Digi R66 802.11b/g mini-PCI module User Manual RCW5600W

Digi International Inc 802.11b/g mini-PCI module RCW5600W

Revised Manual

MiniCore RCM5600W/RCM6600WC-Programmable Wi-Fi Core Modules OEM User’s Manual019–0174_G
MiniCore RCM5600W/RCM6600W User’s ManualPart Number 019-0174    •   Printed in U.S.A.©2012 Digi International Inc.   •   All rights reserved.Digi International reserves the right to make changes andimprovements to its products without providing notice.TrademarksRabbit®, MiniCore®, and Dynamic C® are registered trademarks of Digi International, Inc.Wi-Fi® is a registered trademark of the Wi-Fi Alliance.Rabbit 5000® and MiniCore® are trademarks of Digi International, Inc.The latest revision of this manual is available on the Digi Web site www.digi.com.
TABLE OF CONTENTSChapter 1:  Introduction  11.1 MiniCore Module Variants................................................................................................................... 11.2 RCM5600W/RCM6600W Features ..................................................................................................... 31.3 Advantages of the RCM5600W/RCM6600W...................................................................................... 41.4 Development and Evaluation Tools...................................................................................................... 41.4.1 RCM5600W or RCM6600W Standard Development Kit  ..........................................................41.4.2 RCM5600W or RCM6600W Deluxe Development Kit .............................................................51.4.3 Optional Add-Ons  .......................................................................................................................51.4.4 Software  ......................................................................................................................................61.4.5 Online Documentation  ................................................................................................................61.5 Certifications......................................................................................................................................... 71.5.1 FCC Part 15 Class B  ...................................................................................................................71.5.2 Industry Canada Labeling  ...........................................................................................................91.5.3 Europe  .......................................................................................................................................101.5.4 Japan ..........................................................................................................................................10Chapter 2:  Getting Started  112.1 Install Dynamic C ............................................................................................................................... 112.2 Hardware Connections........................................................................................................................ 122.2.1 Step 1 — Prepare the Interface Board for Development ..........................................................122.2.2 Step 2 — Install Module on Interface Board ............................................................................132.2.3 Step 3 — Connect Antenna .......................................................................................................142.2.4 Step 4 — Connect USB Cable  ..................................................................................................142.3 Run a Sample Program ....................................................................................................................... 162.3.1 Troubleshooting  ........................................................................................................................172.4 Where Do I Go From Here? ............................................................................................................... 182.4.1 Technical Support  .....................................................................................................................18Chapter 3:  Running Sample Programs  193.1 Introduction......................................................................................................................................... 193.2 Sample Programs ................................................................................................................................ 20Chapter 4:  Hardware Reference  234.1 RCM5600W/RCM6600W Digital Inputs and Outputs ...................................................................... 254.1.1 Memory I/O Interface  ...............................................................................................................324.1.2 Other Inputs and Outputs  ..........................................................................................................324.1.3 Analog Inputs  ............................................................................................................................334.2 Serial Communication ........................................................................................................................ 344.2.1 Serial Ports  ................................................................................................................................344.2.2 Programming Port  .....................................................................................................................354.3 Wi-Fi................................................................................................................................................... 36
4.3.1 Antenna Grounding Requirements  ...........................................................................................384.4 Ethernet (RCM6600W and RCM6650W only) .................................................................................  394.5 Programming Modes ..........................................................................................................................  394.5.1 Standalone Operation of the RCM5600W/RCM6600W .......................................................... 404.6 Other Hardware ..................................................................................................................................  414.6.1 Clock Doubler or PLL  .............................................................................................................. 414.6.2 Spectrum Spreader .................................................................................................................... 414.7 Memory ..............................................................................................................................................  424.7.1 SRAM ....................................................................................................................................... 424.7.2 Flash Memory ........................................................................................................................... 424.7.3 Encryption RAM Memory  ....................................................................................................... 42Chapter 5:  Software Reference  435.1 More About Dynamic C.....................................................................................................................  435.2  Dynamic C Function Calls ................................................................................................................  455.2.1 Digital I/O ................................................................................................................................. 455.2.2 Serial Communication Drivers  ................................................................................................. 455.2.3 Serial Flash Memory Use  ......................................................................................................... 465.2.4 User and ID Blocks  .................................................................................................................. 485.2.5 Wi-Fi Drivers ............................................................................................................................ 485.2.6 Interface Board Function Calls ................................................................................................. 495.3 Upgrading Dynamic C .......................................................................................................................  505.3.1 Add-On Modules  ...................................................................................................................... 50Chapter 6:  Using the Wi-Fi Features  516.1 Introduction to Wi-Fi .........................................................................................................................  516.1.1 Infrastructure Mode  .................................................................................................................. 516.1.2 Ad-Hoc Mode ........................................................................................................................... 526.1.3 Additional Information ............................................................................................................. 526.2 Running Wi-Fi Sample Programs ......................................................................................................  536.2.1 Wi-Fi Setup  .............................................................................................................................. 546.2.2 What Else You Will Need  ........................................................................................................ 556.2.3 Configuration Information ........................................................................................................ 566.2.4 Wi-Fi Sample Programs  ........................................................................................................... 596.2.5 RCM5600W/RCM6600W Sample Programs  .......................................................................... 626.3 Dynamic C Wi-Fi Configurations ......................................................................................................  696.3.1 Configuring TCP/IP at Compile Time  ..................................................................................... 696.3.2 Configuring TCP/IP at Run Time ............................................................................................. 736.3.3 Other Key Function Calls ......................................................................................................... 736.4 Where Do I Go From Here?...............................................................................................................  74 Appendix A:  RCM5600W and RCM6600W Specifications 75A.1 Electrical and Mechanical Characteristics ........................................................................................  76A.1.1 mini PCI Express Connector Design Recommendations  ........................................................ 82A.2 Rabbit 5000 Microprocessor Characteristics ....................................................................................  84A.3 Rabbit 6000 Microprocessor Characteristics ....................................................................................  84 Appendix B:  ‘Interface Board 85B.1 Introduction .......................................................................................................................................  86B.1.1 Interface Board Features .......................................................................................................... 87B.2 Mechanical Dimensions and Layout .................................................................................................  88B.2.1 Headers  .................................................................................................................................... 89
B.3 Power Supply ..................................................................................................................................... 90B.4 Using the Interface Board .................................................................................................................. 91B.4.1 Add Additional Boards .............................................................................................................92B.5 Interface Board Jumper Configurations ............................................................................................. 93 Appendix C:  Prototyping Board 95C.1 Introduction ........................................................................................................................................ 96C.1.1 Prototyping Board Features ......................................................................................................96C.2 Mechanical Dimensions and Layout.................................................................................................. 97C.2.1 Headers  .....................................................................................................................................99C.3 Using the Prototyping Board............................................................................................................ 100C.3.1 Add Additional Boards ...........................................................................................................101 Appendix D:  Digital I/O Accessory Board 103D.1 Introduction...................................................................................................................................... 104D.1.1 Digital I/O Accessory Board Features  ...................................................................................104D.2 Mechanical Dimensions and Layout................................................................................................ 105D.2.1 Headers ...................................................................................................................................106D.3 Using the Digital I/O Accessory Board ........................................................................................... 107D.3.1 Configuration  .........................................................................................................................108D.3.2 Add Additional Boards ...........................................................................................................110 Appendix E:  Serial Communication Accessory Board 111E.1 Introduction ...................................................................................................................................... 112E.1.1 Serial Communication Accessory Board Features .................................................................112E.2 Mechanical Dimensions and Layout ................................................................................................ 113E.2.1 Headers  ...................................................................................................................................114E.3 Using the Serial Communication Accessory Board ......................................................................... 115E.3.1 Configuration ..........................................................................................................................116E.3.2 Add Additional Boards ...........................................................................................................118 Appendix F:  Power Supply 119F.1 Power Supplies ................................................................................................................................. 119F.1.1 Battery Backup ........................................................................................................................120F.1.2 Battery-Backup Circuit  ...........................................................................................................121F.1.3 Reset Generator .......................................................................................................................121F.1.4 Onboard Power Supplies .........................................................................................................122
OEM User’s Manual 11.  INTRODUCTIONThe RCM5600W and RCM6600W MiniCore modules provide a compact module in a mini PCI Express form factor with integrated Wi-Fi/802.11b/g functionality to allow you to create a low-cost, low-power, Wi-Fi based control and communications solution for your embed-ded system.The RCM6600W allows use of Ethernet as well as Wi-Fi, which opens up many possibili-ties for embedded systems which require wireless as well as traditional, wired, connectiv-ity.A Development Kit is available with the essentials that you need to design your own microprocessor-based system, and includes a complete Dynamic C software development system. The Development Kit also contains an Interface Board with a USB connection that will allow you to evaluate the RCM5600W/RCM6600W, and a Prototyping Board to help you to develop your own applications. You will also be able to write and test software for the RCM5600W/RCM6600W modules, including Wi-Fi applications.The RCM5600W has a Rabbit 5000 microprocessor operating at up to 73.73 MHz, flash memory, two clocks (main oscillator and real-time clock), and the circuitry necessary to reset and manage the Rabbit 5000. An edge connector brings out the RCM5600W user interface to a 52-pin mini PCI Express socket on the motherboard the module is mounted on.The RCM6600W is similar to the RCM5600W, except that it has a Rabbit 6000 micropro-cessor operating at up to 162.5 MHz. The Rabbit 6000 has 1MB of internal fast RAM, and it is also possible to use Wi-Fi and Ethernet simultaneously. The RCM6600W also permits four of the edge connector pins (PE0-3) to be selectively configured as analog inputs.The RCM5600W/RCM6600W module receives its +3.3 V power from the motherboard on which it is mounted. The module can interface with other CMOS-compatible digital devices through the motherboard.1.1  MiniCore Module VariantsThis document describes four MiniCore module variants. The RCM5600W is based on the Rabbit 5000 microprocessor, whereas the RCM6600W is based on the Rabbit 6000 and it includes Ethernet as well as Wi-Fi. There are also two minor variants, the RCM5650W and the RCM6650W. These variants add a larger serial flash memory (4MB instead of 1MB) but are otherwise almost identical to their -00W siblings.
2 MiniCore RCM5600W/RCM6600WUnless otherwise noted, references to the RCM5600W also apply to the RCM5650W, and references to the RCM6600W also apply to the RCM6650W. The term “MiniCore” refers to any of these variants, as appropriate to the context, as does the term “RCM5600W/RCM6600W”.
OEM User’s Manual 31.2  RCM5600W/RCM6600W Features•Small size: 1.20" × 2.00" × 0.40"(30 mm × 51 mm × 10 mm) •Microprocessor: Rabbit 5000 running at 73.73 MHz, or Rabbit 6000 running at 162.5 MHz (as well as lower multiples of 25MHz).•Up to 35 general-purpose I/O lines each configurable with up to four alternate functions•On the RCM6600W: four I/O lines may be selected as analog inputs, in pairs.•3.3 V I/O lines•Six CMOS-compatible serial ports — four ports are configurable as a clocked serial port (SPI), and two ports are configurable as SDLC/HDLC serial ports.•Airoha single-chip 802.11b/g transceiver•External I/O bus can be configured for 8 data lines, 8 address lines (shared with parallel I/O lines), and I/O read/write•1MB SRAM and 1MB serial flash memory (4MB serial flash memory on the RCM5650W/RCM6650W)•Battery-backable real-time clock•Watchdog supervisorCurrently there are four production models. Table 1 summarizes their main features.Table 1.  RCM5600W, RCM5650W, RCM6600W and RCM6650W FeaturesFeature RCM5600W RCM5650W RCM6600W RCM6650WMicroprocessor Rabbit® 5000 at 73.73 MHz Rabbit® 6000 at 162.5 MHzSRAM 1MB (external for Rabbit 5000, internal for Rabbit 6000)Serial Flash Memory (program) 1MB 4MB 1MB 4MBSerial Ports6 shared high-speed, CMOS-compatible ports:6 are configurable as asynchronous serial ports;4 are configurable as clocked serial ports (SPI);2 are configurable as SDLC/HDLC serial ports;1 asynchronous serial port is used during programmingWi-Fi 802.11b/g standard, ISM 2.4 GHzEthernet Not available Available on edge connectorThe RCM5600W/RCM6600W is programmed through a USB connector on the mother-board using a USB cable supplied with the Development Kit. The RCM5600W/RCM6600W may also be programmed remotely using the Remote Program Update library with Dynamic C v. 10.54 or later (v. 10.68 for the RCM6600W). See Application Note AN421, Remote Program Update, for more information.
4 MiniCore RCM5600W/RCM6600WNOTE:  The RabbitLink cannot be used to program the RCM5600W/RCM6600W.Appendix A provides detailed specifications for the RCM5600W/RCM6600W.1.3  Advantages of the RCM5600W/RCM6600W•Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-processor core.•Competitive pricing when compared with the alternative of purchasing and assembling individual components.•Easy C-language program development and debugging•Rabbit Field Utility to download compiled Dynamic C .bin files.•Generous memory size allows large programs with tens of thousands of lines of code, and substantial data storage.1.4  Development and Evaluation Tools1.4.1  RCM5600W or RCM6600W Standard Development KitThe RCM5600W or RCM6600W Standard Development Kits contains the hardware essentials you will need to use your RCM5600W or RCM6600W module. These items are supplied in the standard versions of the Development Kit.•RCM5600W or RCM6600W module.•2.4 GHz dipole antenna with mounting bracket and U.FL to RP-SMA connector cable.•Interface Board with standoffs/connectors.•Prototyping Board with standoffs/connectors.•USB cable to program the module via Interface Board.•Dynamic C CD-ROM, including product documentation on disk.•Getting Started instructions.•Registration card.
Rabbit, Dynamic C, and Digi are registered trademarks of Digi International Inc.MiniCore RCM5600WThe RCM5600W MiniCore module provides a compact module in a mini PCI Express form factor with integrated Wi-Fi/802.11b/g functionality to allow you to create a low-cost, low-power, Wi-Fi based control and communications solution for your embedded system. These Getting Started instruc-tions included with the Development Kit will help you get your RCM5600W up and running so that you can run the sample programs to explore its capabilities and develop your own applications.Development Kit ContentsThe RCM5600W Standard Development Kit contains the following items• RCM5600W module.• 2.4 GHz dipole antenna with mounting bracket and RP-SMA connector cable.• Interface Board with standoffs/connectors.• Prototyping Board with standoffs/connectors.• USB cable to program RCM5600W via Interface Board.•Dynamic C®CD-ROM, with complete product documentation on disk.•Getting Started instructions.• Registration card.Visit our online Rabbit store at www.rabbit.com/store/ for the latest information on peripherals and accessories that are available for the RCM5600W MiniCore modules.Step 1 — Install Dynamic C®Before doing any development, you must install Dynamic C. Insert the CD from the Development Kit in your PC’s CD-ROM drive. If the installation does not auto-start, run the setup.exe  program in the root directory of the Dynamic C CD. Install any Dynamic C modules after you install Dynamic C.CAUTION: Provide ESD protection such as smocks and grounding straps on your footwear while assembling the RCM5600W module, installing it on another board, and while making or removing any connections.OEM User’s Manual 5Figure 1.  RCM5600W/RCM6600W Standard Development Kit1.4.2  RCM5600W or RCM6600W Deluxe Development KitIn addition to the items included in the standard Development Kit, the Deluxe Develop-ment Kit contains the following items.•Universal AC adapter, 5 V DC, 2 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs). Development Kits sold in North America may contain an AC adapter with only a North American style plug.•Digital I/O and Serial Communication accessory boards for use with certain sample programs.•DB9 to 10-pin header serial cable.•Rabbit 5000 or Rabbit 6000 Processor Easy Reference poster.1.4.3  Optional Add-OnsRabbit has a power supply and an Antenna Add-On Kit available for the RCM5600W/RCM6600W.•Separate power supply (Part No. 101-1273)The universal AC adapter is available for customers who purchased the Standard Development Kit. This universal AC adapter may be used if your RCM5600W/RCM6600W does not work when you power it through the USB cable, and you do not have your own +5 V DC power supply.•Antenna Add-On Kit (Part No. 101-1295)2.4 GHz dipole antennaU.FL to RP-SMA connector cable
6 MiniCore RCM5600W/RCM6600WRCM5600W or RCM6600W modules purchased individually or in production quanti-ties do not come with an antenna or a connector cable. The Antenna Add-On Kit pro-vides a convenient source of these items.Visit our Web site at www.digi.com or contact your Rabbit sales representative or authorized distributor for further information.1.4.4  SoftwareThe RCM5600W is programmed using version 10.50 or later of Dynamic C; the RCM5650W requires version 10.60 or later of Dynamic C; and the RCM6600W or RCM6650W require version 10.68 or later. A compatible version is included on the Development Kit CD-ROM. This version of Dynamic C includes the popular µC/OS-II real-time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and the Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library.In addition to the Web-based technical support included at no extra charge, a one-year telephone-based technical support subscription is also available for purchase. Visit our Web site at www.digi.com for further information and complete documentation, or contact your Rabbit sales representative or authorized distributor1.4.5  Online DocumentationThe online documentation is installed along with Dynamic C, and an icon for the docu-mentation menu can be placed on the workstation’s desktop. Double-click this icon to reach the menu. If the icon is missing, use your browser to find and load default.htm in the docs folder, found in the Dynamic C installation folder.The latest versions of all documents are always available for free, unregistered download from our Web sites as well.
OEM User’s Manual 71.5  CertificationsOnly RCM5600W/RCM6600W modules bearing the FCC certification are certified for use in Wi-Fi enabled end devices, and any applications must have been compiled using Dynamic C v. 10.50 or later (RCM5650W applications must have been compiled using Dynamic C v. 10.60 or later; and RCM6600W or RCM6650W applications with v. 10.68 or later). The certification is valid only for RCM5600W, RCM5650W, RCM6600W or RCM6650W modules equipped with the dipole antenna that is included with the modules, or a detachable antenna with a 60 cm coaxial cable (Digi International part number 29000105). Follow the antenna grounding recommendations provided in Section 4.3.1. Changes or modifications to this equipment not expressly approved by Digi International may void the user's authority to operate this equipment.In the event that these conditions cannot be met, then the FCC certification is no longer considered valid and the FCC ID can not be used on the final product. In these circum-stances, the systems integrator or end-user will be responsible for re-evaluating the end device (including the transmitter) and obtaining a separate FCC certification.NOTE: Any regulatory certification is voided if the RF shield on the module is removed.1.5.1  FCC Part 15 Class BThe RCM5600W, RCM5650W, RCM6600W and RCM6650W MiniCore modules have been tested and found to comply with the limits for Class B digital devices pursuant to Part 15 Subpart B, of the FCC Rules. These limits are designed to provide reasonable pro-tection against harmful interference in a residential environment. This equipment gener-ates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio commu-nications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television recep-tion, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures:•Reorient or relocate the receiving antenna.•Increase the separation between the equipment and the receiver.•Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.•Consult the dealer or an experienced radio/TV technician for help.
8 MiniCore RCM5600W/RCM6600WLabeling Requirements (FCC 15.19)       RCM5600/5650WFCC ID: MCQ-MCWIFIThis device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:(1) this device may not cause harmful interference, and(2) this device must accept any interference received, including interference that may cause undesired operation.    RCM6600/6650WFCC ID: MCQ-R66This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:(1) this device may not cause harmful interference, and(2) this device must accept any interference received, including interference that may cause undesired operation.If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module or the device must be capable of displaying the FCC identification number electronically. This exterior label can use wording such as the following: •Contains Transmitter Module FCC ID: MCQ-MCWIFI •Contains FCC ID: MCQ-MCWIFI•Contains FCC ID: MCQ-R66 for RCM6600/RCM6650W. Any similar wording that expresses the same meaning may be used.The following caption must be included with documentation for any device incorporating the MiniCore modules described herein.Caution — Exposure to Radio-Frequency Radiation.To comply with FCC RF exposure compliance requirements, for mobile configurations, a separation distance of at least 20 cm must be maintained between the antenna of this device and all persons. This device must not be co-located or operating in conjunction with any other antenna or transmitter.
OEM User’s Manual 91.5.2  Industry Canada LabelingIC: 1846A-MCWIFI RCM5600WDIGI INTLThis Class B digital apparatus complies with Canadian standard ICES-003.Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.RCM5600WIC: 1846A-MCWIFI RCM5650WDIGI INTLThis Class B digital apparatus complies with Canadian standard ICES-003.Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.RCM5650WRCM6600WIC: 1846-R66 RCM6600WDIGI INTLThis Class B digital apparatus complies with Canadian standard ICES-003.Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.RCM6650WIC: 1846-R66 RCM6650WDIGI INTLThis Class B digital apparatus complies with Canadian standard ICES-003.Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.
10 MiniCore RCM5600W/RCM6600W1.5.3  EuropeThe marking shall include as a minimum:•the name of the manufacturer or his trademark;•the type designation;•equipment classification, (see below).Receiver Class Risk Assessment of Receiver Performance1Highly reliable SRD communication media, e.g., serving human life inherent systems (may result in a physical risk to a person).2Medium reliable SRD communication media, e.g., causing inconvenience to persons that cannot be overcome by other means.3Standard reliable SRD communication media,e.g., inconvenience to persons that can simply be overcome by other means.NOTE: Manufacturers are recommended to declare the classification of their devices in accordance with Table 2 and EN 300 440-2 [5] clause 4.2, as relevant. In particular, where an SRD that may have inherent safety of human life implications, manufacturers and users should pay particular attention to the potential for interference from other systems operating in the same or adjacent bands.Regulatory MarkingThe equipment shall be marked, where applicable, in accordance with CEPT/ERC Rec-ommendation 70-03 or Directive 1999/5/EC, whichever is applicable. Where this is not applicable, the equipment shall be marked in accordance with the National Regulatory requirements.The MiniCore module has been tested and found to comply with:•EN 300 328 v1.7.1•EN 301 489-1 v1.8.1•EN 301 489-17 v1.3.2 standards.1.5.4  JapanRCM5600W and RCM5650Wmodules are certified for use in Japan under Article 2-1-19. The Acceptance Number is 003WWA090869.
OEM User’s Manual 112.  GETTING STARTEDThis chapter describes the RCM5600W/RCM6600W hardware in more detail, and explains how to set up and use the accompanying Interface Board.NOTE: This chapter (and this manual) assume that you have the RCM5600W or RCM6600W Development Kit. If you purchased a MiniCore module by itself, you will have to adapt the information in this chapter and elsewhere to your test and develop-ment setup.2.1  Install Dynamic CTo develop and debug programs for the RCM5600W/RCM6600W modules (and for all other Rabbit hardware), you must install and use Dynamic C.If you have not yet installed Dynamic C version 10.50 (or version 10.68 for an RCM6600W, or a later version), do so now by inserting the Dynamic C CD from the Development Kit in your PC’s CD-ROM drive. If autorun is enabled, the CD installation will begin automatically.If autorun is disabled or the installation does not start, use the Windows Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder of the CD-ROM.The installation program will guide you through the installation process. Most steps of the process are self-explanatory.Once your installation is complete, you will have up to three new icons on your PC desk-top. One icon is for Dynamic C, another opens the documentation menu, and the third is for the Rabbit Field Utility, a tool used to download precompiled software to a target system.If you have purchased any of the optional Dynamic C modules, install them after installing Dynamic C. The modules may be installed in any order. You must install the modules in the same folder where Dynamic C was installed.
12 MiniCore RCM5600W/RCM6600W2.2  Hardware ConnectionsThere are four steps to connecting the Interface Board for use with Dynamic C and the sample programs:1. Insert standoffs/connectors on the Interface Board.2. Install the MiniCore module on the Interface Board.3. Connect antenna.4. Connect the USB cable between the Interface Board and the workstation PC.CAUTION: Provide ESD protection such as smocks and grounding straps on your footwear.while assembling the module, installing it on another board, and while making or removing any connections.Remember to use ESD protection regardless of whether you are working with the  module on the Interface Board or in your own OEM application.2.2.1  Step 1 — Prepare the Interface Board for DevelopmentInsert a short plastic standoff supplied from the Development Kit in one of the corner holes from the bottom of the Interface Board, then secure it with a long plastic standoff from above as shown in Figure 2. Repeat this step so that plastic standoffs/connectors are in place at three positions and the antenna bracket is at the fourth position.Figure 2.  Insert Standoffs/Connectors
OEM User’s Manual 132.2.2  Step 2 — Install Module on Interface BoardPosition the RCM5600W/RCM6600W module with the edge connectors facing the mini PCI Express socket J1A at an angle as shown in Figure 3 below. Insert the edge connectors into the mini PCI Express socket J1A, then press down on the opposite edge of the module to snap it into place in holder J1B.InterfaceBoardJ1AJ1BJ1BRCM5600WRCM5600WJ1AFigure 3.  Install the RCM5600W/RCM6600W Module on the Interface BoardShould you need to remove the module, use two fingernails to hold back the spring clip at J1B from the two module corners, lift up the edge of the module above J1B, then pull the module away to remove the edge connectors from the mini PCI Express socket.J1BCAUTION: Remove power before attempting to insert or remove the RCM5600W/RCM6600W in the mini PCI Express socket.
14 MiniCore RCM5600W/RCM6600W2.2.3  Step 3 — Connect AntennaInstall the antenna U.FL to RP-SMA connector cable in the bracket using two lockwashers and the nut as shown in the insert in Figure 4. Connect the wire to connector P1 on the RCM5600W/RCM6600W, then attach the antenna to the antenna RP-SMA connector.RESET   JP143216578Power LED JP2ToPC USB portJ5Connectwire to P1nutlockwashersCAUTION:  Do not remove the RF shieldsince any attempt to remove the shieldwill damage the RF circuits underneath it.Any regulatory certification is voidedif the RF shield on the RCM5600Wmodule is removed.Figure 4.  Connect Antenna and USB CableAlternate Antenna Connector Cable InstallationIf you prefer, you may solder the RP-SMA antenna connector directly to the Interface Board at P1 as shown in the diagram at right. Before doing so, make sure that you use a long plastic standoff instead of the an-tenna bracket. Then connect the wire to connector P1 on the RCM5600W/RCM6600W, and at-tach the antenna to the RP-SMA connector.P12.2.4  Step 4 — Connect USB CableThe USB cable connects the RCM5600W/RCM6600W to the PC running Dynamic C to download programs and to monitor the module during debugging. It also supplies power to the Interface Board and the MiniCore via the USB interface.Connect the USB cable between USB connector J5 on the Interface Board and your PC as shown in Figure 4. Note that the USB cable connectors are different at either end, so there is only one way to connect them between the PC and the Interface Board.
OEM User’s Manual 15Your PC should recognize the new USB hardware, and the LEDs next to the USB connec-tor on the Interface Board will flash — if you get an error message, you will have to install USB drivers. Drivers for Windows XP are available in the Dynamic C Drivers\Rabbit USB Programming Cable\WinXP_2K folder — double-click DPInst.exe to install the USB drivers. Drivers for other operating systems are available online at www.ftdichip.com/Drivers/VCP.htm.The green power LED on the Interface Board should light up when you connect the USB cable. The RCM5600W/RCM6600W and the Interface Board are now ready to be used.NOTE: A RESET button is provided on the Interface Board to allow a hardware reset without disconnecting power.NOTE: Pins 1–2 on header JP1 on the Interface Board must be jumpered to download and debug applications and sample programs with Dynamic C running. Pins 1–2 should be left unjumpered to run an program already loaded in flash memory.CAUTION: Do not jumper pins 1–3 on header JP1 on the Interface Board.Alternate Power Supply Connections — Deluxe Development KitThe deluxe Development Kit contains a separate AC adapter that may be used to supply power to the Interface Board and the RCM5600W/RCM6600W when the USB cable is not connected or when more power is needed than the USB cable is able to supply. The AC adapter may also be used to supply power when the USB cable is connected, in which case the power supply through the USB cable will be disconnected automatically. Figure 5.  Alternate Power Supply Connections—Deluxe Development Kit
16 MiniCore RCM5600W/RCM6600WFirst, prepare the AC adapter for the country where it will be used by selecting the plug. The deluxe Development Kit presently includes Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the top of the plug assembly into the slot at the top of the AC adapter as shown in Figure 5, then press down on the spring-loaded clip below the plug assembly to allow the plug assembly to click into place. Release the clip to secure the plug assembly in the AC adapter.Connect the AC adapter to DC input jack J6 on the Interface Board as shown in Figure 5. Plug in the AC adapter. The green power LED on the Interface Board should light up. The RCM5600W/RCM6600W and the Interface Board are now ready to be used.Note that the center pin of J6 is positive.2.3  Run a Sample ProgramIf you already have Dynamic C installed, you are now ready to test your programming connections by running a sample program. Start Dynamic C by double-clicking on the Dynamic C icon on your desktop or in your Start menu. Select the “Communications” tab in the Dynamic C Options > Project Options menu and verify that Use USB to Serial Converter is selected to support the USB cable. Choose Store Program in RAM on the “Compiler” tab for faster compiling when running sample programs. Click OK.You may have to select the COM port assigned to the USB USB cable on your PC. In Dynamic C, select Options > Project Options, then select this COM port on the “Com-munications” tab, then click OK.Now find the WIFISCAN.C sample program in the Dynamic C Samples\WiFi folder, open it with the File menu, then compile and run the sample program by pressing F9.The Dynamic C STDIO window will display Starting scan...., and will display a list of access points/ad-hoc hosts similar to the one shown here.The following fields are shown in the Dynamic C STDIO window.•Channel—the channel the access point is on (1–11).•Signal—the signal strength of the access point.•MAC—the hardware (MAC) address of access point.•Access Point SSID—the SSID the access point is using.
OEM User’s Manual 172.3.1  TroubleshootingIt may be possible that your PC or laptop is unable to deliver enough current through the USB connection if you are not using a separate power supply. The RCM5600W/RCM6600W will not operate in this case, and the solution is to use a sepa-rate 5 V power supply as described in the Alternate Power Supply Connections section. Contact Technical Support (see Section 2.4.1) or visit our Web site if you would like to get the universal AC adapter from the Deluxe Development Kit.If you receive the message Could Not Open Serial Port, check that the COM port assigned to the USB cable was identified and set up in Dynamic C as described above. This same error occurs when Windows has already allocated the COM port to another process.If you receive the message No Rabbit Processor Detected, the USB cable may be connected to the wrong COM port, or the connection may be faulty. First, check both ends of the USB cable to ensure that it is firmly plugged into the PC and the USB connec-tor in the Interface Board. Ensure that the module is firmly and correctly installed in its connector on the Interface Board.If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-cation error message when you compile and load a sample program, it is possible that your PC cannot handle the higher program-loading baud rate. Try changing the maximum download rate to a slower baud rate as follows.•Locate the Serial Options dialog on the “Communications” tab in the Dynamic C Options > Project Options menu. Select a slower Max download baud rate. Click OK to save.If a program compiles and loads, but then loses target communication before you can begin debugging, it is possible that your PC cannot handle the default debugging baud rate. Try lowering the debugging baud rate as follows.•Locate the Serial Options dialog on the “Communications” tab in the Dynamic C Options > Project Options menu. Choose a lower debug baud rate. Click OK to save.Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. You should receive a BIOS successfully compiled message once this step is completed successfully.
18 MiniCore RCM5600W/RCM6600W2.4  Where Do I Go From Here?If the sample program ran fine, you are now ready to go on to other sample programs and to develop your own applications. The source code for the sample programs is provided to allow you to modify them for your own use. The RCM5600W/RCM6600W User’s Manual also provides complete hardware reference information for the RCM5600W/RCM6600W, the Interface Board, the Prototyping Board, and the accessory boards in the Deluxe Development Kit.For advanced development topics, refer to the Dynamic C User’s Manual, also in the online documentation set.2.4.1  Technical SupportNOTE: If you purchased your RCM5600W/RCM6600W through a distributor or through a Rabbit partner, contact the distributor or partner first for technical support.If there are any problems at this point:•Use the Dynamic C Help menu to get further assistance with Dynamic C.•Support for Rabbit Products forum at forums.digi.com•File a support request by going to www.digi.com, and selecting Support / Online Sup-port Request.
OEM User’s Manual 193.  RUNNING SAMPLE PROGRAMSTo develop and debug programs for MiniCore modules (and for all other Rabbit hard-ware), you must install and use Dynamic C. This chapter provides a tour of its major fea-tures with respect to the RCM5600W/RCM6600W.3.1  IntroductionTo help familiarize you with the Wi-Fi enabled MiniCore modules, Dynamic C includes several sample programs. Loading, executing and studying these programs will give you a solid hands-on overview of the MiniCore’s capabilities, as well as a quick start with Dynamic C as an application development tool.NOTE: The sample programs assume that you have at least an elementary grasp of ANSI C. If you do not, see the introductory pages of the Dynamic C User’s Manual for a sug-gested reading list.In order to run the sample programs discussed in this chapter and elsewhere in this manual,1. Your MiniCore must be installed on the Interface Board as described in Chapter 2, “Getting Started.”2. Dynamic C must be installed and running on your PC.3. The USB cable must connect the Interface Board to your PC.4. Power must be applied to the MiniCore through the Interface Board.Refer to Chapter 2, “Getting Started,” if you need further information on these steps.To run a sample program, open it with the File menu (if it is not still open), then compile and run it by selecting Run in the Run menu (or press F9). The MiniCore must be in Pro-gram Mode (see Figure 14) and must be connected to a PC using the USB cable.Complete information on Dynamic C is provided in the Dynamic C User’s Manual.
20 MiniCore RCM5600W3.2  Sample ProgramsOf the many sample programs included with Dynamic C, several are specific to the RCM5600W or RCM6600W. These programs will be found in the SAMPLES\RCM5600W and SAMPLES\RCM6600W folders respectively. Sample programs in the SAMPLES folder one level up are generic samples that can be run on any Rabbit-based product.Before you compile and run the fol-lowing sample programs, make sure that pins 1–2, 5–6, and 7–8 on header JP1 of the Interface Board are jumpered. The pins on header JP2 must also be jumpered. Each sample program has comments that describe the purpose and function of the program. Follow the instructions at the beginning of the sample program.CAUTION: Do not jumper pins 1–3 on header JP1 on the Inter-face Board.   JP143216578JP2•FLASHLED.C—demonstrates the use of costatements to flash LED DS1 on the Inter-face Board. PD0 on the MiniCore is used to drive the LED.•TOGGLESWITCH.C—monitors switch S1 and LED DS1 on the  Interface Board. LED DS1 on the Interface Board is turned on and off when you press switch S1. PD0 on the MiniCore is used to drive the LED, and PD1 detects the activity on switch S1.
OEM User’s Manual 21The Digital I/O accessory board may also be used to run the TOGGLESWITCH.C and the SERIALTOSERIAL.C sample programs. This accessory board is included only with the Deluxe Development Kit.To install the Digital I/O accessory board, insert the strip of header pins included with the accessory board into the socket at J12 on the bottom side of the Digital I/O accessory board. Then line up the Digital I/O accessory board with the Interface Board standoffs/connectors and install the Digital I/O accessory board pins into socket J2 on the Interface Board. Secure the Digital I/O accessory board with the long plastic standoffs/connectors from above as shown in Figure 6—note that one plastic standoff/connector needs to be inserted “upside down” to secure the Digital I/O accessory board to the antenna bracket.   JP5JP84321657843216578JP7Install header connector stripin bottom socketFigure 6.  Install Digital I/O Accessory Board Pins 1–2, 3–4, 5–6, and 7–8 on headers JP5 and JP8 on the Digital I/O accessory board must be jumpered. Pins 2–4 and 3–5 on header JP7 on the Digital I/O accessory board must also be jumpered.Uncomment the following line in the sample programs when you are using the Digital I/O accessory board.#define DIGITAL_IO_ACCESSORY•TOGGLESWITCH.C—monitors switches S1, S2, S3, and S4 on the Digital I/O acces-sory board and lights LEDs DS1–DS4 when the corresponding pushbutton switch is pressed. LEDs DS1–DS2 on the Digital I/O accessory board are controlled by PA4–PA7, and switches S1–S4 are controlled by PB4–PB7 respectively.
22 MiniCore RCM5600WThe SERIALTOSERIAL.C sample program is in the SAMPLES\RCM5600W\SERIAL folder.•SERIALTOSERIAL.C—monitors switches S1, S2, S3, and S4 on the Digital I/O acces-sory board and lights LEDs DS1–DS4 when the corresponding pushbutton switch is pressed. LEDs DS1–DS2 on the Digital I/O accessory board are controlled by PA4–PA7, and switches S1–S4 are controlled by PB4–PB7 respectively. The sample program sends messages from Serial Port B to Serial Port C to indicate that a switch was pressed. Messages received by Serial Port C are displayed in Dynamic C’s STDIO window.Before you compile and run this sample program, you will need to connect J2 pin 19 (PC0/TxD) to J2 pin 22 (PC3/RxC) or the correspond-ing holes on P2.P2J2If you are using the Serial Communi-cation accessory board, you should connect pin 3 (TXD) on header J3 to pin 5 (RXC) on header J4 instead.
OEM User’s Manual 234.  HARDWARE REFERENCEChapter 4 describes the hardware components and principal hardware subsystems of the MiniCores. Appendix A, “RCM5600W and RCM6600W Specifications,” provides com-plete physical and electrical specifications.Figure 7 shows the Rabbit-based subsystems designed into the RCM5600W.RCM5600WMiniCore ModuleRABBIT ®5000+3.3 VCMOS-levelsignalsCustomer-specificapplicationsReal-TimeClockMainClockSRAMSerialFlashWi-FiFigure 7.  RCM5600W Subsystems
24 MiniCore RCM5600W/RCM6600WFigure 8 shows the Rabbit-based subsystems designed into the RCM5600W.Ethernet6Analog  CMOS-level / Analog6Figure 8.  RCM6600W Subsystems
OEM User’s Manual 254.1  RCM5600W/RCM6600W Digital Inputs and OutputsFigure 9 shows the RCM5600W pinouts for the edge connector.GNDn.c.n.c.LNKPE0PE2PE5PE7PD0PD2PC0PC2PC4/TxBPB0/SCLKPB2PB4PB6PA0PA2PA4PA6/IORD/IOWRSTATUSSMODEGND151252+3.3 Vn.c.n.c.ACTPE1PE3PE6/RESET_INPD1PD3PC1PC3PC5/RxB/RESETPB3PB5PB7PA1PA3PA5PA7VBAT_EXTPB1/CLKAPC6/TxAPC7/RxA+3.3 VBottom Topn.c. = not connectedFigure 9.  RCM5600W Pinouts
26 MiniCore RCM5600W/RCM6600WFigure 10 shows the RCM6600W pinouts for the edge connector.Figure 10.  RCM6600W PinoutsThe edge connectors are designed to interface with a 52-pin mini PCI Express socket.Figure 11 shows the use of the Rabbit 5000 microprocessor ports in the RCM5600W/RCM5650W modules.
RABBIT ®5000Port A Port B Port DPort EPA0PA7 PB0PB7PE0PE3PE5PE7PD0PD3/RESET/IORD/IOWRWatchdog11 TimersClock DoublerSlave PortReal-Time ClockBackup BatterySupportMisc. I/O/RESET_INPort C(Serial Ports B, C & D)ProgrammingPort(Serial Port A)PB1, PC6, STATUSPC0, PC2, PC4PC1, PC3, PC5Serial Ports E & FPC7, /RESET_IN,SMODE0, SMODE1Memory & I/OInterfaceRAMWi-FiOEM User’s Manual 27Figure 11.  Use of Rabbit 5000 PortsFigure 12 shows the use of the Rabbit 6000 microprocessor ports in the RCM6600W/RCM6650W modules.Figure 12.  Use of Rabbit 5000 PortsThe ports on the Rabbit 5000 microprocessor used in the RCM5600W/RCM5650W are configurable, and so the factory defaults can be reconfigured. Table 2 lists the Rabbit 5000/ 6000 factory defaults and the alternate configurations.Table 2.  RCM5600W/RCM6600W Pinout Configurations Pin Pin Name Default Use Alternate Use Notes1GND
28 MiniCore RCM5600W/RCM6600W2+3.3 V3Ethernet Tx +EthernetRCM6600W only (no connect on RCM5600W)4Ethernet Rx +5Ethernet Tx -6Ethernet Rx -7LNK Combined link and activity on RCM6600W8ACT/2.5V 2.5V source on RCM6600W9PE0PE0/AIN0 Input/OutputI/O Strobe I0A20Timer C0TCLKFINT0QRD1BConfigurable as analog input on RCM6600W, as a pair with PE1/AIN110 PE1PE1/AIN1 Input/OutputI/O Strobe I1A21Timer C1RXD/RCLKFINT1QRD1AInput CaptureConfigurable as analog input on RCM6600W, as a pair with PE0/AIN011 PE2PE2/AIN2 Input/OutputI/O Strobe I2A22Timer C2TXFDREQ0QRD2BConfigurable as analog input on RCM6600W, as a pair with PE3/AIN312 PE3PE3/AIN3 Input/OutputI/O Strobe I3A23Timer C3RXC/RXF/SCLKDDREQ1QRD2AInput CaptureConfigurable as analog input on RCM6600W, as a pair with PE2/AIN2Table 2.  RCM5600W/RCM6600W Pinout Configurations (continued)Pin Pin Name Default Use Alternate Use Notes
OEM User’s Manual 2913 PE5 Input/OutputI/O Strobe I5INT1PWM1RXB/RCLKEInput Capture14 PE6 Input/OutputI/O Strobe I6PWM2TXEDREQ0Serial Port E15 PE7 Input/OutputI/O Strobe I7PWM3RXA/RXE/SCLKCDREQ1Input Capture16 /RESET_IN Input Input to Reset Generator17 PD0 Input/OutputI/O Strobe I0Timer C0D8INT0SCLKD/TCLKFQRD1B18 PD1 Input/OutputIA6I/O Strobe I1Timer C1D9INT1RXD/RCLKFQRD1AInput CaptureTable 2.  RCM5600W/RCM6600W Pinout Configurations (continued)Pin Pin Name Default Use Alternate Use Notes
30 MiniCore RCM5600W/RCM6600W19 PD2 Input/OutputI/O Strobe I2Timer C2D10DREQ0TXF/SCLKCQRD2BSerial Port F20 PD3 Input/OutputIA7I/O Strobe I3Timer C3D11DREQ1RXC/RXFQRD2AInput Capture21 PC0 Input/OutputTXDI/O Strobe I0Timer C0TCLKFSerial Port D22 PC1 Input/OutputRXD/TXDI/O Strobe I1Timer C1RCLKFInput Capture23 PC2 Input/OutputTXC/TXFI/O Strobe I2Timer C2 Serial Port C24 PC3 Input/OutputRXC/TXC/RXFI/O Strobe I3Timer C325 PC4*Input/OutputTXBI/O Strobe I4PWM0Serial Port Bwith PB0, used for serial flash and Wi-Fi signal strength26 PC5*Input/OutputRXB/TXBI/O Strobe I5PWM127 PB0*Input/OutputSCLKBExternal I/O Address IA6SCLKB (used by serial flash) with PC4, PC5, used for serial flash and Wi-Fi signal strengthTable 2.  RCM5600W/RCM6600W Pinout Configurations (continued)Pin Pin Name Default Use Alternate Use Notes
OEM User’s Manual 3128 /RESET Reset output Reset inputReset output from Reset Generator or external reset input29 PB2 Input/Output/SWRExternal I/O Address IA030 PB3 Input/Output/SRDExternal I/O Address IA131 PB4 Input/OutputSA0External I/O Address IA232 PB5 Input/OutputSA1External I/O Address IA333 PB6 Input/Output/SCSExternal I/O Address IA434 PB7 Input/Output/ S L AVAT NExternal I/O Address IA535–42 PA[0:7] Input/OutputSlave port data bus(SD0–SD7)External I/O data bus(ID0–ID7)43 /IORD Output  External I/O read strobe44 VBAT_EXT Battery input45 /IOWR Output  External I/O write strobe46 PB1*Input/OutputSCLKAExternal I/O Address IA7Programming port SCLKA47 STATUS*Output Programming portTable 2.  RCM5600W/RCM6600W Pinout Configurations (continued)Pin Pin Name Default Use Alternate Use Notes
32 MiniCore RCM5600W/RCM6600W4.1.1  Memory I/O InterfaceThe Rabbit 5000 address lines (A0–A19) and data lines (D0–D7) are routed internally to the onboard SRAM, and the Rabbit 6000 has internal RAM as well as external RAM (RCM6650W only). I/O write (/IOWR) and I/O read (/IORD) are available for interfacing to external devices.Parallel Port A can be used as an external I/O data bus. Parallel Port B pins PB2–PB7 can also be used as an external I/O address bus.When using the external I/O bus for any other reason, you must add the following line at the beginning of your program.#define PORTA_AUX_IO    // required to enable external I/O busSelected pins on Parallel Ports D and E as specified in Table 2 may be used for input capture, quadrature decoder, DMA, and pulse-width modulator purposes.4.1.2  Other Inputs and OutputsThe status, /RESET_IN, and SMODE I/O are normally associated with the programming port. Since the status pin is not used by the system once a program has been downloaded and is running, the status pin can then be used as a general-purpose CMOS output. The programming port is described in more detail in Section 4.2.2./RESET_IN is an external input used to reset the Rabbit microprocessor. /RESET is an output from the reset circuitry that can be used to reset other peripheral devices.The two SMODE pins, SMODE0 and SMODE1, are tied together to +3.3 V via a pullup resistor, and may be used as a special input when the RCM5600W/RCM6600W is operat-48 PC6*Input/OutputTXA/TXEI/O Strobe I6PWM2Programming port49 SMODE*Input50 PC7*Input/OutputRXA/TXA/RXEI/O Strobe I7PWM3SCLKCInput Capture51 GND52 +3.3 V* These pins should be used cautiously (if at all) in most applications, since they have specific or dedicated functionality related to programming the MiniCore module, or have connections to on-core peripherals. Consult Rabbit Technical Support for details.Table 2.  RCM5600W/RCM6600W Pinout Configurations (continued)Pin Pin Name Default Use Alternate Use Notes
OEM User’s Manual 33ing in the Run Mode. The logic state of these two pins determines the startup procedure after a reset.4.1.3  Analog InputsOn the RCM6600W and RCM6650W only, four of the edge connector pins may be con-figured as analog inputs. On the MiniCore module, a multiplexer may be switched at run-time between routing the edge pin to either the PE0-3 digital I/Os, or to the on-chip ADC inputs of the Rabbit 6000. The multiplexer connects the edge pins in pairs: PE0 and PE1 may be switched together, or PE2 and PE3. Thus, zero, two or four analog inputs are avail-able.See the SAMPLES/RCM6600W/ADC folder for demonstration of the analog input facility.
34 MiniCore RCM5600W/RCM6600W4.2  Serial CommunicationThe MiniCore module does not have any serial level converters directly on the board. However, a serial level converter or protocol converter may be incorporated on the board the RCM5600W/RCM6600W is mounted on. For example, the Serial Communication accessory board in the Deluxe Development Kit has an RS-232 transceiver, and the Inter-face Board has USB connections. 4.2.1  Serial PortsThere are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial ports can operate in an asynchronous mode up to the baud rate of the system clock divided by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where an additional bit is sent to mark the first byte of a message, is also supported.Serial Port A is normally used as a programming port, but may be used either as an asyn-chronous or as a clocked serial port once application development has been completed and the RCM5600W/RCM6600W is operating in the Run Mode.Serial Port B, shared by the RCM5600W/RCM6600W module’s serial flash and by the A/D converter in the Wi-Fi circuit, is set up as a clocked serial port. Since this serial port is set up for synchronous serial communication, you will lose the peripheral functionality if you try to use the serial port in the asynchronous mode.NOTE: Since Serial Port B is shared, exercise care if you attempt to use Serial Port B for other serial communication. Your application will have to manage the sharing negotia-tions to avoid conflicts when reading or writing to the devices already using Serial Port B. Any conflict with Serial Port B while the RCM5600W/RCM6600W is powering up may prevent an application from loading from the serial flash when the RCM5600W/RCM6600W powers up or resets. Do not drive or load the Serial Port B or SCLKB (PC4, PC5, and PB0) pins while the RCM5600W/RCM6600W is powering up. The serial port B pins should not be reallocated for general purpose I/O.Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock line synchronously clocks the data in or out. Either of the two communicating devices can supply the clock.Serial Ports E and F can also be configured as SDLC/HDLC serial ports. The IrDA proto-col is also supported in SDLC format by these two ports. Serial Ports E and F must be con-figured before they can be used. The following macros show one way to do this.#define SERE_TXPORT PEDR#define SERE_RXPORT PEDR#define SERF_TXPORT PFDR#define SERF_RXPORT PFDR
OEM User’s Manual 35Table 2 summarizes the possible parallel port pins for the serial ports and their clocks.Table 3.  Rabbit 5000 Serial Port and Clock PinsSerial Port A** In general, these serial ports or pins should be avoided for general use unless the designer is inti-mately familiar with their possibly conflicting uses. Contact Rabbit Technical Support for details.TXA PC6*, PC7*Serial Port ETXE PE6, PC6*RXA PC7*,PE7 RXE PE7, PC7*SCLKA PB1*RCLKE PE5, PC5*Serial Port B*TXB PC4*, PC5*TCLKE PE4, PC4*RXB PC5*, PE5Serial Port FTXF PD2, PE2, PC2SCLKB PB0*RXF PD3, PE3, PC3Serial Port CTXC PC2, PC3 RCLKF PD1, PE1, PC1RXC PC3, PD3, PE3 TCLKF PD0, PE0, PC0SCLKC PD2, PE2, PE7, PC7*RCLKE/TCLKE and RCLKF/TCLKF must be selected to be on the same parallel port as RXE/TXE and RXF/TXF respectively.Serial Port DTXD PC0, PC1RXD PC1, PD1, PE1SCLKD PD0, PD3, PE0, PE3, PC34.2.2  Programming PortThe MiniCore programming port is accessed via the USB connector (J5) on the Interface Board. The programming port uses the Rabbit microprocessor’s Serial Port A for commu-nication. Dynamic C uses the programming port to download and debug programs.The programming port is also used to cold-boot the Rabbit microprocessor on the RCM5600W/RCM6600W after a reset.
36 MiniCore RCM5600W/RCM6600W4.3  Wi-FiFigure 13 shows a functional block diagram for the Wi-Fi circuits.U15AntennaSwitchP1XCVRU8AL2236Rx PathTx PathRxBasebandTxBaseband3-wire serial busU4SerialFlashU10SRAMFigure 13.  RCM5600W/RCM6600W Wi-Fi Block DiagramThe Wi-Fi transmission is controlled by the Rabbit chip, which contains the Wi-Fi Media Access Control (MAC). The Rabbit microprocessor implements the 802.11b/g baseband MAC functionality, and controls the 802.11b/g integrated Airoha AL2236 transceiver.Program code is stored in the serial flash and is loaded into an SRAM for execution when power is applied to the RCM5600W/RCM6600W modules. The data interface between the processor MAC and the AL2236 transceiver consists of a D/A converter and an A/D converter. Both converters convert “I” and “Q” data samples at a rate of 40 MHz.The AL2236 is a single-chip transceiver with integrated power amplifier for the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. It is configured and controlled by the Rabbit via a 3-wire serial data bus. The AL2236 contains the entire receiver, transmitter, VCO, PLL, and power amplifier necessary to implement an 802.11b/g radio. The AL2236 can transmit and receive data at up to 11Mbits/s in the 802.11b mode and at up to 54 Mbits/s in the 802.11g mode. It supports 802.11b/g channels 1–13 (2.401 GHz to 2.472 GHz). Channel 14 is not used. The data modulate the channel carrier in such a way so as to produce a spread spectrum signal within the 22 MHz channel bandwidth of the selected channel. The channel numbers and associated frequencies are listed below in Table 3.The Wi-Fi channels have a certain amount of overlap with each other. The further apart two channel numbers are, the less the likelihood of interference. If you encounter interfer-ence with a neighboring WLAN, change to a different channel. For example, use channels 1, 6, and 11 to minimize any overlap.
OEM User’s Manual 37Table 4.  Wi-Fi Channel Allocations1These channels are disabled for units delivered for sale in the United States and Canada.Many countries specify the channel range and power limits for Wi-Fi devices operated within their borders, and these limits are set automatically in the RCM5600W/RCM6600W in firmware according to the country or region. For example, only channels 1–11 are authorized for use in the United States or Canada, and so channels 12 and 13 are disabled. Table 4 provides additional information on which channels are allowed in selected countries. Any attempt to operate a device outside the allowed channel range or power limits will void your regulatory approval to operate the device in that country.Channel CentreFrequency(MHz)FrequencySpread(MHz)1 2.412 2.401‐2.4232 2.417 2.406‐2.4283 2.422 2.411‐2.4334 2.427 2.416‐2.4385 2.432 2.421‐2.4436 2.437 2.426‐2.4487 2.442 2.431‐2.4538 2.447 2.436‐2.4589 2.452 2.441‐2.46310 2.457 2.446‐2.46811 2.462 2.451‐2.4731212.467 2.456‐2.4781312.472 2.461‐2.4831412.484 2.473‐2.495
38 MiniCore RCM5600W/RCM6600WThe following regions have macros and region numbers defined for convenience.Table 5.  Worldwide Wi-Fi Macros and Region NumbersRegion Macro Region Number Channel RangeAmericas IFPARAM_WIFI_REGION_AMERICAS 0 1–11MexicoIFPARAM_WIFI_REGION__MEXICO_INDOORS 11–11 (indoors)IFPARAM_WIFI_REGION_MEXICO_OUTDOORS 29–11 (outdoors)Canada  IFPARAM_WIFI_REGION_CANADA 3 1–11Europe, Middle East, Africa, except France IFPARAM_WIFI_REGION_EMEA 4 1–13France IFPARAM_WIFI_REGION_FRANCE 5 10–13Israel IFPARAM_WIFI_REGION_ISRAEL 6 3–11China IFPARAM_WIFI_REGION_CHINA 7 1–11Japan IFPARAM_WIFI_REGION_JAPAN 81–14** Channel 14 is not available for the RCM5600W/RCM6600W.Australia IFPARAM_WIFI_REGION_AUSTRALIA 9 1–11The same omnidirectional antenna is used to transmit and receive the 802.11b/g RF signal. An antenna switch isolates the high-power RF Tx signal path from the RF Rx signal path. The antenna switch at U15 works by alternately connecting the antennas to either the AL2236 Tx output or to the AL2236 Rx input. In order to support this antenna-sharing scheme, the RCM5600W/RCM6600W module operates the radio in a half-duplex mode so that receive and transmit operations never occur at the same time The RF connector on the Interface Board is an RP-SMA connector with its outer casing attached to the RCM5600W/RCM6600W ground.There are two LEDs close to the RF shield, a green LED at DS1 (LINK) to indicate associa-tion with the Wi-Fi access point, and a yellow LED at DS2 (ACT) to indicate activity.4.3.1  Antenna Grounding RequirementsWhen deploying the RCM5600W/RCM6600W in a production environment, take care to ensure that the antenna is properly grounded via the RP-SMA connector and the U.FL to RP-SMA connector cable. The RP-SMA connector must be firmly attached to a bracket or soldered to a grounded location. If you are using a bracket, it must make firm contact with a ground such as the plated, grounded mounting hole provided on the Interface Board.
OEM User’s Manual 394.4  Ethernet (RCM6600W and RCM6650W only)The RCM6600W supports use of dual network interfacing. Wi-Fi is described in the previous section. The Ethernet peripheral on the RCM6600W is practically identical to that on the RCM6700. Refer to Rabbit’s Technical Note TN266, PCB Layout for the Ethernet PHY Interface, provides further details about designing your own PHY interface. Also, the MiniCore RCM5700/RCM6700 User’s Manual provides additional information regarding the Ethernet interface.4.5  Programming ModesThe USB cable is used to connect the programming port of the RCM5600W/RCM6600W to a PC USB port via the Interface Board.Whenever the MiniCore module is reset, the operating mode is determined by the state of the SMODE pins. The MiniCore is automatically in Program Mode when the SMODE pins, which are tied together, are pulled up to +3.3 V. This happens when the MiniCore is installed on the Interface Board, and pins 1–2 on header JP1 on the Interface Board are jumpered. When the SMODE pins are pulled low by removing the jumpers from pins 1–2 on header JP1 on the Interface Board, the Rabbit microprocessor will operate in the Run Mode once it is reset. The USB cable may be used for a serial connection to the program-ming port when the MiniCore is operating in the Run Mode.  Figure 14.  Switching Between Program Mode and Run Mode
40 MiniCore RCM5600W/RCM6600WA program “runs” in either mode, but can only be downloaded and debugged when the MiniCore is in the Program Mode.Refer to the Rabbit 5000 (or 6000) Microprocessor User’s Manual for more information on the programming port.4.5.1  Standalone Operation of the RCM5600W/RCM6600WThe MiniCore must be programmed via the Interface Board or via a similar arrangement on a customer-supplied board. Once the MiniCore has been programmed successfully, reset it by cycling power off/on or by pressing the RESET button on the Interface Board. The jumper across pins 1–2 on header JP1 on the Interface Board must be removed in order for the MiniCore to operate in the Run Mode after it is reset. The MiniCore module may now be removed from the Interface Board for end-use installation.CAUTION: Power to the Interface Board or other boards should be disconnected when removing or installing your RCM5600W/RCM6600W module to protect against inad-vertent shorts across the pins or damage to the RCM5600W/RCM6600W if the pins are not plugged in correctly. Do not reapply power until you have verified that the RCM5600W/RCM6600W module is plugged in correctly.
OEM User’s Manual 414.6  Other Hardware4.6.1  Clock Doubler or PLLThe RCM5600W takes advantage of the Rabbit 5000 microprocessor’s internal clock dou-bler. A built-in clock doubler allows half-frequency crystals to be used to reduce radiated emissions. The 73.73 MHz frequency specified for the RCM5600W model is generated using a 36.864 MHz crystal.The clock doubler should not be disabled since Wi-Fi operations depend highly on CPU resources.The RCM6600W has an internal PLL (Phase Locked Loop) which allows the main pro-cessor to be clocked at integer multiples of 12.5MHz between 25MHz and 162.5MHz. For operation with Wi-Fi, at least 100MHz should be selected. The default clock frequency will be 162.5MHz. Operation below 25MHz is inadvisable since the contents of the inter-nal fast RAM may be lost (since this is a type of dynamic RAM).4.6.2  Spectrum SpreaderThe Rabbit 5000 and 6000 feature a spectrum spreader, which helps to mitigate EMI prob-lems. The spectrum spreader is on by default (provided a slow clock speed is selected), but it may also be turned off or set to a stronger setting. The means for doing so is through a simple configuration macro as shown below.1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.2. Normal spreading is the default, and usually no entry is needed. If you need to specify normal spreading, add the lineENABLE_SPREADER=1For strong spreading, add the lineENABLE_SPREADER=2To disable the spectrum spreader, add the lineENABLE_SPREADER=0NOTE: The strong spectrum-spreading setting is not recommended since it may limit the maximum clock speed or the maximum baud rate. It is unlikely that the strong set-ting will be used in a real application.3. Click OK to save the macro. The spectrum spreader will be set according to the macro value whenever a program is compiled using this project file.NOTE: Refer to the Rabbit 5000 (or 6000) Microprocessor User’s Manual for more information on the spectrum-spreading setting and the maximum clock speed.
42 MiniCore RCM5600W/RCM6600W4.7  Memory4.7.1  SRAMRCM5600W boards have 1MB of SRAM installed at U10. RCM6600W boards use the on-chip 1MB fast RAM, giving very high bus speed and no wait states.4.7.2  Flash MemoryRCM5600W/RCM6600W boards have 1MB of serial flash memory installed at U4. The RCM5650W/RCM6650W have 4MB of serial flash memory installed at U4.A “user block” area is defined to store persistent data. The function calls writeUser-Block() and readUserBlock() are provided for this. Refer to the Dynamic C Function Reference Manual for additional information.4.7.3  Encryption RAM MemoryThe tamper detection feature of the Rabbit 5000 and 6000 microprocessors can be used to detect any attempt to enter the bootstrap mode. When such an attempt is detected, the 32 bytes of VBAT RAM memory in the Rabbit chip is erased.
OEM User’s Manual 435.  SOFTWARE REFERENCEDynamic C is an integrated development system for writing embedded software. It runs on a Windows-based PC and is designed for use with single-board computers and other devices based on the Rabbit microprocessor. Chapter 5 describes the libraries and function calls related to the RCM5600W/RCM6600W.5.1  More About Dynamic CDynamic C has been in use worldwide since 1989. It is specially designed for program-ming embedded systems, and features quick compile and interactive debugging. A com-plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.Since the RCM5600W/RCM6600W has a serial flash memory, all software development must be done in the static SRAM. The flash memory and SRAM options are selected with the Options > Program Options > Compiler menu.NOTE: An application should be compiled directly to the SRAM on the RCM5600W/RCM6600W module using the Store Program in RAM compiler option while debugging for faster upload times and to save wear on the flash, but should be recompiled to Store Program in Flash for use after the USB cable is dis-connected. Your final code must always be stored in flash memory for reliable operation.Developing software with Dynamic C is simple. Users can write, compile, and test C and assembly code without leaving the Dynamic C development environment. Debugging occurs while the application runs on the target. Alternatively, users can compile a program to an image file for later loading. Dynamic C runs on PCs under Windows NT and later—see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®, for additional information if you are using a Dynamic C under Windows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the program compiles.
44 MiniCore RCM5600W/RCM6600WDynamic C has a number of standard features.•Full-feature source and/or assembly-level debugger, no in-circuit emulator required.•Royalty-free TCP/IP stack with source code and most common protocols.•Hundreds of functions in source-code libraries and sample programs:Exceptionally fast support for floating-point arithmetic and transcendental functions.RS-232 and RS-485 serial communication.Analog and digital I/O drivers.I2C, SPI, GPS, file system.LCD display and keypad drivers.•Powerful language extensions for cooperative or preemptive multitasking •Loader utility program to load binary images into Rabbit targets in the absence of Dynamic C.•Provision for customers to create their own source code libraries and augment on-line help by creating “function description” block comments using a special format for library functions.•Standard debugging features:Breakpoints—Set breakpoints that can disable interrupts.Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and machine cycle times. Switch between debugging at machine-code level and source-code level by simply opening or closing the disassembly window.Watch expressions—Watch expressions are compiled when defined, so complex expressions including function calls may be placed into watch expressions. Watch expressions can be updated with or without stopping program execution.Register window—All processor registers and flags are displayed. The contents of general registers may be modified in the window by the user.Stack window—shows the contents of the top of the stack.Hex memory dump—displays the contents of memory at any address.STDIO window—printf outputs to this window and keyboard input on the host PC can be detected for debugging purposes. printf output may also be sent to a serial port or file.
OEM User’s Manual 455.2   Dynamic C Function Calls5.2.1  Digital I/OThe RCM5600W/RCM6600W was designed to interface with other systems, and so there are no drivers written specifically for the Rabbit 5000 I/O. The general Dynamic C read and write functions allow you to customize the parallel I/O to meet your specific needs. For example, useWrPortI(PEDDR, &PEDDRShadow, 0x00);to set all the Port E bits as inputs, or useWrPortI(PEDDR, &PEDDRShadow, 0xFF);to set all the Port E bits as outputs.When using the external I/O bus on the Rabbit 5000 or 6000 chip, add the line#define PORTA_AUX_IO    // required to enable external I/O busto the beginning of any programs using the auxiliary I/O bus.The sample programs in the Dynamic C SAMPLES/RCM5600W or SAMPLES/RCM6600W folder provide further examples.5.2.2  Serial Communication DriversLibrary files included with Dynamic C provide a full range of serial communications sup-port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The PACKET.LIB library provides packet-based serial functions where packets can be delimited by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries provide blocking functions, which do not return until they are finished transmitting or receiving, and nonblocking functions, which must be called repeatedly until they are fin-ished, allowing other functions to be performed between calls. For more information, see the Dynamic C Function Reference Manual and Rabbit Semiconductor’s Technical Note TN213, Rabbit Serial Port Software, both included with the online documentation.
46 MiniCore RCM5600W/RCM6600W5.2.3  Serial Flash Memory UseThe RCM5600W/RCM6600W module has a serial flash memory that contains the user block and stores the application program. Two function calls are provided to work with the serial boot flash. These function calls are in the Dynamic C LIB\Rabbit4000\BIOSLIB\BOOTDEV_SFLASH.LIB library. The FAT file system func-tion calls from in the Dynamic C LIB\FileSystem\FAT_CONFIG.LIB library are not supported.sbfReadint sbfRead(void *dest, unsigned long offset, unsigned nbytes);DESCRIPTIONReads up to 64K from anywhere on the serial boot flash. This function call supports both the blocking mode for use with µC/OS-II and a mutex for preemptive multitask-ing, and the nonblocking mode for cooperative multitasking. See the description for sbfWriteFlash() for more information on using a µC/OS-II and a mutex with the serial flash driver.PARAMETERSdest near pointer to the destination bufferoffset the physical offset into the serial flashnbytes the number of bytes to readRETURN VALUE0 if successful.The return values below apply only if _SPI_USE_UCOS_MUTEX is not #defined:positive N  to indicate that the  SPI port is being used by device nif more than _SPI_MAXTIME milliseconds elapse while waiting for the SPI port to become available, one of the following two runtime errors will occur: ERR_SPI_MUTEX_ERROR (when using µC/OS-II) or -ETIME (if not using µC/OS-II).
OEM User’s Manual 47sbfWriteFlashint sbfWriteFlash(unsigned long flashDst, void* Src, unsigned len);DESCRIPTIONWrites len bytes (up to 64K) to physical address flashDst from Src.Keep calling sbfWriteFlash() until it returns zero or a negative error code. A pos-itive return value indicates that the serial flash SPI port is being used by another device. If you are using µC/OS-II and _SPI_USE_UCOS_MUTEX is #defined, you may call sbfWriteFlash()just once. If more than _SPI_MAXTIME milliseconds elapse while waiting for the SPI port to become available, one of the following two run-time errors will occur: ERR_SPI_MUTEX_ERROR (when using µC/OS-II) or -ETIME (if not using µC/OS-II).NOTE: This function call is not power-fail safe. The writeUserBlock()  function call provides a safer way to store critical data using redundant copies.PARAMETERSflashDst the physical address of the flash destinationSrc near pointer to the source datalen the number of bytes to writeRETURN VALUE0 if successful.-1 if an attempt was made to write to the user/ID block or program area.The return values below apply only if _SPI_USE_UCOS_MUTEX is not #defined:-EBUSY  to indicate a busy writing to the serial flashpositive N  to indicate that the  SPI port is being used by device nif more than _SPI_MAXTIME milliseconds elapse while waiting for the SPI port to become available, one of the following two runtime errors will occur: ERR_SPI_MUTEX_ERROR (when using µC/OS-II) or -ETIME (if not using µC/OS-II).
48 MiniCore RCM5600W/RCM6600W5.2.4  User and ID BlocksThe sample program USERBLOCK_INFO.C in the Dynamic C SAMPLES\USERBLOCK folder can be used to determine the version of the ID block, the size of the ID and user blocks, whether or not the ID/user blocks are mirrored, the total amount of flash memory used by the ID and user blocks, and the area of the user block available for your applica-tion.The USERBLOCK_CLEAR.C sample program shows you how to clear and write the con-tents of the user block that you are using in your application (the calibration constants in the reserved area and the ID block are protected).NOTE: Since RCM5600W/RCM6600W MiniCore modules have a serial boot flash that shares the serial flash SPI lines with other devices, exercise care when accessing the user block. Pay attention to the instructions associated with the user block function calls in the Dynamic C LIB\Rabbit4000\BIOSLIB\IDBLOCK.LIB library.5.2.5  Wi-Fi DriversComplete information on the Wi-Fi libraries and function calls is provided in Chapter 6. Additional information on TCP/IP is provided in the Dynamic C TCP/IP User’s Manual.
OEM User’s Manual 495.2.6  Interface Board Function CallsThe function calls described in this section are for use with the Interface Board features. The source code is in the Dynamic C LIB\Rabbit4000\RCM5xxx\RCM56xxW.LIB or LIB\Rabbit4000\RCM6xxx\RCM66xxW.LIB library if you need to modify it for your own board design.The sample programs in the Dynamic C SAMPLES\RCM5600W or SAMPLES\RCM6600W folder illustrate the use of the function calls.Other generic functions applicable to all devices based on Rabbit microprocessors are described in the Dynamic C Function Reference Manual.5.2.6.1  Board InitializationbrdInitvoid brdInit(void);DESCRIPTIONCall this function at the beginning of your program. This function initializes Parallel Ports A through E for use with the Interface Board. This function call is intended for demonstration purposes only, and can be modified for your applications.Summary of Initialization1. I/O port pins are configured for Interface Board operation.2. Unused configurable I/O are set as outputs.4. LEDs are off.5. The slave port is disabled.Pins PB0, PB1, PC6, PC7, PD4, PD7, and PE4 are configured separately by the BIOS and associ-ated libraries. Parallel port H is configured automatically as part of the 16-bit memory setup, and cannot be used as a general purpose I/O port.RETURN VALUENone.
50 MiniCore RCM5600W/RCM6600W5.3  Upgrading Dynamic CDynamic C patches that focus on bug fixes are available from time to time. Check the Web site www.digi.com/ for the latest patches, workarounds, and bug fixes.5.3.1  Add-On ModulesStarting with Dynamic C version 10.40, Dynamic C includes the popular µC/OS-II real-time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and other select libraries. Starting with Dynamic C version 10.56, Dynamic C includes the Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library.In addition to the Web-based technical support included at no extra charge, a one-year telephone-based technical support subscription is also available for purchase.Visit our Web site at www.digi.com for further information and complete documentation.
OEM User’s Manual 516.  USING THE WI-FI FEATURES6.1  Introduction to Wi-FiWi-Fi, a popular name for 802.11b/g, refers to the underlying technology for wireless local area networks (WLAN) based on the IEEE 802.11 suite of specifications conforming to standards defined by IEEE. IEEE 802.11b describes the media access and link layer control for a 2.4 GHz implementation, which can communicate at a top bit-rate of 11 Mbits/s. Other standards describe a faster implementation (54 Mbits/s) in the 2.4 GHz band (802.11g). The adoption of 802.11 has been fast because it's easy to use and the performance is com-parable to wire-based LANs. Things look pretty much like a wireless LAN.Wi-Fi (802.11b/g) is the most common and cost-effective implementation currently avail-able. This is the implementation that is used with the RCM5600W/RCM6600W MiniCore modules. A variety of Wi-Fi hardware exists, from wireless access points (WAPs), various Wi-Fi access devices with PCI, PCMCIA, CompactFlash, USB and SD/MMC interfaces, and Wi-Fi devices such as Web-based cameras and print servers.802.11b/g can operate in one of two modes—in a managed-access mode (BSS), called an infrastructure mode, or an unmanaged mode (IBSS), called the ad-hoc mode. The 802.11 standard describes the details of how devices access each other in either of these modes.6.1.1  Infrastructure ModeThe infrastructure mode requires an access point to manage devices that want to communi-cate with each other. An access point is identified with a channel and service set identifier (SSID) that it uses to communicate. Typically, an access point also acts as a gateway to a wired network, either an Ethernet or WAN (DSL/cable modem). Most access points can also act as a DHCP server, and provide IP, DNS, and gateway functions.When a device wants to join an access point, it will typically scan each channel and look for a desired SSID for the access point. A zero-length string SSID ("") will associate the device with the first SSID that matches its capabilities.Once the access point is discovered, the device will logically join the access point and announce itself. Once joined, the device can transmit and receive data packets much like an Ethernet-based MAC. Being in a joined state is akin to having link status in a 10/100Base-T network.802.11b/g interface cards implement all of the 802.11b/g low-level configurations in firm-ware. In fact, the 802.11b/g default configuration is often sufficient for a device to join an
52 MiniCore RCM5600W/RCM6600Waccess point automatically, which it can do once enabled. Commands issued to the chip set in the interface allow a host program to override the default configurations and execute functions implemented on the interface cards, for example, scanning for hosts and access points.6.1.2  Ad-Hoc ModeIn the ad-hoc mode, each device can set a channel number and an SSID to communicate with. If devices are operating on the same channel and SSID, they can talk with each other, much like they would on a wired LAN such as an Ethernet. This works fine for a few devices that are statically configured to talk to each other, and no access point is needed.6.1.3  Additional Information802.11 Wireless Networking; published by O'Reilly Media, provides further information about 802.11b wireless networks.
OEM User’s Manual 536.2  Running Wi-Fi Sample ProgramsIn order to run the sample programs discussed in this chapter and elsewhere in this manual,1. Your module must be plugged in to the Interface Board as described in Chapter 2, “Get-ting Started.”2. Dynamic C must be installed and running on your PC.3. The USB cable must connect the USB connector on the Interface Board to your PC.4. Power must be applied to the module through the Interface Board.Refer to Chapter 2, “Getting Started,” if you need further information on these steps.To run a sample program, open it with the File menu, then compile and run it by pressing F9.Each sample program has comments that describe the purpose and function of the pro-gram. Follow the instructions at the beginning of the sample program.Complete information on Dynamic C is provided in the Dynamic C User’s Manual.
54 MiniCore RCM5600W/RCM6600W6.2.1  Wi-Fi SetupFigure 15 shows how your development setup might look once you’re ready to proceed.Ethernet EthernetHubInfrastructure Mode (via Ethernet connection)Ad-Hoc ModeInfrastructure Mode (via wireless connection)USB Cableto PC USB portFigure 15.  Wi-Fi Host Setup
OEM User’s Manual 556.2.2  What Else You Will NeedBesides what is supplied with the RCM5600W or RCM6600W Development Kits, you will need a PC with an available USB port to program the MiniCore module. You will need either an access point for an existing Wi-Fi network that you are allowed to access and have a PC or notebook connected to that network (infrastructure mode), or you will need at least a PDA or PC with Wi-Fi to use the ad-hoc mode.
56 MiniCore RCM5600W/RCM6600W6.2.3  Configuration Information6.2.3.1  Network/Wi-Fi ConfigurationAny device placed on an Ethernet-based Internet Protocol (IP) network must have its own IP address. IP addresses are 32-bit numbers that uniquely identify a device. Besides the IP address, we also need a netmask, which is a 32-bit number that tells the TCP/IP stack what part of the IP address identifies the local network the device lives on.The sample programs configure the RCM5600W/RCM6600W modules with a default TCPCONFIG macro from the LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library. This macro allows specific IP address, netmask, gateway, and Wi-Fi parameters to be set at compile time. Change the network settings to configure your RCM5600W/RCM6600W module with your own Ethernet settings only if that is necessary to run the sample pro-grams; you will likely need to change some of the Wi-Fi settings.•Network ParametersThese lines contain the IP address, netmask, nameserver, and gateway parameters.#define _PRIMARY_STATIC_IP "10.10.6.100"#define _PRIMARY_NETMASK   "255.255.255.0"#define MY_NAMESERVER      "10.10.6.1"#define MY_GATEWAY         "10.10.6.1"There are similar macros defined for the various Wi-Fi settings as explained in Section 6.3.1.The Wi-Fi configurations are contained within TCPCONFIG 1 (no DHCP) and TCPCON-FIG 5 (with DHCP, used primarily with infrastructure mode). You will need to #define TCPCONFIG 1 or #define TCPCONFIG 5 at the beginning of your program.NOTE: TCPCONFIG 0 is not supported for Wi-Fi applications.There are some other “standard” configurations for TCPCONFIG. Their values are docu-mented in the LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library. More information is available in the Dynamic C TCP/IP User’s Manual.
OEM User’s Manual 576.2.3.2  PC/Laptop/PDA ConfigurationThis section shows how to configure your PC or notebook to run the sample programs. Here we’re mainly interested in the PC or notebook that will be communicating wirelessly, which is not necessarily the PC that is being used to compile and run the sample program on the RCM5600W/RCM6600W module.This section provides configuration information for the three possible Wi-Fi setups shown in Figure 15. Start by going to the control panel (Start > Settings > Control Panel) and click on Network Connections. The screen shots shown here are from Windows 2000, and the interface is similar for other versions of Windows.Check with your administrator if you are unable to change the settings as described here since you may need administrator privileges.When you are using an access point with your setup in the infrastructure mode, you will also have to set the IP address and netmask (e.g., 10.10.6.99 and 255.255.255.0) for the access point. Check the documentation for the access point for information on how to do this.Infrastructure Mode (via Ethernet connection)1. Go to the Local Area Connection to select the network interface card used you intend to use (e.g., TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button. Depending on which version of Windows your PC is running, you may have to select the “Local Area Connection” first, and then click on the “Properties” button to bring up the Ether-net interface dialog. Then “configure” your interface card for an “Auto-Negotia-tion” or “10Base-T Half-Duplex” connec-tion on the “Advanced” tab.NOTE: Your network interface card will likely have a different name.
58 MiniCore RCM5600W/RCM6600W3. Click <OK> or <Close> to exit the various dialog boxes.Infrastructure Mode (via wireless connection)Set the IP address and netmask for your wireless-enabled PC or notebook as described in Step 2 for Infrastructure Mode (via Ethernet connection) by clicking on Network Connections, then on Local Area Connection. Now click on Wireless Network Connection to select the wireless network you will be connecting to. Once a sample program is running, you will be able to select the network from a list of available networks. You will have to set your wireless network name with the access point SSID macro for the infrastructure mode as explained in Section 6.3, “Dynamic C Wi-Fi Configurations.”Ad-Hoc ModeSet the IP address and netmask for your wireless-enabled PC or notebook as described in Step 2 for Infrastructure Mode (via Ethernet connection) by clicking on Network Connections, then on Local Area Connection. Now click on Wireless Network Connection to select the wireless network you will be connecting to. Once a sample program is running, you will be able to select the network from a list of available networks. You will have set your wireless network name with the Wi-Fi channel macros for the ad-hoc mode as explained in Section 6.3, “Dynamic C Wi-Fi Configurations.”2. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and click on “Properties” to fill in the fol-lowing fields:IP Address : 10.10.6.101Netmask : 255.255.255.0Default gateway : 10.10.6.1TIP: If you are using a PC that is already on a network, you will disconnect the PC from that network to run these sample programs. Write down the existing set-tings before changing them so that you can restore them easily when you are fin-ished with the sample programs.The IP address and netmask need to be set regardless of whether you will be using the ad-hoc mode or the infrastructure mode.
OEM User’s Manual 59Once the PC or notebook is set up, we're ready to communicate. You can use Telnet or a Web browser such as Internet Explorer, which come with most Windows installations, to use the network interface, and you can use HyperTerminal to view the serial port when these are called for in some of the later sample programs.Now we’re ready to run the sample programs in the Dynamic C Samples\WiFi folder. The sample programs should run as is in most cases. 6.2.4  Wi-Fi Sample ProgramsThe sample programs in Section 6.2.4.1 show the setup and operation of a wireless net-work — the WIFISCAN.C sample program is ideal to demonstrate that the RCM5600W/RCM6600W has been hooked up correctly and that the Wi-Fi setup is cor-rect so that an access point can be found.6.2.4.1  Wi-Fi Operation•WIFIDHCPORTSTATIC.C—demonstrates the runtime selection of a static IP configura-tion or DHCP. The SAMPLES\TCPIP\DHCP.C sample program provides further exam-ples of using DHCP with your application.Before you compile and run this sample program, check the TCP/IP configuration parameters, the IP address, and the SSID in the macros, which are reproduced below.#define USE_DHCP#define TCPCONFIG 1#define _PRIMARY_STATIC_IP "10.10.6.100"#define IFC_WIFI_SSID "rabbitTest"Modify the values to match your network. You may also need to modify the values for MY_GATEWAY if you are not pinging from the local subnet.Now press F9 to compile and run the sample program. When prompted in the Dynamic C STDIO window, type 's' for static configuration or 'd' for DHCP.•WIFIMULTIPLEAPS.C—demonstrates changing access points using WEP keys. You will need two access points to run this sample program. The access points should be isolated or on separate networks.The sample program associates the MiniCore module with the first access point (AP_0 defined below) with WEP key KEY0 (defined below). After associating, the sample program waits for a predefined time period, and then pings the Ethernet address of the access point (AP_ADDRESS_0). The sample program then associates with the second access point and pings its Ethernet address (AP_1, KEY1, AP_ADDRESS_1), and then switches back and forth between the two access points.When changing access points, first bring the IF_WIFI0 interface down by calling ifdown(IF_WIFI0). Next, change the SSID and key(s) using ifconfig() calls. Finally, bring the IF_WIFI0 interface back up by calling ifup(IF_WIFI0). Note that the sample program checks for status while waiting for the interface to come up or down.Before you compile and run this sample program, check the TCP/IP configuration parameters, the IP address, and the SSID in the macros, which are reproduced below.
60 MiniCore RCM5600W/RCM6600W#define TCPCONFIG 1#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_WEPYou do not need to configure the SSID of your network since that is done from the access point names.Now configure the access to the two access points.// First Access Point#define AP_0 "test1"#define AP_0_LEN strlen(AP_0)#define MY_ADDRESS_0 "10.10.6.250" // use this static IP when connected to AP 0#define PING_ADDRESS_0 "10.10.6.1" // address on AP 0 to ping#define KEY_0 "0123456789abcdef0123456789" // Second Access Point#define AP_1 "test2"#define AP_1_LEN strlen(AP_1)#define MY_ADDRESS_1 "10.10.0.99" // use this static IP when connected to AP 1#define PING_ADDRESS_1 "10.10.0.50"// address on AP 1 to ping#define KEY_1 "0123456789abcdef0123456789"#define IFC_WIFI_SSID AP_0#define _PRIMARY_STATIC_IP MY_ADDRESS_0Modify the access point names and keys to match your access points and network.•WIFIPINGYOU.C—sends out a series of pings to a MiniCore module on an ad-hoc Wi-Fi network.This sample program uses some predefined macros. The first macro specifies the default TCP/IP configuration from the Dynamic C LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library.#define TCPCONFIG 1Use the next macro unchanged as long as you have only one RCM5600W/RCM6600W MiniCore module. Otherwise use this macro unchanged for the first MiniCore module.#define NODE 1Then change the macro to #define NODE 2 before you compile and run this sample program on the second module.The next macros assign an SSID name and a channel number to the Wi-Fi network.#define IFC_WIFI_SSID  "rab-hoc"#define IFC_WIFI_OWNCHANNEL "5"Finally, IP addresses are assigned to the MiniCore modules.#define IPADDR_1  "10.10.8.1"#define IPADDR_2  "10.10.8.2"As long as you have only one module, the Dynamic C STDIO window will display the pings sent out by the module. You may set up a Wi-Fi enabled laptop with the IP address in IPADDR_2 to get the pings.If you have two modules, they will ping each other, and the Dynamic C STDIO window will display the pings.
OEM User’s Manual 61•WIFISCAN.C—initializes the RCM5600W/RCM6600W and scans for other Wi-Fi devices that are operating in either the ad-hoc mode or through access points in the infrastructure mode. No network parameter settings are needed since the RCM5600W/RCM6600W does not actually join an 802.11 network. This program out-puts the results of the scan to the Dynamic C STDIO window.•WIFISCANASSOCIATE.C— demostrates how to scan Wi-Fi channels for SSIDs using ifconfig IFS_WIFI_SCAN. This takes a while to complete, so ifconfig() calls a callback function when it is done. The callback function is specified using ifconfig IFS_WIFI_SCAN.Before you run this sample program, configure the Dynamic C TCP_CONFIG.LIB library and your TCPCONFIG macro.1. Use macro definitions in the “Defines” tab in the Dynamic C Options > Project Options menu to modify any parameter settings.If you are not using DHCP, set the IP parameters to values appropriate to your network._PRIMARY_STATIC_IP = "10.10.6.100"_PRIMARY_NETMASK = "255.255.255.0"MY_NAMESERVER = "10.10.6.1"MY_GATEWAY = "10.10.6.1"Set the macro IFC_WIFI_SSID= to define a C-style string to set the SSID of your access point as, for example,IFC_WIFI_SSID = "My Access Point"or use an empty string, "", to associate with the strongest BSS available.Alternatively, you may create your own CUSTOM_CONFIG.LIB library modeled on the Dynamic C TCP_CONFIG.LIB library. Then use a TCPCONFIG macro greater than or equal to 100, which will invoke your CUSTOM_CONFIG.LIB library to be used. Remember to add the CUSTOM_CONFIG.LIB library to LIB.DIR.2. If you are using DHCP, change the definition of the TCPCONFIG macro to 5. The default value of 1 indicates Wi-Fi with a static IP address.Now compile and run the sample program. Follow the menu options displayed in the Dynamic C STDIO window.Press s to scan available access pointsPress a to scan access points and associatePress m to print WIFI MAC statusNote that ifconfig IFS_WIFI_SCAN function calls do not return data directly since the scan takes a fair amount of time. Instead, callback functions are used. The callback function is passed to ifconfig() as the only parameter to IFS_WIFI_SCAN.ifconfig(IF_WIFI0, IFS_WIFI_SCAN, scan_callback, IFS_END);
62 MiniCore RCM5600W/RCM6600WThe data passed to the callback function are ephemeral since another scan may occur. Thus, the data need to be used (or copied) during the callback function.While waiting for user input, it is important to keep the network alive by calling tcp_tick(NULL) regularly.6.2.5  RCM5600W/RCM6600W Sample ProgramsThe following sample programs are in the Dynamic C SAMPLES\RCM5600W\TCPIP\ or SAMPLES\RCM6600W\TCPIP\ folder. The Interface Board must be set up as described in Section 3.2.•PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will pro-duce a long flash of LED DS1 on the Interface Board when a ping is sent, and a short flash when a ping is received.Before you compile and run this sample program, change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Uncomment the VERBOSE define to see the incoming ping replies.•PINGLED_WPA_PSK.C—This program demonstrates the use of WPA PSK (Wi-Fi Protected Access with Pre-Shared Key). WPA is a more secure replacement for WEP. The implementation in the sample program supports use of the TKIP (Temporal Key Integrity Protocol) cypher suite.The sample program uses macros to configure the access point for WPA PSK, specify the TKIP cypher suite, assign the access point SSID, and set the passphrase.#define WIFI_USE_WPA  // Bring in WPA support#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_TKIP // Define cypher suite#define IFC_WIFI_SSID "rabbitTest"The next macro specifies a suitable pre-shared key to use instead of the passphrase. The key may be entered either as 64 hexadecimal digits or as an ASCII string of up to 63 characters. Authentication should be set to “open system,” which basically means that knowing the key is sufficient to allow access.#define IFC_WIFI_WPA_PSK_HEXSTR \   "1010101010101010101010101010101010101010101010101010101010101010"TIP: There is a good chance of typos since the key is long. First, enter the key in this sample program macro, then copy and paste it to your access point. This ensures that both the RCM5600W/RCM6600W and the access point have the same key.TIP: For an initial test, it may be easier to use the 64 hex digit form of the key rather than the ASCII passphrase. A passphrase requires considerable computation effort, which delays the startup of the sample program by up to 30 seconds (10 seconds on the RCM6600W). Some access points and devices do not allow direct configuration of the hexadecimal key, so for maximum compatibility it is recommended to use the pass-phrase regardless of the additional computation burden.
OEM User’s Manual 63Change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Uncomment the VERBOSE define to see the incoming ping replies.Once you have compiled the sample program and it is running, LED DS1 will go on with a brief toggle off when a ping is sent. LED DS1 will go off for a longer duration when a ping is received. LED DS1 is controlled by PD0.•PINGLED_WPA2_CCMP.C—This sample program demonstrates the use of WPA2 PSK (Wi-Fi Protected Access with Pre-Shared Key).). WPA is a more secure replacement for WEP. The implementation in the sample program uses the Advanced Encryption Standard (AES) based algorithm, also known as the CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) cypher suite.Apart from the configuration of WPA2_CCMP at the top of the sample program, the rest of the code is identical to the case without WPA2 PSK. Indeed, most of the TCP/IP sample programs should work with WPA2 CCMP simply by using the same configura-tion settings.Configure your access point for WPA2 PSK before you run this sample program. Specify the CCMP cypher suite, and enter a suitable pre-shared key. The key may be entered either as 64 hexadecimal digits or as an ASCII string of up to 63 characters. Authentication should be set to “open system,” which basically means that knowing the key is sufficient to allow access.Now change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Uncomment the VERBOSE define to see the incoming ping replies.Once you have compiled the sample program and it is running, LED DS1 will go on with a brief toggle off when a ping is sent. LED DS1 will go off for a longer duration when a ping is received. LED DS1 is controlled by PD0.
64 MiniCore RCM5600W/RCM6600W•PINGLED_STATS.C—This program is similar to PINGLED.C, but it also displays receiver/transmitter statistics in the Dynamic C STDIO window.Before you compile and run this sample program, change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Modify the value in the MOVING_AVERAGE macro to change the moving average filter-ing of the statistics. Also review the GATHER_INTERVAL and GRAPHICAL macros, which affect the number of samples to gather and create a bar graph display instead of a numeric display.Uncomment the VERBOSE define to see the incoming ping replies.Once you compile and run this sample program, LED DS1 on the Interface Board will go on with a brief toggle off when a ping is sent, and the LED will go off for a longer duration when a ping is received.•SMTP.C—This program demonstrates using the SMTP library to send an e-mail when the S1 switch on the Interface Board is pressed. LED DS1 on the Interface Board will light up when e-mail is being sent. LED DS1 is controlled by PD0.
OEM User’s Manual 65The Digital I/O accessory board may also be used to run the BROWSELED.C, PINGLED.C, and PINGLED_STATS.C sample programs. This accessory board is included only with the Deluxe Development Kit.To install the Digital I/O accessory board, insert the strip of header pins included with the accessory board into the socket at J12 on the bottom side of the Digital I/O accessory board. Then line up the Digital I/O accessory board with the Interface Board standoffs/connectors and install the Digital I/O accessory board pins into socket J2 on the Interface Board. Secure the Digital I/O accessory board with the long plastic stand-offs/connectors from above as shown in Figure 16—note that one plastic standoff/connec-tor needs to be inserted “upside down” to secure the Digital I/O accessory board to the antenna bracket.   JP5JP84321657843216578JP7Install header connector stripin bottom socketFigure 16.  Install Digital I/O Accessory BoardPins 1–2, 3–4, 5–6, and 7–8 on headers JP5 and JP8 on the Digital I/O accessory board must be jumpered. Pins 2–4 and 3–5 on header JP7 on the Digital I/O accessory board must also be jumpered.
66 MiniCore RCM5600W/RCM6600W•BROWSELED.C—This program demonstrates a basic controller running a Web page. Four “device LEDs” are created along with four buttons to toggle them. Users can use their Web browser to change the status of the lights. The DS1, DS2, DS3, and DS4 LEDs on the Digital I/O accessory board will match those on the Web page. As long as you have not modified the TCPCONFIG 1 macro in the sample program, enter the fol-lowing server address in your Web browser to bring up the Web page served by the sample program. Remember to configure the access point to match the default settings of the TCPCONFIG 1 macro.http://10.10.6.100.Otherwise use the TCP/IP settings you entered in the in the “Defines” tab in the Dynamic C Options > Project Options menu.Once you compile and run this sample program, you can use the buttons in the Web browser to toggle the LEDs on the Digital I/O accessory board on/off.•PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will flash LED DS2 on the Digital I/O accessory board when a ping is sent and it will flash LED DS3 when a ping is received.Before you compile and run this sample program, change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Uncomment the VERBOSE define to see the incoming ping replies.•PINGLED_STATS.C—This program is similar to PINGLED.C, but it also displays receiver/transmitter statistics in the Dynamic C STDIO window.Before you compile and run this sample program, change PING_WHO and IFC_WIFI_SSID to the host and SSID you want to ping. You may modify PING_DELAY to change the amount of time in milliseconds between the outgoing pings.Modify the value in the MOVING_AVERAGE macro to change the moving average filter-ing of the statistics. Also review the GATHER_INTERVAL and GRAPHICAL macros, which affect the number of samples to gather and create a bar graph display instead of a numeric display.Uncomment the VERBOSE define to see the incoming ping replies.Once you compile and run this sample program, LED DS2 on the Digital I/O accessory board will flash when a ping is sent, and LED DS3 will flash when a ping is received.
OEM User’s Manual 67The Serial Communication accessory board needs to be installed to run the SERIAL_TO_WIFI.C sample program. This accessory board is included only with the Deluxe Develop-ment Kit.To install the Serial Communication accessory board, insert the strip of header pins included with the accessory board into the socket at J12 on the bottom side of the Serial Communication accessory board. Then line up the Serial Communication accessory board with the Interface Board or Digital I/O accessory board standoffs/connectors and install the Serial Communication accessory board pins into socket J2 on the Interface Board or the Digital I/O accessory board. Secure the Serial Communication accessory board with the long plastic standoffs/connectors from above as shown in Figure 17—note that one plastic standoff/connector needs to be inserted “upside down” to secure the Serial Communica-tion accessory board above the antenna bracket.   JP5432165784321JP7Install header connector stripin bottom socketFigure 17.  Install Serial Communication Accessory BoardPins 1–2, 3–4, 5–6, and 7–8 on header JP5 on the Serial Communication accessory board must be jumpered. Pins 1–2 and 3–4 on header JP7 on the Serial Communication acces-sory board must also be jumpered.•SERIAL_TO_WIFI.C—This program demonstrates using TCP over Wi-Fi, which is handled automatically by the libraries. This sample program uses the RabbitWeb HTTP enhancements to configure a simple serial to Wi-Fi converter.This sample program only supports listening TCP sockets, which means that serial to Wi-Fi devices can only be started by another device initiating the network connection to the Rabbit.
68 MiniCore RCM5600W/RCM6600WEach serial port can be associated with a specific TCP port. The Rabbit will listen on each of these TCP ports for a connection, which will then be associated with a specific serial port. Data will then be shuttled between the serial and Wi-Fi connections.Before you compile and run this sample program, define the _PRIMARY_STATIC_IP and IFC_WIFI_SSID in the sample program to match your network settings.Now compile and run this program.As long as you have not modified the TCPCONFIG 1 macro in the sample program, enter the following server address in your Web browser to bring up the Web page served by the sample program. Remember to configure the access point to match the default settings of the TCPCONFIG 1 macro.http://10.10.6.100.Select the serial port settings in the Web browser. You may leave the TCP port and baud rate settings at their defaults, then set 8 data bits, no parity, and 1 stop bit. Click Submit to save the changed settings.Now start a Telnet seession to associate a serial port with a TCP port is with telnet: Open a cmd window via Run > cmd and type telnet 10.10.6.100 4567 at the prompt to associate Serial Port C, for example, where 4567 was the TCP port assigned to Serial Port C in the previous setup performed via the Web browser.Next, open a serial utility such as Tera Term or Hyperterminal configured to match the settings selected via the Web browser. Finally, use the 10-pin to DB9 serial cable included with the Deluxe Devlopment Kit to connect the PC serial port selected in your serial utility to header J4 (Serial Port C) or header J3 (Serial Port D), depending on the TCP port selected for the Telnet session. As you type characters in the Telnet utility window, you will be able to observe them in the serial utility window, and vice versa.
OEM User’s Manual 696.3  Dynamic C Wi-Fi ConfigurationsRabbit has implemented a packet driver for the RCM5600W/RCM6600W that functions much like an Ethernet driver for the Dynamic C implementation of the TCP/IP protocol stack. In addition to functioning like an Ethernet packet driver, this driver implements a function call to access the functions implemented on the 802.11b/g interface, and to mask channels that are not available in the region where the RCM5600W/RCM6600W will be used.The Wi-Fi interface may be used either at compile time using macro statements or at run time with the ifconfig() function call from the Dynamic C LIB\Rabbit4000\TCPIP\NET.LIB library.6.3.1  Configuring TCP/IP at Compile TimeIt easy for you to set up the parameter configuration using already-defined TCPCONFIG macros from the Dynamic C LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library at the beginning of your program as in the example below.#define TCPCONFIG 1There are two TCPCONFIG macros specifically set up for Wi-Fi applications with the RCM5600W/RCM6600W module. (TCPCONFIG 0 is not supported for Wi-Fi applica-tions.)TCPCONFIG 1No DHCPTCPCONFIG 5DHCP enabledThese default IP address, netmask, nameserver, and gateway network parameters are set up for the TCPCONFIG macros.#define _PRIMARY_STATIC_IP "10.10.6.100"#define _PRIMARY_NETMASK   "255.255.255.0"#define MY_NAMESERVER      "10.10.6.1"#define MY_GATEWAY         "10.10.6.1"The use of quotation marks in the examples described in this chapter is important since the absence of quotation marks will be flagged with warning messages when encrypted librar-ies are used.Wi-Fi Parameters•Access Point SSID—IFC_WIFI_SSID. This is the only mandatory parameter. Define the  IFC_WIFI_SSID macro to a string for the SSID of the access point in the infra-structure (BSS) mode, or the SSID of the ad-hoc network in the ad-hoc (IBSS) mode.The default is shown below.#define IFC_WIFI_SSID "rabbitTest"•Mode—IFC_WIFI_MODE determines the mode: IFPARAM_WIFI_INFRASTRUCT for the infrastructure mode, or IFPARAM_WIFI_ADHOC for the ad-hoc mode.
70 MiniCore RCM5600W/RCM6600WThe default is shown below.#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCT•Your Own Channel—IFC_WIFI_CHANNEL determines the channel on which to operate.The default is shown below.#define IFC_WIFI_CHANNEL 0The default 0 means that any valid channel may be used by the requested SSID. This parameter must be non-zero when creating an ad-hoc network. While it is optional for the infrastructure mode, it is usually best left at the default 0.Note that there are restrictions on which channels may be used in certain countries. These are provided in Table 5 for some countries.•Region/Country—IFC_WIFI_REGION sets the channel range and maximum power limit to match the region selected. Table 5 lists the regions that are supported and their corresponding macros.The region selected must match the region where the RCM5600W/RCM6600W Mini-Core module will be used.The default is shown below.#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS•Disable/enable encryption—IFC_WIFI_ENCRYPTION indicates whether or not encryp-tion is enabled.The default (encryption disabled) is shown below.#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_NONEThe following encryption options are available.•IFPARAM_WIFI_ENCR_NONE — no encryption is used.•IFPARAM_WIFI_ENCR_ANY — any type of encryption is used.•IFPARAM_WIFI_ENCR_WEP — use WEP encryption. You will need to define at least one WEP key (see below). •IFPARAM_WIFI_ENCR_TKIP — use TKIP or WPA encryption. You will need to define a passphrase or a key for TKIP encryption, as well as define the WIFI_USE_WPA macro (see below).•IFPARAM_WIFI_ENCR_CCMP — use CCMP or WPA2 encryption. You will need to define at least one WEP key (see below). •There are four encryption keys (0, 1, 2, 3) associated with the IFC_WIFI_WEP_KEYNUM macro (default 0). One or more of the following additional macros must be defined as well. The default is for the keys to remain undefined.
IFC_WIFI_WEP_KEY0_BINIFC_WIFI_WEP_KEY1_BINIFC_WIFI_WEP_KEY2_BINIFC_WIFI_WEP_KEY3_BINIFC_WIFI_WEP_KEY0_HEXSTRIFC_WIFI_WEP_KEY1_HEXSTRIFC_WIFI_WEP_KEY2_HEXSTRIFC_WIFI_WEP_KEY3_HEXSTROEM User’s Manual 71These macros specify the WEP keys to use for WEP encryption. These keys can be either 40-bit or 104-bit (i.e., 5 bytes or 13 bytes). They must be defined as a comma-separated list of byte values.Note that you do not necessarily need to define all four WEP keys. You may typically just define one key, but make sure it matches the key used on all other devices, and set IFC_WIFI_WEP_KEYNUM to point to the correct key.If both IFC_WIFI_WEP_KEY#_BIN and IFC_WIFI_WEP_KEY#_HEXSTR are defined for a particular key, the hex version will be used.•Use WPA encryption.The following macro must also be used to compile WPA functionality into the Wi-Fi driver. This is necessary to enable TKIP encryption.#define WIFI_USE_WPA•Set WPA passphrase—IFC_WIFI_WPA_PSK_PASSPHRASE is a string that matches the passphrase on your access point. It may also point to a variable.Define an ASCII passphrase here, from 1 to 63 characters long. An example is shown below.#define IFC_WIFI_WPA_PSK_PASSPHRASE "now is the time"If possible, you should use IFC_WIFI_WPA_PSK_HEXSTR instead of IFC_WIFI_WPA_PSK_PASSPHRASE to set the key.•Set WPA hexadecimal key—IFC_WIFI_WPA_PSK_HEXSTR is a string of hexadecimal digits that matches the 256-bit (32-byte) hexadecimal key used by your access point.Specify a 64 hexadecimal digit (256 bits) key here. This key will be used and will over-ride any passphrase set with the IFC_WIFI_WPA_PSK_PASSPHRASE macro. The example hex key shown below#define IFC_WIFI_WPA_PSK_HEXSTR \   "57A12204B7B350C4A86A507A8AF23C0E81D0319F4C4C4AE83CE3299EFE1FCD27"is valid for the SSID "rabbitTest" and the passphrase "now is the time".Using a passphrase is rather slow. It takes a Rabbit 5000 more than 20 seconds to gen-erate the actual 256-bit key from the passphrase, and it is still about 10 seconds on a Rabbit 6000. If you use a passphrase and #define WIFI_VERBOSE_PASSPHRASE, the Wi-Fi library will helpfully print out the hex key corresponding to that passphrase and SSID. In a real application, steps should be taken to save the hexadecimal key in non-volatile memory so that the key does not have to be recomputed from the pass-phrase at each power-up.
72 MiniCore RCM5600W/RCM6600W•Authentication algorithm—IFC_WIFI_AUTHENTICATION can be used to specify the authentication modes used.The default shown below allows enables both open-system authentication and shared-key authentication.#define IFPARAM_WIFI_AUTH_ANYThe following authentication options are available.•IFPARAM_WIFI_AUTH_OPEN — only use open authentication.•IFPARAM_WIFI_AUTH_SHAREDKEY — only use shared-key authentication (useful for WEP only).•IFPARAM_WIFI_WPA_PSK — use WPA preshared-key authentication (useful for TKIP and CCMP only).•Fragmentation threshold—IFC_WIFI_FRAG_THRESHOLD sets the fragmentation threshold. Frames (or packets) that are larger than this threshold are split into multiple fragments. This can be useful on busy or noisy networks. The value can be between 256 and 2346.The default, 0, means no fragmentation.#define IFC_WIFI_FRAG_THRESHOLD 0•RTS threshold—IFC_WIFI_RTS_THRESHOLD sets the RTS threshold, the frame size at which the RTS/CTS mechanism is used. This is sometimes useful on busy or noisy networks. Its range is 1 to 2347.The default, 2347, means no RTS/CTS.#define IFC_WIFI_RTS_THRESHOLD 2347Examples are available within Dynamic C. Select “Function Lookup” from the Help menu, or press <ctrl-H>. Type “TCPCONFIG” in the Function Search field, and hit <Enter>. Scroll down to the section on “Wi-Fi Configuration.” The Dynamic C TCP/IP User’s Manual.(Volume 1) provides additional information about these macros and Wi-Fi.It is also possible to redefine any of the above parameters dynamically using the ifcon-fig() function call. Macros for alternative Wi-Fi configurations are provided with the ifconfig() function call, and may be used to change the above default macros or configurations.
OEM User’s Manual 736.3.2  Configuring TCP/IP at Run TimeThere is one basic function call used to configure Wi-Fi and other network settings — ifconfig(). See the Dynamic C TCP/IP User’s Manual, Volume 1 for more informa-tion about this function call.As of Dynamic C 10.60, you can also make use of iDigi. See User’s Manual: Dynamic C - iDigi Services for Rabbit Developers Guide for more information. 6.3.3  Other Key Function CallsRemember to call sock_init() after all the Wi-Fi parameters have been defined. The Wi-Fi interface will be up automatically as long as you configured Dynamic C at compile time with one of the TCPCONFIG macros. Otherwise the Wi-Fi interface is neither up nor down, and must be brought up explicitly by calling either ifup(IF_WIFI0) or ifconfig(IF_WIFI0,…). You must bring the interface down when you configure Dynamic C at run time before modifying any parameters that require the interface to be down (see Section 6.3.2) by calling ifdown(IF_WIFI0). Then bring the interface back up. Finally, no radio transmission occurs until you call tcp_tick(NULL).Instead of executing the above sequence based on sock_init(), you could use sock_init_or_exit(1) as a debugging tool to transmit packets (ARP, DHCP, association, and authentication) while bringing up the interface and to get the IP address.
74 MiniCore RCM5600W/RCM6600W6.4  Where Do I Go From Here?NOTE: If you purchased your RCM5600W/RCM6600W through a distributor or through a Rabbit partner, contact the distributor or partner first for technical support.If there are any problems at this point:•Use the Dynamic C Help menu to get further assistance with Dynamic C.•Check the Support for Rabbit Products forum at forums.digi.com.• File a support request by going to www.digi.com, and selecting Support / Online Sup-port Request.If the sample programs ran fine, you are now ready to go on.An Introduction to TCP/IP and the Dynamic C TCP/IP User’s Manual.provide background and reference information on TCP/IP, and are available on the CD and on our Web site.
OEM User’s Manual 75APPENDIX A.  RCM5600W AND RCM6600W SPECIFICATIONSAppendix A provides the specifications for the RCM5600W and RCM6600W MiniCore modules.
76 MiniCore RCM5600W/RCM6600WA.1  Electrical and Mechanical CharacteristicsFigure A-1 shows the mechanical dimensions for the RCM5600W and RCM5650W.Figure A-1.  RCM5600W and RCM5650W DimensionsFigure A-2 shows the mechanical dimensions for the RCM6600W.
(2.3)(2.3)OEM User’s Manual 77Figure A-2.  RCM6600W DimensionsIt is recommended that you allow for an “exclusion zone” of 0.08" (2 mm) around the RCM5600W/RCM6600W top and bottom and 0.04" (1 mm) around the three non-connec-tor edges when the RCM5600W/RCM6600W is incorporated into an assembly that includes other printed circuit boards. This “exclusion zone” that you keep free of other components and boards will allow for sufficient air flow, and will help to minimize any electrical or electromagnetic interference between adjacent boards. Figure  shows this “exclusion zone.”
78 MiniCore RCM5600W/RCM6600WFigure A-3.  RCM5600W/ RCM6600W “Exclusion Zone”
OEM User’s Manual 79Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM5600W and RCM5650W. Table A-1.  RCM5600W and RCM5650W Specifications Parameter RCM5600W RCM5650WMicroprocessor Rabbit® 5000 at 73.73 MHzNetwork peripherals Wi-Fi (802.11 b/g)EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)Serial Flash Memory (program) 1MB 4MBSRAM 1MBBackup Battery Connection for user-supplied backup battery(to support RTC)General-Purpose I/O Up to 35 parallel digital I/0 lines configurable with four layers of alternate functionsAdditional Inputs Reset inAdditional Outputs Status, reset outExternal I/O Bus Can be configured for 8 data lines and 8 address lines (shared with parallel I/O lines), plus I/O read/writeSerial Ports6 high-speed, CMOS-compatible ports:•all 6 configurable as asynchronous (with IrDA), 4 as clocked serial (SPI), and 2 as SDLC/HDLC•1 clocked serial port shared with programming portSerial Rate Maximum asynchronous baud rate = CLK/8Slave Interface Slave port allows the module to be used as an intelligent peripheral device slaved to a master processorReal-Time Clock YesTimersTen 8-bit timers (6 cascadable from the first), one 10-bit timer with 2 match registers, and one 16-bit timer with 4 outputs and 8 set/reset registersWatchdog/Supervisor Ye sPulse-Width Modulators4 channels synchronized PWM with 10-bit counter or4 channels variable-phase or synchronized PWM with 16-bit counterInput Capture 2-channel input capture can be used to time input signals from various port pinsQuadrature Decoder 2-channel quadrature decoder accepts inputs from external incremental encoder modules
80 MiniCore RCM5600W/RCM6600WTable A-2.  RCM6600W and RCM6650W SpecificationsPower3.15 V DC (min.) – 3.45 V DC (max.)625 mA @ 3.3 V while transmitting/receiving85 mA @ 3.3 V while not transmitting/receivingOperating Temperature –30°C to +55°CHumidity 5% to 95%, noncondensingConnectors Edge connectors for interface with 52-pin mini PCI Express socketBoard Size 1.20" × 2.00" × 0.40"(30 mm × 51 mm × 10 mm)Parameter RCM6600W RCM6650WMicroprocessor Rabbit® 6000 at 162.5 MHzNetwork peripherals Wi-Fi (802.11 b/g) and Ethernet (10/100 Mbit)EMI Reduction Spectrum spreader for reduced EMI (radiated emissions) - only for slow clock speeds.Serial Flash Memory (program) 1MB 4MBSRAM 1MBBackup Battery Connection for user-supplied backup battery(to support RTC)General-Purpose I/O Up to 35 parallel digital I/0 lines configurable with four layers of alternate functions, plus FIM (Flexible Interface Module) control.Analog Inputs0, 2 or 4 inputs shared with PE0,1 or PE2,3. 12 bit resolution, 11 bits performance at up to 1 Msample/sec (125 ksample/sec for any one input with no CPU overhead). Input range 100mV to Vcc-100mV typical.Additional Inputs Reset inAdditional Outputs Status, reset outExternal I/O BusCan be configured for 8 data lines and8 address lines (shared with parallel I/O lines),plus I/O read/writeSerial Ports6 high-speed, CMOS-compatible ports:•all 6 configurable as asynchronous (with IrDA), 4 as clocked serial (SPI), and 2 as SDLC/HDLC•1 clocked serial port shared with programming portSerial Rate Maximum asynchronous baud rate = CLK/8Table A-1.  RCM5600W and RCM5650W Specifications (continued)Parameter RCM5600W RCM5650W
OEM User’s Manual 81Slave Interface Slave port allows the module to be used as an intelligent peripheral device slaved to a master processorReal-Time Clock YesTimersTen 8-bit timers (6 cascadable from the first), one 10-bit timer with 2 match registers, and one 16-bit timer with 4 outputs and 8 set/reset registersWatchdog/Supervisor Ye sPulse-Width Modulators4 channels synchronized PWM with 10-bit counter or4 channels variable-phase or synchronized PWM with 16-bit counterInput Capture 2-channel input capture can be used to time input signals from various port pinsQuadrature Decoder 2-channel quadrature decoder accepts inputs from external incremental encoder modulesPower3.15 V DC (min.) – 3.45 V DC (max.)625 mA @ 3.3 V while transmitting/receiving85 mA @ 3.3 V while not transmitting/receivingOperating Temperature –30°C to +55°CHumidity 5% to 95%, noncondensingConnectors Edge connectors for interface with 52-pin mini PCI Express socketBoard Size 1.20" × 2.00" × 0.40"(30 mm × 51 mm × 10 mm)Wi-FiRegion 802.11b 802.11gTypical Average Antenna  Output Power Americas, Japan 19 dBm15 dBmOther Regions 18 dBmCompliance  802.11b/g, 2.4 GHzParameter RCM6600W RCM6650W
82 MiniCore RCM5600W/RCM6600WA.1.1  mini PCI Express Connector Design RecommendationsThe RCM5600W/RCM6600W is mounted on the Interface Board via a mini PCI Express connector and a corresponding locking latch connector. These are offered by manufactur-ers as a matched set, although in some cases different manufacturer’s parts may be inter-changeable. Table A-3 lists the recommended parts for the mini PCI Express connector and the locking latch connector used for the Interface Board.Table A-3.  Interface Board Connector-Related PartsConnector Part Manufacturer Part Number Rabbit Store Part Numbermini PCI Express Connector Pinrex 984-63-052202 498-0090Latch Connector FOXCONN AS0B226S68K-7F 498-0091Figure A-4 shows a footprint for the SMT connectors in Table A-3.Figure A-4.  PCB SMT Footprint for Pinrex and FOXCONN Connectors(25.4 mm = 1”)
OEM User’s Manual 83Other manufacturers such as Molex offer similar connectors and latches, but these can have different mechanical structures and PCB footprints to what we use on the Interface Board. Table A-4 lists a pair of matched Molex parts that might be used.Table A-4.  Molex Connector-Related PartsConnector Part Molex Part Numbermini PCI Express Connector 67910-0002Latch Connector 48099-4000Follow the PCB design and layout recommendations and considerations provided by the manufacturer for the connector and latch that you select.The RCM5600W/RCM6600W may also be mounted with standoffs instead of a latch con-nector — this is the type of mounting recommended for the module to maximize vibration resistance. The height of the standoffs will depend on the mini PCI Express connector selected — Table A-3 provides some examples. Figure A-5 shows a footprint for this mounting option based on the mini PCI Express connector in Table A-3.0.80 typ.23.906.300.50 typ.0.701.102.156.7010.302.303.203.103.1024.3010.70f = 1.60 f = 1.100.400.4048.05f = 3.18f = 3.18All dimensions are in mm.MiniCoreReference Footprint Layout. 25.0027.152.00 typ.4.10 4.103.50Figure A-5.  PCB Standoff Footprint with mini PCI Express ConnectorsTable A-5.  Standoff Heights Based on mini PCI Express Connectormini PCI Express Connector Height Standoff Height Remarks6.8 mm 4.4 mm Used with Interface Board9.2 mm 6.8 mm Used with Accessory Kit
84 MiniCore RCM5600W/RCM6600WThe SMT connectors are ideal in a development environment, where the latch connector facilitates swapping RCM5600W/RCM6600W MiniCore modules as development pro-gresses. The absence of holes also maximizes trace routing flexibility on the printed cir-cuit board. The standoff option offers better vibration resistance once you are ready to deploy your application based on the RCM5600W/RCM6600W.The Rabbit store sells an accessory kit (Part No. 101-1306) with the standoffs, screws, and mini PCI Express connector needed to mount an RCM5600W/RCM6600W using the footprint. The heights of the mini PCI Express connector and the associated standoffs in the accessory kit are shown in millimeters at rightmini PCI Expressconnector6.89.2A.2  Rabbit 5000 Microprocessor CharacteristicsIf using the RCM5600W, the Rabbit 5000 Microprocessor User’s Manual, which is included with the online documentation, provides complete specifications and timing dia-grams for the Rabbit 5000 microprocessor.Rabbit’s Technical Note TN227, Interfacing External I/O with Rabbit Microprocessor Designs, which is also included with the online documentation, contains suggestions for interfacing I/O devices to the Rabbit 5000 microprocessors.A.3  Rabbit 6000 Microprocessor CharacteristicsIf using the RCM6600W, the Rabbit 6000 Microprocessor User’s Manual, which is included with the online documentation, provides complete specifications and timing dia-grams for the Rabbit 6000 microprocessor.The Rabbit 6000 microprocessor has the following basic differences compared with the Rabbit 5000:•Runs at a higher clock speed (up to 162.5MHz).•Includes some new instructions for more efficient cryptography and arithmetic.•Contains an internal 1MB fast RAM which does not require any wait states.•Has 16 (instead of 8) DMA channels, which can access the internal RAM without impacting the main CPU.•Can run Ethernet and Wi-Fi communications simultaneously.•Incorporates two Flexible Interface Modules (FIMs) which are independently running satellite processors, with a PIC-like instruction set. Each FIM can be selected to control external I/O lines; typically, an entire 8-bit parallel port may be assigned to FIM con-trol. The FIMs run at 2 times the main CPU clock rate, i.e. up to 325MHz, and thus may be programmed to implement simple peripheral functions that do not require main CPU intervention.
OEM User’s Manual 85APPENDIX B.  ‘INTERFACE BOARDAppendix B describes the features and accessories of the Interface Board, and explains the use of the Interface Board to demonstrate the RCM5600W/ RCM6600W. The Interface Board has power-supply connections and a USB interface to program the RCM5600W/ RCM6600W.
86 MiniCore RCM5600W/RCM6600WB.1  IntroductionThe Interface Board included in the Development Kit makes it easy to connect an RCM5600W/ RCM6600W module to a power supply and a PC workstation for develop-ment.The Interface Board is shown below in Figure B-1, with its main features identified.RCM5600W/RCM6600WFigure B-1.  Interface Board
OEM User’s Manual 87B.1.1  Interface Board Features•Power Connection—Power is supplied to the Interface Board either from the PC via the USB connection or through a power supply jack, J6. A chip at U4 disconnects the USB power supply from the rest of the Interface Board when power is supplied through jack J6.Users providing their own power supply should ensure that it delivers +5 V DC at 10 W.•Regulated Power Supply—The raw DC voltage is routed to a 3.3 V linear regulator. The regulator provides stable power to the RCM5600W/ RCM6600W module and other boards connected to it.•Power LED—The power LED lights whenever power is connected to the Interface Board.•Reset Switch—A momentary-contact, normally open switch is connected directly to the RCM5600W/ RCM6600W’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.•mini USB Connector—A USB cable is used to connect the RCM5600W/ RCM6600W via the Interface Board to your PC to enable you to program your RCM5600W/ RCM6600W module.•mini PCI Express socket—The Interface Board provides a 52-pin mini PCI Express socket to enable you to install your RCM5600W/ RCM6600W module. There is a snap-in holder to hold the opposite end of the RCM5600W/ RCM6600W module firmly in place.•I/O Switch and LED—One momentary-contact, normally open switch is connected to PD1 on the RCM5600W/ RCM6600W module and may be read as an input by sample applications.One LED is connected to PD0 on the RCM5600W/ RCM6600W module, and may be driven as an output indicator by sample applications.
88 MiniCore RCM5600W/RCM6600WB.2  Mechanical Dimensions and LayoutFigure B-2 shows the mechanical dimensions and layout for the Interface Board.0.15(3.8)0.15(3.8)0.175(4.4)3.45(88)3.75(95)2.50(64)0.175(4.4)0.181(4.6)0.628(15.9)0.230(5.8)0.360(9.1)0.317(8.1)0.304(7.7)0.130(3.3)× 40.125 dia(3.2)Figure B-2.  Interface Board DimensionsTable B-1 lists the electrical, mechanical, and environmental specifications for the Inter-face Board.Table B-1.  Interface Board SpecificationsParameter SpecificationBoard Size 2.50" × 3.75" × 0.60" (64 mm × 95 mm × 15 mm)Operating Temperature –40°C to +85°CHumidity 5% to 95%, noncondensingInput Voltage  +5 V DCOutput Voltage +3.3 V DCMaximum Current Draw(including user-added circuits)nominal 750 mA max. for USB supply,1.5 A for separate power supplyOther ConnectorsOne 2 × 25 IDC header sockets, 0.1" pitch,One 52-pin mini PCI Express socket to accept RCM5600WOne mini USB connectorOne 2 mm power supply jackStandoffs/Spacers 4
OEM User’s Manual 89B.2.1  HeadersThe Interface Board has a header socket at J2 for physical connection to other boards. J2 is a 2 × 25 SMT header socket with a 0.1" pin spacing. Figure B-3 shows the layout of another board to be plugged into the Interface Board — this footprint is identical for the Interface Board and the two accessory boards. The values are relative to the mounting hole.(0.6985)Figure B-3.  Interface Board Footprint
90 MiniCore RCM5600W/RCM6600WB.3  Power SupplyThe RCM5600W/ RCM6600W requires a regulated 3.15 V – 3.45 V DC power source to operate. Depending on the amount of current required by the application, different regula-tors can be used to supply this voltage.The Interface Board has an onboard +3.3 V linear regulator. The Interface Board is pro-tected against reverse polarity by a Shottky diode at D3 as shown in Figure B-4.LINEAR POWERREGULATORPOWERINJ610 µFLD29150DT33RU1+RAW+3.3 V123213B240D310 µFB240D1J5mini USBCONNNECTORU4D2B240VBUS POWERSWITCHCONTROLLERFigure B-4.  Interface Board Power SupplyPower may be supplied to the Interface Board either via the mini USB connector at J5 or through the power supply jack J6. When a separate power supply is used, the chip at U4 disables power from the mini USB connector, which continues to supply power only to the USB interface chip. Diodes at D1 and D2 prevent power from going back to the other power supply that is not supplying power. A separate power supply is required whenever the Interface Board is not connected to the PC.A jumper on header JP2 controls the current limiting applied to the power drawn via the mini USB connector — the current is nominally limited to 700 mA when a jumper is installed (default), and is nominally limited to 500 mA when no jumper is installed.
OEM User’s Manual 91B.4  Using the Interface BoardThe Interface Board is also a demonstration board. It can be used to demonstrate the func-tionality of the RCM5600W/ RCM6600W right out of the box without any modifications to either board.The Interface Board comes with the basic components necessary to demonstrate the oper-ation of the RCM5600W/ RCM6600W. One LEDs (DS1) is connected to PD0, and one switch (S1) is connected to PD1 to demonstrate the interface to the Rabbit 5000 micropro-cessor. Reset switch S2 is the hardware reset for the RCM5600W/ RCM6600W.The Interface Board provides the user with RCM5600W/ RCM6600W connection points brought out conveniently to header socket J2. Other boards such as the Prototyping Board or the accessory boards from the Deluxe Development Kit can be plugged into header socket J2. The pinouts for header socket J2 are shown in Figure B-5.Note: These pinouts are as seen onthe Top Side.+3.3 VPE0PE2PE5PE7PD0PD2/RESET_IN+3.3 VPC0PC2PC4/TxBPC6/TxAPB0/SCLKBPB2PB4PB6+3.3 VPA0PA2PA4PA6/IORDSTATUS+3.3 VGNDPE1PE3PE6SMODEPD1PD3/RESETGNDPC1PC3PC5/RxBPC7/RxAPB1/SCLKAPB3PB5PB7GNDPA1PA3PA5PA7/IOWRVBAT_EXTGNDJ2Figure B-5.  Interface Board Pinout
92 MiniCore RCM5600W/RCM6600WB.4.1  Add Additional BoardsThe Prototyping Board and the two accessory boards included with the Deluxe Develop-ment Kit may be installed on the Interface Board as shown in Figure B-6.Install header connector stripin bottom socketFigure B-6.  Install Additional Boards on Interface Board1. Insert the header strip into header socket J2 on the Interface Board or the board already installed above the Interface Board.2. Line up the board being installed above the pins extending from the header socket and the stand-offs/connectors.3. Press down to install the board.4. Insert additional plastic standoffs/connectors as shown to hold the board firmly in place and to hold another board if desired.When additional boards are installed, the board-to-board spacing is 0.7" (17.8 mm). Multiple boards should be installed in this sequence from bottom to top.•Interface Board with RCM5600W/ RCM6600W installed.•Prototyping Board.•Serial Communication accessory board.•Digital I/O accessory board.
OEM User’s Manual 93B.5  Interface Board Jumper ConfigurationsFigure B-7 shows the header locations used to configure the various Interface Board options via jumpers. JP1 JP2Figure B-7.  Location of Configurable Jumpers on Interface BoardTable B-2 lists the configuration options using either jumpers or 0  surface-mount resistors.Table B-2.  Interface Board Jumper Configurations Header Description Pins Connected Factory DefaultJP1 Dynamic C Setup1–2 SMODE pins pulled up(Programming Mode)** The RCM5600W will operate in Run Mode when these pins are not jumpered.×3–4 Reserved for future use5–6 LED DS1 connected ×7–8 Switch S1 connected ×JP2 mini USB Connector Power Supply Current Limiting1–2 Nominal 700 mA ×n.c. Nominal 500 mA
94 MiniCore RCM5600W/RCM6600W
OEM User’s Manual 95APPENDIX C.  PROTOTYPING BOARDAppendix C describes the features and accessories of the Prototyping Board, and explains the use of the Prototyping Board to build prototypes of your own circuits. The Prototyping Board mounts on the Interface Board from which it receives its power and signals.
96 MiniCore RCM5600WC.1  IntroductionThe Prototyping Board included in the Development Kit provides a prototyping area for more advanced hardware development. The Prototyping Board is shown below in Figure C-1, with its main features identified.PowerLEDThrough-HolePrototyping Area3.3 V and GNDBusesSMT PrototypingAreaRCM5600WModuleExtension HeaderStackingUser InterfaceConnectorFigure C-1.  Prototyping BoardC.1.1  Prototyping Board Features•Power Connection—Power is supplied to the Prototyping Board via the RCM5600W header socket connections.•Power LED—The power LED lights whenever power is connected to the Prototyping Board.•Module Extension Headers—The complete pin set of the RCM5600W module is duplicated below header J2. Developers can solder wires directly into the appropriate holes, or, for more flexible development, a 2 × 25 header strip with a 0.1" pitch can be soldered into place. See Figure C-4 for the header pinouts.•Prototyping Area—A generous prototyping area is provided for the installation of through-hole and surface-mount components. +3.3 V and ground buses run along the left and right edges of the through-hole prototyping area. The through-hole area is set up to accept components with a pitch of 0.1" or widths of 0.3" or 0.6". Several areas for surface-mount devices are also available. (Note that there are SMT pads on both the top and the bottom of the Prototyping Board.) Each SMT pad is connected to a hole designed to accept a 30 AWG solid wire.
OEM User’s Manual 97C.2  Mechanical Dimensions and LayoutFigure C-2 shows the mechanical dimensions and layout for the Prototyping Board.0.15(3.8)0.15(3.8)0.175(4.4)3.45(88)3.75(95)2.50(64)0.175(4.4)× 40.125 dia(3.2)2.15(55)Figure C-2.  Prototyping Board Dimensions
98 MiniCore RCM5600WTable C-1 lists the electrical, mechanical, and environmental specifications for the Proto-typing Board.Table C-1.  Prototyping Board SpecificationsParameter SpecificationBoard Size 2.50" × 3.75" × 0.52" (64 mm × 95 mm × 13 mm)Operating Temperature –40°C to +85°CHumidity 5% to 95%, noncondensingOperating Voltage +3.3 V DCCurrent Draw from Interface Board (excluding user-added circuits)2 mAPrototyping Area 1.7" × 2.7" (40 mm × 70 mm) throughhole, 0.1" spacing, additional space for SMT componentsConnectorsTwo 2 × 25 IDC header sockets, 0.1" pitch(a 2 × 25 IDC header strip is included to connect the Prototyping Board to the Interface Board below it)Standoffs/Spacers 4
OEM User’s Manual 99C.2.1  HeadersThe Prototyping Board has a header socket at J2 for physical connection to other boards above it, and a header socket at J12 on the bottom side to connect to boards below it. J2 and J12 are 2 × 25 SMT header sockets with a 0.1" pin spacing. Figure C-3 shows the layout of another board to be plugged into the Interface Board — this footprint is identical for the Prototyping Board and the two accessory boards. The values are relative to the mounting hole.(0.6985)Figure C-3.  MiniCore Boards Footprint
100 MiniCore RCM5600WC.3  Using the Prototyping BoardThe Prototyping Board provides the user with RCM5600W connection points brought out conveniently to labeled points below header J2. The pinouts for header socket J2 are shown in Figure C-4.Note: These pinouts are as seen onthe Top Side.+3.3 VPE0PE2PE5PE7PD0PD2/RESET_IN+3.3 VPC0PC2PC4/TxBPC6/TxAPB0/SCLKBPB2PB4PB6+3.3 VPA0PA2PA4PA6/IORDSTATUS+3.3 VGNDPE1PE3PE6SMODEPD1PD3/RESETGNDPC1PC3PC5/RxBPC7/RxAPB1/SCLKAPB3PB5PB7GNDPA1PA3PA5PA7/IOWRVBAT_EXTGNDJ2Figure C-4.  MiniCore Boards PinoutThere is a 1.7" × 2.7" through-hole prototyping space available on the Prototyping Board. The holes in the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V and GND traces run along the left edge of the Prototyping Board for easy access. Small to medium circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire between the prototyping area, the +3.3 V and GND traces, and the surrounding area where surface-mount compo-nents may be installed. Small holes are provided around the surface-mounted components that may be installed around the prototyping area.
OEM User’s Manual 101C.3.1  Add Additional BoardsThe Prototyping Board and the two accessory boards included with the Deluxe Develop-ment Kit may be installed on the Interface Board as shown in Figure C-5.Install header connector stripin bottom socketFigure C-5.  Install Additional Boards1. Insert the header strip into header socket J2 on the Interface Board or the board already installed above the Interface Board.2. Line up the board being installed above the pins extending from the header socket and the stand-offs/connectors.3. Press down to install the board.4. Insert additional plastic standoffs/connectors as shown to hold the board firmly in place and to hold another board if desired—note that one plastic standoff/connector needs to be inserted “upside down” to secure the Prototyping Board to the antenna bracket.When additional boards are installed, the board-to-board spacing is 0.7" (17.8 mm). Multiple boards should be installed in this sequence from bottom to top.•Interface Board with RCM5600W installed.•Prototyping Board.•Serial Communication accessory board.•Digital I/O accessory board.
102 MiniCore RCM5600W
OEM User’s Manual 103APPENDIX D.  DIGITAL I/O ACCESSORY BOARDAppendix D describes the features and accessories of the Digital I/O accessory board, and explains how to use the Digital I/O accessory board. The Digital I/O accessory board mounts on the Interface Board or other board already installed on the Interface Board from which it receives its power and signals.
104 MiniCore RCM5600WD.1  IntroductionThe Digital I/O accessory board included in the Deluxe Development Kit provides Push-button switches and LEDs to use in conjunction with selected sample programs. The Dig-ital I/O accessory board is shown below in Figure D-1, with its main features identified.PowerLEDRCM5600WModuleExtension HeaderUser Switchesand LEDsPullup/PulldownJumperConfigurationLED and SwitchSignal ConnectionsStackingUser InterfaceConnectorFigure D-1.  Digital I/O Accessory BoardD.1.1  Digital I/O Accessory Board Features•Power Connection—Power is supplied to the Digital I/O accessory board via the RCM5600W header socket connections.•Power LED—The power LED lights whenever power is connected to the Digital I/O accessory board.•Module Extension Headers—The complete pin set of the RCM5600W module is duplicated below header J2. Developers can solder wires directly into the appropriate holes, or, for more flexible development, a 2 × 25 header strip with a 0.1" pitch can be soldered into place. See Figure D-4 for the header pinouts.•I/O Switches and LEDs—Four momentary-contact, normally open switches are con-nected to PB4–PB7 on the RCM5600W module and may be read as an input by sample applications.Four LEDs are connected to PA4–PA7 on the RCM5600W module, and may be driven as an output indicator by sample applications.
OEM User’s Manual 105D.2  Mechanical Dimensions and LayoutFigure D-2 shows the mechanical dimensions and layout for the Digital I/O accessory board.0.15(3.8)0.15(3.8)0.175(4.4)3.45(88)3.75(95)2.50(64)0.175(4.4)× 40.125 dia(3.2)2.15(55)Figure D-2.  Digital I/O Accessory Board DimensionsTable D-1 lists the electrical, mechanical, and environmental specifications for the Digital I/O accessory board.Table D-1.  Digital I/O Accessory Board SpecificationsParameter SpecificationBoard Size 2.50" × 3.75" × 0.52" (64 mm × 95 mm × 13 mm)Operating Temperature –40°C to +85°CHumidity 5% to 95%, noncondensingOperating Voltage +3.3 V DCCurrent Draw from Interface Board 6 mA (typical)ConnectorsTwo 2 × 25 IDC header sockets, 0.1" pitch(a 2 × 25 IDC header strip is included to connect the Digital I/O accessory board to the board below it)Standoffs/Spacers 4
106 MiniCore RCM5600WD.2.1  HeadersThe Digital I/O accessory board has a header socket at J2 for physical connection to other boards above it, and a header socket at J12 on the bottom side to connect to boards below it. J2 and J12 are 2 × 25 SMT header sockets with a 0.1" pin spacing. Figure D-3 shows the layout of another board to be plugged into the Digital I/O accessory board — this foot-print is identical for the Prototyping Board and the two accessory boards. The values are relative to the mounting hole.(0.6985)Figure D-3.  MiniCore Boards Footprint
OEM User’s Manual 107D.3  Using the Digital I/O Accessory BoardThe Digital I/O accessory board provides the user with RCM5600W connection points brought out conveniently to labeled points below header J2. The pinouts for header socket J2 are shown in Figure D-4.Note: These pinouts are as seen onthe Top Side.+3.3 VPE0PE2PE5PE7PD0PD2/RESET_IN+3.3 VPC0PC2PC4/TxBPC6/TxAPB0/SCLKBPB2PB4PB6+3.3 VPA0PA2PA4PA6/IORDSTATUS+3.3 VGNDPE1PE3PE6SMODEPD1PD3/RESETGNDPC1PC3PC5/RxBPC7/RxAPB1/SCLKAPB3PB5PB7GNDPA1PA3PA5PA7/IOWRVBAT_EXTGNDJ2Figure D-4.  MiniCore Boards Pinout
108 MiniCore RCM5600WD.3.1  ConfigurationThe pushbutton switches may be configured active high (pulled down) or active low (pulled up) via jumper settings on header JP7 for the four switches installed. Jumpers on JP12 may be set up in a similar way after additional switches are installed at S5–S8.47 kW+VJP7S1S4ACTIVE LOW47 kW+V JP7S1S4ACTIVE HIGHFigure D-5.  Pushbutton Switch ConfigurationThe four LED output indicators are set up as sinking outputs. Four additional LEDs may be installed at DS5–DS8.Jumpers on headers JP5 and JP8 connect the RCM5600W signals to the pushbutton switches or LEDs. These jumpers may be removed and other RCM5600W signals may be connected to the switch or LED positions above these headers via headers JP6 and JP9. Table D-2 lists the connection options for the switches and LEDs.Table D-2.  Digital I/O Accessory Board Switch/LED Connection Options Default RCM5600W Signal Switch/LEDConnected via Alternate ConnectionHeader Pins Header PinPB4 S1*JP51–2JP61PB5 S2 3–4 2PB6 S3 5–6 3PB7 S4 7–8 4
OEM User’s Manual 109NOTE: Switches S5–S8, LEDs DS5–DS8, and the corresponding configuration headers JP10–JP14 and circuits are not stuffed.Figure D-6 shows the locations of the configurable jumpers.JP7 JP5 JP8 JP10 JP13 JP12JP6 JP9 JP11 JP14Figure D-6.  Location of Configurable Jumpers on Digital I/O Accessory BoardPA4 DS1JP81–2JP91PA5 DS2 3–4 2PA6 DS3 5–6 3PA7 DS4 7–8 4PB0 S5†JP101–2JP111PB1 S6 3–4 2PB2 S7 5–6 3PB3 S8 7–8 4PA0 DS5JP131–2JP141PA1 DS6 3–4 2PA2 DS7 5–6 3PA3 DS8 7–8 4* Switches S1–S4 are pulled high or low via jumpers on header JP7.† Switches S5–S8 are pulled high or low via jumpers on header JP12 (not stuffed).Table D-2.  Digital I/O Accessory Board Switch/LED Connection Options (cont’d)Default RCM5600W Signal Switch/LEDConnected via Alternate ConnectionHeader Pins Header Pin
110 MiniCore RCM5600WD.3.2  Add Additional BoardsThe Prototyping Board and the two accessory boards included with the Deluxe Develop-ment Kit may be installed on the Interface Board as shown in Figure D-7.Install header connector stripin bottom socketFigure D-7.  Install Additional Boards1. Insert the header strip into header socket J2 on the Interface Board or the board already installed above the Interface Board.2. Line up the board being installed above the pins extending from the header socket and the stand-offs/connectors.3. Press down to install the board.4. Insert additional plastic standoffs/connectors as shown to hold the board firmly in place and to hold another board if desired—note that one plastic standoff/connector needs to be inserted “upside down” to secure the Prototyping Board or other accessory board above the antenna bracket.When additional boards are installed, the board-to-board spacing is 0.7" (17.8 mm). Multiple boards should be installed in this sequence from bottom to top.•Interface Board with RCM5600W installed.•Prototyping Board.•Serial Communication accessory board.•Digital I/O accessory board.
OEM User’s Manual 111APPENDIX E.  SERIAL COMMUNICATION ACCESSORY BOARDAppendix E describes the features and accessories of the Serial Communication accessory board, and explains how to use the Serial Communication accessory board. The Serial Communica-tion accessory board mounts on the Interface Board or other board already installed on the Interface Board from which it receives its power and signals.
112 MiniCore RCM5600WE.1  IntroductionThe Serial Communication accessory board included in the Deluxe Development Kit pro-vides two 3-wire serial ports to use in conjunction with selected sample programs. The Serial Communication accessory board is shown below in Figure E-1, with its main fea-tures identified.PowerLEDRCM5600WModuleExtension HeaderCTS/RTSAvailable on J3 RS-232 HeadersPC0PC3Brought Outto J3 and J4Serial Port D Serial Port CStackingUser InterfaceConnectorFigure E-1.  Serial Communication Accessory BoardE.1.1  Serial Communication Accessory Board Features•Power Connection—Power is supplied to the Serial Communication accessory board via the RCM5600W header socket connections.•Power LED—The power LED lights whenever power is connected to the Serial Com-munication accessory board.•Module Extension Headers—The complete pin set of the RCM5600W module is duplicated below header J2. Developers can solder wires directly into the appropriate holes, or, for more flexible development, a 2 × 25 header strip with a 0.1" pitch can be soldered into place. See Figure E-4 for the header pinouts.•RS-232 Headers—Serial Ports C and D are brought out as 3-wire RS-232 ports on headers J4 and J3 respectively. Header J3 can be set up as a 5-wire RS-232 serial port with flow control provided by Serial Port C.
OEM User’s Manual 113E.2  Mechanical Dimensions and LayoutFigure E-2 shows the mechanical dimensions and layout for the Serial Communication acces-sory board.0.15(3.8)0.15(3.8)0.175(4.4)3.45(88)3.75(95)2.50(64)0.175(4.4)× 40.125 dia(3.2)2.15(55)Figure E-2.  Serial Communication Accessory Board DimensionsTable E-1 lists the electrical, mechanical, and environmental specifications for the Serial Communication accessory board.Table E-1.  Serial Communication Accessory Board SpecificationsParameter SpecificationBoard Size 2.50" × 3.75" × 0.52" (64 mm × 95 mm × 13 mm)Operating Temperature –40°C to +85°CHumidity 5% to 95%, noncondensingOperating Voltage +3.3 V DCCurrent Draw from Interface Board 10 mA (typical)ConnectorsTwo 2 × 25 IDC header sockets, 0.1" pitch(a 2 × 25 IDC header strip is included to connect the Serial Communication accessory board to the board below it)Two 2 × 5 IDC headers, 0.1" pitchStandoffs/Spacers 4
114 MiniCore RCM5600WE.2.1  HeadersThe Serial Communication accessory board has a header socket at J2 for physical connec-tion to other boards above it, and a header socket at J12 on the bottom side to connect to boards below it. J2 and J12 are 2 × 25 SMT header sockets with a 0.1" pin spacing. Figure E-3 shows the layout of another board to be plugged into the Serial Communica-tion accessory board — this footprint is identical for the Prototyping Board and the two accessory boards. The values are relative to the mounting hole.(0.6985)Figure E-3.  MiniCore Boards Footprint
OEM User’s Manual 115E.3  Using the Serial Communication Accessory BoardThe Serial Communication accessory board provides the user with RCM5600W connection points brought out conveniently to labeled points below header J2. The pinouts for header socket J2 and the RS-232 headers at J3 and J4 are shown in Figure E-4.Note: These pinouts are as seen onthe Top Side.TxDRxDGNDCTSDRTSDJ3TxCRxCGNDJ4+3.3 VPE0PE2PE5PE7PD0PD2/RESET_IN+3.3 VPC0PC2PC4/TxBPC6/TxAPB0/SCLKBPB2PB4PB6+3.3 VPA0PA2PA4PA6/IORDSTATUS+3.3 VGNDPE1PE3PE6SMODEPD1PD3/RESETGNDPC1PC3PC5/RxBPC7/RxAPB1/SCLKAPB3PB5PB7GNDPA1PA3PA5PA7/IOWRVBAT_EXTGNDJ2Figure E-4.  Serial Communication Accessory Board PinoutThe remaining RS-232 header positions at J5 and J6, and the RS-485 screw-terminal header position at J1 are unstuffed.
116 MiniCore RCM5600WE.3.1  ConfigurationSerial Ports C and D are brought out as 3-wire RS-232 serial ports on headers J4 and J3 respectively. Jumpers may be installed on header JP7 to use header J3 as a 5-wire RS-232 serial port with flow control provided by Serial Port C.Jumpers on headers JP5 connect the RCM5600W signals to the RS-232 transceiver. Jump-ers may be installed on header JP7 to use header J3 as a 5-wire RS-232 serial port with flow control provided by Serial Port C. Note that Serial Port C does not support flow con-trol using serial DMA, so the following macro must be used with flow control via Serial Port C on the Serial Communication accessory board.#define SER_DMA_DISABLEThe jumpers at header JP5 connect the Serial Port D and Serial Port C signals to the RS-232 transceiver. These jumpers may be removed so that other RCM5600W serial port signals may be connected via JP6 to the RS-232 transceiver.Table E-2.  Serial Communication Accessory Board RS-232 Connection Options Default RCM5600W SignalHeader Serial PortConnected via Alternate ConnectionHeader Pins Header PinPC0J3 Serial Port D(RS-232)JP51–2JP61PC1 3–4 2PC2J3/J4** Configured via header JP7.Serial Port C(RS-232)5–6 3PC3 7–8 4PE6J5 Serial Port E(RS-232)JP81–2JP91PE7 3–4 2PC4J5/J6†† Configured via header JP10 (unstuffed).Serial Port B(RS-232)5–6 3PC5 7–8 4PD0 —JP111–2JP121PD1J1‡‡ Termination and bias resistors enabled via header JP13 (unstuffed).Flow Enable 3–4 2PD2 Serial Port F(RS-485)5–6 3PD3 7–8 4NOTE: Headers J1, J5, J6, and the associated circuits and configuration headers are not stuffed.
OEM User’s Manual 117Figure E-5 shows the locations of the configurable header positions.JP8JP10JP13JP12JP6 JP9JP11JP7JP5Figure E-5.  Location of Configurable Jumpers on Serial Communication Accessory Board
118 MiniCore RCM5600WE.3.2  Add Additional BoardsThe Prototyping Board and the two accessory boards included with the Deluxe Develop-ment Kit may be installed on the Interface Board as shown in Figure E-6.Install header connector stripin bottom socketFigure E-6.  Install Additional Boards1. Insert the header strip into header socket J2 on the Interface Board or the board already installed above the Interface Board.2. Line up the board being installed above the pins extending from the header socket and the stand-offs/connectors.3. Press down to install the board.4. Insert additional plastic standoffs/connectors as shown to hold the board firmly in place and to hold another board if desired—note that one plastic standoff/connector needs to be inserted “upside down” to secure the Prototyping Board or other accessory board above the antenna bracket.When additional boards are installed, the board-to-board spacing is 0.7" (17.8 mm). Multiple boards should be installed in this sequence from bottom to top.•Interface Board with RCM5600W installed.•Prototyping Board.•Serial Communication accessory board.•Digital I/O accessory board.
OEM User’s Manual 119APPENDIX F.  POWER SUPPLYAppendix G provides information on the current requirements of the RCM5600W, and includes some background on the chip select circuit used in power management.F.1  Power SuppliesThe RCM5600W requires a regulated 3.15 V – 3.45 V DC power source. The MiniCore design presumes that the voltage regulator is on the user board, and that the power is made available to the RCM5600W board through the edge connectors. An RCM5600W with no loading at the outputs operating at 73.73 MHz typically draws 85 mA, and may draw up to 625 mA while the Wi-Fi circuit is transmitting or receiving.
120 MiniCore RCM5600WF.1.1  Battery BackupThe RCM5600W does not have a battery, but there is provision for a customer-supplied battery to keep the Rabbit 5000 real-time clock running.The edge connector, shown in Figure F-1, allows access to the external battery. This makes it possible to connect an external 3 V power supply. This allows the internal Rabbit 5000 real-time clock to retain data with the RCM5600W powered down.GNDn.c.n.c.LNKPE0PE2PE5PE7PD0PD2PC0PC2PC4/TxBPB0/SCLKPB2PB4PB6PA0PA2PA4PA6/IORD/IOWRSTATUSSMODEGND151252+3.3 Vn.c.n.c.ACTPE1PE3PE6/RESET_INPD1PD3PC1PC3PC5/RxB/RESETPB3PB5PB7PA1PA3PA5PA7VBAT_EXTPB1/CLKAPC6/TxAPC7/RxA+3.3 VBottom TopExternalBatteryn.c. = not connectedFigure F-1.  External Battery ConnectionsA lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is recommended. A lithium battery is strongly recommended because of its nearly constant nominal voltage over most of its life.The drain on the battery by the RCM5600W is typically 5 µA when no other power is supplied. If a 165 mA·h battery is used, the battery can last about 3.75 years:165 mA·h5 µA------------------------ 3 . 7 5  y e a r s .=
OEM User’s Manual 121The actual life in your application will depend on the current drawn by components not on the RCM5600W and on the storage capacity of the battery. The RCM5600W does not drain the battery while it is powered up normally.Cycle the main power off/on on the RCM5600W after you install a backup battery for the first time, and whenever you replace the battery. This step will minimize the current drawn by the real-time clock oscillator circuit from the backup battery should the RCM5600W experience a loss of main power.NOTE: Remember to cycle the main power off/on any time the RCM5600W is removed from the Interface Board or motherboard since that is where the backup battery would be located.Rabbit’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, provides addi-tional information about the current draw by the real-time clock oscillator circuit.F.1.2  Battery-Backup CircuitFigure F-2 shows a suggested battery-backup circuit.VBATIO47 kWR12VBAT-EXTExternal Battery+3.3 VD1C12,2 nFQ1FDV302PRESOUTFigure F-2.  RCM5600W Backup Battery CircuitThe battery-backup circuit serves the following purposes:•It reduces the battery voltage to real-time clock, thereby limiting the current consumed by the real-time clock and lengthening the battery life.•It ensures that current can flow only out of the battery to prevent charging the battery.•Switches to battery power only when the +3.3 V system power supply is off.F.1.3  Reset GeneratorThe RCM5600W uses a reset generator to reset the Rabbit 5000 microprocessor when the voltage drops below the voltage necessary for reliable operation. The reset occurs between 2.85 V and 3.00 V, typically 2.93 V. The RCM5600W has a reset output on the edge connector.
122 MiniCore RCM5600WF.1.4  Onboard Power SuppliesThe +3.3 V supplied to the RCM5600W powers most of the onboard circuits. In addition, there is a +1.8 V DC linear regulator that provides the core voltage to the Rabbit 5000 micro-processor. Other linear regulators supply the additional voltage levels needed by the Wi-Fi circuits.+ 1.8 V DCU11Regulated+ 3.3 V DC+ 5 V DCU5Wi-Fi+ 3.3 V DCU6+ 2.8 V DCU7Charge PumpFigure F-3.  RCM5600W Onboard Power Supplies
OEM User’s Manual 123INDEXAaccessory boardsDigital I/O  ....................... 100configuration options  .. 104LED outputs  ............ 104pushbutton switches  104dimensions .................. 101specifications ............... 101Serial Communication  .... 108configuration options  .. 112RTS/CTS ................. 112dimensions .................. 109specifications ............... 109accessory kitmini PCI Express connector and standoffs ................. 80additional informationonline documentation .......... 5antennaextension ............................. 6antenna connectionsgrounding requirements  6, 33via bracket on Interface Board ....................................... 12via RP-SMA connector sol-dered to Interface Board 12Bbattery backupbattery life  ....................... 117circuit .............................. 117reset generator ................. 117board initializationfunction calls ..................... 45brdInit() ......................... 45Ccertifications ........................... 6Europe ................................. 8FCC ..................................... 6Industry Canada  .................. 7labeling requirements .......... 7clock doubler  ........................ 36compiler options  ................... 39connectorsaccessory kit ...................... 80design and layout recommen-dations ........................... 78mini PCI Express  ........ 78, 80PCB footprint with latch connector ...................... 78PCB footprint with standoffs ....................................... 79DDevelopment Kits  ................... 4Deluxe Development Kit  .... 4AC adapter  ...................... 4accessory boards ............. 4Standard Development Kit .. 4Dynamic C  ...................... 4Getting Started instructions 4Interface Board ................ 4Prototyping Board ........... 4USB cable  ....................... 4digital I/O .............................. 22function calls ..................... 41memory interface  .............. 28SMODE0 .......................... 28SMODE1 .......................... 28Digital I/O accessory board ............................... 99, 100features ............................ 100dimensionsDigital I/O accessory board ..................................... 101Interface Board  ................. 84Prototyping Board ............. 93RCM5600W ...................... 74Serial Communication accessory board  .......... 109Dynamic C .............. 5, 9, 14, 39add-on modules ............. 9, 46installation ....................... 9compiler options  ............... 39librariesBOOTDEV_SFLASH.LIB ..................................... 42Rabbit Embedded Security Pack .......................... 5, 46sample programs ............... 18standard featuresdebugging ...................... 40telephone-based technical support ...................... 5, 46troubleshooting ................. 15upgrades and patches  ........ 46Eexclusion zone  ...................... 75external I/O bus  .................... 28software ............................. 28FfeaturesDigital I/O accessory board ..................................... 100Interface Board  ................. 83Prototyping Board ............. 92RCM5600W ........................ 2Serial Communication accessory board  .......... 108Hhardware connections  ........... 10install RCM5600W on Interface Board  ............. 11USB cable  ......................... 12
124 MiniCore RCM5600WIinstall additional boards ..........................88, 97, 106Interface Board ......................82dimensions .........................84features ..............................83jumper configurations  .......89jumper locations  ................89mounting RCM5600W ......11power supply  .....................86power supply jack polarity  82specifications .....................84Jjumper configurationsaccessory boardsDigital I/O ....................104Serial Communication .112Interface Board ..................89Prototyping BoardJP2 (analog inputs reference) ....................89Llabeling requirements ..............7LEDsWi-Fi association and activity ........................................33Ooperating region configuration ..55optional add-ons ......................5antenna and connector cable 5power supply  .......................5PPCB footprintmini PCI Express connector and latch  ........................78mini PCI Express connector and standoffs  .................79pinoutDigital I/O accessory board ......................................103RCM5600Walternate configurations  .24RCM5600W edge connectors 22Serial Communication acces-sory board ....................111power supplies+3.3 V ..............................115battery backup  .................116Program Mode .......................34switching modes ................34programmingRemote Program Update  .....2programming port  .................30Prototyping Board  .................92dimensions .........................93expansion area ...................92features ..............................92prototyping area  ................96specifications .....................94RRabbit 5000tamper detection  ................37VBAT RAM memory  .......37Rabbit subsystems .................23RCM5600Wmounting on Interface Board .......................................11Run Mode ..............................34switching modes ................34Ssample programs  ...................18accessory boardsDigital I/O ................19, 63Serial Communication ...65getting to know the RCM5600WFLASHLED.C ...............18SERIALTOSERIAL.C ...............................19, 20TOGGLESWITCH.C ...............................18, 19hardware setup  ..................17PC/notebook configuration 53TCP_CONFIG.LIB ...........52USERBLOCK_CLEAR.C 44USERBLOCK_INFO.C ....44Wi-FiBROWSELED.C ...........64PINGLED.C ......60, 63, 64PINGLED_STATS.C .........................62, 63, 64PINGLED_WPA_PSK.C .....................................60PINGLED_WPA2_CCMP.C .................................61SERIAL_TO_WIFI.C ...65SMTP.C .........................62TOGGLESWITCH.C ....63WIFI_SCAN.C ........55, 59WIFI_SCANASSOCIATE.C .....................................59WIFIDHCPORTSTATIC.C .....................................57WIFIMULTIPLEAPS.C 57WIFIPINGYOU.C .........58Wi-Fi configuration macros .......................................52Wi-Fi network configuration .52serial communication  ............29function calls  .....................41softwarePACKET.LIB ................41RS232.LIB .....................41Serial Communication accessory board ...........................108features ............................108serial flash memoryfunction calls  .....................42sbfRead ..........................42sbfWriteFlash ................43softwareBOOTDEV_SFLASH.LIB .....................................42serial ports  .......................29, 30programming port ..............30Serial Port B (shared)  ........29Serial Port Econfiguration information ..29Serial Port Fconfiguration information ..29
OEM User’s Manual 125software ................................... 5external I/O bus ................. 41I/O drivers  ......................... 41librariesBOOTDEV_SFLASH.LIB ..................................... 42TCP_CONFIG.LIB ....... 67sample programs  ............... 18serial communication drivers ....................................... 41serial flash boot drivers ..... 42troubleshooting ................. 15Wi-Fi configuration at compile time  ................. 67configuration macros ..... 67access point SSID ...... 67authentication ............ 69channel ...................... 68enable/disable encryp-tion .......................... 68encryption keys  ......... 68fragmentation threshold ................................. 70mode .......................... 67other macros .............. 70region/country ........... 68RTS threshold ............ 70select encryption key . 68set WPA hex key ....... 69set WPA passphrase  .. 69WPA encryption ........ 69network configuration  ... 67TCPCONFIG macro  ..... 67Wi-Fi configuration at run time ............................... 71Wi-Fi drivers ..................... 44specifications ........................ 73accessory boardsheaders ................ 102, 110Digital I/O accessory board ..................................... 101dimensions ........................ 74electrical, mechanical, and environmental ............... 76exclusion zone ................... 75Interface Board  ................. 84headers .......................... 85Prototyping Board ............. 94headers .......................... 95Rabbit 5000 DC characteris-tics ................................. 80Serial Communication accessory board  .......... 109spectrum spreadersettings .............................. 36subsystemsdigital inputs and outputs .. 22switching modes  ................... 34Ttamper detection  ................... 37technical support ................... 16troubleshooting ..................... 15UUSB cableconnections ....................... 12user blockfunction calls ..................... 44readUserBlock() ............ 37writeUserBlock() ........... 37VVBAT RAM memory ........... 37WWi-Fiadditional resources  .......... 72bring interface down ......... 71bring interface up  .............. 71circuit description  ............. 31function callsifconfig() ................. 67, 71ifconfig(IF_WIFI0,…) .. 71ifdown(IF_WIFI0) ........ 71ifup(IF_WIFI0) ............. 71sock_init() ..................... 71sock_init_or_exit(1) ...... 71tcp_tick(NULL) ............ 71sample programs ............... 55
126 MiniCore RCM5600W

Navigation menu