1971_Motorola_TTL_Integrated_Circuits_Data_Book 1971 Motorola TTL Integrated Circuits Data Book
User Manual: 1971_Motorola_TTL_Integrated_Circuits_Data_Book
Open the PDF directly: View PDF .
Page Count: 553
Download | |
Open PDF In Browser | View PDF |
I GENERAL INFORMATION I ITECHNICAL DATAl MC3100/MC3000 Series • Interchangeability Guide Packaging Information ~ ~ ISELECTOR GUIDES I MC4300/MC4000 Series • MTTL Complex Functions MC5400/MC7400 Series • MC5400/MC7400 Series MC8200/MC7200 Series • MTTL III MC3100/MC3000 Series MC9300/MC8300 Series • MTTL II MC2100/MC2000 Series MCBC5400/MCB5400F Series • MTTL I MC500/MC400 Series TTL Memories • Beam Lead MCBC5400/MCB5400F Series I APPLICATION NOTESI • Dielectrically Isolated MCE54HOO/MCE74HOO Series MTTL Memories ~ • ~ ~ TTL INTEGRATED CIRCUITS DATA BOOK This book presents technical data for a broad line of TTL integrated circuits. Complete specifications for the individual monolithic circuits in the most popular TTL families are provided in the form of data sheets. In addition, selector guides are included to simplify the task of chOOSing the best combination of circuits for optimum system architecture. The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of any manufacturer. First Edition May, 1971 @ MOTOROLA INC., 1971 CONTENTS GENERAL INFORMATION Interchangeability Guide Packaging Information SELECTOR GUIDES MTTL Complex Functions MC5400/MC7400 Series MTTL III MC31 OO/MC3000 Series MTTL II MC2100/MC2000 Series MTTL I MC500/MC400 Series Beam Lead MCBC5400/MCB5400F Series Dielectrically Isolated MCE54HOO/MCE74HOO Series MTTL Memories TECHNICAL DATA (Data sheets in each section are in alpha-numerical order unless otherwise noted.) MC3100/MC3000 Series Index General Information Data Sheets MC4300/MC4000 Series Index General Information Data Sheets MC5400/MC7400 Series Index General Information Data Sheets (in numerical order except MC15482/MC17482-MC25482/MC27482. which follows MC5480/MC7480.) MC8200/MC7200 Series Index Data Sheets MC9300/MC8300 Series Index Data Sheets (includes MC9601/MC8601) MCBC5400/MCB5400F Series Index General Information Data Sheets MTTL Memories Index Data Sheets APPLICATION NOTES The following are trademarks of Motorola Inc.: MTTL, MTTL I, MTTL II, MTTL III, MDTL, MECL, MECL II, MECL III, MRTL, CROSS REFERENCE The following listings of TTL devices indicate the Motorola replacement for most TTL devices available. Devices are referenced to the prime source only - not to any manfuacturer who may be a second source. In some cases a Motorola suggested alternate is given. These parts have pinout and/or specification differences and therefore are not exact replacements. The alternate will generally vary by pinouts, function, or specifications. In many cases the alternate offers improved performance. FAMILIES REFERENCED Manufacturer Texas Instruments Series Number SN54/74 SN54H/74H Fairchild 9000/9300 Signetics 8200/7200 8800 8HOO National 8200 8500 8600 8800 Sylvania SUHL I & II SERIES 54/74 TTL TEXAS INSTRUMENTS TO MOTOROLA TEMPERATURE RANGE CROSS REFERENCE Temperature Range T.I. Motorola ooC to +70 o C -55°C to +125 0 C SN74xx SN54xx MC74xx MC54xx PACKAGE CROSS REFERENCE Package T.I. Motorola Comments Flat Ceramic (1/4" x l/S", 1/2" leads) Dual I n-Line Ceramic Dual I n-Line Plastic Flat Ceramic (1/4" x l/S", 1" leads) F Special L P F Motorola Package is 1/4" x 1/4" J N S DEVICE CROSS REFERENCE Function Type SN7400 SN7401 Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate (Open Collector) Quad 2-lnput NOR Gate SN7402 Quad 2-lnput NOR Gate SN7403 (Open Collector) Hex I,nverter SN7404 Hex Inverter (Open Collector) SN7405 Hex Inverter Buffer/Driver SN7406 (Open Collector) Hex Buffer/Driver (Open Collector! SN7407 SN740S Quad 2-lnput AND Gate Triple 3-lnput NAND Gate SN7410 SN7412 Triple 3-lnput NAND Gate (Open Collector) Dual 4-lnput NAND Schmitt Trigger SN7413 Hex Inverter Buffer/Driver SN7416 (Open Collector) Hex Buffer/Driver (Open Collector) SN7417 Dual 4-lnput NAND Gate SN7420 Expandable Dual 4-lnput NOR Gate SN7423 with Enable Dual 4-lnput NOR Gate with Enable SN7425 SN7426 Quad 2-lnput High-Voltage Interface NAND Gate SN7427 Triple 3-lnput NOR Gate S-Input NAND Gate SN7430 Quad 2-lnput OR Gate SN7432 Quad 2-1 nput NAN D Buffer SN7437 Quad 2-lnput NAND Buffer SN743S (Open Collector) SN7440 Dual 4-lnput NAND Buffer SN7441A BCD-to-Decimal Decoder/Driver SN7442 SN7443 SN7444 SN7445 SN7446 BCD-to-Decimal Decoder Excess 3-to-Decimal Decoder Excess 3 Gray-to-Decimal Decoder BCD-to-Decimal Decoder/Driver BCD-to-Seven Segment Decoder/Driver "To be introduced Direct Replacement MC7400 MC7401 MC7402 MC7403 MC7404 MC7405 MC7406" MC7407* MC740S* MC7410 Suggested Alternate - - MC3007 MC7416* - MC7417* MC7420 - MC7426 - - - - - MC3003 MC7440 MC7441A - MC7442 MC7443 MC7444 MC7445 MC7446 - MC7430 Comments - Both devices have output breakdown voltage = 30V - MCS317B' , MC7441 A has zener clamped outputs, Nixie® display driver. V out = 55 V V out = 30 V } MC7446 lout = 20 mA V out = 40 V }MCS317B lout = 20 mA SERIES 54/74 TTL DEVICE CROSS REFERENCE (conti Type Function SN7447 BCD-to-Seven Segment Decoder/Driver Direct Replacement MC7447 Suggested Alternate MC8317D* MC4039 Comments V out ; 15 V }MC7447 'out; 20 mA V out ;20V}MC8317D 'out; 20 mA MC7448 MC7449 MC7450 MC8307 • MC7451 MC7453 - SN7454 SN7460 SN7470 SN7472 SN7473 BCD-to-Seven Segment Decoder BCD-to-Seven Segment Decoder Expandable Dual 2-Wide 2-lnput AOI Gate Dual 2-Wide 2-lnput AOI Gate Expandable 4-Wide 2-lnput AOI Gate 4-Wide 2-lnput AOI Gate Dual 4-1 nput Expander J-K Flip-Flop J-K Flip-Flop Dual J-K Flip-Flop MC7454 MC7460 MC7470 MC7472 MC7473 - SN7474 Dual Type D Flip-Flop MC7479 SN7475 Quad Latch MC7475 SN7476 SN7477 SN7480 SN7481 SN7482 Dual J-k Flip-Flop Quad Latch Gated Full Adder 16-B it Memory 2-Bit Adder MC7476 MC7477 MC7480 MC4004 MC17482 MC4005 MC27482 SN7483 4-Bit Adder MC7483 MC8260 SN7484 SN7485 SN7486 Gated·lnput 16-Bit Memory 4-Bit Comparator Quad Exclusive OR Gate MC7484 MC4022 MC3021 SN7488 SN7489 SN7490 256-Bit Read Only Memory 64-Bit Random Access Memory Decade Counter MC7490 MCM4064 MC4023 MC7491A MC7492 MC4023 SN7448 SN7449 SN7450 SN7451 SN7453 SN7491A 8-Bit Shift Register Divide-by-12 Counter SN7492 - - MC3052 MC3050 MC3061 MC4015 - 4-Bit Binary Counter 4-Bit Sh ift Register MC7493 MC7494* MC4015 SN7495 4-Bit Universal Shift Register 5-Bit Shift Register 8-Bit Bistable Latch J-K Flip-Flop J-K Flip-Flop Dual J-K Flip-Flop MC7495 MC4012 MC7496 MC74100* - MC7474 SN74110 SN74111 SN74121 SN74122 SN74123 SN74141 J-K Flip-Flop J-K Flip-Flop Monostable Multivibrator Retriggerable Monostable M ultivibrator Dual Retriggerable Monostable Multivibrator BCD-to-Decimal Decoder "To be introduced MC74107 MC74121 - 14-pin flat pack only MC4005 lout; 20 mA MC17482 faster, slightly different loading. MC27482 has exclusive OR outputs for look-ahead carry schemes. MC8260 has greater functional capability. MC3021 is pin compatible, IF; 3.0 mA; 7486 IF; 1.6 mA MC4023 fTog; 30 MHz, multicount capability MC4023 fTog; 30 MHz, multicount capability - SN7493 SN7494 SN7496 SN74100 SN74104 SN74105 SN74107 MC3050 is edge triggered MC3061 f Tog ; 40 MHz, edge triggered MC7479 has buffered outputs, Set-Reset override clock. MC4015 is quad edgetriggered flip-flop MC8601 MC8602* - MC4015 higher speed, lower power MC4012 fTog = 30 MHz, PD;180mW MC7474 has VCC on Pin 14, Gnd on Pin 7 SERIES 54n4 TTL DEVICE CROSS REFERENCE (contI Type Function Direct Replacement Suggested Alternate - SN74145 SN74150 SN74151 SN74152 SN74153 BCD-to-Decimal Decoder/Driver 16-Bit Data Selector a-Bit Data Selector 8-Bit Data Selector Dual 4-Bit Data Selector MC74145 MC74150' MC74151' MC74152" MC74153* MC8312 MC8312 MC4000 SN74154 SN74155 One-of-16 Decoder Dual One-of-Four Line Decoder MC8311 MC74155* MC4007 SN74156 Dual Two-to-Four Line Decoder (Open Collector) BCD Counter Synchronous 4-Bit Binary COllnter Synchronous 4-Bit Decade Counter Synchronous 4-Bit Binary Counter 8-Bit Serial-I n/Parallel-Out Shift Register 8-Bit Parallel-In/Serial-Out Shift Register Synchronous 8-Bit Shift Register 4-by-4 Register File 8-Bit Parity Generator Arithmetic Logic Unit Carry Generator Binary-to-BCD Converter MC74156" - MC9310 MC9316 - SN14160 SN74161 SN74162 SN74163 SN74164 SN74165 SN74166 SN74170 SN74180 SN74181 SN74182 SN74185 SN74190 SN74191 SN74192 SN74193 SN74196 SN74197 SN74198 SN74199 Synchronous Decade Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter Synchronous Decade Counter Synchronous Binary Counter 50-MHz BCD Counter 50-MHz Presettable Binary Counter 8-Bit Parallel In-Out Left-Right Shift Register 8-Bit Parallel In-Out J-K Input Shift Register 'To be introduced - - MC74165* - - MC7260' MC7261' MC4001 - - - - MC74192* MC74193* - - MC4007 tpd = 14 ns, PD=125mW - MC74164* - MC4000 tpd = 18 ns, Po = 150 mW - - MC74180* MC74181' MC74182* Comments - MC8280' MC8316 MC8291· - - - - MC4001 expandable to any number of bits. Converts BC D to Binary or Binary to BCD SERIES 54H/74H (MC3000) TTL TEXAS INSTRUMENTS TO MOTOROLA TEMPERATURE RANGE CROSS REFERENCE Temperature Range T.I. Motorola OoC to +70 oC -55°C to +125 0 C 74Hxx 54Hxx MC30xx MC31xx PACKAGE CROSS REFERENCE Package Flat Dual Dual Flat Ceramic I n-Line I n-Line Ceramic (1/4" x 1/S", 1/2" leads) Ceramic Plastic (1/4" x 1/S", 1" leads) T.I. Motorola Comments F J N S Special L P F Motorola Package is 1/4" x 1/4" DEVICE CROSS REFERENCE Direct Replacement Type Function SN74HOO SN74H01 SN74H04 SN74H05 SN74H08 SN74H10 SN74H11 SN74H20 SN74H2l SN74H22 SN74H30 SN74H40 SN74H50 SN74H51 SN74H52 SN74H53 SN74H54 SN74H55 SN74H60 SN74H61 SN74H62 SN74H71 SN74H72 SN74H73 SN74H74 SN74H76 Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate (Open Collector) Hex Inverter Hex Inverter (Open Collector) Quad 2-lnput AND Gate Triple 3-lnput NAND Gate Triple 3-lnput AND Gate Dual 4-lnput NAND Gate Dual 4-lnput AND Gate Dual 4 Input NAND Gate (Open Collector) 8-lnput NAND Gate Dual4-lnput NAND Buffer Expandable Dual2-Wide 2-lnput AOI Gate Dual 2-Wide 2-lnpu~ AOI Gate Expandable 4-Wide 2-2-2-3 Input AND-OR Gate Expandable 4-Wide 2-2-2-3 Input AOI Gate 4-Wide 2-2-2-3 Input AOI Gate Expandable 2 -Wide 4-1 nput AOI Gate Dual 4-lnput Expander Triple 3-lnput E>:,pander 4-Wide 3-2-2-3 Input Expander J-K Flip-Flop J-K Flip-Flop Dual J-K Flip-Flop Dual Type 0 Flip-Flop Dual J-K Flip-Flop SN74H78 SN74H101 SN74H102 SN74H103 SN74H106 Dual J-K Flip-Flop J-K Flip-Flop J-K Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop - SN74H108 Dual J-K Flip-Flop - MC3000 MC3004 MC3008 MC3009 MC3001 MC3005 MC3006 MC3010 MC3011 MC3012 MC3016 MC3024 MC3020 MC3023 MC3031 MC3032 MC3033 MC3034 MC3030 MC3019 MC301S MC3054 MC3055 MC3063 - Suggested Alternate - - - - - - - - - MC3060 MC3062, MC3063 MC3061 MC3054 MC3055 ·MC3063 MC306:!, MC3063 MC3061 9000/9300 SERIES TTL FAIRCHILD TO MOTOROLA PACKAGE AND TEMPERATURE RANGE CROSS REFERENCE Package 14-Pin 14-Pin 16-Pin 16-Pin 14-Pin 14-Pin 16-Pin 16-Pin Flat Ceramic (1/4" x 1/4") Flat Ceramic (1/4" x 1/4") Flat Ceramic (1/4" x 3/a") Flat Ceramic (1/4" x 3/a") Dual In-Line Ceramic Dual In-Line Ceramic Dual In-Line Ceramic Dual In-Line Ceramic Temperature Range Fairchild Motorola OoC to +75 0 C _55°C to +125 O C OoC to +75 0 C -55°C to +125 O C OoC to +75 0 C _55°C to +125 O C OoC to +75 O C -55°C to +125 0 C U319xxx59x U319xxx51x U4L9xxx59x U4L9xxx51x U6A9xxx59x U6A9xxx51X U6B9xxx59x U6B9xxx51x MC8xxxF MC9xxxF MC8xxxF MC9xxxF MCaxxxL MC9xxxL MCaxxxL MC9xxxL DEVICE CROSS REFERENCE Type Function Direct Replacement - Suggested Alternate 9000 9001 9002 J-K Flip Flop J-K Flip Flop Quad 2-1 nput NAN D Gate MC3052t MC7400#t MC3000 9003 9004 Triple 3-lnput NAN D Gate Dual 4-lnput NAND Gate MC7410#t MC7420#t MC3005 MC3010 9005 Dual Expandable AOI Gate MC7450#t MC3020 9006 9007 Dual Expander a-Input NAND Gate MC7460#t - MC3030 MC3015 900a 4-Wide Expandable AOI Gate - MC7453#( 9009 9014 9015 9016 9017 Dual 4-lnput Buffer Quad Exclusive OR Gate Quad NOR Gate Hex Inverter Hex Inverter (Open Collector) 9020 9022 9024 9033 Dual J-K Flip Flop Dual J-K Flip Flop Dual J-K Flip Flop lS-Bit Memory 9034 25S-Bit Read Only Memory MCM4002 9035 9300 64-Bit Memory 4-Bit Shift Register MC9300 9301 9304 930S 9307 BCD-to-Decimal Decoder Dual Full Adder Up/Down BCD Counter Seven-Segment Decoder MC9301 MC9304 MC930S* MC9307* MC74192 MC7448 9308 9309 9310 Dual 4-Bit Latch Dual 4-lnput Multiplexer Programmable BCD Up Counter MC930a MC9309 MC9310 MC4000 MC4016 9311 9312 9314 One-of-16 Decoder a-Input Multiplexer 4-Bit Latch MC9311 MC9312 MC9314* MC7440#t MC7404t - - - MC3051 Comments MC3051 is edge triggered - MC3024 MC3021 MC3002 MC3024 MC7405, MC3009 MC3061 MC30S2 MC3060 MC4004 MCM40S4 MC4012 MC3000 has superior characteristics Active bypass Improved power vs. frequency characteristic Direct pin replacement for DI L and flat pack MC3015 pin compatible with 9007 MC7453 is 2-2-2-2 Input 9008 is 2-2-2-3 Input Edge triggered High speed (50 MHz) MC4004: VCC = Pin 4 Gnd = Pin 10 Optional pullup resistors to facilitate wire OR outputs (custom metalization) MC4012 PD = 1aO mW, fTog = 30 MHz Active high outputs, MC7448 is pin replacement MC4016 programs in binary code, counts down MC4015 t These devices are pinout replacements but may vary in electrical specifications * To be introduced #Dual in-line package only MC4015 Quad Type D Flip-Flop 9000/9300 SERIES TTL DEVICE CROSS REFERENCE (conti Type Function Direct Replacement 9315 9316 BCD-to-Decimal Decoder/Driver Programmable Binary Up Counter MC7441A MC9316* 9317 9318 9321 Seven-5egment Decoder 8-1 nput Priority Encoder Dual One-of-Four Decoder MC9317* MC9318* 9322 9324 9325 9327 9328 9334 9337 9338 9340 9341 9342 9348 Quad 2-lnput Multiplexer 5-Bit Comparator BCD-to-Decimal Decoder/Driver Seven-5egment Decoder Dual 8-Bit Shift Register 8-Bit Addressable Latch Seven-Segment Decoder 8-Bit Multiple Register Arithmetic Logi" Unit 4-Bit Arithmetic Ligic Unit Carry Extender 12-Bit Parity Tree 9350 9352 9353 9354 9356 9357A 9357B 9358 9359 9360 9366 9375 9377 9380 9382 9383 9390 9391 9392 9393 9394 9395 9396 Decade Up Counter BCD-to-Decimal Decoder Excess 3-to-Decimal Decoder Excess 3 Gray-to-Decimal Decoder 4-Bit Binary Counter BCD-to-5even Segment Decoder/Driver BCD-to-5even Segment Decoder/Driver BCD-to-Seven Segment Decoder BCD-to-5even Segment Decoder Decade Up/Down Counter Binary Up/Down Counter 4-Bit Latch 4-Bit Latch Full Adder 2-Bit Full Adder 4-Bit Full Adder Decade Counter '8-Bit Shift Register Divide-by-12 Counter Binary Counter 4-Bit Shift Register 4-Bit Universal Shift Register 5-Bit Shift Register Suggested Alternate MC4018 MC744617 - - MC4007 - MC8266* MC4022 MC74141 MC9328 - MC74181* MC74182* MC7442 MC7443 MC7444 MC7446 MC7447 MC7448 MC7449 MC74192* MC74193* MC7475 MC7477 MC7480 MC7482 MC7483 MC7490 MC7491 MC7492 MC7493 MC7494* MC7495 MC7496 Comments Nixie® driver capability MC4018 programs in binary code, counts down MC744617 pin replacements MC4007 Po = 125 mW, tpd = 14 ns. MC7446 MC7260· MC7261* MC4008, MC4010 MC4023 MC7493 - - - t These devices are pinout replacements but may vary in electrical specifications • To be introduced #Dual in-line package only MC4008, 4010 expandable to any size words Del ... TTL SIGNETICS TO MOTOROLA TEMPERATURE RANGE CROSS REFERENCE (8200 SERIES ONLY) Temperature Range Signetics Motorola OoC to +75"C -55°C to +125 O C N82xx S82xx MC72xx MC82xx PACKAGE CROSS REFERENCE Package 14-Pin 16-Pin 16-Pin 14-Pin 14-Pin 24-Pin 14-Pin 16-Pin 24-Pin Dual In-Line Plastic Dual I n-Line Plastic Dual I n-Line Ceramic Dual In-Line Ceramic Flat Glass Flat Ceramic Flat Ceramic Flat Ceramic Dual In-Line Ceramic Signetics Motorola Comments A B E F J P Q R y P P L L F F F F L Motorola package is ceramic Direct Replacement Suggested Alternate DEVICE CROSS REFERENCE Type Function N8200 Dual 5-Bit Register - MC4015 N8202 10-Bit Register - MC4015 N8230 8-lnput Data Selector - N8241 N8242 N8250 N8251 N8260 N8261 N8266 Quad Exclusive OR Gate 4-Bit Comparator Binary-to-Octal Decoder BCD-to-Decimal Decoder Arithmetic Logic Element Fast Carry Extender 4-Bit 2-lnput Data Selector 4-Bit 2-lnput Data Selector (Open Collector) Gated Full Adder 4-Bit Universal Shift Register 4-Bit Universal Shift Register Quad Latch 8-Bit Shift Register Presettable Decade Counter Presettable Binary Counter Synchronous Binary Up/Down Counter Synchronous Decade Up/Down Counter Presettable Divide-by-12 Counter MC8312, MC74151' MC3021 MC3022 MC4006 MC8301 N8267 N8268 N8270 N8271 N8275 N8276 N8280 N8281 N8284 N8285 N8288 MC7241 MC7242 MC7250' MC7251' MC7260' MC7261' MC7266* - - MC7267* - - MC7480 MC4012 MC7270* MC7271* MC7280' MC7281* MC7284* Comments MC4015 Quad Flip Flop, has direct Set, Reset, 30-MHz data rate MC4015 Quad Flip Flop, has direct Set, Reset, 30-MHz data rate MC8300 MC7475 MC7491A MC4016 MC4018 - MC7285* - MC7288* MC7492 MC4016 fully programmable MC4018 fully programmable • To be introduced •• Direct replacement can be supplied as a special. # Motorola flat-pack device direct replacement for Signetics flat-pack device. ## Motoroia device direct repiacement in duai-in-iine packages ii>, L). Can supply F package as speCial. DCl •••TTl DEVICE CROSS REFERENCE (cont) Type N8806 N8808 N88l6 N8822 N8825 N8826 N8827 N8828 N8829 N8840 N8848 N8855 N8870 N8880 N8881 N8885 N8H16 N8H20 NSH21 N8H22 N8H70 N8H80 N8H90 Function Dual Expander 8·lnput NAND Gate Dual4-lnput NAND Gate Dual J-K Flip Flop J-K Flip Flop Dual J-K Flip Flop Dual J-K Flip Flop Dual Type D Flip Flop J-K Flip Flop Dual AOI Gate 4-Wide AOI Gate Dual 4-lnput Power Gate Triple 3-lnput NAND Gate Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate (Open Collector) Quad 2-lnput NOR Gate Dual 4-lnput NAND Gate Dual J-K Flip Flop Dual J-K Flip Flop Dual J-K Flip Flop Triple 3-lnput NAND Gate Quad 2-lnput NAND Gate Hex Inverter Direct Replacement MC7460 MC7430 - MC7479 MC7472 MC7450 MC7453 - - MC7401 Suggested Alternate MC7420··# MC7473# MC3051 MC3061 MC3062 MC7440" MC7410# MC7400"# MC7402 MC3010## MC3061 MC3062 - MC3005## MC3000## MC3008## - MC7479 has buffered outputs MC3051 - - Comments - - re,oao w;~ ,,, .~;~ bypass, improved power vs. frequency characteristic, improved tpd vs. temperature. • To be introduced •• Direct replacement can be supplied as a special. # Motorola flat-pack device direct replacement for' Signetics flat-pack device. ##Motorola device direct replacement in dual-in-line packages (P, L). Can supply F package as special. DM7000/8000 SERIES TTL NATIONAL TO MOTOROLA TEMPERATURE RANGE CROSS REFERENCE Temperature Range oOc to +70 oC -55°C to +125 0 C National Motorola DM8xxx DM7xxx MC74xx MC54xx PACKAGE CROSS REFERENCE Package National Motorola Dual In-Line Ceramic Flat Ceramic (1/4" x 1/4") Dual I n-Line Plastic 0 F L F P N DEVICE CROSS REFERENCE Type DM8200 DM8210 DM8211 DM8213 DM8220 DM8283 DM8520 Function 4-Bit Digital Comparator 8-Channel Digital Switch 8-Channel Multiplexer with Strobe 4-to-16 Line Decoder Parity Checker/Generator 4-Bit Full Adder Modulo N Divider Direct Replacement MC8311 Suggested Alternate - MC7483 - MC4008 MC7260· MC4016/18 DM8530 DM8532 DM8533 DM8550 DM8551 DM8560 DM8563 DM8570 Decade Counter Divide-by-12 Counter Divide-by-16 Counter Quad Latch Buss aRable Quad 0 Decade Up/Down Counter Binary Up/Down Counter Serial I n-Parallel Out 8-Bit Shift Register MC7490 MC7492 MC7493 MC7475 MC7280* MC7288· MC7281· MC4015 MC74192· MC74193· MC74164· MC7495 DM8580 4-Bit Universal Shift Register Parallel In Serial Out 8-Bit Shift Register MC7495 MC4012 MC74165* MC7495 4-Bit Universal Shift Register Presettable Decade Counter Presettable Binary Counter Presettable Divide-by-12 Counter Quad 2-lnput TTL-to-MOS Gate Quad 2-lnput TTL-to-MOS Gate 14-volt Hex Inverter (Open Collector) Line Receiver EIA RS-232C Line Receiver Line Driver BCD-to-Decimal Decoder/Driver BCD-to-Decimal Decoder BCD-to-Seven Segment Decoder/Driver BCD-to-Seven Segment Decoder/Driver BCD-to-Seven Segment Decoder/Driver Retriggerable Monostable Multivibrator MC8300 DM8590 DM8600 DM8680 DM8681 DM8688 DM881 0 DM8811 DM8812 DM8820 DM8822 DM8830 DM8840 DMB842 DM8846 DM8847 DM8848 DM8850 ·To be introduced - - Comments - - MC4016/18 program directly in binary/BCD code MC7280 is presettable MC7288 is presettable MC7281 is presettable MC4015 is Quad 0 Flip Flop Two MC7495's can perform parallel or serial in, parallel or serial out function MC4012 Po = 180 mW, fTOt,= 30 MHz Two C7495's can perform 8 bit parallel or serial in, parallel or serial out function - - - - - - MC1584 MC1488 MC1582 MC7441 A MC7442 MC7446 - MC7447 - MC7448 - MC9601 - - MC1488 is quad Active low, V out = 30 Volts, lout = 20 mA Active low, V out = 35 Volts, lout = 20mA Active High SUHL TTL SYLVANIA TO MOTOROLA TEMPERATURE RANGE CROSS REFERENCE Temperature Range Sylvania Motorola SF and SG Series (Example: SG40) -55°C to +125°C, High Fan-Out SG40 (Base Number) SG41 SG42 SG43 -55°C to +125 0 C, Low Fan-Out OoC to +75 0 C, High Fan-Out OoC to +75 0 C, Low Fan-Out MC500 MC550 MC400 MC450 SM Series (Example: SM10 - applies only to Direct Replacementl -55°C to +125 0 C. High Fan-Out SM10 (Base Number) SM11 SM12 SM13 +125 0 -55°C to C, Low Fan-Out OOC to +75 0 C, High Fan-Out 0 OOC to +75 C, Low Fan-Out MC4326 MC4327 MC4026 MC4027 PACKAGE CROSS REFERENCE Package Sylvania Motorola Dual In-Line Ceramic (Black) Flat Ceramic Dual In-Line Ceramic Dual In-Line Plastic 01 02 03 L F L P Comments Motorola package is 1/4" x 1/4" Motorola only DEVICE CROSS REFERENCE Type SF10 SF11 SF12 SF13 SF20 SF21 SF22 SF23 SF30 SF31 SF32 SF33 SF50 SF51 SF52 SF53 SF60 SF61 SF62 SF63 SF80 SF81 SF82 SF83 SF91 SF93 SF100 Function Direct Replacement MC513 MC563 MC413 MC463 MC514 MC564 MC414 MC464 MC521 MC571 MC421 MC471 MC515 MC565 MC415 MC465 MC516 MC566 MC416 MC466 MC522 MC572 MC422 MC472 MC572 MC472 MC573 SF101 R-5 Flip-Flop R-5 Flip-Flop R-5 Flip-Flop R-5,Flip-Flop Gated R-5 Flip-Flop Gated R-5 Flip-Flop Gated R-S Flip-Flop Gated R-5 Flip-Flop AC Coupled R-S Flip-Flop AC Coupled R-5 Flip-Flop AC Coupled R-S Flip-Flop AC Coupled R-5 Flip-Flop AND J-K Flip-Flop AND J-K Flip-Flop AND J-K Flip-Flop AND J-K Flip-Flop OR J-K Flip-Flop OR J-K Flip-Flop OR J-K Flip-Flop OR J-K Flip-Flop Dual Type 0 Flip-Flop Dual Type 0 Flip-Flop Dual Type 0 Flip-Flop Dual Type 0 Flip-Flop Dual Type 0 Flip-Flop Dual Type 0 Flip-Flop Dual J-K Flip-Flop (Separate Clock, 35 MHz) Dual J-K Flip-Flop SF102 Dual J-K Flip-Flop MC423 MC573 Suggested Alternate - MC2126 MC2176 MC2026 MC2076 MC3160 MC3160 MC3060 MC3060 MC3160 MC3060 MC3162 MC2123 MC3162 MC2173 MC3062 MC2023 SUHL TTL DEVICE CROSS REFERENCE (conti Direct Replacement Function Type Suggested Alternate SF103 Dual J-K Flip-Flop MC473 SF1.10 MC524 SF111 Dual J-K Flip-Flop (Common Clock, 35 MHz) Dual J-K Flip-Flop SF112 Du;!1 J-K Flip-Flop MC424 SF113 Dual J-K Flip-Flop MC474 SF120 MC2123 MC2173 MC2023 MC2073 MC2124 MC3162 MC3062 MC3062 MC3161 SF131 SF132 SF133 SF200 SF201 SF202 SF203 SF210 SF211 SF212 SF213 SF250 Dual J-K Flip-Flop (Separate Clock, 50 MHz) Dual J-K Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop (Common Clock, 50 MHz) Dual J-K Flip-Flop Dual J-K Flip-F lop Dual J-K Flip-Flop AND J-K Flip-Flop (50 MHz) AND J-K Flip-Flop AND J-K Flip-Flop AND J-K Flip-Flop OR J-K Flip-Flop (50 MHz) OR J-K Flip-Flop OR J-K Flip-Flop OR J-K Flip-Flop AND J:K Flip-Flop (30 MHz) MC3062 MC2073 MC3161 MC2124 MC3161 MC2174 MC3061 MC2024 MC3061 MC2074 MC3162 MC2174 MC2024 MC2074 ·MC2125 MC2175 MC2025 MC2075 MC2126 MC2176 MC2026 MC2076 SF251 AND J-K Flip-Flop - SF252 AND J-K Flip-Flop - SF253 AND J-K Flip-Flop - SF260 OR J-K Flip-Flop (30 MHz) - SF261 OR J-K Flip-Flop - SF262 OR J-K Flip-Flop - SF263 OR J-K Flip-Flop - MC3161 MC3061 MC3061 MC3151 MC3151 MC3051 MC3051 MC3154 MC3154 MC3054 MC3054 MC3151 MC2125 MC3151 MC2175 MC3051 MC2025 MC3051 MC2075 MC3154 MC2126 MC3154 MC2176 MC3054 MC2026 MC3054 MC2076 SG40 SG41 SG42 SG43 SG50 SG51 SG52 SG53 SG60 SG61 SG62 SG63 SG70 SG71 SG72 SG73 SG80 SG81 SG82 SG83 Dual 4-lnput NAN D Gate Dual 4-lnput NAN D Gate Dual 4-lnput NAN D Gate Dual 4-lnput NAN D Gate Expandable 4-Wide 2-2-2-3 Input AOI Expandable 4-Wide 2-2-2-3 Input AOI Expandable 4-Wide 2-2-2-3 Input AOI Expandable 4-Wide 2-2-2-3 Input AOI 8-lnput NAND Gate 8-lnput NAND Gate 8-lnputNAND Gate 8-lnput NAND Gate Expandable Dual2-Wide 2-lnput AOI Expandable Dual2-Wide 2-lnput AOI Expandable Dual2-Wide 2-lnput AOI Expandable Dual2-Wide 2-lnput AOI Dual Pulse Shaper/Delay AN D Gate Dual Pulse Shaper/Delay AND Gate Dual Pulse Shaper/Delay AND Gate Dual Pulse Shaper/Delay AND Gate SF121 SF122 SF123 SF130 MC574 - Gate Gate Gate Gate Gate Gate Gate Gate MC500 MC550 MC400 MC450 MC501 MC551 MC401 MC451 MC502 MC552 MC402 MC452 MC520 MC570 MC420 MC470 MC526 MC576 MC426 MC476 - - - SUHL TTL DEVICE CROSS REFERENCE (cont) Type Function Direct Replacement SG90 SG91 SG92 SG93 SG100 SG10l SG102 SG103 SG110 SG111 SGl12 SG113 SG120 SG121 SG122 SG123 SG130 SG131 SGl32 SG133 SGl40 2-Wide 3-lnput AOI Gate with Gated Complement 2-Wide 3-lnput AOI Gate with Gated Complement 2-Wide 3-lnput AOI Gate with Gated Complement 2-Wide 3-lnput AOI Gate with Gated Complement Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable 2-Wide 4-lnput AOI Gate Expandab!e 2-Wide 4-lnput AOI Gate Expandable 2-Wide 4-lnput AOI Gate Expandable 2-Wide 4-lnput AOI Gate Expandable 8-lnput NAND Gate Expandable8-lnput NAND Gate Expandable 8-lnput NAN D Gate Expandable 8-lnput NAND Gate Dual 4-lnput Line Driver Dual 4-lnput Line Driver Dual 4-lnput Line Driver Dual 4-lnput Line Driver Quad 2-lnput NAND Gate MC503 MC553 MC403 MC453 MC504 MC554 MC404 MC454 MC505 MC555 MC405 MC455 MC506 MC556 MC406 MC456 MC507 MC557 MC407 MC457 MC508 SG141 Quad 2-lnput NAND Gate MC558 SG142 Quad 2-lnput NAND Gate MC408 SG143 Quad 2-lnput NAND Gate MC458 SG150 SG151 SG152 SG153 SG160 SG161 SG162 SG163 SG170 SG171 SG172 SG173 SG180 SG181 SG182 SG183 SG190 SG191 SG192 SG193 SG2DO SG201 SG202 SG203 SG210 SG211 SG212 SG213 SG.220 SG221 SG222 SG223 SG230 SG231 SG232 SG233 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates Triple 2-lnput Buss Driver Triple 2 -Input Buss Driver Triple 2 -Input Buss Driver Triple 2-lnput Buss Driver Dual 4-lnput Expander for AOI Gates Dual 4-lnput Expander for AOI Gates Dual 4-lnput Expander for AOI Gates Dual4-lnput Expander for AOI Gates Dual4-lnput Expander for NAND Gates Dual 4-lnput Expander for NAND Gates Dual4-lnput Expander for NAND Gates Dual 4-lnput Expander for NAND Gates Triple 3-lnput NAND Gate Triple 3-lnput NAND Gate Triple 3-lnput NAND Gate Triple 3-lnput NAND Gate Expandable 8-lnput NAN D Gate Expandable 8-1 nput NAN D Gate Expandable 8-lnput NAND Gate Expandable 8-lnput NAND Gate Expandable 2-Wide 4-lnput AOI.Gate Expandable 2-Wide 4-lnput AOI Gate Expandable 2-Wide 4-lnput AOI Gate Expandable 2-Wide 4-lnput AOI Gate Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates 4-Wide 3-2-2-3 Input Expander for AOI Gates MC509 IV!C559 MC409 MC459 MC519 MC569 MC419 MC469 MC510 MC560 MC410 MC460 MC511 MC561 MC411 MC461 MC512 MC562 MC412 MC462 MC2111 MC2161 MC2011 MC2061 MC2100 MC2150 MC2000 MC2050 MC2101 MC2151 MC2001 MC2051 MC2102 MC2152 MC2002 MC2052 Suggested Alternate - MC2112 MC2162 MC2012 MC2062 MC2111 MC2161 MC2011 MC2061 MC2101 MC3l00 MC2151 MC3l00 MC2001 MC3DOO MC2051 MC3DOO - - MC3l07 - MC3007 - - MC3l05 MC3l05 MC3005 MC3D05 - - MC3l 0.0 MC3100 MC3000 MC3000 - - H(;o SUHL TTL DEVICE CROSS REFERENCE (cont) Type SG240 SG241 SG242 SG243 SG250 SG251 SG252 SG253 SG260 SG261 SG262 SG263 SG270 SG271 SG272 SG273 SG280 SG281 SG282 SG283 SG290 SG291 SG292 SG293 SG300 SG301 SG302 SG303 SG310 SG311 SG312 SG313 SG320 SG321 SG322 SG323 SG330 SG331 SG332 SG333 SG340 SG341 SG342 SG343 SG351 SG353 SG370 SG371 SG372 SG373 SG380 SG381 SG382 SG383 SM10 SM11 SM12 SM13 SM20 SM21 SM22 SM23 SM30 SM31 Function Dual 4-lnput NAND Gate Dual 4-lnput NAND Gate Dual 4-lnput NAND Gate Dual 4-lnput NAND Gate Expandable 4-Wide 2-2-2-3 Input AOI Gate Expandable 4-Wide 2-2-2-3 Input AOI Gate Expandable 4-Wide 2-2-2-3 Input AOI Gate Expandable4-Wide2-2-2-3InputAOI Gate 8-lnput NAND Gate 8-lnput NAND Gate 8-lnput NAND Gate 8-lnput NAND Gate Dual 4-lnput Expander for AOI Gates Dual 4-lnput Expander for AOI Gates Dual4-lnput Expander for AOI Gates Dual 4-lnput Expander for AOI Gates Dual4-lnput AND Gate Dual4-lnput AND Gate Dual4-lnput AND Gate Dual4-lnput AND Gate Dual 2-Wide 2-3 Input OR Expander Dual 2-Wide 2-3 Input OR Expander Dual 2-Wide 2-3 Input OR Expander Dual 2-Wide 2-3 Input OR Expander Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable 3-Wide 3-lnput AOI Gate Expandable Dual2-Wide 2-lnput AOI Gate Expandable Dual 2-Wide 2-lnput AOI Gate Expandable Dual 2-Wide 2-lnput AOI Gate Expandable Dual 2-Wide 2-lnput AOI Gate Triple 3-lnput NAND Gate Triple 3-lnput NAND Gate Triple 3-lnput NAND Gate Triple 3-lnput NAN D Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput NOR Gate Quad 2-lnput Lamp Driver Quad 2-lnput Lamp Driver Hex Inverter Hex Inverter Hex Inverter H ex Inverter Hex Inverter Hex Inverter Hex Inverter Hex Inverter Full Adder Full Adder Full Adder Full Adder Dependent Carry Fast Adder Dependent Carry Fast Adder Dependent Carry Fast Adder Dependent Carry Fast Adder Independent Carry Fast Adder Independent Carry Fast Adder Direct Replacement MC2103 MC2153 MC2003 MC2053 MC2104 MC2154 MC2004 MC2054 MC2105 MC2155 MC2005 MC2055 MC2106 MC2156 MC2006 MC2056 MC527 MC577 MC427 MC477 MC528 MC578 MC428 MC478 MC2112 MC2162 MC2012 MC2062 MC2113 MC2163 MC2013 MC2063 MC2107 MC2157 MC2007 MC2057 - - MC2165 MC2065 MC529 MC579 MC429 MC479 MC2116 MC2166 MC2016 MC2066 MC4326 MC4327 MC4026 MC4027 MC4328 MC4329 MC4028 MC4029 MC4330 MC4331 Suggested Alternate MC3110 MC3110 MC3010 MC3010 MC5453 MC5453 MC7453 MC7453 MC3115 MC3115 MC3015 MC3015 MC3130 MC3130 MC3030 MC3030 - - - MC3120 MC3120 MC3020 MC3020 MC3105 MC3105 MC3005 MC3005 MC3102 MC3102 MC3002 MC3002 MC3102 MC3102 MC3002 MC3002 MC5404 MC5404 MC7404 MC7404 MC3108 MC3108 MC3008 MC3008 MC5480 MC5480 MC7480 MC7480 - - SUHL TTL DEVICE CROSS REFERENCE (cont) Type Function Direct Replacement Suggested Alternate - SM32 SM33 SM41 SM43 SM61 SM63 SM71 SM73 SM81 SM82 SM83 SM90 SM91 SM92 SM93 SM111 Independent Carry Fast Adder Independent Carry Fast Adder Carry Decoder Carry Decoder Quad Latch (Open Collector) Quad Latch (Open Collector) Quad Latch Quad Latch 16-Bit Scratch Pad Memory 16-Bit Scratch Pad Memory 16-Bit Scratch Pad Memory Decade Counter Decade Counter Decade Counter Decade Counter 4-Bit Shift Register MC4030 MC4031 MC4332 MC4032 MC4335 MC4035 MC4337 MC4037 MC4304 MC4304 MC4004 MC5090" MC5091" MC5092" MC5093" MC5111" SM113 4-Bit Shift Register MC5113" SM121 SM123 SM131 SM133 SM141 SM143 SM151 SM153 SM163 SM173 SM181 SM183 SM191 SM193 8-Bit Parity Tree 8-Bit Parity Tree 4-Bit Comparator 4-Bit Comparator Programmable Binary Divider Programmable Binary Divider Programmable Decade Divider Pr09rammable Decade Divider Binary Counter Decade Counter Binary Up/Down Counter Binary Up/Down Counter Decade Up/Down Counter Decade Up/Down Counter MC5121' • MC5123" MC5131" MC5133" MC5141' • MC5143" MC5151" MC5153" MC5163" MC5173" MC5181 •• MC5183' • MC5191' • MC5193' • SM203 BCD-to-Seven Se9ment Decoder SM211 SM213 SM221 SM223 Dual 4-Bit Multiplexer Dual 4-Bit Multiplexer Demultiplexer Demultiplexer • To be introduced • * Available on special order only MC4300 MC4000 MC4302 MC4002 - - - - MC5490 MC5490 MC7490 MC7490 MC4312, MC5495 MC4012, MC7495 MC4308 MC4008 MC4322 MC4022 MC4318 MC4018 MC4316 MC4016 MC7493 MC7490 MC54193' MC74193' MC54192' MC74192' , MC8306 MC8307* , MC7448, MC4039 - PACKAGING INFORMATION The packaging used for each device type is indicated on the individual data sheet unless packaging is the same for all devices in a given Me-number series. In this case, the packaging description is in the General Information section for that series. F SUFFIX CERAMIC PACKAGE CASE 607 TO-86 Package type is denoted by a suffix to the part number as follows: lead 1 identified by color dot or by elbow on lead. To convert inches to millim8tars multiply by 25.4 AIiJEDECdimensionsand notes apply Description Ceramic Flat Ceramic Dual In-Line Plastic Dual In-Line Suffix F L P FSUFFIX CERAMIC PACKAGE CASE 609 TO-8S 0.013 [iIT7 ~ PSUFFIX PLASTIC PACKAGE CASE 605 TO-116 'I 1 0.350 T a.050T.P. If SEA.TING a~~~ OO~I~ l--L:!~ j MAX L 0090 r .11 =c !j ~ 1__ = 1°.150_1 0.150,°.100 __ [400 0]00 0.003 O]ijl E3 I o:m ~ rn 0.008 Ii]'Iii I I' 0500 [OOQ lead 1 identified by color dot or by elbow on ltad. To convert inches to millimeters multiply by 25.4 Four insulating ~nd-otfs ara provided To. convert jnchas to millimeters multiply by 25.4 AtlJE~EC.dimBnsionsandnol1tsap~ly All JEDEC dimensions and notes apply Devices formerly using Case 609 are now being manufactured In Case 607. Either package may be shipped during the transition. L 0160 rno :M· ,-- o~L~ ~SEAT1NGPlANE ~ L o.ld L T.P. LSUFFIX CERAMIC PACKAGE CASE 620 1----0.740 - - - I ii "I.. ~~ PSUFFIX PLASTIC PACKAGE CASE 612 -01lO8(j)1 DG12 0.021 -Dimension is to lead cenlMline when formed parallel. CD 4 insuJating stand·offs are providad. To convert inches 10 millimeteR multiply by 25.4 --l 7' TVP ~. =ro:'""\ o;rs rns rI 0.090 o:m 0.008 L r ILo.n5 o:m = Y 0010150 0015 if.n2O SEATING PLANE (i)ThiJdimansion is meIIllrad from dta lead canters .Ithisaatingpj... withlaadsvartical. (1) Laad 1 idantifiad by color dot. notch in 1II8d, ornQtchin,.ramic. To convert inches to mitlimetarsmultiply by 25.4 '4 ¥ if! PACKAGING INFORMATION (continued) LSUFFIX CERAMIC PACKAGE CASE 623 TO-116 I "U I 11 ~\-.I~ 0.500 0.540 "'\t(..~"'(pr.. 13 I-UDDD LSUFFIX CERAMIC PACKAGE CASE 632 t~~~ 0160 SEATING ~~FP~"A_N_E ________ ~ ~Ti I J i t;&m~ ~ oooa--\\- -l I-~:n~ -ll--0.016 0.020 0.0301!.!!5 0.135 0.010 "i 15' Dim To convert inches to miltiml1lK1 multiply bv 25.4. AlIJCDEC10-116 dimensions and notesapplv. To convert inches 10 miillmetersmulliply by25.4 "Dimension is 10 lead centerline when formed parallel. PSUFFIX PLASTIC PACKAGE CASE 648 LSUFFIX CERAMIC PACKAGE CASE 638 a::I::I~~ ~O.815=1 ~:::~:::d ~0.'05·""""'''''1 :f m;----I 0.400 0.190 0.015 [""I J °f'~?-)IJ~l\I-\I-\I-~-\I-:'T o·;;f O.O~ U U lUI U U U U U - 0.100 I I T,P. -l----l 0.0'5 [lJ05 J!-0.015 (i]2(j 0.085 &Wo 0.012·~ I-O.300~ REF m'~ "==t- ~:~ll ~ ~7~ I-L -l~55 o.a;-fI--ITJo nL~~1-- 0.100~ To convert inches to millimelers multiply by 25.4 "Dimension is to lead cllnterljml when formaci parallel. 1L015 0.010 T.P. o:rn To conven inches to millimeters multiply by 25.4 *Dimension is to IlIBd centerlina whan formed parallel. PSUFFIX PLASTIC PACKAGE CASE 649 I O(\COO 0.240 1.240 1.260---------1 L~--.l 0.003 -,- ---r 0.030 li."OO5 [(!7D 2' 1 -(i)- ~ L~ 0040 11 FSUFFIX CERAMIC PACKAGE CASE 651 0155 ~-i =,J-1H~~~:.a 0.015_11-- 0.1851 0.020 0.205~: g~ ---I/-- O.ooa "Dimension to lead centerline when formed parallel. To convart inches to millimeU!rsmulliply by 25.4 iiJiT2 lead 1 identified bV color dot or by elbow on lead. Top Covar mada of silastic matarial. To convert inches to millimelers multiply by 25.4 INTEGRATED CIRCUITS The MTTL complex functions are designed for digital applications in the medium to high-speed range. These MTTL devices provide significant reduction in package count and increased logic per function over devices in the basic MTTL and MDTL families. --PSUFFIX PSUFFIX PLASTIC PACKAGE CASE 605 TO-tt6 LSUFFIX PLASTIC PACKAGE CASE 6t2 CERAMIC PACKAGE CASE 620 F SUFFIX F SUFFIX CERAMIC PACKAGE CASE 607. T0-86 CERAMIC PACKAGE CASE 609. TO·a5 ~ LSUFFIX _ CERAMIC PACKAGE CASE 632 TO·116 FUNCTIONS AND CHARACTERISTICS (Vee L SUFFIX PSUFFIX CERAMIC PACKAGE CASE 623 PLASTIC PACKAGE CASE 649 = 5.0 V, TA = 2S 0 e) All devices shown can be used with all MTTL and MOTL device.; however, the loading factors Shown reflect use with other devices in the same Me number series unless otherwise noted Tvpe Function Dual 4-Channel Data Selector5 165 10 30 160 10/55# 105 15/12# 15/12# 165 165 35 390 S,S = 10 632 Gated Full Adder MC5480L 2-8it Full Adder MC15482F,L 607,632 2-Bit Full Adder MC25482F,L 607,632 4-BIt Binary Full Adder MC5483L 620 MC5484L 620 MC7480L,P 632,605 Caut = 5 A*,B*"'3 MC 17482F ,L,P 607,632,605 MC27482F ,L,P 607,632,605 10 10 MC7483L,P 620,612 S'" 10 Cout = 5 IOL=40mA f - - - - - - f - - - + - - - - - - I - - - - - - l } Open Collector MC7484L,P 620,612 10L -20mA 16-Bit Scratch Pad Memory Cell With Gated Inputs Decade Counter MC5490F,L 607,632 MC7490F ,L,P B-Sit Shift Register MC5491AL 632 MC7491AL,P 632,605 Divide-by- Twelve Counter MC5492F,L 607,632 MC7492F ,L,P 607,632,605-- 4-8it Binary Counter 4-BitShift Register MC5493L 632 • MC5494l 620 4-Bit Shift Register MC5495F,L 607,632 5-8it Shift Register MC5496L Monostable Multivibrator MC54121F,L BCD to One-of-Ten Decoder/Driver MC54145L 620 16-Channel Data Selector -MC54150L a-Channel Data Selector ·MC54151L 623 620 620 607,632 MC7493L,P ~MC7494P MC7495F ,L,P MC7496L,P MC7412IF,L,P MC74145L,P -MC74150P -MC74151P 607,632,605 } Write Mode: 25 Sense Mode: 15 20/bit 10 10 10 10 632,605 607,632,605 25 175 10 25 25 250 240 10 t o d+,BtoQ=35 50 max 90 215 8.5 to 35 8.5 to 35 200 145 225 620,612 607,632,605 20/bit 160 175 160 160 25 60 612 250 620,612 649 612 Quad Exclusive OR Gate MC8241F,L 607,632 MC7241F,L,P 607,632,605 10 10 Quad E)(clusive NOR Gate (Open Collector) MC8242F,L 607,632 MC7242F,L,P 607,632,605 10 18 170 Universal 4"Bit Shift Register MC9300L 10 25 22 300 125 8,0 to 28 110 620 MC8300L,P 620,612 BCD-to-Decimal Decoder MC9301 L 620 MC8301 L,P 620,612 Dual Full Adder MC9304L 620 MC8304L,P 620,612 Sl,52=10 51, S2."" 9 Dual 4·Bit Latch MC8308P 649 Dual 4-Channel Data Selector MC9309L 620 MCB309L,P 620,612 Presettable Oecade Counter MC9310L 620 MC8310L,P 620,612 MC8311P One-of-16 Decoder 8-Channel Data Selector MC9312L 620 MCB312L,P 620,612 MC9316l 620 MC8316L,P 620,612 DuaI8-~it MC9328L 620 MC8328L,P 620,612 325 9_0 to 24 150 Z,W= 9 14 to 35 649 Presettable4-Bit Binarv Counter EtoQ"'25 Z,W = 10 E to Q- 26 max 10 z .. 20/10t Z"" 18/91 9.0 to 24 300 175 135 14 to 35 300 a = 22 (tpd_) ~ to~~t3g+) 250 Cto Shift Register Retriggerable Monostable Multivibrator G) F MC960lF ,L 607,632 MC8601F ,L,P 607,632,605 6 MC9601 "" 6 MCS601 = a sUffix denotes ceramic flat package, L suffix denotes.ceramic dual in-line package, P suffix denotes plastic dual in-line package_ -*MC4300 Series/MC4000 Seri.s; loading specified fot use with- MTTL I devices. #Add delay/Carry delay tHigh/Low -To be announced 25 LOGIC DIAGRAMS Numbers at ends of pin terminals represent pin numbers. Numbers in parenthesis indicate loading. Loading factors reflect use with other devices in the same MC~number series unless otherwise noted. SHIFT R E G I S T E R S - - - - - - - - - - - - - - - - - - - . MC4012 4-Bit Shift Register TRUTH TABLE Synchranous Inputs 9 (10) (1) 10 (5) MC5491A/MC7491A 8·Bit Shift Register A 5 3 e I a 0, ooo , , , ::»-I-.qe 9 t n+8 B 0 I ',, , 0 4 (10) 8 (1) o (1) (1) 11 (1) 'n 13 (10) 6 (10) (1) 13 (1) o s 1 (1) 12 (l)All 2(10) a R (1) B 12 'Vcc=Pin 14 (10) 5 Gnd = Pin 10 Vee ~ Pin 14 Gnd = Pin 7 tpd = 25 ns typ tpd "" 22 os typ/bit Po ~ 175 mW typ/pkg f ~ 18 MHz typ Po ~ 180 mW typ/pkg MC5494/MC7494 4·Bit Shift Register MC5495/MC7495 4·8it Shift Register 13 (10) (1) 1 6 MC5496/MC7496 5-Bit Shift Register 15 9 (2) 6 (1) 9 2 8 12 (10) 3 (1) 2 4 o 11 9 11 (10) (1)3 VCC=Pin 5 Gnd = Pin 12 16 6 11 16 10 10(10) (1)5 14 13 4 (1) 4 13 14 2 (1) 8 3 15 Vee Gnd Clock 10 = Pin = Pin 14 7 Vee = Pin 5 Gnd "" Pin 12 80-----' tpd. Clock to Q = tpd Po f 25 ns typ Po ~ 175 mW typ/pkg t,-og ~ 10 MHz = 25 ns typ ~ 250 mW typ/pkg ~ 31 MHz typ MC8328/MC9328 Dual 8·Bit Shift Register MC8300IMC9300 Universal 4·Bit Shift Register (1) 1 (1) 2 15 (6) (1) 3 (2.3) 9 (1) 4 (1) 5 (1) 6 (1) 7 14 (6) 13 (6) o (1) (3) (4) 10 --< E ~"I 01 --014 4-Blt 02 --012 Binary (1) 50--A 10--A 03 --011 03 6 11 e[---<>5 7-segment Character Generator Vee = Pin 16 Gnd = Pin 8 a fl-;-Ib d[---<>4 e '--013 SEGMENT IDENTI FICATION .\-\e f L-014 150-- C 100-- 0 0 g--02 h h--03 Po - 240 mW typ/pkg 1 2 lI,b,e,d,e,f b,' .,b,d,a,g 3 .,b,c,d,g o o o o b,c,f.g I,e,d,f,g o o 0 d 4 5 •, c.d,a,f.g ·· , •• b,c 8,b,c,d,.,f.8 a.b.c,f.g NONE h (Ext.) NONE NONE NONE o o 1 1 1 1 1 1 o• b , d • 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 o o 0 1 1 0 1 0 0 0 0 , 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 o o o 1 0 1 1 0 0 0 0 1 1 1 1 o o o o o 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 o o 0 o , a o , , o, 1 , OUTPUT INPUT SEGMENTS DIGIT ILLUMINATED 3 2 1 1 o o o , 0 0 0 1 1 1 1 1 1 1 0 1 , 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 o , o a o 0 o o 0 1 0 1 1 1 1 1 1 0 1 1 ~ 0 1 1 1 1 0 1 1 1 1 1 1 , , 0 1 1 1 (continued) LOGIC DIAGRAMS (continued) DECODERS ( c o n t i n u e d ) - - - - - - - - - - - - - - - - - - - - - - - . . . , MC1441A BCD-to-Decimal Decoder and High-Level Driver MC5442/MC7442 BCD-to-Decimal Decoder (1) 15 (10) MC5443/MC7443 Excess Three-to-Decimal Decoder (1) 3 16 8 (1) 6 (1) 14 MC5444/MC7444 Excess Three Grav-to-Decimal Decoder 15 9 Vee - Pin 16 Gnd = Pin 8 13 (1) 13 14 (1) 7 10 2 (1) 4 MC5442/MC7442 aco Vee = Pin 5 Gnd = Pin 12 INPUT 0 C a 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 A 9 0 1 1 0 1 , 0 0 1 0 1 1 1 1 1 1 1 1 1 0 a 1 1 1 1 1 1 1 1 0 1 OUTPUT 7 6 5 4 3 2 1 1 1 1 1 , 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 INPUT C 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -Po - 105 mW typ/pkg MC5445/MC7445 MC54145/MC74145 BCD to 1-01-10 Decoder/Driver , ,, ••• , ~, ,, •• ~• , , ,, •• , 0 1 0 1 0 0 1 a 1 0 0 1 1 0 1 1 1 1 0 1 1 1 A 0 0 0 0 , , ,, , 0 ,, , a 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 ,, , 0 1 •• ,, • ,, , , ,, • •• • • • , , , 0 1 , 0 0 1 0 , 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 15 1 16 Po - 265 mW typ/pkg 4 (10) 5 (10) 6 (10) 7 (10) 9 (10) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 '1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 ,, 0 1 1 1 , ,, , 1 , , 1 , 1 (1) 7 13 (1) 1 12 (1) 2 11 (1)£ 10 (1) 3 9 (1) 5 15 (2.6/5) 4 14 Gnd "" Pin 8 14 1 0 0 2 3 1 " 0 0 0 0 BCD-to-8even Segment Decoder/Drivers = Pin 1 0 MC5446/MC7446 MC5447/MC7447 MC5448/MC7448 Vee 1 1 0 1 1 1 ,, •,, 0 0 0 0 1 . 0 0 (10) ALL TYPES DECIMAL OUTPUT 7 6 5 4 3 2 a 9 0 0 1 1 1 3 4 ,, , ,,, , , , ,, , , , , , , , , , ,, , , ,,,, ,, , ,,, , ,, •, •, , , , ,, •• •, , ,, , •• • •, ,,, , , ,,, , , , , , , ,, ,, ,, ,, , • , , ,,, , 0 0 0 , 1 a 0 0 0 MC5444/MC7444 EXCESS3GRAY INPUT A C 0 0 , 0 0 0 0 (10) 11 (10) (1) 12 MCfi443/MC7443 eXCESS 3 INPUT C A 0 0 2 10 (10) tpd, 2 Logic Levels = 22 ns tvp 3 Logic Levels = 23 ns typ Po - 140 mW typ/pkg 11 ~ 5 MC5446/MC7446 6 ALL TYPES DIGIT DR FUNCTION LT RBI 0 C B A BI/RBO 1 1 o0 0 0 1 X o 0 0 1 1 2 X • 0 1 X •• 1 1 3 4 X o 1 0 0 1 x o 1 0 1 1 7 13 • 9 10 11 12 •• • 7 I. I." Vee == Pin 16 Gnd == Pin 8 8 11 INPUT OUTPUT 0 C a A 9 a 7 6 6 4 3 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 , , ,,, ,,, , , , , , , 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 14, 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,, • , ,, , ,, , 1 1 1 , , 1 1 1 1 X X X X X X X X X X ,, , o , o , , 1 0 0 , •, , ,, ,• 81 X X 1 0 0 o X X X X 1 1 1 1 0 1 1 • 1 1 1 0 () 1 1 0 , 11 1 11 1 X X X X RBI LT 0 1 0 0 0 0 0 0 X 1 1 1 0 • 1 MC5447/MC7447 OUTPUT b d f 9 MC5448/MC7448 OUTPUT b d f ·• •• •• • ·• • · , · , 1 0 1 1 1 1 1 0 0 0 1 1 1 , ,,, 9 •, ,, •, •, , •• •• , , •, • •, , , , , , 1 1 0 • • • ••, •, • •• •, ,, ,, , •, o • • •• • • • • •• • • • • • • • • • •, • •• • , ,, ,, , • • • • • , o ,, , , • o, •• 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 · 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 X.: Don t care SEGMENTS ILLUMINATED SEGMENT IDENTIFICATION tpd == 50 ns max Po - 215 mW typ/pkg . . . . . .-----.. . . . .-P------"'"- "~,,---,-----------...,.., LOGIC DIAGRAMS (continued) DECODERS ( c o n t i n u e d ) - - - - - - - - - - - - - - - - - - - - - - - - , MC5449/MC7449 BCD-to-5even Segment Decoder/Driver (1) 5 DIGIT INPUT OR FUNCTION DeB A BI 11 • 10 3 o 0 0 0 1 1 0 0 o , , o 1 1 1 0 0 o0 o0 o0 o , o 1 1 2 (1) 1 •, • • I. " 9 VCC - Pin 16 Gnd = Pin 8 8 (1) 2 6 (1)4 7 · 13 "15 ., Po - 165 mW typ/pkg 1 0 0 1 1 0 1 1 1 0 1 1 0 11 1 111 0 1 • 1 0 1 to, 12 13 12 (2.6) 3 0 , 0 1 0 1 0 1 0 x x x )( · · MC8301/MC9301 BCD-to-Decimal Decoder OUTPUT f d , ,, , , , , , , •• o • ,, • •, •, •• • •• • •,, • , , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 • •• • • •• • • •• • •• ••• • •• •• •• •• •• •• • 0 1 1 1 1 1 1 1 1 1 (1) 15 12 (10) 11 (10) (1) 14 (1) E (1) 19 Vee = Pin 24 B (1) 21 C (1) 20 02 3 (10) 03 4 (10) 04 5 (10) (10) 7 (10) 07 8 (10) 08 9 (10) 06 A (1) 22 (10) 05 Gnd - Pin 12 (1) 23 01 2 0 a9 10 (10) 0.10 11 (10) a" 13 (10) a'2 14 (10) a'3 15 (10) 0.14 16 (10) a'5 17 (10) ,, 1 0 0 0 0 0 t 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 · • •1 1 1 1 1 1 1 1 10 1 1 1 • • 1 1 1 1 X,. Doo'tcare · tpd (10) 4 (10) 5 (10) 6 (10) (10) Pin 16 Gnd::: Pin 8 ,, , , ,, , , , , o , o ,, , , ,, ,, ,, , o o • , •• , ,, o , , •• , ,, ,, • •• ,, ," o • , ,, , o " X X X X X X X X X (10) 3 Vcc - INPUT OUTPUT EO ~ 0 C B A 1514131211 1098 7 6 5 4 3 2 1 0 x x x 9 2 MC8311 1-01-16 Decode, (10) 00 10 (10) 1 ~--------------------------------------x-.-O-O"-'-'·-~--------------------~(1) (1) 18 13 (10) 1 1 1 1 1 1 1 1 1 1 11 1 11 1 111 11 11 , 1 1 0 1 • 1 01 1 11 1 11 1 1 1 1 1 " " " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 • , 1 1 1 • 1 1 1 o 1 1 1 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 INPUT • OUTPUT 6 5 4 3 •, , ,0 ,• , , , , , ,, ,,,, ,, ,, , ,, ,, , ,, ,, ,, ,, ,, C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 , 0 0 0 0 1 1 1 1 ,, , 0 0 1 1 0 0 1 1 A 0 1 0 1 0 1 0 9 1 1 1 1 1 1 1 , ,, 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 2 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 7 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tpd "" 22 ns typ Po - 125 mW typ/pkg MC54145/MC74145 BCD to 1-01-10 Decoder/Driver (E to 0) - 26 ns typ Po - 175 mW typ/pkg See MC5445/MC7445 PARITY T R E E S - - - - - - - - - - - - - - - - - - MC4010 Dual 4-Bit Parity Tree MC4008/MC4308 8-Bit Parity Trea (2) 13 (2) 1 (2) 2 (2) 3 (2) 9 (2) 10 g::. (2)1~ 8 (10) Vcc - Pin 14 Gnd = Pin 7 (2) 11 (2) 12 (2) 4-----4 (2) 5-----/ ) 0 - - - - - 6 (10) 8-1020309010011012013 6-405 whereX@Y=X·Y+X·Y tpd - 16-30 ns typ Po - 150 mW typ/pkg (2) 5 (2) 9~ 6 (10) VCC - Pin 14 ~~: ~~ Gnd-Pin 8 (10) (2) 13 6-1@2@405 where X 0 Y tpd = xe Y + X. y = 9.5·22 ns typ Po - 125 mW typ/pkg 7 LOGIC DIAGRAMS (continued) COUNTER-LATCH- D E C O D E R - - - - - - - - - - - - - - - - . MC4050/MC4350 2 Monolithic Counter-Latch-Decoder Erliibi8 0------, High-Current Drivers 10. SEGMENT IDENTIFICATION 11 b 9 c 5 d FUNCTION Lamp Test Lamp Blanking Aaset Decoder 4 e C E R X X X X X X X X rnibii P PI 6 ..... 7 Serial 3 Output = Pin = Pin Vee Gnd 16 8 S.qu.~. Lamp BI.nle. ing P ~ ~ Latch . P2 P3 P' P. P7 P8 PO PtO Pl1 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , ,, , S X LT X 0 0 0 0 0 0 0 0 0 I I ,, I I I I , I I 0 • 0 0 0 0 0 LB X SOUl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - I 0 0 any number of pul_ may be applied P n .. ,,'pul_on the Clock input fTog ~ 35 MHz typ Po f ." 2 3 4 , I 450 mW typ/pkg ., , ,, , . OUTPUT INPUT 7-Segment Decade Counter b 0 0 0 • I I I I I 0 0 0 d 0 0 0 I I I I I f 0 ,, ,, ,, ,, , , , ,,, ,, ,o, o , , ,, 0 0 I 0 0 0 0 0 0 I 0 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I I 0 0 0 I 0 0 0 0 I I 1 I I 0 0 I 0 0 0 0 Q I I ,.....,-3.0 V ....J '-OV X - Don't care MC4051 Monolithic Counter-Latch-Decoder 2 ertabi8 0------, High-Current Drivers Clock 1 16 Vee lOa SEGMENT IDENTIFICATION 11 b 9 c INPUT C E R S . X X X. X X X I FUNCTION Latch Counter 5 d Lamp Telt Lamp Blanking Reset rriibi'e 4 State 9 Serial Output ~ Gnd = Pin Pin 16 8 fTd9;;: 35 MHz typ Po ~ 450 mW typ/pkg . p. f 2 3 S.qu••" Vee X X pt e 6 7 X P P., . : .~ Latch P2 '3 P' P, P1 P8 P. P10 PIl P 1 0 X I 0 0 , 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 I I I I 0 0 0 0 0 0 0 0 0 0 , , I I 0 LB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 - 0 0 0 0 0 0 X 0 SOUl 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 any number of pu'se. may be applied ~ n . ., , •, OUTPUT , LT 1 0 0 0 0 b , 1 0 0 0 I I 0 0 0 0 0 0 0 1 1 f d 0 0 0 0 0 0 0 0 0 1 0 0 0 I I I I 1 1 0 0 1 I , ,, , , , ,, , ,, , , ,, , ,, 0 0 0 ,, ,, ,, 0 I I 0 I I 0 0 I I I I 0 I 1 1 I I 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 I 1 I I 0 0 ,.....,-3.0 V '-OV pulses on tha Clock Input ....J X'" Don"'cars F .. LOGIC DIAGRAMS (continued) COUNTERS---------------------------------------, MC4016/MC4316 COUNT MC40181MC4318 • 8 7 6 5 4 Programmable Modulo-N Hexadecimal Counter (1) 4 (2) 6 (1) 5 OUTPUT 03 Q2 Q1 00 I 0 0 I I 0 0 0 I I I 0 0 I I 0 I 0 0 I 0 I 0 0 0 0 I I I 0 0 0 0 0 0 I 0 0 0 0 (2) (2) 1 (8) Gnd == Pin I. COUNT 8 2 3 13 (4)10 12 (3) I I 1 13 1 1 1 1 1 0 0 12 11 10 I • 1 1 0 0 0 0 0 0 0 0 8 7 6 5 · tpd, Clock to 03 = 50 ns typ Clock to Buss::; 35 ns typ Po = 250 mW typ/pkg 3 2 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 I 0 0 1 1 1 1 0 0 0 0 1 8 (10) 3 6 (10) (3)10 OUTPUT 03 02 01 00 15 5 (10) (1)12 MC4018/MC4318 Vee == Pin 16 2 (2) 13 (8) 15 (8) (1)14 (2) I 0 (1)11 (1) 3 2 (8) 9 MC4023 4-Bit Universal Countsr MC40161MC431. Programmable Modulo-N Decade Counter (3) 1 0 1 0 1 0 4 (3) 11 9 (10) = I Vce Pin 14 Gnd == Pin 7 0 1 0 1 0 1 0 1 0 tpd == 16 ns typ/bit Po = 200 mW typ/pkg f = 30 MHz tvP MC5490/MC7490 Decade Counter (2)14 CO QO 12 (10) (4) Cl Ql 9 1 Q2 8 COUNT SEQUENCE TRUTH TABLE RESET/COUNT TRUTH TABLE (10) RO (10) (1) 3 (1) 6 Vee == Pin 5 Gnd == Pin 10 02 01 00 1~J 0 0 1 0 x x X X 1 X 0 X 0 1 0 X X 0 X 0 X 0 COUNT X 0 0 X COUNT 0 2 Q3 1 1 1 1 )( - .oUTPUT COUNT OUTPUT Pin 2 Pin 3 Pin 6 Pin 7 11 (10) (1) RS ~J g COUNT COUNT 0 1 2 3 4 5 6 7 8 • Don I care. 03 02 01 00 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 - (2) 14 (4) MC5492/MC7492 MC5493/MC7493 Divide-by-Twelve Counter 4-8it Binary Counter 1 0 1 OUTPUT 02 01 00 0----<\ CO QO 12 (10) (2) 14 0----<\ eo 00 12 (10) el Ql 11 (10) (2) 01 9 (10) Q2 9 (10) 02 8 (10) 8 (10) 1 Vee == Pin 5 Gnd = Pin 10 10---...qCl Vec = Pin 5 Gnd == Pin 10 (1) 6 (1) 2 (1) 7 (1) 3 11 (10) COUNT Q3 0 1 2 3 4 OUTPUT COUNT Po 1 0 0 0 0 tpd == 20 ns typ/bit Po = 160 mW typ/pkg (1) tpd 1 1 1 1 1 = 60 ns typ = 160 mW typ/pkg 0 1 2 3 4 5 6 1 8 I.• 11 03 0 0 •• 0 0 1 1 1 1 1 1 00 connect8d to C1 02 0 0 · · 1 1 0 0 0 1 1 01 0 0 1 1 0 0 0 0 1 1 0 0 O. 0 1 0 1 0 1 0 1 0 1 0 1 , 6 tpd == 20 ns typ/bit Po = 160 mW typ/pkg 7 8 8 I. 11 12 13 I. 16 0 0 0 • • • • 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 I 1 0 0 1 1 0 • 0 1 • •• • • 1 1 1 1 1 1 1 00 conne<:ted to (;1 (continued I LOGIC DIAGRAMS (continued) COUNTERS ( c o n t i n u e d ) - - - - - - - - - - - - - - - - - - - - - - - - . . . , MCB310/MC9310 Presettable Decade Counter MC8310/MC9310 COUNT a3 , 0 2 (2/3) 3 (2/3) 4 (2/3) 5 (2/3) 6 0 0 0 0 0 0 0 0 2 3 ·• 14 (6) (1) (2) MCB316/MC9316 OUTPUT OUTPUT MCB316IMC9316 4-Bit Binary Counter 5 13 (6) ,, 7 •• Vee == Pin 16 Gnd = Pin 8 12 (6) a, a2 COUNT OJ ao ,, 0 ,, ,, 0 0 0 0 0 0 0 ·• 0 ,, ,, 0 0 0 0 0 0 3 , , , 0 ,, 6 0 7 •• 0 10 11 12 13 I. (1) 11 (6) (2) 15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 a2 a, ao , ,, , ,, , 0 0 '0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 , 0 0 1 • 1 0 0 0 1 1 0 1 , tpd ::: 14 to 35 ns typ 9 (2) 10 fTog == 28 MHz typ 15 (6) = 300 mW typ/pkg Po MEMORIES AND MAGNETIC MEMORY DRIVERS--------..., MC4042 Quad Predriver MC4004, MC4005, MC4304, MC4305 16-Bit Scratch Pad Memory Cell 5 6 7 5 8 (1) Al (4) B 3 Xl 2 S"I" 12 5"0" 11 X2 X3 14 X4 2 11 (1) A2 6 (1) A3 9 ___t_<_-t--o 7 C2 ,/++-----0 14 C4 (1) A413 13 90-------' Vee == Pin 4 Gnd = Pin 10 Vee = Pin 4 Gnd == Pin 10 Substrate = Pin tpd: Write Mode == 25 ns typ Read Mode = 15 ns typ Po = 250 Gnd 10 3 tpd = 15 ns typ Po = 120 mW typ/pkg mW typ/pkg MC4043 MC54B4/MC74B4 16-Bit Scratch Pad Memory Cell With Gated Inputs Dual Line Selector (I)AI2~14Cl (2) VCC2 Cl B 5 8 6 7 8 9 C2 (1) A2 6 Gnd 10 Vee = Pin 4 4 Xl 3 X2 2 X3 X4 Gnd = Pin 10 Substrate = Pin 3 = Pin 1 Vee = Pin 5 Gnd 5"0" = Pin 12 11 15"--'---"" tpd: Write Mo~e =;: 25,n5 typ Read Mode = 15 ns typ 16 Gate 2 = Pin 7 10 tpd Po 12 W"O" Collectors of Output Transistors: Gate 1 S"I" = 20 ns typ Po = 250 mW typ/pkg 11 = 70 mW typ/pkg ;a 4 LOGIC DIAGRAMS (continued) ADDERS------------------------------------------, MC4026/MC4326 MC4027/MC4327 MC4028/MC4328 MC4029/MC4329 Dependent-Carry Fast Adder Full Adder (2) 8 (2) 9 (1) 2 MC4030/MC4330 MC4031/MC4331 Independent·Carry F_st Adder 5 tpd 7 Po 6 (1) 13 Vee:::: Pin 4 Gnd::::o Pin 10 = 125 Cin S 0 0 0 1 0 0 1 1 tpd 0 1 0 1 = (Add •• 0 1 0 0 1 = 13 (2) 13 Cn -l Note 1 Note 2 S Ebut 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ns typ Po - 90 mW typ/pkg 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 .1 1 , 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Carry Decoder (4)14 (4) 8 (4) 1 (1) 13 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 Co", Note 3 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •••• • ••• 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 -- ;; 11 0 1 1 1 •• •-• :• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MC5480/MC7480 G_ted Full Adder (3) 7 (1) 9 (1) 8 (1) 9 5 (10) (1) 11 (2) 3 (1) 2 (1) 12 (1) 6 (1) 5 (1) 2 (5) 3 6 (10) (1) 13 Vec:::: Pin God:::: Pin 14 (Input ~ 1.625) (Output = 3) = 4~O ns typ/decoder 1.0 ns typ/pF at expander nodes = 20 mW typ/pkg Cin • A Cout S S 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 4 (5) Vee::::; Pin 4 Gnd "" Pin 10 Po 0 1 1 1 1 1 MC432914029 Comment MC4331 (4031 Cout Notel. This column represantlil the AND function whose Inputs are pins 13 .nd 12, .nd is d.flned' by the ellpression (An_1@Sn_11(Cn_21_ Note 2. This column rapresents the AND function whO$lllnp ... ts are pinl13, 14, and 1, and is defin.d by the . .pression (An_1 G;) Bn-1 l\An_2@Sn_2ltCn_31. Note3. 41- Don'tC.r•. Th. "Don't C.r." occurs for th. MC433O-31/4Q30-31 onlv, b.c....se tha Cn .nd tha@n from .ny one previous stega entering a gi\len s ... bsequent .tage cannot be sim ... ltaneously at logle "1". MC4032/MC4332 Atpd 4 CONDENSED TRUTH TABLE FOR THE Nth STAGE Pin Numblrs 12,13 13,14,1 5 1 6 MC4330/4030 MC4328/4028 B 0 • 3 20-----' A 0 7 Loads Loads Loads Loads 0 0 0 0 I I I I 11 0 C.... 0 0 0 1 MTTL MTTL MTTL MTTL 9 ~ Delay) = 25 ns typ tpd (Carry Delay) 6 (1) 14 8 0 0 0 0 0 OUTPUT .. . B 0 0 0 0 0 0 1 1 1 1 5 (1) Output Loading Factor: MC4328, MC4330 = 15 MC4329, MC4331 = 7 MC4028, MC4030 = 12 MC4029, MC4031 = 6 MC4326"" 15 MTTL I Loads MC4327 = 7 MTTL I Loads MC4026 == 12 MTTL I Loads MC4027 "" 6 MTTL I Loads A 9 (1) 11 mW typ/pkg Output Loading Factor: INPUT 8 (2) (1) 12 Delay) = 25 ns typ tpd (Carry Delay) = 13 ns typ (1) 11 (1) 12 = (Add (2) (Input ~ 1.6251 (Output = 3) tpd (Add Delay) :::: 55 ns typ tpd (Carry Delay:::: 10 ns typ A .. A*.AC, 8 - s* 8S C whareA*"~ a*=~ 2. Whan A* (or S*J is used" an input, A1 and A2 {or 81 lind s21 must be conneeted to g'OI"Iod, 3. When A 1 and A2 (or S 1 and S21 are uaed u Inputs, A* lor sir) must be open, or u,.d to perform wired-OR logic. Po ~ 105 mW typ/pkg (continued) LOGIC DIAGRAMS (continued) ADDERS (continued) --------------------------'""""1 MC8304/MC9304 Dual Full Adder MC5483/MC7483 4-Bit Binary Adder (4) 130-- Cin (4) 100-- Al (4) 110-- 61 (1) 8 0 - - A2 (1) 70-- 62 (4) 3 0 - - A3 (4) 4 0 - - 63 (1) 10-- A4 f------o 9 51 (4) (10) 2 Al 52f---o6 (10) 53 r---0 2 (10) (4) 3 61 (4) 4 Cin 1 Caut r---0'4 (5) (1)1~:D (4) 15 5 Gnd = Pin 12 INPUT % ~ ein=1 When C2=O Who" C2=1 X, X t% %~ ~ Vc: %%A , , , , , 0 1 0 1 0 0 1 0 8. 0 0 0 0 1 1 1 1 0 0 0 0 Caut 1 ~5 (7) 52 f---- lIecfor Outpud MC5401F,L 607,632 MC7401 F,L,P 607,632,605 10 35 40 Quad 2-lnput NOR Gate MC5402F,L 607,632 MC7402F,L,P 607,632,605 10 10 40 Quad 2-lnput NAND Gate (With Open ColI"ctor) MC5403L 605,632 10 35 40 Hex Inverter MC5404F,L 607,632,605 10 13 60 -55 to + 125°C Function Case 632 607,632 MC7403L,P MC7404F,L,P Case ® Loading Factor Each Output Hex loverter MC5405L 632,605 10 35 60 Triple 3-lnput NAND Gate MC5410F,L 607,632 MC7410F,L,P 607,632,605 10 10 30 Dual 4-lnput NAND Gate MC5420F,L 607,632 MC7420F,L,P 607,632,605 10 10 20 Quad 2-lnput Interface NAND Gate MC54;!6L 632,605 10 17 40 a-Input NAND Gate MC5430F,L 607,632 MC7430F,L,P 607,632,605 10 Dual 4-1 nput NAN 0 Buffer MC5440F,L 607,63, MC7440F,L,P 607,632,605 30 10 13 50 - BCD-to-Decimal Decoder and High-Level Driver 632 632 MC7405L,P MC7426L,P 10 MC7441AL,P 620,612 - - 105 BCD·to-Decimal Decoder MC5442L 620 MC7442L,P 620,612 10 22/23# 140 Excess Three-to-Decimal Decoder MC5443L 620 MC7443L,P 620,612 10 22/23# 140 Excess Three Gray-toDecimal Decoder MC5444L 620 MC7444L,P 620,612 10. 22/23# 140 - -' (ll[l)l (11 [121 (1) [13J (5) 10 (1) (13) 13 (1) (14) BUFFER---------- 8 (12) (10) (11 (14) 5 (11[619 (11 (1) 1 (1) (1) (6) (1) (7) (1) (8) (1) (9) :~ 5~ [7J 10 [81 12 [9J 13 (3) 13 (1) (6) 2 (7) 3 (1) (8) 4 (11 (9) 5 111 (13) 9 tpd'" 13 ns typ Po = 50 mW typ!pkg 8 (10) (30) MC5405/MC7405 Hex Inverter Hex Inverter (Open Collector), 1 - 1 > - 2 (14)(101 (11 l--{)o-2 1101 (11[ 3 J 3-{:>o-4 [ 2 ](10) (1) 3--{)o-4 (101 I 5 - 1 > - 6 [6 ](101 (11 5--{)o-6 (10) (11[ 7 J 9 - 1 > - S [ S Hl0) (1) 9--{)o-S (10) (1l{ 9 J 11-{::>o-10[10](10) (1) 11--{)o-10 (10) (1)[13J 13-V-12[12J (10) (1) 13--{)o-12 (10) (11[ 5 1 (1) (30) MC5404/MC7404 (11[ 1) MC5453/MC7453 Expandable 4-Wide 2·lnput AND·OR·INVERT Gate [5J 6 [2J INVERTERS tpd:: 13 ns typ Po :: 28 mW typ!pkg (1) D D 6(10)(10) 8 = (9·10) + (13.1) (1) 2 4 8 (12) 1101 111 (14) 10 Emitter [11 Collector (2] 2=1 S = 113. 1) + 12.3) + 14·51 + 19·101 + IExpander.1 2=1 = 35 ns typ tpd'" 13 ns typ tpd Po = 60 mW typ/pkg Po = 60 mW tvp!pkg tpd'" 13 ns typ Po = 22 mW typ/pkg MC5454JMC7454 4-Wide 2·lnput AND·OR-INVERT Gate 111 EXPANDER---------~ MC54601MC7460 Dual 4-lnput Expander for AND·OR·INVERT Gates (3) 13 (11 (5) 1 (11 (6) 2 111 [7J 3 111 [S) 4 111 [9J 5 (11 [13J 9 [31 13 Collector [51 1~---~12[2J S [121 (101 [6J 2~---~ 11 [1] 171 3 [8J [9J [10J [12J (11 [14J 10 Emitter Emitter :~---~ 10 [141 6~--~9 8 [13J Collector 8 = (13 • 11 + (2 • 31 + (4 • 51 + (9 • 101 tpd'" 13 ns typ 5 (10) (1)110-- AC (1) 120-- Bl S • 0 0 I I I I ---<>6 (10) (1) 130-- B2 (1) 2 0 - - BC (5) 0 Vee = Pin 7 Gnd = Pin 14 • A Caul S s 0 0 I I 0 0 I I 0 I 0 I 0 I 0 I I I I 0 I 0 0 0 I 0 0 I 0 I I 0 0 I I 0 I 0 0 I A*.AC.B=~ I. A- 3 0 - - Cin Cout f---<>4 (5) A- S* wh.r.A*"~ s* .. i"1Te2 10! I"pvt, A1 and,A2 (or 81 and 82) (Input = 1.625) (Output = 3) (Input = 1.625) (Output 2. Whan A* (or Bot) 1$ used lU lin !1 = 3) muff' be connected to ground. 3. When ."d A2 ~1 (or B, and 82) ar. usad as (npun, A* (or 8*1 must be open, or u.ad to perform wired-OR logic. tpd (Add Oelay) ~ 55 ns typ tpd (Carry Delay:: 10 ns typ Po ~ 105 mW typ/pkg MC15482/MC17482 MC25482/MC27482 ., A' ., 51 ., 0 0 0 0 0 0 I 0 0 0 I 0 0 0 I 0 I 0 0 I I 0 0 0 I 0 0 t 0 0 I 2-Bit Full Adder INPUT AI 30--- Bl f----<> 1 (10) S2 f----<> 12 (10) Ell 1 f----<> 7t (10) (2) 130--- 82 (92 f---<>8t (10) (2) 2 0 - - Al (2) 140-- A2 (2) (3) • • Sl 50--- Cin :out f---<> 10 (10) I OUTPUT Cin -1 Cin-O • C C 52 SI e" e,1 • 0 0 I 0 I 0 I 0 I 0 0 I I 0 0 0 I 0 I I 0 0 I I 0 0 0 I I I I 0 0 = ',5 ns I 0 I 0 0 I I 0 I I 0 0 0 I I tpd (Carry Delay) = 12 os I I I 0 0 0 I I 0 I 0 0 0 0 I 0 I 0 I I 0 0 I I 0 0 1 1 1 0 0 1 1 1 0 1 0 I 1 I 0 0 1 I 1 tpd Po (Add Delay) ~ 165 mW typ/pkg Vee = Pin 4 Gnd = Pin 11 • 0 I I I 0 I 0 0 1 I 0 I 0 1 0 0 1 I 0 0 1 1 0 1 0 0 I 0 I I I 0 I 0 I 1 1 0 0 1 1 I I 0 1 0 I 1 I 0 I 1 1 1 0 1 1 I I 1 0 0 t Available only on MC25482/27482 MC5483/MC7483 4-Bit Binary Adder OUTPUT INPUT % % /{, % Cin-,' Cin"'O (4) 13 c:>-- Cin (4) 100-- Al (4) 110-- Bl (1) 80-- A2 (1) 70-- B2 (4) 30-- A3 (4) 40-- B3 (1) 10-- A4 (1) 160-- 84 51 f---<>9 (10) 82 f---o6 (10) (10) When C2= 1 %%v.: %l% ~ Vc: A3 53 f---o2 Wh.n C2=O Vee = Pin 5 Gnd = Pin 12 54 f---o15 (10) 0 I I I I I I 0 0 0 0 I I 0 0 0 0 I I I I I I tpd = 35 ns typ Po ~ 390 mW tvp/pkg 8' 0 0 0 C out ---<>14 (6) 83 0 I 0 I 0 I 0 I 0 I 0 I I 1 0 I I 0 0 0 0 0 a 0 0 0 0 0 0 0 I I I I I I I I Co S3 0 I I 0 0 I I 0 0 I I 0 0 0 0 0 I I I 0 I I 0 , , 0 0 0 0 I 0 0 0 S3 , 0 , ,, 0 0 I o· 0 0 0 , 0 I I I I 0 0 0 0 0 0 0 I I 0 0 I I 0 0 0 .0 I 1 0 I I I 0 I I I ,, ~ Co 0 0 0 0 0 I I I 0 I I I I I I I ir'put conditions at A 1, A2. B1, 82, and C,n ~rB.used to ~eter mine oU'tputs S1 and S2, and th" value ofi'the i,nen.al carry, C2. Ttle values.t C2. A3, 83, A4, .nd 84 are then ut,ed to dB,termin. outputs 53, 54, and Cout- LOGIC DIAGRAMS (continued) COUNTERS---------------------------------------, MC5490/MC7490 Decade Counter (2) 1 4 0 - - - . q (4) co 10---<11 Cl aD 12 (10) al (10) 9 a2 8 COUNT SEQUENCE TRUTH TABLE RESET/COUNT TRUTH TABLE RO (10) (1) (1) • • . X 2 X Vee::: Pin 5 3 )( Gnd ." Pin 10 6 X 0 OUTPUT COUNT OUTPUT 02 01 ~t ~ I ~ 11 (10) (1) A9 Pin 2 Pin 3 Pin 6 Pin 7 03 1 1 0 x 1 1 X 0 x X 1 1 X 0 X 0 X 0 0 X COUNT COUNT COUNT COUNT • X 00 I 0 0 0 1 2 3 ·•• 1 1 •• Don'tc..re. 03 02 01 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 - 1 1 1 1 1 00 <;onnillcted 10 C1 tpd (1) = 20 os tvp/bit Po = 160 mW typ/pkg MC5492/MC7492 Divide-by-Twelve Counter (2) 14 o---~ CO (4) 1 Cl VCC = Pin 5 aD 12 (10) (2) al 11 (10) (2) a2 9 (10) 8 (10) Gnd = Pin 10 (1) MC5493/MC7493 4-Bit Binary Counter 14o---~CO 1 VCC Gnd 6 (1) (1) 2 (1) 3 Cl = Pin = Pin 5 10 aD 12 (10) al 9 (10) a2 8 (10) 11 (10) OUTPUT 01 00 •, •• •• ••, • • , • •• ,,, ••, • • , , •• •,,, • ••, , • , " ,, •,, ,. ,, ,, ,, •, •, •, •, •, • •, COUNT OUTPUT COUNT 03 1 = 60 ns typ Po = 160 0 0 0 0 2 3 ·••• mW typ/pkg 01 0 0 0 0 1 1 0 1 1 0 0 1 tpd :::: 20 ns typ/bit Po = 160 mW typ/pkg 0 1 1 ··· ,. · 2 0 0 ,."• 02 3 00 • • • , •,, •• , ,, •• •,, •, ,, ,, • •, • - 0 tpd 02 03· 1 '2 13 0 14 ao connected to C1 0 0 ·•, aD connected to E1 MEMORIES----------------------------------------. 6 7 MC54841MC7484 8 9 16-Bit Scratch Pad Memory Cell With Gatad Inputs 4 XI 3 X2 2 X3 X4 S"I" 12 S"O" 11 tpd: Write Mode:::: 25 ns typ Read Mode = 16 ns typ W"O" Po = 250 mW typ/pkg 15 16 10 11 Vee = Pin 5 Gnd = Pin 12 LOGIC DIAGRAMS (continued) DECODERS--------------------------------------~ MC7441A BCD-to-Decimal Decoder and High-Lavel Driver MC54421MC7442 BCD-to-Decimal Decoder (1) 150-- A c:io - - 0 1 (10) --02 (10) (1) 140-- B 02 - - 0 3 03 - - 0 4 (10) --05 (10) (1) 130--C 05 - - 0 6 Os - - 0 7 (10) (10) 07 - - 0 9 (10) ci1 MC5443/MC7443 Excess Th .....ta-Decim.1 Decoder (1) 3 0 - - A 0.0 f--016 MC5444IMC7444 Excess Three Gr.v-to-Decimal Decoder 01 f--o 15 54 0.2 f--os (1) S o - - B 03 f--09 04 f--o 13 Vee = Pin 16 Gnd = Pin S 05 f--o 14 (1) 70-- C 07 f--o 10 MC5442/MC7442 MC5443/MC7443 EXCESS J INPUT aco INPUT Vee = Pin 5 Gnd = Pin 12 INPUT 0 c a OUTPUT A 9 8 765432 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 ,, , , 1 0 0 , ,,, ,,, , 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 , , ,, 1 0 , ,, ,, ,, ,1 0, , , ,, ,, , , , ,, ,, , , ,, , ,, , 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Po = 105 mW typ/pkg MC5445/MC7445 MC54145/MC74145 BCD to 1-of-10 Decoder/Driver 150-- A (lo - - 0 1 140-- B 01 - - 0 2 02 - - 0 3 03 - - 0 4 130--C 04 - - 0 5 05 --OS OS - - 0 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 0 , 1 1 1 1 1 1 7 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 , 1 1 1 1 o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 , , 1 1 1 1 1 1 1 1 1 1 , 0 1 1 1 1 1 1 1 1 1 1 1 1 tpd = 50 ns max Po = 215 mW typ/pkg 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 ,, ,~ ,, , , , , , , , 1 0 "', ,, ,, ,, , , 0 0 0 1 A 0 1 1 0 0 1 1 0 0 a 0 0 0 0 0 1 , , C 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 , , 1 , , 1 1 0 0 0 0 0 0 , 3 4 5 6 7 8 9 10 11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " I. 13 15 81 R81 LT 1 1 1 1 X 1 0 X o o o o o X X o o X X X X o X X X X X X X X X 0 X 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1111 X X X X o 0 0 0 X X X X 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 2 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (1) 7 0 - - A a f--o 13 (1) 1 0 - - B bf--012 (1) 2 0 - - C cf--oll (l)So--o df--ol0 (1)30-- LT (1)50-- RSI ef--09 f f--o 15 (2.S/5) 4 0 - - BI/RBO 9 f--o 14 ALL TYPES 1 1 0 , ,, ,, ,, ,, , ,, ,, 1 , ,, , ,, , , ,, ,, ,, , ,, , , ,, ,, ,, ,, ,, ,,,,,, , : ,, ,, ,, ,,, , , ,, ,,, , ,, , ,, , , ,,, ,, ,, ,, , , ,,, , , , 9 a 7 6 • 4 3 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 MC5446/MC7446 MC5447/MC7447 MC5448/MC7448 BCD-to-Seven Segment Decoder/Drivers 1 1 1 1 1 1 1 1 1 1 1 1 DECIMAL OUTPUT 0 C 0 ALL TYPES A 0 , 0 1 OUTPUT 6 5 4 3 2 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 a A DIGIT OR 09 --011 8 a , FUNCTION L T RBI 0 C B A aI/ABO Vee = Pin 16 Gnd = Pin S INPUT C a A 9 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 c Po = 2S5 mW typ/pkg OS - - 0 10 0 0 MC5444/MC7444 EXCESS 3 GRAY INPUT Vee = Pin 16 Gnd = Pin S 07 - - 0 9 120-- 0 09 f--oll (10) (1) 120-- 0 Po = 140 mW typ/pkg OS f--o 1 09 f--02 (1) 4 0 - - 0 Cia f--o 10(10) tpd. 2 Logic Levels"" 22 ns typ 3 Logic Levels = 23 ns typ 06 f--oll (10) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 MC5446/MC7446 MC5447/MC7447 OUTPUT b , d , f 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 . 0 1 0 0 , 0 1 0 0 0 1 1 , 0 1 1 1 1 0 ,, , ,, . MC5448/MC7448 • 1 1 1 0 1 1 0 0 0 , 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 OUTPUT b , d f , 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 • 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 X .. Oon'l care SEGMENT IDENTIFICATION . fl Ib 9 ·1d Ie SEGMENTS ILLUMINATED -II-:hl'- 1 f:H!C!=I!U!'=!:=! ! 1 I 11__ I: : 1 :110 1 2 8 9 10 3 I I_IU 4 11 12 5 S 7 13 14 15 (continued) LOGIC DIAGRAMS (continued) 1"""1DECODERS (continued) MC5449/MC7449 BCD-to-Seven Segment Decoder/Driver DIGIT INPUT OR FUNCTION DeB A 81 ,• .~11 (1) 5 0 - - A b~ID (1) 1 0 - - 8 c~9 Vee"" Pin 16 Gnd = Pin 8 d~8 (1) 2 0 - - C e~6 (1) 4 0 - - 0 f~13' (2,6) 3 0 - - 81 9 ---<) 12 Q 0 Q 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )( X X X 0 1 o 3 4 5 o 0 o 1 o 1 o 1 o , 8 1 0 0 0 1 0 0 1 •, I.• o 0 0 1 0 , 1 0 0 1 1 0 1 0 1 0 1 to, 0 11 1 0 , 1 " , 1 0 1 1 1 1 0 , 1 0 0 13 14 I. 8' t, x = Don'teare ·• OUTPUT , • ••• • · .· · •• ·• • •• • • •• · ·•• ·• ·• • • • ·• 1 b 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 • •• 1 1 1 1 1 1 1 1 1 f d 1 • 1 1 1 0 1 1 •o 1 1 1 1 1 o 0 o • 0 1 1 1 1 1 •1 1 1 1 0 • •1 1 1 0 0 1 1 1 0 0 o 1 1 1 1 1 1 1 1 1 1 1 1 PO"" 165 mW typ/pkg SHIFT R E G I S T E R S - - - - - - - - - - - - - - - - - - - - - , MC5494/MC7494 4-Bit Shift Register MC5491A/MC7491A 8-Bit Shift Register 13 (10) (1) C 9 6 3 4 (I)A II 14 (ID) (1) 812 9 11 13 14 16 15 Vcc=Pin 5 Gnd"" Pin 10 Clock lD 8 TRUTH TABLE Synchronous Inpu1S A " tn+8 B •I • • 1 1 1 0 , a 0 • •, 1 01 ·l' Vee = Pin 5 tpd "" 25 ns typ Po :::: 175 mW typ/pkg f:::: 18 MHz.typ Gnd "" Pin 12 tpd. Clock to Q = 25 tiS typ = 175 mW typ/pkg fTog = 10 MHz ~ Po (continued) LOGIC DIAGRAMS (continued) SHIFT REGISTERS (continued) - - - - - - - - - - - - - - - - - - - - - , MC5496/MC7496 5·Bit Shift Register MC5495/MC7495 4-Bit Shift Register 15 13 (10) (1) 1 14 (2) 6 (1) 9 12 (10) 13 (1) 8 (1) 2 (1) 3 11 (10) 11 10 (10) 10 (1) 4 (1) 5 Vee = Pin 14 Gnd = Pin 7 tpd Po = 25 ns typ = 250 mW typ/pkg Vee = Pin 5 Gnd = Pin 12 tpd. Clock to' 04· "" 25 ns typ Po - 240 mW typ/pkg f Tog = 10 MHz f-31MHztyp MULTIVIBRATORS--------. MC54121/MC74121 Monostable Multivibrator Vee = Pin 14 Gnd:::: Pin 7 6 2k (1) AI 3 1 (10) to INPUT A1 A2 1 1 0 X X 0 0 X X 1 1 X 0 1 1 0 0 X X 0 0 1 1 X 1 1 • 0 1 1 0 0 1 1 0 0 1 1 0 0 tn+lINPUT A2 A1 1 0 X 0 X X 0 X 1 1 1 X 0 1 X 0 X 0 0 X 1 X 1 1 0 X • 1 0 0 1 1 1 1 0 0 1 1 0 0 OUTPUT Innibit Inhibit Inhibit Trigpring Ttigg.rin; TrlltQtlring T ri ltSl8 ri ng ",hlblt Inh.blt Inhibit Inhibit Inhibit Inhibit x - Oon tear. ~ t" .. Time period prior to input tr.",ition tn. 1 '" Q (10) (1) A2 4 (1) B 5 0 - - - - ' Time period following Input tunsition tpd, B to Q :::: 35 ns typ Po =90 mW tvp/pkg (50% duty cycle) Q INTEGRATED CIRCUITS MC3000 Series (0 to +750 C) MC3100 Series (-55 to +125 0 C) MTTL III integrated circuits comprise a family of transistortransistor logic designed for general purpose digital applications. The family has a high operating speed (30-50 MHz clock rate), good external noise immunity, high fan-out, and the capability of driving lines up to 600 pF capacitance. _'AX PLASTIC PACKAGE CASE 605 TO·116 ~ - LSUFFIX CERAMIC PACKAGE CASE 632 TO-116 ~SUFFIX CERAMIC PACKAGE CASE 607 T0-86 FUNCTIONS AND CHARACTERISTICS (Vee = 5.0 V. TA = 250 e) - Type(j) Function Quad 2-lnput NAND Gate Quad 2-lnput AN 0 Gate Quad 2-lnput NOR Gate Quad 2-1 "put 0 R Gate Quad 2-lnput NAND Gate (Open Collector) Triple 3-lnput NAND Gate Triple 3-lnput AND Gate Triple 3-lnput NAND Gats (Open Collector) Propagation Delay Power Dissipation mW Case 605. 607. 632 to +750 C Caso 607. 632 Factor -55o C to +1250 C Each Output tpd nstyp typ/pkg MC3000 MC3001 MC3002 MC3003 MC3100 MC3101 MC3102 MC3103 10 10 10 10 6.0 9.0 6.0 9.0 88 112 122 150 MC3004 MC3104 10 B.O 8B MC3005 MC3006 MC3105 MC3106 10 10 6.0 9.0 66 84 o MC3007 MC3107 10 8.0 66 MC300B MC3009 MC3010 MC3011 MC3108 MC3109 MC3110 MC3111 10 10 10 10 6.0 B.O 6.0 9.0 140 90 44 56 MC3012 MC3112 10 8.0 44 MC3015 MC3016 MC3115 MC3116 10 10 8.0 22 22 MC3018 MC3118 MC3019 MC3119 .. MC3020 MC3120 10 6.0 62.5 MC3021 MC3022 MC3023 MC3024 MC3025 MC3026 MC3121 MC3122 MC3123 MC3124 MC3125 MC3126 8 8 10 30 20 20 14 14 6.0 9.0 100 85 62.5 90 70 90 Dual 3-1 nput 3-0utput AN 0 Series Terminated Line Driver Dual 3-lnput 3-0utput NAND Series Terminated Line Driver Dual 4-lnput Expander for AND·OR·INVERT Gates Expandable 4-Wide 2-2-2-3 Input ANO-OR Gate Expandable 4-Wide 2-2-2-3 Input ANO-OR-INVERT Gate 4-Wide 2-2-2-3 Input ANO-OR·INVERT Gate MC3028 MC3128 9.0 56 MC3029 MC3129 44 MC3030 MC3130 .. 6.0 .:l.tpd = 1.0 15 MC3031 MC3131 10 10 87.5 MC3032 MC3132 10 7.0 40 MC3033 MC3133 10 7.0 40 Expandable 2-Wide 4-lnput AND-OR-INVERT Gate AND J-K Flip-Flop AND Input J-K Flip-Flop AND Input JJ-Ki< Flip-Flop Double-Edge-Triggered Master-Stave TVpe 0 Flip.Flop MC3034 MC3134 10 7.0 :30 MC3050 MC3051 MC3052 MC3150 MC3151 MC3152 10 10 10 f-40MHz f 50 MHz f-40MHz 80 50 75 MC3053 MC3153 10 - 100 OR Input J-K Flip-Flop MC3054 MC3055 MC3060 MC3061 MC3062 MC3063 MC3154 MC3155 MC3160 MC3161 MC3162 MC3163 10 10 10 10 10 10 f - 30 MHz f - 30 MHz f-30MHz f - 50 MHz f - 50 MHz f - 30 MHz 95 80 120 100 100 176 Hex I "vertar Hex I nvertar Dual 4-1 nput NAND Gate Dual 4-fnput AND Gate Dual 4-lnput NAND Gate (Open Collector) a-Input NAND Gate a-Input NAND Gate 4-Wide 3-2-2-3 Input Expander For AND-OR·INVERT Gates Triple 3~lnput Expander For AND-OR Gates Expandable Dual 2-Wide 2-lnput AND-OR-INVERT Gate Quad 2-lnput Exclusive OR Gate Quad 2-lnput ExcLusive NOR Gate Dual 2-Wide 2-lnput AND-DR-INVERT Gate Dual 4-lnput NAND Buffer Gate Dual 4-lnput NAND Power Gate Dual 4-lnput AND Power Gate • Output Loading AND Input J-K Flip-Flop Dual Type 0 Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop .. 8.0 .:l.tpd1 .:l.tpdO "tpd1 .:l.tpdO 6.0 6.0 . . CD F suffix denotes Flat Package, L suffix denotes Dual In-Line Ceramic Package, P suffix denotes Plastic Package, (i.e., MC3000F = Flat Package, MC3000L = Ceramic Package, MC3000P = Plastic Package) . ... Direct Output = 10 minus the number of resistor-terminated outputs being used. "Full output loading factor of the expandable gate is maintained . • New Devices =0.4 = 0.05 = U.4 = 0.05 40 25 [li]LfLf~ DOD lOGIC DIAGRAMS Numbers at ends of terminals represent pin numbers. Numbers in parenthesis indicate loading. Vee = Pin 14, Gnd = Pin 7. GATES--------------------------------------------~ MC3000/MC3100 Quad 2-lnput NAND Gate :=0-3 1101 111 : = 0 - 6 (119=0(1110 8 (101 (101 (1112=0(1113 11 (101 (101 . (101 8 (1112~ 11 (101 (1113 tpd = 9.0 ns typ Po = 112 mW typ/pkg MC3003/MC3103 Quad 2-lnput OR Gate MC3004/MC3104 Quad 2-lnput NAND Gate (Open Collector) :=C>-6 1119=C>11110 8 (101 :=r:=r:=r:=r- (11 ( 1112 = C > - 11 (101 11113 8 (1112~ . 11 (101 3=~ tpd = 6.0 ns typ Po = 122 mW typ/pkg MC3005/MC3105 Triple 3-lnput NAND Gate 6 1101 111 111 111 ~~6 (10) ( 119 = r : = r (1110. 8 1101 1119~ 8 (1110 (1) 11 1101 3 11112=r:=r. . 11 (101 11113 12'=~ 3 ~;-;2 tpd tpd = 9.0 ns typ Po = 150 mW tvp/pkg Po (11 (1) (1) ~~6 !1)9~ 1) 10 (1)11 12 == 1 •. ? .1-3 tpd -= 9.0 ns typ Po = 84 mW typ/pkg 8 = 8.0 ns typ = tpd == 6.0 ns typ Po "" 66 m,W typ!pkg 88 mW typ/pkg MC3007/MC3107 Triple 3-lnput NAND Gate (Open Collector! (11'~ 111 2 12 (101 (1113 (101 (1110 3 = 1 + 2 MC3006/MC3106 Triple 3-lnput AND Gate (101 ('1'~ (11 2 . 12 (101 (1) 13 111 111 1101 (119~ (101 (101 (11 (101 :~3 :~6 (1113 tpd = 6.0 ns t~p Po = 88 mW typ/pkg :=C>-3 (11 (11 (119~ (1110 111 (11 3 = 1• 2 (11 (11 (11 (101 3"'~ (11 (11 111 (1) (1) MC3002/MC3102 Quad 2-lnput NOR Gate :~3 :~6 111 111 (11 MC3001/MC3101 Quad 2-lnput AND Gate 111'~. 111 2 12 (101 11) 13 (11 ~~6 (101 (1) (101 (1~9~ (1 1 0 . 8 (11 (1) 11 12=~ tpd == 8.0 os tYP Po =' 66 mW typ/pkg- (10) (101 MC3010/MC3110 Dual 4-lnput NAND Gate (11 (11 (11 (1) ~~6!101 ( 1)93=> (1110 . 11112. . 8110) (1113 6=1·2·4·5 tpd = 6.0 os typ Po = 44 mW typ/pkg (continued) LOGIC DIAGRAMS (continued) GATES (continuedj------------------------,;.-----, MC3012/MC3112 Quad 4-lnput NAND Gate (Open Collector) MC3011/MC3111 Dual 4-lnput AND Gate i==C}-s 1111!==C}-' L f- III ~===3 11)1 110) III (1) 110) = 9.0 ns typ tpd = 8.0 11) 11) (1) (1) 11) 11) }--Bll0) 8::: 1 . 2 . 3 . 4 -10·11·12·13 ns typ ''':~ 11) 10 (1) 13 (1) B (10) MC3021{MC3121 Quad 2-lnput Exclusive OR Gate . 8110) 11.S) (1.S) III (1) S ~ ~33»-"'"' :=[>-3 IS) (l.S) ""BD(1) 10 :==:)[>-S IS) (1) (l.S) 9 = = : ) [ > (S) 11.S) 10 S (1) (l.S) 1 2 = = : ) [ > - (1) (l.S) 13 3=1.2+1_2 tpd = 14 ns typ Po ~ S5 mW typ/pkg 3=1.2+1.2 Po : 100 mW typ/pkg 11 IS) (1) (1) MC3024/MC3124 Dual 4-lnput NAND Buffer Gate . (1) 13 11.6) IB) tpd :::: 14 ns typ MC3023{MC3123 Dual 2-Wide 2-lnput AND-OR-INVERT GATE 11.6) :=L>-s (B) (l.S) 1 2 = L > l11B) I1.S) 13 tpd = 6.0 ns typ PD = 62.5 mW typ/pkg B.O ns ,yp 22 mW typ/pkg :=L>-3 11.S) 9 = L > IS) 11.6) 10 B (9.10) + (13- 1) + (Expanders) MC3022/MC3122 Quad 2-lnput Exclusive NOR Gate 11.6) (l.S) 1 11) 8:::: 3 . 4 . 5 . 6 . 1 1 • 12.1 .2 (1.6) Emitter 11 (1) I tpd =: 8.0 ns typ PD = 22 mW typ/pkg Collector 12 ~ B (10) MC3020{MC3120 Expandable Dual 2-Wide 2-lnput AND-OR-INVERT Gate ml~ tpd Po 3 4 10 11 12 13 Po "" 44 mW typ/pkg MC3016{MC3116 8-lnput NAND Gate 1~ I::l~ ~ 6=~ Po : 56 mW ,yp/pkg IiIl~ m 6110) 9-- 11!10~ 11 12 (1) 13 6= ,.2_4_5 tpd MC3015/MC3115 8-lnput NAND Gate SilO) 1 ~BD-"'" !ll ! = = c r -s (30) !~Il!==cr-S(30) 6-1-2-4-5 S=19-10) +113-1) tpd Po = 6.0 ns typ ~ 62.5 mW typ/pkg typ = 6.0 ns typ Po ~ 90 mWtyp!pkg (continued) LOGIC DIAGRAMS (continued) GATES ( c o n t i n u e d ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - , MC3031/MC3131 Expandable 4-Wide 2-2-2-3-lnput AND-OR Gate MC3032/MC3132 Expandable 4-Wide 2-2-2-3-lnput AND-OR-INVERT Gate (1) 13 (1) 1--.------.. (1) 2 (1) 3 (1) 4 (1) (1) 5 8 (10) (1) 10 (1) 11--,-_ 1--'1.-_ (1) 2 (1) 3 (1) 4 (1) 5 (1) 6 (1) 9 8 (10) (1) 1 0 . - - , - _ (1) 12--r--..... (1)13 ~_ Collector 9 _ _ _ _ _ _ _ _ _--' Emitter Collector 11---------~ 12~-----------.... 8 = (13 -1) + (2 .3) tpd = 10 ns typ 2 (1) 3- (1) 5 (1) 6 (1) 9 MC3034/MC3134 Expandable 2-Wide 4-lnput AND-OR-INVERT Gate (1) 1 (1) 2 11) 3 (1) 4 ~_ 8 (10) 8 (10) 11) 10 11)11 (1) 12 (1) 13 5 (1)10,--'1....._ 8 .10) + (Expanders) MC3033/MC3133 4-Wide 2-2-2-3-lnput AND-OR-INVERT Gate 4 (1) + (9 Po = 87.5 mW typ/pkg 1--'1.-_ 11) .6) =7 ns typ Po = 40 mW typ/pkg (1) 13 11) + (4.5 tpd = 113 '1) 9 + 12 '3) + (4.5 .6) + 19.10) tpd Po 8:: (1 . 2 . 3 . 4 ) + (10.11 .12 .13) + (Expanders) = 7 ns typ = 40 mW typ/pkg tpd == 7.0 ns typ Po = 30 mW typ/pkg POWER G A T E S - - - - - - - - - - - - - - - - - - - - - , MC3025/MC3125 Dual 4-lnput NAND Power Gate (1.3) 13J-- (1.3) (1.3) o-c-- 2 (1) 3--{>o-c-- 5 (1) 6--{>o-c-- 7 (1) 8--{>o-c-- 9 (1)6~7 (1)8~" (1)9~11 Po = 28 mW typ/pkg MC2006/MC2056 MC2106/MC2156 Dual4-lnput Expander for AND-OR-INVERT Gates (1) 12 (1) 13 ==L>- 14 (1) 11--{>o-c--12 3=r;2" (1),13--{>o-c--14 Collector (1)14~\ (1) 1 12 (1) 2 , -~13 (1) 530 \ 3 Emitter Emitter (1) (1) (1) ( 1) 6 - 7 -\11 ~ Collector Po = 14 mW typ/pkg 9 2 =,1 tpd = 20 ns typ Po = 105 mW typ/pkg tpd = 6.0 ns typ Po = 132 mW typ/pkg LOGIC DIAGRAMS (continued) FliP-FLOPS---------------------, MC2023/MC2073 MC2123/MC2173 Dual J-K Flip-Flop (Separate Clock) MC2025/MC2075, MC2125/MC2175 AND J-K Flip-Flop (1.2) (.) K3 14 K2 1 Kl 2 (1.00) CLOCK 3 (0.67) (0.67) (0.67) J3 j~ 5 6 7 !U!~ 8 9 J a 0 a a m"D= RESET 13 (0.67) (0.67) (0.67) 12 11 an °n+1 0 a 0 1 0 1 0 1 1 1 1 , a a 1 1 1 1 J 2 CCl5CK 3 K 1 1 (0.67) 15 12 (o.im 5 _ K 7 a SET 8 tn tn+1 K a 1 13 CLOCK (.) K=K,-K2- K a 1 1 1 a a ·'y" (1.0) (0.67) J "" J, • J2 • J3 a a SET (.) 0 11 a" a" t 0 an f = 50 MHz typ Po = 50 mW typ/pkg f Po ~ 11 K 1 3 (0.67) J 6 (0.67) K 7 SET 8 tn ·'.2 13 12 5 a " tn+1 K a 11 Qn an 0 t t 0 a" a" MC2100 Series a" a Cl:OCK (•• ) RESET (.) MC2DOO Series *1.15 14 2 (2.0) (0.67) K a (0.67) (1.0) (0.67) MC2024/MC2074 MC2124/MC2174 Dual J-K Flip-Flop (Common Clock) MC2000 Series '1.15 ··2.3 MC2100 Series '1.2 "2.4 f = 70 MHz typ Po = 110 mW typ/pkg 70MHztyp = 110 mW typ/pkg MC2028/MC2078 MC2128/MC2178 OR J-K FLIP-FLOP MC2026/MC2076, MC2126IMC2176 OR J-K Flip-Flop (1.2) m:~~! M2 13 M114 100.67) .67 ) K2 Kl 1 2 (2.00) CLOCK 3 l~:g~! 12 12 !g:~~! 19:~~! Jl J2 5 6 t~ 8 (0.67) (2.0) J 0 1 X X X X x CLOCi< 3 I&:~~I JtS~ ~ (0.67) Jl 7 (1.2) (1.2) SET 11 11 7 SET 9 (1.2) K2 2 L K M a x x X 1 X X X X X X X 0 X 1 a 1 X = Don't Care an °n+1 0 0 0 1 1 1 0 1 1 1 0 J = a J, . J2 L = Ll' L2 K=K,.K2 M=M,.M2 f = 50 MHz typ Po = 60 mW typ/pkg Jl J2 Kl K2 JKl JK2 X X X X 1 X 1 0 1 X X X X X 0 X 0 0 0 0 1 1 1 a 1 0 X 1 X X 0 1 X 1 1 0 0 0 1 X 0 X 1 a x = Don't Care a 1 1 X a a X X 0 0 0 1 1 1 1 1 X 1 1 X 1 X X 1 1 1 1 1 a 1 a a a Q n +l an 1 a an 1 a 1 1 1 an an 1 1 1 1 1 1 an an f = 35 MHz typ Po = 60 mW typ/pkg a a INTEGRATED CIRCUITS MC400 Series (0 to +75 0 C) MC500 Series (-55 to +1250 C) ... MTTL integrated circuits comprise a family of transistor-transistor logic designed for general purpose digital applications. The family has a medium operating speed (20 MHz clock rate). good external noise immunity, high fan out, and the capability of driving lines up to 600 pF capacitance. "YI'frn! P SUFFIX PLASTIC PACKAGE CASE 605 TO-116 MAXIMUM RATINGS Rating Value Unit 'W'''~ Vdc Supply Voltage - Continuous MCSOO/SSO Series MC400/450 Series Supply Operating Voltage Range Input Voltage +8.0 +7.0 Vdc Vdc Vdc 4.5 to 6.0 +5.5 +5.5 Output Voltage CERAMIC PACKAGE CASE 632 TO-116 °c Operating Temperature Range MCSOO/SSO Series M C400/450 Series -55 to +125 o to +75 Storage Temperature Range Ceramic Package Plastic Package -65to+150 -55 to +125 °c °c Maximum Junction Temperature MC500/550 Series MC400/450 Series +175 ~SUFFIX +150 Thermal Resistance - Junction To Case (0 JC) °C/mW 0.09 0.15 Ceramic Package Plastic Package Thermal Resistance - Junction 1"0 Ambient (8 JA) CERAMIC FLAT PACKAGE CASE 607 °C/mw 0.26 0.30 Ceramic Package Plastic Package FUNCTIONS AND CHARACTERISTICS (VCC = 5.0 V, TA = 25 0 CI Output Tvpe (1) 12 (1) 13 2 (30) Collector (1)63J- ~~ ___~2 (1) 14 (I) (1) 7 8 (1) 9 6~ ___\.1 7 10 (30) Emitter Emitter :~---~14 10~ ___ ~13 12 tpd = 13 ns typ Po = 50 mW typ!pkg Collector A maximum of 4 expanders may be connected to the MC5450F or MC5453F/MC85453F. FLiP-FLOP--------------------......, MCBC5472/MCB5472F J-K Flip-Flop 3 3ID Numbers in brackets denotes beam number. 1J 1! [7J ! (2) (2) SET Jl 7 [2] CLOCK 2 1 [91 1 [10J J2 8 J3 9 !Wnl ~~ 1~ (11[14] K313 (2) [5J RESET a 12[13](10) Q 10[11](10) 5 tn tn+1 J K a 0 0 I 1 0 1 0 I an 0 1 On J::: J1 • J2. J3 K= K1-K2_K3 f~ Po 15 MHz ~ 40 mW Wp/pkg MCE54HOO I MCE74HOO SERIES INTEGRATED CIRCUITS MCE54HOO Series (-65 to +1250 C) MCE74HOO Series (0 to +700C) The Dielectrically Isolated Integrated Circuit (DIIC) MTTL family is designed specifically for use in military and space applications that require a high degree of reliability under severe radiation environ· ments and post irradiation operation. The MTTL DIIC family utilizes nichrome resistors, post metalization passivation, monometallic inter· connections, and very small high frequency transistor structures to enhance the radiation resistant qualities of this line. Dielectrically Isolated MTTL has the same electrical characteristics and pin con· figurations as the conventional MTTL 54H/74H family which make them interchangeable. This feature eliminates the need for redesigning existing equipment to gain radiation·resistance, and allows the design engineer to utilize a familiar logic type for new systems; FUNCTIONS AND CHARACTERISTICS (Vcc = 5.0 V, T A F SUFFIX CERAMIC PACKAGE CASE 607 T0-86 = 25°C) Output Loading Factor Type Case 607 Function Quad 2·1 nput NAN 0 Gate Quad 2-lnput NAND Gate (Open Collector Output Hex I nvertar Triple 3-lnput NAND Gate Dual4-lnput NAND Gate 11-lnput NAND Gate Dual 4-lnput NAND ~ower Gate Dual 2·Wlde 2·lriput AND·OR·INVERT Gats 4·Wlde 2·lnput AND·OR·INVERTGate Dual 2·Wlde 2·3·lnput AND·OR·INVERT Gate 4·Wide 3·3·2·3·lnput AND·OR·INVERT Gate J·K Fllp·Flop Dual J·K Fllp·Flop Dual Type 0 Flip-Flop Binary To One-Of-Eight Line Decoder -55 to +125o C MCE54HOO MCE64HOI MCE54H04 MCE54Hl0 MCE54H20 MCE54H31 MCE54H40 MCE54H51 MCE54H54A MCE54H56 MCE54H57 MCE54H72 MCE54H73 MCE54H79 MCE54Hl46 o to +700 C MCE74HOO MCE74HOI MCE74H04 MCE74Hl0 MCE74H20 MCE74H31 MCE74H40 MCE74H51 MCE74H54A MCE74H56 MCE74H57 MCE74H72 MCE74H73 MCE74H79 MCE74H146 Propa· gation Power Delay Dissipation Each tpd mW Output 10 10 10 10 10 10 30 10 10 10 10 10 10 10 10 nstyp 6.0 8.0 6.0 6.0 6.0 9.0 6.0 6.0 6.0 6.0 6.0 16 16 16 typ/pkg 80 80 120 60 40 20 80 58 40 68 40 70 140 140 130 - Individual data sheets for this series of TTL devices are available. To obtain copies, send your request to: Technical Information Center, Motorola Semiconduci:or Products, Inc., P.O. Box'20924, Phoenix, Arizona 85036. MCE54HOO / MCE74HOO SERIES lOGIC DIAGRAMS Flat Package: VCC = Pin 4, Gnd = Pin 11. GATES~----~----------------------------------~ MCE54HOO/MCE74HOO Quad 2·lnput NAND Gata (1) (1) (1) 2 ' = 0 -3 (')2'~3 (10) (1)~(10) (10) (1) (1) 7 (1),9~_ (1)130(1) 2 3 6= 0 -6 7 (1) 87~5 (1)10~8(10) (1)12=014 (10) (1) 13 (1)930(1) 10 13 (10) (1)12=014 (10) (1) 13 (1) Po = tpd (1)14~ (1) 8 9 (1)7~ = 6.0 ns typ Po = 60 mW typ/pkg = 8.0 ns typ Po = 80 mW typ/pkg 6.0 ns typ =80 mW typ/pkg : : ~:~2 6 12 12=~ MCE54H20/MCE74H20 Dual 4.lnput NAND Gate (1) (10) (1) 3=~ tpd (10) 14 (i)6~ (10) (1)9~ 10~8 (10) (1) MCE54H10/MCE74H10 Triple 3·lnput NAND Gate (1) 6 = 0 -5 (1) MCE54H01/MCE74H01 Quad 2·lnput NAND Gata (Open Collector Output) tpd MCE54H31/MCE74H31 11·lnput NAND Gate MCE54H51/MCE74H51 Dual 2·Wide 2·lnput AND·OR·INVERT Gata (1) 1 - - - - , (1) 2 ;::,:~'2('0) (1) 3 (10) (1) 5 (1) 6 (1) 7~M~~[=~ 12(10) (1) 8= 10 (10) (1) (1) 9 6 7 ::: 8 9 (1)10 (1) 10110) 11) (1) 13 (1)14----' 6=10204 0 5 V>- (1)14~ 8= (9 010) + (13 0 1) 8= 1 0 2 0 3'4 0 5'6,".12 := 6.0 ns typ Po = 40 mW typ/pkg tpd = 6.0 ns typ Po = 58 mW typ/pkg tpd = 9.0 ns typ P'O = 20 mW typ/pkg MCE54H54A/MCE74H54A 4·Wide 2·1 nput AND·OR·INVERT Gate tpd MCE54H56/MCE74H56 Dual 2·Wide 2·3·1 nput AND·OR·INVERT Gat. MCE54H57/MCE74H57 4·Wid. 3·3·2·3·lnput AND·DR·INVERT Gate 11) (1) (1) (1) 6-""'---_; (1) 6 (1) 7-""'---_; (1) 8 (1) 9-""'---_; (1) (1) 3 (1) 13 12 (10) 1 1 (1)2~ 3 11) 14 12 (10) (1) 2 (1) 3 (1) 14 12 (10) 11) (1) 13 (1)14-""'---_; 11) (1) (1) ~~'"'' (1) 6 (1) 7 (1) 8 (1) 9 (1) 10 12 = (3.5) + (6.7) + (8.9) + (13.,4) 12 = 6.0 ns typ Po = 40 mW typ/pkg tpd = (1'2 .3) tpd Po + (13 "4) = 6.0 ns typ = 58 mW typ/pkg 12= (,.,3.,4)+(2.3.5) + (6 .7) + (8.9 .'0) tpd - 6.0 ns typ Po = 40 mW typ/pkg LOGIC DIAGRAMS (continued) Numbers at ends of terminals represent pin numbers for devices in the flat package. Numbers in parenthesis indicate loading. POWER GATE----, FLiP-FLOPS------------, MCE54H72/MCE74H72 J-K Flip-Flop MCE54H40/MCE74H40 Dual4-lnput NAND Buffer (2) (2) 1 (2)12~ ID Jl 7 J2 J3 8 9 (2) 14 (2) CLOCK 2 (2)6~ 7 (1) (2) 13 2 (30) (2) 8 (2) 9 Q K114 K2 1 K313 (1) (1) (2) 12(10) Q tn+1 tn SET3 J K a 0 0 1 1 0 1 an 0 0 1 1 On 10(10) 10 (30) (2) RESET 5 J=~ K = K 1. K2. K3 f = 30 MHz Po = 70 mW typ/pkg MCE54H73/MCE74H73 Dual J-K Flip-Flop tpd "" 6.0 ns typ Po = 80 mW tvpJpkg J 1 4 1 0 _ 12 (10) (2) CLOCK (1) (1) INVERTER-----, MCE54H04/MCE74H04 Hex Inverter K 2 J (2) CLOCK (1) K lOa (2)~ (1) 3-[:>0--2 (10) (1) 5-[:>0--6 (10) 7-[:>0--8 (10) (1) (1) 9 - [ : > 0 - - 1 0 (10) o 0 1 0 1 (10) 8 (10) 1 1 Q f=30MHz Po = 140 mW typ/pkg MCE54H79/MCE74H79 Dual Type D Flip-Flop (2) SET (1) 0 (2) CLOCK (2) (1) SET 0 (2) CLOCK 14 ~,(2) tpd = 6.0 ns typ PD = 120 mW typ/pkg K o 9 '~ 6 a 9 : 6 10 (10) (10) (3) RESET (1) 1 3 - [ : > 0 - - 1 2 (10) J 6 1 - [ : > 0 - - 1 4 (10) (1 ) tn+1 13 (10) 57y_ (2) RESET (1) a 3 RESET "~ 2 ~ 13 (10) 1 a 12 (10) 0 an on+1 0 0 0 0 1 1 0 0 1 1 1 1 On+1 "" on 3 f:35MHz Po ~ 140 mW typ/pkg ~ ~: LOGIC DIAGRAMS (continued) DECODER----------------------------------------~ MCE54H146~CE74H146 .Binary to 1-of-8 Line Decoder Ei18'bi'8 (1) 1007 (10) 7 9 06 (10) 8 05 (10) 1204 (10) 1303(10) 1402(10) 1 01 (10) 2 00 (10) (1) A 5 (1) B 3 (1) C 6 tpd = 14 ns typ Po = 130 mW tvp/pkg INTEGRATED CIRCUITS MTTL integrated circuit memories comprise a growing family of memories designed for direct general purpose memory applications in transistor-transistor logic systems_ The family consists of both read-only memories (ROMs) for look-up tables, microprograms, or code conversion, and read-write random access memories (RAMs) for scratch pad or cache applications_ The family has medium operating speed, good external noise immunity and high fanout_ PSUFFIX PLASTIC PACKAGE CASE 605 TO-116 FSUFFIX CERAMIC PACKAGE CASE 607 T0-86 PSUFFIX LSUFFIX LSUFFIX PLASTIC PACKAGE CASE 612 CERAMIC PACKAGE CASE 620 CERAMIC PACKAGE CASE 632 TO-116 L SUFFIX PSUFFIX CERAMIC PACKAGE CASE 638 PLASTIC PACKAGE CASE 648 FUNCTIONS AND CHARACTERISTICS IVee = 5_0 V, T A = 25 0 e) .. MC~153,1IIIC~053 . MC3154, IIIIC3155, ··MC3160, MC3161, .MC3162, MC3163, MC3054 MC3055 M~3060 MC3061 MC3062 MC3063 Quad 2-lnput NAND Gate Quad 2-lnput AND Gate Quad 2-lnput NOR Gate Quad 2-lnput OR Gate Quad 2-lnput NAND Gate (Open Collector) Triple 3-lnput NAND Gate Triple 3-lnput AND Gate Triple 3-lnput NAND Gate (Open Collector) Hex Inverter Hex Inverter Dual 4-II1Put NAND Gate Dual 4-lnput AND Gate Dual 4-lnput NAND Gate (Open Collector) 8-lnput NAND Gate a-Input NAND Gate 4-Wide3-2-2-3 Input Expander For AND-OR-INVERT Gates Triple 3-lnput Expandar For AND-OR Gates Expandable Dual 2-Wide 2-lnput AND-OR-INVERT Gate Quad 2.lnput Exclusive OR Gate Quad 2-lnput Exclusiva NOR Gate Dual 2-Wide 2-lnput AND-OR-INVERT Gata Oual4..,lnput NAND Buffer Gate Dual4-lnput NAND Power Gate Dus"4-lnput AND Power Gate Dual 3-lnput 3-0utput AND Serias Terminated Line Driver Dual3-lnput 3-0utput NAND Series Terminated Line Driver Dual4-lnput Expander for AND-OR-INVERT Gates eXpandable 4-Wide 2-2-2-3 Input AND-OR Gate Expandable 4-Wida 2-2-2-3 Input AND-OR-INVERT Gate 4-Wide 2-2-,2-3 Input AND-OR-INVERT Gate Expandable 2-Wide 4-lnput AND-OR-INVERT Gate AND J-K Flip-Fiop .ANO J-K Flip-Flop AND. Input JJ-KK Flip-Flop Double-Edge-Triggered Master-Slave Type D Flip-Flop OR Input J-K Flip-Flop AN.D Input J-.K Flip-Flop pual Type D Flip-Flop pual J-K Flip-Flop Dual J-K Flip-Flop Dual J-K Flip-Flop GENERAL INFORMATION MC3100/3000 Series INTRODUCTION MTTL III integrated circuits are designed with speed approaching the limit for saturated logic and for good I.oad driving capability. This line includes all the characteristics that have made transistor-transistor logic so popular. The major advantage of MTTL III over other TTL lines is the square transfer characteristic (Figure 1) that exists only for the MTTL III family. Because of this "ideal" transfer characteristic. the MTTL III farnily is the only TTL line that is truly compatible with MDTL. Another advantage of this family over competitive TTL lines is that it is designed to minimize problems associated With ringing. The circuits in theMTTL III family are distinguished by a multiple-emitter input transistor, a darlington active "pUll-Up" in the upper output netWork, and an active bypass network in the base of the output pull-down transistor as shown in. Figure 2. The multiple-emitter input configuration offers the maximum logic capability in the minimum physical area and provides improved switching characteristics duril'lg turnoff. Clamp diodes are provided at each of the inputs to limit undershoot that occurs in typical system applications such as driving long interconnect Wiring. The FIGURE 1 - COMPARISON OF CONVENTIONAL TRANSISTOR-TRANSISTOR LOGIC AND MTTL III 4 • Darlington output configuration provides very low output impedances in each of the two output states. These low impedances result in excellent ac noise immunity and allow high-speed operation while driving large capacitive loads. The active bypass shown in the unshaded area of Figure 2 holds the phase inverter transistor "off" until gate threshold is reached. This circuit operation provides the squared transfer characteristic shown in Figure 1. In addition to improving the transfer characteristic, the bypass network offers a number of advantages compared to a simple resistor that can be traced to a much smaller impedance variation with temperature. 1. Lower bypass impedance for the reverse current of the output transistor at elevated temperatures, provides faster turn-off. 2. A lower current spike during the turn-off transient causes a lower ac power factor resulting in a lower total power consumption. This advantage is even more pronounced at higher temperatures. 3. Faster turn-on at low temperature. FIGURE 2 - TYPICAL MTTL III CIRCUIT MTTL III ;§ <5 3 ? w CI « I- 2 ..J o > I;) 1= ;) o 1 o~~--~--~==~====~ 2 3 o INPUT VOLTAGE (VOLTS) ~_.......,. .. ,. . ___=-___~_,"'_'_'_'_I!III"._'~'"W'~lllI'___""_"""___""_"""'"-......;.........-.......... "' ,,.,...-....- - - - -.............- - -.....--~---...,.......". • MTTL III GENERAL INFORMATION MC3100/3000 Series TYPICAL CHARACTERISTICS Typical operating characteristics of the MITL III family include: (Unless otherwise indicated. the parameters ara defined for Vce =+5.0 volts and T A =+250 C.l Supply Voltage Operating Range = 4.5 to 5.5 volts Operating Temperature Range: MC3100Series = -550 C to +1250 C MC3DOO Series = 0 to +750 C Output Drive Capability Gates (Output Loading Factor): MC3100 Series = 10 Gates MC3DOO Series = 10 Gates Capacitance = 600 pF Output Impedance High State = 100hms nominal (unsaturated) Low State· 10 ohms nomi nal Output Voltage Swing = 0.2 to 3.5 volts typical Input Voltage Limits +5.5 volts maximum -1.5 volts minimum (1) "NAND" GATES The basic gete of the MTTL III logic family is the positive logic NAND gate. This gate is characterized by high speed. good load driving capability. superior transfer characteristic. and freedom from ringing problems. Representative of the verious NAND gates presently available in the MITL III family is the 4-input NAN D gate (% of the MC3110/3010) shown in Figure 3. "AND" GATES While it is possible to design a complate logic system with NAND logiC, it is often desirable to use other logic forms to save circuits, power dissipation, and propagation delay. Therefore, Motorola has added the positive logic AND function to the MTTL III family. Examples of the AND function are the standard quad 2-input gate, dual 4-input gate, dual 4-input power gate and a dual 3-input, 3-output line driver. The technique used to form the AND function is the addition of an invamr to the basic NAND circuit. As'shown in Figure 4, the inverter transistor with a collector resistor and an offset diode conn'ected to its emitter is inserted between themultiple-emitter input transistor and the basic circuit phase-splitter transistor. The extra inversion adds only 3.0 ns propagation delay and about 6.0 mW additional power dissipation. Switching Threshold· 1.5 volts nominal Input Impedance High State = 400 k ohms nominal Low State = 2.4 k ohms nominal FIGURE 3 - MTTL III POSITIVE LOGIC "NAND" GATE CIRCUIT Worst-Case de Noise Margin High State· 0.700 volt minimum Low State = 0.700 volt minimum Vee '4 Power Dissipation 22 mW per gate typical 50-80 mW per flip·flop typical Switching Speeds (2) Average Propagation Delay = 6.0 ns per gate typical 13 ns per flip-flop typical Rise Time = 1.0 ns typical Fall Time = 1.3 ns typical Flip-Flop Clock Frequency (MC3061) = 50 MHz maximum. 7 OND % Md311013010 FIGURE 4 - MTTL III POSITIVE LOGIC "AND" GATE CIRCUIT Vee '4 (I) Assuming unused inputs are returned to voltage not greater than 4.0 Vdc. (2) The switching characteristics.of the MTTL III family are defined with respect to the associated transitions of the voltage waVeforms. The average propagation delay is defined as the average of the turn-on delay and the turnoff delay measured from the 1.5 V point of the input to the 1.5 V point of the associated output transition or: ton + toff tpd ='--2-- ns Rise time is defined as the positive going transition of the output from the 1.0 V to the 2.0 V level. Fall time is defined as the negative output transition from the 2.0 V to the 1.0 V level. 7 OND % MC3101/3001 GENERAL INFORMATION MTTL III MC3100/3000 Series I "OPEN COLLECTOR" GATES RL(min) Calculations (See Figure 6) This open-collector MTTL gate, when supplied with the proper load resistor RL, may be paralleled with other open-collector MTTL gates to perforM, the "Implied AND" function, and simultaneously will drive from one to nine MTTL III loads_ When used by itself the gate can drive ten MTTL III loads_ Only one resistor is needed for any set of paralleled outputs; the upper and lower limit for RL will be determined by the desired circuit configuration. The maximum resistor value is required to ensure that sufficient load current and off current through the outputs will be available during a logic "1" level at the output_ The minimum resistor value is required to ensure that I RL plus the load current will not exceed the current sinking capabilities of one output transistor with the output in the logic "0" state. For both limits the value of R L is determined by: Unless it can be absolutely guaranteed that more than one output transistor will be on during all logic "0" output periods, the sink current (lOLl must be limited to 20 rnA, the maximum current which will ensure a maximum logic "0" level (VOLI of 0.4 volt. The sink current comes partly through the loed resistor and partly from the inputs being driven (IFf. The equation for calculating the minimum value of R Lis: VCC-VOL RL(minl = IOL - N IF - FIGURE 6 Vee Where VRL is involts and IRL in amperes. ·Current through OFF output I. negliglbleet logic "0'1 level. RL(max) Calculations (See Figure 5) The allowable voltage drop across RL (VRLI is the difference between VCC and the VOH laval required at the load: VRL = VCC - VOH· The total current through RL (I RLI is the sum of the load currents (lRI and the off-level reverse currents (lCEXI through each of the paralleled outputs: where n = number of outputs paralleled, and N MTTL III loads. number of I I ~ I I N L-o- Therefore, the equation for RL(maxl is: VCC-VOH RL(maxl = n ICEX + N IR "AND-OR-INVERT" GATES Unlike the MDTL family of logic Circuits, the outputs of MTTL logic circuits cannot be tied together to perform the "Implied AND", often called the "Wired OR" functio~_ If the outputs of the MTTL family devices are tied together, the lower output transistor of one circuit and the upper output transistor of another circuit can be "on" simultaneously. This condition provides a lOW-impedance path from VCC to ground, and due to excessive current flow, the saturated output state cannot be maintained and the desired logic function is nOt satisfied. To retain the logical advantages offered by the "Implied AND" with the speed and loed driving capability of an active pullup, the MTTL III family offers an AND-OR-INVERT Gate. The gate in Figure 7 incorporates two 2-input AND functions with outputs that are ORed and iilVerted_ The AND function is provided by two multiple-emitter input transistors (01a and Q1b). The OR and INVERT operation is accomplished by two paralleled tran· sistors (02a and Q2bl sharing a single collector resistor and a single bypass network. These paralleled transistors in turn drive the standard output. The common collector and emitter nodes of one gate in each package are available externally to permit expansion. FIGURE 5 EXPANDER AND EXPANDER NODES I I I I N ~l--cr The ORing nodes of 1/2 the MC3120/3020 dual AND-ORINVERT Gate (Figure 71 are available for expanding the number of AND gates to four_ Since these are comparatively high-impedance nod~s, care should be taken to minimize capacitive loeding on the expander terminals if switching speed is to be maintained_ When an expander is to be used with an expandable AND-OR-I NVERT gate, it should be placed as close as possible to. the gate being expanded. The increese in the average propagation delay per AND gate added to an expandable AND-OR-INVERT gate is typically 1_0 nslAND • GENERAL INFORMATION MTTL III MC3100/3000 Seri.. gate. The increase in average propagation delay as a function of capacitance added to the expander nodes is typically 1.0 ns/pF. FIGURE 7 - MTTL 111 "AND"()R-INVERT" GATE CIRCUIT Vee 12 14 10 tions that exceed the capability of a standard gate. The MITL II I power gates, shown in Figure 10, are designed to maet these require· mants with a minimum of additional circuitry. Available in both FIGURE 9 - MITL 111 POSITIVE LOGIC "OR" GATE CIRCUIT 9 Vee 14 13 , GND 1> MC.3120/3020 , 1/4 MC31 0313003 GND "NOR"GATES To save inverters, the system designer often. needs the positive logic NOR function as well as the negative logic NOR available with the standard NAND gate. This capability is incorporated in the MITL III line in the form of the MC31 02/3002, quad 2-input NOR Gate. The NOR gate is a modified AND"()R-INVERT gate with NAND and AND functions, the power gates feature output circuitry designed to provide twice the fan-out of conventional gates: 20 stendard gate loads instead of 10. only a single emitter on each input transistor, as shown in Figure 8. LINE DRIVERS "OR" GATES Standard MTTL III gates offer good load driving capability and high fan-out. In most systems. however, there are a few applic,," To minimize switching transients on long lines, the MITL III family includes dual 3-input/3·output serieHerminated line drivers. Two outputs have 75·ohm resistors in series with the standard output node, and one is connected directly to the node. A good match can be made at the output of each resistor when driving 9:J..ohm coax or 12().ohm twisted peir. For loeds of 50 to 93 ohms, the two resistive outputs are paralleled for impadance match. ing. The non-resistive output can be used to drive adjacent loads in a normal fashion. The total number of output loads connected to the direct output (non-resistive output) is the standard fan-out of 10, minus the number of resistor terminated outputs being used. FIGURE 8 - MTTL III POSITIVE LOGIC "NOR" GATE CIRCUIT FIGURE 10 - MTTL III POWER GATE CIRCUIT (AND} To provide the system designer with still another tool for optimum design, the MTTL III Series also offers the positive logic OR function. As shown in Figure 9, the OR is essentially a NOR gate with an additional inverter. POWER GATES Vee Vee 14 2.4 k 2.4 k 800 60 1/2 MC3126/3026 7 GND GENERAL INFORMATION MTTl III MC3100/3000 Series Figure 11 shows 1/20f the circuit of the MC3129/3029, dual 3input, 3-output series terminated NAND line driver. Figure 12 shows a typical application of this circuit and Figure 13 demonstrattts the effects of series terminl!!ltion without a significant loss in high state noise immunity. OPERATING CHARACTERISTICS OF FLIP·FLOPS The cornerstone of any modern logic family is the capability of its storage elements. The MTTL III flip·flops are designed to give maximum logic I performance with fewer sYstem restrictions than their predecessors. Three basic designs are typified by the MC3150/ 3050, MC3160/3060, MC3161/3OO1 and MC3162/3OO2. Common to aU designs are: 1. Edge clocking. The flip-flop is clocked at the normal MTTL III threshold voltage (approximet'lily 1.5 V @ 250 C). FIGURE 11 - MTTL IJJ TERMINATED LINE DRIVER (NANDI 2. Overriding asynchronous inputs. ,. Vee The direct SET and RESET inputs control· the operation of the flip· flop regardless of the state of the clock or the information on synchronous inputs. FIGURE 14 - LOGIC DIAGRAMS OF EDGE-CLOCKED MTTL IJJ FLlp·FLOPS ReSETo-~--------r---------' a 7 ONO 1/2 MC3129/3029 CLOCK o---------t-H a SETo-~----------------~ FIGURE 1.2 - TYPICAL APPLICATION OF THE LiNE DRIVER MC3160/3060 ~o--F~========~=r--: ~o--t~========~=t __) MC3161/3061 RESET FIGURE 13 - EFFECTS OF SERIES TERMiNATION WITH A MTTL III GATE DRIVING A 93-0HM LINE \ . UNTEAMINATEO J3 SERIES TERMINATED S'OURCE END. A J ~~___~~_g~;~ ~ n 3 SOURCE ENO.A L ++-+'-t-+- . CI}~3 .LO~DENDO LOAOENDII!IC uP ~.1 g J . e L CLOCK JK o--t-r-H-----+-1 --+H,,':"'::::::><; K1 _1-='--·---""~ -. SET MC315013060 • • GENERAL INFORMATION MTTL III MC3100/3000 Series 3. Short set·up times. Prior to the clocking edge, the input information must become stable. The MTTL III flip·flops require only a minimum of time to read a "I" or a "0". Therefore data may be applied anytime in the clock period except during the time interval between the Set-up and Hold times. This characteristic permits higher clock frequen· cies or eliminates the necessity for critical control of clock pulse width. 4. All inputs to the storage elements including the clock input have inputs that are compatible with all three MTTL families. Power and Ground Distribution Special care should be taken to insure adequate distribution of power and ground syStems. The typical rates of change of current and voltage for a single MTTL III gate are in the range of 107 A/s and 108 V Is respectively. These figures reflect the necessity for a low·impedance power supply and ground distribution system, if transients are to be minimized and noise margins maintained. The use of AWG No. 20 wire or larger is often required. For printed circuitry, line widths of 100 mils or more are often necessary. A ground plane is desirable when using a large number of units. Bypassing ·The MC3150/3050 and MC3160/3060 flip-flops are positive edge triggered storage elements. That is, the inputs are enabled on the negative edge of the clock and the information is stored in the flip-flop on the positive edge of the clock. The MC316113061 and MC3162/3062 dual flip-flops are negative edge triggered devices and therefore operate in precisely the opposite manner. That is, itata is stored on the negative edge of the clock. In addition to the previously mentioned storage elements. The MC3152/3052 Master-Slave flip-flop is also available. Data is stored in Master flip-flop when the clock is low and transferred to the Slave flip-flop when the clock goes high. Detailed discussion of each of the MTTL III flip-flops is provided on the individual data sheets. To reduce supply transients, the breadboard should be bypassed at the point where power is supplied to the board and at intervals throughout the board. The use of a single bypass capacitor at the output terminal of the power supply is not adequate in a bread· board utilizing the fast rise and fall time MTTL III circuits. A com· paratively large, low-inductance type capacitor (in the 1.0 /IF range) is suggested at the point where power and ground enter the board. In many cases it has been found that distributing 0.01 /IF capaci· tors for every five packages throughout a breadboard is adequate to suppress normal switching transients. It is also suggested that a bypass capacitor be placed in close proximity to any circuit driving a large capacitive load. Power Dissipation FIGURE 15 - LOGIC DIAGRAM OF MTTL III MASTER-SLAVE J-K FLIP-FLOP The typical average de power dissipation is given for each MTTL III device (3). It should be noted that the totem·pole output com· mon to all high-level MTTL circuits has an associated ac power dis· sipati,on factor. This factor results from the timing overlap of the upper and lower output transistors during the normal switching op- eration and is typically 0.4 mW/MHz/output for a 15·pF load. This ac power dissipation should be added when calculating the total power requirements of the MTTL III circuits. Unused Inputs and Unused Gates MC315213052 To minimize potential problems resulting from external nOise, the unused inputs of any MTTL III logic circuit should not be left open, but should either be tied to the used inputs or returned to a voltage between 2.0 and 5.5 Vdc. (For flip·flops, see appropriate data sheet for additional detail,) If the unused inputs are returned to a voltage, care should be exercised to insure that the absolute voltage between the most negative input level and that voltage does not exceed +5.5 volts. The total number of inputs that can be tied to the output of any driving gate is 25. (This is defined as high-state output loading factor.) It should be noted that the lowstate output loading rules must still be maintained. The minimum logical "I" [evel for. th.e high,state output loading is summarized for VCC = 5.0 V, VIL = 1.1 V, and IOH = -2.0 mA: VOH = 2.5 volts minimum @ OOC. To minimize power drain, the inputs of any unused gate in a package should be maintained at the level that would place the outputs in the high state (the low power dissipation state). BREADBOARDING SUGGESTIONS When breadboarding with any form of high·speed, high-performance TTL circuit, the designer must always be aware of the problems caused by very high switChing speeds. These switching speeds, e.. pecially the frequencies associated with the very fast rise and fall tiines of the circuits, are in the upper RF range and good high· frequency layout techniques should be used. The follOWing breadboarding suggestions will help the designer in his initial circuit lay· out. In many cases the breadboarding suggestions will have to be modified to meet the requirements of the designer's specific application. (3) Po = IPOL + IPOH 2 (Vec) where IpOL and IPOH are the typical current drains at VCC = +5.0V. MTTL III • GENERAL INFORMATION MC3100/3000 Series DEFINITIONS Input breakdown voltage Total parasitic 9apacitance, which includes probe, IC ICO ID IE lEO IEXE PRF PW wiring, and load capacitances L Collector current \ Expander collector leakage current 4 Rise time tHold "0" I nput diode current with negative voltage applied Emitter current Expander emitter leakage current tHold "1" Minimum time that low state data must be maintained after the clocking edge Minimumtime that high state data must be maintained after the clocking edge Expander drive current at emitter node of AN D-ORINVERT gate Input forward current with VCC applied Input forward current with VCCL applied Input forward current with VCCH applied Clock input forward current o input forward current J input forward current K input forward current JK input forward current Atpd IOL2 IOL2A IOLlB,'C IOL2A,2C IPD IPDH IPDL IR IRC IRD IRJ IRK IRJK IRR IRS ISC P1 applied Output high state current capacitance at expansion points tpd "0" Output low state current with VCCL applied Unterrninated output low state current with VCCL applied Output low state current with VCCH applied Unterminated output low state current with VCCH applied Terminated output low state current with VCCL applied Terminated output low state current with VCCH applied F lip-flop power supply drain current Power supply drain with inputs high Power supply drain with inputs low Input leakage current Clock input leakage current D'input leakage current J input leakage current K input leakage current JK input leakage current RESET input leakage current SET input leakage current Short-circuit current Pulse used to set flip-flop state Turn-on delay Turn-off delay tpd "'" tsd "0" Turn--on delay from asynchronous input tsd "'""0" tSetup Turn-off delay from asynchronous input Minimum time that low state data must be applied prior to the clocking edge tSetup "1" TPin TP out VBE max Unterminated output high state current Terminated output high state current Output low state current Average increase in propagation delay per expander AND gate when connected to an AND-OR-INVERT gate Increased propagation delay caused by additional RESET input forward current SET input forward current I nput current Maximum rated power supply current with V max IOH IOHA IOHB,C IOL lOll IOLlA Pulse repetition frequency Pulse width Fall time VBE min VCC VCCH VCCL VD VEE1 VEE2 VIL Vrnax VOH VOL VOLl VOL2 VOL3 M;nimum time that high state data must be applied prior to the clocking edge Test point at input of device under test Test point at output of device under test Emitter node threshold voltage for logic "0" output level Emitter node threshold voltage for logic "1" output level Power supply voltage High power supply voltage Low power supply voltage Diode clamp voltage Voltage applied to expander emitter for VOL test Voltage applied to expander emitter node for ICO test Maximum logic "0" level output voltage Logic "1" threshold voltage Reduced supply voltage to hold input above threshold and to prevent noise from entering_ the device Logic "0" threshold voltage Maximum rated power supply voltage Output high voltage with IOH source current Output low voltage with IOL source current Maximum output low voltage with VCCL applied Maximum output low voltage with VCC H applied Maximum output low voltage on terminated output with VCC L applied VOL4 VR VRH .Maximum output low voltage on terminated output with V CCH applied Logic uf" minimum reverse voltage Logic "," maximum reverse voltage • GENERAL INFORMATION MTTL III MC3100/3000 Series Rating Supply Voltage - Continuous RATINGS Unit +7.0 +7.0 Vdc Vdc 4.5 to 5.5 Vdc MC3tOOseries MC3000 series Supply Operating Voltage Range MAXIMUM Value Input Voltage +5.5 Vile Output Voltage +5.5 Vile -55 to +125 Oto +75 °c °c °c °c Operating Temperature Range MC3t 00 series MC3000 saries Storage Temperature Range - Ceramic Package Plastic Package -65 to +175 -55 to +125 PACKAGING All MTTL III integrated circuits are available in the TO-S6, 14-lead ceramic flat package (add suffix F to type number when ordering), and in the TO-116, 14lead dual in-line ceramic package (suffix L). MC3000 Series devices are also available in the TO-116, 14·lead dual in-line plastic package (suffix P). LSUFFIX CERAMIC PACKAGE CASE 632 To-11& PSUFFIX 0.005 PLASTIC PACKAGE CASE 605 TO-116 --.1- +=~1"0~1~~~ ~ o.rioo. o.m ij]O{o.oo, [1jj5 ~11 0.030 0.07' 0.045 ,~ '.240 ;m; Lead 1 identified by color dot or by Ilbow on I..d. FSUFFIX CERAMLC PACKAGE CASE &07 TO-86 SEATING ~~~\ ~L ~:::~ ['30 MAX Mj LHH Four inlUlating IIInd-offs Ire provided iIm MC3100/MC3000 series I QUAD 2-INPUT "NAND" GATE MC3100F • MC3000F MC3100L • MC3000L,P (54HOOJ) (74HOOJ,N) This device consists of four 2-input NAND gates. Each gate may be used as an inverter, or two gates may be cross-coupled to form bistable circuits. CIRCUIT SCHEMATIC 1/4 OF CIRCUIT SHOWN Vcc 14 2.4 k 800 60 3 2 Positive Logic: 3 =~ Negative Logic: 3 = "i""+"'2 Input Loaqing Factor '= 1 Output Loading Factor = 10 Gnd Total Power Dissipation = 88 mW typ/pkg Propagation Delay Time Pin numbers for the 54HOOF/74HOOF device- are DEVICE shown in the chart_ These devices are available on sp'ecial request. MC3100F.Ll3000F,L,P 54HOOF/74HOOF =6.0 ns typ PIN NUMBERS 3 4 5 6 3 6 7 5 11 8 9 10 11 12 13 14 8 9 10 14 12 13 4 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX Vcc 950 £.1.0% 280 t+ 7.00$ t- 7.0 nS" TP out MM06150 or Equiv PULSE GENERATOR t- 10% - I = PRF 1.0MHz tvp PW - 50% Duty Cycle t+ = 7.0 ns 50 'MMo7000 or Equiv = 7.0n5 0 V tP~_"" 'pd+ :;'2.4 V T~out 1.5 V -_-SO.4 V Gnd CT = 25 pF :"" '!otal parasitic cap_Beitance, which includes probe, wiring, and load capacitances. The coax ctelavs from input to Scope and output to scope must be matched. The sc,?pe must be terminated if'! 50-ohm impe~ance.. The '950-ohm re~istor and the scope termination impedance 'constitute a 20: 1 attenuator .probe. Coax shall be.CT-O?O-50 or equivalent. See General Information section for packaging. • ELECTRICAL CHARACTERISTICS CtJ .... o gate. The other gates are tested in the same manner. Further, test procedures are shown ,o for only one input of the gate under test. To complete testing, sequence through remaining inputs. :=0-:=0-,:=0-- S n 3 CtJ o o o 6 nO 8 ~ 12-~ 13~11 Test Temperature t -sn MC3000 Characteristic Symbol Input Forward CUrrent Clamp Voltage -2.0 ~2. 50 IR I t 0 50 -2.0 -2.0 -2.0 50 50 50 5.5 BVin VD Short-Circuit Current 2.4 Ise -40 0.4 2.4 2.4 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 I,. 1.0 1.0 I. 0.4 2.5 50 0.4 2.5 1.1 2.0 0.4 -10 1.1 1.8 0.8 1.8 -10 1.1 1.1 0.9 2.4 4.0 0.4 2.4 4.0 0.4 2.4 4.0 2.0 0.4 2.5 4.0 1.8 0.4 2.5 4.0 1.8 0.4 2.5 4.0 '.0 '.0 ~ c Vee VCCl VCCH 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.2.') 10l I 10H I I,. I I. I V" I VIH I V, I V, V'H I Vmox I Vee IVeCl I VeeH 0.4 2.5 CD V1HX 0- 2.5 2.5 I VIHX Gnd 14 ,' I pAdc 14 2,7 Vdc 14 2,7* -2.0 I mAde -1.5 0.4 0.4 VOL 10H 20 !:!. TEST CURRENT / VOLT AGE APPLIED TO PINS LISTED BELOW, 5.5 -1. 5 Y OH 10l MC3DOO Test Limits Output Output Voltage O°C +2SoC +7SoC Unit IF Leakage Current Breakdown Voltage MC3100 Test Limits +2SoC +12SOC V" TEST CURRENT / VOLTAGE VALUES Volts Vmax VIH V, V, V'H mA @ MC3100 Pin Under Test Vdc 14 I Vdc 14 Vd, 14 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I mAde * ,' " I 14 11.2"': " powerRequirements (Total Device) Maximum Power SUpply Current Power SupPly Drain 1,2,4,5,7, 9,10,12,13 14 Im= 14 IpDH 14 40 IpDL 14 16.8 tpd+ I,' 10 tpd~ I,' 10 1,2,4,5, 9, 10, 12, 13 14 14 1,2,4,5,7, 9,10,12,13 Switching Parameters Turn-On Delay Turn-Off Delay S n Test procedures are shown for only one '" Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. " " MC3100/MC3000 series QUAD 2-INPUT "AND" GATE MC3101F • MC3001F MC3101L • MC3001L,P (54H08J) (74H08J,N) This device consists of four 2-input AND gates. This non· inverting function is useful for optimizing logic design, or for direct implementation of standard logic equations. CIRCUIT SCHEMATIC 1/4 OF CIRCUIT SHOWN Vee 14 2.4 k 2.4 k 800 60 3 Positive Logic: 3 = 1 • 2 Negative Logic: 3 = 1 + 2 2 Input Loading Factor:;;; 1 Output Loading Factor = 10 Total Power Dissipation == 112 mW typ/pkg Propagation Delay Time"" 9.0 ns typ 7 Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 280 ,+ 7.0 ns ,- 7.0 ns MMD6150 or Equiv "-=:"""-0 v PW = 50% DutV Cycle t+=7.0ns t- =7.0n$ 50 MMD7000 or Equiv ~0.4V ------------------------Gnd CT = 25 pF "" total parasitic capacitance, which includes probe. wiring. and load capacitances. The coax deleys from input to -scope and output to scope must be matched. The $Cope mult be terminated in 50-ohm impedance. The 950-ohm resistor and the I(:Ope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT,-070-50 or equivalent. See Gene,al I nformation section for packaging. I • ELECTRICAL CHARACTERISTICS s: CAl ..... (") Test procedures are shown for only one gate. The other gates are tested in the same manner. Further, test procedures are shown o ..... for only one input of the gate under test. To complete testing, sequence through fe· maining inputs. s: (") CAl o o ..... n-O :=0-3 :=0-6 9=0-8 12=0-" Tesl Temperature 10 MC3101 13 10L 10H { -SH +2S"C +12n 20 -2.0 20 -2.0 20 -2.0 { 20 -2.0 MC3001 Pin Under Test Symbol Characteristic MC3101 Test Limils 55'C I +2n . +125'C Min I Max I Min I Max I Min I Max I MC300 I Tesl limils O'C I +25"C I +75"C Min I Max I Min Max Min Max 1- Input Forward Current 'F -2.0 -2.0 -2.0 - 20 Leakage Current 'R 50 50 50 50 Breakdown Voltage Clamp Voltage I BVin 3 VOL 3 VOH Short-Circuit Current Power Requirements (Tolal Device) Maximum Power Supply Current Power Supply Drain 14 - 24 14 - I max 14 IpDH Switching Parameters Turn-On Delay Turn-Off Delay t pd _ tpd+ I I -40 2.4 -100 34 48 1,3 I- I - I- I 1,3 I - I - I - I O. , 0.4 2.4 -100 3 IpDL 2.4 -40 'sc I 0.4 Unit -2.0 -2.0 mAde 50 50 /lAde 24 48 -40 0.4 2.5 -100 - 24 4B 2.5 -40 -40 10H 0.4 2.4 4.0 1.8 0.4 2.4 4.0 1.8 0.4 2.4 4.0 5.0 4.5 5.5 2.0 0.4 2.5 4.0 5.0 4.75 5.25 1.8 0.4 2.5 4.0 5.0 4.75 5.25 1.8 0.4 2.5 4.0 5.0 4.75 5.25 VeeL I VeeH I -10 0.8 - 1.1 -10 1.1 - 0.9 1.0 I,. ::J 7.0 7.0 Vee VCCL VCCH 5.0 4.5 5.5 5.0 4.5 5.5 - mAde 24 mAde 48 48 4B mAd, 15 I-I- I 12 I - I - I"' I n, V,H V, VOH Vo Vmllx Vee J V1HX I 2.5 I 2.5 C ~ 3 - , - - - - - 1 1 - 14 2' 14 1,2* - Pulse Out 1 3 1 3 -I-I -I -I-I T -1 - I - I - I - I 2.7 14 2,7 14 3,7 14 1,2,4,5,9, 10,12,13 I I , , Gnd 14 14 14 Pulse In I 14 2• ,,2,4,5,91 10,12,13 - V1HX 14 2' 1 - 1 - 34 V" 1 mAde -100 10 1 - 24 -100 2.0 1.1 1.0 - 3 24 I - I - I - I - I - I 10 , Vde - 12 -2.0 Vd, -100 I -I- I -I - I- I -2.0 0.4 -40 15 "Since this is a non-inverting gate, power drain is minimized by tying the inputs to gates not under test to VRH' 0.4 1.1 10 Vde 2.5 - 20 20 Vde -1. 5 -1.5 VD V" I,. !:!" TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, I 5.5 5.5 Outpul Output Voltage T- O"C +25"C +75'C ::J TEST CURRENT /VOLTAGE VALUES Volts VOH Vmax Vo V'H V, rnA @ I I - 114 - I 14 1,2,4,5,7, 9,10,12,13 MC3100/MC3000 series QUAD 2-INPUT "NOR" GATE MC3102F • MC3002F MC3102L • MC3002L,P This device consists of four 2-input NOR gates. Each gate may be used as an inverter, or two gates may be cross-coupled to form bistable circuits. CIRCUIT SCHEMATIC' 1/4 OF CIRCUIT SHOWN Vee 2.4 k 2.4 k 800 60 3 Positive Logic: 3 204----4 = "f+"2 = i"'e"2 Negative Logic: 3 Input Loading Factor::: 1 Output Loading Factor == 10 Total Power Dissipation == 122 mW typ/pkg Gnd Propagation Delay Time::: 6.0 ns typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vce 280 t+ 7.0 ns j . - -.........t:::::t;;=-3.0 MM06150 or Equiv PW 50 MM07000 or E,quiv '~ I TPout -1 1;~~:~2.4 .~- = 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope .must "be matched. The scope must be terminated in 50-ohm' impedance. ihe 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator pr'Qbe._ Coax' shall be CT -070-50 or equivalent. See General Information section for packaging. V . _-_-_-_-~~d4 V _~_-====-- CT V OV = 50% DutV Cycle t+ = 7.0 ns t- = 7.0 ns ,- 7.0 ns • • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. ~N To complete testing, sequence through re- s: maining inputs. :=D:=D9~. 10~ 12~ 13~ n w o o 3 N Symbol @Test Temperature 11 { -55°C MC3102 +25°C +125°C I IR Breakdown Voltage I BVin Clamp Voltage Unit -2.0 50 Maximum Power SUpply Current Power Supply Drainl I I I -2.0 -2.0 I I 50 50 I V OH 2 4 I 2.4 ISC -40 I -100 -40 0.4 2.4 -100 14 50 -40 0.4 2.5 -100 -40 2.5 -100 -40 1 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 lin 1.0 1.0 ID 1.1 2.0 0.4 2.4 4.0 -10 1.1 1.8 0.4 2.4 4.0 0.8 1.8 0.4 2.' 4.0 5.0 4.5 5.5 1.1 2.0 0.4 2.5 4.0 5.0 4.75 5.25 -to 1.1 1.8 0.4 2.5 4.0 5.0 4.75 5.25 0.9 1.8 0.4 2.5 '.0 5.0 4.75 5.25 7.0 7.0 Vee VCCL VCCH 5.0 4.5 5.5 C. 5.0 4.5 5.5 ro 2.5 -100 -40 -100 I Vee I Vee, I VeeH Gnd 14 7' 14 2,7* 14 2,7* 14 1,2,3,7* 1,2,4,5,7, 9,10,12,13 mAde 1,2,4,5, 9,10,12,13 1,2,4,5,7, 9,10, 12, 13 Pulse In *Since this Is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. Vm~ mAde mAde I I I I 2,7* mAde I VOH 2.7* 45 I I Vo 14 28 10 I V,H I V, I 14 28 1,3 V" Vd, 45 lU I Vd, 28 1,3 10 7' 45 t pd _ lin 14 45 28 10H Vd, 28 451 10 , MAde 28 14 14 tpd+ 10H 20 ImAde 45 IpDH IpDL I 0.4 38 Parameters Turn-Off Delay 10, :::l .... S" c Vd, Switching Turn-On Delay -2.0 50 0.4 38 I ! I -1.5 0.4 0.4 max -2.0 5.5 -1. 5 VOL I I 50 VD Short-Circuit Current Power Requirements (Total Device) -2.0 5.5 OUlput OUtput Voltage O°C +2n +75°C V" TEST CURRENT !VOLTAGE VALUES Volts VIH V, VOH Vmax Vo mA TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, IF Leakage Current t Pin Under Te., Input Forward Current nO 6 8 MC3002 Characteristic s: n w ...... o Pulse Out lU 14 2,7* 10 14 2,7* • MC3100/MC3000 series QUAD 2-INPUT "OR" GATE MC3103F • MC3003F MC3103L • MC3003L,P This device consists of four 2-input OR gates. This non-inverting function is useful for optim izing logic design, or for direct implementation of standard logic equations. CIRCUIT SCHEMATIC 114 OF CI RCUIT SHOWN Vee 14 2.4 k 2.4 k 2.4 k BOO : = D -3 60 4 = D -6 5 1~=D-B 12=D13 11 3 Positive Logic: 3::: 1 + 2 Negative Logic: 3 = 1. 2 20-t---+ Input Loading Factor =1 Output Loading Factor = 10 = Total Power DIssipation 150 rnW typ/pkg Propagation Delay Time = 9.0 ns typ 7 Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 950 ±.'1.0% 280 PULSE GENERATOR t- == 7.0nl 7.0 ns i r -.......t--t-=:;--3.0 V MMD6150 or Equiv PRF. 1.0 MHz typ PW = 50% Duty Cycle t+-7.0n. ,- t+ 7.0 ns "-=;""'-0 V MMD7000 or Equiv Pd+ ~ tpd_ :«2.4 V TP out · 1.5 V , SO.4V CT'''' 26 pF = total parasitic capacitance, which includes probe, wiring. and ioad ======------------~==='Gnd capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50~ohm impedance. T~e 950-oftm 'esistor and the ICOpe termination imp!ldance constitute a 20: 1 attenua'tor probe. Coax shall be CT -070-50 or equivalent. . See General I nformation section for packaging. flf!li) """Wi pz:;;;q;:;u¢ • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. :=D-3 :=D-6 1~=D-8 12=D-11 ,W S (") w o ~ 13 MC3103 MC3003 Characteristic I IInput Forward Current Leakage Current Breakdown Voltage Clamp Voltage Symbol I IF 1 I MC3103 Test limits sn +2n I +12n Min Max Min Max I Min Max -2.0 IR 1 - BVin 1 - Vo 1 - VOL 3 50 Short-Circuit Current - 0.4 - - -2.0 50 - 50 - - - Ise -40 -100 -40 50 5.5 0.4 -100 -40 - - 0.4 -100 -40 '0 V" 20 -2.0 20 -2.0 1.1 2.0 0.4 2.4 4.0 1.0 -10 1.1 1.8 0.4 2.4 4.0 0.4 2.4 4.0 5.0 4.5 5.5 2.5 4.0 5.0 4.75 5,25 20 -2.0 1.1 1.8 0.4 2.5 4.0 5.0 4.75 5.25 20 -2.0 0.9 1.8 0.4 2.5 4.0 5.0 4.75 5.25 1.0 -10 'Ol 'OH "n 10 V" V,H - - Vdc 3 - V, VR VRH I - 1 - - - 1 - mAde 1,2* mAdc 58 58 mAde !V CCH - ~ Gnd \ 14 14 I 2,7 14 I 2,7 14 14 2' 2' 34 Vee! VCCL , , , 1 - Vmax 2' Vdc 34 7.0 :J C TEST CURRENT / VOLTAGE APPLIED TO P'NS LISTED BELOW, Vdc - 5.5 0.4 - -100 5.5 4.5 1.8 1 -40 4.5 5.0 2.0 Vdc -100 5.0 0.8 /lAde -40 VCCH 1.1 - -100 VCCL -2.0 50 0.4 7.0 Vee -2.0 - 2.5 :J !:!'. 20 I Unit nO 20 - 0.4 2.5 O°C +2n +7S"C 'OH mAde -1. 5 2.5 2.4 -sn +2n +12n 'Ol -2.0 -2.0 - 0.4 2.4 2.4 MC3003 Test limits +2SoC O°C +7SoC Min I Max Min I Max Min Max -2.0 -1. 5 V OH Requirements (Total Device) 50 5.5 Output Output Voltage -2.0 t t "n TEST CURRENT !VOLTAGE VALUES Volts V,H V, VR VRH Vm.. rnA Test Temperature @ Pin Under Test 14 I 14 3,7 i Power Maximum Power Supply Curr¢nt Power Supply Drain 1m ", 14 - 45 - - IpDH 14 - 34 34 34 34 IpDL 14 - 58 58 58 Switching Parameters Turn-On Delay Turn-Off Delay t pd _ t d+ *Since this is a non-inverting gate, not under test to VRH 1,3 1,3 - - - 15 - - 12 power drain is minimized by tying the inputs to gates s W .... o (") - 58 45 - mAde - Pulse In - - - 15 '" 12 "0 1 , Pulse Out 3 14 1,2,4,5,9, 10,12,13 - - - - - - -I - I - I - I - I , I - I - I - I - I - I - T --I 1,2,4,5,9, 10,12,13 - I-I - I I . I -- II I 14 14 - I 14 I 14 T 1,2,4,5,7, 9,10,12,13 MC3100/MC3000 series QUAD 2·INPUT "NAND" GATE (Open Collector) MC3104F • MC3004F MC3104L • MC3004L,P (54HOJJ) (74HOlJ,N) This device consists of four 2·input NAND gates with no output pull-up circuits, It can be used where the Wired-OR-function is required or for driving discrete components_ CIRCUIT SCHEMATIC 1/4 OF CI RCUIT SHOWN Vcc 14 2.4 k 800 3 2 Positive Logic: 3 = ~ Negative Logic: 3 = "'f"'+"'2 Input 'Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation"" 88 mW typ/pkg Propagation Delay Time = 8.0 ns typ Gnd Pin numbers for the 54H01F174H01F device are shown in the chart_ These devices are availab1e on special request. DEVICE PIN NUMBERS MC3104F,I./3004F,I.,P 54H01 F174H01 F 234 236 5 7 6 7 11 8 8 9 9 10 11 12 13 14 10 14 12 13 4 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc TP out Vce t+ t- 7.0 ns 7.0 ns 280 j,.---J----f-,=,....-- 3.0 V OV tp~ I PRF;;; 1.0 MHz typ PW = 50% Dutv Cvcle t+ = 7.0 ns TP out 50 = 25 pF => total parasitic capacitance •..which includes prObe, wiring, and load capacitances. See ~eneral I~+:<. 2.4 V ~- ----========~~d4 t-=7.0ns CT --1 I nformation section for packaging_ 444 V I • ELECTRICAL CHARACTERISTICS .... CtJ gate. The other gates are tested in the same manner. Further, test procedures are shown ,~ for only one input of the gate under test. To comph~te testing, sequence through re- s: maining inputs. n CtJ o ~ :=D-3 :=D-6 c:;O ,~=D-8 12 ::J Z. ::J c:: -----r-\.. Cl) '3~" @ T.st Temperature 1 -55"C MC3104 \ +25"C I +12SOC DOC I MC3D04 \ mA I~. _. 1 ... I .... I •• I "I +25°C I .• I ".. 2U TESTCURRENT I VOlTAGE VALUES Volts I VCEX Vm .. V. .. 1 V.u V'H 1 I.• 1 v.. ... , 1 v.'I I I I I I I I - I u I •. u I U., I I'· I ... I .... I .... I 11:':1"'1'''1 .. .. . 1 - 1 u 1 •. u 1 u., 1 I .. I .. ' I ". I ... I I u,' 1 ,., 1 u., 1 1 +75°C I I Characteristic Symbol Pin Unde Test MC3104 Test limits 55'C I +25'C +12SOC I Min Max I Min I Max I Min I Max 'F Fqrward Current Leakage Current Breakdown Voltage '2.0 'R 50 I - 1- 2,0 I I BV in Clamp Voltage MC3004 Test limits O°C I +25'C I + 75°C Min I Max I Min I Max I Min I Max I Input 50 5.5 -2.0 -2.0 1 1- 2. 0 50 50 50 I 50 5.5 -1. 5 -1.5 VD 1"-2.0 1 4.0 5.5 4.0 5.5 4.0 5.5 4.0 5.5 4.0 5.5 4.0 5.5 7.0 7.0 0.. Vee VCCL VCCH ! 5.0 4.5 5.5 1 5.0 4.5 5.51 5.0 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5,0 4.75 5.25 I VIHX 2.5 2.5 TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, Unit 10L I;" 10 V1L I V1H V, V, V'H I VCEx I V I Vee I VCCL I VCeH I m .. 14 mAde I V1HX I Gnd 7' t.tAdc 14 2,7 * Vd, 14 2,7 * Vd, 141 7' OUtput Voltage VOL 0.4 0.4 0.4 0.4 0.4 0.4 Yd, 14 I 7' Output Leakage I CEX 250 250 250 250 250 250 jJ.Adc 14 I 7' 36 36 36 36 mAde 10 10 10 10 mAde Output Current Power Requirements (Total Device) Maximum Power Supply Current Power Supply Drain _ . _ . __ L 'm= I 14 25 IpDH I 14 IPDL I 14 I" I .. __ 36 10 1 I 25 10 1,2,4,5,7, 9,10,12,13 14 mAde ! 7 1,2,4,5, 9,10,12,13 __ 1,2,4,5,-7, g, 10, 12, 13 Switching Parameters - 1,3 14 14 7' 1 20 14 7' 141 1,3 s: (") Test procedures are shown for only one 20 1 1 1 1 '" Sinee this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. MC3100/MC3000 series TRIPLE 3-INPUT "NAND" GATE MC3105F • MC3005F MC3105L • MC3005L,P (54H10J) (74H10J,N) This package consists of three 3-input NAND gates. Each gate may be used as an inverter, or two gates may be cross-coupled to form bistable circuits. CIRCUIT SCHEMATIC 1/3 OF CI RCUIT SHOWN Vee 14 2.4 k 800 60 1 2 13 12 Positive Logic: 12 = ~ Negative Logic~ 12=~ Input Loading Factor = 1 Output Loading Factor = 10 7 Total Power Dissipation = f36 mW typ/pkg Propagation Delay Time'" 6.0 ns typ Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 280 \+ t- 7.0 ns MMD6150 or Equiv PULSE GENERATOR PRF = 1.0 MHz typ PW = 50% Duty Cycle 50 t+=7.0ns t-=7.0n$ MMD7000 or Equiv CJ" = 25 pF =tot,1 parasitic capCJ;citance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The S50-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT ·070-50 or equivalent. See Generel Information section for packaging. 7.0 ns \"---J-+=~3.0 r V OV tp~ --1 1~+«2.4 V TP out ~- _____ ~====~-~-~~-c::-~~:V I • ELECTRICAL CHARACTERISTICS ...o CAl gate. The other gates are tested in the same manner. Further, test procedures are shown ~en for only one input of the gate under test. To complete testing, sequence through re- :s: maining inputs. (") ~ o ~~12 en 13~ nO ~:=:[J--6 ::J ::!. ::J 16~8 C 11~ 'Ot IOH -SS0( 20 -2.0 1 +25°C 20 -2.0 +125°C 20 -2.0 aoc 20 -2.0 MC300S) +25°C ~ + 75°( 20 -2.0 20 -2.0 'oc 'OH 'ill 1.0 Symbol Forward Current Leakage Current I Clamp Voltage Short-Circuit Current Power Requirements (Tot.1 Device) ;~u~u;~;~r Power Supply Drainl Unit IF -2.0 -2.0 -2.0 -2.0 -2.0 IR 50 50 50 50 50 Turn-Off Delay 0.4 VOL 12 V OH 12 2.4 Ise C2 -40' Iruax 14 0.4 .,.40 I VRH 4.0 1.1 1.8 0.4 2.4 4.0 0.8 1.8 0.4 2.4 4.0 -10 2.0 0.4 2.5 4.0 1.1 1.8 0.4 2.5 4.0 0.9 1. 8 0.4 2.5 4.0 Vma "$. 7.0 7.0 Vee VCCL VCCH 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.75 5,25 5.0 4.75 5.25 5.0 4.75 5,25 2.5 2.4 I -100 I -40 I -100 I -40 0.4 0.4 2.5 I -100 I -40 20 'i. '. I VIl I V,H I V, v, V'H Vm.. VCCL VCCH I Vee V1HX 2.5 2.5 2.5 I -100 I -40 ! Vdc 12 Vde 12 mAde 14 30 30 30 30 30 30 I mAde 14 12.6 12.6 12.6 12.6 12.6 12.6 I mAde 7' 14 2,7,13 ,. 14 2,7,13 ,. 7' 2,13 14 7' 14 7' 1,2,7,* 12,13 14 1,2,3,4,5,7, 9,10,11,13 14 1,2,3,4,5, 9,10,11,13 14 1,2,3,4,5,7, 9,10,11,13 14 Pulse 'n Gnd 2,13 I -100 I mAde 20 V1HX 14 14 Vdc IPDL tpd+ VR 2.4 /lAde IpDH *Since this is an inverting gate, VF 0.4 Vdo 0.4 0.4 2.4 I -100 I 50 -1.5 -1. 5 Vo tpd_ V1H 2.0 2,13 -2.0 I mAde 5.5 5.5 BVin Switching Paramefers TUrn-On Delay -10 V1L 1.1 TEST CURRENT / VOLTAGE APPLIED TO P'NS LISTED BELOW, U;e~r ~::-'T-:'=----+-C::-'Tc'c-+-c::-,-r:-~ Output OJtput Voltage ID 1.1 1.0 Pin Characteristic a. Volts mA @Test Temperature ~ 'nput CD TEST CURRENT/VOLTAGE VALUES MC310S Breakdown Voltage :s: (") Test procedures are shown for only one Pulse Out 1,12 10 10 12 14 2,13 7' 1,12 10 10 12 14 2,13 7' power drain is minimized by grounding the inputs to gates not under test. MC3100/MC3000 series TRIPLE 3-1 NPUT "AND" GATE I MC3106F • MC3006F MC3106L • MC3006L,P (74Hl1J,N) (54H11 J) This device consiSts of three 3-input AND gates. This non-inverting function is useful for optimizing logic design, or for direct implementation of standard logic equations. CIRCUIT SCHEMATIC 1/3 OF CIRCUIT SHOWN Vcc 14 2.4 k 2.4 k 800 60 1 2 13 12 Positive Logic: 12"" 1 • 2 .13 Negative Logic: 12 = 1 +2+13 Input Loading Factor = 1 Output Loading Factor ... 10 Total Power Orssipation ""' 84 mW tvp/pkg 7 Gnd Propagation Delay Time =9.0 05 typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vcc 280 t+ t- 7.0 ns 1.0 ns r--t=t:an.z-3.O V MMD6150 or Equiv OV PRF'" 1.0 MHz typ PW ~ 50% Duty Cvcle t+ = 7.0ns t- 7' MMD7000 or Equiv 50 7.0 nl tpd~. tpd+~2.4V TPout . 1.5 V ' ---SO.4V -------------------Gnd CT = 25 pF =total parasitic capacitance, which i"ctudes probe, wiring, and loa~ capacitancss. to The ·coax delays from input to ~op. and output scope mut.t b. matChed. The scope must be terminated in 50·ohm impedance. The 950.-ohm resistor and the lCopa:termination impedance constitute a 20: 1 attenuator probe. Coax .nall· be CT-0'70-50 or equivalent. See.Gene,al lnformation section for paC:kaging. .,ft. " " ' " U;P:;;;M • ELECTRICAL CHARACTERISTICS s (') ...o Test procedures are shown for only one W gate. The other gates are tested in the same manner. Further. test procedures are shown ,~ for only one input of the gate under test. To complete testing, sequence through remaining inputs 13~==C)--12 @ Test Temperature ~==C)--6 { -SS'C MC3l06 +2S'C +l2S'C 111~==C)--8 { MC3006 Characteristic Input Forward Current Leakage Current Breakdown Voltage Clamp Voltage Symbol IF MC3l06 Test-limits MC3006 Test limits Pin +2S'C SS'C +l2S'C +2S'C +7S'C O'C Under Test Min Max Min Max Min Max Min Max Min Max Min Max Unit 1 - -2.0 - Short-Circuit Current Power Supply Drain - -2.0 - -2.0 - 50 - 50 - - - - 5.5 Turn-Off Delay 20 -2.0 - 20 -2.0 1.0 -10 1.1 1.8 0.4 2.4 4.0 7.0 5.0 4.5 5.5 20 -2.0 - - 0.8 1.8 0.4 2.4 4.0 - 5.0 4.5 5.5 20 -2.0 - 1.1 2.0 0.4 2.5 4.0 - 5.0 4.75 5.25 20 -2.0 1.0 -10 1.1 1.8 0.4 2.5 4.0 7.0 5.0 4.75 5.25 2.5 20 -2.0 - 0.9 1.8 0.4 2.5 4.0 - 5.0 4.75 5.25 lin lin ID Vil V'H V, V. V. H - - - - - 1 - 2,13* - f.lAde - - - - - - - 1 * - Vdc - - 1 - - - - - * 50 - 50 - -2.0 mAde ::J ~. ::J - c: (1) a. - Vmax VCC VCCl VCCH V'HX 10H - - Gnd 14 7 - 14 2,7,13 - 14 - 2,7.13 - 1 - 50 - 50 1 - - 5.5 - VD 1 - - -1. 5 - - - - - -1. 5 - - Vdc - - - 1 - - - - * - - 14 - - 7 VOL 12 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 Vdc 12 - - - 1 - - - 2,13* - - 14 - - 7 - 2.4 - 2.4 - 2.5 - 2.5 - 2.5 - Vdc 12 - - - 1 - - 2,13* - - 14 - - 7 - - - - - - - - 1,2,13* - - - 14 - 7,12 VOH 12 2.4 ISC 12 -40 Imax 14 - - - 28 - - - - - 28 - - mAde - - - - - - - - 1,2,3,4,5, 9,10,11,13 14 - - - - 7 IpDH 14 - 20 - 20 - 20 - 20 - 20 - 20 mAde - - - - - - - - - - - 14 - 7 IpDL 14 - 1,2,3,4,5, 9,10,11,13 40 - 40 - 40 - 40 - 40 - 40 mAde - - - - - - - - - - - 14 - 1,2,3,4,5,7, 9,10,11,13 Pulse In Pulse Out - * - 14 - - 2,13 7 * - 14 - 2,13 7 -100 -40 -100 -40 -100 -40 -100 -40 -100 -40 -100 mAde t pd _ 1,12 - - - 15 - - - - - 15 tpd+ 1,12 - - - 12 - - - - - 12 - - '----- - - - - - - -- - ns 1 12 - - - - - ns 1 12 - - - - -- --- - *Since this is a non-inverting gate, power drain is minimized by tying the inputs to gates not under test to VRHo - - S w o o0) (') n-O 2.5 TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BElOW: 10l -2.0 Switching Parameters Turn-On Delay 10H IR Power Requirements (Total Device) Maximum Power Supply Current -2.0 10l BV in OUtput Output Voltage O'C +2S'C +7S'C rnA ! TEST CURRENT! VOLTAGE VALUES Volts V.H Vmax Vcc VCCl VCCH V'HX ID Vil V'H V, V. 5.0 4.5 5.5 4.0 - 1.1 2.0 0.4 2.4 MC3100/MC3000 series TRIPLE 3-INPUT "NAND"GATE (Open Collector) I MC3107F • MC3007F MC3107L • MC3007L,P This device consists of three 3-input NAND gates with no output pull-up circuits_ It can be used where the Wired-OR function is required or for driving discrete components. CIRCUIT SCHEMATIC 1/3 OF CIRCUIT SHOWN Vee 14 800 12 2 13o---f-H Positive Logic: 12"'~ Negative Logic: 12=~ Input Loading Factor =1 Output Loading Factor == 10 = 66 mW typ/pkg Propagation Delay Time = 8.0 ns typ Total Power Dissipation SWITCHING TIME TEST CIRCUIT AND WAVEFORMS V,HX +2.5 Vdc TP out Vee t+ 7.0 ns t7.0 ns 280 Jr---.J-+c=c--3.0 V OV PULSE GENERATOR PRF = 1.0 MHz CT = 25 pF tp~ I -t I~~. typ PW == 50% Duty Cycle t+ :: 7.0 ns t- == 7.0 ns = total TP out 50 2.4 V ~-' ----====-=-=-=-=-~~d4 V parasitic capacitance. which includes probe, wiring, and load capacitances. See General I nformation section for packaging. ,*"" ZW*" #A#44 ;::.,... ELECTRICAL CHARACTERISTICS 3: Test procedures are shown for only one gate. The other gates are tested in the same .... o (') Co) manner. Further, test procedures are shown ....... for' only one input of the gate under 'test. To complete testing, sequence through re· s: maining inputs. (') ~ ~~ 13~ o ..... 12 0o ~==C:?-6 .... :J :i" c 1&~.-.- 8 'l~ CD @Test Temperature t MC3107 -SS'( +2S'( +125'( M(3007 Characteristic I Symbol Pin Under Test MC3107 Test limits 55'( I +25'C + 125'( Min I Max I Min I Ma.JMin I Max .1 t MC3007 Test Limits O'C I +2S'C I +7S'C Min I Max I Min I Max I Min-.lMax Input Forward Current Leakage Current Breakdown Voltage Clamp Voltage IF -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 'R 50 50 50 50 50 50 BVin Vn Oltput Voltage Output Leakage CUrrent VOL 12 0.' 0.' 0., 0.' 0.' 0.' I CEX 12 250 250 250 250 250 250 1max 14 IpDH 14 28 28 28 28 2B IpDL 14 13.5 13.5 13.5 13.5 13.5 'pd'pd. 1,12 Power Requirements (TOIalllevice) Maximum Power Supply Current Power Supply Drain ,0 20 Swilching Parameters Turn-On Delay Turn-Off Delay 20 1,12 20 "Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. 1.0 -10 20 20 20 1.0 -10 20 V" V,H 1.1 2.0 1.1 0.8 0.' 2.' '.0 5.5 1.8 0.' 2.' '.0 5.5 1.8 0.' 2.0 0.' '.0 '.0 5.5 1.1 2.' 2.5 1.1 1.8 0.' 2.5 '.0 5.5 '.0 5.5 0.' 1.8 0.' 2.5 7.0 5.5 7.0 Vee VCCL VCCH 5.0 '.5 5.5 5.0 '.5 5.5 5.0 5.0 '.5 4.75 5.5 5.25 5.0 4.75 5.25 5.0 4.7!) 5.25 VCCL VCCH 14 20 Vii. 2.5 2.5 TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, Unit I 10L I.. I. V" V,H I V, V. V.H VCEX I V~X I Vcc 2,13 mAde 2,13 2,13 V1HX 12 14 2,7,13* 14 2,7.13* 14 7" 14 7" 14 7" 1,2,3,4,5,7, 91'10,11,13 14 mAde Gnd 7" 14 j!Adc 14 1,2,3,4,5, 9,10,11, 13 1,2,3,4,5,7, 9,10,11,13 14 Pulse In 14 I. Vde -1.5 -1.5 lin 20 Q; Vde 5.5 5.5 Output 0'( +25'( +75'( mA 10L TEST ruRRENT I VOLTAGE VALUES Volts VRH V, VeEX Vm1x V. I Pulse Out 12 14 2,13 7" 12 14 2,13 7" 1L~ HEX INVERTER ______________ ~_r_ie_s~ M_C_3_1_00_I_M_C_3_0_00__ MC3108F • MC3008F MC3108L • MC3008L,P (54H04J) (74H04J,N) This device offers six independent inverting gates in a single package. Each gate consists of a single input driving an output inverter. CIRCUIT SCHEMATIC 116 OF CIRCUIT SHOWN Vcc 14 2.S k 1-{>o-2 7S0 3-{>o-4 5S 5-{>o-S 9-{>o-S 2 11-{>o-10 13-{>o-12 Positive Logic: 2:;:: '1 Input Loading Factor == 1 Output Loading Factor = 10 Gnd Total Power Dissipation == 140 typ/pkg Propagation Delay Time"" 6 ns typ Pin numbers for the 54HQ4F/74H04F device are shown in the chart. These devices are available on special request. DEVICE MC310SF,Ll300SF,L,P 54H04F174H04F 1 10 11 9 12 13 12 13 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vcc ,+ 7.0 ns ,- 7.0 ns i.---......H--;::;=-3.0 V MMDS150 or Equiv OV t+ = 7.0 ns t- .., 50 7.0 os MMD7000 ,p~'pd+ ,"2.4 V or Equiv TP out 1.5 V ______________ ~-_-_-_-~~:V CT = 25 pF;. total par4~itic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and qutput to scope must be matched. The- scope must be termi_nated in 50-ohm impedance. ihe 950·oh m resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General Information section for packaging. 14 14 I • ELECTRICAL CHARACTERISTICS S 0 Co\) Test procedures are shown for only one -a inverter. The other inverters are tested in 0 the same manner. ~oo S 0 1--{»-2 3 Co\) 0 0 -------{>-- 4 00 5 -----{>o-- 6 00 9 -----{>o-- 8 V" TEST CURRENT /VOLTAGE VALUES Volts VR VR• VJn1i.": V,. V, L.1 2.0 0.4 2.4 4.0 L.1 L.8 0.4 2.4 4.0 0.8 1.8 0.4 2.4 4.0 L.1 2.0 0.4 2.5 4.,0 L.1 1.8 0.4 2.5 4.0 0.0 L.8 0.4 2.5 4.0 11 -----{>o--10 Test Temperature t t -55°C MC3108 +2SOC +125°C MC3008 Characteristic IInput Forward Current Leakage Current Breakdown Voltal«! Clamp Voltage l°utput OUtput Voltage Short-Circuit Current I Symbol I Pin Under Test I MC3108 Test Limits 55°C +25°C I +12SOC Min Max Min Max I Min Max 'F 'R 'se Maximum Power Supply Current 'm", Power Supply Drain IpDH Delay Turn-a;£! Delay -2.0 20 -2.0 20 -2.0 20 -2.0 L.O L.O -10 -10 Unit 10L 10• lin 10 V" V,. V, 5.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 ~ VR VRH Vmu Vee t I I. VCCL _ VCCH Gnd 7' 50 50 50 50 50 50 .uAdc 14 7' Vde 14, 7' 5.5 0.4 0.' 2.4 -100 -1.5 -40 -100 0.4 Vde 0.4 2.4 2.5 -40 -40 37.5 0.4 -100 -40 -100 37.5 'pd+ 10 10 'I - I -I - I - I - I 1,2 10 10 2 58 58 58 mAde 26 26 26 26 26 26 mAde 11,13 Pulse In power drain Is minimized by grounding the inputs to gates not under test. 7' 7' Pulse Out I-I - I - I - I- I I I 1,2,7* 1,3,5,7,9 11,13 1,3,5,9, ',2 58 I. 14 m.Ade 58 7' 14 mAde 58 14 14 Vde Vdc 2.5 I. * Since this is an inverting gate, Vcc• 4.5 TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, IpDL 'pd- '.0 VCCL 5.0 mAde 14 14 7.0 Vee -2.0 Switching Parameters Turn~On -2.0 20 10 -2.0 0.' -40 20 lin 0 -2.0 -1.5 2.4 ~2. -2.0 5.5 VOL 10• 20 -2.0 VD Wower Requirements (Total Device) MC3008 Test limits O°C +25°C +WC Min Max Min Max Min Max O°C +2SOC +75°C 10L ~. ::J C -2.0 BVin VOH mA @ 13 -----{>o--12 ::J I' 7 !4 1,3,5,7,9 11,13 I II II I J I I I 14 14 7' 7' HEX INVERTER MC3100/MC3000 series " \.----------' MC3109F • MC3009F MC3109L • MC3009L,P (74H05J,N) (S4HOSJ) . This device consists of six independent inverting gates with no output pullup circuits. It can be used where the Wired·OR function is required, or for driving discrete components. CIRCUIT SCHEMATIC 1/6 OF CIRCUIT SHOWN Vcc 14 1---{)--2 2.S k 760 3---{)--4 5---{)--6 9---{)--S 2 11 - - - { ) - - 1 0 13 - - - { ) - - 12 470 Positive Logic; 2 = Input Loading Factor Gnd '1 =1 Output Loading Factor = 10 Total Power Dissipation = 90 mW typ/pkg Propagation Delay Time = B ns typ Pin numbers for the 54H05F174H05F device are shown in the chart. These devices are available on special request. DEVICE MC3109F)../3009F,L,P 54H05F174H05F PIN NUMBERS 2 14 3 3 4 2 5 5 6 6 7 11 8 8 9 7 10 11 10 9 12 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vcc TP out ,+ 7.0 ns ,- 7.0 ns 280 1r--_.H-;;;=-3.0 V OV 'pd~'Pd+"'2'4 V PRF = 1.0 MHz typ PW = 50% Duty Cycle t+=7.0ns = 7.0 ns TPout 50 1.5 V ---SO.4V -------------------Gnd t- CT "" 25 pF = total parasitic capacitance, w,hich includes probe. wiring, and load capacitances. See General I nformation section for packaging. . ......... A ,1if4!4 I • ELECTRICAL CHARACTERISTICS 3: o w .... Test procedures are shown for only one inverter. The other inverters are tested in the same manner. JS 3: o 1---[>0--2 3---[>0--4 ~ ocg 5 -----{:>- 6 8::J .... ;5' 9 -----{:>- 8 11 -----{:>-10 13 -----{:>-12 MC3109 Characteristic J Symbol I IInput Forward Current Leakage Current Breakdown Voltage Clamp Voltage IF 1 1R 1 - 50 - 50 - BVin 1 - - 5.5 - 1 - - - Vo Output Output Voltage Output Leakage Current VOL I 2 ICEX I 2 Power Requirements (Tolal Device) Maximum Power Supply Current Power Supply Drain MC3109 Tesl Limils SS'C I +2S'C +12S'C Min Max I Min Max Min I Max Pin Under Test 'max I. IpDH l4 'PDL l4 -2.0 Turn-Off Delay 'pd- 1,2 tpd+ ',2 -1.5 5. - -2.0 - -. - - 5.5 - - - - - - -1.5 - -2.0 50 - -2.0 50 0.' I * Since this is an inverting gate, power drain - 1 250 I - - 58 - 58 28 - 26 - - 0.4 1 250 I - 1 250 I - 1 25. I 37.5 - - - - 37.5 58 58 58 28 - 2. 15 '8 - - - - is minimized by grounding the inputs to gates not under test. - - - 1 250 I 2. 15 18 - - 1.1 2.0 0.' 2.' '.0 5.5 1.0 -10 1.1 1.8 0.' 2.' '.0 5.5 20 20 c: 7.0 Vee VCCL VCCH 5.0 '.5 5.5 5.0 '.5 5.5 1.8 0.' 2.' '.0 5.5 5.0 '.5 5.5 O'C +2S'C +7S'C 2. 1.1 2.0 0.' 2.5 '.0 5.5 5.0 4.75 5.25 1.1 1.8 0.' 2.5 5.0 4.75 5.25 0.• 1.8 0.' 2.5 5.0 4.75 5.25 I Vee, I VeeH -10 1.0 20 20 I I I Unit mAde 50 /.LAde - lin - Vde - mAde 58 mAde 2. mAde , V" - - - - - I I - I - I 1 - - - - - - Pulse In Pulse Out - ns 1 2 ".0 1 2 V, V. 1 - - 1 I - V,H - I I. 1 Vde Vde ... 7.0 5.5 5.5 '.0 ~ TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, 10.. 1 200 I "Ade I - V" V,H 0.8 -2.0 0.' I. 20 t MC3009 Test Limits O'C +2S'C I +7S'C Min Max Min Max I Min Max lin +12S'C I - I •.• I - I •.• I - I··' I - I I - I I - I I Switching Paramete('S Turn-On Delay -2,0 10' t -SS'C +2S'C MC3009 TEST CURRENT / VOlTAGE VALUES Volts V, V. V.H VeE>( Vml• RIA @Test Temperature I - I - - - 1 I- I - - - I I I - J - J - J - J - - - - I I - - 1 - 1 -I - 1 J Vm1x - - - - VeE)( Vee - - 1 - V.H I - I - - 1,3,5,7, 9,11,13 - 1 J 2 - - 14 I - I I I. I I - I I I. I 14 - 1 - 1 J J - - - 1 14 J 14 J 1 I Gnd 14' 7' 14 7' I. 7' - 7' I 7' - I 7' - I ITS,5,7, 9,11,13 14 1411,g.5,7, 9,11,13 7' 1 1 I I 7' MC3100/MC3000 series DUAL 4-INPUT "NAND" GATE I MC3110F • MC3010F MC3110L • MC3010L,P (54H20J) (74H20J,N) This device consists of two 4-input NAND gates. These gates may be cross-coupled to form a set-reset flip-flop. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 2.4 k 60 800 ~==r=}-6 li==r=)-8 1 2 6 4 5o-t+-H Positive Logic: 6::::;~ Negative Logic: 6 = 1 + 2 + 4 + 5 Input Loading Factor = , Output Loading Factor = 10 Total Power Dissipation = 44 mW typ!pkg Propagation Delay Time'" 6.0 ns typ Gnd Pin numbers for the 54H20F174H20F device are DEVICE shown in the chart. These devices are available on special request. MC3110F,L/3010F,L,P 54H20F174H20F PIN NUMBERS 2 12 3 3 4 5 13 14 6 2 8 9 11 10 '6 10 11 7 14 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc Vcc 280 t+ 7.0 ns ,- 7.0 ns TP out ~--...f-!-::=-3.0 V MMD6150 or Equiv OV PRF =1.0 MHz typ PW = 50% Duty Cycle t+=7.0n. t-=7.0nl t~ I MMD7000 50 or e"quiv -i 1~+"2.4 ~---..:. _______-_-_-_- TPout :--~~d4 V V CT == 25 pF = total parasitic capacitance, which iricludes probe, wrring, and load capacitances. The COBX delays from input to scope and o~tput to scope must be matched. The sc·ope must be terminated in 50-ohm impedance.· The 9SO-ohm resistor and the scope termination impedance consti,tute a 20; 1 attenuator probe. Coax shall. be CT -070-50 or equivalent. See General I nformation section for packaging. ,.ii' Ii /RiU;. '" ..... $Z;:p:;;; ,. \ i G4,J •. ;; • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one s: (") W ..... gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- ..... ~O s: n maining inputs. ~ ..... i==3 }-a li==r:=}-a o n-O :::l !:!, :::l C ~ Pin u'nder Test Symbol Characteristic Input ...., ............... Forward Current 'F -2.0 Leakage Current 'R 50 Breakdown Voltage Clamp Voltage I BVin -2.0 50 Max I Min I Max -2.0 -2.0 I 50 50 I 5.5 Unit -2.0 -2.0 mAde 50 50 !-lAde ',. 10 VIL I V'H ..................... , V, V. Vm .. V'H VCCH VCCl Vee 2,4,5 Vde 5.5 -1.5 Vn 10L Max Min 10H -1.5 V1HX Gnd 14 " 14 2,4,5,7* 14 2,4,5,7* 14 Vdc ,' Output Output Voltage Short-Circuit Current 0.4 VOL VOH 2.4 'se -40 0.4 0.4 2.4 -100 -40 2.4 -100 -40 -100 0.4 0.4 2.5 -40 2.5 -100 -40 0.4 2.5 -100 -40 Vde Vdc -100 2,4,5 14 2,4,5 14 " 1,2,4,5,6,7 14 mAde Power Requirements (Total Dev;ce) Maximum Power Supply Current Imax 14 Power Supply Drain IpDH 14 20 20 20 20 20 20 mAde IpDL 14 8.4 B.4 B.4 8.4 8.4 8.4 mAde 12;,5 Switching Parameters Turn-On Delay t pct_ I 1,6 I-I TUrn-Off Delay tpd+ I 1,6 1 _ 1 * Since this I I 1 - 1 10 10 1 I- I -I - I- I 10 1 1 - 10 1 - I _ I _ I is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. I - I - I '" 0" 1,2,4,5,7, 9,10,12,13 14 mAde 12,5 1,2,4,5, 9,10,12,13 Pulse In r -I , Pulse Out -I I , I _I - 1 - 1 - 1 - _-r _-I 1 - 1 -I 1 1 1 I I 14 I I 14 I I I 14 7 14 1,2,4,5,7, 9,10,12,13 I 2,4.5 I 1 2,4,5 1 " " MC3100/MC3000 series I OUAl4-INPUT "ANO" GATE MC3111F • MC3011F MC31n L • MC30n L P (54H21J) (74H21J,N)' This device consists of two 4-input AND gates. This non-inverting function is useful for" optimizing logic design, or for direct implementation of standard logic equations. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 2.4 k 2.4 k 800 60 1 2 4 6 Positive Logic: 6 = 1 .2.4.5 Negative Logic: 6 == 1 +2 +4 +5 So-+t-+-+ J nput Loading Factor"" 1 Output Loading Factor == 10 Total Power Dissipation = 56 mW typ/pkg Propagation Delay Time == 9.0 ns typ 7 Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX Vcc +2.5 Vdc Coax 9S0 ±'1.0% 280 TP out t- ::: t- 7.0 ns 1..---","-1--:-::--- 3.0 V MM061S0 or Equiv PULSE GENERATOR PRF = 1.0 MHz typ PW = 50%' Duty Cycle t+ = 7.0 ns t+ 7.0 ns, "--;";;;";';;"'-0 V so MM07000 or Equiv , . . . - -...-,---~2.4 V 7.0 ns ~0.4 V --------------Gnd CT = 25 pF =total parasitic capacitance, which includes probe, wiring. and load capacitancM. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General Information section for packaging. • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one ..... ..... gate. The other gate is tested in the same manner. Further. test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- ..... :s: o ~ ..... ..... nO mainjng inputs. ~=3 ~}-6 1~~ 8 12 :::l 13 ~ MC3111 MC3011 Symbol Characteristic Input Forward Current Leakage Curre~ Breakdown Voltage Clamp Voltage' I Short-Circuit Current -2.0 IR 50 Power SUpply Drain -2.0 -2.0 50 50 50 - I - -2.0 20 -2.0 O°C +2SoC +7SoC 20 -2.0 '0 -Z.O 20. -Z.O Unit ICOL 10• VOL 6 - 0.' 0.' 0.' - 2.' - - 6 2.' - 2.' - 2.5 - 2.5 I.e 6 -.0 -100 -40 -100 -40 -100 -40 -100 -40 Imax 14 18 - IpDH 14 13.2 - 13.2 13.2 IPOL 14 26 - 26 26 0.' - -2.0 -2.0 mAde 50 50 J.l.Adc Turn-On Delay t pd_ I TUrn-Off Delay 'pd+ I 0.' 0.' -100 -40 - -100 18 13.2 13.2 26 26 26 1.0 -10 0 VCCH 1.1 2.0 0.' 2.' '.0 5.0 '.5 5.5 1.1 1.8 0.' 2.' '.0 5.0 '.5 5.5 0.8 1.8 0.' 2.' '.0 5.0 '.5 5.5 1.0 -10 1.1 2.0 0.' 2.5 '.0 5.0 4.75 5.2!> 1.1 1.8 0.' 2.5 '.0 5.0 4.75 5.25 0.' 1.8 0.' 2.5 '.0 5.0 4.75 5.25 CD Co 7.0 7.0 6 - mAde - - mAde - - ~Adc - I - I - I - I IS I - I - I 6 - I - I - I- I I-I- I -I - I- I I-I- I 12 V1HX 2.5 I 2.5 lin 10 VOL V'H V, V, V,. V",... Vee I V IV CCL n. no V1HX CCH 14 I 1 1 Goo 2 • 4 • 5,7 14 1 ~ 2,4,5,7 I' I I 1 1:,2,4,5,7, 9,10,12,13 I. mAde 1,6 *S:I.nce this is a non-inverting gate, power drain is minimized by tying the inputs to gates not under test to VRH VCCL 14 Vd, - I - I - I - I - I - I Vee 2,4,5* Vd, 2.5 13.2 15 VOL Vd, 1,6 12 10 Vd, Switching Parameters I.. c TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, -1.5 VOH - ~2. 20 5.5 -1.5 VD 20 I -2.01 10H -SSoC +2SoC +12SoC MC3011 Test Limits +7SoC O°C +2SoC Min I Max I Min Max Min I Max 5.5 BVin Power Requirements (Total Device) Maximum Power SUpply Current I IF Output OUtput Voltage MC3111 Test Limits SSoC +2SoC I + 12SoC Min I Max I Min I Max I Min I Max t t 10L :;- TEST CURRENT/VOLTAGE VALUES Volts V, Vm •• V'H V, V'H rnA @Test Temperature Pill Under Test :s: o Co.) f Pul.. Out 1 6 1 - , - 1 - J -\ 2,4,5* - - - - . . 6,7 14 1,2,4,5, 9,10,12,13 1,2,4,5, 9,10,12,13 -I -I -I - 1- 1 1 -I - T - T - T I - I - I 14 - I - I 14 - I - I - I 2,4,5'" 1 1,2,4,5* . Pul.. In r - - 1 - 1 -I I' - 1 . 1 - I4 1 1 - 1 14 1 - 1 I - 114 I - I -1 I 2,4,5 2,4,5 MC3100/MC3000 series DUAL 4-1 NPUT "NAND" GATE (Open Collector) MC3112F • MC3012F MC3112L • MC3012L,P (54H22J) (74H22J,N) This device consists of two 4·input NAND gates with no output pull·up circuits. It can be used where the Wired·OR function is required or for driving discrete components. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 2 4O--i-i-4 5o--i-i-i-4 Positive Logic: 6 = ~ Negative Logic: 6 = 1 + 2 + 4 + 5 470 Input Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation = 44 mW typ/pkg Propagation Delay Time = 8.0 ns typ Gnd 7 Pin numbers for the 54H22F174H22F device are shown in the chart. These devices are available on special request. DEVICE MC3112F,L/3012F,L,P 54H22F174H22F PIN NUMBERS 2 12 3 3 4 5 13 14 6 2 8 11 to 9 6 10 11 12 13 7 14 8 9 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc TP out Vcc t+ 7.0 ns ,- 7.0 ns 280 if---,j-+c=c;-3.0 V OV PULSE '~pdtpd+ GENERATOR :i!:2.4 V PRF ~ 1.0 MHz ,yp PW = 50% Dutv Cycle t+=7.0n5 t- = 1.0 ns Cj = 25 pF = total TPout 50 1.5 V , ___-====---_-:"'-:'-=---':'~~d4 V parasitic capacitance, which includes,probe. wiring~ and load capacitan~es. See General Information" Section for packaging. • ,0 .. .,"'i( 'IQP.W·', I • ELECTRICAL CHARACTERISTICS s: .... .... ("') Test procedures are shown for only one (,J gate. The other gate is tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- •N s: ("') maining inputs. (,J ~==i o ..... »-6 N 0o ::J ..... S' 16~ 8 12 13 Test Temperature mA @ MC3112 t MC3012 Characteristic _1 Symbol I Pin Under Test I MC3112 Test limits +125'C 55°C I +25'C Min I Max Min Max Min Max -S5°C +25°C +1 25°C t MC3012 Test limits +75°C I +25°C Max I Min Max Min Max O°C +25'C +75"C 10L lio ID 20 20 1.0 -10 20 20 20 1.0 -10 20 Vecl VCCH 5.0 4.5 5.5 V" V,H V, 1.1 2.0 0.4 2.4 4.0 5.5 1.1 1.8 0.4 2.4 4.0 5.5 0.8 1.8 0.4 2.4 4.0 5.5 1.1 2.0 0.4 2.5 4.0 5.5 1.1 1.8 0.4 2.5 4.0 5.5 0.8 1.8 0.4 2.5 4.0 5.5 Leakage Current Breakdown Voltage Clamp Voltage IF 1 -2.0 50 IR 1 BV in I VD 1 Output Output Voltage VOL Output Leakage Current leEX Power Requirements (Total Devite) Maximum Power Supply Current I Power Supply Drainl I I 6 - -2.0 50 Min - -2.0 -2.0 50 50 - 5.5 5.5 - -1. 5 Turn-Off Delay Unit - -2.0 mAde 50 50 /lAde - - Vdc -1.5 10L lio ID V" V,H V, V, - 5.5 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 - 0.4 0.4 D.4 0.4 0.4 0.4 Vdo 250 250 250 250 250 250 pAdo IpDH 20 20 20 20 20 20 mAde IpDL 14 5.0 5.0 5.0 5.0 5.0 5.0 mAde 12.5 14 14 1,6 20 20 ,. Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. Vee Vecl \ 2.5 VCCH I V1HX Gnd 14 2,4,5,7* 14 2,4,5,7" 14 I I 1 12,4,51 - 1 - 2,4,5 I I 1 6 I I I 14 I I I I I I 14 I I I -I -I -I-I I T " 1,2,4,5,7, 9,10,12,13 14 1 1,2,4,5,7, 9,10,12, 13 141 • I - I - I - I - I 7' ! 14 1,2,4,5, 9,10,12,13 Pulse Out I 7' - 1 1 6 Pulse In 1,6 2.5 14 mAde 14 12.5 Vm .. - I -I I -I I - I I - I I - I I - I I I I - I-I -I I- I I -I I - I I - I I - I I - I I - I I I - I - I -I 14 tpd+ 4.5 2,4,5 - - VCEX V'H I Vdo 'max tpd_ 7.0 5.0 5.0 V1HX TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, -2.0 Switching Parameters Turn-On Delay 7.0 CD 0. DoC Input Forward Current c TEST CURRENT !VOLTAGE VALUES Volts V, Vee VCE'X Vm.. V'H I -I I I I - I 14 14 I I II I 2,4,5 I I 2,4.5 I " 7• MC3100/MC3000 series B-INPUT "NAND" GATE MC3115F • MC3015F MC3115L • MC3015L,P This device is an a-input NAND gate. It is useful when processing a large number of variables, such as in encoders and decoders. Vee 14 2.4 k 800 60 1 2 3 j~8 11 12 13 8 4o-l-+-H 10o-+-IH-+-.. Positive Logic: Ilo-t-I-++-H o-:j::;t:I:U4:tJ 8 12 130- , . 2 . 3 . 4 .'0 .,1 • 12 • 13 Negative Logic: 8 =1 + 2 + 3 + 4 + 10 + 11 + 12 + 13 Input Loading Factor"" 1 7 Output Loading Factor = 10 Total Power Dissipation = 22 mW typ/pkg Gnd Propagation Delay Time = 8.0 ns typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc Vee 280 t+ 1.0 ns t- 7.0 ns ir---.lr-f-==--3.0 V MMD6150 or Equiv PULSE GENERATOR PRF = 1.0 MHz typ PW - 50% Duty Cycle flV 50 MMD7000 or Equiv t+ = 7.0 ns t-=7.0n5 CT = 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the: ,scope termination impedance constitute a 20; 1 attenuator probe. Coax shall be CT -070-50 or equivalent. General I nformation section for paCkaging. I ______________ t~ ~ 1~+~2.4 V ~- TPout ~~~~~~~:V • ELECTRICAL CHARACTERISTICS :s: Test procedures are shown for only one input of this device. To complete testing. sequence through remaining inputs in the (") same manner. ~at W ..... ..... :s: (") j~8 ~ ..... at 0o 11 12 13 ::J ~ ::J c: @Test Temperature MC3115 t MC3015 Characteristic Symbol Iinput Pin Under Test I I I F I IR Breakdown Voltage I BVin Clamp Voltage O"C +25°C +75"C 10 • 20 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 '0 I -2.0 -2.0 -2.0 -2.0 -2.0 mAde 50 50 50 50 50 J.lAdc 5.5 5.5 -1.5 Vn 1.0 1.0 I. -10 -10 V" TEST CURRENT IVOLTAGE VALUES Volts V,H V, VR VRH Vrnax 1.1 2.0 0.4 2.' 4.0 Ll 1.8 0.' 2.' 4.0 0.8 1.8 0.4 2.' 4.0 Ll 2.0 0.4 2.' '.0 1.1 1.8 0.4 2.' '.0 0.9 1.8 2.' 4.0 0.' VCCH '.0 .... ,, .. , '.0 4.75 5.25 '.0 4.75 5.25 '.0 4.75 5.25 Vee '.0 7.0 7.0 '.0 10 • I 1011 I 1'0 I I. I V" I V,H I V, I I I I I I I I VR I V1HX ,., ,., ,., I V_ I Vee I Vcc• I VeeH I~i~i:: ~~, I - I - ! - I VRH 2.' I 2.' I V,HX Goo 14 Vde -1.5 VCCl TEST CURRENT {VOLTAGE APPLIED TO PINS LISTED BELOW, T -2.0 Leakage Current t MC3015 Tost Limits MC3115 Test Limits I +75"C -55"C +25"C I + 125"C I O"C I +25"C Min I Max Min Max J Min I Max ~ Min Max Min Max Min Max~ Unit I Forward Current -55"C +25"C +125"C mA 1011 I.. ~ 14 '2,3,4,7,10, 11,12,13 14 2,3,4,7,10, ~ 11,12,13 14 Vde Output Output, Voltage Short-CirCUit Current 0.4 VOL 0.' 0.' 0.4 0.' 0.4 Vde 2,3,4,10 Vde 2,3,4,10, 14 11,12,13 VOH 24T Ise -40 1-100 - 2.' 2.' 2. , 2.' 2.5 14 11,12,13 -40 -100 -,0 -100 -40 -100 -40 -100 -'0 -100 mAde 1,2,3,4,7,8. 10,11,12,13 14 1 Power Requirements (Total Device) =~~~u~~~r Imax Power Supply Drainl IPDH 14 10 10 mAde IpDL 14 '.2 '.2 mAde 14 Switchi!lg Parameters Turn-On Delay Turn-Ofi Delay 'pd'pd+ 1,8 1,8 14 mAde 12 12 1 1 I 1 1 1,2,3,4,7, 10,11,12,13' 1,2,3,4, 10,11,12,131 14 14 2,3,4,10, 11,12,13, 14 2,3,4,10, 11,12,13 112 12 1,2,3.4,7, 10,11,12, lsi 14 MC3100/MC3000 series 8-INPUT "NAND" GATE I MC3116F • MC3016F MC31161 • MC30161,P (54H30J) (74H30J, N) This device is an a·input NAND gate. It is useful when processing a large number of variables, such as in encoders and decoders. Vcc 14" 760 2.8 k 58 J~8 3 4 5 12 1 2 8 1~:++tU Positive Logic: 8 3.4.5.6.".,2.,.2 120-H-++-H 1 2 0-+-1-++-+-1..... Negative Logic: O-H:+::II:-t-=-H 8 - 3 + 4 + 6 + 6 + 11 + 12 + 1 + 2 1nput Loading Factor 7 Gnd Pin numbers for the 54H30F174H30F device are shown in the chart. These devices are available on special request. =1 Output Loading Factor"" 10 Total, Power Dissipation = 22'mW typ!pkg Propagation Delay Ti me = 8.0 ns typ DEVICE MC3116F.Ll3016F,L.P 54H30F174H30F PIN NUMBERS 9 2 10 3 2 4 3 5 5 6 6 7 11 8 12 9 1 10 11 14 7 12 13 14 8 13 4 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX Vcc +2.5 Vdc 280 t7.0 ns t+ 7.0ns !r--......f-i-;=,-3.0 V MMD6150 or Equiv 50 MMD7000 or Equiv PW - 50% Duty CY,cle t+ = 7.0 nl t- =7.0"1 -::- CT = 25 pF = total parasitic capacitance. whJch includes probe, wiring. and load capacitances. The coax delavs from input to scope and output to scope. must be matched. The 'scope :mult be terminated in 50~ohm impedance. The 95Q-ohm resistor -.nd the -'Cope termination impedance constitute 820: 1 attenuatar probe. Coax shall be CT -070-50 or equivaJent. General I nformation section for packaging. ".\ '·%i",,qAA4!Upt ;;:: 4 .i.s;:;aa;1J",,4AA7P:;:::;;::;; r- OV t~ -i 1;~.'~2.4 TPout ___~....:::.==:..-_--'--=--~~d4 V V • ELECTRICAL CHARACTERISTICS 3: C') Test procedures are shown for only one Co) input of this device. To complete testing, ~ sequence through remaining inputs in the ~ ~m same manner. s: C') ~~ "'! Co) o 5 6 ~ m 0o 8 ::J @Test Temperature t t -55°C MC3116 +2Soc +12Soc MC3016 Characteristic Input Symbol Forward Current 'F Leakage Currellt 'R Breakdown Vo~tage Clamp Voltage Pin Under Test MC3116 Test Limits +2S oC 55°C +12SoC Min Max Min Max I Min I Max I I I I MC3016 Test limits O°C +7SoC I +2SoC Min Max Min I Max Min Max O°C +2Soc +7Soc Un~ -2,0 -2.0 -2.0 -2.0 -2.0 mAde 50 50 50 50 50 50 /.lAde 5.5 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 20 -2.0 10L 10H Short-Circuit CUrrent VOH 2.4 'se -'0 Power Requirements (Total Device) Maximum Power SUpply Current Power Supply Drain 0.' VOL -1.5 Imax 2.' -100 -'0 0.' -100 -,0 0.' 2.5 2.' -100 -,0 IpDH 14 10 IpDL 14 '.2 10 .. , -'0 -'00 Turn-Off Delay 5.0 4.5 5.5 5.0 '.5 5.5 5.0 5.5 5.0 '.5 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 1.1 1.8 0.' 2.' '.0 0.8 1.8 0.' 2.' '.0 1.1 2.0 0.' 2.5 '.0 1., '.8 0.' 2.5 '.0 0.' 1.8 0.' 2.5 7.0 7.0 '.0 V1HX 2.5 I 2.5 I,. ID V" V,H V, V, V'H Vmn Vee I VCCLJ VCCH I V,HX I -'0 -100 1,2,4,5 6.11,12 1 10 mAde '.2 '.2 '.2 '.2 mAde 14 I 14 I 11,2.3.4,5.8,1 6,7,11, i2 14 -I 8,11,12 1 1,2,3.4.5, 14 mAde '0 1,2,4,5. 6,7,11,12 \1,2,4,5. 14 1,2,4,5, 6,11,12 mAde 10 Gnd 14 14 7,11,12 1,2,3,4, 5,6,11,12 14 1,2,3,4,5, 7,11,12 14 Pulse In 'pd'pd. 4.0 141 Vd, 10 Parameter'S Delay VCC.H 2.' 1,2,4,5, Vd, 2.5 Switching Turn~Qn 0.' ... 8.5 14 VCCL 0.4 Vd, 0.' 2.5 -100 -10 Vee 2.0 Vd, 5.5 0.' 1.0 -10 V" 1.1 TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, Output OJtput Voltage 1.0 ID TEST CURRENT /VOLTAGE VALUES Volts V,H V, V, V_ V'H 6,11,12 -1.5 VD 20 I I -2.0 BVin 10L mA 10H I,. "" :r c: II Puis. Out 3,8 12 12 14 1,2,4,5, 6,11,12 3,8 '0 10 14 1,2,4,5, 6,11,12 MC3100/MC3000 series 4-WIDE 3-2-2-3 INPUT EXPANDER FOR "AND-OR-INVERT" GATES MC3118F • MC3018F MC3118L • MC3018L,P (54H62J) (74H62J,N) This expander is designed to expand the AND-ORINVERT capabilities of the MC3032 and MC3034. One expander can be connected to each expander input of the expandable gate. VCC 14 3 8 4 I. ~'7;:~ ~r<~r< J 2.8 k !~ 50- ~ 2.8 k 5 Collector __\6 .l. 2--,--_/ ___\8 1 2 - - . . - -..... 13 9 lo-H-+-H 2°-hH-+-H 10 11 "-Input Loading Factor"" 1 Full output loading factor of the expandable gate is maintained. Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time: .6.tp d1 = +0.4 ns tvp ~tpdO = 0.05 ns typ 7 Gnd 6 When added to the expandable "AND-OR-INVERT" gate. atpd l/pF ~ +0.3 ns/pF typ atpdO/pF - +0.04 ns/pF typ Caused by additional capacitance at expansion points. Pin number. for the 54H62F/74H62F device are DEVICE shown in the chart. These devices are available on MC3118F,L/3018F,L,P 54H62F 174H62F special request. 8 12 9 7 10 11 8 9 12 13 14 5 6 4 APPLICATION: EXPANDABLE 4-WIDE 2-2-3-2-INPUT AND-OR-INVERT GATE WITH A 4 WIDE 3-2-2-3 INPUT EXPANDER CONNECTED 3 4 5 r-----------, I I I I 2 12 13 9 10 11 EXPANDER I MC3018 I I Col1ector 1 Positive Logic: ___ oJI 8"-(1-13)+(2.3) +(4'5'6)+(9 '10) +(3·4·5) +(1-2)+(12 '131+(9 ,10-11) ~-------~r~----------JI 13 2 3 4 5 6 9 10 Expandable Gate 8 I L I ____________ JI See General I nformation section for packaging. EXPANDABLE GATE MC3032 '~ _______~~-------J Expander I • ELECTRICAL CHARACTERISTICS 3: (') W Test procedures are shown for only one ..... ..... input of the expander being tested. To complete testing, sequence through remain- ,r:1l ing inputs. S (') W 0 ..... 3 4 r:1l 5 00 2 12 13 9 @Test Temperature 10 " { -55'C MC3118 +25'C +125'C O'C MC3018 { +25'C +75'C mA V. V.H V. 2.4 4.0 2.4 4.0 7.85 2.4 6.3 10L I.. 10 5.B5 7.0 6.7 1.0 1.0 -10 -10 7.4 10L Characteristic Input Forward Current Breakdown Voltage Clamp Voltage VEE' VEE. V'H V'L 0.4 1.0 0.85 2.0 0.8 0.85 0.6 0.85 1.8 4.0 0.4 0.4 0.85 1.8 0.8 0.8 2.5 4.0 0.4 1.0 0.85 2.0 0.8 2.5 4.0 0.4 0.8 0.85 1.8 0.8 2.5 4.0 0.4 0.6 0.85 1.8 0.8 'F -2.0 -2.0 -2.0 -2.0 -2.0 'R 50 50 50 50 50 Output Voltage Collector Current -1.5 Vo 50 7.0 1.0 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 10 V. V.H V. VEE' VEE. V,H 0.4 320 'eoti 0.4 -600 -470 -470 -470 V'L Vmax Vee IVee, IVeeH I JLAdc Vdc Vdc -1.5 0.4 0.. 4 VOL"'''' 'Eo C' CD Q. Vm • x Vee VeeL VCCH -2.0 mAde 5.5 5.5 BVin lin 0.4 0.4 -600 -600 570 Vdc 1,2 JlAde 1,2 -I 7' 14 2,7* 14 2,7* 7' ~i~9·1 p-Adc I 7' I - I 7' l14t 1'4t 1'4t 14 I - Gnd 14 14 Output Emitter Current :J TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: Pin Leakage Current ... :;- TEST CURRENT /VOLTAGE VALUES Volts 16,14 Power Requirements (Total Device) Maximum Power Supply Current Power Supply Drain 1 1m. . 14 mAde 8.0 8.0 IpDH 14 7.0 7.0 7.0 7.0 7.0 7.0 mAde lpOL 14 9.0 9.0 9.0 9.0 9.0 9,0 mAde "'Ground inputs to gates not under test. t Apply to pin 14: @Lowtemp. VCCL' @25 C Vec' @ Hi temp VCCR t t Connect 575 n resistor from Pin 8 to ground. **This test is a measure of potential difference between pins 6 & 8. D 1,2,3,4,5,7 9,10.12,13 14 1,2,8,4,5, 9,10,12,13 14 14 I ~'~i;:i2~i~ MC3100/MC3000 series TRIPLE 3·INPUT EXPANDER FOR "AND·OR" GATES MC3119F • MC3019F MC3119L • MC3019L,P (74H61J, N) (54H61J) This device consists of three independent 3·input AN D gates. The outputs of each gate are available as ORing nodes. Using the MC3019 expander, with the MC3031 expandable gate, up to six AND gates can be ORed together. 1/3 OF CIRCUIT SHOWN VCC 14 2.8 k "3=0- - - - -......- - 0 9 12 2o--+--+ 10 13 3O--+-+--i Input Loading Factor = 1 Full output loading factor of the expandable gate is maintained. 1k Total Power Dissipation::: 25 mW typ/pkg Propagation Delay Time: dt p dl ::: +0.4 ns typ AtpdO::: +0.Q5 ns typ When added to the expandable "AND-OR" gate. 7 Gnd Atpdl/pF = +0.3 ns/pF typ AtpdO/pF = +0.04 nslpF typ Caused by additional capacitance at expansion points. Pin numbers for the 54H61F/74H61F device are DEVICE shown in the chart. These devices are available on special request. MC3119F,Ll3019F,L.P 54H61F174H61F APPLICATION: EXPANDABLE 4·WIDE 2·2·2-3·INPUT AND-OR GATE WITH A TRIPLE 3-INPUT EXPANDER CONNECTED 1 2 3 r--------..,I 9 ~$=o-8 ";~'0 :r:::;::::L..r L _____ _ 13 I I Collector EXP'ANDER 1 MC3019 I __ ..JI Positive Logic: 8 ,.........- ..... . . . 2...,..-.........../ 10-'--............ 11...,...-.........../ 12-'--............ 3 : IL .2) + (3.4.5) + (10 ',1) + (12.'3) + (1 .2.3) v '---y--J Expandable Gate Expander EXPANDABLE }----f-S GATE MC3031 I 13 = (1 I _ _ _ _ _ _ _ _ .....II See General Information section for packaging. .. 4 ( AlAe A; " i1¥JSJt4ll I • ELECTRICAL CHARACTERISTICS s:: ow - Test procedures are shown for only one expander. The other expander is tested in a similar manner. Further, test procedures are shown for only one input of the eXM ~CD pander being tested. To complete testing, sequence through remaining inputs. s:: o ~ CD ~3=C>-9 3 8 J .... :j' :3=C>-s c: J Characteristics Input Forward Current Leakage Current Breakdown Voltage Clamp Voltage @Test Temperature { -5$"C MC31l9 +25°C +125°C DOC MC3D19 { +25°C +75°C MC31l9 Test Limits MC3D19 Test Limits Pin DOC +25°C +125°C +25°C +75°C Under -5SoC Symbol Test Min Max Min Max Min Max Min Max Min Max Min Max Unit IF 1 - -2.0 - -2.0 - -2.0 5.5 5.5 5.35 - 2.5 4.0 0.4 2.2 2.0 0.8 - 5.0 4.75 5.25 5.5 1.0 -10 2.5 4.0 0.4 1.8 5.0 4.75 5.25 - - 2.5 4.0 0.4 0.8 0.8 7.0 6._~ 2,.2 2.2 - 5.0 4.75 5.25 IOL lin ID V. V.H VF VCEX VIH - - 2,3 1 - - - - - - - - - Vde - - 1 - - - Vo -1. 5 - - - - - -1. 5 - 1.0 - - 1.0 - 50 7' - - 2,3,7 - - - 14 - 14 2,3,7 - - - - - 14 - 7' - - - - - - 1,2,3 - 7' 2,3 - 9 - 1 - - - - 14 - 14 - 7 - - 9.0 - - - - - 9.0 - - mAde - - IpOH - 18 - 18 - 18 - 18 - 18 mAde - - - - - IPOL 14 - 6.75 - 6.75 - 6.75 6.75 - 6.75 6.75 mAde - - - -- -- *Ground inputs to gates not under test. 14 9 18 .. - - - - - - - Vde - - Gnd ~Adc 14 - - VI. V..... Vcc VCCl VCCH 50 14 - , 1.0 lmax ---- VI. V..... VCC Vcc• VCCH TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: 1 - - 1.8 - - Power Rrblrements (Total &Vice) 4.5 - 1 50 5.0 - - 1.0 1.8 ·1 50 5.5 - 4.5 2.4 0.8 0.8 5.0 - 2.2 2.2 7.0 - 0.4 0.4 1.8 7.3 4.0 4.0 - - - - 5.5 2.4 Vde 50 - 50 4.5 -10 t-tAdc - - 1.0 5.0 1.0 - - 50 - 50 - 5.5 50 50 50 0.8 - - 1.0 2.0 - 5.5 - 2.2 - - - 0.4 - 50 9- 4.0 mAde - 9 V.H 2.4 -2.0 - VOL ID - V. - - 1 ICEX VF VCEX VIH 'in 4.5 -2.0 1 Output Voltage mA 10 • - ~ Emitter Current Power Supply Drain -2.0 BVin Output Maximum Power Supply Current - ~ TEST CURRENT/VOLTAGE VALUES Volts - - - - - - 14 - - - 1,2,3,4,5, 6,7,11,12,13 1,2,3,4,5,6, 11,12,13 - - - - - - - 14 7 - - - - - - - - 14 1,2,3,4,5, 6,7,11,12,13 MC3100/MC3000 series EXPANDABLE DUAL 2-WIDE 2-INPUT "AND-OR-INVERT" GATE MC3120F • MC3020F MC3120L • MC3020L,P (54H50J) (74H50J,N) One side of this dual device consists of two 2-input AND gates ORed together and driving an output inverter. The other side consists of two 2-input gates ORed together, driving an output inverter, and the OAing nodes are available for expansion. Up to four AND gates can be ORad together using the MC3030/3130 expander. Care should be taken to minimize the amount of capacitance on the expander terminals in order to maintain switching speeds. CIRCUIT SCHEMATIC OF CI RCUIT SHOWNt ~1/2 Vee 14 12 2.4 k BOO 10 9 60 2.4 k 9--....r-~ -~ L_.../ 10 B 13 Emitter 11 - _ _ _ _ _ _ _--' 13 Collector 1 2 - - - - - - - - - - - - ' B Positive Logic: 8 (9.10) + (13 .1) + (Expanders) Negative Logic: 8 - (9 7 11 Gnd + 10) -(13 + 1) -(Expanders) Input Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation = 62.5 mW typ!pkg Propagation Delay Time = 6.0 ns typ tOther half of circuit omits e:! 1,9,10, 12,13"" 14 11 1,2,3,4,5,7, 14 mAde 9,10,13 14 Pulse Switching Parameters Turn~On Delay Turn-Off Delay In tpd~ tpd+ Pulse Oul 14 1.8 1.8 :s: n w ..... gate, The other gate is tested in the same 1l *Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. 1l 13 7,9,10* 13 7,9,10* MC3100/MC3000 series QUAD 2-INPUT EXCLUSIVE "OR" GATE I MC3121F • MC3021F MC3121L • MC3021L,P This device consists of four 2-input Exclusive OR gates_ They can be used to build parity checking/generating functions. Up/down counters can be built using these gates and J-K flip-flops. CIRCUIT SCHEMATIC 1/4 OF CI RCUIT SHOWN Vee 14 12=D13 Positive Logic: 3 = 1 • 11 '2 + 1. 2 2~~~------+----1~----~ Input l.oading Factor = 1.6 Olftput Loading Factor = 8 Total Power Dissipation""" 1 00 mW typ/pkg Propagation Delay Time = 14 ns tvp 7 Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 280 t+ t- 7.0 ns 7.0 ns It--.......H~=-3.0 MMDS150 or Equiv V OV t~pdtpd+ MM07000 or Equiv 50 t+·""'7.0ns ~2.4V t-=7.0nl TPout' 1.5 V -_--===::=-=-=-~~d4 O·ne input to gates not under test must be tied to VI HX the other grounded. V CT = 25 p~ = total parasitic capacitance, which includes probe, wiring, and load capacitances. Th. C08>t: delays, from inptrt to scope and output to scope must be matched. The scope must be terml.nated In 50~ohm impedance. The 950·ohm resistor and the scope t.rminat~Qn i~pedance constltute a 20: 1 attenuator probe. Coax shall be CT ·070-50 or equivalent. See General I nformation section for packagj ng. 16,,,, '~D " i .. L+9$.N!k Jtt\' C. ; 4 ;: 4 4 1 4 FHj(,.... = q¢ H ,;jU&4M$ • ELECTRICAL CHARACTERISTICS .... s: To complete testing, sequence through remaining inputs. (') ~ ~~3 :~6 ,~~B N .... nO :J ~ S· '2~" 13---fL...--/- -SS<>( MC3121 { +25°C +125°C O°C MC3021 { +25°( +7So C MC3121 Test limits Pin Under ~-,--f--,--f--,---I Symbol ~ o I mAde 'F -3.0 -3.0 -3. 'R 100 100 100 I/.I.Ade 5.5 BVin Output Output Voltage Short-Circuit Current VOH ~:: I 'sc -20 I -65 1-20 PDwer ROqilramants {Total Devicel Maximum Power Supply Current Imax L4 I~:: ~:: -65 35 16 -1.6 16 -1.6 16 -1.6 0.8 16 -1.6 1. 1 16 -1.6 1.1 16 -1.6 0.9 Itn 1.0 1.0 I mAde 1.0 V1H Vf VI VaH 1.1 2.0 0.4 2.4 4.0 5.0 1.8 0.4 2.4 4.0 5.0 1.8 0.4 2.4 4.0 5.0 4.5 5.5 2.0 0.4 2.5 4.0 5.0 4.75 5.25 1.8 0.4 2.5 4.0 5.0 4.75 5.25 1.8 0.4 2.5 4.0 5.0 4.75 5.25 1.1 4.5 V1HX V_ •• 2.5 7.0 2.5 '1.0 V1HX V""1l 5.5 4.5 5.5 TEST CURRENTIVOlTAGE APPLIED TO PINS LISTED BELOW, +75'C 10L 10H I.. ID I Ya I V,H V, V. VRH I I Vee VCCL VeeH Gnd -3.01 mAde 2,5,10,13 14 4,7,9,12 IOO 100 I /.I.Ade 5,10,13 14 2,4,7,9,12 14 2,4,7,9,12 5.5 -1.5 Vdc 5,10,13 Vdc 5,10,13 14 5,10,13 5,10,13 5,10,13 5,10,13 14 14 ~:: I = I~:: I = -20 1.0 ~ Vee VCCL VeeH V1L -3.0 I g:11 ~~~ ~:; I I~: ~ I I ~~~ I I ~~~ I::; I -20 I -65 I mAdei ID IOO Vdc g:! I I g:: I ~~~ 0.4 0.4 VOL ~ IOH -3.0 Vdc -1.5 VD +25°C ~1~I~xl~IM~I~I~xl~ Forward Current Breakdown Voltage 101 MC3021 Test limits O°C Leakage Current Clamp Voltage r::: ~ TEST CURRENT !VOLTAGE VALUES @~ Temperature Characteristic Input -65 I -20 I -65 40 I -20 I 1,2 1,2 2,5,10,13 -65 I mAde mAde 1,4,9,12 4,7,9,12 4.7,9,12 4,7,9,12 4,7,9,12 4,7,9,12 14 14 3,4,7,9,12 14 2,5,10,13 14 Power Supply Drain 14 14 Switching Parameters Turn-On Delay 'pd- 1,3 25 25 14 2,5,10,13 4,7,9,12 Turn-Off Delay tpd+ 1,3 25 25 14 2,5,10,13 4,7,9,12 Pins not listed are left open. s: (') ....NW Test procedures are shown for only one gate. The other gate is tested in the same manner. Further. test procedures are shown for only one input of the gate under test. • MC3100/MC3000 series QUAD 2-INPUT EXCLUSIVE "NOR" GATE MC3122F • MC3022F MC3122L • MC3022L,P This device consists of four 2-input Exclusive NOR gates. They can be used to build parity checking/generating functions. Up/down counters can be bu ilt using these gates and J-K flip-flops. CIRCUIT SCHEMATIC 1/4 OF CI RCUIT SHOWN Vee 14 4k 4k 4k 100 4k 1.2 k 3 12=nJ- 2o-~-+------~---+----~-------+------~ 11 13 2 k Positive Logic: 3 == I nput Loading Factor 1. 2 + 1 .2 = 1.6 Output Loading Factor"" 8 Gnd Total Power Dissipation = 85 mW typ/pkg Propagation Delay Time"" 14 os typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 390 t7.0 ns t+ 7.0 ns TP out i,.---V---+=;;-3.0 V MMD6150 or Equiv PRF "" 1.0 MHz typ PW"" 50% Duty Cycle~ t+=7.0ns t- =7.0ns 50 MMD7000 or Equiv t~ r- OV 1~~2.4 -1 V ~- ______________ TP out Ground inputs of gates not under test. =====~~:V CT ::; 25 pF "" total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delav~ from input to scope and output to scope must be matched. The scope must be terminated· in 50·ohm impedance. The 950·ohm resistor and the 'scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See GenEliral I nformation section for packaging. 4U hi IX oMn:iuu;::::::a • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one W gate. The other gate is tested in the same manner. Further. test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. ...& N _N 3: w (') ~=£>o----3 :=£>0---9~ 10~ 0 N N 6 nO 8 @Tesl Temperature { -55·C MC3122 +25·C +125·C { O·C MC3022 +25·C +75·C MC3022 TeSI Limils MC3122 Tesl Limits Pin O·C +2S·C -55·C +25·C +125·C +WC Under Symbol Tesl Min Max Min Max Min Max Unil Min Max Min Max Min Max I Unil I Forward Current IF 1 [R 1 Breakdown Voltage Clamp Voltage I - VD 1 - VOL I Short-Circuit CUrrent I 'sC 33 3 3 VOH I 3 ~3. 0 - 100 BVin Output Output Voltage - - -3.0 100 5.5 - - -1.5 - -3.0 mAde j.LAdc - Vde - - Vde - 1-- 10.4 o. ~ 1-- 10.4 O. 'I O. 'I - 10.4 2.' 2.' I -20 -I I -65 2.' 2.' -20 - 2.' 2.' I -65 I -20 - - 100 -- Vde Vdc Vde Vde - -3.0 [00 5.5 - - -3.0 100 - - - -1.5 I -65 ImAde I -20 I -I 2.5 2.5 -65 -20 2.5 2.5 I"" 16 -1.6 16 I. -1. 6 -1.6 16 -1.6 16 -1. 6 16 -1. 6 I,. 2.0 2.0 I. -10 -10 V. VR VRH Vee VCCL VccHl V_ 0.' 2.' '.0 5.0 '.5 5.5 1.8 0.' 2.' 5.0 1.8 0.' 5.0 1.1 2.0 0.' 2.' 2.5 '.5 4.5 5.5 0.8 '.0 4.0 4.75 5.25 1.1 1.8 0.9 1.8 0.' O.• Va V,H 1.1 2.0 1.1 I 7.0 I 7.0 CD Q. 5.5 '.0 5.0 2.5 '.0 5.0 4.75 5.25 2.5 '.0 5•• 4.75 5.25 TEST CURRENT!VOLTAGE APPLIED TO PINS LISTED BELOW, VCCH 10l V..." GIld -3.0 mAde 14 4,5,7,9,10,12,13 100 /.LAde 14 2,4,5,7,9,10,12,13 - Vde 14 2,4,5,7,9,10,12,13 1-- 1O'i 1-- 10.4 O. 'I 1 -- 10.' 0.4 0.4 2.5 2.5 10l I Volts mA :j' c J TEST CURRENT IVOLTAGE VALUES 13~ Leakage Current ... ::J 12~11 Characterisfie Input -- 1. Vde Vde Vdc Vde Vde I -65 I -20 I -65 I mAde 1,2 I I,'- I 4,5,7,9,10,12,13 14 14 4,5,7,9,10,12,13 4,5,7,9,10,12,13 14 4,5,7,9,10,12.13 4,5,7,9,10,12,13 14 1,2 3,4,5,7,9,10,12,13 14 Power Requirements (ToIal Deyice) Maximum Power Supply Current mAde Power Supply Drain 14 1,2,4,5,9, 10,12,13 mAde 2,5,10,13 mAde 1,2,4,5,9, 10,12,13 1,4,9,12, 14 14 Switching Parameters Turn-On Delay tpd_ 22 14 Turn-Off Delay tpd+ 22 14 Pins not listed are left open. 3: (') 2,4,5,7,9,10,12,13 I I 2,4,5,7,9,10,12,13 MC3100/MC3000 series DUAL 2-WIDE 2-INPUT "ANO-OR-INVERT" GATE I MC3123F • MC3023F MC3123L • MC3023L,P (54H51J) (74H51J. N) This dual device consists of two 2-input AND gates ORed together and driving an output inverter. CIRCUIT SCHEMATIC 1/2 OF CI RCUIT SHOWN Vcc 14 800 10 9 1~~' 8 13 60 2.4 k 1 ~~ 4 13 6 5 8 Positive Logic: 8=(9·10)+(13.,) Negative Logic: 8-(9+ 10) .(13+ 1) Input Loading Fa'ctor = 1 Output Loading Factor = 10 Total Power Dissipation = 62.5 mW typ/pkg Gnd Propagation Delay Time = 6.0 ns typ DEVICE Pin numbers for the 54H51 F174H51F device are shown in the chart. These devices are available on MC3123F,Ll3023F,L,P special request. 54H51F174H51F SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc Vee Coax 950 ±1.0% 280 TP out t- 7.0 ns \.-----.iH"""'=-3,0 V MMD6150 PRF = 1.0 MHz typ PW ... 50% Duty Cycle t+ 7.0 ns or Equiv I L ______ JI OV 50 MMD7000 t+ = 7.0nl t- =7.005 tP~_ tpd+ , or Equiv TP out ~2.4 V 1.5 V -,--';;0.4 V Gnd CT = 25 pF =total capacitances. parasitj~ capacit8':lce, which includes probe. wiring, and load The coax delays from input to scope aoc::l output to scope multt be matched. The scope must be terminated in 50·ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equ;'valent. See General I nformation section for packaging. ,U"A,.ifM .. ; ·!AM "'" 4 , , ;a;a;;;;# ..... • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one gate. The other gate is tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- s(") W .... N .W S (") w o maining inputs. 1~~8 N W n 13 o 1 ::l ~. ::l ~~, c: TEST CURRENT/VOLTAGE VALUES @Test MC3123 V1L VIH VF VA V,",o"lts:;-_~_~_ _~_~_ _~ VRH V m • x Vee VCCl VeeH V1HX 1.1 2.0 0.4 2.4 4.0 1.1 1.8 0.4 2.4 4.0 -2.0 0.8 1.8 0.4 2.4 -2.0 1.1 2.0 0.4 2.5 mA Temperature lal 10M -55G( 20 -2.0 +2S C +125°C 20 -2.0 20 oDe 20 Unit 10L t G ( lin 10 1.0 -10 5.0 4.5 5.5 5.0 4.5 5.5 4.0 5.0 4.5 5.5 4.0 5.0 4.75 5.25 VCCL VeeH 7.0 ~ 2.5 l Characteristic Symbol Pin Under ~ Test~x MC3023 Test limits MC3123 Test limit, TEST CURRENT I VOLTAGE APPLIED TO PINS LISTED BelOW, 10H Input Forward Current Leakage Current Breakdown Voltage Clamp Voltage Output Output Voltage Short-Circuit Current Power Requirements (Total Deyice) ~p~u~u;~:n~r I IF -2.0 IR 50 BVin 2.0 -2.0 -2.0 50 50 50 50 5.5 -1. 5 0.4' VOL V OH 2.4 I - I 2.4 50 ! I - I 2.4 I 0.4 I I - I 2.5 I 0.4 I I - I 2.5 I 0.4 I I - I 2.5 I V,H I V, VR VRH Vm .. I Vee /lAdc 14 7,9,10,13* Vdo 14 7,9,10,13* I 0.4 I Vdc 14 I 13 13 Vdo 14 20 20 7,9,10* 7,9,10 * 14 1,7,10* 1,7,8,9, to, 13" 14 -40 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I -40 I -100 I Vdc Ise Gnd 7,9,10* Wo I - V1HX 14 14 -1. 5 '0.4 I VIL 13 -2.0 I mAde 5.5 VD Imax -2.0 I'n 10 1,2,3,4,5,7, 14 mAdc 9,10,13 14 Switching Parameters Pulse In I Pulse Oul Turn-On Delay t pd _ 1.8 11 11 14 13 7,9,10* Turn-Off Delay t 1,8 11 11 14 13 7,9,10 pd. *Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. * MC3100/MC3000 series DUAL 4-INPUT "NAND" BUFFER GATE MC3124F • MC3024F MC3124L • MC3024L,P (54H40J) (74H40J,N) This device consists of two 4-input NAND power gate circuits, Each gate is designed for driving high fan-out loads (30). CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 390 1.4 k 45 1 2 4 6 So-t+-H Positive Logic: 6 Negative Logic: 6 =1 • 2 • 4 • 5 =1+2 +4 +5 I nput Loading Factor := 2 Output Loading Factor = 30 Total Power Dissipation = 90 mW typ/pkg Propagation Delay Time = 6.0 ns typ 7 Gnd Pin numbers for the 54H40F174H40F device are shown in the chart. These devices are available on special reques~. DEVICE MC3124F,L/3024F,L,P 54H40F174H40F 1 4 PIN NUMBERS 6 8 9 10 11 11 10 6 7 5 14 12 13 14 8 9 4 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS vcc 950 ±.1.0% 93 t+ 7.0 ns ,- 7.0 os TP out !r---.J-+=,.,..-3.0 V MMD6150 or Equiv OV PRF = 1.0 MHz tvp PW "" 50% DutV Cvcle t+ "" 7.0 ns t-""7.0ns 50 MMD7000 'P~dtpd+' :2:2.4 V or Equiv TPout 1.5 V ---';0.4 V Gnd Cr = 25 pF = total parasitic capacitance, which includes probe. wiring, and load capacitances. The coax delavs from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The ~50-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General Information section 'for packaging. I • ELECTRICAL CHARACTERISTICS W .... gate. The other gates are tested in the ;iame manner. Further, test procedures are shown ,~ for only one input of t!:le gate under test. To complete testing, sequence through re· s: (") maining inputs. ~ ~ !==L)-s 8::J :to 9-- 19===l 13==l )-8 MC3124 MC3024 Characteristic Input Symbol Forward CUrrent -4.0 Leakage Current IR 100 Breakdown Voltage -4.0 -4.0 -4.0 -4.0 I mAde roo 100 100 100 100 I 0.' VOL 2.' 2.4 0.' 2.4 0.4 2.5 Ise -1.5 60 -1.5 6. -L5 60 -1.5 60 -1.5 60 -1.5 10 V" Vee VCCL VCCH 1.0 -10 1.1 2 .• 5.• '.5 5.5 1.1 1.8 5•• '.5 5.5 0.8 1.8 5.0 5.5 1.1 5.0 '.5 4.75 1.0 -10 5.25 1.1 5.0 4.75 5.25 0.9 5.0 4.75 5.25 ... 2.' '.0 0.' 2.' 4 .• 0.' 2.' '.0 2.0 0.' 2.5 '.0 1.8 0.' 2.5 4.0 1.8 0.' 2.5 '.0 .. , '.0 IOL 10H II,. I 10 I V" I V'H I VF I VR I VRH 2.' I I V I Vee I VCCL I VCCH I mox 2,4,5 /lAde 2.5 V,HX I " 14 2,4,5,7" 14 2,4,5,7* " " 14 11.2,4,5 Gnd 14 I. Vd, 2.5 -40 ! -125 ~ V1HX TEST CURRENT /VOlTAGE APPLIED TO PINS LISTED BelOW, 0.4 ! Vdc 0.4 2.5 -40 I -135 o. lin Vd, -1.5 0.4 10H C Vd, 5.5 -1.5 Vo VOH Short-Circuit Current DOC +25°C +75°C 0 ~4. 5.5 BVin Output OUtput Voltage -55°C +25°C +12n MC3124 Test limits MC3D24 Test limits 55°C L_+~5°C 1 +12SOC I - It' 1- +25°C +75°C ~I~I~I~I~I~I~I~I~I~ M~unitl IF Clamp Voltage t t 10< ::J TEST CURRENT /VOLTAGE VALUES Volts VR VRH Vm.. V'H VF mA @Test Temperature Pin Under Test 14 2,4,5 mAde 14 11.2.4.5,6,7* I. 1,2 .. 4,5,7 9,10,12,13 Power Requirements (Total Device) Maximum Power Supply Current Power Supply Drain Imax 14 IpDH 14 IPDL 14 Turn-On Delay Turn~Off Delay 'pdt pd + I I 14 mAde 22 22 40 40 40 40 .0 40 mAde 16 16 16 16 16 16 mAde 1,2,4,5,9, 10,12,13 9.10~,13 1,6 I 12 12 14 1,6 I 12 12 14 ... Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. 11,2,:,5, , 14 lPulseIn 1PuisOut• .. Switching Parameters 3: (") Test procedures are shown for only one , 2,.,5' 2,4,5 " " MC3100/MC3000 series DUAL 4-INPUT "NAND" POWER GATE MC3125F • MC3025F MC3125L· MC3025L,P This device consists of two 4·input NAND power gate circuits. Each gate is designed for driving high fan-out loads (20). CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vee 14 450 2.2 k j:=[~)-6 54 1~==3 =)-8 1 2 6 4 5o-++-H Positive Logic: 6 l ' 2 • 4 • 5 Negative Logic: 6 - 1 + 2 + 4 + 5 Input Loading Factor = 1.3 Output Loading Factor = 20 Total Power Dissipation = 70 mW typ/pkg Propagation Delay Time = 6.0 ns typ Gnd SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX Vee +2.5 Vdc Coax 140 950 ± 1.0% t+ t- 7.0 mi 7.0 ns TP out PRF = 1.0 MHz typ PW =- 50% Du~y Cycle t+=7.0n5 t-=7.0n5 j,---.lH-=""","-3.0 V MMD6150 PULSE GENERATOR or Equiv 50 MMD7000 or Equiv tP~_ , tpd+~2.4 V TPout 1.5 V ---~0.4V ------------Gnd CT = 25 pF =total parasitic capacitance, which includes probe, wiring, and load capacitances. The COax delays from input to ,scope and output to sC'?Pe must'be matched. The scope must be termtnated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 a"ttenuator probe. Coax shall be CT -070-50 or $quivalent. See General I nformation section for packagtng. .fill;WiiU c·. In IF ,.4P 4 ]!4iU¥(¢;;;;:;::;U:;;;:;Z;;;;;;;t;;#4i I • ELECTRICAL CHARACTERISTICS S n Test procedures are shown for only one CtJ gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. ~ J~~ s n CtJ o/'I.) !===3 }-s 16§}>12 U1 n-O ...5' ::J 8 13 c: ~ Characteristic Inpul Symbol Pin Under Test MC3125 T.sl limils MC3025 Tesl Limils 55°C I +2S'C I + 12S°C 10°C +2S'C MinTMax Min Max Min Max Min Max Min I Max I Min I I I I I Forward CUrrent IF -2.6 -2.6 -2.6 Leakage Current IR 50 50 50 Breakdown Voltage Clamp Voltage BV Short-Circuit Current Power Requirements (Tolal Device) -2.6 -2.6 50 50 5.5 w 0.4 VOL V OH 241 Ise -50 . 24 I. I -125 I -50 I -125 Maximum Power Supply Current 14 Power Supply Drain 14 34 14 10.6 50 0.4 0.4 2.4 -50 -125 -50 -50 16 T. 1 34 I . I 10.6 0.4 2.5 -125 -50 -125 34 34 10.6 10.6 . Turn-On Delay Turn-Off Delay F I V, VRH I V I Vee I V I V I rna .. 14 2,4,5 1 . 34 mAde mAde I. I. I. I . I. I 12 1,6 I . I . I .I . 121 no I no . -1 CCH V1HX ! Gnd 14 7' 14 2,4,5,7'" 14 2,4,5,7* 7' I I I 7' 14 2,4,5 1 1,2,4,5,6,7* 14 1,2,4,5,7 9,10,12,13 14 . 1,2,4,5,9, 10,12,13 . Pulse Pulse In Oul I. I. I CCL 2,4,5 14 6 mAde 10.6 12 *Since this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. ,H 1 6 34 12 -1 IL 1 Vd, 10.6 1,6 r I V IV I V I 1 Vd, Switc~-- Parametelrs 10 mAde 16 . I lin 1 Vdo 2.5 -125 IOH Vdo 0.4 2.5 'OL I ,uAde -1. 5 I . I 0.4 I l Unit I -2.61 mAde Max 5.5 -1.5 Vn Oulput Output Voltage r I I r I . I. I . I . I. I I 6 1 6T-l-T-l-I·T I T I .. II II 14 I 14 14 7 14 1,2,4,5,7 9,10,12,13 I II . I 2,4,5 I 7' 2,4,5 I 7' • MC3100/MC3000 series DUAL 4-INPUT "AND" POWER GATE MC3126F • MC3026F MC3126L • MC3026L,P This device consists of two 4-input AND power gates. Each gate is designed for driving high fan-out loads (20). CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 2.2 k 450 3k 1 2 4 54 6 5o-,..t+-H Positive Logic: 6 == 1 • 2 • 4 • 5 Negative Logic: 6"" 1 + 2 + 4 + 5 I "put Loading Factor"" 1.3 Output Loading Factor '= 20 Total Power Dissipation = 90 mW typ/pkg Propagation Delay Time = 9.0 ns typ 7 GND SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 140 t+ 7.0 ns t- 7.0 ns j,......:--J--+----3.0 V MMD6150 or Equiv PULSE GENERATOR "-':"::';;:"'-0 V PRF = 1.0 MHz tvp PW = 50% Duty Cycle 50 t+ = 7.0ns t-=7.005 MMD7000 or Equiv "...----+--~~2.4 V ';0.4 V ======~-----~====Gnd CT = 25 pF =total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be- terminated tn 50-ohm impedance. The 950-ohm resistor and the scope terminati,on impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General Information section for packaging. e.@""lI!C1:;;;au::;::: • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one sC') .... N Co\) gate. The other gate is tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. ~(j) S C') ~ N (j) 8 :J lE=~ r+ )-8 13 Temperature MC3126 MC3026 Characteristic Input Symbol Forward Current Leakage Current Breakdown Voltage 1 Clamp,Voltage I I 'F -2.6 'R 50 BVin V()lt~e vD -2.6 -2.6 -2.6 " '0 50 I VOL 0.' 2.4 - 0.' -125 -50 I I 0.' -125 -50 -125 -125 -50 .0 -4.0 40 -4.0 -4.0 .0 -4.0 Unit 1",- 10 • -4.0 lin 1.0 1.0 I. V, Vee VCCl VCCH 1.1 2.0 0.' 5.0 4.5 5.5 -10 1.1 1.8 0.4 2.4 4.0 0.8 1.8 0.4 2.' '.0 -10 1.1 2.0 0.' 2.5 4.0 1.1 1.8 0.' 2.5 '.0 0.' 1.8 0.' 2.5 4.0 2.' '.0 '.0 '.0 I:: 5.0 4.5 5.5 5.0 4.5 5.5 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 50 .Ad, lin I. V" V,. V, VR V_ VR• Vee I V IV CCL -125 -50 -125 I 2.5 CCH I V1HX 14 I Gnd T 2,4,5,7 141 I I 2,4,5,7 14 Vd, 0.4 2.5 14 2,4,5 '" Vd, 2.5 ~ V1HX TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW, 50 2.5 -50 -4.0 '0 40 mAde 0.4 0.' 2.5 2.' IOH '0 O°C +25°C +75°C -2.6 -1.5 2.' -50 ' Be I- -55°C +2SOC + 125°C -2.6 5.5 -1.5 V OH Short-Circuit Curl.'ent I 5.5 Output Output MC3026 Test Umits O°C +25°C +75°C Min I Max Min Max Min I Max MC3126 Test Limits 55°( +2S oC I + 125°C Min I Max Min Max I Min I Max Pin Under Test t t 10L 5· TEST CURRENTIVOLTAGE VALUES Volts VR V_ VR• V,. V, mA @Test Vd, 2,4,5 >II 14 Vd, 2,4,5 '" 14 1,2,4,5 mAd' * ., , 14 Power Requirements (Tolal OeYice) Maximum POwer Supply Current Power Supply Drain 14 IpDH 14 15 15 15 15 15 15 mAd, IPDL 14 40 .0 40 '0 .0 '0 mAde 22 -- Switching Parameters Tum-on petay Turn-au Delay t pd _ tpd+ * Since this is a non-inverting gate, not under test to VRH • mAd, Imax 1,6 I I ,,2,4,5,.1 - I I - 15 l5 1 I I power drain is minimized by tying the inputs to gates - I l5 I I l5 14 1,2,4,5,7, 9,10,12,13 !4 In - 14 9,10,12,13 1,2,4,5, 9,10,12,13 Pulse - - 1,8 22 Pulse Oul 14 2,4,5 14 2,4,5 ., MC3100/MC3000 series DUAL 3-INPUT 3-0UTPUT "AND" SERIES TERMINATED LINE DRIVER I MC3128F • MC3028F MC3128L • MC3028L,P This device is a dual 3-input/3-output series-terminated AND line driver that minimizes switching transients on long lines by approximating line ·impedance. Two outputs are provided through 75-ohm resistors for use when driving 93 to 120-ohm lines. These outputs should be paralleled when driving 50 tb 93-0hm lines. In addition, an output is provided directlY at the gate output node for driving adjacen~ gates. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vee 14 2.4 k 2.4 k 800 60 =0£ I' 12 13 5 I 2 9 8 10 :3 Positive Logic: 4, 5, 6, == 1 .2-3 Negative Logic: 4, 5, 6, Input Loading Factor =1 +2 +3 =1 Output Loading Factor, Direct Output (Pins 6 & 8) == 8 minus the number of reslstor·terminated outputs 7 being used. Gnd Output Loading Factor. Resistors (Pins 4,5,9, & 10) =1 Total Power Dissipation = 56 mW tYP/pkg Propagation Delay Time"" 9.0 ns typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc Vee ,+ 280 7.0 ns ,- 7.0 os i,.---V-+-::::::;--3.0 V MM06150 9r Equiv TPin :F'C "-=::"'-0 V PW == 50% O'utV Cycle t+ = 7.0 ns t- = 7:0n$ Pd+ 50 MMD7000 or Equiv .. 'pd- .?2.4 V TP out 1.5 V ","0.4 V --------------------~--Gnd CT == 25 pF = total parasitic ·capacitance, which includes probe. wrring, and load capacitances. The coax delays trom input to scope and output to scope must be matched. The scope must be terr:ninated in 50-ohm impedance. The 9S0-ohm reSistor and the scope termination-impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. See General I nformation section for packaging. II';:\¢':$¢P , ,,...•it.ru;z:z:u;:;:: • ELECTRICAL CHARACTERISTICS s: o Test procedures are shown for only one W ...a line driver. The other line driver is tested in the same manner. Further, test proce· N dures are shown for only one input of the ,t» line driver being tested. To complete tast· ing, sequence through remaining inputs. s: o ~~: ~ N 3~4 t» g 11=0-[: 12 13 :J ~, :J C 10 CD ~ TEST CURRENT !VOlTAGE VALUES @Test -SSOC MC3128 MC3028 MC3128 Test limits 55'C I +25'C I + 125'C Pin Under Symbol Characteristit Tes' Min I I Max I Min I Max I Min I Max I Leakage Cur~nt BTeakdown Voltage I Clamp Voltage 'Fa -2.0 IR 50 Short-Circuit Current -2.0 50 50 -2.0 50 -1.5 VOL 1 0:4 VOL 2 0.5 -1.5 0.4 I - V OH 2.4 I - Ise -40 I -100 I -40 ~2.0 -2.0 ,., Vn I 0.5 I 2.4 I 1 -100 0.4 0.4 I - I 0.5 I 2.4 I -100 1011 'OlC IOHA 10NB IOHC 16 2.0 2.0 _1.8 -0.1 -0.1 -0.1 +2S C 16 2.0 16 2.0 oae 16 I - I - I 0.5 J I I -100 1 -40 1 -100 1 - I 2.5 I - VIL VIN VF VI VIN 1.1 2.0 0.4 2.4 4.0 Vnou Vee Veei VeeH 5.0 4.5 5.5 2.0 -1.8 -0.1 2.4 4.0 4.5 5.5 2.0 -1.8 -o.r -0.1 0.8 1.8 0.4 2.4 4.0 5.0 -1,8 -0.1 -0.1 1.1 2.0 0.4 2.5 4.0 5.0 4.75 5.25 1.1 1.8 0.4 2.5 4.0 5.0 4.75 5.25 '0.9 1.8 0.4 2.5 4.0 5.0 4.75 5.25 I Vee VCCL Vee" +2SoC 16 2.0 2,0 -1.8 -0.1 -0.1 16 2.0 2.0 -1.8 -0.1 -0.1 1.0 1.0 -10 -10 1.1 1.8 0.4 7.0 7.0 5.0 I",. lOLA lo.e Ii0MA loo.llo.,e II. I I. I V" I V," I V, I V, VRH V_. 2.3* I mAde 2.5 V1HX 14 2,3,7 Vdo 14 2:,3,7 14 6,7 14 4· I Vdc 2,3* 14 2,3'" 14 2,3'" 14 1,2,3'" -40 [ -100 [ mAde Power Requirements: ~?J~~o;=~ ·1 SUpply Current SwitChing Parameters 1_ 1 14 1 - 1 - 1- I 18 I - I - 1- I - I - I 18 I - I - I mA'" I - I - I - I - I - I - I . I - I - I - I - I - 11U;~i3 I Pulse In Turn-On Delay t pd _ 1,6 Turn-Off Delay 'pd. " 1,6 12 "'Since this is a non-inverting gate, power drain is min1mLzed by tying tbe inputs to gates not under test to VRH • " 12 Gnd 14 /LAde 0.5 J Vde I 2.5 I - V1HX TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, 0.4 I Vdc I - I I 2.5 -40 fD Vdo 0.4 0.5! lin 2.0 +7S oC T ,., BV in Output Oltput Voltage -2,0 \ lOlA +12So C o MC3028 Test Limits O'C +25'C I +75'C Min I Max Min I Max I MinJ.r.la><.l Unit Input Forward Current [ Volts mA Temperature I 14 Pulse Out 14 2,3 14 2,3 MC3100/MC3000 series DUAL 3-INPUT 3-0UTPUT "NAND" SERIES TERMINATED LINE DRIVER I MC3129F • MC3029F MC3129L • MC3029L,P This device is a dual 3-input/3-output series-terminated NAND line driver that minimizes switching transients on long CIRCUIT SCHEMATIC 1/2 OF CI RCUIT SHOWN lines by approximating line impedance. Two outputs are pro· vided through 75-0hm resistors for use when driving 93 to 120-0hm lines. These outputs should be paralleled when driv· ing 50 to 93-0hm lines. In addition, an output is provided directlv at the gate output node for driving adjacent gates. Vee 14 800 2.4 k 60 11 12 13 2 3 =L>-E Positive Logic: 4, 6, 6 Negative Logic: 4, 5,6 98 10 =~ =1 + 2 + 3 Inp.ut Loading Factor:: 1 Output Loading Factor, Direct Output (Pins 6 and 8) = 8 Minus The Number of Resistor~Terminated Outputs Being Used. 7 Gnd Output Loading Factor. Resistors (Pins 4, 5, 9 and 10) Total Power Dissipation = 44 mW typ/pkg Propagation Delay Time = 6.0 ns typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.5 Vdc Vee 280 t- 7.0 ns 1.----~+=~-3.0 MMD6150 PULSE GENERATOR V or Equiv OV PRF: 1.0 MHz typ PW : 50% DUtv t+ = 7.0 ns t- Cycle 50 MMD7000 or Equiv = 7.0ns tP~_ tPd+. 2:2.4 V TPout 1.5 V ---SO.4 V Gnd CT = 25 pF = total parasitic capacitance, which includes probe, wiring. and load c;:apacitances. The coax delays from input to scope and output to scope. must be matched. The scope must be terminated in 50·ohm impedance. The 9SO·ohm resistor and the $Cope termination impedance constitute a 20: 1 attenuator probe. Coax shall be C-r -070-50 or equiva.ent. See Genera' I nformation section for packaging. ;:, !i# ; iA ;4 ,qs;::;q;wa 4F =1 • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one line driver The other line driver is tested in the same manner. Further, test prace· CAl ..... N .CD cures are shown for only one input of the s: (") line driver under test. To complete testing sequence through remaining inputs. ~ ~ 1~: 0o 3~4 :::J ~ :::J C "=0£: CD a. 12 13 10 TEST CURRENT/VOLTAGE VALUES @Test Temperature j -5S MC3129 +2S oC +12S oC 0 t MC3029. Input Forward Currellt Leakage Current Breakdown Voltage -2.0 IF I. I Clamp Voltage -2.0 -2.0 50 50 50 50 2.0 16 2.0 2.0 -0.1 -0.1 5.5 I +2S C t +75°C 5.25 5.25 2.5 VeeH V"", o I TEST CURRENT I VOLTAGE APPLIED TO PINS LISTED BELOW, Unit 10.. I..LI l'Olc I'..... 'CHI i.... c I 1m I I. I V,r I V,. I V, V.. V, Vmu I Vee Vcc, a,3,7* Vd' ~l. Vd, 5 14 l' 1* 0.4 0.' 0.' 0.4 0.' 0'.4 , Vdc 2,3 14 0.5 0.5 0.5 0.5 0.5 O.S I Vdc 2,3 14 Vd, 2,3 Ise 2.4 2.4 ·100 I ·40 I ·100 2.5 ~100 1* 2,3,7* ~Adc VOL 1 2.4 Gnd 14 2,3 VOL2 VOK Z.5 5.5 2.0 -2.0 5.5 ·1.5 Output Short·Circult Current -2.0 5.5 BV in VD O-itput Voltage -2.0 VtHX 16 5.25 I Pin Test'---1-="--'-='-'-'=.L ( Volts lOlA ifC MC3029 Test Limits +2SoC + 75°C Min ! Max Min I Max Un~r C-~~~~~~~~~~~~ Symbol Characteristic 2.5 2.5 ., 1* 1,2,3,6,7* 14 -40 I ·100 I -40 POW*" Requirements ~J,~~:;lf' I Imu I 14 I - I - I - I 12 I - 1 - I - 1 - 1 - 1 " SWitdoing Parameters Turn-On Delay Turn-Off Delay s: (") 1 - 1 - 1mAd, I - 1 - 1 - 1 - 1 - 1 - 1 -I - 1 - 1 - 1 - 1 - 1 - 1 " 1 - 1 - 1 - 1 - Pulse-, Pulse In 'pd- 1,6 10 'pd. 1,' 10 *Slnce this is an inverting gate, power drain is minimized by grounding the inputs to gates not under test. 10 Out 14 2,3 14 2,3 1 :,~,~::; .* l' MC3100/MC3000 series DUAL 4·INPUT EXPANDER FOR "AND·OR·INVERT" GATES MC3130F • MC3030F MC3130L • MC3030L,P (54H60J) (74H60J,N) This device consists of two independent 4·input AND gates. The outputs of each gate are available as ORing nodes. Using the MC3030/3130 expander, with the MC30;20/3120 expandable gate, up to four AND gates can be ORed together. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vcc 14 2.4 k Collector 12 lJ~ __~12 1 2 3 20--+. J ___ ~ 11 Emitter Emitter :~ __~,o o--4-H 6 13C>--H-+... __~9 ollector ' B Input Loading Factor = 1 Full output loading factor of the expandable gate is maintained. Total Power Oissipatipn = 15 mW typ/pkg Propagation Delay Time: .a.tpd = +1.0 ns typ When added to the expandable ,. AN D·D R·I N VERT" gate. .6.tpd/pF = +1.0 ns pF typ Caused by additional capacitance at expansion points. 7 Gnd APPLICATION: EXPANDABLE 2·WIDE 2·INPUT AND·OR·INVERT GATE WITH A DUAL 4·INPUT EXPANDER CONNECTED , 13 ~ ...l_I"'---'---' Collector ~-7-'r-,-___ J g=C~--»-~M I I } ___ JI EXPANDER MC3030 Positive Logic: 8 - (9.10) + ( 13.1) + l13. 1.2.3) + (4.5.6.8) r----- ---, } : '- ________J. See General I nformation section for packaging. ~---~vr---~ Expandable Gate EXPANDABLE GATE MC3020 Expander I • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one ..... Co\) expander, The other expander is tested in a similar manner. Further, test procedures are shown for only one input of the sC"') Co\) o S ex~ pander being tested. To complete testing, sequence through remaining inputs. (") Co\) oCo\) o Collector 13~ __~12 ~ ___ \. 11 3 Emitter c;O :::J !:!'. :::J Emitter C ~~__ __"'0 6 \.9 ~ Col! ector Test Temperature V, TEST CURRENT/VOLTAGE VALUES Volts Vm• x V" V'H V, VEE1 VEE2 V,H 2.4 4.0 0.4 1.10 0.80 2.0 1.1 -10 2.4 4.0 0.4 0.95 0.65 1.8 1.1 - 2.4 4.0 0.4 0.75 0.45 1.8 8.0 - 2.5 4.0 0.4 1. 00 0.70 8.0 1.0 -10 2.5 4.0 0.4 6.0 - - 2.5 4.0 0.4 mA @ Ie lin -55'C MC3130 +25'( +125'( 6.0 - 6.0 1.0 0'( +25'( +75'( M(3030 j (haracteristic 'nput Forward Current Leakage Current Breakdown Voltage Clamp Voltage Symbol Pin Under Test IF 1 IR 1 BVin 1 VD 1 M(3130 Test Limits 55'( +25'( +125'( Min Max Min Max J .Min I Max L I Output Output Voltage VOL 12 Emitter Current lEO 11 Collector Current leo 12 Power Requirements (Total Deyice) MaJdmum Power Supply Current Power Supply Drain '----- I""", 14 IpDL 14 * Ground inputs to gates not under test unless ** The inputs to both gates are ungrounded. - 50 - - -2.0 M(3030 Test Limits 0'( +25'( +75'( Min Max Min I Max I Min Max - - -2.0 50 - 50 5.5 - - - - -1. 5 -2.0 -2.0 Vdc - 1 1.25 Vdc -300 .uAdc 300 .uAdc - - mAde - 4.5 mAde - 300 - 300 - - - 7.0 4.5 - 4.5 -- - - 1.4 -300 otherWise noted. 1 - - - Vdc -1. 5 - 4.5 - - 1.15 - JlAdc - -300 4.5 50 - - 7.0 - - - - 1.35 -300 300 - '. mAde 5.5 1.35 lin -2.0 - -300 - Ie - - 4.5 Unit 50 - 10 VCCl VCCH 4.5 5.5 7.0 4.5 5.5 0.8 - 4.5 5.5 2.0 1.1 - 4.75 5.25 0.95 0.65 1.8 1.1 7.0 4.75 5.25 0.85 0.55 1.8 0 .• - 4.75 5.25 VCCL VCCH - 14 7' 14 2,3, 7, 14 2,3,7,13* TEST (URRENT I VOLTAGE APPLIED TO PINS LISTED BELOW, - 1.5 300 - 6.0 50 -300 300 - -2.0 t t 12 - - V, V'H 1 - - - - - - V, 2,3, 13 1 - - - - - VEE1 VEE2 V" Vm• x - - - - - - - - - 14 - I 11 - V,H - - 14 - 12,14 1 - 12,14 11 - 11 - 1 - - - - - 14 - - - - - - Gnd 13~ 7' 7' - 7" 7' 1,2,3,4,5, 6,7,8,13 - 14 - 1,2,3,4,5, 6,7,8,13 MC3100/MC3000 series EXPANDABLE 4·WIDE 2·2·2·3 INPUT "AND-OR" GATE MC3131F • MC3031F MC3131L • MC3031L,P (54H52J) (74H52J, N) This device consists of three 2·inputAND gat~s and one 3input AND gate ORED together to provide the AND·OR function. A single expander pin is available which provides the capability to expand this gate to • 1o-wide AND·OR gate using the MC3119/3019 triple expander. CIRCUIT SCHEMATIC 2 3 4 5 8 10 11 12 13 Collector 9 Input L.oading Factor =1 Output Loading Factor"" 10 Total Power Dissipation"" 87.5 mW tvp/pkg Propagation Delay Time = 10 ns typ Pin numbers for the 54H52F/74H52F device are shown in the chart. These devices are available on special request. DEVICE MC3131F,L/3031 F,L,P 54H52F/74H52F SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIH Vee +2.5 Vdc t+ 7.0 ns 280 ,- 7.0 ns 1r--~~-==-3.0 V PULSE GENERATOR PRF = 1.0 MHz ,yp PW = 50% Duty Cycle t+ = 7.0 ns t- OV TP out t~pdtpd+ MMD6150 2:2.4 V or Equiv TP out = 7.0 ns MMD7000 1.5 V ----===_-c:-~c::_=~~d4 or Equiv Expander pins should be left open when measuring switching times. CT "" 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 9SG-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. V I • ELECTRICAL CHARACTERISTICS 3: C') w Only one input of the expander is being tested. To complete testing, sequence through remaining inputs. ~ w ~ 1 4 5 10 11 12 13 8 mA 101 10H Ii. ID Ix V, VIL V'H VOH Vx Vo 20 -2.0 1.0 - -0.3 0.4 1.1 2.0 4.5 1.0 2.4 MC3031 { IF IR Breakdown Voltage Clamp Voltage VD Expander Input Current ~x 4.5 5.5 +25:C 20 -2.0 1.0 -10 -0.3 0.4 1.1 2.0 4.5 1.0 2.4 4.5 5.5 20 -2.0 1.0 - -0.3 0.4 0.8 1.8 4.5 1.0 2.4 4.5 5.5 W J 7.0 I - I - O°C 20 -2.0 1.0 - -0.3 0.4 1.1 2.0 4.5 1.0 2.5 4.75 5.25 - +25°C 20 -2.0 1.0 -10 -0.3 0.4 1.1 2.0 4.5 1.0 2.5 4.75 5.25 7.0 +75°C 20 -2.0 1.0 - -0.3 0.4 0.9 1.8 4.5 1.0 2.5 4.75 5.25 10H lin ~ 0o :::I ~. :::I c:: ~ TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: -2.0 -2.0 50 I 5. 5 BVin ~ Veel VeeH Vm . . +12SC Pin Forward Current C') -55"C Under ~~:....:..-+--'=r'---~:--r':""':'-I-"'--"-'-'--+CC:"--'~-+=---r:::--i Symbol I Test Reverse Current Volts @Test Temperature MC3131 { Collector 9 - - - - - - - - - ' characteristic Input s: TEST CURRENT /VOLT AGE VALUES 2 3 I - 15.5 -2.0 I 50 I I - I 5.5 I - ~1. - I 50 ~2. I - 0 I 50 I 5.5 I - -2.0 I - I 50 I 5. 5 I - Ix I V, I VIL I V'H VOH Vx I Vo I VCCL I VeeH IVm•• -2.0 ImAde I - I 50 I 5. 5 I - -1.5 5 ID Gnd 14 I "Ade 14 2,7 I Vde 14 2,7 Vde 14 -2.7 I -4.51-2.71-4.51-2.71-4.51-2.91-5.351-2.91-5.351 -2.9 I -5. 351mAde 1,2,3,4,5, 7,10,11,12,13 14 Output Output Voltage VOL VOH Short-Circuit Current I 8 0.4 0.4 0.4 0.4 0.4 0.4 I Vdc 0.4 0.4 0.4 0.4 0.4 0.4 I Vdc 2.4 2.4 2.4 2.5 2.5 2.5 Vde 2.4 2.4 2.4 2.5 2.5 2.5 Vde 2,4,5, 1,3, 10,12 14 11,13 1,2,3,4,5 10,11,12,13 1,2 14 14 3,4,5,7,10,11 14 1,2,3,4,5. 7,10,11,12.13 12,13 Isc -40 I -1001-40 I -100 I -40 I -100 I -40 I -100 I -40 1-100 I -40 I -100 ImAde 1,2,3,4,5 10,11,12,13 14 7,8 Power Requirements Max Power Supply Current Power Supply Dr~n 14 lmax 34 34 IpDH I 14 31 IpDL I 14 24 14 I 1,2,3,4,5,7, mAde 10,11,12.13 31 31 31 31 31 ~mAdc 14 24 24 24 24 24 I mAde 14 1,2,3,4,5 7,10,11,12,13 Pulse Pulse In Out Switching Parameters Turn-On Delay t1>d_ I 1,8 15 15 Turn-Off Delay tpd+ I 1,8 15 15 ns 14 3,4,5.7. 10,11.12.13 14 3,4,5, 7,10 MC3100/MC3000 series EXPANDABLE 4-WIDE 2·2·2·3·INPUT "AND·OR·INVERT" GATE MC3132F • MC3032F MC3132L • MC3032L,P (54H53J) (74H53J, N) This device consists of four 2·2·2·3·input AND gates ORed together and inverted. Up to four MC3120/3020 or one MC3118/3018 expander gates may be ORed with the device at the expander points. CIRCUIT SCHEMATIC 12 14 Vcc 2.8 k 2.8 k 2.8 k • 2.8 k 13 760 58 2 13 0..1 0-2 3 T.' .~ 3 ~~~~~ T.l~ I 8 4 5 8 6 h. 9 10--""1.._"/ Emitter 1 1 - - - - - - - - - - - - l 4 500 5 6 9 10 250 Collector 1 2 ' - - - - - - - - - - - - - - ' l Positive Logle :' 8"'(13 -I) + (2-3) + (4-5-6)+ (9-10)+ (Expanders) 4k Negative Logic: 8 - 13 + 1) - (2 + 3) _ (4 + 5 + 6) - (9 + 10) - (Expanders) Gnd 11 I nput Loading Factor;;; 1 Output Loading Factor = 10 Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time = 7 ns tYP Pin numbers for the 54H53F/74H53F device are DEVICE shown in the chart. These devices are available on MC3132F.L/3032F.L.P special request. 54H53F174H53F SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vcc VIH +2.5 Vdc Coax 950 280 ±.1.0% t+ t- 7.0 ns 7.0 ns !r---.J-+=;;;-- 3.0 V PULSE GENERATOR OV TP out · PRF - 1.0 MHz typ PW - 50% Dutv Cycle tP~_. . .. tPd+ :l!:2.4V )O-4'---+oIf---c..... MMD6150 or Equiv. t+=7.0nl t- = 7.0 ns TPout 1.5 V ___--===:....-_-----~~d4 V MMD7000 or Equiv. Expander pins should. be left open ,when measuring switching times. CT '"" 25 p'F :o:::ltot81 parasitic ,capacitance, which includes probe. wiring, and load capacitances. The ,CO~X delays from input to scope and ~utpUt to scope must be matched. The scope must be tenninated in 50-ohm,impedance., The 9SO-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe, Coax shall be CT -070-50 or equivalent. See General I nformation section for packaging. -~-,.,..------,....~~,.-••----.....",..,.---..,..-,.......~... ".,.. -.~...... Q_....- - -........,.............---------~--------- • ELECTRICAL CHARACTERISTICS Tast procedures are shown for one input of the device. To complete testing, se- :s: 0 ... Co.) quence through remaining inputs in the same manner. Co.) ,N s: 0 Emitter 11 Collector 12 Characteristic Input MC3132 Test Limits 55 to +125'C Min Max Unit -2.0 - IF 1 curre~~ IR 1 50 pAdc BVin 1 5.5** - mVdc 5.5** Clamp Voltage Vo 1 - -1. 5** mVdc - Expander Input Current lEX 12 Q) -5.85 Base-Emitter Voltage V BE 11@ - VOL 8 - Breakdown Voltage Co.) MC3132 MC3032 MC3032 Test Limits Oto +75'C Min Max Unit Forward Current Leakage 0 \\ lD Pin Under Symbol Test Co.) 8 4 5 6 9 mAde -2.0 50 10L 10H lin rnA ID IXI 20 1 -2.0 20 1 -2.0 1.0 1.0 -101 0.7 -101 1.1 0- v,iYf 0.32 0.57 V" Vee VCCl VCCH -0.32 -0.47 63 1.4 1 0.4 1 2.4 1 4.0 1 2.01 0.8 -0.57 -0.6 68 1. 4 1 0.4 1 2.4 1 4.0 J 2.01 0.8 5.0 5.0 Vee VeCL VCCH 4.5 4.75 0 ::J 5.5 ~. 5.25 c: ::J CD TEST CURRENTIVOLTAGE APPLlEO TO PINS LISTED BELOW, 10L 10H mAde - MAde - - mVdc N TEST CURRENTIVOLTAGE VALUES (All Temperatures) Ohms Volts VRH 1)(4 R.xli V, V. IX. IX. V'H I'n ID IXI 1)(2 - - - - - - - 1 -1. 5** mVdc mAde -6.3 mAde 8 - 1.0 Vdc 1.0 Vdc 8 - 0.4 Vdc - 0.4 Vdc 8 - 0.4 Vdc - 0.4 Vdc - - Vdc 2.4 8 - 8 - 1 - - - - - 11 12 - - - - - - - - 11,12 - - - - - - R,x(3; V,xC! 1)(4 Ix> - - 12 - - - 11 12 - - - - V, V. 1 VRH V'H V" 13 - - - 1 - - - - - - - - - - - - - .e: Gnd 14 141 - - 2,3,4,5,6, 7,9,10,13 - 14 1,2,3,4,5,6, 7,9,10,13 - - - 14 1,2,3,4,5,6, 7,9,10,13 1,13 - - 14 2,3,4,5,6, 7,9,10,13 14 14 Output OUtput Voltage 8@ V OH Short",Cireuit Current I 8 2.' Vdc Vdc 2.4 8 -20 -55 mAde -18 -55 mAde IIPDH I. - 14 mAde - I. mAde IpDL 14 - 11 ' mAde - 11 mAde 1lsc 2 .• Vdc 8 - - - - - - 1,13 - - - 3,5 10,13 - 1,2,4,9 - 14 14 - - - - - - - - 1,2,3,4,~ - I -I - 1 - 1 13 Power Requirements Power Supply Drain Switching Parameters I Turn-On Delay 1 tpd_t Turn-Off Delay "'*Tested only at 25 QC CD See Figure 1. ® See Figure 2. @ See Figure 3. Pulse In tpd+i 1,8 - 1,8 l' Expander pms open 11** 11** ns ns - 11** 11** ns ns 1 1 - - - - - 5,9,10,13 - - 8 l - 1 - 1 - 1 - - - 1 1 - - 1 - - 1 - - 13 1 1 -I - 2,3,4,5,6, 7,9,10 14 1 1,2,3,4,5,6, '1,9,10,13 I-I - I. -I - 114 - - Pulse Out 8 - - 114 1 - I. 14 1,2,3,4,5,6, 7,9,10,13 1,2,3,4,5,6, '1,8,9.10,13 1 1,2,3,4,5,6. 7,9,10,13 -I - I - - 2,3,4,5,6, 7,9,10 2,3,4,5,6, 7,9,10 MC3132, MC3032 (continued) I FIGURE 2 - VBE TEST CIRCUIT FIGURE 1 -lEX TEST CIRCUIT ------..,I I I I lEX + -=- ~- VEX FIGURE 3 - VOL TEST CIRCUIT lr------.., I I I I 8 • MC3100/MC3000 series 4-WIOE 2-2-2-3-INPUT "ANO-OR-INVERT" GATE MC3133F • MC3033F MC3133L • MC3033L,P (54H54J) (74H54J,N) This device consists of four 2-2-2-3-input AND gates ORed together and inverted. 14 Vcc 2.8 k n 1:3 1 2 :3 ~ ~ 2.8 k 2.8 k 7JlT. 1 2.8 k 1:3 760 ~ I 58 ~~ I 2 :3 5 8 6 9 f... 10---.._../ 4 Positive Logic: 500 250 5 6 l 9 10 8 4 8 = (13 '1) + (2' 3) + (4.5 .6) + (9 '10) Negative Logic: 8 = 13 4k + 1)' (2 + 3)' (4 + 5 + 6). (9 + 10) Input Loading Factor = 1 Output Loading Factor = 10 Gnd Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time = 7 ns typ Pin numbers for the 54H54F174H54F device are DEVICE shown in the chart. These devices are available on special request. MC313:3F.L/3033F,L,P 54H54F174H54F 9 1 10 11 14 12 13 2:3 14 4 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX +2.4 V Vcc ,+ 280 7.0 ns ,- 7.0 ns ir---J-t-:=;--3.0 V MMD6150 PW = 50% Duty Cycle t+=7.0ns t-=7.0n5 or Equiv OV tP~_ 'pd+ «2.4V 50 MMD7000 or Equiv CT := 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delavs from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General Information section for packaging. TPout 1.6 V ----==='--=-::::-=-~~d4 V :s: n ELECTRICAL CHARACTERISTICS w .w Test procedures are shown for only one input of this device. To complete testing, sequence through remaining inputs in the same manner. 13 1 2 3 4 5 :s: n w ~ 8 w ~ Characteristic Pin Under Symbol Test Input Forward Current Leakage Current Breakdown ,W Volt~ge Clamp Voltage IF 1 IR 1 - BVln 1 VD Short-Circuit Current -1. 6 1.0 -10 0.4 2.4 4.0 2.0 0.8 5.0 4.5 5.5 [ 20 -1. 6 1.0 -10 0.4 2.4 4.0 2.0 0.8 5.0 4.75 5.25 VR VRH 1 - - 1 IOL IOH I;. ID VF - - - 13 - - - 14 7 - - - - - 14 2,3,4,5,6 7,9,10,13 - - - - - 14 2,3,4,5,6 7,9,10,13 - - - 14 - 7 - 1,13 - - 14 - 3,5, - 1,2,4,9 - 14 - 7 - - - - 14 1,2,3,4,5,6, 7,8,9,10,13 - - - - 14 7 1,2,3,4,5,6 7,9,10,13 Vcc VCCL VCCH MAde - 50 MAde - 5.5*· - mVdc 5.5" - mVde - - 1 - - - 1 - -1. 5** mVde - -1. 5 mVde - - - 1 - - VOL 8 - 0.4 Vde - 0.4 Vde 8 - - - VOH 8 2.4 - Vde 2.4 - Vde - 8 - - - Ise 8 -40 -100 mAde -40 -100 mAde - - - - - - - IpHH 14 - 14 mAde - 14 Ill:Adc - - - 1,2,3,4,6, 5,9,10,13 14 - 11 mAde - 11 mAde " - - - - IpDL - - - - - - - 14 Pulse In Pulse Out - Gnd 2,3,4,5,6 7,9,10 10,13 Tur_n-On Delay t pd _ 1,8 - u** ns - 11** ns 1 6 - - - 13 - - - 14 - - Turn-Off Delay tpd+ 1,8 - 11** ns - 11 ** ns 1 6 - - - 13 - - - 14 - - "Tested only at 25°C !:: V1L -2.0 Switching Parameters ::J V1H - mAde ::J !:!'. TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: mAde -2.0 Power Requirements Power Supply Drain 20 50 Output Output Voltage MC3133 Test Limits SS to +12SoC Min Max Unit MC3133 MC3033 MC3033 Test Limits oto +7SoC Min Max Unit g IOL TEST CURRENT /VOLTAGE VALUES (All Temperatures) rnA Volts VF VR VRH V1H V1L Vcc VCCL VCCH I;. ID IOH 2,3,4,5,6 7,9,10 2,3,4,5, 7,9,10 • • MC3100/MC3000 series EXPANDABLE 2-WIDE 4-INPUT "AND-DR-INVERT" GATE MC3134F e MC3034F MC3134L e MC3034L,P (54H55J) (74H55J, N) 14 VCC 9 2.8 k 2.8 k This device consists·of two 4-input AND gates ORed together and inverted. The emitter and collector nodes of the OR stage are brought out to provide expansion capability to a 6-wide AOI gate using the MC3130/3030 or MC3118/3018 expanders. 760 58 2 3 4 8 10 11 8 12 2 3 4 13 5--------------~ 9----------------~ 10o-+-t+l---""'" 11 o-n-+-+------H 12o-~rt_r-----+--H Positive Logic: 13o-~rt_r-----+-n~ 8= (1 e2e3e4)+ (10ell e12e13) + (Expanders) Negative Logic: 8 = (1 + 2 + 3+ 4)e (10+ 11 + 12+ 13) e (Expanders) GNO 5 Pin numbers for the 54H55F174H55F device are shown in the chart. These devices are available on special request. 7 I nput Loading Factor == 1 Output Loading Factor = 10 Total Power Dissipation = 30 mW typ/pkg Propagation Delay Time = 7.0 ns typ DEVICE MC3134F,Ll3034F ,L,P 8 9 10 11 5 54H55F174H55F 6 12 13 14 784 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VIHX Vcc +2.5 Vdc 280 t+ 7.0 ns t- 7.0 ns ....--.J--+=~3.0 V MM06150 or Equiv OV PAF: 1.0 MHz typ PW = 50% Duty Cycle MMD7000 or Equiv t+ ;: 7.0 ns t-=7.0n5 1--1 t~ 1~+~2.4V ~- TP out -----====-=-=-=-=-=-~~d4 CT = 25 pF =total parasitic capacitance, which includes probe, wiring, and capacitances. load ' The coax delavs f;om input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 9SO-ohm resistor anu the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. See General I nformation section for packaging. V ELECTRICAL CHARACTERISTICS s: (") Test procedures are shown for only one W .... input of the gate under test. To complete testing, sequence through remaining inputs. .~ s: (") 2 3 4 ~ W 10 11 12 13 .jlo. nO TEST CURRENT /VOLTAGE VALUES (All Tamparaturas) Ohms 5-----9------ ::J ~. VCCH MC3134 MC3034 MC3034 Tast limits o to +75°C Min I Max I Unit Characteristic Input Forward Current -2.0 mAde Leakage Current 50 )..lAde ::J 5.5 C 5.25 a.. CD TEST CURRENTIVOlTAGE APPLIED TO PINS LISTED BElOW, 10l 10H I;" 10 I IXl 1X2 1X3 IX4 I REX'@I VEX(j) I V, I v. V'H VCCH 2,3,4 14 14 Gnd 2,3,4.7, 10,11,12,13 Breakdown Voltage 14 Clamp Voltage Vdc Expander Input Current -6.3 mAde Base-Emitter Voltage 1.0 Vd, 0.4 Vd, 0.4 Vdc 5,9 2,3,4,7, 10,11,12,13 7 14 14 1,2,3,4,7, 10,11,12.13 14 1,2,3,4,7, 10,11,12,13 14 7,10,11,12,13 14 1,2,3,4,7, 10.11,12.13 Output Output Voltage VOL I VOH I 1SC I 8@ 0.4 Vd, 0.4 Vd, 2.4 2.4 Short-Circuit Current ·40 -100 Vd, 2.5 Vdc 2.5 mAde ·40 1,2, 3,4 1,2, 3.4 2,3,4, 11,12,13 Vdc . I . 14 I 1,10 14 Vdc -100 mAde 1,2,3,4,.7. 10,11,12.13 14 1,2,3,4,7, 10,11.12.13 Power Requirements Power Supply Drain IPDH 14 12 IpDL I 14 6.4 1,8 11** 14 1,2,3,4,10, 11,12,13 14 1,2,3,4,7, 10,11,12,13 Switching Parameters In Turn-On Delay tpd_** I 14 7,10.11,12,13 14 7,10,11,12,13 111"1 Turn-Off Delay t pd +**11,8 11** I I 11 ** **Tested only at 25~C CD See Figure 1. CID See Figure 2. @ See Figure 3. II • MC3100/MC3000 series "AND" J-K FLIP-FLOP MC3150F • MC3050F MC3150L • MC3050L,P Information may be applied to, or changed at the J and K inputs any time in a clock cycle, except during the interval of time between the Set up and Hold times. The inputs are inhibited when the clock is high; data is entered into the input steering section of the flip-flop when the clock goes low. The input steering section of the flip-flop continually reflects the input state when the clock is low. Data present during the time interval between the Set up and Hold times is transferred to the bistable section on the positive edge of the clock and the outputs Q and respond accordingly. The flip-flop can be set or reset directly by applying the high state to the SET or RESET inputs. This J-K flip-flop triggers on the positive edge of the clock. An AND input geting configuration formed by three J inputs AN Oed together and three K inputs ANDed together, minimizes the requirements for external gating. The enable input (JKI consists of a J and 8 K input internally connected together. This input provides gating for the J and K inputs or an additional logic input for use in counters or other applications. A direct SET and RESET are provided to permit presetting data, such as initial conditions into the flip-flop. The direct SET and RESET fully override the clock; i.e., the direct SET and RESET control the operation of the flip-flop regardless of the state of the clock. SET a 9'-----------, J3 4 LOGIC DIAGRAM RESIOT J2 3 Jl 2 8 CLOCK 13+----1 JK 1 Input Loading Factors: J, K, SET, RESET = 0.75 CLOCK, JK = 1.5 Output Loading Factor == 10 Kll0 6 K211 K312 RESET 5------..J J=J1.J2.J3_JK K = K 1 • K2. K3. JK TRUTH TABLE , , SET Q" a nol , , , ,, , ,, ,, ,, , 0 0 0 0 0 0 0 0 Typical Characteristics (Vee = 5.0 V, TA Logical "1" Setup Time = 10 ns Logical "0" Setup Time"" 5.0 ns Logical "1" and "0" Hold Time = 5.0 ns 0 tpd_ = 12 0 0 0 tpd+ ns = 14 ns 0 0 0 14 VCC 5 6C>---~-------4 5c>-~--I+-J r Gnd 7 Q ~---~---O8 '---~- SET __--o 9 CLOCK 13~~-~+---------~--------+-- Jl 2o-~---+~JII'(1 J2 3 ~+- Jl J2 K1o--~-, J3 K3 4k 4k 5 7 Gnd B 6 Q a 13 9 a::OcK Se.08".rIl1 Information .ctlon for packaging. ,.hap;;?;;:>#..... "ax. A 11M: • ELECTRICAL CHARACTERISTICS mID J3 12 J2 11 J1 10 CLOCK JK J Q w ~ U'I ~ 8 @ K3 RESET K Cl mAde 10H lin 10L -S5"( 20.0 -2.0 20.0 -2.0 20.0 20,0 20.0 -2.0 20.0 -2.0 MC3lS1 6 4 5 Test Temperature 13 1 ~~ ~ MC30S1 t +2S"C +12S'C t O"C +25"C +75"C Forward Current K J JK JK Set ReSel Ci'Oci{ CIOCI{ Reverse Current K J JK 'R sa Reset CloCK Breakdown Voltage K J JK BVill Set Reset Clock Clamp Voltage K J JK Vo -1.5 -1. 5 -3.0 -1. 5 -1. 5 -3.0 -3.0 -4.0 -4.0 -4.0 -4.6 -4.6 -4.0 -4.6 -4.6 -1. 5 -1.5 -3.0 -3.0 -4.0 -4.0 -4.6 -4.6 50 50 100 140 140 145 50 50 100 140 140 145 50 50 100 140 140 145 -1.5 2 10 1 1 9 5 13 13 -1.5 -3.0 -3.0 -4.0 -4.0 2 10 1 9 5 13 2 10 1 9 5 13 -1.5 -1.5 -1.5 mAde -1.5 -3.0 -4.6 -4.6 -3.0 -3.0 -4.0 -4.0 -4.6 -4.6 50 50 100 140 140 145 50 50 100 140 140 145 50 50 100 140 140 145 -3.0 0.4 1.1 2.0 2.4 4.0 4.5 5.5 5.0 1.1 1.8 2.4 4.0 4.5 5.5 5.0 -2.0 0.4 0.8 1.8 2.4 4.0 4.5 5.5 5.0 -2.0 0.4 1.1 2.0 2.5 4.0 4.75 5.25 5.0 0.4 1.1 1.8 2.5 4.0 4.75 5.25 5.0 0.4 0.9 1.8 2.5 4.0 4.75 5.25 5.0 1.0 ReSet -10 I.. ID -3.0 -4.0 -4.0 -4.6 -4.6 V, V" V,H VR VRH 2 10 1 1 9 5 1,3,4,5,9,13 1,5,9,11,12,13 2,3,4,5,9,10,11,12,13 2,3,4,5,9, IO,H, 12,13 1,2,3,4,5,10,11,12,13 13 1,2J3J4,~,9, 10,11,12 1,2,3,4,5,9,10,11,12 VCCL VCCH 2 10 l' 9 5 13 "r Voltage Short Circuit Current rSC 0 ~ 7.0 ~. ~ Vm . . . 1 1 1 14 -1. 5 2 Vde 1 1 1 2 10 1 9 5 13 0.4 0.4 D•• 0.4 2.4 2.4 -20 -20 2.4 2.4 -65 -65 -20 -20 0.4 0.4 -65 -65 -20 -20 0.4 0.4 2.5 2.5 2.4 2.4 -65 -65 -20 -20 -65 -65 0.4 0.4 0.4 0.4 2.5 2.5 -20 -20 2.5 2.5 -65 -65 -20 -20 -65 -65 Vde 1 l 14 14 14 14 Power Requirements (TDtal Device) Maximum Power CUrrent Gnd 14 Vde Vde mAdc mAdc (1) 1,3.4.5.7.9.13 1.5.7.11.12.13 2,3,4,5,7,9,10,11,12,13 1,2,3,4,7,10,11,12,13 1,2,3,4,7,10,11,12,13 1,2,3,4,5,7,9,10,11,12 1 -1. 5 c: 1.3.4.5.7.13 1.7.9.11.12.13 2,3,4,5,7,9,10,11,12,13 1.2.3.4.7.13 1.7.10.11.12.13 1,2,3,4,5,7,9,10,11,12 10 VOL VOH ~ 0- 14 Output ~tput W 0 U'I 7.0 j 1,2,3,4,10,11,12,13 13 Vee S n Vmax 14 Vde 5.5 5.5 1 9 5 13 Clock VCCL VCCH VCC 0.4 10H 10 set V, TEST CURRENT!VOLTAGE VALUES V.lts V,L V,H VR VRH TEST CURRENT !VOLTAGE APPLIED TO PINS LISTED BELOW, SV1"b.l~ 'F 10 1.0 -10 Pin Characteristic Input S n I; 7,13 7,13 7,]3 7,13 14 14 5,6,7 7,8,9 1,7,9,13 1,7,9,13 "'Momentary ground before making measurement. If pin number appears in other column, it should be returned to voltage. .e: MC3151, MC3051 (continued) I OPERATING CHARACTERISTICS High state data must be present 12 ns prior to the fall of the clock and remain 5.0 ns afterthe clock signal rises. Negative edge triggering: When the clock goes from the high state to the low state, the information in the input steering section is transferred to the bistable section. The direct SET and RESET inputs may be used any time, regardless of the state of the clock. If these inputs are not used THEY MUST BE TIED to a voltage between 2.0 and 5.5 Vdc. Unused Inputs: JK input MUST be in the high state to enable the clocked inputs. When the JK input is not used, it should be tied to a voltage between 2.0 and 5.5 Vdc. Unused J inputs should be tied to used J inputs, the used JK input, a, or a voltage between 2.0 and 5.5 Vdc. Unused K inputs should be tied to used K inputs, the used JK input, a, or a voltage between 2.0 and 5.5 Vdc. Unused SET and RESET inputs MUST be tied to a voltage between 2.0 and 5.5 Vdc. FIGURE 1 -MAXIMUM CLOCK FREQUENCY TEST CIRCUIT VIHX = +2.5 Vdc Vee Coax 280 950 ±1.0% TP out PULSE GENERATOR o----i"'/-.-.. t+=7.0ns 50 t- "'" 7.0 ns Maximum Clock Frequency = 40 MHz min PW :: 50% Duty Cycle CT = 25 pF =total r MMD6150 or, EqUiv. MMD7000 or Equiv. • A load is connected to each output during the test. parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. WAVEFORMS AND DEFINITIONS TP out • MC3151, MC3051 (continued) OPERATING CHARACTERISTICS (continued) FIGURE 2 -SWITCHING TIME TEST CIRCUIT (For J inputs and RESET input; to test other inputs. refer to Test Procedures Chart) Letter designations refer to waveforms Coax Vee VIHX = + 2.5 Vdc Coax shown below: 280 9S0 950 ±1.0% ± 1.0% B. e.D. E TP out MMD61S0 O---1,:::/-~--t or Equlv. TPin PA F = 1.0 MHz typ t+ = 7.0ns t- = A SO MMD7000 7.0 ns or Equiv. = F Three pulse generators are required and must be slaved together to provide the waveforms shown. • A load is connected to each output during the test. CT = 25 pF =total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. VOLTAGE WAVEFORMS AND DEFINITIONS A 3.0 V 1.S V TEST PROCEDURES CHART B 3.0 v--tr-,....-..I I I OV I 1.5 V I ---: tHold "1" D3.0v~~ns I 1.S V OV ~tSet"O" . -.! I I E 3.0 V tHold "0" r---- I OV "O I I G 3.0V tPd •• 1 I o V---+---' I I H 3.0 V----i~r-., o V "tpd .. o.~q J tHold "1" J "ts.t"O" J SET"I RmT"1 K"I 2.4V D Gnd G God ~o.4V :i!2.4 V Gnd !>:0.4V ~2.4V J Gnd 2.4 V G tHold "'" K Gnd 2.4V G ts.t "0" K Gnd 2.4V tHold "0" K Gnd 2.4 V ..,.. 2.4V I I "d··O·· 1.5 V ---- l-J1.S V W t S d "1" '2 ~2.4V So.4V ~2.4V ~O.4 Oelev from CCOCK to Q during DeI.V from CLOCK to Q during '2 V tset "1" J teSt. CC6CK to a during Wt "1" '2 '8 K tIIst. Wt"'" J tIIlt. '8 D ....,from~to Q during tut"1" K test. f.t",,, I I D M.. '2 2.4 V 2.4V K I I G tHold "0" 500 ns==-t30 nsl._ _ __ R. Min ts.t"1" ",. ••0". _\....3"1.5 V a" God DeleV from 30 ns I ts.t-"1" ",. o V -1"---;:...., F 3.0 V J" TEST e 3.0V~0.ns., OV LlMITS(ns INPUT I--tSet "1" I ~"O" DeI.V from lET to Q durin" Wt ."" K test. "Dllev from REiE'f to Qdurlngtut "'" J test. DeIIV from SeT to Q during ~ "1" K tut. RElET to Q during Wt "'" J . .t. DeJey from ··L.-tten thown In th.- column. mer to WlVWformi at tile left. '8 '8 MC3100/MC3000 series "ANO"INPUT JJ.KK FLIP-FLOP MC3152F • MC3052F MC3152L • MC3052L,P This is a master-slave J-K flip-flop that triggers on the positive edge of the clock. The flip-flop has an AND input configuration consisting Information is normally apl'l ied to, or changed at, the clocked inputs while the clock is in the high state, since the inputs are inhi- of two J-inputs and a J..input ANDed together and two K-inputs and bited under this condition. a K-input ANDed together. An enable input (JK) is also provided master flip-flop section when the clock goes low. Once input data has been stored in the master flip-flop section it cannot be removed (or changad) by means of the clocked inputs. The direct SET or RESET provide the only means of removing previously stored information. The state of the master flip-flop is transferred to the slave flip-floP section on the positive transition of the clock and the outputs respond accordingly. The flip-flop can be set or reset directly by applying the low state to the direct SET or RESET consisting of an additional J and K input internally connected tow gether. This input provides gating in addition to the clock for the clocked inputs (J, J, K and K) or an additional logic input (JK) for use in counters or certain other applications. A direct SET and RESET are provided to enable presetting data into the flip-flop such as initial conditions. The direct SET and RESET control the operation of the flip-flop regardless of the state of the clock. Information may be stored in the inputs. ~ LOGIC DIAGRAM J2 J1 CLOCK JK Kl ~----------~ 12 4 6 9'i>~t---~ Input Loading Factors: JK = 1.5 J, K, CLOCK = 0.75 SET. RESlrr = 2.25 Output Loading Factor = 10 3 18 11>".......--""-_. . L.~...J RESET 13--------__~ J = Jl . J2 . K = Kl • K2· J TRUTH TABLE K 0" "" ,, ,, ,, , ,, ,, , , , Typical Characteristics: \VCC= 5.0 V; T A = 2SoC) J3 . J K in· Total Power Dissipation = 75 mW/pkg Toggle Frequency = 40 MHz Logical "1" Setup Time = 10 ns Logical "0" Hold Time = 8.0 ns JK 0,,+1 tpd_ = 20 no 0' tpd+= 12ns Q 6k 1.2 k 1.2 k 6k 7 See Genaral Information section for packaging. . ,a;;u I ~ J2 ELECTRICAL CHARACTERISTICS J1 gK 12 @Tes! Temperature 10L ; ' of-<; CL.OCK JK J Characteristic 1~ -2.0 +25"C 20 -2.0 +125"( 20 -2.0 ooe 20 -2.0 20 -2.0 20 -2.0 MC3052 { +25"C +7SQ( 4 -1.5 -1.5 -1.5 12 3 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 :~: ~ I::~~~ :~: ~ I:!~~ -1.5 -1.5 -1.5 -1.5 -1.5 -l.SlmAde -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 I mAde '.e -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 I mAde I FJK -3.0 -3.0 -3.0 -S.,o -S.O -S.O I mAde I FS -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 I mAde IFJ 11 I FJ IFK 10 '.i\ 13 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 I mAde r.u 4 12 50 50 50 50 50 50 50 50 50 50 ;~ I~1~~ 'aK 3 11 50 50 50 50 50 50 50 50 50 50 ;~ I~!:~ lRJ 1.0 -10 1.0 -10 2.0 0.4 2.4 4.0 1.8 0.4 2.4 4.0 0.8 1.8 0.4 2.4 4.0 1.1 2.0 0.4 2.5 4.0 1.1 1.8 0.4 2.5 4.0 0.9 1.8 0.4 2.5 4.0 1.1 Vmax Vee VCCL VCCH 7.0 5.0 4.5 5.5 5.0 4.5 5.5 4.5 5.5 5.0 7.0 5.0 4.75 5.75 5.0 4.75 5.75 5.0 4.75 5.75 IOH II;. liD I V" I,V,H IV,I V. VRH U1 Vmox IVee IVee, IveCHIP,' 1,12 1,4 14 14 5,7,9,13 5,7,9,13 3 1,11 1,3 14 14 2,7,9,10 2,7,9,10 10 S,4,11,12 13 14 2,5,7,9,10,13 14 7,9,13 14 2,7,9 12 5,9 5,9 14 14 1,2,7,12 1,2,4,7 11 9,10 9,10 14 14 1,7,11,lS 1,3,7,13 14 50 50 50 50 50 I/lAde 50 50 50 50 50 I/lAde 'Re 50 50 50 50 50 50 I/lAde 'RJK 100 100 100 100 100 100 I/lAde 5,9,10 14 IRS 150 150 150 150 150 1501/lAde 1,4,10,12,13 14 3,5,7,11 150 150 150 HiO 150 150 I ).lAde 1,2,S,5,11 14 4,7,10,12 5,9 5,9 9,10 9,10 2,5,9,10,13 1,4,10,12,13 1,2,3,5,11 14 1,2,7,12 1,2,4,7 1,7.11,13 I,S,7,13 S,4,6,7,8,11,12 3,5,7,11 4,7,10,12 7 7 7 IRR 13 I BVin 4 12 3 5.5 5.5 10 Vo 14 14 13 Vd, 4 12 3 11 1 2 2 13 5 9 10 13 5 • 10 ,• -1.5 -1.5 12 3 11 11 5 10 9 5 1 2 13 Output 0.' 0.' VOL l:!1 : VOH =!g I:fgg Short-CircuitCurrentt ISC ~~:: Power IImax 14 3,4,6,7,8,11,12 14 Vd, 12 ~SI ~:ll ~~~ Il:!1 : lUI lUI: lUI: Inl I ~~~ I:1~ I:fgg I::g I:~gg I:~g I:~gg I :!g I:~gg I:!g I:i~~ I~~~~ 0.4 0.4 42 0.4 0.' 0.4 0.' 0.4 0.4 42 mAdc· is I 14 14 14 14 is ~s 14 14 - 14 N nO ::l :!'. c: ::l ~ 14 14 10 9 1 2 13 Power Requirements (Total Device) Gnd 14 1 Output Voltage 3l: 50 10 ....U1 n w o 4 12 11 3l: w n ~N TEST CURRENTIVOlTAGE APPLIED TO PINS LISTED BElOW, I 10l 11 Clamp- Voltage lin • 50 IRK BreakdownVoltage ! IOH -55°(.20 Pin Under Symboll Tes! f:-::-T=-:-'---I-cc:-=r-::"-I-:-:::c,=:-=--Io-::-r:'--I=::r:'---t=+"--1 Unit IFK Leakage Current a~ K 10 13 Input Forward Current MC31 52 mA TEST CURRENTIVOlTAGE VALUES Volts ID V1L V1H VF VR VIH 7,9 7,9 7,9 7.9 2.6,7 7,8,13 1,2,3,4,5,7,9,10,11,12.13 MC3152, MC3052 (continued) I OPERATING CHARACTERISTICS Data should be present prior to the negative clock transition. If data is changed from a "1" to • "0" while the clock is in the low stata, the flip-flop will not recognize this new data state. The application of a low level to the SE'f input sets a high and low level on the RESET input resets a low. These functions may be performed at any time without regard to the clock area. Positive edge triggering - When the clock goes from the low to the high state, the information stored in the master flip-flop section is transferred to the sIeve flip-flop section thus appearing at the outputs. When the clock is in the high steta, the inputs are inhibited. Unused J, K, and JK inputs should be tied together with used inputs, to the internally connected output, or to a voltage between 2.0 and 5.5 Vdc. The unused J and R inputs must be tied to ground. The unused SET and ~ inputs should be tied to a voltage between 2.0 and 5.5 Vdc. FIGURE 1 -MAXIMUM CLOCK FREQUENCY TEST CIRCUIT VIHX = +2.5 Vdc Vee Coax 280 950 ±1.0% ,JPout MMD6150 o---+"--iIIII-~ or Equiv. 50 t+ MMD7000 = 7.0 ns or Equiv. t-=7.0ns Maximum Clock Frequency = 25 MHz min .. A load is connected to each output during the test. CT "" 25 pF = total paraSitic capacitance, Which includes probe. wiring, and load capacitances. The coax delavs from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 95Q-ohm resistor and the scope termination Impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. WAVEFORMS AND DEFINITIONS TP out - J ,S¥4 ~, i , "i!RDhlU4U4tiJ4 MC3152, MC3052 (continued! • OPERATING CHARACTERISTICS (continued) FIGURE 2 -SWITCHING TIME TEST CIRCUIT (For J inputs and ~ input; to test other inputs, refer to Test Procedures Chart) VIHX = +2.5 Vdc Letter designations refer to waveforms shown below: VCC Coax Coax 280 950 ±1.0% 950 ±1.0% MMD6150 o-~.....-lo"'~' or Eq~iv. r PRF = 1.0 MHz typ 50 t+=7.0ns = 7.0 ns t- F Three pulse generators are required and MMD7000 or Equlv. * A load is connected to each must be slaved together to provide the output during the test. waveforms shown. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 960-ohm resistor and the scope termination impedance constitute a 20:1 attenuatar probe. Coax shall be CT-070-50 or equivalent. CT = 25 pF = total parasitic capacitance, which includes probe. wiring, and load capacitances. VOLTAGE WAVEFORMS AND DEFINITIONS A3.0 V OV B 1.5 V CLOCK' OV o U~1:~:~ msts) 3.0 V 1 " 0 TEST PROCEDURES CHART I ""=rFF"' oV INPUT TEST I ----1 D3'0V~~n' OV I 1.5 V r--tSetup "ON -: tHold "0" E 3.0 V : o V-I'-"";,;..J'I I :----500 n'==730 n01.,....._ __ 3.0 V I OV G 3.0 V : tpd+~ oV jJ r r H 3.0 V--BI -. ~ OV tpd_ J tHold"O" J 'tsetup"1" II; te.",p"1" J tHoId"O" J ts.tup"1" 1.5 V 30 ns F 'SetuP"'" tHold U1" .... _~1.5V I t::::r-. . tod- i ~_.5_V_ _ I I LJ1.5 ~ V tsd+ ::: :::: ::: ::5::~:: :::: ::~:: ~~~. Ctolayl.omcloc:ktoi5duringtsetup","J_t. C"I.y I.om clock 10 Q dud", 1!ietup "'" II; _ , . .... O.lay "011'1 mto Q dll.ln'ts..1up "1" II; 11111:• C••..,f.omJfElf'ftoli durl "ltslltUp"1"J_· 0eI"YfnlmSeT10QdurlntltsMuP "'" I( ",n. o.llIYfrom i!II"!Il'I'"toQdu.I"I'SIItUp "'" J_t.. ·1..IItbIr.lhown In th_ colllm ... ~.. to *-'orm •. MC3100/MC3000 series DOUBLE-EDGE-TRIGGERED MASTER-SLAVE TYPE D FLIP-FLOP MC3153F • MC3053F MC3153L • MC3053L,P This double-edge-triggered master-slave type D flip-flop accepts data on the rising clock edge and transfers it to the output when the clock input changes back to the logic "0" state_ A 4-wide, 2-2-2-3 input AND-OR gate is internally connec.ted to the D input of the flip-flop. This makes the device useful in forming shift registers using one package per""bit. 3 4 5 2 10 a 6 Q 8 11 13 12 DAI 3 DA2 4 DA3 5 9-------<1· OBI 1 DB2 2 DCl 13 DC212 VCC- 14 Gnd? 7 001 10 002 11 Input Loading Factor: o Inputs == 1 Clock Input == 2 Output Loading Factor = 10 9C Total Power Dissipation""' 100 mW typ LOW LEVEL "AND-OR-INVERT" GATE LOW-LEVEL "NAND" GATE Vcc Vcc 1k :t: Diodes only on inputs connected to external points. HIGH LEVEL "AND-QR-INVERT" GATE Vcc :t:Oiodes connected from each input to GND. See General Information section for packaging information. tiWO ;;;;;;; ., pq:4 I • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one ....W of the input AND gates. Furthermore only one input on the AND gate is tflSted. To complete testing. test other gates and inputs in the same manner. c.n _W s: (') ,lIDo 11 13 w o c.n w @Test Temperature 6 12 9 C Ci 8 MC3153 MC3053 Characteristic mAde 'Oll 10H { -55°C +25°C +125°C 20.0 -1. 6 - - 0.4 1.1 2.0 2.4 4.0 5.0 4.5 5.5 20.0 -1. 6 1.0 -10 0.4 1.1 1.8 2.4 4.0 5.0 4.5 5.5 I 7.0 20.0 -1. 6 0.8 1.8 2.4 4.0 5.0 4.5 5.5 { - 0.4 -1. 6 - - 20.0 0.4 1.1 2.0 2.5 4.0 5.0 4.75 5.25 20.0 -1. 6 1.0 -10 0.4 1.1 1.8 2.5 4.0 5.0 4.75 5.2517.0 20.0 -1. 6 - - 0.4 0.9 1.8 2.5 4.0 5.0 4.75 5.25 O°C +25°C +75°C MC3053 Test Limits Pin O°C I +25°C I +75°C I Under Symbol 1 Test f-::::-'T:";:-tC-T:-:"'-+:-::-=;:::=- Min IMax I Min IMax I Min I Max I Unit lin 'D nO TEST VOLTAGE/CURRENT VALUES vdc VIL V. V'H VR VRH VCC VCCL VCCH IVmax :l "" :;' c: ~ TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW: lOll I 10H I I," I I. I V. I VIL I V'H I VR I VRH IVccl VCCL IVCCHIVmaxl ,. IGnd' Input Forward Current Data IF Clock Reverse Current Data Clock Breakdown Voltage Data IR -1. 6 -3.2 -I. 6 -3.2 -1. 6 -3.2 -I. 6 -I. 6 -3.2 -3.2 -I. 6 -3.2 mAde mAde 14 14 40 80 40 80 40 80 40 80 40 80 40 80 p.Adc MAde 14 14 2,7* 9 5.5 5.5 Vdc Vdc 14 14 2,7* -1.5 -1. 5 Vdc Vdc BVin 5.5 5.5 Clock Clamp Voltage Data VD -1.5 -I. 5 CloCk 7 14 14 Output Output Voltage VOL VOH Power Requirements (Total Device) Maximum Power Supply Current 2.4 2.4 Imax 14 IpDH 14 s: (') 0.4 0.4 0.4 0.4 0.4 0.4 Vdc 1,2,3,4,5, 10,12,13 11 14 0.4 0.4 0.4 0.4 0.4 0.4 Vdc 1,2,3,4,5,10,11 12,13 14 3,4,5,10,11,12,13 13,4,5,10,11,12,13 1,2 2 14 14 I- ~:: I - 2.4 2.4 2.5 2.5 2.5 2.5 39 30 I - I 30 1 ;0 *Other input pins groWlded. **Apply positive pulse prior to taking measurement to set flip-flop in the desired state. 30 1- Vdc Vdc 2.5 2.5 I 39 30 30 mAde mAde Data Present --\25 nsfi=lVRH t----J L-GND - 1 -I 1 14 14 7* MC3153, MC3053 (continued) I Oata present at the D inputs 20 ns prior to and 5.0 ns following the rising edge of the clock pulse is stored in the flip-flop until the clock falling edge, when it is transferred to the outputs. The data may change any time except between the setup time (20 ns) and the hold time (5.0 ns) without affecting the outputs. OPERATING CHARACTERISTICS SWITCHING TIME TEST CIRCUIT 2.5 Vdc r----------, Vee I I Coax Coal( I 280 r-----,I 950 1.1.0% I 950±. 1.0% MMD6150 or Equiv W. Xo--..-+-'-I MMD7000 or Equiv U.Vo-~;-~------~e Two pulse generators are required and must be slaved together to provide the waveforms shown. • A load is connected to oach The pulse generator driving the clock must be operated output during the test. in the double pulse mode. ~etter designations refer to waveforms shown below: WAVEFORM SYMBOL U V W,X 1.0MHz 0.5 MHz PW 20MHz 50% Duty Cycle t+. t- 7.0 ns 30 ns 7.0 ns 1.0 ns f - CT ;:: 25 pF ::: total paraSitic capacitance, which includes probe, wiring, and load capacitances. The coax -delays from input to scope and output to scope must be matched. The scope must be terminated in _50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent. VOLTAGE WAVEFORMS AND DEFINITIONS 30ns U,V 3.0 v---v---.i OV W 3.0 v-f,...-!....... TEST PROCEDURES CHART OV 5.0 X n.~ -t~Old "1" INPUT I 3.0 V OV \ TEST Turn·On Delay _~20ns --tJtup "0" 5.0 nsy l 0.4 V ~ C tpd- V V Q Turn·Qff Delay -tHold "0" 2.4 V Q SYMBOL Q tpd+ Q f Toggle Frequency Gnd !-tpd_ a fTog Q V V U U D W Q Q LIMIT Z y X Y Z 35 ns max. X Y Z W Z Y . ..- .. - 35 ns max. 20MHz min. ·0 I nput connected to Q output. z 2.4 V 1 0.4 V ~ !-tpd+ * ·Output must change state wi1'h each input pulse. \ Gnd • JitQ£:::t.... Of·"" MC3153, MC3053 (continued) • APPLICATIONS INFORMATION LOGIC DESCRIPTION This flip-flop performs the 0 function, with input logic defined by the following equation: 6= 1.2+ 3.4.5+ 10.11 + 12.13 The operation of the flip-flop is as follows (refer to Figure 1). AssumeQis "0". To set a "1" on theQ output, "1" must be applied to all the inputs on either gate A, B, C, or D. When the clock goes high, a "0" appears on the output of gate G and a "1" appears on th.e output of gate H. However, because the other input to gate J comes from gate F, the output of J remains "0", and because of the input from gate G to gate I, the .output of gate I remains "0". When the clock goes low, the outputs of gates E and F go to "1". Thus gate J now has a "1" applied to both inputs and its output goes to "1". Since gate L now has a "1" applied to it. its output goes to "0", and this is coupled to gate K, which now has zero applied to both inputs causing it to go to a "1". The flip-flop has now switched and Q is a "1". Setting a "0" on the output may be followed through in a similar fashion. SYSTEM SKEW Clock skew in a system is one of the most difficult problems that the system designer must solve. Consider the clock driver circuitry shown in Figure 2. Clock skew between C1 and C2 could be caused by a number of factors, including unequalloeding, unequal wiring distances, and different turn-on and turn-off times between clock line driver getesthat may be in the circuit between C1 and C2. Most flip-flops that are presentlv available in integrated form do not allow the system deSigner to control the amount of skew in the system. With the MC3153/3053, system clock skew can be adjusted. Three basic types of flip-flops are now in use: (1) the chargecontrolled flip-flop, (2) the edge-triggered flip-flop, and (3) the master-slave flip-flop. Figure 2 is an example of a system in which the clock skew problem is encountered. The direct..,oupled shift register can be made with the two most common types of flip. flops - the negative-edge-triggered flip-flop or the master-slave flipflop. When negative-edge-triggered flip-flops are used to implement the shift register of Figure 2, the maximum allowable clock skew, Figure 3A, is the propagation delay from the falling edge of the clock to the output of flip-flop A minus the hold time of flip-flop B. It should be noted that the maximum propagation delay time and the minimum hold time from data sheets may not be used to calculate maximum allowable clock skew. Instead, the minimum propagation delay and maximum hold times must be used to calcu- late maximum clock skew to insure proper system operation over the entire temperature and power supplV variations expected. If the shift register of Figure 2 is constructed with master-slave flip-flops, the maximum allowable clock skew, Figure 3B, is the propsgation delay from the falling edge of the clock to the output of flip-flop A plus the time required to transfer and latch the inform .. tion into the master portion of flip-flop B. The minimum propaga. tion delay and latch times must be used in calculating the maximum clock skew to guarantee proper system operation. BV using MC3153/3053 double-edge-triggered master-slave type o flip-flops in the circuit of Figure 2, the maximum clock skew, Figure 3C, is the propagation delay from the falling edge of the clock to the outout of flip-flop A minus the hold time of flip-flop B plus the clock pulse width. In this case, minimum propagation delay and maximum hold time must be used in the skewcalcuJations. However, since the clock pulse width is part of the clock skew calculation, system clock skew can b- 2.8 k 2,8 2.8 k k " y I - T W r o 1 JIA • - 0 2 JIB ~ 7 GND ~ K2A '----------- 3 L----------f'::I:t±-<> 4 110--+1-.--------~ 120--±~~~--------J K2B 'lI'c~.~l ~~~ '- nCLOCK r 13 t See General I nformation section for packaging. ,.:m;;;;., , ,4 . t u,. J2A J28 MC3154, MC3054 (continued) • OPERATING CHARACTERISTICS Data must be applied to the J-K inputs while the clock is low. When the clock input goes to the positive logic "'" state, the data at the J and K inputs is transferred to the master section, where it is stored until the clock changes to the positive logic "0" state. Data at the J and K inputs must not be changed while the clock is high. When the clock returns to the positive logic "0" state, information in the master section is transferred to the slave section. Application of a logic "0" to the SET J!lQ.ut will force the Q output to the logic "'" state. The SET input overrides the clock. Since no charge storage is involved in this flip-flop, rise and fall times are not important to its operation. Clock fall times as long as '.0 Ils will not adversely affect the operation of the flip-flop. The clock pulse need only be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logic "''', is '2 ns minimum. SWITCHING TIME TEST CIRCUIT VCC +5.0Vdc 280 TP out MMD6150 or Equiv. PULSE GENERATOR 50 CLOCK = t- = t+ = 3.0 ns (10% to 90%) SET = t-= t+ = 7.0 ns (10% to 90%) f = 10 MHz for waveform A 1.0 MHz for waveforms B, E, and F ""I Two pulse generators are required and must be slaved together for testing SET. Only one pulse generator is required for J, K, and CLOCK tests . • A load is connected to each output during the test. CT = 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope- must be matched. The scope must be terminated in 50-ohm impedance. The 9SO-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatOr probe. Coax shall be CT -070-50 or equivalent. MMD7000 or Equiv. = 3: ELECTRICAL CHARACTERISTICS (1 ....en to) Test procedures are shown for only one J and one K input on each AND gate, plus ,~ the SET and CLOCK inputs. To complete testing, sequence through remaining J and K inputs in the same manner. SET J1A J1B J2A J2B s: (1 ~ i~··.· en ~ CLOCK 13 Q TEST CURRENT /VOLTAGE VALUES (All Temperatures) Volts 8 rnA Cnaraderistic no :J .... 06 Pin MC31S4 Test Limits SS to +12S'C Under Symbol Test Min Max Unit MC3JS4 MC30S4 MC30S4 Test Limits o to +7S'C Min Max Unit ::i' 101 10H lin VF Vo VOH VIH V" 20 -1.5 1.0 0.4 2.4 4.5 2.0 0.8 4.5 5.5 20 -1. 5 1.0 0.4 2.4 4.5 2.0 0.8 4.75 5.25 c ~ Vee1 VeeH TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: 101 10H lin VF Vo VOH VIH V" Vee, VCCH P •• A Gnd Input Forward Current "JIA' KIA 1 11 5 13 13 -2.0 -2.0 -6.0 -4.0 -4.0 mAde IRI 1 11 5 13 13 50 50 150 100 100 /JAde BV. m 1 11 5.5* 5 t IF set CiOCk Clock JIA KIA Leakage Current Set Ci'Ock Clock JIA KIA Set ClOCK Ia 13 CiOc'K -2.0 -2.0 ~ ~6.0 -4.0 -4.0 50 50 150 100 100 t Vde 5.5* J 1 mAde 1 11 5 13 13 t t 1 14 7,6 7 7 7 7,6 t 1,2,3,4,5,9,10,11,12 14 1 11 5 13 13 MAde Vde 2,13 5**,12,13 1,2,3,4,9,10,11,12,13 1,2,3,4,5**,9,10,11,12 2,5,7,13 5,6,7,12,13 6,7,9,10,11,12,13 1,2,3,4,5,7,9,10,11,12 1,2,3,4,5,6,7,9,10,11,12 t 1 11 5 13 13 14 2,5,7,13 5,6,7,12,13 6,7.9.10.11.12.13 1,2,3,4,5,7,9,10,11,12 1,2,3,4,5,6,7,9,10,11,12 1 Output Output Voltage 0.4 0.4 VOL Short-Circuit Current Y OH 6 8 2.4 2.4 ISC & -40 -40 0.4 0.4 Vde Vde Vde Vde 9,10,11,12 5 1,2,3,4 14 14 5 14 1,2,3,4 14 13 7,13 7 7,13 7 Yde Yde 2.4 2.4 -100 mAde -40 -100 mAde 1,2,3,4,9,10,11,12,13 14 5,6,7 -100 mAde -40 -100 mAde 1,2,3,4,5,9,10,11,12,13 14 6.7.81 30 30 mAde mAde 30 30 mAde mAde 1,2,3 ,4,5,9 ,10,11,12 14 14 1,2,3,4,5,7,9,10.11,12.13 7.1311 Yde Vdc 9,10,11,12 13 Power Requirements Power Supply Drain - _.- -. _._-- IPD 14 14 *Tested at 25°C only. **MomentarUy ground pin prior to taking measurement, then apply 4. 5 volts. t Limit duration of test to 100 ns. t t Momentary 4. 5 V then apply gnd. PA=JL405/ • MC3154, MC3054 (continued) • TEST PROCEDURES (Letters shown in test columns refer to waveforms.) INPUT SYMBOL TEST LIMITS Q Q I:! J, K S fTog A 2.4 V 2.4 V t t Turn-On Delay tpd_ B B 2.4 V C C Turn~Off Delay tpd+ B B 2.4 V 0 0 Turn-On Delay tsd- E 2.4 V F G H Turn-Off Delay tsd+ E 2.4 V F G H - 1'oggle Frequency Min Max Unit 25 - MHz - 27 ns - 21 ns 24 ns 13 ns t Output shall toggle with each Input pulse. VOLTAGE WAVEFORMS AND DEFINITIONS ,----""---------3.0 V GNO-..L--'------+->...---...;....---O.O V - - - - - - - - - + - - - , - - - - - - 2 . 4 V min C TP out 1.5 V GNO _ _ _ _ _ _ _ _ _t=--="~-=.!....:===:::O.4 V max _ _ _ _ 2.4 V min o TP out ==================0.4 = GNO V max 3.0V E TPin C05CK GNO 0.0 V 3.0 V F TPin SET O.OV GNO 2.4'V min G TP out 0.4 V max GNO H TP out J GNO 2.4 V min 1.5 V 0.4 V max • MC3100/MC3000 series "AND" INPUT J·K FLlP·FLOP MC3155F • MC3055F MC3155L • MC3055L,P (S4H72J) SEi' (74H72J,N) 13 - - - - - - , Jl J2 J3 3 4 5 8 CLOCK 12 Kl 9 K2 10 K311 RESET 2 - - - - - . . I tn This negative-edge-clocked J-K flip-flop operates on the master-slave principle. Three K inputs are ANDed together, and three J inputs are ANDed together. SE'F and RESET inputs are also available. The device helps minimize package count in J-K flip-flop applications requiring AND gating into the J or K inputs. tn+1 J K a 0 0 1 1 0 1 0 1 an 0 1 an J = Jl K = 6 • J2 • J3 Kl • K2 - K3 Input Loading Factor: J. K, CLOCK = 1 SET, RESET = 2 9 3 Jl K210 4 J2 K3'11 5 J3 Kl Output Loading Factor"" 1 0 Total Power Dissipation = 80 mW typ/pkg Propagation Delay Time = 10 ns typ Operating Frequency = 30 MHz typ Pin numbers for the 54H72F/74H72F device are DEVICE shown in the chart. These devices are available on special request. MC3155F,Ll3055F,L,P 54H72F174H72F 6 2 5 3 5 9 4 8 6 CIRCUIT SCHEMATIC .------~--~~------1~--~-~---_.----_o14 VCC 58 760 2.8 k 2.8 k 58 760 a H--06 80--"",,, 470 13O---~--_'----------~ SET ~----~~----,-~----o2 r---1~--~r-~~------~t-~---~~-+-., 2.8 k 2.8 k ~ 2_8 k 2.8 k KI90----... ; - - - - 0 3 Jl K210o---...J K3 11 0-------1 '-----04 J2 '------05 J3 .. L---t--------------1~-~ te~-t_----07 Gnd CLOCK 12 See General I nformation section for packaging. $i.li!Q4AU ¥#4A "¥if 'WM. MC3155, MC3055 (continued • OPERATING· CHARACTERISTICS Data must be applied to the J·K inputs while the clock is low. When the clock input goes to the positive logic "1" state, the data at the J and K inputs is transferred to the master section, where it is stored until the clock ·changes to the positive logic "0" state. Data at the J and K inputs must not be changed while the clock is high. When the clock returns to the positive logic "0" state, infor· mation in the master section is transferred to the slave section. Application of a logic "O"to the SET input will force the Q output to the logic "1" state, and application of a logic "0" to the RESET input will force the a output to the logic "1" state. The SET and RESET inputs override the clock. Since no charge storage is involved in this flip·flop, rise and fall times are not important to its operation. Clock fall times as long as 1.0 Ils will not adversely affect the operation of the fl ip· flop. The clock pu lse need only be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logic" 1", is 12 ns minimum. SWITCHING TIME TEST CIRCUIT Vee +5.0Vdc Coax 280 TPin MMD6150 or E,quiv P\JLSE GENERATOR -= t- = t+ ';;7.0 ns (lO% to 90%) f = 25 MHz for waveform A 1.0 MHz for waveforms e, E,-and MMD7000 or Equfv ~I F -= Two Pelse generators are required and and R SET. must be slaved together for testing ru Only one pulse generator is required for J, K, and CLOCK tests. -A load is connected to each output during the t85:1:. CT = 25 pF = total parasitic capaci'lance. which includes ~rObe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm reSistor and the scope termination impedance (:onstitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. s(') ....W ELECTRICAL CHARACTERISTICS Test procedures are shown for only one J and one K input, plus the SET, RESET, and CLOCK inputs: To complete testing, sequence through remaining J and K inputs in the same manner. Jl .ID . Q 8 0: 6 Input J K IF set Reset Clock J K ~1 Set Reset Clock J K BVin Set Reset Clock 3 9 13 2 12 ·12 3 9 13 2 12 3 9 13 2 12 Output Output Voltage Short-Circuit Current -- - 5.5" -2.0 -2.0 -4.0 -4.0 -2.0 -2.0 mAde 50 50 100 100 50 /LAde - Vde I 1 - - 5.5** -2.0 mAde -2.0 -4.0 -4.0 -2.0 -2.0 I 50 50 100 100 50 /LAde - Vde 1 ! !!- ! - - - VOL 6 8 - 0.4 0.4 Vde Vde - VOH 6 8 2.4 2.4 - Vde Vde 2.4 2,4 ISC 6 8 -40 -40 -100 -100 mAde mAde -40 -40 IPD 14 14 25 25 mAde mAde - Power Requirements Power Supply Drain IOL MC3155 20 MC3055 20 Pin MC3155 Test Limits MC3055 Test Limits oto +75°C S5 t~ +125?C Under Symbol Test Min Max Unit Min Max Unit IOL Characteristic Leakage Current S n w o 3 SEi"13 Forward Current (J1 ~(J1 - -- Vde Vde - mAde mAde 1.0 0.4 2.4 4.0 2.0 0.8 4.5 5.5 -2.0 1.0 0.4 2.4 4.0 2.0 0.8 4.75 5.25 IOH lin - - - - - -- - - - VF 3 9 13 2 12 12 - - 3 9 13 2 12 - 6 - -- - 8 - - nO ::J ~. ::J c: ~ TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: - - -2.0 - 6 8 25 25 lin -- Vde Vde -100 mAde -100 mAde rnA IOH --- 0.4 0.4 U1 U1 TEST CURRENT /VOLTAGE VALUES (All Temperatures) Volts VR VRH VF ¥IH VIL VCCL VCCH - - - - - 3 9 13 :I 12 - - - -- - - ... VR -- - ---- VRH VIH V1L 2~ 4,5, 12 10,11,12,13' 3,4,5,9,10,11 3,4,5,9,10,11 2~ 3, 4, 5~ 9,10,11 3,4,5,9,10,11, 13* - - - - - - - - - - - - VCCL VCCH - 14 7 I j - 14 - 1 - - - 14 2 13 13 2 14 14 13 2 2 13 14 14 - - - - - - - - - - - - __ Gnd ! 2,4,5,7,12 7,10,11,12,13 7,9,10,11,12 3,4,5,7,12 2,3,4,5,7,9,10,11,13 2,4,5,7,12 7,10,11,12,13 7,9,10,11,12 3,4,5,7,12 2,3,4,5,7,9,10,11,13 7 7 - 7 7 14 14 2,6,7,12 7,8,12,13 14 2,3,4,5,7,9,10,11,12 3,4,5,'1,9,10,11,12,13 - - - - - - - -- -_. - - - - 14._ *Momentarily ground pin prior to taking measurement. "Tested @ 25°C only. • MC3155, MC3055 (continued) • TEST PROCEDURES (Letters shown in test columns refer to waveforms.) TEST SYMBOL INPUT c J, K A 2.4 V 2.4 Toggle Frequency fTog A fj a a V t S LIMITS Min Max Unit t 26 - MHz Turn-On Delav tpd- B B 2.4 V 2.4 V C 0 - 27 ns Turn-Off De.lay tpd:t- B B 2.4 V 2.4 V C 0 21 ns Turn-On Delay tsd- 2.4 24 ns Turn-Off Delay tsd+ Enable Voltage '* I nhjbit Voltage-(:( V E F G H - 2.4 V 2.4 V E F G H 10 13 ns VEN B 2.0 V 2.4 V 2.4 V t t t VINH B 0.8 V 2.4 * * * - - V 2.4 V 2.4 V t Output shall toggle with each input pulse. :t:Output shall NOT,toggle. * Tested at all temperatures. VOLTAGE WAVEFORMS AND DEFINITIONS J.:----"'li::=b.:c=-----3.0 V A TPin CLOCK Gnd -~~---------+~~~----,OV ~+-"""",----3.0 V B Data 1.5 V Input Gnd ----~--+---~~--OV - - - - - - - - - t - - , - - - - - - 2 . 4 V inin C TP out tpd_ Gnd tpd+~,2.4 V min 0 r'·5V TP out Gnd ::::::::::::::::::::============'0.4 Vmax ~-----------3.0 E V TPin i'iESEf Gnd ---~----~Lf------------OV F 3.0V TPin SET Gnd ---+~====~~======~~----L+---OV , - - - - - - - - 2 . 4 V min G TP out Gnd --+----'':::::::::::::::::::::::::::::::=I=~---------O.4 V max tSd+r I -'/.5 V HTP ~----------"\.-+--------2.4 out Gnd V min 0.4 V max MC3100/MC3000 series DUAL TYPE D FLIP-FLOP MC3160F • MC3060F MC3160L • MC3060L,P This dual flip-flop triggers on the positive edge of the clock and performs the Type D flip-flop logic function. This device consists of two completely independent Type D flip-flops, both heving direct SET and RESET inputs for asynchronous operations such as porallel data entry in shift register applications. Information may be applied to, or changed at, the D inputs any time during the clock cycle except during the time interval between the Setup and Hold times. The clocked inputs are inhibited when the clock is high and data may be applied to the input steering section of the flip-flop when the clock goes low. The 1/2 OF DEVICE SHOWN 14 input steering section continually reflects the input state being applied when the clock is low. The information present at the inputs during the time interval between the Setup and Hold times is transferred to the bistable section on the positive edge of the clock, and the outputs Q and Q respond accordingly. The flip-flop can also be set or reset directly at any time, regardless of the state of the clock, by applying a low state to the direct SET or RESET inputs. SET4~ o 2 O. 5 CLOCK 3 Q 6 i'fE"SE'f 1 SET10~ o 12 a 9 Q CLOCK 11 . 8 RESET 13 TRUTH TABLE 0 on On+1 0 0 1 1 0 0 0 1 1 1 0 1 on+1;;; On Input Loading Factors: LOGIC DIAGRAM RESETo-~--------~r----------' 1/2 OF DEVICE SHOWN SET-l.15 RESET - 1.7 CLOCK- 1.5 0-0.75 Output Loading Factor;;; 10 O~--,--, Typical Characteristics: (VCC=5.0 V, TA:=l:2S0C) CLOCKo-----------~~ Total Power Dissipation = 120 mW/pkg Toggle Frequency = 30 MHz Logical "1" Setup Time = 10 ns Logical "0" Setup Time;;; 5.0 ns a Logical "1" and "0" Hold Times tpd_ = 17 ns tpd+ = 15 ns SETo-~------------------~ sea General Information section for packaging = 5.0 ns • • ELECTRICAL CHARACTERISTICS flip-flop_ The other flip-flop is tested in 4~ a 5 SET D 2 CLOCK 3 RESET 1 the same manner. 0: ~~ 6 Test Temperature 0: 8 RESET 13 MC3060 10H 20 -2.0 20 -2.0 20 O°C +25°C +75°C Pin Under f--,-,"":;'::"':"+""':;r:-,.:,-+~'T=-~J-,-,."="':=-O--+""':;::"":-+-""':'-r,..:~ Symbol Test Unit Characteristic Input Forward Current Leakage Current Breakdown Voltage i FC -3.0 -3,0 -3.0 -3.0 -3.0 -3.0 I mAde IFD -1. 5 -1. 5 -1. 5 -1. 5 -1. 5 -1. 5 I mAde ~s -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 I mAde ~R -3.4 -3.4 -3.4 -3.4 -3.4 -3,4 I mAde 1 + t -......---o4~ J 30----+--4 See General Information section for packaging. t----I----o2 K 3: ELECTRICAL CHARACTERISTICS (') Test procedures are shown for only one flip·flop. The other flip-flop is tested in the same manner. SET .~ W ~ Q') 5 Test Temperature 9 MC3162 t IOL 20 -2.0 1.0 -10 0.4 2.4 4.0 7.0 4.5 5.5 t 20 -2.0 - 0.4 2.4 4.0 - 4.5 5.5 8 MC3062 Characteristic Input Forward Current Leakage Current Breakdown Voltage Clamp Voltage MC3162 Test Limits MC3062 Test Limits Pin +25°C +12SoC O°C +25°C +75°C Under -55°C Symbol Test Min Max Min Max Min Max Min Max Min Max Min Max - -4.7 - -4.7 -4.5 -4.5 - - -4.5 -4.5 50 50 - 50 50 150 - - 150 - 150 150 - 150 - 150 - 5.5 - ~ - - - ~S 4 - -4.7 ~C 1 1 - -4.5 -4.5 IR 2 3 IRS 4 - IRe 1 - BVin 2 3 4 1 - - 2 3 4 1 - - - - - VD 50 50 - - - Output Output Voltage -1. 5 -1. 5 2 3 - - 2.4 2.5 - ISC 5 -20 -65 Maximum Power ~l'ply Current Imax 14 - - Power Supply Drain lPD Short-Circuit Current Power Requirements (Total Device) -- - 14 - - - 31 _. - -1. 5 - - 0.4 2.5 4.0 - 4.75 5.25 1.0 -10 0.4 2.5 4.0 7.0 4.75 5.25 ~. 20 -2.0 - - 0.4 2.5 4.0 - 4.75 5.25 c: Unit IOL IOH mAde mAde - - mAde - - mAde mAde - 50 50 -- 50 50 /lAde ~Adc - - 150 - 150 ~Adc - 150 - 150 ~Adc - - - - - Vdc ~ - - -1. 5 - - ~ - Vdc - - - - -4.7 - -4.5 -4.5 50 50 - - 150 - 150 - 5.5 - -- --- - - - - - - - - - - ~ - VR VRH lin ID VF - - 2,6 3,5 - - 4,6 - 1,2 1,6 1,5 - 2,3 2,3,4 - 1.4 1,4 Vmax - - - 3,7,13 14 14 4 7,13 7,13 - - - - - 2 3 3 2 - - 14 14 - - - - - 4 3 - - 14 - - - - - 1 - - - 14 - - - - - -- - - 14 - 2 3 4 1 - - - - 14 - - ~ - - 2 3 4 1 - - - - - - 14 14 - - i -- - - - - - - - - --- - - - - - 0.4 0.4 - 0.4 0.4 - 0.4 0.4 - 0.4 0.4 Vdc Vdc 5 6 - 4 2.4 2.5 - 2.4 2.5 - 2.5 2.5 - 2.5 2.5 - 2.5 2.5 - Vdc Vdc - - - 5 6 - - 4 - - 4 - 14 -20 -65 -20 -65 -20 -65 -20 -65 mAde - - - - - - - - - -20 -65 14 - -- -- - - 3,7,13 2,7,13 --- - - - - - - -- - - - 14 Gnd -- 14 14 0.4 0.4 - c.. - - - :J VCCL VCCH PI • - - :J CD - - 0o TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED' BELOW: -4.7 -4.7 -4.5 -4.5 - -2.0 -4.5 -4.5 - - N -2.0 - -1. 5 -1. 5 W 20 -1. 5 -1. 5 - (') oQ') 20 - - -1. 5 -1. 5 - O°C +2n +75°C 3: - - 0.4 0.4 5 6 - -1. 5 -1. 5 -55°C +2n +125°C ~ - - V OH - - 5 6 VOL -- - -1. 5 -1. 5 IF 20 TEST CURRENT /VOLTAGE VALUES mA Volts IOH I.In ID VF VR VRH Vmax VCCL VCCH -2.0 4.5 - 0.4 2.4 4.0 5.5 @ 6 ,N i - - - 1,4,7,13 1,4,7,13 - 2,3,4,7,13 -- 7,13 - 5 4 1,2,7,13 1,4,7,13 1,4,7,13 1,2,7,13 2,3,4,7,13 ~ 1,7,13 1,7,13 4 5 7 1,7,13 14 - 4,5,7,13 - 41 - - - - - 41 - - mAde - - - - - - - 14 - - - 4,7,10 - 31 - 31 - 31 - 31 - 31 mAde - - - - - - - - - 14 - 4,7,10 - * Momentarily ground pin prior to taking measurement. (If pin is also in another column the pin must be returned to that voltage or current for measurement. ) • MC3162, MC3062 (continued) • OPERATING,CHARACTERISTICS The data must be present 12 ns prior to the fall of the clock and remain Until 0 n. after the clock fall •. The flip-flop is set to the a = 1 state'by applying a low level to the SET input. The direct SEi' inputs may be used at any time without regard to the clock state. If these inputs are not used they should be returned to a voltage between 2.0 and 5.5 Vdc. Negative edge triggering - The input state during the time interval between the Setup and Hold times is stored in the flip-flop when the clock goes low: Unused clocked inputs should be tied to the clock, to the internally connected output, or to a voltaga between 2.0 and 5.5 Vdc. MAXIMUM CLOCK FREQUENCY TEST CIRCUIT VIHX +2.5 V PULSE GENERATOR MMD6150 or Equiv K t+ = 7.0 os 50 MMD7000 or Equiv t- == 7.005 Maximum Clock Frequency == 40 MHz min .. A load is connected to each output during the test. CT = 25 pF == total parasitic capacitance. which includes probe, wiring, and load capacitances. The coax delays from input to st:ope and output to scope must be matched. The scope must be terminated in 50·ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. VOLTAGE WAVEFORMS ANO OEFINITIONS 3 0 V -.--------, t.5 V I 1-12 OV~ TP out r----'"'I ns-l L......--.J . I .--------, ro- I I L-.-.-.J I L--....J MC3162, MC3062 (continued) • OPERATING CHARACTERISTICS (continued) SWITCHING TIME TEST CIRCUIT (For J Inputs; to test other inputs, refer to Test Procedures Chan) Vee Letter designations refer to waveforms shown below: Coax Coax 280 +2.4'V 950 ± 1.0% 950±.1.0% B,C,D,E "JP out o-....'--loIII--+ TPin MM06150 or Equlv 2.4 V PRF::: 1.0 MHz typ PW = 50% Duty Cycle 50 MM07000 H 0' ;;'2.4 V t+=7.0ns t- = 7.0 ns or Equiv • A load is connected to each output during the teSt. Three pulse generators are required and must be slaved together to provide the waveforms sh own. CT '"" 25 pF - total parasitic capacitance, which include. probe. wiring, and load capacitances. The coax delavs from input to scQpe and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or aquiv8.lant. VOLTAGE WAVEFORMS AND DEFINITIONS A TEST PROCEDURES CHART 3,OV INPUT B 3,0 V--\,....-"';'"\I TEST J' sp· K' LIMITS (ns) Q' o· SO.4V :l!:2.4V $"0.4 V ~2.4V I OV Mo. , t$atlJp "1" J ""317'" oV : i 1.5 V E 3.0 V o I ~tuP"l"l< 1.5 V t--tsetup "0" tHold "0" tHold "1" K I tsetup -'0" K Gnd ~:2.4 V $"0.4 V tHoLd "0" K j3nd ~2.4V $0.4 V 30 ns :---500 ns~o F 3.0V , OV o GoO 0" ---: V-l'-.....,:. . .I G 3.0 V 0" :tHold"1" D3.ov~~n oV 2.4\1 tHold"1"J I tPd+B' V-----"I"-.... v---+ f\ :j:=r I """""' H 3.0 OV tpd- n'I _____ _"-.J1.5 V 1Ft D.ley from Ci:OCK to Q oeley from CLOCK to Qdurlnlltsetup "'" K :t U I w u u 5.0 fo---- C!l «> ---- I.J "0 0. .- >~ .. I- _4.75 ::> IF21 ~ 1: :; >..J 5.0 r- 1--- DD- :J lal UNUSED INPUTS GROUNDED Rl C/l a: 4.75 ~ U • i 0 D- U > 4.5 10 I~ I w 0.8 V / 12 14 16 16.8 18 20 IOL' OUTPUT SINKING CURRENT (rnA) all unused inputs (common to the unit segment under test) are returned toa referencevoltege, VRH = 4.0 V. Since all the characteristics except the maximum loading current, lOLl are held constant VCCH Ib) UNUSED INPUTS OPEN Rl for both test points, these tests not only guarantee the dc noise immunity but they also define the maximum drive capability of the output as a function of power supply voltage, as shown in Figure 5. Using this information, it is possible to relata tha output drive capability of an MC4000 series function to any of the various MTTL or MOTL specification formats. The input threshold voltages and the output low-state voltage specified on the MC4000 series data sheet must still be used. For example, the MTTL I MC500/400 series specifies the output low-stete voltege for VCC = +5_0 V. Relating a typical MC4000 series function, the MC4008, to this format, tha following guaranteed limits resultat T A = +7So C: VOL = 0.4 V at IOL ~ 16.8 mA with Vth "0" = 0.9 V, and all other inputs returned to Vth "1"= 1.8V. With this information, it is possible to define the VOL at IOL characteristics of the MC4000 series to any of the various MOTL or MTTL specification formats. The input thresholds and the VOL for the MC4000 series must be used as specified on the MC4000 series data sheat. Output High-State Voltage The output high-stete voltage, VOH(volts), specification defines the guaranteed minimum output high~state voltage at maximum high-state loeding current. This voltege is defined to guar- Input Clamp Diode Voltage Each of the signal inputs to the MC4000 series functions has a clamp diode to limit negative ringing that can occur on signal lines. The input clamp diode voltage tast, VD, at the input diode current, ID, guarantees the maximum impedance of the clamp diode. Output Low-8tate Voltage The output low-state voltage, VOL(volts), in conjunction with the minimum input threshold voltege, Vth "0", definas the minimum low-state de noise !nargin and the maximum drive capability of the output for that guaranteed noise margin. The output lowstete voltage is specified ·at both power supply extremes under maximum output loading conditions with the worst-case input threshold voltage appiied to a single input of the unit under test; antee a worst-case, high-state noise immunity. The maximum highstate drive current, lOLl defines the high-state driving characteristics of the device. The output high-state voltege for the MC4000 .eries is specified with the worst-case threshold voltage on the input, the minimum power supply voltege, VCCL, and the maximum high-state output current as a loed on the output. The unused inputs are returned to an input reference voltege, VRH. This limit, as specified, is compatible with the other families of MTTL and MOTL and can be used independant of power supply variations for the threshold voltages specified on the various MC4000 series data sheets. The output short circuit current, Isc(mA), the maximum power supply current, ImaxlmA), and the power supply drain, IpolmA) can be used directly with the various MTTL and MOTL specification formats. MTTL GENERAL INFORMATION MTlL MC4300/4000 Series Complex Fundions I DEFINITIONS BVin CT IB ICEX 10 IF lin IL Imax IOH IOL IpO IpOH Input breakdown voltage Total parasitic capacitance, which includes probe, wiring, and load capacitances Base current Logic "1" output leakage current Input diode current Input forward current Input current Inverse beta current Maximum rated power supply current with Vmax applied Output logic "I" state source current Output logic "0" state sink current Power supply current drain Power supply current drain with inputs in logic "I" state IPOL Power supply current drain with inputs in logic "0" state IpO max Maximum power supply current Minimum power supply current Input reverse current Logic "I" state source current with output shorted to ground Pulse repetition frequency Pulse width IPOmin IR ISC PRF PW t+ ttpd+ tpdtwp twr TPin TPout VBE VCC VCCH VCCL Vo VF VIH VIL Vin Vmax VOH VOL VR Voltage rise time Voltage fall time Turn-off delay time Turn-on delay time Write pulse time Write recovery time Test point at input of device under test Test point at output of device under test Base-emitter voltage Power supply voltage Maximum operating power supply voltage Minimum operating power supply voltage Input clamp diode voltage Input forward voltage Logic "I" state input voltage Logic "0" state input voltage Input voltage VRH Maximum rated power supply voltage Logic "I" state output voltage Logic "0" state output voltage Input reverse voltage High-state reference voltage Vth "0" Vth "I" logic "0" state input threshold voltage Logic "I" state input threshold voltage GENERAL INFORMATION MTTL MTTL MC4300/4000 Series Complex Fundions 0.005 .....l 0.035 • 4=~lOC:l;'rd.l 0.603 PACKAGING - O.006 D•I19, Package type is denoted by a suffix to the part number as follows: SUFFIX F SUFFIX 14-PIN CERAMIC PACKAGE CASE 607 TO-86 0.030 [ffi ~ O.1i7li O.04!) 0.055 (ffii5 0.010 001'11 I...J DESCRIPTION F Ceramic Flat L p Ceramic Dual In-Line Plastic Dual In-Line Lead'identifiadbycolardot orbVelbowonlead. To conven inches to millimeters multiply by 25.4 All JEOEC dimenSlOllS and notes apply 0.190...1 if2l"D I LSUFFIX 14-PIN CERAMIC PACKAGE CASE 632 TO-116 l-..J l-!!.!m I I I 0.110 INDEX~ ... ~ !Il!~ .680----d ~~~ ~l r--rmo j ~lmU MIN t----:: I '290 I"""'*'i DJTII SEATING PLANE 0.0118 j\-- AllJEOECdlmenslollsandnotesopply 0.325 MAX 0.290 o.m (j) ~OllO &lirnnrrrn=L m r r IL~~\ o:ns 0090 rna ~ 00 to 150 0015 irn2D SEATING PLANE CDThis dimension is I1l8IIlIH'ed from thalud cen~' atth••atinll plane with tndsverucal. Q)lead 1 ldentifltd by color dot, notth In Ilad, ornotchincaramlc. To convert inches to miUimetersmuiliplybyZ5.4 To convartinch8$to millimetarsmuitiply by 25.4. AIIJEDEC TO·116 dimensions and notes apllly. Four inwlatingstand-offsars IJrovlded To COllvert IlIclles to millimeters multiplybV 25.4 - 1 \l. im'5\\ f~::::::U~ ;~~:::::::1~ JLO.D57 Lr---&; - -1--.1 1::2~ I,fflll'lf!0'200a ~ - - - - - - T_Mf--ffl-'29D ~ I LSUFFIX 16-PIN CERAMIC PACKAGE CASE 620 PSUFFIX 14-PIN PLASTIC PACKAGE CASE 605 TO-116 PSUFFIX 16-PIN PLASTIC PACKAGE CASE 612 iSlo lead canterlinewhen fO/med paraJJel. G) 4 iosulating stand·ofhare provided. To CtHlwrt inches to miUimet&rs multipl-y by 25.4 ~Oimension MC4300/MC4000 series DUAL 4-CHANNEL DATA SELECTOR MC4300F,L* MC4000F,L,P* B 5 A -- :::}- To Othe, Data Selector 3 I This device consists of two four-channel data selectors with common control lines, constructed from highlevel AND-OR gates and low-level inverters. By selecting one of four logic combinations, information on one of the four data inputs will be routed to the output. Data selectors are useful in applications where digital data is to be routed from one of several registers or locations to another register or location for processing. 1/2 OF DEVICE SHOWN (Numbers and symbols in parenthesis are for other half of device.) TYPICAL PROPAGATION DELAY TIMES (ns) TA = 2SoC XO 6 (YO) (2) INPUT Z CONDITIONS f--';:A:--t_....,.,18~-I XO =X2=X3=logic 110", Xl t--!;B';--+__1,,5=----I'ogic "1". ~------------~t::::t~l~ X1 X1 7 (Y1) (1) 11 = A and B are de- fined by the logic equations. LOW-LEVEL INVERTER ~------------=+===+~L-" X2 8 (Y2) (14) Vee Vcc~ o---------~====~~ GND ~ PIN 4 PIN 10 4k X3 9 (Y3) (13) Z ~ ABXO + ABX1 + ABX2 + ABX3 W =- ABYO + ABV1 + ABY2 + ABY3 :J: Diode used Input Loading Factor;::: 1 only ~oh:;e~~~~~~s Output Loading Factor::: 10 --{»>- external point. Total Power Oilsipation == 150 mW typ/pkg HIGH-LEVEL "AND-OR" GATE Vee :t: Diodes used only when inputs are connected to external points. "'F suffix L suffix P suffix = TO-86 ceramic flat package (Case 607). = TO-116 ceramic dual in-line package (Case 632). = TO-116 plastic dual in-line package (Case 605). wee: ;((1\1 • ELECTRICAL CHARACTERISTICS s (1 ~ W o o 3 o------l A 5 B z "TI 11 ~ r- 6 o------l XO ~ s Xl 8 X2 9 X3 2 (1 ~ o o o YO Yl 14 Y2 13 Y3 W~12 ' - - - -.... T.!p::ure lOLl -5SoC 16 { +25°C 16 +12SOC 16 oDe 16 { +2SoC 16 +16°C 16 MC4300 MC4000 Characteristic Pin r-~~=r~~~~~~:i--"'~~~~~~~~=r--~ ~::r f-;;;::,!]7.:C:+-=-T;::-::-t-;~r.;::-I-;;;:T=:h;;2T;;::::-t-;;:Ti:::l Unit Symbol lOU 18.4 18.4 18.4 17.6 17.6 17.6 "TI TEST CURRENT!VOlTAGE VALUES Volts mA IOH -1.6 -1,6 -1.6 -1.6 -1.6 -1.6 liD V,L lin 1.0 -10 -10 - IT 1.1 0.8 1.1 t.ot __-.__-.__-.__ ..!.:..!. 0.9 V'H 2.0 VIHX 1.8 1.8 2.0 2.5 ~ 1.8 r- VF VR VCCH D.4 2.4 5,5 0.4 2.4 2.4 t 4.0 2.5 4.0 2.5 5.5 5.5 5.25 5.25 0.4 0:4 0.4 0.4 5.0 t 5.0 4.5 2.5 I '""0 8 :J .... S" t: CD 5.25 '--rT~E~S~T~CU~R~R~E~N~TI~V~O~LT~A:G~E~A:P=PL;'E~O:T:O~P:'N:S~L~'S~T~E:D~B;E:LO=W;''-__~-''-__~~-1 V,L VF VIH I VIHX Vn I VRH I Vmax I Vee I VCCL I VCCH Input Forward Current L"k,,, Cu,,,", B",kdow" Volt", CI.mp Volt.,. 5 G... 3,5,10 I I I Output Output Voltage Short-Circuit Current IR BVi" Vo I I I 6 6 6 I - I 40 I - I 40 I - I 40 I - I 40 I - I 40 I - I 40 I I - I - I 5.5 I - I - I - I - I - I 5.5 I - I - I - I I - I - I - I -1.5 I - I - I - I - I - I -1.5 I - I - I 0.4 0.4 0.4 0.4 - 1 2.41 - 12.4 VOL 11 11 11 0.4 0.4 2.41-12.4 0.4 0.4 VOH ISC 11 -30 1 -1'001 -30 100 1 -30 I -1001 -30 I -1001 -30 0.4 0.4 2.41 - 12.41 I -100 I -30 0.4 0.4 I -100 pAd, Vd, Vd, Vd, Vdc Vdc I - I - I - I- I- I I - I - I - I6 I- I I - I - I - I- I6 I 11 11 11 mAde 1,2,3,5,6,7,8,9,13,14 , 1,2,3,5,6,7,8,9,13,14 1,3,5,7,8,9,13,14 I - I - I I - I - I I - I - I I 3,5,61 - I - I - I I - I 3,5 I - I - I I - I - I - I - I 4 I I I - 3,5,10 10 I 10 10 10 10 2,6 2,5,6,8,9,13,14 - , 1,3,7 10 10,11 Power Requirements IT~tal Device) Maximum Power SupplV Current I 'max 65 65 _d, Power Supply Orain I fpO 45 45 otAd, SWttching Paramaters Turn-On Oelay 1,2,3,5,6,7, 8,9,10,13,14 Pulse In I 1,2,3,5,6,7, 8,9,10,13,14 pUl7,out 1,2,3,5,7,8, 9,10,13,14 tpd_l I 11 16 16 tpd_2 I 11 22 22 11 tpd_3 I 11 27 27 11 1,2,5,B,8, tpd+1 I 11 16 16 11 1,2,3,5,7,8, 9,10,13,14 tpd+2 I 11 22 22 11 1,2,3,7,8, 9,10,13,14 tpd+3 I 11 27 27 11 1,2,5,B,8, 9,10,13,14 1,2,3,7,8, 9,10,13,14 9,10,13,14 Turn-Off Delay MC4300F ,L, MC4000F ,L,P (continued) INPUT AND OUTPUT LOADING FACTORS with raspact to MTTL and MDTL families FAMILY MC4300 INPUT LOADING FACTOR MC4300 OUTPUT LOADING FACTOR MC4300 MC500 MC2100' MC3100 MC5400 MC930 1.0 1.23 0.8 0.8 1.0 1.0' 10 12.3 8 8 10 10 FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 1.0 1.0 0.67 0.7 1.0 1.15 • 10 10 6 8 10 12 .. Applies only when input is being driven by MDTL gate with 2.0 kilohm pullup resistor. Logic "1" state drive limitations 0(gate5 with 6.0 kilohm pullup resistors reduce drive capability to fan-out of 3. SWITCHING TIME TEST CIRCUIT 2.4 V I Coax· 950 ± 1.0% TPin " PULSE GENERATOR 3 B 6 8 9 2 950.± 1.0% XO X2 X3 / TP out YO Yl 14 PW = 200 ns t+ = t- = 5.5 ±O.S os Amplitude = 2.5 V 13 = 25 pF z 11 XI 50 PRF = 1.0 MHz typ CT Coax· A Y2 w 12 Y3 = tOtal parasitic capacitance, which includes probe, wiring, and load capacitances. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedanc::e. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT·070·50 or equivalent. VOLTAGE WAVEFORMS ir-----------------,l-+-::-;;:-;-;---2.5 V TPout 1.5 V t p d+1 t p d+3 TP O'ut 1.5 V tpd-2 1/4 MC3000 I MC4300F ,L, MC4000F ,L,P (continued) TYPICAL PROPAGATION DELAY TIMES I FIGURE 2 - THREE-GATE DELAY versus TEMPERATURE FIGURE 1 - FOUR-GATE DELAY versus TEMPERATURE . s 26 w ~5~PF r-- _ _ _ 25 pF :< V ;::: >- « ..J 24 , w ~ Cl z o 22 « Cl ..«o .. .....- \ I- ~'::>. 20 ---'- 18 -75 --50 o -25 ,/' !-' tpd_ z ",'" 16 Q ....... I- « Cl ..o« .. tpd+ 5iOPF 25 pF "- .......... ...... ... w Cl "'~ ........... '-- ~ r- ___ 18 « ..J I?' 0 ","" .,.-- 0: j ,/ 20 :< ;::: >- ./V V tpd_ tpd+ !w V ~ tpd+ ~ ~ k:;:::::::: ~pd- ---1"-- -- ~ ~ .... .... .......... ","" tpd+ tpd _ 14 l 0: 25 75 50 100 12 -75 'tl ~Q. 125 --50 -25 o 25 50 75 100 125 TA. AMBIENT TEMPERATURE (oC) TA. AM81ENT TEMPERATURE (oC) FIGURE 3 - TWO-GATE DELAY versus TEMPERATURE c 15 ~50P~ w ~ >- 13 « ..J w Cl Z -- « Cl « o 9.0 r - - r--tpd_ -0 7.0 -75 ...:- f.-:::: .:+--- .. 0: ~Q. --50 I tp~ ~ t pd _,......- ........ ';::: . 25 pF ....... r- "- tpd+ 11 o --- " I- ........ -- o -25 -- -- 25 .... ~ .... ~I-'". 75 50 100 125 TA. AMBIENT TEMPERATURE (oC) . s FIGURE 4 - DELAY versus LOAD CAPACITANCE 28 w :< ;::: >- :3w Cl 24 20 ;::: 16 0: 4.0 o ---- (4G.tes~ ~ ::J---"(4 Gates1 tpd+ I- (3 G a , e s 1 , _ i=-I. es1 ,....... I, Ga,es1 tpd+ ~ (3 Gat _ 12 8.0 j - 'pd- « Cl « ..o .. - ~ r- tpd+ Z o ---= tpd- - ~sl tpd- 30 t:;;;: ~ r--- VCC = 5.0 VdcTA = 25°C - Fan-out o FIGURE 5 - DELAY versus SUPPLY VOLTAGE 60 90 = 1 120 CL. LOAD CAPACITANCE (pF) 28 CL = 25 pF w :< ;::: >- tpd_ (4 Gates) « ..J 20 Cl Z 16 o ;::: 12 « Cl « ..o 8.0 -0 o w - .. 150 ~Q. 0: I TA = 25°C 24 ~ ! tpd+ (4 Gates) J tpd+ (3 Gates) - == tpd_ (3 Gates) _ - tpd+ (2 Gates) - - ~pd_ (~ Gat~s)_ - 4.0 4.5 I 1 j 5.0 VCC.SUPPLY VOLTAGE (VOLTS) 5.5 MC4300F ,L, MC4000F ,L,P (continued) FIGURE 6 - 1-BIT 16-LINE DATA SELECTOR TYPICAL APPLICATIONS B o A C Data selection from one of sixteen inputs can be accomplished by using multiple MC4300/4000 data selector units, as shown in Figure 6. An N-bit data selector network may be realized by paralleling N/2 data selectors as shown in Figure 7. Each bit is selected from its own group of four different inputs; therefore from each dual data selector we can obtain two bits. Thus, for N bits we need N/2 dual 4-line selectors. XO Xl X2 1/2 MC4300/f-f-I---, MC4000 X3 FIGURE 7 - N-BIT 4-LINE DATA SELECTOR X4 X5 X6 1/2 MC4300/f-f-I---, MC4000 B A X7 1/2 MC4300/ MC4000 00 XOl XlI X8 X21 X9 1/2 MC4300/ MC4000 00 1st Bit 1/2 MC4300/ MC4000 01 2nd Bit X31 Xl0 XlI X02 X12 X12 X13 X14 X22 1/2 MC4300/ MC4000 X32 X15 0 C 8 A 00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 XO Xl X2 X3 X4 X5 X6 X7 X8 X9 Xl0 XlI X12 X13 X14 X15 .4< 1/2 MC4300/f----o ON MC4000 Nth Bit B A XOn Xln X2n X3 n an 0 0 1 1 0 1 0 1 1 '" ''"" '" ''"" XO Xl X2 X3 ''"" '" q, = Don't care 1 ''"" n = any number up to N 1 '" 1 I BCD-TO-BINARY! BINARY-TO-BCD NUMBER CONVERTER MC4300/MC4000 series MC4001L,P* • 4-Blt Number 10 15 Enable 6 7 9 The MC4001 is derived from the XC170!171 128-Bit Read Only Memory. It serves as a basic building block in Binary-to-BCD and BCDto-Binary converters. Conversion of any length binary or BCD word can be accomplished by interconnecting MC4001 packages. The MC4001 also contains a full adder and subtractor. 3 2 4 5 11 12 14 13 Features: Address times < 45 ns Outputs sink 16 mA Output capacitance < 7.0 pF ~~ 4-Sit BCD 4-Bit'Binary VCC ~ Pin 16 GND = Pin 8· @ 1.5 V TRUTH TABLE (POSITIVE LOGICI OUTPUT INPUT D 0 0 0 0 0 0 0 0 ,, ,, ,, C B A 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 , ,,, , ,, , , , , , , , ,, , ,, , , 0 0 1 0 0 1 Binary to BCD 7 6 5 4 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 ,, ,, , ,,, ,, ,, ,, , 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 BCD to 3 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 ,, , , , 1 0 0 0 0 0 ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC) Binary 1 0 0 E E 07 06 05 04 03 02 01 00 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,, ,, ,, ,, ,, , ,, , 0 0 0 0 0 1 1 0 1 0 0 1 FUNCTION ENABLED 0 0 0 0 0 0 0 0 0 "NAND" GATE EQUIVALENT OF BCD-TO-BINARY CONVERTER "NAND" GATE EQUIVALENT OF BINARY-TO·BCD CONVERTER 00 04 ~-----------O05 01 ~===C::)----<>06 02 A 0-+++----"-+1-." B 0-4-+_----' C~~+_---~~_1~ 03 Do--+-----~-~-I B <>--t-i.......-_1~ c ~-H---l--1 00--+----1 • L suffiK = 16-pin dual in-line ceramic package (Case 620), P suffix = 16-pin dua(in-Hne plastic package (Case 612). »--+-----------0 07 MC4001 L,P (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL famili.. FAMILY MC4001 INPUT LOAOING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 MC4001 OUTPUT LOADING FACTOR Note: Differences in MC4000 series loading factors r..ult from differences in specifications for each family. 5 5 5 1.0 1.0 0.67 0.7 1.0 •• Applies only when input is being driven by MDTLgate with 2 k ohm pullup resistor. Logic "'" state drive limitations of gates with 6 k ohm pullup resisfors reduce drive capability to fan-out of 3. 6 10 11 1.15·· • MAXIMUM RATINGS Symbol Value Unit Supply Voltage Vee -0.5 to +7.0 Vdc Supply Operating Voltage Range Vee Input Voltage Yin 4.75 to 5.25 -0.5 to +5.5 Vdc Power Dissipation (Package Limitation) Derate above TA=25 0 e PD 625 5.0 mW mW/oC °c °c Rating Operating Temperature Range TA oto +75 Storage Temperature Range Tstg -55 to +125 Vdc ELECTRICAL CHARACTERISTICS (TA = 0 to +750 C) Symbol Characteristic Address Input Forward Current (VA = 0, Vee = 5.0 Vde) IF Enable Input Forward Current (VE = 0, Vee = 5.0 Vde) IF Address Input Leakage Current (VA = 5.5 Vde, Vee = 5.0 Vde) IR Enable Input Leakage Current (VE = 5.5 Vdc, Vee'" 5.0 Vdc) IR Min - Max Unit mAde 1.6 mAde 1.6 IlAde 100 IlAde 100 , Logical "0" Output Voltage (IOL = 16 mAde, VIL = 0.9 Vde, VIH = 2.0 Vdc, Vee = 4.75 Vde) Logical "1" Output Voltage (VIL = 0.9 Vdc, VIH = 2.0 Vde, IOH = -0.5 mAde, Vee = 4.75 Vdc) Power Supply Drllin Current (Memory Enabled, Vee = 5.25 Vde) (Memory Disabled, Vee = 5.25 Vde) VOL VOH Vde - 0.45 - 2.S Vde mAde IpD 9~ 55 SWITCHING TIMES (VCC = 5.0 Vdc, T A - +250 C) Positive Input Address to PoSitive Output Negative Input Address to Negative Output Positive Inl/ut Address Or Enable to Negative Output Negative Input Address or Enable to Positive Output 4".. 4 IOL= lOrnA driving 30 pF (ism - 45 ns, 45 ns tA+Q-or tE+Q- .45 ns tA-Q+ or tE-Q+ 45 ns tA+Q+ tA-Q- ... MC4001 L,P (continued) TYPICAL APPLICATIONS FIGURE 1 - BINARY-TO-BCD CONVERSION FIGURE 2 - BCD-TO-BINARY CONVERSION • BCD DIGIT 3 BCD DIGIT 2 BCD DIGIT 1 EQUIVALENT CONVERSION ALGORITHM 1. Examine three most significant bits. If sum., 5, add 3. BINARY 2. Shift laft 1 bit. 3. Examine each BCD decade. add 3. If sum ~ 5, EQUIVALENT CONVERSION ALGORITHM 1. Shift BCD number right 1 bit. Examine 4. Shift left 1 bit. 5. Is least significant bit in least significant BCD position: If "no", loop to item 3. If "yes". conversion Is fInished. each 4-bit decade. If ~8, subtract 3. 2. Shift right and examine untif n-4 levels of examination are completed. Delay time = 225 ns max (n equals total number of bits In BCD input code.) FIGURE 3 - 4-BIT BINARY ADDER OUTPUT CONVERTED TO BCD S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 53 C 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 52 B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 . 51 A N4 N3 N2 Nl NO 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 4-BIT BINARY ADDER I IS4 153 TRUTH TABLE 1:7 I I SO S2 lSI C B MC4001 Q6 Q5 Q:I 11, 1 ---Nt BCD TENS NO BCD UNITS MC4001 L,P (continued) FIGURE 4 - BLOCK DIAGRAM I Many functions can be designed from the XC170/171 Read Only Memory. TheMC4001 BCD·to·Binary/Binary·to·BCD converter is made from the XC171, which has 2.0 k ohm pullup resistors on the outputs. Through use of a computer·designed metal mask, the truth table shown on the first page of this data sheet is programmed into the Memory by etching out metal links from the device metal· ization where a 10gic"1" level must be stored. Logic "O"s are stored where links are not removed. ROM Array Enable Inputs 16 Words Of 8 Bits ROM { A~:~: 4 AmplifierInverter Pairs Decode Array C o : 8 Output Buffers Drivers 07 00 ~ Data Output FIGURE 5 - REPRESENTATIVE CIRCUIT Word 15 Bit 7 ,---- ---, Inputs { Enable r-1===r=~~~~~g[::~~'T----:=--t'- ------------>-~ 1111 j Bit 0 ______~ I I : l_______ Word 15 r -- -----, I I I I I r-- -- - -, A I Bit 7 I 0000 1 I Word 0 r----- I Bit 0 1 I B --I I 1 1 1 I ROM Address I I _J Inputs e <0 • Z 4 I ~ _ _ _ _ _ _1 I I Word 0 : Vee . Q$lii4\"M +4 47 Links removed if logic "1" state desired• Vee MC4300/MC4000 series DUAL DATA DISTRIBUTOR MC4002F, L, p~ • ADVANCE INFORMATION/NEW PRODUCT B 13 A X 11 20 3 5 20 ~ ABX 21 ~ ABX 22 ~ ABX 23 ~ ABX wo~ Wl y 7 : TYPICAL PROPAGATION OELAY TIMES (ns) TA = 25°C Cy ~ey t G>o [hg:' H ~ INPUT 20 21 22 23 A 14.5 14.5 10.5 10.5 14.5 10.5 14.5 10.5 10.5 10.5 10.5 10.5 23 B 9 Input Loading Factor: A, B ~ 3 e, y 21 12 22 2 e This device consists of two data distributors con· structed from high·level AND gates and low·level in· verters, One distributes information present at the input line to one of four output lines; the other dis· tributes information present at the input to one of two output lines, The routing path is selected by the logic signals at the control lines A, B or C. Data distributors are useful in applications where digital data is to be routed from a single register or location to one of several registers or locations for processing. X wo Wl INPUT wo Wl e 14.5 Y 10.5 10.5 10.5 Vee ~ PIN 4 GND ~ PIN 10 2 X~4 Output Loading Factor"" 1 0 Total Power Dissipation = 175 mW tvp/pkg HIGH·LEVEL "ANO" GATE LOW·LEVEL INVERTER Vee Vee 4k 4k 4k :j:Diodes used only when inputs are connected to external points . • F suffix = T0-86 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605). 2k 1k 100 MC4002F, L, P (continued) INPUT and OUTPUT LOAOING FACTORS with respect to MTTL and MOTL families FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 1.0 1.0 0.67 0.7 1.0 1.15** 10 10 6 S 10 12 Note: Differences in MC4000 series loading factors result from differences in specifications for each family. ** Applies only when input is being driven by MDTL gate with 2.0 k ohm pull~p resistor. Logic "'" state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3. DC ELECTRICAL CHARACTERISTICS (TA = 0 to 7soCI Characteristic Symbol Value Conditions Input Forward Current - A, B C,Y -4.S mAde max IFl X A,B C,Y Threshold Voltage Yin = 004 Vde, V CC = 4.75 Vde 120 "Ade max IR X Clamp Voltage -2.8 mAde max -5.6 mAde max Leakage Current - A, B Breakdown Voltage Yin = 004 Vdc, VCC = 5.25 Vde -4.2 mAde max IF2 X C,Y -3.2 mAde max -604 mAde max SO "Ade max Vin = 2.5 Vde, VCC = 5.25 Vde 160 "Ade max aVin 5.5 Vde max I in = 1.0 mAde, VCC = 5.25 Vde, T A = 25°C VD -1.5 Vde max 10 = -10 mAde, VCC = 4.75 Vde, TA = 250 C Vth "1" 2.0 Vde TA -OoC 1.8 Vde TA = +25 0 C, or TA = +750 C Vth "0" 1.1 Vde TA = OoC, or TA = +25 0 C 0.9 Vde TA=+750C Output Output Voltage Short-Circuit Current VOL 004 Vde max IOL= 16 mAde, VCC = 4.75 Vde t 0.4 Vde max IOL = 17.6 mAde, VCC=5.25 Vde t VOH 2.5 Vde min ISC -20 to -65 mAde IOH = -1.6 mAde, VCC = 4.75 Vde t V CC = 5.0 Vde. output grounded t tThese tests are performed according to the logic equations with a true input equal to Vth "'" and a false input equal to V th "0". I MC4300/MC4000 series 16-BIT SCRATCH PAD MEMORY CELL MC4304F, L • MC4305F, L* MC4004F,L,P • MC4005F,L,P* This 16-Bit memory cell serves as the basic building block for scratc!'! pad memory systems having cycle times of less than 100 ns. The basic cell provides 16 words of one-bit memory operating in the non-destructive readout ~NDRO) mode. The memory contains 16 flip-flops arranged in a fourby-four matrix. A single bit of the matrix is selected by 5 driving one of four X select lines and one of four V select lines above the select threshold. Two sense amplifiers are shared by all 16 bits and provide a double rai I output from the selected bit. The sense output of many devices can be "wired ORed" together since the output stage does not have a pullup resistor or network. Two write amplifiers allow a "1" or a "0" to be written into a selected bit. 6 V, 8 V2 V4 V3 '3W",,, (Write"''') X, 3 HI'.' ~ H ~ H ~ ~ ~ ~ ~ ~ 2,1 I ~ 3,' I ~ 1.2 ~ 2,2 ',3 1 2,3 9 W"O" (Write "0") 0 ~0 ~ V cc= Pin 4 G ND=Pin10 tpd: Wri te Mode = 25 ns typ Sen58 Mode = 15 ns typ Po= 250 mW typ/pkg 8 1;)= 3,2 ~ 4,2 H~-~ 12 S",,, (Sen.e ",") ~ ~ 4,1 I 1 4,4 ~ '1 S"O" (Sen.e "0") - OPERATING SEQUENCE FIGURE 1 - REAO MODE TIMING DIAGRAM x, Y Select Lines Sense Output S",,, A I I I I I I I 1.0 Megohm) must be DEVICE UNDER TEST Rl OHMS R2 OHMS MC4304, MC4004 MC4305, MC4005 120 240 330 560 See Switching Time Test Procedures used when taking measurements. tabJe for val!Je of CT' VOLTAGE WAVEFORMS AND DEFII\IITIONS 10 ns max 10 ns max J.-----'-----~-,l=:::l=....:r_---3.0 A P·RF - 1.0 MHz PROPAGATION DELAY TIME B V TPin '"FG"" =~r:_::_=_=_=_=_=~2~0~0~n~s~=_=_=_=_=_=_=_=__::~==':::===0.4 V TP out --------~=====================~-----GND .1<----,l=b.... . - - - - - - - - - - - 3 . 0 C TPin PRF - 5.0 MHz D TP out V GNDV =~.!:::.~~~========================0.4 Output not GND _ ___~d~.~fi~n!ed~____~==============t=======, RECOVERY TIME E TPin PRF - 5.0 MHz ==================:.r:~~=+==0.4 V ~rl F TPout GND ~~v defined . GN D MC4304F,L, MC4305F,L, MC4004F,L,P, MC4005F,L,P (continued) • SWITCHING TIME TEST PROCEDURES (Letters shown in test columns refer to waveforms) Test TurnMOff oelay Time (Address Lines to sense "0" Output) Turn·Off Delay Time (Address Line. to Sense" 1" Output) Pin Symbol Under .... Test tpd+ tpd+ 11 .... tpd+ .... tpd.+ Turn-On Oelay Time {Address Lines to Sense "0" Output) tpd_ .... .... tpd_ Turn-On Delay Time (Address Lines to Sense "1" Output) tpd_ tpd_ Turn-Off Delay Time (4 Bits) (Address Lines to Sense "0" Output) Turn-Off Delav Time (4 Bits) (Address Lines to Sense "1" Output} Write Recovery Time Write Pulse Width Output Input I;'in 3 X, 2 X2 1 14 5 6 X3 X4 Y, Y2 7 Y3 8 Y4 Limits CT" MC4304-5 MC4004-5 nsmax nsmax W"O" W",,, S"O" S"," pF 9 12 - - - - - B - 30 200 23 35 23 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd Gnd 3.0 V A Gnd Gnd Gnd A A Gnd Gnd Gnd A 3.0 V 3.0 V 3.0 V 3.0 V - - - - - Gnd Gnd Gnd Gnd 3.0 V 3.0 V 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Grid A A Gnd Gnd Gnd A A 3.0V 3.0 V 3.0V Gnd 3.0V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0V Gnd Gnd Gnd A A Gnd Gnd Gnd A A 3.0V 3.0 V 3.0 V 3.0 V 12 12 - 3.0V 12 12 11 11 - Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnc( Gnd 3.0 V Gnd Gnd Gnd Gnd B 3.0V - Gnd - Gnd Gnd B Gnd - B Gnd Gnd Gnd Gnd E C Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd E C - • Capacitance value for load of the Swi~ching Time Test Circuit • ·Precondltioning procedures for subsequent test. Tested during 'twr tests. 35 23 - - - - - 30 35 35 - - - B 30 35 35 0 30 40 - 30 40 40 "smin nsmin 25 25 B Gnd 3.0 V 23 35 - Gnd 30 200 - Gnd Gnd - ,,3 35 Gnd 3.QV 3.0 V - - 3.0 V 12 11 - - 3.0V 3.0V 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd Gnd Gnd 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V A Gnd Gnd Gnd A A A A Gnd 12 - 35 - - 23 35 Gnd Gnd twr 23 - 3.0 V Gnd Gnd tpd+ - 23 35 30 200 Gnd Gnd Gnd 3.0 V 30 200 - B B Gnd Gnd Gnd Gnd B B 35 - Gnd Gnd Gnd 3.0 V 3.0V 3.0V 3.0V 3.0V 3.0V 3.0 V 3.0 V 3.0 V 3.0V Gnd Gnd Gnd 3.0 V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd Gnd A A A A A Gnd - Gnd Gnd 11 twp 11 3.0·V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V Gnd 3.0 V 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd Gnd A A Gnd Gnd Gnd Gnd Gnd A Gnd und und A Gnd Gnd Gnd Gnd Gnd - .... tpd+ 13 - F - - - 40 MC4300/MC4000 series BINARY TO ONE-OF-EIGHT LINE DECODER MC4306F,L* MC4006F,L,P* 1000 8 Enable 1101 1202 1303 4 Ci4 3 05 2 Q6 1 Q7 This device converts three lines of input data to a one·of·eight output. The enable line provides an in· hibit capability and also allows the decoder to be expanded for larger decoder systems. The 3·input/B-output decoder consists of high·level and low· level gates ·internally connected for minimum power consumption and maximum driving capabilities. The enable gate must be in the low state to perform the decode operation shown in the truth table. The propagation delays shown in the charts are typical and vary according to loading, interconnection wiring length, and the number of logic levels involved. A 5 TRUTH TABLE 8 6 Vee = Pin 14 GND e 9 = Pin 7 Input Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation;;: 100 mW typ/pkg LOW·LEVEL INVERTER 1 = High State 0= Low State TYPICAL TURN-ON DELAY TIMES Ins) T A = 2SoC, Cr INPUT :f: Applies only to input gate. ~ E HIGH·LEVEL GATE 00 01 11.5 16.0 02 = 25 pF Q3 04 Q5 Q6 Q7 16.0 11.5 16.0 11.5 16.0 11.5 11.5 160 16.0 11.5 11.5 16.0 16.0 11.5 11.5 11.5 11.5 16.0 16.0 l~.O 16.G 13.5 13.5 13,5 13.5 13.5 13.5 13:5 13.5 Vee 4k 1.2 k 100 ·F suffix == T,O-86 ceramic flat package (Case 607). L suffix'" TO:116 dual in-line ceramic package (Case 632). P suffix"" TO-116 dual in-Hne plastic pac~age (Case 605). TYPICAL TURN-OFF DELAY TIMES Insl TA = 250 C,CT=25 pF rNPUT 00 Ql 02 53 A. Q5 56 A 14.0 19.5 14.0 19.5 14.0 19.5 14.0 19.5 14.0 14.0 14.0 14.0 14.0 19.5 19.5 19.5 19.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 Q7 19.5· 19.5 • • ELECTRICAL CHARACTERISTICS s (') Test procedures are shown for only one f) o0) input and one output. Test other inputs and outputs in the same manner. Additionally. test,all input-output combinations according. to the truth table. ..r- "T1 s ~ 10 8 01 o o0) 11 0212 5---lA 03 6---lB 9---lC "T1 13 Q4 4 05 3 06 07 2 @Te.. I •.. Temperalure I u., -55'( ... I MC4306 r +25'( \ +12S'( I OO( Characteristic Input S.l!!!boI Forward Current IF Leakage Current I '7. ... M(4006 Tost limits MC4306 TOSI limil. 0'( +2S'( I +7S0( +25'( I -I'12S'( Min I Max Min Max Min Max Min Max Min Max Min Max I Unit I Clamp Voltage . - V. Volts VRH 2.' '.0 '0 '.0 " '.0 '7. : "...n ,-,.. ".0,-'0,:.:,:. ,:.: U I r -.l.U I ~ V__ 7.0 '.0 2.5 '.0 2.5 '.0 7.0 5.0 4.5 5.5 5.0 '.5 5.5 ~, 5.0 '.5 5.5 C 5.0 4.75 5.25 5.0 4.75 5.25 5.0 4.75 5.25 rEST (URRENT /VOlTAGE APPLIED TO PINS LISTED BELOW, ~1. 6 -1.6 -1.6 -1.6 -1.6 -1.6 mAde .0 .0 .0 .0 .0 "Ade lOll I '0 ,2 I 10H I I" I 10 I Vil I .v IH , V, , V. VRH , Vm " , Vee , VCCl , VeeH I Gnd 14 '0 14 5.5 5.·5 Vde -1.5 -loS Vo 14 f Vde Short-Clrcuit Current VOLI 0.' 0.' 0.' 0.' 0.' 0.' Vde 5,6,9 VOL2 0.' 0.' 0.' 0.' 0.' 0.' Vd. 5,6,9 Vde 5.6.8.91 V OH 2.' I- 2.' I Be -20 I -.5 -2. Power Requirements (Totar Devitt> =~~u;::.~r Ilmax .. Power Supply Drain I 14 IPD 2.5 2.' -.5 -20 -65 -20 2.5 -65 -20 2.5 •• 5 -20 -65 - 14 14 - 14 mAde 51 51 mAde 3. 3. mAde ....1..1"111" - 5.6.. I - I n-O VCCL Oulput Output Voltage VeeH ~ .-~ Vee -S5'( BVin BreakdoWn Voltage .- I U •. .1I 2 .• I -,. I" 0 I -'0 I;': I:' I:': -,. I - I - r ~.~ I:' I. :.~ T I 2.' I " : -,. I - , - , .. ' ,.. ,:.: 2.5 ,.. ~', l mA I I L._ u~ II Lun.. II I.- II L II V.. . ". II V_.~... II _v_~ I I '0. I MC4006l +2S'(: +7s'(.n Pin Under T••I 'i- TEST (URRENT IVOLTAGE YAlUES 14 :::l :::l CD 0. MC4306F ,L, MC4006F ,L,P (continued) INPUT AND OUTPUT LOADING FACTORS with respect to MTTL and MDTL families FAMILY MC4306 INPUT LOADING FACTOR MC4306 OUTPUT LOADING FACTOR MC4300 MC500 MC2100 MC3100 MC5400 MC930 1.0 1.2 0.8 0.8 1.0 1.0· 10 12 8 6 10 10 FAMILY MC4006 INPUT LOADING FACTOR MC4006 OUTPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MCB30 1.0 1.0 0.67 0.6 1.0 1.15' 10 10 6 8 10 12 • * Applies only when input is being driven by MDTL gate with 2.0 kilohm pullup resistor. Logic "1" state drive limitations of gat~s' with 6.0 kilohm pullup resistors reduce drive capability to fan-out of 3. SWITCHING TIME TEST CIRCUIT 2.5 Vdc Coax E . 950 ±. 1.0% 50 51 PULSE GENERATOR A 52 / TPout 53 54 PRF = 1.0 MHz typ PW = 200 ns t+ = t- ;; 5.5 ± 0.5 ns (10% to 90% points) B 1/4 MC3000 55 56 lCT C 57 Load required only on output being tenad CT ;; 25 pF = total parasitic ca'pacitance. which includes probe, wiring, and load capacitances. *.The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor antfthe !:!cope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50.or BCluivalent. SWITCHING TIME TEST PROCEDURES (T A • 25 0 C) VOL TAGE WAVEFORMS· (Letters shown in test columns refer to waveforms.) i..------"\.t-t------ 3.0 V LIMITS E C 53 57 Max Unit tpd+ (C to 53) Gnet' X Z - 20 ns tpc(- (C to 53) Gnd X Z - 17 ns tp'd't (C to 57) Gnd X - Y 29 ns tpd- '(C to 571 tpd+ lEta Q71 Gnd X - y 23 ns X 2.5 V - Z 21 ns X 2.5 V - z, 20 ns TEST' tpd_ (EtoQ7) X -\f-~---1.5 V "--'-=--~OV ;"2.4 V y ---:,--_-b-,~====~~=:====,;;O.4 V z ,------'--,+-'=--;;,2.4 V MC4306F ,L, MC4006F ,L,P (continued) TYPICAL SWITCHING TIMES • FIGURE 1 - TURN-"ON DELAY TIME' versus TEMPERATURE o .s 28 w :; j:: _ I' FIGURE 2 - TURN·OFF DELAY TIME versus TEMPERATURE o .s .1. Vg~::: p~dC j:: 24 >- « -' w o z 20 <;> z a: ~ 16 I- j ........ --- ............ """- 3 G.tes 12 -55 f...-- - 2 Gates o -25 30 25 50 - ~ 100 CT 26 « -' w o 22 IJ. IJ. o Z a: ~ f..-- I-" 75 >- '-..... .; 125 -- o 26 j:: o .s = 5.0 Vdc CT = 25 pF :; j:: 22 >- a: ~ 14 I- o --- 10 -55 I-- 3 Gates 20 IJ. IJ. <;> Z a: I-- 2 Gates ~ ,5l 24 -' w -' 18 :J .; ..0. o 25 50 75 100 16 I"0 -25 125 -- o :; 1= 32 -' w o z <;> 20 .,........ a: l- .......- V 16 i J. - - - --i-'""'" V V f-' 12 25 V ....- .......50 75 .......- .......- 2 G.tos 100 CT. CAPACITANCE (pF) 125 150 32 w - j:: 28 _ :; 3 G.tes.......... Z ~ 0 .s ~ 100 125 ~ V ~ 2 Gates I o -25 V 25 50 ~ 75 ~ 100 125 FIGURE 6 - TURN·OFF DELAY TIME versus CAPACITIVE LOADING V~C ~.o V~c 24 75 TA. AMBIENT TEMPERATURE (oC) f= 28 I-- TA = 25°C >- « 50 .,/' 3 Gates - 12 -55 FIGURE 5 - TURN·ON DELAY TIME versus CAPACITIVE LOADING w 25 CT= 25pF TA. AMBIENT TEMPERATURE 1°C) .s -- o ,/ f-' vc6 = 5.0 ~dC - « « w 2 Gates -25 28 w :; >- o z o Z -:--- FIGURE 4 - TURN-OFF DELAY TIME versus TEMPE RA TUR E !. I I-- VCC 3 Gates /'" T A. AMBIENT TEMPERATURE (oC) FIGURE 3 - TURN-ON DELAY TIME versus ,TEMPERATURE w / I 14 -55 TA. AMBIENT TEMPERATURE (oC) .s = 50 ~F 18 I- J. Vc~ = 5.0 ~dC _ w :; >«. -' w 24 <;> Z 20 a: ~ I- .; J. 16 --- - -- 12 25 -- TA = 25°C f.- 0 IJ. IJ. v~c = ~.o v~c - 3 Gates I---!---- f.-- 50 I-- 75 1 i' Ga 100 CT. CAPACITANCE (pF) .......- - 125 -...- 150 MC4306F ,L, MC4006F ,L,P (continued) TYPICAL SWITCHING TIMES (continued) . FIGURE 7- TURN-ON DELAY TIME verus POWER SUPPLY VOLTAGE 20 w ;;; i= > ~ .J . T~~2~Oe- .=. w ;;; i= > .J W 11. 11. 14 o Z :::> a: :::> 2 Gates 12 I- 18 16 14 2 Gates .; I J. Gat~s Z a: l- 3 o o o T~ 25~e- 20 ~ 3 Gates W z 22 oS 18 16 FIGURE 8 - TURN-OFF DELAY TIME versus POWER SUPPLY VOLTAGE 10 4.5 5.0 J. 5.5 12 4.5 Vee. POVIER SUPPLY VOLTAGE (VOLTS) 5.0 5.5 Vee. POWER SUPPLY VOLTAGE (VOLTS) TYPICAL APPLICATIONS state 0 thru 7. enabling decoder unit 1 ~nd inhibiting decoder unit 2. For states 8 thr'u 15 the reverse is true. thus providing the eight additional sta~es.needed for the fourth input variable. Outputs 0 thru 15 anlselected by the natural binary code on inputs A. B. C, and D; however, the MC4306/4006 can be used to decode any four-bit code by appropriately choosing outputs to correspond to the inputs. Combinations of MC4306/4006 decoders can be used to produce various decoding operations. Figure 1 illustrates the use of two of these binary to one-of-eight decoders and one inverter to convert four digital inputs into one of 16 mutally exclusive outputs. In this operation the Enable input of both decoders. in conjunction with the inverter. is used for the fourth digital bit. The D input is low from FIGURE 1 - BINARY TO 1-0F-16 DECODER 0 A B e 0 E C B A Device 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 7 8 9 or Equiv 2 E OutPl,.It D 0 1 2 3 4 5 • 116 Me3008 Input Output I Terminal 10 11 12 13 ,. 15 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 2 • MC4306F ,L, MC4006F ,L,P (continued) FIGURE 2 - GATED BINARY TO 1-OF-64 DECODER A' o-------...-l • B' o------..-+-l C' O-----~+I--l TYPICAL APPLICATIONS (continued) Output Terminal C , 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 . " 0 '0 Figure 2 illustrates the use of nine MC4306/4006 decoders in a 1-of-64 decoder. If the Enable input is used as a·data input terminal, the data bit will appear at the output terminal selected by the address on lines A, B, and C. Thus the MC4306/4006 can be used as an eightline data distributor (demultiplexer). All unselected outputs will be at a logic "1" level. Figure 3 shows two MC4312/4012 four-.bit shift registers used in conjunction with an MC4306/4Q06 to yield an eightbit serial data transmission system. The MC4312/4012's convert eight bits of parallel data to serial for transmission to another part of the system. The MC4306/ 4006 receives the serial data and distributes it to any of eight locations. By holding the address lines of the MC4306/4006 constant, all data bits are routed to the same location where they may be converted to parallel form again. By changing the MC4306/4006 address inputs at the same rate that data is being transmitted, each data bit can be distributed to a different location. 0 0 0 0 0 12 '3 '4 15 '6 ,.,." A 0 20 21 22 23 24 25 26 27 2. 00 01 02 03 04 05 2. 30 3' 32 33 34 35 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,, ,, ,, "' ,, ,, ,, ,,, , ,,, , ,,, ,, , " ,, ,, ,, 06 07 3. 3. 40 4' 42 43 44 45 46 47 48 4. 50 51 52 53 54 55 56 5. 5. 60 6' 62 63 Input Output B A C· B' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,, , ,, , ,, ,, ,, , , ,, , , ,, ,, ,,, ,, , ,, ,,, ,,, ,, ,, ,, ,, ,, ,, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , ,,, ,,, ,,, , ,,, ,, 0 0 0 0 0 0 0 0 , ,,, , ,,, 0 0 0 0 0 0 0 '0 0 ,,, ,, ,, 1 A' 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4 0 , , ,, , ,, ,, ,, , , , ,, , ,, ,, ,, , , , ,, , ,, ,, ,, , , , ,, , ,, , , 0 0 0 0 Device , ,, , , , ,, , ,, ,, ,, ,, ,, ,~ ,, ,, ,, ,, ,, ,, 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 8 , , , 0 FIGURE 3 - B·LlNE MULTIPLEXED TRANSMISSION SYSTEM Serial Input MC3015 1/6 MC300e aD 01 02 03 04 AS Address { 06 07 ReSet 0--1---, Serial Output I I I Logic "'" Clocko-+-----+_~---~-+__+---~--+_~-~-+_--~_+----------~ I MC4306F ,l, MC4006F ,l,P (continued) FIGURE 4 - DECODED DIVIDE-BY-FIVE COUNTER TYPICAL APPLICATIONS (continued) (n addition to simply decoding the output state of a counter, the MC4306/4006 can be' used to make an ordinary binary counter into an odd-modulus counter. For example, three flip-flops and one MC4306/ 4006 provide a completely decoded divide· by-five counter as shown in Figure 4. The 4, output is used to set all the flip·flops ,to the 111 state so that the counter will return to 000 on the next clocking edge. The Enable input is used to prevent false outputs due to rippling of the outputs through intermed'iate states. Output 7 of the MC4306/4006 is used for the fifth counter output state. • MC4300/MC4000 series DUAL BINARY TO ONE-OF-FOUR LINE DECODER MC4007L,P" • 1/2 OF DEVICE SHOWN 4 (12) 00 3 (13) 01 2 (14) 02 x (10) 6 1 (15) Q3 Y (9) 7 Vee GND ~ ~ This device converts two lines of input data to a one-of-four output. The enable line provides an in· hibit capability and also allows the decoder to be ex· panded for larger decoder systems. The dual 2-input!4-output decoder consists of high-level and low-level gates internally connected for minimum power consumption and maximum driving capabilities. The enable gate must be in the low state to perform the decode operation shown in the truth table. The propagation delays shown in the charts are typical and vary according to loading, interconnection wiring length, and the number of logic levels involved. PIN 16 PIN 8 TRUTH TABLE E=O Number in parenthesis indicates pin number for other side. Input Loading Factor: 1 Output Loading Factor = 10 Total Power Drssipation "" 125 mW typ/pkg x y 00 01 Q2 03 0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 = High State a = Low State LOW-LEVEL GATE Vee TYPICAL TURN-ON DELAY TIMES (ns} TA=25oC Input i Applies only to input gate. HIGH-LEVEL GATE X 00 11.5 01 02 03 15.5 11.5 15.5 Y 11.5 11·5 15.5 15.5 E 13.5 13.5 13.5 13.5 Vee TYPICAL TURN-OFF DELAY TIMES (nsl TA "L suffix P suffix = 16-pin dual in-line ceramic package (Case 620L = 16-Din in-line plastic Dackage ~----6 Vee GND = Pin 14 1 Input Loading Factor'" 2 = Pin Output Loading Factor"" 1 0 Positive Logic: Total Power Dissipation 8 - 1020309010011012013 6 -405 wh.r. X @V = 0': • VI + (X • VI = 150 mW typ!pkg Propagation Delay Time = 15-30 ns typ TYPICAL PROPAGATION DELAY TIMES -;; FIGURE 1 - THREE-GATE DELAY versus TEMPERATURE E 55 --I-'~OPF I- ___ 25pF w :. ;:: > o z o .....- .-; ,~+ Cl 25 -':t -- -- a: 15 -75 -50 ~ ........ -- ~ ..«o .. ~ ~/~ 35 26 -_1- :::--~ 'pd+ .... ~ ........ :. > « ..J 25 50 1 22 II w o z o ;:: «. (!l « . o . 100125 ~o. .......... J 14 - 'pd+ -50 -25 10 -75 TA. AMBIENT TEMPERATURE (oCI o 40 :. 36 w ;:: > 'pd+ (3 Ga,.s) « ..J 32 o z 28 ~ Cl 24 w o ..«o ..a: j. 20 ~ VCC TA - -- Fan-Out -- =1 -r- 16 - o ,..... S w I (1 G.,.),...- ,...- 30 60 . 'pd_ (1 Gate) 90 -o 'pd:,....- -- -===-= _-1"- 'T- 25 50 75 100 125 120 CL. LOAD CAPACITANCE (pF) *F suffix = TO-S6 ceramic flat pack.age'(Case 607). L suffix = TO-11~ ceramic dUB.1 in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605). 150 40 36 > « ..J 32 o 28 ;:: « (!l 24 z o ~ a: 12 o 1 FIGURE 4 - DELAY varsusSUPPLY VOLTAGE :. 0;:: w 'pd- (3 G~tes) = 5.0 Vdc = 25°C ~ _'pd+ ", --_..---' - I .... ... ...- ..,./ T A. AM81ENT TEMPERATURE (OCI FIGURE 3 - DELAY versus LOAD CAPACITANCE S -- tpd+ 18 a: 75 ~OPF - - - - 25pF ;:: "0 o -25 FIGURE 2 -ONE-GATE DELAY versus TEMPERATURE w I 45 :Iw ! . tpd+ (3 Gates) 1 'pd- (3 Ga,.s) f--- CL = 25 pF ~TA 20 o 16 j. 12 4.5 = 25°C 'pd+ (1 Gate) 'pd_ (1 G.te) 5.0 VCC.SUPPLV VOLTAGE (VOLTS) 5.5 • • ELECTRICAL CHARACTERISTICS S n Test procedures are shown for only one ~ input and one output. Test other inp!-Its w and output in the same manner. To com-. o pletetli'Sting. t~ all input-output combinations according to'the logic equation. CO -r "T1 sn ~ o o 1 2 CO 3 9 "T1 8 r- 10 11 "-g 12 )D 4 5 { MC4308 -S5·e +2S Q C +125Oc MC4000 Leakage Current Breakdown Voltage Clamp Voltage Symbol I MC4308 Test Limits Pin Under TeJt 'F - { aGe +25 oC +76OC IOL1 IOL2 16 16 16 16 16 16 18.4 18.4 18.4 17.6 17.6 17.6 oDc I +25OC I +l25OC I Max I Min I Max I Min I Max I Min I Max I Min I Max I Min I Max I Unit I lOLl IIOL21 I -3.2 -3.2 80~ 'R -3.2 -3.2 80 80 - 80 5.5 BVin Vo lin 'OH -1.6 -1.6 -1.6 1.6 -1.6 -1.6 -3.2 80 - -3.2 80 mAd, ,.Ad, Vd, Vd, 0.4 0.' Vd, Vd, Vd, 5.5 -1.5 -1.5 'D 1.0 -10 1.0 -10 - MC4OO8 Tast Limits I +25o C, I +7SoC -55°C Min Volts mA "Tnt Temp8f'ature Charocteristic: Input Forward Current 8:J TEST CURRENTNOLTAGE VALUES 6 V'L 1.1 1.1 0.8 1.1 1.1 0.9 V'H 2.0 1.8 1.8 2.0 1.8 1.8 VF VR VRH 0.4 0.4 2.4 2.4 0.4 2.4 0.4 0.4 0.4 2.5 2.5 2.5 4.0 4.0 4.0 4.0 4.0 4.0 Vmax 7.0 7.0 Vee VCCL VCCH 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5 4.75 5.5 4.75 4.75 5.5 5.5 5.25 5.25 5.25 I ~. :J V,HX s:: CD -1 a. 2.4 2.4 TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: 1oH I lin 110 V'L V'H I VF I VR I VRH I Vma• I Vee I VCCL I VCCH V,HX Gnd ,.,. 14 13 7,13 7,13 14 Output Output VOltage Short·Circuit Curnmt Maximum Power Supply Current 2.41 'se ITotal Device) 'max, 'PO 0.4 0.' 0.4 ~ Power ReqUirements Power SuppJy Drain 0.' VOL -201 -65 ,. ,. 2.4 -20 -s5 0.4 0.4 2.' -20 -65 0.4 0.4 2.5 -20 -66 0.' 0.' 2.5 -20 2.5 -65 Turn.()ffOelav -S5 mAd, - 14 14 14 14 58 58 mAde 5,13 1. 45 45 mAde 5,13 - 46 23 .6 23 46 23 46 23 Switching Paramat.., , Tum-On De:Jay -20 - 2,3,9,10,11,12,13 2,3,9,10,11,12,13 1.2,3,9,10,11,12,13 1,2.3,9,10,11,12,13 Pulseln Pulse Out 1 8 7.8 1,2,3,4,7 9,10,11,12 1.2.3,4,7 9.10,11,12 I 14 - I - I ,.,. ,. I 14 2,3,9,10,11,12 I 7,13 5.7 2,3,9,10,11,12 5.7 MC4308F,L, MC4008F,L,P (continued) INPUT AND OUTPUT LOADING FACTORS with respect to MTTL and MDTL families FAMILY MC4308 INPUT LOADING FACTOR MC4308 OUTPUT LOADING FACTOR MC4300 MC500 MC2100 MC3100 MC5400 MC930 1.0 1.2 0.8 0.8 1.0 1.0' 10 12 8 8 10 10 FAMILY MC4008 INPUT LOADING FACTOR MC4008 OUTPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 1.0 1.0 0.67 0.7 1.0 1.15· 10 10 6 8 10 12 *Applles only when mput Is bemg driven by MDTL gate With 2.0 kilohm pullup reSistor. LogiC "1" state drive limitations of gates with 6.0 kilohm pulfup resistors reduce drive capability to fan-out of 3. SWITCHING TIME TEST CIRCUIT 2.4 V I PULSE GENERATOR PRF t+ 1 = 1.0 MHz typ PW= lOOns 0.5 ns = t- = 5.5 ± -=- Coax· 13 8 950 ±. 1.0% 2 3 9 /TPout 10 11 12 4 1/4 MC3000 6 Load required only on output being 5 tested. CT = 25 pF = total parasitic capacitance, which includes probe, wiring, and toad capacitances. ·The coax delays f(om input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 9S0-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equ iva lent. VOL TAGE WAVEFORMS .- t+ !r---,--- 2.6 1.0. V V .;c______~~::::::::::::::::::::::::::::::::::::::::~~::====~G»N~Do-n4V • MC4308F ,L, MC4008F ,L,P (continued) m FIGURE 5 - 20·BIT PARITY GENERATOR • r----------------, MC4308/4008 APPLICATIONS INFORMATION .--------+0 Logic "1" 81-<>...j...;..--... 9 r-<>,.,N-../ ~ 10'--"'-'-,,-........ ~ 11r-u...,-7t..._ Output A Parity bit to be added to original word to form odd parity Output B Parity bit to be added to original word to form even parity L '-----1--0 Logic "0" ________________ ~ A parity generation tree (simple parity) for a 20·bit word is shown in Figure 5. It uses two MC4308/4008 8-bit parity trees and one MC4310/ 4010 dual 4-bit parity tree. If a parity word containing odd parity is required (i.e., the 20·bit word plus the parity bit are to contain an odd number of"" s"). the direct output from the parity tree (output A) is used as the parity bit. If even parity is required, the extra Ex· clusive·NOR gate in one MC4308/4008 provides the inversion when connected as indicated for output B. FIGURE 6 - 20·BIT PARITY DETECTOR m P':;ii:V I----_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-,---.., r a MC4308/4008 2 '-"-'-,,-........ 3r-u...,-7t..._ 4 '-"-'-"............ 5r-u...,-7t..._ 6 '-"-'-u--.... 7,.........,-7t..._ 'E0 . 3: ~ N 8 9 10 11 Output A "," output when odd parity with no error 12 13 14 15 16 17 18 19 '-----1--0 Logic "0" L ________________ ~ A parity detection circu it for a 20· bit word is shown in Figure 6. The 20·bit word is connected to a two·stage parity tree identical to that used for the 20·bit parity generator; however, for the detection circuit the output of the tree must be compared with the input parity bit. The parity bit serves as an input to the second stage of the tree. For odd parity detection, output A will be a logic "1" if no error has occurred. For even parity detection, a logic "1" will appear at output B if no error has been introduced. Longer word lengths can be examined in a similar manner. MC4300/MC4000 series DUAL 4-BIT PARITY TREE MC4010L, P * ADVANCE INFORMATION/NEW PRODUCT 1~ 2 H : Three Exclusive NOR gates are connected together to form each of the two 4·bit parity trees in the package. An even number of logic ",.' states on the inputs will result in a logic "," output state. An odd parity checker can be made by connecting an inverter to the output of the device. This function is constructed using low and high·level Exclusive NOR gates connected as shown in the logic diagram to maximize output drive capability and minimize power dissipation. 6 L 9~ 10 12 L 13 L H 8 Vee· PIN 14 GNO = PIN 7 Positive Logic: 6=1020405 where X <:> y =X .'7+ X' Y Input Loading Factor'" 2 Output Loading Factor = 10 Total Power Dissipation = 125 mW typ/pkg Propagation Delay Time = 9.5 to 22 ns typ LOW·LEVEL GATE HIGH·LEVEL GATE Vee Vee 4k 4k 4k 4k 4k 2k :t:APPlies only to Input gate . • L suffix = TO~116 ceramic dualln~line package (Case 632). P suffix =- TO-116 plastic dual In-line package (Case 605), I {"om:;;;:::; 4k I MC4010L, P (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families I FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MCS30 1.0 1.0 0.67 0.7 1.0 1.15"" 10 10 6 S 10 12 Note: Differences in MC4000 series loading factors result from differences in specifications for each family. "" Applies onlv when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6.0 k ohm pullup resistors reduca drive capability to fan·out of 3. DC ELECTRICAL CHARACTERISTICS (TA Characteristic =0 to 750 CI Symbol Value IFI -3.2 mAde max IF2 -2.S mAdc max Yin = 0.4 Vdc, VCC = 4.75 Vdc IR SOllAde max Yin = 2.5 Vde, VCC = 5.25 Vde Conditions Input Forward Current Leakage Current Breakd.own Voltaga Clamp Voltage Threshold Voltage Yin = 0.4 Vdc, V CC = 5.25 Vdc BVin 5.5 Vde max lin = 1.0 mAde, Vce= 5.25 Vde, TA = 250 e VD -1.5 Vde max 10 - -10 mAde, Vee - 4.75 Vde, TA = 25°C Vth "1" 2.0Vde Vth "0" I.SVde TA -ooe TA = +250 C, orTA = +750 C 1.1 Vde TA = oOe, or TA = +250 e 0.9 Vde TA=+750e Output OutPUt Voltags Short-Circuit Current VOL 0.4 Vde max IOL = 16 mAde, Vee = 4.75 Vdet 0.4 Vdemax IOL = 17.6 mAde, Vee = 5.25 Vdet VOH 2.5 Vdc min Ise -20 to -65 mAde IOH = -1.6 mAde, Vee = 4.75 Vdet Vee - 5.0 Vde, output groundedt tThese tests are performed according to the logic equations with a true input equal to Vth "1" and a false input equal to V th "0". MC4300/MC4000 series 4-BIT SHIFT REGISTER MC4012L,P* This 4-bit register provides parallei or serial data entry and retrieval, determined by the logic state of the mode control input_ For parallel operation, set the mode control to the logic "1" state and strobe the information at the Dp inputs into the register. Serial left-shift operation is achieved in this mode by connecting the Q outputs to the Dp inputs of the previous stage_ For serial right-shift operation, set the mode control to logic "0" and clock data into the register from DS. Strobe 13 o----f----., Clock 12 o-j---f----., Os QO Ql Q2 Q3 10 9 6 4 2 Mode COntrol 1 11 Vee"" Pin 14 GNO == Pin 7 3 °p3 °PO Input Loading Factor: Mode Control = 5 Propagation Oelay Time == 25 ns typ/bit 'tsetup "0" (Mode Control) == 25 ns typ t setvp "1" (Mode Control) = 12 ns typ tsetup "0" (OPO; DS) = 4.0 ns typ Other Jnputs == 1 o.utput Loading Factor = 10 Total Power DISSipation = 180 mW typ/pkg tsetup "'" (OPO. OS) - 3.0 ns typ INPUT GATING thold "0" thold "1" thold "0" thold'''1'' fT09 = 35 (Mode Control) 5.0"1 tvp (Mode Control) , 9.0"s tvp (OPO. OS) = 7.0 ns typ (OPO, DS) = 11 ns typ MHz typ @ 25°C TYPICAL FLIP-FLOP r----~---~~----~~------~;_--~------~----~------_r- --<> Z2 ~ B2 7 ~~ ZI BO Bl }- 0 0 0 0 0 0 0 0 Y }- J)J }- ~ Vee GND Input Loading Factor = 2 Output Loading Factor = 10 Total Power Dissipation = 250 mW typ/pk~ Propagation Oelay Time = 20 ns typ = Pin 16 =:; Pin 8 ~ ~ This is advance information on a new introduction and specifieations are subject to c!'lange ~ithou:t notice. *p suffix = l6-pin dual in-line plastic package (Case 612). *4 ;:c ;,.4S# , • MC4300/MC4000 series 4-BIT UNIVERSAL COUNTER MC4023F,L,P* • ADVANCE INFORMATION/NEW PRODUCT 513_ 01 e2 02 81_ e3 Q3 612_ J4 04 9 This device is a 4-bit counter with internally connected feedback. Inputs and outputs can be connected to count to any number between two and twelve except seven and eleven. Reset inputs are provided on each flip-flop to allow direct setting of the Q outputs to zero any time during the counting cycle_ Each flip-flop in the counter is built from high and low-level gates as shown by the logic diagram_ The flip-flops and the feedback inverter are connected as shown by the block diagram to provide minimum power dissipation and maximum drive capability_ LOW-LEVEL GATE Vee Vee = Pin 14 GND=Pin 7 4k Input Loading Factor: J= 1 <:1, <:3 = 2 <:2, R - 3 Output Loading Factor"" 1 0 Total Power Dissipation = 200 2k mW typ/pkg Propagation Delay Time = 16 ns typ/bit Operating Frequency = 30 MHz typ ·Oiode used only when input Is connected to external point. LOGIC DIAGRAM HIGH-LEVEL GATE One flip-flop shown. Only inputs shown on block diagram are present. Vee 4k *F suffix"'" TO-S6 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605). 1_2 k 100 MC4023F, L, P (continued) INPUT LOADING and OUTPUT DRIVING FACTORS with respect to MTTL and MDTL families FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT DRIVE FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 1.0 1.0 0.67 0.7 1.0 1.15" 10 10 6 8 10 12 I Note: Differences in MC4000 series loading factors result from differences in specifications for each family •• Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic "I" state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability "to fan~out of 3. DC ELECTRICAL CHARACTERISTICS ITA = 0 to 75°C) Characteristic Symbol Value IFI -1.6 mAde max Conditions Input Forward Current - J Cl,C3 -3.2 mAde max C2,R -4.8 mAde max J IF2 -1.4 mAde max Cl,C3 -2.S mAde max C2,R -4.2 mAde max Leakage Current - J IR SO "Ade max C2,R 120"Ade max Breakdown Voltage Threshold Voltage Vin = 0.4 Vde; VCC = 4.75 Vdc 40 "Ade max Cl,C3 Clamp Voltage Vin = 0.4 Vde, VCC = 5.25 Vde Vin = 2.5 Vde, VCC = 5.25 Vde BVin 5.5 Vde max lin = 1.0 mAde, VCC = 5.25 Vdc, TA = 25°C VD -1.5 Vde max 10 = -10 mAde, VCC = 4.75 Vde, TA = 25°C Vth "," Vth "0" 2.0 Vde TA = DoC 1.8 Vde TA = +250 C, orTA = 75°C 1.1 Vde TA = DoC, orTA = +250 C 0.9 Vde TA = +750 C Output Output Voltage VOL VOH Short·Circuit Current ISC 0.4 Vde max IOL = 16 mAde, VCC = 4.75 Vde 0.4 Vde max IOL = 17.6 mAde, VCC = 5.25 Vde 2.5 Vde max -20 to -65 mAde IOH = -1.6 mAde, VCC = 4.i5 Vde V out = 0 Vde, VCC =5.0 Vde MC4023F, L, P (continued) SE~UENCES COUNTING • Ql 513_ C2 Q2 8 6 12 J4 Q3 Q4 DIVIDE BY 3 9 DIVIDE BY4 (;2 Q2 Q4 Cl Ql Q3 0 0 0 0 1 2 1 0 0 1 1 2 3 0 0 0 0 DIVIDE BY6 DIVIDE BY 12 Ql Q2 Q4 C3 Q3 Ql Q2 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 5 1 2 3 4 applied to C2; the output is taken from Q4. 5 6 7 8 9 DIVIDE BY 4: Use flip-flops 1 and 3; connect 01 to C3. 10 Apply the input signal to In addition to the connection for divide by 3, connect 01 to C2. ApplV the input signal to Ct. 11 DIVIOE BY 6: DIVIDE BY 2: Use flip-flop lor 3. DIVIDE BY 3: Use flip-flops 2 and 4, connected as shown. The input signal is ct. DIVIDE BY 12: In addition to the connections for divide by 6, connect 03 to 513_ C2 Q2 8 1_ C3 Q3 612_ J4 Q4 ct. DIVIDE BY5 9 DIVI DE BY 8: 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 Cl 8 Ql C2 Q2 6 DIVIDE BY 10 Q4 Cl Ql Q2 Q3 Q4 0 1 0 1 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 <:1 Ql Q2 Q3 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 5 6 7 C3 Q3 9 12 J4 Q4 1 1 2 3 4 5 6 7 8 9 1 0 1 0 1 0 1 DIVIDE BY 10: 0 1 1 In addition to the connections for divide by 5, connect Q 1 to C2. Apply the input signal to C1. C2 Q2 Q3 Ql 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 a DIVIDE BY 9: 11 R4 1 1 1 1 Q3 Connect flip-flops 2 and 3 as shown for divide by 5, but do not connect 03 to j4. Connect a 1 to C2. The input signal is applied to C1; the output is taken from 03. 5 13 0 0 0 Q2 DIVIDE BY 9 2 0 C2 2 3 4 Connect flip-flops 2,3, and 4 as shown. The input signal Is applied to <:2; the output is taken from Q4. 0 Q4 Apply the input signal to C3. DIVIDE BY8 DIVIDE BY 5: 1 1 1 Cl 2 3 4 Ql 1 1 0 1 0 1 1 1 1, 0 1 1 1 1 0 Q4 1 The input signal is applied to C2; the output is taken from 04. DUAL VOL TAGE-CONTROLLED MULTIVIBRATOR MC4300/MC4000 series MC4324F,L* MC4024F, L, P* 4 -iE The MC4324/4024 voltage-controlled multivibrator provides appropriate level shifting to produce an output compatible with MTTL logic levels. Frequency control is accomplished through the use of voltagevariable current sources which control the slew rate of a single capacitor. Variation of the output frequency over a 3.5 to 1 range is possible with an' input dc con· trol voltage of +1.0 to +5.0 volts. Voltage·controlled multivibrators are used in phase· locked loops for digital frequency control. they may also be used for some types of A to D converters. 3 2 6 12 8 Vcc: VCM = 1. 13 Output Buffer = 14 GND: VCM = 5. 9 Output Buffer = 7 External Capacitor for Frequency Range Determination Output Loading ~actor Power Dissipation = 7 = 150. mW typ/pkg Maximum Operating Frequency = 30 MHz typ CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN (Numbers in bracketS are pin numbers for other half.) 4110) 3111) ----------1~---------- X2 Xl [13] lO-____ ~~_+~----------~---c-cfP-n-tr~o-I----~~--~--4r------------, VCC (VCM) ,-------"""'"1[014 VCC 2570 (Output Buffed 4k 1.4k 100 560 Control Input 750 6 [8) 560 304 560 [9) 5~----~-------------4--+-----~----------~--~--~~~~ GND (VCM) "F suffix = TO-S6 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P'suffix = TO-116 plastic dual in-line package (Case 605). GND (Output Buffer) • ELECTRICAL CHARACTERISTICS 2 ~ VCM • e N 6 ~ rnA Pin Symbol Test Min Max Min Max lin 2 12 - 40 40 - 40 40 6 - 0.4 - 0.4 IOL2 IOH VIH VCC VCCL VCCH 11.2 -1.6 5.0 5.0 4.5 5.5 +250 C 9.8 11.2 -1.6 5.0 5.0 4.5 5.5 +1Z::~ 9.8 11.2 -1.6 5.0 5.0 4.5 5.5 9.8 11.2 -1.6 5.0 5.0 4.75 5.25 +2SoC 9.8 11.2 -1.6 5.0 5.0 4.75 5.25 +7SoC 9.8 11.2 -1.6 5.0 5.0 4.75 5.25 { MC4024 MC4024 Test Limits OoC +2SoC Volts @Tast Temperature IOL1 { ~50C 9.8 MC4324 11 MC4324 Test Limits _55°C +2SoC +12SoC Under Characteristic -It on !"" S TEST CURRENTNOL TAGE VALUES "fr' 10 (") ~ C ~ r.." " ~ TEST CURRENTNOL TAGE APPLlEO TO PINS LISTEO BELOW, .~ +7SoC Max Min Max Min Max Min Max Unit IOL1 IOL2 IOH VIH VCC VCCL VCCH Gild - 40 40 - 40 - - 40 40 ,t.tAdc 40 40 40 ,t.tAdc - - - 2 12 - - 14 14 5,7,9 5.7,9 - 0.4 - 0.4 - 0.4 - 0.4 Vdc 6 8 - - 5.7,9 2.5 2.5 -40 -40 - Vdc Vdc 6 8 2 12 - 1.4,14 10,13,14 6 8 2 12 2 12 - -100 -100 mAde mAde - - - 2 12 1,3,14 11,13,14 Min Input Forward Current VOL VOH I 6 8 2.4 2.4 ISC I IpO 11,3,14'- 6 8 + - 2.4 2.4 1-40 1-100 -40 -40 -100 -40 + - - 2.4 2.4 -100 -40 -100 -40 + - 2.5 2.5 -100 -40 -100 -40 - .+ -100 -100 2.5 2.5 -40 -40 + - -100 -100 ~ ~ - - - - 1,4,14 10,13,14 1,3,14 11,13,14 - - - + 5,7,9 5,7,9 5,6,7,9 5,7,8,9 Power Requirements (Total Device) Power Supply Drain 8:::J !:!". :::J c: CD Output Output Voltage Short-Circuit Current s (") 37 mAde 37 2.4,10,121 1,13,14 5,7,9 AC TEST CIRCUIT AND WAVEFORMS TP out GND Coax shall be CT-070-50 or equivalent. CT = 25 pF "" total parasitic capacitance, wh ich includes probe, wiring, and load capacitances. Co MC4324F,L, MC4024F,L,P (continued) AC TEST LIMITS TEST SYMBOL Maximum Operating Frequency f max Ratio of Frequency of Oscillation over Specified Input Voltage Range 25 MHz Ccontrol = 100pF, Vin high = 5.0 Vdc, Vin low = 1.0 Vdc 3.5:1.0 FIGURE 1 -INPUT VOLTAGE versus OUTPUT FREQUENCY (15 pF FEEDBACK CAPACITOR) 5.5 The operating frequency range of this multivibrator is controlled by the value of an external capacitor that is connected between X 1 and X2. Either of the two equations shown below may be used to define the value of Ccontrol: ).IF, or Ccontrol = -- 5.0 I..J 0 <1: I- is typically 30 MHz. Three power supply and three ground connections are provided in this circuit. Each multivibrator has a separate power supply and ground connection. The output buffers have a common power supply and ground pin. This provides isolation between VCM's and minimizes the effect of output buffer transients on the multivibrators in critical applications. This separation of power supply and ground lines also provides the capability of disabling one VCM by disconnecting its Vee pin. All grounds must always be connected to insure substrate grounding and proper isolation. The output buffer transforms the logic levels of the VCM to MTTL logic levels. FIGURE 2 - INPUT VOLTAGE versus OUTPUT FREQUENCY (100 pF FEEDBACK CAPACITOR) VCC ~ +1~50J V Al T~~ Y 5.0 Vdc 5.0 - u; ..J o 4.0 > <1: I- 55 O C ::> 2.0 Q. ~ - i: >- 1.0 o o 1- I- -55°C, IJ l 0 I- ::> Q. z 2.0 ~ o 4.0 5.0 f out , OUTPUT FREQUENCY (MHz) 6.0 30 +125 0 C -- ~ K.,~ "">~V'"t---550 C r---+250C 1.0 o 3.0 25 r- f--+1250C i: ;; 1.0 ~~ VI V 3.0 > 2.0 20 +25 0 C 1 4.0 w <1: Q. 15 I I I Cl o 2.0 10 5.0 I--- VCC = 5.0 Vdc ~ J 1.0 5.0 FIGURE 3 -INPUT VOLTAGE versus OUTPUT FREQUENCY (430 pF FEEDBACK CAPACITOR) ..J o +250 C f out , OUTPUT FREQUENCY (MHz) 0 > ::> ~ ~ -+1250 C ~ > I- ..J f/\+25 C ~+250CI 0 u; ..J I- 3.0 /V. ..... :::;-- I- ""':V"+1250 C 3.0 -55°C / L K-5~OC ..J f-- -55°C w Cl 4.0 5.5 +25 0 C I- ~~ U; Cl with f given in Hz. The maximum operating frequency of th is device +125 0 C ..... 1- w ).IF, 1min 5.5 I I I -vcc = 5.0 Vdc ~ 100 500 = f max Min Ccontrol = 10 pF, Vin = 5.0 Vdc Frequency Ratio = 3.5:1 OPERATING CHARACTERISTICS Ccontrol • LIMITS CONDITIONS o 0,2 0.4 0.6 0.8 1.0 f out , OUTPUT FREQUENCY (MHz) 1.2 MC4324F,L, MC4024F,L,P (continued) The basic frequency synthesizer loop shown in Figure 4 consists of five basic components: the reference oscillator, the phase detector, the low-pass filter, the voltage controlled multivibrator/oscillator, and the divide by N counter. This loop achieves a stable state when fVCM = N fref. When this condition does not exist the VCM searches through its frequency spectrum until it finds the frequency at which the stable state occurs. At this point the loop locks. This system allows the generation of many discrete frequencies from a single, highly stable source (fref). A system such as this has many useful applications in com· munications (frequency control systems) ,computer systems (for synchronizing data tracks and clocking systems), in instruments (frequency synthesizers and counters) and filter networks. In addition to its function in. the phase'locked loop, the VCM may be used as a fixed oscillator (plug crystal into capacitor pins and ground control input), in simple A to D converter systems, and as an FM modulator. • APPLICATIONS INFORMATION FIGURE 4 - PHASE·LOCKED, FREQUENCY SYNTHESIZER LOOP Reference Oscillator Voltage~ Phase Controlled Multivibrator MC4324/4024 Detector MC4344/4044 fVCM 7N N Progl."ammable Counter MC4316/4016 MC4318/4018 fVCM ~~____________M __C_43_0_0_I_M_C_4_00_0_~ __ri_es__~ FULL ADDERS MC4326F, L • MC4327F, L* MC4026F, L, P • MC4027F, L, P* These full adders are designed for serial and ripple-carry parallel adder systems. True Sum and Carry are produced at the output from the input information. A separate 3-input NAND gate is provided on the monolithic chip to provide the inverted Su m or Carry output. 5 A 8 B 9 TRUTH TABLE Input Pins Output Pins 2 5 7 8 9 A B SUM Cout Cin 11-------------, 12-------- 0 0 0 0 ~--------6 13------------~ VCC = Pin 4 GND = Pin 10 Input Loading Factor: A, B = 2 e, n • Pins 11, 12, 13 =1 Output Loading Factor: MC4326 = 15 MTTL MC4327 = 7 MTTL MC4026 = 12 MTTL MC4027 = 6 MTTL 1 1 1 1 I I I I Loads Loads Loads Loads , 0 0 {} 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 Total Power Dissipation Add Delay = 25 ns typ Carry Delay = 13 ns typ 0 0 0 = 90 mW typ!pkg CIRCUIT SCHEMATIC VCC 4 4.5 k 4.5 k 4.5 k 4.5 k C out ~~----------+-~7 5.6 k 6 11 120---+4 130---+-+--+ = TO-B6 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-1 16 Plastic dUal· in-line packaGe (Case 605). *F suffix • II S n t) ELECTRICAL CHARACTERISTICS Test procedures are shown for inputs A and Cin. Other inputs are tested in the same manner. Output tests should be completed according to the truth table. N 0) "T1 ~ r s ~ W N ...... TEST CURRENT!VOlTAGE VAlUES rnA @ T.s' Temperature Cin 2 11 12 13 MC4326*, MC4327 D~-- 6 M(4026*, MC4027 I I -ssoc lOt Symbol ~ ,r- 100 Pr* Std Pr· Std lin 21.. 1.0 2.0 VII. V1H V. Vth1 VthO VOUI 0.45 0.9 5.5 VrM• Vee 8.0 5.0 20 10 -2.2 -1.2 2.8 4.5 a.o +25°C 20 10 -2.2 -1.2 0.45 2.8 4.5 1.7 1.0 5.5 +12SoC 20 -2.2 -1.2 0.45 2.8 4.5 1.4 0.8 5.5 5.0 ooe to 20 10 -2.2 -1.2 0.45 3.0 4.5 1.9 1.0 5.5 5.0 +2S oC 20 10 -2.2 -1.2 0.45 3.0 4.5 1.8 1.0 5.5 +75°C 20 10 -2.2 -1.2 0.45 3.0 4.5 1.7 1.0 5.5 Pin Under Characteristic "T1 Volts 1.0 2.0 5,0 7.0 S n ~ ~ 5.0 5.0 :n TEST CURRENT!VOLTAGE APPLIED TO PINS lISTEO BELOW, I Test I Min I Max I Min I Max I Min I ,Max I Min I Max I Min I Max I Min I Max I Un~ lOt 10H 1m I 21,. I V" I V,H V. V"'l I VthO V... V_. Vee Gnd I""", Forward Current 'F -1.33 [ [-1.33 -1.33 -1.~[ [-l.~ -1.661 mAde 8,9,11,12,13 2,10 -2.66 -2.66 -3_~ -3.~ -3.321 mAdc 2,9,11,12,13 8,10 -2.66 Leakage Current 1ft Inverse Beta Current 'L Breakdown Voltage 0.1 I - 10.1 0.1 0.1 0.1 0.1 I mAdc 8,9,10,11,12,13 0.2 I - 2.9,10,11,12,13 10.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 I mAdc 0.1 I mAdc 0.2 0.2 0.2 0.2 0.2 0.2 I mAdc BV in 10 10 5.5 5.5 Vd, ~ ~ 8,9,10,11,12,13 ~ 2,9,10,1"1,12,13 10 Vout "1" Leakage Current 0.45 Voot "0" 2.5 Isc Output Voltage VOL VOH - I - -25 I 0.45 1 - I 2.4 I 0.25 I IOLK Short-Circuit Current I I 0,45 I I 2.5 I I 0.45 1 - 1 0.45 I Vdc 2.8 3.1 3.15 I 0.4 3.0 I - I 0.25 I - - I Vdc 2,8,9 10 8,9 10 5,10 I 0.45 I - - - I 2.5 I 2,8,9 - I 0.25 I - I -100 I -25 I -100 I -25 I -100 I -25 I -100 I -25 1 '-100 I -25 I -100 I mAde I I 0.25 J - I 0.45 I I 2.4 I 10 I 0.4 - - I 2.5 1 - 2,8,9 I - I 0.25 I - I 0.25 I mAdc 0.4 - .. I 0.4 I - I 0.45 I Vdc 3.15 Vd, 3.1 10 2,8,9 2,8,9 10 Power Requirements (T..al Oevice) Mludmum' Power Supply Current Power SUpply Drain 'm~ ',.DR IpDL "'Prime Fan-Out 38 mAd, 47 27 27 27 35 35 35 I mAde 32 32 32 41 41 41 I mAde s ~ o ...... N ~"T1 r- ~ 10 O"'put Output Voltage r,""0 2,8,9,10,11,12,13 10 2,8,9,10,11,12,13 8::s ...5' s:: ~ MC4326F,L, MC4327F,L, MC4026F,L,P, MC4027F,L,P (continued) • SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee Coax· Coax· 2.5 k 950 ±1.0% 50 PRF = 2.0 MHz Zin = 500hms CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. -ni. coax delays from input to scope and output to scope must be matched. The scope 'must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. Jc------------,~i::?__ni:;_---3.0 X TPin = V GND = = +_ _ _ _ _ _ _ _--'-f2=====0.4V ~---- 200 ns------., ---~~+==============+==~~~--GND =====~+_--------~=====GND SWITCHING TIME TEST PROCEDURES (Lettars shown in test columns refer to waveforms.) INPUT PIN PINS TEST tpd+ LIMITS 8 9 lin/Out) A B 9/5 9/5 Open X Open Open Open Z Open X Open Open Open Z 3.0 V 3.0 V 3.0 V 3.0 V Open Open Z Open Open Z 11 12 13 5 6 SUM tpdtpd+ 11/6 Open Open X tpd- 11/6 Open Open tpd+ 8.9/7 X X X Open tpd_ t+ 8.917 X X Open t- OUTPUT PIN UNDER TEST Tested during each of the above tests. 7 Cout - - y y ns max 35 35 20 20 20 20 8.0 5.0 ~_______________M_C_4_3_0~O~/_M_C_4_0_00__~_r_ie_s~1 ADDERS MC4328F, L thru MC4331F, L* MC4028F,L,P thru MC4031F,L,P* • This family of fast adders is designed for use in parallel look-ahead carry adder applications where high-speed addition is requirad. The dependentcarry fast adders have a Carry output that is dependent upon the two input bits for that stage plus the Carry input from all previous stages. The Carry output from the MC4330/31 is independent of the carry from the previous stages. CONDENSED TRUTH TABLE FOR THE Nth STAGE 11 12,13 Cin1(n-1) Note 1 Pin Numbers 13,14.1 5 MC4330{4030 MC4331/4031 Note 2 Sum (El,ut Cout MC4328/4028 MC4329J4029 Comment Cout Note 3 " "" Input Loading Factor: <±lln1. A. B~2 <±>in2. Cin1, Cin2. Cin3 = 1 Output Loading Factor: MC4330 ~ 15 MTTL I Loads MC4331 ~ 7 MTTL I Loads MC4030 ~ 12 MTTL I Loads MC4031 ~ 6 MTTL I Loads MC4328, MC4329, MC4028, MC4029, Total Power Dissipation = 125 mW typ/pkg Add Delay == 25 ns typ Carry Delay Note 1. This column represents the AND function whose inputs ere pins 13 and 12, and Is defined by the expression (A n_,@Sn_1)(Cl n [n-2})' Note 2. This column represents the AND 'functIon whose inputs are pins 13, 14, and 1, and i5 defined by the expression (A n _1 G:) B n -l){A n-2 @Bn_2)(Cn_31. Note 3, q, '" Don't Care. The "Don't Care" occurs for the MC4330-31/4030-31 only, because the C n and the@n from anyone previous stage entering a given subsequent stage cannot be simultaneously at logic "1" DEPENDENT-CARRY FAST ADDER MC4328/4028, MC4329/4029 <±lln2 1 <±lln1 13 INDEPENDENT-CARRY FAST ADDER MC433014030, MC4331/4031 -----------, I Cin3 14 --r-r---<-_/ = 13 ns typ j---------- --, <±lin2 I I I I I Cin3 14 <±lin 1 13 1 I C in2 12 - - - ' - L . . _ / Cln2 12 C in1 11 Xl 3 X2 2--~-----~ Cln1 X1 X2 A B 8 ---'---'-' 9 >r"--~~ --+--------' I I 11 I 3 I 2 - - - - - - - - - __ I A 8---'--..-----):>-_ _ _ _ _--\ B 9 7 C out ~;-,--"1-~ I I IL __ r--- ;>O-+-r- 6 I. I <±l out I .:>0---+-+-6 <±lout I 1 1 I 1 _____________ III JI L VCC~PIN4 GND ~ PIN 10 • F suffix = TO-86 ceramic flat package (Case 607). L. suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 606). I 1 I IL :>O-i-+-5 SUM _ _ _ _ _ _ _ _ _ _ 1\1 _ .J.I VCC ~ PIN 4 GND ~ PIN 10 MC4328F,L thru MC4331F,L, MC4028F,L,P thru MC4031F,L,P (continued) CIRCUIT SCHEMATIC • Xl (f);n2 C in3 14 (f);nl 13 C in2 12 C in1 11 X2 A 8 t-rl-+-07 Cout t-.....---+---<> 5 SUM o-+--.--+-+--I' I 1.2k I . L ____________ ~ __ =----1I 10 GND o Connection shown by dashed line u~ed only on dependent-carry devices. . • ELECTRICAL CHARACTERISTICS s: C') oI:lo I nput test procedures are shown for only w inputS(t)in2 and A. Other inputsare tested ~ in the same manner. Output tests should be completed according to the truth table. ·"rr+ ... ::T C TEST CURRENT!VOlTAGE VALUES mA @ Test Temperature -SSoC MC432S', MC4329 0 MC4330. MC4331 +25 C ! +125°C I MC4028*, MC4029I DOC MC4030., MC4031 +2S:C +75 C 10< s: Volts C') I"" Pr* Std Pr* S1d 20 10 -2.2 -1.2 20 20 10 10 -2.2 -2.2 -1.2 -1.2 20 20 20 10 10 10 -2.2 -2.2 -2.2 -1.2 -1.2 -1.2 lin 1.0 1.0 V1L VIH VI Vth1 0.45 0.45 0.45 0.45 0.45 0.45 Vtho VOUI 2.8 4.5 2.8 2.8 4.5 4.5 2.0 0.9 5.5 1.7 1.4 1.0 0.8 5.5 5.5 3.0 3.0 3.0 4.5 4.5 4.5 1.9 1.8 1.7 1.0 1.0 1.0 5.5 5.5 5.5 Vm.x Yee 8.0 5.0 5.0 f) 5.0 W ~ ·r-" 5.0 7.0 5.0 5.0 s: U~~r-~~~~~~~~~-1--crc~~~~~~~~~--i------.------~~~~~~~::~~~~::~-----r----'-~ Characteristic Symbol I Test Leakage Current Inverse Beta Current IF IR -1.33 -1.33 -2.66 -2.66 -2.66 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 I 0.2 0.2 0.2 0.1 IL -1."1 1-1.·61 -1.33 0;2 BreakdoWn Voltage [ BV in - -3.32 -3.32 I I - - [ 0.1 I - I-I." mAd' 8,9,11,12,13,14 1,10 -3.32 mAdc 1,9,11,12,13,14 8,10 I 0.1 mAde 8,9,10,11,12,13,14 0.2 0.2 I mAde 1.9,10.11,12.13,14 0.1 0.1 1 mAde I 0.2 0.2 I mAde 5.5 5.5 Vd, ~ ~ ~ 10 10 8,9,10,11,12,13,14 10,12,14 1,9,10,11,12,13;14 10,12,14 Output OutpJ.t Voltage 0.45 I Vout "0" Vout "1" Leakage Current 2.5 I ISC Output Voltage VOL V aH I - 10.45 -100 I - -25 0.4 0.4 2.7 2.5 2.5 0.25 5** I -25 I -100 1-25 I 3.1 I 0.45 0.45 2.4 0.25 IOLK Short-Circuit Current 13.15 I I - I 0.45 0.45 I Vde 2.5 2.4 I - 1 Vdc I .. I 0.25 I mAde 0.25 0.25 0.25 -100 1-25 -100 I -25 -100 I -25 I -100 I mAde 0.45 0.4 0.4 - I 2.8 3.1 I - I - I 0.45 I 13.15 I Vde - I Vde _ I mAde ',9 11,13 ',9 11,13 65 I lmax Power Supply Drain IpDH 321-1321-1321-141 JpDL 38 55 I - I 38 I - I 38 I - I 48 - I 41 I - I 41 I mAde 48 J - I 48 I mAde r+ ...::T C s: ~ 10 ~ 5,10 8,9 10 11,1318,9 10 w ·"-c"r8;:, (Total Device) Maximum Power Supply Current " r"-c c 8,10 11,131 00 10 Power Requirements .Prime Fan-Out UShort one output at a time. ~ C N Il11ut Forward Current C') Gnd a, 9, 10, 11,13 10 8,9,10,11,13 .... :5' c ~ MC4328F,L thru MC4331F,L, MC4028F,L,P thru MC4031F,L,P (continued) SWI TCHI NG TIME TEST CI RCUIT AND WAVEFORMS VCC MC511 OR EQUIV 1 N3605 OR EQUIV _~~~~--+,=======0.4 V ~~-GND t--~~- Z 200 ns - - - - - I TP out GND t+ CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. "The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. "" Load only pin 5 when testing output 5. Load both outputs 6 and 7 when testing pin 6 or 7. SWITCHING TIME TEST PROCEDURES (Letters shown in test columns refer to waveforms. I INPUT PIN TEST PINS UNDER TEST Un/Outl 8 A 9 B tpd+ 11/5 Open Gnd X tpd_ 11/5 Open Gnd X OUTPUT PIN LIMITS 11 Cin1 5 7 12 13 Cin2 ®in1 14 1 Cin3 ®in2 Open Gnd Open Open y - Open Gnd Open Open y - 35 6 SUM ®out Cout - I)S max 35 tpd+ 8/6 X 3.0 V Gnd Gnd Open Gnd Open Y - - 30 tpd_ 8/6 X 3.0 V Gnd Gnd Open Gnd Open - y - 30 tpd+ 8/7 X 3.0 V Gnd Gnd Open Gnd Open - - 2 20 tpd_ 8/7 X 3.0 V Gnd Gnd Open Gnd Open - - 2 t+ t- Te,sted during each of the above tests. 20 8.0 5.0 MC4328F,l thru MC4331 F,l, MC4028F ,l,P thru MC4031 F ,l,P (continued) TYPICAL APPLICATION The MC4328/29 and MC4330/31 adders can be used with the MC4332 Carry Decoder to build 8stage look-ahead carry subsystems. Each stage examines the carry outputs from all previous stages while adding bits A and B for that stage. The carry outputs of the first and eighth stages are dependent upon the carry inputs from previous stages; thus the MC4328/29 adder is used for stages one and eight while the MC4330/31 adder is used for stages two through seven. The MC4332 Carry Decoder is used to expand the look-ahead carry input capability required for stages four through eight. The add delay of an eight stage adder is equal to the sum of the add delay and the delay from the A and B inputs to the@output of one stage. Thus the typical add delay for an 8-stage adder is 25 ns + 13 • ns or 38 ns typical. When expander inputs are not used they should not be connected to .any external point. This minimizes possible problems resulting from noise pick-up. Cin A1 B1 Jj" 9 11 13 =~ od ~ A2 82 A3 83 A4 B4 AS 85 8 9 8 9 8 9 8 9 ~ MC4328 OR ~ =~ ~ MC4329 ~ ~ ~ ~ r MC4330 OR MC4331 ~ ~ ~ ~ ,....,1{ ~ MC4330 OR MC4331 MC4330 14r--" ~ ~ ~ 5 6 7 56 7 1~ Il~ OR MC4331 ~ ~ 5 6 7 11 13 12 5rf ~ ~ = MC4330 OR 3 MC4331 ~ MC4332 567 ~ a b c d - ra.STAGE LOOK·AHEAD CARRY SUBSYSTEM S1 83 82 84 86 A7 87 AS 8 9 8 9 8 11 I 14r--~ -<>"~ ~ ~MC4332 MC4330 OR MC4331 ~ 5 6 7 ~ -4 1 MC4330 14 OR 1 MC4328 14 OR 13 12 MC4331 ~ MC4332 56 u- b' c' d' 14r--~ ~ MC4329 llo.o..2 13 7 ~ ~ rl f3 MC4332 ri 11[,- 5r:f Cout Anticip ated Carry to ne xt a-stage bsvstem .u A1 (i) B1 C2 A2(i) B2 C3 A3(i) B3 C4 M(i)B4 C5 AS (i)·B5 e' f' g' h' c6 A6(i) B6 C7 56 9 " 14r--~ 'V"~ B8 " 13 12 ~ a' 55 AS 13 12 1~ 9 h 57 58 MC4300/MC4000 series "\ CARRY DECODER \.-------------' MC4332F,L* MC4032F,L,P* This 4-wide4, 5, 6,7 input AND-OR expander provides the necessary logic for carry decod ing between look-ahead carry adder stages using the MC4328/29 and MC4330/31 fast adders. 14 8 13-~++t-J EMITTER ':::'1---.....---12 9--+++t-J ...__-0----11 COLLECTOR .3 -tTlFR=:3 2-++++-+-' Input Loading Factor: Pinsl,8,14 =4 Pin 7 Pin 3 = 3 = 2 6---..!=====:~ Pins 2, 5, 6, 9, 13 = 1 Total Power Dissipation = 20 mW typ/pkg 5----' ~tpd = 4.0 ns typ/decoder 1.0 ns tvp/pF at expander nodes Vee = Pin 4 GND = Pin 10 TYPICAL APPLICATION 4 Vcc 4k I I(rr ..v- \ 13 4k (r I 'f .vk \ 9 4k I Y IrrJ ( ~ 2 I 14 8 1 7 (r r 4k II 5 ~ ~H:.:: 6 3 ~ 10 ·F suffix "'" TO~86 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line packa.ge (Case 605). 1211 The MC4328/29 and MC4330/31 adders can be used with the MC4332 Carry Decoder to build 8-stage look -ahead carry subsystems. (See the MC4328-31 ) data sheet for a diagram.) Each stage examines the carry outputs from all previous stages while adding bits A and B for that stage. The carry outputs of the first and eighth stages are dependent upon the carry inputs from previous stages; thus the MC4328/29 adder is used for stages one and eight while the MC4330/31 adder is used for stages two through seven. The MC4332 Carry Decoder is used to expand the look· ahead carry input capability required for stages four through eight. The add delay of an eight stage adder is equal to the sum of the add delay and the delay from the A and B inputs to the (j;) output of one stage. Thus the type ical add delay for an 8-stage adder is 25 ns + 13 ns or 38 ns typical. When expand.er inputs are not used they should not be connected to any external point. This minimizes possible problems resulting from noise pick-up. • • ELECTRICAL CHARACTERISTICS s: e Test procedures are shown for only one set of inputs. Test remaining inputs in the same manner. N ." ~ 14 8 r s: o 1TT:1 1 13 ~ 7--....:I~::::j 9 3 2 8N 12 ~"T1 ...,r- -,.m:t==1 _ 6--"===~L nO 5 ::J ~. ::J C Pin Uooer~~~-+~~~~~~~~~~-+~~~~~~~ Symbol I Test Characteristic Input Forward Current Leakage CUrrent I IF I Ia Inverse Beta Current I Breakdown Voltage .~-. I IL BVin 5.5 -5.32 -1.33 -2.66 -3.99 -5.32 -1.33 -2.66 -3.99 -5.32 -6.64 -1.33 '-2.66 -1.66 -6.64 -1.66 -3.32 -3.32 -3.99 -4.98 -4.98 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.' 0.3 mAde 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.2 0.3 0.' 0.1 0.' 0.3 mAde 5.5 5.5 5.5 5.5 lOt Unit V, V. c.. ~ ~ ~ r [- - [-[i [ Vdc Leakage Current mAde mAde 2,3,5,6,7,8,9,10,13,14 1,3,5,6,7,8,9,10,13,14 1,2,5,6,7,8,9,10,13,14 1,2,3,5,6,8,9,10,13,14 10 [ ~ 2,3,5,6,7,8,9,10,13,14 1,3,5,6,7,8,9,10,13,14 1,2,5,6,7,8,9,10,13,14 Vde OUtput Voltage Goo 10 I I I I I I I Output V" VE3 Vm . . Vee Vth1 VthO VOUf1 V... 2 VEl 2,3,5,6,7,8,9,13,14 1,3,5,6,7,8,9,13,14 1,2,5,6,7,8,9,13,14 1,2,3,5,6,8,9,13,14 -6.64 mAde -1.66 -3.32 -4.98 5.5 1,.121,.131,.141,.1 III -_ ...._.•. , • __ .~ __ ~.. ! I- I- I I ! I 12 I - 1- 11 111 11 1 - 1 - 112 1 - 112 1 - • • • 1 " 2'3'5'6'Y'lO'''''' 2,3,5;6,7,9,10 1,10 10 Power Requirements Maximum Power Supply Current Power Supply Drain I max mAde IpDH mAde IpDL mAde ·Voltage measured between pins 11 and 12. I 12 112 1 - 1- • 1,2,3,5,6,7,8,9,10,13,14 • 10 1,2,3,5,6,7,8,9,10,13,14 MC4300/MC4000 series QUAD LATCH (Open Collector) MC4335F,L* MC4035F, L, P * This monolithic device consists of four latch circuits with open collector outputs, common Strobe input, and output DO 1~-J--\-________- , Strobe 2 14 00 01 3-...L....s-----.}--r-_ _ _ _ _..., enable input. The output of each latch will follow the data input when the Strobe input is in a logical "1" state. When the Strobe is in a logical "0" state, the latch will store the logic state of the data input just prior to the change of the Strobe from a "I" level to a "0" level. The open collector outputs make this device useful for bussing or wire DRing outputs together. Two 5.0 k ohm resistors are available in the package to provide the passive pullup function in wired·OR or bussed operation. The output enable is useful where it is desirable to gate information out of the latches according to a predetermined timing scheme. 1201 02 5 Input Loading Factor (MTTL I Loads): 11 02 03 7-...L....r----.}--t_------, 8 Enable 6 - - - - " - - - - - - - - - - - - - . . . . , _ . . / 03 Two 5.0 k ohm pullup resisTors are internally connected to VCC and brought out on pins 9 and 13. Data I nput (Strobe H jgh) - MC4335 = MC4035 = Data I nput (Strobe Low) - MC4335 = MC4035 = Output Enable - MC4335 = 4.0 MC4035= 3.6 Strobe - MC4335 = 5.2 MC4035= 5.2 Output Loading Factor (MTTL I Loads): 4.2 4.0 1.1 0.9 MC4335 = 7 (I OL = 9.3 mAde) MC4035= 7 (lOL = 11.6 mAde) Total Power Dissipation = 140 mW tYP/pkg Propagation Delay Time = 25 ns typ CIRCUIT SCHEMATIC 1/4 OF DEVICE SHOWN VCC 5k 9 '----013 Oatao-~~~-*----+_--------t_----+_--~ ~---vQ Strobe GNO .. F suffix = TO-S6 ceramic flat package (Case 607). L suffix = TO-116 ceramic'dual in-line package 1.0 Megohm) must be used. SWITCHING TIME TEST PROCEDURES (T A = 25°C) (Letters shown in test columns refer to waveforms.) TEST Strobe Propagation Delay PIN UNDER TEST (In/Out) Pin 1 DO t p d+l 2/14 T t pd_1 2/14 T SYMBOL INPUT Pin 2 OUTPUT LIMITS (ns) Max RL Ohms Strobe Pin 6 Enable Pin 14 DO MC4335 MC4035 MC4335 S 2.4V U 510 390 25 25 S 2.4V U 510 390 40 35 50 MC4035 t p d+2 2/14 T S 2.4V U 5.0k 5.0k 50 tpd-2 2/14 T S 2.4 V U 5.0k 5.0k 34 34 Rise Time t+ 14 T S 2.4 V U 5100r 390 or 0.3 RC 0.3 RC 5.0 k 5.0k Fall Time t- 14 T S 2.4V U 510 390 9.0 5.0 t pd+3 1/14 V 2.4 V 2.4 V W 510 390 20 20 tpd-3 1/14 V 2.4 V 2.4V W 510 390 30 25 t pd+4 1/14 V 2.4 V 2.4 V W 5.0 k 5.0k 50 50 Data Propagation Delav Enable Propagation Delay tpd_4 1/14 V 2.4V 2.4V W 5.0 k 5.0k 25 25 t pd+3 1/14 X 2.4 V Y Z 510 390 20 20 t pd-3 1/14 X 2.4 V Y Z 510' 390 30 25 t pd+4 1/14 X 2.4V Y Z 5.0 k 5.0k 50 50 t pd-4 1/14 X 2.4V Y Z 5.0 k 5.0k 25 25 Minimum Strobe Enable - 1/14 T\l! 1.BV 2.4 V (6) 5.0 k 5.0k ~ Ma)( imum Strobe Inhibit - 1/14 T(1) 1.0V 2.4 V @ 5.0 k 5.0k @ @ @ (!) Pulse T conditions changed: VL"" 1.0 V, VH "" 1.8 V ~ Output shall follow data input. @ Output shall not toggle. MC4335F ,L, MC4035F ,L,P (continued) VOLTAGE WAVEFORMS STROBE INPUT ===p-t! ~m ~~-:-e S PRF = 4.0 MHz 4 t+_ p-------;:; , 1---+-----------.---3.0 v T PRF == 2.0 MHz -~~===t======~-----+--------'=g~6 -----i 20 ns min ------+-L~2.0 u V 1.5 V 1.0 V ------GND DATA INPUTS PRF = V 4.0 MHz =~-----+~===='t----I-----+-~==g~6 w ENABLE INPUT X PRF = 2.0 MHz V PRF = 4.0 MHz ,------3.0 V =-q------~~=====~=====g·~6 w 0.4 V ---~~--~~---~---~----------GND t Pd tpd+ z -------------;;-tt-_t-~·-·~rt+rr·--------GND • II Strobe +:>0 W 0.4 V This quad latch consists of four gated latches that store data on the negative edge of the strobe input. Information must be present at the data inputs prior to the setup time and remain at the data inputs through the hold time to insure that it will be stored by the latch when the negative edge of the strobe occurs. The setup time is 7.0 ns for a logical "1" and 5.0 ns for a logical "0", Hold time is 7.0 ns after the strobe edge for a logical "1" and 5.0 ns prior to the strobe edge for a logical "0". OPERATING CHARACTERISTICS s: (") 3.0 V W thold"1" 7.0 ns Data U'I r" "1" "0" s: 5.0 ns (") Data .j::o. o w "0" t setup"1" U'I 7.0 ns " r"'-c 8::l ------- ELECTRICAL CHARACTERISTICS - Test procedures are shown for the Strobe, Enable, and only one data input, and for one output, Other data inputs and outputs are tested. in the same manner. Pin Under ISymbol Test Characteristic Input I Forw.Hd Current IF Leakage Curro"llt I Breakdown Voltagr> IBV in I mA 1m M(433S M(403S MC4335 Test Limits SSO( +25"( +125'( Min Max Min Max Min Max ,:;: -5.6 I 1 2 -1.5 6 -7.0 -5.3 13 -1.3 0.2 0.5 0.4 IR 5.5 MC4035 Test Limits 0'( +25'( +75'( Min Max Min Max Min Max -5.6 -1.8 'n -1.3 .:::i 6 -6.0 -1. 6 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 5.5 5.5 5.5 -n: -6.7 6: 8 -1.5 -7.0 -5.3 -1.3 -8.6 0.2 0.5 0.4 5.5 5.5 11. 6 9.3 TEST CURRENT iVOlYAGEVillUEs-(All Temperatures) Volts lOH I,. V," V'H V, V, Vout I 0.1 l.0 0.8 2.0 0.4 4.5 5.5 7.0 5.0 4.5 l.0 0.8 2.0 0.4 4.5 5.5 7.0 5.0 4.7~5.25 0.' lOl lOH I,. V," V'H :IlAdl V, V, I 1 2 6 2 3,5,7 1,3,5,6,7 1,2,3,5,7 I 13 Vout Vmax Vcc VCCl VCCH I I I-I I I Output Volta!!:e VOL 0.4 14 0.4 0.4 14 14 VOH1 I Leakage Current ICEX 14 14 14 14 2.4 2.4 2.4 2.4 2.4 2.4 0.25 1.0 0.25 1.0 0.4 0.4 0.4 I I I 2.4 2.4 0.25 1.0 2.4 2.4 0.25 1.0 2.4 2.4 0.25 1.0 Cl. I Pulse Pulse 1 2 -I Gnd I- I -I 10 2,10 1,3,5,7,10 1,2,3,5,7,10 Vde 2,10 1,3,5,6,7,10 1,2,3,5,7,10 Vde 14 2,3,5,7 1,10 10 10 2,6 14 14 Vde Vde 0.25 1.0 4 CD mAde I Output ::l C I 5.5 TEST CURRENTiVOLTAGE APPLIED TO PINS LISTED BElOW, Unit !:!'. Ivmaxi Vce IVccllVecH mAde mAde 14 14 1,3,5,7,10 10 1,2,6 1,2 14 14 10 6,10 Power Requirements (Total Device) Maximum Power Supply Current 1,3,5,6,7,10 Power Supply Drain 10 1,3,5,6,7,10 ~:~ ~ Pulse' 1---, 'ti - OV 24V l~i~S QUAD LATCH MC4300/MC4000 series "'\ l _ _ _ _--------' MC4331F,L * MC4037F, L, P * DO 1~~-r----}_------, Strobe 2 14 00 01 3 This monolithic device consists of four latch circuits with active pullup networks for high capacitive load drive capability. Separate data inputs and a common Strobe input are provided. Information present on the data inputs prior to the negative edge of the strobe in· put will be stored in the latch. When the strobe input is high, the Q output will follow the data input. 12 01 Input Loading Factor (MTTL I Loads): 025-,t-r-J-t---------, Data Input (Strobe High) - MC4331 ::: 4.2 MC4037 = 4.0 Data I nput (Strobe Low) - MC4337 Strobe - 03 7·~--'--J"""------}_I_-----__, = 1.1 MC4037 = 0.9 11 02 MC4337 MC4037 = 5.2 = 5.2 Output Loading -Factor (MTTL J Loads): MC4337 10 (lOL 13.3 mAde) MC4037 10 (lOL 16.6 mAde) = = 8 03 = = Total Power Dissipation Propagation DelaY Time = 150 mW tYP/pkg = 25 ns typ Vee= Pin 4 GND= Pin 10 CIRCUIT SCHEMATIC 1/4 OF DEVICE SHOWN VCC 4k D.t.o-~~~-4--~------~--~r-~ o Strobe 1 k 2k GNO *F suffh( = TO-86 ceramic flat package (Case 507). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605), 1 k • MC4337F ,L, MC4037F ,L,P (continued) II1II ~I__________________________ O_P_E_R_A_T_IN_G__C_H_A_R_A_C_T_E_R_IS_T_ICS __________________________ Strobe 3.0V 1.5 V 0.4 V This quad latch consists of four gated latches that store data on the negative edge of the strobe input. Information must be present at the data inputs prior to the setup time and remain at the data inputs through the hold time to insure that it will be stored by the latch when the negative edge of the strobe occurs. The setup time is 7.0 ns for a logical "1" and 5.0 ns for a logical "0". Hold time is 7.0 ns after the strobe edge for a logical "1" and 5.0 ns prior to the strobe edge for a logical "0". ~ Data "'" Data ",". "0" "0" thold"1" tsetup"O" 5.0 ns ~ I ,.5 V\. "1 f-- 7.0 ns thold"O" 5.0 ns i J 1. 5V I-----.t- t setup"l" 7.0 ns SWITCHING TIME TEST CIRCUIT Vcc Coax· 00 2 3 PULSE GENERATOR 5 t+ = t-'55.0 ns 50 7 Zout == 50 ohms 00 '4 Strobe 0' 01 02 '2 11 TP out 02 03 RL 330 ohms - MC4337 280 ohms - MC4037 03 8 Two pulse generators are required and must be slaved to provide the waveforms shown. CT"" 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. MM07000 or Equiv MC4337F ,L, MC4037F ,L,P (continued) • VOLTAGE WAVEFORMS STROBE INPUT ~--,"-------3.0 V V PRF - 4.0 MHz ====~-l---___J.~====-::!....-l-----=====g.~~ Jr--+-------~--3.0 V W PRF = 2.0 MHz ----+~==:::j::======~--___J.--------~g.~~ ------+--.L~-2.0 V x 1.5 V __ _ _ _ _ _ ~-~~==l.=O=V==============i===~--------- GND DATA INPUTS _Lr--"".lI::-----3.O V y PRF = 4.0 MHz z ==~~~--+--~======1_+_--~~·GND SWITCHING TIME TEST PROCEDURES (T A = 25°C) (Letters shown In test columns refer to waveforms.) TEST Strobe Propagation Delay OUTPUT INPUT PIN UNDER TEST (In/Out) Pin 1 DO Pin 2 Strobe Pin 14 t pd+1 2/14 W V X 25 tpd-1 2/14 W V X 40 SYMBOL 00 LIMITS (ns) Max Rise Time t+ 14 W V X B.O Fall Time t- 14 W V X 5.0 t p d+2 1/14 y 2.4 V Z 20 t p d-2 1/14 y 2.4V Z 30 Minimum Strobe Enable - 1/14 wUl 1.BV ~ ~ MSKimum Strobe Inhibit - 1/14 wGl 1.0V @ @ Data Propagation Delay cr> Pulse W conditions changed: V L = 1.0 V, ® Output shall follow data input. @ Output sha~' not toggle. VH = 1.8 V. • ELECTRICAL CHARACTERISTICS S n Test procedures are shown for only the t; Strobe input, on9 data input, and one out- put. Other data inputs and outputs are tested in the same manner. ~ ,"T1 r sn -I=:to o W ...... ,." MC4337 MC4037 1m 10H lin V" V'H V. V. Vou' Vm~ I VCC IVCCL I· VCCH 8 -1.4 1.0 0.8 2.0 0.4 4.5 5.5 7.0 15.0 14.5 ~. IS.3 -1.4 1.0 O. B 2.0 0.4 4.5 5.5 7.0 15.0 14.7U5.25 IF Leakage Current IR Breakdown Voltage -5.6 -1. 5 -7.0 -5.6 -1. 5 -7.0 -5.6 -1. 5 -7.0 -6.7 -1. 8 -8.6 -6.7 -1.8 -8.6 -8.6 0.2 0.5 0.2 0.5 0.2 0.5 0,2 0.5 0.2 0.5 0.2 0.5 BVin 5.5 5.5 VOL 14 14 0.4 0.4 -1. 8 mrl YOH 14 2.4 Short-Circuit Current ISC 14 -15 Leakage Curren t I CEX 14 Power Requirements (Tolal Device) Il Maxhrium Power Supply Current ~er Supply Drain ti Pulse: I , Pulse: 2 - 2.4 -60 -15 2.4 -60 - - 40 , IpDH - 26 - 26 IPDL 4 - 45 - 45 ~:: ~ 2.4 Y OY 100 nS min 4 -15 0.25 0.25 4 max 0.4 0.4 0.4 0.4 2.4 -60 -15 0.25 - 0.4 0.4 2.4 -60 -15 0.25 -15 0.25 I Yde , -60 mAde 0.25 mAde Yde - - - 32 - 321-1321mAde 55 - 55 , - , 55 I I- I - I - I~ Gnd 10 ~ 2,10 1,3,5,7,10 Vdc I-I -I I I You, 1,1 I VCCH,I Pulse V_x Vcc I VCCL 1 Pulse 2 Yde Yde 45 3,5,7 2 1,3,5,7 CI> C- 2,10 1,3,5,7,10 26 50 I ~ c: mAde 0.4 0.4 2.4 -60 1 11 2 mAde 5.5 5.5 0.4 0.4 I - I - I~ I -6.7 Output Output Voltage 10L IloH I 1;0 I V'L I V'H I V. I V. ~ I 5.5 TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: , Forward Current ~ 13.3 MC4337 Test Limits MC4037 Test Limits I Pin +2S·C , +7S·C , SS·C , +25·C , +12S·C I O·C Under' Symbol! Test I Min I Max I Min I Max I Min I Max I Min I Max I Min I Max I Min I Max I Unit Characteristic Input r TEST CURRENT / VOLTAGE VALUES (All Temperatures) Volts mA mAde 'mAde 10 10 14 14 - '14 , , - 10 '1,2 10,14 I -I- I - I- I- I- I 1,2 '14 10 10 10 1,3,5,7,10 MC4300/MC4000 series INVERTING/NON-INVERTING ONE-Of-EIGHT DECODER MC4038P* 3-Bit Binary 15 6 1 OUtput 7 9 10 Inversion Enable Inputs The MC4038P is derived from the XC170 128-8it Read Only Memory. A 3-bit binary address selects the desired word for the 8-bit output. The inversion control, D, selects half of the memory chip with the bit pattern that defines a 1-of-8 decoder function. When D is a logic "0", the selected output is designated as a logic "0". A logic "1" on D produces a logic "1" on the selected output. Control 07 00 Features: Address times < 45 ns Outputs sink 20 mA Output capacitance < 7.0 pf @ 1.5 V Wired OR capability to 64 memories 324511121413 1-of-8 Output Vee"" Pin 16 Gnd = Pin 8 TRUTH TABLE (POSITIVE LOGIC) D a a a a a a a 0 1 1 1 1 1 1 1 1 INPUT C B A OUTPUT 7 6 5 4 3 a a b a a 1 a 1 a a 1 1 a 1 1 1 1 a 1 1 1 1 a 1 a 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 0 1 o· a 0 0 0 1 0 0 0 0 a a a a 1 1 1 1 0" a 1 1 a 1 a a 0 a a 1 a 1 0 a 1 1 1 a a 1 a 1 1 1 1 1 0 1 0 a a 0 a 0 0 0 0 0 0 0 a Total Power DissipatiOn 1 0 a 0 a 0 = 1 1 1 1 1 1 1 a 0 a 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 1 0 0 0 0 0 1 0 0 a ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC) a a a a 0 a 1 0 0 0 0 1 0 0 E E Q7 06 05 04 03 02 01 00 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 FUNCTION ENABLED 1 1 1 a a a 1 1 240 mW typ/pkg Word Line 16 BltO Word 16 Bit7 ...................................... -----".~ I I I Word 0 ROM Address Inputs • 'P suffix = lS-pin dual in-line plastic package (C... S12). Links removed if logic"'" state desired. BitO I MC4038P (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families • FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT LOADING FACTOR 1.0 1.0 0.67 0.7 1.0 Open Collector IOL=20mA MC4000 MC400 MC2000 MC3000 MC7400 MC830 Note: Differences in MC4000 series loading factors r.sult from differences in specifications for each family. •• Applies only when input is being driven by MDTLgate with 2 k ohm pullup resistor. Logic "I" state drive limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan-out of 3. 1.16·· MAXIMUM RATINGS Symbol Value Unit Supply Yoltage YCC -0.5 to+7.0 Yde Supply Operating Yoltage Range YCC 4.5 to 5.5 Yde Input Yoltage Yin -1.5 to +5.5 Yde Operating Temperature Range TA oto +75 Storage Temperature Range Tstg -55 to +125 °c °c Rating ELECTRICAL CHARACTERISTICS ITA = 0 to +7SOC) Symbol Characteristic Address Input Forward Current 01A = O. YCC = 5.0 Yde) IF Enable Input Forward Current (YE = 0, YCC = 5.0 Yde) IF Address Input Leakage Current (Y A = 5.5 Yde, YCC =5.0 Yde) IR Enable Input Leakage Current (YE =5.5 Yde, YCC =5.0 Yde) Logical "0" Output Voltage (IOL = 20 mAde, YIL =0.9 Ydc, YIH IR Min Max Unit mAde 1.6 mAde 1.6 !lAde 100 !lAde 100 =2.0 Yde, YCC =4.75 Yde) Logical "1" Output Leakage Current (YIL =0.9 Yde, YIH = 2.0 Ydc, YCEX =7.0 Yde, YCC = 5.25 Ydc) Power Supply Drain Current (Memory Enabled, YCC = 5.25 Ydc) (Memory Disabled, YCC = 5.25 Ydc) Ydc YOL 0.45 ICEX !lAde 100 mAde IpD max IPDmin 73 55 t++ t-- 45 ns 45 ns t+- 45 n. t-+ 45 ns SWITCHING TIMES (VCC = 5.0 Vdc) Positive Input Address to Positive Output Negative Input Address to Negative Output Positive Input Address or Enable to Negative Output Negative Input Address or Enable to Positive Output IOL = lOrnA driving 30 pF MC4300/MC4000 series SEVEN-SEGMENT CHARACTER GENERATOR MC4039P* Enable Il"!puts Lb I B Output a b 12 11 c 5 .,...v MC4039P C 0 Pin No. t>t>- a A 1 Digit 6 Number 15 10 I h d e f 4 13 14 hi 3 9 2 The MC4039P is derived from the XC170 128-8it Read Only Memory. It can directly Digit Indicator operate low-voltage lamp indicators. A four' digit binary input is translated into combinations of the eight outputs. These combinations correspond to different illuminated Vee = Pin Gnd ~ segments of the seven-bar digit indicator. The input and output codes with their related 16 Pin B Total Power Dissipation = 240 numerical digits are shown in the diagram. The enable inputs can be used for automatic mW typ/pkg blanking. Features: TRUTH TABLE (POSITIVE LOGIC) Digit Indicator a c::==::J f~ ~b 9 c::==::J e~ ~c 0 c::==::J h d DIGIT SEGMENTS ILLUMINATED 0 1 a,b,c,d,e,f b,c 2 a,b,d,B,g a,b,c,d,g b,c,f,g a,c,d,f,Q c,d,e,f,g a,b,c 8,b,c,d,e,f ,9 a,b,c,f,g 3 4 5 6 7 8 9 NONE • - ·NONE NONE NONE h IExt.) 9 INPUT D C B A a b c d e f 9 h 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 Io---l-)-r===r~~~~~~~[=~ Word Line 15 Enable Inputs 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 a 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 < Address times 45 ns Outputs sink 20 mA Output capacitance < 7.0 pF @ 1.5 V OUTPUT Wired OR capability to 64 memories ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC) 1 1 1 1 1 1 0 1 1 1 1 b 1 1 1 1 1 1 1 1 1 1 FUNCTION 1 1 Bit7 .;.:.;.;.:.;.;.;.;.;.;.:.:.;.:.;.;.:.:. .................... f g h 1 1 1 1 1 1 1 1 1 ENABLED 1 1 1 e a 1 1 Word 15 c E E 0 0 0 1 1 0 d BitO Word 15 ....................................... :::::::::;:::::::;:::;:;:;:;:;:;:;:;:;: ~;l].· -----i.il• ~. • • • • • ••• • • • • • • • I .. T···· I I I Word 0 Bit 7 I ROM Address Inputs • 'P suffix = 1S-pin dual in-line plastic package (Case 612). Links removed if logic 06 1" state desired. I Word 0 Bit 0 I MC4039P (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families • FAMILY MC4000 INPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 MC4000 OUTPUT LOADING FACTOR Note: Differences in MC4000 series loeding factors result from differences in specifications for each family. 1.0 1.0 0.67 0.7 1.0 Open Collector IOL = 20 mA •• Applies only when input is being driven by MDTLgate with 2 k ohm pullup resistor. Logie "I" state drive limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan·out of 3. 1.15·· MAXIMUM RATINGS Symbol Value Unit Supply Voltage Vee -0.5 to +7.0 Vde Supply Operating Voltage Range Vee 4.5 to 5.5 Vde Input Voltage Yin -1.5 to +5.5 Vde Rating Operating Temperature Range TA oto +75 °e Storage Temperature Range Tstg -55 to +125 °e ELECTRICAL CHARACTERISTICS (T A • 0 to +75OCI Symbol Characteristic Address Input Forward eurrent 01 A = 0, Vce = 5.0 Vde) IF Enable Input Forward eurrent (VE = 0, Vce = 5.0 Vde) IF Address Input Leakage Current (V A = 5.5 Vde, Vec = 5.0 Vde) IR Enable Input Leakage Current (VE = 5.5 Vde, Vce = 5.0 Vde) IR Min Max Unit mAde 1.6 mAde 1.6 "Ade 100 "Ade 100 Logical "0" Output Voltage (I0L = 20 mAde, VIL = 0.9 Vdc, VIH = 2.0 Vdc, Vec = 4.75 Vde) VOL Logical "1" Output Leakage Current (VIL = 0.9 Vdc, VIH = 2.0 Vde, VCEX = 7.0 Vde, VCC = 5.25 Vde) IeEX Power Supply Drain Current (Memory Enabled, Vec = 5.25 Vde) Vde 0.45 "Ade 100 mAde IpO max (Memory Disabled, Vce = 5.25 Vde) IPOmin 73 55 t++ 45 ns t-- 45 ns t+- 45 ns t-+ 45 ns SWITCHING TIMES (VCC - 5.0 Vdcl Positive Input Address to Positive Output Negative Input Address to Negative Output Positive Input Address or Enable to Negative Output Negative Input Address or Enable to Positive Output IOL= lOrnA driving 30 pF MC4300/MC4000 series BINARY TO TWO-Of-EIGHT DECODER MC4040P* 4-Bit Binary 1015 6 1 7 Enable 9 Inputs The MC4040P is derived from the XC170 128-Bit Read Only Memory. This device, with two enable inputs, transforms any 4-bit binary number to a 2-of-8-bit coded number. The device can also be thought of as a dual binary to 1-of-4 decoder. 324511121413 Gnd = Pin Features: Address times < 45 ns Outputs sink 20 mA Output capacitance < 7.0 pF @ 1.5 V Wired 0 R capability to 64 memories 2-of-8 Output Vec = Pin 16 8 TRUTH TABLE IPOSITIVE LOGIC) INPUT OUTPUT D C B A 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 Total Power DISSipation 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 '1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC) E E 07 06 05 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 04 03 02 1 1 1 1 1 1 1 1 1 FUNCTION ENABLEO 01 00 1 1 1 1 1 _-L = 200 ,:"W typ/pkg Word Line 15 Bit? BitO Word 15 - ..... -- .......... . Word 0 I I BltO I ~nn::~ {~LJr-r=G~~g=}-1-~~~~-----.!,~I~~ I ROM Address Inputs • 'P suffix = H"pin dual in-line plastic package (Case 612). Links removed if logic "1" state desired. MC4040P (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families I FAMILY MC4000 INPUT LOADING FACTOR MC4000 MC400 MC2000 MC3000 MC7400 MC830 MC4000 OUTPUT LOADING FACTOR Note: Differences in MC4000 series loading factors result from differences in specifications for each family. 1.0 1.0 0.67 0.7 1.0 Open Collector IOL = 20 mA "Applies only when input is being driven by MDTLgate with 2 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan-out of 3. 1.15·· MAXIMUM RATINGS Symbol Value Unit Supply Voltage VCC -0.5 to +7.0 Vde 4.5 to 5.5 -1.5 to +5.5 o to +75 -55 to +125 Vde Rating Supply Operating Voltage Range VCC Input Voltage Yin Operating Temperature Range TA Storage Temperature Range Tstg Vde °c °c ELECTRICAL CHARACTERISTICS (TA = 0 to+750c) Symbol Characteristic Address Input Forward Current (VA = 0, VCC = 5.0 Vde) IF Enable Input Forward Current (VE = 0, VCC = 5.0 Vde) IF Address Input Leakage Current (VA = 5.5 Vde, VCC = 5.0 Vde) IR Enable Input Leakage Current (VE = 5.5 Vde, VCC = 5.0 Vde) IR Min Max Unit mAde 1.6 mAde 1.6 "Ade 100 "Ade 100 Logical "0" Output Voltage (lOL = 20 mAde, VIL = 0.9 Vdc, VIH = 2.0 Vdc, VCC = 4.75 Vde) VOL Logical "1" Output Leakage Current (VIL = 0.9 Vde, VIH = 2.0 Vde, VCEX = 7.0 Vde, VCC = 5.25 Vde) ICEX Power Supply Drain Current (Memory Enabled, VCC = 5.25 Vde) Vde 0.45 "Ade 100 mAde IPDmax (Memory Disabled, VCC = 5.25 Vde) IPDmin 60 55 t++ t-- 45 n, 45 ns t+- 45 n. t-+ 45 n. SWITCHING TIMES (Vce - 5.0 Vdc) Positive Input Address to Positive Output Negative Input Address to Negative Output Positive Input Address or Enable to Negative Output Negative Input Address or Enable to Positive Output IOL = lOrnA driving 30 pF MC4300/MC4000 series SINGLE-ERROR HAMMING CODE DETECTOR AND GENERATOR MC4041P* The MC4041P is a programmed 128-bit Read Only Message Memory suitable for a variety of error detection and correction applications. Simple parity trees for error detection can be con~ Bits M:f JM:1M:t MoI o I T,a~smi~ted Panty Bits lr L C B A I. I. I. I. /, c!mpare Circuit (Excluslve "OR" D C B A 7 6 5 4 3 2 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 a a a 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 a 0 1 1 0 0 1 1 a 1 0 1 a 0 0 a 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 P4 Address times < 45 ns Outputs sink 20 rnA Output capacitance < 7.0 pF @ 1.5 V Wired OR capability to 64 memories Vee = Pin ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC) E E 07 06 05 Q4 03 02 01 00 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 FUNCTION ENABLED 16 Gnd "" Pjn 8 Simple Parity: The outputs of bits 0, 6, and 7 provide parity check over the 4 message bftS. OUTPUT 0 1 0 1 0 1 0 1 0 1 0 1 Generated Parity Bits PI P2 Error Detection; TRUTH TABLE (POSITIVE LOGIC) INPUT block. Also, more complex error control schemes, suchasHamming single error detection and correction, can be implemented with this device. Features: Binary Code of Bit In Error. 00 01 02030405 0607 13 14 12 11 5 4 2 3 Output 0 0 0 01 02 03 Of Corresponding Inputs) Pin No. structed using the MC4041 P as the basic building I MC4041P t t? 1 Enable 9 Inputs a 1 1 0 a 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 PARITY TREE fOR '6-8ITWORD Hamming Detection and Correetion: Bits 1, 2. and 3 perform the parity calculations necessary for Hamming Code generation or detection on 4 message bits. Fa ... greater than 4 bits per message, ROM's may be cascaded. In these cases, I?its 4, 5, 6, and 7 perform the necessary parity calculations. Total Power Dissipation = 240 mW typ/pkg For more information on this tunction and its uses, see Application Note AN-446, "The XC170 128-Bit Read Only Memory". Word 15 BitO :.:.:.:.:~: .:.:.~.:.:.:.:.: Inputs I I I I I I I Ward 0 Blt7 I ROM Address Inputs • • p suffix = 1S-pin dual in-line plastic package (Case 612). .:.:.:.:-;: ------.~ Enable { Links removed if logic "1" state desired. I Word 0 BitO I MC4041P (continued) INPUT and OUTPUT LOADING FAcTbRS with respect to MTTL. and MDTL famili .. • FAMILY MC4000 INPUT LOADING FACTOR MC4000 OUTPUT LOADING FACTOR Note: Differences in MC4000 series loading factors result from differences in specifications for each family. 1.0 1.0 0.67 0.7 1.0 MC4000 MC400 MC2000 MC3000 MC7400 MC830 Open Collector IOL=20mA .. Applies only when input is being driven by MDTLgate with 2 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan-out of 3. 1.15·· MAXIMUM RATINGS Symbol Value Unit Supply Voltage VCC -0.5 to +7.0 Vde Supply Operating Voltage Range VCC 4.5 to 5.5 Vde Input Voltage Yin -1.5 to +5.5 Vde Rating Operating Temperature Range TA o to +75 °c Storage Temperature Range Tstg -55 to+125 °c ELECTRICAL CHARACTERISTICS (TA = 0 to +75 0 cl Symbol Ch~ractaristic Address Input Forward Current (VA = O. Vce = 5.0 Vde) IF Enable Input Forward Current (VE = 0, VCC = 5.0 Vde) IF Address Input Leakage Current (V A = 5.5 Vde, VCC = 5.0 Vde) IR Enable Input Leakage Current (VE = 5.5 Vde, VCC = 5.0 Vde) IR Min Max Unit mAde 1.6 mAde 1.6 /lAde 100 /lAde 100 Logical "0" Output Voltage (lOL = 20 mAde, VIL = 0.9 Vde, VIH= 2.0 Vde, VCC = 4.75 Vde) VOL Logical "I" Output Leakage Current (VIL = 0.9 Vde, VIH = 2.0 Vde, VCEX = 7.0 Vde, VCC = 5.25 Vde) ICEX Power Supply Drain Current (Memory Enabled, VCC = 5.25 Vde) Vde 0.45 /lAde 100 mAde IPDmax (Memory Disabled, VCC = 5.25 Vde) IPDmin 73 55 SWITCHING TIMES (VCC = 5 0 Vdcl Positive Input Address to Positive Output Negative Input Address to Negative Output Positive Input Address or Enable to Negative Output Negative Input Address or Enable to Positive Output IQL=10mA driving 30 pF t++ 45 ns t-- 45 ns t+- 45 ns t-+ 45 ns MC4300/MC4000 series QUAD PREDRIVER MC4042F, L, P* DUAL LINE SELECTOR MC4043F, L, P* The MC4042 and MC4043 are designed for magnetic memory driver/selector applications. The MC4042 monolithic quad predriver consists of four high- speed switching transistors, each driven by an MTTL compatible NOR gate. Each NOR gate has an individual address input and a common timing input. The inputs of the MC4042 can be driven directly with standard MTTL decoders such as the MC4006 binary to one-at-eight decoder or the MC4007 dual binary to one-af-four decoder. The open-collector output transistor of the MC4042 will sink 50 rnA. The MC4043 monolithic dual line selector con'sists of two high- speed 400 rnA switches driven by MTTL compatible NOR gates. Each NOR gate has an individual address input and a common timing input. The address and timing inputs of the MC4043 can also be driven directly with standard MTTL decoders such as the MC4006 and MC4007. The MC4042 and MC4043 input circuits are the same, but the output circuitry is different as shown in the device schematics. The output transistors of both devices have a minimum BVCEX of 15 volts, and are gold doped to increase switching speeds. Many memory predriver applications employ transformer cou~ piing between the predriver and driver stages. In such designs, large MC4042 voltage overshoots occur due to the transformer inductance and high~speed switching currents. The collector of the MC4042 is internally clamped to prevent the collector from exceeding the maximum rated voltage during the switching transitions. The voltage applied to the diode clamp, pin 5, should be the same or greater than the collector voltages at pins 1, 7,8, and 14, to prevent the diode clamp from being forward biased during nonswitching periods. The output transistor is driven with a conventional totem pole arrangement to provide active pultup and puUdown. The collectors of the pullup transistors of the MC4043 are available at pins 1 and 7. An external load resistor to VCC must be provided. This reduces power dissipation of the package and provides a means by which the speed of the device can be varied by changing the value of the pullup resistance. The internal decoding circuitry of the MC4043 is such that both switches can be turned on at on'e time. However, due to power limitations, care must be taken to ensure that only one switch is turned on at anyone time. The MC4042 and MC4043 can provide a memory Systlllll with an inexpensive, reliable, fast drive system. They nrl.! also tlsllful 11:-> relay or lamp drivers, high fan-out gates, and MOS drivE~rs. MC4042 AND MC4043 TRUTH TABLE (One gate only) Vee 2 5 VCC=PIN4 GND = PIN 10 SUBSTRATE = PIN 3 Al B CI 0 0 1 1 0 1 0 1 0 1 1 1 MC4043 A1 ~++------o 14 GNO 10 Collectors of Output Transistors: Gate 1 = Pin 1 Gate 2 = Pin 7 Input Loading Factors: A=1,B=4 Total Power Dissipation = 120 mW typ/pkg Propagation Delay Time"" 15 ns typ Input Loading Factors: GND 10 A = 1, 8 = 2 Total Power Dissipation = 70 mW typ/pkg Propagation Delay Time = 20 ns typ SCHEMATIC (Yo OF DEVICE SHOWN) SCHEMATIC (y, OF DEVICE SHOWN) Vee Vee 4 k 4 k e 1.14 k ____-~--- IoConnect pins to Vee through a 75-ohm resistor. • ...:i'o :::l t: m a. MC4042F ,L,P. MC4043F ,L,P (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS • 12 Vdc "The coax delays from input to scope and output to scope must be matched. R2 A.~--~---------, The scope must be terminated in 50ohm impedance. The 950-ohm resistor and the scope termination impedance R3 constitute a 20: 1 attenuatar probe. The 4.95 k ohm resistor and the scope termination impedance constitute a 100: 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. BO-4r~----------4-~~/ Two pulse generators I are required to provide I the waveforms shown. t+ 6.0 ns t- 6.0 ns 2.5 V Pulse A 50 ----~~~~~~~~~~~g~~ 300 ns t- "" t+ '= 6.0 ns max PRF = 1.0 MHz 50 ns ,-,=--2.5 V PW: Pu Ise A = 300 ns Pulse B = 200 ns R MC4042 R1 R2 R3 All resistances In Pulse B ------~~~==~~~~==g~~ 6.0 ns MC4043 950 4.95 k 400 CT = 25 pF = total parasitic capacitance, which includes 950 4.95 k probe and wiring capacitances. 30 ohms, 200 ns TP out -----====='-=== ± 1.0% MC4042 TYPICAL SWITCHING TIMES FIGURE 2 - TURN-OFF DELAY TIME versus TEl FIGURE 1 - TURN-ON DELAY TIME versus TEMPERATURE 16 20 ..s" UJ 19 - Vee = UJ 5.0 Vdc :; :; i= >- « ..J 18 Cl Z II: ::J l- 16 ~ UJ ..-/ I-"" ,/ ./ - l o u t = 50 rnA, / 15 / I out ,.- = 30 rnA- ~ 12 Z 11 II: ~ - ::J f- ~ 10 25 :; . TA 25 0 C - 16 ""-.. I 25 75 50 FIGURE 4 - TURN·OFF DELAY TIME versus POWER SUPPLY VOLTAGE 14 .......... ......... 0 Z I"--. II: I--- ~o. 4.5 r-- TA ~ 25 0 e - :; I""--. lout = 30 ..J UJ lout = 50 rnA .......... 15 I"--. UJ « ......... UJ i> --lout = 50 rnA I i= >- ...... « ..J 14 --~ I-- C "- UJ ::J l- f..--"" ~ ..-/ T A, AMBIENT TEMPERATURE (oe) 17 ..s z f..-- o 75 50 FIGURE 3 - TURN-ON DELAY TIME versus POWER SUPPLY VOLTAGE Cl lout = 30 rnA 9.0 o - 13 T A, AMBIENT TEMPERATURE (oC) i= >- 5 .0 ee 14 Cl u. u. o ./ "..- 14 13 ..J ,/ i> ~o. « ./ UJ o Z >- ./ 17 -0 1 ldC 15 I- ./ rn~ -- - 5.0 Cl u. u. 0 !--. - Z a: ........ .......... lou~ = 13 ...... r---- -- 12 I - - · I out ::J ~ 50 ,;;;- 36 - rnA .- ---- +-- r-- f- + " t-- Vce, POWER SUPPLY VOLTAGE (VOLTS) t---.. ~o. 5.5 4.5 5.0 Vee, POWER SUPPLY VOLTAGE (VOLTS) MC4042F ,L,P, MC4043F ,L,P (continued) MC4043 TYPICAL SWITCHING TIMES FIGURE 5 - PROPAGATION OELAY TIME versus PULLUP RESISTANCE (Pins 1 and 71 35 r- w ::; j: 23 _l I IOL - 400 mA w V tpd· Z o ~ .«o .. 20 V V 20 .......... Cl .......... 15 ,; 10 _I"""" 18 I--- 17 16 o 100 50 o 200 150 TA - 25 0 C j: >- :3w 17 Q z o j: « Cl « 16 a: 15 .. ..o 7 E L ~ 75 50 21 .--.,-------r-,.--,---,--, .... w ....... TA· 25°C j: >- / « oJ w o z 2 f« Cl « o r- Tr·T·· IOL - 400 mA ::; /'" ~t;- -tpd+ ....... 19r---r--i---t~~---r--i---t---r--i--~ .. .. a: = ,; ..0. ~ /' ...... 1"""" ,.- FIGURE 8 - PROPAGATION OELA Y TIME versus POWER SUPPL Y VOLTAGE o Vcc = 5.0 Vdc /' TA. AMBIENT TEMPERATURE (DC) FIGURE 7 - PROPAGATION OELAY TIME versus COLLECTOR CURRENT 18 L 25 PUj,LUP RESISTOR (OHMS) w ::; • L ~ .....- - tpd+ II: ..0. t p d/ 19 /" ~ ....... .,.., L 21 V 25 Q r-- I~L - ~OO ~A r-- VCC = 5.0 Vdc r-- 22 30 f-- VCC = 5.0 Vdc f-- TA = 25 0 C >« oJ FIGURE 6 - PROPAGATION OELAY TIME versus TEMPERATURE ,; lool~ ~ ~ ~ ~ IC. COLLECTOR CURRENT (mA) ~ ..0. __ __ 16~~__~~__~__L-~-_ _~r--~~ ~=5.0 4.5 5.5 VCC. POWER SUPPLY VOLTAGE (VOLTS) OUTPUT VOLTAGE VARIATIONS FIGURE 9 - MC4042 FIGURE 10- MC4043 2 2 OSCILLOSCOPE PW = 200 ns V H -3.5V CJ: = 25 pF = total para- V L - Q.4 V sitrc capacitance, which includes probe and Pin3=GND Pin 5 = 12 Vdc wiring capacitances. c,. n. = 25 pF = total parasitic capacitance, which inctUdes PW = 400 VH-3.5V probe and wiring capacitances. VL-O.4V Ground Pin 3 (substrate) Diode PIV f- ~ f:::l =:: ,15 V 5: E w Cl o « ~ 00 .) > > 25 TA. AMBIENT TEMPERATURE (DC) T A. AMBIENT TEMPERATURE (DC) 75 MC4042F ,l,P, MC4043F ,l,P (continued) Figure 11 illustrates a typical core memory driver/selector using MC4042 and MC4043 devices. The source circuit for the X or Y drive line consists of an MC4042 predriver transformer TYPICAL APPLICATION coupled to a fast high-current transistor. The sink circuit is the MC4043 line selector. The source and sink circuits are. used in pairs and are arranged to permit bipolar currents to pass through a selected drive line. Supply voltage and resistor values are determined by system requirements. FIGURE 11 - X or V DRIVE SELECTION MATRIX NOTE: Stack Bias Resistors are omitted 2N3444 }\ MC4007 '·of·4 • DECODER ENABLE 2·BIT ADDRESS { y 03 .- -----, 1}S; MC4043I I ,-------. L ___ ~~ 1- - - - - - , Ir- 2 .JI ____ I I I I I L IX or Y DRIVE LINE I I I I X or Y DRIVE LINE ...l I ., I I I I I I L J [~-_-_-~-jr---"""-o+V CONTROL INPUT AND TIMING WRITE r---~---+-----------~---~-o+V READ r--' r---' :I :: I I lI L_2j L.:..3J }\ MC4007 '·of·4 DECODER x r-., I I I I I I I ENABLE 2·BIT ADDRESS { I-' I I 21 L. __ I I I I I 1 31 L.. _...J MC4300/MC4000 series PHASE-FREQUENCY DETECTOR MC4344F,L* MC4044F, L, P* This device contains two digital phase detectors and a charge pump circuit which converts MTTL inputs to a de voltage level for use in frequency discrimination and phase·locked-Ioop applications. The two phase detectors have common inputs. Phase-frequency detector 1 is locked in (indicated by both outputs high! when the negative transitions of the variable input (VI) and reference input (RI) are equal in frequency and phase. If the variable input is lower in frequency or lags in phase, the U 1 (up! output goes low; conversely the D 1 (down! Amplifier 9 ~ 8 Output output goes low when the variable input is higher in frequency or leads the reference input in phase. It is important to note that the duty cycles of the variable input and the reference input are not important since negative transitions control system operation. Phase detector 2, on the other hand, is locked in when the variable input phase lags the reference phase by 900 I indicated by the U2 and D2 outputs alternately gOing low with equal pulse widths). If the variable input phase lags by more than goo, U2 will remain low longer than 02, and, conversely, if the variable input phase lags the reference phase by less than gOO, 02 remains low longer. In this phase detector the variable input and the reference must have 50% duty cycles. Vee = Pin 14 GND= Pin 7 Input Loading Factor: The charge pump accepts the phase detector outputs (U1 or U2 applied to PU, and 01 or D2 applied to PD! and converts them to fixed RI, VI = 3 Output L~ading Factor (Pin 8) = 10 amplitude positive and negative pulses at the UF and OF outputs respectively. These pulses are applied to a lag-lead active filter, which incorporates external components, as well as the amplifier provided in the Total Power Dissipation = 85 mW typ/pkg Propagation Delay Time = 9.0 ns typ (thru phase detector) MC4344/4044 circuit. The filter provides a de voltage proportional to the phase error. PHASE DETECTOR The phase detector portion of this device is constructed using low and high-level gates interconnected 8S shown by the logic diagram. LOW-LEVEL "NAND" GATE HIGH-LEVEL "NAND" GATE Vee :j: Diode used only when input is connected to external point. AMPLIFIER CHARGE PUMP Veeo-------~--------~----------~--------~ 1 k 3.9 k Output ..__-_--08 PO 110--_....-' 1 k :~~----------------~Ud'5 *F suffix = TO-SS ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-, 16 plastic dual in-line package (Case 605). MC4344F,L , MC4044F,L,P (continued) • INPUT STATE ELECTRICAL CHARACTERISTICS UF PU Charge 9 Pump PO 11....--- PhaseFreq Detector U Amp",;e, 5 4 OF r-'10 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 OUTPUT U1 01 U2 02 x X X X x X X X X X 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 X x 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 X X X X TRUTH TABLE 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 This is not strictly a functional truth table; i.e., it does not show all possible modes of operation. It is use~ ful for de testing. 1. X indicates output state unknown. 2. U1 and 01 outputs are sequential; i,e" they must be sequenced in order shown. 3. U2 and 02 outputs are combinational; i.e., they need onlv inputs shown to obtain outputs. 8 Output ~ TEST CURRENTIVOL TAGE VALUES ., Tnt :-~: _2~:;~_D:~'~; {;~1'~ ~ ~ ; ~'1~! ~ ;.T!7:'M!~l~ ~1'!~ !1!~Hl':! ~!~i!I;!"!I!D! 'A! V!lLl1VI!H!V!F!V!R!ViRiH!Vi-!'!V!C(C!V!~!L1V!C!CHl ~ ___ r INPUT RI VI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15, 16 17 ~C4344 ) +25°C {+::~ ~~ =::: MC4044 +1EiiOc MC4344 Test Limits Pin Unci. Characteristic "PUI Forw.-dCurrent -55Oc +25Oc +l25 o C MC4044 Test Limits +25o C +75Oc MM Min Mu oOc Symbol 'F Leakage Current , - -4.8 -4.8 - -4.8 -4.8 - -4.8 -4.8 "1 - -1.6 - -1.6 - -1.6 3 4 - 120 120 5.0 40 - 120 120 5.0 40 - 120 120 5.0 40 3 " " Breakdown Voltage - - -4.8 -4.8 -1.6 120 120 5.0 40 Clamp Voltage - -1.5 -1.5 VOL VOH 1.0 -10 0.002 1.1 1.8 0.4 0.002 0.9 1.8 0.4 20 -1.6 IOL 10Hl IOH2 lin lOlA VIL VIH VF - - 1 - - 3 11 6 2.4 4.5 5.0 1.5 Vd, - 2.5 2.5 0.4 - 2.5 -1.5 -1.5 - - 2.5 2.5 4.15 + - - 2.5 Vdc Vde - - 2.5 2.4 0.4 5.25 VR VRH Voul Vce VCCL VCCH 14 14 4 14 - 2 13 2 13 ~H Short·CircuitCurrenl Leail;lJ!IBCurrent 2 - " 1 - 3 2.4 U - 2.4 14 - 2.4 2.4 U - U - U U - U - U " VOL VOH 2 13 2 13 2 13 2 13 2 0.4 VCE U _ 2.5 - ~ - U U '0 Leakage Currant IOLK "0 2.5 - 2.5 U - U U 8 1,3 13 - = We Vdc Vde 0.4 Vdc Vdc Vdc - ~ - _ U U - U - U 2.4 2.4 2.4 2.4 2.4 -20 2.4 2.4 - -65 2.4 - 2,' 2.4 - -20 - 2.4 2.4 -65 2.4 -20 - -65 - 2.5 - 2,S 2.6 2.5 2.5 2.6 2.5 -20 2.5 2.S - 2.5 2.S - 2.5 -65 2.5 -20 - 2.S -65 - 2.5 2.5 2.5 - 2.5 - 2SO 250 " 250 8 2 1 1 1,3 - 13 ',3 - " 2 - -20 -65 fA~c 250 250 + + + + " 120 5.0 40 - 120 5.0 - 120 5.0 - 3 ~ - + - 120 5.0 - " 13 2 13 1,3 1,3 3 3 3 - - - 1 , - 1,3 - - 3 ',3 1 14 14 14 14 1,3 ',3 3 14 1 3 Vdc - + 14 - 1 1 + - 11 Used 10 ehange pawer supplV yoltage frompreviQu,tet!. 14 - 2,7 6,7 7,12 7,13 - 4,7 - " 120 Adc 5.0 ~tk 40 Tha outputs of the dev,cemvstbetestedbysequencongihrough the,nd,cated input states according to the truth tabl, and runctionaldiagram. All input, power supplV lind ground voltages must be maintained betWeen tests unless otherwise noted. ProcedurBli identified by ,double asterisk ( •• ) in the Symbol column are n9Cl!$l.-V to changEI the nate of the sequenlial logic. - 3 13 - 14 14 14 14 14 14 14 14 14 14 14 14 - 3 3 0.8 120 6.0 14 3 3 ',3 1.5 0.5 1 1,3 1,3 '1,3 0.8 10 - Vdc Vdc Vdc Vdc Vdc Vdc 7 14 14 14 14 14 14 14 14 14 1 ',3 ',3 13 - :':+++++++++++++ 2 3 _ 0.4 2.5 2.5 2.4 5,7 14 14 1,3 1,3 1 1 0.4 10 Output Current Po_Requirements (Total Oavlcll PowerSupplvDrain 2.5 15 0.4 6 12 COllector·Emitter Voltage Qutp\ltVoltagEI - - 2.5 7 7 - 14 14 - 12 Vd, Vdc 2.5 2,S 2 ~H 2,S 0.4 2.4 " 2 IOLK 2.4 0.4 13 VOL 'SC 2.4 Pulse 1 - 1,3 VOH VOL VOH 5.25 1 3 Vdc 12 VOH VOL ::: 2.5 3 3 1,3 VOH VOL ~:: 1.5 1 - - 0.4 6 12 -1.0 ~:: ::~ ~:~~: ~:: TESTCURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: S* Output (Not, " OutllutVoltage 1.0 -10 - 1 3 20 -1.6 10 :::: 8 14 7."7 MC4344F,L , MC4044F ,L,P (continued) APPLICATIONS INFORMATION Figure 1 shows the MC4344/4044 in a phase-locked loop with the following features: 1. Zero ~ error between the reference frequency and the output of the divide-by-N feedback, achieved because phasefrequency detector 1 locks negative edges in the system; 2. Adjustable channel spacing. achieved by changing the pre- FIGURE 1 - PHASE-LOCKED, FREQUENCY SYNTHESIZER LOOP scaling factor (7 P) when generating the reference frequency; 3. Digitally programmed tuning of the output, in multiples of the reference frequency, accomplished by changing N in the divide-by-N chain in the feedback loop. iMC4344i4044:- - - - - - - - - - - - - - - - - -1 I VCC I I 5 1 k R1 C1 Charge Pump ·The resistors, capacitor, and FET are external to the M C4344/4044. Values of R 1, R2, R3, and Cl are determined by operating frequency of interest. 1.4 V R4=---lOSS I 1 R3 I I 1 I I 8 1 I I I _ I L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..1 -TN L-__________________ Programmable Counmr r-------------------------------~ MC4316/4016 MC4318/4018 Figure 2 shows phase detector 2 of the MC4344/4044, which operates as a correlation detector, used in a phase-locked loop. There are two differences between this system and that shown in Figure 1. First, the VCM output,when locked in,lags the reference by 900 . Second, since the correlation detector integrates the product of its two inputs over each cycle, it can handle signals in a high-noise environment. This loop is sensitive to harmonics, therefore care must be taken to limit the frequency range of the VCM. FIGURE 2 - PHASE-LOCKED, CORRELATION DETECTOR LOOP rMC4344/4044"; - - - -- - - -- -- - - -- Refere~ 6 I Note: Noise in this system is the jitter of each pulse around its center. *The resistors, capacitor, and FET are external to the M C4344/4044. Values of Al, R2, A3, and C1 are determined by operating frequency of interest. V~ 1 1 5 11 --~ ~------, 1 k R1 : I I R3 C1 Charge Pump I I I I L ___________________- ______ 1.4 V R4=---lOSS ..1I -TN '-________________--1 Programmable Counter I-__________ MC4316/4016 MC4318/4018 ~ __________________.....J • MC4344F,L , MC4044F ,L,P (continued) APPLICATIONS INFORMATION (continued) II Figure 3 depicts the MC4344/4044 in a system used to generate a slave clock pulse with its negative edge locked to the negative edge of the master clock, but with adjustable pulse width. The pulse width of the slave clock pulse is controlled only by the monostable multivibrator, which is triggered from the negative edge of FIGURE 3 - SLAVE CLOCK PULSE GENERATOR an input pulse. The slave clock application is useful when the clock from a master computer must be slaved to that of a satellite. Maste '- Clock r Phase-F requency Detector MC4344/4044 Voltage-Controlled Multivibrator Retriggerable lVIonostable Multivibrator MC9601/B601 MC4324/4024 Maste,~ L Clock ~:~~~ -----! (Set by Monostable Multivibrator) r--r-. Slave Clock MC4300/MC4000 series NON-INVERTING ONE-Of-EIGHT DECODER MC4048P* Vee'" Pin 16 GND = Pin 8 3-Bit Binary 15 6 1 Chip Function 10 Enable 9 Input Enable Inputs 324511121413 The MC4048P is derived from the XC171128-bit Read Only Memory_ A 3-bit binary address selects the desired word for the 8-bit output, and the selected output goes to a logic "1"_ The function enable input, D, is useful for expansion of the decoding function_ When D is a logic "0" all outputs are logic "0"_ A logic "1" on D produces a logic "1" on the selected output_ Features: Address times < 50 ns Outputs sink 16 mA Output capacitance < 7 _0 pF @ 1_5 V 1-of-8 Output 1-0F-64 DECODER ISelected output is a positive logic "1 "I TRUTH TABLE (POSITIVE LOGIC) INPUT OUTPUT DCBA76543210 000000000000 000100000000 001000000000 001100000000 010000000000 010100000000 Total Power Dissipation = 240 mW tvp/pkg 011000000000 011100000000 100000000001 100100000010 101000000100 101100001000 110000010000 110100100000 111001000000 111110000000 ENABLE INPUT TRUTH TABLE IPOSITIVE LOGIC) E E Q7 06 05 04 03 02 01 00 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FUNCTION ENABLED REPRESENTATIVE CIRCUIT SCHEMATIC Word Line 15 Word 15 Bit 7 Word 15 Bit 0 r-------- -, r-------, I I I I r--Y======r=~~~~~I~II[I=!==~+:lr------~~-t: ---~ i ! ~ ______ J L_____ J I__ I I A 0000 I I I I I I- : Word 0 r----- : I Bit 7 --, I I I I Word 0 'Bit 0 r---------, I I I I I I I B ROM Address Inputs C t : VCC I I I _.J _..l D • • p suffix = 16-pin dual in-line plastic package (Case 612). Links removed if logic "'1" state desired • VCC • MC4048P (continued) • INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families FAMILY MC4048 INPUT LOADING FACTOR MC4048 OUTPUT LOADING FACTOR 1.0 1.0 0.67 0.7 1.0 10 10 7 7 10 11 MC4000 MC400 MC2000 MC3000 MC7400 MC830 1.16·· Note: Differences in MC4000 series loading factors result from differences in specifications for each family. •• Applies only when input is being driven by MDTL gate with 2 k ohm pullup resistor. Logic "I" state drive. limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan-out of 3. MAXIMUM RATINGS Symbol Value Unit Supply Voltage Vee -0.5 to +7.0 Vdc Rating Supply Operating Voltage Range Vee 4.5 to 5.5 Vde Input Voltage Yin -1.5 to +5.5 Vde Operating Temperature Range TA o to +75 °e Storage Temperature Range Tstg -55 to +125 °e ELECTRICAL CHARACTERISTICS (TA = 0 to +75OC) Symbol Characteristic Address Input Forward Current 0V A = 0, Vee = 5.0 Vde) IF Enable Input Forward Current (VE = 0, Vee = 5.0 Vde) IF Address Input Leakage Current (VA = 5.5 Vde, Vee = 5.0 Vde) Enable Input Leakage Current (VE = 5.5 Vde, Vee = 5.0 Vde) IR Min Max Unit mAde 1.6 mAde 1.6 /tAde 100 IR Logical "0" Output Voltage (IOL = 16 mAde, VIL = 0.9 Vde, VIH = 2.0 Vde, Vee =4.75 Vde) VOL Logical "1" Output Voltage (lOH = 0.5 mAde, VIL =0,9Vde, VIH= 2.0Vdc, Vee = 4.75 Vde) VOH Power Supply· Drain Current (Memory Enabled, Vee = 5.25 Vde) (Memory Disabled, Vee = 5.25 Yde) - /tAde 100 Vde 0.45 Vde 2.5 mAde IpD max IPDmin 85 55 tA+B+ 50 ns tA~B- 50 ns tA+B- or 1£+B- 50 ns tA-B+ or tE-B+ 50 ns SWITCHING TIMES (VCC = 5.0 Vdc) Positive Input Address to Positive Output Negative Input Addresst" Negative Output Positive Input Address or Enable to Negative Output Negative Input Address or Enable to Positive Output IOL = 10 rnA driving 30 pF MC4300/MC4000 series COUNTER-lATCH-DECODER MC43S0L* MC40S0L,P* ADVANCE INFORMATION/NEW PRODUCT This device is a monolithic MSI integrated circuit combining the functions of an NBCD counter, four-bit latch, and a seven-segment decoder/driver. The counter advances on the negative edge of the Clock, subject to control by the Enable input. The Serial Output is high driving the ninth count, allowing synchronous or asynchronous counter op· eration when used in conjunction with the Enable input and some external gating. The counter Reset places the counter in a non-N BCD state, turning off the output driver transistors when transferred through the latch and decoded. This feature gives automatic suppression of leading zeros in'the display. The latch section admits information while the Strobe is high and latches the data on the negative edge of the strobe. The seven-segment decoder/ driver provides up to 40 mA drive capability for displays which require current sinking in the active mode. A lamp blanking input is provided for intensity modulation. A lamp test feature is also available. 2 En8'iJie 0 - - - - , Lamp 13 High-Current Drivers Test SEGMENT IDENTIFICATION .10 a 11 b Decade Counter 4-81t 7-5egment Latch Decoder 9 c 5 d 4 e Serial Output 6 f 7 9 L~mp 3 Vee = Pin 16 GND = Pin 8 Blanking Total Power Dissipation = 450 mW typ/package Maximum Toggle Frequency 35 MHz typ = FUNCTIONAL TRUTH TABLE INPUT R 5 FUNCTION C E Lamp Test Lamp Blanking X X X X X X X 1 a a Reset Enable P l' PI P2 2 3 P3 4 .P4 5 St.ate SequencE! P5 6 P6 P7 8 P8 9 P9 a PIa 1 Pll Latch P 7 a a 0 ·0 0 a 0 a 0 0 0 a X 1 0 a a a a a a 0 a a a P = any number of pulses may be applied P n "=: n pulses on the Clock input X = Don.'t care , *L suffix P suffix = 16-pin dual = 16-pin dual X X 1 I 1 1 1 1 1 1 1 1 1 1 1 a LT LB 1 X a a a a a a a a a a a a a a a 1 a - 0 0 a a a a a a a a a a a 0 0 a 0 a a a 3.0 V It-0 V in~line ceramic package (Case 620). in-line plastic package (Case 612), 5 0ut - 0 6 a 1 a a a a b a a 1 1 1 1 a 0 1 a a a a a a 1 1 1 1 1 a a a a 1 I a b a a a a OUTPUT c d e f 9 a a a 1 1 1 1 0 1 1 1 1 1 1 a 1 1 1 1 1 1 1 a 1 a a a a a a a a a a a a I a a 1 a a a 1 1 a ., a 1 0 1 a 1 a 1 0 1 1 ~ 0 o· a 1 1 1 1 1 1 a a a 0 .' a 1 a a 1 1 1 MC4300/MC4000 series COUNTER-lATCH-DECODER MC4051P* • Advance InforIDation ative edge of the strobe. The seven-segment decoder/ driver is active high and will source up to 40 mA at a 10% duty cycle or 15 mA at a 100% duty cycle. A lamp blanking input is provided for intensity modulation. A lamp test feature is also available. The output structure of this device is an open emitterfollower configuration whose equivalent circuit is a voltage source with a relatively small series resistance. Although this resistance increases when the output is grounded, the situation is potentially destructive to the device. When the outputs are in the high ("1") state, they should not be connected to ground through an impedance of less than 100 ohms. This device is a monolithic MSI integrated circuit combining the functions of an N BCD counter, four-bit latch, and a seven-segment decoder/driver. The counter advances on the negative edge of the Clock, subject to control by the Enable input. The Serial Output is high driving the ninth count, allowing synchronous or asynchronous counter operation when used in conjunction with the Enable input and some external gating. The counter Reset places the counter in a non-N BCD state, turning off the output driver transistors when transferred through the latch and decoded. This feature gives automatic suppression of leading zeros in the display. The latch section admits information while the Strobe is high and' latches the data on the neg- 2 ErlBbie 0-----, Lamp 13 Test High-Current Drivers SEGMENT IDENTIFICATION 16 Vee 10. 11 b 9 c Decade Counter 4-Bit 7-58Oment Latch Decoder 5 d 4 • 6 7 Serial Output 3 Vee"" Pin 16 GND = Pin 8 Lamp Blank ing Total Power Dissipation = 450 mW typ!package Maximum Toggle Frequency = 35 MHz typ FUNCTIONAL TRUTH TASLE FUNCTION Lamp Test Lamp Siank ing Reset Enibi8 State Sequence 1 2 3 4 5 6 7 8 9 0 L~C~ C E X X X X X X P Pl P2 P3 P4 P5 P6 P7 P8 P9 P'O P" p 1 0 0 0 0 0 0 0 0 0 0 0 0 INPUT R S X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 P = any number of pulses ~ay be applied Pn = n pulses on the Clock mput X == Don't care LT LB X 1 X X 1 1 1 1 1 1 1 1 1 0 0 , ,, , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "ou, 1 - 0 0 O. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O· 0 0 0 , 0 0 0 0 0 OUTPUT c d a b 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 ,, ,, 0 O' , e f 1 9 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 ,, ,, , , ,, , ,,, , ,, ,, , 1 1 1 3.0 V SL0 V .p suffix = 16-pin dual in-line plastic package (Case 612). This is advance information on a new Introduction and specifications are subject to change,wlthout notice. 0 0 0 0 0 MC4300/MC4000 series DUAL MAJORITY LOGIC GATE MC4062P* Advance InforIllation This integrated circuit offers the designer additional versatility in logic design. When any two or all three of the inputs are raised to the "1" level, the output goes to the "1" level. The output, Z, and its comple· ment, Z, are both available. AI Bl 20-~~-;__- l Cl ao--4---i__'/ 5 ZI L-______<> 4 Z1 INPUT A B C 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 0 A2130-~~-i__ .~ 8 B2120--+~-{__~ Z2 ' - - - - - - 0 1 0 Z2 C211o-~~~__~ 1 0 1 1 OUTPUT Z Z 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 Total Power Dissipation = 75 mW typ/pkg Propagation Delay Time = 20 ns typ (Z Output) 11 ns typ Vee = Pin 14 GND=Pin 7 (Z Output) CIRCUIT SCHEMATIC (112 OF DEVICE SHOWN) 4> A 1.2 k 4 > 1.2 k 100 0-----.....- - ' Z B 1 500 > 500 1 k 4k C Z This is advance information on a new introduction and specifications are subject to change without notice . • p suffix = TO-116 dual in-line plastic package (Case 605). • • INTEGRATED CIRCUITS MC5400/MC7400 SERIES .TTl MC5400/7400 SERIES INTEGRATED CIRCUITS INDEX • General Information General Description Maximum Ratings Typical Characteristics Package Description Definitions Usage Suggestions DEVICE SPECI FICATIONS MC5400/MC7400 MC5401/MC7401 MC5402/MC7402 MC5403/MC7403 MC5404IMC7404 MC5405/MC7405 MC5410/MC7410 MC5420/MC7420 MC5426/MC7426 MC5430/MC7430 MC5440/MC7440 MC7441A MC5442/MC7442 MC5443/MC7443 MC5444/MC7444 MC5445, MC54145/MC7445, MC74145 MC5446, MC5447/MC7446, MC7447 MC5448/MC7448 MC5449/MC7449 MC5450/MC7450 MC5451/MC7451 MC5453/MC7453 MC5454/MC7454 MC5460/MC7460 MC5470/MC7470 MC5472/MC7472 MC;;5473/lVIC7473 MC7475 . MC7476 MC5479/lVIC7479 MC9480/MC7480 ... MC25482, MC15482/MC17482, MC27482 MC5483/MC7483 MC5484/iVtC7484 MC5490iMC7490 MC5491 A/MC7491 A MC5492/MC7492 MC5.493/MC7493 MC5494/MC7494 MC5495/MC7495 MC5496/Mc7496 MC54107/MC74107 MC54121/MC74121 MC54145/MC74145 MC54150/MC74150 MC54151/MC74151 Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate (Open Collector) Quad 2-lnput NOR Gate Quad 2-lnput NAND Gate Hex Inverter Hex Inverter (Open Collector) Triple 3-lnput NAND Gate Dual4-lnput NAND Gate Quad 2-lnput Interface NAND Gate 8-lnput NAND Gate Dual 4-lnput NAND Buffer BCD-to-Decimal Decoder BCD-to-Decimal Decoder Excess Three-to-Decimal Decoder Excess Three Gray-to-Decimal Decoder BCD-to-One-Of-Ten Decoder/Driver BCD-to-Seven Segment Decoder/Driver BCD-to-Seven Segment Decoder/Driver BCD-to-Seven Segment Decoder/Driver Expandable Dual 2-Wide 2-lnput AND-OR-INVERT Gate Dual 2-Wide 2-lnput AND-OR-INVERT Gate Expandable 4-Wide 2-lnput AND-OR-INVERT Gate 4-Wide 2-lnput AND-OR-INVERT Gate Dual4-lnput El ~ I 1.0 - General Description The purpose of this section fs to provide guidelines for the use of MC5400/7400 series digital integrated circuits. It is arranged in three parts: the first containing maximum ratings, typical character- istics, package descriptions. and definitions; the second a briefly worded description of recommended design procedures; and the third a more detailed explanation of the reasoning behind these recommendations. GENERAL INFORMATION MTTL MC5400/7400 Serie. to guarantee that anyone limit is not exceeded. For example, a 1.1 - Maximum Ratings The maximum rating table is perhaps the most important portion of the General Information Section. Failure to observe these ratings can result in catastrophic device failure. It is important to note that this rating table does not guarantee that a device will operate if the values noted are not exceeded-it only states that exceeding these values may induce failures. Also. it is not enough maximum supply voltage of 6.5 volts is with in the rating, but may induce failure if the design is such that input voltage ratings or maximum junction temperatures are exceeded as a result of the high supply voltage. The only exceptions to this rule involve currents and voltages applied to input terminals. The table is constructed to allow the designer to limit either current or voltage to a safe value. MAXIMUM RATINGS Value Unit 4.5 to 5.5 4.75 to 5.25 7.0 -10 -30 Vdc Rating Supply Voltage, Operating Supply Voltage, Continuous MC5400 Series MC7400 Series All Types Input Forward Current - Continuous - Pulsed<30 ms Vdc mAde OR -0.5 -1.5 Vdc 1.5 mAde 5.5 -55 to +125 Oto + 70 -65 to +150 -55 to +125 +175 +150 Vdc Negative Voltage at Input - Continuous - Pulsed <30 ms Maximum Input Reverse Cl;Irrent OR Maximum Positive Voltage at Input Operating Temperature Range Storage Temperature Range Maximum Junction Temperature MC5400 Series MC7400 Series MC5400 Series MC7400 Series MC5400 Series MC7400 Series °c °c °c 1_2 - Typical Characteristics The following summary presents the typical operating char- acteristics of the MTTL MC540017400 series. Unless otherwise indicated, the parameters are defined for VCC = +5.0 volts and T A = +250 C. Switching Threshold = 1.5 volts nominal I "put Impedance High State = 400 kilohms nominal Low State = 4.0 kilohms nominal Worst-Case DC Noise Margin Supply Voltage Operating Range MC5400 Series = 4.5 to 5.5 volts MC7400 Series = 4.75 to 5.25 volts Operating Temperature Range MC5400 Series = -55 to +125 0 C MC7400 Series = 0 to +700C Output Drive Capability Other Gates IOutput Loading Factor! = 10 Capacitance = 600 pF Output Impedance High State = 70 ohms lunsaturated) nominal Low State = 10 ohms nominal Output Voltage Swing = 0.2 to 3.5 volts typical Input Voltage Limits +5.5 volts maximum -0.5 volt minimum High State - 0.400 volt minimum Low State - 0.400 volt minimum Power Dissipation Basic Gate = 10 mW typ/gate Basic Flip-Flop = 40 mW typ/pkg Thermal Resistance - Junction To Case (8 JC) Ceramic Package = 0.090 C/mW Plastic Package = 0.150 C/mW Thermal Resistance - Junction To Ambient 10 JA) Ceramic Package = 0.260 C/mW Plastic Package = O.ZOoC/mW Switching Speeds Average Propagation Delay = IOns per gate typical . 30 ns per flip-flop typical Rise Time = 2.5 ns typical Fall Time = 1.5 ns typical Flip-Flop Clock Frequency = 30 MHz maximum GENERAL INFORMATION MTTL MC5400/7400 Series 1.3 - Package Description PSUFFIX Package type is denoted by a suffix to the part PLASTIC PACKAGE CASE 605 TO-116 number as follows: Suffix F Description Ceramic Flat Ceramic Dual In~Line Plastic Dual In·Line L P SEATING ~A\"\~fuf .L~..Jo:: ~ ~ -L~CI~~~ L=~ I 0.090 Imil imlI 0.015 J!]J!3 Four insulitingstand-offsare provided To convert inchlSlo millimeters multiply.by 25.4 AItJEDEC dimensions and notes apply PACKAGE DIMENSIONS j 0.006 00" '~:'1~:::]~ L ~~~OOi~I~t=H ~.C3iJ O.~3 0.006 iil55 0.070 0.095 POINT if.W5 01145 0.010 PSUFFIX 1 PLASTIC PACKAGE CASE 612 0.030 U]"/I! 0.055 I~ =11 FSUFFIX CERAMIC PACKAGE CASE 607 TO-S6 ~:~~ CDTh.dlmenlion is rneuurtd at the Slating planl. (l)4inllllatingstend-offsarlprovided. Lead 1 idantified by color dot or by elbow on lead. To convert inches to millimeters multiply by 25.4 To convert inchas to millimeters multiply by 25.4 AIIJEDECdimansionsandllotasapply LSUFFIX LSUFFIX CERAMIC PACKAGE CASe 620 CERAMIC PACKAGE CASe 632 TO-116 t o 32' MAX .290 1..J----C-~____J--.:!70 I!Jjjj (j) t~\-[200\O",o:m -.-----L 0.135 IrnS ~ L ~Lo:m 0115 0.090 0015 ilJlD if.U2ii It tiMI lItIing pi_with laadsftrtical. a:>Lud1 idlntifiedbycolor dot, nou:hInlHd, ornotchlncenmil:. To convert inchel to miilimaterJ muhipiy by 25.4 I r/ O'to15' SEATING PI.ANE --6 (9) 9==C::>-[2) V = Vee = Pin 14 [4) Gnd "" Pin 7 [11) 1 2 = B ±cr Z -3 (7) B [3) Pin MCS400 Test limits SS to +12SoC Under Symbol Test Min Max Unit ~ ,8 :s C') To complete testing, sequence through remaining inputs. (5) ..... .a:=- 8 [8) (0' (OH VIL TEST CURREtlT /VOLTAGE VALUES (All Temperatures) Volts V.2 V., V,hO Vee VIH V,HH V'hl Vee, VeeH 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5,50 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5.25 mA 11 (14) Characteristic Input :s C') ELECTRICAL CHARACTER ISTICS rLA1 OIL MCS400 MC7400 MC7400 Test limits o to +70°C Min Max Unit TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: nO :::I ..... Pin 7[11 Jis grounded for all tests in addiUon to the pins listed below: 10 , 10H VIL V'H V,HH V., VR2 Vthl V'hO Vee VeCL VeeH Gnd - - - V * - - V B* Forward Current IF A - -1. 6 mAde - -1. 6 mAde - - A - - B - - Leakage Current IRI A - 40 /lAde - 40 /lAde - - - A - - - - IR2 A - 1.0 mAde - 1.0 mAde - - - A - - - - - - V B* VOL Z - 0.4 Vdc - 0.4 Vdc Z - - - - - - A,B - - V - * VOH Z 2.4 - Vdc 2.4 - Vdc - Z - - - B - - A - V - * ISC t Z -20 -55 mAde -18 -55 mAde - - - - - - - - - - - V A,B,Z* IpDH V - 22 mAde - 22 mAde - - - - - All Inputs - - - - V * IpDL V - 8.0 mAde - 8.0 mAde . . - - - - - . . - - V All Input. Pulse In Pulse OUI * Output Output Voltage Short-Circuit Current Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On Delay tpd_ A,Z - 15** ns . 15** ns A Z - B - - . - - V - - Turn-Off Delay tpd+ A,Z - 22** ns - 22** ns A Z - B - . . . . V - - . Ground inputs, to gates not under test. **Tested only at 25° C. tlonly one output should be shorted at a time. I . s· t: CD Cl. MC540017400 series QUAD 2-INPUT "NAND" GATE WITH OPEN COLLECTOR MC5401 • MC740 1 Add Suffix F for TO-S6 ceramic package (Case 607). Suffix L for TO-1 16 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7401 only. This device consists of four 2-input NAND gates with no output pullup circuits. It can be used where the Wired-OR function is required, or for driving discrete components. CIRCUIT SCHEMATIC 1/4 OF CIRCUIT SHOWN • Vee r1 1.4 k 4k z 1 k Positive Logic: Z Negative Logic: Z Gnd Vee ~ Pin Gnd ~ Pin Pin [lJ Z - 1 [3J 2= ±[y B [2J 3 [6J [5J [7J : = = L } - 4 [9J [10J : = = L } - 1 0 [8J [12J 1 1 = = L } 13 [14J [13J 12 A B DIL Pkg Pkg LA Pin = ',A"";'"B = A+"B Input Loading Factor = 1 Output Loading Factor = 1 0 Total Power Dissipation = 40 mW typ/pkg 14 [4J Propagation Delay Time 7 [11 J = 35 os typ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS TP out Vee +5.0 Vdc ; - - -.....- - - - - - 3 . 0 V min '1<-----1.5 V ' -_ _ _ 0 V max PULSE GENERATOR 2.4 V min 1.5 V t+=12nS} . = 6.0 ns 10% to 90% POints t- PRF ~ 1.0 MHz Duty Cycle = 50% PW ~ 0.51" Z·out~50 .n R L = 400 ohms for tp.d- test. 4.0 k ohms for tpd+ test. CT = 15 pF = total p@rasiticcapacitance,which includes probe. wiring, and load capacitances. High impedance probes ( >1.0 megohm) must be used for tests. s: FLAT] OIL [ Pkg Pkg Pin Pin 2=tcY- [IJ 3 [2J V= vee =Pin 14 [4J Gnd = Pin 7 [111 [6J [7J [9J [10J C"') ~ z B 1 :==:[J-4 :==:[J-,0 "==:[J- [12J [13J 12 ELECTRICAL CHARACTERISTICS 0'1 o .... s: C"') [3J [5J '" ~ [8J o.... 13 [14J Test procedures are shown for only one gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. Pin MC5401 Test limits Under -55 to +125°C Test Min Max Unit MC5401 MC7401 MC7401 Test limits o to +70°C Min Max Unit 0.4 TEST CURRENT /VOLTAGE VALUES (All Temperatures) Volts V,H V,HH V., V.2 V'hO VCEX Vcc V'hl 5.5 5.0 2.4 4.5 5.0 2. a 0.8 5.5 16 0.4 2.4 IOL VIL V,H - A Characteristic Input Symbol Forward Current IF A -1. 6 mAde -1. 6 mAde Leakage Current IRI A 40 ,uAdc 40 !-lAde IH2 A 1.0 mAde 1.0 mAdc VOL Z 0.4 Vdc 0.4 Vdc I CEX Z 0.25 mAde 0.25 mAde IpDII V - 22 mAdc 22 mAde IpDL V - 8.0 mAde 8.0 mAde mA 10L VIL 16 5.5 4.5 5.0 2.0 0.8 5.5 5.0 ! - V,HH V. l V.2 V'hl V'hO VCEX Vec Il VCCH 4.50 5.50 4.75 5.25 Pin 7[11] is grounded for all tests in addi~ tion to the pins listed below: VCCL VCCH Gnd - V * V B* V B* - * A A ::;' C -6 1:=C>-S 11 12~ A 13~ z B Positive Logic: Z = Negative Logic: Z = 1 k· Gnd Input Loading Factor =1 Output Loading Factor Vee Gnd = Pin = Pin :A"...-s A+B = 10 Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time = 35 ns typ 14 7 Device available only in dual in-line package. SWITCHING TIME TEST CIRCUIT AND WAVEFORMS TP out Vee +5.0 Vdc '1.-----1.5 V 1.5 V , . - -....- - - - - - 3 . 0 V min ' -_ _ _ 0 V max 2.4 V min Duty Cycle = 50% PW = 0.51l" Zout~50 .n R L = 400 ohms for tpd_ test. 4.0 k ohms for tpd+ test. CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. High impedance probes ( >1.0 megohm) must be used for tests. :=±cY- v = Vee"" :=0- Pin 14 Gnd = Pin S n ~ o 3 6 .W 9~8 7 s 10~ (") 12~~11 ~ ~ 13~ 8 8:::I ELECTRICAL CHARACTERISTICS - Test procedures are shown for only one gate. The" other gates are tested in the same mA manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. Characteristic Input Pin MC5403 Test limits Under -55 to +125'C Symbol Test Min Max Unit MC5403 MC7403 MC7403 Test limits o to +70'C Min Max Unit TEST CURRENT /VOLTAGE VALUES Volts VR, VR2 V'H V'HH V'h' (All Temperatures) :::!". :::I I:: 'Ol VIl V'hO VCEX 16 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.5 5.0 4.50 5.50 16 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.5 5.0 4.75 5.25 Vcc VCCl a VCCH Pin 7 is grounded for all tests in addition to the pins listed TEST CURRENT !VOlTAGE APPLIED TO PINS LISTED BELOW: below: 'Ol VIl V'H V'HH VR, VR2 V,h' V'hO VCEX Vcc VCCl VCCH Gnd Forward Current IF A - -1. 6 mAde - -1. 6 mAde - A - - B - - - - - - V * Leakage Current IRI A - 40 /lAde - 40 }.LAde - - A - - - - - - - - V B* IR2 A - 1.0 mAde - 1.0 mAde - - - A - - - - - - V B* VOL Z - 0.4 Vdc - 0.4 Vdc Z - - - - - A,B - - V - * ICEX Z - 0.25 mAde - 0.25 mAde - - - - A - - B Z - V - * IpDH V - 22 mAde - 22 mAde - - - - - All Inputs - - - - - V - IpDL V - 8.0 mAde - 8.0 mAde - - - - - - - - - V A,B* B - - - - - V - - - Output Outp:ut Voltage I Output Leakage Current Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On Delay tpd_ A,Z - 15** nB - 15** nB - - Pulse In Pulse Out A Z ! I Turn-Off Delay tpd+ A,Z Ground inputs to gates not under test. **Tested only at 25° C. - 45** nB - 45** nB A Z B - - - - - - V - - - MC5400/7400 series '\ HEX INVERTER '-_ _ _ _ _- - - - - - 1 MC5404 • MC7404 Add Suffix F for TO·86 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7404 only. CIRCUIT SCHEMATIC 1/6 OF CIRCUIT SHOWN • rLAT] Pkg Pin Vee 100 OIL Pkg Pin [11 1~2 [141 [31 3--\)0---4 [21 [51 5--\)0---6 [61 [71 9--\)0---8 [81 A [91 1 1 - - \ ) 0 - - - 1 0 [101 Z [131 1 3 - - \ ) 0 - - - 1 2 [121 1 k Positive Logic: Z~A Gnd I nput Loading Factor == 1 Output Loading Factor == 10 Total Power Dissipation"" 60 mW typ/pkg Propagation Delay Time == 13 ns typ Vee ~ Pin 14 [41 Gnd ~ Pin 7 [111 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc , . - -...- - - - - - 3.0 V min 400 '\-----1.5 V oV max 2.4 V min PULSE GENERATOR t+ = 12 ns } . t- = 6.0 ns 10% to 90% pOlOts PRF ~ 1.0 MHz Duty Cycle = 50% PW = 0.5J,ls Zout~50 MMOS150 or Equiv 1_ 50 MM07000 or Equiv n CT "" 15 pF = total parasitic capacitance. which includes probe. wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. 1.5 V rFLAT] Pkg Pin [lJ v s: ("') ELECTRICAL CHARACTERISTICS DIL Pkg Pin Test procedures are shown for only one 1~2[14] the same manner. [3J 3-{:»--4 [2] [5] 5-{:»--6 [6J 8 [8J U1 inverter. The other inverters are tested in ~ o .~ s:("') ...... ~ ~VCC ~ Pin 14 [4] Gnd '" Pin 7 [111 o -{:»-- ~ [m [OH VIL TEST CURRENT jVOlTAGE VALUES (All Temperatures) Volts VIH VIHH V. 2 V. I V,hO VCC V'h I VCCL VCCH 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5.50 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5. 25 mA 10 [10J MC5404 MC7404 MCl 404 Test limits o to +70'C Min Max Unit 12 [12J Characteristic Input Symbol Pin MC5404 Test limits Under -55 to +125'C Test Min Max Unit Forward Current IF A Leakage Current IRI A IR2 A VOL Z - V OH Z 2.4 ISC t Z -20 IpDH V IpDL V - -I. 6 mAde 40 - -I. 6 mAde pAde 40 vAde 1.0 mAde 1.0 mAde 0.4 Vdc - 0.4 Vdc Vdc 2.4 -55 mAde -18 33 mAde nO :::l ,... S· c C1l Pin 7[11] is grounded for all tests in addi- tian to the pins listed below: TEST CURRENT jVOlTAGE APPLIED TO PINS LISTED BElOW: 10L 10H - V" V,HH V,H A V. I V. 2 - - V'h I V'hO Vce VCCL A - A VCCH Gnd V * V * V * Output Output Voltage Short-Circuit Current mAde 33 mAde - Z Vdc -55 A Z - - V * A V * V A,Z* - V - - - V All Inputs - V Power Requirements (Total Device) Power Supply Drain All Inputs 12 mAde - 12 Switching Parameters Turn-On Delay t pd _ A,Z Turn-Off Delay tpd+ A,Z - 15** ns 22** ns - - mAde Pulse In Pulse Out 15** ns A Z - 22** ns A Z - L *Ground inputs to inverters not under test. **Tested only at 25°C. t'Only one output should be shorted at a time. ____ -----'-- * V - - '------ * .. 0. MC5400/7400 series HEX INVERTER (Open Collectorl MC5405 • MC7405 Add Suffix F for TO·S6 ceramic package (Case 607). Suffix L for TO·116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7405 only. This device consists of six independent inverting gates with no output pullup circuits. It can be used where the Wired-OR function is required, or for driving discrete components . CIRCUIT SCHEMATIC 1/6 OF CIRCUIT SHOWN • Vee rLAT] Pkg Pin 4k DIL Pkg Pin [11 1~2 [141 [31 3--{)o-4 [21 [51 5--{)o-6 [61 [71 9--{)o-S [SI 1.4 k A Z [91 1 1 - - { ) o - 1 0 [ 1 0 1 1 k [131 1 3 - - { ) o - 1 2 [121 Positive Logic: Z=A Gnd Input Loading Factor = 1 Output Loading Factor :=:: 10 Total Power Dissipation:=:: 60 mW typ/pkg Propagation Delay Time = 35 ns typ 0 Vee = Pin 14 [41 Gnd = Pin 7 [111 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS TP out Vee +5.0 Vdc , - - -.....- - - - - - 3.0 V min ,...----1.5V ' - - - - - - 0 V max . PULSE GENERATDR 2.4 V min 1.5 V t+=12nS} t- = 6.0 ns 10% to· 90% points PRF = 1.0 MHz Duty Cycle = 50% -l-~~=::::!~:I:::== ~':dV 50 PW = 0.5 III Zout~50 n RL = 400 ohms for tpd_ test. 4.0 k ohms for tpd+ test. CT = 15 pF = total parasitic capacitance, whic~ inclu~es probe, wiring, and load capacitances. High impedance probes ( >1.0 megohm) must be used for tests. max f FLAT] s: DIL Pkg Pin Pkg Pin (") c.TI [l)l~2[14J ~ o .c.TI [3J 3--{:>o---4 [2J s: [5J 5--{:>o---S [6J " (") v = Vee = Pin 14 [4J Gnd=Pin ~ o 7 [11] [7J 9--{:>o---S --{:>o--- c.TI [SJ 12 [12J Pin MC5405 Test Limits 55 to +125'C Under Test Min Max Unit nO 10 l101 10L VeEX VIL 16 5.5 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5.50 16 5.5 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5.25 Pin 7[11 J is grounded for all tests in adctitian to the pins listed below: Vcc VCCL VCCH Gnd - - V * V * V * mA MC5405 MC7405 MC7405 Test Limits o to +70'C Max Unit Min IOL VCEX VIL -1. 6 mAde - - A 40 !lAde 1.0 mAde 0.4 Vdc Characteristic Input Symbol Forward Current IF A -1. 6 mAde Leakage Current lRI A 40 J.lAde IR2 A 1.0 mAde VOL Z - 0.4 Vdc - ICEX Z 0.25 mAde 0.25 IpDlI V IpDL V - ~ TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts VR2 VIH VIHH V., V'hl V'hO Vec !:t. ~ c VCCL TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: - V,H V,HH V. , V.2 - - V,hl V'hO A - A - - CD Q. VCCH Output Output Volta~e Output Leakage Current Z mAde - - - Z - - A A V * V * Power Requirements (Total Device) POWl'r Supply Drain 33** 33** mAde t pd _ Turn-Off Delay tpdT - - - V - - - V All Inputs Inputs 12** mAde - 12** mAde Switching Parameters Turn-On DeLly All mAde Pulse In Pulse Out A,Z 15** ns 15** ns A Z - A,Z 55** ns 55** ns A Z - * V - - - - *Ground inputs to inverters not under test. **Tested only at 2S"C. • V - * MC5400/7400 series TRIPLE 3-INPUT "NAND" GATE MC5410 • MC7410 Add Suffix F for TO-86 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7410 only_ CIRCUIT SCHEMATIC 1/3 OF CIRCUIT SHOWN FLAT] [ Pkg Pin Vee [11 OIL Pkg Pin 1 A [212~12(31 [14113~ [61 [71 [SI 3 :3J-- (51 6 (91 [101 1 : 3 J - - S [131 [121 11 z A B e Positive Logic: Z=~ Negative Logic: Z -A+ii"+C Input Lo"ading Factor = 1 Output Loading Factor = 10 Total Power Dissipation = 30 mW typ/pkg Propagation Delay Time = 10 ns typ Gnd Vee - Pin 14 (41 Gnd - Pin 7 (111 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc ~--....- - - - - - 3 . 0 400 '---- MM06150 or Equiv t+=12n5} . t- '" 6.0 ns 10% to 90% POints Duty Cycle Zout~50 MM07000 50 or Equiv = 50% PW - 0.5"s -= n CT --OV max 2.4 V min PULSE GENERATOR PRF - 1.0 MHz V min lk----1.5V = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to SCope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 atten.uator probe. Coax shall be CT -070-50 or equivalent. 1.5 V r FLAT] Pkg Pin [1] DIL Pkg Pin 1 s: (") A [2]2~ [14] 13~ [6] 3 [81 5~ [7]4~ v = Vee = Pin 14 [4J Gnd=Pin 7 [11] [9J ELECTRICAL CHARACTERISTICS 0'1 ~ - 1 2 [3] -> ,0 6 93J- s: [51 (") -..J 8 ~ [131 10l 10H V" TEST CURRENT jVOLTAGE VALUES (All Temperatures) Volts VR2 VIH VIHH VRl V,hO Vcc V,hl 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 mA Pin MC541 0 Test Limits Under -55 to + 125"C Test Min Max Unit Characteristic Input Symbol Forward Current IF A Leakage Current IR1 A IR2 A VOL - MC541 0 MC741 0 MC7410 Test Limits o to +70"C Min Max Unit 10l -1. 6 mAde - -> o VCCH 5.0 4.50 5.50 5.0 4.75 5.25 VeCl VCCH Gnd V * - V B,C* A - V B,C* - A,B,C - V - * - A V TEST CURRENT jVOLTAGE APPLIED TO PINS LISTED BELOW, -1. 6 mAde 40 MAde - 40 flAde - 1.0 mAde - 1.0 mAde - Z - 0.4 Vdc 0.4 Vdc Z V OH Z 2.4 ISC t Z -20 IpDH V IpDL V 10H V" VIH VIHH VRI A - - B,C VR2 A - n-O VCCl V,hl V'hO - - Vcc :::J ~. :::J Pin 7[14J is grounded for all tests in addiHan to the pins listed below: Output Output Voltage Short-Circuit Current - Vdc 2.4 - Vdc Z - - B,C -55 mAde -18 -55 mAde - - - - 16.5 mAde - 16.5 mAde, - 6.0 mAde - 6.0 mAde - - Pulse In Pulse Out * - V - V - - - V A,B,C* - V - * A,B,C* Power Requirements (Total Device) Power Supply Drain - Switching Parameters Turn-On Delay Turn-Off Delay tpd_ A,Z tpd+ A,Z - *Ground inputs to gates not under test. **Tested only at 25 0 C. t Only one output should be shorted at a time. 15** ns 22** ns - - All Inputs - - - - - 15** ns A Z - B,C - 22** ns A Z - B,C - - - - - V * c: ~ MC5400/7400 series DUAL 4-INPUT "NAND" GATE MC5420 • MC7420 Add Suffix F for TO·86 ceramic package (Case 607). Suffix L for TO·116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7420 only. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN Vee [LAT] Pkg DIL Pkg Pin Pin ;~ [1] [12] 4 [13] 1.4 k 4k 5 [14] . e Z 6 (2] D [9] 93r>[6] (7] 10 8 [10] [8] 12 13 z A B eo--+--I-. Do--+++" Positive Logic: Z = A • B • C. 0 Negative Logic: Z = A + B + C + 0 1k I nput Loading Factor Vee = Pin Gnd = Pin =1 Output Loading Factor = 10 Total Power Dissipation = 20 mW typ/pkg Propagation Delay Time = 10 ns typ Gnd 14 [4] 7 [111 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc , , . . . - - - . - - - - - - 3.0 V min 400 'Ir-----l.5V 'I. 0 V max 2.4 V min MMD6150 or Equiv 1.5 V -+---l-~==!~i=== 0.4 V Gnd 50 Duty Cycle = 50% PW = 0.51l' Zout~50 MMD7000 or Equiv n CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to sc()pe must be matched. The scope must be terminated in 50-ohm impedance. The 950~ohm resistor and the scope termination im~ pedance constitut;e a 2.,0: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. max r FLAT] Pkg OIL Pkg Pin Pin [I] 2~ 4 5 [13J = Vee == Pin 14 [4] Gnd""Pin 7 [11] C 0 Z N ,0 6 [2] :s: [14J (") [6J9~ [7Jl0~ ELECTRICAL CHARACTERISTICS (J'I .j::Io A [12] v :s: (") "'-I .j::Io 8[10J VIL -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5.50 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5.25 VCCL VeeH Gnd - V * - V B,C,D* - V B,C,D* mA Pin MC5420 Test Limits -55 to +125°C Under Test Min Max Unit Characteristic Input Symbol Forward Current IF A Leakage Current IRI A IR2 A VOL 10L 10H ) 16 .. _.. _0 16 MC7420 Test Limits o to +70°C Min Max Unit (") VeeL 10L 10H VIL - A mAde - -I. 6 mAde 40 MAde - 40 MAde - - - 1.0 mAde 1.0 mAde - - Z - 0.4 Vdc 0.4 Vdc Z V OH Z 2.4 - Vdc 2.4 Vdc - ISC t Z -20 -55 mAde -18 -55 mAde IpDH V - 11 mAde - 11 mAde IpDL V - 4.0 mAde - 4.0 mAde VIH A - VIHH VR1 VR2 B,C,D - V'hO V'hl - A - Vee o VeeH TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: -I. 6 - N o TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts VRI VR2 VIH VIHH V,hl V'hO Vee ::t ::!. ::t Pin 7[11] is grounded for all tests in addition to the pins listed below: Output Output Voltage Short -Circuit Current - - - Z - - - B,C,D - - - - - - - - * V A,B,C,D - A - - V - * V All Inputs Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On Delay Turn-Off Delay Pulse In Pulse Out Z tpct_ A,Z - 15** ns - 15** ns A tpd+ A,Z - 22** ns - 22** us A Z . .- *Ground inputs to gate not under test. **Tested only at 25" C. t Only one output should be shorted at a time. - All Inputs - - - - - B,C,D - - B,C,D - '-- ---- --- - - V - - - V A,B,C,D* - L- -- - V - - V - * - - - '-- * --- -- --- C 8.. MC5400/7400 series QUAD 2-INPUT INTERFACE "NAND" GATE MC5426L* MC7426P,L* This device features high-output voltage ratings for use as an interface circuit with 12 volt systems, such as low threshold voltage MOS logic circuits. The output is rated at 15 volts, however, Vee is connected to the standard 5 volt source. The output transistor has a 16 milliamp sink capability at an output voltage of 0.4 volt maximum, thus allowing high fan- 1/4 OF CIRCUIT SHOWN out drive capability while maintaining the nominal power dissipation of the standard gate. 14' I Vee 4k 1.4 k 3 2 Positive Logic: Negative Logic: 1 k 3"'" "f"';'2 3 = i""+2' Input Loading Factor:: 1 Output Loading Factor = 1 0 GND 7 Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time = 17 ns typ • L suffix = TO-116 ceramic package (Csse 632) P suffix = TO-116 plastic package (Case 605) See General Information section for package outline dimensions. VOLTAGE WAVEFORMS AND DEFINITIONS SWITCHING TIME TEST CIRCUIT Vee TP out +5.0 Vdc 1...----,.t--+----3.o v 1 k '-+----1.5 V ------~~----~~~-----OV tPd_~Pd+ 2.4V min t+:S;12 ns t-:S'6 ns TP out PRF ~ 1.0 MHz Generator Zout~50 ohms PW = 500 ns 1.5 V ______....::==='---=-=-=-=-=-=-=~~ ~ max VIH +2.4 Vdc CT = 15 pF = total parasitic capacitance, which includes probe, wiring, ,nd load capacitances. High impedance probes (>1.0 megohm) must be used for tests. s: ELECTRICAL CHARACTERISTICS n (11 Test procedures are shown .for only one ~ gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- N 0) r maining inputs. s: n """ ~ N 0) :==C}-3 :==C}-6 ."'C r 0o ::J ,~==C}-8 ::J C 12~ II ~. '3~" TEST CURRENT!VOl TAGE VALUES (All Temperatures) mA IOl MC5426 Test Limits Pin Characteristic Symbol Test MC7426 16 I I V,H VR1 VR2 0.4 2.4 4.5 5.5 0.4 2.4 4.5 5.5 Unit -1.6 40 'R2 1.0 VOL VOH 0.4 I I Vth 1 VthO VOH 2.0 0.8 12 2.0 0.8 I 12 I I Vee VCCL 5.0 4.5 VCCH 5.5 5.0 4.75 5.25 Vee VCCL VCCH TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: Oto 700 e Max Min 16 V,l MC7426 Test Limits -55 to + 125°C Under MC5426 Volts IOH 10l V,l IOH V,H VR2 VR1 Vth a VOH Gnd Max Unit mAde -1.6 mAde 14 7' /.lAde 40 ,uAdc 14 2,7* mAde 1.0 mAde 14 2,7" Vdc Vdc 0.4 Vdc Vdc Min Vth 1 Input Forward Current 'F Leakage Current 'R1 Output Output Voltage Output Current 15 IOH 50 /.lAde 22 mAde 8.0 mAde 15 50 pAde Power Requirements (Total Device) Power Supply Drain IpDH 14 IpOL 14 - - 22 mAde - - 8.0 mAde - - Pulse In Switching Parameters Turn-On Delay tpd_ 1.3 Turn-Off Delay 'pd+ 1.3 *Graund Inputs to gates not under test * *Tested only at 25°C. - 17* ~ n, 24" "' - 17** n, 1 Pulse Ou' 3 24'''' "' 1 3 I 1 l I - - I 1 - I 2 1 - 2 I -l I 1 I - - -l I 1 - - I 1 I 1 _. - - 1,14 7' 7' 1,14 7" 14 1.2 I - 1 - I - I I 1 - I - 1 • - I 1 12 I 14 1 - 14 I -l - I 14 -l 14 1' .4.7.9.12 MC5400/7400 series '\ 8-INPUT "NAND" GATE '-------------' MC5430 • MC7430 Add Suffix F for TO-S6 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7430 only. CIRCUIT SCHEMATIC Vee • rLAT] Pkg Pin OIL Pkg Pin [2i 4k 1.4 k 100 t-o... IIII III A B e o g::::: f-< (3) 2 [51 3 [61 4 [71 5 [81 6 8 [12) [91 11 >--0 z [10) 12 E F Positive Logic: G H r-.... Z=AeSeCeDeEeFeGeH Negative Logic: A Z~A+B+C+D+E+F+G+H 1 k ~.~ A Input Loading Factor = 1 Output Loading Factor = 10 Gnd Vee Gnd Total Power Dissipation = 10 mW typ!pkg Propagation Delay Time = 10 ns typ = P;n = 14 [4) Pin 7 [111 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc ....- - - - - - 3 . 0 V min ~-- 400 '\-----1.5 V OV max PULSE GENERATOR t+ t- = 12 ns =. 6.0 ns } 2.4 V min MMD6150 or Equiv . 10% to 90% pOInts PRF = 1.0 MHz 50 Duty Cvcle = 50% MM07000 or Equiv PW = 0.5,,, Zout:::::::::50 n CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50·ohm impedance. The 950~ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. 1.5 V s: (") ELECTRICAL CHARACTERISTICS FLAT] [ Pkg Pin OIL Pkg Pin [3J 2 [5J 3 [6J 4 ,,,n '" [8J Forward Current IF eN ,0 s: (") z IOL IOH VIL 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5.50 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5.25 rnA G H Pin MC5430 Test Limits -,55 to + 125°C Under Test Min Max Unit A - -1. 6 mAde MC5430 MC7430 MC7430 Test Limits o to +70°C Max Min Unit - -1. 6 - 40 !lAde A 1.0 mAde VOL Z 0.4 Vdc V OH Z 2.4 ISC t Z -20 IpDH V IpDL V IRI A IOL IR2 !lAde - 1.0 mAde - 0.4 Vdc C') VeeL Short-Circuit Current Pin 7[11] is grounded for all tests in addi- I tion to the pins listed below: I V'L VIH V'HH VRI VR2 Vthl VthO Vec VeeL VecH Gnd - A - - B,e,D,E, - - - - - V - - - - V B,C,D,E,F ,G,H - - - V B,C,D,E,F ,G,H - V - V - - V - - V - - V All Inputs - - - - - A - - - - A - - - Output Output Voltage o VeeH IOH mAde 40 o TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: F,G,H Leakage Current ~ """ W TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts VR2 VthO Vee VIH VIHH VR1 Vthl 6 [101 12 Symbol ~ remaining inputs in the same manner. "~O"" [9J 11 Characteristic Input U1 A [2J V ~ Vee ~ Pin 14 [4J Gnd '= Pin Test procedures are shown for only one input. To complete testing, sequence through - Z All - I~puts Vdc 2.4 -55 mAde -18 6.0 mAde - Vdc - Z - -55 mAde - - - 6.0 mAde - - - 2.0 mAde - B,C,D,E, F,G,H - - - - A All Inputs,Z Power Requirements Power Supply Drain - 2.0 mAde - t pd _ A,Z Turn-Off Delay tpd+ A,Z - 15' ns - 15* ns 22* ns - 22' ns ---- *,Tested only at 25" C. t Only one output should be shorted at a time. -- All - Inputs Switching Parameters Turn-On Delay - - - Pulse In Pulse Out A Z - Z - A --- - - - - - - - - - - V - - V B,C,D,E, F,G,H - - B,C,D,E, - - ~?~-~ --- - ::J ~. ::J C ~ MC5400/7400 series DUAL 4-INPUT "NAND" BUFFER MC5440 • MC7440 Add Suffix F for TO-S6 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Csse 632). Suffix P for TO-116 plastic package (Case 605) MC744Q only. This device consists of two 4-input NAND power gate circuits. Each gate is designed for driving high fan-out loads (30). CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN I Vee r1 Pkg LA 500 4k Pin 100 [1J [12J [13J [14J [6J A OIL Pkg Pin ;~ 4 e 5 0 Z 9~ [7J 10 B z eo-++. [8J 12 o o--+++-" 6 [2J 8 [10J [9J 13 Positive Logic: Z = A • B • C • 0 Negative Logic: Z Gnd Vee Gnd =A +B + C +0 Input Loading Factor"" 1 Output Loading Factor = 30 Totsl Power Dissipation = 50 mW typ/pkg Propagation Delay Time = 13 ns typ = Pin 14 [4J = Pin 7 [11J SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc , . . - -.....- - - - - - 3.0 V min 133 'k------1.5V ' -_ _ _ 0 V max 2.4 V min PULSE GENERATOR MM06150 or Equiv t+ = 12 ns t- = 6.0 ns } . 10% to 90% POints PRF = 1.0 MHz Duty Cycle = 50% 50 MM07000 or Equiv PW = 0.5 /l' Zout~50 .n CT = 15 pF = total parasitic capacitance. which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. 1.5 V s: n ELECTRICAL CHARACTERISTICS FLAT] [ Pkg Pin 11] 112] 113] v === Vee Gnd = = Pin 14 [4] Pin 7 [11] OIL Test procedures are shown for only one Pkg Pin 1 A 4 5 C 0 2~ Z C'1 gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- .~ s: maining inputs. 612] n ..... 114] 16] 9~ ~ ~ Symbol Forward Current IF A Leakage Current IRI A IR2 A VOL Z V OH Z 2.4 IsCt Z -20 IpDH IpDL 10H Vil 48 -1. 2 0.4 2.4 5.5 4.5 5.0 2.0 0.8 48 -1. 2 0.4 2.4 5.5 4.5 5.0 2.0 0.8 8110] mA Pin MC5440 Test Limits -55 to + 125°C Under Test Min Max Unit Characteristic Input 10l TEST CURRENT /VOLTAGE VALUES (Ali Temperatures) Volts VR2 V,H V,HH V. , V,hl V,hO Vce MC5440 MCl440 MCl440 Test Limits o to +70 c C Min Max Unit -1. 6 mAde -1. 6 mAde - 40 11Adc 40 fJ.Adc - 1.0 mAde 1.0 mAde 0.4 Vdc 0.4 Vdl: o VCCH 5.0 4.50 5.50 5.0 4.75 5.25 Pin 7[11 Jis grounded for all tests in addition to the pins listed below: VCCl VCCH Gnd V * V B,C,D* V B,C,D* TEST CURRENT IVOn AGE APPLIED TO PINS LISTED BElOW: lot 10H Vil V,H V,HH A V. , VR2 B,C,D - V,hl V,hO Vee - A - - A nO VCCl ::l ~. ::l t: Ol a. Output Output Voltage Short-Circuit Current Vdc 2.4 -70 mAde -18 V 27 V 8.0 Z Vdc -70 mAde mAde 27 mAde mAde 8.0 mAde A,B,C,D B,C,D Z - - A - V * V * - V A,B,D,D,Z* Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On Delay Turn-Off Delay *: - t pd _ A,Z tpd+ A,Z - All Inputs - - Pulse In Pulse Out 15** ns 15** ns A Z B,C,D 22** ns 22** ns A Z B,C,D - V - - V A,B,C,D* V - - V - * - * -- Ground inputs to ~ate not under test. Tested only at 25 C. tbnly one output should be shorted at a time. ----------------- ,- ~ MC5400/7400 series BCD-TO-DECIMAL DECODER AND HIGH-LEVEL DRIVER MC7441AL,P* This monolithic device is a BCD to one-of-ten decoder with high-level outputs capable of driving gas-filled coldcathode indicator tubes or other devices requiring highvoltage drivers. In a typical application, this device would be driven by the MC7490 decade counter through the • MC7475 quad bistable latch. The outputs are guaranteed to operate at 55 volts with a maximum of 200 IJ.A leakage current. The outputs of this device are protected by zener diodes to eliminate the possibility of oscillation due to the breakdown of the output devices. TRUTH TABLE 1600 1501 A3 8 02 9 86 03 1304 1405 e7 1106 1007 D4 1 08 2 09 D INPUT C B A 9 8 7 6 5 4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 OUTPUT 3 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 Input Loading Factor = 1 Total Power Dissipation = 105 mW typ/pkg A 3O-----l 16 00 01 15 8 02 03 9 13 54 05 14 11 06 07 10 0.8 09 2 Vee = PIN 5 GND = PIN 12 -= *L suffix:::: l6-pin ceramic package (Case 620). P suffix = l6-pin plastic package (Case 612). 2 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 s: (") """ t .... » ELECTRICAL CHARACTERISTICS n Test procedures are shown for only the A input and one output. To complete test~ ;ng, sequence through the remaining inputs and outputs as shown in the truth table. o ::J ~. ::J C CIl Q.. Ion TEST CURRENT I VOLTAGE VALUES (All Temperatures) Volts Vout VCC VCCL VCCH VthO V'L V'H V'HH Vth1 7.0 0.4 rnA Characteristic Pin Under Symbol Test Input MC7441A Test Limits oto +70°C 2.4 5.5 2.0 0.8 55 5.0 4.75 5.25 TEST CURRENT I VOLTAGE APPLIED TO PINS LISTED BELOW: Min Max Unit Ion V'L V'H V'HH Vth 1 Vth 0 YOU! VCC VCCL VCCH Gnd Forward Current IF 3 - -1. 6 mAde - 3 - - - - - - - 5 12 Leakage Current IRI 3 - 40 !lAde - - mAde - 3 - - - 12 1.0 - 5 - - - 3 - 3 IR2 - 5 12 Output Voltage VOL 1 - 2.5 Vde 1 - - - 4 3,6,7 - - 5 - 12 Output Leakage Current IOLK 1 - 200 !lAde - - - - - 3,4,6,7 1 - 5 - 12 IpD 5 - 32 mAde - - - - - - - 5 - - 4,12 Output Power Requirements (Total Device) Power Supply Drain L- ~----------. '@,,- po MC5400/7400 series 'BCD-TO-DECIMAL DECODER - MCS442L"" • MC7442L,Pol' EXCESS THREE-TO-DECIMALDECODER MCS443L"" • MC7443L,Pol' EXCESS THREE GRAY-TO-DECllI/IAL DECODER MCS444L"" • MC7444L,Pol' These devices decode four-bit BCD, Excess 3, or Excess 3 Gray Input Loading Factor == 1 Output Loading Factor inputs to select one-ot-ten outputs. The selected output is in the logic "0" state, while all other outputs are in the logic "1" state, = 10 Full decoding of all valid input logic ensures that outputs remain off for any invalid input condition. These devices are useful in memory selection, industrial control, Total Power Dissipation = 140 mW typ/pkg Propagation Delay Time: and data routing applications. 2 Logic Levels = 22 ns typ 3 Logic Levels = 23 ns typ . DC Noise Margin == 1.0 V typ MC5442/MC7442 MC5443/MC7443 Vee == Pin 16 Gnd = Pin 8 Vee Gnd = MC5444/MC7444 Pin 16 8 Vee = Pin 16 Gnd == Pin 8 = Pin These decoders are constructed using low~level inverters and high·level NAND gates interconnected as shown by the logic diagrams. The inverter and gate schematics appear on the next page of this data sheet. MC5442/MC7442 BCD INPUT A D C B MC5443/MC7443 EXCESS 3 INPUT A D C B 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 t 0 1 1 0 1 a 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 a *L suffix = 16-pin dual in-line ceramic package (Case 620). P suffix = 16-pin dual in-line plastic package (Case 612). 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 MC5444/MC7444 EXCESS 3 GRAY INPUT D C B A 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 9 8 ALL TYPES DECIMAL OUTPUT 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 l' 1 1 1 1 1 1 1 1 1 t 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MC5442L, MC5443L, MC5444L/MC7442L,P, MC7443L,P, MC7444L,P (continued) CIRCUIT SCHEMATICS LOW-LEVEL INVERTER HIGH-LEVEL "NAND" GATE Vee Vee • MC5442/MC7442 ELECTRICAL CHARACTERISTICS "A Test procedures are shown for only one input and one output. Test other inputs and outputs in the same manner according to o.=c the truth table. Additionally. test all inputoutput combinations according to the truth table. ~~~ QSr::-o o---!..!-o Cho_,1stic - Jl.Adc - 5.5 - Vde 5.5 -1.6 mAde 40 .Adc Vdc - - - 0.4 - 0.4 1 2.4 - Vdc Vdc 2.4 - -20 -55 mAde .'8 - aVin 12 12 12 VOL VOH Ise 1 1 1 IpD '6 - IF IR -'.6 mAde 40 Output Output Voltage Short-Circuit Current Vdc Vde -55 mAde Power R..uiremenb IT_I~.I Power Supply Drain 41" mAde - 56" mAde Turn-Off Delay Three Logic Levels Turn-On Oalay Tum-Off Delay V'hO 0.8 0.8 Vee VCCL VCCH 5.0 4.5 5.5 5.0 1 4.75 1 5.25 - - - 12 - - - 12 - 12 - - - - 1 - - - - - - - - 13,15 - - - - - - 12.13,14,15 12,13,14 15 '2,14 - - Gnd '6 16 16 8 8 8 - - '6 8 8 1.8 16 '6 - - - - - 16 - - 8,12,13,14,15 - - - - 16 16 - - 8,12,'3,14 8,12,13,14. - - - - - 8,12,'3,'4 8,12,13,14 Pul.. I"USO SWitchi.... Par.1Mt8rS Two LosPc Levels Turn-On Delay Voh> 10L 10H lin VF VR V'h 1 MC5442 16 -0.4 1.0 0.4 2.4 2.0 MC7442 161 -0.4 1.0 0.41 2.41 2.0 1 MC5442TestLimits MC1442TestLimits TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: Pin Oto+700C Un_ ~to+125oC Vee VCCL VCCH V,hO 10L 10H lin VF VR Vth , Symbol T_ Min . MIIx Unit Min MIIx Unit Input Leakage Current Breakdown Voltage mA Q9p.L..o - Forward Current TEST CURRENTNOLTAGE VALUES (All Temperatures) 'pd-2 tpd+2 15,1 1pd-3 1pd+3 15,2 15,2 IS,' 10" 10' 30" n. n. 10" 10 30' - 35" n. - 35" 36 n. 25 25 36 In Out n. n. 15 15 1 1 - n. n. 15 15 2 - - 2 - '6 16 MC5442L, MC5443L,MC5444L/MC7442L,P, MC7443L,P, MC7444L,P (continued) MC5443/MC7443 ELECTRICAL CHARACTERISTICS ~re shown for only one input and one output. Test other inputs and outputs in the same manner according to the truth table. Additilmally, test all inputoutput combinations according to the truth table. Test procedures I TEST CURRENTNOL TAGE VALUES CAli Temperatures) mA MC5443Test Limits MC7443TestLimits Characteristic Symbol VGlts TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: ~n ~~~~to~+~I~~~O~C~~~0~t~O~+7~0~OC~~~~~~~~~:T~~r-~~~~:l~~r:==lI.~j Max Unit Min Max Unit IOL IOH lin VF VR Vth 1 Vth 0 Vee VCCL VCCH VIHX u;!' Min Input '2 Forward Current Leakage Current Breakdown Voltage -1.6 mAde 12 12 40 5.5 - /.lAde Vdc - '2 '2 '2 -1.6 mAde 40 5.5 ",Adc Vdc Gnd '6 '6 '6 Output Output Voltage Short-Circuit Current Power Requirements (Total Device) Power Supply Drain Switching Parameters !-;V.,.,O~L,-+--;---j~.-+.:0:::"=+-7V;:;dc:-+=c+-.::O':.:'c+-VCi.d;:C-+~+""7+-t-=--r.::--+-,,'4;;"i'5+..';--,2;;,'~3:,-r=-t-7.'6;-,:r-_+_+---;---i VOH ISC 'pD 2.4 -20 '6 -55 Vdc 2.4 mAde -18 Vdc -55 mAde 4'" mAde 56* mAde - 13 2.13,14 Pulse 12,14.15 15 16 '.8 '6 '6 - 8,12,13,14,15 '6 '6 '3 8,'2." '3 8,12.14 '6 '6 '3 '3 8,12,14 8,12,14 ulse ~~ Two Logic Levels Turn-On Delay tpd_2 15,2 10'" 30* 10" 30" Turn-Off Delay tpd+2 15,2 10 25 10 25 '5 Turn-On Delay tpd 3 15,3 tpd+3 15.3 35" 35" '5 Turn-Off Delay '5 Three Logic Levels 35" 35 '5 "'Tested only at 2SoC. MC5444/MC7444 ELECTRICAL CHARACTERISTICS Test procedures are shown for only one in- put and one output. 'Test other inputs and outputs in the same manner according to the truth table. Additionally, test all inputoutput combinations according to the truth table. ". ". as 13 v- C o-E 0 ~:r;-o a8~ ~p2-0 MC5444 TEST CURRENTNOLTAGE VALUES (All Temperatures) mA IOl 16 Volts IOH lin VF VR Vth 1 -0.4 1.0 0.4 2.' 2.0 Vth 0 0.8 Vcc VCCL 5.0 '.5 VCCH V,HX 5.5 2.5 MC7444~'~6i--~0~.4~'.~OtO~.74r.2~.4~!J~.2~.0~-~0~.8~'1~5~.0~~14~.7~5+~5.~25~-2~.~5~ Pin Characteristic Input F,orward Current Leakage Current Breakdown Voltage Output Output Voltage Short-Circuit Current Power Requirements (Total Davice) Power Supply Drain Switching Parameters Two Logic Levels Turn-On Delay Turn-Off Delay Three Logic Levels Turn-On Delay Turn-Off Delay "Tested only at 26°C. Symbol MC5444TeItLimits MC7444TestLimits TEST CU,RRENTNOLTAGE APPLU:D TO PINS LISTED BELOW: uT~r~~~t~O~+~I~~~O~c~~~o~ro~+~7~~~C~~~~~~~~J::1~~Y-~~-'~~~~~~-r:--l ....~ Min Max Unit Min Max Unit IOL IOH lin VF VR Vth 1 Vth 0 Vee VCCL VCCH VIHX 12 12 '2 -1,6 mAde 40 pAde 5.5 VOL Vdc 0.4 2.4 -20 ISC 'pD '6 "d-2 'pd+2 '3.1 '3.1 'pd-3 'pd+3 13,2 '3,2 10" 10 - -1.6 mAde 40 pAde 5.5 Vdc - '6 '2 Vdci 16 '6 '6 14 '2,13,'5 '3.'4 '2,'5 -55 Vde 2.4 mAde -18 Vde -55 mAde 41* mAde - 56" 30" 10" 30" ~ '0 25 '3 '6 35" 13 13 '6 16 35" 35 35 12,13,14,15 mAde Gnd '6 - '2 Vdc 0.4 12 - 8 16 ',8 '6 - '6 '4 8,12.13,14,15 8.'2,'5 '4 8,12,15 '4 8.12.'5 8,'2.'5 14 MC5442L, MC5443L, MC5444L/MC7442L,P, MC7443L,P, MC7444L,P (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS Vce VIHX +2.5 Vdc '+5.0 Vdc 00 15 A 400 01 02 14 B 03 TP out 04 13 PRF = 1.0 MHz =: t- ~10 ns 50 t+ 12 C MMD6150 05 or Equiv 06 07 0 08 09 9 10 11 r MMD7000 or Equiv CT CT = 15 pF == total parasitic capacitance, which includes probe, wiring, and load capacitances. ·The coax delays from input to scope and output to scope must be matched, The scope must be terminated in 50-ohm impedance. The 9SO-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. 3.0 V TPin OV t p d_2 2.4 V min TP out 0.4 V max GND tpd+3 2.4 V min TP Qut 0.4 V max GND -:::- MC5442L, MC5443L, MC5444L/MC7442L,P, MC7443L,P, MC7444L,P (continued) TYPICAL APPLICATIONS Two MC5442/7442 decoders may be used to perform 4-line to 16-line decoding. Data inputs A, B, and C are paralleled to the two decoders, while input D is applied to one decoder and is to the other. (See Figure 1.) FIGURE 1 - BINARY·TO-DECIMAL DECODING USING MC544217442 The excess 3 code is similar to the BCD code except that 3 is • added to each digit before coding. This code has the advantage of beingself~complementing. Ifall zeros in a BCD number are changed to ones and all ones are changed to zeros, the nines complement of the decimal number is obtained. TJle ability to obtain the nines camplementcan reduce the hardware necessary to perform subtraction. MC544217442 A A B B C C D D 00 01 02 03 04 05 06 07 08 09 (See Figure 2.) All Gray codes have one basic characteristic in common. As the code is advanced from any number to the next. only one bit of the code will change at a time. When a non-Gray code such as straight binary is advanced from 3 to 4 (0011 to 0100) three bits of the code must change. Since in many applications the voltages on the three lines do not change simultaneously. a number of false outputs may be generated which last for a short time. These false outputs are easily accepted by the high-speed devices now in use. In contrast, the excess 3 Gray code of the MC5444/7444 would change from 0101 to 0100 to advance from 3 to 4. Decimal Output 0 2 3 4 5 6 8' 9' M C544217 442 Analog measuring devices require a converter for information fed to a digital system. These converters usually use a Gray code output. Gray codes are also useful in sequential circuitry because of the change of only one bit at a time. 00 01 02 03 04 05 06 07 08 09 D Figure 3 shows the MC5444/7444 used for decoding 3-line binary·te-octal. The input to A, B, and 0 is the binary code ABC. C The C input of the device is used as a strobe. Octal data is taken B from outputs 01 through 08 when the strobe is taken to a logic "1". Outputs 00 and 09 are not used. A 8' 9' 10 11 12 13 14 15 Dff Dff -These decimal outputs are available from both decoders. FIGURE 2 -II-LINE EXCESS THREE CODE-TO-NINES COMPLEMENT DECIMAL DECODING USING MC5443/7443 FIGURE 3 - 3-LINE BINARY-TO-OCTAL DECODING USING MC544417444 MC544317443 Excess 3 Code Input Nines r - - - - , Complement I I Input A B C D IL ___ ..JI MC3108 or Equiv 00 01 02 03 04 05 06 07 08 09 MC544417 444 Nines Complement Decimal Output A Input A B Input B Strob~ C Input C D 00 01 02 03 04 05 06 07 08 09 No Connection tl'~" No Connection MC5400/7 400 series BCD TO ONE-OF-TEN DECODER/DRIVERS MC5445L • MC7445L,P iC MC54145L . MC74145L,P iC These devices are intended for use as drivers for indicators or relays, rather than drivers for MTTL logic gates, as is the case with the MC5442/7 442, which isfunctionally identical. The output transistors of these devices are capable of sinking 80 mA, and have break· down voltages of 30 V (MC5445/7445) and 15 V (MC54145/74145). The outputs are suitable for open-collector logic applications, and are compatible for interfacing with most MOS integrated circuits. Since full decoding is included, all outputs remain off for nonBCD inputs 00 C 13 2 01 3 02 4 03 5 04 6 05 9 07 10 08 06 D 12 11 09 Vee = Pin 16 GND = Pin 8 Total Power Dissipation = 215 mW typ/pkg Propagation Delay Time = 50 ns max INPUTS D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 OUTPUTS A 0 1 a 1 0 1 0 1 0 1 0 1 0 1 0 1 09 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 ·L suffix = 16-pin dual in-line ceramic package (Case 620). P suffix = 16-pin dual in-line plastic package (Case 612). 08 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 07 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 06 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 05 04 03 02 01 60 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • I s: ELECTRICAL CHARACTERISTICS (") Test procedures are shown for only one input and one output. 0'1 Test other inputs ~ ~ and outputs in the same manner according 0'1 to the truth table. Test all input*output comhinations according to the truth table. r- s:(") "t 00 151A 01 0'1 r- 02 141B 03 Ie 05 "-c s("): 04 13 0'1 06 ~ ..... 07 12 I iii r- 08 D 11 - ~'I I TEST CURRENT/VOLTAGE VALUES (All Temperatures) s: Volts rnA (") Symbol Pin Under Test Forward Current IF 12 Leakage Current IRI 12 IR2 12 VOL 1 1 VCEX Characteristic MC5445/MC54145 Test Limits 55 to +12SoC lOll IOL2 ICEX VIL VIH VIHH Vth 1 MC5445, MC54145 20 80 0.25 0.4 2.4 5.5 2.0 0.8 5.0 4.5 5.5 MC7445, MC74145 20 80 0.25 0.4 2.4 5.5 2.0 0.8 5.0 4.75 5.25 MC7445/MC74145 MC544517445 MC54145/74145 VCCL "..... VCCH ~ iii r- TEST CURRENTIVOLTAGE APPLIED TO PINS LISTED BELOW: Test Limits o to +70o C Min Max Unit Min Max Unit lOll - -1.6 mAde -1.6 mAde 40 ,uAdc 40 ,uAdc 1.0 mAde - 1.0 mAde - - - 0.9 0.4 Vdc Vdc - - 0.9 0.4 1 1 30 15 - Vdc Vdc 30 15 - Vdc Vdc Vdc Vdc 16 - 62 mAde - 70 mAde IOL2 ICEX VIL VIH VIHH V'h 1 Vth 0 VCC VCCL VCCH Gnd - 12 - - - 16 8 12 - - - - - - - 16 8 - 12 - - - - - - - -- - - - - - 1 12,13,14 1 12,13,14 - - - Input Output Output Voltage V'hO VCC - - - 1 1 - - - - - 1 1 - 16 8 16 16 - - - 16 16 8 8 8 8 (Total Device) Power Supply Drain IPD Pulse In Turn-On Delay 'pd- 15,1 Turn-Off Delay 'Pd+ 15,1 #Tested only at 25 u C. - 50# ns - 50# ns 15 50# ns - 50# ns 15 I I 1 - - - - 16 8,12,13,14,15 - 16 16 - - 8 - nO ::J ~, ::J C CD - 12,13,14,15 12,13,14,15 12,13,14,15 12,13,14,15 - - 0.. Power Requirements Switching Parameters "-c Pulse Out 8 MC5445L, MC7445L,P/MC54145L, MC74145L,P (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS 0.4 V 5.0 V 00 15 A 14 B 100 01 02 03 3 4 04 13 C 0.5 06 TP out 0.7 PRF = 1.0 MHz 12 50 PW= 100ns D lCT 08 09 t+=t-~10ns CT "" 15 pF = total parasitic capacitance, which includes probe and wiring capacitances. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 9S0-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. 90% 3.0 V TPin 10% OV 2.4 V TP out 0.4 V GND MC5445L, MC7445L,P/MC54145L, MC74145L,P (continued) FIGURE 1 - BINARY-TO-DECIMAL DECODING USING MC5445/7445 OR MC54145174145 TYPICAL APPLICATIONS Two MC5445/7445 or MC54145/74145 decoder/drivers (depending on drive requirementsl may be used to perform 4-line to 16-line decoding. Data inputs A, B, and C are applied to both decoder/drivers, while input D is applied to one decoder and B to the other. (See Figure 1.1 In addition to the obvious decoder applications, these circuits can also be used for data distribution (Figure 21. Inputs A, B, and C of the decoder/driver are used as con· trol inputs, while the D input serves as the data input. In a typical compound data routing application, origin data is selected by the control inputs of the MC54151/74151 8-channel data selector. The data is then routed to the proper destination by means of the MC5445/7445 decoder/ driver control lines. MC5445/7445 MC54145/74145 8CO Inputs A---.------1 A 8--+.......- - - - - 1 8 C--+-4-1~----1 C 0--++-1-.......---1 D 00 01 02 03 04 05 06 07 08 09 Decimal Outputs 0 2 3 4 5 6 7 8' 9' To Indicators Relays, etc. MC5445/7 445 MC54145/74145 D C 8 A 00 01 Q2 03 04 05 06 07 08 09 8' 9' 10 11 12 13 14 15 Dff Off 'These decimal outputs are available from both decoders. FIGURE 2 - COMPOUND DATA ROUTING USING MC544517445 ~",,'"" 0"" ""' { A 8 E 00 Z Data Origin C XO { ,,",," """" Control Xl X2 A 02 8 03 04 05 X3 C X4 X5 X6 01 Z X7 Destination 06 07 Data 0 08 09 MC54151/74151 MC5445/7445 8-Channel Data Selector Decoder/Driver MC5400/7400 series BCD·TO-SEVEN SEGMENT DECODER/DRIVERS MC5446L • MC7446L,P* MC5447L • MC7447L,P* Compatible with MC5400/7400 Series devices. These devices decode 4-bit binary coded decimal data, dependent on the state of auxiliary inputs, and provide direct driving of incandescent, seven-segment, display indicators. Ripple blanking inputs provide capability for suppression of non-significant zeros in a system. The blanking input can be used to control lamp intensity. A 7 13 • B 1 12 b e 2 SEGMENT IDENTIFICATION 11 c 016 Blanking Input Ri~~le NUMERICAL DESIGNATION - SEGMENTS ILLUMINATED 10 d (>4+_ _1 Blanking Output 9 Lamp-Testi3 Input • 15 f Ripple 5 Blanking 8 14 9 9 10 11 12 13 14 15 Input Input Loading Factor: Vee = GND = Pin BIIRBO = 2.6 Other Inputs = 1 Pin 16 8 Output Loading Factor: 81/R80 = 5 Total Power Dissipation = 265 mW typ/pkg TRUTH TABLE DIGIT OR FUNCTION 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 81 RBI LT I INPUT LT Pin 3 RBI Pin 5 D Pin 6 C Pin 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 0 1 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X 0 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X Q X B Pin 1 A Pin 7 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 0 X 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X 0 0 X X x = Don't care -L suffix = l6-pin dual in-line ceramic package (Case 620), P suffix = l6-pln dual in-line plastic package (Case 612). BI/RBO Pin 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 OUTPUT a Pin 13 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 b Pin 12 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 c Pin 11 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 d Pin 10 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 e Pin 9 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 f Pin 15 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 9 Pin 14 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 MC5446L, MC5447L/MC7446L,P, MC7447L,P (continued) CIRCUIT SCHEMATIC r-----------~~------~--~16 Vee 13 a A 70-r--~ 12 b 11 c e 2 o-r--tt-~ 10 d o 6 o-r--ti---" 9 e 15 f Blanking Input .Or -r----l--1f=t==::::::::~T'--' 4 .. 0. Ripple Blanking Output Ripple Blanking Input 5 o-r--+------' 14 g 3 Lamp Test s: ELECTRICAL CHARACTERISTICS (") ~ Test procedures are shown for only one data input and the blanking input, and for one driver output and the ripple blanking output. Test other inputs and outputs in B the same manner according to the truth table. Test all input-output combinations b ~' according to the truth table. r 12 s: 11 6 0 10 3 LT 9 (") U1 t-...I .- 15 RBI 41 8; 13 A s: 14 BIIRBO n -...I .-£ TEST CURRENTNOLTAGE VALUES (All Temperatures) • mA lOLl 20 IOL2 8.0 IOH -0.2 ICE X 0.25 VIL 0.4 VIH 2.4 VIHH 5.5 Mp446, MC7447 20 8.0 -0.2 0.25 0.4 2.4 5.5 MC7446IMC7447 Test Limits Test Limits Vth 1 2.0 2.0 Vth 0 0.8 VCC 5.0 VCCL 4.5 0.8 5.0 4.75 VCCH 5.5 5.25 :a VIHX 2.4 s: n 2.4 -...I TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: o to +700 C -55 to +1250 C Under Characteristic MC5446, MC5447 MC5446/MC!;447 Pin Volts Svmbol Tost Min Ma. Unit Min Ma. Unit lOLl IOL2 IF 1 4 1 1 - -1.6 -4.2 mAde mAde - ~Adc "Ade - - 1.0 mAde - -1.6 -4.2 40 1.0 mAde 40 - mAde - 2.4 30 15 - 0.4 0.4 - - 0.4 0.4 -4.0 Vde Vde Vde Vde Vde 2.4 - mAde 30 15 - - ISC 9' 4" 4" 9' 9' 4 -4.0 mAde - IpD 16 - 76 mAde - 90 mAde - 7,9 7,9 - ns ns ns - IOH It;EX '- VIL VIH VIHH Vth 1 VthO VCC VCCL VCCH VIHX Gnd - 1 4 3 - 1 - - 16 16 16 16 - - - - - - 8 8 3,8 3,8 - 3,4,5 3 3,5 - - - - 3.4,7 3,4,7 3,5 - 16 16 16 - 1,2,6,7 1,2,5,6,7 1,2,6,7 1,2,6 1,2,6 1,2,6,7 - - 16 16 16 - 8 8 8 8 8 4,8 Input Forward Current Leakage Current IRl IR2 mAde - - 1 - - -- 4 - - - - - - - - - - - - - - Output Output Voltage MC!;446/7446 MC544717447 Short-Circuit Current VOL VOH VCEX Vde Vde Vde Vde Vde 9 - - - - - 4 - - 9 9 - - - - - - - - - - - 1,2,3,4,5,6,7 - - - 16 - 8 - - - - - 16 - - 1,2,3,4,5 3,4,5 3 6,8 1,2,6,8 1,2,6,7,8 - - 3 1,2,6,7,8 - Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On "Delay Turn-Dn,Delay tpd-l tpd+l tpd-2 Turn-Off Delay tpd+2 Turn-Off Delay 4,5,13 4,5,13 *Test procedure for outputs a thru g. **Test procedure for' BI/RBO only. #Tested only at 2SoC. 100# 100# 100# 100# ns - Pulse In Pulse Out 7 9 7 100# 100# 100# ns ns ns 4,5 9 13 100# ns 4,5 13 - - 16 16 16 t .--...I '"-c nO ::J .... 5' c ~ MC5446L, MC5447L/MC7446L,P, MC7447L,P (continued) SWITCHING TIME TEST CI RCUIT AND VOLTAGE WAVEFORMS 2.4 V • 5.0V 13 A B 2 6 3 PRF ~ 1.0 MHz 50 PW-l00ns t+ 5 4 = t- :S:24 ns b 11 C D LT RBI BI/RBO 280 12 d 10 9 TP out 15 14 r CT CT = 15 pF = total parasitic capacitance, which Includes probe and wiring capacitances. ·Tha coax delays from Input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance conStitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. 3.0V TPin OV tpd_1 2.4V TP out 0.4 V GND t p d+2 2.4 V TP out 0.4 V GND MC5446L, MC5447L/MC7446L,P, MC7447L,P (continued) OPERATING CHARACTERISTICS These monolithic integrated circuits provide the logic necessary to decode a BCD input and drive a seven-segment numerical indicator. Input buffers give an input loading factor of 1 on all but the BI/R BO input. High-sink-current outputs, designed to withstand the relatively high voltages of incandescent seven·segment indicators, permit direct driving of the indicators. Both devices will draw a maximum reverse current of 250 microamperes at the maximum output voltage (30volts for the MC5446/7446 and 15 volts for the MC5447/7447). Pin 4 serves as both a blanking input and a ripple blank· ing output (BI/RBO). For displaying digits 0 thru 15 the blanking input must be held at a logic" 1" or open (see the truth table). For a decimal 0 output the ripple blanking input (RBI) must also be at a logic "1" or open. When a logic "0" is applied to BI, outputs a thru g go to a logic "1" regardless of the state of any other input. With RBI at a logic "0" and A = B = C = D also at a logic "0", outputs a thru g go to a logic "1" and RBO goes to a logic "0". When a logic "0" is applied to lamp-test and BI/RBO is open or held at a logic "1", outputs a thru g go to a logic "0". INPUT/OUTPUT VOLTAGE WAVEFORMS LT BI ~ ~ x-------x 'A 0 B x-------x c x-------x 01 Ix-------x I LT RBI rRSQ Response BI/RBO .- '--___________ x- - - ---------------.l.!r b d x----x "" Input may be high or low. . ----X Forced 81 ~ II This 6-digit display provides blanking of non-significant zeros in the two most-significant and two least-significant decades. This causes the number 6.3 to be displayed instead 006.300. Blanking is achieved by grounding input RBI of the most-significant and least-significant decades and connecting the BI/R BO terminal of these two decades to input TYPICAL APPLICATION RBI of the adjacent decades. The RBI inputs of the decades on either side of the fixed decimal point are inhibited by connecting them to a 5.0-volt source, causing zeros to be retained in these positions. Lamp intensity control is achieved by modulating input BI with a multivibrator. :s: (") (J1 .j::o. .j::o. 0) r :s: (") CJ1 .j::o. .j::o. -...J r :s: (") -...J To Display Indicators 't Most-Significant Decade '(d;cator ~ 5' r V ~·-t~ DeCimal POint IndIcator 5' r V ~- T =c Least-Significant .j::o. .j::o. 0') r .""C :s: (") -...J .j::o. .j::o. -...J r ""C nO ::I :~~-1--J---::~~-L~--~------~~,t'==~-----L--II----~~~=J===------BCD Input BCD Input Lamp 0 Test ,- -.- - - BCD Input - ----- I BCD Input --, I I MC540517405 __ J Voltage-Controlled ::~~~~i~;:~o;4 rl___...._._______-J~-_____~l__ _ __J~_ _ _ _ _ _~L------__.J !:!'. ::I I:: CD 0.. MC5400/7400 series BCD-TO-SEVEN SEGMENT DECODER/DRIVER MCS448L • MC7448L,P* This device decodes 4-bit binary coded decimal input data in a format suitable for use with incandescent, seven-segment, display indicators. It is intended for use with other logic elements or discrete components rather than for the direct driving of display indicators as is the case with the MC5446/7446 and MC5447/7447 which are similar. A 7 Ripple blanking inputs provide capability for suppression of non-significant zeros in a system. The blanking input may be used to control lamp intensity. 13 a • B 1 12 b C 2 SEGMENT IDENTIFICATION D6 Blanking Input or 4 Ripple Blank ing NUMERICAL DESIGNATION - SEGMENTS ILLUMINATED 10 d 0-1'-----1 Output Lamp-Test 3 Input Ripple 5 Blanking Input 8 14 9 9 10 11 12 13 14 15 Input Loading Factor: BI/RBO ~ 2.6 Other Inputs = 1 Vee = Pin 16 GND =' Pin 8 Output Loading Factor: BI/RBO ~ 5 a thru g = 4 Total Power Dissipation '" 265 mW typ/pkg TRUTH TABLE DIGIT OR FUNCTION 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BI RBI LT x- I INPUT LT Pin 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 OUTPUT RBI Pin 5 D Pin 6 C Pin 2 B Pin 1 A Pin 7 BI/RBO Pin 4 a Pin 13 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X 0 X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 X X X X X X X X X X X X X X X X X 1 0 0 0 X X X 0 0 X X Don t care *L suffix:= 16-pin dual in-line ceramic package (Case 620). P suffix = 16-pin dual in-line plastic package (Case 612). b c d e Pin 12 Pin 11 Pin 10 Pin 9 f Pin 15 Pin 14 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 9 • ELECTRICAL CHARACTERISTICS s: n (11 Test procedures are shown for only one data input and the blanking input, and for one driver output and the ripple blanking t CO r output. Test other inputs and outputs in the same manner according to the truth table. Test all input-output combinations according to the truth table. s: t 13 A b B CO 12 r'"C 11 C ~D d 10 n o 9 LT .... ::J 15 RBI 41 n ...... ::J C ~ 14 BI/RBO TEST CURR ENT /VOLT AG E VA LU ES (All T emperaturesl rnA I MC5448 MC7448 Pin Under Characteristic Symbol 1 Test MC5448 Test limits I M. . 'F -1.6 Leakage Current 'R1 40 'R2 1.0 Output Output Voltage VOL -4_2 g' Max Un;' - -1.6 - -4.2 mAdc mAdc Min 4" VOH Load Current I Load Short-Circuit ISC g' 4"" 2.4 2.4 g" -1.3 I I mAde mAd, J1.Ade mAd, - - 0.0 Vd, Vd, - - Vd, Vd, 2.4 2.4 - mAd, -1.3 0.4 6.4 I IOL2 8.0 8.0 I I Volts IOH1 -<)4 -0.4 IOH2 Iv< I v~ I .. ~ I n .... 40 n .. .., " M VIHX I 2.4 2.4 '" '" TEST CURRENT!VOLTAGE APPLIED TO PINS LISTED BELOW: o to +70 oC Unit Input Forward Current 6.4 I MC7448 Test Limits 55 to +125OC Min 10L 1 l lOll I 1 IOL2 I 1 1 IOH1 I IOH2 I V,L I V,H I V,HH I VLoad Vth 1 MAde mAd, 0.4 0.4 Vd, Vd, 3,4,5,7 - Vd, Vd, 3 3.5 -4_0 mAd, - -4_0 76 mAde - gO mAde VthO I VCC I VCCL I VCCH VIHX Gnd 16 16 1.0 mAde mAd, I 1 3 1,2,6 1,2,5,6,7 3.5 3,8 16 3.8 16 16 1,2,5,6,7 1,2,6,7 1,2,5,6,7 I 16 16 16 - 1,2,6,7 I 16 4,8 16 Current Power Requirements (Total Device) Power Supply Drain IpO 16 Turn-On Delay tpd_1 7,9 100# n, Turn-Off Delay 7,9 100# Turn-On Delay tpd+1 tpd.,...2 Turn-Off Delay tpd+2 n' n, n, 4,5,13 4,5,13 ---Test procedure for outputs a thru g_ ......Test procedure for BI/RBO only_ #Tested only at 250 C_ 100# 1ilO# t--- - Pulse In I 100# t 100# I n, n, t I 4.5 4,5 I 16 Pulse Out 100# 100# - 1,2,3,4,5,6,7 I Switching Parameters 16 1,2,3,4,5 16 3.0,5 I I 6,8 1,2,6,8 ---- f3 16 1,2,6,7,8 13 16 1,2,6,7,8 MC5448L, MC7448L,P (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVE'FORMS 5.0 V 2.4 V 7 13 A B 2 6 3 PRF 1.0 MHz PW-1QOns ~ 5 50 4 t+=t-~24ns b 12 11 C o d LT e 10 MM06150 or Equiv , 9 15 RBI MM07000 BI/RBO 14 or Equiv R L ~ 1.0 kn for MC5448. 667 n for MC7448. CT = 16 pF = total parasitic capacitance. which includes probe and wiring capacitances. ·Tha coax delavs from Input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The . 950-onm resistor and the scope termination impedance constitute a 20: 1 attanuat~r probe. Coax .hall be CT:070-50 or equivalent. A INPUT TO OUTPUTS 3.0V TPin A OV 'pd-l 2.4V TP out 0.4 V GNO t p d:+2 2.4V "[Pout 'O.4V GNO RBI INPUT TO OUTPUTS TPln A.B,C,O \1.5 3.0V V Oli 3.0V TPin RBI 1.5 V O'V 2.4V TP out 1.5 V 0.4 V GNO • MC5448L, MC7448L,P (continued) OPERATING CHARACTERISTICS • ing output (BI/RBO). For displaying digits 0 thru 15 the blanking input must be held at a logic "1" or open (see the truth table). For a decimal 0 output the ripple blanking input (RBI) must also be at a logic "1" or open. When a logic "0" is applied to BI, outputs a thru g go to a logic "0" regardless of the state of any other input. With RBI at a logic "0" and A ; B ; C; D also at a logic "0", outputs a thru g and RBO go to a logic "0". When a logic "0" is applied to lamp-test and BI/RBO is open or held at a logic "1", outputs a thru g go to a logic "1". This monolithic inte!rated circuit provides the logic necessary to decode a BCD input and drive a seven-segment numerical indicator. It is intended for use primarily as a driver for discrete, active components or logic elements. If direct driving of display indicators is desired, the MC5446n446 (30 volts maximum output voltage) or the MC5447n447 (15 volts) should be used, since they are designed to handle the relatively high voltages and sink currents (20 mAl of incandescent indicators. Pin 4 serves as both a blanking input and a ripple blank- INPUT/OUTPUT VOLTAGE WAVEFORMS LT ,...A-, BI ,....-....., x-------x A 0 2 4 6 B X-------X c X-------X 01 IX-------X I LT rRBO Response BIIRBO I '--___-'-_________ x- - - - - RBI --------------'--,l.!.r b d x----x = Input m~y be high or low. --X Forced 81 c:::::=- MC5448L, MC7448L,P (continued) APPLICATIONS INFORMATION The MC5448/7448 is useful in applications requiring higher output currents and/or voltages than is available with the MC5446/7446. The decoder/driver may be used to drive buffer transistors selected for the required output characteristics. A suitable interface circuit is shown in Figure 1, where each decoder/driver output drives two lamp segments. If the buffer load current is known, then base current is obtained from IB "" I L/hFE. From this and the approxi· mate MC5448/7448 output characteristics, suitable values of RB can be determined. For a given load current, ILoad, (21B in this example) the output voltage, Vo , is given by Vo = 2.5 - 0.139 I Load = 2.22 volts. (See the load line of Figure 2, with I Load = 2.0 mA.) RB is then found from: RB = Vo - VBE IB 2.22 - 0.75 "" 1.5 kr2 10.3 Operation of the blanking controls is identical to that of the MC5446/7446 and is illustrated in a typical appli· cation on the MC5446/7446 data sheet. FIGURE 1 - TYPICAL INTERFACE CIRCUIT 7-Segment Indicator 7 -Segment I nd ieater F rom Other Buffers ~ From Other Buffers IL IL = 25 rnA = 25 rnA 2N4264 hFE(min) "" 25 I Load I FIGURE 2 - APPROXIMATE OUTPUT CHARACTERISTICS u; To Other Buffer Pairs 4.0r---r--'--~---r--'---'-~'---r--'---. l.J 0 > 3.0 w ~ « l- .J RBI MC5448/7448 BI/RBO 0 2.0 > l:J "- l:J 1.0 0 BCD Input " > 0 0 4.0 8.0 12 lL.oad, LOAD CURRENT (rnA) 16 20 • MC5400/7400 series BCD-TO-SEVEN SEGMENT DECODER/DRIVER MC5449F· MC7449F* This device decodes 4-bit binary coded decimal input data in a format suitable for use with incandescent, seven-segment, di$. plav indicators. It is intended for use with other logic elements or discrete components rather than for the direct driving of display indicators as is the case with the MC5446/7446, which is A 5 similar. Lamp intensity can be controlled by applying a variable duty cycle signal to the blanking input. 11 a '8 1 • 10 b C 2 SEGMENT IDENTIFICATION 04 3 Blanking 9 c B d 6 • NUMERICAL DESIGNATION - SEGMENTS ILLUMINATED Input 13 f 8 9 10 12 11 13 14 15 12 9 I nput Loading Factor: 81 - 2.6 Other Inputs = 1 Vee == Pin 14 GND= Pin 7 Output Loading Fac:~or: a thru 9 = 6 Total Power Dissipation = 165 mW typ/pkg TRUTH TABLE DIGIT OR FUNCTION 0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 1;11 xIII Don INPUT D Pin 4 C Pin2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 x t 0 1 1 1 1 0 0 0 0 1 1 1 1 X B Pin 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X care F suffix = T0-86 ceramic flat package (Case 607). BI A Pin 5 "Pin 3 a Pin11 b Pin 10 c Ping 0 1 0' 1 0 1 0 1 0 1 0 1 0 1 0 1 X' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 OUTPUT d Pin 8 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 D, e Pin 6 f Pin 13 g Pin 12 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 l 0 1 0 1 0 0 0 1 0 0 P 1 1 1 1 1 1 1 0 0 s: ELECTRICAL CHARACTERISTICS n 0'1 Test procedures are shown for only one ~ data input and the. blanking input, and for one drrver output and the ripple blanking output. Test'a-theT ,inputs and outputs in 11 the same manner according to the truth 10 b A table. Test all input-output combinations according to the truth table. ~ s(')" 9 B 2· C d 4' D 6 3 13 BI ..... t 8 cg 'TI (") o 12 :J ~. :J C ~ TEST CURRENT/vOL TAGE VALUES (All Temperatures) Volts mA MC5449 Test Limits Pin 10 0.4 2.4 5.5 2.0 0.8 5.0 4.75 5.25 2.4 TEST CURRENT/vOLTAGE APPLIED TO PINS LISTED BELOW: VIL VIH - 1 - - - mAde - 0.4 Vde 9 56 mAde 1.0 Vde - mAde - mAde 9 - 0.4 14 - 47 IpD 2.4 MC7449 itAdc 1.0 VOL Output Output Voltage VIHX 5.5 mAde - 1 VCCH 4.5 40 pAde IR2 VCCL 5.0 -1.6 mAde 40 1 VCC 0.8 - -1.6 1 IHI Vth 0 2.0 - - IF Leakage Current Vth 1 5.5 IOL - Input Forward Current Min VIHH 2.4 Unit Unit Test VIH 0.4 Max Max Symbol VIL 10 MC7449 Test Limits o to +70 oC 55 to+1250C Under Characteristic IOl MC5449 Min VIHH Vth 1 Vth 0 VCC VCCL VCCH VIHX Gnd 7 - - - - - 14 1 - - - - - 14 - - 1 - - - - 14 - - - - 1,2,3,4,5 - - 14 - - 7 - - - 1,2,3,4,5 - - - 14 - 7 7 7 Power Requirements (Total'Device) Power Supply-Drain Switching Parameters - Pulse In Pulse Out Turn-On Delay tpd-1 5,9 - 100# ns - 100# ns 5 9 - - - - 14 - - 1,2,3 4,7 Turn-Off Delay tpd,l-1 5,9 - 100# ns 100# ns 5 9 - - - - 14 - - 3 1,2,4,7 Turn-On Delay tpd_2 3,13 100# ns 100# ns 3 13 - - - - 14 - - - 1,2,4,5,7 tpd+2 3,13 - - 100# ns - 100# ns 3 13 - - - - 14 - - - 1,2,4,5,7 T urn-Off De lay #Tested only at 25°C. II MC5449F, MC7449F (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS 2.4 V • 5.0 V 11 A b 9 B 2 4 PRF = 1.0 MHz PW = 100 ns t+ = t- ~ 24 ns 50 3 C D BI RL 10 d 8 6 TP out 13 lCT 12 r------t±==-3.0 V RL = 1.0 kf2 for MC5449, 667 11 for MC7449. CT = 15 pF = total parasitic capacitance, which includes probe and wiring ''----0 V capacitances. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. 2.4 V TP out 0.4 V ---+--t--------------r~-------GND TP out INPUT/OUTPUT VOLTAGE WAVEFORMS OPERATING CHARACTERISTICS o 2 4 6 8 10 12 14 0 A~ This monolithic integrated circuit provides the logic necessary to decode a BCD input and drive a sevensegment numerical indicator. It is intended for use primarily as a driver for discrete, active components or logic elements. Open collector outputs provide the capability for wire DRing the outputs with other devices. If direct driving of display indicators is desired, the MC5446/7446 (30 volts maximum output voltage) or the MC5447/7447 (15 volts) should be used, since they are designed to handle the relatively high voltages and sink currents (20 mAl of incandescent indicators_ Ripple blanking and lamp test inputs are not available, due to the pin limitations of the 14-pin flat package. The blanking input can be used in conjunction with external gates to obtain suppression of non-significant zeros in a multiple digit display. Design of zero-suppression systems is discussed in Application Note AN-516. B~ c~ Dl L BI----------------------,L a~ b~ c~ d~ e~ f-'~ 9----1 U L MC5449F, MC7449F (continued) LOGIC "0" CONDITIONS TYPICAL APPLICATION This open-collector output device may be used to drive other logic circuits by adding an external pull-up resistor as shown. Maximum and minimum values for the external resistor, RL, must be determined for the particular circuit configuration. The maximum value will be determined by the requirements for sufficient current to external' loads when the decoder/driver output is high (logic "1"). The minimum value must be selected to ensure that the current through the resistor plus the current from external· loads will not cause the low output voltage (logic "0") of the decoder/driver to rise above the specified value. The allowable drop across the load resistor, R L, for the high state is the difference between Vee (5.0 volts), and the required output voltage, VOH (2.4 volts) for the MTTL gates. The current through the resistor is the sum of the load currents, N I R 1, where N is the nu mber of gates being driven and I Rl is the leakage current, 40 /lA for a typical MTTL gate. From this, the maximum value of ; RL is R (max) = Vee - VOH - 5.0 - 2.4 ""33 kQ L NIR12(40) 10-6 for two loads. Since the MC5449/7449 sink current, IOL, is 10 rnA, the minimum value of R L in this case is given by: Vee - VOL RL(min) = I NI . OL- F 5.0 - 0.4 [10 - 2(1.6)]10. 3 =680 Q I M C544917 449 --- 81 BCD Inputs LOGIC "1" CONDITIONS MTTL v CC o---'IIlIIr..... MC544917449 ~ BCD Inputs 81 MC5400/7400 series EXPANDABLE DUAL 2-WIDE 2-INPUT "AND-OR-INVERT" GATE MC5450 • MC7450 Add Suffix F for TO·86 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7450 only. This device consists of twoAND-OR-INVERT gates, one of which OR expandable_ Up to four MC5460/ 7460 expander gates may be ORed with the device at the expander points_ CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWNt • Vee rLAT] OIL 1.4 k 4k 4k 100 Pkg Pkg Pin Pin 13] 9 15] 10 B [12] [13] 13 [14] 1 Emitter [1] 11 e Z Collector [2] 12 o A B 0--+-+---+ 0--+-+---+-+ [6]2~ 3 . [7] 1 k [8] 4 [9] 5 6 [10] Positive Logic: Z = (A • 5) E + (C • 0) + (Expanders) Negative Logic: Gnd Z = (A = Pin 14 [4] Gnd=Pin 7 [11] + 5) • (C + 0) • (Expanders) Input Loading Factor = 1 Output Loading Fa~tor = 10 Vee Total Power Dissipation = 28 mW typ/pkg Propagation Delay Time = 13 ns typ tOther half of ~ircu'ft omits expander inputs. SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc ~--------3.0 V min 1.5 V o V max 950 ±.1.0% 2.4 V min r---------, I ·1.5 V _+--l-~=::::!-:!::.i==O.4 V max or Equiv MM07000 PRF = 1.0 MHz or Equiv Duty Cycle = 50% PW -0.5/L' Zout""50 no CT = 15 pF "" total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input ~o scope and output to scope must be matched. The scope must be terminated in 50·ohm impedance. The 950·ohm resistor and the scope termination im· pedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. rL.AT] DIL ELECTRICAL CHARACTERISTICS Pkg PH' Test procedures are shown for only one Pkg Pm ''''~ gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. (5] 10 B (13J 13 C (14] D 1 EmItter [1) 11 E COllector (2) '2 F Characteristic 1612~ 3 (7] 8 [12] [8] 4 [9] 5 6 ~ ! 10] U1 ~O TEST CURRENT JVOLTAGE VALUES (All Temperatures) Ohms Volts VR2 VIH V1HH VRI 1X4 R,x® V,xCD V" rnA 10L MC5450 MC7450 MC7450 Test Limits o to +70°C Min Max Unit MC5450 Test Limits 55 to +12n Min Max Unit n U'1 S V= Vee = Pin 14 [4J Gnd = Pin 7 [IIJ Pin Under Symbol Test S z 10" IXI Ix. IX2 n -.oJ ~ VthO Vth1 Vee VCCl VCCH 16 I -0.4 0.41 0.151 -0.151 0.3 138 0.' 10.4 2.4 5.5 4.5 5.0 I 2.0 0.8 5.0 4.50 16 1 -0.4 0.62 0.271-0.2710.43 130 0;4 10.4 2.4 5.5 1 4.5 5.0 1 2.0 0.8 5.0 4.75 I Pin 7[ 11] is 5.50 grounded for all tests in 5.25 addition to the pins listed below: TEST CURRENT /VOLTAGE APPLlED TO PINS LISTED BELOW, 10L 10H IXI 1X4 Ix. IX2 V,x(j) R,x® V1HH V," V" VR2 VRI VthO Vth1 Vee VCCl VCCH Gnd IF Leakage Current IR1 - D - IR2 Expander Input Current Base-Emitter Voltage I I , - 40 D I - I 1.0 I - -1. 6 mAde 40 /lAde 1.0 I mAde I mAde I I I -3.1# I mAde I I I I I I I I I I I I I I I [ [ I I - I 1. 0# I Vde I Z I I I I 0.4 I Vde I - I 0.4 I Vde I Z I I 0.4 I Vde I 0.4 I Vdc 2.4# Vde -55 mAde -18 -20 ISC t E mAde IpDH V I' mAde 14 mAde IpDL V 8.0 mAde 8.0 mAde 'pd+ *Oround inputs to gate not under test. ** Tested only at 25°C. D,Z 15** 15** E [ F A,B,C* V I A,B,C* I I I I I I I I I I I V I I A,B,C*,D I I I I I I I I V I I A,B,C*,D I I- I I I C,D I I I V I I A,B* I I I V A,B V A,B* V A,B,C*,D I C,D I D F I All Inputs D A,B,C*,D,Z V V I A,B,C*,D Pulse Out I - I - I I I C I- I D,Z t Only one output should be shorted at a time. I I - I V V Pulse In 'pd- E,F E,F - I D C -55 Switching Parameters Turn-Off Delay I Vde Vde I Z I 2.4# I I 1. 0# Vde I I I 2.4 I I ®I Vde I I E 2.4 I I V BE I I I I Z I- I I mAde , - D I -2.9#1 VOL V C - CDI Power Requirements (Total Device) Turn-On Delay D F V OH Power SupplyDrain /lAde D Z®I Short-Circuit Current mAde lEX Output Output Voltage -1. 6 #Tested only at low temperature limit. CD See Figure 1. ® See Figure 2. @ See Figure 3 . n0 :::J !:t. :::J c:: CD a.. Input Forward Current U'1 0 • V I A,B* V I A,B* MC5450, MC7450 (continued) FIGURE 2 - VBE TEST CIRCUIT FIGURE 1 - lEX TEST CIRCUIT l FLAT] OIL Pkg [ Pkg Pin FLAT] OIL Pin r------, Pkg Pin Pkg Pin (14J 1 I I (13J 131 I (14J r - - - - --.., 1 I 1~12J (13J I 1[12J '8 (3J,,-=--C..r-' • [3J [5J 0I0....=.---I"-' [5J -=- Vex FIGURE 3 - VOL TEST CIRCUIT r---[141...:....:..r-, [13J [ 3J [5J 'O"::'--'-1-...... MC5400/7400 series DUAL 2-WIDE 2-INPUT "AND-OR-INVERT" GATE MC5451 • MC7451 Add Suffix F for TO"86 ceramic package (Case 607). Suffix L for TO-1l6 ceramic package (Case 632). Suffix P for TO-t16 plastic package (Case 605) MC7451 only. CIRCUIT SCHEMATIC 1/2 OF CIRCUIT SHOWN OiL rLAT] Pkg Pkg Prn Pin Vee '~ [3] [5] 10' f13] 13 4k 4k L4 k [14] 100 [6] [8] , , Z 8[12] 0 1 17] e : '~ : ',' ,,_,6 [10] (9] Z o A B <>--+-+--..... <>--+-+----'-+-+ + (C • DJ + ,8) • (C + D) Posi,tive Log-ie: Z = (A ~ B) :Negative Logic: Z =JA ,Input Loa<;ting Factor = 1 Gnd Output Loading f!:actor = 10 Total Power Dissipation = 28 mW typ/pkg Prop?gation Delay Time Vee ~ Pin 14(4] Gnd ~ Pin J (11] = 13 ns'typ SWITCHING TIME TEST CiR,CUIT ANDWAVEFORMS r - - ,,--,,--.,. 950 ±Lo% I ,PRF = LO MHz Duty Cycle = 50% 'PW ~ 0,5", Zoul~50 Ground inputs to gate not u~~~r·te$t.> -n CT = ., 5:pF, = 'total parasitic capacitance, which ,nclud_s probe. wiring, ~nd load capacitances. The coax delays from input to scope and output to scoRe must be matched. The scope must be terminated" in 50·ohm impedance. The' 950"Ohm resistor and the scope termfnation impedance constitute a 20; 1 attenuator probe. Coax shall be CT -070-50 -or'eQuivalent. ELECTRICAL CHARACTERISTICS • rLAT] OIL Test procedures are shown for only one Pkg Pkg Pin Pin gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re- "'"~ [5[ 10 [13] 13 maining inputs. [14] 1 3: n (11 : Z [6[ [7[ 8 [12] [8] 0 [9] ~ ~~"" -' s: n ~ (J1 -' lot IOH VIL 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.50 5.50 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 5.0 4.75 5.25 Characteristic Input Symbol Forward Current IF Leakage Current rnA Pin MC5451 Test limits Under -55 to + 125°C Test Min Max Unit MC5451 MC7451 MCl 451 Test limits o to +70°C Min Max Unit 0- TEST CURRENT !VOLTAGE VALUES (All Temperatures) Volts VIH VIHH V.2 V,hO Vce V., V'hl v = Vee = Pin 14 [4] Gnd = Pin 7 [11] o :J ~, Vert IOH V'L VIH VIHH V., - D - - C - - D - - D - -1. 6 mAde - -1. 6 mAde lRI D - 40 /lAde - 40 fJ.Ade IR2 D - 1.0 mAde - 1.0 mAde - VOL Z - 0.4 Vdc - 0.4 Vdc Z - V OH Z 2.4 - Vdc 2.4 Vdc - Z ISC t Z -20 -55 mAde -18 -55 mAde - IpDH V 14 mAde - 14 mAde IpDL V - D V.2 ~ Pin 7[11] is grounded for all tests in addition to the pins listed below: TEST CURRENT jVOlTAGE APPLIED TO PINS LISTED BELOW: IOL :J C VCeH Vth1 V'hO Vce Vert VCCH Gnd - - - - V * - - - - - - C,D - V A,B,C* - - V A,B,C* - - V - A,B* D - V - A,B* Output Output Voltage Shor" -Circuit Current - - - C - - - - V A,B,C*,D,Z Power Requirements (Total Device) Power Supply Drain - 8,0 mAde - 8,0 mAde Switching Parameters Turn-On Delay Turn -Off D el'ay - - Pulse In Pulse Out - - All Inputs - - - - - - V - - V A,B,C*,D t pd _ D,Z - 15** ns - 15** ns D Z - C - - - - - V - - A,B* tpd+ D,Z - 22** ns - 22** ns D Z - C - - - - - V - - A,B* .Ground inputs to gates not under test. **Tested only at 25" C. t Only one output should be shorted at a time. MC540017400 series EXPANDABLE 4-WIDE 2-INPUT "AND-OR-INVERT" GATE MC5453 • MC7453 Add Suffix F for TO·86 ceramic package (Case 607). Suffix L for TO-116 ceramic pacl and t""!J scope termination impedance con'stitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. > r FL.AT] DIL Pkg Pkg Pin Gnd = Pin 7 f 11 J A Collector 1~~0_~12[2] [6] 2 e 32_\ 11 3 0 Emitter [8] CJ1 .j::o 43=imittec -..s ~ TEST VOLTAGE VALUES (All Temperatures) MC5460 MC7460 IF B - -1. 6 Leakage Current 1m B - IR2 B Volts Ohms REX 1 Forward Current (") o [13] :ollector Symbol n .j::o --\9 Characteristic Input s: pander being tested. To complete testing, sequence through remaining inputs. [I] . - - " 10 [14] Pin MCS460 Test Limits -SS to +12ST Under Test Min Max Unit (j) ~O are shown for only one input of the ex- [5] [7] V" Vee" Pin 14 [4] s:(") expander. The other expander is tested in the same manner. Further, test procedures Pin [31 13 ELECTRICAL CHARACTERISTICS Test procedures are shown for only one REX 2 Vil V,H V1HH V.2 Vfh 1 =. :::l VlhO VOl V02 V03 Vee Ven VeeH :::l pin 7[ 11] is grounded for all tests in addition to the pins listed below: 1.2 k* 1. 1 kl 0.4 2.4 5.5 4.5 5.0 2.0 0.8 4.5 1.0 0.85 5.0 4.50 5.50 1.2 k* 1. 1 kl 0.4 2.4 5.5 4.5 5.0 2.0 0.8 4.5 1.0 5.0 4.75 5.25 VlhO VOl V02 V03 Vee VCCL VeeH Gnd MC7460 Test Limits o to +70°C Min V. , 0.85 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, REX REX 2 Vil V'H V,HH V. , Max Unit mAde -1. 6 mAde 40 IlAde 40 vAde - 1.0 mAde 1.0 mAde - - B - - 0.4 Vdc 0.4 Vdc ZO - - - 150§ IlAde 270§ IJ.Ade ZI - - A,C,D mAde - - - I - B - - B - V.2 V,h I - A,C,D - - V - - - - V A,C,D - - - - V A,C,D - ZI - - V - - ZO - - ZI - - - - - - - - - A,B,C,D - c: CD a. Output Output Voltage VOLt ZO,ZI Leakaf:',€ Current I CEX ZO Drive Current IDR ZI -0.3§ IpDL V - 4.0 mAdc - 4.0 mAdc IpDH V - 2.5 mAde - 2.5 mAde - mAde -0.43§ - - - A,B,C,D B - V - V - - V All Inputs - V - Power Requirements (T otal Device) Power Supply Drain Switching Parameters Turn-On Delay Turn-Off Delay t pd _ tpd+ *Resistor to ground. tResistor to VCCL· #Sce test circuit. - All Inputs - - - - ZO A,C,D - - - - - - - - V A,C,D - - - - - V - - - - ZI Pulse In # 20** ns - 20** ns B # 34** ns - 34** ns B --- - - - ' ~ --~ tVOL measured between pins 11 and 12. §Tested only at low temperature limit; i. e., at _55°C for MC5460, at O°C for MC7460. **Tested only at 25" C; times include delay of expandable gate. - - - - - • ~------~.--~~-~~~ MC5400/7400 series "\ \.._-------' J-K FLIP-FLOP MC5470L'I' MC7470L,P'I' This J-K flip-flop triggers on the positive edge of the clock pulse_ The multiple-input gating configuration helps minimize package count in J-K flip-flop applications requiring AND gating at the inputs. This device requires relatively fast clock rise and fall times ( :s: 150 ns) but is more suitable for use in high-speed SET 13 Jl 3 J2 4 ° J* 5 CLOCK 12 K* 9 Kl 10 • 8 hold times_ The inputs are inhibited when the clock is high; data is entered into the input steering section when the clock goes low. The input steering section 5. 6 2 tn oil continually reflects the input states when the clock is low. The flip-flop can be set or reset directly by applying a logic "0" to SET or RESEi'. respectively. while clock is at logical zero level K2 11 RESET systems since information may be applied to, or changed at the steering inputs any time in a clock cycle except during the interval of time between the setup and J K 0 0 1 1 0 1 0 1 tn+1 Q On 0 1 Output Loading Factor"" 10 J = Total Power Dissipation = 65 mW typ/pkg J1 • J2 • ji = 30 ns typ = 35 MHz typ Pl'"opagation Delay Time K=K1. Kl.~ Operating Frequency an L suffix = TO-116 ceramic package (Case 632) P suffix = TO-116 plastic package (Case 605) See General Information section for package outline dimensions." 7 4k SET 13 9 K* 10 Kl K2 11 CLOCK 12 4k 4k 4k 4k 4k ~~'---K~~ ~~;r ~ ~ .~~ ~ 0.8 k ~ REsET 2 5 J* 3 Jl J2 4 MC5470L, MC7470L,P (continued) OPERATING CHARACTERISTICS logic "1"; a low input to RESET sets Q to Data present during the time interval between the Setup and Hold times is transferred to the bistable section on the positive edge of the clock pulse. Steering data should be present 20 ns prior to rise of the clock and remain 5.0 ns after the clock signal rises. The direct SET and RESET inputs should be applied only when clock is low. A low input to SET sets Q to a a logic "1". Unused inputs: If J* and K* are not used they should be grounded. Unused SET and RESET inputs should be tied to a voltage between 2.4 and 5.5 Vdc. Unused J or K inputs should be tied to the used J or K inputs, respectively, or to a voltage between 2.4 and 5.5 Vdc. SWITCHING TIME TEST CIRCUIT 2.4 V Vee O.B V +5.0 V .. 'to A load is connected to each output during the test. r - - - - - - - - --, 400 II I TP out MMD6150 or Equiv. MMD7000 or Equiv. Two pulse generators are required and must be slaved together for testing Only one pulse generator is required for~. K, and CLOCK tests. ffi and RE"SEf. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 9S0-ohm resistor and the scope termination impedance constitute a 20:1 attenuatar probe. Coax shall be CT-070-50 or equivalent. CT := 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. TEST PROCEDURES (Letters shown in test columns refer to waveforms,) SYMBOL TEST Toggle Frequency INPUT C J tTog E 2.4 V tpd_ . Q Q 2.4 V t J* K* R S 2.4 V Gnd Gnd 2.4 V K LIMITS Min Max Unit t 20 - MHz O.BV 5.0 V 5.0 V Gnd Gnd A B - 50 ns O.B V 5.0V 5.0 V Gnd Gnd A B e e D tpd+* D - 50 ns Turn-On Delay from Clock tpd_ E 2.4 V 2.4V Gnd Gnd 5.0V 5.0 V H,I H.I 10 50 ns Turn~Off tpd+ E 2.4V 2.4 V Gnd Gnd 5.0V 5.0 V H.I H.I 10 50 ns Minimum Input Setup Time at J* tsetup E 2.4V 2.4 V F Gnd 5.0V 5.0 V H,I H.I - 20 ns Minimum Input Hold Time at J1, J2 tHold E G 2.4 V Gnd Gnd 5.0 V 5.0 V H,I H,I - 5 ns Turn~On Delay from SET or RESET Turn-Off Delay from SET or RESET Delay from Clock .... tOutput shall toggle with each Input pulse ·SET or R'E'SE'T function can occur only when .clock input is low. Other gates are inhibited. * *, dentical teSt to be performed on K 'nput. * • MC5470L, MC7470L,P (continued) VOLTAGE WAVEFORMS AND DEFINITIONS 3.0 V TPin A • FfESE'f PRF = 1.0 MHz OV 25 nsmin 3.0 V TPin B SE'f PRF "" 1.0 MHz OV tpd_ 2.4 V C TP out 1.5 V Q GND D TP out Q GND E 0.4 V J 1.5 V "{ 2.4 V 0.4 V TPin CLOCK PRF = 1.0 MHztt ov -------"""':4-----+----------3.o v TPin J* ~~---+_-----------ov --------------4---"""',+-~----3.0V G T?in J,K 1'"-'-=---0 v 6.0 ns ---------------+--"""'.--------~2.4 V H TP out Qor Q GND---------------+---~~'====== ';;0.4 V t TP out Oor a. Pd +) ·~----~2.4 V 1.5 V GND==================:::'''======== ';;0.4 v ttPRF varies when,testing fTog" s: ELECTRICAL CHARACTERISTICS n Test procedures are shown for only one J and one K input. plus the SET. RESET. and CLOCK inputs. To complete testing. sequence through remaining J and K in- U1 ~ ...... o r- puts in the same manner. ~ s: n ...... SET :!:j o r- 13----------------~ ~~=~ J* 5 "'- <', .. ... no=,,~ K1 10 K2 11 RESEi' . a : IOL 2 . Pin . MC5470 Te~t Limits Test IF 1~ Min IOH VIL VIH ~ VIHH VR Vt hl VthO !:!" ~ VCCL c: VCCH MC5470 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 4.5 5.5 MC7470 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 4.75 5.25 MC7470 Test Limits -55 to + 125°(: Under Symbol 0o TEST CURRENTIVOLTAGE VALUES (All Temp... ture,) Volts mA 6 . Characteristic " 8 ' ~ TEST CURRENT/VOLTAGE APPLIED TO PINS LISTeD BELOW: 0° to +70°C Max Unit Min =~:~ mAjdC :: - Max Unit tOl IOH Vil VIH VIHH =~:~ mAtdC :: - :: - 130 13 2 12 12 :: - :: - VR V t hl VthO VCCL VCCH Gnd :: - :: - :: - lt4 5'j7'9 Input ForwardCurrent" ~ sot 13 ·2 12 12 ·Reset Clock Leakage Current** J I A1 - ~Adc - 3.4,10,11 3.4.10,11 2',3,4,10,11 3.4.10,11,13' ...,... 40 - 40 - - - 3 - 5 - - - 14 2,4,7 40 80 80 40 ~ - 40 80 80 ·40 ~ - - - 10 13 2 12 - 9 9 5 - - - - ~ 7.11,13 7,10,11 7,10,11 3.4,7 ,30 '3 2 12 :: 't·O mAtdC :: I ·O mAtdc :: :: :: :: :: :: l4 t - - - :: ,30 13 2 -'2 ~ - 9 5 - - - - t 7:'0:11 7,10,11 7 VOL 6 8 - - 0.4 0.4 6 8 - - - - - 2 13 13 2 14 14 - 7,12 7.12 VdH 6 8 2.4 2.4 - Vdc Vde 2.4 2.4 - Vdc Vde - 6 8 - - - - 13 2 2 13 14 14 - 7,12 7,12 ISC 6 -20 -57 mAde -18 -57 mAde ~ ~ 13 - - - - - - 14 5,7,9,12 8 -20 -57 mAde -18 -57 mAde - - 2 - - - - - - '4 5,:1,9,12 14 - 26 mAde - 26 mAde - - - - - - - - - 14 2,7,12 14 - 26 mAdc - 26 mAde - - - - - - - - - 14 7,12,13 IR2 sot Reset Clock Power Requirements Power Supply Drain I t ;~~i~~i~~ - Reset Clock Short-Circuit Current ~Adc -3.2 3 ~ Output Output Voltage -3.2 -3.2 -1.6 -1.6 10 13 2 12 !S.- ~ :: - IpO 0.4 0.4 Vdc Vdc Vdc Vdc *Momentarily ground pin prior to taking measurement. "'*When testing J* or K* other inputs are left open. • I /ii'~3. i '\ MC5400/7400 series '-------------' J-K FLIP-FLOP MC5472 • MC7472 Add Suffix F for TO-S6 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7472 only. rLAT] OIL • Pkg Pkg Pin Pin This negative-edge-clocked J-K flip-flop operates on the master-slave principle. Three K inputs are ANDed together, and three J inputs are ANDed together. SET and RESET inputs are also availab[e. The device helps minimize package count in J-K flip-flop applications requiring AND gating into the J or K inputs. Vee - Pin 14 [4] Gnd-Pin 7 [II] [3] 13 [7] 3 [8] 4 [9] 5 8 [12J [2] 12 [14] 9 6 [10] [I] 10 LOGIC DIAGRAM [13] 11 [5] 2 Q Q J - Jl • J2 • J3 K = K1 • K2 • K3 Input Loading Factor: J, K-l In In+l J K Q 0 0 1 1 0 1 0 1 a" Clock, Set, 'R'8s8t= 2 0 1 an so-t-.==-.... ,--=::'--+-0 R Jl Kl K2 K3 J2 J3 Output Loading Factor = 10 Total Power Dissipation = 40 mW typ/pkg Propagation Delay Time"" 30 ns typ Operating Frequency = 20 MHz typ CIRCUIT SCHEMATIC r-----~----~~--------_.------~r---~~----------~Vee Q Set 5. 'R"8s8t Kl Jl K2 1<3 J2 J3 s: ELECTRICAL CHARACTERISTICS ("') 0'1 Test procedures are shown for only one J f';-k~T] LPin -'.... =" and one K input. plus the Set, Reset, and Clock inputs. To complete testing, seOIL v Pkg ~ Pin ,N quence through remaining J and K inputs in the same manner. Vee ~ Pin 14 [4] Gnd "" Pin 7 (11 J s: ("') .... [3] 13 ____________- , [7] 3 [8] 4 [9] 5 [2] 12 [14] ....N-'=" 8 [12] t n-O Cj .... :J 9 [1]10~6[10] [13] 11 [5] mA 2 Characteristic TEST CURRENT (VOLTAGE VALUES (All Temperatures) Volts VR V,hl V'hO VCC VCCL VCCH VIL VIH VIHH 10L 10H MC5472 16 MC7472 16 Pin MC5472 Test limits MC7472 Test limits o to +70'C 55 to +125'C Under Symbol Test Min Max Unit Min Max Unit 10L -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 4.50 5.50 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 4.75 5.25 10H VIL VIH VIHH - - - Jl Kl S R C C - - - - Jl Kl S R C TEST CURRENT (VOlTAGE APPLIED TO PINS LISTED BElOW: VR V,hl V'hO J K IF set Reset Clock Leakage Current J K IRI Set Reset CloCk .J K IR2 set Reset Clock Output Output Voltage Short-Circuit Current VOL Jl Kl S R C C Jl Kl S R C** Jl Kl S R C -1. 6 -1. 6 -3.2 ~ 40 40 80 - mAde I -1. 6 -1. 6 -3.2 - /-lAde - + 1 1.0 mAde - 1 1 - ~ 40 40 80 + 1.0 - mAde I /lAde 1 - - 1 1 - - - - - Q Q - - 0.4 0.4 Vdc Vdc Q - 2.4 2.4 - Vdc Vdc 2.4 2.4 - Vdc Vdc - Q Q -20 -20 -57 -57 mAde mAde -18 -18 -57 -57 mAde mAde - V V - 12 12 mAde mAde - - 12 12 mAde mAde - V OH Q Q ISC t IpD - - - - - - Vdc Vdc Q - mAde 0.4 0.4 Q Power Requirements Power Supply Drain - C.J2.J3.R* C,K2,K3,S* C,J1,J2.J3,Kl ,K2.K3 C ,Jl,J2,J3,Kl,K2.K3 J1 ,J2 ,J3 ,Kl ,K2 ,K3,R* J1 ,J2 ,J3 ,Kl ,K2 ,K3 ,S* - - Q - - - - - - - - - - - - - - ~ Pin 7[11 J is grounded for all tests in addilion to the pins listed below: Gnd - - - - - - - - - - c: Vcc VCCL VCCH Input Forward Current :J - - V I V C,J2,J3,R C.K2,K3.S C.Jl,J2,J3 C.Kl,K2,K3 C,Jl,J2.J3,Kl,K2,K3,R - 1 - V - - 1 - V V - - V V - - - - - - - - J1 Kl S R C - - - R S S R - - - - S R R S - - - Jl,J2,J3,Kl,K2,K3 JI,J2,J3,Kl,K2,K3 - - - - - V V C,Q,R C,Q,S - - - - - - - - ~I - - R S - - *Momentarily ground pin prior to taking measurement. tOnly one output should be shorted at a time. **Under normal operating conditions this current is negative. This test guarantees that positive leakage current will not exceed the limit shown . • - - C.J2,J3,R C.K2,K3,S C,Jl,J2,J3 C,Kl,K2,K3 C ,Jl,J2,J3,Kl,K2.K3,S MC5472, MC7472 (continued) TEST PROCEDURES (Numbers shown in test columns refer to waveforms.) TEST SYMBOL Toggle Frequency INPUT Q 1! J, K R 5 fTog 1 1 2.4 V 2.4 V Turn-On Delay tpd- 2 2 2.4 V 2.4 V Turn-Off Delay tpd+ ttssd+d- 2 2 2.4 V 2.4 V 2.4 V 2.4 V 5 - 6 2.4 V 2.4 V 5 6 Enable Voltage VEN 2 2.0 V 2.4 V Inhibit Voltage VINH 2 0.8 V 2.4 V Turn-On Delay Turn-Off Delay a LIMITS Min Max Unit t 15 - MHz 3 3 10 40 4 4 10 25 7 8 - 40 7 8 2.4 V t t t - 2.4 V :/: :/: :/: - t 25 tOutput shall toggle with each mput pulse. iOutput shall NOT toggle. VOLTAGE WAVEFORMS AND DEFINITIONS " . . - - -....- - - - - - - - - 3.0 V '-------0 V ---------t---,------2.4 3 TP out Gnd---------t--------- V min 0.4 V max ~---2.4Vmin 4 TP out Gnd ===================0.4 V max ,------------3.0 V 1.5 V '------"'--(----------------0 V 3.0 V '-------'--(----0 V , - - - - - - - - 2 . 4 V min 7 TP out __+___ Gnd Jsd + -------. -=========:j::~=========:O.4 _ 8 TP out .--t--------2.4 V max V min 1.5 V Gnd===~:.....---------------~=======O.4 V max nsns nsns - MC5472, MC7472 (continued) OPERATING CHARACTERISTICS Data must be applied to the J-K inputs while the clock is low. When the clock input goes to the positive logic "1" state, the data at the J and K inputs is transferred to the master section, where it is stored until the clock changes to the positive logic "0" state, Data at the J and K inputs must not b. changed while the clock is high. When the clock returns to the positive logic "0" state. information in the master· section is transferred to the slave section. Application of a logic "0" to the R.set input will force the Q output to the logic "1" state. The Reset input overrides the clock. Since no charge storage is involvedin this flip-flop. rise and fall times are not important·to its operation. Clock fall times as long as 1.0 I-IS will not adversely affect the operation of tha flip-flop. The clock pulse need only be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logic u1", is 20 ns minimum. Transistors QA have been added to the standard flip-flop circuit to protect the device against negative clock transients. This addition prevents both outputs from changing to the logic "'" state when transients in excess of -2.0 V appear at the clock. SWITCHING TIME TEST CIRCUIT Vee +5.0 Vdc 400 MMD6150 or Equiv. 50 t+=10ns t- ... 5 ns PA F = 15 M Hz for waveform 1 1.0 MHz for waveforms 2, 5, and 6 r Two -pulse generators are required and must b!=t sla\led together for testing Set and ReSet. Only one f),ulse generator is required for J, K, and Clock tests. -The coax delays from input to scop.., and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT -070-50 or equivalent. * • A load is connE!'cted to each output during the test. CT "" 1 5 pF :: total parasitic capacitance. which includes probe, wiring, and load capacitances. MMD7000 or Equiv. • ,---1 " DUALJ-K FLIP-FLOP MC5400/7400 series '--"------~ MC5473 • MC7473 Add Suffix F for TO~86 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 605) MC7473 only. 12 14=0=0. a 1 C 3 K 13 R 7yO9 5 This negative-edge-clocked dual J-K flip-flop operates on the masterslave principle. The device is quite useful for simple registers and counters where multiple J and K inputs are not required. C 1: KRa 8 LOGIC DIAGRAM (1/2 OF DEVICE SHOWN) 2 tn tn+1 J K Q 0 0 0 1 0 an o Q ...-==......+-0 R'eS8t 1 11 1 Input Loading Factor: J, K ~ 1 0 an Reset, Clock"" 2 K Output Loading Factor = 1 0 Total Power Dissipation::::; 80 mW typ/pkg Propagation Delay Time:::: 30 ns typ Operating Frequency = 15 MHz typ Pin numbers are the same in all packages. LOGIC DIAGRAM (112 OF DEVICE SHOWN) 00---+--.... .....---~a ~- L---------~----------~------~~--------~--------~t-----+_OGnd L--.------------------------~~-.----~Reset K s:: (") ELECTRICAL CHARACTERISTICS Test procedures are shown for only one flip-flop. The other flip-flop is tested in CTI .j::Io the same manner. 14=0=012 1 C 3 K (5 13 -..J ,CN 7=JJ09 5 C 10 K R 5 s:: (") -..J .j::Io 8 R mA Pin Under Symbol Test Characteristic Input Forward Current J K IF Reset Clock Leakage Current J K Reset K K R C IR1 J K R ct Clock J J IR2 J K Reset R C Clock MC5473 Test limits 55 to +125'C Min Max Unit MC5473 MC7473 MC7473 Test limits o to +70°C Min Max Unit - -1. 6 -1. 6 -3.2 -3.2 mAde - 40 40 80 80 !lAde ~ - 1.0 mAde - - ~ ~ ~ - -1. 6 -1. 6 -3.2 -3. 2 mAde - 40 40 80 80 ~LAdc - 1.0 mAde ~ ~ ~ IOL 10H 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 10L 10H VIL - - - J - - Short-Circuit Current VIHH V. - - R C - - C,R C,R C,J J,K,R - - J - - K - - - K - - - ~ - - - - - R - J - K R - - Pin 11 is grounded for all tests in addi- VCCL VeCH - - - - - - - - - - V Q ~ Q - V - Q - R R - - - VOH Q Q 2.4 2.4 - Vdc Vdc 2.4 2.4 - Vdc Vdc - - - Q Q - Q -20 -20 -57 -57 mAde mAde -18 -57 -57 mAde - - - - - - C,J,K mAde C,J,K - - 40 40 mAde mAde 40 40 mAde mAde - - - - - - - - - - - - - - - - - R R - Gnd - - C,R* C* C,J* J*,K,R C,R* C* C,J* J*,K,R ~ Q V V - Q V V - Q C,J*,K C,J*,K - V V - Q,Q* V V - Both R Inputs BothQ - - - R - - - - - - - - - - ** - - - - Vee - - - - listed below: V'hO - - - V'hl - R C Q Q - ..... tion to the pins ~ Vdc Vdc - 5.25 V 0.4 0.4 - 4.75 - - V V ::::l C - Vdc Vdc IpD 5.50 - 0.4 0.4 -18 4.50 - - Q ::::l - - Q ISC' VeCH - R C Q Power Requirements (Total Device) Power Supply Drain VIH VOL - to) n-O TEST CURRENT jVOlTAGE APPLIED TO PINS LISTED BElOW: Output Output Voltage TEST CURRENT jVOlTAGE VALUES (All Temperatures) Volts Vil V,h 1 V,hO Vee VeCL VIH VIHH V. -..J - R - C,J*,K C,J*,K R,Q* *Ground inputs to flip-flop not under test. **Momentarily ground pin prior to taking measurement to set flip-flop in the desired state. (If pin is also in another column, the pin must be returned to that voltage or current for measurement.) tOnly one output should be shorted at a time. tUnder normal operating conditions this current is negative. This test guarantees that positive leakage current will not exceed the limit shown . • ro a. MC5473, MC7473 (continued) OPERATING CHARACTERISTICS • Data must be applied to the J-K inputs while the clock is low. Since- no charge storage is involved in this flip-flop', rise and fall When the clock input goes to the positive logic "1" state, the data at the J and K inputs is transferred to the master section. where it is stored until the clock changes to the positive logic "0" state. Data at the J and K inputs must not be changed wh He the clock is high .. When the clock returns to the positive logic "0" state. information in the master section is transferred to the slave section. times are not important to its operation. Clock fall times as long as 1.0 I'S will not adversely affect the operation of the flip-flop. The clock pulse need only be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logic ",", is 20 ns minimum. Transistors QA have been added to the standard flip-flop circuit to protect the device against negative clock transients. This addition prevents both outputs from changing to the logic "'" state when transients in excess of -2.0 V appear at the clock. Application of a logic "0" to the Reset input will force the Q output to the logic "1" state. The Reset input overrides the clock. SWITCHING TIME TEST CIRCUIT Vee +5.0 Vdc Coax 400 Q o--+--qe MMD6150 or Equv. Q K R 50 MMD7000 or Equiv . t+=12nS} t- = 6.0 ns 10% to 90% Points • A load is connected to each output during the test. f = 15 MHz for waveform 1 1.0 MHz for waveforms 2 and 3 Two pulse generators are required and must be slaved together for tsd tests. CT = 15 pF = total parasitic capacitance, which inclu~es p~obe, wirinQ, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. MC5473, MC7473 (continued) TEST PROCEDURES (Numbers shown in test columns refer to waveforms.) INPUT TEST SYMBOL Q c J, K R 1 2.4 V t Toggle Frequency fTog 1 LIMITS Q t Min Max Unit 15 - MHz Turn-On, Delay tpd- 2 2 2.4 V 4 4 10 40 ns Turn-Off Delay tpd+ 2 2 2.4 V 5 5 10 25 ns Turn·On Delay tsd- 2 2 3 6 7 - 40 ns Turn-Off Delay 'sd+ 2 2 3 6 7 - 25 ns Enab'le Voltage VEN 2 2.0 V 2.4 V t t t - - 2.4 V t t :j: - - Inhibit Voltage VINH 2 0.8 V tOutput shall toggle with each input pulse. :j:Output shal1 NOT toggle. VOLTAGE WAVEFORMS AND DEFINITIONS 3.0 V 1,2 TPin OV 3 3.0V TPin ReSet 2.4 V min 4 TP out 0.4 V max Gnd 2.4 V min 5 TP out 0.4 V rna" Gnd 2,4 V min 6 TP out 0.4 V max Gnd TP out Gnd \ 2.4 V min 0.4 V max I ~~__________________M_C_5_4_00_1_7_4_00__se_r_ie_s~ QUAD LATCH MC7475p· This device consists of four bistable latch circuits in one 16-pin package_ Both a and outputs are available on all four devices_ When the strobe is in the logic "1" state, the a output will follow the state of the data input. When the strobe goes to the logic "0" state, the a output will retain the state of the data input at the time of the transition from the logic "1" state. a DO 2 16 QO 60 Dl • Strobe D2 D3 Strobe 3 15 Ql 13 14 61 9 Q2 8 62 6 10 Q3 4 11 63 7 tn 0 Qt Q 1 0 o LOGIC DIAGRAM (1/4 OF DEVICE SHOWN; STROBE COMMON TO TWO LATCH SECTIONS) tn+l 1 I 0 1 13 Strobe Input Loading Factor: D=2 Strobe = 4 Output Loading Factor Vee = Pin 5 Gnd :: Pin 12 = 10 Total Power Dissipation = 160 mW typ/pkg Propagation Delay Time 2 D 16- Pin Package = 30 ns typ • P suffix = 16-pin plastic package (Case 612) See General Information section for package outline dimensions. 1/4 OF CIRCUIT SHOWN (STROBE COMMON TO TWO LATCH SECTIONS) Vee r-----._-----1------~~------._----~----_.------_.------~----_.---05 16 a Q 1 ~--+_------~------~~--~----------+_r_------~------~--~~--o12 Gnd 13 Strobe 2 D MC7475P (continued) OPERATING CHARACTERISTICS Data present on the 0 input between the setup and hold times will be transferred to the Q output when the strobe input changes from the logic "0" state to the logic "1" state. As long as the strobe remains in the logic "1" state, the Q output will follow the state of the D input. When the strobe input changes from the logic "1" state to the logic "0" state, data present on the 0 input between the setup and hold times will be retained on the Q output until the strobe returns to the logic "1" state. • SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc Coax· 950± 1.0% D Q MMD6150 or Equiv ~ 15 ns (10% to 90% Points) Duty Cycle = 50% Zout = 50 n t- = t+ 50 ST MMD7000 or Equiv •• A load is connected to each output during the test. Two pulse generators are required and must be slaved together to provide the waveforms shown. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equ ivalent. CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. TPln Strobe PRF = 0.5 MHz Gnd TPin PRF OV 3.0 V DATA = 1.0 MHz Gnd OV 2.4 V max TP out Q TP out a Gnd 0.4 V min 2.4 V max Gnd • ELECTRICAL CHARACTERISTICS s: n Test procedures are shown for only one "~U'1 latch. The other latches are tested in the same manner. D2i16 D 3 ""C a 1 8' Q 15 !:!". a 14 :l :l D7£i9 STROBE D 13 6 c: CD Co a 8 ~ 10 11 IOL IOH TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts V V V Vth1 VthO VCC IH IHH R1 V'L 16 -0.4 0.4 rnA Characteristic Input Pin MC747S Test Limits oto +70"( Under Symbol Test Min Max Unit - VIH VIHH VR1 - - 2 13 - - - 13 - 2 13 - - - - - - -- 1.0 1.0 mAde mAde - - 1 16 -- 0.4 0.4 Vde Vde 1 16 - VOH 1 16 2.4 2.4 - Vde Vde 1 16 ISC 1 16 -18 -18 -57 -57 mAde mAde - IpD 5 - 49 mAde - ~1 2 13 ~2 2 13 VOL Output Short-Circuit Current VIL /LAde /LAde Leakage Current - Output Voltage IOH 80 80 2 13 4.5 IOL mAde mAde IF 5.5 2.0 0.8 5.0 VCCH 4.75 5.25 VCCL VCCH Gnd - 5 5 12 12 5 5 12,13 2,3,12 5 5 12,13 2,3,12 12 12 TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: -3.2 -3.2 Forward Current 2.4 VCCL - - - Vth1 VthO - 2 13 - - - - - 2,13 13 2 Vcc - - - - -- 5 5 13 2,13 2 5 5 - - 5 5 1,2,12 12,16 - - 2,3,4,6,7,12,13 - - - - - - 13 2,13 - - - - - - - - - - - 5 - - - 12 12 Power Requirements (Total Device) Power Supply Drain ~~_________________M_C_5_4_0_0_17_4_0_0_s_e_ri_es~ DUAL J-K FLIP-FLOP MC7476P* 2D SET J 4 a CI:OCK 1 _ K 16 a Rem 15 to 14 3 '0 SET 9 CI:i5CK K This negative-edge-clocked dual J-K flip-flop operates on the masterslave principle. The device is quite useful for simple registers and counters where multiple J and K inputs are not required. Available only in the l6-pin package, this device provides both SET and RESET inputs on both fl ip-flops in the package. ;: Rem Q 11 a 10 tn+l J K Q 0 0 1 0 1 0 an 1 1 lln 0 1 • LOGIC DIAGRAM (112 OF DEVICE SHOWN) Input Loading Factor: J, K = 1 CLOCK. SET, RE"S"ET = 2 Output Loading Factor = 10 Total Power Dissipation:::: 80 mW typJpkg Propagation Delay Time = 30 ns typ Operating Frequency = 15 MHz typ • P suffix = 16-pin plastic package (Case 612) See Gene,allnfo,mation section fo, package outline dimensions. 1/2 OF CIRCUIT SHOWN r-----~~------~~------------~--------_.------_.--------------_o5 vcc 15 a Q 14 GND 3 SET 160-------.. K RESET ......- - - 0 4 ELECTRICAL CHARACTERISTICS SET J CLOCK Test procedures are shown for only one ID= . 4 1 a 15 6 a 14 s: IOL 10H TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts VIL VIH VIHH VI V'hl V'hO Vcc 16 -0.4 0.4 mA 11 10 MC7476 Test Limits Pin Oto +70°C Under Symbol Test Min Max Unit Characteristic Input Forward Current J K ~ 4 16 Ial 3 1 1 4 16 2 3 1** Set Reset Clock Leakage Current J K 2 Set ReSet Clock J K Ia2 Set Reset Clock 4 16 2 3 1 Output Output Voltage Short-Circuit Current -- --- .... C') _ -1.6 -1. 6 c3.2 ~ 40 40 80 mAdc J /lAdc • ! 1 1 1.0 mAdc 2.4 5.5 4.5 2.0 0.8 5.0 VCCL VCCH 4.75 5.25 .,en:e nO .... :J 5· TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: 10L -- ---- 10H VIL -- 4 16 2 3 1 1 - - - - - - - - VIH -- VIHH VI - 1,3* 1,2* 4,16 4,16 2*,4,16 3*,4,16 - - V'hl Vcc VCCL VCCH Gnd - - -- 5 6,9,12,13 - -- J J - 5 1,3,6,9,12,13 1,2,6,9,12,13 1,6,9,12,13,16 1,4,6,9,12,13 2,3,4,6,9,12,13,16 - - - -- - - 4 16 2 3 1 -- - - - 3 2 2 3 2 3 3 2 -- - - VOL 14 15 - 0.40 0.40 Vdc Vdc 14 15 -- -- -- - VOH 14 15 2.4 2.4 - Vdc Vdc - 14 15 -- -- ISC 14 15 -18 -18 -57 -57 mAdc mAdc -- -- - - - - - IPD 5 5 - 32 32 mAdc mAdc - - - - - - - - (1) V'hO -- 4 16 2 3 1 c: - ! - 5 - 1 5 5 - - 6,9,12,13 6,9,12,13 - 5 5 - 6,9,12,13 6,9,12,13 - - - - 5 5 3·,6,9,12,13,14 2,6,9,12,13,15 -- 5 5 - - - - - 1,3,6,9,12,13 1,2,6,9,12,13 1,6,9,12,13,16 1,4,6,9,12,13 2,3,4,6,9,12,13,16 Power Requirements (Total Device) Power Supply Drain - - *Momentarily ground pin prior to taking measurement. **Under normal operating conditions this current is negative. This test guarantees that positive leakage will not exceed the limit shown. 2,7,13 3,8,13 .. - --- .e: MC7476P (continued) OPERATING CHARACTERISTICS Data must be applied to the J-K inputs while the clock is low. When the clock input goes to the positive logic "'" state, the date at the J and K inputs is transferred to the master section, where it is storad until the clock changes to the positive logic "0" state. Data at the J and K inputs must not be changed while the clock is high. When the clock returns to the positive logic "0" state, informetion in the master section is transferred to the slave section. _ Application of a logic "0" to the RESET input will force the o output to the logic "'" state. The ~ input overrides the clock. Since no charge storage is involved in this flip-flop, rise and fall times are not important to its operation. Clock fall times as long as '.0 ps will not adverselV affect the operation of the flip-flOp. The clock pulse need onlv be wide enough to allow the data to settle in the master section. This time, which is the setup time for a logiC "''', is 20 ns minimum. Transistors OA have been added to the standard flip-flop circuit to protect the device against negative clock transients. This addition prevents both outputs from changing to the logic "'" state when transients in excess of -2.0 V appear at the clock. SWITCHING TIME TEST CIRCUIT 5.0 Vdc t- "" t+ ~ 5.0 ns f = 10 MHz for waveform A 1.0 M Hz for waveforms a, E. and F 5.0 Vdc Two pulse generators are required and must be slaved together for testing. SET and R'E"S'ET'. Onty one pulse generator is required for J, K, and CL5'C'i< tests. '" Resistor used only when th:st input is under test. '" "'The coax delays from input to. scope and output to scope. must be matched. The scope must be terminated in 50-ohm impedance. The 9S0-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-07.0-50 or equivalent. CT = 15 pF ::; total parasitic capacitance, which includes probe, wiring, and load capadtances. ' I MC7476P (continued) OPERATING CHARACTERISTICS (continued) TEST PROCEDURES (Letters shown in test columns refer to waveforms.) INPUT I TEST SYMBOL Toggle Frequency Q a 2.4 V t "C J, K Ii S fToa A A 2.4 V LIMITS Min Max Unit t 10 - MHz Turn-On Delay tpd_ B B 2.4 V 2.4 V C C - 50 ns Turn-Off Delay tpd+ B B 2.4 V 2.4 V 0 0 - 50 ns Turn-On Delay t.d_ 2.4 V 2.4 V E F G H 10 50 ns Turn-Off Delay tsd+ 2.4 V 2.4 V E F G H 10 50 ns t t t - - * $ - - Enable Voltage VEN B 2.0 V 2.4 V 2.4 V Inhibit Voltage VINH B O.B V 2.4 V 2.4 V tOutput shall toggle with each input pulse. * ;Output shall NOT toggle. VOLTAGE WAVEFORMS AND DEFINITIONS ,----...,.0--------- 2.4 V Gnd ==~~_ _ _ _ __+-.-:~==========0.4 V ---------+---,,------2.4 Vmin C TP out Gnd _ _ _ _ _ _ _ _-1-1-'-__'-____ 0.4 V max _ - - - 2 . 4 V min o TP out Gnd -===============::::==-0.4 V max 2.4 V E TPin RESE'f 0.4 V Gnd 2.4 V F TPin SET 0.4 V Gnd 2.4 V min G TP out 0.4 V max Gnd H TP out Gnd J 1~5 2.4 V min V 0.4 V max MC5400/7400 series DUAL TYPE D FLIP-FLOP MC5479 • MC7479 Add Suffix F for TO·86 ceramic package (Case 607). Suffix L for TO-116 ceramic package (Case 632). Suffix P for TO-116 plastic package (Case 60S) MC7479 only.) This dua[ typeD f1ip-f[op triggers on· the positive edge of the clock input. During the clock transition the state of the D input is transferred to the Q output. The device is useful in shift registers and simple counters. CIRCUIT SCHEMATIC 1/2 OF DEVICE SHOWN Vee r~~l Pm [8] Set OIL Pkg Pin 4 [6] 2 5 [9] [7] 3 6 [10] [5] [14] 10 51 [2] 12 el 01 9 [13] [HII 01 01 8 [12] RI [3] 13 tn D Q tn+l 0 1 o1 I a I 1 0 Input Loading Factor: 0=1 Set, Clock o Gnd Output Loading Factor == 10 Vee = Pin' 14 [4] Gnd = Pin =2 Aeset = 3 7 [II] Total Power Dissipation .... 84 mW typ/pkg Propagation Delay Time = 16 ns typ Operating Frequency = 30 MHz typ Re~t~~--------~~----------I D-, elock ,~~ C)-------------t-'H s.rto--+------------------------" LOGIC DIAGRAM 1/2 OF OEVICE SHOWN • -. FLA~ OIL ELECTRICAL CHARACTERISTICS L Pkg Pin Test procedures are shown for only one flip·flop. The other flip·flop is tested in the same manner. Pkg Pin [8J 4 [6J 2 [7J 3 s: n ~ .... 5 [9J ~CD co s: 6 [10J 00 RO v ~ Vec ~ Pin 14 [4J Gnd ~ Pin [5J 7 [11J n ~ .... I [14J 10 CD ,.--s,[ 2 J 1 2 - Cl Pin Under Symbol Test Characteristic D Clock D S R C D Set Reset Clock D S R C Set IF Reset Leakage Current D Set IRI ~2 Reset Clock IOH 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 4.50 5.50 [3J 13 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 4.75 5.25 R C Q - D mAde t ~ 40 80 120 80 ILAde 1.0 mAde ~ TEST CURRENT jVOLTAGE APPLIED TO PINS LISTED BELOW: o -- -1. 6 -3.2 t mAde ~ -- 40 80 120 80 ILAde - 1.0 mAde ~ ~ - - 0.4 0.4 Vde Vde - 2.4 2.4 - Vde Vde 2.4 2.4 Q -20 -20 -57 -57 mAde mAde -18 -18 V V - - 30 30 mAde mAde - S ISC t Q Q Q Q Power Requirements {Total Device} Power Supply Drain -1. 6 -3.2 MC5479 MC7479 MC7479 Test Limits to +70°C Min Max Unit ~ ~ l 0.4 0.4 Vde Vde c ~ Pin 7(11] is grOUndedl for all tests in addition to the pins I listed below: I IOL IOH V1L V1H V1HH VRI Vthl VthO Vcc VCCL VCCH Gnd -- -- D S R C -- -- R,S R D,S R - - --- - V - ~ CO,CI CO,Cl,DO CO,Cl CI,DO,SO - - - - - - - -- C,S C*,D,R Co,S S -- V - D S R C - - D S R C C,S C*,D,R C*,S S - - - - V - - S R - - - - - - - - - - - - - - - ~ ! Cl,RO Cl CI, DO Cl,DO,RO Cl,RO Cl CI,DO Cl,DO,RO - - ~ R S - V V - CO,Cl,DO CO,Cl,DO - R S S R - V V - - CO,Cl,DO CO,Cl,DO - - - - - - V V CO,SO,QO Cl,RO,QO - - - - - V V CO,Cl,DO,Dl,SO,Sl CO,DO,RO,Cl,Dl,Rl, - I , , VOL VOH Short-Circuit Current - - Output Output Voltage - ::J ..... :;" VCCH IOL MC5479 Test Limits 55 to +125°C Min Max Unit - mA nO [ 1 J l l - 01 01 -8[121 Rl Input Forward Current 01 - 9 [13J TEST CURRENT jVOLTAGE VALUES {All Temperatures} Volts V1L V1H V1HH VRI Vthl VthO Vee VeCL IpD - - - Q - Vde Vd. - Q -57 -57 mAde mAde - - - - 30 30 mAde mAde - - -- _ ... - "Momentarily ground pin prfor to taking measurement, then set to state indicated. t Only one output should be shortsd at a time. Q - Q -- - - - - - - - - - MC5479, MC7479 (continued) SWITCHING TIME TEST CIRCUIT vee OPERATING CHARACTERISTICS +5.0 Vdc Data may be applied to the D input any time following 5.0 ns after the leading edge of a clock pulse and 20 ns before the leading edge of the following clock pulse. The state of the D input when the clock changes from the positive logic "0" state to the positive logic ",.' state is transferred to the Q output of the flip· flop. Th~ data input cannot be changed between the setup time (20 ns) and the hold time (5.0 ns) without adversely af· fecting the operation of the flip·flop. The direct Set and Reset inputs override the clock, and may be applied any time duro ing the operating cycle. 400 MMD61S0 or Equiv MMD7000 t+ = 12 ns } t- = 6.0 ns PRF or Equiv 10% to 90% points Two pulse generator. are required and = 20 MHz for waveform 1 "" 1.0 MHz for waveforms must be slaved together to provide the waveforms shown. Only ane pulse generator (duty cycle = 50%) is required to 2 thru 5 Zout~50 n test toggle frequency. The coax delays from input to scope and output to scope must be matched. The scope must be ter.minated in 50-ohm impedance. The 950-ohm resistor and the scope termination Impedance constttute a 20:1 attenuatar probe. Coax shall be CT -070-50 or equivalent. CT 15 pF ... total parasitic capacitance. which includes probe. wiring. and load capacitances. ;< VOLTAGE WAVEFORMS AND DEFINITIONS 1,2 1.5 V I Clock (Must be used on all tests) ~ 30ns 3 I I 1.S V TEST PROCEDURES CHART 3.0 V --0 V (Numbers shown in test columns refer to waveforms.) 1--20 ns I TEST I C I Toggle Frequency Turn-On Delay Clock to Q Turn-Off Delay Clock to Q Turn-On Delay I I I [-20n5 4 : INPUT SYMBOL I 1.S V R8S8ito OV Q Turn-Off [)elay Sat to Q 0 R 2.4V 2.4 V fTog I I I I 'pd+ 6 T~ D 3.0 V 1.5 V p=:=t OV I I tsd- : - 2..5 V Gnd , I Gnd IJ r 7 tpd- I 2.4 V min 0.4 V max I I 2.4 V min L!SV 0.4 V max tsd+ Q t t LIMITS 2. Min Ma. tSd_ 2 3 • 2_4 V 7 6 t,o+ 2 4 2.4V • 6 7 ~5 2 4 2.4 V 2.4 V 7 6 2 3 2.4V 2_4 V 6 7 Unit MH, 3. 3. 2. ""'tpd+ ·Connect to Q. tOuqjut shall toggle with each Input pulse. S Q S • GATED FULL ADDER MC5480L* MC7480L,P* "\ MC5400/7400 series '--------------' The MC548017480 is a one-bit binary full adder with gated complementary inputs, complementary Sum and Sum outputs, and an inverted Carry output. The circuit uses DTL inputs and a high-speed, high-fan-out, TTL "totem pole" configuration for the Sum, Sum, and Carry outputs. The design of the high-speed carry circuitry reduces the need for external "look ahead carry" cascading in system designs. The use of low-level, low-power gates in a monolithic design pro- TRUTH TABLE vides significantly lower power dissipation than equivalent adders built from stan- dard integrated circuits. This full adder provides a basic building block for medium and high-speed, multiple-bit, parallel-add/serial-carry subsystems. I VCC=Pin7 GND == Pin 14 Cin B A Cout 5 S 0 0 0, 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 S r------<> 6 :><:-----<>5 S 1. A ~ A*'Ae, B ~ B*'Be where A*:: A1 • A2 8*~ 81'82 2. When A* (or a*> is used as an input, A 1 and A2 (or 81 and 82) must be connected to ground. 3, When A1 and A2 (or B1 and 82) are used as inputs, A* (or must be open, or used to perform wired-OR logic. a*> Output Loading Factor: Input Loading Factor: A1, A2, Ae, B1, B2. Be ~ 1 C out = 5 S~ A*, B* ~ 1.625 S, Cin= 5 A*, 8*~ 3 eino-------------., 10 Total Power Dissipation == 105 mW typ/pkg Propagation Delay Time: Carry Delay == 10 ns typ Add Delay == 55 ns typ 3k veeO---~----------1_----~ 100 Alo--14-+--I A2 +---....------0 Cout 100 Ae s Blo-14-+--I B2 t--+.....--f----t---+--o s Bk GNDO------------+-~~~~------------------------------~ -L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605). ELECTRICAL CHARACTERISTICS Output voltage (logic level) tests are shown ,only for each output. Th~ complete Circuit can be tested by follOWing the truth table. - MCS480 MC7480 Pin MC54BO Test Limits Under 55 to + 12S"( Characteristic Forward Current Symbol B¥ Test Min IF TEST CURRENTiVOLTAGE VALUES (All Temperatures) ~ Volts CJ'1 rnA Max Unit -2.6 mAde lOll IOL2 lOLl IOH 110M2 IOH3 V1l VIH V1HH VRI V,hl V,hO VCCL VCCH CO~ 4.8 8.0 16 -0.12 -0.2 -0.4 0.4 2.4 5,5 4.5 2.0 0.8 4.5 5.5 0 4.8 8.0 16 -0.12 -0.2 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 4.75 5.25 MC74BO Test Limits 0 to +70°C Min Max Unit -2.6 mAde r ~ TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW, C') lOLl IOL2 lou IOH 1 IOH2 'OHa Vlt V1H V1HH VR1 Vth1 Vtho VCCl VCCH 14 Gnd ....... ~ 7,12,13 0 7,12,13 r Be -1.6 -1.6 CIll -8.0 -8.0 " Al -1.6 -1.6 _ A2 -1.6 -1.6 A¥ 10 -2.6 -2.6 AC 11 -1.6 -1.6 Bl 12 82 Leakage Current j (") IRI 2 15 Al !LAde 15 200 200 15 15 11 12 13 13 12 7,8,9 7,8,9 j 13 BC C in 10 ~ jJ.Ade 14 1,7 7,8,9,12,13 7,9 7,8 11 81 B2 BC IR2 11 7,10 12 12 7,13 13 13 2 1.0 mAde 1.0 7,12 mAde 14 1,7 C in 7,8,9,12,13 Al 7,9 ~ 7,8 AC 11 11 7,10 8l 12 12 7,13 B2 13 13 7,12 Output c A Output Voltage 0'1' VOL o: vd' 0.], :~. ::' ::::::::::: ']' Vjd' 1 B" I I 10 2,3,8,11,12 I - I 10 :,: I VOH I : 12t I Vd]' 2]., _ c---=- _ r---:-.. B" I I I I'se I I 10 9,13 ...c'-+-=:---+--cc-: f--------28• 2. 11 V]d' 10 ,,:.:,::,13 ']' 2, 9, 13 3,8,11,12 3, 10, 11 1,2,8,9,12,13 8, , Short-Circuit Current Cout 4 Power Requirements Power Supply Drain 11'D -20 I I 14 I - -70 -57 mAde -57 31** -18 j j -70 mAde -57 35** 2,3,8,11,12 141 j 2,9,13 -57 mAde .... :s" ~ AC g 3,10,13 4,7,9,13 3,5,7,8,11,12 1,2,6,7,8,9,12,13 mAde 14 **Tested only at 25°C • Q. MC5480L, MC7480L, P (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS 2.4 V Vcc Coax'" Coax* 2450 MMD7000 2 • BC Cin A1 Cout A2 S AC A* B1 B* o~v 4 C VGen = 3,0 V t+ ~ 15 ns ':" 0-+-+-....._,' -L2= s::,;: L3 - , L = _ 400 _ ohms _ _R_ _ .JI L... except ,..-------, ·The coax delays from input to scope and output L 1_ - Same as L2 L... _ __ _ _ JI to scope must be matched. The scope must be (10% to 90% points) PRF = 1.0 MHz Duty Cycle = 50% terminated in 50-ohm impedance. The 2450- ohm resistor and the scope termination Impedance constitute a 50: 1 attenuatar probe. Coax shall !:'e CT -070-50 or equ ivalent. CT = 15 pF::::I total parasitic capacitance, which includes probe, wiring, and load capacitances. Zout ~50 ohms 2.4 V min 0.4 V max GND TEST PROCEDURES ITA = 25 0 CI PIN UNDER TEST TEST tpd+ tpd_ tpd+ tpd_ c;;;rt 4 ~ ~ co;t 4 4 4 tpd+ tpd_ S S 5 tpd+ tpd_ S S 6 6 tpd+ tpd_ A* A* 10 10 tpd+ B* tpd_ B* INPUT Be Cin Pin 2 Pin 3 OUTPUT A1 A2 Ae B1 B2 C out Pin 8 Pin 9 Pin 11 Pin 12 Pin 13 Pin 4 y Y Y Y 2.4 V 2.4 V Gnd Gnd 2.4 V Gnd 2.4V Gnd 6 Y Y Y Y 2.4 V 2.4 V Gnd Gnd Gnd Gnd L3 L3 L3 L3 Gnd Gnd L3 L3 Gnd Gnd Y Y 2.4 V 2.4 V S S Pin 5 Pin 6 A* B* MAX Pin 10 Pin 1 LIMIT 17 ns 12 ns 25 ns 55 ns L1 L1 L2 L2 70 ns 80 ns L2 L2 55 ns 75 ns CT CT Y Y I I I ""' T MMD61.50 I....-d:or Equlv. _ -__ _ _ _ -=...J S B2 t- = I 2.4 V 2.4 V 65 ns 25 ns CT CT 65 ns 25 ns _________f 2-BIT FULL ADDER "\ MC5400/7400 series \..----------' MC15482L • MC17482L * MC25482L • MC27482L* ADVANCE INFORMATION/NEW PRODUCT A2 14<>----1-" Each bit of this device performs the logical addition of two binary numbers. The sum outputs, the carry output for the second bit, and Exclusive OR outputs for each bit are available. A look-ahead carry is pro1/ided internally. Tho Exclusive OR outputs of the MC25482/MC27482 can be used for lookahead carry when adding more than two bits. This device is constructed from low and high-Iavel NAND .and AND-DR-INVERT gates as shown in the logic diagram 13~"""T""-"_/ B2 to maximize output drive capability and minimize power dissipation. 12 A1 2n...l _ _...I--'" __ 3~~~~~-t~=-~ B1 ______________, TRUTH TABLE INPUT OUTPUT Cin -1 Cin -0 A' 0 Input Loading Factor: A. B = 2; Cj = 3 Output Loading Factor = 10 Total Power Dissipation = 165 mW tvp/pkg 4k 0 0 0 0 0 0 0 , , , , , , 0 0 0 0 0 0 0 1 0 0 (} , 0 0 0 0 0 0 0 0 , 0 , , , , , , , , , , , , , , , , , , , 0 0 0 0 0 0 0 0 0 1 0 0 0 1 '* Diodes only on 0 0 , 0 0 r-------------------,-~ Vee , 0 0 LOW-LEVEL "NAND" GATE 0 0 , , , , , , , , , , , , , , , , , 0 Vee"PIN4 GND"PIN11 0 82 0 t Available only on MC25482/27482. 52 A2 , , , , Cin 5~------------------~----------L-~ 5' 0 8' 0 C 5' 0 0 0 52 C , , 0 0 inputs connected INPUT B2 C; input connected • L. suffix = TO-116 ceramic duslln-line package (Case 632). 0 0 0 0 0 0 0 0 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 0 0 , 0 0 0 0 0 1 0 1 0 0 0 0 0 , 0 0 , , , , 1 0 0 1 0 0 0 0 0 0 0 0 0 5, 1 52 .1 co .10 5' .1 52 1 Co .1 0 1'8.5.1 .1 9 .5 .1 271 .1'4 5.61 '3.1 9.5 .1 - 9.0.1'8.51'41- HIGH-LEVEL INVERTER to external point . 0 0 TYPICAL PROPAGATION DELAY TIMES TA = 250C 'pd_ (nsl 'pd+ (nsl OUTPUT OUTPUT LOW-LEVEL "AND-DR-INVERT" GATE :j: Diode only on 0 0 , , 0 t Available only on MC25482/27482. to external points. HIGH-LEVEL "AND-DR-INVERT" GATE (,!),' ('!)2' MC15482, MC17482, MC25482, MC27482 (continued) DC ELECTRICAL CHARACTERISTICS • TA = 0 to +700 C for MC17482 and MC27482 TA = -55 to +1250 C for MCI5482 and MC25482 Characteristic Symbol Value IF -3.2 mAdc max -4.8 mAdc max IR BO"Adc max 120 "Adc max 1.0mAdc max Conditions Input Forward Current - A, B C; Leakage Current ~ A, B Ci A,B,Ci Threshold Voltage Vth "I" 2.0 Vdc Vth "0" 0.8 Vdc VOL 0.4 Vdc max Yin = 0.4 Vdc, VCC = 5.5 Vdc V SELECT X SELECT 0--_ _ _ _--'-1___ L ____________ J 1,2,3, or 4 6,7,8,or9 VCC VCC 850 750 750 850 3,5 k 3.5 k SENSE AMPLIFIEA VCC 4-1< 4k W .. O" W"I" 11 15 10 16 GND 12 WRITE INVERTER S ELECTRICAL CHARACTERISTICS n Test procedures are shown for only one bit. Other bits are tested in the same manner. In addition, test procedures are U'1 level. The other Write inputs are tested IS"O" in the same manner. I 'vv Volts I Symbol IxV I V;n 1 I V;n 2 I V;n 3 I VF I VR I V'h I V'h VV I Vo"' I VCCL I VCCH MC5484 5.5 MC7484 5.25 S n -..J TEST CURRENTIVOl TAGE APPLIED TO PINS LISTED BELOW: __ ~ Characteristic .ir- TEST CURRENT/VOlTAGE VALUES (All Temperatures) rnA shown for only one Write input of each ~:~'~~~~~~~-+~~~~~~~-r~~~~~~~~ ~~~~~~~~r-~--r-~--~~--~~--~~~~~l Gnd 'F Write Inputs Leakage Current Address Lines 10 15 10 15 BV m Write Inputs Output -11 -11 mAde mAde -11 -11 mAde mAde -1.60 -1.60 mAde mAde -1.60 -1.60 mAde mAde 0.4 0.4 mAde mAde 0.4 0.4 mAde mAde 0.1 0.1 mAde mAde 0.1 0.1 mAde mAde 2,3,4,10,11,12,15,16 7,B,9, 10,11, 12, 15, 16 6.7.8,9 1,2,3,4 1,2,3,4,6,7 ,8,9, 12, 15, 16 1,2,3,4,6,7.8,9,10,11,12 10 15 .." nO ::l !:!. 'R Write Inputs Breakdown Voltage Address Lmes ~ r- Input Forward Current Address Lines it 10 15 5.5 5.5 Vdc Vdc 5.5 5.5 Vdc Vdc 5.5 5.5 Vdc Vdc 5.5 5.5 Vdc Vdc 2,3,4,6,7,8,9,10,11,12; 15, 16 1,2,3,4,7 ,8,9, 10, 11,12,15, 16 10 15 1,2,3,4,6,7,8,9,12,15,16 1,2,3,4,6,7 ,8,9, 1 0, 11,12 ::l t: ~ 2,3,4,6,7,8,9,10,11,12,15,16 1,2,3,4,7 ,8,9, 10, 11, 12, 15, 16 10 15 1,2,3,4,6,7,8,9,12,15,16 1,2,3,4,6,7,8,9,10,11,12 (Note 1) Output Voltage Wrtte "1" Logic "0" Level 14 0.45 Vdc 0.45 Vdc 14 V out "0' 14 0.45 Vdc 0.45 Vdc 14 Write "0" !nhlbit Logic "0" Level 15,16 1,6 Logic "0" Level V out "0" 13 0.45 Vdc 0.45 Vdc 13 Vout "0" 13 0.45 Vdc 0.45 Vdc 13 V out "0" 14 0.45 Vdc 0.45 Vdc 14 2,3,4,7,8,9,12 'OLK 14 0.25 J mAde 0.25 ) mAde 1,6 IOLK 13 0.25 j mAde 0.25 ) mAde 1,6 I Leakage Current 'OLK 13 0.25 ) mAde 0.25 J mAde 1,6 78# I mAde I 2,3,4,7,8,9,12 15,16 2,3,4,7,8,9,10,11,12,15,16 15,16 2,3,4,7,8,9,12 14 2,3.4,7.8,9,10,11,12,15,16 13 2,3,4,7,8,9,10,11,12,15,16 10,11 2,3,4,7,8,9,12 1,6,7,8,9 1,6,7,8,9 0.25 ) mAde 0.25 ) mAde 2,3,4,7,8,9,10,11,12,15,16 1,6 10,11 14 1,6 1,6 15,16 IOLK 2,3,4,7,8,9,10,11,12,15,16 1,6 15,16 Leakage Current Write "0" 2,3,4.7,8,9,12 1.6 2,3,4,7,8,9,12 10,1' Write "1" 2,3,4,7,8,9,10,11.12.15,16 10,11 15,16 10,11 Write "0" Leakage Current 10,11 1,6 10,11 1,6 Leakage Current Write "1" Leakage Current 2,3,4,7,8,9,12 2,3,4,7,8,9,10.11,12,15,16 1.6 Wnte "1" Logic "0" Level I 15,16 Write "1" Inhibit 15,16 1,6 Write "0" LogiC "0" Level 1,6 10,11 V out "0" 2.3,4,10,11,12 13 2,3,4,10,11,12,15,16 14 2,3,4,10,11,12.15,16 1,6.7,8,9 1,6,7,8,9 2,3,4,12,15,16 P:O-wer Requirements (Total Device) Power Supply Drain Note 1. 'PO 91 II ) mAde 1,2,3,4,6,7,8,9,10, 11,12,13,14,15,16 Output logiC "0" voltage and leakage current measurements are made as part of a functional test of a memory ~ Indicates preconditionmg procedures for the subsequent test All power supply and input voltages must be maIntaIned between tests 4 # Tested only at 25°C. - - - - - - - -____I ____~ MC5484L, MC7484L,P (continued) SWITCHING TIME TEST CIRCUIT TPout 16 Two pulse generators are required and must be slaved to provide the waveforms shown. X3 X2 X1 6 Y1 Y2 Y3 50 120 13 S"1" 14 330 11 TP out High-impedance probes (>1.0 Megohm) must be used when t8k Ing measurements. See Switching Time Test Procedures table for value of CT' VOLTAGE WAVEFORMS AND DEFINITIONS MC5484L, MC7484L,P (continued) SWITCHING TIME TEST PROCEDURES (Letters shown in test columns refer to waveforms) Symbol Under Test Turn·Qff Delay Time (Address Lines to Sense "1" Output) tpd+ tpd+ tpd+ tpd+ 13 13 14 14 "a.. Output) Turn-Off Delay Time (4 Bits) (Address Lines to Sense "0" Output) Turn-Off Delay Time (4 Bits) (Address Lines to Sense" 1" Output) Write Recovery Time Write Pulse Width Xl X2 X3 1 6 7 8 9 X4 Yl Y2 Y3 Y4 13 14 10 15 W"O" W"l" 5"0" 5"1" A A Gnd Gnd Gnd Gnd Gnd Gnd A A Gnd Gnd Gnd Gnd Gnd Gnd 3.0 V 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0V Gnd Gnd Gnd A Gnd Gnd GOd Gnd Gnd Gnd A A Gnd Gnd Gnd A Gnd Gnd G'nd Gnd Gnd B Gnd Gnd B 3.0 V Gnd Gnd 3.0 V Gnd Gnd Gnd Gnd 3.0 V Gnd 13 Gnd tpd_ 14 3.0 V 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0V Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd A Gnd Gnd Gnd A tpd_ 14 tpd_ tpd_ 13 Turn-On Delay Time (Address Lines to Sense" 1" Output) 3 3.0 V 3.0 V 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd 3.0 V Gnd Gnd Gnd 3.0 V 3.0 V Gnd Gnd A Gnd Gnd Gnd A Gnd Gnd Gnd Gnd A Gnd Gnd Gnd A Gnd Gnd Gnd Gnd Turn-On Delay Time (Address Lines to Sense 4 . CT pF Limits MC5484 MC7484 ns max ns max 15 200 25 35 35 15 200 25 35 25 15 200 45 45 55 55 B 15 45 45 B 200 55 55 15 30 30 30 3.0 V 3.0 V 3,OV 3.0 V 3.0V 3.0 V 3.0 V 3.0 V Gnd 3.0 V 3.0 V Gnd Gnd Gnd 3.0V GOd Gnd Gnd 3.0 V Gnd .Turn-Off Delay Time (Addr~ss Lines to Sen$e "0" Output) Output Input Pin Pin Test Gnd 3.0 V 13 3.0 V 3.0 V 3.0 V 3.0V 3.0 V 3.0 V 3.0 V 3.0 V Gnd 3.0 V Gnd Gnd Gnd 3.0 V 3.0V 3.0 V 3.0 V 3.0 V A A Gnd Gnd Gnd A A A Gnd Gnd tpd+ 14 3.0 V 3.0 V 3.0V 3.0 V 3.0V 3.0 V 3.Q V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0V 3.0V 3.0 V 3.0 V Gnd A Gnd Gnd Gnd A A A A Gnd twr 14 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd 13 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd tpd+ Gnd Gnd A Gnd Gnd Gnd 3.0 V Gnd Gnd A Gnd Gnd Gnd Tested during 'twr tests. twp B B B B 25 35 - Gnd Gnd 3.0 V B - Gnd B 15 30 E C 0 15 60 60 E C 15 60 60 ns min ns min 25 25 • Capacitance value for load of the Switching Time Test Circuit • ·Preconditioning procedures for subsequent tll!st. OPERATING CHARACTERISTICS Sixteen flip-flops are arranged in a 4-by-4 matrix with each flip-flop representing one bit of 16 w~rds. Each flip-flop, consisting of two cross-coupled triple-emitter transistors, is used to store one bit. Memory status of a particular bit is det~rmifled by sensing which of the two flip-flop transistors is conducting. One emitter of each of these transistors serves as the sensing outpu"t. All 16 of the logical "1" sensing output~ are connec~d t~ ~e sense 109;c "1" amplifier inpot, and all 16 ofthe logical "0" sersing outputs are connected to the sense Jogie "0" amplifier input.. The remaining emitters on each i'ransistor provides the .matrix 'connections required for the X- and V-address lines. Address line inputs are 'normally held at logiC ~'O" and currents from all conducting flip-flop transistors flow out of these address lines. To address a flip-flop both the X- and V-address lines associated with that flip-flop are taken to a logic 'il" voltage. Due to the matrix nature of the circuit, at least one address line of all flip-flops except the one being addressed will continue to remain at a logic 00" level and no change will occur on those flip-flops. But, in the adA dressed flip-flop, the current in the cOl1ducting transistor diverts from the Qddress lines to the appropriate sense line and then to one of the sense amplifiers. Thus, either the sense amplifier associated with a logic "1" or the sense amplifier associated with a logic "0" is activated._ When this occurs, the output of the activated sense amplifier drops from a logic "1" to a !ogic "0" level. The memory is non-destructive as the states of the flip-flops 'are not disturbed during sensing. To store new information in a flip-flop, it is necessary to address it and apply logic "1" voltage to the appropriate 'write amplifier input. Th,e output of the write amplifier responds by dropping to a logic "0" level. Since all logic "0" sense fines are connected to the output-of the logic "0" write ampl-ifier and all logic "1" sense lines are connected to the output of the logic "1" write amplifier, a logic "0" voltage on the output of a write amplifier wi II apply the same voltage to emitters of all flip:.ftop transistors connected to that amplifier." In all flip-flops "xcept the one being addressed, this lOW voltage has no effect since at least one other emitter on each of the flip-flop transistors is held . low by the address lines. But two possibilities exist with the flip-flop that is addressed. The flip-flop may already be in the desired state, in which case no change occurs. But if the flip-flop must be changed from one state to the other, the low voltage applied to the emitter of the ~ranslstor which is not conducting turns that transistor on, causing the other transistor to turn off. MC5484L, MC7484L,P (continued) are enabled before a Y driver. However, if the memory accessing sequence specifies that only a single bit may be selected at a time TYPICAL APPLICATIONS • and, consequently, that only one of the X (or Y) selection lines may be high at a time, then the driver requirements can be relaxed somewhat. This is possible because of current sharing in the multiemitters of the storage flip-flop transistors. If the voltages at the emitters of the "on" transistor differ by no more than approximately 100 mV, then each emitter will carry an appreciable portion of the transistor current. The saturation characteristics of the drivers determine the emitter potentials and, therefore, the division of cell current among the various drivers. Since the Va L of the driver will increase if the collector current increases, the selection currents will be almost evenly distributed among the drivers if the driver saturation characteristics are reasonably uniform. If operation is restricted to a single X selection line and a single Y selection line and current sharing is assumed, then each select line must be capable of carrying the full current from a single cell plus approximately one half of the current from three cells. Each line must, therefore, carry: A fast scratch pad memory offers the system designer several design alternatives. Temporary memory with a greater storage capacity than simple registers can be distributed throughout a system. The basic technique for expanding bit capacity is shown in Figure 3; Figure 4 illustrates a method for expanding word capacity. Optimum design of the selection line drivers depends on the specific system application. The maximum load presented to the drivers by the selection lines is a function of the sequence used to address the memory. The desired logic swing and noi~e immunity should also be considered when designing the drivers. Each of the 16 flip-flops draws a maximum dc supply current of 2.75 mA (for Vee = 5.0 Vdc). The total current flowing in all 16 flip·flops, and consequently the summed current in the eight selection lines, is 44 rnA. (Each selection line is tested for a maximum of 11 mAl. Consider the sequence involved in selecting the four bits X 1 y 1, 11/4 + (3) (1/2) (11/4) X1 Y2, X1Y3, and X1Y 4 simultaneously. If the four Y select lines = 6.88 mAo Since the dc output levels of the driver transistors determine the noise immunity of the selection line, the system noise environment and the desired noise immunity should enter into the driver selection. are enabled before the X1 line-then each of the four X lines must carry the full current from four cells, i.e., 11 rnA. The Y drivers must also have the capability of sinking 11 rnA if the four X drivers FIGURE 3 - 16 WORD, N BIT MEMORY MEMORY ADDRESS REGISTER J 2 3 1 Decoder 2 Bit Binary to 1 of 4 }\ MC4007 1 Oecoder 2 Bit Binary to 1 of 4 J % MC40Q7 Timing Selection Line Drivers J 0 X3 X2 Selection Line Drivers I Xl Timing I Y4 Y3 Y2 I Yl X4 /" \ Bit 1 Bit I Write Bit I Sense {~:=:J {~ Bit 2 !o ! ! ! ,0 1 1 '-v-' __ Write Sense Bit 3 ~~ ! ~ ---Write Sense Bit N ---~ ~ !~ Write Sense C548417484 MC5484L, MC7484L,P (continued) FIGURE 4 - 64 WORD, 4 BIT MEMORY MEMORY ADDRESS REGISTER Decoder 3 8'it Binary to 1 of 8 MC4006 Decoder 3 Bit Binary to 1 of 8 MC4006 Timing Timing 0---, Selection Line Drivers Yl Y2 Y3 Y4 Y5 Y6 Y7 Selection Line Drivers X2 X3 X4 Xl YB X5 X6 X7 - .--- - - IXC5484174B4 ~ 'i ."'- "", ~ o '" '" '" '\ '\J ~ ll' 1 0 1 "" 1 0 1 "- "'."" r\ } o XB o ll' 1 0 1 ~ "\ "" .r\: } o 1 0 1 '-..-'-v- --"'--'-v-' --....--'-v-' '-v-''-v-' Sense Write Bit 1 Sense Write Sense Write Sense Write Bit 2 Bit 3 Bit 4 ~__________________M __C_5_40_0_1_7_40_0__ se_ri_e_s~ DECADE COUNTER MC5490F,L* MC7490F,L,P* This 4-bit counter is comprised of a divide-by-two section and a divide-by-five section. These sections can be used independently, or can be connected to perform the counting function or the simple divide-bYten function with an output duty cycle of 50%. Two sets of direct RESET inputs are provided to allow setting all outputs to a logic "0" or to the BCD cou nt of 9. RESET/COUNT TRUTH TABLE RO A9 OUTPUT I ,, ,, , , ~I ~ I~ I, COUNT Pin 2 Pin 3 Pin 6 Pin 7 Q3~ Q2J Ql X X 0 0 X I X X 0 X X 0 0 X X 0 X 0 X 0 0 X 0 X QO 0 0 COUNT COUNT COUNT Don teare. 02 8 01 00 Cl 12 1 CO 14 9 03 11 COUNT SEOUENCE TRUTH TABLE OUTPUT COUNT 0 1 2 3 Q3 Q2 Ql QO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 , 0 1 ,,, ,, ,, ,, , 4 5 6 7 8 0 0 R 0 C C 0 C 51 52 0 0 0 9 0 C 5 Q Rol~ 0 00 connected to C1. R91~ Input Lo'ading Factor: RO, R9 = 1 CO = 2 (;1 =4 Output Loading Factor = 10 Vee Total Power Dissipation = 160 mW typ/pkg Propagation Delay Time = 20 ns typ!bit GND TYPICAL FLlp·FLOP TYPICAL RESET GATE vcco---~---------, 1k == Pin 5 = Pin 10 vcco---------~--------~~------------_.------~~--_, 4k 5.6 k 5.6 k 4k 1.4 k 100 3k RO RO r--------+---r--~~~O +----40--~Gnd 3.2 k Gndo-----------~~ *F suffix = TO-SS ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Ca~ 632). P suffix'" TO-116 plastic dual in-line package (Case 605). ELECTRICAL CHARACTERISTI~ mA input of each reset gate. The other input of each reset gate is tested in "the :Same manner. MC5490 Test Limils -55 to + 125'C Pin Under Symbol Test Min Characlerislic Input Forward Current RO R9 CO Cl Leakage Current IF RO R9 CO Cl IRI RO R9 CO Cl IR2 2 6 14 1 2 6 14 1 2 6 14 1 s TESTCURRENT I VOLTAGE VALUES (All Temperatures) Test procedures are shown for only one - - - - MC5490 MC7490 MC7490 Test Limits o to +70'C Max Unit Min -1. 6 mAde - -1.6 -3.2 -6.4 ~ 40 ·40 80 160 /.lAde 1.0 mAde ~ - ~ ~ 12 - 0.4 -20 - - - - -- V" 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 0.7 5.0 4.5 5.5 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 0.8 5.0 4.75 5.25 IOH V'L -1. 6 -1. 6 -3.2 -6.4 mAde pAde 1.0 mAde - 2 6 14 1 40 40 80 160 - ~ V'H - - - V'HH VR, V'h 1 - 3 7 - - V'hO V'hL - -- - 2 6 14 1 - - - 2.3,14 6.7 - - - 2,3,6,7 14 - - - - - 5 - - 10 1 5 - - 10 1 - - 5 1 9,10 2,3,6,7 1 - 5 - - 10 2,3,6,7 1 - 5 - - 10 1 - - - 5 1 8,10 1 - 5 - - 10 - 2.3,6,7 1 - 5 - - 10 6,7 2,3 - - 5 10,11 6,7 2,3 1 - 5 - - - - - - - 5 - 6,7,10 - - - - 2.3,6.7.14 - - 6,7 - - - - 9 - - - - 2,3,6,7 Vdc - 2,3 - - 8 - - - - - - - - - Vdc 2.4 Vdc 0.4 Vdc - 0.4 Vdc -20 -57 mAde -18 -57 mAde 2.4 - Vdc 2.4 - 3,10 - - - - - 10,12 - 2.4 - 3,10 7,10 10 10 14 12 mAde ~ 5 - - 5 - -57 5 - 9 -18 - - - - - - - Q cto 10 10 2,10 2,10 - - mAde - ~ - - 10 - -57 - 5 - - Vdc - - - - - 0.4 - - - s Gnd 5 - - r Pulse VCC VCCL VCCH 1 ~ - Vdc . - 12 ~ - - - ~ - 2 6 14 1 - - - ~ o "T1 TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: IOL ~ V,hl V,hO Vth L Vcc VCCL VCCH IOH Unit Max ~ Volts V'H V'HH VR, IOL . r., "T1 ! ! 7 1 10 10 0o .... ::J :i" c: 10 (\) Output Output Voltage QO CD VOL Short-Circuit Current Igc Output Voltage V OH j VOL 9 Ql CD IsC Q2 CD V OH 1 VOL 8 Igc Q3 CD V OH 1 VOL 11 ISC V OH 1 IpD 5 - 0.4 Vdc - 0.4 Vdc -20 -57 mAde -18 -57 mAde 2.4 - Vdc 2.4 - Vdc - 8 - - - 0.4 Vdc - 0.4 Vdc 11 -20 -57 mAde -18 -57 mAde - - - 2.4 - Vdc 2.4 - Vdc 11 - - - - - 46 mAde - 53 mAde - - - - - Power Requirements (Total Device) Power Supply Drain - - a. 10 - Pulse 1: Apply positive pulse prior to taking measurement to set the device in the desired state. r-l-Vth H (2.2 V) Maintain Vth L voltage for measurement. .J L Vth L ill All input, power supply and ground voltages must be maintained between each test unless otherwise noted. --------------~----- MC5490F, L, MC7490F, L, P (continued) SWITCHING TIME TEST CIRCUIT Vee +5.0 Vdc 950 400 ±.1.0% • Cl 14 PULSE GENERATOR MMD6150 01 9 CO o-~r-_~~",,*",or Equiv 02 8 MMD7000 or Equiv Duty Cycle = "50% fTog = 10 MHz min CT = 16 pF = total parasitic capacitance. which Includes probe, wiring. and load capacitances. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950~ohm resistor and and the scope termination Impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-60 or equ ivai ant• •• A load Is connected to each output during the test. VOLTAGE WAVEFORMS AND DEFINITIONS t+ 15 ns t- 16 ns Clock Pul.e Y (fTog test) PRF = 10 MHz Pulse Z (tpd test) PRF = 1.0 MHz 00 GND,====-----===----f-====------.:==::..---I--=-==----== Vmax .0.4 r----..,I.---------2.4 01 GND--=======~_______+~======~------~~=========O.4vm8x ___________ 02 03 V min __ 2.4 V min GND :=============-__________________~~======:O.4 V max """\+-....c:'-'-''-'-'-=~ / , - 2 . 4 V min GND ==========================~_______~::::0.4 max V MC540017400 series 8-BIT SHIFT REGISTER MC5491AL* MC7491AL,P ~ The 8·bit serial·in, serial·out shift register is composed of eight R·S master·slave flip·flops, an input AND gate, and a dock driver. Single rail data inputs are ANDed together and applied to the input of the first flip·flop. The clock inverter·driver Vee Gnd is cor:nmon to all eight flip·flops and causes information to be shifted to the output on the positive edge of the input clock pulse. Both Q and Q are available from the last bit. The 8·bit sh ift register may be used as an 8·bit delay line in data handling systems and control systems. 5 = Pin 10 = Pin TRUTH TABLE Synchronous Inputs t n +8 tn A 0 0 B 0 Q 0 0 0 1 11 01 1 Q 1 1 1 Input Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation = 175 mW 'typ/pkg Propagation Delay Time = 25 ns typ Operating Frequency = 18 MHz typ 0 12 11 10~~~~~~~=4~~;=~~=+~~~~=+~~~==~=+~+=+=~=-~ 9 ·L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix"" TO-116 plastic dual In-line package (Case 606). • • s: (") 01 ~ ELECTRICAL CHARACTERISTICS TEST CURRENT / VOLTAGE VALUES (All Temperatures) rnA MC549 1A MC749 1A Characteristic Pin MC549 1A Test Limits MC7491A Test Limits -55 to +125°C oto +70°C Under Symbol Test Min Max Unit Min Max Unit Input Forward Current - -1. 6 mAde t t 40 ilAde t t 1.0 mAde 11 12 - t t - VOL 13 13 14 - 0.4 Vde t VOH 13 14 2.4 2.4 - ISC 13 14 IpD 10 IF 9 11 12 Leakage Current lRI IR2 9 11 12 9 Output Output Voltage Short-Circuit Current Power Requirements Power Supply Drain CO .... » - t , 40 ilAde -1. 6 mAde - t t - 1.0 mAde t t 0.4 Vde t - - Vde Vdc 2.4 2.4 - Vde Vdc -20 -20 -57 -57 mAde mAde -18 -18 -57 -57 mAde mAde - 50' mAde - 58' mAde t • I s: IOL IOH V1L V1H V1HH VR1 VR2 V.h 1 V.hO VCCL VCCH (") 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 4.5 5.5 16 -0.4 0.4 2.4 5.5 4.5 5.0 2.0 0.8 4.75 5.25 .... -...I ~ CO » TEST CURRENT /VOlTAGE APPLIED TO PINS LISTED BELOW: IOL IOH V1L - - - 9 - 11 12 - - - - - 13 13 14 - - - - - 13 14 - - 9 - - 11 12 - - - - - - - - - - - - 9 11 12 - - 12 11 - - - - - - - - - - - - - - 10 - t - t 5 - t - 10 10,12 10,11 - 5 - t - 10 10,12 10,11 5 - 9 10 - 11,12 11 - , - 11,12 11 12 5 5 - - - 5 5 - - - - 5 9 - - - - - - - - - - Vth 1 Vth 0 Measure - 5 Gnd 12 11,12 - **Input pulse: - - ." ** - - - - - - - - - - - - f'" V1H V1HH VR1 VR2 V,hl V,hO VCCL VCCH *Tested only at 25°C. Setup f'" Volts t 9 9 • 10 10 C'l o =. :l :l C C1l a. , I 9,10,11,12,13,14 i 9,10,11,12,13,14 ' 10,11,12 MC5491AL, MC7491AL, P (continued) SWITCHING TIME TEST CIRCUIT 5.0 Vdc 400 TP out MMD7000 or Equiv s MMD6150 or Equiv Co--t------i )<>-t-..qC A MMD6150 or Equiv O--r--~-----1--' .....L.J t+ = t-= 10 ns B~+-+-- 400 5.0 Vdc Two pulse generators are required and must be slaved together to provide the waveforms shown. Pulse generator for Pulses A and B must be operated in the double pulse mode. TEST PROCEDURES (Letters shown in test columns refer to waveforms) '" Resistor used only wher;t that input is under test. TEST B A C W W T . tpd+ V 2.4V U y tpd+ 2.4V V U tpd_ 2.4V X U tpd- X 2.4V U must be matched. The scope must be terminated in 50-ohm impedance. The 9SO-ohm resistor and the scope terminetioM impedance'constitute a 20:1 attenuatar probe. Coax shall be CT -070-50 or ~uivalent. CT = 15 LIMITS INPUT '" "'The coax delays from input to scope and output to scope < pF = total parasitic capacitance, which includes probe, wiring, and load capaci,tanc8L fTog Q Q y Z Z Min Max Unit 10 - MHz 40' ns 40 ns 40 ns 40 ns ·Output shall toggle with each input pulse. VOLTAGE WAVEFORMS AND DEFINITIONS PulseT: f= 10MHz Duty CyCle = 50% Pulse U: f .. 1.0 MHz Duty Cycle = 50% 3.0V OV tSetup (1) ~ 25 ns min tHold (1) _= 0 ns min t- = 0.5 Pulse V : Pulsew: f PulseX: f = 0.5 MHz 3.0 V 90% 1.5V 10% MHz f = 5.0 MHz OV 3.0 V OV tpd+< 2.4 V min Pulsey: TPout 1.5V 0.4 V GND max tpd_ 2,.4 V min 0.4 V max GND MC5400/7400 series DIVIDE-BY-TWELVE COUNTER MC5492F,L* MC7492F,L,P* This 4-bit counter is comprised of a divide-by-two section and a divide-by-six section. These sections can be used independently. or can be connected to perform the divideby-twelve function. When used independently. the divideby-six section provides the divide-by-three function at the C output and the divide-by-six function at the D output. The outputs may be set to the logic "0" state any time during the counting sequence by setting both RO inputs to the logic "'" state. COUNT SEQUENCE TRUTH TABLE OUTPUT COUNT 0 • 1 2 3 4 5 6 7 03 02 01 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 8 1 9 1 0 0 0 0 10 11 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 Vee=PIN5 Gnd = PIN 10 A connected to C1 co 01 12 14 02 01 Cl 03 8 9 11 1 Input Loading Factor: RO" 1 el = 2 o e2= 4 Output Loading Factor = 10 o f---+----I e Total Power Dissipation = 160 mW typ/pkg Propagation Delay Time = 60 ns typ o o e R R R RO 6 RO 7~__.. _ __' TYPICAL FLIP-FLOP RESET GATE Vee Vee 1 k 5.6 k 4k 5.6 k 4k 1.4k 100 3k RO RO r-------~--~--~--OO Clock 3.2 k Gnd *F suffix = TO-S6 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Csse 605)' ....- -....-oGnd S ELECTRICAL CHARACTERISTICS C2 Bf---<> 11 TEST CURRENT / VOLTAGE VALUES (All Temperatures) 140-----:- C1 C 1---0 9 D RO RO 7 Pin MC5492 Test Limits Under -55 to + 125°C Symbol Test Min Max Unit Characteristic . Input Forward Current RO IF 6 7 14 1 IRI 6 7 14 1 Cl C2 Leakage Current RO Cl C2 - - - - ---- 1.0 mAde ~ .•.. ~ --- Vtlc ACD VOL - 0.4 ISC j -20 -57 2.4 - Short-Circuit Current Output Voltage V OH BCD VOL ISC V OH cCD VOL ISC V OH DCD VOL 1;C 1 IpD 5 -1. 6 -1. 6 -3.2 -6.4 mAde 40 40 80 160 J.lAde 1.0 mAde ~ ~ 10H 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 0.7 5.0 16 -0.4 0.4 2.4 5.5 4.5 2.0 0.8 0.8 5.014.75 V,H V,HH VOl V'h I V'hO I 4.5 5.5 --- .-- 10H V,L --- 6 7 14 1 - - - V,H -- 6 7 14 1 -- V,HH VOl - - - - 6 7 14 I - - - - - 12 - ~ ~. -- - 0.4 Vdc 12 mAde -18 -57 mAde - V~c 2.4 - Vde - 0.4 Vde - O.• Vde -57 mAde -18 -57 mAde 2.4 - Vde 2.4 - Vde - - 0.4 Vdc - 0.4 Vde 9 -20 -57 mAde '18 -57 mAde 2.4 - Vde 2.4 - Vde - -'. 7 6 - V,h I -- - -- --- -- VthO - - - VthL - ...... Vce VCCL VCCH 5 - - - - -- 5 - 5 - - - -- --- S n .5.25 TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: 10L - - -- - - - - - - 5 ~ ~ Pulse Pulse I 2 --- -- Gnd - 10 ~ 7,10 6,10 10 10 - -- - - - 7,10 6,10 10 10 - - - 1,10 1,10,12 ~ - - - - 6,7,14 - - - - 6,7 - - - 5 14 - - - - - - 6,7,14 - 5 - - - 1,10 - - - - 6,7 - 1 - 10,14 - 6,7 - 1 10,11,14 - - - 6,7 1 - - 10,14 - \1 - - - - - - - - - - 9 - - - - - 6,7 1 - 0.' Vde - 0.4 Vde 8 - - - - - -57 mAde -18 -57 mAde - - - - - - 2.4 - Vde 2.4 - Vde - 8 - - - - - ! - 40 mAde - 46 mAde - - - - - - - - 6,7 5 - - 5 5 - - - - 10,14 1 9,10,14 - 10,14 - 10,14 5 - - - - 5 1. - 5 - - 1 - 5 - - - - - 5 - 1 1 - 5 - - - 10,14 5 -- - - - 6,7,10 1 \ 8,10,14 Power Requirements (Total Device) Power Supply Drain Pulse 1: MOJ?1entarily apply Vth 1 then ground prior to taking measu:rement to set the device in the desired state.-,- Vth 1 Pulse 2: Applil positive pulse prior to taking measurement to set the device in the desir~d state. rI- VIH ...J L GND Maintain ground for measurement. Maintain ground for measurement., CD All input} power supply and ground voltages must be maintained between each test unless otherwise noted. L GND - ~ .rN "T1 - -20 8 V OH - Unit V'hL Vcc VCCL VCCH 10L -20 9 1 ~ --- Max N "T1 .r Volts V,L 11 11 1 - JlAdc 12 - Output Min 40 40 80 160 C1 C2 IR2 MC5492 MC7492 MC7492 Test Limits o to +70°C mAde ~ rnA !-------o8 -1. 6 -1. 6 -3.2 -6·1 6 7 14 1 RO Output Voltage 6 n ~ (g 12 A "-c 8:J !:!". :J c: <1l a. MC5492F ,L, MC7492F ,L,P (continued) SWITCHING TIME TEST CIRCUIT Vcc +5.0 Vdc Coax· • 950 ±1.0% 950 ±1.0% 390 ±5.0% C2 14 Pulse Generator B C1 C 11 MMD6150 9 or Equiv 50 Duty Cycle = 50% -= RO RO D 8 MMD7000 or Equiv 6 fTog = 10 MHz min CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. "The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm Impedance. The 9S0-ohm resistor and and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equ ivalent . ... A load is connected to each output during the test. VOLTAGE WAVEFORMS AND DEFINITIONS TPin t+ t- Pulse V (f Tog test) PRF = 10 MHz Pulse Z (t'pd test) PRF = 1.0 MHz TP out A TP out B TP out C Ir~~~~~~~~~~~~~~"""d-- TP out 0 ~::;;:================-- ____ __________ ~ 2.4 V min -'~ 0.4 V max MC5400/7400 series 4-BIT BINARY COUNTER MC5493L* MC7493L,P* This 4-bit counter is comprised of two sections: a divide-by-two section and a divide-by-eight section. These sections can be used independently. or can be connected to provide the divide·by-16 function. All outputs of the counter can be set to the logic "0" state by applying a logic "1" level to the Reset input. TRUTH TABLE Connect ao to C1 • OUTPUT COUNT Q3 Q2 Q1 QO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Input Loading Factor RO.= 1 CO,Cl =2 V CC =Pin5 Gnd = Pin 10 Output Loading Factor = 10 Total Power Dissipation = 160 mW typ/pkg Propagation Delay Time = 20 ns typ/bit TYPICAL FLIP·FLOP RESET GATE VCCo----.---------, 1k VCCo----------.--------~--------------_.------~r_--, 5.6 k 4k 5.6 k 3k RO RO . Clock O--+--+-.....- ....----1I--.....-~ 3.2 k Gndo---------~~~ ·L suffix = TO-116 ceramic dual in~line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 60S). 4k 1.4k 100 --.-_ .. :s: ELECTRICAL CHARACTERISTICS n Test procedures are shown for only one ~w input of the reset gate. The other input is tested in the same manner. r- l :s: 01 9 n ..... 02 8 03 RD ~ w r"'-c 11 2T3 nO TEST CURRENT/VOLTAGE VALUES (All Temperatures) mA IOL Pin MC5493 Test Limits Input Forward Current Leakage Current Output Output Voltage Short-Circuit Current Output Voltage 00 01 02 03 Symbol Test RO CO (;1 , , Max Unit 'F 2 14 1 -1.6 -3.2 -3.2 RO CO C1 'R1 2 14 1 AO CO (;1 'R2 2 14 1 CD CD CD I CD I VOL 'SC VOH 12 VOL ISC VOH 9 VOL ISC VOH VOL 'SC ,VOH + ,, + Min, o to +70oC mAde 40 80 80 JlAdc 40 80 80 ,uAdc 1.0 mAde 1.0 mAde + + 0.4 -57 Vde mAde Vde 0.4 -57 -20 2.4 0.4 -57 -18 2.4 0.4 -57 -18 2.4 0.4 -57 -18 2.4 Vde V,L 0.4 -0.4 0.4 IOL IOH 2.4 2.4 VIHH J 5.5 5.5 .1 VRI Vth 1 VthO 4.5 4.5 2.0 0.8 2.0 0.8 0.4 -57 -18 2.4 J Vth L VCCl 0.7 4.5 0.8 4.75 5.25 V,L V,H VIHH VRI Vth 1 Vth 0 VCCl VCCH Vth L 2 14 1 :::J r::: CD c.. VCCH 1 5.5 1 10 10 10 + 3.10 10 10 + 2.3 mAde 12 Vde 2.3 1. 14 14 1 2.3 mAde Vde mAde Vde 10 2.3 8 2.3 11 , + 1 2.3 11 10 2.3.10.12 10 10 2.3.9.10 2.3 mAde Vde , Gnd 3,10 l' 1 12 , I Pulse 5 2 14 + Vdc V,H 1 Vde Vde mAde IOH -0.4 Vdc Vde mAde 1 ::to TEST CURRENTiVOLTAGE APPLIED TO PINS LISTED 8ELOW, Vde Vdc mAde Vdc Vde 11 , , -1.6 -3.2 -3.2 0.4 -57 -20 2.4 Min mAde A.' 8 16 Unit -57 -20 2.4 MC7493 Max + -20 2.4 16 MC7493 Test Limits -55 to +12SoC Under Characteristic MC5493 :::J Volts 2.3 ,. 10 2.3.8.10 10 10 2.3.10.11 10 Power ReqUirements (Total Device) Pow!'!r Supply Drain Pulse 1: CD IpO - I 46 I mAde I - I 53 Apply positive pulse prior to taking measurement to set the device in the desired state. Maintain Vth L voltage for measurement. I mAde JTVIH Vth L All input, power supply and ground voltages must be maintained between each test unless otherwise noted. 10 MC5493L, MC7493L,P (continued) SWITCHING TIME TEST CIRCUIT Vee +5.0 Vdc 950 ±.1.0% 400 MMD6150 or Equiv Pulse Generator Duty Cycle Q2 8 = 50% Q3 11 50 pF 1_ -=- MMD7000 or Equiv fTog::: 10 MHz min CT "" 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. "'The coax delays from input to scope and output to SCOpe must be matched. The scope must be terminated in 60~ohm impedance. The 950-ohm resistor and and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT-070-.50 or equivalent . .... A load is connected to each output during the test. VOLTAGE WAVEFORMS AND DEFINITIONS Clock Pulse A ~ 10 MHz PRF Pulse B PRF = 1.0 MHz QO Q1 Q2 OV -2.4 V min ====--__==__-===--__==_--+-===-__==__-===-__=='----+-==0.4 V max -2.4Vmin G~~N~O~====~---~~======~---~========~---~~======~---~~O.4vmax , - - - - - - - - - k - 2 . 4 V min =G7N~D~===========~-~------+~==~==========.---:;-,-------+~O.4 Q3 GND Vmax MC5400/7400 series 4-BIT SHIFT REGISTER MC5494 MC7494 Compatible with MC5400/7400 Series dovices. ADVANCE INFORMATION/PRODUCT PREVIEW* Soon to be announced, the MC5494/7494 4-bit shift register is constructed of four R-S master-slave flip-flops plus internal gating to accomplish right-shift or parallel-to-serial conversion. Right-shift operation is accomplished by entering serial data at the serial input prior to the positive transition of the clock pulse. Parallel operation is accomplished by first clearing all flip-flops and then setting the appropriate flip-flop(s) to the logic "1" state. The common clear input is independent of the clock input, and the separate preset inputs are independent of either clock or clear inputs. (~ Presets ____________________ ____________________ ~A~ 1A 2A 16 1B 2B 14 1C 3 2C 13 1D 4 ~, 2D 11 Preset 2 15 Preset 1 6 Q s Serial Input Clear Clock Q s s C o Clock Clock Clock R Clear 5. R Clear 5. 8 Clear 10 Vee = Pin 5 GND = Pin 12 Total Power Dissipation = 175 mW typ/pkg Propagation Delay Time (Clock to Output) = 25 ns typ Maximum Toggle Frequency = 10 MHz "'Products to be introduced 9 Output B A R Clear MC5400/7400 series 4-BIT SHIFT REGISTER MC5495· MC7495 Add Suffix F for T0-86 ceramic package (Case 607). Suffix L for TO·116 ceramic package (Case 632). Suffix P for To-116 plastic package (Case 605) MC7495 only. The MC5495/7495 performs as a right-shift or left-shift register, Input Loading Factor: Mode Control = 2 Other Inputs"'" 1 or a parallel-in/parallel-aut storage register. depending on the logic level present at the Mode Control input. The device consists of R-S master-slave flip-flops, high and Output Loading Factor = 10 Total Power Dissipation = 250 mW typ/pkg Propagation Delay Time"" 25 ns typ low-level gates and inverters interconnected as shown by the logic diagram. • Maximum Shift Frequency"" 31 MHz typ Vee = Pin 14 Gnd= Pin Serial I "put Os 7 1 2 CpO 6 Mode Control Clock 2 Left Shift Clock 1 Right Shift 8 9 13 00 10 03 3 Cpl LOW-LEVEL "AND-OR-INVERT" GATE WITH INVERTER DRIVER r---------------~----~--------ovcc LOW-LEVEL INVERTER r---------~-----r----~-ovcc s '----Hot---<: R R·S MASTER-SLAVE fliP-flOP tOiode used only when input is connected to external point. HIGH-LEVEL "AND-OR" GATE r-------~------~------~~--~ovcc 4k 4k 4k a 1.5k so-t---~:.l :t: Diode used only when input is connected to external point. Clock 0--+----+------------+----' MC5495, MC7495 (continued) ELECTRICAL CHARACTERISTICS Vee"" Pin 14 Gnd = Pin 7 TEST CURRENT/VOLTAGE VALUES (All Temperatures) rnA 10L MCS495 16 MC7496 16 Volts 10H V,L V,H -0.4 -0.4 0.4 0.4 2.4 2.4 VIHH VR V t h1 VthO 0.8 0.8 5.5 4.5 2.0 5.5 I 4.5 I 2.0 I Vee VCCL VCCH 5.0 5.0 4.5 5.5 4.75 5.25 MC5495TestLimits MC7495TestLimits Pin Characteristic Input Forward Current leakage Current Symbol -56 to +126oC Un... Toot Min Max Unit 'F -1.6 mAde 'Rl -3.2 -1.6 -1.6 40 "Adc ~ 1 2 3 4 5 6 8 ~ 9 'R2 Mo. Unit - -1.6 mAde - -3.2 -1.6 -1.6 40 #-lAde ~ j j 80 40 40 1.0 mAde TEST CURRENT/VOL TAGE APPLIED TO PINS LISTED BELOW: Oto +700c Min -- jj ~ 10L 10H V,L V,H V,HH VR Vthl VthO Vee VCCL VeeH 14 VOL VOH Short-Circuit Current lse t 10 11 12 13 13 10 11 12 13 13 10 11 12 13 Power Requirements Power Supply Orain 'PO " 0.' j j + B 6 j 80 40 .0 1.0 mAde 0.' ~ ~ Vdc 2.' ~ -18 Vdc ~ ~ Vde 2.' ~ ~ -57 mAde -18 ~ j 6 6 tOnly one output should be shorted at a time. mAde - I. 10 11 12 '3 13 mAde I. 2.3,4,5 1,6 1,6 1,6 10 11 12 13 13 - 3.4,5.6 - 2,3.4,5 • 2,3,4.5.6 I. ~ ~ + 7 6,7 7 8 ~ 2,3.4,5 -57 mAde 82 + 7 6,7 7 7 6,7 j + + + + + + 72 1 6,7 7 6,7 I. j j Vdc 6.7 7 6 Output Output Voltage Pulse Gnd 1 + 8 ~ I. + + I. B,9 7 ~ 7 ~ 7,10 7,11 7,12 7.13 MC5495, MC7495 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vcc Coax· 400 MMD6150 or Equiv t+ = t- ~ 24 os (10% to 90%) 50 MM07000 or Equiv Two pulse generators are required and must be slaved together to provide the waveforms shown. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. SWITCHING TIMES PRF = A 500 kHz B PRF = 1.0 MHz c -<+-------------+~~~~----_Y~----------~~----------L---------------~OV ------LT-----t~~L------t~--~----_i~--~------~--~------~--OV ~----------'\:-.-------------- 2.4 V min =======~/______________~======-______________~.=======g.~dV max RECOMMENDED SETUP AND RELEASE TIMES FOR MODE CONTROL INPUT D Serial Input E Clock 1 ,----y------------------------------- 3.0 V 1.5 V ------~------~----------------~------~----------------------------OV ,---,---------------3.0 V Clock 2 1.5 V ______________+-______Lt______ ts etup ~~~------------L-------J---~--------OV "0" , - - - - - - - - - - - 3.0 V G M ode Control ________--'______________...L~----~--~------''----------------L.-------------- 0 V ts etup " ' " H Output QO / \ tRelease "1" /r---_____\----2.4 V m;n ===========:______________~======__________________'~====~.~dV max • MC5495, MC7495 (continued) SWITCHING TIME TEST PROCEDURES (T A ~ 25°C) (Letters shown in test columns refer to waveforms.) TEST Propagation Delay Time • tpd+ Clock to Output tpd_ Maximum Shift Frequency Setup Time, Serial or Parallel Inputs MC Pin 6 C2 Pin 8 C1 Pin 9 QO, Q1, Q2 or Q3 Pin 13,12,11,or 10 0.4 V Gnd B C - 26 35 ns - A 2.4 V B Gnd C - 26 35 ns A - 0.4 V Gnd B C - 26 35 ns - A 2.4 V B Gnd C - 26 35 ns f max Tasted during tpd tests. Clock 2 ReleaseTime, ModeControl tRelease Clock 1 Clock 2 20 31 - MHz - 10 20 ns - -10 0 ns QO OPO tsetup Unit - tHold Setup Time, Mode Control Clock 1 Min Typ Max A tsetup Hold Time, Serial or Parallel Inputs VALUE OUTPUT INPUT Os 0PO, OP1, 0p2 or OP3 SYMBOL Pin 1 Pin 2, 3, 4, or 5 D 0.4 V G 0.4 V E H - - 20 ns D 0.4 V G F 0.4 V H - - 20 ns D 0.4 V G 0.4 V E H - - 10 ns D 0.4 V G F 0.4 V H - - 10 ns OPERATING CHARACTERISTICS Data Input FIGURE 1 - SERIAL RIGHT·SHIFT OPERATION Logic "0" For serial right-shift operation, the Mode Control input is held at a logic "0". This enables the "A u AND gates and inhibits the "B" gates, coupling the output of each flip-flop to the input of the succeeding flip-flop, and inhibiting all four parallel data inputs and Clock 2. Serial data is entered at Os and the clock pulse applied at Clock 1. The input information shifts one output to the right on each negative edge of the clock pulse. ~ DS 00 ~Data Output ~ C1 01 L09iC"1"~ Clock PUlse~ 2 3 4 I Clock Pulse Data Output MC· FIGURE 2 - SERIAL LEFT-SHIFT OPERATION 12 C2 DpO Dp1 Dp2 I~~~t~ Dp3 02 ~ 03~ For seria~ left-shift operation, the Mode Control input is held at a logic "1". This enables the "B" ANO gates and inhibits the "A" ANO gates, decoupling the output of each flip-flop from the input o~ the succeedin9 flip-flop. The output of each flip-flop must be externally connected to the parallel data input of the preceding flip-flOp. Serial data is entered at input Op3 and the clock pulse applied at Clock 2. A parallel-in/parallel-out storage register is obtained by applying a logic "1" level to the Mode Control input, applying parallel data at inputs 0PO, 0P1, OP2, and OP3, and a clock pulse at Clock 2. In either mode, information is transferred to the outputs of the device on the negative transition of the clock pulse. The Mode Control must be in a logic "0" state 20 ns (tsetup "0") prior to the negative transition of the Clock 1 pulse, and in a logic "1" state 20 ns ItSetup "1") prior to the negative transition of the Clock 2 pulse. The Mode control must also be in a logic "0" state 10 ns (tAelease "0") prior to the positive transition of the Clock 2 pulse, and in a logic "1" state 10 ns (tRelease "1") prior to the positive transition of the Clock 1 pulse. Clock 1 must be high when the Mode Control goes from high to low. Clock 2 must be high when the Mode Control goes from low to high. MC5495, MC7495 (continued) TYPICAL APPLICATION These diagrams show the external gating and connections required for a divide-by-N counter. When the MC549517495 is operated in the serial mode, a 2-input NAND gate is the only gating required for all odd functions; a single inverter is sufficient for all even functions. 13 DS MC C1 C2 DpO Dp1 Dp2 Dp3 DIVIDE-BY-8 03 10 MC5400/7400 series 5-BIT SHIFT REGISTER MC5496 MC7496 ADVANCE INFORMATION Soon to be announced, the MC5496/7496 5-bit shift register is constructed of five R-S master-slave flip-flops plus internal gating to accomplish.serial-to-parallel or parallel-to-serial conversion, and parallel-in/parallel-out or serial-in/serial-out operation. Right-shift operation is accomplished by entering serial data at the serial input prior to the positive transition of clock pulse. The common clear input is independent of the clock, and the separate preset inputs are independent of the clock or clear inputs. The clear input must be at a logic "1" level and the preset input must be at a logic "0" level when clocking occurs. Preset A 2 Preset Enable Preset B 3 Preset C 4 ~ ~ ~ ~ 16 14 13 11 10 SQ---------+-----f-----i-+---+--+.....---i---+--1--+----1h Q s s B R 9 Clear Clear s c Q E Clock Q R s o Clock Clock Clock Preset E 7 ~ A Serial Input Preset D 6 Clear 1 Clear 16 Vee:; Pin 5 GND"" Pin 12 Total Power Dissipation = 240 mW typ/pkg Propagation Delay Time (Clock to Output) "" 25 ns typ Maximum Toggle Frequency"" 10 MHz Clock Q R Clear R Clear '\ DUAL J-K FLIP-FLOP MC5400/7400 series '------------' MC54107L* MC74107P,L* This negative-edge-clocked dual J-K flip-flop operates on the masterslave principle, The device is quite useful for simple registers and counters where multiple J and K inputs are not required_ J8'y5 CTIiCK 9 0. K 11 RESET tn 6 10 J1D3 CLOCK 12 K RESET 4 K Q 0 0 1 0 1 an 0 1 1 _ a tn+1 J LOGIC DIAGRAM (1/2 OF DEVICE SHOWN) 0 1 o.n 2 a 13 6 5 t--=:::"'-I~10 Input Loading Factor: 0. RESET J, K = 1 RESET, CLOCK = 2 Output Loading Factor = 10 K 11 8 J Total Power Dissipation"" 80 mW typ/pkg Propagation Delay Time Operating Frequency = 30 ns typ = 15 MHz typ ·L suffix = TO-116 ceramic package (Case 632) P suffix = TO-116 plastic package (Ca.. 605) See General Information section for package outline dimensions. 1/2 OF CIRCUIT SHOWN .-----~~--------~----------~--------~------._-------------o14 VCC a 50---+--" +--......- - - _ 0 6 ~-------4----------~-----+-r--------~--------4_----+_0GNO L-~--------------------~~.----o10 RESET 1 ....-----08 K MC54107L, MC74107P,L (continued) OPERATING CHARACTERISTICS • Since no charge storage is involved in this flip,-flop, rise and fall Data must be applied to the J-K inputs while the clock is low. When the clock input goes to the positive logic "'" state, the data at the J and K inputs is transferred to the master section, where it is stored until the clock changes to the positive logic "0" state. Data at the J and K inputs must not be changed while the clock is as '.0 jJS will not adversely affect the operation of the flip· flop. The clock pulse need only be wide enough to allow the data to senle in the master section. This time, which is the setup time for high. When the clock returns to the positive logic "0" state, infor- a logic "1", is 20 ns minimum. mation in the master section is transferred to the slave section. Application of a logic "0" to the RESET input will force the output to the logic "'" state. The RESET input overrides the clock. Transistors QA have been added to the standard flip-flop circuit to protect the device against negative clock transients. This addition prevents both outputs from changing to the logic "I" state when transients in excess of -2.0 V appear at the clock. o times are not important to its operation. Clock fall times as long SWITCHING TIME TEST CIRCUIT Vee +5.0 V 400 PULSE GENERATOR MM06150 or Equiv. 50 t-:::: t+~ f 5.0 ns = 10 MHz for waveform A 1.0 MHz for waveforms Band C r Two pulse gene.rators are required and must be slaved together for tsd tests;. • The coax delays from input to scope and Ol,.ltput to scope must be matched. The scope must be terminated in 50-ohm impe-d~nce. 'The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equfvalent . •• A load is connected to each output during the test. CT == 15 PF ::: total paraSitic capacitance, whi'ch inciudes probe, wiring, and load capacitances. -, MMq7000 or Equiv. MC54107L, MC74107P,L (continued) TEST PROCEDURES (Letters shown in test columns refer to waveforms.) INPUT TEST SYMBOL Q Q C J, K R 2.4 V t t Toggle Frequency fTog A A Turn-On Delay LIMITS Min Max Unit 10 - MHz n, n, n, n, tpd_ B B 2.4 V 0 0 10 50 Turn-Off Delay tpd+ B B 2.4 V E E 10 50 Turn-On Delay tsd- B B C F - - 50 Turn-Off Delay tsd+ B B C - G - 50 Enable Voltage VEN B 2.0 V 2.4 V t t t - - Inhibit Voltage VINH B 0.8 V 2.4 V :j: :j: :j: - - tOutput shall toggle with each input pulse. t Output shaU NOT toggle. VOLTAGE WAVEFORMS AND DEFINITIONS A.B J./ TPin 1---20 2.4 V "\ n' min-I\. 1.5V 0.4 V GND 25 ns min 5000' C 2.4 V TPin 1.5 V 1.5)1\ FiEsEi' 0.4 V GND 0 TP out GND 2.4 V min !---tpd_.~.5V 0.4 V max 2.4 Vmin E f-tPdjt, 1.1; V TP out 0.4 V max GND 2.4 V min F .~.5V TPout -t,d_ GND --1/ -t,d+ G TP out GND _ _ _ _ _ _ _ _ 0 .4 V max 2 .4Vmin ~-----_,,-..:~========~7==11.=5=V======0.4 V max • -- ELECTRICAL CHARACTERISTICS s (") Test procedures are shown for only one flip·flop. The other flip·flop is tested in C1'I -1=00 .... o the same manner. J ...... 8~5 r C'LOcK9~ 6 3 rnA 2 MC54107 MC74107 Pin MC54107 Test Limits MC741 07 Test Limits 55 to +125°C to +70°C Under Symbol Test Min Max Unit Min Max Unit Characteristic - 8 11 10 9 - -1. 6 -1. 6 -3.2 -3.2 mAde Reset Clock J 8 - 40 40 80 80 IlAde - ~ -- mAdc Forward Current J K Leakage Current K Reset IF IRI 10 9 Clock J K Reset 11 -~ ~ -1. 6 -1. 6 -3.2 -3.2 mAde 40 40 80 80 IlAdc - 1.0 mAde - - ~ ~ IOH -0.4 0.4 2.4 5.5 4.5 2.0 0.8 5.0 4.5 5.5 -1=00 .... o 16 -0.4 0.4 2.4 5·5 4.5 2.0 0.8 5.0 4.75 5.25 ~." IOL Short-Circuit Current --- V1H V1HH VR - 8 11 10 9 - - - - - - 10 - - - 8 11 10 9 - - - - - V.h1 - - - - - - - - - - - 10 10 9,10 9,10 8,9 2,3,14 - - - - - - - - 8 11 10 9 - - - 10 - 10 - - - ~ VOL 5 6 - 0.4 0.4 Vdc Vdc - 0.4 0.4 Vdc Vdc 5 6 - - V OH 5 6 2.4 2.4 - Vde Vdc 2.4 2.4 - Vdc Vdc - 5 6 - - - ISC 5 6 -20 -20 -57 -57 mAde mAdc -18 -18 -57 -57 mAde mAde - - - 8,9,11 8,9,11 - - - - - IpD 14 14 - - 32 32 mAde mAde - 32 32 mAde mAde - -- - - - - - ------ Vcc - ~ ! ! V. hO -- Power Requirements (Total Device) Power Supply Drain V1L - Output Output Voltage IOH 1.0 Clock VCCH ...... r- TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BElOW: - 8 11 ...... 16 10 9 IR2 s (") IOL o Input TEST CURRENT /VOLTAGE VALUES (All Temperatures) Volts V1L V1H V1HH VR V.h 1 V.hO VCC VCCL - - - 10 - - VCCL VCCH ** Gnd - 14 5 ~ 6 7' 7' - 7' - 14 - -- - - - ~ 14 c [ 7' - 7,9,10* 7,9** 7,8,9 , 7,8,10,11 - 7,9,10* 79* ' 7,8,9 '" 7,8,10,11 , ! 10 14 14 - - - 14 14 - 6 - - - 14 14 6 5,7* - 6,7,10* - 14 14 - - 7,10,13 7 - - - - - - - 6 - 2,6 ~ s· 10 10 8 .... 7,8,9,11* 7,8,9,11* 7,8,9,11* 7,8,9,11 * "'Ground inputs to flip-flop not under test. "''''Momentarily ground pin prior to taking measurement to set flip-flop in the desired state. (If pin is also in another column, the pin must be returned to that voltage or current for measurement.) tTest duration ~ 100 ms. TUnder normal operating conditions this current is negative. This test guarantees that positive leakage current will not exceed the limit shown. MC5400/7400 series MONOSTABLE MULTIVIBRATOR MCS4121F,L* MC74121F,L,P* This monostable multivibrator produces accurate output pulses from either edge of an input pulse. The output pulse widths may be varied from 40 nanoseconds to 40 seconds by using appropriate external timing components. Internal compensation provides pulse width stability of better than ex +,/- Sf lot Al A2 ~~ 1.0% with variation of Vee and ambient temperature. In most applications, overall stability will be determined by the accuracy of the external components. Inputs A 1 and A2 trigger on the negative·going edge of the input pulse, and input B triggers on the positive·going edge . • RX ~~ 2k Input Loading Factor"" 1 Output Loading Factor"" 1 a Total Power Dissipation = 90 mW typ/pkg (50% duty cyc'e) ~6Q B 5 ~1 Q Vee = Pin 14 GND"" Pin 7 TRUTH TABLE tn INPUT tn+1 INPUT OUTPUT AI A2 B AI A2 B 1 0 1 1 1 0 1 X X 0 0 1 X X 0 0 X X 1 1 X 0 0 0 1 1 1 1 0 0 0 X 0 X, 1 1 0 1 1 0 0 X 0 1 1 0 X X X 0 0 0 X 1 X 1 1 0 X X 1 1 1 X 0 1 0 0 1 1 1 1 0 0 1 1 0 0 Inhibit Inhibit Inhibit Triggering Triggering Triggering Triggering Inhibit Inhibit Inhib1t Inhibit Inhibit Inhibit X =' Don't care tn = Time period prior to input transition tn+1 = Time period following input transition ·F suffix = T0-86 ceramic flat package (Case 607). L suftix = TO-116 ceramic dual in-line package (Case 632), P suffix = TO-116 plastic dual in-line package (Case 605). • ELECTRICAL CHARACTERISTICS s: (") Test procedures are shown for only one A input. ... (.TI The other A input is tested in the +:0- same manner. ... N s: (") "N .... ~ ... 2 k A13~ --06 n-O Q A24~ ::J ~. ::J TEST CURRENT/VOLTAGE VALUES (All Temperatures) B 5 f---o1 rnA Q C Volts CD 0.. VCCH Pin Under Characteristic T." Symbol MC54121 Test Limits -55 to +12SoC Min input Forward Current 'F Leakage Current 'R1 3 5 2.4 VOH -20 'SC Power Requirements Power Supply Drain Unit I -1.6 mAde mAde 40 80 1.0 1.0 0.4 VOL Short-Circuit Current Max -3.2 IR2 Output Output Voltage I -20 14 14 IpO I Max -1.6 -3.2 .u Ade 5.25 Unit = V,L I V,H mAde mAde I V,HH I VR Vth 1 Vth 0 Vee VCCl VCCH Gnd 4 3,4 14 14 6",7 4,5,7 7 pAde 5,7 .uAdc IlA de 3,4 14 14 mAde mAde 1.0 1.0 mAde mAde 3,4 14 14 4,5,7 7 Vdc 2.4 -55 -18 -18 25 40 mAde mAde 0.4 Vdc -55 -55 mAde mAde 9,14 14 1,3,4,5,7 3,4,5,6,7,10,11" .. 25 40 mAde mAde 9,14 9,14 3,4,7 3,4,7 Vdc Switching Parameters (ex IOH 10L 40 80 Vdc r -55 5.5 MC74121 MC74121 Test limits o to +70 o C Min mAde mAde - MC54121 6 Pulse In 80 pF unless otherwise I 3,4,5 14 3,4,5 14 7,11 Pulse Out - noted.) Turn-Off Delay - A to Q 6 6 tpd+ B to Q Turn-On Delay - A to Q 8 to Q Output Pulse Witdth tpd- 70# 55# 80# 65# PW With Internal Timing Resistor With eX"" 0 With RX = 10 kH, Cx "" 100 pF RX'" 10kn, Cx = 1.01lF Minimum Duration of Trigger Pulse 70'lf 55# 80# 65# 5,1 tHold I + 5,1 "Momentarily ground this pin before taking measurement . ..... Pin 10 should be grounded after pin 11. #Tested only at 250 C. 70# 20.::t" 600# 6.0# 150# 50# 800# 8.0# 50# n, t 70# 20# 600# 6.0# 150# 50# 800# 8.0# 50# 4,5 9,14 9,14 4,5 9,14 9,14 3,4 3,4 1 "' t + + 9,14 9,14 14 14 3,4,7 9,14 3,4,7 + MC54121, MC74121 (continued) TEST CIRCUIT AND VOLTAGE WAVEfORMS r-----------, I vee I I Pulse eX IW~~ I Test LC~c~~__ r------I RX 10k Vee I I I I I __J 10 9 400 11 r+--~_;, I 2k MMD6150 or Equiv PRF =:: PW -= t+ =. t- =. 1.0 MHz 50 ns (1.5 V·points) 50 MMD7000 or Equiv 6.0 ns 12 ns L _ _ _ _ _ _ _ _ _ _ _ _ --' The coax delays from input to scope and output to scope must be marched. The scope must be terminated In 50-ohm Impedance, The 9SO-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. CT = 15 pF = total parasitic capacitance. which includes probe, wiring, and load capacitances. OUTPUT PULSE WIDTH SWITCHING TIMES TPin B --f.J= r----t±con;;;z--3.0 V .5 V (I nvert for A1,A2) ==!....--OV 3.0 V OV tHold ~-------:'2.4 V TP out TP out Q Q ,----,----:.2.4 V ,,0.4 V ===I==========~~.6 V ------t-----------r-----GND ----+"--,---------:.2.4 V TP out Q _____+---.:+=========="0.4 :'2.4 V TP out Q GND V APPLICATIONS INFORMATION 1.2 vOlts: Internal latching circuitry provides for a typical noise immunity of 1.5 volts on the Vee line. During the active state, the outputs are independent of further transitions on the inputs and depend only on the external timing components. With no external timing components and pin 9 connected to VCC (pins 10 and 11 left open), an output pulse of Inputs A 1 and;.A2 are' negativ'e-edge-triggered ar:-d will trigger the monos table mu Itivibrator into the' active state when either or both go low while B is high. The B ~nput will trigge~ the one-shot when B goes hjgh whi!.e .either· A or B i-s low. Triggering occurs at a particular vortage leve~.and is independent of the input pulse transition time. The Schmitt-trigger capability of th.e B input can be used to obtain level detection and t~ process relati,vely s~ow leading edges. Jitter-free triggering is obtai ned with transition times as slow as 1.0 volt/second, providing the circuit with ~ typical noise ;mmunity of approximately 30 nanoseconds is obtained. An external timing capacitor connect~ between pins 10 and 11 wjll extend the pulse width. Accurate repeatable'pulse wfdth'may be obtained by leaving pin 9 open and connecting an external resistor between pin 11 and VCC. This resistor should be at least 1.4 kilohms and may be as large as 40 kilohms for the MC74121 and 30 kilohms for the MC54121. The timing capacitor may be as large as 1000/'F. Within these limits, the output pulse width is given by: PW = CXRX loge 2. • MC54121, MC74121 (continued) FIGURE 4 - OUTPUT PULSE WIDTH versus EXTERNAL TIMING RESISTOR VALUE FIGURE 1 - SCHMITT TRIGGER THRESHOLD VOLTAGE versus TEMPERATUR E ~o 1.B 1.7 ~ w Cl « 1.6 f- ..J .. o > o ..J o 10 m 5 1.5 1.4 "" '" ~ ~ '" W 0: J: f- 1.0m 5 .............. ~e-GOin -55 b ;: ~e-Goinlg Thresrold 1001'5 .. .. o 25 75 50 100 125 I::l 0: +10 > 0: f- +5.0 '"w iii 0: ...J « Z 0: W fZ ..-""1 ...-Y 1.01'5 100 pF Cx ..,.... ....,.... .....- ..,.... V ,.,..- ...... ,.,..- V Cx - 10 pF +15 « o V 5 100 n s FIGURE 2 -INTERNAL TIMING RESISTOR VARIATION versus TEMPERATUR E f- ~ .......r--- I::l t ..-""1 V ..,.... V o ~ Z o /' Cx = 1000 pF w ~ ::l -25 V ......r Cx - 0.01 jJF TA. AMBIENT TEMPERATURE (oC) I ..,.... V V 1.3 1.2 Cx = 0.1 jJF V Thres1.o'd J: '- J: 1.0jJF =Cx o -5.0 -55 f-.-- -- o -25 V / / / 10 n 5 1.0 3.0 5.07.0 10 30 ,./ 25 75 50 100 125 TA. AMBIENT TEMPERATURE (oC) FIGURE 5 - OUTPUT PULSE WIDTH versus EXTERNAL CAPACITANCE J: l- FIGURE 3 - OUTPUT PULSE WIDTH VARIATION versus TEMPERATUR E ~ z 0 ;:: «. 0: « > ~ cJ = 60 pl +0.25 _RX=10k!l TA = +25 0 C .. .. w J: l- e ;: w e +0.50 0 -0.25 '" ::l ...J / / / ~ ::l I::l V I::l :/ I"'-pw o = 420 ns 5.25 5.5 ~. 11. -0.50 4.25 4.5 4.75 5.0 5.75 VCC.SUPPLY VOLTAGE (VOLTS) 50 70 100 RX. TIMING RESISTOR VALUE (k!l) 6.0 Cx. TIMING CAPACITOR VALUE MC5400/7400 series BCD TO ONE-Of-TEN DECODER/DRIVERS MCS414SL • MC7414SL,P-lC MCS44SL • MC744SL,P-lC 1 C 13 D 12 These devices are intended for use as drivers for indicators or relays, rather than drivers for MTTl logic gates, as is the case with the MC5442/7 442, which isfunctionally identical. The output transistors of these devices are capable of sinking 80 mA, and have breakdown voltages of 30 V (MC5445/7445) and 15 V (MC54145/74145). The outputs are suitable for open-collector logic applications, and are compatible for fnterfacing with most MOS integrated circuits. Since full decoding is included, all outputs remain off for nonBCD inputs 0.0 2 (11 3 0.2 4 0.3 5 0.4 6 0.5 7 0.6 9 0.7 10 (1S 11 (19 Total Power Dissipation = 215 mW typ/pkg Propagation Delay Time::;::: 50 ns max Vee"" Pfn 16 GND= Pin 8 INPUTS D C 0 0 0 0 0 0 0 0 0 1 0 "I 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 OUTPUTS B A 0 0 0 1 1 0 09 0 0 0 1 1 0 0 1 0 O. 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 • L suffix '7' l6-pin dual in-Jin~ ceramic package (Case E?2c;Jl. P suffix"" l6-pln duel in-line plastic package (Case 612). QS 1 1 1 1 1 1 1 1 0 .1 1 1 1 1 1 1 07 Q6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 05 04 03 Q2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 01 00 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • T 3: ELECTRICAL CHARACTERISTICS C') Test procedures are shown for only one ... CJ1 input and one output. Test other inputs ~ and outputs in the same manner according to the truth table. Test all input-output ./:110 tTl .r combinations according to the truth table. s: n ~ -.., 120 IslA 01 ~ 122 141 8 03 13 Ie 125 tTl r - 124 S 06 (") 07 CJ1 osf-2E 11 121 0 I 09 t 1 mA MC54451MC54145 Test Limits -55 to +125o C Pin Under Characteristic Input Forward Current Leakage Current Output Output Voltage MC5445/7445 MC54145/74145 Power Symbol 'F 'Rl IR2 VOL VCEX Tost Min 12 12 - 12 Max MC5445, MC54145 20 SO MC7445, MC74145 20 SO 'eEX 0.25 V,L V,H V,HH 0.4 2.4 5.5 0.25 0.4 2.4 5.5 MC7445/MC74145 Test Limits o to +70o C 12 - - 12 - - - 16 16 - - - 12 - - - S S S - - - - 12,13,14,15 12,13,14,15 16 16 - - - - 12,13,14,15 12,13,14,15 - - - 16 16 8 S S 8 - - - - - - - 16 8,12,13,14,15 12,13,14 12,13,14 - - - - 16 16 - - - S S mAde -1.6 40 1.0 mAde .uAdc - - - 0.9 0.4 - 0.9 0.4 - 1 1 - - - 30 15 Vdc Vdc Vdc Vdc - 70 mAde - 1 1 - - - 16 Requirements (Total Devicol Povver Supply Drain IpO Switching Parameters Turn-On Delay Turn-Off Delay - C. #Tested only at 25 u - - Pulse In 'p-3 :=J[>-4 :=J[>-10 [14) [7) [8) [2) 1 2 = J [ > -11 [1) [3) 13 Input Loading Factor::::; 2 Output Loading Factor = 10 Total Power Dissipation = 225 mW typ/pkg Vee GND = Pin = Pin 14 [4) 7 [11) Numbers at ends of terminals represent pin numbers for devices in the dual in-line package. Numbers in brackets represent pin numbers for devices in the flat package. SWITCHING TIME TEST CIRCUIT AND WAVEFORMS TP out TPin 84.2 )-I--'---+--,---1~~VVIr---<>2.6 V 5k PRF = 1.0 MHz PW= lOOns t+ = t- = 5.0 ns 5 kG and 30 pF include jig and scope. ·F suffix = TO-S6 ceramic flat package (Cass 607). L suffix =.TO-116 ceramic dual In-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605). ~ 3'OV 1.5 V tpd+~ ~ TPout~1.5V ' r-tP.dd-- ~ OV • ELECTRICAL CHARACTERISTICS s: n Test procedures are shown for only one 00 gate. The other gates are tested in the same manner. Pin numbers indicated are for devices in dual in-line packages only. To test devices in the flat package, substitute pin numbers shown in brackets on the logic diagram on the first page of this data sheet. ~ ..... "T1 ~ r s: C') " N .j:Io ...a "T1 I :=L>-3 :=L>-4 ~ :=:)[)-10 12=:)[)-11 @Test Temperature 13 MC8241 { MC7241 { Symbol I Under Test MC8241 Test Limits -5S0C Min I Max +25 0 C I Min I Max lin VIL VIH VF VR Vee VCCL VCCH -550C 16 4.5 5.0 4.75 5.25 10 0.8 0.8 0.8 0.4 16 16 -0.5 -0.5 -0.5 2.0 +25 o C 5.0 5.0 5.0 4.75 4.75 5.25 5.25 -0.5 -0.5 -0.5 0.4 0.4 0.4 4.5 4.5 16 16 16 2.0 2.0 2.0 4.75 5.25 10 2.0 2.0 0.4 0.4 5.0 5.0 4.75 4.75 5.25 oOe +250 C MC7241 Test Limits oOe +12S Q C I Min I I Unit Min -3.2 -3.2 mAde mAde -0.1 50 50 /lAde /lAde Max +25 0 C !:t. 10H +750 C Characteristic 0o ;j Volts 10L +125 0 C Pin " TEST eURRENTIVOLTAGE VALUE mA 0.8 0.8 0.8 4.5 4.5 4.5 ;j c m a. 5.25 TEST CURRENTNOl TAGE APPLIED TO PINS LISTED BELOW: +7S o C I Max I Min I Max I Min I Max 1 Unit 10L I 10H II;n I VIL I VIH I VF I VR I Vee I VeeL I VeeH I Gnd Input Forward Current IF leakage Current IR Breakdown Voltage Output Output Voltage Short Circuit Current -0.1 -0.1 -3.2 -3.2 50 50 -0.1 -0.1 -3.2 -3.2 - 50 50 1 -0.1 -0.1 6.0 6.0 BVin ~ VOH 0.4 2.6 2.6 I- 0.4 2.8 2.8 0.4 2.6 2.6 -70 mAde 57 mAde -0.1 -3.2 -3.2 -0.1 -0.1 50 50 -3.2 -3.2 50 50 6.0 6.0 0.4 Vde Vde Vde -0.1 50 50 Vde Vde -20 Ise -0.1 -3.2 -3.2 2.6 2.6 0.4 2.8 2.8 0.4 2.6 2.6 14 mAde mAde ,.Ade 14 14 2.7 1.7 Vde Vde 14 14 1.7 /lAde Vde 14 1.2 14 14 Vde Vde -20 -70 mAde 57 I Max mAde Typ 2,7 14 2.3.7 Power Requirements (Total Davk:el Power Supply Drain IpO Switching Parameters I 14 Typ I Max 14 Pulse In 11.6.7.8,13 Pulse Out Turn-On Delay tpd_ 10 10 14 2.7 Turn·Off Delay tpd+ 10 10 14 2.7 MC8200/MC7200 series QUAD EXCLUSIVE "NOR"GATE (Open Collector) MC8242F, L* MC7242F, L, P* ADVANCE INFORMATION/NEWPRODUCT This device contains four independent Exclusive NOR gates with open collector outputs which may be used to implement digital comparison functions. A four-bit comparison may be made by connecting the outputs together. 3 =". '2 + 1 • 2 Input Loading Factor = 2 Output Loading Factor = 1 a Total Power Dissipation = 170 mW typ/pkg Vee = Pin 14 [4] GND = Pin 7 [11] Numbers at ends of terminals represent pin numbers for devices in the dual in~line package. Numbers,i" brackets represent pin numbers for devices in the flat package. SV)lITCHING TIME TEST CIRCUIT AND WAVEFORMS TPin TP out Vee ~-3.0V 530 PULSE GENERATOR PRF = 1.0 MHz PW""100ns t+ = t- = 5.0 ns 84.2 )C>-'-'--+--'-+-......I--'lM,......-o 2.6 30 P l V 5k 5 kn and~ 30 pF include jig and scope . • F suffix L suffix P suffix = TO-S6 ceramic flat p.8ckag,e (Case 607). = TO·116 ceramic duar in-line package (Case 632). = TO-116 plastic dual in-I ina package (Case 605). "'"~~ ;~F.Pd~OV TPout~1.5V .~ s: (') ELECTRICAL CHARACTERISTICS Test procedures are shown for only one CO gate. The other gates are"tested in the same manner. Pin numbers indicated are for devices in dual in-line packages only. To test devices in the flat package, substitute N ~ "TI ~ pin numbers shown in brackets on the logic diagram on the first page of th is data sheet. r :=L>-3 :=L>-4 s: ..... (') ~ :=J[>-10 12=J[>. 11 N "TI rnA ! IOl Temperature -55°C MC8242 MC7242 +25 0 C 25 25 +12SoC 25 OoC 25 +2SoC 25 25 +7SoC lin I VIL - I 10 I VIH VF VR lIcc 0.8 2.0 0.4 5.0 0.8 0.8 2.0 0.4 4.5 45 2.0 2.0 0.4 0.4 45 5.0 5.0 2.0 0.4 2.0 0.4 4.5 45 0.8 10 I 0.8 0.8 Under ~~~~-4--~~~4---~~~ IOl Unit To" I;n I Vil I VIH Input Forward Current IF Leakage Current Breakdown Voltage Output Output Voltage Leakage Current IR I 1 2 45 5.0 VCCL 4.75 4.75 4.75 VCCH 8:J 5.25 525 :j' c 4.75 525 525 5.0 4.75 5.25 5.0 4.75 5.25 .-. CD 0.. TEST CURRENTiVOlTAGE APPLIED TO PINS LISTED BELOW, Pin Symbol ~ Volts @Test Characteristic r- TEST CURRENTiVOlTAGE VALUE 13 -0.1 1 -3.21- 0 . 1 -3.2 -0.1 -0.1 -3.2 -3.2 -0.1 -0.1 -3.2 -3.2 50 50 50 50 - 50 50 - - - - - - 0.4 OA 25 48 -1 1- - BVin 0.4 VOL 6.0 6.0 I - I - IOlK I VF VR I~I~I~I~ 14 -3.2 -32 -0.1 -0.1 -3.2 -3.2 -0.1 -0.1 -3.2 -3.2 mAde 50 50 _. 50 50 - 50 /.lAde J.lAdc 14 N 13 Vdc Vdc - Vdc Vdc 14 14 1) Vdc Vdc - 0.4 - - 25 J.lAdc - - - - mAde -0.1 mAde -0.1 ,u.Adc f.LAdc 6.0 6.0 - - - - - - 0.4 - - - 25 mAde - - - ns - - -W18 48 Max - 0.4 N mAde I 25 I Vdc Vdc 1.2 ~Adc V V 14 14 ~ ~4 Power Requirements (Total Device) Power Supply Drain IpO 141-1-1 - Switching Parameters Turn-On Delay tpd- Turn-Off Delay tpd+ !# 18 3 I - I - I 18 I M:x - ns 18 mAde I 7 ns I 7 INTEGRATED CIRCUITS MC9300jMC8300 SERIES MTTl MC9300/MC8300 SERIES COMPLEX FUNCTIONS INTEGRATED CIRCUITS INDEX MC9300, MC8300 MC9301, MC8301 MC9304, MC8304 MC8308 MC9309, MC8309 MC9310, MC8310 MC8311 MC9312, MC8312 MC9316, MC8316 MC9328, MC8328 MC9601, MC8601 • Universal 4-Bit Shift Register BCD-to-Decimal Decoder Dual Full Adder Dual 4-Bit Latch Dual 4-Channel Data Selector Presettable Decade Counter One-of-Sixteen Decoder 8-Channel Data Selector Presettable 4-Bit Binary Counter Dual 8-Bit Shift Register Retriggerable Monostable Multivibrator MC9300/MC8300 series UNIVERSAL 4-BIT SHIFT REGISTER MC9300L * MC8300L,P* This serial/parallel sh ift register consists of four fl ip-flops operated in the synchronous mode. Functions available are shift left, sh ift right, serial-to-serial, parallel-to-parallel, serial to-parallel, and parallel-to-serial conversion. This device operates on the positive-going edge of the clock pulse in both the serial and parallel mode. The device includes an internal clock buffer, input clamp diodes to reduce ringing, Q outputs for all four stages, Q output for the last stage, synchronous parallel entry, and an asychronous master reset. The J and R inputs are available, and may be tied together to produce a D input. Input Loading Factor J, K, MR, OpO, Dpl. Dp2,Dp3 = 1 PE ~ 2.3 Clock = 4 Output Loading Factor = 6 Total Power Dissipation = 300 mW typ/pkg Propagation Delay Time = 25 ns typ 4 6 5 Dpl DpO Dp3 Vee = PIN 16 GND= PIN 8 Clock 10 1203 1103 J 2 K 3 01 00 02 13 14 15 INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTl families MC9300 INPUT LOADING MC9300 OUTPUT LOADING FAMILY FACTOR FACTOR FAMILY MC9300 Me50D IVlC2100 MC3100 MC4300 MC5400 MC930 .. 1.0 1.06 0.7 0.7 1.0 1.0 2 (6.0 k ohm pullup) 8 (2.0 k ohm pullup) 6 6.4 4.25 3.6 4.65 4.65 5.6 MC8300 MC400 MG2000 MC3000 MC4000 MC7400 MC830· • Fan-Out Fan-Out =: = ·"'Due to logic "1" state drive limitations of the MDTL family. *L suffix P suffix = = 16-pin dual in-line ceramic package (Case 620). 16-pin dual in-line plastic package (Case 612). MC8300 INPUT LOADING FACTOR Fan-Out = Fan-Out = 1.0 1.0 0.6 0.7 1.0 1.0 2 (6.0 k ohm pullup) B (2.D k ohm pullup) MC8300 OUTPUT LOADING FACTOR 6 5.45 4.5 4.25 5.3 5.3 6.1 • • ELECTRICAL CHARACTERISTICS s: n e.g Test procedures are shown for only one parallel data input. Other parallel data inputs are tested in the same manner. "PI: Dpl up3 J Opo °P2 QO Ql 2 Further, test procedures are shown for only ~ one output. Complete testing according to the Functional Test Diagram. ~ Clock ~ ~ Q2 !2.0 _ Q3 ~ K 0.3 MR Temperature IOL1 .!.!..o r~ +250 C MC9300 +1250 C ODC +25o C MC8300 +7SoC Pin -55 0 C Characteristic Input Forward Current - Test Min Ma. Min Ma. Min Ma. Unit Min Ma. Min Ma. Min IFl 1 2 3 4 9 10 - -1.6 - -1.6 - -1.6 mAde - -1.6 - -1.6 - OPO PE Clock MR J IF2 K °PO PE Clock MR J IR - - - - ~ - ~ - -3.68 -6.4 - -3.68 -6.4 - -1.24 - -1.24 1 2 3 4 - 9 10 - -2.85 -4.95 1 2 - 60 ~ - 140 - 240 - - - - - ~ ~ - -2.85 -4.95 - 60 - - ~ I ~ I ~ I -3.68 -6.4 -1.24 mAde - -2.85 - -4.95 - 60 140 240 - - Vdc ~Adc -3.68 -6.4 - -1.41 - -1.41 ~ - ~ - 60 3 4 PE 9 10 1 2 - 3 4 9 10 - 12 12 0.4 0.4 - 0.4 0.4 - 0.4 0.4 Vdc Vdc - - 11 2.4 - 2.4 - 2.4 - - - - 75 - - MR VD J K OPO PE Clock - Output Output Voltage VOL VOH - - - 140 240 -1.5 j ~ - K ~ - OpO - ~ -3.68 -6.4 - Clock Clamp Voltage MC8300 Test Limits +7SoC +25o C OOc Symbol J - MC9300 Test Limits +12SoC +2SoC 9.6 9.6 9.6 9.6 9.6 9.6 Max 10 IOL2 IOH 7.44 7.44 7.44 8.5 8.5 8.5 -0.36 -0.36 -10 -0.36 -0.36 -0.36 -10 -0.36 - VIL VIH VF VR 0.80 0.90 0.80 2.0 1.7 0.4 0.4 0.4 0.45 4.5 4.5 4.5 4.5 4.5 4.5 0.85 0.85 0.85 1.4 1.9 1.8 1.6 0.45 0.45 s: Vcc VCCL VCCH 4.5 4.5 5.5 5.5 5.0 4.5 4.75 4.75 - 4.75 5.5 5.25 5.25 5.25 5.0 - n CO w o o nO ::J ~, TEST CURRENT NOLTAGE APPLIED TO PINS LISTED BELOW: Unit lOLl IOL2 IOH - - - 10 Pulse Vcc VCCL VCCH I VIL VIH VF VR - - - - 1 9 9 - 1 2 - ::J - -3.24 -5.65 ~ 140 240 - - - -3.24 -5.65 - 140 240 - -1.5 60 ~ - - -1.6 mAde ~ I ~ I ~ I -3.68 -6.4 - -1.41 mAde - -3.24 -5.65 60 - - - 0.45 0.45 - 0.45 0.45 - Vdc 2.4 - 2.4 - 2.4 - mAde - - - 80 - - j j }.LAde 140 240 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 12 - Vdc - - 11 - mAde - - - - Vdc j 0.45 Vdc 0.45 Vdc - - 1 2 3 4 9 10 1 9 9 - 9 9 - - - 9 10 - - 1 2 3 4 - - - - - 9 10 - - - - 1 2 3 - - - 4 4 - - 3 4 4,5,6,7,9 4,5,6,7,9 - 4,5,6,7,9 - - - - - 4 9 10 - - - 16 - Gnd CD 8 - I I I I I I 1 - - - - 16 - - - - 8 1 - - 16 16 - - - 8 - - - - - - - 16 1 16 - 1 8 16 - 1 8 - - - 16 - - - j - 8 j 8 Power Requirements (Total Devic;e) Power Supply Drain Pulse 1:-, c: 0. MR K Leakage Current ~O Volts @Tost J1 Under ~ TEST CURRENTNOLTAGE VALUE mA r.VIH L-....J_ VIL U100nsmin IpD .'6 - 1,8 I MC9300, MC8300 (continued) SWITCHING TIME TEST CIRCUIT 2.4V DpO 2 10 TPin PULSE GENERATOR 3 Clock R Dp2 00 15 14 01 13 02 12 03 11 0.3 MR t+ = t-S5.0 ns (1.0 V to 2.0 V points) PRF "" 2.0 MHz for all tests except PW and f sr' Three pulse generators are required and must be slaved together to provide the waveforms shown. * *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. CT = 15 P~ = total parasitic capacitance, which includes probe and wiring capacitances. SWITCHING TIME TEST PROCEDURES (T A = 25°C) (Letters shown in test columns refer to waveforms.) TEST PIN UNDER Pin 1 Pin 2 SYMBOL TEST MR J INPUT Pin 3 Pins 4, 5, 6 K DpO, Dpl, Dp2 Pin 7 Pin 9 Pin 10 PE OUTPUT Pin 12 VALUE Min Typ Max Unit Clock 03 Turn-Off Delay. Clock to 03 tpd+ 10,12 2.4 V 2.4V Gnd 2.4 V 2.4 V 2.4 V A B - 18 35 Turn-On Delay, Clock to 03 tpd_ 10,12 2.4 V 2.4 V Gnd 2.4 V 2.4 V 2.4 V A B - 25 45 ns Gnd 2.4 V 2.4 V 2.4V A B 15 25 - MHz - 13 35 ns Maximum Shift Rate fsr Minimum Clock Pulse Width PW 12 2.4 V 2.4 V Dp3 Tested during each of the above tests. ns Minimum Data InputSetupTime tsetup "1" (Serial or Para'lIel Inputs) tsetup "0" 7,12 F 2.4V Gnd 2.4 V C Gnd D E 0.. TEST CURRENTIVOLTAGE APPLIED TO PINS LISTED BELOW, Min Min C TEST CURRENT /VOLTAGE VALUES Volts VIH V, V. Vee VCCL VeeH V1HX ID Vil - - 16 - - - 16 - 16 16 - 8 8 - 8 8 - 8 16 1 2,8,14 16 1 2,8,14 - MC9301, MC8301 (continued) INPUT and OUTPUT LOADING FACTORS with to MTTL and MDTL families ,_act FAMILY MC9300 MC500 MC2100 MC3100 MC4300 MC5400 MC930' MC9301 INPUT LOADING FACTOR MC9301 OUTPUT LOADING FACTOR FAMILY 1.0 1.06 0.7 0.7 1.0 1.0 10 10.6 7.0 7.0 10 7.75 9.4 MCB300 MC400 MC2000 MC3000 MC4000 MC7400 MC830' Fan-Out = 2 (6.0 k ohm pullup) Fan-Out = 8 (2.0 k ohm pull up) MC8301 INPUT LOADING FACTOR MC8301 OUTPUT LOADING FACTOR 1.0 1.0 0.6 0.7 1.0 1.0 Fan-Out = 2 (6.0 k ohm pullup) Fan-Out = 8 (2.0 k ohm pull up) 10 9.0 6.0 7.4 10 8.75 10.8 "'Due to logic "1" state drive limitations of the MDTL family. SWITCHING TIME TEST CIRCUIT 2.4 V Coax Coax 950 ±.1.0% ~50 ±.1.0% A 50 B PRF = 1.0 MHz Wp PW = 100 ns t+ "" t- ~ 15 ns Amplitude = I 04 TP out 65 C 3.0 V D The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: r attenuatar probe. C08)C. shall be CT -070-50 Or equivalent. 06 07 08 09 -= CT"" 16 pF "" total parasitic capacitance, whlc"h includes probe, wiring, and load capacitances, VOLTAGE WAVEFORMS t- t+ 1,...----3.0 V ''---------------------------------------~'4_--~-------OV :========~==~t-----------------~--------------------+_----~~===SVOL Gnd tpd--+__----t • ~f MC9300/MC8300 series '\ DUAL FULL ADDER '----------- MC9304L* MC8304L,P* This device consists of two independent, high·speed, binary full adders, with complementary Sum outputs. Adder two has provisions for both active high and active low inputs. Carry In and Carry Out of adder two are com pie· mentary to those of adder one. These choices provide greater design flexibility and minimum package count. ADDER 1 INPUT OUTPUT Cin1 B1 Al c;;;;t1 51 51 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 l' 1 0 0 1 1 0 1 0 0 1 ~ Gnd "'" Pin A12 B13 Cin1 4 ~ H H 8 751 FULL ADDER 1 651 5.C out 1 8215 • Vee L A214 A2 FULL ADDER 2 ~ 1 L B213 Cin2 12 Gnd ~ = Pin 16 = Pin 8 H H 9 82 1052 11 Cout 2 ADDER 2 INPUT I nput Loading Factors: Adder 1: ~1, ~1, ~1 = 4 Adder 2: A2, B2, Cin2 = 4 A2, B2 = 1 Output Loading Factors: Adder 1: ~1 =7 51 = 10 51 = 9 Adder 2: C out2 = 7 52 = 9 52 = 10 Total Power Dissipation = 110 mW typ!pkg TYPICAL PROPAGATION DELAY TIMES (ns) TA = 25°C tpdINPUT tpd+ Cout S Cout S C in 8.0 - 8.0 - Al - 25 - 28 • L suffix = l6-pin dual In-line ceramic package (Case 620). P suffix = l6-pln dual in-line plastic package (Case 612), OUTPUT Cin 2 B2 A2 B2 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 .1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Cout 2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 52 82 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 3: ELECTRICAL CHARACTERISTICS (') Test procedures are shown for only one adder. The other adder is tested in the same manner. Output tests are shown for (0 W o .~ only one set of input conditions. To comADDER 1 plete testing. sequence through all input combinations according to the appropriate truth table. 2 Al eo 5 3 Bl S 7 3: (') CO ~ 4~6 14 1 Co 13 15 mA @Test Temperature lOll IOL2 lou IDL4 101.5 IOL6 10til IOH2 IOH3 11 S 9 12 MC9304 10 I -S5 +25°C +125°C 0( 1+2S c o Pin IL-~..t~~~~~~5'ti--Cf.:~~~~~~~~---t U~~~~+-~~+-~~+-~~4-~~4-~~ Forward Current IF1 -6.4 -6.4 -1.6 -1.6 I 12 13 14 15 In -6.4 1 -4.96 12 13 -4.96 I. -1.24 -1.24 -4.96 I 12 13 240 240 15 Leakage Current IR '0 I' 15 Clamp Voltage VD 60 240 I I'13 I. 15 Output Output Voltage VOL 0.' 9 10 II 9 10 11 V OH 9 10 II Power Requirements (Total DeYK') Power Supply Drain I ~D 16 r -6.4 -6.4 -1.6 -1.6 -6.4 -6.4 -6.4 -1.6 -1.6 -6.4 -4.96 -4.96 -1.24 -1.24 -4.96 -4.96 -4.96 -1.24 -1.24 -4.96 240 240 60 60 240 240 240 60 60 240 -6.4 -6.4 -1.6 -5.64 -1.41 -1.41 -5.64 -5.64 -5.64 -1.41 -1.41 -5.64 -5.64 mAd, -5.64 -1.41 -1.41 -5.64 240 240 60 60 240 240 240 60 60 240 :ff I"A!d' -5.64 -1.6 -6.4 -1.5 -1.5 I I 0.' Turn-Off Delay -6.4 -1.6 -1.6 -6.4 50 12.4. 11.2 8.70 -1.2 -1.08 -0.84 - 0.85 2.0 0.40 4.5 5.0 4.5 5.5 - 11.2 8.70 -1.2 -1.08- -0.84 -10 0.85 1.7 0.40 4.5 5.0 4.5 5.5 3.4 12.4 11.2 8.70 -1.2 -1.08 -0.84 - 0.85 1.4 0.40 4.5 5.0 4.5 5.5 11.2 14.1 12.7 9.85 -1.2 -1.08 -0.84 - 0.8 1.9 0.45 4.5 5.0 4.75 5.25 11.2 14.1 12.7 9.85 -1.2 -1.08 -0.84 -10 0.9 1.8 0.45 4.5 5.0 4.75 5.251 2.4 I '/5 13 15 14/9 35 .0 13 15 tpd+ 1 I '/5 tpd1-2 14/9 .0 " - I 0.8 11.610.451 4.5 :i" I Yea. VeeH VIHX 12.4 101 , 11012110"110,,IIOL,lloL6110H' IloH2110>1.1 I. V" V'H mAd, ! ! c:: ~ 15.0 14.7515.25 1 V, V, I 12 13 14 15 12'3'4'12'13'14'15 12 13 14 15 1 1,2,3,4,13,14,15 Vee I VCCL l,2,3,4,12,H,IS 1,2,3,4,12,13,15 1,2,3,4,12,13,14 10 I 16 I 15 13 14 15 II 10 11 10 II mAd, I Pulse Out 14 I' 1,12,13,14,15 12,13,14,15 12,13,14 1,12,13,14,15 12,13,14,15 12,13,14 12,13,14,15 1,12,13,14,15 1,12,13,14,15 16 I 1,1:) 1 I 1,15 I r 16 16 1,2,12 16 1,2,12 3,8,13,15 16 1,2,12 1,2,12 3,8,13,15 3,8,13,15 16 • 2,3,4,8,12,13,14,15 1,2,3,4,8,13,14,15 1,2,3,4,8,12,14,15 1,2,3,4,8,12,13,15 1,2,3,4,8,12,13,14 r 12 10 ! 12 13 1 T God 1,2,3,4,12,14,15 1,2,3,4,12,13,15 1,2,3,4,12,13,14 I' 240 I VCCH Vmx 16 1,2,3,4,13,14,15 2,3,4,12,13,14,15 Pulse In tpd_l tpd_ 2 Vee 11.2 I 'j' I 'j' I 'j' II 'i' IT 'i' IOfTI' : I vr 45 :J VR 11.2 0.' Switching Para~ Turn-On Delay -6.4 VF __.-__r--.~.-__r--.~n~~~cU~U~~~T/~V~~~T~AG~E~~~PL~lm~T~O~PI~~~LlS~T~ED~B~n~o:w~,____-;__-,__-;__~__~ Unit -6.4 -6.4 -1.6 -1.6 -6.4 VIH 16.0 14.4 +7S0CI16.oI14.4111.2114.1112.719.851~1.21-1.081-o.841 Symbol 1 Tost VIl 16.0 14.4 16.0 14.4 ... Volts ID 16.0 14.4 11.2 00C 16.0 14.4 MC8304 Characteristic Input 0o mT CURRENT /VOLTAGE VALUES ADDER 2 3,8,13,15 MC9304, MC8304 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Coax 950 ±'1.0% ~____~.~TPoutl h,.,,-,,-------,L-+------- 3.0 V TP out 1 ADDER 2 Coax PRF"'2.0 MHz t- Gnd =="'=F=--'-'-~'--------+''====0.4 V 950 ± 1.0% PW;:::::::250 ns (1.5 V points) t+ = ~----~~TPout2 < 5.0 ns TP out 2 2.4 V VIHX • The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope ter- mination impedance constitute a 20: 1 attenuatar probe. Coax shaH be CT·070-50 or equ ivalent. CT =: 15 pF == total parasitic capacitance, which includes probe and wiring capacitances. MC9304, MC8304 (continued) TYPICAL HIGH-LEVEL "AND-OR-INVERT" GATE r-------~--------~------------------._--_.----~--oVCC 4k 4k 1.5 k 4k 120 70 This full adder is constructed using high and low level gates interconnected as shown by the logic diagram. - :t:Oiodes used only when inputs are connected to external points. LOW-LEVEL INVERTER HIGH-LEVEL INVERTER r---------_.-QVCC :j: Diode used only when input is connected to external point. fiGURE 1 - fUNCTION BLOCK DIAGRAM ACTIVE HIGH INPUTS ACTIVE LOW INPUTS OR ADOER 1 This diagram illustrates the adder function of the MC9304/8304 using either active low or' high ADDER 1 2 Al Co 5 2 3 61 S 7 3 4 Cin1 S 6 4 5 6 inputs. ADDER 2 11 12 11 13 13 15 14 9 10 15 12 9 10 MC9300/MC8300 series " \.----------' DUAL 4-BIT LATCH MC8308P* 2 3 4 6 8 10 ., 00 5 DO 01 01 02 02 03 MR 03 9 E 7 11 17 00 15 16 18 20 22 DO 01 02 03 01 19 02 21 03 23 MR This device is constructed of AND, NAND, and NOR gates. Each half of the device contains four latches with common enable (EO) and E1) and common Master Reset (MR). Data entered at the D input of each latch will appear at the' corresponding Q output if the enable inputs are in the logic "0" state. When the enable inputs are in the logic "1" state, each latch will maintain the information present when the enable inputs were last in the logic "0" state. The master reset input overrides aJI other input states. When a logic "0" is applied to the MR input, all outputs of the quad latch will be forced to a logic "0". INPUTS MR EO E1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VCC = Pin 24 GND I = Pin 12 Input Loading Factors: ~O. 01, 02, 03 = 1.5 MR, EO, El = 1.0 Output Loading Factor = 9 Total Power Dissipation = 325 mW typ!pkg Propagation Delay Time (Enable to Output) a = 25 ns typ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 "'x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 0 1 x 03 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 X X X OUTPUTS 02 01 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 .1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 X X X X X X x x x DO Q3 Q2 Q1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 X LATCHED X LATCHED X x o ~AoT~Hci'~ QO 0 1 0 0 0 1 1 1 0 0 0 1 1 1 a 1 0 X"" Don t Care LOGIC DIAGRAM 1/2 OF DEVICE SHOWN BIT #2 BIT #1 BIT #3 BIT #4 r - - -- - - - - - - - - - - - - - --..., r- - - -..., r - - - -..., r- - - --, I I II II II II II EO L_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ E:1 II II ..J L ____ 00 DO • P suffix = 24-pin dual in-line plastic package (Case 649). 5 I I II " 3 4 II II II II 2 II :I II \.1 II II II II II II II II II II J L ____ J L ___ _ s: ELECTRICAL· CHARACTERISTICS Test procedures are shown for only one (") 2 3 4 6 8 10 bit of one half of the device. The other bits are tested in the same manner. 00 DO Dl D2 D3 00 5 CN 0 01 MR 02 9 03 11 00 ("l 0 :l ..... :l C C1l 14 ---c.fEO'J E IO~ 1 6 - DO 1 8 - Dl 2 0 - D2 2 2 - D3 0.. 00~17 TEST CURRENTNOL TAGE VALUES 01 1-- 19 02 1--21 MR 03 1--23 Pin lOLl IOL2 IOH VIL VIH OOC 12.7 14.4 12.7 14.4 1.9 1.8 0.45 4.5 +25 0 C +75 0 C 12.7 14.4 -0.6 0.85 -0.6 -10 0.85 -0.6 0.85 1.6 0.45 4.5 Characteristic MC8308 Test Limits +2SoC +75 0 C DoC Forward Current Leakage Current Clamp Voltage Output Output Voltage , , , , Symbol Test Min Max Min Max Min Max Unit IF 1 2 4 - -1.6 -1.6 -2.7 - -1.6 -1.6 -2.7 - -1.6 -1.6 -2.7 mAde - 1 2 4 - - 60 60 90 - - - /lAde 1 2 4 - VOLl 5 - 0.45 VOL2 VOH 5 2.4 0.45 - IR VD 5 - - - - - - - -1.5 2.4 - - Vde - - 0.45 - 0.45 Vde 0.45 - - 0.45 - Vde 2.4 ID VF 0.45 VR 4.5 VCC VCCL VCCH - 4.75 5.25 5.0 - 4.75 5.25 4.75 5.25 TEST CURRENTNOL TAGE APPLlEO TO PINS LISTED BELOW: lOll Input Volts @ Test Temperature 13 Under mA - Vde ,, , ,, IOL2 IOH ID VIL VIH VF VR VCC VCCL VCCH Gnd - - - - - 1 2 - - - - 24 - 12 12 4,12 - - - - - - - 12 - 1 2 4 - - - - - 24 12 - 1 2 4 - 24 - - - - 24 - 12 12 - 24 24 - 24 - - 12 - - - - - - - 5 - - - 2,3,4 - - - - 2,3,4 - - - 5 - 5 - 2,3 4 - - Power Requirements - - - 12 VIL (Total Device) IpHD 24 - - - 117 - - mAde Data Setup "1" Time tSetup "1" 5 - - 2.0 - - - Data Hold "1" Time tHold "1" 5 - - - - - Turn·Off Delay Data Setup "0" Time tpd+ 5 - - 15 - - - tSetup "0" 5 - - 6.0 44 - - - Data Hold "0" Time tHold "0" 5 - tpd- 5 8.0 - n5 n5 n5 n5 n5 n5 Power Supply Drain Switching Parameters Turn-On Delay - - - 30 - - - - - - 2,3,4,6,8,10.14, 15,16,18,20,22 Pulse In Pulse Out 2,4 5 - 24 - - 3,12 2,4 5 - 24 - - 3,12 2,4 5 - 24 - - 3,12 2,4 5 - 24 - 2,4 5 2,4 5 - - - -_______11 3,12 24 - 24 3,12 - - 3,12 ,-_ MCB30B (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS Two pulse generators are required and must be slaved to provide the waveforms shown. EO 00 5 El PULSE GENERATOR 4 PRF = 1.0 MHz typ t+ = t- = 10±.a.S ns (10% to 90% points) Amplitude = 3.0 V PW = ns Pulse 30 X 47 44 Y Z 50 DO CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equ ivalent. • STORING A "1"" 3.0 V Pulse X - - - - - - - - . . TPin EO OV tHold "'" 3.0 V Pulse Y TPin DO TP out 'Pdf. 1.5 OV ~VOH V SVOL GND STORING A ""0"" PW 3.0V Pulse X - - - - - - - " ' TPin EO OV tHold "0" 3.0V Pulse Z - - - - - - , TPin DO TP out 'Pdt; 1.5 OV ~VOH V SVOL GND MC9300/MC8300 series DUAL 4-CHANNEL DATA SELECTOR MC9309L* MC8309L,P* This device consists of two four·channel data selectors 1/2 OF DEVICE SHOWN with common control lines, constructed from higtrlevel AND· OR-I NVERT gates with active pullup outputs. and low-level inverters on the control inputs. By selecting one of four logic combinations, information on One of the four data inputs will be routed to the complementary outputs. (Numbers and symbols in parenthesis are for other half of device) Data selectors are useful in applications where digital data is to be routed from one of several registers or locations to another register or location for processing. The MC9309/8309 may be cascaded to multiple levels so that any number of lines can be multiplexed onto a single output buss. XO 12O------------rt++-~~ [YQI Xl [Yll X2 [Y2] X3 [Y3] TYPICAL PROPAGATION DELAY TIMES (ns) TA = 25°C [4] 11o------------+++-i__--' [2] [5] )0-..------<> 14 [WI Z INPUT Z Z CONDITIONS A 24 16 Xl 17 9 XO = X2 = X3 = logic "0", Xl = logic "1". A and 8 are defined by the logic equations. 10o------------+-+-i__--' [6] Vee 9O----------------l__../ ~ GND~ [7] PIN 16 PIN 8 LOW-LEVEL INVERTER r---------~--oVee 2k z ~ ABXO + ABXl + ABX2 + ABX3 Z ~ ABXO + ABXi + ABX2 + ABX3 W - ABYO + ABYl + ABY2 + ABY3 W~ ABYO + ABY1 + ABY2 + ABY3 I Input Loading Factor"" 1 = 10 Z.W- 9 Output Loading Factor: Z. W Total POWBr Dissipation = 150 mW typ/pkg +Diode used only when input is connected to external point. HIGH·LEVEL "AND·OR·INVERT" GATE (Complementarv Outputs) z L---------------~z :j: Diode used only when input is connected to external, point . .. L suffj-x = 16-pin dual in-line ceramic package (Case 6201P suffix = 16-pin dua' in-line plastic package (Case 612). .-s: ELECTRICAL CHARACTERISTICS Test procedures are shown for only one input and one output. Test other inputs and outputs in a similar manner according to A B XO Xl X2 X3 Z Z VO VI V2 V3 W W 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 > > 0 1 0 1 > > 0 1 0 1 0 1 0 1 0 1 ~ 0 1 > > > > > > > > > > > > > > 1 0 1 0 1 0 1 > > > > 0 1 0 1 0 1 0 1 0 1 > > 0 1 > > > > > > 0 1 > > > > > > > > > > L-2q, :::: 13 3 12 11 10 9 4 5 6 7 - > > > > o- 1...--- > > > > S I 0 1 0 1 0 XO XI X2 X3 VO VI V2 V3 tC nO I nput level does not affect output. .... ::J ~ 2!--14 W Wi TEST CURRENTNOLTAGE VALUES 2 Temperature { +2SoC oOC { +250 C +7SoC Volts mA @Test MC8309 lOll IOL2 12.4 11,2 12.4 11.2 12.4 11.2 14.1 12.7 14.1 12.7 14.1 12.7 IOL3 16,0 16.0 16.0 16.0 16.0 16.0 IOL4 14.4 14.4 14.4 14.4 14.4 14.4 10Hl -1,2 -1.2 -1.2 -1.2 -1.2 -1.2 IOH2 10 -1,08 -1.08 -10 -1,08 -1,08 -1.08 -10 -1.08 - VIL 0,80 0.90 0.80 0.85 0.85 0.85 VIH 2,0 1,7 1.4 1,9 1.8 1.6 VF VR Vcc VCCL VCCHIVIHX 4,5 5,5 0.4 4,5 4.5 0.4 4.5 5,0 5,5 I 2.4 4.5 5.5 0.4 4.5 4.75 5.25 0.45 4.5 0,45 4.5 5,0 4.75 5.25 2.4 4.75 5.25 0.45 4.5 - 1 MC8309 Test Limits MC9309 Test Limits TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: Pin oOC -5S0C +2S0C +2S0C +125 0 C +750 C Under VIH VF/VR/ VCC/VCCL!VCCH/VIHXI Test Min I Maxi Min I Maxi Min I Max I Min I Max I Min I Maxi Min I Maxi Unit I'OL1/ IOL2/ IOL3/ IOL4/ IOH1/10H2/ 10/ VIL Gnd Input Clamp Voltage Output Output Voltage IF IR 'YO -1.6 60 SO/-/60 -1.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 VOLI VOL2 VOH -1.6 -1.6 3 3 3 2.4 2.4 I- 2.4 2.4 -1.6 60 0.4 0.4 0.4 0.4 2.4 2.4 0.45 0.45 0.45 0.45 2.4 2.4 2.4 2.4 -1.6 60 -1.5 -1.6 60 0.45 0.45 0.45 0.45 0,45 0.45 0.45 0.45 3 $lAde Vde 2.4 2.4 16 8 / 16 8 mAde 31 I Vde Vde Vde Vde Vde Vdc 6,13 13 6,13 13 13 6,13 - 8 16 8 8 16 16 3 3,6 3 3,6 3,6 3 -1 16 16 16 16 8 8 8 8 Power Requirements (Total Device) Power Supply Drain IPOH Switching Parameters I 16 I - I - I - I 40 I - I - I- I - I - I 43 I - I - I mAde 'pd'pd+ 16 3,4,5,6, 7,9,10, 11,12,13 Pulse Out Turn..()n Delay Turn-Off Delay CO W o Zt-- 15 +l25oC Leakage Current (') c -550C Forward Current W o ,tC 5' A B MC9309 Symbol OUTPUTS: INPUTS OUTPUTS INPUTS the truth table, Additionally, test all inputoutput combinations according to the truth table, Characteristic (') tC TRUTH TABLE 15 15 I 16 16 8 11 13,8,9,10,12 11 13,8,9,10,12 MC9309, MC8309 (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families MC9309 INPUT LOADING MC9309 OUTPUT LOADING FACTOR MC8309 INPUT LOADING MC8309 OUTPUT LOADING FACTOR FAMILY FACTOR Z Z FAMILY FACTOR Z Z MC9300 MC500 MC2100 MC3100 MC4300 MC5400 MC930' 1.0 1.06 0.7 0.7 1.0 1.0 Fan-Out"" 2 (6.0 k ohm pull up) Fan-Out == 8 (2.0 k ohm pullup) 10 10.6 7.0 7.0 10 7.75 9.4 9.0 9.5 6.3 6.3 9.0 7.0 8.4 MC8300 MC400 MC2000 MC3000 MC4000 MC7400 MC830' 1.0 1.0 0.6 0.7 1.0 1.0 Fan-Out = 2 (6.0 k ohm pullup) 10 9.0 6.0 7.4 10 8.75 10.8 9.0 8.1 5.4 6.6 9.0. 7.8 9.7 . Fan-Out"" 8 (2.0 k ohm pullup) Due to logic "1" state drive limitations of the MDTL family_ SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS 2.4 V Coax· 13 A B Z 15 XO Xl 2 14 X2 PULSE GENERATOR X3 YO W Yl PRF - 1.0 MHz PW - 200 ns Y2 (1.5 V points) iiii 2 Y3 ~5.0 ns (1.0 V to 2.0 V points) t+ = t- Zout ~50 ohms • ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope ter- mination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. CT"" 15 pF == total parasitic capacitance, which includes probe and wiring capacitances. h=,---*+---3.0 V GND=~+~~___---.jp::===0.4 V TP out GND======~----------~== 950±1.0% • MC9300/MC8300 series PRESETTABLE DECADE COUNTER MC9310L * MC8310L,P* COUNT SEOUENCE TRUTH TABLE OUTPUT COUNT 0 1 2 3 4 5 6 1 8 9 03 02 01 00 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 The MG9310/8310 decade counter consists of four J-K master-slave flip-flops plus additional gating to accomplish the counter function_ Parallel inputs are provided for presetting data and parallel outputs for full counting flexibility_ An asynchronous master reset (M RI clears all flip-flops regard less of other input states. Parallel information may be preset only while the parallel enable (PEl is in the logic "0" state. Inputs GEP and GET and output TG are useful in cascading counters. TG provides an output pulse each time the counter reaches its maximum count. Input Loading Factors: MR. CIOf..= 1 Clock, PE, CET = 2 PO. Pl. P2. P3 Total Power Dissipation = 300 mW typ/pkg Propagation Delay Time = 14 to 35 ns typ Toggle Frequency = 28 MHz typ = 2/3 Output Loading Factor"" 6 14 00 11 12 13 01 02 03 15 TC 4 Vee GND • L suffix = 16-pin dual in-line ceramic package (Case 620l. P suffix = 16-pin dual in-line plastic package (Case 612), P2 PI PO 3 5 = Pin 16 = Pin 8 P3 6 ELECTRICAL CHARACTERISTICS s: Test procedu'res are shown' for, only one input and one output. Test other inputs (g (") CAl ...... and outputs in a similar manner according to the truth table. o s: (") 00,14 MR 2 00 CAl ...... o e 3 PO 4 -Pl 01 ..l 02 ~ P2 ~ P3 7 - 9 03 eEP PE ~ eET - Te 13 r!1--- { ~ MC9310 MC8310 MC9310 Test Limits Characteristic +25 0 C Min Test Min Max Min Max IF 1 2 3 - -1.6 -3.2 -1.07 - -1.6 -3.2 -1.07 - 60 120 40 - Max Unit Min IOl2 10H 10 Vil VIH VR VF Vee VeCl -55 0 C 9.6 7.44 -0.36 0.80 2.0 0.4 4.5 - 4.5 5.5 9.6 9.6 7.44 7.44 -0.36 -10 0.90 -0.36 0.80 1.7 0.4 4.5 4,5 5.0 4.5 4.5 9.6 DoC +25 O C 9.6 8.50 -0.36 - 0.85 1.9 0.45 4.5 - 5.5 5.5 4.75 5.25 8.50 -0.36 -10 0.85 0.45 4.5 5.0 +75 0 C 9.6 8.50 -0.36 1.8 1,6 0.45 4.5 - 4.75 4.75 5.25 Unit 1011 - - 0.85 1.4 0.4 C VCCH +25 0 C MC831 0 Test Limits DoC +125 0 C Symbol :::J Temperature IOl1 +125 0 C _55°C :::J .... Volts @Test { Pin Under n-O TEST eURRENT/vOl TAGE VALUES rnA (1) D.. 5.25 TEST CURRENT/VOl TAGE APPLIED TO PINS liSTED BELOW: +7SoC +25 0 C Max Min Max Min -1.6 -3.2 -1.07 - -1.6 -3.2 -1.07 - Max IOl2 10H ID Vil VIH VF VR - - - - 1 2 3 - - - VCC VCCl VCCH Gnd 16 16 16 8 8 8 16 16 16 8 8 8 Input Forward Current Leakage Current IR Clamp Voltage Output Output Voltage Switching Parameters Turn-On Delay -- Q Turn-Of! Delay - Q - 60 120 40 - - VD 1 - - VOU 11 - 0040 11 11 11 - 0040 VOl2 0.40 - 0.40 0.40 0.40 11 11 2,4 2.4 - 2.4 2,4 75 - VOH Power Requirements (Total Dev'ice) Power Supply-Drain Current 1 2 3 - 204 0040 DAD - 204 -1.5 - -1.6 mAde -3.2 mAde -1.07 mAde - 60 120 40 .uAde ,uAdc ,uAdc - - Vdc - 60 120 40 - 60 120 40 - - -1.5 - - -1.6 mAde -3.2 mAde -1.07 mAde - - - - 60 120 40 }.LAde /.LAde ,uAde - - - Vdc - - - 0.40 Vdc - 0045 - 0045 Vdc 11 - Vdc Vdc Vdc - 0.45 0.45 0.45 - 0.45 0.45 0,45 - 0.45 0.40 0040 0040 0.45 0.45 0,45 Vdc Vdc Vdc - 11 11 11 - Vdc Vdc 2.4 2.4 - 2.4 2.4 - 2.4 2.4 - - Vdc Vdc - - mAde 75 - - mAde - - - - 1 - - 11 11 - - - - - - 16 - - - tpd_ 2,14 - - - 30 2,14 - - 35 2,15 - - - 40 ns 2,15 60 ns Turn-On Delay TC tpd+ tpd_ Turn-Off Delay TC tpd+ - - ns ns - - - - - 1 2 3 - 16 - 8 - 16 8 See Timing Diagram@ t6 16 16 16 8 8 8 See Timing Diagram@t2 See Timing Diagram@t16 16 16 - 16 - - 8 16 - - 8 See Timing Diagram@ t4 - - See Timing Diagram@ t1 - 2,7 9,10 ,. - 8 8 - 40 - - ns 2 14 VIHX =3.0 Vdc 1,3,4,5,6,7,9,10 - 30 - - ns 2 14 1,3,4,5,6,7,9,10 16 70 ns 2 15 1,3.4,5,6,7,9,10 16 8 40 ns 2 15 1,3,4,5,6,7,9,10 16 8 Pulse In Pulse Out - .. Apply after potentials have been applied to other pms. - - See Timing Diagram@ t1 I IpD - VR~Gnd ~50ns (Holdl • 8 MC9310, MC8310 (continued) TIMING DIAGRAM Pin NQ. Clock 2 fie 9 rYir1lrrL y VIH CET 10 VIL r- ~ .1 VIL I ~ VIH I MR PI W-- ~ w-' --.r J J J'J VIH JII,. ' - - CEP PO r-, VIL 3 VIHl 4 VI~ VIL VI~ VIL VIJ ;VILI P2 5 P3 6 QO 14 Ql 13 Q2 12 Q3 11 TC 15 I I I VIL o r-1 JOH hh VOL - ----, J \ J 'F\ 2 4 3 5 I I 6 I t- ~ 8 7 I I I I I to tl t2 t3 t4 t5 t6 t7 t8 t9 tl0 tIl t12 t13 t14 t15 t16 I-t17 t18 NOTES 1. The Clock pulse must be in the" high state during the high to low transition of CET and CEP, and the low to high transition of PE for correct logic operation. 2. Pin conditions reflected on timing diagram for tests at time specified: to: Parallel (P) inputs high, Parallel Enable chronous Master Reset (MA) pulsed; transition from high to low. a (PE) low, asynoutputs make tl: Measure both VOLI and VOL20n OO,Ol,02,03and TC before Clock goes high. t2: Clock has been pulsed, 0 outputs are high; measure VOH. t3: Clock is in high state while 'transitions of PE and CET occur (necessary condition)' Parallel entry is now in- hibited, P inputs are at the low level. t4: Count enable (CET) is at the low level (disabled), count cannot occur; ,check Q outputs to see that they remain at the low level. t5: CET is set to a high level and CEP is set at the low level while the Clock is high, t6: Check 0 outputs to see that count is disabled, outputs remain low. t7: CEP is set high while Clock is high; count is now enabled. t8: 'Clock is pulsed, count begins from 0000 to 0001. t9 thru Check 0 and TC output states. t17: t18: Outputs go to low state, count begins (0000). MC9310, MC8310 (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS VIHX 3.0 V 00 01 PULSE GENERATOR 02 03 PRF PW = 10 MHz =: 14 13 12 TP out 11 1/4 MC3000 or Equiv 50 typ 100 ns TC 15 CTI t+=t-~10ns Amplitude =: 3.0 V CT = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuatar probe. Coax shall be CT-070-50 or equivalent. • MC9300/MC8300 series ONE-OF-5IXTEEN DECODER MC8311P* This device converts four BCD inputs to select one of sixteen outputs. The selected output is in the logic "0" state while all other outputs are in the logic" 1" state. Two Enable inputs are provided for increased logic capability. This device is useful in memory selection control and data routing applications. ao 2 01 3 02 4 03 5 04 6 05 7 06 8 07 9 08 Input Loading Factor"" 1 Output Loading Factor = 10 1009 11010 .. Total Power Dissipation"" 175 mW typ/pkg 13011 Propagation Delay Time Ei1'8i:'i1e to Output"" 26 ns max 14012 15013 16014 ! 17 015 Vee = Pin 24 GND=Pin 12 INPUT EO 1 1 0 0 0 0 0 0 0 0 0 0 0 0 a a 0 0 0 x "" E1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OUTPUT D C B A X X X X X X X X X X X X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 Don't care .,p suffix::: 24-pin duaJ in-line plastic package (Case 649). 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 12 1 1 1 1 1 1 1 1 1 "I 1 1 1 1 1 0 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 9 a 7 6 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 4 3 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 s: ELECTRICAL CHARACTERISTICS n Test procedures are shown for only ~ne input and one output. 00 ....w.... Test other inputs and outputs in a similar manner according to the truth table. Addi· tionally. test all input·output combinations accord· ing to the truth table. 18 00 8::I 01 :;' ... c: 02 19 ~ 03 L4 23 'A 11 010 p-'-'- ..E.e 011 012 Leakage Current Test Min Max Min Max Min 'IFl 18 20 - -1.6 -1.6 -1,6 -1.6 18 20 - - - 18 - 20 - 18 20 - VOU 1 - VOL2 VOH 1 1 2.4 - IpO 24 - - IR Vo IOL1 IOL2 DOC 14.1 16 -0.6 +25 0 C +750 C 14.1 16 -0.6 14.1 16 -0.6 Unit lOLl IOL2 IOH 10 VIL VIH VF VR VCC VCCL VCCH Gnd - - - - - - 18 20 - 24 24 12 12 - 18 20 - - - - - -1.41 -1.41 - -1.41 -1.41 24 24 - 12 12 60 60 - 60 - - c1.5 -1.5 0.45 0.45 - 60 - - 18 20 - - 18 20 - - - 18,19,20,21,22,23 Max VF VR VIL VIH 0.85 1.9 0.45 4.5 -10 0.85 1.8 0.45 4.5 5.0 4.75 5.25 - 0.85 1.6 0.45 4.5 - 4.75 5.25 VCC VCCL VCCH 4.75 5.25 TEST CUR RENT /VOLTAGE APPLIED TO PINS LISTED BELOW: +75 o C Symbol IF2 Temperature p.'2- +25 o C OOC 10 IOH MC831t Test Limits Pin Under Clamp Voltage 015 Volts @Test 013 2!!.o Input Forward Current TEST CURRENTIVOLTAGE VALUES mA ~ ~ 014 ~ 2!..c Characteristic ~ -1,6 mAde -1,6 mAde -1.41 mAde -1.41 mAde - - - - - 60 60 ,uAdc - - Vdc Vdc - 0.45 Vdc 1 - 0.45 0.45 Vdc - 1 2.4 - 2,4 - Vdc - - 1 - - 60 - - mAde - Pulsa - - Pulse In Out ns 19 4 ns ns ns 19 4 23 4 23 4 ,uAdc - - - - - 24 24 12 12 24 24 - 12 12 - - 24 - - - - - - - - 18,19,20,21,22,23 - 18,20,21,22,23 19 - - - - Output Output Voltage 0.45 - 12 24 12 24 - 12 24 - - 12 24 - - 12,18,20,21 24 - - 12,18,19,20,21 - Power Requirements (Total Device) Power Supply Drain SWitching Parameters E tpel- 19,4 - - Turn-Off Oelay - E 'pd+ 19,4 - A 'pd- 23,4 - - T urn-Off Delay - A tpd+ 23,4 - -- Turn-On Delay Turn-On Delay - - 31 - 35 - 40 26 - - - VIHX = 2.4 Vdc - - • 22,23 - 22 - 22 - 22,23 - - 24 24 12,18,20,21 12,18~ MC8311 (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS Coax· Coax· 950±. 1.0% 950 ±. 1.0% TP out PULSE 23 A GENERATOR <>+__..:2;::2-1B .. PRF ~ 1.0MHztyp PW= lOOns r r-oO-',-_...;2::.1'-1C 50 t+=t-~10ns (10% to 90% points) Ampl itude = 3.0 V +--<>",,--_..:2:.;:°-10 L.. _ _ _ _ _ _ _ _ _ _ _ _ .J I CT - 15 pF :: total parasitic capacitance, which includes probe, wiring, and load capacitances. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equ iva lent. - ~ 90% 10% y~P:+ TP out :==============~, TPin E TPout '\ ~+ ------3.0· V 1.5 V +--------0 V ftPd- _________~-:::::::::::: V CC X4 X5 6 X6 7o--------~r-tt±±=f~ X7 9~--------_r-r_t~r-, Z LOW·LEVEL INVERTER ,-------------"t---O V CC Z = Eo(ABCXO + ABCX1 + ABCX2 + ABCX3 + ABCX4 + Al!CX5 + ABCX6 + ABCX7) Z= 4k E o(ABCi«l + ABCiO + ABCX2 + ABCi<:} + ABCX4 + ABCX5 + ABCX6 + ABCX7) Input Loading Factor =1 Output Loading Factor: High: Z = 20. Z = 1B Low: Z=10.Z= 9 Propagation Delay Time = 24 ns typ Power Dissipation == 135 mW typ/pkg ~ Diode used only when input is connected to external point. HIGH·LEVEL "AND·OR·INVERT" GATE (Complementary Outputs) --~--------------------~~----~~~--4r----~--4r-oVCC 4k Z L---------------~z +Oiod~s used only when· inputs are connected to external points . • L sufftx::: 16~pin·dual in-line ceramic package (Case 620)_ P suffix = 16-pin dual in-line plastic package (Case 612). • .ELECTRICAL CHARACTERISTICS s: (') CC W .... ~N s: (') TRUTH TABLE Test procedures are shown for only one input and one output. Test other inputs and outputs in a similar manner according to the truth table. Additionally, test all input-output combinations according to the truth table. 10 .0....... E A B C Z XO Xl X2 3 115 E C B A XO Xl X2 X3 X4 X5 X6 X7 Z Z 1 0 0 a a a a 0 a a a a 0 a 0 0 a 0 0 a a a a a 0 0 0 a a 1 1 1 1 0 a 1 1 0 1 a 1 a 0 1 1 0 1 0 1 1 a a 0 a 1 1 1 1 0 0 1 1 a a 1 1
a 1
0 1 CO ....NW nO ::J !:!". ::J t: a 1 a 1 [ tP = Input level does not atfect output. J4 4 TEST CURRENT!VOL TAGE VALUES mA Volts "Test Temperature IOL1 IOL2 'OL3 IOL4 IOHl IOH2 10 { MC9312 MC8312 Characteristic Input Forward Current leakage Current Clamp Voltage I +25OC Min Max 1 -1.61 _ 'Fl 'F2 -1.24 I I +125 o C Min Max -1.6 -1.6 -1.24 -1.24 60 -1.5 60 A.• A.' 0.4 0.4 0.4 'R Vo +25o C +12SoC 14.4 12.4 12.4 12.4 OOc 12.7 14.1 +25o C 12.7 14.1 +15 0 C 12.7 14.1 ODC 1 +25OC Min Max Min Max -1.6 - I - -1.41 -1.2 -1.08 -10 -1.2 -'1.08 -1.2 -1.08 -1.2 -1.08 -10 -1.2 -1.08 - 11.2 14.4 16.0 14.4 16.0 14.4 16.0 14.4 16.0 14.4 16.0 -1.6 VOL1 VOL2 VaH 14 15 14 15 14 15 Power Requirements (Total Device) Power Supply Drain IpDH 16 0.4 0.4 0.4 A.' 0.4 A.' 2.41 2.' - A.' 2.4 2.4 2.4 2.4 60 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 ~-=-_1 40 1 - 2.4 2.4 2.' 1 '0 1 - Turn-Off Delay 'pd'pd+ 11/15 36 341 I I I 36 34 0.85 0.85 V,L 0.45 I I 5.25 5.25 5.25 VIH VF VR VCC VCCL VCCHI 16 2.4 Vde Vde Vde Vde Vde Vde I n, VIHX Gnd 8,10,11.12,13 8.10,11,12,13 16 16 Vde 2.' 2.4 I 0.85 /lAde - 15 " 15 15 15 14 1- I 11 11 1 - - - 10,11.12.13 14 14 - 1.10.11.12.13 - 1.10,11.12.13 - 10,11,12,13 15 1- 1.10.11.12.13 8 8 16 16 10.11.12.13 14 15 14 1 43 1 - 1 43 1 - 1 43 1mAde 1 - I 2.4 0.80 16 Pulse In 11/15 5.5 5.5 5.5 VCC VCCL 4.5 5.0 4.5 5.0 4.5 5.0 1.9 0.45 5.0 4.75 4.75 1.8 0.45 4.5 5.0 1.60.45 4.5 5.0 4.15 mAde Switching Parameters Tum-On Delay VIHX 2.0 0.4 1.7 0.4 4.5 1.4 0.4 4.5 -1.41 mAde -1.41 60 -1.5 2.' VCCH 0.80 0.90 'D IOL1 IOL2 IOL3 IOL4 IOH1 IOH2 Unit Output Output Voltage V,H VF VR TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW: +75OC Max Min -1.6 -1.2 -1.08 16.0 11.2 MC8312 Test limits MC9312 Test limits Pin -550 C Under Symbol I Te.. Min Mex { -550 C 11.2 V,L - -1 - 16 16 1 - 1 - 1- 1 16 I I I 16 16 8 '6 16 Pulse Out I I 15 15 I 2,3,4,5,6,7.91 1,8,10,12,13 2.3,4,5.6.7,91 1,8,10,12.13 MC9312, MC8312 (continued) INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families MC9312 INPUT LOADING FAMILY MC9300 MC500 MC2100 MC3100 MC4300 MC5400 Me930· FACTOR 1.0 1.06 0.7 0.7 1.0 1.0 Fan-Out = 2 MC8312 OUTPUT LOADING FACTOR MC8312 INPUT LOADING MC9312 OUTPUT LOADING FACTOR Z Z FAMILY 10 10.6 7.0 7.0 10 7.75 9.4 9.0 9.5 MC8300 MC400 MC2000 MC3000 MC4000 MC7400 MC830' 6.3 6.3 9.0 7.0 8.4 FACTOR 1.0 1.0 0.6 0.7 1.0 1.0 Fan-Out = 2 (6.0 k ohm pullup) (6.0 k ohm pulfup) Fan-Out = 8 (2.0 k ohm pullup) Fan-Out:;:: 8 (2.0 k ohm pullup) Z Z 10 9.0 6.0 7.4 10 8.75 10.8 9.0 8.1 5.4 6.6 9.0 7.B 9.7 .. Due to logic "'" state drive limitations of the MOTL family. SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS 10 11 A 8 Coax" E z 15 Z 14 C XO X1 PULSE X2 GENERATOR X3 X4 PAF:::: 1.0 MHz PW X5 = 200 ns X6 (1.5 V points) t+ == X7 t- S:5.0 ns (1.0 V to 2.0 V points) 2.4 V .. ·The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope ter- mination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. CT = 15 . . . pF'''''-total parasitic capacitance,. which includes probe and wiring cap!-Icitances. h""":-;---->.-+---3.0 V GND=::::"+=~~-----l~===0.4 V TP out GND=====~------~~ I MC9300/MC8300 series PRESETTABLE 4-BIT BINARY COUNTER MC9316L* MC8316L,P* COUNT SEQUENCE TRUTH TABLE OUTPUT COUNT 03 02 01 00 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 1 1 1 1 0 0 1 1 0 10 11 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 12 13 14 15 1 1 1 1 1 1 1 1 .0 0 0 1 1 0 5 6 7 8 9 0 1 0 1 0 1 1 The MC9316/8316 hexadecimal counter consists of four J-K masterslave flip-flops plus additional gating to accomplish the counter function. Parallel inputs are provided for presetting data and parallel outputs for full counting flexibility. An asynchronous master reset (MRl clears all flip-flops regardless of other input states. Parallel information may be preset only while the parallel enable (PEl is in the logic "0" state. Inputs CEP and CET and output TC are useful in cascading counters. TC provides an output pu lse each time the counter reaches its maximum count. 1 0 1 1 1 Total Power Dissipation = 300 mW typ/pkg Propagation Delay Time = 14 to 35 ns typ Toggle Frequency == 28 MHz typ Input Loading Factors: MR. CI;E.= 1 Clock, PE, CET = 2 PO, P1, P2, P3 = 2/3 • Output Load ing Factor =6 14 QO 13 Q1 12 11 Q2 Q3 MR Clock 2 CEP 7 i'E 9 15 TC CET 10 P1 PO 3 5 VCC= Pin 16 GND *L suffix = 16~pin dual in-line ceramic package (Case 620). P suffix = l6-pin dual in-line plastic package (Case 612). P3 P2 4 = Pin 8 6 s: CO W .... s: 00 .... ELECTRICAL CHARACTERISTICS (") Test procedures are shown for only one input and one output. Test other inputs and outputs in a similar manner according to the truth table. •0) 14 QO MR (") - Co.) Clock - Ql,13 3,PO 4 Pl ------2 0) Q2 ~ P2 ~ P3 ----..2 ~ Temperature lOLl PE ~ CET TC { ~ MC8316 MC9316 Test Limits Pin Characteristic tnput Forward Current Leakage Current Test Min Max Min Max Min IF 1 2 3 - -1.6 -3.2 -1.07 - -1.6 -3.2 -1.07 - 1 2 3 - - 60 120 40 VD 1 - VOLl 11 VOL2 Power Requirements (Total Device) Power Supply Drain Current Switching Parameters Turn-On Delay ~ Q - -Max Unit -1.6 mAde -3.2 mAde -1,07 mAde Max Min Max - -1.6 -3.2 -1.07 - -1.6 -3.2 -1.07 - - - 2,14 Turn-On Delay TC tpd_ 2,15 40 ns Turn-Off Delay TC tpd+ 2,15 60 ns ns - - 1 2 3 - See Timing Diagram@ 11 See Timing Diagram@ 14 - 35 - tpd+ Q - - ns Turn-Off Delay - - - - - 11 11 - - 2,14 VR - 30 - tpd_ VF Vdc Vdc - - VIH - mAde 75 16 Vil 2.4 2.4 - - IPD 10 - - - - 0.85 IOH 11 11 11 2.4 2.4 2.4 2.4 - 1.4 IOl2 - - 11 11 - lOll Vdc Vdc Vdc 2.4 2.4 2.4 2.4 VOH Unit 0.45 0.45 0.45 Vdc Vdc - - 5.25 0.45 4.5 -0.36 - - - 2.4 2.4 0.40 0.40 0.40 4.75 4.75 1.6 8.50 - 0.45 0.45 0.45 0.40 0.40 0.40 - 5.25 5.0 5.0 0.45 4.5 - - - 11 11 11 4.75 1.8 - - 0.40 0.40 0.40 0.40 4.5 5.0 8.50 -0.36 -10 0.85 11 0.45 0.45 0.45 Vdc - 5.0 0.4 1.9 8.50 -0.36 Vdc Vdc Vdc Vdc 0.40 0.40 4.5 0.45 4.5 0.85 7.44 0.45 0.45 - - :::l ~, :::l 1 - - - Gnd - - 16 16 16 8 8 8 - 16 16 16 8 8 8 - - 1 2 3 - - 16 8 - 16 8 16 16 16 - See Timing Diagram @ 19 See Timing Diagram@ 110 8 8 8 See Timing Diagram @ t2 See Timing Diagram @ t16 16 16 - 16 - - - - 8 - 8 - - - 2,7 l' 9,10 VIHX = 3.0 Vdc - mAde Pulse In opulseOut - - - 30 - - ns 2 14 1,3,4,5,6,7 ,9, 10 16 ns 2 14 1,3,4,5,6,7 ,9, 10 16 ns 2 15 1,3,4,5,6,7,9,10 16 - - ns 2 15 1,3,4,5,6,7,9,10 16 VR~Gnd ~50ns IHoldl • - - - - 40 5.25 VCCH 75 60 CD c. VCCl - 35 c: VCC - - VCCH TEST CURRENTNOl TAGE APPLIED TO PINS LISTED BELOW: -1.6 mAde -3.2 mAde -1.07 mAde 60 5.5 5.5 5.5 1.7 - - Vdc -1.5 60 120 40 - 4.5 4.5 2.0 0.90 0.80 Vdc 0.45 ,uAdc - - 60 120 40 5.0 5,0 0.80 -0.36 -0.36 -10 -0,36 - - - - - J,lAdc 4.5 4.5 - 7.44 7.44 ,uAdc /-lAde ,uAde -1.5 /.lAde - 0.4 0.4 VIH 120 40 - 60 120 40 - - Max VCCL VIL - - 60 120 40 - Min - - .. Apply after potentials have been applied to other pi'ns. Min Vcc 10 9,6 9.6 OoC +25 o C 9.6 +7SoC 9.6 VR VF IOH IOL2 9.6 9.6 MC8316 Test Limits +1SoC +2SoC OoC +12SoC Symbol IR Clamp Voltage Output Output Voltage +2SoC -55°C ~50C +25 o C +12SoC MC9316 { Under Volts mA @Test Q3 ~ CEP nO TEST CURRENTNOLTAGE VALUES 8 8 8 8 8 MC9316, MC8316 (continued) TIMING DIAGRAM Pin No. 1!WiLJ1...r-LrJLrJ ' JW-Lr Jf-rlJ~ J~~ r-h- 2J Clock PE 9 VIH CET 10 CEP VIL .1. VIL I PFJ VIH 1L f---' 7 VIH 1 ---, MR VIL PO I VIH 3 VIL P1 VIJ 4 I VIL P2 VIJ 5 I VIL .. P3 i VIJ 6 ~tr°H VOL 13V- 11 12V- 11 11V- h 00 1 4 01 02 03 TC I VIL 0 ~1 2 4 3 I 5 6 I 7 I B I I I 10 9 12 11 I 13 - I I I 1'5 0 14 - I - J - I 15 to t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t'11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 loV!.!!"ansition of CET and CEP, and the low to"high transition of PE for correct logic operation. ·2. Pin conditio.ns reflected on timing diagram for tests at time specified: to: Paraliel (PI inputs high, Paraliel Enable (PE) low, asyn· chronous Master Reset (MR) pulsed; 0 outputs make transition from high to low. tl : Measure both VOLl and VOL2 on QO, 01,02, 03 and TC before Clock goes high. t2: Clock has been pulsed, 0 outputs are high; measure VOH. t3: Clock is in high state while transitions of PE and CET occur (necessary condition). Parallel entry is now in- hibited, P inputs are at the low level. t4: Count enable (CET) is at the low level (disabled), count cannot occur; check a outputs to see that they remain at the low level. t5: CET is set to a high level and CEP is set at the low level while the Clock is high. t6: Check Q outputs to see that count is disabled, outputs remain low. t7: CEP is set high while Clock is high; count is now enabled. t8: Clock is pulsed, count begins from 0000 to 0001. t9 thru Check 0 and TC output states. t23: t24: Outputs go to lowstate, count begins (0000). - t23 t24 NOTES 1. The Clock pulse must be in the high state during the high to - MC9316, MC8316 (continued) SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS VIHX 3.0 V 00 01 02 PULSE 14 13 12 TPout GENERATOR 03 PRF PW = 10 MHz typ 50 = 100 ns TC 11 1/4 MC3000 or Equiv 15 CTI t+ = t - :S:10 ns Amplitude = 3.0 V • C-r = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. *The cOax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax sha'lI be CT-070-50 or equivalent. 3.0 V TPin Clock OV TP out Q TP out TC ~VOH SVOL GND 2VOH SVOL GND MC9300/MC8300 series DUAL 8-BIT SHIFT REGISTER MC9328L * MC8328L,P* The MC9328/8328 is a monolithic dual 8-bit serial shift register. Each 8-bit register is provided with a 2-input multiplexer circuit and complementary serial outputs. The two registers can be clocked together with a common line, or clocked separately with separate lines. A common Master Reset input is active in the low level and overrides all other inputs. Input Loading Factors: MR, ~O, 01 = 1 Os = 2 Clock - Pins 7,10= 1.5 Pin 9 "" 3 Output Loading Factor"" 6 Total Power Dissipation = 250 mW typ/pkg Propagation Delay Time = : Clock to Output, tpd_ = 22 ns typ tpd+ = 13 ns typ MR to Output, tpd_ or tpd+ = 35 ns typ Vee = Pin 16 GND = Pin 8 12 14 Q Os 13 DO 11 15 Q 01 Clock fO~ 01 5 Os DO 4 6 3 Q 2 a MR TIMING DIAGRAM Pin No. 7,10 Clock { ~----------------------------------------------_+---VIL 9 ---+--VIH t---I--VIL --------' Os 4 Os 13 DO 6 DO 11 01 5 01 12 Q 14 X = :!i:VOH ';;VOL May be high or low. a 15 x :!i:VOH ';;VOL Q 3 x :!i:VOH' ';;VOL 2: VOH ';;VOL a 2 L x Precondition Cycle • L suffix::: l6-pin dual in-line ceramic package (Case 620). P suffix = l6-pin du'al in-line plastic package (Case 612). t1 t2 t3 t4 t5 t6 t7 t8 t9 :s: ELECTRICAL CHARACTERISTICS (') ~ Test procedures are shown for only one input and one output of one half of the device. Co.) To complete testing, sequence through other inputs and outputs in the I MR same manner 9 C Q N ~t:JJ 3 :s: C 4 6 DS DO 5 Dl (') t:JJ Co.) 5 N t:JJ 2 0o 10 13 11 12 ~ ~R Qt---14 mA @Test Temperature C DS DO . Dl MC9328 -55°e {. +25 oe +l25 o C 5f--15 OoC { MC8328. +25 o e +75°C Characteristic Leakage Current Clamp Voltage Under Symbol Test 'F j IR 4 7 9 1 4 7 9 Vo :i" c CD lOLl IOL2 7.44 7.44 7A4 9.6 9.6 9.6 9.6 9.6 9.6 8.5 8.5 8.5 VIL VIH VF VR Vee VceL VeeH -0.36 0.80 -0.36 -10 0.90 -0.36 0.80 -0.36 0.85 -0.36 -10 0.85 -0.36 0.85 2.0 1.7 lA 1.9 1.8 1.6 0.4 0.4 0.4 OA5 0.45 0.45 4.5 4.5 4.5 4.5 4.5 4.5 - 4.5 4.5 4.5 4.75 4.75 4.75 5.5 5.5 5.5 5.25 5.25 5.25 IOH 10 - - - 5.0 5.0 - a. -rEST eURRENT/vOL TAGE API 'LIED TO PINS LISTED BELOW: ·Pin Input Forward Current ....:::J TEST eURRENT/VOLTAGE VALUES Volts 1--=-<-'=-+-=-;:--"---+-...,.---,-1.6 -3.2 -2.4 -4.8 60 120 90 180 - - - - -1.6 -3.2 -2.4 -4.8 60 120 90 180 -1.5 - Min I Max I Min I Max -1.6 mAde -3.2 -2A -4.8 60 jJAdG 120 90 180 Vdc - ~ + - - - -1.6 -3.2 -2.4 -4.8 60 120 90 180 - - - - - - -1.6 -3.2 -2.4 -4.8 60 120 90 180 -1.5 - - - Unit lOLl IOL21 IOH 110 -1.6 mAde -3.2 -2.4 -4.8 60 - - 120 90 180 - - ~ I VIL I VIH I VF I VR I Vee I VeCL I 41 97 1-_ 1 4 7 9 jJ.Adc + - Vdc - - - - - - - VeCH Gnd 16 8 - 16 + + 16 + - '8 + 8 Output Output Voitage VOLl VOL2 VOH 3 3 3 0.40 1 - 1 0.40 1 - 1 OAO 1 Vdc I - 1 0.45 0040 1 -. 1 OAO 1 - 1 OAO 1 Vdc 1 - 1 0.45 2A 1 - 1 2A 1 - I 2.4 1 - 1 Vdc 1 2.4 1 - 1 2A 0.45 1 - 1 0.45 1 Vdc 1 0.45 1 Vdc 0.45 1 2A 1 - 3 1 Vdc -1 31 See Timing Diagram 16 - 7.8.10 See Timing Diagram - 16 See Timing Diagram 16 - 7.8.10 7.8.10 Power Requirements (Total Device) 'pDH 16 Turn·On Delay C to Q tpd- 3 Turn-Off Delay C to Q tpd+ Turn·On Delay MR to Q tpd- Turn-On Delay MR to Q Ipd- 3 3 3 Power Supply Drain 73 mAde 44 26 70 70 ns - 73 mAde 44 26 70 70 ns Switching Parameters 16 Pulse In· ns ns ns • Letters in parentflesis refer to waveform. #These pins tied together ##These pins tied together • ns ns 91WI 91W) lIY).9IX) lIZ),9IXI Pulse Out 3 3 3 3 V .. x = 2.4 Vd. 1.4.6.11.13 1.4,6.11.13 4,5.6,11,12,13 4,5.6,11,12,13 16 16 16 16 8 # 2.5 2,5 ## 12,15 7.8,10 12.15 7.8.10 7.8.10 7.B.l0 MC9328, MC8328 (continued) SWITCHING TIME TEST CI RCUIT AND VOLTAGE WAVE FORMS 1 MR 9 Two pulse generators are required to provide the waveforms shown. Q 3 C Os DO PULSE GENERATOR Q 2 01 PRF : 1.0 MHz typ 50 t+ = t- "S:10 ns (10% to 90% points) Amplitude = 3.0 V PW"" ns 28 Pulse W 100 30 56 X Y c,. "" Z 15 pF "" total parasitic capacitance, which includes probe, wiring, and load capacitances. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 95C-ohm resistor and the scope termination impedance constitute a 20: 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. CLOCK PROPAGATION DELAY Pulse W 3.0 V TPin Clock tpd+ TP out Q ~=f== TP out Q ____________________________~____________________~~_____ ~~gL ~VOH __4--t===========================================t~===~VOL GNO tpd_ MASTER RESET PROPAGATION DELAY Pulse X TPin J\..J'JL.3.0 Clock . V 0 V Pulse X J V L J L 3 . 0 V TPin Clock 0 V PW(iiiiFl) (Clock Pulse Low) PW(iiiii'i) (Clock Pulse High) Pulse V \r--------3.0 V TPin MR Pulse Z TPin -----------------0 V ]-t MR Q ~,-------------OV Jt t Pd - t Pd - TP out \r-------3.0 V ---------------;;,VOH 1.5V ~VOL GNO TP out Q ------------;;,VOH 1.5 V ~VOL GNO MC9300/MC8300 series RETRIGGERABLE MONOSTABLE MUL TlVIBRATOR MC9601F, L~ MC8601F, L, p~ Input Loading Factor = 1 Output Loading Factor: MC9601- 6 MC8601 = 8 Total Power Dissipation = 80 mW typ/pkg Propagation Delay Time = 2~ ns typ 80 81 1 Vee = Pin 14 GND = Pin 7 "-~.~-... 82 2 ~~"-__' AI30-------; 6 A24o-----....I a The MC9601/8601 monostable multivibrator may be triggered from either edge of an input pulse and will produce accurate output pulse over a wide range of widths. The duration and accuracy of the complementary output pulses are determined by the external timing components, RX and CX. Each time the input conditions ,for triggering are met the external timing capacitor, CX, is discharged, starting a new output pulse. The output goes to the high state while Cx is being discharged and remilins there until the capacitor recharges through RX, to a threshold determined by an internal comparator. Input pulses applied during the active state again discharge the capacitor, thus adding another full timing cycle to the output pulse width. This retriggering feature can be inhibited if not required. FUNCTIONAL TEST 1/4 MC3003 Bl y TIMING DIAGRAM Y -,I r ...--.....;-~ 3 ,OV GND 4.5V Device SEQUENCE 1. 2. 3, 4. 5. MC9601 Apply VIL to Bl. Momentarilv grou nd Y. Apply VIH to Bl. Apply VIL to Bl, Check V for logical "1" level. MC8601 CIRCUIT SCHEMATIC AI 30-.-------------' GND 7 4o-~~----------' A2 ·F suffix = T0-86 ceramic flat package (Case 607). L suffix = TOM116 cerl!lmic dual in-line package (Case 632). P suffix = TO-1 fa plastic dual in-line package (Case 605). Temperature VIL VIH -55 +25 +125 0 +25 +75 0,85 0,9 0,85 0.85 0,85 0,85 2.0 1.7 1.4 1.9 1,8 1.6 • MC9601, MC8601(continued) ELECTRICAL CHARACTERISTICS TEST (URRENT!VOLTAGE VALUES(') Cx RX Test procedures ar. shown for O~IV on. ~VCC :~~~r ~th.r inputs are tested in the sam. i~ t=g: o 81 1 82 2 Temperature IOL JOH -SSO( 10.0 -0.72 I 80 MC9601· VF 0.4 4.5 4.5 5.5 +25°C 1-"10"-,0+-0"'.7='+-:-'"'"0+:0--.,:-+-:-,.'"'5-tc5 =-.0:--t-:-,.-::5-tcC:-5."'5-i l +12S C1-":.:0",.0+:-0__. 7;;:.2t--+~0':"'+.:;'.-:-5+_t-:".:::5:+.5".::5-1 6 , 1i Pin MC9601 Test limits Leakage Current Clamp Voltage 12.8 -0.96 0'( +25'C + 75'C Unit Min Max Min Max Min Max Unit -1.6 -1.6 mAde 60 60 I..I.Adc 60 Yd, -1.5 -1.5 0.45 4.5 ~:!: !:: 5.0 4.75 5.25 ::~: :::: IOL -1.6 mAde -1.6 -l.6 -10 TEST CURRENT !VOLTAGE APPLIED TO PINS LISTED BELOW, V, MC8601 Test limits Under -55'( +25'( + 125'( Symbol Test Min Max Min Max Min Max -1.6 O°C t :~~:~ ~::: ~~::: MC8601 Forward Current 10 o A 1 3 ~=:=;=L~ il A2 4~ L-- Characteristic Input Volts mA @Tost 60 Gnd 14 !-(Adc 14 Yd, 14 Vdc Vdc 14 14 7,11 7 Vdc Vdc 14 14 7 7,11 6,7 7811 Output Output Voltage 0.4 0.4 0.4 O.A 2.4 2.4 Short-Circuit Current 2.4 2.4 0.4 0.4 2.4 2.4 Vdc Vdc -10 -40 -10 -40 ISC Vdc Vdc 0.45 0.45 2.4 2.4 0.45 0.45 2.4 2.4 -10 -10 mAde mAde 0.45 0.45 2,4 2,4 -40 -40 mAdt· 14 mAde 14 Power Requirements Power SUpply Drain 14 25 25 25 mAde 25 25 25 mAdc 14 (1) A la-kilohm resistor (RX) is placed between Pin 13 and Vee for all tests unless otherwise noted, SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Coax· 950 t+ =t- ~tOns I __________ ...J1 L • The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT-070-50 or equivalent. CT = '5 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. 4.5 V .z---±=±"",.,---------3.0 V =~---+:::=========g'~~ When RX = 5.0 k!l,CX = 0: PW :: 65 ns max, tpd+ :: 40 ns max, tpd_ = 40 ns max OND =========~~~------~===SVOL When RX = 10 k!l ±.1.0%, Cx = 1000 pF: PW = 3.081ls min, 3.76 ils max PW---..; TPout a MC9601, MCS601 (continued) TYPICAL CHARACTERISTICS FIGURE 1 -INPUT LOAD CURRENT versus INPUT VOLTAGE +0.5 ;( ! IZ 1 I 0 t--vle~5'lv-0.5 w T A ~ _55 0 e II: II: ::J u -1.5 .. I::J \ I -2.5 / TA - -550 e ::J U w w .J .. o I 40 TA:: r-- - 20 I::J Z -0.5 TA - -S50C « "« ...-TA~+1250e III -3.5 -1.5 60 (.'I _TA ~+250e ~ +0.5 1 I -Vec~S.ov II: II: TA = +2SoC I 0 j IZ w l.CJr\ 'po- a « .J ~1+12)e'":l. TA FIGURE 2 - INPUT LEAKAGE CURRENT versus INPUT VOLTAGE 80 +1.5 Y+12rc \" o 1 I Vee~5.0V ! - r-TA Output Low 120 L.?" IZ w II: II: § 80 ~V ::J U . I::J I::J 0 ~ +125Le~ 2.0 o ~ o ~ r- ;( .5 V~C-5.~V I Output High 1 0 IT A == +2SoC Z I II: II: TA = _55°C, "'" J# W I -10 U '-TA ~ .. I::J _55 0 e I::J 0 I#' 0.4 0.8 1.2 ~ ~20 1.6 o ~ w 130 z i= ~ o ~ 110 90 a II: w ..s:C o .. 70 ---- I - Vee ~ I 5.0 vide 4.5 ~ r50 -55 5.5 Vde -25 o 25 v~e I SO' ::; ---75 8.0 - --1.00 TA. AMBIENT TEMPERATURE (oC) o ~ ~ ,.... I ' T A =+25 0 C ' T A =+125 0 e 1 I +1.0 +2.0 +3.0 +4.0 +5.0 +6.0 +7.0 VOH.OUTPUT VOLTAGE (VOLTS) FIGURE 5 - POWER DISSIPATION versus AMBI ENT TEMPERATURE and SUPPLY VOL TAG E .5 6.0 ~ /# -30 -1.0 VOL. OUTPUT VOLTAGE (VOLTS) ~ 4.0 FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE (HIGH STATE) +10 ::J ~~ 40 ~ INPUT VOLTAGE (VOLTS) FIGURE 3 - OUTPUT CURRENT versus OUTPUT VOLTAGE. (LOW STATE) ;( ': / / /f INPUT VOLTAGE (VOLTS) 160 +250~ / o +2.5 T .......... 125 i= >- ::) w a II: w FIGURE 6 - NEGATIVE TRIGGER DELAY TIME varsus AMBIENT TEMPERATURE 80 CL = 15 40 r-- II: I- r to~ r-- (.'I ~ w .l I VCC = 5.0 Vde RX=5.0kf! 60 r-- Cx = 0 pF 20 'off > ~ (.'I w Z - Complementary o -55 -25 o -- Output '1 TrueOitput 25 50 75 100 T A. AMBIENT TEMPERATUR E (oC) 125 MC9601, MC8601 (continued) TYPICAL CHARACTERISTICS (continued) 1O f- CI 1.2 §: w en ..J :::> f- :::> f- 1.0 :::> o aw N ::; 1 -- 1.1 _ 0- 0- FIGURE 8 - NORMALIZED OUTPUT PULSE WIDTH versus SUPPLY VOLTAGE FIGURE 7 - NORMALIZED OUTPUT PULSE WIDTH versus AMBIENT TEMPERATURE J: f- .1. CI VCC - 5.0 Vdc RX- 1Okn Cx -10 3 pF --...... §: w en ..J :::> Z --- - --....... - 0.9 :::> 0- f- 1.0 :::> o CI w ~ 0.8 ..J 4: ::; 0.8 -55 II: -25 a 25 50 75 100 125 o Z 0.6 4.0 4.5 T A, AM81ENT TEMPERATURE (oC) 1O f- CI §: w en ..J :::> FIGURE 9 - NORMALIZED OUTPUT PULSE WIDTH versus OPERATING DUTY CYCLE 1.4r---,----r---,----~---r--_,----r_--, r-1.2 r-- VCC - 5.0 V RX - 10 kn Cx - 10 3 pF TA:= +25 0 C f- Z w en f- :::> :::> 0 ::; 65 r\ 60 ~ 0.6~ 20 __~__- L__- - '____~__- L__~~__~__~ 40 60 80 100 OPERATING ClUTY CYCLE (%) z ::; ~dC 5.0 RX = 5 kn :::> ::; o Vc~ - 70 ~=OPF f- 0.8f-~+----l----I----+---+---+----+---~ 4: II: §: 0- CI W 75 0- o N ..J oS :::> 1.01--+--+-+--+--+--1--+--"1 :::> 6.0 FIGURE 10 - OUTPUT PULSE WIDTH versus AMBIENT TEMPERATURE ..J :::> f- . CI -l-----f---+---+---I-----j 5.5 5.0 V CC , SUPPLY VOLTAGE (VOLTS) J: f- 0- 0- I. f- 4: o 1 -- TA _+25 0 C RX -10 kn 1.2 - - Cx _10 3 pF 0- ::; II: 1.4 55 -55 ~ ~ VV "" ---25 o 25 / -t-- 50 75 100 125 T A, AMBIENT TEMPERATURE (oC) PULSE WIDTH For values of Cx less than 1000 pF, the output pulse width, PW, is defined by the curves of Figure 11. For larger values of eX use the equation: PW - 0.32 RX Cx [1 + (0.7fRX)] where PW is in nanoseconds, OPERATING CHARACTERISTICS RX is in kilohms, eX is in picofarads. Values of RX may vary from 5.0 kilohms to 50 kilohm. for 00 to +75 0 C operation of the MCS601, and from 5.0 kilohms to 25 kilohm. for -55° to +1250 C operation of the MC9601. The range of capacitance values is unlimited, hence maximum pulse width is limited only by the values of available capaCitors. MC9601, MCS601 (continued) 10 5. t--O~ Cx >1000 pF PW= 0.32 RXCX [1 + (0.7/RXll 3.0 k"'. VII' ~ 1.0 ~ J: b ~ RX :> O. 3 I- :> 0- I- ~ :> o ~. 0- ~WL I--'"' L V /' V '/ V V V V V V ~V .L L L L V lIEf:rL I-- I-V VV I--' V I-- I-- ~~ ~ l- 0- =5~lk~ V L IL 0.5 w '1 V L / FIGURE 11-0UTPUT PULSE WIDTH versus TIMING RESISTANCE AND CAPACITANCE L ./ O. 1 10k!} ...- 0.05 ~Ikh 0.03 0.0 1 1.b 3.0 5.0 10 30 50 100 300 500 Cx. TIMING CAPACITANCE (pF) PULSE INITIATION Output pulses are initiated by ahy combination of inputs satlS~ fying the logic expression AI. A2 • 181 + 82); A 1 and A2 must be high and 'either 81 or B2 must be low. Output pulSes are generated by transitions from low to high 00 A 1 or A2. and by transitions from high to low on 81 or 82. Leading edge triggering may be accomplished by either of the methods shown io Figure 12. Similarly, trailing edge triggering may be accomplished by either of the methods shown in Figure 13. FIGURE 12-LEADING EDGE TRIGGERING =j§ ~40ns~ 3.0V Input~ =J; Input~ '\L 3.0 V ~ ",--0.4 V ----t------------~------GNO 0.4 V GNO t p f o- ' - -_ _ _ _ _.... Output ~2.4 1.5 V V =:::::::::::::::~.==============0.4 GNO la) INPUT TO 81 (B2. AI, AND A2 HIGH) ~40nS---j tPdfo V Output -------;;,,2.4 V 1.5 V V =:::::::::::::::~.==============0.4 GNO Ib) INPUT TO A, (A2 HIGH, Bl OR 82 LOW) MC9601, MCS601 (continued) FIGURE 13-TRAILING EDGE TRIGGERING r--------------------------------, r--------------------------------, J. :!:40n.~ ----'"""+------3.0 v Input 1.5 V 0.4 V F GND :!:40n.~ --{: ~ ...-----3.0 V Input tpd~ t Pd Output :!:2.4 V GND ===================~=====0.4 V (a) INPUT TO Bl (B2, AlAND A2 HIGH) FIGURE 14 - NON·RETRIGGERABLE OPERATION GND :::V I Output 1.5 V 0.4V ====================~======GND (b) INPUT AI (A2 HIGH, Bl OR B2 LOW) In Figure 14(a), A2 is held low by the a output during the active state. Since both A inputs must be high for triggering to occur, this configuration inhibits retriggering at all of the remain· ing inputs. The configuration of Figure 14(b) will be triggered active on the trailing edge of a negative going pulse applied to either AI or A2. B2 and 61 are then held high by the Q output. Since either 61 or 62 must be low for triggering to occur, further triggering during a timing cycle is inhibited. The feedback arrangement of Figure 14(c) holds 62 low during the active timing cycle. Since this keeps the output of the inverted OR gating circuitry high, subsequent input signals to 61 during the active state do not retrigger the monostable. Noise immunity is improved by returning unused "high" inputs to VCC through a 2.0 kilohm resistor instead of leaving them open (see Aland A2 of Figure 14(c), for example.) i II (a) Inputs ASTABLE OPERATION Astable applications requiring adjustable duty cycles may be accomplished by the conventional method of cascading two onsshots as shown in Figure 15. In applications where narrow output pulses are satisfactory, a single monostable may be used. One method for dOing this is illustrated in Figure 16, monostable A. The clock gener~tion for a simple pulse generator is accomplished by connecting the output of the "A" monostable back to an AND input. The period of oscillation, or pulse repetition fre~ quency, PRF, is determined by the external timing components, RXA and CXA. At the end of each timing cycle, the QA output generates a low-to~high transition at the AND input and thus triggers another cycle. The nominal output pulse width is approx~ imately 30 ns, and is determined by the propagation time through the gating and discharge circuitry. The maximum PRF is approx~ imately 15 MHz, obtained with CXA = 0 pF and RXA = 5.0 kil. The variable delay feature is controlled by the timing components of monostable '"B'", CXB and RXB. The output pulse width is determined ·by CXC and RXC, the timing components of monostable '"C". a (b) Input a 2 k Vee (c) RETRIGGER INHIBIT For applications where retriggering is not required .. appropriate feedback from the outputs will inhibit trigger signals arriving during the active timing cycle. Figure"4 illustrates three methods for doing this. ELECTROLYTIC CAPACITOR PROTECTION If electrolytic capacitors are used they should be protected from reverse voltage; either of the methods indicated in Figure 16 may be used. Any silicon switching diode, such as the lN4001 shown for monostable '"B", is adequate. The transistor method of monostable lieu requires a silicon transistor with gain at low currents. This figure also illustrates the preferred method of using remotely located variable timing components. Noise pickup will be minimized by locating RX and Cx physically close to the device. Stray capacitance at pins 11 and 13 should be 50 pF or less. MC9601, MCS601 (continued) FIGURE 15 -ASTABLE OPERATION -ADJUSTABLE DUTY CYCLE Vcc Vcc .....-oa2 ~- Vcc Vcc .-J I --------.-+1- 0.32 (1 ::2) -+I------·~I~. + -, L I I RX2 C (1 O :2) X2 +R ---'I 1...._ _ _ FIGURE 16 - PULSE GENERATOR Vcc Vcc ~".. , S Rx(max) - RXA2 Vec ~"'" I I I R I I I < RX (0.7) hFE I I I I RXA2 ~ RX(min) RXB2 B Qr---------------~ MC8601 MC8601 '""1·-----PRF------l'1 aAJn~ I 1 __________~n~__~------__~ I II I 11______ ~D.,aY__l_pw~'---------I • • BEAM~ LEAD INTEGRATED CIRCUITS MCBC5400/ MCB5400F SERIES l MCBC5400/MCB5400F SERIES BEAM LEAD INTEGRATED CIRCUITS INDEX Introduction Beam Lead Technology Beam Lead Reliability Assurance Steps Packaging Typical Characteristics Breadboarding Suggestions Maximum Ratings DEVICE SPECIFICATJONS II I MCBC5400 MCBC5401 MCBC5402 ,MCBC5430 ,.MCBC5440 MCBC5453 MCBC5454 MCBC5460 MCBC547~ MCB5400F MCB5401F MCB5402F MCB5430F MCB5440J;'..; MCB5453F 'MCB5454F MCB5460F MCB5472F. Quad 2-lnput NAND Gate Quad 2-lnput NAND Gate (Open Collector Output) Quad 2-lnput NOR Gate 8-lnput NAND Gate Dual 4-lnput NAND Buffer Expandable 4-Wide 2-lnput AND-OR-INVERT Gate 4-Wide 2-lnput AND-OR-INVERT Gate Dual 4-lnput Expander for AND-OR-INVERT Gate J-K Flip-Flop GENERAL INFORMATION MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUITS .....-.~ FIGURE 1 - TYPICAL MTTL CIRCUIT MCBC5400IMCB5400F Series INTRODUCTION The MTTL MCBC5400/MCB5400F series of transistortransistor logic is a medium-speed, high noise immunity family of saturating integrated logic circuits designed for digital logic apptications requiring clock frequencies to 30 MHz and switching speeds in the 12-15 ns range under moderate capacitive loading. The bel!m lead sealed-junction technology 'used in this MTTL family makes the devices useful in military, aerospace, and commercial applications that require a high degree of reliability under environmental conditions of severe temperature extremes, mechanical shock, and high humidity. The beam lead products employ a silicon nitride dielectric that hermetically seals the chip,eliminating the need for a hermetic package. The beam leads are gold cantilevered structures extending from the chip. These beams bond readily to a gold metalized substrate providing one of the most reliable interconnection systems known for semiconductor devices. The circuits in the MCBC5400/MCB5400F series are identified by a multiple emitter input transistor and an active pullup in the upper output network as shown in Figure 1. The multiple emitter input configuration offers the maximum amount of logic capability in the minimum physical area and provides improved switching characteristics du.ring turnoff. Clamp diodes are provided at each of the inputs to limit undershoot that occurs in typical applications such as driving long interconnect wiring. The active pullup output configuration provides low impedance in the high output state. The resulting low impedances in . both states provide excellent ac noise immunity and allow high-speed operation while driving large capacitive loads. These beam lead MTTL units have the same electrical characteristics as the. conventional flat-pack units and may be used interchangeably with them. This eliminates the need for electrically redesigning equipment for improved reliability after the successful performance of prototype or pre-production units with conventional devices. BEAM LEADTECHNOLOGY Junction Sealing In conventional integrated circuits, the p ..,N junctions are pr~ tected bV a layer of silicon dioxide. This oxide, while acting 85 an simulator and. providing a degree of protection, is permeable to mo- bite ions.· Ions- impinging on the surface of the finished circuit can cause high leakage current and reduction of current gain. Silicon nitride passivation applied over the oxide prevents contaminants that can result in such degradation from reaching the oxide . Metalization The metalization on the Motorola beam lead integrated circuits of platinum silicide ohmic contacts topped by layers of titanium and platinum. These in turn are followed by two layers of gold. The first ~old leyer providE.. ' the. chip intraconnection and the second, thicker layer forms the cantilevered beams that connect the chip to theo";tside world (see Figure 21. This metalization method has .the ability to withstand conditions of high humidity over extended periods of time without degradation or the formation of undesirable inter-metallics. It is also capable of being bonded to a gold-metalized substrate and provides a highly relaible gold-ta-gold bond, which is easily made and readily inspectable. Bonds have also been made to other substrate metal materials without difficulty. Durihg the bonding process, beam read devices lift off the substrate surface, which, with the ductility of the gold metal beams and the high quality bond, allows the device to withstand wide variations in temperature without,failure due to fatigue. Separation Etch Conventional integrated circuits are separated wi~h a "scribe and break" technique v.hich not only results in a yield lo's' dul.to cracking of .the die, but can, also- result io minute cracks, which do, not immediately. reveal. ,themselves ,and can cause· device . failure. at a later date. The beam lead sealed-junction del/ices are separated by chemically -etching through the silicon.from the back side, thereby avoiding mechanical stresses and/or other latent defects. • Mlll GENERAL INFORMATION MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUITS TABLE 1 Beam Lead Reliability Assurance Steps I. Chips A. Tests performed after wafer separation etch 1. Post separation etch visual inspection (backside) 2. Wafer electrical probe (100%dc testperdata sheet at 250 C. B. Tests performed on a bonded sample after die transfer and pick 1. Beam integrity al Bond qualification samples to test header b) Push die off haader from metallization side c) Each beam must withstand 2.00 gm. min. 2. Junction seal integrity a) Electrical test b) Apply NaCI over die c) Reverse bias input junctions at T A = 3000 C for eight hours in forming gas atmosphere d) Electrical test 3. Electrical qualification a) Package sample b) DC parameters at all temperatures per data sheet c) AC test per data sheet C. Inspection after die pick and sort 1. 100% high power visual inspection 2. Rand QA sample high power inspection II. Packaged Devices A. Inspection after die bond. 1. Sample visual inspection B. Testing after encapsulation 1. Lot stress screening a) Temperature cycling: -65 0 C to 1500 C min; 10 cycles b) Water immersion: boiling water ("'1000 C; 1 hour) c) Electrical measurements: dc leakage parameters d) Stabilization bake: T A = 1750 C min; 24 hours min e) High temperature reverse bias (cost option) C. Testing after package cleaning and marking 1. Electrical tests a) Final dc test per data sheet at 25 0 C (100%) b) Final ac test per data sheet at 250 C (sample) 2. Rand QA final outgoing inspection a) Burn in screen (cost option) b) Group A - visual/mechanical .inspection per MIL· STD-883. method 2009. Group A tests are performad on every lot on a sample basis. D.C. electrical measurements per data sheet (sample) A.C. electrical measurements (sample) c) Group B environmental testing per MIL-STD-883 Class A as applicable. These tests are performed periodically during the manufacturing period on a production lot of a representative circu it type. The circuit type selected each per.ied is changed routinely and is representative of all structurally similar devices produced on the same line by the same processes during that period. d) Group C - life testing per MIL-STD-883 Class A as applicable. These tests are performed periodically on at least one lot of every circuit family produced during that period. FIGURE 2 - BEAM LEAD SEALED JUNCTION TRANSISTOR • Thin Gold m~====~11 Lij~~~f;: Platinum Titanium Silicon Dioxide Reliability Processing Conventional integrated circuits have established an outstandi ng reputation for reliability. Beam lead integ~ated circuits provide even higher reliability by eliminating the major failure modes of conventional circuits. Most failures in conventional 'Integrated circuits are due to contaminahts reaching the active chip or to fajlure . Silicon Nitride in the bonds between the package and the chip. Beam lead technology solves both of these problems. The silIcon nitride hermetically seals the chip so that even a leaking package causes no failure. The all-gold beam lead interconnection system eliminates the sources of conventional bond failure~ These processes, are completely documented by in-process specifications and are carefully monitored' for·adherence to process requirements and inspection I GENERAL INFORMATION MTTL MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUITS FIGURE 3 - 14-L••d Chip FIGURE 4 - 1S-Laad Chip leads true position within 0.002 total. Leads true position witliin 0.062 total. FIGURE 5 - Di. Size Device Number Function 2~lnput NAND Gate Di. Size No_ Na_ Beem~ Plns_ Ceramic Siz," 14x%. 5400 Quad 35 x 45 14 14 5401 Quad 2-lnput NAND Gate Open Collector 35 x 45 14 14 14x14 5402 Quad 2-lnput NOR Gate 45x 45 16 14 5410 Triple 3"·lnp·ut NAND Gate 35 x 45 14 14x%. 14x%. 5440 Dual"4-lnput NAND Buffer 35 x 45 14 14 14x"%, 5453 Expandable AND/OR Inverter 35 x 45 14 14 14x14 5454 4 Wide 2-lnput ANDIOR Inverter 35 x 45 14 14 14x%. 5460 O"ual4-lnput Expander 36 x 46 14 14 5472 J-K Flip Flop 46 x 45 16 16 5473 Dual J.,.K Flip Flop - 14 14x%. 14x%. 14x%. - 14 standards by the Motorola Reliability and Quality Assurance Department. In addition, the tests itemized in Table 1 are conducted on all lots from which die are taken for sale either as dice or packaged circuits. FIGURES. Mechanical Properties 0.045 0.055 00'3 oirnlcl1~ MIN .1 ml'lm,~ ~O'40..j 'T Imll lead 1 identifiedby£olor dot or by elbow(!n lead. Top COV8r mad,ofsHastic material. FSUFFIX CERAMIC PACKAGE CASE 651 The beam leads, which are cantilevered ·from each die, are tested for beam-strength, hardness, ductil1ty and adhesion to the chip by suitable tests to demonstrate that the die are readily bondable and will be reliable under extreme temperature and mechanical stress conditions. Packaging and Handling The MCBCq400/MCB5400F series of beam lead sealed-junction digital integrated circuits is. availabl~ in the. chip, form and in a y.. .. x J(," ceramic flat package. Tlte shipping carrier for chips is.8 2" square glass pla~ pn which the chips are placed. A thin layer of polymerfilm covers the plate and retains the chips in place, The chips do not IIdhere to, the .film when it· is lifted to remove them from the carrier. Call! must be exerci$~ "Yhen. r~moving t.he chips from the carrier to ensure thatthe beams are not bent. This is most easily done by using a vacuum pick'upfor this purpose. • GENERAL INFORMATION MTTL MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUITS Standard beam patterns are used depending on the die size required. Figures 3, 4, and 5 show these configurations and list the devices that are made from ~ach. TYPICAL CHARACTERISTICS The following summary presents the typical operating characteristics of ttie MTTL MCBC5400iMCB54ooF series. Unless otherwise indicated, the parameters are defined for VCC = +5.0 volts and TA = +250 C. Power and Ground Distribution Spacial care should be taken to insure adequate distribution of power and ground systems. The typical rata of change of currents and voltages for a single MTTL gate is in the range of 107 Als and 108 Vis respectively. These figures reflect the necessity for alowimpedance power supply and ground distribution system, if transients are to be minimized and noise margins maintained. The use of AWG No. 20 wire or larger i. often required. For printed cireu itry, lina widths of 100 mils or more are often necessary. A ground plane is desirable when using a large number of units. Bypassing Supply Voltage Operating Range = 4.5 to 5.5 volts Operating Temperature Range = -55 to +1250 C Output Drive capability Other Gate. (Output Loading Factor) = 10 capacitance = 600 pF Output Impedance High State = 70 ohms (unsaturated) nominal Low State = 10 ohms nominal Output Voltage Swing = 0.2 to 3.5 volts typical Input Voltage Limits +5.5 volts maximum -0.5 volt minimum Switching. Threshold = 1.5 volts nominal Worst-case DC Noise Margin High State - 0.400 volt minimum Low State - 0.400 volt minimum Power Dissipltion (1) Basic Gate = 10 mW Iyp/gate Basic Flip·Flop = 40 mW typ/pkg Switching Speed. (2) Average Propagation Delay = 13 ns per gate typical 30 ns per flip·flop typical Rise Time = 2.5 ns typical Fall Time = 1.5 ns typical Maximum Flip-Flop Clock Frequency Power Dissipation The standard supply voltage of the MTTL logic circuits is +5.0 Vdc. The typical average de power diSSipation is given for each MTTL circuit. (1) It should be noted that the totem pole output common to all high laval MTTL circuits hes an associated ac power dissipation factor. This factor results. from the timing overlap of the upper and lower output transistors during the normal switching operlition and is typically 0.30 mW/MHz/output for a 15 pF load. This ac power dissipation should be added when calculating the total power requirements of the MTTL circuits. Input Impedance High State = 400 k ohms nominal Low State = 4.0 k ohms nominal I To reduce supply transients, the breadboard should be bypassed at the point where power is supplied to the board and at intarvals throughout the board. The use of a singla bypass capacitor at the output terminal of the power supply is not adequate in a breadboard utilizing tha fest rise and fall time MTTL circuits. A comperetively large, low-inductance type capacitor (in tha 1.0 "F range) is suggested at the point where power and ground entar tha board. In many c.... it has been found that distributing 0.01 "F cepacitors for avary eight packages throughout a breadboard is adequate to suppress normal switching transients. It is also suggested that a bypass capacitor be placed in close proximity to any circuit driving a large capacitive load. Unused Inputs and Unused Gates The unused inputs of any MTTL logic circuit should not be left open, and can either be tied to the used inputs or returned to the supply voltage. This will reduce any potential problems resulting = 20 MHz typical (11 Po = IpOL + IpOH 2 (Vee) where IpOL and IpDH are the typical de current drains at Vee "" ±s.o v. BREADBOARDING SUGGESTIONS When breadboarding with any form of high-speed; high-performance TTL, tlie desigrier must continually bfi aware of the fact that he is working with the fastest form of saturating logic avallabla in the industry today. The switching spaeds, espacially the fraquencieS associated with the very fest -rise and fall timeS of the circuits, are in the R F range and good high-frequency layout teChniques should be ·used. The following breadboarding ·suggestions have been inCluded to help the designer in his initial circuit layout. In many cases the breadboarding suggestions will hava to be modified to meet therequiremants of the designar's spacific application. (2)The ,witching characteristics of the MTTL famllv are defined with respect to the aSSociated translstions of the voltage waveforms. The average propagation delay Is defined as the average of the turnon delay and the turn-off delay measured from the 1.6 V point of the Input to the 1.5 V point of the associated output translt'on or: ton + toff tpd = - - 2 - - ns. Rise time is defined as the positive going transition of the output from the 10% to the 90% V level. Fall time is defined 8S the negative tr8nsitlon.of the output from the 90% to the ,1 0% V level. MTTL GENERAL INFORMATION MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUITS from external noise. If the inputs are returned to the supply volt- age, care should be taken to insure that the supply voltage does not exceed the maximum rated input voltage of 5.5 volts. If the supply can exceed 5.5 volts, the unused inputs must be returned to a lower voltage. The total number of inputs that can be tied to the output of any driving gate is 50. (This is defined as high state output loading factor.) It should be noted that the low state output loading rules must .still be maintained. The minimum logical "'" level, VOH = 2.4 V minimum for the high-state output loading, with Vtho =0.8 V, IOH = -0.4 mA, and VCCL. SIGNAL LINE NOISE IMMUNITY LOGIC "0" LEVEL LOGIC "'" LEVEL GROUND LINE NOISE IMMUNITY POWER SUPPLY NOISE IMMUNITY -1. J"l:;.-GND GND ) oRl.J""t;;" -i f-pw ) r---'----, • SIGNAL LINE NOISE IMMUNITY w o :l LOGIC "0" LEVEL 6 LOGIC "'" LEVEL LOGIC "1" REFERENCE LEVEL = 3.5 VOLTS LOGIC "0" REFERENCE LEVEL = 0.2 VOLTS I- :::; ~Cij 4 1\ «~ wo ~~ . 2 III 0 :l W (5 z w o 0 l ...... 50 100 150 ~Cij2 «~ wO ~.~ 1 :l .. z :3 I- 150 300 6r-~------t---------r---------r-------~ ~ 5 4r-----". . __ =-+----~--+-------+---------! ~ 2r--------+--~--~r_------~------~ w 100 250 : :;
.J- PW. NOISE PULSE WIDTH (ns) 20.0 s:r-_PO_W_E_R--,-SU_P_P_L_Y,--N_O--,-IS_E_I_M_M_U_N_ITT_Y_ _--, ~~ '-.... 50 150 :l 0 0 100 PW. NOISE PULSjO WIDTH (ns) , :::; (5 50 GROUND LINE NOISE IMMUNITY I- w 250 3 :l III 200 . PW. NOISE PULSE WIDTH (nsl 200 250 6z \. °0~------~10~0~------2~0~0~------3~00~-------4~00 PW. NOISE PULSE WIDTH (ns) MTTL GENERAL INFORMATION MCBC5400/MCB5400F Series BEAM LEAD INTEGRATED CIRCUIT5 The unused inputs of the various flip-flops mav be tied back to trigger the flip-flop. In addition, clamp diodes have been provided their associated outputs. To determine which outputs are related to each set of inputs by internal feedback, refer to the circuit schematics. on all data inputs to limit any undershoot or negative ringing on the data lines. The inputs of any unused gate in a package should be grounded_ This places the gate in its lowest power condition and will help to Dual J·K Flip-Flop - MCB5473F eliminate unnecessary power drain. edge of the clock. Each of the independent flip-flops has a single J and a single K input. A direct RESET has been provided for preclearing the flip-flop regardless of the state of the clock. The op- Expanders and Expander Nodes The DRing nodes of all the MTTL AND-DR-INVERT gates are made available for expanding the number of AN D gates to 6 (MC5450F) or 8 (MC5453F)_ Since these are cOmparatively highimpedance nodes. care should be taken to minimize capacitive loading on the expander terminals if switching speed is to be maintained. When an expander is to be used with an expandable AND-ORINVERT gate, it should be placed as close as possible to the gate being expanded. The increase in average propagation delay as a function of capacitance added to the expander nodes is typically 1_0 ns/pF_ This dual master-slave J-K flip-flop also triggers on the negative eration of this device is the same as the MCB5472F. Each of the flip-flops has the special clamp circuit on the clock line as well as clamp diodes on all the data inputs. Noise Immunity In a typical system noise begins to pose a problem when it is of such a magnitude that it can change the state of a flip-flop in the system or prevent a flip-flop from Changing state at the proper time. Noise can be present on the ground line. the power supply line or the signal line. In designing a system using MTT L. particular care must be taken Output OR (AND) Function due to the extremely high rate of change of voltage and current Unlike the MDTL family of logic circuits, the outputs of the MTTL logic circuits cannot be tied together to perform the output OR, or more correctly, the output AND function_ If the.outputs of the MTTL family devices are tied together, it would be pos- on the signal lines and current on the power supply and ground lines (see sections on Power and Ground Distribution and By· passing). Th~se factors increase the possibility of noise gener~tion within the system itself in addition to externally generated noise. Noise immunity in a digital system is a function of the propaga- sible for the lower output transistor of one circuit and the upper output transistor of another circuit to be "on" simultaneously. This condition provides a lowwimpedance path from Vee to ground and the current that flows (approximately ISC) exceeds the guar- anteed sink current. As a result. the saturated state cannot be maintained and the desired logic function is not satisfied. Operating Characteristics of Flip-Flops J-K Flip-Flop - MCBC5472/MCB5472F This master-slave J-K flip-flop triggers on the negative edge of the clock. An AND-input configuration is used. consisting ot three J inputs ANDed together and three K inputs ANDed together. A direct SET and RESET are provided to permit presetting data into the flip-flop. The direct SET and RESET control the operation of the flip-flop regardless of the state of the clock. Information is '1orl)1aIlY.applied to, or changed at the clocked inputs while the clock is in the low state since the master memory is inhibited in this condition. Information may be stored in t~e master flip-flop section when the clock goes high. Once the input data has been stored in the master flipwflop section it cannot be removed (or changed) by me~ns of the clocked inputs. The direct SET or RESET provide the only means of removing previously stored information. They override the clock input and can be applied any time during the· clock cycle. The state of the master flip-flop is transferred to the slave flipflop section· on the negative transition of the clock. and the outputs respond accordingly. The flip-flop can be set or reset by applying a low state to the direct 'SET or RESET inputs. A speci~1 clamp circuit has been included on the clock line to guarantee that negative transients, such as ringing on the clock line. do no~ false- tion delays of the gates and flip-flops in the system and the dc threshold levels of these devices. The following block diagrams show typical test set-ups for measuring signal line. ground line and power supplV line immunity of a gate in a digital system. The system is considered disturbed when the flip-flop begins toggling. The curves show the tvpical noise amplitude a system can accept as a function of noise pulse width. As the pulse widths bew come narrower the amplitude can increase without disturbing the system. This can begin occurring when the pulse width is less than 20 ns on the signal line or 50 ns on the power supply or ground line. ,This pulse width·amplitude product is an indication of the minimum noise energy that is required to disturb a system. The low input and output impedances of MTTL gates and flip-flops re- quires more energy on the s.ignal lines to distrub the system than in DTL or RTL systems. With proper power and ground distribution and bypassing. noise on power supply and ground lines can be main w tained below levels which would be detrimental to system operation. MAXIMUM RATINGS Rating Supply Voltage - Continuous Supply Operating Voltage Range Input Voltage Output Voltage Operating Temperature Range Storage Temperature Range Ceramic Package Maximum Junction Temperature Therma1 Resistance Junction-to-Case. 8 JC Ceramic Package Value Unit +7.0 4.5 to 5.5 +5.5 +5.5 -55 to +125 Vdc Vdc Vdc Vdc -65 tD +150 DC +175 DC 0.09 °C/mW DC MCBC5400/MCB5400F series QUAD 2-INPUT "NAND" GATE MCBC5400* MCB5400F* ~ B[AMLEAD~ This device consists of four 2-input NAND gates that is produced using beam lead sealed junction technology. These devices are particularly useful in highly reliable systems using 1/4 OF CIRCUIT SHOWN hybrid beam lead assembly techniques or standard flat pack· age assembJy techniques. 4 Vee 4k 1.4 k 100 3 Positive Logic: 3 = ~ Negative Logic: 3 = '1"+"2 1 k Input Loading Factor = 1 Output Loading Factor = 10 GND TOtal Power Dissipation = 40 mW typ!pk.g 11 Propagation Delay Time SWITCHING TIME TEST CIRCUIT = 10 ns typ VOLTAGE WAVEFORMS AND DEFINITIONS Vee +5.0 Vdc Coax" 950 r--v+-=:::--3.0 V 400 "ri----l.5 V ---~----~~~---OV tPd_~. tP.d+ 2.4 V MMD6150 t+ ""-12 t-:::: or Equiv. n5 6.0 ns PRF = 1.0 MHz, 50% duty cycle Generator ZoutR:50 ohms MMD7000 or EQuiv. +2.4 Vdc CT = 15 pF = tot.&1 parasitic capacitance, which includes T-P out -------====:------------~~ci max pro~e, wiring, and load capacitances. "The qoax delays from input to scope and output to scope must be matched. Tt:'ascope must be terminated in 50-ohm impedance. The 9S0-ohm resistor and the scope~termination impedance constitute a',20: 1 attenlJator probe. Coax shall be CT-070-50 or equivalent. "F suffix;:: 1/4" x 1/4u ceramic package (Case 651). MCBC-prefixed devices are un,. encapsulated. Beam numbers are the same as the pin numbers for flat-packaged devices. See General Information section for package and chij:rdetails. min 1.5 V III s: ELECTRICAL CHARACTERISTICS n to n Test procedures are shown for only one gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through remaining inputs. ~=C}-3 CJ1 ~=C}-5 .0 ~ o 1~=LJ--8 IOL IOH V1L TEST CURRENT /VOlTAGE VALUES (All Temperatures) Volts VR2 V1H V1HH VR1 V.h1 V.hO Vcc 16 -0.4 0.4 2.4 12=C}13 14 Characteristic Input mA Test Limits MCBC5400/MCB5400F Pin Under -55 to +125°C Symbol Test Min Max Unit IOL 5.5 4.5 5.0 2.0 0.8 5.0 s: n to VCCL VCCH 4.5 5.5 CJ1 ~ o o "T1 nO TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW: ::l ::!". IOH V1L V1H V1HH VR1 VR2 V. h1 V. hO Vcc VCCL VCCH Gnd a. Forward Current IF 1 - -1. 6 mAde - - 1 - - 2 - - - - - 4 11* Leakage Current IRI 1 - 40 /lAde - - - 1 - - - - - - - 4 2,11* IR2 1 - 1.0 mAde - - - - 1 - - - - - - 4 2,11* VOL 3 - 0.4 Vde 3 - - - - - - 1,2 - - 4 - 11* VOH 3 2.4 - Vde - 3 - - - 2 - - 1 - 2,4 - 11* ISC 3 -20 -55 mAde - - - - - - - - - - - 4 1,2,3,11* IpDH 4 - 22 mAde - - - - - 1,2,6,7,9, 10,12,13 - - - - 4 11 IpDL 4 - 8.0 mAde - - - - - - - - - - - 4 1,2,11* Pulse In Pulse Out Output Output Voltage Short-Circuit Current Power Requirements (Total Device) Power Supply Drain ::l C C1l Switching Parameters Turn-On Delay tpd_ 1,3 - 15** ns 1 3 - 2 - - - - - 4 - - 11* Turn-Off Delay tpd+ 1,3 - 22** ns 1 3 - 2 - - - - - 4 - - 11* *Ground inputs to gates not under test. **Tested only at 25° C. MCBC5400/MCB5400F series QUAD 2-INPUT "NAND" GATE WITH OPEN COLLECTOR MCBC5401* MCB5401F* ,~ &Jj .. ··0 BEAM LEAD ~ r This device consists of four 2·jnput NAND gates with no output pullup network that is produced using beam lead sealed 1/4 OF CIRCUIT SHOWN junction technology. These devices are particularly useful in highly reliable systems using hybrid beam lead assembly tech- niques, or standard flat package assembly techniques. 4 Vee 1.4 k Positive Logic: 3 = Negative Logic: 3 "" W 02 1 k Input Loading Factor Output Loading Fill;tor 10 Total Power Dissipation'" 40 mW tvp/pkg GND 11 Propagation Delay Time'" 35 ns typ VOLTAGE WAVEFORMS ANO DEFINITIONS SWITCHING TIME TEST CIRCUIT Vee TP out +5.0 Vdc 1,-----,.'f-f----3.0 V 90% \t----1.5V 10% ------~+I------~~------OV tPd~~~-1 . . i:tPd+ I t+ = t- = 12ns TP out 6.0 ns PRF = 1.0 MHz,50%dutycycle +2.4 Vdc _~ 1.5 V _____===_-_-_---------~~6 max Generator Zout ::::: 50 ohms R L = 400 ohms for tpd_ test. 4.0 k ohms for tpd+ test. CT "" 15 pF "" total parasitic capacitance, which includes probe, wiring, and load capacitances'. High impedance probes (>1.0 megohm) must be used for tests. *F suffix"" 1/4" x 114" ceramic package (Case 651). MCBC-prefixed devices are unencapsulated. Beam numbers are the same as the pin numbers for flat-packaged devices. See General Information section for package and chip details. 2.4 V min • • ELECTRICAL CHARACTERISTICS s: n Test procedures are shown for only one to gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. (') ~:::[>-3 To complete testing, sequence through re- C11 ~ .... ~:::[>-5 maining inputs. 109:::[>-S 12:::[>-14 13 Test Limits Pin MCBC5401/MCB54011 -SS to +12SoC Under Test Min Max Unit mA IOL V1L (All Temperatures) TEST CURRENT!VOLTAGE VALUES Volts V1H V1HH VR2 VR1 V'h 1 V'hO VCEX VCC 16 0.4 2.4 mAde - 1 - 40 /lAde - - 1 - 1.0 mAde - - 3 - 0,4 Vde 3 I CEX 3 - 0.25 mAde IpDH 4 - 22 IpDL 4 - 8.0 IF 1 - -1. 6 Leakage Current IRI 1 - IR2 1 VOL 2.0 0.8 5.5 5.0 4.5 5.5 C11 ~ ....o (") o :l V1H Forward Current 5.0 VCCH "T1 V1L Symbol 4.5 to VCCL TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: IOL Characteristic Input 5.5 s: n V1HH .... VR1 VR2 V,h 1 V'hO VCEX Vee VeCL VeeH Gnd 2 - - - - - - 4 11' - - - - - - - - 4 2,11* - 1 - - - - - - - 4 2,11' - - - - - 1,2 - - - 4 - 11' - - - - 1 - - 2 3 - 4 - 11' mAde - - - - - 1,2,6,7,9, 10,12,13 - - - - - 4 11 mAde - - - - - - - - - - - 4 1,2,11' Pulse In Pulse Out m Q. Output Output Voltage Output Leakage Current Power Requirements (Total Device) Power Supply Drain Switching Parameters Turn-On Delay t pd _ 1,3 - 15** ns 1 3 2 - - - - - - 4 - - 11 Turn-Off Delay t pd + 1,3 - 45** ns 1 3 2 - - - - - - 4 - - 11 .Ground inputs to gates not under test. **Tested only at 25°C. 5' c MCBC5400/MCB5400F QUAD 2-INPUT "NOR" GATE series MCBC5402* MCB5402F* This device consists of four 2-lnput NOR gates that is produced using beam lead sealed junction technology. These de- 1/4 OF CIRCUIT SHOWN vices are particularly useful in highly reliable systems using hybrid beam I.ead assembly techniques or standard flat package assembly techniques. 4 Vee 4 k 4k 1.4 k 100 3 2 Positive Logic: 3 "" Negative Logic: 3 1'+2 0: ;-;-2 Input Loading Factor'" 1 Output Loading Factor'" 10 Total POwer Dissipation Propagation Delay'Time GND = 48 mW typ/pkg ='0 ns typ 11 Package No.11 I 21 31 41 51 61 7 I 8 I 9 110111112113114j ~m~ 1 2131415161719110~111211311411~ Pin numbers on drawings are for devices in the flat package. SWITCHING TIME TEST CIRCUIT VOLTAGE WAVEFORMS AND DEFINITIONS Vee +5.0 Vdc ~--...- - - - - - 3 . 0 4011 gOilo.5" .. 10% '----0 V )O-H'-~-•. MMD6150 50% 50 t- =:0 2.4 V min or Equiv. 1.5 V t+ 15 ns PRF = LO MHz G~enerator Zout t- MMD7000 or Equiv.' t-f :;:; _I--+~==!~~==g.~~ +2.4 Vdc ~ V '1<----1.5 V 50 ohms CT = 15 pF =total parasitic capacitance, which includes·probe, wiring, and load capacitanc~s. ·The coax delays from input to scope and output to ,scope must be matched. The ~cOJ)J1I mt.!st be terminated in 60~ohm impedance. The 950~ohm resistor and the scope termin~tion impedance constitute a 20: 1 attenuator probe. Coax shall be C),-Q70..S0' or equivalent. *F suffix =; 1/4" x 1/4" ceramic package (Case 651) MCBC-prefixed devices.are unencapsulated. See General Information section for package an'd chip details. • max • • ELECTRICAL CHARACTERISTICS Test procedures are shown for only one s (') ~=D-3 ~=D-5 gate. The other gates are tested in the same manner. Further, test procedures are shown for only one input of the gate under test. To complete testing, sequence through re· maining inputs. Pin numbers used are for devices in the flat package. OJ n CTI ,J:Io o 9~8 10-----L-/- ~N 12~ 14 13~ (') s OJ CTI TEST CURRENT/VOLTAGE VALUES (All Temperatures) Volts VR2 VR, V'hl V'hO Vcc V'H V'HH mA 10H 10l 16 Characteristic Input Test limits Pin MCBCS402/MCBS402F -SS to +12S'C Under 10l Symbol Test Min Max Unit Forward Current IF 1 Leakage Current IRI 1 ~2 1 VOL - I 0.4 "Il 0.4 I 2.4 5.5 4.5 5.0 2.0 I 0.8 5.0 ~ N VCCl VCCH 4.5 5.5 "T1 n-O ::J ~. TEST CURRENT /VOLTAGE APPLIED TO PINS LISTED BELOW: ::J c: (1) 10H VIl V'H V'HH VRI VR2 1 - - 2 - 1 - - - -1. 6 mAde 40 tlAdc - - - 1.0 mAde - - 3 - 0.4 Vdc 3 - VOH 3 2.4 - Vdc - ISC 3 -20 -55 mAde - - IpDH 4 - 27 mAde - IpDL 4 16 mAde 1 V'hl VCCH Gnd - 4 11' - 4 2,11* - 4 2,11* V'hO Vcc VCCL - - - 1 - 4 - 2,11* - 2 4 - 1,11 "'- - - - - - 4 1,2,3,11* 1,2,6,7,9, 10,12,13 - - - - 4 11 4 1,2,11* - 2,11* a. Output Output Voltage Short-Circuit Current 3 - - - - - - - - - - - - - - Power Requirements (Total Device) Power Sftpply Drain Switching Parameters Turn -On Delay Turn-Off Delay . Pulse In Pulse Out - - - 'pd- 1,3 - 15** ns 1 3 - - - - - - 'pd+ 1,3 - 22** ns 1 3 - - - - - - Ground inputs to gates not under ,test. **Tested only at 25 0 C. - 4 - 4 - 2,11* I - - - - - - - .... ~---- MCBC5400/MCB5400F series 8-INPUT "NAND" GATE MCBC5430* MCB5430F* ~ ,~ BEAM LEAD This device is an 8 input NAND gate. It is useful when processing a -large number of variables, such as in encoders R Vee and decoders. 4 8eam lead sealed junction technology is used to manufacture these devices. They are particularly useful in highly 4k 1.4 k t..... 1111, III ~f- 2 3 5 6 7 8 reliable systems using hybrid beam lead assembly techniques or standard flat package assembly techniques. 100 2~ , _ _.., 3 5 6 12 >--0 12 8 9 10-~----' 9 10 f'>o.. Positive Logic: ~. 12 1 k • = 2.3.5.6.7.8.9.10 NeQ"ative Logic: 12 = 2 + 3 + 5 + 6 + 7 + S • 9 I 10 .~ Input Loading .Factor:: 1 Output Loading Factor"" 10 Total Power Dissipation = 10 mW tvp/pkg Propagation Delay Time = 10 ns typ 11 GND • SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee +5.0 Vdc [,---,+-+--:---3.0 90% 400 'irr----l.5V --I~..:1..:0':':%~_GND TP out L ____ -'I t+ t- = 12 ns } == 6.0 "ns 10% to 90% points TP out 50 MMD7000 or Equiv PRF = 1.0 MHz, 50% duty cycle PW - 0.5/ls Zout~50 ohms tPd-~r MMD6150 or Equiv --I '-----L=...1.5 V - - -___-====::::c::::c::::--~~ci' max "= CT = 15 pF '" total parasitic capacitance, which includes probe, wiring, and load capacitances. The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50·ohm impedance. The 9S0·ohm resistor and the scope termination impedance constitute a 20: 1 attenuator probe. Coax shall be CT -070-50 or equivalent. *F suffix = 1/4" x 1/4" ceramic package (Case 651). MCBC-prefixed devices are unencapsulated. Beam numbers are the same as the pin ntimbers for flat-packaged dev}ces. ~ee General I nformation s~ction for package and chip details. ~2.4vmin • ELECTRICAL CHARACTERISTICS s (") Test procedures are shown for only one in- tXJ put. To complete testing, sequence through (") c.n ~ w remaining inputs in the same manner. ~o S 3 (") tXJ c.n 12 ~ w :~ 10L 16 Characteristic Input 10H V" TEST CURRENT /VOLTAGE VALUES (All Temperatures) Volts Vth1 V., V., V,hO Vee V'H V'HH -0,4 0.4 2.4 mA 10 Test limits Pin MCBC5430/MCB5430F 55 to +125°( Under Symbol Test Min Max Unit - Forward Current IF Leakage Current IRI 2 40 pAde IR2 2 1.0 mAde VOL 12 0.4 Vdc VOH 12 2.4 ISC 12 -20 IpDH 4 IpDL 4 2 -1. 6 I 5.5 4.5 I 5.0 I 2.0 I 0.8 I 5.01 o ." Ven VeeH 4.50 5.50 0o =, ::J ::J C CD Q. TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW: 10L 10H mAde V" V'H V'HH 2 - V., V., V,hl Vec Vcn 3,5,6,7,8, 9,10 - 2 - V,hO - - 2 VCCH Gnd 4 11 4 3,5,6,7,8,9,10 4 3,5,6,7,B,9,10 - 11 Output Output Voltage Short-Circuit Current - 12 Vdc - 12 2 3,5,6,7, 8,9,10 -55 mAde - - 6.0 mAde - - 4 2,3,5,6,7, B,9,10 4 - 11 - 4 2,3,5,6,7 ,B,9,10, 11,12 - - 4 11 - - 4 2,3,5,6,7,8,9,10,11 4 - Power Requirements Power Supply Drain 8,9,10 - 2.0 Turn-On Delay tpd_ 2,12 Turn -Off Delay tpd+ 2,12 - - - mAde Switching Parameters **Tested only at 25°C. - 2,3,5,6,7, Pulse In Pulse Out 15** ns 2 12 - 3,5,6,7, 8,9,10 22** ns 2 12 - 3,5,6,7, 8,9,10 - - - 4 11 11 MCBC5400/MCB5400F series DUAL 4-INPUT "NAND" BUFFER BEAML"D~ MCBC5440* MCB5440F* This device consists of two 4-input NAND power gates that are produced using beam lead sealed junction technology. These devices are particularly useful in highly reliable systems using hybrid beam lead assembly techniques or standard flat package assembly techniques. 1/2 OF CIRCUIT SHOWN 100 lj=L}-2 g=C)-10 1 12 13cr-t-+~ 14 Positive Logic: 2 - , • 12 .13'.14 1 3 W"l " (Write "1") X, 3 9 W"O" (Write "0") ~ " 1,1 I ~ ~ 1,2 ~ ~ ~ H 1.3 ~ {;J X2 2 ~ 2.1 I ~ ~ 2.2 2.3 ~ A VCC=Pin4 GND- Pin 10 \ T T Po = 260 mW tvp/pkg X3 1 ~, tpel: Write Mode"'" 25 ns typ Sense Mode"'" 16 ns typ ~ ~ 3.1 I 3.2 ~ ~ 3.3 ~ 1 3,4 '~ 125"1" (Sense "1") X4 14 ~, 4.1 I ~L1 4.2 ~~ 4.3 ~y 4,4 ~ , ,1 5"0" (Sense "0") -OPERATING SEQUENCEFIGURE 1 - READ MODE TIMING DIAGRAM X. Y Select Lines I ----~-+--1 10 GNO WRITE INVERTER ----" - - , - -- .-------- ELECllUCAL CHARACTERISTICS @Test Temperature t -5S 0 ( M(4304*, MC430S MC4004-, MC400S Volts 1ST Pr* SId Iw 'XY Vln1 • Write Jnputs 13 Leakage Current Address Lines 'R 1~ Write Inputs Breakdown Voltage Address Lines BVin 1~ Write Inputs Output (Note -11 -1.33 -1.33 0,85 0.9 4.5 ~:: 4.5 4.5 1.0 3.0 0.75 ~:~ ::~ ~:~: :::: ( 40 20 1.0 3.0 0.8 1.0 1.0 ,!~~:~:~ :~ ~:~ ~:~ ~:: ~~~ ~:~ O°C Vf ::: Vout Vee 2.2 5.5 5.0 ~:: ::: ::~ 2.1 5.5 5.0 ::~ ::: v.. v... BVclt r~" 7.0 ::~ 7.0 Vee BV... 3: TEST (URRENT/VOLTAGE APPLIED TO PINS LISTED BELOW, -11 -11 -13.5 -13.5 -13.5 -13.5 -13.5 -13.5 mAde mAd(' -1.33 -1.33 -1.3 -1.331 ·1.66 -1.66 ·1.66 -1.66 -1.66 mAde mAde 1'"0" Iw IXY Vin1 Vin2 Vo ' V, V, 5,6,7,6 11,2,3,14 Gnd 1,2,9,10,13,14 6,7,8,9,10,13 1,2,3,5,6,7,8,10,13,14 1,2,3,5,6,7,8,9,10,14 9 13 I : I~:: I = I g:! I : Ig:! I : Ig:! I : Ig:! 1:~~~ I = Ig:! I = I ~:! I = I~:! I =I~:! 1= Ig:! ~:~I I~:~I It~1 lUI I~::I I;:~I ~~~ 1;:;1 1:::1 1::;1 Inl Inl 1;:;1 .~~~ ~:: Ig:~ Vth :~ -11 -11 ·1.66 V. 20 Unit -11 Vin3 40 Characteristic Input IF Vin2 I +~~~:~:~ Pin I-'::':':~'F':";'::=-T---=:=+--=::C-'-T-'-"-="T'-'-'==r- Forward Current Address Lines ~ t g TEST CURRENT/VOLTAGE VALUES mA Tilt prQc:edUres ... shown for only one bit. Oth.. bits . . tested in the lime manner. 1,2,5,6,7,8,9,10,13,14 1,3,.3,6,7,8,9,10,13,14 1,2,3,5,6,7,8,10,13,14 1,2,3,5,6,7,8,9,10,14 9 I mAdl' 13 1,2,5,6,7,8,9,10,13,14 1,2,3,6,7,8,9,10,13,14 1,2,3,5,6,7,8,10,13,14 1,2,3,5,6,7,8,9,10,14 9 13 I) Output Voltage Write "I" Logic "0" Level Vout "0 ..1 12 0.45 0.45 0.45 0.45 0.45 0.45 I Vde 12 Write "O"Inhibit Logic "0" Level Vout "0 •.1 12 0.45 0.45 0.45 0.45 0.45 0.451 Vde 12 Logic "0" Level Vout "0 ..1 11 0.45 0.45 0.45 0.45 0.45 0.451 Vde 11 Write "1" Inhibit Logic "0" Level Vout "0 ..1 11 0.45 0.45 0.45 0.45 0.45 0.45 J Vde 11 ',5 0.45 0.45 0.45 0.45 0.45 I Vdc 12 Leakage Current Write "1" Leakage Current IOLK I 12 0.25 0.25 0.25 0,25 0.25 0,251 mAde 0.25 0,25 0.25 0.25 0.25 0.~51 mAdc IoLK 1 11 0.25 0.25 0.25 0.25 0.25 0.251 mAde Leakage Current Write "0" Leakage Current IOLK I 12 0.25 0.25 0.25 0.25 65 65 65 72 0.25 0.25 I mAd(' 1,2,6,7,8,10,14 ',5 1,2,6,7,8,9,10,13,14 3,5 1,2,6,7,8,9,10,13,14 3,5,13 1,2,6,7,8,10,14 3,5 1,2,8,7,8,9,10,13,14 3,5,13 1,2,6,'J,8,10,14 1,2,6,7,8,10,14 12 13,5,6,7,8 3,5,6,7,8 1,2,6,7,8,~,10.13,14 1,2,6,7,8,10,14 11 3,5 13 Write "1" 3,5,9 3,5,9 13 IOLK I 11 1,2,6,7,8,9,10,13,14 3,5 Write "0" Leakage Current 3,5 13 Write "1" 0.45 1,2,6,7,8,9,10,13,14 1,2,6,7,8,10,14 13 Vout "0,,1 12 1,2,6,7,8,10,14 3,5 13 3,5 Write "0" Logic "0" Level 3,5,13 11 1,2,6,7,9,10,13,14 1,2,9,10,14 1,2,9,10,13;14 3,5,6,7,8 1.2,10,13,14 3,5,6,7,8 1,2,9,10,13,14 Power Requirements . (Total Device) PoweJ;" Supply Drain 'pD Power Supply Breakdown Current !"kt 95 72 105 72 I mAde 1,2,3,5,8,7,8,9,10,13,14 mAdc 1,2,3,5,6,7,8,9,10,13,14 .Prime Fan-Out Note 1. Output logic "0" voltage a.n<1leakage current measurements are made as part of a functional test of a memory. Procedures identified by a double asterisk (... ) are preconditIoning procedures lor the subsequent test. AU power supply and input voltages must be maintained between te;sts. ~ i • ~ ." ~ r- ~ ~ g ~" r;, ~ 3: (") ~ ~ :nr- ;, 8" ...:i. ::::I t: ~ MC4304F,L, MC4305F,L IMC4004F,L,P, MC4005F,L;P (continued) SWITCHING TIME TEST CIRCUIT Vcc TPout TPin RI R2 Two pulse generators are required and must be slaved to provide the waveforms shown. High·impadance probes ( >1.0 Megohm) must be used when taking measurements. DEVICE UNDER TEST R1 OHMS R2 OHMS MC4304, MC4004 MC4305, MC4005 120 240 330 560 see Switching Time Test Procedures table for value of CT- VOLTAGE WAVEFORMS AND DEFINITIONS 10 ns max 10 ns max ~----------------~~~nv------3.0V A TPin PRF = 1.0 MHz PROPAGATION OELAY TIME =~~====:2~oo~~n'~====+~~====O.4 V t=-- GND !I.SV tpd+ B TP out ------~~============~------GND ~--~~=--ftT,-------------------3.0V • C D TPln PRF= 5.0 MHz ==~~~=I':=================~'~~ TPout --~~~~--~======+==~GND RECOVERY TIME E TPln PRF - 5.0 MHz F TPout J<--,--:t±b",.,..--3.0 V MC4304F,L, MC4305F,L /MC4004F,L,P, MC4005F,L,P (continued) SWITCHING TIME TEST PROCEDURES I Letters shown in test columns refor to waveformsl Pin Test Tum-off Dalay Time (Address Lines' to Sen.. "0" Output) Symbol Undor .... tpd+ .... Test 11 (Address Lin.. to Sen .. "1" Output) Turn-On Delay Time (Address Lines to Sense ·'0" Output) Turn-On Delay Time (Addren Line. to San .. "". Output) Turn-Off Delay Time (4 BiU) (Addres. Lines to San .. "0." Output) Turn-Off Delay Time {4 Bits) (Address Lin .. to Sense "1" Output) Write Recovery Time Write Pulse Width - t"d+ tpd+ 12 12. tDdtpd_ 11 .... .... .... .... 'cdtpd_ tpd+ 2 X2 , X3 Input Pin ,4 X4 5 Y, 6 Y2 Limits ,2 CT" MC4304·5 MC4004·5 nsmax nsmax W"O" W",,, 5"0" 5",,, pF Output 7 Y3 8 Y4 9 ,3 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0V 3.0 V Gnd 3.0V 3.0 V Gnd Gnd Goo 3.0 V Gn~ Gnd Gnd 3.0 V Gnd A A tpd+ Turn-Off Delay Time 3 X, Gnd Gna Goo Gna Gnd Gnd A Gnd Gnd A Gnd Gnd God Gnd Gnd God God Gnd 3.0 V 3.0V 3.0 V 3.0V 3.DV 3.0V 3.0V 3.0 V 3.0 V Gnd 3.0 V Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd Gnd 3.0 V A God Gnd Goo A Gnd Gnd Gnd Gnd Gnd Gnd Goo Gnd Gnd Gnd A God Gnd Gnd A - - - - B B - 30 23 23 200 36 35 - - - - - - B 30 B' 200 23 35 36 - - 23 3.0 V - - - - Gnd Gnd - - B 30 23 23 n 3.0 V 3.0 V 3.0 V 3.0Y 3.0 V 3.0 V 3.0 V 3.0 V Gnd 3.0 V Gnd Gnd Gnd '3.0 V Gnd Gnd Gnd 3.0V God Gnd Gnd A Gnd Gnd Gnd God A A Gnd Gnd Gnd A Gnd Gnd Gnd 'Gnd Gnd B 200 36 35 Gnd - 3.0 V 3.0V 3.0V 3.0V 3.0V 3.0 V 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd Goo 3.0V Gnd God Gnd Gnd - - 12 12 11 A A Gnd Gnd Gnd Goo Gnd Gnd A Gnd A Goo Gnd Gnd Gnd Gnd Gnd Gnd 3.0 V, 3.0V 3.0V 3.11 V 3.0V 3.0 V 3.0 V 3.0V Gnd 3.0 V God Gnd God 3.0 V 3.0V 3.0 V 3.0 V 3.0 V A Gnd Gnd God A A Gnd A A 3.0V 3.0 V 3.0 V 3.0Y 3.0V 3.0V 3.0V 3.0 V 3.0 V 3.0V God Gnd Gnd 3.0 V 3.0 V 3.0 V 3.0 V Gnd - Gnd 3.0 V 23 - B 200 35 36 - - - - - 30 35 35 - - - Gnd - 3.0 V ,A Gnd Gnd Gnd A A Gnd Gnd Gnd Gnd Gnd 3.0V 'Gnd Gnd Goo E 11 3.11 V Gnd Gnd Gnd 3.0V Gnd Gnd E C C Testeq during 'twr tests. - 23 B 3.0 V Gnd - 30 Gnd 12 A - B - 12 - - - - Goo 'wr - A 3.0V Gnd tpd+ 'wp " F - - - B 30 35 35 0 30 40 40 30 40 40 ns min nsmin 26 25 ·Capacitance value for load of the Switching Time Test Circuit • ·Preconditioning procedures for subseq~uent test. I MEMORIES 16-BIT SCRATCH PAD, MEMORY CELL WITH GATED INPUTS MC5484L* MC7484L,P* driving one of four X select lines and one of four '( select lines above the select threshold. Two sense amplifiers are shared by all 16 bits and provide a double rail output from the selected bit. The sense output of many devices can be "wired ORed" together since the output stage does not have a pullup resistor or network. Two gated write am· plifiers allow a "1" or a "0" to be written into a selected bit. This 16-Bit memory cell serves as the basic building block for Scratch pad memory systems having cycle times of less than 100 ns. The basic cell provides 16 words of orre-bit memory operating in the non-destructive readout (NDRO) mode. The memory contains 16 flip-flops arranged in a four· by·four matrix. A single bit of the matrix is selected by 6 7 Yl 8 Y2 9 Y4 Y3 16 } W"l" (Write "I") 15 11 } W"O" (Write "0") 10 Xl 4 ~. 1.1 I ~ 2.1 ~ ~ ~ ~ 1.2 2.2 ~ 0 ~ q 2,3 H _~ I 1.4 H 2,4 ~ ~ v cc = Pin 5 = Piii-:2 Gt>10 "'d: Wrl te Mode = 2& ns typ Sen.. Mode = 15 nl typ PO= 260 mW typfpkg X3 2 ~ 3,1 .I ~ r- ~ ~ ~ 3,2 3,3 ~H ~ 3.4 v 4,1 I r-~ ~~ 4,2 4,3 ~y 4,4 ~ 14 S"l" (Sense "I") -{>----<> 13 S"O" (Sen.e "0") "- OPERATING SEQUENCE FIGURE' - READ MODE TIMING DIAGRAM x, V Select Lines I I.R - 1.0 Megohm) mUlt be see Switching Time Test Procedures used when talc. ;ng measurements. table faT value of CT. VOLTAGE WAVEFORMS AND DEFINITIONS 10 ns max 10 os max r----------il=l::ariiiZ"'---3.0 V A TPin PRF - 1.0 MHz t - - - - - 200 n 5 - - - - - I t="'-_ _ _ O V PROPAGATION DELAY TIME B TP out 3.0 V e PRF TPin ~ 5.0 MHz OV 100 ns 0 TPout --~ Output not defined GND RECOVERY TIME E F 3.0 V TPin, PRF - 6.0 MHz ":Pout OV ~·~. .• 1.5;V defined .. GND • MC5484L, MC7484L,P (continued) SWITCHING TIME TEST PROCEDURES (Lette.. sho_ in test columns refer to waveforms) Turn-Off oelay Time (Address Lines to Sense "0" Output) Turn-Off Delav Time (Address Lines to Sense" 1" Output) Turn-On Oelay Time (Address Line, to Sense "0" Output) Turn-On Delay Time (Address Lines to Sense "1" Output) Turn-Off ullIiay Tif(liii (4 Bits) (Address Lines to Sense "0" Output) Turn-Off Delay Time (4 Bits) (Address Lines to Sense "1" Output) Write Recovery Time Write Pulse·Width Symbol Unde, .... .... Test tpd+ tpd+ 14 tpd+ tpd+ .... .... 'pdtpd_ 'pdtpd_ .... .... tpd+ - - 13 13 14 13 13 14 14 13 - Output Input Pin Pin Test 4 Xl 3 2 X2 X3 1 X4 6 7 8 9 Yl Y2 Y3 Y4 3.0 V 3.0V 3.0 V 3.0V 3.0 V Gnd 3.0 V Gnd 3.0V Gnd Gnd Gnd 3.0 V Gnd Gnd A Gnd Gnd Gnd Gnd Gnd una A Gnd Gnd Gnd Gnd Gnd 3.0 V 3.0V 3.0V 3.0V Gnd Gnd A Gnd Gnd A Gnd Gnd 3.0V 3.0 V 3.0V 3.0 V 3.0V 3.0 V Gnd Gnd 3.0 V Gnd Gnd Gnd Gnd 3.0V Gnd A Gnd Gnd Gnd Gnd Gnd Gnd A Gnd Gnd Gnd Gnd Gnd 13 14 - - - B B - - -- B 26 36 - - - - 3.0 V Gnd Gnd - - B Gnd - tpd+ 14 'wr 14 13 3.0 V 3.0 V Gnd Gnd 3.0 V Gnd Gnd Gnd Gnd Gnd Gnd 3.0 V Gnd Gnd Gnd - Tested during "twr tests. E E - 35 25 35 3.0V 3.0 V 3.0V 3.0V 3.0 V 3.0 V 3.0 V 3.0 V Gnd 3.0V Gnd Gnd Gnd 3.0 V 3.0V 3.0 V 3.0 V 3.0 V A Gnd Gnd Gnd A A A A Gnd - 25 - Gnd 3.0 V Gnd Gnd - 26 36 nsrnax 15 200 3.0 V 3.0 V 3.0 V 3.0 V 3.0V 3.0V 3.0 V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0V God Gnd Gnd Gnd Gnd Gnd Gnd A Gnd Gnd Gnd Gnd A Gnd Gnd Gnd A Gnd Gnd Gnd Gnd A B - 15 200 - B 3.0 V Gnd Gnd Gnd B - MC7484 - 3.0 V 3.0 V 3.0 V 3.0 V 3.0V 3.0 V 3.0 V 3.0 V Gnd 3.0 V Gnd Gnd Gnd 3.0V Gnd Gnd Gnd 3.0 V A Gnd Gnd Gnd A Gnd Gnd Gnd Gnd A Gnd Gnd Gnd Gnd A Gnd Gnd Gnd 3.0 V 3.0 V 3.0V 3.0V 3.0V 3.0V 3.0V 3.0 V 3.0 V 3.0 V Gnd Gnd Gnd 3.0 V 3.0 V 3.0 V 3.0V Gnd A Gnd Gnd Gnd A A A Gnd A 'wp 15 3.0 V 3.0V 3.0 V 3.0 V Gnd Gnd Gnd Gnd A una una A Gnd Limits CT" MC5484 nsmax W"O" W"I" S"O" S"I" pF 10 - - - - 15 45 45 200 55 55 - - B 15 200 - - 45 45 55 55 - - - - t5 30 30 - - - - - B 15 30 30 B - - - - 3.0 V Gnd - C C - 0 15 60 60 F - 15 60 60 nsmin nsmin 25 25 ·Capacitance value for load of the Switching Time Test Circuit • ·Preconditioning procedures for subsequent test. OPERATING CHARACTERISTICS Sixteen flip-flops are arranged in a 4-by-4 matrix with each flip-flop representing one bit of 16 words. Each flip-flop, consisting of two cross-coupled triple-emitter transistors" is used to store one bit. Memory status of a particular bit is determined by sensing which of the two flip-flop transistors is conducting. One emitter of each of these transistors serves as the sensing output. All 16 of the logical "1" senSing outputs are connected to lhe sense logic" 1" amplifier input, and all 16 of the logical "0" sensing outputs are connected to the sense logic '!O" amplifier input., The remaining emitters on each transistor provides the matrix connections required for the X- and V-address lines. Address line inputs are normally held at logic "0" and currents from all conducting flip-flop transistors flow out of these address lines. To address a flip-flop both the X- and V-address lines associated with that flip-flop are taken to a logic "1" voltage. Due to the matrix nature of the circuit, at least one address line of all flip-flops except the one being addressed will continue to remain at a logic "0" level and no change will occur on those flip-flops. But, in the ad- dressed flip-flop, the current in the conducting transistor diverts from the address lines to the appropriate sense line and then to one of the sense amplifiers. Thus, either the sense amplifier associated with a logic "1" or the sense amplifier associated with a logic "0" is activated. When this occurs, the output of the activated sense ampl ifier drops from a logic "1" to a logic "0" level. The memory is non-destructive as the states of the flip-flops are not disturbed during sensing. To store new information in a flip-flop, it is necessary to address it and apply logic "1" voltage to the appropriate write amplifier input. The output of the write amplifier responds by dropping to a logic "0" level. Since all logic "0" sense lines are connected to the output of the logic "0" write amplifier and all logic "1" sense lines are conneoted to the output of the logic ,.'" write amplifier, logic "0" VOltage on the output of a write amplifier will apply the same voltage to emitters of all flip-flop transistors connected to that amplifier. In all flip-flops except the one being addressed, this low voltage has no effect since at least one other -emitter on each of the flip-flop transistors is held low by the address lines. But two possibilities .exist with the flip-flop that is addressed. The flip-flop may already be in the desired state, in which case no change occurs. But if the flip-flop must be changed from one state to the other, the low voltage applied to the emitter of the transistor which is not conducting turns that transistor on, causing the other transistor to turn off. a MC5484l, MC7484l,P (continued) are enabled before a Y driver. However, if the memory accessing sequence specifies that only a single bit may be selected at a time and, consequently, that only one of the X (or Y) selection lines may be high at a time, then the driver requirements can be relaxed somewhat. This is possible because of current sharing in the mUltiemitters of the storage flip-flop transistors. If the voltages at the emitters of the "on" transistor differ byno more than approximately 100 mV, then each emitter will carry an appreciable portion of the transistor current. The saturation characteristics of the drivers determine the emitter potentials and, therefore, the division of eel( current among the various drivers. Since the VOL of the driver will increase if the collector current increases, the selection currents will be almost evenly distributed among the drivers if the driver saturation characteristics are reasonably uniform. If operation is restricted to a single X selection line and a single Y selection line and current sharing is assumed, then each select line must be capable of. carrying the full current from a single cell plus approximately one half of the current from three cells. Each line must, therefore, carry: TYPICAL APPLICATIONS A fast scratch pad memory offers the system designer several de~ sign alternatives. Temporary memory with a greater storage capacity than simple registers can be distributed throughout a system. The basic technique for expanding bit capacity is shown in Figure 3; Figure 4 illustrates a method for expanding word capacity. Optimum design of the selection Ihie drivers depends on the specific system application. The maximum load presented to the drivers by the selection lines is a function of the sequence used to address the memory. The desired logic swing and noise immunity should also be considered when designing the drivers. Each of the 16 flip-flops draws a maximum dc supply current of 2.75 mA (for Vee = 5.0 Vdc). The total current flowing in all 16 flip-flops, and consequently the summed current in the eight selection lines, is 44 mAo (Each selection line is tested for a maximum of 11 mA). 11/4 + (3) (1/2) (11/4) = 6.88 mAo Consider the sequence involved in selecting the four bits X1 y 1, X1Y2, X1Y3, and X1Y 4 simultaneously. If the four Y select lines Since the dc. output levels of the driver transistors determine the noise immunity of the selection line, the system noise environment and the desired noise immunity should enter into the driver selection. are enabled before the X1 line then each of the four X lines must carry the full current from four cells, i.e., 11 rnA. The Y drivers must also have the capability of sinking 11 mA if the four X drivers FIGURE 3 - 16 WORO, N BIT MEMORY MEMORY ADDRESS REGISTER J I' 2 0 Decoder 2 Bit Binary to 1 of 4 Y, MC40Q7 Decoder 2 Bit Binary to 1 of 4 y, MC4007 Timing Selection Line Drivers Selection Line Drivers J X3 X2 Xl Y4 Y3 Y2 y, X4 1M ..l , > • : : Bit' Write Bit 1 Sense {i2J {~ Timing I Bit 2 !~ ! ~ --,..-.---.,-' Write Sense Bit 3 bbbb o , 0 , --,..-.---.,-' Write Sense BitN ! ~ *~ ----- Write --..,-.' Sense C548417484 I MC5484L, MC7484L,P (continued) FIGURE 4 - 64 WORD, 4 BIT MEMORY MEMORY ADDRESS REGISTER Decoder 3 Bit Binary to 1 of 8 MC4006 Decoder 3 Bit Binary to 1 of 8 MC4006 Timing Timing 0--, Selection Line Driver. Yl Y2 Y3 Y4 Y5 Selection Line Drivers Xl X2 X3 X4 X5 X6 X7 XB Y6 Y7 YB r- '- - ~ - IXC5484174B4 I ~" ~ I' l1' ----o 1 0 1 Sense Write Bit 1 '" '" ~ "'- i'\. '\."1 ' " ." .."1 f\: ll' h' -------- -------o 1 0 1 Sense Write Bit 2 o 1 0 1 Sense Write Bit 3 ~ '."\ "\l f'( .. o l1' -------1 0 1 Sense Write 8it4 . ~_____________________M_E_M__O_R_IE_S__~ MCM4002 256-BIT READ ONLY MEMORY 256-BIT READ ONLY MEMORY The MCM4002 is a monolithic 256·bit Read Only Memory (ROM) that can be programmed for custom requirements. The basic organi· zation of the memory is 32 eight·bit words, with each bit initially in the logic "0" storage state established by the metal intraconnection. By removing appropriate metal links on the device metalization, these bits can be changed to the logic "1" state to meet specific program requirements. The MCM4002 also features optional 2.0 kilohm pul/up resistors on the eight collector outputs. The open collector output option is obtained by removing metal links to the 2.0 kilohm resistors on the device metalization. Utilizing the open collector option at the buf· fered output bit lines al/ows several memories to be "Wire ORed" to form large arrays. In these cases an external pul/up resistor must be connected from the open col/ector outputs to VCC. The ROM truth table and the pul/up/open col/ector design options are specified by the ordering information on a customer data card as shown in this data sheet. The "scribe·it·yourself" feature al/ows the design engineer to breadboard his pattern prior to submitting his final design for production by Motorola, thljsminimizing costly design errors. FEATURES: _ . PSUFFIX PLASTIC PACKAGE LSUFFIX CERAMIC PACKAGE CASE 6:(0 • • . . - . CASE 648 15 Enable 10 AO B1 11 A1 B1 11 AZ 63 13 A3 B4 14 A4 B5 60 66 • Positive Logic for Both Inputs and Outputs: Logic "0" = Output Device ON (VoLl Logic "1" = Output Device OFF (VOH) • Logic Levels Compatible with MDTL and All MTTL Families • Address Times < 50 ns 67 VCC"'Pin16 GND '" Pin 8 UNPROGRAMMED MCM4002 ARRAY • Outputs Sink 12 mA Open Col/ector, 10 mA with Pul/up Resistors. • Configuration al/ows mechanical programming ("scribe· it·yourself") to verify pattern before processing APPLICATIONS: • Look Up Tables • Micro Programs • Decode Functions • Code Conversion • Number Conversion • Random Logic • Character Generation I MCM4002 (continued) DESIGNING A CUSTOM FUNCTION FROM THE MCM4002 READ ONLY MEMORY A custom function may be designed with the MCM4002 by defining whether metalization links on the memory array should be removed or left in place. The memory is originally programmed with logic "O's" and with 2_0 kilohm pullup resistors on the collector outputs. Logic "1's" may be programrred into the array by remov- ing metalization links from the pattern. Open collectors may also be programmed into the array by similar means. The following pro- 3. Scribe the pattern into the breadboard device. Method A: guide to placement of the metalization links. Method B: cedure ;s suggested for obtaining the f;nal, correct design. 1. Define tha required truth table, using the format shown in Figure 1. 2. Select the output option desired: either 2.0 kilohm pullup Purchase lidless device from Motorola and "scribe-it-yourself." Use Figures 2 and 3 as a Purchase custom-scribed lidless device from Motorola or selected Motorola franchised dis- tributors. 4. Order custom function for production by following ordering information on this data sheet. resistors, or open collectors. FIGURE 1 - TRUTH TABLE FORMAT WORD 0 WORO 1 WORD 2 WORD 3 WORD 4 WORD 6 WORD 6 WORD 7 WORO 8 WORD 9 WOR010 WORD 11 WORD 12 WORD 13 WOR014 WORD 15 WORD 16 WORD 17 WORD 18 WORD 19 WORD 20 WORD 21 WORO 22 WORD 23 WORD 24 WORD 25 WORD 26 WORD 27 WORO 28 WORD 2JJ WORD 30 WORD 31 -I LSUFFIX CERA.MIC PACKAGE CASE 6.20 1'"'1 ~'I'" I'"I"" l,rr'I"ll PSUFFIX PLASTIC PACKAGE CASE 648 MCM4002 (continued) FIGURE 2 - PASSIVATION MASK The passivation mask indicates not only the positioning of the metalization links for the ROM, but also defines bonding pads and pullup resistor links. This figure, with Figure 1, should be used to determine links to be removed in programming the memory. Outputs must be specified as having either ••• ·. .• PIN I (60) • PIN2 IB1) • PIN3 IB2) • PIN5 IB4) • PIN6 IB5) .. ••• •• •• PIN 7 IB6) • pullup resistors • PIN 15 IENABLE) ··..··..··.. ··..·.·. ··.. ·. ·• .• ··..• • ·. ·.·. •• .• ·• .• ··.. • • ·.··.. ·• .• ··..·• .• ··.. ·• .• •• •• ·• .• ·• .• ·• .• •• •• ··.. • • ·• .• ·• .• ·• .• ·• .• ·• .• ·• .• ··..·• .• ·.• • ·• .• ··.. ·• .• ·•• .•• ···...···... I: • PIN 161Vee) •• •• ~ BITOOF/' • • • • • • • BIT 7 OF WORO 0 • • WORO 0 •• •• •• •• •• •• •• •• •• •• •• I: •• •• •• .PIN4 IB3) !ill or 2!! open collectors. Pullup resistor and open collector options cannot be mixed on an individual chip. PINI4 • 1A4) I PINI3. IA3) PINI2. IA2) " " /. • • • • • • .• "BIT 7 OF WORO 31 BIT 0 OF _ WORO 31 PIN B (GNO) • PIN 9 IB7I PIN 10 lAO) .:. *Metalization links which connect optional 2.0 kilohm pullup resistors to outputs. PINll. IA1) • MCM4002 (continued) ORDERING INFORMATION After the memory bit pattern is established by the user, the explains how truth table information is converted from the binary bit pattern to the hexadecimal numbering system. This is done to The punched card provides the mask~making instructions utilizing Computer-Aided Design Techniques. This card accompanies the manufactured parts to the Final Test and Quality Control areas. Motorola's automatic testing facility compares the function of the completed memory'circuits with the program specified on accommodate most computer equipment presently in use for best the card, and tests the input-output electrical characteristics. information is transmitted to Motorola by supplying punched cards (rectangular punched holes) as described in Figure 3. Figure 4 user-supplier interfacing and to obtain standard Hollerith punch throughout the card. FIGURE 3 - PUNCHED CARD FORMAT Two cards are required' card 01 defines words 0 thru 15 card 02 defines words 16 thru 31 Output Option: Open Collectors Use BAA 2.0 kilohm Pullup Resistors - Use BBA Motorola Program Identification; Fixed - Use MKRS2 Each a·blt ROM word is expressed as two hexadecimal numbers - Bits 7, 6, 5, and 4 determine the first hexadecimal digit and bits 3, 2, 1, and 0 determine the second (see Figure 5). Part Number I 1617 18 19 20 21 22 23 24 25 26 27 o 11 Revision 10 IIIIJ I (Obtain Number on Card 2 Customer Part Number AAAAA ~8-C84::,2 Device Marking Word Number Customer Identification Code (Obtain from Motorola Sales Office) /' MKRSc Number of Cards Card Number ROM Words I 2 I 31 41 51 6 I 71 81 9 a 293031 110 111 12 113114 15 Office I -02 -02 fIl lJHHHr In i~; iH BBA :~3'f~91~"r;40~Ol~EfA l~lt:f'( J from Motorola Sales fj BOTH (HOE. :::100000000:0000000000000100000000000000000000000010100000000000000 000:1001010 12345'111111112I3M15I111111120%l22232425 27212130313233 353831 )40442 447 51 5354 51 I!! 01112 15 11111 11121n475 Jl II 11111111111" , 11 , "1111111"1111'111111111'1111111'11111111111111111111111111111 21211222221222222122222222222222221122222122122222222222222222211222222122222221 3333333333333133333333333333333333333331333333133.33333.333333133.33333331333333 14444444444444414444444444444444444444444444444114444444414414444444444444444444 55555555555555551555555555555555555555155511555555555555555551555555555555555555 66666666666666666666666666666666666661666666666666661666166666666661166616666666 111171111711171117177717771111111111111111111111111777777717111771171~1717117117 8888 8 sa 8.88188 Is 8 8 8 888888888888888888.888888888 a8 8 I. 8 818 8 a8 8 8 8 8 88 8 8 8 88 8 88 8188.88 89199989999999999999999999999999999999991999999999999999999999999]99999999999999 ' - t:l 3 4 5 ' ~ 1~!:ZI3MJ5~T~~:~~~);~,2ii212'29H31S23334]53637S13940414243444S414J484t$D5t525354S5S8S1511i'&oI1I2I3646&166168"lOnn1SJ415J1n}l1t~ • FIGURE 4 - ROM WORD PROGRAMMING FORMAT FOR PUNCHED CARD BINARY TO HEXA· DECIMAL CON· VERSION TABLE INPUT (AI OUTPUT (BI 43 2 1 0 7 .6 5 4 3 2 1 0 Word 0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 000001 1 1 1 1 1 o 0 0 0 1 00 1 1 1 0 o0 0 1 0 o 0 1 0 0 1 o 0 0 1 1 11 1 o 0 0 00 1 o 0 0 0 0 1 0 0 o0 1 o 1 1 1 o 1 o 1 o 0 1 1 0 ·1 1 o 0.1 0 o 0 1 1 1000011 0 1 0 o 00 o 0 0 0 0 0 1 o 0 1 1 1 0 0 0 1 0 1 o 1 o 1 1 0 1 1 0 0 1 o 1 100 0 1 1 1 0 1 1 o 0 1 1 1 o 1 1 0 1 1 o 1 o 0 1 o 1 o 0 1 1 1 o 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 CARD COLUMN -- COL 38 COL 39 BINARY CARD DATA CHARACTER 1 0 . . Transfer to 38 and 39 a s F and e (1111 11101 using conversion table o 0 0 0 o 1 40 and 41 00 0 1 00 1 0 o 1 42 and 43 00 1 1 44 and 45 1 0 0 ·1 o 0 1 1 46 and 4'7 0 1 o 1 48" and 49, o0 50_and 51 0.0 O. .1 1 0 62 and.53 1·1 0 1 1 1 1 o 0 0 o 1 54 and 55 1 o 0 1 1 0 56 and 57 1 o 1 0 1 0 58 and 59 1 o 1 1 o 1 60 and 61 1 1 0 0 0 0 62 and 63 Note: Words 16 thru 31 1 1 64 and 65 1 1 0 1 transfer to card 02 1 1 1 0 1 1 66 and 67 in the same manner. 1 1 1 1 0 0 68 and 69 0 1 2 3 4 5 6 7 B 9 A B C 0 E F MCM4002 (continued) MAXIMUM RATINGS Symbol Value Unit Supply Voltage Vec -0.5 to +7.0 Vde Input Voltage Vin -1.5 to +5.5 Vde Output Voltage (Open eollectors) VOH -0.5 to +7.0 Vde Rating Operating Temperature Range Plasti~ Package Thermal Resistance, Junction to Ambient (Typical) Ceramic Package Thermal Resistance, Junction to Ambient (Typical) Storage T emperatu re TA o to +75 °e 9JA 200 °e/w TA -55 to +125 °e 9JA 95 °e/w T stg -55 to +125 De ELECTRICAL CHARACTERISTICS (Plastic Package, T A" oOe to 750 e unless otherwise notedl Symbol Min Max Unit IF - 1.6 mAdc IR - ·100 gAde Open Coilectors - 0.45 Pullup Resistors - 0.45 2.5 - - 200 - 80 95 65 Characteristic InpLAt Forward Current (Vin ~ 0.4 Vde, Vee ~ 5.25 Vde) Input Leakage Current (Vin ~ 4.5 Vde, Vee ~ 5.25 Vde) Logic "0" Output Voltage (10 ~ 12 mAde, VIL" 0.8 Vdc, VIH" 2.0 Vde, VEnable: 0.8 Vde, Vee~ 4.75Vdel (to" 10 mAde, VIL ~ 0.8 Vdc, VIH" 2.0 Vde, VEnable: 0.8 Vde, Vee: 4.75 Vdc) Vde VOL Logic "1" Output Voltage (IOH ~ -0.5 mAd,e, VI L " 0.8 Vde, VIH " 2.0 Vde, VEnable ~ 2.0 Vde, Vee" 5.25 Vde) Vdc VOH Pullup Resistors Output Leakage Current (Vout ~ 5.25 Vdc, VEnable" ~.O Vde, Vee ~ 5.25 Vdel leE x Open Collectors Power Supply Drain Current (Memory Enabled, VEnable" 0 Vde,Other Inputs" 0 Vde, Vee: 5.25 Vde) (Memory Disabled, VEnable: 2.0 Vde, Other Inputs ~ 0 Vde, Vec " 5.25 Vdcl /.lAdc mAde Ice Open Collectors Pullup Resistors - ELECTRICAL CHARACTERISTICS (Ceramic Package, T A" -55 0 e to +1250 e unless otherwise notedl Symbol Min Max Unit IF - 1.6 mAde IR - 100 /.lAde Open Collectors - 0.45 Pullup Resistors - 0.45 2.5 - - 200 - 80 95 65 tE+B+ - 50 ns Characteristic Input Forward Current (Vin ~ 0.4 Vde, Vee: 5.5 Vde) Input Leakage Current (Vin : 4.5 Vde, Vee ~ 5.5 Vdcl Logic "0" Output Voltage (10 ~ 12 mAde, VI L : 0.8 Vdc, VEnable" 0.8 Vdc, Vce: 4.5 (10 ~ 10 mAdc, VIL: 0.8 Vde, VEnable" 0.8 Vde, Vee" 4.5 Vde VOL VI H : 2.0 Vde, Vde) VIH" 2.0 Vdc, Vdel Logic '1" Output Voltage (lOH: -0.5 mAde; VIL~ 0.8 Vdc, VIH" 2.0 Vdc, VEnable ~ 2.0 Vdc, Vee ~ 5.5 Vdc) Vdc VOH Pullup Resistors /.lAde ICE'X Output Leakage Current Open Collectors (Vout ~ 5.5 Vde, VEnable: 2.0 Vde, VCC: 5.5 Vdc) Power Supply Drain Cur,rent SWITCHING TIMES (Both Packages, VCC" 5.0 Vdc, T A mAOe Ice (Memory Enabled, VEnable ~ 0 Vde, Other Inputs: 0 Vde, Vce ~ 5.5 Vdc) (Memory Disabled, VEnable" 2.0 Vde, Other Inputs" 0 Vde, V ee ~ 5.5 Vde) Open Collectors Pullup Resistors - ~ 25 0 el (see Figure 5) Enable Input Turn-Off Delay Time Tu'rn-On Delay Time tE-B- .,... 50 ns Address Input Turn-Off Delay Time tA+B+ or tA-B+ - 50 ns Turn-On Delay Time tA+B- or tA-B- - 50 ns MCM4002 (continued) FIGURE 5 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS Vee 5.0 Vdc PULSE GENERATOR ~·r Enable 80 AO 81 Al 82 A2 83 A3 84 A4 85 470 86 87 V1HX 3.0 V Enable Input Test: Connect data inputs to VIHX. Address Input Test: Inputs not under test left open. High impedance probes must be used when making these measurements. 5.0 os max 5.0 os max 3.0 V TPin Enable Input OV 5.0nsmax 5.0 os max 3.0 V TP;n Address Input OV ~ TPout tA-8- T~o!Jt '\ MEMORIES MCM4064AL ~----------I MCM4064L Advance Infor:rnatton/New Product MTTL 64-BIT RANDOM ACCESS MEMORY 64-BIT RANDOM ACCESS MEMORY The MCM4064AL/4064L is a 64-Bit random access memory organized as a 16-word by4-bit array_ Schottky-diode-clamped transistors are utilized to obtain fast switching speeds, and Schottky clamp diodes are used on all inputs to provide minimum line reflection_ The high speed of this memory makes it ideal in scratch pad operation_ Address decoding is incorporated in the circuit providing 1-of-16 decoding from the four address lines_ Separate Data In and Data Out lines, together with a Chip Enable, provide for easy expansion of memory capacity _ A Write Enable is provided to enable data presented at the Data In lines to be entered at the addressed storage cells_ When writing, Data Out is the complement of the Data In_ The open-collector output transistors are also Schottky barrier devices and combine greater current sinking capability with lower leakage currents, thereby increasing the wire-or capability of these devices. Features: • Both Minimum and Maximum Access Times Specified • Binary Addressing • Chip Enable for Memory Expansion • Outputs May Be "Wire ORed" • Logic Levels Compatible with MDTL and All MTTL Families • Low-Voltage Input Clamp Diodes • Access Time < 60 ns • Power Dissipation Typically 6 mW/bit • Outputs Sink 15 rnA MCM4064AL CAS~ 638 MCM4064L CASE 620 MAXIMUM RATINGS Symbol Va1ue Supply Voltage VCC 7.0 Vdc Chip Enable 2 CE Input Voltage - All Inputs Vin 5.5 Vdc WriteEfNtble 3 WE Output Voltage - All Outputs Vo 5.5 Vdc Addrass 0 AO Output Current 10 100 mAde Address 1 15 A1 TA 9JA Oto +85 80 °c °CIW . Address 2 14 A2 Address 3; 13 A3 8JC 45 °CIW Data In 1 D1 MCM4064L (Case 620) Thermal Resistance, Jun"ction to Ambient (Typical) Dataln 2 Oto+70 110 °c °CIW D2 TA 9JA Thermal Resistance, Junction to 8JC 60 °CIW T stg -65 to +160 °c Rating Unit Operating Temperature Range MCM4064AL (Ca.. 638) Thermal Resistance, Junction to Ambient (Typical) Thermal Resistance, Junction to Ca.. (Typical) Dataln 3 Dataln 4 '" t2 03 04 case ITypical) Storage Temperature Range Vee'" Pin 16 GND==Pin B 5 0ata0iii 1 7 Data Oul2 9 081&Out3 11 Data OUI4 MCM4064AL, MCM4064L (continued) DC ELECTRICAL CHARACTERISTICS (MCM4064AL: (TA = a to +850 C, Case 638; MCM4064L: TA = a to +100 C, Case 620) Symbol Min Typ Max Unit IF - - 1.6 mAdc Input Leakage Current - All Inputs (VIH = VCC = 5.25 Vdc) IR - - 80 "Adc Input Clamp Voltage - All Inputs (lin = -5.0 mAdc, VCC = 4.75 Vdc) Vc - - -1.0 Vdc VIL VIH - - 0.8 2.0 - - Logic "0" Output Voltage - All Outputs (Vec = 4.75 Vdc, IOL = .15 mAdc) VOL - - 0.45 Vdc Output Leakage Current - All Outputs (VCC = VCEX = 5.25 Vdc) ICEX - - 100 "Adc Power Supply Current (VCC = 5.25 Vdc, all inputs except WE grounded)' ICC - - 105 mAde Input Capacitance - All Inputs (Vin =,2.0 Vdc, VCC = 5.0 Vdc) Cin - 6.0 - pF Cout - 8.0 - pF Symbol Min Typ Max Unit tA+8+ tA-8- 15 15 - 60 60 ns tA+8- 15 - 60 tA-8+ 15 60 tCE+8+ 15 - tCE-8- 15 - 60 Write Pulse Width (See Figures 1 and 3) twp 40 - - ns Write Recovery Time (See Figures 1 and 3) Iwr - 50 ns tHAW 5.0 - - ns Characteristic Input Forward Current - All Inputs (VIL = 0.4 Vdc, VCC = 5.25 Vdc) Vdc Input Logic Levels - All Inputs "0" Level (VCC = 5.0 Vdc) "1" Level Output CapaCitance - All Outputs (Vout -- 2.0 Vdc, VCC - 5.0 Vdc) AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 Vdc, TA = 250 C) Characteristic Access Times - Address Input or Chip Enable to Output Delay. (See Figures 1 and 2) Address and Data Hold Time After Write (See Figures 1 and 3) 60 ·Worst-case de input condition. BLOCK DIAGRAM 16 WORDS OF 4 BITS STORAGE ARRAY CHIP ENABLE CE AD "",w{ LINES 15 14 13 Al A2 ADDRESS DECODER 1 OF 16 A3 15 04 DATA INPUT LINES r WRITE ENABLE 11 03 10 6 02 82 Bl VCC = Pin 16, GND = Pin 8 QATA OUTPUT LINES MCM4064AL, MCM4064L (continued) FIGURE 1 -SWITCHING TIME TEST CONDITIONS AND LOAD CIRCUIT Vee = 5.0 Vdc, TA = 250 e INPUT WAVEFORM 3.0>.0.5 LOAD CIRCUIT v----------r---- Vee 300 -5.0 ns max 600 30 pF FIGURE 2 -ACCESS TIME DEFINITIONS CHIP ENABLE ADDRESS - - - -.. 1 ADDRESS - - - - - ' 1 DATA OUT CDThistfimlllJiol) is rnaasured from ttJ,llIIId ctlltan at theteating pllnewith leads YfrtICII. cr> ....d 1 identifiad by l;OIor dol. notch in lead. or notch inca'imic. CASE 620 FIGURE 3-' WRITE TIME DEFINITIONS CE a::r::I, ~D.815~ ..... a:m . HIl L I-D.275~ WE---~-----~ 10JiS1 IV VJVlU UITJID.~D.l60 IT t.~ ..98 1 I o:m+---l DATA OUT I D.D45 IJli5II tT' t-i[i'if9 TVP CASE 638 I D.300 I I-- REf;--i MCM4064AL, MCM4064L (continued) TYPICAL ACCESS TIMES ADDRESS TO OUTPUT CHIP ENABLE TO OUTPUT FIGURE 4 - VARIATIONS WITH SUPPLY VOLTAGE 70 ] I- :::> 1= :::> '" '" I- ~ ."'" '" ;.. 60 50 ,... 1,... ' -- FIGURE 7 -VARIATIONS WITH LOAD CAPACITANCE I~L=15mIA- ! CL=30pF TA=25 0 C - 1=:::> 40 r- I- :::> 60 '"'" . w .... '"z 50 ... w t-+ t++ ;::: 40 .. 30 ~ 30 1-- 5w' '" ;::: t++ 20 5.0 4.75 5.25 5.5 o FIGURE 5 - VARIATIONS WITH LOAD CAPACITANCE ~ "" ui . -. -,...,.,.. 1--1+- 40 . 30 t--t++ - r-- ~ ~ /"" ...... .......... 50 ~ '"'" ...... I- .....'" w .... 50 I-- w .-V % <..) VCC = 5.0 VdcIOL=15mA TA=25 0 C - 100 1 40 1e '";::: .. VCC = 5.0 Vdc 10L = 15 mA CL=30pF SO - I - - 9.. I- ~. I I I 30 I I 20 25 50 75 I --+ I I I 30 50 :I 40 : -lI ] :z: le ~ ~ 1e w I I- I ,: I 1++ WRITE RECOVERY 30 ~ ffi I I WRITE PULSE WIDTH 20 I I 10 VCC = 5.0 Vdc ----1 IOL=15mA I > I I '"a:fil I l- I ~ w I ii: 1=30 PF.--+ I 1 20 25 B5 FIGURE 9 - TYPICAL WRITE RECOVERY AND WRITE PULSE WIDTH versus TEMPERATURE t+- 40 I- 1-+ '";:: I I 1++ I 200 t :::> '"'" !iia: ""ui l- I TA,AMBIENTTEMPERATURE (DC) 70 I- I ~ ui FIGURE 6 - VARIATIONS WITH TEMPERATURE 60 I- ~ 4 <..) 150 ] - 60 z I' o 1= :::> CL, LOAD CAPACITANCE (pF) I- VCC =1 5.0 Vdc 10L = 15 mA CL=30pF- :::> SO 20 200 FIGURE 8-VARIATIONSWITH TEMPERATURe I- 60 I--- 1-+ 1$ 150 100 ] '";::: !ii L 70 ] '"'" l- I CL, LOAD CAPACITANCE (pF) 70 1= :::> VCC = 5.0 Vdc_ 10L = 15 mA TA=25 0 C - I--"'" 50 VCC, SUPPLY VOLTAGE (VOLTS) :::> .,....,....- V ,...,.,.. <..) 20 4.5 I- ..... .......... I- 1- ' +- w' 70 50 TA, AMBIENTTEMPERATURE (OC) 75 85 25 50 TA, AMBIENTTEMPERATU RE (DC) 75 B5 MCM4064AL, MCM4064L (continued) TYPICAL DC CHARACTERISTICS FIGURE 10 - TYPICAL SUPPLY CURRENT versus TEMPERATURE FIGURE 11 - TYPICAL OUTPUT LOW VOLTAGE versus OUTPUT CURRENT 110 : I Vcc = 5.25 Vdc ;; I 100 I .g I .... ~ '"~ I I 90 I I I ~ 80 I it I ijl 03 52 70 I I I I I 60 o 75 50 25 o. 5 ~o -:::: ~ 0.4 1 to ~ 0.3 ~~ o > ~ .... ::> :=::> 0.2 ::::.-::: ::::--r----== --:: ::::=-:::: ~ TA =ooc ~ w Vcc = 5.0 Vdc / f-T 25 0 C 85 0 C ~ O. 1 o > 5.0 85 10 15 20 lout, OUTPUT CURRENT (rnA) TA, AMBIENT TEMPERATURE 10C) APPLICATIONS INFORMATION The MCM4064 64-bit MTTL RAM has several features which should be considered when designing larger systems with this device. 1. Chip Enable - This input essentially turns off the device when intii'e high state. The chip will neither read out nor write in data when disenabled. The open collector 'output devices allow Wire GRing or phantom logic for expansion into larger systems. Graphs in this data sheet show the relationship between and capacitance onJthe output due to"Wire DRing. ~cesstime 2. Write Enable - The WE input gates the data on the data input leads into the memory cells. The output amplifiers are tied directly to the. write amplifiers and follow as the inverse of the input for either state of CE as long as WE is low. There is, however, a "glitch" on the output lines just after WE returns high or goes low. For proper writing into the memory, the address and data hold time after writing (tHAW) must be greater than 5.0 ns. 3. The address inputs have standard TTL-compatible input thresholds and standard TTL loading rules can be used. The data outputs have open-collector, Schottky-clamped transistors and can be wire ORed with the incumbent cost in propagation delay. Typical output capacitance is specifiec;l for aid in system design. Figure 12 shows a typical system desiQn using TTL logic and the MCM4064 as a main frame store. This figure will be used to dis- cuss several design considerations. . The four address inputs of tbe MCM4064 are common to all devices in the system. The gates driving these addresses have a fanout of eight, which is a typical and reasonable TTL fanout. In the diagram, each address driver shown represents four devices, one for each address. Thus, 8 x 4 or 32 inverters are required for address driving. The chip enable inputs are used for further address expansion and a one-of-eight decoder (MC4006) is used ·for selecting one chip of eight with Wired OR outputs. Again a TTL fanout of eight is used. This chip enable decodings adds three address bits, A5, A6 and A7. The memory chips are Wire-ORed in sections of eight. This figure of eight is used as a trade-off in decoding array time versus increase in access time due to output capacitance. The eight out- putsat B.O pF each, plusan average of 5.0 pF for board capacitance give a total of slightly.more than 100 pF for a total typical access time (from Figure 5) of about 50 ns. Each section of eight memory chips is connected to a one-of-four data selector (MC4000) which selects one of four sections. This adds a further two address bits, AB and A9, for a total of 512 address locations. kone-of- four decc)der is required for each data output and eight selectors. or four MC4000 devices, are required for the system. Four selectors give output bits 01 through 04 and the second set provides 05 through 08 from a secolJd 8 x 4 array of memory devices. The input data drivers shown in Figure 12 also represent .four inverters, on~ for each data input bit, in the same manrier as the addre~s d'rivers and output selectors. The input data is distributed in common to both a x 4 memory arrays. The particular column of eight MCM4064's for which the data is intended is selected by the MC4007 data selectors which drive the write enable inputs . Only one olthe eight MCM4064's in the columns will actually write in this data and is selected by the chip enable input. Thus only one device in the a:x 4 array will actually accept the input data: that daVic'e chosen by the coincidence of the CE and WE lines. The· entire system shown, therefore, constitutes a 51 ~-word by a-bit memory and requires ~he following devices: 64 bit !TIemories 64 MCM4064 One~of-four data selectors 4 MC4000 One-of-eight decoders 1 MC4006 One-at-four decoders MC4007 11 MC7404 Hex inverters The system access time is the total of the input decoding times, memor:Y access times, and output selection delay times~ However, this may be decreased for read~read cycles by utilizing the maximum and minimum access times. Thus, if one changes the address or chip enable inputs every 60 ns, there is at least 15 ns of valid data on the memory output. Therefore, an output buffering scheme which can latch up the memory contents within 15 ns could be used to reduce the read-read access time to 60 ns plus the address/chip enable skew times which are invariably present. A similar technique could be used for read-write and write-write cycles. • • - -....- - - - - - - 1 r - - - - AO.Al.A2.A3 - 1 - - - - 05,06,07,08 :s: (") :s: ~ o ~ » r -:s: (") s: ~ Write o ~ r- n-O :l :::!. :l I:: ~ Note: R'" 300 ohms A9 01,02,03,04 APPLICATION NOTE ABSTRACTS The application notes listed in this section have been prepared to acquaint the circuits and systems engineer with Motorola TTL integrated circuits and their applications. To obtain copies of the notes, simply list the AN number or numbers and send your request on your company letterhead to: Technical I nformation Center, Motorola Semiconductor Products Inc., P.O. Box 20924, Phoenix, Arizona 85036. AN-464 MTTL Designer's Note - The MC4004/ MC4005, A 16-8it Random Access Memory High speed, non-destructive readout (N DRO) memory systems can be constructed with the MTTL 16-bit memory chip. Information concerning the chip that is pertinent to the design of a complete memory system is herein presented. The topics discussed are: (1) operation of the 16-bit memory including typical read and write sequences, (2) typical dc and Switching characteristics as a function of temperature, power supply, and output load, and (3) examples of memory system organization uti· lizing the 16-bit memory as the basic cell. AN-465 MTTL Designer's Note MC4007 Decoders The MC4006/ Two MTTL complex functions, the MC4006 Binary td One-of-Eight Decoder and the MC4007 Dual Binary to One-of-Foour Decoder are discussed. Their basic modes of operation and expansion capahilities are described. Examples of the use of the decoders in various systems, are presented. AN-476 MTTL Designer's Note ~ The MC4000 Data Selector and the MC4002 Data Distributor Two MTTL complex functions, the MC4002 four and two-channel data distributor, and the MC4000 dual four-channel data selector are discussed. Their basic modes of operation and expansion capabilities are described. Examples of the use of the data distributor and the data selector in various systems are presented. AN-488 High-SpeedAddition Using Lookahead Carry Techniques The use of the lookahead carry principle to increase the operating speed of adder systems is described. Several adders of different sizes using variations of lookahead carry are developed and the logical implementation of these using the MTTL III and MECL II and III logic families is given. AN-492 Operating Characteristics of Motorola MC3000/MC3100 Series TransistorTransistor Logic Gates This application note explains the advantages of using the MC3000/MC3100 Series of conventional TTL. Design data is included which should allow determination of the operating characteristics under almost any setoof conditions. AN-493 ,The MC3000/MC3100 Series TransistorTransistor Logic Flip-Flops This application note explainsthe basic operation of the various flip-flops available in the MC3000/MC31 00 series of transistor-transistor logic from Motorola. Typical operating characteristics are included so that operation under different conditions can be determined. AN-494 The Motorola Transistor-Transistor Logic Lines This application note contains aogeneral description and comparison of Motorola's MTTL I, MTTL II, MTTL III, MTTL 5400/7400, and the MC4000 lines. The basic gate and the MTTL III bypass circuit are discussed and tables of electrical characteristics are included. Two appendices provide definitions of common MTTL terms, a discussion of the effect of input diodes, and loading rules for the MC4000 series complex functions. AN-496 Error Detection and Correction Using Exclusive OR Gates and Parity Trees The availability of Exclusive OR gates and parity trees allows digital system designers to use error detection and correction codes to improve their system reliability and maintainability without the major cost penalty that has existed in the past. Use of Exclusive-OR gates and parity trees available in the MRTL, MTTL, MDTL, and MECL families to design simple parity and single error Hamming parity detection and correction circuits is discussed. I APPLICATION NOTE ABSTRACTS (continued) AN-505 The MC4012, An MTTL 4-Bit Shift Register The MC4012 is a 4-bit shift register consisting of four D-type flip-flops operated in the synchronous mode and may be used for temporary storage of information. The MC4012 may be operated in either the parallel or serial mode input depending upon the logic state of the mode control. Circuit operation and various applications of the device are the subject of this application note. AN-516 Direct Di'gital Display Using MTTL Complex Functions This application note examines some of the different design methods for digital readouts with the added circuitry advantage of integrated circuit complex functions; in particular the MC5400/7400 series. AN-528 Binary-To-BCD-To-Binary Conversion With Complex IC Functions Complex function integrated circuits reduce the cost of performing conversion from binary to the BCD code or from the BCD code to binary. Four methods of performing each conversion are discussed and compared. AN-534 This note describes the design and construction of commutating (digital) filters using Motorola MECL II, MTTL III and MC7400 digital integrated circuits. A short section on commutating filter theory is included along with examples of filters and their responses. AN-535 Operation of the MC5491A/7491A8-bitshift register and the MC5495/7495 4-bit universal shift register is discussed. Typical applications are covered for each device and use of the two devices in a data transmission system is illustrated. AN-532 MTTL and MECL Avionics Digital Frequency Synthesizer This application note discusses several approaches that illustrate applications of complex digital integrated circuits directed toward avionics frequency synthesizers, The techniques presented point out the simplicity with which both MTTL and MECL digital integrated circuits can be used to produce frequency synthesis for avionic communications. Phase-Locked Loop Design Fundamentals The fundamental design concepts for phase locked loops implemented with integrated circuits are outlined. The necessary equations required to evaluate the basic loop performance are given in conjunction with a brief design example. AN-537 The MC4023, An MTTL 4-Bit Universal Counter The MC4023 Universal Counter can be connected to count any number from two through twelve except seven and eleven. For all settings, counting is in a binary sequence from count zero to the selected number. Operating characteristics and applications of the device are the subject of this application note. AN-539 AN-530A The MC7491A Eight-Bit Serial Shift Register and the MC7495 Four-Bit Shift Register Commutating Filter Techniques Interfacing With MOS I/C's This application note discusses the problem of interfacing MOS integrated circuits with the logic levels of MECL, MDTL, MTTL, and MRTL. The emphasis is placed primarily on the use of other integrated circuits to achieve this interfacing. AN-541 Medium Scale Integration in the Numerical Control Field Since medium scale integration means complex functions, the logic design engineer must understand both the product and its end use in order that his design be optimized. Transistor-Transistor Logic has a number of devices such as programmable counters, phase detectors, voltage controlled multivibrators, comparators, etc., which are available today in integrated circuit form. The devices can be applied to the numerical controls field and are the subject of th is paper. NOTES NOTES IGENERAL INFORMATIONI ITECHNICAL DATA I • ~. Interchangeability Guide MC3100/MC3000 Series ~ Packaging Information ISELECTOR GUIDES • MC4300/MC4000 Series • MC5400/MC7400 Series I MTTL Complex Function • MC5400/MC7400 Series MTTL III MC3100/MC3000 Series MC8200/MC7200 Series • MC9300/MC8300 Series • MTTL II MC2100/MC2000 Series • MCBC5400/MCB5400F Series ~ MTTL I MC500/MC400 Series TTL Memories ~ Beam Lead MCBC5400/MCB5400F Series _'APPLICATION NOTES ~ I Dielectrically Isolated MCE54HOO/MCE74HOO Series MTTL Memories 6649 PRINTED IN USA !;-71 IMPERIAL LITHO 822538
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:17 14:15:21-08:00 Modify Date : 2017:07:17 15:02:19-07:00 Metadata Date : 2017:07:17 15:02:19-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:4cacb0c4-51d2-f14c-8449-80d7abe5527c Instance ID : uuid:1cedafaf-ae32-4444-9c53-883012d4bd73 Page Layout : SinglePage Page Mode : UseNone Page Count : 553EXIF Metadata provided by EXIF.tools