1972_Motorola_Semiconductor_Library_First_Edition_Vol1 1972 Motorola Semiconductor Library First Edition Vol1

User Manual: 1972_Motorola_Semiconductor_Library_First_Edition_Vol1

Open the PDF directly: View PDF PDF.
Page Count: 1025

Download1972_Motorola_Semiconductor_Library_First_Edition_Vol1 1972 Motorola Semiconductor Library First Edition Vol1
Open PDF In BrowserView PDF
THE
SEMICONDUCTOR
DATA LIBRARY
_ _ _ _ _ _ _ _ _ _ FIRST EDITION
prepared by
Technical I nformation Center

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility
is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent rights of any manufacturer identified in this library.

Nous n'acceptons aucune responsabilite' en ce qui concerne les erreurs qui auraient pu s'introduire dans cette
edition, en depit des soins minutieux apportes sa pnlParation et sa revision; nous esperons toutefois que les
renseignements fournis sont fiables. De plus, il est bien entendu que ces renseignements ne permettent pas a'
I'acheteur de dispositifs semiconducteurs d'utiliser ies brevets des fabricants mentionnes dans ce catalogue.

a

a

Die in diesem Such enthaltenen Angaben wurden sorgfiiltig uberpruft und sind nach unserer Meinung vallig
zuverlassig. Wir konnen jedoch fUr die Genauigkeit dieser Angaben keine Verantwortung ubernehmen. Daruber
hinaus wird dem Kaufer von Halbleiterelementen mit Angaben, die in dieser Sibliothek genannt werden, keine
unter die Patentrechte eines Herstellers fallende Lizenz erteilt.

First Edition
@MOTOROLA INC., 1972
"All Rights Reserved"

THE
SEMICONDUCTOR
DATA LIBRARY
One of the major problems facing workers in the
electronics field is the identification and selection of
semiconductor devices. Type numbers assigned to the
semiconductors are of little value since they indicate
neither device parameters nor appl ications. Because it
is difficult even to identify the many thousands of
device type numbers, let alone evaluate their merits for
a particular applicati9n, engineers often limit their
designs to a few well-known device types - despite
the fact that newer or more suitable devices may be
available. To help alleviate this problem, the Motorola
Semiconductor Data Library has been developed.
The Motorola Semiconductor Data Library identifies and characterizes all semiconductor devices with
1 N- - -, 2N- - -, and 3N- - . numbers registered with the
Electronics I ndustries Association at the time the
library was printed, as well as a broad line of devices
with special in·house type numbers.
(It provides
complete data sheet specifications for a wide range of
discrete semiconductors, and short·form specifications
for integrated circuits'! And in addition, to simplify
the selection of the most useful semiconductor type
numbers, it contains carefully prepared selector guides
with recommended devices for specific applications.
Properly used, it can be a valuable aid for the design
engineer, the component engineer, and the purchasing
agent in narrowing the broad categories of potentially
usable components to those best suited for a specific
project.

Dimensioned Device Outlines - Dimensioneddrawings
of package outlines with JEDEC and Motorola cross
(Includes leadform drawings on specific
reference.
packages.!
Applrcation Note Catalog - Selection guide listing
application note by application category. Also a brief
summary of the available application note contents and
how to order application notes.
To meet the requirements of a practical up-to-date
reference, the Reference Volume of the Semiconductor
Li brary wi Ii be completely updated and published twice
a year, with supplementary publications quarterly.

VOLUME I
This volume contains complete data sheets for
Motorola-manufactured devices with E lA-registered
type numbers up to 1 N4999 and 2N4999. Data sheets
are in numerical sequence according to device type
number except for those data sheets that cover several
devices with differing type numbers. A numerical
index in front of the book permits the user to quickly
locate the page n umber of the data sheet for any device
characterized in the book.
Since most of the device type numbers in the
"below 5000" category have already been utilized by
existing product, it is expected that this book will
require little updating in the next few years. Accordingly, this volume will be reprinted only as required by
the demand, and modifications will be made only when
reprinting is required..

COMPOSITION OF THE LIBRARY
The Semiconductor Data library is divided into
three volumes, organized as follows:

VOLUME II
This volume contains data sheets for all Motorolamanufactured, EIA registered devices with type numbers 1 N5000 and 2N5000 and up, as well as those
with 3N- - . type numbers. I n addition, all active data
sheets for devices with special Motorola type numbers
(not registered with E IA) are included.
Because this book contains the detailed data for
all the most recently developed semiconductors, it will
be updated through .the publication of supplements.
Two supplements will be published during the life of
this edition.

REFERENCE VOLUME
The reference volume is a self-contained compendium of semiconductor devices and integrated
circuits information. This volume enables the user to
locate and select devices for most any application or
specific circuit. It also contains package and hardware
information as well as applications information. Once
a preliminary selection of a potentially suitable device
has been made, consult Volumes I or II for detailed
specifications for that particular device.
EIA Registered Device Index - Complete numerical
index of all E IA registered device types, with major
electrical specifications.
Non-Registered Device Index - Complete numerical
index of all in-house non-registered Motorola device
types, with major electrical specifications.
Microcircuits Components - Unencapsulated transistors, diodes, passive devices, and integrated circuits
for use in hybrid circuits.
(I ncludes processing,
packaging, and inspection criteria'!
Master Selection Guides - Grouping of preferred
devices by major device categories for quick preselection of devices best suited for specific applications.
I ncludes semiconductor devices and I Cs.
Military Device Listing - A complete list of Motorola
devices that comply with Military Specifications.
Hardware and Packaging Information - Device mounting hardware, heat sinks and special device packaging.

How to Use The Semiconductor Data Library
The library is designed to serve several specific
functions;
1. To permit quick identification (together with
major specifications) of EtA registered semiconductor devices with units with special Motorola
type numbers.
2. To permit quick selection of the most suitable
devices for a specific circuit application.
3. To permit quick selection of the devices that
best meet a given set of electrical specifications.
4. To provide complete characterization of a broad
line of components, encompassing most semiconductor categories, for a detailed comparison
of device types.

"

The following examples illustrate several ways of
using this library.
Problem: Device Identification
Known: Device Type Number
I nformation Needed:
Device function, applications,
major specifications.
Procedure: Consult the Master I ndex of the Reference
Volume and locate the type number of the device in
question in the alpha-numeric listing of the master
index. The information given in this index lists not only
the type of device it is, but also provides the major
electrical specifications for the device. I n addition, it
indicates whether or not the device is manufactured by
Motorola and, if not, whether Motorola can supply an
electrically suitable equivalent.
Complete data for
Motorola man ufactured devices can then be obtained,
if required, from the other two volumes of your Semiconductor Data Library.

Known: a) I ntended circuit application for a particular device
b) Approximate electrical specifications of
a desired device.
I nformation Needed: a) What devices are available
for a specific circuit function?
b) What device types will best
match a required set of electrical characteristics?
Procedure:
Consult the Master Selection Guide section of the Reference Volume. This section contains
product categories, i.e., power transistors, zener diodes,
etc., and by specific market segments, including communications, consumer and military. An index to the
individual selector guides is given at the beginning of
the section for quick access to the pertinent guides.
Complete data for Motorola manufactured devices can
then be obtained, if required, from the other two
volumes of your Semiconductor Data Library.

Problem: Device Preselection

CATALOGUE DE SEMICONDUCTEURS

Identifier et ensuite choisir les dispositifs semiconducteurs constituent I'un des grands problemes que
rencontrent ceux qui travaillent dans Ie domaine de
lelectronique. Les differents dispositifs sont des ignes
par des chiffres ne donnant aucune indication sur leurs
parametres et sur leurs applications. La difficulte pour
les techniciens et ingenieurs d'identifier plusieurs milliers
de dispositifs les am/ment
utiliser, lors de la conception de circuits, des dispositifs bien connus alors que
d'autres dispositifs mieux adaptes sont dispon ibles. Afin
de pall ier cet inconvenient, Motorola a donc institue
ce catalogue de semiconducteurs.

INDEX DU CATALOGUE
Le Catalogue de Semiconducteurs comprend trois
volumes:
VOLUME DE REFERENCE
Le volume de n!ference resume les renseignements
sur les dispositifs semiconducteurs et circuits integres.
Ce volume permet donc
I'utilisateur de determiner
et de choisir les dispositifs pour la majorite des applications; il contient egalement des renseignements sur
les boitiers et sur les systemes de montage. Une fois
Ie choix du dispositif effectue, il suffit de consulter
les Volumes I et II pour obtenir toutes les donnees
concernant ce dispositif.

a

a

Le Catalogue de Semiconducteurs de Motorola identifie et caracterise les dispositifs semiconducteurs enregistnis au pres de I'Association des Industries Electroniques (EIA) par les symboles 1N---, 2N---, et3N--ainsi que les dispositifs propres
Motorola avec des
numeros speciaux. (Ce catalogue contient les specifications completes pour tous les semiconducteurs discrets,
et des specifications abregees pour les circuits int~gres.)
De plus, afin de simplifier Ie choix des dispositifs les
plus utiles, il contient egalement un "gu ide" mettant
en evidence les dispositifs destines
des applications
bien specifiques. Son utilisation adequate peut donc
etre un outil de travail tres utile pour I'ingenieur de
circuit, I'ingenieur de composants, et I'acheteur en leur
permettant de limiter Ie nombre de composants possible convenent Ie mieux pour un projet bien determine.

a

Index des Dispositifs Homologue's par EIA
Cet index fournit egalement les donnees electriques
principales.

,

Index des Dispositifs Non-Homologues

a

Cet index fournit une liste complete des dispositifs
Motorola non-homologue's, avec leurs donnees alectriques principales.
Composants Micro-circuits
Transistors et diodes non-encapsule~, elements passifs et circuits integres pour utilisation en circuits hy-

III

brides (ycompris processus, mise en boitier et criteres
d'inspection.)

supplElmentaires, car il contient toutes les donnees de·
taillees des dispositifs semiconducteurs les plus recents.
Deux supplements seront publies pendant la duree de
vie de cette edition.

Guide
Les dispositifs les plus utilises y sont groupes par
categories principales. pour un choix rap ide des com·
posants les mieux adaptes 'a certaines applications (y
compris dispositifs discrets et circuits integres.)

Methode d'Utilisation du Catalogue de
Semiconducteurs
Ce catalogue a pour but:
1. D'identifier rapidement, grace aux specifications
principales, si Ie dispositif est homologue par E I A
ou s'il s'agit d'un type special Motorola.

Liste des Dispositifs Mil itaires
Cette liste fournit tous les dispositifs Motorola homo·
logues par les Specifications Militaires.
Boitiers et Modes de Montage

2. De selectionner rapidement Ie dispositif Ie mieux
adapte un circuit.

Fournit les modes de montage, les radiateurs et les
boitiers speciaux.

3. De selectionner rapidement un dispositif en fonc·
tion des specifications electriques.

a

4. De fournir les donnees completes de tout I'ensem·
ble des composants Motorola - donc la majorite
des dispositifs semiconducteurs - afin de pouvoir
com parer taus les types de dispositifs ..

Dimension des Boitiers
Dessin et dimension des boitiers homologues par
JEDEC et Motorola (y compris les dessins pour former
les tiges.)

Exemples de methodes d'utilisation;

Catalogue de Notes d' Appl ications

Question:
Identifier Ie dispositif
Donnee:
Type de dispositif
Renseignements Requis:
Fonction du dispositif, ap·
plications et specifications
principal es.

Fournit une liste complete des notes d'applications
groupees par categories, egalement un resu me des notes
d'applications disponibles et la marc he
suivre pour
les obtenir.

a

Methode: Consulter l'lndex du Volume de Reference
et determiner Ie numero du dispositif en question parmi
la liste numerique de I'index. Ce renseignement ainsi
obtenu indique non seulement, Ie type de dispositif
mais egalement fournit les specifications electriques
principales de ce dispositif. De plus, Ie fabricant y
sera precise et Ie catalogue indiquera si Motorola peut
fournir les dispositifs equivalents.
Les deux autres
volumes de ce catalogue vont maintenant fournir toutes
les donnees sur les dispositifs faits par Motorola.

II est evident qu'afin de garder ce catalogue 'a jour,
Ie Volume de Reference sera completement revise et
publie deux fois par an, avec des additions supplemen.
taires publiees tous les trimestres.
VOLUME I
Ce volume est constitue par les specifications pour
les composants faits par Motorola avec les numeros
homologues par EIA jusqu'a 1N4999 et 2N4999. Ces
specifications sont ciassees par ordre numerique sauf
les specifications qui se rapportent
plusieurs types
de dispositifs. Un index numerique en premiere page
permet'a I'utilisateur de determiner rapidemente Ie nu me·
ro de la page pour chaque dispositif decrit dans ce
catalogue.

a

Question:

b) Specifications'electriques approximatives du dispbsi·
tif en question.

II est probable que les dispositifs portant un numero
en-dessous de 5000 necessiteront peu de mise jour
puisque tous ces numeros sont deja utilises. En con·
sequence, ce volume ne sera rllimprime que sur demande
et les modifications apparaitront uniquement lors de
cette nouvelle edition.

a

VOLUME II
Ce volume est constitue par toutes les specifications
pour les dispositifs faits par Motorola, homologues par
EIA avec numeros 1N5000, 2N5000, etc. ainsi que
ceux avec les numeros 3N···. De plus, les specifications
de dispositifs avec numeros speciaux de Motorola (non
homologues par EIA) y sont inciuses.
Ce catalogue sera mis

a jour a I'aide

d'editions

Choix du Disposil if

Donnees:
a) Application probable du circuit pour un dispositif
connu.

Renseignements Requis,:
a) Quels sont les dispositifs disponibles pour la fonc·
tion precise de ce circuit?
b) Quel type de dispositif va rllpondre
des caracte·
ristiques electriques predlherminees?

a

Methode:
Consulter Ie Guide dans Ie Volume de
Reference qui est categorise par produits, c'est·a·dire
transistors de puissance, diodes zener, etc., et par marches, y compris communications, grand public, et mili·
taire. Ces differentes categories apparaissent en premiere
page pour faciliter la selection du Guide. Nous pouvons
maintenant obtenir toutes les donnees sur les disposi·
tifs faits par Motorola en utilisant les deux autres volu·
mes du Catalogue de Semiconducteurs.

IV

DIE HALBLEITER DATENBIBLIOTHEK
hybriden Kreisen. (Prozess-, Einkapselung- und Inspektions-Kriterien sind inbegriffen.)

Eines der Hauptprobleme fUr Fachleute in der Elektronik-Industrie besteht in der Bestimmunq und Selektion von Halbleitertypen. Die meisten Typenbezeichnungen geben wenig oder keine Auskunft uber Parameter oder Anwendungen von speziellen Halbleitern.
Viele tausend verschiedene Halbleitertypen sind heute
erhiiltlich.
Es ist fast unmoglich, auch nur einen
geringen Prozentsatz aller Typen genau zu kennen.
Somit bringen die meisten Ingenieure und Techniker
nur die bekanntesten und gebriiuchlichsten Halbleitertypen zur Anwendung, auch wenn neuere und bessere
Elemente zur Verfugung stehen.

Hauptnachschlagewerk
Zusammenfassung in Gruppen der bevorzugten Hauptelementkategorien fUr schnelle Vorselektion der Elemente die am besten fur gegebene Anwendungen in Frage
kommen. Dieses Dokument enhalt Halbleiterelemente
und integrierte Kreise.
Mil itarelementen- Liste

Um diesem Problem Abhilfe zu schaffen hat Motorola
die meisten Halbleitertypen in eine Halbleitersammlung
zusammengefasst. Diese Halbleitersammlung umfasst
aile IN, 2N und 3N Typen, die durch die "Electronics
Industries Association" registriert sind. Weiterhin sind
eine grosse Anzahl von Motorola In-Haus Typen in dieser
Sammlung zusammengefasst. Vollstandige Spezifikationen einer grossen Anzahl von diskreten Halbleitern
und Kurzspezifikationen von integrierten Schaltkreisen
sind vorhanden.
Zusiitzl ich sind, zur Vereinfachung der Aufsuche der
meist gebrauchten Halbleitertypennummern, Nachschlagetabellen mit Vorzugstypen fUr bestimmte Anwendungen in der Sammlung enthalten.
Die Halbleitersammlung kann dem Entwicklungs und
Komponent-Ingenieur sowie dem Einkiiufer von Halbleitern gute Dienste leisten im Aufsuchen der best
miiglichen Elemente fur eine bestimmte Anwendung.

ZUSAMMENSETZUNG DER
HALBLEITERSAMMLUNG
Die Halbleitersammlung besteht aus drei Teilen, die
folgendermassen zusammengefasst sind:

Dies ist eine vollstandige Liste von Motorola Bausteinen
die Militarspezifikationen erfullen.
Montagezubehor und Einkapselung Information
Bauelement-Montagezubehor,
zial-E I ementeneinkapselung.

KU hlelemente u nd Spe-

Vermasste Elementen-Grundrisse
Vermasste Zeichnungen von Gehiiusegrundrissen mit
JEDEC und Motorola GegenUberstellung. (Zeichnungen
der Anschlussformen von gegebenen Gehausen sind
inbegriffen.)
Awendu ngsbericht- Katalog
Nachschlaglisteder Anwendungsberichte welche in Anwendungskategorien zusammengefasst sind. Eine kurze
Zusammenfassung des I nhalts der verfugbaren Berichte
ist gegeben und ebenfalls wie sie bestellt werden konnen.
Um den Anforderungen eines praktischen, auf den letzten Stand gebrachten Nachschlagewerkes zu genugen
wird der Referenz-Band der Halbleiterbibliothek zweimal im Jahr vOllstiindig uberarbeitet und publiziert.
Zusiitzl iche Veriiffentl ichungen werden vierteljiihrl ich
herausgegeben.
BAND I

REFERENZ-BAND

Dieser Band enthalt vOllstandige Datenbliltter der von
Motorola fabrizierten Elemente mit EIA registrierten
Nummern bis zu 1 N4999 und 2N4999. Die Datenblatter sind in numerischer Ordnung gemass der Bauelemente-Typennummer eingereiht. Ausnahme sind solche
Datenbliitter welche spezielle Elemente mit wechsel nden
Typennummern behandeln. Ein numerisches Verzeichnis am anfang des Bandes erlaubt dem Benutzer ein
schnellesAuffinden der Datenblatter fur aile Elemente,
die im Buch aufgefUhrt sind.

Der Referenz-Band besteht aus einer ubersichtlichen
Zusammenfassung von Halbleitern und integrierten
Schaltungen. Mit Hilfe dieses Referenzbandes lassen
sich Halbleiter und integrierte Schaltungen fur spezielle
Anwendungszwecke leicht auffinden. Gehiiuse-, Anwendungs- und Montagezubehorinformation sind ebenso im Referenzband angegeben. Nach der Wahl eines
Halbleiters oder einer integrierten Schaltung aus dem
Referenzband kann Band I oder Band II fUr die speziellen Daten zur Hilfe gezogen werden.

Weil die meisten Elemente- Typennummern in der Kategorie bis 5000 schon von bestehenden Produkten aufgebraucht wurden, ist erwartet, dass dieser Band in
den niichsten Jahren wenig Ueberarbeitung verlangt.
Dementsprechend wird dieses Buch nur neu gedruckt
wenn die Nachfrage es verlangt und Modifikationen
werden nur bei einer Neuauflage vorgenommen.

EIA Registriertes Halbleiter-Verzeichnis
VOllstandiges numerisches Verzeichnis aller EIAregistrierter Halbleiter Typen, mit den hauptsachlichen elektrischen Spezifikationen.
Nicht Registriertes Halbleiter-Verzeichnis
Vollstandiges numerisches Verzeichnis aller nicht registrierter I n-Haus Motorola Halbleiter Typen, mit den
hauptsachl ichen elektrischen Spezifikationen.
Mi kroschaltkreis- Komponenten
Nicht eingekapselte Transistoren, Dioden, passive Elemente und integrierte Schaltkreise fur den Gebrauch in

v

BAND II
Dieser Band enthalt Datenblatter der von Motorola
hergestellten EIA registrierten Elemente mit der Typennummer 1 N5000 und 2N5000 und aufwiirts und ebenfalls solche mit den 3N- - Typennummern. Aile aktiven
Datenblatter fUr Elemente mit speziellen Motorola
Typennummern (nicht EIA registriert) sind zusatzlich

hier einbezogen.
Weil dieser Band die detaillierten Dilten fur aile der
erst kUrzlich entwickelten Halbleiter enthilt, wird er
durch Publ ikationen von Zusatzbuchern auf den letzten
Stand gebracht. Zwei Zusatzbucher werden wiihrend
der"Lebensdauer'~dieser Ausgabeveroffentl icht werden.
Wie wird "Die Halbleiter Datenbibliothek" gebraucht
Die Bibl iothek ist zusammengestellt worden um mehrere
spezielle Funktionen zu erfullen:

1. Erlaubtschnelle Bestimmung (zusammen mit Hauptspezifikationenl von·E IA registrierten Halbleitern
und Bausteinen mit speziellen Motorola Typennummern.
2. Erlaubt schnelle Selektion der best geeignetsten
Elemente fUr eine bestirrimte Schaltungsanwendung.

3. Erlaubt schnelle Selektion von Elementen welche
am besten gegebene elektrischeSpezifikationen erfUlien.

4. Liefert vollstandige Charakterisation einer breiten
Komponentenlinie, welche die meisten Halbleiter·
Kategorien einschliesst. Erlaubt einen detaillierten
Vergleich der Elementtypen.
Die nachfolgenden Beispiele veranschaul ichen mehrere
Wege um diese Bibliothek zu gebrauchen.
Problem:
Elementen·Bestimmung
Bekannt:
Elemente-Typennummer
Elementefunktion,
Benotigte Information:
Anwendung, Hauptspezifikationen
1m Hauptverzeichnis des Referenzbandes
Vorgang:
sind die Typennummern des zu untersuchenden Elementes in der alphanumerischen Liste aufgefuhrt. Die

Information, die in diesem Verzeichnis gegeben ist,
bestehtnicht nur aus dem Elemententyp sondern auch
die elektrischen Hauptspezifikationen sind gegeben.
Zusatzlich ist angegeben ob das Element von Motorola
hergestelltwird und, im Fall dass dies verneint wird, ob
Motorola ein elekti"isch vergleichbares Bauelement liefern kann. Wenn benotigt, konnen die v611stiindigen
Daten der von Motorola hergestellten Halbleiter von
den zwei anderen Banden der Halbleiter Bibliothek
erhalten werden.
Problem:
Bekannt:

Elementen-Vorbestimmung

al Vorgesehene Schaltkreisanwendung fur ein bestimmtes Element.
bl Ungefiihre elektrische Spezifikationen eines gewUnschten Typs.
Benotigte Information:
al Welche Elemente sind fyr eine bestirnmte Kreisfu nk tion verfU gbar?
bl Welche Elementtypen erfLilien am besten die erforderl ichen elek trischen Charakteristi ken?

Vorgang:
Das Hauptnachschlagwerk des Referenzban des wird aufgeschlagen.
Dieses Kapitel enthl:ilt
Produktkategorien, z. B. Leistungstransistoren, Zenerdioden etc. eingereiht in bestimmte Marktsegmente, einschliesslich Fernmeldewesen, Verbraucherindustrie und
Militarbereich. Ein "Index" zu den einzelnen "AuswahlFUhrern" ist amanfang dieses Kapitels gegeben, was
zum schnellen Auffinden der zutreffenden "Fuhrer"
hilft. Volistandige Daten der von Motorola hergestellten Elemente kennen, wenn benotigt, von den zwei
anderen Banden entnommen werden.

VI

NUMERICAL INDEX

DEVICE

PAGE

PAGE

DEVICE

DEVICE
1N989
1N990
1N991
1N992
1 N 1183
1 N1 184
1 N1185
1 N 1186
1 N 1187
1 N 1188

1N758,A
1N759,A
1N761
1N762
1N763
1N764
1N765
1N766
1N767
1N768

1-9
1-9
1-10

1N708
1N709
1N710
1N711
1N712
1N713
1N714
1N715
1N716
1N717

1N769
1N816
1 N821,A
1N823,A
1N825,A
1N827,A
1N829,A
1N935,A,B
1N936,A,B
1N937,A,B

1-10
1-11
1-11
1-11
1-15
1-15
1-15
1-18

1N718
1N719
1N720
1N721
1N722
1N723
1N724
1N725
1N726
1N727

1N938,A,B
1N939,A,B
1 N941,A,B
1N942,A,B
1N943,A,B
1N944,A,B
1N945,A,B
1N946,A,B
1N957
1N958

1N728
1N729
1N730
1N731
1N732
1N733
1N734
1N735
1N736
1N737

1N959
1N960
1N961
1N962
1N963
1N964
1N965
1N966
1N967
1N968

1N1323
1N1324
1N1325
1N1326
1N1327
1 N 1351
1 N 1352
1 N 1353
1N1354
1N1355

1N738
1N739
1N740
1N741
1N742
1N743
1N744
1N745
1N746,A
1N747,A

1N969
1N970
1N971
1N972
1N973
1N974
1N975
1N976
1N977
1N978

1N1356
1N1357
1N135.8
1N1359
1N1360
1N1361
1N1362
1N1363
1N1364
1N1365

1N748,A
1N749,A
1N750,A
1N751,A
1N752,A
1N753,A
1N754,A
1N755,A
1N756,A
1N757,A

1N979
1N980
1N981
1N982
1N983
1N984
1N985
1N986
1N987
1N988

1N1366
1N1367
1N1368
1N1369
1N1370
1 N 1371
1 N 1372
1N 1373
1N1374
1N1375

1N248B
1N249B
1N250B
1N429
1N702
1N703
1N704
1N705
1N706
1N707

1-3
1-3
1-3
1-5
1-9

1-9

1
~

1-18
1-22

~

1-22
1-26

1-26

vii

1 N 1189
1 N 1190
1 N 1191
1 N 1192
1 N 1193
1 N 1194
1N1195,A
1N1196,A
1N1197,A
1N1198,A
1 N 1313
1 N 1314
1 N 1315
1 N 1316
1 N1317
1 N 1318
1 N 1319
1N1320
1 N1321
1N1322

PAGE
1-26

+

1-26
1-28

1

1-28
1-29

1

1-29

1-30

It
1-30

NUMERICAL INDEX (continued)

DEVICE
1 N 1507
1 N 1508
1 N 1509
lN1510
lN1511
lN1512
lN1513
lN1514
lN1515
lN1516

PAGE
1-31

lN1517
lN1518
lN1519
1 N 1520
1 N 1521
1 N 1522
1 N 1523
1 N 1524
1 N 1525
1 N 1526

DEVICE
lN1815
lN1816
lN1817
lN1818
lN1819
1 N 1820
lN1821
1 N 1822
1 N 1823
1 N 1824

PAGE
1-33

I

DEVICE
1 N261 0
1 N2611
1N2612
1 N2613
lN2614
lN2615
lN2616
1 N2617
1 N2620,A.B
1 N2621,A.B

lN1825
lN1826
lN1827
lN1828
lN1829
lN1830
lN1831
1 N 1832
lN1833
lN1834

lN2622.A.B
1 N2623,A.B
lN2624.A.B
lN2804
lN2805
lN2806
1 N2807
1 N2808
1 N2809
1 N281 0

1 N 1835
lN1836
1 N2008
1 N2009
1 N201 0
1 N2011
lN2012
lN2032
lN2033
1 N2034

1 N2811
1 N2812
1 N2813
1 N2814
1 N2815
1 N2816
1 N2817
lN2818
1 N2819
1 N2820

1 N 1595
1 N 1596
1 N 1597
1 N 1598
1 N 1599
1 N 1600
1 N 1601
lN1602
1 N 1603
lN1604

lN2035
lN2036
1 N2037
lN2038
1 N2039
lN2040
1 N2041
lN2042
1 N2043
lN2044

1 N2821
1 N2822
1 N2823
1 N2824
1 N2825
1 N2826
1 N2827
1 N2828
lN2829
lN2830

lN1605
1 N 1606
1 N 1607
1 N 1608
1 N 1609
1 N 1730
1 N 1731
1 N 1732
1 N 1733
1 N 1734

1 N2045
1N2046
1 N2047
lN2048
lN2049
lN2163,A
lN2164,A
lN2165.A
lN2166,A
lN2167,A

1 N2831
1 N2832
1 N2833
1 N2834
1 N2835
1 N2836
1 N2837
1 N2838
1 N2839
lN2840

1 N 1527
1 N 1528
lN1530,A
1 N 1588
1 N 1589
1 N 1590
1 N 1591
1 N 1592
1 N 1593
1 N 1594

1 N 1735
lN1736,A
1N1737,A
lN1738,A
lN1739,A
lN1740,A
lN1741,A
1 N 1742.A
lN1803
1 N 1804
lN1805
1 N 1806
lN1807
1 N 1808
lN1809
lN1810
lN1811
lN1812
lN1813
lN1814

1-31
1-5
1-30

1-30
1-32

~

1-32
1-5

1

1-5
1-33

1-33

f
1-33
1-34

1

lN2168,A
1 N2169,A
lN2170,A
lN2171.A
lN2382
lN2383
lN2384
lN2385
1 N2489
lN2490

,

1-34
1-32

1-32
1-35

lN2491
lN2492
lN2493
lN2495
lN2496
lN2497
lN2498
lN2499
lN2500
1 N2609

,
1-35

viii

1 N2841
1 N2842
1 N2843
1 N2844
1 N2845
1 N2846
1 N2970
1 N2971
1 N2972
lN2973
1 N2974
1 N2975
1 N2976
1 N2977
1 N2978
1 N2979
1 N2980
1 N2981
1 N2982
1 N2983

PAGE
1-35

1

1-35
1-36

~

1-36
1-40

1-40
1-43

1-43

NUMERICAL INDEX (continued)

DEVICE
1N2984
1N2985
1N2986
1N2987
1N2988
1N2989
1N2990
1N2991
1N2992
1N2993

PAGE

DEVICE

PAGE

DEVICE

1N3156,A
1N3157,A
1 N3189
1 N3190
1N3191
1N3208
1N3209
1N3210
1N3211
1 N3212

1-45

1N2994
1N2995
1N2996
1N2997
1N2998
1N2999
1N3000
1N3001
1N3002
1N3003

1N3213
1N3214
1N3282
1N3283
1N3284
1N3285
1N3286
1N3305
1N3306
1 N3307

1-49

1N3004
1N3005
1N3006
1N3007
1N3008
1N3009
1N3010
1 N3011
1N3012
1N3013

1N3308
1N3309
1N3310
1 N3311
1 N3312
1N3313
1N3314
1N3315
1N3316
1N3317

1N3686
1N3687
1N3688
1N3689
1N3690
1N3691
1N3692
1N3693
1N3694
1N3695

1N3318
1N3319
1N3320
1N3321
1N3322
1N3323
1N3324
1N3325
1N3326
1N3327

1N3696
1N3697
1N3698
1N3699
1N3700
1N3701
1N3702
1N3703
1N3785
1N3786

1N3024
1N3025
1N3026
1N3027
1N3028
1N3029
1N3030
1N3031
1N3032
1N3033

1N3328
1N3329
1N3330
1N3331
1N3332
1N3333
1N3334
1N3335
1N3336
1N3337

1N3787
1 N3788
1N3789
1N3790
1N3791
1N3792
1N3793
1N3794
1 N3795
1N3796

1N3034
1N3035
1N3036
lN3037
1N3038
1N3039
1N3040
1N3041
1N3042
1N3043

1N3338
1N3339
1N3340
1N3341
1N3342
1N3343
1N3344
1N3345
1N3346
1N3347

1 N3797
1 N3798
1 N3799
1N3800
1N3801
1N3802
1N3803
1N3804
1N3805
lN3806

1N3044
1N3045
1N3046
1N3047
1N3048
1N3049
1N3050
1N3051
1N3154,A
1N3155,A

1N3348
1N3349
1N3350
1N3491
1N3492
1N3493
1N3494
1N3495
1N3580,A,B
1N3581,A,B

1 N3807
1N3808
1N3809
1 N3810
1 N3811
1N3812
1N3813
1 N3814
1N3815
1N3816

1N3014
1N3015
1N3016
1 N3017
1 N3018
1N3019
1N3020
1N3021
1N3022
1N3023

1-43

1-43
1-59

1-59
1-45
1-45

i

1-45
1-48

+

1-48

t

1-49
1-40

1-40
1-51

+

1-51
1-34
1-34

ix

1N3582,A,B
1N3583,A,B
1N3649
1N3650
1N3659
1N3660
1N3661
1N3662
1N3663
1N3675

PAGE
1-34
1-34
1-55

t

1-55
1-57

1N3676
1N3677
1N3678
1N3679
1N3680
1 N3681
1N3682
1N3683
1N3684
1N3685

1-57
1-58

1-58

NUMERICAL INDEX (continued)

DEVICE
lN3817
1 N3818
1 N3819
lN3820
lN3821,A
lN3822,A
lN3823,A
lN3824,A
lN3825,A
lN3826,A
lN3827,A
lN3828,A
lN3829,A
lN3830,A
lN3879
lN3880
lN3881
lN3882
lN3883
lN3889
lN3890
lN3891
lN3892
lN3893
lN3899
lN3900
lN3901
lN3902
lN3903
lN3909
lN3910
1 N3911
lN3912
lN3913
lN3993
lN3994
lN3995
lN3996
lN3997
lN3998
lN3999
lN4000
lN4001
lN4002
lN4003
lN4004
lN4005
lN4006
lN4007
lN4057,A

,

PAGE
1-58

1-58
1-59

1-59
1-65

~

1-65
1-71

~

1-71
1-77

~

1-77
1-83

~

1-83
1-89

1

1-89
1-90

!

1-90
1-5

DEVICE

1

1-5
1-94

DEVICE
lN4569
lN4570
lN4571
lN4572
lN4573
lN4574
lN4575
lN4576
lN4577
lN4578

1 N4101
lN4102
lN4103
lN4104
lN4105
1 N4106
lN4107
lN4108
lN4109
lN4110

lN4579
lN4580
lN4581
lN4582
lN4583
lN4584
lN4719
lN4720
lN4721
lN4722

1 N4111
lN4112
lN4113
lN4114
lN4115
1 N4116
lN4117
lN4118
lN4119
lN4120

lN4723
lN4724
lN4725
lN4728
lN4729
lN4730
lN4731
lN4732
lN4733
lN4734

lN4121
lN4122
lN4123
lN4124
lN4125
lN4126
lN4127
lN4128
lN4129
lN4130

lN4735
lN4736
lN4737
lN4738
lN4739
lN4740
1 N4741
lN4742
lN4743
lN4744

1 N4131
lN4132
lN4133
lN4134
lN4135
lN4370,A
lN4371,A
lN4372,A
lN4387
lN4388

lN4745
lN4746
lN4747
lN4748
lN4749
lN4750
lN4751
lN4752
lN4753
lN4754

lN4058,A
lN4059,A
lN4060,A
lN4061,A
lN4062,A
lN4063,A
lN4064,A
lN4065,A
lN4066,A
lN4067,A

lN4549
lN4550
lN4551
lN4552
lN4553
lN4554
lN4555
lN4556
lN4557
lN4558

lN4068,A
lN4069,A
lN4070,A
lN4071,A
lN4072,A
lN4073,A
lN4074,A
lN4075,A
lN4076,A
lN4077,A

lN4559
lN4560
lN4561
lN4562
lN4563
lN4564
lN4565
lN4566
lN4567
lN4568

1-5

PAGE
1-5

lN4078,A
lN4079,A
lN4080,A
lN4081,A
lN4082,A
lN4083,A
lN4084,A
lN4085,A
lN4099
1 N4100

1-94
1-9
1-9
1-9
1-98
1-99
1-40

,

1-40
1-101

1-101

x

lN4755
lN4756
lN4757
lN4758
lN4759
lN4760
1 N4761
lN4762
lN4763
lN4764
lN4765
lN4766
lN4767
lN4768
lN4769
lN4770
lN4771
lN4772
lN4773
lN4774

PAGE
1-101

1-101
1-103

1

1-103
1-105

1-105
1-101

I

1-101

NUMERICAL INDEX (continued)

DEVICE

PAGE

1N4775
1N4776
1N4777
1N4778
lN4779
1N4780
1N4781
1N4782
1N4783
1N4784

1-101

1N4896,A
1N4897,A
1N4898,A
1 N4899,A
1N4900,A
1N4901,A
1N4902,A
1N4903,A
1N4904,A
1N4905,A

1-110

DEVICE

PAGE

DEVICE

PAGE

2N324
2N331
2N350A
2N351A
2N375
2N376A
2N378
2N379
2N380
2N381

2-17
2-18
2-20
2-20
2-22
2-25
2-25
2-25
2-25
2-27

2N718
2N718A
2N720A
2N721
2N722
2N726
2N727
2N731
2N735
2N736

2-77
2-79
2-81
2-83
2-85
2-87
2-87
2-89
2-90
2-90

2N282
2N383
2N398,A
2N404
2N404A
2N441
2N442
2N443
2N456A
2N457A

2-27
2-27
2-29
2-31
2-31
2-33
2-33
2-33
2-36
2-36

2N739
2N740
2N741,A
2N743
2N744
2N753
2N827
2N828
2N828A
2N829

2-90
2-90
2-92
2-94
2-96
2-69
2-98
2-100
2-102
2-102

1N4906,A
1N4907,A
1N4908,A
1N4909,A
1N4910,A
1N4911,A
1N4912,A
1N4913,A
1N4914,A
1N4915,A

2N458A
2N459,A
2N460
2N461
2N464
2N465
2N466
2N467
2N499,A
2N502,A,B

2-36
2-25
2-38
2-38
2-39
2-39
2-39
2-39
2-41
2-41

2N834
2N835
2N838
2N840
2N841
2N869
2N869A
2N910
2N911
2N914

2-105
2-105
2-107
2-109
2-109
2-111
2-113
2-115
2-115
2-117

1N4916,A
1N4917,A
1N4918,A
1N4919,A
1N4920,A
1N4921,A
1N4922,A
1 N4923,A
1N4924,A
lN4925,A

2N508
2N508A
2N524
2N525
2N526
2N527
2N554
2N555
2N559
2N618

2-17
2-43
2-45

2-45
2-8
2-8
2-48
2-22

2N915
2N916
2N918
2N929,A
2N930,A
2N956
2N960
2N961
2N962
2N963

2-119
2-121
2-122
2-124
2-124
2-126
2-126
2-126
2-126
2-128

lN4926,A
1N4927,A
1N4928,A
1N4929,A
lN4930,A
lN4931,A
1N4932,A
lN4933
1N4934
lN4935

2N650,A
2N651,A
2N652,A
2N653
2N654
2N655
2N656
2N657
2N665
2N669

2-52
2-52
2-52
2-54
2-54
2-54
2-56
2-56
2-57
2-6

2N964
2N964A
2N965
2N966
2N967
2N968
2N969
2N970
2N971
2N972

2-126
2-131
2-126
2-126
2-128
2-137

j
1-101

1-110
1-111

~

•

1N4936
lN4937
1N4997
1N4998
lN4999
2N109
2N173
2N174
2N176
2N178

2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689
2N696

2-58

1-111
1-103
1-103
1-103
2-11
2-3
2-3
2-6
2-8

2-58
2-61

2N973
2N974
2N975
2N978
2N985
2N995
2N996
2N998
2N1008,A,B
2N 1 011

2N242
2N277
2N278
2N297A
2N307,A
2N319
2N320
2N321
2N322
2N323

2-10
2-11
2-11
2-14
2-10
2-16
2-16
2-16
2-17
2-17

2N697
2N699
2N700,A
2N702
2N703
2N705
2N706,A,B
2N707,A
2N708
2N711,A,B

2-61
2-62
2-64
2-66
2-66
2-67
2-69
2-71
2-73
2-74

2N 1 021
2N1022
2N1038
2N1039
2N1040
2N 1041
2Nl042
2N1043
2N1044
2N1045

1

xi

1

2-137
2-140
2-142
2-143
2-144
2-146
2-148
2-149

,
,

2-150
2-150
2-153

2-153
2-155

2-155

NUMERICAL INDEX (continued)

DEVICE
2Nl073,A,B
2Nl099
2Nll00
2Nl120
2Nl131,A
2Nl132,A
2Nl141
2Nl142
2N 1143
2Nl162,A
2Nl163,A
2Nl164,A
2Nl165,A
2Nl166,A
2Nl167,A
2N 1175
2N 1185
2Nl186
2N 1187
2N 1188
2N 1189
2Nl190
2N 1191
2Nl192
2Nl193
2N 1194
2N 1195
2N1204,A
2N1358,A
2N1359
2N1360
2N1362
2N1363
2N1364
2N1365
2N1408
2N1412,A
2N1413
2N1414
2N1415
2N1420
2N1494,A
2N1495
2N1496
2N1529,A
2N1530,A
2N 1531,A
2N1532,A
2N1533
2N1534,A
2N1535,A
2N1536,A
2N1537,A
2N1538
2N 1539,A
2N1540,A
2N1541,A
2N1542,A
2N1543
2N1544,A
2N1545,A
2N1546,A
2N1547,A
2N1548
2N1549,A
2N1550,A
2N1551,A
2N1552,A
2N1553,A
2N1554,A

PAGE
1-157
2-159
2-3
2-160
2-161
2-85
2-164
2-164
2-164
2-169

~

2-169
2-173

~

2-173

,

2-176
2-176
2-178

2-178
2-164
2-180
2-3
2-22

t

2-22
2-185
2-186
2-189
2-189
2-189
2-77
2-180
2-180
2-180
2-191

r

2-191
2-195

2-195
2-198

~

2-198

PAGE

DEVICE
2N1555,A
2N1556,A
2N1557,A
2N1558,A
2N1559,A
2N1560,A
2N1561
2N1562
2N1595
2N1596

2-198

~

2-198
2-202
2-202
2"205

~

DEVICE
2N2096
2N2097
2N2099
2N2100
2N2137,A
2N2138,A
2N2139,A
2N2140,A
2N2141,A
2N2142,A

PAGE
2-180

t

2-180
2-243

2N1597
2N1598
2N1599
2N1613
2Nl.651
2N1652
2N1653
2N1692
2N1693
2N1705

2-205
2-77
2-207
2-207
2-207
2-202
2"202
2-209

2N2143,A
2N2144,A
2N2145,A
2N2146,A
2N2152
2N2153
2N2154
2N2156
2N2157
2N2158

2N1706
2N1707
2N 1708
2N1711
2Nl724
2N1725
2N1742
2N 1751
2N1842
2N1842A

2-209
2-209
2-211
2-77
2-213
2-213
2-41
2-216
2-218
2-221

2N2171
2N2192,A,B
2N2193,A,B
2N2194,A,B
2N2195,A,B
2N2212
2N2218,A
2N2219,A
2N2221,A
2N2222,A

2-27
2-251

2N1843
2N1843A
2N1844
2N1844A
2N1845
2N1845A
2N1846
2N1846A
2N1847
2N1847A

2-218
2-221
2-218
2-221
2-218
2-221
2-218
2-221
2-218
2-221

2N2223,A
2N2224
2N2242
2N2256
2N2257
2N2258
2N2259
2N2273
2N2285
2N2286

2-236
2-262
2-264
2-266

2N1848
2N1848A
2N1849
2N1849A
2N1850
2N1850A
2N1893
2N1924
2N1925
2N1926

2-218
2-221
2-218
2-221
2-218
2-221
2-224
2-226
2-226
2-226

2N2287
2N2288
2N2289
2N2290
2N2291
2N2292
2N2293
2N2303
2N2322
2N2323

2-207
2-273
2-273
2-273
2-275
2-275
2-275
2-85
2-277

2N1959
2N1970
2N1980
2N1981
2N1982
2N1983
2N1984
2N1990
2N1991
2N2042

2-228
2-230

2N2324
2N2325
2N2326
2N2330
2N2331
2N2357
2N2358
2N2359
2N2368
2N2369

2-277
2-279
2-279
2-282
2-282
2-282
2-284
2-286

2N2043
2N2060,A
2N2075,A
2N2076,A
2N2077,A
2N2078,A
2N2079,A
2N2080,A
2N2081,A
2N2082,A

2-234
2-236
2-239

2N2369A
2N2381
2N2382
2N2405
2N2410
2N2415
2N2416
2N2453,A
2N2476
2N2477

2-290
2-292
2-292
2-224
2-296
2-298
2-298
2-300
2-302
2-302

,

2-230
2-231
2-231
2-233
2-161
2-234

1

2-239

xii

2-243
2-247

~

2-247

+

,
,

2-251
2-253
2-255

2-255

2-266
2-269
2-207
2-207

~

NUMERICAL INDEX (continued)

DEVICE

PAGE

2N2480,A
2N2481
2N2490
2N2491
2N2492
2N2493
2N2501
2N2526
2N2527
2N2528

2-236
2-304
2-308

2N2537
2N2538
2N2539
2N2540
2N2552
2N2553
2N2554
2N2555
2N2556
2N2557

2-315

2N2558
2N2559
2N2560
2N2561
2N2562
2N2563
2N2564
2N2565
2N2566
2N2567
2N2573
2N2574
2N2575
2N2576
2N2577
2N2578
2N2579
2N2635
2N2639
2N2640

+

2-308
2-309
2-312
2-312
2-312

1
l

2-153

2-153
2-155

1

2-155
2-317

l

2-317
2-320
2-322

!

DEVICE
2N2895
2N3896
2N3897
2N2903.A
2N2904.A
2N2905,A
2N2906,A
2N2907.A
2N2912
2N2913

PAGE
2-360
2-360
2-360
2-362
2-364

+

2-364
2-370
2-372

DEVICE

PAGE

2N3116
2N3120
2N3121
2N3127
2N3133
2N3134
2N3135
2N3136
2N3137
2N3209

2-391
2-427
2-427
2-429
2-433

2-439
4-441
2-286
2-443
2-443
2-445
2-445
2-449
2-449
2-453

,

2-433
2-435
2-437

2N2914
2N2915
2N2916
2N2917
2N2918
2N2919
2N2920
2N2927
2N2929
2N2944

2-372
2-328
2-374
2-376

2N3210
2N3211
2N3227
2N3232
2N3235
2N3244
2N3245
2N3248
2N3249
2N3250,A

2N2945
2N2946
2N2947
2N2948
2N2949
2N2950
2N2951
2N2952
2N2955
2N2956

2-376
2-376
2-377
2-377
2-380
2-380
2-382
2-382
2-385
2-385

2N3251,A
2N3252
2N3253
2N3279
2N3280
2N3281
2N3282
2N3283
2N3284
2N3285

2-453
2-459
2-459
2-464
2-464
2-464
2-464
2-466

2N2957
2N2958
2N2959
2N2972
2N2973
2N2974
2N2975
2N2976
2N2977
2N2978

2-385
2-391
2-391
2-372

2N3286
2N3287
2N3288
2N3289
2N3290
2N3291
2N3292
2N3293
2N3294
2N3295

2-466
2-469

2-372
2-393
2-395
2-397
2-399
2-393
2-393
2-401
2-403
.2-403

2N3296
2N3297
2N3298
2N3299
2N3300
2N3301
2N3302
2N3303
2N3304
2N3307

2-476
2-479
2-482
2-484

2-405

2N3308
2N3311
2N3312
2N3313
2N3314
2N3315
2N3316
2N3323
2N3324
2N3325

2-490
2-492

2N3330
2N3375
2N3425
2N3427
2N3428
2N3439
2N3440
2N3444
2N3445
2N3446

2-498
2-500
2-504
2-506
2-506
2-509
2-509
2-459
2-513
2-513

2N2641
2N2642
2N2643
2N2644
2N2646
2N2647
2N2652,A
2N2696
2N2710
2N2720

2-322
2-324
2-324
2-326
2-328
2-330
2-332

2N2979
2N3009
2N3010
2N3011
2N3012
2N3013
2N3014
2N3015
2N3019
2N3020

2N2721
2N2722
2N2723
2N2724
2N2725
2N2728
2N2785
2N2800
2N2801
2N2832

2-332
2-334
2-336
2-336
2-336
2-338
2-340
2-342
2-342
2-344

2N3021
2N3022
2N3023
2N3024
2N3025
2N3026
2N3043
2N3044
2N3045
2N3046

2N2833
2N2834
2N2837
2N2838
2N2845
2N2846
2N2847
2N2848
2N2857
2N2894

2-344
2-344
2-242
2-242
2-350
2-350
2-350
2-350
2-352
2-358

2N3047
2N3048
2N3053
2N3054A
2N3055
2N3072
2N3074
2N3081
2N3114
2N3115

1

1

~

2-405
2-410

!

2-410
2-412
2-413
2-417
2-421
2-421
2-423
2-425
2-391

xiii

~

t

2-469
2-471

+

2-471
2-473

,

2-484
2-486
2-488
2-490

~

2-492
2-495
2-495
2-495

NUMERICAL INDEX (continued)

DEVICE
2N3447
2N3448
2N3467
2N3468
2N3485,A
2N3486,A
2N3487
2N3488
2N3489
2N3490
2N3491
2N3492
2N3494
2N3495
2N3496
2N3497
2N3498
2N3499
2N3500
2N3501
2N3506
2N3507
2N3508
2N3509
2N3510
2N3511
2N3544
2N3546
2N3553
2N3611
2N3612
2N3613
2N3614
2N3615
2N3616
2N3617
2N3618
2N3632
2N3634
2N3635
2N3636
2N3637
2N3647
2N3648
2N3712
2N3713
2N3714
2N3715
2N3716
2N3719

PAGE
2-513
2-513
2-517
2-517
2-364
2-364
2-520

DEVICE

PAGE

DEVICE

PAGE

2N3771
2N3772
2N3783
2N3784
2N3785
2N3789
2N3790
2N3791
2N3792
2N3796

2-606
2-606
2-609
2-609
2-609
2-614
2-614
2-614
2-614
2-619

2N3961
2N3970
2N3971
2N3972
2N3980
2N3993
2N3994
2N3994A
2N4012
2N4015

2-500
2-691
2-691
2-691
2-693
2-695
2-695
2-695
2-697
2-699

2-619
2-623
2-623
2-627

2N4016
2N4048
2N4049
2N4050
2N4051
2N4052
2N4053
2N4066
2N4067
2N4072

2-699
2-701

2-524

2N3797
2N3798,A
2N3799,A
2N3800
2N3801
2N3802
2N3803
2N3804
2N3804A
2N3805

2-701
2-705
2-705
2-707

2-531
2-531
2-533
2-533
2-536
2-536
2-539
2-541
2-500
2-545

2N3805A
2N3806
2N3807
2N3808
2N3809
2N3810
2N3810A
2N3811
211!3811A
2N3812

2N4073
2N4091
2N4092
2N4093
2N4123
2N4124
2N4125
2N4126
2N4130
2N4151

2-707
2-709
2-709
2-709
2-711
2-711
2-715
2-715
2-719
2-721

2N3813
2N3814
2N3815
2N3816
2N3816A
2N3817
2N3817A
2N3818
2N3821
2N3822

2N4152
2N4153
2N4154
2N4155
2N4156
2N4157
2N4158
2N4159
2N4160
2N4161

!

2-520
2-523
2-523
2-523
2-523
2-524

,

,
+

2-545
2-548

2-548
2-500
2-552

+

2-552
2-536
2-536
2-558
2-560

+

2-560
2-564

2N3720
2N3726
2N3727
2N3733
2N3734
2N3735
2N3736
2N3737
2N3738
2N3739

2-564
2-568
2-568
2-570
2-572

2N3740,A
2N3741,A
2N3742
2N3743
2N3762
2N3763
2N3764
2N3765
2N3766
2N3767

2-582
2-582
2-587
2-591
2-595

,

2-572
2-578
2-578

+

2-595
2-601
2-601

2-627
2-631
2-634
2-634

2N3823
2N3824
2N3838
2N3839
2N3866,A
2N3870
2N3871
2N3872
2N3873
2N3883

2-636
2-634
2-638
2-352
2-640
2-645

2N3896
2N3897
2N3898
2N3899
2N3902
2N3903
2N3904
2N3905
2N3906
2N3909,A

2-645

2N3924
2N3925
2N3926
2N3927
2N3946
2N3947
2N3948
2N3950
2N3959
2N3960

2-667

,
,
,

2-645
2-647

2-645
2-651
2-655
2-655
2-660
2-660
2-665

2-667
2-673
2-673
2-679
2-683
2-687
2-687

xiv

~

2N4162
2N4163
2N4164
2N4165
2N4166
2N4167
2N4168
2N4169
2N4170
2N4171
2N4172
2N4173
2N4174
2N4175
2N4176
2N4177
2N4178
2N4179
2N4180
2N4181
2N4182
2N4183
2N4184
2N4185
2N4186
2N4187
2N4188
2N4189
2N4190
2N4191

2-721

NUMERICAL INDEX (continued)

PEVICE
2N4192
2N4193
2N4H!4
2N4195
2N4196
2N4197
2N4198
2N4199
2N4200
2N4201
2N4202
2N4203
2N4204
2N4212
2N4213
2N4214
2N4215
2N4216
2N4220,A
2N4221,A

PAGE
2-721

1

2-721
2-727

1

DEVICE

PAGE

2N4363
2N4364
2N4365
2N4366
2N4367
2N4368
2N4371
2N4372
2N4373
2N4374

2-780

DEVICE

PAGE

2N4890
2N4898
2N4899
2N4900
2N4901
2N4902
2N4903
2N4904
2N4905
2N4906

2-838
2-840
2-840
2-840
2.844
2-844
2.844
2-848
2.848
2-848
2-852
2.852
2.852
2-856
2.856
2-856
2.860
2.860
2.860
2-864

2-733
2-735
2-735

2N4375
2N4376
2N4377
2N4378
2N4391
2N4392
2N4393
2N4398
2N4399
2N4400

2-780
2-784
2-784
2-784
2-786
2-786
2-791

2N4910
2N4911
2N4912
2N4913
2N4914
2N4915
2N4918
2N4919
2N4920
2N4921

2N4222,A
2N4223
2N4224
2N4231
2N4232
2N4233
2N4234
2N4235
2N4236
2N4237

2-735
2-739
2-739
2-743
2-743
2-743
2-746
2-746
2-746
2-751

2N4401
2N4402
2N4403
2N4404
2N4405
2N4406
2N4407
2N4409
2N4410
2N4416

2-791
2-795
2-795
2-802
2.802
2-808
2.808
2-812
2-812
2-814

2N4922
2N9423
2N4924
2N4925
2N4926
2N4927
2N4928
2N4929
2N4930
2N4931

2-864
2-864
2-868
2-868
2-869
2-869
2-871

2N4238
2N4239
2N4260
2N4261
2N4264
2N4265
2N4276
2N4277
2N4278
2N4279

2-751
2-751
2-755
2-755
2-759
2-759
2-764

2N4427
2N4428
2N4441
2N4442
2N4443
2N4444
2N4851
2N4852
2N4853
2N4854

2.816
2-818
2.820

2N4937
2N4938
2N4939
2N4940
2N4941
2N4942
2N4948
2N4949
2N4957
2N4958

2.873

2N4855
2N4856,A
2N4857,A
2N4858,A
2N4859,A
2N4860,A
2N4861,A
2N4870
2N4871
2N4877

2.828
2-830

2N4959
2N4974
2N4975
2N4993

2-877
2-885
2.885
2-887

2N4280
2N4281
2N4282
2N4283
2N4342
2N4351
2N4352
2N4360
2N4361
2N4362

2-727
2-733

+

1

2-764
2-768
2-770
2-774
2-778
2-780
2-780

,

2-820
2.824
2-824
2.824
2-828

~

2.830
2.832
2-832
2-836

xv

,

2-871

~

2-873
2-875
2-875
2-877
2-877

xvi

1N••• JEDEC REGISTERED
DEVICE SPECIFICATIONS

1-1

1-2

lN248B

Ie thru lN250B, C

lN1191 thru lN1198
lN1195A thru lNl198A
1N3213,.1 N3214

Medium current silicon rectifiers. Unique doublecase construction consists of hermetically sealed inner
metallic case surrounded by molded external case;
provides highest degree of ruggedness and reliability .
Type numbers shown have cathode connected to case.
but reverse-polarity units can be obtained by adding
suffix "R" to standard type number, e. g. IN248BR.

CASE 42
(DO-5)

MAXIMUM RATINGS

Symbol

Rating
Peak Repetitive Reverse Voltage
and
DC BlOCking Voltage
lN248B, lN119l
lN248C
lN249B, lN1192
lN249C
lN1193
lN250B, lN1194
lN250C
lN1195, lN1195A
lN1196, lN1196A
lN1197, lN1197A, lN32l3
lN1198, lN1198A, lN32l4

VRM (rep)

RMS Reverse Voltage
lN248B,
lN248C
lN249B,
lN249C
lN1193
lN250B,
lN250C
lN1195,
lN1196,
lN1197,
lN1198,

Vr

VR

lN119l

Value

Unit
Volts

50
55
100
110
150
200
220
300
400
500
600
Volts
35
38.5
70
77
105
140
154
210
280
350
420

lN1192

lN1194
lN1195A
lN1196A
lN1197A, lN32l3
lN1l98A, lN32l4

Average l/2-Wave Rectified Forward Current
(Resistive Load, 60 Hz , TC = 150°C)

10

Peak Repetitive Forward Current
(TC = 150°C)

IFM (rep)

Peak Surge Current
(TC = 150°C, superimposed on Rated
Current at Rated Voltage, 1/2-Cycle,
1/120 sec)

IFM (surge)

1-3

Amp
20
Amp
90
Amp
350

1N248B,C thru 1N250B,C (continued)
THERMAL CHARACTERISTICS

Maximum Operating and Storage Temperature: -65 to + 190°C
Maximum Thermal Impedance, Junction to Case: (JJC = 1.50 C/W DC
D

ELECTRICAL CHARACTERISTICS
~

Cbara,cteristics

Max

Symbol,

Full Cycle Average Forwarc;l Voltage Drop
(10 (max)' rated Vr ,60 cps; TC = 150°C)

VF(AV)

Instantaneous Forward Voltage Drop
(I: F = 100 Amps, T J = 25°C)

VF

Full Cycle Average Reverse Current
(10 ~max)' rated Yr' 60 cps, TC = 150°C)
IN 48B thru lN250B, lN119l thru lN1198
lN248C
lN249C
lN250C
lN1195A
lN1196A
lN1197A
lN1198A
lN32l3 and lN32l4
DC Reverse Current
(Rated VR , TC = 25°C)

IR(AV)

Unit
Volts

0.6
Volts
1.5
mA
5.0
3.8
3.6
3.4
3.2
2.5
2.2
1.5
10.0
mA

IR
1.0

MAXIMUM AVERAGE FORWARD CURRENT RATING
versus MAXIMUM CASE TEMPERATURE

TYPICAL FORWARD CHARACTERISTICS
1000
800
600
400

a:~

:$
tZ
co:
co:

..,
::>
u
Q

co:

~

co:
0

200

20

~
U)

10
8
6

z
~
z

!:
~

~

100
80
60
40

....
::>
0
..,
U)

~

L

1

1/
TJ

= ISOOC /

•
L
II

JT

J

= 25°C
.

4

I

2

o
Te. MAXIMUM CASE TEMPERATURE (OC)

~

J.oo"':

1
0.4

0.8

1.2

1.6

2.0

V,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

1-4

lN429
Temperature compensated zener reference diodes designed for reference sources utilizing an oxide-passivated
junction for long-term voltage stability, high uniformity
and reliable operation.

N1530 series

1

N1735 series

1

lN4057 series
CASE 41

CASE 57

MAXIMUM RATINGS ITA

=

25 0 C unless otherwise noted)

Rating

Symbol

Value

Unit

TJ

-55 to +175

°c

Storage Temperature Range

Tstg

-65 to +175

°c

Power Dissipation *

Po

See Tables 1 & 2*

W

Operating Junction Temperature Range

*The devices are designed for operation at the specified IZT. Operation above or below
this current is not recommended, since the temperature coefficient is no longer valid.
See Note 2 and Figure 4.

MECHANICAL CHARACTERISTICS
Case:

Discrete glass package devices encapsulated in a
transfer molded plastic package

Polarity: Indicated by diode symbol except 1N429, 1N1530, 1N1530A where cathode
indicated by polarity dot of contrasting color
Weight:

Varies according to device
0.5 grams (min)
12 grams (max)

Finish:

All external surfaces corrosion resistant and leads readily solderable.

1-5

1N429/1 N1530/1 N1735/ 1N4057 (continued)

TABLE 1 - ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Zener
Voltage±5%
@
Vz
IZT
TYPE

CASE

Volts

mA

lN4057
lN4057A
1 N4058
lN4058A

41-8

12.4
12.4
14.6
14.6

10

ZZT
Ohms
(Note 3)

Temperature

Coefficient
%/OC
(Note 2)

25
25
30

",Vz
",vz@ IZT
PO·
(+25 to +1 DOOC) (-55 to + 250 C)
TA = 250 C
Volts
Volts
(Note 2)
(Note 2)
W

0.005
0.002
0.005
0.002

0.047
0.019
0.055
0.022

0.050
0.020
0.058
0.023

0.063
0.025
0.069
0.028
0.079

0.067
0.027
0.074
0.030
0.084

1 N4059
1 N4059A
1 N4060
lN4060A
lN4061

16.8
16.8
18.5
18.5
21

35

0.005
0.002
0.005
0.002
0.005

1 N4061A
1 N4062
lN4062A
1 N4063
lN4063A

21
23
23
27
27

35
40
40
45
45

0.002
0.005
0.002
0.005
0.002

0.032
0.086
0.035
0.101
0.041

0.034
0.092
0.037
0.108
0.043

1 N4064
lN4064A
1 N4065
lN4065A
1 N4066

30
30
33
33
37

50
50
55
55
80

0.005
0.002
0.005
0.002
0.005

0.113
0.045
0.124
0.050
0.139

0.120
0.048
0.132
0.053
0.148

lN4066A
1 N4067
1 N4067A
1 N4068
lN4068A

37
43
43
47
47

80
90
90
100
100

0.002
0.005
0.002
0.005
0.002

0.056
0.161
0.065
0.176
0.071

0.059
0.172
0.069
0.188
0.075

51
51
56
56
62

110
110
120
120
135

0.005
0.002
0.005
0.002
0.005

0.191
0.077
0.210
0.084
0.232

0.204
0.082
0.224
0.090
0.248

135
230
230
250
250

0.002
0.005
0.002
0.005
0.002

0.093
0.255
0.102
0.281
0.113

0.099
0.272
0.109
0.300
0.120

1 N4069
lN4069A
1 N4070
1 N4070A
lN4071

41-9

7.5

lN4071A
1 N4072
lN4072A
1 N4073
lN4073A

62
68
68
75
75

1 N4074
lN4074A
1 N4075
1 N4075A
1 N4076

82
82
87
87
91

270
270
290
290
310

0.005
0.002
0.005
0.002
0.005

0.307
0.123
0.326
0.131
0.341

0.328
0.131
0.348
0.139
0.364

1 N4076A
lN4077
lN4077A
lN4078
lN4078A

91
100
100
105
105

310
340
340
700
700

0.002
0.005
0.002
0.005
0.002

0.137
0.375
0.150
0.394
0.158

0.146
0.400
0.160
0.420
0.168

lN4079
lN4079A
1 N4080
lN4080A
lN4081

110
110
120
120
130

740
740
800
800
840

0.005
0.002
0.005
0.002
0.005

0.413
0.165
0.450
0.180
0.488

0.440
0.176
0.480
0.192
0.520

lN4081A
1 N4082
lN4082A
1 N4083
lN4083A

130
140
140
150
150

840
960
960
1020
1020

0.002
0.005
0.002
0.005
0.002

0,195
0.525
0.210
0.563
0.225

0.208
0.560
0.224
0.600
0.240

lN4084
1 N4084A
lN4085
lN4085A

175
175
200
200

1150
1150
1350
1350

0.005
0.002
0.005
0.002

0.656
0.263
0.750
0.300

0.700
0.280
0.800
0.320

41-10

5.0

2.5

"Derate linearly from 25°C to 175°C.

1- 6

1.5

2.0

2.5

1N429/ 1 N 1530/1 N 1735/1 N4057 (continued)

TABLE 2 - ELECTRICAL CHARACTERISTICS (IZT

= 7.5 rnA, TA = 250 C unless otherwise noted)

Max Voltage Change
Max Dynamic
Impedance
(Note 3)
ZZT (Ohms)

Temperature
Coefficient
(Note 2)
(%/oC)

Power·
Dissipation

0.050

20

0.01

200

53

1

0.050

20

0.01

200

41-6

2

8.4

0.014
0.007

15

0.002
0.001

250

57

3

lNl736
1 N1736A

12.4

0.100
0.050

40

0.01
0.005

400

41-3

2

lN1737
lN1737A

18.6

0.150
0.075

60

0.01
0.005

600

41-5

2

24.8

0.200
0.100

80

0.01
0.005

800

41-5

2

31.0

0.250
0.125

100

0.01
0.005

1000

41-4

2

lN1740
1 N1740A

37.2

0.300
0.150

120

0.01
0.005

1200

41-4

2

lN1741
lN1741A

43.4

0.350
0.175

140

0.01
0.005

1400

41-4

2

lN1742 @
1 N1742A

49.6

0.400
0.200

180

0.01
0.005

1600

41-4

2

@

Zener
Voltage
VZ±5%
(Volts)

-55, +25, +1oooC
lNZ (Volts)
(Note 2)

1 N429 (j)

6.2

lNl735

6.2

1 N1530· '"
lN1530A •• @

Type
Number

lN1738
lN1738A
lN1739
lN1739A

Po

Case
Number

(mW)

CD Available to M I L-S-19500/299 Specifications .

• Derate linearly from 25°C to 175°C

~ Available to MI L-S-19500/320 Specifications.

"IZT=10mA

@ Available to

MIL-S-19500/298 Specifications.

TH}=I.
Dl!9
Ii
i

I

0.200
DIA

II
I,

Q~

, 'i
I

~~D'A

Figure

Number

0370

1.062

~
1(Q!5
Q0055

OUTLINE DIMENSIONS IINCHES)

'KG
41-'
41·2
41-3

A

MAX
1.00
0.500
1.030
1.220
0.655
0.520
1.000

41 ·4
41-5
41·6
41-7
4'-8 0.520
41-9 0.780
41 10 1,155

,

MAX
0.500
0.375
0.378
0.641
0.641
0.275
0.375
0.260
0.260
0.323

C
0.002
0.032
0.032
0.032
0.032
0. 032

D

MIN
1.25
1.25
1.25
1.75

1,.25

002Ir 25

0.032 1.25

0.030 1.00
0.030. 1.00
0.030 1.00

'4

4.3
4.7
'.1
,.6
6.2
6.8

20
20
20
20
20
20

22
19
17
II
7

,

8,
7,
70
6,
60
5>

2
2
I
I
0.1
0.1

30
30
20
20
20
20

IN75>
IN7,6
IN7,7
IN7,8
IN7,9

7.'
8.2
9.1
10.0
12.0

20
20
20
20
20

6
8
10
17
30

,0
4,
40
3,
30

0.1
0.1
0.1
0.1
0.1

20
20
20
20
20

TYPE
NUMBER

1,.

T. 150'C
I.@ V. 1V
I'A

100
7,
50
10
10
10

200
1,0
100
30
30
30

POLARITY: Cathode End. Indicated by Color Band, Will Be Positive When Operate
Operated I n The Zener Region.

1-9

=

=

T. 25'C
I.@V. =1V
I'A

=

1N746 thru 1N759 (continued)

SPECIAL.se'LECTIONS.AVAILA8LE INCLUDE.: (See Selector Guide for details)

1 - Nominal zener voltages between those shown.'
2 -;

..

.

"4~~hoerd~~~:: U(~i\~n~~r~e~i~~~~nnCne:c~~~ =;?t"~·~pe~i~i·~jot·O~~~~~· :=nlt~~l ~:ft:~~~nle~i~sv~t:~t::rs~~:i~ake

possible higher
zener voltages and provide lower temperature coefficients. lower dynamic impedance and greater power handling ability.
b. Two or more unit, matched to one another with any: specified tolerance.

3 - Tight voltage tolerances: 1.0%.2.0%.3.0%.

voitage . (Vz) and· test voltage for leakage current will
conform to the characteristics of the next higher
voltage type shown in the ta~le.

To design·ate units With zener vo"itages ·other than
those listed, the Motorola type number should be
modified as shown below. Unless otherwise specified,
the electrical characteristics other than the nominal

EXAMPLE: IN746 series, IN4370 series

'M

.4

T

Power Rating

T

Motorola

3;7

A

T

l

Alloy

Z

T

Zener Diode

5

T

Tolerance (±%)

Nominal Voltage

lN761 thru lN769

Recommended for applications reqUlrmg an exact
replacement only. Fqr new designs /;lee IN5221 series.

1-10

.4M.64FRlO/lN8l6
.4Ml.36FRS
.4Ml.36FR2
.4M2.04FRS
.4M2.04FR2
MZ2360
MZ236l
MZ2362

CONSTANT-VOLTAGE REFERENCE DIODES FOR
LOW-VOLTAGE APPLICATIONS

.. high·conductance silicon diodes designed as a stable forward
reference source for biasing transistor amplifiers and similar applications.

• Guaranteed Forward Voltage Range
• Choice of Package
• Temperature Effects Provided

MAXIMUM RATINGS
Rating
DC Power Dissipation

Symbol

Value

Unit

Po

400

mW

TJ. T stg

-6510+175

TL ~ 300 C ±30C.
Lead Length = 3/8"

@

Operating and Storage Junction

°c

FORWARD REFERENCE
DIODES
- STABISTORS-

Temperature Range

.4M1.36FR5
.4M1.36FR2
.4M2.04FR5
.4M2.04FA2
MZ2361
MZ2362

MECHANICAL CHARACTERISTICS
Case: Choice of package, either Glass or Surmetic

Dimensions: See outline drawings
finish: All external surfaces are corrosion resistant and leads are readily solderable and weldable

Polarity: Cathode indicated by polarity band. Cathode negative for forward
reference application.
Weight: 0.2 Gram (approximate)
Mounting Positions: Any

1-11

.4M.64FR10/l N816,.4Ml.36FR5, .4Ml.36FR2, .4M2.04FR5,
.4M2.04FR2, MZ2360, MZ2361, MZ2362 (continued)

ELECTRICAL CHARACTERISTICS (TA

=

25 0 C unless otherwise noted)

Forward Reference

Reverse Leakage
Current (Max)

Voltage (1)
@

Type Number

.4M.64FR 101
lNB16* (2)
.4Ml.36FR5
o4M1.36FR2
o4M2.04FR5
o4M2.04FR2
MZ2360
MZ2361
MZ2362

@

VF
Volts
MiniMax

IF
rnA

IR
}.IA

VR
Volts

Package

Case

0.5B/0.70

1.0

0.1

4.0

Glass

51

1.29/1043
1.33/1.39
1.94/2.14
2.00/2.0B
0.63/0.71
1.24/1.3B
1.90/2.10

10
10
10
10
10
10
10

0.1
0.1
0.1
0.1
10
10
10

4.0
4.0
4.0
4.0
5.0
5.0
5.0

Glass
Glass
Glass
Glass

51
51
51
51
59
51
51

Surmetic
Surmetic
Glass

*Indicates JEDEC Registered Data for lN816
(1) Motorola guarantees the forward reference voltage when measured at 90 seconds while maintaining the lead temperature (TL) at 30°C
.±- 1°C, 3/8" from the diode body.
(2) Minimum Saturation Voltage for lN816 "" 40 V @ 100 p.A.

8

.....,I II-- 0J.IIIl
0.107

MZ2360
.4M.64FR 1011 N816
.4Ml.36FR5
o4Ml.36FR2
.4M2.04FR5
.4M2.04FR2
MZ2361
MZ2362

-

f--- ~.~~

OIA

OIA

0030
1 10

[034

CASE 51

CASE 59

00·7

0041

POLARITY MARK
ICATHOOEI

,

100 MIN

110
MIN

All JEDEC dimensions and notes apply

All JEDEC dimenSions and notes apply

1-12

.4M.64FR10/1N816, .4M1.36FR5, .4M1.36FR2, .4M2.04FR5,
.4M2.04FR2, MZ2360, MZ2361, MZ2362(continued)

TYPICAL FORWARD VOLTAGE CHARACTERISTICS
FIGURE 1 - .4M.64FR10/1N816

FIGURE 2 - .4Ml.36FRS
100

10

;;(

70
50

7.0
5.0
TJ

E

§
~

1250C /

0

C>
~



~

125OC.7 F---- TF 250C

TJ
0

~

I Max

0.7
0.5

0.1

;;(

2.2

2.4

2.6

.4M.64FR10/1N816, .4M1.36FRS, .4M1.36FR2, .4M2.04FRS,
.4M2.04FR2, MZ2360, MZ2361, MZ2362 (continued)

TYPICAL TEMPERATURE COEFFICIENT
FIGURE 7 - .4M.64FR10/1N816

FIGURE 8 - MZ2360

+1.0

+1.0

G

3;

.s
>-

15

;:;

~

8
w

-1.0

'"=>>-

~

ai>-

/'

-2.0

u:

~

-3.0

o

-

1.0

2.0

. / f.-

3.0

4.0

5.0

6.0

7.0

B.O

9.0

-3. 0

10

10

20

30

40

50

60

70

BO

90

100

IF, FORWARD CURRENT (mAl

IF, FORWARD CURRENT (rnA)

FIGURE 9 - .4M1,36FR5/MZ2361

FIGURE 10 - .4M2.04FR5/MZ2362

+2.0

~

G

3;

:;;

.s
>-

15

.s

>- -2.0

0

~

~
~

w

8

w

8
w
'"
i':

-2. 0

w

'"=>

g

~ -4.0

. / V-

~_

-4.0

./'"
-6.0

ai>-

>-

u:

~

--

15

;:;

/

---

b---:

I-- r--

-

u:

,£'

-6. 0
10

20

30

40

50

60

70

BO

90

100

-B. 0

10

20

30

40

50

60

70

IF. FORWARD CURRENT (mAl

IF, FORWARD CURRENT (mAl

1-14

BO

90

100

lN821, A, lN823, A(SILICON)
lN825, A, lN827, A
lN829, A
Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage
stability. RamRod construction provides a rugged, glassenclosed, hermetically sealed structure.
CASE 51

MAXIMUM RATINGS

(00·7)

Junction Temperature: -55 to +175 0 C
Storage Temperature: -65 to +175 0 C
DC Power Dissipation: 400 mW @ T A

= 50°C

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable.
POLARITY:

Cathode indicated by polarity band.

WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any
ELECTRICAL CHARACTERISTICS

JEDEC
Type No.
(Note 1)

(TA

= 25'C unless otherwise noted)

Maximum
Voltage
Change
!>.V Z (Volts)

Ambient

Test
Temperature

°c

±loC

(Note 2)

Maximum

Temperature
Coefficient
'o/"C
(Note 2)

DynamiC
Impedance
ZZT Ohms

0.01

15

(Note 3)

Vz = 6.2 V ±5.0'0* @ IZT = 7.5 rnA
1N821

0.096

1N823

0.048

-55, 0, +25, +75, +100

0.005

1N825

0.019

0.002

1N827

0.009

0.001

1N829

0.005

0.0005

1N821A

0.096

0.01

1N823A

0.048

0.005

1N825A

0.019

0.002

1N827A

0.009

0.001

1N829A

0.005

0.0005

*Tighter-tolerance units available on special request.
CAPACITANCE (C) = 30 to 400 pF @ 90'601 VZ
FORWARD BREAKDOWN VOLTAGE (VI) = 15 to 400 V

1-15

I

10

j

lN821,A /lN823,A /lN825,A /lN827,A /lN829,A(continu,ed)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(with IZT = 7.5 rnA ±O.Ol rnA) (See Note 4)

1N821 thru 1N829
FIGURE 1b

FIGURE 1a

.~+

----+-i

+---+---------1"--1
H-+_--1t'"--_-+__'"'-_+_' N~~!,±. ---j-.-----1

.

-------'-------.-.j

fYc~__""+~--""""F_---+-1N829,AL-----i----~

-75~---

-looL_ _L_--,i,....-_-L==±==±::::=::::J
-55

100

TA, AMBIENT TEMPERATURE (OC)

ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE
(At Specified Temperatures)
(See Note 5)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.

FIGURE 3 - 1N821A SERIES

FIGURE 2 - 1N821 SERIES

10

I-.

9.0

'"'

.5 8.0

~

'"~
'"zw
w

N

7,5

-

I
i

10

TI - - - -

---1-----I

9.0

i

'"'
E

---+~~~t==--

r-

i5

'"'"co

7.0

8.0
7.5
7.0

u

'"

w
z
w

6.0

6.0

N

!9

!9
5.0

5.0

25

4.0
-75

50

·.Vz, MAXIMUM VOLTAGE CHANGE (mV)
(Referenced to IZT" 7.5 rnA)

Vz, MAXIMUM VOLTAGE CHANGE (mV)

(Referenced to lZT " 7.5 rnA)

1-16

1N821,A / 1N823,A / 1N825,A / 1N827,A / 1N829,A (continued)
MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT
(See Note 3)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.

FIGURE 5 - 1N821A SERIES

FIGURE 4 - 1N821 SERIES
1000
800
0
:z:
0r----_

.-

~ :~
~
~

'"x
''"N"

'"w

0

10

N

10

i:i'i

6.0
4.0 r---'

N

1.0
1.0

2.0

4.0

6.0 8.0 10

40

20

'"

6. 0
4. 0 _ _

60 80100

2. 0
1. 0
1.0

:-;;-1 00oC

~ ~;o
---

8. 0

f1
'"

--

.~
I

~

~

--

2.0

25 0 C -

40

20

~ 8.0

--

~ 00

~
~

_.. _...

10 O~

~

i:i'N i

-,-----.

200

--

I

!

-

.

-:-55 0 C

~

:::-

I
4.0

2.0

6.0 8.0 10

40

20

60

80100

IZ. ZENER CURRENT ImAI

IZ. ZENER CURRENT ImAI

FIGURE 6 - DISTRIBUTION OF MAXIMUM GENERATED NOISE
1.0

I~T = 7.5
BANDWIDTH = 500 Hz

ml

8-

-

./

6

V

./'" V
!

/

4

/

I

/
-

. . .,v

2

I

--

/'

0 ~
10
20

30

40

50

100
fC. CENTER FREQUENCY IkHzl

NOTE 1:
Types lN821. lN823, lN825, lN827, and lN829 are available to
MIL-S-19500/159.
NOTE 2:

200

400

1000

equal to 10% of the dc zener current. 'ZT, is superimposed on IZT.
Curves showing the variation of zenar impedance with zener current
for each series are given in Figures 4 and 5. A cathode·ray tube
curve-trace test on a sample basis is used to ensure that each zener
characteristic has a sharp and stable knee region.

Voltage Variation (D, VZ) and Temperature Coefficient.

NOTE 4:

All reference diodes are characterized by the "box method". This
guarantees a maximum voltage variation (AVZ) over the specified
temperature range. at the specified test current (lZT), verified by

These graphs can be used to determine the maximum voltage change
of any device in the series over any specific temperature range. For
example, a temperature change from 0 to +500 C will cause a volt·

Vz is meas-

age change no greater than +31 mV or -31 mV for lN821 or lN821A.
as illustrated by the dashed lines in Figure 1. The. boundaries given

tests at indicated temperature points within the range.

ured and recorded at each' temperature specified. The.~ Vz between
the highest and lowest" v~lues must not exceed the maximum AVZ

given.

This method of indicating voltage stability is now used for

JEDEC registration as well as for military qualification. Ttle former
method of indicating voltage stability - by means of temperature

coefficient -accurately reflects the voltage deviation at_ the tempera·
ture extremes, but is not necessarily accurate within the tempera·
ture range because reference diodes have a nonlinear temperature
relationship. The temperature coefficient, therefore, is given only
as a reference.
NOTE 3:

The dynamic zener impedance, ZZT, is derived from the SO-Hz ac
voltage drop which results when an ac current with an rms value

are maximum values. For greater resolution, an expanded view of
the shaded area in Figure 1a is shown in Figure 1b.
NOTE 5:
The maximum voltage change. ~ VZ, Figures 2 and 3 is due entirely to the impedance of the device. If both temperature and IZT
are varied, then the total voltage change may be obtained by graphically adding ~ Vz in Figure 2 or 3 to the ~ Vz in Figure 1 for the
device under consideration. If the device is to be operated at some

stable current other than the specified test current, a new set of
characteristics m.ay be plotted by superimposing the data in Figure 2
or 3 on Figure 1. For a more detailed explanation see AN·437
(Application Note).

1-17

lN93S, A, B(SILICON)
thru

lN939, A, B
Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage
stability. RamRod construction provides a rugged, glassenclosed, hermetically sealed structure.
MAXIMUM RATINGS

CASE 51
(00-7)

Junction Temperature: -55 to +175 0 C
Storage Temperature: -65 to +175 0 C
DC Power Dissipation: 500 mW @ T A = 25 0 C
MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily sold·
erable and weldable.
POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram(approx)
MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS

JEDEC
Type No.
(Note I)

(T A ~ 25'C unless otherwise noted)

Maximum
Voltage
Change
t;V Z (Volts)

Ambient
Test
Temperature

Temperature
Coefficient

chlOe

Maximum
Dynamic
Impedance
ZZT (Ohms)

(Note 2)

±loC

(Note 2)

(Note 3)

°c

Vz = 9.0 V ±5.0'·0* @ IZT = 7.5mA
0.01

IN935

0.067

IN936

0.033

IN937

0.013

IN938

0.006

0.001

IN939

0.003

0.0005

--

0.005
0, +25, +75

0.002

IN935A

0.139

0.01

IN936A

0.069

0.005

IN937A

0.027

IN938A

0.013

0.001

IN939A

0.007

0.0005

IN935B

0.184

0.01

IN936B

0.092

0.005

IN937B

0.037

IN938B

0.018

0.001

IN939B

0.009

0.0005

-55, 0, +25,
+75, +100

-55, 0, +25,
+75, +100, +150

*Tighter-tolerance units available on special request.
CAPACITANCE (C)

= 20 to

180 pF @ 90'0 oj Vz

FORWARD BREAKDOWN VOLTAGE

Wf )

=

100 to 800 V

1-18

0.002

0.002

20

20

20

1N935, A, B thru 1N939, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
(with IZT = 1:5 mA ±O.Ol mAl (See Note 4)

1 N935 thru 1 N939

FIGURE 1a

FIGURE 1b

75r-----,-----,----,-----,-----,-----,
lN935
50~----~----~--~----~-----~----~

lN937

lN936

lN938
lN939
lN939
lN938
AVZ

=

-22-1i mV

l __ ~ __ _

-1O~~r--~-

I

---+---'''''''':--+------+--lN937

-15~--_\c-+--_'lr--+_--

-50/-----+I--+T--t-----t----t---H

I
I

-20 ~------\---

lN935

-75-!:-0----::2!:-5---::5!:-0---:!7::-5--~--~-----'

o

75

50

TA. AMBIENT TEMPERATU RE (OC)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
(with IZT :::; 7.5 mA ±O.Ol mAl (See Note 4)

1 N935A thru 1 N939A

FIGURE 2a
150

~_5 mA

IZT =

100

V
V

~
-100

-150
-55

lN935A

l/

FIGURE 2b
lN935A

0

I

0

I

lN936A

~

~

~~
~

-

20
lN937A
lN938A

-:::::-

=.1.lN939A t::I

'"
'\

50

100

f--

UA
1N937A

I

I

}

0

I /

I

/
lL

--

..,...

/

./

o ~

:--..;:- r--

-10

lN936A

/

//
V
'I/, ~

\\.
\ \.

-3 0

\

-5 0
-55
TA. AMBIENT TEMPERATURE (OC)

\

\

-

-"-

'\.
\

\

,

lN935A

lN937A

./

~

-............

-2 0

\

-

...... t--..

\'\.

-4 0

1-19

I

I

I

lN936A

1 N935A
150

I

0

1N938A
lN939A

.......

lN939A

"

---.j
lN937A

--I----r--

\ lN936A
50

--

........ lN938A

100

1N935, A, B thru 1N939, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
Iwith I ZT

0

7.5 mA ±O.Ol mAl ISee Note 4)

1 N935B thru 1 N939B

FIGURE 3a

FIGURE 3b

200

lN935B

40

I
I

150

w

~
~

10

1/

I 1

_ 50

'-'5'
w~

/././

",,?
0
~.;

~

'"

0

o B

>

2£

-10

'"N

-20

x --50

>~

-100

\

-30
-150
-40

,..,-

9.0

---

-rn:c---·-

-550C

t-----t---

,...

f------\

i\lN935B

~ 7.0

+1500 C

-----~----+....,.-

~
2
=>

z

~

W

N

5.01----I-~7'7LllooL--

-150

20 - . -10

8. 0
6. 0 =

~

4.0

N

2. 0 - ·

_ _- ' -_ _ __ L_ _ __ "

-100
-50
50
WZ. MAXIMUM VOLTAGE CHANGE ImV)

=

40 - -

2

N
'--I<-<-..L-~'__

1 N939B

~

I
lN938B

i
.-

lN937S-

------

--

150

100

=== =

~

-j-I

4.0 L -_ _ _

1N939B

-

. -

THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES

- - - - .!?
_. - ~ 200

~ ~~

~ 6.0

!iJ

1000 MORE
800
c;:; 600
~ 400

'" 100

----~-_i.---

'"'-'=>

--....

t\.-1~936B
50

z

cr:

~

1 N938B

(See Note 3)

-----"1
+75 0 C

-.., 8.0
.§.

........

.-

_._-

""'" ""
\- ---~ --~-~

(See .N ote 5)

-

i

I

FIGURE 5 - MAXIMUM ZENER IMPEDANCE
versus ZENER CURRENT

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES

10

/'

---- -.....
./

1-

'\

-50
-55
TA. AMBIENT TEMPERATURE 1°C)

FIGURE 4 - ZENER CURRENT versus MAXIMUM
VOLTAGE CHANGE lat specified temperatures)

./"

\ '\
\ 1'\

2

--

r---- ;937B

,/

~
"\'\.
--.........

0

3~

lN936B

-f--_.

20

100

.§.

/

'ri-I
I /

30

'>

-

I

50

1. 0
0.1

100

(Referenced to IZT::: 7.5 mAl

1-20

fA"t'

--

~

:f--.

--

::::- 11
sotcl

-t

~-

i-+=

-55°C

I-

~

..- 25°C
~-

r- r- ----

i-1.0
10
IZ, ZENER CURRENT ImA)

100

1N935, A, B thru 1N939, A, B (continued)

FIGURE 6 - DISTRIBUTION OF MAXIMUM GENERATED NOISE
20

..

IZT = 7.5 rnA
f---BAN OWl OTH = 500 Hz

-j
2

-

!--

:/

0

4.0

V

r--: t- r-

/

1"-

j
V

/

o~
10

20

30

40

50

100
fe, CENTER FREUUENCY (kHz)

200

400

10 00

NOTE 1:
Types 1N935B, 1N937B, and 1N939B are available ta MIL-S·19500/
156.
NOTE 2:
Voltage Variation (nVz) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This
guarantees a maximum voltage variation (.~VZ) over the specified

temperature range, at the specified test current (lZT). verified by

tests at indicated temperature points within the range. This method
of indicating voltage stability is now used for JEDEC registration as
well as for military qualification. The former method of indicating

voltage stability - by means of temperature coefficient - accurately
reflects the voltage deviation at the temperature extremes, but is not
necessarily accu~ate within the temperature range because reference
diodes have a nonlinear temperature relationship. The temperature
coefficient, therefore, is given only as a reference.

NOTE 3:
Zener I mpedance Derivation
The dynamic zener impedance, ZZT, is derived from the 60-Hz ac
voltage drop which results when an ae current with an rms value
equal to 10% of the dc zener current, IZT, is superimposed on IZT.

1-21

Curves showing the variation of zener impedance with zener current
for each series are given in Figure 5. A cathode-ray tube curve-trace
test on a sample basis is used to ensure that each zener characteristic
has a sharp and stable knee region.

NOTE 4:
These graphs can be used to determine the maximum voltage change
of any device in the series over any specific temperature range. For
example, a temperature change from +25 to +50 0 C will cause a volt·
age change no greater than +22 mV or -22 mV for 1 N935, as illus·
trated by the dashed lines in Figure 1. The boundaries given are
maximum values. For greater resolution, expanded views of the
shaded areas in Figures 1a, 2a, and 3a are shown in Figures 1b, 2b,
and 3b respectively.

NOTE 5:
The maximum voltage change, 6VZ, in Figure 4 is due entirely to the
impedance of the device. If both temperature and IZT are varied,
then the total voltage change may be obtained by adding b..VZ in Figure 4 to the b.. Vz in Figure 1, 2, or 3 for the device under consideration. If the device is to be operated at some stable current other
than the specified test current, a new set of characteristics may be
plotted by superimposing the data in Figure 4 on Figure 1,2, or 3.

N941 I A, B(SILICON)

1

thru

lN945, A, B
Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage
stability. RamRod construction provides a rugged, glassenclosed, hermetically sealed structure.
MAXIMUM RATINGS
CASE 51

Junction Temperature: -55 to +175 0 C

(00-7)

Storage Temperature: -65 to +175 0 C
DC Power Dissipation: 500 mW @ T A = 25°C
MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable.
POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any
ELECTRICAL CHARACTERISTICS

JEDEC
Type No.
(Note 1)

(TA

Maximum
Voltage
Change
AV Z (Volts)

= 2S'C unless otherwise noted)
Ambient

Test

Temperature

Temperature

Coefficient

±loC

(Note 2)

°c

(Note 2)

"'orc

Maximum
Impedance
ZZT (Ohms)
(Note 3)

Vz = 11.7 V ±5.0%* @ IZT = 7.5 rnA
IN941

0.088

0.01

IN942

0.044

0;005

IN943

0.018

IN944

0.009

0.001

1N945

0.004

0.0005

IN941A

0.181

0.01

IN942A

0.090

0.005

0, +25, +75

0.002

IN943A

0.036

-55, 0, +25,

0.002

1N944A

0.018

+75, +100

0.001

1N945A

0.009

1N941B

0.239

0.01

1N942B

0.120

0.005

1N943B

0.047

-55, 0, +25,

0.002

IN944B

0.024

+75, +100, +150

0.001

IN945B

0.012

30

30

0.0005

0.0005

*Tighter-tolerance units available on special request.
CAPACITANCE (C) = 14 to 35 pF@ 90% of Vz
FORWARD BREAKDOWN VOLTAGE (Vf ) = 150 to 1200 V

1-22

30

1N941, A, B thru 1N945, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT= 7.5 mA :l0.01 rnA) (See Note 4)

1N94 1 thru 1N945
FIGURE 1b

FIGURE 1a
100r----,----,------,---r---,------,

15
10

751-----+-

15

~±~--+~-----+---------+i/-I --7L..
. ---t--lN941/

/lN941

I
I

/

lN943

I

I /
1/

10

./

lN944

...../ / ....-

1/ /

5.0

--.....

~

::-----

-5.

""-

t"--...
-.........

\

\

-751-----f---r--,~---+---+--+-I

\

-1 0

\

"

'\.
'\

lN945
!

1N944

'\.

\

\

o

--......

'"
'" '\

I

I

lN943

I

\.

lN941

-1 5

lN945

............

\ '\.

-1 5

-100~0---=----=----:!75::-----'----'----'

-.........

o~--

-10

i

.

lN941
15

50

75

TA. AMBIENT TEMPERATURE IOC)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT = 7.5 rnA ±O.Ol mA) (See Note 4)

1N941A thru 1N945A

FIGURE 2a
100

0

150

;;

/

100

.s
w
'"~_
~~

/

50

",3

-g 0

D~

>E
>;."

~~-50
x

V/ V-V

-100

I--l~lA 1/1/ N941A
/

5

-- -

lN943A

--

1N945A

,

1 N944A

lN943A

~ ~

}

1/ / /
II//....;

-100
-55

'\

N9~1A

1

-1 5

\'\.
\ \
\ \
\ \
\

\
\

-55

100

TA. AMBIENT TEMPERATURE IOC)

1-23

'"""- '" ""'\.

-lN944A

'\.

\

\
\

\

lN945A
1N945A

............

\

lN941A \

lN941A

1N944A

............--......

~ ............

-5 0
50

1N943A

............

~

0

"",-150

/

I /
./
I /
'/
I / V
1//

lNy1A

lN94h.-~4A
~ b-.. -:::::::

'">;

~

£

~ I-:::::::

w~

,-,'
~

V

lN941A

FIGURE 2b

\

1N943A

lN941A

\
50

100

I

1N941 , A, B thru 1N945, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
(with 'ZT " 7.5 mA ±O.Ol mA) (See Note 4)

lN941B thru lN945B
FIGURE 3b

FIGURE 3a
250
200
150

o

/'

/

0

/

~

o~
0
0

'/

-==

---~

-15 0

..,.

0
1N9tB

IN942B

5

I

.............

I I

/

1/ /

I /
1///

)

-1:.""",. lN944B .1.1
-..:..::::: ~IN9:;;;;r
1N943B
~

~
50

I

t 1

..--

~

I
lN~41B

/lN942B

r:'91~ IN914~B

-20 0
-250
-55

~

lOa'

""

'\

,~

,...

......

",

~-- -"'::::::..

~

\ '\.
\ \.
\
\.

\

\

\
\

\

-5 a
-55
TA, AMBIENT TEMPERATURE (OC)

""""
\

lOa a

."

.........

lN944B
lN945B

\.
\

lN941B

\

\.
lN943B

i\ lN942B
lOa

50

150

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES

.;' 150°C

;: 8.0f------+-------+----- ,,...--1----4

!9

-~
~

1N945B

(See Note 3)

~

~
N

lN944B

'\. '\

\

9.0 f------+-------+------+_---H,/¥'I------_j

7.0

..... ,

\.

(See Note 5)
MORE THAN 95% OF THE UNITS ARE IN THE RANGI::S INDICATED BY THE CURVES
lO.------,-------r------.-----~7I~--,

7.5

,""'""'"

FIGURE 5 - MAXIMUM ZENER IMPEDANCE versus
ZENER CURRENT

FIGURE 4 - ZENER CURRENT versus MAXIMUM
VOLTAGE CHANGE (At specified temperatures)

~
'"G
'"w

lN943B

....

\"\.

lN9~1B

150

- - "-

,,-:.
a

-2 5

1N942B

/

'"

/

~

0

----~~

f--------+------+---..,,....+------+-------I
-55°C

a

6.0f------+------"J~~----+_-----l------_j

~

5.0~~~~~~~-=::~~~-+~~~

- 25 0 cL
1. a

50

lOa

AVZ, MAXIMUM VOLTAGE CHANGE
(Referenced to IZT = 7.5 rnA)

1-24

a

10
IZ, ZENER CURRENT (rnA)

1.0

lOa

1N941, A, B thru 1N945, A, B (continued)

FIGURE 6 - DISTRIBUTION OF MAXIMUM GENERATED NOISE
50

0

r-- r-

0

0

-

..... r-.

IZT" 7.5 mA
BANDWIDTH" 500 Hz

---

-

r-_

0

--

r-

-

0

10

20

30

40

50

200

100

400

1000

fe, CENTER FREQUENCY (kHzl

NOTE 1:
Types lN941B. lN943B. and lN944B are available to MIL-S-195001

157.
NOTE 2:

Curves showing the variation of zener impedance with zener current
for each series are given in Figure 5. A cathode-ray tube curve-trace
test on a sample basis is used to ensure that each zener characteristic
has a sharp and stable knee region.

Voltage Variation (6VZ) and Temperature Coefficient.

NOTE 4:

All reference diodes are characterized by the "box method". This

These graphs can be used to determine the maximum voltage change
of any device in the series over any specific temperature range. For
example, a temperature change from +25 to +500 C will cause a voltage change no greater than +29 mV or -28 mV for lN941. as illustrated by the dashed lines in Figure 1. The boundaries given are
maximum values. For greater resolution, expanded views of the
shaded areas in Figures la, 2a, and 3a are shown in Figures lb, 2b,
and 3b respectively.

guarantees a maximum voltage variation (~VZ) over the specified
temperature range, at the specified test current (IZTL verified by
tests at indicated temperature points within the range. This method
of indicating voltage stability is now used for JEDEC registration as
well as for military qual ification. The former method of indicating
voltage stability - by means of temperature coefficient - accurately
reflects the voltage deviation at the temperature extremes, but is not
necessarily accurate with in the temperature range because reference
diodes have a nonlinear temperature relationship. The temperature
coefficient, therefore, is given only as a reference.
NOTE 3:

NOTE 5:

The maximum voltage change, 6. VZ, in Figure 4 is due entirely to the
impedance of the device. If both temperature and IZT are varied,
then the total voltage change may be obtained by adding'" Vz in Fig-

Zener Impedance Derivation
The dynamic zener impedance, ZZT, is derived from the 60-Hz ae
voltage drop which results when an ac current with an rms value
equal to 10% of the dc zener current, IZT, is superimposed on IZT'

1-25

ure 4 to the /j, Vz in Figure 1, 2, or 3 for the device under consideration. If the device is to be operated at some stable current other
than the specified test current, a new set of characteristics may be
plotted by superimposing the data in Figure 4 on Figure 1,2, or 3.

lN9S7 thru lN992
Hermetically sealed, all-glass case with all external
surfaces corrosion resistant. Cathode end, indicated
by color band, will be positive with respect to anode end
when operated in the zener region.

CASE 51
(00-7)

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C
D C Power Dissipation: 400 Milliwatts at 50°C Ambient (Derate 3.2 mW;oC
Above 50°C Ambient)
TOLERANCE DESIGNATIONS

With no suffix, tolerance is ±20%, for ±10% units, add suffix A, for ±5% units,
add suffix B.

ELECTRICAL CHARACTERISTICS (TA= 2S0C unless otherwise noted)
Motorola Guarantees the Zener Voltage at 90 Seconds with Lead Temperature of 30o C± 1°C. 3/8" from Unit Body.
NOMINAL
TEST
ZENER VOLTAGE
TYPE
CURRENT
VI
NUMBER
I"
VOLTS
mA

MAXIMUM
DC ZENER CURRENT

MAXIMUM ZENER IMPEDANCE

REYERSE LEAKAGE CURRENT

Iz_

1"@I"
Ohms

1,,@Iz,
Dbms

I"
mA

mA

I, MAXIMUM
(,.AI

TEST VOLlASE YR·
Yu

YR'

IN957
IN958
IN959
IN960
IN961
IN962

6.8
7.5
8.2
9.1
10
11

18.5
16.5
IS
14
12.5
11.5

4.5
5.5
6.5
7.5
8.5
9.5

700
700
700
700
700
700

1.0
0.5
0.5
0.5
0.25
0.25

47
42
38
35
32
28

ISO
75
50
25
10
5

5.2
5.7
6.2
69
7.6
8.4

4.9
5.4
5.9
6.6
7.2
8.0

IN963
IN964
IN965
IN966
IN967
IN968

12
13
IS
16
18
20

10.5
9.5
8.5
7.8
7.0
6.2

11.5
13
16
17
21
25

700
700
700
700
750
750

0.25
0.25
0.25
0.25
0.25
0.25

26
24
21
19
17
IS

5
5
5
5
5
5

9.1
9.9
11.4
12.2
13.7
15.2

8.6
9.4
10.8
11.5
13.0
14.4

IN969
IN970
IN971
IN972
IN973
IN974

22
24
27
30
33
36

5.6
5.2
4.6
4.2
3.8
3.4

29
33
41
49
58
70

750
750
750
1000
1000
1000

0.25
0.25
0.25
0.25
0.25
0.25

14
13
11
10
9.2
8.5

5
5
5
5
5
5

16.7
18.2
20.6
22.8
25.1
27.4

15.8
17.3
19.4
21.6
23.8
25.9

IN975
IN976
IN977
IN978
IN979
IN980

39
43
47
51
56
62

3.2
3.0
2.7
2.5
2.2
2.0

80
93
lOS
125
ISO
185

1000
1500
1500
1500
2000
2000

0.25
0.25
0.25
0.25
0.25
0.25

7.8
7.0
6.4
5.9
5.4
4.9

5
5
5
5
5
5

29.7
32.7
35.8
38.8
42.6
47.1

28.1
31.0
33.8
36.7
40.3
44.6

IN981
IN982
IN983
IN984
IN985
IN986

68
75
82
91
100
110

1.8

1.1

230
270
330
400
500
750

2000
2000
3000
3000
3000
4000

0.25
0.25
0.25
0.25
0.25
0.25

4.5
4.0
3.7
3.3
3.0
2.7

5
5
5
5
5
5

51.7
56.0
62.2
69.2
76.0
83.6

49.0
54.0
59.0
65.5
72.0
79.2

IN987
IN988
IN989
IN990
IN991
IN992

120
130
ISO
160
180
200

1.0
0.95
0.85
0.80
0.68
0.65

900
1100
1500
1700
2200
2500

4500
5000
6000
6500
7100
8000

0.25
0.25
0.25
0.25
0.25
0.25

2.5
2.3
2.0
1.9
1.7
1.5

5
5
5
5
5
5

91.2
98.8
114.0
121.6
136.8
152.0

86.4
93.6
108.0
115.2
129.6
144.0

1.7
1.5
1.4
1.3

1-26

1 N957 thru 1N992 (continued)

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guida for details)

1 - Nominal zener voltages between those shown.

2 - Matched sets: (Standard Tolerances are ±5.0%. ±3.0%. ±2.0%. ±1.0%) depending on voltage per device.

a. Two or more units for series connection with specified tolerance on total vOfta~e. Series matched sets make possible hi.her
b. f:,noe~;~~~~e~n~t~d':!f~~~~ ~~Wae~et:~cftt,:t~~:hC:~~f~C~::lie~O~1~r:~~:~iC imps anee and .reater power handling ability.

3 - Tight voltage tolerances: 1.0%.2.0%.3.0%.

*VR1 - Test Voltage for 5% Tolerance Device
VR2 - Test Voltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device

To designate units with zener voltages other than
those listed, the Motorola type number should be
modified as shown below. Unless otherwise specified,
the electrical characteristics other than the nominal

voltage (V z) and test voltage for leakage current will
conform to the characteristics of the next higher
voltage type shown in the table.

EXAMPLE: IN957 series
.4

T

M

T

Power Rating Motorola

115

l

Nominal Voltage

Z

T

Zener Diode

3

T

Tolerance (±%)

1N

1183thru 1N 1190

(SILICON)

Medium current silicon rectifiers. Unique doublecase construction consists of hermetically sealed inner
metallic case surrounded by molded external case;
provides highest degree of ruggedness and reliability .
Type numbers shown have cathode connected to case ,
but reverse-polarity units can be obtained by adding
suffix "R" to standard type number, e. g. IN U83R.

CASE 42
(00-5)

MAXIMUM RATINGS

Rating

Symbol

Peak Repetitive Reverse Voltage
and
DC Blocking Voltage
1N1l83
1N1l84
IN1l85
1N1l86
1N1l87
IN1l88
1N1l89
1N1l90
RMS Reverse Voltage
1N1l83
1N1l84
1N1l85
1N1l86
IN1l87
IN1l88
1N1l89
IN1l90
Average 1/2-Wave Rectified Forward
Current
(Resistive Load, 60 Hz, TC = 140°C)
Peak Repetitive Forward Current
(TC = 140°C)
Peak Surge Current
(TC = 140°C, superimposed on Rated

Value

Volts

VRM (rep)
VR

V
r

Unit

50
100
150
200
300
400
500
600
Volts
35
70
105
140
210
280
350
420
Amp

10

35
IFM (rep)

IFM (surge)

Amp
150
Amp
400

Current at Rated Voltage)
Operating and Storage Temperature
Thermal Impedance

T J , T stg

-65 to +190

°C

°JC

1.0

°C/W,
DC steady state

1-28

1Nl183 thru 1N1190

(continued)

ELECTRICAL CHARACTERISTICS
Symbol

Value

Max Full Cycle Average Forward Voltage Drop
(10 (max)' rated Vr ' 60 Hz, TC = 140°C)

VF(AV)

0.6

Max Instantaneous Forward Voltage Drop
(IF = 100 Amps, T J = 25°C)

VF

1.3

Max Full Cycle Average Reverse Current
(10 (max)' rated Vr' 60 Hz, TC = 140°C)

~(AV)

Max DC Reverse Current
(Rated VIt ' TC = 25°)

~

Characteristics

MAXIMUM AVERAGE FORWARD CURRENT RATING
versus MAXIMUM CASE TEMPERATURE
(60 CPS, RESISTIVE OR INDUCTIVE LOAD)
45 "
J,

c::

35

r-r}

5.
Iz 30

""
=>
c.>
0

""
~

...""
0

""

r:

20 i""

10

~ 200

f-rJ

",,",J

o

100
80
0
60
""~ 40
""0
.....
eI)
:::> 20
0
z
""
~
z 10
""I- 86
eI)
!:
4

""<.>

r\ \

6~

, \\

"' ~ ~

120

140

/

~
=>

5 i1
0

rnA

....!!:

Z

1'\ \\

""
"";;~

1.0

160

.....-

~

I-

\ .\

""> 15
""
""
~

rnA

400

1\ \
I AND 3'

25

10.0

iL

J'

""
""

Volts

1000
800
600

\DC
:::;:

Volts

TYPICAL FORWARD CHARACTERISTICS

~

40

Unit

r

.",

I

I

I
TJ

= 150

0

Cj /TJ

= 25°C

-

'\

180

I

2
1

o

I

J
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
V.. INSTANTANEOUS FORWARO VOL TAGE (VOLTS)

Te. MAXIMUM CASE TEMPERATURE (OC)

lNl191thru lNl198
1N1195A thru 1N1198A

For Specifications, See IN248B Data.

1-29

lN1313 thru lN1327
Very low power zener diodes with standard ±10%
tolerances. Available with ±5.0% tolerance by adding
suffix "A" to type number.
Standard cathode-to-case polarity.
For new designs and for industry preferred replacement devices, see MZ92-8.8A series.

CASE 53

MAXIMUM RATINGS

Junction and Storage Temperature Range:
above 25°C).

ELECTRICAL CHARACTERISTICS (T A

Type

1N1313
1N1314
1N1315
1N1316
1N1317

Max Reverse Current
Nominal
Yoltaa:1
TA = 25"C TA = 100'C
Yz@IZT=20Q"A IR@VR
IA@VR
yolts
"A
"A

8.75
10.50
12.75
15.75
19.00

0.5
0.5
0.5
0.5
0.5

5
5
5
5
5

Type

1N1323
1N1324
1N1325
1N1326
1N1327

-65 to +175°C (Derate 1 mW/oC

= 25°C unless otherwise noted)

Test
Voltall
VR
"Its

6.8
8.2
10 '
12
15

Max Reverse Current
Nominal
Voltage
TA = 25"C TA = 100"C
IA@VR
Vz@IZT= 2oo"A IR@VR
pA
"A
"Its

Type

1N1318
1N1319
1N1320
1N1321
1N1322

23.50
28.50
34.50
41.00
48.50

Max Riversl Current
Nominal
Yoltall
TA = 25'C TA = 100"C
YZ@IZT= 200 pA I,@VR
IA@VR
pi
"Its
"A

58.00
71.00
87.50
105.0
127.5

0.1
1.0
1.0
1.0
1.0

10
50
50
50
50

0.1
0.1
0.1
0.1
0.1

10
10
10
10
10

Tlst
Voltage
YR
yolts

18
22
27
33
39

Test
Volta,e
YR
YOIts

47
56
68
82
100

lN1351 thru lN1375

CA5E56~

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see IN2970 series.

(00·4)

1-30

1

N1507 thru 1N1517

CASE 52

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1. O-watt, IN4728
series.

(00-13)

lN1518 thru lN1528
Recommended for applications reqUIrmg an exact
replacement only. For new designs and for industry
preferred replacement devices, see IN4728 series.
CASE 52
(00-13)

IN

1530, A
For Specifications, See IN429 Data.

lN1588 thru lN1598
Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see IN3993 series.
CASE 56
(00-4)

lN1599 thru lN1609

CASES6~

Recommended for applications requiring an exact
replacement only. For new designs and for industry
preferred replacement devices, see IN3993 series.

(00-4)

1-31

HIGH VOLTAGE SILICON RECTIFIERS MOLDED ASSEMBLIES

lN1730 thru lN1734
lN2382 thru lN2385
Standard single - phase, half-wave, high -voltage
silicon rectifier assemblies.
CASE 41
MAXIMUM RATINGS (\!overing all devices. in the table below)
Max. DC Reverse Current
@ Rated Peak Reverse Voltage

25°C

10pA

100°C

100pA
2.5A

Max. Surge Current
(8 ms)
Operating Temperature

_55°C to +150"C

ELECTRICAL CHARACTERISTICS

Rectifier
Types

VRM
(rep)

1N1730
1Nl731
IN1732
1Nl733
1Nl734
1N2382
IN2383
1N2384
1N2385

1000
1500
2000
3000
5000
4000
6000
8000
10000

Avg. Rectified
Fwd.
Current.., mA Max.RMS
Input
@25°C @100'C Voltage
200
200
200
150
100
150
100
70
70

100
100
100
75
50
75
50
35
35

Max. DC
Fwd.
Voltage
@ 100mA
@ 25°C

700
1050
1400
2100
3500
2800
4200
5600
7000

5
5
9
12
18
18
27
27
39

Case
Dimensions

Lead
Dimensions

L

Dia.

L

Dia.

.5
.5
1.0
1.0
1.0
1.5
1.5
1.5
2.0

.375
.375
.375
.375
.5
.5
.5
.5
.5

1.250
1.250
1.250
1.250
1. 250
1.250
1.250
1.250
1.250

.030
.030
.030
.030
.030
.030
.030
.030
.030

IN 1735 thrulN1742 (REFERENCE DIODES)
IN 1736Athru lN1742A
For Specifications, See IN429 Data.
IN 1765 thru IN 1802 (ZENER DIODES)
Recommended for applications requiring an exact replacement only'. For new designs and for industry prefer·red replacement devices, see IN4728 series.
CASE 52
(00-13)

1-32

1N 1803 thru 1N 1836 (ZENER DIODES)
Recommended for applications requiring an exact replacement
only. For new designs and for industry preferred replacement devices, see IN3993 series, and IN2970 series.

CAsE56\
(00-4)

1N1816 thru 1N1836 are available as clipper devices.To
order, add suffix "C" for ±10%, suffix "CA" for ±5%.

1N2008 thru 1N20 12 (ZENER DIODES)

~
CASE 56
(00-4)

~

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see IN2970 series.

lN2032 thru lN2040(ZENER DIODES)
Recommended for applications requiring an exact replacement only. For new designs and for industry
preferred replacement devices, see IN4728 series.
CASE 52
(00-13)

lN2041 thru lN2049(ZENER DIODES)

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see IN3993 series.
CASE 56
(00-4/

1-33

N2163 thru 1N2171 (SILICON)

1

lN2163A thru lN2171A
lN3580, A,

Bthru

lN3583, A,

B

TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Highly reliable reference sources utilizing an oxide-passivated
junction for long-term voltage stability. Construction consists of
welded hermetically sealed metal and glass case.

TEMPERATURECOMPENSATED
SILICON ZENER
REFERENCE DIODES

• Low Dynamic Impedance
• Choice of Three Temperature Ranges
• "Box Method" Specifications Guarantee Maximum Voltage Deviation.

Temperature compensated reference diodes are made by taking
advantage of the differing thermal characteristics of forward and
reverse biased silicon PN junctions. A forward biased junction has a
negative temperature coefficient of approximately 2.0 millivoltsfC.
Reverse biased junctions above 5.0 volts have a positive temperature
coefficient and therefore it is possible by judicious selection of
combinations of forward and reverse biased junctions to obtain a
device that shows a very low temperature coefficient due to cancellation. Because of the differing Impedance versus temperature characteristics of the junctions involved, optimum temperature stability is
obtained by operating in the zener current range at which the temperature coefficient is a minimum.

~O'125MAXOIA

1.25
MIN

l:~~.

MAXIMUM RATINGS
Junction Temperature: -56 to +200oC .
Storage Temperature: -66 to +2000 c

0.21

DC Power Dissipation: 750 mW @ T A = 25°C

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed. welded metal glass
DIMENSIONS: Sao Outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable

and weldable.

Q.350

.~~-I
-j

POLARITY: Cathode to case
WEIGHT: 1.5 Grams (approx)
MOUNTING POSITION: Any

CASE 52
(00-13)

1-34

lN2163 thru lN2171, lN2163A thru lN2171A,
lN3580, A, B thru lN3583, A, B (continued)
ELECTRICAL CHARACTERISTICS
Vz

=9.4 Volts ± 0.4 v I± 0.2 V Suffix "A") @II ZT = 10 rnA)

Type
Number

Test
Temperature$'

Temperature
Coefficient

6V Z IVolts)

°c

%IOC

Voltage
Change
INote 1)

NOTE 1:

Voltage Variation (6.V Z ) and Temperature Coefficient.

Max

INote 1)

lN2163.A

0.033

0, +25, +70

0.005

1N2164.A

0.086

-55, D, +25,
+75, +125

0.005

lN2165.A

0.115

-55, D, +25,
+75, +125, +185

0.005

lN2166.A

0.007

0, +25, +70

0.001

lN2167.A

0.017

-55,0, +25,
+75, +125

0.001

lN2168.A

0.023

-55,0, +25,
+75, +125, +185

0.001

lN2169.A

0.004

D, +25, +70

0.a005

lN2170.A

0.009

-55,0, +25,
+75, +125

0.0005

lN2171.A

0.012

-55,0, +25,
+75, +125, +185

0.0005

Max Dynamic
Impedance
(Note 21
ZZT (Ohms)

15

15

15

All reference diodes are characterized by the "box method". This
guarantees a maximum voltage variation (6.V Z ) over the specified
temperature range, at the specified test current (lZT)' verified by
tests at indicated temperature points within the range. Vz is
measured and recorded at each temperature specified. The 6V Z
between the highest and lowest values must not exceed the
maximum 6V Z given.
This method of indicating voltage stability is now used for JEDEC
registration as well as for military qualification. The former method
of indicating voltage stability - by means of temperature co~
efficient - accurately reflects the voltage deviation at the tem~
perature extremes, but is not necessarily accurate within the
temperature range because reference diodes have a nonlinear
temperature relationship. The temperature coefficient, therefore,
is given only as a reference.

ELECTRICAL CHARACTERISTICS
Vz '" 11.7 Volts ± 5.0% (lZT '" 7.5 mAl
Max
Voltage
Change

Temperature
Coefficient
(Note 1)

°c

Max Dynamic
Impedance
INote 21

%loC

ZZT (Ohms)

lN3582
lN3583

0.088
0.044
0.018
0.009

0, +25, +75

0.01
0.005
0.002
0.001

lN3580A
lN3581A
lN3582A
lN3583A

0.181
0.090
0.036
0.018

·55,0, +25,
+75, +100

0.01
0.005
0.002
0.001

lN3580B
lN3581B

0.239
0.120
0.048
0.024

Type
Number
lN3580
1N3581

1N3582B

lN3583B

(Note 1)
6V Z (Volts)

Test

Temperatures

-55, 0, +25
+75, +100, +150

IN2382thru

0.01
0.005
0.002
0.001

25

NOTE 2:

The dynamic zener impedance, ZZT' is derived from the 60~Hz ac
voltage drop which results when an ac current with an rms value
equal to 10% of the dc zener current, IZT' is superimposed on Izr
A cathode~ray tube curve~trace test on a sample basis is used to en~
sure that the zener has a sharp and stable knee region.

25

25

IN2385

For Specifications, See IN1730 Data.

IN2498 thru IN2500
Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see IN2970 series.
CASE 56
(DO-4)

IN2609 thru IN2617
Obsolete, discontinued types, replace with devices from the IN4001 series.

1-35

lN2620, A, B(SILICON)
thru

lN2624, A, B
Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage
stability. Construction consists of welded hermetically
sealed metal and glass case.
MAXIMUM RATINGS
CASE 52

Junction Temperature: -55 to+1750C

(00-13)

Storage Temperature: -65 to +175 0C
DC Power Dissipation: 750 mW @ T A = 250C
MECHAN ICAL CHARACTE R ISTICS
CASE: Hermetically sealed, welded metal and glass
DIMENSIONS: See outline drawing.
FI N ISH: All external surfaces are corrosion resistant and leads are readily sold·
erable and weldable.
POLARITY: Cathode to case
WEIGHT: 1.5 Grams (approx)
MOUNTING POSITION: Any
ELECTRICAL CHARACTERISTICS

JEDEC
Type No.

(TA

Maximum
Voltage
Change
AV Z (Volts)

=25°C unless otherwise noted)
Ambient
Test
Tem~rature

Temperature
Coefficient

±loC

(Note 1)

°c

(Note 1)

%rC

Maximum
Dynamic
Impedance
ZZT (Ohms)
(Note 2)

Vz = 9.3 V ±5.0%* @ IZT = 10 rnA
1N2620

0.070

0.01

1N2621

0.035

0.005

1N2622

0.014

1N2623

0.007

0.001

1N2624

0.003

0.0005

1N2620A

0.144

0.01

1N2621A

0.072

0.005

1N2622A

0.029

1N2623A

0.014

0.001

1N2624A

0.007

0.0005

1N2620B

0.191

0.01

1N2621B

0.095

0.005

1N2622B

0.038

1N2623B

0.019

0.001

1N2624B

0.010

0.0005

0, +25, +75

-55, 0, +25,
+75, +100

-55, 0, +25,
+75, +100, +150

*Tighter·tolerance units available on special request.
CAPACITANCE (C) = 75 to 200 pF @ 90% of Vz
FORWARD BREAKDOWN VOLTAGE (Vf) = 100 to 800 V

1-36

0.002

0.002

0.002

15

15

15

1N2620, A, B thru 1N2624, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT

=

10m A ±O.01 mAl (See Note 3)

1N2620 thru 1N2624
FIGURE 1b

FIGURE 1a
75,-----,-----,-----,-----,-----,-----,
lN2620

:>
.5
~

:z

25F-==i"-----::*"''----+-----+------+---+-H

~C3
..,g,
wo

",-

~~

0

o~

>..!!

..

"'~
::>-

x

:li

-25

N

~

-50 f-----+------f-".---+-----+------+-----H

-75l--.J:---J:--+=~~:=j=~
o
25
50
75
TA. AMBIENT TEMPERATURE (DC)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT

= 10 mA ±O.Ol mAl (See Note 3)

1N2620A thru 1N2624A

FIGURE 2a
150

FIGURE 2b

o lN26Z0A/

lN2620A

100

.5

0

w

50

'"z

~G

0

"'0

~~
« 0
1--'~

.

o~
~

>

I

/ /

/ /

/1

0

:----...

::>";;

-1 0

x"''''
« -50
'"N

-20

~

-30

-100

-40

lN2620A
50

lN2622A

~

lN2623A
lN2624A

:--....;:: r-.....

\'\

............

...........

\ "\.
f'....
\
\ \.
\
\.
\
\.

TA. AMBIENT TEMPERATURE (DC)

1-37

./
,/

.......

\"\.

,

-50 lN262DA
-55

100

I

//
//.-- .-

0 ~

~

-150
-55

/lN2621A

/

0

:>

/

/
/

0

lN2624A

"

"

lN2623A

lN2622A

'\ lN2621A

1\

50

100

1 N2620, A, B thru 1 N2624, A, B (continued)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
(with IZT = 10 mA ±O.Ol rnA) (See Note 4)

1N2620B thru 1N2624B
FIGURE 3b

FIGURE 3a

a

1N2620B

a

I

_200L_ _J
-55

--

50

100

............

\"\.

a

\

O~~
a

'\

I

--....
-......
--..:::::

-.:....

~-"'-.

.........

~

\

-----Ji
lN2623B

'\
\

\

\

I

i

....... 1N2624B

.............

I

,lN2624BL-

~

"",l'\. __
""
! .." "

~

1N2623B
~-

lN2622B

lN2621B

\

lN2620B
-5 a
-55

150

/'"

-

Ii"""""

-4 a

__-1,-__l-__:i===1:::NS26:=2:::0B=:::::.J

./

1/ /
// V
I//"'_ ~

a

-1501-----t---j---t-"..--+---+--H

lN2622B

./

I I

a

-3

lN2621B

II

I
I /

a

-2

/
/

I

a

-1

I

50

100

150

TA, AMBIENT TEMPERATURE (DC)

FIGURE 4 - ZENER CURRENT versus MAXIMUM
VOL TAGE CHANGE (at specified temperatures)

FIGURE 5 - MAXIMUM ZENER IMPEDANCE
versus ZENER CURRENT
(See Note 2)

(See Note 4)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INOICATED BY THE CURVES

200

"',.S'"

11

w

;;j'

.5
>-~

'"
'"

10

G
~ 9.0

~
«

___i

I_~T_

~
~

100
80

~

60
4

a

~

,.
'"~
N

N

"~

="- "" i"-..
............ ""-

-55 0 C,/'

'"w

I

~

I

20

::>

~

B.O

I
-

.........

I

-:::::: ~

""

......1100 0 C

t:: "-

I ,~

I

1a

a

~25;C
......... ............
1---............
r-..r-..

5.

7.0
-75

1.0

2.0

4.0

6.0

8.0 10

IZ, ZENER CURRENT {mAl

AVZ, MAXIMUM VOLTAGE CHANGE (mV)

(Referenced to IZT = 10 mAl

1-38

I

"" '"

-

~ ~: aa

I

20

1N2620, A, B thru 1N2624, A, B (continued)

FIGURE 6 - DISTRIBUTION OF MAXIMUM GENERATED NOISE
2
B-

~

4

.3

0

>

w

'"0z

'"
'"x.
'"
=>

IZT= lJ rnA
Bandwidth = 500 Hz

6

I

2

/

- - -

---

r--

I

B. 0
4. o

/

./'

i

ro-

1---

--

r--

r- I-r--

/

0/
10

20

30

40

100

50

200

400

1000

fe, CENTER FREaUENCY 1kHz)

NOTE 1:

Voltage Variation (" VZ) and Temperature Coefficient.
All reference diodes are characterized by the "box method". This

for each series are given in Figure 5. A cathode-ray tube curve--trace
test on a sample basis is used to ensure that each zener characteristic
has a sharp and stable knee region.

guarantees a maximum voltage variation (6VZ) over the specified

NOTE 3:

temperature range, at the specified test current (1 ZT), verified by
tests at indicated temperature points with in the range. Th is method
of indicating voltage stability is now used for JEDEC registration as

These graphs can be used to determine the maximum voltage change
of any device in the series over any specific temperature range. For

well as for military qualification. The former method of indicating
voltage stability - by means of temperature coefficient - accurately
reflects the voltage deviation at the temperature extremes. but is not
necessarily accurate within the temperature range because reference
diodes have a nonlinear temperature relationship. The temperature
coefficient, therefore. is given only as a reference.

example, a temperature change from +25 to +500 C will cause a voltage change no greater than +23 mV or -23 mV for 1N2620, as
illustrated by the dashed lines in Figure 1. The boundaries given are
maximum values. For greater resolution, expanded views of the
shaded areas in Figures 1a. 2a. and 3a are shown in Figures 1b. 2b.
and 3b respectively.

NOTE 4:
The maximum voltage change, 6VZ, in Figure 4 is due entirely to the

NOTE 2:

impedance of the device. If both temperature and IZT are varied,
then the total voltage change may be obtained by edding "VZ in Fig-

Zener I mpedance Derivation
The dynamic zener im pedance, ZZT, is derived from the 6CH-1z ac
voltage drop which results when an ac current with an rms value

equal to 10% of the dc zener current, IZT, is superimposed on IZT.

ure 4 to the 6VZ in Figure 1,2, or 3 for the device underconsideration. If the device is to be operated at some stable current other
than the specified test current, a new set of characteristics may be

Curves showing the variation of zener impedance with zener current

plotted by superimposing the data in Figure 4 on Figure 1,2, or 3.

1-39

lN2804 thru lN2846 (ZENER DIODES)
6.8V thru 200V

(Case 54)

lN4557 thru lN4564 lN4549 thru lN4556
3.9Vthru 7.SV

3.9V thru 7.SV

CAS~

(Case 58)

(TO-3 Modified)

Units are available with anode-to-case and cathodeto-case connections (standard and reverse polarity).
For reverse polarity, add suffix "R" to type number.

(stud package)

N3305

(Case 54)

N3350

1
thru 1
6.8V thru 200V
(Case 58)

CASE 58

MAXIMUM RATINGS

Junction and Storage Temperature: _65°C to +175°C.
D C Power Dissipation: 50 Watts. (Derate 0.5 W/oCabove 75°C).
TOLERANCE DESIGNATION

The type numbers shown have a standard tolerance of ±20% on the nominal
zener voltage. Add suffix" A" for ±10% units or "B" for ±5% units. (2% and 1%
tolerance also available. (See Selector Guide for details)
CASE 54 APPLICATIONS INFORMATION
If these units are used with a socket, the unregulated line should be connected
to one pin through a suitable current limiting resistor and the load should be
connected to the other pin. The load will now be disconnected from the line if

the unit is removed from the socket.
Typical circuit connections for anode-to-case and cathode-to-case polarities
(standard and reverse polarities, respectively) are shown be low
CIRCUIT CONNECTIONS
STANDARD POLARITY
(ANOOE

TO CASE I

REVERSE POLARITY
(CATHOOE TO CASE I

(":'~~~FOF~)(O~NCATS;PEA~~ )
(A) NOMINAL ZENER VOLTAGES BETW.EEN THE
VOLTAGES SHOWN AND TIGHTER VOLTAGE
TOLERANCES:
To desi.gnate units with zener voltages other than
those assigned JEDEC numbers and/or tight voltage
tolerances (±.3%. ±'2%. ±.l %). the Motorola· type
number should be used.

50

M

90

S

Z

T Ze~r

3

Drce Molola NoJinaI
Torance
Description
Voltage I Stud Diode (±%)
Example: 50M90ZS3

51~olts

n!ice JM
JS ZetJ5lB oiall
Description (each device>. Diodes
Tolerance
Motorola
Stud
Tolerance
per device (±5%)
Code·
(omit for ±20% ~nits) (A-Not used)
.Code:
B - Two devices in series
C - Three devices in series
D - Four devices in series
Example: 50M51SZ5Bl
(e) ZENER CLIPPERS: (Standard Tolerance ±I 0% and

(Ii%\

±5%).
Special clipper diodes with opposing Zener
junctions buUt into the device are available by using
the following. nomenclature:

(B) MATCHED SETS: (Standard Tolerancesare±5.0%.

±2.0%. ±1.0%).
Zener diodes can be obtained in sets consisting
of two or more matched devices. The method for
specifying such matched sets is similar to the one
described in (A) for specifying units with a special
voltage and/or tolerance except that two extra
sufrtxes are added to the code number described.

1
10

DeJ
JM No!taIJS ler JZ
Description
Voltage
Diodes
Motorola

These units are marked with code letters to
identify the matched sets and, in addition, each unit
in a set is marked with the same serial number.
which is different for each set being ordered.

Stud

Example: 50M20SZZ10

1-40

Clipper
Tolerance for each of
the two Zener voltages
(not a matching requirement)

1N2804 thru 1N2846

(continued)

ELECTRICAL CHARACTERISTICS
(re

=30'C unless otherwise specified) VF = 1.5 V max @ 10 A on all types.

SO Wan

SO Wan

CASE 54

CASE 58

Max Zener Impedance
Nominal
Max DC Zener
Test
Zener Voltage
Current
Current
@I
7S'C Case Temp
(lZT)
(Vz) V~ts
(lZM)mA
ZZT @IZT ZZK @ IZK SmA
mA
ohms
ohms

=

amlSE

•

LEAlME CUIIENt

I. MAX

V. I

VR2

Typical
Zener
Voltage
Temp. CoeH.
%/'C

(~A)

11900
10650
9700
8900
6100
7300

150
150
100
20
20
20

0.5
0.5
1.0
1.0
1.0
2.0

0.5
0.5
1.0
1.0
1.0
2.0

-.025
-.025
.010
.015

0.14

400
500
600
650
900
1000

1850
1850
1700
1650
1500
1370

0.2
0.16
0.3
0.24
0.4
0.5

70
200
70
100
70
70

6600
6650
5900
6050
5200
4800

150
10
75
10
50
25

4.5
2.0
5.0
3.0
5.4
6.1

4.3
2.0
4.7
3.0
5.2
5.7

.040
.045
.045
.053
.048
.051

1200
1100
1000
960
890
830

0.6
0.6
1.0
1.1
1.2
1.4

80
60
80
80
80
80

4300
3900
3600
3300
3000
2800

10
5
5
5
5
5

6.7
6.4
9.1
9.9
10.6
11.4

6.3
8.0
8.6
9.4
10.1
10.8

.055
.060
.065
.065
.070
.070

780
740

80
80
80
80
80
80

2650
2500

11.5
12.2

.070
.075

13.7

13.0

.075

2200
2100
1900

5
5
5
5
5
5

12.2
13.0

660
630
570

1.6
1.8
2.0
2.2
2.4
2.5

14.4
15.2
16.7

13.7
14.4
15.8

.075
.075
.080

24
25
27
30
33
36

520
500
460
420
380
350

2.6
2.7
2.8
3.0
3.2
3.5

80
90
90
90
90
90

1750
1550
1500
1400
1300
1150

5
5
5
5
5
5

18.2
19.0
20.6
22.8
25.1
27.4

17.3
18.0
19.4
21.6
23.8
25.9

.080
.080
.085
.085
.085
.085

IN3327
IN3328
IN3329
IN3330
IN3331
IN3332

39
43
45
47
50
51

320
290
280
270
250
245

4.0
4.5
4.5
5.0
5.0
5.2

90
90
100
100
100
100

1050
975
930
880
830
810

5
5
5
5
5
5

29.7
32.7
34.2
35.8
38.0
38.6

28.1
31.0
32.4
33.8
36.0
36.7

.090
.090
.090
.090
.090
.090

IN2832
IN2833
IN2834
IN2835
IN2836

IN3333
IN3334
IN3335
IN3336
IN3337
IN3338

52
56
62
68
75
82

240
220
200
180
170
ISO

5.5
6
7
8
9
11

100
110
120
140
150
160

790
740
660
600
540
490

5
5
5
5
5
5

39.5
42.6
47.1
51.7
56.0
62.2

37.4
40.3
44.6
49.0
54.0
59.0

.090
.090
.090
.090
.090
.090

IN2837
IN2638
IN2839
IN2640
IN2641
IN2842

IN3339
IN3340
IN3341
IN3342
IN3343
IN3344

91
100
105
110
120
130

140
120
120
110
100
95

15
20
25
30
40
50

160
200
210
220
240
275

420
400
380
365
335
310

5
5
5
5
5
5

69.2
76.0
79.6
63.6
91.2
98.6

65.5
72.0
75.6
79.2
86.4
93.6

.090
.090
.095
.095
.095
.095

IN3345
IN3346
IN3347
IN3348
IN3349
IN3350

140
150
160
175
180
200

90
65
80
70
68
65

60
75
80
85
90
100

325
400
450
500
525

290
270
250
230
220
200

5
5
5
5
5
5

106.4
114.0
121.6
133.0
136.8
152.0

100.6
108.0
115.2
126.0
129.6
144.0

.095
.095
.095
.095
.095
.100

IN4557
IN4558
IN4559
IN4560
IN4561
IN4562

IN4549
IN4550
IN4551
IN4552
IN4553
IN4554

3.9
4.3
4.7
5.1
5.6
6.2

3200
2900
2650
2450
2250
2000

0.16
0.16
0.12
0.12

IN2804
IN4563
IN2805
IN4564
IN2806
IN2807

IN3305
IN4555
IN3306
IN4556
IN3307
IN3308

6.8
6:8
7.5
7.5
8.2
9.1

IN2808

IN2809
IN2810
IN2811
IN2812
IN2813

IN3309
IN3310
IN3311
IN3312
IN3313
IN3314

10
11
12
13
14
15

IN2814
IN2815
IN2816
IN2817
IN2818
IN2819

IN3315
IN3316
IN3317
IN3318
IN3319
IN3320

16
17
18
19
20
22

IN2820
IN2821
IN2822
IN2823
IN2824
IN2825

IN3321
IN3322
IN3323
IN3324
IN3325
IN3326

IN2826
IN2827
IN2828
IN2829
IN2830
lN2831

-

IN2645

IN2643
IN2644
IN2846

700

0.12

600

2300

SPECIAL SELECTIONS AVAI LABLE INCLUDE: (See Selector Guide for details)

*VR1 - Test Voltage for 5% Tolerance Device
VR2 - Test Voltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device

1-41

.030

.040

1N2804 thru 1N2846

(continued)

FIGURE 1- TEMPERATURE CHARACTERISTICS
30
10

~
~

!Ii
5

~

~

1

~ :: II

./

In

3.0

...,.V

1.0

0.3

6 V IS THE TYPICAL VOLTAGE CHANGE OBSERVED OVER THE TEMPERATURE RANGE
FROM +25 TO + 125'C. 6 V IS POSITIVE ABOVE 5 VOLTS, NEGATIVE BELOW 4.3
VOLTS. BETWEEN 4.3 ANO 5.0V, 6 V VARIES APPROXIMATELY +O.OBV.

. 1/

0.\

,

0.03
1.0

2.0

5.0

10

50

20

100

500

200

1000

VI, BREAKDOWN VOLTAGE IVOLTSI

FIGURE 2POWER·TEMPERATURE DERATING CURVE

FIGURE 3 - LEAKAGE CURRENT

50

Vi

100

50

'"

1=

~

z

40

ill
Q

30

~

i

~

.?

20

lilll

10

~

!

~

'\

~

I\.

~

"'r-...

10

o

o

25

50

75

TYPICALLY, BO% OF THE DEVICES FALL WITHIN THE INDICATED RANGE.
I " (\) Below 5.BV
SEE SPEC FORV,
121 Above 5.BV
V, O.8V (VZINOMINAL) VjTOLUANCfl)

100

125

150

"\

"-

1.0

111

0.1

I
0.01

175

10

Te, CASE TEMPERATURE I'CI

100

,.

f"".,.

10

§

~

111

r-.

1.0

'!

IV

30V

ffi

~

.:t

II

I'.

0.1

:S.lV

TEST FREQUENCY 50 Hz
AClrmsl CURRENT . 10% of I,

1 11111111

0.01
I

100

VI, NOMINAL BREAKDOWN VOLTAGE IVDLTSI

FIGURE 4 - ZENER IMPEDANCE
versus ZENER CURRENT

Vi

./

121

10

1 1 I I II III
100
II, ZENER CURRENT ImAI

1-42

II
1000

10,000

1000

lN2970 thru lN3015

CASES~

(ZENER DIODES)
Diffused-junction zener diodes for both military and

high-reliability industrial applications.

Available with

anode-to-case and cathode-to-case connections (standard and reverse polarity),

i.

e.,

1N2970 and 1N2970R.

Supplied with mounting hardware.

(00-4)

The type numbers shown have a standard tolerance of ±20% on the nominal
zener voltage. Add suffix "A" for ±10% units or
tolerance also available.)

"B"

for ±5% units.

(2% and 1%

MAXIMUM RATINGS
Junction and Storage Temperature: -65°C to +175°C.
D C Power Dissipation: 10 Watts.

(Derate

83.3

mW;oC above 55°C).

ELECTRICAL CHARACTERISTICS
(TC ~ 25 0 C unless otherwise noted)

VF

= 1.5 V max @ IF = 2 amp on all types.

Nominal
Zener Voltage
V, (@ Izr
Volts

Test
Current
Izr
mA

IN2970
IN2971
IN2972
IN2973
IN2974

6.8
7.5
8.2
9.1
10

370
335
305
275
250

1.2
1.3
1.5
2.0
3

500
250
250
250
250

1.0
1.0
1.0
1.0
1.0

1,320
1,180
1,040
960
860

150
75
50
25
10

5.2
5.7
6.2
6.9
7.6

4.9
5.4
5.9
6.6
7.2

IN2975
IN2976
IN2977
IN2978
IN2979

II
12
13
14
15

230
210
190
180
170

3
3
3
3
3

250
250
250
250
250

1.0
1.0
1.0
1.0
1.0

780
720
660
600
560

5
5
5
5
5

8.4
9.1
9.9
10.6
11.4

8.0
8.6
9.4
10.1
10.8

IN2980
IN2982
IN2983
IN2984
IN2985

16
18
19
20
22

155
140
130
125
115

4
4
4
4
5

250
250
250
250
250

1.0
1.0
1.0
1.0
1.0

530
460
440
420
380

5
5
5
5
5

12.2
13.7
14.4
15.2
16.7

11.5
13.0
13.7
14.4
15.8

IN2986
IN2988
IN2989
IN2990
IN2991

24
27
30
33
36

105
95
85
75
70

5
7
8
9
10

250
250
300
300
300

1.0
1.0
1.0
1.0
1.0

350
300
280
260
230

5
5
5
5
5

18.2
20.6
22.8
25.1
27.4

17.3
19.4
21.6
23.8
25.9

Type No.

Max Zener Impedance
Zzr @ Izr
Ohms

Z" @ I"
Ohms

Mar DC Zener
Current
I'M mA

IlK
mA

Mar. Reverse Current •
I.Mu
(I'A)

V"

"VR1 - Test Voltage for 5% Tolerance Device. VR2 - Test Voltage for 10% Tolerance
Device. No Leakage Specified as 20% Tolerance Device.

51~OltS

(A) NOMINAL ZENER VOLTAGES BETWEEN THE
VOLTAGES SHOWN AND TIGHTER VOLTAGE
TOLERANCES:
To designate units with zener voltages other than
those assigned JEDEC numbers and/or light voltage
tolerances (±3%. ±2%. ±I %). the Motorola type
number should be used.
10
M
90
Z
3

z±

1

D!ce JM
5 B Orall
erJ
Description (each device) Diodes
Tolerance
of set
Motorola
Tolerance
(±1 %)
per device (±5%)
Code"
.Code:
(omit for ±20% units) (A'Not used)
B - Two devices in series
C - Three devices in series
Device Motorola Nominal
Zener Tolerance
D - Four devices in series
Description
Voltage
Diode (±%)
Example: 10M5l5Bl
Example: 10M90Z3
(C) ZENER CLIPPERS: (Standard Tolerance ±IO% and
±S%).
(B) MATCHED SETS: (Standard Tolerances are ±5 .0%.
Special clipper diodes with opposing Zener
±2.0%. ±1.0%).
junctions built into the device are available by using
Zener diodes can be obtained in sets consisting
the following nomenclature:
of two or more matched devices. The method for
Z
Z
10
specifying such matched sets is similar to the one
described in (A) for specifying units with a special
JM
voltage and/or tolerance except that two extra Device
Nominal
suffixes are added to the code number described.
Description
Voltage

T

T

T

T

T

T

These units are marked with code letters to

~f'

Motorola

identify the matched sets and, in addition, each unit

in a set is marked with the same serial number.
which is different for each set being ordered.
Example: 10M20ZZlO

1-43

d~,J

1

Clipper
Tolerance for each of
the two Zener voltages
(not a matching requirement)

V"

1N2970 thru 1N3015 (continued)
ELECTRICAL CHARACTERISTICS
(TC ~ 25 0 C unless otherwise noted)

VF

= 1.5 V max @ IF = 2 amp on all types.

Nominal
Zener Voltage
V, (@ In
Volts

Test
Current

1N2992
1N2993
1N2995
1N2996
1N2997

39
43
47
50
51

65
60
55
50
50

11
12
14
15
15

300
400
400
500
500

1.0
1.0
1.0
1.0
1.0

210
195
175
165
163

1N2998
1N2999
1N3000
1N3001
1N3002

52
56
62
68
75

50
45
40
37
33

15
16
17
18
22

500
500
600
600
600

1.0
1.0
1.0
1.0
1.0

1N3003
1N3Q04
1N3005
1N3006
1N3007

82
91
100
105
110

30
28
25
25
23

25
35
40
45
55

700
800
900
1,000
1,100

lN3008
lN3009
lN3010
lN3011
lN3012

120
130
140
150
160

20
19
18
17
16

75
100
125
175
200

lN3014
lN3015

180
200

14
12

260
300

Type No.

hT

mA

Max Zener Impedance
Zn @ In
Ohms

Max DC Zener
Current
1,... mA

Max. Reverse Current •
I, Max
(/LA)

V"

5

5
5
5
5

29.7
32.7
35.8
38.0
38.8

28.1
31.0
33.8
36.0
36.7

160
150
130
120
110

5
5
5
5
5

39.5
42.6
47.1
5 I. 7
56.0

37.4
40.3
44.6
49.0
54.0

1.0
1.0
1.0
1.0
1.0

100
85
80
75
72

5
5
5
5
5

62.2

59.0
65.5
72.0
75.6
79.2

1,200
1,300
1,400
1,500
1,600

1.0
1.0
1.0
1.0
1.0

67
62
58
54
50

5
5
5
5
5

1,850
2,000

1.0
1.0

45
40

5
5

ZlK @ I"
Ohms

IlK
mA

69,2

76.0
79.8
83.6
91.2

S().4

~.8

93.fl
100.8
108.0
115.2

106.4
114.0
121.G
131).8

152.0

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

*V R1. - Test Voltage for 5% Tolerance Device. VR2 - Test Voltage for 10% Tolerance
DeVlce. No Leakage Speclfled as 20% Tolerance Device.

lN3016 thru lN30S1
For Specifications, See IN3821 Data.

1-44

V"

129.6
144.0

N3154, A(SILICON)

1

thru

lN3157, A
Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage
stability. RamRod construction provides a rugged, glassenclosed, hermetically sealed structure.
CASE 51
(00-7)

MAXIMUM RATINGS
Junction Temperature: -55 to +175 0 C
Storage Temperature: -65 to +175 0 C
DC Power Dissipation: 500 mW @ T A

= 25°C

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing.
FIN ISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable.
POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram(approx)
MOUNTING POSITION: Any
ELECTRICAL CHARACTERISTICS

JEDEC
Type No.
(Note 1)

(T A

=

2S·C unless otherwise noted)

Maxi nlU 111

Maximunl
Voltage
Change
t!i.V Z (Volts)

Ambient
Test
Temperature

Temperature
Coefficient

(Note 2)

±loC

(Note 2)

°c

Dynamic
Impedance
ZZT (Ohms)

'brc

(Note 3)

V Z ; 8.4 V ±5.0(:1* @ IZT ; 10 mA
0.01

1N3154

0.130

1N3155

0.065

1N3156

O. 026

O. 002

1N3157

O. 013

0.001

1N3154A

0.172

1N3155A

0.086

-55, 0, +25, +75,

1N3156A

O. 034

+100, +150

1N3157A

0.017

0.005

-55, 0, +25, +75, +100

-~

15

--

0.01

*Tighter-tolerance units available on special request.
CAPACITANCE (C); 20 to 180 pF @ 90';0 of V z
FORWARD BREAKDOWN VOLTAGE (V f ) ; 100 to 800 V

0.005

--

0.002
0.001

15

1N3154, A thru 1N3157, A

(continued)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(with IZT = 10 mA 1-0.01 mAl

(See Note 4)

1N3154 thru 1N3157
FIGURE 1b

FIGURE 1a
150

I

50
40

100
30

I

--//
L /
/ /

:;

S

20

w

'"z

50

~
w

01.1

.'"

lN3154

" lN3155

~
-

.---

/

_---

1 / / ...... f-

.. _...

_-

lN3156

~

- - C--'

lN3157

.....-:.

L

--

---_.
...

O~

~
0
>

-r---I"'---.
r--..
-1
O-"'~
::---"
~
\ '\
.:-........
-2 0
I~""""'"
~ ........

'"=>

.'x"

-50

'>N"

-'"\

<

-30

-100
-4 0

~

\

"----"-

\

1------5 0
-55

"

-

'\

t'\.~;m54-

lN3157

1N3156

~1N3155
100

50

TA, AMBIENT TEMPERATU RE (DC)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT - 10 mA i:D.Ol mAl

200
IZT= 10 lA

I

150

/'"

0

-10 0

~

"'-

-15 0

-20 0
-55

o

--

-- }
----

~ ~ .........

lN3156A

20
0

lN31fA

•

""

1N3156A

~

lN3155A_

i

0

100

-1 0
-2 0

/

I
1..
j

""-

I

~

~

L-..

..............

\"\

-5 0
-55
TA, AMBIENT TEMPERATU RE (DC)

._-

1----lN3156A

j------- .

lN3157A

:

c::--."

b",

\

\

_._,---

.,. r -

V

--

/~

lN31 54A

1-46

--~---

/'

/

-,_.-

.~

lN3157A

..........

'\.
\ '\.
\
'\.

-40 - -

150,

lN3155A

L
I

II /'
1/ ~

-3 0

~.

1

50

30

lN3157A

.....

_1 lN3154A,l

t---j

lN3155A

/ ....-k -::::::

FIGURE 2b

o

lN3154A

/V

(See Note 4)

1N3154Athru 1N3157A

FIGURE 2a

'"
--

\

\lN3154A

i"-

50

\

""

-~

lN3156A

- -

lN3155A
100

150

._-

lN3154, A thru lN3157, A (continued)

FIGURE 3 - ZENER CURRENT versus MAXIMUM
VOLTAGE CHANGE (at specified temperatures)

FIGURE 4 - MAXIMUM ZENER IMPEDANCE
versus ZENER CURRENT

(See Note 5)

12

MORE THAN 95% OF THE

UNI~

ARE IN THE

(See Note 3)

~NGES

~iJO

INDICATED BY THE CURVES

Ui

~

+100oC

~

10

~

-55°C

~

=>

u

10

~

9.0

~

~

N

5.0

'"x
«
'"N

8.0

100°C

~-

> F:: t::t:::
['

;;;

~

B

~ -....., r"-.!f-

z

«

IZT

--

r-- -

-

!S --s;

--:--.... c--...

w
u

+150 0 C

~

~

50

e

11

~

-

:~=

-55°C
+251oC

5

MORE THAN 95°" OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES

r---.- ..- -

._-

--

.-

,-

25°C

= =:

--t:--

==

_.
t----- r------

1--

N

7·~7·':-5-~"-"':'::1..-L----;:!o-----:'----2::':5:------::-!50

1.0

(Referenced to IZT

~

10

5.0

1.0

20

30

40

IZ, ZENER CURRENT (rnA)

,VZ, MAXIMUM VOLTAGE CHANGE (mV)
10 rnA)

FIGURE 5- DISTRIBUTION OF MAXIMUM GENERATED NOISE
, - ---,-,--

4.

0=+1

-

IZT=10ml

§

3. oI---- BAN OWl OTH = 500 Hz

>

......

(

.3
w

~

0
z

=>
'"
'"x
'"

«

2. 0

V

1.u

10

-----1

/

-

V

/

1
20

30

40

50

100

200

400

1000

fe, CENTER fREQUENCY (kHz)

NOTE 1:

Types lN3154 thru lN3157 are available to MIL-S-19500/158
NOTE 2:

Voltage Variation

(.~ VZ)

Curves showing the variation of zener impedance with zener current
for each series are given in Figure 4. A cathode-ray tube curve-trace
test on a sample basis is used to ensure that each zener characteristic
has a sharp and stable knee region.
NOTE 4:

and Temperature Coefficient.

All reference diodes are characterized by the "box method", This
guarantees a maximum voltage variation (1':. VZ) over the specified
temperature range, at the specified test current (lZT), verified by
tests at indicated temperature points within the range. This method
of indicating voltage stability is now used for JEDEC registration as
well as for military qualification. The former method of indicating
voltage stability - by means of temperature coefficient - accurately
reflects the voltage deviation at the temperature extremes, but is not
necessarily accurate within the temperature range because reference
diodes have a nonlinear temperature relationship. The temperature
coefficient, therefore, is given only as a reference.
NOTE 3:

Zener Impedance Derivation.o
The dynamic zener impedance, ZZT. is derived from the 60-Hz ac
voltage drop which results when an ae current with an rms value
equal to 10% of the dc zener current. IZT, is superimposed on 'ZT.

1-47

These graphs can be used to determine the maximum voltage change
of any device in the series over any specific temperature range. For
example, a temperature change from 0 to +500 C will cause a voltage change no greater than +42 mV or -42 mV for lN3154, as
illustrated by the dashed lines in Figure 1. The boundaries given are
maximum values. For greater resolution,. expanded views of the
shaded areas in Figures 1a and 2a are shown in Figures 1b and 2b
respectivel y.
NOTE 5:

The maximum voltage change, 6. VZ, in Figure 3 is due entirely to
the impedance of the device. If both temperature and IZT are varied,
then the total voltage change may be obtained by adding 6. Vz in
Figure 3 to the 6.VZ in Figure 1 or 2 for the device Ulider consideration. If the device is to be operated at some stable current other
than the specified test current, a new set of characteristics may be
plotted by superimposing the data in Figure 3 on Figure 1 or 2.

lN3189 thru lN3191
Obsolete, discontinued types, replace with devices from the IN4001 series.

1

N3208thru 1N3212

(SILICON)

Medium-current silicon rectifiers. Cathode connected to case, but reverse polarity (anode-to-case
connection) also available by adding suffix "R" to type
number, e. g. IN3208R. Supplied with mounting hardware.

CASE 42
(00-5)

MAXIMUM RATINGS
Symbol

Rating

1N3208 1N3209 lN3210 1N3211 lN3212
lN3208R IN3209R lN3210R lN3211R lN3212R

Unit

D C Blocking Voltage

VR

50

100

200

300

400

Volts

RMS Reverse Voltage

V

35

70

140

210

280

Volts

Average Half-Wave Rectified
Forward Current With Resistive Load

I0 *

15

15

15

15

15

Amp

250

250

250

250

250

Amp

Peak One Cycle Surge Current
(60 cps & 25°C Case Temp)
Operating Junction Temperature
Storage Temperature

r

IFM(surge)
TJ

-65 to + 175

°c

Tstg

-65 to + 175

°c

ELECTRICAL CHARACTERISTICS

(All Types) at 25"C Case Temp.

Characteristic

Symbol

Value

Unit

Maximum Forward Voltage at 40 Amp D-C Forward
Current

VF

1.5

Volts

Maximum Reverse Current at Rated D-C Reverse
Voltage

IR

1.0

mAdc

IIJC

1.7

C!W

Typical Thermal Resistance, Junction To Case

1-48

lN3213,lN3214
For Specifications, See IN248B Data.

1

N3282thru 1N3286

(SILICON)

Low-current silicon rectifiers for applications requiring extremely high reverse - voltage capability.
Hermetically sealed, subminiature glass package,
offering excellent stability and reliability under environmental extremes.

CASE 51
(00-7)

MAXI MUM RATI NGS

(At 60 cps Sinusoidal Input, Resistive or Inductive Load)
Symbol

Rating

1N3284

1N3285

1N3286

Unit

1000

1500

2000

2500

3000

Volts

V
r

700

1050

1400

1750

2100

Volts

10

100
50

100
50

100
50

100
50

100
50

mA
mA

IFM(surge)

2.5

2.5

2.5

2.5

2.5

Amp

IFM(rep)

0.50

0.50

0.50

0.50

0.50

Amp

Peak Repetitive Reverse
Voltage
DC Blocking Voltage

VRM(rep)
VR

RMS Reverse Voltage
Average Half-Wave Rectified
Forward Current
(25· C Ambient)
(100· C Ambient)
Peak Surge Current
(1/2-cycle, 60 Hz)
Peak Repetitive Forward
Current

1N3282 1N3283

Operating and Storage
Temperature Range

·C

-65 to + 150

TJ , Tstg

ELECTRICAL CHARACTERISTICS
Value

Unit

VF

2.5

Volts

VF(AV)

1.2

Volts

1.0

p.A

Symbol

Characteristic
Maximum Forward Voltage Drop @ 100 mA,
Continuous DC (25·C)
Maximum Full-Cycle Average Forward Voltage
Drop @ Rated Current (100·C)
Maximum Reverse Current@ Rated DC Voltage
(25· C)
(100·C)
Maximum Full-Cycle Average Reverse Current
@ Max Rated PIV and Current (as Half-Wave
Rectifier, Resistive Load, iOO·C)
Typical Thermal ReSistance, Junction to Ambient

1-49

Ia

10.0

IR(AV)

10.0

6JA

400

p.A
·C/W

1 N32 82 thru 1N3286 (continued)
MAXIMUM ALLOWABLE DC OUTPUT

TYPICAL FORWARD CHARACTERISTICS
(FOR ALL TYPES)

S
j!

60

ia

50

I...

_50°

80
70

m

~

90

:I
:3

(SINGLE.PHASE RESISTIVE OR INDUCTIVE LOADi

100

100

..ill

1-......

~

:3
i

25°C

...

~

60

\

S
100°C 1-

40

::>

u

Ii!

40

~

20

~

\

I...

39
20

\

j

10

o

"\.

80

~

V./ /
o

0.5

1.0

1.5

2.0

2.5

Y•• FORWARD VOLTAGE DROP (VOLTS)

3.0

o

3.5

o

25

50

N3305 thru 1N3350

1

For Specifications, see IN2804 Data.

1-50

75

100

125

\
150

T•• AMBIENT TEMPERATURE (OC)

175

200

lN3491 thru lN3495 (SILICON)
(MR322 thru MR328)
MR330, MR331

CASE 43
(00.21)

Medium-current silicon rectifiers - compact, highly
efficient silicon rectifiers for medium-current applications.

MAXIMUM RATINGS

<'0..,
.... .... .., .....<'0 ..,co<'0 0..,.., c;;..,
0-<'0 0-<'0 0-<'0 0-<'0 0-<'0 ..,
..,,,,,
..,,,,, ..,,,,, ..,""
:IE :IE
"" :IE"" :IE""
~:IE ~:IE ~:IE ~:IE ~;: ""

~<'O

Symbol

Rating
Peak Repetitive Reverse Voltage

~..,

~..,

..,~

~

~..,

~..,

~..,

Unit

VRM(rep)

Working Peak Reverse Voltage

VRM(wkg)
VR

DC Blocking Voltage

Non-Repetitive Peak Reverse Voltage
(halfwave, slngle phase,
60 cycle peak)

VRM(non.rep)

RMS Reverse Voltage

Vr

Average Rectified Forward Current
(single phase, resistive load,
60 Hz , see Figure 3) TC = 130 0 C

10

Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions, see Fi,gure 5)

50

100

200

300

400

500

600

800

1000

Volts

100

200

300

400

500

600

720

1000

1200

Volts

35

70

140

210

280

350

420

560

700

Volts

IFM(surge)

r2t

Rating (non-repetitive, for t
greater than 1 ma and less

12t

25

Amp

300 (for 1/2 cycle)

Amp

A(rms)2sec

375

than B.3 mB)

Operating and Storage JWlction
Temperature Range

°c

·65 to +175

TJ' Tstg

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol

Max

Unit

9JC

1.2

°C/Watt

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction.
FINISH: All external surfaces corrosion-resistant and the terminal lead is readily
solderable.
POLARITY: CATHODE TO CASE (reverse polarity units are available upon request and
are designated by an "R" suffix i.e. MR327R or IN3491R).
MOUNTING POSITIONS: Any.

1-51

1N3491 thru 1N3495 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions

Symbol

Max

Unit

Full Cycle Average Forward Voltage Drop
°
(rated 10 and Vr , single phase, 60 Hz,.TC = 150 C)

VF(AV)

0.6

Volts

Instantaneous Forward Voltage Drop
(iF = 100 Amps, TJ = 25°C)
Full Cycle Average Reverse Current
(rated Io and Vr , single phase, 60 Hz, TC = 150°C)
1N3491/MR322
1N3492/MR323
1N3493/MR324
1N3494/MR325
1N3495/MR326
MR327
MR328
MR330
MR331

10
10
8.0

6.0
4.0
3.0

2.5
2.0

1.5

200

r;::r

~

I
i3
_

t-- -

TJ

.If

,.

-

70

II

"""'"

60° CONDUCTION

60

16 PHASE STAR)
)
I

r--...

-

I

/

120° CONDUCTION
13 PHASE, HALf WAVE OR
fULL WAVE, OR
6 PHASE WITH
INTERPHASE)

n. . TJ -25°C

10
6.0

I

2.0

Ii ..../

/ /;

/

/

V

/
- . DC: CONTINUOUS

180° CONDUCTION
11 PHASE, HALf WAVE OR fULL WAVE)

-

~ "/

10

0.2

/

V

~V

0.6
0.4

/

7 / /

'iJ /
;: I'~ .........

1.0

I~V

~

0.1

o

V

/ / / /
/ 1/ /

I

/ /

/

_+1+

-

20

~ 4.0

I

IWC

rnA
1.0

FIGURE 2- MAXIMUM FORWARD POWER DISSIPATION

FIGURE 1- MAXIMUM FORWARD VOLTAGE DROP

60
40

rnA

IR

600
400

~
ffi

1.5

IR(AV)

DC Reverse Current
(RatedVR , TC = 25°C)

100

Volts

VF

0.4

0.8

1.2

1.6

2.0

2.4

V,. MAXIMUM fORWARD VOLTAGE DROP IVOLTS)

10

20

30

40

I'IAYI' AvERAGE fORWARD CURRENf lAMP)

1-52

50

60

1N3491 thru 1N3495

(continued)
FIGURE 3 - MAXIMUM CURRENT RATINGS

40

~

35

f5

r-

I-I--

'~"

30 I - -

~

25

ffi

~
~

t:

~

I--I--I--

1==

6 PHASE STAR
60' CONDUCTION

I-10

r-r--

I

r--.,

'--

100

e--30

i'-.
...........
..............

25

"'

'-

............
.......
............ ...........

-- -

V

130

35
-

.........

"""'-

120

110

40

I~DUCTIVEILOAD

60 1Hz, RESldTiVE OR

I-I--

J

I

T

--

""

./

3 PHASE
IHALF WAVE OR FULL WAVEI
120' CONDUCTION

20 I - 15

.....r

1 PHASE
IHALF WAVE OR FULL WAV8
180" CONDUCTION

~

81

fi!

D~, CONTlN~OUS

~

..........

140

'-.....

20

"'- I'...

15

...........

..........

t-..

"' '-

10

...................

r---...

150

~

r--...

" '\.

170

160

180

o

Te, CASE TEMPERATURE I'CI

FIGURE 4- MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE

3
<>
;j::

gi

~~

2.4

2.4
2.2

III I

2.2

I _I

I "

II

TJ - Te = 8JC!t)

2.0

6<;6

PAY

1.8
1.6

ffi~ 1.4

~8

1.2

~:;

1.0

e:~
i=~

I-

~~ 0.8

f.---

--

2.0

---r

-

1.8

I

1.6

1<;6+3<;6

f-- ...-

L4

--

~

06

1.2
1.0
0.8

t:;'-

0.6

0.6

cH

0.4

0.4

0.2

0.2

o

0

0.1

1.0

0.5

0.2

2.0

5.0

20

10

100

50

200

500

1000

t, TIME (msl

FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT
500

'"~

Ii

300

200

500

--

0;

r----. --r--- r-- t-r--

~
-;;

•,

1

t-

100 l -

t--

l70 I-

C\ C\ C\

I
300

V'MI",I APPLIED AFTER SURGE
NON·REPETITIVE IMAX 500 SURGES DURING DEVICE lIFETIMEI

r-- t - ~
r--- r-- ~ f-- r- I-t,/

t-.

z

~

I
I
I
SURGE APPLIED AT RATED
LOAD CONDITIONS

1-1-

REPETITIVE (UNLIMITED NUMBER OF SURGES, TJ

200

< 175'C BEFORE SURGE APPLIED)

i---

100

i-I CYCLE-I
70
50

50
1.0

2.0

5.0

10

50

20
CYCLES AT 60 Hz

1-53

100

200

500

1000

1N3491 thru 1N3495 (continued)
TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 6- RECTIFICATION EFFICIENCY

-

100

"":::~

.- ..

, ;

20

-I"-

70

~

",

~

~

50

g

TJ -17S'C

I

Iii
l!l

~
'"

..

30

].

~

I

2.0

~
i:1

\

\

1\

2.0

\
10

20

30

3.0

oJ

\

S.O 7.0

"

......

i'..

~

t'- i""-r--

1\
SO

1.0
70 100

(,'"SA

......

IA

.......

3A'

=¥~l([
0.2

0.1

REPETITION RECOVERY (kHz)

0.3

" ...................
r-..

r....

......... ...... r....r-.

r-..

""'r-.

0.5 0.7

1.0

2.0

3.0

S.O 7.0

10

).11, RATIO OF REVERSE TO FORWARD CURRENT

FIGURE 8- JUNCTION CAPACITANCE

FIGURE 9 - FORWARD RECOVERY TIME

1000

1.0

700

SOD

I'..

300

i

TJ -2S'C

>..

~ 5.0

I I I I

3.0

..........
..........

o

-rulJ
I I

10

~ 7.0

\

\

-rvv-·
--1.0

!

\ . TJ -2S'C

CURRENT INPUT WAVEFORM

20

FIGURE 1- REVERSE RECOVERY TIME
30

.......

......

].

TJ = 2S'C

~

!

200

iill

too
:.!

. ~ 70

0.7

~VF~I

0.5

rr-

0.3

~

t350

L.2
d

30
20

.

0.1

10
1.0

2.0

3.0

S.O

7.0

10

20

30

SO

70 100

V•• REVERSE VOLTAGE !VOlTS)

~ :sr~1~

TOSlIlt:~':'D.2°~/W
SllOOl~_

.L

~

-I~ .01D

/1IDI I Y
I-~_I....

:!../

.

. ....
~"'_HfAT
~
-I
I O.449·_O.OOIDl~

•• _

HEAT SIll MOUtmlll

INTIMATE
CONTACTARf.A

COIftETE KNURl '-...... TtII
CONTACT MEA
CtIQSIS

1_ tr.-I

----

I--- TJ - 2S'C

t

/

'.,/'

.--

...-

2.0

L
/

Vh

-----

1.0

-

V
V

3.0

./
vfr=lV

f.--Iv,,-2V

JI
S.O

--

1-"-1-

7.0

10

i, FORWARD PULSE CURRENT lAMPS)

MOUNTING PROCEDURES
MR322·MR331 and

lN3491-1N34~5

rectifiers are d,sianed to be press-fiued in a heat slRk. in

order to attain lull device ratinas. Recommended protedures for this type of mounting are as follows:
1. Drill a hole in lite heat sink 0.499 ± .001 Inch in diameter.
.
2. Break the hole edge as shown to prevent shearing oft' the knurled edae of the rectifier when it II
pressed into the hole.
.
3. The depth and width of the break should be 0.010 inch maximum to retain maximum beat sink
surface contact.
4. To prevent damaae to the rectifier durinl pre....in, the presslnl force shouid be applied only on
the shoulder rlnl of the rectifier case as ~wn in the "lUre.
5. The pressinl force should be applied evenly about the shoulder rinl to avoid tUtin. or cantina
of the rKtifier case in the hole durin. the pre....ln operation. Also, tbe use of a liaht industrial
lubricant will be of considerable aid.

. TJtII.CHASSIS IlllUIIIItII

'''::'54

1

N3580I A, Bthru 1N3583I A, B

For Specifications, See 1N2163 Data.

1N3649.1 N3650
Obsolete, discontinued types, replace with devices from the MRl120 series.

1N3659thru 1N3663 (SILICON)
Low-cost silicon rectifiers in hermetically sealed,
press-fit case, designed for operation under severe
environmental conditions. Cathode connected to case,
but available with reverse polarity by adding suffix
"R" to type number.

CASE 43
(00.21)

MAXIMUM RATINGS (TC = 2S oCuniess otherwise noted)
Rating
Peak Repetitive Reverse Voltage
DC Blocking Voltage

. Srmbol
VRM(rep)
VR

RMS Reverse Voltage

Vr

Average Half-Wave Rectified Forward Current with Resistive Load
@ 100°C case
@ 150°C case

10

Peak One Cycle SUrge Current
(150°C case temp, 60 Hz)

1113&59
11138591

1113&&0
1lila

11136&1
IN3&lill

1113&62
11136&2R

11136&3
lN36&3R

Units

50

100

200

300

400

Volts

35

70

140

210

280

Volts

IFM(surge)

30
25

Amp
Amp

400

Amp

Operating Junction Temperature

TJ

-65 to +175

°c

Storage Temperature

T stg

-65 to +200

°c

ELECTRICAL CHARACTERISTICS

IN_
lN3&59R

IN_
IN_R

1113&&1 11136&2
IN3&61R lN3&62R

lN3&&3
1113.

Unit

1.2

1.2

Volts

0.7

0.7

0.7

Volts

4.0

3.5

3.0

rnA

Characteristic

Symbol

Maximum Forward Voltage
at 25 Amp DC Forward Current

VF

1.2

1.2

1.2

Maximum Full Cycle Average
Forward Voltage Drop @ Rated
PlV and Current

VF(AV)

0.7

0.'1

~(AV)

5.0

4.5

Maximum Full Cycle Average
Reverse Current @ Rated PlV and
Current (as half-wave rectifier,
resistive load, 150°C)
Thermal Resistance

1.0

8JC
1-55

°C!W

1 N3659 thru 1N3663 (continued)
40

30

'"

35

r--...

1500 C
250

\

C

1

....... -5SO.C

\

\

,

o

o

V.V J
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

o

..

o

100

50

V,. fORWARD VOLTAGE (VOLTS)

150

\

200

T", CASE TEMPERATURE (OC)

1N3659-1N3663 rectifiers are designed for press-fitted mounting in a heat sink. Recommended
procedures for this type of mounting are as follows:
1. Drill a hole in the heat sink 0.499 ± .001 inch in diameter.
2. Break the hole edge as shown to prevent shearing off th.e knurled edge of the rectifier when it is pressed into the hole.
3. The depth of the break should be 0.010 inch maximum to retain maximum heat sink surface contact
with the knurled rectifier surface.
4. Width of the break should be 0.010 inch as shown.
These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier- heat
sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.
These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink
plate which is mounted. in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional.heat sink capacity.

TYPICAL THERMAL
RESISTANCE, CASE
TO SINK, fJ~s

=

O.2·C/W

RIVET

ADDITIONAL
HEAT SINK PLATE

COMPLETE
KNURL CONTACT
AREA

INTIMATE
CONTACT AREA

THIN CHASSIS

THIN·CHASSIS MOUNTING

1-56

N3675 thru 1N3703 (SILICON)

1

CASE 59
(00-41)

Recommended for applications requiring an exact replacement only.
For new designs and industry preferred replacement devices, see
IN4728 series.

1-57

N3785 thru 1N3820

1

Low silhouette single-ended package for printed circuit or socket mounting. Cathode connected to case.

CASE 55

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.
D C Power Dissipation: 1. 5 Watts at 25°C Ambient. (Derate 10 mW;oC).
The type numbers shown have a standard tolerance of ±20% on the zener voltage. Standard tolerances of ±10% and ±5% on individual units are also available
and are indicated by suffixing" A" for ±10% and "B" for ±5% units to the standard
type number.
ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)
VF

= 1.5 V max @ 300 mA

Max Zener Impedance

Type No.

Nominal
Zener Voltage @ I"
(V,) Volts

Test
Current
(I,,)

mA

1"@I" 1"@I"
ohms
ohms

Reverse leakage Current"

IZlI
mA

Max DC Zener
Current
(1,.) mA

I, Max
(ILA)

V"

V"

Typical
Zener
Voltage
Temp. Coef!.

%I'C

IN3785
IN3786
1N3787
1N3788
1N3789

6.8
7.5
8.2
9.1
10

55
50
46
41
37

2.7
3.0
3.5
4.0
5

700
700
700
700
700

1.0
0.5
0.5
0.5
0.25

195
175
155
140
125

150
75
50
25
10

5.2
5.7
6.2
6.9
7.6

4.9
5.4
5.9
6.6
7.2

.040
.045
.048
.051
.055

1N3790
1N3791
1N3792
1N3793
1N3794

11
12
13
15

34
31
29
25
23

6
7
8
10
11

700
700
700
700
700

0.25
0.25
0.25
0.25
0.25

115
105
98
85
80

5
5
5
5
5

8.4
9.1
9.9
11. 4
12.2

8.0
8.6
9.4
10.8
11. 5

.060
.065
.065
.070
.070

IN3795
1N3796
1N3797
IN3798
1N3799

18
20
22
24
27

21
19
17
16

14

13
15
16
17
20

750
750
750
750
750

0.25
0.25
0.25
0.25
0.25

70
62
56
51
46

5
5
5
5
5

13.7
15.2
16.7
18.2
20.6

13.0
14.4
15.8
17.3
19.4

.075
.075
.080
.080
.085

IN3800
1N3801
1N3802
IN3803
1N3804

30
33
36
39
43

12
11
10
10
9.0

25
30
35
40
45

1,000
1,000
1,000
1,000
1,500

0.25
0.25
0.25
0.25
0.25

41
38
35
31
28

5
5
5
5
5

22.8
25.1
27.4
29.7
32.7

21. 6
23.8
25.9
28. 1
31. 0

.085
.085
.085
.090
.090

1N3805
IN3806
1N3807
1N3808
IN3809

47
51
56
62
68

8.0
7.4
6.7
6.0
5.5

55
65
75
85
95

1,500
2,000
2,000
2,000
2,000

0.25
0.25
0.25
0.25
0.25

~

24
22
20
18

5
5
5
5
5

35.8
38.8
42.6
47.1
51. 7

33.8
36.6
40.3
44.6
49.0

.090
.090
.090
.090
.090

1N3810
1N3811
1N3812
IN3813
1N3814

75
82
91
100
110

5.0
4.5
4.1
3.7
3.4

110
130
150
200
300

2,000
3,000
3,000
3,000
4 000

0.25
0.25
0.25
0.25
0.25

16
14
13
12.0
11. 0

5
5
5
5
5

56.0
62.0
69.2
76.0
83.6

54.0
59.0
65.5
72.0
79.2

.090
.090
.090
.090
.095

1N3815
1N3816
IN3817
1N3818
IN3819
IN3820

120
130
150
160
180
200

3.1
2.9
2.5
2.3
2.1
1.9

350
400
700
750
800
1,000

4,500
5,000
6,000
6,500
7,000
8,000

0.25
0.25
0.25
0.25
0.25
0.25

10.5
9.0
8.0
8.0
7.0
6.0

5
5
5
5
5
5

91. 2
98.8
114.0
121. 8
137.0
152.0

86.4
93.6
108.0
115.0
130.0
144.0

.095
.095
.095
.095
.095
.100

16

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

1 - Nominal zener voltages between those shown.

2 - Matched sets: (S.tandard T:olerances a.re

±~.O%.

±.3:0%. ±2.0%. ±l.O%) depending on voltage per device.

a. Two or more Units for s~nes connection with speclf.le.d tolerance on tot~1 yoltage. Series matched sets make possible higher
zener voltages and prOVide lower temperature coeffiCIents. lower dynamIC Impedance and greater power handling ability.
b. Two or more units matched to one another with any specified tolerance.
3 - Tight voltage tolerances: 1.0%,2.0%,3.0%.

*VR1 - Test Voltage for 5% Tolerance Device. VR2 - Test Voltage for 10% Tolerance
Device. No Leakage Specified as 20% Tolerance Device.

1-58

N3821 thru 1N3830 (SILICON)

1

SERIES
(lM3.3AZ10 thru lM7.5AZ10)

lN3016 thru lN3051
SERIES
(1 M6.8Z thru 1 M200Z)
Desig'IH"I'S Data Sheet
1.0 WATT
ZENER REGULATOR DIODES

1.0 WATT METAL SILICON ZENER DIODES
a complete series of 1.0 Watt Zener Diodes with limits and
operating characteristics that reflect the superior capabilities of
silicon·oxide·passivated junctions. All this in an axial·lead, metal
package offering protection in all common environmental conditions.

3.3-200 VOLTS

• To 100 Watts Surge Rating@10ms
• Maximum Limits Guaranteed on Five Electrical Parameters
• Power Capability to MI L·S·19500 Specifications
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented.

Limit curves - representing boundaries on device characteris-

tics - are given to facilitate "worst case" design.

*MAXIMUM RATINGS
Rating

Symbol

Value

Unit

DC Power Dissipation@TA ~ 25°C
Derate above 25°C (See Figure 1)

PD

1.0
6.67

Watt
mWtOC

TJ.Tstg

-65 to +175

°c

Operating and Storage Junction
Temperature Range

Lead Temperature 230°C at a distance not less than 1/16" from the case for 10 seconds.

MECHANICAL CHARACTERISTICS
~O.215MAXOIA

CASE: Welded. hermetically sealed metal and glass.
DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion-resistant and leads are readily solderable
and weldable.
POLARITY: Cathode connected to the case. When operated in zener mode, cathode will
be positive with respect to anode.
WEIGHT: 1.4 Grams (approx)
MOUNTING POSITION: Any

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
2.0

o

~~

1.2

i5

'"w

"-.. ~
31;::'- ::::--..
~
...........

~ 0.8

."'"
.'"x

~

ll= lEAJ lENG+HTO HEAT SINK

",1118"

z

to"

1'-..,
..........

........... 1--.

I"::-

r---... ~

0.4

~~

.......

0

o

20

40

r--

60

80

100

120

140

TL.lEAD TEMPERATURE (OCI

""

160

AIIJEDECdimeniionsandnotesapply

180

200
CASE 52
00·13

• Indicates JEDEC Registered Data.

1-59

1N3821 thru 1N3830, 1N3016thru 1N3051 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25 0 C unless otherwise noted)
VF = 1.5 V max @ IF = 200 mA for all types
*Nominal

JEDEC

Zen.r Voltage

*Test

Type No.

Current

(Flangeloss)

VZ@IZT
Volts

(Note 1 8< 2)

INote3)

IZT
mA

*Max Zener I mpeciance

Max Reverse Current

(Note 4)

(Note 5)

ZZT@IZT
Ohms

ZZK@IZK
Ohms

IZK
mA

IR Max

VRI

(~A)

5%

·,00

·'.0
'1.0

VR2

·Max DC Zener
Current
IZMmA

10%

(NoIoS)

1.0
1.0
1.0
1.0

276
252
238
213

3.3
3.6
3.9
4.3

76
69
64
.8

10
10
9.0
9.0

400
400
400

1.0
1.0
1.0
1.0

4.7
5.1
5.6
6.2

'3
49
45
41

8.0
7.0
5.0
2.0

500
550
600
700

1.0
1.0
1.0
1.0

'10
'10
'10
'10

"1.0
·1.0
·2.0
·3.0

1.0
1.0
2.0
3.0

194
178
162
146

tN3B30

6.S'
7.5

37
34

1.5
1.5

500
250

1.0
1.0

'10
'10

·3.0
·3.0

3.0
3.0

133
121

lN30l6
1N3017

6.8
7.'

37
34

3.'
4.0

700
700

a.•

1.0

10
10

'.2
'.7

4.'
5.4

140
125

1N30tS
lN3Gt9
1N3020
1N302t

8.2
9.1
10
11

31
28
25
23

4.5
'.0
7.0
8.0

700
700
700
700

0.5

0.25
0.25

10
7.5
5.0
'.0

6.2
6.9
7.6
8.'

5.9
6.6
7.2
8.0

115
10.
95
85

lNJQ22
lN3023
lN3024
lN3025

12
13

21
19
17

2.0
1.0
1.0
1.0

9.1
9.9
11.4

15.5

700
700
700
700

0,25

16

9.0
10
1.
16

8.6
9.4
10.8
11.5

80
74
63
60

lN3026
lN3027

18
20
22
24

14

750
750
750
750

0.25

a.•
a.•

11.5
10.5

20
22
23
25

13.7
15.2
16.7
18.2

13.0
14.4
15.8

'2
47
43
40

9.5
8.5
7.'
7.0

35
40
45
50

750
1000

0.25

lN3032
lN3033

27
30
33
36

1N3034
1N3035
1N3036
lN3037

39
43
47
51

6.5
6.0
5.5
5.0

60
70
80
95

lN3038
1N3039
1N3D40
1N3041

56
62
68
75

4.5
4.0
3.7
3.3

lN3042
1N3043
lN3044
lN3D45
lN3046

82
91
100
110
120

lN3047
lN3048
1N3049
1N3050
1N3051

130
150
160
180
200

lN3821

lN3822
lN3823
lN3824

lN3B25
1N3B26

lN3827
1N3828

lN3829

"

1N3Q28

lN3029
1N3030
lN3D3t

12.5

400

·tOO
,.0
'10

a.•

0.25
0.25
0.25
0.25

0.25
0.25

O.S

a .•

·'.0
*1.0

...

12.2

17.3

25.1
27.4

21.6
23.8
25.9

34
31
28
26

a .•
a .•

0.5

29.7
32.7
35.8
38.8

28.1
31.0
33.8
36.7

23
21
19
18

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

42.6
47.1
51.7
56.0

40.3
44.6
49.0
54.0

17
15
14
12

3000
3000
3000
'000
4500

0.25
0.25
0.25
0.25
0.25

a .•

62.2
69.2
76.0
83.6
91.2

59.0
65.5
72.0
79.2
86.4

11
10
9.0
8.3
8.0

5000
6000
6500
7000
8000

0.25
0.25
0.25
0.25
0.25

0.5

98.8
114.0
121.6
136.8
152.0

93.6
108.0
115.2
129.6
144.0

6.9
5.7
5.4
4.9
4.6

1000

0.25
0.25

1000

0.25

1000
1500
1500
1500

0.25
0.25
0.25
0.25

110
125
150
175

2000
2000
2000
2000

3.0
2.8
2.5
2.3
2.0

200
250
350
450
550

1.9
1.7
1.6
1.4
1.2

700
1000
1100
1200
1500

0.5
0.5
0.5

a .•
a .•

0.5
0.5
0.5
0.5

a.•
a.•
0.5
0.5

20.6
22.S

19.4

"JEDEC Registered Data on lN3821 thru 1N3830and 1N3016 thru lN3051

NOTE 1 - TOLERANCE AND TYPE NUMBER DESIGNATION
(B) MATCHED SETS: (Standard To)erances are ±5.0%. ±2.0%.
±1.0%).

1N3821 thru 1N3830 - The JEDEC type numbers shown have a

st3'1dard tolerance for the nominal zener voltage of ±10%. A
standard tolerance of ±5% for individual units is also available and

Zener diodes are available in sets consisting' of two or more

is indicated by adding suffix "A" to the standard type number.

matched devices. The method for specifying matched sets
is similar to the one desc;ribed in (A) except that two addi-

1N3016 thru 1N3051 - The JEDEC type numbers shown have a
standard tolerance of ±20% for the nomina) zener voltage. Suffix
"A" for ±10% units or "B" for ±5% units.

tional suffixes are added to the code number described.
These devices are marked with code letters to identify the
matched sets and, in addition, each unit in a set is marked
with the same serial number. which is different for each

NOTE 2 - SPECIALS AVAILABLE INCLUDE:

set ordered.

(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLTAGES SHOWN AND TIGHTER VOLTAGE TOLERANCES: To designate units with zener voltages other than

those assigned JEDEC numbers and/or tight v,oltage tolerances (±3%. ±2%. ± 1%1. the Motorola type number should
be used.
5.1
A
Z
3
1
M
Device

Description

J

T

T

Motorola

T

T

Zener

Tolerance

Voltage

Diode

(±%)

Te

A

5

T

I
B

lNJ;21
Ove:':1
thru
Tolerance
Tolerance
lN3830 per device
of set (±1%)
Motorola
only ±5% (omit for
±20% units)
Code
A - Not used
EXAMPLE lM51Z5Bl
B - Two devices in series

Desc~~~ion

T

Nominal 1N3821
thru
1N3830
only

D

T;;;r;;;;
M51

1

(each device)

C - Three devices in series
Four devices in series

o-

EXAMPLE 1M5_1AZ3

1-60

1N3821 thru 1N3830, 1N3016thru 1N3051 (continued)

APPLICATION NOTE
(C) ZENER CLiPPE RS: (Standard Tolerance±10% and ±5%).

Since the actual voltage available from a given zener diode is
temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate
its value. The following procedure is recommended:

Special clipper diodes with opposing Zener junctions built
into the device are available by using the following nomenclature:

1

M

1

T

Motorola

7.5

A

T

T

Z

Z

T

Lead Temperature. TL. should be determined from:

10

Zener
cJperT
Diodes
lN3821
T clerance for each of

Device

Nominal

thru

Description

Voltage

lN3830

(not a matching require-

only

Example:

LA is the lead-to-ambient thermal resistance (oC/W) and
Po is the power dissipation. The value for () LA will vary
and depends on the device mounting method. ()LA is gen·
erally 30-40 0 C/W for the various clips and tie points in
common use and for printed circuit board wiring.

(J

the two Zener voltages
ment)
1M7.5AZZ10

NOTE 3 - ZENER VOLTAGE (VZ) MEASUREMENT

Motorola guarantees the zener voltage when measured at 90

seconds while maintaining the lead temperature (TLl at 30De ± ,oC,

3/8" from the diode body.

The temperature of the lead can also be measured using a thermo·
couple placed on the lead as close as possible to the tie point. The
thermal mass connected to the tie point is normally large enough
so that it will not significantly respond to heat surges generated in
the diode as a result of pulsed operation once steady· state conditions are achieved. Using the measured value of TL' the junction
temperature may be determined by:

NOTE 4 - ZENER IMPEDANCE (ZZ) DERIVATION
The zener impedance is derived from the 60 cycle ae voltage,
which results when an ae current having an rms value equal to 10%

~T JL is the increase in junction temperature above the lead
temperature and may be found from Figure 6 for a train of
power pulses (L "" 3/8 inch) or from Figure 7 for dc power.

ofthe dc zener current (I ZT or IZK) is superimposed on IZT or I ZK.
NOTE 5 - REVERSE LEAKAGE CURRENT IR
Reverse leakage currents are guaranteed only for 5% and 10%
zener diodes and are measured at VR as shown in the Electrical
Characteristics Table.

For worst-case design. using expected limits of IZ. limits of P D
and the extremes of T J(a T J) may be estimated. Changes in voltage.
VZ. can then be found from:

NOTE 6 - MAXIMUM ZENER CURRENT RATINGS (lZM)

lN3821 thru lN3830 - Maximum zener current ratings are based
on maximum voltage of 10% tolerance units.

lN3016 thru lN3051 - Maximum zener current ratings are based
on maximum voltage of 5% tolerance units.

NOTE 7 - SURGE CURRENT

li r )

Surge current is specified as the maximum allowable peak, nonrecurrent square-wave current with a specified pulse width, PW.
The data presented in Figures 8 and 9 may be used to find the
maximum surge current for a square wave of any pulse width

between 0.01 ms and 1000 ms.

8 VZ • the zener voltage temperature coefficient. is found from
Figures 2 and 3.
Under high power-pulse operation. the zener voltage will vary
with time and may also be affected significantly by the zener resistance. For best regulation. keep current excursions as low as possible.
Data of Figure 6 should not be used to compute surge capability.
Surge limitations are given in Figure 8. They are lower than would
be expected by considering only junction temperature. as current
crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 8
be exceeded.

1-61

lN3821 thru lN3830, lN3016thru lN3051 (continued)

TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION
(90% OF THE UNITS ARE IN THE RANGES INDICATED)
FIGURE 3 - TEMPERATURE COEFFICIENT-RANGE
FOR UNITS 10 TO 220 VOLTS

FIGURE 2 - TEMPERATURE COEFFICIENT-RANGE
FOR UNITS TO 12 VOLTS

.t:;

8.0

@

7.0

~ 6.0
f-

t .. V

5.0

~ 3.0

8

2.0

'"a::=>

1.0

/
/

'"
~

-1.0

f-

-2.0

;;? -3.0
~

[7

.s:>

./

!---'

....-/

V

70

./

u:
t:J

50

8
'"
~

7
./
1/ ,/

30

~

U

./ T
RANGE

/

~

>;;
5.0

6.0

7.0

8.0

9.0

10

a

12

II

10

/1

W

~

W

W

FIGURE 4 - TYPICAL VOLTAGE REGULATION
in

~ 7. a

7'

5. a

~ 3. O~

17 - -

IZ = 0.1 IZM to 0.5 IZM ---

; 2. a
o
>

./v

"'

~ 1. a
N

~

--

O. 7
O. 5

-.~

0.3

'"uN

0.2

?

---

./

to

~

/

\

\

o. I
2.0

3.0

5.0

~
10

20

30

50

lOa

200

VZ, ZENER VOLTAGE AT IZT (VOLTS)

FIGURE 5 - MAXIMUM REVERSE LEAKAGE
(95% OF THE UNITS ARE BELOW THE VALUES SHOWN)
lOa
50

100

IW

I~

Vz, ZENER VOLTAGE@IZT(VOLTS)

a
o

RANGE

rl

Vz, ZENER VOL TAGE @ IZT (VOLTS)

2:

./

1//

"-

N

4.0

F

(ODES NOT INCLUDE lN3828, lN3829, AND lN38301

TA=125 0 C_

I'\.
TA - 25 0 C

0.1
3.0

5.0

30

10

NOMINAL Vz (VOLTS)

1-62

I-- r::::.-

V

/ /

~
w

./

3.0

lOa

>-

1/ /

f-

;'?

./

/

1---~ ...........--

~

-

........

~ 4.0

U

200

@

V

I

:>

.s

E.J

V

50

lOa

ISO 200

IW

IW

B

1N3821 thru 1N3830, 1N3016thru 1N3051

(continued)

FIGURE 6 - TYPICAL THERMAL RESPONSE L, LEAD LENGTH

= 3/8 INCH

100

=

D .O.~
"..,..

-

-

0=0.2

-

-

0-0.1

= =
-

0=

1.0

-

0=0.05

DUTY CYCLE. 0 = I1/t2
SINGLE PULSE LlTJL OJLIt)PPK
REPETITIVE PULSESLlTJL -OJL(t. D)PPK

0 0.02

--

om
0.01

r-SLIL
PPK

:
~:
~tl
:

~t2~

NOTE: Below 0.1 Second, Thermal
Response Curve is Applicable
to any Lead Length (Ll.

StGi E rUi SE

-tT
0.003 0.005

.....

I

II II

0.03

0.05

0.1

0.3

0.5

II II
3.0

1.0

5.0

10

t. TIME (SECONDS)

FIGURE 7 - TYPICAL THERMAL RESISTANCE
~

140

z

~
~

130

-'
«

:E

ffi

120

"':;5

~e..
-' 110

,/

/'

/

/"

./

V

100

90

/"

~

PRIMARY PATH OF I
CONDUCTION IS THROUGH
THE CATHODE LEAD

6
>:z

'"t;
z
;:;
~

I

/'

V

/'
1/8

112

3/8

1/4

5/8

3/4

118

1.0

L. LEAD LENGTH TO HEAT SINK (INCH)

FIGURE 8 - MAXIMUM NON·REPETITIVE SURGE CURRENT
4000
3000
OIFFUSEO JUNCTION
DEVICE

g2000

.L

~
::!i
~

::; 1000
~
~ 800

~

SUUAR E WAVE PU LSE:
PULSE WIDTH = 0.01 ms
DUTY CYCLE = 0%
lL = 50°C ±20C@3/8"

..........

600

I

-

I

"ALLOly JUNICTIOIN riEJldE
400
2.0

3.0

5.0

7.0

10

-I

T -I Tff

20

30

50

VZ.ZENER VOLTAGE (VOLTS)

1-63

70

100

200

30

50

100

I
200

lN3821 thru lN3830, lN3016 thru lN3051 (continued)

FIGURE 9 - SURGE POWER FACTOR
1.0
MUL TlPL Y NORMALIZEIl POWER FACTOR TIMES FIGURE~;.t
SURGE POWER POINTFOR VOLTAGE IN OUESTION, TO OBTAIN
SURGE CAPABILITY AT OIFFERENTPULSE WIDTHS AND DUTY
CYCLES. THE 1.0 X REFERENCE POINT IS 0.01 m,ATO% OUTY
CYCLE.

0.7
0.5

~D=O

.......

0.3

t'"

0.2

:l:
ffi

O. 1

~

0.07

r--

r--

0.02

::J

I--

'"

t---

0.05

~ 0.01
o
Z

......

~

~ 0.03

ffi

r-

r--........

~ 0.05

N

r-..

0.007
0.005

0.1

0.003

0.2

r-.

-

r---

r-

--

0.002
0.001

0.01

0.03

0.05 0.07 0.1

0.3

0.5 0.7

1.0

3.0

5.0 7.0

10

30

50

saUAREWAVE PULSEWIOTH (m,)

FIGURE 10 - TYPICAL CAPACITANCE
10,000
5000

...

~

w
'-'

z

2000
1000

'"

500

«>~ ~ 5.0

q---------

o

2.0 - 5.0

~z

~ ~ 4.01--+--tf--r-xr--t---+--t---t------1

0

~~
> ~ 3.0f--+-+y.,.y.+--t--+--+---f----j

0

2.0

h

0

3.0
2.0
4.0
5.0
6.0
7.0
IFIAV), AVERAGE FORWARD CURRENT lAMP)

:/W

8.0

1.0

FIGURE 6 - CURRENT DERATING

'"

~ 7.0
~

-

~

~

3.0 - ,

.-

-

o

~>

«

2.0

:; 1.0

«
u:

----

'"

f----

:0. 7.0

/ RESISTIVE LOAO

i--

'"
«

~
----

_.- ---_.
- ._-

--

i

"'

-_.-.

----+----"/ CAPACITIVE LOAD

--

/

W

2.0
3.0
4.0
5.0
6.0
7.0
IFIAV), AVERAGE FORWARD CURRENT lAMP)

8.0

80

120
90
100
110
TC, CASE TEMPERATURE 1°C)

~

w

'";i
w

~~

130

5.0

r-

>
«

"

140

"'"

f-

~~

~

..........""" ~'

)--

4.0

-

o

20

o I-.J
o

6.0

'"

~

~~
~~

-

0:

«
'"

10

~

~

oo
~

~L~o.
......... ~IIAV)

-----

--

'/

0:
)-- ----

6. 0 -

5. 0 -

J

----I[L~

8.0 0 -

4. 0 -

oo
'-'
o

de

~

FIGURE 7 - CURRENT DERATING

0: 8. 0 -

:0.

L

/~ ~

""'.0

E

J / //

1

0-

:;

IJ / /

oc- CAPALTIVE LiOAOS

7.0

0:

3.0 -

/-CAPACITIVE
LOA OS
IIPK) _
IIAV) - 2.0;5.0

------------~O--------- ----

2.0 --j ) - - _ ,10 -----

:;: 1.0 -

«

~

150

o' o

80

90

"

~ ~"

----

~~
~~

100
110
120
130
TC, CASE TEMPERATURE 1°C)

140

"

150

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT
10 1

-

-

=

VR - 100 V

./

V

V
1

/'
100

500
200
300
400
VR, REVERSE VOLTAGE IVOLTS)

600

10-2 V
20 30

700

40

50

60

70

80

90 100 110 120 130 140 150 160

TJ, JUNCTION TEMPERATURE 10C)

1-67

lN3879 thru lN3883, MR1366

(continued)

TYPICAL DYNAMIC CHARACTERISTICS
F.IGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
10 0

10

f----

I

7. o

~

f---------3.of----------

~

2. 0

w

>-

TJ 25°C

"ff+-

~ 5.01

I-tfr

Vfr

V-

>

§
~

1.0

~

o. 7

~

o. 5

5: o. 3
i: o.

2~

o. 1
1.0

II'

0

1.1 V

0

- -.

TJ ~ 25°C

f-...

...........

r"'--t--.

Vir

0

i

.-V
I0

2.0

5.0
10
20
'F. FORWARD CURRENT lAMP) ..

50

1.0

100

2.0

5.0
10
20
VR. REVERSE VOLTAGE IVOLTS)

TYPICAL RECOVERED STORED CHARGE DATA
(SEE NOTE 2)
FIGURE 13 - T J

FIGURE 12 - T J = 2SoC

r. 0
IFM

~

w

' / 17

....-

~~

o

t;; o. I

~

IFM' 20

1. 0

~

I'\.""-

5~ o.2

r

20 A

~

40 A

~ o. 5

~
13
o

[/1.-

V

5

~ 0.0
0.0

.~

<:::::

~ ~ i--'

:~ v.-

LO

-,

./ 1/

./ V

~

10 A

o. 2

10
5.0

2.0

I

o. 1

0 t>

_

0.0 5

50

lOA

0.0 2
10

100

1.0 A

~ ~i--'
2.0

5.0

1/

~k

o. 1

~

v

c: 0.0 5

0.0 2

1·0

:'0 A

Jae /
2.0

5.0

10

100

i--'

~

w

>

~_

20

"l
50

....-

/'

o. 2

dildt.IAMP/ps)

j..
i)OA-

10 A
0.0 5

....-/.

2.0

1.0 A

-'

~~

5.0

10

di/dt IAMP/"s)

1~68

.-< v
P<

~ fY

.1

0.0 2
10

100

1/],..

o. 5

w

5.0:A---t
~v

CJ

IFM~4JA

1. 0

o

lOA

§.

'"

~

/' V v[,...

~ o. 2

~

g~

Ix
1/

~

3w

-

40 A

g~ o.5

>

2. 0

IF~ ~ 20lA

1. 0

50

FIGURE 15 - T J = 150°C

FIGURE 14 - T J = 100°C

3.
w

20

10

di/dt.IAMP/"s)

di/dt (AMP/J.ls)

2. 0

V v
V
"'- I...-V~
5.0A

~

20

10

~

~

5.UA

'\

1

O.5

o

o

100

40 A

w

~

50

= 7SoC

2. 0

3

~

r-.....

20

50

100

lN3879 thru lN3883, MR1366 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT

115 Vac
60 Hz

RI

10 k
ZW

A - TEKTRONIX 545A, K PLUG IN
PRE-AMP, P6000 PROBE OR EQUIVALENT

30U
50W
NON-INDUCTIVE

3U
Z5W

RI - ADJUSTED FOR 1.4 UBETWEEN
POINT Z OF RELAY AND RECTIFIER

UNIT
UNDER TEST

INDUCTANCE~38~H

n.

RZ - TEN-I W, 10
1% CARBON CORE
IN PARALLEL

A

TA" Z5
RZ
IU
lOW
NON-INDUCTIVE

~1~oC FOR

RECTIFIER

MINIMIZE ALL LEAD LENGTHS

30 Vdc
CI
1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
CONSTANT VOLTAGE
LO"F
RIPPLE" 3 mVrms MAX
SUPPLYo-+_ _4 _ _ _ _---<~-----.3~00-V_4_-_0- Zout" Il>UMAX,OCtoZ kHz

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI "50 Ohms
RZ" Z50 Ohms
01 "IN4723
DZ" IN4001
03" IN4933
SCRI "MCR729-10

LI
di/dt ADJUST

T1

v 3 : ) c ,ll,

IZO
60 Hz

CI"O_5to50~F

CZ • 4000 ~F
L1 " 1.0 - Z7 ~H
T1 = Variac Adjusts I(PK) and di/dt
TZ" 1:1
T3 = 1:1 (to trigger circuit)

CI

03

om

'IPK) ADJUST

1:1
OZ

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passesthru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of alt Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A, VR = 30 V. In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 25°C, 750 C, 100o C, and

dUdt

IRMIREC)+------"L

From stored charge curves versus di/dt, recovery time (t rr )
and peak reverse recovery current (IRMIREC)) can be closely
approxi'mated using the following formulas:

ISo"C_
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse re·
covery test current waveform for all Motorola fast recovery
rectifiers is shown.

Q

j

trr = 1.41 x [ -~

1/2

di/dt

'RMIREC) = 1.41 x [QR x di/dt] 112

1-69

1N3879 thru 1N3883, MR1366

(continued)

NOTE 3

A/

~

MICA W.ASHERS
560
195
.002

--x-x.570
.200
.003

~

~
o

CASE TEMPERATURE
REFERENCE POINT

NYLON BUSHING

.276 , ' 9 0 ,
,286
.195

.041.
.051

FLATWASHER

~
o
m

Steel, Electro-deposited zinc plate

.490

.215

x

m

.030
x .050

INSULATING HARDWARE KIT
AVAILABLE UPON REQUEST

10

195~ SOLDER TERMINAL

200

/

Copper, Electro-deposited tin

10 065~
095

~

~

plate
.885 x .425 x .020
.915
.455
023
LOCK WASHER
$teel, Electro-deposited zinc
plate,lnternal tooth

.370 x .~ x .020
.381
.204
.025

~
~

NUT
1018 Steel, Electro-deposited zinc
plate,10-32NF-2-8

.362 Nom. across flats
375
. ~ Thick

7/16 STUD (MH 745)

CASE TO HEAT SINK THERMAL RESISTANCE
UNDER VARIOUS CONDITIONS:

Torque:

15 in-Ibs

1-70

::~~

across points

N3889 thru 1N3893
MR1376

1

De!Sig'ner!S

Data Sheet
FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
12 AMPERES

.. designed for special applications such as de power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 100 nanoseconds providing high efficiency
at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions
The Designers

Data sheets permit the design of most circuits entirely from the

information presented. limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

'MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage

VRWM

DC Blocking Voltage

lN3889

lN3B90

lN3891

lN3892

50

100

200

300

400

600

75

150

250

350

450

650

Volts

35

70

140

210

280

420

Volts

lN3893 MR1376 Unit
Volts

VR

Non-Repetitive Peak Reverse
Voltage

VRSM

RMS Reverse Voltage
Average Rectified Forward
Current (Single phase, resistive
load, T C =' 100°C)

Amps

12

Non-Repetitive Peak Surge
Current (Surge applied at
rated load conditions)

Amp

200
(one cycle)

Operating Junction Temperature
Range
Storage Temperature Range

T stg

-65 to +150

°c

-65 to +175

°c

THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction to Case

'ELECTRICAL CHARACTERISTICS
Characleristic

Symbol

I nstantaneous Forward Voltage
(IF =' 38 Amp, TJ = 1500 C)

Forward Voltage
(IF"" 12 Amp, TC = 25°C)
Reverse Current (rated dc voltage)

Min

TyO

M..

1.2

1.5

1.0

1.4

10
0.5

15
1.0

"A
mA

Typ

M..

Unil

100
200

200
400

Volts

VF

TC-250C
TC = 100°C

Unil
Volts

vF

'R

"DimenSion isa diameter
All JEOEC dimensions and notes apply

CASE 568
00·4

MECHANICAL CHARACTERISTICS

'REVERSE RECOVERY CHARACTERISTICS
Characleristic
Reverse Recovery Time
OF = 1.0 Amp to VR = 30 Vdc, Figure l6}
ilFM = 36 Amp, di/dt = 25 AlilS, Figure 17)

Symbol

Reverse Recovery Current
(IF = 1.0 Amp to VR =30Vdc, Figure 16)

IRM{REC)!

t"

Min

I

FINISH: All external surfaces corrosion
resistant and readily solderable
Amp

-

2.0

"'Indicates JEOEC Registered Data for 1N3889 Series_

1-71

CASE: Welded, hermetically sealed

POLARITY: Cathode to Case

WEIGHT: 5.6 grams (approximately)

lN3889 thru lN3893, MR1376 (continued)

FIGURE 2 - M'AXl'iI/IUMSURGE CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
300

100 ...........

200

TJ' 250;"-

70

.....-

30

0

I

20

~

I.

J'.",

r'L

1\

II I
2.0

3.0

5.0
10
20
30
NUMBER OF CYCLES AT 60 Hz

50

100

NOTE 1

FLIT

I

5.0

PPk

I

~
.~ 3.0

Ppk

tp_

I

~

.

TIME

I------tl~

DUTY CYCLE, IJ '" Ip/t]
PE.AKPDWER,Ppk,ispeakofan
eqUlvalenl square power pulSt!:

To determiAe maximum junction temperature of the diode 10 a given situation,
Ihe tollowingprocedure is recommended.

2.0

The temperature 01 the case should be measured,uslOg a Ihermocoupleplaced
on the case at the temperature reference pOint (see Note 3). The thermal mass
connected to the case is normally large enough so Ihaillwili not significantly
respond to heat surges generated In the dlodeasa result of pulsed opera lion once
steady·stateconditionsareachfeved. Using the measured value 01 TC. thejun~tion
temperature may bedetermmed by:

1.0
0.7

TJ=TC+ TJC
where TJC is the increase m junction temperature above the "case temperature.
It maybe determined by
t, TJC = Ppk· ·ROJC [0 + 0- DJ . r(1j +tpJ +r(tp) . r(1111
where
r(l) '" normalized value of transient thermal resistance at time, t,from Figure
3,i.e:
r (Ij + tpJ" normalized lIalue of transient therm~1 resistance at lime II' Ip

0.5
0.3
0.4

1-..---1..1 CYCLE

0
1.0

7.0

z

~

1\

0-

#

10

'"

0-

0

J

~

~

"

0

u

I I

is operated such that TJ = 150 o C;
VRRM may be applied between
each cycle of surge.

i'

0

1/.
LV

:;;

::::>
~

~riort~ surgl" t~, ~8Ctij\ar)

.......

./

li:

~

V

TJ'1500 C

50

.,::::>

--

.....

.....- .....-

100

s....

o

0.8
1.2
1.6
2.0
2.4
2.8
VF, INSTANTANEOUS FORWAilD VOLTAGE (VOLTS)

3.2

FIGURE 3 - THERMAL RESPONSE
1.0

~

.... ::;

0.5

-

~:i 0.3
2 0 0.2

"''''
~~
.... w

w.,
~~ 0.1

t::~

t5 ~ 0.05

-;jet
'i::'~ 0.03
~

....

V

0.02

• 0.0 1
0.001 0.002

0.005

0.D1

0.02

0.05

0.1

0.2

0.5

1.0

5.0
2.0
TIME (m,)

t,

1-72

10

20

50

100

200

500

1000

2000

5000 10.000

lN3889 thru lN3893, MR1376

(continued)

SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION
20

20

r

clpAc!TlVJ Lolos
1(PK)=20
I(AV)

r- r-

clPAc, T,vJ
IIPK) = 20_T
6IIAV)
-.......

V

17 V
1.10
I~
V ./ './
5.0
rx /'1/V-

. / RESISTIVE-_ rINOUCTIVE
LOAD

r-

,

14

12
6.0
8.0
10
4.0
IF(AV). AVERAGE FORWARO CURRENT (AMP)

~

o
o

~
~

....

13
~

..

~
~
w

'"
ffi
>

'":;;
~

"f'<

H

10

I-

F
6.0 F

8.0

..........

I-

f"...>'
.........

r-....-......:::..
__

f4.0 ff-

....

.......... ~
~

~

20

~
~

.'"
.

~,

100
110
120
130
TC. CASE TEMPERATURE 1°C)

~

140

........

--1
10

10

12

14

-

CAPACITIVE LOAD?:.- ~,
IIPK) = 2.0.5.0/ " ~,
I- f-IIAV)
,/"

'-

:;;

2.0 --,

u::
"

"'

I-

-j

4. 0--1

" .>..."
-:> ~

r

8. O.....,

de

"-

-"'" ................ '\."-

-

~

>

""'"1"'90

I'\.

=:l

~ 6.0 w

I--

I'--...~

80

8.0

-

2=1

'"'

I--

~_i-"""" 10

I-

o

~

CAPACITIVE LOAOS
I(PK)
F-50
I--IIAV)

2.0 I-

o:--'

14

~

"
r--....

6.0

FIGURE 7 - CURRENT DERATING

RksISTIV~ LOAD

........
......... .........

F

4.0

IFIAV). AVERAGE FORWARD CURRENT lAMP)

D:'

12 ~

/'

...... V'de

~ ~P"

2.0

FIGURE 6 - CURRENT DERATING
14

./

./

/ ./ ~ V
./~ ~

~V

2.0

/

1-/
l/
lI- ~ /. V
/ ./ ~

2

~~

o

1/

"- II
10
1
r--I.
2.0-5.0 __
I

/ / %: V

o ~ 'flIP

LO~OS

i

-

I"\,

10
20/
1

-j
0:-,
80

150

90

"\.

...... ~"\.

100

110

120

130

..........~

'",,

lo."

140

150

TC. CASE TEMPERATURE 10C)

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT
101

==

~
N
:::;

I

::i

VR=100V

V

100

'"o

!'O
I-

/

Z

~ 10- 1

w

'"
'"

::>

~

'w"'
'"'"~

f=~

'" 10 1

w

t=F<;
100

V

!E

I

,nO

10:- 2

0:

I
200

I

10- 31
300

400

500

600

20

70

30

40

I
50

60

I
70

80

90 100 110 120 130 140 150 160

TJ.JUNCTION TEMPERATURE (OC)

VR. REVERSE VOLTAGE (VOLTS)

1-73

1N3889 thru 1N3893, MR1376 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FleURE1U -FORWARD RECOVERY TIME

FIGURE 11 - JUNCTION CAPACITANCE .

0

100

I

7.o

~ 5. 01

I---

w

~

3.0 1 - - -

~
>
o

2.0

~

a:
o
a:

~

1.0
O.7
O. 5

~

0.3

~

,.. 0.2

TJ - 25 0 C

v~
!--tfr

lIfr

~

V

-

.TJ = 25 0 C

~

r-....

50

w

V

<.>

~

1.1 V

' " Vfr

C3

........ .....

-I'--

30

;,:
;3

rJ

---

O. 1
1.0

20

..... I--"'"
2.0

5.0
10
20
'F. FORWARD CURRENT (AMP)

50

10
1.0

100

2.0

10
20
VR. REVERSE VOLTAGE. (VOLTS)

50

100

TYPICAL RECOVERED STORED CHARGE DATA
(See Note 21

FIGURE 12 - T J - 25°C
1.0

=20 A

IfM
.3
w

3.
w

40 A

0.5

~

I 'v-"

«

13

,/

~ o. 1

o
t;)

V

~ ~ V"

0. 1

V ..

~

a:

~

L'"

"-

~

g 0:0
0.0

~IP'~

'\

:~V
1.0

lOA

5.0

10

10

./ /'
,/

O. 1

a::

O.Q5

'"

/" V

0.2

~
~~

50

100

0.01
1.0

1.0

FIGURE 14 - T J = 100°C

IfL
1. 0

5 o.5

101~

/ .0- "/'....,

~ 0.2

~

~ <'

O. 1

......

5.0

~ 0.05

~

~

'"w

0.01
1.0

~~
1.0

5.0

10

./

.7

100

50

100

di/dt. (AMP/",)

~_

0.0 5

,/

,,(V

'"
'20 A

10'A
1.0 A

'/h
0.0 1
1.0

~ P'"
1.0

5.0

10
di/dt IAMP/",)

1-74

V'"

~ ts; P<

d

I\A
10

50

IFM=JA

O. 1
O. 1

'"

)

......

20

O. 5

~

>

5.0 A

~~

d

10
dr/dt.IAMP/",)

1. 0

'"a:w

lOA

8

'"

.3
w
'"a:
~

w

>

;'

",

o

a:

1.0 A

1. 0

40 A

~

lOA"

FIGURE 15- TJ = 150°C

2. 0

w

"'- ...... ~

~ ~....-

dild! IAMP/",)

.3

c>

~

",.-

5.0 A

d

I

2.0

40 A

~
>

§

5.0 A,
1.0 A-'

1

0.5

~

~

'"w

0.05

IfJ = 10

1.0

~

V

~
~

FIGURE 13 - TJ = 75°C
1.0

10

50

100

lN3889 thru lN3893, MR1376 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT

115 Vat
SO Hz

10 k
ZW

A - TEKTRONIX 545A, K PLUG IN
PRE-AMP, PSOOO PROBE OR EGUIVALENT

30n
50W
NON-INDUCTIVE

RI
3n
Z5W

RI - ADJUSTED FOR L4nBETWEEN
POINT Z OF RELAY AND RECTIFIER

UNIT
UNDER TEST

INOUCTANCE~38~H

~----t n MAX, OC to Z kHz

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI = 50 Ohms
T1
RZ = Z50 Ohms
01 = IN4723
02 = IN4001
03 = IN4933
SO Hz
SCRI = MCR729-1O
CI =0_5to 50~F
CZ ~ 4000 ~F
L1 = 1.0 - Z1 ~H
TI = Variac Adjusts IIPK) and di/dt
TZ =1:1
T3 = 1:1 (to trigger circuit)

L1
di/dt ADJUST

Izo?tJvc TIZ

03

I

CI

IIPK) ADJUST

OUT.

1:1
OZ

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the

di/dt

time that the current, thru a previously forward biased rectifier

diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A. VR = 30 V_ In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2So C. 7So C. locPC. and

IRM(REC)+-----'''-

From stored charge curves versus di/dt, recovery time (trr)
and peak reverse recovery current II RMIREC)) can be closely
approximated using the following formulas:

15o"C,
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

trr

= 1,41

0

~

x [ _R_
di/dt

1/2

IRMIREC) = 1,41 x [OR x di/dtJ 112

1-75

lN3889 thru lN3893, MR1376 (continued)

NOTE 3

A
V
M. leA W.ASHERS

560

195

,002

.570 x .200 x .003

~

CASE TEMPERATURE
REFERENCE POINT

NYLON BUSHING

~ .~
o

~
o

x

.286

.190 x

.041.

.195

.051

FLAT WASHER

Steel, Electro-deposIted zinc plate
.490
.215
.030

~ x

m

x .050

INSULATING HARDWARE KIT
AVAILABLE UPON REQUEST

10 .195~ SOLDER TERMINAL
200
Copper. Electro-deposited tin

,065~

plate

.885 x .425 x .020

10 .095

.915

~
~

~
~

.455

.023

LOCK WASHER
Steel, Electro-deposited zinc
plate,lnternal tooth
.370 x .~ x ,020
.381
.204
025

NUT
1018 Steel, Electro-deposited zinc
plate,10-32NF·2-B

.362 Nom. across flats
.375

7/16 STUD (MH 745)

CASE TO HEAT SINK
THERMAL RESISTANCE UNDER
VARIOUS CONDITIONS

TORQUE:

15IN·LBS

1-76

.182 Thick .~ ilcrass points
.192
.433

N3899 thru 1N3903
MR1386

1

Desig'ue.·s

Sh~eet

Data

FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
20 AMPERES

.. designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 100 nanoseconds providing high efficiency
at frequencies to 250 kHz.

Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

"MAXIMUM RATINGS
Rating

Symbol

lN3899

lN3900

lN3901

lN39D2

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage
DC Blocking Voltage

VRWM
VR

50

100

200

300

400

600

VRSM

75

150

250

350

450

650

Volts

VR(RMS

35·

70

140

210

280

420

Volts

Non-Repetitive Peak Reverse
Voltage
RMS Reverse Voltage

Average Rectified Forward
Current (Single phase, resistive
load, TC = 100°C)

Non-Repetitive Peak Surge
Current (surge applied at
rated load conditions)

lN3903 MR1386 Unit
Volts

Amp

10

20
Amps

IFSM

250
(one cycle)

Operating Junction Temperature
Range

0.115

-65 to +150

TJ

Storage Temperature Range

if200l

U

-65 to +175

Tstg .

"THERMAL CHARACTERISTICS

o.o.. j f

Characteristic

MIN

Thermal Resistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
OIaracteristlc

Tlrminal2

Symbol

Instantaneous Forward Voltage
(IF "S3Amp, TJ'" 1500C)

'F

Forward Voltage
(IF'" 20 Amp, TC

VF
os

Min

Mox

1.2

1.5

Unit
Volts

·Oill1lnsionilldilmllll.

All JEDEC dlman510nsand notes ilpply

Volts

1.1
10

25°C)

Reversa Current (ratlld de voltage) T C '" 2SoC

Tv.

'R

TC = 100"C

0 .•

1.4
25
1.0

mA

Tv.

M,.

Unit

100
200

200
400

CASE 257

""

DO..

"REVERSE RECOVERY CHARACTERISTICS
Charactaristlc
evarse Recoverv Time
(IF" 1.0Amp to VR = 30 Vdc, Figura 16)
tlFM = 36 Amp, di/dt .. 25 A/lJ,s. Figure 17)
avarse "&Covarv Current
(IF" 1.0Amp to VR - 30 Vde, Figure·161

Symbol

t"

Min

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
Amp

IRMtREC)

2.0

-Indlcatal JEDeC Re"lsterad Oata for 1N3899 SerUI,.

FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Ca..
WEIGHT: 17 Grams IAppro.imately)

1-77

1N3899 thru 1N3903, MR1386

(continued)

FIGURE 1 - FORWARD VOLTAGE
500

'FIGURE 2- MAXIMUM SURGE CAPABILITY
100

I

".,...

I

300

-

,,/"

...-

V
TJ: 25°C

200

L

/

100

V
./

V

~~ 70
~-'~

60

~

50

~

0

ffi

... '-"

o

~

z"'
w=>

u'"

Or- J\

~c3

or---

1:;

I'"

11111

0
2.0

1.0

5.0

3.0

11111
7.0 10

20

30

50

70 100

NUMSER OF CYCLES AT 60 Hz

20

NOTE 1

I

f!

10

RJL
PPk

z
z

A

1\

1--..-1-1 CYCLE

o

II

"

~

lll" I"-.. I.....!"-

0

A

~

'"~

each cycle of surge

tHJ.

50

UJ

1/

G

I I II
I
I I
I I
Prior to surge, the rectifier
I I
is operated such thatTJ '" 150 oC;
VRRM may be applied between

u,.';:::'

~5110C

V

ii:

"

'-"

'/

...

i"t--

w-aD

",w

70

............

90

Ppk
DUTY CYCLE, 0 '" tp/tl
PE~K POWER, Ppk, is peak of an

tp__

7.0

I

"

~

equivalent ~quare power pulse.
TIME

1-'1-----<

t; 5.0

To determine maximum junction temll-erature of the diode in a given sit':lation,
the following procedure is recommended

.~

3.0

The temperature of the case should be measured using a thermocouple placed
on the case at the temperature'reference point (see Note 3l. The thermal mass
connected to the case is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result of pulsed operation once
steady-state condilionsareachieved. Usiog the measured valu!lof TC, the junction
temperature may be det~rmined.by:
TJ"'TC+ 6TJC
where 6 TJC is the increase in junction temperature above the case temperature.
It may be determined by·
6:TJC=Ppk ·ROJC1 0 +{1-.01·r(tl+ 1pl+r(tpl-r(qll
where
rltl = normalized value of transienl thermal resistance al time, I, from Figure
3, i.e.:
r (t1 + tp) '" normalized value of transient thermal resistance at lime tl + tp

2.0

1.0
0.7
0.5

o

0.4

O.S

1.2

1.6

2.0

2.4

2.S

3.2

3.6

4.0

'F, INSTANTANEOUS FORWARO VOLTAGE IVOLTS)

FIGURE 3 - THERMAL RESPONSE

....

1.0

!w"_ 0.5

--

:I:w

:: ~ 0.3

z"
"'"'
z"
"z
~::iE

0.2

......

~:; O. 1

W U

::::~

~ ~0.05
""13

~ 0::0.03

-E:

0.02
0.0 1

--

0.1

0.2

IS" Note 1)

.......

0.5

1.0

2.0

5.0

10

20
t, TIME

1-78

50

1m,)

100

200

500

1000

2000

5000

10,000

1N3899 thru 1N3903, MR1386 (continued)

SQUARE WAVE INPUT

SINE WAVE INPUT

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - FORWARD POWER DISSIPATION
32
a:

2B

~c - 24 ~5 20

.I..

,---I(PK) • 20
I(AV)
10

UJ Q

"';:
ffi!!::
>!:l

/

5.0

16

w
12

/

V

I

a:;I:

....
..
"E

/

I

c... z

V

/
V

/

50

V

V

/

/

/"

/'

5.0':)

;; B.O

~

4.0

o~
o

~

~~

4.0

12

B.O

20

16

.........-::

-~4.0

o
o

-1

16

....
-

12

=

'"'

I-

ffi

a:
a:

:::>

'"
~

~

~
w 8.0

'"ffi
::: 4.0

I

!""'-

--i

~

51

-

=

·r

-

r-

-j

-

I(PK)=20
-i(AV)
-CAPACITIVE LOADS

J.

""

""'-

.............

.........

""-""'"
""

,.....,
o

BO

90

100

110

120

:::>

f-

..

~

T

12

f-

w

8.0 f -

140

,
150

'"w~
~

I

""-

I
20

16

' \ . de

"\

"2.0+ 5;--"

12 H

~

~

~~
~

130

de

~I(AV)- 2.0

8.0

h
H

16 f-'

'"
:il

-.........: r-...~

.....,

-

r-

20

ffi

a:
a:

0

I

RESISTI~OE:~OUCTIVE _

"

10-

./

FIGURE 7 - CURRENT DERATING

FIGURE 6 - CURRENT DERATING
20

1/

V

F-.

IF(AV). AVERAGE FORWARD CURRENT (AMP)

IF(AV). AVERAGE FORWARD CURRENT (AMP)

ii:

"7
./

V V ...... ~ V
~ ~ ~ K'

/ ~~

~i5

V

V V ~ :/'"

~V

L /

/

CAP1ClTlvJ LOADl
I
I(PK). 20
I(AV)
10

I

lO
I(PK) = ~O
I(AV)
I
CAPACITIVE LOADS

'-

""

'\.
'\.

"'-

'-~ \.

..........

'-:": ~.

-&

H

o' o

80

100

90

",

~~

4.0 H

120

110

130

140

150

TC. CASE TEMPERATURE (DC)

TC. CASE TEMPERATURE (DC)

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE B - TYPICAL REVERSE CURRENT
10 1

I==t= VR - 100 V
V

"I

1

~

a:

:::>

I

./

1

'"
w

'"w
a:

>
w

a:

2

IE

10- 31
20
VR. REVERSE VOLTAGE (VOLTS)

1-79

V

1

1
30

1 1
40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE (DC)

1N3899 thru 1N3903, MR1386 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT

115 Vac 10 k
60 Hz
2W

A - TEKTRONIX 545A, K PLUG IN
PRE·AMP, PSOOO PROBE OR EClUIVALENT

30n
50W
NON·INOUCTIVE

RI
30
25W

Rl - ADJUSTED FOR 1.40 BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38 pH

UNIT
UNDER TEST

n.

R2 - TEN·I W,.lO
1% CARBON CORE
IN PARALLEL
TA· 25 ~l~oC FOR RECTIFIER
R2
10
lOW
NON.INOUCTIVE

MINIMIZE ALL LEAD LENGTHS

30 Vdc
Cl
CONSTANT VOLTAGE
1.0.F
SUPPLY 0-+_ _....._ _ _ _ _......-----.3-0-0_V...._ _

o-

1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
RIPPLE = 3 mVrms MAX
Zout = 1\> 0 MAX, DC to 2 kHz

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
Rl

Rl = 50 Ohms
T1
R2 = 250 Ohms
01 = 1N4723
02 = 1N4001
03 = 1N4933
60 Hz
SCRl = MCR729·10
Cl =O.5t050pF
C2" 4000 pF
L1=1.0-27pH
T1 = Variac Adjusts I(PK) and di/dt
T2 = 1:1
T3 = 1:1 (to trigger circuit)

120V~C

L1
di/dt ADJUST

,T2,

Cl

03

I(PKI ADJUST

om:

1:1
02

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the
time that the current. thru a previously forward biased rectifier
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Aeverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit depend
ent. Typical and maximu"m recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A, VR = 30 V. In order to cOver all circuit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current

di/dt

w

and for junction temperatures of 25°C, 75°C, 10o"C, and
15o"C.

IRM(REC)+----'IL

From stored charge curves versus di/dt, recovery time

hrr )

and peak reverse recovery current (I RM(RECII can be 'cLosely
approximated using the following formulas:

To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

trr

0 ~
= 1.41 x [ _R_

1/2

dildt

IRM(RECI = 1.41. x [ OR x dildt] 112

1-80

1N3899 thru 1N3903, MR1386 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
20 0

10

I
I
r----3.0 r----7.0
5.0

j
w

~

~
w

v~
I-tfr

V

1.0

'"
;;:
~

'"

0.3

=-

0.2

.e

~

>

0.7
0.5

or---

u.

IIfr

2.0

8w
'"~

I

TJ = 25°C

~

z
~

U

-

I-.

70

;::

1.1 V

VIr

10

;3
z
o

50

~

30

TJ = 25°C

r-

....

tz
...... f-"'"

oj

~

O. 1
1.0

2.0

10
20
5.0
IF. FORWARO CURRENT (AMP)

20
1.0

100

50

2.0

5.0

10

20

50

100

VR. REVERSE VOLTAGE (VOLTS)

TYPICAL RECOVERED STORED CHARGE DATA
(See Not. 2)

FIGURE 12 - TJ

= 25°C

FIGURE 13 - T J = 75°C

1.0

2.0

I

IFM = 20 A

3

.3

40 A

0.5

UoI

~

~

'./ \

'"i3

/' ./

~ o. 2

~ ;:;::

'"o

t;; O. 1

*~

~~

/"

g 0.02
0.0

1~

1.0

V
5.0

10

//

*~
i;;

i

5.0 A

"'

50

20

100

./ C?: 7

0.2

0 t>

0.1

/'
'-....

~

...... ""' ....
lOA

5.0 A

0.05
~

CJ

l.0j

2.0

0.5

0

lOA

"'\

~ ~ ......

40A

'"i3

./ ./~

~ 0.05

IFM -201

1.0

0.02
1.0

~~

1.0 A
......

5.0

2.0

10

50

20

100

di/dt. IAMP/~s)

di/dt (AMP/~sl

STORED CHARGE DATA
FIGURE 15 - T J • 150°C

FIGURE 14 - T J = 1QOoC
2. 0

3.
w

2. 0

IF~ = 20lA

1. 0

Y

.3
w
'"

40 A

~

'"~

~ O. 5

u

V

:i:!

t;'"

/ J/:

O. 2

~k

o

w

ffi

>

O. 1

~ 0.05

"'

*

I.--~
lOA

8

0.0 2
1.0

~ t::::-""

2.0

5.0

20

O. 2

*w
>

O. 1

"'

50

100

/

.~

0.05

1-81

~ P<

I.-

~OA:-

LOA

/.....:
0.0 2
1.0

~
2.0

~

5.0

10
di/dt (AMP/~s)

di/dt. (AMP/~s)

/
~ ../

10 A

CJ

I\A
10

~

§cr::

5.0 A

/.
~~

CJ

O. 5

/'

./
.//

I/l-'

IFM=4JA

1. 0

20

50

100

1N3899 thru 1N3903, MR1386

(continued)

INSULATING HARDWARE KIT AVAILABLE UPON REQUEST

,

REFERENCE POINT

MICA WASHERS
,997
,255
,004

-- x

1.003

.265

~. ~",,"m",,",
..

x-

.006

~">'.ON
(ST;;~ x~;: x~;~
BUSHIN'G

o

@f
a

FLATWASHER
Steel. Electro-deposited
Zinc plate

.727 )( .276 )( .055
,749
,296
.071
.160

Mrl-j
.085
MIN.

t::t
~
.437

I

r

MIN
,625 MAX.-j·

SOLOER

TERMINAL

Copper, electro-tinned
(AMP #341241

HOLE OIA .
.2651-.005

LOCK WA'SHER
Electro-deposited
Zinc plate, Internal tooth
.460
,250
_ x _ ) ( .017
_
,480
.270
,027

~ Steel. spring,

L

~

~ ~~~

Steel" Electro-deposited
Zinc p'late
'

%-28 '\fF·28

.425 across flats x ".178" Thick

,437

11/16 STUD (MH 746)

CASE TO HEAT SINK
THERMAL RESISTANCE UNDER
VARIOUS CONDITIONS

1-82

::~:

,193

across points

N3909 thru 1N3913
MR1396

1

FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
30 AMPERES

... designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
'having typical recovery time of 100 nanoseconds providing high efficiency
at frequencies to 250 kHz.

Designer's Data for 'Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

'MAXIMUM RATINGS
Rating

Symbol

lN3909

lN3910

lN3911

lN3912

Peak Repetitive Reverse Voltage

VRAM
VRWM
VA

50

100

200

300

VRSM

75

150

250

350

450

650

Volts

VAtRMs)

35

70

140

210

280

420

Volts

Working Peak Reverse Voltage
DC Blocking Voltage

Non-Repetitive Peak Reverse
Voltage
AMS Reverse Voltage

Average Rectified Forward
Current (Single phase,

lN3913 MR1'"

Unit
Volts

400

600

Amps

'0

30

resistive Joad, Tc = 1000CI
Non-Repetitive Peak Surge
Current (surge applied at rate
load conditions)
QperatingJunction Temperature
Range

Amp

IFSM

300

Storage Temperatur.e Range

TJ

-65 to +150

°e

T sts

-65 to +175

°e

ffig"

O.060J-

THERMAL CHARACTERISTICS

MIN

1/4-28 UNF.2A

Charaeteristic
Tlrminal2

Thermal Resistance, Junction to Case

'ELECTRICAL CHARACTERISTICS
Characteristk:
Instantaneous Forward Voltage
OF = 93 Amp, TJ;: lSOOC)
Forward VOltage
(IF = 30 Amp, TC '" 25 0 C)
Reverse Current (rated de voltage) TC = 25 C

Te = l00Pe

Typ

Ma.

Unit

'F

1.2

1.6

Volts

VF

1.1

1.'

Volts

'A

10
0.5

25
1.0

"A
mA

TVI'

Max

Unit

100
200
1.5

200
400
2.0

Symbol

Min

"Dim'rllioni5adiametar.
AIIJEOECdimansionsimdnOl.sapplv
CASE 257

00..

'REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recovery Time
OF = 1,OAmp to VR ;:30Vdc, Figure 16)
(lFM" 36 Amp, diJdt;: 25 A/p.s, Figure 171
Reverse Recovery Current
OF ;: 1.0 Amp to VR ;: 30 Vdc, F"igure 16)

Symbol

t"

IRM(REC)

Min

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed

Amp

FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Ca..

• Indicates JEDEC Aagistered Data for lN3909 Saries.

WEIGHT: 17 Grams (Approximately)

1-83

lN3909 thru lN3913, MR1396 (continued)

FIGURE 1 - FORWARD VOLTAGE
500

y

TJ' 25 ac

V

30 0

/'
/'

20 0

..... V

........, /

90

i'

«
~

III"r-.

!\

:il
2
«
....z
«

~
~

-

11111

o

2.0

1.0

3.0

lW1
7.0 10

5.0

20

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

/I

~

'"::>

1'1"'-

~ICYCLE

0

0

(\

!\

0

I

0

each Cycle of Surge.

'NJ

o~

III

0

~

=

VA RM may be applied between

0

t-

~
:5<.>

....

O~

0

~ri~ris It:D!lerated
'Urg'\h' :"t:ti.: I oI
such that TJ 150 C;

I"""'-

150a C

v

1/
/, V

100

FIGURE 2 - MAXIMUMSURGE CAPABILITY
100

NOTE 1

FLlL

0

Pk

7. 0

Ip_

Ppk
.

1---,,-----1

5.0

.~

DUTY CYCLE, 0 = tp/q
PEAK POWER, Ppk. is peak of an

.

equivalent square power pulse.

TIME

Todeterminemaximum junction temperature of the diode in a given situation,
the following procedure is recommended:

3. 0

The temperature of the case should be measured using athermocoupl eplaced
on the case at the temperature reference point (see Note 3), The thermal mass
connected to the case is normally large enough so that 'it will not significantly
respond to heatwl1lesgenerated in thediodeasa result Qf pulsed operationonce
steady-state conditions are achieved. Using the measured value of TC. the junction
temperature may be determined by:

2.0

TJ=TC'L"ITJC
where·\TJC is the increase in junction temperature above the case temperatur e.
It may be determined by:
/), TJC =Ppk 'ROJC {O+ (l-DI . rtq +tp)+r(tp) -r(q}j
where
dtl" normalized value of transient thermal resi$lance at time, t, from Figure
3. i.e.:
.
r (t] +tpl '" normalized value of transient thermal resistance at time t,+tp.

1. 0

o.7
O. 5
0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

VF,INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

FIGURE 3 - THERMAL RESPONSE
1.0
-'
«

:;;

ffii= ~

0.3

~~

0.1

~~
Vi ~
.... LU

W<.>

0.5

0.2

........ 1--

>2

§ ~ 0.05
"-'"
"-w
UJ

a:: 0.03

-E

0.02

t...---

0.01
0.1

-

0.2

0.5

1.0

2.0

5.0

.-

--10

(SEE NOTE 1)

20

50

t, TtME (m,1

1-84

100

200

500

1000

2000

5000

10,000

1N3909 thru 2N3913, MR1396

(continued)

SINE WAVE INPUT

SQUARE WAVE INPUT

FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION

50

50
CAPACITIVE LOADS
r------- IlPK) ,

/

-~20

/

'10
5.0

./

/ / V/

//

o

~

o

/. V~ V
~ f:Y'

f---'.'!!'!<.I~2;

V

V

/

IIAV)

f---

r-------~APACITivE LOAbs
IIAV)

10

//
/

5.0

12

16

20

24

28

32

B.O

4.0

20

24

28

32

FIGURE 7 - CURRENT DERATING

32

32

0:

24

F;

a:~

r

24

=>
'-'
o

t-+

16 r---"

5:
w

'"~

8.0

~

~





~

=

r-- rl250C

I-

i

150°C

100°C
75°C

2

L'

I

10

== =
==

50°C

10 I

2

V

'::: 25°C

10 0

o

I

100

200

300

400

500

600

10- 3
20

700

VR, REVERSE VOLTAGE IVOLTS)

1- 85

30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ, JUNCTION TEMPERATURE 1°C)

lN3909 thru lN3913, MR1396

(continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
7.0
5.0

1
w

~

3.0

=

TJ

===
u~
~tfr
-

1.0

~

0.7
0.5

~

0.3

'"

0.2

25 0 C

VVir

>

~

~

vtr

E 2. 0
~

--

10 0

10

--

,/

0

1.1 V

0

TJ~250C

r-...

...........

r-...

-r--.

0

.-

o. 1

1.0

2.0

10

5.0
10
20
IF, FORWARO CURRENT (AMPI

50

100

1.0

2.0

5.0
10
20
VR, REVERSE VOLTAGE (VOLTSI

50

100

TYPICAL RECOVERED STORED CHARGE DATA
FIGURE 12 - TJ

(See Note 21

= 25°C

1.0
IFM

3
~

V

I'v-"

'"
G
~

.....-V

/

0.2

V ...

~ ~ V-

o

t; o. I

'"

::t

1.0

'"'"
g

0.5

'FMI~201
40 A

o

'"~

8

~

~ ~ "> ...... 1--'
/'

w

~

......'\

~r:::::

g 0.02

~ iP ~

1~ V-1.0

10 A

I

5.0 A

1.0

'"w

I

cc

0.05

§

i'.

'"

to A

'"

5.0

10

50A-tT

0

d

002

2.0

20

50

1.0

100

~ ::::::

...,

3.
w
'"
'"

'"
G

].

40 A --

g'"'"

5

V

,/

L 0

~ 0.0 5

./.

oC

5.0 A

...,

~ ;..-'

1.0

~ 4J A

l.-/

~~
2.0

1\0 A

5.0

10

di/dt,

20

0.5

/

~

0.2

~

O. I

§

10 A .

0.0 2

IFM

1,0

~

V k-"

I-'
~ <: V . . .

1

d

100

w

~ o. 2

'"w>
;:;

50

FIGURE 15 - T J = 150°C

20

IF~ ~ 20lA

~
8

20

10
diJdt, (AMP/ps)

FIGURE 14 - T J = 100°C

1. 0

1.0 A

5.0

2.0

di/dl {AMpi/-lS)

2. 0

.....-

./

/' V- / ' I--'

0.2

o

0.05

0.0

= 75°C

20 A

40 A

0.5

UJ

FIGURE 13 - T J
2.0

-i

cc

/'

~ YP<

0.0 5

100

1.0 A

/~ ~

d

50

0.0 2
1.0

~ f?'
2.0

5.0

10

di/dt

(AMP/~sl

1-86

1')0 A

10 A

oC

.1

/

~ ./

(AMP/~sl

20

50

100

1N3909 thru 1N3913. MR1396 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT

115 Vac
60 Hz

A - TEKTRONIX 545A, K PLUG IN
PRE·AMP, P6000 PROBE OR EUUIVALENT

30n

RI
3n
25W

10 k
2W

SOW
NON·INDUCTIVE

R1 - ADJUSTED FOR 1.4nBETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38 ~H

UNIT
UNDER TEST

n.

R2 - TEN·1 W, 10
1% CARBON CORE
IN PARALLEL

A

TA' 25
R2
1n
lOW
NON.INOUCTIVE

~1~oC FOR

RECTIFIER

MINIMIZE ALL LEAD LENGTHS

30 Vd,
C1
1.0 Ad, FROM CONSTANT VOLTAGE SUPPLY
CONSTANT VOLTAGE
1.0l'F
RIPPLE' 3 mVrmsMAX
SUPPL Y e-:+__....____---<~----- 3-00-V4_-__ n MAX, DC to 2 kHz

..

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
R1

R1 = 50 Ohms
R2' 250 Ohms
01 = 1N4723
02·1 N4001
03 = 1N4933
SCR1 • MCR729·10
C1 =0.5 to 50l'F
C2 ~ 4000 ~F
L1 • 1.0 - 27 I'H

L1
di/dt ADJUST

T1

120~VC
60 Hz

IT21

C1

03

I (PKI ADJUST

om:

1,1
02

T1 = Variac Adjusts I(PK) and di/dr
T2 = 1,1
T3 = 1:1 (to triyger circuit)

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier. recovery time is very circuit dependent. Typical and maximum reoovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set conditions
using IF = 1.0 A, VR = 30 V. In order to coverall circuit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2SoC, 7SoC. 100"C, and
ISo"C.
To use these curves. it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

0'

From stored charge curves versus di/dt. recovery time (trr)
and peak reve..e recovery current

Ii RM(RECII can be closely

approx.imated using the following formulas:

1-87

[ OJ 1/2

trr

= 1.41

x _R_
di/dt

IRM(RECI

= 1.41

x [OR x di/dt] 112

1N3909 thru 1N3913, MR1396

(continued)

INSULATING HARDWARE KIT AVAILABLE UPON REQUEST

MICA WASHERS

.997
.255
.004
--X--x
1.003
.265
.006

~

~@/o
o

CASE TEMPERATURE
REFERENCE POINT

NYLON BUSHING
~ x .264 x .060
.372
.274
.070

o
FLAT WASHER

~ Steel,

~

Electro-deposited
Zinc plate

.727
.276
.055
-x - x .749
.296
.071

~
~

SOLDER

TERMINAL

.160
MAX.

Copper, electro-tinned

(AMP #341241

HOLE OIA.

LOCK WASHER

~ Steel. spring,

~

'

~

Zinc plate, Internal tooth
.460
x .250
_
x.017
_
.480
.270
.027

NUT
1018 Steel, Elp.ctro-deposited
Zinc plate

%-28 NF·2B

:;~
11/16 STUD (MH 746)

.265 ± .005

Electro-deposited

moss flat" • ~~~ Thick

.485
.505 acmss points

CASE TO HEAT SINK
THERMAL RESISTANCE UNDER
VARIOUS CONDITIONS

TORQUE: 25IN-LBS

1-88

1

N3993 thru 1N4000

(ZENER DIODES)

Low-voltage, alloy-junction zener diodes in hermetically sealed package with cathode connected to case.
Supplied with mounting hardware.

CASE 56
\00-4)

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.
D C Power Dissipation: 10 Watts. (Derate 83.3 mW;oC above 55°C).
The type numbers shown in the table have a standard tolerance on the nominal
zener voltage of ±10%. A standard tolerance of ±5% on individual units is also
available and is indicated by suffixing "A" to the standard type number.
ELECTRICAL CHARACTERISTICS
(TB

= 30°C

Type No.

±

3, Vf

= l.5 max

Nominal
Zener Voltage
V,@I"
Volts

@ IF

Test
Current
I"
mA

= 2 amp for

all units)

Max Zener Impedance
Z"@I,,
Ohms

Z.. @I.. = 1.0 mA
Ohms

Max DC Zener
Current
I," mA

Reverse
leakage Current
I.
)J.A

V.
Volts
O. 5
0.5
1.0
1.0

IN3993
IN3994
IN3995
IN3996

3.9
4.3
4.7
5.1

640
580
530
490

2.0

1.5
1.2
1.1

400
400
500
550

2380
2130
1940
1780

100
100
50
10

IN3997
IN3998
IN3999
IN4000

5.6
6.2
6.8
7.5

445
405
370
335

1.0
1.1
1.2
1.3

600
750
500
250

1620
1460
1330
1210

10
10
10
10

1.0

2.0
2.0
3.0

SPECI AL SELECTIONS AVAI LABLE I NCLUOE: (See Selector Guide for details)

(A) NOMINAL ZENER VOLTAGES BETWEEN THE
VOLTAGES SHOWN AND TIGHTER VOLTAGE
TOLERANCES:
To designate units with zener voltages other than
those assigned JEDEC numbers and/or tight voltage
tolerances (±3%, ±2%, ±I %), the Motorola type
number should be used.
10
M
5.0
A
Z
3

T

DLce Molola NoJinal
zler ToJance
Description
Voltage Alloy Diode
(±%)
Example: IOMS.OAZ3
(B) MATCHED SETS: (Standard Tolerances are ±S.O%,
±2.0%, ±l.O%).
Zener diodes can be obtained in sets consisting
of two or more matched devices. Tke method for
specifying such matched sets is similar to the one
described in (A) for specifying units with a special
voltage and/or tolerance except that two extra
suffixes are added to the code number described.

5,~olts

DJice JM
J,A z± 5
erJ
Description (each device) Diodes
Motorola

1
B

orall
Tolerance
of set
(± 1%)

Alloy
Tolerance
per device (±5%)
Code*
(omit for ±20% units) (A-Not used)
*Code:
B - Two devices in series
C - Three devices in'series
D - Four devices in series
Example: lOM5.IAZ5BI
(C) ZENER CLIPPERS: (Standard Tolerance ±10% and
±S%).
Special clipper diodes with opposing Zener
junctions built into the device are available by using
the following nomenclature:

10
TJM
T J AZener
fJZ
Device
Nominal
Description
Voltage
Diodes
Motorola

These units are marked with code letters to
identify the matched sets and, in addition, each unit
in a set is marked with the same serial number,
which is different for each set being ordered.

Alloy

Example: IOM4.7 AZZIO

1-89

1

Qipper
Tolerance for each of
the two Zener voltages
(not a matching requirement)

N400 1thru 1N4007

1

Surmetic rectifiers, subminiature size, axial lead
mounted rectifiers for general purpose low-power applications.

CASE 59
(00-41)

MAXIMUM RATINGS

8
- - - - - ('oj

Rating

Symbol

Peak Repetitive Reverse Voltage

VRM(rep)

Working Peak Reverse Voltage

VRM(wkg)
VR

DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(halfwave, single phase, 60 Hz peak)

VRM(non-rep)

RMS Reverse Voltage

V

Average Rectified Forward Current
(single phase, reSistive load,
60 Hz, see Figure 6, T A = 75°C)

10

Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions, see Figure 2)
Operating and Storage Junction
Temperature Range

r

M

"I:t

I.t'I

~

"I:t

"I:t

"I:t

400

600

300
140

0
0

0
0

Z

Z

Z

Z

50

100

200

75

150

35

70

"I:t

0

"I:t

0
0

0
0

Z
....

"I:t

Unit

Z

800

1000

Volts

600

900 1200 1500

Volts

280

420

Volts

Z

560

1.0

IFM(surge)

700

Amp

Amp

30 (for 1 cycle)

°c

-65 to +175

T J , Tstg

......

0

0
0

ELECTRICAL CHARACTERISTICS
Characteristic and Conditions

Symbol

Maximum Instantaneous Forward Voltage Drop
(iF = 1. 0 Amp, T J = 25°C) Figure 1

VF

Maximum Full-Cycle Average Forward Voltage Drop
(10 = 1. 0 Amp, T L = 7SoC. 1 inch leads)
Maximum Reverse Current (rated dc voltage)

T J = 25°C
T J = 100°C

Maximum Full-Cycle Average Reverse Current
(10 = 1. 0 Amp. T L = 75°C. 1 inch leads)

VF(AV)
IR
IR(AV)

Max

Unit
Volts

1.1
Volts
0.8
0.01
0.05

mA
mA

0.03

1 N4001 thru 1N4007

(continued)

MECHANICAL CHARACTERISTICS
CASE: Void free, Transfer Molded
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C, %" from
case for 10 seconds at 5 Ibs. tension
FINISH: All external surfaces are corrosion-resistant. leads are readily solderable
POLARITY: Cathode indicated by color band
WEIGHT: 0.40 Grams (approximately)
FIGURE 1- FORWARD VOLTAGE

a
a
a

.....

V

J...-' ......

J...-'

TJ" 25°C

./

FIGURE 2-MAXIMUM SURGE CAPABILITY

+-

~

V

ii:

~ 2.

a

=>

i
~

o. 1

'"

~

in

l'

a

~

t-,..

III
TYP ICALI

MAXIMUM

;:,

I

0==

J

7. a
5.

SURGE APPLIED AT NO
LOAD CONDITIONS
V'''I",I APPLIED AFTER SURGE
TJ O~ 25°C

r- t-

30 .........

-

t'--..... .......

SURGE APPLIED AT RATED
LOAD CONDITIONS
V... I,,,( APPLIED AFTER SURGE
TJ 17SOC

a
1.0

2.0

3.0

5.0

7.0

10

20

30

50

70

100

NUMBER OF CYCLES AT 60 Hz

o. 2

FIGURE 3-FORWARO VOLTAGE TEMPERATURE COEFFICIENT
4. 5
4. 0
3. 5
3. 0
2. 5
2. 0
1. 5

~ 0.0 7
..!f. 0.0 5
0.03

P

0.02

~

ffi

0.0 1

U

1. a

8

0
-0. 5
-1. a
-1 .5
-2 .0
-2. 5

1/
YPICAL RANGE

~ o. 5

0.00 7
0.005
0.00 3
0.002
0.00 1
0.4

1----+-1 CYCLE

t-.

~

~ O. 7
~ o. 5

o. 3

0_

~

<.>

:.i!

ffi a
~ 1.
~

[ \ [ \ C\

I-I--

01--

~

7. a
5. a
3. a

10 I'---

z

1/ ./

a

a

,.ii:5

~

0.8

1.2
Vf,

1.6

2.0

2.4

2.8

3.2

3.6

4.0

I-'

0.001

0.0050.01

INSTANTANEOUS FORWARD VOLTAGE IVOLTI

iF,

0.05 0.1

0.5 1.0

5.0 10

50

INSTANTANEOUS FORWARD CURRENT lAMP)

FIGURE 4- TYPICAL TRANSIENT THERMAL RESISTANCE
~

~

I--I---

r--

1 i

t- L

L

I

~

-

~

.....

0

a

--

a
1~

3.0

~
5.0

7.0

10

20

~

::::-

--

-L

I"

L

112"

L

1132"

b--'"

30

50

70

100

200

300

PW, PULSE WIDTH 1m,)
FOR IIJl(tl VALUES AT PULSE W)DTHS LESS THAN 3.0 ms, THE ABOVE CURVE
CAN BE EXTRAPOLATED DOWN TO 10 ItS AT A CONTINUING SLOPE OF 1/2

1-91

SOD

700

1000

2000 3000

5000 7000

10k

20k 30 k

1N4001 thru 1N4007

(continued)

CURRENT DERATING DATA

FIGURE 5-LEAD TEMPERATURE DERATING (DC ONLY)

FIGURE 6- RESISTlVE,INDUCTIVE LOADS
4. 0

8.0

............
0::
:5

'"

s.o

0::
:5

'"

r-...

l5

l5

~
=>
'-'

!

"k

4.0

~ 2. 0"""'-

r---. r--...... L~ 3)8" ...... "'-

Q

! r-r--"
~

~

I'"'

L~
........... ~
r-t=: "'-

2.0

SO

80

3. 0-....

~

~~1!3r

--

100

r--.... ....

r-::::: ~

120

ISO

140

1.2
180

200

'"r---..
-r-r- r--

..........

r-...

I~SOHz

r--.....

L ~ 1!32"

~~3/~

r-....L~

1"

L0

0

20

SO

40

Te. LEAD TEMPERATURE lOCI

.............

80

"" " ~'"
~

'ISEE ~oITii

-.... " ~, ,,\
...........

............

100

N ~

120

140

ISO

180

Te. LEAD TEMPERATURE lOCI

FIGURE 7- CAPACITIVE LOADS

NOTES

2.0

NOTE 1

r- ::::--- ..........
.............
:::::: :::-

-l~ 1!32':':;
IL~ 1"

20

40

TYPICAL VALUES FOR HJA IN STILL AIR

I, ~ lOx 11.. ,1

I

0

Data shown for thermal resistance junction-to-ambient (BJA) for the mountings
shown is to be used as typical guideline values for preliminary engineering or in
case the tie point temperature cannot be measured.

1 ~ SO Hz

1-0"

~ ::--......
.........

/r~~ 1!32"

~ t-......

rr-: ::::-"-

.........

.........

I, ~ 20 x 11 ..,1

SO

80

iL-j

'rL~I"

100

120

,

MOUNTING
METHOD

~~
ISO

180

JI-TERMINAL STRIP -l ~

P.C. BOARD
MOUNTING METHOD 1

MOUNTING METHOD 2

LEAD LENGTH. LIIN.I

1/32

- I
55 I
200

Te. LEAD TEMPERATURE lOCI

nP"

nP"L

~tl----l

70

I
I
I

1
85
85

fiJA

°C/W
°CIW

DUTY CYCLE. 0 ~ t,lt l

-.J-t,~

80

3/8
75
72

"Using Mounting Method 1 or 2 with L = I"' the curve marked" in Figure
6 can be used for 60 Hz half·wave resistive/inductive load (Rating vs.
Ambient Temperature). The abscissa of Figure 6 then indicates TA in ·C.

NOTE 2

FIGURE 8- STEADY·STATE THERMAL RESISTANCE

TIME

PEAK POWER, P,b i. peak 01 a.
equivalent square power pulse.

To determine maximum junction temperature of the diode in a
given situation. the following procedure is recommended:

SO

/

0
MAXIMUM

0
0

/.

:;::;

/
V

/.

-:/

.;::::.-

The temperature of the lead should be measured using a thermocouple placed
on the lead as close as possible to the tie point. The thermal mass connected to
the tie point is normally large enough so that it will not signilicantly respond to
heat surges generated in the diode as a result of pulsed operation once steady.
state conditions are achieved. Using the measured value of Tl. the junction
temperature may be determined by,

i-"'"

-:;:; ~PICAL

TJ

=

Tl

+ .6TJl'.

where 6. TJl is the increase in junction temperature above the lead temperature.
It may be determined by,

0.....-:: /
O/'"

6 TJl

0

"

1b--L-l-f-L-dr

VnlnU~)Ilm

~

140

r L1

I"

where

HJl(t)

8J L(t l +t p )

L. LEAD LENGTH IINCHESI

BJlltp)

~ P" [ RJll~1 • 0 + II

- 01· RJlltl + tpl

=

value of OJl{tl at time

tl +tp

= value of 8Jllt) at end of pulse width tp

8J l[t 11 = value of 6Jlltl at time tl

1-92

+ RJLlt,1

= value of transient thermal resistance at time 1 i.e.:

- fiJlI1II]

200

1N4001 thru 1N4007 (continued)

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 10- REVERSE RECOVERY TIME

FIGURE 9- FORWARD RECOVERY TIME
2. 0

r--10

~
r---

~

TJ

4}1
tfrJh

20

25°C

L-I

II

O. 7t--

3'";:::

/

5

~

i-"

o1

0.2

0.1

0.3

0.5

0.7

10

2.0

TI

5.0

3.0

5.0 7.0

>

3.0

-

2.0

~

~ ~-20V

'-....

0.2

03

FIGURE 11- RECTIFICATION WAVEFORM EFFICIENCY

0.4
03

0.2

-

O. 1
10

~

I~

MEASURED DATA

r

O. 5

I'

I I ITIft::::: r.:::-

TJ

I I Lilli

"'<:I ;:,o..~

~

I'-

J\I'vJ1J1---2.0

3.0

50 7.0

10

we

.,'"

~
lE
;'0

:'\

~

r-..

~
20

20

3.0

5.0

7.0 10

30

50

TJ

25°C

30

>.-..

175°C

f':::: ~

CURRENT INPUT WAVEFORM

10

100
70
50

~

kN1 f - r- .,

DATA NORMALIZED
l ,U

0.7

'"

FIGURE 12-JUNCTION CAPACITANCE

10

TOI1~

0.5

1b A~~

......

IRiI" DRIVE CURRENT RATIO

I" fORWARD CURRENT IAMPI

O. 7

~50C

oJ1 < I, v~

......
10
0.1

lO

--s

t-teJ

7.0

>
~

J..--'

0.2

0

i'.,

~
~

1/
f':';, ~ 10V

V

O. 3

0
10

70 100

<.S

20 >-

--

10
7.0
5.0
3.0
2.0

~

10
0.1

200

0.2 03

0.50.7 10

REPETITION FREQUENCY IkHzl

2030 507.010

20 30

50 70 100

VR, REVERSE VOLTAGE IVOLTI

RECTIFIER EFFICIENCY NOTE

FIGURE 13 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT
u(sine)

V'm
IT'R l
V'm

•

4
100 % - IT'
• 100% - 40.6%

~
For a square wave input of amplitude Vm •
the effiCiency factor becomes:

The rectification effiCiency factor a shown in Figure 11 was calculated using the
formula:

V'oldcl
(J =.-

Pdc
~

-~
=

V'oldcl

V20 lrmsl • 100% - V'olacl-

V~· 100%

III

-~

For a sine wave input Vm sin
efficiency factor becomes:

(.)t)

to the diode, assumed lossless. the maximum theoretical

(A full wave Clrcuil has tWice these efficiencies)

121

V'm

CT(square)

mc

-·100%
V'm

50%

131

Rc

As the frequency of the input signal is increased. the reverse recovery time of the diode
lFigure 10) becomes significant. resulting in an increasing ac voltage component across
RL which is oppOSite in polarity to the forward current. thereby reducing the value of the
efficiency factor 0". as shown on Figure II.
It should be emphasized that Figure 11 shows waveform efficiency onlYi it does not
provide a measure of diode losses. Oata was obtained by measuring the ae component of
Vo with a true rms ac voltmeter and the de component with a de voltmeter. The data was
used in Equation 1 to obtain points for Figure 11.

lN40S7,A thru lN408S, A
For Specifications, See IN429 Data.
1-93

N4099 thru 1N4135 (SILICON)

1

(MZ4614 thru MZ4627) *

LOW-LEVEL SILICON PASSIVATED ZENER DIODES

SILICON
ZENER DIODES

· .. designed for 250 mW applications requiring low leakage, low
impedance, and low noise.

1±5.0% TOLERANCE)

•

Voltage Range from 1.8 to 100 Volts

•

First Zener Diode Series to Specify Noise-50% Lower than
Conventional Diffused Zeners

250 MILLIWATTS
1.8-100 VOLTS

•

Zener I mpedance and Zener Voltage Specified for Low· Level
Operation at I ZT = 250 p.A

•

Low Leakage Current IR from 0.01 to 10p.A over Voltage Range

•

Expanded Temperature Range T J = -65 to +2000 C

SILICON OXIDE
PASSIVATED JUNCTION

MAXIMUM RATINGS
Rating

Unit

Value

DC Power Dissipation, 25°C Ambient

250

mW

Derati ng Factor

1.43

mW/oC

-65 to +200

°c

Junction and Storage Temperature

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass.
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily

solderable and weldable.
POLARITY: Cathode indicated by polarity band.

.....-----t-

1
POWER TEMPERATURE DERATING CURVE
250

5

200

'"

Z

0

;:::

'-'
>0
0

...'"

30

r-....

'"<

::>

CI

'"ffi

...

~

0

>

f". f'..

~

~

'-'

~

>>-

.......

I'-- ...........

u;

15

...

Q

~1l5

20

........... r-...!.N4124

10

r--.

0'"
z:
Q

z:

o

o

75

100

125

150

175

200

I, ZENER CURRENT (!tA)

1-96

...........

............

--

225

250

...
I"'"

275 300

TRUE

V...

rms

VOLT
METER

1N4099 thru 1N4135, MZ4614 thru MZ4627

FIGURE 4 - TYPICAL FORWARD CHARACTERISTICS

FIGURE 3 - TYPICAL CAPACITANCE

1000

1000
700
500

Vz

3.9V

TJ

25°C

500

200

~

70

:f
100
t:

~



(continued)

~
~

"-

2.0

3.0

1

5.0 7.0

10

20

30

50

f

100
0

-

r--

20

TJ

150°C/ 100 o'Cr r-25°C ~

Ia

5. 0

100

I. 0
0.3

1/

/

2. 0
70

/
0.4

0.5

VR, REVERSE VOLTAGE IVOlTS)

0.6

0.7

0.8

V" FORWARD VOLTAGE (VOLTS)

N4370 thru 1N4372
1N4370A thru 1N4372A
1

For Specifications, see IN746 Data.

1-97

55°C/

L

0.9

1.0

N4387

1
(SILICON)
(MV1804)

Silicon varactor diode for high-power frequency multiplication applications.

CASE 44

cathode connected to stud

(00·4)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Reverse Voltage

VR

150

Vdc

RF Power Input

Pin

40

Watts

PD

20
200

Watts
mW/oC

T J , T stg

-65 to +175

°c

Total Device Dissipation @ TC
Derate above 75° C

= 75°C

Operating and Storage Junction
Temperature Range

ELECTRICAL CHARACTERIST.lCS

(Tc

= 25'C unless otherwise noted)

Symbol

Characteristic
Reverse Breakdown VoLtage
(r R = 10 /-LAdc)

BV R

Series Resistance
(V R = 6.0 Vdc, f = 50 MHz)

RS

Junction Capacitance *
(V R = 6.0 Vdc, f =1.0MHz)

CT

Figure of Merit
(V R = 10 Vdc, f = 50 MHz)

Q

Min

Typ

Unit

Max

150

200

-

-

1.0

1.5

-

25

35

150

200

.

15

18

.

50

60

-

Vdc
Ohms
pF

-

FUNCTIONAL TESTS
Power Output

TripLer Circuit
Pin = 30W, fin = 150 MHz,
f out = 450 MHz

Efficiency

P

1)

30

--

1.4

1400

I

I"..
.......

I
P,.

"

,

20 WATTS

1.2

1.0

~

800

~

600

o

.

'.

d 400

I
200
f~,. OUTPUT

20o

,

I

I

"

f~50MHz

FREQUENCY (MHz)

600

800

0.6

~

fil

ii:

0.2

o
20

e

0.4 ~

Rs

l-

0
400

:.:

0.8 ~

"

~

i
~
z

Ql-'

;;:

"

= 10 WAnS

120 0
... 1000

ffi

......

I

p,"

100

%

p.. 140 WAnS

P,. - 30 WATTS

--

Walts

SERIES RESISTANCE AND FIGURE OF MERIT
versus REVERSE VOLTAGE

POWER OUTPUT versus OUTPUT FREQUENCY
FOR HARMONIC TRIPLING
25

out

40

60

80

100

120

140

V•• REVERSE VOLTAGE (VOLTS)

160

180

200

1

N4388

(SILICON)

(MV1806)

Silicon varactor diode for high-frequency harmonic
generation applications.
CASE 44

cathode connected to stud

(00·4)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Reverse Voltage

VR

100

Vdc

Forward Current

IF

1.0

Amp

RF Power Input

P.
m

25

Watts

Total Device Dissipation @ TC = 75°C
Derate above 75° C

PD

10
0.10

Watts
W;OC

T J , T stg

-65 to +175

°c

Operating and Storage Junction
Temperature Range

ELECTRICAL CHARACTERISTICS

(TA

=

25"C unless otherwise noted)

Symbol

Characteristic

BV R

Reverse Breakdown Voltage
(I R = 10 !lAdc)
Reverse Current
(V R =75Vde)

IR

(V R =75Vde, T A =150°C)
Diode Capacitance
(V R = 6.0 Vde, f =l.OMHz)
(V R =90Vde, f=l.OMHz)

CT *

Series Resistance
(V R = 6.0 Vdc, f = 50 MHz)

RS

Figure of Merit
(V R = 10 Vdc, f = 50 MHz)
(V R = 90 Vdc, f = 50 MHz)

Q

Min

Typ

Max

100

150

-

-

0.5

2.0

-

-

100

-

10

20

5.0

10

-

1.2

2.0

200

300

1000

-

-

11.0

12.0

-

55

60

-

Unit
Vdc
!lAde

pF

Ohms

-

FUNCTIONAL TESTS
Power Output

Efficiency

Doubler Circuit
(Figure 1)
Pin = 20 W, fin = 500 MHz,
f out = 1000 MHz

1-99

P

out

1)

Watts

%

1N4388 (continued)

FIGURE OF MERITversus REVERSE VOmGE

3000
2000

I=ISO ~HZ

:,...-

1000

I

V'

i!; 200

~

/

100

-

-

SOO

"8soc

tl
d

20

,.

. 2~oC

POWER OUTPUTversus OUTPUT FREQUENCY
DOUBLING (X2)

'"

~

i
;

r- 1-1-

IS

p!,

~oJ
r-- 1-1-

~

10
P,,~

lOW

r""--

50
¥,.~sw

'l

20
10
1.0

s.O

2.0

10

20

50

o

100

100

p,.
300

200

s

-

s

r-I- ........

O

......

t- I-t--

P,,-SW
Pi,

0
100

200

300

0

N:ri

s

~

r--r-....r-..,

lOW

I I

S

10001200

700

0

r-!'" ~ 20W
P"

500

QUADRUPLING (X4)

TRIPLING (X3)

r-

400

I, OUTPUT FREQUENCY (MHz)

VR, REVERSE VOLTAGE (VOLTS)

0

3W

3W
400

SOO

700

0
100

1000 1200

-

p:,_~WI

Pill

200

300

3W
400

..........

1--

500

700

-........

1000 1200

I, OUTPUT FREQUENCY (MHz)

I, OUTPUT FREQUENCY (MHz)

FIGURE 1 - HARMONIC DOUBLER EFFICIENCY TEST CIRCUIT
500 MHz COAX CAVITY

1000 MHz COAX CAVITY
r------------,

r----------,

500 MHz

o--f1
I

,-+'----....--+---+-1,

lift 50 ohms.
P,,20W

,

L ____ _

I MEGOHM

I

_..J

0.5·12pF

1-100

(

i

I 'I
,
I,L

,
,I
__________ J

01000 MHz

N4549 thru 1N4556
lN4557 thru lN4564

1

For Specifications, See lN2804 Data

1N4565-1 N4584
1N4775- 1N4784
lN4765-1N4774
Low level temperature-compensated zener reference
diodes-highly reliable reference sources utilizing an
oxide-passivated junction for long-term voltage stability.
RamRod construction provides a rugged, glass-enclosed,
hermetically sealed structure.

CASE 51
(00-7)

MAXIMUM RATINGS
Junction and Storage Temperature: -650 C to +175 0 C
DC Power Dissipation: 400 Milliwatts at 500C Ambient
(Derate 3.2 mWfOC Above 500C)

MECHANICAL CHARACTERISTICS
CASE:

Hermetically sealed. all-glass

DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable and
weldable.
POLARITY: Cathode indicated by polarity band.
WEIGHT:

0.2 Gram (approx)

MOUNTING POSITION:

Any

1-101

1N4565·1 N4584/1 N4775·1 N4784/ 1N4765·1 N4774

t;Vz @
(Note 11
Volts

TYPE

Ma.

I

Test
Temperatura
·C

Temperatura
Coefllclent

t;Vz @
(Note 1)
Volts

Drnamic

far Reference

Impad.
Ohms

%I"C
(Note 11

(Note 21

Max

TYPE

Max
Vz

Vz

=1.4 Volts ±5% (IZT =0.5 mAl

lN4515
lN4566
IN4567
lN4588
lN4569

0.041
0.024
0.010
0.005
0.002

IN4515A
lN4566A
IN4'I7A
IN4518A
lN4519A

0.099
0.050
0.020
0.010
0.005
Vz

0.048
0.024
0.010
0.005
0.002

lN4570A
lN4571A
IN4572A
lN4573A
lN4574A

0.099
0.050
0.020
0.010
0.005

0.01
0.005
0.002
D.DDI
D.DDDS

200

0.01
0.005
0.002
D.DDI
D.DDD5

2DD

lN4775A
lN4776A
IN4777A
lN4778A
lN4779A

0.132
0.066
0.026
0.013
0.007

100

lN4780
lN4781
lN4782
lN4783
lN4784

0.064
0.032
0.013
0.006
0.003

100

lN4780A
I N4781 A
lN4782A
lN4783A
IN4784A

0.132
0.066
0.026
0.013
D.DD7

lN4765
lN4761
IN4767
IN4766
IN4719

0.068
0.034
0.014
0.007
0.003

lN471SA
IN4716A
lH4767A
lN4768A
lN4761A

0.141
0.070
0.028
0.014
0.007

0.068
0.034
0.014
0.007
0.003
0.141
0.070
0.028
0.014
0.007

Vz

0, +25,
+75

-55,0,
+25, +75,
+100

0.01
0.005
D.DD2
D.DDI
0.0005
0.01
0.005
0.002
0.001
D.DDDS

Vz

=6.4 Volts ±5% (IZT =2.0 mAl

lN4575
lN4571
lN4577
lN4578
lN4579

0.048
0.024
0.010
0.005
D.DD2

lN4575A
lN4571A
lN4577A
lN4578A
lN4579A

0.099
0.050
0.020
0.010
0.005

lN4580
lN451t
lN4582
lN4583
lN4584

0.048
0.024
0.010
0.005
0.002

lN4580A
lN4581A
lN4512A
lN4583A
1.N4584A

0.099
0.050
0.020
0.010
0.005

Vz

-55,0,
+25, +75,
+IDD

0,+25,
+75

-55,0,
+25, +75,
+100

0.01
0.005
0.002
0.001
D.DDD5
0.01
D.DDS
0.002
D.DDI
D.DDD5

50

50

=6.4 Volts ±5% (IZT =4.0 mAl
0,+25,
+75

-55,0,
+25, +75,
+100

Vz

0.01
0.005
0.002
0.001
D.DDDS

25

lN4770
lN4771
lN4772
IN4773
lN4774

0.01
D.DDS
0.002
0.001
0.0005

25

lN4770A
I N4771 A
lN4772A
lN4773A
lN4774A

Test

Temperatura

Temperatura

Coefficient

·C

far Reference
%I"C
(Note II

Dynamic
Imped.
Ohms

Max
(Note 21

=8.5 Volts ±5% (lZT =0.5 mAl

0.064
0.032
0.013
0.006
0.003

lN4775
IN4771
lN4777
IN4778
lN4779

=6.4 Volts ±5% (IZT =1.0 mAl

lN4570
lN4571
lN4572
lN4573
lN4574

Vz

0, +25,
+75

(continued)

0, +25,
+75

-55,0,
+25, +75,
+100

D.ot
0.005
0.002
0.001
o.oDDS

200

0.01
0.005
0.002
D.DDI
o.oDDS

200

=8.5 Volts ±5% (IZT =1.0 mAl
0, +25,
+75

-55,0,
+25, +75,
+100

0.01
0.005
0.002
0.001
D.DDDS

100

0.01
0.005
0.002
D.DDI
0.0005

IDD

=1.1 Volts ±5% (IZT = 0.5 mAl
0, +25,
+75

-55,0,
+25, +75,
+100

0.01
D.DD5
0.002
0.001
D.D005

350

0.01
0.005
0.002
0.001
0.0005

350

='.1 Volts ±5% (lz, =1.0 mAl
0,+25,
+75

-55,0,
+25, +75,
+100

0.01
0.005
D.DD2
0.001
D.DDDS

200

0.01
0.005
0.002
0.001
0.0005

2DD

NOTE 1:

NOTE 2:

Voltage Variation c",vZl and Temperature Coefficient.
All reference diodes are characterized by the "box method". This
guarantees a maximum voltage variation (.0. VZ) over the specified
temperature range. at the specified test current (I ZT). verified by
tests at indicated temperature points within the range. This method
of indicating voltage stability is now used for JE DE C registration as
well as for military qualification. The former method of indicating
voltage stability - by means of temperature coefficient - accurately
reflects the voltage deviation at the temperature extremes, but is not
necessarily accurate within the temperature range because reference

The dynamiC zener impedance. ZZT. is derived from the 6O-Hz ac
voltage drop which results when an ac current with an rms value

equal to 10% of the dc zener current. IZT. is superimposed on IZT.
A cathode--ray tube curve--trace test on a sample basis is used to en-

sure that the zener has a sharp and stable knee region.

diodes have a nonlinear tel1"perature relationship. The temperature

coefficient, therefore. is given only as a reference.

1-102

lN4719 thru lN4725
lN4997 thru 1N5003

(SILICON)

MR1030 thru MR1036, MR1038, MR1040

CASE 60

CASE 70

IN4719 THRU IN4725
MRI030A THRU MRI040A

IN4997 thru IN5003
MRI030B THRU MRI040B

Silicon high-conductance rectifiers available in either
axial-lead or single-ended packages. Type numbers
shown have cathode connected to case. For anodeto-case connection, add suffix "R" to type number,
i. e. IN4719R
MAXIMUM RATINGS (Both Package Types) TA = 25°C unless otherwise noted

Rating

Symbol

IN
MR

IN
MR

IN
MR

MR

50

100

200

100 200

IN
MR

MR

300

400

500

600

800 1000

Volts

300

400

500

600

'120 1000 1200

Volts

140

210

280

350

420

'100

Volts

4719 .4720 4721

4722

IN
MR

1030 1031 1032 1033 1034 1035 1036

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
(one half-wave, single phase,
60 cycle peakl

VRM (rep)
VRM (wkg)
VR
VRM
(non-rep)

RMS Reverse Voltage

Vr

Average Rectified Forwa~d Current
(single phase, resistive load,
60 cps. T A = '150 C) see figure 4

10

Peak Repetitive Forward Current
(T A = '15OC)

35

'10

IFM (rep)

NOn-Repetitive Peak Surge CUrrent IFM(surge)
(superimposed on rated current
at rated voltage, T A = '15OC)
see figure 1
12t Rating (non-repetitive,
1 msec 
Q.

~

200

..

--

T,

15
~

!

MAXIMUM SURGE CURRENT TA = 75°C)

~o:
::l ""
5 300

/

20

>-

mA

0.5

i

I liT,

~

1. 0
~ O. 8
~ o. 6

;: lOa

,'"

20

40

0< a

80< lao

0<2 OA

MAXIMUM FORWARD POWER
DISSIPATION versus AVERAGE FORWARD CURRENT

~ 150·IC TO 1~5·C

~

J

~ V/
J~ I V
~ Voc

V/ V

V

(60 CPS.

I4<0

""5>-

L6

1.8 2<0

~
'"
13
'"
;:

.
'"
'"..'"'
.

RES'ISTl~E OR 'INDJCTIVE LOAD)

'\

DC

t-

1'\

3<0

'I'-

Q

I'-I'-

6ot>

t-.....,

~

1 1.0

r\

I

~
2<0

4

60

I" •• ,. AVERAGE FORWARD CURRENT (AMP)

1'\

" "~ '\ ~
""'"
"~
.....

~

r-

~~
o

LO 1.2 1.4

1'\

I-

;;;:

0:

~~
~
~

0

5<0

~

~ ~V

0<6 0<8

MAXIMUM FORWARD CURRENT versus AMBIENT TEMPERATURE

~V

6t/ V

I

v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

CYCLES AT 60 CYCLES PER SECOND

T,

25"C

1

0< 2
I

8 10

=

4

<

01

'L

I I

z

r--- r---

150"1

4<0

~
~

j~

.J

=

10
8. a
6. a

fa 2. a

r-- l"- t-

p-

/

;;;:

li!

~

~

lOa
8o
60

Volts

0.9

8

.

/'

200

0.45

80

100

120

140

TAo AMBIENT TEMPERATURE ('C)

1-104

~

I~

160

I\.
180

lN4728 thru lN4764 (SILICON)
lMll0ZS10 thru lM200ZS10
De~jg·np.·~

Data Sheet
1.0 WATT
ZENER REGULATOR DIODES

1.0 WATT SURMETIC 30 SILICON ZENER DIODES
. . a complete series of 1.0 Watt Zener Diodes with limits and
operating characteristics that reflect the superior capabilities of
silicon-ox ide-passivated junctions. All this in an axial-lead, transfermolded plastic package offering protection in all common environmental conditions.
•

3.3-200 VOLTS

To 80 Watts Surge Rating @ 1.0 ms

•

Maximum Limits Guaranteed on Six Electrical Parameters

•

Package No Larger Than the Conventional 400 mW Package
Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented.

Limit curves

~

representing boundaries on device characteris-

tics - are given to facilitate "worst case" design.

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

*DC Power Dissipation @TA = 50°C

Po

Derate above 50°C
DC Power Dissipation @TL
Lead Length = 3/8"
berate above 75°C

Po

1.0
6.67
3.0

Watt
mWloC
Watts

24
-65 to +200

mWloC

TJ, Tstg

= 75°C

·Operating and Storage Junction

°c

Temperature Range

MECHANICAL CHARACTERISTICS
CASE: Void-free, transfer-molded, thermosetting plastic

o

FI N I SH: All external surfaces are corrosion resistant and leads are readily solderable
and weldable

I I 0.100 DIA
--l f-- 0.107

POLARITY: Cathode indicated by polarity band. When operated in zener mode,cathode
will be positive with respect to anode

MOUNTING POSITION: Any
WE IG HT: 0.4 gram lapprox)
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

~

5.0

:t

~ 4.0

~

'"
~

'"3!

2.0

C

,.'"

::>

x
«

I\.

'"

L- 3/S"

--.. r--...
L = 1.0"

1.0

20

40

60

1.10

\

f'....

............ r-...

............

_l

I\.

..........
..........

\

-... ""- I\.

~

SO

I

(CATHODEI

'\

I

'"~

L ==t'".

POLARITY MARK

L=l/S" ' \

i'...

r--..",,-

L = LEAOI LENGTH_
TO HEAT SINK

\

~

........
3.0

~

I\.

~

;t

--::l:

,1"

100

120

140

TL, LEAO TEMPERATURE IOC)

160

ISO

To convert Inches to millimeters multiply by 25.4
AIiJEDECdimeoslOlisand notesaplily

200

• Indicates JEDEC Registered Data

1-105

CASE 59
D0-41

1N4728 thru 1N4764 (continued)
1M110ZS10 thru 1M200ZS10

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted) 'VF = 1.5 V max, IF = 200 mA for all type.
·Nominal
JEDEC
Type No.'
(Note 11

Motorola
TypaNo.
(Note 21

lN4728
lN4729
lN4730
lN4731
lN4732

ZenerYoitage
YZOIZT
Volts
(Nota 2& 31

'Test
Current
.·jZT

3.3
3.6

,76
69
64
5B
53

.inA

'Surge
Current
OTA-2&OC

·L.... age
Current

·Max Zen.r Impedance
(Nota 41

ir-.I!I~

ZZTO·IZT
Ohms
" '10
10
9.0
9.0
8.0

ZZKOIZK
Ohriii'

1.0
1.0
1.0
1.0
1.0

1 oil

400
400
400
500

100
50
10
10

1.0'
1.0
1.0
1:0
1.0

'lS0
1260
1190
"'1070
970

7.0
5.0
2.0
3.5
4.0

550
600
700
700
700

1.0
1.0
1.0
1.0
0.5

10
10
10
10
10

1.0
2.0
3.0,
4.0
5.0

890
810
730
.660
605

.IZK

IlIA

400

.IR..
VR,
pAMaxOV'l'ts

'(~51

lN4733
lN4734
lN4135
lN4736
lN4737

lM3.3ZS10
lM3.6ZS10
,lM3.9ZSfO
lM4.3Ziho
lM4.7ZS10
lM5.1Z$10
1M5.6ZS10
1M6.2ZS10
lM6.8ZS10
lM7.5ZS10

lN4738
lN4739
lN4740
lN4741
lN4742

1 M8.2ZS1 0
lM9.1ZS10
lMl0ZS10
lMl1ZS10
lM12ZS10

8.2
9.1
10
11
12

31
25
23
21

4.5
5.0
7.0
·B.O
9.0

700
700
700
,700
700

0.5
0.5
0.25
0.25
0.25

10
10
10
5.0
5.0

6.0
7.0
7.6
8.4
9.1

550
500
454
414
380

lN4743
lN4744
lN4745
lN4746
lN4747

lM13ZS10
lM15ZS10
lM16ZS10
lM1BZS10
lM20ZS10

13
15
16
18
20

19
17
15.5
14
12.5

10
14
16
20
22

700
700
700
750
750

0.25
0.25
0.25
0.25
0.25

5.0
5.0
5.iI
5.0
5.0

9.9
11.4
12.2
13.7
15.2

344

lN4748
lN4749
lN4750
lN4751
lN4752

lM22ZS10
lM24ZS1,0
lM27ZS10
lM30ZS10
lM33ZS10

22
24
27
30
33

11.5
10.5
9.5
B.5
7.5

23

750
750
750
1000
1000

0.25
0.25
0.25

.~:~~

5.0
5.0
5.0
5.0
5.0

16.7
lB.2
20.6
22.8
25.1

205
190
,170
150
135

lN4753
lN4754
lN4755
'lN4756
lN4757

lM36ZS10
lM39ZS10
lM43ZS10
1 M47ZS1 0
lM51ZS10

36
39
43
47
5'1

7.0
6.5
6.0
5.5
5.0

60
70
BO
95

1000
1000
1500
1500
1500

0.25
0.25
0.25
0.25
0.25

5:0
5.0
5.0
5.0
5.0

27.4
29.7
32.7
35.B
38.B

'125
115
110
95
"90

lN475B
lN4759
11114760
lN4761
lN4762

lM56ZS10
lM62ZS10
lM6BZS10
lM75ZS10
1MB2ZS10

56
62
6B
75
B2

4.5
4.0
3.7
3.3
3.0

110
125
150
175
200

2000
2000
2000
2000
3000

0.25
0.25
0.25
0:25
0.25

5.0
5.0
5.0
5.0'
5.0

42.6
47.1
51.7
56.0
62.2

BO
70
65
60
55

lN4763
lN4764

lM91ZS10
lMl00ZS10
lMll0ZS10
lM120ZS10
lM130ZS10

91
100
110
120
130

2.B
2.5
2.3
2.0
1.9

250
350
460
550
700

3000
3000
4000
4600
5000

0.25
0.25
0.25
0.25
0.25

5.0
'5.0
5.0
5.0
5.0

69.2
76.0
B3.6
91.2
98.B

lM150ZS10
lM160ZS10
lM1BOZSltl
lM200ZS10

150
160
180
200

1.7
1.6
1.4
1.2

1000
1100
1200
1500

6000
6500
7000
BODO

0,25
0.25
0.25
0.25

5.0
5.0
5.0
5.0

U4.0
1-21.6
136:B
152,0..

-

-

"

~.I!

. 4,'3'
4.7
5.1
5.6
6.2
6.8
7.5

49

45

41
37
34
2B

25
35

40
45
50

the JEDEC type numbers listed:have a standard tolerance on
the nominal zener voltage of ± 10%. A standard tolerance of ±5%

NOTE 2 - SPECIALS AVAILABLE INCLUDE:
(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLT·
AGES SHOWN AND TIGHTER VOLTAGE TOLER·
ANCES: To designate units with zenei' voltages oth.r
than those. assigned JEDEC numbers andlor tight voltage
tolerances (±5%. ±3%. ±2%. ±1%1. the' Motorola type
number should be used.

--.J

Motoro";

S

Z

'T

T1

Nominal
Voltage

Tolerance
(±%) ,

Surmetic

Zener
Diode

Example:

3

T

-

-

-

Zener diodes can be obtained in setS consisting of two
or more matched devices. The method for specifying such
matched sets is similar to the one described in (A). except
that two extra suffixes are edded to the code nu mber
described.

"A" to the standard type nu"!ber.

90

50
45

, (B) MATCHED SETS: .lStendard Tolerances are±5.0%. ±3.0%.
±2.0%. ± 1.0%1. ' '

on individual unitS is also availeble and is indicated by suffixing

+ 1M

304
2B5
250
225

• Indicates JEOEC Registered Data

NOTE 1 - TOLERANCE AND TYPE NUMBER DESIGNATION

Device
Description

,'.

These unitS are marked with COde letters to identify the
matched sets and. in addition. each unit .ili a set is marked
with the same sarial number. which is different for eech set
being ordered.
'

;

M

D~

T

5

Description Motorola

-r-

Example:

1-106

:J

Surmetic

Zener

B - Two devices in series
C - Three devices in series
D - Four devices in _ies

lM90ZS3

S

51 Volts
.
(each device)

'Code:

J'

Z

T

5B

1

LOvIrall

Tolerance
of set
1±1%)

Diodes
Tolerance' ,
Code'
" ·(A·Not used)
per device (±5%)
(omit for ±20% units)
lM51ZS5Bl

lN4728 thru lN4764 (continued)
lMll0ZS10 thru lM200ZS10

APPLICATION NOTE

(CI ZENER CLIPPERS: (Standard Tolarance±IO% and ±5%1.

,

Special clipper diodes with opposing Zener junctions built
into the device are available bV using the following nomen-

Since the actual voltage ayailable from. given zener diode is
temperature dependent, it is necessary to determine junction tem-

clature:

perature under any ••t of operating conditions in order to calculate
its. value. The following procedure is recommend'ed:

M

T

Device

20

T

T

Nominal
Voltage

Description

Motorola

Example:

1M20ZZS10

Z

Z

S

TT

10

T

Lead Temp.erature. TL' should be determined from:

Surmetic

Clipper

Zener
Diode

T oleranee for each of
the two Zenar volteges
(not a matching requirementl

NOTE 3 - ZENER VOLTAGE (VZI MEASUREMENT

Motorola guarantees the zener voltage when measured at 90
seconds while maintaining the load temperature (T LI at 3aDC ± ,oC.
3/8" from the diode bodV.

8 LA is the lead-to-ambient thermal resistance (oC/W) and
Po is the power dissipation. The valUe for 8 LA will vary
and depends on the device mounting method. 8 LA is generally 30-40 0 C/W for the various clips and tie points in
common use and for printed circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close 8$ possible to the tie point. The
thermal mass connected to the tie point is normally large enough
so that it will not significantly respond to heat surges generated in
the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T L. the junction
tamperature may be determined by:

~T JL is the increase in junction temperature above the lead
temperature and may l;J,e found from Figure 2 for 8 train of
power pulses (L = 3/8 inch) or from Figure 3 for dc power.

NOTE 4 - ZENER IMPEDANCE (ZZI DERIVATION
The zenar impedance is derived from the 60 cvcle ac voltage.
which results when an ac current having an rms value equal to '0%
of the de zener current (lZTor IZKI is superimposed on IZT or IZK.
NOTE 5 - SURGE CURRENT lirl NON·REPETITIVE

The rating listed in the electrical characteristics table is maximum peak. non-repetitive, reverse surge current of 1/2 square wave

For worst-case design. using expected limits of I Z. limits of Po
and the extremel of T J(~T J) may be estimated. Changes in voltage.
VZ, can then be found from:

or equivalent sine wave pulse of 1/120 second duration superimposed on the test current.IZT. per JEDEC registration. however.

actual device capability is as described in Figures 4 and 5.

8VZ, the zener voltage temperature coefficient, is found from

Figures 6 and 7.
Under high power-pulse operation, the zener voltage will vary
with time and may also be affected significantly by the zener resistance. For best regulation. k_p current excursions nlow as possible.
Data of Figure 2 should not be used tocomputesurgecapabllity.
Surge limitations are given in Figure 4. Thev are lower than would
be expected by conSidering only junction temperature, as current
crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 4
be exceeded.

1-107

lN4728 thru lN4764 (continued)
lMll0ZS10 thru lM200ZS10

FIGURE 2 - TYPICAL THERMAL RESPONSE, LEAD LENGTH L= 3/8 INCH
w

30

~

20

~
iii
~
"'<.>
-'

~

~~

~~

>->:-

ffi

I
0-0.5

-

0.1

3.0

Zu

~ ~ 1.0

DUTY CYCLE. 0 1]/'2 - ~JL.JL
SING LE PU LSE "TJ L = OJLltlPPK
REPETITIVE PULSES "TJL = OJ Lit. D)PPK PPK ~I] '--

~ ~ P"

,I"
~0.02

0.7 ~o
0.5 F"-D 0
0.3
0:0001

~

~

~ 2.0 -0.05

>-~

--

7.0 - 0 . 2
5.0

tilt=:

i""'"

".

10

i

NOTE: BelowO.1 Second, Thermal
AespQnse Curve is Applicable

>-'2-'

) '10 a~y ILe~dl ~'t9'h Ill.

---

0.0002

0.0005

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

" TIME ISECONOS)

FIGURE 3 - TYPICAL THERMAL RESISTANCE

~

80

<.>

70

'"
to

60

w
Z

~

~

'"
ffi'"

:I:

/
,,/'

50
40
30

6

20

~
>:Z

0

~

10

~

V

/

/'"

~TL

V

I

'"
'"5:w

~

SQUARE WAVE PULSE
PULSE WIDTH =0.01 ms
DUTY CYCLE =0%

300

w

~

iil

TL =27 0 C±20 C@3/8"

200

\

I

PRIMARY PATH OF
CONDUCTION IS TH ROUGH
I THE CYHOO E ~EAO

Z

:;

~

If

~ 400

tL~

//'"

DIFFUSED JUNCTION
OEVICE

800
700
600

>- 500

//

>0

FIGURE 4 - MAXIMUM NON-REPETITIVE SURGE POWER
1000

1/8

114

1/2

3/8

3/4

5/8

ALLOY JIUNCTiON
100
Z.O

7/8

3.0

L, LEAD LENGTH TO HEAT SINK (INCH)

5.0

7.0

10

20

rTf

30

50

70

100

zoo

VZ. ZENER VOLTAGE IVOL TS)

FIGURE 5 -SURGE POWER FACTOR
1.0

'"~

0.7

~ 0.3

'"~

r--.

0.05

01

all

0.1

o.lz

"w
~

0 a

0.5

r- r-..

~ 0.07
o

~

j

0.05

r-

----

MULTIPLY NORMALIZED POWER FACTOR TIMES FIGURE4,~
SU RGE POWER POINTFOR VOLTAGE IN QUESTION. TO OBTAIN
SURGE CAPABILITY AT DIFFERENT PULSE WIDTHS AND DUTY
CYCLES. THE 1.0 X REFERENCE POINT IS 0.01 msATO% DUTY
CYCLE.

-

0.03

~ 0.02

0.01
0.01

0.03

0.05 0.07 0.1

0.3

0.5 0.7 1.0

3.0

5.0 7.0 10

SQUARE WAVE PULSE WIDTH Ims)

1-108

30

50

70 100

-I-

300

500 7001000

1N4728 thru 1N4764 (continued)
1M 11 OZSl 0 thru 1M200ZS1 0

TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION
(90% OF THE UNITS ARE IN THE RANGES INDICATED)
FIGURE 6 - TEMPERATURE COEFFICIENT-RANGE
FOR UNITS TO 12 VOLTS
f-

!::'

lO

G

'"

8.0

.s

6.0

3;
f-

55

<3

4.0

0

2.0

~

'-'

f-

V

./ ./
./ ./

V
/

f-

;3
<:t:>

.s

I'

----

v-'"

<3

~

I
RANGE

V

23

50
40

~

30

j

20

:::>

./

~

5.0

6.0

7.0

8.0

9.0

10

11

/1/
1/

11L

II,

10
a

12

20

40

VZ, ZENER VOLTAGE@ IZT (Va LTSI

60

80

Vz, ZENER

FIGURE a-VOLTAGE REGULATION

g

1.0
0.8

~

0.6

I\,

w

;o

(!:I

>

IL

V

\1 \

0.4

~

.L

~VZ

~ 0.2
w

V

f.1

0.3

a;

./

t.Vz
YPICAL
RANGE

./
1\

I I

o. I

IZ 0.1 to
~ O.OS 0.5 of IZM

N 0.0 6
>
w

~ ~ 0.0 2
IE ~ 0.0 1
3.0

5.0

7.0

10

20
50
NOMINAL Vz (VOLTS)

1-109

f-

V

N

4.0

~

V ./

1t:e-

V

l.i!- f- I""'

" r:t!

100

~

-4.0
3.0

........

3;

~

w

-2.0

'"G

'"...<'" ..........

,/

a;

j

!::' 200

/

./' /

~

:::>

as

FIGURE 7 - TEMPERATURE COEFFICIENT-RANGE
FOR UNITS 10 TO 200 VOLTS

100

200

300

100

120

140

va LTAGE@ IZT (VOLTS)

160

180

200

lN4765thru lN4774
lN4775thru lN4784
For Specifications; See IN4565

Data~

LOW NOISE
TEMPERATURE~COMPENSATED
ZENER REFERENCE DIODES

.lN4896,A
thru

IN4915,A
12.8 V.:I:.5.0%

Highly reliable reference sources utilizing an oxide-passivated junction for' long-term voltage stability. RamR od construction: provides
a rugged, glass-enclosed, hermetically sealed structure.

IN4916,A

.•

thru

•

IN4932,A
19.2 V .:1:.5.0%

•

Low Noise Density Specified for Critical Applications
Low Power Drain
Devices Specified
and 7.5mA

@

0.5 mA, ,1.0. mA~ 2.0 mA, 4,0 mA,

Maximum Voltage Change Specified over Test Temperature Range

• Temperature Compensation Guaranteed over Two Standard Operatirig Temperature R~ges:
+25 to +WOoC
-55 to +1000C

MAXIMUM RATINGS
Junction and Storage Temperature: -650 C to +1750 C
DC Power Dissipation: 400 Milliwatts at 5O"c Ambient
(Derate 3.2 mW/oC Above-SOoC)

.- - - - - t

&; DIA

'~:~~ DIA

MECHANICAL CHARACTERISTICS
CASE:

Hermeticallv sealed, aUillass

DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leeds are·readilv
solderable and weldable.·
'..
POLARITY: Cathode indicated bV polarity band.
WEIGHT:

0.2 Gram (approx)

MOUNTING POSITION: Anv

CASE 51
00-7

1,-:-110

1N4896, A thru 1N4915A, 1 N4916, thru 1 N4932, A (continued)

T...
Number

o.VZ
Volts
IN.tell

Temp. Coeff.
forR.,.

%I"C
IN_II

Dynamic

Dynamic
Imped.

-

Ohms

Type

IN_ZI
.V

IZT = 0.6 rnA *NO ". O.B-

Number

1 N4896

0.096

0.01

0.198
0.048
0.099
0.019
0.040

0.01
0.005
0.005
0.002
0.002
0.001
0.001

lN4898A
, N4899

lN4899A

0.010

0.020

%I"C
IN.tell

.v

IZT:II 0.5 rnA *NO = 1 . 0 -

JHz

lN4896A
1 N4897
1 N4897A
1 N4898

Im.peeI.
Dh...
MIX
IN_ZI

Temp. Coeff.
for Ref.

o.VZ
Vol..
IN.tell

.JHz

0.144
0.29S
0.072
0.149
0.029
0.060

lN4916
lN4916A
lN4917
lN4917A
lN4918

400

lN4918A

.V
'ZT = 1.0 mA *ND" O.4.JHz

0.01
0.01
0.005
0.006
0.002
0.002

600

•

.V

IZT= 1.0mA NO"'O.5-

.JHz

VZ= 12.8 V

1 N4900
lN4900A
lN4901
1 N4901 A
lN4902
lN4902A
1N49D3
lN4903A

0.096
0.198
0.048
0.099
0.019
0.040
0.010
0.020

0.01
0.01
0.005
0.005
200

0.002

0.002
0.001
0.001

Vz = 19.2 V
.V
JHz

IZT'" 2.0 rnA ·NO .. 0.25

TEMPERATURE

··A"SUFFIX

0.01
0.01
0.005
0.005
0.002
0.002

300

IZT - 2.0 rnA *NO - 0.26 -

RANGE:
lN4904
lN4904A
1 N4905
1 N4905A
lN4906
lN4906A
tN4907
1 N4907A

0.096
0.198
0.048
0.099
0.019
0.040
0.010
0.020

0.01
0.01
0.006
0.005

0.002

STANDARD
DEVICES
+25, +75, +1000c

100

, N490S
lN49Q8A

lN4909
lN4909A
lN491Q
tN4910A

1N4911
1N4911A

0.096

0.01

0.048
0.099
0.019
0.040
0.010
0.020

0.005
0.006
0.002
0.002
0.001
0.001

IZT" 4.0 rnA *ND "" 0.22
lN49215
lN4925A
lN4926
lN4926A
lN4921
lN4927A
1N4928
lN4928A

50

.V

1N4915~

0.01
0.01
0.005
0.006
0.002
0.002
0.001
0.001

76

.JHz

JHz

0.096
0.198
0.048
0.099
0.019
0.040
0.010
0.020

0.01
0.01
0.005
0.005
0.002
0.002
0.001
0.001

0.144
0.298
0.072
0.149
0.029
0.060
0.014
0.030

•
.V
IZT' 7.5 mA ND' 0.20

IZT = 7.5 mA *ND = 0.201N4912
1N4912A
lN4913
1N4913A
1N4914
1N4914A
1N4915

150

.V
JHz

-66.0. +25.
+75,+1000c

0.01

0.198

1N4924

0.01
0.01
0,006
0.005
0.002
0.002

"A"SUFFIX

.V
IZT = 4.0 mA -NO = o.22Fz

-65,0+ 26.
+75,+1000c

0.144
0.298
0.072
0.149
0.029
0.060

lN4922
lN4922A
1 N4923
1 N4923A
lN4924A

0.002
0.001
0.001

.V

.JHz

TEMPERATURE

RANGE:
STANDARD
DEVICES
+26, +75. +1000c

0.144
0.298
0.072
0.149
0.029
0.060

lN4919

lN4919A
lN4920
lN4920A
lN4921
1 N4921 A

1N4929
1N4929A
lN4930
1N4930A
1N4931
1N4931A
1 N4932
, N4932.A

25

0.144
0.298
0.072
0.149
0.029
0.060
0.014
0.030

0.01
0.01
0.005
0.0015
0.002
0.002
0.001
0.001

36

"NOISE OENSITV MEASUREMENT METHOD

NOTE 1:
Voltage Variation (.::lVZ) and Temperature Coefficient.
All reference diodes are characterized by the "box method". This
guarantees a maximum voltage variation (6VZ) over the specified
temperature range, at the specified test currant (I ZT), verified by
tests at indicated temperature points within the range. Vz is measured and recorded at each temperature specified. The i!i..VZ between
the highest and lowest values must not exceed the max 6 Vz given.
This method of indicating voltage stability is now used for JEDEC
registration as well as for military qualification. The former method
of Indicating voltage stability - by means of temperature coefficientaccurately reflects the voltage deviation at the temperature extremes. but is not necessarily accurate within the temperature range
because reference diodes have a nonlinear temperature relationship.
The temperature coefficient, therefore. is given only as a reference.

Ammeter

Load
Resistor

DC Power
Supply

Zener

Tnt

Amplifier

r-f>-

vr

Filter
fa'" 2.0 kHz
BW = 1.4 kHz

Noise Density
(Volts per Square Root Bandwidth)

rr-

LL

True

RMS
Volt
Meter

V out

=- - - - - Overall Gain

BW

Where BW "" Filter Bandwidth (Hz)
V out Output Noise (Volts RMS)

NOTE 2: Zener Impedance Derivation
The dynamic zener impedance. ZZT' is derived from the 60-Hz ac
voltage drop which results when an ac current with an rms value
equal to 10% of the dc zener current, IZT. is superimposed on IZT'
A cathode-ray tube curve-trace test on a sample basis is used to ensure that the zener has a sharp ~md stable knee region.

The input voltage and load resistance ere high so that the zener diode
is driven from a constant current source. The amplifier is low noise
so that the amplifier noise is negligible compared to that of the test
TC zener. The filter bandpass is known so that the noise density
can be calculated from the formula shown_

1·110A

lN4933thru lN4937·
MR2271

FAST RECOVERY
POWER RECTIFIERS

. SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
1 AMPERE

. . . designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
'
high efficiency at frequencies to 250 kHz.

8

I I

0.100

--I I-- 0Tii7 0lA

Designer's Data for "Worst Case"

Cond~tions

The Designers Data Sheet permits .the design of most circuits entirely from the
information presented. Limit curves - representing dey-ice characteristics boundaries-

are given to facilitate "worst case" design.

*MAXIMUM RATINGS
Symbol

Ratin'll

Peak AepetltiveRaverse Voltage

1N4933

1N4934

1N4935 MR2271 1N4936 1N4937

VRWM
VR

50

100

200

300

400

606

VRSM

75

150

250

350

450

650

Votts

.VR{RMS)

35

70

140

210

280

420

Volts

DC Blocking Voltage

Non-Repetitive Peak Reverse Voltage
RMS Reverse Voltage
Average Rectified Forward Current

'0

1.0

Amp

IFSM

30

Am ..

TJ

-6510 +150

T stg

-e5to +175

°c
°c

(Single phese, resistive toad,

TA=7sOC)
Non-Repetitive Peak Surge C.urrent
(surge applied at rated load
conditions)
Operating Junction Temperature Range
Storage Temperature Range

0030
0.034

POLARITY MARK
(CATHODE)

Volts

VRRM

Working Peek Reverse Voltage

Unit

r-

1.10

"THERMAL CHARACTERISTICS

1.10

_'I"

AJI JEDECdlmensions and notes apply
CASE 59
00·41

Chillracteriflic
Tl'Iermal Aesistance,Junctionto Ambient
(TVPical Printed Circuit
Board Mounting)

"ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

MI"

V,
V,

·Instantaneous Forward Voltage
(iF = 3.14 Amp, TJ = 1SOOC)
Forward Voltage
OF = 1.0 Amp. T A" 2SoCI
-Raverse Current (rated de voltaga) TAB 2So C

'R

TA-1000C

Ty.

Mox

Unit

1.0

1.2

Volts

1.0

1.1

Volts

1.0

5.0

.A

50

100

Ty.

Mox

100

200

150

300

1.0

2D

'REVERSE RECOVERY CHARACTERISTICS
Chlractaristic

Symbol

Aevana Recovery Time
OF;' 1.0 Amp
VR = 30 Vdcl {Figure 211
(IFM'" 15 AmI?, di/dt .. 10 A/~sI{Figurll"22)

'u

Rever. Recoverv Current
.!IF "'.9Ampto VR ~30Vdcl {Figure 211

IRM(REC)

to

-lndicatesJEO~,C

Registered Data for

Min

1N493~Series

1-111

Unit

MECHANICAL CHARACTERISTICS
CASE: Void Free, Transfer Molded
FINISH: External leads are gold
plated, leads are readily
solderable

POLARITY: Cathode indicated by
Polarity band.
Amp

WEIGHT: 0.4 Gram (Approximately)

lN4933 thru lN4937, MR2271 (continued)

FIGURE 2 - MAXIMUM SURGE
CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
0

3D

I I

-

V

'- TJ = 250 C

/

0
TYPICAL

~

~

O. 7

<
:!:

O.5

z

In

"" =
...
...~~
50

A

~~ 30 t--

1----1., CYCLE

~
_ 2
0
I0

o

o.2

I

o. I
0.07

I

0.05

0.4

0.8

1.2
2.4
1.6
2.0
2.8
1If. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

3.2

4. 5
4.0
3. 5
3.0
f; 2.5
~ 2.0
~ 1.5
~ 1.0
~ O.5
0
8..0· 5
-1.0
-1.5
-2.0
-2 .5
0.05

SINE WAVE INPUT
FIGURE 4 - FORWARD POWER DISSIPATION
3.2

IIP~) -20I

2.8

'IAV)

"'~

~:. 2.4
~~
~~ 2.0
1.6

.... 0

1.2

~!l!
>""


~

~~

I

3.0

...

"'''

wOO
to

V

I

5.0

~

["..

0

""w

7.0

5

i/

100

......

V/

0

§'

.".,..

",.,

/'

V

j

V

.

V
1--5.

l-V' /

V/

/ / /.: V
// ~

TJ~

INDUCTIVE LOAD)

~

~

0.1

2.8

0"""'"

/

~
V'

/. "/
/ L L::: I ' L
/.~ , / dc

~~ ./
~V V

2

2.4

(IO

/

6

8

TJ~

1500C

~ '/

l.....- ~ f"""

~F"'"'
0.4

0.8

1.2

1.6

2.0

'FIAV). AVERAGE FORWARD CURRENT lAMP)

1-112

50

SQUARE WAVE INPUT
FIGURE 5 - FORWARD POWER
DISSIPATION

8

4
1.6
20
1.2
0.8
'FIAV). AVERAGE CURRENT lAMP)

I--'

0.2
0.5
1.0
2.0
5.0
10
20
iF. INSTANTANEOUS FORWARD CURRENT (AMP)

0

p

0.4

~

4

1500C

~~ ~

0.4

L

ld.
L:t

'IPK)=7
'IAV)

~~

~~ 0.8

II
TYPICAL RANGE

~~ESI~TIV~'

/

1/ /'

0

Y

/

11

2.4

2.8

1N4933 thru 1N4937, MR2271 (continued)

MAXIMUM CURRENT RATINGS
SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 6 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

,.£

,

2. B " ,

5.... 2. -1/B" ........
4...... ,

iii

.

2.0

'"

1.

'"
~
ii1

~

:zw
'"

.......

2-L~

--

ffi

'"S

0.4

~

r-...

........
~

60

70

BO

90

100

~

1.5~r-31B"

~

~

140

1.0

ffi

'"

s
~

'""""

130

5/B·;-.......

'"
>

"-

120

150

S

2.4

!;;

.........

w

.
=>
c
a:

~

'"
:z

........

............

1.6
1.2

w

",.

ffi

O.B

>
<[
-

0,4

}

......... ..........
.......... ,~

-- --

~ 2.0

K

10

..........

0
50

60

a:

,.

2,B

$

iii

......
2,4

.

2.o

'"~

"''" .....,,,,,,,-.....

c

i'"

~
~ ..........
........... ....... -...;:

.....

......

70

~

90
100 110 120
TL, LEAD TEMPERATURE (DC)

70

BO

130

~

140

"

130

140

..........

"

L""--.

......... 2,.010
...... ~O
IO""i-.....

~

,
t-....
r-... .....

I--I(PK) =20 ......
t'-..
61--1(AV)
1.

'" ""::-....

.............

~

"-

............... ~

........
--..::: ......
~
~

~"-

~

"

0
50

150

,

~
60

70

BO

90
100 110 120
TL, LEAO TEMPERATURE(DC)

130

140

150

1.2 r--...

1,2 ........

1.0

~~

~~ ~.6
0.4
0,2

r......

.........

.......

.......

......

-,...,r......

1--...
..........

70

wW

r-. ><-

~

~

130

140

0,4
0, 2

......
.........

80
90
100 110 120
TA, AMBIENT TEMPERATURE (DC)

"

1.0

~!E
~~ 0.6
S ..

r-......

~
CAPACITIVE LOAD
:::-...
I(PK) = 5.0"~~
I(AV) 10
....... ~
~
20
--.;:

60

I""-....t-....
I---de
r-...... -.........: r-...
!"-.. --.....;: ...... K
~s:
...
,.
.......... ~
~S 0.8
......... ~ ..........
'"
~

BJA =850 /W- I - -

,
,
,

I

........

c

RESISTIVE·INOUCTIVE
LOAO

...............

-. r-

o
50

<:

...... t--..

150

"de

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
1.4

~~ 0.8

~

~

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
1.4

c

~B

~ i'.........

4

,

'"~
:5 a:

'"r'--- r--.

B

~

60

............. r......

BO
90
100. 110 120
TL, LEAD TEMPERATURE (DC)

~ 1.2

~~

0
50

.........
r-...
....... r--.........

FIGURE 9 - 1/8" LEAD LENGTHS. VARIOUS LOADS

I(PK) =7T (~ESISTlh/INDIUCTlvk)
I(AV)

........

--

........

=-'...... ~ ~

FIGURE 8 - 1/8" LEAD LENGTH. VARIOUS LOADS

,.a:

BOT~

LEAJS TO H'EAT _ - ' - SINK WITH LENGTHS
AS SHOWN

0, 5

TL, LEAD TEMPERATURE (DC)

2,B

I"'--....
r.....

r......1

~

~~
r-........: ~
~~

110

'" r-...
~~ ["-..

.
c

"

r--... """r--... t-....
...........
r--...

r......

~~
.......
"

2.o

'"
=>

~~:H~~~ LENGTHS -

r--...

2.5

!;;

BOTH LEADS TO HEAT_

t--..

0
50

~
~

..........

-'1-

o.8

>

-

-~ ........

a:

RESISTI~~1~~ UCTIVE_

..........

6-3/;::-"

1.

FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

150

1-113

o

50

"""

BJA = 650C/W- I - -

CAPACITIVE LOAO
....... ~
I(PK) = 2,0 10 5,0' ~ ~
IIAV)10' , . / ~ ~......
20
~~
~

"-

60

70

BO
90
100 110 120
130
TA, AMBIENT TEMPERATURE (DC)

~

140

"

150

1N4933 thru 1N4937, MR2271

(continued)

FIGURE 12 - THERMAL RESPONSE

FIGURE 13 - THERMAL RESISTANCE

1.0

80

i5 0.7
~ 0.5
:::i

~ 0.3

tz '"~

~~
"'<.>

1

. . . V'

:~ O. 1
~~O.07
-E-~ 0.05

(SEE NOTE 11

./"

V

~

~0.03

LV

MAXIM1UM/

0.2

'"~ 0.02

~

f--JOTH LElosTo )EATSINl.
EaUAL LENGTH

LEAD LENGTH = 1/4"

~

./'V

V

TYPICAL

V V "

/

V ......... V
10

/'

to-

0.0 1
0.05 0.1 0.2 0.4

,./

1.0 2.0 4.0

10

20 40

I. TIME

100 200400 10002000 5000

o

o

114

1/8

1/2

3/8

1m,)

NOTE 1

FUL
PPk

Ppk

tp_

1----..----1

5/8

3/4

7/8

LEAD LENGTH (INCHES)

NOTE 2
Data shown for thermal resistance junction-to-ambient (BJA) for the
mountings shown is to be used as typical guideline values tor preliminary
engineerillg or in case the tie point temperature cannot be measured.

DUTV CYCLE, 0 =tp/ll
PEAK POWER, Ppk, is peak of an
equivalent square power pulse.

TYPICAL VALUES FOR (JJA IN STILL AIR

TIME

LEAD LENGTH, L (IN}

To determine maximum junction temperature of the diode in a given situation,
the following procedure is recommended

MOUNTING
METHOD
I

The temperature of the case should be measured using a thermocouple placed
on the case at the temperature reference point (see Note 31. The thermal mass
connected to the case is normaliV large enough so that it wilt not significantly
respond to heat surges generated in the diode asa result of pulsed operation once
steady-state conditions are achieved. Using the measured value of TC, the junction
temperature may be determined by:

2
3

1/8

65

7.

1114 1,/2 I 314
82

72
81

9t
.0

MOUNTING METHOD 1

TJ=TC+""TJC

MOUNTING METHOD 2

rhl =normalized value of transient thermal resistance at time, t, from Figure
3, i.e.:
r (tl + tpl '" normalized value of transient thermal resistance at lime t 1';' Ip

Vector pin mounting

c/w
°C!W
°C!W

P. C. Board wilh

1-1/2" x 1·112" copper surface

~LJ=3/8"

~:.

tlTJC"'Ppk 'ROJC 10+(1- 0)' r(tt +Ip)+r(tp) - r(ttlJ

where

ROJA

MOUNTING METHOD 3

r'=-J t--'=i
w~

where"" TJC is the increase in junction temperature above the case temperature.
It may be determined by:

92
101

rT

II~

Board Ground
Plane

-:

FIGURE 14 - THERMAL CIRCUIT MODEL
(For Heat Conduction Through The Lead,)

ROSA

TAK-=-

Use of the above model permits junction to lead thermal resistance for any
mountingoonfigurationtobefound. For a given total lead length, lowest values
occur when one side of the rectifier is brought as close as possible to the heat
sink. Terms in the model signify:

1-114

T A '" Ambient Temperature Res'" Thermal Resistance, Heat Sink to Ambient
TL'" Lead Temperature
R8L = Thermal Resistance, Lead to Heat Sink
T C = Case Temperature
A8J = Thermal Resistance, Junction to Case
TJ '" Junction Temperature Po = Power Dissipation
(Subscripts A and K refer to anode and cathode sides respectively.)
Values for thermal resistance components are:
AeL"" 11'PC/W/IN. Typically and 12S0C/W/IN Maximum
ROJ "" 1SOC/W Typically and 300CfW Maximum
The maximum lead temperature may be calculated·as follows:
TL"" 1500 -L\TJL
t'lTJL can be calculated as shown in NOTE 1 or it may be approximated
as follows:
ATJl ~OJL. PF: PF may be formulated for sine-wave operation from
Figure 3 or from Figure 4 for square·wave operation.

1N4933 thru 1N4931, MR2211

(continued)

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 15 - FORWARD RECOVERY
TIME

FIGURE 16 - JUNCTION CAPACITANCE

0.5

j

,.;::

0.3

w

30

-V~r<1.L
_
TJ<250C

~
~

g

/

ffi o.2

/'

o>

1ll
0:

~
c:§

0:

~
~

O. 1

a

0:

~
~

0.07

~

TJ < 25°C

t"-.. ............
10

z

V

Q

~

20

w

V

........

7. 0

5.0

"

L"

0.05
0.1

0.2

0.5

2.0

1.0

5.0

3.0
1.0

10

2.0

5.0

10

20

50

100

VR. REVERSE VOLTAGE (VOLTS)

IF. FORWARO CURRENT (AMP)

TYPICAL RECOVERED STORED CHARGED DATA
FIGURE 17 - TJ = 25°C

FIGURE 18 - TJ

1.0

= 75°C

2. 0
IFM < 20 A

3

w
.~

0.5

./

~ o. 2

~~

o

t:; o. I

:..--- ""'~

~

~w
>
~_

0:

~ 0.0 5

10 A
~o::::'

'\

~ loP ......

:~ V-1.0

o.5

5.0A

\

5.0

10
di!dt lAMP!",)

50

20

100

.3
w
~

5 o.5
V

~

~V V

~ 0.2

.~

~ k'

O. I

>

v

V
10 A .

8

~ 0.05


= 110'0.5-

Tc

2N1100

2N174 AND 1358
60

30

~3~
20

~

500",

, ""'" ~ ~ t::::
1'\ ~

hl

""

~

170.W~r I
"\
POWI!R OISSIPATlON AT I\.

1tAIl

25

0.5
0.4
0.3
0.2

Sm.

20
I ...

Sm.

TEMjRAyRE

I}I
c

100",
OR LESS

,,
""'

~
~

B

I

O. S

The Safe Operating Area Curves indicate leVell: limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

"""

T~

lbo
OR LESS".'

--

(i
o

10

-

-\....

'"t\. \ \
de/"

,

lOO'V. 8 mA
(2NIIOO ONLY)
WITH BACK 81AS APPLIED
ULSE tURVjS ONYI't--

O. 2

COUECTOtI-EMITTER VOLTAGE (VOLT$)

/t--.

l70·WATT /
POWER1lISSIPATION AT
2SoC CASE TEMrERAjURE

1

O. I

" ~~

'"/

2

0.4
O.l

O.I 0

2501'S

f...-

''\ ~

TO IOV. SmA

-rrrll~~\m~EO
tR!LSE f~ ON~Yl ~ r- .\

500~s

\ \. ~ ~ ~ k- r

10

r-

1m.

.......

250!"

-\

20 lO 40 50
60 70 80
COLLECTOR.£MITTER VOLTAGE (VOLTS)

90 100

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2-5

176 (GERMANIUM)

2N
2N669

PNP germanium power transistors for economical
power switching circuits and commercial grade power
amplifier applications.
CASE 11
(TO-3)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector - Base Voltage

VCB

40

Vdc

Collector-Emitter Voltage

V CES

30

Vdc

IC

3.0

Amp

Collector Current (Continuous)

T J, Tstg

-65 to +100

'c

Total Device Dissipation
(At 25'C Case Temperature)

PD

90

Watts

Thermal Resistance
(Junction to Case)

BJC

0.8

'C/W

Storage and Junction Temperature

SAFE OPERATING AREAS

2N669,2N176
gO-WATT
POWER DISSIPATION

-

25°C CASE ,MPfRATURE-

~

\ \

r

The Safe Operating Area Curves indicate
Ie - VCE limits below which the device will
not go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector·emitter short. (Case
temperature and duty cycle of the excursions make no significant change in these
safe areas.) To insure operation below the
maximum TJ, the power-temperature derating curve must be observed for both
steady state and pulse power conditions.

5m,

\1\

OR LESS
2N176

2N669

=
-

do

0.5
D4
OJ

02

0.1

o

10

20

30

40

50

COLLECTOR-EMITTER VOLTAGE (VOLTS)

2-6

2N176, 2N669 (continued)

ELECTRICAL CHARACTERISTICS (TC= 2S0C unless otherwise noted)
Symbol

Characteristic
Collector-Base Cutoff Current
VCB = 30 V, IE = 0
VCB = 2.0 V, IE = 0
VCB =30V, IE = 0, TC = gaoC

leBO

Emitter-Base Cutoff Current
VEB = 10 V, Ie = 0
2N176
2N669

Collector-Emitter Saturation Voltage
Ie = 3 A, IB = 300 mA

Power Gain
Pout = 2 Watts, VCE = 12 V, Ie = 0.5 Amp,
f = 1 kHz, RS = 10 Ohms, RL = 26.6 Ohms

-

lEBO

-

-

2.0

BVCER
BVCES

30
30

-

-

Small-Signal Input Impedance
VCE = 2.0 V, IC = 0.5 Amp, f = 1 kHz

hie

2N176
2N669

INPUT CURRENT versus EMITTER DRIVE VOLTAGE
(Both Types)

i

./

0. .:

••

37

-

-

-

5.0

4.0
3.0

7.0
5.0

-

-

45
90

-

7.0
10

-

25
50

..

u

u

~

-

'\

'\

I'\.

"
'\

••
u

kHz

,

/

/

k'"
~

%

Ohms

/

0.04

-

250

-

j

~ 0.01

....

-

/

! •.•

Vdc
0.4

-

/

U,
0.12

-

34
38

.111

/

/

Vdc

POWER-TEMPERATURE DERATING CURVE
(Both Types)

V

I· ....

mA

dB

fete

2N176
2N669

hfe

_ 0.11

20

-

25
75

2N176
2N669

Small-Signal Forward-Current Transfer Ratio
2N176
VCE = 2.0 V, Ie = 0.5 Amp, f = 1 kHz
2N669

I

mA
jJ.A
mA

-

OpE

Small-Signal Current Gain Cutoff Frequency
VCE = 12 V, Ie = 0.5 Amp, f = 1 kHz ref

v: =2 ~lS

3.0

50
-

Total Harmonic Distortion
(under same conditions. of power gain)

0'"

Unit

-

hFE

2N176
2N669

Maximum

-

VCE(SAT)

DC Forward Current Transfer Ratio
VCE =2.0V, Ie = 0.5 A

0...

Typical

-

Collector-Emitter Breakdown Voltage
Ie = 330 mA, RBE = 10 Ohms

.,22

Minimum

u

u

U

U

•o

H

' ... lMIHIIltTEI VOLT_ _IS)

2-7

20

..

eo

'\
eo

.00

2N

178 (GERMANIUM)

2N554
2N555

CASE 11

~

(TO-3)

PNP germanium power transistor for non-critical
power amplifier and power switching applications requiring economical components.

MAXIMUM RATINGS

Rating

Symbol

2N:178

2N554

2N555

Unit

Collector-Emitter Voltage

VCER

30

16

30

Vdc

Collector-Base Voltage

VCB

30

15

30

Vdc

Emitter-Base Voltage

VEB

20

15

15

Vdc

Collector Current
Total Device ,Dissipation @ TC

= BO°C

Operating and Storage Junction
Temperature Range

Ie

3.0

Adc

PD

10

Watts

-40 to +90

T J , T stg

°c

50

1\.
1\

""'

POWER-TEMPERATURE DERATING CURVE

o

:0

"-

1'\
I

IU

,

r\

10o

TC. CASE TEMPERATURE (OC)

•
•

2N178, 2N555

'\ H

2

I

5

POWER DISSIPATION AT
3D~ TEMPERATURE

3

•
3

ZN17.
2N555

,..
......

'I'"

•
,

2N554

•

_An

5

I

SAFE OPERATING AREAS.

"

2

i ~,~~ ~ t>.....
•

I

I:~

=R'tISSIPATION AT

I:

300c CASE TEMPEIATUIE

I-I---

"

Af--..

u

.3
,2

•

D.

•0

20

30

.

.

,

50

•0

20

3D

..

COLUCTONMlml VOLTAGE (VOLTS)

COlLECTO_1TTElI VOlTACE (VOlT$)

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TI, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

The Safe Operating Area Curves indicate leVelD limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2-8

2N 178, 2N554, 2N555

(continued)
ELECTRICAL CHARACTERISTICS ;(TC = 250 C unless otherwise noted)

I Symbol IMin I Typ IMax I Unit

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC =330 mAdc, RBE = 100)

Collector-Base Cutoff Current
(V CB =2.0 Vdc, IE = 0)

=30 Vdc,
= 15 Vdc,

BV CER

2N178
2N554
2N555

ICBO

2N178

--

-

-

0.05

-

-

2N178

~ = 0)

2N554

(V CB = 30 Vdc, IE = 0)

2N555

-

2N178

-

-

-

2.0

-

45

(V CB
(V CB

= 30 Vdc,

~ = 0, TC = 90°C)

Emitter-Base Cutoff Current
(V BE = 10 Vdc, IC = 0)

lEBO

2N178

mA

3.0

IE = 0)

(VVB

Vdc

-

30
16
30

-

10.0

-

20.0

-

20.0
mA

ON CHARACTERISTICS
DC Current Gain
(IC = O. 5 Adc, VCE = 2.0 Vdc)

hFE

2N178
2N554
2N555

Collector-Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 300 mAdc)

15

VCE(sat)

-

-

-

50

-

0.6

-

5.0

6.0

-

50

Vdc

SMALL-SIGNAL CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC =O. 5 Adc, VCE = 12 Vdc, f = 1. 0 kHz ref) 2N178
2N554
2N555

f

Small-Signal Current Gain
(IC =O. 5 Ad':, VCE = 2.0 Vdc, f = 1. 0 kHz ref) 2N178
2N554
2N555

hfe

Input Impedance
(IC =O. 5 Adc, VCE = 2.0 Vdc, f = 1. okHz)

h.
Ie

oe

-

2N178
2N554
2N555

6.0

-

--

55

-

8.0

25
25
25

-

-

-

-

30

55

-

kHz

Ohms

FUNCTIONAL TESTS
Power Gain
(V CE = 12 Vdc, IC = O. 5 Adc, Pout = 2.0
Watts, f = 1. 0 kHz, RS= 10 Ohms,

GpE

2N178
2N554
2N555

dB

28
20
25

-

33

35
35

-

-

-

5.0

RL = 26. 6 Ohms)
Total Harmonic Distortion
(Under same conditions as power gain)

2N178

INPUT CURRENT versus INPUT DRIVE VOLTAGE

COLLECTOR CHARACTERISTICS
3.0

10

~

!

240
90

50

2.0

5
!....

!

.....

70

~

4
0
20
1.0
·12 n<'l

....

j:

100-

-

,/
2

~"
0

10

i

140

20

30

VeE

40

VeE. COLlfCTOR·EMIITER VOLTAGE (VOLTS)

I

= 2 VOLTS

J

160

I....

120

f

80

,

/

~

100

/

60

./

40

o

I

I

~

20

0
0

~:::j

180

!:

,/
4

200

.

~

I

220

i1l'

::>

~

8

%

~

o

0.2 0040.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

V. B• INPUT DRIVE VOLTAGE (VOLTS)

2-9

2N242 (GERMANIUM)
2N307, A

CASE1~
(TO_3lI1~

PNP germanium power transistors for general purpose power amplifier and switching applications_

MAXIMUM RATINGS

Symbol

2N242

2N307. 307A

VCB

45

35

Volts

Collector-Emitter Voltage (RsE = 301'l)

VCER

45

-

Volts

Collector- Emitter Voltage

VCEO

-

35

Volts

VEB

-

10

Volts

Rating
Collector - Base Voltage

Emitter - Base Voltage

Unit

Collector Current

IC

5.0

5.0

Amp

Junction Temperature Range

TJ

-65 to ... 110

-65 to ... 110

°c

Collector Dissipation (at T C = 250 C)

PD

106

Watts

106

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Characteristic
Collector- Base Cutoff Current
(VCB = 2 Vdc)
(VCB = 25 Vdc)
(VCB = 1 Vdc, IE = 0, T C= 85 0 C)

2N307
2N307
2N307A
2N242

Emitter- Base Cutoff Current
(VEB = 10 Vdc)
Collector-Emitter Cutoff Current
(VCE = 45Vdc, RBE =301'l)
(VCE = 25 Vdc, RBE = 30 I'l)
(VCE = 35Vdc, RBE =301'l)

2N242
2N242
2N307
2N307A

Base - Emitter Voltage
(VCE = 1. 5 Vdc, IC = 1. OAdc)

2N242

Collector - Emitter Saturation Voltage
(IC = 2. 0 Adc, IB = 200 mAdc)
(IC = 0.2 Adc, IB = 20 mAdc)
(lC = 1. 0 Adc, IB = 100 mAdc)

2N242
2N307
2N307A

DC Current Gain
(VCE = 12 Vdc, IC = 500 mAdc)
(VCE = 1 Vdc,.IC = 200 mAdc)
Common Emitter Cutoff Frequency
(VCE = 12 V. IC = 0.5 A)
(VCE = 6 V. IC = 1 A)
Power Gain
(IC = 0.5 A. VCE
Rg=101'l)

= -14 V, RL = 301'l.

2N242
2N307
2N307A
2N242
2N307A
2N307
2N242

2-10

Min

Max

ICBO

-

0.5
5.0
2.0
5.0

lEBO

-

2.0

ICER

-

-

5.0
1.0
15
7.0

0.3

0.8

-

0.8
1.0
0.8

30
20
30

120

5.0
3.5
3.0

-

VBE
VCE(sat)

hFE

lae

G"

Unit
mAdc

mAdc
mAdc

Vdc
Vdc

-

-

kHz

-

dB

30

2N277 (GERMANIUM)
2N278
2N173
2N1099

~

i lIIl ~

CASE 5
(TO-36)

PNP germanium power transistors for general purpose power amplifier and switching applications. Power and temperature ratings exceed EIA registration.

MAXIMUM RATINGS

Rating

2N277 2N278

Symbol

2N173 2N1099 Unit

Collector-Base Voltage

VCB

40

50

60

80

Vdc

Emitter-Base Voltage

VEB

20

30

40

40

Vdc

Emitter Current-Continuous

IE

15

Adc

Base Current

IB

4.0

Adc

PD

170
2.0

Watts
W/oC

Total Device Dissipation @T C = 25 0 C
Derate above

25 0 C

Operating and storage Junction
Temperature Range

°c

T J' T stg

-65 to +110

THERMAL CHARACTERISTICS

Characteristic

Max

Symbol

Thermal ReSistance, Junction to Case

Unit
°C/W

0.5

9JC

SAFE OPERATING AREAS

.

2N173

50
0
0

•,

~

lOoJ.lS
OR LESS

I" l'- l~

4

/ J',.
POW£R DISSIPATION AT
250, CASE

1

TE,MPWTj

,

a.

d.

1

a.: 1---1
2

t---

1

a.

30

40

,,.

250 I

\

1001"
OR LESS

,

"\

"T CA'j TEMr'RAy" i)

..

..

d.

500"., 'so ...
~100".

'"'"'" t>--.:

~="'&rSSIPATlON AT

170·WATT

POWER DISSIPATION AT

25"C CASE TEMPERATURE

,...

,

, '00...
'"''
~ ~ V~O:rE'ss
~ ~~

>-

so

COWCTOUMITTER VOlTAGE MIlTS)

FOIl 'IULS' fU""I' allLt -

60

70 0

10

20

30

40

50

t-...

"

~I\

1\'

TO SOW,B IlIA

TOaDY, 8 IlIA

t-- yITH BACK ElIAS APPLIED

~\

OR""

~

25"C CASE TEMPERATURE

"

1

HCI
20

~ ~ ::::

2N278

2N277

~

~

TO SOY 8 IlIA
wnH
81M APPLIED

10

~

500 115

170.W...
POWER DISSIPATION AT

(FORPULSECORVESOf'Ilj'_
0

'm,
r"

JI

170·WATT

JJ o.

,

1\ i' "~

,

"

,

..

250,..s

\ I\.: ~ ~

,
,

I

'm, 500,.

,~

2N1099

WiTH BACK BIAS APP%I~ "-~
I - - J--. IPUj
tURVES jLYl

I-~\
60

10

I-

80

90 1000

COlLECTOR.£MIT1'ER VOLTAGE (VOlT$)

The Safe Operating Area Curves indicate Ie V CE limits below which the device will not go. into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

10

20

30

40

coutcTOR.£MITT£R VOLTAGE (VOLTS)

'00

10

20

30

40

COWCTOft-EMITTtR VOLTAGE (VOlTS)

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2-11

50

2N277, 2N278, 2N173, 2Nl099

(continued)

ELECTRICAL CHARACTERISTICS ITe = 25 0 e unless otherwise noted)

Symbol

Characteristic

I CBO

Collector-Base Cutoff Current
VCBO = 2V
Collector-Base Cutoff Current
VEB = 1.5 V, VCB = 40 V
50
60
80

2N277
2N278
2N173
2N1099

Emitter-Base Cutoff Current
VEBO = 20 V
30
40
40

2N277
2N278
2N173
2N1099

Collector- Base Cutoff Current
VCSO = 40 V, 71°C
50
60
80

2N277
2N278
2N173
2NI099

Collector-Emitter Voltage
IC = 300 rnA, VEB = 0

Collector-Emitter Voltage
Ie = 1 Amp, IB = 0

Floating Potential
IE = 0, VCB = 40 V
50
60
80

2N277
2N278
2N173
2N1099
2N277
2N278
2N173
2N1099
2N277
2N278
2N173
2N1099

Current Gain
Ie = 5 Amp, VCB = 2V
Ie = 12 Amp, VCB = 2V
Base- Emitter Voltage
Ie = 5 Amp, VCB = 2V

Saturation Voltage
Ie = 12 Amp, IB = 2 Amp

ICBX

-

lEBO

Vfl

8.0
8.0
8.0
8.0

-

15
15
15
15

40
45
50
70

-

-

-

-

25
30
45
55

-

-

-

0.15
0.15
0.15
0.15

1.0
1.0
1.0
1.0

-

70

-

25

-

-

0.65
0.65
0.65
0.65

-

0.3
0.3
0.3
0.3

-

volt

-

35

-

f
ae

Rise Time
"on" Ie = 12 Adc,
IS =2 Adc, VCE =

tr

Vdc

-

-

-

Common-Emitter Current Amplification
Cutoff Frequency
Ie = 5 Amp, VCE = 6V

-

Vdc

-

VCE(SAT)

/LA

rnA

-

-

VBE

Unit

rnA

-

2N277
2N278
2N173
2N1099

-

1.0
1.0
1.0
1.0

-

-

BVCEO*

100

8.0
8.0
8.0
8.0

-

BVCES*

Maximum

2.0
2.0
2.0
2.0

-

I CBO

Typical

rnA

-

hFE

2N277
2N278
2N173
2N1099

Minimum

Vdc

0.9
Vdc
1.0
1.0
0.7
kHz

0.3

10

-

-

15

-

-

15

-

/Ls

12 V
tf

Fall Time
"off" IC = 0,
VES = 6 V, REB = 10 Ohms

* To avoid excessive heating of the collector junction, perform these tests with the sweep method.

2-12

/LS

2N277, 2N278, 2N173, 2Nl099

(continued)

INPUT CHARACTERISTICS

POWER· TEMPERATURE DERATING CURVE
~

0.6

210

~

...............

180

~

............

150

.~ 120

~

90

~

60

&.

30

P-lb

............
..........

0.5

-..... ............

J

r-....

0

40

20

60

100

80

110

T C' Case Temperature (oC)

c;;-

""
""c..
:E
S
....z
IX

....
IX

I

0.4

'1

0.3

BO°C ....

::>
'"
u

....

25°C .....

~

The maximum continuous
power is related to maximum junction temperature
by the thermal resistance
factor.
This curve has a value of
150 Watts at case temperatures of 25°C and is 0 Watts
at 110°C with a linear relation -between the two temperatures such that:

CD

..:

I

0.2

WC -....,

~

JI
/, J

~ I 'I

~V

~V

0.1

-

/: ~ V

t...:::: ~ io""

0

o

0.2

0.4

O.B

0.6

1.0

VRE' BASE -EM ITTER VOLTAGE (VOLTS)

allowable Pn =

11 0° - Tc
0.5

CURRENT TRANSFER CHARACTERISTICS

TRANSCONDUCTANCE CHARACTERISTICS

12

/

V /

10

c;;....
IX
....
c..

)~ ~

B

S

....z

....

::>

u

....u
~

0

4

u

..2
2

0

I"

J/

6

/

~If

h '/

:E

S

....z
....

_400CI

IX
IX

::>

J ,/,

6

VJ /

u

IX

....u
0

~
....
0

/j r.t

BO°C

/ r ~2SoC
V / V--

4

u

~

_40°C

2

,ru

o
0.1

)'1

c;;....
IX
....
c..

#
II
//I

o

J

10

~

IX

0

./

~

12

"",

~ I'... ~ 8O'C- / )< V' r---- 250C

:E

IX
IX

./

0.2

0.3

0.4

0.5

I•• BASE CURRENT (AMPERES)

VV/
~

'/ V
o "
0.2

0.4

0.6

0.8

VBE• BASE·EMITTER VOLTAGE (VOL TS)

2-13

1.0

2N297

A (GERMANIUM)

CdE~
(TO-3)

PNP germanium power transistor for military and
industrial power switching and amplifier applications.
Operating temperature range and- collector dissipation
rating exceeds military specifications.

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

60

Vdc

Collector-Emitter Voltage

VCES

50

Vdc

Collector-Emitter Voltage

VCEO

40

Vdc

Emitter-Base Voltage

VEB

40

Vdc

Emitter Current

~

5.0

Amp

Operating Temperature Range

TJ

Collector Dissipauon at 25 DC
Case Temperature
(8JC = 1 DC/w max)

-65 to .. 110

DC

85

watts

PD

POWER·TEMPERATURE DERATING CURVE
100

"

o

o

20

"'"
"~'" I'"
"
40
60
80
T C' Case Temperature (oC)

2-14

""
100

110

2N297 A (continued)
ELECTRICAL CHARACTERISTICS

(TC = 250 C unless otherwise notedj

Chancterlstic

Symbol

.20

-

-

fue

5.0

-

kHz

lEBO

-

3.0

mAde

leBO

-

200

/LAde

leBO

-

3.0

mAde

12.5

mAde

h

=
=

14 Vde
0.5 Amp

Emitter-Base Cutoff Current
VEB
IC

=
=

40 Vde
0

Collector"Base Cutoff Current
VCB
IE

=
=

2 Vde
0

Collector-Base Cutoff Current
VeB
IE

=
=

60 Vde
0

Base Current
VeE '" 2 Vdc
Ie= 0.5 Adc
Base Current

=
Ie=

VCE

.

FE

.2 V
2.0 Ade

Small-Signal Current Transfer Ratio
Cutoff Frequency
VeE
Ie

Ualt

-

DC Current Transfer Ratio

=
Ie=

Maximum
100

hFE

VeE

Minimum
40

DC Current Transfer Ratio
VeE '" 2V
Ie= 0.5 Adc

IB

5.0

IB

-

100

mAde

VEB

-

1.5

Vde

0.18

Vdc

1.0

Vde

-'

2 Vde
2Ade

Emitter-Base Voltage
VCE '" 2 Vdc
IC = 2 Adc
Floating Potential

Vfl

VCB =
(Voltmeter input resistance
= 10 Megohm min)
Collector-Emitter Saturation Voltage
Ie= 2 Adc
IB = 200 mAdc
60 Vde

Collector-Emitter Voltage

Ie=
IB =
=
=

BVCEO

40

-

Vde

BVCES

50

-

Vde

leBO

-

6.0

mAde

300 mAde
0

Collector-Emitter Voltage
IC
VEB

VCE(SAT)

300 mAdc
0

High-Temperature Operation
TC

= +71°C

min

Collector Cutoff Current
VCB
IE

=
=

30 Vde
0

2N307 (GERMANIUM)
2N307 A
For Specifications,

See 2N242 Data.

2-15

2N319 thru 2N321 (Germanium)
CASE 31(1) \ .

~

(TO-S)

PNP germanium transistors for audio amplifier
and low-frequency switching applications.

Base connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Bue Voltage

Vcs

25

Vdc

Collector-Emitter Voltage

VCEO

20

Vdc

Emitter-Due Voltage

VEB

5.0

Vdc

Ie

500

mAdc

Collector Current
Junction and Storage Temperature

T J' Tstg

PD

Power DlII81patlon at 25°C Ambient

ELECTRICAL CHARACTERISTICS

Symbol

Collector Cutoff Current
VCB = -25 Vdc, ~ =0

ICBO

Emitter Cutoff Current
VEB = • 15 Vdc, \: =0

~BO

Collector-Emitter Voltage
\: = 0.6 mAde, RaE =10 K

BVCER

225

mW

Min

Max

Unit

-

16

IIAdc

-

10

IIAdc

20

-

Vdc

25
34
53

42
65
121

-

23
30
47

---

-

180

320

-

35

1.0
1.5
2.0

-

hFE

= -1 Vdc
2N319
2N320
2N321

DC Current Gain
\: .. 100 mAde, VCE .. -1 Vdc

hFE
2N319
2N320
2N321

Base Jnput Voltage
VCE = -1 Vdc, \: .. 20 mAde

VBE

Qatput Capacitance; Input AC Open Circuit
VCS -5 Vdc, ~ = 1 mAde, f = 1 MH~

Cob

Frequency Cutoff
VCS =-5 Vdc,

fab

=

~

°C

IT A = 250 C unless otherwise noted)

Characteristics

DC Current Gain
\: =20 mAdc, VCE

-65 to + 100

.. 1 mAdc
2N319
2N320
2N321

2-16

mVdc

pF

MHz

2N322 thru 2N324 (GERMANIUM)
2N508
PNP germanium transistors for audio driver and low
power output service in entertainment equipment.
CASE 31(1)
(TO-S)

Base connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Collector-Base Voltage

VCB

18

Vdc

Collector-Emitter Voltage

VCEO

18

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

500

mAdc

T J , T stg

-65 to + 100

Collector Current
Junction and Storag.e Temperature
Power Dissipation at 25°C Ambient

ELECTRICAL CHARACTERISTICS

ICBO

Emitter Cutoff CUrrent
VEB ; -3 Vdc, IC; 0

~BO

Collector-Emitter Voltage
IC ; 0.6 mAdc, R BE; 5 K

BV CER

Base Input Voltage
VCE ; -1 Vdc, IC; 20 mAde

VBE

Output Capacitance; Input AC Open Circuit
VCB ; -5 Vdc, IE; 1 mAde, f; 1.MHz

Cob

~;

Max

Unit

-

16

/LAde

-

16

/LAde

18

-

Vdc

34
53
72
99

65
121
198
198

-

180

320

mVdc

-

35

1.0
1.5
2.0
2.5

-

Min

hFE
2N322
2N323
2N324
2N508

Frequency Cutoff
VCB ; -5 Vdc,

mW

(TA; 25 0 C unless otherwise noted)

Collector Cutoff Current
VCB ; -16 Vdc, ~ ; 0

DC Current Gain
VCE ; -1 Vdc, IC; 20 mAdc

°c

225

PD

Symbol

Characteristics

Unit

1 mAdc
2N322
2N323
2N324
2N508

fa-b

2-17

pF

MHz

2N331 (Germanium)

PNP germanium transistor for audio range amplifier
and switching service in military equipment. Have collector dissipation and storage temperature ratings significantly higher than those of the military specification
(see maximum ratings table below).

CASE 31(1)
(TO·S)

All leads isolated

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

30

Volts

Emitter-Base Voltage

VEB

12

Volts

Storage Temperature

Tstg

-65 to + 85

°c

storage Temperature

Tstg

-65 to + 100

°c

Collector Dissipation at T A = 25°C
(MIL-S-19500!4C
(Derate 1.25 mW;oC above 25°C)

PD

75

mW

Collector Dissipation at TA = 25°C
(JAN 2N331)
(Derate 2.67 mW;oC above 25°C)

PD

200

mW

ELECTRICAL CHARACTERISTICS (TC = 2S o C unless otherwise noted)

Characteristics

Symbol

Emitter Cutoff Current
(VEB = -12 Vdc, IC = 0)

~BO

Collector Cutoff Current
(VCB = -30 Vdc, ~ = 0)

ICBO

Small-Signal Open-Circuit Output Admittance
(V CB = -6 Vdc, ~ = 1.0 mAdc, f = 1 kHz)

hob

Small-Signal Short-Circuit Input Impedance
(VCB = -6 Vdc, ~ = 1.0 mAdc, f" 1 kHz)

hib

Small-Signal Short-Circuit Forward-Current
Transfer Ratio
(VCE = -6 Vdc, IC" 1.0 mAdc, f = 1 kHz)

lye

Small-Signal Short-Circuit Forward-Current
Transfer Ratio Cutoff Frequency
(VCB = -6 Vdc, ~ " 1 mAdc)

fab

Output Capacitance
(VCB = -6 Vdc, ~

Cob

Noise Figure
(VCB = -6 Vdc, ~
f = 1 kHz, f-Al Hz

= 1 mAdc)
= 1 mAdc,

Min

Max

,..Adc

-

10

-

10

-

1.0

-

50

30

70

0.4

-

-

50

"Adc
"mho
Ohms

-

)

2-18

MHz

pF

NF
RS" 1000, ohms,

Unit

dB

-

20

2N331

(continued)

POWER·TEMPERATURE DERATING CURVE
220

,

JAN

200
180

f?!

I-

~

::;
::!

~
~

CI

~

~

~

'\

160
140

(hA

i!.
~

~N331

\

I"

= 0.375°C/mW(max)

120

(he

\

r\.

'\ \..

100

\

\
",\

"

60
40
20

o0

\

'\ \

80

,;

A.

= 0.25°C/mW(max)

10

20

30

40

50

60

70

TA • AMBIENT TEMPERATURE (OC)

2-19

80

'\ ~

"

90. 100

2N350A (GERMANIUM)
2N351A
2N376A
PNP germanium power transistors for economical
power switching applications and for power amplifiers
requiring up to 4 watts of output power at relatively
low distortion.

CASE1~
~
(TO-3)I

MAXIMUM RATINGS

Symbol

Rating

VCB

50

Vdc

Collector-Emitter Voltage

VCES

40

Vdc

Collector Dissipation
at 25'C mounting base temperature

Po

90

Watts

Collector Junction Temperature

TJ

-65 to +100

·C

9JC

0.8

'C/W

CURRENT GAIN versus
COLLECTOR CURRENT (COMMON EMITTER)

Ci

Unit

Collector-Base Voltage

Thermal Resistance
(Junction to Case)

100

Value

\

,

2N350A

/"
~\

/"\ [\\

\

\ ......... ~
\
~

2ft351A

V2N376A

90

"-

211376A

"\'

POWER TEMPERATURE
DERATING CURVE

SAFE OPERATING AREAS

2N351A

)( \
./

VeE.2 VOLTS

\

5ms _
OR liSS

\

......

90·WATT

POWER DISSIPATION

~'~r\.

"- '~.

"

"\.

de

2N3!10A ... ~ I"-,~

20

r-.

\

\,

250C CASf TEMPERATURE

'\

~

0.2

I

2

3

4

COLLECTOR CURRENT (AMPERES)

!I

o

0.1

0

10

20

30

40

COU£CTOR'[MlmR VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate IcV CD limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

~

0

W

~

~

90

\

~

MOUNTING BASE TEMPERATURE (OC)

(Duty crcle of the excursions make no significant
change In these safe areas.) To insure operation
below the maximum T;r, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2-20

2N350A, 2N351 A, 2N376A (continued)

ELECTRICAL CHARACTERISTICS
Symbol

GENERAL

Collector Cutoff Current
VCB ~ 30 V
VCB ~ 2 V
VCB~30V, T ~ 100·C

I CBO

Emitter Cutoff Current
VEB ~ 10 V

lEBO

Collector Breakdown Voltage.
IC ~ 1 A (RBE
10 Q)

BVCES

=

(at mounting base temperature 25°C ± 3°C.)

=

Minimum

Unit

Maximum

Typical

-

-

-

50

-

/lA

-

30

rnA

-

-

2.0

rnA

40

-

-

Vdc

rnA

3.0

=

Ie
330mA, RBE
0
(This test should be made
under dynamic conditions only)

ELECTRICAL CHARACTERISTICS (at mounting base temperature 25°C ± 3°C.)
COMMON EMITTER

Sym
Power Gain (± 0.5 db)
Pout ~ 4 Watts, VCE
IC ~ 0.7 A, f ~ 1 kHz

Unit

2N376A

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

30

-

33

32

-

35

34

-

37

-

-

7.0

-

-

7.0

-

-

7.0

20

-

60

25

-

90

35

-

120

5.0

-

-

5.0

-

-

5.0

-

-

-

30

-

-

45

-

-

60

-

5.0

-

6.0

-

20

7.0

-

25

-

0.8

1.75

-

-

-

-

-

-

-

1.0

2,00

-

-

-

-

-

-

-

-

-

-

0.8

1.75

-

-

-

-

-

-

-

1.0

2.00

-

-

-

-

-

-

-

-

-

-

0.8

1.75

-

-

-

-

-

-

-

1.0

2.00

dB

GpE
~

12 V,

Total Harmonic Distortion
under same conditions as power gain
DC Forward Current Gain
VCE ~ 2 V, IC ~ 0.7 A

hFE

Current Gain Frequency Cutoff
VCE ~ 12 V, IC~0.7A,
f ~ 1 kHz ref

fae

Small-Signal Forward Current Gain
f ~ 1 kHz, VCE ~ 2 V, IC ~ 0.7 A

hfe

Small-Signal Input Impedance

h.ie

f~lkHz, VCE~2V, IC~0.7A

Collector Saturation Voltage
IC ~ 3 A, IB ~ 300 rnA
BasecEmitter Voltage
IC ~ 3 A, IB ~ 300 rnA
Collector Saturation Voltage
IC ~ 4 A, IB ~ 400 rnA
Base-Emitter Voltage
IC ~ 4 A, 113'~ 400 rnA
Collector Saturation Voltage
IC ~ 5 A, IB ~ 500 rnA
Base-Emitter Voltage
IC ~ 5 A, IB ~ 500 rnA

2N351A

2N350A

VCE(SAT)
VBE

VCE(SAT)
VBE

VCE(SAT)
VBE

%

kHz

17

Ohms
Vdc
Vdc

Vdc

Vdc

2-21

Vdc

Vdc

2N350A, 2N351 A, 2N376A (continued)
INPUT CURRENT verSU$
EMmER·DRIVE VOLTAGE

OUTPUT CURRENT versus
EMITTER·DRIVE VOLTAGE
5.0

200

II

4.5

I
2N!7'A~

1I

110

/ /

'-

I

/ J '/

2N!5IA

'-

/ //

I '//
Vh'

1.0

.5

o ~
o

,

.2

VCE

.6

.1

120

ii3

10

1.0

1.2

1.4

1.11

o

1.1

'-..j

I

/

40

= 2 VOLTS

/

/

/

!

fA v

.4

~

~

'-2N!50A

~~

2N!50 A}
2N!!!1 A ~
2N!7' A

/

....... /
o

.2

V

.4

VCE' 2 VOLTS

.•

.1

1.0

1.2

1.4

1.6

1.8

VIE' BASE TO EMITTER VOLTAGE (YOLTS)

VIE' BASE TO EM IlTER VOLTAGE (VOLTS)

2N375 (GERMANIUM)

2N618
2N1359
2N1360
2N1362 thru 2N1365

CASE~

PNP germanium power transistors for general purpose switching and amplifier applications.

(TO-3)

MAXIMUM RATINGS

2N1359 2N375 2N1362 2N1364 Unit
Symbol 2N1360
2N618 2N1363 2N1365

Rating

VCES

40

60

75

100

Vdc

Collector-Base Voltage

VCB

50

80

100

120

Vdc

Emitter-Base Voltage

VEB

25

40

50

60

Vdc

Collector-Emitter Voltage

Collector Current-Continuous
Peak
Total Device Dissipation @ T C
Derate above 25 0 C

= 250 C

Operating and Storage Junction
Temperature Range

Adc

3.0

IC

10
Watts
W/oC

106

PD

1.25

°c

T J' T stg

-65 to +110

THERMAL CHARACTERISTICS

Symbol

Cha racteristic
Thermal Resistance, Junction to Case

6JC

2-22

Max

Unit

0.. 8

°C/W

2N375, 2N618, 2N1359, 2N1360, 2N1362 thru·2N1365
ELECTRICAL CHARACTERISTICS (TC =

Characteristic

25 0 C

unless otherwise noted)

TJPls

Collector-Base Cutoff Current
(V CB = 40 V, IE = 0)
(V CB = 50 V, IE = 0)

2N1359, 2N1360

(VCS = 60 V, IE " 0)
(VCS" BO V, IE " 0)

2N375, 2N61B

(V CS =75V, IE = 0)
(VCS" 100 V, IE" 0)

2N1362, 2N1363

(VCS" 100 V, IE " 0)
(VCS" 120 V, IE " 0)

2N1364, 2N1365

S,mbDI
ICSO

Collector-Sase Cutoff Current
at Tc " +90°C
VCS = 1/2 SV CES rating
Emitter-Sase Cutoff Current
(VES " 12 V, Ie " 0)
(VES " 25 V, IC = 0)
(VES = 50 V, IC = 0)
(VES = 60 V, IC = 0)
Collector -Emitter Sreakdown
Voltage
IC = 500 mA, VES = 0)

DC Current Transfer Ratio
(V CE = 4 V, IC = 1. OA)
(VCE = 4V,Ic = LOA)

Transconductance
(VCE = 4 V, IC = LOA)

Frequency
(VCE = 4
(VCE = 4
(V CE = 4
(VCE = 4

Cutoff
V, IC
V, IC
V, IC
V, Ie

= 1 A)
" 1 A)
= 3 A)
= 3 A)

Collector Saturation Voltage
(Ie = 2.0 A, Is = 200mA)

Sase-Emitter Drive Voltage
(Ie = 2.0A, IS " 200 mAl

Collector-Emitter PunchThrough Voltage
(VCS = 50 V, IC = 0)
(VCS = 100 V, IC = 0)
(VCS = 120 V, IC " 0)

2N1359, 2N1360
2N375, 2N618
2N1362, 2N1363
2N1364, 2N1365

64
65
64
65

-------

-----

--

Maximum

Unit
rnA

3,0
20.0
3.0
20.0
3.0
20.0

---ICSO

--

--

20

rnA

IESO

--

0.5

mA

----

-----

40
60
75
100

-------

-----

35
60
15
20

55
90
22
35

90
140

O.B

1.25
1.6
1.25
1.6

SV CES

375, 1362,
61B, 1363,
375, 1362,
61B, 1363,

Minimum TJPlcal

----

2N1359, 2N1360
2N1362, 2N1363
2N1364, 2N1365

2N1359,
2N1360,
2N1359,
2N1360,

(continued)

hFE

3.0
20.0

20
20
20

Vdc

--

---mhos

2N375
2N6lB
2N1359, 2N1362, 2N1364
2N1360, 2N1363, 2N1365

2N375
2N618
2N1359, 2N1362, 2N1364
2N1360, 2N1363, 2N1365

2N1359, 375, 1362, 64
2N1360, 618, 1363, 65

2N1359, 375, 1362, 64
2N1360, 61B, 1363, 65

gFE

f
Ole

2-23

5.0
5.0
7.0
5.0

8.5
8.5
10
8.5

----

-----

Vdc

----

0.4
0.3

1.0
0.8

VSE

---

0.7
0,6

---

------

kHz

--

VCE(sat)

V ESF

2N1359, 2N1360
2N1362, 2N1363
2N1364, 2N1365

1.0
0.8
1.0

2.2
2.5

--

---

Vdc

Vdc
1.25
1.25
1. 25

2N375 (continued)
POWER-TEMPERATURE DERATING CURVE
120

;;

!

110

~

~

.....

100

.~

80

is

60

.~

.
. '"

The maximum continuous power is
related to maximum junction temperature, by the thermal resistance factor. For d. c. or frequencies below
25 cps the transistor must be operated
within the constant Pn = Vc x Ic
hyperbolic curve. This curve has a
value of 106 Watts at case temperatures of 250 C and is 0 Watts at 110De
with a linear relation between the two
temperatures such that
Po allowable = 1100 - Tc

I'.....

"

'" '" ,

40
20

40

20

.....

100

80

60

,

0.8

110

Te' Case Temperature fC)

CURRENT GAIN versus COLLECTOR CURRENT

BASE-EMITTER VOLTAGE versus COLLECTOR CURRENT
1.5
0:;
~
0

...

~

140

r--...,..--,......-..,.---,---,......-...,..-......,

120

t---f~-+.--+--+---+--+--i

Ve~ = 2 vi

z

'"~
0

>

...'"

III

~~

~

:i
~ 0.75
(I)

"";.,

,:

80
60

'''"'
1---~~-~--+---:~~-+--4--~

2NI359~~

20
Ie

M~X PEA~

I

10

20

~~s

Ims

\

./

I
e

"-

'\.

\

4

\.

3

\

2

I, "'"

t-

Z
....

'"'"::>u
'"0

I-

"-

\

'->
,coy

~\

~

............

...

0

u

de /

0.1

10

20

30

L

J

1

40

50

60

...a:

2

,

70

,

, ,

~

I'>..
/
V\

1\

........ ......... '\

t.....

V ~~

9LJT
POWER DISSIPATION
25°C CASE TEMPERATURE

.........
tU

0

80

COLLECTOR·EMITTER VOLTAGE (VOLTS)

0.5
0.4

J{

0.3

I

\ \\

~

'" ~

i"'-

"- .........

I

"'\

TO 75V, 3 mA
WITH BACK BIAS APPlI=i=
(PULSE CURVES ONLY)

0.2

0.1

250~s

...-- OR LESS

......

'-'

~

!

\ \

\..

Ie MAX CONT.

5bo

.A'~I

II

1\

\

0

I"'-..

T090V,3mA
WITH BACK BIAS APP~~
(PULSE CURVES ONLY)

o

-- __

Im~

I
5ms

I\,

'-'
a:

"r-..,

0.2

3

'"::::>

...

0.3

$
Z

N

/ .......

0.5
0.4

5
4

t-

t"

90.wL
POWER DISSIPATION
25°C CASE TEMPERATURE

U
....
...

0::
::I!

\ I~

.....

~AxlpEA~
I
"'\.

\l\

\.

!

2N375, 2N618

I'\.

OR LESS-

\.\
\\

"-

--~

10

250~s

'\.

I

Ie, COLLECTOR CURRENT (AMP)

SAFE OPERATING AREAS

I

5ms

.......................

............

o 0~--~--~--~----~--~----~~
0.5
3.5
1
1.5
2
2.5

3.5

1
1.5
2
2.5
Ie, COLLECTOR CURRENT (AMP)

0.5

2N1362,2N1363

$

Y

40 -·2N375
2N1362
2N1364
20

o

2N618 --I---+---i
2N1363
2N1365

I"'

CD

0::
::I!

/2NI3~0

\

~ 100 1----+-~.t_--1
...
~

o

I I III

~

5 10 15 20 25 30 35 40 45 50 55 60 65
COLLECTOR·EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate I c V CE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2-24

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2N3

76 A(GERMANIUM)
For

Spe~ifications,

See 2N350A Data.

2N378 thru 2N380(GERlt\ANIUM)
2N459,A

CASEll~.·
..
(10-3)1

~

PNP germanium power transistors for general purpose power amplifier and sWitching applications.

MAXIMUM RATINGS

Rating

Symbol 2N378 2N379

2N380

20

40

30

60

60

40

80

60

-

-

-

-

-

105

105

70

70

Vdc

-

105

Vdc

10

25

Vdc

Collector-Emitter Voltage

VCEO

Collector-Emitter Voltage

VCEX

(VBE = 1. 5 V)
(VBE = 1.0 V)
Collector ..Einitter Voltage

VCES

Collector-Base VOltage

VCB

Emitter-Base Voltage

VEB

-

2N459 2N459A Unit
Vdc
Vdc

-

Collector Current.

IC

5.0

Adc

Operating Junction
Temperature Range

TJ

-65 to +110

°c

Total Device Dissipation @T C = 25° C

PD

106

Watts

ELECTRICAL CHAR~CTERISTICS (TA':' 25°C unless otherwise notedl

Characteristic

Symbol

I Min IMax I Unit

OFF CHARACTERISTICS
collector-Emitter Breakdown Voltage
(IC =100mAdc)

2N378
2N379
2N380
2N459,2N459A

Collector Cutoff Current
(VCE =40 Vde, VBE(off)= 1.5 Vdc)
(VCE = 60 Vde, VBE(off) = 1.5 Vde)

2N378

(V CE =80 Vde, VBE(off) = 1.-5 Vde)

2N379

(VCE= 105 Vde, VBE(off) = 1. 5 Vde)

2N459

(VCE = 105 Vde, VBE (off) = 1. 0 Vde)

2N459A

(VSE = 25 Vdc)

ICEX

2N380

Collector ·Cutoff Current
(V eB = 25 Vdc)
(V CB = 25 Vdc, TC = 85°C)
Emitter Cutoff Current
(VBE = 10 Vdc)

BV CEO

2-25

-

-

10

lEBO

Vdc

mAde

-

10

-

10

-

ICBO

2N380
2N459
2N459A-

20
40
30
60

10

-

10

-

0.5

-

7.5

mAdc

--

mAdc
1.5
2.0
2.0

2N378, thru 2N380 2N459. 2N459 A

(con.tinued)

ELECTRICAL CHARACTERISTICS (continued)

I

Symbol

Characteristic

Min I Max I Unit

ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 Adc, V CE = 2.0 Vdc)

(IC = 5.0 Adc, V CE = 2.0 Vdc)
Collector-Emitter Saturation Voltage
(IC = 2.0 Adc, IB = O. 2 Adc)
Base-Emitter Voltage
(IC =2.0Adc, VCE =2.0Vdc)

2N378
2N379,2N459
2N380
2N459A
2N459A

2N378-2N380,2N459
2N459A
2N378
2N379, 2N459, 2N459A
2N380

hFE

VCE(sat)

VBE(on)

40
20
30
40
20

80
70
70
70

-

1.0
0.3

-

1.6
1.3
1.0

5.0

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC = 1.0Adc, VCE = 2.0 Vdc)
(IC =2.0Adc, VCE =2.0Vdc)

f

2N378-2N380,2N459
2N459A

2-26

(Ie

kHz

5.0

2N381 thru 2N383 (GERMANIUM)
2N2171

CASE31m\
(TO-S)

PNP germanium transistors for small-signal audio
amplifiers, Class B push-pull output stages and mediumspeed switching circuits.

Base connected to case

MAXIMUM RATINGS

Rating

Symbol

Collector-Base Voltage

Unit

Value

VCB

50

VCER

25

VEB

20

Volts

Collector Current

IC

400

mA

Junction Temperature

TJ

-65 to +100

°c

Collector Dissipation
TA = 25°C
derate
TC = 25°C
derate

PD
225
3.0
500
6.7

mW
mW;oC
mW
mW;oC

Collector-Emitter Voltage (R BE

= 10K)

Emitter-Base Voltage

ELECTRICAL CHARACTERISTICS

Symbol

Collector-Base Cutoff Current
(VCB = -25 Vdc)

ICBO

Emitter-Base cutoff Current
(YEB = -20 Vdc)

lEBO

Collector-Emitter Voltage
(IC = 500 I.I.Adc, RBE = 10K)

BV CER

Collector-Emitter Voltage
(IC = 50 I.I.Adc, VBE = 1.0 Vdc)

BVCER

(IC

= 100 mAdc,

2N381
2N382, 2N383, 2N2171

= -1.0 Vdc)

VCE

= -1.0 Vdc)

Volts

(TC = 25 0 C unless otherwise noted)

Characteristics

DC Current Gain
(IC = 20 mAdc, VCE

Volts

2N381
2N382
2N383
2N2171
2N381
2N382
2N383
2N2171

2-27

hFE

Min Typical

Max

Unit
I!lAdc

---

6.0

10

---

5.0

10

25

- --

-----

50
45

35
60
75
110

---- -- ----- -- ------

!lAdc

Vdc

-- Vdc

30
50
65
90

----65
95
120
250

- --- -----

--

-

2N381 thru 2N383, 2N2171 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristics

Symbol

Small Signal Current Gain
(IC= 10mA, veE = -5.0V, f= 1kHz)

Voltage Feedback Ratio
(Ie = 10 mA, VCE = -5 V, f = 1 kHz)

85
135
155
310
Xl0- 3

-- --------

0.66
0.69
0.72
0.75

--- ---- -ohms

hie

-- ----- -- --

2N381
2N382
2N382
2N2171

300
450
550
850

h
oe

2N381

(Rg = 450 n , RL = 500 n )

2N382
2N383

(Rg = 785n , RL = 500n )

2N2171

Output Capacitance
(Ie = 1 mA, VCB = -6V)

GT

Cob

Noise Figure
(Ie = 1 mA, VCE = -6V, Rg = 1 kc, f = 1 kHz)

- --

-- ---- -

j.Lmhos

-- -- --- ----

2N381
2N382
2N383
2N2171

(Rg = 550 n , RL = 500 n )

- --- - --- ---

420
400
380
500

- ------- ---

42.5

--- -- -- --

20

- --

36
38
39.5

NF

6.0
5.5
5.0
3.5

2-28

pF

--- --- -MHz

fab
2N381
2N382
2N383
2N2171

dB

dB

- --- -- - --

2N381
2N382
2N383
2N2171
Cutoff Frequency
(IC = 1 mA, VeB = -6V)

60
90
115
210

hre

Input Impedance
(Ie = 10 mA, VCE = -5.0 V, f = 1 kHz)

Unit

-- 35
70
90
120

2N381
2N382
2N383
2N2171

Trailsducer Gain
(Rg " 300 n , RL " 500 n )

Max

~e
2N381
2N382
2N383
2N2171

Output Admittance
(Ie = 10 mA, VCE = -5.0 V, f = 1 kHz)

Min Typical

-------- --

3.0
4.0
5.0
7.5

- --- -- ----

2N398 r 2N398

A(GERMANIUM)
PNP germanium transistor for high-voltage, audiofrequency applications.

CASE 31(1)
(TO·S)

All leads isolated

MAXIMUM RATINGS

Rating
Collector~Base

Symbol

Voltage

2N398A

2N398

Unit

VCS

105

105

Vdc

Collector·Emitter Voltage

VCEO

105

105

Vdc

Emitter-Base Voltage

VEB

50

50

Vdc

DC Collector Current

IC

200

100

mA

Emitter Current

~

200

100

rnA

Junction Temperature

TJ

-65 to +100

-65 to +85

°c

Storage Temperature

Tstg

-65 to +100

-65 to +85

°c

Collector Dissipation @ 25°C
Thermal Resistance, Junction to Ambient

PD

150

50

mW

(lJAmax

0.5

1.2

°C/mW

ELECTRICAL CHARACTERISTICS

(Tc

=25°C unless otherwise noted)
Symbol

Characteristics

Min

Typical

Max

Unit

Collector-Base Cutoff Current
(VCB = 105 V, IB =0)

I CBO

-

12.0

50

I1A

Collector-Base Cutoff Current
(VCB = 2. 5V,
= 0)

ICBO

-

5.0

14

I1A

Emitter-Base Cutoff Current
(VEB =50 V, IC = 0)

lEBO

-

3.0

50

I1A

Collector-Emitter Saturation Voltage
= 5 mAdc; IB = O. 25 mAdc)

VCE (SAT)

-

0.11

0.35

Vdc

Base-Emitter Saturation Voltage
=5 mAdc; = O. 25 mAdc)

Ia

VBE (sAT)

-

0.22

0.40

Vdc

DC Current Transfor Ratio
= 5 mAdc; VCE = 0.35 Vdc)

hFE

20

65

.

-

DC Collector-Emitter PunCh-Through Voltage
(VCB necessary toobtaln VEB of -1 V max,

V pT

105

160

.

Vdc

fOlb

-

1.0

-

MHz

Ia

Uc
Uc

Uc

using instrument with Zln

> 11 megohm to

measure VBE)
Small-Blgnal Short-Circuit, Forward Current
Transfer Ratio Cutoff Frequency
(VCB = 6 Vdc; IE = 1 mAdc)

2-29

2N398 (continued)

POWER - TEMPERATURE DERATING CURVE

DC CURRENT TRANSFER RATIO versus COLLECTOR CURRENT
Vt'F. =O.35V

70

200
ISO

60
160

~::l

~

150
140

"

120

~

r'\

z:

0

~
i:i
Q
~
~

100
SO

~

:ri

~

~

i'-

20

o

W

M

W

U

~

30

""

20

......

U
Q

r'\.

ro

~

i'"
u

~

f'\.

t'.. r-...
o

I"r--...

....

...... ~39S
40

\

40

~

60

~

'"'-

50

0

i

2N3*

w

"'- ........

r-- r--

r-

10

~

~

o

~

o

20

40

60

SO

100

120

140

160

ISO

TA, AMBIENT TEMPERATURE (OC)

I,., COLLECTOR CURRENT (MILLIAMPERES)

LARGE SIGNAL CURRENT GAIN (H FE ) versus TEMPERATURE

OUTPUT CURRENT versus BASE·DRIVE VOLTAGE
(VCE=-IV)

(Normalized to 2SOC Value; VeE =O.3SV)

260

200
ISO
160

V

140
120
100
80

60
40

1/1

--

/
~

- -----

V

./

L

/

V

/

II

24 0
22 0

1

~ 200

Ic= mA

Ic- 50~A

-

=
~

160

~

140

5~

L
II

ISO

:3

)

/

120

/

u
D::

§
::j
u

'"

100

80

L

60
40

20

20

o

o
-60

-40

-20

+20 +40
TEMPERATURE (OC)

+60

200

+SO

+100

o

0.1

--

V

0.2

L
0.3

I

/

0.4

0.5

0.6

V.,,, BASE·EMITTERVOLTAGE (VOLTS)

2-30

0.7

O.S

2N404 (GERMANIUM)
2N404A

PNP GERMANIUM
SWITCHING
TRANSISTORS

PNP GERMANIUM SWITCHING TRANSISTORS

.. designed for medium-speed saturated switching applications.

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Max) @ IC = 24 mAdc

•

High Emitter-Base Breakdown VoltageBVEBO = 12 Vdc (Min) @ IE = 20 pAdc - 2N404
= 25 Vdc (Min) @ IE =20 pAdc - 2N404A

r;:D'35~
*MAXIMUM RATINGS
Symbol

2N404

2N404A

Unit

Collector-Emitter Voltage

VCES

24

35

Vde

Collector-Base Voltage

VCB

25

40

Vde

Emitter-Base Voltage

VEB

12

25

Vde

Rati"g

IC

150

mAde

Emitter Current

IE

100

mAde

Total Device Dissipation @TA ~ 25°C
Darate above 250 C

Po

150
2.0

mW
mW/oC

Total Device Dissipation @TC • 25°C
Derate above 250 C

Po

300
4.0

mW
mW/oC

-65 to +100

DC

Collector Currant - Continuous

Operating and Storage Junction
Tamporatura Range

TJ,Tstg

nii*
l

g:m~LO.029
-II'-~

i: ~."..

Pin 1. Emitter

~,/
A
/\&m

D•D2B

45 0 T.P.

--L

·Indlcates JEDEC Registered Data.
A1IJEDECTQ·5dimensionsandnotesapply.

CASE 31 (1)

TO-5
Collector Connected to Case

2-31

2N404, 2N404A (continued)
*ELECTRICAL CHARACTERISTICS ITA = 2SOC unless otherwise noted)

Characteristic

Symbol

OFF CHARACTERISTICS
Collector-B_ Breakdown Voltage
(lc = 20 "Ado, IE - 01

BVCBO

Max

-

12

25

-

-

24
36

-

-

-

-

1.0

-

O.B
20

5.0
90

-

0.5

2.5

30
24

80

-

90

-

-

0.09
0.09

0.15
0.20

-

0.27
0.30

0.35
0.40

4.0

25

-

--

8.0
8.0

20
20

hie

-

3.6

-

kohms

hre

-

8,0

-

X 10-4

hie

-

135

-

-

hoe

-

50

-

"mhos

-

Vdc

Vpt
2N404
2N404A
VEBII
2N404A
leao

=aOOcl

Emittar Cutoff Current

lEBO

= 2.5 Vdc, IC =01

Vdc

-

BVEBO

Eminer·Basa Floating Potential
(VCB = 35 Vdc, IE = 01

Unit

-

25

2N404
2N404A

Punch-Through VoltageOl
(VEBfI-1.O Vdcl

(VEB

Typ

40

2N404
2N404A

Emittar-B_ Breakdown Voltage
!IE - 20 "Ado, IC = 01

Collector CUtoff Current
(VCB - 12 Vde, IE = 01
(VCB = 12 Vdc, IE =0, TA

Min

_.

-

Vdc

-

-

Vdc
,.Ade

"Ade

ON CHARACTERISTICS
DC Current Gain

(lC = 12 mAde, VCE
!lC = 24 mAdc, VCE

hFE

=0.15 Vdel
=0.20 Vdel

Collector-Emitter Saturation Voltage

VCE( ..tI

(lC= 12 mAde, IB - 0.4 mAdel
(lc = 24 mAde, IB ='1.0 mAde I
Base-Emitter Voltage
!lC - 12 mAde, IB - 0.4 mAdel
!lc = 24 mAde, IB = 1.0 mAdel

VSE

SMALL-5IGNAL CHARACTERISTICS
Alpha Cutoff Frequency
!IE = 1.0 mAde, VCB = 6.0 Vdel

Ihfb

Output Capacitance

(Vca
(Vca

= 6.0 Vde, IE = 0, I = 1.0 MHzl
=6.0Vde, IE = 1.0mAde,l= 2.0 MHzl

Cob

2N404
2N404A

I nput Impedance

(lC

= 1.0 mAde, VCE = 6.0 Vde, f = 1.0 kHz!

Voltage Feedbaek Ratio
!lC -1.0 mAde, VCE = 6.0 Vde, I

=

Small-Signal Current Gain
!lC = 1.0 mAde, VCE - 6.0 Vde, I

= 1.0 kHzl

Vde

Vde

MHz
pF

1.0 kHzl

Output Admittance

!lc = 1.0 mAde" VCE = 6.0 Vde, I

-

= 1.0 kHzl

SWITCHING CHARACTERISTICS
Oeley Time (Figure 11

...

-

0.07

-

tr

-

0.12

-

Storage Time (Figure 11

is

-

tf

-

0.20

Fall Time (Figure 11

0.10

-

...,..
,..

300

1400

--"C

Rise Time (Figure 11

Stored aase Charge (Figure 21

Om

~

-Indicates JEOEC Registered Data.
(1)V pt Is determined by measuring the emitter-base floating potentia' VEBtl' using a voltmeter with 11 megohms minimum input
Impedance. The collector-base voltage, VeB. is increased until VEBfl'" -1.0 Vdc; this value of VeB '" (V pt + 1).

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

FIGURE 2 - STOREO BASE CHARGE TEST CIRCUIT

INPUT
vout[[l

Cl is increased until the toll time of the
output waveform is decreased to 0.2 ,...
Dab i. then calculated by lIsb = Cl Vin.
VoutUL
NOTES: 1. Input pulse supplied by generator with following

characteristics:
a, Output impedance: 50 Ohms
b. Repetition rate: 1.0 kHz

c, Rise and fall time: 20 ns Max
2. Waveforms monitored on scope with following

characteristics:
a, Input resistance - 10 Megohms Min

2-32

b, Input capacitenee -15 pF Ma.
e. Ri.. time - 15 ns Ma.
3. All rssistors ±.1.0% tolerance.

2N441 (GERMANIUM)
2N442
2N443
CASE 5
(10-36)

PNP germanium power transistors for power switching and amplifier applications. Power and temperature
ratings exceed EIA registration.

~
.

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

Symbol

2N441

2N442

2N443

Unit

VCES

40

45

50

Vdc

Collector-Base Voltage

VCB

40

50

60

Vdc

Emitter-Base Voltage

VEB

20

30

40

Vdc

Base Current - Continuous

IB

4.0

Adc

Emitter Current - Continuous

IE

15

Adc

PD

150

Watts

Total Device Dissipation @ TC

=

25°C

Operating Junction Temperature Range
(EIA Registered)

TJ

-65 to +95

°c

Operating Junction Te.mperature Range

TJ

-65 to + 100

°c

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
(EIA Registered)

8JC

1.0

°C/W

Thermal Resistance, Junction to Case

8JC

0.5

°C/W

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
160

en
1=
«

"'

140

~ Manufactu~er

~ 120

z
o
i= 100
~

in
en

80

o

60

a:

w

s:o

40

o

20

a..
a..

~---

"
- "
"
.... ........
....

E I A registered

o
o

20

40

'"'"

r---,.....

60

, ....~

80

100

TC, CASE TEMPERATURE (OC)
The maximum continuous power is related to maximum junction temperature, by the thermal resistance factor_
This curve has a value of 150 Watts at case temperatures of 25° C and is
o Watts at 100°C with a linear relation between the two temperatures such that
100° ~ T C
PD allowable =
0._5

2-33

2N441 thru 2N443

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

=25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

25
30
45

-

--

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage.
(IC = 1.0 Adc, IB = 0)

Collector-Emitter Breakdown Voltage.
(IC = 300 mAde, VBE = 0)
Floating Potential
(VCB = 40 Vde, IE
(VCB
(VCB

= 50 Vde,
= 60Vde,

= 0)
= 0)
= 0)

IE
IE

(VCB
(VCB
(VCB

= 50 Vde,
= 60 Vde,
= 40 Vdc,
= 50 Vde,
= 50 Vde,

= 0)
= 0)
= 0,
= 0,
= 0,

IE
IE
IE
IE
IE

2N441
2N442
2N443
2N441

Collector Cutoff Current
(VCB = 2.0 Vdc, IE = 0)
(VCB = 40 Vde, IE = 0)
(VCB
(VCB

2N441
2N442
2N443

•

VEBF

-

ICBO
2N441
2N443

TB
TB

= 71°C)
= 71°C)
= 71°C)

2N441
2N442
2N443

= 40 Vde,

2N443

lEBO

2N442

= 0)

-

2N442
TB

40
45
50

2N443

2N441

Ie

BVCES

2N442

Emitter Cutoff Current
(V BE = 20 Vde, IC = 0)
(V BE = 30 Vdc, IC = 0)
(V BE

•

BVCEO

-

-

Vde

Vde

Vde
1.0
1.0
1.0

0.1

-

2.0

8.0

2.0

8.0

2.0

8.0

-

15

-

15

mAde

15

mAde

-

1.0

8.0

1.0

8.0

1.0

8.0

20

-

40

ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 Ade, VCE

(Ie = 12 Ade,

VCE

hFE

= 2. 0 Vde)
= 2.0 Vdc)

Collector-Emitter Saturation Voltage
(IC = 12 Ade, IB = 2.0 Ade)

Base-Emitter Voltage
(IC = 5.0 Ade, VCE = 2.0 Vdc)

VCE(sat)

2N441
2N442
2N443

VBE

2N441
2N442
2N443

-

20

-

0.3
0.3
0.3

-

-

--

Vde

1.0

-

Vde

0.65
0.65
0.65

0.9

-

15

-

I1B

-

15

-

I1B

-

-

DYNAMIC CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC =5.0 Ade, VCE = 6.0 Vde)

SWITCHING CHARACTERISTICS
Rise Time
(VCE = 12 Vde, IC

= 12

Fall Time
(IC = 0, VBE

Vde, RBE

= 6.0

Ade, IB

tr

= 2.0 Ade)

tf

= 10 ohms)

• Pulse Test: Pulse Width" 300 ,,"s, Duty Cycle" 2.0%.

2-34

2N441 thru 2N443

(continued)

TYPICAL COMMON-EMITTER CHARACTERISTICS
FIGURE 2 - OUTPUT CHARACTERISTICS
5

~

~adomA

.0

-

IZ

TJ' 25'C

::!IE:

~

IU

./jmA

.l

1_

15

-

600 mA

'1'-...,

-'

~
::E 9.0

I

,

U
IE:

o

0.6

! 0.4

1

9
3.0

z

::E 0.3
:::l

IU

o

~

A~ r--....

I- 8.0

A ~ "i'....

z
IU
IE:
IE:

:::l

u 6.0
IE:

~
~

J
IJ/
1/1

4.0

9
2.

1/

"

.... Tj

o

'":::..-'"~

/

0.8
0.4
0.6
0.2
veE. eASE VOLTAGE (VQLTS)

1.0

I.

10.0
Tj-SQ'C-"",

0:
:;

«
~

=8O'C

2S'C

25'C,
8.0
-4O'C "'>i

IU

IE:
IE:

-4Q'C

:::l
U

IU

4.0

9

V

2. 0

0.75

2-35

/.VI
ry V

/ /11

::u
~

VL

/ "/

6.0

IE:

0
0.15
0.3
0.45
0.6
Ie. 8ASE CURRENT (AMP)

/

12. 0

0,1.
0

II

r

FIGURE 7 - TRANSCONDUCTANCE
CHARACTERISTICS

l/ /:V
..I: ~ '"

10

~

o

60

/

V/

./

./ ~

/

I

0.1

FIGURE 6 - DC CURRENT GAIN
TRANSFER CHARACTERISTICS
12

0.2

~

IS~~,I

1 11

-4O·c .......

u

50
40
10
20
30
VCE. COLLECTOR VOLTAGE (VOLTS)

0:

2!i"C,

IU

'VSE'· 0

o
o

Tj- 8O'C,

I-

~

I
I
.I II
I

0:

lOOmA
-50mA

8

I

I

400mA

I

50

FIGURE 5 - INPUT CHARACTERISTICS

..- . /
-" ../

~ 6.0

...J
...J

40

30

20

10

VCE. COLLECTOR VOLTAGE (VOLTSI

200 mA

IU

VSE = 0

'IS=~~•
I

o

TJ' 25'C

. / 3OOm~

:::l

-

- -

.150 mA

0.5

I
500mA

1/

IU

l,mA

V

40

bo~A

~

2'J&mA

V

6.0

3.0

2N443-

,,1000 mA

'"

300 m~

VSEI. 0 -

10
20
30
VCE. COLLECTOR VOLTAGE (VOLTS)

....

i"

9

FIGURE 4 - OUTPUT CHARACTERISTICS

12

-

TJ'25'C

400mA

8

100 '1'A-:--

IS=~

:;

,
,

500 mA

...J
...J

..-

Go

9.0

IE:

200 mA

,

6OO'mA

~

a

300mA

3. 0

_

-'

~

500rA

/'

o

-

0: 12

/

0

0

BOOmA

. . - 600mj

...... 400 mA

2N442

_looomA

1

---

~

15

2N441-

1000 mA

2

FIGURE 3 - OUTPUT CHARACTERISTICS

_,V L
o

V

/ / ,/
/

/

/11' V
V

,

V

0.2
0.4
0.6
0.8
veE. BASE VOLTAGE (VOLTS)

1.0

2N456A (GERMANIUM)
2N457A
2N458A
7 AMPERE
POWER TRANSISTORS
PNP GERMANIUM

PNP GERMANIUM POWER TRANSISTORS

40-60-80 VOLTS

. designed for general-purpose power amplifier and switching
applications.
•

High DC Current Gain hFE = 30-90@ IC = 5.0 Adc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 5.0 Adc

85 WATTS

"MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

2N456A

2N457A

2N458A

Unit

VeEO

20

30

40

Volts

Collector-Base Voltage

Ves

Emitter-Base Voltage

VES

Collector Current

Ie

Base Current

IS

Total Device Dissipation@Tc = 25°C
Derate above 25°C

PD

Operating and Storage Junction
Temperature Range

TJ,T stg

--

40

60
20
7.0

--.,...-

3.0

-

---

Volts

80

-

85
1.0
_ _6 5 t o + l l 0 _

Volts
Adc
Adc

Watts

w/oe
°e

*Indicates JEDEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING eURVE
@

TA

z

5.0

~
v.i(i)

4.0

@

TC

0

5S
"'s:

~~

3.0
2.6
2.0
1.0

'; I ::
0

I~~

25

50

75

100

110

125

T, TEMPERATURE (OCI

CASE 11

TO·3
COLLECTOR CONNECTEO TO CASE

2-36

2N456A, 2N457A, 2N458A (continued)

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted 1
Characteristic

Symbol

Min

Max

20
30
40

-

-

Unit

OFF CHARACTERISTICS
Collector~Emitter

Breakdown Voltage

Vde

BVCEO

(lC = 200 mAde, IB = 01

2N456A
2N457A
2N458A

Collector-Base Cutoff Current

mAde

ICBO

(VCB= 20 Vde, IE = 01

2N456A

-

0.5

(VCB = 30 Vde, IE = 01

2N457A
2N458A

-

0.5

(VCB = 40 Vde, IE = 0)
(VCB = 40 Vde, IE = 01

2N456A

-

2.0

(VCB = 60 Vde, IE = 0)

2N457A

-

2.0

(VCB = 80 Vde, IE = 01

2N458A

-

2.0

(VCB = 40 Vde, IE = 0, TC = +71 o CI
(VCB = 60 Vde,IE = 0, TC = +71 o CI

2N456A

-

10

2N457A

-

(VCB = 80 Vde, IE = 0, TC = +71 o CI

2N458A

Emitter-Base Cutoff Current

0.5

10
10
2.0

lEBO

mAde

(VEB = 20Vde, IC = 01
ON CHARACTERISTICS
DC Current Gain

-

hFE

-

(lC = 1.0 Ade, VCE = 1.5 Vdel

40

(IC = 3.0 Ade, VCE = 1.5 Vdel

35

-

(lC = 5.0 Ade, VCE = 1.5 Vdel

30

90

22

--

VCE(satl

-

0.5

Vde

VBE

-

1.5

Vde

IT

200

-

kHz

hie

-

28

Ohms

(lc = 7.0 Ade, VCE = 1.5 Vdel
Collector-Emitter Saturation Voltage

(lC = 5.0 Ade, IB = 500 mAdel
Base-Emitter Voltage

(lC = 5.0 Ade, VCE = 1.5 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC = 1.0 Ade, VCE = 2.0 Vdel
I nput Impedance

(lC = 5,0 Ade, VCE = 1.5 Vdel
*Indicates JEDEC Registered Data.

2N459I

A(GERMANIUM)
For Specifications, See 2N378 Data.

2-37

2N460, 2N461 (GERMANIUM)
PNP germanium transistor for general purpose
in dustrial applications.

CASE 31(1)
(TO-5)

Base connected to case

MAXIMUM RATINGS

Rating

Symbol

Unit

Value

Collector-Base Voltage

V CB

45

Volts

Collector-Emitter Voltage (R BE = 1 K)

VCER

35

Volts

Emitter-Base Voltage

V EB

10

Volts

Collector Current

IC

Collector Dissipation
at 25° C Case Temperature
Derate above 25° C
at 25° C Ambient Temperature
Derate above 25° C

PD

Junction Temperature Range

TJ

ELECTRICAL CHARACTERISTICS

Symbol
I CBO

Emitter-Base Cutoff Current
(V EB = -10 Vdc)

~BO

Collector-Emitter Voltage
(IC = 1 mAdc, RBE = 1 K)

BV CER

Small-Signal Current Gain
(V CB = -6 Vdc, IE = 1 mAde, f

= 1 kHz)

2N460
2N461

Small-Signal Current Gain
(V CB = -6 Vdc, IE = 1 mAdc, f

= 1 kHz)

2N460
2N461

Reverse Voltage Ratio
(V CB = -6 Vdc, IE = 1 mAdc, f

= 1 kHz)

2N460
2N461

= 1 mAdc, f = 1 kHz)

2N460
2N461

Output Admittance
(V CB = -6 Vdc, IE

= 1 mAdc, f = 1 kHz)

2N460
2N461

Frequency Cutoff
(V CE = -5 Vdc, IE

= 1 mAdc)

2N460
2N461

Noise Figure
(VCE = -4.5 Vdc, IE

mAdc, R
g

hfb

hfe
h rb
h ib

hob

fab

Cob

= 1 mAde, f = 1 MHz)
=0.5

500
6.7
225
3.0

mW
mW/oC
mW
mW/oC
°c

(Te = 250 e unless otherwise noted)

Characteristics

Output Capacitance
(V CB = -10 Vdc, IE

mA

-65 to +100

Collector-Base Cutoff Current
(V CB = 45 Vdc)

Input Resistance
(V CB - -6 Vdc, IE

400

= 1 K, f = 1 kHz)2N460
2N461

2-38

NF

Min Typical Max

---

---

15

---

---

10

35
0.94
0.955
17
31

-----

Unit
/JAdc
/lAdc

---

---

0.96
0.968

0.972
0.988

---

36
200

Vdc

---

--X1O-4

2.0
3.0

15
15

30

40
40

0.8
0.5

1.5
1.5

Ohms
25
25

---------------

---

pmho

4'.0

-----

20

---

5.0
4.0

-----

1.2

MHz

pF

dB

2N464 thru 2N467 (GERMANIUM)
PNP germanium transistor for general purpose applications in the audio-frequency range.
CASE
31(1) "
(TO-5)
All I&ads isolat&d

\\

MAXIMUM RATINGS

Symbol

Rating
Collector-Base Voltage

VCB

Collector-Emitter Voltage

VCER

Emitter-Base Voltage

VEB

DC Collector Current

IC

Max. Junction & Storage Temperature

21464

2N4&5

2N466

2N4&7

45

45

35

35

Volts

40

30

20

15

Volts

Unit

12

Volts
mA

500
°c

TJ and
T stg
100

Collector Dissipation,.Ambient

PD

mW
200

Derate above 25°C
Thermal Resistance, Junction to Ambient

&JA

2.67

mW/oC

0.375

°C/mW

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)

Characteristic
Collector-Emitter Breakdown Voltage
(lc = 0.6 mAde, R BE= 10 K ohms)

Symbol
2N464
2N465
2N466
2N467

Collector- Base Cutoff Current
(V CB = 20 Vdc)

Small Signal Current Gain
(V CE = 6 Vdc, IE = 1. 0 mAdc, f

= 1 kHz)

2N464
2N465
2N466
2N467
2N464
2N465
2N466
2N467

2-39

Max

-

-

-

-

-

6.0

15

-

0.7
0.8
1.0
1.2

-

14
27
56
112

26
45
90
180

-

BV CER

ICBO

Small Signal Current Gain Cutoff Frequency
(V CB = 6 Vdc, IE = 1 mAdc)

Typ

Min

f~

hfe

Unit
Vdc

40
30
20
15

-

p.Adc

MHz

-

-

-

2N464 thru 2N467 (continued)
ELECTRICAL CHARACTERISTICS (continued)

Characteristic

SyII..1

Small Signal Input Impedance
(V CE = 6 Vde, IE = 1. 0 mAde, f = 1 kHz)

Mill

hie

2N464
2N465
2N466
2N467

Small Signal Power Gain
(V CE = 6 Vde, IE = 1.0 mAde, f = 1 kHz, matched) 2N464
2N465
2N466
2N467

Ge

Noise Figure
(V CE = 2.5 Vde, IE = 0.5 mAde, f = 1 kHz, Rs = 10 Kohms,

NF

Max

TJP

-

900
1400
3000
5500

-

40
42
44
45

-

Ulit
Ohms

-

-dB

--

dB

-

22

df=1Hz

SMALL SIGNAL CURRENT GAIN versus TEMPERATURE

POWER·TEMPERATURE DERATING CURVE

,

200
180

800
600

\

160

400

r\

S 140
~

<.>

°

::;

.....
:i 120

I

z

0

S
a..
;.;;

'".....2i

II>
N

I\.

\

100

\

80

0

~

z

r\

60

a..

\

'\
10

20

30

40

50

60

10

80
60

80

-'

-""
....... .....

40

o
-60

90 100

-40

20

40

60

80

AMBIENT TEMPERATURE °C

JUNCTION TEMPERATURE °C

Input Current versus Emitter·Drive Voltage

Small Signal Current Gain versus Collector Current
(common emitter 1 ....)

III

I

1.8

I

200

III rl V

1.6

IV )
1-1 III I
1/ r/ V

2N464
1.4
2N465
1.2

I VI
/ VJ fjC:::
) VI r--

1.0

a

c.

.6
.4

.2

.... ~

o

.05

.10

V

~

z
....

Vea = 1 VOLT
1\.2N467

I--- ,,2N466

.....

2N466

...z:;.;;<

80

i

40 10-

.....
.....

2N461

"- ~

12Q

'"'"::><.>

~v
.20

"\

z

1"- ~
"",,2N465

--.....

" -'"

I"""-- t--

--

I-- r 2j464

~V

.15

160

~

j

.8

o

o

-20

2.0

~

V

20

20

o

/

ioo

<.>

r'\

40

o

~

200

::>

<

e

........
~
...
...
...'"

!c

.25

.30

.35

.40

.45

o
o

10

20

30

40

50

60

10

80

COLLECTOR CURRENT (lcl MILLIAMPERES

BASE TO EMITTER VOLTAGE (V..l VOllS

2-40

90 100

499

Germanium PNP high frequency transistors designed
2N
for driver applications, small-signal amplification, wide
(2N499JANAVAILABLE) band video amplifiers, and VHF/UHF oscillators.

2N499A
(2N499A JANAVAILABLE)

2N502
2N502A

CASE 149
5 to 10

>10

3.0

>3 to 5

>5

6.0

-

3.5to<5

<3.5

15

-

12 to <15

<12

p.Adc

Vdc

Vdc

-

Vde

1.0

>1.0 to 1.2

>1.2

-

0.3

>0.3 to 0.35

>0.35

0.32

0.44

0.30 to <0.32

Vdc

0.44 to 0.50
3076

hFE

5

SUBGROUP 4

Rise Time

~:f~ :0~~55 ;::~,V:~~faoO ~b~:.de,
CCE'" 150 pF I CCB

III

2

:g.5

~:;s. ~.2:·~~~: lc5 : ;:0~!)
(Vee.' -3.5 Vdc.

II . -I

2

3

1.5

mAde,

25

150

20 to<25

<0.30
and

> 0.50
<20

.nd

and

>150 to 200

>200

-

1.0

3251
Condition A

tr

pF)

Sto.rage Time

Fall Time

3

p.Ade

5.0

and
DC Current Gain
(IC = -10 mAde, VCE '" ·0.5 Vde)

-

1.0

3071

·10 mAde, IB '" ·0.4 mAde)

Base·Emttter Saturation Voltage
(lC" ~10 mAde, IS ;r: ·0.4 mAde)

-

1.0
lEBO

5

Collector-Emitter Saturation Voltage
(Ie = ·50 mAdc. 's • -1.5 mAde)
Of

7

5
3061
Condition D

SUBGROUP :I

(lc

10

3251
Condition A

.

3251
Condition A

..

~JB- =o;!ort-:~) C = 300 ohms,
-0

NOTES:

95 to 115

>115

-

95

>95 to 115

>115

-

100

> 100 to 120

>120

os

os

n.

JAN 2N559·1, ·2,·3

(Continued)

TABLE II - GROUP B INSPECTION

Mll-STD-7S0
Melhod

Examination or Test

LTPD for
Re","clive Reliabilitv level
Tolal 9
Maor

Limit
Symbol

(1) (2) (3) (1) (2) (3)

Requirement Limit
Min
Max

Defect Classification
Minor
Major

Unit

SUBGROUP I

Physical Dimensions

2066

20

15
3

SUBGROUP 2

Moisture Resistance
(No Initial conditioning; one c/cle;
only steps 1 to 6)

1.5

1

1021

End.Point Tests:
Emitter-Base Cutoff Current
(VEB" -1 Vdc)

Collector-Base Cutoff Current
(VeE'" -5 Vdc)

DC Current Gain
(Ie"' -10 mAde, VeE" -0.5 Vdc)

3061
Condition D

lEBO

3036
Condition D

leBO

3076

hFE

/lAde

10

...
20

200

>10 to 20

>20

> 5 to 10

>10

/lAde

15 to <20
and

>200 to 250
SUBGROUP 3

Tension

20

15

7

10

20

15

7

10

20

15

7

10

'0

- -

10

-

20

3

-

20

15

5

10

2036
Condition A

Solderability

2026

Temperature Cycling
(5 cycles)
+5
T(high) '" 100 -0
T(high)

150 ~5

1051

°c

Condition B
2N559 (1)

2N559 (2),
2N559 (3)
Thermal Shock (Glass Strain)
0:

0c

Moisture Resistance

1056
Condition A

1021

End-Point Tests: Same as Subgroup 2
SUBGROUP 4

Shock
(Non-operating; 5 blows: 1500 Gin
Orientations Xl' Y I • Y2' and Zl
(total = 20 blows)

2016

Constant Acceleration
(20.000 G, Orientations Xl' YI' Y2 ,
and Zl)

2006

Vibration Fatigue
(No bias applied)

2046

Vibration, Variable Frequency
(1 cycle each in Orientations Xl. YI.
and Zl)

2056

End-Point Tests: Same as Subgroup 2
SUBGROUP 5

Terminal Strength - Lead Fatigue

®

2036
Condition E

SUBGROUP 6

High-Temperature LiCe (Non-operating)
(Tstg = 100:~ 0c 2N559 (t.)ONLY

- -

1031

End-Point Tests: Same as Subgroup 2
SUBGROUP 7

High- Temperature Life (Non-operating)

(Tstg ..

l50:~

oc)

7

1031

~~~~: ~~~.

End-Point Tests: Same as Subgroup 2
SUBGROUP.

1026

Steady-State Operation Ure
(IE '"

50

:~

mAdc.

Pn '" l50_+1~

mW,

TA '" 25 ~ 3°C)

End-Point Tests: Same as Subgroup 2
NOTES:

CD Total 18 defmed as the sum of the major and mmor defectives.

® Rejects from prior electrical-test samples from the same lot may be used {or this test.

2-50

250

JAN 2N559.1, .2,·3

(Continued)

TABLE III - GROUP C INSPECTION·

LTPD for
MIL·STD-7S0 Respective Reliabilily Level
Method
Total 0Maior

Examination or Test

limit
Symbol

(1) (2) (3) (I) (2) (3)
10

SUIGROUP 1

output Capacitance
(Vee = -5 Vdc, IE

7

5

5

3

Cob

'" 100 kHz)

3261

Current-Gain ..... Bandwidth Product
(IE = 10 mAde, Vc == _1 Vde,

Defict Classificalion
Major
Minor

Uni!

2

3236

= 0, f

Requiremenl limil
Min
Max

pF

-

6.0

>6 to 10

>10

300

1000

250 to <300

<250

MH.

IT
and

f'" 100 MHz)

>1000

Delay Plus RiSe Time

~~~S :(!!::~cR~~E&~)o~::~~ Vdc,
eee '"

3251
Condition A

ns

-

50

>50 to 75

>75

-

40

>40 to 50

>50

10

-

8 to<10

<,

-

-

-

-

-

-

-

-

-

-

-

-

-

5.0

-

3.5 to <5

<3,5

12

-

8 to<12

<,

VCE{sat)

-

0.3

>0.3 to 0,6

>0,6

VBE(sat)

0,31

0.47

0.25 to <0.31

<0.25

2:6.5 pF, CBE '" 2 ! 0.5 pF

10

SUBGROUP 2

Collector-Emitter Cuto(( Current
(VeE

td + tr

= 5Vdc,TA =+550C)

DC Current Gain
(Ie = -10 mAde, VCE
TA = _55°C)

= -0.5

7

$

5

3

2

3041
Condition C

ICES

3076

hFE

Vdc,
20

SUBGROUP 3

Salt Atmosphere (Corrosion)

15

7

10

5

J.lAdc

3

1041

End-Point Testa:

Same as Group B. Subgroup 2

-

SUBGROUP 4

High-Temperature Life

(Non~operating)

20

10

0

5

1031

100:~ °C)

(T stg '"
End~Point

Tests:

Emitter-Base Breakdown Voltage
(IE'" -300,!.lAdc)

3026
Condition D

BV EBO

Collector-Emitter Breakdown Voltage
(Ie' -100.uAdC)

3011
Condition C

BVCES

Collector-Emitter Saturation Voltage
(IC· -10 mAdc, IB "" -D,S mAdc)

3071

Base-Emitter Saturation Voltage
{IC '" -10 mAde, ~ '" -0.4 mAde}

3066
Condition A

Delay Time

3251
Condition A

i:~c= =_O~:55 ~~~.Vl~~off~o; ~h~:~C'

i~~s :0~:55 :1~~,V:~(~(q;, ~h;;~C'
CCE '" 150 pF, CCB '" 2

3251
Condition A

tr

~;i~ ~,;:'~!:~:!lg: -;;0 ~!~)

and

and

>0.47 to 0,55

>0.55

3251
Condition A

t,

10

3'

< 10 and
>35to45

>45

15

105

<15 and
>105 to 125

>125

15

105

<15 and
>105 to 125

> 125

ns

ns

• Group C is to be performed on the first lot and every 6 mOl\ths thereafter,
NOTE:
Total is defined as the sum o( the major and minor defectives.

CD

2N618 (GERMANIUM)
For Specifications, See 2N375 Data.

2-51

Vdc

ns

:g.5 pF)

Storage Time

Vdc

Vdc

td

CeE '" 150 pF', GCE .. 2 :g.5 pF,
CBE =: 2 !O,5 pF)
Rise Time

Vdc

2N650A, 2N650 (GERMANIUM)
2N651 A, 2N651
2N652A, 2N652

GERMANIUM PNP MILLIWATT TRANSISTORS

AUDIO TRANSISTORS
GERMANIUM PNP

· .. designed primarily for low·power audio amplifier and medium·
speed switching applications.

45 VOLTS
200 MILLIWATTS

• Stabilization Bake at 1000C for 120 Hours for
Greater Gain Stability
•

Low Collector· Emitter Saturation Voltage 0.2 Vdc Typ @ IC ~ 200 mA

'MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCER

30

Vdc

CollectorwBase Voltage

Vce

46

Vdc

Emitter-Base Voltage

VEe

30

Vdc

Collector Current - Continuous (1)

IC

500

mAde

Total Device Dissipation
Oefi~te above 2SoC

Po

200
2.67

mW/DC

-65 to +100

°c

Coliector·Emitter Voltage (RBE = 10 k ohms)

@I

TA

<:

25°C

Operating and StorageJunction Temperature Range

TJ, T stg

mW

Maximum lead temperature is 250°C for 3.0 seconds,

~:l;iDlA~
~DlA

1/16" ±. 1/32" from case.
(1) Limited bV power dissipation.

'THERMAL CHARACTERISTICS
Characteristic

Svmbol

Max

Unit

Thermal Resistance, Junction to Case

6JC

0.250

DC/mW

Thermal Resistance. Junction to Ambient

8JA

0.375

DC/mW

0.240

~.~~=tI
0.019

1.5

Hi~

*Indicates JEOEC Registered Data.

FIGURE 1 - POWER·TEMPERATURE DERATING
220

180

10

..s

..........

160

"'"

~ 1411

>=
;1; 120

ili

C
~

~

"-

r--..... .......,

200

100

""

'\. 'JC = 0.25DC/mW

........

"

."-

"\..

"-

'JA = 0.375 DC/mW"'-

80

..........

60

~ 40

........ ~

20

o
20

"""

Pin 1. Emitter
Z.8s.
3.Collector

30

40

50

60

70

80

TA,AMB1ENTTEMPERATURE (DC)

90

'"

100

2-52

CASE 31 (1)
TO-5
(All leads isolated from Case)

2N650A,2N650/2N651 A,2N651 /2N652A,2N652 (continued)
*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

Symbol

Min

Max

Unit

VEBF

-

1.0

Vde

Collector Cutoff Current
(VCE = 30 Vde, RBE = 10 k ohms)

ICER

-

600

/lAde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
(VCB = 45 Vde, IE = O)
(VCB = 10 Vde, IE = 0, TA

ICBO

-

10
50
100

-

10

30
33
45
80

-

-

0.250
0.250
0.250
0.500
0.500
0.500

-

0.270
0.260
0.250

0.75
1.0
1.25

-

Characteristic
OFF CHARACTERISTICS

Floating Potential (11
(VCB = 45 Vde, IE

= 0, voltmeter input resistance ~

10 megohms)

= +71 o C)

Emitter Cutoff Current
(VEB = 30 Vde, IC = O)

lEBO

/.tAde

/lAde

ON CHARACTERISTICS

DC Current Gain
(lC

VCE

= 1.0 Vde)

2N650
2N650A
2N651, A
2N652, A

Collector-Emitter Saturation Voltage
2N650,A
2N651 , A
2N652,A
2N650,A
2N651, A
2N652,A

Base-Emitter Voltage

= 10 mAde,

VCE

putput Capacitance (1.)
(VCB = 6.0 Vde, IE = 0, f

2N650,A
2N651 , A
2N652, A

VCB

= 6.0 Vde, f = 1.0 kHz)

-

25

pF

hib

27

37

Ohms

30
50
100

70
120
225

hob

0.15

1.0

IJmhos

NF

-

15

dB

-

hfe

= 1.0 mAde, VCE = 6.0 Vde, f = 1.0 kHz)

Output Admittance (1)
(IE = 1.0 mAde, VCB

Cob

= 1.0 MHz)

Small-Signal Current Gain

(IE

MHz

f ab
2N650,A
2N651 , A
2N652, A

Input Impedance

= 1.0 mAde,

Vde

VBE

= 1.0 Vde)

SMALL-SIGNAL CHARACTERISTICS
Common-Base Cutoff Frequency
(IE = 1.0 mAde, VCB = 6.0 Vde)

(IE

Vde

VCE(sat}

(I C = 50 mAde, I B = 2.5 mAde)
(lC = 50 mAde, IB = 1.67 mAde)
(I C = 50 mAde, I B = 1.25 mAde)
(lC = 100 mAde, IB = 5.0 mAde)
(lC = 100 mAde, IB = 3.33 mAde)
(lC = 100 mAde, IB = 2.5 mAde)
(IC

-

hFE

= 10 mAde,

2N650, A
2N651, A
2N652, A

= 6.0 Vde, f = 1.0 kHz)

Noise Figure

(IE = 0.5 mAde, VCE = 4.5 Vde, RS
f = 1.0 kHz, C. f = 1.0 Hz)

= 1.0 k ohms,

(1) Applies only to 2N650A, 2N651A, and 2N652A Devices

* Indicates JEDEC

Registered Data.

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN
2.0

II

~:::;

1.2

~J: 25'~



u
u
0

~

0.3
0.2
0.5

1.0

2.0

5.0

10

20

50

100

<.0

1\
200

II

1.0
VrE1'I ni

O.S
0.6

\0 v -

>

0.4

0

./.

"""

VCEI7tl@IC/IB

10

p

2-53

./

IIII
0.5

1.0

2.0

5.0

10

20

50

100

IC, COLLECTOR CURRENT ImAI

IC,COLLECTOR CURRENT ImAI

ttl

......,... ./
V

0.2

500

i lV:

VBElsatl@ICIIB: 10

'"

S
0

'\

f- TJ: 25'C

200

500

2N653 thru 2N655 (GERMANIUM)

CASE31(1\
(10-5)

PNP germanium transistor, ·for high-gain amplifier
and switching service in the audio frequency range.

All leads isolated

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector to Base Voltage

VCB

30

Volts

Collector to Emitter Voltage

VCER

25

Volts

Emitter to Base Voltage

VEB

25

Volts

IC

250·

rnA

Junction Temperature Limits

TJ

-65 to +100

·C

Storage Temperature Limits

Tstg

-65 to +100

·C

Collector Dissipatton in, Ambient
Derate 2.67 mW/·C above 25·C

PD

200

mW

Thermal ReSistance, Junction to Ambient

6JA

0.375

·C/mW

Collector D. C. Current

*

.Limited by power diSSipation.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristics

Symbol

2N653

2N654

2N655

Unit
Min Typ Max Min Typ Max Min Typ Max

Small Signal Current Gain
VCE .. 6 V, IE .. 1. 0 mA, I .. 1 kHz

hie

30

49

Small Signal Input Impedance
VCE = 6 V, IE .. 1. 0 mA, I .. 1 kHz

hie

750

-

Small Signal Current Gain Cutoff
Frequency
VCB = 6 V, ~ - 1. 0 mA

fab

1.5

Output Capacity
VCB .. 6 V, ~ • 0 mA, I,. 1 MHz

Cob

Noise Figure
VCE 4. 5 V, IE .. O. 5 mA,
R,. I, f kHz
.1f-lHz
Collector Reverse Current
VCB - 25 V, ~ =0

70

50

80

100

130

250

-

-

8500 ohms

2.0

2.5

MHz

10

10

10

pF

NF

10

10

10

dB

ICBO

5.0

15

5.0

15

5,0

15 pA

Emitter Reverse Current
VEB -25V,Ie=0

~BO

5.0

15

5.0

15

5.0

15 pA

Collector-Emitter Reverse Current
VCE " 25 V, RaE 10k

leER

600

600

600 p:A

Base-Emitter Input Voltage
VCE - 6 V, IC =1. 0 mA

VBE

0.3

0.3

0.3 Vdc

=
= =

=

2-54

2900 1500

-

125

4700 3000

2N653 thru 2N655

(continued)

SMALL SIGNAL CURRENT GAIN (hf.)
versus TEMPERATURE

POWER-TEMPERATURE DERATIHG CURVE

1000
800
800

...
•

..

400

ti

200

220
200

Jc • O.2'·CI .... IInod

.. 180

....

i:::;

N

'"...
~

~

II.

0

...z

'"a:u
'"
A.

100
80

-- -- "'\ - - 'y- 8
"- \. \

r:

IE

:::! 140

,.,. V V

VeE" 6 VOLTS

= I MA

160

r\

:I

'-

~ 120

~

:100

60
VeE" I VOLTIE" 50 MA-=

io'

~

~

80

:!

60

...

o

ALL TYPES

\

8JA ·0.375"CfI•• C.... ) ~

;;;

40

'\

.... 40

20
20

o

-80 -60 -40 -20

0

20

40 80

80

100

o

:I

200

.

150

....
z

JV /

IE
IE

100

IE

....0

...u....
...
0

50

~

u

o

~

~

ro

~

~

"

~

~

BASE TO EMITTER VOLTAGE (Vse) VOLTS

o

"""'"0.2
BASE

TO

160
VCO' I VOLT

L/1

veE' I VOLT

~

...
u
'"

~

LARGE SIGNAL CURRENT GAIN
versus COLLECTOR CURRENT

\;l5;
I f"-..- 2N653

:I

~

""-I

.2N61

:::;

-..

w

~

~

180

IE

c

'\

AMBIENT OR CASE TEMPERATURE 'C

OUTPUT CURRENT versus BASE DRIVE VOLTAGE

.......

"

1

JUNCTIOH TEMPERATURE ac

250

1\

]\\

ALL TYPES

o

1\
\

.

...

~

140
120

z

.......

=
. 100

.I

Z

~
IE

~/
~~
V./

..........

-

80

k

:>

u

~

60

U
Q

4 O~
0

EMITTER

0.6

0.8

o

VOLTAGE (VIII VOLTS

2N655

.... 1"-....

-.

l"'-I - 12N653- V
..1

o
0.4

'"

r--2N654

r
.........
~ '-

20

40

60

80

100

1-_

120

-

140

160

COLLECTOR CURRENT Ci.) MILLIAMPERES

2-55

180 200

2N656 (SILICON)
2N657

NPN SILICON ANNULAR TRANSISTORS
NPN SILICON
ANNULAR TRAN~STORS

. NPN silicon annular transistor designed for small-signal amplifier
and general purpose switching applications.
•

High Collector·Emitter Breakdown Voltage BVCEO = 100 Vde (Min) @ IC = 250 !lAde - 2N657

•

High Emitter-Base Breakdown Voltage BVEBO = 8.0 Vde (Min) @ IE = 250 !lAde

*MAXIMUM RATINGS
Rating

Symbol

2N656

2N657

Unit

Collector-Emitter Voltage

VCEO

60

100

Vde

Collector-Base Voltage

VCB

60

100

Vde

Emitter-Base Voltage

VEB

8.0

Vde

Total Device Dissipation @ T A - 2SoC
Derate above 2SoC

PD

1.0
5.7

Watt
mW/oC

Teo:: 25°C

PD

4.0
22.B

Watts
mW/oC

TJ,Tstg

-65 to +200

°c

Total Device Dissipation
Derate above 25°C

@

Operating and Storage Junction

Temperature Range

Characteristic

Symbol

Min

Max

60
100

-

60
100

-

-

BVEBO

B.O

-

ICBO

-

10

~Ade

hFE

30

90

-

VCE(satl

-

4.0

Vde

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
lie = 250~Ade, IB = 01
Collector-Base Breakdown Voltage
(lC = 100~Ade, IE = 01
Emitter-Base Breakdown Voltage

Vde

BVCEO
2N656
2N657
BVCBO
2N656
2N657

::"wj1=1
H.·.

I

0019

15

Vde

~ILJ

ON CHARACTERISTICS
DC Current Gain(1)

(lC = 200 mAde, VCE = 10 Vdel
Collector-Emitter Saturation Voltage(1)
lic = 200 mAde, IB = 40 mAdel

SMALL·SIGNAL CHARACTERISTICS
Input Impedance(1)

liB

= 8.0 mAde, VCE = 10 Vdel

* Indicates JEDEC
(1)Pulse Test:

CASE 31

Registered Data.

Pulse Length

=

ITO-5)

300 MS, Duty Cycle '$ 2.0%.

2-56

0.240

Vde

liE = 250~Ade, IC = 01
Collector Cutoff Current
(VCB = 30 Vde, IE = 01

-+---1

Ii
QlQ.~ DIA ~

0335 OIA
0.370

*ElECTR ICAl CHARACTER ISTICS (TA = 25°C unless otherwise noted 1

2N665 (GERMANIUM)

CASE~

PNP germanium power transistor for driver and
power output amplifier and power switching applications in military and industrial equipment.

(TO-3)

MAXIMUM RATINGS

Symbol

Rating

Value

Unit

Collector-Base Voltage

VCB

80

Vdc

Emltter-Base Voltage

VEB

40

Vdc

DC Collector Current

Ie

3.0

Amp

DC Emltter Current

IE

5.0

Amp

Collector JWlCtion Temperature

TJ

-85 to +95

°c

Collector Dissipation
Derate above 25°C

PD

35
0.5

W/oC

watts

ELECTRICAL CHARACTERISTICS
Characteristic
Emitter Cutoff Current
(V EBO • -40 Vdc, Ie

=

Symbol

Min

lEBO

-

2.0

---

0.05
:2.0
10

0)

Collector Cutoff Current
(VCBO = -2 Vdc, If = 0)
(VCBO = -80 Vdc, E = 0)
(VCBO = -80 Vdc, IE = 0)
DC Current Gain
(VCE = -2 Vdc, Ie = -0.5 Adc)
(VCE = -2 Vdc, Ie = -2 Adc)
Emitter-Base Voltage
(VCE = -2 Vdc, Ie = -2 Adc)
Floatinc PotenUal
(VCS = -80 Vdc, voltmeter input
r8sistaace = 10 megohms min, t • 1 sec)

IeBO

bFE

VEB

Max

40
20

80

-

1.5

-

VEBF

Collector-Emitter S.turaUon Voltage
(Ie = -3 Adc, IB = -220 mAde)

VCE(sat)
VCEO

Collector-Emitter Voltage
(Ie = -300 mAde, IS = 0)

-

-0.9

-Vdc

Vde

40

-

Vde

-

kHz

20

Emitter Cutoff Current
(VEBO = -30 Vdc, Ie = 0, TC = +71OC min)

lEBO

-

2.0

Collector Cutoff Current
(VCBO = -30 Vde, IE • 0, TC

ICBO

-

2.0

2-57

mAdc

Vdc

fae

+71 oC min)

mAdc

1.0

Small-Signal Short-Circuit Forward-Current
Transfer-RaUo Cutoff Frequency
(VCE = -14 Vdc,lc = -2 Ade)

=

Unit

mAde
mAde

2N665

(continued)

hFE.versus TEMPERATURE
u

..,

0

200
180

N

160

!C

140

......

II!

/
le- 0•5A ......

/

0

';/I. 100

80
-60

-

~

./

120

/
./
./

Yco - 2Y

/ le -2A

o

-20

-40

20
40
Te. CASE TEMPERATURE (OC)

The Safe Operating Area
Curves indicate Ic - V CE
limits below which the device
will not go inio secondary
breakdown. Collector load
lines for specific circuits must
fall within the applicable Safe
Area to avoid causing a collector-emitter short. (Duty
cycle of ~he excursions make
no significant change in these
safe areas.) To insure operation below the maximum T J •
the power-temperature derating curve must be observed for both steady state
and pulse power conditions.

60

80

100

SAFE OPERATING AREA
Ims

5ms

fC'

~

...IEa:a:

2

=>

u
a:

POWER-TEMPERATURE DERATING CURVE

I'!

fd
::::l
0

40

u

1"-..,
I
I
I
I

..§

~
~

I
I

I

o

o

i
60

40

~

80

o

100

10

20

30

40

50

60

Ya • COWCTOR-EMlmRVOlTAGE (VOLTS)

Te. CASE TEMPERATURE loe)

2N669 (GERMANIUM)

For Specifications, See 2N176 Data.

2-57A

70

2N681 thru 2N689 (SILICON)

CME2~

Industrial-type, silicon controlled rectifiers in a stud package
with current handling capability to 25 amperes at junction
temperatures to 1250 C. MCR equivalents available in TO-48
package - i.e. - 2N681 available in T0-48 package as MCR681.

\

MAXIMUM RATINGS (T..

= 12S·C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage. t
2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689
Peak Reverse Blocking Voltage.
(Transient)
(non~recurrent t = 5 ms max.)

2N681
2N682
2N683
2N684
2N685
2N686
2.N687
2N688
2N689

25
50
100
150
200
250
300
400
500
V RSM(non-rep) *

IT
TTSM

Peak Gate

25

Amp
Amp

200
A2s
165

Power~Forward

Average Gate

Volts
35
75
150
225
300
350
400
500
600

J2t

Circuit Fusing Considerations
(T J = -65 to +125 0 0, t ;;; 8.3 ms)
Peak Gate

Unit
Volts

VRSM(rep)*t

Forward Current RMS (all conduction angles)
Peak Forward Surge Current
(One cycle, 60 Hz, T J = ~65 to +125 0 C)

Value

Power~Forward

PGM

5.0

Watts

PG(AV)

0.5

Watt

IGM

2.0

Amp
Volts

Current~Forward

Peak Gate Voltage-Forward

VGFM

10

Reverse

VGRM

5.0

TJ

-65 to + 125

°c

Tstg

-65 to +150

°c

-

30

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque

tv RSM for all types can be appUed on a continuous dc basis without incurring change.
• VRSM(rep) ratings apply for zero or negative gate voltage.

2-58

in. lb.

2N681 thru 2N689

(continued)

ELECTRICAL CHARACTERISTICS (Tc = 2S0C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage
(T J ; 125°C)

Symbol
VORM

2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689

Peak Forward or Rever/3e Blocking Current
(T J ; 125°C)
2N681 - 2N684
2N685
2N686
2N687
2N688
2N689

IORM
IRRM

Gate Trigger Current (Continuou/3 dc)
(Anode Voltage; 7 Vdc, RL = 50 11)

IGT

Gate Trigger Voltage (Continuou/3 dc)
(Anode Voltage = 7 Vdc, RL = 50 11)

VGT

Holding Current
(Anode Voltage

IH

= 7 Vdc, Gate Open)

Forward On Voltage
(IT = 20 Adc)

VTM

Turn-On Time
(IT ; lOA, IG ; 200 mAl

tgt

Turn-Off Time
(IT = 10 A; IR
TJ ; 125°C)

tq

= 10 A,

dv/dt ; 30 V/p.s min,

Min
25
50
100
150
200
250
300
400
500

Typ

Max

--

--

-

-

Volts

--- - --

-- ---- --- -

mA
10.0
10.0
10.0
10.0
8.0
6.0
mA

-

10

25

0.25

-

3.0

20

-

1.1

1.5

1.0

-

30

-

-

30

-

-

1.0

2.0

-

Units

Volt/3
mA
Volt$
/is
/is

(VORM; rated voltage)

Forward Voltage Application Rate
(Gate open, TJ = 125°C)

dv/dt

Thermal Resistance (Junction to Case)

9J C

2-59

V/ /is
°C/W

2N681 thru 2N689

,MAXIMUM ALLOWABlE
FORWARD GATE CURRENT
2.0 IGM-2AMP

(continued)

GATE TRIGGER CHARACTERISTICS

FDRWARD CONDUCTING CHARACTERISTICS

3 VOLTS MINIMU
GATE VOLTAGE
REQUIRED TO
TRIGGER

1.0

~

z'

.~ .~

is

i>-I! e

<.>

z!ci!=

f!!~!:

~ 0.1

~ iii

~.05
..2

z

I-

~II

~t.

0.25

~ 10

~

40 mA MINIMUM
GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS
(l25'C - 2S mAl
(-6S'C - 80 mAl

5

6

7

8

I

::.

_MAXIMUM

Sl 1.0

9

I

TJ
TJ

/

12S'C2S'C"-

z
;:: 0.5

~~ 0.2

MAXIMUM ALLOWABLE FORWARD
GATE VOLTAGE 10 VOLTS

4

'I ,,'/

5.0

~ 2.0

J::. 0.1
3

·7

TYPICAL~

o

---------

TYPICAL
TRIGGER POI,NT

o

'" 20
::.

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UI'tITS WILl TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA

.... :i
....=z~
f .. +

~ 0.2

50

,~

~U!!ITS

0.5
Q;
21

".

~JOO

10

O.n

II II
, 0.5

1.0

1.5

2.0

VGT. GATE VOLTAGE (VOLTS)
(TJ = 2S'C - AN,OOE @ 7 VOLTS)

VT.INSTANTANEOUS FORWARO ON VO LTAGE (VOLTS)

CURRENT DERATING

SUGGESTED FIN SIZES

IT(AV). AVERAGE FORWARO CURRENT ,(AMP)

2-60

2.5,

2N696 (SILICON)
2N697

NPN silicon annular transistors designed for smallsignal amplifier and general purpose switching applications.

CASE 31
(TO-5)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCER

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

PD

0.6

watt

Collector-Emitter Voltage

Total Device Dissipation @ T A = 25°C
Derate above 25°C

13.3

Total Device Dissipation @ TC = 25°C

PD

mWrC
Watts

2.0

13.3

Derate above 25°C
Operating and Storage Junction
Temperature Range

-65 to +200

T J' Tstg

ELECTRICAL CHARACTERISTICS (TA
Characteristic

mWrC
°c

= 25 0 C unless otherwise noted.)

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage"
(Ic = 100 mAdc, RBE = 10 ohms)

BVCER"

Collector-Base Breakdown Voltage
(IC = 100 j.tAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(~ = 100 !.LAdc, IC = 0)

BV EBO

Collector Cutoff Current
(V CB = 30 Vdc, ~ = 0)

Vdc
40
Vdc
60
Vdc
5.0

ICBO

-

(VCB= 30 Vdc, IE = 0, T A = 1500 C)

!.LAdc
1.0

-

100

20
40

60
120

-

1.5

-

1.3

40
50

-

-

35

ON CHARACTERISTICS
DC Current Gain.
(IC = 150 mAdc, VCE = 10 Vdc)

2N696
2N697

hFE•

.

Collector-Emitter Saturation Voltage·
(IC = 150 mAdc, ~ = 15 mAdc)

VCE(sat)

Base-Emitter Saturation Voltage·
(IC = 150 mAdc, IB = 15 mAdc)

VBE(sat)*

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current Gain-Bandwidth Product
(IC = 50 mAdc, VCE = 10 Vdc, f = 20 MHz)'

2N696
2N697

Output Capacitance
(V CB = 10 Vdc, ~ =.0)

fT

Cob

• Pulse Test: Pulse Length ::; 12 ms, Duty Cycle::; 2.0%.

2-61

MHz

pF

2N699 (SILICON)

NPN silicon annular transistor designed for
medium-current switching and amplifier applications.

CASE 79
(TO·39)
Collector connected to casit

MAXIMUM RATINGS

Rating

Symbol

Value

Collector-Emitter Voltage

VCER

80

Vdc

Collector-Base Voltage

VCB

120

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

PD

0.6

Watt

4.0

mW/"C

2.0

Watts

Total Device Dissipation TA :::; 25"C
Derate above 25° C
Total Device Dissipation T

C

;;; 25°C

Pn

Derate above 25° C
TJ

Operating Junction Temperature
Storage Temperature Range

T

stg

Unit

13.3

mW/oC

175

°c

-65 to +200

°c

Max

Unit

THERMAL CHARACTERISTICS

Characteristic

Symbol

Thermal Resistance, Junction to Case

eJC

75

°C/W

Thermal Resistance, Junction to
Ambient

eJA

250

°C/W

2-62

2N699

(continued)

.ELECTRICAL CHARACTERISTICS

Characteristic

(T A

= 2S'C unless otherwise noted)

Symbol

Min

Max

80

-

-

2.0

-

100

40

120

-

5.0

-

1.3

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage*
(IC = 100 mAdc, RBE ~ 10 ohms)

BVCER*

Collector Cutoff Current
(V CB = 60 Vdc, IE = 0)

I CBO

(VCB = 60 Vdc, IE = 0, TA = 150°C)
Emitter Cutoff Current
(V EB = 2. 0 Vd~, IC = 0)

lEBO

Vdc

IJ.Adc
200
IJ.Adc

ON CHARACTERISTICS
DC Current Gain*
(IC = 150 mAdc, V CE

hFE *

= l(i"Vdc)

Collector-Emitter Saturation Voltage*
(IC = 150 mAdc, IB = 15 mAdc)

V

Base-Emitter Saturation Voltage*
(IC = 150 mAdc, IB = 15 mAdc)

V

CE(sat)
BE(sat)

Vdc

*
*

-

Vdc

SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(I C = 50 mAdc, VCE " 10 Vdc,
f = 20 MHz)
Output Capacitance
(V CB = 10 Vdc, IE "0, f " 100 kHz)
Input Impedance
(I C " 1. 0 mAdc, VCB
f " 1.0 kHz)
(IC = 5.0 mAdc, V CB

= 5.0 Vdc,
= 10

Cob

-

-

20

pF
ohms

h ib

f " 1. 0 kHz)

20

30

-

10
X 10- 4

h rb

f = 1.0 kHz)

= 5.0

50

Vdc,

Voltage Feedback Ratio
(IC " 1. 0 mAdc, VCB " 5.0 Vdc,
(I C

MHz

fT

-

2.5

-

3.0

mAdc, VCB " 10 Vdc,

f " 1. 0 kHz)
Small-Signal Current Gain
(IC " 1. 0 mAdc, V CE = 5.0 Vdc,

-

hfe

f " 1. 0 kHz)

35

100

45

-

(IC " 5.0 mAdc, VCE " 10 Vdc,
f " 1.0 kHz)

Output Admittance
(IC " 1. 0 mAdc, VCB " 5.0 Vdc,
f " 1. 0 kHz)

(IC " 5.0 mAdc, VCB

O. 1

O. 5

-

1.0

= 10 Vdc,

f " 1. 0 kHz)

*

Ilmhos

hob

Pulse Test: Pulse Width ~ 300 IlS; Duty Cycle ~ 2%.

2-63

2N700,A

(GERMANIUM)

PNP germanium mesa transistors for oscillator,
frequency multiplier, wide- band mixer and wide- band
amplifier applications.

CASE 21
(TO-17)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

25

Vdc

Collector-Emitter Voltage
2N700
2N700A

VCEO

Emitter-Base Voltage

VEB

0.2

Vdc

Collector DC Current

Ie

50

mAdc

Junction Temperature

TJ

100

Storage Temperature

Tstg

Total Device Dissipation
at 25 0 C Ambient
Derate above 25 0 C

PD

Vdc
20
25

~

GAIN

"'"

I

2

10

"'" "
"
"-

"-> I''\.

NOISE FIGURE

o

1000

~

800

...

V

%

Vel = -6Ydc
I, =2 mAde

10

1

.g

h••

!!! 20

:.l

co

20

50

100

t. FREQUENCY (mHz,

~

200

75

mW

1.0

mW;oC

CURRENT·GAIN-BANDWIDTH PRODUCT
versus CURRENT AND VOLTAGE

40

f--powt

°c

-65 to +100

POWER GAIN CURRENT GAIN,
& NOISE FIGURE versus FREQUENCY

30

°c

500

1000

C

~

600

:;
z

II

400

~

i...

200

::>

<>

/

-

~

-

I,

I I =III
-6

@

Ve•

Veo @ I,

=2 mAde

I'

" °o

2.0

4.0

6.0

8.0

10

12

I,. EM ITTER CURRENT (mAde)
Ye•• COlLECTOR - BASE VOLTAGE (VOLTS)

2-64

Vde

r- ~.

14

16

2N700,A

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)

Characteristic
~olleetor-Base

Sym

Test Conditions

Types
All Types

25

32

~olleetor-Emitter BVCEO IC = 100 /lAde, IB = 0
~reakdown Voltage

2N700
2N700A

20
25

-

Emitter-Base

All Types

0.2

All Types
2N700
2N700A

-

IE = 2 mAde, VCE = 6 Vde, f = 1 kHz

All Types

IE = 5 mAde, VCE = 6 Vde, f = 1 kHz

2N700A

~reakdown Voltage

~reakdown Voltage

Collector Cutoff
Current

Small Signal
Forward Current
Transfer Ratio

BVCBO IC = 100 /lAde, IE = 0

Min Typ Max Unit

hfe

hib

Base Resistance

I

rb

Collector-Base
Cob
putput CapaCitance
(case grounded)
Power Gain
Ge

NF

Power Gain

Ge

Vde
Vde

0.4

2.0

/lAde

60

-

150
50

4.0

10

-

-

-

2.5
5.0

-

All Types

-

17

30

Ohms

IE = 2 mAde, VCB = 6 Vde, f = 300 MHz All Types

-

55

100

Ohms
pF

VCB = 6 Vde, IE = 0
VCB =.6 Vde, IE = 0,T A =85 0 C

IE = 2 mAde, VCB = 6 Vde, f = 1 kHz

VCB = 6 Vde, IE = 0, f = 100 kHz
IE = 2 mAde, VCB = 6 Vde, f = 70

-

7

50

-

2N700
2N700A

-

-

-

1.1

1.5
1.4

2N700

20

23

2N700A

22

-

-

All Types

-

6.0

2N700A

26

-

MHz

(neutralized)
Noise Figure

-

0.5

IE = 2 mAde, VCE = 6 Vde, f = 200 MHz 2N700
2N700A
Input Impedance

Vdc

-

BV EBO IE = 100 /lAde, IC = 0
leBO

-

10

-

-

dB

dB

IE = 2 mAde, VCB '= 6 Vde, f = 30 MHz
(neutralized)

2-65

-

dB

2N702 (SILICON)
2N703

NPN silicon annular transistors designed for lowlevel, high-speed switching applications.
MAXIMUM RATINGS (T." 25'C unless otherwise noted)

Rating
Collector·Emitter Voltage
Collector·aase Voltage
Emitter·aase Voltage

CASE 22
(TO·18)

Symbol

Value

Unit

VCEO

25

Vdc

Vca

25

Vdc

YEa

5.0

Vdc
mAdc

Collector Current

IC

50

Total Device Dissipation @TA = 25' C

PD

300

roW

2.0

mW/'C

Derate above 25' C
PD

Total Device Dissipation @T C = 25' C
Derate above 25' C
Operating and Storage Junction
Tem~_erature Range

T stg

600

mW

4.0

mW/'C

.65 to ...175

'c

ELECTRICAL CHARACTERISTICS (T." 25'C unless otherwise noted)

Characteristic

Symbol

Collector-Emitter areakdown Voltage
(IC =2.0 mAde, la =0)

av CEO

Collector-a1/-.. Breakdown Voltage
(IC = 5.0 I'Adc, IE = 0)

avCOO

Emitter·aase areakdown Voltage
(IE = 10 I'Adc, IC =0)

BV EOO

Min

Typ

Max

25

·

-

25

-

-

5.0

-

-

Unit

OFF CHARACTERISTICS

Collector Cut911 Current
(VCE =20 Vde, IB = 0)

ICEO

-

-

10

Collector .Cutoll Current
(V CB =10 Vdc, ~ =0)
(VCB = 10 Vde, IE =0, TA

ICOO

-

·
-

0.5

-

60
100

-

=+150'C)

ON CHARACTERISTICS
DC Current Oain'
(IC = 10 mAdc, VCE
(IC

=10 qlAde,

=5.0 Vdc)
VCE =5.0 Vdc,

TA

=-55'C)

2N702
2N703
2N702
2N703

hFE

.
.

Collector·Emitter Saturation Voltage'
(IC = 10 mAde, IB =1. 0 mAde)

V CE(sat)

aase-Emitter On Voltage"
(IC =10 mAde, VCE =5.0 Vde)

VBE(on)"

Vde
Vde
Vde
I'<\dc
I'Adc

50

20
40
12
20

·
·
·

.-

.

-

0.5

0.7

·

0.95

Vde
Vdc

SMALL 'SIGNAL CHARACTERISTICS
Current·Gain - Bandwidth Prnd1,1ct
(~ = 10 mAde, VCE =5· 0 Vde, I

IT

=100 MHz)

Output Capacitance
(V CB = 5.0 Vde, ~ = 0, f = 1. 0 MHz)
·Pulse Test: Pulse Width

=300 1'8,

COb

Duty Cycle = 2.0%.

;2-66

MHz
70

150

-

3.0

pI"
6.0

2N705 (GERMANIUM)

(TO-18)
CASE
22

PNP germanium mesa transistor for high-speed
switching applications ..

"

olleetor connected to else

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

15

Vdc

Collector - Emitter Voltage

VCES

15

Vdc

Emitter-Base Voltage

VEB

3.5

Vdc

Collector Current

IC

50

mAdc

Emitter Current

IE

50

mAdc

Junction· Temperature

TJ

100

°c

Storage Temperature

Tatg

Collector Dissipation @ TC
Derate above 25°C

= 25°C

300

Pc

Collector Dissipation in Free Air

Pc

~

10

g

8

~ve.=IJ

2.0
1. 0
O. 8
O. 6

O. 4
O. 2

O. I
QI

!

~

/'

--I--

..,V
O~

55·C

:c

i

~

5
10
Ie. COUECTOR CURRENT (mAdel
I~

2~

2

O•

~~ 0.1 5

----/

8

V

05

0.2 5

~

.,.

+25·C

20

mW
mWrC

150

mW

O.3

Ie

>

+~ j....--

Te'e...

4.0

COLLECTOR SATURATION VOLTAGE
versus AMBIENT TEMPERATURE

NORMALIZED D.C. CURRENT GAIN
versus COLLECTOR CURRENT
6

°c

-65°C to +100

50 100

->~

o.1

-75

= 25 mAde

,.. VI-"

-50

-25

V

Ie = 10 mAde

---

~

.......... P

I---'

l--'"

I---'

L--

'ell, = 10

+25

+SO

T•• AMBIENT TEMPERATURE (·CI

2-67

V

+75

+100

2N705

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

Collector-Base Breakdown Voltage
(IC = 100 /.lAde, IE =0)

BVCBO

15

-

-

Vde

Collector-Emitter Breakdown Voltage
(ICE = 100 /.lAde, VBE =0)

BVCES

15

-

Emitter-Base Breakdown Voltage
(IE = 100 /.lAde, IC =0)

BV EBO

3.5

-

-

I CBO

-

0.2

3.0

/.lAde

hFE

25

40

-

-

Collector Cutoff Current
(V CB = 5 Vde, ~E = 0)
DC Forward Current Transfer Ratio
(V CE = .3 Vde, IC = 10 mAde)

O. 18

0.3

0.45

-

VBE

0.34

0.39

0.44

Small Signal Forward Current Transfer Ratio
(V CE = 1. 0 Vde, IC = 10 mAde, f = 100 MHz)

hfe

-

9.0

-

Collector Capacitance
(V CB = 10 Vde, IE = 0, f

Cob

-

5.0

-

pF

Input Capacitance
(VBE = 2 Vde)

Cib

-

3.5

-

pF

Common Base Alpha Cutoff Frequency
(V CB = 5 Vde, IC = 10 mAde)

fab

-

300

-

MHz

td + tr

-

55

75

ns

s

-

65

100

ns

tf

-

70

100

ns

(IB

= 5 mAde,

VCE(sat)

= 50 mAde)

IC

Base-Emitter Voltage
(IB = .4 mAde, IC =10 mAde)

Delay + Rise Time
(IC = 10 mAde, 1J

= 1 MHz)

= 1 mAde)

Storage Time
(1Jl = 1.0 mAde, 1J2

= .25 mAde)

Fall Time
(IBI = 1. 0 mAde, 1J2

= . 25 mAde)

t

z

§
:g

80

z

""~
~
;::

£'0

~

~.:

40

0

-----

--

Vde

Vde

CURRENT GAIN - BANDWIDTH PRODUCT (fT)
versus COLLECTOR CURRENT

STORAGE TIME versus CIRCUIT CURRENT RATIO
~

Vde

-

Collector Saturation Voltage
(I B = .4 mAde, IC = 10 mAde)

100

Vde

~oo

Ie

=

25 mAde

i
....
g
Q

TA = 25"C

f:z:

111 =41 11 -

~

R.=IOOn
I -10 mAde

R,-IK!!_

-

10

l~

i

i
z

-

400

300

200

I

/

v=

VeE
1 Vdc
TA =25°C

100

~
20

Ie/I,,, CIRCUIT CURRENT RATIO

.i

0

o

10

20

30

Ie. COllECTOR CURRENT (mAdel

2-68

40

50

2N706

,A, B (SILICON)

(2N706JAN AVAILABLE)
2N753

CASE 22
(TO-IS)

NPN silicon annular switching transistors for highspeed switching applications.

\

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

"
2N706
2N7'06A
2N706B
2N753

Junction Temperature
Storage Temperature

Value

Unit

VCB

25

Volts

VCER"

20

Volts

VEB

3.0
5.0
5.0
5.0

Volts

TJ

175

°C
°c

Tstt,<

-65 to ,175

Total Device Dissipation
at 25 0 C Case Temperature,
(Derate 6.67 mW7°C above 25°C)

PD

1.0

Watt

Total Device DiSSitatiOn
at 250 C Ambient emperature
(Derate 2 mW/oC above 25°C)

PD

0.3

Watt

Total Device Dissipation
at 1000C Case Temperature
(Derate 6.67 mW/oC above 10OOC)

PD

0.5

Watt

·Refers to col/ector breakdowII voltage ill the high current region when R,,.

2-69

=

JOn

2N706,A,B,2N753

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Type

Characteristic
Collector Cutoff
(VCB = 15Vdc,
(VCB ~ 15Vdc.
(VCB = 25Vdc.

Current
IE = 0)
IE = 0, TA
IE = 0)

=

All Types
All Types
2N706A. 2N706B,
2N753

150 0 C)

Collector- Emitter Cutoff Current
(VCE = 20Vdc. Rbe = lOOk)

2N706A, 2N706B,
2N753

Emitter Cutoff Current
(VEB = 3Vdc, fc = 0)
(VEB = 5Vdc, Ic = 0)

Symbol
ICBO

ICER

lEBO
2N706
2N706A. 2N706B,
2N753
BVCEO'

COllector-Emitter Breakdown Voltage.
(R = 10 ohms, fc = 10mAdc)

BVCER'

-

2N706
2N706A, 2N706B,
2N753

Base-Emitter Voltage'
(Ie = 10mAdc, IB = lmAdc)

hFE'

0.5
30

-

10

-

10

-

10
10

VBE(sat)'
2N706
2N706A, 2N706B,
2N753
VCE(sat)·

Collector Saturation Voltage'
(Ie = 1000dc, IB = lmAdc)

2N706, 2N706A
2N706B
2N753
2N753

= 50mAdc, IB = 5mAde)

Collector C~acitance
(VCB = 5V c, IE = 0

2N706A, 2N706B,
2N753
2N706

(VCB = 10Vdc, IE = 0)
Small-Signal Forward Current Transfer Ratio
(VCE = 15Vdc, IE = 10mAdc,
f = looMHz)

-

40
40

-60

-

120

-

0.75

0.9

0.7

0.75

0.9

---

0.3
0.3
0.18
0.3

0.6
0.4
0.6

-

4.5

5.0
6.0

2.0

4.0

-

400

-

-

39

50

16
16
19

60
25
35

5.0

T ••

Storage Time

s

2N706B

ts

Turn-On Time

ton··

Turn-Off Time

toff·'

Vde

Vde

-

MHz
ohms

rb

2N706
2N706A
2N753

Vde

pF

fT

Charge Storage Time Constant

j.lAdc

-

hfe

= 10mAdc,

j.lAdc

Vde

COb

Current Gain- Bandwidth ·Product
(VC~ = 15Vdc, IE = 1000de,
f = 00 MHz)

Unit

/LAde

15

20
20
40

Max

3.0

0.005

20

Forward-Current Transfer Ratio'
(fc = 10mAdc, VCE = IVdc)

Base Resistance
(VCE = 15Vdc. IE
f = 300 MHz)

-

-

Collector-Emitter Breakdown Voltage·
( IC = 10mAde,IB = 0)

(Ie

Min Typ

-

ns

19

25

ns

30

40

ns

50

75

ftS

, Pulse Test: PW:s 12 ms, Duty Cycle:s 2%

** Switching Times Measured with Tektronix Type R Plug-In (50!Hnternal Impedance) and CirCuits Shown Below.
SWITCHING TIME TEST CIRCUIT

STORAGE TIME TEST CIRCUIT

Type RSampling Resistor

20U
Pulse Volts
Internal Resistance

+7V

n

~rv~- -I:

20~

UK
o-J,JII\r-A,JVv-+--l

Pulse Volts
Internal Resistance

+5VFl:50~

l50n
OV - - - - - ()-"VV'v-'I(VI.';---!.
_4V

2-70

MEASUREMENT CIRCUIT

2N707,

A(SILICON)

NPN silicon epitaxial mesa transistors for VHF
oscillator and class C amplifier applications.

CASE 22
(TO-18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N707

2N707A

Unit

Collector-Emitter Voltage

VCEO

-

40

Vdc

Collector-Emitter Voltage
(R BE ~ 10 ohms)

VCER

28

-

56

70

Vdc

4.0

5.0

Vdc

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Total Device Dissipation @ T A = 25°C
Derate above 25 0 C

PD

Total Device Dissipation @ T C = 25°C

PD

Derate above

25 0 C

Operating and Storage Junction
Temperature Range

50 n
Input

Vdc

180 pF

RFC
1.8

0_ 5

Watt

3_33

mW/oC

1.0

1.2

6.67

8.0

Watts
mW/oC
°c

TJ,Tstg

2N707 (Note 1)
2N707A

0.3
2.0

-65 to + 175

3:1
Air
Core

0.001 /IF

4-30
pF
0.17

Ll

J.LH

/lH

50 fl
Output

L2

2)
.01 J.LF

+VCC (Note 4)

Ll
L2

5 turns #14 wire wound on
1/2" diameter.
2 turns #14 wire wound on L1 ·

Note 1
Note 2
Note 3
Note 4

Heat sink is required.
Adjust for Class C operation.
Very High conductance silicon
diode.
Adjust VCC for proper VCE

FIGURE 1 -100 MHz, CLASS C, COMMON BASE AMPLIFIER

2-71

2N707,A

(continued)

ELECTRICAL CHARACTERISTICS

(Tc = 25 0 C unless otherwise noted)

I Symbol IMin I

Characteristic

Typ

IMax]~

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(Ic = 20 mAdc, IB '" 0)

2N707A

Collector-Emitter Breakdown Voltage
(IC = 10 mAdc, RBE = 10 ohms)

2N707

Collector-Base Breakdown Voltage
(IC = 10 pAdc, IE = 0)

2N707
2N707A

Emitter-Base Breakdown Voltage
(IE = 100 pAdc, IC = 0)

2N707A

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)

2N707
0

(VCB = 15 Vdc, IE = 0, T A = 150 C)

2N707

(VCB = 30 Vdc, IE = 0)
0
(VCB =30 Vtlc, IE =0, TA = 150 C)

2N707A

Emitter Cutoff Current
(VBE = 4 Vdc, IC = 0)
(VBE = 5 Vdc, IC = 0)

BVCEO
BVCER
BVCBO
BVEBO
ICBO

2N707A
2N707

lEBO

2N707A

40

-

-

28

-

-

56
70

-

-

0.005

5.0

5.0

-

Vdc
Vdc
Vdc

Vdc
,.Mc

3.0

-

0.01

1.0

-

5.0

100

-

-

9.0
9.0

12

-

50

/.IAdc
10
100

ON CHARACTERISTICS'
DC Current Gain
(IC = 10 mAdc, VCE = 1 Vdc)

2N707
2N707A

hFE

Vdc

Collector Saturation Voltage
(IC '" 10 mAdc, IB = 1 mAdc)

VcE(sat)

-

0.18

0.6

Base-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1 mAdc)

VBE(sat)

-

0.75

0.9

70

350

-

600

-

-

4.0

10.0

-

4.0

6.0

-

80

-

200

300

400

-

-

-

38

-

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IE = 15 mAdc, VCE = 10 Vdc)

fT

Maximum Frequency of Oscillation
Output Capacitance
(VCB = 10 Vdc, IE = 0)
(VCB = 5 Vdc, IE = 0)

f

2N707

max

Cob

2N707A
r' C
b c

Collector-Base Time Constant
(IC = 10 mAdc, VCB = 10 Vdc, f = 4 MHz)

MHz
MHz
pF

ps

FUNCTIONAL TEST
Power Output (Figure 1)
(VCE = 20 Vdc, Pin = 50 mW)
(VCE = 40 Vdc, Pin = 175 mW)

All Types
2N707A

100-MHz Oscillator Efficiency
(VCE = 28 Vdc, IC = 40 mAdc)
111 Pulse

Pout

'1

Test: Pulse Width S300 ps, Duty Cycle S2.0%.

2-72

mW

%

2N708 (SILICON)
2N708

NPN silicon annular transistor for high-speed switching applications.

JAN, JTX AVAI LABLE

if)

"MAXIMUM RATINGS

~

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Total Device Dissipation @ T A - 25 u C
Derate above 2SoC
Total Device Dissipation @ T C - 2SoC
TC = 100°C
Derate above 2SoC
Derate above 1000 C
Operating and Storage Junction Temperature Range

l\

CASE 22
(TO-IS)

Collector
connected to case

Symbol

VCEO
Vce
VEB
PD
PD

TJ, T stg

Value

Unit

15
40
5.0
360
2.0
1.2
680
6.9
6.9
-65 to +200

Vdc
Vdc
Vdc
mW
mW/oC
Watts
mW
mW/oC

mW/oC
°c

·Indicates JEDEC Registered Data.

ELECTRICAL CHARACTERISTICS

(T.

= 25'C unless otherwise noted)

Symbol

Characteristic

Min

Typ

Max

15

-

-

20

-

-

40

-

-

5.0

-

-

-

-

10

-

0.005

0.025

-

-

15

-

-

0.08

15

-

-

30

-

120

15

-

-

-

0.2

0.4

-

0.4

0.72

-

0.80

-

-

0.90

300

450

-

-

3.0

6.0

-

-

50

-

15

25

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 30 mAde, IB = 0)

BVCEO

Collector-Emitter Breakdown Voltage
(IC = 30 mAde, RBE ~ 10 ohms)

BV CER

• Collector-Base Breakdown Voltage
(IC = 1. 0 ;.tAde, IE = 0)

BVCBO

• Emitter-Base Breakdown Voltage
(IE = 10 ;.tAde, IC = 0)

BV EBO

t Collector Cutoff Current
(VCE = 20 Vde, VBE = 0.25 Vdc, TA
• Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
(VCB = 20 Vde, IE = 0, TA

I CEX

= +125"C)

I CBO

= 150"C)

Emitter Cutoff Current
(V BE = 4.0 Vdc, IC = 0)

lEBO

Vde
Vde
Vde
Vde
;.tAde
;.tAde

;.tAde

ON CHARACTERISTICS
• DC Current Gain
(IC = 0.5 mAde, VCE
(IC
(IC

hFE

= 1. 0 Vde)

= 10 mAde, VCE = 1. 0 Vde) (Note 1)
= 10 mAde, VCE = 1. 0 Vde, T A = -55"C) (Note

1)

'Colleetor-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

VCE(sat)

= 7.0 mAde, IB = 0.7 mAde, T A = -55"C to +125"C)

• Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

VBE(sat)

= 7.0 mAde, IB = 0.7 mAde, T A = -55"C)

-

Vde

Vde

DYNAMIC CHARACTERISTICS
ttCurrent-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vdc, f
Output Capacitance
(VCB = 10 Vdc, IE

= 0, 100 kHz

• Extrinsic Base Resistance
(IC = 10 mAde, VCE = 10 Vdc, f
• Storage Time
(IC = IBI = IB2

fT

= 100 MHz)
~

f

~

1. 0 MHz)

Cob
r'
b

= 300 MHz)

t

= 10 mAde)

-Indlcates JEDEC Registered Data.
tJEDEC Registration Defined as VCB

==

20 Vdc.

ttJEDEC Registration Defined as fire'
Note 1: Pulse Test: Pulse Width .;,;;; 300 II- s, Duty Cycle';;;; 2.0%.

2-73

s

MHz
pF
ohms
ns

2N711 I

A, B(GERMANIUM)
PNP germanium mesa transistors for high-speed
switching applications.

CASE 22
(TO-lS)

Collector
conneded to case

MAXIMUM RATINGS
Rating

Symbol

2N711

2N711A

2N711B

Unit

Collector-Base Voltage

VCB

12

15

18

Vdc

Collector-Emitter Voltage

VCES

12

14

15

Vdc

Collector-Emitter Voltage

VCEO

-

7.0

7.0

Vdc

Emitter-Base Voltage

VEB

1.0

1.5

2.0

Vdc

Collector Current (Continuous)

Ie

50

100

100

mAde

Emitter Current (Continuous)

IE

50

100

100

mAde

Junction Temperature

TJ

•

Storage Temperature

Tstg

•
•

Device Dissipation@ TC = 25°C

Po

Derate above 25°C

Device Dissipation @ T A = 250 C

4

Po

•

•

Derate above 25°C

2-74

100
-65 to+ 100
300
4.0
150
2.0

•
II

•

•
•

•

°c
°c
mW
mWrC
mW
mWrC

2N711 ,A,B

(continued)

ELECTRICAL CHARACTERISTICS (T A: 25°C unless otherwise noted)

Characteristic
Collector-Base Breakdown Voltage
(Ie = 100 I'Adc, IE = 0)

(Ie =

2N711
2N711A

= 0)

20 I'Adc, IE

=

2N711
2N711A

20 ",Adc)

2N711A, 2N711E

Emitter-Base Breakdown Voltage
(IE = 0.1 mAde, Ie = 0)

2N711
2N711A
2N711B

Collector-Base Cutoff Current
(VCB = 5 Vdc, IE = 0)
(VCB

=

2N711
2N711A

= 0)

10 Vdc, IE

DC Current Gain
(IC : 10 mAde, VCE

2N711A
2N711B

= 0.5 Vdc)

2N711
2N711A
2N711B

= 50 mAde, VCE • 0.7 Vdc)

= 10 mAde,

(Ie

= 50 mAde, IB

IB

BVCES
12
14

BVCEO

IeBO

hFE

2N711
2N711A

= 0.4 mAde)
= 2 mAde)

VCE(sat

2N71~B

Small-Signal Current Gain
(Ie = 10 mAde, VCE = 5 Vde, f = 100 MHz)

(Ie = 10 mAde,

VCE = 0.5 Vde, f = 100 MHz)

Base-Emitter Voltage
(Ie = 10 mAde, IB = 0.4 mAde)

(Ie

2N711A, 2N711B
2N711A
2N711B
2N711, 2N711A
2N711B

= .50 mAde, IB = 2 mAde)

hre

2N711A, 2N711B

(VCB = 10 Vde, IE = 0, f = 1 MHz)

Figure 1:

{ 2N711A
2N711B

Figure 2:

{ 2N711A
2N711B
2N711

Figure I:

{ 2N711A
2N711B

Figure 2:

{ 2N711A
2N711B
2N711

Minority Carrier storage Time

Figure 1: { 2N711A, 2N711E
FIgur 2' { 2N711A, 2N711E
e.
2N711

2-75

-

-

-

0.2

3.0
1.5

20
25
30

30

-

-

-

0.2

-

-

1.5

tr

-

--

Vdc
Vdc

1.5
I'Adc
100
20

-

-

150
150

Vdc

-

0.5
0.30
0.25

-

-

0.55
0.45

-

-

0.38

0.44
0.44

-

-

5.0

-

-

0.65
0.65
pF

6.0

-

ns
ISO
110

-

-90

110
100
ISO

-

-

150
140

-

-90

120
100
200

-

-

100

70

75
100

-

~+tr

Vdc

Vde

0.40
0.40
Cob

Vdc

I'Adc

-

40

0.30
0.30

ts

Delay Plus Rise Time

1.0
1.5
2.0

VBE

2N711

Fall Time

-

1.1
1.2

2N711A
2N711B

Collector OUtput Capacitance
(VCB = 5 Vde, IE = O,f= 1 MHz)

-

-

--

Unit

-

7.0

-

2N711A

--

-

-

-

2N711B

-

Max

-

-

lEBO

Typ

15

BVEBO

2N711A, 2N711B

Collector saturation Voltage
(Ie = 10 mAde, IB = 0.5 mAde)
(Ie

18

2N711B

Emitter-Base Cutoff Current
(V EB = 1 Vdc)

(Ie

12
15

2N711B

Collector-Emitter Breakdown Voltage
(Ie = 5 mAde, IB = 0)

Min

BVCBO

2N711B

Collector-Emitter Breakdown Voltage
(Ie = 100 I'Adc)
(Ie

Sym

--

-

ns

ns

2N711,A,B

(continued)
SWITCHING CIRCUITS

FIGURE 1

FIGURE 2
-3.5Ydc

r:k"ACKMD
_,,,.

o

INPUT

'UuUIN.

+1.25V

ov-=J- -F_SAyU

~
••

ax-"KT1IOII~"1
OREQUIVALEIft'

RISUID fALL TIME < I nl

::S::~~~'UIYALElU

COLLECTOR SATURATION VOLTAGE
versus AMBIENT UMPERATURE

COLLECTOR SATURATION VOLTAGE

STORAGE TIME versus CIRCUIT CURRENT RATIO
o.6

IJ

Ic = SOmAtIc

~

5

i

~

Ht~

0.2

~

~

I-""

IClt:=- i-"'I""

It.-

I""'"

-60 -40 _20

o.1

0 +20 +40 +60 +80 +100

2

TA • AMBIENT TEMPERATURE lOCI

4

8

8 10

20

40

60 80 100

Ie/I •• CIRCUIT CURRENT RATIO

STORAGE TIME versus
CIRCUIT CURRENT RATIO

NORMALIZED DC CURRENT GAIN
versus COLLECTOR CURRENT

250r----r----,r---,----,

10.0
8.0
6.0

I
Ve.

I

I

=1 VOLT

200Ir--+-.!Io~-ir_--+--_i

4.0

!:

*

(Ic= 100 mAdc, IB = 0)

ICBO

= 0)

"Ade

-

100

-

100

(IC = 150 mAde, VCE = 10 Vde)

20

45

(IC = 5. 0 mAde, ,VCE = 10 Vde)

15

-

-

1.5

-

1.3

50

-

(V CB =30Vde, ~ =0, TA = 150· C)
Emitter Cutoff Current

lEBO

(VBE = 2. 0 Vde, IC = 0)

Vde

"Ade

ON CHARACTERISTICS
DC Current GaIn.

hFE

Collector-Emitter Saturation Voltage
(IC = 150 mAde,

Ia = 15 mAde)

Base-Emitter Saturation Voltage
(IC = 150 mAde, IB = 15 mAde)

•

VCE(sat)

VBE(sst>.

Vde

Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product

Output Capacitance

Cob

(VCB =10 Vde, ~ = 0, f = 100 kHz)
Input Capacitance

Clb

(V BE = O. 5 Vde, IC = 0)
Input Impedance

pF

-

45

-

100

25

35

pF

ohms

hlb

(IC =.1.0 mAde, VCB = 5.0 Vde, f = 1.0 kHz)
(IC = 5. 0 mAde, VCB

MHz

fT

(IC = 50 mAde,. VCE'= 10 Vde, f = 20 MHz)

=10 Vde,

-

f = 1. 0 kHz)

. Voltage Feedback Ratio

~b

(IC = 1. 0 mAde,' VCB = 5.0 Vde, f =1.0 kHz)
(IC = 5.0 mAde, VCB = 10 Vde, f = 1.0 kHz)
Small Signal Current Gain

(Ie = 1.0 mAde, VCE = 5.0 Vde, f = 1.0 kHz)
(IC = 1. 0 mAde, VCB = 5.0 Vde, f = 1.0 kHz)
(IC = 5.0 mAde, VCB = 10 Vde,.f = 1.0 kHz)
• Pulse Test: Pulse Width = 300 "s; Duty Cycle = 1.0%

8.0

Xl0- 4

8.0

lire

(IC '= 5. o,mAde, VCE = 10 Vde, f = 1.0 kHz)
Output Admittance

-

10

hob

15

50

20

-

-

"mhos
1.0
5.0

2N722

(SILICON)

(2N1132 JAN AVAILABLE)

2Nl132
2Nl132A
2N2303

PNPSILICON
SWITCHING
TRANSISTORS

J
CASE 22
(TO-IS)

PNP SILICON ANNULAR TRANSISTORS

2N722

... designed for medium-current switching and amplifier applications.
2N1132
2N1132A
2N2303

MAXIMUM RATINGS

Rating

Symbol 2N722 2N1132 2N1132A 2N2303

Collector-Emitter Voltage

VCEO

Collector-Emitter Voltage
(RBE • 10 Ohms)

VCER

35

35

40

35

50

50

50

50

Unit
Vdc
Vdc

Collector-Base Voltage

VCB

50

50

60

50

Emitter-Base Voltage

V EB

5.0

5.0

5.0

5.0

Vdc

Collector Current

IC

-

-

600

500

mAde

T~~~a~:~~v~;:j~atlon @TA = 25°C

PD

400
2.67

600
4.0

600
4.0

600
4.0

mW
mW/"C

Total Device Dissipation@Tc=2SoC
Derate above 25° C

PD

1.5
10

2.0
13.3

2.0
13.3

2.0
13.3

mWiC

Operating Junction Temperature
Range

TJ

-65 to +175

'c

.Tstg

-65 to +300

·c

Storage Temperature Range

Vdc

0.200

Watts

TO·' OUTLINE

(Collector internally connected to case)

11 :,[0 hr
--t
~
nn

om
0.195 01.

W11

0.210

O.016 DIA
0.019

.500
MIN
U u-1.
0.100
BAS(

- -

L..JfU'-"'-COLLECTOR

""

0.048

TO·18 OUTLINE

(Collector internally connected to case)

2-85

2N722, 2N1132, 2N1132A, 2N2303(continued)
ELECTRICAL CHARACTERISTICS

I.

(T" = 2S·C unless otherwise noted)

Symbol

Characteristic:

Min

1

Max

1

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'CU
(IC .. 100 mAde; IB " 0)

2N722, 2N1l32, 2N2303
2N1l32A

Collector-Emitter B1'eakdown Voltage (11
(IC .. 100 mAde, RBE S 10 Ohms)
Collector-Base Breakdo\Vn Voltage
(XC" 100 ItAd~, IE .. 0)
Emitter-Base Breakdown Voltage
(IE " 100 It~e, IC .. 0)

2N722, 2N1l32, 2N230S
2N1l32A
2N722, 2NU32, 2N2303

BVCBO

BV EBO

2N1132A
2N722, 2NU32, 2N2303
2N1l32A

(V CB .. 50 VdC, IE" 0, T A" 150·C)

2N1l32A

Emitter Cutoff Current
(V BE .. 5. 0 Vde, IC = 0)

2NU32A

(VBE =2.0Vdc, IC =0)

50
50
60
5.0
5.0

I CBO

·

-

2N722, 2NU32, 2N2303

(VCB .. 50 Vde, IE .. 0)

3~

40
BVCER

(IE .. 1. 0 mAde, Ic " 0)
Collector Cutoff Current
(VCB " 30 Vde, IE" 0)
(V CB ,,30 Vde, IE" 0, T A" lS0·C)

BVCEO

·
lEBO

2N2303

--

Vde

-

Vde

-

-

Vde

Vde

ItAdc
1.0
100
0.5
50
ItAde

-

100

25
75

--

30
75

90
200

100

ON CHARACTERISTICS
J)C Current GaIn
(IC .. 5.0 mAde, V CE .. 10 Vde)
(Ic " 160 mAde, VCE .. 10 Vde)

2N722, 2N1l32, 2N1l32A
2N2303

hFE

2N722 , 2N1132, 2N1l32A
2N2S0S

Collector-Emitter Saturatioll Voltage
(IC .. 150 mAde, IB .. 15 mAde)

VCE(sat)

-

1.5

Base-Emitter Saturation Voltage
(IC .. 150 mAde, IB .. 15 mAde)

VBE(sat)

·

1.3

60

.

-

45

Vde
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC .. 50 mAde, VCE .. 10 Vde, f .. 20 MHZ)
Output CapaCitance
(V CD " 10 Vde, IE "0, f .. 100 kIU)

fT

2N722, 2N1l32, 2N2303

(VCD = 10 Vdc, ~ .. 0, r .. 1.0 MHz)

COb

2N1132A

Input Capacitance
(V BE .. O. 5 Vile, IC .. 0, f .. 100 kHz)

C ib

Input Resistance
(IC = 1.0 mAde,

h lb

VclI .. 5.0 Vde, f .. 1.0 kHz)

(IC .. 5.0 mAde, VCD .. 10 Vde, f .. 1.0 kHz)
Voltage Feedback Ratio
(IC " 1.0 Ade, VCE .. 6.0 Vdc, f " 1.0 kHz)

h rb

(Ie" 5.0 mAde, VCE .. 10 Vde, f .. 1.0 k1U)
Stnall.8igDat Current Gain
(IC .. 1.0 mAde, VCE .. 5.0 Vde, f " 1. 0 kHz)

(IC " 5.0 mAde,

'V CE

.. 5.0 Vde, f .. 1. 0 kHz)

2N722 , 2NU32
2N1l32A
2N2303
2N722, 2N1l32. 2N1l32A
2N230S

Output Admittance
(IC .. 1.0 mAde, VCE .. 5. 0 Vde, f .. 1.0 kHZ)
(IC .. 6.0 mAde, V CE .. 10 Vde, f .. 1.0 kIU)
(11

hre

hob

Pul" Test: Pulee Width '" 300 its, Duty Cycle ~ 2.0%.

2--:86

-

MHz
pF

30
pF
80
Ohms

25

-

35
10

X 10.4
8.0
8.0
100

25
25
75

SOO

30
75

-

-

-

75

.

Itmhos
1.0
5.0

2N726 (SILICON)
2N727

PNPSILICON
AMPLIFIER
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

· .. designed for general purpose audio amplifier applications.

•

Co"ector·Emitter Breakdown Voltage BVCEO =20 Vdc (Min) @ IC = 10 mAdc

•

Low Output Capacitance Cob = 5.0 pI' (Max) @ VCB = 5.0 Vdc

!

·MAXIMUM RATINGS
Rating

Coliector·Emitter Voltage
Coliector·Sase Voltage
I t:mitter·Sase Voltage
Collector CUrrent

Continuous

Total Device Dissipation@TA = 25u C
Derate above 25°C
Total Device Dissipation@Te=250C
Derate !!bove 25°C
Operating and Storage Junction
Temperature Range

Symbol

Valua

Unit

VCEO
VCS
VES
Ie

20
25

Vde
Vde
Vde
mAde
mW
mW/oe

Po
Po
TJ.Tstg

!l.U

50
300
2.0
1.0
6.67
-65 to +200

Watt
mW/oC
°e

·Indicates JEDEC Registered Data
Pin 1. EMlttet

2. a...
3. ColI.ctar

0.100

Collector Connected to Case

eASE 22 (1)
(TO'IS)

2-87

2N726, 2N727 (continued)

*ELECTRICAL CHARACTERISTICS (TA = 250C unless otherwise noted)

I

Characteristic

Symbol

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltagel11
(lc = 10 mAde,lB = 0)

I

Min

Max

Unit

BVCEO

20

-

Vde

Collector Cutoff Current
(VCE = 15 Vde,IB = 0)

ICEO

-

5.0

/lAde

Collector Cutoff Current
(VCB = 25 Vde, IE = 0)
(VCB = 25 Vde, IE =0, TA = 150o C)

ICBO

-

-

1.0
25

Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)

lEBO

-

0.5

15

/lAde

/lAde

ON CHARACTERISTICS
OC Current Gain(l)
(lC = 10mAde, VCE = 1.0 Vde)

-

hFE

(lC = 10 mAde, VCE =1.0 Vde,
TA = -55 0 C)

2N726
2N727

30

45
120

2N726
2N727

6.0
12

-

Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)

Base-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)

VCE(sat)

-

0.6

Vde

VBE(sat)

-

1.0

Vde

fT

140

-

MHz

Cob

-

5.0

pF

15

90
240

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produet(2)
/lC= 10 mAde, VCE = 10 Vde, f= 100MHz)

Output Capacitance
(VCB = 5.0 Vde, IE = 0, f= 1.0 MHz)
Small-Signal Current Gain
(lc=10mAde, VCE=10Vde,
f = 1.0 kHz)

30

* Indicates JEOEC Registered Data.
(1)Pulse Test: Pulse Width

= 300 #ls,

-

hfe
2N726
2N727

Duty Cycle< 2.0%.

(2)fT is defined as the frequency at which Jhfel

e~rapolates to

unity.

2-88

2N731

(SILICON)

NPN silicon transistor designed primarily for medium'Power audio-frequency applications in industrial service,
MAXIMUM RATINGS

Rating

Value

VCER

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

1.0

Adc

Total Device Dissipation @TA '" 25° C

PD

0.5

Watt

3.33

mW;oC

PD

1.5

Watts

TJ

+175

Collector-Emitter Voltage
(RBE "'~ 10 ohms)

CASE 22
(TO·18)

Collector electrically
connected to case

Unit

Symbol

Derate above 25°C
Total Device Dissipation @T C = 25° C

10

Derate above 25° C
Operating Junction Temperature
Storage Temperature Range
ELECTRICAL CHARACTERISTICS

(1.

-65 to +200

Tstg

= 2S'C unless otherwise noted)

Symbol

Characteristic

mW;oC
°c

.Min

I.

Max

·C

Unit

OFF CHARACTERISTICS
Collector· Emitter Breakdown Voltage 111
(IC =100 mAde, ~E = 10 ohms)

BV CER

Collector-Base Breakdown Voltage
(IC =100 /LAde, ~ =0)

BV CBO

Emltter·Base Breakdown Voltage
(~ =100 /LAde, IC =0)

BVEBO

Collector Cutoff Current
(V CB =30 Vdc, ~ = 0)
(V CB

=30 Vdc,

~

=0,

ICBO
TA

40

-

60

-

5.0

-

-

1.0

Vdc
Vdc
/LAde

-

100

40

120

VCE(sat)

.

1.5

VBE(sat)

-

1.3

25

-

-

35

-

80

=150·C)

Vdc

ON CHARACTERISTICS
DC Current Gain t1I
(IC =150 mAde, VCE

hFE

=10 Vdc)

Collector-Emitter Saturation Voltage
(IC =150 mAde, IB =15 mAde)

(11

Base·Emltter Saturation Voltage 111
(IC =150 mAde, ~ =15 mAde)

Vdc
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE =10 Vde, f
Output Capacitance
(V CB =10 Vdc, ~

fT

=20 MHz)

Cob

=0, f =1. 0 MHz)

Input CapaCitance
(V BE =O. 5 Vdc, IC = 0, f = 1.0 MHz)

Clb

I1I:Pulse Test: Pulse Width = 300 /Ls, Duty Cycle = 2.0%.

2-89

MHz
pF
pF

2N735 (SILICON)
2N736
2N739
2N740

NPN silicon annular transistors designed for smallsignal amplifier and general purpose switching applications.

CASE 22
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N735 2N73g
2N736 2N740

Unit

V CEO

60

80

Vdc

Collector-Base Voltage

VCB

80

125

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

1.0

Adc

Total Device Dissipation @ TA = 25°C
Derate above 25°C

PD

500

mW

T J' T stg

2.86
-65 to +200

Collector-E':mitter Voltage

Operating and Storage Junction
Temperature Range

Lead Temperature, 1/16" ± 1/32" froIn case for 10 s.

2-90

mWrC

°c

2N735, 2N736, 2N739, 2N740

ELECTRICAL CHARACTERISTICS

(TA

(Continued)

= 25"C unless otherwise noted)

Symbol

Characteristic

Min

Max

60
80

--

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage' III
(IC = 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
(IC = 10 !lAde, IE = 0)

2N735, 2N736
2N739, 2N740
2N735, 2N736
2N739, 2N740

Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)

BVCEO
BV CBO
BV EBO

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)

I CBO

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

5.0

-

-

1.0

-

10

30
60

100
200

-

1.0

80
125

Vde

Vdc

Vde
!lAde
!lAde

ON CHARACTERISTICS
DC Cur rent Gain
(IC = 5.0 mAde, VCE = 5.0 Vde)

2N735, 2N739
2N736, 2N740

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 2.0 mAde)

hFE

VCE(sat)

Base-Emitter Voltage
(IC = 10 mAde, IB = 2.0 mAde)

VBE

Vde
Vdc

0.35

1.5

Cob

-

10

h.
1e

.

SMALL·SIGNAL CHARACTERISTICS
OUtput Capacitance
(VCB = 5.0 Vde, IE = 0, f = 1.0 MHz)
Input Impedance
(IC = 5.0 mAde, VCE = 5.0 We, f = 1.0 kHz)
Small-Signal Current Gain
(IC = 5.0 mAde, VCE = 5.0 Vde, f = 1.0 Hz)

(I)

2N735, 2N739
2N736, 2N740
2N735, 2N739
2N736, 2N740

Pulse Test: Pulse Width ~ 300 ~s, Duty Cycle ~ 2.0%.

2-91

hfe

pF
Ohm

-

1500
1800

40
80

100
200

-

2N7

41, A (GERMANIUM)

PNP germanium mesa transistors for oscillator,
frequency multiplier and amplifier applications.
CASE 22
(TO-IS)

Collactor connectad to elsa

MAXIMUM RATINGS

Rating

Symbol

Unit

2N741 2N741A

Collector-Emitter Voltage

VCE

15

20

Vdc

Collector-Base Voltage

VCB

15

20

Vdc

Emitter-Base Voltage

VEB

1.0

Vdc

Collector Current

IC

100

mAdc

Total Device Dissipation @ T A = 25°C

Po

150
2.0

mW
mw;oC

Po

300
4.0

mW
mW/oC

TJ,T stg

-65 to +100

°c

Derate above 25°C
Total Device Dissipation @ TC =' 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

POWER GAIN AND COMMON EMITTER CURRENT GAIN
versus FREQUENCY

POWER OUTPUT versus FREQUENCY,
CLASS C AMPLIFIER

28

500

----

400

-

300

II,

LIMITED DUTY CYCLE
NOTE: DC power input
is 800 to 1000 Milliwatts

-- . .

~

HIGH ReliABILITY MAX

10

20

30

40 50 60

80 100

16

z

.12

200

AIN

I

~

1

8.0

II

~

Vel = -6Vde
I, - 5 mAde

;j

~

o

~

~

,,

i'-..\

100

~OWER

20

,
200 -

"'I""

24

~

'\:

!

4.0
300

I~

o
I

FREQUENCY (MH'i

Z.o

4.0 6.0 10

20

40 60 100

FREQUENCY ( MH'i

2-92

200

400

1000

2N741,A (continued)
ELECTRICAL CHARACTER ISTICS (TA = 250 C unless otherwise noted)

Characteristic
ON CHARACTERISTICS
Collector-Base Breakdown Voltage
~ = 100 "Adc, IE =0)

BVCBO

1.0

-

-

-

100

-

0.2

3.0

10

25

fT

300

360
360

--

Output Capacitance
(VCB =6 Vde, IE = 0, f = 100 kHz)

Cob

-

6.0

10

Collector Capacitance
(VCB =6 Vde, IE = 0, f

Ce

-

3.0

-

20

-

-

2N741
2N741A

Emitter-Base Breakdown Voltage
=100 ,.Adc, IC =0)

BVEBO

OE

Collector Cutoff Current
(VCE = 15 Vdc, VBE = 0)
(VCE

=20 Vde,

2N741
2N741A

VBE = 0)

Collector Cutoff Current
(V CB == 6 Vdc, IE = 0)

ICES

ICBO

ON CHARACTERISTICS
DC Current Gain
(IC =5 mAde, VCE =6 Vde)

I

15
20

-

-

Vdc

Vde

"Ade

100
/.LAde

SMALL-SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(IE =5 mAde, VCB = 6 Vde, f = 100 MHz)

2N741
2N741A

=100 kHz)

pF

Small-Signal Current Gain
(IC = 5 mAde, VCE =6 Vdc, f = 1 kHz)

hfe

Output Admittance
(IE =5 mAde, VCB " 6 Vdc, f

=1 kHz)

hob

-

45

-

Input Impedance
(IE =5 mAde, VCB

=6 Vde, f =1 kHz)

hib

-

8.0

15

Base Resistance
(IE = 5 mAde, VCB

=6 Vde,

--

75
65

-

-

7.0

-

16

22

-

f = 300 MHz)

Noise Figure
(IE =5 mAde, VCB = 6 Vdc, f

2N741
2N741A

r'b

NF

=30 MHz)

pF

"mhos
Ohms

Power Gain, Matched, Neutralized
(VCB = 6 Vdc, IE =5 mAde, f = 30 MHz)

Gpe

Power Output
~ = 60 mAde, VCB = 6 Vdc,
Gpe= B dB, f = 30 MHz)

Pout

-

200
250

-

Power Output
(IC = 60 mAde, VCB = 6 Vde,
Gpe= 5 dB, f = 70 MHz)

Pout

-

200

-

2-93

MHz

Ohms

dB

dB

mW

mW

2N743

(SILICON)

NPN silicon annular transistor designed for highspeed, low-current, saturated switching operations.

CASE 22
(TO-IS)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Unit

Value

VCEO

12

Vdc

Collector-Base Voltage

VCB

20

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAdc

PD

300
1.71

mW

Collector-Emitter Voltage

Collector Current - Continuous
Total Device Dissipation @TA

= 25° C

Derate above 25° C
Operating and Storage Junction
Temperature Range

TJ , T

mW/oC

-65 to +200

stg

°c

SWITCHING TEST CIRCUITS

FIGURE 2 - CHARGE-STORAGE TIME
TEST CIRCUIT

FIGURE 1 - TURN-ON AND TURN-OFF
TIME TEST CIRCUIT
INPUT PULSES

.:i-

10 V

ONi
VI

91

-q
tr

~

~
TO SCOPE

so

TURN-OFF:

RS

0.1

~
0.1
TO SCOPE
tL F

1. 0 ns

~F
O. 1 ~F SOO

tr~1.0ns

Vin=-10~
~ 1.0~: rs

. Zin :: son

Pulse Width :;:: 300 ns -'V\I\,.-JVIII...-{

SCOPE INPUT IMPEDANCE. 1Megohm
SCOPE INPUT CAPACITANCE = 20'pF
GENERATOR OUTPUT IMPEDANCE = 50 ohms
INPUT PULSE tr • t f = 2ns

AT POINT A

pC

150mAdc

FIGURE 1 -

VBB'

pC

10mAdc

100

100

Ie

= -150mAde
IS = -7.5mAde

A

f~
HgRELAY

~

-90%

20mV
MAX

'=

f

10ns

2-104

10%--

MAX..l1.

r

_L

r

20mV
MAX

834
2N835
2N

(SILICON)

NPN silicon epitaxial transistors for high- speed
switching applications.
CASE 22 \
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N834

2N835

Unit

Collector-Emitter Voltage

VCES

30

20

Vdc

Collector-Base Voltage

VCB

40

25

Vdc

Emitter-Base Voltage

VEB

5.0

3.0

Vdc

Collector Current-Continuous Peak

Ie

200

mAdc

Total Device DisSipation @ T A = 25°C
Derate above 25°C

PD

0.3

Watt

2.0

mwflC

1.0

Watt
mW/oC

Total Device Dissipation @ T C

=

25°C

PD

Derate above 25°C

6.67

Total Device Dissipation @ T C

= 100°C

0.5

Watt

6.67

mWflC

-65 to +175

°c

PD

Derate above 100°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

FIGURE 1 - TURN·ON AND TURN·OFF

FIGURE 2 - CHARGE STORAGE TIME

TIME MEASUREMENT CIRCUIT

CONSTANT MEASUREMENT CIRCUIT
+10Vde

'50

82.

.

'Oo

,<

0.11&'

_ ,.........I\IIr..e--;-'VV~1-O

...
...

50

·+l1Y

t. n ,Y.. =+18Vdc

V,.=-19Vdr:

.'---r=:t

NOTE. ALL SWlreHINa TIMES MWUR£l) WITH LI/IIATfION MOOU 420 SWlreHINC TIME TEST SET OR EQUIVALENT.

'_.

2N834, 2N835

(continued)

ELECTRICAL CHARACTERISTICS (TA'i= 25°C unless otherwise noted)

I· Symbol

Characteristic

Min 1 . Max

Unit

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(IC = 10 j.l.Adc, ~ = 0)
Emitter-Base Breakdown Voltage
(~= 10 j.l.Adc, IC = 0)

= 20 Vdc,

VBE

BVEBO

2N834
2N835

Collector Cutoff Current
(VCE = 30 Vdc, VBE = 0)
(VCE

BVCBO

2N834
2N835

leES

2N834

= 0)

2N835

Collector Cutoff Current
(VCB = 20 Vdc, ~ = 0)
(VCB

= 20 Vdc, ~ = 0,

leBO
TA

= IS0oC)

40
25

--

5.0
3.0

-

-

10

-

10

-

Vdc

Vdc

j.l.Adc

j.l.Adc
0.5
30

ON CHARACTERISTICS
DC Current Gain 111
(Ie = 10 mAdc, VCE

= 1 Vdc)

Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1 mAdc)
(IC

= 50 mAdc,

IB = 5 mAdc)

hFE

2N834
2N835

111

Base-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1 mAdc)

(V CE(sat)

2N834
2N835

25
20.

--

-

0.25
0.30

-

2N834
2N835

III

VBE(sat)

Vdc

0.4

-

Vdc

-

0.9

350

-

300

-

DYNAMIC CHARACTERISTICS
Current~Gain

- Bandwidth Product
VCE = 20 Vde, f

(IC

= 10 mAde,

= 100 MHz)

2N834

(IC

= 10 mAde,

f = 100 MHz)

2N835

High-Frequency Current Gain
(IC = 10 mAde, VCE = 20 Vde, f = 100 MHz)

2N834

(IC

= 10 mAde,

VCE

VCE

Output Capacitance
(VCB = 10 Vde, ~

= 15 Vde,

= 15 Vde,

f = 100 MHz)

Ihfel

= 0, f = 100 kHz)
2N834
2N835

Turn-On Time (Figure 1)
(IC = 10 mAde, IBI = 3 mAde, IB2

= 1 mAde)

2N834
2N835

Turn-Off Time (Figure 1)
(IC = 10 mAde, IB1 = 3 mAde, Ia2

= 1 mAde)

2N834
2N835

-

Cob

-

4.0

ts

-

25
35

ton

-

Pulse Test: Pulse Width S 12 ms, Duty Cycle S 2%

2.-106

toft

MHz

-

3.5
3.0

2N835

Charge-Storage Time Constant (Figure 2)
(IC = 10 mAde, IBI = Ia2 = 10 mAde)

111

fT'

pF
ns

ns

-

33
20

-

75
35

ns

2N838 (GERMANIUM)
PNP germanium epitaxial mesa transistor for highspeed switching applications.

"

CASE 22
(TO·18)

Collector connected to CBse

MAXIMUM RATINGS

Rating

Symbol
. VCB

Collector-Base Voltage

Value

Unit

30

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

Collector-Emitter Voltage

VCEX

15

Vdc

Emitter-Base Boltage

VEB

2.5

Vdc

Collector Current (Continuous)

Ie

100

mAdc

Junction Temperature

TJ

+100

°c

Storage Temperature

Tstg

-65 to+ 100

°c

PD

1.50

mW

2.0

mW/OC

Device Dissipation @ T A

= 250 C

(Derate 2mW/oC above 25 0 C)

FIGURE 1 -

SWITCHING TIME TEST CIRCUIT

=

GENERATOR Z... 50!!
INPUT PULSE t, = t.
1 ns
INPUT PULSE WIDTH = 100 ns
(5q% DUTY CYCLE)

Vee

= -3V

-=

Ie.
1'1
I"

FIGURE 2 - AREA OF PERMISSIBLE LOAD LOCI

= -IDmAdc

= -3.3mAdc
= +3.3mAdc

80

~

275 !!

.s
SCOPE

liN:=:: 1 Megn
CIN :::;; 20 pF
t.::::: 1 ns

~

~

'"
'"

~

'-'

~

is

VlEI01 = +4Vdc

'-'
~

VeE' COLLECTOR·EMITTER VOLTAGE (VOLTS)

2-107

2N838 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl

Symbol

Characteristic

Min

Typ

30

35

---

30

35

---

2.5

4.5

---

15

---

---

Max

Unit

Collector-Base Breakdown Voltage
(Ic =100 fJ.Adc, IE =0)

BVCBO

Collector-Emitter Breakdown Voltage
(IC=100 J1Adc, VEB=O)

BVCES

Emitter-Base Breakdown Voltage
(IE = 100 fJ. Adc, IC = 0)

BVEBO

Collector Latch-up Voltage
(see Figure 2)

LVCEX

Collector-Emitter Cutoff Current
(V CE =15 Vdc, VEB =0)

ICES

---

l.0

10

Collector-Base Cutoff Current
(VCB=15V, IE = 0)

leBO

---

l.0

10

DC Forward Current Transfer Ratio
(IC=10mAdc, VCE =0.3Vdc)

hFE

30

70

---

Collector-Emitter Saturation Voltage
(Ic =10 mAdc, IB =3.3 mAdc)

VCE(sat)

---

0.1

0.18

Base-Emitter Voltage
(Ie = 10 mAdc, IB = 3.3 mAdc)

VBE

---

0.39

0.5

Small-Signal Forward Current Transfer Ratio
(IC=10 rnA, VCE=IV, f=100 MHz)

hfe

3.0

4.5

---

Collector Output Capacitance
(VCB=10 V, IE=O, f=1 MHz)

Cob

---

2.0

4.0

Delay Time (Figure 1)

td

---

10

15

ns

Rise Time (Figure 1)

tr

---

7.0

15

ns

Storage Time (Figure 1)

ts

---

10

20

ns

Fall Time (Figure 1)

tr

---

10

20

ns

2-108

Vdc
Vdc
Vdc
Vdc

fJ. Adc
fJ.Adc

--Vdc
Vdc

--pF

2N840 (SILICON)
2N841

NPN silicon annular transistors designed for smallsignal amplifier and general purpose switching applications.

CASE 22
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

45

Vdc

Collector-Emitter Voltage

VCES

45

Vdc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

VEB

2.0

Vdc

IC

1.0

Adc

500

mW

2.86

mW;oC
°c

Collector Current
Total Device Dissipation @ TA

= 25°C

PD

Derate above 25°C
Operating and Storage Junction
Temperature Range

T J , T stg

2-109

-65 to +200

2N840, 2N841

(Continued)

ELECTRICAL CHARACTERISTICS

(TA

25°C unless otherwise noted)

=

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 10 mAdc, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 100 !lAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 !lAdc, IC = 0)

BVEBO

Collector Cutoff Current
(V CE = 45 Vdc, VBE = 0, RBE = 5.0 k ohms)

ICER

Collector Cutoff Current
(V CB = 45 Vdc, IE = 0)

I CBO

(VCB = 45 Vdc, IE = 0, T A = 150"C)
Emitter Cutoff Current
(V BE = 2.0 Vdc, IC = 0)

lEBO

45

-

45

-

2.0

-

-

20

-

1.0

-

50

-

50

30
60

100
400

-

2.0

1.5
2.0

-

-

15

40
80

90
330

15
25

-

-

1.2

-

80

-

1.2

-

500

Vdc
Vdc
Vdc

!lAdc
!lAdc

!lAdc

ON CHARACTERISTICS
DC Current Gain
(Ie = 10 mAdc, VeE = 5.0 Vdc)

hFE

2N840
2N841

Collector-Emitter Saturation Voltage
(IC" 10 mAdc, IB = 2.2 mAdc)

VCE(sat)

Vdc

SMALL·SIGNALCHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 20 MHz)

2N840
2N841

Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1. 0 MHz)
Small-Signal Current Gain
(IC = 1. 0 mAdc, VCE = 5.0 Vdc, f = 1. 0 kHz)
(IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz,
T A = -55 "C)

fT

Cob

2N840
2N841

hfe

2N840
2N841

Output Admittance
(Ie = 1. 0 mAde, VCE = 5.0 Vdc, f =1. 0 kHz)

hoe

Input Resistance
(IC = 1. 0 mAdc, VCB = 5.0 Vdc, f = 1. 0 kHz)

hib

Output Conductance
(IC = 1.0 mAdc, VCB = 5.0 Vdc, 1 = 1.0 kHZ)

hob
Re(hie )

Real Part 01 Input Impedance
(IC = 10 mAdc, VCE = 10 Vdc, f = 20 MHz)

2-110

MHz

pF

-

fllUhos
Ohms
fllUhos
Ohms

2N869 (SILICON)
2N995

CASE 22
(TO· IS)
Collector connected to case

PNP silicon annular transistors for high-frequency
general-purpose amplifier applications.

MAXIMUM RATINGS

Rating

Symbol

Types

Value

Unit

Base Voltage

VCB

2N869
2N995

25
20

Vdc

Collector- Emitter Voltage

VCEO

2N869
2N995

18
15

Vdc

Emitter-Base Voltage

VEB

2N869
2N995

5.0
4.0

Vdc

Total Device Dissipation
at 25°C Case Temperature
at 100°C Case Temperature
Derate above 25°C

Po

Both
Types

1.2
0.68
6.86

Watts
Watt
mW/oC

Total Device DisSipation
at 25°C Ambient Temperature
Derate above 25°C

Po

Both
Types

0.36
2.06

Watt
mW/oC

Storage Temperature

Tstg

Both
Types

-65 to +200

°c

Junction Temperature

TJ

Both
Types

+200

°c

2-111

2N869, 2N995

(continued)

ELECTRICAL CHARACTERISTICS ITA =25°C unless otherwise noted)

Symbol

Characteristic
Collector-Base Breakdown Voltage
(Ic = 10 /lAdc, IE = 0)
2N869
2N995

BVCBO

Collector-Emitter SUstaining Voltage III
2N869
(Ic = 10 mAdc, IB '" 0)
2N995

VCEO(sust)

Emitter-Base Breakdown Voltage
2N869
(IE = 10 /l Adc, IC = 0)
2N995

BV EBO

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)

ICBO

(VCB

=

15 Vdc, IE

2N869
2N995

= 0, T A = 150°C)

Emitter Current
(VEB = 4.0 Vdc, Ie = 0)

Collector Saturation Voltage
(Ie = 10 mAdc, IB = 1.0 mAdc)
(IC = 20 mAdc, IB = 2.0 mAde)

2N869
2N995

Base Saturation Voltage
(Ie = 10 mAdc, IB =1.0 mAdc)
(Ic = 20 mAdc, IB =2.0 mAdc)

2N869
2N995

.

DC Forward-Current Transfer Ratio
(I<::: = 10 mAdc, VCE = 5.0 Vdc)
(IC = 1.0 mAdc, VCE = 1.0 Vdc)
(Ie = 20 mAdc, VCE = 1.0 Vdc)
(Ic = 50 mAdc, VCE = 1.0 Vdc)

25
20

------- ---

18
15

------- ---

5.0
4.0

----- -----

-----

-----

lEBO

--- ---

10

VCE (sat)

-----

2N869
2N995
2N995
2N995

Vdc

---

Vdc
1.0
0.95

20
25
35
25

--- 120
--- --140

pF

---. -

3.0
3.0

9
10

Open-Circuit Input Capacitance
(VSE = 0.5 V, Ie = 0) Both Types

Cib

---

7.0

11

(1)

Pulse Note: Pulse Width = 300

II s,

Duty Cycle = 1%

2-112

1.0
l.0

---

----- ---

Cob

bee

Vdc

/lAdc

Open-Circuit Output Capacitance
2N869
(VCB = 10 V, IE = 0)
2N995

Small-Signal Forward-Current
Transfer Ratio
( IC = 10 mA, VCE = 15 V, f = 100 MHz) 2N869
(Ic = 10 mA, VCE = 10 V, f = 100 MHz) 2N995

Vdc

0.17 1.0
0.2

0.78
----- ---

hFE

(1)

Vdc

/l Adc

25

VBE (sat)

Unit

010
005

--- ---

Both Types

.

2N995

Min Typ Max

pF

3.0
3.0

-----

---

2N869A(SILICON)
2N869A JAN/JANTX Available

MM869B

PNP SILICON
SWITCHING
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

PNP silicon annular low-power transistor designed for mediumspeed, saturated switching applications.

•

Collector-Emitter Breakdown Voltage BVCEO =30 Vdc (Min) @ IC = 10 mAdc - MM869B

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Max) @ IC = 30 mAde

• Turn-On Time ton = 10 ns (Typ) @IC

=30 mAdc -

MM869B

*MAXIMUM RATINGS
Symbol

2N869A

MM869B

Unit

VCEO

18

30

Vde

Collector-Base Voltage

VCB

25

30

Emitter-Base Voltage

VEB

Rating

Collector-Emitter Voltage

Vde

5.0

Vde

IC

200

mAde

Total Device Dissipation
Derate above 25°C

@

T A = 25°C

Po

360
2.1

mW
mW/oC

Total Device Dissipation
Derate above 25°C

@

T C = 25°C

Po

1.2
6.86

Watt.
mW/oC

TJ, Tstg

-65 to +200

°c

Collector Current

Operating and Storage Junction
Temperature Range

0.Z09

1 1f.iliir

&m OlAl

l

·2N869A JEOEC Registered Data.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

OIA

L
1$°

ij

0.500

~OIA

-2.0 V

Pulse Source
Ir< 1.0ns
f'W > 200 ns
Zin = 50 n.

100
Pin 1. Emitter

t----oVOUI

0.1 "F
VinT

2.0 k

TO SAMPLING SCOPE
Zin'" 100 kn.
tr< 1.0ns

2. Base
3.Coilector

0.100

0.028

II:ImI

100

CASE 22 (11
(TO·1SI

2-113

2N~69A,MM869B (continued)

"IU.!iCTRICAL. CtfARACTERISTICS (TA = 25°C unle$S otherwise not\ld)

rOFF::'':: :':

Min

Typ

Max

18
30

-

-

25

-

-

25
30

-

BVEBO

5.0

-

--

Vde

ICES

-

.010

"Adc

25

"Ad.

.010

"Ad.

Symbol

Unit

CtiARACTERISTICS

qpII~~tlir'li1mitt.r SU$t.ln'ing Voltage(1 I

VCEO(susl

lie" 10 mAd~. IB '''0)

2N869A
MM869B

Oollll\:tor·Emitte. 6reakdown Voltage
(10" 10 "Ade. VBS "0)
CQlllil:tor;llase S.ea~down Voltage
(Ie ~10 "Ade. Ie .. 01

BVCES
2NB69A

,

BVCBO
2N869A
MMB69B

, Smitt~r-Il_ Brea~down Voltage
II"" 10uAdQ.IC" Q)
q\lll~~tor Cutoff Current

Vde

IVCE" 1p Vd., VBe .. 0)
CQlle~tor Clltott Cu rrent

ICBO

(Vea "1~ Vde. IE .. D. TA" 150( 0)
lIall!l Cutr,"!

IB

Vde

(Vee" 1Ii Vd., VBE "01

Vde

ON CHARACTIlRISTICS
PC'Ollrrim! Gain(11
(Ie" 10 mAd~. VeE" 0.3 Vdcl
(10" 10 mAde, VOE .. 5.0 Vdel
(I C = 30 mAde. V Cf;:

hFE 111
30

40

.. 0.5 Vdcl

40

VeE (sat!

, Sase·Emi!t,. Saturation Voltage
(lc" 10 mAde, Ie" 1.0 mAde)

-

-

-

0.15

-

-

VBE(satl

-

Vdc
0.2
0.5
Vde

-

-

400

-

-

MH~

-

6.0

pF

-

-

6.0

pF

-

-

50

10

-

-

-

80

0.78

(lc" 30 mAde, la" 3.0 mAdel
(lc .. 100 mAd~, IS .. 10 mAdc)

-

120

25

-

(Ie" 100 mAde, 18" lQ mAde)

-

120

-

17

110" 30 mAde. VOE .. 0,5 We, TA "-550 CI
IIc = 100 mAde, VCE " 1.0 Vdel
. Colleclor-em ~er Saturation VOltage
(10" 10 mAde, 16 .. 1.0 mAde)
(I C .. 30 rnAdQ, I B .. 3,e;! mAde)

-

0.85

0.98
1.2
1.7

IlMALL,sIGNAL CHARACTIlRISTICS
Current.Galn-eandwldth Proquei(21
lie ~ 10 mAde. VCE ~ 15 Vde, t ~ 100 MHz)

fy

output C;IIP,clte"ee
(Vca .. 5.0 VdG. IE ~ 0, f ~ 140 kHz)

Cob

InpL!t"CapliCitance
(Vefi ~ 0.5 Vd~, Ie ~ o. f .. 140 kH~1

Gib

"WmlI-lING CHARACTERISTICS
Turn;OnTlme
He ~ 30 mAde; IBl .. 1.5 mAde)
IIC" 30 mAdc, le1 .. 3.0 mAde)
Turn-Off Time
(lC" 30 mAde,lBl "le2" 1.5 mAde)

lie::" 31/ mAde.IB1" IB;I"3.0 mAde)

Both Type.
MM829B

ton

Both Types
MM829B

toff

~~1II8!1AA ~epec Registered Pata.
111PUIM! Te.t, Pul .. Width" <300 "s, Duty C;yola < 1.0~.
1:llfT i~ Refined as the frotquenoy at which Ihfalaxt,apolates to unity.

2-114

-

60

ns
ns
ns

-

ns

2N910 (SILICON)
2N911

NPN silicon annular transistors designed for smallsignal amplifier and general purpose switching applications.

CASE 22
(TO-18)

Collector connected to cIse

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

60

Vdc

Collector-Emitter Voltage

VCER

eo

Vdc

Collector-Base Voltage

VCB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

PD

O. !5

Watt

2,86

mW/PC

1.8

Watt

Total Device DisSipation @ T A ;;: 25°C
Derate above 2!5°C

PD

Total Device Dissipation @ T C ::;: 25°C
TC ;: 10QoC

0.975
10.3

Derate above 25°C
Operating and Storage Junction
Temperature Range

T J' T stg

2-115

-65 to +200

mW;oC
°c

2N910, 2N911 (Continued)
ELECTRICAL CHARACTERISTICS

(T.

=2S'C unless otherwise noted)

Characteristic

Symbol

Min

Max

Uriit

-

Vde

60
80

-

100

-

7.0

-

-

25

nAde

-

15

pAde

-

25

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage'
(IC = 30 mAde, IB = 0)

BVCEO(sus)

Collector-Emitter Sustaining Voltage'
(IC = 100 mAde, RBE ~ 10 ohms)

BVCER(sus)

Collector-Base Breakdown Voltage
(IC = 100 pAde, ~ = 0)

BVCBO

Emitter-Base Breakdown Voltage
(~ = 100 pAde, IC = 0),

BV EBO ,

Collector Cutoff Current
(VCB = 75 Vde, IE = 0)
(VCB = 75 Vde, IE = 0, ,T A

ICBO

= 150"C)

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

,
,

Vde
Vde
Vde

nAde

ON CHARACTERISTICS
DC Current Gain
(IC = O. I mAde, VCE
VCE

= 10 Vde)

(IC = 10 mAde, VCE

= 10 Vde,

(IC

= 10 mAde,

= 10 Vde)

hFE

2N9IO
2N911

TA

= -55"C)

2N910*
2N9U*

75
35

2N910*
2N911*

30
15

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

= 50 mAde,

IB

VCE(sat)

= 5.0 mAde)

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

= 50 mAde,

IB

35
20

VBE(sat)

= 5.0 mAde),

-

-

Vde

-

0.4

0.,6

0.8

-

0.9

60
50

-

-

15

-

85

1.2
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwldth Product
(IC = 50 mAde, VCE = 10 Vde, f
Output Capacitance
(VCB = 10 Vde, IE

= 0,

Input Capacitance
(V BE = 0.5 Vde, IC

= 0,

Input Impedance
(IC = 5.0 mAde, VCE

f

= 20 MHz)

Cob

= 100 kHz)
f

C ib

= 100 kHz)
f

= 1.0 kHz)

2N9IO
2N911

Small-Signal Current Gain
(IC = 1.0 mAde, VCE = 5.0Vdc, f

= 1.0 kHz)

2N910
2N911

VCE

= 5.0 Vde,

f

= 1.0 kHz)

2N911

= 5.0 Vde,

f

= 1.0 kHz)

2N910
2N911

In~t

= 5.0 mAde,

= 5.0 Vde,

Output Admittance
(IC = 5.0 mAde, VCE

(Ic

Voltage Feedback Ratio
(IC = 1.0 mAde, VCB = 5.0 Vde, f

= 1.0 kHz)

2N910
2N911
2N911

(IC

= 1..0 mAde,
= 5.0 mAde,

= 5.0 mAde,

VCB
VCB

VCB

Output Conductance
(IC = 1.0 mAde, VCB
(IC

= 5.0 mAde,

VCB

= 5.0 Vde,
= 5; OVde,

f

= 5.0 Vde,

f

= 1. 0 kHz)

= 5.0 Vde,
= 5.0 Vdc,

f

= 1.0 kHz).
= 1. 0 kHz)

f

Noise Figure
(IC = O. 3 mAde, VCB = 10 Vde, RG
f = 1. 0 kHz, B. W. = 200 Hz)
,

hfe

hoe
hib

f

(IC

hie

Resistance

= 1. 0 kHz)
= 1. 0 kHz)

(Ie

fT

2N910
2N911

Pulse Test: Pulse Width

~

300

j./S,

hrb

hob

NF

= 510 ohms,

2N9IO
2N911

Duty Cycle = 2.0%.

2-116

MHz

pF
pF
Ohms

-

-

1800
1000

76
36

200
90

40

100

-

-

100
50

20

30

4.0

8.0

-

-

3'.0
1. 25

-

1. 75

jUIlhos

Ohms

X 10-4

-

jUIlho
0.5
1.0
dB
12
15

~j

2N914 (SILICON)
2N914 JAN. JTX Available

CASE 22
(TO·1S)

Collector connected
to case

NPN silicon annular transistor for high-speed switching applications.

MAXIMUM RATINGS

Symbol

Value

*Collector-Emitter Voltage

VCEO

15

*Collector-Emitter Voltage
(RBE !> 10 ohms)

VCER

Rating

*Collector-Base Voltage

VCB

*Emitter-Base Voltage
Collector Cu rrent (Note 1)
*Total Device Dissipation @ T A

=

25°C

=

25°C

Vdc
40

Vdc

VEB

5.0

Vdc

IC

150

mAdc

PD

360

rnW

2.06

mW/oC

1.2

Watts

=

100°C

6.9

mW/oC

PD

0.68

Watt

TJ

200

Tstg

-65 to +200

°c
°c

PD

Derate above 25°C
* Total Device Dissipation @ T C

*Operating Junction Temperature Range
*Storage Temperature Range

Vdc

20

Derate above 25 0 C
*Total Device Dissipation @ T C

Unit

*Indicates JEDEC Registered Data.
Note 1: Limited by Power Dissipation

t...

CHARGE STORAGE TIME CONSTANT TEST CIRCUIT

OV - ,
-9V

U

+5V

r

INPUT PULSE
Rise Time:=::: 1 ns
500 Source Impedance

O.l/Lr

T-

and

TEST CIRCUIT
+5V

INPUT PULSE
Rise Time :-:::: 1 ns
500 Source Impedance

240

O.ll'f

215

100

loft

OUTPUTTO
SAMPLING OSCILLOSCOPE
Rise Time ~ 1 ns
500 Input Impedance
PW ~200ns

+7V

2-117

T

23

200

200

=
-4V

OUTPUT TO
SAMPLING OSCILLOSCOPE
Rise Time ~ 1 ns
50n ,Input Impedance
p W ~ 200 ns

2N914

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Symbol

Cha racteristic

Min

Max

15

-

20

-

40

-

5.0

-

-

10

-

0.025

-

15

-

0.1

30

120

12
10

-

-

0.70

-

0.25

0.70

0.80

300

-

.

6.0

-

9.0

-

20

Unit

OFF CHARACTERISTICS
*Collector-Emitter Sustaining Voltage (Note 1)
(IC = 30 mAdc, IB = 0)

BVCEO(sus)

*Collector-Emitter Sustaining Voltage (Note 1)
(IC = 30 mAdc, RBE $ 10 ohms)

BVCER(sus)

*Collector-Base Breakdown Voltage
(Ic;: 1. 0 /lAdc, IE '" 0)

BV CBO

*Emitter-Base Breakdown Voltage
(IE;: lO/lAde, IC = 0)

BV EBO

*Collector Cutoff Current
(V CE = 20 Vdc, VEB(off) '" 0.25 Vde, l'A ;: 125°C)

I CEX

"Collector Cutoff Current
(V CB = 20 Vde, IE = 0)

I CBO

(V CB = 20 Vde, IE '" 0, T A = 150°C)
Emitter Cutoff Current
(V BE =4.0Vde,I C =0)

lEBO

Vdc
Vdc
Vdc
Vdc
/lAde

/lAde

/lAde

ON CHARACTERISTICS
DC current Gain (Note 1)
*(IC = 10 mAde, VCE = 1. 0 Vde)

hFE

(IC = 10 mAde, VCE = 1. 0 Vde, T A = -55°C)
*(I c = 500 mAde, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage (Note 1)
*(I c '" 200 mAde, IB = 20 mAde)

VCE(sat)

(IC '" 10mAdc,IB = 1. 0 thru 20 mAde, T A = -55 to +125 0 C)
"'Base-Emitter Saturation Voltage
(I C ;: 10 mAde, IB = 1. 0 mAde)

VBE(sat)

-

Vde

Vde

DYNAMIC CHARACTERISTICS
tCurrent-Gain - Bandwidth Product
(IC ;: 20 mAde, VCE ;: 10 Vde, f = 100 MHz)

fT

Output Capacitance
(V CB =10 Vde, IE '" 0, f = 1.0 MHz)

Cob

Input Capacitance
(V BE = 0.5 Vde, IC;: 0, f = 1.0 MHz)

Cib

"Charge Storage Time Constant (Note 2)
(Ie;: IBI ;: IB2 ;: 20 mAde)

7"5

pF
pF
ns

Turn-On Time (Note 2)
(Ic '" 200 mAde, IBI " 40 mAde, IB2 .. 20 mAde)

t

on

-

40

Tu,n-Off Time (Note 2)
(IC ;: 200 mAde, IBI ;: 40 mAde, IB2 = 20 mAde)

toff

-

40

Note 1: Pulse Test: Pulse Width'" 300 Jl.S, Duty Cycle';; 1.0%.
Note 2: Measu,ed on Sampling Scope: Pulse Width;;' 200 ns.
"Indicates JEDEC Registered Data..
t JEDEC Registration Defined as hre.

2-118

MHz

ns
ns

2N915 (SILICON)

NPN silicon annular tran~istor for high-frequency
amplifier, oscillator and switching applications.

CASE 22
(TO-18)
Collector connected to c••e

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

70

Vdc

Collector-Emitter Voltage

VCEO

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Total Device Dissipation
@ l!5°C Case Temperature
Dllrating Factor Above 25°C

PD

Total Device Dissipation
@ 25°C Ambient Temperature
Derating Factor Above 25°C

PD

Junction Temperature,
Operating

TJ

Storage Temperature Range

Tstg

2-119

1.2
6.9

W
mW;oC

0.36
2.06

W
mW;oC

+200
-65 to + 200

°c
°c

2N915 (continued)

ELECTRICAL CHARACTERISTICS (TA

Characteristic

Symbol

Collector Cutoff Current
IE ;. 0 VCB : 60V
Collector Cutoff Current
IE : 0 VCB : 60V

@

= 250 C unless otherwise noted)

150·C

Collector Breakdown Voltage
IC : 100 Il A IE : 0

Min

Max

Unit

ICBO

10

nA

ICBO

30

Il A

BVCBO

70

Volts

VCEO

50

Volts

Emitter Breakdown Voltage
IC : 0 IE : 100 Il A

BV EBO

5.0

Volts

Base Saturation Voltage
IC : lOrnA IB : 1.0mA

VBE(sat)

0.9

Volts

Collector Saturation Voltage
IC : 10mA IB = 1.0mA

VCE(sat)

1.0

Volts

DC Pulse Current Gain
IC = 10mA VCE = 5.0V

hFE

Output Capacitance
IE = 0 VCB • 10V

COb

3.5

pF

Emitter Transition Capacitance
IC = 0 VEB = O.5V

CTE

10

pF

Collector to Emitter Sustaining Voltage 111
IC = 10mA IB : 0

50

200

High Frequency Current Gain f : 100MHz
IC : 10mA VCE = 15V

hfe

2.5

Small Signal Current Gain f ;: 1 kHz
Ie : 1.0mA VCE = 5.0V

hfe

40

200

50

250

Ie

= 5.0IpA

VCE

Input Resistance f : 1 kHz
IC = 1. OrnA VCE = 5.0V
IC = 5. OrnA VCE : 5.0V
Output Conductance J = 1 kHz
Ie = 1.0mA VCE = 5.0V
IC

= 5.0mA

111 Pulse Test: pw ~ 300

"

= 5.0V
h;
Ie

hoe

VeE = 5.0V
/lB, Duty Cycle

~ 1. G%

2-120

.

6000

ohms

2000

ohms

75

Ilmho

125

Ilmho

2N916 (SILICON)
2N916 JAN Available

CASE22
(TO·1S)

~
NPN silicon annular transistor for high-frequency
amplifier, oscillator and switching applications.

Collector
connected to case

MAXIMUM RATINGS

Rating

Unit

Symbol

Value

Collector-Base Voltage

VCB

45

Vdc

Collector-Emitter Voltage

VCEO

25

Vdc

Emitter-Base Voltage

VEB

5

Vdc

Total Device Dissipation
@ 25"C Case Temperature
Derating Factor Above 25·C
Total Device Dissipation
@ 25"C Ambient Temperature
Derating Factor Above 25·C
Junction Temperature, Operating

PD

storage Temperature Range

Tst1

1.2
6.9

W
mW/"C

. 36
2.06

W
mW/"C

PD
TJ

·C

-65 to +300

·C

~ 25 0 C unless otherwise noted)

ELECTRICAL CHARACTERISTICS tT A

Cha racteristic

+200

Symbol

Min

Max

Unit

Collector Cutoff Current
VCB = 30V
~ =0

ICBO

10

nAdc

Collector Cutoff Current @150· C
VCB = 30V
IE = 0

ICBO

10

/lAde

Collector Bre~kdown Voltage
IC = lOj.LA IE = 0

BV CBO

45

Vdc

VCEO

25

Vdc

Emitter Breakdown Voltage
IE = 10 j.LA
IC = 0

BV EBO

5.0

Vdc

Base Saturation Voltage
Ie = lOrnA IB = LOrnA

VBE(sat)

0.9

Vdc

Collector Saturation Voltage
IC = lOrnA IB = LOrnA

VCE(sat)

0.5

Vdc

Collector to Emitter Sustaining Voltage 111
IC = 30m A IB = 0

DC Pulse Current Gain 111
IC = lOrnA VCE =1.0V

hFE

50

200

Output Capacitance
VCB = 5.0V
IE = 0

Cob

6.0

pF

Emitter Transition Capacitance
VEB = 0.5V
IC = 0
High Frequency Current Gain ( = 100 MHz
IC = lOrnA VCE = 15V

C TE

10

pF

h(e

3.0

Small Signal Current Gain ( = 1 kHz
IC = 1. OmA VCE = 5.0V
IC = 5.0mA VCE = 5.0V

h(e

40

Input Resistance ( = 1 kHz
IC = 1. OmA VCE = 5.0V
IC = 5.0mA VCE = 5.0V

h.
Ie

Output Conductance ( = 1 kHz
IC = LOrnA VCE = 5.0V
IC = 5.0mA VCE = 5.0V

hoe

111 Pulse Test: Pulse Width;:; 300 j.LS, Duty

50

Cycle,~l.O%

2-121

200
250
6000

ohms

2000

ohms

75

j.Lmho

125

j.Lmho

2N918 (SILICON)
2N918JAN,JTXAVAILABLE

NPN SILICON
AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS
· .. designed for lise in VHF and UHF amplifier, mixer and o:;cillator
applications.
•

High Current-Gain - Bandwidth Product fT = 600 MHz (Min) @ f = 100 MHz

•

Low Output Capacitance Cob = 1.7 pF (Max) @ VCB = 10 Vdc

•

Coliector·Emitter Sustaining Voltage VCEO(sus) = 15 Vdc (Min) @ IC = 3.0 mAdc

I
~:~

• JAN/JANTX Also Available

01.

h'
r-

I

0.1

!'Wo

*MAXIMUM RATINGS

1.'N
0.500

Svmbol
VCEO

Value
15

Colleetor-Sase Voltage

VCB

30

Emitter·Base Voltage

Rating
Collector-Emitter Voltage

Unit
Vdo
Vde

0.016 D1A

o:m

VES

3.0

Vde

CQllector Current - Continuous

IC

50

mAde

Total Device Dissipation @l T A = 250 C
Derate ai>qve 250 C

Po

200
1.14

mW
mWf'C

Total Device Dis$ipation ~ TC::: 25°C
Derate above 250 C

Po

300
1.71

mW
mW/oC

-65 to +200

DC

Operating and Storage Junction
Temperatur. Range
"'Indi~.t.s

TJ, T stg

0.100

!!,!!l§
0.048
CASE 20110)
TO·72 PACKAGE

JEDEC Registered Oata

To convert lriches to millimeters multiply by 25.4.
All JEDEC TO·72 dimensions and notes apply.

FIGUR E 2 - 500 MHz OSCILLATOR TEST CIRCUIT

FIGURE 1 - NEUTRALIZED 200 MHz POWER AMPLIFIER GAIN
TEST CIRCUIT

.L

L2'/
FROM SOil

'f.(
LI

'[1: ¥8i
~
100

1

I

1000.F

']:J "
:1~
\I

'CI

1
0,01 ,.F

·~xtefl'al

, j

RFC

-

TO SOn
0.01 "F3DETECTOR
200 MHz
RFC

3

L2
LEAO 41C
FLOATING
500 MHz

~ 2.2k

1000

~ -VEE

."..~

1.0kO.Il5,.F
-VEE
+VCC
CiRCUIT COMPONENT INFORMATION:
CI: 3.0-12pF
L2: 0.4-0.65 pH Miller 14303 (or
equal)
C2: 1.5-7.SpF
Ll: 31l2turns#16AWG 5/16"
L3: 8 turns 116 AWG 1f8"ID,
7/8" length, turnsratio-8
ID, 1116" length, turnsrlltio
·2tol
tol
":'

~

CIRCUIT COM PONENT INFORMATION:

2 GR Tvpe 874TEE
1 GR Type 874-D20 Adjustable

L2: 9 turns 122 A
WG, 3/16" DO.
lIZ"llng1h

1 Gs~u:ype 874-LA Adjusteble
line

Capacitance values are in pF.
Double Stub Tune r consistl of the
following cammer ciallyav.ilab~
components.

inlirlead $hield tQ isolate collector IaiId from emitter and base feads.

2-122

D

L1: 2turnl'16AWG. 318" OD,
11/4"length

lGRType874-WN3Short.
CircuitTerminetion
(or equivalents)

2N918 (continued)

*ELECTRICAL CHARACTERISTICS (TA

~ 25 0 C unless otherwise noted)

Symbol

Min

Max

Unit

VCEO(sus)

15

-

Vde

Collector· Base Breakdown Voltage
(lC ~ 1.0/LAde, IE ~ 0)

BVCBO

30

-

Vde

Emitter-Base Breakdown Voltage
(IE ~ 10/LAde, IC ~ 0)

BVEBO

3.0

-

Vde

-

.Q10
1.0

/LAde
/LAde

hFE

20

-

-

VCE(sat)

-

0.4

Vde

VBElsat)

-

1.0

Vde

for

600

-

MHz

-

1.7
3.0

Cib

-

2.0

pF

NF

-

6.0

dB

G pe

15

-

dB

Pout

30

-

mW

~

25

-

%

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC

~

~

3.0 mAde, IB

0)

Collector Cutoff Current
(VCB ~ 15 Vde, IE ~ 0)
(VCB ~ 15 Vde, IE ~ 0, TA ~ 150o C)

ICBO

ON CHARACTERISTICS
DC Current Gain

(lC

~

~

3.0 mAde, VCE

1.0 Vde)

COllector-Emitter Saturation Voltage
(lC~

10 mAde,

Bas~Emitter

(lC

~

IB~

1.0 mAde)

Saturation Voltage

10 mAde, IB

~

1.0 mAde)

DYNAMIC CHARACTERISTICS

.

Current·Gain - Bandwidth Product I I)
(lC ~ 4.0 mAde, VCE ~ 10 Vde, f ~ 100 MHz)
Output Capacitance

(VCB
(VCB

~
~

10 Vde, IE
0, IE ~ 0, f

~

0, f ~ 140 kHz)
140 kHz)

I nput Capacitance

(VEB

~

pF

Cob
~

0.5 Vde, IC

~

0, f

~

140 kHz)

Noise Figure

(lC ~ 1.0 mAde, VCE ~ 6.0 Vde, RG ~ 400 Ohms, f ~ 60 MHz)
FUNCTIONAL TEST
Amplifier Power Gain (Figure I)
(VCB ~ 12 Vde, IC ~ 6.0 mAde, f

~

200 MHz)

Power Output (F igure 2)
(VCB ~ 15 Vde, Ie ~ 8.0 mAde, f

~

500 MHz)

Collector Efficienev (Figure 2)
(VeB ~ 15 Vde, Ie ~ 8.0 mAde, f

~

500 MHz)

*Indicates JEDE~ Registered Data.
(1)fT is defined as the frequency at which Ihfel extrapolates to unity.

2-123

2N929, A (SILICON)
2N930, A
2N929JAN AVAILABLE
2N930JAN AVAILABLE

NPN silicon annular transistors for low-level, lownoise amplifier applications.

CASE 22
(TO·18)

Collector connected to C8se

MAXIMUM RATINGS

Symbol

2N929
2N930

2N929A
2N930A

Unit

VCEO

45

60

Vdc

Collector-Base Voltage

VCB

45

60

Vdc

Emitter-Base Voltage

VEB

5.0

6.0

Vdc

Rating
Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ T A

=

25°C

IC

30

PD

0.5

Derate above 25°C
Total Device Dissipation @ TC

=

PD

25°C

Derate above 25°C
Operating Junction Temperature Range
Storage Temperature Range

TJ
T

2-124

stg

mAdc
W

3.33

mW/oC

1.8

12

Watt
mW/oC

-65to + 175

°c

-65 to +200

°c

2N929, A, 2N930, A

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=2S'C unless otherwise noted)
Symbol

Min

Max

45

-

60

-

5.0
6.0

-

-

2.0

--

10
2.0

nAde

10
2.0

pAde

25
60

-

2N929, 2N929A
2N930, 2N930A

40
100

120
300

2N929
2N929A
2N930
2N930A

10
15
20
30

(IC = 500 pAdc, VCE = 5.0 Vde)

2N929, 2N929A
2N930, 2N930A

60
150

(IC = 10 mAde, VCE = 5.0 Vde) 111

2N929, 2N929A
2N930, 2N930A

-

Characteristic

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage 111
(IC = 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
(IC = 10 pAdc, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 pAde, IC = 0)

BV CEO

2N929A, 2N930A
2N929, 2N930
2N929A, 2N930A

Collector Cutoff Current
(VCE = 5.0 Vde, IB = 0)
Collector Cutoff Current
(VCE = 45 Vdc, VBE = 0)
(VCE = 45 Vde, VBE = 0, TA = 170'C)
Collector Cutoff Current
(VCB =45Vdc,IE =0)
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

BV CBO
BV EBO
ICEO

2N929, 2N930
2N929A, 2N930A

ICES

2N929, 2N930
2N929A, 2N930A
2N929, 2N930
2N929A, 2N930A
2N929, 2N930
2N929A, 2N930A

ICBO

lEBO

Vde
Vdc
Vde

nAde

nAde
10
2.0
nAde
10
2.0

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 pAde, VCE = 5.0 Vdc)

(IC = 10 pAde, VCE = 5.0 Vde)
(IC = 10 pAde, VCE = 5.0 Vde, T A = -55'C)

Collector-Emitter Saturation Voltage Ill·
(IC = 10 mAde, IB = 0.5 mAde)
Base-Emitter Saturation Voltage (11
(IC = 10 mAde, IB = 0.5 mAde)

hFE

2N929A
2N930A

2N929, '2N930
2N929A, 2N930A
2N929, 2N930
2N929A, 2N930A

VCE(sat)

VBE(sat)

-

-

--

-

350
600

0.6

1.0

Vdc
1.0
0.5
Vdc

SMAll·SIGNAl CHARACTERISTICS
Current-Gain-Bandwidth Product

30
45

2N929, 2N930
2N929A, 2N930A
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz)

MHz

fT

(IC = 500 pAdc, VCE = 5.0 Vde, f = 30 MHz)

2N929, 2N930
2N929A, 2N930A

Cob

Input Impedance
(IE = 1.0 mAde, VCB = 5. 0 Vdc, f = 1.0 kHz)

hib

Voltage Feedback Ratio
(IE = 1.0 mAde, VCB = 5.0 Vdc, f = 1. 0 kHz)

hrb

Small· Signal Current Gain
(IC = 1. 0 mAde, VCE = 5.0 Vde, f = 1.0 kHz)
2N929, 2N929A
2N930, 2N930A

hre

Output Admittance
(~ = 1.0 mAde, VCB = 5.0 Vde, f = 1.0 kHz)

hob

Noise Figure
(IC = 10 pAde, VCE = 5.0 Vde,
RS = 10 k ohms, f = 10 Hz to 15.7 kHz)

NF
2N929, 2N929A
2N930, 2N930A

111 Pulse Test: Pulse Width;;; 300,..., Duty Cycle;;; 2.0%.

2-125

pF

.

-

8.0
6.0

25

32

-

600

60
150

350
600

-

1.0

-

4.0
3.0

ohms

X 10-6

IJIllho
dB

2N956

For Specifications, See 2N718A Data.

2N960 (GERMANIUM)
2N961
2N962
2N962JAN AVAILABLE
2N964
2N964JAN AVAILA.BLE
2N965
2N966

PNP germanium epitaxial mesa transistors for highspeed switching applications.
CASE 22
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Symbol

2N960
2N964

2N961
2N96S

2N962
2N966

Unit

Collector-Emitter Voltage

VCE

15

12

12

Vdc

Collector-Base Voltage

VCB

15

12

12

Emitter-Base Voltage

VEB

2.5

2.0

1. 25

Characteristic

Total Device Dissipation @ T A = 25°C

4.0

Operating and storage Junction
Temperature Range

°c

TJ.Tstg

-65 to + 100

NORMALIZED DC CURRENT TRANSFER RATIO
Yersus COLLECTOR CURRENT

1.5
~ 1.2

~

1.0

~

0.6

+85"C

¥
+25°C

5 0.8
u

~

0.4

~
~

0.3

'"~

0.2

.J·D.IS

,.-

,.-

TA = -55°C

V

CURRENT GAIN·BANDWIDTH PRODUCT (fT)
versus COLLECTOR CURRENT

--

500

'"

--

V ..........

"'

/"

r-!.CI

, I I
::=

1 Vdc

r--. ......

t"-

~
Vel = 0.5.Vdc

T" = 25°C

VeE = 1 Vdc

5
10
20
Ie. COLLECTOR CURRENT (mAde)

"

~V

I

. / '"
1

mW
mW/oC

300

PD

Derate above 25°C

ffi

mW
mW/oC

2.0

Total Device Dissipation @ T C = 25°C

III

Vdc

150

PD

Derate above 25°C

~ 2.0

Vdc

50

I I

10

100

20

Ie. COllECTOR CURRENT (mAde)

2-126

50

100

2N960 SERIES

(continued)
COLLECTOR·EMITTER SATURATION VOLTAGE
versus AMBIENT TEMPERATURE

STORAGE TIME versus CIRCUIT RATIO

~
~

~ 0,4

40

-------

til

~

S!

~

100 mAde

T~

i;;:

ffi

Ie -IOmAde

i

~

o

~
8

R, = 1000
R,= I KO
10

5

0.2

::

r--II' :::::4112

o

Ie: 1,=10
0,3

~

50 mAde

20

15

O. I

!
,}

Ie II,,, CIRCUIT CURRENT RATIO

2N964, 2N965, 2N966
~2N960, 2N961, 2N962

-- - :,.:::. ::-

-

,,"" ~

-,

-1;: ~ ~oomAde
50 mAde

-~

- - -- 0

....t:,;:.

~mAde
-1I

"""'- .::::",

Ie 12mAt -

0
-75 -50 -25

0

r--

+25 -:-50 +75 +100

TAO AMBIENT TEMPERATURE 1°C)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)

Symbol Min Typ Max Unit

Characteristic
Collector-Base Breakdown Voltage
(IC = 100 /.LAde,
= 0)

l:E

Emitter-Base Breakdown Voltage
= 100 /.LAde, IC = 0)

(l:E

2N960,2N964
2N961,2N962,2N965,2N966
2N960, 2N964
2N961,2N965
2N962,2N966

Collector-Latch-up Voltage
VCC = 11.5 Vde

= 12 Vde)

2N960,2N964

ICBO

l:E

DC Current Gain
(IC = 10 mAde, VCE
(IC

= 50 mAde,

(IC

= 100 mAde,

VCE

= 0.3

Vde)

= 1 Vde)

VCE

= 1 Vde)

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1 mAde)
(IC

= 50 mAde,

(IC

= 100 mAde,

IB

= 5 mAde)

IB

= 10 mAde)

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1 mAde)
(IC

= 50 mAde, IB = 5 mAde)
= 100 mAde, IB = 10 mAde)

Current-Gain - Bandwidth Product
= 20 mAde, VCB = 1. 0 Vde, f

(l:E

ICES

2N961,2N962,2N965,2N966

Collector-Base Cutoff Current
(VCB = 6 Vde,
= 0)

(IC

BVEBO

LVCEX

Collector-Emitter Cutoff Current
(VCE = 15 Vde)
(V CE

BV CBO

hFE

15
12

25
20

-

2.5
2.0
1. 25

--

-

-

11.5

-

-

-

-

100

-

0.4

3.0

20
40

-

/.LAde
100
/.LAde

2N960, 2N961, 2N962
2N964,2N965,2N966

20
40

2N960, 2N961, 2N962

20
40

50
85

-

.

-

0.11
0.13

0.18
0.20

-

0.18
0.20

0.35
0.40

--

0.27
0.30

0.60
0.70

0.30

0.40

0.50

0.40

0.55

0.75

0.40
0.40

0.65
0.75

1. 00
1. 25

300

460

-

2N9~4,2N965,2N966

2N964,2N965,2N966
2N960,2N961,2N962

VCE(sat)

2N964,2N965,2N966
2N960,2N961,2N962
2N964,2N965,2N966
2N960, 2N961, 2N962
All Types

VBE(sat)

All Types
2N960,2N961,2N964,2N965
2N962,2N966
fT

= 100 MHz)
2-127

Vde

Vde

40
70
55
90

2N960,2N961,2N962
2N964,2N965,2N966

Vde

-

-

Vde

Vde

MHz

2N960 SERIES (continued)
ELECTRICAL CHARACTERISTICS (continued)

Symbol Min Typ Max Unit

Characteristic
Output Capacitance
(VCS = 10 Vde, ~

= 0, f = 1 MHz)

Emitter Transition Capacitance
(VES = 1 Vde)
Turn-On Time
(IC = 10 mAde, lSI
(IC

= 100 mAde,

All Types
VSE(off) = 1. 25 Vde)

= 5 mAde,

lSI

= 5 mAde,

VSE(off)

Turn-Off Time
(IC = 10 mAde, lSI = 1 mAde, Ia2

= 0.25

-

2.2

4.0

C'!'e

-

2.0

3.5

ton

-

35

50

30

50

= 1.25 Vde)

= 100 mAde,

IBI

= 5 mAde,

IB2

60
80

85
100

-

50
60

85
100

-

0.6

-

TRE

Hole Storage Factor

K' s

.

Fall Time Constant

TFE

2N960,2N961,2N964,2N965
2N9 62, 2N966

= 5 mAde)

-

= 1.25 mAde)

Rise Time Constant

(Ie = 100 mAde, IB

ns

ns

2N960,2N961,2N964,2N965
2N962,2N966

Total Control Charge
(IC = 10 mAde, IB = 1 mAde)

pF

toff

mAde)

2N960,2N961,2N964,2N965
2N962,2N966
(IC

pF

Cob

~

-

--

2N960, 2N961, 2N964, 2N965
2N962,2N966

16
0.5

ns
ns
ns
pC

50
60

80
90

80
100

125
150

2N963 (GERMANIUM)
2N967

CASE22~

PNP germanium epitaxial mesa transistors for highspeed switching applications.

(TO-1S)

Collector
connected to case

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Total Device Dissipation @T A = 25°C

Symbol

Value

Unit

VCES

12

Vde

VCB

12

Vdc

PD

150.
2.0

mW
mW/oC

PD

300

mW
mW/oC

Derate above 25°C
Total Device DiSSipation @T C

= 25°C

Derate above 25°C

4.0

Operating and Storage Junction
Temperature Range

TJ,Tstg

2-128

°c
100

2N963, 2N967

(continued)

ELECTRICAL CHARACTERISTICS ITA = 25 0 C unless otherwise noted)

Characteristic

Symbol

Collector-Base Breakdown Voltage
(IC = 100 MAdc, ~ = 0)

BV CBO

Emitter-Base Breakdown Voltage
(~ = 100 MAdc, IC = 0)

BV EBO

Collector-Latch-up Voltage
(VCC = 10 Vdc)

LV CEX

Collector Cutoff Current
(V CE = 12 Vdc, VBE = 0)

ICES

Collector Cutoff Current
(V CE = 10Vdc, VBE = 0.3Vdc, TA

ICEX

= 550 C)

Min

Max

12

-

2.0

-

10

-

-

100

-

20

-

5.0

Emitter Cutoff Current
(VBE = 5 Vdc, IC = 0)

lEBO

-

1.0

IBL

-

20

20
40

-

-

0.2

0.3

0.5

300

-

-

5.0

-

4.0

ton

-

60

toff

-

120

-

120

Vdc, T A = 55 0 C)

DC Current Gain
(IC = 10 mAdc, VCE

= 0.3

Vdc)

2N963
2N967

hFE

Collector Saturation Voltage
= 10 mAdc, Ia = 1 mAdc

VCE(sat)

Base-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1 mAdc)

VBE(sat)

(Ie

Current-Gain - Bandwidth Product
(IC = 20 mAdc, VCE = 1 Vdc, f = 100 MHz)
Output Capacitance
(VCB = 5 Vdc, ~

= 0,

Input Capacitance
(VBE = 1 Vdc, IC

= 0, f = 100 kHz)

Turn-On Time
= 10 mAdc, IBl

(Ie

=

fT

Cob

f = 1 MHz)

Cib

1 mAdc, VBE (off) = 1.25 Vdc)

Turn-Off Time
(IC = 10 mAdc, Ia1 = 1 mAdc, IB2

=

1. 25 mAdc)

Total Control Charge
(IC = 10 mAdc, IB = 1 mAdc)

~

2-129

Vdc

Vdc

MAdc

ICBO

= 0.3

Vdc

MAdc

Collector Cutoff Current
(V CB = 6 Vdc, IE = 0)

Base Cutoff Current
(VCE = 10 Vdc, VBE

Unit

MAdc

mAdc

MAdc

Vdc

Vdc

MHz

pF

pF

ns

ns

pC

2N963, 2N967

i
...
~

(continued)

1.0

0.7
T.

~ 0.6

~

"

0.5

::>

~

~ 0.4

~

0.3

0.1
0.1

= 25°C

~-T""-""T"--"'~--r---r--r---'

0.8

0.61--==I""-"=~I--+=-+--+--I

!'-o..

1

50 mAde

..... ..........

m de

"

~ 0.2

~

VOLTAGE versus TEMPERATURE CHARACTERISTICS

COLLECTOR·EMITTER SATURATION VOLTAGE
versus BASE CURRENT

r-

0.4

I-.......!:::::::--F:::::.+--...LJ

0.2

I--+=,.,r=-

2 mAde-

Ie

0.2

0.30.4

3

0.6. O.B 1.0

4

-75

56

-25

--50

25

COLLECTOR LATCH·UP VOLTAGE TEST CIRCUIT

TYPf RSAMPLING
RESiSTOR
20 [I -3.1 Ydc

280 0

o

INPUT SIGNAL

SOOn
<>--'IN'>

+1.25 Ydc

200 {I
PULSE VOLTS
INTERNAL RESISTANCE

-5.4 Yde

= -lOVdc

BASE AND COLLECTOR CUTOFF CURRENT TEST CIRCUIT

NOTE,
Ic =-10mAdc
1... =-1 mAde
In = +0.25 mAde
Y" (0) = +1.25 Ydc
USE TEKTROIlIX TYl'E "R"
PLUG·IN
•TEKTRONIX TYPE 581 SCOPE
OR EQUIYALENT

4.BK

°li

-2.5Vdc
Vee

100

10·mA (Ie) SWITCHING TIME TEST CIRCUIT

TEKTRONIX 541
OR EQU IYALENT
+0.3 Ydc

75

50

TA • AMBIENT TEMPERATURE (OC)

I,. BASE CURRENT (mAde)

10·mA (Ie) TOTAL CONTROL CHARGE TEST CIRCUIT

-3.1 Ydc

'V"

300 {I

10011 A'

U

-5.4 Ydc
It pOint A

NOTE,
Ie = -10 mAde
I. = -1 mAde

+0.3Vde
-O.lBVde

nJCt

.,..

1

I T
..
20 ...

10 ns
MAX

MAX

NORMALIZED DC CURRENT TRANSFER RATIO
versus COLLECTOR CURRENT

CURRENT GAIN·BANDWIDTH PRODUCT (fT)
versus COLLECTOR CURRENT

~

o

5 2.0
ffi 1.5
~ 1.2

~ 1.0

-

.\ 85"C.....

~

0.6

~ 0.4

~ 0.3

..

:::;

~ 0.2
o
Z 0.15

i

I

+?5°C

!Z 0.8

~

-

I I I I
I I L

.~.

./

V

.L'

DoC
."

1

.......

. / ..-r:: = -5rC
.....
I III
1

Vc~

....
'-'
5

~ lOO

~Z 200
=<
'"....
~

1 Vdc

I
20

.! 1. .1
-!t:.
~II

Vde

'"....o

I

10

500

~ 400

==

--

+V

V .....- :::~

-t{'
=

V

V

Vel

0.5 Vdc "

" ~ 25°C

100

~

I I

.£

50

Ie. COllECTOR CURRENT (mAde)

0

2

10

20

Ie, COllECTOR CURRENT (mAde)

2-130

50

2N964 (GERMANIUM)
For Specifications, See 2N960 Data.

2N964A (GERMANIUM)

\

PNP germanium epitaxial mesa transistor for highspeed switching applications.

CASE 22
(TO-18)

Collector Connected to Case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

7.0

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

2.5

Vdc

Collector Current

IC

100

mAdc

Total Device Dissipation @ T A = 25°C

PD

150

mW
mW/oC

2.0

Derate above 25°C

300

mW

4.0

mW;oC

TJ,T stg

-65 to +100

°c

Symbol

Max

Thermal Resistance, Junction to Case

8JC

0.25

°C/mW

Thermal Resistance, Case to Ambient

8CA

0.5

°C/mW

PD

Total Device Dissipation@ TC = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic

FIGURE 1

FIGURE 2
280[1

INPUT SIGNAL

+ 1.25 Vdc

-5.4 Vdc

20"

200 !l
PULSE VOLTS
INTERNAL RESISTANCE

480

-3.1Vdc

TYPE R SAMPLING
RESISTOR
4.8K

Unit

NOTL

900

= +0.25 mAde
VOl = + 1.25 Vdc
III

5.7Vdc

USE TEKTRONIX TYPE "R"
PLUG-IN
TEKTRONIX TYPE 581 SCOPE
OR EQUIVALENT

IO-mA (Ie! SWITCHING TIME TEST CIRCUIT

n

100 H
PULSE VOLTS
INTERNAL RESISTANCE

NOTE·

I, = -100 mAde
1,1:::: ·--5 mAde
1'1 -= + 1.25 mAde
VOl :-:: + 1.25 Vdc
USE TEKTRONIX TYPE .oR"
PLUG-IN
TEKTRONIX TYPE 581 SCOPE
OR EQUIVALENT

IOO-mA (Iel SWITCHING TIME TEST CIRCUIT

2-131

5.2 Vdc

TYPE R SAMPLING
RESISTOR

+ 1 25 Vdr.

Ie::::: -10 mAde
1'1 = -1 mAde

2H

..--""""'~"""",'Ir--<>

INPUT SIGNAL

2N964A

(continued)

ELECTRICAL CHARACTERISTICS (T A

I·

~ 25°C unless otherwise noted)

I Fig. I Symbol I

Characteristic

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
= 10 mAde, IB =0)

BVCEO

Collector-Base Breakdown Voltage
(Ic' =100 lIMe, IE =0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 /lAde, IC =0)

BVEBO

7.0

-

-

Vde

25

-

Vde

15

2.5

-

-

LVCEX

11.5

-

-

Collector-Emitter Cutoff Current
(VCE = 15 Vde, VBE =0)

ICES

-

-

100

Collector Cutoff Current
(VCB = 6 Vde, IE = 0)

ICBO

-

0.4

3.0

IBL

-

-

4.0

50

140

-



:&

~

T,

55·;,.....--

...,"" ~
"- ')

70

..,::>'"

~

~5·C

f

ilOO

....z:

T,

~

10

-'

/'

.----1
/'
T'=~5.C./~

I

r

BASE LEAKAGE CURRENT TEST CIRCUIT

7

B••• L•• kag" Current_ In •. is defined as base leakage
current with both junctions reverse biased. Ie is
always less than 1m. for Von> V'r' (V OH is off condition base bias, VT is base voltage at threshold of
conduction.)

:&

.,j
2
-0.5

NOTE,

,/
o

./

05
1~
15
Vo" BASE-EMInER REVERSE BIAS (VOLTS)

2.0

Limit Curves are based on periodic engineering evaluation.
indicated in the Electrical CharacteriStics Table.

2-133

Production Tests are made at points

2N964A

(continued)

2N964A LIMIT CURVES

FIGURE 5-COLLECTOR·EMITTER SATURATION VOLTAGE versus BASE CURRENT
1.0
TJ 25°C
~.I
VeE =0 0.15 + 2.2 Ie
@ le ll ,
2.5

.~

0.7

I\,

\

in

\

!:;

0
~

....

\

0.5

'"
~>

\

0
'"
....

\

\

Ie - 100 mAde

~0

" ~ ......

0.3

t:

::0

~

:::>

::0

;::;:

\

c(

::0

e
> 0.2

i'-..

r-....

0.15
0.2

0.3

'-

'\..

~

0.5

--

~

50 mA

20mA

I-IOmA

IIII

1.0

20

10

30

50

I,. BASE CURRENT (mAde)

FIGURE 7- TEMPERATURE CO·EFFICIENTS

FIGURE 6-BASE·EMITTER VOLTAGE versus COLLECTOR CURRENT
-

~

0.8

o

....~
'"~
~

~

~

g

TJ 25!C
-Ie/l, =0 10

....

lei I,

it
....
o

V.....

i

9,e(25'to~
VeEI.tl

9,e ( 55 to 25°C)

:;: -0.5

~

:1:

10

~

;:;

0.6

-

=0

0.5

is

~
~

1.0

'":::>
~

0.4

-1.0

Q,.

::0

i!i

:::>

::0

9"

.... -1.5

;::;:

VIElt.f)

c(

::0

.;

0.2

-2.0
10

20

50

o

100

20

Ie. COLLECTOR CURRENT (mAde)

60

40

80

FIGURE 8-CURRENT GAIN CHARACTERISTICS
60
z

50

'"....

40

'"

30

:;;:

-.... - ... -' ---.--- - ... ...

~VeE

is

a:
:::>
<>
::0

:::>

::0

Z

~

20

i

-~-

~

10

2

---

--

--

1 Volt

--~
\\

1--

1---

"'-

100

Ie. COLLECTOR CURRENT (mAde)

-

--- --- -----\\\'-

... -

.~-

\\\

\\':::

TJ

=0

TJ
TJ

=0

25°C
DoC

=0

_55°C

"- rTJ

10

=0

20

-

....

'- -- -- -t-..,

-

85°C

50

Ie. COLLECTOR CURRENT (mAde)
NOTE,

Limit Curves are based on periodic engineering evaluation.
indicated in the Electrical Characteristics Table.

2-134

Production Tests are made at points

100

2N964A

(continued)

2N984A LIMIT CURVES
FIGURE 9-SWITCHING TIME CURVES FOR RESISTOR COUPLED CIRCUITS
9a-RISE TIME FACTOR
;;,:~

.........
or
.......<>

..:ii!
......
:Ii

<>

1\
\
1.4

I- - 1-,....

\

1.3

<>

...
...;::

"

1.2

1.1

:""-. 1'-0..

'"
r£
1.0
1.5

r-,...

-

10

2

1.0

I,..oo~

....
~ 0.8

/

~

i!!l

0.6

~

-

10
20
Ie, COLLECTOR CURRENT (mAde)

2

6000

1/
INPUT SIGNAL

SKL MODEL
PULSE GENERATOR

;A=TRI=TFE
-6.DVde

.02

SWITCHING TIME EQUATIONS
.TA = active region time constant

.05

0.1

0.2

0.5 1.0
fJo/fJc

2.0

5.0

10

20

RISE·TIME = t, =T.fJ,R
FALL·TIME = tf = T.fJcF
STORAGE TlME·o.= t'. =TcoS
t,
10 to 90% rise-time
tf -, 10 to 90% fall·time

=

T c.

9d-STORAGE TIME

..

2.0

1.8

.I

t-- Ic

-«
1.6 t-- Po

II

I

1m

II

1.4

'"
0

1.2

~

1.0

~

0.8

~

=

Ie in saturation/ III (base "on"
current)

f3c = Ie in saturation/lu (base "off"
current)
Rsee Figure 9a
F see Figure 9c
S see Figure 9d

1/

...

;:: 0.6

1/

(!J

:!

the effective collector recov·
ery time and is virtually uninfluenced by current levels.
20 ns typical and 60 ns
maximum for this transistor.

#F

V

:Ii

0

/

=

T. =T•• =T" (Figure 9b)
fJo = h" at edge of saturation
(fJo = h" on Figure 8)

90%

<.>

...

500

Tu= 1.1 ~

t.=t'.+I,1ot,

~

HEWLETT·PACKARD TYPE
185A SAMPLING SCOPE

Ie.

~

.... 1-"
o

c

6K

5.6K

/

~ 0.2
.......

!::l
-'

100

....

II

;::

;:

50

l.i

:IE

~

L-~

~

.... -.!o-1-14-

o

20

I)

~~ 0.4

1\

' ...

Ii

...

"

TYPICAL
LIMIT

ACTIVE REGION TIME CONSTANT TEST CIRCUIT

9c- FALL TIME FACTOR

~

~

I,

:Ii

!(l

1\

\.

~

~

9b-ACTIVE REGION TIME CONSTANT

1.5

0.4

V

Ii;
.,; 0.2

.0
0.1

0.2

0.5

1.0

10

20

1"11,,, CIRCUIT DRIVE RATIO
NOTE,

Limit Curves are based on periodic engineering evaluation. Production Tests are made at points
indicated in the Electrical Characteristics Table.

2-135

2N964A

(continued)

2N964A LIMIT CURVES
FIGURE 10-TOTAL CONTROL CHARGE
1000

"'Adjust V•• for -5.4 volt pulse at point A
15 pF

700

..,or
Ii

500

;;

-

~
:.s...

Ve•

"V,.

=
=10
6V

lell,

TJ = 100''l

.."

~
:z: 200

'"'
-'
0
....
'"z:
0

'"'~

....

0

:E
:::>
:E

~

§

100

~

,--"1\"""'-'0-3.1 Vdc
300 !l
NOTE,

100 n

Ie::: -10 mAde

tU ..J..1~01H.Re"y

~

-5.4 Vdc
at point A

I, = -1 mAde

JfC
i_+
O% , --90%

":' -=

r1, --41! ..

10 ns

lOb
When a transistor is held in a conductive state by a current, 1m , a charge Q8 is developed in the
active region. A charge QT of opposite polarity, equal in
magnitUde, can be stored on an external capacitor C to
neutralize the internal charge and considerably reduce the
turn-off time of the transistor. Figure lOb shows the test
circuit and turn-off waveform. Given QT from Figure lOa,
the external C for worst case turn-off in any circuit is:
C = QT/b. V, where b. V is defined in Figure lOb.
Total Control Charge.

50

1,....00- . "

,j

20
0.2

5.0

0.5 0.7 1.0
2.0
I" BASE CURRENT (mAde)

7.0

10

lOa

FIGURE 11- JUNCTION CAPACITANCE VARIATIONS
10

--J

TYPICAL
_LIMIT

g

...z:j

'"';:>
(3

~

~

;3
z:
0
;::

'"'z

~
:E
:::>
:E

4

~

:E

....~
--~
',C,.
....

~

~

C••

--- --- --- --C••

o
10
REVERSE BlAS (VOLTS)
NOTE,

J

MAX

MAX

Y(,=25'C

70

:E

_t

20mv

Limit Curves are based on periodiC engineering evaluation.
indicated in the Electrical Characteristics Table.

2-136

Production Tests are made at points

2N965 (GERMANIUM)
2N966
For Specifications, See 2N960 Data.

2N967 (GERMANIUM)
For Specifications, See 2N963 Data.

2N968 thru 2N975 (GERMANIUM)

CASE 22
(TO·1S)

\

PNP germanium mesa transistors for high-speed
switching applications.

Collector connected to case

MAXIMUM RATINGS

2N969 2N970 2N971
Symbol 2N968
2N972 2N973 2N974 2N975

Rating

Unit

Collector-Emitter Voltage

VCES

15

12

12

7.0

Vdc

Collector-Base Voltage

VCB

15

12

12

7.0

Vdc

Emitter-Base Voltage

VEB

2.5

2.0

1. 25

1. 25

Vdc

Total Device Dissipation @ T A = 25°C
Derate above 25°C

PD

150
2.0

mW
mW/oC

=25°C

PD

300

mW
mw;oC

Total Device Dissipation @ TC
Derate above 25°C
Operating and storage Junction
Temperature Range

4.0

TJ,T stg

2-137

-65 to +100

°c

2N968 thru 2N975

(continued)

NORMALIZED D.C. CURRENT GAIN
versus COLLECTOR CURRENT
10
8
6

CURRENT GAIN·BANDWIDTH PRODUCT (fT)
versus COLLECTOR CURRENT
500

r--

VeE

= 1 Vdc
N

400

-

:&:

OS

2.0

....

+ ?~
1.0
0.8
0.6

0.4
0.2
O. 1
0.1

./

./

-!.---) ......-0.2

--

+25°C_

l.----" _ 550 C

/

~
:&:

6

./

~

~

V

~

~ 300
200

"

z



~

~

- ..

~

~

§

'";::
~
~

V
--

80

r-----

Ie

=

25 mAde

w

mAd,7""'~

V
~

50

STORAGE TIME versus CIRCUIT CURRENT RATIO

~

Ie = 10

V

40

z
;;.
"'"

1

~

30

100

)/

z

20

10

Ie, COLI ECTOR CURRENT (mAde)

COLLECTOR SATURATION VOLTAGE versus AMBIENT TEMPERATURE

";::

= 25°C

T"
100

~

0.5 1.0 ' 2.0
10
Ie. COLLECTOR CURRENT (mAde)

g

VcE =lVdc

-

I---llc/l,t lOl-

TA

=

25°C

I••

~

4182

R,

= 100 f!

60

40

r--

I

~

10 mAde

R,

20

O. l

10

5
75-50 -25
0 +25 +50 + 75 + 100
T" AMBIENT TEMPERATURE (OC)

lKn_

-

20

15

lei I,,, CIRCUIT CURRENT RATIO

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(IC = 100 ",Adc, IE = 0)
2N968,2N972
2N969, 2N970, 2N973 , 2N974
2N971,2N975

BVCBO

Emitter-Base Breakdown Voltage
2N968, 2N972
(IE = 100 ",Adc,. IC = 0)
2N969,2N973
2N970,2N974
2N971 , 2N975

BVEBO

Collector Cutoff Current
(VCE = 15 Vdc, VBE = 0)
(VCE = 12 Vdc, VBE = 0)
(VCE = 7 Vdc, VBE = 0)

ICES

2N968,2N972
2N969, 2N970, 2N973, 2N974
2N971,2N975

Collector Cutoff Current
(VCB = 6 Vdc, IE = 0)

7.0

25
20
15

-

2.5
2.0
1.25
1.25

-

-

-

-

100

15
12

2..,...138

Vdc

",Adc
100
100

ICBO
2N968, 2N969, 2N970,
2N972, 2N973, 2N974
2N971,2N975

Vdc

",Adc

--

-

3.0
3.0
10

2N968 thru 2N975

(continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic
ON CHARACTERISTICS
DC Current Gain
CIc = 10 mAde, VCE = O. 5 Vde) 2N968, 2N969, 2N970, 2N971
2N972, 2N973, 2N974, 2N975

CIc = 25 mAde,

VCE

= O. 7 Vde)

2N968, 2N969, 2N970, 2N971
2N972, 2N973, 2N974, 2N975

Collector-Emitter Saturation Voltage

CIc = 10 mAde,
(Ic .. 25 mAde,

VCE(sat)

= 1 mAde)
IB = 1. 5 mAde)
IB

Base-Emitter Saturation Voltage
(Ic = 10 mAde, IB = 1 mAde)

CIc = 25 mAde,

hFE

IB

2N968, 2N969, 2N972, 2N973
2N970, 2N971, 2N974, 2N975

= 1.5 mAde)

VBE(sat)

2N968, 2N969, 2N972, 2N973
2N970, 2N971, 2N974, 2N975

17
40

35
75

20
40

40
85

-

Vdc

-

0.19

0.25

0.25

0.5

0.30
0.30

0.39
0.43

0.55
0.65

-

0.45
0.60

0.80
1.0

250

320

-

-

4.0

9.0

-

3.5

-

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
~ = 10 mAde, VCB = 1 Vdc" f '" MHz)

fT

Collector Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1 MHz)

Cob

Emitter Transition Capacitance
(VEB = 1 Vde,
= 0)

C Te

Ie

Turn-On Tlme
(VBE(off) '" 1.25 Vdc, IC

Turn-Off Time
(IC = 10 mAde, ISl

= 10 mAde,

= 1 mAde,

IBl = 1 mAl
2N968, 2N969, 2N972, 2N973
2N970, 2N971, 2N974, 2N975

IS2 " 0.25 mAde)

Total Control Charge
CIc = 10 mAde, IB = 1 mAde)
(IC

= 25 mAde, Is = 1. 5 mAde)

2N968, 2N969, 2N972, 2N973
2N970, 2N971, 2N974, 2N975
2N968, 2N969, 2N972, 2N973
2N970, 2N971, 2N974, 2N975

2-139

pF

-

'

50
65

75
100
ns

toff

--~

pF

ns

ton

2N968,2N969
2N972,2N973
2N970, 2N971, 2N974, 2N975

MHz

-

70
75
100

150
175
275

75
80

100
150

90
175

175
300

pC

2N978 (SILICON)

PNPSILICON
AMPLIFIER
TRANSISTOR
PNP SILICON ANNULAR

TRANSISTOR

designed for general-purpose amplifier applications_
• Collector-Emitter Sustaining Voltage VCEO(sus) = 20 Vdc (Min) @ IC = 100 mAdc

*MAXIMUM RATINGS
Svmbol

Value

Unit

VCEO

20

Vde

Collector-Base Voltage

VCB

30

Vde

Emitter-Base Voltate

VEB

5_0

Vde

Collector Current

IC

600

mAde

Total Device Dissipation@TA = 25°C
Derate above 25°C

PD

0.33

Watt
mW/oC

Total Device Dissipation @T C ~ 25°C
Derate above 25°C

PD

Rating
Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

2.64
1.25
-65 to + 200

l~r
I

DIAl OIA

l
I

w,o

j

0.500

-T

Watts
mW/oC

10
TJ,T stg

~:::

~OIA

°c
Pin 1. Emitter

2. Base 1
3. Collector

-Indicates JEDEC Registered Data.

Collector Connected to Case
CASE 22 (I)
(TO-IS)

2-140

2N978 (continued)

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

VCEO(sus)

20

-

Vde

BVCBO

30

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage( 1)
(lC = 100 mAde, IB =0)
Collector-Base Breakdown Vololage
(lC = 1.0 mAde, IE = 0)
Collector Cutoff Current
(VCB = 10 Vde, IE = 0

"Ade

ICBO

(VCB = 10 Vde, IE = 0, TA = 150o C)
Emitter Cutoff Current
(VEB = 1.0 Vde, IC = 0)

lEBO

-

5.0

-

200

-

200

"Ade

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 30 mAde, VCE = 10 Vde)

-

hFE
15

(~C = 150 mAde, VCE = 10 Vde)

-

15

60

Collector-Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VCE(seti

-

1.5

Vde

.Base-E mitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VBE(seti

-

1.5

Vdc

Output Capecitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)

Cob

-

45

pF

Small-Signal Current Gain
(lC = 50 mAde, VCE = 10 Vde, f = 20 MHz)

hfe

2.0

-

-

SMALL-SIGNAL CHARACTERISTICS

-Indicates JEDEC Registered Data.

(llPulse Test: Pulse Width = 300 "s, Duty Cycle = 1.0%.

2-141

2N985 (GERMANIUM)

PNP germanium epitaxial mesa transistor for highspeed switching applications.
CAU22
(TO-lS)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

15

Vdc

Collector-Emitter Voltage

VCEO

7.0

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector Current

Ie

200

mAdc

Junction Temperature

TJ

100

°c

storage Temperature

Tstg

-65 to +100

°c

PD

300
4.0

mW
mW/oC

150

mW
mW/oC

Device Dissipation
@ TC = 25°C
Derate above 25°C

Device Dissipation
@ TA = 25°C
Derate above 25°C

PD

2.0

SWITCHING TIME TEST CIRCUIT
Vcc= -lO.3V

~--------~---------oVoo,

I

+l.2::'tf-__ V"

OSCILLOSCOPE RISE TIME"", 1 ns

I

_.1._

1 KIl

TOTAL COLLECTOR SHUNT

,~, C, CAPACITANCE"" 6

-5.5V

I

INPUT PULSE
t. "'" 1 ns
t,::=: 1 ns

I

I

~

PW~200ns

2-142

pF

2N985

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Collector-Base Breakdown Voltage
(IC = 100 !lAdC, IE = 0)

BV CBO

Collector-Emitter Breakdown Voltage
(IC = 5 mAde, IB = 0)

BV CEO

Collector-Emitter Breakdown Voltage
(Ie = 100 !lAde, RBE = 0)

BVCES

Emitter-Base Breakdown Voltage
(IE = 100 !lAde, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 5 Vde, IE = 0)

leBO

Emitter Cutoff Current
(V EB = 3 Vde, Ie = 0)

lEBO

DC Current Gain
(Ie = 10 mAde, VCE

(Ie

=

hFE

= 0.25 Vde)

100 mAde, VCE =

0.5 Vde)

Collector· Saturation Voltage
(Ic = 10 mAde, IB = 0.5 mAde)
(IC =

100 mAde, IB =

VCE(sat)

5 mAde)
VBE

Base-Emitter Voltage
(IC = 10 mAde, IB = 0.5 mAde)
(IC

Collector Output Capacitance
(VCB = 5 Vde, IE = 0, f = 1

= 100

2N

=

1.25 rnA)

15

-

3.0

-

-

3.0

.-

100

40

-

60

-

-

0.15

Vde

Vdc

Vde

Vde

!lAde

Vde

0.30
Vde

-

6.0

ton

-

35

toft

-

80

For Specifications, See 2N869 Data,

Unit

!lAde

-

995 (SILICON)

2-143

-

3.0

Cob

= 5 mAde, IB2

7.0

0.60

MHz)

Turn-off Time
(Ie = 10 mAde, IB1

-

0.40
Ibrel

= 5 mAde, VBE(O) = 1.25 Vde)

15

0.40

MHz)

Turn-on Time
(IC = 10 mAde, IBI

Max

0.28

= 100 mAde, IB = 5 mAde)

Small Signal Current Gain
(VCE = 2 Vde, IC = 30 mAde, f

Min

pF

ns

ns

2N996 (SILICON)

PNPSILICON ANNULAR TRANSISTOR
PNPSILICON
TRANSISTOR
· .. designed for general-purpose amplifier applications.

•

Collector-Emitter Sustaining Voltage VCEO(sus) = 12 Vdc (Min) @ IC = 10 mAdc

•

Collector-Base Breakdown Voltage BVCBO = 15 Vdc (Min) @IC = 10 J.LAdc

•

Emitter-Base Breakdown Voltage BVEBO = 4.0 Vdc (Min)@IE = 10J.LAdc

/!

*MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCEO

12

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

200

mAde

Total Device Dissipation@TA "" 2SoC
Derate above 25°C

Po

360
2.06

mW
mW/oC

Total Device Dissipation @TC=: 25°C

Po

1.2
6.86

Watts
mW/oC

TJ.Tstg

-65 to +200

°c

Collector-Emitter Voltage

Derate above 2SoC
Operating and Storage Junction
Temperature Range

• Indicates JEDEC Registered Data.
STYLE 1
Pin 1. Emitter

2. Base
3. Collector

0.028
0.04ll

Collector Connected to Case

CASE 22111

ITO-181

2-144

2N996

(continued)

*ELECTRICAL CHARACTERISTICS (T A; 25°C unless otherwise noted)
Svmbol

Min

Max

Unit

VCEOlsus)

12

-

Vdc

BVCBO

15

-

Vde

BVEBO

4.0

-

Vde

-

0.005

"Ade

15

"Ade

lEBO

-

10

"Ade

hFE

35

-

-

VCElsatl

-

0.3

Vde

VBElsat)

-

0.95

Vde

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage I 1)
IIc = 10 mAde, IB = 0)
Coliector~Base

Breakdown Voltage

IIc = 10 "Ade, IE = 0)
Emitter-Base Breakdown Voltage

liE

= 10 "Ade, IC = 0)

Collector Cutoff Current
IVCB = 10 Vde, IE = 0)
IVCB

= 10 Vde,

IE

ICBO

= 0, TA = 150°C)

Emitter Cutoff Current
IVBE = 4.0 Vde, I C = 0)

ON CHARACTERISTICS
DC Current Gain
IIC = 20 mAde, VCE

= 1.0 Vde)

Collector-Emitter Saturation Voltage

IIc = 60 mAde, IB = 2.0 mAde)
Base-Emitter Saturation Voltage
(lc

= 20 mAde, IB = 2.0 mAde I

OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produet(21
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHzl
Output Capacitance
(VCB = 10 Vde, IE = 0, f

= 100 kHz to 1.0 MHzl

·1 ndicates JE DEC Registered Data.
(1)Putse Test: Pulse Width ~300 Ils, Duty Cycle s;'2.0%.

(2)fT is defined as the frequency at which Ihfel extrapolates to unity.

2-145

fT

100

-

MHz

Cob

-

10

pF

2N998 (SILICON)

Darlington amplifier containing two NPN silicon annular transistors is designed for applications requiring
very high-gain, low-noise, and high-input impedance.

B,

CASE 20(8)
(TO·72)

MAXIMUM RATINGS

Symbol

2N998

Collector-Emitter Voltage

VCEO

60

Vdc

Collector-Base Voltage

VCB

100

Vdc

Emitter-Base Voltage

VEB

15

Vdc

Collector Current

IC

500

mAdc

Total Device Dissipation @ T A = 25°C

Po

0.5

watt

2.86

mW/oC

1.8

Watts

10.3

mW/oC

TJ

+200

°c

Tstg

-65 to +200

°c

Rating

Derate above 25°C
Total Device Dissipation @ T C = 25°C

Po

Derate above 25°C
Operating Junction Temperature
Storage Temperature Range

2-146

Unit

2N998 (continued)

ELECTRICAL CHARACTERISTICS

CT.

= 2O'C .. Ie.. oth....' ....... )

Characteristic

Symbol

Min

Max

60

-

100

-

15

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Yoltage 111
(Ie = 30 mAdc, IB = 0)

BYCEO(sus)

Collector-Base Breakdown Voltage
(Ie = 100 "Ade, IE = 0)

BYCBO

Emitter-Base Breakdown Voltage
(IE = 10.0 "Ade, IC = 0)

BY EBO

Collector Cutoff Current
(YCB = 90 Yde, IE = 0)

(YCB = 90 Yde, IE

=

ICBO

0, TA = 150o C)

Emitter Cutoff Current
(Y BE = 10 Yde, IC = 0)

lEBO

-

Yde

Yde

Yde

"Ade
0.01
15
p.Adc

0.01

ON CHARACTERISTICS
DC Current Gain ~ "

(Ie = 1 mAde,

hFE

2,000

8,000
-

25

-

Cob

-

30

C lb

-

50

1,000

-

YCE = 5 Yde)

600

(Ie = 10 mAde, YCE = 5 Yde)
(IC = 100 mAde, YCE = 5 Yde)

1,600

(Ie

= 10 mAde, YCE = 5 Vde, measured
across each transistor within the device)

-

DYNAMIC CHARACTERISTICS
Output Capacitance
(YCB = 10 Yde, IE

= 0, r = 140 kHz)

Input Capacitance

(Y BE

= 0.5 Yde, Ie = 0, r = 140 kHz)

Small-Signal CUrrent Gain
(Ie = 1 mAde, YCE = 5 Vdc, f = 1 kHz)

hre

NOise Figure-"
(Ic = 0.1 mAde, YCE

NF"

= 10 Yde, RS

f = 1 kHz, Bandwidth =

= 5 kQhms,

200 Hz)

-

pF

pF

dB
6.0

111 Pulse Test: Pulse Width = 300 "S, Duty Cycle = 1%
··Measured with constant current supply of 20 ItAdc connected to the emitter of the input transistor. (See Figure 1)

FIGURE 1- NOISE-FIGURE TEST CIRCUIT

2-147

-

1008, A, B

2N
(GERMANIUM)
2Nl008B JAN AVAILABLE

CASE31(~
,1)_~

PNP germanium transistor for audio driver and medium speed switching applications.

(TO-5)

All ,leads isolated

MAXIMUM RATINGS

Symbol

Rating

2110118 2N1008A 2N10118B

Unit

Collector-Base Voltage

VCB

20

40

60

Vdc

Collector-Emitter Voltage

VCEO

20

40

60

Vdc

Emitter-Base Voltage

15

VEB

Ie

300

Vdc
mAdc

IB

30

mAdc

Collector Current
Base Current
Collector Dissipation
TA = 25°C
derate
TC = 25°C
derate

PD

mW
mW/oC
mW
mW/oC

200
2.7S
300
4.0

Junction and storage Temperature Range

T J , T stg

-65 to +100

°c

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristics

SymbDI

Collector Leakage Current

:

~~g: ~~ ~~~! T A = S50C) ~:~~~:
(VCB=
(VCB =
(VCB =
(VCB =

25
25
45
45

2N100S
ZN100SA
2N100SB

Typ

leBO

--- 5.0
--- ----- 5.0
--- ----- 7.0
--- ---

lEBO

---

Vdc)
2N100SA
Vdc, TA = S50C)2N100SA
Vdc)
2N100SB
Vdc, ~A = S50C) 2N100SB

Emitter Leakage Current
(VEB = 10 Vdc)

Min

BVCER

Collector-Emitter Saturation Voltage
(Ie = 100 mAdc, IB = 10 mAdc)

VCE (sat)

Small Signal Current Gain
(Ie '" -10 mAdc, VCE = 5.0 Vdc,
f= 1 kHz)

hte

Input Resistance (VCB = 6 V, IE = 1 mA)

~e

/lAdc
10
500
10
500
15
750
10
10
10
Vdc

15
35
55

2-148

UNIT

J1-Adc
,5.0

--- ----- ---

Collector-Emitter Breakdown Voltage
(Ie = 1.0 mAdc, RBE = 10 K)
2N100S
2N100SA
2N100SB

Mu

-------

--- ---

------Vdc
0.25

--40

---

150

200

---

1000

ohms

2N

1011 (GERMANIUM)

~

CASE 11
(TO-3)

PNP germanium power transistor for general
purpose power amplifier and switching applications in
military and industrial equipment. Operating temperature range and power dissipation exceed military
specifications.

MAXIMUM RATINGS

Symbol

2N1Oll

Unit

Collector-Emitter Voltage

VCEO

40

Vdc

Collector - Emitter Voltage

VCES

80

Vdc

Collector-Base Voltage

VCB

80

Vdc

Emitter-Base Voltage

VEB

40

Vdc

Collector Current

Ie

5.0

Adc

Total Device Dissipation @ T C = 25 0 C

PD

90

Watts
W/oC

Rating

Derate above

25 0 C

1.2

Operating and Storage Junction
Temperature Range

TJ,T stg

°c
-65 to +100

THERMAL CHARACTERISTICS

Characteristic

Symbol

Thermal Resistance, Junction to Case

9J C

Max

Unit

0.8

°C/W

100
90
.,

::::

,,~

80

""'-

g
:c6

POWER· TEMPERATURE
DERATING CURVE

i

60

rIl

is
..

~

40

'"

~,

~

~Q

"-,,~

20

10

o
o

20

2-149

40

60

80

""

100

2Nl011

(continued)

ELECTRICAL CHARACTERISTICS

(TC = 25°C unless otherwise noted).

Symbol

Characteristic

Minimum

Maximum

Unit

hFE

-

hFE

30

fae

5.0

-

lEBO

-

3.0

mAdc

I CBO

-

200

/.lAdc

I CBO

-

15.0

mAdc

Base Current
VCE = 2 Vdc
IC = 1 Adc

IB

6.7

-

mAdc

Base Current

IB

40

100

mAdc

Emitter-Base Voltage
VCE = 2 Vdc
IC = 3 Adc

VEB

-

2.0

Vdc

Floating Potential
VCB = 50 Vdc
(Voltmeter input resistance
= 10 Megohm min)

Vfl

-

1.0

Vdc

Collector-Emitter Saturation Voltage

VCE(SAT)

-

1.5

Vdc

BVCEO

40

-

Vdc

BVCES

80

-

Vdc

I CBO

-

'DC Current Transfer Ratio

150

-

75

-

VCE = 2 V
IC = 1. 0 Adc
DC Current Transfer Ratio
VCE = 2 V
IC = 3.0 Adc
Small-Signal Current Transfer Ratio
Cutoff Frequency

kHz

VCE = 2 Vdc
IC = 3 Amp
Emitter- Base Cutoff Current
VEB = 40 Vdc
IC = 0
Collector- Base Cutoff Current
VCB = 2 Vdc
IE = 0
Collector-Base Cutoff Current
VCB = 80 Vdc
IE = 0

VCE = 2 Vdc
IC = 3 Adc

IC = 3 Adc
IB = 200 mAdc
Collector-Emitter Voltage
IC = 300 mAdc
IB = 0
Collector'-Emitter Voltage
Ie= 300 mAdc
VEB = 0
High- Temperature Operation
TC = +90'C min
Collector Cutoff Current
VCB = 30 Vdc
IE = 0

2-150

20

mAde

1021
2Nl022
2N

(GERMANIUM)

PNP germanium powertransistorsfor industrial and
general purpose power amplifier and switching applications.
CASE 11
(TO-3)

MAXIMUM RATINGS (TC

=250C unless otherwise noted)

Rating

2N1021

2N1022

Unit

VCB

100

120

Volts

Collector-Emitter Voltage

VCEX

100

120

Volts

Collector-Emitter Voltage

VCEO

50

Volts

VEB

30

Volts

Ie

5.0

Amp

Symbol

Collector-Base Voltage

Emitter-Base Voltage
Collector Current
Operating Junction and storage
Temperature Range
Total Device Diss~ation @ TC = 25 0 C
Derate above 25 C

°c

-65 to +110

T J , Tstg
PD

Watts
W/oC

85
1.0

POWER·TEMPERATURE DERATING CURVE

@TA @Tc

5

100

4

85
80

3
2.6
2

60

Tc

~

---

_IA

40
20

o

o
o

25

-- ~

-----=-

50

~

75

TEMPERATURE (Oe)

2-151

-

~

~

100

110

125

2Nl021, 2Nl022 (continued)

ELECTRICAL CHARACTERISTICS

(TC = 250 CJlntess.otllerwise noted)

Characteristic
Collector-Base Cutoff Current
(VCB = 50 Vdc)

2Nl021

(VCB = 60 Vdc)
(VCB = 100 Vde)

2Nl022

(VCB = 120 Vde)

2Nl022

(VCB= 50 Vdc, TC = + 55°C)
(V CB = 60 Vdc, TC = + 55°C)

2Nl021

.Symbll
leBO

Mill Mu

-

-

2Nl021

2Nl022

Collector-Emitter Breakdown Voltage*
(Ie = 200 mAde)

BVCEO*

Emitter-Base Cutoff Current
(V EB = 10 Vdc)

lEBO

50

(V EB = 30 Vdc)
VBE

Base-Emitter Voltage
(VCE = -1.5 Vdc, Ie = 1.0 Adc)
Collector-Emitter Saturation Voltage
(Ie = 5 Ade, IB = 500 mAdc)

VCE(sat)

DC CurreQt Gain
(IC = 1 Ade, VCE = 1.5 Vdc)

hFE

-

mAdc
0.5
0.5
2.0
2.0
8.0
8.0

-

mAde
2.0

Vde

-

:3.0

-

0.5

40

-

Vde

35

= 5 Adc, VCE = 1.5 Vdc)

30

(IC .. 7 Ade, VCE = 1.5 Vdc)

22

90
-

-

28

Input Impedance
(Ie = 1.0 Ade, \TCE

hte

= 1.5 Vdc)

Current Gain-Bandwidth Product
(Ie = 1.0 Adc, VCE = 2 Vdc)
*Sweep Test:

fT
200

1/2 sine wave, 60 Hz •

2-152

Vde

0.5

= 3 Adc, VCE = 1.5 Vdc)

(Ie
(Ie

Ualt

-

ohms

-

kHz

1038 thru 2N 1041 (GERMANIUM)
2N2552 thru 2N2559
2N

PNP GERMANIUM
POWER TRANSISTORS

PNP GERMANIUM MEDIUM POWER TRANSISTORS

40-100 VOLTS
20 WATTS
· .. designed for relay drivers, pulse amplifiers, audio amplifiers and
high-current switching applications.

• High Current Capability - IC = 3.0 Amperes
• Guaranteed Excellent Collector-Emitter Sustaining Voltage
• 20-Watt Power Dissipation at 250 C Case Temperature
• 1000C Maximum Junction Temperature

CASE 180

:~I:D·E

2N!..~ 2Nl039 2N1041 21111041
Symbol 2N~~ 2N2553
21112555
2N2551 2N2557
2N25~

veE a

30

40

Collector-Base Voltage

VeB

40

60

Emitter-Ba.. Voltage

VEB

Collector-Emitter Voltage

Collector Current - Continuous

Ie

"Base Current - Continuous

IB

Total Device Dissipation@TA - 25°C
Derate above 25°C

Po

Total Device Dissipation @Te =25°C
Derate above 25°C (Note 1)

Po

• -Operating and Storage Junction
Temperature Range

-------

---

~:=

20
3.0
1.0
450
6.0

50

60

Vdc

100

Vdc

-----

20
----0.261---- - - -65 to +100 -

TJ,Tstg

D.39O

,,-nfi-+

Unit

SO

--~

1.5

~ ~~j

Adc
Adc

2N1038-2N1041

mW
mW/oe

w/oe

BAS[O.0101

l

o.011 0
0.028

Vdc

Watts

CASE 184

iUMI

0.310 DIA
[J4O

*MAXIMUM RATINGS
Rating

CASE 183

CASE 180

-lir-!~l""·"ll.Emittel ~..... 0",~
2.8ase
3. Collector

".~"~'" .i
111111
t

°e

__
~ l.:]I.

0345

SEATING
PLANE

Olfll

o.D12

-J "''

~~

Ifoia

rna

/.)(;O~o:no

r

~~
~0l)
""j
..~
~.42~ 'f...... J"5'~
If«y "<..

~~~~

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

I
I

Symbol
8Je

I
I

Max
3.15

-Indicates JEDEC Registered Data.
Note 1: Case Temperatur. shall be measured 0.100 ± 0.010 inches above the
seating plane.

I Unit
I °e/w

2N2552-2N2555

0.083

""

[-~1.500MIN

=+ ai~

IIII

•• Motorola guarantees this data In addition to the JEOEC
Registered Data shown.

CASE 183

'.o~'''~

t-t.985 M I N _

0.485

om

{j

0.022

iillil
1l2.2lIUNF.2A

1. Emitter
2. Base
3. Collector

SEATING PLANE-

2N2556-2N2559

CASE 184

Collector Connected to Case
(All Tvpes)

2-153

2Nl038 thru 2Nl041/2N2552 thru 2N2559 (continued)

* ELECTRICAL CHARACTERISTICS

(Tc

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

30
40
50
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC " 100 mAde, IB " 0)

VCEO(sus)
2NI038, 2N2552, 2N2556
2NI039, 2N2553, 2N2557
2NI040, 2N2554, 2N2558
2NI041, 2N2555, 2N2559

Vde

-

Collector Cutoff Current
(V CE = 15 Vdc, IB'" 0)
(V CE " 20Vdc, IB =0)

2N1038, 2N2552, 2N2556
2NI039, 2N2553, 2N2557

-

25

(V CE = 25 Vdc, IB = 0)

2N1040, 2N2554, 2N2558

-

20

(V CE =30Vde, IB =0)

2NI041, 2N2555, 2N2559

-

20

-

0.65
0.65

I CEO

mAde
20

Collector-Emitter Cutoff Current
(V CE " 40 Vde, V BE(off) " 0,2 Vde)

2NI038, 2N2552, 2N2556

(V CE " 60 Vde, V BE(ol!) " O. 2 Vde)

2NI039, 2N2553, 2N2557

(V CE " 80 Vde, V BE(ol!) = 0.2 Vde)

2NI040, 2N2 554, 2N2558

(V CE " 100 Vde, V BE (off) " 0.2 Vdc)

2NI041, 2N2555, 2N2559

(V CE " 20 Vde, VBE(Off) = 0.2 Vde, TC = 85°e)

2NI038, 2N2552, 2N2556

-

(V CE = 30 Vdc, V BE (off) = O. 2 Vde, TC " 85°e)

2NI039, 2N2553, 2N2557

-

5.0

(V CE = 40 Vdc, VBE(ol!) " 0._2 Vdc, TC = 85°C)

2NI040, 2N2 554, 2N2558

5.0

(V CE = 50 Vde, V BE(of!) = O. 2 Vde, TC = 85°C)

2NI041, 2N2555, 2N2559

-

125
125

ICEX

I CBO

mAde

0.65
0.65
5.0

5.0

Collector Cutoff Current
(V CB " 20 Vdc, IE" 0)

2NI038, 2N2552, 2N2556

(V CB = 30 Vde, IE = 0)

2NI039,2N2553,2N2557

(V C B = 40 Vdc, IE " 0)

2NI040, 2N2554, 2N2558

(V CB = 50 Vdc, IE = 0)

2NI041, 2N2555, 2N2559

-

**(V CB " 40 Vdc, IE " 0)

2NI038, 2N2552, 2N2556

-

750

**(V CB = 60 Vdc. IE = 0)

2NI039, 2N2553, 2N2557

-

750

**(V CB "80 Vdc, IE = 0)

2NI040, 2N2554, 2N2558

-

750

**(V CB " 100 Vde, IE = 0)

2NI041, 2N2555, 2N2559

-

750

-

650

33

200

20

60

-

0.25

-

1.0

18

72

2.0

-

Emitter Cutoff Current
(V BE = 20 Vde, Ie = 0)

lEBO

!lAde

125
125

!lAde

ON CHARACTERISTICS
DC Current Gain
(IC " 50 n\Ade, VCE = O. 5 Vde)

hFE

(Ie = 1. 0 Ade, VCE = 0.5 Vdc)
Collector-Emitter Saturation Voltage
(I C = 1. 0 Ade, IB = 100 mAde)

V CE(sat)

Base-Emitter Input Voltage
(I C = 1.0 Adc, VCE =0.5 Vdc)

V BE

-

Vde

Vde

SMALL·SIGNAL CHARACTERISTICS
Small-Signal Current Gain
(I C = 500 mAde, V CE = 1. 5 Vde, I " 1. 0 kHz)

hie

Small-Signal Current Gain
(I C = 500 mAde, V CE = 1. 5 Vdc, I = 112.5 kHz)

I

*Indicates JEDEC Registered Data.
**Motorola Guarantees this data in addition to the JEDEC Registered Data Shown.

2-154

hlel

-

2Nl 042 thru 2Nl 045 (GERMANIUM)
2N2560 thru 2N2567

PNP GERMANIUM
POWER TRANSISTORS

PNP GERMANIUM MEDIUM POWER TRANSISTORS

40-100 VOLTS
20 WATTS
· .. designed for relay drivers, pulse amplifiers, audio amplifiers and
high·current switching applications.

• High Current Capability - IC = 3.5 Amperes
• Guaranteed Excellent Coliector·Emitter Sustaining Voltage
• 20·Watt Power Dissipation at 25 0 C Case Temperature
• 1000C Maximum Junction Temperature

CASE 183

CASE 180

:molA~

0.310 DIA

*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Ba.. Voltage

VeB

Emitter·Ba.. Voltage

VEB

Collector Current - Continuous

IC

Base Current - Continuous

IB

Total Device Dissipation@TA =25°C
Derate above 25°C

Po

Total Device Dissipation @TC =25°C
Derate above 25°C (Note 1)
**Operating and Storage Junction
Temperature Range

Po
TJ,Tstg

40

80

60

-------

20
3.5
1.0

450
6.0

--

100

-- - - -

----

20
-0.267----

-65 to +100 - - -

illi

-+

Unit

Vdc

O.O"OIA
0.028

~ ~ ~j

Vdc
Adc
Adc

2N2564 - 2N2567

mW

~

mW/oC

W/oC

0.1414

1.5

Vdc

Watts

Q.lliI

0.390

[340

2Nl042 2Nl043 2N 1044 2Nl045
Symbol 2N2560 2N2561 2N2562 2N2563
2N2564 2N2565 2N2566 2N2567
60
40
50
30
VCEO

CASE 184

__ I

CASE 180

LEmitter

943Mlt.I--1

H-~~

2. Base

r~.!~~

:< /j,

'"''"~'" .it ~~~O/'.Ill!
~~
IIIII1

°c

~
O.3!5

1f.~65

SEAT!NG
PLANE

L-:Je-I ~~o
0012

3. Collector

-J """
M~8

""j
"'"
~.421
'i-...."'<..PIO
il"U1y

~~~

THERMAL CHARACTERISTICS

2N2560 - 2N2563

CASE 183

Characteristic
Thermal Resistance. Junction to Case
* Indicates JEOEC Registered Data.
Note1: Case Temperature shall be measured 0.'00 ± 0.010 inches above the
seating plane.
--Motorola guarantees this data in addition to the JEOEC Registered Data shown.

.....
om

lj

1l2.20UNf.2A

1. Emitter
2. Base
3. Collector

SEATlNGPLANE

2Nl042 - 2Nl045

CASE 184

Collector Connected to Case
(All Typ..l

2-155

2N1042 thru 2N1045/2N2560 thru 2N2567 (continued)
*ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

I

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC = 100 mAde, IB = 0)

Vde

VCEO(sus)
2Nl042,2N2560,2N2564
2N 1043,2N2561,2N2565
2N 1044,2N2562,2N2566
2N 1045,2N2563,2N2567

Collector Cutoff Current

30
40
50
60

mAde

ICEO

(VCE = 15 Vde, IB = 0)

2N 1042,2N2560,2N2564

-

25

(VCE = 20 Vde, IB = 0)

2Nl043,2N2561,2N2565

-

20

(VCE = 25 Vde, IB = 0)

2Nl044,2N2562,2N2566

-

20

(VCE = 30 Vde, IB = 0)

2Nl045,2N2563,2N2567

-

20

'Collector-Emitter Cutoff Current

(VCE = 40 Vde, VBE(off) = 0.2 Vde)

= 60 Vde,

ICEX

mAde

2Nl042,2N2560,2N2564

-

0.65

VBE(off) = 0.2 Vde)

2Nl043,2N2561,2N2565

-

0.65

(VCE = 80 Vde, VBE(off) = 0.2 Vde)

2N 1044,2N2562,2N2566

-

0.65

(VCE = 100 Vde, V8E(off) = 0.2 Vde)

2Nl045,2N2563,2N2567

-

0.65

(V CE = 20 Vde, V BE (off) = 0.2 Vde, T C = 85°C)

2Nl042,2N2560,2N2564

-

5.0

(VCE = 30 Vde, VBE(off) =0.2 Vde, TC = 85°C)

2N 1043,2N 2561,2N2565

-

5.0

(VCE = 40 Vde, VBE(off) =0.2 Vde, TC = 85°C)

2N 1044,2N2562,2N2566

-

5.0

(VCE = 50 Vde, VBE(off) = 0.2 Vde, TC = 85°C)

2N 1045.2N2563,2N2567

-

5.0

2N 1042,2N2560,2N2564

-

125

(VCB = 30 Vde, IE = 0)

2N 1043,2N2561,.2N2565

(VCB = 40 Vde, IE = 0)

2Nl044,2N2562,2N2566

-

125

(VCE

Collector Cutoff Current '

(VCB = 20 Vde, IE = 0)

!lAde

le80
125

(VC8 = 50 Vde, IE = 0)

2Nl045,2N2563,2N2567

-

125

**(VCB = 40 Vde, IE = 0)

2N 1042,2N2560,2N2564

-

750

**(VCB = 60 Vde, IE = 0)

2N 1043,2N2561,2N2565

-

750

**(VCB = 80 Vde, IE = 0)

2Nl044,2N2562,2N2566

-

750

**(VCB = 100 Vde, IE = 0)

2N 1045,2N2563,2N2567

-

750

-

650

50

-

(lC = 1.0Ade, VCE = 1.0 Vde)

-

150

(lC = 3.0 Ade, VeE = 1.0 Vde)

20

60

-

0.25

Emitter Cutoff Current

IE80

!lAde

(VBE = 20 Vde, IC = 0)
ON CHARACTERISTICS

DC Current Gain

-

hFE

(lC = 50 mAde, VCE = 0.5 Vdcl

Collector-Emitter Saturation Voltage

Vde

VCE(,at)

(lC= 1.0Ade,IB = 100 mAde)

-

0.75

VBE

-

1.5

Vde

hfe

25

100

-

Ihfel

2.0

-

-

(lC = 3.0 Ade, IB = 300 mAde)
Base-Emitter Input Voltage
(lC = 3.0 Ade, VCE = 1.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
Small-Signal Current Gain

(lC = 500 mAde, VCE = 1.5 Vde, f = 1.0 kHz)
Small-Signal Current Gain

(Ie = 500 mAde, VCE = 1.5 Vde, f = 125 kHz)
"'Indicates JEDEC Registered Data .
• "'Motorola Guarantees this data in addition to the JEDEC Registered Data Shown.

2-156

2N

1073 A, B(GERMANIUM)
I

CASE4-~
(TO_41)1J4~

PNP germanium power transistors for high-voltage
power switching applications.

MAXIMUM RATINGS

Rating

Symbol

2N1073

2N1073A

2N10738

Collector-Emitter Voltage

VCER

40

80

120

Vdc

Unit

Collector-Base Voltage

VCB

40

80

120

Vdc

Emitter-Base Voltage

VEB

1.5

1.5

1.5

Vdc

10

10

10

Collector Current (Cont)

lc

Base Current (Cont)

IB

Emitter Reverse Current
(Surge 60 cps Recurrent)

IE

Amp
Amp

5.0

Amp
1.5

Storage and Operating
Temperature

Tstg
TJ

Collector Dissipation
(25 0 C Mtg. Case Temp.)

°c

-65 to +110

Watts

PD

85

POWER-TEMPERATURE DERATING CURVE

iloo
-

-

80

~ 60

~

iJ'i

o

k:- 85 WAITS MAX

"'

40
20
0

ffi
~

The maximum eonlinuous power is relaled 10
maximum junction temperature by the thermal
resislanee factor. This curve has a value of 85
watts at a case temperature of 25'C and is 0
walts at 110'C with a linear relalion between
the Iwo temperatures such that:
110' - Te
Allowable p. = -1-.0- Watts

...........

0

~

~OOC

.......

25
50
75
100
Te. CASE TEMPERATURE (OC)

...

125

~

SAFE OPERATING AREAS - PULSE CONDITIONS
2Nl073A

2Nl073

2N1073B

10
500", ::
S.O
V\I

3.0

~

'"'
'"

~
is

'"'
'"
~

sm,l\J
1m,

1.0

500~'

o.s

2S0~'

"'SO~,

0.3

;;i
~

\

rj)

0.1

~

\',e;sL,

:\=f-\

I

\ \.\
~~

'\
OC-

1\

Sm,

'\

i"-

'\

25~",

'V

"

,=

~ ~ I-- "" 50",

1m, ....,

<~

~

~

I'\.

~

O~ .,..l

~

g

"'" 5m,
1m,

500",

,

250~,

\ IN

,.:;.c:-

i'"

-

"'r--..

•.,

I'.,

'"t"". r-....

OC-

.os
.03

.01
o

10

20

30

40

10

20

30

40 SO 60 70 80
0 10 20
Ve•• COLLECTOR-EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate lc VCE limits below which the.device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2-157

30

40

50

60

70

80

90

100 110 120

(Duty cycle of the excursions make no significant
change 1D these safe areas.) To insure operation
below the maximum Tl, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2Nl073, A, B

(continued)

ELECTRICAL CHARACTERISTICS

(TA = 25'C unless otherwise noted)

Characteristic

Symbol

Collector-Base Cutoff Current
(V CB = 25 Vdc, IE = 0)

ICBO

Min Typ Max Unit
mAdc

(V CB = 60 Vdc, IE = 0)

2N1073A

(V CB = 60 Vdc, IE = 0, T C =85'C)

2N1073A

(V CB = 80 Vdc, IE = 0)

2N1073A

(V CB = 100 Vdc, IE = 0)

2NI073B

-

(V CB = 100 Vdc, IE = 0, TC = 85'C)

2N1073B

-

-

(V CB = 120 Vdc, IE = 0)

2N1073B

-

-

20

-

-

O. 3

-

-

50

-

-

1.0

-

-

1.0

-

1.0

40
80
120

-

-

20

-

60

-

15

-

-

-

1.0

-

0.5

1.0

-

5.5

-

/1S

-

1.2

-

/1s

-

2.0

-

/1s

2N1073

(V CB = 25 Vdc, IE = 0, T C =85'C)

2N1073

(V CB = 40 Vdc, IE = 0)

2N1073

-

-

(V CB = 2. 0 Vdc, IE = 0)
Emitter-Base Leakage Current
(V EB = O. 75 Vdc)

lEBO

Emitter Floating Potential
(V CE = 40 Vdc)

2N1073

(V CE = 80 Vdc)

2N1073A

(V CE = 120 Vdc)

2N1073B

Collector-Emitter Breakdown Voltage*
(IC = 50 mAdc, RBE = lOOn)

2N1073
2N1073A
2N1073B

VEBF

BV CER*

DC Current Gain
(Ie = 5.0Adc, VCE = 2.0 Vdc)

hFE

Small-8ignal Current Gain
(I C = O. 5 Adc, VCE = 12 Vdc, f = 30 kHz)

hfe

Base Input Voltage
(V CE = 2.0 Vdc, IC = 5.0 Adc)

VBE

Collector-Emitter Saturation Voltage
(Ie = 5.0 Adc, IB = O. 5 Adc)

V CE(sat)

Rise Time

t

Storage Time

t

Fall Time

tf

r
s

1.0
15
20

1.0
15
20

2.0
20

mAdc
Vdc

Vdc

Vdc
Vdc

*To avoid excessive heating of collector junction, perform this test with a sweep method.

COLLECTOR CURRENT versus BASE CURRENT

COLLECTOR CURRENT versus DRIVE VOLTAGE

r---- J

10

- 55 ° C
+25°C
+IOOOC

f

/; ~

o
100

200

300

400

500

600

700

~
o

I" BASE CURRENT (MILLIAMPS)

/

/V
Vel

=- 2 V

~

0.5

1.0

VH • BASE· EMITTER VOLTAGE (VOLTS)

2-158

1.5

2Nl073, A, B

(continued)
COLLECTOR CURRENT versus DRIVE VOLTAGE

DC CURRENT GAIN versus COLLECTOR CURRENT
50

40

25

\

\ '

\ \~ ~
~~~
~

Ve• = MAX. RATING

Vel =::: -2 V

~

/

I

7

+ 100°C)

_55°C_

-

/

./

+25 O C
+IOOoC

10

+2~

/

/ /
-5}!

o
2 '

10

12

+0.3

Ie. COLLECTOR CURRENT (AMP)

+0.2

+0.1

-0.1

-0.2

V". BASE·EMITTER VOLTAGE (VOLTS)

SWITCHING TEST CIRCUIT

MERCURY
SWITCH

4[1

" '.:
~
+

2N

0 -20!l

12

v

....._ _ _ _ _ _+-1111---_ _ _ _ _ _--J

I--------.-J
PULSE CONDITIONS; Ie

= 3 Ade. I, = 300 mAde

10 99 (GERMANIUM)
For Specifications, See 2N277 Data.

2N

1100 (GERMANIUM)
For SpeCifications, See 2N174 Data.

2-159

- 0.3

2N

1120

(GERMANIUM)

PNP germanium power transistor for military and
industrial power applications.

MAXIMUM RATINGS

Rating

Symbol

2N1120

Unit

Collector-Emitter Voltage

VCEO

40

Vdc

Collector-Emitter Voltage

VCES

70

Vdc

Collector-Base Voltage

VCB

80

Vdc

Emitter-Base Voltage

VEB

40

Vdc

Emitter Current

IE

15

Adc

Total Device Dissipation @ T C = 25 0 C

PD

90
1.2

Watts
W!oC

TJ

-65 to +100

°c

Symbol

Max

Unit

0.8

°C!W

Derate above 25 0 C
Operating Junction Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

(}JC

100
90
~

'"

"

80

~
POWER·TEMPERATURE
DERATING CURVE

.§
-:;j

60

.So

'"

is'"
...
Q)

40

"

0

p.,

"""

~

~

",

"- "-

p.,A 20

10

o
o

20

2-160

60
40
o
T C' Case Temperature ( C)

80

"""

100

2N 1120 (continued)

ELECTRICAL CHARACTERISTICS (Te = 25 0 e unless otherwise noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 300 mAdc, IB = 0)

BVCEO

Collector-Emitter Breakdown Voltage
(IC = 300 mAdc, VBE = 0)

BVCES
VEBF

Floating Potential
(VCB = 80 Vdc, ~ = 0)

40

-

70

-

-

1.0

-

0.3

Vdc
Vdc
Vdc

(Voltmeter Input Resistance = 10 meg. min.)
Collector Cutoff Current
(VCB = 2Vdc, ~= 0)
(VCB = 30 Vdc, ~ = 0)

ICBO

mAdc

20

(V CB = 80 Vdc, IE = 0)

~BO

Emitter Cutoff Current
(V BE = 40 Vdc, IC = 0)
Base Current
(V CE = 2 Vdc, IC = 5 Adc)

IB

(VCE = 2 Vdc, IC = 10 Adc)

-

15

-

5.0

50

-

200

500

-

100

20

50

mAdc
mAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 Adc, VCE

hFE

= 2.0 Vdc)

(IC = 10.0 Adc, VCE

= 2.0 Vdc)

Vdc

Collector-Emitter Saturation Voltage
(IC = 10 Adc, IB = 1. 0 Adc)

VCE(sat)

-

1.0

Base-Emitter Saturation Voltage
(IC = 10 Adc, IB = 1.0 Adc)

VBE(sat)

-

1.5

Base-Emitter On Voltage
(IC = 10 Adc, VCE = 2 Vdc)

VBE(on)

-

2.0

SMALL SIGNAL CHARACTERISTICS
Common-Emitter Cutoff Frequency
(Ie = 5.0 Adc, VCE = 2.0 Vdc)

2-161

-

Vdc
Vdc

2N 1131 (SILl.CON)
2N1131JAN AVAILABLE

2Nl131A
2N1991
PNPSILICON
AMPLIFIER
AND
SWITCHING
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS
· .. designed for medium-speed switching and amplifier applications
where low DC current gain is essential.
•

rr:=j

2N1131
2N1131A

Low DC Current Gain hFE = 45 (Max) @ IC

= 150 mAdc -

2N1131,A

•

Turn-On Time - ton = 45 ns (Max) - 2N 1131A

•

Turn-Off Time - toff = 35 ns (Max) - 2N1131A

II

j

O"09m1~~~EATING
+=

0500

PLANE

L

M!.!iDlA

0,019

Pin 1 Emili.,

*MAXIMUM RATINGS

CASE 79 (1)

Rating

Symbol

2N1131 2N1131A 2N1991

Unit

Cpllector·Emitter Voltage

VeEO

35

40

VeER

50

50

20
-

Vde

Collector·Emitter Voltage
Collector·Ba•• Voltage

VeB

50

60

30

Vde

Emitter·Base Voltage

VEB

5.0

5.0

5.0

Vde

Vde

Collector Current - Continuous

Ie

600

600

600

mAde

Total Device Dissipation@TA==2SoC

Po

0.6
4.0

0.6
4.0

0.6
4.8

Watt
mW/oC

Total Device Dissipation@Te= 250 e
@TC=I000C
Derate above 25°C

Po

2.0
1.0
13.3

2.0
1.0
13.3

2.0
1.0
16

Watts
Watt
mW/oC

Operating Junction Temperature Range

TJ

175

175

150

°c

-65 to
+150

°c

Derate above 250 e

Storage Temperature Range

-65 to +200

T.tg

Tccanvel1incheslomitlimetersmulliplybyZ5.4.

AIIJEOEC TO·39 dimensions and notl?S apply.

°·JJ5~

rFr-m-I~

2N1991

T

Q

LIT 1f
iilil9

·11· ._'y

',,,",,,","_"m;ll'm._,,,,,,,,b,25A.
Alt JEDECTO·5dimension$3nd notes apply.

Characteristic

Symbol 2N1131,A 2N1991

Unit

Thermal Resistance, Junction to Case

8Je

75

62.5

°elW

Thermal Resistance, Junction to Ambient

8JA

250

208

°e/w

T
IT

o.ols--lLo.029
Wel!lht '" 1.15 gram

THERMAL CHARACTERISTICS

O."O

"""

CASE 31 (1)

~ 0&Sll
//

450T.P.O.O

--.L

TO·S
Pin 1. Emiller
2. BaSB
1 Collector

*Indicates JEOeC Registered Data.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT - 2N1131A
SKL
MODEL
503

12~r

Vp

--u-

"

ATTENUATOR
Zo = 170 Ohm.

fl.')
~

1.0 k

1.0 k
0.01
50

+-:~

-T

VBB

90% -J.o".....-----t"'~

I

150
~F

"

CONOITIONS:
VCC = -15 Volt.
Vp = -7.5 Volts
VBB = 1.5 Volts
Pulse Width = 150 n.

0.01 ~F

"/'
VCC

T

+

'TE'i
'-'

~

20 -v~.
10
5.0

15Vdc

/
/

2.0
1.0
0.5

,I

/

0.2
0.1
;j 0.05

'-'

§""
0

'-'

/
jO.02
/
0.01
0.005
-75 -50 -25

....~~~

O~~~LL~

0.40

0.45 0.50 0.55 0.60 0.65
v•• BASE·EMITTER VOLTAGE (vile)

0.70

25

50

75

100

T" JUNCTION TEMPERATURE rC)

COLLECTOR SAlUUnON

COllECTOR INPUT AND OUTPUT CAPACITANCE
versus VOLTAGE

CHAUCfERlSTICS
20

100 t-::+-~:-:-t--t--+--.Jfr-+---l

TA ~'25"C
f = 100 kHz
C,.

2Ot---t---t-:HC--t--t-+-+--..1

C.

O~~~~~~~~~-J

o

I

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

V_" COLLECTOR SATURATION VOLTAGE (Vile)

2~167

0.1 0.2

0.5 1.0 2
5 10 20
REVERSE BIAS VOLTAGE (VOLTS)

50

2Nl141·2Nl143, 2Nl195

(continued)

PDW£IIWN AIID IIOISE FIGURE
_
EMITTER CUIRENT

PDW£IIAIN ANI NOISE IIGUII£
VIIlTAGE

lInUS CQU£CTOI-BASE

28

28

10

26

POWER GAIN vs. v.. 1.= 10 mAde

V

,;; 24

6~

i:iI

iil
c;:

4

NOISE FIGURE vs. V..
1.= 10mAdc

I

o

o

4

6

8

W

I

~

M

i22

~

az

20

70 MC NEUTRAliZED & MATCHED
T. = 25'C
I
I

I

-

26
iii'

iii'
3!

~

o

o

/

1\

10

r--

POWER GAIN vs. I.
V.. =-IOVde

- --

"

f---

I-

NOI IE FIGURE vs. I.
V.. =-IOVdc

70 MC N~UTRALIZiD & MATCHED

I

T.=25 C

o

6
8
W·
12
I•• EMITTER CURRENT (mAde)

V... COLLECTOR BASE VOLTAGE (Vdc)

14

16

o

COM. . EMlmR POWER GAIN, ~ft, AND NOISE FIGURE
YeISllS FREQUENCY

---" "

40

r-....

V,,_-IOVdc
le=-IOmAde
T.=25'C

V

...... r-,
......

r-.......Pg

r--- NOISE FIGURE

rr"~~
10

20
50
FREQUENCY (I MHz)

II

100

f'oo

SMAlL SIGNAl CDRIEIIT GAIN 111ft)
III'SIIS COLLECTOR CUIRENT
19

01:

~

15

u

13

i

~

j

f

,

In

oil

11

I

i3i
.J 9
7

o

~

1.2
5Vde_

Va

.......

1000

NaLIZEUFt
. . AMBIENT TEMPERATURE

Vco-- WVde

~ 17

o

500

200

l.l

'" ~
V,,= -2Vde

j
.

!§
~

14

/

..1 0.9

g

).

12

1.0

I

r\

f= lOOMB,- I - - T.=~5'C
10
Ie. COLLECTOR CURRENT (mAde)

NOR~AlIZED

h"
TOI 25' C
Va=-lOVdc
le= -IOmAdc

16

/

0.8

0.7
-75

-50

/

V

V

~

V
-25

.25

50

T•• AMBIENT TEMPERATURE ('C)

2-168

/

75

100

1162

1167

2N
thru 2N
(GERMANIUM)
2N1162A thru 2Nl167A

PNP germanium power transistors for switching and
amplifier applications in high reliability equipment.

CASE 11A

CASE 4-04

(TO-3 modified)

(TO-41)

2N1162,A
2N1164, A
2N1166, A

2N1163, A
2N1165, A
2N1167, A

MAXIMUM RATINGS
Apply also to standard, non-A series

Rating
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

2N1162A
2N1163A

2N1164A

2N1166A

Symbol

2N1165A

2N1167A

VCB

50

80

100

Vdc

VCES

35

60

75

Vdc

VEB

25

40

50

Vdc

Total Device Dissipation @ 25°C
Derate above 25°C

PD

Operating and Storage
Junction Temperature Range

TJ , T

stg

2-169

Units

106
1. 25

Watts
W;OC

-65 to +110

°c

2N 1162 thru 2N 1167

(continued)

GROUP A ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
Collector Cutoff Current
(V CB = VCB(maxl, I,,'

Min

Typ

ICBOI

--

,3.0

15

ICBO

--

Symbol

= 0)

Collector Cutoff Current
(V CB = 2 V, IE = 0)

(V CB = 15 V, IE = 0, TC = 90°C)

2N1162A-3A'

(V CB = 30 V, IE = 0, TC = 90°C)

2N1164A-7A'

Collector- Emitter Breakdown Voltage**
2N1162A-3A'
(IC = 500 mA, V EB = 0)
2NI164A-5A*
2N1166A-7A*
Emitter Cutoff Current
(V EB = 12 V, IC = 0)

BV CES

..

lEBO

Max

rnA

125

225

/lA

-

10

20

rnA

--

10

20

rnA

35
60
75

-

-

-

0.5

1.2

Vdc

-

rnA

--

DC Forward Current Gain
(V CE = I V, IC = 25 A)

hFEI

15

25

-

(VCE = 2 V, IC = 5 A)

hFE

-

65

125
volts

Collector- Emitter Saturation Voltage
(IC = 25 A, IB = I. 6 AI

V CE(sat)

-

0.3

0.8

Base-Emitter Saturation Voltage
(IC = 25 A, IB = 1. 6 A)

VBE(sat)

-

0.7

1.7

--

4.0

-

Common Emitter-Cutoff Frequency
(V CE = 2 V, IC = 2 A)

f

ae

Unit

volts
kHz

·CharactenstIcs apply also to correspondmg, non-A type numbers
**Sweep Method: 1/2 cycle sine wave, 60 Hz

SWITCHING CHARACTERISTICS (Typical)
Pulsed Drive Base Current
Off
On

Saturated Collector
Current

td +t,

Response times in /IS
t5

tf

5 amp

330 rnA

100 mA

11

5.0

17

10 amp

660 rnA

200 rnA

15

4.0

20

19

3.0

18

25 amp

1650 rnA

FIGURE 1 -

500 mA

POWER TEMPERATURE DERATING CURVE

120

en
I-I--

100 r--....

~

z
0
;=
co::
c..
en
en
C
0::

L.U

80

f"""'..

r--.... r--......

1"

......

r-.......

60
40

r-....... ......

r--.... r--....

"-

==
c..

0

0

c..

20

f'. r--....

o

25

1"

1"

1"

(he = 0.8°C/W, MAX

50

75
Te , CASE TEMPERATURE (OC)

2-170

r-.....

r-...... r-.......
100

r-.......
125

2Nl162 thru 2Nl167

(continued)
30

FIGURE 2 - ACTIVE REGION SAFE OPERATING AREAS

20
The active region safe operating
area curves indicate Ic·VeE limits
to be observed in order to avoid
secondary breakdown. (Secondary
breakdown is independent of temperature and duty cycle.) These
curves do not define operation in
the avalanche region. To insure
operation below the maximum
junction temperature, power derating must be observed for both
steady state and pulse conditions.

\

Sms'"

10

~

S,O

I

3,0
2,0

""
~

s~r ~ ~"<

..... OR LESS

10

,

Ims

"-

3,0
2,0

~

I

~\

500 p.S
dC

i

..., \

/'

~ 1.0

A

8 O,S
.!l 0,4
TO 80 V, 20 rnA

~~~s~~~~i~O:~\IED-

~

.......... _\.
\

-

40
20
30
so
VeE, COLLECTOR·EMITTER VOLTAGE IVOLTSi

10

'\

~70

60

\

TO SOV,20rnA

~rr~s~~KR~i~So:~\IED
o

r--

-

10
30
20
VeE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

-\

2S0l-'S

~

~

Sms

~~

40

-

~ORLESS

Ims

S,O

~

3,0

SO~I-'S

I"'"

2,0

dC,../"

1.0

S
~ 0.5

Q.3
0,2

f".. r-...

dc

1.0

30
20

2S01-'~_

~ S.O

""
~B

\

"\.y

8 O,S
.!l 0,4

30

10

"

::j

0.1

\

2S0 I-'S
lyORLtSS-

Ims

"-.......

0,3
0,2

20

r-. r-......

......

04
0.3
0,2

"""'

~~\

"'"

0.1 0

10

20

'\

-

TO 90 V, 20 mA
WITH BACK BIAS APPLIED
IPULSE CURVES O~LYI

~

r-r-

30
40
SO
60
70
VeE, COLLECTOR·EMITTER VOLTAGE !VOLTSI

~ 90

80

LARGE SIGNAL CHARACTERISTICS

FIGURE 3- TRANSCONDUCTANCE
30

VeE~ I V

20

A

~

~~

10

I

FIGURE 4 -INPUT ADMITTANCE
2000

~~

l/': ~

I
VeE~IV

1000

V

/

SOO
TJ

~

lOO'C

200

I

/

/

if /

0

II

/

I.0

II

/

TJ~ 100'C /

'"/

/

0,3

o

II
0,2

0.6
VIE, BASE·EMITTER VOLTAGE lVOLTSI

/

TJ

~

-SS'C

2S'C

I

/

/

II

I

I 0,4

/

1.1

TJ ~ 2S'C

S

I

/
/

/

TJ

0

I

/

1/

J

0

0,S

/V
/
V

/

TJ ~ -sS'C

/

/

/

II

I
0,8

2

1.0

2-171

II
0,2

0,4
0.6
V.., BASE·EMITTER VOLTAGE lVOLTSI

0,8

1.0

2N 1162 thru 2N 1167 (continued)
F1BUR£ 5- CURR£NT BAlN
200

F10UR£ &- SATURAnON MBION
30

IV~EI~IV
l"- I"- t'--,

100

TJ

- r-

.......

TJUt

..

...

/

~ ~V .....
V
/
~
/

~t--

1\

20

If V V

20

----

0.8
0.6

0.4

I, - 0.2 AMP

~-

Y

\

10

1.0

I--"

~/

It
2.0 3.0
5.0
Ie, COLLECTOR CURRENT lAMP)

V

/

~

30

1.0

v:V

V

TJ--55'C

,

0.5

~

I~V V

25'C

~

10
0.3

,ll.

1.6 1.4 1.2
25

30

25

0.2

0.4

0.6

VOE, COLLECTOR.fM1TTER VOLTAGE (VOLTS)

2-172

r 'f
0.8

1.0

2N1175
FOR SPECIFICATIONS, SEE 2N1413-2N1415 DATA.

2N 1185

thru

2N1188(GERMANIUM)

PNP germanium transistors for high-gain audio amplifier and switching applications.

CASE 31 (1)
(TO-5)

All leads isolated from case

MAXIMUM RATINGS

Rating

Symbol

Collector-Base Voltage
2N1l85
2N1l86 -2N1l88

VCB

Collector-Emitter Voltage
2N1l85
2N1186-2N1188

VCER

Emitter-Base Voltage

VEB

Collector Current *
(Continuous)
Storage and Operating Temperature

IC
T stg' T J

Value

Unit
Vdc

45
60
Vdc
30
45
30

Vdc

500*

mAdc

-65 to +100

°c

Collector Dissipation in, Ambient
(Derate 2.67 mW/oC above 25°C)

PD

200

mW

Thermal Resistance
Junction to Ambient

(JJA

0.375

°C/mW

Thermal Resistance
(Junction to Case)

(JJC

0.250

°C/mW

*Limited by power dissipation

2-173

2N 1185 thru 2N 1188

(continued)

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
Symbol

Characteristic
Collector-Base Cutoff Current
(V CB = 30 V, IE = 0)
(VCB = 45 V, IE = 0)
(V CB = 60 V, IE = 0)
(VCB=10V,IE=0,TA=+71°C)

2N1185
2N1186 thru 2N1188
2N1186 thru 2N1188
All Types

Emitter-Base Cutoff Current
(V EB = 30 V, IC = 0)
Collector-Emitter Leakage Current
(VCE = 30 V, RBE = 10 K)
(VCE = 45 V, RBE = 10 K)

2N1185
2N1186 thru 2N1188

ICBO

3.0
5.0
55

-

10
10
50
100

10

-

-

600
600

45
60

-

-

-

10

25

-

5.0

NF

Small Signal Current Gain Cutoff
Frequency
(V CB = 6 V, IE = 1 rnA)

fab
2N1185
2N1186
2N1187
2N1188
hib

hob

2N1185
2N1186
2N1187
2N1188

hfe

2N1185
2N1186
2N1187
2N1188

hFE

2N1185
2N1186
2N1187
2N1188

2-174

/lAdc

Vdc

-

pF

dB

15

MHz

1. 75
0.75
1.0
1. 25

2N1185
2N1186
2N1187
2N1188

/lAdc

ICER

Noise Figure
(VCE = 4.5 V, IE = 0.5 rnA,
Rg = 1 K, f = 1 kHz, <1f = 1 Hz)

Unit
/lAdc

3.0

Cob

DC Current Transfer Ratio
(V CE = 1. 0 V, Ie = 10 mAl

-

-

Output Capacitance
(V CB = 6 V, IE = 0)

Small Signal Current Gain
(V CE = 6 V, IE = 1 rnA, f ~ 1 kHz)

Max

lEBO

Vpt

Output Admittance
(V CB = 6 V, IE = 1 rnA, f = 1 kHz)

Typ

-

Collector-Emitter Punch-Thru Voltage
2N1185
(V F = 1. 0 V,
2N1186 thru 2N1188
VTVM Impedance ~lMohm)

Input Impedance
(V CB = 6 V, IE = 1 rnA, f = 1 kHz)

Min

3.0
1.5
2.0
2.5

-

Ohms
27
27
27
27

35
31
34
35

37
37
37
37

0.2
0.2
0.2
0.2

0.50
0.65
0.60
0.55

0.7
1.0
0.9
0.8

190
30
50
100

260
49
80
130

400
70
120
225

130
33
45
80

170
44
75
115

-

/lmho

-

-

2N 1185 thru 2N 1188 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Base-Emitter Input Voltage
(V CE = 1.0 V, IC = 10 rnA)

Min

Typ

Max

--

0.215
0.245
0.235
0.225

0.240
0.270
0.260
0.250

VCE (sat)

--

0.175
0.175
0.175
0.175

0.250
0.250
0.250
0.250

V CE(sat)

-

0.250
0.250
0.250
0.250

0.500
0.500
0.500
0.500

Symbol

Characteristics

V BE

2Nl185
2N1186
2N1187
2N1188

Collector-Emitter Saturation Voltage
(Ic = 50 rnA, IB = 1. 0 rnA)
(Ic = 50 rnA, IB = 2.5 rnA)
(Ic = 50 rnA, IB = 1. 67 mAl
(IC = 50 1pA, IB = 1.25 rnA)

2N1185
2N1186
2N1l87
2N1l88

Collector-Emitter Saturation Voltage
(Ic = 100 rnA, IB = 2. 0 mAl
(Ic = 100 rnA, IB = 5.0 rnA)
(Ic = 100 rnA, IB = 3.33 rnA)
(IC = 100 rnA, IB = 2.5 rnA)

2N1l85
2N1l86
2N1l87
2N1188

!;;:
~

.c

...~
15
<>
~

""

200
100
80
60
40

/

VeE = 1 VOLT
IE = 50 MA

3~

V
~

o

I oI

-80 -60 -40 --20

""

.;

40

60

80

100

120

...

0

"""-,

I

......

,

I'\..

......... I'\..

1'0..' ~

"

10

0

I

~

9J. = 0.3750C/mW(max)-J

801--60
40
20

~
20

I""""'"

oI---

I

9JC = 0.25°C/mW(max)

~

12
10

ilic;

I- VeE = 6 VOLTS

I
"'i,

160
140

~
:

1,=1 MA
20

22 0
200
180

~
_

°

'"

N

Vdc

(For All Types)

400

u

Vdc

POWER·TEMPERATURE DERATING CURVE

(Typical All Types)

600

Vdc

-

SMALL SIGNAL CURRENT GAIN(h.. ) versus TEMPERATURE

Unit

20

30

40

50

60

70

80

90

TEMPERATURE (OC)

TJ • JUNCTION TEMPERATURE (OC)

'"

100

DC CURRENT TRANSFER RATIO versus COLLECTOR CURRENT

OUTPUT CURRENT versus BASE DRIVE VOLTAGE

180

"-

o 160
~

~ 140

""~

120

40

j

20

V... BASE-EMInER VOLTAGE (VOLTS)

-........

80
60

o

VeE = 1 VOLT
,-!N1l85

...... 1'-0.,

z
~ 100

!i:
~
g;
<.>
g

l'..

2N1l88

2N1l86

o

20

1' ....

~

40

--r-r--

- -,..-. ""'" - r- '- '- -. ==

2N1l87

...

1-.

60

80

100

120

140

~-

160

Ie. COLLECTOR CURRENT (MILLIAMPERES)

2-175

180

200

2Nl189 2Nl190(GERMANIUM)
PNPgermanium transistors for high-gain audio amplifier and switching applications.·

CASE31{l) ' \
(TO·5)

All leads isolated

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

45

Vdc

Collector-Emitter Voltage

VCER

30

Vdc

Emitter-Base Voltage

VEB

15

Vdc

IC

500*·

mAde

T J , Tstg

-65 to +100

°c

PD

200

mW

Collector Current
(Continuous)
Junction, Storage Temperature
Collector Dissipation, Ambient
(Derate 2.67 mW1° C above 25° C)
Thermal Resistance
(Junction to Ambient)

9JA

0.375

°C/mW

Thermal Resistance
(Junction to Case)

~C

0.250

°C/mW

·Limited by pawerdissipation.

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted

Symbol Min

Characteristic
Collector-Base Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB = 45 Vdc, IE = 0)
(V CB= 10 Vdc, IE = 0, TA = + 7l oC)

I CBO

Emitter-Base Cutoff Current
(VEB = 15 Vdc, IC = 0)

lEBO

Collector-Emitter Leakage Current
(VCE = 30 Vdc, RBE = 10K)

ICER

Collector-Emitter Punch-Thru Voltage
(VEB = 1 Vdc, VTVM Impedance ~ 1 M ohm

Vpt

Output Capacitance
(VCB ;: 6 Vdc, IE

Cob

",

= 0, f = 1 MHz)

Noise Figure
(VCE = 4.5 Vdc' IE
Rg = 1 K, f = 1 kHz

NF

= 0.5 mAdc
.4f = 1 Hz)

Small-Signal Current-Gain Cutoff Frequency
(V CB = 6 Vdc, IE:; ImAdc)

Mal Unit

--

3.0

-

-55

10
50
100

-

3.0

10

-

-

600

45

-

-

-

12.0

25

-

5.0

15

/lAdc

/lAdc
.uAdc
Vdc

pF

dB

fab
2N1l89
2N1l90

2-176

TfP

MHz

1.75
2.25

3.5
4.5

-

2N 1189, 2N 1190 (continued)
ELECTRICAL CHARACTERISTICS (continued)

Characteristic

Symbol

Input Impedance
(VCB = 6 Vde, IE

=

1 mAde, f

=

Output Admittance
(VCB = 6 Vde, IE

=

1 mAde, f

=1

Small Signal Current Gain
(VCE = 6 Vde, IE = 1 mAde, f

.=
~

...

0

z

ti
'"
It

100
80
60

= 1 VOLT

-

a

(sat)

:::

~

z

=1 MA

'"~

I Ia

"-

0

"

0..

60

80

100

~

...

~

'"

::>
<.)

I

I"\.

......

" """

80. = 0.375°C!mW(max)..J

........

I"...

20

30

40

50

60

70

80

~
90

'"

100

DC CURRENT TRANSFER RATIO versus COLLECTOR CURRENT
0

~ 120

200

o

80

is

60

<.)

40

.....

VeE

' .....
...........

~

..........

r.......

...........

<.)

0

= 1V

------

~O

_2N1189

0

~ Y'
0.2

z:
..:
~

'"'"::>

~/

50

100

*... "

II

100

.
'"

2L90j '/2~1189

150

o

",

........

140

<.)

~

I

8,c = 0.25°C!mW(max)

TEMPERATURE (0C)

VeE; 1 V

'"
~

~
o

0.3
0.3

0.17
O. 19

I"\,
.......

160
140
120
100
80
60
40
20

10

OUTPUT CURRENT versus BASE DRIVE VOLTAGE

::i

O. 14 0.22
O. 15 0.22

....

120

~ 250
..

-

-

T,. JUNCTION TEMPERATURE (OC)

~

Vde

(For All Types)

c;

40

0.26
0.25

POWER·TEMPERATURE DERATING CURVE

,...,.V

20

0.24
0.22

-

220
200
~
;: 180

= 6 VOLTS

-80 -60 -AO -20

Vde

-

2N1189
2N1190
2N1l89
2N1l90

~

20

-

115
170

VCE

0

- Vo"
I"

175
300

VBE

~

40

/lmho

120
190

60
100

~

= 50 MA

0.9

75
125

(Typical All Types)

Vc"
IE

-

-

2N1189
2N1190

= 50 mAde, IB = 1.5 mAl
= 50 mAde, IB = 1.0 mAl
= 100 mAde, IB = 3.0 mAl
= 100 mAde, IB = 2.0 mAl

/

0.1

hFE

SMALL SIGNAL CURRENT GAIN(h.. ) versus TEMPERATURE

200

37

1 kHz)

Colleetor- Emitter Saturation Voltage

.

31

Unit

hfe

=

2N1l89
2N1l90

...~

27
hob

Base-Emitter Drive Voltage
(VCE = 1.0 Vde, IE = 10 mAde)

600
400

Mu

Ohms

kHz)

DC Current Transfer Ratio
(V CE = 1.0 Vde, IE = 10 mAde)

(IC
(IC
(IC

TJII

hib
1 kHz)

2N1189
2N1190

(Ic

Min

20

it

0.4

0.6

o

0.8

o

20

40

60

80

100

120

140

160

Ie, COLLECTOR CURRENT (MILLIAMPERES)

V... BASE-EMITTER VOLTAGE (VOLTS)

2-177

180 200

2N

1191 thru 2N 1194 (GERMANIUM)
PNPgermanium transistors for high-gain audio amplifier and switching applications.

All leads isolated

MAXIMUM RATINGS
Rating

Symbol

Value

Collector-Base Voltage

VCB

40

Vdc

Collector-Emitter Voltage

VCER

25

Vdc

Emitter-Base Voltage

VEB

25

Vdc

200

mAdc

-65 to +100

DC

200

mW

Collector Current
(Continuous)

IC

Storage and. Operating Temperature

T stg ' T J

Collector Dissipation in,Ambient
(Derate 2.67 mW rC above 25°C)

PD

Unit

Thermal Resistance
(Junction to Ambient)

9JA

0.375

°C/mW

Thermal Resistance
(Junction t() Case)

9JC

0.250

°C/mW

ELECTRICAL CHARACTERISTICS

(TA

= 25°C unless otherwise noted)
Symbol

Characteristic
Collector-Base Cutoff Current
(V CB = 25 V, IE = 0)
(V CB

= l.0

V, IE

ICBO

= 0)

Min

Typ

-

Max

Unit

-

15

/lAdc

2.0

-

/lAdc

Emitter-Base Cutoff C\!rrent
(VEB '" 25 V, IC = 0)

lEBO

-

-

15

/lAdc

Collector -Emitter Leakage Current
(V CB '" 25 V, RBE '" 10 K)

ICER

-

-

600

/lAdc

Output Capacitance
(VCE'" 6 V, IE'" l. 0 rnA)

Cob

-

20

-

pF

Noise Figure
(V CE = 4.5 V, IE = 0.5 rnA,
f = 1 kHz,R s = 100 ohms)

NF

-

10

-

dB

-

1.5
2.0
2.5
3.0

-

MHz

Small Signal Current Gain Cutoff Frequency
(VCB = 6 V, IE'" L(} rnA)

2N1l91
2N1l92
2N1l93
2N1l94

2-178

fab

-

-

-

2Nl191 thru 2Nl194

(continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic

Typ

Mu

Unit

30
50
100
190

40
75
160
280

70
125
250
500

-

20
40
70
125

-

80
135
300
600

-

-

42
44
46
48

-

-

-

0.3

Min

Symbol

Small Signal Current Gain
(VCE = 6 V, IE = 1.0 rnA,
f = 1 kHz)

hfe

2N1l91
2N1l92
2N1l93
2N1l94

DC Current Gain
(V CE =lV,IC =10mA)

hFE

2N1l91
2N1l92
2N1l93
2N1l94

Small Signal Power Gain
(VCE = 6 V, IE = 1. 0 rnA,
f = 1 kHz, matched)

Ge

2N1l91
2N1l92
2N1l93
2N1l94

Base-Emitter Input Voltage
(VCE =6V, IC= 1.0 rnA)

V BE

OUTPUT CURRENT versus BASE DRIVE VOLTAGE

.
S

160

~

120

~

100

~
~
"co
"
j

~,

140

Veo = 1 VOLT

r,

i'- r-.....

80

........

o

o

20

SMALL SIGNAL CURRENT GAIN
versus TEMPERATURE

-..-

~

60

~

40

~

........ ...

"

~

ro-

40
60 80 100 120 140 160 180
Ie, COLLECTOR CURRENT (M ILLIAMPERES)

200

POWER-TEMPERATURE DERATING CURVE
(For All Types)

200

~

=

200

100
80

..........

220

400

~

......... ,
I'-.

-.- .- -- - --- "--

1'- ..... ....

(For All Types)

600

~

<2N1194

..........

l/N1192

-I-

60
40

0.8

-,

"'~1193

2N1191/

~

Vdc

\

20

N

-

DC CURRENT TRANSFER RATIO

~

°"

dB

v,rsus CURRENT COLLECTOR

180

0.2
0.4
0.6
V." BASE -EMInER VOLTAGE (VOLTS)

-

VrF:
1 VOLT
I E =50MA

/

-'"

"...

/

~

V

.~

~

z

160

8110 =0. 75°C/mW (rna,)

120
100

~

80

\

I'\.

140

~

Y

" '\

180

(he;;:;: O.25°C/mW (max)

[\
\

~

1\

'\ \

i5

V" _ 6 VOLTS
IF,
1 MA

=

~
Q

I'\. \
1\.\

60

0..

40

20

o

o
-80 -60

-40 -20

20

40

60

80

100

120

o

w

~

~

~

~

~

TEMPERATURE (OC)

T" JUNCTION TEMPERATURE (OC)

2Nl195

,

'\~

20

FOR SPECIFICATIONS, SEE 2N1l41 DATA.

2-179

ro

~

~

~

2N 1204,

A(GERMANIUM)

2N1494,A
2N1495
2N 1496
2N2096
2N2097
2N2099
2N2100

PNP germanium epitaxial mesa transistors for highspeed, high-current switching in line and core driver
applications.

CA5E~
(TO.5~1 ~

CASE 25

2N1204.A
Collector
2N1495
2N2099
connected
2N2100

MAXIMUM RATINGS

2N1494.A
2N1496
2N2096
2N2097

to case

Rating

Symbol

Collector-Base Voltage

Value

VCB

2N1204, 2N1204A, 2N1494, 2N1494A
2N2096, 2N2099
2N1495, 2N1496, 2N2097, 2N2100

Unit
Vdc

20
25
40

Collector-Emitter Voltage
2N2096, 2N2099
2N1204, 2N1204A, 2N1494A
2N2097, 2N2100
2N1495, 2N1496

VCEO

Collector - Emitter Voltage

VCES

Vdc
12
15
20
25

2N1204, 2N1204A, 2N1494, 2N1494A
2N2096, 2N2099
2N1495, 2N1496, 2N2097, 2N2100

Vdc
20
25
40

VEB

4.0

Vdc

Collector Current

IC

500

mAdc

Total Device Dissipation @ TC =25°C
All Types
Derate above 25°C

PD
750
10

mW
mW/oC

Total Device Dissipation @ T A = 25°C

PD
300
4.0

mW
mWjOC

500
6.67

mW
mW/oC

-65 to +100

°C

Emitter-Base Voltage

TO-5 Case
2N1204. 2N1204A, 2N1495, 2N2099, 2N2100

Derate above 25°C
Case 25
2N1494, 2N1494A, 2N1496, 2N2096, 2N2097

Derate above 25°C
TJ
T
stg

Operating Junction and
Storage Temperature Range

2-180

2N 1204,A SERIES

(continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Characteristics
Collector-Base Breakdown Voltage
(IC =100 "Ade, IE =0)

Collector-Emitter Breakdown Voltage
(Ie = 100/.lAde, V BE '" 0)
Collector-Emitter Breakdown Voltage
(Ie'" 2 mAde, IS '" 0)

(Ie =10 mAde,." =0)

2N1204. 2N1204A, 2N1494, 2N1494A
2N2096, 2N2099
2N1495, 2N1496, 2N2097, 2N2100
2N1204, 2N1204A, 2N1494, 2N1494A

=10 mAde, Ie = 0)

2N1204, 2N1204A, 2N1494 thru 21'<11496, 2N1494A

BVCES

BVCEO

BVEBO

2N2D90, 2N2097. 2N2099, 2N2100

Collector Cutoff Current

=5 Vde, IE =0)
=12 Vde, IE = 0)
(VCS =15 Vde, IE =0)
(VCS
(VCS

2N1204, 2N1204A, 2N1494 thm 2N1496, 2N1494A

leBO

2N2096, 2N2099
2N2097, 2N2100

Emitter Cutoff Current
(V SE

BVCBO

2N2096, 2N2099
2N2097, 2N2100
2N1495, 2NI496

Emitter-Base Breakdown Voltage
(IE'" 1 mAde. Ie =0)
(IE

Symbol

2N1204, 2N1204A, 2N1494, 2N1494A
2N2096, 2N2099
2N1495, 2N1496, 2N2097, 2N210Q

=0.5 Vdc, IC =0)
=1 Vdc, IC = 0)

2N1494 thru 2N1496, 2NI494A

(V SE
DC Current Gain
(Ie'"' 200 mAde, VCE = 0.5 Vdc)

lEBO

2N2096, 2N2097, 2N2099, 2N2100
hFE

Minimum

Typical

20
25
40

40

20
25
40

40

IS

25

12
20
25

-

4.0
4.0

-

-

-

-

0.4

-

Maximum

Unit

---

Vde

--

-

50

10

50

12

25

-

30

70

(Ie =400 mAde, VCE = 1.5 Vde)·

2N1204, 2N1494, 2N2096, 2N2a99
2N2097, 2N2loo

15
20

35
SO

-

-.

0.3

--

--

-

-

0.7

0.60
-

O. '12

3.5
3.5

6.5
20

-

8.0

50

1.1
1.5

2.0

-

-

-

--

20
35
55

-

30

75

VCE(sat)

2N2097, 2N2100

(Ie = 200 mAde, IB '" 10 mAde)

2N1204, 2N1204A, 2N1494, 2N1494A
2N2097, 2N21oo
2N2096, 2N2099

(IC = 200 mAde, IB - 20 mAde)

2NI495, 2NI496

Ia

(Ie = 400 mAde,
= 25 mAde)··
Sase-Emitter saturation Voltage
(IC • 50 mAde, ." =2. 5 mAde)
(le '" 200 mAde, IB '" 10 mAde)

Collector Output Capacitance
(V CB = 10 Vde, IE'" 0, [= 4 MHz)
Input Capacitance
(V BE .. I Vde,
= 0, ("" 4 MHz)
AC Current Gain
(IC =20 rnA, VCE = 10 V, ['" 100 MHz)

Ie

2N1204A, 2N1494A, 2N1495, 2N1496
VSE(sat)

2N2097, 2N2l00
2Nl204, 2Nl204A, 2N1494 thru 2N1496, 2N1494A
2N2097, 2N2l00
2N2096, 2N2099
2N1204, 2N1204A, 2Nl494 thru 2N1496, 2N1494A
2N2096, 2N2097, 2~099, 2N2100

2Nl204, 2N1204A, 2N1494,
2N1495, 2N1496

0,40

Cob

Cft>

All Types
2~H94A

Rise Time (Figure 5)

hre
I

2N20S7, 2N2l0D
2N1204, 2N12a4A. 2N1494. 2N1494A, 2N2a96, 2N2a99
2N1495, 2N1496
Minority Carrier storage Time Constant
(Figure 4)

2N12a4, 2N1204A, 2N1494. 2N1494A
2N1495, 2N1496

storage Time (Figure 6)

Fall Time (Figure 6)

1 ms, Duty cycle ~ 6%
Duty crele :s:: 2%

:s; 5 ms,

2-181

---

-

Ts

'r

2N2097, 2N21aa
2N2ag6, 2N2099
~

,

Is

2N2097, 2N2l0a
2N2a96, 2N2a99

·Pulse Test: Pulse width
**Pulse Test: Pulse width

-

-

Vde

"Ade

2N2097, 2N2l00

Collector-Emitter Saturation Voltage
(Ic =SO mAde, ." =2.5 mAde)

Vde

7.0
12

(Ic '" 200 mAde, VCE = 1 Vdc)

2NI204A, 2N1494A, 2N1495, 2NI496

Vde

"Ade

-

-

Vde
0.4
0.5
0.6
0.3
Vde
0.5
0.8
0.9
pF

pF

ns

ns

-

-

90

ns
SO
70
ns
40
60

2N1204,A SERIES

(continued)

FIIIURE 1- 1YPICAL RISE AND FALL nME BEHAVIOR

FIGURE 2- STORAGE nME VARlAnoIIS

30
Vee- IOV
TJ - 2SOC
fJ.-IO

j

20

1,,-1..

"

1c~lIo«

1\

'" .........

1\

I

\

I\.

"- .......

V

10

V/

~

"

!

30

50

70

200

100

...".. ~

I
300

..."..,

.,..,... ......
I ..............

10

1,,1 ... CIRCUIT ORIVE RATIO

FIGURE 3- TOTAL CONTROL CHARGE
I
I
I - tJ=12So~

-

lell,=IO

/

FIGURE 4 - CARRIER STORAGE TIME CONSTANT TEST CIRCUIT

!

+ Vu

"

/

VOUT
TO SCOPE

I,

= I, = 20 mA

1.5 K

IN277

l.I

I

I'

,. , /

,/

100
1.0

5.0

7.0

10

30

I,. BASE CURRENT (mAdel

50

500

-n

40

10,.s

c, You,

'T,=-I,

FIGURE &- STORAGE AND FALL TIME TEST CIRCUIT

V."

Ha RElAY
TEKTRONIX TYPE 517
CRO OR EQUIVALENT

250

250

50

-IOV

JL
--I I--

• ADD SCOPE AND PROBE
CAPACITANCE TO C, FOR
CORRECT CALCULATION
OFT,(K',I.

FIGURE 5 - RISE TIME TEST CIRCUIT
HI RELAY

135

10

O'S"F

3.0

......... i"""

500

Ie. COLLECTOR CURRENT (rnA)

3000

50

~

oJ

20

20
I". BASE ClRIRENT!mAde)

i

10
10

~
~

/
t.andt,

I..

50

10V

-SV

-IOV

NOTE I: SCOPE IMPEDANCE SUFFICIENTLY HIGH SO THAT DOUBLING
OR HALVING ITS VALUE DOES NOT CHANGE THE READING.
SCOPE RISE TIME FAST ENOUGH SO THAT DOUBLING OR
HALVING ITS VALUE DOES NOT CHANGE THE READING.

-10 V

2-182

2N 1204,A SERIES

FIGURE 7 - COLLECTOR-EMITTER SATURATION VOLTAGES
versus BASE CURRENT

1.0

i1!

g

(continued)

TJ
0.8

~

~

0.8

r'-.

0.6

\

\

III 0.4
:::l

\

8

""-

J 0.2
o
0.1

0.3

1/

Ie = 500mA

le-~oom~l+

I'..

/

I~ = I~OmA
Ie

10mA

I I II

Ie

SOmAl

-II

I

I

P""

0.5 0.7 1.0
3.0
5.0 7.0 10
I•• BASE CURRENT (mAde)

30

50

~ +1.0 r-7~-t--t-:::::;i::;;....t":=!:;;:;;f--1""=j

l

FIGURE 10 - NORMALIZED CURRENT GAIN
CHARACTERISTICS

..I.

I

z

---

~

<

~ 1.0

is

!<>

~

u
;;:

g

~

~ -1.0
~

..

~ -2.0

t;;;:t::::;:::::r....t-f~f~t::;-tl
Iv. (-55°C TO +25°C)

t--t--t--t--t--t--t--t--+----!

FIGURE 11 - LEAKAGE CHARACTERISTICS
COMMON EMITTER

I
/

Va =,-20V

K
10

:Il
co:

=> 7.0 - V ,
<>

... 5.0
~
~
~

c

T --

,)

CD

~

1.0
-0.25

J
0

+85°C

0.5

~

!

o
z

0.3

i

-

",

""""

1c

-

TJ = +8s

.,..........

TJ

+25°C

""'1"'0..

'T, =

-55°C

",,-

,,/

V

0.1
30
50 70 100
Ie. COLLECTOR CURRENT (mAde)

10

300

500

FIGURE 12 - JUNCTION CAPACITANCE
versus REVERSE VOLTAGE

IS

~

~.
TJ

'THiiESHOLO 1
f- VOLTAGE

3.0

TJ

0.7

~

-3.0 ......--I_--L_-'-_......._~_'--....._--L_-'
400
50
100
200
300
500
Ie. COLLECTOR CURRENT (mAde)

30

~""'
30 50 70 100
300 500
Ie. COLLECTOR CURRENT (mAde)

10

Ve• =, VOLT

<>

/

0.3

2.0

I-

.,J

...... ~

FIGURE 9 - TEMPERATURE COEFFICIENTS

z

I

I

-=10
TJ = 25°C

g

1

I

I- ,:

=: 25°C

I- '.

...

<>

FIGURE 8 - BASE-EMITTER VOLTAGE
versus COLLECTOR CURRENT

+55O C

...........
.............. ~

.... Lub,1 Current. I" is defined as

bias. V, is base voltage al Ihreshold of
eondielion.)
TJ

,

""'~ ....

base leakage eurrenl wilh bolh junelions
reverse biased. Ie is .'ways less Ihan I..
for V01>V,. (VOl is off condition base

C••

~r---......

+25°C

L
1.5
0.5
1.0
Vo•• BASE-EMITTER REVERSE BIAS (VOLTS)

2
2.0

2-183

0.4 0.5 0.7

1.0

5.0
3.0
REVERSE BIAS (VOLTS)

7.0

10

20

2N

1358, A(GERMANIUM}
For Specifications, See 2N174 Data.

2N

1359 (GERMANIUM)

2N1360
2N

1362

thru 2N

1365

For Specifications, See 2N375 Data.

2-184

2N

1408 (GERMANIUM)
PNP germanium transistor for high voltage neon driver, solenoid and relay driver circuits.

All leads isolated

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

50

Vdc

Collector-Emitter Voltage

VCES

50

Vdc

Emitter-Base Voltage

VEB

10

Vdc

Collector Current

IC

200

mA

Collector Dissipation at T A =25°C

PD

150

mW
mWjOC

2.0

derating factor
Junction Temperature Range

°c

-65 to +100

TJ

ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted)
C~aracteristlc

Symbol

Collector-Base Cutoff Current
(V CB = 5 Vdc, ~ = 0)

I CBO

Emitter-Base Cutoff Current
(V EB = 5 Vdc, IC = 0)

lEBO

Collector -Emitter Leakage Current
(VCB = 50 Vdc, .RBE = 0)

ICES

Collector-Base Breakdown Voltage
(IC = 25 #Adc, ~ = 0)

BVCBO

Emitter-Base Breakdown Voltage
(~ = 25 #Adc,
= 0)

BVEBO

Collector-Emitter Punch-Thru Voltage
(~= 25 #Adc)

Vpt

Base-Emitter Jnput Voltage
(IB = 1.0 mAdc, VCE = 1.0 Vdc)

VBE

DC Current Gain
(VCE -1 Vdc, IB

hFE

Ie

= 1 mAdc)

Small Signal Current Gain

=5.0 Vdc,

~

=1.0 mA, f =1 kHz)

hfe

Output Admittance
(VCB = 5.0 Vdc,

~

=1.0 mA,

hob

(VCE

f

= 1 kHz)

2-185

Min

Max

---

7.0

---

7.0

Unit
#Adc

#Adc

#Adc

---

150

50

---

10

---

50

---

---

0.6

10

---

10

---

---

2.0

Vdc

Vdc

Vdc

Vdc

---

--#mhos

1412

2N
(GERMANIUM)
2N1412A
"

~
II
-)

PNP germanium power transistors for high-voltage
power amplifier and switching applications in military
and industrial equipment.

,. I

CASE 5
(TO-36)

MAXIMUM RATINGS

Rating

Value

Symbol

Unit

V CB

100

Vdc

Collector-Emitter Voltage

VCES

80

Vdc

Collector-Emitter Voltage

VCEO

60

Vdc

VEB

60

Vdc

Emitter Current (Continuous)

IE

15

Amp

Base Current (Continuous)

IB

4.0

Amp

Tstg

-65 to +100

°c

0.5

°C/W

Collector-Base Voltage

E mitte r - Base Voltage

Junction & Storage Temperature
Thermal Resistance

I1JC

POWER· TEMPERATURE DERATING CURVE

SAFE OPERATING AREA
0
30

5m.

500~.

1m.

......

0

250~.

'\ \. ~~~~ _I~O~'[

10

V

""~

\ ~

"/

-

~

7"
'""'- ..... flt:

HO·WATT /
POWER DISSIPATION AT
25'C CASE TEMrERAiURE

I
5

OR LESS-

~

"

,

~

d~/

T~ 1001v. 8 mA
(2NlIOO ONLy)

S
!.

.

80

...

20

Ia

o

10

20

30

40

50

"-

"- ~

40

o

I

60

60

0
20

40

60

Te. CASE TEMPERATURE (OC)
The maximum continuous

BACK BIAS APPtli-~.
ULSE tURVr ONjY)
(iWITH

O. I

" "-"-

120

~ 100

:iii
iii

i\

160
150
140

70

80

80

"

100

This curve bas a value of

:.,:rjJ~c~f~~t~~n:~;::ri; lJr~~1~~.~ =i~e.r~~~;

by the thermal resistance at 100·C with a linear relafactor.
tion between the two tern·
peratures such that:
allowable PD = WO° - To
0.5

90 100

COLLECTOR·EMITTERYOLTAGE (VOLTS)

The Safe Operating Area Curves indicate l e V CE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2-186

2N 1412

(continued)

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Emitter Cutoff Current

Minimum

Maximum

. Unit

lEBO

-

200

/lAde

lEBO

-

10

mAdc

ICBO

-

200

/lAdc

ICBO

-

10

mAdc

VEB " -2.0 Vdc
IC = 0
Emitter Cutoff Current
VEB = -60 Vdc
IC = 0
Collector Cutoff Current
VCB = -2.0 Vdc
IE = 0
Collector Cutoff Current
VCB = -lOO'Vdc
IE = 0
Emitter-Base Voltage

VEB

0.5

Vdc

VEB

0.9

Vdc

Vfl

1.0

Vdc

VCE(SAT)

0.7

Vdc

VCE = -2.0 Vdc
IC = -1.2 Adc
Emitter-Base Voltage
VCE = -2.0 Vdc
Ie = -5.0 Adc
Floating Potential
VCB = -100 Vdc
IE = 0
(Voltmeter input resistance
= 10 Megohm min)
Collector-Emitter Saturation Voltage
IC = -12 Adc
IB = -2.0 Ade
Forward Current Transfer Ratio *

-

-

hFE

10

hFE

25

BV CEO

60

-

Vdc

80

-

Vdc

faie

5.0

-

kHz

lEBO

-

6.0

mAdc

leBO

-

6.0

mAdc

VCE = -2.0 Vdc
IC = -15 Adc
Forward Current Transfer Ratio

50

-

VCE = -2.0 Vdc
IC = -5.0 Adc
Collector-Emitter Breakdown Voltage *
IC = -1 Adc
IB = 0
Collector-Emitter Breakdown Voltage

*

BV CES

VEB = 0
IC = 300 mA
Small-Signal Short-Circuit Forward-Current
Transfer Ratio Cutoff Frequency
VCE = -12 Vdc
IC = -5.0 Adc
High- Temperature Operation
Emitter Cutoff Current
TC = +71°C min
VEB = -30 Vdc
Collector Cutoff Current
VCB = -30 Vdc
IE = 0

'Test by sweep method with a short duty cycle (about 1 %) to avoid excessive heating.

2-187

2N1412

(continued)

INPUT CHARACTERISTICS

CURRENT TRANSFER CHARACTERISTICS

0.6

12

0.5

...ffi

Ci)
C>.

::E

5
z

.......
""
...""

IIJ

0.3
SooC

=>
<.>
en

«

CD

0.2

25°

~

:;;

1""""" i"""~
0.4

rl

""g;

~

4

"
O.S

2

I'

.,

III

o
o

1.0

0.15

VER • EMITTER·BASE VOLTAGE (VOLTS)

15

I~

j

SooC

S

::E

5

....
is
""=>""
<.>
""u0
....

...::::l

25°C ~
6

ILVJ
/ 1/V
1'--'
/ / /

4

0

u

~

2

o
o

/
,/
0.2

/

~,

,

0.4

~
~

J

10

C>.

12

VI

900
800

J

_700

rsbo

~
I
- ~_550
500

~ ~_45Q

~OO

--

"j If

350
3 0

'/

~-

250

~

40 oC -

2rO
1501

.ioo

,/

/

50

-'

3

10

I. _

V

m!,

O.S

1.0

00

10

20

30

40

50

I. _ 0

VES
\

.J U~

60

70

SO

Ve+:. COLLECTOR·EMITTERVOLTAGE (VOLTS)

V,,,.. EM ITTER·BASE VOLTAGE (VOLTS)

2-188

=0

~~tb~

0.6

0.75

0.60

OUTPUT CHARACTERISTICS

12

...""

0.45

0.30

I". BASE CURRENT (AMPERES)

TRANSCONDUCTANCE CHARACTERISTICS

iil

OOC

1/
A1

<.>

4°iC-

V

~

6

""
o

~

- 25°C

<.>

~::l

'/ L"-

// /'
Jj 0-

S

5

r 1O

0.6

_400C"")

.......z

V rt

I

~~

0.2

~

~~

/

0.1

IIJ

~

/

I / /'"

10

I
JI
I J

0.4

/

90

100

1413 thru 2N 1415 (GERMANIUM)

2N
2Nl175

CASE

PNPgermaniumtransistorsfor general-purpose lowfrequency amplifier and switching applications. Characteristic curves similar to 2N524-2N527 series.

31(1)

(TO-5)

Base connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

35

Vdc

Collector-Emitter Voltage

VCEO

25

Vdc

Emitter-Base Voltage

VEB

10

Vdc

IC

500

mAdc

Collector Current
Junction and Storage Temperature
Power Dissipation at 25°C Ambient

T j & Tstg

-65 to +100

°C

225

mW

Po

ELECTRICAL CHARACTERISTICS· (T A; 25 0 C unless otherwise noted)

Characteristics

Symbol

Min

Max

Unit

Collector Cutoff Current
VCB ; 30 Vdc, IE; 0

ICBO

-

12

pAdc

Emitter Cutoff Current
VEB ; 10 Vdc, IC ; 0

lEBO

-

10

pAdc

Collector-Emitter Voltage
IC; 0.6 mAde, RBE = 10 K

BVCER

25

-

Vdc

Punch-Thru Voltage

Vpt

25

-

Vdc

25
34
53
70

42
65
90
140

DC Current Gain
IC = 20 mAde, VCE

= 1 Vdc

hFE
2N1413
2N1414
2N1415
2N1175

2-189

-

2N1413 thru 2N1415, 2Nl175 (continued)
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted)

Characteristics
DC Current Gain
IC = 100 mAde, V CE

Base Input Voltage
VCE = 1 Vde, IC

=

= 20

Symbol

Min

Max

Unit

hFE

1 Vdc
2N1413
2N1414
2N1415
2N1175

23
30
47
62

-

-

-

260

mVdc

-

40

pF

-

MHz

VBE

mAdc
2N1175

Output Capacitance; Input AC Open Circuit
VCB = 5 Vdc, IE = 1 mAdc, f = 1 MHz

Cob

Frequency Cutoff
VCE = 5 Vdc, IE

f",b

= 1 mAdc

O.B

2N1413
2N1414
2N1415
2N1175

Small-Signal Short-Circuit Forward-Transfer Current Ratio
VCE = 5 Vdc, IE = 1 mAdc, f = 1 kHz
2N1413
2N1414
2N1415
2N1175

hfe

Small-Signal Open Circuit Output Admittance
VCB = 5 Vdc, IE = 1 mAdc, f = 1 kHz
2N1413
2N1414
2N1415
2N1175

hob

Small-Signal Open-Circuit Reverse-Transfer Voltate Ratio
VCB = 5 Vdc, IE = 1 mAdc, f = 1 kHz
2N1413
2N1414
2N1415
2N1175

h rb

Small-Signal Short-Circuit Input Impedance
VCB = 5 Vdc, IE = 1 mAdc, f = 1 kHz
2N1413
2N1414
2N1415
2N1175

h ib

1.0
1.3
1.5

-

20
30
44
60

41
64
120

0.10
0.10
0.10
0.10

1.3
1.2
1.0
0.9

/lmh

1.0
1.0
1.0
1.0

10
11
12
14

X10- 4

26
26
26
26

36
35
33
31

/lmhos

2N1420
For Specifications, See 2N718 Data,

2N1494, A, 2N 1495,2N 1496
For SpeCifications, See 2N1204 Data.

2-190

-

-

BB

1529

1538

2N
thru 2N
(GERMANIUM)
2N 1529A thru 2N 1532A, 2N 1534A thru 2N 1537A

PNP germanium power transistors for switching and
amplifier applications in high-reliability equipment.

CASE 4-04

CASE 11

(TO-41)

(TO-3)

For units with solder lugs attached, specify
devices MP1529, A etc. (TO-41 package)

MAXIMUM RATINGS

Rating

Symbol

2N1529
2N1534

2N1530
2N1535

2N1531
2N1536

2N1532
2N1537

2N1533
2N1538

Units

Collector-Emitter Voltage

VCEX

40

60

80

100

120

Vdc

Collector- Emitter Voltage

VCES

30

45

60

75

90

Vdc

Collector-Emitter Voltage

VCEO

20

30

40

50

60

Vdc

Collector-Base Voltage

VCB

40

60

80

100

120

Vdc

Emitter -Base Voltage

VEB

20

30

40

50

60

Vdc

Collector Current
(Continuous)

IC

5.0

Amp

Collector Current
(Peak)

Ie

10

Amp

Junction Temperature Range

TJ

-65 to +110

Total Device Dissipation

Po

106

(25°C Case Temperature)
Thermal Resistance

0.8

IIJC

2-191

°c
watts

°C/W

2N 1529 thru 2N 1538 (continued)

=

ELECTRICAL CHARACTERISTICS (Tc 2S'Cunless otherwise specified.>
Characteristics apply to corresponding "A" type numbers also.
Min

Max

ICBOl

-

2.0
2.0
2.0
2.0
2.0

Collector- Base Cutoff Current
(V CB " 2Y)
(VCB " I 2 BVCES rating; TC " +90 oC)

ICBO

-

0.2
20

Emitter- Base Cutoff Current
(Y EB " 12Y)

lEBO

-

0.5

S,mbol

Characteristic
Collector-Base Cutoff Current
(YCB " 25Y)
(Y CB : 40Y)
(YCB " 55Y)
(YCB" 65Y)
(V CB " 80Y)

Collector-Emitter Breakdown Voltage
(IC " 500 mA, V EB " 0)

2N1529. 2N1534
2N1530.2N1535
2N1531, 2N1536
2N1532, 2N1537
2N1533, 2N1538

BV CES
2N1529, 2N1534
2N1530. 2N1535
2N1531, 2N1536
2N1532.2N1537
2N1533. 2N1538
ICEX

Collector-Emitter Leakage Current
(V BE " -lY, VCE @ rated BV CBO )
Collector-Emitter Breakdown Voltage
(Ie " 500 mA, IB" 0)

Collector-Base Breakdown Voltage
(IC " 20 rnA)

Current Gain
(V CE " 2V,IC " 3A)

Base- Emitter Saturation Voltage
(I C = 3A, IB = 300 rnA)

Collector-Emitter Saturation Voltage
(IC " 3A, IB = 300 rnA)

Transcondu.ctance
(V CE = 2V,
3A)

Ie "

BV CEO
2N1529,
2N1530,
2N1531,
2N1532,
2N1533,

2N1534
2N1535
2N1536
2N1537
2N1538

2N1529,
2N1530,
2N1531,
2N1532.,
2N1533,

2N1534
2N1535
2N1536
2N1537
2N1538

2N1529 - 2N1533
2N1534 - 2N1538

2N1529 - 2N1533
2N1534 - 2N1538

2N1529 - 2N1533
2N1534 - 2N1538

2N1529 - 2N1533
2N1534 - 2N1538

2-192

BV CBO

hFEl

VBE(sat)

mA

rnA

rnA

30
45
60
75
90

gFE

---

volts

-

rnA

-

20

20
30
40
50
60
40
60
80
100
120
20
35

--

volts

--

-

volts

--40
70

-

volts

-

1.7
1.5

-

1.5
1.2

1.2
1.5

-

VCE(sat)

Unit

volts

-

mhos

2N 1529 thru 2N 1538 (continued)
POWER·TEMPERATURE DERATING CURVE

!~IFJ--+---+l-i~~sg!J
110~===F~;:~==~====~==~~

-

~

0

20

40

60

80

lao 110

Te. CASE TEMPERATURE (OC)

The maximum continuous power is
related to maximum junction temperature, by the thermal resistance factor. For dc or frequencies below
25Hz the transistor must be operated
within the constant Pn = Vc x Ic
hyperbolic curve. This curve has a
value of 106 Watts at case temperatures of 25°C and is 0 Watts at 110°C
with a linear relation between the two
temperatures such that
P n allowable = 110° - Tc
0,8

COLLECTOR CURRENT versus BASE CURRENT

COLLECTOR CURRENT versus EMITTER BASE VOLTAGE

2N1534 - 2N1538

J

./

#

1.0

..

20V

2.0

3.0

DC CURRENT GAIN versus

lSG

SOil

-----1 r--I

2N1529 - 2N1533

COLLECTOR CURRENT

TEST TRANSISTOR

I

V

v,. EMITTER·BASE VOLTAGE (VOLTS)

SWITCHING TIME MEASURING CIRCUIT

=

/

/

I'

I•• BASE CURRENT lAMPS)

Zo

v

/

VeE = 2V

~GI

I

125

I

LJ

= 2V

;\

PULSE GENERATOR

TYPICAL SWITCHING CHARACTERISTICS
V
R
Ie
t..+t.
(AMP) IVOLTS) (ohms). II'S}
2N1521-33

3

3

65

10

t.

t,

i/tS)

("S)

2

5
25

2N153W8

3

3

100

8

3

'" '"

..........

I'-.. t---. 2N1534 - 2N1538

'""r- r- r--

2Nl529 -lN1533

5

o0

1.0

2.0
Ie. COLLECTOR

2-193

-r--r----

3.0
C~RRENT

4.0
lAMP}

5.0

2N 1529 thru 2N 1538

(continued)

SAFE OPERATING AREAS - PULSE CONDITIONS
The Safe Operating Area Curves indicate I c V CE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2N1529,2N1534'

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

2N1530,2N1535'

2N1531,2N1536'

10

=t~m'
1 m,

r- r- -Sms

l - I-- -1m,
l - I-- -500",

H

-c~ 500 "'

"t--

\

~~

\

f--

\

I-

\r"'

\

~
~

z

100 pS

~

5m,
1m,

I"<- H.

>---

u

~
~

!
.fj

\

1\

\\

\

\

DC\

OC\

~250 /lS

t\ 11

~
~
~

~

~ I--

\

1\

1500 ",

\

I\.
\

['\
DC

i\\
\~

\1

r"\
,,,-

0.7

r-....

0.5

\

0.4

"'-

['\

0.3
0.1
TO 45V,3mA
WITH APPLIED
BACK BIAS
(FOR PULSE CURVES ONLY)

0.1

o

5 10

15

10

~

15 30

T060V,3mA
WITH APPLIED
BACK BIAS
(fOR PULSE CURVES ONLY)
350

5

10

15 10

15 30 35

40

TO 75 V, 3 rnA
WITH APPLIED
BACK BIAS
(fOR PULSE CURVES ONLY)

\

45

50 0

5

10

15

10

25

30 35

40

45

\

50 55 60

65

V", COLlECTOR.£MITIER VOLTAGE (VOLTS)

2N1532,2N1537*

2N1533,2N1538

10

5ms
1m,

.....

5m,
1m,
500 I~S

) 500 "'

~2501's

\

1\

1\

t(:

'\

"

~

!

DS"-

~

;;;i

~

.fj

~\\

r"......

0.7

......
........

0.5

I\, 1\

[\ \
['\

"'}

i'

",

l\ \

~~
~~

~~

"

......

" '"

0.4
0.3
0.1

TO 90 V, 3 rnA
WITH APPLIED
BACK BIAS
(fOR PULSE CURVES ONLY)
0.1

"

1'5

r-....

\ .~~
\

~

'\

~

8

--::::; 250

~

o

10

10

30

40

50

60

70

I' .....

~

800

TO 110 V, 3 rnA
WITH APPLIED
BACK BIAS
(FOR PULSE CURVES ONLY)
10

10

V", COllECTOR·EMITIER VOLTAGE (VOLTS)

*Characteristics apply to corresponding' An type numbers also.

2-194

30

40

50

60

70

80

~
90

100

1539

1548

2N
thru 2N
(GERMANIUM)
2N1539A thru 2N1542A, 2N1544A thru 2N1547A

PNP germanium power transistors for switching and
amplifier applications in high-reliability equipment.

CASE 4-04

CASE 11

(TO-41)

(TO-3)

For units with solder lugs attached, specify
devices MP1539, A etc. (TO-41 package)

MAXIMUM RATINGS

Symbol

2N1539
2N1544

2N1540
2N1545

2N1541
2N1546

Collector-Emitter Voltage

VCEO

20

30

40

50

60

Vdc

Collector-Emitter Voltage

VCES

30

45

60

75

90

Vdc

Collector-Emitter Voltage

VCEX

40

60

80

100

120

Vdc

Collector-Base Voltage

VCB

40

60

80

100

120

Vdc

Emitter-Base Voltage

VEB

20

30

40

50

60

Vdc

Rating

Collector Current-Continuous

2N1542
2N1547

2N1S43
2N1548

Unit

IC

5.0

Adc

IC

10

Adc

Total Device Dissipation @TC = 25· C

PD

106

Watts

Operating Junction Temperature Range

TJ

-65 to +110

·C

Peak

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

0.8

·C/W

The maximum continuous power is
related to maximum junction temperature, by the thermal resistance factor. For d. c. or frequencies below
25 cps the transistor must be operated
within the constant P n = Vc x Ie
hyperbolic curve. This curve has a
value of 106 Watts at case ternperatures of 25 0 C and is a Watts at 1100 C
with a linear relation between the two
temperatures such that
P n allowable = 1100 - Tc
0.8

POWER·TEMPERATURE DERATING CURVE
110
~10
!10(
~ 80

...........
~

~

60
~ 40
~ 20
~0
.... 0

2-195

~

"'-..
....... i'...
20

40

60

Tc, CASE TEMPERATURE ('C)

80

100 110

2N 1539 thru 2N 1548

(continued)

ELECTRICAL CHARACTERISTICS

(Te

=2SOC unless otherwise noted)

Characteristic

Symbol

Min

Max

20
30
40
50
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltaget
(IC ; 500 mAdc, IB ; 0)

Collector-Emitter Breakdown Voltaget
(IC ; 500 mAdc, VBE ; 0)

Collector - Base Breakdown Voltage
(IC ; 20 mAdc, IE ; 0)

2N1539, 2N1544
2N1540,2N1545
2N154l,2N1546
2N1542,2N1547
2N1543,2N1548
2N1539,2N1544
2N1540,2N1545
2N154l,2N1546
2N1542,2N1547
2N1543,2N1548
2N1539,2N1544
2N1540,2N1545
2N154l,2N1546
2N1542,2N1547
2N1543,2Nl548

BVCEOt

BV CESt

BV CBO

volts

-

30
45
60
75
90

-

40
60
80
100
120

-

-

Collector Cutoff Current
(V CE @ rated VCB' VBE ; 1. 0 Vdc)

I CEX

-

20

Collector Cutoff Current
(V CB ; 2.0 Vdc, IE ; 0)

ICBO

-

0.2

-

2.0

(V CB ; 1/2 VCES rating, TC ; 90°C)

volts

mA
mA

20

Collector Cutoff Current
(V CB ; 25 Vdc, IE; 0)
(V CB ; 40 Vdc, IE ; 0)

2N1539,2N1544
2N1540,2N1545

-

2.0

(V CB ; 55 Vdc, IE; 0)

2N154l,2N1546

-

2.0

(V CB ; 65 Vdc, IE; 0)

2N1542, 2N154 7

-

2.0

(V CB ; 80 Vdc, IE ; 0)

2N1543,2N1548

-

2.0

50
75

100
150

3.0
5.0

-

VCE(sat)

-

0.3
0.2

VBE(sat)

-

0.7
0.5

I CBOl

volts

mA

ON CHARACTERISTICS
DC Current Gain
(IC ; 3.0 Adc, V CE ; 2.0 Vdc)

DC Transconductance
(IC ; 3.0 Adc, VCE ; 2.0 Vdc)

Collector-Emitter Saturation Voltage
(IC ; 3.0 Adc, IB ; 300 mAde)

Base-Emitter Saturation Voltage
(IC ; 3.0 Adc, IB ; 300 mAde)

2N1539-2N1543
2N1544-2Nl548

2N1539-2N1543
2N1544-2N1548

2N1539-2N1543
2N1544-2N1548

2N1539-2N1543
2N1544-2N1548

hFEl

gFE

DYNAMIC CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC ; 3.0 Adc, VCE ; 2.0 Vdc)
Characteristics apply to corresponding A type numbers also.
tTo avoid excessive heating of collector junction, perform this test with a sweep method.

2-196

-

mhos

volts

volts

2N 1539 thru 2N 1548 (continued)
SWITCHINO TIM. M.ASURINO UNIT

TRANSISTOR

Ie V
(Amp) (Volts)

r------

~.------!

.J

2N153,",3

20Vl...

3

2N1544-48

PULSE GENERATOR

3

~

2NI544-2N1548

~

0.1

c:
~

4

....

5

3

5

3

250

5

3

8

--, V V 7

Vl/. Vr--..

::::I

:!S
....

~..,
.2

2N1539 .2N1542
0.5

165

If

il!
..,'"

J
J. V
0.4

3

I

I

0.3

~)

2NI544·2NI548

~ A.. ,

0.2

~)

(ohml) ~)

I
V",=-2 V

I
/
V

VCI = - 2 V

1,,+1.

COLLECTOR CURRENT versus BASE CURRENT

COLLECTOR CURRENT versus EMITTER BASE VOLTAGE
I

I,

R

= 2 kHz,

"Input Pulse Repetition Rate
Pulse Width = 50 P.s

I

SWII::r~:·:I".1

Can~ltlo.l"

11,1_

I.n.

Zo • ~on

o

0.6

II
o

~

10

V
~
V

20

30

40

2NI539·2NI543

50

70

60

80

90

I" BASE CURRENT I mA )

VEl. EMlmR-BASE VOLTAGE (VOLTS)

2N1539, 2N1544
20

SAFE OPERATING AREAS

I. JPEAK

The Safe Operating Area Curves indicate
Ic - VCE limits below which the device will
not go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector-emitter short. (Case
temperature and duty cycle of the excursions make no significant change in these
safe areas.) To insure operation below the
maximum TJ. the power-temperature derating curve must be observed for both
steady state and pulse power conditions.

5ms I

sLid

Im1s

Oft LESS

10

i

I

"-\.

-"i"""r

3

I =ooLV "
2

1

'"

~~~~~Sir~~~:TURE

"

0.'
D.•
03

..

D.'

1\

-

f-

TO 45V.3 mA

,_

WITH BACK BIASAPP~If--

(PULSjCURVES1DNlYI

0.1
.0

10

15

20

2S

r

30

35

COlLECTOR.fMlnER VOLTAGE (VOL TSI

"~,,,.J.,
II.

0

\". 1

I~'

+t"'~EJ ,,,.

lOO~

50011'1

ORlfSS

~,;

Im~

250-

if
~

I~ ,1..1 /VI"r\.

"i}T'~

\

1

8

25"CCASETEMPIRATURE

....

02

.1

r--

1\

9O-WAn
POWER DISSIPATION
25"C CASE TEMPERATURE

PQWEROISSIPA11~

•

1~5

,J.,;~"

51"

::r

1m,1

:o~~

\

"T"y~

~

1 1

v1"'''i

250 ...s
OR lESS

OR LESS

2

~

".~"'! ,Im\

250"

"

••
,

2N154:t. 2N1548

2N1542.2N1547

2N1541, 2N1546

2N1540, 2N1545
20

I:'

~~\

'TrvKr-..r-..~

9O-WATT

9(J..WAn
POWERDISSIPATlnN

POWER DISSIPATION

2s o CCASETEMPERATURt:

25°C CASE TEMPERAtURf

d•
d•

I"
i

6OV,lrlA
1--+-+---1- TJ
WIT1iBACKBIASAPp~I~-rr

1,!,'TiONT

o

5

10

l!i

20

25

3D

r-~\

354045

COLlECTOlI-[MlnER VOLTAGE (VOLTS)

I-+-H+-+

500

3}.',,, APPL'EO
l'~ --1\

TO'TI",5!.:..
w
.........

(PU1"'i"j"i"i

1--I--+-j-T090V.3mA

wnH.BACKBIASAPP,~~

I'~\

5101520 n 30354045 so 55 60 650
COUECTOR.£MmER YOLUGE (VOlTS)

2-197

(PUiSECUjVESjlYJ
10

20
30
40
50
60
COllECTOR-EMmER VOlTAGE {VOlTS]

I

10

SOo

1020 :JO 40 50 60 70 10
COWCTOff.lMmER VOLTAGE {VOlTS)

90 100

2N 1539 thru 2N 1548 (continued)
DC CURRENT GAIN versus COLLECTOR CURRENT

BASE CURRENT versus EMITTER BASE VOLTAGE
10 0

o.

.....

IE

III

I

I

I

200

I

I

.

..

70

50

~

40

!

2N1544-2N1548

0

1'-..... ~

20

:::>

I

0.1

40

o

0.4
0.2
0.3
0.5
V'" EMITIER-BASE VOLTAGE (VOLTS)

-...r- ~
'~

./". " ,

o

.........
80

//

o

, / 2N1544-2Nl548

.......

...

/ /

10

2N

II

~

5
II 120

17II

I

:::>

I

.=- 2Y

z 160

2N1539-2N1543 \ -

60

...

I
Ye

YCE =- 2 Y

0

!

I

240

0.6

~

2N1539-2N1543

I/

rI

I

o

4

Ie. COLLECTOR CURRENT (AMP)

1549, A thru 2N 1560, A(GERMANIUM)
PNP germanium power transistors for switching and
amplifier applications in high-reliability equipment.

CASE 11A

For units with solder lugs attached, specify
devices MP1549, A etc_ (TO-4·1 package)

CASE 4-04

ITO-411

(TO-3 modifiedl

MAXIMUM RATINGS Apply to corresponding "Hi-Rei" Series also
Rating
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector- Emitter Voltage

Symbol
VCEX
VCES VCEO -

2N1549 2N1550 2N1551 2N1552
2N1553 2N1554 2N1555 2N1556
2N1557 2N1558 2N1559 2N1560

Units

40

60

80

100

Vdc

30

45

60

75

Vdc

20

30

40

50

Vdc

Collector-Base Voltage

VCB

40

60

80

100

Vdc

Emitter-Base Voltage

VED

20

30

40

50

Vdc

Collector Current (Continuous)

IC

15

Amp

Collector Current (Peak)

IC

20

Amp

Collector Junction Temperature

TJ

Collector Dissipation
(25'C Case Temp.)

PD

106

Watts

°JC

0.8

°C/W

Thermal Resistance

-65 to +110

*To avoid excessive heating of collector junction, perform this test with a sweep method.

2-198

°c

2N 1549 thru 2N 1560 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristics apply to corresponding A type numbers also.

Characteristic

Min

Max

-

3.0

2N1551, 2N1555, 2N1559

-

3.0

2N1552, 2N1556, 2N1560

-

3.0

-

0.2

-

20

-

0.5

Symbol

Collector-Base Cutoff Current
(V CB = 25 V)
2N1549, 2N1553, 2N1557
(V CB
(V CB
(V CB

= 40 V)
= 55 V)
= 65 V)

2N1550, 2N1554, 2N1558

Collector-Base Cutoff Current
(V CB = 2 V)
(V CB

= 1/2

BV CES rating; TC

I CBO

= +90°C)

Emitter-Base Cutoff Current
(V EB = 12 V)

lEBO

Collector-Emitter Breakdown Voltage
(I C = 300 mAl
2N1549,
2N1550,
2N1551,
2N1552,

2N1553,
2N1554,
2N1555,
2N1556,

2N1557
2N1558
2N1559
2N1560
ICEX

Collector-Emitter Breakdown Voltage*
(I C = 300 mA, IB = 0)
2N1549, 2N1553,
2N1550, 2N1554,
2N1551, 2N1555,
2N1552, 2N1556,
Collector-Base Breakdown Voltage
(I C = 20 mAl
2N1549,
2N1550,
2N1551,
2N1552,

3.0

rnA

rnA

volts
30
45
60
75

-

-

20

rnA

volts

BV CEO *
2N1557
2N1558
2N1559
2N1560

20
30
40
50

volts

BV CBO
2N1553,
2N1554,
2N1555,
2N1556,

2N1557
2N1558
2N1559
2N1560

40
60
80
100

-

-

hFEl

= 10 A)

10
30
50

2N1549 - 2N1552
2N1553 - 2N1556
2N1557 - 2N1560

Base-Emitter Drive Voltage
(IC = 10 A, IB = 1. 0 A)

30
60
100
volts

VBE
2N1549 - 2N1552
2N1553 - 2N1556
2N1557 - 2N1560

Collector Saturation Voltage
(IC = 10 A, IB = 1. 0 A)

rnA

BV CES

Collector-Emitter Leakage Current
(V BE = 1.0 V, VCE @ rated BV CBO)

Current Gain
(V CE = 2.0 V, IC

ICBO!

VCE(sat)
2N1549 - 2N1552
2N1553 - 2N1556
2N1557 - 2N1560

-

1.3
1.0
0.85

-

1.0
0.7
O. 5

volts

*To avoid excessive heating of collector junction, perform this test with a sweep method.

2-199

Unit

2N 1549 thru 2N 1560 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic
Transconductance
(V CE = 2.0 V, IC = 10 A)

Symbol

2N1549 - 2N1552
2N1553 - 2N1556
2N1557 - 2N1560
f

COLLECTOR CURRENT versus BASE CURRENT

,.

J

is

~

I
I
2N1553·2N1556

6

1Ii

4

/

V

Y

If

i

....

<.>

~I

/
V

10

2N1557·2N1560

COLLECTOR CURRENT versus EMInER-BASE VOLTAGE

2N1553-2N1556 ...

."...., ..-

12

,.~

V-

'IV V

2N1557-2N15S0 /

l!l

e'"

Vc

6

~

,= -2V

vc,= -2V

0
<.>

4

,g

J

o

o

0.2

0.4
I"~

0.6

O.B

o

1.0

....

vc ,= -

2V

K.,NI557.2NI5S0

z:
;;:

co

....

BO

z

~
::>
<.>

I'k
to- ~

~53r?5SI

60

1

I
40 - '

o

I"N...
I I I

I

...... ;:::: 2N1549-2N1552
.......

20

o

N

4

'"

/ /

/ 1/
V It'

2N1549-2N1552

~~

0.2

0.4

O.S

O.B

1.0

v", EMITTER-BASE VOLTAGE (VOLTS)

1.0

BASE CURRENT versus EMInER-BASE VOLTAGE
r--..,--,-..,--,-..,--,--r--r-'-,----,

O.B

t--t--+--t--+--t--+--t--+-I-+---l

O.S

t--+-+--+-+--+-+--+--t+--+----i

0.4

t--t--+--t--+--t--t-:-t-++-;---l

CURRENT GAIN versus COLLECTOR CURRENT

100

JII

o

BASE CURRENT (AMPS)

140

120

/

V/ J

'"

::>
<.>

I

V

I

10

...

2N1549-2N1552,

I- ~
'/

~

V"

kHz

10
6.0
5.0

14

~

'"'"::><.>
'"e
~
0

Typ

ae

Willi

12

18
30
40

6.0
8.0
12

2N1549 - 2N1552
2N1553 - 2N1556
2N1557 - 2N1560

~

mhos

gFE

Frequency Cutoff

1·

Unit

Max

Min

,.~

r--... r-..
l""'- I'-

-

~
~
::>

"' ..... r---

<.>
....
~

--

0.21--+---+

r10

12

14

0.2

IS

0.4

O.S

0.8

V", EMMITER-BASE VOLTAGE (VOLTS)

'c, COLLECTOR CURRENT (AMPS)

2-200

1.0

2N 1549 thru 2N 1560

(continued)

SAFE OPERATING AREAS

The Safe Operating Area Curves indicate IcV CEl limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

,

2N1550, 2N1554, 2N1558

2N1549, 2N1553, 2N1557
/lcMAXPEAM

5ms

'm.

:, \\I\. '<. 1\

1
i,\~50,ll5

OR LESS

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

Ie MAX PEAK

t\' \

."<

'm.

ShlS

"<
i'..

2N1551, 2N1555, 2N1559

'\1\

...

IcMA)(PEAK

/500,111
lOOpS
DR LESS

I\~

K

'm.

2N1552, 2N1556, 2N1560

1'\

r\f.-!~~~

,m,

/leMAKPEAK/Sms

500,lls1

~

\\\

~

50°111

«-

250,111
DR lESS

5 IcMAXCONT.

~

}'o.

/

,

9O·WATT
POWER DISSIPATION

I"

25°CCASETEMPEIlATUAE

'ciAXCjNT "-./ I>-

1\

I-\'

,.U //1" i'- f'\

~~

tL11

25°C CASE TEMPERATUAE

•
"

T045V.3mA l

t'"'

d,
d,

"

'.4

2 r - t--

\

,........

POWER DISSIPATION
25°CCASETEMP[RATURf

d,

3

\.

"""'CO'),7
~JTT ~

~

i'-i'-

POWERDISSIPAT10N
25°C CASE TEMPERATURE

POWER DISSIPATION

"I"\. .......

l\

t"--

IcMAXCONT.

,,-

WJTHBACKBIASAPPL~
IPULSjCURViLYl

T~"V.3.J

-

10
15
20
25
30
COWCTOR.£MmEIt VOLTAGE MILTS}

-r-

350

5

10

Hi

20

25

30

.

3

"

f\.
45

50'

~~T~:AlK~ASAPPlItD
rsYui
. . ~I'

T075V,3mA

I-WITHBACKBI"APP\'~

WITHBACKBIASAP~~~

tiUlS'I'Uj'"\"

-

iPU'i"l'j 'l~

51015202530354045505560650

COUECTOR.fMITTER VOLTAGE (VOl.TSl

20

10

COLLECTOR.fMITTERVOLTAGEIVOlTS)

.. . .
70

50

30

COllECTOR.fMmER VOlTAGE MILTS}

POWER·TEMPERATURE DERATING CURVE

The maximum continuous power is
related to maximum junction tempera- 110
ture, by the thermal resistance fac - ~ 106
tor. For dc or frequencies below !IOO
25 Hz the transistor must be operated ~ 80
within the constant PI) = Vc x Ie
~ 60
hyperbolic curve. This curve has a
~ 40
value of 106 watts at case tempera~ 20
tures of 250 e and is 0 watts at 1100 e ,f
with a linear relation between the two
0
temperatures such that Pn allowable
=1100 - Tc

"""
20

~

40

~

"-..
60

'"

80

.......

i'.....

100 110

Te. CASE TEMPERATURE ('C)

0.8

SWITCHING TIME MEASURING UNIT
TRANSISTOR

Zo = 50n

In

2ovL... J

O.. lces

.

PULSE GENERATOR

2-201

C••dlll ••• •

.

V
Ie
R
(Amp) (V.lts) (ohms)
2N1549 ·52
10
10
10

0

'"
~

.
.:
0

~

80

E....

oS

....
z
~
:::>

60

'"
....

40

<.>

0.4

0

0.2

~
5<.>

..f>

V

/

20

.".,

V

100

in 0.8

Iso

~
3::

- - -1- -- 1--- ~

,.....
~;:.--

1.0

.

is

En

0

:::>

r

'"

'"~

;:: 0.6
:::>

..
0

P" = 12SmW_
= 1601 MHz
T.= 25°C
f

gj60
" COLLECTOR·EMmER VOLTAGE (VOLTS)

POWER OUT, COLLECTOR CURRENT AND COLLECTOR EFFICIENCY versus POWER IN
2N1562!2N1693

2NlS61/2N1692
100

100

= -15Vdc
,= 160,MHz
T. = 25°C

V, .•
1.0

~

~
5

0.8

oS

60

~

~

0.6

0

'"~
!C

~

80

gj 40
<.>

0.4

.: 0.2

'"0
....

~
5

, ....

... V("

20

V

V

.....-

" --

~

:::>

§

0

'"
~

:='"

50

75
100
p .. , POWER IN (mW)

125

150

0.6

.

~

'\ 0.4

.,

~

0.2

80

f-'

oS

....

i

:::>


'V

-

0

0

50

25

75

100

125

150

p.. , POWER IN (mW)

POWER OUT, COLLECTOR CURRENT AND COLLECTOR EFFICIENCY versus FREQUENCY
2N1562!2N1693

2N1561/2N1692

10 0
1.0

u

~

oS
!~ 0.8 ....

50

'"~

.
.:
0

0.6
0.4
0.2

~:::>


0
Z

TYPICAL TRIGGER POINT

'"'"=>
u
~

-,

~ TYPICAL /~

1.0

'"
'"
In
f-

I

if

0.1

'"

1::'

NOTE: VOLTAGE DROP MEASURED
'I:z INCH FROM BOTTOM OF CASE

O.O~

z

10

~'MAXIMUM

0.5

0.2

~

MAXIMUM ALLOWABLE FORWARD
GATE VOLTAGE 10 VOLTS

4
5
6
7
VGT. GATE VOLTAGE (VOLTS)
(T, = 25°C. ANODE @ 12 VOLTS)

2.0

=>

.001

3

5.0

~

~
z

•

~

10

",

!5:

~o~

i~~

FORWARD CONDUCTING CHARACTERISTICS

,.

1L

I

0.02

0.01

o

2-205

1

j

T, 125O C TJ =25°C -

3.0
4.0
1.0
2.0
VT.INSTANTANEOUS FORWARD ON VOLTAGE (VOLTS)

5.0

2N1595 thru 2N 1599 (continued)
ELECTRICAL CHARACTERISTICS

(TC = 25°C unless otherwise noted)

Min

Typ

Max

50
100
200
300
400

-

-

--

--

IORM

-

-

1.0

Peak Reverse Blocking Current
(RatedVRSM, T J = 125°C)

IRRM

-

-

1.0

Gate Trigger Current (Continuous de)
(Anode Voltage = 7 Vdc, RL = 12 Q)

IGT

-

2.0

10.0

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = 12 Q)

VGT

-

0.7

3.0

0.2

-

-

-

5.0

-

Symbol

Characteristic
Peak Forward BlockingVoltage*
(T J = 125°C)

Peak Forward Blocking Current
(Rated VORM with gate open, T J

(VORM = ~ated, RL = 12
Holding Current
(Anode Voltage

= 7 Vdc,

VORM*
2N1595
2N1596
2N1597
2N1598
2N1599

= 125°C)

n, TJ =

VGNT

125°C)

IH

Gate Optm)

rnA
rnA
Volts

-

1.1

2.0

Turn-On Time (td + t r )
(IGT = 10 rnA, IT = 1A)

tgt

-

0.8

-

-

10

-

(VORM

dv/dt

= 20 V/ /.IS,

TJ

=

tq
125°C)

niA
Volts

VTM

= 1 A,

Volts

rnA

Forward On Voltage
(IT = 1 Adc)

Turn-Off Time
(IT = 1 A, IR

Units

= rated voltage)

/.IS

/.IS

*VORM for all types can be applied on a continuous de basis without incurring damage.

CURRENT DERATING
AMBIENT TEMPERATURE

CASE TEMPERATURE

G

...

~110~--~~~~~---+--~----~--~--~

:::>
'"

~...

...~

5

90t--1-80

,.E
DC

1.2

0.5

iT(AV).AVERAGE FORWARD CURRENT (AMP)

2N

iT(AV). AVERAGE FORWARD CURRENT (AMP)

1613 (SILICON)
For SpeCifications, See 2N718A Data.

2-206

0.7

2N 1651 thru 2N 1653 (Germanium)
2N2285 thru 2N2287 (Germanium)

CASE 161

CASE 3A

(TO-41)

(TO-3 modified)

2N2285 thru 2N2287

2N1651 thru 2N1653
Collector connected to case

PNP Germanium power transistors designed for high-current
switching applications requiring low saturation voltages and fast
switching times in addition to good safe operating area.

MAXIMUM RATINGS

Symbol

Rating

2N1651 2N1652 2N1653
2N2285 2N2286 2N2287

Unit

VCEO

30

60

80

Vdc,

Collector - Sase Voltage

VCS

60

100

120

Vdc

Emitter-Sase Voltage

VES

Collector-Emitter Voltage

Collector Current - Continuous

IC

Sase Current - Continuous

IS

Total Device DiSSipation@T C =25°C
Derate above 25° C

PD

Operating and Storage Junction
Temperature Range

--

T J , Tstg

-

-

1.5
'25
5.0

Vdc
Adc
Adc

-

106
1. 25

Watts

wic
°c

-65 to +110-

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

Symbol

Max

Unit

IiJC

0.8

°C/W

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT
O.25mH

IB(off) --+-

'R3
R1 = 1.0 Ohm, 20 Watts
RZ =1.5 Ohms, 2.0 Watts

R5' IC Adi"st@VCE=VZ

A3 = 0.1 Ohm, 1.0%
R4 'S 0.04 Ohm

81: Adjust for IB(on)=

""-::>,--JIoIII'v--.,----p--o Your

5000

V"o-_J,iIN-....- - H

V"

I

INPUT WAVE FORMS

I
I

l_l __

-10%

t~

270

(NOTE 2)

~1O%

V"

I

V"= +20V I
V,,= -3.3 V I

5000

--t
!S}
I

I

Vou,

I

I

90%-

I...
V,,=-20V
V.. = +17V

I

NOTE 3

I
I

90%-

-

-

I
I'

1""-.t

t-t...-t

I-tM-l
OUTPUT WAVE FORMS

50
NOTE

+
Vn(NOTE 1)

Vee = 3 V(NOTE I)

1, With cerlain types of power supplies, it may be necessary 10 connect

25 ~F decoupling capacitors across Ihe power·supply terminals for Vee and VD.

NOTE 2, Input voltage (V,,) obtained from a pulse generator having an output impedance
of 50 ohms. V" rise lime ~ 1.0 ns, pulse duralion "" 300 ns, and duty factor
~2.0%.

NOTE 3, Input and output waveforms, shown above, monitored by means of an oscilloscope
having a rise time ~ 0.5 ns, input capacilance of probe ~ 2.5 pF wilh shunt
resistance ~ 3000 ohms.

2-211

2N1708

(continued)

ELECTRICAL .CHARACTERISTICS

(T.

= 2S'C "'e.. otherwisenot.d)
Symbol

characteristic

.

OFF CHARACTERISTICS
co'nector-Emitter Sustaining Voltage*

BV CEO(sus)

(IC = 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
(IC = 100 ).LAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 100 ).LAde, IC = 0)

BV EBO

Collector-Cutoff Current

Max

12

-

25

-

Unit
Vde

Vde

Vde
3.0

I CEX

(V CE = 10 Vde, V BE = 0.25 Vde, T A = 100°C)
Collector Cutoff Current
(V CB = 15 Vde, IE = 0)

Min

ICBO

/lAde

-

15

-

0.025

/lAde

15

(V CB = 15 Vde, IE = 0, TA = 150?C)

ON CHARACTERISTICS
DC Current Gain'"
(IC = 10 mAde, VCE = 1. 0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(s.t)

(IC = 10 mAde, IB = 1. 0 wAde)
(IC = 50 mAde, IB = 5.0 mAde)

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

20

-

-

0.22

0.7

0.9

200

-

-

6.0

-

40

-

75

-

25

Vde

0.35
Vde

VBE(s.t)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vde, 1= 100 MHz)

IT

Output Capacitance

Cob

(V CB = 10 Vde, IE = 0, I = 140 kHz)

Turn-On Time
(Figure I)
(I C = 10 mAde, IBI = 3. 0 mAde, IB2 = 1. 0 mAde)

t

(Figure 1)
Turn-Off Time
(V CC = 3. 0 Vde, IC = 10 mAde, IBI = 3.0 mAde, IB2 = 1. 0 mAde)

*

pF

ns

on

ns

toft
t

(Figure 2)
Storage Time
(I C = 10 mAde, IBI = IB2 = 10 mAde)

MHz

ns

s

Pulse Test: Pulse Length;::; 6.0 ms, Duty Cycle ~ 30%.

FIGURE 2 - STORAGE TIME TEST CIRCUIT
890
V~,

V'"

91

(NOTE 2)

(NOTE 21

4\
PULSE
GENERATOR
VOLTAGE

(V,"I

500

0}_10%

.

: "---IOV

'-__-'I~===__--"'".....

I (NPUT WAVE FORM
I

OUTPUT
VOLTAGE

IV...I

TIME

~
I-t,..,

'---......"O"'UT"'PU"'T"'W"'A"'VE--:F"'OR"'"M,--- TIME
V.. ~ II V(NOTE 11

NOTE 1: Input voltage (V,n) obtaiMd from pulse generator
having an output impedance of 50 ohms. V,n rise
time < 1 ns, pulse duration ~ 300 ns, and duty
factor ~ 2.0%.

Veo = 10 V(NOTE 11

NOTE 2: Input and output wave forms monitored by means
of an oscilloscope having a rise time ~ 0.5 ns;
input capacitance of probe ~ 2.5 pF with shunt
resistance ~ 1000 ohms.

2N1711
For Specifications, See 2N718A Data.

2-212

2N 1724 (SILICON)
2N1725

NPN silicon power transistors designed for switching and amplifier applications.
CASE 9
(TO-61)

MAXIMUM RATINGS

Rating

Symbol

Value

Collector-Base Voltage

VCB

120

Vdc

Collector-Emitter Voltage

VCE

80

Vdc

Emitter-Base Voltage

VEB

10

Vdc

Collector Current (Continuous)

IC

5_0

Adc

Power Dissipation

PD

117

Watts

Thermal Resistance I Junction to Case

UJC

1.5

°C/W

Junction Operating Temperature Range

TJ

-65 to +200

°c

2-213

Unit

2N1724, 2N1725

(continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
Emitter-Base Cutoff Current
(VEB =9 Vdc)
(VEB = 10 Vdc)

2N1725

Symbol

Min

Typ

Max

~BO

-

-

0.5
10.0

-

1.0

-

Collector-Emitter Cutoff Current
(V CE = 60 Vdc, VBE =0)
(V CE = 60 Vdc, VBE = 0, TC = 150°C)
(V CE = 120 Vdc, VBE = 0, TC = 150° C)

ICES

Collector-Base Cutoff Current
(V CB = 3 Vdc, ~ = 0)

ICBO

DC Current Gain
(V CE = 15 Vdc, IC = 2 Adc)
(V CE

= 15 Vdc,

IC

=2 Adc,

= _55 0 C)

(V CE = 15 Vde, IC = 0.1 Adc)

-

10.0

-

-

0.1

80

-

-

20
50

40
90

90
150

2N1724
2N1725

12
25

-

2N1724
2N1725

20
50

--

-

0.5

1.0

1.2

2.0

1.6

-

260

550

VCEO(sus)
hFE

Collector-Emitter Saturation Voltage
(Ic = 2 Adc, IB = 200 mAdc)

VCE(sat)

Base-Emitter Saturation Voltage
(IC = 2 Adc, IB =200 mAde)

VBE(sat)

High Frequency Current Gain
(VCE = 15 Vde, IC = 0.5 Adc, f

mAdc

-

2N1724
2Nl725
TA

mAdc

-

Collector-Emitter Sustaining Voltage
(IC =200 mAdc, IB = 0)

hfe

= 10 MHz)

Common Base Output Capacitance
(VCB = 10 Vdc, f =O. 1 MHz)

2.0

mAdc
Vdc

Vdc

1.0

Vdc

pF

Cob

Switching Times
(IC = 2 Adc, IB1 = -IB2 = 0.2 Ade)
De lay time plus Rise time

Unit

itS

td + tr
t

Storage time

s

Fall time

tf

2-214

-

0.15
1.3
0.14

-

2N 1724, 2N 1725

(continued)
FIGURE 1 -

Ul

i

POWER-TEMPERATURE DERATING CURVE

120

...............

100

.S"
~
.S'

80

is'"

60

~

40

'"

...
0

~

~ i'-.

--........ ~

P-

o

-...........

20

P-

o
o

25

50

75
100
125
o
T C' Case Temperature ( C)

~

150

-.....

~200

175

SAFE OPERATING AREAS

1 ms

0.
8
.$
....,

"......


10
5.0

0.5 ms
250
/1S

t=nc

.7'
....... ~
5 ms

1.0

or 1ess

'\.

'l\ /

FIGURE 2 -

0.5

In using these curves the average power derating
curve (Fig. 1) must be observed to ensure operation below the maximum junction temperature •

::l

U

...

.8

0.1

~

0.05

"

'0

2N1724, 2N1725

'I

u

0.01

o

30

60

90

Collector-Emitter Voltage (Volts)

FIGURE 3 100

"

80

.~

""a


...'"

60

::l

U

~
Ii<
..:::

40

20
0

----

~

;-

-----0.1

0.2

0.3

DC CURRENT GAIN versus COLLECTOR CURRENT

2N1725

- r---. I".....

2N1724

0.4 0.5
0.8 1.0
2.0
I C ' Collector Current (Amp)

............

'too..

- -r--

3.0

4.0 5.0

2N1742
For SpeCifications, See 2N499 Data.
2-215

r"

r--..

i'"

r... r--- to.......
8.0 10

2N

1751 (GERMANIUM)
PNP Germanium power transistor designed for highcurrent switching applications requiring low saturation
voltages, short switching times and good sustaining
voltage capability.
• Alloy-Diffused Epitaxial Construction
• Low Saturation Voltages VCE(sat) = 0.3 Vdc (Max) @ IC = 20 Adc
VBE(sat) = 0.7 Vdc (Max) @ IC = 20 Adc

Collector Connected to Case
CASE 3A
(T0-3 modified)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

60

Vdc

*Collector-Base Voltage

VCB

80

Vdc

!l'SO Hz
"'Zener selected to establish Sustaining Voltage.
NOTE: Series impedance and inductance must be kept to a minimum.
Adjust input pulse width for Ie = 25 A condition.

2-216

2N1751 (continued)
ELECTRICAL CHARACTERISTICS

(Tc

=25°C unless otherwise noted)
Symbol

Characteristic

Min

Max

60

-

45

-

-

1.0

-

50

-

5.0

-

200

-

5.0

-

25

-

50

30

90

-

0.3

-

0.7

1.5

-

20

-

-

12

/.IS

10

/.IS

S.O

/.IS

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 mAdc, IB = 0)

BVCEO

Collector-Emitter Sustaining Voltage (See Figure 1)
(IC = 25 Adc)

VCE(sus)

"Floating Potential
(VCB = SO Vdc, ~ = 0)

VEBF

Collector-Emitter Cutoff Current
(VCE = SO Vdc, ~E = 50 Ohms)

ICER

Collector Cutoff Current
(VCE=SOVdc, VBE=O)

ICES

Collector Cutoff Current
(V CB = 2.0 Vdc, ~ = 0)

I CBOl

Collector Cutoff Current
"(VCB = SO Vdc, ~ = 0)

I CB02

(V CB = SO Vdc, IE = 0, TC = 100·C, +0, -3· C)

~BO

• Emitter Cutoff Current
(VEB = 2.5 Vdc, IC = 0)

Vdc
Vdc
Vdc
mAdc
mAde
/.lAde
mAdc

mAdc

ON CHARACTERISTICS

* DC Current Gain

hFE

(IC = 20 Adc, VCE = 1. 5 Vdc)
Collector-Emitter Saturation Voltage
(IC = 20 Adc, IB = 2. 5 Adc)

VCE(sat)

Base-Emitter Saturation Voltage
(IC = 20 Adc, IB = 2. 5 Adc)

VBE(sat)

Vdc
Vdc

SMALL-SIGNAl. CHARACTERISTICS
• Common-Base Cutoff Frequency
(Ic = 0.5 Adc, VCB = 10 Vdc)

fab

"Small-Signal Current Gain
(IC = O. 5 Adc, VCE = 6.0 Vdc, f = 30 kHz)

hfe

MHz

-

SWITCHING CHARACTERISTICS
Rise Time
Storage Ti me
Fall Time

t

(Ic = 25 Adc, ~(on) = 2. 5 Adc,

t

~(off) = 2. 5 Adc)

r
s

tf

(See Figure 2)

*Indlcates JEDEC Registered Data.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
1.1

SCOPE O-.......--JV'\I'Ir-----.
PU LSE WI OTH = 50 /.IS
OUTY CYCLE = 10%

Adj for
IB(on)= 2.5 A
.. 12V

la(off)0.1

-

0.7
IB(on)
= 2.0 V

TUT

",28 V

PULSE
Adj for IB(off)
GENERATORo-_ _ _ _ _ _~~-------~--=-2.-5_A_ _ __4------~

Adj
IC = 25 A

2N

1842 thru 2N 1850 (SILICON)

CASE~

Industrial-type, silicon controlled rectifiers in a stud package
with current handling capability to 16 amperes at junction
temperatures to lOOOC. MCR equivalents available in TO-48
package - i.e. - 2N1842 available in T048 package as MCR1842.

\

MAXIMUM RATINGS -

0.2

a

0.1

~~:

i:A.-

a:
w

>-

=~;;
_c_

z,..:z:

>-

I
I
I
L. _ _ _

i

,.:
!E

i:

TYPICAL
TRIGGER AREA

.02

!I

.0001

0.3

~
~

UNIT~

7

:il

I

!I

1.0

PEAK FORWARD
GATE VOLTAGE 10 VOLTS

!;;

1:'

-TJ
T,

lOO'C
25'C

, I

:

0.1
0,5

10

-- -

NOTE, VOLTAGE OROP MEASURED
I INCH FROM BOTTOM OF CASE -

0.2

;!;

1

8

MAXIMUM

==

z
<
z>- 0.5
<

=

i

//

//

1/

2.0

:::>
'"

(IOO'C - 50 mAl
(-40'C - 150 mAl
V. 3.5 VOLTS

i
6
3
1
5
4
VGT. GATE VOLTAGE IVOLTS)
(T, 25'C - ANODE @ 1 VOLTS)

20
10

< .5.0
~

L 80_ mATOGATE
CURRENT REQUIRED
TRIGGER ALL
_

-(T, = -40 TO +tOO'C)

~

a

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA

::Ie!::

<
to .05

50 f--TYPiCAl

1il

~ ~ I

5

1il
a:

5

2.0 VOLTS
GATE VOLTAGE
REQUIRED TO
TRIGGER ALL UNITS

1.0

100

:IE

I

=

II
2.0
2.5
1.5
1.0
VT, INSTANTANEOUS FORWARD ON VOLTAGE IVOLTS)

CURRENT DERATING

3.0

SUGGESTED HEAT SINK SIZES
10

100
Ii:
:IE

...~

5

80

>-

:::>

>-

~

...co:~

'"
J

8

1il

a:
a:

II:

a

60

~'

6

<

3
a:

40

~

4

3" x 3"

w

U

I

to

<

~
>
<

20
DC,

ItDJMt'L~8,U~.~~~,~: OR

$'
5

0
0

4

6

FINS 1/16-'THICK COPPER
WITH EMISSIVITY 90%
STUD MOUNTED DIRECTLY
TO COPPER FIN
MINIMUM SPACING 3/4"

10

12
IT(AV), AVERAGE FORWARD CURRENT lAMP)

14

16

1:"

2-220

=
=

0
0

20

40
60
TA• AMBIENT TEMPERATURE (OC)

80

100

2N

1842A thru 2N 1850A.(sILiCON)
Industrial-type, silicon controlled rectifiers in a stud
package with current handling capability to 16 amperes
at junction temperatures to 125°e.

MAXIMUM RATINGS

(,T J

= 12S'C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage.
2N1842A
2N1843A
2N1844A
2N1845A
2N1846A
2N1847A
2N1848A
2N1849A
2N1850A
Peak Reverse Blocking Voltage
(Transient)
(Non-Recurrent 5 ms max.)

2N1842A
2N1843A
2N1844A
2N1845A
2N1846A
2N1847A
2N1848A
2N1849A
2N1850A

Forward Current RMS

VRSM(rep)*

VRSM.(non-rep)

IT(RMS)

Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -65 to + 1250 C)

ITSM

Circuit Fusing Considerations
(TJ = -65 to +125 0 C, t ;:; 8.3 ms)

12t

Value

Unit
Volts

25
50
100
150
200
250
300
400
500
Volts
35
75
150
225
300
350
400
500
600
16

Amp
Amp

125
A2s
60

Peak Gate Power - Forward

PGM

5.0

Watts

PG(AV)

0.5

Watt

Peak Gate Current - Forward

IGM

2.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

5.0

TJ

-65 to +125

°c

Tstg

-65 to +150

°c

Average Gate Power - Forward

Reverse
Operating Junction Temperature Range
Storage Temperature Range

-

Stud Torque

30

*VRSM(rep) for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero or negative gate voltage.

2-221

in. lb.

2N1842 A thru 2N1850A (continued)
ELECTRICAL CHARACTERISTICS (Tc

= 25°C unless otherwise noted)

Characteristic

Symbol

Peak Forward Blocking Voltage.
(T J ~ 125°C)

2N1842A
2N1843A
2N1844A
2N1845A
2N1846A
2N1847A
2N1848A
2N1849A
2N1850A

Peak Forward or Reverse Blocking Current
(VORM, OR VRSM, gate open, T J = 125°C)

VORM*

IORM
IRRM

Min

Typ

25
50
100
150
200
250
300
400
500

---

--

-

-

6.0

Max

-

Units
Volts

-

rnA

rnA

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 50 !1)

IGT

-

15

80

Gate Trigger Voltage
(Anode Voltage = 7 Vdc, RL = 50 !1)

VGT

-

0.8

2.0

-

-

Volts

VGNT

0.25

Holding Current
(Anode Voltage = 7 Vdc, Gate Open)

IH

-

20

-

Forward On Voltage
(IT = 16 Adc)

VT

-

1.1

1.6

Turn-On Time (~ + t r )
(IGT= 50 mA, IT = 10 A)

tgt

-

-

,",S

1.0

tq

-

-

,",S

30

Forward Voltage Application Rate
(Gate Open, T J = 125°C)

dvldt

-

30

-

vi /.lS

Thermal Resistance (Junction to Case)

6 JC

-

1.0

2.0

°c/w

(VORM = Rated V, RL = 500, T.J = 1250 e)

Turn-Qff Time
(IT = 10 A, IR ~ 10 A, dvldt = 20

vlp,s,

T J = l25 0 C)

Volts

*VORM for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero ornegative gate voltage.

2-222

mA

2N 1842A thru 2N 1850A (continued)

MAXIMUM ALLOWABLE
FORWARO GATE CURRENT

IGM = 2 AMP

~ 50

~
'"'"

1.0
is:

'"~

0.5

I

>-

15

'"

a'"

0.2

I

0.1

I
L

~

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
ANO CURRENT WITHIN THIS AREA
80 mA GATE CURRENT
REQUIREO Tq TRIGGER ALL UNITS

I

w

to

L
-

-

-

(~'tS~CC'::-I~~)

-

.05

~

10

31
:''"i:

5.0

~ 0.5

z

I

1

~ 0.2
.f 0.1

Iii

0.5

0.0

10

= 25°C. ANODE @ 7 VOLTS)

= 12SoC
= 2S'C
2.5

SUGGESTED HEAT SINK SIZES

.---r---r-....,.---.,---..----r---.---...,

CURVES SHOWN ARE FOR 180' CONOUCTION ANGLE
FOR OTHER CONDUCTION ANGLES. MULTIPLY
CURRENT VALUES BY FOLLOWING FACTORS,

~ 125

8

~ 110

6 1-_ _+-_"""'~--=

iii=> 120

1----'-_-"...._ _ _+-120· -0.91

90' - 0.82
60'-0.72

30' - 0.58
DC - 1.40

I

.....-""Ir~~~~~I~~E::g~cll,~IAg·lRMt
CONDUCTION ANGLE FACTOR

~

~
..2

TJ

2.0

1.5

1.0

TJ

VT.INSTANTANEOUS FORWARD ON VOLTAGE (VOLTS)

130

ill
>-

=

I

i ,

CURRENT DERATING

140

DROP MEASURED
I / NOTINCH,VOLTAGE
FROM BOTTOM OF CASE

II

z

9
(TJ

~/ MAXIMUM

1'(/

«

VGT. GATE VOLTAGE (VOLTS)

0.25

//

I
TYPICAL

53 1.0

PEAK FORWARD
GATE VOLTAGE 10 VOLTS

!I

20

:::>

TYPICAL TRIGGER POINT

.02

a

'" 2.0

---

VGT = 3.5 VOLTS

t-'
!E

.0001

FORWARD CONDUCTING CHARACTERISTICS

!Ii 100

2.0-rr--......,.--.....

100

90
80
DC

70~-t--~--+-~--r--+--+--~
60~

o

__

~

__

~

4

__

~

__

~

__

~

10

__

~~~~

12

14

s
E

16

FINS 1/16" THICK COPPER
WITH EMISSIVITY
90%
STUD MOUNTED DIRECTLY
TO COPPER FIN
MINIMUM SPACING 3/4"

=
=

RESISTIVE OR INDUCTI'vE LOAD. 50 TO 400 Hz
0 ~FR_E_E_CO_N.lV_EC_T_IO_N_C_0.l0L_IN_G_ _.l._ _....I._ _....I.._...;;::1

20

40

60

80

T•• AMBIENT TEMPERATURE (OC)

IT(AV). AVERAGE FORWARD CURRENT (AMP)

2-223

100

120

1893 (SILICON)

2N
2N240S

NPN silicon annular transistors designed for mediumpower amplifier and switching applications.

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

CASE 31

VCEO

80

VCER

100

Vde

140

Vde

VCS

120

Vde

Emitter-Base Voltage

VES

7.0

Vde

Total Device Dissipation @ TA

Collector connected
to case

Unit

90

Collector-Base Voltage

Collector Current

(TO-5)

2N1893 2N240S

Symbol

Collector-Emitter Voltage

=

25"C

IC

0.5

1.0

PD

0.8

1.0

Watt

4.57

5.71

mW/'C

Derate above 25"C

PD

Total Device Dissipation @ TC - 25"C
Derate above 25"C
Operating and Storage Junction Temperature Range

Ade

3.0

5.0

Watts

17.2

28.6

mW/'C

'c

T J' T stg

-65 to +200

Symbol
eJC

2N1893 2N240S

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance. Junction to Case
Thermal Resistance. Junction to Ambient

ELECTRICAL CHARACTERISTICS

(T A

eJA

58.3

35

219

175

Unit
'C/W
'C/W

= 25'C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage'
(IC = 30 mAde, IB = 0)
(IC = 100 mAdc, IB = 0)
Collector-Emitter Sustaining Voltage
(IC = 100 mAde, RBE = 10 ohms)

2N1893

BVCEO(sus)

2N2405
2N1893
2N2405

BVCER(sus)

Collector-Base Breakdown Voltage
(IC = 100 !LAdc, IE = 0)

BVCBO

Emitter- Base Breakdown Voltage
(IE = 100 !LAde, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 90 Vde, IE ~ 0)
(VCB = 90 Vdc, IE = 0, T A = 150"C)

ICBO
2N1893
2N2405

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

2-224

,
90

-

100
140

-

120

-

7.0

-

-

0.01

-

15
10

-

0.01

80

-

Vde

Vdc

Vdc
Vdc
!LAde

!LAdc

2N1893, 2N240S (continued)

ELECTRICAL CHARACTERISTICS (continued)

I

Symbol

Characteristic

Min

Max

Unit

ON CHARACTERISTICS
DC Current Gain 111
(IC = 0.1 mAde, VCE = 10 Vde)
(IC = 10 mAde, VCE = 10 Vde)
(IC = 10 mAde, VCE = 10 Vdc, T A = -55·C)
(IC = 150 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(IC = 50 mAde, IB = 5.0 mAde)
(IC = 150 mAde, IB = 15 mAde)

hFE

2N1893

35

2N1893

20

-

2N1893
2N2405

40
60

120
200

-

1.2

2N1893

2N1893

VCE(sat)

2N1893
2N2405

Base-Emitter Saturation Voltage
(Ic = 50 mAde, IB = 5.0 mAde)

2N1893

(IC = 150 mAde, IB = 15 mAde)

2N1893
2N2405

VBE(sat)

20

-

Vde
5.0
0.5
Vde
0.9
1.3
1.1

SMAll-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde; f
Output Capacitance
(VCB = 10 Vde, IE = 0, 100 kHz
Input CllIPacitanee
(V BE = 0.5 Vde, IC

= 0,

Input Impedance
(IC = 1. 0 mAde, VCB
(IC = 5.0 mAde, VCB

= 20
~

100 kHz

f
~

MHz)

~

f

1. 0 MHz)

= 5.0 Vde, f = 1. 0 kHz)
= 10 Vde, f = 1. 0 kHz)

Voltage Feedback Ratio
(IC = 1. 0 mAde, VCB = 5.0 Vdc, f = 1. 0 kHz)
(IC = 5.0 mAde, VCB = 10 Vdc, f = 1. 0 kHz)
Small-Signal Current Gain
(IC = 1. 0 mAde, VCE = 5.0 Vdc, f
(IC = 5.0 mAde, VCE = 5.0 Vde, f
(IC = 5.0 mAde, VCE

= 10 Vde,

-

-

15

-

85

20

30

4.0

8.0

-

1. 25

30

100

2N2405

50

275

2N1893

45

-

-

0.5

-

0.5

Cob

1.0 MHz)
~

= 1. 0 kHz)
= 1. 0 I

<>
<>
0

.i

30
20

\

,

""

-40

-20

o

+20

+40

~140

2N2043/)

!O:

~ 100

~

2N201Z-

40

60

/

::>

...........

:;: 80

- I

~~3

t--

80

100

120

_

140

160

ISO

+60

+80

+100

/ 1/
1/ /

I,

= 1 Vd.
:I! 160 I-- Vel
Te = 25°C

!. 120

.........

!'-. r--..

20

180

II!

Va = 1 Vd.
Te = 25°C

10

a0

L- le- 5OmA

200
0;

50

I

-:/

.-'

COLLECTOR CURRENT versus BASE·DRIVE VOLTAGE

DC CURRENT GAIN versus COLLECTOR CURRENT

z
:;;:

-

le=5mA

./

TA • AMBIENT TEMPERATURE (OC)

70
60

./L -

--

100

0

'-.....;\.

20

./

./

"

120

.....

10

I
Va = 0.35Vdc

140

<->

'\.

00

-

160

'\

")...

6",

-

0.50
0.75

LARGE SIGNAL CURRENT GAIN versus TEMPERATURE

POWER·TEMPERATURE DERATING CURVE

" "-

MHz

2N2042
2N2043

-

25

fab

(VCB = 6 V, IE = 1 mAl

-

pF

-

Common-Base, Small-Signal Forward Current
Transfer Ratio Cutoff Frequency

220
200
180

0.25
0.75

Cob

= 0)

E

Unit

200

Ie. COLLECTOR CURRENT (MILLIAMPERES)

2-235

//

"/

V

1//
'/ 2N2042

V/
.#

60

40
20

o

o

~
0.2

0.8
0.4
0.6
V... BASE-EMITTER VOLTAGE (VOLTS)

1.0

1.2

2N2060, A (SILICON)
2N2060 JAN,JTXAVAILABLE
2N2223,A
NPN silicon annular Star dual transistors for differ2N2480,A
ential amplifiers and other applications requIrmg a
matched pair with a high degree of parameter uniformity.

MAXIMUM RATINGS(eachside)

Rating

Case 654-04
TO-78

Collector-Emitter Voltage

Svmbol

2N2060
2N2060A
2N2223
2N2223A

2N2480

VCEO

60

40

40

-

-

Vde

75

80

Vde

5.0

5.0

VCER

80

Collector-Base Voltage

VCB

100

Emitter-Base Voltage

VEB

7.0

Collector-Emitter Voltage

200

°c

Tstg

-65 to +200

°c

IC

One Side
PD

0.5
2.86

0.6
3.43

Watt
mW/"C

Total Device Dissipation @T C = 25°C
Derate above 25°C

PD

1.6
9.1

3. a
17.2

mW/"C

(each side) (T A

Collector-Emitter Breakdown Voltage'
(IC = 20 mAde, IB = 0)

= 0)

Symbol

Collector-Base Breakdown Voltage
(IC = 100 /lAde, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 100 /lAde, IC = 0)
Collector Cutoff Current
(V CB = 30 Vdc, IE = 0, TA
(V CB = 60 Vdc, IE = 0)
(V CB

= 80 Vdc,

IE

= 0)

(V CB

= 80 Vdc,

IE

= 0,

Emitter Cutoff Current
(V BE = 5.0 Vdc, IC = 0)

TA

= 150'C)

= 150'C)

IMin IMax I Unit

,

2N2480,2N2480A

BV CEO

2N2060, 2N2060A, 2N2223, 2N2223A

Collector-Emitter Breakdown Voltage'
(IC = 100 mAdc, RBE ;2 10 ohms)

2N2060, 2N2060A, 2N2223, 2N2223A
2N2060, 2N2060A, 2N2223, 2N2223A
2N2480
2N2480A
2N2060, 2N2060A, 2N2223, 2N2223A
2N2480,2N2480A
2N2480,2N2480A

BV CER*
BV CBO

BV EBO

I CBO

2N2480
2N2480A
2N2060,2N2060A
2N2223,2N2223A
2N2060,2N2060A
2N2223,2N2223A
2N2060,2N2060A
2N2223,2N2223A
2N2480
2N2480A

'Pulse Test: Pulse Width;:; 300 /ls, Duty Cycle

~

Watts

= 2SoC unless otherwise noted)

OFF CHARACTERISTICS

mAdc, IB

Both Sides

Total Device Dissipation @ TA = 25° C
Derate above 25°C

Characteristic

= 30

Vde

TJ

Operating Junction Temperature

ELECTRICAL CHARACTERISTICS

(I C

Vde

mAde

PINS 4 AND 8 OMITIED

Pin Connections BottomView
All Leads Electrically Isolated
from Case

Unit

500

Collector Current

Storage Temperature Range

2N2480A

2.0%.

2-236

Vdc
. 40

-

60

-

80

-

100
75
80

-

7.0
5.0

-

-

15

-

0.050
0.020
0·002
0.010
10
15

-

2.0
10
50
20

Vdc

Vdc

-

/lAdc.

-

lEBO

Vdc

nAdc

-

2N2060, A, 2N2223, A, 2N2480, A (continued)

ELECTRICAL CHARACTERISTICS (conti nued)

I

Characteristic

Symbol

Min

I Max I

25
15
30
25
20
35
40
30
50
50
50

75

120
350
200
150
200

-

0.6
1.2
1.3

Unit

ON CHARACTERISTICS
DC Current Gain
(IC " 10 /lAdc, VCE " 5.0 Vdc)

2N2060,2N2060A
2N2223,2N2223A
2N2060,2N2060A
2N2223,2N2223A
2N2480
2N2480A
2N2060,2N2060A
2N2480
2N2480A
2N2060,2N2060A
2N2223,2N2223A

(IC " 100 /lAdc, VCE " 5.0 Vdc)

(I C " 1. 0 mAdc, VCE " 5.0 Vdc)
(IC " 10 mAdc, VCE " 5.0 Vdc)*
Collector-Emitter Saiuration Voltage
(IC " 50 mAdc, IB " 5.0 mAdc)

2N2060A
2N2060, 2N2223, 2N2223A, 2N2480A
2N2480

Base-Emitter Saturation Voltage
(I C " 50 mAdc, IB " 5.0 mAdc)

2N2060, 2N2060A, 2N2223, 2N2223A,
2N2480A
2N2480

hFE

VCE(sat)

90
150

-

Vdc

Vdc

VBE(sat)

-

0.9
1.0

SMALL SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(I C " 50 mAdc, VCE " 10 Vdc, f " 20 MHz)

Output Capacitance
(V CB " 10 Vdc, IE " 0, f " 1. 0 MHz)

Input Capacitance
(V BE "0.5 Vdc, IC "0, f " 1. 0 MHz)
Input Impedance
(IC " 1. 0 mAdc, V CE " 5.0 Vdc, f " 1. 0 kHz)
Input Impedance
(IC " 1. 0 mAdc, VCB

2N2223, 2N2223A, 2N2480,
2N2480A
2N206Q,2N2060A
2N2060, 2N2060A, 2N2223,
2N2223A
2N2480A
2N2480
2N2060, 2N2060A, 2N2223,
2N2223A,2N2480A
2N2060,2N2060A
2N2480A

= 5.0 Vdc, f = 1. 0 kHz) 2N2060, 2N2060A, 2N2223,

2N2223,2N2223A

Small-Signal Current Gain
(IC " 1. 0 mAdc, VCE " 5.0 Vdc, f " 1. 0 kHz)

2N2060,2N2060A
2N2223,2N2223A
2N2480A

Output Admittance
(IC" 1.0 mAdc, V CE " 5.0Vdc, f" 1.0 kHz)

2N2060, 2N2060A, 2N2480A

Output Admittance
(Ic" 1.0 mAde, VCB " 5.0 Vdc, f" 1.0 kHz)

2N2223,2N2223A

Noise Figure
(IC = 0.3 mAdc, VCE

pF

Cob

-

-

15
18
20
pF

C ib

h.
Ie

85
ohms

1000
1000

4000
5000

20
20

30
35

-

3.0

50
40
50

150
120
300

4.0

16

-

0.5

ohms

hib

h rb
hfe

h

oe

hob

X 10- 4

-

/lmhos

/lmhos

dB

NF

= 10 Vdc, RS " 510 ohms,

f " 1. 0 kHz, BW = 1. 0 Hz)
(IC = 0.3 mAdc, VCE = 10 Vdc, RS

= 510 ohms,

f = 1. 0 kHz, BW = 200 Hz)
(IC = 0.3 mAde, VCE = 10 Vdc, RS

= 1. 0 k ohm.

f

50
60..

2N2223A
2N2480A

Voltage Feedback Ratio
(IC " 1. 0 mAdc, VCB " 5.0 Vdc, f " 1. 0 kHz)

MHz

fT

2N2480, 2N2480A
2N2060, 2N2060A

= 1. 0 kHz, BW = 15.7 kHzt)

tAmphher: 3.0 dB pomts at 25 Hz and 10 kHz with a roll-off of 6.0 dB per octave.

2-237

-

8.0

-

8.0

-

8.0

2N2060, A, 2N2223, A, 2N2480, A

(continued)

ELECTRICAL CHARACTERISTICS (continued)

I

Symbol

Characteristic

Min

I Max I

0.9
0.8
0.9
0.8

1.0
1.0
1.0
1.0

-

3.0
5.0
10
15
5.0
10

Unit

MATCHING CHARACTERISTICS
DC Current Gain Ratio**
(IC = 100 J.!Ade, V CE = 5.0 Vde)
(IC = 1. 0 mAde, VCE = 5.0 Vde)
Base Voltage Differential
(IC = 100 !lAde, V CE = 5.0 Vdc)

(IC" 1.

o mAde,

VCE = 5.0 Vde)

2N2060, 2N2060A, 2N2223A
2N2223, 2N2480, 2N2480A
2N2060,2N2060A
2N2480,2N2480A
2N2060A
2N2060, 2N2223A, 2N2480A
2N2480
2N2223
2N2060, 2N2060A, 2N2480A
2N2480

Base Voltage Differential Change
(IC = 100 !lAde, VCE = 5.0 Vde, T A = -55 to +25'C)

2N2060A
2N2060
2N2223,2N2223A
2N2480,2N2480A
(IC = 100 !lAde, VCE = 5.0 Vde, TA = +25 to +125'C) 2N2060
2N2060A
2N2223,2N2223A
2N2480,2N2480A

'*The lowest hFE reading is taken as hFEl for this ratio.

2-238

hFE/hFE2**

IVBE1-VBE21

-

mVde

-

-

ll(V BE l-V BE2)

-

mVde
0.4
0.8
2.0
1.2
1.0
0.5
2.5
1.5

2N2075 thru 2N2082 (GERMANIUM)
2N2075A thru 2N2082A

PNP germanium power transistors for high-power
applications in high-reliability equipment.

CASE 5
(TO-36)

MAXIMUM RATINGS
2N2075
2N2079

Unit

55

65

Vdc

50

70

80

Vdc

40

50

70

80

Vdc

20

25

35

40

Vdc

Symbol

2N2078
2N2082

2N2077
2N2081

Collector-Emitter Voltage

VCEO

25

45

Collector-Emitter Voltage

VCES

40

Collector-Base Voltage

V CB

Emitter-Base Voltage

VEB

Rating

Collector Current
Total Device Dissipation @ TC

=

25°C

Operating Junction Temperature Range

2N207&
2N2080

IC

15

Adc

PD

170

Watts

TJ

-65 to +110

°c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

Symbol

Max

Unit

eJC

0.5

°C/W

175

~

~

150

~

125

z0

iii
c
~

~!II..

""

100

~

...
~

ID

75

~

~

...c

co

50

c

,t

'"

"" "

"-

iii!
~

POWER-TEMPERATURE DERATING CURVE

~

25

0

o

10

20

30

40

50 60

70

80

The maximum average power is related to maximum junction temperature by the thermal resistance
factor.
This curve has a value of 170 Walls at case temperatures of 25°C and is 0 Walls at 110°C with a
linear relation between the two temperatures such
that:
IIOO_Tc
allowable P.
0.5

=

~

90 100 110

Te. CASE TEMPERATURE (OC)

2-239

2N2075 thru 2N2082

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

= 25'C unless otherwise noted)

Symbol

Characteristic

Min I Max I Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 Adc, IB = 0)

2N2078,
2N2077,
2N2076,
2N2075,

Collector-Emitter Breakdown Voltage*
(IC = 300 mAdc, VBE = 0)

2N2078,
2N2077,
2N2076,
2N2075,

2N2082
2N2081
2N2080
2N2079
2N2082
2N2081
2N2080
2N2079

BV CEO

BV CES

-

40
50
70
80

1.0

(V CB = 50 Vdc, IE = 0)

2N2077, 21"2081

-

(V CB = 70 Vdc, IE = 0)

2N2076, 2N2080

-

1.0

(V CB = 80 Vdc, IE = 0)

2N2075, 2N2079

-

1.0

-

0.2

-

4.0

-

15

25
40
20
35
15
25
8
12

100
160
40
70

V CE(sat)

-

0.7
0.9

VBE(on)

-

0.9

(V CB = VCB(max), VEB = 1. 5 Vdc)
(VCB=VCB(max)' IE=O, T C =+71"C)
Emitter Cutoff Current
(V BE = VBE(max)' IC = 0)

lEBO

(V BE = VBE(max) , IC = 0, T C =+71"C)

Vdc

Vdc

2N2078, 2N2082

ICBO

Vdc

-

Floating Potential
(V CB = 40 Vdc, IE = 0)

Collector Cutoff Current
(V CB = 2.0 Vdc, IE = 0)

VEBF

25
45
55
65

1.0

mAdc
4.0
15
mAde

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 2 Ade, VCE = 2.0 Vdc)
(IC = 5.0 Adc, VCE = 2.0 Vdc)
(IC =5.0 Adc, VCE = 2.0 Vdc, TC = -55°C)
(IC = 12 Adc, VCE = 2.0 Vdc)
Collector-Emitter Saturation Voltage
(IC= 13 Adc, IB = 2. 0 Adc)

2N2075
2N2079
2N2075
2N2079
2N2075
2N2079
2N2075
2N2079

thru
thru
thru
thru
thru
thru
thru
thru

2N2078
2N2082
2N2078
2N2082
2N2078
2N2082
2N2078
2N2082

2N2075 & 76, 2N2079 & 80
2N2077 & 78, 2N2081 & 82

Base-Emitter On Voltage
(IC = 5. a Adc, VCE = 12 V:dc)

hFE

-

-

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC =5.0Adc, VCE =6.0Vdc)
Rise Time
(V CE = 12 Vdc, IC(on) = 12 Adc, I B .= 2.
Fall Time
(V BE = 6.

a Vdc,

f

Ole
t

a Adc)

IC(off) = 0, RBE = 10 ohms)

r

2N2075 thru 2N2078
2N2079 thru 2N2082
2N2075 thru 2N2078
2N2079 thru 2N2082

I-

Typ

kHz

jJ.s

9.0
6.0
tf

*To avoid excessive heating of collector junction, perform this test with a sweep method.

2-240

5. a

jJ.s
12
13

2N2075 thru 2N2082 (continued)
SAFE OPERATING AREAS
60
50
40
30

I

I

Sm.

20

.......

'\ l\.

10

-

I

500,..

1m.

~

~ ~....... r

1"\ ~

250~s

-

~~

"

l70·WATT /
POWER DISSIPATION AT
25°C CASE TEMrERAiURE

"

-

~

d~/

T~

20

1\~,

40

50

60

70

'\

10

i

~
I-

is
:i

3

13

I

0.5
0.4
0.3

0.2

Ims

''""

500~s

o

100~s

OR LESS

10

-,

25°1 .ASE TrPERATiR:e/

~IT060v.18mA

20

30

40

50

-~\
60

70

80

90

100

I
5msec

Ims

2

\.

500"s

250"s

\ ~~

~lOO~s

/

\\\

"

\~

l70·WATT ,POWER DISSIPATION AT
25°C CASE TEMPERATURE

\.'

1

~

OHESS

I'" ~ ~

3

de

\

O. 5
O.4
O. 3

I

r-- ~~mA~~~41~~~mIED

\.

2N2078. 2N2082

5

L ""\

170·WATT
r- POWER DISSIPATION AT

o

10

~

IIFOR PU~SE CUR~ES ONL~)_

0.1

0

i'-. ~ ~...
......
"
~

I)'

TO 80V. 8 mA

60
50
40
30

2S0p.5

~~

i\.

COLLECTOR.£MITTER VOLTAGE (VOLTS)

2N2077,2N2081
5ms

'\

tOR P1ULSE fURVjS ONLt) 0.1

90 100

I

20

,-

rl"'

-- ~~r1J~A~~~~~§ ~~~nEO

0.2

-\

80

OR LESS

de

0.5
0.4
0.3

COLLECTOR·EMITTER VOLTAGE (VOLTS)
60
50
40
30

"'

7

100~s

"~

POWER DISSIPATION AT
25 CASj TEMrERArE

1\

250~s

~ ~ ;:

l70.WATTI /

I

30

500~s

V

\

(i

O. 1 0 10

~ r\.

........::

f\...

1001v. 8 mA
(2NllOO ONLY)
WITH BACK BIAS APPLIED
ULSE tURT ONT"i-

O. 2

1

ORLESS- f--

O. 5
0.4
O. 3

2N2076 2N2080
Ims

5ms

'20

160~s I

""

7' ......
/ .........

1

60
50
40
30

2N2075, ~N20r9

O. 2

-\

10
20
30
40
50
COLLECTOR·EMITTER VOLTAGE (VOLTS)

60

1
O. 0

70

10
20
30
40
COLLECTOR·EMITTER VOLTAGE (VOLTS)

50

(Duty cycle of the excursions make no significant
change In these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

The Safe Operating Area Curves indicate IcV CE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2N2075-2N2078

CURRENT TRANSFER CHARACTERISTICS
12

TRANSCONDUCTANCE CHARACTERISTICS
12

r---,----r--~----~--,---~--_,

10 .....--4----1--

I= J

10

8

8

6

6

41----ifII''--4----I----t--i--t----l

4

Ve•

-2V

//

/ /I'
.........
~~
+2~OC"
+8~oC

-400C~

2

0.1

0.2
D.3
0.4
0.5
I•• BASE CURRENT (AMPERES)

0.6

0.7

a

2-241

rJ

/. ~v

a

~~
0.1

/

0.2
0.3
0.4
0.5
0.6
V... BASE EMITTER VOLTAGE (VOLTS)

0.7

0.8

2N2075 thru 2N2082

(continued)
2N2019-2N2082

TRANSCONDUCTANCE CHARACTERISTICS

CURRENT TRANSFER CHARACTERISTICS

OL-~~~~~~~

0.6
I., BASE CURRENT (AMPERES)

o

0.1

0.2

0.4

__L-~~~__-J
0.5

0.6

v", BASE·EMmER VOLTAGE (VOLTS)

2N2096 (GERMANIUM)
2N2097

0.3

For Specifications, See 2N12 04 Data,

2N2099
2N2100

2-242

0.7

0.8

2N2137 thru 2N2146 (GERMANIUM)
2N2137A thru 2N2146A
PNP germanium industrial power transistors for
driver applications in high reliability equipment.

CASE 11

CASE 4-04

(TO-3)

(TO-41)

For units with solder lugs attached, specify
devices MP2137,A etc. (TO-41 package)

MAXIMUM RATINGS
Apply also to standard, non-A series

2N2139A
2N2l44A

2N2140A
2N2145A

2N2146A

30

45

60

75

90

Vdc

VCES

30

45

60

75

90

Vdc

VCEO

20

30

45

60

65

Vdc

VEB

15

25

30

40

45

Vdc

Symbol

Collector-Base Voltage

VCB

Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Total Device Dissipation
@ TC; 25°C

2N2137A
2N2142A

2N2138A
2N2143A

Rating

Pn

Operating and Storage Junction Temperature Range

T J , T stg

2-243

Unit

0.833

Watts
W/oC

-65 to +110

°c

70

Derate above 25°C

2N2141A

2N2137 thru 2N2146

(continued)

ELECTRICAL CHARACTERISTICS
*Characteristics apply also to corresponding, non-A type numbers.

Symbol

Characteristic

Min

I Typ I Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage**
(IC = 500 mAdc, IB = 0)

Collector-Emitter Breakdown Voltage**
(IC = 300 mAdc, VBE = 0)

2N2137A,2N2142A*
2N2138A,2N2143A*
2N2139A,2N2144A*
2N2140A,2N2145A*
2N2141A,2N2146A*
2N2137A,2N2142A*
2N2138A,2N2143A*
2N2139A,2N2144A*
2N2140A,2N2145A*
2N2141A,2N2146A*

Floating Potential
(V CB = 30 Vdc, IE = 0)

2N2137A,2N2142A*

(V CB = 45 Vdc, IE = 0)

2N2138A,2N2143A*

(V CB = 60 Vdc, IE = 0)

2N2139A,2N2144A*

(V CB = 75 Vdc, IE = 0)

2N2140A,2N2145A*

(V CB =90Vdc, IE =0)

2N2141A,2N2146A*

Collector-Base Cutoff Current
(V CB = 2.0 Vdc, IE = 0)

BVCEO**

BV CES**

VEBF

I CBO

(V CB = VCB(max), IC = 0, TC = +71° C)
Collector-Base Cutoff Currentt
(V CB = VCB(max), IE = 0)

I CB01

Emitter-Base Cutoff Current
(V BE = VBE(max)' IC = 0)

lEBO

(V BE = VBE(max)' IC = 0, TC = +71° C)

20
30
45
60
65

-

-

30
45
60
75
90

-

-

-

-

1.0

-

Vdc

Vdc

Vdc
1.0
1.0
1.0
1.0
mAdc

-

0.018

0.05

0.75

5.0

-

0.1

2.0

-

0.08

2.0

-

0.5

5.0

30
50
15
25

45
70
22
33

60
100

mAdc

mAdc

ON CHARACTERISTICS
DC Current Gain
(IC = O. 5 Adc, VCE = 2.0 Vdc)t
(I C = 2.0 Adc, VCE = 2.0 Vde)

2N2137A-2N2141A*
2N2142A-2N2146A*
2N2137A-2N2141A*
2N2142A-2N2146A*

h FEl .

hFE

-

Collector-Emitter Saturation Voltage
(IC = 2. 0 Adc, IB = 200 mAde)

VCE(sat)

-

0.12

0.5

Base-Emitter Saturation Voltage
(IC = 2.0 Adc, IB = 200 mAdc)

V BE (sat)

-

0.75

1.2

DYNAMIC CHARACTERISTICS
Common Emitter Cutoff Frequency
(IC = 2.0 Ade, VCE = 6.0 Vdc)
**Sweep method: 1/2 cycle sine wave, 60 Hz .

2-244

-

Vdc

Vdc

2N2137 thru 2N2146 (continued)

FIGURE 1 -

70

..........

60

r--.....

........

50

r....... t-

POWER TEMPERATURE DERATING CURVE

()JC =

r-..... ~

40

.........

30

r--.....

r-.... ~

20

-- r-....

10

o
25

50

. . r-....

1.2°C/W, MAX

~

100

75

125

Tc, CASE TEMPERATURE (OC)

2N2138. A; 2N2143. A

2N2137. A; 2N2142. A
FIGURE 2 - ACTIVE REGION
SAFE OPERATING AREAS

3

\ 1\ 1\\1\
~ \
y

2

I

~ \ """-OR2501'S
LESS

5ms

The active region safe operating
area curves indicate le·VeE limits
to be observed in order to avoid
secondary breakdown. (Secondary
breakdown is independent of temperature and duty cycle.) These
curves do not define operation in
the avalanche region. To insure
operation below the maximum
junction temperature, power derating must be observed for both
steady state and pulse conditions.

\ 1\.~ ~

5001'5

Ims)

1\

R\l\

t\ ~ r~~~rs~

5ms

\

~~

lms

1\
dC~

dcr'\l\
1

1\

1\

I~

0

20

10

J

500tS

i'..

f\

30

40

"20

10

30

50

VeE, COLLECTOR-EMITTER VOLTAGE IVOLTSI

\ \ t\\~
\, 5ms~ ~

2

1ms-

dc~1
1

O

~

1'\f\\

"1

5001'5

5ms-

1

i--

250 1'$OR LESS

1\

30

40

50

1ms-

60

I
70 0

10

20

~

'\

1\ .........

i

I'--- t---

20

f\\,~

dC~

~~

f\-. 1\
10

2N2141.A; 2N2146.A

2N2140.A; 2N2145.A

2N2139.A; 2N2144. A
3

30

40

i

~

j"--.. t 60

~

70

~~

!\

dC----r---"
I

l'
~

I
80 0

I

10

20

30

2501'S I--

OR LESS

l-

1ms

~l

50

5001'5

5ms

~~~ts~-

VeE, COLLECTOR-EMITTER VOLTAGE IVOLTS)

2-245

~~ v
J ~ (\
1\
"~
\

5001'5

40

50

60

"
~

70

80

90 100

2N2137 thru 2N2146 (continued)

LARGE SIGNAL CHARACTERISTICS
FIGURE 4 -INPUT ADMITTANCE
(2N2137A-2N2141A,2N2137-2N2141)

FIGURE 3 - TRANSCONDUCTANCE

(All TYPES)

3.

J

o

i

is

200

. /V/
./ / 1/

2.O~ VeEi2V

100

J

TJ-IOO·C/
1.0

TJ

~_o: :l

TJ~

J

0.3

V

.9 0.2
O. I

I

/

J
o

/

/

0.4
0.6
BASE-EMITTER VOLTAGE IVOLTS)

V,~

/

/

S·C

TJ

,

I

0.2

L

I

0.4

0.6

0.8

1.0

V... BASE-EMITTER VOLTAGE IVOLTS)

FIGURE 6 - NORMALIZED DC CURRENT GAIN

(All TYPES!

3. 0

200

F=~eE

/

21v

/

/

2.0
_TJ , lOOT

50
TJ -IOO·C/

1/

/

~

/
/

1.0

FIGURE 5-INPUT ADMITTANCE
(2N2142A-2N2146A,2N2142-2N2146)
100

100·

/

/

0.8

/

S.0

2.0

V

0.2

TJ

II

/

/

"/ IY V

10

~

/ I

VeE

I--TJ - 2S· C /

20

~

-ss·c

=
-

i

~

l5 O. S

/

0

~

2S· C

/

V ,/ /
2V

/

/
/

/

T

5.0

/

2.0

/

~

1. O_TJ
-TJ

~

o. 5

j

0: 3

is

25· C

I

0.2

SS·C

--

-

.......

VeE

2V

"

::-...

""'....

O.2

I

/
I

TJ - -SS·C

/

25·

0.4

0.6

O. I

1.0

0.8

V... BASE-EMITTER VOLTAGE IVOLTS)

1.0
0.5
0.3
Ie. COLLECTOR CURRENT lAMP)

FIGURE 7- SATURATION REGION
(2N2137A-2N2141A,2N2137-2N2141)

FIGURE 8 - SATURATION REGION
(2N2142A-2N2146A, 2N2142-2N2146)

3.0

0.1

0.2

2.0

3.0

3.0
160
140
120
100
80

,.0::

:$

iB

~

is
~

60

I

B

40

I, -'20'mA

0.4
0.3
COUECTOR-EMITTER VOLTAGE IVOLTS)

~

30

8
.9

20

~

.9

Ve~

100
90
80
70
60
50
40

1,-IOmA

0.3

0.5

VeE. CQLLECTOR-EMITTER VOLTAGlIVOLTS)

2-246

0.4

O.S

2N2137 thru 2N2146

(continued)

INPUT & TRANSFER CHARACTERISTICS

BASE·EMITTER VOLTAGE versus COLLECTOR CURRENT

DC CURRENT TRANSFER RATIO versus COLLECTOR CURRENT

All Types
1.2

100
VCE

VeE:::: 2V

=

2V

90
1.0

~

o

'" 70
S

w

'"w

2: 0.8

'"~
'">
e:i

~

60

~
....

50

z

0.6

~

V

i

~~

o

,.-

~

f

/

'"

r'\.

"

<.>

V

\

,

40

~

./

0.4

0.2

\

80

30
20

"'

~

/

~

2N2142A·2N2146A -

L

~ r-....

...............

/

/

-"-- r--..

2N2137A· 2N2141A

10

o

o

o
Ie. COLLECTOR CURRENT (AMP)

Ie. COLLECTOR CURRENT (AMPS)

2N2152 thru 2N21 54 (GERMANIUM)
2N21

S6 thru 2N21 58
PNP germanium power transistors for high-power,
high-gain applications in high-reliability industrial
equipment.

CASE 5
(T0-36)

MAXIMUM RATINGS

Symbol

2N2152
2N2156

2N2153
2N2157

2N2154
2N2158

Unit

Collector-Emitter Voltage

VCEO

30

45

60

Vdc

Collector-Emitter Voltage

VCES

45

60

75

Vdc

Collector-Base Voltage

VCB

45

60

75

Vdc

Emitter-Base Voltage

VEB

25

30

40

Vdc

Rating

Collector Current

IC

Total Device Dissipation @ TC = 25°C

PD

30

Derate above 25°C
TJ

Operating Junction Temperature Range

Adc

170

Watts

0.5

W/oC

-65 to + 110

°c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

2-247

Symbol

Max

Unit

°JC

0.5

°C/W

2N2152 thru 2N2154

2N2156 thru 2N2158

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage *
2N2152,2N2156
(IC ~ 1. 0 Adc, IB ~ 0)
2N2153,2N2157
2N2154,2N2158
Collector-Emitter Breakdown Voltage *
2N2152,2N2156
(Ic~ 300mAdc, VBE~ 0)
2N2153,2N2157
2N2154,2N2158
Floating Potential
(V CB ~ 45 Vdc, IE ~ 0)

2N2152,2N2156

(V CB ~ 60 Vdc, IE ~ 0)

2N2153,2N2157

(V CB

~

75 Vdc, IE

~

0)

BVCEO*

BV CES *

VEBF

ICBO

(V CB

~

45 Vdc, IE

~

0)

2N2152,2N2156

(V CB

~

60 Vdc, IE

~

0)

2N2153,2N2157

(V CB

~

75 Vdc, IE

~

0)

2N2154,2N2158

(VCB

~ VCB{max)' IE ~ 0, TC ~ 71 °C)

Emitter Cutoff Current
(V BE ~ 25 Vde, IC ~ 0)
(V BE

~

30 Vdc, IC

~

0)

(V BE

~

40 Vdc, IC

~

0)

(VBE~ VEB{max)' IC~ O,TC~

--

-

45
60
75

-

-

-

-

1.0

-

0.08

0.2

0.9

4 .. 0

0.9

4.0

0.9

4.0

-

4.0

15

-

0.2

4.0

0.2

4.0

0.2

4. 0

-

2.7

15

50
80

75
105

100
160

25
40

47
63

-

15

38

-

-

0.06

0.1

-

0.2

0.3

-

0.65

1.0

1.0

2.0

-

2N2154,2N2158

Collector Cutoff Current
(VCB~ 2V, IE~ 0)

30
45
60

lEBO

71 o C)

-

-

Vdc

Vdc

Vdc
1.0
1.0
mAdc

mAde

ON CHARACTERISTICS
DC Current Gain
(IC ~ 5.0 Adc, VCB

~

2 Vde)

(IC ~ 15 Adc, VCB ~ 2 Vdc)

2N2152,2N2153,2N2154
2N2156, 2N2157, 2N2158

hFE

2N2152, 2N2153, 2N2154
2N2156, 2N2157, 2N2158

(IC ~ 25 Ade, VCB ~ 2 Vde)
Collector-Emitter Saturation Voltage
(IC ~ 5.0 Adc, IB ~ 500 mAdc)
(IC

~

25 Adc, IB

~

VCE{sat)

2 Adc)

Base-Emitter On Voltage
(IC = 5.0 Ade, IB ~ 500 mAde)
(IC

~

25 Ade, IB

V BE (on)

= 2 Ade)

-

-

Vdc

Vde

SMALL SIGNAL CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC = 5.0 Ade, VCE = 6.0 Vdc)

*To avoid excessive heating of the collector junction, perform these tests with an oscilloscope.

2-248

2N2152 thru 2N2154, 2N2156 thru 2N2158

(continued)

SAFE OPERATING AREAS
(Duty cycle of the excursions make no significant
The Safe Operating Area Curves indicate Ic-

change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

V CE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

2N2153. 2N2157

2N2152,2N2156
30

~'

\ \
"
\~ "~ ~

20
10

:3

:f

5

:::;;

4

...

3

5

15

I'....

Ie (MAX.) '"
2N2152
_2N2156

I

I

....

/

<.)

5~01'S

de/

t'-..

~

,

0,5
0.4
0,3

~

le(MAX~

~

2N2153
5 i--2N2157

~
§'"

3

2

<.)

o'"

E

"

~
l'..
/

~

"

""

~

170.JIATT I
t- POWER DISSIPATION AT
25°C CASE TEMPERATURE

1

- 5001'5
-2501'S

'"""'l\L

I

~~Ol's
1\\
"
de/

OR LESS

~

o<.)

",

I

5ms
1ms

~

~
......... '-\'

::j

~

0,5
0,4
0,3

0,2

0,2
0,1

........."
"'
"
~

~ 4

501'5 _
OR LESS

~

o

<.)

~

-+-

~~
~

10

-2501's

,"' .\

........ ..,\\

'"o

\\

20
5ms
I-- 1m;

i'- ~ ~ ~

170-WATT
POWER DIS.SIPATION AT
25°C CASE TEMPERATURE

.2

g§

:::>

30

0,1

o

20

10

40

30

50

o

10

30

20

50

40

60

70

COLLECTOR-EMITTER VOLTAGE (VOLTS)

COLLECTOR-EMITTER VOLTAGE (VOLTS)

POWER-TEMPERATURE DERATING CURVE
175
170
150

g

2N2154, 2N2158
30

20

:3

1\\

~~

10

:::;;

~
15

'"'"i3

~\.

"

5
4
3

7'
/

de

2

~

I
__

~ ~ r--

500'1'5
250 l's

..... ~,~\

_

I

;:xr-,."i ~ -J
"\

I- 170·WATT
POWER DISSIPATION AT
25°C CASE TEMPERATURE

~
~

0.5
0,4
0.3

o

10

20

30

~

100

!~

75

re

50

'\

'\
'\

r\.

'\

25

, 5°it s
OR LESS

o
o w w

40

50

60

~

~

~

w ro

~

"-

~

'\

~

ill

Te, CASE TEMPERATURE lOCI

\,

0,2
0,1

"-

125

I\,"

Y

'"
I'!
o<.)

5ms
Ims

\~I\..

~ .....

e5

"-

"'U:

"\

~

,\.

"\ ~

"r\.

70

COLLECTOR-EMITTER VOLTAGE (VOLTS)

80

90

The maximum continuous power is
related to maximum junction temperature by the thermal resistance factor.
This curve has a value of 170 Watts at
case tomperatures of 250 C and is 0 Watts
at 110 C with a linear relation between
the two temperatures such that:
allowable

2....:249

Pn = 1100

-

Tc

O. 5

2N2152 thru 2N2154, 2N2156 thru 2N2158

(continued)

TYPICAL INPUT AND TRANSFER CHARACTERISTICS
COLLECTOR CURRENT

COLLECTOR CURRENT
mlus BASE CURRENT

0

versus BASE-EMlnElI VOLTAGE
30

Ve ,-2V

. . . .J. . /.

5
2N2156-2N2~

0

V
V
/~

r
V

5

5

~V-

0

5

u

M

~

IAllTY~y

2N2152 -2N2154

f

o
o

V

5

h

5

/

0

V

0 !

U

~

MUM

0

M

-V
0.2

I,. BASE CURRENT (AMPS)

/

/

0.4

V

0.6

0.8

If

Ve ,-2V

Ve,-2V

/

1\

\

0.6

0\

0.5

\

0'"

,

i

~

~N2156 - 2N2158

7
7

O.4

(ALL TYPESlj

i3

~ I~ r-.. ............
2N21~ r-- r--- r--

~ O. 3

/

O.2

2N2152 40

O. I

0

0
10

15

20

25

0.2

30

-V
0.4

V
0.6

0.8

VIE. BASE-EMITTER VOLTAGEIVOLTSI

Ie. COLLECTOR CURRENT lAMP)

2N2171

L2

BASE-EMITTER VOLTAGE
OJ

16

LO

VIE. BASE-EMITIER VOLTAGE !VOLTS)

BASE CURRENT versus

DC CURRENT GAIN

Vlrsus COLLECTOR CURRENT

0

I

Ve,-2V

FOR SPECIFICATIONS, SEE 2N381 DATA.

2-250

LO

L2

2N2192,A,B thru 2N2195,A,B
(s.ILlCON)

NPN silicon annular transistors for high-current
switching and amplifier applications.
CASE 31
(TO-S)

Collector connected to case

MAXIMUM RATINGS

2N2192
2N2192A
2N2192B 2N2193 2N2195
Symbol 2N2194
2N2193A 2N2195A
2N2194A 2N2193B 2N2195B
2N2194B

Rating

Unit

Collector-Base Voltage

VCB

60

80

45

Vdc

Collector-Emitter Voltage

VCEO

40

50

25

Vdc

Emitter-Base Voltage

VEB

5.0

B.O

5.0

Vdc

Collector Current

IC

1.0

1.0

1.0

Adc

Total Device Dissipation
@ 25°C Ambient Temperature
Derating Factor Above 25° C

PD

0.8

0.8

4.56

4.56

0.6
3.43

Watt
mW/oC

Total Device Dissipation
@ 25°C Case Temperature
Derating Factor Above 25°C

PD

•

2.8
16

•

•

Watts
mW/oC

Junction Temperature, Operating

TJ

-65 to +200

°c

Tstg

-65 to +200

°c

Storage Temperature Range

2N2193, A, B}
2N2194,A,B

•

FIGURE 1
Vin

= 15 V, Vb = 15 V

2N2192, A, B - Vin

= 7.5 V, Vb = 7.5 V

-IV~----------~~--------~

1 pF
Scope Input:
R 10 Megohms

tr

= 20 ns

t, = 20 ns
Rgon = 50 n

C
330 pF

2-251

7V

J

=
= 11.5 pF

2N2192,A,B thru 2N2195,A,B

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic
Collector-Base Breakdown Voltage
(IC = 100 /lAde, IE = 0)

2N2192, A, B, 2N2194, A, B
2N2193, A, B
2N2195, A, B

Collector Emitter-Open Base Sustain Voltage
(IC = 25 mA pulsed, IB = 0)

(It

Emitter-Base Breakdown Voltage
(IE • 100 /lAde., IC = 0)

= 30 Vde, IE

2N2192, A, B, 2N2194, A. B
2N2195, A, B

= 0, T A = 150·C)

= 0,

T A • 150·C)

Emitter Cutoff Current
(VES = 3 Vde, IC = 0)
(VEB = 5 Vde, IC

BV CBO

VCEO(sus)

= 0)

ICBO

2N2193, A, B
lEBO

2N2192 thru 2N2195
2N2192A thru 2N2195A
2N2192B thru 2N2195B

Base-Emitter Saturation Voltage
(Ic = 150 mAde, IB - 15 mAde)

VCE(sat)

VBE(sat)

DC Current Gain (It
(IC = 0.1 mAde, VCE • 10 Vde)

2N2192, A, B, 2N2193, A, B

(IC • 10 mAde, VCE = 10 Vde)

(IC • 10 mAde, VCE = 10 Vde, TA

= -55·C)

----

hFE

--15

2N2192, A, B
2N2193, A, B
2N2194, A, B

75
30
15

~N2192, A, B
2N2193, A, B

35
20

(IC - 150 mAde, VCE • 10 Vdc)

2N2192,
2N2193,
2N2194,
2N2195,

A,
A,
A,
A,

B
B
B
B

100
40
20
20

(IC • 150 mAde, VCE = 1.0 Vdc)

2N2192,
2N2193,
2N2194,
2N2195,

A,
A,
A,
A,

B
B
B
B

70
30
15
10

(IC = 500 mAde, VCE = 10 Vdc)

2N2192,
2N2193,
2N2194,
2N2192,

A,
A,
A,
A,

B
B
B
B, 2N2193. A, B

35
20
12
15

(Ie = 1.0 Adc, VCE = 10 Vdc)
Output Capacitance
(V CB = 10 Vde, IE = 0, 1=1.0 MHz)

Cob

Sn",ll Signal Current Gain
IIC = 50 mA, VeE = 10V, f _20 MHz)

hIe

Rise Time

t

Storage Time

2N2192-94, 2N2192A-94A, 2N2192B-94B

Fall Time

(It

40
50
25

-

2N2193, A, B

Collector-Emitter Saturation Voltage
(IC - 150 mAde, IB = 15 mAde)

60
80
45

5.0
5.0
8.0

2N2192, A, B
2N2194, A, B
2N2195,A, B

2N2192, A, B, 2N2194, A, B
2N2195,· A, B

Pulse Test: PW So 300 /lS

r

ts
tl

Duty Cycle So 2%

2-252

Max

BV EBO

2N2193, A, B

(V CB = 60 Vde, IE • 0)
(V CB = 60 Vde, IE

2N2192, A, B, 2N2194, A, B
2N2193, A, B
2N2195, A, B
2N2192, A, B, 2N2194, A, B,
2N2195, A, B
2N2193, A, B

Collector Cutoff Current
(VCB - 30 Vde, IE = 0)
(V CB

Svmbol Min

2.5

-

-

Unit

--

Vde

---

Vde

Vde

/lAde
0.010
0.100
15
25
50
0.010
25
/lAde
0 •.050
0.100
0.050
Vde
0.35
0.25
0.18
Vde
1.3

---

-

300
120
60

-

----

pF
20

-

-

70

ns

150

ns

50

ns

2N2212

(GERMANIUM)

PNP GERMANIUM POWER TRANSISTORS
10 AMPERE

· .. designed for high-current SllVitching applications requiring low
saturation voltages. short SllVitching times and good collector-emitter
sustaining capability.

PNP ADE GERMANIUM
POWER TRANSISTORS

• Alloy-Diffused Epitaxial Construction
• Low Saturation VoltageVCE(SAT) = 0_5 Vdc (Max) @IC = 5.0 Adc

120 VOLTS
102 WATTS

MAXIMUM RATINGS

Symbol

Value

Unit

"Collector-Emitter Voltage

VCER

120

Vdc

"Collector-Base Voltage

VCB

120

Vdc

"Emitter-Base Voltage

VEB

1.5

Vdc

IC

10

Adc

IB

3.0

Adc

PD

102
1.2

TJ.T stg

-65 to +110

Watts
W/"C
·C

Rating

"Collector Current - Continuous
"Base Current - Continuous
Total Device Dissipation@ TC = 25·C
Derate above 25·C
"Operating and Storage Junction
Temperature Range

~
O~~

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

.Thermal Resistance, Junction to Case

6 JC

0.83

·c/W

R
,...

"Indicates JEDEC Registered Data_

I550MM-

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT

~~
1
..

ffi

~rtiC.1

0.05

.. ~ lN1181

C~mon

1.0@

....

~'-.!> >-0
'-20Hz
Duty Cycle = 0.5%

U
----f-

IC A4/i~1. 10 mH

,I'

10

Push to Tast

.r.

Ad/ust IB=
5.0.1
7

ill!

.... '"\

1.0
100W

Horizontal

- I-~

~1180V~

~~! ~ ~
i"-VCEllUIl 0-150

==1 ~ ...
...

~.... ! ......
I

I--Hli1-Hl/-'1--1I011IR

~.~t:><:~ $
I~ ....

Collector Connected to Cue

re
3.0

2-253

CASE 4-04
ITO-41,

2N2212 (continued)

ELECTRICAL CHARACTERISTICS

(Tc

=25°e unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

-

Vde

60

-

Vde

60

-

50

-

20

OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage
(Ic • 100 mAde, IS = 0)

SVCEO

Collector-Emitter Sustaining Voltage(See Figure 1)
(IC = 5. 0 Ade, IS = 0)

VCE(sus)

Collector-Emitter Cutoff Current
(VCE = 120 Vdc, RSE = 100 Ohms)

ICER

*Colleetor Cutoff Current
(VCE = 100 Vdc, VBE (off) = 0.2 Vde, TC = 85·C)

I CEX

Collector Cutoff Current
(VCs =2.0Vde, ~=O)

ICSO

*(VCS = 100 Vde, IE = 0)
Emitter Cutoff Current
(VES = 0.75 Vde, IC = 0)

-

mAde
mAde
/LAde
200
2.0

mAde
mAde

-

25

50

200

(Ic = 1.2 Ade, VCE = 1.0 Vde)

60

200

(Ic = 5.0 Ade, VCE = 2.0 Vde)

50

120

VCE(sat)

-

0.5

VSE(on)

-

1.0

-

7.0

/Ls

10

/Ls

8.0

/Ls

IESO

ON CHARACTERISTICS
*DC Current Gain
(Ic = 0.6 Ade, VCE = 1. 0 Vdc)

hFE

Collector-Emitter Saturation Voltage
(IC = 5.0 Ade, IS = 0.5 Adc)
*Sase-Emitter On Voltage
(IC = 5.0 Adc, VCE = 2.0 Vdc)

Vde
Vde

SMALL-SIGNAL CHARACTERISTICS
*Small-Signal Current Gain
(IC = 0.5 Ade, VCE = 6.0 Vdc, f = 30 kHz)

SWITCHING CHARACTERISTICS
Rise Time
Storage Time

tr

(IC = 5.0 Ade, lSI = 0.5 Ade, IS2 = 0.5 Ade)

ts

(See Figure 2)
Fall Time

tf

-

*Indieates JEDEC Registered Data.
FIGURE 2 - SWITCHING TIME TEST CIRCUIT

Adjust for
Ie = 5.0 A

+13.5 V
100,.. - -.....I---I~

27

PRF = 60 Hz
1 4 - ' - ' ' ' - - - 100 ,..

MR830
Input Pulse

t r• tt!!> 10 ns

2-254

2N2218I A, 2N2219I A 2N2221 I A{sILiCON)
2N2222,A, 2N5581 , 2N5582

NPN SILICON ANNULAR HERMETIC TRANSISTORS
NPN SILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

. . . widely used "Industry Standard" transistors for applications
as medium-speed switches and as amplifiers from audio to VHF
frequencies.
• DC Current Gain Specified - 1.0 to 500 mAdc
• Low Collector-Emitter Saturation Voltage VCE(sat) @ IC = 500 mAdc
= 1.6 Vdc (Max) - Non-A Suffix
= 1.0 Vdc (Max) - A-Suffix
• High Current-Gain-Bandwidth Product fT = 250 MHz (Min) @ IC = 20 mAdc - All Types Except
= 300 MHz (Min) @ IC = 20 mAdc - 2N2219A, 2N2222A,
2N5582

CASE 31 (1)
TO·5

• Complements to PNP 2N2904,A thru 2N2907,A

2N221B,A
2N2219.A

• JAN/JANTX Available for all devices

SELECTION 3UIDE
Characteristic
BVeEO
le= 10mAdc
Volts

Device
Type

hFE
Ie

= 150mAdc

Ie = 500 mAdc

MinIMax

Min
30

20

2N2218
2N2219

30

40/120
100/300

2N2221
2N2222

30

40/120
100/300

20

40

40/120
100/300

25

2N5581
2N5582

Package
TO-5

TO-46

40

40

40/120
1001300

40

2N2221A
2N2222A

40

40/120
100/300

40

l

D.2"
rna
DlA

I ~om

m.

o.soo
MIN

O.!!.!§

O.019 D1A

25

TO-5

25

TO-18

rr

ji

DlA1

TO-18

30

2N2218A
2N2219A

o.17B

1111. EmlulIl
2 ,~
3.Coliector

~

0.100

*MAXIMUM RATINGS
Rating

Symbol

2N2218
2N2219
2N2221
2N2222

2N2218A
2N2219A 2N5581
2N2221A 2N5582
2N2222A

Unit

VeEO

30

40

40

Vde

Coliector·Base Voltage

Vea

60

75

75

Vde

Emitter·Base Voltage

VEa

5.0

6.0

6.0

Vde

Ie

BOO

BOO

BOO"

Coliector·Emitter Voltage

Collector Current - Continuous

mAde
CASE 26
T0-46

2N221~:~ 2N2221 ,A 2N5581
2N2219, 2N2222,A 2N5582
Total Device Dissipation @TA =25°C
Derate above 2SoC

Po

0.8
5.33

0.5
3.33

0.5
3.33

Watt
mwfle

Total Device Dissipation @TC= 2SoC
Derate above 250 e

Po

3.0
20

1.8
12

2.0
11.43

Watts
mwfle

Operating and Storage Junction
Temperature Range

TJ,Tstg

- - 6 5 to + 2 0 0 -

-Indicates JEaEC Registered Data.
··Motorola Guarantees this Data in Addition to JEOEC Registered Data.

2-255

2N55B1
2N55B2

Weight

/!

~

1.1Sgr.m

CASE 22(1)
TO·1B
2N2221,A
2N2222.A

'. Lr"

I

-I

D500
MIN

1_

°e
The respective JEOEC registered
dimensions and notes apply

' DDB'
~

!:ill.
0019'"

2N2218,A, 2N2219,A, 2N2221 ,A, 2N2222,A, 2N5581 ,2N5582 (continued)

*ELECTRICAL CHARACTERISTICS

I

ITA =.250 C unless otherwise noted)
Symbol

Characteristic

Min

Max

30
40

-

60
75

-

5.0
6_0

-

-

10

Unit

OFF CHARACTERISTICS
Collector~Emitter

Breakdown Voltage

(lC = 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)

Vde

BVCEO
Non-A Suffix
A-Suffix,2N5581,2N5582

Vde

BVCBO
Non-A Suffix
A-Suffix, 2N5581,2N5582

Vde

BVEBO
Non-A Suffix
A-Suffix,2N5581,2N5582

-

nAde

Collector Cutoff Current
(VCE =60 Vde, VEB(off) = 3.0 Vde)

A-Suffix, 2N5581 ,2N5582

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

Non-A Suffix

-

0.01

(VCB = 60 Vde, IE = 0)
(VCB = 50 Vde, IE = 0, T A = 150o C)
(VCB =60Vde,IE =0, TA = 150o C)

ICEX

"Ade

ICBO
A-Suffix,2N5581,2N5582

-

0.Q1

Non-A Suffix

-

10

A-Suffix, 2N5581 ,2N5582

-

10

-

10

-

20

Emitter Cutoff Current
(VEB = 3.0 Vde, IC = 0)

A-Suffix, 2N5581 ,2N5582

Base Cutoff Cu rrent
(VCE = 60 Vde, VEB(off) = 3.0 Vde)

A-Suffix

lEBO

nAde
nAde

IBL

ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC = 0.1 mAde, VCE = 10 Vde)

2N2218,A,2N 2221 ,A,2N5581 (1)
2N2219,A,2N2222,A,2N5582( 1)

20
35

-

(lC = 1.0 mAde, VCE = 10 Vde)

2N2218,A,2N2221,A,2N5581
2N2219.A,2N 2222,A,2N5582

25
50

-

(lC = 10 mAde, VCE = 10 Vde)

2N2218,A,2N2221,A,2N5581 (1)
2N2219,A,2N2222,A,2N5582(1 )

35
75

-

(lC = 10 mAde, VCE = 10 Vde, TA = -550 C)

2N2218A,2N2221A,2N5581
2N2219A,2N 2222A,2N5582

15
35

-

(lC = 150 mAde, VCE = 10 Vde)(l)

2N2218,A,2N2221,A,2N5581
2N2219,A,2N2222,A,2N5582

40
100

120
300

(lC= 150 mAde, VCE = 1.0Vde)(1)

2N 2218A,2N 2221 A,2N 5581
2N2219A,2N2222A,2N5582

20
50

(lC = 500 mAde, VCE = 10 Vde)(l)

2N2218,2N2221
2N2219,2N2222
2N2218A,2N2221A,2N5581
2N2219A,2N2222A,2N5582

20
30
25
40

-

Collector-Emitter Saturation Voltage(l)
(lC = 150 mAde, IB = 15 mAde)
(I C = 500 mAde, I B = 50 mAde)
Base-Emitter Saturation Voltage( 1)
(lC = 150 mAde, IB = 15 mAde)
(lC = 500 mAde, IB = 50 mAde)

-

Vde

VCE(sat)

-

Non-A Suffix
A-Suffix, 2N5581,2N5582

-

0.4
0.3

-

1.6
1.0

Non-A Suffix
A-Suffix, 2N5581 ,2N5582

0.6
0.6

2.0
1.2

Non-A Suffix
A-5uffix, 2N5581 ,2N5582

-

2.6
2.0

Non-A Suffix
A-Suffix, 2N5581 ,2N5582

Vde

VBE(sat)

2-256

2N2218,A, 2N2219,A, 2N2221,A, 2N2222,A, 2N5581, 2N5582 (continued)

*ELECTRICAL CHARACTERISTICS (Continued)
Symbol

Characteristic

Min

Max

250
300

-

-

8_0

-

30
25

Unit

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth P,oduet(2)
(lC: 20 mAde, VCE : 20 Vde, I : 100 MHz)
Output Capaeitanee(3)
(VCB: 10 Vde, IE = 0, I : 100 kHz)
Input Capaeitanee(3)
(VEB = 0.5 Vde, IC =0, I
I nput Impedance
(lC = 1.0 mAde, VCE

(lC: 10 mAde, VCE

MHz

IT
All Types, E .eept
2N2219A,2N2222A,2N5582
Cob

pF

Cib

= 100 kHz)

Non-A Sufti.
A-Sum.,2N5581,2N5582

k ohms

hie

= 10 Vde, I = 1.0kHz)

2N2218A,2N2221 A,2N5581
2N2219A,2N2222A,2N5582

1.0
2.0

3.5
8.0

= 10 Vde, I: 1.0 kHz)

2N2218A,2N2221A,2N5581
2N2219A,2N2222A,2N5582

0.2
0.25

1.0
1.25

2N2218A,2N2221A,2N5581
2N2219A,2N2222A,2N5582

-

5.0
8.0

2N2218A,2N2221A,2N5581
2N2219A,2N2222A,2N5582

-

2.5
4.0

2N2218A,2N2221A,2N5581
2N 2219A, 2N 2222A,2N 5582

30
50

150
300

2N2218A,2N2221A,2N5581
2N 2219A,2N 2222A,2N5582

50
75

300
375

2N2218A,2N2221A,2N5581
2N2219A,2N2222A,2N5582

3.0
5.0

15
35

2N2218A,2N2221 A,2N5581
2N2219A,2N2222A,2N5582

10
25

100
200

-

150

Voltage Feedback Ratio
IIC: 1.0 mAde, VCE = 10 Vde, I : 1.0 kHz)
(IC: 10 mAde, VCE : 10 Vde, I : 1.0 kHz)
Small-Signal Current Gain
IIC: 1.0 mAde, VCE: 10Vde, I : 1.0 kHz)
IIC: 10mAde, VCE: 10Vde, I : 1.0 kHz)

Output Admittance
(lC: 1.0 mAde, VCE : 10 Vde, I : 1.0 kHz)
IIc:10mAde,VCE:10Vde, I : 1.0kHz)

X 10-4

h,e

-

hIe

jJ.mhos

hoe

Collector-Base Time Constant

po

'b'Ce

II E : 20 mAde, VCB: 20 Vde, I : 31.8 MHz)

A-Sullix,2N5581,2N5582

Noise Figure

NF

(lC: 100 !lAde, VCE : 10 Vde,
RS: 1.0kohm, I : 1.0 kHz)

pF

d8

-

2N2219A,2N2222A

4.0

SWITCHING CHARACTERISTICS (A-Suffix 2N5581 and 2N5582)
td

-

Rise Time

t,

Storage Time

to

tl
TA

Delay Time

10

no

-

25

no

-

225

no

-

60

no

-

2.5

no

(VCC: 30 Vde, VBE(oll): 0.5 Vde,
IC: 150mAde, IBl : 15 mAde)
(Figu,e 14)

(VCc:30Vde, IC: 150 mAde,
IBl : IB2: 15 mAde)
(Figu,e 15)
Fall Time

Active Region Time Constant* *
IIC: 150 mAde, VCE: 30 Vde)
-Indicates JEDEC Registered Data .
•• Motorola Guarantees this Data in Addition to JE DEC Registered Data.
(1 )Pulse Test: Pulse Width'S. 300 J,ls, Duty Cycle 5: 2.0%.

(2}fT is defined as the frequency at which

ihfeJ extrapolates to unity.

(3)2N5581 and 2N5582 are Listed Ccb and Ceb for these conditions and values.

2-257

2N2218,A,2N2219,A, 2N2221,A,2N2222,A,2N5581,2N5582 (continued)

FIGURE 1 - NORMALIZED DC CURRENT GAIN
4.0

z

;;:
OJ
f-

~
'"
13

'-'

'"
5l
N

:::;

2.0

-

TJ=175 0C

,....-

I I
250~

"':'i-

1.0

~

r

--

- 1- - 1- r- r- - r---~ -

-

l- I-

0.7

«
~ 0.5 1 - 0

-

-

-55 0C

z

~

-

~

"-

,

......

""

0.3
0.2
0.5

v'_

J

CE ~ 1.0
-VCE=lOV_

I

3.0

i'...--

."C

~

'\~

'\.
0.7

1.0

3.0

2.0

5.0

10

30

20

50

70

100

200

1'1..1'1..

500

300

IC.COLLECTOR CURRENT (mA)

FIGURE 2 - COLLECTOR CHARACTERISTICS IN SATURATION REGION
I. 0

~

\\
\\

0.8

~

~§;
ffi

t::

~

---

o. 4

O:l

\

~

.; O. 2

o
o

EXAMPLE: For type 2N2219. estimate a base current (I.) to insure
saturation at a temperature of 25'C and a collector current of

"-

\ 1""-

0.6

This graph shows the effect of base current on collector current. /30
(current gain at the edge of saturation) is the current gain of the
transistor at 1 volt. and /3. (forced gain) is the ratio of 1,/1 .. in a circuit.

TJ ~ 25°C

Ie

2.0

1.0

Observe that at I, = 150 mA an overdrive factor of at least 2.5
is required to drive the transistor well into the saturation region. From
Figure 1. it is seen that h" @ 1 volt is approximately 0.62 of h" @ 10
volts. Using the guaranteed minimum gain of 100 @ 150 mA and
10 V. /30 = 62 and substituting values in the overdrive equation.
we find:

50 rnA

3.0

/301/3,.

150 rnA.

300 rnA

150 rnA

--

"-

~

4.0

/30 h,,@ l.OV
7J:=~
5.0

FIGURE 4 - TEMPERATURE COEFFICIENTS
+1.6

TJ = 25~C

:t.>

1.2

.5

~0

C

'"
«

o.a

~

VSE(sal) @Iclis = 10

~ 0.6

ffi

V

i-"
~ f--

0.4
,,2

u

'"

2.0

'"=>

VCE(sal)@lclla- 10

~

10

-0.8

.....V

f-

;:i

5.0

(-550C10 1250 C)

8
w

I 1111
II 1I11
II 1111

"'"
1ll
f-

o
1.0

eVC for VCElsal)

§

VBE @VCE- 1.0 V

'">

0.5

IIII

(25 0C10 175 0C)
+0.8

f-

1.0

OJ

>'

1.::::::6.0 mA

OVERDRIVE FACTOR

FIGURE 3 - "ON" VOLTAGES
1.4

62
2.5= 150/1..

20

50

----

100

200

500

IC. COLLECTOR CURRENT (mA)

eVB for VBE

-1.6

III
-2.4
0.5

1.0

2.0

5.0

10

20

50

III100

IC. COLLECTOR CURRENT (mA)

2-258

J
200

500

2N2218,A, 2N2219,A, 2N2221,A, 2N2222,A, 2N5581, 2N5582 (continued)

NOISE FIGURE
VCE = 10 V, TA = 2SoC
FIGURE 5 - FREQUENCY EFFECTS

FIGURE 6 - SOURCE RESISTANCE EFFECTS

6.0
5.0 r\.
iii

:g

""
:::>
co
0::
~

i..:
z:

1

kHz

1"'"

~

3.0
2.0

0.5

1.0

..:
z:

Ic= 100m
Rs ~ 1.0 Il

o
0.2

C5 4.0
z:

II
I'I'-r-.

1.0

\

~
~

........

2.0
5.0
f. FREQUENCY (kHzl

10

20

VCE

II

50

I

/

0::

~

~

6.0

V

I)

r--.

11111

111
J ;~~I

/

:g

Ic~lOpA

Rs ~ 4.3 kll

IOOpA J

Ic ~ LOrnA

iii

4.0

0.1

f~1.0

B.O

"I'.

~

,,

10

........

""

2.0

o
100

0.1

0.2

0.5

1.0
2.0
5.0
10
20
R,. SOURCE RESISTANCE (k OHMSI

50

100

h PARAMETERS
= 10 Vdc, f = 1.0 kHz, TA = 2SoC

This group of graphs illustrates the relationship between hfe and other "h" parameters
for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were
selected and the same units were used to develop the correspondingly numbered curves

on each graph,
FIGURE 7 -INPUT IMPEDANCE

20

FIGURE 8 - VOLTAGE FEEDBACK RATIO

0

........

........ r-.,.
10

~ 7.0
i5
~

~

20

~

5.0

i

1

3.0
:!! 2.0
~

30

~

~

~

..

.......

........
2......

1.0
0.7
O. 5
O.3
0.1

~

""

2.0
1.0
0.5
Ic. COLLECTOR CURRENT ImAdel

0.2

~.
.J

I'

5.0

"

10

'\.

"

0'
5. 0

....

3.0

I.0

20

I

~

,...., ..... ~
100

1

70

0.1

0.2

0.5

1.0

i"-5.0

2.0

-

~

r-....

10

20

Ic. COLLECTOR CURRENT ImAdel
FIGURE 10 - OUTPUT ADMITTANCE

-

-~

~

~

I-

...

~

g

30
0.1

~

.J
1.0
2.0
0.5
Ic. COLLECTOR CURRENT (mAdel

'f

50
1~

20

is

1/

0.2

J

100

~

../

V

i

~

2

50

"

2

200

200

a

"

2. 0

FIGURE g - CURRENT GAIN

~

1

1"\

........

r--

300

~

"\

5.0

10

20

2-259

10

-

5. 0
0.1

,
./

./

0.2

V

2

1.0
2.0
5.0
0.5
Ic. COLLECTOR CURRENT ImAdel

10

20

2N2218,A, 2N2219,A, 2N2221 ,A, 2N2222,A, 2N5581, 2N5582 (continued)

SWITCHING TIME CHARACTERISTICS
FIGURE 12 - CHARGE DATA

FIGURE 11 - TURN-QN TIME

10,000

200

"\
10Ot\.

'"

1,@5V

I\v

\.

I,

,,2:y

0
'.I
t..@V"loffl

'-'
~0

0

300

j
~
::l
:'t
!iil

.

I

t;;

..::

100

~

~

\
~

,

.....

.....

,/

~

20
30
50
Ie, COLLECTOR CURRENT ImA)

.....

~

,-

1/

100

~

"-

30
20

.
.~
~

lell" = 10

100

.....

le/l" = 20· ~ ~

"<

z:
~

I

10

20 30
50 70
Ie. COLLECTOR CURRENT (mA)

t.

..........

'"

.......

............

70

100

20

lell"

.......

200

300

>:

-

t...

.....

...........
lell" = 10 ..........

..:: 30

.........

~

':::::

4

K

I'""

j

20

:""'- >-

4 H GAIN TYPES
TJ 725°IC

200

10
10

300

30

20

50

70

100

200

300

Ie, COlLECTOR CURRENT (mA)

Ie, COLLECTOR CURRENT (mA)

FIGURE 15 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT

FIGURE 14 - D£LAY AND RISE TIME
EQUIVALENT TEST CI RCUIT

GENERATOR RISE TIME" 2.0 ns
PH" 200 n.
DUTY CYCLE = 2.(1)\

100

~

'ell" -10

t;;

...........
50

50

~

4
.....

30

70

Q

I I
20

7.0

........

LOW GAIN TYPES
----,- TJ ~ 25°C

I

5.0

200

~

I

j

I I II II

FIGURE 13 - TURN OFF BEHAVIOR
300

... r--.

'ell" ~ 10 ..........

~QA.ACTIVE REGIO~t:: ALL TYPES
CHARGE

20
3.0

__"'t'

...........

~

30V

Vee

o

>=

50

HIGH GAIN TYPES
L?W GAIN TYPES

200 i---'

200 300

100

70

10
10

500

I-'

~
QT, TOTALCONTRO~~
CHARGE

./

1000

I'

1

.....

g

1'\

'r......

10

........

200

~

5.0

I"

2000

~'

10
3.0

TJ 25°C
'ell,-IO
f-- - Vee = 5V(UNLESS NOTED)

t..@V"loff "

I'

=

I- -

Vee lOV
UNlESS NOTED

I'\.

r--

5000 ~

TJ ~ 25°C
Ie/I, ~ 10

DUTY CYCLE' 2.(1)\

+JOV

l ~r~ ~O:.::.

+30 V

200

+16.2 V

.n'"
0.5 V

1.0 k

C>-">NV-...-t---f
lN916
OSCI LLOSCOPE
Rin> 100 k ohms
Cin" 12pF
RISE TIME" 5.0 ns

-13.8 V
.. 5001'.--1

2-260

-J.OV

SCOPE
Rin> 100 k ohms
Cin" 12pF
RISE TIME" 5.0 ns

2N2218,A, 2N221 9,A, 2N2221 ,A, 2N2222,A, 2N5581, 2N5582 (continued)
FIGURE 16 - CURRENT-GAIN-BANDWIDTH PRODUCT AND
COLLECTOR-BASE TIME CONSTANT DATA

FIGURE 11- CAPACITANCES

500

30
Vel ~ 20V
f-- TA
~ 25°C

~ t--

.,

.....
f"-.

1111

........

TJ

~

25°C

20

r- ~

..... "'"

~

~

r-- ..... 1"-

I' ..... 1"-

Cob

~

r-- . . .

!E 10
~

§ 7.0

rb'Cc f--

V

C"-

r--....

5.0

,

V
10
0.1

2.0 3.0 5.0
0.5
1.0
Ie, COLLECTOR CURRENT (mAde)

0.2

10

3.0
0.1

20 30

0.2

0.3

0.5

1.0
2.0 3.0
REVERSE VOLTAGE (VOLTS)

5.0

10

20

FIGURE 18 - ACTIVE-REGION SAFE OPERATING AREAS
2.0

!12
~

II:

~
II:

o

TO·5

o. 1

1.0 ms

O.3 r=Tr S
I-TO-46
0.2
HTJ=115 0 C
1
I
I

~

0.0 1
0.05

This graph shows the maximum IC-VCE limits of the device
both from the standpoint of thermal dissipation lat 25 0 C case
temperature), and secondary breakdown. For case temperatures
other than 250 C, the thermal dissipation curve must be modified
in accordance with the derating factor in the Maximum Ratings
table.
To avoid possible device failure, the collector load line must
fall below the limits indicated by the applicable curve. Thus, for
certain operating conditions the device is thermally limited, and
for others it is limited by secondary breakdown.
For pulse applications, the maximum IC-V CE product indicated
by the dc thermal limits can be exceeded. Pulse thermal limits

100~~

O.5

~ o.

8

ION-

'\.

1.0

~""::>..

Second Breakdown

li:~

de

'"' ~

Pulse Duly Cycl • .;; 10%
-

0.03
0.02
2.0

- - -

Bonding Wire limited
Thermal Umitations@Tc 25°C

Applicable For Rated SVCEO

may be calculated by using the transient thermal resistance curve

of Figure 19.
5.0

3.0

20

10

1.0

30

40

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 19 - THERMAL RESPONSE

5
TO·5
PACKAGE

2

1

TO-46

........

~ ....-: :;::::~

-

~

....

i-"

9JC(I) = r(t)9JC

5

....... ~
2~
0.0 1

10--4

TO·18

II

10-3

10-1
I,

2N2223,A

TIME (s)

For Specifications, See 2N2060 Data.

2-261

2N2224 (SILICON)

NPN silicon annular transistor designed primarily
for high speed switching applications.

CASE 31
(TO·S)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

65

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

0.5

Adc

PD

0.8

W

5.33

mW;oC

3.0

Watts

20

mW;oC

Collector-Emitter Voltage

Collector Current-Continuous
Total Device Dissipation @ T A

= 25° C

Derate above 25°C
Total Device Dissipation @ T C

= 25° C

PD

Derate above 25° C
Operating Junction Temperature

TJ
T

Storage Temperature Range

stg

+175
-65 to +200

°c
.,c

FIGURE 1
470
-""""111--...,..-...,..--1

+12 Ydc 0-......

~1o%---[-

10k

I
I

I
I
I

I

OY,--_

L-s.oy

s.o Ydc
t

I
I

-S.OVdc

2-262

-I

~W%---F
1-1"

2N2224

(continued)

ELECTRICAL CHARACTERISTICS

(T A

= 25"C unle" otherwise noted)

Characteristic

Symbol

Min

Max

40

-

65

-

5.0

-

-

0.01

-

1.0

20

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 10 mAdc, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 /lAdc, ~ = 0)

BV CBO

Emitter-Base Breakdown Voltage
(~ = 10 /lAdc, IC = 0)

BV EBO

Collector-Cutoff Current
(V CB = 50 Vdc, ~ = 0)

ICBO

(V CB = 50 Vdc, ~ = 0, T A = +150°C)

Emitter Cutoff Current
(V EB =4.0VdC, IC =0)

lEBO

Vdc

Vdc

Vdc

/lAdc
10
/lAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 0.1 mAdc, V CE = 10 Vde)

hFE

-

(IC = 1. 0 mAde, VCE = 10 Vdc)

25

-

(IC = 10 mAde, VCE = 10 Vde)

35

115

(IC = 100 mAde, V CE = 1. 0 Vde)

40

120

Collector-Emitter Saturation Voltage (11
(IC = 150 mAde, IB = 15 mAde)

VCE(sat)

-

0.4

Vde

Base-Emitter Saturation Voltage:(1)
(IC = 150 mAde, IB = 15 mAde)

V BE(sat)

-

1.3

250
160

-

-

8.0

-

15

-

15

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 20 mAde, VCE = 20 Vde, f = 100 MHz)

fT

(IC = 80 mAde, VCE = '10 Vde, f = 100 MHz)

Output Capacitance
(V CB = 10 Vde, IE = 0)
Circuit Delay
(TA = 25°C)

(Figure 1)

Circuit Delay - Total Change
(T A = +10°C to TA ~ +25°C)
(1)

Cob

tde
(Figure 1)

(l.tde

Pulse Test: PW ~ 300 /ls, Duty Cycle ~ 2.0%

2-263

MHz

pF

ns

ns

2N2242 (SILICON)

NPN silicon annular transistors designed for highspeed, low-power saturated switching applications.
CASE 22
(TO·1S)

MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

Unit

Value

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

225

mAdc

PD

360

mWatts

2.0

mW/oC

Collector Current -

Continuous

Total Device Dissipation @' T A

-= 25° C

Derate above 25° C
Junction Temperature - Operating

T.T

Storage Temperature Range

T

stg

°c

-65 to +200

°c

+ 3.0 v (Vee)

FIGURE 1 - SWITCHING TIME
TEST CIRCUIT

30
0.1 I1_F
;--.JV\I'v--._....u----1..---O seOPE
z ~ 100 k

5.0 k

240

5.0k

PULSE WIDTH 96 ns

-65 to +200

51

1.0k

PRR 120 Hz
t
...Q!!.
V BB = -4.0 V
V in

= +21

V

V BB
V in

= +17 V
= -20 V

890

O. 1 JlF

.....~~-~-oseOPE

,....-v~-

O. 1 JlF

500

z

~ 100 k

1.0k

62

PULSE WIDTH 96 ns

PRR

91

500

FIGURE 2 - STORAGE TIME
TEST CIRCUIT

-IOU

+10 V

+11 V

120 Hz

2-264

2N2242

(continued)

ELECTRICAL CHARACTERISTICS

(1,

= 25'C unl.ss oth .... ;'. noted)

Symbol

Characteristic

Min

Max

15

-

20

-

40

-

5.0

-

-

10

'-

0.1

-

15

-

0.1

40

120

20

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 30 mAdc, ~ = 0)

BV CEO

Collector-Emitter Breakdown Voltage 11/
(IC = 30 mAdc, RBE = ~ 10 ohms)

BV CER

Collector-Base Breakdown Voltage
(IC = I. 0 !lAde, ~ = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 IlAd c, IC = 0)

BVEBO

Collector Cutoff Current
(V CE = 20 Vde, VEB(Off)

= 0.25

Vde, T A

ICEX

= 125°C)

Collector Cutoff Current
(V CB = 20 Vdc, IE = 0)
(V CB

= 20 Vdc,

IE

ICBO

= 0,

TA

Emitter Cutoff Current
(V EB(off) = 4.0 Vdc, IC

= 150°C)
lEBO

= 0)

Vdc
Vdc
Vdc
Vdc
!lAde

IlAde

!lAde

ON CHARACTERISTICS
DC Current G.in' (1/
(IC = 10 mAde, VCE
(IC = 10 mAdc, V CE

= I. 0 Vdc)
= I. 0 Vde,

hFE
TA

= _55°C)

Collector-Emitter Saturation Voltage
(IC = 100 mAdc, IB = 10 mAde)
(IC

= 10 mAde,

IB

= I. 0

mAde, TA

VCE(sat)

= -55

to +125°C)

Base-Emitter Saturation Voltage
(IC = 100 mAde, IB = 10 mAde)
(IC

= 10' mAde,

IB

= 1.0 mAdc,

VBE(sat)
TA

= 125°C)

-

Vde

-

0.7

-

1.5
0.8

250

-

-

6.0

-

30

-

50

-

25

0.3
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 20 mAde, VCE = lq Vdc, f
Output Capacitance
(V CB = 10 Vdc, IE

= 0,

f

Cob

= I. 0 MHz)

Turn-On Time (Figure 1)
(V CC = 3.0 Vde, VBE (off)

t

= +2.0 Vdc,

Turn-Off Time (Figure 1)
(V CC = 3. 0 Vdc, IC = 10 mAdc, IBI
Storage Time
(Figure 2)
(I C = 10 mAde, IBI = IB2
(1)

fT

= 100 MHz)

Pulse Test: Pulse Wdith

IBI

= 3.0

= 3.0

mAde, IC

mAdc, IB2

= 10 mAde)

= I. 0 mAde)

toff
t

= 10 mAde)

=300 /lS;

Duty Cycle

= ~ 2%

2-265

on

s

MHz
pF

ns

ns
ns

2N2256, 2N2257 (SILICON)
2N2258 {GERMANIUM}
2N2259 (GERMANIUM)

NPN silicon and PNP germanium mesa complementary transistors for high- speed non- saturated switching
applic ations.
CASE 22
(TO-18)

Collector connected to cese

MAXIMUM RATINGS

2N2258
2N2259

Symbol

2N2256
2N2257

VCEO

7.0

7.0

Vdc

Collector-Base Voltage

VCB

7.0

7.0

Vdc

Emitter-Base Voltage

VEB

1.0

1.0

Vdc

Collector Current-Continuous

IC

100

100

mAdc

Total Device Dissipation @ T A = 25°C

PD

300
2.0

150
2.0

mW
mW/oC

PD

1000

300

6.67

4.0

mW
mW/oC

Rating
Collector-Emitter Voltage

Derate above 25°C
Total Device Dissipation @ T C = 25°C
Derate above 25°C
Operating and storage Junction
Temperature Range

T J , Tstg

-65 to +175

Unit

°c

-65 to +100

TRANSISTOR SELECTION CHART

TYPE
TYPE

NPN

2N2256

X

2N2257

X

hFE @ Ie

PNP

40

X
X

2N2258

X

2N2259

X

2-266

20

= 25 rnA

X
X

2N2256 thru 2N2259

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 /LAde, VBE = 0)

BV CES

Collector-Base Breakdown Voltage
(Ie = 100 /LAde, ~ = 0)

BV CBO

Emitter-Base Breakdown Voltage
(~= 100 /LAde, IC = 0)

BV EBO

Collector Cutoff Current
(VCB = 6 Vdc, ~ = 0)
(V CB = 6 Vdc, ~ = 0, TA = 650 C)

ICBO

7.0

15

-

7.0

15

-

1.0

-

-

-

3.0
30

10

17

Vdc
Vdc
Vdc
/LAde

100

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 1 Vdc)

2N2256,2N2258
2N2257, 2N2259

(IC = 25 mAde, VCE = 1 Vdc)
Base-Emitter On Voltage
(Ie = 10 mAde, VCE = 1 Vdc)
(IC = 25 mAde, VCE = 1 Vdc)

hFE

2N2256,2N2258
2N2257, 2N2259
2N2256,2N2257
2N2258, 2N2259

VBE(on)

2N2256,2N2257
2N2258,2N2259

Conduction Threshold Base-Emitter Voltage*
2N2256,2N2257
(IC = 200 /LAde, VCE = 1 Vdc)
2N2258, 2N2259

VT

-

40

30
50

20
40

35
55

-

-

0.70
0.35

0.8
0.5

0.8
0.45

0.9
0.6

0.5
0.1

-

-

250

320

250

320

-

--

4.0
4.0

5.0
8.0

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 10 mAde, VCE = 1 Vdc,f = 100 MHz) 2N2258,2N2259

fT

(IC = 10 mAde, VCE = 15Vdc,f = 100MHz) 2N2256,2N2257
Output Capacitance
(V CB =5 Vdc, ~ = 0, f
Base Resistance
(~ = 5 mAde, VCB

=

4 MHz)

= 2 Vdc,

2N2256,2N2257
2N2258,2N2259

f = 300 MHz)
2N2256,2N2257
2N2258,2N2259

Turn-On Time
2N2256,2N2257
See Fig. 1
2N2258,2N2259
See Fig. 2
Turn-Off Time
2N2256,2N2257
See Fig. 1
2N2258,2N2259
See Fig. 2

Cob

.

pF

Ohms

rb

-

50
75

100
125

-

3.0

7.0

-

4.0

8.0

-

4.0

7.0

3.0

7.0

-

ton

toff

MHz

ns

ns

*Base-to-emitter forward bias voltage at which transistor will be at the threshold of conduction; i. e. that
base-to-emitter voltage at which the collector current is less than or equal to the specified amount
under a given collector-to-emitter voltage condition.

2-267

2N2256 thru 2N2259
FIGURE 1 -

(continued)

NPN SWITCHING TIME TEST CIRCUIT

FIGURE 2 -

PNP SWITCHING TIME TEST CIRCUIT

+3V

<

1,,1,
I NS
R, "'_ SOn

1"
lOOn
GROUNO
PLANES

OV;u-2V

3-150n
RESISTORS
IN A "Y"
CONFIGURATION

-3V

,,SOn

FIGURE 3 -

5#1
OSCILLOSCOPE
(1,
0.7 NS)

I
I

OV.....J

: 5.2 K

L..

son

GROUND
PLANE

I K

+2V n

<

, 5.2 K

sOn

-22V

t" t, < I NSEC
R, '" son
OSCILLOSCOPE
0.7 NS)

(I,

<

SOil
3·1501l
RESISTORS
IN A "Y"
CONFIGURATION

-IV
0.05#1

SOil
I K

I

0.05#1

0.05#1

+22 V

FIGURE 4 -CURRENT MODE INVERTER FOR USE WITH
DIODE LOGIC PROPAGATION DELAY TIME 10 ns

CASCADE COMPLEMENTARY GATE

"ANI)" I"M"

GATES

INVERTER

-lSV

-lSV -3

I
I

TO "ANI)" M
"M" GATES

I
I -3D

i
I
I
I
+1.5

'TRANSITRON
PNP·2N2258

FIGURE 5 -

S3065G

NPN2N2256

FIGURE 6 - CURRE_NT GAIN'·BANDWITH
PRODUCT CHARACTERISTICS

CURRENT GAIN CHARACTERISTICS

I

500r---~----~-----'---'--------'----'

TYPICAl CURV[

~ 400r
, -===+=-.:.::lIM::::ITc;:C::::.URY,~~I--., ____ +--.._
,---------j-----j

~

-------------

~

'-'

'"~

300

~

250

~

150

."..'"

I-"----+----c~-='""'t-.-J·-t- -------- - - j - - - - - j

12001-/-~'F__V

1---

~
- - - - LIMIT CURVE

10~5----~---1~0------~--2~0--~-3~0--~40--~50-

-~I-------~

.£
100L---~----~----~--~--------~--~

5

Ie, COLLECTOR CURRENT (mA)

2-268

10
15
20
Ie, COllECTOR CURRENT (mA)

35

50

2273

2N
(GERMANIUM)
2N2273 JAN

High-frequency germanium PNP transistor, designed for military and high-reliability industrial as
well as commercial VHF amplifier applications.

CASE 22
(TO-IS)

Collector connected to C8.e

MAXI MUM RATI NGS

(T A = 25°C unless otherwise noted)

Symbol

Rating

Value

Unit

Collector-Base Voltage

VCB

25

Volts

Collector- Emitter Voltage

VCES

25

Volts

Collector-Emitter Voltage

VCEO

15

Volts

Emitter-Base Voltage

VEB

1.0

Volt

Collector Current

IC

100

mA

Total Device Dissipation@ TA = 25°C
Derate above 25 ° C

PD

150
2.0

mW
mWrC

TJ • T stg

-65 to +100

°c

Junction Operating & Storage
Temperature Range

TABLE I - GROUP A INSPECTION (TA = 25°C unless otherwise noted)
BOTH TYPES (L TPD applies to JAN 2N2273 only)

Limits
MIL-STD-7S0
Method
Symbol Min Max

Examination or Test

Unit

LTPD

SUBGROUP 1

2071

-

Collector-Base Cutoff Current
(V CB = 12 Vdc, IE = 0)

3036
Condition D

I CBO

Collector- Base Breakdown Voltage
(IC = 100/.LAdc, IE = 0)

3001
Condition D

BV CBO

Emitter-Base Breakdown Voltage
(IE = 100 MAdc, IC = 0)

3026
Condition D

BV EBO

Forward Current Transfer Ratio·
(IC = 1 mAdc, VCE = 10 Vdc)

3076

Visual and Mechanical Examination

-

-

-

10

25

-

1.0

-

-

5

SUBGROUP 2

Collector-Emitter Breakdown Voltage
(IC = 200/.LAdc, VBE = 0)

•

3011
Condition C

BV CES

3306

h fe

Small-Signal Forward Current Transfer Ratio
(IC = 1 mAdc, VCE = 6Vdc, f=10MHz)

* Applies to

hFE

MIL unit only

2-269

MAdc

20

75

25

-

20

28

Vdc
Vdc

Vdc
dB

>-

5

2N2273 (continued)
TABLE I - GROUP A INSPECTION (continued)

Umits
MIL-STD-7S0
Method Symbol Min Max Unit

Examination or Test

LTPD

SUBGROUP 3

Output Capacitance
(VCB = 10 Vdc, IE

= 0,

f

=1

3236
MHz )

Base Spreading Resistance
(IC = 1 mAdc, VCE = 10 Vdc, f

3266

=250 MHz)

Small-Signal Forward Current Transfer Ratio*
(IC = 1 mAdc, VCE = 6 Vdc, f = 100 MHz)

3306

Noise Figure*
(VCB = 10 Vdc, IC

3246

f

= 10MHz,

RG

=

pF

Cob

-

3.5

rb'

-

250

h fe *

2.5

ohms

-

dB

NF*

1 mAdc,

=50 ohms)·

'" 10

-

-

12

-

100

15

-

20

150

50

250

10

30

I-

STANDARD UNIT ONLY
Emitter-Base Leakage Current
. (VEB = 0.5 Vdc, IC = 0)

lEBO

Collector-Emitter Breakdown Voltage
(IC = 100/.lAdc, IE =0)

BVCEO

Forward Current Transfer Ratio
(IC = 1 mAdc, VCE = 10 Vdc)

hFE

Real Part of Small-Signal Short-Circuit Input Impedance
(VCE = 10 Vdc, IC = 1 mAdc, f = 250 MHz)
Power Gain (See Figure 1)
(VCE = 9 Vdc, IC = 1 mAdc, f

=30

Re(h ie )
GpE

MHz)

/.IAdc
Vdc

-

-

ohms
dB

* Applies to MIL unit only

TABLE II -

GROUP B INSPECTION -

JAN 2N2273 only

(T A = 25 0 C unless otherwise noted)

Examination or Test

Limits
MIL-STO-7S0
Symbol Min Max Unit
Method

LTPD

SUBGROUP I

2066

--

-

-

Solderability

2026

-

-

1051

-

-

-

Temperature Cycling

-

-

1056
Condition A
1021

-

-

-

-

-

-

-

-

3036
Condition n

ICBO

-

20

3076

hFE

Physical Dimensions

-

10

SUBGROUP 2

(Thigh

= 100~~oC;

Condition B

10 cycles)

Thermal Shock
(Glass Strain)
Mol sture Resistance
End POints: (Subgroups 2, 3, 5, 6, 7)
Collector -Base Cutoff Current
(VCB = 12 Vdc, IE = 0)
DC Forward Current Transfer Ratio
(IC = 1 niAdc, VCE = 10 Vdc)

2-270

15

/JAde

~

). 10

2N2273 (continued)

TABLE II -

GROUP B INSPECTION (continued)

Limits
MIL-STD-7S0
Max Unit
Min
Symbol
Method

Examination or Test

LTPD
~

SUBGROUP 3

2016
Nonoperating

-

-

-

-

Vibration, Variable Frequency
(10 G)

2056

-

-

-

Constant Accelerating
(10,000 G)

2006

-

-

-

2036
Condition E

--

--

-

-

-

-

-

-

100

8.0

-

Shock
(500 G, 1 msec, 5 blows each orientation:
Y1' Y2, Xl and Zl)

~

10

-

End POints: same as Subgroup 2
SUBGROUP 4

Lead Fatigue (Note 1)

10

SUBGROUP 5

High Temperature Operation (Note 2)
(T A = 70~goC)
Collector-Base Cutoff Current
(VCB = 12 Vdc, IE = 0)

I CBO

3036

-

Low Temperature Operation (Note 2)
(TA = -55±3°C)
3076

Forward Current Transfer Ratio
(V CE = 10 Vdc, IC = 1 mAdc)

hFE

-

1041

salt Atmosphere (Corrosion)

-

/lAdc

-

10

--

End Points: same as Subgroup 2

~

SUBGROUP 6

1031

High Temperature Life
(T = 100+5 oC)
A
-0

-

-

-

-

A = 10

-

-

-

-

A= 10

(Nonoperating)

End Points: same as Subgroup 2
SUBGROUP 7

1026

Steady State Operation Life
(VCB = 10 Vdc, Pc = 60 mW, TA = 55~goC)
End Points: same as Subgroup 2

Note 1. Rejects from prior electrical tests from the same lot may be used for this test.
Note 2. Test measurement shall be made after thermal equilibrium has been reached at
the temperature specified.

FIGURE 1 - 30 MHzPOWER GAIN TEST CIRCUIT
120
INPUT

1.5- 47

0.47 J.'H

T"
1.5-30

51

5000

-=

1000

l'

510

"PRIMARY ~ 5~ TURNS, %" LONG
SECONDARY ~ 1~ TURNS
NO. 22 WIRE, 0.0. ~ W

510

2-271

ALL RESISTANCE VALUES IN OHMS
ALL CAPACITANCE VALUES IN PICOFARADS

2N2273

(continued)

VARIATION IN DC GAIN versus COLLECTOR CURRENT

AC CURRENT GAIN versus FREQUENCY

300

5

0

Ve.~

r-- t-~

-6Vde

,......V

le~-lmAde

L~~ooc
r\.

5

V-V

\

/
./

1\

TA~25/

/

\

5

V
0

0
1.0

10

20

50
100
f. FREQUENCY ( MH,)

CONTOURS OF CURRENT GAIN -20

\

\
\

\

\..

-

350 MHZ~OO MHz

0

-2.0

/

"IiII
V
./
/

-4.0

-6.0

NORMALIZED AT Ie ~ -I mAde
Ve• ~ -IOVde-

-2.0

-3.0

-5.0

I

-10

-20

fr AND n,'C c versus COLLECTOR CURRENT
6

\
0

"

-

'b'C;

t'--,.

.........

"t-,

I

V- --;:

0

II

r-......

.......

I"-

V

j

if
0

V

---

"-

Po

/

/"
./

1

3

VI' ~ 6 Vde

~

V

"-

V

600

I

",

'\
300jH\

Vj

)0 /
-1.0

BANDWIDTH PRODUCT

/'

VI-"

Ie. COLLECTOR CURRENT (mAl

IT ~ 450 MHz

1\

5

1000

!\.

\\

0

500

\

~
5

200

V/
,......

V'
\

5.0

V-

I/'

TA~/

./

\
2.0

V-

0/

!\.
5

,,/
V
/

/"

0

\

0

/"

VV

-8.0

-10

-12

Ie. COLLECTOR CURRENT (mAdel

2000

-2.0

-4.0

-6.0

-8.0

Ie. COLLECTOR CURRENT (mAdel

2N2285 thru 2N2287
For Specifications, See 2N1651 Data.
2-272

-10

-12

20

2N2288,2N2289
2N2290

(GERMANIUM)

PNP GERMANIUM POWER SWITCHING
TRANSISTORS

10 AMPERE

... designed for fast·switching applications requiring low saturation
voltage and excellent collector·emitter sustaining voltage capability.

PNP ADE GERMANIUM
POWER TRANSISTORS
40·120 VOLTS
70 WATTS

• Alloy·D iffused Epitax ial Construction
• Low Saturation VoltagesVCE!sat) ~ 0.5 Vdc (Max) @ IC ~ 5.0 Adc
VBE!sat) ~ 1.0 Vdc (Max) @ IC ~ 5.0 Adc

MAXIMUM RATINGS

2N2288

Symbol

Rating
*Collector-Emitter Voltage
(R BE = 100 Ohms)

·Collector-Base Voltage

VCB

*Emitter-Sase Voltage

VEB

·Collector Current - Continuous

2N2289

40

80

120

40

80

120

Vdc
Adc

IC

10-

IB

_3.0_

Total Device Dissipation @ T C ::; 25 "c
*Derate above 25"C

PD

70

-0.833

-

Adc

Watts
W/oC

-65 to + 1 1 0 -

-

TJ,T stg

Vde

-0.75-

Base Current - Continuous

*Operating and Storage Junction
Temperature Range

Unit

2N2290

Vdc

VeER

°c

Characteristic

Max

Thermal Resistance, Junction to Case

1.2

1

~
~ATE ~~
'

O

THERMAL CHARACTERISTICS

0

L050
MAX

CODE

1550 MAX

083

*Indicates JEDEC Registered Data.

FIGURE t - SUSTAINING VOLTAGE TEST CIRCUIT

Vertical
0.05

Common

-

1.0
Horizontal

IS

f = 20 Hz

Duty Cycle = 0.5%

U

- -

10
Collector Connected to Case

-~- ~~.e

A_d~-'lu~. ,t(jlIS"'-_-_;~

....
st_ _ _ _

_ _-'\/l3./l0"""_ _--'

CASE llA
(TO·31

Except Pin Diameter

2-273

2N2288, 2N2289, 2N2290 (continued)
ere = 25"C unless otherwise noted)

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Min

Max

30
50
70

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 mAde, IB = 0)

2N2288
2N2289
2N2290

Collector-Emitter Sustaining Voltage (See Figure 1)
(IC = 5.0 Ade)

2N2288
2N2289
2N2290

'Collector-Emitter Breakdown Voltage
(IC = 50 mAde, RBE = 100 Ohms)

2N2288
2N2289
2N2290

'Collector Cutoff Current
(VCE = 15 Vde, IB = 0)
(.VCE = 25 Vde, IB = 0)
(VCE

= 35

Vde, IB

2N2288

= 0)

'Collector Cutoff Current
(VCE = 40 Vde, VBE (off)
(VCE
(VCE

= o. 1 Vde, TC = lOOoC, + 0, -3.0 0 C)
= 80 Vde, VBE (off) = 0.1 Vde, TC = lOOoC, +0, -3.0 0 C)
= 120 Vde, VBE(off) = 0.1 Vde, TC = lOOoC, +0, -3.0o C)

Collector Cutoff Current.
(VCB = 2.0 Vde, IE = 0)
,(VCB = 40 Vde, IE = 0)
,(V CB
,(VCB

BVCEO

VCE(sus)

BVCER

ICEO

-

50

30
50
70

-

50

-

50

-

35

2N2288

I CEX

Vde

Vde

mAde

2N2289

mAde

2N2289

-

35

2N2290

-

35

-

200

-

5.0

-

25

20

-

20

60

VCE(sat)

-

0.5

VBE(sat)

-

1.0

25

100

15

-

-

5.0

!LS

ICBO

2N2288
2N2289
2N2290

Emitter Cutoff Current
(VEB = 0.75 Vdc, IC = 0)

40
80
120

--

2N2290

All Types

= 80 Vde, IE = 0)
= 120 Vde, IE = 0)

Vde

lEBO

!LAde
5.

a

mAde

5.0
mAde

ON CHARACTERISTICS

*DC Current Gain
(IC
(IC

= 2.0 Adc,
= 5.0 Adc,

VCE
VCE

hFE

= 5.0 Vdc)
= 2.0 Vdc)

Collector-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 0.5 Adc)

* Base-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 0.5 Adc)

Vdc
Vdc

SMALL·SIGNAL CHARACTERISTICS
'Small-Signal Current Gain
(IC = 0.5 Adc, VCE = 14 Vdc, f
(IC

= 0.5

Adc, VCE

= 6.0

Vdc,

hfe

= 1. 0 kHz)
f = 30 kHz)

-

SWITCHING CHARACTERISTICS
Rise Time
Storage Time
Fall Time

t
IC

= 5. 0 Adc,

IB1

= IB2 = 1. 0 Ade)

s

-

7.0

!LS

tf

-

8.0

!LS

t
(See Figure 2)

'Indlcates JEDEC Reglstered Data.

r

FIGURE 2 _ SWITCHING TIME TEST CIRCUIT
Adjust for
Ie = 5.0 A

Vee = -22 V

+10 V

' - - - - PRF = 60 Hz

. I nput Pulse

t r • tf ~ 1 0 ns

2-274

212291, 212292
212293

(GERMANIUM)

10 AMPERE

PNP GERMANIUM POWER SWITCHING
TRANSISTORS

PNP ADE GERMANIUM
POWER TRANSISTORS
· .. designed for fast switching applications requiring low saturation
voltage and excellent collector·emitter sustaining voltage capability.

40·120 VOLTS
70 WATTS

• Alloy·Diffused Epitaxial Construction
• Low Saturation VoltagesVCE(sat) = 0.5 Vdc@ IC = 5.0 Adc
VSE(sat) = 1.0 Vdc@ IC = 5.0 Adc

MAXIMUM RATINGS

Rating

Svmbol

2N2293

Unit

VCEO

30

50

70

Vdc

.Collector-Base Voltage

VCS

40

80

120

Vdc

·Emitter-Base Voltage

VES

*Collector-Emitter Voltage

.Cbllector Current - Continuous

Ie

-Base CUrrent - Continuous

IS

T~ra:~::v,:;;~ong

TC=25"C

-Operating and Storage Junction
Temperature Range

PD

2N2291

--

2N2292

-

1.5

--=-

TJ.Tstg -

-

10
3.0

-

70
0.83

-65 to + 1 1 0 -

Vd.
Ad.
Adc
Watts

W/"C
·C

THERMAL CHARACTERISTICS

Max

Characteristic
Thermal Resistance, Junction to Case

1.2

-Jndicates JEDEC Registered Data.

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT

1.171

rnf

-

1.0

IB

1=20Hz
Duty Cycle = O.!i'lIi

U

--

10

~--+----IJIII-------=-~

--=Z-~~.est

......_ _ _

Collector Connected to Ceee

Ad~!~ 0,.I B_=_~
..

_ _-,,31\o.01'v-_ _ _"

CASE11A
(TO·3)
Except Pin Diameter

2-275

2N2291 thru 2N2293

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

30
50
70

-

30
50
70

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(Ic = 100 mAdc, IB = 0)

'Collector-Emitter Sustaining Voltage (See Figure I)
'(IC = 500 mAde)

"(IC

= 5.0

25
50
70

-

40
80
120

-

-

50
50

-

35

2N2292

-

35

2N2293

-

35

2N2291
2N2292
2N2293

Ade)

2N2291

= 0)

2N2293

Vde, IB

= 120 Vdc,

= 0.1

Vdc, TC

= 100"C)
= 100"C)

'(VCB
,(VCB

I CEX

2N2291

= 0.1 Vdc, TC
= 0.1 Vdc, TC = 100"C)

VBE(off)

Collector Cutoff Current
*(VCB = -2.0 Vde, IE = 0)
'(VCB

I CEO

2N2292

'Collector Cutoff Current
(VCE = 40 Vdc, VBE(off)
(V CE = 80 Vde, VBE(off)
(VCE

BVCER

2N2291
2N2292
2N2293

'Collector Cutoff Current
(VCE = 15 Vdc, IB = 0)
(VCE = 25 Vdc, IB = 0)

= 35

VCE(sus)

2N2291
2N2292
2N2293

'Collector-Emitter Breakdown Voltage
(IC = 50 mAde, RBE = 100ohms)

(V CE

BVCEO

2N2291
2N2292
2N2293

All Types

= 40 Vde, IE = 0)
= 80 Vde, IE = 0)
= 120 Vde, IE = 0)

I CBO

-

2N2291
2N2292
2N2293

Emitter Cutoff Currenl
(VEB = 1. 5 Vdc, IC = 0)

lEBO

Vdc

Vdc

Vdc

mAdc
50

mAde

I'Adc
200
5.0

mAde

5.0
5.0
mAde

-

50

40

-

50

120

VCE(sal)

-

0.5

VBE(sal)

-

1.0

50

200

15

-

ON CHARACTERISTICS
*DC Current Gain
(IC = 2.0 Adc, VCE
(Ic

= 5.0

Adc, VCE

= 5.0
= 2.0

hFE

Vdc)
Vdc)

Collector-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 0.5 Adc)

* Base-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 0.5 Adc)

Vdc
Vdc

SMALL·SIGNAL CHARACTERISTICS
*Small-Signal Current Gain
(IC = 0.5 Adc, VCE = 14 Vdc, f
(IC

= 0.5

Adc, VCE

= 6.0

Vdc,

-

hfe

= 1. 0 kHz)
f = 30 kHz)

SWITCHING CHARACTERISTICS
Rise Time

I
(IC

= 5.0 Adc,

IB1

= IB2 = 0.5

Adc)

storage Time

t
(See Figure 2)

Fall Time

-

r
s

If

'IndIcates JEDEC RegIstered Data.
"Motorola guarantees this data in addition to the JEDEC Registered Data Shown.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
VC C =-25V

r-"I/X/\r-~
PRF=6QHz

-14 V
MR830

Input Pulse

t r. tf ::;;10 ns

2-276

7.0

I's

10

I's

8.0

I'S

2N2303 (SILICON)
For Specifications, See 2N722 Data.

2N2322 thru 2N2326 {SILICON}
All-diffused PNPN thyristors designed for gating
operation in rnA I p.A signal or detection circuits.

CASE 31(2)
(TO-5)

MAXIMUM RATINGS*(T J =

= 1000 ohms)

12S'C unless otherwise noted, Rs.

Rating
Peak Reverse Blocking Voltage
(Note 1)

Symbol
2N2322
2N2323
2N2324
2N2325
2N2326

Non-Repetitive Peak Reverse Blocking Voltage
(t < 5.0 ms)
2N2322
2N2323
2N2324
2N2325
2N2326

VRSM(rep)

VRSM(non-rep)

Value

Unit
Volts

25
50
100
150
200
Volts
40
75
150
225
300

IT(RMS)

1.6

Amp

ITSM

15

Amp

PGM

0.1

Watt

PG(AV)

0.01

Watt

Peak Gate Current - Forward

IGM

0.1

Amp

Peak Gate Voltage - Forward

VGFM

6.0

Volts

Reverse

VGRM

6.0

Forward Current RMS
(All Conduction Angles)
Peak Surge Current
(One-Half Cycle, 60 Hz)
No Repetition Until Thermal
Equilibrium is Restored
Peak Gate Power - Forward
Average Gate Power - Forward

Operating Junction Temperature Range

TJ

Storage Temperature Range

T

-

Lead Solder Temperature
(> 1/16" from case, 10 sec. max)

*

stg

JEDEC Registered Values

2-277

-65 to +125

°c

-65 to +150

°c

+230

°c

2N2322 thru 2N2326

(continued)

ELECTRICAL CHARACTERISTICS

(T.

= 25'C unl.., otI1erwi.. noted. R.. = 1000 ohm,)

Symbol

Characteristic
Peak Forward Blocking Voltage (Note 1)

VDRM

2N2322
2N2323
2N2:r.!4
2N2325
2N2326

Max

Min

-

25"
50"
100"
150"
200"

IRRM

-

100"

Peak Forward Blocking Current
(Rated VORM, T J = 125'C)

IDRM

-

100"

VT

-

1.5

(IT = 3.14 A

Peak, T C = 85' C)

Gate Trigger Current (Note 2)
(Anode Voltage = 6.0 Vdc, RL = 100 ohms)
(Anode Voltage = 6.0 Vdc, RL = 100 ohms, TC = -65'C)

IGT

(Anode Voltage = 6.0 V, RL = 100 ohms, TC = -65'C)
(VDRM = Rated, RL = 100 ohms, TJ = 125°C)
Holding Current
(An04e Voltage = 6.0 V)

I1A
I1A
Volts

-

2.0"

-

200

I1A

-

VGT

Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL = 100 ohms)

IH

350"
Volts
0.8
1. 0"

0.1"

-

-

2.0

rnA

-

(Anode Voltage = 6. O~, TC = -65'C)

3.0"

-

0.15"

(Anode Voltage = 6.0 V, TC = 125'C)
Turn-On Time

tgt

Turn-Off Time

tq

Volts

---

Peak Reverse Blocking Current
(Rated VORM, T J = U5'C)

Forward "On" Voltage
(IT=1.0A Peak)

Unit

Circuit dependent,
consult manufacturer

" JEDEC Registered Values
Notes: 1. VRSM and VORM can be applied for aU types on a continuous de
basis without incurring damage.

ward or reverse blocking capability such that the voltage applied exceeds
the rated blocking voltage.

2. R6K current is not included in measurement.
Thyristor devices shall not be tested with a constant current source for for·

FIGURE 1- CASE TEMPERATURE vs CURRENT

~l~r---~~~~~~~~~~~~~-'r---~

~

1

~120f.:lllli"'-+---

120

~ 110t--~~~~"..t::---t--+---t''t---'1-----i

3Ioo~-+~~~~~~~~a==F~

j
~

Ii:!

j!!100

~

~ ~~---+--~~~~~---+--~~~~~~~

!!

~60~---+----~~~~--~~--+---~----~

90

~ 80~--~--~--~--+-~~--+-~~--~

i
i

Thyristor devices shall not have a positive bias applied to the gate concur·
rently wtth a negative potential applied to the anode.

70t---t--+-..,.--f--r----/--+--+--"M
~

~~0--~0~.2--~0~.4--~0~.6--~0~.8~-1~.0~~1.2~~1.~4--~1.·6

~~40~--~----~~~~~~---P~--~--~
c

~

~20r----+----t-~~~'~~~~~--~d~C--;

i

~'

~ °0~--~0~.l----~0.2~--~0~.3~~Ot.4~~~0.~5--~0~.6----10.7

IT(AV).AVERAGE FORWARO CURRENT (AMP)

IT(AV),AVERAGE FORWARD CURRENT (AMP)

2-278

2N2330 (SILICON)
2N2331

NPN silicon annular Star transistors for low-level

DclAC chopper applications.
CASE 22
(TO-lS)
2N2331

CASE 31
(TO-S)
2N2330

Collector connected to cue

MAXIMUM RATINGS

Symbol

2N2330
(TO-S)

1N2331
(TO-18)

Unit

VCEO

20

20

Vdc

Collector-Base Voltage

VCB

30

30

Vdc

Emitter-Base Voltage

VEB

5.0

5.0

Vdc

Rating
Collector-Emitter Voltage

Collector Current

IC

Total Device Dissipation @ T A = 25°C

PD

Derate above 25°C
PD

Total Device Dissipation @ TC = 25°C
Derate above

25 0 C

Operating Junction Temperature Range
Storage Temperature Range

2-279

500

mAdc

0.8

0.5

Watt

5_33

3_33

mW/oC

3.0

1.8

20

12

Watts
mW/oC

TJ

-65 to + 175

°c

Tstg

-65 to + 200

°c

2N2330, 2N2331

(continued)

ELECTRICAL CHARACTERISTICS (TA

I

Characteristic

= 2S0C unless otherwise noted)
Symbol

Min

Max

20

-

30

-

5.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1 mAdc, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 10 MAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 MAdc, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 4.5 Vdc, IE = 0)

ICBO

-

1.0

Emitter Cutoff Current
(VBE = 4.5 Vdc)

lEBO

-

5.0

I(Off)

-

1
10

50

-

-

0.75

-

3.0

100

-

-

10

-

20

Offset Current
(VBC = 2 Vdc, VCE
(V BC

0

= 0, T A = 25 C)

= 2Vdc, VCE = 0, TA = 85 0 C)

Vdc
Vdc
Vdc
nAdc
nAdc
nAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAdc, VCE
Offset Voltage
(IB = 200 MAdc, IE

= 1 Vdc)

= 0)

Inverse SatUration Voltage
(IB = 200 MAdc, IE = 50 MAdc)

hFE
V(off)
VEC(sat)

mVdc
mVdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 1 mAdc, VCE = 1 Vdc, f = 100 MHz)
Output Capacitance
(V CB = 2 Vdc, IE

= 0)

Input Capacitance
(V BE = 2Vdc, IC= 0)

fT
Cob
C ib

2-280

MHz

pF
pF

2N2330, 2N2331

(continued)

INVERSE SATURATION VOLTAGE
versus
BASE CURRENT

INVERSE SATURATION VOLTAGE
versus
EMITTER CURRENT
1.8

'>

'>

5 7
T,,:=25°C

I,_lmi
I,

I,

= 200~y

/

I,

V
~V /

= 100 ~~/

/

= 500 ~A

\

\

1.6

~ =2SoC

z: 1.4

<>

V /

/

.s
~

T. = 8Soc'I

i

~

1.2

~

....

/

'"
ffi
>

V

1.0

I, = SO "Adc

~r\.
I~

!:

,./"

3" 0.8

;:;

~

,;

o

20

40

60

100

400

200

600

0.6

1000

20

40

60

I.. EM IHER CURRENT ("AI

100

400

200

600

1000

I,. BASE ON·DRIVE CURRENT (,.A)

INVERSE SATURATION VOLTAGE
versus
BASE CURRENT

OFFSET VOLTAGE
versus
BASE CURRENT
0.8

1.4

--

I,II, = 0.25

1----

T. = 25°C ~ 17

I

/

\

~ 0.6

....

T. = 2SoC

1'..

~ 0.4

t;;

~

tt<>

T. = 85°C ~ ~

"'" --r-

~

'//

1,=0

-

....

....

--~

J 0.2

"-

T. = 8SoC

0.6
20

40

60

100

400

200

600

1000

20

40

I,. BASE ON·DRIVE CURRENT ("AI

60

100

200

400

600

1000

I,. BASE OFF'()RIVE CURREN' !,.A)

OUTPUT CAPACITANCE versus COLLECTOR·BASE VOLTAGE
and
INPUT CAPACITANCE versus EMITTER·BASE VOLTAGE

INVERSE
SATURATION
CHARACTERISTICS

30
20

- - --

r-- t--.

~UIT CjPjCITANiE

J-.-

........ C... OUTPUT CAPACITANCE

--

...... r-....

T. '" 2SoC
-

20r-~~~~1-----t---~-----r--~

O.S

1.0

I.S

2.0

2.S

1
0.1

3.0

VEC • EMIHER-tOlLECTOR VOLTAGE (mVdcl

0.2

0.4 0.6

1.0

4

REVERSE BIAS (VOLTSI

2-281

6

10

20 30

2N2357 thru 2N2359 (Germanium)

CASE 161
(TO-41)
Collector Connected to Case

PNP Germanium power transistors designed for very high-current switching applications requiring low saturation voltages, fast
switching times and good safe operating area.

MAXIMUM RATINGS

Symbol 2N2357 2N2358 2N2359 Unit

Rating

VCEO

30

60

80

Vdc

Collector-Base Voltage

V CB

60

100

120

Vdc

Emitter-Base Voltage

VEB

Collector-Emitter Voltage

Collector Current - Continuous

IC

Base Current - Continuous

IB

Total Device Dissipation @T C =25° C
Derate above 25° C

PD

Operating and Storage Junction
Temperature Range

T J' Tstg

--

2.5
50

.-

10

-

170
2.0

-

-65 to +110

----

Vdc
Adc

-

Adc

-

Watts
W/oC

°c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction
to Case

Symbol

Max

Unit

8JC

0.5

°C/W

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT

IB(off) --+-

Rl '" 1.0 Ohm, 20 Watts

IC Adjun @VCE = Vz

81:

Adjust for '8(on) '"

R2'" 10 Ohms, 2.0 Watts
R3 = 0.1 Ohm, 1.0%
R4 '$ 0.04 Ohm

*

R5

0.25 mH

• R3 r/:><---"''VIr--=

3.0
2.0

- -3.0

5.0

5.0

7.0

10

20

lOOiLS

PRF=60Hz

MR830
2.0

1-

Ir, If';; 10 ns

;x;,

. . . .If1--'

,-

I- "I- . .

INPUT PULSE

1.0
1.0

If

30

50

70

100

I C, COL LECTO R CU RRENT (AMP}

2-283

SCOPE

2N2368 (SILICON)

NPNsUicon annular· transistor designed for highspeed, low-level, saturated-switching application.
CASE 22
(TO-IS)

Collador connected to C8sa

MAXIMUM RATINGS

Symbol

Value

Collector-Emitter Voltage

VCEO

15

Vdc

Collector-Emitter Voltage

VCES

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

PD

0.36

Watt

2.06

mW/oC

1.2

Watt

6.85

mW/oC

-65.10+ 200

°c

Rating

Total Device Dissipation@ TA := 25°C
Derate above 25°C
Total Device Dissipation@ TC = 25°C

PD

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ. Tstg

Unit

FIGURE 1 - STORAGE TIME TEST CIRCUIT
o

'\.. . •
v;, +

·-10--

.

.s

DUTY CYCLE < 2%

500!l

'.

PULSE GENERATOR
V;, RISE TIME < I
SOURCE IMPEDANCE ~ 50Q .
PW'~300 ns

89011

"A"
O.l"F

.

561!

n

8

0.OD23,tf

0.0023"F

IO"F

V.,,

TO OSCILLOSCOPE
INPUT IMPEDANCE~· 50!1
RISE TIME ~I ns

9Hl

'-!>

5001!

I

O.l"F I KI!

_u.

IO"F

llV~

+6V

I
+ 10V

~po

2-284

o

~4V-+-'-"'-'-';;;';';"'';';''''

2N2368 (continued)
ELECTRICAL CHARACTERISTICS

ITA = 25°C unless otherwise noted)

Symbol

Characteristic

Min

Max

15

-

40

-

40

-

4.5

-

-

0.4
30

20
10
10

60

-

-

0.25

0.7

0.85

400

-

-

4.0

-

10

-

12

-

15

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(Ie = 10 mAdc, IB = 0)

BVCEO

II}

Collector-Emitter Breakdown Voltage
(Ic = 10 I1Ade, VBE = 0)

BV CES

Collector- Base Breakdown Voltage
(Ic = 10 /.lAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 11 Adc, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 20 Vdc, IE = 0)
(VCB = 20 Vdc, IE = 0, T A = 150 oC)

ICBO

Vdc
Vdc
Vdc
Vdc
/.IAdc

ON CHARACTERISTICS
DC Current Gain (1)
(Ie = 10 mAde, VCE = 1.0 Vdc)
(IC = 10 mAde, VCE = 1.0 Vdc, TA = -55°C)
(IC = 100 mAdc, VCE = 2.0 Vdc)

hFE

Collector-Emitter saturation Voltage
(Ic = 10 mAdc, IB = 1.0 mAdc)

VCE(sat)

Base-Emitter Saturation Voltage
(Ie = 10 mAdc, IB = 1.0 mAdc)

VBE(sat)

Vdc
Vde

DYNAMIC CHARACTERISTICS
Current-Gain- Bar.dwidth Product
(IC = 10 mAdc, VCE = 10 Vdc, f = 100
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 140

fT
MHz)

Cob
kHz)

Storage Time (Figure 1)
(Ic = IBI = 10 mAdc, IB2 = -10 mAdc)

ns

ton

Turn-Off Time (Figure 2)
(IC = 10 mAdc, IBI = 3.0 mAdc, IB2 = -1.5 mAdc)

tofi

Pulse Test: Pulse Width

TURN·ON WAVEFORMS

= 300

ns

/.Is; Duty Cycle ~ 2%

FIGURE 2 -

TURN·ON AND TURN·OFF TIME
TEST CIRCUIT
_II

"

R

13KIl

501l

13K~
PULSE GENERATOR
V" RISE TIME < 1 ns
SOURCE IMPEDANCE ~ 501l
PW··-' 300 ns
DUTY CYCLE < 2%

pF
ns

ts

Turn-On Time (Figure 2)
(IC = 10 mAde, IBI .. 3.0 mAdc, IB2 = -1.5 mAdc)

III

MHz

I

501l

0.D023 1'F

.

O.OO5I'F 0.005 1,F .'L

"

v"

:9

TO OSCILLOSCOPE
INPUT IMPEDANCE
RISE TIME = 1 ns

o. 501l

TURN·OFF WAVEFORMS

D.0023 1,F
-'t.

V,,,

O.lI'F

O.lI'F

.

I

~T'I<----l0%

90%

~Vcc~3V

2N2369 (SILICON)
2N3227

NPN silicon annular transistors for low-current,
high-speed switching applications.
CASE 22
(TO-18)

Collector connected to case
MAXIMUM RATINGS

Rating

Value

Symbol

Unit

VCE

40

Vdc

C ollector- Emitter Voltage

VCES

40

Vdc

Collector-Emitter Voltage 2N2369
2N3227

VCEO

15
20

Vdc

Emitter-Base Voltage

VEB

4.5
6.0

Vdc

Collector Current (10 J1.sec pulse)

Ic(Peak)

500

mA

Total Device DisSipation
@ 25°C Ambient Temperature
Derating Factor Above 25°C

PD

0.36
2.06

Watt
mW/oC

Total Device DisSipation
@ 25°C Case Temperature
Derating Factor Above 25°C

PD
1.2
6.85

watts
mW/oC

Junction Temperature, Operating

TJ

storage Temperature Range

Tstg

. Collector-Base Voltage

2N2369
2N322'7

+200

°c

-65 to +200

°c

SWITCHING TIME EQUIVALENT TEST CIRCUITS

FIGURE 1 -

t... CIRCUIT -

FIGURE 3 - to" CIRCUIT - 10 mA

10 mA
+ 10.75 V--l

3V~iIIIV'-..,

PULSE WIDTH (I,)

FIGURE 2 -

-2V

DUTY CYCLE

t... CIRCUIT":' 100 mA

DUTY CYCLE

Ins

2700
3.3 K

= 2%

FIGURE 4 - to" CIRCUIT - 100 mA

+U.4;U_ .
_1_

= 300 ns

3V

PULSE WIDTH (1,)= 300 ns

+IO.8V

PULSE WIDTH (I,)

t--

-9'1~~---'"
v---:j-t:-:ns

= 300 ns
= 2%

n
~ l<

• DUTY CYCLE

I,

,T'
_Jc.,< 12pl

-" .....,..., .

-8.6;~ns
PULSE WIDTH (I,) BETWEEN 10 AND

= 2%

OUTY CYCLE

= 2%

_ ":Cs

< 12 pI

500~s

·Total shunt capacitance of test jig and connecton.

2-286

2N2369, 2N3227

(continued)

ELECTRICAL CHARACTERISTICS

Characteristic

Fig. No. Symbol

Collector Cutoff Current
(V CB = 20 Vdc)

2N2369
2N3227

(VCB = 20 Vdc, T A = 150°C)
Collector Cutoff Current
(VCE = 20 Vdc, VEB(off) = 3 Vdc)
Base Cutoff Current
(VCE = 20 Vdc, VEB(of!) = 3 Vdc)
Collector-Base Breakdown Voltage
(IC = 10!l Adc, IB = 0)

IcEX

2N3227

IBL

2N3227

-

0.4
0.2

BV EBO

2N2369
2N3227

Collector-Emitter Voltage
(I C = 10 IL Adc, IB = 0)
Collector-Emitter Saturation Voltage III
(IC = 10 mAde, IB = 1 mAdc)
(IC = 100 mAdc, IB = 10 mAdc)

Both Types
2N3227

11,13

0.5

Base-Emitter Saturation Voltage (1)
(IC = 10 mAdc, I¥ = 1 mAde)
(IC = 100 mAdc, B = 10 mAde)

Both Types
2N3227

13

15
20

BVCES
40

DC Current Gain III
(Ic = 10 mAdc, VCE = 1.0 Vdc)

VCE(sat)

VBE(sat)

hFE

120
300

20
40

(IC = 100 mAdc, VCE = 1.0 Vdc)

2N3227

12

(Ic = 100 mAdc, VCE = 2 Vdc)
Small Signal Current Gain
(IC = 10 mAdc, VCE = 10 Vdc, f

2N2369

5

kHz)

Total Control Charge
(IC = 10 rnA, IB = 1 rnA, VCC = 3 V)

Rise Time
Storage Time
Fall Time

Cob

10
1,6
3,6

7,8

2,6
VCC=10V, VEB(off) =2 Vdc,
Ie = 100 rnA, IBI = 10 rnA
VCC= 10 V
IC = 100 rnA, lSI = IB2 = 10 rnA

ts
ton
toff

QT

2N3227

Delay Time

tq:

2N3227
tr
2N3227

4,6

ts

tr

Pulse Test: Pulse Width = 300 !lS, Duty Cycle = 2%

2-287

5.0

-

-

C1b

2N3227

Storage Time
(Ic = IB1 = IB2 = 10 rnA)
Turn-On Time
(IC = 10 rnA, J B1 = 3 rnA, VCC = 3 V, V EBLOffl = 1. 5 Vdc)
Turn-Off Time
(Ie = 10 rnA, 1B1 = 3 rnA, IB2 = 1.5 rnA, Vce = 3 V)

20

-

30

kHz)

Vdc

Vdc

Vdc

Vdc

12

Output Capacitance
(V CB = 5 Vdc, IE = 0, f = 140
Input Capacitance
(VBE = 1 Vdc, Ie = 0, f = 140

Vdc

Vdc

0.85
1.4

12

hre

-

0.70
0.8

2N2369
2N3227

MHz)

-

0.25
0.45

40
100

= 100

!lAdc

-

2N2369
2N3227

(IC = 10 mAdc, VCE = 1.0 Vdc, TA = _55 0 C)

!lAdc

-

BVCEO

(1)

30
50
0.2

4.5
6.0

Unit
!lAdc

40

2N2369
2N3227

Collector-Emitter Breakq:own Voltage
(IC = 10 mAdc)

Max

BVCBO

Emitter-Base Breakdown Voltage
(IE = lOll Adc, Ie = 0)

(11

I CBO

2N2369
2N3227

Min

-

-

4.0
4 .. 0

pF
pF

ns

-

13

-

12

-

50

-

5.0

ns

18

ns

ns
ns
18
pC

13

ns

15

ns

2N2369, 2N3227

(continued)

FIGURE 6 - TYPICAL SWITCHING TIMES

FIGURE 5 - JUNCTION CAPACITANCE VARIATIONS

""'-

-

......

4

........

.;:

-

.-~

1-......

'\.
\.

=

'\.

50

"

\ \

\
),
t,(Vee =3V)

\

i"-.. . .

--

1-,..1

~. = 10
Vee = 10 V
VOl
2V

'\.

-

r-.... .........

COb.

h

100

-LIMIT I
- -TYPICAL
TJ = 25°C-

Cob

II

\

f\

t:,..../

,...V
0,2

.'" "~r!:~

"-

Vee = 10V

t-...

~

......

1
0.1

~

""

'\.

f\.
t,

~

2

0,5

1.0

2.0

5.0

10

1

20

10

REVERSE BIAS (VOLIS)

50

100

Ie, COllECTOR CURRENT (mAl

FIGURE 8 - QT TEST CIRCUIT
FIGURE 7 - MAXIMUM CHARGE DATA
500

1 1
Vee = lOY

I II

----25°C

OTt

tJ~

I

=

/

\.

/'

...~

~

'"<.>

-

>\ ~ [/

50

,...

.~

L


to

'-'
CI
:=!

::>

z:=!
:E
i

SO

.."""

~

V

20

V

--- ::::-~

T,

,.....

T, = 2SoC

V"""

-

I

~

7SoC

I I I

~

7S0~

2;OC and

T,

r--- ......... , ~
'""" """'" ~
r---I-- """'"i ' ........ ~ ....
~

T, _ -SSoC

r- r--....

I

I

~

T'1 11S;C

-

I

trl

i""'oo..

-.....:::::: .......

~

~

---

T, = 12SoC

20

10

I""'-

.......

......

t--..
100

so

Ie. COLLECTOR CURRENT (mAl

FIGURE 14 - TYPICAL TEMPERATURE COEFFICIENTS

FIGURE 13 - SATURATION VOLTAGE LIMITS
1.4

~
0

1.2

co

1.0

...c:.
~

1.0

r-- T~~=2~~C
MAXi"y

0

r:::::T.1
MIN

:>

z: 0.8

~

""

MAX

VeE"lfl

tt -1.0
-1.5
-2.0

.... 1--'

0.2

-2.5
I

10

20

5SoC TO +25°C

...

t.e

so

100

Ie. COLLECTOR CURRENT (mAl

+0.15 mV/ot
....OA my/ot

f

(,SSOC,TO +TCI

~
o

~

w

~

25°C TO 125°C

(~5S0CITO + J50Cl

+Q.15mV/OC
+0.3 mV/OC

I

I
(2S 0C TO 12soCl

tJv. torV.,...1

I I

~

~

~

~

ro

Ie COLLECTOR CURRENT (mAl

2-289

T

(25°C TO 121SOCI

APPROXIMATE DEViATION
FROM NOMINAl

0:;

~
'-'

I

I

Bvc for VeEl...,

-..;

~

0.6

'"
1 0.4
>

1
~

g
E-0.5

VIEII.fl

0

~
::>

O.S

~

~

~

2N2369A (SILICON)
2N2369A JAN, JTX AVAILABLE

NPN silicon epitaxial transistor for high-speed
range of 10 - 100 mAdc switching applications. Specifications provided at _55 0 C to +125 0 C for critical dc
characteristics.

CASE 22
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

V CEO

15

Vdc

Collector-Emitter Voltage

V CES

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

VEB

4. 5

Vdc

IC

200

mAdc

Emitter-Base Voltage
Collector Current - Continuous
Peak (10 fls Pulse)

= 25° C

Total Device Dissipation@ T A

500
PD

De rate above 25° C
Total Device DisSipation @ T C = 25° C

PD

Derate above 25° C
Operating Junction Temperature Range
Storage Temperature Range

Watt

2.06

mW/oC

1.2

Watts

6.85

mW;oC

+200

TJ
T

0.36

°c
°c

-65 to +200

stg

SWITCHING TIME EQUIVALENT TEST CIRCUITS

FIGURE 1 - ton CIRCUIT -10 rnA

n

FIGURE 2 - toll CIRCUIT -10 rnA

t

+ 10. 6V

-1.

50~~-~

3.0V

<;;

ns

PULSE WIDTH (t 1) = 300 ns
DUTY CYCLE = 2.000

+10'75:~-_~
3~OV

:
o-'\N\r-+-i

3.3 k

__

-!-

_"i'
J C s t < 4. 0 pF

-4. 15 V
1. 0 ns

1t--

o-'\N\r-t-t

3.3 k

I
I
o

;r-::
_ -II

C s t < 4.0 pF

PULSE WIDTH (t/ = 300 ns
DUTY CYCLE = 2.000

t Total shunt capacitance of test

2-290

jig and connectors.

2N2369A

(continued)

ELECTRICAL CHARACTERISTICS

(T ...

=

2S·C un!es5 otherwise noted)

Characteristic

.

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage*
([C = [0 mAde, [B = 0)

-

BV CEO

Collector-Emitter Breakdown Voltage
([C = 10 11Ade, [B = 0)

-

BV CES

Collector-Base Brea.kdown Voltage
([C = 10 11Ade, [E = 0)

-

Emitter-Base Breakdown Voltage
([E = 10 11Ade, IC = 0)

-

Collector Cutoff Current
(V CE = 20 Vde, V BE = 0)

-

Base Current
(V CE = 20 Vde, V BE

=

40

-

40

-

4.5

-

ICES

-

0,4

[CBO

-

30

-

-

0.4

DC Current Gain*
(IC = 10 mAde, VCE
(IC
(IC
([C
([C

-

= 1. 0 Vde)
= 10 mAde, V CE = 0,35 Vde)
= 10 mAde, VCE = 0.35 Vde,
= 30 mAde, V CE = 0.4 Vde)
= 100 mAde, VCE = 1. 0 Vde)

-

120

TA

40

-

(IC

= 10 mAde, IB
= 30 mAde, [B

(IC

= 100

=

1. 0 mAde, T A

=

3.0 mAde)

mAde, IB

= 10

20

VCE(sat)

= +125'o C)

mAde)

= 1. 0

10 mAde, [B

=

.

-

-

Base-Emitter Saturation Voltage*
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

.

= _55°C)

Collector-Emitter Saturation Voltage*
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

hFE

mAde, T A

VBE(sat)

.

= +125°C)

= 1. 0 mAde, T A = -55°C)
(IC = 30 mAde, [B = 3.0 mAde)
(IC = 100 mAde, IB = 10 mAde)

(IC

10 mAde, IB

=

Vde

Vde

~Ade

~Ade

/.LAdc

IB

ON CHARACTERISTICS

Vde

Vde

BV EBO

150°C)

= 0)

-

BV CBO

-

Collector Cutoff Current
(V CB = 20 Vde, [E = 0, T A

[5

-

30

-

20

-

-

0.20

-

0.30

-

0,50

0,70

0.85

Vde

0.25

Vde
0,59

-

-

1. 02

-

1. 15

-

1. 60

DYNAMIC CHARACTERISTICS
Current-G

~

mAdc

100
1.0

Ie. COLLECTOR CURRENT (mAde)

3.0

5.0

7.0

10.0

I,. BASE CURRENT (mAde)

2-292

30.0

50.0

2N2381, 2N2382

(Continued)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 10 mAdc, IE = 0)
2N2381
2N2382

BVCEO

Collector-Base Breakdown Voltage
(Ic = 100 MAdc, IE = 0)

BV CBO

2N2381
2N2382

Latch-Up Voltage

7
2N2381
2N2382

Collector Cutoff Current
(V CE = 30 Vdc, V BE = 0)
(V CE = 45 Vdc, VBE = 0)

LV CEX

ICES

2N2381
2N2382

Collector Cutoff Current
(V CB = 5 Vdc, ~ = 0)

ICBO

(V CB = 5 Vdc, ~ = 0, TA = 85 0 C)
(V CB = 20 Vdc, IE = 0)
2N2381
2N2382

15
20

-

-

30
45

-

-

-

20
25

-

-

-

-

100

-

1.0

7.0

-

--

-

-

Emitter Cutoff Current
(V BE = 0.5 Vdc,IC = 0)

lEBO

(V BE = 4 Vdc, IC = 0)

Vdc

Vdc

Vdc

MAdc
100
MAdc
100
25
15
mAdc

-

-

1.0

40

-

25

-

-

0.25

0.4

-

0.4

0.7

0.45

0.54

0.7

-

0.71

0.9

300

-

-

-

3.5

6.0

8.0

15

4.5

7.0

ns

8.0

15

ns

20

30

ns

8.0

15

ns

3.0

ns

0.005

ON CHARACTERISTICS
DC Current Gain
(IC = 200 mAdc, VCE = 0.5 Vdc)

11

hFE

(IC = 400 mAdc, VCE = 1. 0 Vdc)
Collector-Emitter Saturation Voltage
(IC = 200 mAdc, IB = 20 mAdc)
(IC

8,10

VCE(sat)

= 400 mAdc, IB = 40 mAdc)

Base-Emitter Saturation Voltage
(IC = 200 mAdc, IB = 20 mAde)
(IC = 400 mAde, IB

9,10

VBE(sat)

= 40 mAdc)

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 20 mAdc, VCE = 10 Vde, f = 100 MHz)

fT

Output Capacitance
(V CB = 10 Vdc, IE = 0, f = 4 MHz)

13

Input Capacitance
(V BE = 1 Vdc, IC = 0, f = 4 MHz)

13

Delay Time

4

td

4

tr

Rise, Time
Storage Time
Fall Time
Active Region Time Constant

Cob
Cib

3,4

ts

-

4

tf

-

1,4

'fA

-

2-293

MHz

pF

1.6

pF

2N2381, 2N2382

(Continued)

FIGURE 3 -- STORAGE TIME VARIATIONS
2.5

...
...;::
:,;

~

...

le/llo«I ..

...;::

4

~
!1l

3

:,;

'"..
'"

2.0

~ r--..

~
gj

::;

!o

1.5

I' ~

~

z:

1.0

.
~

~

:,;
0

z:
.;

~

10
20
I", BASE CURRENT (mAde)

5

5

111=111

o

50

I

......

--

-

~~

,

V

~

10

2
1,,11.. CIRCUIT DRIVE RATIO

FIGURE 4 -- SWITCHING TIME EQUATIONS & TEST CIRCUIT
50 Il
TO SAMPLING SCOPE
Scope t,"; 0.7 ns
Scope R' N ; " 100 KO

= t· =. TAffJR

Rise Time

=

= t,

Fall Time

= 10 to 90% Rise Time (fig. 5)
TAf1CF = 10 to 90% Fall Time (fig. 6)

/30 = hFf at Edle of Saturation
Ik

fJf

= Ie in Saturation /

== Ie in Saturation /

Scope

In (Base "OFF" Current)

hi (Base "ON" Current)

< I ns

1.0

1.5

~
~

\

.: 1.4 \
~

gj

.

~

'\.

~

-"

~ 1.2

~

...:,;

;: 1. I

III
ii:

"" 1.01.5

0.6

I

.g_O.4

o

~

"'

........ .....
5
lIo/fl'

/
~

...:,;

..... .......

./

;:: 0.2

10

-

~

..:
20

,...~

It'

~

::;

i

""

7

Q

f\

1.3

I,..ot

:::. 0.8

\

::;

3 pf

FIGURE 6 -- FALL TIME FACTOR

FIGURE 5 -- RISE TIME FACTOR

io

~

Ie = 200mA
lit = 40mA
I.. = 40mA

Z_. = SOil

GENERATOR
INPUT PULSE t,

;t

CIN

~

0 ~~
.05

.02

0.1

0.2

0.5

1.0

5.0

2.0

10

20

flollle

FIGURE 7 -- COLLECTOR LATCH·UP VOLTAGE AND TEST CIRCUIT
2N2381-Vee = -20V, R, = 401l
2N2382-Vee = -25V, R, = SOil
ADWST VII for +0.5 Vat point A
ADJUST base pulse for 5"s width
ADJUST collector pulse to reduce duty cycle ~5%

"U

I

POWER SUPPLY
HP 72IA

~ 300~----+-~~~-----+----~~----r--~

~

LATCH-UP TEST
LOAD LINE

:::>

~200~----+-----~~~~~--~~----r---~

~

8100~----+-----~-----f~--~~----r---~

HP212A

-sLr

o

__~__~~__~__~~__~__~
10
15
20
Va, COLLECTOR-I;MITTER VOLTAGE (VOLTS)

30

2-294

R,

lJ."e:

V II

PULSE GENERATOR

.2
O~

PULSE GfNERATOR
HP212A
Vee

. ._A....::..._....JW.....--1I--I

TECHTRONIX 541
OR EQUIVALENT

2N2381, 2N2382

FIGURE 8 -

~
c

(Continued)

COLLECTOR·EMITTER SATURATION VOLTAGES
versus BASE CURRENT

FIGURE 9 - BASE·EMITTER VOLTAGE
versus COLLECTOR CURRENT
_ 0.8

1.0

...

~
~ 0.7
i

~

i

TJ = 2SoC

0.8

z:

c

5 0.6
:::>

~

III

,-

0.4

!:
:E
....
'"
c

f;3 0.2

g
<>
i

J

\

\

..

'-

0

0.3

0.1

I'....... .......

\

10mA

I I II

§i

!--'

I

...

u

l:! -1.0

~

~
l:!

~

r'

:,.....-

(~250C T~ +~
~

~-5S0C TO +2JOC)

--

~io'"

1
50

30 50 70 100
300 SOD
Ie. COLLECTOR CURRENT (mAdcI

10

Veo
z:

- ..! H~C TO ~25OC)

~

1.0

~
~

0.7

LI volT

!!!

"""Va,...,

1"""'-0 ....

--

TJ

--- ---- - 1 V
./"
~

TJ= +8S!C

~ I-"

,.
g 0.5
<>

f--:S

0.4

FIGURE 11 - NORMALIZED GAIN CHARACTERISTICS

~

-

/

III

2.0

Va,,,,,

1/
)

.] 0.3
30

+2.0

i

iJ

~ 0.5

ril,

FIGURE 10 - TEMPERATURE COEFFICIENTS

~ +1.0

I

~

Ie = 100mA
SOmAl i
I

0.5 0.7 1.0
3.0 S.O 7.0 10
I•• SASE CURRENT (mAdc)

+,=10

I

i§ 0.6

le-Joo~~+

Ie

I

~=10

_I.
TJ = 25°C

5

Ie = SOOmA

~

-

~

+2SOC

roo..

TJ = -5SOC

0.3

J

~ -2.0

-3.0
50

100

200
300
400
Ie. COLLECTOR CURRENT (mAde)

SOO

0.1
10

FIGURE 12 - LEAKAGE CHARACTERISTICS
COMMON EMITTER
30

V
Vco -,-20V

rntRESHOLD I - t-VOLTAGEt

r---

~

1.0
-0.25

I

J-'

300

SOO

FIGURE 13 - JUNCTION CAPACITANCE
versus REVERSE VOLTAGE
15

TJ

+8SoC

TJ

+S5OC

/

I--V,

)

30
50 70 100
Ie. COLLECTOR CURRENT (mAde)

~I.

"-...........;
~

BI.I LIIIII.I Current. I" Is defined IS
baSI leakage current with both junctions
reverse biased. Ie is always IISS th.n I"

for VIIJofil

>

~ r--.

Y,. (Vliloflt is off condition

baSI bias. V, Is base Yoltage at threshold

i\

of c,nduction.)

TJ

C••

r..........

j2S0 C

2
0

O.S
1.0
1.5
V..,.HI. BAS£.£MITTER REVERSE BIAS (VOLTS)

2.0

2-295

0.4 0.5 0.7

1.0

5.0 7.0
3.0
REVERSE BIAS (VOLTS)

10

20

2N2405
For Specifications, See 2N1893 Data.

2N2410 (SILICON)
NPN.silicon annular transistor designed for highspeed, medium-power saturated switching applications.
CASE 31
(TO·5)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

30

Vdc

Collector-Emitter Voltaga

VCER

40

Vdc

Collector-Base Voltage

VeB

60

Vdc

Emitter-Base voitage

VEB

5.0

Vdc

Collector Current

IC

800

mAdc

PD

800

mW

4.57

mW/oC

2.5

Watts

14.3

mW/oe

TJ

200

°c

Tstg

-65 to +200

°c

RBE

= 10 ohms

Total Device Dissipation @ T A

= 25°C

Derate above 25°C
Total Device Dissipation @ Te

= 25°C

PD

Derate above 25°C
Operating Junction Temperature Range
Storage Temperature Range

2-296

2N2410

(continued)

ELECTRICAL CHARACTERISTICS (T. =

25'e ,,''''

,th,,..'" ,p,,,',,d)

Characteristic I

Min

Symbol

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(IC = 30 mAde. IB = 0)

BV CEO

(sus)

Collector-Emitter Breakdown Voltage III
(Ic = 30 mAde. RBE = 10 ohms)

BVCER

Collector-Base Breakdown Voltage
(Ie = 0.1 mAde, IE = 0)

BV eBO

Emitter-Base Breakdo\VIl Voltage
(IE = 0.1 mAde, Ie = 0)

BV EBO

Collector-Cutoff CUrrent
(V CE = 30 Vde, VBE = 0)
(VCE = 30 Vde, VBE = 0, TA = 150°C)

leES

Collector Cutoff CUrrent
(VCB = 30 Vde, IE = 0)

leBO

30

-

40

-

60

-

5.0

-

Vdc
Vdc

Vdc

Vde

/lAde

-

-

0.3
350

-

0.3

/lAde

--

r--~

Emitter Cutoff Current
(V BE = 4 Vde, Ie = 0)

lEBO

/lVde

-

0.3

30
15
30
25

120
100

ON CHARACTERISTICS
DC Current Gain 11)
(Ic = 10 mAde, VCE = 10 Vde)
(Ie = 150 mAde, VCE = I Vde)
(Ie = 150 mAde, VCE = 10 Vde)
(Ie = 500 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage (1)
(Ie = 150 mAde, IB = 15 mAde)
(IC = 500 mAde, IB = 50 mAde)

VCE(sat)

Base-Emitter Saturation Voltage (11
(IC = 150 mAde, IB = 15 mAde)
(Ie = 500 mAde, IB = 50 mAde)

V BE (sat)

120

Vde
0.45

1.3
Vde

1.2
1.6

DYNAMIC CHARACTERISTICS
Current-Gain- Bandwidth Product
(IC = 50 mAde, VeE = 10 Vde, f = 100 MHz)

fT

Output Capacitance
(V CB = 10 Vde, IE = 0, f = 1 MHz)

Cob

Input Capacitance
(V BE = 0.5 Vde, Ie = 0, f = 1 MHz)

I

Cib

--

T'lrn-On Time (td + trl
(Ie = 150 mAde, Figure 1)
(IC = 500 mAde, Figure 2)

ton

Turn-Off Time (t s + tf)
(Ie = 150 mAde, Figure 1)
(Ie = 500 mAde, Figure 2)

toff

Storage Time
(Ie = 150 mAde, Figure 1)

ts

Fall Time
(Ie = 150 mAde, Figure 1)

tr

200

-

-

11

-

50

-

-

65
65

-

55
65

MHz

pF

pF

ns

ns

-

n"

-

40

-

30

ns

III Pulse Test: PuIs. Widtb = 300 /ls: Duty eycle = 2%

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 1-1, 150 mA
FIGURE 2-I, 500mA
~ '" 12 n~ t, '" 12 ns, PULSE WIDTH = 1.51's ± 0.51's, PRR '" 500 Hz
t, "" 1ns, PULSE WIDTH'" 300 ns

=

=

S ------T

+4.75 V

INPUT

INPUT

.~ RfO%-~

OUTPUT

-

90%-- -

--

tOil

-

t.
-

-2.75

--- ----90%

I..

,----=0-.... ------ +6.50V
- - -3.50V

V

10%-OUTPUT

-~

t••

+6.5V

2500
INPUT

OSCILLOSCOPE

OSCILLOSCOPE
t. ~ 4ns

Ri• " , 100kO
Ci• ' " 12 pF

1000
INPUT

2-297

t..

~4ns

Ri. ' " lOOk!)

C,.'" 12pf

2N2415 (GERMANIUM)
2N2416

GERMANIUM ULTRA-HIGH-FREQUENCY TRANSISTORS

AMPLIFIER
TRANSISTORS

... for very low-noise, high-gain amplifiers, oscillators, mixers, and frequency multipliers.

GERMANIUM PNP
EPITAXIAL MESA
DIFFUSED BASE

• High Maximum Frequency of Oscillation
f~ = 2000 MHz typ
• Low Noise Figure
NF=3.0 dB max at 200 MHz (2N2415)
• High Maximum Available Gain
MAG = 14 dB typ at 500 MHz for 2N2415.
MAG = 12.5 dB typ at 500 MHz for 2N2416
• High Breakdown Voltages
BVcoo =25 Volts typ
BVcEo = 15 Volts typ
• Low Output Capacitance
C.b =0.9 pFtyp

MAXIMUM RATINGS'

Rating

Symbol

Value

Unit

V CEO

10

Vdc

Collector- Base Voltage

V CB

15

Vdc

Emitter-Base Voltage

VEB

0.3

Vdc

IC

20

mAdc

PD

75

mW

1.0

mWjOC

-65 to +100

·C

Collector-Emitter Voltage

Collector Current

Total Device Dissipation @ T A

= 25'C

Derate above 25°C
Operating and Storage Junction
Temperature Range

*

T J , Tstg

The maximum rating is that value above which device operation may be impaired
from the viewpoint of life or performance.

TO-12 PACKAGE

CASE 20

2-298

2N2415, 2N2416

(continued)

ELECTRICAL CHARACTERISTICS

(T, = 25"C unless olh.,w;se noled)

Characteristic

Symbol

Min

Typ

Max

10

15

-

15

25

-

-

1.0

5.0

-

-

100

500
400

-

-

-

0.9

2.0

15
10

-

300
300

-

-

8.0
10

-

2.4
3.4

3.0
4.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage' (1)
(IC = 2.0 mAde, IB = 0)

BVCEO

Collector-Base BreakdO)Yn Voltage
(IC = 100 "Ade, IE = 0)

BVCBO

Collector Cutoff Current
(VCB = 10 Vde, IE = 0)

ICBO

Emitter Cutoff Current
(V BE = 0.3 Vde, IC = 0)

~BO

Vde
Vde
"Ade
"Ade

ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 mAde, VCE = 6.0 Vde)

2N2415
2N2416

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 2.0 mAde, VCE = 6.0 Vde, 1= 200 MHz)

IT

2N2415
2N2416

Output Capacitance
(VCB =6.0Vde, IE=O, 1=1.0MHz)
Small-Signal Current Gain
(IC = 2.0 mAde, VCE = 6.0 Vdc, 1= 1. 0 kHz)
Collector-Base Time Constant**
(IE = 2.0 mAde, VCB = 6.0 Vde, 1= 79.8 MHz)

Cob

hie

2N2415
2N2416

r b 'e e **

2N2415
2N2416

MHz

pF

ps

dB

NF

Noise Figure
(VCB = 6.0 Vde, ~ = 1.5 mAde, RS = 75 ohms, I = :~~4~~z)

2N2416

FUNCTIONAL TESTS
Maximum Available Gain#
(VCB = 6.0 Vde, IE =2.0 mAde, 1= 500 MHz)
(1)

**

2N2415
2N2416

Pulse Test: Pulse Width ~ 300 ps, Duty Cycle:: 2.0%.
Direct Collector-Emitter header capacitance balanced out to give true device capability.
MAG calculated from f max as determineri from actual amplifier circuits.

TYPICAL MAG and NOISE FIGURE versus FREQUENCY
60

50

OJ
~

z

;;:

40

'"~.,

:3 30
~
c<

I,

-- -

14

6.0V

Vel

2.0mA

12

r-....

10
lil

:s

....

--

:::>
8.0 co
'"

..:

....

_MAG

,.
d

c<

'"z
6.0 0

.....

20

NF

10

..:
z

1/

4.0

.....

2.0

.......:
10

50

100
f, FREQUENCY (MHzi

2-299

500

1000

.......:

.......: o
2000

2N2453 (SILICON)
2N2453A

Dual NPN silicon transistors designed for differential
amplifier applications.

Pin Connections, Bottom View

Case 654-04
TO-78

All Leads Electrically Isolated from Case
PINS 4 AND 8 OMITTED

MAXIMUM RATINGS

(each side)

Rating

Symbol

2N2453A

2N2453

Unit

VCEO

30

50

Vdc

Collector-Base Voltage

VCB

60

80

Vde

Emitter-Base Voltage

VEB

7.0

Vdc

IC

50

mAdc

Collector-Emitter Voltage

Collecwr Current
Operating and Storage Junction
Temperature Range

T J . T stg

-65 to +200

Both
Sides

One
Side
Power Dissipation@TA = 25'C

PD

Derate above 25· C
PD

Power DissipatiOn@.T C = 25' C
T C =100'C
Derate above 25·C

ELECTRICAL CHARACTERISTICS

(each side) (T.

C

200

300

mW

1.14

1.71

mW/"C

600

1200

mW

350

700

mW

3.43

6.86

mW/"C

= 25'C unle...,herN;se noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage"
(IC = 10 rilAdc, IB = 0)

2N2453
2N2453A

Collector-Base Breakdown Voltage
(Ic = 10 /,lAdc, IE = 0)

BVCEO(sus)

BV CBO

2N2453
2N2453A

Emitter Base Breakdown Voltage
(IE = 0.1 /lAdc, IC· = 0)

BV EBO

Collector Cutoff Current
(V CB = 50 Vde, IE = ·0)

ICBO

(V CB = 50 Vde, IE = 0, TA = 150'C)
Emitter Cutoff Current
(V BE = 5.0 Vde. IC = 0)
• Pulse Test: Pulse Width

~BO
~

300 /lS, Duty Cycle

~

2. 0%.

2-300

•

30
50

-

60
80

-

7.0

-

Vde

-

Vde

Vde

-

/lAde
0.005

-.

10

-

0.002

/lAde

2N2453, 2N2453A

(continued)

ELECTRICAL CHARACTERISTICS

(each side) (fA = 25'C unle.. olhe",i" noted)

Characteristic

Symbol

Min

Max

Unit

ON CHARACTERISTICS
DC Current Gain
(IC = 10 /lAde, V CE = 5.0 Vde)

hFE

(I C = 10 /lAde, V CE = 5.0 Vde, T A = -55·C)
(IC = 1. 0 mAde, VCE = 5.0 Vde)
(IC = 1. 0 mAde, VCE = 5.0 Vde, TA = -55·C)

40

-

150

600

75

-

80

Collector-Emitter Saturation Voltage
(IC = 5.0 mAde, IB = 0.5 mAde)

VCE(sat)

-

1.0

Base-Emitter Saturation Voltage
.(IC = 5.0 mAde, IB = 0.5 mAde)

VBE(sat)

-

0.9

60

-

-

8.0

-

10

5.0

-

-

6.0

150

600

5.0

30

20

30

-

5.0

-

0.2

-

7.0

0.90

1.0

-

Vdc
Vde

SMAll· SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 5.0 mAde, VCE = 10 Vde, I = 30 MHz)

IT

Output Capacitance
(V CB = 10 Vde, IE = 0, I = 140 kHz)

Cob

Input Capacitance
(VBE = O. 5 Vdc, IC = 0, 1= 140 kHz)

Cib

Input Impedance
(IC = 1.0 mAde, VCE = 5.0 Vde, 1= 1.0 kHz)

hie

Voltage Feedback Ratio
(IC = 1.0 mAde, VCE = 5.0 Vde, 1= 1.0 kHz)

h

Small-Signal Current Gain
(IC = 1.0 mAde, VCE = 5.0 Vde, 1= 1.0 kHz)

hIe

Output Admittance
(IC = 1.0 mAde, VCE = 5.0 Vde, 1= 1.0 kHz)

h
oe

Input Impedance

h ib

(IC = 1. 0 mAde, VCB = 5.0 Vde, I = 1. 0 kHz)

re

Voltage Feedback Ratio
(IC = 1.0 mAde, V CB = 5.0 Vde, 1= 1.0 kHz)

h rb

Output Admittance
(lC = 1.0 mAde, VCB = 5.0 Vde, f = 1.0 kHz)

hob

Noise Figure
(IC = 10 /lAde, V CE = 5.0 Vde, ~ = 10 k ohms, I = 1. 0 kHz)

NF

MHz
pF
pF
k ohms
X 10- 4

/lmhos
Ohms
X 10- 4

/lmho
dB

MATCHING CHARACTERISTICS
DC Current Gain Ratio**
(IC = 100 /lAde, VCE = 5.0 Vde)

2N2453A

hFE/hFE2**

(IC = 1. 0 mAde, V CE = 5.0 Vde)

0.90

1.0

(IC = 1. 0 mAde, VCE = 5.0 Vde, TA = _55°C to +125°C)

0.85

1.0

-

3.0

-

5.0

Base Voltage Diflerential
(IC = 10 /lAde, VCE = 5.0 Vde)

IV BE1- VBE21

(IC = 1. 0 mAde, VCE = 5.0 Vde)
Base Voltage Differential Gradient
(IC = 10 /lAde. VCE = 5.0 Vde, T A = _55° C to +125° C)
2N2453
2N2453A

•• Lowest hFE reading is taken as hFE1 lor this ratio.

2-301

mVde

/lV/oC

A(V BEl -V BE2)
I>TA

-

"

10
5.0

2N2476 (SILICON)
2N2477
NPN silicon annular transistors designed for highspeed, low-power saturated switching applications.

CASE 31
(TO-5)

Collector connected td case

MAXIMUM RATINGS

Symbol

Value

Unit

Collector-Emitter Voltage

V CEO

20

Vdc

Collector-Base Voltage

V CB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

PD

0.6

Watt

3.4

mW/oC

2.0

Watts

Rating

Total Device Dissipation @ TA = 25° C
Derate above 25° C
Total Device Dissipation @ T C = 25° C

PD

11. 4

Derate above 25° C
Operating & Storage Junction
Temperature Range

mW/oC

°c

-65 to +200

T j' Tstg

FIGURE 1 - TURN-ON TIME TEST CIRCUIT

400
Vin

V
out

of<

o

-..I2ns
: (max)

PW >150 ns
D.C. < 210

I
I

10000

6.4Vl:£j-----lI
V
l 90/0-: out

Z=500
500

I-t~

on

*Input and output waveforms monitored by means of an oscilloscope
or other indicating device having a rise time150 ns
D.C. < 2/.

17.7V

*

1000

n

'Input and output waveforms monitored by means of an oscilloscope
or other indicating device. having a rise time

isc:;

1.2

0

...'"
:iii
.....,.l\!

0.8

J

0.4

1=

-'"

.... ~

10
Ie. COLLECTOR CURRENT (mAde)

100

1IIIll

1
10
Ie. COLLECTOR CURRENT (mAde)

0.2

g 6.0

I

o
~
::;;
;:::

4.0

is 3.0

~
~

ti
~

~

\
I

~

1.0

1.0

~

T,

0

~

!...
~

...:E

!
100 200

10

+0.5

0
-0.5 -1.0
-1.5 -2.0 -2.5
VOl. BASE-EMITTER REVERSE BIAS (VOLTS)

-3.0

FALL TIME FACTOR

~I'

1\

/

\

\

1.6

\.4

\

~

\

1.2

iii

'\

~

......... i'-o..

./
I-'"

r-

o ~~

1.0
\

II

.J
.~

~

.!il

2Lc

~ ... i""""

~

i

VOLT~E

2.0

'
J 1.1

-

0.005

RISE TIME FACTOR

.
.

.-- V,. THRESHOLD

100oC_

I

Ie. COLLECTOR CURRENT (mAde)

;:.

T,

~0.01

o
0.1

•ri

0.1

~ 0.05

ir--..

100

T, =1 1500C

j

\

Vee=3V

2.0

5.0
1.0
0.5

'"
i:l

z

Vee - +20 V

10.0

...
!ii

I

~ 5.0

50

COMMON EMITTER DC
L.EAKAGE CHARACTERISTICS

~~~ = 115VI

...

Bvcl 55 12iW!

I

ACTIVE REGION TIME CONSTANT
7.0

~~

1~:tI~IIIIIIIIII~11111 im

CD

0

-l t

0 -VICE 1"'1

it
""-0.5

>

10
I

9w:I2J to 100°C)

g

T, = 25°C
lell, = 10

'"~

Ill~/I, =

10

.02

20

.05

0.1

0.2

0.5

/Jo/fJc

2-311

1.0

2.0

5.0

10

20

2N2526 (GERMANIUM) PNIP germanium power transistors for high-voltage
2N2527
power switching applications.
~ CASE 11A
~ CASE 4--04
2528.
2N
. ~
~
(TO-3modified)

(TO-41).

For units with solder lugs attached. specify
devices MP2526 etc. (T0-41 package)

MAXIMUM RATINGS

Rating

Symbol

2N2526

2N2527

2N2528

Unit

Collector-Emitter Voltage

VCE

80

120

160

Vdc

Collector-Base

VCB

80

120

160

Vdc

Emitter-Base VoUage

VEB

5.0

Vdc

Collector Current - Continuous

IC

10

Adc

Base Current

IB

5.0

Adc

Emitter Reverse Current
(Surge 60 Hz Recurrent)

IE

1.5

Adc

Total Device Dissipation @ TC = 25°C

PD

85

Watts

T J , T stg

-65 to +110

°c

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

eJC

1.0

°cjw

Thermal Resistance, Junction to Case

POWER·TEMPERATURE DERATING CURVE
The maximum continuous power is related to
maximum junction temperature by the thermal
resistance factor. This curve has a va~ue of 85
watts at a case temperature of 2S"C and is 0
watts at HO"C with a linear relation between
the two temperatures such that:
110· - Tc
Allowable PD
1.0
Watts

z:

100

~

80

a:

20

~

0

o

85 WATTS MAXIMUM

..............

I... i_ :~
p..

=

l~

I'-..
0

....... ~.20~C

25
50
75
100
Tc. CASE TEMPERATURE (OC)

125

SAFE OPERATING AREAS
10
Sm.

1m.

500 ..

0
5
4

.......

3
2

\

I\.

1

,

r--... I'\.
T

"-

.1

0
5.1.
0

OR lESS

~

,\.'l\

5
4

!

~ ~ r-.

"-

1~'

sdo,..'

12S0~'

20
0

I

",

3

2
1

~

o. 5

u

.3
0.2

~

I'

I"

~

i\

,,~

OR lESS

M.

I\.'

L"-

.........

1

E E

I..:l.

~II..\

t:"h ~ ~

,

.5
.4

IS-WATT
POWER DISSIPATION AT

i'

250 & CASE TEMPERATURt.

.OS
.04
.03
.02

.02

5
4

3
2

r-. ~~1
r-.,::::

g.4

.1

.OS
.04
.0 3

,

ORLes;'= FF
t-t-

.... 1=1=

500 .. 1 ~

1m.

5 ...

I

50p.s __: :

.'\

.5

8S-WAn
POWER DISSIPATION AT
25°C CASE TEMPERATURE

2N2527

..

100..

.4f-- ~d'
.3
.2

~

"

.3
2

L
15-WATI

.1

E~!ll~2~rfr~~~rJRE

.os

de

'~

~

de

.D4
.03
.0 2
\

.01

o

~

~
~
~
~
H
ro
COLLtCTOll.£MlmR VOlTAGE MIlTS)

10

~

1
.0 0 10 20 30 ~ SO H ro 80 ~ 100 110120130
COliECTOll.£MmER VOlTAGE ('101 TSI

The Safe Operating Area Curves indicate I c limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.
VCE

.0 1

o ao

~

10

10

100

120

l~

1H lID

COLlECTOR-EMInER VOLT_ tyOLTS)

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum Tl, the power-temperature
derating curve must be observed for both steady
state and pulse P9wer conditions.

2-312

2N2526 thru 2N2528

(continued)

ELECTRICAL CHARACTERISTICS

(T c

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Typ I Max I Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage*
(IC = 100 mAdc, IB = 0)

BV CEO(sus)•

-

-

5,0

-

-

2N2526

-

35

2N2527

-

2N2528

-

-

25

2N2527

-

-

25

2N2528

-

-

25

-

-

3.0

Emitter-Base Breakdown Voltage
(IE = 50 mAdc, IC = 0)

BV EBO

Collector Cutoff Current*
(V CE = 80 Vdc, VBE (off) = O. 2 Vdc, T C = 100° C)

I CEX

(V CE = 120 Vdc, V BE (off) = O. 2 Vdc, T C = 100' C)
(V CE = 160 Vdc, VBE(off) = 0.2 Vdc, TC

= 100

C

C)

Collector-Emitter Cutoff Current
(V CE = 80 Vdc, RBE = 100 ohms)

(V CE

= 160 Vdc,

RBE = 100 ohms)

Collector Cutoff Current
(V CB = 80 Vdc, IE = 0)

•

mAdc

35
35

mAdc

I CBO

2N2526

Vdc

mAdc

ICER

2N2526

(V CE = 120 Vdc, RBE = 100 ohms)

Volts

80
120
160

2N2526
2N2527
2N2528

(V CB = 120 Vdc, IE = 0)

2N2527

-

-

3.0

= 0)

2N2528

-

-

3.0

-

-

150

20

-

50

4.0

6.0

-

(V CB = 160 Vdc, IE
(V CB

= 2.0

Vdc, IE = 0)

IlAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 3.0 Adc, VCE = 2.0 Vdc)

hFE

DC Transconductance
(IC = 3.0 Adc, VCE

gFE

= 2.0

Vdc)

mhos

Collector-Emitter Saturation Voltage
(IC = 10 Adc, IB = 1. 0 Adc)

V CE(sat)

-

O. 5

0.8

Vdc

Base-Emitter Saturation Voltage
(IC = 10 Adc, IB = 1. 0 Adc)

VBE(sat)

-

0.8

1.2

10

15

-

r

-

5. 5

-

IlS

Vdc

DYNAMIC CHARACTERISTICS
Small-Signal Current Gain
(IC = O. 5 Adc, VCE = 12 Vdc, f

= 30

hfe

kHz)

-

Rise Time

t

Storage Time

t

s

-

1.2

-

IlS

Fall Time

tf

-

2.0

-

Ils

*To avoid excessive heating of collector junction, perform this test with a sweep method.

TYPlCAL INPUT CHARACTERISTICS
ALL TYPES

COLLECTOR CURRENT ,ersus BASE CURIIENT

COLLECTOR CURRENT ,ersus DRIVE VOLTAGE
IOr-----r----r----rr--,-,-~_,r_--·

IOr---~---r---r---'----'---'---,

i

8

!

re

4

~.2

1-----t-----I7''I--t----+----I----;

2 ~---+-_++.I----+----+---___1f----1

oL....""....:;_......I_ _-'-_-.L_ _.....

_~

100

200

300

400

soo

600

700

o

0.5

1.0

V", BASE·EMITTER VOLTAGE (VOLTSI

I" BASE CURRENT (mAl

2-313

1.5

2N2526 thru 2N2528

(continued)

SWITCHING TEST CIRCUIT
PULSE CONDITIONS; Ie

=

DC CURRENT GAIN versus COLLECTOR CURRENT

3 Ade, I, = 300 mAde

50r----.----.-----r---~----~--~

40

MERCURY
SWITCH

1---1t-+.......---t-----I----i-------I----J

0.5 /IF'

40

10

+25°C
-r-._-L+IOOOC
10 I---,.----t-----I---i-------I-.:..::.:.~

50

+

10

4V
Ie, COLLECTOR CURRENT (AMPERES)

2-314

2N2537 thru 2N2540 (SILICON)

NPN silicon annular Star transistors for high-speed
switching.

"

CASE 22

CASE 31

(TO-18)

(TO-5)

2N2539
2N2540

2N2537
2N2538

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Collector-Base Voltage

V'CB

2N2S37
2N2S38
(TO·S)

2N2539
2N2540
(TO·18)

60

60

Vdc

Unit

VCEO

30

30

Vdc

Collector-Emitter Voltage

VCER

40

40

Vdc

Emitter-Base Voltage

VES

5.0

5.0

Vdc

3
17.2

1.8
10.3

0.8
4.S7

O. ~
2.S6

Collector-Emitter Voltage

Total Device Dissipation
2SoC Case Temperature
Derate above 2SoC

Po

Total Device Dissipation
2SoC Ambient Temperature
Derate above 2SoC

Po

Junction Temperature

TJ

-65 to .200

°C

Storage Temperature

Tstg

-65 to .200

°c

TOTAL CONTROL CHARGE TEST CIRCUIT
+8.3V

JL

watts

watts

100

JL
INPUT
SIGNAL

INPUT TRANSITION.
TIME ,of 2 ns _
IMPEDANCE = san
OUTPUT

INPUT'

D%

,

- - -

GRouND PLANES

I
Ilk

+-......""'-......- -...

,

1510

YOUT

TO OSCILLOSCOPE
RISE TIME ,of 5 ns
Z;" = 10Mn

50

I

...1.

~l'

50mVma,

t. == 'TA{jfR ::::: 10 to 90% Rise Time
b = TAfJeF ::::: 10 to 90% fan Time
R=~o In(
~o
)
~
In(l+~)
~c
IJc

rr:

90%

10 ns

100

_.--'lli'-+-{
50

100

'ADJUST INPUT FOR a TO +8.3V
PULSE AT POINT "A"
TRANSITION TIME ,of 2 ns

+15.2 Vdc

+8.3V

TO OSCILLOSCOPE
RISE TIME ,of 5 ns
Z;"= 10Mn

100

mW/"C

ACTIVE REGION TIME CONSTANT TEST CIRCUIT

+15.2 Vdc

PULSE AT "A"

mW/"C

max

T .. = I••

Output Waveform

I"

F=.!};:,

t,

~o

/Jc

::::: hFE at Edle of Saturation

=

Ie in Saturation / 111 (Base "OFF" Currlnt)

/JF = Ie In Saturation / 1'1 (BaSI "ON" Current)

2-315

2N2537 thru 2N2540

(continued)

ELECTRICAL CHARACTERISTICS

ITA = 250C unless otherwise noted)

Characteristic
Collector Cutoff Current
(V CB = 40 Vde, IE = 0)
(V CB = 40 Vde, IE = 0, TA

Symbol

Min

Max

ICBO

-

0.250
200

-

= 150°C)

Emitter Cutoll \,;urrent
(V EB = 3 Vde, IC = 0)
Collector I.;uton \.;urrent
(V BE = 0.2 Vde, VCE = 20 Vde)
Sase \.;uton current
(VSE = 0.2 Vde, V CE = 20 Vde)
(VSE = 0.2 Vde, VCE = 20 Vde, TA

lEBO

-

lCEX
lSL

= 150°C)

Collector-Base Sreakdown Voltage
(Ie = 10 /LAde, IE = 0)

SVCSO

Collector-Emitter Sreakdown Voltage
(Ie = 100 mAde, pulsed, Is = 0)

SVCEO

Collector-Emitter Breakdown VOltage
(Ic = 100 mAde, pulsed, RSE ~ 10 \1)

nVCER

Emitter-Base Breakdown voltage
(IE = 10 /LAde, IC = 0)

nVESO

Collector Saturation Voltage *
(IC = 150 mAde, IS = 15 mAde)
(IC = 500 mAde, IS = 50 mAde)

VSE(sat)

DC Forward Current Transfer Ratio
(IC = 1 mAde, VCE = 10 Vde)
(IC

= 10 mAde, VCE = 10 Vde)

(IC

= 150 mAde, VCE = 10 Vde) (11

(Ic

= 500 mAde, VCE = 10 Vde) (1J

Output Capacitance
(VCS = 10 Vde, IE

= 0, f = 100

2N2537,
2N2538,
2N2537,
2N2538,
2N2537,
2N2538,
2N2537,
2N2538,

2N2539
2N2540
2N2539
2N2540
2N2539
2N2540
2N2539
2N2540

(I)

/LAde

0.05

/L AQe
0.250
/LAde
0.250

-

200

60

-

30

-

40

-

5.0

-

-

0.45
1.6

-

1.3
2.6

20
35
30
50
50
100
20
30

-

hFE

Cob
kHz)

Input Capacitance
(V ES '" 0.5 Vde, Ie = 0, f = 100 kHz)
Small Signal Forward Current Transfer Ratio
(VCE = 20 Vde, IC = 20 mAde, f = 100 MHz)

/LAde

Vde
Vde
Vde
vde

VCE(sat)

Sase-Emitter Saturation Voltage
(IC = 150 mAde, IS = 15 mAde) (I)
(Ic = 500 mAde, IS = 50 mAde) .

Unit

Cib

Vde

Vde

-

-150
300

-

pF

-

8.0

-

25

2.5

-

hfe

-

pF

Pulse Test: Pulse wiath ;:; 300 /Ls, duty cycle;:; 2%

SWITCHING CHARACTERISTICS
Characteristic
Total Control Charge
Storage Time
(Ie = IBI = IS2 : 20 mAde, VCC

= 5V)

Aetive Region Time Constant
Turn-on Time
(lSI = IS2 = 15 mAde, Ie = 150 mAde,
VCC = 7 Vde, RL = 40 n)
Turn-off Time
(ISI = IB2 = 15 mAde, Ie = 150 mAde,
VCC = 7 Vde, RL = 40 $1)

Symbol

Mu.

Unit

QT

750

pC
ns

TS
20

TA
ton

toff

2-316

2.0

40

ns
ns

ns
40

2N2552 thru 2N2559
For Specifications, See 2N1038 Data.

2N2560 thru 2N2567
For Specifications, See 2NI042 Data.

2N2573 thru 2N2579 (SILICON)
Industrial-type, silicon controlled rectifiers in a
"diamc;;md" package for applications requiring a high
surge-current rating or low thermal resistance.
CASE 61

CASE 54

(TO-41)

(TO-3 Modified)

For units with pins (TO-3 Modified) specify devices MCR649AP-l(2N2573) thru MCR649AP-.](2N2579).

MAXIMUM RATINGS

~UNITS

~5 AMJ R~S
+

6S TO

J

12S"C

'"

:':

ffi

'"

'""'t;;

........ r-

~ r-......

150

I

~Z

I
I
I

I
I

g~ +

....

0.2

0

;!~ ~

~~ ~f< il

<0

0.1

!S ~ ..."

!

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA

I

~\J

40 mA MINIMUM
GATECURRENT REQUIRED
TO TRIGGER ALL UNITS
(12S"C-2smA)
(-65°C - 80 mAl

I

I

L __________ _

.OS
TYPICAL
TRIGGER
POINT

.......

~

I

~cCu
~
ffi '" -

!«:J

0::-

'"
13
w
....

"'

~
"'~

=-

To

_ 250
::>
<.)

MINIMUM
GATE VOLTAGE
REQUIRED TO TRIGGE

1.0

MAXIMUM ALLOWABLE NON-RECURRENT
SURGE CURRENT

.02

:z::

~

100

1

10

4

20

60

40

3

CYCLES AT 60 Hz

4

100

120

50

115
110

10

7

LOW CURRENT LEVEL

12S

~

6

=

MAXIMUM ALLOWABLE CASE TEMPERATURE

r

S

VGT. GATE VOLTAGE (VOLTS)
(T,
2SoC -ANODE @ 6 VOLTS)

0.3

I

0°

/
./

":E

180°

I---~~~~-­~ONDUCTI~?-

:$

ANGLE
::>10S ~--~~~~~~~--t---~---~

....

20 -TYPICAL

::>

10

~

~

<.)

~

~

~ 100

~

~ 95

~
::>

'"

~ 90

:il
z

II

2.0

85
80

;'!;

II
i

~

.f

0.2

I
I

6S

0.1

I

10

15

2S

20

MAXIMUM-

;?

I

=

- - - T, 125°C_
--T,=2SoC

1/

0.5

70

o

\! P

5.0

;."
z 1.0

75

"

/'
/

'I

:I

0.5
1.0
1.5
2.0
VT.INSTANTANEOUS FORWARD ON VOLTAGE (VOLTS)

0.0

IT(AV). AVERAGE FORWARD CURRENT (AMP)

MAXIMUM TRANSIENT THERMAL RESISTANCE
JUNCTION TO CASE

2.5

POWER DERATING CURVE
30

1.6

28
1.4

V

'"

24

/
/

I

V
/

u

.. D.2

0.0

~
.001

.OOS

z

18

CURVE DEFINES TEMP. RISE
OF JUNCTION ABOVE CASE
FOR SINGLE LOAO PULSE OF
DURATION t.

E

16

0

14

PEAK ALLOWABLE DISSIPATION
IN RECTIFIER FOR TIME t
EQUALS 12S"C (MAX. To)
MINUS MEASURED CASE TEMP.,
DIVIDED BY THE TRANSIENT
THERMAL RESISTANCE.

'"
~

12

0

I

p

_

p. . k -

TJ(mu)-T c

.02

t, TIME

.OS

0.1

~

0.2

~

"

10

O.S

1.0

2-319

10

20

30

=

=

"""-

*DC4 IS DOW CORNING NO.4
SILICONE LUBRICANT

I

(s)

""

.f

r-

_

(jJC

I I
.01

20

~

.,/

.002

22

5

MAXIMUM POWER DISSIPATION
WITH UNIT MOUNTED
ON THE MS·10 HEAT SINK
I-USING DC4* AND FREE
CONVECTION COOLING
ASSUM ING MAX IMUM FORWARD
DROP AND 8,c l.S"C/W,
8cs 0.2"C/W AND 80. 3.0"C/W

r--

26

=

r-r--

I"-

"

\..

~

"'- ~

40 SO 60 70 80 90 100 110 120
TAo AMBIENT TEMPERATURE (OC)

130

2N2635 (GERMANIUM)

PNP germanium epitaxial mesa transistor for highspeed switching applications.
CASE 22
(TO·18)

Collector connected to cese

MAXIMUM RATINGS ITA: 250 C unless otherwise noted)

Rating

Symbol

Value

Collector-Base Voltage

VCB

30

Vdc

Collector-Emitter Voltage

VCEO

15

Vdc

Emitter-Base Voltage

VEB

2.5

Vdc

Collector Current (Continlious)

Ie

100

mAdc

Junction Temperature

TJ

+100

°c

Storage Temperature

Tstg

-65 to+ 100

°c

Device Dissipation @ 25°C
Ambient Temperature
(Derate 2mW/oC above 25°C)

PD

150

mW

Unit

mW/OC

2.0

SWITCHING TIME TEST CIRCUIT
-3.5V

SCOPE

I,,,;; 3.5ns
INPUT WAVEFORM:

I, = I,";; Ins

PW i!o 0.5,..5
DUTY CYCL~ ,.;; 50 %

R,• i!o 100Kn
C,.";; 3 pF

+1.25Vlj
0-

-

C,,.;; 6 pF

-

(includes C,.)
-5.4V

2-320

2N2635

(Continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Svmbol

Characteristic
Collector-Base Breakdown Voltage
(Ie = 100 /l Adc, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage
(Ic = 2 mAde, IB = 0)

BVCEO

Emitter-Base Breakdown Voltage
(IE = 100 /l Adc, Ie = 0)

BV EBO

Collector-Base Cutoff Current
(VCB = 25V. IE = 0)
(VCB = 25V, IE = 0, TA = +55 0 C)

ICBO

Emitter-Base Cutoff Current
(VEB = lV, Ie = 0)

lEBO

Static Forward Current Transfer Ratio
(Ie = 10 rnA, VCE = 0.5V)
(Ic = 50 rnA, VCE = 1V)
(Ic = 50 rnA, VCE = lV, TA = _55°C)
(Ic = 100 rnA, VCE = 1V)

hFE

Base-Emitter Voltage
(Ie = 10 rnA, IB = 0.5 rnA)
(Ie = 50 rnA, IB = 2.5 rnA)
(Ic = 50 rnA, IB = 2.5 rnA, T A
(Ic = 100 rnA, IB = 10 rnA)

VBE

30

50

---

15

30

---

2.5

4.5

---

--.
---

1.0
5.0

5.0

---

2.0

20

VCE(sat)

Vdc

20

--- --300
----- ----- --0.36
0.47
0.56
0.57

0.45
0.70
0.85
0.90

-------

0.13
0.20
0.22
0.23

0.20
0.40
0.45
0.75

---

--Vdc

---------

Vdc

1.5

--- ---

Collector Output Capacitance
(VCB = 5 V, IE = 0, f = 1 MHz)

Cob

---

2.5

5.0

Input Capacitance
(VBE = 1V,IC = O,f

Cib

4.0

--pF

Delay Time

td

Rise Time

tr

Storage Time

ts

--- ----- 15
--- 20
--- 100

Fall Time

tr

---

2-321

Vdc

/lAdc

Small-Signal Forward Current Transfer Ratio Ihfel
(Ic = 30 rnA, VCE = 2V, f = 100 MHz)

= 1 MHz)

Unit
Vdc

/lAdc

30
45
25
30

= -55°C)

Collector-Emitter Saturation Voltage
(IC = 10 rnA, IB = 0.5 mAl
(Ie = 50 rnA, IB = 2.5 rnA)
(IC = 50 rnA, IB = 2.5 rnA, TA = +55°C)
(IC = 100 rnA, IB = 10 rnA)

Min Typ Max

35

pF

20

ns

30

ns

185

ns

65

ns

2N2639 thru 2N2644 (SILICON)

Dual NPN silicon annular transistors designed for
low -level, low-noise differential amplifier applications.
Can be used in complementary circuits with 2N3806
series or 2N2802 series, for TO-89 flat packages see
2N3043-2N3048 series.

PINS 4 AND 8 OMITTED

Case 654-04

TO-78

Pin Connections, Bottom View

MAXIMUM RATINGS

(TA

=

25°C unless otherwise noted)

Symbol

Value

Unit

VCEO

45

Vdc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

30

mAdc

TJ , Tstg

-65 to +200

°c

Rating
Collector-Emitter Voltage

Collector Current
Operating and storage Junction
Temperature Range

One

Side
Total Device Dissipation @ TA = 25°C
Derate above 25°C

PD

Total Device Dissipation @ TC = 25°C
Derate above 25°C

PD

2-322

Both
Sides

300

600

1. 72

3.43

mW
mWjOC

600
3.43

1200
6.87

mW
mWjOC

2N2639 thru 2N2644

(continued)

ELECTRICAL CHARACTERISTICS (each side)

(T A = 25°C unless otherwi'Se noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(lC = 10 mAde,
=0)

BVCEO(sU8)

Ia

Collector-Emitter Cutoff Current
(VCE = 5 Vde,
=0)

I CEO

Collector Cutoff Current
(VCB = 45 Vdc, IE = 0)
(VCB = 45 Vdc, IE =0, TA

I CBO

Ia

= +150'C)

Emitter-Base Cutoff Current
(V ER = 5 Vde, IC = 0)

lEBO

45

-

-

0.010

-

0.010

Vdc
;tAdc
;tAde

-

0.010

50
100

300
300

10
;tAde

ON CHARACTERISTICS
DC Current Gain ( 11
(IC = 10 ;tAde, VCE

= 5 Vde)

(IC

= 10 ;tAde,

= 5 Vde,

(IC

= 100 ;tAde,

(IC

=I

VCE

VCE

mAde, VCE

2N2639, 2N2640, 2N2641
2N2642, 2N2643, 2N2644
TA

= -55'C)

= 5 Vdc)

= 5 Vde)

hFE

2N2639, 2N2640, 2N2641
2N2642, 2N2643, 2N2644

10
20

2N2639, 2N2640, 2N2641
2N2642, 2N2643, 2N2644

55
110

2N2639, 2N2640, 2N2641
2N2642, 2N2643, 2N2644

65
130

-

-

1.0

0,6

1.0

35

-

-

8,0

Collector-Emitter Saturation Voltage' (1)
(IC = 10 mAde,
=0.5 mAdc)

VCE(sat)

Base-Emitter SaturatIon Voltage l t 1)
(IC - 10 mAde, IB = 0.5 mAde)

VBE(sat)

Ia

-

-

Vdc
Vde

SMAll·SIGNAl CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = I mAde, VCE = 5 Vdc, I =20 MHz)

IT

Output Capacitance
(V CB - 5 Vde, IE - 0, I

Cob

Input Impedance
(IC = I mAdc, VCB

=I

MHz)

= 5 Vdc, I = I

Reverse Voltage Transfer Ratio
(IC = I mAdc, VCB = 5 Vdc, I

=I

kHz)

Small-Signal Current Gain
(IC =1 mAde, VCB = 5 Vde, I

=I

kHz)

Output Admlttaoee
(IC = I mAde, VCB

= 5 Vde,

Noise Figure
(IC = 10 ;tAde, VCB

=5

h ib

kHz)

h rb

2N2639, 2N2640, 2N2641
2N2642, 2N2643, 2N2644

hIe

hob

I-1kHz)

25'

-

pF

32

X 10-6

600
600

-

1.0

~mh08

dB

NF

Vde,
RS = 10k ohms, Bandwidth = 10 Hz to 15 kHz)

Kohma

600

130

65

MHz

-

4.0

0.9
0.8

1.0
1.0

--

5.0

MATCHING CHARACTERISTICS
DC Current Gain Ratio ••

(IC - 10 ;tAde, VCE

= 5 Vde)

Base Voltage Differential
(IC = 10 "Ade, VCE = 5 Vde)
Base Voltage Differential Temperature Gradient
(lC = 10 ;tAde, VCE = 5 Vde, T A = -55 to +125'C)

2N2639, 2N2642
2N2640, 2N2643
2N2639, 2N2642
2N2640, 2N2643
2N2639, 2N2642
2N2640, 2N2643

Pulse Test: Pulse Width = 300 ,,8; Duty Cycle ~ 2%
··The lowest hFE reading is taken as hFEl for this test.

(11

2-323

hFEI/hFE2**

IVBEI - VBE2 1

AIVBEI - VBE2 1
ATA

mVdc

10
;tV/'C
10
20

2N2646 (SILICON)
2N2647

Silicon annular PN unijunction transistors designed
for use in pulse and timing circuits, sensing circuits
and thyristor trigger circuits.
CASE 22A
(TO-18 Modified)

(Lead 3 connected to case)

MAXIMUM RATINGS

(TA =2S·Cunlessotherwisenoted)

Rating

Symbol

Value

Unit

PD

300*

mW

RMS Emitter Current

Ie

50

mA

Peak Pulse Emitter Current**

ie

2.0 **

Amp

VB2E

30

Volts

VB2B1

35

Volts

TJ

-65 to +125

°c

Tstg

-65 to +150

°c

RMS Power DisSipation*

Emitter Reverse Voltage
Interbase Voltage
Operating Junction Temperature Range
storage Temperature Range

* Derate 3.0 mW/oC increase in ambient temperature. The total power dissipation
(available power to Emitter and Base-Two) must be limited by the external
circuitry.
** Capacitor discharge - 10 JJ.F or less, 30 volts or less.

2-324

2N2646, 2N2647 (continued)

ELECTRICAL CHARACTERISTICS

IT, ~ 25·C""'....."'~"."....)

Characteristic

Symbol
2N2648
2N2847

Interbase Resistance
(VB2BI = 3 V,IE = 0)

aR BB

Emitter saturation Voltage.

VEBI(sat)

= 10 V, IE = 50 rnA) (Note 2)

Modulated Jnterbase Current

(V B2BI

IB2 (mod)

= 10 V, IE = 50 mAl

Emitter Reverse Current
(VB2E = 30 V. IBI = 0)

lEO

2N2848
2N2647

Peak Point Emitter Current
(VB2BI = 25 V)
Valley Point Current
(V B2BI = 20 V, RB2

Typ

0.56
0.68

--

0.75
0.82

4.7

7.0

9.1

0.1

-

0.9

-

-

Volts

3.5

-

-

rnA

15

Unit

K ohms

RBB

Interbase Resistance Temperature Coefficient
(VB2BI = 3 V,IE = 0, TA = _55°C to +1250 C)
(VB2BI

Max

Min

q

intrinsic Standoff Ratio
(VB2BI = 10 V) (Note I)

Ip
2N2646
2N2847

= 100 ohms) (Note 2)

Base-Qne Peak Pulse Voltage
(Note 3, Figure 3)

Iv

2N2648
2N2647

/LA

-

0.005
0.005

--

1.0
1.0
6.0
10

-18

mA

4.0
8.0

5.0
7.0

--

Volts

3.0
6.0

12
0.2
/LA

5.0
2.0

VOBI

2N2648
2N2647

%1°c

NOTES
1. Intrinsic standoff ratio,
'I.is defined by equation:

2. Use pulse techniques: PW = 300 p.s duty cycle ";;2% to avoid
internal heating due to interbase modulation which may result in
erroneous readings.

'I=~)
Vln ,

3. Base·One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in SCR firing circuits and other types of pulse circuits.

Where Vp = Peak Point Emilter Voltage
V828 , = Interbase Voltage
VIE8,I = Emilter to Base·One Junction Diode Drop
(=0.5 V @ lO pAl

FIGURE 1- UNIJUNCTION TRANSISTOR SYMBOL FIGURE 2- STATIC EMITTER CHARACTERISTIC
AND NOMENCLATURE
CURVES

-

i

I
I ~PEAK POINT I
I

j

V,

NEGATIVE
RESISTANCE" SATURATION
REGION
REGION

CUTOfF
REGION

I,

v,

(Typical Relaxation Oscillator)

v,

I"

1

FIGURE 3- YOII TEST CIRCUIT

(Exauara'eeI to Show Details)

+ 20V
R,

R"

IOkll

100 {l

I

:
:

EMITTER TO
BASE·l
CHARACTERISTIC

, VALLEY POINT \

-J--- , •
t -----

+----

VEI!!.atl

Vv

I
I
I

I
I
I

I
-t~~-------7lv----~~ ~

-

lEO

2-325

-tJl--YOI '

t

2N2652 (SILICON)
2N2652A

Dual NPN silicon transistors for use as a differential amplifier.

~.@5
PINS 4 AND 8 OMITIED

Pin Connections, Bottom View
Case 654-04

TO·78

All leads Electrically Isolated from Case

MAXIMUM RATINGS (each side)

Value

Unit

VCEO

60

Vdc

Collector-Base Voltage

VCB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Collector Current

IC

500

mAdc

Operating Junction Temperature Range

TJ

-65 to +200

°c

Storage Temperature Range

T

-65 to +200

°c

Symbol

Rating
Collector-Emitter Voltage

stg

One Both
Side Sides
Total Device Dissipation @ T A = 25° C

PD

Derate above 25° C
PD

Total Device Dissipation @ T C = 25° C
TC = 100·C
Derate above 25° C

0.3

0.6

Watt

1. 72

3.43

mW/oC

1.0

2.0

Watts

1.14

Watt

0.57
5.7

2-326

11. 4

mW/oC

2N2652, 2N2652A

(continued)

ELECTRICAL CHARACTERISTICS (eaoh side)

(T, = 25'C "'ess otherNise noted)

Characteristic

Symbol

Min

Max

60

-

100

-

7.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage t11
(IC = 20 mAdc, IB =0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 100 /lAdc, IE =0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 100 /lAdc, IC =0)

BV EBO

Collector Cutoff Current
(V CB = 50 Vdc, IE =0)
(V CB

=50 Vdc,

IE

=0,

ICBO

2N2652
2N2652A
TA

=150'C)

2N2652
2N2652A

Emitter Cutoff Current
(V BE = 5.0 Vdc, IC =0)

~BO

2N2652
2N2652A

Vdc
Vdc

Vdc

/lAde

-

0.010
0.002

-

15
10

-

0.010
0.002

/lAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 100 /lAdc, V CE
(IC
(IC

=1. 0 mAdc,
= 1. 0 mAdc,

= 5. 0 Vdc)
V CE = 5.0 Vdc)
V CE = 5.0 Vdc,

hFE

TA

= -55'C)

Collector-Emitter Saturation Voltage
(IC = 50 mAdc, IB = 5.0 mAdc)

VCE(sat)

Base-Emitter Saturation Voltage
(IC = 50 mAde, IB = 5.0 mAdc)

VBE(sat)

35

-

50

200

15

-

-

1.2

-

0.9

60

-

-

15

-

85

Vdc

Vdc

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAdc, VCE =10 Vdc, f
Output Capacitance
(V CB =10 Vdc, IE

fT

=20 MHz)

Cob

=0, f =1. 0 MHz)

Input Capacitance
(V BE = 0, O. 5 Vde, IC = 0, f = 1. 0 MHz)

C ib

Input Impedance
(IC =1. 0 mAde, V CE

=5.0 Vdc, f =1. 0 kHz)

h.
Ie

Input Impedance
(IC = 1.0 mAdc, VCB

=5.0 Vdc, f =1.0 kHz)

h ib
hfe

Small-Signal Current Gain

VCE

=5.0 Vdc, f =1. 0 kHz)

Output Admittance
(IC = 1. 0 mAde, V CE

=5.0 Vdc, f =1. 0 kHz)

Noise Figure
(IC =O. 3 mAdc, V CE

=10 Vdc,

(IC

f

= 1. 0 mAde,

h

~

=510 ohms,

B. W.

oe

MHz
pF'

pF

k ohms

1.0

10.5

20

35

50

300

4.0

50

ohms

Jlmhos

NF

= 1.0 Hz,

dB

=1. 0 kHz)

8.0

MATCHING CHARACTERISTICS
DC Current Gain Ratio**
(IC = 100 /lAde, V CE = 5.0 Vdc)
(IC

= 1. 0 mAdc,

V CE

=5.0 Vdc)

2N2652
2N2652A
2N2652
2N2652A

Base Voltage Differential
(IC = 100 /lAdc, VCE =5.0 Vdc)
(IC

= 1. 0 mAde,

VCE

hFE/hFE2"

IVBE1-VBE21

=5.0 Vdc)

Base Voltage Differential Gradient
(IC =100 /lAde; V CE =5.0 Vdc, T A

1

V BE1- V BE2)

= -55 to +125'C)

l!.TA

t1l Pulse Test: Pulse WIdth ~ 300 /lS, Duty Cycle ~ 2.0%.
The lowest of the two hFE readings is taken as hFEl f~r the purpose of measurement.

**

2-327

0.85
0.9

1.0
1.0

0.85
Q.9

1.0
1.0

-

3.0

-

3.0

-

10

mVdc

/lV/'C

2N2696 (SILICON)
2N2927

PNP SILICON ANNULAR TRANSISTORS

PNPSILICON
SWITCHING
TRANSISTORS

designed for use in medium-speed, non-saturated switching
applications_
•

High Collector-Emitter Breakdown Voltage BVCEO =25 Vdc @ IC = 100/!Adc

•

High Collector-Base Breakdown Voltage BVCBO = 25 Vdc@ IC = 100/!Adc

I

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

2N2696 2N2927

Unit

VeEO

25

Vde
Vde

Collector-Sase Voltage

VeB

25

Emitter-Base Voltage

VEB

4.0

Vde

Collector Current -'Continuous

Ie

500

mAde

Total Device Dissipation@TA = 25°C

Po

Derate above 25°C

Po

Total Device Dissipation @Te= 25°C

Derate above 25°C
Operating and Storage Junction

TJ,Tstg

Watts

0.36
2.06

0.8
4_56

mW/oe

1.2
6.85

3.0
17.1

Watts
mW/oe

-65 to +200

°e

Temperature Range

2N2696

2N2927

2N2927

2N2696

l"'" r
1llI"1 ~

0.335 DIA
0.370
0.305 DIA
0.335

T- ~

nJ

i -1". " . -hli
h

•

0.240
I 0.260

0.019

1.5

*tndicates JEOeC Registered Data.

FIGURE 1 - TURN-ON AND TURN-OFF TIME TEST CIRCUIT

VBB

MIN

~DlA

~

H~j

+4.0 V
0.100

330

0:LJ
9;::SESOURCE
RISETIME < 6.0 n.
lin =50 OHMS
PW= 500 n.

T

TO OSCI LLOSCOPE
INPUTl>100 kOHMS
tr<1.0 ns

D.OZ8

[041

1.0f-_...._-A,J14V0Ir-_t-i
Pin 1. Emitttr
2.8asa

75

3. Collector

Collector

Collector

connected to case

connected to case

CASE 22 (1)
(TO-1B)

2-328

Pin 1. EmiUI!f
2.Base
3. Collector

CASE 31 (1)
(TO-5)

2N2696, 2N2927 (continued)

*ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
Min

Max

25
25

-

BVCBO

25

-

Vde

ICES

-

25

nAde

0.025

/'Adc

5.0
5.0

"Ade
"Adc

lEBO

-

100

"Ade

IB

-

25

nAdc

30

130

(lC = 50 mAde, VCE = 1.0 Vdc, TA = -550 C)

12

-

(lC = 300 mAde, VCE = 2.0 Vde)(I)

20

-

-

0.25

-

1.0

-

1.1

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage"
(lC = 100 "Ade,IB = 0)
(lC = 10 mAde, IB = 0)

Symbol

2N2927
2N2696

Collector-Base Breakdown Voltage
(lC = loo"Ade, IE = 0)
Collector Cutoff Current
(VCE = 15 Vde, VBE = 0)

BVCEO

ICBO

(VCB = 10 Vde, IE = 0, TA = 150o C)
2N2927

Emitter Cutoff Current
(VEB = 4_0 Vdc, IC = 0)
Base Current
(VCE = 15 VdF. VSE = 0)

Vde

2N2927

Collector Cutoff Current
(Vca = 10 Vde, IE = 0)
(VCB'= 15 Vde, IE = 0, TA = 1250 C)

Unit

2N2927

ON CH..,.R,ACTERISTICS
,.
DC Curient Gain
(lC ='50 mAde, VCE = 1.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage
(lC = 50 mAdc,lB = 2.5 mAde)

Vdc

VCE(sa!)

(lC = 300 mAde,lB = 30 mAde)
Base-Emitter Saturation Voltage
(lC = 50 mAde, I B = 2.5 mAde)

Vde

VBE(sat)

-

2.0

VBE(on)

-

1.0

Vdc

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 140 kHz)

Cob

-

20

pF

Input Impedance
(lC = 10 mAde, VCE = 10 Vde, f = 1.0 kHz)

hie

-

1500

ohms

Voltage Feedback Ratio
(lC = 10 mAde, VCE = 10 Vdc, f = 1.0 kHz)

hre

-

26

X 10-4

Small-Signal Current Gain
(lC = 10 mAde, VCE = 10 Vde, f = 1.0 kHz)

hfe
25

180

(lC = 300 mAde, IB = 30 mAde)
Base-Emitter On Voltage
(lC = 50 mAde, VCE = 1.0 Vde)

2N2927

SMALL-SIGNAL CHARACTERISTICS

1.0

-

hoe

-

1200

"mhos

(lC = 50 mAde, VCE = 3.0 Vde, f = 100 MHz)
Output Admittance
(lC = 10 mAde, VCE = 10 Vde, f = 1.0 kHz)

-

SWITCHING CHARACTERISTICS
Turn-On Time

(VCC = 10 Vdc,l C ",,300 mAde, IB1""3O mAde)
(See Figure 1)

ton

-

75

ns

Turn-Off Time

(VCC = 10 Vde,lc""3OOmAdc, IB1 = IB2",,30mAdc)
(See Figure 1)

toff

-

170

ns

-Indicates JEDEC Aegistered Data .
• ·Motorola Guarantees this data in addition to JEDEC Registered Data.
(1 )Pulse Test: Pulse Width = 300 /.ls, Duty Cycle = 1.0%.

2-329

2N2710 (SILICON)
NPN silicon transistor primarily designed
for high-speed, low-power saturated switching applications for industrial service.

CASE 22
(TO·18)

Collector connected to case

MAXIMUM RATINGS

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

20

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

500

mAdc

PD

0.36

W

2.1

mW/oC

PD

1.2

W

TJ

+200

°c

Rating

Collector Current -Continuous
Total Device Dissipation @ TA

= 25° C

Derate above 25° C
Total Device DisSipation @ T C

= 25° C

Operating Junction Temperature Range
Storage Temperature Range

T

stg

-65 to +200

FIGURE 1 - STORAGE TIME TEST CIRCUIT
JOV

980

+6.0VlJ

500

OSCILLOSCOPE
INPUT~

10Mn

~

1.5pF

tr = t, ~ 0.4ns

-4.0 V

I" I, ~ 0.5 ns
Zi' ~ 50 ohms

2-330

°c

2N2710

(continued)

ELECTRICAL CHARACTERISTICS I (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Max

20

-

30

-

40

-

5.0

-

-

0.0.3

-

30

-

1.0

40

-

40

-

-

0.25

-

0.9

-

1.3

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 10 mAde, IB = 0)

BV CEO

Collector-Emitter Breakdown Voltage
(IC = 10 /lAde, VBE = 0)

BV CES

Collector-Base Breakdown Voltage
(IC = 10 /lAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)

BVEBO

Collector-Cutoff Current
(V CB = 20 Vde, IE = 0)

ICBO

(V CB = 20 VDC, IE = 0, TA = +150'C)

~BO

Emitter Cutoff Current
(V BE = 3.0 Vde, IC = 0)

Vde
Vde
Vde
Vde

,.Adc

/lAde

ON CHARACTERISTICS
DC Corrent Gain
(IC = 10 mAde, VCE = 1. 0 Vde)

hFE

(IC = 50 mAde, VCE = 1. 0 Vde)
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VCE(sat)

(IC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VBE(sat)

(IC = 50 mAde, IB = 5.0 mAde)

-

Vde
0.4
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 20 Vde, f = 100 MHz)

fT

Output CapaCitance
(V CB = 10 Vde, ~ = 0, f = 4.0 MHz)

Cob

Turn-On Time (Figure 2)
(V CC = 3.0 Vde, VBE (off) = 2.0 Vde , IC = 10 mAde, IBI " 3.0 mAde)

t

Turn-Off Time (Figure 2)
(VCC = 3.0 Vde, IC = 10 mAde, IBI = 3.0 mAde, IB2 = 1. 0 mAde)

toff

Charge-Storage Time (Figure 1)
(V CC = 10 Vde, IC = IBI = IB2 = 10 mAde)

MHz
500

-

-

4.0

-

20

-

35

-

15

ns

on

t

pF

ns
ns

s

FIGURE 2 - TURN ON AND TURN OFF TIME TEST CIRCUIT
3.0V

+n
7 0V
.

270

2.0 k

INPUT~
~

t,~ t,~

-2.0 V

tr• t, ~ 0.5 ns
Z;,~

OSCILLOSCOPE

50 ohms

2-331

IOMn
2.6 pF

0.4"s

2N2720 (SILICON)
2N2721

Dual NPN silicon transistors for small-signal, lowpower differential amplifier applications.

~@~

Case 654-04
TO-78

PINS 4 AND 8 OMITTED

Pin Connections, Bottom View
All leads Electrically Isolated from Case

MAXIM UM RATI NGS (each side) (TA = 25°C unless otherwise noted)

Symbol

Value

Unit

VCEO

60

Vdc

Collector-Base" Voltage

VCB

80

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

40

Rating
Collector-Emitter Voltage

Collector Current
Operating and Storage Junction
Temperature Range

TJ , T

stg

mAdc

-65 to +200

°c

One Both
Side Sides
PD

Total Device Dissipation @TA = 25° C
Derate above 25° C

PD

Total Device Dissipation @ T C = 25° C
Derate above 25° C

2-332

0.3

0.6

Watt

1. 71

3.4

mW/oC

0.6

1.2

Watts

3.4

6.8

mW/oC

2N2720, 2N2721

(continued)

ELECTRICAL CHARACTERISTICS (each side) (T, = 25'C unless otherwise noted)

Min

Max

60

-

-

10

-

0.01
10

-

10

30

120

(IC = 1. 0 mAde, VCE = 5.0 Vdc)

35

(IC = 10 mAdc, VCE = 5.0 Vdc)

42

-

-

1.0

0.65

0.85

80

-

-

6.0

25

32

-

500

30

200

-

1.0

0.9
0.8

1.0
1.0

-

5.0
10

-

0.8
1.6

Symbol

Characteristic

Unit

OFF CHARACTERISTICS
BV CEO

Collector-Emitter Breakdown Voltage' (1)
(IC = 10 mAde, IB = 0)
Collector Cutoff Current
(V CE =5.0Vdc, IB =0)

ICEO

Collector Cutoff Current
(V= 60 Vde, I = 0)
(V~: = 60 Vde, I~ = 0, T A = 150°C)

I CBO

Emitter Cutoff Current
(V EB = 5.0 Vde, IC = 0)

~BO

Vdc

nAdc

Il Ade

nAde

ON CHARACTERISTICS
DC Current Gain
(IC = 100 IlAdc, VCE = 5.0 Vde)

hFE

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

V CE(sat)

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VBE(sat)

-

Vde

Vdc

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vdc, f = 20 MHz)

fT

Output Capacitance
(V CB = 5.0 Vde, ~ = 0, f = 1. 0 MHz)

Cob

Input Impedance
(IE = 1. 0 mAde, VCB = 5.0 Vde, f = 1. 0 kHz)

h ib

Voltage Feedback Ratio
(IE = 1. 0 mAde, VCB = 5.0 Vdc, f = 1. 0 kHz)

h rb

Small-Signal Current Gain
(IC = 1. 0 mAde, VCE = 5.0 Vdc, f = 1. 0 kHz)

hfe

Output Admittance
(IE = 1. 0 mAde, VCB = 5.0 Vde, f = 1. 0 kHz)

hob

MHz

pF
ohms

X 10- 6

11 mhos

MATCHING CHARACTERISTICS
DC Current Gain Ratio**
(IC = 100 IlAde, VCE = 5.0 Vde)

Base Voltage Differential
(IC = 100 IlAdc, VCE = 5.0 Vdc)
Base Voltage Differential Gradient
(IC = 100 IlAde, VCE = 5. 0 Vde, T A = -55 to +25' C)

(IC

=

100 IlAde, V CE = 5.0 Vde, TA = +25 to +125'C)

2N2720
2N2721
2N2720
2N2721
2N2720
2N2721

hFE/hFE2**

Iv

BE1- V BE21

-

l>(V BE1- V BE2)

2N2720
2N2721

111 Pulse Test: Pulse Width = 300 I'S, Duty Cycle = 2%

**

The lower of the two hFE readings is taken as hFEl for the purpose of measurement.

2-333

-

-

mVde

mV

1.0
2.0

2N2722 (SILICON)

Dual NPN silicon transistor for small-signal, lowpower differential amplifier applications.

Case 654·04

~PN

TO·78

NPN'<;[J
PINS 4 AND 8 OMITTED

Pin Connections Bottom View
All leads Electrically Isolated from Case

MAXIMUM RATINGS (each side) (TA = 25°C unless otherwise noted)

Symbol

Value

Unit

V CEO

45

Vdc

Collector-Base Voltage

V CB

45

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

40

Rating
Collector-Emitter Voltage

Collector Current

TJ , T

Operating & Storage Junction
Temperature Range

stg

mAdc

-65 to +200

°c

One Both
Side Sides
Total Device Dissipation @T A
Derate above 25° C

= 25°C

Total Device Dissipation @T C

= 25° C

PD
PD

Derate above 25° C

2-334

0.3

0.6

Watt

1.7

3.4

mW/oC

0.6

1.2

Watts

3.4

6.8

mW/oC

2N2722

(continued)

ELECTRICAL CHARACTERISTICS (each side)

(TA

= 25'0 unl.ss oth• .wi,. noted)

Characteristic

Symbol

Min

Max

45

-

45

-

-

2.0

-

0.001
1.0

-

1.0

50

250

(IC = 10 /LAde, VCE = 5.0 Vde)

100

(IC = O. 1 mAde, VCE = 5.0 Vde)

125

-

-

1.0

0.65

0.85

100

-

-

6.0

25

32

-

600

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage III
(IC = 10 mAde, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 /LAde, IE = 0)

BV CBO

Collector Cutoff Current
(V CE =5.0Vde, IB =0)

ICEO

Collector Cutoff Current
(V CB = 30 Vde, ~ = 0)
•
(V CB = 30 Vde,
= 0, T A = 150 C)
Emitter Cutoff Current
(~EBI = 5.0 Vde, IC = 0)

ICBO

IE

lEBO

Vde
Vde
nAde

/LAde

nAde

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 /LAde, VCE = 5.0 Vde)

hFE

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 0.5 mAde)

VCE(sat)

Base-Emitter Saturation Voltage
(Ic = 10 mAde, IB = O. 5 mAde)

VBE(sat)

-

Vde
Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vde, I = 20 MHz)

IT

Output Capacitance
(V CB = 5.0 Vde, IE = 0, I = 1. 0 MHz)

Cob

Input Impedance
(~ = 1.0 mAde, VCB = 5.0 Vde, I = 1. 0 kHz)

hib

Voltage Feedback Ratio
(IE = 1. 0 mAde, VCB = 5.0 Vde, I = 1. 0 kHz)

h rb

Small-Signal Current Gain
(~ = O. 1 mAde, VCE = 5.0 Vde, f = 1. 0 kHz)

hIe

Output Admittance
(~ = 1. 0 mAde, VCB = 5.0 Vde, f = 1. 0 kHz)

hob

Noise Figure
(IC = 10 /LAde, VCE = 5.0 Vdc, RG = 10 k ohms,

NF

f = 10 Hz to 15.7 kHz)

MHz
pF
ohms

X 10- 6

100

700

-

1.0

/Lmhos
dB

-

4.0

0.9

1.0

MATCHING CHARACTERISTICS

-

DC Current Gain Ratio**
(IC = 1. 0 /LAde, VCE = 5.0 Vde)

hFEl/hFE2**

Base Voltage Differential
(IC = 10 /LAde, VCE = 5.0 Vde)

IVBEI - VBE2 1

-

5.0

o(VBEI-VBEa)

-

0.8

Base Voltage Differential Gradient
(IC = 10 /LAde, VCE = 5.0 Vde, T A = -55 to +25' C)
(IC = 10 /LAde, VCE = 5.0 Vde, T A = +25 to +125' C)

111 Pulse Test: PUlse Width = 300 I-'S, Duty Cycle" 2.0% .

•*

The lower of the two hFE readings is taken as hFEI for the purpose of measurement.

2-335

mVde
mVde
1.0

2N2723 thru 2N2725 (SILICON)

CASE 20(8)

Two NPN silicon annular transistors connected as a
darlington amplifier, and designed for applications requiring very high gain.

(TO-72)

c

EZ

MAXIMUM RATINGS (TA =25°C unless otherwise noted)

Symbol

2N2723
2N2724

2N2725

VCE20

60

45

Vdc

VCB1

80

45

Vdc

VE2B1

12

10

Vdc

Collector Current

IC

40

30

mAdc

Total Device Dissipation@TA = 25°C
Derate above 25°C

PD

Total Device Dissipation @T C = ·25° C

PD

Rating
Collector Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

TC = 100°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

0.5

Watt

2.9

mW/oC

1.8

Watts

1.0

Watt

10.5
TJ , T

2-336

stg

Unit

-65 to +200

mW/oC
°c

2N2723 thru 2N2725

(continued)

ELECTRICAL CHARACTERISTICS

ITA

=2S·C unless otherwise noted)

Characteristic

Symbol

Min

Max

60
45

-

80
45

-

12
10

0.01

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage 111
(IC = 10 mAde, IBI = 0)

Collector-Base Breakdown Voltage
(IC = 10 IlAde, IE2 = 0)
Emitter-Base Breakdown Voltage
(IE2 = 10 IlAde, IC = 0)

Collector Cutoff Current
(V CB1 = 60 Vde, IE = 0)

2N2723, 2N2724
2N2725
2N2723, 2N2724
2N2725
2N2723, 2N2724
2N2725

BV CE20

BVCBlO

BV E2BlO

I CBlO

(V CB1 = 30 Vde, IE = 0)

2N2725

(V CB1 =30Vde, IE =0, TA = 150'C)

2N2725

-

2.0

-

10

-

1.0

(V CB1 = 60 Vde, IE = 0, TA = 150'C)

Emitter Cutoff Current
(V BlE2 = 10 Vde, IC = 0)

2N2723, 2N2724

2N2723, 2N2724

IE2BlO

2N2725

(V BlE2 = 6.0 Vde, IC = 0)

Vde

Vde

IlAde

-

2N2723, 2N2724

Vde

10
0.002

nAde

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE2 = 5.0 Vde, IB2 = 0)

2N2723
2N2724
2N2725

(IC = 100 IlAde, VCE2 = 5.0 Vde, IB2 = 0)

hFE

2000
7000
2000

10,000
50,000
10,000
Vde

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB1 = 1. 0 mAde)

VCE2(sat)

-

1.0

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB1 = 1. 0 mAde)

VBE2(sat)

-

1.7

100

-

-

10

Vde

SMALL-SIGNAL CHARACTERISTICS
Current-Gain- Bandwidth Product
(Each Unit)
(IC = 10 mAde, VCEI or V CE2 = 10 Vde, 1= 20 MHz)

IT

Output Capacitance

(V CBl = 10 Vde, IE2 = 0, I = 140 kHz)

2N2723, 2N2724

S mall-Signal Current Gain

2N2723
2N2724
2N2725

(IC = 10 mAde, VCE2 = 5.0 Vde, 1= 1. 0 kHz)
(IC = 10 !lAde, V CE2 = 5.0 Vde, 1= 1. 0 kHz)

Noise Figure
(Input Stage Only)
(IC = 50 !lAde, VCE = 5.0 Vde, RS = 3.0 k ohms,

Cob1

hIe

MHz

pF

1500
5000
1500

15,000
60,000
15,000

NF

1= 1. 0 kHz, BW = 100 kHz)

2N2723

-

10

2N2724

.

6.0

2N2725

-

6.0

(IC = 10 !lAde, VCE = 5.0 Vde; Ri; = 10 k ohms,
I = 1. 0 kHz, BW = 100 kHz)

dB

(IC = 3.0 !lAde, VCE = 5.0 Vde, RS = 30 k ohms,
1= 1. 0 kHz, BW = 100 kHz)
111 Pulse Test: Pulse Width~12 ms, Duty Cyele~2.0

%.

2-337

2N2728 (GERMANIUM)

PNP germanium high-current power transistors especially designed for switching and power converter
circuit operating from low-voltage power sources such
as solar cells, thermo-electric generators, sea cells,
fuel cells, and 1. 5-volt batteries.

CASE 7

MAXIMUM RATINGS

Symbol

Value

Unit

Collector- Base Voltage

V CB

15

Vdc

Collector-Emitter Voltage

VCEO

5.0

Vdc

Emitter- Base Voltage

vEB

15

Vdc

Rating

Collector Current (continuous)

IC

50

Adc

Base Current (continuous)

IB

10

Adc

Total Device Dissipation @ 25°C
Case Temperature

PD

170

Watts

Operating Temperature

TJ

+110

°c

Storage Temperature

Tstg

-65 to +110

Thermal Resistance
(Junction to Case)

IlJC

0.5

2-338

°c

°C/W

2N2728

(continued)

ELECTRICAL CHARACTERISTICS

Symbol Min

Characteristic
Collector Cutoff Current
VCE =15V,
VBE = 1 V
VBE = 1 V,
VCE =10V,

ICEX
TC = l00·C

Emitter-Base Cutoff Current
VEB = 15 V

lEBO

Emitter Floating Potential
VCB =15V,
IE = 0

VEBF

Collector-Emitter Breakdown Voltage·
IC = 500 rnA,
IB = 0

BVCEO

DC Current Transfer Ratio
VCE = 2 V
IC = 20 A,

hFE

Collector-Emitter Saturation Voltage
IC = 50 A,
IB = 5 A

Typ

mAdc

- - -

35

- -

10

- -

O. 5

10

mAdc

Vdc

10

-

40

-

130

VCE(sat)

-

0.075 0.1

Base-Emitter Voltage
IC =50A, IB = 5 A

VBE(sat)

-

0.85 1.0

Common Emitter Cutoff Frequency
VCE = 2 V
IC = 20 A,

fae

Rise Time
IC = 20 A,
Storage Time
VBE =6V,

Roo = 100

Fall Time
VBE = 6 V,

Roo = 100

IB(on) = 2 A

-

Vdc

kHz

4.5

-

r

-

18

25

ts

-

15

20

-

10

15

tf

V

Vdc

3.0

t
VCC = 1. 75 V,

5.0

Unit

Max

IJ,S

IJ,S

IJ,S

• To avoid excessive heating of the COllector junction, perform these tests with an oscilloscope.

MERCURY SWITCH

0·500
.08750

9.90

+
+

-----tll...----'----~
6V

2-339

1.75V
SWITCHING TIME TEST CIRCUIT

2N2785 (SILICON)

CASE 20(8)
(TO·72)

Two NPN silicon annular transistors connected as a
darlington amplifier, and designed for applications requiring very high gain.

c

MAXIMUM RATINGS

(TA

=25°C unless otherwise noted)

Rating

Symbol

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

40

Vdc

VCB1

60

Vdc

VE2B1

15

Vdc

7.5

Vdc

0.5

Watt

3.33

mW/oC

1.8

Watts

1.0

Watt

PD

Derate above 25° C
Total Device Dissipation @T C

= 25° C

PD

TC = 100°C
Derate above 25° C

10

Operating Junction Temperature Range
Storage Temperature Range

Unit

VCE20

(Pin 4 to Pin 2)
Total Device Dissipation @TA = 25° C

Value

TJ
T

2-340

stg

mW/oC

-65 to +175

°c

-65 to +200

°c

2N2785

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25·C unless otherwise noted)

Symbol

Characteristic

Min

Max

40

-

60

-

15

-

-

500

-

0,05

-

20

600

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(IC = 20 mAde, IBI = 0)

BV CE20

Collector-Base Breakdown Voltage
(IC = 100 /lAde, IE2 = 0)

BV CBlO

Emitter-Base Breakdown Voltage
(IE2 = 100 /lAde, IC = 0)

BVE2BI0
I CEO

Collector Cutoff Current
(V CE =20Vde, IB =0)

I CBlO

Collector Cutoff Current
(V CB1 = 30 Vde, IE = 0)

(V CB1 = 30 Vde, IE = 0, T A = 150' C)
Emitter Cutoff Current
(V E2B1 = 5,0 Vde, IC = 0)

IE2B10

Vde

Vde

Vde

nAde

/lAde
10
nAde

ON CHARACTERISTICS
DC Current Gain« 1)
(IC = 1. 0 mAde, V CE2 = 4,0 Vde)

hFE

(IC = 10 mAde, VCE2 = 5,0 Vde)

1200

(IC = 100 mAde, V CE2 = 5,0 Vde)

2000

Collector-Emitter Saturation Voltage
(IC = 15 mAde, IBI = 3, 0 mAde)

VCE2(sat)

-

20,000
Vde

-

1.0

10

-

-

30

30

80

-

10

600

-

-

0,5

SMALL SIGNAL CHARACTERISTICS
Current-Gain-Bandwidih Product
(IC = 1. 0 mAde, VCE2 = 5,0 Vde, I = 10 MHz)

IT

Output Capacitance
(V CBl = 10 Vde, IE2 = 0, I = 1. 0 MHz)

Cob1

Input Impedance
(IC = 1. 0 mAde, VCB1 = 5,0 Vde, 1= 1. 0 kHz)

\b

Voltage Feedback Ratio
(IC = 1. 0 mAde, V CE2 = 5,0 Vde, 1= 1.0 kHz)

h rb

Small-Signal Current Gain
(IC = 1. 0 mAde, VCE2 = 5,0 Vde, I = 1. 0 kHz)

hie

Output Admittance

hob

(IC = 1. 0 mAde, VCB1 = 5,0 Vde, 1= 1.0 kHz)
II)

Pulse Test: Pulse Width ~ 300 /lS, Duty Cycle ~ 2,0%,

2-341

MHz

pF

Ohm
x 10- 4

flmhos

2N2800 (SILICON)
2N2801
2N2837
2N2838

PNP silicon annular transistors for medium-speed
switching applications_

"

CASE 22
(TO-18)

2N2800
2N2801

2N2837
2N2838

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

50

Vdc

Collector-Emitter Voltage

VCEO

35

Vdc

Emitter-Base Voltage

VEB

s.o

Vdc

Collector Current

IC

600

rnA

Total Device Dissipation
@ 25'C Ambient Temperature
2N2600, 2N2601 - TO-5
Derating Factor Above 25'C

PD
0.6
4.57

Watt
mW/'C

O. 5

Watt
mW/'C

2N2637, 2N2636 - TO-16
Derating Factor Above 25'C

2.66
PD

Total Device Dissipation
@ 25'C Case Temperature
2N2600, 2N2601 - TO-5
Derating Factor Above 25'C

17.3

Watts
mW/'C

1.6
10.3

Watts
mW/'C

+200

'c

3.0

2N2637, 2N2636 - TO-16
Derating Factor Above 25'C
Junction Temperature, Operating

TJ

Storage Temperature

Tstg

'c

-65 to + 200

STORAGE AND FALL TIME TEST CIRCUIT

DELAY AND RISE TIME TEST CIRCUIT

+189V

INPUT

+10V

Zo ::::: 50!:!
INPUT
10
SOn
PRf = 150 PPS
RISE TIME,,;; 2 ns

64

=

-:U__ f-

500

50

TO OSC I LLOSCOPE
RISE TIME ""'5ns
= 10 M!J

l,.

PRf= 150 PPS
RISE TIME,,;; 2 ns

+nr-+~ s

12~

2-342

lK
500

C>-<~5-0

-+-r

-¥,fI,,-........

64

TO OSCillOSCOPE
RISE TIME,,;; 5 ns
Z,"
10 MQ

=

2N2800, 2N2801, 2N2837, 2N2838

(Continued)

ELECTRICAL CHARACTERISTICS (TA

=25°C unless otherwise noted)
Symbol

Characteristic
Colleetor- Base Breakdown Voltage
(Ic = 10 ~Ade, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 ~Ade, IC = 0)

BV EBO

Collector-Emitter Breakdown Voltage
(IC = 100 mAde, IB = 0)

BVCEO

Collector Cutoff Current
(VCE = 25 Vde, VBE = 0.5 Vde)

ICEX

Base Cutoff Current
(VCE = 25 Vde, VBE • 0.5 Vdel

IBL

DC Forward Current Transfer Ratio
(IC = 0.1 mAde, VCE = 10 Vdel
2N2800, 2N2837
2N2801 , 2N2838

hFE

Min

Max

Vde

50

-

5.0

-

35

-

-

100

-

100

Vde
Vde
nAde
nAde

20
30

-

(IC = 150 mAde, VCE = 10 Vde)"!
2N2800. 2N2837
2N2801. 2N2838

30
75

90
225

(IC = 150 mAde. VCE = 1 Vdel"!
2N2800. 2N2837
2N2801. 2N2838

15
30

-

25
40

-

(IC = 500 mAde.

VCE = 10 Vdel 'II
2N2800. 2N2837
2N2801. 2N2838

Collector Saturation Voltage
(IC = 150 mAde. IB = 15 mAde)

VCE(sat)

(IC = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(IC = 150 mAde. IB = 15 mAde)

VBE(sat)

(IC = 500 mAde, IB = 50 mAde)
Output Capacitance
(V CB = 10 Vde. f = 100 kHz!

Cob

Current-Gain - Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde. f = 100 MHz)

fT

SWITCH I NG CHARACTERISTICS

Vde

-

0.4
1.2

-

1.3

-

25

120

-

pF

5,..,bol

T,,1cI1

td

9

Rise Time

r
ts

Storage Time
Fall Time

f
300

~s.

duty cycle

MHz

(T A = 25 0 C unless otherwise noted)

CharlCterlstic

~

Vde

1.8

Delay Time

111 Pulse Test. Pulse Width

Unit

~

2%

2-343

Mllimam

Unit

25

ns

25

45

ns

100

225

ns

;su

4~

ns

2N2832 (GERMANIUM) PNP germanium transistors for
amplifier applications.
2N2833
2N2834
CASE 11A
(TO-3 modified)

switching and

CASE 4-04
(TO-41)

Collector connected to case
For units with solder lugs attached. specify
device MP2832 etc. (TO-41 package)

MAXIMUM RATINGS

Rating

Symbol

2N2832

2N2833

2N2834

Unit

VCEO

50

75

100

Vdc

Collector-Base Voltage

V CB

80

120

140

Vdc

Emitter-Base Voltage

VEB

2.0

Vdc

Collector Current - ContiilUOus

IC

20

Adc

Base Current

IB

5.0

Adc

Total Device Dissipation @ TC = 25°C

PD

85

Watts

TJ , Tstg

-65 to +110

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

FIGURE 1 - POWER DERATING CURVE

......

""""

THESE TRANSISTORS ARE ALSO SUBJECT TO SAFE AREA CURVES AS
INDICATED BY FIGURES 2. 3. 4. BOTII LIMITS ARE APPLICABLE
AND MUST BE OBSERVED

..........

~

I"-.....

.............
25

50

75

r--.....

100

110

125

Te. CASE TEMPERATURE (OC)

SAFE OPERATING AREAS
FIGURE 2 - 2N2832
20
10

1\

'Th ..,50"s I

H

~5ms

""

SOo"s
j

~

\\

::E

S

...z
0-

1.0

~<>

-~

,,\ L,\

\

~OC

'":::><>'"
'"~

,I"'
" ..

0.1

FIGURE 4 - 2N2834

FIGURE 3 - 2N2833

\c

,

5ms

.... ~

\.

,

..... :\ .,1-- 50 ,",

\

~.so"s

1\

-

SOo"s

~

jms

--

500"s

~"

'lit\

,"

I'\. ..... OC

DC

I'.

"

I\,'

~

~

.........

~

'1~

.2

,

,'\.

~

~

\

.01
a

20

40

60

80

100

0

20

40

60

80

100

,

~

120

140

a

20

40

60

80

100

120

140

160

V"" COLLECTOR.£MITTERVOLTAGE (VOLTS)
The Safe Operatinl Area Curves illclicate the Ie Vcs limits below which the devices Win not 10 Into secondary breakdown. As secondary breakdown is independent
of temperature and duty cycle, these curves can be used as lonl a"the averaie power derating curve (Filure 1) is,al,so taken into consideration to insure operation
below the maximum junction temperature.
'
a

2-344

2N2832 thru 2N2834

(Continued)

ELECTRICAL CHARACTERISTICS

(Tc

= 25°C unless otherwise noted)

Characteristic

Symbol

I Min I Typ I Max IUnit I

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage Ul
(Ic = 100 mAdc, IB = 0)

2N2832
2N2833
2N2834

Emitter-Base Breakdown Voltage
(IE = 50 mAdc, IC = 0)

BVCEO(sus)

BVEBO

Floating Potential*
(V CB = 80 Vdc, IE = 0)

2N2832

(V CB = 120 Vdc, IE = 0)

2N2833

(V CB = 140 Vdc, IE = 0)

2N2834

Collector Cutoff Current*
(V CE = 100 Vdc, VBE = 0)

2N2832

(V CE = 140 Vdc, VBE = 0)
(V CE = 160 Vdc, VBE = 0)

2N2834

VEBF *

ICES*

2N2833

50
75
100

-

-

-

-

2.0

-

-

-

-

0.5

-

0.5

-

0.5

-

-

20

-

20

-

-

40

Collector Cutoff Current**
(V CE = 50 Vdc, VBE(off) =0. 2 Vdc, TC =+85°C)

2N2832

=+85° C)

2N2833

-

TC = +85°C) 2N2834

-

(V CE = 75 Vdc, VBE (off) =0. 2 Vdc, TC
(V CE = 100 Vdc, VBE (off) =

o. 2 Vdc,

Collector Cutoff Current*
(V CB = 2.0 Vdc, ~ = 0)

I CEX**

ICBO *

Volts

Vdc

Volts

mAdc
20

mAdc
40
40
mAdc

-

0.3

-

10

50

75

-

25

-

100

-

-

0.15

(IC = 10 Adc, IB = 1. 0 Adc)

-

-

0.30

(IC = 20 Adc, IB = 2.0 Adc)

-

-

0.5

-

-

0.6

= 1. 0 Adc)

-

-

0.75

(IC = 20 Adc, IB = 2.0 Adc)

-

-

1.0

2.0

3.5

-

-

2.0

4.0

jJ.s

-

3.0

5.0

jJ.s

-

1.0

2. 5

jJ.s

(V CB = 80 Vdc,

~

= 0)

-

2N2832

(V CB = 120 Vdc, IE = 0)

2N2833

(V CB = 140 Vdc, ~ = 0)

2N2834

-

10
10

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 Adc, V CE = 2.0 Vdc)
(IC

= 10 Adc,

hFE

VCE = 2.0 Vdc)

Collector-Emitter Saturation Voltage
(IC = 1. 0 Adc, IB = 100 mAdc)

V CE(sat)

Base-Emitter Saturation Voltage
(IC = 1. 0 Adc, IB = 100 mAdc)
(IC = 10 Adc, IB

VBE(sat)

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Small Signal Current Gain
(IC = 1. 0 Adc, VCE = 10 Vdc, f = 5.0 MHz)

h fe

Rise Time

t

Storage Time

t

Fall Time

tf

*SWEEP TEST: 1/2 Sine Wave, 60 Hz min.
(1IPULSE TEST: Pulse Width = 1. 0 ms, 2.0% Duty Cycle.

2-345

r
s

-

2N2832 thru 2N2834 (Continued)

FIG 5 - BASE·EMmER SATURATION VOLTAGE VARIATIONS
0.8

i

Te=-!'·C

~ 0.7
~

le= 20A

g

I
~

Ie = lOA

0.6

lell, = 20

~ 0.5

;

Ie

0.4 f--Ie = lA

ID

1

~~-

--

3A

-

..

--"

1---

~

f--

~r-

-c;

~~

./
~

V

~

"

lei I, = 10

,]

0.3
0.1

.01

1.0

5.0

I,. BASE CURRENT (AMP)

i

I

0.8

Te=2SoC

...

~ 0.7
lell, = 20-1\

z:

~ 0.6
~

~

~ 0.5

Ie = lOA

~

~ 0.4

J

Ic =3A
Ie

1A

I

1.. 1-

..

~.

,..-

~/
~/

':'=P'~
~ ~~
I....

--

~~
_
....
--_-..

II

Cv

.... 1"1

r-

~

-

lell, = 10

0.3
.01

0.1

5.0

1.0

I,. BASE CURRENT (AMP)
0.9

~

Te =10"C

Ie = 20A -

~ 0.8

~

g

I

I

I

I

"\ / A. !7
}/~-;/

lell, = 20

I
i

0.7

~

0.6

I'

~ 0.5

Ie = lOA

I'

-....,

0.4

;""'"

le=3A

j

I I 1

.} 0.3

I I

0.25
.01

r\

~
-~ ~

0.1

L~

2-346.

l......:": I-'

lei I, = 10

~' fo':f::;::t'
~ ~ i'

,..

1.0

I,. BASE CURRENT (AMP)

n

5.0

2N2832 thru 2N2834

(Continued)

FIG 6 - COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

g 0.5

I

g
~
o

le=3A

Ie = IA

w

te =

>
z

0.3

~

'"

~

0.2

'-

~
e

~ 0.1

i\

............

o

'"

Te = -40'C

"'
-= r--= --t.

J

20A' \

\

\

\

::>

'Ie

\

1\

o

~

I~A \

0.4

-- '" -

- r> c.:::

.....

I
.01

le/l, = 20 -

-

I
f\ 1\ 1> ........

-

.... \...

,

......

"-

0.1

,/

"" ""

le/l, = 10

1.0
I,. BASE CURRENT (AMP')

iii 0.5

, I

:;
o

~

le= IA

w

~ 0.4

\

~
z
o

~ 0.3

\

~

~

0.2

:i
~

e

~ 0.1

o

Te

'"

\.
~ i'.....

25'C

le=20A:

I' r--. .....

Ie/I, = 20

I'-r--

-= f=.

r---

I

i\

I

\

\

"-

'"

,,

Ie = lOA

Ie = 3A

'1-"

/

............
~/

~

/

le/l,=IO ~,/

"-

,I

,,'" r- I-

... '" ""

-

I
.01

0.1

1.0
I,. BASE CURRENT (AMP)

~ 0.7

g

!
>

~

~

le= 3A

'\.. Ie = IA

.~

0.6

0.5
0.4

~
f5 0.3

"-1"-

!::

Ie = lOA

\

1\

\\
.....

~

~ 0.2

\

'",

..............

~ 0.1

le/l., = 20-

b-..::

......... .....

Te -100'C
.001

"""\
~~

... 1--'11

I

>--

.01

0.1
I,. BASE CURRENT (AMP I

2-347

~ 20~

1\

I'
/r---I'-

Ie

,,\

r

1\

\

f',

\

!lle = ISA

1.0

r-

le /l , = 10

i'...

2N2832 thru 2N2834 (continued)

FIGURE 7 - CURRENT VARIATIONS
REVERSE- ~FORWARD
20

Iitt

P'"~

25°C"';

~ r.;

_40°C

1.2

V
100°C

l

08
.

./~
V

8

;;
.01

.2 0.2

' .. =2'

II

.02

1.0

1/

/ /
//

IZ7

1

o

15

10
5
I.. BASE CURRENT (rnA)

10

2.0

1-4O"C_
.

/

/

I

~V.. ~2V

0.1

.04 .06 0.1
0.2
0.4 0.6
I•• BASE CURRENT (AMP)

/
j

I

~ 0.4

"/

/

I

~

J

I

I

I

I

/

j

25°C

I

<> 0.6

..JI~

7

1/

1

~

7

1

I
/
_ 1.0 ~+IOOOC
/

20

FIGURE 8 - COLLECTOR CURRENT·VOLTAGE VARIATION
20

100
80

.---: ~
f=+looOC

!

I

/

/

/

/

_60

::::>

/_400C

+25OC/

<>

Va =2V

I
_

I

0.2
0.1
0.1

I

I

I

I
0.2

.-/

I

I

+25°C

/

10

/

V

1400C

0.6

0.7

0.2

0.8

o

0.1

0.2

0.1

0.3

FIG 9 - BASE CURRENT·VOLTAGE VARIATIONS

FIGURE 10 CURRENT·GAIN VARIATIONS

/

/

250C /

/

100°C /

80

-4DoC

~

\\

' .. =2V

~

I\.

100·C

1\"

'\.'1

~

."

20

.........

10

I

0.2
0.4
0.6
VII. BASE EMITTER VOLTAGE (VOLTS)

-"""'"

I,..-

/
I

I

-25~

-'

-40·C

4

I

I

I

/

:111

SEE FIG. 7_ - . l

100

2'

/

o

20

/

V•• BASE.£MITTER VOLTAGE (VOLTS)

I

2

I

I
+100 oC

4

0.5

0.4

0.3

60
40
<> 20

6

I

I

6

llOO

10

IV...

.2 8

:s
!

~

V..

VII. BASE.£MITTER VOLTAGE (VOLTS)

1000
600
400 :::: V..
200

~

=

40

I

I

REYERSE- -FORWARD

0.1

0.8

1~

Ie. COLLECTOR CURRENT (AMP)

2-348

10

2N2832 thru 2N2834

(continued)

FIG 11 - RISE and FALL TIME vs COLLECTOR CURRENT
I.. = lu

I III

= D.lle

FIG 12 - STORAGE TIME YS COLLECTOR CURRENT

J

klIS~ ~IIME/

~
-""::::
0.1

r.:..

0.2

4

0.4 0.6

::E

...;::

-I"

-~

=

I ..

= 0.1 Ie

....

'\

co

ali
0

"',

~/

mi

V"

/ - r----

r----

...~

V
VI'

-

4

....

'".:

lME

O.l

20

10

0.2

0.4 0.6

Ie. COlLECTOR CURRENT (AMP)

4

6 8 10

20

Ie. COLLECTOR CURRENT (AMP)

FIG 13 - SWITCHING TIME TEST CIRCUIT

MERCURY SWITCH

Chrlctlrlltlc

R,

sr-

Mil

Unit

Rise Time

t,

4

I's

Storage Time

t,

6

I's

Fall Time

t,

2.5

I's

0- 20V
R,

AOJUST R" R.. Rio for I"

0- 2V

=

In = O.lle

PULSE CONDITIONS; Ie = 5 AMP. I"

=

0.5 AMP

Switching times shown are for constant current drive conditions.
Faster times can be realized by the use of a lower source impedance
or a speed-up capacitor. See Chapter !!i of the Motorola Switching
Handbook for a morc detailed ex.planation.

FIG 14 - CURRENT GAIN - BANDWIDTH PRODUCT
vs COLLECTOR CURRENT

FIG 15 - OUTPUT CAPACITANCE vs REVERSE VOLTAGE
2000

~

...

Va - B VOLTS

,... ,.......

u

..............

~

u

/'

< 1000
~
800
<
"I
0
600
....

...

'\.

u

'"

'""

........
i""-

t'-....

'"

\
\

..........

~

["'-.......

u

J
o
0.1

1500

z
<
t=

400

......

300
0.2

0.4

0.6 0.8 1

1.0

Ie. COLLECTOR CURRENT (Ade)

4

8 10

Ve•• REVERSE VOLTAGE (Vde)

2N2837, 2N2838
For Specifications, See 2N2800 Data.

2-349

20

40

2N2845 thru 2N2848 (SILlC()N)

NPN silicon annular transistors designed for highspeed, medium-power saturated switchingapplications.

CASE 22
(TO-18)

2N2845
2N2847

CASE 31
(TO-S)
2N2846
2N2848

MAXIMUM RATINGS

Rating

Symbol 2N2845 2N2846 2N2847 2N2848

Unit

VCEO*

30

30

20

20

Vdc

Collector-Base Voltage

VCB

60

60

60

60

Vdc

Eniitter-Base Voltage

VEB

5.0

5.0

5.0

5.0

Vdc

Po

360

800

360

800

mW

2.1

4.6

2.1

4.6

mW/oC

1.2

3.0

1.2

3.0

Watts

6.9

17.2

mW/oC

Collector-Eniitter Voltage*

Total Device Dissipation@ T A

=

25°C

Derate above 25°C
Total Device Dissipation@TC

=

25°C

Po

6.9

Derate above 25°C
Operating Junction Temperature Range
Storage Temperature Range

17.2

-65 to 200

TJ
Tstg

*Applicable from 1 mA to 30 mA (Pulsed)

2-350

-65 to+ 200

°c
°c

2N2845 thru 2N2848

(continued)

ELECTRICAL CHARACTERISTICS

(T ... = 2S"C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(IC " 30 mAde, 18 " 0)
(Ic " 30 mAde, 18 " 0)

BVCEO(sus)

2N2845, 2N2846
2N2B47,2N2848

Collector-Base Breakdown Voltage
(IC "0,1 mAde, IE " 0)

8VC80

Emitter-Base Breakdown Voltage
(IE" 0.1 mAde, Ie" 0)

8VE80

30
20
60
5.0

Collector-Cutoff Current
(V CE " 30 Vde, V8E " 0)

icES

Collector Cutoff CUJ:"rent

IC80

(VC8 " 30 Vde, IE " 0, T A " 150°C)

Base Leakage Current
(VCE " 30 Vde, V8E " 0)

18L

-

-

~;dc

Vde
J.iAdc

0.2
JJAdc

200
Il Ad c

0.2

ON CHARACTERISTICS III
DC Current Gain
(IC " 150 mAde, VCE " 10 Vde)
(ic " 500 mAde, VCE " 10 Vde)
(IC" 500 mAde, V CE

=

hFE

2N2845, 2N2846
2N2847, 2N2848
2N2845, 2N2846
2N2847, 2N2848
All Types

1 Vde)

Collector-Emitter Saturation Voltage
(ic " 150 mAde, 18 " 15 mAde)
(Ie " 500 mAde, 18 " 50 mAde)

VCE(sat)

All Types
2N2845, 2N2846
2N2847, 2N2848

Base-Emitter Saturation Voltage
(ic " 150 mAde, 18 " 15 mAde)
(Ie " 500 mAde, 18 " 50 "'Ade)

V8E(sat)

30
40
20
30
10

-

120
140

-

--

Vde
0.4
1.0
0.75
Vde
1.2
1.6

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC " 50 mAde, VCE " 10 Vde, I " 100 MHz)

IT

Output Capacitance
(VC8" 10 Vde, IE" 0, f " 140 kHz)

Cob

Turn-On Time (Figure 1)
(VCC " 10 Vde, IC - 150 mAde. 181 ~ 15 mAde)
(VCC " 6 Vde. IC - 150 mAde. 181 ~ 15 mAde)

2N2845, 2N2846
2N2847, 2N2848

Turn-Ofl Time (Figure 2)
(VCC" 10 Vde, ic ~ 150 mAde, 181 ~ 182 • 15 mAde)
(Vee::::: 6 Vdc, Ie ... 150 mAde, lSI'" 182 ... 15 mAde)

2N2845, 2N2B46
2N2847, 2N2848

ton

ton

--

MHz

-

250

pF
8.0
ns
40
25
ns
40
40

(II Pulse Test: Pulse Width" 300!'s; Duty Cycle"' 2%

FIGURE 1- TURN·ON TIME TEST CIRCUIT

FIGURE 2- TURN·OFF TIME TEST CIRCUIT
Vee

200ns

R,

:~
<
t,

1110

2ns

" '__~.., SCOPE
1;,= 100 kg
tr < 2ns

.05"F

Ikg

O~

50g

200 ns

-

t, < 2ns

2N2845. 2N2846

2N2847,2N2848

Vee

IOV

6V

R,

62g

39g

2-351

+16V

2N2857 (SILICON)

NPN SILICON
RF SMALL-SIGNAL
TRANSISTOR

NPN SILICON RF SMALL-SIGNAL TRANSISTOR

.... designed primarily for use in high'gain, low·noise amplifier, oscil·
lator, and mixer applications. Can also be used in UHF converter
applications.
•

High Current·Gain-Bandwidth Product fT = 1.6 GHz (Typ) @ IC = 8.0 mAde

•

Low Noise FigureNF = 4.5 dB (Max)

@

f = 450 MHz

I

• Low Collector·Base Time Constant rb'Cc = 15 ps (Max) @ IE = 2.0 mAde
• Characterized with Scattering Parameters
•

Ideal for Micro-Power Applications·

0.209
0.230
DlA

r
~o
1_1'

*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Svmbol

Value

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

2.5

Vdc

Collector Current - Continuous

IC

40

mAde

Total Device DllIsipation @TA =25°C
Derate above 25DC

Po

200
1.14

mW
mW/oC

Storage Temperature Range

Tstg

-65 to +200

°c

~:~~: OIA

0.500
MIN

~
0.100
Pin I. Emitter
2. Base
3. Collector
4. Case
~
0.048

CASE 20110)
TO-72 PACKAGE
Active Elements Isolated from Case

"Indicates JEDEC Ragistarad Data.

2-35.2

2N2857 (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage**

(lc

Collector-Base Breakdown Voltage

(I C

BVCEO

15

-

-

Vde

BVCBO

30

-

-

Vde

BVEBO

2.5

-

-

Vde

ICBO

-

-

0.01

!lAde

fT

1000

-

1900

MHz

0.7

1.0

pF

= 3.0 mAde, IB = 0)
= 1.0 !lAde, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)
Collector Cutoff Current

(VCB

= 15 Vde, IE = 0)

ON CHARACTERISTICS
DC Current Gain

(lC

= 3.0 mAde, VCE = 1.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC

CD

= 5.0 mAde, VCE = 6.0 Vde, f = 100 MHz)

Collector-Base Capacitance

(VCB

Ceb

Small-Signal Current Gain

(lC

hfe

50

-

220

-

rb'C e

4.0

-

15

ps

-

5.8

-

-

3.7

4.5

-

11

12.5

-

19

30

-

-

= 2.0 mAde, VeE = 6.0 Vde, f = 1.0 kHz)

Collector-Base Time Constant

(IE

-

= 10 Vde, IE = 0, f = 0.1 to 1.0 MHz)

= 2.0 mAde, VCB = 6.0 Vde, f = 31.9 MHz)
NF

Noise Figure (Figure 1)

= 0.1 mAde, VCE = 1.0 Vde, RS = 50 ohms, f = 450 MHz) ~
(lC = 1.5 mAde, VCE = 6.0 Vde, RS = 50ohms, f = 450 MHz)
(IE

dB

FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 1)

dB

G pe

(IE = 0.1 mAde, VCE = 1.0 Vde, f = 450 MHz) ~
(lC = 1.5 mAde, VCE = 6.0 Vde, f= 450 MHz)
Power Output (Figure 2)
(IE = 12 mAde, VCB = 10 Vde, f = 500 MHz)

Pout

*Indicates JEDEC Registered Data.
**Motorola quarantees this data in addition to JE DEC Registered Data.
fT is defined as the frequency at which Ihfel extrapolates to unity_
@) Micro-Power Specifications.


'"
u:

OS
w

!Jl

(5
2!

I-- v'CE = ~.O Jde I
I-

IC = 1.0 mAde
RS = Optimum

7.0 I-

in
:;;

(~250 Ohms@105and 200 MHZ),
~

100 Ohms@450 MHz

:x:

300

..,2!

200

8

w

6.0

600
500
400

«

In

5.0

r f::
~ ~2.9d8

........

i'-- t-- 3.0 dB

~

'\

=R

o
60

l"-

'"

I
50

I'""--. ~ ~t--.

:::>

2.0
1.0

r- I--

VCE = 6.0Vdc
f = 105 MHz

100 F90
80 f;;;: i-4.0dB
70
~
.,; 60
5dB
'" 50
1
40

..,w

- l - I-

u: 3.0
2!

.......

t-

F- t-.... r---;:;

j.5~B

~

4.0

---

.--

70

200

100

300

400

30
0.5

500

0.7

1.0

f. FREQUENCY (MHz)

2.0

FIGURE 5 - NOISE FIGURE versus SOURCE
RESISTANCE AND COLLECTOR CURRENT
600
500 Iin
:;;

:x:

300

8

..,zw

200

~

1--

'---..

I- ~dB

r---.....

.......

........

P
l - ~L~B

100

it

50
40

~

...........

I.......

'\

)

In

i3

VCE - 6.0 Vde
f =200MHz

r-...

'"
i'-

«

'"w
..,
'":::>

30
0.5

"I"
r--.

4.0 dB

~

I-

1\

V'

l-

70 I--

3.0

IC. COLLECTOR CURRENT (mAde)

0.7

--

~

m
1.0

2.0

3.0

Ic. COLLECTOR CURRENT (mAde)

2-354

J)

I-5.0

7.0

10

5.0

7.0

10

2N2857 (continued)

FIGURE 6 - CURRENT-GAINBANDWIDTH PRODUCT

FIGURE 7 - NOISE FIGURE AND POWER GAIN
versus COLLECTOR CURRENT

~ 2. 0

0

G

"

~

'"

~

1.8
1.6

.....-

1.4

V

""

~ 1. 2

8. Or---

r~

~

/

;1i
V
~ 1.0 /
,/
;;'

i
c:

i3

.c:

25

r-V~E : 16.oUe

S

RS

~

~
w

~

1\

\

~

\

08

6. 0

"

'"u:w
4. 0

VNF

5.0

2. 0

0.6
0.4
1.0

2.0

3.0

5.0

10

7.0

20

o

0
0.1

30 40

0.2

0.5

10
9.0

~

1
18 f- VCE" 6.0 Vde
IC "1.5 mAde
16

.5

14

V
/'

'-'

z

"'"'"

12

6.0

;;

4.0

V

-----I--'

o
100

150

'E

8.0

w

7.0

.5

V

z

'"

>>-

"
'">-'"

1i'
>-

9i'V

/V

V

t-

300

400

500

6.0

600

.5
w

'-'

z
>>-

50
45

800

g

~

2.0

-

1.0

100

VI-'

'"

35

'"'"

30

"'"
w

25

'"z
;:::

20

>~

15

/

~

'"
~
~

.£

10

/

V

'"""

"
V f-"

ibf,

I-150

200

~

5.0

'E
.5

4.5

500

600

800

1000

f- VCE "6.0 Vde
IC "1.5 mAde

>-

"'"
c

3.0

~

2.0

~

1.5

i

'"

2.5

ffi

1.0

c:

0.5

~

/
jb re

400

500 600

800

1000

f. FREQUENCY (MHz)

100

---150

200

k-'"
V
-9re
300

400

f, FREQUENCY (MHz)

2-355

V

./

o
300

400

~ 3.5

-

i'..
200

300

~ 4.0

i'..

150

~

FIGURE 11 -REVERSE TRANSFER
ADMITTANCE versus FREQUENCY

--

5.0
100

90'

V I-"'"

f, FREQUENCY MHz)

~de

9f,

V

V[--

V

4.0
3.0

1000

VCE" 6.0
IC "1.5 mAde

40

.1

V

5.0

FIGURE 10 - FORWARD TRANSFER
ADMITTANCE versus FREQUENCY

'E

10

~de

f, FREQUENCY (MHz)

~

7.0

VCE" 6.0
IC "1.5 mAde

+Jb

o
200

5.0

2.0

'-'

./

~

2.0

.....- ~

/

/

8.0

>-

1i'

'>="

+ibi'V--

10

1.0

FIGURE 9 - OUTPUT ADMITTANCE
versus FREQUENCY

20

w

0.7

IC, COLLECTOR CURRENT (mAde)

FIGURE 8 - INPUT ADMITTANCE
versus FREQUENCY

'">->-

I-'"
~I-"'"

./

~

20

<:

IC, COLLECTOR CURRENT (mAde)

'E

G~er--

50 Ohms

f" 450 MHz

500

600

800

1000

2N2857 (continued)

FIGURE 12 - S11. INPUT REFLECTION COEFFICIENT

FIGURE 13 - S22. OUTPUT REFLECTION COEFFICIENT

FIGURE 14 - S12. REVERSE TRANSMISSION COEFFICIENT

FIGURE 15 - S21. FORWARD TRANSMISSION COEFFICIENT

2-356

2N2857 (continued)

FIGURE 16 - S11.INPUT REFLECTION COEFFICIENT AND S22. OUTPUT REFLECTION COEFFICIENT

2-357

2N2894 (SILICON)

PNP silicon annular transistor designed for lowlevel, high-speed switching applications.
CASE 22
(TO-18)

MAXIMUM RATINGS

ITA

=

25°C unless otherwise noted I

Rating

Symbol

Value

Unit

VCEO•

12

Vdc

Collector-Base Voltage

VCB

12

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

200

mAdc

Collector-Emitter Voltage

*

Collector Current-Continuous
Total Device Dissipation @ TA

= 25°C

PD

360

mW

2.06

mW/oC

1200
6.85

mW
mW/oC

-65 to +200

°c

Derate above 25°C
Total Device Dissipation @ TC

= 25°C

PD

Derate above 25°C
Operating and storage Junction
Temperature Range

T J , Tstg

*Applieable from 0.01 to 10 mAde.

FIGURE 1- SWITCHING TIME TEST CIRCUIT
-2V

Vss

620
1000

' - - - O Vout TO SAMPLING SCOPE
O.l,uF

2kO

Vin 0 - - -...-------,1 t - - -....- - " " ' ' ' v - - - t - - f

1000

2-358

lin:::=" 100 kO
tr ~ 1 ns

2N2894

(continued)

ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(IC = 10 mAde,
= 0)

Is

BVCEO(sus)

Collector-Emitter Breakdown Voltage
(IC = 10 "Ade, VBE

BV CES

= 0)

Collector-Base Breakdown Voltage
(IC = 10 "Ade, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)

BV EBO

Collector- Cutoff Current
(VCE = 6 Vde, VBE = 0)
Collector-Cutoff Current
(VCB = 6 Vde, IE = 0, TA

ICES
ICBO

= 125°C)

Base Current
(VeE = 6 Vde, VBE = 0)

IB

12

-

12

-

12

-

4.0

-

-

Vde
Vde
Vde
Vde
nAde

80
MAde

10
nAde
80

ON CHARACTERISTICS
DC Current Gain It)
(IC = 10 mAde, VCE = O. 3 Vde)
(IC = 30 mAde, VCE
(IC = 30 mAde, VCE
(Ie

= 100

= 0.5
= 0.5

hFE

Vde)
Vde, T A

= _55°C)

25

Collector-Emitter Saturation Voltage(1)
(IC = 10 mAde, Ia = I mAde)
(IC = 30 mAde, IB = 3 mAde)

VCE(sat)

Is = 10 mAde)

Base-Emitter Saturation Voltag (1)
(IC = 10 mAde, Ia = I mAde)

(IC = 30 mAde, IB

150

17

mAde, VCE = 1.0 Vde)

(IC = 100 mAde,

30
40

VBE(sat)

= 3 mAde)

-

-

Vde
0.15

-

0.2

-

0.5
Vde

0.78
0.85

(IC = 100 mAde, IB = 10 mAde)

-

0.98
1.2

-

1.7

400

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie = 30 mAde, VCE = 10 Vdc, f '" 100 MHz)

IT

Output Capacitance
(VCB = 5 Vde, IE = 0, 1= 140 kHz)

Cob

-

6.0

Input Capacitance
(V BE = -0.5 Vde, IC = 0, 1= 140 kHz)

Cib

-

6.0

Turn-On Time, Figure 1
(Vce = 2 Vde, VBE(o!!) = 3 Vde,

ton

-

60

IC = 30 mAde; IBI = 1. 5 mAde)
Turn-Off Time, Figure 1
(VCC = 2 Vde, IC = 30 mAde,

pF
pF
ns

ns

toff

-

Ial = 1s2 = 1. 5 mAde)
(11 Pulse Test: Pulse Width = 300 J.LS; Duty Cycle = 1%

2-359

MHz

90

2N2895 (SILICON)
2N2896
2N2897

NPN silicon annular transistors designed for smallsignal amplifier and general purpose switching applications.

CASE 22
(TO·IS)

MAXIMUM RATINGS

Rating

Symbol

2N2895 2N2896 2N2897

Unit

Collector-Emitter Voltage

VCEO

65

90

45

Vdc

Collector-Emitter Voltage

VCER

80

140

60

Vdc

Collector-Base Voltage

VCB

120

140

60

Vdc

Emitter-Base Voltage

VEB

Collector Current

IC

Total Device Dissipation @ T A = 25°C

PD

Derate above 25°C
Total Device Dissipation @ TC = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

PD

T J , T stg

2-360

...
...
...
...

.

...

-

7.0

...

Vdc

1.0

....

Adc

0.5

...

Watt

2.86
1.8
10.3
-65 to +200 -

...

...

...

mW;oC
Watts
mW;oC

°c

2N2895, 2N2896, 2N2897

(Continued)

ELECTRICAL CHARACTERISTICS

(T.

= 2S"C unless otherwise noted)

Characteristic

Symbol

Min

Max

65
90
45

-

80
140
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage III
(IC = 100 mAdc, IB = 0)

Collector-Emitter Breakdown Voltage
(IC = 100 mAdc, RBE = 10 ohms)

2N2895
2N2896
2N2897

(11

Collector-Base Breakdown Voltage
(IC = 0.1 mAdc, IE = 0)

2N2895
2N2896
2N2897
2N2895
2N2896
2N2897

Emitter-Base Breakdown Voltage
(~= 0.1 mAdc, IC = 0)
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)

(VCB = 60 Vdc, IE = 0, T A = +150"C)
(VCB = 90 Vde,

~

= 0)

(YCB = 90 Vdc, ~ = 0, TA = +150"C)
Emitter Cutoff Current
(V BE =5.0Vdc, IC =0)

BVCEO(sus)

BVCER

BVCBO

BV EBO

2N2895
2N2896
2N2897

ICBO

Vdc

120
140
60
7.0

-

Vdc
/'Adc

-

0.002
0.01
0.05

2N2895
2N2897
2N2896

-

0.01

2N2896

-

10

-

0.002
0.01
0.05

10

-

lEBO

Vdc

-

-

2N2895
2N2896
2N2897

Vdc

2.0
50

/'Ade

ON CHARACTERISTICS
DC Current Gain
= 10 /'Adc, VCE = 10 Vde)

(Ie

2N2895

hFE

(IC = 100 /'Ade, VCE = 10 Vde)

2N2895

20

(IC = 1. 0 mAdc, VCE = 10 Vde)

2N2896, 2N2897

35

(IC = 10 mAdc, VCE = 10 Vdc)
(IC = 10 mAde, VCE = 10 Vdc, TA = -55"C)
(IC = 150 mAde, VCE = 10 Vde)'111

(IC = 500 mAde, VCE = 10 Vdc) II)
Collector-Emitter Saturation Voltage 111
(IC = 150 mAde, ~ = 15 mAdc)
Base-Emitter Saturation Voltage III
(IC = 150 mAdc, IB = 15 mAdc)

-

-

2N2895

35

2N2895, 2N2896

20

-

2N2895
2N2896
2N2897

40
60
50

120
200
200

2N2895

25

-

-

0.6
1.0

120
100

-

-

15

-

80

50
50

200
275

-

8.0

2N2895, 2N2896
2N2897
2N2895, 2N2896
2N2897

VCE(sat)

VBE(sat)

-

-

Vdc

Vdc
1.2
1.3

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAdc, VCE = 10 Vdc, f = 20 MHz)

2N2895, 2N2896
2N2897

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Cob

Input Capacitance
(V BE = O. 5 Vdc, IC = 0, f = 100 kHz)

C ib

Small-Signal Current Gain
(IC = 5.0 mAde, VCE = 5.0 Vde, f = 1. 0 kHz)
Noise Figure
(IC = 0.3 mAde, VCE = 10 Vde, RS = 500 ohms,

2N2895
2N2896, 2N2897

NF
2N2895

f = 1. 0 kHz, BW = 15 kHz)
(11

hfe

Pulse Test: Pulse Width:; 300 1./8, Duty Cycle:; 1. 8%.

2-361

MHz

pF
pF

dB

2N2903 (SILICON)
2N2903A
Dual NPN silicon transistors designed for differential
amplifie r applications.

Case 654-04
TO-78

PINS 4 AND 8 OMITTED

Pin Connections, Bottom View
All leads Electrically Isolated from Case
MAXIMUM RATINGS

(each side)

Rating

Symbol

Collector-Emitter Voltage

Value

Unit

30

Vdc

V CEO

Collector-Base Voltage

V CB

60

Vdc

Emitter-Base Voltage

V EB

7.0

Vdc

IC

50

mAdc

Collector Current
Operating and Storage Junction
Temperature Range

T J , T stg

One
Side
Power Dissipation@TA "25" C

PD

Derate above 25' C
Power Dissipation @TC " 25· C

PD

T C " 100·C

Derate above 25°C

ELECTRICAL CHARACTERISTICS

(each side) (T,

= 25

°c

-65 to +200

Both
Sides

200

300

mW

1. 14

1. 71

mwj'e

600

1200

350

700

mW

3.43

6.86

mWj'C

mW

c ""'" ,'h"wi" ,otod)

Symbol

Characteristic

Min

Max

30

-

60

-

a

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sust'-a.ining Voltage (1)
(Ie" 10 mAdc. IB " 0)

BV CEO(sus)

Collector-Base Breakdown Voltage
(IC " 10 }lAdc. IE " 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE" O. I }lAdc. IC ~ 0)

BV EBO

Collector Cutoff Current
(V CB " 50 Vdc. IE ~ 0)
(V CB

~

50 Vdc. IE

~

ICBO

O. TA

~

150'C)

Emitter Cutoff Current
(V BE " 5. a Vdc, IC " 0)
(11

Pulse Test: Pulse Width

lEBO

<

300 fiS, Duty Cycle

<

2.

0"0.

2-362

Vdc

Vdc

7.

Vdc

fiAdc

-

0.01

,

15

-

O. 01

}lAdc

2N2903, 2N2903A

(continued)

ELECTRICAL CHARACTERISTICS

(each side) (T, . 25 e ",.,. oth",,,,. "otod)

Characteristic

Symbol

Min

Max

Unit

ON CHARACTERISTICS
DC Current Gain
(I C = 10 IlAde, V CE = 5.0 Vdc)

hFE

(IC = 10 /lAde, V CE = 5.0 Vdc, T A = -55' C)
(IC = 1. 0 mAde, VCE = 5.0 Vdc)
(IC = 1. 0 mAde. V CE = 5.0 Vdc, T A = _55' C)
Collector-Emitter Saturation Voltage
(IC = 5.0 mAdc, IB = O. 5 mAdc)

V CE(sat)

Base-Emitter Saturation Voltage
(IC = 5.0 mAde. IB = 0.5 mAde)

VBE(sat)

25

-

125

625

60

-

-

1.0

-

0.9

60

-

-

8.0

-

10

1.0

-

-

6.0

150

600

5.0

30

20

30

-

5.0

-

0.2

-

7.0

0.8
0.9

1.0
1.0

-

10
5.0

60

-

Vdc
Vdc

SMALL -SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 5.0 mAde, VCE = 10 Vde. f = ~O MHz)

fT

Output Capacitance
(V CB = 10 Vdc, IE = 0, f = 140 kHz)

Cob

Inp"lt Capacitance
(V BE = O. 5 Vdc, IC = 0, f = 140 kHz)

Cib

Input Impedance
(IC = 1. 0 mAde, V CE = 5.0 Vdc, f = 1. 0 kHz)

h.
Ie

Voltage Feedback Ratio
(IC = 1. 0 mAdc, VCE = 5.0 Vde, f = 1. 0 kHz)

h

Small-Signal Current Gain
(IC = 1. 0 mAde. V CE = 5.0 Vdc, f = 1. 0 kHz)

hfe

Output Admittance
(IC = 1. 0 mAde, V CE = 5.0 Vde, f = 1. 0 kHz)

h

Input Impedance
(IC = 1. 0 mAde, V CB = 5.0 Vde, f = 1. 0 kHz)

hib

Voltage Feedback Ratio
(I C = 1. 0 mAde. V CB = 5.0 Vde, f = 1. 0 kHz)

h rb

Output Admittance
(IC = 1. 0 mAde, VCB = 5.0 Vde, f = 1. 0 kHz)

hob

Noise Figure
(IC = 10 /lAdc, V CE = 5.0 Vdc, RS = 10 k ohms, f = 1. 0 kHz)

NF

re

oe

MHz
pF

pF
kohm
X 10- 4

/lmhos

ohms

X 10- 4

/lmho
dB

MATCHING CHARACTERISTICS
DC Current Gain Ratio**
(IC = 1. 0 mAde. V CE = 5.0 Vdc)
Base Voltage Differential
(IC = 10 /lAde, V CE = 5.0 Vde)

2N2903
2N2903A
2N2903
2N2903A

Base Voltage Differential Gradient
(IC =10 IlAdc, VCE = 5.0 Vdc, T A = -55' C to +125'C)
2N2903
2N2903A
** Lowest hFE reading is taken as hFEI for this ratio.

2-363

hFE/hFE2*

IV BEI- V Bd

mVde

/lV/'C

,,(V BEI- V BE2)
6.TA

-

20
10

2N2904, A thru 2N2907, A(SILICON)
2N3485,A, 2N3486,A
PNP SILICON ANNULAR HERMETIC TRANSISTORS
· .. designed for high-speed switching circuits, DC to VHF amplifier
applications and complementary circuitry.
•

High DC Current Gain Specified - 0.1 to 500 mAdc

•

High Current-Gain-Bandwidth Product tr = 200 MHz (Min) @ IC = 50 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc

•

2N2904,A thru 2N2907,A Complement to NPN 2N2218,A,
2N2219,A, 2N2221,A, 2N2222,A

•

JAN/JTX Available, Except 2N3485 and 2N3486.

PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

!m
Ir:~--L
llo.",

CASE 31

2N;~:'A

SELECTOR GUIDE

T T
L
~~
U.U16-1r

(1)

2N2905.A

.Characteristic

&8ll)

o:m

~/AO.028
A.~

Pm 1. Emitll!r
2.BallG

Device
Type

3.Colleo;tor

BVCEO
Ic=10mAde
Volts

Ic=I.0mAde

hFE
Ic a l50mAdc

IC =500 mAdc

Min

Min

Min

40

25

20

I
I

50

40
100

2N2904
2N2905
2N2906
2N2907
2N3485
2N3486
2N2904A
2N2905A
2N2906A
2N2907A
2N3485A
2N3486A

60

25

30

~

Package
TO-5

li1

50

30

25
50

40
100

30

40
100

40
100

50

40
100

40
100

40
SO

TO-18

0.019 iliA

40
100

40
100

40
50

TO-46

p",1.
2 Ba~
3 Collectlll

20
20
40

TO-18

""

TO-46

0.209

I

1!1]!I OIA

40
100

imb
OIA

II

r

\;--

I

TO-5
a,Olll

We'lhl

'I ~

I

CASE 22 (1)
TO·18

.l

2N2906,A
2N2907,A

O.050-i :_

~ OJI!"..

9~_~0178

-MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Ba .. Voltage

Emitter-Base Voltage
Collector Current -.Continuous

Symbol

Non-A Suffix

I

A-8uffix

Unit

VeEO

40

I

60

Vdc

VeB

60

Vdc

VEB

5.0

Vdc

T ot81 Device Dissipation
@TA=250e
Derate above 2Soe

Po

Total Device Dissipation
@Te=2Soe
Derate above 250 e

Po

CASE 26
TO·46

600

400

400

mW

3.43

2.2B

2.28

mW/oe

3.0

1.8

2.0

Watts

10.3

11.43

mW/oe

17.2
TJ,Tstg

OO"MAI

mAde

600

Ie

2N2904,A 2N2906,A 2N34B5,A
2N2905,A 2N2B07,A 2N3486,A

Operating and Storage Junction
Temperature Range

1.15 gram

T

O.SOO
MIN

Em",,,

~

-65 to +200

°c

2N3485.A
2N3486,A

I

L
"I,
I

OIA

-~
0085

OSOO
MIN

1

The respective JEOEC registered
dimensions and nOlesapply

2-364

OJ"

.Q.lli.OIA
0019

2N2904,A thru 2N2907,A/2N3485,A, 2N3486,A (continued)
-ELECTRICAL CHARACTERISTICS (T A

= 250 unless othOfWise noted)

Symbol

Ch.I'lICteristic

Min

Typ

MIIx

40
60

-

-

Vde

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(lC = 10 mAde, IB = 0)

Vde

BVCEO

Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)

BVCBO

60

-

Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)

BVEBO

5_0

-

-

Vde

ICEX

-

-

50

nAde

-

-

0_020
0_010

-

20
10

Non-A Suffix
A-Suffix

Collector Cutoff Current
(VCE = 30 Vde, VBE = 0_5 Vde)
Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)
(VCB

= 50 Vde,

IE

= 0, TA = 1500 C)

Non-A Suffix
A-Suffix

ease Cutoff Current
(VCE

"Ade

ICBO
Non-A Suffix
A-Suffix

IB

-

-

50

nAde

= 30 Vde, VBE = 0_5 Vde)

ON CHARACTERISTICS
DC Current Gain
(lC = 0.1 mAde, VCE

(lC

(lC

(lC
(lC

= 1.0 mAde, VCE = 10 Vde)

= 10 mAde, VCE = 10 Vde)

= 150 mAde, VCE = 10 Vdc)!ll
= 500 mAde, VCE = 10 Vde)(l)

2N2904,2N2906,2N3485
2N2905,2N2907,2N3486
2N2904A,2N2906A,2N3485A
2N2905A,2N2907 A,2N3486A

20
35
40
75

-

-

2N2904,2N2906,2N3485
2N2905,2N2907,2N3486
2N2904A,2N2906A,2N3485A
2N2905A,2N2907A,2N3486A

25
50

-

-

40

-

100

-

-

2N2904,2N 2906,2N3485
2N2905,2N2907,2N3486
2N2904A,2N2906A,2N3485A
2N2905A,2N2907 A,2N3486A

35
75
40
100

-

-

2N2904,A,2N2906,A,2N3485,A
2N2905,A,2N2907,A,2N3486,A

40
100

-

120

300

2N2904,2N2906,2N3485
2N2905,2N2907,2N3486
2N2904A,2N2906A,2N3485A
2N2905A,2N2907A.2N3486A

20
30

-

0_4

-

-

-

-

1_3
2_6

fT

200

-

-

MHz

Cob

-

-

8_0

pF

Cib

-

-

30

pF

ton

-

26

45

ns

td

-

6_0

10

ns

tr

40

ns

toff

-

20
70

100

ns

Is

-

50

80

ns

tf

-

20

30

ns

Collector-Emitter Saturation Voltage( 1)
(lC = 150 mAde, IB = 15 mAde)
(lC

-

hFE

= 10 Vde)

40
50
VCE(satl

= 500 mAde, IB = 50 mAde)

Base-Emitter Saturation Voltage

VBE(satl

= 1"50 mAde, IB = 15 mAde)(l)
(lC = 500 mAde, IB = 50 mAde)

(lc

-

-

-

-

-

-

-

Vde

-

1_6
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produet(2)
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE

= 0, f = 100 kHz)

Input Capacitance
(VSE = 2_0 Vde, IC

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS

Turn-On Time
Delay Time

RiseTime
Turn-Off Time

Storage Time

(VCC = 30 Vde, IC = 150 mAde,
IBl = 15 mAde)
(Figure 15a)

(VCC = 6_0 Vde, IC = 150 mAde,
181 = IB2 = 15 mAde)
(Figure 15b)

Fall Time
-Indicates JEDEC Registered Data.
CUPulse Test: Pulse Width S 300 loll, Duty Cycle s: 2.0%.
(2)fT is defined as the frequ-;ncv at which Ihfel .,ctrapolates to unity.

2-365

2N2904,A thru 2N2907,A/2N3485,A, 2N3486,A (continued)

FIGURE 1 - NORMALIZED DC CURRENT GAIN

2.0

- --.-

...z

to

w

'"~
'"
'"
Q

- --- - -- - -

-

;;:
1.0

~

0.7

ffi
N

:::;

<

~

f---

'"
Z
Q

-- - - '-

-l"-

+25°C

--

.......

-

--- -- - -- - -

--- .- - --

0.5

:IE

~

i-- I -

r--

+IWC

-f-

z

"

"

1-- _

'"

0.2
0.5

0.7

2.0

1.0

3.0

I\,

7.0

10

~

'Ii' ,

r---

55°C .......

\.

.... ...

"

'"
....

\

so

30

20

"

~

--VeE~IOV

5.0

....

.......

---- VeE ~ 1.0V

0.3

i'

100

70

200

300

500

Ie. COLLECTOR CURRENT (mAl
FIGURE 2 - NORMALIZED COLLECTOR SATURATION REGION

1.0

~

\

in

!:l
~

0.8

~

~

j;

\
~

0.6

I;

0.4

~

0.2

This graph shows the effect of base current on col·
lector current. po (current gain at edge of saturation) is
the current gain of the transistor at 1 volt. and p. (forced
gain) is the ratio of Ie/I" in a circuit.
EXAMPLE: For type 2N290S, estimate a base cur·
rent (I,,) to insure saturation at a temperature of 2S"C
and a collector current of 150 mAo
Observe that at Ie = ISO mA an overdrive factor of
at least 3 is required to drive the transistor well into
the saturation region. From Figure I, it is seen that
h.. @ 1 volt is approximately 0.60 of h.. @ 10 volts.
Using the guaranteed minimum of 100 @ 150 mA and
10 V, po = 60 and substituting values in the overdrive
equation, we find:

TJ ~25°C

~ ......

\

le~300mA

,\. '-...::I"_ r---!,.SO mA
\ ['.....
SOmA

-

\

I---

IOj_

3=~

1..

ISO/I"

= 7.5 mA

Ipol P~. OVERDRIVE FACTOR
FIGURE 3 - "ON" VOLTAGES

FIGURE 4 - TEMPERATURE COEFFICIENTS

2.0

II
1=12Jo!
J1 1

T

1.6

i

I.!
V"ISATlmm' =~ ~

1.2

j;

i.:

V'E@VeE
0.4

15!;l

0.5

1.0

2.0

5.0

10

20

!!i

vlL

SO

100

200

I

~e FJR Je~(~AT~
n

I I II I

55:C TO +25°C

+25°C TO + moc

~~ FO~ J"II III

-1.0

II

8

I III.LU

~f-

...

+25°C TO +175°C
"I

-2.0

l;'~

VeE ISATI @ lell, - 10

o

1.0

+1.0

>
§

~I

0.8

?

,III I III I

P

~

~

+2.0

500

Ie. COLLECTOR CURRENT (mAl

-nI01+15~t

-3.0
0.5

1.0

2.0

5.0

10

20

50

Ie. COLLECTOR CURRENT (mAl

2-366

100

200

500

2N2904,A thru 2N2907,A/2N3485,A, 2N3486,A(continued)

SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE
VCE = 10 V. T A = 2SoC
FIGURE 5 - FREQUENCY EFFECTS

FIGURE 6 - SOURCE RESISTANCE EFFECTS
10

6.0

11111

II 1111

\ Ie ~ 10 p.A

f~ l.IikHz

8.0

I-N-+-t1--tt++t+++I-tt-ttlH-t-t-t-+t+t-ttl

4.0

i

m

Ic~IO""

tt1jttn1tttt:1=t!~RS~~i4~.1~kk!llt~:111111fH

3.0

2.0 p...:1-....--I_-If-+++H+H-+-+-+

..... -

1\

\

0::

~~:: ~:~ ~

V

4.0

2.0

Ie ~ 100 p.A

I-H-If-+++H+H-+-+-+ Rs ~ 1.2 kll

!-'V

lmA

~

+-++++tIti

0~~~~~~~~~11~"~1"~1~~~~
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50 100
f. FREQUENCY (kHz)
VCE

o

0.1

V

~

"I'-.I

,\[\

111111

1.0 I-H-+=f1~+t++++I+I+l-f+-+-+--+-+++I+H

I

'\

r-..\

\Ii

II

100pA

I\~

~

iii

V
I

'b

1\

6.0

I

0.2

0.5

1.0

2.0

5.0

10

50 100

20

Rs. SOURCE RESISTANCE (k OHMS)

h PARAMETERS
= 10 Vdc. f = 1.0 kHz. T A = 25°C

This group of graphs illustrates the relationship between hfe and other "h" parameters
for this series of transistors. To obtain these curves, a high-gain and a low'gain unit were
selectad and the same units were used to develop the correspondinglv numberad curves
on each graph.
FIGURE 7 - INPUT IMPEDANCE

FIGURE B - VOLTAGE FEEDBACK RATIO

20

20

"\.

......
10

~

'"
0

5.0

,

""

~
z:

~
l!

2.0

5

1.0

!Ii:
.J

~

i,.'"

"r-...

'\

5.0

'\.'

liil

'\

~

.......

2

l"\

10

~

;5

is!
..1

0.5

r....
0.2

1' .....

2.0

I"\.

.....-

2

.......
1.0

~

~

.........

I'

0.1
0.1

0.2

0.5

1.0

5.0

2.0

10

0.5

20

0.1

0.5

0.2

Ie. COLLECTOR CURRENT (mAdel

1.0

2.0

5.0

20

10

Ie. COLLECTOR CURRENT (mAde)

FIGURE 9 - CURRENT GAIN

FIGURE 10 - OUTPUT ADMITTANCE

500

300

/
z

:cto

200

200

I-

~

'"
'"
::>
'"
.....
<
z

to

~<

~~~

100

I
~

I-

/

100

70

~

2

o

50

V
20

0.2

0.5

5.0
1.0

2.0

5.0

10

20

Ie. COLLECTOR CURRENT (mAde)

0.1

V

1/

10

0.1

./
./2

j

30

0.2

0.5

1.0

2.0

Ie. COLLECTOR CURRENT (mAde)

2-367

V

,

50

~

'"'
'"

:i

-I--

I--

5.0

10

20

2N2904,A thru 2N2907,A/2N3485,A, 2N3486,A (continued)

FIGURE 11 - TURN ON TIME

500

II II

300

t, ,
100

!

70

20

10

",

..

I

.

d

- -

~; ,......

-

i'
5.0 7.0

1/
...... I'OT. TOTAL CONTROL CHARGE

~ 1000

...
"
,
" ...

30

Vee~30V

2000

,

'" ....

50

....,..

i"'"

3000

----·VCC = 30 v. VBElofil = 2.0 V- - VCC = 10 v. VBElofil = 0 V l -

200

:;

FIGURE 12 - CHARGE DATA

5000

jill J

II

10

20

30
50 70 100
Ie. COLLECTOR CURRENT ImAl

200

,

300

- ~'

300

L

500

200

OA, ACTIVE REGION CHARGE

I \I

100
5.0 7.0. 10

500

20

FIGURE 13 - STORAGE TIME

500
300

I

II

I

~

~

~I;;

500

200

~

30
20

10

'"

100

.:i

50

~

~- ..
ml.,"

50 lello

:-::-

..t--..,

...

1-1"1

~:e(:, -

,

20

30
50 70 100
Ie. COLLECTOR CURRENT ImAl

200

300

"

70

10

500

lel l,

0

. ..

10

-

......

5.0 7.0

10

20

30
50 70 100
Ie, COLLECTOR CURRENT (mAl

200

300

500

FIGURE 15b - STORAGE AND FALL
TIME TEST CIRCUIT

-30

+15V

INPUT
Zo=50n
PRF = ISO PPS
RISE TIME" 2.0 14

200

1.0 k

o_~

_

~,

lel l,

FIGURE 15. - DELAY AND RISE
TIME TEST CIRCUIT

INPUT
lo=50n
PRF = ISO PPS
RISE TIME" 2.0 ns

I

1,,~112

20

21

10

500

I I

30

III
5.0 7.0

300

Vee~30V

"

~
;::::

70

.J

I

,

300

IBI = IB2

liiiloo
>-

200

FIGURE 14 - FALL TIME

III

1,.-1.-:111"

200

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

TO OSCI LLOSCOPE
RISE TIME" 5.0 ns
50

1.0 k

1.0 k

50

-J200nsL

2-368

-6.0

37

TO OSCI LLOSCOPE
RISE TIME" 5.0 ns
IN916

2N2904,A thru 2N2907,A/2N3485,A, 2N3486,A(continued)

FIGURE 17 - CAPACITANCES

FIGURE 16 - CURRENT-GAIN-BANDWIDTH PRODUCT
500

...

:c

300

t;

200

~

-

V~E='2JJ

r-l--

'"~

,/

::

I:;

100

z:

~

70

I

50

IB

30

1i!i

~

...... 1-"

20

-r-

TJ = 25'C

......

r- -t--r-

~

!i
~

........

C"

........

10
8.0

§ 6.0
1/

20

Cob

u

/

I-

.....

4.0

......

V

,.f

10

I--

.... _f-

TJ = 250 C

:0

40

V

2.0

0.1

O.L 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

20

30 50

0.1

0.2

Ie, COUECTOR CURRENT ImAde)

0.5

1.0

20

5.0

10

20

40

REVERSE BIAS IVOLTS)

FIGURE 18 - ACTIVE REGION SAFE OPERATING AREAS
2.0

...

~
....

0.7
0.5

.

0.3

ill

'"'"=>
'"0

~

r

..

TO 1S

.....
10",,,,-

This graph shows the maximum IC-VCE limits of the device
both from the standpoint of thermal dissipation (at 2So C case
temperature), and secondary breakdown. For case temperatures
other than 2So C, the thermal dissipation curve must be modified
in accordance with the derating factor in the Maximum Ratings
table.
To aV!)id possible device failure, the collector load line must
fall below the limits indicated by the applicable curve. Thus, for
cartain operating conditions the device is thermally limited, and
for others it is limited by secondary breakdown.
For pulse applications, the maximum IC-VCE product indicated
by the de thermal limits can be exceeded. Pulse thermal limits
may be calculated by using the transient thermal resistance curve
of Figure 19.

OO.c

TO·5

:,.

· """
r-T046

0.2
0.1

,

'"

tOms,

1.0

.

....;:....
TJ = 2000 C

F= --- Second Breakdown Limited

8 0.01 ~~ § 0.05

~

de

D...

Pul" Duty Cycle .. 10%
.... -

Bonding Wire Limited

I- - - - - Thermal limitations @TC=250 C
Applicable For Rated BVCEO
0.03 r
0.02
2.0
3.0
5.0
7.0
10

20

30

40

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 19 - THERMAL RESPONSE

....
ill

in
2

0.5

..:

......
"''''
",2

~~ 0.2

~fficc
"'-'
0":
u..

TO·5 PACKAG~
0.1

"''''
~~ 0.05
~~

'"o
2

~

0.02

~

1..&"

........

.,.. 1::::::::

-

~ f-"
9JC(t) = r(t)9JC

T046
TO·18

"t
0.01
10--4

10-1

t, TIME I,)

2-369

2N2912 (GERMANIUM)
PNP high-speed, high-frequency power transistor
especially designed for switching and power converter
circuits operating from low-voltage power sources such
as solar cells, thermo-electric generators, sea cells,
fuel cells and 1. 5 volt batteries.

CASE 8

MAXIMUM RATINGS

Rating

Symbol

Rating

Unit

vCEO

5.0

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

1.5

Vdc

Collector Current-Continuous

IC

25

Adc

Base Current-Continuous

IB

3.0

Adc

Total Device Dissipation @ TC = 35°C
Derate above 35°C

PD

75
1.0

Watts
wjOc

T J , Tstg

-65 to +110

°c

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

Lead temperature 1/16" from case for 10 seconds

= 240·C

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

IJJC

1.0

°cjw

Thermal Resistance, Case to Ambient

IJ CA

30

°Cjw

FIGURE l-ACTIVE-REGION SAFE OPERATING AREA
25

1

1

20

r

......

..---- J,..-dc
....".. 1---'-5 ms

, ----

1

15

".

The Safe Operating Area Curves indicate Ic - VCE limits below which
the device will not enter secondary
breakdown. Collector load lines for
specific circuits must fall within the
applicable Safe Area to avoid caus·
ing a catastrophic failure. These
curves are applicable for all case
temperatures, however, the nominal _
power-temperature derating is 75
watts minus 1.0 watt for each °C
when Tc ~ 35°C.

I

1---'-1 ms or less

10

5.0
l£-500 rnA

2.0

4.0

6.0

/"1OmA
8.0

10

12

14

VCE, COLLECTOR-EMITIER VOLTAGE (VOLTS)

2-370

16

18

20

2N2912

(continued)

ELECTRICAL CHARACTERISTICS

Characteristic

(Tc = 2S"C unle•• otherwise noted)

Symbol

Fig. No.

Min

Max

5.0

-

5.0

-

Unit

OFF CHARACTERISTICS

"

Collector-Emitter Breakdown Voltage"
(Ic = SOO mAdc, IB = 0)

BVCEO

Collector-Emitter Sustaining Voltage"
(Ic = SOO mAdc,
= 0)

BVCEO(sus)

Ia

"

Collector Cutoff Current
(VCE = 15 Vdc, VBE = 0)

ICES

-

10

Collector Cutoff Current
(VCE = 15 Vdc, RBE = 5.0 ohms)

ICER

-

10

Collector Cutoff Current
(VCE = 15 Vdc, VBE(off) = 0.2 Vdc)

ICEX

-

10

-

10

-

SO

ISO

-

200

800

-

0.12

(VCE = 5.0 Vdc, VEB(off)= 0.2 Vdc, TC = 85·C)
Collector Cutoff Current
(VCB = 15 Vdc, ~ = 0)

ICBO

Emitter Cutoff Current
(VBE = 1.5 Vdc, IC = 0)

~BO

Vdc
Vdc
mAdc
mAde
mAde

15
mAdc
mAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 10 Adc, VCE = 2.0 Vdc)

Uc = 5.0 Adc,

2

VCE = 2.0 Vdc)

Collector-Emitter Saturation Voltage
(Ic = 5.0 Adc,
= O. 5 Adc)

(Ie = 25 Adc,

2

Ia
Ia = 2. 5 Adc)

Base-Emitter Saturation Voltage
= 5.0 Adc,
= O. 5 Adc)

(Ie

(IC = 25 Adc,

hFE

VCE(sat)

VBE(sat)

Ia
Ia = 2. 5 Adc)

-

Vdc

0.5
Vdc
0.5
1.2

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
= 5. 0 Adc, VCE = 2.0 Vdc, f = 1.0 MHz)

fT

Uc

Rise Time
(VCC = 10 Vdc, IC = 5.0 Adc)

3

Storage Time
(VCC = 10 Vdc,

3

Ie = 5.0 Adc)

Fall Time
(Vcc • 10 Vdc, IC = 5.0 Adc)

10

-

tr

-

2.0

ts

-

10

-

2.0

tf

3

MHz
iJ.S

iJ.S

I'S

"Sweep Test: 1/2 Cycle sine wave, 60 Hz

FIGURE 3 - SWiTCHING·TlME TEST CIRCUIT

FIGURE 2- TYPICAL COLLECTOR CHARACTERISTICS
20

100~gg;

18
Ii:

16

~

14

8

12

GO:
GO:

...

:::>

~

~

~

~,...".

I. 0-

~

3O~

0.10
2.00 CARBON

I
20mA

V

I
PRF= 200 Hz
PW= SO p.S

10mA

6

I
I

4
2

SCOPE

40mA

"

r/

10
8

SOmA

ADJUST FOR
III(ONI = 0.2SA

1.-OmA

~
0.2

0.4

0.6

0.8

10V

+

1.0

Va. COLL£CTOR.£MlnER VOlTAGE IWlTSl

2-371

2N2913 thru 2N2920

(SILICON)

2N2972 thru 2N2979
2N2919 JAN &JTX AVAILABLE
2N2920 JAN & JTX .

Dual NPN silicon annular tranSistors, especially
designed for low-level, low-noise differential~amplifier
applications, feature very high Beta guaranteed from
10 JiAdc to 1. 0 mAdc and excellent noise characteristics.

CASE 635
2N2972

CASE 654-04

(TO-71)

2N2913

thru

thru

2N2979

2N2920

Pins 4 and 8 omitted

Pin Connections, Bottom View
All leads Electrically Isolated From Case

MAXIMUM RATINGS (each side)

(TA

Rating

=25°C unless otherwise noted)
Symbol

2N2913-18 2N2919-20
2N2972-77 2N2978-:-79

Unit

VCEO

45

60

Vdc

Collector-Base Voltage

VCB

45

60

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

30

mAdc

Collector-Emitter Voltage

Collector Current
Operating and Storage Junction Temperature Range

Total Deville Dissipation @ T A
Case 654-04
Derate above 25°C
Case 655
Derate above 25°C

= 25°C

Total Device Dissipation @ TC
Case 654-04
Derate above 25°C

= 25°C

T J' T stg

-65 to +200

°C

One
Side

Both.
Sides

300
1.7

600
3.4

mW
mW/oC

250
1. 43

300
1. 72

mW
mW/oC

750
.4.3

1500
8.6

mW
mW/oC

500
2.85

750
4.3

mW
mW/oC

PD

PD

Case 655
Derate above 25°C

2-372

2N2913 thru 2N2920, 2N2972 thru 2N2979 (continued)
ELECTRICAL CHARACTERISTICS (each side) (T.= 2S"Cunle•• otherwi.enoled)

Characteristic

I

Symbol

Min

I Typ I Max

Unit

OFF CHARACTERISTICS
Sustaining Voltage
(Ic = 10 mAde, IB = 0)

Collector~Emitter

2N2913 thru 18, 2N2972 thru 77
2N2919, 2N2920, 2N2978, 2N2979

Collector-Base Breakdown Voltage
(IC = 10 !JAde, IE = 0)

2N2913 thru 18, 2N2972 thru 77
2N2919, 2N2920, 2N2978, 2N2979

Emitter-Base Breakdown Voltage
(IE = 10 !JAde, IC = 0)

BVCEO(sus)
BVCBO
BVEBO

Collector Cutoff Current
(VCE = 5.0 Vde, IB = 0)

ICEO

Collector Cutoff Current
(VCB = 45 Vde, IE = 0)

2N2913 thru 18, 2N2972 thru 77
2N2919, 2N2920, 2N2978, 2N2979
All Types

(VCB = 45 Vde, IE = 0, TA = 150"C)
Emitter Cutoff Current
(V EB = 5.0 Vde, IC = 0)

ICBO

lEBO

45
60

-

45
60

--

6.0

-

Vde

Vde

Vde
!JAde

-

-

0.002

-

--

-

0.010
0.002
10

-

-

0.002

60
150

-

!JAde

!JAde

ON CHARACTERISTICS
DC Current Gain'l1I
(IC = 10 !JAde, VCE = 5.0 Vde)

2N2913, 15,17,19, 2N2972 , 74, 76, 78
2N2914, 16, 18,20, 2N2973, 75, 77,79

hFE

240
600

Collector-Emitter Saturation Voltage
(IC = 1. 0 mAde, IB = 0.1 mAde)

VCE(sat)

-

--

Base-Emitter On Voltage
(Ie = 100 !JAde, VCE = 5.0 Vde)

VBE(on)

-

-

0.7

60

-

-

-

4.0

6.0

25

28

32

-

-

1.0

(IC = 10 !JAde, VCE = 5.0 Vde, TA = -55·C)

2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18,20, 2N2973, 75, 77, 79

15
30

(IC = 100 !JAde, VCE = 5.0 Vde)

2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18,20, 2N2973, 75, 77, 79

100
225

(Ie = 1. 0 mAde, VCE = 5.0 Vde)

2N2913, 15, 17, 19, 2N2972, 74, 76, 78
2N2914, 16, 18, 20, 2N2973, 75, 77, 79

150
300

-Vde
0.35
Vde

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 500 !JAde, VCE = 5.0 Vde, f = 20 MHz)

fT

Output Capacitance

Cob

(VCB = 5.0 Vde, IE = 0, f = 140 kHz)
Input Impedance
(Ie = 1.0 mAde, VCB =5.0 Vdc, 1= 1.0 kHz)

hlb

Output Admittance
(IC = 1.0 mAde, VCB = 5.0Vde, I =1.0kHz)

hob

Noise Figure
(IC = 10 !JAde, VCE = 5.0 Vde, RS = 10 k ohms,

NF

f = 1.0 kHz, BW = 200 Hz)

(IC = 10 !JAde, VCE ~ 5.0 Vde, RS = 10 k ohms,
2N2914, 16, 18, 20, 2N2973, 75, 77, 79
'2N2,913, 15, 17, 19, 2N2972,,H, 76, 78

DC Current Gain Ratio*·
(IC = 100 !JAde, VCE = 5.0 Vde)

2N2917,18, 2N2976,77
2N2915, 16, 19,20, 2N2974, 75, 78, 79

Base Voltage Differential
(IC = 10 !JAde to 1. 0 mAde, VCE = 5.0 Vde)

2N2917,18, 2N2976,77
2N2915, 16, 19,20, 2N2974, 75, 78, 79
2N2917,18, 2N2976,77
2N2915, 16, 19,20, 2N2974, 75, 78, 79

(Ie = 100 !JAde, VCE = 5.0 Vde)

Base Voltage Diflerential Gradient
(Ie = 100 !JAde, VCE = 5.0 Vde, T A = -55·C to +25·C)
2N2917,18, 2N2976,77
2N2915, 16, 19,20, 2N2974, 75, 78, 79
(IC = 100 !JAde, VeE = 5.0 Vdc, T A = +25"<: to +125"<:)
2N2917,18, 2N2976,77
2N2915, 16, 19,20, 2N2974, 75, 78, 79
111 Pulse Test: Pulse Width ~ 300

**

jJS,

Duty Cycle ~ 2.0%.

The lowest hFE reading is taken as hFEl for this ratio.

2-373

IJ.lIlhos

dB

-

f = 10 Hz to 15.7 kHz, BW = 10 kHz,)

hFE1/hFE2**

pF
ohms

-

2N2914, 16, 18, 20, 2N2973, 75, 77, 79
2N2913, 15, 17, 19, 2N2972, 74, 76, 78

MHz

0.8
0.9

IVBE1- VBE21 -

2.0
3.0

3.0
4.0

2.0
3.0

3.0
4.0

-

-

1.0
1.0

--

10
5.0

-

-

mVde

5.0
3.0

~VBECVBE2)

mVde

--

-

1.6
0.8

--

--

2.0
1.0

2N2929 (GERMANIUM)

PNP germanium epitaxial mesa transistor for low
noise, broadband, power and driver amplifier applications.
CASE 31
(TO-S)

Collector connected to else

MAXIMUM RATINGS

Unit

Symbol

Value

Collector-Base Voltage

VCB

25

Vdc

Collector-Emitter Voltage

VCES

25

Vdc

Collector-Emitter Voltage

VCEO

10

Vdc

Emitter-Base Voltage

VEB

0.75

Vde

Collector Current

Ie

100

mAde

Total Device Dissipation @ T A = 25°C
Derate above 25°C

PD

300
4.0

mW
mW/oC

Total Device Dissipation @ T C = 25°C
Derate above 25°C

PD

750
10

mW
mW/oC

JW1ction Temperature

TJ

100

°c

Tstg

-65 to +100

°c

Rating

storage Temperature Range

NORMALIZED DC CURRENT GAIN CHARACTERISTICS
1.2

-

.....---

~5'C / ..... 1--''''.....
,/' /
TJ -

1.0

"

~ i'..

/

/ ~

,/

I':l\.

~

TJ = 25'C

/ V

~

\

~

1\
\

0.4
-1

-2

-5

-7

-10

Ie. COLLECTOR CURRENT (mAde)

2-374

-20

-so

-70

-100

2N2929 (Continued)

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noteeil

Cha racteristic

Sym

Collector-Base Breakdown Voltage

BVCBO

Ie= 100 /.IAdc, IE = 0

25

45

Collector-Emitter Breakdown Voltage

BVCES

Ie= 100 /.I Adc, VEB = 0

25

45

Collector-Emitter Breakdown Voltage

BV CEO

IC = 10 mAdc, IB = 0

10

Emitter-Base Breakdown Voltage

BVEBO

I E = 1 mAdc, Ie = 0

0.75

IeBO

VCB = 10 Vde, IE = 0

Min Typ Max Unit

Test Conditions

20

-

Vde

1.5

-

Vde

0.15

5.0

/.IAdc

-

50

1.0

100

Vdc
Vdc

lEBO

VEB = 0.5 Vde, Ie = 0

-

DC Forward Current Transfer Ratio

hFE

VCE = 10 Vde, Ie = 10 mAde

10

30

100

-

Collector-Emitter Saturation Voltage

VCE(sat)

IC = 50 mAde, IB = 10 mAde

0.15

0.5

Vde

Base-Emitter Saturatior. Voltage

VBE(sat)

IC = 50 mAde, IB = 10 mAde

-

0.55

1.0

Vdc

Collector Cutoff Current

VCB = 10 Vde, IE = 0, TA =+55 0 C
Emitter Cutoff Current

Small-Signal Forward Current
Transfer Ratio

/.lAde

hre

Ie= 10 mAde, VCE = 10 Vde, f =

10

35

120

-

IT

IC = 10 mAde, VCE = 10 Vde, f = 100 MHz

800

1100

1400

MHz

Current Gain - Bandwidth Product

1 kHz

IC = 20 mAde, VCE = 10 Vdc, f = 100 MHz

1000

1250

1600

Ie= 40 mAdc, VCE = 10 Vdc, f = 100 MHz

700

1200

-

VCB = 10 Vdc, IE = 20 mAdc, f = 31.8MHz

10

25

40

ps

-

45

75

ohms

1.75

2.5

pF

26

28

-

dB

-

16

-

5.5

-

Collector-Base Time Constant

~' Cc

Real Part of Small-Signal Short
Circuit Input Impedance

Re(h ie )

IC = 10 mA, VCE = 10 V, f = 1000 MHz

Collector-Base Capacitance

Cob

VCB = 10 Vde, IE = 0, f = 100

Power Gain

Ge

VCE = 10 Vdc, Ie = 10 mAdc, f = 60 MHz
VCE = 10 Vdc,

Noise Figure

NF

Ie •

kHz

10 mAdc, f = 200 MHz

VCE = 10Vdc,IC = 2 Adc,f = 200MHz

dB

RG = 50n

NOISE FIGURE versus FREQUENCY

MAXIMUM AVAILABLE GAIN versus FREQUENCY

10

40

I,

_V c,=-IOV

--

l-?"

50~Z

{/

"1§z
~

V
R,

-

iii

~

ISO!!

VCE-=-IOV

~ "'-....,

30

;)

t

I

Ie = -lo/rnA

Ic=-IOmA

....

r-NEUT GAIN

. .0-....

~

MAG=~
41gl l gnl

10

'~

d

10

"I'

1

10

30

50

70

100

100

f. FREQUENCY I MH,)

20

30

50

70

100

f. FREOUENCYIMH,)

2-375

100

500

2N2944 (SILICON)
2N2945
2N2946

PNP silicon annular transistors designed for low-level,
high-speed chopper applications.
MAXIMUM RATINGS

Symbol 2N2944 2N294S 2N2946

Rating
Emitter-Collector Voltage

CASE 26
(T0-46)

VECO

Vde
Vdc

VCS

15

25

40

VES

15

25

40

Vde

Collector Current

IC

-100-

Total Device Dlsslpati~. @

PD

-500-

mW
mWrC

PD

-2.8_2.0_

_11.4_
_
-85 to + 2 0 0 -

mWrC
·C

Total Device Dissipation @
TC = 25°C

Derate above 25° C
OperaUng and" storageJunctton TJ,Tstg
Temperature Range

(TA

35

Emitter-Base Voltage

Derate ,above 25° C

ELECTRICAL CHARACTERISTICS

20

Collector-Base Voltage

TA =25·C

Collector electrically
connected to case

Unit

10

mAde

Watts

=2S'C unless otherwise noted)

I Symbol

Characteristic

Min

Typ

-

-

I· Max

Unit

OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 15 Vde, ~= 0)

2N2944

(VCB = 25 Vde, ~ = 0)

.2N2945

(VCB =40Vde, ~ =0)

2N2946

Emitter Cutoff Current
(VEB = 15 Vdc, IC = 0)
(VEB = 25 Vdc, IC = 0)

2N2944

(VEB = 40 Vde, IC = 0)

2N2946

I CBO

~BO

2N2945

-

nAdc
0.1
0.2

-

0.5

-

0.1

-

DAde
0.2
.0.5

ON CHARACTERISTICS
DC Current Gain
(Ic = 1.0 mAde, VCE = O. 5 Vdc)

Forward Current Transfer Ratio (inverted connection)
(IC = 200 "Ade, VCE = 0.5 Vdc)

Offset Voltage
(~ =200 "Adc, ~ = 0)

(IB = 1.0 mAdc, ~ = 0)

Us = 2.0 mAde, ~ = 0)

2N2944
2N2945
2N2946
2N2944
2N294fi
2N2946
2N2944
2N2945
2N2946

ilpE

ilpE(inv)

VEC(off)

80
40
30

180
160
130

6.0
4.0
3.0

20
17
15

---

.

---

0.3
0.5
0.8

0.4
0;5
0.6
0.8
0.9
1.0

0.6
1.0
2.0
1.0
1.6
2.5

10
5.0
3.0

15
13
12

--

Cob

-

3.2

10

. Cib ·

-

1.9

6.0

rec(on)

--

4.0
4.5
5.0

20

--

mVdc

0.18
0.23
0.27

2N2944
2N2945
2N2946
2N2944
2N2945
2N2946

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
(IC = 1.0 mAde, VCE = 6. 0 Vdc, f = 1.0 MHz)

2N2944
2N2945
2N2946

Output Capacitance
(VCB - 6. 0 Vdc, ~ = 0, f = 500 kHz)
Input Capacitance
(VEB = 6.0 Vdc, IC = 0, f = 500 kHz) •
Dynamic On Series Resistance
(IC = 100 "Ade, ~ = 1.0 mAde, ~=0,f=I.0kHz)

2N2944
2N2945
2N2946

2-376

fT

MHz

pF
pF
atms
35
45

2N2947(SILICON)
2N2948

NPN silicon annular transistors for power amplifier
applications to 100 MHz.
CASE 1
(TO-3)

Collector connected to case

MAXIMUM RATINGS*

Rating

Symbol

2N2948

2N2947

Unit

Collector- Base Voltage

VCB

60

40

Vdc

Collector-Emitter Voltage

VCES

60

40

Vdc

Emitter - Base Voltage

VEB

3.0

2.0

Vdc

Collector- Current (continuous)

IC

1.5

Adc

Base-Current (continuous)

IB

500

mAdc

Power Input (Nominal)

P.

5.0

Watts

Power Output (Nominal)

P

20.0

Watts

Total Device Dissipation

PD

25.0

Watts

167

mWjOC

175

°c

-65to+175

°c

@ 25 °C Case Temperature

In

out

Derating Factor above 25 0 C
Junction Temperature

TJ

Storage Temperature Range

Tst!!:

*The maximum ratings as given for de conditions can be
exceeded on a pulse basis. See electrical characteristics.

2-377

2N2947, 2N2948

(Continued)

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Collector- Emitter
Sustain Voltage

VCES

(sJ~\'

(TA

= 2SOC unlessotharwise noted)

Test Conditions

·Min Typ

2N2947: IC = O. 250 A, RBE = 0

90

120

2N294S: IC = O. 250A, RBE = 0

SO

100

III

Collector- EmitterOpen Base
Sustain Voltage

VCEO(sus) 2N2947: IC = O. 250A, IB = 0

40

2N294S: IC = O. 250A, IB = 0

20

Collector- Emitte~
Current

ICES

2N2947: VCE = 60 Vdc, VBE = 0
VCE = 50 Vdc, VBE = 0, TC = 175'C
2N294S·· VCE = 40 Vdc, VBE = 0
VCE = 30 Vdc, VBE = 0, TC = 175'C

Collector Cutoff
Current

I CBO

2N2947: VCB = 50 Vdc, IE = 0
2N294S: VCB = 30 Vdc, IE = 0

Emitter Cutoff
Current

lEBO

2N2947: VEB = 3 Vdc, IC = 0
2N294S: VEB = 2 Vdc, IC = 0

DC Current Gain

hFE

---------

2N2947: IC = 400 mAde, VCE = 2Vdc

6.0

2N294S: IC = 400 mAde, VCE = 2 Vdc

2.5

Both Types: IC = 1 Adc. VCE = 2 Vdc

2.5

VCE(sat)

IC = 1. 0 Adc, IB = 500 mAdc

VBE(sat)

IC = 1.0 Adc,

Ia = 500 mAdc

---

AC Current Gain

Ihfe l

VCE = 2.0 Vdc, IC = 400 mAde, f = 50 MHz

2.0

Collector Output
Capacitance

Cob

VCB = 25 Vdc, [E=O, f = 100 kHz

Power Input

Pin

Pout = 15 W, f = 50 MHz, VCE = 25 Vdc

---

Efficiency

"

IC(max) = 1A

2N2947

Power Input

Pin

Collector- Emitter
Saturation Voltage
Base-Emitter
Saturation Voltage

Efficiency

"

------------------

Max

Unit

-----

Volts

0.5

Volts

mAde

1.0
0.5
1.0
1.0

I'Adc

1.0
100

I'Adc

100
60
100

-0.5

Vdc

2.0

Vdc

-60

pF

2.0

3.0

Watts

60

SO

--

%

Pout = 15 W, f = 30MHz, VCE = 25 Vdc

--

2.0

3.0

IC(max) = 1. 0 A 2N2948

60

70

--

III Pulse Measurement: Pulse Width:; 1001's, Duty Cycle = 2. 0%.

2-378

Watts

%

2N2947,2N2948

(continued)

OUTPUT CHARACTERISTICS versus POWER INPUT

POWER OUTPUT versus FREQUENCY

25

20

80

COLL EFF.
70
20

f\ 1\1\ \\ '

2N2948 f-ol
p,. = 3W

\

~

,,

50

tt 40
'"G 30
~

~

~
<.>

\'\~

25V
Te = 2S'C

20

~

<.>

0

Vc~ ::=

10

~

-

~ .. =2.SW

\

o

IS

60

2N2947 _
p.. = 3W

40
60 80 100
f, FREQUENCY IMH,)

200

20

I-"""

~
~

/

J

V

?

V

2.0

/

o

o

o.S

/
V

l.-2N2947
Ve• = 2SV
f=50MHz

./

/Y
,

10

300

--

7

P"'y

....
=>
0g10
'"~

Te = 2S'C

I

I.S

2

o

2.5

3.5

p.. , POWER INPUT (WATTS)

POWER OUTPUT versus COLLECTOR VOLTAGE

POWER OUTPUT versus POWER INPUT

20r-----,------.----~~----_r----_.

20

,/

o

V

V

/

o

/

V

//

/

IS~----4_--·--~~----~----~--~~

~5
0-

gIO~----4_~--_t--~~~----~----~

2N2947
P,.=3W
f

i

= 50MHz

Te = 2S'C
2N2947
f=50MHz

Te = 2S'C

15
20
10
Va. COtLECTOR-EMITTER VOLTAGE (VOLTS)

2

25

3

p,., POWER INPUT (WATTS)

2-379

2N2949 (SILICON)
2N29S0

NPN silicon annular transistors for power amplifier
and driver applications to 100 MHz.
(TO·l07)

2N2949

Collector connected to case;
stud isolated from case

2N2950

MAXIMUM RATINGS-

~~ting

Symbol

Value

Unit

Collector- Base 'V()ltage

VCB

60

Vdc

Collector-Emitter Voltage

VCES

60

Vdc

Emitter - Base Voltage

VEB

3.0

Vdc

Collector Current (Continuous)

IC

0.7

Adc

Base Current (Continuous)

IB

100

mAdc

RF Input Power (Nom)

Pin

1.0

Watt

Pout

S.O

Watts

6.0

Watts
mW/oC

RF Output Power (Nom)
Total Device Dissipation
(2S0C Case temperature)
(Derating Factor above 25°C)

Po

Total Device Dissipation at
25° Ambient
(Derating Factor above 2S0C)

Po

Junction Temperature

TJ

175

·C

Tstg

-65 to + 175

·C

40
2N2949
0.5

3.33

Storage Temperature Range

2N2950
0.7
4.67

Watt
mW/·C

* The maxImum ratings as gIven for de condItions can be. exceeded on a pulse baSIS. See Electrical
Characteristics.
POWER OUTPUT versus POWER INPUT
POWER OUTPUT versus COLLECTOR VOLTAGE

/
V

o

V

o

/'
5

//
10

15

V
P" = 0.2SW
1=50 MHz
Tc = 25'C

20

25

OL-----~----~----~----~----~
o
0.1
0.2
0.3
0.4
0.5
p.., POWER INPUT (WATTS)

VeE, CotLECTOR-EMITTERVOLTAGE (VOLTS)

2-380

2N2949, 2N2950 (Continued)

ELECTRICAL CHARACTERISTICS

Characteristic

ITA = 250 C unless otherwise noted)

Symbol

Collector-Emitter Sustain Voltage
Collector Emltter- Open Base
Sustain Voltaire
Collector-Emitter Current

Test Conditions

Min

Typ

111
VcEs(swii

IC=O. 250 A, R BE = 0

85

120

111
VCEO(sus)

IC=0.250A, IB=O

40

---

----

---

---

VCE= 60 Vdc, VBE=O

ICES

VCE =50 Vdc, VBE= 0

Max

Unit

--

Volts

--

Volts

100

"Adc

500

TC= + 175'C
Collector - Cutoff Current

ICBO

VCB=50 Vdc, ~=O

Emitter-Cutoff Current

lEBO

VEB = 3 Vdc, IC=O

DC Current 'Gain

hFE

VCE = 2.0Vdc
IC= 40 mAdc

5.0

VCE =2.0 Vdc
IC= 400 mAdc
'tE(Sai)
VBE(sat)

Collector - Emitter Saturation
Voltage
Emitter-Baee Saturation Voltage

I hfel

AC Current Gain

Collector Output Capacitance

0.1

"Adc

100

"Adc

--

100

--

5.0

--

--

--

IC = 400 mAdc, 's= 80 mAdc

--

--

0.5

Vdc

IC=400 mAdc, IB=80mAdc

--

--

2.0

Vdc

VCE =2.0 Vdc
IC=40 mAdc, f=50 MHz

2.0

--

--

--

--

--

20

pF

--

--

0.35

Watt

43

--

--

%

VCB= 25 Vdc, I E=O

Cob

f=IOOkHz
Power Input

Pin
P out=3. 5 watts, f=50 MHz

Efficiency

VCE=25 Vdc, IC (max)=325 mA

"

111 Pulse Width' 100/18, Duty Cycle = 2%

POW.ER OUTPUT versus FREQUENCY

\ 1\

\

1\1\

90
p••,-

80

\

1\

20

40

=

25V

~

Te = 2S'C

0-

\

10

VeE

~3
=>

\

o

OUTPUT CHARACTERISTICS versus POWER INPUT
100

~

P.. =0.4W

\\
prtni-\ 1\

60 80 100
f, FREQUENCY IMH,.j

200

/'

~ 70
60

U

§ 50
~2 '"~ 40

!;
0

~

J

/

~

/

830

V

20

/

10

o

300

2-381

~

z

--- --COlL. HF.

600 ~

B

e'"

"-.,

..--

400

~ i"- Ie

Ve

200

= 25 Vdc

t::..:

0.1

0.4
0.2
0.3
p,., POWER INPUT IWAITS)

~

5

'"
.9

50 MHz

Tc ~ 25°C

o

800

1...

L

>-

ffi

~

0.5

2N2951 (SILICON)
2N2952

CASE 31
(TO·5)

CME~
(TO·l8)

2N2951

2N2952

Collector connected to case

NPN silicon annular Star transistors for power amplifier applications to 100 MHz.

MAXIMUM RATINGS.

Value

Units

Collector-Base Voltage

VCB

60

Vdc

Collector- Emitter Voltage

VCES

60

Vdc

Emitter- Base Voltage

VEB

5.0

Vdc

Collector Current (continuous)

IC

250

mAdc

Base Current (continuous)

IB

50

mAdc

Total Device Dissipation
(25°C Case Temperature)
(Derate above 25"C)

PD

Total Device Dissipation
(25° C Ambient Temperature)
(Derate above 25°C)

PD

Junction Temperature

TJ

-65 to 175

°c

Storage Temperature Range

T stg

-65 to 175

°c

Rating

Symbol

2N2951

2N2952

3.0
20

1.8
12

Watts
mW/"C

0.8
5.33

0.5
3.33

mW/"C

• The maximum ratings as given for dc conditions can be exceeded on a pulse basis.
See Electrical Characteristics.

2-382

2N2951, 2N2952

(Continued)

ELECTRICAL CHARACTERISTICS

Characteristic

(TA

= 2S0 C unless otherwise noted I

Symbol

Collector-Emitter Current

ICES

Conditions
VCE = 60Vde, VBE = 0
VCE = 50Vde, VBE = 0, T C = 175°C

Collector Cutoff Current

I CBO

VOB = 50 Vde, ~ = 0

Emitter Cutoff Current

lEBO

VEB = 5 Vde, IC = 0

DC Current Gain

hFE

-----

100

/LAde

500

/LAde

0.1

/LAde

100

/LAde

20

150

= 10 Vde*

20

--

---

IC = 10 mAde, VCE = 10Vde
IC = 150mAdc', VCE

Min Max Unit

Collector- Emitter Saturation Voltage

VCE(sat)

IC = 150 mAde, IB = 15 mAde

--

0.5

Vde

Base-Emitter Saturation Voltage

vBE(sat)

IC = 150 mAde, IB = 15 mAde

--

2.0

Vde

30

--

Volts

IC = 100 mA, IB = 0

20

--

Volts

VCE = 10 Vde, IC = 10 mAdc

4.0

--

--

--

8.0

pF

--

100

mW

35

--

%

Collector-Emitter Sustain Voltage 111

VCES(sus) IC = 100 mA, RBE = 0

Colleetor- Emitter Open Base f1I
Sustain Voltage

VCEO(sus)

I hfe I

AC Current Gain

f = 50 MHz
Collector Output Capacitance

Cob

Power Input

P.m

VCB =10Vdc,IE=0, f=100kHz

Test Circuit Fig. 1
Pout = 600 mW
f = 50 MHz
VCE = 13.6 Vdc
IC(max) = 125 mA

rt

Efficiency
IIiPuise Width

= 100

/Ls, Duty Cycle = 2%

2-383

2N2951, 2N2952

(Continued)

POWER OUTPUT versus FREQUENCY
1400

1200

l

f=SOMHz
Vo. = 13.6Vde
Te = 2S'C

--

p~.

-

800
1000

\.

i"

oS
~ 800

I\,

!:;

o

'"~

\;

P" = 50 mW - - - \

500

I

P" = 100mW

-

§

1\

'"~

f

\

~

\

200

500

,,1

400

810

20

40 SO 80100

o
200 300

j

V

o

f= 50 MHz·
P" = 100mW
Te = 2S'C

/

1000

.... '

...

200

o

J

l!

o

I

~

z:

6°ffi

120~
=>
u

~

.
t:;

40g

80

~

'"
~
g
u

.§
40

40

SO

80 100 120 140
P,,, POWER INPUT(mW)

160

180 200

POWER OUTPUT versus POWER INPUT

--

I

!:;

.... '" -~

,-

~

600

/

j
400

200

30

o

.....

-

/

800

o

'"

J

Ve• = 28.0 de .....

1200

/
25

:c

u

i" 1000

20

ISO

~

e

f=50MHz
Tc = 2S'C

~

IS

80

o

20

oS

10

200

>-

V ~
.... I

1400

V" "

/

I

100

20

POWER OUTPUT versus COLLECTOR VOLTAGE
1200

-- .... -

V.... ....

V

/'

200

\

t-- . /

,....- V

~Ll.EFF._

1\

oJ 400

-

OUTPUT CHARACTERISTICS versus POWER INPUT
1000

J

I
I
Vee = 13.SVde
Te = 2S'C

/

"...

I

./

/
,/

~
o

/

""

7

20

13.6Vde_

40

:::::-

/'

-

-

I-

S.3Vde_

......-

SO

,..-

80
100 120 140
P", POWER INPUT(mW)

Va., COLLECTOR·EMITTER VOLTAgE (VOLTS)

ISO

180

200

FIGURE 1 - POWER OUTPUT AND POWER GAIN CIRCUIT

H3.6V

2.7 ,,"

.001

0.22,.."
0.15,.."
4-30

4·30

,.F

~

RL = 50n

-.:'

40·90

NOTt,
GROUND POINT musl be kept as close as
possible to the transistor emitter lead.
Transistor must be mounted with heat sink.

2N2955 (GERMANIUM)
2N2956
2N2957
1(\

PNP germanium epitaxial mesa transistors for highspeed switching applications.

CASE2~
(TO.18)Z

\ \

Collector connected to case

MAXI MUM RATI NGS (T A = 250C unless otherwise noted)

Symbol

Rating
Collector-Base Voltage

VCS

Emitter-Base Voltage

VES

Unit

Value
40

Vdc
Vdc

3.5

2N2955
Collector-Emitter Voltage 2N2956
2N2957

VCEO

Collector Current

Ie

100

mAdc

Junction Temperature

TJ

100

°c

Storage Temperature

Tstg

Total Device Dissipation at 25°C
Case Temperature
(Derate 4 mW/oC above 25°C)

PD

300

mW

Total Device Dissipation at 25°C
Ambient Temperature
(Derate 2 mW/oC above 25°C)

PD

150

mW

25
20

Vdc

18

°c

-65 to +100

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Fig. No. Symbol

Characteristic
Collector-Base Breakdown Voltage
(Ie = 100 j.lAdc, IE= 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 j.lAdc, Ie = 0)

BVEBO

Collector-Emitter Breakdown Voltage
(Ic = 10 mAde, Emitter-Base
Termination - Open)

8
2N2955
2N2956
2N2957

Collector-Emitter Reverse Current
(VCE = 25 Vdc, VEB = 0.5 Vdc)

BVCEO

IcEX

Base Leakage Current
(VCE = 25 Vdc; VEB = 0.5 Vdc)

9

2-385

IBL

Min Typ Max Unit
40

60

---

3.5

5.0

---

25
20
18

35
28
25

-------

--- ----- ---

Vdc
Vdc
Vdc

j.lAdc
10

j.lAdc
10

2N2955, 2N2956, 2N2957

(Continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic
On Characteristics
Forward Current Transfer Ratio
(Ie = 10 mAde, VCE" 1 Vde)

(Ic = 50 mAde, VCE = 1 Vde)

(IC = 100 mAde, VCE = 1 Vde)
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1 mAde)

(Ic = 50 mAde, IB = 5 mAde)

(Ie = 100 mAde, lB" 10 mAde)
Base-Emitter Voltage
(IC = 10 mAde, IB = 1 mAde)

(Ic " 50 mAde, IB = 5 mAde)

(IC = 100 mAde, IB = 10 mAde)

hFE

2N2955
2N2956
2N2957

1
2
3

2N2955
2N2956
2N2957
2N2956
2N2957
VCE (sat)

2N2955
2N2956
2N2957

5
6
7

2N2955
2N2956
2N2957
2N2956
2N2957
4
2N2955
2N2956
2N2957
2N2955
2N2956
2N2957

VBE

43
64
105

20
40
100
30
60

43
76
130
69
115

-------

-----------------

0.12
0.12
0.09
0.20
0.16
0.13
0.23
0.18

0.20
0.18
0.15
0.30
0.25
0.20
0.34
0.26

0.38
0.37
0.36
0.51
0.48
0.45
0.56
0.52

0.50
0.47
0.44
0.65
0.60
0.55
0.70
0.65

2.5

4.0

3.3

---

---

---------------

2N2956
2N2957

--- ---

20
30
60

-----

60
120

Vde

Vde

Transient Characteristics
Output Cap~eitanee
(VCS = 5 Vde, IE = 0, f = 1 MHz)

10

Input Capacitance
(VBE = 1 Vde, IC

10

= 0,

f = 1 MHz)

Small Signal Forward Current
Transfer Ratio (VeE = 5 Vde,
IC = 10 mAde, f = 100 MHz)
Delay Time
(VCC =12 Vde, Ies = 50 mAde,
IB1 = 5 mAde, VBE (Off) =2.2 Vdc)
Rise Time
(same conditions as ~)

Storage Time
(VCC = 12 Vdc, Ies = 50 mAde,
IB1 = 5 mAde, IB2 = 5 mAde)
Fall Time
(same cOnditions as t s )

Total Control Charge
(Ic '" 10 mAde, IB = 1 mAde)

Cob
Cib

I lite I

2N2955
2N2956
2N2957
12

12,13

td

tr

2N2955
2N2956
2N2957
12,16

ts

2N2955
2N2956
2N2957
12,15
2N2955
2N2956
2N2957
17

tr

Q,-

2N2955
2N2956
2N2957

Active Region Time Constant
(IC = 10 mAde)

14

2-386

TA

-----

pF

pF

2.0
2.5
3.0

3.5
3.75
4.0

---------

---

7.0

15

25
18
15

40
30
25

28
37
42

40
55
60

25
18
18

40
35
35

---------

---------

-----------

ns

ns

ns

ns

84
88
88
2.9

-----

pe

---

ns

---

2N2955. 2N2956, 2N2957

(Continued)

FIGURE 1 - CURRENT GAIN CHARACTERISTICS

FIGURE 2 - CURRENT GAIN CHARACTERISTICS

2N2955

2N2956

100

100
Ve ,= 1Vde

80

80

60

60

.....
.....-~ .....
.-

...... I--'

z

~ 40

~

..,~

~

L,..-

30

j

i
jj~
'I\~ r-

n

j...- i-"'~i-'
0

~ iIIo..

\ \

~
I--'" i-'"
I--'~i-'

I-

50

-..,;:

......

01--'"

~r:::

1\

\

0

r- ...

,.........
i""'~

r- r-~

..---, ,-l.-\ \ \

,.,...f"'"

50

,

-,

,.,... r.--

\ I~
1\

i-- TJ =
i--TJ =
TJ =
TJ =

75°C
25°C
OOC
- 55°C

0

I- TJ = 75°C
1'-- I-TJ = 25°C
I-TJ = OOC
TJ = , 5 n

JCE =

1

10

1Vde

0
5

6

8

10

20

60

40

10

80 100

Ie. COLLECTOR CURRENT (mAde)

20

40

60

80 100

Ie. COLLECTOR CURRENT (mAde)

FIGURE 3 - CURRENT GAIN CHARACTERISTICS

FIGURE 4 - BASE EMITTER VOLTAGE versus COLLECTOR CURRENT

2N2957
200

V

I--'

v-: ~-\

100

..

z

/~

"...

80

co
I-

~ 60

..,~

/

V

./

.,.

\

\

\.......

)(

\ \

L

vV'

40

- "'I"-

v- \

~~

0.8

r---

t-

......

0.7

,....

~r-

g 0.6

o
2:.

\

~

0.5

'"
~
::;;
~

0.4

g

J \

lL\ 1\ \

\.. i- TJ =

75°C
TJ = 25°C TJ = OOC
TJ = - 55°C_

\

;;'j

>" O.

1/
V

L

~

~~
~

i-"""

3

--

V
,..,. ,-~

~

~K r--

~ r\

f.--

-=--:

i-2N2955
2N2956
2N2957

O. 2
~e, = 1Vde

20
5

10

20

40

60

80 100

Ie. COLLECTOR CURRENT (mAde)

o. 1

20

40

60

Ie. COLLECTOR CURRENT (mAde)

2-387

80

100

2N2955, 2N2956, 2N2957

(Continued)

COLLECTOR·EMITTER SATURATION VOLTAGE versus BASE CURRENT
FIGURE 5 -2N2955

1.0

,
U>

!:;

I

0.8

20m'A'

lOrnA

g
'"
~.

\
\

1

= 2SOC

\ SOmA

\
\
\

0.6

>

tiS

t; 0.4

\

~

<5
..,

j

TJ

\.

0.2

o

0.4

0.2

0.1

'-

I'..

...........

0.6

2.0

0.8
1.0
I" BASE CURRENT (mAde)

4.0

6.0

8,0

10

FIGURE 6 -2N2956
1.0

I

\

\

1

lOrnA

\
\

20mA

SOmA

\

= 2SOC

\ 100mA

\
\

,

\

\

,

..... ~

\.

..........

...........

o

0.1

TJ

.0,4

0.2

0.6

1.0

0.8

I,. BASE CURRENT (mAde)

2.0

4.0

6.0

,

8.0

10

FIGURE 7 -2N2957
1.0

\
lOrnA

20mA

,

1\

\
\

0.1

'\

0.2

\

0.4

=2SoC

1\ 100mA

SOmA

1\

TJ

1\

"'-

r--....
0.6

0.8

1.0

I,. BASE CURRENT (mAde)
2-388

--

""-

2.0

4.0

6.0

8.0

10

2N2955, 2N2956, 2N2957

(Continued)

FIGURE 8 - OPEN BASE LOAD LINE RATING & TEST CIRCUIT

Vee

V" = -10V
<:;- 80

::i'

.§.

...

15

lK!l

60

'"'"
~
...'"0

~

40

0

u

.2

20

00

10

25

2N2955, - 25V
2N2956, - 20V
2N2957, - 18V

30

245!l
1970
1770

Ve•• COLLECTOR·EMITTERVOLTAGE (Vdc)

FIGURE 9 - COMMON EMITTER DC LEAKAGE CHARACTERISTICS
100
THRESHOLO OF EMITTER INJECTION

V"

I

TJ

85°C

TJ

155°C

I
0

,

- 25 Vdc

V
+0,5 Vdc

~

TJ=V

aa.e Leakage Current. III is defined as
base leakage currenl wilh bolh junclions
reverse biased. Ie is always less than IlL
for VOl > Yr. (VOl is off condition base
bias. V, is base vollage al Ihreshold of
condilion.)

Vr=-2y-

I

O. 1
- 0.5

BASE LEAKAGE CURRENT TEST CIRCUIT

o

0.5

1.5

2.5

Vo•• BASE-EMITTER REVERSE BIAS (VOLTS)

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - JUNCTION CAPACITANCE versus REVERSE BIAS
1.5

5.0

11

le/l. = 10
1,0

I

~

1\'~

~
~- 1--

- 1--

co.

1--

eve

V.. (sal)

-

0

~ l.-

S

V
-2, 0

1.0
o

2.0

4.0

6.0

8.0

10

12

14

16

I

Ve• (sal)

18

20

o

10

l.-

t-

f""
20

30

40

50

60

70

,Ie. COLLECTOR CURRENT (mAde)

REVERSE BIAS (VOLTS)

2-389

80

90

100

2N2955, 2N2956, 2N2957

(Continued)

FIGURE 12 - SWITCHING TIME TESTCIRCUIT

FIGURE 13 - RISE TIME FACTOR
1.5

GENERATDR
louT = 50.0

Ie. = - 50. mAdc
1,,=-5mAdc
1.. =-5mAdc
VIEIO"1 = +2.2 Vdc

Vee = - 12V

INPUT PULSE:
tr=tf~lns

INPUTPULSE WIDTH:
10.0. nsec (50.% D,UTY CYCLE)

2350

DLJ

~

..,~

1.4

..

1.3

!d:::;
::E

IKO

'"
c
'"
c

~

t- RISE~TIME
tt-

\.

;;
SCDPE
l,N"'" I MEGO
CIN ~ 20 pF
t,": I ns

-lo.V
510

t;
~

...
~

'"

~

=

'\

::E

'"
0;;

VII = +4.4V

1.2

l l

t, T,'II.
,,,
t, = 10 to 90% rise-time
TA = active region time constant
fJF Ie in saturation/II. (base uon" current)
po = h.. at edge of saturation
-

1.1

,"

.........

.....
i......

1.0
1.5

2.0

r--

0.6

4.0

8.0

-

10

20

polf!,

FIGURE 14 - ACTIVE REGION TIME CONSTANT
8.0

FIG,URE 15 - FALL TIME FACTOR
1.0.

V~=I-IDV

7.0.

o. 8 r-

6.0
5.

r- FALL-TIME = t, =
r-

~

T, pc F
t, = 10 to 90% fall-t'me
T, = active region constant
Pc = Ie in saturation I I..
(base-off current)
110= h.. at edge of saturation

;--

1/

/

o. 6

1/

01\

4.0.

)

0.4

II

3.0

~

2.0
1.0

5

10

---

20

o. 2

r:
60

40

~

o ""'~

80100

.02

.05

L

0.1

0.2

1". COLLECTOR CURRENT (mAdc)

FIGURE 16 - STORAGE TIME
1000

6.0

600

U

4.0

/

1.0

....9li!

i--"" ....

0«

::c
<>
C

'"....cz:

0.6

0....

0.:4

5.0

10

20

r-

2N2955

r- 2N2956 -- - - -

...6~

2N2957---

20.0

/'

100

~

60
40

~

-...

I

20

O. I
0.2

400

.5

/
0.1

2.0

Vee -·5V
lell, 10
TJ 25°C

....I

<>
~

0.2

1.0

FIGURE 17 - TOTAL CONTROL CHARGE

10

2.0

0.5

Po/ile

0.4 0.6

1.0

2.0

4.0 6.0

10.
0..1

10

1,,/1.. CIRCUIT DRIVE RATIO.

0..2

0..4 0.6

1.0

2.0

I" BASE CURRENT (mAdc)

2-390

4.0. 6.0

10.

2N2958 (SILICON)
2N2959
2N3115
2N3116
NPN silicon annular Star transistors for high- speed
"switching and amplifier applications.

CASE 22
(TO·18)

2N2958
2N2959

2N3115
2N3116

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

~~~;~~
(TO·S)

2N311S
2N3ll6
(TO·1S)

Unit

Collector-Base Voltage

VCB

60

60

Vdc

Collector-Emitter Voltage

VCEO

20

20

Vdc

Emitter-Base Voltage

VEB

5.0

5.0

Vdc

Collector-Current

IC

Total Device Dissipation
25°C Case Temperature
Derate above 25°C

PD

Total Device Dissipation
25°C Ambient Temperature
Derate above 25°C

PD

Junction Temperature Range

TJ

-65 to +175

°c

Storage Temperature Range

Tstg

-65 to +200

°c

600

mAdc

20

1.8
12

watts
mW/oC

0.6
4.00

0.4
2.67

watts
mW/OC

3.0

2-391

600

2N2958, 2N2959, 2N3115, 2N3116 (Continued)
ELECTRICAL CHARACTERISTICS(TA = 25°C unless otherwise noted.

Symbol

Min

Max

Collector Cutoff Current
(VCS = 50 Vdc, IE = 0)
(V CS = 50 Vdc, IE = 0, TA = 150oC)
Collector Cutoff Current
(VCE = 30 Vdc, VSE = 0.5 Vdc)
Sase Cutoff Current
(VCE = 30 Vdc, VSE = 0.5 Vdc)

leBO

---

0.025
IS

---

.050

---

.050

Collector-Sase Sreakdown Voltage
(IC = 10 !lAdc, IE = 0)

SVCSO

Collector-Emitter Sreakdown Voltage III
(Ic = 10 mAde, pulsed, IS = 0)

SVCEO

Emitter-Sase Sreakdown Voltage
(IE = 10 !lAde, Ie = 0)

SV ESO

Collector Saturation Voltage (1)
(Ic = 150 mAdc, IS = 15 mAde)

Characteristic

--IcEX
ISL

20

)J.

JoL-Adc

-------

VCE (sat)

---

0.5

Sase-Emitter Saturation Voltage (1J
(IC = 150 mAde, IS = 15 mAdc)

VSE (sat)

---

1.3

DC Forward Current Transfer Ratio
(Ie = 150 mAde, 2N2958, 2N3115
2N2959, 2N3116
VCE = 10 Vdc)
Common-Sase Open Circuit OUtput Capacitance
(VCS = 10 V, IE = 0, f = 100kHz)

hFE

40
100

120
300

---

B.O

---

20

-----

75
300

---

200

250

---

Delay Time
(Vce = 30 V, ICS

=

Rise Time
(VCC = 30 V, ICS

=

150 mA, lSI
150 mA, lSI

= 150

=

15 mA)

= 15

mA)

=

15 mAo

Fall Time
(V CC = 6 V, les = 150 mA, lSI =
IS2 = 15 rnA)

15 mA,

mA, lSI

~

300

/loS,

duty cycle

td
tr
ts

~

Current Gain-Sandwidth Product
(IC = 20 rnA, VCE = 20 V, f = 100MHz)
PULSE TEST: Pulse width

Cob

iT
~

2%

2N2972thru 2N2979
For Specifications, See 2N2913 Data.

2-392

Adc

}J-Adc

5.0

Storage Time
(VCC = 6 V, les
IS2 = 15 mA)

f1I

60

Unit

Vdc
Vdc
Vdc
Vdc
Vdc

--pF

ns
ns
ns

ns

MHz

2N3009 (SILICON)
2N3013
2N3013JAN AVAILABLE
2N3014
NPN silicon epitaxial switching transistors designed
for high-speed, medium-power saturated switching
applications

MAXIMUM RATINGS

Rating

CASE 27
Collector Connected to Case

Value

Symbol

Collector-Emitter Voltage2N3009, 2N3013
2N3014

(TO·52)

VCEO *

Unit
Vdc

15
20

Collector-Emitter Voltage

V CES

40

Vdc

Collector-Base Voltage

V CB

40

Ydc

Emitter-Base Voltage

Y EB

2N3009
2N3013. 2N3014
Collector Current - Continuous

Vdc
4,0
5.0
200

IC

(lOlls pulse) Peak

Total Device DiSSiPation@TA • 25'C
Derate above 25' C

PD

Total Device DiSSipation@T C • 25' C

PD

@T C

0.36

= 100'C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

*

mAdc

500
Watt

2.06

mW/'C

1.20

Watts

0.68

Watt

6.85

mW/'C
·C

-65 to +200

T J , Tstg

Applicable from 0.01 mA to 10 mA (Pulsed)

FIGURE 1 - TURN·ON AND TURN·OFF TIME TEST CIRCUIT
VBB
V

0•.1

in

Zin = 50 ~

Type

Test

2N3009
2N30l3

t on & toff

2N3014

I

TO SAMPLING
SCOPE
Input Z '" 100 kn

Rl

/IF

~t-3....""R",4-+-£..

SWITCHING TEST CIRCUIT VALUES
V.
V BB
R2
Rl
R3
VCC
In
(ohms)
(volts)
11
7.0
-13

ton
toff

15
2.0
2.0

-5.0
GND
7.0

300

50

100

62

75

R4

t

INPUT PULb"'E
t f Pulse Width
r
(nanoseconds)

170 <1. 0 <1.0

-

100 2.0 k <1.0

>100
>200

FIGURE 2 - CHARGE STORAGE TIME CONSTANT TEST CIRCUIT

o, L
-

-1o_,

0

• llL

F"A"

890

_r----'w.--.--;Ir-'WI.~~)Vout

Vin l07..,...,t--+-..,.,,-+t..

=-

"'--f"""-:-::;;;:l:::i
OTO

V in

T

Pulse Generator
Rise Time = 1 ns

V.

To Oscilloscope S
Input Impedance = 50
Rise Time == 1 ns

10 V

In

Source Impedance = 50 n
Vin Rise Time less than 1 ns

PW

2-393

==

300 ns

Duty Cycle" 2%

at point "A"
V

n

out

2N3009, 2N3013, 2N3014

(continued)

ELECTRICAL CHARACTERISTICS (T A : 25" C uiliess otherwise Ilokd)

Characteristic

Symbol

Min

Max

15
20

-

Unit

OFF CHARACTERISTICS
Collector-E mittel' Sustaining Voltage (11

(I C c 10 mAde, IB c 0)

2N3009, 2N3013
2N3014

BV CEO(sus)

Collector-Emitter Breakdown Voltage
(IC c 100 pAde, V BE cO)

BV CES

Collector-Base Breakdown Voltage
(IC c 100 jlAde, IE cO)

BV CBO

Emitter-Base Breakdown Voltage
(IE c 100 pAde, IC cO)

2N3009
2N3013, 2N3014

Collector-Cutoff Current
(V CE c 20 Vde, V BE cO)
(V CE c 20 Vdc, V BE cO, TA = +85°C)

(V CE c 20 Vde, V BE cO)
(V CE c20Vde, V BE =0, TA = +125°C)
Base Current
(V CE c 20 Vde, VBE c 0)

ON CHARACTERISTICS

= 10

mAde, VCE

ICES

Vdc
40

40

Vde
4,0
5.0

2N3013, 2N3014
2N3013, 2N3014

-

40

-

0.5
0.3

IB

All Types

hFE

120

25

2N3009, 2N3013

25

12

-

-

0.18

2N3014
= 1. 0 Vde)
2N3009, 2N3013
= 300 mAde, VCE = 1. 0 Vde)
= 30 mAde, VCE cO. 4 Vde, TA = _55°C) 2N3013, 2N3014

25
15

Collector-Emitter Saturation Voltage
(IC = 30 mAde, IB = 3.0 mAde)

All Types

(IC c 100 mAde, IB c 10 mAde)

2N3009, 2N3013

= 10 mAde)

2N3014

(IC c 300 mAde, IB c 30 mAde)

2N3009, 2N3013

(IC
(IC

= 10 mAde, IB = 1. 0 mAde)
= 30 mAde, IB = 3.0 mAde, T A = +85° C)
= 30 mAde, IB c 3.0 mAde, T A c +125°C) 2N3013,

Base-Emitter Saturation Voltage'
(IC = 30 mAde, IB = 3.0 mAde)

(I C

= 10 mAde,

= 10
= 30

VCE(sat)

2N3014
2N3009
2N3014

All Types

mAde)

All TYPeS

mAde)

2N3009, 2N3013

IB c 1. 0 mAde)

2N3014

(lC c 100 mAde, IB
(IC c 300 mAde, IB

/lAde

30

(IC

(IC

15
0.3

2N3014

=O. 4 Vde)

(IC : 100 mAde, V CE

(IC c 100 mAde, IB

jlAde
0.5

2N3009

Vde

(1)

(IC c 100 mAde, VCE c O. 5 Vde)

(IC

-

-

2N3009

2N3009
2N3013, 2N3014

DC Current Gain
(IC c 30 mAde, VCE cO. 4 Vde)

{IC

BV EBO

Vdc

V BE(sat)

Vde

-

0.28

0.75

0.95

-

1. 20

0.70

0.80

350

-

-

5.0

-

8.0

0.35
0.50
0.18
0.30
0.25
Vde

1. 70

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(IC c 30 mAde, VCE

Output Capacitance
(V CB c 5.0 Vde, IE

= 10 Vde,

I

IT

= 100 MHz)

= 0,

f c 140 kHz)

= 0,

Ie 140 kHz)

Cob

pF

C 1b

Input Capacitance

(V BE c 0.5 Vde, IC

Turn-On Time (Figure 1)
(VEB(o!!) c 5.0 V, VCC c 15 V, IC c .300 mAde, IBI ~.30 mAde)
2N3009, 2N3013
(VEB(o!!) = 0, VCC c 2.0 V, IC c 30 mAde, IBI ~ 3. 0 mAde)

t

= 30

pF

ns

on

2N3014
Turn-Off Time (Figure 1)
(V CC c 15 V, IC c 300 mAde, IBI ~ IB2 ~30 mAde)

(V CC c 2. 0 V, IC

MHz

-

15

-

16
ns

toff

2N3009, 2N3013
mAde, IBI ~ IB2 ~3. 0 mAde) 2N3014
t

Charge-Storage Time (Figure 2)
(IC ~ IBI ~ IB2 ~ 10 mAde)
(II Pulse Test: Pulse Width c 300 ps: Duty Cycle ~ 2%.

2-394

s

-

25

-

18

25
ns

2N3010 (SILICON)

NPN silicon low-power transistor primarily designed for high-speed, saturated switching applications.
CASE 22
(TO-18)

Collector connected to case

MAXIMUM RATINGS

Symbol

Value

Collector-Emitter Voltage*

VCEO *

6.0

Vdc

Collector-Emitter Voltage

VCES

11

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

4_0

Vdc

Collector Current - Continuous

IC

50

mAdc

Total Device Dissipation @T A = 25°C

PD

0.30

Watt

1.71

mW/oC
°c

Rating

Derate above 25° C
Operating and Storage Junction
Temperature Range

TJ , T

stg

Unit

-65 to +200

* Applicable from 0.01 mAdc to 10 mAdc (Pulsed).

FIGURE 2 - CHARGE·STORAGE TIME
TEST CIRCUIT

FIGURE 1 - TURN-ON AND TURN·OFF
TIME TEST CIRCUIT
Vee = +1.0 V

+3.0

TO OSCILLOSCOPE
RISE TIME = 0.4 ns
50 INPUT Z 50n

RTSE TIME < 1.0 ns
OUTPUT Z = 50n
PULSE WIDTH"" 200 ns

0

~Vout

+5.2 V

0.1 /.iF

v
50

~

O. I MF
taff
V BB =+5.0V

V.

m

=

-4.0 V

RISE TIME < 1.0 ns
OUTPUT Z = 50n
PULSE WIDTH = 200 ns

2-395

TO OSCILLOSCOPE
RISE TIME = O. 4 ns
INPUT Z = 50n

2N3010

(continued)

ELECTRICAL CHARACTERISTICS

(T,

= 25'C ""$$ o'h, ... ,,, oo'eO)

Characteristic

Symbol

OFF CHARACTERISTICS
Coll~ctor-Emitter

(I C

~10

Sustaining Voltagel1)
mAde, IB = 0)

BV CEO(sus)

Collector-Emitter Breakdown Voltage
(IC = 10 /lAde, VBE = 0)

BV CES

Collector-Base Breakdown Voltage
(IC = 10 /lAdc, IE" 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 /lAdc, IC " 0)

BV EBO

Collector Cutoff Current
(V CE =11 Vde, VBE =0)
(V CE = 5.0 Vdc, VBE = 0)

ICES

.

Min

Max

6.0

-

11

-

15

-

4.0

.
0.1
5.0

-

10

15

-

(IC = 10 mAde, VCE = O. 4 Vde)

25

125

(IC = 30 mAde, VCE = 0.4 Vde)

15

.

IBL

Vde
Vdc
/lAde

-

Base Cutoff Current
(V CE " 11 Vdc, VEB(off) = 0)

Vdc
Vdc

-

(V CE " 5.0 Vde, VBE "0, T A " +85 0 C)

Unit

10

/lAde

ON CHARACTERISTICS 111
DC Current Gain"
(I C = 1.0 mAde, VCE = 0.4 Vdc)

hFE

Collector-Emitter Saturation Voltage
(Ic " 1. 0 mAde, IB " 0.1 mAde)

VCE(sat)

Vde

(IC = 10 mAde, IB = 1. 0 mAde)

.
-

(IC = 30 mAde, IB = 3.0 mAde)

-

0.38

(IC = 10 mAde, IB = 1. 0 mAde, T A = 85 0 C)

-

0.4

0.68

0.85

(IC = 10 mAde, IB " 1.0 mAde)

0.75

0.95

(Ic = 30 mAde, IB = 3.0 mAde)

-

1.3

600

-

-

3.0

-

2.0

V

Base-Emitter Saturation Voltage
(IC = 1. 0 mAde, IB = O. 1 mAde)

.
BE(sat)

-

0.25
0.25

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(I C = 10 mAde, VCE = 4.0 Vdc, f = 100 MHz)

fT

Output Capacitance
(V CB = 5.0 Vde, IE = 0, f = 140 kHz)

Cob

Input Capacitance
(V BE " O. 5 Vde, IC " 0, f = 140 kHz)

Cib

Time (Figure 1)
(V CC "1.0 Vdc, VBE(off) = 1. 0 Vdc, IC ,,10 mAdc,

t

Turn~On

toff

=1. 0 mAde)

Charge Storage Time (Figure 2)
(IC "IBI = lB2 " 5.0 mAde)

t

01 Pulse Test: Pulse Length = 300 /lS; Duty Cycle ~ 2.0%.

2-396

pF
pF
ns

on

IBI = 2.0 mAde)
Turn·Off Time (Figure 1)
(V CC = 1. 0 Vdc, IC = 10 mAdc, 1m = IB2

s

MHz

-

12

-

12

-

6.0

ns
ns

2N30

11 (SILICON)

NPN silicon low-power transistor primarily designed for high-speed, saturated switching applications.

CASE 22
(TO·1S)

ColI.ector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage*

VCEO *

12

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

V EB

5.0

Vdc

Collector-Current-Continuous

IC

200

Peak (10 J.1.s Pulse)

mAdc

500

Total Device Dissipation @ TA =25°C

PD

De rate above 25°C
Total Device Dissipation @ T C =25°C
T =100°C
C
Derate above 25°C

PD

Operating and Storage Junction
Temperature Range

T J' Tstg

0.36

Watt

2.06

mW/oC

1. 20

Watt

0.68
6.85

mW/oC

-65 to
+200

°c

* Applicable from 0.01 rnA to 10 rnA (Pulsed)

FIGURE 1 - CHARGE·STORAGE TIME TEST CIRCUIT
"A"

.1:=-UYin
V. Rise Time'" 1. 0 ns
10

Source Impedance =

son

890

0.1 /IF 1.0k

500

56
+

ltV

----I----....----~

Yin Rise Time less than 1. 0 ns '----..--......
PW z 300 ns
Duty Cycle", 2. 0%

2-397

To Sampling Oscilloscope
Input Impedance =50n
Rise Time", 1. 0 ns

2N3011

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 2S"C unless otherwise noted)

Characteristic

Min

Max

12

-

30

-

30

-

5.0

-

-

0.4

-

10

-

0.4

30

120

(IC = 30 mAde, VCE = 0.4 Vde)

25

-

(IC = 100 mAde, VCE = 1. 0 Vde)

12

-

-

0.20

-

0.25

0.72

0.87

-

1.15

400

-

-

4.0

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(IC = 10 mAde, IB = 0)

Vde

BVCEO(sus)

Collector-Emitter Breakdown Voltage
(IC = 10 /lAde, VBE = 0)

BV CES

Collector-Base Breakdown Voltage
(IC = 10 /lAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 100 /lAde, IC = 0)

BV EBO

Collector Cutoff Current
(V CE = 20 Vde, VBE = 0)

ICES

(V CE = 20 Vde, VBE = 0, T A = +85° C)
Base Cutoff Current
(V CE =20Vde, VBE =0)

IBL

Vde
Vde
Vde
/lAde

/lAde

ON CHARACTERISTICS 111
DC Current Gain
(IC = 10 mAde, VCE = 0.35 Vde)

hFE

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VCE(.at)

(IC = 30 mAde, IB = 3.0 mAde)
(IC = 100 mAde, IB = 10 mAde)
(IC = 10 mAde, IB = 1. 0 mAde, T A = +85°C)
Base-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)

-

Vde

0.50
0.30
Vde

VBE(sat)

(IC = 30 mAde, IB = 3. 0 mAde)
(IC = 100 mAde, IB = 10 mAde)

1. 60

DYNAMIC CHARACTERISTICS
MHz

Current-Gain-Bandwidth Product
(IC = 20 mAdc, VCE = 10 Vde, f = 100 MHz)

fT

Output Capacitance
(V CB = 5.0 Vde, ~ = 0, f = 140 kHz)

Cob

Turn-On Time (Figure 2)
(V CC = 2.0 Vde, VEB(off) = 0, IC ~ 30 mAde, IBI ~ 3.0 mAde)

t

on

-

15

Turn-Off Time (Figure 2)
(V CC = 2.0 Vde, IC = 30 mAdc, IBI

toff

-

20

-

13

~

-I B2 ~ 3.0 mAde)

Charge Storage Time (Figure 1)
(IC = IBI ~ -IB2 ~ 10 mAde)

t

pF
ns
ns
ns

s

111 Pulse Test: Pulse Length = 300 /lS, Duty Cycle ~ 2.0"6.

FIGURE 2 - TURN-ON AND TURN-OFF TIME TEST CIRCUIT
VCC

100

2.0 k
Rise Time < 1. 0 no
Pulse Width > 200 no
Zin = 500

a

2.0 V

I"

To Oscilloscope
Rise Time < 1. 0 no
Input R ~ 100 k

100

Ton: VBB Grounded

Toff VBB =7.0V

Vln -7.0V

Vln

2-398

= -13

V

2N

30 12 (SILICON)

PNPSILICON
SWITCHING
TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR

· .. designed for use in medium-speed saturated switch ing appl ications.
•

Collector-Emitter Sustaining Voltage VCEO(sus) = 12Vdc@llc=10mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.15 Vdc@lIC= 10 mAdc

!
0.209

017B

iU9S

*MAXIMUM RATINGS

1 rno

DIA1[

OIA

r
L&f,o
I

Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VeEO

12

Vde

Collector-Sase Voltage

Ves

12

Vde

Emitter-Base Voltage

VES

4.0

Vde

Collector Current - Continuous

Ie

200

mAde

Total Device Dissipation @TA = 25°C
Derate above 25°C

Po

0.36
2.06

Watts
mWloe

Total Device Dissipation @Te= 25°C
Derate above 25°C

Po

1.2
6.S5

Watts

wloe

TJ,Tstg

-65 to +200

°e

Operating and Storage Junction

i

0.500

&.m D"

J

Pin 1. Emitter
2. Base
a.Collector

0.100

Temperature Range
0.028

IIJRIj

Collector Connected to Case

CASE 22 (1)
TO-IS
*lndlc8te. JEOEC Registered Oate.

2-399

2N3012 (continued)

-ELECTRICAL CHARACTERISTICS IT A = 25 0 C unless otherwise noted)

I

Symbol

Min·

Max

Unit

VCEO(sus)

12

-

Vde

Collector-Emitter Breakdown Voltage
(lC = lO"Ade, VBE = 0)

BVCES

12

-

Vde

Collector-Base Braakdown Voltage
(lC = 10 "Ade, IE = 0)

BVCBO

12

-

Vde

Emitter-Base Braakdown Voltage
(IE = 100 "Ade, IC = 0)

BVEBO

4.0

-

Vde

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(l)
(lC = 10 mAde, IB = 0)
(Emitter-Base Termination - Open Base)

Collector Cutoff Current
(VCE = 6.0 Vde, VBE = 0)

ICES

(VCE = 6.0 Vde, VBE = 0, T A =

+850

C)

Base Current
(VCE = 6.0 Vde, VBE = 0)

IB

-

80

nAde

-

5.0

"Ade

-

30

nAde

-

ON CHARACTERISTICS
DC Currant Gain(l)
(lC = 10 mAde, VCE = 0.3 Vde)

-

hFE
25

-

30

120

20

-

-

0.15

-

0.2

0.78

0.98

(lC = 30 mAde,lB = 3.0 mAde)

0.85

1.2

(lC = 100 mAde, IB = 10 mAde)

-

1.7

(lC = 30 mAde, VCE

=0.5 Vde)

(lr. = 100 mAde, VCE = 1.0 Vde)
Collector-Emittar Saturation Voltage(l)
(lC = 10 mAde,lB = 1.0 mAde)
(lC = 30 mAde,lB = 3.0 mAde)
(I C = 30 mAde, I B = 3.0 mAde, T A = +850 C)
(lC

Vde

VCE(setl

= 100 mAde, IB = 10 mAde)

Base-Emitter Saturation Voltage(l)
(lC = 10 mAde,lB = 1.0 mAde)

0.4
0.5
Vde

VBE(..t)

SMALL"SIGNAL CHARACTERISTICS
Output Capacitance
(VCB = 5.0 Vde, IE = 0, f = 140 kHz)

Cob

-

6.0

pF

Input Capecitanee
(VEB = 0.5 Vde, IC = 0, f = 140 kHz)

Cib

-

6.0

pF

Small-Signal Current Gain
(lr. = 30 mAde, VCE = 10 Vde, f = 100 MHz)

hfe

4.0

-

-

Turn-On Time

(VCC = 2.0 Vde, IC",,30 mAde, IB1",,1.5 mAde)

ton

-

60

ns

Turn-Off Time

(VCC= 2.0Vde, IC""30mAde, IBl = IB2",,1.5 mAde)

toff

-

75

ns

SWITCHING CHARACTERISTICS

.

(See Figure 1)

Indicates JEDEC Registered Data.

(1)Pulse Test:

P~lse Width ~

300 "S, Duty Cycle

= 1.0%.

FIGURE 1 - TURN-ON AND TURN-OFF TIME TEST CIRCUIT

-2.0 V

VBB

Notes:
(1) Collector Current~30 rnA

62

Pulse Source
Rise Time < 1.0 ns
Pulse Width> 200 ns
Zin =50 Ohms
Vin

(2) Turn On and Turn Off Base Currents ~1.5 rnA

100

T-1-.. .

Vout

0.1

_-'II
2.Vklr-+-r

o

To Sampling Scope
Input R;;. 100 k Ohms

":"

Rise Time < 1.0 ns

2-400

(3) ton

VBB = +3.0 V

Vln = -7.0 V

toff

VBB - -4.0 V

Vln = +6.0 V

2N3013
2N3014
For Specifications, See 2N3009 Data.

2N30 15 (SILICON)
NPN silicon annular transistor designed for highspeed, medium-power saturated switching applications.

CASE 31
(T0·5)

Collector connected to case

MAXI MUM RATI NGS

ITA = 25°C unless otherwise noted)

Symbol

Value

Unit

VCEO*

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

V EB

5.0

Vdc

Total Device DisSipation @ T A ~ 25°C
Derate above 25°C

PD

800
4.6

mW
mW/oC

= 25°C

PD

3.0

Watts

17.2

mW/oC

-65 to+ 200

°c

Rating
Collector-Emitter Voltage*

Total Device Dissipation @ TC
Derate above 25°C
Operating and storage Junction
Temperature Range

TJ' Tstg

*Applicable from 1.0 rnA to 30 rnA (Pulsed)

2-401

2N3015

(continued)

ELECTRICAL CHARACTERISTICS (T A

I

= 25°C unless otherwise

noted)

Symbol

Characteristic

Min

Unit

Max

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage·
(IC = 30 mAde, IB = 0)

BVCEO(sus)"

Collector-Base Breakdown Voltage
(Ie = 100 I'Ade, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = lOOI'Ade, Ie = 0)

BVEBO

Collector-Cutoff Current
(VCE = 30 Vde, VBE = 0)

ICES

Collector-Cutoff Current
(VCB = 30 Vde, IE = 0, T A = 125°C)

leBO

Base Leakage Current
(VCE = 30 Vdc, V BE

-

60

-

5.0

-

-

IBL
=

30

-

0)

Vde

Vde
Vde

/lAde
0.2
/lAde
200
pAde
0.2

ON CHARACTERISTICS
DC Current Gain·
(IC = 150 mAde, VCE = 10 Vde)
(IC = 300 mAde. VCE = 0.7 Vde)

hFE*

Collector-Emitter Saturation Voltage(lC = 150 mAde, IB = 15 mAde)
(IC = 500 mAde, IB = 50 mAde)

VCE(sat)"

Base-Emitter Saturation Voltage.
(IC = 150 mAde, IB = 15 mAde)
(IC = 500 mAde, ~B = 50 mAde)

VBE(sat)"

30
10

-

-

120

-

Vde

-

0.4
1.0

-

1.2
1.6

260

-

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde, f
Output Capacitance
(VCB = 10 Vde,IE

= 0, f

=

fT

= 100 MHz)

Cob

140 kHz)

Turn-On Time (Figure 1)
(VCC = 25 Vde, IC ~ 300 mAde, IBI
(VCC = 25 Vde, IC ~ 500 mAde, IBl

~
~

-

ton
30 mAde)
50 mAde)

Turn-Off Time (Figure 2)
(VCC = 25 Vde, IC = 300 mAde, IBI = IB2 = 30 mAde)
(VCC = 25 Vde, IC ~ 500 mAde, IBl = IB2 = 50 mAde)

Ioff

-

MHz

pF

8.0
ns
40
40
ns
60
60

·Pulse Test: Pulse Width = 300 Jlsi Duty Cycle 1£ 2%

FIGURE 1- TURN·ON TIME TEST CIRCUIT

FIGURE 2- TURN·OFF TIME TEST CIRCUIT

v..

+25 V
R,

100Q

200 ns

:"~
<
t,

200Q

2ns

5011

+25V

°LJTOQ
V"

OSCILLOSCOPE
t,< Ins
R" "" 100 kQ

.051'F

R,

200Q

OSCILLOSCOPE
t, < Ins
R" "" 100 kQ

200 ns

tr<2ns

Ie

-=-

R,

R,

Ie

ViII

ohms

rnA

Volts

V..
Volts

ohms

7.0

80

300

-13

10

80

11

48

500

-21

16

48

rnA

V"
Volts

300
500

2-402

30 19 (SILICON)
2N3020
2N

NPN silicon annular transistors designed for highcurrent, high-frequency amplifier applications.
CASE 31
(TO·S)

Collector connected to case

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage

Value

Unit

VCEO

80

Vdc

Collector-Base Voltage

VCB

140

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

IC

l.0

Adc

0.8
4.6

W
mWrC

5.0
28.6

W
mWrC

TJ

-65 to +200

°c

Tstg

-65 to + 200

°c

Collector Current
Total Device Dissipation @ T A
Derate above 25°C

= 25°C

PD

Total Device Dissipation @ TC
Derate above 25°C

= 25°C

PD

Operating Junction Temperature Range
Storage Temperature Range

2-403

2N3019, 2N3020

(continued)

ELECTRICAL CHARACTERISTICS

(At 2SoC unless otherwise noted)

Characteristic

Symbol

Min

Max

80

-

140

-

7.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage \11
(Ic = 30 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 100 IlAde, IE = 0)

BVCBO

Emitter-B~se

BV EBO

(IE

Breakdown Voltage
IC = 0)

= 100 IlAde,

Collector Cutoff Current
(VCB = 90 Vde, IE = 0)
(VCB = 90 Vde, IE = 0, T A

ICBO

0.010

-

10

-

0.010

50
30

100

2N3019
2N3020

90
40

120

2N3019
2N3020

100
40

300
120

= 150"C)
lEBO

Vde
Vde
IlAde

-

Emitter Cutoff Current
(V BE = 5 Vde, IC = 0)

Vde

IlAde

ON CHARACTERISTICS
DC Current Gain \11
(IC = 0.1 mAde, VCE
,

(IC

= 10 mAc,

= 10

= 10 Vde)

VeE

(IC

= 150 mAde,

VCE

= HI. Vde)

(Ie

= 150 mAde,
= 500 mAde,

VCE

(IC

= 10
= 10

(IC

= 1 Adc,

VCE

VCE

2N3019
2N3020

Vde)

Vde, TC

= -55"C)

Vde)

= 10 Vde)

= 500 mAde, IB = 50

-

2N3019

40

-

50
30

100

Both Types

15

-

-

0.2

-

0.5

-

1.1

100
80

-

-

12

-

60

80
30

400
200

-

400

-

4.0

VCE(sat)

mAde)

Base-Emitter Saturation Voltage'{l1
(Ie = 150mAde, Is = 15 mAde)

VBE(sat)

-

-

2N3019
2N3020

Collector-Emitter Saturation Voltage 111
(IC = l50mAde, IB = 15 mAde)
(IC

hFE

Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde, f = 20 MHz)
Output Capacitance
(Vcs = 10 Vde, IE

= 0,

Input Capacitance
(V BE = O. 5 Vde, IC

= O.

f

f

C ib

= 1 MHz)
= 1 kHz)

Collector-Base Time Constant
(I C = 10 mAde, V CE = 10 Vde, f

= 10 Vde,

2N3019
2N3020

= 1 kHz,

h fe

r'C
be

= 4 MHz)
f

fT

Cob

= 1 MHz)

Small-Signal Current Gain
(Ic = lmAde, VCE = 5 Vde, f

Noise Figure
(IC = 100 IlAdc, VCE

2N3019
2N3020

RS =1 kohm) 2N3019

111 Pulse Test: Pulse Width ~ 300 IlS, duty cycle ~ 1%

2-404

NF

MHz

pF
pF

ps
dB

2N3021

thru

2N3026 (SILICON)

CASE1~
~
(TO·3)

PNP silicon power transistors for Class C power amplifiers, high-current core switching and high-speed switching
and amplifier applications.

MAXIMUM RATINGS

Rating

Symbol

2N3021
2N3024

2N3022
2N3025

2N3023
2N3026

Unit

Collector-Base Voltage

VCB

30

45

60

Volts

Collector-Emitter Voltage

VCEO

30

45

60

Volts

Emitter-Base Voltage

VEB

4.0

Volts

Collector Current

Ie

3.0

Amp

Base Current

IB

Power Dissipation

PD

Junction Operating Temperature Range

TJ

2-405

0.5

Amp

25

watts

-65 to +175

OC

2N3021 thru 2N3026 (continued)
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

(VSE = 4 Vdc)
Collector-Emitter Cutoff Current
(VCE = 25 Vdc, VSE = 2 Vdc)
(VCE = 40 Vdc, VSE = 2 Vdc)
(VCE = 54 Vdc, VSE = 2 Vdc)
(VCE = IS Vdc, VSE = 2 Vdc, TC = 150°C)
(VCE = 25 Vdc, VSE = 2 Vdc, TC = 150°C)
(VCE = 35 Vde, VSE = 2 Vde, TC = 150°C)

2N3021,
2N3022,
2N3023,
2N3021,
2N3022,
2N3023,

2N3024
2N3025
2N3026
2N3024
2N3025
2N3026

(IC = 100 mAde, IS = 0)
(Ie = 50 mAde, IS = 0)
(IC = 20 mAde, IS = 0)
(IC

= 1.0 Adc,

VCE

2N3021, 2N3022, 2N3023
2N3024, 2N3025, 2N3026

Saturation Voltage
Ade, IS = 0.3 Ade)

---

VCE (sat)

2N3021, 2N3022, 2N3023
2N3024, 2N3025, 2N3026

Base-Emitter Saturation Voltage
(Ie = 3 Ade, IS = 0.3 Ade)

hte

= 30 MHz)

mAde
0.2
0.2
0.2
2.0
2.0
2;0

30
45
60

--

20
50

60
180

Vde

1.5
1.0
Vde
1.5

-

-

--

It

Vde

-

2.0

td +tr
t.

= 100 mAde)

Unit

1.0

-

VBE (sat)

Small Signal Current Gain
(Ic = 0.5 Ade, VCE = IS Vde, !
Swttchlng Times
(Ic = 1 Ade, lSI = IS2

IcEX

hFE

Co!1e~tor-Emitter

(Ie = 3

-

BVCEO•

2N3021, 2N3024
2N3022, 2N3025
2N3023, 2N3026

= 2 Vde)

Mu

mAde

lEBO

--

Collector-Emitter Breakdown Voltage-

DC Current Gain

Min

SymbDI

Characteristics
Emitter-Base CutoU Current

n.

100

3415
75

·Perform tests USing sweep method to prevent heating.

5

e
!
~

POWER· TEMPERATURE DERATING CURVE

~
i.t

mESE TRANSISTORS ARE ALSO SUBIECTTO SAFE AREA CURVES AS
~B~k'it~ BOrn LIMITS ARE APPLICABLE AND MUST BE

~
~

5

1'--.
.........

t'-..,

......

r-..........

5

~

0

75

25

115

125

TCO CASE TEMPERATURE fOe)

SAFE OPERATING AREAS
2N3021, 2N3024
10

t~O

2N3022, 2N3025

,,5
1'1

50,,5

I"\, 1,\

i"".

Ii:
::E

5

....
~

...
:=

OC'1.0

<>

0.1

BVcso

@

Ie

=> ~ "1"\ 1\

"- l"'\.

5 $

DCI

=

-

~

I

50,,5

r-... ......

\

5001'1

~<>
~

"
~ 1\1\'

5ms

::>

2N3023, 2N3026

DCP-

5 ms
500,,5

~

~

"

5ms

~

5001'1'

~

r- BVe,o

@

I

Ie

\}

~

~

~N

-

5 5

~

1\

.\

=100 mA:...;

10=

~

......

\

~

\
\

50 mA

I
BV"",

@

Ie

= 20 mA I-"

.01
10

20

30

0

10

20

30

40

50

10

20

30

40

50

60

Vee, COLLECTOR EMITTER VOLTAGE (VOLTS)

Tn~~~~e~P~fa:!r;:pe~~~~r~~-:3sd:~~i~~':le~Cth~~Ec~i~!~S ct:~o; =dha!hfo:Be~~etSh::~:r~~~!!~r ~~~~:~Yc=krsO~ ~:k!~e I~~!e c~:f~!~r;.~i::= ~::a~: are

operation below the maximum junction temperature.

2-406

2N3021 thru 2N3026

(continued)
BASE·EMITTER SATURATION VOLTAGE VARIATIONS

1.4

~
0
~
w

co

1.2

~

§;!

~.

z

0

~

1.0

or

0.8

~

f----

ie = 0.3 A

~

-- -- -~

~

.

~

-----..",..-

.-.-

f-- - I - f--

- 40°C
2Soc
--'1 ISOOC

1
0.4

i

20

,

40

60

80
100
i •• BASt CURRENT (rnA)

I

1.4
1.2

~
~

~

I

!

0.8

=>

I

I

1.0

is

or

,
I

~

"I
or

,

\

I

8~

\

I

0.4

r--. \

0.2

400

600 700

1

w

1.2

g

1.0

~

is

i

0.6

'"'

0.4

I

I
I
I

-r-

-- "--- "'"' -- ----

-

,

,

\\
\

~

,

\

1\ I'
\

\

"

,,~

""- ~~
8 10

4

--- --

--=

l~,
"'"""

r-t ic,=H

80 100

ie

Jl

l~

200

400

600

800 1000

COllECTOR CURRENT YS BASE·EMITTER VOLTAGE
6
4

I0

/

=2 V /

/

VI

in

/

!i

2

is

I

5-

A.

",/

Ve• = 2 V

~

L

: 0.6
~ 0.4

6
4

/
ISOoC /

or

I

25°C

J

t;

is o. I
~

,
0.4

0.8

1.0

1.2

1.4

ISOOC/

2SoC/

/

/-40 C
o

.06
.04
.02

0.6

I

O. 2

~

-40°C

'-'

0.2

\

10

Vet

O. I

800 1000

- - -40°C2SoC
_.- ISOoC,_

\

ie= 0.3 A

60
(rnA)

600

\

----

BASE CURRENT - VOLTAGE VARIATIONS

0

0.2

400

-i-

20
40
1•• BASE CURRENT

60
40

O. 6
O.4

I AI

200

--...::s"

...
" ~ ....I"'-

ie ,3, A

2N3024 thru 2N3026

I'
I'

\

0

I

,

1\

,
,
,
I

'.\ I

O. 2

100

40
60
80 IDa
i•• BASE CURRENT (rnA)

I

\

ie

ie - 0.3 A

20

1\

~
~

40 oC
2SOC
-·-ISOOC

,

r--I'~ ..

\

COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

0.8

=>

I

~ ~ .....

8 10

1.4

~

, _J_

I

1

I
I

f\

I

- -10-

o
~

Ii
l

I

\

0.6

:E

I

:

I
I

~

~

200

COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS. 2N3021 thru 2N3023

w

1-1;'

~

r- -----

,;

10

-

ie = 3 A

-

ie - I A

_f--

0.6

IX)

--- -- - :;::.::--

.0 I
0.2

V... BASE·EMmER VOLTAGE (VOLTS)

I

II
0.4

J
0.6

0.8

1.0

V... BASE·EMmERVOLTAGE (VOLTS)

2-407

1.2

1.4

2N3021 thru 2N3026

(continued)
CURRENT GAIN VARIATIONS, 2N3021 thni 2N3023

70

--

150'C

60

~

z

i....

!ij
..,='"
j

50

----

~
r--- r---

25'C
40
-40'C
30

20
0.1

Veo = 2 V

0.2

0.6

0.4

0.8

.Ie, COLLECTOR CURRENT (AMp)

CURRENT GAIN VARIATIONS, 2N3024 thru 2N3026
16O'

---

.150'C

140
120

z

i

I
..,

25'C

100
'

...

..

~

-4O'C

80

" "" "-

vee';' 2 V

~

60

-.......

t---

---

'.

40

20
0.1

0.2

0.6

0.4

0.8

~.'"
~"'
4

2

Ie, COLLECTOR CURRENT (AMP)

ACTIVE REGION TIME CONSTANT

RISE TIME FACTOR
2.0

i

::.•

1.8

~
~

0

1.6

'"
0

t;

...~

1.4

:E

...

..

*

I

0

I 1.11

1.0
1

6

\
\

0

\

ITJ =2S9C

\

2

8

""

1.2

8\
4

t\.

;::

'"

I

TAC,'

\

~

I

RISE TIME 10 - 90%) t, =
R
fl. = h" AT EOGE OF SATURATI N
fl. ='Ie IN SATURATION II" IBASE "ON" CURRENT)

\
\

0

:i

,I.

\

I\.Vcc =30V

6

I'.,..vcc:"'3V

V

"'\
...... ..... ~~
""t-

.....:.
1"-1"10

)

/

....

o
20

0.1

.0.4

0.6 0.8 1

Ie, COLLECTOR CURRENT (AMP)

SWITCHING. nME EQUATIONS
Using charge control theory and data given with this transistor, switching times for a wide variety of conditions
can be' readily computed.

2-,408

3

2N3021 thru 2N3026

(continued)

JUNCTION CAPACITANCE VARIATIONS

1000

800

....

60 0

~ COb

~40
0,

S

TJ - 25°C

..........
......

<.>

5is

.........

200

"

~

r-.....!'-,

~ 100
80
60
40
0.1

0.2

'" .......

0.4 0.6
4 6 8 10
REVERSE JUNCTION VOLTAGE (VOLTS)

20

40

TURN-ON TIME TEST CONDITIONS
V,. ADJUSTED TO I" USING CURRENT PROBE.
I, OF INPUT
I"

INPUT PULSE

< 10 ns

= 100 mA

SCOPE

OUTPUT PULSE

12 V

< 5 ns
12 II

V,. 0--_----

+

Vo• = - II V>--W",",--li

Ie 0

--+--'li-+----,~

I, IS MEASURED FROM 10% POINT OF V"

TURN·OFF TIME TEST CONDITIONS
INPUT PULSE

Vo• ADJUSTED TO 10 USING
CURRENT PROBE. T,
10 ns
PULSE WIDTH> 10 ~.
10= 100mA

<

+9V

v,. o---~y.---

OUTPUT PULSE
12n

+

10
V" ~

+ 9 V > - - V V ' - _.....
Ie O--+----I~II_--

-UV

I.

+3V

2-409

I,
t. IS M,EASURED FROM 90% POINT OF V"

2N3043 thru 2N3048 (SILICON)

Dual NPN silicon annular transistors designed for
low-level, low -noise differential amplifier applications.
Can be used in complementary circuits with 2N3049,
2N3050, for metal can see 2N2639-2N2644 series.

CASE 610-02

1

2

4

5

NPN

NPN

Pin Connections, Bottom View
All leads Electrically Isolated from Case

MAXIMUM RATINGS (each side)

Rating

(TA~250Cunle5Sotherwisenoted)

Symbol

Value

Unit

VCEO

45

Vdc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

30

mAdc

TJ , Tstg

-65 to +200

·C

Collector-Emitter Voltage

Collector Current
Operating and Storage Junction
Temperature Range

Side

Both
Sides

250

350

mW

1. 43

2.0

mW/"C

700

1400

mW

4.0

8.0

mW/'C

One
Total Device Dissipation @ T A

=25'C

PD

Derate above 25'C
Total Device Dissipation @ TC

=25'C

PD

Derate above 25'C

2-410

2N3043 thru 2N3048

(continued)

ELECTRICAL CHARACTERISTICS (each side)

(T A = 250C

unless otherwise noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage III
(lc • 10 mAde, ~ = 0)

BVCEO(sus)

Emitter-Base Breakdown Voltage
(IE = 10 iLAde, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 45 Vde, IE = 0)

ICBO

(VCB = 45 Vde, IE = 0, T A = +150·C)
Emitter-Base Cutoll Current
(VEB = 4 Vde, Ic = 0)

lEBO

45

-

5.0

-

-

Vde
Vde
/tAde

0.010
10
/tAde
0.010

ON CHARACTERISTICS
DC Current Gain" (1)

(lC = 10 /tAde, VCE = 5 Vde)

aN3043, aN3044, aN3045
aN3046, aN3047, aN3048

(IC = 1 mAde, VCE = 5 Vdc)

2N3043, aN3044, 2N3045
2N3046, aN3047, 2N3048

hFE

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 0.5 mAde)

VCE(sat)

Base-Emitter On Voltage
(lC = 10 mAde, VCE = 5 Vdc)

VBE(on)

100
50

300
aoo

130
65

-

-

1.0

0.6

0.8

30

-

-

8.0

-

Vde
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1 mAde, VCE = 5 Vdc, I = 20 MHz)

IT

Output Capacitance
(VCB • 5 Vde, IE = 0, I = 1 MHz)

Cob

Input Impedance
(lC = 1 mAde, VCE = 5 Vdc, 1=1 kHz)
Small-Signal Current Gain
(Ii: = 1 mAde, VCE = 5 Vdc, 1= 1 kHz)
Output Admittance
(IC = 1 mAde, VCE = 5 Vde, 1= 1 kHz)

2N3043, 2N3044, aN3045
2N3046, 2N3047, 2N3048
2N3043, 2N3044, aN3045
2N3046, aN3047, aN3048

hie

hie

h

aN3043, 2N3044, 2N3045
2N3046, 2N3047, aN3048

oe

pF
Ohms

3.2k
1. 6k

19k
13k

130
65

600
400

--

100
70

J.lmhos

dB

NF

Noise Figure
(IC = 10 J.lAde, VCE = 5 Vdc,
R" = 10k ohms, Bandwidth = 10 Hz to 15.7 kHz)

MHz

-

5.0

0.9
0.8

1.0
1.0

--

5.0

MATCHING CHARACTERISTICS
DC Current GaIn Ratio"
(Ie = 10J.lAde, VCE = 5 Vde)
Base Voltage Dlflerenttal
(lC • I0J.lAde, VCE = 5 Vde)

2N3043, 2N3046
aN3044, 2N3047
aN3043, 2N3046
2N30«, aN3047

Base Voltage Dlflerentlal Temperature Gradient
(IC = 10 /tAde, VCE = 5 Vde, T A • -55 to +125·C) 2N3043, 2N3046
2N3044, 2N3047
(11Pulse Test: Pulse Width. 300 J.lS; Duty Cycle ~ a%
"The lowest hFE reading is taken as hFEI lor this test.

2-411

hFEl/hFEa**

IVBEI - VBE2 1

A(vBEI - vBE:J
ATA

mVdc

10
J.lV;oC
10
20

2N

3053 (SILICON)
NPN silicon annular transistor designed for mediumcurrent switching and amplifier applications,
MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

CASE 31
(TO-S)

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current-Continuous

Ie

·700

mAdc

Total Device Dissipation @ TC = 25 0 C

Po

5.0

Watts

28.6

mW/oC

TJ

200

DC

Tstg

-65 to +200

°c

Derate above 25°C
Operating Junction Temperature Range
storage Temperature Range

ELECTRICAL CHARACTERISnCS CT. = 25'C "0'... _

.. _)
Symbol

Characteristic

Min

Max

Unit

-

Vdc

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage


\

f--

0

1.0

4.0

5.0

2.0

10

"APPLIES FOR Ic/IB" hFE/1

:;;

.§ +1.5

IIIII
IIIII

1.0

+1.0

~

250Cto

+0.5

~
0

~

~

-0.5

II!

>-

~ -1.0

0.02

0.04

0.1

0.1

0.6

"
0

/

1.0

1.0

--I---

/

0.4

>
>'

7

0.1
VCElsat)@ICIlB

III
0.4

.......

'-

«

-55 to 150°C

IIII

0.01

VBElsat)I@le/IB= 10

to

I~

m~~

~ -,1.5

>-. -1.0
>
 -2.5
0.004

V

w

1tn:250C- -

:>

liT
500 1000

200

TJ = 15°C

0.8

V

11500~ I IIII .-/"

8

100

7'

"eVC FOR VCElsat)

'"ffi

50

20

FIGURE 11 - "ON" VOLTAGES

FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.5

TJ = 25°C

lB. BASE CURRENT ImA)

IC. COLLECTOR CURRENT (AMP)

~ +2.0

3.0 A

0.8

"

:>

30

1

LOA

'"'"

70

~ 50

500 mA

Ic=100mA

>

I

I III

~

VCE = 4.0 Vdc

0
0.004

4.0

0.Q1

0.02

/

10

0.04

0.1

0.2

1.0

0.4

1.0

4.0

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE

FIGURE 12 - COLLECTOR CUT·OFF REGION

7

103
2

f--VCE

30 V

f:=T J -

150~C

),

......

./

1

I--VCE = 30 Vdc

"
f'..

5

IC = 10 ICES-

"

F== ~1000C
~TYPICAL ICES
f--VALUES OBTAINED
I==FROM FIGURE 11

FORWARO= ~

1== F=250C
ICES
-0.3

-0.1

-0.1

+0.1

+0.2

+0.3

+0.4

+0.5 +0.6

~

[7

-"

IC = 21CES f,--

"- ""'< "-

f

1~ I::: REVERSE

10-3
-0.4

1":

IC ~ICES

......

1'-.

102

0

10

40

60

BO

100

120

140

TJ. JUNCTION TEMPERATURE 1°C)

VBE. BASE·EMITTER VOLTAGE IVOLTS)

2-416

" "
160

180

"

200

2N3055 (SILICON)

15 AMPERE
POWER TRANSISTOR

NPN SILICON POWER TRANSISTOR

NPN SILICON
· .. designed for general-purpose, moderate speed, switching and
amplifier applications.
• DC Current Gain hFE =20-70@ IC

60 VOLTS

115 WATTS

=4.0 Adc

• Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC =4.0 Adc
• Excellent Safe Operating Area

-MAXIMUM RATINGS
Symbol

Volua

Unit

*Collector-Emltter Voltage

VCEO

60

Vde

Collector-Emitter Voltage

VCER

70

Vde

Collector-Base Voltage

VCB

100

vae

Emitter-Base Voltage

VEB

7.0

Vde

IC

16

AIle

Rating

Collector Current

Continuous

Continuous

Base Current

Total Dwice Dlsslpatlon@Tc=26o C
Derate above 260 C
Oparating and Storage Junction
Temperatura Range

IB

7.0

AIle

Po

116
0.667

Watts
WJOC

..Q;

TJ,Tstg

to +200

°c

THERMAL CHARACTERISTICS
Cheracterlstlc
Thermal Raslstance, Junction to Case
-Indicates JEDEC Registered Data.
'Motorola guarantees this value In addition to JEDEC Registered Data.

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
140

g

120

I--

~loo
z

..

f'-..

~ 80

~
'"

I

~

""""

60
40

..........

"-

"""" I'-...

~ 20
0

25

50

75

100

125

150

~
175

200

TC. CASE TEMPERATURE ('CI
Safe Area Limits are Indicated by Figure 9. 80th limits are applicable and mul't be observed.

2-417

CASE 11
(TO-3)

Collector Connected to Ca.

2N3055 (continued)

*ELECTRICAL CHARACTERISTICS (Tc

=

25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

Unit

Coliector·Emitter Sustaining Voltage (Note 11
(lC = 200 mAdc, IB = 01

VCEO(susl

60

-

Vdc

Coliector·Emitter Breakdown Voltage (Note 11
(lC = 200 mAdc, RBE = 100 Ohmsl

BVCER

70

-

Vdc

Coliector·Emitter Current
(VCE = 30 Vdc,IB = 01

ICEO

-

0.7

mAdc

Collector Cutoff Cu rrent
(VCE = 100 Vdc, VEB(offl

ICEX

-

Emitter·Base Cutoff Current
(VEB = 7.0 Vdc, IC = 01

lEBO

OFF CHARACTERISTICS

mAdc

= 1.5 Vdcl
(V CE = 100 Vdc, VE B(off) = 1.5 Vdc, T C = 1500 CI

-

5.0
30

-

5.0

20
5.0

70

1.1
8.0

VBE

-

1.8

Vdc

Small Signal Current Gain (Note 11
(VCE = 4.0 Vdc, IC = 1.0 Adc, f = 1.0 kHzl

hfe

15

120

-

Small Signal Current Gain Cutoff Frequency
(VCE = 4.0 Vdc, IC = 1.0 Adc, f = 1.0 kHzl

fae

10

-

kHz

mAdc

ON CHARACTERISTICS
DC Current Gain (Note 11
(lC = 4.0 Adc, VCE = 4.0 Vdcl
(lc = 10 Adc, VCE

= 4.0 vdcl

Coliector·Emitter Saturation Voltage (Note 11
(lC = 4.0 Adc, IB = 0.4 Adcl
(lC

= 10 Adc,

-

hFE

Vdc

VCE(satl

IB = 3.3 Adcl

Bas&-Emitter Voltage (Note 11
(lC = 4.0 Adc, VCE = 4.0 Vdcl
DYNAMIC CHARACTERISTICS

Note 1:

Pulse Wldth""300,,., Duty CycleS 2.0%.

-Indicates JEOEC Registered Data.

FIGURE 2 - BASE CURRENT·VOLTAGE VARIATIONS

1000
700
500
300
200

10
7.0

-'V

I-- YCE = 2.0 Vd.

V

SEE NOTE 1

~

i5g::
'"

<>

~

~

100
70
50

V

"'"

5.0
0::

...'"z

-"L

/. '/

3.0

5

,

1.0

<>

0.5

!}

,

3.0

0.4

0.8
V,~

VCP 2.0 Vd.
SEE NOTE 1.

25°C / !-400 C

1.2

1.6

2.0

0.1

BASE·EMITTER VOLTAGE (VOLTS)

I II

I II

I

0.2

I

I
o

II

0.3

I

2.0

I

I

t;
w
::l
., 0.7

TJ = IWCJ25 0 C/ '-40°C

10
7.0
5.0

.,'"
0:

'

II

TJ= 17SoC

<>

I

/

30

iJ

/

2.0

W

0:
0:

20

1.0

FIGURE 3 - COLLECTOR CURRENT·VOLTAGE VARIATIONS

o

I I
0.4

0.8

1.2

VIE, BASE·EMITTER VOLTAGE IVOLTSI

Note 1. Pulse Test: Pulse Width"" 200 "I, Duty Cycle "" 1.5%.

2-418

1.6

2.0

2N3055 (continued)

FIGURE 4 - COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

,

1.4

,

1.2

,

1.0 II

\I
\
\

0.4

~

:i1

.I
TJ

'\

- "-

5.0 Adc ~

o

10

~":

--- - -

30

20

50

--

'"

)

r 3.0 Adc

-- It 1.0 Adc

-70

-

,

........

1.,_

"\

--.

i"-1

I

,,\:i--

-

'. \

25°C
---- -40°C---]WC
SEE NOTE 1

'i.,

I

~

0.2

,

\

,

\

I

0.6

['

\

\

0.8

1

\

1\
\

\

"

,

\
\

I

100

200

300

500

700

1000

2000

I,. BASE CURRENT (mAl
FIGURE 5 - BASE·EMITTER SATURATION VOLTAGE VARIATIONS

1.4

- --

1.0

-

--- - -- --

0.8
0.6

-

-

;..;...

r-- = r----

- - - r--....

r--

- -- -- ---- -- - - - Il.[) 3.0 Adc

~\ 5.0 Adc

-

1.2

--

-

-

1.0 Adc

TJ

-

~

-

25°C
----40°C--IWCSEE NOTE 1 -

0.4

.1.
~

0.2

o

30

20

10

70

50

100

200

500

300

700

2000

1000

I" BASE CURRENT (mAl
FIGURE 6 - COLLECTOR CURRENT versus
BASE·EMITTER VOLTAGE

FIGURE 7 - COLLECTOR CURRENT versus
BASE·EMITTER RESISTANCE

100

10
7.0
5.0

1

3.0

~

2.0

~
::>

1.0

~

'-'

:='"

g
'-'

.!J

50
30
20

I

I
VCE - VCEO -20V
SEE NOT~ 1

~

I

I

/

1

I

0.7
0.5

I

'l75°C

./

.!J

0.3
0.2
0.1
-0.6

TJ

~

100°C

./

-0.2

5.0

3.0
2.0

II

1.0

r::

IWC

TJ

0.5
0.3
0.2

REVERSE- !-+FORWARD
-0.4

,/

10

0.2

0.4

I

0.1
1.0

10

VCE ~ VCEO -20V

1IIIi~ENnl;~

100°C
100

1000

10,000

R", EXTERNAL BASE-EMITTER RESISTANCE {OHMSI

V", BASE·EMITTER VOLTAGE IVOLTS)

2-419

100,000

2N3055 (continued)

FIGURE 8 - CURRENT GAIN VARIATIONS
-

125

TJ

~

75

175"C

1--

100

z

I

I

~

~

-"

~

-r--r--.

+-- I--25"C

K

L--- I -

ffi

~
1

I---

50

1-"1-

...........

l..---

hF_Ie-leae
E---I, ~ lese

~i

VCE· 2.0 Vdc

t---

"'"

~ ."-

40"C

~
25

---

..........

.::::::

~~t--

--o
om

0.02

0.05

0.03

0.07

0.1

0.2

0.3

LO

0.7

0.5

2.0

3.0

5.0

7.0

10

Ie. COLLECTOR CURRENT (AMP)

FIGURE 9 - ACTIVE-REGION SAFE OPERATING AREA

20

t--

ii: 10

~

t-

iii
~

-- 50",
250", 500

5.0

",_f-

3.0

~ 2.0 f--

lOms

TJ =200·C

K" i'\ ~

--.:-

j-dC )
I.
.1 ..
t;
Secondary Breakdown limited
~ 1.0
F _. _. Bonding Wire limited
Te = 25 0 C
8 ~ - - - Thermal limitations
~ 0.5
Pulse Duty Cycle';; 10%
~
Applicable For Rated BVCEO
0.3
0.2
20
6.0
10
3.0
o'"

I---

<-

\"

t=--

The Safe Operating Area Curves indicate I C~V CE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions,

"'
"\

30

60

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 10 - TYPICAL SWITCHING TIMES

-"i

~

0.7

.... ,

.
~

.........

0.3

100
1.0W

........

....;.
h;- ~~

•

-g.ov 1......""---1..-4.8,,
~

~
::l 0.5
>=
~

TEST CIRCUIT

',"-30'~VESHAPE

-g.ovLJ

1.0

'"z
;;

10--

'I~

1.5

-

1'-...

i.:-::

,.-

1-

-Urns

T

I
I

IC = 5.0 Adc. 181 = IB2 = 0.5 Adc
f"" 150 Hz DUTY CYCLE"" 2.0%

+30 V

ATPOINTA

-1

20
1.0W

t-

~f..::

900

100
Hg RELAYS

0.2

1

-=- -9.0 V

Illill2
0.1

0.1

0.2

2.0
0.5 0.7 1.0
0.3
IC. COLLECTOR CURRENT lAMP)

3.0

100
-4,0 V

5.0

2-420

2N3072 (SILICON)
2N3073

PNP SILICON
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS
. designed for medium·speed, industrial switching applications.
•

Choice of Package and Power Ratings

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 50 mAdc

•

High Small,Signal Current Gain hfe = 180 (Max) @ IC = 10 mAdc

f!I

*MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Symbol

2N3072

2N3073

Unit

VeEO

60

Vdc

Coliector·Sa.. Voltage

Ves

60

Vdc

Emitter-Base Voltage

VES

4.0

Vdc

Collector Current - Continuous

Ie

500

mAde

Total Device Dissipation@TA=250e
Derate above 25°C

Po

800
4.56

360
2.06

mW
mW/oe

Total Device Dissipation @Te=250e

Po

3.0
17.1

1.2
6.85

Watts
mW/oe

Derate above 2SoC
Operating and Storage Junction

-65 to +200

TJ.Tstg

°e

Temperature Range

o. j
t ~~
o:m
0.240
0'009J[
L

f

315

0:335

Imii

L

-nEAT1NG

C

0.500 0.016

O.0l9

PLANE

.
0.016

iJ]T9

STYLE 1
Pin 1. Emitter
2. Base
3. Collector

CASE 79(11

2N3072

TO·39

"'Indicates JEQEC Registered Data.

1

FIGURE 1 - TURN·ON AND TURN·OFF SWITCH I NG TIMES TEST CI RCUIT

-30 V

+4.0 V

30
330
68
PULSE GENERATOR

140

Vin~:U-

~UlA11

!I

~rDlA

!

L
I *0

4
j
0

0.500

mUlA

STYLE 1
Pin 1. Emitter

TO SAMPLING
OSCILLOSCOPE

2. Base
J. Collector
0.100

500pF

tr,tf~6.0ns

tr<1.0ns

pw. 0.5",

lin ;a. 0.1 Megohm

0.028
~

Zin=50n
Collector Connected to Case
2N3073

CASE 22( 11

TO·18

2-421

2N3072, 2N3073 (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted}

I

Characteristic

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage(l)
(lC = 30 mAde, IB = 0)

BVCEO

60

-

Vde

Collector-Base Breakdown Voltage

BVCBO

60

-

Vde

BVEBO

4_0

-

Vde

-

10

nAde

-

10

/lAde

-

100

/lAde

10

nAde

OFF CHARACTERISTICS

(lC = 100/lAde, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 100/lAde, IC = 0)
Collector Cutoff Current

ICES

(VCE = 30 Vde, VBE = 0)
(VCE

= 30 Vde, VBE

= 0, TA = 1250 C)

Emitter Cutoff Current
(VEB = 4_0 Vde, IC = 0)

lEBO

Base Current
(VCE : 30 Vde, VBE : 0)

IB

-

ON CHARACTERISTICS
DC Current Gainll)
(lC: 50 mAde, VCE : 1.0 Vde)

-

hFE

(lC: 50 mAde, VCE : 1.0 Vde, T A: -55 0 C)
(I C : 300 mAde, V CE : 2.0 Vde)
Collector-Emitter Saturation Voltage

30

130

12
15

Vde

VCE(satl

(lc = 50 mAde, IB = 2.5 mAde)
(lc = 300 mAde, IB : 30 mAde)
Base-Emitter Saturation Voltage

-

0.25

-

1.2

1.0
Vde

VBE(satl

(lc = 50 mAde, I B = 2.5 mAde)

-

2.0

VBE(on)

-

1.2

Vde

fT

130

-

MHz

Output Capacitance
(VCB = 10 Vde, IE : 0, f: 140 kHz)

Cob

-

10

pF

I nput Impedance
(lC: 10 mAde, VCE = 10Vde,f= 1.0 kHz)

hie

-

1.5

k ohms

Voltage Feedback Ratio
(lC= 10 mAde, VCE = 10Vde,f= 1.0kHz)

hre

-

26

X 10-4

Small-Signal Current Gain
(lC: 10 mAde, VCE = 10 Vde, f : 1.0 kHz)

hfe

25

180

-

Output Admittance
(IC: 10 mAde, VCE = 10 Vde, f : 1.0 kHz)

hoe

-

1200

/lmhos

Turn-On Time
(I C ",,300 mAde, 181",,30 mAde)

ton

-

40

ns

Turn-Off Time
(lC",,3oo mAde, IB1""IB2",,30 mAde)

toff

-

100

ns

(lC: 300 mAde, IB: 30 mAdel
Base-Emitter On Voltage

(lC: 50 mAde, VCE: 1.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Produet(2)
(lC: 50 mAde, VCE = 20 Vde, f = 100 MHz)

SWITCHING CHARACTERISTICS (Figur. 1)

-Indicates JEDEC Registered Data.
(1)Pulse Test: Pulse Width = 300 Ils, Duty Cycle = 1.0%.
(2)fT is defined as the frequency at which lhfel extrapolates to unity.

2-422

2N

3081

(SIUCON)

PNP SILICON ANNULAR TRANSISTOR
· .. designed for medium-speed switching and general-purpose amplification applications in industrial service.

PNPSILICON
TRANSISTOR

• High Collector-Base Breakdown Voltage BVCBO = 70 Vdc (Min) @ IC = 10 /LAdc
•

Low Collector-Emitte'r Saturation Voltage VCE(sat) = 0.3 Vdc (Max) @ IC = 150 mAdc

*MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

50

Vde

Collector-Ba.. Voltage

VCB

70

Vde

Emitter-Base Voltage

VEB

6.0

Vde

Collector Current - Continuous

IC

600

mAde

Total Oeviee Dissipation@TA - 25°C
Derate above 25°C

Po

0.6
3.4

Watts
mW/oC

Total Device Dissipation@Tc-250C
Derate above 25°C

Po

2.0
11.5

Watts
mW/oC

Storage Temperature Range

Tstg

-65 to +200

°c

Rating
Collector-Emitter Voltage

·'ndicates JEOEC Registered Data.

~l;~DlA~
O,305 D1A

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Voo

VBB:+30V

=·rm=tI

Vee: -7.0 V

(Adjust for

VBElolI):+1.0V
~ IN3731
40

1.0 k

Generator
RiseTim ... l.0ns

itA"
1.0.F

~

1.Ok

- 15 1

Input at

Point "A"

ilLJ

Pin 1. Base
2. Emitter
3. Collector

r;:1.0""~

o~-j~~-~+15J,~
ltd, tr I

Itsl tf I

O%:

:1

~

Output

SeOPE

Inputlmpedance>1.0k
Capacitance" 5.0 pF
Rise Time "1.0 ns

51

1.5

I--

(<»-_--l~-..,.:...--I\Nv---+--+_lV")
Input

Qm

O'~fF

(~

/

0.240

4\~8~9

~

0.004

~
I

I

[Q45

CASE 3111)

I

TO-5

I

90%

Collector Connected to Case
To convert inches to millimeters multiply by 25.4.

2-423

2N3081 (continued),

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

~haracteristic

Symbol

Min

Max

Unit

VCEO(sus)

50

-

Vde

Collector-Base Breakdown Vliltage
(lC = 10 !LAde, IE = 0)

BVCBO

70

-

Vde

Emitter-Base Breakdown Voltage
(IE = 100 !LAde, IC = 0)

BVEBO

6.0

-

Vde

-

10

nAde

-

10

nAde

10

!LAde

lEBO

-

100

nAde

IB

-

10

nAde

20

-

(lC

30

90

(lC

15

-

20

-

-

0.3
1.4

VBE

-

1.1

Vde

fT

150

-

MHz

Output Capacitance
(VCB = 10 Vdc, IE = 0, f =:1.0 MHz)

Cob

-

13

pF

Input Capacitance
(VEB = 0.5 Vde, IC

Cib

-

70

pF

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage

(lC

= 10 mAde,

IB

= 0)

Collector Cutoff Current
(VCE = 35 Vde, VEB(off)

ICEV

= 0.5 Vde)

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
(VCB

= 50 Vde,

ICBO

IE = 0, TA'= 150o C)

Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)

Base Current
(VCE

= 35 Vde,

VEB(off) ~ 0.5 Vde)

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 150 mAde, VCE = O.~ Vde)

-

hFE

= 150 mAde, VCE = 10, Vde)
= 500 mAde, VCE = 2.~ Vde)
(IC = 500 mAde, VCE = 10'Vde)

Collector-Emitter Saturation Voltage(l)
(IC = 150 mAde,IB= 15 mAde)

Vde

VCE(sat)

(lC = 500 mAde, IB = 50 mAde)
Base-Emitter Voltage(l)
(lC = 150 mAde, IB = 15 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Prdduct(2)
(IC = 50 mAde, VCE = 10 Yde, f = 100 MHz)

= 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS (S.. Figure 1)

Turn·On Time
Turn-Off Time

*Indicates JEOEC Registered Data.
(1)Pulse Test: Pulse Width

S3pO /Js,

Duty Cycle"" 1.0%.

(2)fT is defined as the frequen~v at which Ihfel extrapolates to unity.

2-424

2N3114 (SILICON)

NPN silicon annular transistor designed for highvoltage, low-power video amplifier applications.

CASE 31
(TO·5)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCB

150

Vdc

VCEO

150*

Vdc

VEB

5.0

Vdc

Collector Current

IC

200

mAdc

Total Device Dissipation @ T A = 25 ° C

PD

0.8

Watt
mW/oC

Collector-Base Voltage
Collector-Emitter Voltage*
Emitter-Base Voltage

4.57

Derating Factor Above 25°C
Total Device Dissipation @ TC = 25°C
Derating Factor Above 25°C

PD

Operating Junction Temperature

TJ
Tstg

Storage Temperature Range
*Between 0 and 30 mAo

2-425

28.6

Watts
mW/oC

200

°c

5.0

-65 to

+200

°c

2N3114

(continued)

ELECTRICAL CHARACTERISTICS

ITA

=

25 0 e unless otherwise noted)

Characteristic

Symbol

Collector-Base Breakdown Voltage
(Ie = 100/LAde, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage·
(IC = 30 mAde, IB = 0)

BVCEO

Emitter-Base Breakdown Volt:ate
(IE = 100 "Ade, Ie = 0)

BVEBO

Collector Saturation Voltage·
(IC = 50 mAde,
= 5 mAde)

Min

Max

150

-

150

-

5.0

-

VCE(sat)·

-

1.0

.Base-Emitter Saturation Voltage·
(IC = 50 mAde, IB = 5 mAde)

VBE(sat)

-

0.9

DC Current Gain·
(IC = O. 1 mAde, VCE = 10 Vde)

hFE

15

-

(IC = 30 mAde, VCE = 10 Vde)

30

120

(IC = 30 mAde, VCE = 10 Vde, TA = -55·e)

12

-

.

Is

Collector Cutoff Current
(VCB = 100 Vde, IE = 0)

.

.

ICBO

-

(VCB = 100 Vde, IE = 0, T A = 150·C)
Emitter Cutoff Current
(V EB = 4 Vde, IC = 0)

lEBO

Small Signal Current Gain
(VCE = 10 Vde, Ie = 30 mAde, I = 20 MHz)

Ihlel

UII.'P.ut t:apae~~nee
(V CB = 20 Vde, IE = 0, I = 140 kHz)

10
/LAde

Cob

-

9.0

Input Capacitance
(VEB = 0.5 Vde, IC = 0, 1= 140 kHzl

C ib

-

80

Small Signal Current Gain
(Ie = 1. 0 rnA, VCE = 5 V, 1= 1 kHzl

hIe

25

-

-

30

For Specifications, See 2N2958 Data

2-426

/LAde

-

2N3115 (SILICON)
2N3116

Vde

0.010

2.0

·PW ~ 300 /Lsec, Duty Cycle tI!. 1%

Vde

Vde

0.10

Re(h ie )

Vde

Vde

-

Real Part 01 Input Impedance
(Ie = 10 rnA, VCE = 10 V, 1= 100 MHz)

Unit

pF
pF

ohms

2N3120 (SILICON)
2N3121

PNP SILICON
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS

~~;~DIAR

· .. designed for general-purpose, medium·speed switching applications.

0.315 01A
0.335

0.240
0.260

o~.
1
O'
OOO-ill'

•

Choice of Package and Power Ratings

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 50 mAdc

•

DC Current Gain Specified From 50 mAdc to 300 mAdc

II

2N3120

0.'

MiN
~

0.016 01A
0.019

Pm 1.
,.
3.

CASE 79
TO·39

l

*MAXIMUM RATINGS
Rating

Symbol

2N3120

2N3121

VCEO

45

Vdc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

Collector-Emitter Voltage

VEB

4.0

Vdc

IC

500

mAde

Total Device Dissipation @TA = 25°C

Po

Total Device Dissipation @TC = 25°C

Po

Operating and Storage Junction

T J,Tstg

iilllI
DlA

n
r

360
2.06

mW/oC

3.0

1.2
6.85

Watts
mW/oC

-65 to +200

4
0

0.500

mW

800
4.56

17.1

Derate above 25°C

0.'00

0.170

Collector Current - Continuous

Derate above 2SoC

:::: DlAll

Unit

°c

~OIA

j

2N3121

Temperature Range
Pin 1. Emitter

0.100

2. Base
3. Collector

-Indicates JEDEC Registered Data

0.028

0]48

Collector Connected to Case
CASE 22(1)

TO-IS

2-427

2N3120, 2N3121 (continued)

"ELECTRICAL CHARACTERISTICS

(T A = 25 0 C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage(l)
(lc = 30 mAde, IB = 0)

BVCEO

45

-

Vde

Collector-Base Breakdown Voltage
(lC = 100 )lAde, IE = 0)

BVCBO

45

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

Vde

OFF CHARACTERISTICS

(IE

= 100 )lAde,

IC

= 0)

Collector Cutoff Current
(VCE
(VCE

ICES

-

10

nAde

-

10

)lAde

lEBO

-

100

)lAde

IB

-

10

nAde

30

130

= 30 Vde, VBE = 0)
= 30 Vde, VBE = 0, T A = 1250 C)

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)

Base Current
(VCE = 30 Vde, VBE = 0)
ON CHARACTERISTICS
DC Current Gain(1)
(lC = 50 mAde, VCE

-

hFE

= 1.0 Vde)
(lC = 50 mAde, VCE = 1.0 Vde, T A = -55 0 C)
(lC = 300 mAde, VCE = 2.0 Vdel

Collector-Emitter Saturation Voltage

12

-

15

-

-

0.25

-

0.5

Vde

VCE(sat)

= 50 mAde, I B = 2.5 mAdcl
(lC = 300 mAde, IB = 30 mAde)
(lC = 500 mAde, IS = 50 mAdel
(I C

Base-Emitter Saturation Voltage
(lC = 50 mAde, IB = 2.5 mAde)

-

1.0

-

1.2

Vde

VSE(sat)

= 500 mAde, I B = 50 mAde)

-

2.0

VBE(on)

-

1.2

Vde

IT

130

-

MHz

Output Capacitance
(VCS = 10 Vde, IE = 0, I = 140 kHz)

Cob

-

10

pF

Input Impedance
(lC = 10 mAde, VCE

hie

-

1.5

k ohms

hr.

-

26

X 10-4

hIe

25

180

-

hoe

-

1200

J.lmhos

Turn-On Time
(lC~300 mAde, IBI ",,30 mAde)

ton

-

40

ns

Turn-Off Time
UC"",300 mAde, lSI = IS2~30 mAde)

toff

-

100

ns

(I C

Base-Emitter On Voltage
(lC = 50 mAde, VCE = 1.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product(2)
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

= 10 Vde, f = 1.0 kHz)

Voltage Feedback Ratio
(lc = 10 mAde, VCE = 10 Vde, f

= 1.0 kHz)

Small-Signal Current Gain
(lC = 10 mAde, VCE = 10 Vde, I

= 1.0 kHz)

Output Admittance
(lC

= 10 mAde,

VCE

= 10 Vde, f = 1.0 kHz)

SWITCHING CHARACTERISTICS (Figure I)

* IndIcates JEOEC Registered Data.
(1 )Pulse Test: Pulse Width'" 300 MS, Duty Cycle

=

1.0%.

(2)fT is defined as the frequency at which Ihfel extrapolates to unity_

FIGURE 1 - SWITCHING TIMES TEST CI RCUIT

o~GENErOR
Vin

=

-9.0 V

L-J

+4.0 V o--~Wlr---,

~o

~wt~ ~.~.~ns
lin"" 50

Q

15

i ,.

tr< 1.0 ns

-=

lin> 0.1 Megohm

2-428

2N3127 (GERMANIUM)
2N3127 JAN AVAILABLE

PNP germanium mesa transistor designed for industrial and commercial VHF jUHF amplifier applications.
CASE 20
(10·72)

Active Elements Isolated From Case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

20

Vdc

Collector-Emitter Voltage

VCES

25

Vdc

Collector-Base Voltage

VCB

25

Vdc

Emitter-Base Voltage

VEB

0.75

Vdc

IC

50

mAdc

Collector Current
Total Device Dissipation @ TA

= 25°C

PD

Derate above 25°C
Operating & Storage Junction Temperature

2-429

TJ, Tstg

100

mW

1.33

mW/oC

-65 to+ 100

°c

2N3127 (continued)

TABLE I - GROUP A INSPECTION

(T ...

=:

2S-C unless otherwise noted) (lTPO applies to JAN 2N3127 only)

MIL·STD·7S0
Method

Examination or Test

Symbol

Limits
Min

Max

-

-

25

-

20

-

25

-

Unit

LTPD

SUBGROUP 1

Visual and Mechanical Examination

2071

-

-

10

SUBGROUP 2

Collector-Base Breakdown Voltage
(IC = 100/lAde, IE = 0)

3001
Condition D

BV CBO

Collector-Emitter Breakdown Voltage
(IC = 2 mAde, IB = 0)

3011
Condition D

BV CEO

Collector-Emitter Breakdown Voltage
(Ic = 100 /lAde, VBE = 0)

3011
Condition C

BVCES

Collector-Base Cutoff Current
(V CB = 10 Vde, IE = 0)

3036
Condition D

ICBO

-

3.0

Emitter-Base Cutoff Current
(VBE = 0.75 Vde, IC = 0)

3061
Condition D

lEBO

-

100

20

100

VBE(sat)

-

0.6

VCE(sat)

-

0.3

20

125

400

-

C eb

-

1.2

ICBO

-

50

Vde
Vde
Vde

"Ade
5

DC Current Gain
(IC = 3 mAde, VCE = 10 Vde)

3076

Base-Emitter Saturation Voltage
(Ic = 5 mAde, IB = 1 mAde)

3066
Condition A

Collector-Emitter Saturation Voltage

3071

(IC = 5 mAde, IB = 1 mAde)

hFE

"Ade

Vde
Vde

SUBGROUP 3

Small-Signal Current Gain
(Ic = 3 mAde, VCE = 10 Vde, f = 1 kHz)

3206

Current-Gain - BandWidth Product

3261

(IC = 2 mAde, VCE = 6 Vde, f = 100 MHz)

Collector - Base Capacitance'(V CB = 10 Vde, IE = 0, f ~ 0.1

3236
~

1.0 MHz)

hre
fT

.

10

MHz
pF

SUBGROUP 4

Collector-Base Cutoff Current
(VCB = 10 Vdc, IE = 0, TA = 85°C)
DC Current Gain =t
(IC = 3 mAde, VCE = 10 Vdc, TA

3036
Condition D
3076

hFEf

Power Gain (Figure 1)
(Ie = 3 mAde, VCE = 10 Vae, RS = 50 ohms,
f = 200 MHz)

3256

Gpe

Noise Figure (Figure 1)
(IC = 3 mAde, VCE = 10 Vde, RS = 50 ohms,
f = 200 MHz)

3246

=

-55

~~

OC)

/lAde

7.0

-

17

25

-

5.0

-

SUBGROUP 5

STANDARD UNIT ONLY

Collector-Base Time Constant (Figure 2)
(Ic = 3 mAde, VCB = 10 Vde, f = 31.8 MHz)
• Measured in a guarded circuit, such that the can capacitance is not included.
f Applies to JAN unit only.

2-430

NF

I

10

dB

dB

15

2N3127 (continued)

TABLE 11- GROUP B INSPECTION - JAN 2N3127 only

Examination or Test

CT. =

"·c",..,ot"MI",,,od)

MIL·STD·7S0

Method

Symbol

limits

Unit

LTPD

Min

Max

-

-

-

-

-

-

-

-

-

-

-

-

ICBO

-

3.0

20

100

-

-

-

-

-

-

-

-

-

-

-

-

-

-

15

-

-

-

-

A.15

ICBO

-

6.0

17

125

-

-

SUBGROUP I

Physical Dimensions

2066

20

SUBGROUP 2

2026

Solderability
(Omit aging)

Temperature Cycling
(Thigh = 100:a °C)

1051
Condition B

Thermal Shock (Glass Strain)

1056
Condition A

..

Seal (Leak Rate).·

Condition C,
Procedure

10-7

atm

15

eels

mao

Condition B

for Gross
Leaks
Moisture Resistance

1021

-

End-Point Tests: (Subgroups 2, 3)

Collector-Base Cutoff Current
(V CB = 10 Vde)
DC Current Gain
(Ie = 3 mAde, VCE

= 10 Vdc)

3036
Condition D
3076

hFE

!JAde

-

SUBGROUP 3

Shock
(Non-operating; 1500 Gj 5 blows of 0.5 ms each in
Orientations Xl. YI. Y2. and Zt)
(total = 20 blows)

2016

Vibration Fatigue
(Non_operating; 20G)

2046

Vibration, Variable Frequency

2056

Constant Acceleration (Centrifugal)

2006

(20,OOOG, Orientations Xl' Y I , Y2 • and Zt)

15

End-Point Tests: Same as Subgroup 2
SUBGROUP.

Lead Fatigue

2036
Condition E

SUBGROUP S

High-Temperature Life (Non-operating)
(T slg = 1000 C)

1031

End-Point Tests: (Subgroups 5, 6)
Collector-Base Cutoff Current
(VCB = 10 Vde, IE = 0)
DC Current Gain
(IC = 3 mAdc, VCE = 10 Vde)

3036
Condition D
3076

hFE

!JAde

-

SUBGROUP 6

Steady State Operation Life
(Ic = 10 mAde, VCB = 10 Vde)

1026

End-Point Tests: Same as Subgroup 5
··Per Method 112 of M1L-STD-202

2-431

-

-

A = 15

2N3127 (continued)

TABLE III - GROUP C INSPECTION* - JAN 2N3127 only

(T,~,.·e""'",ot"~i"oot"'l

MIL·STD·750
Method

Examination or Test

Symbol

Limits
Max

Min

LTPD

Unit

SUBGROUP 1

Collector-Base Time Constant (Figure 2)
(IC· 3 mAde. V CB ~ 10 Vde, f • 31.8 MHz)

rbC e

Salt Atmosphere (Corrosion)

1041

-

3036

ICBO

ps

-

12

} 20

-

-

-

~.o

JlAde

20

100

1.0

3.5

1.25

5.0

End-Point Tests:

Collector-Base Cutoff Current
(VCB ~ 10 Vde, IE = 0)

Condition D

DC Current Gain

(IC

~

SUBGROUP

3 mAde, VCE

3076
=

10 Vde)

3216

2 mAde, VCE = 6 Vde, f

30 MHz)

~

Input Conductance

(IC

=

-

2

Output Conductance

(IC

hFE

2 mAde, VCE

3221
~

6 Vde, f

~

Re(h oe )

rumhas

mmhas

Re(Yie)

30 MHz)

)

10

:t: Group C tests shall be performed on the initial lot and every six months thereafter.

FIGURE 1- TEST CIRCUIT FOR POWER GAIN AND NOISE FIGURE

FIGURE 2- TEST CIRCUIT FOR COLLECTOR·BASE TIME CONSTANT

SHIELD

I

I
I
0.1 p.F
OUTPUT

INPUTr

HIGH IMPEDANCE
VOLTMETER

f~31.8MHZ=-

0.47 p.H

0001 Jlf

L, .
T, .

... JA. in. 10, Ij2 in. long, 5 tUrns
#20 solid copper wire, center tapped
~ rn dla, close wound, 3 turns #26
solid copper wire, 1: 1 ratio bi-filar
wound .
. . . high quality piston type capacitor.

I
=-

3.9"H

-Vee

roo""

O.I"F

O.1"F

3.9"H

NOTE: Distance from emitter of
transistor to ground side
01 bypass capacitors to
be kept minimum.

t NOTE: Ein

=

0.5 Vmeasured at set point.
(in mY) x 10

rb'C~ = EO\lt

2-432

2N3133 thru 2N 3136 (SILICON)
~

PNP silicon annular Star transistors for high-speed
\ \ switching and DC to UHF amplifier applications.

CASE 22
(TO-18)

2N3133
2N3134

2N3135
2N3136

Collector connected to case

MAXIMUM RATINGS

Symbol

Rating

~~~{34
(TO-5)

~~~~~~

Unit

(TO-18)

Collector-Base Voltage

VCB

50

50

Vdc

Collector-Emitter Voltage

VCEO

35

35

Vdc

Emitter-Base Voltage

VEB

4.0

4.0

Vdc

Collector Current

Ie

Total Device Dissipation
@250C ease Temperature
Derate Above 25°C

PD

Total Device Dissipation
@25°C Ambient Temperature
Derate Above 25°C

PD

JWlction Temperature

TJ

-65 to +200

°e

Storage Temperature

Tstg

-65 to +200

°e

6.00

600

3
17.3

mA

1.8
10.3

0.6
3.43

Watts
mW/oC

0.4
2.28

Watts
mW/oC

SWITCHING CHARACTERISTICS (At 2SoC unless otherwise noted)

Symbol

Characteristic
Turn-On Time
(Vee = 30 V,

les = 150 mA,

Turn-Off Time
(Vee = 6V, les

= 150 mA,

IBl

IBI

= 15 mA)

= IB2 = 15 mA)
2-433

Typ

Max

26

75

70

150

Unit
ns

ton

ns

toft

2N3133 thru 2N3136 (Continued)

ELECTRICAL CHARACTERISTICS ITA =2SoC unless otherwise noted)

Characteristic
Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB =30 Vdc, IE .. 0, TA

Symbol

Min Max Unit

leBO

-----

Collector Cutoff Current
(VCE = 30 V, VBE =0.5 V)

leu

Base Cutoff Current
(VCE .. 30 V, VBE

IBL

-----

= 0.5

= 150°C)

V)

"Ad(
0.05
30
"Adc:
0.1
"Adc:
0.1

Collector-Base Breakdown Voltage
(Ie = 10 "Adc, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage III
(Ie = 10 niAdc, IB = 0)

BVCEO

Emitter-Base Breakdown Voltage
(IE .. 10 "Adc, Ie = 0)

BVEBO

Collector Saturation Voltage III
(Ic == 150 mAdc, IS = 15 mAdc)

VCE (sat)

,_ ...

0.6

Base-Emitter Saturation Voltage (1)
(Ie =150 mAdc, IB = 15 mAdc)

VBE (sat)

---.

1.5

DC Forward Current Transfer Ratio
2N3133,
(IC = 1.0 mAdc, VCE = 10 Vdc)
2N3134,
(Ie = 150 mAdc, VCE = 10 Vdc) (1) 2N3133,
2N3134,

2N3135
2N3136
2N3135
2N3136

Output Capacitance

(VCB • 10 Vdc, IE
Input Capacitance
(VBE = 2 Vdc, Ie

= 0, f

= 100

= 0, f = 100

---

---

Vdc

35

---

Vdc

4.0

-------

25
50
40 120
100 300

2-434

pF

10

Cib

---

40

200

---

fT

Pulse Test: Pulse Width s 300 "s, duty cycle s 2%

Vdc

---

kHz)

MHz)

Vdc

Cob
kHz)

Current-Gain - Bandwidth Product
(Ie = 50 mAdc, VCE = 20 Vdc, f = 100
(1)

hFE

Vdc

50

pF

MHz

3137

2N
(SILICON)
MM1803

NPN silicon annular transistors for large signal VHF
and UHF applications.
CASE 31
(TO-5)

Collector connected ·to case

MAXIMUM RATINGS

Rating

Symbol

2N3137

MM1803

Units

Collector-Base Voltage

VCB

40

50

Vdc

Collector-Emitter Voltage

VCEO

20

25

Vdc

Emitter-Base Voltage

V EB

4.0

5.0

Vdc

Collector Current (Continuous)

IC

150

150

Power Dissipation
@25'C Case Temperature
@25'C Ambient Temperature

PD

Operating Junction Temperature
Storage Temperature Range

TJ ,
Tstg

Thermal Resistance
Junction to Case
Thermal ReSistance
Junction to Ambient

mAdc
Watts

2.0
0.8

'c
-65 to +200

/lJC

87.5

'C/
Watt

/I
JA

153

'C/
Watt

250 MHz POWER GAIN TEST CIRCUIT (2N3137)

250 MHz POWER GAIN TEST CIRCUIT (MM1B03)

L-J"Y,n....._...r.., Z out

=

L2

.075

I'H

(5.5 turns #16ga. ID = 3/16" length 1/2")

50

L1 = 3/4 turn No. 14 tinned wire 3/8" ID
L2 = 4 turns No. 18 tinned wire 1/4" ID 7/16" long

2-435

2N3137, MM 1803 (Continued)
ELECTRICAL CHARACTERISTICS ITA = 25 0 C unless otherwise noted)

Symbol

Characteristic
Collector-Base Breakdown Voltage
IC = O. 1mAdc, IE - 0
Collector-Emitter Open Base Sus. Voltage
IC - 15mAdc, IB = 0

2N3137
MM1803
2N3137
MM1803

VCBO

VCEO(sus)

Collector Cutoff Current
VCB- 20Vdc, IE - 0, TC - +150' C

ICBO

Collector Cutoff Current
VCB -20Vdc, ~=O

ICBO

Emitter-Base Breakdown Voltage
IE - 100jLA, IC - 0
DC CUrrent Gain
VCE - 5Vdc, IC = 50mAdc

2N3137
MM1803
2N3137
MM1803

Collector,..Emitter Saturation Voltage
IC - 50mAdc, IE - 5m'Adc

VEBO

hFE

Ihie I

Common-base Output Capacitance
V
CB - lOVdc, IC "0, f - 100kHz

Cob

Power Output

P
Pin - 100mw, f = 250MHz

Efficiency

VCE - 20Vdc

Pin - 100mw, f

Efficiency

VCE - 20V

*Pulse Width '" 300 /lS,

-.250MH~

Duty cycle - 1%

Max

Unit
Vdc

40
50
Vdc

20
25

/lAdc
50
/lAdc
.05
Vdc

4.0
5.0
20
40

120
160
Vdc
0.3

5.0
pF

3.5

2N3137

Power Output
Power Gain

Typical

VCE(sat)

Small Signal Current Gain
VCE - 10Vdc, IC .. 50mAdc,f - 100 MHz

Power Gain

Min

MM1803

400

600

Ge

6.0

7.7

dB

11

40

65

%

Pout

560

700

mWatts.

Ge

7.5

8.5

db

45

60

%

11

out

mWatts

2N3209 (SILICON)

PNP SILICON ANNULAR

TRANSISTOR

PNPSILICON
TRANSISTOR

designed for medium·speed saturated switching applications.
•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.15 Vdc (Max) @ IC = 10 mAdc

•

Low Output Capacitance Cob = 5.0 pF (Max) @ VCB

= 5.0 Vdc

• DC Current Gain Specified - 10 mAdc to 100 mAdc

*MAXIMUM RATINGS
Svmbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

20

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

200

mAde

Total Device Dissipation@TA = 2SoC

Po

360
2.06

mW
mW/oC

Po

1.2
6.85

Watts
mW/oC

T J,Tstg

-65 to +200

°c

Rating
Collector-Emitter Voltage

Derate above 2SoC
Total Device Dissipation @TC=250C

Derate above 2SoC
Operating and Storage Junction

0.209
0.230
DlA

F
~o

I ~o

Temperature Range

1

'"Indicates JEDEC Registerad Data.

0.500

m

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

J

DiA

-2.0 V

VBB

STYLE 1

100

Pin 1. Emitter
2. Base
3. Collector

62

0.050
0.100

rv

t - - - - - O Vout

0.1 MF

V;"~

Pulse Source
AiseTime<1.0ns
PW>200 ns
Zin '" 50 n

2.0k

~

100

To Sampling Scope

0.028
0.048

Input Z "'" 100 kn

Rise Time < 1.0 ns

To convert to millimeters multiply by 25.4.
All JEDEC TO-18 dimensions and notes apply.

Notes:
(1)

(2)
(3)
(4)

Collector Current"'" 30 rnA
Turn On and Turn Off Base Currents"'" 1.5 rnA
ton - VBS = +3.0 V, Vin = -7.0 V
toft - Vas = -4.0 V, Vin '" +6.0 V
Collector Connected to Case
CASE 22(1)
TO·18

2-437

2N3209 (continued)

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

VCEO(sus)

20

-

Vde

Collector-Emitter Breakdown Voltage
(le= 10/lAde, VBE =0)

BVeES

20

-

Vde

Collector-Base Breakdown Voltage
(lC = 10 /lAde, IE = 01

BVCBO

20

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage( I)
(lC = 10 mAde, IB = 0)

(IE = 100 /lAde, IC = 0)
Collector Cutoff Current
(VCE = 10 Vde, VBE = 0)

ICES

(VCE = 10 Vde, VBE = 0, TA = 125°C)

Base Cu rrent
(VCE = 10 Vde, VBE = 0)

IB

-

0.080

I'Ade

10

/lAde

80

nAde

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE = 0.3 Vde)

-

hFE
25

-

(lC = 30 mAde, VCE = 0.5 Vde)

30

120

(lc = 30 mAde, VCE = 0.5 Vde, T A = -55°C)

12

-

(lc = 100 mAde, VCE = 1.0 Vde)

15

Collector-Emitter Saturation Voltage( I)
(lC = 10 mAde, IB = 1.0 mAde)

Vde

VCE(sat)
0.15

(lc = 30 mAde, I B = 3.0 mAde)

-

(lC = 100 mAde, IB = 10 mAde)

-

0.6

0.78

0.98

(I C = 30 mAde, I B = 3.0 mAde)

0.85

1.2

(lC = 100 mAde, IB = 10 mAde)

-

1.7

IT

400

-

MHz

Output Capacitance
(VCB = 5.0 Vde, IE = 0, I = 140 kHz)

Cob

-

5.0

pF

I nput Capacitance
(VEB = 0.5 Vde, IC = 0, I = 140 kHz)

Cib

-

6.0

pF

ton

-

60

ns

toll

-

90

ns

Base-Emitter Saturation Voltage( I)
(lC = 10 mAde, IB = 1.0 mAde)

0.2

Vde

VBE(sat)

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product(2J
(lc=30mAde, VCE = 10Vde,l= 100MHz)

SWITCHING CHARACTERISTICS (Figure 11

Turn-On Time
(lC""30 mAde, IBI ",,1.5 mAdel
Turn-Oil Time
(lC ",,30 mAde, IBI = IB2",,1.5 mAde)

* Indicates JEDEC

Registered Data.

(1)Pulse Test: Pulse Width = 300 IJ.s, Duty Cycle = 1.0%.

(2)fT is defined as the frequency at which lhfel extrapolates to unity.

2-438

2N321

0 (SILICON)
NPN silicon high frequency switching transistor
is designed for high speed, saturated switching applications for industrial service.

CASE 22
(TO-IS)

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage
Applicable from 0 to 500 mAdc

Value

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

500

mAdc

Total Device Dissipation @ T A = 25°C

PD

0.36

Derate above 25°C
Total Device Dissipation @ TC = 25°C

PD

Derate above 25°C
Storage Temperature Range

2.06

mW;oC

1.2

Watts

6.9

mW;oC

-65 to+ 200

T stg

FIGURE 1 - STORAGE TIME TEST CIRCUIT
OV-,

r

+5.0V

-9.0VW
INPUT PULSE
Rise Time ~ 1.0 ns
50 n Source Impedance

0.1 pi 1.0 k

~

O.lpl'

OUTPUT TO
SAMPLING OSCILLOSCOPE
Rise Time ~ 1.0 ns
50 n Input Impedance
PW~200 ns

100

+7.0V

2-439

Watt

°c

2N3210 (continued)
ELECTRICAL CHARACTERISTICS

(TA

,

=2S'C unless otherwise noted)
Symbol

Characteristic

.Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage' f1 1
(IC = 30 mAde, ~ = 0)

BVCEO(suS)

Collector-Base Breakdown Voltage'
(IC = 2. 0 /lAde, ~ = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)

BVEBO

Collector Cutoff Current
(V CE = 20 Vde, VEB(off)

I CEX

= 3.0 Vde)

Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
(V CB

= 20 Vde,

IE

= 0,

I CBO
TA

= 150'C)

Emitter Cutoff Current
(VEB = 2.0 Vde, IC = 0)

lEBO

Base Cutoff Current
(V CE = 20 Vde, VEB(off)

IBL

= 3.0 Vde)

.

15

-

40

-

5.0

-

Vde
Vdc
Vde
nAde

-

25

-

0.010

-

15

-

100

-

0.025

30

120

-

0 ..25

-

0.75

0.7

0.8

-

1.5

/lAde

nAde
/lAde

ON CHARACTERISTICS
DC Current Gain' (11
(IC = 10 mAde, VCE

hFE

= 1. 0 Vde)

Collector-Emitter Saturation Voltage
(IC = 20 mAde, IB = 2.0 mAde, 'TA = +125'C)
(IC

= 200

mAde, IB

= 20

Vde

VCE(sat)

mAde)

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
(I C = 200 mAde, IB = 20 mAde)

-

Vde

VBE(sat)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 20 mAde, VCE = 10 Vde., f = 100 MHz)

fT

Output Capacitance
(V CB = 10 Vde, IE

Cob

= 0,

Turn-On Time
(VBE(off) ~ 0.2 Vde, IC

Turn-Off Time
(IC = 200 mAde, IB1

f

= 100 kHz)

t

= 200

= 40

= 40

mAde, IB1

mAde, IB2

= 20

mAde) (Figure 2)

Storage Time
(IC ~ IB1 ~~2 ~ 20 mAde)

on

t
(Figure 1)

-

6.0

-

40

-

40

s

-

20

FIGURE 2 - TURN-ON AND TURN·OFF TEST CIRCUIT
+5.0V

INPUT PULSE
Rise Time ~ 1.0 ns
50 n Source Impedance

O.lp.f 1.0k

(---'w--o

O.lp.f

1

OUTPUT TO
SAMPLING OSCILLOSCOPE
Rise Time ~ 1.0 ns
50 n Input Impedance

200

PW~200ns

-4.0V

2-440

MHz

ns
ns

f11Pulse Test: Pulse Width ~ 300 /lS, Duty Cycle ~ 2.0%.

::rL

-

pF

toff

(Figure 2)

mAde)

300

ns

-"

2N3211

(SILICON)

NPN silicon high frequency switching transistor designed for high speed, saturated switching applications
for industrial service.
MAXIMUM RATINGS

Symbol

Rating
CASE 22
(TO-18)

Value

Unit

VCEO

15

Vdc

Collector - Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

500

mAdc

PD

0.36

Watt

Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ TA

= 25'c

2.06

Derate above 25 'c
Total Device Dissipation @ TC = 25'C

PD

Derate above 25'C
Operating & Storage Junction
Temperature Range

T J , Tstg

mW/"C

1.2

Watts

6.9

mW/'C

'c

-65 to +200

ELECTRICAL CHARACTERISTICS (TA = 25·C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage
(IC = 30 mAde, IS = 0)

SV CEO

Collector-Base Sreakdown Voltage
(IC = 10 /lAde, IE = 0)

SVCSO

Emitter-Base Sreakdown Voltage
= 10 /lAde, IC = 0)

SVESO

(r.:

Collector Cutoff Current
(V CE = 20 Vde, VES(off)

I CEX

= 3.0 Vde)

Base Cutoff Current

(V CE
(V CE

= 20 Vde,
= 20 Vde,

VES(off)
VES(<>ff)

= 3.0 Vde)
= 3.0 Vde,

ISL
TA

= 85' C)

Vde
15

-

40

-

6.0

-

-

25

-

0.025

Vde
Vde
nAde
/lAde

10

ON CHARACTERISTICS
DC Current Gain' (I) I
(IC = 100 /lAde, VCE
(IC
(IC
(IC
(IC
(IC
(IC

= 1. 0 Vde)
= 1.0 mAde, VCE = 1.0Vde)
= 10 mAde, VCE = 1. 0 Vde)
= 10 mAde, VCE = 1.0 Vde, TA = -55'C)
= 50 mAde,. VCE = 1. 0 Yde)
= 100 mAde, VCE = 1. 0 Vde)
=' 500 mAde, VCE = 5.0 Vde)

Collector-Emitter Saturation Voltage 111
(IC = 10 mAde, IS = 1. 0 mAde)
(Ic = 50 mAde, IS = 5.0 mAde)
(IC

= 100 mAde,

IS

(IC
(I)

= 50 mAde, IS = 5.0 mAde)
= 100 mAde, IS = 10 mAde)

Pulse Test: Pulse Width ~ 300 /lS, Duty Cycle ~ 2. 0%.

50

-

50

150

20

30

-

10

-

-

0.2

-

0.4

-

0.85

-

1.2

20
40

VCE(sat)

= 10 mAde)

Sase-Emitter Saturation Voltage 111
(IC = 10 mAde, IS = 1. 0 mAde)
(IC

hFE

VSE(sat)

-

Vde
0.3

Vde
1.0

2N3211

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25'C unless otherwise noted)

Symbol

Characteristic

Min

Max

350

-

-

4,0

-

7,0

-

15

-

60

-

2,5

Unit

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC : 10 mAde, V CE : 20 Vde, I : 100 MHz)

IT

Output Capacitance
(V CB : 10 Vde, IE : 0, I : 100 kHz)

Cob

Input Capacitance
(V BE : 0, 5 Vde, IC : 0, I: 100 kHz)

C ib

Charge-Storage Time Constant
(IC ~ IBI ~ IB2 ~ 10 mAde)

(Figure 1)

Total Control Charge
(IC : 10 mAde, IB : 1. 0 mAde)

(Figure 2)

Active Region Time Constant
(IC : 10 mAde, IB : 1. 0 mAde)

(Figure 3)

T

s

~
fA

MHz

pF

pF

ns

pC

ns

FIGURE 1 - CHARGE STORAGE TIME CONSTANT TEST CIRCUIT
+ IOVdc

t,~

O.l"F

1.0 ns

V;'~
-IOV

Z'o"" 50 ohms

Oscilloscope tr ~ 1 ns
Z'o"" 50 ohms

50

+llV

FIGURE 2 - TOTAL CONTROL CHARGE TEST CIRCUIT
+ 3,Q Vdc

SLOV

300

100

-L

--..~o'v"
I Xo:v-r

PULSE AT A
100

'ADJUST V" FOR 0 TO+ S,O VOLT
PULSE AT A

~

10 ns MAXl

50mV MAX

FIGURE 3 - ACTIVE REGION TIME CONSTANT TEST CIRCUIT
IS,O k
r - - -...."""'-1~-....-O SCOPE
Vout

Jl.:S,QV

SOD

INPUT
SIGNAL

50
TA

=

+6,QV
TRE""

- - - - - - GROUND PLANES
NOTES FOR FIGURES 2, 3
INPUT PULSE - TRANSITION TIME TO +S,O Vdc"; 2,0 n,
INPUT PULSE - OPTIONAL GENERATOR OUTPUT ]MPEDANCL ADJUST FOR

~~~~~ :~~~~ f~~~gl~Ac~c~103MoE86~Al

+ S,O Vdc

SCOPE RISE TIME;? 0.7 ns

2N3227 (SILICON)

For Specifications, See 2N2369 Data.
2-442

TRE ='I"FE

ill
-l
tr

cs

2N3232 (SILICON)
2N3235

CASEll~

NPN silicon power transistors designed for switching and amplifier applications,

(TO-3)

MAXIMUM RATINGS

2N3232

2N3235

Units

VCB

60

55

Vdc

VCEO

60

55

Vdc

VEB

6.0

7.0

Vdc

IC

7.5

15

Adc

Base Current (Continuous)

IB

3.0

7.0

Adc

Power Dissipation

Pn

Symbol

Rating
Collector-Base Voltage
Collector - Emitter Voltage
Emitter-Base Voltage
Collector Current (Continuous)

Thermal Resistance, Junction to Case

'2

~

0:

.~

80

'"
is'"

60

TJ

-65 to +200

°c

POWER-TEMPERATURE DERATING CURVE

a"

40

0
Po.

20

~

~ ......
...............

...

~

°C/W

120

d
100
~

d
.S<

Watts

1.5

°JC

Junction Operating Temperature Range

FIGURE 1 -

117

............
.............

Po.

o
o

25

50

75

100

125

T C ' Case Temperature (oC)

2-443

i'....... .......

150

~200

175

2N3232, 2N3235 (continued)

ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted I

Symbol

Characteristic
Emitter-Base Cutoff Current
(VEB ~ 6.0 Vdc)
(V EB ~ 7.0 Vdc)

2N3232
2N3235

Collector -Emitter Cutoff Current
(V CE ~ 60Vdc, VBE ~ -1.5 Vdc)
(V CE ~ 30 Vdc, VBE ~ -1. 5 Vdc, TC ~ 150°C)
Collector-Emitter Sustaining Voltage*
(IC ~ 100 mAdc, IB ~ 0)
Collector Current
(VCE ~ 60 Vdc, IB
(V CE ~ 55 Vdc, IB

~BO

2N3232
2N3235
2N3232
2N3235
2N3232
2N3235

~

0)

2N3232

~

0)

2N3235

DC Current Gain*
(IC ~ 1. 5 Adc, VCE ~ 10 Vdc)

2N3232

= 10 Vdc)
= 4 Vdc)
= 4 Vdc)

ICEX

VCEO(SUS)

ICEO

hFE

•

Min

Max

-

1.0

-

1.0
1.0
5.0
5.0

60
55

-

-

10

-

10

18

55

mAdc
5.0
mAdc

mAdc

2N3232

18

(IC ~ 2 Adc, VCE

2N3235

20

-

2N3235

20

70

-

2.5

-

1.1

-

3.5

1.0

-

= 4 Adc,

VCE

Collector-Emitter Saturation Voltage
(IC ~ 3.0 Adc, IB = 0.2 Adc)
(IC

~

4.0 Adc, IB

~

0.4 Adc)

= 4.0 Adc,

VCE

2N3232

= 4 Vdc)

= 4 Vdc,

Ie = 4.0 Adc,

VBE

2N3235

Small Signal Current Gain
(V CE = 10 Vdc, IC = 3.0 Adc, f
(V CE

VCE(sat)

2N3235

Base-Emitter Voltage*
(IC = 3.0 Adc, VCE = 10 Vdc)
(IC

2N3232

f

= 1. 0 MHz)
= 1.0 MHz)

2N3232
2N3235

*Use sweep test to pre.vent overheating.

2-444

hfe

Vdc

-

(IC ~ 3.0 Adc, VCE
(IC

Unit

-

Vdc

1.0

Vdc
1.8

-

-

2N3244 (SILICON)
2N3245

PNP silicon annular transistors for medium-current,
high-speed switching and driver applications.

CASE 31
(TO-S)
Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N
2N
3244 3245

Unit

Collector-Base Voltage

VCB

40

50

Vdc

Collector-Emitter Voltage

VCEO

40

50

Vdc

Emitter-Base Voltage

V EB

5.0

Vdc

1.0

Adc

Collector Current

IC

Total Device Dissipation
@ 25'0 C Ambient Temperature
Derating Factor Above 25"C

PD

Total Device Dissipation
@ 25 0 C Case Temperature
Derating Factor Above 25°C

PD

Junction Temperature, Operating
Storage Temperature Range
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

1.0
5.71

Watt
mWrC

5.0
28.6

Watts
mWrC

TJ

+200

°c

T stg

-65 to +200

°c

6JA
(JJC

2-445

0.175
35

°C/mW
°C/W

2N3244, 2N3245

(Continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Fig. No. Symbol

Cha racteristic

ICBO

Collector Cutoff Current
(VCB = 30 Vde, x.: = 0)

-

50

x.:BO

-

30

IBL

-

80

40
50

-

40
50

-

5.0

-

-

0.3
0.35

-

= 3 Vdc)

Base Cutoff Current
(V CE = 30 Vde, V BEloff) = 3 Vdc)
Collector-Base Breakdown Voltage
(IC = 10", Ade, IE = 0)
Collector-Emitter Breakdown Voltage 111
(IC = 10 mAde, IB = 0)

BV CBO
2N3244
2N3245
BV CEO
2N3244
2N3245
BV EBO

Emitter-Base Breakdown Voltage
(IE = 10", Ade, IC = 0)
Collector Saturation Voltage (11
(IC = 150 mAde, ~ = 15 mAde)

2,3
2N3244
2N3245

(IC = 500 mAde, ~ = 50 mAde)

2N3244
2N3245

(lc = 1 Ade, ~ = 100 mAde)

2N3244
2N3245
VBE(sat)

DC Forward Current Transfer Ratio (11
(IC = 150 mAde, VCE = 1.0 Vde)

1

hFE

-

60
35

150
90

(IC = 1 Ade, VCE = 5 Vde)

2N3244
2N3245

25
20

-

-

25

-

100

175
150

-

Input Capacitance
(VOB = 0.5 Vde, IC = 0, f = 100 kHz)

5

C ib

Current-Gain - Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

IT

2N3244
2N3245

Delay Time

td
(Ic = 500 mA, ~1 = 50 mA

Rise Time

VOB =2V, VCC = 30 V)

t
2N3244
2N3245
t

Storage Time
(IC = 500 mA, VCC = 30 V
Fall Time

2N3244
2N3245

~1 = ~2 = 50 mAl

Total Control Charge
(IC = 500 mA, IB = 50 mA, VCC = 30 V)

7,10
2N3244
2N3245

111 Pulse Test: PW ~ 300 /lS, Duty Cycle ~ 2%

2-446

-

r

-

35
40

s

-

140
120

-

45

-

14
12

tf

~

-

pF

15

6,9

Vde

-

-

6,8

Vde

-

50
30

Cob

Vde

1.5

2N3244
2N3245

5

Vde

2.0

(IC = 500 mAde, VCE = 1.0 Vde)

Output Capacitance
(V CB = 10 Vde, IE = 0, f = 100 kHz)

nAde
Vde

-

1.1

2N3244
2N3245

nAde

1.0
1.2

0.75

(IC = 500 mAde, ~ = 50 mAde)
(IC = 1 Ade, ~ = 100 mAde)

nAde

0.5
0.6

3

Base-Emitter Saturation Voltage (1)
(IC = 150 mAde, IB = 15 mAde)

VCE(sat)

Unit
",Ade

.050
10

ICEX

Emitter-Base Leakage Current
(V EB = 3 Vde, IC = 0)

Max

-

(VCB = 30 Vde, x.: = 0, T A = 100"C)
Collector Cutoff Current
(V CE = 30 Vde, V BE(off)

Min

pF
MHz

ns
ns

ns

ns
nC

2N3244, 2N3245

(Continued)

FIGURE 1 - MINIMUM CURRENT GAIN CHARACTERISTICS
2.0

-

125°C

1.5

I

75°C

--- .

-.....;

25°C

~ 1.0

r T
IV _

~

i

,- .......:'" "'~.
="'..

55°C

~
z: 0.5

I

................ 1'0...""

15°C

f-

- - 2V

~.,..

... 2JOC-f'II ' - f -

~

1i
~

,.,\,:

0.2
100

50

500

200
Ie, COllECTOR CURRENT (IlIA)

1000

FIGURE 2 - COlLECTOR·EMlmR SATURATION VOLTAGE CHARACTERISTICS
in
~

1.4

0

~
~

'"""
~

1.2

2N3244 _
.T, = 25°C

\

0

>

'":=

1.0

Ie = ISO mA

le=50mA

:i

:l:

0.8

0

0.6

~
u

::E
::>
::E

~ 0.4

::E

1:& 0.2
0.5

~

Ie = 500 mA

\ , e = 750mA

"- .........

--

"- .......

....

I2.0

1.0

"- ............

\.

\
\

5.0

10
I" BASE CURRENT (mAl

-

r--

20

100

50

1.4

I

0

..

2N3245 T, = 25°C _

~
~

'"

1.2

~

\ ~50mA

0

>

'":=

1.0

ISO mA

50 mA

\500mA

:i

~ 0.8

,

\

::E
::>
::E

r-...

~ 0.4

::E

0.2
0.5

I"'

...........

\

f3~

c5 0.6
<..>

IJ

200

1.0

I"
r-2.0

5.0

I""'-...
1-1-1-

--

'"
10
I" BASE CURRENT (mAl

2-447

20

50

100

200

2N3244, 2N3245

(Continued)

FIGURE 3 - MAXIMUM SATURATION VOLTAGES

FIGURE 4 - TYPICAL TEMPERATURE COEFFICIENTS

2.0

1.6 - -~

.1

fI,=IO

v

...

----

~~

~

~

~

~ -0.5

r-r-

i

~

~
Vetil..'.

o

200

-1.0
-1.517"'''+:;;;;.t'''''f''='-;

2N3244

100

50

J---+-+--t--t----1:=""'"-+'.....r.--4--l

ffi

2N3245
0.4

(25 to 125°C)

I...-

lE/

TJ = 25°C

rl-T=r:=!===1:::~;;;;:;T:::i=:::J::::J

+0.5

LI

I

500

0~~-2~0~0-~~40~0-~~60~0-~~80~0~~~1000

-2

1000

Ie. COLLECTOR CURRENT (mA)

Ie. COLLECTOR CURRENT· (InA)

FIGURE 5 - JUNCTION CAPACITANCE

FIGURE &- TYPICAL SWITCHING TIMES
ISO

= 25°C

TJ

r- 1-1100

t.

160

MAX-TYP---

140

~fl.

12o

Cie.

lloO

....

~
;::

I""-

C..

r...

20

"!lS.

20

t..'1'0

o

10
0.1

0.2

0.5

1.0

2.0

5.0

10

10

.

10

200

100

20 30

-

30 -

fl.

...............

,.........fJ.

40

....

20

fl.

20

{J.

SO
60

r-- 1--

.........
30

........

Veo '30V
V.. 2V
TJ 25°C
In
I"

10

fl.

300

400

'0

600

Ie. COLLECTOR CURRENT (rnA)

REVERSE BIAS (VOLTS)

FIGURE 8 - TURN-DN EQUIVALENT TEST CIRCUIT
FIGURE 7 - CHARGE DATA

2V

+

20

t~ ~goc

10 Veo

--LIMIT
-'-TYPICAL

30V

Q,2N3244

.... ~

~:::::

ii3 2.0 ."

l--'[

5911

200 Il

PW = 200 ns
RISE TIME ~ 2 ns
DUTY CYCLE = 2%

Q.2N324~t::'

0- 2N3244

~

~ F"'"

1.0

-10.75VU

...

II, 2N3245

-lOV

SCOPE

Q,
~ 5.0

l-f

~

0S

50

100

200

500

1000

I.. COLLECTOR CURRENT (mA)

DUTY CYCLE = 2%

FIGURE 10 - QT TEST CIRCUIT

IN916

+3V

FIGURE 11 - TURN·OFF WAVEfORM

-lll

.J 1. 10.,
=2%

DUTY CYCLE

~~~=~

C_~
1200 pi ma. lot 2N3245
1400 pi ma. 'Dr 2N3244

2-448

BOO

2N3248 (SILICON)
2N3249

PNP silicon annular transistors for low-level, highspeed switching applications.
CASE 22
(TO·18)

Collector connected to else

MAXIMUM RATINGS

Rating

VCB

15

Vdc

Collector-Emitter Voltage

VCEO

12

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Total Device Dissipation
@. 25°C Ambient Temperature
Derate above 25°C

PD

Total Device Dissipation
@ 25°C Case Temperature
Derate above 25°C

PD

Operating Junction Temperature

TJ

Storage Temperature Range

Tstg

Y,

....j

I- 300.0

DUTY CYCLE

200
100

=2"

~ t--

1.2
6.9

watts
mW/oC

200

°c

-65 to +200

°c

....

IleL1011"ll~LI

Ita

oIHns
10K

-1_

lie

esc-I·
pF

4
12

V..
volts
+0.5
+0.5

~~

..,-. C.

I.SII

oIHns
215
95

....

~

>---......+-1:

I:~~~;'"
Vcc
volts
3
10

T,

~t, (10 VI

~

Yee

-l I, I--

3V, V.. 0.5V
25°C

Vcc

t.

t... CIRCUIT

v'_ml" I
D---'--

o

.

watt
mW/oC

50

FIGURE 2 -

10
100

0.36
2.06

FIGURE 3 - TYPICAL SWITCHING TIMES

Y~3t~r-o

Ie

Unit

Collector-Base Voltage

FIGURE 1 - t.. CIRCUIT

InA

Value

Symbol

V,
volts
-10.6
-10.7

1K
T.... _ _ ltoaceol_JlallldccnlllClOn.

-

V.
valts
-10.9
-11.3

~

t, (3 VI

.-1

-

to-.!'-

~
V,
volts
+9.1
+8.7

2

1

10

20

leo COLLECTOR CURRENT (mAl

2-449

50

100

2N3248, 2N3249

(Continued)

ELECTRICAL CHARACTERISTICS (T A = 250 C unless othewise noted)

Characteristic

Fig.No.

Symbol

Collector-Cutoff Current
(V CE = 10 Vdc, VBE(off) = 1 Vdc)
(VCE = 10 Vdc, VBE(off)= 1 Vdc, TA = 100°C)

ICEX

Base Cutoff Current
(V CE = 10 Vdc, VBE(off) = 1 Vdc)
Collector-Base Breakdown Voltage
(Ie = 10 !lAde, IE = 0)
C6llector-Emitter Breakdown Voltage 111
(Ie = 10 mAde, IB = 0)
Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)

IBL
BVCBO
BVCEO

BV EBO

Collector Saturation Voltage 11)
(Ie = 10 mAde, IB = 1 mAde)
(Ic = 50 mAde, IB = 5 mAdc)
(IC = 100 mAde, IB = 10 mAde)

7,8
2N3248
2N3249

Base-Emitter Saturation Voltage 11)
(Ie = 10 mAde, 1B = 1 mAde)
(Ie = 50 mAde, I, = 5 mAde)
(Ie = 100 mAde, LB = 10 mAde)
DC Current Gain 11)
(IC = 0.1 mAde, VCE = 1 Vde)
(IC

= 1.0 mAde,

(IC

= 10

mAdc, V CE

(IC

= 50

mAdc, VCE

(Ie = 100 mAde,

8

4
2N3248
2N3249

Fall Time
Turn-On Time

Turn-Off Time

-

50

-

Vdc

12

-

Vdc

5.0

-

Vdc

-

--

0.125
0.25
0.4
0.45

0.6

-

0.9
1.1
1.3

50
100

--

-

2N3248
2N3249

50
100

150
300

=

1 Vde)

2N3248
2N3249

35
75

= 1 Vde)

2N3248
2N3249

~5

MHz)

= 100 mA,
= 10 V

-

8.0

6

C ib

-

8.0

fT

QT
td

1,3

= IB2 = 10 mA,

--

Cob

3 V)

IBI

-

6

5,10

=

Ie = 100 mA, IB = 10 mA,
VBEloffl = 0.5 V, VCC = III V
~

35

2N3248
2N3249

2,3

CC

tr
ts

Vde

Vde

= 1 Vdc)

VCE

nAdc

15

-

pF
pF
MHz

250
300

-

-

150

tr

pC
5.0

ns

15

ns

60

ns

20

ns

IC = 10 mA, IBI = 1 rnA,
VBEloffl = 0.5 V,VCC = 3 V

1,3

ton

-

90

ns

Ie

2,3

toff

-

100

ns

= 10 mA, IBI = IB2 = 1 mA,

VCC = 3 V
11)

-

50
100

1 Vde)

Total Control Charge
(Ie = 10 mA, IB = 0.25 rnA, V CC

Storage Time

hFE

Unit
!lAdc

0.05
5.0

2N3248
2N3249

=

VCE

Current-Gain - Bandwidth Product
(IC = 20 mAdc, VCE = 10 Vde, f = 100

Rise Time

VBE(sat)

Max

-

0.7

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Input CapaCitance
(VBE = 1 Vde, Ie = 0, f = 100 kHz)

Delay Time

VCE(sat)

Min

Pulse Test: PW = 300 !lB, Duty Cycle:;

2%

2-450

2N3248, 2N3249

(Continued)

FIGURE 4 - MINIMUM CURRENT GAIN CHARACTERISTICS
100
T,

2N3248

125°C

1

....... .....

1

-

T, = 25°C

50
z

~

T,

I

TJ

= _55°C

....

i

Vel:;:: 1 V

....... ~

..............

115°C

\.
~

............

=>
<>

i

...........

..............

20

........

,

~

i'~

"'- r-...

\
i'"

10
0.5

0.2

0.1

2.0

1.0

5.0

10

20

50

100

Ie. COllECTOR CURRENT {mAl

200
T,

I

~NJ24~

12loc

r-

1c

T,I= 25

~

100

T,

TJ

15°C

;:::

-

Vel = 1 V

.............

" ......

r-...."

,

I--

\i\
i' 1\[\

- r-r-...

-55°C

I\~

'r-. r-.
20
0.1

0.2

0.5

5.0
2.0
Ie. COLLECTOR CURRENT (mAl

1.0

FIGURE 5 - MAXIMUM CHARGE DATA

10

20

50

FIGURE 6 - JUNCTION CAPACITANCE

5000

20

~~A~
---TYP

UNLESS NOTED, Vee _ 3 V
TJ

2000

::::;

~ 500

200

100

40

/~

-~

I

......
1::=:::::::

.J1

10

f3r.

Q,,{jF

?sfJ

100°C

1\11
aT.

1000

g
~

25°C

r--..... .......

lOa::>

40

-Vee

10

pc:;: t..... i"""'"

i--"': V

~

--"25 O C

...

II U

....H1

= a,
Vee

20

50

Cob

.........

....... r--:

.....

~.

3V
100

-- -

1'-...1"-

Cib

..llJ.l.
10 V

100

4
0.1

Ie. COLLECTOR CURRENT {mAl

2-451

0.2

.......

t""" ...

--

2.0
1.0
0.5
REVERSE BlAS (VOLTS)

5.0

10

2N3248, 2N3249 (Continued)
FIGURE 7 COLLECTOR SATURATION VOLTAGE CHARACTERISTICS
I.0

1\

1\ le=5OmA
\

le=30mA

le=IOmA

le= 3mA

6

\

2N324I

1\ le= lOOmA
1\
1\

\

roo.

2

:\

\
\,

\

4

0.02

r... '-

.......... ~

5.0

2.0

1.0
0.5
I,. BASE CURRENT (mAl

0.2

10

20

1.0

\

1\

0.8
le=30mA

le=IOmA

Ie = 3 mA

~
~

0.6

'1 le= 50mA

le= 100mA

Iii
IIu

0.4

"-

~
i! 0.2

i

IJ

o

0.02

"",

"0.1

0.05

0.2
I~

"

r-

t=IO
' - - ' =25OC

&1.0

..I

f"
....

.J..ooot'"

IT

0.8

>e

MIN V.looI'

2

0.6
0.4

o

I

~

FIGURE 10 -

Q,

50

100

235

...l-

~

14.pFm••

_L
,T,

Jm ~vrLf =

_.....
::t

.,.

.11lV/OC
5MYI

:to.

W

20

.Jc. < 4pF

2'110

2-452

,

(,55OC,TO +rC)

ZSO(: TO 12511C
:t .1IMV/OC

+25~

I

1

.v/

1--(~55.C'TO +J5OC)
(25OC TO

~

~
50 ~
~
Ie COLLECTOR CURRENT (mAl

FIGURE 11- TURN-OFF WAYE FORM

TEST CIRCUIT

-3V_w.---.
4V

-ISOC TO

l? r..- ~fotV
-2
I
o

VALUES REFER TO Ie = 10 mA TEST POINT

t°

--

0.25

--

0.5

0.6

0-.9

--

1.2

= 50

(IC

= 5 mAde)

mAde, IB

Base-Emitter Saturation Voltage 111
(IC = 10 mAde, Ia = 1 mAde)

= 50 mAde,

(IC

18

(IC

= 1 mAde,

= 5 mAde)

VCE

= 50

= 1 Vde)

mAde, VCE = 1 Vde)

Output Capacitance
(V CB = 10 Vde, IE = 0, f = 100
Input Capacitance
(VeB = 1 Vdc, IC

= 0,

f = 100

hFE

2N3250,2N3250A
2N3251,2N3251A
2N3250,2N3250A
2N3251,2N3251A
2N3250,2N3250A
2N3251,2N3251A
2N3250, 2N3250A
2N3251,2N3251A

(IC = 10 mAde, VCE =IVde)
(IC

Vde

VBE(sat)

DC Forward Current Transfer Ratio 111
(IC = 0.1 mAde, VCE = I Vde)

kHz)

--

--

150
300

----

--

6.0

pF

C1b

--

B.O

pF

fT

250
300

----

MHz

2N3250, 2N3250A
2N3251,2N3251A

MHz)

----

40
80
45
90
50
100
15
30

Cob

kHz)

Current-Gain - Bandwidth Product
(IC = 10 mAdc, VCE = 20 Vdc, f = 100

Vde

SMALL SIGNAL CHARACTERISTICS

Characteristic

Svmbol

Min

Max

Unit

Small Signal Current Gain
(IC = 1.0 mA, VCE = 10 V. f

= 1 kHz)

2N3250.2N3250A
2N3251.2N3251A

hfe

50
100

200
400

--

Voltage Feedback Ratio
(Ic = 1. OmA, VCE = 10 V, f

= 1 kHz)

2N3250.2N3250A
2N3251.2N3251A

h

re

---

10
20

X10- 4

Input Impedance
(IC = 1. 0 rnA, VCE

= 10 V. f = 1 kHz)

2N3250.2N3250A
2N3251.2N3251A

hie

1.0
2.0

6.0
12

kohms

Output Admittance
(IC = 1.0 rnA, VCE

= 10 V.

2N3250.2N3250A
2N3251.2N3251A

oe

4.0
10

40
60

II mhos

r'bCC

--

250

ps

NF

--

6.0

dB

f

= 1 kHz)

Collector-Base Time Constant
(IC = 10 mA, VCE = 20 V)
Noise Figure
(IC = 100 IIA, VCE

= 5 V,

RS

= 1 k.ll, f = 100

Hz)

(I/Pulse Test: PW = 300.us, Outy Cycle = 2%

2-454

h

2N3250, A, 2N3251, A

(Continued)

SWITCHING CHARACTERISTICS ITA = 250C unless otherwise noted)

Symbol Max

Characteristic
Delay Time

= 3 Vde,

(Vee
Ie

=10 mAde,

=0.5 Vdc
lsi = I mAl

VBE

Rise Time

2N3250,2N3250A

Storage Time

(lsi =IB2 = I mAde
Vee

td

35

DS

tr

35

ns

175

ts

2N3251,2N325IA

Unit

200

ns

= 3Vl
tf

Fall Time

50

DS

SWITCHINQ TIME CHARACTERISTICS

FIGURE 1 -

DELAY AND RISE TIME

500

100

500

I

I\.
200

FIGURE 2 - STORAGE AND FALL TIME

~

TJ = 25°C
Ic= 101.,
V... =O.SV

" ""
"'

1'\

~

• TJ - 25"C

-

ie-lOla, = lOla
Vcc-3V

200

~

'-

,

100

--

t,.@Vee =3V f- I-

~

I"

"'
20

"

I I

!" t,.
~

@

=10V

~
~

~ I\..

10

Vee

'"

~ ~

"

""

r"
t,

"

........

10
20
Ie. COllECTOR CURRENT (mAl

20

'"r-...

1""0
10

"""

"'
5

to

l~

'" "

5

50

10

Ie. COllECTOR CURRENT (mAl

2-455

20

50

2N3250, A, 2N3251 I A

(Continued)

AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(Ve.

FIGURE 3 -

=6V. T. =25 C)
0

FIGURE 4 -

FREIlUENCY
10

I~

'"

SOORCE RESISTANCE ~ 4.3 K
Ie ~ 10,.A

......

le~

400

1K
2K
4K
f. FREQUENCY 1Hz)

10K

K

20K

40K

100

lOOK

'I

200

400

/)

r-...

1"- ~

tS o

200

10,..\

" "- ....

.........
SOUiCE RESISTANCE ~
le~ 100,..\

100

I
IJ.
le~ lOmAI
il
II IJ

1\
........

I

I

1kHz

\.

i"o..

SOURCE RESISTANCE

/

V

"

V

le~l00"'\

~

1K
2K
4K
10K
R•• SOURCE RESISTANCE (OHMSI

20K

40K

lOOK

h PARAMETERS
Ve.

FIGURE 5 -

= lOV. f = 1

kHz. T.

= 2S'C

CURRENT GAIN

FIGURE 6 -

400

OUTPUT ADMITTANCE

200

200

,
V

~

i---"r-"

80

so

JAN 2N3251A

1

~

J

-;3250, 2N32~
JAN 2N325OA

100

I'

".

100

=
-

I-I--

2N3251,2N3251A
JAN 2N3251A

f-

20

./

./

V
./

"

10

2N325O, 2N325OA
JAN 2N325OA

5.0

SO

50
40

10

0.1

0.2

0.5

10

2.0

5.0

1Q

I'"
0.1

2.0
10
Ie. COLLECTOR CURRENT (IlIA)

0.5

0.2

Ie. COLLECTOR CURRENT (IlIA)

FIGURE 7 50

20

M

FIGURE B 20

.......

~

" ""

10

........

2N3251, 2N3251 A
JAII2N3251A

i

•

ii:

2N3250, 2N325OA

I JAII12~~m

2.0
0.1

0.2

0.5

10

r......

--

2.0
Ie: COLLECTOR CURRENT" (IlIA)

-

'"
2N3250, 2N325OA~
JAN 2N325OA

2.0

.......

5.0

INPUT IMPEDANCE

,.....

5.0

::5

.J

10

i'o...

I'

10

"~ "

1

:3

VOLTAGE FEEDBACK RATIO

5.0

1.0

2N3251 , 2N3251A
...... JAN 2N3251A

"-

"

I'

.........

0.5
5.0

10

2-456

0.1

0.2

0.5
1.0
2.0
Ie. COLLECTOR CURRENT (IlIA)

5.0

10

2N3250, A, 2N3251 I A

(Continued)

FIGURE 9 -

NORMALIZED CURRENT GAIN CHARACTERISTICS

2.0
TJ

z

$

;

TJ

1.0

Ii
i

.......

~ loc

i'.. r-...
~
~,

TJ

~

i

12~OC

-

.:""'!

~ ~~~oc

--- '" ,

O.~

I"

-..~

I r-T

NORMALlZ£DAT Ie

TYPICAL h"
0.2
0.2

0.1

1.0

O.~

= 10 mAo Ve• = I V
74 -

~

2N32~0.

2N3250A. JAN 2N32~OA

2N3

2N32t' JI 2Nr'r

2.0
Ie. COLLECTOR CURRENT ImAl

FIGURE 10 -

~.O

20

10

~o

COLLECTOR SATURATION REGION

1. 0

8

:.,
2

TJ

~

25°C

This graph shows th.e effect of base current on colle.ctor current: fio is the
current g~," of the transistor at 1 volt, and f3F (forced gam) is the rattO of Ic/isF
In a circUIt. EXAMPlL for type 2N3251. estimate a base current 11,,1 to Insure
saturation at a temperature of 25°C and a collector current of 10 rnA.
Observe that at Ie ~ lOrnA an overdrive factor of at least 2.5 is required to
drive the transistor well into the saturation region. From Figure 9, it is seen that
h,,@ 1 volt IS typically 1671guaranteed limits from the Table of Characteristics

~OrnA

~~

167
2.5 ~ lOrnA/I"

3t. .

lOrnA'

I

0

can be used for "worst-case" design) .

/30 rnA

I,,:::: 6.68 rnA typ

3

'7f;. OVERDRIVE fACTOR

FIGURE 11 -SATURATION VOLTAGES
1.0

pi, ~
-TJ = 25°C

\0

w

~

~
2

~

O.S

tt
125 0

,.

-SSOC to 2S0C

,.

P

0.6

§

-O.S

isu

..: -1.0

0.4

tl:I

-

WCtOJ2S~

~~

'-'

VeE I..'}

0.2

_I-"

-1.5
-2.0

10
20
Ie. COLLECTOR CURRENT (mAl

so

~

-2.5

o

2-457

-

."

0

~

25°C

9ve for VeE' ... }

......

z:

:i:::>

TEMPERATURE COEFFICIENTS

!I

i'
V"I'::J,. ,,/

0.8

; '"

FIGURE 12 1.0

?"

L

.......

YV

9v,forV..

-

i"'" _I--r- -

- -55°C to 25°C

I I
10

30
20
Ie. COllECTOR CURRENT (mAl

40

50

2N3250, A, 2N3251 , A

(Continued)

fT AND rb'C e versus Ie

FIGURE 13 -

FIGURE 14 -

400

\

~

:0

j
Ii

t; 300

\;

=>

Q

~ ~

z:

...
0
<.>

!

I~
<.>

.;

~

.

/

%

~

z:
~

'\

200

r--.....

I

z:

-....... .......

VeE = 10V;
le=5mA.
M.A. G. = 29 d81TYPlCALLYl

1;-" r- ........

I--

V

2.1

mmhos

3 pF

2.2Ko

Vee = 20V
TAl = 25~C

.::
o

V, x 100

35 pI

1700

100

pF

rit'CC

t--.

~

§
'"
'"
a

30 MC EQUIVALENT CIRCUIT

o

20
10
15
Ie. COLLECTOR CURRENT (mAdel

FIGURE 15 20
TJ

25

30

JUNCTION CAPACITANCE

FIGURE 16 -

CHARGE DATA

1000

~2JOC

Vcc=10V
---Vee=3V I
t-- t-- PF = 10
500 I-- t-- TJ = 2S OC

LL

1

It:

I,L

10

.......

~

........

.....

200

....

~r-...

r--..

'"

~

Ci•

0.2

~

.

i'.

..... r--!"o

L

50

'"

..... ..".,

L-

20 ~-

0.1

~

100

.... r--!"o

I'"

Q,.
~-

Cob

"

..

~

0.5
1.0
2.0
REVERSE BIAS IVOLTS)

5.0

10

1

~.,

1--

,

J"

I"
5

10

Ie. COlLECTOR CURRENT (mAl

2-458

,.

20

50

2N3253

2N3252,
(SILICON)
2N3253 JAN AVAI LABLE
2N3444
2N3444 JAN AVAILABLE
NPN silicon annular transistors for high-current
saturated switching and core driver applications.
CASE 31
(TO-5)

Collector connected to case

MAXIMUM RATINGS

Symbol

Rating

Unit

2N3252 2N3253 2N3444

Collector-Base Voltage

VCB

60

75

80

Vdc

Collector-Emitter Voltage

VCEO

30

40

50

Vdc

Emitter-Base Voltage

VEB

Total Device DisSipation
25°C Case Temperature
Derate above 25°C

PD

Total Device Dissipation
25°C Ambient Temperature
Derate above 25°C

PD

Junction Operating Temperature Range

TJ

5.0

I

•
I

I

•

Storage Temperature Range

Tstg

5.0
28.6

I

•
•

1.0
5.71

•

Watts
mW/oC

Watt
mW/OC

•

-65 to + 2 0 0 -

°c

-

-65 to + 2 0 0 -

°c

9JC
9JA

Thermal Resistance:

Vdc

I

35

°C/W

0.175

°C/mW

SWITCHING CHARACTERISTICS ITA = 25°C unless otherwise noted)

Symbol Min Max Unit

Characteristic
uutpUt I.,;apacitance
(VCB = 10 Vdc, IE = 0, f = 100 kHz)

cob

-

12

Input CapaCitance
(V EB = 0.5 Vdc,

C1b

-

80

200
175

-

-

5.0

-

15

ns

30
35

ns

40

ns

30

ns

Ie

= 0, f = 10O.kHz)

Current Gain-Bandwidth Product
(IC = 50 mAdc, VCE = 10 Vdc, f = 100 MHz)
Total Control Charge
(IC = 500 mAdc, IBI = 50 mAdc, VCC

=

2N3252
2N3253,2N3444

fT

QT

30 V)

Delay Time

Ie = 500 mAdc, Isl = 50 mAdc

Rise Time

VCC = 30 V, VBE = 2 V

Storage Time

IC = 500 mAdc, IBI = Is2 = 50 mAdc

Fall Time

VCC

2N3252
2N3253, 2N3444

= 30V

2-459

td

ts

-

tr

-

tr

pF
pF
MHz

nC

2N3252, 2N3253, 2N3444

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=25°C unless otherwise noted)
Symbol

Characteristic
Collector Cutoff Current
(VCB; 40 Vde, IE ; 0)

ICBO

2N3252

Min

-

Max

p.Adc

0.50

(VCB; 40 Vde, IE ; 0, T A ; lOO°C) 2N3252

75.0

(VCB; 60 Vde, IE ; 0)
2N3253, 2N3444
(V CB ; 60 Vde, IE ; 0, T A ; lOOOC) 2N3253, 2N3444

75.0

Emitter Cutoff Current
(VBF ; 4 Vde, IC ; 0)

(VCE; 60 Vde,

VEB(off);

0.50

lEBO

Collector Cutoff Current
(VCE; 40 Vde, VEB(Off); 4 Vde)
4 Vde)

Base Cutoff Current
(VCE ; 40 Vde, vEB(off)~ 4 Vde)
(VCE = 60 Vde, VEB(Off); 4 Vde)
Collector-Base Breakdown Voltage
(Ie; 10 /lAde, IE ; 0)

ICEX

2N3252

IBL

2N3253, 2N3444
BV CBO

2N3252
2N3253
2N3444

Collector-Emitter Breakdown Voltage 111
(Ie; 10 mAde, pulsed, IB; 0)
2N3252
2N3253
2N3444

BV CEO

Emitter-Base Breakdown Voltage
(IE ; 10 p.Ade, Ie = 0)

BV EBO

Collector Saturation Voltage 111
(I C ; 150 mAde, IB = 15 mAde)

(Ie ;

500 mAdc, IB = 50 mAde)

(Ie ; 1.0 Adc, IB = 100 mAde)

2N3252
2N3253, 2N3444

VCE (sat)

VBE (sat)

(IC = 500 mAde, IB ; 50 mAde)
(IC = 1.0 Ade, IB ; 100 mAde)
DC Forward Current Transfer Ratio 111
(I C ; 150 mAde, VCE; 1 Vde)
2N3252
2N3253
2N3444

-

0.5

p.Ade
0.5
p.Ade

-

0.50

60
75
80

---

30
40
50

--

5.0

-

-

0.3
0.35

-

2N3252
2N3253, 2N3444

Base-Emitter Saturation Voltage 111
(IC = 150 mAde, IB = 15 mAde)

0.05

--

2N3252
2N3253, 2N3444

p.Ade

-

2N3253, 2N3444,
2N3252

0.7
-

hFE

0.50

Vdc

1.0
1.2
Vdc
1.0
1.3
1.8

30
25
20

-

-

30
25
20

90
75
60

(IC = 1 Ade, VCE ; 5 Vde)

2N3252
2N3253
2N3444

25
20
15

---

2-460

Vdc

0.5
0.60

2N3252
2NS253
2N3444

2%

Vde

Vdc

(IC ; 500 mAde, VCE = 1 Vde)

111 Pulse Test: Pulse width = 300/ls, duty cycle;

Unit

-

2N3252, 2N3253, 2N3444

(continued)

COLLECTOR SATURATION VOLTAGE CHARACTERISTICS
_

1.4

~

1.2

g
i

~

5

2N3252

1.0

0.8

_

0.6

~!'!~

10= l00mA

0.4

oJ

0.2

~

10= 250 mA

\
r-...

I'
2

---

4

6

......

\
10= 750mA

7 .8 9 10

30

20

15

-

'"

--

i--

r--

T, = 25°C

\ 10=500mA

\
\

~
::IE

\

1

::>

55

1\

\
\

40

!0-

60

50

70 80 90 100

150

200

I.. BASE CURRENT (mAl

\

\
~

1.2

~

1.0

i

~

~

O~
_

10= loomA

le= 250 mA

Ie = 500 mA

\

0.8
0.6

i'

'-.

:IE

~ 0.4
0.2

2

4

6

7

8 9 10

15
20
It. BASE CURRENT (mAl

;;; 1.4

g

~

1c=750mA

r--

30

40

50

70 60 90 100

60

T, = 25°C
le= lDOmA

10= 250mA

IIi

0.4

J

0.2

f--

le= 5DOmA

\1.= 750mA

1\

0.8

0.6

2DO

\

1.0

i

150

2N3444

1.2

~
~

,

\

I"

>

i
~

T, = 250C

\

!:;

•

--

'\...
~

~

.J

-

2N3253

\

\

2

4

.............

"-

"
6

7

i"""

"

\

8 9 10

20
15
I.. BASE CURRENT (mA)

2-461

30

40

50

60

70 80 90 100

150

2DO

2N32 52, 2N3253, 2N3444

(continued)

MINIMUM CURRENT GAIN CHARACTERISTICS

70
T,

50

T,

5L-__
50

~~

60

__

70

~~~

80

90

- r--:....- "' .

125'C

~

25°C

T,

15°C

T,

55°C

2N3252

1

VCE

~

--

=

2V

-VeE

~ ...

_

1V

"' ..... "---.. I"-...r-.."'"" ~"" ~

________

~

lOa

____

~

__

~

__

~

____

~

200
300
Ie. COLLECTOR CURRENT (mA)

~,

... ['-.... r-...~ '~" t.....:
~~

____L-__

400

500

L-~

600

__

700

L-~~

800 900 1000

70r---r-~--.--r-.--------r-----r----r---r-----r----r-~r--~1~1r-~T~

50

c==r==t=""F""+'7"""'7:;;:-+--==*=::::::~:;:;::-::±------t----j_-+_+ll
2N3253 T
125°C
~- ......
VeE = 1 V

I

J

5~--~~--~~~--------~----~--~--~----~----~--~~--~~~
400
500
600
700 800 900 1000
50
60
70
80 90 lOa
200
300
Ie. COLLECTOR CURRENT (mA)

70

1 'N3444

50
T,

z

-- -::..::::

125°C

;;: 30

'"

-"'::::::

i
~

'z"

"
j

25°C

T, _

15°C

T, _

55°C

--""

50

60

70

80

200

90 100

3D!)

400

Ie. COLLECTOR CURRENT (mAl

50

....
'"
....
co

30

.s

~,8,=2rl

L.. I~

In 20

,:

t:::"

""""

.... f ....

-- - -1--

r\"
~

'"

0

~~ ~

500

~

--

I--

~~

,8'1'10

111 =1.1

50

70

100

~. f;;
-;

1"1, ..

.s

rT I'-of-.,I ...

'";::

t-

'-'
~

~
~

,8,

'"

50

....

..... "'r-.

~

1'\

600

700

I

200
300
Ie. COLLECTOR CURRENT (mA)

...

......

800 900 1000

I:, ...,~tt

20

Vee = 30 V
_ _ 25°C TJ

_125°C TJ

I!.

~

fI' -

30

10

~

20

-......;

[":: t.......

~- l-

1"-- ....... t--.....
~ C"........

r-

- - - 25°C
--125°C

I

10

70

I", I, -1/81'_1
-

~

......

100

;::
<

~"

TYPICAL FALL TIME VARIATIONS

TYPICAL STORAGE TIME VARIATIONS
100

-;

~ 1-.,.......

10

5

70

........

- r--

20

2V

-VeE

~-- .......

~

T,

_

VeE -1 V

.-

I·
I--~

t-

10
500

700

1000

50

70

100

200

300

Ie. COLLECTOR CURRENT (mA)

2-462

500

700

1000

2N3252, 2N3253, 2N3444

(continued)

TYPICAL RISE TIME VARIATIONS WITH TEMPERATURE

TYPICAL TURN-ON TIME VARIATIONS WITH VOLTAGE
100
70

100
(J,=10
TJ = 25°C

'-

70

50 '-~

I
~

30

;::

20

t"-

100

500

300

'~

'"

Ii:
~

20

1000

50

70

200

100

~

-

....
!"0-

g 2000

//

700 . /

....

r-..... .........

..... r..

r.. ....
0.2

0.5

5.0
1.0
2.0
REVERSE BIAS (VOLTS)

10

~

a..

.........

10
8

U

500

Cob

200
50

50

20

70

./

~ 1.2

V

1.0

MAX V"I'I!--- V
1-

~
~ 1.0

g

~ 0.8

MINV"I••tl

~

~ 0.6

-

f-- ....

MAX VeEhotl 2N3253·2N3444

:i 0.4

2JOC TO l1250
1.5

1I

I

1.4

11
....
.g

II
j,.o~"" t7

-

0.5

S
u

L.,..; Vlol

o

-2.0
200
300
500
Ie, COLLECTOR CURRENT (mA)

1000

700

1000

2-463

V

c:.FL... I-'"
~5°CT025°C

;

125 0 Cj!5

~

-1.0

V

--

~•• fO~V~ F'"'"

~ ~55°C TO 25°C

. .:v-r

-1.5

100

700

1'1

8

MAX Vee 1"'1 2N3252

70

--

.....

(lye for Veil""

~ -0.5

I.-'
~ t::::

0.2

50

200
300
500
I.. COLLECTOR CURRENT (rnA)

2.0

II

TJ = 25°C

In
!:;

100

TYPICAL TEMPERATURE COEFFICIENTS

(J,~10

1.6

'"

300

LIMITS OF SATURATION VOLTAGES
1.8

/.

IAV

V/ I'

~

<

..I~ 72N3252

1000

30

0

I?'

/

I

...

c

0.1

1000

V / T(12~oC/~ ~N3253, 2N3444
V
~
/ I7/
TJ=125

3000

r--

1"- .....

700

1/

~

50

20

Vee' 30 V
le= 10 I~
TJ= 250 C

II-

5000

~
....

!1c
u

f--

7000

C,.

....e.....z

500

MAXIMUM CHARGE DATA

J5O~

r;:

300

10,000

T}=
-MAX
- - - TYP

70

.~~...

Ie, COLLECTOR CURRENT (mA)

JUNCTION CAPACITANCE VARIATIONS

100

~

10
700

Ie, COLLECTOR CURRENT (mA)

200

~

Vee = 30V

~

200

~

30

Nd@!"~2J

=; °l~

70

-

...;::

~ee~~~

........ t,

_!'o..

.......

tdl @:..:

t,

~

"~r.. I" ~ t'.....
50

~

oS

I" I"...

10

r-....

50

j

1'1"

Vee 30V:f:
(J, 10
-=25°C
_125°C

~

o

200

400
600
Ie, COLLECTOR CURRENT (rnA)

800

1000

2N3279 thru 2N3282 (GERMANIUM)
PNP germanium epitaxial mesa transistors for highgain, low-noise amplifier, oscillator, mixer and frequency multiplier applications.
CASE 20
(10·72)

MAXIMUM RATINGS

Symbol

2N3279
2N3280

2N3281
2N3282

Unit

Collector-Emitter Voltage

VCEO

20

15

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

Rating

IC

50

mAdc

PD

100
1. 33

mW
mW/oC

TJ , Tstg

-65 to +100

°c

Collector Current
Total Device Dissipation @ TA
Derate above 25°C

=

25° C

Ope-rating and Storage Junction Temperature Range

0.5

1.0

POWER GAIN AND NOISE FIGURE Jersus COllECTOR CURRENT

NEUTRALIZED POWER GAIN AND NOISE FIGURE versus
FREQUENCY

_MHz

20

!50
25

~ 20 1-::;;_=f!5e;!!";:;:;;l~~lb~~~

i

15~~~~~-4~~-4~~~~~~

i

10

f

........

_40
~.

I"'-....

30

r..

120

Ii J

J

10

-a.
,..:~ !If

o
4

6

Ie =3 IlIA

............

III

i

COMMON EMITlU V.. = 10 V,

10

-'
20

40

60

100

""".-

............

200

J;

_/

r-....

400 600

f, F1IECIUUIC'I (MHz)

I.. COlLECTOR CURRENT (IlIA)

2-464

r..
1000

..........

o

2000

2N3279 thru 2N3282

(Continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 2.0 mAdc, IB = 0)

2N3279, 2N3280
2N3281, 2N3282

BV CEO

Collector-Emitter Breakdown Voltage
(IC = 100 /.LAdc, VBE = 0)

BV CES

Collector-Base Breakdown Voltage
(IC = 100 /.LAdc, IE = 0)

BV CBO

Collector Cutoff Current
(VCB = 10 Vdc, ~ = 0)
(V CB

= 10 Vdc,

IE

= 0,

I CBO

All Types
TA

= +55°C)

Emitter Cutoff Current
(V BE = O. 5 Vdc, IC = 0)
(V BE = O. 75 Vdc, IC = 0)

2N3279, 2N3280

~BO

2N3281, 2N3282
2N3279, 2N3280

-

-

20
15

-

30

-

-

30

-

-

-

1.0

5.0

-

50

-

-

100

-

-

100

10
10

-

70
100

-

-

0.3
0.5

-

-

-

-

1.0
1.5

400
300

500
400

800
800

-

2000

-

-

0.9
1.0

1.0
1.2

10
10

-

100
150

3.0
3.0

5.0
5.0

10
15

-

2.9
4.0

3.5
5.0

17
16

-

-

23
23

-

0

Vdc

-

Vdc
Vdc

/.LAdc

/.LAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 3.0 mAdc, VCE = 10 Vdc)

hFE

2N3279, 2N3280
2N3281, 2N3282

Collector-Emitter Saturation Voltage
(IC = 5. 0 mAdc, IB = 1. 0 mAdc)
Base-Emitter Saturation Voltage
(IC = 5.0 mAdc, !B = 1. 0 mAdc)

2N3279, 2N3280
2N3281, 2N3282
2N3279, 2N3280
2N3281, 2N3282

VCE(sat)

VBE(sat)

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth' Product
(IC = 3.0 mAdc, VCE = 10 Vdc)

fT

2N3279, 2N3280
2N3281, 2N3282

Maximum Frequency of Oscillation
(IC = 3.0 mAdc, VCE = 10 Vdc)
Output Capacitance*
(V CB = 10 Vdc, IE

= 0,

f

f

= 100 kHz)

Small-Signal Current Gain
(IC = 3.0 mAdc, VCE = 10 Vdc, f

= 1. 0 kHz)

Collector-Base Time Constant
(IE = 3.0 mAdc, V CB = 10 Vdc, f = 31. 8 MHz)
Noise Figure
(IC = 3.0 mAdc, VCE

Cob*

2N3279
2N3280 thru 2N3282

hfe

2N3279, 2N3280
2N3281, 2N3282
r
2N3279, 2N3280
2N3281, 2N3282

max

b

'c c

NF

= 10 Vdc,

f = 200 MHz)

2N3279, 2N3280
2N3281, 2N3282

MHz

MHz
pF

ps

dB

FUNCTIONAL TESTS
Power Gain
(IC = 3.0 mAdc, VCE = 10 Vdc, f = 200 MHz)
Power Gain (AGC)**
(IC = 20 mAdc, VCE

= 5.0 Vdc,

f

= 200 MHz)

2N3279, 2N3280
2N3281, 2N3282

G
pe

Gpe(AGC)**
2N3279, 2N3281
2N3280, 2N3282

-

0

*C ob is measured in a guarded circuit such that the can capacitance is not included.
**AGC is obtained by increasing Ie' The ·circuit remains adjusted for V CE = 10 Vdc and IC = 3.0 mAdc
operation.

2-465

dB

dB

-

2N3283 thru 2N3286 (GERMANIUM)

PNP germanium epitaxial mesa transistors for TV
and FM, RF and IF amplifier, oscillator and general
purpose high-gain, low-noise amplifier applications.

CASE 20
(TO·72)

MAXIMUM RATINGS

Symbol

2N3283
2N3284

2N3286

2N~~~~

Unit

VCES

25

20

Vdc

Collector-Base Voltage

VCB

25

20

Vdc

Emitter-Base Voltage

VEB

0.5

Vdc

IC

50

mAdc

100
1. 33

mW
mWjOC

-65 to +100

°c

Rating
Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ T A

= 25°C

PD

Derate above 25°C
Operating and Storage Junction Temperature Range

NEUTRALIZED POWER GAIN AND
NOISE FIGURE versus FREQUENCY

50

COMMON EMIHER V"

=

10 V

Ie

= 3 mA

30

~

~

-

_G pe

•• Nf..l

o
20

12

40

60

.,,-I

100

.............

~
600

1000

10

"''Ii.

t'400

-

2000

['., l'

Gpe

I-:;. Nf

5

"

"
-5

-'
6

f, fREQUENCY I MHzl

rY
i'--~

15

~

/

,..../ ["--.

200

~

tl - I--

l/

-'

'"

15VI-

~
3

10

12

1.

I" COLLECTOR CURRENT (mAl

2-466

1

IldVI /

neulrallzallonand lunmg set at
Vel = lOY, Ie :::" 3mA)

~ 20

r-......

10

25

16

............

10

POWER GAIN AND NOISE FIGURE versus
COLLECTOR CURRENT 200 MHZ
COMMON EMITTER
I

20

"-

40

T J' T stg

16

18

20

2N3283 thru 2N3286

(Continued)

ELECTRICAL CHARACTERISTICS

lIT A

=

250 C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 fJAdc, VBE = 0)

2N3283, 2N3284
2N3285, 2N3286

BVCES

Collector Cutoff Current
(VCB = 10 Vdc, IE = 0)

ICBO

Emitter Cutoff Current
(V BE = 0.5 Vdc, IC = 0)

lEBO

Vdc
25
20

30
25

-

-

2.0

10

-

-

100

250

400

800

-

2000

-

-

1.0

1.5

10
5.0

-

200
200

-

10

25

fJAdc
fJAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 3.0 mAdc, VCE = 10 Vdc)

2N3283, 2N3284
2N3285, 2N3286

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 3.0 mAdc, VCE = 10 Vdc, f = 100 MHz)

MHz

fT

Maximum Frequency of Oscillation
(IC = 3.0 mAdc, VCE = 10 Vdc)

f

max

,

Output Capacitance'
(VCB = 10 Vdc, IE = 0, f = 100 kHz)

Cob

Small-Signal Current Gain
(IC = 3.0 mAdc, VCE = 10 Vdc, f = 1. 0 kHz)
2N3283, 2N3284
2N3285, 2N3286

hfe

r b 'c c

Collector- Base Time Constant
(IE =3.0mAdc, VCB =10Vdc, f=31.8MHz)
Noise Figure
(IC = 3.0 mAdc, VCE = 10 Vdc, f = 200 MHz)
2N3283
2N3284
2N3286

MHz
pF

ps
dB

NF

-

-

5.0
6.0

-

4.0
5.0
5.0

16

20

23

14

-

-

-

FUNCTIONAL TESTS
Common-Emitter Amplifier Power Gain
(VCE = 10 Vdc, IC = 3.0 mAdc, f = 200 MHz)
2N3283, 2N3284
2N3286
Power Gain (AGe)"
(VCE = 5.0 Vdc, IC

Power Output
(VEE = 12 Vdc, f

dB

Gpe(AGe)"
=

20 mAde, f

=

200 MHz, Figure 1)
2N3283
2N3284
P

=

dB

Gpe

247 MHz)

2N3285

out

-

-

0

0

-

2.0

-

-

mW

• Cob is measured in a guarded circuit such that the can capacitance is not included.
,. AGe is obtained by increasing IC' The circuit remains adjusted for VCE = 10 Vdc and IC = 3.0 mAdc operation.

2-467

2N3283 thru 2N3286 (Continued)

FIGURE 1 -

200 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT
SHielD
I

I

I
I

CN
l·1

OUT
SOil
Rl

SOllr;
IN

RI

':"

470

NonS:

l·1 'I. inch inside diameter, If> inch length, 4 turns #20 solid copper wire,
center tapped.

T·I \4 inch inside diameter, close wound, 3 turns #26 solid copper wire. 1:'1

ratio bi·liller wound.
• Hi8h Quality piston type capacitor.
Distance Irom emitter contact 01 transistor to ,round sid. 01 bypass capaci.
tor should be kept minimum

FIGURE 2 -

I,

-Vee

257'MHzDSCILLATOR POWER OUTPUT TEST CIRCUIT

8KII

.001"F~

l, - 4 TURNS OF # 22 NYKLAD WIRE SPACED FOR 257 MC. COIL FORM 7/32" CENTER
RFC - 24 TURNS # 30 NYKLAD WIRE CLOSE WOUfjD
ALL CAPACITORS ARE CERAMIC TYPE

2-468

10011
POWER
DETECTOR

2N3287 thru 2N3290

(SILICON)

NPN silicon annular transistors for high-gain, lownoise amplifier, oscillator, mixer and frequency multiplier applications.
CASE 20
(TO·72)

MAXIMUM RATINGS

Rating

Symbol

2N3287
2N3288

2N3289
2N3290

Unit

Collector - Base Voltage

VCB

40

30

Volts

Collector - Emitter Voltage

VCES

40

30

Volts

Collector - Emitter Voltage

VCEO

20

15

Volts

Emitter - Base Voltage

VEB

3.0

3.0

Volts

Collector Current

IC

50

50

rnA

Power Dissipation at 25°C Case
Above 25°C derate 1. 71 mW/oC

PD

300

300

mW

Power Dissipation at 25° C ambo
Above 25°C derate 1. 14 mW;oC

PD

200

200

mW

Junction Temperature

TJ ,

+200

+200

°C

Storage Temperature Range

T

stg

-65 to +200

-65 to +200

°C

200 MH % TEST CIRCUIT: POWER GAIN, NOISE FIGURE, & AGC

RL =500

ll,6 turns of #16 tinned wire; %" 10; Air wound; winding length 3,4";
T1,3 turns primary and secondary Bifilar wound (close wound) on '14"
Vccfeeds tap 4% turns from collector end; output tap 3'12 turns
ceramic form (cambian type) with brass slug. #22 enameled wire.
from collector end.
PI,General Radio 874 G6 Pad (6dB)
P2,Generai Radio 874 G6 Pad (6dB)

2-469

2N3287 thru 2N3290

(Continued)

ELECTRICAL CHARACTERISTICS (TA

Characteristic

Symbol

Collector-Base
Breakdown Voltage

BV CBO

Collector-Emitter
Breakdown Voltage

BV CES

Collector-Emitter
Breakdown Voltage

BVCEO

Emitter-Base
Breakdown Voltage

BV EBO

= 25°C unless otherwise noted)
Min

Typ

Max

2N3287, 2N3288
2l'i3289, 2N3290

40
30

--

-

2N3287, 2N3288
2N3289, 2N3290

40
30

-

-

2N3287, 2N3288
2N3289, 2N3290

20
15

--

Test Conditions
IC = 10 /.IAdc, IE = 0

IC = 10 /.IAdc, VBE = 0

IC = 2.0 mAdc, IB = 0

--

Vdc

-

-

Vdc

-

-

--

.010
3.0

/.IAdc

15
10

'-

100
150

VCB = 15 Vdc
All Types
VCB = 15 Vdc, TA = 150 0 C 2N3287, 2N3288

DC Forward Current
Transfer Ratio

hFE

VCE = 10 Vdc, IC = 2 mAde
2N3287, 2N3288
2N3289, 2N3290

-

-

Collector-Emitter
Saturation Voltage

VCE (sat)

IC = 5 mAdc, IB = 0.5 mAdc
2N3 287, 2N3288
2N3289, 2N3290

--

-

0.3
0.4

Base- Emitter
Saturation Voltage

VBE (sat)

IC = 5 mAdc, IB = 0.5 mAdc
2N3287, 2N3288
2N3 288, 2N3290

-

-

0.9
1.0
150
200

Output Capacitance

Cob

Collector-Base
Time Constant

rb'C c

Current Gain Bandwidth Product

iT

Maximum Frequency
of Oscillation

f max

Power Gain

Ge

Noise Figure

Power Gain (AGC)

-

0.9
1.2

1.1
1.5

3.0
3.0

8.0
8.0

15
20

VCE = 10 Vdc, IC = 2 mAdc
2N3287, 2N3288
2N3289, 2N3290

350
300

600
500

1200
1200

VCE = 10 Vdc, IC = 2 mAdc

-

2000

-

-

24

4.9
6.0

6.0
7.0

--

0
+5

VCE =10 Vdc, IC = 2 mAdc, f = 200 MHz
2N3287, 2N3288
2N3289, 2N3290

Ge

-

-

VCE = 10 Vdc, IC = 2 mAdc, f = 1 kHz
2N3287, 2N3288
2N3289, 2N3290
VCB = IOVdc,IE =O,f = 0.1 MHz(Note 1)
2N3287
2N3288 thru 2N3290
VCB = 10 Vdc, IC = 2 mAde, f = 31.8 MHz
2N3287, 2N3288
2N3289, 2N3290

VCE = 10 Vdc, IC = 2 mAdc, f = 200 MHz
All Types

NF

Vdc

3.0

ICBO

hfe

Vdc

IE = 10 /.IAdc, IC = 0

Collector Cutoff
Current

AC Current Gain

Unit

VCE = 5.0 Vdc, IC =20 mAdc, f = 200MHz( Note 2)
2N3287
2N3289
2N3288, 2N3290

15
10

-

Vdc

Vdc

pF

ps

MHz

17

---

0

MHz
dB
dB

dB

-

Note 1. Cob is measured in guarded circuit such that the can capacitance is not included.
Note 2. AGC is obtained by increasing IC' The circuit remains adjusted for VCE = 10 Vdc, IC = 2 mAdc operation.

NEUTRALIZED POWER GAIN
AND NOISE FIGURE versus FREQUENCY
50

....

40

~z:
~

.

'"
~

Vet - 10 Vde, Ie - 2 mAde

,

20

d

r--'

o

10

"- !X"

v·

/'

r-....

f-- .

20

40

60

100

200

!!! !
z:
~

'"<5

z:

~

""~

..-z :r
d

"

400 600 1000

F.REQUENCY (, MHz\.

!'

12~

NF

G.

10

20

16

r-....

30

POWER GAIN AND NOISE FIGURE versus COLLECTOR CURRENT

0

2000

4000
Ie, COLLECTOR CURRENT (mAl

2-470

2N3291

thru

2N3294 (SILICON)
NPN silicon annular transistor for TV and FM mixer,
RF and IF amplifier and general-purpose, low-noise,
high-gain amplifier applications.

CASE 20
(TO-72)

MAXIMUM RATINGS

Unit

VCB

25

20

Volts

Collector - Emitter Voltage

VCES

25

20

Volts

Emitter - Base Voltage

VEB

3.0

3.0

Volts

Collector Current

Ie

50

50

mA

Power Dissipation at 25°C Case
Above 25°C derate 1. 71 mW/oC

PD

300

300

mW

Power Dissipation at 25°C Amb.
Above 25°C derate 1.14 mW/oC

PD

200

200

mW

Junction Temperature

TJ

+200

+200

°c

Storage Temperature Range

Tstg

NEUTRALIZED POWER GAIN
AND NOISE FIGURE versus FREQUENCY
Vco- 10 Vde,

Ie -

2 mAde

~.-

10

II!

....

II.

"- ')< ,,.",,'

40 60 100
flIEQUENCY

200
(MHz)

~

NF

12

20

iii

3

---

20

20
16

~
~

•

!'"

!z

ii
l!l
0

z '"
8 ..: 0~
z

16

12

.....

...

.J

.......

4

"

400 600 1000

-65 to +200

•

°c

POWER GAIN AND NOISE FIGURE versus COLLECTOR CURRENT

...

40

o

2N3293
2N3294

Collector - Base Voltage

50

10

2N3291
2N3292

Symbol

Rating

2000

0
4000

2-471

4

2N3291 thru 2N3294 (Continued)

ELECTRICAL CHARACTERISTICS

Cha racteristic

eTA = 25°C unless otherwise noted)

Symbol

Min

Test Conditions

C ollector-Emitter
Breakdown Voltage

BVCES

Ie

Collector Cutoff Current

leBO

V CB = 10 Vdc, IE = 0

Emitter Cutoff Current

lEBO

VEB = 0.5 Vdc,

DC Forward Current
Transfer Ratio

hFE

VCE = 10 Vdc,

Ie

=

2 mAde

10

AC Current Gain

hte

VCE = 10 Vdc,
f = 1 kHz

Ie

=

2 mAdc,

10

Output Capacitance

Cob

VCB = 10 Vdc, IE = 0,

AC Current Gain

Ibrel

VCE = 10 Vdc,

= 25 "Adc, VBE = 0
2N3291, 2N3292
2N3293,2N3294

Ie

=

35
30

-

Vdc

25
20

-

.01

0.1

/lAdc

-

100

"Adc

-

-

-

200

-

-

1.0

2.0

pF

2 mAdc

2.5

6.0

12

-

-

15

30

ps

-

2000

-

MHz

0

f = 100 kHz , Note 1

f = 100 MHz

Ie =

Collector-Base
Time Constant

rbCC

V CB '= 10 Vdc, IC = 2 mAdc
f = 31.8 MHz

Maximum Frequency
of Oscillation

fmax

VCE = 10 Vdc,

Ie =

2mA

VCE = 10 Vdc,
f = 200 MHz

Ie

2 mAdc,

2N3291
Power Gain

Ge

Noise Figure

NF

Power Gain (AGe)

Ge

Note 2
VCE = 5 Vdc,

Ie

=

20 mAdc

=

TVp Max Unit

16

20

24

dB

-

6.0

8.0

dB

-

-

0

dB

18

20

24

dB

9.0

dB

-

dB

f = 200 MHz
2N3292
Power Gain

Ge

VCE = 10 Vdc, IC = 2 mAdc

Noise Figure

NF

f = 200 MHz

-

7.0

Power Gain (AGe)

Ge

Note 2
VCE = 5 Vdc, IC = 20 mAdc
f = 200 MHz

-

0

2N3293
Power Output

Pout

VEE

=-11

Vdc, f

=

2.0

-

-

mW

14

-

dB

-

7.0

-

257 MHz

2N3294
Power Gain
Noise figure

Ge
NF

VCE = 10 Vdc,
f = 200 MHz

Ie

=

2 mAdc

Note 1. COb is measured in guarded circuit such that the can capacitance is not included.
Note 2. AGe is obtained by increasing
Ie = 2 mAdc operation.

Ie.' The circuit remains adjusted for VC'E

2-472

=

10 Vdc,

dB

2N3295 (SILICON)

NPN silicon annular Star transistor for linear amplifier applications from 2.0 to 100 MHz.

CASE 31
(TO-S)

Collector connected to case

MAXIMUM RATINGS·

Rating

Rating
Collector-Base Voltage

VCB

60

Unit
Vdc

Collector-Emitter Voltage

VCES

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current (Continuous)

IC

250

mAdc

Base Current (Continuous)

IB

50

mAdc

Total Device Dissipation
(25°C Case Temperature)
Derate above 25°C

PD

2.0
13.3

Watts
mW/oC

Total Device Dissipation
(25°C Ambient Temperature)
Derate above 25°C

PD

0.8
5.33

Watts
mWrC

Junction Temperature Range

TJ

-65 to 175

°C

Storage Temperature Range

Tstg

-65 to 175

°C

Symbol

• The maximum ratings as given for DC conditions can be exceeded on a
pulse basis. See Electrical Characteristics.

2-473

2N3295 (Continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Characteristic

Symbol

Collector-Emitter Current

ICES

Rating

vCE

= 60Vdc, VBE = 0

VCE = 50Vdc, VBE = 0,
T C =175°C

Min

Ty~

-- --

Collector Cutoff Current

ICBO

VCB = 50Vdc, IE = 0

-- --- --

Emitter Cutoff Current

lEBO

VEB = 5 Vdc, IC = 0

-- --

DC Current Gain

hFE

VCE = 10Vdc

Max Unit
100 II Adc

500 Il Adc
O. I Il Adc
100 II Adc

IC = 10mAdc,

--

20

_. -- --

IC = 150mAdc,
VCE = 10Vdc 111
Collector-Emitter
Saturation Voltage

VCE(sat)

Base-Emitter
Satutation Voltage

VBE(sat)

Collector- Emitter
Sustain Voltage
Collector-Emitter Open
Base Sustain Voltage

Collector Output
Capacitance

V ' I I Ic = 100mA, IB = 0
CEO(sus)

20

-- --

4.0

-- --

Power Input (PEP) (Note I)

Pin

Power Gain

Ge

Intermodulatlon
Distortion Ratio

1m

I1J Pulse

Test: Pulse Width

1/

= 100 liS,

Vdc
0.5

-- -- 2.0
30 -- --

Cob

Efficiency

IC = 150mAdc,
IB = 15mAdc

-- --

V
III IC = 100mA,
RBE =0
CES(sus)

Ihfe I

AC Current Gain

60

IC = 150mAdc,
IB = 15mAdc

Duty Cycle = 2

VCE = 10Vdc,
I C = 10mAdc, f=50MHz
VCB
f

P

t

= 10Vdc, IE =0,
= 100kHz
=O. 3 Watts

PEP
(0.15 W rms)
f = 30MHzYCE = 15. OVdc
ou

IC(max)

%

Note 1. PEP. Peak Envelope Power

2-474

=40mA

--

20

Vdc
Volts
Volts

-pF

-- --

B.O

-- --

12

14

17

30

32

---

25

30

--

mW
dB
dB

%

2N3295

(Continued)

SAFE OPERATING AREA

POWER OUTPUT versus FREQUENCY

500

0.4

~
~

\

400

ig

300

~

200

\

~

"I\.

~
DC
100

I'....

~

Te - 25°C

15

~

~

0.06

""-

0.04

.....

0.2

15 Vdc

I. DISTORTr <-3, dB

.......

\\ \

I

\ :\r\

0.01

50

60

40

20

10

60 80 100
I. FREQUENCY MHz)

200

~

r-....

~

~

\

i

i

II~ 30 HZ

Ve.-15Vdcl
0.4
1-30 MHz.
MINIMUM 1m DISTORTION
Te
- 25°C
I--

r--

~

0.3

J

0.2

i

1\

r-- _Ve.-15Vdc

400

POWER OUTPUT versus OPTIMUM BIAS

r-.... .......

"

'\.

\.\. \.
I--- VeE -

0.02

i"""-o ........

~

J

~ ~

O.1Il!

0.5

0.4

0.3

%~ ~~

;;

20
30
40
Ve" COLLECTOR· EMIITER VOLTAGE (VOlTSI

~

~

~~ ~~

~ 1\

0.1

MAXIMUM POWER OUTPUT FOR GIVEN 1m DISTORTION LEVEL
0.5

IIII
,.~

0~
~~.

~

"

.....
10

0.2

~

~

\.

~

.!J

~S P~LSE ~IDTH

0.5
.
'\ 50% DUTY CYCLE

~~
,

/

/

/

/

/

/

/

/

0.1

0.1
25

30
35
I., INTERMODULATION DISTORTION (,dB BELOW SIGNAU

40

3.4
3.2
3.6
3.8
lelo"I' OPTIMUM NO - SIGNAL COLLECTOR CURRENT (mAl

3.0

4.0

OUTPUT CHARACTERISTICS versus POWER INPUT
30 MHz

4 MHz
50

0.5

r- MINIMu! 1m DllTORTliN

.y

i

0.4

/'

0.3

~

~

co

15

~

J

~

0.2

./

--

30

,

20

A""~ .....

0.1

o

~

.......

40

.

i ~
5
~

I

10

V

V

o

o

~

10

0.4

;,. ~

0.3

~

0.2

0.1

oV
o

V

,

........ r""

,/

2-475

.....

40

~
30

./

I

20

./

/

p...

MINIMUM I. DISTORTION

ICE ; 115 VdC _

0.05

10

1

/
0.1

~

i3

~

0.15

P,. ' POWER INPUT ImW - PEP)

p., POWER INPUT (mW - PEP)

L

~

/

§

i

50

i-""

~

P•

YCE 1 =15Vdc

~

0.5

0.2

0.25

o

I
"

2N3296 (SILICON)

NPN silicon annular transistor for linear amplifier
applications from 2 to 100 MHz.

(10-102)

Collector connected to case;
stud isolated from case

MAXIMUM RATINGS (Note 1)

Symbol

Value

Unit

Collector-Base Voltage

VCB

60

Vdc

Collector-Emitter Voltage

VCES

60

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector Current (Continuous)

IC

700

mAdc

Base Current (Continuous)

IB

100

mAdc

RF Input Power (Note 2)

P.

10

1.0

Watt

RF Output Power (Note 2)

P

out

5.0

Watts (PEP)

6.0
40

Watts
mW/oC

0.7
4.67

Watts
mW/oC

Rating

(PEP)

Total Device Dissipation
(25°C Case Temperature)
Derating Factor above 25°C

Po

Total Device Dissipation at
(25°C Ambient Temperature) .
.Derating Factor above 25°C

PD

Junction Temperature

TJ

175

°c

Tstg

-65 to +175

°c

Storage Temperature Range

Note 1: The maximum ratings as given for dc conditions can be exceeded on a
pulse basis. See Electrical Characteristics.
Note 2: PEP = Peak Envelope Power.

2-476

2N3296 (Continued)

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Conditions

Min Typ Max Unit

Collector-Emitter Sustain Voltage

VCES(SUSJ' 11 IC - O. 200A, RBE ; 0

85

120

--

Volts

Collector Emitter-Open
Base Sustain Voltage

VCEO(susJI IC ; O. 200A, I B ; 0

40

--

--

Volts

-----

--

100

---

500

Collector-Emitter Current

VCE ; 60Vdc, VBE ; 0
ICES

VCE ; 50Vdc, VBE ; 0, TC; +175°C

Collector-Cutoff Current

ICBO

VCB ; 50Vdc, IE; 0

Emitter-Cutoff Current

lEBO

VEB ; 3Vdc, IC; 0

DC Current Gain

hFE

Collector-Emitter Saturation Voltage
Emltter-Base Saturation Voltage

AC Current Gain

IC ; 40mAdc

5.0

VCE ; 2. OVdc,

IC ; 400mAdc

5.0

VCE(sat)

IC - 400mAdc, IB ; 80mAdc

VBE(sat)

IC - 400mAdc, IB ; 80mAdc

I hfe I

Collector Output Capacitance

Cob

Power Input (PEP) (Note 2)

P.

Power Gain

G

Intermodulation Distortion Ratio

I

Efficiency

VCE ; 2. OVdc,

VCE ; 2. OVdc,I C ; 40mAdc, f ;50MHz
VCB ; 25Vdc, IE ; 0, f; 100kHz

10

e

Pout; 3.0 Watts (PEP)(l. 5 W rms)
VCE ; 30 Volts, f; 30MHz

m

---

------

1'/

2-477

0.1

/lAdc

100

/lAdc

--

---

0.5

Vdc

2.0

Vdc

50

--

--

--

---

20

pF

--

--

75

mW

2.0

16

19

--

dB

30

35

--

dB

40

48

--

%

IC(max) ; 125mA

III Pulse Test. Pulse Wldth - 100 /lsec. Duty Cycle; 2%.
Note 2 PEP. Peak Envelope Power.

/lAdc

2N3296

(Continued)

POWER OUTPUT versus FREQUENCY

SAFE OPERATING AREA
1400

~

1200

~

~

a

~
:j

8

~

.9

4.0

\

1000
800

---.;
600

,

h

400

2.0

\

0.5 .S

'"

~

200

~

PULSE WIDTH

;~% DUTY CYCLE

Te

~

f'-.. ........

E
15

0.6

~""-

"

10

1.0
0.8

.J

2D
30
40
50
60
7D
Veo . COLLECTOR· EMITTER VOLTAGE IVOLTS!

80

.~~

1M DISTORTION < - 3D dB

~

~

25'C

-~~
~~

Ve.=3~VcIc

~

IIII

I

I

~
~

%

~

~

1"\4\:\~
'""
""

0.4

\.

\.\. \.

0.2

\ 1\ 1\

D.1
90

10

40

2D

60 80 100
,. FREQUENCYf MHz I

200

POWER OUTPUT versus OPTIMUM BIAS

MAXIMUM POWER OUTPUT FOR GIVEN 1m DISTORTION LEVEL

~

""'

,1= 30~HZ
f-- I--OPTIMUM BIAS

r--

1\
"

f\.
\

,

Ve• ~ 15 Vd':--

MINIMUM 1m DISTORTION
Te=25'C- I--

I\Va = 30VcIc

'\

....r-..

,1=30~H~b-

\

VeE = 30 Vdc

r--

\

[\

"

/

i--"'"

V

-r-.

/

\.

Ve.= 15Vc1c

o

o
35
40
25
30
Im.INTERMODULATION DISTORTION IdB BELOW SIGNAU

20

10
12
lei",')' OPTIMUM NO - SIGNAL COllECTOR CURRENT ImAdel

2

45

14

OUTPUT CHARACTERISTICS versus POWER INPUT

4 MHz

30 MHz

I

60

I

MINIMUM 1m DISTORTION

I;"

.,13DVI/"

1/

.,

~

)
~

o

....

ry

V....

~

I/;
j

o

"",-

V

P",130Vl

....
20

;-' ~

J;><

./

.... "I

....

1-'

40
30

-- -- - -

P",1l5V1

I
I
80

100

~

.......

!
e;

2D

~,
.:

1D

~

1,1l5Vl).

11\

V
It........
o

40

/
./
~

)

o

-+--

_. - 1--1---

P,.. 13OVl

...... ....

I. ... 1-P... 1l5Vl~

-

12

PI,. POWER INPUT ImW - PEPl

2-478

50

.Jf'

k)

o

MINIMUM 1m DISTORTION

J,.(,I30Vl

~

J.,. ....

40
60
PI,. POWER INPUT ImW - PEPI

)I

5D

~.1l5V1

50

I

16

30

20

1,..-

I
~
~

"

10

20

o

2N

3297(SILICON)

NPN silicon annular transistor for linear amplifier
applications for 2 to 100 MHz.

CASE 1
(TO·3)

Collector connected to case

MAXIMUM RATINGS.

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

60

Vdc

Collector - Emitter Voltage

VCES

60

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector Current (Continuous)

IC

1.5

Adc

Base-Current (Continuous)

ls

500

mAdc

Power Input (PEP)

Pin

5.0

Watts (PEP)

Power Output (PEP)

Pout

20.0

Watts (PEP)

Total Device Dissipation

PD
25.0
167

mW;oC

@ 25°C Case Temperature

Derating Factor above 25°C

Watts

Junction Temperature

TJ

175

°c

Storage Temperature Range

T stg

-65 to +175

°C

• The maximum ratlnp u given for de conditions can be exceeded on a pulae baala. See electrical characterlstica

2-479

2N3297

(Continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
Collector-Emitter
Sustain Voltage

Min

Typ Max Unit

80

100

--

Volts

40

--

--

Volts

--

0.5

VCE = 50Vdc, VBE = 0, TC = +175°C

---

--

1.0

Symbol

Conditions

V
\11
CES(sus) It = 0.250A, RBE =0

111
Collector Emitter-Open V
CEO(sus) IC = 0.250A, IB = 0
Base Sustain Voltage

Collector-Emitter
Current

ICES

VCE = 60Vdc, VBE = 0

mAdc

Collector-Cutoff
Current

I CBO

VCB = 50Vdc, IE = 0

--

--

1.0

/lAdc

Emitter-Cutoff
Current

lEBO

VEB = 3Vdc, IC=O

--

--

100

/lAdc

IC = 400mAdc, VCE = 2Vdc

6.0

I C = lAde, VCE = 2Vde

DC Current Gain
hFE

2.5

---

--

60

--

Collector-Emitter
Saturation Voltage

VCE(sat)

IC = 1Adc, IB = 500mAdc

--

--

0.5

Vdc

Emitter-Base
Saturation Voltage

VBE(sat)

IC = 1Adc, IB = 500mAdc

--

--

2.0

Vdc

2.0

--

--

--

--

--

60

pF

--

--

1.2

Watts
PEP

10

13

--

dB

m

30

33

--

dB

'I

40

45

--

%

AC Current Gain

I hfe I

VCE

=2Vdc, IC = 400mAdc, f

Collector Output
Capacitance

Cob

VCB

= 25Vdc,

Power Input (PEP)

P.

Intermodulation

'i

100kHz

In

Note 2
Power Gain

IE = 0, f

= 50MH2

Pout = 12 Watts PEP (6. OW rms)
G

e

I

VCE = 30 Volts, f = 30 MHz
IC(max) = 0.50 Amp

Distortion Ratio
Efficiency

III Pulse Test: Pulse Width = 100 /lS, Dut} Cycl e = 2 %
Note 2. PEP. Peak Envelope Power

2-480

2N3297

(Continued)

SAfE OPERATING AREA

POWER OUTPUT versus fREIlUENCY

30

20
15
0.5 JJ. s:. PULSE WIOTH
50% DUTY CVCfE

1\

2.5

5

!

~

\

2.0

~

"~

1.5

\

OC

.9

1,\

i'.
'........

r-...

"'%

" '"

VCE~30V

i

~

15

t;;

~

<.

1m OISTORlON

t--- 1'-70

~

" r-,.\'%
~
"?

~

I ' r-

1\

80

10

i'l

j

dB

30

20

-::;

~

,:

~-

~

~



;

I"'"

/
I

~

<>

"

<>

,/

-15 -51) -25

~

~ 400
~

V

40

"
50

2N3299 thru 2N3302 (SILICON)

NPN silicon annular transistors for high-speed
switching circuits and DC to UHF amplifier applications.
CASE 22
CASE 31
(TO-S)

(TO-IS)
2N3301
2N3302

2N3299
2N3300

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

500

mAdc

Operating Junction Temperature Range

TJ

-65 to +200

°c

T stg

-65 to +200

°c

Collector-Emitter Voltage
(Applicable 0 to 10 mAdc)

Storage Temperature Range

2N3299 2N3301
2N3300 2N3302
Total Device Dissipation @TA = 25° C

0.8

0.36

Watt

4~56

2.06

mW/oC

3.0

1.8

Watts

17.2

10.3

PD

Derate above 25°C
Total Device Dissipation @T C = 25° C

PD

Derate above 25°C

FIGURE 1 - SATURATED TURN-ON SWITCHING
TIME TEST CIRCUIT

--j

300ns

r-

o.:r---L

Vee

= 25Vdc

80
....- - 0 OUTPUT TO

OSCILLOSCOPE

500

mW/oC

FIGURE 2 - SATURATED TURN·OFF SWITCHING
TIME TEST CIRCUIT

r-

+:n
""1

Zi• .,100 kD
t,:;; 1.0 ns

IO I-'S

Vee = 25 Vdc

-15 Vdc

80
500
500

OUTPUT TO
OSCILLOSCOPE

Zi. '" 100kD

t, :s; 1.0 ns

50

2-484

2N3299 thru 2N3302

(continued)

ELECTRICAL CHARACTERISTICS (T. =

2S"C un .... otIIerwiJe noted)

Symbol

Characteristic

Min

Max

Unit

-

Vde

30
60

-

5.0

-

-

0.01

-

10

-

10

OFF CHARACTERISTICS
Colleetor-Emllter Breakdown Voltage,\1I
(IC = 10 mAde, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 !.LAde, ~ = 0)

BVCBO

Emitter-Base Breakdown Voltage
(~ = 10 !.LAde, IC = 0)

BV EBO

Collector Cutoff Current
(V CE = 50 Vde, VBE = 0)
(V CE = 50 Vde, VBE = 0, TA = 150·C)

ICES

Emitter Cutoff Current
(V SE = 3. 0 Vde, IC = 0)

lEBO

Base Current
(V CE = 50 Vde, VBE = 0)

IB

Vde
Vde
!.LAde
10
nAde
nAde

ON CHARACTERISTICS
DC Current Gain
(IC = O. 1 mAde, VCE

hFE

=10 Vde)

2N3299, 2N3301
2N3300, 2N3302

(IC = 1. 0 mAde, VCE = 10 Vde)

2N3299, 2N3301
2N3300, 2N3302

25
50

(IC = 10 mAde, VCE = 10 Vde) 111

2N3299, 2N3301
2N3300, 2N3302

35
75

(IC = 150 mAde, VCE = 1. 0 Vde) III

2N3299 , 2N3301
2N3300, 2N3302

20
50

-

(IC = 150 mAde, VCE = 10 Vde)' 111

2N3299, 2N3301
2N3300, 2N3302

40
100

120
300

(IC = 500 mAde, VCE = 10 Vde) 111

2N3299, 2N3301
2N3300, 2N3302

20
50

-

-

0.22

-

1.1
1.3

-

1.1

250

-

-

8. a

-

20

Collector-Emitter Saturation Voltage
(IC = 150 mAde, Ia = 15 mAde)
(IC = 300 mAde, IB = 30 mAde)

VCE(sat)

(IC = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(IC = 150 mAde, IB = 15 mAde)

VBE(sat)

(Ic = 300 mAde, IB = 30 mAde)
(IC = 500 mAde, IB = 50 mAde)
Base-Emitter On Voltage
(IC =150 mAde, VCE = 10 Vde)

VBE(on)

20
35

-

-

Vde
0.45
0.6
Vde

1.5
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

fT

Output Capacitance
(V CB = 10 Vde, IE = 0, f = 140 kHz)

Cob

Input CapaCitance
(V BE = 2. a Vde, IC = 0, f = 140 kHz)

Cib

Turn-On Time (Figure 1)
(V CC = 25 Vde, IC = 300 mAde, IBI = 30 mAde)

ton

-

60

Turn-Off Time (Figure 2)
(V CC = 25 Vde, IC = 300 mAde, IBI = IB2

toff

-

150

= 30 mAde)

111 Pulse Test: Pulse Width ~ 300 !.Ls; Duty Cycle ~ 2%.

2-485

MHz
pF
pF
ns
ns

2N3303 (SILICON)

NPN silicon annular transistor designed for highspeed, high-current switching and driving applications.
CASE 94
Collector connected to case

MAXIMUM RATINGS

Rating

Value

Symbol

Unit

VCEO

12

Vdc

Collector-Base Voltage

VCB

25

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

1.0

Adc

Collector-Emitter Voltage

Collector Current-Continuous
Total Device Dissipation @ T A =25"C
Derate above 25°C

PD

= 25°C

PD

Total Device Dissipation @ TC
Derate above 25 ° C
Operating and Storage Junction
Temperature Range

ELECTRICAL CHARACTERISTICS

3.0

TJ , Tstg

Watt
mW/"C

17.2

Watts
mW/"C

-65 to
+200

°c

ITA = 250C unless otherwise noted)

Symbol

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Voltage·
= 30 mAde, IB = 0)

•

BVCEO

(Ie

Collector-Base Breakdown Voltage
(IC = 0.5 mAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
= O. 1 mAde,
=0)

BVEBO

('E

0.6

3.43

Ie

Collector Cutclff Current·
(VCE = 15 Vde, VBE = 0)

ICES

Base Current
(VeE = 15 Vde, VBE = 0)

IB

.Pulse Test: Pulse Width = 300 /LS, Duty Cycle :S. 2%

2-486

Min

Max

12

-

25

-

4.0

-

-

Unit
Vde
Vde
.Vde
/LAde

100

/LAde
100

2N3303 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Symbol

Characteristic

Min

Unit

Max

ON CHARACTERISTICS

DC Current Gain
(I C = 10 mAde, VCE

= 100 mAde,
(IC = 300 mAde,
(I C = 300 mAde,
(I C

hFE

= 0.5 Vde)
VCE = 0.5 Vde) (11
VCE = 0.5 Vde) III
VCE = 0.5 Vde, TA = -55'C)(11

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1 mAde)
(IC = 100 mAde, IB = 10 mAde) (1)
(IC
(IC
(IC

VCE(sat)

= 300 mAde, IB = 30 mAde) (11
= 300 mAde, IB = 30 mAde, TA = 125°C) (11
= 1 Ade, IB = 100 mAde) (11

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1 mAde)

VBE(sat)

= 100 mAde, IB = 10 mAde) (11
= 300 mAde, IB = 30 mAde) (11
(I C = 1 Ade, IB = 100 mAde) (1)

(IC
(IC

DYNAMIC CHARACTERISTICS
Current -Gain - BandwIdth Product
(IC = 100 mAde, VCE = 5 Vde, f

Output Capac itanee
(VCB = 5 Vde, IE

fT

= 100 MHz)

Cob

= 0, f = 140 kHz)

Input Capacitance
(VBE = 0.5 Vde, IC

C ib

= 0, f = 140 kHz)

30

-

30

120

10

-

-

0.25

20

Vde

-

0.23

-

0.33

-

0.50

-

0.70

-

0.78

-

1. 10

-

2. 1

Vde

1. 30

450

-

-

15

-

25

pF
pF

Turn-On Time (Figure 1)
(V EB(off) ~ 4 Vde, IC ~ 1 Ade, IBI ~ 100 mAde)

t

on

-

15

Turn-Off Time (Figure 1)
(IC ~ 1 Ade, IBI ~ IB2 ~ 100 mAde)

toff

-

25

-

15

Storage Time (Figure 2)
(IC ~ 100 mAde, IBI ~

t
IB2 ~ 100 mAde)

(11 Pulse Test: Pulse Width = 300

I1S,

VII

::rL
PUlSE SOURCE
t,.=t,~l.Ons

~.~

lOll

PRf 100 ns

4711

_01:LI
PUlSE SOURCE
t,~ 1.0ns
~. ~ 500

PRf < 100kHz

2-487

Ie:::::: lOOmA, 111:::::: -lIZ::::: lOOmA

2N3304 (SILICON)

PNP silicon annular transistor designed for lowlevel, high-speed switching applications.

CASE 22
(TO·18)

Collector connected to cese

MAXIMUM RATINGS

Rating

Symbol

Value

VCEO

6.0

Vdc

Collector-Base Voltage

VCB

6.0

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

PD

300

mW

1. 72

mWjOC

Collector-Emitter Voltage

Total Device Dissipation @ T A

= 25°C

Derate above 25°C
Total Device Dissipation @ T C

= 100°C

PD

Derate above 1000C
Operating & Storage Junction
Temperature Range

TJ, Tstg

2-488

Unit

500

mW

5.0

mWjOC

-65 to..200

°c

2N3304 (continued)

= 25°C unless otherwise noted)

ELECTRICAL CHARACTERISTICS IT A

Symbol

CharacJeristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustainil1l Yoltage ("
10 mAde, 18 • 0)
Collector-Emitter Breakdown Voltage
(lC' 100#Adc, V8E • 0)

8VCES

Collector-Base Breakdown Voltage

8VCBO

Emitter-Base SreakdoWD Voltale

Ie •

6,0

BVEBO

Collector-Cutoff Current

4 •. 0

IcES

-

(VCE • 3 Vde, V8E' 0)
(VeE

=3 Vdc, VSE

+1250 C)

'" 0, TA '"

Base Current

18

(VCE • 3 Vde, V8E • 0)

Vde

-

6.0

0)

Vde

-

6.0

(Ic' 100#Ade, IE • 0)
(IE' 100#Adc,

Vde

BVCEO(SU8)

(Ie •

Vdc
~Adc

0.01
10

nAde
10

ON CHARACTERISTICS
bn

DC Curren. Gain CII
(Ie • I mAde, VCE • 0.5 Vde)

(Ie •

15
12

10 mAde, VCE • 0.3 Vde, TA • • 55OC)

= 10 mAde, VeE'"

0.3 Vdc)

30

(lc • 50 mAde, VCE • 1.0 Vde)

20

(Ie

Collector-Emitter Saturation Voltage

(Ie •

120

Vde

VCE{...)
0.15

I mAde, 18 • 0.1 mAde)

(.Ie '" 10 mAde. IS"" 1 mAde. T A'" + 1250(:)

0.23

(Ie '"

0.18

10 mAde, IS '" 1 mAde)

0.5

(Ie = 50 mAde, IS '" 5 mAde)

Base-Emitter Saturation Voltage
(lc • I mAde, 18 • 0.1 mAde)

(Ie •
(lC

Vde
1.0

0.8

10 mAde, '8' I mAde)

= SO mAde, IS

0,8

0.7

1.5

'" 5 mAde)

OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
 lOOns
~.~5O!l
~.~<1.0ns

TO SAMPLING SCOPE
IiI ~ lookQ

tr < I.Ons

d:l-ro.

IW

Pulse Width > lOOns
1.. =5O!l
~"'l.Ons

2-489

511l

Vco=-3V

..."( 1
TO SAMPLING SCOPE
111~loolcQ

~<1.0ns

2N3307 (SILICON)
2N3308
PNP silicon annular transistors for high-gain, lownoise amplifier, oscillator, mixer and frequency multiplier applications.

CASE 20
(TO-72)

MAXIMUM RATINGS

Value
Symbol

Rating

2N3307

2N3308

Unit

Collector-Base Voltage

VCB

40

30

Vdc

Collector-Emitter Voltage

VCES

40

30

Vdc

Collector-Emitter Voltage

VCEO

35

25

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector Current

IC

50

mAdc

Power Dissipation at TC = 25°C
Derate above 25°C

Po

300

mW
mW/oC

Power Dissipation at TA = 25°C
Derate above 25°C

PD

Junction Temperature

TJ

1.71

T

storage Temperature Range

1.14

mW
mW/oC

200

°c

-65 to +200

°c

200

stg

COMMON EMITTER AVERAGE SMALL POWER GAIN
& NOISE FIGURE versus COLLECTOR CURRENT

NOISE FIGURE versus FREQUENCY

0
- - TUNEDATle"'-2mAdeONlY.
TUNED AT EACH TEST CURRENT.

Ve,=-10 Vde
t =200 MHz

5

0/

~

5

- "'.-,,,

-

0

o

-2

-4

6

-8

-

I I

VcE =-15Vdc-

r-r-

"

I" ~> ~

~~

5

-5

I--

Nf

1--- ......

Vc

,= -5 Vdc

3

f..L

I 'r-..." 1'.

Ie = -2 mAde
RG =50 ohms

"~. "

.......

-10

-12

-14

-16

0-

-18

o

20

20

30

50

70

100

t, fREQUENCY IMHz)

Ie, COllECTOR CURRENT ImAdel

2-490

200

300

500

2N3307, 2N3308 (Continued)
ELECTRICAL CHARACTERISTICS ITA =25°C unless otherwise noted)

Characteristic Symbol
BV CBO

IC

=

10 !.lAde, IE

Collector- Emitter
Breakdown Voltage

BVCES

IC

=

10 !.lAde, VBE

Collector-Emitter
Breakdown Voltage

BVCEO

IC

=

2.0 mAde, IB

Emitter-Base

BV EBO

IE

=

10 !.lAde, IC

Collector Cutolf
Current

ICBO

VCB
VCB

=
=

15 Vde

DC Current Gain

hFE

VCE

=

10 Vde,

Collector-Emitter
Saturation Voltage

VCE(sat)

IC

=

3 mAde, IB

=

Base-Emitter
Saturation Voltage

VBE(sat)

IC

=

3 mAde, IB

=

AC Current Gain

hIe

Output Capacitance.

Cob

= 10 Vde,
VCB = 10 Vde,

Collector-Base
Time Constant

r b 'ce

VCB

=

10 Vdc, IC

=

2 mAde, I

Current GainBandwidth Product

IT

VCE

=

10 Vde, IC

=

2 mAde, I

Maximum Frequency

I

VCE

=

10 Vde, IC

=

2 mAde

VCE

=

10 Vde, IC

=

2

Breakdown Voltage

of Oscillation

Power Gain

Ge

2N3307
2N330B

40
30

-

-

=0

2N3307
2N330B

35
25

Both Types

3.0

2N3307
2N3307

Power Gain (AGC) ••

G
e

VCE

=

5.0 Vde, IC

-

--

Vde

-

-

Vde

0.001

0.010

!.lAde

0.5

3.0

-

-

-

0.4

Vde

-

-

1.0

Vde

2N3307
2N330B
2N3307
2N330B

40
25

-

250
250

1.0
1.2

1.3
1.6

pF

=31. B MHz

-

2N3307
2N330B

2.0
2.0

-

15
20

ps

=100

Both Types

300

-

1200

MHz

Both Types

-

2000

-

MHz

-

24

dB

4.0
5.0

4.5
6.0

dB

0

dB

0.6 mAde

Both Types

0.6 mAde

Both Types

=

Vde

250
250

kHz

= 200

20 mAde, I

MHz

Both Types

MHz

= ·2 mAde, I =200

10 Vde, IC

-

-

-

40
25

= 2 mAde, f = 1
IE =0, I =O. 1 MHz

=

Vde

-

2N3~OB

mAde, I

Unit

-

-

-

Both Types

IC

VCE

Max
-

=0

=150 ·C
IC = 2 mAde

NF

-

40
30

=0

Noise Figure

Typ

2N3307
2N330B

15 Vde, T

VCE

max

Min

Test Conditions
=0

Collector-Base
Breakdown Voltage

MHz

=200 MHz

-

17

-

2N3307
2N3308

-

2N3307
2N330B

-

-

-

-

0

• Cob is measured in guarded circuit such that the can capacitance is not included.
The circuit remains adjusted for VCE = ... 10 Vdc, Ie

•• AGC is obtained by lDcreasing Ie.

= -2

mAde operation.

MAXIMUM AVAILAlLE GAIN

SMALL SIGNAL CURRENT GAIN versus FREQUENCY

VlrsuS

FREQUENCY

50
Veo - -10 Vile
25

~

~

Ve. =-10 Vdc

iii:

~
!

2mAdc

i.

""-."l

~,

_l!..
y;.

1c~-5mAdc

5

o

20

30

50

70

.........

i

t"t-~~.

f--hI.

40

~

100

~

~

200

"'"

'............. f-

300

500

t: FREQUENCY (MHz)

~

I:::::=::::

30

~ ~2i

20

)~--~=::

MAG=~

41. I..

10

o

20

30

50

70

100

f. FREQUENCY (MHz)

2-491

200

300

500

2N3311 thru 2N3316 (GERMANIUM)

PNP germanium power transistors for high-power
applications.
CASE 5
(TO·36)

Collector corinected to clse

MAXIMUM RATINGS

Rating

Symbol

2H3311
2M3314

2M3312
2M3315

2N3313
2H331.

Unit

Collector-Base Voltage

VCB

30

45

60

Volts

Collector-Emitter Voltage

VCES

30

45

60

Volts

Collector-Emitter Voltage

VCEO

20

30

40

Volts

Emitter-Base Voltage

VEB

20

25

30

Volts

Collector Current (Continuous)

IC

5.0

Amp

PD

170

Watts

= 25 0 C

Power DisSipation at TC

Junction Temperature Range

TJ

-65 to + 110

Thermal Resistance

8JC

0.5

°c
·C/W

POWER· TEMPERATURE DERATING CURVE

~

!.

~
;::

...c
a
s...
l...
...a

170
150
125

~I'-..

i'--..

100

'""'-

75

.......

50

I'.....

25

i"""-...
10

20

30

40

50

60

70

80

Te. CASE TE",PERATURE (OC)

90

The maximum continuous power is
related to maximum junction temperature by the thermal resistance factor.
This curve has a value of 170 Watts at
case temperatures of 25 0 e and is 0 Watts
at llOoe with a linear relation between
the two temperatures such that:

100 110

allowable P D = 1100 - Tc
0.5
2-492

2N3311 thru 2N3316

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

=25°C unless otherwise noted)
Symbol

Characteristic

I Min I Max I

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage*
(IC = 500 mAdc, IB = 0)

Collector-Emitter Breakdown Voltage*
(IC = 300 mAdc, VBE = 0)

2N3311,2N3314
2N3312,2N3315
2N3313,2N3316
2N3311,2N3314
2N3312,2N3315
2N3313,2N3316

Collector Cutoff Current
eV CE = 10 Vdc, ~ = 0)

2N3311,2N3314

(V CE = 15 Vdc, IB = 0)
(V CE = 20 Vdc, IB = 0)

BVCEO*

BV CES*

ICEO

20
30
40

-

30
45
60

-

Vdc

mAdc
200

2N3312,2N3315

-

2N3313,2N3316

-

200

-

35

ICEX

Vdc

200

mAdc

Collector Cutoff Current
(V CE = 25 Vdc, V BE = 1. 0 Vdc, TC = 100°C)

2N3311,2N3314

(VCE =40Vdc, VBE = 1.0Vdc, TC = 100°C)

2N3312,2N3315

-

35

(V CE = 55 Vdc, VBE = 1. 0 Vdc, TC = 100°C)

2N3313,2N3316

-

35

-

5.0

mAdc

Collector-Base Cutoff Current
(V CB = VCB max)
(V CB = 2.0 Vdc, ~ = 0)

ICBO

Emitter-Base Cutoff Current
(VBE = VBE max' IC = 0)

lEBO

-

4.0

hFE

60
100

150
250
120
200

VCE(sat)

-

0.1

VBE(on)

-

0.6
0.5

1.0

-

30
40

90
120

0.3
mAdc

ON CHARACTERISTICS
DC Current Gain
(I C = 500 mAdc, VCB = 2. 0 Vdc)
(IC = 3.0 Adc, VCB = 2.0 Vdc)

2N3311
2N3314
2N3311
2N3314

thru
thru
thru
thru

2N3313
2N3316
2N3313
2N3316

Collector-Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 300 mAdc)
Base-Emitter Voltage
(IC = 3.0 Adc, VCE = 2.0 Vdc)

2N3311 thru 2N3313
2N3314 thru 2N3316

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Common Emitter Cutoff Frequency
(IC = 3.0 Adc, VCE = 2.0 Vdc)
Small Signal Current Gain
(IC = 3.0 Adc, VCE = 2.0 Vdc, f = O. 5 kHz)

f(lie

2N3311 thru 2N3313
2N3314 thru 2N3316

hfe

-

*To avoid excessive heating of the collector junction, perform these tests with an oscilloscope.

2-493

kHz

I

2N3311 thru 2N3316 (continued)
2N3311,2N3314 m
10
Ie PEAK j

lms
5

-

lCI"'Ax]

CONT.

~

m,

~

a
'"
u

\~\\

l70·WATT AVERAGE ...../
POWER OISSIPATION AT
25"C CASE TEMPERATURE

~

SAFE OPERATING AREA

)<. \\\\ \

/

~

~

~~

25·50 ~s
2501"
500 ~,

~\

./

Q.

o

"sec to 5 msee pulse)

~C...!

The Safe Operating Area Curves indicate the Ic-V CE limits
below which the devices will not go into secondary breakdown, As the safe operating are~s shown are independent of
temperature and duty cycle. these curves can be used as long
as the average power derating curve is also taken into consideration to insure operation below the maximum junction
temperature.

/1
~

0.5

.§ 0.4

0.3
0.2

o. 1

10
20
30
Ve<. COllECTOR·EM ITTER VOLT AGE (VOL TSI

2N3312. 2N3315 (25

f,LS

40

to 5 ms pulse)

2N3313. 2N3316 (25

10

to 5 ms pulse)

~I\~

5m,

t-- 250 "'

~\:

1

-- 500",

! 21--~~--r-~~~rr~~+-~
!
/
-V "'\

Q.

"::!.
~

z

w

DC

a'"'"

'"
~

'"

~8

f,LS

10 r--le-p'TEA-K-"'J"~--I-m-Sr,-.:~~'T'~n'i:=-Tt---25-'5"lOr~-S---'

Ie PEAK

0.5 I----t----t---+---~l--+_--__i

~ 0.4

1---+---+---+---+"'-+---1

0.3

1---1----1---+---+--'1--+---1

1 1---+--I---I---1----t---+---' 30 Megohms@ f = 1.0 kHz

•

Drain and Source Interchangeable

•

Active Elements I solated from Case

~:;~:
OIA

Symbol

Value

Unit

VDG

20

Vdc

VGSR

20

Vde

"'Gate Current

IG

10

mAde

*Total Device Dissipation@TA = 25°C
Derate above 2SoC

PD

300
2.0

mW
mW/oC

·Storage Temperature Range

Tstg

-65 to +200

°c

Drain-Gate Voltage
Reverse Gate-Source Voltage

~o

1_1'

MAXIMUM RATINGS
Rating

r-

I

0.500

~~~: OIA

MIN

~
0.100

-Indicates JEDEC Registered Data.

Pin 1. Source

2. Gate
3. Drain
4. Case
0.028
0.048
TO-72
CASE 20 (51

2-498

2N3330 (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Svmbol

Min

Max

Unit

VIBRIGSS

20

-

Vde

-

10

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

IIC = 10 /lAde, VDS = 01
Gate Reverse Current

nAde

IGSS

IVGS= 10Vde, VDS=OI

10

/lAde

IDSS

2.0

6.0

mAde

VGS

-

6.0

Vde

rDS

-

800

Ohms

1500

3000

IVGS = 10 Vde, VDS = 0, TA = 1500 CI

-

Zero-Gate Voltage Drain Current INote 1)
IVDS = -10 Vde, VGS = 0)
ON CHARACTERISTICS
Gate-Source Voltage

IVDG = -15 Vde, ID = 10/lAde)
Drain-Source Resistance

liD = 100 /lAde, VGS = 0)
SMALL-SIGNAL CHARACTERISTICS
Forward Transadmittanee INote 1)
IVDS = -10 Vde, ID = 2.0 mAde, f = 1.0 kHz)

JJmhos

IVfsl
1350

-

IVosl

-

40

JJmhos

Reverse Transfer Conductance
IVDS = -10 Vde, ID = 2.0 mAde, f = 1.0 kHzl

Ivrsl

-

0.1

/lmhos

Input Conductance

IVisl

-

0.2

J.Lmhos

Ciss

-

20

pF

NF

-

3.0

dB

IVDS = -10 Vde, ID = 2.0 mAde, f = 10 MHz)
Output Admittance

IVDS = -10 Vde, ID = 2.0 mAde, f = 1.0 kHz)

IVDS = -10 Vde, ID = 2.0 mAde, f = 1.0 kHzl
I nput Capacitance

IVDS = -10 Vde, VGS = 1.0 Vdc, f = 1.0 MHzl
Common-Source Noise Figure

IVDS = -5_0 Vde, ID = 1.0 mAde, RG = 1.0 Megohm,
f = 1.0 kHz)
-Indicates JEDEC Registered Data.
Notel: Pulse Test: Pulse Width ~ 630 ms, Dutv Cycle ~1 0%.

2-499

2N3375(SILlCON)\
2N3553
2N3632

* Collector Connected

2N 3961

• CASE 79

·'·CASE 24

(10·39)

2N3553

"·CASE 36

(10·102)

(10·60)

2N3961

2N3375
2N3632

to Case
.. Collector electrically connected
to case; stud electrically
isolated from case
* •• Stud electrically
Isolated from case

NPN silicon RF Power transistors, optimized for
large-signal power amplifier and driver applications to
400MHz, provide wide choice of power levels and guaranteed safe operating areas.
MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

Symbol

2N3375 2N3553 2N3632 2N3961

VCEO

40

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current

..
..
..

= 25·C

Operating and Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS

PD

(TA

..

4.0

Vdc
Vdc

1.0

3.0

1.0

11.6

7.0
40

23
131

10

Watts

57.2

mW;oC
·C

66.4

TJ , Tstg

..

65

Vdc

1.5

IC

Total Device Dissipation @ TC
Derate above 25·C

•

Unit

..

•

-65 to +200

Adc

=25'C unless otherwise noted)
Symbol

Characteristic

Min

Max

40

.

Unit

OFF CHARACTERISTICS
BVCEO(sus)*

Collector-Emitter Sustaining Voltage*
(IC = 200 mAde, IB = 0)

Emitter-Base Breakdown Voltage
(~ = 0.25 mAde, IC = 0)
(IE = O. 1 mAde, IC = 0)

2N3632
2N3375, 2N3553

2N3375, 2N3553
2N3632

Collector Cutoff Current
(VCE = 30 Vdc, VBE( ff) = 1. 5 Vdc, TC = 200'C)
o
2N3375, 2N3553
2N3632
(VCE = 65 Vdc, VBE(off) = 1.5 Vdc)

Emitter Cutoff Current
(V BE =4.0Vdc, IC =0)

ICEO

2N3961

* Pulsed tbru 25 mH inductor (See Figures 5 and 6).

2-500

4.0

-

-

0."
0.25

ICBO

lEBO

Vde

mAde

mAde:

-

2N3632
2N3961
2N3375, 2N3553
2N3632

-

ICEX

2N3375, 2N3553
2N3632

Collector Cutoff Current
(VCB = 28 Vdc, ~ = 0, TA = 150'C)
(VCB = 65 Vde, ~ = 0)

4.0
4.0

2N3961

(IE = 1. 0 mAde, IC = 0)
Collector Cutoff Current
(VCE = 30 Vde, IB = 0)

BVEBO

Vdc

-

5.0
10
1.0
5.0

-

-

0.5
1.0

-

0.1
0.25

-

mAde
5.0

mAdc

2N3375, 2N3553, 2N3632, 2N3961 (continued)
ELECTRICAL CHARACTERISTICS (continued)
Characteristic
ON CHARACTERISTICS
DC Current Gain
(IC = 250 mAde, VCE = 5.0 Vde)

2N3375, 2N3553, 2N3632

hFE

2N3632

(IC = 1.0Ade, VCE = 5.0 Vdc)
Collector-Emitter Saturation Voltage
= 250 mAde, IB = 50 mAde)

(Ie

VCE(sat)

2N3553

Base-Emitter Saturation Voltage
(IC = 1. 0 Ade, IB = 5.0 Ade)

2N3632

-

-

-

1.0

-

-

VBE(sat)

-

-

fT

350
-

500

2N3375, 2N3632

(IC = 500 mAde, IB = 100 mAde)

5.0

-

10

-

Vde

1.0

-Vde

1.5

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 100 mAde, VCE = 28 Vde, f = 100 MHz)
(IC = 125'mAde, VCE = 28 Vdc. f = 100 MHz)
(IC = 150 mAde, VCE = 28 Vdc, f = 100 MHz)
Output Capacitance
(VCB = 28 Vdc, IE = 0, f = 100 kHz)
(VCB = 30 Vdc, IE = 0, f = 100 kHz)

2N3553
2N3961
2N3375
2N3632

Cob

2N3961
2N3375, 2N3553
2N3632

MHz

500
400

-

8.0

10

8.0
16

10
20

-

1.0

Watt

-

dB

1.0

Watt

-

dB

-

0.25

Watt

-

dB

pF

FUNCTIONAL TESTS
2N3375
Pin

-

Gpe

8.75

~

65

Test Circuit Figure 8

Pin

-

(VCE = 28 Vdc, Pout = 3.0 Watts,

Gpe

4.77

Power Input

Test Circuit Figure 7

Common-Emitter Amplifier
Power Gain

(VCE = 28 Vdc, Pout = 7.5 Watts,
f = 100 MHz)

Collector Efficiency
Power Input
Common-Emitter Amplifier
Power Gatn

f = 400 MHz)

%

%

~

40

Test Circuit Figure 9

Pin

-

(VCE = 28 Vdc, Pout = 2. 5 Watts,

Gpe

10

~

50

-

Pin

-

-

3.5

Watts

Gpe

5.86

-

-

dB

~

70

-

-

%

0.5

Watt

-

dB

%

0.5

Watt

Collector Efficiency
2N3553
Power Input
Common-Emitter Amplifier
Power Gain

f = 175 MHz)

Collector Efficiency

%

2N3632
Power Input

Test Circuit Figure 10

Common-Emitter Amplifier
Power Gain

(VCE = 28 Vdc, Pout

= 13.5 Watts,"

f = 175 MHz)

Collector Efficiency
2N3961
Power Input

Test Circuit Figure 11

Pin

-

-

Common-Emitter Amplifier
Power Gain

(VCE = 12.5 Vdc, Pout =2.0Watts,

Gpe

6.0

-

~

60

Collector Efficiency

RS = 50 ohms, RL = 50 ohms,
f = 135 MHz)

Power Input

Test Circuit Figure 12

Common-Emitter Amplifier
Power Gatn

(VCE

= 28 Vdc, Pout = 4.0 Watts,

Pin

-

-

Gpe

9.0

-

60

-

RS = 50 ohms, RL = 50 ohms,

Collector Efficiency

~

f = 175 MHz)

2-501

-

dB

%

2N3375, 2N3553, 2N3632, 2N3961

(continued)

POWER OUTPUT versus FREQUENCY
COMMON EMITTER - VeE
28 Vde, Tc
25°C

=

10

-I--

8.0

::---....

-r---

I>-.

-o.S~

"l" ':>c

.I

/" r-

............

/

Iiw
i-"'"

-- -

o.ifw

"-" .".
.........

r- r--.
....... t-

....... i'-

~
.............

0
..... r--.

P"

~"

8.0

....... r--.. ..... ~

?

-

r-

l"-.

I.SW-

..I.

r---.... r--

r--...
.............

FIGURE 2 - 2N3553
10

p,~~2hw

- ....r-..

r-...

-......

=

FIGURE 1 - 2N3375

~o.osow

~
r-....."'"
..........

r--.....

~

100

200

ISO

2S0

75

SO

0

~/

~

~

"
').....

~ 10
~ 8.0
5
co

a..~

h:-I--

6.0 r--- o.sw

1.0(

4.0

.......

150

........

.....

..... ::::::

200

400

300

En 6.01----":::O".....,.....-+-----=""""';::-..:::po;l~-...::::.;'-"-____l

~ :::::::::-...

- --./

. / r--...

l.SW

:--...

............

~

2.0

~

5

~
co

4.01------"""""""':t----"""""-::---f:.......;;:::-''=l

I 3.01------::....."i""''------==:.......;;:I----;;;-..e::...,''''''''':--I
~
~

.:

2.01------+-----+-----+-~

1.0L...._ _ _ _ _..I.-_ _ _....l-_ _--I._---..l

1.0
50

",

r-...: ~

FIGURE 4 - 2N3961

2.JW

_/

./

" ....... ........ r---" , .....

2.SW

---- :---::=::::
-

,

10~========+======+=====+==~

p"I~\w

E

."')< .........

f. FREQUENCY (MHz)

FIGURE 3 - 2N3632

20

VO.2S0W

/

100

f. FREQUENCY (MHz)

40

OI375l

o

400

300

o.sw

/

O.1/ow
1.0

1

60

80

200

100
ISO
f. FREQUENCY (MHz)

300

100

150

200

300

f. FREQUENCY(MHz)

BVCEOI,"" PULSE TEST CIRCUITS

FIGURE 5 - 2N3375. 2N3553. 2N3632
lOX PROBE
TEKTRONIX P6000
OR EQUIVALENT

TO SCOPE VERT.
TEKTRONIXS03
OR EQUIVALENT

TO

;--___.......,...., SCOPE
lOX PROBE
VERT.
TEKTRONIX

PULSED@:l
60Hz
RELAY

1--------1

UNIT
UNDER
TEST

FIGURE 6 - 2N3961
50%

E~~~~L~~

DUTY
CYCLE

TO TElITRONIX
S030R
EQUIVAlENT

rI
I

5.0

TO SCOPE HORIZ.

....

RElAY

2-502

TO SCOPE
HORIZONTAL
SENSING

2N3375, 2N3553, 2N3632, 2N3961

(continued)

TEST CIRCUITS

2N3375
FIGURE 8 - 400 MHz

FIGURE 7 - 100 MHz
4.0-40 pF

2·
STUB
TUNER

RS = 50n

3·
STUB
TUNER

2N3375

+2SV
500 pF

Ll: 3 turns No. 16 AWG wire 14"1.0 .• 5/16" long
L2: 5 turns No. 16 AWG wire 5/16"1.0 .• 7116" long

2N3553

2N3632

FIGURE 9 - 175 MHz

FIGURE 10 -175 MHz
3.0-35 pF

3.0-35 pF

L1: 2 turns No. 16 AWG wire 3116" 1.0 .• 14"long
L2: 2 turns No. 16 AWG wire 3116"1.0 .• 14"long
L3: 3 turns No. 16 AWG wire 3/S" 1.0 .• 3/S"long

Ll. L3: 4 tums No. IS AWG wire 14" 1.0. 3/16" long
L2: 1turn No. 16 AWG wire 14"1.0 .• 3/16" long
4: 2% turns No. 16 AWG wire 14"1.0 .• 14"long

2N3961
FIGURE 12 -175 MHz

FIGURE 11 -135 MHz

C,. C3 =5.0·60 pF
(Air Variable)
+12.5 V
C2· 7.0-100 pF (Air Variable)
C4 = 1.0-30 pF
(Air Variable)
C5 = 1000 pF
(Disc Ceramic)
C6 • 0.02 ~F
(Disc Ceremic)
Ll = 3 turns No. 16 AWG wire. 5/16"1.0 •• 5116" long
L2' 5 turns No. 16 AWG wire. 7116"1.0 .• 5/S" long

Cl .................. 1.0-12pF
(Air Variable)
C2 .................. 1.0-30 pF
(Air Veriable)
C3 .................. 5.0-50 pF
(Air Variable)
C4 .................. 7.0-75 pF
(Air Variable)
C5 ..................470 pF
(Disc Ceramic)
C6 ............... 0.001 ~F
(Disc Ceramic)
Ll. L3. 4 ............................ 2 turns No. 18 AWG enameled wire
14" 1.0 .• air wound 3/16" long
L2 ........................................· RFC• QU<1

2-503

RL = son

2N3425 (SILICON)

Dual NPN silicon transistor designed for use as a
high-frequency sense amplifier.

PINS 4 AND 8 OMITTED

Pin Connections Bottom View
All leads Electrically Isolated from Case

Case65~4

TO-78

MAXIMUM RATINGS

(each side)(TA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

15

Vdc

Collector-Emitter Voltage
(R BE ~ 10 ohms)

VCER

20

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

TJ

+200

°c

Operating Junction Temperature
Storage Temperature Range

T

stg

°c

-65 to +200

One Both.
Side Sides
Total Device Dissipation @ TA = 25° C

PD

Derate above 25° C
P

Total Device Dissipation @ T C = 25° C
TC = 100°C
Derate above 25° C

D

0.3

0.4

Watt

1. 72

2.28

mWjOC

0.75

1.5

Watt

0.43

0.86

Watt

4.3

8.55

mWjOC

FIGURE 1- SWITCHING-TIME TEST CIRCUIT
V;,

.

v...

.)

5.0 k
5.0 k

50

Vi

°i~1

0.01

"

"

t,.,
v.= -4.0Vdc
V;, = +21 V•.•

270

I'

INPUT AND DUTPUT PULSE
WAVEFORMS

V.. = +17Vdc
Vln = -20 Vp•p

ToOSCILLOSCOPE

V
., "~) +
Vcc=3.0Vdc
1-

t'Jv~:n

10%
V;, rise time

< 5.0 ns

Capacitor values in ~F
Resistor values in ohms

2-504

20Vdc

i

2N3425

(continued)

ELECTRICAL CHARACTERISTICS

(each side) (T, = 25'C unless oth.""se noted)

Symbol

Characteristic

Unit

Max

Min

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (U
(lC = 10 mAde, IB = 0)

BV CEO(sus)

Collector-Emitter Sustaining Voltage" (1)
(IC = 30 mAde, RBE ~ 10 ohms)

BV CER(sus)

Collector-Base Breakdown Voltage
(lC = 10 !lAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)

BVEBO

·Collector Cutoff Current
(V CE = 20 Vde, VEB(oll) = 0.25 Vde, T A = 125' C)

ICEX

Collector Cutoff Current
(V CB = 20 Vde, IE = 0)

ICBO

-

20

-

40

-

5.0

-

-

15

-

0.025

-

15

-

0.2

12

-

30

120

12

-

Vde
Vde
Vde
Vde
!lAde

(V CB = 20 Vde, IE = 0, T A = 150'C)
Emitter Cutoff Current
(V EB' = 4.0 Vde, IC = OJ

15

uAde

uAdc

lEBO

ON CHARACTERISTICS
DC Current Gain
(I C = O. 5 mAde, VCE = 1. 0 Vde)

=10 mAde,

(IC

hFE

VCE = 1. 0 Vde)

(IC = 10 mAde, VCE = 1. 0 Vde, T A = -55' C)
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VCE(sat)

Vde

-

0.4

0.7

0.85

-

0.9

300

-

-

6.0

-

9.0

20

-

-

50

on

-

50

toff

-

90

-

40

(Ie = 7.0 mAde, IB = O. 7 mAde, TA = -55'C to +125'C)
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VBE(sat)

-

0.5
Vde

(IC = 7.0 mAde, IB = 0.7 mAde, TA = -55'C)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 20 mAde, VCE = 10 Vde, I = 100 MHz)

IT

Output Capacitance
(V CB = 10 Vde, IE = 0, I = 140 kHz)

Cob

Input Capacitance
(V BE = 0.5 Vde, IC = 0, I

Cib

~

140 kHz)

Small-Signal Current Gain
(IC = 10 mAde, VCE = 1. 0 Vde, 1= 1. 0 kHz)
Real Part of Input Impedance
(IC . = 10 mAde, VCE = 10 Vde, I

= 300 MHz)

Turn-On Time (Figure 1)
(V CC c 3 ..0 Vde, VEB(off)

Vde, IC

= 2,0

=3. 0 mAde,

Storage Time (Figure 2)
(IC =10 mAde, IBI =10 mAde, IB2

=10 mAde)

m Pulse Test:

pF
pF

hie

IB2

IBI

t

=3. 0 mAde)

=1. 0 mAde)

t

Ohms

Re(h ie )

=10 mAde,

Turn-Off Time (Figure I)
(V CC = 3.0 Vde, IC = 10 mAde, IBI

MHz

s

ns
ns
ns

Pulse width ~ 300 us, duty cycle ~ 1%

FIGURE 2 - STORAGE TIME TEST CIRCUIT
"A"

v,"

890

If

500

0.1

500 ..

+ 6.0 Vdc
91

O~

.,0.0025 0.002\

z.= 50 n

68

1~

+

~~
"

,\.

-:t
V"

~

11 Vdc

7

Vee

,

TO OSCILLOSCOPE
Z'"~ lookn
t ,;,; 5.0 ns

.I

.'-

~~

+

T=

Capacitor values in /IF

Voo rise time

Resistor values in ohms

10 Vdc

2-505

< 5.0 ns

0-----

k
-rr-

10%
PULSE AT POINT "A"

-4.0Vdc ----f---'.....- - -

2N3427, 2N3428 (GERMANIUM)

PNP germanium transistors for audio amplifier and
medium-speed switching applications.
CASE 31(11
(TO.5)

All leads isolated
from case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector- Base Voltage

V CB

45

Vdc

Collector-Emitter Voltage

VCER

30

Vdc

Emitter-Base Voltage

VEB

30

Vdc

Collector Current (Continuous)

IC

500*

mAdc

Base Current (Continuous)

IB

50*

mAdc

Storage and Operating Temperature
Range

T stg ' TJ

-65 to +100

°c

Collector Dissipation,Ambient
Derate Above 25°C

PD

* Limited by power dissipation

2-506

200
2.67

mW
mWrC

2N3427, 2N3428

(continued)

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
Characteristic

Symbol

Collector-Base Cutoff Current
(V CB = 1. 5 Vdc, IE = 0)

= 10 Vdc,

I CBO

= 0, TA = +71 °C)
(V CB = 30 Vdc, IE = 0)
(V CB = 45 Vdc, IE = 0)
(V CB

IE

Emitter-Base Cutoff Current
(V EB = 30 Vdc, IC = 0)

lEBO

Collector-Emitter Leakage Current
(V CE = 30 Vdc, RBE = 10K ohms)

ICER

Collector-Emitter Punch-Thru Voltage
(Vn = 1. 0 Vdc, VTVM impedance i!; 1 megohm)

Vpt

Output Capacitance
(V CB = 6 Vdc, IE

Cob

= 0, f = 1 MHz)

Noise Figure
(V CE = 4.5 Vdc, IE

.M

=1

fll!b

Input Impedance
(V CB = 6 Vdc, IE

= 1 mAde, f = 1 kHz)

h ib

Output Admittance
(V CB = 6 Vde, IE

= 1 mAde, f = 1

hob

kHz)

Small-Signal Current Gaill
(V CE = 6 Vde, IE = 1 mAde, f

= 1 kHz)

2N3427
2N3428

Small-Signal Current Gain
(V CE = 6 Vde, IE = 1 mAde, f

=2

2N3427
2N3428

DC Current Gain
(IC = 20 mAde, V CE

MHz)

= 1 Vde)

(IC

= 100 mAde, V CE = 1 Vde)

(IC

= 200 mAde, V CE = 1 Vdc)

2N3427
2N3428
2N3427
2N3428
2N3427
2N3428

Base-Emitter Input Voltage
(V CE = 1 Vde, IC = 100 mAde)
Collector-Emitter Saturation Voltage
(IC = 100 mAde, IB = 2 mAde)
IB

Unit

Max

/lAde

-

3.0

5.0

-

-

100

-

-

10

-

3.0

10

-

-

600

30

-

-

10

20

50
/lAde

/lAde

-

Vdc

pF

dB

NF

Hz)

= 200 mAde,

Typ

= 0.5 mAde, R,s = 1 K ohms, f = 1 kHz •

Small-Signal Current-Gain Cutoff Frequency
2N3427
(V CB = 6 Vdc, IE = 1 mAde)
2N3428

(IC

Min

= 4 mAde)

hfe

Ihfel
hFE

V BE

2N3427
2N3428
2N3427
2N3428

2-507

VCE
(sat)

-

5.0

10

4.0
5.0

6.0
8.0

-

25

-

35

0.05

-

0.50

200
350

325
475

500
800

2.0
2.5

-

7.0
8.0

150
250
100
150
75
125

275
375
210
260

350
400

-

-

-

-

O. 5

-

0.155
0.150
0.220
0.200

0.200
0.190
0.300
0.280

MHz

Ohms

/lmho

-

-

-

-

-

Vde

Vde

2N3427, 2N3428

(continued)

POWER·TEMPERATURE DERATING CURVE

,

220
u;
to!;c
:I:

:::

200
180

~ 140

z:

0

~
0.

in

120
100

'"0
'"~

80

0.

40

0

~

I'\.

8JC

i

~

8J. = 0.375°C/mW"",-

o

~

'\

~

'" """

I

I\.

.Y

,~

20

o

w m

~

~

2N3428

160

./ //

w w ro

w

~

V/

100

/. V
V/

80
60

h

40

~

20

"\

oV
o

~

,= 1V
2N3427

400

/ /
;/ /

360

o

0.1

7
II
W

~

7,2N3428

I
g

J

0,3

i'-..

i'-- . . . r-., 1'---.2N3428
.............
2Ni';v--

200

""'"-

160

t.......

r-- t---- r-

100
60

~

0,2

260

v',= IJ

t'.....

300

)7

o

1.4

DC CURRENT GAIN "rsus COLLECTOR CURRENT

OUTPUT CURRENT versus BASE DRIVE VOLTAGE

~

1.2

1.0

I,.BASE CURRENT {MILLIAMPERES)

200

~

0,8

0,6

0,4

0,2

TEMPERATURE (OC)

Ve

/. /

/ . ~3427

140

~ 120

:;;

I'\:

60

VeE =IV

::l

-..;;

i'-..

V'

V

/

180

= 0.25°C/mW

\ /
r\:

" '"

160

COLLECTOR CURRENT "rsus BASE CURRENT
200

0,4

0,$

0,6

oo

vEO. EMITTER-8ASE VOLTAGE (VOLTS)

20

40

60

80

~

~

~

Ie. COLLECTOR CURRENT {MILLIAMPERES)

2-508

~

~

200

2N3439 (SILICON)
2N3440

NPN SILICON HIGH VOLTAGE POWER TRANSISTORS
· .. designed for use in consumer and industrial line·operated
applications. These devices are particularlv suited for audio, video
and differential amplifiers as well as high·voltage, low·current
inverters, switching and series pass regulators.
•
•
•

1 AMPERE
POWER TRANSISTORS
NPN SILICON
250-350 VOLTS

High DC Current Gain hFE=40·160@lc=20mAdc
Current·Gain-Bandwidth Product fT = 15 MHz (MinI @ IC = 10 mAdc
Low Output Capacitance Cob = 10 pF (Max) @f = 1.0 MHz

10 WATTS

• MAXIMUM RATINGS
Rating
Collector-Em,tter ¥oltage
ColleCTor-Base Voltage

Emitter-Base Voltage

___(;ollector Current - Continuous

Symbol

2N3439

VCEO

3SO

Ve.
VEe

450

'e

Po

Total Device OISSiPOltlon@TC-25OC
Derate above 25°C

Po

Operating and Storage Junction Temperatura

Unit

250
300

Vdo
Vdo
Vdo
Ado
Ado
Watts
mW/oC
Watts

w/oe

-65 to +200

TJ, T$19

Range

2N3440

7.0
1.0
0.5
1.0
5.7
10
0.057

'.

Base Current
Total Device DisSIpation @I T A "- 25°C
Derate above 250 C

I

oc

THERMAL CHARACTERISTICS
CharacterBtic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS ITe-

I

::::~ ~

'::;~{IT

250 C unless OlherWISI' noted)

Charac:taristic

Symbol

Min

Mox

Unit

OFF CHARACTERISTICS

·Collector-Emitter Sustaining Voltage (1)
(lC" 50 mAde, 18" 0)

Vdo

VCEO(sus)
2N3439
2N3440

Collector Cutoff Current
(VCE " 300 Vdc, IS "0)
(VCE '" 200 Vdc, IS '" 01
Collector C"'toff Current
(VCE = 450 Vde, VSE(off) .. 1.5 Vdel
(VCE = 300 Vdc, VSEloff) = 1.5 Vdel

350
250
,Ad,

ICEO
2N3439
2N3440

20
50

-

500

500
STYLE I

-Collector Cutoff Current
(VCS .. 360 Vdc, IE .. 01
(VCS .. 250 Vdc, IE "01

2N3439
2N3440

-Emlttat Cutoff Current
lYse" 6.0 Vde, IC .. 0)

ICBO

20
2P

,Ad<

IESO

20

,Ad,

~II~
MIN

,Ado

ICEX
2N3439
2N3440

I

PIN I. EMITTER
2. BASE
3. COLLECTOR

ON CHARACTERISTICS (1)
DC Current Gain
(Ie· 2.0 mAde, VCE" 10 Vdel
-lie = 20 mAde, VeE'" 10 Vdc)
·Colleetor·Emlttar Saturation Voltage
(lC • 60 mAde, 'S .. 4.0 mAde)
Sase·Emitter Saturation Volta.
(lC .. 50 mAde, la .. 4.0 mAde)

hFE

30
40

2N3439
Both Types

160

VCElsatl

0.5

Vdo

VSE(sat)

1.3

Vd,

"DYNAMIC CHARACTERISTICS
Currant·Gain - Bandwidth Product
(lC = 10 mAde, VeE'" 10 Vde)
Output Capacitance
lYCB '" 10 Vde,le "O,t .,.0 MHz)
Input Capaeitanal
(VES =6.0 Vdc,lC =0, f =. 1.0 MHz)
Small1ignal Current Gain
lie'" 5.0 mAde, VCE '" 10 Vtk:, f '" 1.0 kHz)
Rql Part of Common Emitter SmaIl-5iFlal
Short-Circuit I nput Impedance
(VCE" 10 Vde, IC = 5.0 mAde, f = 1.0 MHz I
·'nd,catesJEOEC Reg,stared Data.
(1) P",I_Tast: P",llaWldth,.300j.l.s. Duty

tT

MH,

15

Cob

10

OF

75

OF

300

Oh....

Cib
ht.
Re(hle'

25

All JEDEC dimensions and notes apply

CASE 31

TO·5
Cyc'a~2.0%.

2-509

2N3439, 2N3440 (continued)

FIGURE 2 - SATURATiON REGION

FIGURE 1 - DC CURRENT GAIN
300

+j~\~OOC

200
z 100

n

<1
<.0

2S OC

~

SO

~

30

~

20

~

10

u; 1.0

-

"-

w

c

~

'--

~

~\

a:

~
_

3.0
O.S

2.0 VOLTS

1.0

2.0

0.6

0.4

r-.,

10

>

20

SO

100

200

0
0.1

SOO

I'...

0.2

O.S

IC, COLLECTOR CURRENT (mAl

TJ=2S oC

I
-

'"~

II II

+0.8

I

V

10

-

+0.4

)-

.5

<.0

~

~ 0.4

o
2.0

3.0

S.O

20

10

f.30

-0.8

~

so

100

~
I-

-1.6 r-- -

'"

-2.0

200

eVB 10rVBE

2.0

S.O

IC, COLLECTOR CURRENT (mAl

7

=IC-2xICES

=

"

t=IC ~ ICES

40

--- to- f10

20

SO

,.....200

100

IC, COLLECTOR CURRENT (/AI

FIGURE 5 - EFFECTS OF BASE-EMITTER RESISTANCE

,,
.", " .,

-

-1.2

:>

Ic/lB - S.O

I

Jt./

......-r.~

=>

/

V

.1.-1-

100

-0.4 I-- 'Applies lor ICIIB'; hFE/S

8

«

'">
IC!IB =110

SO

ssoc to 2S0C _

~

/

VBE(onl@VCE= 10V

VCE(sat!

20

III I

G

O. 6

0.2

10

2~OC \0 js~ot

JOV~ f~r ~CIE:S;tl

'"
~

I-

~
w

---

S.O

IIIII

G

3;

II ,..........

I II l i l t

VBE(sat! @IcllB

2.0

"-

FIGURE 4 - TEMPERATURE COEFFICIENTS

II II

0.8

--

r--.

\

,IB, BASE CURRENT (mAl

FIGURE 3 - "ON" VOLTAGES
1.0

1.0

\

1\

\[C=10m~

0.2

~

S.O

\

SOmA
20 rnA

'"'-'

VCE I 101 V~Lr~

I IIII

200 rnA
100 rnA

::

\'

p..-= ....

VCE
S.O

0.8

ffi

~.

..--::

I\ I II

\
\

<.0

~
'">

1\ TJ = 2SoC

1\

~

'"
~

FIGURE 6 - CUT -OFF REGION
100

VCE - 200 V

r==VCE

IC= Sx ICES

"

10

~.

1.0

.3
I-

~

-

~
=>

."-

",

'"

" "","-

80

"

~

200 V

~TJ=150oC

F
1

ICES
1000C

8 o. 1
~

:....

160

Forward::::::::

2SoC

. . . =---

120

~ FRev,orse

200

TJ,JUNCTION TEMPERATURE (OCI

0.0 1
+0.4

+0.3

+0.2

+0.1

-0.1

-0.2

-0.3

VBE, BASE·EMITTER VOLTAGE (VOLTSI

2-510

-0.4

~

-O.S -0.6

2N3439, 2N3440

(continued)

FIGURE 8 - TURN-OFF TIME

FIGURE 7 - TURN-ON TIME
0.4

"-.,

0.3

"-

0.2

]

"' O. 1

"""""- "-", ~
~

/

'" 0.07
S

,, ,

/
0.05 r-tr@ ICIIB = 5.0

....... ~

"-..

I

I
30

50

70

0.7

~

0.5

,

...........
~

0.2

.........

100

.......

O. 1
10

200

-

VCC 150VTJ = 250C-

--

~

I

0.3

........

......

20

]

>=

/

......

ICIIB = 5.0
0.02
1.5
10

tsl@IC/I~~ 5.cito io

1.0

/

"""" '

~ VBE(;ff) = 5.0 V./

0.03 f--td

IC/IB=lO

~~

--t-r-.I

2.0

TJ'250C -

td@VBE(off)' 5.0 V

........

3.0

~CC' 15ri Volts

tr@le/IB' 10

t'..,

tl@ICIIB=10
tl@IC/IB= 5.0- f - -

_ L'
........

20

r--

50

30

IC. COLLECTOR CURRENT (rnA)

.,/'

--

r---

70

100

200

IC. COLLECTOR CURRENT (rnA)

FIGURE 9 - SWITCHING TIME EQUIVALENT TEST CIRCUIT

FIGURE 10 - CURRENT-GAIN-BANDWIDTH PRODUCT
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
50
20
50
10
20

PW=lO",
Duty Cycles"" 1.0%
tr = 1.0 ns

To Scope

t;
=>
c

~

Turn-off Test: V2

=

5.0V

">;:

8.DV

50
IC

~
c

Turn-on Test: V2

51

51

(Adjust for IBl = IB2)

i<
c

~

30

;;:

':'

/

o

2

z

-5.0V

Turn-off Test Only

'"

Note: Vee and RC adjusted for VeE(off) = 150 V and Ie as desired,
AB chosen for desired IS1. Vl "" lOY.

'"=>

~

10 rnA
,./

/

/~

/'

u
"'
z

"

0.7

ff-

0.5

..3

«

:;;
c
«
f-

~
f=>
c

.g

:>:

T = 250C

//

10

I

7.0
1.0

2.0

~

70

VJE 30V
TJ = 250C

./""

~
u
"'
z

::::::

~ f:::::

;;:
;3 10

r-

7.0

I20

30

50

70

3.0
0.2

100

IC. COLLECTOR CURRENT (rnA)

Cob
Ccb

(C~)

5.0

10

25 0C

30
20

e;

./

0.3

TJ

ib

50

«
....

7.0

100

FIGURE 12 - CAPACITANCE

./

0.1
5.0

50

10
20
5.0
IC. COLLECTOR CURRENT (rnA)

100

1.0

0.2

r\

fTVS Ie

VCE' 10 V

FIGURE 11 - OUTPUT ADMITTANCE

I-- -

100

1

'"
....
::5

Diode Used For

2.0

-

ITVi\'CE

0.5

1.0

2.0

"

5.0

............
10

20

VR. REVERSE VOLTAGE (VOLTS)

2-511

50

100

200

2N3439, 2N3440 (continued)

FIGURE 13 - TYPICAL THERMAL RESPONSE
1. 0

I-

~

o. 71

~

o. 5

0-0.5

::; ~ o. 3
~:i
~~

,..-

0.2

o. 2

t--

0.1

~ ~ 0.1 1 - - - c- 0.05
c:;:

~ ~o.o7
~ ~o.o 5
~I­
o
0.03
z

t

~

fnn

p

I-

eJc(I) - r(I) eJC
- eJC 8.5 "CIW TYP
o CURV~S APPLY FOR POWER
_PULSE TRAIN SHOWN
SINGLE _READ TIME AT 11
t 2 _ PULSE -TJ(pkl TC P(pkl eJC(t)
DUTY CYCLE, 0 I1/t2

:;:::::j:::'

b

~f--!

0.01

V

0

0 1 0 rSintn'ie\

0.02

I

0.0 1
0.01

0.02 0.03

0.05

III

0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

20

10

30

50

100

200 300

500

1000

t, TIME (m,1

FIGURE15- POWER DERATING

FIGURE 14 - ACTIVE-REGION SAFE OPERATING AREA
1000

5001JS~

«

~

30o

~

20 o

z

'"=>

~ 100
o

t;
~

8
!;}

50

o
O
5.0

1=

0

Second Breakdown limit

-

-

-

I I III

1111

10

-'" ~
I"'"

'\ 1\1\

~c

TJ';; 200 0 C

0

'\

t'-.

01-- -

10 IJS

501JS~
1.Um'~Kl~i"< tt-

5.0 ms

_ 500

0

i"-t-..,
~

0

Bending Wire Limited

Thermally Limited (T C o25 0 CI
I
I I I II
Curves apply below
rated ~CEO(fu,' I

I

20

30

50

100

200

"~

0

2N3440-r2N3439-+-

""

t300

0
500

40

80

120

TC, CASE TEMPERATURE (OCI

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI

160

"'"

200

There are two limitations on the power handling ability of a transistor; average junction temperature and second breakdown.
Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 14 is based on TJ(pk) = 200o C; TC is variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided T J(pk) =200oC. T J(pk) may be calculated from the. data in Figure 13. At high case
temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by
second breakdown. (See AN-415)

2N3444 (SILICON)
For Specifications, See 2N3252 Data.

2-512

2N3445 thru 2N3448 (SILICON)

CAS~

NPN silicon power transistors for switching and amplifier
applications requiring fast response, wide band and good
Beta linearity.

(TO-3)

Collector connected to case

MAXIMUM RATINGS

Rating

2N3445
2N3447

2N3446
2N3448

Unit

VCB

80

100

Volts

VCEO

60

80

Volts

VEB

6.0

10

Volts

Symbol

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current

Ie

7.5

Amp

Base Current

IB

4.0

Amp

Power Dissipation

PD

115

Watts

Junction Operating Temperature Range

TJ

-65 to +200

°C

POWER-TEMPERATURE
DERATING CURVE
These transistors are
also subject to safe area
curves. Both limits are
applicable and must be
observed.

~j :~i""I:-Mlit@gl
o

25

50

75

100

125

150

175

To CASE TEMPERATURE ("C)

SAFE OPERATING AREAS
10
7.0
5.0


'"'"

0

~
0

'"..?

1.0
0.7
O.S
0.3
0.2

Sms

"........

-- ~

2N3446, 2N3448

,
\

\

-

'-

t-OC~
Sms

"

~

Ims

Ims

,
",A ,\

'"

0.5ms

-"2S0;' " '

0.1 ~'
TJ ..::::::175OC
TJ ...:::::::175°C
0.07 ~ - - - TJ 2SOC
- - - TJ 25°C
0.05
0.01 ·1._....I._.....I_......L..._"-_.........;,1
-(
o
10
20
30
40
50
60
0
10 20 30 40
Ve., COLLECTOR·EMITTER VOLTAGE (VOLTS)

;~251~1~

E

2-513

(
50

60

70

80

The Safe Operating Area
Curves indicate Ie - V CB
limits below which the device
will not go into secoD9ary
breakdown. Collector load
lines for specific circuits must
fall within the applicable Safe
Area to avoid causing a· col·
lector-emitter short. (Duty
cycl.e of tbe 'excursions make
no significant change in these
safe areas.) To insure operation below the maximum T J ,
the power-temperature derating curve must be ob·
served for both steady state
and pulse power conditions.

200

2N3445 thru 2N3448

(continued)

ELECTRICAL CHARACTERISTICS (TC

=

Symbll

Cbll1CIerlstlc
Emitter-Baae Cutoff Current
(VEB' 6 Vdc)
(VEB = 10 Vdc)

2N3445, 2N3447
2N3446,2N3448

Collector-Emitter Cutoff Current
(VCE • 60 Vdc, VBE • -I Vde)
(VCE • 60 Vdc, VBE = -I Vde, TC • ISOoC)
(VCE • 80 Vde, VilE' -1 Vdc)
(VCE • 80 Vde, VilE' -1 Vde, TC • 1500 C)

2N3445,2N3447
2N3445,2N3447
2N3448,2N3448
2N3448,2N3448

Collector-Emitter Cutoff Current
(VCE • 40 Vde, I B ,. 0)
(VCE' 60 Vde,IB • 0)

2N3445, 2N3447
2N3446, 2N3448

Collector-Baae Breakdown Voltage
(IC • 1 mAde, IE' 0)

2N3445, 2N3447
2N3446, 2N3448

Collector-Emitter Sustaining Voltage
(Ie • 100 mAde, lB' 0)

2N3445, 2N3447
2N3446, 2N3448

DC Current Gain

(Ie •

0.5 Ade, VCE • 5 yde)

(Ie •
(Ie'

3 Ade, VCE • 5 Vde)
5 Adc, VCE • 5 Vde)

2N3445,
2N3447,
2N3445,
2N3447,

2N3446
2N3448
2N3446
2N3448

Collector-Emitter Saturation Voltage
(Ie • 3 Ade, IB • 0.3 Ade)
(Ie • 5 Adc, IB • 0.5 Ade)

2N3445, 2N3446
2N3447, 2N3448

Base-Emitter Saturation Voltage
(IC' 3 Adc, IB • 0.3 Ade)
(Ie ~ 5 Ade, IB • 0.5 Ade)

2N3445; 2N3446
2N3447, 2N3448

Base-Emitter Voltage
(Ie = 3 Ade, VCE • 5 Vde)
(Ie • 5 Ade, VCE • 5 Vde)

2N3445, 2N3446
2N3447,.2N3448

Small Signal Current Gain
(VCE' 10 Vde, Ie • 0.5 Ade, f • I kHz)
(VCE' 10 Vde,

Ie •

25°C unless otherwise noted)

2N3445, 2N3446
2N3447, 2N3448

--

leEX

leEO

BVCBO

VCEO(sue)

hFE

VCE (sat)

Switching Times
(VCC" 25 Vde, RL • 5 ohms,
Delay Time plus RiJJe Time
Storage Time
Fall Time

Ie •

80
100

--

60
80

--

VBE

hre

Cob

U.H
mAde

0.25
0.25
mAde

0.1
1.0
0.1
1.0

-

mAde

1.0
1.0
Vde

--

Vdc

-

-60

45
85
40
75

120
Vde

--

VBE(sat)

lu

-

20
40
20
40

0.5 Ade, f • 10 MHz)

Common Base OUtput Capacitance
(VCB' 10 Vde, f . 0.1 MHz)

T"

MIl

lEBO

0.6
0.8

1.5
1.5

1.0
1.0

1.5
1.5

-

1.0
1.0

1.5
1.4

20
40
1.0

-1.6

-

-

260

400

-

0.15
0.9
0.15

0.35
2.0
0.35

Vde

Vde

100
200
pF
p..

5 A, IBI • IB2 • 0.5 A)
td +tr

t.

It

COLLECTOR CURRENT versus BASE CURRENT
10
5.0

10

~ 2N3445, 2N3446

t-

t-

....
~

2.0

....

1.0

i:l

0.5

VeE

5V

c:-

:5

~

""0

~

0

<.>

.2

/

+25°C

+ 175°C

I

~

2.0
1.0

""

~

-40°C

0

<.>

.2

0.02

~?

0.5

5001000

2-514

/

0.2

.7~

0.1
0.05
0.02

0.5 1.0 2.0 5.0 10 20
50 100 200
I., BASE CURRENT (rnA)

: 2N344'j:'2N3448

t-

....

i"i:l

0.05

0.01
. 0.1 0.2

r=

:5

1/

0.2
0.1

5.0

V

/

,-

'C

:OC

2N3445 thru 2N3448

(continued)
CURRENT GAIN VARIATIONS

50

r-- 2N3~45. 2N3l46

---- ---

--

VCE = 5V

40

z

...~

3D

----

i

:::>

'"•

20

~

10

~

~ I--

---

+25 O C

-

..............
........

.........

----"

40°C

......

r- !'--or-.

o
0.2

0.1

0.3

0.4

0.5

2.0

1.0

0.7

4.0

3.0

5.0

7.0

10

Ie. COLLECTOR CURRENT (AMP)

100

I--- 2N3~47, 2N3J48

--

-

VcE =5V

80

r--

z

:c

...

co

60

~0:

~

--

J

...........

........
..........

-

40°C

40

r-..

"

:::>

'"

-""'"

+25°C

........

~

20

o

0.1

0.2

0.3

0.4

0.5

0.7

2.0

1.0

3.0

4.0

5.0

7.0

10

Ie. COLLECTOR CURRENT (AMP)

i

COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

~

1.2

is

1.0

i

0.8

w

~

:::>

~

.......

0.6

!

0.4

~

8

J

......

,

"

It
1\

\

\

,

,

0.2

-

2N3445, 2N3446

I\.

~.:-::--

- - - 2N3447, 2N3448

0

1

10

20

.....

- -

f',.

'.
'\.
........

"

.....

"-

2-515

50

",

i'

" ......-

~

-

~

3D

I.....

.~

......

I•• BASE CURRENT (mA)

~

\

,

Ie = SA

'v\'

'\..

"

\

\

'.

'\

I

\

\

le= 3A

X

,

V

,

"

TJ=25°C

\...

le;;-IA

V

I

\

!

\

~

~

I ,

\
\

lie =IO.3 IA

0:

o

I

!

1.4

70

100

200

300

500

700

1000

2N3445 thru 2N3448

(continued)

BASE CURRENT·VOLTAGE

COLLECTOR CURRENT·VOLTAGE

VARIATIONS

VARIATIONS
10
7.0 =VeE
5.0
"-

300
200

SV

VeE

/

'"

>-

/

2.0

i

+

u

1.0

'"

~8

/

/

3.0

~

/

175 C/ +25°CI

I

>-

~

a

10

-

/

0.1
0.2

I

I II

I

I

I I

I

0.6
0.8
1.0
V", BASE·EMITTER VOLTAGE (VOLTS)
0.4

f

I
+175 0 C / +25 0 C! / -40°C

~

0.2

~

/'

30
20

~

I

~

/

;;,-

0.7
0.5

-2 0.3

//

/

100
70
.§.
50

V

j-40 0 C

0

1
= 5V

1.2

0.2

1.4

I I

O.B
V", BASE-EMITTER VOLTAGE (VOLTS)
0.6

0.4

1.0

1.2

TYPICAL SWITCHING TIMES
10,000
5000

1==1"
l-

TEST CIRCUIT
le l10

I"

-OJ

-~

2000

i

1000

~

-

'"

;: 500

'"x

200

~

100

z

~

1.....1

I--I -

I

~-

,,5

=

Ie = SA, I" = I" 0.5A
f=150Hz DUTYCYCLE=2%
WAVE SHAPE
+30V
AT POINT A
5n

-9V

1..-1
.-1.7ms
0"

I,~ ~ ~

-l-

t, f-- I-

4.8
ms

4W

lOOn

....

~ f-

-

I,

30

:.Lrf
j
--.+..-

+115V~

V" OV

1W

50
20
10
0.1

0.2

0.3
0.5 0.7 1.0
2.0
Ie, COLLECTOR CURRENT (AMP)

3.0

5.0

ACTIVE REGION TIME CONSTANT

RISE TIME FACTOR

50

2.5

1\

I>-

\

50

z

~

z:

40

~

;:::

Vee=30V - TJ = 25°C
1,= •• RII,--

\

'\

'"
~

'">
t3

.

~

20

ZoO

~
;:::

..""

I I I I
11 I 1.1

1

O.911,/IIJ

20

30

\

~

i"..
.....

1.5

\

"- I"-...

10

o
0.1

I

L(

\
\
\

~

\.

30

0.911,

1\

::'"u

0

IIIII

:~ 11~0

II

\

0

u

z

I

1.0
0.2

0.3

2.0
0.5 0.7 1.0
Ie, COllECTOR CURRENT (AMP)

3.0

5.0

1

7

10

110/11,

2-516

50 70 100

2N3467, 2N3468
2N3467
2N3468

(SILICON)

JAN AVAI LABlE
JAN AVAilABLE

PNP silicon annular transistors for
switching and driver applications.

high-speed

Collector
connected to case
MAXIMUM RATINGS

2N3467

Collector-Base Voltage

VCB

40

50

Vdc

Collector-Emitter Voltage

VCEO

40

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

1.0

Adc

Total Device Dissipation @ T A = 25°C
Derating Factor Above 250C

PD

1.0
5.71

Watt
mW/oC

Total Device Dissipation @ T C = 25°C
Derating Factor Above 25°C

PD

5.0
28.6

watts
mW/oC

Junction Temperature, Operating

TJ

+200

°c

T stg

-65 to +200

°c

Storage Temperature Range

fJ JC (case)

= 35°C/W

STORAGE TIME VARIATION WITH TEMPERATURE
200

LIMITS OF SATURATION VOLTAGE
1.6

,~= Ib",I= \01"
Vee = 30V
T :::::25°C
- - - T = 125°C

I

- - - .....

70

'"""

:;; 50

~

0
~

~

/I. '- 10. 120

-

~

0

30

~

1.0

0

>
~

0.8

/1. 1

i
S

0.6

= to ~

J.

I I

1',=1,-%1,

50

70

100

~

200

300

500

700

1000

2-517

VIlEI••,

f..- .....

.... 1--

.J..--"'"

I

-

~..Jo-"'"

I--: :;.....-"'"

70

100

1

2N3468 y . /

MAX VeE

0.4

50

~

I
M'N

0.2

'e, COLLECTOR CURRENT (mAl

,.......

MAX

L

~

l-

II

20

,-

/1.=10
TJ = 25Q C

1.2 fo-

"'1 .1

~
11,'= ~O

~

fo-

iii

llJ

J

III
I

1.4

J

100

2N3468

fJ. JA (air) = O.I75°C/mW

THERMAL RESISTANCE

i
'"
'";:::
..,

Unit

Symbol

Rating

2N3467

1 I
200

300

'e. COLLECTOR CURRENT (mAl

500

700

1000

2N3467, 2N3468 (continued)
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)

Symbol

Characteristic
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
(VCB = 30 Vde, IE = O,TA = 100oC)

leBO

Collector Cutoff Current
(VCE = 30 Vde, VBE(Off) = 3 Vde)
Base Cutoff Current
(V CE = 30 Vde, VBE(off) = 3 Vde)
Collector-Base Breakdown Voltage
(Ie " 10 IlAde, IE = 0)

2N3467
2N3468

Collector-Emitter Breakdown Voltage III
(Ic = 10 mAde, IB = 0)

2N3467
2N3468

Emitter-Base Breakdown Voltage
(IE = 10 "Ade,.Ie = 0)

-

-

0.10
15

leEX

-

100

IsL

-

120

BVCBO

2N3467
2N3468

(Ie = 500 mAde, IB = 50 mAde)

2N3467
2N3468

(Ie = 1 Ade, IB = 100 mAde)

2N3467
2N3468

Base-Emitter Saturation Voltage III
(Ie = 150 mAde, IB = 15 mAde)

40
50

VCE(sat)

= 1 Ade, IB

VBE(sat)

= 100 mAde)

DC Forward Current Transfer Ratici
(Ie = 150 mAde, VCE = 1.0 Vde)

(Ie

111

=,500 mAde, VCE = 1.0 Vde)

(Ie = 1 Ade, VCE = 5 Vdc)

2N3467
2N3468

5.0

-.-

(Ie = 500 mAde, lB. = 50 D;lAde)


'"
.,

T, _ 25°C

f- -

-f---

-

-~

.....

i'

l-

Z

I--

.-f- -

-

-- --- -

20

\

-R

"

I'

~"

lao

70

2V

\

"r'\\ \
\

~.

\'

~ t, 1\ ~\

~l\\\ \

10

50

V.,
Vet

-

-- ~ ""\

T, = -55°C

2~34617I~-

,

30

:e
:::>
:e

~
.ll

- r--

--

T, = 125°C
''''''f''- 1 - -

200
Ie, COLLECTOR CURRENT (mAl

300

700

500

1000

70

2J346J -

V.,=IV
- - - V",=2V

50
T, = 125°C

-----

-

f--

r---

~- r- -~ 1"- ........

-- -- -- ---- - ~ r- .......

-

T, = 25°C

~

,...-

-

-

f---

10

50

70

100

300
200
Ie. COlLECTOR CURRENT (IlIA)

2-519

,

",

\

"
1'
\
- "" \
~~

-- ---

T, = -55°C
~-

~

,~.

............... ........

SOD

"

700

1000

2N3485, A(SILICON)
2N3486, A
For Specifications, See 2N2904 Data.

2N3487 thru

2N

3492 (SILICON)
NPN silicon power transistors designed for switching and amplifier applications.

CASE 9
(TO·61)

MAXIMUM RATINGS

Rating
Collector - Base Voltage

Symbol

2N3487
2N3490

2N3488
2N3491

2N3489
2N3492

Unit

VCB

80

100

120

Vdc

VCEO

60

80

100

Vdc

VEB

10

10

10

Vdc

Collector Current (Continuous)

IC

7.5

7.5

7.5

Adc

Base Current (Continuous)

IB

4.0

4.0

4.0

Adc

Power DiSSipation

PD

117

117

117

Watts

1.5

1.5

1.5

°C/W

Collector-Emitter Voltage
Emitter-Base Voltage

Thermal Resistance,Junction to Case
Junction Operating Temperature Range

°JC

TJ

2-520

_65 0 C to + 200°C

°c

2N3487 thru 2N3492

(continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic

Symbol

Emitter-Base Cutoff Current
(V EB = 10 Vdc)

~BO

Collector-Emitter Cutoff Current
(VCE = 60 Vdc, VBE = -1 Vdc)
(VCE = 80 Vdc, VBE = -1 Vdc)
(VCE = 100 Vdc, VBE = -1 Vdc)

2N3487,2N3490

ICEX

(VCE = 60 Vdc,
(VCE = 80 Vdc,

2N3487,2N3490
2N3489 , 2N3492
2N3487, 2N3490
2N3488 , 2N3491
2N3489,2N3492

Collector-Emitter Sustaining Voltage
(Ie = 100 mAdc, = 0)

Ia

2N3487,2N3490
2N3488,2N3491
2N3489, 2N3490

DC Current Gain
(Ie = 0.5 Adc, VCE = 5 Vdc)

(Ie =

2N3487,2N3488,2N3489
2N3490, 2N3491 , 2N3492
2N3487, 2N3488
2N3489
2N3490,2N3491
2N3492

3.0 Adc, VCE = 5 Vdc)

(Ic = 5.0 Adc, VCE = 5 Vdc)
Collector-Emitter Saturation Voltage
(Ie = 1 Adc, IB = 0.1 Adc)

2N3487,2N3488,2N3489
2N3490, 2N3491, 2N3492
2N3490, 2N3491 , 2N3492

Base-Emitter Saturation Voltage
(IC = 3 Adc,
= 0.3 Adc)

2N3487,2N3488,2N3489

Ia
Ia = O. 5 Adc)

2N3487, 2N3488, 2N3489

(IC = 5 Adc, VCE = 5 Vdc)

2N3490,2N3491,2N3492

Small Signal Current Gain
(VCE= 10 Vdc, Ie = 0.5 Adc, f = 1 kHz)

Ie = 0.5 Adc,

f = 10 MHz)

2N3487,2N3488,2N3489
2N3490, 2N3491 , 2N3492
All Types

Common Base Output Capacitance
(VCB = 10 Vdc, f = 0.1 MHz)
Switching Times
(V CC ... 25 Vdc, RL = 5.11 ,

VCEO(sus)

hFE

VBE(sat)

2N3490,2N3491,2N3492

Base-Emitter Voltage
(IC = 3 Adc, VCE = 5 Vdc)

(VCE = 10 Vdc,

BV CBO

VCE(sat)

(Ie = 3 Adc, Ia = 0.3 Adc)
(IC = 5 Adc, Ia = 0.5 Adc)
(Ie = 5 Adc,

ICEO

2N3488,2N3491

Collector-Base Breakdown Voltage
(IC = 100 /LAdc, ~ = 0)

Ie = 5 Adc,

VBE

hfe

Cob

IBI =-I

aa = 0.5 Adc)

Delll¥ Time plus Rise Time

td+tr

Storage Time

ts
tf

Fall Time

2-521

-

0.10

-

25

-

25

-

(VCE = 60 Vdc, VBE = -1 Vdc, TC = 15~oC) 2N3487, 2N3490
(V CE = 80 Vdc, VBE = -1 Vdc, TC = 150oC) 2N3488,2N3491
(VCE = 100 Vdc, VBE = -1 Vdc, TC = 150oC) 2N3489 , 2N3492

Ia
Ia = 0)
Ia = 0)

Max

-

2N3488,2N3491
2N3489,2N3492

Collector-Emitter Cutoff Current
(VCE = 40 Vdc,
= 0)

Min

mAdc
/LAdc
25
250
250
250
/LAdc

-

250

80
100
l20

-

60
80
100

-

20
40
20
15
40
30

-

60
45
120
90

-

0.3

-

-

1.2
1.0
1.5

-

1.5

250
250

Vdc

-

Vdc
1.5

-

1.5

Vdc

-

1.4

20
40
1.0

100
200

-

Vdc

Vdc

-

-

Unit

-

-

pF
550

0.35
2.0
0.35

/LS
/LS

2N3487 thru 2N3492

(continued)

FIGURE 1 -

POWER·TEMPERATURE DERATING CURVE

120

2

'"

~

100

~
.:"

0

:0
oj

80

~

.~

is'"

60

~ t-......
...............

...



~
~

(2S"C to -SS"Cj

1A~

-1.5

"

02:C

10

"",-

-

Iv. for YIE ,...,

-

o

10

-- --I"-

..
..

.....~ 2N349a. 2N3499
C..

5.0

......

....

2.0

1.0

100

i'ooo

2N3500. 2N3501

125°C)

-2.0

-2.5

.....

(2S 0 C 10 -5S0C)

i

~u

JUNCTION CAPACITANCE VARIATIONS

100

200

300

400

500

0.1

0.2

0.5

1.0

2.0

5.0

10

REVERSE alAS (VOLTS)

Ie. COLLECTOR CURRENT (mA)

2-525

20

50

100

2N3498 thru 2N3501

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=2S'C unless otherwise noted)

Characteristic

Symbol

Min

Max

100
150

-

Unit

OFF CHARACTERISTICS
Collector"Emitte'r Breakdown Voltage 111
(IC = 10 mAdc, IB = ,0)
Collector-Base Breakdown Voltage
(IC = 10 #lAde, IE = 0)

2N3498, 2N3499
2N3500, 2N3501
2N3498, 2N3499
2N3500, 2N3501

Emitter-Base Breakdown Voltage
(IE = 10 #lAde, IC = 0)
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

BV CEO

BVCBO
BVEBO

21:'13498, 2N3499

(VCB = 50 Vde, IE = 0, T A = 150'C)

2N3498, 2N3499

(VCB = 75 Vdc, ~ = 0)
(VCB = 75 Vde, IE = 0, T A = 150·C)

2N3500, 2N3501

ICBO

2N3500, 2N3501

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)

lEBO

100
150

Vde

Vde

-

6.0

-

-

0.050

-

25

20
35

Vdc
#lAdc

50
0.050
50
nAdc

ON CHARACTERISTICS
DC Current Gain 111
= 0.1 mAde, VCE = 10 Vde)

(Ie

hFE

(IC = 1. 0 mAde, VCE = 10 Vde)

2N3498, 2N3500
2N3499, 2N3501

25
50

(IC = 10 mAde, VCE = 10 Vde)

2N3498, 2N3500
2N3499, 2N3501

35
75

-

(IC = 150 mAdc, VCE = 10 Vdc)

2N3498, 2N3500
2N3499, 2N3501

40
100

120
300

(IC = 300 mAde, VCE = 10 Vde)

2N3500
2N3501

15
20

(IC = 500 mAde, VCE = 10 Vde)

2N3498
2N3499

15
20

-

2N3498, 2N3500
2N3499, 2N3501

Collector-Emitter Saturation Voltage 111
(IC = 10 mAde, IB = 1. 0 mAdc)

VCE(sat)

(Ie = 50 mAdc, Ia = 5.0 mAde)
(IC = 150, mA-de, IB = 15 mAde)

2N3500, 2N3501

(IC = 300 mAde, IB = 30 mAde)

2N3498, 2N3499

Base- Emi tter Saturation Voltage C11
(IC = 10 mAdc, IB = 1.0 mAde)
(IC = 50 mAde, IB = 5. OmAdc)

VBE(sat)

(IC = 150 mAde, IB = 15 mAde)

2N3500, 2N3501

(IC = 300 mAde, IB = 30 mAdc)

2N3498, 2N3499

tIl Pulse Test: Pulse Width;;; 300 IJB, Duty Cycle;;; 2.0%.

2-526

-

-

Vde
0.2
0.25
0.4
0.6
Vde
0.8
0.9
1.2
1.4

2N34981hru 2N3501 (continued)
ELECTRICAL CHARACTERISTICS (continued)

Symbol

Characteristic

Min

Max

Unit

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 20 mAde, VCE = 20 Vdc, 1= 100 MHz)

IT

Output Capacitance
(VCB = 10 Vdc, IE = 0, 1= 100 kHz)
Input Capacitance
(V BE = 0.5 Vdc, IC = 0, I

-

-

10
8.0

-

80

0.2
0.25

1.0
1. 25

-

2.5
4.0

50
75

300
375

10
20

100
200

Cob

2N3498, 2N3499
2N3500, 2N3501

C ib

= 100kHz)

Input Impedance
(IC = 10 mAde, VCE = 10 Vdc, 1= 1. 0 kHz)
Voltage Feedback Ratio
(IC = 10 mAde, VCE = 10 Vdc, 1= 1. 0 kHz)
Small-Signal Current Gain
(IC = 10 mAde, VCE = 10 Vdc, 1= 1.0 kHz)
Output Admittance
(IC = 10 mAde, VCE = 10 Vdc, 1= 1. 0 kHz)

-

hIe

2N3498, 2N3500
2N3499, 2N3501

p.mhos

hoe

2N3498, 2N3500
2N3499, 2N3501

pF

X 10- 4

hre

2N3498, 2N3500
2N3499, 2N3501

pF

k ohms

h.
Ie

2N3498, 2N3500
2N3499, 2N3501

MHz

150

Typ

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 100 Vdc, VBE(Off) = 2.0 Vdc,

Rise Time

IC = 150 mAde, IB1

= 15 mAde)

Storage Time

(V CC = 100 Vdc, IC = 150 mAde,

Fall Time

IBI = IB2 = 15 mAde)

td

20

ns

t

35

ns

ts

300

ns

tl

80

ns

r

SWITCHING TIMES

SATURATION VOLTAGES
500

~. = 10

I

J

1.0

1'\

ALL TYPES';

200

en

~

I

0.8

n
V"

~

'"
4

~

~

0

6-

-I-'"

",

-

I\.

I

TJ = 25°C

.... '"

10 0

"'\1'\
~

~
1\ i'-

,

"\.

...

./

1\.\

1
2N3500

:-.

71}

~V

Vcc::;:;:lOOV

V.E
Ie

_ , ~<
~Ni4~81

..tt.

~

=2 V

~

10 III

1•• :=

III

0

...

2N~49r

I-'

/

\'

V

iN3501 .....
4

0
1.0

t,

'"

"\,1\

!
Veo

...........
t, .........

0

O. 2

I"-

1'\
~

0
2.0

5.0

10

20

50

100

200

500

10

20

50
Ie. COLLECTOR CURRENT

Ie. COLLECTOR CURRENT (mAl

2-527

100

(mAl

200

300

2N3498 thru 2N3501

(continued)

CURRENT GAIN CHARACTERISTICS vs JUNCTION TEMPERATURE

200

2N3498 _
TJ

!!

100

Ci
!IE

:1/

...'"=>

TJ

so

15

...

Ii
20

Ve•

= lisoc

-

2SoC

I

"-

TJ _ -55°C

----

=2V

~

~

"~

~

10
50

20

10

100

500

200

Ie. COllECTOR CURRENT (mA)

300

~N34~ _

TJ = 125°C
200

"

TJ _ 25°C
E

~ 100
ill
II!
::>

...

'"'"
Q

TJ

2V

Vet

.... ~

55°C
~

50

j

"~
.............. ~

~

20

""

~

10
1

10

20

50

100

200

500

Ie. COlLECTOR CURRENT (mA)

CURRENT GAIN CHARACTERISTICS versus COLLECTOR EMITTER VOLTAGE
1.5

2N3498·2N3499
z:
C

'"...

ia

TJ

1.0

O.S

'-'
Q

§
'ii

-

......
....

" '" '"
va

~

'"z

"

Ve •

25°C _

" r-10V'
1\

I\..

=IA ~~.=2V

0.2

\

r\.

0.1

10

20
Ie. COLLECTOR CURRENT (mA)

2-528

50

100

200

"'"I"

~
500

2N3498 thru 2N3501

(continued)

CURRENT GAIN CHARACTERISTICS vs JUNCTION TEMPERATURE

200

I

I

2N3500 _
Vco = 2Vz

T.

100

~

T,

15

..,'"'":::>..,
1

125·C

.....

25·C

I'

50

Q

20

T•

---

55·C

-,'".....

~

~~

~~

~~

10
10

I

50

20

100

500

200

Ie. COLLECTOR CURRENT (mAl

200

....

T.

I

125·C
T.

z

~ 25.C I

I""-

I

,

I

2N3501 _
Vet = 2 V

100

ii

~

...'"..,
:::>

T, = -55·C

~

.........

50

Q

""~

~

Ii

""

20

~

""~

.

10

1

10

20

50

~

500

200

100

Ie. COLLECTOR CURRENT (mAl

CURRENT GAIN CHARACTERISTICS versus COLLECTOR EMITTER VOLTAGE
~

2N3500·2N3501
T,

0

25·C -

.".

r-.

..

"

."......

"'"

O. I

10

20
Ie. COLLECTOR CURRENT (mAl

2-529

50

:00

~ =IOV" et L

'\I

.....

I'\.

"

~=2V

Ve.=IV~ l'...
200

,

I": ~
500

2N3498 thru 2N3501

(continued)

SMALL SIGNAL h PARAMETER CHARACTERISTICS
Ve •

~

10 Vdc, f

~

1.0 kHz, TA

~

25°C

OUTPUT IMPEDANCE

CURRENT GAIN

40 0

0

20 0

20

I/~
2N3499,2N350Y

2N3499,2N3501......... ~~
.:.
.l:

V~

10 0

10

./

-- -

.....

,..,.

5.0

I-

0

i-'

~

..,........-

V

2N3498, 2N3500

..... i""""

..,.'-

./
2N3498,2N3500

:.,.....- .....

..,.
2.0

20
0.1

0.5

0.2

1.0

5.0

2.0

1.0
0.1

10

0.2

0.5

I" COLLECTOR CURRENT (mAl

INPUT IMPEDANCE

0

~
'\.

5. 0

\

"

1\

~
'"

.

2N3498,2N3500
2. 0

:\ \

2N3499,2N3501

2N3499, 2N3501

"

5.0

"-

1

r\.

2N3498,2N350

1\[\

I. 0

2.0

1'-

O. 7

01\.

1.0

!'

O. 5
0.4
0.2

0.5

10

\. '\.

r\. I\.

0.1

5.0

"'1\

10

\.

;;;

.l:

20

"

2.

VOLTAGE FEEDBACK RATIO

50

1\

01\

1.0

I" COLLECTOR CURRENT (mA!1

1.0

2.0

5.0

lO

0.5
0.1

0.2

0.5

1.0

r'\

"
"

2.0

I" COllECTOR CURRENT (mAl

I" COLLECTOR CURRENT (mA I

2-530

i'

5.0

10

2N3506, 2N3507 (SILICON)

NPN silicon annular transistors for high-current,
high-speed, saturated switching and core driver applications.
CASE 31
(TO·S)

Collector connected to case

MAXIMUM RATINGS

Rating

2N3506

2N3507

Unit

VCB

60

80

Vdc

Collector-Emitter Voltage

VCEO

40

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

3.0

Adc

Total Device Dissipation
@ 25°C Case Temperature
Derating Factor Above 25°C

PD

5.0
28.6

Watts
mW/oC

Total Device Dissipation
@ 25 ° C Ambient Temperature
Derating Factor Above 25°C

PD

1.0
5.71

Watts
mW;oC

Junction Operating Temperature

TJ

200

°C

T stg

-65 to +200

°c

Symbol

Collector-Base Voltage

Storage Temperature Range

THERMAL RESISTANCE 8JA
B.re

= O.175°C/mW
= 35°C/W

SWITCHING TIMES

SATURATION VOLTAGES
1.4

f----J. ~ 10

1.2 f-- TJ

~

I
I

25°C

--

1.0
0.8
0.6
0.4

1
.;

V'EII~

....

t..

~

~

r

o t, ,I

.L
Ve'lwII/

~

L

0

0.5

1.0

'-

~

~ t'-..

I'..

0

2.0

3.0

0.1

r---

~

-"

t. t. l-\l,

2-531

-

-r--

t,

t,

t."'I"
"I

0.2

0.3

0.5

0.7

1.0

Ie. COLLECTOR CURRENT lAde)

Ie. COLLECTOR CURRENT lAde)

30V 2V 101,,-

J

10

0.3

~

I" ~I ..

r0.2

Ie

I T ~ 25°~_

iIlIIt...

-I.

L

.

Vee

0""

L

toO'

......

o. 2
0
0.1

100

f"'"

2.0

3.0

2N3506, 2N3507

(continued)

ELECTRICAL CHARACTERISTICS

(TA = 250 C unless otherwise noted)

·Qlaracteristic

Svmbol

Collector Cutoff Current
2N3506
(VCE = 40 Vd\!, VEB(off) = 4 Vdc)
(VCE = 40 Vdc, v EB(off) = 4 Vdc, T A = 100·C)

ICEX

2N3507
(VCE = 60 Vde, v EB(off) = 4 Vdc)
(VCE = 60 Vde, VEB(off) = 4 Vdc, T A = l00·C)
Base Cutoff Current
(VCE = 40 Vde, VEB(oll) = 4 Vdc)

2N3506

13L

2N3507

(VCE = 60 Vdc, VEB(oll) = 4 Vdc)

Min

-------

COllector-Base Breakdown' Voltage
(lC = 100 j.lAdc, IE = 0)

2N3506
2N3507

BVCBO

60
80

Collector-Emitter Breakdown Voltage 111
(lC = 10 mAdc, pulsed, IB =0)

2N3506
2N3507

BVCEO

40
50

Emitter-Base Breakdown Voltage
(IE = 10 j.lAde, IC = 0)

BVEBO

Collector Saturation Voltage 111
(lC = 500 mAdc, 13 = 50 mAde)

VCE(sat)

(lC = 1.5 Adc, 13 = 150 mAdc)
(lC = 2. 5 Adc, 13 = 250 mAdc)
Base-Emitter Saturation Voltage 111
(lC = 500 mAdc, IB = 50 mAdc)

VBE(sat)

(lC = 1.5 Adc, IB = 150 mAdc)
(lC = 2.5 Adc, 13 = 250 mAdc)
DC Current GainJl1
(lC = 500 mAdc, VCE = 1· Vdc)

2N3506
2N3507

b FE

(lc = 3.0 Adc, VCE = 5 Vdc)

2N3506
2N3507

25
20

Current 
0

0.8

~

~

I
f--~: ~ ~~oC

. TIl

IMAXVj"yLt
1.0

z

7

I--

l/1'
-I
I

I

MIN VaE (,~tl

L--~;:"

......

i==

I.- ~ I-

0.6

1

t,

>

~

b--' I--""
2 I

~

LIMITS OF SATURATION VOLTAGE

~,

"
~

..........

30

20

10

Vee

"'-1\

)

f-.(

1.4

;::

'":i:z
r=

'"""'" :::;
I-...... """"
~S~

~

Ie, COLLECTOR CURRENT (mAl

70

t3 20 I -

~

r-..

TYPICAL SWITCHING TIMES

30

= 2SoC & 7SoC-

T,

~

"'" ........ ........ ~""
......

f..--

100

50

~

= -ISOC\
\

f--

Vrr-

0.4

I

S
7 10
20 30
Ie. COLLEGTOR CURRENT (mAl

SO

70

MAX VeE

(~"

~

0.2

100

2-535

I

S
7
10
20
30
Ie, COLLECTOR CURRENT (mAl

50" 70 100

2N3510 (SILICON)
2N3511
2N3647
2N3648

NPN silicon annular transistors for high-speed saturated switching applications to 500 rnA.

\
Zll3511 "
UfU10

2II3MI
.
. .,

CASE 27

CASE 26

(TO·52)

(TO·46)

ColI.ctor connect.d to CII ••

MAXIMUM RATINGS

Rating

Symbol

2N3510
2N3647

2N3511
2N3648

Unit

Collector-Base Voltage

VCB

40

40

Vdc

Collector-Emitter Voltage

VCEO

10

15

Vdc

Emitter-Base Voltage

VEB

6.0

Ie

500

Collector Current

TO-46
2N3647
2N3648

Vd~

mAdc

TO-52
2N3510
2N3511

Total Device Dissipation @TA = 25°C
Derating Factor Above 25°C

PD

400
2.28

360
2.06

mW
mW/oC

Total Device Dissipation @T C = 25°C
Derating Factor Above 25°C

PD

2.0
11.43

1.2
6.9

watts
mW/oC

Junction Temperature, Operating

TJ

+200

°c

Tstg

-65 to +200

°c

Storage Temperature Range

STORAGE TIME VARIATION

I..

20

p,
~ p,= o.

-

-""

:~

10

....

~

10

io"""

V

i-"

I.'-I.-Itt,

2

V1

1.2

~~

I

1.0

'1

0.6

IImf
II

--T,=2S 0 C
T,=12S 0 C

1-"11

I

II
II
10 I
- :_J/,~25°C
T,~

~

;:

111=112

LIMITS OF SATURATION ·VOLTAGE

II

.....

-.

MAX VaElla!!,...
0.8

~

MIN

VaEhatl

I
I

0.4

MAX Veer",+!

V

Vee --,6 V

2

3

5 7 10

20 30

50 70 100

0.2
200 300 500

Ie. COLLECTOR CURRENT (mAl

1.0

2.0 3.0

5.0 7.0 10

20 30

50 70 100

Ie. COLLECTOR CURRENT (mAl

2-536

200 300 500

2N3510, 2N3511 , 2N3647, 2N3648

ELECTRICAL CHARACTERISTICS

(continued)

(TA

= 25°C unless otherwise noted)

Characteristic
ColleCtor Cutoff Current
(VCE = 10 Vde, VEB{off)
(VCE = 10 Vde, VEB(off)

Symbol
ICEX

= I Vde)
= I Vde, TA = 150°C)

Base Cutoff Current
(VCE = 10 Vde, VOB = I Vde)
Collector-Base Breakdown Voltage
(Ie = 10 "Ade, IE = 0)

IBL
BVCBO

COllector-Emitter Breakdown Voltage"
(Ie = 10 mAde, IS = 0)

2N3510, 2N3647
2N3511, 2N3648

Emitter-Base Sreakdown Voltage
(IE = 10 "Me, Ie = 0)
Collector Saturation Voltage'
(Ie = 10 mAde, I~ = 1 mAde)
(Ie = 150 mAde, S = 15 mAde)
(Ie = 300 mAde, IS = 30 mAde)
(Ie = 500 mAde, IB = 50 mAde)

All Types
All Types
2N3510, 2N3647
2N3511, 2N3648

Base-Emitter Saturation Voltage.
(Ie = 10 mAde, IS = 1 mAde)
(Ie = 150 mAde, IS = 15 mAde)
(Ie = 300 mAde, IB = 30 mAde)
(Ie = 500 mAde, IR = 50 mAde)

All Types
·All Types
2N3510, 2N3647
2N3511, 2N3648

DC Current Gain'
(Ie = 1.0 mAde, VCE

(Ie = 10 mAde,

VCE

BVEBO

= 1 Vde)
= 1 Vde)

(Ie = 150 mAde, VCE = 1 Vde)

(Ie = 150 mAde, VCE = 1 Vde, TA =
(Ie = 300 mAde, VCE = 1 Vde)
(Ie = 500 mAde, VCE = 1 Vde)

Output Capacitance
(VCS = 10 Vde, IE = 0, f = 100

2N3510,
2N3511,
2N3510,
2N3511,
2N3510,
2N3511,
-550 C) 2N3511,
2N3510,
2N3511,

Rise Time

(Ie = 150 mA,

ll'
15 mA,
EB = 0.5 V,

Turn-On Time

Fall Time

VBE(sat)·

hFE'

Cob

VCC = 6 V)

Storage Time

2N3647
2N3648
2N3647
2N3648
2N3647
2N3648
2N3648
2N3647
2N364R

VCE(.at)·

kHz)

Input Capacitance
(VBE = 0.5 Vde, Ie = 0, f = 100 kHz)
Small Signal Current Gain
(Ie • 15 mAde, VCE = 10 Vde, f = 100
Delay Time

BVCEO'

(Ie.

15.0 mA,
~1 = -lB2 = 15 rnA,
CC = 6 V)

C lb

MHz)

2N3510, 2N3647
2N3511. 2N3648
2N3510, 2N3647
2N3511, 2N3648

~

2N3510, 2N3647
2N351l, 2N3648

tr

2N3510, 2N3647
2N3511, 2N3648

ton

2N3510, 2N3647
2N3511, 2N3648

t,.

2N3510, 2N3647
2N351l, 2N3648
2N3510, 2N3647
2N3511. 2N3648

Turn-Off Time

hre

tr
toff

Total Control Charge
(Ie· 150 mA, IS = 15 mA, VCC • 6V)

QT

Small Signal Current Gain
(Ie·· 1 mA, VCE = 10V,f

hre

= 1 kHz)

Voltage Feedback Ratio
(Ie = 1 mA, VCE = 10 V, f = 1 kHz)

h re

Input Impedance
(Ie' 1 mA, VCE = 10 V, f = 1 kHz)

h;e

Output AdmIttance

hoe

Uc= lmA,VCE -10V,f= 1

kHz)

• Pulse Test: PW" 300 "s, Duty Cycle'" 2%

2-537

Min

40
10
15
6.0

0.8
12
15
20
25
25
30
12
15
12

3.5
4.5

-

--

Max

Unit
"Ade

.025
50
.025

-

-

"Ade
Vde
Vde

Vde
Vde

0.25
0.4
0.6
0.8
Vde
0.8
1.0
1.15
1.5

-150
120

--

pF
4.0
pF

8.0

-

-

10
8.0

ns

12
10

ns

20
16

ns

16
12

ns

12
8.0

ns

25
18

ns
pC

-

300

20

150

-

25

0.6

4.5

10

100

Xl0- 4
kohrna

"mhos

2N3510, 2N3511 , 2N3647, 2N3648

(continued)

MINIMUM CURRENT GAIN CHARACTERISTICS
50

30

'"
1§

------- -- ----- - -

~

10

'"
~
~
~

~

10

I-

~

,..-

Ye,= I Y -

'\

I\.

"'-, ~

_r-

I-

2N3511
2N3648

-

_r-

V

£,

,

~

I

J

,....... ...-...-

:;;

~

I

:,...- ......

V

u

1i
'"z

~

r-i==- - ~lk-

l- ...-"-

...............

"'-

!\

\

'" ""\
'I\.

"\

!\

'\
20

10

50

30

70

100

200

300

500

Ie, COLLECTOR CURRENT [rnA)

50

30
z

1§
z

!1i

20

'"
z

:;;

V I-

--- -- - --

V-

10

.- ...-...-

~

:,...-f-

r-±==
I
i

r-..

~
I

-

-r-

-

..I---

TJ

",

Ye

,= I Y -

~,

l- f--

J

.... ,.-"'"

,......-

-

f-'TJ ~ 125°C

,..-f-

,......-

~

£,

,......-

.- f-I-

2N3510
2N3647

1\
'"'"

-.....,
~

-55°C

- -

\

'"

[\

\

, ""\

,....- I--

!\

'\

10

20

30

Ie, COLLECTOR CURRENT (mAl

2-538

50

70

100

200

300

~

\
500

2N3544 (SILICON)

CASE 22
(TO-18)

\

NPN silicon annular transistor for VHF and UHF
oscillator applications.

Collector connected to case

MAXIMUM RATINGS

Symbol

Value

Unit

Collector-Base Voltage

Rating

VCB

25

Vdc

Collector-Emitter VQltage

VCES

25

Vdc

VEB

3.0

Vdc

IC

100

rnA

Emitter-Base Voltage
Collector Current
Power Dissipation @ TC
Derate above 25°C

=25°C

PD

400
2.67

mW
mW/oC

Power Dissipation @ TA

=25°C

PD

300
2.0

mW
mW/oC

TJ

+175

°C

Tstg

-65 to +175

°c

Derate above 25°C
Junction Temperature
Storage Temperature Range

TEST CIRCUIT
SHORT
SOU AOJUSTABll LINE

330 pf

SOU
POWER METER

lKU

r-1o_oO_p_f______________~____~~1O~0~OP~f I~--~~::::::~t:==--~--------------~

v"

UK me CAVITY)

Vee

+-

+

2-539

NOTES,
I. SET Vee
12 Vde.
2. ADJUST V" fOR ie
12 mAde.
3. SET ADJUSTABLE LINE FOR
MAXiMUM POWER OUTPUT.

=

=

2N3544

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Conditions

Collector-Base
Breakdown Voltage

BVCBO IC

Collector- Emitter
Breakdown Voltage

Min Typ Max Unit

= 10 /.LAdc, IE = 0

25

30

--

Vdc

BVCES

IC = 10 /-LA, VBE = 0

25

30

--

Vdc

Collector Cutoff Current

ICBO

VCB = 15 Vdc, IE = 0

---

Emitter Cutoff Current

lEBO

VEB = 3 Vdc, IC = 0

--

0.1

10

/-LAdc

VCE = 10 Vdc, IC=10 mAdc

25

50

-.

..

15

-.

2.5

pF

DC Current Gain

hFE

AC Current Gain

Ihfel

Collector Output Capacitance

Cob

Collector-Base Time Constant

Oscillator Power Output

r b 'cc

0.01 0.1

= 10 Vdc, IC =10 mAdc, 6.0 9.0
f = 100 MHz
VCB = 15 Vdc, IE =0,
f = 100kHz -- .VCB = 10 Vdc,IC = lQ m,!\Qc, _.
-f =31.8 MHz

VCE

f =l.OGHz, Vc = 12 Vdc,
lC=12 mAdc

2-540

10

/.LAdc

ps

2N3546 (SILICON)

PNP silicon annular transistor for low-level, highspeed switching applications.
CASE 22
(TO-18)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

15

Vdc

Collector-Emitter Voltage

VCEO

12

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

Total Device Dissipation @ TA = 25·C
Derate above 25·C

PD

0.36
2.06

Watt
mW/"C

Total Device Dissipation @ TC = 25·C
Derate above 25·C

PD

1.2
6.9

Watts
mW/"C

Operating Junction Temperature

TJ

200

·C

Storage Temperature Range

T stg

-65 to +200

·C

Thermal ReSistance, Junction to Ambient

()JA

0.49

°C/mW

Thermal ReSistance, Junction to Case

()JC

0.15

°C/mW

2-541

2N3546

(continued)

ELECTRICAL CHARACTERISTICS

(T A

= 25 0 C unless otherwise noted)

Characteristic

Symbol

Collector Cutoff Current
(VCB = 10 Vde)

I CBO

(V CB " 10 Vde, T A" 150·C)
Collector Cutoff Current
(VCE" 10 Vde, VBE(Off) " 3 Vde)

I CEX

Base Cutoff Current
(VCE = 10 Vde, VBE(Off) " 3Vde)

IBL

Collector-Base Breakdown Voltage
(IC " 10 ",Ade, IE =0)

BVCBO

Emitter-Base Breakdown Voltage
(IE =10 ",Ade, IC" 0)

BV EBO

Collector-Emitter Breakdown Voltage
(IC = 10 mAde, IB = 0)

BVCEO

(11

Collector Saturation Voltage 111
(IC " 10 mAde, IB = 1 mAde)
(IC " 50 mAde, IB

VCE(sat)

= 5 mAde)

(IC " 100 mAde,. IB " 10 mAde)
Base-Emitter Saturation Voltage 111
(IC = 10 mAde, IB " 1 mA.:!e)

= 50 mAde,

VBE(sat)

= 5 mAde)

Min

---

Max
0.010
10

",Ade

--

0.010

--

0.10

15

--

4.5

--

12

--

----

,..Ade

0.50
Vdc

0.7

0.9

1.3

20

--

30

120

15

--

(IC " 50 mAdc, VCE " 1 Vde)

25

"-

(IC " 100 mAde, VCE " 1Vde)

15

--

--

6.0

--

5.0

700

--

--

400

(IC

= 10 mAde,

hFE

VCE " 1 Vde)

(IC " 10 mAdc, VCE

= 1 Vdc,

Output Capacitance
(V CB " 10 Vdc, IE "0, f

z

T A " -55·C)

Cob

1 MHz)

C1b

Input Capacitance
(VBE = O. 5 Vde, IC = 0, f" 1 MHz)
Current-Gain - Bandwidth Product
(IC = 10 mAde, VCE " 10 Vde, f = 100 MHz I

IT

QT

Total Control Charge
(IC = 50 mA, IB = 5 mA, VCC " 3 V)
Delay Time

IC = 50 mA, IBI "SmA,

Rise Time

VBE = 2 V, VCC " 3 V

storage Time

IC = 50 mA,

Fall Time

VCC = :I V

lsi

td
tr

= 1s2 = 5 mA,

t.
tf

Turn-On Time
(See Figure 3.4.5,)

Turn-Off Time
(1)Pulse Test: PW = 300 ",8, Duty Cycle ~ 2%

2-542

Vde

0.25

1.6

DC Current Gain 111
(IC " 1. 0 mAde, VCE " 1 Vde)

Vde

Vde

--

IB

Vdc

0.15

0.8

(IC

(IC " 100 mAde, IB " 10 mAdc)

Unit
",Ade

-----

--

pF
pF
MHz
pC
10

nl

15

ne

20

ns

15

ne

ton

-.

40

ns

toff

--

30

ns

2N3546

(continued)

1.6

FIGURE 1

FIGURE 2

LIMITS OF SATURATION VOLTAGES

STORAGE TIME BEHAVIOR

30

rP'~

10
1.4 I- TJ ~ 25°C

~

~
z

51

~
Si
"i

,;

1.0

,/

I

= r---

-

i'

.,...~,~ 20':::::-'" r-- .... ....... ..... r--- I"r ...
, I, ...... ~ ........ -...... r-.
1' ..
I, =I,-'Iot/
......... ....... 1',,.............
~

...... f'

r-r- r- MAX V8Et5..tl

0.8
0.6

b.< ..... - --f~:-.Ll~10

V

~
~

20

V

1.2

181 =112
10 - - TJ =2SoC
- - - TJ -= 125°C

I

f- MIN VaElutl

r-....

.......

r-....

.......

"

0.4
0.2

-

0
1.0

r--- r- M~X Ve~I"~1
2.0

~

10

5.0

50

20

5
10

20

30

r\
100

70

50

Ie, COLLECTOR CURRENT (mAl

100

Ie. COLLECTOR CURRENT (mAl

FIGURE 3

FIGURE 5

FIGURE 4

STIlU8E AND FAlL nME
[QUIYAl.EllJa''1ST CIRCUIT

DELAY AIID RISE nME
EQUIYALENT TEST CIRCUIT
-3Y

SWlTCHIII8 nME TEST CIRCUIT
V.

-2Y

1000620
550

550

I
;*~ Cs":IOpf
I
~

....

Y
.. +2YQ-F

~

-IO.avU

_,u;n

PULSE WIDTH > 200 III
R1S£ TIME < 1111

z..-500

PULSE WIDTH = 200 III
R1S£ TIME ..: 2 III
DUTY CYCLE "'10%

PULSE WIDTH - 200 III
R1S£TlME ... 2111
DUTY CYCLE "" 10%

t..: VBS = +3Y,Y.. = -7V
t.w: VBE =-4Y, Y.. = +6Y

·OSCllLOSCOPf RISE TIME"; I ..

FIGURE6

MINIMUM CURRENT GAIN CHARACTERISTICS

0

0

.- ..- f - - - -TJ = 125°C

-...::: --

~-

~

0~

0

-- -

O~
7
1.0

,:::::::.;:-

..---

.-.:

TJ

-

--

=25°C

-

TJ = -55°C

.....

.--

,-

~-

- r-t-

-

- --:::.::::

.......

--Ve,=IV
- - - Ve,=2V

1' .....

.......

~
~ ' ....
.............

""

'~~

,,~

.::::.: f::.::

....
.....r.....

I'.

2.0

3.0

5.0

7.0

10

Ie;. COLLECTOR CURRENT !mAl

2-543

20

30

50

70

100

2N3553 (SILICON)
For Specifications, See 2N3375 Data.

2-544

2N3611

thru 2N

3614

(GERMANIUM)

PNP germanium power transistors
for switching and amplifier applications.
For units with solder lugs attached. specify
device MP3611 etc. (TO-41 package)

CASE 11

CASE 4-04

(TO-3)

(TO-41)

MAXIMUM RATINGS

Rating

2N3611 2N3612
2N3613 2N3614

Symbol

Unit

Collector-Emitter Voltage

VCES

30

45

Vdc

Collector-Emitter Voltage (Open Base)

25

35

Vdc

Collector-Base Voltage

VCEO
VCB

40

60

Vdc

Emitter-Base Voltage

VEB

20

30

Vdc

Collector Current (Continuous)
Peak Collector Current (PW

~

5 msec)

Base Current (Continuous)
Storage Temperature Range
Operating Case Temperature Range
Total Device Dissipation @ TC = 25°C
Derate above T C = 25°C

Ie
Ie

7.0

Adc

15

Adc

IB

2.0

Adc

Tstg

-65 to +110

°c

TC
PD

-65 to +110
77
1.0

°c
watts
wloe

Thermal Resistance, Junction to Case

ilJC

1.1

°clw

Thermal Resistance, Case to Ambient

ilCA

32.7

°clw

SAFE OPERATING AREAS
2N3611 and 2N3613

20
15

.........

10

""'50

I'---,

.........

2N3612 and 2N3614

20
15
I'S

I

'"

10

5OOl'S

.......

"""-

""-

DC

-

0.3
0.2
0.15

~"-"'l

L

o

15

o Ic.oUMIT
0 1

\

~

~

:='"'-'

\

25

'\. I'\.

.1\.

~

~'\ i''\.

"!!!V
1 SAF~1

"-.,

EXPANDED ........ '
LOW CURRENT AREA
SEE NOTE

'\r--..1\.\

'"

\\
"-

0.3
0.2
0.15
0.1

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

10

15

20

25

"'-,

i\\

60/

---r ---1

o

30

45

~

'\

='¥~~
2""'_1
o f

\\

'\.

AREA

\
20

I

~ 0.7
2 0.5

\

3041V
10

DC

2

13 1.5

--r

0.1

"

"Jms

i'-..

0-

'\...\
'\.

500 I's

fC

\\\ \

'\

'"

SEE NOTE
SAFE \
AREA

"I\. \

5ms

" "'"

~LOW EXPANDED
~
CURRENT AREA

1

'"

, ""
1. . . . . . . . . .

"l"-., 5Ol's

\
30

35

40

VeE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate
IccVCE limits below which the device will not go into
secondary breakdown. Collector load lines for specific
circuits must fall within the applicable Safe Area to
avoid causing a collector-emitter short. (Case. temperature and duty cycle of the excursions make no significant change in these safe areas.) The load line may
exceed the BVCES voltage limit only if the collector

current has been reduced to 20 rnA or less before or
at the BVCES limit; then· and only then may the load
line be extended to the absolute maximum voltage rating of BVeRo. To insure operation below the maximum
T J • the power-temperalure derating curve must be observed for both steady state and pulse power conditions.

2-545

45

2N3611 thru 2N3614

(continued)

ELECTRICAL CHARACTERISTICS

Chanmristics
Collector-Emitter Breakdown Voltage.
(IC = 250 mAde)

SJlllbal
BVCES

2N36ll, 2N3613
2N36l2, 2N3614

Collector-Emitter Breakdown Voltage·
(~ = 500 mAde)

•

VEBF

Collector-Emitter Leakage Current
(VCEo = 1/2 VCEO max)

~EO

Collector-Emitter Leakage Current
(VCE = VCE max, VBE = 1.0 Vdc, TC = +100·C)

~EX

Collector-Base Cutoff Current
(VCB = 2 Vdc)

ICBO

(VCB
(VCB

= 25 Vdc)
= 40 Vdc)
= VCB max)

2N3612, 2N3614

Collector-Emitter Saturation Voltage
(~ = 3 Adc, IB = 300 mAde)

= 7 Adc,

~ =

(IC = 7 Adc, IB = 700.mAdc)

3 Ade, VCE

= 2 Vdc)

Small Signal Current Gain
(IC = 0.5 A, VCE = 12 V, f
(~

= 0.5 A, VCE = 2 V, f

DC Current Gain
(~= 3 Adc, VCE
(~=

7 Adc, VCE

= 2 Vdc)

2N36ll, 2N3612
2N3613, .2N3614

hFE

Vde

mAde
mAde

-

10

-

.040

mAde
0.5
0.5
5.0
,.Adc

0.25

2N36ll, 2N3612
2N3613, 2N3614
2N36ll, 2N3612
2N3613, 2N3614

SO

-

hfe

= 2 Vdc)

-

VCE(sat)

gFE

2N3612
2N36l3, 2N3614

= 20 kHz)
= 1 kHz)

1.0

Vde

-

0.S5

--

0.7
0.6

-

2~611,

Vde

Vde

-

500

2N36ll, 2N3612
2N3613, 2N3614

Ullt

---

-

VBE(sat)

2N36ll, 2N36l2
2N3613, 2N3614

Transconductance
(~=

25
35

Mu

lEBO

700 mAde)

Base-Emitter Saturation Voltage
(~ = 3 Adc, ~ = 300 mAde)

30
45

-

2N36ll, 2N3613

Emitter-Base Cutoff Current
(VEB = VEB max)

(~

•

BVCEO

2N36ll, 2N3613
2N3612, 2N3614

Floating Potential
(VCB = VCB max)

(VCB

Mil

3.0
3.5
15

Vde

·1.1
0.9

-

40
60

100
150

35
60

70
120

20
30

mhos

-

-

--

·SWeep Test: 1/2 sine wave, 60 Hz

POWER·TEMPERATURE DERATING CURVE

These transistors are
also subject to safe area
curves. Both limits are
applicable and must be
observed.
25

2-546

50
75
. TEMPERATVRE (OC)

100

110

125

2N3611 thru 2N3614

(continued)

COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE
10

//

/

3.0
0::

TYPICAL SWITCHING TIMES

/? /'
//'

5.0

VI /

2.0

'"5z
=
=
u 1.0
=

/

/

r--

~

.2

.-V1

><
-/'

r-

TJ=+loooCtV /OOC

::>

~
8

-8I,

~

I

0.5

/

0.3

/

-

/

/

/ / ~

0.2

0.2

,--t-"If

,......"

I" = -182= lellO

I I

0.1

f...-

f - - ,.....-

I

/

.........

&-

VeE = 2V

I I I

I

0.4
0.6
0.8
V", BASE·EMITTER VOLTAGE (VOLTS)

1.0

0.5

0.3

0.7
1.0
2.0
Ie, COLLECTOR CURRENT (AMP)

5.06.0

3.0

DC CURRENT GAIN versus COLLECTOR CURRENT

- -

200

V

--- - -

f--

r--

------

I
VeE=2V

r--

i
~~

r---- t:- :--r--

40°C

.030

.050

0.1

0.4

~
~

~~

g

\

I

r, ,

I

\~\

I

I
I

I

0.3

'~

0.2
0.1

~

~ ~ .:,;;:;.

8

:E

1.0

3.0

~{

\

I

\

'"

.!

0.3
0.5
Ie, COLLECTOR CURRENT lAMP·)

5.0

COLLECTOR-EMITTER SATURATION VOLTAGE VAR:ATIONS
0.5

z

_

-I,+le,o

25°C

r--

.010

hfE ~ Ie - leBO

TJ = 100°C

r--.....

'\" "

~~

--- - -

10

20

30

50

' .........
'0 t-...........
.....

~.... ~
.....

-----

0

5

-

--

70

"-

-

200
100
I" BASE CURRENT (mAl

2-547

25°C TJ
- - - 100°C
- - ---40°C

....

-r--f-- - ---

leilA
300

-,

t- 1- -

--- -

- .1--

----

le=7A

Irr

500

700

1000

2000

2N3615

thru

2N3618 (GERMANIUM)

PNP germanium power transistors for switching and
amplifier applications.

CASE 11

CASE 4-04

(TO-3)

(TO-41)

For units with solder lugs attached, specify
devices MP3615 etc. (TO-41 package)

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage
Collector-Emitter Voltage
(Open Base)
Collector-Base Voltage
Emitter-Base Voltage

2N3615
2N3617

2N3616
2N3618

Unit

VCES
VCEO

60

75

Vdc

50

60

Vdc

VCB
VEB

80

100

Vdc

40

50

Vdc

Collector Current (Continuous)

IC

7.0

Adc

Peak Collector Current
(PW ~ 5 msec)

IC

15

Adc

Base Current (Continuous)

IB

2.0

Adc

storage Temperature

Tstg

-65 to+ 110

Operating Case Temperature

TC
PD

-65 to+ll0

Total Device Dissipation
@TC = 25 0 C
Derate above 25 0 C

~C

-Uc
Watts

77
1.0

W/oC

Thermal Resistance,
Junction to Case

()JC

1.0

°C/W

Thermal ReSistance,
Case to Ambient

()CA

32.7

°C/W

@TA @Tc
5 100
85
4
80
3
2.6
2

60

POWER·TEMPERATURE DERATING CURVE

-"""""'Tc

---

IA

40

20

o

o
o

25

............

-r---.:::-~

~

50
75
TEMPERATURE (OC)

------~......... r:=::....
100

These transistors are also subject to safe area curves.
Both limits are applicable and must be observed.
2-548

110

125

2N3615 thru 2N3618

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25°C unless otherwise noted)

Characteristic

Symbol

Collector-Emitter Breakdown Voltage*
(IC = 250 mAde)

2N3615, 2N3617
2N3616, 2N3618

Collector- Emitter Breakdown Voltage*
(IC = 300 mAdc)

2N3615, 2N3617
2N3616, 2N3618

BV CES *

BV CEO *

Floating Potential
(V CB = VCB max)

VEBF

Col1.ector-Emitter Leakage Current

I CEO '

(V CE

= 1/2 VCEO max)

Collector- Emitter Leakag·e Current
(V CE = VCE max, VBE = 1.0 Vdc, T C

I CEX

= +100°C)

Collector-Base Cutoff Current
(VCB = 2.0 Vdc)

I CBO

(V CB = 55 Vdc)

2N3615, 2N3617

= 65 Vdc)
(V CB = VCB max)

2N3616, 2N3618

(V CB

Emitter-Base Cutoff Current
(V EB = VEB max)
(V EB = 12 Vdc)

VCE(sat)

= 7.0 Adc, IB = 700 mAdc)

= 7. 0 Ade, IE = 700 mAdc)

Transconductance
(IC = 3.0 A, VCE

= 2.0 V)

Small Signal Current Gain
(IC = O. 5 A, VCE = 12 V, f

2N3615, 2N3616
2N3617, 2N3618

(IC = 7.0 Adc, VCE = 2.0 Vdc)

gFE

hie

= 20 kHz)

DC Current Gain
(I C =3.0Adc, VCE =2.0Vdc)

VBE(sat)

2N3615, 2N3616
2N3617, 2N3618
2N3615, 2N3616
2N3617. 2N3618

(Ic = O. 5 A, VCE = 2.0 V, f = 1. 0 kHz)

2N3615, 2N3616
2N3617, 2N3618
2N3615, 2N3616
2N3617, 2N3618

hFE

2N3615, 2N3616
2N3617, 2N3618

Current-Gain-Bandwidth Product
(I C = 0.5 Adc, VCE

Unit
Vdc

-

60
75

-

50
60

1.0

-

-

30

-

10

-

0.060

Vdc

Vdc
mAdc
mAdc

mAde
1.0
1.0
5.0
IlAdc

500

-

Base Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 300 mAde)
(IC

Max

lEBO

Collector-Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 300 mAdc)
(I C

Min

IT

= 2.0 Vdc)

Vdc

-

0.25

-

0.7
0.6

3.0
3.5

-

15

-

40
60

100
150

30
45

60
90

20
30

-

0.35
Vdc

1.1
0.9

2-549

-

-

Typ
600

*Sweep Test: 1/2 sine wave, 60 Hz

mhos

kHz

2N3615 thru 2N3618

(continued)

SAFE OPERATING AREAS
2N3615 and 2N3617
20
15

"-

10

"

~

r

5

I

::::>

u

1.5

e'"

u

~

0.7

~

0.5

H
0.3

'""-

1"-.."-

5O"s

500".s

.......

~

'" '"

~
LOW EXPANDED
CURRENT AREA

,

1~~~1

.......

.....

f

60

'"

'\.\

80/

'"

20
30
40
50
VeE. COLLECTOR·EMmER VOLTAGE (VOLTS)

---

~

~

::::>

u

150

I

~

0.5

0.2

'"

'""-

r

DC~

"

[",-

'\..

V LOW EXPANDED
~."
CURRENT AREA

GM~
AREA

\'"

I

20 A

~/
o

75

10

\.

'\\

"

\'

"'-

'\

""

100/1

0.1

60

f\.

"-

50
60
20
30
40
VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

1\

70

80

current has been reduced to 20 rnA or less before or
at the BV CES limit; then and only then may the load
line be extended to the absolute maximum voltage rating of BVCBO' To insure operation below the maximum
T J • the power-temperature derating curve must be observed for both steady state and pulse power conditions.

DC CURRENT GAIN ,ersus COLLECTOR CURRENT
TJ= +IOO°C

r--

--- -

H-+k
+25°C

VeE = 2V
hFE 1_ .

rr- t--

100
-40°C

1S

1-

R~

0.3

NOTE The Safe Operating Area Curves indicate
le-VcE limits below which the device will not go into
secondary breakdown. Collector load lines for specific
circuits must fall within the applicable Safe Area to
avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) The load line may
exceed the BVOF:. voltage limit only if the collector

200

1.5

_ 0.7

"'-..... , "'-

0.1

10

~

a

.....

5OO"s

"- I'\.I

~

\.

~50f.LS

r'\.~ms

/C

!2:

" 1"-

I'...

~'M'3
J
o

0.2

"'-

~

~
"-

,,,,"

"'-5ms
.....

I

'\

10

"-

DC"

2N3616 and 2N3618
20
15

50

-

I~ -

bo. _

Ia +ICBO

I'-...

c:::::-: ~
I--

0.01

~
~

~~

0.015 0.02

0.03

::::>

~

0.2
0.5
0.3
Ie. COLLECTOR CURRENT (AMP)

0.4

"- ,

0.3

- - +25°CTJ
- - __ -40°C
- - - +loo°C

0.1

\
\

"

~

\

\\

\

t: 0.2
i'!l

1
~

0.15

1.0

1.5

2.0

COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

ffi

~

0.1

0.5

is

i

0.05

\

,,
~

......

-~

-"':"-

--

5.0

'"

,

\~

I~ j'I.
"\
" .
" ~ ~ ::::::
"'"

-

.

~

3.0

10.0

'-. ~ ::-

:::::.-:

,

,

le...=7A

-

"

le=3A

=-' .le=l(

0

1

1.5

to

15

20
30
so
I,. BASE CURRENT (mA)

2-550

70

100

ISO

200

300

500

700 1000

2N3615 thru 2N3618

(continued)

BASE CURRENT versus BASE·EMITTER VOLTAGE

COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE

300

10
./

'/

VV /

r;:: 2.0

:>
<.>

/

100

V /

3.0

'"5
~

/.

./

5.0

200

~

L

50

V/ lic

.!J

L

/

/

I
TJ = +JOO·~/J

~

~

l'l~

I /V

TJ=+J00°C/+25°C

1.0

/

/

1/

V

+ic'j

W

-40·C

L

0.5

/

/
1I

0.3
0.2

II

V

/

/

0.1

/

0.2

/

/

/

5.0

II

/
I

3.0

VCE=2V

Ii

2.0

I

I

I

1.0

0.4
0.6
0.8
V,. BASE:EMIITER VOLTAGE (VOLTS)

I

0.1

1.0

0.2

/

I/

/
/
VCE~2V

SEE rTE 1 >--

V/

0.3
0.4 0.5 0.6
0.7 0.8
VIE. BASE·EMITTER VOLTAGE (VOLTS)

0.9

1.0

NOTE 1 - Dotted line indicates Metered Base Current plus the leB" of the transistor at 100°C.

COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE
300
200

TYPICAL SWITCHING TIMES

7

15

50
30
20

/
10

V

t- ~t-

/p
I- ~~

2.5

[7
0.3

3.0

./

0.7

I~·C

'"
~

V

~ 1.0

~V

8

rTr

V

/
I

0.1

1.0

/

0.5

0.05
0.03
0.02
5.0

7

7

/

/

.!J 0.3
0.2

1.0
2.0
3.0
Ic. COLLECTOR CURRENT !AMP)

/

/

7

+JOO·C

I

B 2.0

/

I- ~

kt:

0.5

5.0 I=TJ

~

V

/

/

10

;;;:

.s

./

/

/

100

~25·C

0.01
0.3

2-551

I

I
0.2

VCE - 'n VCEO-

0.1
-0.\
-0.2
VIE. BASE·EMIITER VOLTAGE (VOLTS)

-0.3

2N3632
For Specifications, See 2N3375 Data.

2N3634

thru

2N3637 (SILICON)

JAN, JTX A VAl LABLE

PNP silicon annular transistors for high-voltage
switching and low-power amplifier applications.
CASE 31
(TO·S)

Collector connected to case

MAXIMUM RATINGS

Symbol

2N3634
2N3635

2N3636
2N3637

Unit

VCEO

140

175

Vdc

Collector-Base Voltage

VCB

140

175

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

IC

1.0

Adc

Total Device Dissipation @ TA = 25°C
Derate above 25°C

PD

1.0

Watt
mW/oC

Total Device Dissipation @TC = 25°C

PD

5.71
5.0

Rating
Collector-Emitter Voltage

28.6

Watts
mW/oC

-65 to +200

°c

Derate above 25°C
TJ , T stg

Operating and Storage Junction Temperature Range

FIGURE ,. -

JUNCTION CAPACITANCE VARIATIONS

FIGURE 2 -

GAIN·BANDWIDTH PRODUCT

500

100

I .1.
Yc.= lOY
TJ = 2S'C

0_
0

-

0

...........

c;:-

~

200

I

r.....

~

c••

,

t;

1\

i!J

0

,1~

100

/

70

./

7
5
0.1

0.2 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

20 30

50 70 100

REVERSE BIAS (VOlTS)

2-552

", ~

"

50
1.0

""
2.0

/

3.0

5.0 7.0

10

20

30

50

70 100

2N3634 thru 2N3637

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 2S'C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltagel1i
(IC = 10 mAde, IB = 0)

2N3634, 2N3635
2N3636, 2N3637

BVCEO

-

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)

-

BV EBO

Collector Cutoff CUrrent
(VCB = 100 Vde, IE = 0)

-

Emitter Cutoff Current
(V BE = 3.0 Vde, IC = 0)

-

Collector-Base Breakdown Voltage
(IC = 100 !lAde, IE = 0)

2N3634, 2N3635
2N3636, 2N3637

ICBO
lEBO

Vde
-

140
175

-

140
175

-

5.0

-

-

100

-

50

40·
80

-

Vde

Vde
nAde
nAde

ON CHARACTERISTICS
DC Current Gain (1 I
(IC = 0.1 mAde, VCE = 10 Vdc)

3,4,5,6
2N3634, 2N3636
2N3635, 2N3637

hFE

(IC = 1. 0 mAde, VCE = 10 Vde)

2N3634, 2N3636
2N3635, 2N3637

45
90

-

(IC = 10 mAde, VCE = 10 Vde)

2N3634, 2N3636
2N3635, 2N3637

50
100

-

(IC " 50 mAde, VCE " 10 Vde)

2N3634, 2N3636
2N3635, 2N3637

50
100

150
300

(IC = 150 mAde, VCE = 10 Vde)

2N3634, 2N3636
2N3635, 2N3637

25
50

-

-

0.3

-

0.8

0.65

0.9

150
200

-

-

-

10

-

75

100
200

600
1200

-

3.0

Collector-Emitter Saturation Voltage 1'1
(IC = 10 mAde, IB = 1. 0 mAde)

11,12

VCE(sat)

(IC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage ('1
(IC = 10 mAde, IB = 1. 0 mAde)

11,12

VBE(sat)

(IC = 50 mAde, IB = 5.0 mAde)

-

Vdc
0.5
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(VCE = 30 Vdc, IC = 30 mAde, I = 100 MHz)
2N3634, 2N3636
2N3635, 2N3637

2

Output Capacitance
(VCB " 20 Vde, IE = 0, I = 100 kHz)

1

Input Capacitance
(V BE = 1.0 Vde, IC = 0, 1= 100 kHz)

1

Inpu t Impedance
(IC = 10 mAde, VCE = 10 Vde, I = 1. 0 kHz)
2N3634, 2N3636
2N3635, 2N3637

7

10

Voltage Feedback Ratio
(IC = 10 mAde, VCE = 10 Vde, f = 1. 0 kHz)
Small-Signal Current Gain
(IC = 10 mAde, VCE = 10 Vde, 1= 1. 0 kHz)
2N3634, 2N3636
2N3635, 2N3637

9

Output Admittance
(IC " 10 mAde, VCE = 10 Vde, [= 1. 0 kHz)

8

Noise Figure
(IC = 0.5 mAde, VCE = 10 Vde, RS = 1. 0 k ohms,

-

f " 1. 0 kHz)

SWITCHING CHARACTERISTICS

= 100 Vde,

= 4.0

Turn-On Time

(VCC

Turn-Off Time

IC = 50 mAde, IBI = IB2 = 5.0 mAde)

VBE

Vdc,

('1 Pulse Test: Pulse Width ~ 300/JS, Duty Cycle ~ 2.0%.

2-553

MHz

IT

Cob
C ib

pF
pF
ohms

hie

hre

X 10-4

-

hie

hoe
NF

40
80

160
320

-

200

-

3.0

/IDlhos
dB

2N3634 thru 2N3637

(continued)

FIGURE 3 -

CURRENT GAIN CHARACTERISTICS versus JUNCTION TEMPERATURE

300

2N3634
VCE -.2.0V

200

i

T, = 125'C

100

t5
~
8
1

70

-... .......

T,-25't-

50

T, =

0

....... "- ...... '"

55'C

....... i'~

20

~

~ t:-.......

I"":

I0
1.0

2.0

5.0

3.0

10

7.0

20

30

100

70

50

200

Ie, COLlECTORCURROO (rnA)

300

2N3635

200

i

100

15

70

58
1

T,

125'C

T,

25'C

I"-...

~ t--..

I
~,

VCE= 2.0V

55'C

"-

......

50

i'...'"~
"- ~

0

~

20

I0
1.0

2.0

3.0

5.0

7.0

10

30

20

50

200

100

70

(C, COllECTOR CURRENT (mAl

FIGURE 4 -

CURRENT GAIN CHARACTERISTICS versus COLLECTOR EMITTER VOLTAGE

2. 0

2H3634·2N3635
TJ~25'C

r

l.0

........

o. 7

.....

.....
.........

o. 5

-

............

.........

o. 3

"
"-

NORMALIZED TO VeE = 10 V Ie =50 mA

O. 2

VeE~ 10V~
..... VeE ~ 2.0V

...... ~

t'--..~

VeE = l.Ov..............

c-......

~

O. I
1.0

2.0

3.0

5.0

7.0

20

10

Ie. COLLECTOR CURRENT '.mA)

2-554

30

50

70

100

200

2N3634 thru 2N3637

(continued)

FIGURE 5 -

CURRENT GAIN CHARACTERISTlCSversusJUNCTlON TEMPERATURE

300

2N3636
200

Ve,- 2.0V
TJ -12S"C

0
TJ

~

2S"C

~

"- r-.

["0".

TJ

0

I0
1.0

2.0

3.0

5.0

7.0

i"'o..

r-...: t-- t'r-.. ~'" r-..

SS"C

30

10

20

30

"'~"
~~
100

70

50

200

Ie, COLLECTOR CURRENT (rnA)

300

2N3637

TJ - 12S"C

ZOO

VCI- 2.0V

..... r--.,.
TJ

.........

2S"C

I
0

TJ

~

SS"C'

"
I.....

"'

I'.~

0

l'-['

"'~

0

~~

0

~

10
1.0

2.0

3.0

S.O

7.0

10

30

20

50

70

100

200

Ie, COLLECTOR CURRENT (rnA)

FIGURE 6 -

CURRENT GAIN CHARACTERISTICS versus COLLECTOR EMITTER VOLTAGE

2.0

2N3636·2N3631
TJ -25'C1.0

........

O}

.........

0.5

......

"\.

...........
...........

I
0.3

NORMALIZED TO VeE ~ 10 V. Ie ~ 50 rnA

........

'"'"

"-

VeE

~ 1.0 V"--....

0.2

.......

I
oI

1.0

1.0

3.0

5.0

7.0

\0

10

Ie. COLLECTOR CURRENT [mAl

2-555

30

50

Vco -

"
........

1',

70

I.

VeE ~12.01

'r-..

r--.

.

\O(~

I

""" l'......
100

200

2N3634 thru 2N3637

fiGURE 7 0

0

\
1\ 1\

7. 0

\.

1\

(continued)

fiGURE 8 -

INPUT IMPEDANCE
0

0

ill)
0

\

0

OUTPUT IMPEDANCE

2N3635,2N363:;

\

0

\

0

f\

0

1\
\

1\
1\

II

i\

0

2N3634, 2N3636

l-

1\
0.3

0.5

0.7 1.0

2.0

3.0

+-- I-

5.0

5.0 7.0

10

0.2

0.1

0.3

0.5

I" EMInER CURRENT (mAl

fiGURE 9 -

fiGURE 10 -

CURRENT GAIN

1.0

2.0

:1\r\ f\..

~I -

7.0

10

VOLTAGE FEEDBACK RATIO

\

0

;'\

0

L--H-I-I-

J..- .....

\

1\
1\

I'

.0

,

I\,

2N3634, 2N3636
.0
2N3634,

2N~3~

.0·

0

NN3635,2N3637

1'\

0.3

0.5 0.7

1.0

2.0

3.0

S.O 7.0

10

o.7

0.1

I" (MInER CURRENT (mAl

0.2

0.3

0.5

0.7

1.0

2.0

I" EMITTER CURRENT ImAI

2-556

)'\.

""-

.0

0.2

5.0

\

2N3635, 2N3637

50
0.1

3.0

oI\,

I

I.--

0.7

I" EMITTER CURRENT ImAI

200

150

II

1I

l/
/

.0

0.2

iI

2N~35, 2N3637

O. 7

O. 5
0.1

./

i-

2N3634, 2N3636 \.

0

...... ~

3.0

r-.
5.0

7.0

10

2N3634 thru 2N3637

(continued)

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 11 - SATURATION VOLTAGES
1.0

+1.0

p,~ 10

I

r- TJ ~ 25'C

V

o.8

l,c

+0. 5

VBE';.:!l-- ~~

~

I-""

to -55'CI-

125'C to 125'CI

Ove for VeE! ... )

6
5

/

125'C.to -WCI

J

/ ' ~"IH'I

VeEI ••t)

0.2

-1.5

o

2.0

1.0

3.0

5.0 7.0 10

20

30

50 70 100

200

-2.0

J5'C to 125'CI

f.--"

V
o

50

100

Ie;. COLLECTOR CURRENT lmAl

150

200

Ie, COLLECTOR CURRENT lmAl

FIGURE 13- SWITCHING TIME TEST CIRCUIT
P.W. ",20 p.s
DUTY CYCLE";; 2%
RISE TIME";; 20 ns

2.0k

~-lOOV
V;._

FIGURE 14 - TURN·ON TIME VARIATIONS WITH VOLTAGE
1000

500

'\.

200

p, 10 -

'\.
~

300

i\.

w
:E

70

....

50

;:::

i'

TJli~51'f -

Vee -IOOV

t,

500o

~

10V

r--c

tfl

N3634-35

"-

'\.

'\

1'\

1000

~
~

p,

700

""

r-.

,'\.

500

'\

'\
p, ~ 10,\

200

20

,..,.

......

1'111
l"'f' ~

~-

20

r'

'\'

t d @ VOl ~ OV.....

100

..... ~

"

70

7
5

1.0

'\

Vee ~ 100V
TJ ~ 25'C

'\

300

I\..

10

'\

'\

~1

'\

20

2000

2N3636·37

I'

30

300o

I III I, V

'"""{
Vee

.. 100

.s

FIGURE 1 5 - TURN·OFF TIME VARmTiONS WITH CIRCUIT GAIN

CURVES APPL VTO ALL DEVICE TYPES
EXCEPT WHERE INDICATED

700

~

...

2.0 3.0

5.0 7.0 10

20

30

50 70 100

200

50
1.0

2.0

3.0

5.0 7.0 10

20

30

Ie, COLLECTOR CURRENT lmAl

Ie, COLLECTOR CURRENT ImAI

2N3647 (SILICON)
2N3648
For Specifications, See 2N3510 Data.
2-557

50 70 100

200

2N3712 (SILICON)

NPN silicon annular transistor designed for highvoltage DC to VHF amplifier applications.

CASE 31
CTO-5)
Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

150

Vdc

Collector-Base Voltage

VCB

150

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAdc

PD

1.0

watt

Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ T A

= 25°C

Derate above 25°C
Total Device Dissipation @ TC

5.71

= 25°C

PD

5.0

TJ , T

-65 to +200

28.6

Derate above 25°C
Operating and Storage Junction
Temperature Range

2-558

stg

mW;oC
watts
mW;oC

°c

2N3712

(continued)

ELECTRICAL CHARACTERISTICS

(T, = 25'C unless otherw;se noted)

Symbol

Characteristic

Min

Max

150

-

150

-

5.0

-

-

0.1

-

50

-

0.1

25

-

30

150

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage III
(IC = 30 mAde, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 100 jJAdc, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 100 jJAdc, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 75 Vdc, IE = 0)

ICBO

(VCB = 75 Vdc, IE = 0, T A = 150°C)
Emitter Cutoff Current
(V BE = 4.0 Vdc, IC = 0)

lEBO

Vde
Vdc
Vdc
jJAdc

jJAdc

ON CHARACTERISTICS
DC Current Gain (1)
(Ic = 10 mAdc, VCE = 10 Vde)

hFE

(IC = 30 mAde, VCE = 10 Vdc)
Collector-Emitter Saturation Voltage 111
(Ic = 50 mAdc, IB = 5.0 mAde)

VCE(sat)

-

2.0

Base-Emitter Saturation Voltage
(IC = 50 mAdc, IB = 5.0 mAdc)

VBE(sat)

-

0.9

40

240

1.0

9.0

-

80

25

-

-

100

0)

Vde
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 30 mAdc, VCE = 10 Vde, f = 20 MHz)

fT

Output Capacitance
(VCB = 20 Vdc, IE = 0, f = 1.0 MHz)

Cob

Input Capacitance
(V BE = 0.5 Vde, Ie = 0, f = 1.0 MHz)

Cib

Small-Signal Current Gain
(IC = 30 mAdc, VCE = 10 Vdc, 1= 1. 0 kHz)

hie

Collector-Base Time Constant
(IE = 30 mAde, VCB = 10 Vde, f = 31. 9 MHz)

r 'C
b e

111 Pulse Test: Pulse Width ~ 300 /J.S, Duty Cycle ~ 2.0%.

2-559

MHz
pF
pF

ps

2N3713 thru 2N3716 (SILICON)

NPN silicon power transistors for medium-speed
switching and amplifier applications. Complement to
PNP types 2N3789 thru 2N3792.
CASE 11
(TO-3)

MAXIMUM RATINGS

Rating

2N3713
2N3715

Symbol

2N3714
2N3716

Unit

C/')llector-Base Voltage

VCB

80

100

Volts

Collector-Emitter Voltage

VCEO

60

80

Volts

VEB

7.0

7.0

Volts

Collector Current

Ie

10

10

Amp

Base Current

IB

4.0

4.0

Amp

Power Dissipation

PD

150

150

Watts

Thermal Resistance

e JC

l.l7

1.17

°C/W

f---

Emitter-Base Voltage

T J and
Tstg

Operating Junction and
Storage Temperature Range

SAFE OPERATING AREAS

2N3713 2N3715

°c

-65 to +200
2N3714 2N3716

!O
500"" 250", -

500 ,,'

OClo5m,

~,

1'\

.... ;-to

~150p$

\

'\ .\
1 m'

~

I

OClo5m,

K\\ '\ \

~ ~\ \

!5

~

250",

LO

"'\

'\

-" ~

'\

Ims

~

\

\ 1\ ] <56",

-

\. ~\ j

0 \~
"-

-

\\l

07

i"

~

_\.

2 0.5

~

~~~

'\.\\

0.3

~

0.2

O. 1
10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

80

90

VeE, COLLECTOR-EMITIER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate Ie - VCF. limits
below which the device will not go into secondary breakdown. Collector load lines for specific circuits must rail
within the applicable Safe Area to avoid causing a collectoremitter short. (Duty cycle of the excursions make no signifi-

cant change in these safe areas.) To insure operation below
the maximum T,,, the power-temperature derating curve
must be observed for both steady state and pulse power
conditions.

2-560

2N3713 thru 2N3716 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Types

Characteristic

Symbol

Min

Max

lEBO

-

5.0

Ie EX

---

Emitter-Base Cutoff Current
(vEB = 7 Vde)
Collector-Emitter Cutoff Current
(VCE = 80 Vde, VBE = -1.5 Vde)
(VCE = 100 Vde, VB!!.'" -1.5 Vde)
(VCE = 60 Vde, VBE = -1.5 Vde, TC - 150OC)
(VCE =60 Vde, VBE = -1.5 Vde, TC = 150°C)

2N3713,
2N3714,
2N3713,
2N3714,

Collector-Emitter Sustaining Voltage"
(Ie = 200 mAde, IB = 0)

VCEO(sus)"

2N3713, 2N3715
2N3714, 2N3716

DC Current Galn "
(Ie = lAde, VCE = 2 Vde)

(Ie

2N3715
2N3716
2N3715
2N3716

= 3 Ade, VCE = 2 Vde)

Collector-Emitter Saturation Voltage·
(IC = 5 Ade, IB = 0.5 Ade)

Switcblng Times
(Iii = 5 A, lBI
Ise Time
Storage Time
FaIL Time

1.0
10
10
Vde

--

-

90
150

~O

15
30

--

VCE(sat) •

-

1.0
0.8

VBE(sat) •

--

2.0
1.5

-

1.5

2N3713, 2N3714
2N3715, 2N3716

Base-Emitter Voltage"
(Ie = 3 Ade, VCE = 2 Vdc)

VBE •

SmaIl Signal Current Gain
(VCE = 10 Vdc, Ie = 0.5 Ade, f

mAde
1.0

25

2N3714
2N3716
2N3714
ZN3716

2N3713, 2N3714
2N3715, 2N3716

Base-Emitter Saturation Voltage"
(Ie = 5 Ade, lB = 0.5 Ade)

mAde

60
60

hFE"
2N3713,
2N3715,
2N3713,
2N3715,

hre

= I MHz)

Unit

Vde

Vde

Vde

-

-

4.0

Typ

= IB2 = 0.5 A)

/.&s

0.45
0.3
0.4

tr
ts

Ir

*Use sweep test to prevent overheating

COLLECTOR·EMITTER SATURATION VOLTAGE VARIATIONS

1.4

{

,,

1.2

I
~

~

,

II

1.0

II

0.8

I
\

0.6
0.4

o

10

~
..........

-

20

1.2

~

1.0

~
~

es

~<- I -

-- 50

I)

--

--

70

Ic

100
200
I,. BASE CURRENT (mAl

-

I ric

f---

]A

IA
300

500

1000

700

2000

BASE·EMITTER SATURATION VOLTAGE VARIATIONS

0.8
0.6

- F F"

- ---1":- r:;.;;=. - 1 - rrI~

- '--

-

-

- -- --

--- - -- --

~

i

"-

Ic-SA

..... -

.......

1.._

~

30

r-I-

I

\

,

t-

I

I

rt~

" \

1.4

;

1'-.

~

I

--

0.2

----

'~

\

I

TJ =
25"C-40"C- - 175"C
SEE NOTE 2

\.

II

1\
\

I

I _

i,

I'.

,

-1- ..... +-

+---

1-

- - -- - --- - - - Ie

Ic

SA

f---

]A

;~"~ -

Ic" IA

----40"C--I75"C-

If

SEE NOTE 2 f---

0.4

j

!

0.2

o

10

20

30

50

70

100
200
I,. BASE CURRENT (mAl

2-561

300

500

700

1000

2000

2N3713 thru 2N3716

(continued)
COLLECTOR CURRENT versus BASE CURRENT

10
7.0
5.0

r-

2N3713. 2M3714

II

./

3.0
2.0

l

as'"
~

3.0
2.0

A~

1.0

i

!

0.7
0.5
0.3

~ 0.2

f;l

VeE - 2V
SEE NOTES 1. 2

J ~ l75°C'

:::I

8
.!J

10
7.0
5.0 c-- 2M3711.2N3716

'J

0.1
0.07
0.05

25°C

~ 0.2

~

0.01

0.1 0.2

l.flV

Irdi

0.07
0.05

V

"

I

TJ~

.!J 0.1

I

0.02

0.5
0.3

u

40°C

0.03

~7

1.0
0.7

40°C

0.02

I
5.0 10

25°C

0.03

i

0.5 1.0 2.0

VeE - 2V
SEE NOTES I. 2

20

50 100 200

0.01

500 1000

~' 1/
0.1 0.2

0.5 1.0 2.0

I•• BASE CURRENT (mAl

~Cl

~

".

50

100 200

500 1000

I" BASE CURRENT (mAl

10

VeE ~ 2V I--SEE NOTE 2

--

100
70
50

~

"V-

V

./.

V

/, '/

20
TJ

=

lWC/

10
7.0
5.0
3.0

a

25/ '-40°C

:

1
0.4

0.8

if

1 11

II

1.2

I

II

I I
0.4

1.6

VeE ~2V
SEE NOTE 2

25°C :/ !400 C

/

( !

2.0

IWC

=

/1
'/.'

/

1/

/,

/

TJ

30

1.0

20

-

300
200 I---

l

10

COLLECTOR CURRENT·VOLTAGE VARIATIONS

BASE CURRENT·VOLTAGE VARIATIONS
1000
700
500

5.0

0.8

V". BASE·EMITTER VOLTAGE (VOLTSI

1.2

1.6

2.0

VIE, BASE·EMITTER VOLTAGE (VOlTS)

NOTE 1. Dotted line indicates metered base current plus the leBO of the transistor at 17.5°C •
NOTE 2. Pulse test: pulse width

= 200 IJ,S, duty cycle = 1.,5%

TYPICAL SWITCHING TIMES
1.5

-

TEST CIRCUIT
---liIoI

I.-t .-30 s
~

Ic =5A,J 1, =IIJ=O.5A
f = 150 cps DUTY CYCLE = 2%
WAVESHAPE
ATPOINTA
+30V

::Lrfj

+11 5V'

-9V

I'"

I.- -.1.-t...
_1.7ms

4.8
ms

:

0.7

3-

~

13

........ '.

20n
IW

;:::

'"z
;;;
~

,"

t:-

0.3

~
........

:'

0.5

:E

900n
loon
IW

1.0

--"---

'- -I-

~

0.2

k--

~~

loan

IB'T I

82

0.1
0.1

0.2

0.3

0.5

0.7

1.0

Ie, COLLECTOR CURRENT (AMP)

2-562

2.0

3.0

5.0

2N3713 thru 2N3716

(continued)

CURRENT GAIN VARIATIONS
I - 2N3713,

100

TJ~lwcl

2N3714

-....-

b--:::

r-o

.02

.oI

__25"C
r--

-

--

~

........... .

-I-

.03

.05

-

..........

4O"C

.07

OJ

0.2

h _Ie-ICBO
FE-I.+lc.o

~

0.5

OJ

O}

"'"I'-"'-....."

2V

Ve.

"'-

LO

2.0

."'-r"~
.........

3.0

""-

~~ t--

5.0

7.0

10

Ie, COLLECTOR CURRENT IAMPI

200 I -

z

2N3~15 ,12N371~

----

150

1j

is

V

g;
~

1

100

----

TJ~IWC

I

-l

.01

118+ leBO

r-.

-r-.

Ve. ~ 2V

.............

......

-~"C

I-- f..--

I

t-"

o

Ie-leBO

hFE = - -

r-- ........ ......

25"~

-l- f-

-

50

I
I

I
.02

.03

.05

.07

OJ

0.2

0.5

0.3

O}

..........

-..... ~

-

LO

r--- ~ :::::::: :::::::
~

2.0

3.0

5.0

7.0

10

Ie. COLLECTOR CURRENT lAMP I

CURRENT-GAIN- BANDWIDTH PRODUCT versus COLLECTOR CURRENT

--

t-- r-

~ ........

.......

r--............

~

Ve. ~ 6V

o

OJ

0.2

0.3

0.5

O}

Ie. COLLECTOR CURRENT IAMPI

2-563

LO

2.0

3.0

~

5.0

2N3719 (SILICON)
2N3720
PNP silicon annular power transistors for highspeed, high -current switching in core, driver and
Class C power applications.

CASE 31
(TO·S)

Collector
connected to case

MAXIMUM RATINGS

Rating

Svmbol

2N3719 2N372D

Unit

ColleCtor-Base Voltage

VCB

40

60

Volts

Collector- Emitter Voltage

VCEO

40

60

Volts

Emitter-Base Voltage

VEB

4.0

4.0

Volts

Collector Current-Continuous
Collector Current-Peak

Ie

3.0

3.0

10

10

Amp
Amp

Base Current

IB

0.5

0.5

Amp

Total Device Dissipation @ T A
Derate above 25°C

= 25°C

PD

Total Device Dissipation @ T C
Derate above 25°C

= 25°C

PD

Operating JWlCtion and storage
Temperature Range

TJand
Tstg

1.0
5.72

Watt
mW/oC

6.0

34.3

Watts
mwl'>C

-65 to +200

°c

SAFE OPERATING AREAS

2N3719

2N3720

10
SOl'S

7.0
5.0
3.0

iL

1.0

...i5

0.7
0.5

~

..,'"::0'"
'"
0

~..,

0.3

~

",,,"~ ~ms
•

...

I',

0

.9

'-

~

\

~

f-- p. @ T. = 25°C ....

10

20

,r""'"--.. ~ 0
.........

\

\

\

~

.\\

-

---."'

---

BVcoo @ Ie = 20mA -

o

\

,

.03

.01

~

\

..

0.1
.07
.05

SOl'S

Y

\

\

~

,

lI..

5001" '"

p. @ Te=25~

.==

51'S

,

"

I\.

5001'5 " '

'"

5ms

... ...

......

P.@Te =25OC ....

........ '"-.'-.

...

=1==

\

\ \
\

\.

1\

\ \

" ~ -- -~

"

~ 1

\

'III.:

I p. @I T'=j50 C

~

30

51'5

......

1---

BVCIO @l e =20mA:--1"""

40

0

10

VCI. COUECTOR-EMmER VOLTAGE (VOLTS)

20

30

40

SO

60

2N3719 and 2N3720

(continued)

ELECTRICAL CHARACTERISTICS (TC

=

25°C unless otherwise noted)

Symbol

Characteristic
Collector Leakage Current
(VCE = 40 Vdc, VBE = 2 Vdc)

2N3719

= 60 Vdc, VBE = 2 Vdc)

2N3720

(V CE

Collector-Base Cutoff Current
(VCB = 40 Vdc, IE = 0, TA = 25°C)

lCEX

Min

-

leBO

Max
10
10

mAde

(VCB

2N3719

(VCB

2N3720

-

2N3720

-

1.0

-

1.0

20

-

25

180

15

-

-

0.75

= 40 Vdc, IE = 0, TA = 150°C)
= 60 Vdc, IE = 0, T A = 25°C)
(V CB = 60 Vdc, IE = 0, T A = 150°C)

2N3719

Emitter-Base Cutoff Current
(VBE = 4 Vdc, lC = 0)

lEBO

DC Current Gain (1)
(Ie = 500 rnA, VCE

hFE

= 1.5 V, T A = 25°C)
(Ie = 1 A, VCE = 1.5 V, TA = 25°C)
(IC = 1 A, VCE = 1.5 V, TA = _40°C)

Collector-Emitter Saturation Voltage 111
(Ie = 1 A, IB = 100 mA, T A = -40 to + 100°C

(Ie = 3 A,

IB

VCE(sat)

= 300 mA, TA = 25°C)

Base-Emitter Saturation Voltage' 111
(IC = 1 A, IB = 100 rnA)

VBE(sat)

(Ie = 3 A, IB = 300 rnA)
Collector-Emitter Breakdown Voltage (11
(Ie = 20 rnA, IB = 0)

BVCEO

Cib

Ie =

0, f

= 100 kHz)

Current-Gain - Bandwidth Product
(VCE = 10 Vdc, Ie = 500 mAdc, f = 30 MHz )

fT

Turn-On Time

ton

Uc·= 1 Adc, IBI = 100 mAl
Turn - Off Time

(Ie =
III Pulse

1 Adc, IBI

toff

= IB2 = 100 rnA)

Test: Pulse Width ~ 300 p,s, Duty Cycle $ 2.0%.

2-565

Volts

1.5

60

Input Capacitance
(VBE = 0.5 Vdc,

mAde

-

2N3720
Cob

1.0

0.010

1.5

40

Collector Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 100 kHz)

0.010

-

2N3719

Unit
I'Adc

Volts
2.3

-

Volts

pF

-

120

-

1000

60

-

-

100

-

400

pF

MHz
ns

ns

2N3719, 2N3720

(continued)

BASE EMITTER SATURATION VOLTAGE VARIATIONS
1.4

~

0

-- - t::;.;:
------- ... ---....-::::
-~

Z,
~

'"~

1.2

~

r-'

z:

0

~

1.0

~

Ie

'"
1=

=0.3 A .... ---

0.8

....
~

-

le= 3 A

-

-- -- -- - - ,...-I- - - - Ie _I A

--

:iii

,~

0.6

j

.j

I"-

-- 40·C
2S·C
---I ISO·C

0.4
10

20

40

60

80

100

200

I•• BASE CURRENT

600 700

400

(mA)

COllECTOR·EMITIER SATURATION VOLTAGE VARIATIONS
~

1.4

~
~

1.2

~
~

\

1.0

i

\\

0.8

~
~

0.6

~

0.4

;

\

, \1
'"

\

:iii

\

I

o

I

,

1\

\

\
\

\
\

\',~
"-

----

---40·C25·C
-- 150·C._

1\
\

I~,

\

.~

...

r- -1~ io-..

--- --

60
(mA)

""'-

- --

Ie- 0.3 A

40
20
I •• BASE CURRENT

8 10

4

\

\

\

~

0.2

,
~
,
I

\

80

lao

Ie

I

lel=~ ~

I

~

200

400

600

CURRENT GAIN VARIATIONS
120

-

150'C

- -r--. ~

100
z

~

~

2S·C

80

r-

Ii!

'"::><.>

J

60

40

Vel = 2 V

- ----~ '-....
r--.

...............

-

20
0.1

-40'C

0.2

0.4

0.6
0.8
I", COLLECTOR CURRENT (AMP)

2-566

---

~"

.....

~

2

800 1000

2N3719, 2N3720

(continued)

BASE CURRENT - VOLTAGE VARIATIONS

COLLECTOR CURRENT vs BASE·EMITTER VOLTAGE

100

10

60
40

6
4

/

20

Vea = 2 V

C

.5 10
.... 6
4

/

/

VI

i'$

/

i'"' 0.6

...c

2

./

50.4

I

1500 e

/

I
25 0 e/

!t;

II
-40 oe

1.

O. 2

~

so.
1
u

~

0.6
0.4

.2 .06

0.2

.02

l5ooe/

.04

0.1
0.2

~

A

V/

Vea = 2 V

1

t!

'"u'~"'

2

0.4

0.6

.0 1
0.8

1.0

0.2

1.2

25 oe/

L

1-40 e
o

J..

-'-

11
0.4

1
0.6

0.8

1.0

v•. BASE.£MITTER VOLTAGE (VOLTS)

VR. BASE.£MITTER VOlTAGE (VOLTS)

2-567

1.2

1.4

2N3726 (SILICON)
2N3727

DUAL PNP SILICON
ANNULAR TRANSISTORS

PNPSILICON
AMPLIFIER
TRANSISTORS

... a matched pair of silicon bi-polar devices in a single package. Designed for general-purpose differential amplifier applications.

•
•
•

Collector-Emitter Breakdown Voltage BVCEO = 45 Vdc (Min) @ IC = 10 mAde
Low Noise Figure NF = 4.0 dB (Max) @ IC = 30/lAdc
Low Base-Emitter Voltage Differential IVBE1 - VBE21 = 2.5 mVdc (Max) (2N3727)

PINS 4 AND B OMITTED

Pin Connections.
BOHom View

All Leads Electrically Isolated from Case

MAXIMUM RATINGS
Rating

Svmbol

Value

VCEO

45

Vdc

~:~~~OIA~

Collector-Base Voltage

VCB

45

Vdc

1f.:rnI

Emitter-Base Voltage

~~~

Collector-Emitter Voltage

Unit

VEB

5.0

Vdc

Collector-Current

IC

300

mAde

Base Current

IB

100

mAde

T J. Tstg

-65 to +200

°c

Operating and Storage Junction
Temperature Range

Total Device Dissipation@TA = 2SoC

Po

Derate above 25°C
Total Device Dissipation @ T C = 25°C
Derate above 25°C

Po

One
Side
400
2.29

Both
Sides
500
2.86

mW
mW/oC

0.B5
4.B5

1.4
B.O

Watt
mW/oC

0.305 DIA

31[

~

Pin 1.
2.
3.
5.
6.
7,

0.165

if.TS5"

if.i!l9

0.500
MIN

~

--.l.

Collector 1
Bass 1
Emitter 1
Emitter 2
Base2
Collector2

PINS 4 AND 8 OMITTED

All leads Electrically ISOlated from Case
CASE 654·04
·'ndicates JEDEC Registered Data

2N3726, 2N3727

(continued)

*ELECTRICAL CHARACTERISTICS (each side) (TA = 25°C unless otherwise noted)
Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (11
(IC: 10 mAde, IB: 0)

BVCEO

45

-

Vde

Collector-Base Breakdown Voltage
(lC: 0.01 mAde, IE : 0)

BVCBO

45

-

Vde

Emitter-Base Breakdown Voltage
(IE: 0.01 mAde, IC: 0)

BVEBO

5.0

-

Vde

-

10
10

nAdc
/tAde

-

0.1

/tAde

80
120
135
115

-

Characteristics
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB: 30 Vde, IE: 0)
(VCB: 30 Vde, IE: 0, TA: 150°C)

ICBO

Emitter Cutoff Current
(VBE: 3.0 Vde, IC: 0)

lEBO

ON CHARACTERISTICS

DC Current Gain
(lC:
(lC:
(Ie:
(Ie:

hFE

0.01 mAde, VCE : 5.0 Vde)
0.1 mAde, VeE: 5.0 Vde)
1.0 mAde, VCE: 5.0 Vde)
50 niAde, VCE: 5.0 Vde) (1)

-

350

-

Collector-Emitter Saturation Voltage (1)
(IC: 50 mAde,IB: 2.5 mAde)

veE (sat)

-

0.25

Vde

Base-Emitter Saturation Voltage (1)

VBE(sat)

-

1.0

Vde

60
200

600

Cob

-

8.0

pF

Cib

-

30

pF

I nput Impedance
(lC: 1.0 mAde, VCE: 10 Vde, f: 1.0 kHz)

hie

-

11.5

k ohm

Voltage Feedback Ratio
(lC: 1.0 mAde, VCE: 10 Vde, f: 1.0 kHz)

h re

-

15

X 10-4

Small-Signal Current Gain

hfe

135

420

-

hoe

-

80

J.Lmhos

NF

-

4.0

dB

hFE1/hFE2

0.9

1.0

-

-

5.0
2.5

-

1.6
0.8
2.0
1.0

(Ie: 50 mAde, I B : 2.5 mAde 1
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC: 1.0 mAde, VCE: 10 Vde, f: 20 MHz)
(lC: 50 mAde, VCE: 20 Vde, f: 100 MHz)

MHz

fT

Output Capacitance
(VCB: 10 Vde, IE: 0, f : 1.0 MHz)

Input Capacitance
(VEB: 0.5 Vde, IC: 0, f: 1.0 MHz)

(lC: 1.0 mAde, VCE: 10 Vde, f: 1.0 kHz)

Output Admittance
(lC: 1.0 mAde, VCE: 10Vde,f: 1.0kHz)
Noise Figure
(Ie: 30/tAde, VCE: 5.0 Vdc, RS: 10 k ohms, f: 1.0 kHz,
B.W. : 200 Hz)

MATCHING CHARACTERISTICS
DC Current Gain Ratio (3)
(lC: 0.1 mAde to 1.0 mAde, VCE : 5.0 Vde)

Base-Emitter Voltage Differential
(lC: 0.1 mAde to 1.0 mAde, VCE: 5.0 Vde)

mVde

~(VBE1-VBE2

Base-Emitter Voltage Differential Change
(lC: 0.1 mAde to 1.0 mAde, VCE : 5.0 Vde,
T A: -55 0 e to +25 0 C)
(lC: 0.1 mAde to 1.0 mAde, VCE: 5.0 Vde,
T A: +25 0 e to + 125°C)

mVde

[VBE 1-V BE2[
2N3726
2N3727
2N3726
2N3727
2N3726
2N3727

·Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Length = 300 J.Ls, Duty Cycle == 1.0%.

(2) fT is defined as the frequency at which Ihfel extrapolates to unity.

(3) For purposes of this ratio, the lowest hF E reading is taken as hF E 1.

2-569

2N3733 (SILICON)

NPN silicon transistor designed for amplifier, frequency multiplier, and oscillator applications.
CASE 36
(TO·60)

stud isolated from case

MAXI MUM RATI NGS ITA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

Vdc

Collector-Emitter Voltage
(VEB (off) = 1. 5 Vdc)

VCEV

65

Vdc

Collector-Base Voltage

VCB

65

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

3.0

Amps

Total Device Dissipation @ T A = 25°C

PD

23

Watts

0.13

W/"C

-65 to +200

°c

Derate above 25°C
Operating and Storage Junction Temperature Range

T J,T stg

FIGURE 1 - 400·MHz TEST CIRCUIT
+Vcc=28V

2STUB
TUNER
3STUB
TUNER

Zs = 500
7.8-17 pF
7.8-17 pF

2-570

2N3733

(continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 0 to 200 mAdc, IB = 0)

11)

BVCEO

Vdc

40

-

-

65

-

-

65

-

-

4.0

-

-

-

-

fT

-

400

Output Capacitance
(VCB = 30 Vdc, IE = 0)

Cob

-

-

20

Collector-Case Capacitance

Cs

-

-

6.0

-

6.5

-

14.5

Collector-Emitter Breakdown Voltage 11)
(IC = 0 to 200 mAdc, VEB(off) = 1. 5 Vdc)

BVCEV

Collector-Base Breakdown Voltage
(I C = O. 5 mAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 0.25 mAdc, IC = 0)

BVEBO

Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)

I CEO

Vdc

Vdc

Vdc

mAdc
0.25

ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(IC = 500 mAdc, IB = 100 mAdc)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(I C = 150 mAdc, VCE = 28 Vdc, f = 100 MHz)

Base -Spreading Resistance
(IC =250 mAdc, VCE = 28 Vdc, f = 200 MHz)

rbb

MHz

-

pF

,

-

pF
Ohms

FUNCTIONAL TEST
Power Output

VCE = 28 Vdc, P in =4W,

Efficiency

f = 260 MHz

Power Output

VCE = 28 Vdc, Pin = 4 W,

Efficiency

f = 400 MHz (Figure 1)

Pout
1)

P

out
1)

111 Pulsed through a 25 mH inductor; duty cycle = 50%

2-571

10
45

60

-

-

Watts

%
Watts
%

2N3734 (SILICON)
2N3735
2N3736
2N3737

\~
CASE 26
(TO-46)

2N3736
2N3737

Medium current NPN silicon annular transistors designed for high-speed switching and driver applications.

CASE 79
(TO-39)

2N3734
2N3735

Collector connected to case

MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)

Symbol 2N3734
2N3736

Rating

2N3735
2N3737

Unit

Collector-Base Voltage

VCB

50

75

Vdc

Collector-Emitter Voltage

VCEO

30

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

1.5

Adc

Collector Current

TO-39
TO-46
2N3734 2N3736
2N3735 2N3737
Total Device Dissipation @ T A
Derating Factor Above 25°C

= 25°C

PD

1.0
5.71

Total Device Dissipation @ T C
Derating Factor Above 25°C

= 25°C

PD

4.0
22.8

11.4

8JA
8JC

0.175
0.044

0.35
0.088

Thermal Resistance
Junction to Ambient
Junction to Case
Junction Temperature, Operating
St.orage Temperature Range

0.5
2.86

watt
mW/oC

2.0

Watts
mW/oC
°C/mW

TJ
Tstg

2-572

+200
-65 to +200

°c
°c

2N3734, 2N3735, 2N3736, 2N3737
ELECTRICAL CHARACTERISTICS

I

(continued)

ITA = 25°C unless otherwise noted)

I Symbol IMinlMaxl Unitl

Characteristic

OFF CHARACTERISTICS
Collector-Sase Sreakdown Voltage
(Ie = 10 p.Ade, IE = 0)

SVCSO

Collector-Emitter Sreakdown Voltage 111
(Ic = 10 mAdc, IS = 0)

SVCEO
2N3734, 2N3736
2N3735,·2N3737
SV ESO

Emitter-Sase Sreakdown Voltage
(IE = 10 p.Adc, Ie = 0)
Collector Cutoff Current
(VCE = 25 Vdc, VES =
(VCE = 25 Vde, VES =
(VCE = 40 Vde, VES =
(VCE = 40 Vdc, VES =
Sase Cutoff Current
(VCE = 25 Vdc, VES
(VCE = 40 Vdc, VES

50
75

2N3734, 2N3736
2N3735, 2N3737

2 Vde)
2 Vde, TA
.2 Vdc)
2 Vde, TA

= 100OC)
= 100

2N3734, 2N3736

Ie EX

C)

= 2 Vde)
= 2 Vdc)

2N3734,2N3736
2N3735, 2N3737

ISL

-

5.0

-

-

0.20
20
0.20
20

-

0.3
0.3

-

Vdc

-

30
50

-

2N3735,2N3737

0

-

Vdc

Vdc
p.Adc

p.Adc

ON CHARACTERISTICS
DC Current Gain III
(Ie = 10 mAdc, VCE = 1 Vde)
(Ie = 150 mAde, VCE = 1 Vdc)
(Ie = 500 mAde, VCI1 = 1 Vde)
(Ie = 1 Ade, VCE = .5 Vdc)

(Ie = 1.5 Ade,

VCE

hFE

2N3734,
2N3735,
2N3734,
2N3735,

= 5 Vde)

2N3736
2N3737
2N3736
2N3737

Collector Saturation Voltage III
(Ie = 10 mAdc, I~ = 1 mAde)
(Ie = 150 mAde, S = 15 mAde)
(Ie = 500 mAde, IS = 50 mAde)
(Ie = 1 Ade, IS = 100 mAde)

VCE(sat)

Sase-Emitter Saturation Vo1tage lll
(Ie = 10 mAde, Is = 1 mAde)
(Ie = 150 mAde, IS = 15 mAde)
(Ie = 500 mAdc, IS = 50 mAde)
(Ie = 1 Ade, IS = 100 mAde)

VbE(sat)

35
40
35
30
20
30
20

- 120
80

--

VQC

-

0.2
0.3
0.5
0.9

-

0.8

-

Vdc

'- , 1 .1.2
0
0.9 1.4

_..

DYNAMIC CHARACTERISTICS
Output Capacitance
(V CB = 10 Vde, IE
Input Capacitance
(V BE = 0.5 Vde, IC

Delay Time

(VC C

Rise Time

Ie

Fall Time

= 100 MHz)

= 30 V,VBE(off). 2 V,
= 1 Amp, lB1 = 100 mA)

(VCC = 30 V,Ie = 1 Amp,
IBl = -IB2 = 100 mAl

Total Control Charge
(Ie = 1 Amp, IB = 100 mA, VCC
lliPulse Test: PW ;a 300 p.s, Duty Cycle

= 30 V)
~

2%

2-573

pF

-

9.0

-

80

2.5

-

td

-

8.0

ns

tr

-

40

ns

ts

-

30

ns

tr

-

30

ns

-

10

Cib

= 0, f = 100 kHz)

High-Frequency Current Gain
(Ie = 50 mAde, VCE = 10 Vde, f

Storage Time

Cob

= 0, f = 100 kHz)

hte

QT

pF

-

nC

2N3734, 2N3735, 2N3736, 2N3737

(continued)

"ON" CONDITION CHARACTERISTICS
FIGURE 1

DC CURRENT GAIN

300

II

200

~

150

--

§ 100

~
1

-- - -!--

-

---- .::::. r:=-=-

50

30

1.0

-1--:

TJ

I-

::;::;::- ~

I-- r-

2.0

;:;:..-I--

-

c----.,

- T -- 55°C

Ve,~

lOY

r-

~

..:s
-- - r- - -

TJ ~ 25°C

--

--

.......

-

--:;.0.. p.-

~

-- -

-r-- ~~ -

--t-

100°C

-lve'~IJ

--

r:;::.::- ~ r--

I- :--

-

fw-"

-- --

--

--- -- --1--1-

I-"

70

-- -- -

I I
TJ ~ l75°C

~

~

:--r-- '""- r\:

J

r--~~

5.0

20

10

200

100

50

1000

500

Ie, COLLECTOR CURRENT ImAl

COLLECTOR SATURATION REGION
1.0

I
TJ~25°C

in

c::;

~

0.8

l\
. . . r---

~

CO>

;"'.

~

0.6

~

~
oC
S'

rJ
:>

Observe that at Ie = 500 rnA an overdrive factor of at least 2.0 is required
to drive the transistor well into the saturation region. From Figure I, it is seen
that hFE @ I volt is typically 54 Iguaranteed limits from the Table of Char·
acteristics can be used for "worst·case" design). .'.

500mi

\'

. . r-::: r--

0.2

t---

I

1\ "- "'-

0.4

~

8

,I

Ic-IA _

1\

ffi

This graph shows the effect of base current on collector current. fie (cur·
rent gain at the edge of saturation) is the current gain of the transistor at I
volt, and (if Iforced gain) is the ratio of Ie/I" in a circuit. EXAMPLE: For type
2N3734, estimate abase current 0,,) to insure saturation at a temperature of
25"C and a collector current of 500 rnA.

I

150 rnA
54
500 mA/l"

I" = 18.5 mA typ

2~---

lOrnA

I
f30/ f3" OVERDRIVE FACTOR

TEMPERATURE COEFFICIENTS

"ON" VOLTAGES
1.2
1.0

I I I
_

""

VIE I"')

i!!

g

~

0.8

i:!:

O:ti

~

0.4

+2.0

I I

I II

TJ~25°C

+1.5
.1

I
Ie/I, ~

I-"

2

10

+1.0

.J.-..t" ""'1---

~
V,,@Ve,=IV

~ +0.5

i

~

Ve'(H'1

(ell, ~ 10

II

I I II

j
10

20

30

50

100

200

300

500

-2.0

Ie, COllECTOR CURRENT (mAl

~~t:::=

---

9v. fOR VIE

-I~

55°C TO 25°C

l2:r
100

200

300

400

500

600

700

le,COLlECTOR CURRENT ImAl

2-574

~loooC
~25°C

25°CTOIWC
-1.5

1000

I.---"'"

L-t::::

-0.5
-1.0

f-'i-""'"
f-'"

~-

§

IJCTOJ5 0 C

-

IJvc fOR Ve'(H'1

G

5!

0.2

I I

800

900 1000

2N3734, 2N3735, 2N3736, 2N3737

(continued)

LARGE SIGNAL CHARACTERISTICS
INPUT ADMITTANCE

TRANSCONDUCTANCE

,

1000
700

f--

VeE~

I

20

I

10

/

10V

500

I

400

I

I

J.

I I
VeE

"/

10V

I

I

5.0

/

300

I

~

is

I

I

II

200

I I

~

TJ ~ 175°C

Il1

G

100

~

70

~

~

/

2.0

TJ~IW

is

Il1
B

25°C

25°C

1.0

~

I

0.5

I

I

I

I

-55°C

I

1/

40

/

J

i

55°C

50

I

I
I

30

0.2

20

I

I

10
0.2

/

0.1

0.05

0.6

0.4

1.0

0.8

o

1.2

0.2

0.4

0.6

0.8

1.0

1.2

VIE, BASE-EMITIER VOLTAGE (VOLTS)

VIE, BASE-EMITTER VOLTAGE (VOLTS)

"OFF" CONDITION CHARACTERISTICS
EFFECT OF BASE·EMITTER RESISTANCE

TRANSCONDUCTANCE
10'

10>

=

VeE

-

TJ ~ 175°C

=

30V

~'VeE"30V
,IWC

I

.".

10'

,/

1/

10>
l'J'100°C

~

;

TJ

I
~

II

10

I

100°C

V

1.0

)

10-1

10-'

TJ

10- 1

25°C

~ I- REVERSE- ~FORWARD t+
t - I-

I I- I I

0.2

0.1

0.1

TJ '2S"C

10-'
0.2

0.3

0.4

0.5

VIE, BASE-EM)TTER VOLTAGE (VOLTS)

10>

I1J4

I()I

1()6

RIE, EXTERNAL BASE·EMITIER RESISTANCE (OHMS)

2-575

10'

2N3734, 2N3735, 2N3736, 2N3737

(continued)

SWITCHING CHARACTERISTICS
_TJ=25·C

-- TJ= 150·C

TURN-ON TIME

RISE AND FALL TIMES
100

100
70

""

."'\.

~

\1\

~
;:::

\

./'

~

10

'"
'"

AI'"

Voo-2V

50

'\.

,
500

200

lOll

10

1000

20

70

,..1-"

30

!

I

20

-

1e1l.-2O
I

,/'
10

10

........

50

I

I

Ieli. -10

!
w
i!!

,;.,

::l

"

lell.- 2O

" "

20

':

r-

Vee- IOV

\:
"

['\\ ......

le/l. -10

'\

~

~

50

lOll

200

500

1000

_""
r-.::

.........

10

20

10

20

Ie. COllECTOR CURRENT (rnA)

50

100

~I-'

200

Ie. COlLECTOR CURRENT (rnA)

SWITCHING TIME EQUIVALENT TEST CIRCUITS
TURN·ON TIME
p, w. "'" 200ns

RISE TIME"'" 2 ns
DUTY CYCLE"'" 2%

TURN·OFF TIME

HOY

HOY
30n

30Q

+II.lY

lOOn

+nn~
V11I

-

-2Y

---

-

Vin

V,.

loon
I,

0

10 < I,

< 500 uS

I, < Sns

-=-

1.>11"
DUTY CYCLE - 2%

2-576

I_

~,

I\.

30

i:f

I-'

1---' ....

.

I

1,,--1..

~

'Ii

I

. .1- -I.
.,.,..~

I

70

"'::l~_...

/'

t;

.:

100

t'.-t,-IH

-

1000

FALL TIME
1,,--1..

....

500

200

lOll

50

Ie. COLLECTOR CURRENT ImAl

100

~

-c=:r.

10

STORAGE TIME

:g

I

...... ~

If

Ie. COllECTOR CURRENT (rnA)

50

1"""- I.

~

20

Vee -lOY

Id
VOl

20

If

....r.

1.1""

'\.

10

~~

~

Vee -30V

""'-

I\.\.

20

~

30

\1,\

I

i;:::

1'\

\\

30

lell.-IO

50

~

1'\

30V

Vee

~

lell.- IO

~

\1'\.

50

I'S.
."1.

70

IN916

500

1000

2N3734, 2N3735, 2N3736, 2N3737

(continued)

CHARGE DATA

CAPACITANCE

10
0.7

5.0

100

I-- r-

Vcc~30V

r- r-

/cll.= 10

III
III

70 !-I-

- TJ =' 25°C
I-- r-- -TJ = 150°C

r---

50

IVJ~i5°CI

I'.

Cib
2.0

~

i

j/

1.0

d

~

!ltV

~

0.7

/0..-

0.5

./'V
0.2

~V

10 ~

/

~

/'

V

V

20

I

/

<.)

~

30

V

l

III

V

/

-

1/

~

7.0

I'

Cob

5.0

0.1

3.0
20

10

50

100

500

200

1000·

0.1

0.2

0.5

Ie. COlLECTOR CURRENT ImA)

1.0

2.0

5.0

20

10

50

REVERSE BIAS IVOLTS)

ACTIVE REGION SAFE OPERATING AREAS
3.0
2.0

[\

1\

\.

'"

1.0

0.5

"-

~

'"

:$

ffigg

13

I

""" '"""I~ " ~

'"

" ......... '

~

0.3
0.2

.......

,Cr--..

I.05

~

r-

~

r---.....

.......

r--

-............

.......

......

The Safe Operating Area Curves indicate le·VeE limits
below which the de\/ic~s. win not go into secondary breakdown. As the safe operatmg areas shown are independent of
temperature and duty cycle, these curves can be used as

.03 I- long as thermal
.02 f-

IMax rating table) is also taken _
into consideration to insure operation below the maximum
junction temperature .

I

re~stance

I

-.....

.......

1ms

0.1

j}

SOILs

100 p.S

I-- 2N3734

.......

t--

----

.......
-............

t---.

f"-....

............. ,.........

~

..........

--. 1"---..
t---..

r----

.........
.............

~

----=
-

2N3736
2N3735

2N3737

I

.01

o

10

20

30

VeE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

2-577

40

50

2N3738 (SILICON)
2N3739

~

High-voltage NPN silicon power transistors, designed for use in line operated equipment such as audio
output amplifiers; low-current, high-voltage converters;
and AC line relays, featuring excellent dc gain.

~

CASE 80
(TO-66)

Collector connected to case

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating

2N3738

Symbol

2N3739

Unit

Collector-Base Voltage

VCB

250

325

Vdc

Emitter-Base Voltage

VEB

6.0

6.0

Vdc

VCEO

225

300

Vdc

Collector-Emitter Voltage
Collector Current (Continuous)

IC

3.0

Collector Current (Peak)

IC

3.0

Amp

Base Current

IB

1.0

Amp

Total Device Dissipation @ T C = 25 0 C
Derate above 25 0 C

PD

20
0.133

wloc

°JC

7.5

°C/W

T J , Tstg

-65 to +175

°c

Thermal Resistance
Junction Operating and Storage
Temperature Range

Adc

Watts

POWER·TEMPERATURE DERATING CURVE

20

~

16

z

12

"

~

0

>=

............

..............

.........

~

..............

~

~

is

..............

8

.............

f5

~
....Q

..............

4

o

.........

~

..............

o

25

50

75

100

Tc. CASE TEMPERATURE (DC)

2-578

125

150

175

2N3738, 2N3739

(continued)

ELECTRICAL CHARACTERISTICS

I

(T A = 25°C unless otherwise noted)

Characteristic

Symbol

IMin IMax I Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 5 mAdc, IB = 0)

(1)

2N3738
2N3739

Emitter-Base Cutoff Current
(V EB = 6 Vdc)
Collector Cutoff Current
(VCE = 250 Vdc, VBE = 1.5 Vdc)
(VCE = 300 Vdc, VBE = 1.5 Vdc)
(VCE = 125 Vdc, VBE
(VCE = 200 Vdc, V BE

=
=

lEBO
ICEX
2N3738
2N3739

1.5 Vdc, TC
1.5 Vdc, TC

=
=

2N3738
2N3739

lOO°e)
lOO°e)

I CEO

Collector-Emitter Cutoff Current
(VCE = 125 Vdc, IB = 0)
(V CE

=

200 Vdc, IB

=

2N3738
2N3739

0)

Collector-Base Cutoff Current
(VCB = 250 Vde, IE = 0)
(VCB

=

325 Vde, IE

=

VCEO(sus)

2N3738

ICBO

2N3739

0)

Vdc

225
300

-

-

0.1

-

0.5
0.5

-

0.25

-

0.1

30

-

40

200

mAdc
mAdc

1.0
1.0
mAdc
0.25
mAde
0.1

ON CHARACTERISTICS
DC Current Gain (1)
(IC = 50 mAde, VCE
(IC
(IC

=
=

hFE

= 10 Vde)
VCE = 10 Vde)
VCE = 10 Vde)

100 mAdc,
250 mAdc,

Collector-Emttter Saturation Voltage
(IC = 250 mAdc, IB = 25 mAde)

(1)

Base- Emitter Voltage (1)
(Ic = 100 mAde, VCE = 10 Vde)

25

-

VCE(sat)

-

2.5

VBE

-

1.0

10

-

-

20

35

-

-

Vdc
Vde

TRANSIENT CHARACTERISTICS
Current-Gain -Bandwidth Product
(IC = 100 mAde, VCE = 10 Vde, f

= 1. 0

fT
MHz)

Common Base Output Capacitance
(VCB = 100 Vde, IC = 0, f = 100 kHZ)
Small Signal Current Gain
(IC = 100 mAde, VCE = 20 Vde, f
(1)PULSE TEST: PW

~

Cob
hfe

= 1 kHz)

300 IJ.S, Duty Cycle

~

MHz
pF

-

2%

ACTIVE REGION SAFE AREAS
3.0
2.0
1.0

.

0.5

~

0.3

Ii:

s

B

I

r\. r\. ~

I"

........

~

"-

"

2N}738
AND
2N3739

i'..

"'{....

10",

r-....

50",

==

500",

r-..

"..........

0.2

........

0.1

t-.. 1 m,
t-..

~

5m,

~

2N3739
ONLY -

.........

-

r--....

t---...

r-

..Q 0.05

r--..

0.Q3
0.02
0.01
40

-t--I--

80

120

160

200

r-

-

240

VeE. COLlECTOR·EMtTIERVOlTAGE (VOLTS)

2-579

280 300

The Safe Operating Area Curves indicate
le·Ve, limits below which the device will not
go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector·emitter short. (Case
temperature and duty cycle of the excur·
sions make no significant change in these
safe areas.) The load line may exceed the
B.VeEo voltage limit only if the collector cur·
rent has been reduced to 20 mA or less be·
fore or at the BVeEolimit; then and only then
may the load line be extended to the abso·
lute maximum voltage rating oi BVelO. To
insure operation below the maximum T"
the power-temperature derating curve must
be observed for both steady state and pulse
power.conditions.

2N3738, 2N3739

(continued)

CURRENT GAIN
300

I
I
I TJ --1175'~
.1

200

z:

~

;1

100
70
50

30

-

i""'

L--' +25'C I
TJ

......

I

~

---~

- -. -...

--

----

-

J

-5~'C

--

.- :--

~

20 f- TJ ~

--

+lOO'C

TJ

I---rt-

lOV

r--

VeE

2V

r--

---- --

2.0

,

'--

~~ ~
\

1\'"'

~ ~ ~"

5.0

3.0

.;-,

- - ---- D: ~ -'l.. --

10
1.0

.

'",-

.:-..

i""""

i-"" to-

.. - VeE

7.0

20

10

30

50

100

70

300

200

500

Ie. COLLECTOR CURRENT ImAI

"ON" VOLTAGES
1.0

CAPACITANCE

I I

I I I_III I

VeE1"'1@ lell, ~ 10
......-:
I

0.8
lell, ~ 10

~

~

V,,@Ve ,

0.6

I

"""VI-i

200

L.I

/

100

:..- t1

~
~

;;;

/

J-- VeE(ut) lell, ~ 10

- ....

....

1-1-

lell,

~

/

V 1/
V
TJ

<3
~

+25'C I-

20

!

-"

I'

r-

100

200

300

500

0.1

0.2

0.5

1.0

2.0

10

5.0

Ie. COLLECTOR CURRENT ImAI

REVERSE BIAS VOLTAGE (VOLTSI

TURN-ON TIME

TURN-OFF TIME

20

50

100

10

~

i-

1.0

~

C,.

20

10
5.0
2.0

r-

30

10
50

30

70
50

I I I

5

I I
10

TJ ~ +25'C

t--

r'--I'

/

0.4

0.2

300

IOV

~

~

11

lell,

....

"'c-

1,-

f-

le/ l•

10
5.0

• - Vee -,300 V. Vo• "",2 V

ITYPE 2N3739 ONLYI
-Vee ·100 V

Id

I"

l"-

I

0.5

~

ts

i'-.

2.0

"

1.0

'">=

0.2

0.5

0.1

0.02

Vee

0.2

~

~ Vee
l'f~

300V

- (TY~E 2N3739 ONLYI

0.01

0.1
1.0

2.0

5.0

10

20

50

100

200

500

1.0

Ie. COLLECTOR CURRENT (mAl

2.0

5.0

10

20

50

Ie. COLLECTOR CURRENT IrnAI

2-580

'" ."-

,

100V

~

. If

0.05

r--

10

I

~

II
100

200500

2N3738, 2N3739

(continued)

LARGE SIGNAL CHARACTERISTICS

CUT-OFF CHARACTERISTICS

TRANSCONDUCTANCE
500

I
f---

iL

I

200

/
TJ~+IWc

/

/

-

/ I

...../

10

I

/ /

VeE ~ IOV

100

TRANSCONDUCTANCE

VeE

~

I

I

J

I

t-

~

200V

TJ~+IWc

IL

V

I

II

II

./

1.0

1

I

I
1

/
~

I
~

50 f---

r-

TJ

+IOO°c

I
TJ

~

~

I

rr----r--

I

r7

I

10

I

I

I

I

I

II

I

I

I

1

O.oJ

'-'

2

II

TJ ~ +25°c

......-

REVERSE B)AS

FORWARD BIAS

0.2

0.2

-55°C

~

0.001

-

II

0.0001

0.4

0.2

0.8

0.6

0.6

1.0

0.4

V",BASE·EMIITER VOLTAGE (VOLTS)

I

I

I

2.0
TJ

I~ +l75°c__

1.0

~
~

0.2

0.6

0.8

10

5.0

ffi

0.4

EFFECT OF BASE-EMITTER RESISTANCE

10

0.5

t-

V", BASE-EM lITER VOLTAGE (VOLTS)

INPUT ADMITTANCE

~

+ 100°C

I

0

TJ

I

I

TJ

~::i

I

1.

0.1

I

I

7

II

II

+25°c

20

~

8

«

s

f-I..

I

-

I

I

I

/ I I II

1.0

TJ

~

rt--. .J
II
-L

I

0.1

~

I

TJ

B

I

I

I

II
7r-~

/

0.1

J ~ +175°C

ffi

I
I

c--- TJ ~ +25°c

200V

II

+ 100°C

~

~

I

V

~
-

.... +-

VeE

IiT

I
It--~
TJ

+lOO°c

0.01

~

55°C ::
TJ

0.05

I

0.02

I
I

0.01
0.2

0.001

I

II
I'
0.4

+WC

I

I

I

I

I

I

I
0.6

0.0001
0.8

1.0

VIE, BASE-EMIITER VOLTAGE (VOLTS)

10

102

10'

10<

10'

R.., BASE·EMIITER RESISTANCE (OHMS)

2-581

1()6

10'

2N3740, A(SILICON)
2N3741, A

POWER TRANSISTORS

MEDIUM-POWER PNP TRANSISTORS

PNPSILICON
60-80 VOLTS
25 WATTS

· .. ideal for use as drivers, switches and direct replacement of
germanium medium·power devices. These devices feature:
•

Low Saturation Voltage VCE(sat) = 0.6 Vdc@ IC

•

High Gain Characteristics hFE = 30-100@ IC = 250 mAdc

= 1.0 Amp

•

Direct Substitution for Germanium Equivalents

•

Excellent Safe Area Limits (See Figure 2)

•

Low Collector Cutoff Current 100 nA (Max) 2N3740A, 2N3741A

•

Complementary to NPN 2N3766
(2N3740) and 2N3767 (2N3741)

*MAXIMUM RATINGS
Rating

Symbol

2N3740
2N3740A

2N3741
2N3741A

VeEO

60

VE8
VeB
Ie

7.0

80
7.0

60

80

Collector-Emitter Voltage

Emitter-Base Voltage
Collector-Base \f.oltage

Collector Current - Continuous
- Peak INote 1)

Unit
Vdc
Vdc
vdc

/~

4.0
10

Adc

""!
0.050
0.075

Base Current

18

2.0

Adc

Total Device Dissipation@Tc=250C

Po

25
0.143

Wloe

-65 to +200

°e

Derate above 2SoC
Operating and Stor~ge Junction

TJ.Tstg

0.250
0.340

~:;~ OIA

Watts

0.360
MIN

~~l: OIA

Temperature Range
Note 1: See Figure 2

FIGURE 1 - POWER·TEMPERATURE DERATING eURVE

5

~ I'-...

~

~

~
~
...........

0

o
o

........
25

Ion

50

125

150

TC ,TEMPERATURE 1°C)
Safe Area Curves are indicated by Figura 2.

Both limits are applicable and must be observed.

-Indicates JEOEC -Registered Data.

2-582

~200

175

CASE 80
(TO·66)
COLLECTOR CONNECTED TO CASE

2N3740,A, 2N3741,A (continued)
*ELECTRICAL CHARACTERISTICS (TC= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 100 mAde, IB = 0)

@
~

::ttt::==
V,,@VCE

FIGURE 11 - TEMPERATURE COEFFICIENTS

+1.

--

o

I- ~ .....

5-

eve for VCE(satj

0

2.0V

-r

+ I,OOOC to + l75°C

...-.-+2SoC to + 100°CL.-55°e to +25°C

To compu~e saturation voltages:
V. I"" @ operatiogTJ ~ LI,," @+25°C+ Bv_ (operating TJ -2S0C)

0. 6

5 Us. appropriate Ov for voltage of interest.

w

~
§:

II
r 1_--

o. 2
0

O.oI

VCEh.'J @ Icll, ~ 10

I
0.02 0.03

0.05 0.07 0.1

-

0.2

~~
0.3

,----

Use appropriate curve for temperature range of interest.

.

0. 4

0.5

0.7

1.0

2-585

I

lOa

200

'bf-'~- -

-2.0

Ic, COLLECTOR CURRENT lAMP)

i

o

300

ISnt!+175

400
500
600 700
Ie, COLLECTOR CURRENT (mA)

SOD

900

1000

2N3740,A, 2N3741,A (continued)

FIGURE 13 - CAPACITANCE

FIGURE 12 - TURN-QN TIME

3.0
2.0

I I

~e~60V

--

-

Vee~24V

Cob

I'

........
-......;

~e - 6OV. Vob - 2.0V

..... :::::1-- - 1--

t.."

0

" 'I'.

"\
C'b

"r--,
-

"r--,

0

"-

O. I
0.0 7

....

I'\.

~

r--

'1'0.'

0.5

0.2

!'-..r-....,

..:,

0.7

~ 0.3

300

200

~ ~I'I,

1.0

:&

I II

TJ ~ +25·C
- - - T , ~ +150·C

~ I~

..,

I

~

50

Vee ~ 24V. Vob~ 0

........

.......... ......

0.05
10

20

30

50 70 100
200 300
Ie. COLLECTOR CURRENT (mAl

500 700 1000

30
0.1

0.2

0.5

5.0

5.0
4.0

.1

....

3.0 _

I""" :::.
I--

2.0

-....

liT, ~ 125~cl
- - - T,~+150·C

I

........ ....

~ l? I':::t< blell. ~20
IcJ.l.~lb,L: ~ R~ ~~

0

'\
3.0

\,
\.

"

0

" "I'

O.3

500 700 1000

O.2
10

"

f'.

"

,
......

...., I" t-....r-1"- r.... r.. ~~ -1-.1-.

0.3
0.2

n
T, "" +25·C
T, ~ +150·C

\

O.5

200 300
50 70 100
Ie. COLLECTOR CURRENT (mAl

50

~"

O.5

30

20

le/l.~I~ ~'r, i"-

7

20

10

----

,le/l.~20

7

0.1
10

1.0
2.0
5.0
V.. REVERSE VOLTAGE IVOLTS)

~,

\,
~, \j,
2.0

:::!. .

r- ....

~

FIGURE 15 - FALL TIME

FIGURE 14 - STORAGE TIME

10
7.0

"',"',

~

f'r-.

20

30

200
50 70 100
Ie. COLLECTOR CURRENT (mAl

300

500 700 1000

2N3742 (SILICON)

CASE 31

NPN silicon annular transistor for high-voltage amplifier applications from DC to VHF.

(TO-5)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

Unit

Value

Collector-Base Voltage

VCB

300

Vdc

Collector-Emitter Voltage

VCEO

300

Vdc

Emitter-Base Voltage

VEB

'T.O

Vdc

Ie

50

mAdc

Collector Current
Total Device Dissipation @ T A

= 25°C

Total Device Dissipation @ TC

= 25°C

Storage Temperature Range

Watts
mW/oC

+200

°c

TlJtg

-65 to+ 200

°c

JUNCTION CAPACITANCE

GAIN·BANOWIDTH PRODUCT
50

~

50

"'t--

5.0
28.6

TJ

70

30

watt
mW/oC

PD

Derating F .t.ctor Above 25°C
Operating JWlction Temperature

1.0
5.71

PD

Derating Factor Above 25°C

I
TJ

~

40

II

I--

TJ

~
~

25'C

...-:: I:;::

~
~

10

~

5

.<5

-

k:::::== ~

20V

-....

20

~

~
VeE

25'C

b-

.........

~

\

VCE~ lOV\

C.b

1\

5.0

\

3.0

1

i'-r--..

2.0
1.0
0.1

0.2 0.3 0.5

23510203050

10

lOll

1

REV£RSI: BIAS IVOLTSI

5

7

10

I. EMlnER.cURRENT (mAl

2-587

20

30

50

2N3742 (continued)
ELECTRICAL CHARACiERISTICS (TA" 25°C unless otherwise noted)

Characteristic

Symbol

Collector-Bde Breakdown Voltage
(Ie " 100 I' Adc, IE "0)

BVCBO

Collector·Emttter Breakdown voltage·
(Ie = 10 mAdc, IB '" 0)

BVCEO•

Emttter·Base Breakdown Voltage
(IE = lOO/JAde, ~ '" 0)

BVEBO

Collector Saturation Voltage·*
(Ie = 10 mAde, IB = 1 mAde)

(Ie "

30 mAde, IB

(Ie

VBE(sat)·*

= 3 mAdc)

DC Current Gain ••
(IC = 3 mAdc, V CE " 10 Vde)

300
300
7.0

-

-

30 mAde, IB " 3 mAdc)

Base-Emitter Saturation Voltage"
(Ie = 10 mAde, IB = 1 mAde)

(Ie "

VCE(sat)**

Min

hFE *.

10

= 10 mAde, V CE " 10 Vde)

15

(Ie = 30 mAde, VCE = 10 Vde)
(Ie " 50 mAdc, VCE = 20 Vde)

20

Collector Cutoff CUrrent
(VCB = 200 Vdc, IE " 0)

20
ICBO

(VCB = 200 Vdc, IE = 0, TA = lOOoC)
Emitter Cutoff Current
VEB = 6 Vde, Ie '" 0)

lEBO

Small Signal Current Gain
(VCE " 20 Vde, IC '" 10 mAdc, f= 20MHz)

I~el

Output Capacitance
(VCB = 10 Vde, IE " 0, f

Cob

Input Capaeitahce
(V.BE = 0.5 Vdc,

Ie

= 100 kHz)

-

Max

Unit

-

Vdc

Small Signal Current Gain
(IC " 10 mA, VeE" 10 V,l " 1 kHz)

h,e

Voltage Feedback Ratio
(Ie "lOmA, VCE" 10V,!: 1 kHz)

h re

Input Impedance
(Ie " 10 mA, VeE" 10 V, f '" 1 kHz)

hie

Output Admittance
(Ie = 10 mA, VCE = 10 V, f

hoe

= 1 kHz)

Real Part of Input Impedance
(Ie '" 10 mA, VCE = 10 V, f " 5 MHz)

Re(hie)

*PW:: 30 I'S, Duty Cycle ~ 1%
**PW ~ 300 /Ls, Duty Cycle ~ 2%

2-588

Vdc
Vdc

1.0
5~0

Vdc
1.0
1.2

-

-

-

200

-

I'Ade

0.2
20
/.lAde
0.2

1.5

-

-

6.0

"-

80

20

200

pF

pF

Cib
= 0, f " 100 kHz)

Vde

-

XI0- 4

1.0
Kohlll8

1.0
limbOS

5.0

50

-

40

ohms

2N3742

(continued)

CURRENT GAIN CHARACTERISTICS versus JUNCTION TEMPERATURE

----

70
60

~ r-

50

40

~

L--- r-IS
12
10
I

-

~~

I
Ve.- IOV

r.....

""'-

~r--

G

j-I-- f -

TJ - -55'C

...... 1--:"": f -

l--- !-----"

.......

l- f- f-I--

j-- l- t-

-

f-i--

,
,:

!

10

30

20

50

Ie. COLLECTOR CURRENT ImAde}

CURRENT GAIN CHARACTERISTICS versus COLLECTOR·EMITTER VOLT;AGE
:

r--

70 r - - - - 60

,

50

40

I--- r---

- --

TJ

~ 25'C
Ve.

---r--....

I"'"'

J

10V -

""-t--

T- ~E

5V

~:

""'-

i~
~-2V

IS

I\.

12

~

10

I

10

20

50

30

Ie. COllECTOR CURRENT (mAde)

COLLECTOR·EMITTER SATURATION VOLTAGE

BASE ·EMITTER SATURATION VOLTAGE
0.80

r--- I-- lell, ~ 10
r--- I-- TJ -25'C

1

I

I L

i

~ 0.76 f---Ie/I, - 10
TJ -25'C

V

~

i

I
IL

'V

0.72

;;;
~

L

;

V

./

is

§

V

0.68

.. 0.64

.!

.;

./

,/

... V
~

V
,

0.60
10

20

30

5

50

7

10

Ie. COLLECTOR CURRENT (mAde)

Ie. COLLECTOR CURRENT (mAde)

2-589

20

30

50

2N3742 (continued)

SMALL SIGNAL Y

PARAMETERS

T. = 25°C

INPUT ADMITTANCE

REVERSE TRANSFER ADMITTANCE

50

200

VeE-IOVdc

50

20

I.5

Im~,.I

100

30

IIi! :

....... i-""

10
Imlt-.I

Ii

./ I .....

5

l

i-'

~

v

0.5

Re.(y~1

Re(y,.) / '

i
...

I"

./

..!

0.5

t----

VeE

10Vdc

0.2
0.1

Re(Y~1

0.05

1kHz

0.02

0.3
0.2
0.1

l/V
0.2

0.3

2.0

0.5 0.7 1.0

3.0

5.0 7.0 10.0

.01
0.1

Im,YNI

0.5

0.2

I. EMInER CURRE/fT (mAdel

FORWARD TRANSFER ADMITTANCE

I

Vi-'

Imly••)
5 MHz

100

/1'\

,kH.

V

VeE-IOVde

5 MBZ j

5M~

/

O.5

V
0.2

0.3

0.5 0.7 1.0

2.0

IE. EMITTER CURRENT (mAde)

3.0

5.0 7.0 10

O. I
0.1

l·kHz

V

."..

.....V"

~. 2r-'""

2

V

);(Y:J"..... ./

I

~

"

/I

2

Imly,.1

0.1

V

\V
V

V

Rtly.,J~V

10

III

200

VeE -IOVdc

5.0

OUTPUT ADMITTANCE
500

I

2.0

1.0

IE. EMITTER CURRE/fT (mAdcl

300

200

1

g
I

5~H'

I--'"

5MBz
_L

-~
0.2

f-"'"
0.5

1.0

2.0

I. EMITTER CURRENT (mAde)

5.0

10

2N3743 (SILICON)

PNP silicon annular transistor for high-voltage amplifier applications from de to VHF.
CASE 79
(TO-39)
Collector connected to ca.e

MAXIMUM RATINGS

Rating

Symbol

Unit

Value

Collector-Base Voltage

VCB

300

Vdc

Collector-Emitter Voltage

VCEO

300

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

50

mAdc

1.0
5.7

watt
mW/oC

5.0

watts

28.6

mW/oC

+200

°c

Collector Current
Total Device Dissipation @ T A

= 25°C

PD

Derate Above 250C
Total Device Dissipation@ T C

= 25°C

PD

Derate Above 25°C
Operating Junction Temperature

TJ

Storage Temperature Range

Tstg

°c

-65 to +200

GAIN·BANDWIDTH PRODUCT

JUNCTION CAPACITANCE
70

t-

3GO

......

2GO

II

I

I~I

TJ -25"C

Vca - 20V

/'

I
I

\

100

~~

70

50

-

30

"'1'-...

20

10
G.I

0.2

0.5

1.0

2.0

5.0

10

-n20

~

10

Iff

i"'-

\.

/"" ....

T" - 25"C

~

-

I

I I

VeE-IOV

~

\

\

L/

50

100

R£'IERSE BIAS MIlTS)

7

IV
I

1\
5

7

10

I. EMITTER CURRENT InIAl

2-591

20

30

50

2N3743 (continued)

ELECTRICAL CHARACTERISTICS (TA; 25 0 C unless otherwise noted)

Characteristic

Symbol

Collector-Base Breakdown Voltage
(Ie = 100 "Ade, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage·
10 mAde, IB ; 0)

BVCEO·

Emitter-Base Breakdown Voltage
(IE ; 100 "Ade, Ie ; 0)

BVEBO

Collector Saturation Voltage··
(Ie ; 10 mAde, IB ; 1 mAde)

ac ;

-

300

-

5.0

-

VCE(sat)··

-

5.0
8.0

VBE(sat)··

-

1.0

(Ie = 30 mAde, IB = 3 mAde)
DC FOrward Current. Gain··
= 100 "Ade, VCE = 10 Vde)

ac

Max

300

(1(' ; 30 mAde, IB ; 3'mAde)
Base-Emitter Saturation Voltage.·
(Ie = 10 mAdc, IB '" 1 mAde)

Min

25

(Ie

= 30 mAde, VCE = 10 Vdc)

25

250

(Ie = 50 mAde, VCE = 20 Vde)

25

-

-

0.3

25

Collector Cutoff Current
(VCB = 200 Vdc, IE ; 0)

IeBO

(VCB ~ 200 Vdc; IE = 0, T A = l00OC)
Emitter-Base Leakage Current
(V ES '" 3 Vde, Ie ; 0)

lEBO

Small-Signal Current Gain
(Ie '" 10 mAde, VCE ; 20 Vdc, f';20MHz)

Ilite I

Output Capacitance
(VCB z 20 Vdc, IE ; 0, f = 100 kHz)

Cob

Input Capacitance
(VEB = 1 Vdc, Ie

Cib

'"

0, f = 100 kHz)

Small Signal Current Gain
(VCE = 10V,Ie; 10mA,f '" 1 kHz)

bre

Voltage Feedback Ratio
(VCE = 10 V, Ie = 10 mA, f = 1 kHz)

hre

Input Impedance
(VCE = 10 V, Ie = 10 mA, f = 1 kHz)

hie

Output Admittance
(VCE = 10 v. Ie '" 10 mA, f = 1 kHz)

hoe

Real Part of Input Impedance
Re(~e)
(Ie = 10 mAdC, VCE = 10 Vde, f : 5 MHz)
.PW::: 30 "s, Duty Cycle':: 1%
**PW ~ 300 "s, Duty Cycle':: 2%

2-592

-

-

"Ade
30
0.1

1.5

-

-

15

-

400

30

300

-

4.0

-

1.0

-

Vde

1.2

= 10 mAde, VCE = 10 Vde)

(Ic = 1 mAde, VCE = 10 Vde)

Vde

Vde

(Ie

20

Vde

Vdc

-

h FE ••

Unit

"Ade

pF
pF

Xl0- 4
kohms

200
40

"mhos
ohms

2N3743

(continued)

CURRENT GAIN CHARACTERISTICS versus JUNCTION TEMPERATURE

100

TJ

70

z

--

I
~5°C

TJ

50

VeE ~110V

125°C

..........

~

!

30

-

g

~

20

-

55°C

TJ

'""-

-......

~

1.2

1.5

10

12

"\

~

10
1

b...

20

15

50

30

Ie. COLLECTOR CURRENT ImAl

CURRENT GAIN CHARACTERISTICS versus COLLECTOR·EMITTER VOLTAGE
..

70

TJ
50

<3

ffi
lE
ag

1

lOY

VeE

:--....

i!!i

~YeE~5Y

30

'\

20

~

25°C _

---I--,.

i\

\

\

10
1

1.2

1.5

10

12

15

50

30

20

Ie. COLLECTOR CURRENT ImAl

COLLECTOR·EMITTER SATURATION VOLTAGE
7.0

I

!3
~
~

6.0

Ii!
~

§<
z:
9

~

L

lell, ~ 10
TJ ~ 25°C

4.0

~

3.0

/

J

~

§<
z
9

~

./

,

1.0

~

~

~

].

1

./

25°C

V
./

0.64

V

/'"

V

V

,/

0.60

;:

$

~

0.68

i'"

/'

2.0

TJ

1ii
~

gis

t;

I~II' ~ 10

~

V

L

e;

~ 0.72
~

/

5.0

~

BASE·EMITTER SATURATION VOLTAGE

./

V

0.56
10

20

30

50

1

10
Ie. COLLECTOR CURRENT (mAl

Ie. COLLECTOR CURRENT (mAl

2-593

20

30

50

2N3743

(continued)

SMALL SIGNAL Y PARAMETERS

INPUT ADMmANCE

50

500

I~IY~

20

f-

1

~

514Hz

10

Ig

~

7.0
5.0

:i!

RelYi~

fi!

E
I
~
!!;

,..,

.f

..... 1--'

2.0

0.7
0.5

Relyio)

r-

V~

:;

10

= lOrd. I

VeE = 10Vd,

2.0
1.0

0.5

2.0

1.0

5.0

-

I kHz Re Iy,.)

0.1 r-- 1m I!},.) l
.05
0.2
0.1
0.5

I/r
0.2

Rely..)

5.0

0.2 I--

0.2

0.1

.I

50

~ 0.5

V 1kHz

0.1

l

5 MHz
-'

100

20

!

1./

Imly..)

200

!::
i!l

~

~

10-

1.0

REVERSE TRANSFER ADMITTANCE

1000

10

1.0

5.0

2.0

10

IE. EMmER CURRENT (mA)

I.. EMmER CURRENT·llIIAI

FORWARD TRANSFER ADMmANCE

OUTPUT ADMITTANCE

1000

1000

500

500

1

J...j..
5 MHz t- Im!},.)

200
\kHy
Rely,,!

-

VeE

I
~

5 MHz

I V

)'

/'

1/

"...

~,;

/

V

100
50

I

20

i5

10

,/

~

ImlylJ

..!

VeE = 10Vd.

5 MHz
Rely.,) ...........

,..-

,.... 1-1-'

/.

'"..... i"

2
0.1

0.2

D.5

1.0

2.0

5.0

10

0.5
0.1

0.2

D.5

f-"'"

1.0

...... V

2.0

I.. EMmER CURRBIT· (mAl

I.. EMmER CURRENT ImA)

2-594

,;'
1kHz

5.0

10

2N3 762 (SILICON)
2N3763
2N3763 JAN, JTX AVAI LABLE

2N3764
2N3765
2N3765 JAN,JTXAVAILABLE

Medium- current PNP silicon annular transistor, designed for high-speed switching and driver applications.

CASE 31
(TO-S)

CASE 26
(TO-46)

2N3762
2N3763

2N3764
2N3765
Collector connected to case

MAXIMUM RATINGS

(TA=25 0 Cunlessotherwisenoted)

Symbol 2N3762

Rating

2N3764

2N3763
2N3765

Unit

Collector-Base Voltage

VCB

40

60

Vdc

Collector-Emitter Voltage

VCEO

40

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

1.5

Adc

Collector Current

TO-46
TO-5
2N3762 2N3764
2N3763 2N3765
Total Device Dissipation @ T A
Derating Factor Above 25°C

= 25°C

PD

1.0
5.71

0.5
2.86

watt
mW/oC

Total Device Dissipation @ TC
Derating Factor Above 25°C

= 25°C

PD

4.0
22.8

2.0
11.4

watts
mW/oC

0.175
0.044

0.35
0.088

Thermal Resistance
Junction to Ambient
Junction to Case

°C/mW
(JJA
(JJC

Junction Temperature, Operating

TJ

Storage Temperature Range

Tstg

2-595

+200
-65 to +200

°c
°c

2N3762, 2N3763, 2N3764, 2N3765

(continued)

ELECTRICAL CHARACTERISTICS (TA; 25°C unless otherwise noted)

Characteristic

I Symbol IMinlMaxl Unit I

OFF CHARACTERISTICS
Collector-Sase Sreakdown Voltage
(Ie = 10 pAde, IE = 0)

2N3762, 2N3764
2N3763, 2N3765

Collector-Emitter Sreakdown Voltage 111
(Ie = 10 mAdc, IS = 0)

SVCEO
2N3762,2N3764
2N3763,2N3765

Emitter-Sase Sreakdown Voltage
(IE = 10 p Ade, ·Ie = 0)
Collector Cutoff Current
(VCE = 20 Vdc, VES =
(VCE = 20 Vdc, VES =
(VCE = 30 Vdc, VES =
(VCE = 30 Vde, VES;
Sase Cutoff Current
(VCE = 20 Vde, VES
(VCE = 30 Vde, VES

SVCSO

SVESO

2 Vdc)
2 Vde, TA
2 Vde)
2 Vde, TA

2N3762,2N3764

= 100OC)

IeEX

2N3763, 2N3765

= lOOOC)

= 2 Vde)
= 2 Vdc)

2N3762,2N3764
2N3763,2N3765

ISL

40
60
40
60
5.0

----

--

-

Vde

Vdc

vcrc
J,LAdc

0.10
10
0.10
10
J,LAde
0.2
0.2

ON CHARACTERISTICS
DC Current Gain 111
(Ie = 10 mAdc, VCE = 1 Vde)
(Ie = 150 mAde, VCE ~ 1 Vdc)
(Ie = 500 mAdc, VCE = 1 Vde)
(Ie = 1 Adc, VCE = 1.5 Vde)

(Ie = 1.5 Ade,

VCE

=

hYE
35
40
35
30
20
30
20

2N3762,2N3764
2N3763, 2N3765
2N3762, 2N3764
2N3763, 2N3765

5 Vde)

Collector Saturation Voltage" 1
(Ie = 10 mAde, IS =1 mAdc)
(Ie = 150 mAde, IS = 15 mAde)
(Ie = 500 mAdc, IS = 50 mAde)
(Ie = 1 Adc, IS = 100 mAdc)

VCE(sat)

Sase-Emitter Saturation Voltage 111
(Ie = 10 mAdc, IS = 1 mAde)
(Ic = 150 mAde, IS = 15 mAdc)
(IC = 500 mAdc, IS = 50 mAde)
(IC = 1 Adc, IS = 100 mAde)

VSE(sat)

-

--

--

0.9

-- 120
80
-Vdc
0.1
0.22
0.5
0.9
Vdc
0.8
1.0
1.2
1.4

TRANSIENT CHARACTERISTICS
Output Capacitance
(VCS = 10 Vdc, IE = 0, f = 100
Input Capacitance
(VBg= 0.5 Vde,

Ie

Cob
kHz)

C ib
= 0, f = 100

kHz)

High Frequency Current Gain
(IC =50 mAdc, VCE = 10 Vdc, f = 100
Delay Time
Rise Time
Storage Time
Fall Time

2N3762, 2N3764
2N3763, 2N3765

MHz)

(VCC =30V, VSE(Off) =2 V,
Ie = 1 Amp, IB1 = 100 rnA)
(VCC = 30 V, ~ = 1 Amp,
IB1 = -IS2 = 1 0 mA)

Total Control Charge
(Ie = 1 Amp, IB = 100 mA, Vce = 30 V)
111 Pulse

Test: PW :;; 300

J,LS"

Duty Cycle:;; 2%

2-596

I hte I

1.8
1.5

pF

15
pF

80

--

ts

-

tr

-

35

QT

-

30

~

tr

-

8.0

ns

35

ns

80

ns
ns
nC

2N3762, 2N3763, 2N3764, 2N3765 (continued)
"ON" CONDITION CHARACTERISTICS

DC CURRENT GAIN
300

I

II

.-.- .- ::-:::=: ::- .... -.- ..- - .- - ---

200

TJ = 175'C

150

z

$

~J.'- I-

TJ=I~~_

El
~
i

100 1--

50

30

~-

1-;:::'"

I-I-' -",

r--

70 ~-

:::.:::r.::-

,....-

I--

1--

-...;;,:

r-

~-

f-.

t--

".....
- I--

~

20
I~,

"~.

..........

r--

~
~

....... 1"-

ry-r

10

t---

~

~-

i-

5.0

2.0

1'""--

I-

~ l-

- -..
E;:
- '-'-

~-

~

TJ = 25'C

~

1.0

~

I I

- Ve,=IV
- - Ve, = 10V

100

50

200

500

1000

COLLECTOR CURRENT (mAl

COLLECTOR SATURATION REGION
1.0

I
TJ = 25'C

in

::.

0.8

~

'"~
g

1

0.6

~

!
<.>

:2'"

" r--.. .

le-~A

1\
\'" I'-..

~
0.4

\\

0.2

This graph shows the effect of base current on collector current. {3o (cur·
rent gain at the edge of saturation) is the current gain of the transistor at 1
volt, and {3F (forced gain) is the ratio of lellBF in a circuit. EXAMPLE: For type
2N3734, estimate a base current (lB~ to ensure saturation at a temperature of
25'C and a collector of 500 rnA.
.
ObseNe that at Ie = 500 mA an overdrive factor of at least 2.0 is required
to drive the transistor well into the saturation region. From Figure 1, it is seen
that hFE @ 1 volt is typically 54 (guaranteed limits from the Table of Characteristics can be used for "worst-case" design).

I

1\

~

I
500,J

j
150 rnA

t-..:::: t----

2= _ _
54_
500mAIIBF

IBF - 18.5 rnA typ

10j

fJol fJF, OVERDRIVE FACTOR

TEMPERATURE COEFFICIENTS

"ON" VOLTAGES
U

1.0

I II

~

I
V,,@Vco=IV

0.6

I I

+1.0

loo'C~

+0.5

I-- --TI I

~

!ii!
ir:
?

L

-r1r.-r--

o.a

!S

I

I I I I I
V"IN'I, lell, - 10

r- r- TJ = 25'C

+1.5

-

r

I I

five fOR VCEI"'I

.....

~ -0.5

8 -1.0 -

~
10

20

30

50

100

200

-1.5
Iclll-IO
I I I I
300 500
1000

lJ

J.

-2.0

t:

o

1~5'C

-

~

~

lJv,fORV"
..&

"

r-::::.- r-

~

100

200

Ie. COUECTOR CURRENT (mAl

TURft.IIN DME

55'C TO 25'C

lOO'C TO
25'C TO loo'C

~

V

j

t§

Ii.!

2V

25'C TO loo'C

fi3

0.4
0.2

+

I

300

400

500

600

-55'CTO 25'C

I
700

800

900 1000

Ie. COLLECTOR CURRENT !mAl

SWITCHING TIME EQUIVALENT TEST CIRCUITS

TUU-OFF DME
-30V

10 < I, < 5OOl£S
I, < IOns
II£S
OUTY CYCLE ,,; 2%

o ---

,,>

SCOPE
lOOIl

1,1-

SCOPE

lOOIl

I
I

-U.lV

IN916

PW=200ns
RISE TIME"; 2 ns
DUTY"CYCLE"; 2%

HV

2-597

':"

2N3762, 2N3763, 2N3764, 2N3765

(continued)

LARGE SIGNAL CHARACTERISTICS

"OFF" CONDITION CHARACTERISTICS

TRANSCONDUCTANCE

TRANSCONDUCTANCE

1000
700

102

I--- I- VeE 10V

I

500

~ VeE-30V

/ I

/

/ I I I

400

TJ ~ 175°C

102

I

V

/

300

l

I

200

!5

ill
B

I
.P

~

I I I
I

I I

100

!5

10

I

1.0

.p

25°C

55°C

I

4-

REVERSE

I

0.2

I

0.4

./

I

10-2
0.8

0.6

1.0

1.2

0.2

0.1

0.1

VIE, BASE.fMITTER VOLTAGE !VOLTSI

02

0.3

0.4

0.5

VIE, BASE.fMITTER VIIlTAGE!VOlTS)

INPUT ADMITTANCE

EFFECT OF BASE·EMITTER RESISTANCE

10

10'

I--- -

VeE~

10V

TJ~

/

I I

3.0

~eE.~30V

102

/ II

2.0

V

I /

1.0

~
i

FORWARD

10-1

I

10

B

-

J

100°C
, 25°C

20

l

/

TJ ~ 175°

30

5.0

/

~

70

50 r--'-40

100°C

i,...-'

I

0.5
0.3

I

0.2

-

~

I

TJ ~ 175°C

I

ftoo-cf

0.1

I

I
WC

~.

-1- 550C

0.05

II

I

0.03
0.02

I

I

0.01
0.2

I

.I
0.4

10- 1

i,~

I
0.6

10-2
0.8

1.0

1.2

VIE. BASE-EMITTER VOLTAGE IVOLTSI

101

10<

10'

106

107

RIE, EXTERNAl. BASE·EMITTER RESISTANCE lohms)

2-598

100

2N3762, 2N3763, 2N3764, 2N3765

SWITCHING

- TJ =25·C

(continued)

CHARACTERISTICS

TURN·ON TIME
300

RISE AND FALL TIME
300

I

"\.

200

200
Icll,~

~
100

10

I~ :\. '\

".

~"-

"\.'\
'\-.;;:

Vee ~ 30V
Ie/I, ~ 10

~~

100

,,~

'\.

'\.

I\.'~

~'\.

~

t,

~

'\.

30

'\.

20 I - - f-- Id "
V.. ~O ..... fr'~

I-- r-V.b~2V
1

10

--TJ =150·C

Vcc~

"':---.." .--

:'\-

1

10

50

100

'\.

30V

Vcc~

I'...:.

~~

30
10V

" .....1'..

200

500

10

1000

20

30

r--

r--

-

Icll, ~20

r--.. .....,
Icll, -10

100

""-.

-~ t-....

"-

'\ h,

100

~

Icll,~

30

20

20

10

10
100

200

300

"",

r'\.

30

50

1000

500

1000

Ie. COLLECTOR CURRENT (mA)

10

20

30

~

lOV

"

10

50

i'

""

.........

100

.......

r-

p:-- :....,

r---.
t'--..
. . . r--..
200

Ie. COLLECTOR CURRENT (mA)

2-599

I

I I

Ie/I, ~ 20

, "'\

30

Vee

~ r, "- l',

t\

20

Ilfl

181 = -I B2

I'\.1',

50

10

500

I

-~

~

:oJ

300

~',

200

r.~~-'htf

!
~

~
t?

200

FALL TIME
300

II,,~I_I':+

'- -

100

50

STORAGE TIME

.'1
\

I

rr

Ie- COLLECTOR CURRENT (mAl

300

f-

t,

10

Ie. COLLECTOR CURRENT (mA)

200

-

i"-..

20

~

....

If

300

-

-

500

1000

2N3762, 2N3763, 2N3764, 2N3765

(continued)

CHARGE DATA
20

CAPACITANCE
100

I

I I Vce -30VI
lell, ~ 10
10

.-

f::-TJ~+25'C
==
-

70

~

..-

~ --_. TJ~+150'C

-

/

50

IIIII I
II UI 1

-

IT;~1~25,L l -

I--

............

Cibo

~

/

/'
~.

30

Y

~

.-

G

-r-.

§.

....... QT

20

lE

........

~

". lL""

~
<3

"V .IV

.....

"

r-

Cobo

r-.....

10

r.....

/

O}

/

/

0.5

7.0

QA

./

5.0

0.3
0.2

3.0
20

10

30

50

100

200

300

500

0.1

1000

0,5

0.2

1.0

2.0

5.0

10

20

50

REVERSE BIAS (VOLTS)

Ie, COLLECTOR CURRENT, (mA)

ACTIVE REGION SAFE OPERATING AREAS
3,0
2,0

\

f\

\

1.0

\

"

'"

,.~
5

15

~

!

\...

~

0.5
0.3

"--..........

\.

\...

........

'"

...........

..............

'"
.......

............. ....... DC

0.2

..............

...............

...............
0.1

.05

==

,03 _

.02 _

.01

r--

The Safe Operating Area Curves indicate Ie VeE limits
below which the devices will not go into secondary break·
down. Asthe safe operating areas shown are independent of
temperature and duty cycle, these curves can lJe used as long
as the thermal resistance (max rating table) is also taken into
consideration to insure operation below the maximum
junction temperature.

I

I
10

I

'"

--.........

~

"-.

..............

..Y

........

......... 100 fl.sec

~sec

'-......

50 fl.,ec

r-..

I---.....

r---

.......

'"r--.....

r----

2N3764
I

-

2N3763

I
20

-r---

--- --r--

-2N3762
I

-

2N3765 -

I
30
VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)

2-600

40

50

60

2N3766 (SILICON)
2N3767
Medium -power NPN silicon transistors, for use in
switching, and medium-power-Qmplifier applications. Complement to PNP 2N3740 (2N3766) 2N3741 (2N3767).
CASE 80
(TO-66)

Collector con nected to case

MAXIMUM RATINGS

(Te= 25"C unless otherwise noted)

Symbol

Rating

2N3766 2N3767

Unit

Collector- Base Voltage

VCB

80

100

Vdc

Emitter-Base Voltage

V EB

6.0

6.0

Vdc

60

80

Vdc

Collector-Emitter Voltage

VCEO

Collector Current - Continuous

Adc

4.0

IC

Peak

4.0

Base Current

IB

Total Device Dis sipation @ T C = 25° C

PD

Adc

20

Watts

0.133

W/"C

eJC

7.5

°C/W

T J' T stg

-65 to °175

°C

Derate above 25° C
Thermal Resistance
Operating and Storage Junction
Temperature Range

2.0

POWER·TEMPERATURE DERATING CURVE

20

...............

en
~

<:

~
z:

0

............

16

~
0...

12

C

8

...............

........

['.....

~

en
en
<>:::
.....
~
0

0...

IS

~
..............

-......... .....

4

0...

r-......

0

o

25

50

75

100

125

150

Te. CASE TEMPERATURE (Oel
Safe area curves are indicated. Both limits are applicable and must be observed.

2-601

~
175

2N3766, 2N3767

(continued)

ELECTRICAL CHARACTERISTICS (Tc

= 25°C unless otherwise noted)

Characteristic

Symbol

IMin I Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Voltage 111
(IC: 100 mAdc, IB : 0)

BVCEO

2N3766
2N3767

Emitter-Base Cutoff Current
(V EB = 6 Vdc)

lEBO

Collector Cutoff Current
(VCE: 80 Vdc, VBE: 1.5 Vdc)
(V CE = 100 Vdc, VBE : 1.5 Vdc)

ICEX

2N3766
2N3767

(VCE = 50 Vdc, VBE : 1.5 Vdc, TC : 150°C) 2N3766
(VCE: 70 Vdc, V BE : 1.5 Vdc, TC : 150°C) 2N3767
Collector-Emitter Cutoff Current
(VCE: 60 Vdc, IB : 0)

ICEO

2N3766

(VCE: 80 Vdc, IB: 0)

2N3767

Collector-Base Cutoff Current
(VCB: 80 Vdc, IE: 0)

leBO

2N3766

60
80

--

-

0.75

mAdc
mAdc

-

-

0.1
0.1
1.0
1.0
mAdc
0.7
0.7
mAdc

-

0.1

-

0.1

30

-

(IC : 500 mAdc, VCE : 5 Vdc)

40

160

(IC : 1.0 Adc, V CE : 10 Vdc)

20

-

(V CB : 100 Vdc, IE: 0)

2N3767

Vdc

ON CHARACTERISTICS
DC Current Gain
(IC : 50 mAdc, V CE : 5 Vdc)

hFE

Collector-Emitter S4turation Voltage
(IC : 1 Adc, IB : 0.1 Adc)

VCE(sat)

(IC : 500 mAdc, IB : 50 mAdc)
Base-Emitter Voltage
(IC : 1.0 Adc, VCE : 10 Vdc)

VBE

-

-

Vdc
2.5
1.0
Vdc
1.5

TRANSIENT CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC : 500 mAdc, VCE : 10 Vdc, f : 10 MHz)

fT

Common-Base Output Capacitance
(VCE: 10 Vdc, Ie : OAdc,f: 100 kHz)

Cob

Small-Signal Current Gain
(Ie : 100.mAdc, VCE = 10 Vdc, f = 1 kHz)

hre

10

-

-

50

40

-

MHz
pF

-

111 Pulse Test:Pulse Width~300ILs,Duty Cycle~2.0%
4.0

"-

2.0

r\.

"

'"""-

""

.....

1
2N3 7;;-'
AND
2N3767

I

t-...

1m,

i'...

'>-

5m'

::....

1"""0.
)0..,

DC

ACTIVE REGION SAFE AREAS

SOJLS
...... "1.." ........
..........
~

500 JLS

N2N3767 ==
ONlY _
.....,.,

---

i""-

i'-

'"

0.1

.........

0.06
0.04
10

20

30

40

50

VeE. COLLECTOR EMInER VOLTAGE IVOLTSI

60

2-602

70

80

The Safe Operating Area Curves indicate
Ic·Ye< limits below which the device will not
go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector·emitter short. (Case
temperature and duty cycle of the excur·
sions make no significant change in these
safe areas.) The load lin.e may exceed the
BYaovoltage limit only if the collector cur·
rent has been reduced to 20 rnA or less before or at the BYc" limit; then and only then
may the load line be extended to the abso·
lute maximum voltage rating of BYCIO. To
insure operation below the maximum TJ •
the power-temperature derating curve must
be observed for both steady state and pulse
power conditions.

2N3766, 2N3767

(continued)

CUT-OFF CHARACTERISTICS

LARGE SIGNAL CHARACTERISTICS

TRANSCONDUCTANCE

TRANSCONDUCTANCE
10

1000
700
SOO

I

-

300
TJ

1

200

ffi

~
~

100

~

70

/

VCE~5V

I
If

TJLI~'C

so

TJ I

I

I

/

-'r/ I I

-

;

--

~

f-- ~ TJ
~

+JOO'C

/

- tJzsol

FORWARD BIAS

I--- REVERSE BIAS

1.0

1.2

0.6

20

I

f-'-

VCE~5V

./

0.2
0.4
0.2
VIE, BASE.fMITIER VOlTAGElVOlTS)

0.6

EFFECT OF BASE·EMITTER RESISTANCE

.-

VeE = 40V

/

V

II

II

10

J

10

1/ ~
/ / l/

I

0.4

--<

V

0.001

0.6
0.8
VIE, BASE-EMITTER VOLTAGE (VOLTS)
0.4

INPUT ADMITTANCE

TJ ~ +175lC I
1.0

7.0

II

5.0

TJ ~ +175'C

....... i

I I

3.0

./

I

r- I-1.0

1

/

I

2.0

~

I I I

TJ ~ +loo'C

I I -- rf.. V

V
J

ffi

I

I

0.10

TJ ~ +loo'C

.9

0.7
I-0.5

I

./
II

0.10

0.01

TJ = -55'C -

30

~

IL

+J75'C

/

~
.9

10

~

~

.§

20

!!l'-'

TJ

'"

I I I

+2~'C

0.2

/ I

1.0

~I---

ffi

VCE~40V

I

30

1

I

I _l

- -

I

I I

~ +JWC

III

.9

/

r-

TJ ~ +25'C

.......

I

0.3

I

1-

t-I

TJ

~

-55'C

0.01

I

0.2

I

TJ ~ +25'C

I II I

0.1
0.2

0.4
0.6
0.8
V... BASE-EMIITER VOLTAGE (VOLTS)

II

0.001
1.0

1.2

2-603

1()2

I

I II

10'
1()4
lOS
ROE, BASE-EMITIER RESISTANCE (OHMS)

i-'"
1()6

2N3766, 2N3767

(continued)
CURRENT GAIN

300

I
I
TJ = +17S"C

200

1-.

-

z

100

t5
~
i

50

- - ---

i

f-

.• t--~

TJ = +100"C

I
I
--VCE=SV f-

..

-""":.. t-"; ~=--

TJ=+25"C

,

'55"C

TJ

-

VCE-2V

~

"

~

",

30

20

",

~

\

10
10

20

50

30

100

70

500

300

200

700

,

1000

Ic. COLLECTOR CURRENT !mAl

COLLECTOR SATURATION REGION
2.0

'"

'.

~
~
~

."""

Ie = 500nIA

Ie = lOOnIA

I,S

;:!:

Ic=lA

......

~

85

!:

1,0

~

O.S

;
.

" ......
.....

-

.......

U·
>

0,5

0.7

2,0

1.0

3,0

7,0

S.O

10

30

20

+25OC

TJ

50

100

70

I,. BASE CURRENT (IlIA)

TEMPERATURE CO-EFFICIENTS

"ON" VOLTAGES
1.2

8,0

I I I I
-

TJ - +2S"C
6,0

1.0

;
~

!i

0.8

~

r-

-

~

VIE''''I @Ic/l,= 10
I I

P

:i
i

V.. @V",,=2V
II
I

0.6
. 0.4

VCEI"'I@Ic/I,=:10 ~
'.t
I I I I t..I

0,2

,II

4.0

9vc 1", VCll"'l

r"

20

30

50

100

200

300

500

1000

l-

r-

TJ = .,..55"C ID +25"C

I-

I I I I I I

I I
200

300

400

500

600

700

Ie. COLLECTOR CURRENT ImA)

2-604

'""" '"

..

....
100

Ie. COlI.£CTOR CURRENT ImA)

lL

TJ = +25"C ID +17S"C

-4,0
10

II

TJ= 55OCID+25OC

I
"'-1 I
~ ""I... V"

-

-o.z

.J,!o'

I.J..i""n.+"

TJ = +25!CID +17S C
D

2,0

I

II

I I
I I

T. COI1fIIIe saluralion voltages
~"'I @operatlncTJ=V,I"'1
+25DC+ ""Ioperating TJ -' 2S"C1
U", appropriate ", for voltage of interest, ! ,I I,
Uj"anrij Te Idr ~m~,,,a:ure{a,e ~ i i i

800

900 1000

2N3766, 2N3767

(continued)

TRANSIENT CHARACTERISTICS
(TJ

= 25°C)
TURN·OFF TIME

TURN·ON TIME
1000

lell, = 10
-Vee ~ 30V, VOl'

1:\
I'\.

200

~

OV

I'~

~

1000

\

\.

,

Id

..

~
100
w

.....

>=

"

I.

TYPE 2N3767

I,

"-

.s
w

r ....

,

I'\.

Vee ~ 80 ViTYPE 2N3767 ONLY)

I'

300
200

r,

"'

20

K.

20

30

]\

"...

300

III

I(l

I'-. ~"

50

500

20

10

1000

30

50

100

200

300

Ie, COLLECTOR CURRENT (mAl

Ie, COLLECTOR CURRENT (mAl

EQUIVALENT CIRCUIT FOR
MEASURING DELAY AND RISE TIME

CAPACITANCE
300

200

III
II, •

100

"'~
200

100

50

I'

Vee = 30V

r-- l"-

"

10
10

1\
I"

50

30

"

1',=1,- Mot,

~

".

~

I

1\

500

P.W.>2t,
RISE TIME"; 0.1 t"
DUTY CYCLE - 2%

Vee

1'-"

APPROX.J111V,.

C'b

t--f',

.....

V,. _____ --0

1'1'1

I-

VOl
'VOI = BASE-EMmER "OfF" BIAS VOLTAGE

....

EQUIVALENT CIRCUIT FOR
MEASURING STORAGE AND FALL TIMES

"'"

70

APPROX
+l1V

~ c...

50

V,.

1\

APPROX,
-9V

30
0,10,2

0.5

1.0

2,0

5.0

10

20

I"

..........

~

2000

-- Vee = 80 V, VOl = 2 V

:\
300

I"

3000

~~

500

I I I I

5000

,,'-,

50

100

REVERSE BIAS (VOLTSl

2-605

100 < 1,.< 500 piS

I, < IS ..
DUTY CYCLE - 2%

500

1000

2N3771 (SILICON)
2N3772
MJ3771
M.J3772

HIGH-POWER NPN SILICON TRANSISTORS

20 AND 30 AMPERE
POWER TRANSISTORS

· . . designed for use in power amplifier and switching circuits
applications.

NPN SILICON
40-60 VOLTS
150 WATTS

•

High DC Current Gain hFE = 15 (Min) @ IC = 15 Adc - 2N3771, MJ3771
15 (Min) @ IC = 10 Adc - 2N3772. MJ3772

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 15 Adc - MJ3771
1.0 Vdc (Max) @ IC = 10 Adc - MJ3772

*MAXIMUM RATINGS
Symbol

2N3771
MJ3771

2N3772
MJ3772

Unit

Voltage

VeEO

40

60

Vdc

Collector-Emitter Voltage

VeEX

50

80

Vdc

Collector-Base Voltage

Ves

50

100

Vdc

Emitter-Base Voltage

VES

5.0

7.0

Vdc

Ie

30
30

20
30

Adc

Base Current - Continuous

IS

7.5

Total Device Dissipation@TC=250C
Derate above 2SoC

PD

Rating
Coliector~Emitter

Collector Current

~

Continuous
Peak

Operating and Storage Junction
Temperature Range

TJ.Tstg

5.0

ra~

Adc

150
0.86

Watts

-65 to +200

°e

w/oe

1111'550MA~
t
0.83

0.135
MAX

~~tl

~t~

1 _

L-r=:::=~~=::::::=J

II:::!""1 - J:;\II

0.44

*THERMAL CHARACTERISTICS

-!Jl1 "-----j
1.197

Characteristic

0.151 DIA
0.161

I

nr:1;1;
0.655
0.675

I

if.4fI

EMITTER

9.:.~ I'

Thermal Resistance, Junction to Case

0.225

-Indicates JEDEC Registered Data (2N3771, 2N3772).
BASE

CASE 11
TO~3

Collector Connected to Case

2-606

2N3771, 2N3772, MJ3771, MJ3772 (continued)

ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)
Symbol

Characteristic

Min

Typ

Max

40
60

-

-

-

-

-

10
10

-

-

-

-

-

2.0
5.0
10

-

-

-

2.0
5.0

-

-

10

-

-

5.0

15
15
5.0
5.0

-

60
60
-

.,..
-

-

-

-

-

-

-

-

-

-

-

-

2.2
1.7

0.2
2.0

-

-

-

-

-

Unit

OFF CHARACTERISTICS
'Coliector·Emitter Sustaining Voltage (Note 1)
(lC = 200 mAde, IB = 0)
'Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 50 Vde,IB = 0)

Vde

VCEO(sus)
2N3771, MJ3771
2N3772, MJ3772

mAde

ICEO
2N3771, MJ3771
2N3772, MJ3772

'Collector Cutoff Current
(VCE = Rated VCB, VEB(off) = 1-5 Vde)
(VCE = 30 Vde, VEB(off) = 1.5Vde, TC= 1500 C)
Collector Cutoff Current
'(VCB = Rated VCB, IE = 0)
(VCB = 30 Vde, IE = 0, TC = 1500C)

mAde

ICEX
2N3771, MJ3771
2N3772, MJ3772
All Types

mAde

ICBO
2N3771, MJ3771
2N3772, MJ3772
All Types

'E mitter Cutoff Current
(VBE = Rated VBE, IC = 0)

mAde

lEBO

ON CHARACTERISTICS
'DC Current Gain (Note 1)
(lC = 15 Ade, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vde)
(lC = 30 Ade, VCE = 4.0 Vde)
(lC = 20 Ade, VCE = 4.0 Vde)
'Coliector·Emitter Saturation Voltage (Note 1)
(lC = 15 Ade,IB = 1-5 Ade)
(lC = 10 Ade,IB = 1.0 Ade)
(lC = 30 Ade, IB = 6.0 Ade)
(lC = 20 Ade, IB = 4.0 Ade)
Base·Emitter Saturation Voltage (Note 1)
(lC = 10 Ade,IB = 1.0 Ade)
(lC = 15 Ade,IB = 1.5 Ade)
(lC = 20 Ade, IB = 2.0 Ade)
'Base·Emitter On Voltage (Note 1)
(lC = 15 Ade, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vde)

-

hFE
2N3771,
2N3772,
2N3771,
2N3772,

MJ3771
MJ3772
MJ3771
MJ3772
VCE(setl

2N3771
MJ3771
2N3772
MJ3772
2N3771 , MJ3771
2N3772, MJ3772
VBE(set)
MJ3771 , MJ3772
MJ3771, MJ3772
MJ3771, MJ3772
VBE(on)
2N3771
MJ3771
2N3772
MJ3772

-

Vde

-

-

2.0
1.0
1.4
1.0
4.0
4.0
Vde
1.7
1.8
2.5
Vde
2.7
1.7

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
(lC= 1.0 Ade, VCE =4.0 Vde,f= 50 kHz)
(lC= 1.0 Ade, VCE = 10 Vde,f= 1.0 MHz)

MHz

for
2N3771,2N3772
MJ3771, MJ3772

Small Signal Current Gain
(lC = 10 Ade, VCE =4.0 Vde,f= 1.0 kHz)

hfe

40

MJ3771, MJ3772

tr

-

350

-

n'

MJ3771, MJ3772

ts

-

700

-

n.

tf

-

300

-

n.

SWITCHING CHARACTERISTICS
Rise Time

(VCC = 10 Vdc,
Storage Time
IC= 10 Adc,
Fall Time

IBI = IB2 = 1.0 Adc)

MJ3771, MJ3772

'Indica_ JEDEC Registered D8t8 (2N3771, 2N3772).
Note 1: Pulse Test: Pulse Width S; 300 Jl.S, Duty Cycle S; 2.0%.

2-607

2N3771, 2N3772, MJ3771, MJ3772 (continued)

ACTIVE REGION DC SAFE OPERATING AREA

FIGURE 2 - MJ3771, MJ3772

FIGURE 1 - 2N3771, 2N3772

,,

30

~

10

I-

"

::::>

'-'
~ 5.0

1\

,\

~

Cu .... apply

belo~

"1\

if
~
I-

~

::::>

1

3.0

o

3.0

5.0

7.0

10

20

J = 2ioo

---Secondary Breakdown limited
Thermal limitation Te == 250 C

O. 5

1\

MJ3771Mr7j

0.3

I

O.2

40

\

ICurves
I apply
I 1
11111
below rated VCEO

1. o

f-

30

1\

I-- - - -

~ O. 7

i "(
2.0

·i i

2.0

'-'

2.0

1.0
1.0

I\.

3. 0

II:

j

f\

...

5. 0

t

~

jN3T
!N3J72

«.

'-'

r\~

rated VCEO

~

I,, ~~~
%
I\.

7.0

1\

~

'\.I

0

'. r\1\

1 1 1 , , I" III

8

t\

r\:

---Secondary Breakdown limited
I--- __ -Thermal Limitation Te:: 25 0 C

I-

\. I\, I

"

0

I'. \

,"

-,

TJ' 2000 C

7.0

II:
II:

l\

~.%\

'.

'"

:'5

~

I~ \\"'i>

i\,

«.\%,
ill

r-.~t~t\

\

0

if

'l r&'"'i>"

\ 1\

,,

0

60

O. 1
1.0

2.0

3.0

5.0

7.0

10

I

20

1\
'-

30 40

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate IC-VCE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area· to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power~temperature derating must be observed for both steady state and pulse power conditions.

2-608

60

2N3783

thru
(GERMANIUM)

2N3785

PNP germanium epitaxial mesa transistors for highgain, low-noise amplifier, oscillator and frequency
multiplier applications.
CASE 20
(TO-72)

MAXIMUM RATINGS

Rating

Symbol

2N3783 2N3785
2N3784

Unit

Collector-Base Voltage

VCS

30

15

Vde

Collector-Emitter Voltage

VCES

30

15

Vde

Collector-Emitter Voltage

VCEO

20

12

Vde

Emitter-Base Voltage

VEB

0.5

Vde

Collector Current

Ie

20

mAde

Total Device Diss~atioo @ T A = 25 0 C
Derate above 25 C

PD

150

2.0

mW
mW/oC

Junction Operating" Storage Temperature
Range

TJ ,
Tstg

-65 to +100

°c

FIGURE 1 -

200 MHz TEST CIRCUIT: POWER GAIN & NOISE FIGURE

SHlno
I
eN

0.7 -9' pF

L·I
0.7-9*

OUT

PF~"*-fo) ~
2-8pF

470 pF

IN

MOTU.

L·I 14 inch inside diameter. \i Incllionath, 4 turns #20 solid COjIper wire, center tapped.
f.! 14 inch inside diameter, close wound, 3 turns #26 solid copper wire. 1:1 ratio
bj·filler wound.
* Hiah Quality piston type capacitor.
Distance from emitter contact of trensistor 10 ,ro"': side 01 bypass capacitor
should be kept minimum.

470

2-l1 pF

JO.ODIIlF
+10

-Vee

2-609

2N3783 thru 2N3785

(continued)

ELECTRICAL CHARACTERISTICS

Characteristic

BVCBO

Collector-Emitter
Breakdown Voltage

BVCES

Collector-Emitter
Breakdown Voltage

BVCEO

Emitter-Base

BV EBO

Collector Cutoff Current

ICBO

Ie:

100

IC :

IC

IE

100

~Ade,

~Ade,

IE : 0

VEB : 0

2 mAde, Ie = 0

=

100

=

~Ade.

IC: 0

VCB =
VCB :

10 Vdc, IE : 0
10 Vde, IE

=

0, TA

+55 0 C

=

-

Vde

5.0

~Ade

Vde

-

All Types

-

-

100

~Ade

-

200
200

-

0.25
0.35

Vde

0.55
0.65

Vde

50

-

2N3783, 2N3784
2N3785

20
15

-

200
200

2N3783
2N3784, 2N3785

800
700

-

1600
1600

2N3783, 2N3784
2N3785

1.0
1.0

-

6,0
10

2N3783,2N3784
2N3785

-

-

1.0
1.2

pF

3 mAde, f = 200 MHz

2N3783,2N3784
2N3785

20
18

-

=

3 mAde, f = 200 MHz

2N3783
2N3784
2N3785

-

=

15 mAde,

2N3783
2N3784, 2N3785

-

2N3783
2N3784
2N3785

-

5.0 mAde, IB

hie

IC :

3 mAde, VCE

=

10Vde,l: 1 kHz

IT

Ic

3 mAde. VCE

:

10Vde,l: 200

=

Collector-Base
Time Constant

r'C

VCB

:

10 Vde, IE

=

Collector-Base
Capacitance

Cob

VCB

=

10 Vde, IE

=

Power Gain

Ge

VCE

=

10 Vde, IC

=

NF

VCE = 10 Vde, IC
RG = 50 ohms
10 Vde, IC

-

2N3783, 2N3784

2N3783, 2N3784
2N3785

IC:

VCE :

-

1.0 mAde

VBE(sat)

NF

0.5

-

Base-Emitter
Saturation Voltage

Noise Figure

-

2N3783, 2N3784
2N3785

IC

=

All Types

-

Vde

-

1.0 mAde

VCE(sat)

VCE

20
12

-

-

Collector-Emitter
Saturation Voltage

Ge(AGe)

2N3783, 2N3784
2N3785

5.0 mAde, IB :

10 Vde, IC

Power Gain (AGe) Note 1

-

20
15

=

Noise Figure

30
15

Vde

2N3783, 2N3784
2N3785

VCE

b e

2N3783, 2N3784
2N3785

Max Unit
-

3 mAde

hFE

=

-

=

0.5 Vde,

Current Gain Bandwidth Product

30
15

-

=

Typ

2N3783,2N3784
2N3785

All Types

VEB

=

Min

0

lEBO

Small-Signal Forward
Current Transfer Ratio

noted)

=

Ie

Emitter Cutoff CUrrent
DC Forward Current
Transfer Ratio

= 25°C unless otherwise

Test Conditions

Symbol

Collector-Base
Breakdown Voltage

Breakdown Voltage

(TA

3 mAde,
0,

10 Vde, IC :

I =

I =

100

3 mAde, f

MHz

31.8

MHz

kHz

I :

200

= 1000

MHz

MHz

RG: 50 ohms (Note 2)

-

-

-

Ie

ps

33
33

dB

2.2
2.5
2,9

dB

0

-

dB

0

-

6.5

dB

-

7.0
7.5

AGe is obtained by increasing Ie' The circuit remains adjusted for VeE =-

NOTE 2:

This Noise Figure was obtained using Hewlett-Packard Type 342A Noise Figure Meter and Type 349A NOise Source.

=-

MHz

-

NOTE 1:

10 Vdc and

-

3 mAde.

NORMALIZED DC CURRENT GAIN CHARACTERISTICS
1.6
VeE ~ -10Vdc

8

O. 4

----- --

-1

~

iJ~55y ...-

...---

..-"

-2

/'"

/"'"
/TJ~25°C

-3

....... ......

-

-- V'

I-

I-'

i'-.

_r-

~

'\

."

~\
\

-4

-5

-7

Ie. COLLECTOR CURRENT (mAl

2-610

8 -9

10

20

30

2N3783 thru 2N3785 (continued)

Y ... REVERSE TRANSFER ADMITTANCE
CHARACTERISTICS
ITA = 25· Cunless otherwise noted)

Y ... INPUT ADMITTANCE
CHARACTERISTICS
ITA = 25· Cunless otherwise noted)

INPUT ADMmANCE "rsus FREQUENCY
4

Yca--IOVdc
20 f-1e=-3mAdc

/'

6

L~

-4.0

so

~,

70

REVERSE TRANSfER ADMITTANCE versus FREQUENCY
3.0

I I I II

I--""

I

/

Ii!
~

"

I

"-

;
"-

VCE = -IOYdc

t- Ic = -3 mAde

II

i1

2.0

V

1.5

~

!

['\b,.

~

1\

300

200

2.5

.§

V

100

I I I II

lie

500

700

,/

1.0

0.5

'"1\

~

~

1000

70

100

INPUT ADMmANCE versus COLLECTOR CURRENT

,J 200 Jz

40 I-- vc.-- IOVdc

/'

0

~

...........

'7

-I0

-2

V

-4

""

Ii

O.SO

i

0.25

~

~

~

200
I. FREQUENCY (/MHz)

-12

-14

,= 1000 MHz

'-10

IIi!

" '-...
.........

"

-2

r--.....

-4

~ -.!!:.

b,.

~

.............

I

;

----

-6
10
-12
Ie. COlLECTOR CURRENT !mAl

1000

-

boo

2.5

12

14

16

I""

•

-16

2-611

i--k
,=

boo

1000 MHz

YeE = -IOVdc

2.0

1.5

~

""
-14

-&.
-8
-10
Ie. COllECTOR CURRENT !mAl

REVERSE TRANSFER ADMITTANCE VlrsUS COLLECTOR CURRENT
3.0

VCI=-IOVdc

30

700

'~200M~Z

-

-16

INPUT ADMITTANCE versus COLLECTOR CURRENT

40

SOO

~

r-....

-6
-8
-10
Ie. COlLECTOR CURRfNT !mAl

-&. I--' ~~

t-- YeE=-IOVdc

I
..........

~

REVERSE TRANSFER ADMITTANCE VlrsUS COLLECTOR CURRENT
0.75

1/"

0

-20 0

K

V ...

300

I. FREQUENCY (IMHz)

so

....

>

V

1.0
0.5

---2

r--- r--

-4

-&.

-6
-8
10
Ie. COLLECTOR CURRENT !mAl

12

14

16

2N3783 thru 2N3785

(continued)

y,.. FORWARD
TRANSFER ADMITTANCE
CHARACTERISTICS

y _. OUTPUT ADMITTANCE
CHARACTERISTICS
erA = 25' Cunless otherwise notedl
OUTPUT ADMITTANCE versus FREQUENCY

erA ~ 25' C.nless otherwise notedl
FORWARD TRANSFErI ADMITTANCE versus FREQUENCY

125

12

I"

0

VeE ~ -IOVde
Ie = -3 mAde

-'" "'" -

V~

'"

5

0

-25

50

II

10

r--.,

70

200

100

1E

r.... t-....

'"

.....

300

SOD

..s

8.0

I

6.0

~

r--""

,/

,.,i

2.0

'".!:'-r700

.L

5
e:
5 4.0

-~.

l'-...

VeE = -IOYde
le=-3mAdc

~~

I"'""

o

1000

50

70

1~2oo M~z

I-- ~

I-"'"

V

5

~

-2

2.

/

I

....... "

-4

.......

.0

'"

""I/.

.......

-14

-

o.5

~ r-....

-10
-12
Ie. COLLECTOR CURRENT (mAl

-16

0

6

--... ~

"

r'\.

~

10

12

14

16

1=lloooM~z
Yc.--IOVdc

-

-boo

---I::.-I/.
I

""-

N

-~.

~

8

r--.......

'\

~

I--

V

OUTPUT ADMITTANCE versus COLLECTOR CURRENT
_

""'"

~

Ie. COLLECTOR CURRENT (mAl

15

V

~

r-boo

/

o
o

1000

5

1,),1000 MHz
r-- VCE = -10 Vde

/

700

YCE=-IOVde

5r-

FORWARD TRANSFER ADMITTANCE versus COLLECTOR CURRENT
30

SOD

1= ~oo MH~

f-

o

15
0

fo-"I-"r"

OUTPUT ADMITTANCE versus COLLECTOR CURRENT
3.0

"V

!/ V- i"-- r--...

0

300

-f-

f. FREQUENCY (MH,)

fORWARD TRANSFER ADMITTANCE versus COLLECTOR CURRENT

I-- VeE ~ -IOVde

V

/'
L.

200

100

f. FREQUENCY (MH,)

90

L

V
V

~

~

I

~

~

Ie. COLLECTOR CURRENT (mAl

2-612

--

-

-

-r--

10
Ie. COLLECTOR CURRENT !mAl

12

14

:-:.Lo
16

-

2N3783 thru 2N3785

(continued)

MAG & MAXIMUM NF versus FREQUENCY

NOISE FIGURE versus SOURCE RESISTANCE
]0

50

4.0

2N3783
~ -]0 Vde
r--- t- VCE
Ic ~ -3 mAde

2N3783
f= 200 MHz

9.0

40

e--

VCE

~

-]0 Vde

8.0

"I'-

I'

3.0

K'

MAG~~

30

4g"og.,

'" "'-

V

:--.

20

11

,/

TYPICAL GAIN
PER FIGURE I

~

50QI

~

6.0

~

~

5.0

'"=>

4.0

~

0::

~

~

li

~ I'-.

iii

;g

1E
~
~

V

)/
NF IRg

Ie ~ -3 mAde,:-------"
Ic~-2mAde0
Ic ~ -I mAde "'-

7.0

~

2.0

--

"-

~
~

li

~~

~

y

3.0

...... V

r---I'-

1.0

10

2.0

1.0

o

50

70

100

200

300

500

700

o

040

]000

50

100

70

f, FREQUENCY I MH,)

1 1-

,.....
20

2N3783
f 200 MHz

\

=

VCE~-IOVde

\

10

~

;
..J

-16

I

i I> r---~J r---

-14

~~

-

'"

-I 0

500

,,

55

V
I1/

I

""
"
150mw",
DISSIPATION

'j / ~ II
\VV / V; I
/
'/

""

-10

-IS

/, ~

-4

2

0
-5.0

400

..

TUNED AND NEUTRALIZED
@ Ic ~ -3mMe

-2 0

~

~

0

..to

I

'\~

0

1lfl

:i!

~ t-~

o

-12

I\.
~

300

CONTOURS OF CURRENT·GAIN - BANDWIDTH PRODUCT - IT

GAIN versus COLLECTOR CURRENT
30

/

200

R" SOURCE RESISTANCE lohmsl

-20

V

~~ P
-2

~r

-4

-6

Ie, COLLECTOR CURRENT ImAl

Ie, COLLECTOR CURRENT ImA)

2-613

2N3783
th,U
2"3785
10

12

14

2N3789

thru

2N3792 (SILICON)

CASEll~.
~
(TO-3)

PNP silicon power transistors for medium-speed
switching and amplifier applications.
Complement
to NPN type 2N3713 thru 2N3716.

Collector connected to case

MAXIMUM RATINGS (TC = 25°C unless otherwise noted)

Rating
Collector-BaSe Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current

Symbol

2N3789
2N3791

2N3790
2N3792

Unit

VCB

60

80

Volts

VCEO

60

80

Volts

VEB

7.. 0

7.0

Volts

IC

10

10

Amp

Collector Current (Peak)

IC

10

10

Amp

Base Current (Continuous)

IB

4.0

4.0

Amp

Power Dissipation

PD

150

150

Watts

iJJC

1.17

1.17

°C!W

Thermal Resistance
Junction Operating and
Storage Temperature Range

T J , Tstg

ELECTRICAL CHARACTERISTICS

(Tc = 25 0 C unless otherwise noted)

Symbol

Characteristic
Collector-Emitter Sustaining Voltage·
(IC = 1100 mAde, IB = 0)
Collector-Emitter Cutoff Cl1rrent
(VCE = 60 Vdc, VBE = -1. 5 Vdc)
(VCE = 80 Vdc, VBE = -1. 5 Vdc)
(VCE = 60 Vdc, VBE = -1. 5 Vdc, TC = 150°C)
(VCE = 80 Vdc, VBE = -1.5 Vdc, TC = 150°C)

llN3789, llN3791
llN3790, 2N3792
llN3789, llN3791

(Ic = 3 Adc, VCE '" II Vdc)
Collector-Emitter Saturation Voltage·
(IC = 4 Adc, IB = 0.4 Adc)
(IC = 5 Adc. IB =-0.5 Adc)
Base-Emitter Saturation Voltage.
(IC = 4 Adc, IB = 0.4 Adc)
(IC = 5 Adc, IB = 0.5 Adc)

Min Max

VCEO(sus)

•

I CEX

2N3789, llN3791
2N3790, llN37911
lEBO

llN3789, llN3790
llN3791, llN3792

hFE

•

llN3789, llN3790
llN3791, llN37911
2N3789, 2N3790

VCE(sat)

•

llN3791, llN37911
llN3789, llN3790

VBE(sat)

2N3791, llN37911

Current Gain - Bandwidth Product
(VCE = 10 Vdc, IC = O. 5 Adc f =1.0 MHz)

60
80

-

llN3790, llN37911

Emitter-Base Cutoff Current
(V EB = 7 Vdc)
DC Current Gain·
(IC = 1 Adc, VCE = II Vdc)

°c

-65 to +200

•

2-614

mAde
1.0
1.0

-

5.0

-

5.0

115
50

90
150

15
30

-

-

5.0
mAdc

-

Vdc
1.0
1.0
Vdc
ll.O

-

1.5

. 4.0

-

fT

·Sweep Test: 1/2 Sine wave cycle @ 60 Hz •

-

Unit
Vdc

MHz

2N3789 thru 2N3792

(continued)

TYPICAL SWITCHING TIMES AND TEST CIRCUIT

-....

1.0

i

~
O. 7

j.
w

~

o. 5

Ums

..............

"f\:,I'\.""r-,.

ill

"~

.L,.~

O. 3

If -

-1,,1-leIl1
Vee
-30V
Te - 25°C

I

O.2
0.1

0.2

-30 V

""- ~

61l
4W

r'..

'r-. r' ......
--;,2.0

140

~

120

0

100

z

~

~
~
~

,f

\.

r5.0

3.0

POWER-TEMPERATURE DERATING CURVE

160
u;

~

~

.....

I
0.5 0.7 1.0
0.3
Ie, COLLECTOR CURRENT lAMP)

~

f = 150 cps, OIlTY CYCLE = 2%

+9V

. . . . r-.

[\..1',

;=

VALUES SHOWN FOR
ic-5A,),,- -1,,-0.5A

6.7ms

:r-:-1

.............

t--.
..............

..............

80

..............

60

...............

40

...............

20

...............
25

50

75
100
Te , CASE TEMPERATURE 1°C)

150

125

200

175

Safe area curves are indicated. Both limits are applicable and must be observed.

ACTIVE-REGION SAFE OPERATING AREAS

2N3789,2N3791

2N3790,2N3792

10

\4 n-

"\.
Det.Sms

i.>.,.\ 1\

\ \

1m.

!
~

5001"

-

2501's

-

.~

L"-.

ySO!,'

"\ 1\\

~

500!,s 2501's DCt.Sm.

k\\ \ \

-'-..

~ \V

1.0

"\

~

.~

t\ 2

<56!'. -

fI'\. \. 1\ \ \'

1m.

~.

"~

~

~

0 ~\hl

&l 0.7

"\. \.

::::l

8 0.5

"""\\.\

Ji

'-..\'

0.3

~

0.2

0.1

o

10

20

30

40

50

60
VeE,

10

70

20

30

40

50

60

70

80

90

COLLECTOR-EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate IC - VCE limits below which the device will not go into secondary
breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid
causing a collector-emitter short. (Duty cycle of the excursion make no significant change in these safe
areas.) To insure operation below the maximum TJ, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2-615

2N3789 thru 2N3792

(continued)

LARGE SIGNAL CHARACTeRISTICS - TYPE 2N3789, 2N3790
(PULSE TEST,pulse width = 200 "'S, duty cycle = 1%)

TRANSCONDUCTANCE

CURRENT GAIN

,

7.0
5.0
3.0

I(

~ 2.0

~
" ""
~

2.0

g

~

CI::

~

~

1.0

~

~

7
0
.§ O.5

--

I

I

II

O.3

-

r-

o.2

o

IA~

3.0
VeE ~ 2 V

ir!

O. I

2V

5.0

/1/

1. 0

VeE

7.0

/

ffi

I

*

10

10

~ 07

.9

TJ ~ -40°C
TJ ~ +25°C

o. 5
O. 3

TJI=+:WCI

O.2

I

O. 1

0.4

0.8
1.2
2.0
1.6
V.., BASE·EMITTER VOlTAGE (VOLTS)

2.4

0.5

2.8

rJ.

1.0

/,

IJI ~I-iol

fI-

TJ :: 't25°C

2.0

!jJllitn
5.0 10 20
50 100 200
I" BASE CURRENT ImA)

500 1000 2000

* Dashed line indicates metered base current minus leBo of the transistor at

INPUT ADMITTANCE

SATURATION REGION
1.0

1000
700
500

/10 IS h,,@2V
/1F IS FORCED GAIN
lIe/l~

v,

300

TJ = +25°C

2V

h

200

0.8

'(/

~

JV

~

~~

0.6

I'-r-,.

ili

t=

/

i

II
10

......
'-r-

2.0
1.0

o

0.4

I

I

r""'"-

Ic =3A

I
le= IA

I

TJ = +25°C

1.2
2.0
1.6
V", BASE,EMITTER VOlTAGE IVOLTS)

0.8

r-- r--

le= SA

TJ= -40°C

Ti=+iw~

I
0.4

0.2

r--

'-r-.
.....

~

7.0
5.0
3.0

175°C.

2.4

2.8

o
o

2-616

2
OVERDRIVE FACTOR (/1o//1rJ

2N3789 thru 2N3792

(continued)

LARGE SIGNAL CHARACTERISTICS - TYPE 2N3791, 2N3792
(PULSE TEST, pulse width - 200 p.sec; duty cycle - 1%)

TRANSCONDUCTANCE

CURRENT GAIN

10

0

7.0

7.0

IP'

5.0

/

3.0

i

2.0

V

§
O.

3.0

I

Ve.~2V

~ 2. 0

iB

/11

B 1. 0

g
~

./

yo

Ve. ~ 2V

5. 0

g

~

~

1.0

~ o. 7

7

j} O. 5

o. 3

I

-r- TJ ~ -40'C

I

i--c... TJ ~ +25'C

I

f--

I

.ld 0.5

V-

0.3

I

I

.,.

-r-TJ~+lWC

o. 2

0.2

o. 1
o

0.4

2.0
0.8
1.2
1.6
V", BASE·EMITTER VOLTAGE (VOLTS)

2.4

O. 1
0.1 0.2

2.8

0.5

..... TJ ~ -40'C
-TJ~

+25'C

""'TJ - +17S'C
11111111 I
1.0 2.0
5.0 10 20
50 100 200
I" BASE CURRENT (mAl

500 1000

Dashed line indicates metered base current minus leBO of the transistor at 175-0.

INPUT ADMITTANCE
1000
700
500

~ =Ve,

fl. IS FORCED GAIN
«e/lol
T, ~ +2S'C

/. ;- ./

200

i
~

,80 (S h,,@2V

2V

300

~

SATURATION REGION
1.0

0.8

// /

1\

~

1/ ./

100
70
50

'" ......... -.,

~

,.

~ 0.6

30
20

-"

i

I

10
7.0
5.0

1\

~

I,

0,4

~

,;:

I

3.0
2.0

II

1.0

'''-1

I

0.4

'-

--

-

I
le=3A

I
Ie

'--r-.- TJ ~ +25'C
__ TJ

II

o

Q.2

TJ ~ -40'C

"- .........

le~SA

~

+ !75'C

I I I
0.8

1.2

1.6

2.0

2.4

2.8

o
o

2

3

OVERDRIVE FACTOR (,801 P"

V", BASE·EMITTER VOLTAGE (VOLTS)

2-617

1A

-

2N3789 thru 2N3792

(continued)
CURRENT GAIN VARIATIONS

200

100

~ 70

ts

:Ii!

50

2N3789, 2N3790

=

TJ

+l7Soc

TJ

+2SoC

YeE-2V

hi

-

:::r: -

-40°C

lie II1.J

FE= I.+lclo

i'
i'

~

~ t--...

B

.1

I

~&
-.....;:::

30

a

~

TJ - +2Soc

~~

f'~"

10
0.01

0.02

0.03

0.05

0.07

0.1

0.2
0.3
0.5
Ie, COLLECTOR CURRENT IAMPI

0.7

1.0

2.0

3.0

5.0

7.0

10

CURRENT GAIN VARIATIONS
500

--------

- 2N3791, 2N3792

300
200

- r--

+175°C

TJ

+2SoC

TJ

TJ - -40°C

a
a
a

..'.

.'

I

YeE-2V

....... ......

h
le-lelO
FE= 1.+lclo

..... t'-~

I I
TJ

...... ........

~

a

+2Soc

~-+175°C

~~

~~

""'r:::~

20

r"'~

I0

0.01

0.02

0.03

0.05

0.07

0.1

0.2
0.3
0.5
Ie. COLLECTOR CURRENT IAMPI

SATURATION VOLTAGES

2.4
~

;

2.0

-

-

Pi AL~ TYP~S
p. -

0.7

1.0

2.0

3.0

5.0

7.0

10

TEMPERATURE COEFFICIENTS
+5.0 ,--,---,---,---.,..--r--,---,---,---,....--,

1

+4.0

TJ - +25 C I I I
le/l, (FORCED GAINI

til 1.6

VeE-2V

~

It

L

~ 1.2

~

-'- 0.8

;

;:

-

r--VIElut)

-

~V..

P.

O.4

-

,
L..-

~~

t-- _VCEI ...tl

~p. -

10

10 ~

.- .......,.

0

0.1

0.2

0.3

0.5 0.7 1.0
2.0 3.0
Ie. COLLECTOR CURRENT (AMPI

5.0 7.0

10

- 3.0!:-O--f::----,-f-::---::':-~4.0::-""'S;';.O:---::6.'::-0--f;;---;t;;-----;!-;;--t1·0
Ie. COLLECTOR CURRENT lAMp)

2-618

2N3796 (SILICON)
2N3797

Silicon N-channel MOS field-effect transistor designed for low-power applications in the audio frequency
range.

MAXIMUM RATINGS

(TA = 2SOC unless otherwise noted)

Symbol

Rating
Drain-Source Voltage

Value

VDS
2N3796
2N3797

Vdc
25
20

Gate-Source Voltage

VGS

Drain Current
Power Dissipation at T A
Derate above 25°C

Unit

ID

= 25°C

PD

Operating Junction Temperature

TJ

storage Temperature Range

Tstg

±30

Vdc

20

mAdc

300
1.7

mW
mW/oC

+200

°c

-65 to +200

°c

HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to the devices while
handling, testing, or in actual operation, by following the procedures outlined below:
1. To evoid the build-up of static charge, the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

2-619

2N3796, 2N3797

(continued)

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Characteristic

Symbol

Drain-Source Breakdown Voltage
(VGS = -4.0 V. 10" 5.0/lA)

2N3796

(VGS" -7.0 V. 10" 5.0 /lA)

2N3797

Zero-Gate- Voltage Drain CUrrent
(Vos" 10 V, Vas = 0)

25

2N3796

0.5

1.5

3.0

2N3797

2.0

2.9

6.0

3.0

4.0

5.0

7.0

7.0

8.3

14

9.0

14

18

-

-

1.0

-

-

1.0

900

1200

1800

2N379?

1500

2300

3000

2N3796

900

2N3797

1500

=+3. 5 V)

2NS796

VGS(off)

Io(on)

2N3797

Drain... Gate Reverse Current·
(VOG " 10 V, Is = 0)

lOGO *

Gate-Reverse Current *
(VGS = -10 V, Vos = 0)

IGSS *
TA

= 1500 C)

Small.. Slgnal, CommoR-Source Forward Transfer Admittance
2N3796
(VOS" 10 V, VGS = O,!" 1.0 kHz)
(Vos

= 10 V,

VGS " 0, f

= 1.0 MHz)

Small... Signal, Common-Source, Output Admittance
2N3796
(VOS" 10 V, VGS = 0, f" 1.0 kHz)

IYla I

Iyos I

2N3797
Small... Signal, Common-SouJ;ce, Input Capacitance
2N3796
(VOS = 10 V, VGS "0, f" 1.0 MHz)

Ciss

2N3797

Small-Signal, CommoQ.-Source, Reverse Transfer Capacitance
(VOS" 10 V, VGS = 0, f = 1.0 MHz)

Noise Figure
(VOS" 10 V, Vas " 0, f" 1.0 kHz, RS " 3 megohms)

Cras

NF

-

Vdc

Vdc

mAde

pAde

pAde
200
11. mhos

-

-

-

... This value of current includes both the FET leakage current as well as the leakage curr~nt
associated with tl;1e test socket and fixture when measured under best attainable conditions.

2-620

Unit

mAde

lOSS

2N3797

= 0,

-

20

= 10 V)

(VGS " -10 V, VOS

MIx

30

2N3796

HOn" Drain CUrrent
(VOS " 10 V, VGS

Typ

25

Gate-Source Voltage Cutoff
(10 = 0.5 /lA, Vos " 10 V)
(IO" 2.0 p,A, VOS

Min

BVOSX

-

-

/J.mhos

12

25

27

60

5.0

7.0

6.0

8.0

0.5

0.8

.3.8

-

pF

pF

dll

2N3796, 2N3797

(continued)

TYPICAL DRAIN CHARACTERISTICS
FIGURE 1 - 2N3796

FIGURE 2 - 2N3797

20

v
/

20
+8

/ V
/I V

18

16

~/ V

14

~

~

/

10

'/

i.E

1/
V

/"

16

+6

Pv

~~

J

14

-

V

+S

Y

12

V

1/

+4

-

--

-

+3

I

+5.0

TA ~ 25'C

::5

~

~ I-'"

-

-

-

+4.0

+3.5

~

--+3.0

i---

+2.5

+2~

-

+1.5

V

/-

+1.0

+2

I

~

+1

/r-'

VGS ~ 0

v

=
O.S
1.0
1.5

8

10

U

M

U

U

vo,. ORAIN-50URCE VOLTAGE (VOLTS)

m n

+o.s

r

VG'~O

'/

VI-""
2

V

V

V ....----

. / r-'

o

IV

TA ~ 2S'C

r-

/

~

18

I-'"

~

'I'
f

12

+7

M

V

/

-0.5

'/

-1.0
-1.5
-2.0

U

10

12

14

16

18

20

Vos. DRAIN-SOURCE VOLTAGE (VOLTSI

COMMON SOURCE TRANSFER CHARACTERISTICS
FIGURE 4 - 2N3797

FIGURE 3 - 2N3796
1111

I

I,

1111
1111

llill I ,

I

vo, ~ 10V

TA~25'C

vo, ~ IOV

II

TA ~ 2S'C

I

I-'"

I--2

-2

-3

-3

-4

-4
0.02 0.03 0.05

0.1

0.2 0.3 O.S
1.0
2.0 3.0
10 • DRAIN CURRENT (rnA)

5.0

10

20

2-621

f...-~
0.02 0.03 O.OS

0.1

0.2 0.3 O.S
1.0
2.0 3.0 S.O
10 • DRAIN CURRENT (mA)

10

20

2N3796, 2N3797

(continued)

FIGURE 5 - FORWARO TRANSFER AOMmANCE

FIGURE 6 - AMPLIFICATION FACTOR

10000

3SO

5000

300

..,,2N3797

. / ~rL

r:::
./

,,/

./

~

I'

"

2N3796

2SO

\ L1

\ \
\

\

\

~

~ 200
z

I

I\.

\

2N3796
ISO

/'

I\.

100
Vos

200

~

10V

VD'~

TA~2S'C

0.1

0.2

0.3

0.5 0.7 1.0
2.0 3.0
ID. ORAIN CURRENT (mAl

o
20

0.1

1kHz

~

0.2 0.3

0.5 0.7 1.0
2.0 3.0
I.. DRAIN CURRENT !mAl

FIGURE 7- OUTPUT AOMmANCE
14

r--

VDS~10V

r---

TA~2S'C
'~I

200

5.0 7.0 10

20

FIGURE 8 - NOISE FIGURE

1000
500

I\r-,
r'-.

,,

,~

5.0 1.0 10

10V

TA~2S'C

SO -

I'Tn

100

\.

,,'""~

,;,

./

\

12

2N3797

\

"'

Vos~

r--

-

TA~2S'C_

'~I

~

10V

V6'~0

:-..

/J

kHz

,

I-

kHz

10

l\

.I" 2N3796 -

~ '/

-.,.!

/

10

\.

V

.\.
I\.

5.0

2.0
1.0

.I

~

./

./

V
0.1

0.2 0.3

0.5 0.7 1.0
2.0 3.0
ID•ORAIN CURRENT (rnA)

5.0 7.0 10

20

0.1

2-622

0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
R,. SOURCE RESISTANCE (meaOOms)

20 30

2N3798, 2N3798A (SILICON)
2N3799,2N3799A

PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
AMPLIFIER
TRANSISTORS

· .. designed for low-level, low-noise amplifier applications.
•

High Collector-Emitter Breakdown VoltagesBVCEO = 60 Vdc (Min) - 2N3798, 2N3799
90 Vdc (Min) - 2N3798A, 2N3799A

•

DC Current Gain - @ IC = 500 IlAdc
hFE = 150-450 - 2N3798, 2N3798A
300-900 - 2N3799. 2N3799A

•

Low Noise Figure NF = 1.5 dB (Max)

@

1.0 kHz and 10 kHz

!
*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

2N3798
2N3799

2N3798A
2N3799A

Unit

VCEO

60

90

Vdc

Collector-Base Voltage

VCB

60

90

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

CoHector Current - Continuous

IC

50

mAde

Total Device Dissipation @TA ., 25°C
Derate above 25°C

Po

0.36
2.06

Watt
W/oC

Total Device Dissipation @lTC =25 0 C
Derate above 250 C

Po

1.2
6.9

Watts

TJ.Tstg

-65 to +200

DC

Operating and Storage Junction

l

. 0.209

g:\;~ OIAll

rnor-

~I
0.110

4
0

wJDc

0.500

j

~DlA

Temperature Range

Pin 1. Emitter

2. Base

THERMAL CHARACTERISTICS

3. Collector

Symbol

Max

Unit

Thermal Resistance. Junction to Case

9JC

0.15

°C/mW

Thermal Resistance, Junction to Ambient

9JA

0.49

°C/mW

Characteristic

DlA

0.050
0.100

-Indicatas JEOEC Registered Data.
0.028

if.04lI

Collector Connected to Case
CASE 22 (1)

(TO-IS)

2-623

2N3798, 2N3798A, 2N3799, 2N3799A (continued)
"ELECTRICAL CHARACTERISTICS ITA" 25°C unless otherwise noted I
Char,acteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

(IC" 10 mAde, IB" 01
Collector-Base Breakdown Voltage

(Ie" 10 MAde, IE = 01

Vde

BVCEO
2N3798,2N3799
2N3798A,2N3799A

60
90

-

--

60
90

-

-

5.0

-

-

-

0.01

.-

-

-

-

20

-

-

-

Vde

BVCBO
2N3798,2N3799
2N3798A,2N3799A

Emitter-Base Breakdown Voltage
(IE = 10MAde, IC = 01

BVEBO

Collector Cutoff Current

-

JLAdc

ICBO

(VCB = 50 Vde, IE = 01
(VCB = 50 Vde, IE" 0, TA" 1500 CI
Emitter Cutoff Current

lEBO

Vde

10

nAdc

(VBE = 4.0 Vde, IC "01
ON CHARACTERISTICS
DC Current Gain(1)

-

hFE

(lC = 1.0 MAde, VCE" 5.0 Vdel

2N3799,2N3799A

75

(lC = 10 MAde, VCE = 5.0 Vdel

2N3798,2N3798A
2N3799,2N3799A

100
225

-

(lC" 100 MAde, VCE = 5.0 Vdel

2N3798,2N3798A
2N3799,2N3799A

150
300

-

IJC" 100 MAde, VCE = 5.0 Vde, T A" -55 0 CI

2N3798,2N3798A
2N3799,2N3799A

75
150

-

-

(IC" 500 MAde, VCE " 5.0 Vdel

2N3798,2N3798A
2N3799,2N3799A

150
300

-

450
900

(IC" 1.0 mAde, VCE = 5.0 Vdel

2N3798,2N3798A
2N3799,2N3799A

150
300

-

--

(IC = 10 mAde, VeE = 5.0 Vdel

2N3798,2N3798A
2N3799,2N3799A

125
250

-

..

-

-

-

0.2

-

-

0.25

-

-

0.7

.-

..

0.8

..

..

0.7

30

-

-

Collector-Emitter Saturation Voltage(1)

IIc = 1.0 mAde, IS = 100MAdei
Base-Emitter Saturation Voltage(1)

-

-

Vde

VCE(,a,1

(IC" 100 MAde, IB= 10 MAdel

-

-

Vde

VSE(,a,1

IIc = 100 MAde, IS = 10 MAdel
(lc" 1.0 mAde, IS" 100 MAdel
Base-Emitter On Voltage
(IC" 100 MAde, VCE = 5.0 Vdel

VSE(onl

Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Produc't(2)

MHz

IT

(lC = 500 MAde, VeE = 5.0 Vde, I = 30 MHzl

100

..

500

Cob

..

..

4.0

pF

Cib

..

..

8.0

pF

(IC = 1.0mAde, VCE = 5.0 Vde, I = 100 MHzl
Output Capacitance

(Vca = 5.0 Vde, IE = 0, I" lookHzl
Input Capacitanci9

(VSE = 0.5 Vde, IC = 0, I = 100 kHzl
I nput Impedance

(Ie = 1.0 mAde, VeE = 10Vde, I" 1.0 kHzl

k ohms

hie

2N3798,2N3798A
2N3799,2N3799A

Voltage Feedback Ratio

3.0
10
h re

-

15
40

..

25

150
300

-

-

600
900

5.0

..

60

..

4.0
2.5

7,0
4.0

..

X 10-4

(IC = 1.0 mAde, VCE = 10 Vde, I = 1.0 kHzl
Small-Signal Current Gain

(IC= 1.0mAde, VCE = 10Vde, 1= 1.0kHzI

Output Admittance

I

..

hie
2N3798,2N3798A
2N3799,2N37g9A
hoe

,lImhos

(IC" 1.0 mAde, VCE = 10Vde, 1= 1.0 kHz I
Noise Figure

NF

dB

lie = 100 MAde, VeE = 10 Vde, RG = 3.0 k ohmsl,

'~'OO"'. "W~"",

Spot
Noise

f

~

1.0 kHz, S.W. = 200 Hz

I" 10 kHz, S.W. " 2.0 kHz

2N3798,2N3798A
2N3799,2N3799A
2N37S8,2N3798A
2N3799,2N3799A
2N3798,2N3798A
2N3799,2N3799A

Broadband Noise-Bandwidth 10 Hz to 15.7 kHz 2N3798,2N3798A
2N3799,2N3799A
·Indicates JEDEC Registered Data.
(1)Pulse Test: Pulse Width :S;300 JlS, Duty Cycle 'S2.0%.
(2}fT is defined as the frequency at which Ihfel extrapolates to unity.

2-624

-

1.5

..

Q.a

3.0
1,5

-

1.0
0.8

2.5
1.5

-

2.5
1.5

3.5
2.5

..

2N3798, 2N3798A, 2N3799, 2N3799A

(continued)

SPOT NOISE FIGURE
(VCE = 10 Vdc, TA = 25°C)

FIGURE 1 -SOURCE RESISTANCE EFFECTS,f= 1.0kHz

FIGURE 2 -SOURCE RESISTANCE EFFECTS. f = 10 Hz

7.0

10

\

5.0

'"u:
w

/

"-

3.0

~

/

:i!
co

'"u:w

"~1"tA
I'N.

0

2.0
1.0

1.0mA

o

I II

100

I

IC = 10pA

00

z

IC = 1.0 rnA
8.0

i"t\
:i!
4.0 \ \
co
\

~

9.0

I

6.0

200

500

00

~

"'"

7.0

\

/

,./

.'\

6.0

'-"

I,,\:

5.0

"-

4.0
3.0
2.0

/1/

100 P

r---

/
10 pA

1.0

o

1.0 k

2.0 k

5.0 k

10 k

20 k

100

50 k 100 k

200

RS.SOURCE RESISTANCE (OHMS)

500

loOk

2.0k

s.Ok

10k

20k

50k lOOk

RS. SOURCE RESISTANCE (OHMS)

FIGURE 3 - FREQUENCY EFFECTS
5.0

\\

4.0

3.0

w

2.0

00

[\.\

/1.0 rnA. 1.0 k!l

~

I

~

10pA.l0k~1

I'\. ~
~
....... r--:: t--...

<3

z

i"'--r-.

1.0

RS=SOURCE RESISTANCE

I

,,~

~
w
'"co

'"
u:

IC = 100pA. RS= 30 kll

\1\

::::::

lbo pA. 3.0 kll
10pA.l00kll

r-

o
10

20

30

50

100

200

300

500

1.0 k

2.0 k 3.0 k

f. FREQUENCY (Hz)

2-625

5.0 k

10 k

20k

30k

50k

100 k

2N3798, 2N3798A, 2N3799, 2N3799A

(continued)

FIGURE 4 - TYPICAL CURRENT GAIN CHARACTERISTICS
500
-'..-2N379l, 2N37lsA

V}E =l.oU
TA=125 0 C

z

;;:
to

300

r-- .... r--

I-

~
a:

=>

'"

'"c

25 0 C
200

~
-55 0 C
100

0.001

0.002

0.005

0.Q1

0.02

0.05

0.1

0.2

0.5

1.0

5.0

2.0

10

IC, COLLECTOR CURRENT (mAde)

1000
r-2N3799,2N3799A
z

VCE = 5.0 Vde
TA = 125 0 C

700

r-- r--..

;;:

to
I-

~ 500

r-.

250 C

a:

a
'"c

ul

~ 300
-55 0 C

200
0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

IC, COLLECTOR CURRENT (mAde)

2-626

0.5

1.0

2.0

5.0

10

2N3800 thru 2N3804,A (SILICON)
2N3805,A,2N3806
thru

2N3810,A, 2N3811,A
2N3812 thru 2N3816,A, 2N3817,A
DUAL PNP SI LICON ANNULAR

TRANSISTORS

. specifically designed for differential amplifier applications.
•

Tight hFE Match: 5%

•

High hFE: to 225 (min)

@

• Low Noise: 1.5 dB (Max)

Ie

@

PNP SILICON
DIFFERENTIAL
AMPLIFIERS

= 10 I'Adc

1.0 kHz and 10 kHz
from - 550 e to +1250 e

•

hFE Match Temperature Tracking:

•

Tight VBE Match: 1.5 mVdc

•

2N3810 JAN, JTX and 2N3811 JAN, JTX Available

'MAXIMUM RATINGS leach sidel
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

60

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

50

mAde

T J, T stg

-65 to +200

°c

Collector Current
Operating and Storage Junction
Temperature Range

Total Device Dissipation

@

T A = 25°C

Derate above 25°C
Metal Can 12N3806 thru 2N3810,A,
2N3811,A

Derate above 2So C
Flat Package 12N3812 thru 2N3816,A,
2N3817,A

Derate above 2SoC

-

2N3800 thru 2N3804.A
2N3805,A

~

MAX

250

360

mW

1.43

2.06

mW/oC

500

600

mW

2.86

mW/oC

250

3.43
250

1.43

2.06

mW/oC

D'195

fIN

~OIA

_J

•J.,

.Io (JII ~1~
0.250

PLANE

mW

Case
655

MAX

IT
DSDD
MIN

-H-m

-

Ca..
654-04

--r~~+·,!.~r'·"

",

-OIOOT.P

020oT.P

".," 'l--otooTP
--.-

,,

'"u::

w

0"'
z

5:0
4.0

\

\

\\

3.0

~

\ \
r\ 1"\

2.0

~~jA
1.0 rnA

o

1III
500

1.0k

7.0

w

6.0

=>

5.0

\

cr

/

'"u::w

"I'N.

200

~

/

\.

1.0

100

I

IC = 10"A

"'0z

"

...

.\.

I,

V

/
100"/.1

"- .......

"\

4.0

./

3.0

-"-

10"A

2.0
1.0

o
2.0k

5.0k

10k

20k

SDk lOOk

RS. SOURCE RESISTANCE (OHMS)

100

200

500

1.0 k

2.0 k

5.0 k

10 k

RS. SOURCE RESISTANCE (OHMS)

2-629

20 k

50k lOOk

2N3800 thru 2N3804,A, 2N3805,A, 2N3806 thru 2N3810,A, 2N3811 ,A,
2N3812thru 2N3816,A, 2N3817,A(continued)

FIGURE 3 - SPOT NOISE FIGURE
FREQUENCY EFFECTS

5.0

r\\
\

4.0

;w

'"'"
;;:
"'w
~

IC" 100 "A, RS" 30 kn

V

,\

/1.0 rnA, 1.0 kll

'\ l\

3.0

I~
I\.
~
2.0

"

0
z

1.0

RS"SOURCE RESISTANCE

IlclE = 110 UC,IT~IJ 250~)

I

I

r-

IO "A, 10 kn

~ ~.i
I" 1:::::, :::::1::::"'I"-

.l100 "A, 3.0 kn
10 "A, 100 kn

r-.::

I

r"-_

o
10

20

30

50

100

200

300

500

1.0 k

2.0 k 3.0 k

5.0 k

10 k

20k

30k

SDk

100 k

f, FREUUENCY (Hz)

FIGURE 4 - TYPICAL CURRENT GAIN CHARACTERISTICS
(TYPES 2N3BOO,2,4,A,6,B,10,A,12,14,16,A)

500

vclJLl
TA"125 0 C

z

;;' 300

r- I"-t--

"'>--

~
'"
8
u

25 0 C

t--

200

"

i
-55 0 C
100
0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

5.0

2.0

10

IC, COLLECTOR CURRENT (rnA)

FIGURE 5 - TYPICAL CURRENT GAIN CHARACTERISTICS
(TYPES 2N3801,3,5,A,7,9,ll,A,13,15,17 ,A)

1000
VCE " 5.0 Vdc
z
;;'

TA"125 0 C

700

~

"'>--

~ 500

r--..

r-..

r-

25 0 C

5'"
u

"

'"

~ 300
-55 0 C

200
0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

IC, COLLECTOR CURRENT (rnA)

2-630

0.5

1.0

2.0

5.0

10

2N3818 (SILICON)

The RF Line
15 W -100 MHz
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

. designed for applications to 150 MHz.

•

High Collector-Emitter Sustaining VoltageVCE(sus) ~ 80 Vdc (Min)

•

Power Output Pout ~ 15 Watts at 100 MHz

•

Power Gain GPE ~ 7.0 dB (Typ) at 100 MHz with 15 Watts RF Power
Output

MAXIMUM RATINGS INote 11
Rating

Svmbol

Value

Unit

Collector-Emitter Voltage

VCES

60

Vde

Collector-Base Voltage

VCB

60

Vde

Emitter-Base Voltage

VEB

4.0

Vde

Ie

2.0

Ade

Base Current - Continuous

IB

1.0

mAde

Total Device Dissipation@Tc '" 25°C
Derate above 25°C

PD

25
167

Watts
mW/oC

TJ.T stg

-65 to +175

°e

Pin

5.0

Watts

Pout

20

Watts

Collector Current - Continuous

Operating and Storage Junction

1--0.135
1-----0215
-U~i~
OIA

Temperature Range
Power Input (Nominal)

Power Output (Nominal)
Note 1.

The maximum ratings as given for de conditions can be exceeded on a pulse

basis. See electrical characteristics.

To convert inches to millimeters multiply by 25.4
All JEDEC dimensions an0notes apply
STYLE 1. All leads isolated from case

CASE 36
TO-60

2-631

2N3818 (continued)

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Sustaining Voltage(l)
(lC = 0.25 Ade, IB = 0)

VCEO(sus)

40

-

-

Vde

Collector-Emitter Sustaining Voltage( 1)
(lC = 0.25 Adc, RBE = 0)

VCES(sus)

80

100

-

Vdc

-

-

Characteristic
OFF CHARACTERISTICS

Collector-Emitter Current
(VCE = 60 Vde, VBE = 0)
(VCE = 50 Vde, VBE = 0, TC

mAde

ICES

-

0.5
1.0

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

ICBO

-

-

1.0

"Ade

Emitter Cutoff Current
(VEB = 4.0 Vdc, IC = 0)

lEBO

-

-

100

"Ade

5.0
5.0

-

= 1750 C)

ON CHARACTERISTICS
DC Current Gain
(I C = 400 mAde, VCE

-

hFE

= 2.0 Vdc)

-

50
-

Collector-Emitter Saturation Voltage
(lc = 1.0 Ade,lB = 250 mAde)

VCE(sat)

-

-

0.5

Vde

Base-Emitter Saturation Voltage
(lC = 1.0 Adc, IB = 250 mAde)

VBE(satl

-

-

2.0

Vde

(lc

= 1.0 Ade, VCE = 2.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(VCE = 2.0 Vdc, IC = 400 mAde, f

Output Capacitance
(VCB = 25 Vde, IE

= 50 MHz)

tr

150

-

-

MHz

Cob

-

-

40

pF

Pin

-

3.0

3.75

Watts

7]

60

70

-

%

= 0, f = 100 kHz)

FUNCTIONAL TEST
Power Input

Efficiency

Test Circuit Figure 5
(Pout = 15 W, f = 100 MHz, VCE
Ic(max) = 1.0 Adc)

= 25 Vdc,

(1 )Pulse Test: Pulse Width 'S10D ,",s, Duty Cycle = 2.0%.

2-632

2N3818

(continued)

FIGURE 2 - OUTPUT CHARACTERISTICS
versus INPUT POWER

FIGURE 1 - OUTPUT POWER versus FREQUENCY

I00

25

1.0

20

,.

;;:

~«

20

~

15

I':

10

~
....
=>

Vcc = 15

0

~

Vr\ \

\\r\

o'? 5.0
Pin =13.0 W

10

20

50

<3

~

100

~

200

=>
0

~

1.0

300

2.0

FIGURE 3 - OUTPUT POWER versus COLLECTOR VOLTAGE

~

3.0

~

4.0

20

~
....
« 15

./

15

~

V

V

'"~

10

I':
=>

/

0

~ 5.0

o'?

o

8

FIGURE 4 - OUTPUT POWER versus INPUT POWER

20

~
....
=>

0.25

'"0

Pin, INPUT POWER (WATTS)

f, FREQUENCY (MHz)

~
....
«

a'"'"

0..

'"

....

0.50
f=100MHz
TC = 25 0C

I':

8

20

~

iii

....=>~

0
'"
....

40

0.75

~
'"
~

iii

.0

r\

=>

~
....

~

Vcc = 25 V

'"~

it

BO

1\

/
o

/

~

'"~

~
....=>

/'

:==>
}

Pin = 2.5 W
f=IOOMHz

10

0

5.0
f=IOOMHz
TC = 25 0C

TCr50C

5.0

10

15

25

20

1.0

30

VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS)

FIGURE 5 - TEST CIRCUIT
L1: 5 Turns#l. AWG, tinned wire 1/4"10, 3/B" long,

tapped 2-3/4 Turns from ground.
L3: 2 Turns #10 AWG, tinned wire, 112"10, 1/4" long.

1

VCC

I

2.7-30 pF
RS =50 Q

t 0r---"'JIk:--~------..,

2.7-30 pF

L1

2.0

3.0

Pin, INPUT POWER (WATTS)

01---+--1

T.U.T.

2-633

L3

d. I .F DlSCAP

4.0

5.0

2N3821 (SILICON)
2N3822
2N3824
N-CHANNEL
JUNCTION
FIELD-EFFECT
TRANSISTORS

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

SYMMETRICAL
(Type A)

.. designed for audio amplifier, chopper and switching applications.

.
..
..
..
..

.
..

Drain and Source Interchangeable
Low Drain-Source Resistance rds(on) ,,;; 250 Ohms (Max) - 2N3824
Low Noise Figure - NF

= 5.0 dB

(Max) - 2N3821, 2N3822

= 6.0 pF (Max)
IGSS = 0.1 nA (Max)
Crss = 3.0 pF (Max)

High AC Input Impedance - Ciss
High DC I nput Resistance Low Transfer Capacitance -

2N3821 JAN and 2N3822 JAN also Available

0.209
0230
OIA

'MAXIMUM RATINGS
Symbol

Value

Unit

Drain-Source Voltage

VOS

50

Vdc

Drain-Gate Voltage

VOG

50

Vdc

Gate-Sou rce Va 1tage

VGS

-50

Vdc

Rating

Drain Current

10

10

mAde

Total Device Dissipation @TA "" 25°C

Po

300
2.0

mW
mW/oC

TJ

175

T stg

-65 to +200

°c
°c

Derate above 25°C
Operating Junction Temperature

Storage Temperature Range

QJEDIAl
0.195
1\1
STYLE 1
PIN 1 SOURCE

1
3

GATE

4

CASE LEAD

tI

r

ih:;o

I

1

DRAIN

m

1
0,500
MIN

_J

~:~i~ DIA

·Indicates JEDEC Registered Data.
0.100

0.028
0,048

To convert im;hes to millimeters multiply by 25.4
All JEO EC dimensions and notes applv

CASE 20

TO-72

2-634

2N3821, 2N3822, 2N3824

*ELECTRICAL CHARACTERISTICS
[

(continued)

ITA ~ 25°C unless otherwise noted)

Characteristic

Symbol

Min

VIBR)GSS

-50

Max

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

-

Vde

IIG ~ -1.0 !lAde, VOS ~ 01
Gate Reverse Current

nAdc

IGSS

IVGS ~ -30 Vdc, VOS ~ D)
IVGS ~ -30 Vde, VOS = 0, T A = 150°C)
Gate-Source Cutoff Voltage

liD = 0.5 nAde, VOS = 15 Vdc)

-

-0.1

-

-100

-

-

-4.0
-6.0

-0.5

-2.0

-1.0

-4.0

Vde

VGSloff)
2N3821
2N3822

Gate-Source Voltage

Vdc

VGS

liD = 50 !lAde, VOS ~ 15 Vde)

2N3821

liD = 200 !lAde, VOS = 15 Vde)

2N3822

Drain Cutoff Current
IVDS ~ 15 Vde, VGS = -8.0 Vde)

IVOS = 15 Vde, VGS = -8.0 Vde, TA = 150°C)

nAde

101off)
2N3824

-

0.1

2N3824

-

100

4500
6500

ON CHARACTERISTICS
Zero-Gate-Voltage Drain Current( 1)

IVOS = 15 Vde, VGS ~ D)

2N3821
2N3822

DYNAMIC CHARACTERISTICS
Forward Transfer Admittance

,umhos

IVfsl

IVOS = 15 Vde, VGS = 0, f = 1.0 kHz)ll)

2N3821
2N3822

1500
3000

IVOS = 15 Vde, VGS ~ 0, f = 100 MHz)

2N3821
2N3822

1500
3000

Output Admittance(l)
IVOS ~ 15 Vde, VGS

-

/-lmhos

Ivosl
~

0, f ~ 1.0 kHz)

2N3821
2N3822

Drain-Source Resistance

-

10
20

-

250

-

6.0

-

3.0
3.0

-

3.0

-

5.0

-

200

Ohms

rdslon)

IVGS = 0,10 = 0, f = 1.0 kHz)

2N3824

I nput Capacitance

IVDS = 15 Vde, VGS

-

Ciss
~

pF

0, f = 1.0 MHz)

IVOS = 15 Vde, VGS = 0, f = 1.0 MHz)

2N3821
2N3822

(VGS = -8.0 Vde, VOS ~ 0, f ~ 1,0 MHz)

2N3824
NF

Average Noise Figure

(VOS = 15 Vde, VGS ~ 0, RS ~ 1.0 megohm,
f = 10Hz, Noise Bandwidth = 5.0 Hz)
Equivalent Input Noise Voltage
(VOS ~ 15 Vde, VGS ~ 0, f ~ 10 Hz,
Noise Bandwidth ~ 5.0 Hz)

pF

Crss

Reverse Transfer Capacitance

2N3821,2N3822

dB

nv/Hzlh

en
2N3821,2N3822

"'Indicates JEDEC Registered Data.
(l)Pulse Test: Pulse Width ~100 ms, Duty Cycle ~10%.

2-635

2N3823 (SILICON)

N-CHANNEL
JUNCTION
FIELD-EFFECT
TRANSISTOR
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

SYMMETRICAL
(Type A)

· .. designed for VHF amplifier and mixer applications.
•

Low Cross·Modulation and Intermodulation Distortion

•

Drain and Source Interchangeable

•

Low 100·MHz Noise Figure - 2.5 dB (Max)

•

Low Transfer and Input CapacitancesCrss =.2.0 pF (Max)
Ciss = 6.0 pF (Max)

•

2N3823 JAN also Available

1
195 OIA 1\

0209
0230

0178

o

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Drain-5ource Voltage

VOS

30

Vde

Drain-Gate Voltage

VOG

30

Vde

Gate-Source Voltage

VGS

-30

Vde

Gate Current

IG

10

mAde

Total Device Dissipation@TA =2SoC
Derate above 25°C

Po

300
2.0

mW
mW/DC

Operating Junction Temperature

TJ

175

DC

~5tD+200

DC

Storage Temperature Range

T stg

tI

OIA

n'
I!..!1.Q

STYLE 1
PIN 1- SOURCE
2.

3.
4.

1

0210

~~f::EAO

0.500
MIN

~:~~; OIA

~
0. 050

1I\

0.100

0.028

0.048
To convert inches to millimetell multiply by 25.4

All JEDEC dimensions and notes apply
CASE 20

TO·72

2-636

2N3823 (continued)

*ELECTRICAL CHARACTERISTICS ITA

= 250 C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

VIBR)GSS

-30

-

Vdc

-

-0.5
-500

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
IIG = -1.0 "Adc, VOS = 0)
Gate Reverse Current
IVGS = -20 Vdc, VOS

nAdc

IGSS

= 0)

= -20 Vdc, VOS = 0, TA =

Gate·Source Cutoff Voltage
110 = 0.5 nAdc, VOS = 15 Vdc)

VGSloff)

-

Gate-Source Voltage
110 = 0.4 mAdc, VOS = 15 Vdc)

VGS

IVGS

1500

C)

-B.O

Vdc

-1.0

-7.5

Vdc

3500
3200

6500

Re(Yis)

-

800

IYosl
Re(yos)

-

35
200

Ciss

-

6.0

pF

Crss

-

2.0

pF

NF

-

2.5

dB

ON CHARACTERISTICS
Zero-Gate-Voltage Orain Current(l)
IVOS = 15 Vdc, VGS =0)
DYNAMIC CHARACTERISTICS
Forward Transfer Admittance
IVOS = 15 Vdc, VGS = 0, f = 1.0 kHz) (1)
(VOS

= 15 Vdc, VGS = 0, f = 200 MHz)

Input Conductance
IVOS = 15 Vdc, VGS

(VOS

= 15 Vdc,

-

= 0, f = 200 MHz)

Output Conductance
IVOS = 15 Vdc, VGS

"mhos
~mhos

= 0, f = 1.0 kHz)(l)
VGS = 0, f = 200 MHz)

I nput Capacitance
IVOS = 15 Vdc, VGS

"mhos

IYfsl

= 0, f = 1.0 MHz)

Reverse Transfer Capacitance
IVOS = 15 Vdc, VGS = 0, f

= 1.0 MHz)

Common-Source Spot Noise Figure
(VOS = 15 Vdc, VGS = 0, RS = 1000 ohms, f = 100 MHz)
-Indicates JEQEC Registered Data.

(1)Pulse Test: Pulse Width = 100 ms, Duty Cycle ~10%.

2-637

2N3838 (SILICON)
1

2

4

5

Case 610-02

NPN

PNP
NPN-PNP complementary pair silicon annular
transistor designed for switching and general purpose
amplifier applications.

Pin Connections, Bottom View

MAXIMUM RATINGS

(each side) (TA

=25°C unless otherwise noted)

Rating

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

600

mAdc

Operating Junction Temperature Range

TJ

-65 to +175

Pc

-65 to +200

°c

Symbol

Collector-Emitter Voltage
(Applicable from 0 to 10 mAdc)

Storage Temperature Range

T

stg

Total Device Dissipation @TA =25° C
Derate above 25°C

PD

Total Device Dissipation @T C = 25° C

PD

Derate above 25° C

One
Side

Both
Sides

0.25

0.35

Watt

1. 67

2.34

mW/oC

0.7

1.4

Watt

4.67

9.34

mW/oC

FIGURE 1 - TURN·ON TIME TEST CIRCUIT
+8.3SV=r-

o

INPUT

-t"t-

-it,l-

INPUTO-t---"lM.-f-I

I I

"To%'\;

Zln=50n
t,~l.Ons

PW~400ns

Dutycycle ~ 2.0%

=

FIGURE 3 - COLLECTOR·EMITTER NONLATCHING
VOLTAGE TEST CIRCUIT

FIGURE 2 - TURN·OFF TIME TEST CIRCUIT
V,,= -1l.4V
Adjust for voltages
shown for point "A".
S.F

Z,"~50n

INPUT~

t, ~ 10 ns
PW~

10 ItS
Duty Cycle ~ Z.O%

+8.8V~---

+10 V

50 n

=

S.O .f
500n
"A"

IN916
~

OUTPUT

90%-~

(Reverse voltage
polarities when
testing the PNP
unit.)

TO

seo

D--------_

E -6.2 V
P

t~Si~~n

C;. ~ 12 pF

I

ISV POINT
"A"

-It I

-Itl-

no%

""""\.
:
'--J--90%

2-638

INPUT~-'WY""I-H

PW0510.s

Dutycycle ~ 2.0%

2N3838

(continued)

ELECTRICAL CHARACTERISTICS

(each side) (TA

=25·C unless otherwise noted)
I

Characteristic

Symbol

Min

Max

40

-

40

-

60

-

5.0

-

-

0.01

-

10

-

10

35

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'(11
(IC = 10 mAde, IB = 0)

BV CEO

Colleetor-Emitter Nonlatehing Voltage (Figure 3) t
(IC(on) = 600 mAde, IB(on) = 120 mAde, IB(Off) = 0)

VCEO(NL)t

Collector-Base Breakdown Voltage
(Ie = 10 /-LAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 /-LAde, IC = 0)

BV EBO

Collector Cutoff Current
(V CE = 50 Vde, V BE (off) = O. 5 Vde)

ICEV

(V CE = 50 Vde, V BE (off) = O. 5 Vde, T A = 150' C)
Emitter Cutoff Current
(V BE = 3.0 Vde, IC = 0)

lEBO

Base Cutoff Current

I BEV

(V CE = 50 Vde, VBE (off) = O. 5 Vdc)

Vde

Vde

Vde

Vde

/-LAde
10
nAde

nAde

ON CHARACTERISTICS
DC Current Gain
(I C = 0.1 mAde, VCE = 10 Vde)

hFE

-

(IC = 1. 0 mAde, VCE = 10 Vde)

50

-

(IC = 10 mAde, V CE = 10 Vde) IU

75

-

(IC = 150 mAde, VCE = 10 Vde) (11

100

300

(IC = 150 mAde, V q.E = 1. 0 Vde)(11

50

-

-

0.4

0.85

1.3

200

-

-

8.0

1.5

9.0

60

300

-

50

-

8.0
10

ns

Collector-Emitter Saturation Voltage (1)
(IC = 150 mAde, IB = 15 mAde)

VCE(sat)

Base-Emitter Saturation Voltage'(1)
(IC = 150 mAde, IB = 15 mAde)

VBE(sat)

Vde

Vde

SMALL 'SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 20 mAde, VCE = 10 Vde, I = 100 MHz)

IT

Output Capacitance
(V CB = 10 Vde, IE = 0, I = 140 kHz)

Cob

Input Impedance
(IC = 1. 0 mAde, VCE = 10 Vde, 1= 1. 0 kHz)

h.
Ie

Small-Signal Current Gain
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)

hie

Output Admittance
(IC = 1. 0 mAde, V CE = 10 Vde, I = 1. 0 kHz)

h

Noise Figure
(IC = 100 /-LAde, VCE = 10 Vde, RS = 1. 0 k ohm, I = 1. 0 kHz)

NF

Delay Time

(V CC = 10 Vde, V BE(off) = 0 Vde,

td

-

t

r

-

40

ns

s

-

250

nS

tl

-

90

ns

Rise Time

IC = 150 mAde, IB1 = 15 mAde, Figure 1)

Storage Time

(V CC = 10 Vde, IC = 150 mAde,

Fall Time

IB1 = IB2 = 15 mAde, Figure 2)

t

oe

MHz

pF

k ohm

/lmho

dB

IIIPulse Test: Pulse Width ~ 300 /-LS, Duty Cycle ~ 2.0%.

The highest value of collector supply voltage that may be safely used with a resistive load switching circuit in which
the collector current is 600 mAdc.

2-639

-

2N3866 (SILICON)
2N3866A

CME~

NPN silicon transistor, designed for amplifier, frequency-multiplier, or oscillator applications in militaryand industrial equipment. Suitable for uses as output, driver, or pre-driver stages in VHF and UHF
equipment.

(TO-39)

Collector connected to cue

MAXIMUM RATINGS

(TA = 25 0 C unless otherwise noted)
Symbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

55

Vdc

Emitter-Sase Voltage

VEB

3.5

Vdc

Collector Current

IC

0.4

Amp

Total Device Dissipation@Tc=250C

Po

5.0
28.6

Watts
mW/oC

T J, T stg

-65 to +200

°c

Rating
Collector-Emitter

Derate above 25 0 C
Operating and Storage Junction
Temperature Range

I

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)

I

Characteristic

Symbol

I

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage
(IC = 5.0 mAdc, RB E = 10 ohms)

BVCER

55

-

-

Vdc

Coliector·Emitter Sustaining Voltage
(IC = 5.0 mAdc, IB = 0)

BVCEO(sus)

30

-

-

Vdc

Coliector·Base Breakdown Voltage
(IE = O,IC = 0.1 mAdc)

BVCBO

55

-

-

Vdc

Emitter·Base Breakdown Voltage
(IE = 0.1 mAdc, IC = 0)

BVEBO

3.5

-

-

Vdc

Collector Cutoff Current
(VCE = 28 Vdc, IB = 0)

ICEO

-

-

20

/JA

Collector Cutoff Current
(VCE = 55 Vdc, VBE

ICEX

-

-

100

/JAdc

5.0
10
25

-

-

-

200
200

-

-

1.0

500
800

800
-

-

-

2.0

3.0

pF

= 1.5 Vdc)

ON CHARACTERISTICS
DC Current Gain
(IC = 0.36 Adc, VCE
(lc = 0.05 Adc, VCE
(IC = 50 mAdc, VCE

-

hFE

= 5.0 Vdcl
= 5.0 Vdcl
= 5.0 Vdc)

2N3866
2N3866A

COllector-Emitter Saturation Voltage
(lC = 100 mAdc, IB = 20 mAdc)

VCE(sat)

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 50mAdc, VCE = 15 Vdc, f = 200 MHz) 2N3866
2N3866A
Output Capacitance
(VCB = 30 Vdc, IE = 0, f

MHz

fT

Cob

-

= 1.0 MHz)

FUNCTIONAL TEST
Power Gain
Power 0 utput
Collector Efficiency

Test Circuit-Figure 1
Pin = 0.1 W, VCE = 28 Vdc
f = 400MHz, TC = 25 0 C

2-640

G pe

10

-

Pout

1.0

-

-

Watts

11

45

-

-

%

dB

2N3866, 2N3866A (continued)

FIGURE 1 - 400 MHz RF AMPLIFIER CIRCUIT FOR POWER-OUTPUT TEST
8·60
l,

0.9·7
RfC

5.611

l" 2 turns No. 18
wire, 1,4"10.
'AI> long.

Capacitor values in pF
unless otherwise
indicated.

Ls: 2%. turns, No. 18 wire

Tuning capacitors
are air variable.

1'" 10, 3/16" long.

FIGURE 2 - POWER OUTPUT versus FREQUENCY
(Class C)

VeE~-28V

FIGURE 4 - PARALLEL INPUT RESISTANCE AND
CAPACITANCE versus FREQUENCY (Class C)

2.5,----,--,--,----,---,---,---,

200

VJ~28V

160

EMITTER GROUNDED DIRECTLY TO CHASSIS

11.01-----+-;:;~o4;;:--+-~..._--+-""""'d--1

R'.~

i 0.91-----+--'--=-+-""""e::---+-""""'d----P-..:-I
.: 0.81-----+--+--+-""'10..---+---+--1
O.7I-----+--+--+---+--""o..l---+--1

40

0.6 \"::100;:----'----;200==--.L-.-3=00;:----;±4OQ;:----:!:50""0----:::600

100

'"

~

200

~

!

400

..1.

,J

f-175MHz ),
.~
EMITTER GROUNDED DIRECTLY TO fHASSIS

----

VeE -28V

1.5

r-

/

1.0

/'

i

/f'

... 0.5

//

/

~

.......-

..--

'IV'
00

10

20

30

40

~

50

15 WAITS
10 WATT_
10
10 WATT
1.5 WAfS

600

500

700

800 0

FIGURE 5 - PARALLEL OUTPUT CAPACITANCE
versus FREQUENCY (Class C)

J

10 .0

2.5

>-

r-.:

r': ~

I. fREQUENCY (MHzl

FIGURE 3 - POWER OUTPUT versus POWER INPUT
(Class C)

i

~

300

f, fREQUENCY (MHz!

2.0 -

40

C,.~

~
§ 120

i

50

--

13.5V_

,

8. 0

r-

0

!.

J

VeE~28V

J

EMITTER GROUNDED DIRECTLY TO CHASSIS -

~

0

~

t-2.0

~t-

1.5 WATTS

l.i WATT
60

70

80

90

100

p,., POWER INPUT (mWI

0

100

200

300

400

500

f. fREQUENCY (MHzl

2-641

600

700

800

2N3866, 2N3866A (continued)

FIGURE 6 - SMAlL-SIGNAL CURRENT GAIN
versus FREQUENCY
4 .....
22

I
i'o

z

20
I8 ,
I6
~ 14

I:

6
4

\

.......

""- ........

8

....1(dB)

.........

,_Ih"l

"

.....

'"

---.

2""
0
2
40 60

Ic= 80mAde

"

I'

2
0

i
1

7.0

I
I

Vca- !~Vde

3

IS

FIGURE 7 - OUTPUT CAPACITANCE
versus COLLECTOR VOLTAGE

I'--I---

R.ih!.)
80

100

200
f. FREQUENCY (MHzI

400

600

o
o

800 1000

10
VCI.

20

IS

25

30

COLLECTOR·BASE VOlTAGE IVde)

FIGURE 8 - fr versus COLLECTOR CURRENT
VCE = 15Vde
0

--~
-,

0

0

o

o

10VdC=:

~

6Vde

F-

3Vdc

20

40

60

100

80

Ic. COLLECTOR CURRENT (mAde)

FIGURE 10 - DC CURRENT GAIN
versus COLLECTOR CURRENT

FIGURE 9 - rb' Co versus COLLECTOR CURRENT
100

5
f=31.8MHZ

20

VCE= 15Vde

5

0

--....

VCE - 3Vde
10Yde

0

-

.---

0

b

I-"

~-

5Vde

/"

15 Vde

0

5

0

10

20

30

40

0

50

Ic. COLLECTOR CURRENT (mAde)

20

40

60

Ic. COLLECTOR CURRENT (mAdel

2-642

80

100

2N3866, 2N3866A (continued)
y PARAMETER VARIATIONS

FIGURE 13 - SMALL·SIGNAL FORWARD TRANSFER
ADMITTANCE versus COLLECTOR CURRENT

FIGURE 11 - SMALL·SIGNAL INPUT ADMITTANCE
versus COLLECTOR CURRENT
100

280

VeE!.
VeE~

80

0

15Vde

1= 200 MHz

~

.~

~

240

10V~ --.!-.

- - -- --

---- -

-

;

--

--

....... ~- f-.
20

40

=

Iii

- -

I--

-

b;.- r -

80

60

~ .:::- 1--

- - --

-80

-120

100

Ie. COLLECTOR CURRENT (mAdel

o

20

60

40

II.

80

Ie. COLLECTOR CURRENT (mAdel

FIGURE 12 - SMALL·SIGNAL REVERSE TRANSFER
ADMITTANCE versus COLLECTOR CURRENT

FIGURE 14 - SMALL·SIGNAL OUTPUT ADMITTANCE
versus COLLECTOR CURRENT
20

5

VeEI=
VeE~

I~

3

-II,.

1= 200 MHz

I

,~

...
VeE 10Vde VeE= 15Vde - - -

\
20

"",.

......

10V~ .!..

15Vdc
200 MHz

----r---

--

~ v~e

-1...

VeEI 10
VeE~ 15Vde - - -

16

-

1= 200 MHz

b~

-foo- l--

2

- - -- -- -'--

b••

I
~

r-_ r-20

1""40

1"""

60

,

-I"
100

80

"".20

Ie. COLLECTOR CURRENT (mAdel

-

I ..
40

60

80

100

Ie. COLLECTOR CURRENT (mAdel

DESIGN NOTE
Figures 11 through 18 show small-signal admittance-parameter data. This data can be used for
Class A amplifier designs.
For Class C power-amplifier designs, the small-signal parameters are not applicable. Figures 4 and
5 give parallel output capacitance and the parallel input resistance and capacitance for Class C poweramplifier operation.
The parallel resistive portion of the collector load impedance for a power amplifier, RL', may be
computed by assuming a peak voltage swing equal to Vcc , and using the expression

R'
L

where P

= RF power output. The computed R

L'

z

Vce
="'2'P

may then be combined with the data in Figures 2 and

3 to comprise complete device impedance data for Class C power amplifier design.

2-643

2N3866, 2N3866A (continued)

Y PARAMETER VARIATIONS
(VeE == 15 Vde, Ie

FIGURE 15 - SMALL·SIGNAL INPUT ADMITTANCE
versus FREQUENCY

=80 mAde, TA =25°C)
FIGURE 17 - SMALL·SIGNAL FORWARD TRANSFER
ADMITTANCE versus FREQUENCY

80

800

0

,./"

~
,;.

"

1-- .........

0,

r-....

\.

\

1\

0

--... ..........

0

-20

-40
50

70

100

200
f, FREQUENCY (MHz)

~,

"

300

600

-200
50

-/V

-

/
_I-"

o

50

70

100

k[/

--

300

............

~ r-

i'-fI,

100

200

600

300

24

l(

20

/

1il 16
i~

V
/

~

./

8

.!

-

r-

600

Y

70

2-644

/

V

/'

V

-I-- ~

o

50

/

100

200
f, FREQUENCY (MHz)

f, FREQUENCY (MHz)

V

/

12

~

g

~

200

~

FIGURE 18 - SMALL·SIGNAL OUTPUT ADMITTANCE
versus FREQUENCY

V

/

70

""

,

-II<.

r--.....

f, FREQUENCY (MHz)

I
I
/

"'~ ....

0

FIGURE 16 - SMALL·SIGNAL REVERSE TRANSFER
ADMITTANCE versus FREQUENCY

/

r'\

0

b;.......

"-

300

600

2N3870 thru 2N3873 (SILICON)
2N3896 thru 2N3899
2N6171 thru 2N6174
Advance InforIllation

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

35 AMPERES RMS
100-600 VOLTS

.. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.
•

Economical for a Wide Range of Uses

•

High Surge Current - ITSM ~ 350 Amp

•

Practical Level Triggering and Holding Characteristics10 mA (Typ) @ TC = 25 0 C

•

Rugged Construction in Either Pressfit, Stud or Isolated
Stud Package

~

O@
~,
,

,

f--

PIN1G ...n
lCATt10GE
CAS~ ANOOE

O~IO
~
MAX

CASE 174
TO-203
2N3870
thru
2N3873

MAXIMUM RATINGS
Rating

Symbol

*Repetltlve Peak Reverse Blocking Voltage \1 ~
(TJ '" -40 to +1000C)

Value

Unit
Volts

VDRM

1/2 Sine Wave, 50 to 400 Hz, Gate Open

2N3870, 2N3896. 2N6171
2N3871. 2N3897. 2N6172

2N3872, 2N3898, 2N6173

*Non.::p:~~~;e2:::9::e~:174

-----+---:-:---+-----+--:-v,-o,-'' ---l

Blocking Voltage
5.0 ms)

(t:5.

PIN 1 GATE
2CATIIOOE
SllJG,ANOOE

2N3870. 2N3896, 2N6171

2N3871, 2N3897. 2N617:1
2N3872, 2N3898. 2N6173
2N3873, 2N3899, 2N6174
* Forward Current AVG
(T C
-40 to +65 0 C)
{+85 0 CI

Amp

"Peak Surge Current

Amp

0=

(One cycle, 60 Hz) (TC '" +650 C)

Circuit Fusing Considerations
tTJ ~-40to+l00oCI
(t '" 1.0 to 8.3 msJ

CASE 175
2N3896
thru
2N3899

·Peak Gate Power

Watts

"Average Gate Power

Watt

·Peak Forward Gate Current
Amp
Peak Gate V O l t a g e - - - - - - - - - - + - - = - - + - - = - - - + - - - c c
v-,o,-,,---1
"Operating Junction Temperature
Range

~

"Storage Temperature Range

D.

II!III!IIIIIII
in. lb.

Stud Torque 2N3896 thru 2N3899
2N6171 thru 2N6174

'THERMAL CHARACTERISTICS
Characteristic

Unit

Thermal Resistance, Junction to Case
2N3870 thru 2N3873. 2N3896 thru 2N3899
2N6171 thru 2N6174
*Indicates JEDEC Registered Data.

CASE 235

(1) Ratings apply for zero or negative gate voltage. Devices shall not have a pOsitive bias
applied to the gate concurrently with a negative potential on the anode. Devices should
not be tested with a constant current source for forward or reverse blocking capability
such that the voltage applied exceeds the rated blocking voltage.

2-645

2N6171
thru
2N6174

2N3870 thru 2N3873, 2N3896 thru 2N3899, 2N6171 thru 2N6174 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

* Peak Forward Blocking Voltage
(TJ = 100oC)
2N3870,2N3896,2N6171
2N3871,2N3B97,2N6172
2N3872,2N3898,2N6173
2N3873,2N3899,2N6174
'If

Typ

Min

Max

Unit
Volts

VORM

-

100
200
400
600

Peak Forward Blocking Current

-

-

1.0
1.0
1.0
1.0

2.0
2.5
3.0
4.0

2.0
2.5
3.0
4.0

rnA

IRRM

-

"Forward "On" Voltage
(lTM = 69 A Peak)
*TC - -40o C
TC = 250 C

Gate Trigger Voltage, Continuous de

-

1.0
1.0
1.0
1.0

VTM

-

1.5

1.85

Volts

IGT

-

-

80
40

rnA

10

Volts

VGT

*TC = _4Oo C
TC = 250 C

(Anode Voltage = 12 V, RL = 24 n)
(Anode Voltage = Rated YOM,
RL = 100 n, T J = 100oC)

rnA

-

... Peak Reverse Blocking Current
(Rated VRRM,with gate open, TJ = 100oC)
2N3870,2N3896,2N6171
2N3871,2N3897,2N6172
2N3872, 2N3898, 2N6173
2N3873, 2N3899, 2N6174

(Anode Voltage = 12 V, RL = 24 n)

-

IORM

(Rated VORM, with gate open, TJ = looo C)
2N3870,2N3896,2N6171
2N3871,2N3897,2N6172
2N3872,2N3898,2N6173
2N3873, 2N3899, 2N6114

Gate Trigger Current, Continuous de

-

-

-

Holding Current
"TC - -40°C
(Anode Voltage = 12 V, Gate Open)
TC = 250 C
RS = 500hrns)
Peak Initiating OnoState Current = 200 mA

IH

*Turn-On Time (td + t r )
(lTM = 41 Adc, IGT =2oomAdc V = rated VORM, RS= 2500hms.
Rise Time = 0.05 p.s, Pulse Width = 10 (..Is)

ton

Turn·Off Time
'(lTM = lOA, IR = lOA)
(lTM = 10 A, IR = 10 A, TJ = 100o C)

0.8

3.0
1.6

-

-

10

90
50

rnA

-

-

-

1.5

mA

-

-

-

15
25

-

-

50

-

p.s

toff

Forward Voltage Application Rate
(TJ = l00o C)

dv/dt

V/p.s

*'ndicates JEDEC Registered Data.

FIGURE 2 - POWER DISSIPATION

FIGURE 1 - CURRENT DERATING
100

90

~'"'
",,,,""

"'w

80
;,:'"
0:::>
~I~

...

... " ,
:;;w

i~
xl-

Types 2N6171 thru 2N6174 must be derated
an additional 10%. For example, in Figure 1,

~~

w

5w-

50

!'-

the max

.30°_
60°_

70

r.

I

i\ ~"'

I"I""'"

60

I50

o

5.0

~
I-

10

15

~900

20

...
'"w

I

~f--

;,:
~

-

......'<'""'de

1-,1800

25

30

40

~

I~" CONDUCTION ANGLE-

,-1200

:;;

U

de

Conduction) is 700 C.

a derating of 30 0 C. These types must be
0 C; therefore, the allowable Te (max)

derated 33
~ ~ ~70C.
'\ ~

...
I-

Te at 20 A (1800

30

w

...'"
...>

~

20

:;

"

35

~
40

InAV), AVERAGE ON·STATE CURRENT (AMP)

'---t---t--f10

15

.=

CONDUCTION ANGLE

20

InAV), AVERAGE ON·STATE CURRENT (AMP)

2-646

40

2N3883 (GERMANIUM)

Medium-current, germanium PNPhigh-speed switch..;.
ing transistor_
CASE 31
(TO-5)

Collector connected to case

MAXIMUM RATINGS

(TA

=25°C unless otherwise noted)

Sym"bol

Rating

Value

Units

Collector-Base Voltage

VCB

25

Vdc

Collector-Emitter Voltage

VCEO

15

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector Current (Continuous)

IC

300

mAdc

Junction Temperature

TJ

100

°C

Storage Temperature

Tste:

-65 to +100

°C

Device Dissipation @ 25°C Case Temperature
(Derate 10 mW/oC above 25°C)

PD

750

mW

Device Dissipation @ 25°C Ambient
(Derate 4 m W/0 C)

PD

300

mW

COLLECTOR LATCH-UP VOLTAGE AND TEST CIRCUIT
250

200

1\,

ADJUST VII for +0.5 Vat point A
ADJUST base puI$e for 5 ~ widIb
ADJUST coNectat pulse for duly CJCIe ~ 5"

1\

\

80

TO OSCIll.OSCOP£

\

50

o
o

10

lATCII-UP TEST
LOAD LINE

\

HP121&

-5~
t..t.<2O ..
I\.

15

\

510

POWERSUP-PlY
A

100

51

20

25

30

Veo. COUECTOR.fMITTER VOlTAGE MllTS)

2-647

2N3883

(continued)

ELECTRICAL CHARACTERISTICS (TA

~ 25°C unless otherwise noted)

Symbol

Characteristic
Col1ector-Base Breakdown Voltage
(IC = lOO/olAdc. IE '" 0)

BV CBO

Collector-Emitter Breakaown Voltage
= 0)
(IC = lOmAdc,

BVCEO

Emitter-Base Breakdown Voltage
(IE = lOO~Ade. IC = 0)

BV EBO

Latch- Up Voltage

LVCEX

ls

Collector-Emitter Leakage Current
(VCE = 15 Vdc, VEB = 0)

ICES

Base Cutoff Current
(VCE = 15 Vdc, VEB = 0)

IB

DC Current Gain
(IC = 20C mAde, VCE = 1. 0 Vdc)

hFE

Collector- Emitter Saturation Voltage
(IC = 200 mAde, IB = 40 mAde

VCE(sat)

Base-Emitter Voltage
(IC =200 mAde, IB = 40 mAdc)

VBE

Output CapaCitance
(V CB = 10 Vdc, IE = 0, f

Cob

= 100 kHz)

Input CapaCitance
(VBE = 1 Vdc, IC = 0, f = 100 kHz)

fT

Delay Time

td

Rise Time

t

Storage Time

ts
,

Unit

Max

25

-

-

15

-

-

3,0
20

-

-

-

-

100

-

-

100

30

-

-

Vdc
Vdc
Vdc
Vdc
/LAde
~Ade

Vde

-

0.35

0,4

0.65

0.9

-

4.5

8.0

-

10

25

100

300

-

8.0

15

ns

28

40

ns

40

70

ns

28

40

ns

-

r

tf

-

Typ

0.5
Vdc

Cib

Current-Gain - Bandwidth Product
(V CE = 10 Vdc, IC = 40 mAde, f = 100 MHz)

Fall Time

Min

pF

pF

MHz

STORAGE TIME VARIATIONS

,"

'T

2.5

II, = 112

lei {Jo«

I"

...... 1""

,.,...... V

""

,,/

'I'

5

1.0 5

"'"

-10

/
~

i'--

-20

/

V

,,/

-so

I•• BASE CURRENT (mAdel

10
1"11,,. CIRCUIT DtlIV£ RATIO

2-648

/'

2N3883

(continued)

SWITCHING TIME TEST CIRCUIT

_--'W_-.----_
50

-IO.tY

Scope t. ,,.; 5 "S
Scope K,N ~ 100 KI}
Scope C'N ,.; 10 pF

250

GENERATOR

z... = 501}

50

Ie = 200mA

250

INPUT PULSE I, < 5ns

I" =40mA
In=40mA
-lOY

TYPICAL RISE AND FALL TIME BEHAVIOR
60

TOTAL CONTROL CHARGE
3000

L=~loJ
TJ = 25°C

50

fJF=5

\

/

2000 _

-

I~IOoo

\

/

TJ=25°C

V

~=IO

-I.

/

~ 700

\

~
~
8

'\..

r--.

20 10

20

I,and!,

~

30

,/'

~

.........V
- 70

50

300

/'
LV'

.,........, . /

&200

200

100

/'

V

500

300

100 1.0

2.0

Ie. COLLECTOR CURRENT ImAl

- 3.0

5.0

- 7.0

10

20

30

I•• BASE CURRENT (mAl

BASE-EMITTER VOLTAGE
COLLECTOR-EMITTER SATURATION VOLTAGES versus BASE CURRENT

versus COI:LECTOR CURRENT
-0.8

-1.0

'-0.8

\

~-O.&

\
\

~

\

~

\

!'S

~-0.4

r--...

~

"

:P

-0.2

o

-0.1

I

~=IO
ji!-0.7 - I,

~

8.

T~ =125° J

TJ = 25°C

~
g

"- ......

Ie = -2OOmA r-

I~

r-....
le=-lOmA

-0.5 0.7

1.0

II

~

!:j-O.6

lOOmA-

Tiiit
IIII

-0.2

I

2.0
-5.0
I•• BASE CURRENT ImAll

7.0

10

2-649

20

50

I

~

V

~-O. 5

J

-0.4

-

1/
30 50 70 100
Ie. COllECTOR CURRENT ImAl

300

2N3883

(continued)

TEMPERATURE COEFFICIENTS

NORMALIZED CURRENT GAIN CHARACTERISTICS

+2.0

2.0
I-

Ie

T = 10
'1

1+25'~ TO +l~'C)

8vc for Vet'Nt)

f.I--'" I---"

Ve,= -I VOLT

(+25'C TO +lOO'C)

-8vo l.rV", ...)

-

.....

.......

-

~

./

-100

-250

-200

-150

-300

0.1 10

200

1
I

I
i

~

50

30

T.'

20

......

30
50
70
Ie, COllECTOR CURRENT

200

-100

300

(111M

:--,
Clio

10

.......

I

..........

.....

r--..
~

'/y
-:-- TJ +55'C
TIllESHOlD
\'OlTAIlE .... ~ CImIt. I... is defined as base ,.-.1
current with both juncti.......rse r--biased. Ie is always less than III for VOl >
J
'/yo !VOl is off condition base bias, V, is base I - valllp at ~resllold lof conduction.l
I--

lea"".

~ r-...

C.. -

\

f-

............

"

:\

J

20

TJ=-55'C

5

+85'~

Vet = -15V

100

£l

J

f"o;; f-

JUNCTION CAPACITANCE versus REVERSE VOLTAGE

LEAKAGE CHARACTERISTICS COMMON EMITTER

J.

-

V

Ie. COllECTOR CURRENT (mAl,

300

.....

t--

....... 1---"

( 55'C TO +25'C) _

L

T5:
TJ=+25'C

( 55'1 TO +25'C)

-3.0
-50

f-"

TJ=+25'C '.
10
-0.25

I
0.5

I

I
1.0

1.5
Voo. BASE·EMmER RMRSl BIAS MllTSl

2.0

20.4 0.5

0.7

1.0

2N3896 thru2N38 99 (SILICON)
For Specifications, See 2N3870 Data

2-650

2.0
5.0
REVERSE BIAS !VOLTSl

7.0

10

20

2N3902 NPN (SILICON)
2N5157

3.5 AMPERE
HIGH VOLTAGE NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON

. designed for use in high·voltage inverters, converters, switching
regulators and line operated amplifiers.

400 and 500 VOLTS
100 WATTS

•

High Collector· Emitter Voltage - VCEX = 700 Vdc

•

Excellent DC Current Gain hFE = 10 (Min) @ IC = 2.5 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max).@ IC = 1.0 Adc

*MAXIMUM RATINGS
Rating

Symbol

2N3902

Collector-Emitter Voltage

VCEO

400

Collector-Emitter Voltage

VCEX

Emitter-Base Voltage

5.0

@

T C = 75°C

Operating Junction Temperature Range

Storage Temperature Range

I

Vdc

I

Vdc
6.0

3.5

IC

Base Current
Total Device Dissipation
Derate above 75°C

Unit

500

700

VEe

Collector Current - Continuous

I 2N5157

Vdc
Adc

IS

2.0

Adc

PD

100
1.33

Watts

TJ

-65 to +150

°c

T stg

-65 to +200

°c

I

Max

Unit

0.75

°C/W

W/oC

Q,1

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

8JC

J

·Indicates JEDEC Registered Data
0.135
MAX

100

.

;:;; 80
tt-

lO
z

0

60

i5 40

=

~

ill

~!~1

I

.I...--

FIGURE 1-POWER DERATING

"

~,~.:~.~
t

100

120

TC, CASE TEMPERATURE IOC)

140

'"

To convert inches to millimeters multiplv by 25.4
All JEOEC dimensions and notes applV

160

2-651

Collector connected to case
CASE 11

TO·3

2N3902, 2N5157 (continued)

"ELECTRICAL CHARACTERISTICS IT C " 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

325
400

-

500

-

0.25

-

0.25

-

-

2.5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC == 100 mAde, IS =: 0) (See Figure 12)

Vdc

VCEO(,u,)
2N3902
2N5157

Collector-Emitter Breakdown Voitage

BVCER

(Ie'" 3.5 Adc, RBE '" 10 Ohms) (See Figure 12)

Vdc

2N5157

Collector Cutoff Current

mAde

ICED

(VCE "400 Vdc, IB" 0)

2N3902

(VCE "500 Vdc, IB" 0)

2N5157

Collector Cutoff Current

mAde

ICEX

(VCE " 700 Vdc, VEB(off) = 1.5 Vdcl
(VCE" 400 Vdc, VEB(off) = 1.5 Vdc, TC = 125°C)

2N3902
2N5157

-

0.5

Both Types

-

0.5

Emitter Cutoff Current

mAde

lEBO

(VBE = 5.0 Vdc, I C = 0)

2N3902

-

5.0

(VBE ·6.0 Vdc, IC = 0).

2N5157

-

5.0

ON CHARACTERISTlCS(l)
DC Current Gain

-

hFE

(IC = 1.0 Adc, VCE = 5.0 Vdcl

2N3902,2N5157

(IC = 2.5 Adc, VCE = 5.0 Vdc)

2N3902,2N5157

10

-

2N5157

10

.-

(Ie'" 1.0 Adc, VeE:= 5.0 Vdc, TC:= -55°C)

30

Collector-Emitter Saturation Voltage

90

Vdc

VCE(sat)

II C = 1.0 Adc, I B = 0.1 Adcl

2N3902,2N5157

-

0.8

(IC" 2.5 Ado, IB = 0.5 Adcl

2N3902

-

2.5

IIc = 3.5 Adc, IB" 0.7 Adc)

2N5157

-

2.5
1.5
2.0
2.0

Base-Emitter Saturation Voltage

Vdc

VBE(sat)

IIC" 1.0 Adc, IB = 0.1 Adc)

2N3902,2N5157

IIC" 2.5 Adc, IB = 0.5 Adc)

2N3902

-

IIc = 3.5 Adc, IS = 0.7 Adcl

2N5157

-

DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product

MH,

IT

(IC = 0.2 Adc, VCE" 10 Vdcl

2N3902

2.8

(IC = 0.2 Adc, VCE" 12 Vdcl

2N5157

2.8

--

-

150

Output Capacitance

Cob

(VCB" 20 Vdc, IE = 0, I = 1.0 MH,I

pF

2N5157
--'-----.

SWITCHING CHARACTERISTICS
Turn-On Time

(VCC = 125 Vdc, IC =1.0 Adc, ISl =0.1 Adcl
Turn-Off Time
(Vee::: 125 Vdc, Ie::: 1.0 Adc, 181

:=

0.1 Adc, 182:= 0.5 Adcl

ton

-

0.8

toft

-

1.7

"'
"'

2N5157
2N5157

*Indlcates JEDEC Registered Data
(1 )Pulse Test: Pulse WidthS 300 j.1s, Duty Cycle!:: 2.0%.

FIGURE 3 - TURN-ON TIME

FIGURE 2-SWITCHING TIMES TEST CIRCUIT
1.0

'--t~
iBl"IOOmA
I"--L-,

"'500 rnA

f-31-- -T-V~B--

__ L_ --..

50,us

~r@ 0CCI~ \15 JdC

'r-..,.

i'
1.0

IB2"'RB'-~""500rnA}

______ ~ _____ 1_

-

-

o. 7

INPUT CU RRENT WAVEFORM

]

0.5

'A

w

"

;::

/

0.3

,

r-1td I@ IV~~("ff) ~ 5.0 Vdc

0.1

"-

JL JJ

J I II

O. I
0.05
5.0% Duty Cycle
Ir'" 100 ns

ICIIB~lO

TJ"'25 0C

I

0.1

i'.
...........

0.1

0.3

0.5

r-

1.0

IC, COLLECTOR CURRENT (AMPI

"For 2N3902 - change VBB to 5.0 V.

2-652

1.0

3.0

5.0

2N3902, 2N5157 (continued)

FIGURE 4 - THERMAL RESPONSE

\.

"

~ ")..
-c"S: ~

~5

'JC(') rI') BJC
OJC = OJ50CIW Max
0

.--r 0.1

-\..

-'\."'

0.05
0.01

\.

om

OOJ

0.1

0.05

0.01

0.1

pFJ1JL

I I I

0.3

1.0

0.5

1.0

3.0

I I I IIII

I

II III

I

5.0
1,

t~j

f::

TJ(pk)- Te = P(pk) 'Jet')

SINGLE PULSE
0.01

=f-

o CURVES APPLY FOR POWERf::
PULSETRAIN SHOWN
IIREAOTIMEATl1

0.1

10

I-

DUTY CYCLE, D = 111'1

20

30

100

50

100

300

500

1000

2000

TIME !msl

FIGURE 5 -ACTIVE-REGION SAFE-OPERATING AREA

0
TJ

5.0

c::

'"

~

2.0

i

I

1.0

B
oc

150°C

I

o
B

- -

,

J

..

c~

"[\.1.0

- - - Second Breakdown Limit

fm~ ~Ims

.. . - ... =- Bonding Wire limit
_
'"
0.5 - - - - - - Thermal Limil@Tc=75 0 C
~
Curves Apply Below Rated BVCEO(sus)
ms
0.2

de ' \

"-

--I--

AN-415)

1N3902 '

2N5i57 -

om
10

5.0

20

50

100

The data of Figure 5 is based on T J(pk) = 150°C; T C is variable
depending on conditions. Pulse curves are valid for duty cycles of

10% provided T J{pkl...s;; 150°C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
lass than the 1imitations imposed by secondary breakdown. (See

0. 1

'"~O.05
0.02

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE fimits of the transistor that
must be observed for reliable operation; I.e., the transistor must not
be subjected to greater dissipation than the curves indicate.

ri-

200

500

VeE. CDLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 -' TURN-OFF TIME

5. 0
TJ

lellBI 10- leliB = 2.0- -

25 0e

--

2,0

L0
5

02

's

.......

--

"'125~
"

-

2000
1000

I

~+

'"- +---

III

._-

f-----+
-+~ 500
-f--

;::: 300

~

200

r-- :::--

- - - c--

;3
cS 100 1----=--

...... r-./

iJ =12~O~

C;b

~
~

tf@Vee=

0. 1

0.05
0,05

FIGURE 7 - CAPACITANCE
3000

f---- f--

50 1--'

--

"""':Ob

30

0.1

02

0.5

1.0

2.0

1.0

5.0

2.0

3.0

5.0

10

20

30

VR, REVERSE VOLTAGE (VOLTS)

Ie, eOLLECTOR eu RRENT (AMP)

2--653

50

100

2N3902, 2N5157 (continued)

FIGURE 9 -"ON" VOLTAGES

FIGURE B - DC CURRENT GAIN

2. 0

100
TJ=1500C

0

""-....

50

'\

z

;;:

'"

I-

i,...--"'"

0

~

=>
'-'
'-'

-I

./

20

10

~o

= 5.0 Vdc

~
w

I~

....... ~

.........- V

"

~

~ VCE

,.... 25°C

t5

"'''

,.... -55°C

7. 0

.JVCE("t@IC/IB= 10
1":""'1

1. 2

VBE(sat) @IC/IB= 10

'"
~ o.8
o

~

TJ 150°C

0.2

0.1

0.3

1.0

0.5

2.0

3.0

:>

I.?- ~

0.05

0.1

20

0

~
8

;!

5.0

~ +2.0
~ +1.5

V

:=125~C

-

I-

i:5

100

'"=>'-'

3.0

+2.5

500 ==TJ 150°C

'"

i ly/18 ~ 5

2.0

FIGURE II-TEMPERATURE COEFFICIENTS

FIGURE 10 - COLLECTOR CUT-OFF REGION
1000

50

1.0

0.5

IC, COLLECTOR CURRENT (AMP)

IC, COLLECTOR. CURRENT (AMP)

1
~

0.3

1/

I

VICE(Sr tl
0.2

I
II

J
1.1

0.4

5.0

~'- I.---

J

>

",1\'1

I

V

o

5.0
0.05

200

I'

TJ = 25°C
1. 6

==

i=1000C

-

-75°C

I I lJlJ.--8V FOR VCE(sat)'ff
APPLIES FOR IcllB 

'-'

'"
0

~

"""

VCEO(s"s) IS ACCEPTABLE WHEN l - - ~
T GE @IC=100mA

200

I- VCE;> RATED

0

--II

JcJr-:L1Z

f-f-- f-- VIERI)s
WHEN IVCEt5~0 V@IC=3.5A

..s

~

k_

'-'

;! 100

o
o

vr i

2N3902-

I

2N5157

I

I

J\.lBLov

200

300

400

1.0

2-654

-:

2~5;I7 ~~IY

I

0

,

y

III---~---o

500 TEST #2 For 2N5157 Only
VBB = 0
VBB
RB = 10
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
RC = 15
L = 10 mH
100

I

0

o

L.o

100

200

300

400

500

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

2N3903 (SILICON)
2N3904

NPN silicon annular transistors, designed for general - purpose switching and amplifier applications,
features one-piece, injection-molded plastic package
for high reliabilitv. The 2N3903 and 2N3904 are complementary with PNP types 2N3905 and 2N3906, respectively .

(TO-92)

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

200

mAdc

PD

350

mW
mW/oC

T J' T stg

2.73
-55 to +150

Symbol

Max

Unit

9JA

0.357

°C/mW

Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ T A

= 25°C

Derate above 25°C
Operating and Storage Junction
Temperature Range

°c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to
Ambierit

2-655

2N3903, 2N3904

(continued)

ELECTRICAL CHARACTERISTICS (T A

I

= 25°C unless otherwise noted)

Fig. No.

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
Uc • 10 /lAde, IE • 0)

BVCBO

Collector-Emitter Breakdown Voltage.
Uc·I.0mAde,10 '0)

BVCEO•

Emitter-Base 8reakdawn Voltage
(~ • 10 1IAdc, IC • 0)

Collector Cucoff Current
(VCE =30 Vek:, VEO(off)

BVEBO

Vde
60
Vde
40
6.0

10L

ON CHARACTERISTICS
DC Current Gain.
(Ie = 0.1 mAde, VCE • 1.0 Vde)

IS

hFE

2N3903
3N3904

.

~O

-

nAdc

50

-

(Ie • 1. 0 mAde, VCE • 1.0 Vde)

2N3903
2N3904

20
40
35'
70

(lC = 10 mAde, VCE = 1.0 Vde)

2N3903
2N3904

50
100

Uc ·50 mAde, VCE = 1.0 Vde)

2N3903
2NS904

SO
60

2N3903
2N3904

15
30

-

-

0.2

(Ie

= 100 mAde,

VCE = 1.0 Vde)

Collector-Emitter Saturation Voltage.
Uc =10 mAde, 1a • 1.0 mAde)
(Ie = 50 mAde, 10 ·5.0 mAde)

16, 17

Base-Emitter Saturation Voltage(Ie • 10 mAde, 10

17

= I. 0 mAde)

VCE(sat)·

VSE(sat)·

1a • 5.0 mAde)

(Ie • 50 mAde,

Vde
nAde

IeEX

=3.0 Vek:)

Base Cutoff Current
(VCE • SO Vde, VEO(off) • 3.0 Vde)

-

ISO
300

-

Vde

-

0.3

0.65

0.85

-

0.95

250
300

-

Vek:

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Ba.ncMtdth Product
(Ie • 10 mAde, VCE ·30 Vde, f · 100 MHz)
Capacitance
(VCO ' ~.O Vde, ~ = 0, f

Outp.1t

3

= 100kHz)

Input Capacitance

(IC

= 1.0 mAde,

VCE = 10 Vde, f

4.0

-

C'b

13

=1.0 kHz)

O.~

2N3904

Voltage Feedback Ratto
(Ie • 1.0 mAde, VCE ·IOVdc, f = 1.0 kHz)

14

Small-Signal Current Gain
(Ie = 1.0mAek:, VCE ' 10Vde, f= 1.0 kHz)
OutPlt Admittance
(lC 1.0 mAde, VCE • 10 Vde, f = 1.0 kHz)

=

Noise Figure
(lc • 100 /lAde, VCE

1·10 Hz

'0

1~.

=~.O Vde,

11

'1.

12

hoe

2N3903
2N3904

9, 10
HS • 1.0 k ohms,

7 kHz)

1.0

8.0
10

0.1
0.5

5.0
8.0

50
100

200
400

1.0

40

--

6.0
5.0

X 10-4

hr.

2N3903
2N3904

pF
8.0
k ohms

h,.

2N3903

MHz

pF

COb

3

(VOE' O.~ Vde, IC .0, f · 100 kHz)

Inpu.t Impedance

!.r

2N3903
2N3904

NF

2N3903
2N3904

...,dO

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

Storage Time
Fall Time

I,

(VCC ' 3.0 Vde, VOE(offi = 0.5 Vde,
IC • 10 mAde, 101 ' 1.0 mAde)
2NS903
2N3904

(VCC =3.0Vek:, IC = 10mAde,

101 .102 = 1.0 mAde)

• Pulse Test: Pulse Width .. 300",., Duty Cycle

1.0ns

2, 7

'.

2, 8

t

35

ns

3~

.s

175
200

.s

50

n.

FIGURE 2 - STORAGE AND FALL TIME EQUIVALENT TEST CIRCUIT
10<1, < SOO!LS~ I, ~+109V

300ns~
I+DUTY CYCLE = 2%ff+lo.6 V

<

-

~,

'<-

=2.0%.

FIGURE 1- DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT

-O.SV

~

I, 5, 6

oon~-~:E

C

IN916
9.1 V -I I- < to ns

"Total shunt capacitance of test jig and connectors

2-656

2N3903, 2N3904

(continued)

-

TRANSIENT CHARACTERISTICS
T J = 25°C
·--TJ = 125°C

FIGURE 3 - CAPACITANCE

FIGURE 4 - CHARGE DATA

10

5000

Ve~~140V

300o -Iell,~ 10

7. 0

p

~ Cf-

r-

0

COb

.........

r--,.....

.........
Co.

...............

2. 0

~

100O
700

~

500

d

300

10 0':::70
50
1.0

t-

1. o
0.1

0.2 0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE BIAS VOLTAGE (VOLTSI

>e:: L

~

200

-

.........

20 30 40

-- I-

2.0

~

"

200
100
0
0

lell,~

10

I'..

300

" ""['."

200

"-

a.
5.0 7.0 [0
20 30
Ie, COLLECTOR CURRENT ImAl

-

L"

~

lell,~

r-"

70

40 V

[5~

~

iX

2.0

3.0

~.."

.5

1'),

30

.-

~ ....

0

~

0
0

!..@Vo ,

5. 0
1.0

.ov

5.0 7.0 10
20 30
Ie, COLLECTOR CURRENT (mAl

50 70

[00

5. 0
1.0

200

2.0

3.0

FIGURE 7 - STORAGE TIME

20 30
5.0 7.0 10
Ie, COLLECTOR CURRENT (mAl

50 70 100

f--+-+--+-++-t+t+t--+-+--Ic-i-t- 1', ~ t, - % tf-

I, "I 1 I" ~ I"
lell, 10" II

p===tJ;;'::\:"ftit"
c.

:: F-!=:=

;;;F:FH++t--=-+-=

300

-

I

100~I~~!f:iiig~~~!ij~~~,----~
f-+-+--+-+-+-f++++--+-+--t--+-=lei-II't-t--2t10+~_t-'~'f=
50

0

V

/

FIGURE 6 - RISE TIME
500

30o ."" I'-

V

V

aT

3.0

FIGURE 5 - TURN·ON TIME
500

~

-

-<

2000
5. 0

10

'!o..'

lell,~

2.0

3.0

...
10

...
~'

~

...

20 30
5.0 7.0 10
Ie, COLLECTOR CURRENT ImAI

......

---

p-

50

70 100

200

2N3903, 2N3904

(continued)

AUDIO SMALL SIGNAL CHARACTERISTICS

NOISE FIGURE VARIATIONS

12

I I II

o \

= 5.0 Vdc;, TA = 25·C

VCE

FIGURE 9

I II.

FIGURE 10

14

I
I

I
1LJI
1~~.OmA LlLlil L

r-f= 1.0 kHz
12

'\ 0-- SOURCE RESISTANCE = 200 n

I-- K-Ie= 1.0mA

I

'\.
~

I'

i'-.

17'" ""'"

'f..
t:-

SOURCE RESISTANCE = 1.0 k
Ie = 50pA

0.1

0.2

0.4

L

/

/ ' 1e=50pA

1/ /le=loopA..t:

SOURCE RESISTANCE = 200 n
Ie = 0.5mA

~
i.-"
~ ~
"l

-

,

:t-I-o-

/

-.....

~ L SOURCE RESISTANCE 500 n
f-- Ie = 100 pA

o

/i
I

/

I

'\.
i',.

II

10

I

\

J

/

. / A'e=10•5IJ /

V

L

lL
L

./

I

I
4

10

20

f. FREQUENCYIkHzl

(VCE

40

=

o

100

0.1

0.2

h PARAMETERS
10 Vdc,f
1.0 kHz, TA

=

0.4

= 25·C)

FIGURE 11 - CURRENT GAIN

2.0

4.0

10

20

40

100

FIGURE 12 - OUTPUT ADMITTANCE

300

100

200

50

I- ~

1.0

R50 SOURCE RESISTANCElkohmsl

1
iii

~ l-

V

20

./

~

~

ii 10

51

oV

15.0

.J

50

2.0
30
0.1

0.2

5.0

1.0
2.0
0.5
Ie. COUECTOR CURRENT (mAl

1.0
10

0.1

FIGURE 13 -INPUT IMPEDANCE
20

1.0
2.0
0.5
Ie. COlLECTOR CURRENT (mAJ

0.2

5.0

10

FIGURE 14 - VOLTAGE FEEDBACK RATIO
10

.......

f'....

7.0

~

t 5.0

!S

i'" 3.0

" 'r--., .......

"\.
~

"\

;\

"-

~ 2.0

r-....

~

:!!i

~

......... 1-0-

.J 1.0

0.5

VV

0.7
0.2
0.1

0.2

0.5
1.0
2.0
Ie. COLLECTOR CURRENT (mAl

5.0

0.5
0.1

10

2-658

0.2

0.5
1.0
2.0
Ie. COUECTOR CURRENT (mAl

5.0

10

2N3903, 2N3904

(continued)

STATIC CHARACTERISTICS

FIGURE 15 - NORMALIZED CURRENT GAIN
2.0
TJ

~ J125 J
0

r--- r---~

tt:~

z: 1.0

~

I

b

~ 0.7
B 0.5

~~

0.3

I--

i

0.2

I-- ~

j......-

-

I--"

~

~

z:

I
I
Ve,=1.0V

.....,

TJ = -55°C

-

...-

........

~

t--"

r--....

i"

.....

I'

.~

"\t\.

O. I
0.1

0.2

0.3

0.5

0.7

2.0

1.0

3.0

5.0

7.0

10

20

30

50

70

100

Ie. COLLECTOR CURRENT (mAl

"'"l\

200

FIGURE 16 - COLLECTOR SATURATION REGION
I. 0

TJ ~ 25°C

Ie

le=1.0mA

~

[lIe ~ 100mA

le~30mA

10mA

1

6

\

4

[\.

2

.........

0
.01

.02

.03

.05

.07

t-- I -

0.1

0.2
0.3
0.5
I,. BASE CURRENT ImAI

FIGURE 17 - "ON" VOLTAGES
TJ 1= i5°C

~

Hi

...f1J.Hf

0.81-t-t-t-t-t+t-ttt-_uHr-Q""v,l",@ft¥-he,HI.H
OV

~

li 06I-H-++H-t+++--++++++H+I--+-I

~ '~~-+++~~+4-+-H4+~~)
~ 0.4 ~+-+--+-+-I-+++++---+-+--+-++++1-+-h1/<-+-I

p

5.0

7.0

10

0

111

/!ve for Ve" ...)

r-t-

~

200

55°C TO +25°C

-55°C TO +25°C

0

-2.

..... r-

+rn+1

2Soc

1' .....
51.

oto

I III

/!vI for VIE'wtl
~

~

ro

~

~

m

1111
~

Ie. COLLECTOR CURRENT (mAl

2-659

j

LllIJ: t::
I III

~U_l.

O.~~~~WW~~~~~~~~

IT

I II I

ffi -0.5

-I.

100

~IJ5O~-

~.,.-+-+-

t-

~
....

I--r-

i.--i--"

5.0
10
20
50
Ie. COLLECTOR CURRENT (mAl

3.0

111111

O. 5

0.2I-H-++H-t+++--+++±;.joI!!-H+I--+-I

2.0

2.0

1.0

FIGURE 18 - TEMPERATURE COEFFICIENTS

I--I-+-+--++f+ttt-+-+V';'wt~ + ~~

1.0

0.7

1.0

+-+-++H++-++---+-IIH-I+++III++-IIH

~1-+-+-H+t14t Ve"wtl@lell,= 10

l"'--

t'-

f'.....

r--

1.2 r--,-...,..--,.-r--T'"T"T"TTT"---r-r---r--"1--r-'T"T">,.,.---,--,

1.0

f'...

"-

~

~

~

2N3905 (SILICON)
2N3906

PNP silicon annular transistors, designed for general purpose switching and amplifier applications,
features one-piece, injection-molded plastic package
for high reliability. The 2N3905 and 2N3906 are complementary with NPN types 2N3903 and 2N3904 respectively .
'

CASE 29(1)
(10-92)

MAXIMUM RATINGS

Rating

Symbol

Value

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAdc

Pn

350

mW

2.73

mW/oC

T J' Tstg

-55 to +150

°c

Symbol

Max

Unit

8JA

0.357

°C/mW

Collector-Emitter Voltage

Collector Current
Total Device Dissipation @ TA

= 25°C

Derate above 25°C
Operating and Storage Junction
Temperature Range

Unit

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to
Ambient

2-660

2N3.05, 2N3906

(continued)

ELECTRICAL CHARACTERISTICS

(Tc = 25°C

unle .. otherwise notedl
fill. No.

Characteristic

Min

Max

40

-

40

-

5.0

-

ICEX

-

50

'sL

-

50

Symbol

Unit

OFF CHARACTERISTICS
BVCBO

Collector-Base Breakdown Voltage
(IC = 10 jJAdc, IE = 0)

Collector-Emitter Breakdown Voltage

t, I

BVCEO

(IC = 1.0 mAde, 's = 0)
BVEBO

Emitter-Base Breakdown Voltage
(~ = 10 IIAde,

Ie = 0)

Collector Cutoff Current
(VCE = 30 Vde, VBEtoff) = 3.0 Vde)

Base Cuto« Current
(VCE = 30 Vde, VBE(off)' 3.0 Vde)

Vde
Vde
Vde
nAdc
nAdc

ON CHARACTERISTICS
IX: Current Gain' ( 11
(lC = 0.1 mAde, VCE = 1.0 Vde)

lyE

2N3905
2N3906

40
80

--

(IC = 10 mAde, VCE = 1.0 Vde)

2N3905
2N3906

50
100

150
300

(Ie = 50 mAde,

2N3905
2N3906

30
60

2N3905
2N3906

15
30

(Ie

2N3905
2N3906

=1.0 mAde, VCE = 1.0 Vde)

VCE = 1.0 Vde)

(IC = 100 mAde, VCE = 1. 0 Vde)

15

18, 17

Collector-Emitter Saturation Voltage' 111
(lC = 10 mAde, IB = 1.0 mAde)

VCE(s.')

(IC = 50 mAcIc, IB = 5.0 mAde)

17

Bue-Emitter Saturation Voltage (11
(Ie = 10 mAde, IB = 1.0 mAde)



SOO

d

300

III

0

.--

200

-

,.100
70
50
1.0

I.0

0.1

0.2 0.3 0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE BIAS !VOlTSJ

20

30

50

--

I--....

U
10
20
Ie. COLLECTOR CURRENT (mAl

2.0

!

!

300
I"-

"-

~~

I"

30

J
3.0 V

I~ 10£

~

l,,@Vo•
2.0

3.0

~

.s

I!J>

.>li

......

r--. .....

...,.
~

30
0

7.0
5.0
1.0

OV

5.0
10
20 30
50
Ie. COllECTOR CURRENT (mAl

100

200

2.0

3.0

FIGURE 7 - STORAGE TIME

le~\!'S: F-

200
~ 100

iii
::;

70
50

..:

20

I

,....-

/cll.

:::
10

.....

200

·\~II. ~IIO
I

/cll, = 20

I'

" "-

~

5.0 7.0 10
20 30
Ie. COLLECTOR CURRENT (mAl

50 70 100

4

,

I'

100

200

1.,=1" Vcc=40V _

~.

lell.=20

;t'" lell. 20

! 50
g

,
~

lell." 10

le)l~

30
20

10
5.0
1.0

300

~

0

-?

FIGURE 8 - FALL TIME

500

·1·.~'t-~4 In=l ul-

~

-

....

0
0

500
300

200

~

100
70
~ 50
;:::

57' F-

t.@Vcc

20
10
7. 0
5.0
1.0

'"'"

200

,

~

Vee = 40~
le/l.=IO

lell, = 10

~

100
70
50

/

FIGURE 6 - RISE TIME

I'\..
~

200

50

500

I"-

300 ~~

.

--

FIGURE 5 - TURN·ON TIME
500

V
Q.,

16

~

"""

....

"

~

.

--_ .....

10

2.0

3.0

5.0 7.0 10
20 30
50 70 100
/C. COLLECTOR CURRENT ImAl

200

2-662

5.0
1.0

2.0 3.0

20 30
50
5.0 7.0 10
Ie. COllECTOR CURRENT !mAl

100

200

2N390S, 2N3906 (continued)

AUDIO SMALL SIGNAL CHARACTERISTICS

NOISE FIGURE VARIATIONS

VCE

FIGURE 9

= 5.0

Vdc. TA

= 25"C

12

FIGURE 10

_f~ll.0kHZ

10

Ic

1.0 mA

_

6.0

I

~ 4,

1.0

0.2

0.4

1.0

2.0

4.0

10

20

40

f. FREQUENCY 1kHz)

100

""-

0.2

h PARAMETERS

(VCE

= 10 Vdc. f = 1.0 kHz.

FIGURE 11 - CURRENT GAIN

J

/

'"

0
0.1

o~~--~~~~--~~~~--~~~

0.1

\.

o\.. "\.

2.0

'rI

I

Ilc ~ 100 pl.']

~ 8.0

I

-'-

1/

TA

V

0.4

1.0

V

/

IL

/ ' ./

r--.,. ~ /
b:.. po

II

IL V
/ /'

IL

Ic ~0.5mA

k"

V./ I' Ic~50pI.

~

2.0

4.0

10

20

40

100

Ro. SOURCE RESISTANCE Ik ohms)

= 25"C)
FIGURE 12 - OUTPUT ADMITTANCE

100

300
70
200~4-+--+~~HHH+--~~4-4-++++~

/

V
/
/

./

....
7.0
5.0
0.1

0.2

0.5
1.0
2.0
Ic. COllECTOR CURRENT (mA)

Ic. COllECTOR CURRENT!mA)

FIGUII£ 13 -INPUT IMPEDANCE
20

"-

10

i"" 5.0

III

10

"

i-.1.0

"'

5.0

IS

" " "-

2.0

6E

0.5

2

i 3.0
~
~ 2.0

"

~1

10

FIGURE 14 - VOLTAGE FEEDBACK RATIO

7.0

~

5.0

"'
"-

1.0

....... r-

V'"

o. 7
0.2
0.1

0.2

0.5
1.0
2.0
Ic. COllECTOR CURRENT (mA)

5.0

0.5
0.1

10

2-663

0.2

0.5
2.0
1.0
Ic. COllECTOR CURRENT!mA)

5.0

10

2N3905, 2N3.06

(continued)

STATIC CHARACTERISTICS

FIGURE 15 - NORMALIZED CURRENT GAIN
2.0
TJ I

I~
<..)

~

TJ I +2~lc

1.0
O.

-

+12~OC

I
VeE

I
\.0 V

1"--

TJ I 550C

7

...........

O. 5

~
~

~['I:

I

0.3

i

0.2

~

~
'\

O. I
0.1

0.2

0.5

0.3

0.7

\.0

2.0

'c.

20

5.0
7.0
10
3.0
COLLECTOR CURRENT lmAl

30

50

70

~

100

200

FlGutll 16 - CtLLECTOR SATURATI8N REGIGN

,

I.0

!S
~

o.8
le= j.OmA

~
t o.6

;
;,..

1\ 'e=30mA

le=IOmA

le= lOOmA

,\
"'

:!5 0.4

l'l

}J ~ 2~o~

1

\

1\

1"i'..

\

0.2

i'--..

to-

o

.02

.01

.03

.05

.07

0.7

1.0

V"IM~I @lell, = 10~
.I~

TJ - 25°C
.8

V,,@VeE

\.0

2.0

3.0

5.0

~f... Vel""

\.0 V

~

55'C TO +25'C

.6

r-t-+-

1

5

\I

:4

lv, for "I""

17
VeEI"" @Iell, = 10
i

1.0

2.0

5

l J....i..

III

50
5.0
10
20
Ie:. COllECTOR CURRENT !mAl

100

~li5'~ ""
'ITI'k
I Sj"C1TO j 2 CI

+2J·C 0
0

)

0

V

1
+2S'CTO +1 ·C

1

1111'f

10

I

O.5
0

.2

7.0

FIGURE 18 - TEMPERATURE COEFFICIENTS

FIGURE 17 - "ON" VOLTAGES
.0

I--

t- I---

0.2
0.3
0.5
I,. BASE CURRENT lmAl

0.1

'"

-

r- I--

200

2-664

-2

I-"

11
o

r

I
20

40

1
60
10 100 120 140
Ie:. COllECTOR CURRENT !mAl

160

110 200

2N3909 (SILICON)
2N3909A

P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS
(Type A)

SILICON P-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

Depletion Mode (TypeA) Junction Field-EffectTransistors designed
primarily for low-power audio amplifier applications.
• High AC Input Resistance ~
Typically> 30 Megohms @ f ; 1.0 kHz
• Drain and Source Interchangeable
• Active Elements Isolated from Case

-MAXIMUM RATINGS
Symbol

Value

Unit

Drain-80urce Voltage

VDS

-20

Vde

Drain-Gate Voltage

VDG

-20

Vde

Reverse Gate·Source Voltage

VGSR

20

Vde

Forward Gate-Souree Voltage

VGSF

20

Vde

IGF

10

mAde

Po

300
2.0

mW
mW/oC

Tstg

-65 to +200

°c

Rating

Forward Gate Current

Total Device Dissipation @TA = 2SoC
Derate above 2SoC
Storage Temperature Range

0.100

Pin 1. Source
2. Gate

-Indicates JEDEC Registered Data.

3. Drain
4. Case

Q.,ill

0.048
TO-72

CASE 20 (5)
Case Connected

to Source

2-665

2N3909, 2N3909A (continued)

-ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted) (Note 1)
Characteristic

Symbol

Min

Max

Unit

VIBR)GSS

20

-

Vde

-

B.O
8.0

OFF CHARACTERISTICS
Gate-Source Braekdown Voltage
(lG = 10 "Ade, VOS = 0)
Gate-Source Cutoff Voltage
(VOS = 10 Vde, 10 = 10 "Ade)

VGS(off)
2N3909
2N3909A

Gate Reverse Current
(VGS = 10 Vdc, VOS = 0)

IGSS

Vde

-

10

nAde

-

1.0

,.Ade

0.3
1.0

15
15

0.3

7.9

2N3909
2N3909A

1000
2200

5000
5000

2N3909
2N3909A

900

2000

-

-

100

-

32
9.0

-

16

(VGS = 10 Vdc, VOS = 0, TA = l000C)
ON CHARACTERISTICS
Zero-Gate Voltage Orain Current (Note 2)
(VOS = -10 Vdc, VGS = D)

mAde

lOSS
2N3909
2N3909A

Gate-Source Voltage
(VOS = -10 Vdc, 10 = 30/lAde)

VGS

Vde

SMALL.sIGNAL CHARACTERISTICS
Forward Transedmittance (Note 2)
(VOS = -10 Vdc, VGS = 0, f = 1.0 kHz)
IVOS = -10 Vdc, VGS = 0, f = 10 MHz)

IVfsl

Output Admittance
(VOS = -10 Vde, VGS = 0, f = 1.0 kHz)
Input Capacitance
(VOS = -10 Vdc, VGS = 0, f = 1.0 MHz)

IVosl

-

pF

C,..
2N3909
2N3909A

·Indicates JEDEC Registered Data.

Note 1: The fourth lead (case) is connected to the source for aU mealUrements.
Note 2: Pulse Test: Pulse Width ,;;630 rna, Duty CVel.S10%.

2-666

"mhos
pF

Ciss
2N3909
2N3909A

Reverse Transfer Capacitance
(VOS = -10 Vdc, VGS = 0, f = 1.0 MHz)

"mhos

3.0

2N3924 (SILICON)
thru

2N3927
NPN silicon annular RF power transistors, optimized for large-signal power-amplifier and driver
applications to 300 MHz.

Collector electrically connected
to case; stud electrically
isolated from case

CASE 24
2N3925
(TO· 102)

CASE 36
2N3926
2N3927

CASE 79
2N3924
(TQ.39)

(TO·60)

Collector connected to case

Stud and case electrically
connected to emitter

MAXIMUM RATINGS

(TA

= 25°C unless otherwise noted)

Rating

Symbol

2N3924 2N392S 2N3926 2N3927

Unit

VCEO

18

18

18

18

Vdc

Collector-Base Voltage

VCB

36

36

36

36

Vdc

Emitter-Base Voltage

VEB

4.0

4.0

4.0

4.0

Vdc

Collector Current

IC

fr.5

1.0

1.5

3.0

Adc

Power DisSipation @' T C = 25° C

PD

7.0

10

11.6

23.2

Watts

40

57.1

66.3

132.5

mW;oC

Collector-Emitter Voltage

Derate above 25° C
Operating and Storage Junction
Temperature Range

T J , T stg

2-667

-65 to +200

°c

2N3t24 thru 2N3t27

(continued)

ELECTRICAL CHARACTERISTICS

I

(1. = 25"C unless oth81Wise noted)

Characteristic

Conditions

Symbol

I Min I Typ I Max I Unit I

IIff CIIWCltllSTlCS
CoUector-Emltter Sustaining Voltage f 11

'C = 200 mAde

CoUector-B..e Breakdown Voltage

'C = 0.25 mAde, ~. 0

2N3924 thru 2N3926

'C .0.50 mAde, ~ =0

2N3927

Emltter-Ba•• Breakdown Voltage

~ = 1.0 mAde, 'C =0

2N3924 thru 2N3926

'E = 2. 0 mAde, 'C = 0

2N3827

VCB • 15 Vde, ~ • 0

CoUector Cutoff Current

2N3924 thru 2N3928
2N3927

VCB = 15 Vdc, 'E • 0, T A •

150'~N3924 thru

BVCEO(sus) '

18

BVCBO

36

- -

38
BVEBO

-

4.0

2N3928
2N3027

-

Vdc
Vdc

Vde

-

-

0.1 mAde
0.25

-

-

5.0
10

-

350

-

350

-

12.5
25

20
45

-

1.0

watt

7.3

-

dB

- -

%

4.0
'CBO

-

-

DYIIAIIC CIlWCltIlSTICS
Current-Gain

'C = 100 mAde, VCE = 13.8 Vdc, :N;;~ t~!Z 2N3e21

Bandwidth Product

IT

'C • 200 mAde, VCE • 13.6 Vdc, I • 100 MHz 2N3927
VCB • 13.6 Vdc, 'E .0, f • 100 ~~924t1ml 2N3921

Output Capacllanee

Cob

Pin

-

Gpo

8.0

IN3S27

FUIIC1IOIAL TESTS

_

Power Input

Test Circuit Figure 1

_.
-

iii = 50 ohms,

VCE = 13.6 Vd<,

Common-Emitter AmplIller
Power Gain

RL • 50 ohm" f • 175 MHz

CoUeetor Efficiency

Pout = 4.0

Power Input

Teat Circuit Figure 1
VCE • 13.8 Vde,

Common-Emitter Amplifier
Power Gain
Collectoct

iii • 50 ohms,

Pout • 5. 0 Watta

Te.t Circuit Fleure 1
VCE = 13:1 Vdc,

iii • 50 ohms,

Common-Emitter. Amplllier
Power Gain

RL = 50 ohms, f = 175 MHz

CoUector Efficiency

Pout' 7.0 Watt.

Power Input

Test Circuit Figure 1
VCE • 13.8 Vdc,
RL

CoUector Efficiency

Pout • 12 Watt.

3

- -

Pin
Gpe

5.84

~

'(U

iii • 50 ohm.,

50 ohm_, f =175 MHz

1.3

-

8.5

- -

Pin
Gpo
~

Common-Emitter Amplifier
Power Gain

pF

70

~

RL = 50 ohmo, f· 175 MHz

E~leI!..,

Power Input

watt.

MHz

dB

..,

2.0

5.44

8.0

70

-

4.0

Pin

-

-

Gpe

4.77

5.0

~

.80

-

-

(1'Pulsed thru a 25-mH Inductor (See Figure 2)

Watt.

Watt.
dB

"
watta
dB

"

NUIE 2- PULSE TEST CIRCUIT

fllUlE 1-175 MHz TEST CIRCUIT

H .. -

c. .......

13.IVdc

Co. c,.
~pflAl"nl"'l
C, .•.......... 7·IOOpflAlr_1oI
Co ••.••••••..••. 470pflllloc ....1II1icI

Lo -11/2 ..... ;\I14AWI ti..........,
JlI" /0 Air -.cI; wltldl" ""'"
3/IS",bIoolljlpooll tumfroon

C, ............ O'OOljAflllloc ......icl

L,-1lfC

C. ............. O.OljAflllloc_~1

t--.,.,.......

around

.....

~-

L,-2Iurns;\lIUWGti_ .....
1/4"10 Air - - . wlnoll" """" 3/11"

2-668

TO SCOPE

;;I HORIZONTAL
SENSING

2N3924 thru 2N3927

(continued)

CLASS C DESIGN DATA FOR VeE = 13.6 Vde, Te = 2S"C
(Emittar Grounded Directly to the Chassis-No Tuned·Emittar Techniques Used)

2N3924
FIIIURE 5- PWLLEL EQUIVALENT INPUT RESISTAIICE
12

"-

~ "-

i' l'

110

~
~

P...

~

~

i

FIIUH 3- P8W£1 OUTPUT IS FH_IleY
10

~ [".....

6.0

P... ~4.0W~

t--.
.......

4. 0

,

P,_ ~0.25W -0.5W-

7.0

~ 5.0

11

1"\

I

2.0

t

2.0

II

.....

30

"'
""'
'"" '"
'" ~ i'.

1.0
50

70
100
I. FREQUENCY (MHz!

70
100
I, FREQUENCY (MHz)

50

200

FI8URE 8- PWLLEL EQIIIVALEIIT INPUT CAPACITANCE

.........

200

300

"
'"
"r-...I'

270
240

300

'i

210

I

110

i

l'

150
... 120

FIGURE 4- POWER OUTPUT ¥S POWEI INPUT

P... ~2.0W

I"-,.

r--..."-

~

~

90
~€ 60

8.0

-

,"'"

P... -4.0W

I

...... r--..

.....

0
Vel

~

0

15 Vile

0

o

\... ~ t2c' r-

...... ~ p(
......
12Vdc

~

30

70
100
I, FREQUENCY (MHz)

200

--

300

FIGURE 1- PARALLEL EQUIVALENT OUTPUT CAPACITANCE
I~

175 MHz

0
1.5

..... r--.

35

,~ IV

1.0

50

r-..... C'-....

13.6 Vdc

~

0.5

300

,",-

'l"'-.

30

r--...

1.0W r--1.5W

'"

f'O

...i

~2.0~

r--r--

8.0

2.0

P,", POWER INPUT (WAITS)

'i

I
~

r-- r-..

30

1

20

p•.,. =

•.OW

'"

.~ c--...

P... ~2.0W

~~

..:s

15
10
30

2-669

.'"

~"
......

25

is
<.>

I"
I"

50

70
100
I, FREQUENCY (MHz)

200

300

2N3924 thru 2N3927 (continued)

2N3925
FllURE 10-PADLLR EQUIYALEHT 111M RESISTANCE
20

11

1

P~

= 0.5W I.OW
1'0.

.......

......

.

50

70

.......

'"
"'r--..

r--

~
P... -5,OW

I'..

o

'""" "-.."-

70
100
f. FREQUENCY (MHz)

50

30

300

~

"" ~'~

J

r--.I' ~... =3.0~

~"
~ ....

100

Yc,= 15Vdc

P... -5.0~

o

~ ~ ~V
~ ~ ~ 13.6 Vdc

30

50

P,~ POWER

70

100
f. FREQUENCY (MHz)

r--

200

.300

RlURE 12 -PARALLEL EQUIYALEIIT OUTPUT CAPACITANCE

f=175MHz

1.0

50

12Vdc

~ ......

0.5

300

FlCURE 11-PARALLR EQUIYALEIIT 111M CAPACITANCE

Fl&URE 1- POWER OUTPUT n POWER ItPIIT

~

200

500

10

2.0

......:::: ::::::;

4.0

f. FREQUENCY (MHz)

h Y
U. r

P... =3.0W

2.0

" .""'-

200

100

r""" F=:::-- .....

.. 6.0

3.OW-

.........

"

Ya - 13.6 Ylle

1.0
30

2.0W

~ ::::::-.

Ii 12
j 10
i8.0

FIGURE 1-POWER OUTM n FREQUEIICY
10

16

14

1.5
2.0
INPUT (WATTS)

2.5

--t-

3.0

.... f: ~

P... =5.0W

-.... ...::::::+.....

r-

P... -3.0W

o
30

2-670

50

70
100
f. FREQUENCY (MHz)

200

-

S

300

2N3924 thru 2N3927

(continued)

2N3926
FIGURE 15-PARALLEL EQUIVALENT INPUT RESISTANCE
20
18
In

!

16

~

14

~

~ 12

~

II

l.OW

,

20,

r-.

p;.-UW

.....

.....

6.0

300

200

~

~

300

."\
"\ .'\

200

" r-..:r--.'

5 100
~

FIGURE 14-POWER OUTPUT vs POWER INPUT

Pollt =3.5W
.....................

J

12

. . . . . "l......
...
P... -7.0~

.".

Ii
i

VeE - 15 Vd,

j.V
./

8.0

/'
6.0

,J
4.0

~

~
,......

~L

V

...... V

/ ' . / . /t1

""

,/'

V
V
K

......

1.0

1.5
p~. POWER

2.0
INPUT MATIS)

I
70

50

100

--

I--

r--

300

200

'f. FREQUENCY IMH~

13.6 Vdc

FIGURE 17 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE

J

I

65
175jHz- I - -

~

2.0
0.5

-100
30

II
12Vd,

Ii

300

400

I
10

200

FIGURE 16- PARALLEL EQUIVALENT INPUT CAPACITANCE

........

70
100
I. FREQUENCY IMH~

70
100
I. FREQUENCY (MHz)

50

""-

.........
50

P"'-TOW

30

............

30

~ :---

o

............

2.0

t--......

2.0

......

~

0

...... r--.

4.0

.....

........

J

P... -3.5W

.............. .......

~ 8.0

iE

FIGURE 13 - POWER OUTPUT YS FREQUENCY
20

"- ['..

10

2.5

3.0

60

!fi!

55

45

~

40

~

~
is

35
30

J

25

"-

I'

r-.......

P... -7.0W

""",,,,,,"
..............

r.......

~
......
P... -3.5W ..... ~

20
15
30

2-671

r-....

""

50

~

"

50

100
70
I. FREQUENCY IM~

200

..........
..........
300

2N3924 thru 2N3927

(continued)

2N3927
FIIlURE 18 - POWER INPUT YS FIEQUENCY
20

2.0W
1.0W

;

~

o

I

r-...

r-.....

"'"

10
7.0

3.0~.......

..!::.=4.0W

.......

.......

.......

..........

3.0

50

~

w

~

i

"-

~

~ 8.0

" "r-......

r--"

6.0

t'\.

'\

".\

'"

Pout = 6.0W

'\ r--.

~

4.0

p.... = 12W

2.0

300

200

70
100
I, FREQUENCY (MHzI

10

Ii>

.......

'" I'-..

.J

-

........

"i'........ . . . . ~ I'-...

5.0

2.0
30

FIGURE 20- PARALlEL EQUIVALENT INPUT RESISTANCE
12

30

FI8UIE II - POWEI OUTPUT vs POWER INPUT

50

70
100
t, FREQUENCY (MHzl

~

i""""300

200

FIGURE 21-PARALLEL EQUIVALENT INPUT CAPACITANCE
600

20

500

~
V
tJ;:
l.. ~

Vc• = IS Vde

5

~~~
V
12Vdc
/~

0

0

./

13.6 Vdc

l"'----l"- t -

300

i

200

;:;

§

"

100

~

"

;-.-100
u

~
,.. P

p... = 6.0W

0

.~ ~

P~I=

-200

1= 175 MHz

12W

~~

\ ....

1'-

-300

0
1.0

400

i

2.0
3.0
P;" POWER INPUT !WATISI

4.0

-400
30

5.0

50

70

200

100

300

t, FREQUENCY (MHz)

FIGURE 22 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
100
90

DESIGN NOTE
For Class C power-ampliller desilns, small-sisnal plrameters a .. not applicable. The parellel equivalent output
capacitance and input resistance and capacitance for Claas
C power-amplifier desisn Ire used.
Th, parallel resiatlva portion of the collector load impedance for a power amplifier, R,·. may be computad by
Issuminl a pelk volta.. awin, equal to Vee, and usin, the
expression R,' Vcc' /2P who .. P RF power output. The
computed R,' mlY then be combinad with the data for
Class C desl.n to complete device impedance data.

=

=

i
w

~!: :

~

Ij

.........

80
70

......

........

~t-..

60
50

........

::--........
~

40

. . r-.-

P... =12W

I'"

r-- I -

30
20

P... -6.0W

10

o
30

50

70

100

t, FREQuENCY (MHzI

2-672

200

300

2N3946 (SILICON)
2N3947
NPN silicon annular transistors, designed for general purpose switching and amplifier applications.
The 2N3946 and 2N3947 are complementary with PNP
types 2N3250 and 2N3251, respectively.

CASE 22
(TO-18)

Coll_ctor connected to c....

MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

80

Vdc

Collector-Emitter Voltage

VCEO

40

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

Collector Current

Ie

200

mAdc

Total Device Dissipation @ TC "" 2'oC

PD

1.2

watts

6.9

mW/oC

0.36
2.08

watt
mW/oC

Derating Factor Above 25°C
Total Device Dissipation @ TA
Derating Factor Above 25°C

= 25°C

Po

Thermal Resistance
Junction to Ambient

8JA

0.49

°C/mW

Junction to Case

8JC

0.15

°C/mW

TJ

200

°c

Tstg

-65 to +200

°c

Junction Operating Temperature
Storage Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

Characteristic

I Symbol

IMin IMaxl

Unit I

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(Ie = 10 J.lAdc, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage"
(Ie = 10 mAdc)

BVCEO*

Emitter-Base Breakdown Voltage
(IF, = 10 /LAdc, Ie = 0)

BVEBO

Collector-Cutolf Current
(VCE = 40 Vde, VOB = 3 Vde)
(VCE = 40 Vde, VO B = 3 Vde, TA

ICEX

-

.010
15

IBL

-

.025

Base Cutoff Current
(VCE = 40 Vde, VOB

=

·Pulse Test: PW ::i 300 J.ls

= 150°C)

3 Vdc)
,Duty Cycle ::i 2%

VOB

2-673

=

Base-Emitter Reverse Bias

60

-

40

-

6.0

-

Vdc
Vdc
Vdc
/lAdc

/lAde

2N3946, 2N3947 (continued)
ELECTRICAL CHARACTERISTICS (continued)
(T A = 25 0 C unless otherwise noted)

I

I Symbdl IMin IMaxl Unit I

Characteristic

ON CHARACTERISTICS
DC Current Gain 111
(Ic = 0.1 mAde,. VCE

= 1 Vde)

2N3946
2N3947
2N3946
2N3947
2N3946
2N3947
2N3946
2N3947

(IC = 1.0 mAde, VCE = 1 Vde)

(Ie

= 10 mAde, VCE;=

(Ie = 50 mAde,

1 Vde)

VCE = 1 Vde)

Collector Saturation Voltage lll
(Ie = 10 mAde, IB = 1 mAde)
(Ie = 50 mAde, IB = 5 mAde)

hFE
30
60
45
90
50
100
20
40
VCE(sat)

Base-Emitter saturation Voltage 111
(Ie = 10 mAde, IB = 1 mAde)
(IC = 50 mAde, IB = 5 mAde)

VBE(sat)

--

-

--

150
300

--

Vde

-

0.2
0.3

0.6

-

0.9
1.0

-

4.0

-

8~0

250
300

-

-

35

ns

-

35

ns

300
375

ns

-

75

ns

Vde

TRANSIENT CHARACTERISTICS
Output Capacitance
(VCB = 10 Vde, IE
Input Capacitance
(V!BE = .1 Vde, Ie

= 0, f = 100

= 0, f = 100

C 1b
kHz)

Current-Gain - Bandwidth Product
(Ie = 10 mAde, VCE = 20 Vde, f
Delay Time
Rise Time

VCC

Cob

kHz)

= 100

MHz)

= 3 Vde,

VOB

Ie = 10 mAde, IB1

2N3946
2N3947

= 0.5 Vde
= 1 mA

Storage Time

VCC

Fall Time

IB1 • -IB2 = 1 mAde

= 3 V,

IC. 10 mA,

2N3946
2N3947

fT

td

tr
ts

tr

pF

pF

MHz

SMALL SIGNAL CHARACTERISTICS
Small-Signal Current Gain
(Ie = 1.0 mA, VCE = 10 V, f

= 1 kHz)

2N3946
2N3947

VOltage Feedback Ratio
(Ie· 1.0 mA, VCE = 10 V, f

= 1 kHz)

2N3946
2N3947

Input Impedance
(Ie· 1.0 rnA, VCE

= 1 kHz)

2N3946
2N3947

Output Admittance
(Ie = 1.0 rnA, VCE

= 10 V, f

= 10 V, f = 1 kHz)

Collector-Base Time Constant
(Ie = 10 rnA, VCE = 20 V, f

= 31.8

2N3946
2N3947

I1IPulse Test: PW 6300 j.lS, Duty Cyele~ 2%

hre

=

-

10
20

0.5

6.0

2.0

12

V OB :=;Base-Emltter Reverse

Xl0- 4

j.lmhos

hoe

1.0
5.0

to 15.7 kHz)

2-674

250
700

kohms

~e

NF
10Hz

50
100

-

rbc C

MHz)

Wide Band Noise Figure
(Ie = 100 j.lA, VCE = 5 V, Rg = 1 kn , f

~e

Bias

30
50
ps

-

200

-

5.0

4B

2N3946, 2N3947

(continued)

TYPICAL SWITCHING CHARACTERISTICS
IT A = 25°C unless otherwise noted)

DELAY AND RISE TIME

RISE TIME

500

300
200

i

!Ii!
;:::

500

"'-

I'-.

Ie/I.

"

r--

10 _

300

100

Vee

70
2V

VOl

[tl.J.
2.0

1.0

3.0

......

"

~OI~OV

10

=

I

30
20

!

15V ~ I21N394~
-y;

ee

td

50

~V

t•

20

~

-,.....,

lell. -10

"I:-..

100

T,~25'C

-

~

--T, =150'C

70

-- ...:r-. '~N37:-""jr
1'41 J ...

......

30

...:-

20

r-10

so

30

1.0

2.0

3.0

-

2N394~:

-

50

~

2N3946 i7'--

I'-...

5.0 7.0 10
Ie. COLLECTOR CURRENT (mAl

!

--

Vee ~ ISVoits

"

200

~

I'<

......

.~

5.0 7.0 10
Ie. COLLECTOR CURRENT (mAl

20

I

I"

30

50

STORAGE AND FALL TIMES
2N3946

2N3947

1000

_•• lelia - 10·· "150'C

1000

2O--150'C

700

700

lell.

500 , " I f

300

..
"

200

....-,: ,

--- , .....

;~

100

-.

--- .. '['
0

70

.

50
30
20

-

."':'-0.

~"---

... 'r-..
t.

!

,

0

.

!

•0

200

-

I,
.~

100

I, . /

'.

-.
~

50

1/

30

'~

.

-

-

°

...

~

.
.

I

'

'

.........
~

.

0

-'.-. -==

.

.

~ r-....

70

.

Oo

~

-.

""",0

--Iell, -1O····150'C
lell, - 20--150'C

--

~ r-

300 ~

--

-~

,
r-- '
0

!Ii

;:

500

~'l~

. ..

20
1.0

2.0

J.O

5.0

7.0

10

20

50

3D

1.0

2.0

Ie. COllECTOR CURRENT (mAl

3.0

5.0 7.0

10

20

Ie. COLLECTOR CURRENT (mAl

TURN·ON TIME EQUIVALENT TEST CIRCUIT

TURN·OFF TIME EQUIVALENT TEST CIRCUIT

+3V
275

I
I

1-&'<4 pF

_J.._
,T...

,

_J

-TOTAl SHUNT CAPACITANCE OF TEST JIG ANO CONNECTORS

2-675

30

50

2N3946, 2N3947

(continued)

AUDIO SMALL-SIGNAL CHARACTERISTICS

NOISE FIGURE VARIATIONS
Vel= 5 V. TA:::::2S·C

10

II IIII
J1 U1L
IlESISTANCE ~ ~f- SOOIICE
Ie = O.SmA

"r--.

1/
r--- ....

r- ...

'i-

SOURCE RESIST~NCE =
Ie = 1001'"

f-

400

1K

U,.

12

300 II

10

j

I!Ii

.,....

;;;-

J=IIKCI

II

V
\

,... \

~

- -

Ie -

....... 1-'

....

r-

10K

20K

40K

lOOK

100 200

I
fl~l~ lOOjAA

-

~IIII=~~

,/

0;;

~

4K

V

O.SmA

SOURCE RESISTANCE = 2K
Ie = SOjAA

2K
f.

14

~

11 IlIL
100 200

II

400

IK

FREQUENCY {HzI

2K

IIIII 1'1

IIIII

4K

10K

20K

40K lOOK

R,. SOURCE RESISTANCE {OHMSI

h PARAMETERS
VeE

= 10 V, TA::;;: 2S-C.

f

= 1 Kc
OUTPUT ADMITTANCE

CURRENT GAIN
300

200

I-Z

I

-

100

so

70

2N3947 -

I---

SO
./

2N3947

--

70

100

.....

2"3946 -

1/

V

10

2113946

I

30

0.1

0.2

0.5
1.0
2.0
Ie. COlLECTOR CUIIII£NT {mAdel

5.0

10

0.2

0.1

5.0

10

10

20

I'..

......

10

I£

0.5
1.0
2.0
Ie. COllECTOR CURRENT (mAde)

VOLTAGE FEEDBACK RATIO

INPUT IMPEDANCE
so

.,.

V

./

.......
5.0

'T

2N3947 :

........

2.0

..........

1.0

.......

,;

2

"-

~

2N3946

1.0

0.5

2N3947

" I"

!!

' ....

"

2N3946

1'0.,..,

'I

0.7

0.2

r-

0.5
0.1

0.2

0.5

1.0

2.0

5.0

10

0.1

0.2

0.5

1.0

2.0

Ie. COllECTOR CURRENT (mAdcJ

Ie. COlLECTOR CURRENT (mAde)

2...,676

5.0

10

2N3946, 2N3947

(continued)

CURRENT GAIN CHARACTERISTICS
200

'2K39461
T,_I 175OC

100

T,-IOO·C

-

......

T,-2S·C

T,

---

IS·C

T,
I

r-

Veo- Ivall -

ssoc

r-

~

---~

20

0.1

0.2

0.5

2.0

1.0

5.0

10

20

50

Ie. COllECTOR CURRENT (mAl

'SOO
300

~

I
<.>

i

T,

I\SOC

12N39471 _ i--

T,

lOOOC

VeE

TJ

2SoC

'100

ISoC

T,

I S5°C

I--

,
-r--....
~

200

T,

Ivol1 _

........... .......

........

....... ~

70

r-...

50

"" '\..,

30

0.1

0.2

0.5

2.0

1.0

10

5.0

20

50

Ie. COLLECTOR CURRENT (mAl

CAPACITANCE

CHARGE DATA
5000

10
7.0

5.0

i

4.0

I

3.0

~

r- I'-r--.

T,=2SoC

.......
I-1-1-

r--.r-.

""

r-Gr
,...

.'

1000

C,.

1'- ...

......

I

25°C
r-2N3946 - 1500C
2000 r - 2113947 --- 25·C
r-- -- 150'C

I I I

CoO

....

~

""t'-

,
L.

110TH nPfS Yc;c - 40 Y

50 ~o..!i ~

.'
_"l ~

--

-- . --- .

100

2.0

I .....

.

Vc;c= ISV

-

.... -..

.

20

10

1.0

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

1.0

2.0

3.0

5.0

7.0

10

Ie. COllECTOR CURRENT !mAl

REVERSE BIAS VOLTAGEMllTSl

2-677

20

30

50

2N3946, 2N3947 (continued)

COLLECTOR SATURATION REGION
1.0

I
I
e

;§

2N3946 :

le=50mA

le=30mA

TJ=25°C-

0.6

0.4

8

:J

le=IOmA

1c-3mA
0.8

1'-

"'

0.2

0.2

0.1

0.05

0.01

0.5

LO

2.0

5.0

10

I" BASE CURRENT (mAl

1.0

;i

.l

0.8

r--

le-3mA

le- IOmA

2N3947

Ie-SOmA

le- 3OmA

TJ=25°C

I

e

III

0.6

I::

I
..

~

\
\

\

0.4

.......
0.2

,
.......

~

'-

o
0.02

0.01

0.05

0.2

0.1

1.0

0.5

2.0

5.0

10

I" BASE CURRENT (mAl

"ON" VOLTAGES
1.0

0.9

TEMPERATURE COEFFICIENTS
+0.5

I
~

~.

··2N3946

-2N3947

I

~

V.I"'I @ lell, - 10

V

OJ

i
~

e

t0.7
D.6

l-

l-

.- .. ,.

~\

~

ii,."",
f- -I-'

I-'

t:::

I

I I '@"lell,
' '=".10
VClIIAT'
, ' , ' , 111111..~-

i

D.2

0.5

1.0

5.0

10

-1.5

1_2.0
.t

L.".

-2.5

W2.0

1•0

L,

I I I 111111
D.l

-0.5

1-

-.Jl

T ,.nl Inl

0.1

i

V.@VCI-IV

II

"""

D.2

p

.'

l.,;

Io'(r;t

"",I-""

-55"Cto25"C

0.0

V":

t

25"Cto 175"C

IIvc:forVClI""

/

-

V

V Iva for V.I""

-55"Cto25°C

......

25"C 10 175"C

V

-3.0
20

50

Ie. COUfCTOR CUIIIIEIIT ItnAI

2-678

10

50

2N3948 (SILICON)

NPN silicon RF power transistor designed for
amplifier, frequency multiplier, or oscillator applications in military and industrial equipment. Suitable for
use as output, driver, or pre-driver stages in VHF and
UHF equipment. Ideal for CATV applications.

CASE 79
(TO-39)

MAXIMUM RATINGS

ITA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

36

Vdc

Emitter-Base Voltage

VES

3.5

Vdc

Collector Current - Continuowl

IC-

400

mAde

Total Device DIssipation @ TA .. 25·C

PD

1.0
5.71

Watt
mW/·C

TJ • Tstg

-65 to +200

·C

Collector-Emitter Voltage

Derate above 25·C
OperatlDg Junction and Storage
Temperature Range

THERMAL CHARACTERISTICS

Symbol

Max

Unit

'1bermal Res1atance. Junction to Case

'.rc

35

·C/W

'nlermal Res18tance. Junction to Ambient

'JA

175

·C/W

Characteristic

2-679

2N3948

(continued)

ELECTRICAl.. CHARACTERISTICS ITA = 25°C unle.s otherwise noted)

LMin

~~~~~~~___~~~~~'~~'~______________L-~S~

Unit

]

OFF CHARACTERISTICS
Colleetor-Emltlor &101alninl! Volilop
(Ie • 5 mAde,
0)

l! .

BVCBO(...,

Collector-Ba.. Bro;:_ vOlIlop
(Ie' D, 1 mAde,
• 0)
Emitter-Bue Breakdown Volbp
O. 1 mAde, .e· 0)
Collector Cutoff Current
(Yen -15 Vde,
0)
(Vee' 15 V~ TA • lSO'e)

BVeno

18

BVIlBO

('E •

--

ON CHARACTERISTICS

I

~ CurreDt Gam

L-Yc '" 50 mAde,

Vde
Vde

-

3.5

leBO

'E'

Vde

-

20

~-

0.1

100

VCI * 5 Vdc)

DYNAMIC CHARACTERISTICS

SMALL·SIGNAL ADMITTANCE PARAMETERS VERSUS FREQUENCY
(Ie = 80 mAde, Vel = 15 Vdc. TA = 2SoCj
FIGURE 1- Yit

FIGURE 2-

Yre

80

-

40
20

/"
V-b..

~ I-

r--

r--!::.

0
20

/

I
J

"'

I

u

200

10

310

-

".

~

40
50

~

V

70

510

100

400
300

'\

FIGURE 3-

iO

70

~

t"'-... ~

II.

.....

...............
110

500

20

"' '-...

0
-100

300

200

24

.... ~br.

'

r-

FIGURE 4- Y.

y"

i'- ......

"-

... -

f. FREQUENCY (MHz)

f. FREQUENCY (MHz)

500 ........

/

./
./
i""

"'"

r-200

- -- ----

~
~ ;;;T"

i-'"

300

1I

500

70

100

200

f. FREQUENCY IMIfzI

f. FREQUENCY (MHz)

2-680

300

500

2N3948

(continued)

FIGURE 5- SMALL·SIGNAL CURRENT GAIN

FIGURE 6- OUTPUT CAPACITANCE

28

0

20
6

.......
I'

......

2

4

-4

7

T.. - 25°C

5~

RAl

70

00

--

t'"-o.

3

200

r""r-

1"'-...

.~

-

~

300

-

2

r...

'-

~

50

1c=80mAdc

....... r-..!lI,.llcIIl

...... .......1..VAtJ
........

•
o

T.. -25OC-

Yca -15Ydc

4

500

II

uu

700

2

3

IU

Yea. COUfCfIlR-IASE YOlTAGE lYtic)

f. FR£QUEIICY IIIIIzI

SMALL-SIGNAL ADMITTANCE PARAMETERS VERSUS COLLECTOR CURRENT
11- 200 MHz. T.. - 250Cl
-YeE-IOY

-

Yca=15Y

MURE 7:- '11

FIGURE8-

&0

6

50
'",

40

20

'\

0

~... ~

0

'"I)

250

I

o

- --- -_. --- -_.

~

4

II.

-

-b,.

2

-- -- -- -- --

I

br.

-In

"'1000

o

50

5

3

~

'It

,r

-

40

&0

FlGUR£9 -

80

00

40

20

'ft

FIGURE 10 -

&0

~

JIIII

'01

101--1--1-+-1--+--1--+-+--+--1

lit.

I

.,
'- ~ ..

00

- -- -- --

t---+-~-+--+-+

"- +--+-t--t-""""'"1

.1--I-~I-+-I--+--r--+--+--+--1

of

..

4r--r--r--r-1--+-+--+--+-~--;

-

- ..Jro_ -100

-

0~0--~~2O~-L~4O~-L--80~-L--~80~~-t.*

Ie. COUtCTOIt CIIIIfJff!Mld

2-681

2N3948

(continued)

FIGURE 12 - POWER GAIN

FIGURE 11 - 480 MHz RF AMPliFIER TEST CIRCUIT
2

I.

f = 400 11Hz
f- TA-2SoC

.S

,

.0
.S
looopFJ7-=

L, = 2 TURNS # 18 TINNED WIRE, 3/161.0.,
1/." LONG, AIR WOUND.
L, = 2 TURNS, # 18 TINNED WIRE, 1/2 1.0.,
3/16" LONG, AIR WOUND.
"AIR VARIAIIU CAPACITORS

1'_ O.olpf

0

o

---

::>--::::: :..-::..

VCE=ISV
+13.6 Vdc
12V- ~ ~

~ P"'"

..a. ::;;.-"

eP'
100

200

+13.6 Vdc

300

400

500

600

p.., POWER INPUT (mWI

DESIGN NOTE

Figures 1 through 4 and 7 through 10 show small-signal admittance-parameter data. This data can
be used for Class A amplifier designs.
For Class C power-amplifier designs, the small·signal parameters are not applicable_ The parallel
equivalent output capacitance and input resistance and capacitance for Class C power-amplifier
operation are used
The parallel resistive portion of the collector load impedance for a power amplifier, R.', may be
computed by assuming a peak \/OItage swing equal to Vee, and using the expression R.' = Vee'/2P
where P
RF power output. The computed R': may then be combined with the data in Figures 14, 15
and 16 to comprise complete device impedance data for Class C power amplifier design_

=

CLASS C DESIGN DATA (EMITTER GROUNDED DIRECTLY TO CHASSIS)
lVeo = 13.6 Y, TA = 25"C1

FIGURE 14 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE

FIGURE 13 - POWER OUTPUT

2.0..-----..------.----.---,---.----.

;15~--~~~~~~~~~--~

I 1'O~---~~~~~~~~~~~~~
IoJ

O.S t--------1f----+---:-::~,___7l".......:::t_---"I

I

.I.

- P... -I.5WAn:~
6

J

i

2

100

FIGURE 15 - PARALLEL EQUIVALENT INPUT RESISTANCE

O

100

--

400

300

200
f, fREQUENCY (11Hz)

fiGURE 16 - PARALLEL EQUIVALENT INPUT CAPACITANCE
40

I-- '-

200

....;;;:::

4

0

I WATT __
1.5

....

~

f, fREQUENCY IMHzI

p... - J.oWATT

1.0 WATT

30

r--.. r-- r--..

--

P... -l.5WATT __
1.0WATT __

r--::::- '-

~ t:'-.

r0-

....

~

0

300

~oo

400

f, FR£Q\JENCY IMHzI

200
f. fREQUENCY (11Hz)

2-682

300

400

2N3950 (SILICON)

NPN silicon RF power transistor designed for
high-power RF amplifier applications in military and
industrial equipment.

CASE 36
(10·60)

EmiHer common to stud end eese

MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

VCEO

35

Vdc

Collector-Base Voltage

Ves

65

Vdc

Emitter-Base Voltage

VES

4.0

Vdc

Collector-Current - Continuous

IC

3.3

Amp

Total Device Dissipation @ TA .. 25·C
Derate above 25·C

PD

2.8
16

Watts
mWrC!

=25·C

PD

70
0.4

Watts
WrC

TJ • Tstg

-65 to +200

·C

Symbol

Max

Unit

Collector-Emitter Voltage

Total Device Dissipation @ TC
Derate above 25·C
Operating and storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Ambient

'JA

62.5

·C/W

Thermal ReSistance, Junction to Case

'JC

2.5

·C/W

2-683

2N3950 (continued)

ELECTRICAL CHARACTERISTICS (T A ~ 25°C unless otherwise noted)
Characteristic

Min

Symbol

Typ

Max

-

-

Unit

]

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage III
(IC = 200 mAde,
0)

BVCE0(8ua)

'a'

Collector-Emitter Breakdown Voltage
(IC • 10 mAde, VBE • 0)

BVCES

Emitter-Baa. Breakdown Voltage
(IE· 10 mAde, IC' 0)

BY EBO

Collector Cutoff Current
(VCB ' 65 Vdc, IE' 0)
(VCB • 28 Vdc, IE· 0, TA

35
65

-

-

-

IT

-

150

-

Cob

-

80

120

=150·C)

Vdc

-

4.0

I CBO

Vdc

Vdc
mAde

10
10

DYNAMIC CHARACTERISTICS
Current- Gain - Bandwidth Product
(IE' 500 mAde, VCE • 28 Vdc. I. 50 MHz)
Output Capacitance
(VCB = 26 Vdc. ~

=0,

I· 1 MHz)

MHz
pF

FUNCTIONAL TEST
Power Gain

-~~r.ElfICI.nCY

'feat Circuit,... Figure 1,

P out' 50 W. Vce' 28 Vde,
ItS

0;:

50 ohm,sJ f

~

50 MHz

I

I

I

GpE

I

•

I' I Pulsed through a 25 mH mductor; a.ty !a~tor = 50%, Rep. Rate" 60 Hz.

I

8-.0

I

60

I -

-

I

50
Tc

~ 2S!C

;

30

~

25

~

II! 20

v

I
I

/
/

35

Vee

%

V

40

l, - 2TURNS # 18 TINNED WIRE. \4' I.D .• AIR WOUND,
WINDING LENGTH "".
L, - 5 TURNS #16 TINNED WIRE, ~'I.D., AIR WOUND,
WINDING UNGTH "".

-

fiGURE 2- 50 MHz POWER GAIN

FIGURE I - 50 MHz TEST CIRCUIT

• AIR VARIABLE CAPACITORS

dB

0.001 pi

15
0

-=

VYc.-28Vdc

/

/

/

/ "

---

/ ' ~=13.6Vdc

5

0
p~,

2-684

POWER INPUT !WATTS)

I--

2N3950

(continued)

CLASS.C DESIGN DATA FOR VeE

=28 Vdc. Tc=2S"C

(EMmER GROUNDW DlMCTLY 10 THE CHASSIS - NO TUNED-EMITIER TECHNIQUES USEDl

FIGURE 4 - PARALLEL EQUIVAlENT OUTPUT CAPACITANCE

FIGURE 3 - POWER OUTPUT
50

40

"'

'{

........

'"

r......

i'..

r.....

......

r-...

"'I'-.....,

10

i'..
20

600

'\.
H",=30W

I'\. 1\..[\
~ I\. I\:r-,.

['.

~ [S~

200

N"

~

100

f"'..

50
30
f, FREQUENCY 1MHz)

'\.

500

\ \

r--..

P;, = 0.3W""" ......

10

\I '\

3W:'\. 4~\.. r\,.5W

" "" "
'"

""'"

~

"

2W'IW.........

o

700

o

100

70

--

'"

1'""5OW

20

FIGURE 5- PARALLEL EQUIVALENT INPUT RESISTANCE

~

30
I, FREQUENCY (MHz)

-50

70

100

FIGURE 6- PARALLEl EQUIVALENT INPUT CAPACITANCE
5000

4000

~
~

'\.'\

p... =.30 W

i

50W

3000

.J
2000
1000

I

10

"-

10

10

o

'\.

20

30
I, FREQUENCY 1MHz)

50

70

100

o

10

p... = lOW

50W

\..\..

"

[~

.~

"'

20

~

30

50

I, FREQUENCY (MHz)

DESIGN NOTES
For Class.c power·amplifier designs, the small·signal parameters are not applicable. Figures 4 thru
6 and 8 thru 10 give the parallel equivalent output capacitance and input capacitance and resistance for
Class·C power·amplifier operation.
The parallel resistive portion of the collector load impedance for a power amplifier, RL' may be com·
puted by assuming a peak voltage swing equal to Vee. and using the expression RL' = Vcc!/2P where
P = RF power output. The computed R.' may then be combined with the data in Figures 4 through 10
to comprise complete device impedance data for Class·C power·amplifier design.
Due to the high performance capebilities of the 2N3950. care should be exercised during initial
tuning of prototype circuits.
Input power should be increased gradually, while stopping at intarmediate levels to tune. If tuning
difficulties are experienced, or if the power or collector current are abnormal at any intermediate power
input level. the difficulties should be resolved before Increasing power levels further.
The 2N3950 is designed to provide maximum ruuedness commensurata with its high parfor·
mance. Operation at loads with high SWR may produce dangerous voltage and current axcursions, a
condition which should be avoided. In addition. disconnecting the load at full power output could In·
crease device dissipation to over 70 watts which could result in device failure due to dissipation beyond
safe limits set by the junction to ambient thermal resistance, regardless of the intarnal construction
and safe area of the device.

2-685

70

100

2N3950

(continued)

CLASS C DESIGN DATA FOR Vr;a= 13.6 Vdc, Tc=2S·C
IElllTTEllIIlOUIIDfD DIIfI:IlY TO THE CIMSSIS -110 TUfIED.OIIT19t T£CItIIICIUfS USB»

FlCUR£ 7- POWER OUTPUT

FIGURE 8- PARALLEL EQUIVALENT OUTPUT CAPACITANCE
700

50

,

600

~

40

500

r--...,i"-- 1--0... r-....
; t--..~
2Wr-- r-. ....r-.... ~ r-.....'"
J
20
r-- I'" ~
30

~4W- r-- 6W

-

~---

.............

10

o

10

.....

r-....

i

""R "",

30

""

400

J

300

I'-...
~

p... - 20W

t'.... ........
~

I'

t...... ~
..... ~,

i'. ~

"20

~,

50

70

,

100

- --

..... .........

lOW

200

100
0
10

50

30

20

70

100

f, FRfQUENCY!MHz!

f, FRfQUEIICY 111Hz!

FIGURE 10 - PARALLEL EQUIVALENT INPUT CAPACITANCE

FIGURE 9- PARALLEL EQUIVALENT INPUT RESISTANCE
5000

10
9

4000

-

...

4

3000

..... 1--0...

P... -10W
~i--

r-

20';-"'"

~

~\

2000

1000

."

\\

~... - 20W

I~ t--.........

:-lOr

o

10

20

30
f, FRfQUENCY!MHz!

50

70

100

o

10

20

30
f, FRfQUENCY!MHz!

2-686

50

70

100

2N3959 (SILICON)
2N3960

CASE22\

NPN silicon annular transistors particularly well
suited for high-speed current-mode logic switching applications.

(TO·18)

Collector connected to case

MAXI MUM RATI NGS (T A = 25°C unless otherwise noted)

Rating

Value

Symbol

Unit

Collector-Base Voltage

VCB

20

Vdc

Collector-Emitter Voltage
(1 to 30 mA)

VCEO

12

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

Total Device Dissipation @TC = 25°C
Derate above 25°C

PD

750
4.3

mW
mW/oC

Total Device Dissipation @T A = 25°C
Derate above 25°C

PD

400
2.3

mW
mW/oC

6JC
6JA

0.233
0.436

°C/mW

TJ

200

°c

Tstg

-65 to +200

°c

Thermal Resistance
Junction to Case
Junction to Ambient
Junction Operating Temperature Range
Storage Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(Ie = 10 j.LAdc, IE = 0)

BVCBO

Collector-Emitter Breakdown Voltage
(I C = 10 mAde. IB = 0)

BV CEO

Emitter-Base Breakdown Voltage
(IE = 10 ).LAde, IC = 0)

BV EBO

Collector Reverse Current
(VCE = 10 Vdc, VEB = 2 Vdc)
(V CE = 10 Vdc, VEB = 2 Vdc, T A
Base Cutoff Current
(VCE = 10 Vdc, VEB = 2 Vdc)

9

IeEX

20

-

12

-

4.5

-

-

.005
5.0

-

.005

-

= 150°C)

Collector Forward Current
(V CE = 5 Vdc, VB£: = 0.4 Vdc)

2-687

9

IaL

9

IeEX

Vdc
Vdc
Vdc
).LAde

).LAde
j.LAdc
1.0

2N3959, 2N3960 (continued)

ELECTRICAL CHARACTERISTICS (continued)
Characteristic
ON CHARACTERISTICS
DC Current Gain
(IC = 1.0 mAde, VCE = 1 Vdc)
(IC = 10 mAdc, VCE = 1 Vdc)
(Ie = 30 mAdc, VCE = 1 Vdc)

hFE

1

Collector-Emitter Saturation Voltage
(Ie = 1.0 mAde, IB = 0.1 mAde)
(IC = 30 mAdc, IB = 3 mAdc)

2,3,4

Base-Emitter "ON" Voltage
(IC = 1.0 mAdc, VCE = 1.0 Vdc)
(IC = 30 mA'dc, VCE = 1.0 Vdc)

3,4

25
40
25
VCE(sat)

VBE(ON)

-

Vdc

-

0.2
0.3

-

0.8
1.0

-

2.5

-

2.5

13
16

-

-

1000
1300
1300
1600
1000
1200

-

-

-

400

Vdc

TRANSIENT CHARACTERISTICS
Output Capacitance
(VCB = 4 Vdc, IE = 0, f
Input Capacitance
(VBE, = 0.5 Vdc,

Ie =

8

= 1 kHz)

8

= 100 MHz)

Current- Gain - Bandwidth Product
(IC = 5 mAdc, VCE = 4 Vdc, f = 100 MHz)

= 10

(IC

= 30 mAde,

mAde, VCE
VCE

Cib

0, f = 100 kHz)

High-Frequency Current Gain
(IC = 10 mAde, VCE = 10 Vdc, f

(IC

Cob

=

10 Vdc, f

=4

Vdc, f

Collector-Base Time Constant
(IC = 5 mAdc, VCE = 4 Vdc)
(IC

=

10 mAdc, VCE

=

10 Vdc)

(IC

=

30 mAde, VCE

=

4 Vdc)

=

100 MHz)

= 100

MHz)

I hie I

2N3959
2N3960
5
2N3959
2N3960
2N3959
2N3960
2N3959
2N3960
6
2N3959
2N3960
2N3959
2N3960
2N3959
2N3960

pF

MHz

fT

rj, C c

pF

-

---

-

---

-

ps
30
50
25
40
30
50

Typical Performance
(Vout = 1 V)

TYPICAL SWITCHING TIMES

@ 10 rnA

Turn-On Delay Time
Rise Time

7
2N31959
2N3960

Fall-Time

tr
7

Turn-Off Delay Time
2N3959
2N3960

2-688

ton(delay)

tOff(delay)

tr

@ 30 rnA

2.4

2.0

ns

3.0
3.0

2.2
1.7

ns
ns

1.6

1.6

ns

3.3
3.3

2.3
1.9

ns
ns

2N3959, 2N3960

(continued)
FIGURE 2

FIGURE 1
MINIMUM DC CURRENT GAIN

COLLECTOR SATURATION REGION

100

1.0
Va- 1Y

----

70

~

50

8l

40

!S

V
~

:>
<.>

~

'"iii:
;;;
j

30

""". /

TJ ~ 175;C

---

-r

10

.l.

.-l.-

~

~

0.8

~
!i!

0.6

f5

!:

"I"\.
I\~

~ -~5°C

!J

~
1lI

~~

TJ - 25°C

TJ

/

Ui

~

20

V

,

TJ -100°C

--I---

I-

',

1'-1'\-\

~

iii::j

0.4

8

!'".

0.2

This araph shows the effect of base current
on collector currentJ!,. is the transistor
current pin .t the ae of saturation abiii.... lrem Figure 3••nd fl' {Iorced ,ainl
is the ralio 01 lei I" in • circuit.
PL h,,@ 1V{FiB. 31
Ie/I"
fl' TJ ~ 25"&

"

\
\ \ -..;

""
'\

\

........

'\1'0..

"-....

"lrnA

3.0

2.0

5.0

7.0

10

20

2.5
3
OVERORIVE FACTOR (Pol p~

1.5

30

Ie. COLlECTOR CURRENT {mAl

1.0

Ye~

I

MAXIMUM COLLECTOR·BASE TIME CONSTANT

-

I

.8

V

,.

100

~

MAXV..

:Y

l-

~

z:

8

;

-I-

.2

3.0

5.0

7.0

10

!!i

30

. - '-1,-

.

20

~
10

20

2.0

1.0

30

3.0

-0.5

~

-1.0

~ 1800
:I

{25°C to 175°CI

g

1600

I

-2.0

-Va- 4Y

2N3~

-2.5

./

V

20

30

I

k'

IS 1400 I--- --VeE - 10V
IE

{-55°C to 25°CI _

~

10

I--- TJ - 25°C

{-55°C 10 25°CI

8

7.0

FIGURE 6
MINIMUM CURRENT GAIN·BANDWIDTH PRODUCT
2000

~

5.0

Ie. COlLECTOR CURRENT {mAl

I

P
~
.s

f~

::!

FIGURE 5

100-

__

;!

TYPICAL TEMP.ERATURE COEFFICIENTS
9vc lor Val~ I---

I-

12:J~r-f::::: f.:: I'--r..-

.....

Ie. COlLECTOR CURRENT {rnAl

+0.5

-

2N3960

.... :--t-J..

<>
<.>

I
2.0

TJ - 25°C
,-VeE-4Ydc
--YeE-IOYd!: f -

::j

MAXYeElyll@le/l. - 10

1.0

I
I

S

- --

.4

1'---::::-- r-.
.....
......

~

T.'- 25°C

~

!i!

T
T

50

~

I

~

70

!iii:

MINY,,- ~I-

~

3.5

FIGURE 4

FIGURE 3
''ON'' VOLTAGE UMITS

'"
~

•

lOrnA

J!

1.0

.6

Ie ~ 30rnA \ .

~

"i'

,

~75OCI

"I'

'7

,

/ ' , /~

~ :,..-

.....

-- --

~

........

~.

/~/

r-....~
.....

-I----

•.A

2N3959

17

/V
//
'/

fJv. lor Y"

I

500

10

20

30

1.0

2.0

3.0

5.0

7.0

10

Ie. COlLECTOR CURRENT {mAl

le.COLLECTOR CURRENT {rnAl

2-689

20

30

2N3959, 2N3960

(continued)
FIGURE 8

FIGURE 7
TYPICAL SWITCHING TIMES

JUNCTION CAPACITANCE

50

=

30

VIII 1V f-

20

TJ=25"C
Rs-·R,

"'

~

YI.. = v...

r"~

r--....

~Ll.

r-

t--

ff-

TJ=2SoC

r-- l-

fall

"'"

t- I-

rise

r-

c..

I"""'- r-....

turn·•• delay

-MAXIMUM

b

2"3959 ...l

~

1'--

s

'"t-hJ..

2N3960

r-

tu,n-off delay

f"'""P' I-

t:::

.-~=

r- '.

4

1"- ...

Ie. COLLEcrOR CURRENT (mAl
50

0.1

, ......
=

'-

r-- ...
0 ...

1.0

.... .!

2.0

S.O

10

FIGURE 9

Villi 2V f-

20

"'to-

"""

TJ-2S"C
Rs=R,

I'" ~

YI.. =V.,.

f.1I

MAXIMUM CUT·OFF CHARACTERISTICS

f-

rr-

100

40

rise

I

20

........

r--.

r--...
. 2 I--

O.S

Colo

REVERSE BIAS IVOLTSI

~

30

0.2

I"-

~

30

20

10

5

-

.......... r.....

"0.

II
3.

---.TYPICAI.

delay ......

-

t-..

tui"'"del~

3

tUnHIII

4

~

S

i

10
TJ .ISO·C

..:--

L

100'C

"

4.0

20

10

I

WC

I--

2.0

30

Ie. COllECTOR. CURRENT (mAde)

~

1.9

I

0.4

_

I

TEST CIRCUIT
Vcc(+S.3VI

1

0.2

~

0.1

0.04
0.02

1

0.01

0.004
THIS TEST SET UP IS DESIGNED TO SIMUlATE A CASCAD£ OF IDENTICAL STAGES.
.'. THE SOURCE RESISTANCE (Rs! EQUALS
THE LOAD RESISTANCE (R,). VALUES USED
IN THE TEST ARE SHOWN IN THE TABLl
FOR V~ = V... = IV. V.. = +O.SV.
R, & R. VAlUES API'IIOPRIATELY REDUCED

V~=V... =

2volls, V.. - +1.0V

IelmAI R.IKnI
1.0
3.0
10

30

24.0
8.2
2.4
0.8

R"nI
2K
680
200
68

R.1Ol
2K
680

,

0.002
0.00 I
0.6
-

180
36

0.4
0.2
0.2
0.4
0.6
REVERSE BIAS
FORWARD BIAS VIE BASE EMITTER VOLTAGE IVOLTS)

2N396J
For Specifications, See 2N3375 Data.
2-690

2N3970 (SILICON)
2N3971
2N3972

N-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

(Type A)

Depletion Mode (Type A) Junction Field-EffectTransistors designed
primarily for chopper and high·speed switching applications.
•

High Input ImpedanceIGSS = 250 pAdc (Max) @ VGS = 20 Vdc

•

Low Drain·Source "ON" Resistance rds(on) = 30 Ohms (Max) @f = 1.0 kHz (2N3970)

•

Guaranteed Switching Characteristics

1

~DlAl
*MAXIMUM RATINGS
t

Rating

Symbol

Value

Drain-Source Voltage

VOS

40

Vde

Orain-Gate Voltage

VOG

40

Vde

Reve... Gate-SOurce Voltage

OIA

Unit

VGS(r)

40

Vde

Forward Gate Current

IGF

50

mAde

Total Device Oissipatlon@Tc= 25°C
Derate above 25°C

Po

1.8
10

Watts
mW/oC

Tstg

-65 to +200

°c

Storage Temperature Range

r~o

~r-

1,

1

.500

m

J

DlA

·Indlcetea JEDEC Regittarad Data.

Pin

l.Sourct
2. Dr.in
3. Gate and c..

CASE 22 (4)
TO·18

2-691

2N3970, 2N3971, 2N3972 (continued)

*ELECTRICAL CHARACTERISTICS(T A = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

V{BR)GSS

40

-

Vdc

IGSS

-

250

pAde

-

250

pAd.

500

nAd.

OFF CHARACTERISTICS
Gate-Source Breakdown Voltege
(lG = 1.0 "Ade, VGS = 0)
Gate Reverse Current

(VGS

= 20 Vde, VOS = 0)

Drain Reverse Current
(VOG = 20 Vde, IS = 0)
(VOG

lOGO

= 20 Vde, IS = 0, TA = 1500 C)

Drain Cutoff Current

10{off)

(VOS = 20 Vde, VGS = - 12 Vde)

-

250

pAde

(VOS = 20 Vde, VGS

-

500

nAde

= -12 Vde, TA = 1500C)

ON CHARACTERISTICS
Zero·Gate Voltage Drain Current (Note 1)
(VOS = 20 Vde, VGS = 0)

mAde

lOSS

50

2N3970
2N3971
2N3972

Gate-Source Voltage
(VOS = 20 Vde, 10 = 1.0 nAde)

25
5.0

150
75
30

4.0
2.0
0.5

10
5.0
3.0

-

1.0

Vde

VGS
2N3970
2N3971
2N3972

Vde

Drain-Source "ON" Voltage
(l0 = 20 mAde, VGS = 0)

2N3970

= 10 mAde, VGS = 0)
= 5.0 mAde, VGS = 0)

2N3971

-

1.5

2N3972

-

2.0

-

30
60

(l0
(lo

VOS{on)

Static Orain·Souree "ON"· Resistance
(l0 = 1.0 mAde, VGS = 0)

rOS{on)
2N3970
2N3971
2N3972

Ohms

-

-

100

30
60
100

Ciss

-

25

pF

Crss

-

6.0

pF

td{on)

-

10
15
40

ns

SMALL-8IGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = 0,10 = 0, f = 1.0 kHz)

I nput Capacitance
(VOS = 20 Vde, VGS

rds{on)
2N3970
2N3971
2N3972

= 0, f = 1.0 MHz)

Reverse Transfer Capacitance
(VOS = 0, VGS = - 12 Vde, f

= 1.0 MHz)

Ohms

SWITCHING CHARACTERISTICS
Turn.()n
Delay Time

Test Condition for 2N3970:
(VOO - 10 Vd., VGS(on) - 0, 10{on)
VGS{off) = 10 Vde)

= 20 mAde,

2N3970
2N3971
2N3972

Rise Time

Test Condition for 2N3971 :
(VOID = 10 Vde, VGS{on) = 0, 10{on)
VGS{off) = 5.0 Vde)

= 10 mAde,

2N3970
2N3971
2N3972

tr

-

10
15
40

ns

Turn-Off Time

Test Condition for 2N3972:
(VOO = 10 Vde, VGS{on) = 0, 10{on) = 5.0 mAde,
VGS{off) = 3.0 Vde)

2N3970
2N3971
2N3972

toff

-

30
60

ns

*lndic8tesJEDEC Registered Data.
Note 1: Pulse" 88t: Pul. Width - 300 ",s. Duty Cycle = 3.0%.

2-692

100

2N

3980 (SILICON)

Silicon annular PN unijunction transistor designed for
military and industrial use in pulse, timing, sensing,
and oscillator circuits.
CASE 22A
(TO-18 Modified)

(Lead 3 connected to case)

MAXI MU M RAT I NGS

ITA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

RMS Power Dissipation*

1Jl

360*

mW

RMS Emitter Current

Ie

50

mA

Peak Pulse Emitter Current**

ie

1.0**

Amp

Emitter Reverse Voltage

VS3li:

30

Volts

Interbase Voltage

VB2

iu

35

Volts

-65 to +200

·C

Storage Temperature Range

Tstg

* Derate 2_ 4 mWj·C increase in ambient temperature. Total power dissipation (available power
to Emitter and Base-TwO) must be limited by external circuitry.
**Capacitance discharge current must fall to 0.37 Amp within 3.0 ms and PRR S 10 PPS.

2'--693

2N3980

(continued)

ELECTRICAL CHARACTERISTICS

ITA = 25 0 C unless otherwise notedl

Symbol

Characteristic
IntriMic Standoff Ratio
(YB2BI = 10 V) Note I

Max

Min

Typ

0.68

~

0.82

4.0

6.0

8.0

0.4

~

0.9

~

2.5

3.0

Unit

~

Interbase Resistance
(YB2BI = 3.0 V, IE = 0)'

RBB

Interbase Resistance Temperature Coefficient
(YB2DI = 3.0 V, Is = 0, T A • -65'C to +IOO'C)

aR BB

Emitter Saturation Voltage
= 50 mAl Note 2
(YB2BI = 10 V,

VEBI(sat)

Is

Modulated Interbase Current
(YB2BI • 10 V, IE = 50 mAl

fsz(mod)

Emitter Reverse Current
(YB2E = 30 V, IBI • 0)
(YB2E = 30 V, lsi • 0, T A = 125'C)

~

k ohm.

%/'C
Volta

mA
12

15

lEO

Peak Point Emitter Current
(YB2DI = 25 V)

Ip

Valley Point Current
(VB2BI = 20 V, Ra2 = 100 ohms) Note 2

IV

·88•• -Ooe P_ Pulse Voltsg.
(Not. 3, Figure 3)

VOBI

Maximum. OlicUlation Frequency
(Figure 4)

f(max)

~

~

5.0

10

nA

~

~

1.0

IJ.A

~

0.6

2.0

1.0

4.0

10

6.0

8.0

1.0

1.25

IJ.A
mA

Volta
~

MHz
~

NOTES
2. Use pulse techniques: PW - 300 p.s duty cycle ";2% to avoid
internal heating due to interbase modulation which may result in
erroneous readings.

1. Intrinsic standoff ratio,
!l,is defined by equation:

!l=~1

VI281
Where Vp Peak Point Emitter Voltage
VB2I , = Interbase Voltage
VIEIIl = Emitter to Base·One Junction Diode Drop
(=0.5 V @ 10 pAl

=

FIGURE 1- UNUUNCTION TRANSISTOR
SYMBOL AND NOMENCLATURE

3. Base·One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in SCR firing circuits and other types of pulse circuits.

FIGURE 2- STAnC EMITTER
CHARACTERISTICS CURVES

FIGURE 3- YOII TEST CIRCUIT
(Typical Relaxation Oscillatorl

FI8UIIE 4 - F(IIU) MAXIMUM
FREQUENCY TEST CIRCUIT

IExaggerated to Show DetailS!
CUTOFF
REGION

V,

V." PfAK POINT I:

v,

v,

NEGATIVE
I-RESISTANCE.I-SATURATION
REGION
I REGION

+20 V

+20 V

R,
20W

R..

RI2
100 Il

100 Il

I

I EMITIERTO
I
BASE.I
: CHARACTERISTIC

VUI'

v,

-+ _____

V'"I"'I

t------

Vv

I VA~~ POINT\

C,

C,
0.2 p.F

I
I

-+~~------tl.-----L-I,

1'0

2~694

a to 0.1 p.F
R"
201l

TO
FREQUENCY
COUNTER

2N3993, 2N3994 (SILICON)
2N3994A

P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS

SILICON P-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

(Type A)

Depletion Mode (Type A) Junction Field·Effect Transistors
designed primarily for chopper and high-speed switching applications.

•

Low Leakage Current,,lOGO = 1.2 nAdc (Max)

@

VDG = 15 Vdc

•

Low Reverse Transfer Capacitance Crss = 4.5 pF (Max) @ VGS = 10 Vdc (2N3993)

•

Low Drain-Source "ON" Resistance rds(on) = 150 Ohms (Max) @ f = 1.0 kHz (2N3993)

I

*MAXIMUM RATINGS
Unit

Symbol

Value

Drain-Source Voltage

VOS

-25

Vde

Drain-Gate Voltage

VOG

-25

Vde

Reverse Gate-Source Voltage

VGSR

25

Vde

Rating

Forward Gate Current

IGF

10

mAde

Total Device Dissipation@TA==2SoC

Po

300
2.0

mW
mW/oC

T stg

-65 to +200

°c

Derate above 2SoC

Storage Temperature Range

I!1m!r
0.230
DIA

~

11

~~~~ OIA

-Indicates JEOEC Registered Data.

0.500
MIN

~

TO-72
CASE 20 (5)

2-695

2N3993, 2N3994, 2N3994A (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

Unit

V(BR)GSS

25

-

Vde

-

1.2
1.2

nAde
"Ade

-

1.2
1.2
1.0
1.0

nAde

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG = 1.0 "Ade, VOS = 0)
Drain Reverse Current
(VOG = -15 Vde, IS = 0)
(VOG = -15 Vdc, IS = 0, TA

lOGO

=

1500 C)

Drain Cutoff Current
(VOS = -10 Vdc, VGS = 10 Vde)
(VOS = -10 Vde,VGS = 6.0 Vdc)
NoS = -10 Vde, VGS = 10 Vde, TA = 1500 )
(VOl': = -10 Vde, Vr.s. = 6.0 Vde, T Jl. = 1500)
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (Note 1)
(VOS = -10 Vde, VGS = 0)
Gate-Source Voltage
(VOS = -10 Vdc, 10 = -1.0 "Ade)

10(off)
2N3993
2N3994, 2N3994A
2N3993,2N3993A
2N3994, 2N3994A

mAde

lOSS
10
2.0

-

4.0
1.0

9.5
5.5

-

150
300

6.0
4.0
5.0

12
10
10

-

-

16
12

2N3993

-

4.5

2N3994
2N3994A

-

5.0
3.5

2N3993
2N3994, 2N3994A

Vde

VGS
2N3993
2N3994, 2N3994A

"Ade

SMAll-SIGNAL CHARACTERISTICS
rds(on)

Drain-5ource "ON" Resistance

(VGS = 0,10

= O,t = 1.0 kHz)

Forward Transadmittance (Note 1)
(VOS = -10 Vde, VGS = o,t = 1.0 kHz)

Input Capacitance
(VOS = -10 Vde, Vas = O,t

Reverse Transfer Capacitance
(VOS = 0, VGS = 10 Vde, t
(VOS = 0, VGS

2N3993
2N3994,2N3994A

Ohms

mmhos

Iytsl
2N3993
2N3994
2N3994A

pF

Ciss

= 1.0 MHz)

2N3993, 2N3994
2N3994A

Crss

= 1.0 MHz)

= 6.0 Vde, t = 1.0 MHz)

"Indicates JEOEC Registered Data.
Notel: Pulse Test: Pulse With = 100 ms, Outy Cyele'::lO%

2-696

pF

2N40

12 (SILICON)

~E3~

stud isolated from case

NPN silicon annular transistor, designed for frequency multiplication applications.

(TO·60)

MAXI MUM RATI NGS (T A = 25°C unless otherwise noted)

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

Vdc

Collector-Emitter Voltage
(VEB(off) = 1. 5 Vdc)

VCEV

65

Vdc

Collector-Base Voltage

VCB

65

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

1.5

Amps

Total Device Dissipation @ T A = 25°C

PD

11.6

Watts

66.3

mW;oC

Rating

Derate Above 25°C
Operating and Storage Junction Temperature Range

T J,T stg

-65 to +200

°c

FIGURE 1 - TRIPLER TEST CIRCUIT
f,.~

r2.7!l

334 MHz

+28 V

h..
=

0.2pf

- - - - - -17JZZ2'~:zzzzzzzz~ItiZZ2Zzmzzz:ZZZZZZZZzmzzzz:~
O.s..IOpF

1000 pf

RFC I ~ 0.22 /LH
RFC, ~ 0.33 OHMS, W. W. RESISTOR
L, ~ 2 TURNS, lio' DIAMETER, NO. 16 WIR~
L, ~ 1/16" WIDTH COPPER STRIP,lio' LONG
L, ~ 2 TURNS, %" DIAMETER, NO. 18 WIRE
4 ~ IY.! TURNS,li" DIAMETER, 1/16" COPpER STRIP
OUTPUT CAVITY ~ 114" X 114" X 214"
CENTER CONDUCTOR ~ \4" 00 TUBE
OUTPUT DIRECT COUPLE ~ I" FROM SHORTED END

f."

~

1002 MHz

2-697

2N4012

(continued)

ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)

Symbol

Max

Min

Typ

40

-

-

65

-

-

65

-

-

4

-

-

-

-

O. I

hFEI
hFE2

4.0
10

-

40

VCE(sat)

-

-

1.0

-

350

-

c

-

25

-

Output Capacitance
eVCB = 30 Vdc, IE = 0)

Cob

-

-

10

Base-Spreading Resistance
(IC = 250 mAdc, VCE = 28 Vdc, I = 400 MHz)

rbb

-

10

-

-

Characteristic

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (I)
(Ic = 0 to 200 mAdc, IB = 0)

BVCEO

Collector-Emitter Breakdown Voltage /11
(IC = 0 to 200 mAdc, VEB(Off) = I. 5 Vdc)

BVCEV

Collector-Base Breaxdown Voltage
(IC = O. I mAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = O. I mAdc, IC = 0)

BVEBO

Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)

ICEO

Vdc

Vdc

Vdc

Vdc

mAdc

ON CHARACTERISTICS
DC Current-Gain
(Ic 1.0 Adc, VCE; 5.0 Vdc)
(IC 125 mAdc, VCE 5.0 Vdc)

=
=

=

Collector-Emitter Saturation Voltage
(IC 500 mAdc, IB = 100 mAdc)

=

-

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 125 mAdc, VCE = 28 Vdc, 1= 100 MHz)

IT

Collector-Base Cutoff Frequency t
(V CE = 28 Vdc, IC = 0)

I

MHz

GHz

pF

Ohms

FUNCTIONAL TEST
Power Output
Efficiency
Power Output
Efficiency

Tripier (Test Circuit Figure 1)
VCE = 28 Vdc, Pin = I W, lin = 334 MHz,
lout = 1002 MHz

P

2.5

-

11

25

-

Doubler
VCE = 28 Vdc, Pin = I W, lin = 400 MHz,
lout = 800 MHz

Pout

-

3.0

-

35

/11 Pulsed through a 25 mH inductor; duty cycle = 50%
tic is determined Irom Q measured at 210 MHz. Ic = Q x 210 MHz.

2-698

out

~

-

Watts

%
Watts

%

2N4015 (SILl.CON)
2N4016

DUAL PNP SILICON ANNULAR TRANSISTORS
PNPSILICON
MATCHED DUAL
TRANSISTORS

... designed for differential amplifier applications.
•

Collector-Emitter Breakdown Voltage BVCEO =60 Vdc (Min) @ IC = 10 mAdc

•

Collector-Base Breakdown Voltage BVCBO =60 Vdc (Min) @ IC =0.01 mAdc

•

Low Noise Figure NF =4.0 dB (Max) @ IC =0.03 mAdc

•

Low Base-Voltage Differential VBE1-VBE2 = 2.5 mVdc (Max) 2N4016

• Tight DC Current Gain Ratio hFET/hFE2 = 0.9 to 1.0

I

m
=i[

*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

Vdc

Collector-Sa.. Voltage

VCS

Emitter-Sase Voltage

VES

60
60
5.0

IC

300

mAde

IS

100

mAde

TJ,Tstg

-65 to +200

°c

Collector Current
Base Current
Operating and Storage Junction

0.335

=

Vdc

0.305 .
1mb

Vdc

~

05

Temperature Range
ElICh
Transistor

Pack....

3

Total

PNP

IIl!l9

0.165
D.l8f

0.500

MIN
----L

(',>.(&

0]: Co

Total Device Dissipation Iiil T A =250 C
Derate above 250 C

Po

400
2.29

500
2.86

mW
mWf'C

Total Device DiSSipation IiilTC = 25°C
Derate above 25°C

Po

0.85
4.85

1.4
8.0

Watts
mWf'C

PNP

2.~1

7

1

Pin ConnectiollS,
Bottom View

·Indlc:::ates JEDEC Registered Data.

PINS 4 AND 8 OMITTED
All Leads ElactriCilly lsoiltld from C_

CASE 654-04

Formerly Case 32..()2

2-699

2N4015, 2N4016 (continued)

-ELECTRICAL CHARACTERISTICS (TA

I

=25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage(1)
(lc = 10 mAde,lB = 0)

BVCEO

60

-

Vde

Collector-Base Breakdown Voltage
(lC = 10 )lAde, IE = 0)

BVCBO

60

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10)lAde,IC =0)

BVEBO

5.0

-

Vde

-

10

nAde

10

)lAde

-

0.1

)lAde

80

Characteristic

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 50 Vde, IE = 0) ,

ICBO

(VCB = 50 Vde, IE = 0, TA =+150"C)
Emitter Cutoff Current
(VEB = 3.0 Vde, IC = 0)

lEBO

ON CHARACTERISTICS
DC Current Gain
(lC = 0.01 mAde, VCE = 5.0 Vde)

hFE

(lC = 0.1 mAde, VCE = 5.0 Vde)

120

-

(lC = 1.0 mAde, VCE = 5.0 Vde)

135

350

(lC = 50 mAde, VCE = 5.0 Vde)(!)

115

-

-

Collector-Emitter Saturation Voltage(l)
(lC = 50 mAde, IB = 2.5 mAde)

VCE(sat)

-

0.25

Vde

Base-Emitter Saturation Voltage(!)
(lC = 50 mAde,lB = 2.5 mAde)

VBE(sat)

-

1.0

Vde

200
60

600

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Produet(2)
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

MHz

fT

(lC = 1.0mAdc, VCE = 10 Vde, f = 20 MHz)

-

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)

Cob

-

8.0

pF

Input Capacitance
(VEB = 0.5 Vde, IC = 0, f = 1.0 MHz)

Cib

-

25

pF

I nput Impedance
(lC = 1.0 mAde, VCE = 10 Vde, f = 1.0 kHz)

hie

-

11.5

kohms

Voltage Feedback Ratio
(lC = 1.0 mAde, VCE = 10 Vde, f = 1.0 kHz)

h re

-

15

X 10-4

Small-Signal Current Gain
(lc = 1.0 mAde, VCE= 10 Vde, f = 1.0 kHz)

hfe

135

420

-

Output Admittance
(lC = 1.0 mAde, VCE = 10 Vde, f = 1.0 kHz)

hoe

-

80

)l'l'hos

Noise Figure
(lC = 0.03 mAde, VCE = 5.0 Vde,
RS = 10k ohms, f= 1.0kHz, BW= 200 Hz)

NF

-

4.0

dB

hFE1/hFE2

O.g

1.0

-

-

5.0
2.5

MATCHING CHARACTERISTICS
DC Current Gain Ratio
(lC = 0,1 to 1.0 mAde, VCE = 5.0 Vde)
Base Voltage Differential
(lC = 0.1 to 1.0 mAde, VCE = 5.0 Vde
Base Voltage Diffarential Gradient
(lC = 0.1 to 1.0 mAde, VCE = 5.0 Vde,
T A = -550 C to '+250 C)
(lC = 0.1 to 1.0 mAde, VCE = 5.0 Vde,
T A = +250 C to +1250 C)

IVBE1-V BE21
2N4015
2N4016

mVde

-

A(VBE1-V BE2)
ATA

mVde

2N4015
2N4016

-

-

1.6
0.8

2N4015
2N4016

-

2.0
1.0

• Indicates JEDEC Registered Data.

(1)Pulse Test: Pulse Width = 300 )ll, Duty Cycle = 1.0%.
(2)fT is defined 8S the frequency at which Ihfel extrapolates to unity.

2N4048 thru 2N4053 (GERMANIUM)

fif

CASE7

PNP germanium power transistors designed for
high-current applications requiring high gain and extremely low saturation voltage.

Collector connected to case

MAXIMUM RATINGS
Rating

Symbol

2N4048 2N4049 2N4050
2N4051 2N4052 2N4053

Unit

Collector-Emitter Voltage

VCEO

30

45

60

Vdc

Collector-Emitter Voltage

VCES

45

60

75

Vdc

Collector-Base Voltage

VCB

45

60

75

Vdc

Emitter-Base Voltage

VEB

25

30

40

Vdc

Collector Current - Continuous

IC

Total Device Dissipation @ T C

= 25° C

*

Po

60

•

Derate above 25°C
Operating and Storage Junction
Temperature Range

T J , T stg

•

Adc

170

Watts

2.0

W!"C

-65 to +110

°c

Max

Unit

0.5

°C/W

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

Symbol
8JC

•

FIGURE 1- AVERAGE POWER-TEMPERATURE DERATING CURVE
200

en 160

~z:

0

;:::

~

120

0:

en
CI)

is
0<:

LU

80

~

c-

d

c-

'"

" ""

FOR JRANSIENT tERMAL JSISTANCE lND
SAFE OPERATING AREA INFORMATION.
SEE FIGURES 2 & 3.

~

40

o

20

40

60

""'-...

~

80

Te. CASE TEMPERATURE (OC)

*

JEDEC Registered Values, For True Capability See Figure 3
2-701

~

100

120

2N4048 thru 2N4053 (continued)
ELECTRICAL CHARACTERISTICS

(T, ~ 25'C unlessotherw;se noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltaget
(IC = 1. 0 Ade, IB = 0)

Collector-Emitter Breakdown Voltage
(IC = 300 mAde, V BE = 0)

Floating Potential
(V CB = 45 Vde, IE

2N4048, 2N4051
2N4049, 2N4052
2N4050, 2N4053
2N4048, 2N4051
2N4049, 2N4052
2N4050, 2N4053

BVCEOt

BV CES

VEBF

30
45
60

-

45
60
75

-

-

2N4048, 2N4051

(V CB = 60 Vde, ~ = 0)

2N4049, 2N4052

-

= 0)

2N4050, 2N4053

-

0.5

-

15

-

0.2

2N4048, 2N4051

-

4.0

Collector Cutoff Current
(V CE = 30 Vde, VBE(off)
(V CE
(V CE

= 2.0 Vde, TC = +71'C) 2N4048, 2N4051

ICEX

= 45 Vde, VBE (off) = 2.0 Vde, T C =+71'C) 2N4049, 2N4052
= 60 Vde, V BE (off) ~ 2.0 Vde, T C = +71'C) 2N4050, 2N4053

Collector Cutoff Current
(V CB = 2.0 Vde, ~ = 0)
~

0.5
0.5

mAde
15
15
mAde

= 0)
= 0)
= 0)

2N4049, 2N4052

-

4.0

2N4050, 2N4053

-

4.0

Emitter Cutoff Current
(V BE = 25 Vdc, IC = 0)

2N4048, 2N4051

-

4.0

(V CB

= 45 Vde,

ICBO

(VCB = 60 Vde, ~
(V CB

(V BE

= 75 Vdc,

~

~BO

-

= 25 Vdc, IC = 0, TC = +71'C)

-

2N4049, 2N4052

(V BE = 30 Vdc, IC = 0)
(V BE = 30 Vde, IC = 0, TC = +71'C)

2N4050, 2N4053

(V BE = 40 Vdc, IC = 0)
(V BE = 40 Vdc, IC = 0, T C =+71'C)

Vde

Vde

= 0)

(V CB = 75 Vde, IE

Vde

mAdc
15
4.0
15
4.0
15

ON CHARACTERISTICS
DC Current Gain t
(IC = 15 Ade, VCE = 2.0 Vde)
(IC = 60 Adc, VCE

2N4048, 2N4049, 2N4050
2N4051, 2N4052, 2N4053

= 2.0 Vde)

Collector-Emitter Saturation Voltaget
(IC = 15 Adc, IB = 1. 0 Adc)
(I C = 60 Adc, IB

VCE(sat)t

= 6.0 Adc)

Base-Emitter Saturation Voltaget
(IC = 15 Ade, IB = 1. 0 Adc)
(IC = 60 Adc, IB = 6.0 Adc)

-

hFEt

V BE(sat)t

60
120
15

180
240

-

0.15

-

0.3

-

0.6

-

Vdc

Vde
1.0

SMALL SIGNAL CHARACTERISTICS
Common-Emitter Cutoff Frequency
(IC = 15 Adc, VCE = 2.0 Vdc)
To avoid excessive heating of the collector junction, perform test with pulse method.

The switching performance of this transistor is determined primarily
by the gain· bandwidth product, fr·, and the behavior of the base-spreading

reSistance, r,'.

In the case o~ rise time, the base-spreading resistance plays a small
part, and the test CirCUit delivers a constant current step of turn-on current
to the transistor (II.). Therefore, the curve of t. on Figure 6 follows theory
closely, i.e.:

tr =0.8

~.

2;h

From the curve, it can be seen that h is roughly constant with current; using
the equation, its large signal value can be calculated to be approximately
120 kHz at the 20·Amp level. A lower supply voltage will increase rise time
slightly.
Turn·off time is slow because of conductivity modulation which occurs
in the base region. When the transistor is held "on" in saturation, the base
region becomes fHled with excess charge; i.e., charge in excess of that

• iT

necessary to sustain the circuit limited value of Ie. As a result. the base
resistivity and consequently r,' become very low. During turn off. as the
excess charge is reduced, the accompanying increase in resistivity cause~
a marked reduction in theturn·off current, i'2, as can be seen from the wave·
forms of Figure 5. During fall time, the in current is very low causing an
extended fall time.
Only a slight improvement in turn·off performance is achieved with a
"speed·up" capacitor placed across R,. This unusual behavior occurs be·
cause r,' limits the amount of reverse current which can be achieved. Also,
it seems evident that r,' increases with applied reverse current, so that
efforts to speed up the turn.off behavior are somewhat futile.
In most applications. switching time will be close to the values shown
on Figure 6. Delay time is not shown as it is negligible in comparison to the
other times.

=fa.xh••

2-702

2N4048 thru 2N4053

(continued)

FIGURE 2- TRANSIENT THERMAL RESISTANCE
~ 1.0

I ~:~
i

S;

~

f-O

iii 0.03

f-O

SINGLE PU)LT
111.10 0)

Q

,f0.01
0.1

m:r-

0.01

~O.02

0.5

1.0

_

2.0

10 20
50 100
t I, PULSE WIDTH Ims)

5.0

y-+

-+SINGLE PULSE:
TJI"I- Tc ~ 8Je rlt,) p"

--7+ REPETITIVE PULSES.::l-

1'1-!:i;

Til'ilil ~III ~JClrt"i O!~'i

II DUTY CYCLE 0~ l.tt,

1111 II
0.2

0.2

8JellYPI - 0.4°C/W

x

200

500 1000 2000

vided TJI"I < IIO·C. T JI"I may be calculated

0.03

tures, thermal limitations will reduce the power

0.02

that can be handled to values less than the limi·
tations imposed by secondary breakdown.

from the data in Figure 2. At high case tempera-

FIGURE 4 - SAFE OPERATING AREA TEST CIRCUIT
"';0.040

~

"-

"-

30
20

""\

7.0
5.0

'-'

~
2.0 r--

TJ ~ 110°C
CURVES APPLY
BElOW RATED VeEo

1.0
1.0

2.0

.9 3.0

0.25 mH

'0.10,1%

a 10
l!i

=

llO·C; Te is variable depending upon conditions.
Pulse curves are valid for duty cycles to 10% pro-

0.01
5000 10000

FIGURE 3- ACTIVE REGION SAFE·OPERATING AREA

;

The data of Figure 3 is based on TJI"I

0.1
0.07
0.05

100
70
50

i:$

There are two limitations on the power han·dling ability of a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e. the
transistor must not be subjected to greater dissipa·
tion than the curves indicate.

0.3
0.5°C/W

9JC(m •• j

...

I OOo~ ~+tr
:: 0.05

L

.....

0.3
f-O 0.2
0.2
f- 0~ 0.1

15

1.0
0.7
0.5

0.5

I I
3.0

5.0

1

10

20

100p.s

"

.....

7.0

50WZ

r--.

30

VeE, COLLECTOR·EMITTER VOlTAGE IVOLTS)

"

'''V.

1.0ms
'NOT REQUIRED If CURRENT PROBE
USED TO READ I"~I
"PRf::::::60Hz

dC@
50

70

SERIES IMPEDANCE & INDUCTANCE
MUST BE KEPT TO A MINIMUM.

100

FIGURE 6- SWITCHING TIMES

FIGURE 5- SWITCHING TEST CIRCUIT
H

100
70
50

TO OBTAIN DATA FOR FIGURE 6,
R, & RL WERE VARIED. Vee and V,
LEVElS REMAINED APPROXIMATELY
AS SHOWN.

Vee~30V

RL

R,_

..,
Vo

Vee

==

-

==
20

30

I,

ill

'''ZENER SELECTED TO ESTABLISH
SAfE OPERATING AREA VOLTAGE.
@1,=60Adc,
2N4048, 2N4051 = 35 Vdc
2N4049, 2N4052 = 40 Vdc
2N4050. 2N4053 = 45 Vdc

1,'

].

i

~

;::

10
7.0
5.0

Ij

Vee

30 V

_11l~le/IO

I-""

r-- i12 (p.)-I B1

1.'::::::1.

.....

\oIt,

.....

~ .....

t-i- - - - - " " - - - - -

ti

3.0
2.0
i,

01---=""'-----

2-703

1.0
1.0

1\

\
2.0

3.0

20
30
5.0 7.0 10
Ie, COLLECTOR CURRENT lAMP)

50

70 100

2N4048 thru 2N4053 (continued)

TYPICAL DC CHARACTERISTICS

FIGURE 1- DC CURRENT GAIN
2.0
f-TJ

}JI= l~oC

T"'"

25°C

r-....

we'

TJ

FIGURE 8- COLLECTOR SATURATION REGION
2.0

'III

~n

6

III

I Ic=l.OA

III

II

I

I

I

Ie = lOA

Ic = 50A

Ic = lOA

Ic =-l.OA

TJ = 25°C
(NOTE 11-

2

"-

VCE= 2.0 V
(NOTE II

8

NORMALIZED TO TJ = 25°C; Ic = 15 AMP
0.1
0.7

'-

II II
2.0

1.0

l.O

5.0 7.0

10

20

50

lO

o

70

0.005

O.Ol

0.5
0.05 0.1
0.2
I.. BASE CURRENT lAMP)

0.02

Ie. COLLECTOR CURRENT lAMP)

;

Ic

~ 200

.....

~ 100

~

50

~

20

E

10
5.0

Ii

J 2.o

= f=

5.0 ICES

2.0 ICES

Ic

.......

1.0

Ic

10 ICES

.......

Ic=I.2IcES

~

O.8

~
~

0.6

~

.....

0.4
0.2

I'-...
20

40

60
TJ• JUNCTION TEMPERATURE (OC)

~VCE-2.0V:=
~Vc~=20vt--

I

j 10'

!

100°C

I--TJ

,.

I

~

I..--

I--

-- --

f=-~Jr60:;

.v'

J.

+0.4

VIEI,,'I @ Icl I, = 10

1.0

2.0

l.O

""I /

./

~'

/

.-'"

IV
,

/

~

-

I Ll_ ....
I

5.0 7.0 10
20
lc. COLLECTOR CURRENT IAMPI

lO

50 70

~llES ;~ Icll' ~ h~2 I-

+1.0

L,....o

1/

lorVCEI,,'I

'-

0

/

-"'I

U.TJ-250C_ REVERSE BIAS
,I--TJ = 250C

10+0.6

,

...

/

FIGURE 12 - TEMPERATURE COEFFICIENTS

j

\

~

VCEI,,'1 @ Icll, = 10

+2.0

./

.A~

.9 10•

"-

'(/Vc

TJ -100°C

'~ 10 i==TJ 60°C

~

~::X;~TEI!~;S~.

./

-I

~

FIGURE 11 - COLLECTOR CUTOFF REGION
10'

',f
VlElo.1 @VCE = 2.0 V
\.
",

o

100

80

iJ ~ 25°~
(NOTE I

1.0

fOR VAlUES Of IcEs SEE fiGURE II

o

5.0

1.2

VCE'- 20V~

§500

2.0

FIGURE 10 - "ON" VOLTAGES

FIGURE 9 - EFFECTS OF BASE·EMITTER RESISTANCE
1000

1.0

L..-

0

">1

L,..j...

ICES
(/V,

-2.0

lorV"

P

i"'"

fORWARD BIAS

+0.2

-0.2

-l.0
1.0

V". BASE·EMmER VOLTAGE (VOLTS)

2.0

l.O

5.0 7.0

10

Ic. COLLECTOR CURRENT IAMPI

NOTE 1: DIll is obtained flam pulsttelb 'nd adjusted to nullify Ute effect of IclO.

2-704

20

lO

50 70

2N4066 (SILICON)
2N4067

DUAL P-CHANNEL
MOS FIELD-EFFECT TRANSISTORS

DUAL P-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS

Enhancement Mode MOS Field-Effect Transistors designed
primarily for low-power. chopper or switching applications_

• High Forward Transadmittance IYfsl = 2_5 mmhos (Min) @VOS= -15 Vdc (2N4067)

•

Low Forward Gate Current IG F = 2.5 pAdc (Max) @ VGS = -25 Vdc

•

Low Drain-Source "ON" Resistance rds(on) = 250 Ohms (Max)@VGS= -15 Vdc (2N4067)

*MAXIMUM RATINGS
Rating

Drain-Source Voltage
Drain-Gate Voltage
R"".... Gate-SOurce Voltage

Symbol

Value

Unit

VDS

-30

Vde

VDG

-25

Vde

VGSR

+25

Vde

VGSF

-25

Vde

Drain Current

10

200

mAde

Total Device Dissipation@TA = 25°C
Derate above 25°C

Po

0.6
4.0

Watt
mWJOC

Total Device Dissipation@Tc = 25°C
Derate above 25°C

Po

1.7
11.3

Watts
mW/oC

Tstg

-65 to +200

°c

TJ

-65 to +175

°c

Forward Gate-50urce Voltage

Storage Temparature Range
Operating Junction Temperature Range

0.335

Imii

0.305

If.335

0.240

mo

0.010

~l

"'iiiiiiii1ii'F''T'-f-

"""I

0.040

MAX

0.500

0.016

o:Dl9

-.l

°lndlcatesJEDEC R8Qlotered D_.

Pin 1. Or.ln 1

0.028
If.lm

3. G... ,
4..~r.tII.

6. G.-2
7. Orein2

•. Soura 1 .nd 2

Case 642-01

2-705

0.018

If.i!2l

2N4066, 2N4067 (continued)

"ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

Unit

orain-8ource Breakdown Voltage
(10 = 10"Adc, VGS = 0)

V(BR)oSS

-30

-

Vdc

Source-Drain Braakdown Voltage
(IS = 10 "Adc, VGo = 0)

V(BR)SoS

-30

-

Vdc

-

1.0
2.0

"Adc

OFF CHARACTERISTICS

Zero·Gate Voltege Source Current
(VSo = -15 Vdc, VGD = 0)

ISOS

-

(VSD = -15 Vdc. VGO = O. TA = 15o"C)
Zero·Gate Voltage Drain Currerit (Note 1)
(VoS = -15 Vdc, VGS = 0)

nAdc

lOSS
-

1.0

nAdc

-

2.0

"Ado

VGS(TH)

-3.0

-6.0

Vdc

IGF

-

2.5

pAdc

ID(on)

10

50

mAdc

-

500
250

2N4066
2N4067

1.5
2.5

-

2N4066
2N4067

1.0
1.75

-

(VoS = -15 Vdc, VGS = 0, TA = 15o"C)
ON CHARACTERISTICS
Gate-8ource Threshold Voltage
(VoS = -15 Vdc, ID = 10 "Adc)
Forward Gate Current
(VGS = -25 Vdc, VoS· 0)
"ON" Drain Current
(VoS = -15 Vdc, VGS = -15 Vdc)
SMALL-8IGNAL CHARACTERISTICS
Static Drain-80urce "ON" Resistance
(VGS = -15 Vdc, ID = 0, f = 1.0 kHz)

Ohms

rds(on)
2N4066
2N4067

Forward Transadmittance (Note 1)
(VoS = -15 Vdc, VGS = -15 Vdc, f = 1.0 kHz)
(Vos =-15 Vdc, VGS=-15Vdc,f= 1.0 kHz,
TA = l000C)

mmhos

IYfsl

-

Output Admittance
(VoS = -15 Vdc, VGS = -15 Vdc, f = 1.0 kHz)

IYosl

-

300

"mhos

I nput Capacitance
(VOS = -15 Vdc, VGS = -15 Vdc, f = 1.0 MHz)

Ciss

-

7.0

pF

Reverse Transfer-Capacitance
(VoS = 0, VGS = 0, f = 1.0 MHz)

Crss

-

1.5

pF

Source·Substrata Capacitance
(VoU = -15 Vdc, VGS = 0, IS = 0, f = 1.0 MHz)

CSU

-

5.<1

pF

Drain-8ubstrate Capacitance
(VSU = -15 Vdc, VGS = 0, IS = O. f = 1.0 MHz)

CoU

-

5.0

pF

~

-

20
30
50

ns

t

SWITCHING CHARACTERISTICS
(Voo· -15 Vdc, lo(on) = 10 mAdc,

Delay Time
·R; ... TimA

VGS(on) = -15 Vdc, VGS(off) = 0)

Turn·Off Time

-

toff

ns
ns

°lndlcatesJEoEC RegIstered Date.
Notel: Pulse Test: Pul.18 Width:!: 630 ml, Duty Cycle:!: 10%.
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Voo
INPUT PULSE
~<4.0",

tf <4.0 ns
Pula Width '" 0.3 JAS
Pulse Repetition Rate" 120 ppl
Source Impedance =50 Ohms

1.4k

: - - - - - Pulse Width

OSCILLOSCOPE
tr<1.0ns
Input Resistance ;;.107 Ohms
Input Capacitance <; 1.5 pF

1

50%:

1
,

10% I ,
1.4k

Output

~

----1

90%

90%

I

~RiseTiml

---.:

----,,'10%

51

Voltage Wall8torms

:2-706

I •
I

50%

I

InpulPulst

j4ld~lr

Input

-t---- --- VGS(onl

Input

---.j

~
toff

Input Pulse Fall Timl
.....

I
I

2N4072 (SILICON)
2N4073
NPN silicon annular transistors designed as amplifiers and drivers for large-signal VHF and UHF applications_

CASE 22

CASE 31

(TO-18)
2N4072

(TO-5)
2N4073

Collector connected to case

MAXIMUM RATINGS

Symbol

Rating
Collector -Emitter Voltage
Collector-Base Voltage
. Emitter-Base Voltage

2N4073

2N4072

Unit

VCEO

20

Vde

VCB

40

Vdc

VEB

4.0

Vde

IC

100

150

mAde

Total Device Dissipation
Derate Above 25°C

@ TA

= 25°C

PD

0.35
2.0

-

-

Watt
mW/'C

Total Device Dissipation
Derate above 25°C

@ TC

= 25°C

PD

1.5
8.57

Watts
mW/'C

Collector Current-Continuous

Operating Junction and Storage Temperature Range

ELECTRICAL CHARACTERISTICS

-

-

°c

-65 to +200

TJ , Tstg

(TA = 25 0 Cunless otherwise noted I

Characteristic

Symbol

Min

I Typ I Max

Unit

STATIC CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 15 mAdc, IB = 0)

BVCEO(sus)

Collector-Base Breakdown Voltage
(IC = 0.1 mAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = O. 1 mAde, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
(VCB = 15 Vdc, IE = 0, TA
DC Current Gain
(IC = 25 mAdc, VCE

ICBO

= 150°C)
~E

= 2 Vdc)

Vde

20

-

-

40

-

-

4.0

-

-

-

-

0.1

-

100

10

-

-

-

550

-

-

3.0

4.0

Vdc
Vdc
/lAde

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 25 mAdc, VCE = 10 Vdc, f
Output Capacitance
(VCB = 15 Vde, IE

fT

= 100 MHz)

Cob

= 0, f = 100 kHz)
2-707

MHz
pF

2N4072, 2N4073

(continued)

Characteristic
FUNCTIONAL TEST
2N4072
Test Circuit -Figure 5
Pin = 25 mW, VCE =13.6 Vdc,

Power Gain
Power OUtput

f

Collector Efficency
Power Gain

= 175 MHz

2N4073
Test Circuit - Figure 5
Pin = 50 mW, VCE = 13.6 Vdc,
f = 175 MHz

Power Outpul
Collector Efficiency

GpE

10

Pout

250

-

1'/

50

60

GpF.

10

-

Pout

500

650

1'/

50

65

-

dB
mW

%
dB
mW

%

2N4072
FIGURE 1- POWER OUTPUT versus FREQUENCY
300

200

~

I

r-...

"- "'"'" "'- "- ""-

~

j

~

>.
P,. = 20 mW ./
ISmW / / :-......
/
10mW

70

"-

SO

!j

"-

'"
"- "

200

2SO
f, FREQUENCY (MHz)

300

~

100

l-''P

I'-..

4O ISO

/

§

~

iii 100

r:;: V / ./
~V ~V

f= 11SMHz
Tc = 2S'C

~200

"""- > "-

VCE - 13.6 Vdc
Tc = 2SoC

FIGURE 2- POWER OUTPUT versus POWER INPUT
300

400

~

t. ~

lot V ./

r«K-r---

S

V

VCE = ISVdc
13.6 Vdc
-1-i2 Vdc
1

l

10
P,.. POWER INPUT (mWl

IS

2N4073
FIGURE 3- POWER OUTPUT versus FREQUENCY

FIGURE 4- POWER OUTPUT versus POWER INPUT

600

600

"-

"~

P,.=SOmW
2SmW
12.SmW

,

,

,., ""
)0("

"'- /.

~
~
L

," ,

~

ij

70 f- VCE = 13.6 Vdc
f- Tc=2S'C
ISO

200
2SO
f, FREQUENCY (MHzl

300

.A

400

§

.....

......

SO
40 100

~ ~V

f=17SMHz
Tc = 2S'C

400

A
200

J. ~

400

~V
I-VCE= IHdc
~ 13.6Vdc

e< "'-

I--

i--

12Vdc

.4"

V

"

...-

'30
20
P,.. POWER INPUT (mWl

10

40

FIGURE 5- 175 MHz TEST CIRCUIT
L.

7·100

S·2S
Rs = SOil >----t9r--~F-_........J"VV'V'\,,-......- - H

1·30
RFC

L, -3Iums#16Iinnedwire,
~" ID air wound,
winding length %"
L. - 6 turns # 16 linned wire,
~" ID air wound,
winding length %"

Capacilor values in pF unless
olherwise indicated.
Tuning Capacitors are air variable.

Io.OI/LF
+13.6 Vdc

2-708

...

SO

2N 4091 (SILICON)
2N4092
2N4093
N-CHANNEL
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

JUNCTION FIELD-EFFECT
TRANSISTORS
(Type A)

Depletion Mode (Type A) Junction Field-Effect Transistors designed
for chopper and high-speed switching applications.
• Low Drain-Source "On" Resistance rds(on) = 30 Ohms (Max) @ f = 1.0 kHz (2N4091)
• Low Source Reverse Current ISGO = 0.2 nAdc (Max) @ VSG = 20 Vdc
• Guaranteed Switching Characteristics

1 m~ t-

~t;: 0lA11 OIA

l

I~

MAXIMUM RATINGS

Symbol

Value

Unit

Drain-Source Voltage

VDS

40

Vdc

Drain-Gate Voltage

VDG

40

Vdc

Gate-Source Voltage

VGS

40

Vdc

Rating

O

0.500

~~t~OIA

Gate Current

IG

10

mAdc

Totai Device Dissipation @T C = 25· C
Derate above 25·C

PD

1.8
10

Watts

mWiC

Operating Junction Temperature Range

TJ

-65 to +175

·C

T stg

-65 to +200

·C

Storage Temperature Range

ij

CASE 22 (3)
(TO-1S)

FIGURE 1-SWITCHING TIMES TEST CIRCUIT

3.0VOC

VGS(onl '" 0
INPUT WAVEFORM

10% ----\-\------tl'-

TEKTRONIX
SKL MODEl

503A
OR EQUIV

'6'

SAMPLING
SCOPE
OR EQUIVALENT

R= _~:!...

IOlonl

OUTPUT WAVEFORM

===

90%~~~~ 0.20 V MAX

2-709

2N4091, 2N4092, 2N4093 (continued)
ELECTRICAL CHARACTERISTICS

[

CTA

=2S"C unless otherwise noted)

Characteristic

Symbol

Min

Max

40

-

40

-

5.0
2.0
1.0

10
7.0
5.0

-

0.2

-

0.2

.Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG - 1. 0 /lAde, VDS - 0)

V(BR)GSS

Drain-Gate Breakdown Voltage
(ID - 1. 0 /lAde, IS = 0)

V(BR)DGO

Gate-Source Cutoff Voltage
(VOS = 20 Vde, ~ - 1. 0 nAde)

2N4091
2N4092
2N4093

VGS(off)

Source Reverse Current
(V SG - 20 Vde, ~ = 0)

ISGO

Drain Reverse Current
(VDG - 20 Vde, IS = 0)

I DGO

(VDG - 20 Vde, ~ - 0, TA = 150·C)
Drain-Cutoff Current
(VDS - 20 Vde, VGS - 12 Vde)
(VDS - 20 Vde, VGS - B.O Vdc)

2N4091

ID(off)

2N4092

(V DS - 20 Vde, VGS - 6.0 Vde)

2N4093

(VDS = 20 Vde, VGS - 12 Vde, T A - 150·C)

2N4091

(VDS - 20 Vde, VGS = B.O Vde, T A - 150·C)

2N4092

(VDS - 20 Vde, VGS - 6.0 Vde, T A = 150· C)

2N4093

Vde
Vde
Vde

-

nAde

nAde
0.4

/lAde

0.2

nAde

0.2
0.2
0.4

/lAde

0.4
0.4

ON CHARACTERISTICS
Zero-Gate Voltate Drain Current (11
(VDS - 20 Vde, VGS = 0)

2N4091
2N4092
2N4093

Drain-Source "ON" Voltage
(ID - 6.6 mAde, VGS - 0)

2N4091

(~ = 4.0 mAde, VGS - 0)

2N4092

(ID = 2. 5 mAde, VGS - 0)

2N4093

Static Drain-Source "ON" Resistance
(~= 1.0 mAde, VGS - 0)

2N4091
2N4092
2N4093

IDSS

VOS(on)

30
15
B.O

-

-

mAde

Vdc
0.2
0.2
0.2
Ohms

rDS(on)

-

30
50
BO

rds(on)

-

30
50
80

SMALL·SIGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(V GS = 0, ID = 0, f = I. 0 kHz)

2N4091
2N4092
2N4093

Input Capacitance
(VDS = 20 Vde, VGS - 0, f = 1. 0 MHz)

Clss

Reverse Transfer Capacitance
(VDS =0, VGS -20Vde, f -1.0MHz)

-

Ohms

pF

-

16

Crss

-

5.0

td

-

pF

SWITCHING CHARACTERISTICS
Delay Time ~ee Figure I)
(~(on) - 6. 6 mAde)

2N4091

(~(on) - 4.0 mAde)

2N4092

(~(on) - 2.5 mAde)

2N4093

Rise Time (See Figure I)
(~(on) - 6. 6 mAde)

t
2N4091

(~(on) = 4. 0 mAde)

2N4092

(~on) - 2. 5 mAde)

2N4093

Turn-Off Time (See Figure I)
(VGS(off) = 12 Vde)

r

toff
2N4091

(VGS(off) = 8.0 Vde)

2N4092

(VGS(off) = 6.0 Vde)

2N4093

III Pulse Test: Pulse Width $ 300 /lS, Duty Cycle $ 3. 0%.

2-710

ns
15
15
20
ns

-

40

-

40

-

10
20

ns
60
80

2N4123 (SILICON)
2N4124

NPN silicon transistors designed for general purpose
switching and amplifier applications andfor complementary circuitry with PNP types 2N4l25 and 2N4126.
Features one-piece, injection-molded plastic package
for high reliability.

CASE 29(1)
(TO-92)

MAXIMUM RATINGS

Symbol 2N4123 2N4124

Rating
Collector-Emitter Voltage

Unit

VCEO

30

25

Vdc

Collector-Base Voltage

VCB

40

30

Vdc

Emitter-Base Voltage

VEB

Collector Current

IC

Total Device Dissipation @ T A = 25°C

PD

200

mAdc

350

Derate above 25°C
Operating and Storage Junction Temperature Range

Vdc

5.0

mW

2.73

mWj"C

TJ.T stg

-55 to + 150

°c

Symbol

Max

Unit

(JJA

0.357

°C/mW

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Ambient

FIGURE 2 - SWITCHING TIMES

FIGURE 1 - CAPACITANCE
10

200

7.0

Ii

~
~

S.O

-

/

3.0
2.0

"'

100
I

c••

ri

C;.

!

!

- . r.......

I

r-

0.2 0.3

O.S 0.7 1.0

2.0

3.0

S.O 7.0 10

...

" "-

30
20

YU1.H1

1.0

REVERSE BIAS VOLTAGE (VOLTSI

~I'..

/"

........

7.0
S.O

20 30 40

./

~

!£~

Vee ~ 3V
Iell. 10

10.0

r-

1.0
0.1

~

70
SO

2.0

'-

~

O.SV
3.0

S.O

10

20

30

Ie. COLLECTOR CURRENT (mAl

2-711

SO

100

200

2N4123, 2N4124

(continued)

ELECTRICAL CHARACTERISTICS (TA = -25°C unless otherwise noted)

I Fig. No. I Symbol I

Characteristic

Min

Max

Unit

--

Vde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'(U
(IC = I mAde, ~ = 0)
Collector-Base Breakdown Voltage
(IC = 10 /lAde, IE = 0)

BVCEO

2N4123
2N4124

BVCBO

2N4123
2N4124

BVEBO

Emitter-Base Breakdown Voltage
~ = 10 /lAde, IC = 0)

30
25

Vde

--

40
30
5.0

Vde

Collector Cutoff Current
(VCB = 20 Vdc, IE = 0)

I CBO

-

50

nAdc

Emitter Cutoff Current
(V BE = 3 Vdc, IC = 0)

lEBO

-

50

nAde

ON CHARACTERISTICS
9

DC Current Gatn (1)

(IC = 2 mAde, VCE = I Vde)

2N4123
2N4124

(IC = 50 mAde, VCE = I Vdc)

2N4123
2N4124

11

Base-Emitter Saturation Voltage (11
(IC = 50 mAde, IB = 5 mAde)

50
120

150
380

-

--

25
60
10, 11

Collector-Emitter Saturation VoltagE' (11
(IC = 50 mAde" IB = 5 mAde)

hFE

Vde

VCE(sal)

-

0.3

VBE(sat)

-

0.95

2.5
3.0

-

Vde

SMALL SIGNAL CHARACTERISTICS
High- Frequency Current Gain
(IC = 10 mAde, VCE = 20 Vde, 1* 100 MHz)
Current-Gain - Bandwidth Product
(IC = 10 mAde, VCE = 20 Vde, 1= 100 MHz)

OUtput Capacitance
(V CB = 5 Vde, IE = 0, I

I hIe I

2N4123
2N4124

IT

2N4123
2N4124
I

=lOa kHz)
I

Input Capacitance
(V BE = 0.5 Vde, IC = 0, 1= 100 kHz)

Small-Signal Current Gain
(Ie = 2 mAde. VCE = 1 Vde, I = I kHz)
Notse Figure
(IC = 100 /lAde, VCE = 5 Vde, Rs = I k ohm,
Noise Bandwidth 10 Hz to 15.7 kHz)

=

5
2N4123
2N4124
3. 4

Cob
Cib

hIe

--

250
300

pF

-

4.0

-

8.0

pF

50
120

200
480

dB

NF

-

2N4123
2N4124

MHz

6.0
5.0

SWITCHING CHARACTERISTICS

Cha racteristic

Typ

Fig. No.

Symbol

2

trl

24

ns

RIse Time

VCC = 3 Vde, VEB(off} = o. 5 Vde,
IC = 10 mAde, IBI = I mAde

2

tr

U

no

Storage Time

VCC

2

t.

Fall Time

IBI

= 3 Vde, Ic = 10 mAde,
=IB2 = 1 mAde

2

tl

125
11

ns

Delay Time

(11 'Pulse Test: Pulse Width

= 300 /lO,

Duty Cycle

=2%

2-712

Unit
no

2N4123, 2N4124

(continued)
AUDIO SMALL SIGNAL CHARACTERISTICS

NOISE FIGURE
Ve.

=5

Vdc. TA

= 25·C

FIGURE 3- FREQUENCY VARIATIONS
2

~

o \

~ ~le~lrnA

FIGURE 4 - SOURCE RESISTANCE
14

I
I

~

i'-..

ct-'1"""-.
r---

'f..

~ I--

~

200 D

"

I-

"-

"'

J::-r-..

L SOURCE RESISTANCE $00 D
I-- Ie ~ 100 pi.
SOURCE RESISTANCE ~ IW
I
Ie ~ $0 pi.

I

0.2

0.4

I
I

/

SOURCE RESISTANCE
Ie ~ 0.$ rnA

4

10

20

40

o

100

0.1

/lc-lOO~/

/

t:><'"

/

.)
.......

0.2

0.4

/

V

/ ' Ie - $0 pi.

1/

/

./ /
/ /

.......

2.0

1.0

4.0

10

Ve.

40

100

h PARAMETERS
= 10 V. f = 1 kHz. TA = 2S·C

FIGURE 6- OUTPUT ADMITTAnCE

FIGURE 5- CURRENT GAIN
300

100

200

$0

--

V

~i'""'

0"""-

20

R•• SOURCE RESISTANCE IWI

f. FREQUENCY IkHzl

.-

/
/

/ T .

/

I
I
r

IIII

I~_I~ /1/ II /
/ "'e~IO$'J /

10

"-

I

I

r-- f ~ 1kHz
12

r- SOURCE RESISTANCE ~ 200 D

6' ",
0
0.1

I
I

./

~
0

$0

2.0
30

0.2

0.1

1.0
2.0
0.$
Ie. COLLECTOR CURRENT IrnAl

5.0

1.0

10

0.1

FIGURE 7-INPUT IMPEDANCE
20
10

i'....

7.0

~

~ $.0

5.0

10

FIGURE 8- VOLTAGE FEEDBACK RATIO

10

.......

2.0
1.0
0.5
Ie. COlLECTOR CURRENT IrnAl

0.2

"-

5.0

I'\.

!:S

I

'" '~

~ 2.0

~ 1.0
~

~"" 3.0

'\

-'" ......

~

~ 2.0

'" i'-.

~.J

0.5

t--

,,'/

r--....

1.0

0.7
0.2
0.1

0.2

0.5

1.0

2.0

5.0

10

0.5
0.1

Ie. COLLECTOR CURRENT ImAl

0.2

0.5

1.0

2.0

Ie. COlLECTOR CURRENT IrnAl

2-713

5.0

10

2N4123, 2N4124

(continued)
STATIC CHARACTERISTICS
FIGURE 9- NORMALIZED CURRENT GAIN

--

2.0

TJ - JI250J

z

1.0

i

0.7

a

0.5

~

ft:~

f-'

....-

i1

I-""
~

i~

0.3

1

0.2

-

-~
i--

r---.
~

-- r-...

TJ = -55°C

I - ~I-

I
I
VeE-IV
I

r--

~

.....

I'

I:---.

I~

I'

'\ ~

O. I
0.1

0.2

0.3

0.5

0.7

2.0

1.0

3.0

5.0

7.0

10

20

30

50

70

100

"" ..'\

200

Ie. COLLECTOR CURRENT (mAl

FIGURE 10 - COLLECTOR SATURATION REGION
1.0

~

~

§!

TJ ~ 25°C

0.8
Ie ~ 30mA

e- IOmA

le- lmA

Ie -IOOmA

\

o. 6

~

~

i!'l

(i!5 0.4

~

"-

~

~

~ O. 2

o

.01

.02

.05

.03

I"-

r"-....

...... t--

r-- I -

0.1

.07

i""

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

I•• BASE CURRENT (mAl

FIGURE 11- "ON" VOLTAGES
1.2

TJ 1- J50C
1.0

;

0.8

~

O.6

~

0.4

FIGURE 12 - TEMPERATURE COEFFICIENTS

J l Jll
V';I~'~ +IHli ~ ~

-

I.0

O. 5

H1JHf
-

V,,@VeE

1-1""-

0

IV

--

Ove for VeE(~'1

~lLiJJ

111Ll

55°C TO +25°C

lllIt:1111 L J

5

/

I 1111
~IJ5oJ-

-WCTO +25°C
VCr'll@trLk

o. 2
o

1.0

-I.

..l--+"'rl I
II
2.0

5.0

10

20

50

I-

)---

100

200

Ie. COLLECTOR CURRENT (mAl

2-714

1.

51

-2.DIY

+jTl"JjC

~

tN. for VIEI ..tl

o w

~

50

t-

I III I
m

I I I I I

50 ~
~
Ie. COLLECTOR CURRENT (mAl

~

~

~

2N4125 (SILICON)
2N4126

PNP silicon transistors designed for general purpose
switching and amplifier applications and for complementary circuitry with NPN types 2N4123 and 2N4124.
Features one-piece, injection-molded plastic package
for high reliability.
CASE 29(1)
(TO-92)

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage

Unit

2N4125 2N4126

VCEO

30

25

Vdc

Collector-Base Voltage

VCB

30

25

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

200

mAdc

Total Device Dissipation @ T A = 25°C

PD

Operating and Storage Junction Temperature Range

mW

350

Derate above 25°C
TJ,T stg

2.73

mW;oC

-55 to + 150

°c

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

()JA

0.357

°C/mW

Thermal ReSistance, Junction to Ambient

FIGURE 1 -

CAPACITANCE

FIGURE 2 - SWITCHING TIMES

10

200

7.0

r: c••

100

5.0

j

t--..

i1

~

Cib

"

~ I<-

F'--

~

'"

t-

30

50

'\

,./'"

20

30

-....

Vcc-. 3V

= lell.

10
7.0 :: V'f(off} 0.5 V
5.0
1.0
2.0 30
5.0

1.0
2.0 30 5.0 7.0 10

./

20
0-

0.5 0.7 1.0

.'f

,"-.:

3D

;:

10.0

0.2 03

-

I.

2.0

01

7

~

70

50

REVERSE BIAS IVOL TSI

10

I-

20

30

Ie. COLLECTOR CURRENT (mAl

2-715

50

100

200

2N4125, 2N4126 (continued)

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage' 11 t
(IC • 1 mAde. ~ = 0)

BVCEO

2N4125
2N4126

Collector-Base Breakdown Voltage
(IC • 10 ILAde, ~ = 0)

BVCBO

2N4125
2N4126

Emitter-Base Breakdown Voltage
~ = 10 ILAde, 'C = 0)

BVEBO

--

Vde

30
25

--

Vde

30
25

-

Vde

4.0

nAde

Collector Cutoff Current
(VCB = 20 Vde, 'E' 0)

'CBO

-

50

Emitter Cutoff Current
(V BE = 3 Vde, 'C = 0)

~BO

-

50

nAde

ON CHARACTERISTICS
DC Current Gain 111
(lC = 2 mAde, VCE ' I Vde)
(IC = 50 mAde, VCE

=I

9
2N4125
2N4126

hFE

10. 11

Base-Emitter Saturation Voltage'~ 11
(IC = 50 mAde, 'B = 5 mAde)

150
360

11

VCE(sat)

VBE(sal)

-

--

25
60

2N4125
2N4126

Vde)

Collector ... Emitter Saturation Voltage'(1)
(lC = 50 mAde, IB = 5 mAde)

50
120

Vde

-

0.4
Vde
0.95

SMALL SIGNAL CHARACTERISTICS
High-Frequency Current Gain
(IC = 10 mAde, VCE = 20 Vde, f

= 100 MHz)

Current-Gain
Bandwidth Product
= 10 mAde. VCE =20 Vde, f = 100 MHz)

Uc

Output Capacitance
(V CB • 5 Vde, ~

= 0,

Input CapaCitance
(V BE

= 0.5 Vde,

'C

I hfe I

2N4125
2N4I26

IT

2N4125
2N4126
I

r· 100 kHz)
I

= o. r = 100 kHz)

Small-Signal Current Gatn
(IC = 2 mAde. VCE = I Vde, f

5

= I kHz)

2N4I25
2N4126

Noise Figure
(lC = 100 ILAde. VCE = 5 Vde, RS = I k oltm,
Noise Bandwidth = 10 Hz 10 15.7 kHz)

3, 4

COb
C1b
hr.

--

2.0
2.5
200
250

MHz

pF

-

4.5
pF
10

50
120

200
480

NF

dB

--

2N4125
2N4126

-

5.0
4.0

SWITCHING CHARACTERISTICS

Fig. No.

Symbol

Typ

Unit

2

Id

25

ns

mAde

2

tr

18

ns

= 10 mAde,
='B2 = 1 mAde

Characteristic
Delay Time

VCC = 3 Vde, VBE(off)

Rise Time

IC

= 10 mAde.

'BI

=I

= 0.5

Vde,

Storage Time

VCC = 3 Vde, 'C

2

t.

140

ns

Fall Time

'BI

2

If

15

ns

11' Puis. Test: Pulse W,dth

= 300 ILsee, Duty Cycle' 2%

2-716

2N4125, 2N4126

(continued)
AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE
VeE

=5 Vde. T. =25'C
FIGURE 4- SOURCE RESISTANCE

nGURE 3- FREQUENCY VARIATIONS

2

5.0r--.-r-r-r.,---,-,--,-,-r--r---,---,-T'l

1

0

(e- I "'"

iii 8.0

~

6.0

J

I)
I
lle-Ioo,.,...,
V
/ II
V V
/ ./

/

/

I

~ 4.0"-

1.0

1-1

I

;g
~

~_

7

rJ

1-1_11 kHz

'"

2.0

'\.

"'-

1/

/ ' ./

r--.. V
~

./

I>

7./ "'-Ie-SO,.,.

Ie - 0.5"'"

~

0
10

20

40

100

0.1

0.2

0.4

1.0

I. FREQUENCY (kHz)

2.0

10

4.0

20

40

100

Rs. SOURCE RESISTANCE (k!2)

h PARAMETERS
VeE

=10 V. f =1 kHz. T. =25'C
FIGURE 6 - OUTPUT AoMmANCE

AGURE 5- CURRENT GAIN

100
70

200r-+-+--+-+~HHH+--r-r-4-+-~++~

!~

i

100~~~:t=t~~~==~~~~t+it~
70r-+-+--+-+~HHH+--r-~~+-~++~

I
i!:

!

SO

V

30

./
./

20

/'

i

.J

v

~

10
7.0
5.0
0.1

0.2

0.5

Ie. COlLECTOR CURRENT (mAl)

FIGURE l-INPUT IMPEDANCE
20

"'-

10

7.0

!S

~ 2.0

~-.

6!

"

~ 5.0

~ 5.0

~

2.0

5.0

10

FIGURE 8- VOLTAGE FEEDBACK RAnD

10

r--..
"'-

1.0

Ie. COlLECTOR CURRENT (mAo)

i

1

i'
........

2.0

1"'-

1.0

" ....
,

3.0

~J

0.5

~

f', r--

1.0

V'"

0.7

0.2

0.1

0.2

0.5

1.0

2.0

5.0

10

0.5

0.1

0.2

0.5

1.0

2.0

Ie. COLLECTOR CURRENT (mAl!

Ie. COUECTOR CURRENT (mAl)

2-717

5.0

10

2N4125, 2N4126

(continued)
STATIC CHARACTERISTICS

FIGURE 9 - NORMALIZED CURRENT GAIN

2.0

TJ I

~

-

+l2~'C

TJ I +25~C

1. 0

S~'C

TJ I

IE O. 7
~

I

r-.....
..........

a o. 5

I o.
~

I
IV-

Ve.

......

"

~

r--.~

3

~

lo. 2

~

"-':
O. I
0.1

0.2

0.5

0.3

0.7

1.0

2.0

20

3.0
5.0
7.0
10
Ie. COLLECTOR CURRENT (mAl

30

50

70

100

~
200

FIGURE 10- COLLECTOR SATURAnON REGION

I. 0

I
I

8
10= lmA

t!2~,b

\

\

Ie = 10mA

Ie =

\le=30mA

\

6

\

'\
2\.

o

.02

.01

.......

1\

,
r-.

i'...
-I-

.03

.05

.07

.....

0.5
0.2
0.3
I•. BASE CURRENT (mAl

0.1

0.7

V"(ul' @Iell. = 10 ....

?

_H::±::l:mt'

o.8

V,,@Ve.

1.0

-

l\
r-...

i"r-

t-----

2.0

S.O

3.0

7.0

10

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 11 - "ON" VOlTAGES
1.0
TJ = 2S'C

lOO~

1.0

I
I

0.5
8ve for Ve'(u"

IV

.I

+25'C TO +l25'C
55'C TO +25'C

I !HI

0.6

/

O.4

+2J,C ~O ~ 1~5'~ ;;;

i .f 1.:.H---

/
0.2

Ve'I"" @'ell. = 10

I Iii'
0

2.0

50
5.0
10
20
Ie. COLLECTOR CURRENT (mAl

100

200

2-718

,5j'c,TO 2

~

-1.5

I L ..J.....+-'

III
1.0

ih

fJvl for VIEI ...,

I

-2.0

o

I

I

I
20

40

60
80 100 120 140
Ie. COLLECTOR CURRENT (mAl

160

180 200

2N4130

NPN (SILICON)

The RF Lin.e
SOW -70 MHz
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR

· .. designed primarily for use in large·signal output amplifier stages.
Intended for use in industrial communications equipment operating
to 100 MHz. High breakdown voltages allow a high percentage of
up·modu lation in AM circu its operated at 28 volts.

•

Balanced Emitter Construction

•

Power Output - Pout

•

Collector-Base Voltage - 80 Vdc

•

Case Common to Emitter

= 50 W @ 70 MHz

Q1

*MAXIMUM RATINGS
Svmbol

Value

Unit

Collector-Emitter Voltage

VeEO

65

Vdc

Collector-Base Voltage

VeBO

80

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Ie

10

Adc

Base Current - Continuous

IB

2.0

Adc

Total Device Dissipation @TC= 2SoC

PD

120
0.8

Watts

TJ

+175

°e

Tstg

-65 to +200

°e

Rating

Collector Current

~

Continuous

Derate above 25°C
Operating Junction Temperature
Storage Temperature Range

wioe

0.135
MAX

h
t

1.550~T
.j

MAX

o.83
MAX
OIA

036
MAX

~C:::~~~::J
-I 0.039
OIA
~~~~IENr
0.043
----

-I

1

032

1J11___

Il42

1.197

I

*Indicates JEDEC Registered Data

0.420
0.440

To convert inch(!s to millimeters mUltiply bV 25.4

PIN 1. BASE
2. COLLECTOR

Emitter connected to case

CASE 1

2-719

2N4130 (continued)

-ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Sustaining Voltage
(lC 50 mAdc, IB = 0)

VCEO(sus)

65

-

-

Vdc

Collector-Emitter Sustaining Voltage
(lC = 50 mAdc, RBE = 0)

VCES(sus)

80

-

-

Vdc

Collector Cutoff Current
(VCE = 75 Vdc, VBE = -1.5 Vdc)

ICEV

-

-

0.2

Characteristic
OFF CHARACTERISTICS

=

(VCE = 50 Vdc, VBE = -1.5 Vdc, TC

=1500C)

mAdc
1.0

Collector Cutoff Current
(VCB = 80 Vdc, IE = 0)

ICBO

-

-

0.02

mAdc

Emitter Cutoff Current
(VEB = 4.0 Vdc, IC = 0)

lEBO

-

-

1.0

mAdc

10

60

10

-

-

-

2.0

Vdc

fT

125

-

-

MHz

Cob

-

125

200

pI'

Power Input (Figure 1)
(Pout = 5OW, RS = 500hms, VCE = 28 Vdc, f=70 MHz)

Pin

-

-

8.0

Watts

Collector Efficiencv
(Pout =50W, RS=500hms, VCE =28 Vdc, f=70MHz)

1)

50

-

-

%

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 2.0 Adc, VCE
(lC

= 10 Adc,

Coliector·Emit~er Saturation VOltage( 1)

(lC

= 10 Adc,

IB

-

hFE

= 5.0 Vdc)
VCE = 5.0 Vdc)
VCE(sad

-

= 2.0 Ado)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product(2)
(lC = 2.0 Adc, VCE = 10 Vdc, f = 50 MHz)
Output Capacitance
(VCB = 28 Vdc, IE

= 0, f

= 0.13 MHz)

FUNCTIONAL TEST (Figure 1)

·,ndicat•• JEDEC Registered Data
Notes:

(l)Pulse Te.t: Pulse Width~100 ,,0, Duty Cycle
(2}fT Is defined as the frequency at which

= 1.0%.

Ihfel extrapolates to unity.
FIGURE 1 -70 MHz POWER GAIN TEST CIRCUIT

+--""V'I"'-...,.IF-1~~::::""""" OUTPUT
50 Ohms
CI

L4

C3

=

L1

CI
C2
C3
C4
C5
C6,C7

25·280 pF MICA TRIMMER
7.0·50 pF MAPC AIR TRIMMER
200 pF MICA CAPACITOR
0.005.F CERAMIC CAPACITOR
1500 pF FEEOTHRU CAPACITOR
24·200pF MICA TRIMMER

2-720

C8
L1
L2
L3
L4

55·300 pF AIR TRIMMER
0.22.H CHOKE
CHOKE
2 TURNS, #14 AWG, I" OIA., 114" LONG
3/4" LONG, 1/4" WIDE, O.3"THICKCOPPER STRAP

~.I.H

2N4151 (SILICON)
thru

2N4198

SILICON
CONTROLLED RECTIFIERS
THYRISTORS
8-AMPERE RMS
25 thru 600 VOLTS

· .. multi·purpose PNPN silicon controlled rectifiers suited for indus·
trial, consumer, and mulitary applications. Offered in a choice of
space·saving, economical packages for mounting versatility.
• Uniform Low·Level Noise·lmmune Gate Triggering IGT ~ 10 mA (Typ) @ TC ~ 250 C
• Low Forward "On" Voltage \I"f ~ 1.0 V (Typ) @ 5.0 Amp @ 25 0 C
• High Surge·Current Capability ITSM ~ 100 Amp Peak
• Fatigue·Free Solder Construction
• Shorted Emitter Construction

2N4151·58
CASE 85

MAXIMUM RATINGS
(Apply over operating temperature range and for all case types unless otherwise noted)

Symbol

Rating
*Peak Reverse Blocking Voltage (1)

Value

2N4151, 59, 67,75,83,91

25
50

2N4153, 61. 69, 77,85,93

100

2N4154. 62, 70, 78. 86. 94

200

2N4155, 63. 71, 79. 87, 95

300

2N4156, 64, 72, 80, 88, 96

400

2N4157, 65, 73,81,89,97

500

2N4158, 66, 74,82,90,98

*Peak Forward Surge Current

(One cycle, 60 Hz, T J

= -40 to +1 OOoCI

Circuit Fusing Considerations
(TJ -40 to +100o C; t~8.3 msl

* Average Gate Power
*Peak Gate Current

Peak Gate Voltage (21
·Operating Temperature Range

*Storage Temperature Range

600
IT(RMSI

8.0

Amp

ITSM

100

Amp

12 t

40

A2s

PGM

5.0

Watt

PG(AVI

0.5

Watt

IGM

2.0

Amp

VGM

10

Volts

TJ

-40 to +100

°c

T stg

-40 to +150

°c

15

in. lb.

2N4167·2N4182

Stud Torque

Symbol

Typ

Max

Unit

Thermal Resistance, Junction to Case

R8JC

1.5

2.5'

°CIW

Thermal Resistance, Case to Ambient

R8CA
50

-

(See Fig. 111

2N4151·66,2N4183·98

l#

I

2N4167-74
CASE 86

I

2N4175-82
CASE 86l

2N4183·90
CASE 87l

THERMAL CHARACTERISTICS
Characteristic

!

2N4159·66
CASE 85l

=

*Peak Gate Power

j

Volts

VRRM

2N4152, 60, 68. 76, 84, 92

Forward Current RMS

Unit

I.

°C/W

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking
capability in a manner such that the voltage applied exceeds the rated block ing voltage.
(2) Devices should not be operated with a positive bias applied to the gate concurrently
with a negative potential applied to the anode.
-Indicates JEDEC Aegistered Data

2-721

2N4191-98
CASE 88l

2N4151 thru 2N4198

(continued)

E LECTR ICA L CHARACTER ISTICS

(T C ~ 250 C unless otherwise noted)

Characteristic
"Peak Forward Blocking Voltage (I)
(TJ ~ 1000C)

Symbol

IRRM

Gate Trigger Current (ContinJous dc) (2)
(Anode Voltage ~ 7.0 Vdc, RL ~ 100 n)

-

400
500

-

600

-

-

-

2,0

-

-

2.0

-

-

30

-

-

60

-

-

1.5

-

-

2.5

0.2

-

-

2.0

-

-

30

-

-

60

-

1.0

-

-

15

-

-

25

-

-

50

-

rnA
mA
mA

~ -400C)

Volts

VGT

n, T C ~ -400C)

'(Anode Voltage ~ 7.0 Vdc, RL ~ 100 n, TJ ~ l000C)
'Forward "On" Voltage (pulsed, 1.0 ms max, duty cycle.:;I%)
(IF ~ 15.7 A)

Volts

vT

Holding Current
(Anode Voltage ~ 7.0 Vdc, gate open)

mA

IH

• (Anode Voltage ~ 7.0 Vde, gate open, T C = -400C)
Turn·On Time (td + t,)
(lG

Unit

IGT

Gate Trigger Voltage (Continuous dc)
(Anode Voltage ~ 7.0 Vdc, RL ~ 100 n)
'(Anode Voltage ~ 7.0 Vdc, R L ~ 100

-

300

100

TJ ~ l00"C, gate open)

= 100 n TC

200

-

25

50

*Peak Reverse Blocking Current

"(Anode Voltage ~ 7.0 Vdc, RL

Max

VORM

IORM

@

Typ

Volts

2N4151, 59, 67,75,83,91
2N4152, 60, 68, 76, 84, 92
2N4153,61,69,77,85,93
2N4154, 62,70, 78,B6,94
2N4155,63.71,79,87,95
2N4156, 64, 72,BO,88,96
2N4157,65,73,81,89,97
2N4158,66,74,82,90,98

*Peak Forward Blocking Current
(Rated VORM @ TJ ~ l000C, gate open)
(Rated VORM

Min

ton

p.s

= 20 mAde, IF = 5.0 Ade)

Turn-Off Time
(I F = 5.0 Ade, IR

= 100°C)

(IF ~ 5.0 Ade,IR ~ 5.0 Ade, TJ
(VFXM
(dv/dt

~

p.s

toff

= 5.0 Ade)

=rated voltage)
30 V/p.s)

Forward Voltage Application Rate
(Gate open, T J = 100°C)

dv/dt

V/p.s

(1) Ratings apply for zero or negative gate voltage. These devices should not be tested with a constant cur ...ent source for forward or reverse
blocking capability such that the voltage applied exceeds the rated blocking voltage.
(2) For optimum operation, Le. faster turn-on. lower switching losses. best dildt capability. recommended IGT

'=

200 rnA minimum.

-Indicates JEDEC Registered Data

TYPICAL TRIGGER CHARACTERISTICS
FIGURE 1 - CONSTANT CURRENT
TRIGGERING

FIGURE 2 - CAPACITIVE DISCHARGE
TRIGGERING

150

50
VAK=7.0JJ:

100

j

ffi

~

8

w

~

'"
~

I'\..

50

2:

30

0

'\.
~"\.

'"

20

10
7.0
5.0
0.05

TJ = 25°C
VAK = 7.0 Vdc

I'\.

'"

70

!:; 20
w

,l"-

~

I

0

>

-!:!.= -~OC

...... !'-

0.2

1.0

2.0

1i";
ICT

'"0

r-- -;;k
0.5

5.0

':"

I-

=

':"-

U 2.0

~

...............

j
<.3 1.0
>

100°C
0.1

10

'"

5.0

10

20

0.5
200

50

500

1000 2000

~I.'----------PF

tw,AVERAGE TRIGGER PULSE WIDTH (I'SI

2-722

........

5000 10.01 0.02
a .•
CT, TRIGGER CAPACITANCE

pF---.j.,
0.05

0.1

0.2

2N4151 thru 2N4198 (continued)

CURRENT DERATING
FIGURE 4 - MAXIMUM AMBIENT
FIGURE 3 - MAXIMUM CASE TEMPERATURE

TEMPERATURE

100

100
90

'"'w
'"=>
I-

'"'w

0

0

'"=>

I-

«

~

~
ai

I-

w

~

;:3
~

80
70

~

60

75

lI-

50

70

,.a;

40

65

I-

~

ffi

«



~ 100

~

'"~
z

1.2

"

1.6

2.0

2.4

2.B

3.2

3.6

-40

4.0

-20

20

50

~

40

80

60

100

TJ. JUNCTION TEMPERATURE (DC)

FIGURE 11 - CASE·TO·AMBIENT THERMAL RESISTANCE
60

'" "

in

"-

Units mounted in center _
of square sheet of 1/S-inch
thick bright copper. Heat sinks _

,f;,PICAL TERMINAL
STRIP OR PRINTED
CIRCUIT BOARO MOUNTING
(CASE B7l AND B8L)

~
L=3/4"
~ ../:
' - L= 1/4"
~

area of one side)

'"

~

\

held vertically in still air.

(Heat sink area is twice ' -

~

"

L = LEAD LENGTH -

-......;;:::: :::::-.....

I"

:c 20
10
1.0

'-

0.3

O.B

FIGURE 10 - TYPICAL THERMAL RESISTANCE OF PLATES

~

"-

0.5

vr. INSTANTANEOUS ON.sTATE VOLTAGE (VOLTS)

400

-

'- "-

:E

I

/0/
0.4

1.0

z

:c

o

-r- r- r-

~

::::>
u

I

VAK =7.0Vdc
2.0

'"0

z

~

::;

....

rf

~ 3.0

N

~

TJ 250 C
TJ-100oC

7.0
5.0

§

lli

/V

/. "-.. ~

10

r

3.0

....
2.0

5.0

10

10

15

o

100

200

300

AIR FLOW, LINEAR FT/MIN

ReSA. THERMAL RESISTANCE (OCIW)

2-724

400

500

2N4151 thru 2N4198 (continued)

MOUNTING and THERMAL INFORMATION
The versatility of the Motorola SCR can-type package
affords a variety of mounting methods to meet individual requirements_ Oepending upon the thermal resistance value between the SCR case and a heat sink, any mounting method
which satisfies the current derating curves may be used_ Possible mounting media include: solder, epoxy cements; clips
(fuse, resistor, transistor, special); clamps; commercial or
special .dissipators, retainers, coolers, and radiators.
When mounting the SCR's to a heat sink, the following
recommendations apply:

4. Belt Feed Furnace - The procedures are much the
same as with the oven method, with the exception
that possibly a jig would be required to hold the
device and the heat sink in the proper position.
D. Epoxy Mounting Suggestions
1. There are many good commercial epoxies available
today, such as Hysol's "HY-TAC" kit or 3M's
"Scotch Cast #9". Suitable mounting may be obtained by following the epoxy manufacturer's recommendations for mixing and then cementing the
thyristor to the mounting surface with a slight pressure and rotary movement. If improved thermal
conductivity is deSired, powdered alumina (325
mesh) may be mixed into the epoxy in a proportion
of 70% (epoxy) to 30% (alumina)_ If electrical insulation is desired between the thyristor and a heatsink, thin fiberglass tape (course surface) or mica
discs may be used.

A. Heat Sink Contact
1. Since the silicon die is located in the case bottom,
(opposite end from tubed header point A as shown
on the mechanical outline drawing, Figure 12.) the
heat sink contact should be made with case bottom
for proper heat transfer.
B. General Soldering Precautions
1. Solder - Use solder with melting points between
+175·C and +225·C. The commonly-used tin-lead
alloy solders have melting points of +lSS·C (60/40
alloy) and +214·C (50/50 alloy).
2. Flux (when used) - Non-corrosive resin preferred.
3. When soldering to the device terminals or leads,use
of a heat dissipator between soldering point and
SCR case is recommended.
C. Case Soldering Methods
1. Heat Sink Materials:
a. Copper and most of its alloys present no problem
in soldering and would probably be the most favorable heat sink material.
b. Stainless steel is difficult to solder. However, using a strong acid-filled solder, satisfactory soldering can be achieved.
c. In most cases where soldering is difficult, such as
with aluminum, proper preparation with a tin coating on the material can bring about good results.

The primary reason for specifying mounting details is to
help maintain the junction temperature of the SCR at a safe
level and hence provide satisfactory operation. The fundamental relationship between junction temperature and heat
sinks can be expressed as follows:
TJ=TA +ROJA Po
where:
T J = junction temperature (lOO·C max operating for
these devices)

Depending on specific needs, soldering can be effected
by using either hot plate, oven, or belt feed furnace_ In
all cases, temperature must be controlled.
2. Hot Plate - The hot plate is probably the most effective and flexible method of soldering. The following
method is recommended:
a. Set surface temperature of hot plate to a maximum of 225·C.
b. Place heat sinks on hot plate for approximately 5
minutes.
c. Place '/8 "-';." diameter solder preform on area of
heat sink to be soldered.
d. After solder becomes liquid, place device on this
area applying slight pressure and rotating the device slightly to assure good contact_ Flux may be
used here if required. Frequently, suitable wetting
can be achieved mechanically when the device is
rotated in the liquid solder, depending upon the
device surface conditions.
e. Remove heat sinks from heat source and free
air cool.
3. Oven - When soldering is performed in an oven, use
a solder preform (disc, 0.300" x 0.010") or flatten
solder wire (li. "-',4 ") before placing it on the heat
sink. For an inert atmosphere such as N" dry air,
etc., a flux is recommended_ If H,N, is available and
used, flux should not be required. Again, temperature must be controlled_

2-725

=

T A ambient temperature
RI).JA = junction-to-ambient thermal resistance
= ROJC +ROCA (with ROCA = ROCS+ ROSA when
heat sink used)
ROJC = junction-to-case thermal resistance

=

ROCA
case-to·ambient thermal resistance
ROCS = case-to· heat sink thermal resistance
ROSA = heat sink-to-ambient thermal resistance
Po = average power dissipated in the SCR
It is more accurate to base circuit designs upon the case temperature. The preferred method to determine case temperature is to
place a thermocouple on the package at point A as shown on the
mechanical outline drawing. Figure 12. Even when used in free
air. the mass of ,the package is large enough so that it will not

respond to heat surges generated at a 60 Hz rate or higher once
steady-state conditions are achieved.

For operation with a heat sink, normally, the R6CS portion of

R8CA will range between 0.2 and 10 C/W for the can type SCR's,
depending upon the particular mounting. ROCA is approximately
0.20 C/W for the stud packages when used with a thermal grease.
Ukewise, the RO SA portion of RO CA will vary with the shape,
material, and configuration of the heat sink as well as with the

surrounding conditions. Figure 10 is a very basic guide to ROSA.
For free air operation, in instances where the case temperature
cannot be measured or for preliminary engineering work, the case
temperature can be estimated by using values of case-to-ambient
thermal resistance, obtained from Figure 11 and the relation:

TC=ROCAPO+TA
The graph of Figure 11 indicates that the lead length of the SCR
and the thermal mass of the connection to the lead wi II influence

the value of ROCA.
For convenience, Figure 4 shows derating information when
the parts are in a still air ambient mounted on a typical P.C. board.

2N4151 thru 2N4198 (continued)
FIGURE 12 - OUTLINE DIMENSIONS

2N4151·58
CASE 85

2N4159-88
CASE85l

214187·74
CASE 86

!)~

iE,,~

0.437

MAX
HEX

~

0.090 AT CAN
0.110

0.110

!

0.030
0.050

L

0.530

MAX

fK
(j)

~I-10.185
MAX

I

0

(£!

®

O.070 OIA TYP

0.580
MAX

J

0.3srtA
DlA

MAX
0.430
DIA

MAX

2N4175·82
CASE 86L

I_~~~~

2N4183·90
CASE 87L

2N4191·98
CASE 88l

AT CAN

± 7.5 0 DISPLACEMENT

0.065

iillOl-

~n

il1i75

0210

0.190

/,(£!,::..---.-

'1--0.0-30-- -(j")-1
0IA

--'--(j)~ ®~3

"'-1

1.240
TYP

I

0.030
0.034

0.030
- I- Q]34 D1A

DIA~__f

~ :i.: ~[0'35ff'I'"
MAX

1._L-~=!~~~

TYP
1.240
1.320
MIN

~

02700030'

OIA

A

~ ~-(£!---l~r~~O

0.034

3J

---,

Jf

0.185
MAX

MAX
D1A
MAX

NOTES:
STYLE 1
(Thyristors I

(j)

GATE
CATHODE
ANODE

(2)

C3J

1. The case (anode) leads for the 2N4183·90 and
2N4191·98 series may be attached by either soldering or
welding techniques.
2. On all package types: Manufacturer may optionally use
a small metal tab on the case perimeter. opposite the gate
terminal for terminal identification purposes.
3. Point A indicates temperature reference pOint

2-726

MAX

A

0.430

LEAD

0.320

0.430

DIA -+-+1---1
MAX

0.030
0.034
OIA

2N4199 thru 2N4204 (SILICON)

Fast switching, high-voltage thyristors especially
designed for pulse modulator applications in radar and
other similar equipment. Available as JAN devices.

CASE 63

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Peak Reverse Blocking Voltage* (T J=105°C)

VROM(rep). *

50

Volts

IFM(rep)

100

Amp

Current Application Rate**

di/dt**

5000

A/).Is

Peak Gate Power-Forward

P GFM

20

Watts

PGF(AV)

1.0

Watt

Peak Gate Current-Forward

IGFM

5.0

Amp

Peak Gate Voltage-Forward

VGFM

10

Volts

VGRM ***

10

Repetitive Peak Forward Current
(PW = 3.0 ).Is, Duty Cycle = 0.6%,
TC = 85'C max)

Average Gate Power-Forward

Reverse***
Operating Junction Temperature Range
Blocking State
Conducting State

TJ

Storage Temperature Range

Tstg

-

Stud Torque

°c
-65 to +105
-65 to +200
-65 to +200

°c

15

in. lb.

*Characterized for unilateral applications where reverse blocking capability is not important.
Higher voltage units available upon request. VROM(,ep) may be applied as a continuous d c
voltage for zero or negative gate voltage but positive gate voltage must not be applied concurrently with a negative potential on the anode. When checking blocking capability, do not
permit the applied voltage to exceed the rated voltage.
* * Minimum Gate Trigger Pulse: i G = 200 mA, PW = 1 f.ls, t, = 20 ns.
* * *Do not reverse bias gate during forward conduction if anode current exceeds 10 amperes.

2-727

2N4199 thru 2N4204

(continued)

ELECTRICAL CHARACTERISTICS (T,= 25'C " , ' " ofh".,,. Mted)

Characteristic
Peak Forward Blocking Voltage·
(TC= 105'C)

Fig. No.
2N4199
2N4200
2N4201
2N4202
2N4203
2N4204

15

Peak Forward and Reverse Blocking Current
(Rated VFOM and VROM ' TC = 105'C, gate open)

17

Gate Trigger CUrrent (Continuous de)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = 25°C)

14

.

Symbol

Min

Max

VFOM

300
400
500
600
700
800

-

I FOM
IROM
IGT

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65"C)
Gate Trigger Voltage (Continuous de)
(Anode Voltage = rated VFOM ' RL = 100 ohms, TC = 105"C)

VGT
12

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = 25'C)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65°C)
Holding Current
(Anode Voltage = 7.0 Vdc, gate open, TC = 105'C)

18

IHO

Forward "On" Voltage
(If = 2 Adc, PW = 1. 0 ms max, Duty cycle

8

VF

~

1%)

Dynamic Forward "On" Voltage
(0.5 ,"S after 50% decay point on dynamic forward voltage waveform.)
Forward Current: 30 A pulse (PFN discharge circui!.)
Gate Pulse: at 200 rnA, PW = 1. 0 '"S, t, = 20 ns
Turn-On Time
Delay Time
All types

2N4199 and 2N4200
2N4201
2N4202
2N4203 and 2N4204

Rise Time

Pulse Turn-Off Time
Test Conditions: PFN discharge; Forward Current = 30 A pulsej
Reverse Current = 5.0A, TC = 85'C, dv/dt = 250 V/llstoRated VFO M •
Reverse anode voltage during turn-off interval = 0 V;
,
Reverse gate bias during turn-off interval = 6.0 V.
Forward Voltage Application Rate (Linear Rise of Voltage)
(Tc. = 105'C, gate open)

Thermal Resistance (Junction to Case)

-

2.0

-

2.0

2,13

16
6

rnA
rnA

-

100

0.2

-

50

-

2.0

3.0

-

-

1.5

-

25

Volts

1.5
rnA
Volts
Volts

VF(on)
7

I, 9
I,ll

Unit
Volts

ns

-

td
tr

toff(Pulse)

200
200
150
130
100
j.J.S

20

dvldt

-

250

3.0

8J C

VI,""
'C/W

'V'OM for all types can be applied on a continous de basis without incurring damage. Ratings apply for zero or negative gate voltage. When
checking forward or reverse blocking capability. these devices should not be tested with a constant current source in a manner that the
voltage applied exceeds the rated blocking voltage. Other voltage units available upon request.

TEST CIRCUITS

FIGURE I - TURN·ON TIME

FIGURE 2 - TURN·OFF TIME
PfN. Zo = 2.0 Q

200 H

1+)
RE·APPLIED
fORWARD VOLTAGE.
dv/dt ~ 250 VI p.S
TO RATED V'OM

":' Rs= 1.0 Q
1.0 Q

RL~

-Two MR1337·5 fastncovery dIodes In series

2-728

Hc = 2.0 Q

2N4199 thru 2N4204

(continued)

FIGURE 3- MAXIMUM ALLOWABLE FORWARD PULSE CURRENT
200

""
d;

1...-

Da~

"

~

2S·C

r-..... .............
~~

I

",.
/

.,'

...... ....

5000 A/p$MAX

di

i.lbled upon a peak junclion temperature 01 200·C. Junction temperature
must be no higherlllan 10S·C prior to application 01 lorward blocking voltage.

I"

""
5.0
1.0 ns

2.0

4.0

10 ns

20

40

100 ns

200

400

1.0 p$

4.0

2.0

100 p$

200

Ims

400

t, TIME OR PULSE WIDTH

CURRENT DERATING DATA

FIGURE 5- DWnNG USING TYPICAL SWITCHING LOSSES

FIGURE 4- DERATING USING NO SWITCHING LOSSES
100
0:

I"'\

:IE

5

ffi
~
<.>
'"

70

~

~ 50

Q

I!!Ii
:IE

~

:IE

j

,

100

~,.

"' ,"' ""'
"'

~~

;/

....... ~ ~~

.... ~,

" "" "-

Data is based on maximum

"

2.0

3.0

5.0

7.0

10

20

PW, PULSE WIDTH I/-,sl

"Y~a

_.!

30DV
. = VAK-800V

I-100Hz
500 Hz
/ 1.0 kHz
~
2.0 kHz

~r...

steady-state lorward drop dala
IFigure 81 al TJ - 200·C and
data 01 Figure 6. TurnoOn power
transienls are neglecled. The curves ~O kHz
"
indicale maximum capabilily thai
can be approached using delay reactor ~
circuits.

20
1.0

~ o-==-VAK -

TJ - 200·C

' I.......
'\

~

'"

"-

,r-;
~

"

........ ""~

2OO·C8S·C-

rrr

III

y-:::. .....

'

~~

I

I0
100

200

Ik

500

....

....
~

lI"

. . . . IJllltypi 21OIf../
Data IS indicative 0 capability In
ca
PFN circuils. Actual circuils should be
checked as indicated in the design note.

70 100

-

20p$

....::

0.5p.SJ /
·15.0p$"/ /
10p$

0

N{
50

!!I •

~.

10kHz ~.O kHz

30

T

PW- D.S p$
f5.0p$
_
~.
10p$
I=:.==='": ~-.; -. ~

0

r... I'i

TJ
Te

""'11
Sk

2k

10k

20k

f, PULSE REPETITION RATEI Hz)

DESIGN NOTE
Use of Transient Thermal Resistance Data
A train of periodical power pulses can be represented by Ihe model
shown in Fig. A. Using Ihe model and Ihe device Ihermal response, Ihe
normalized effeclive Iransienl Ihermal resistance of Fig. 6. was calculaled for various duty cycles from:
ret) 0 -+' (1 .:.. D). r(tA + t,) + r(t A) -ret,)

=

To find ~Jc(t)multiply the value obtained from Fig. 6 by the steadystate value ~JC (oo). Use 3°C/W for worst·case results; use 2°C/W
for typical information.

:.6 T = r(1)8Jc(oo) PA = (0.039) (3) (1000)

Method 2: For a power waveform where Ihe lime of Ihe peak power
is shorl compared to Ihe tolal transient, the foregoing method results
in an overly large safety factor. A pulse model closer to the real case
is shown in Fig. B. Ushig·the transient thermal resistance information
for 0 = Oin Fig. 6, 6 T(t.) and 6 T(ts)can be evaluated from
6T(t4)

DESIGN EXAMPLE
A 2N4199.discharging a PFN, transieni power pulse shown in Fig. C.
Conditions:

VAK - 150 V.. IPK = 44 A., f = 5000 Hz.

Determine:

6T

Method 1: (See Fig. A) PAtA is chosen to have the same energy as the
aclual power pulse, i.e. : Ihe area under Ihe curves are equal. PA equals
Ihe peak of Ihe aclual power pulse. AI a pulse repetilion frequency of
5000Hz and TA =2.14/-,s (0 = 0.0107): Ihe reading on Fig. 6 is 0.039.

=120·C.

=[PI [r(Tl) + (1 -

01)· r(T + TI ) +

°-

r(T)]

+ Pz[(l- Dz)· reT) + 0z - reT - Tz)tj8Jc (oo)
[;'T(t5)

= [PI [r(Tl+ T z)+(I- 0 1). r(T + T 1+ Tz) + Pz [r(Tz)+(I -

Dz •reT -+' Tz) + Dz -

r(T+ Tz) - r(Tz»)

r(T»)j8Jc (oo)

The two results are compared; the one with higher value is taken for
worst·case design. For the problem, values for the equivalent pulses
of Fig. B are PI = 1000 W, p, = 700 W, TI = 1.05/-,s, T, = 1.551-'5,
0 1= 5.25(10-'),0, = 7.75(10-').

2-729

2N4199 thru 2N4204

(continued)

FIGURE 6- NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE
GJ

I. 0
o. 7
o. 5

~
f3 o. 3
~ ~ o. 2

D 0.5

~~
~
O. 1

0.1

~ ~ 0.0 7

0.05

~

~~

«

---

I-

z

~ 0.0 5

:;5
"'~

~ 0.0 3 _

_t::"

...

D DUTY C CLE

=t:

·lTJDJ STATE JALUES .
8Jcl~1 3°C/W MAX=~
8JCl~1 2°C/W TYP,

=1=

;...,::::

JY2-

~ 0.02 _
~

-

~-

I--'
~

~

..... . "

0.2

~

'-0.005

~r;...

.... ~ 0.001 D~ 0 ISINGLE PULSEI
0.0 1 - - O.llls

0.2

0.4

1.0 P.s

2.0

4.0

10 P.s

100 ,lS 200
t. TIME OR PULSE WIDTH

20

40

1.0 ms

400

2.0

4.0

10 ms

20

40

100 ms

FORWARD "ON" VOLTAGE DATA

FIGURE 7- TYPICAL DYNAMIC FORWARD "ON" VOLTAGE

FIGURE 8- MAXIMUM STEADY·STATE

10~HL" ~I:~ 7lf/~_+-j
l!f-I't::~_U~-~lI.~trJfjA~ f!:~
f )~C~Iigf:GE r B
I7J~ I~ ~I
i- °01-l,i"'1IT-r-h,1T"'~-t-+.~
IF--t--I ""'j';j "', '1- '" -V~K~8dOV-r----,~
11;1
II
I
I
./?5

18

is
~

-

7
60

~ 50

~

0

I!
II

fi1

~30,

~ ~

In

J
i II

II
II

'I

II
1/

V

I

f)

I

1/

/

I

1/ ---VAK~400V'I ___ VAK ~ 400 V_ ",li'_
J
TO 600 V
/j'"
/J - - - - VAK ~ 400 V~.$'~
TO 800 V I~

II

1/

I I~'

/

1/1
III

il/ /
V
jV
If / I

II
)

TJ~25°C-

0

---VAK~600V

1/ 1

III

I II
I I

L

200

300

400

600

0
0
0

o

800

= [ 1000 [0.0205 + (1-5.25.10- 1 ) 0.27 + 5.25. lO~3
+ 700 [(1 -7.75.10- 3 ) 0.27 + 7.75.10- 3 -0.27)

6 T(t s) = [ 1000 [0.032 +

(1-5,25.10- 3 )

+ 700 [0.025 + (1-7.75·10-)

0.27

+

0.27

+ 7.75·10-)

5.25.10- 3

1000

r',

13 =93.51 °c

80O~-

-0.27 -0.0205)

13 = 105.6~C

~

~

~

1 2 3 4 5 6 7 8 9 10 II 12
V" FORWARD"ON"VOLTAGE !VolTSi

- 0.27]

-0,27J

r--.'rdlL
'rj.JJ..

V-

0

700

V

llJ.L

0

1I

~!J..

~lL

0

V,Ionl, TRANSIENT FORWARD "ON" VOLTAGEIVOLTSI

6. T(t,,)

200°C -

0

V
500

105°C-

0

(Time reference - 10% point of peak anode current. Value at specified time after reference point)

100

ill

90

Tc=25 C

0

!>:)

100

;

600

I

I

I

I

ffi

~

""

P,

r-tlj-40 0

'"

200,
0

PA

~:-.

r-tAI

I

P,

t,

I

II~'J
I
~

I
I
I
I

0.5

t,-

I

P>-

~

~

".I.

I

I
1.0

APPROXIMATION

X, / " ~CTUAL PULSE

1.5

2.0

2.5

3.0

"""" l"J
3.5

4.0

t, TIME Ip.sl

FIGURE C- AN ACTUAL TRANSIENT POWER PULSE

FIGURE B- MORE ACCURATE MODel

2-730

4.5

5.0

2N4199 thru 2N4204

(continued)

SWITCHING CHARACTERISTICS

TRIGGERING CHARACTERISTICS

FIGURE 9 - DELAY TIME

FIGURE 10 - TYPICAL PULSE TRIGGER CHARGE/CURRENT

500 ,-,...,,,.....,-,--,..--,-1--'--'--'-'-T""lrT"1

100

~

~
~

8

7

IGT

50

"."-"-

~

\

10

HasT

7

~

;::::

~ t'-.....

~

ffi

~ 100

:;:: ;:::

0.2

" -- -- -........

0.3

0.5 0.7 1.0

T.

PULSE WIDTH (",sl

~

~

70
50
100

...........

<::

200
400
500
300
VAK • ANODE-TO-CATHODE VOLTAGE (VOLTSI

~

-

1.2

f5

~ O.S f- -;;; VAK

600 700 800

JD

I,

~
~

;::::

10

!$

..-

~ 5.0 ~

i""'"

~ 7,0
~

~

j
3.0

2.0
-60

60A

"I

::::;-. ,..-

\

~-

10-

". "
20

~.

1""'

......

.... ....

40

60

3.0

7

3
5.0

0.2 f- -

0

-80

MAXIMUM

......

......

TYPICAL

RATED V",,,,

..,.....,.

MINIMUM
1"""_

-40

-20

20

40

r-

-

NON-TRIGGER REGION
-SO

-

60

80

100

VAK

7V

120

FIGURE 14 - DC GATE TRIGGER CURRENT

_k:: ~

...... ....

,

100
0

r-.,
0

80

100

Te. CASE TEMPERATURE ('CI

I""'- ..... 1--,

r--..

I""'- I'--r-., TYPICAL

............
0

...... 1---

7
5
-80

-SO

-40

20

20

40

60

T;. JUNCTION TEMPERATURE ('CI

2-731

-

,..... ..!!AXIMUM

.....

0

REVERSE GATE BIAS'
--OV
---6V
RATE OF RE-APPLIED
VOLTAGE 400 VII-IS TO Vm",
REVERSE ANOOE CURRENT ~ 5 A
FORWARD CURRENT FALL TIME(200 ns

20

-

I

TJ• JUNCTION TEMPERATURE ('CI

~
~
~A:;:; I- ..- ........
~
.... ~--:

- .- --- -"

1--- .... ".

40

-....
...

1A_

~

0.4

FIGURE 13 - TYPICAL TURN·OFF TIME
20

I.e'

VAK - 7 V

i§

r-""'- r--

/'

2.0

......

1.4

g 0.8

25'C

V

I.S

:g

§; 1. 0
[-t:1:,c

K"

FIGURE 12 - DC GATE TRIGGER VOLTAGE
......

1.8

~

~

25'C

~

...... 1"-

3

./

Ordinates are minimum values to cause triggering for a typical unit.

FIGURE 11 - CURRENT RISE TIME
0.1 ",F CAPACITANCE DISCHARGE
i, (pkl ~ 5 TO 100 AMPS c(SEE FIG. 11- Rl VARIEDI

/

~I

-

IG• GATE CURRENT (mAl

I'....

V

105'C

0.050.07 0.1

~ 200

IV

II
3

300

l'l~5'C

TJ

.......

"-

30

f5 20

'"'"i§
5i

I 00

7V

VAK
70

80

100

120

2N4199 thru 2N4204

(continued)

FIGURE 18 '- TYPICAL dYlilt CAPABILITY

FIGURE 15 - TYPiCAl BLOCKING VOLTAGE OERATING
4000

0

J

~

I. 1

"i3OOO ~VAK=VFOM

GATf OPEN
TJ ~.l05'C

7W

~

..... ~ ~

~20D0

0

/ ' r/ ~

~

7

"-

5

2

200

300

500

700

--

........ I--.

1000

2000

3000

;
:a

-

t--

500

400
0.1

5ODO

0.2

........

105 C

i---'"
0.3

0.5

0.7

1.0

3.0

2.0

5.0

FlGURE11-HOLOING CURRENT

FiGURE 17 - FORWARD BLOCKING CURRENT
VFOM

25'C

V,.K.GATE·To:cATHODE REVERSE VOLTAGE (VOLTS)

dv/d!•.LINEAR RATE Of APPlIEO VOLTAGE tvl p.sJ

VAK

/j /

TJ=-~~

!!51000

~'15 700

.,

100

./

70 VAK

7V

-

MAXIMUM

./

0

/'

0

./

"...

/

V /

0

--

-TVPICAL@TJ '" 25'C

0

../

~'TJ =1105,'C

".

Mi1;;M1PTJ

~ 105'C-

-

5

TYPI~

5

,

I

O.5
02
-60

3
2

-40

-20

20

40

60

80

100

'-::1. - F'~RD
REVERSE

+0.5

120

-4

-3

-5

V&K. GATE·TO-CATHODE VOLTAGE (VOLTS)

FIGURE 20- TYPICALGATE·TII-CATHODE EAPACITANCE

FIGURE 19- TYPICAL ANOOE·TII-CATHODE CAPACITANCE
50

240
TJ

0
0

-2

-I

0

TJ• JUNCTION TEMPERATURE ('C)

:i. 220

= 25'P

i

2N4204

~

~

\.

<5 180

§~ 160

I"-.. r--r-.,

~140

0

~,

j

I--.

7
5
10

20

50

100

200

500

1000

TJ~25'C-

200 1\

120
100

o

"

~

'"

-2

r-....

_r---. I--- t-.;;..
,

~ to-6

V&K. GATE·TO-CATHODE VOLTAGE (VOLTS)

VAK. ANOO[.T().CATHOOE VOLTAGE (VOLTSI

2-732

-8

-10

2N4212 thru 2N4216 (SILICON)

PNPN thyristors (silicon controlled rectifiers) designed for operation in mAl f.lA signal or detection circuits.
CASE 31(2)
(TO-S)

MAXIMUM RATINGS

*

(T J = 125" C unless otherwise noted)

Rating
Peak Reverse Blocking Voltage
(Note 1)
2N4212
2N4213
2N4214
2N4215
2N4216

Symbol
V

Forward Current RMS
(All Conduction Angles)

RSM(rep)

IT

Value

Volt
25
50
100
150
200
1.6

Amp

15

Amp

Peak Surge Current
(One Cycle, 60 Hz)
No Repetition until
Thermal Equilibrium
is Restored

I

Peak Gate Power - Forward

P GM

Average Gate Power - Forward

PG(AV)

Peak Gate Current - Forward

IGM

0.1

Peak Gate Voltage - Forward

VGFM

6.0

Reverse

VGRM

6.0

FM(surge)

Unit

0.1

Watt

0.01

Watt
Amp
Volt

Operating Junction Temperature
Range

TJ

-65 to +125

°C

Storage Temperature Range

T

-65 to +150

°C

Lead Solder Temperature
(> 1/16" from case, 10 sec. max)

-

*

JEDEC Registered Values.
2-733

stg

+230

°C

2N4212 thru 2N4216

(continued)

ELECTRICAL CHARACTERISTICS (Tc = 25'C unless otherwise noted. R..K

= 1000 ohms)

Symbol

Charaderistic
Peak Forward Blocking Voltage (Note 1)

VORM

2N4212
2N4213
2N4214
2N4215
2N4216

Min
25"
50"
100·
150"
200·

Max

-

Unit
Volt

Peak Reverse Blocking Current
(Rated VRSM. T J = 125" C)

IRRM

-

200"

iJ.A

Peak Forward Blocking Current
(Rated VDRM. T J = 125'C)

IORM

-

200"

iJ.A

Forward "On" Voltage
(IF =1.0 A Peak)
(IF = 3.14A Peak)

VF

Gate Trigger Current (Note 2)
(Anode Voltage = 7.0 V, RL = 100 6hms)

-

/lAde

(T C = 25°C)

-

100

(TC = -65"C)

-

300·

-

0.8

-

1. 0*

V GT

(Anode Voltage = 7.0 V. RL = 100 ohms, TC = -65'C)

VGT

(Anode Voltage = RatedVDRM' RL = 100 ohms, T J = 125'C)

V GNT

Holding Current (Anode Voltage = 7.0 V) TC = 25' C

tgt

Turn-Off Time

tq

• JEOEC Registered Values
Notes: 1 V
dV
b
Ii d f all t
a
. RRM an
ORM can e app e or
ypes on
continuous de basis without incurring damage.

.

FIGURE 1 -

CASE TEMPERATURE YS CURRENT

Thyristor devices shan not have a positive bias applied to the gate
concurrently with a negative potential applied to the anode.

FIGURE 2 - AMBIENT TEMPERATURE vs CURRENT
e..
140
NOTES,
....
(1) DC. 1<>. 3<,>. 6<>. CIRCUIT - RESISTIVE OR
'"
~ 120

120

~

itO

......~~ 100

:!<>

100

is 80

CD

90
80

i

70

,.g

(2) 125°C,JUNCTION TEMPERATURE

180°

iii
:IE
c
~

60

CD

~
~

PIII""-4-~ INDUCTIVE LOAD. 50 TO 400 CPS -~4----l

~

~ 40

~

:IE

:IE

Circuit dependent,
consult manufacturer

Thyristor devices shall not be tested with a constant current source
for forward or reverse blocking capability such that the voltage
applied exceeds the rated blocking voltage.

!

~

rnA

G

e..

~

7. O.

TC = -65'C

2. RGK current is not included in measurement.

0.1·

Volt

3.0

IHX

Turn-On Time

~

2. o.

IGT

Gate Trigger Voltage
(Anode Voltage = 7.0 V, RL = 100 ohms, TC = 25"C)

5

Volt
1.5

c

:IE
:>
:IE

60
0

0.2

0.4
0.6
0.8
IT(AV).AVERAGE FORWARD CURRENT (AMPS)

i

20

dc

0

.(

~

2-734

0

0.1

0.2
0.3
0.4
0.5
0.6
IT(AV). AVERAGE FORWARD CURRENT (AMPS)

0.7

2N4220 thru 2N4222 (SILICON)
2N4220A thru 2N4222A

N-channel junction silicon field-effect transistors
designed for general purpose amplifier and switching
applications. "A" types guarantee low noise figure (2.5
dB maximum @ 100 kHz).

DRAIN ~SOURCE

200~~\

t
o

03

1 04

CASE LEAD

CASE 20(3)

GATE

!!..Y

(10·72)

Drain and Source
may be interchanged.

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Drain-Source Voltage

V DS

30

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

V GS

30

Vdc

Drain Current

ID

15

mAdc

Total Device Dissipation @T A = 25°C
Derate Above 25°C

PD

300

mW

2.0

mW;oC

Operating Junction Temperature

TJ

175

°c

T stg

-65 to +175

°c

Storage Temperature Range

2-735

2N4220,A thru 2N4222,A (continued)

ELECTRICAL CHARACTERISTICS

(T. = 25"C unles. otherwise noted)

Characteristic

Min

Symbol

Typ

I Max
.-

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
= -10 "Adc, VIlS = 0)

no

Gate Reverse Current
(Vas = -15 Vdc, VIlS = 0)

V(BR)GSS

-30

-

lasS

-

-

(Vas' -15 Vdc, VIlS = 0, TA = 150°C)
Gate-Source Voltage
= 50 "AOO, VIlS = 15 Vdc)

!In

Un = 200 "AOO,

2N4220, 2N4220A

Vas

-

-

-0.5

-

VIlS = 15 Vdc)

2N4221, 2N4221A

-1.0

!In = 500 "Adc, VIlS = 15 Vdc)

2N4222, 2N4222A

-2.0

Gate-Source Cutoff Voltage
O. 1 nAdc, VIlS = 15 Vdc)

Un •

2N4220, .2N4220A
2N4221; 2N4221A
2N4222, 2N4222A

VGS(off)

Vdc

nAOO
-0.1
-100
Vdc
-2.5
-5.0
-6.0

--

-4.0
-6.0
-8.0

0.5
2.0
5.0

-

3.0
6.0
15

1000
2000
2500

2500
3500
4500

4000
5000
6000

---

--

--

-

VOO

ON CHARACTERISTICS
Zero-Gate-Voltage Drain Current (11
(V1lS =15Vdc, Vas =0)

2N4220, 2N4220A
2N4221, 2N4221A
2N4222, 2N4222A

IDSS

mAdc

DYNAMIC CHARACTERISTICS
Forward Transler Acjmlttance (11
(VIlS = 15 VOO, Vas = 0, 1 = 1.0 kHz)

2N4220, 2N4220A
2N4221, 2N4221A
2N4222, 2N4222A

Output Admittance' 11)
(V1lS =15 Vdc, Vas = 0, 1 = 1.0 kHz)

2N4220, 2N4220A
2N4221, 2N4221A
2N4223, 2N4222A

Drain-Source :ReSistance
(V1lS = 0, Vas = 0)

IYool

rdo(on)

",mhos

10
30
40

--

-

500
400
300

Input CapaCitance
(V1lS' 15 Vdc, Vas = 0,1 = 1.0 MHz)

C iss "

-

4.5

6.0

Reverse Transfer Capacitance
(V1lS = 15VOO, Vas· 0, f = 1.0 MHz)

Cras

1.2

2.0

Common-Source Output CapaCitance
(VDS .15 VOO, Vas = 0, f = 30 MHz)

Cosp

--

1.5

-

--

2.5
2.5
2.5

Noise Figure
(VDS =15 Vdc, Vas = 0,

2N4220, 2N4220A
2N4221, 2N4221A
2N4222, 2N4222A

IImhos

IYlol

Rs =1.0 ';egohm,

NF
f = 100 Hz)

2N4220A
2N4221A
2N4222A

-

pF

pF

I1I·Pulse Teat: Pulse Width = 630 ma, Daty Cycle = 10%

FIGURE 1 - EQUIVALENT LOW FREQUENCY CIRCUIT
Common Sourca
YParamota.. for Frequancies
• Below 30 MHz
Yjs=jwCill
Y.. =jw Co';+ l/r...
Yf.=lffsl
Y.. "-jwC ...

*Cosp is COlI in parallel with Sarles Combination of Cill and C.....

2-736

Ohms

pF
dB

2N4220,A thru 2N4222,A (continued)

FIGURE 2 - FORWARD TRANSFER ADMITTANCE
versus DRAIN CURRENT

'i 6000
i 5000

-0.5

VDS'15V
r-TA" 25'C
~
~ 3000 r-1=1.°lk~

I I

.;I

iii 2000
~
II:

~

FIGURE 3 - TEMPERATURE COEFFICIENT OF Yfs
versus DRAIN CURRENT

2N4221,A

,.....

~

~
~
.... -0.4

I-- 2Ni220~A

w

~
....'"

it -0.3

V

t::: ~~

S

-0.2

....

o 700

II:

500

..... i'"
I"

W
II:

II:

i

VDS=15V

..

....

~ ~

I I

~ 1000

2N4222, A

z

~

-0.1

~

~

-'" 300
:t.
0.1

0.2

0.5

1.0

5.0

2.0

...... ~

.....

~

o

10

0.2

0.3

1.0

0.5

10, DRAIN CURRENT (rnA)

FIGURE 4 - OUTPUT RESISTANCE
versus DRAIN CURRENT

J!l.

!~

1. 0

::!

0. 5

In

8.0

m 0.2

-

....

5 o. 1

is

~ B.O

"- ~

1

0
4
• I:!!..

2. 0

2N4222,A

~

t-.......

iI

.!' 0.02

0
0.2

0.5

1.0

2.0

5.0

3. 0

\

vJS!l~~1

4

VGS=O
RS' 1.0M!!

2

!

\.

.

z

~

"r---

1. 0
0
0.01

8.0

16

12

20

V~sllW

i\

VGS'O
1=1.0 kHz

10

~ 8. 0

~

'"
,.:

c",

w

'"wu::

!!! 2. 0

...... -

""'-

FIGURE 7 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 6 - NOISE FIGURE versus FREQUENCY

~

VOSo DRAIN·SOURCE VOLTAGE (Volts)

5.0

!w

20

e;.. r--

4.0

10

10,ORAIN CURRENT (rnA)

4.0 \

10

....

2N4221,A

0.05

0.0 1
0.1

5.0

w

2N4220,A

II:

I!:

VDS=15V
TA = 25'C
1= 100kHz

....

2.0

3.0

FIGURE 5 - CAPACITANCE
versus DRAIN·SOURCE VOLTAGE

0

5. 0

2.0

10, DRAIN CURRENT (rnA)

0.1

e;
z

'\

6.0

~ 4.0

.........
1.0

i'-.

2.0

10

100

0
0.001

I0.01

0.1

1.0

RS, SOURCE RESISTANCE {Megohms}

I, FREQUENCY (kHz)

2-737

10

2N4220,A thru 2N4222,A (continued)

4.0
3.5

«

.~

3.0

'"'-'z

2.0

oS

'"

10

\

2.5
125"C

~

E

1.0

FIGURE 9 - DRAIN CURRENT

versus GATE·SOURCE VOLTAGE

'\
"\.:C

1.5

FIGURE 8 - DRAIN CURRENT

versus GATE·SOURCE VOLTAGE

~

2N4220, 2N4220A
VOS=15V(Note I, 2)

TA =-55'c

'\.

,"

"'K.."

.........

0

.......

lOSS = 0.5 mA
0.5

~

o
o

r.LSS"~

o.s

;;:

8.0

oS

7.0

~

6.0

..

~A=-55"C

r0 "\..

'"'"
'"'-' s.o

~'Oss = 3.0 mA

12S"C

z

;;: 4.0

~

'"
0

~~

2S"~12S"C

...........

3.0

E

2.0

........ ~

o

if lOSS = 6.0 mA

~-<.~
.':C=2·1~ ~

o

2.0

I.S

~
"- ...:x

125"C

1.0

-.......;;

1.0

2N4221,2N4221A
VOS=15V -(Notel,2)_

9.0

1.0

I""'--..

2.0

4.0

3.0

5.0

VGs. GATE SOURCE VOLTAGE (Volts)

VGS, GATE SOURCE VOLTAGE (Volts)

FIGURE 10 - DRAIN CURRENT

FIGURE 11 - TEMPERATURE COEFFICIENT OF
DRAIN CURRENT versus DRAIN CURRENT

versus GATE·SOURCE VOLTAGE
16r--'---.---.---.---.---r---r---r---r--~

2N4222,2N4222A
~~--~--~---+---+---+--~--VOS=ISV

(Note I, 2)

+15

F

iNo!"I)

+10

.

"<

.3 +5.0

t::-

z

w
13

~ -s.o

8

."'
..i'il

r:::: ~~

-10

~

~

~

10SS= 3.0 rnA

.

~15

-..::::~

6.0mA
-20

'\

-25

11 rnA

C -30

II I

;:;

-35
0.1

0.2

0.5

1.0

2.0

'0, DRAIN CURRENT (mA)

VGS, GATE SOURCE VOLTAGE (Volts)

NOTES:
1. Graphical data is presented for de conditions. Tabular data is
given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle =
10%). Under de conditions, self heating in higher lOSS units reo
duces lOSS (See Figure 10).

2. Figures 8, 9, 10: Data taken in a standard printed circuit with a
TO·18 type socket mounting and 114" lead length.

2-738

5.0

10

2N4223 (SILICON)
2N4224

Silicon N -channel junction field -effect transistors,
designed for VHF amplifier and mixer applications.
Drain and Source interchangeable.
CASE 20(3)
(TO-72)

MAXIMUM RATINGS ITA; 25°C unless otherwise noted)

Symbol

Value

Unit

Drain-Source Voltage

V DS

30

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

Drain Current

ID

20

mAdc

Power Dissipation

PD

300
2.0

mW

Rating

Derate above 25°C

+ 175

TJ

Operating Junction Temperature
Storage Temperature Range

mW;oC
°c

-65 to +200

Tstg

°c

FIGURE 1 - NOISE FIGURE AND POWER GAIN TEST CIRCUIT
Rs

~

5011

I

2-8 pf

4.7 pf
1-1Opf
1-10 pf

L,

~

IV2 TURNS #20 TINNED WIRE, W 10, LENGTH

~

L,

~

3'/2 TURNS #18 TINNED WIRE: WID, LENGTH
TAPPED AT I V. TURNS fROM DRAIN

~

%"

W',

+15 Vdc

2-739

R,

~

50ll

2N4223, 2N4224 (continued)
ELECTRICAL CHARACTERISTICS (T A: 2SoC unless otherwise noted)

Symbol

Characteristic

Min

Max

Unit

-

Vdc

30

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 "Adc, VOS = 0)
Gate Reverse Current
(V GS = 20 Vdc, VOS = 0)

V(BR)GSS

2N4223
2N4224

(V GS = 20 Vdc. Vns = 0, TA = 100'C)

2N4223
2N4224

Gate-SOurce Cutolf Voltage
(10 = 0.25 nAdc, VOS = IS Vdc)

2N4223

(IO = 0.50 nAdc, VOS = 15 Vdc)

2N4224

Gate -SOurce Voltage
(IO = 0.3 mAdc, Vos = 15 Vdc)

2N4223

(10 = 0.2 mAde,

VOS = 15 Vdc)

IGSS

VGS(off)

VGS

2N4224

--

nAdc
0.25
0.50
·250
500
Vdc

-

8.0

-

8.0

Vdc
1.0

7.0

1.0

7.5

ON CHARACTERISTICS
Zero-Gate-Voltage Oraln Current '11
(V DS. = 15 Vdc, VGS = 0)

2N4223
2N4224

DYNAMIC CHARACTERISTICS
Forward Transfer Admittance
(1)
(Vos = 15 Vdc, VGS = 0, f = 1 kHz)
(V OS = 15 Vdc, VGS = 0, 1= 200 MHz)

2N4223
2N4224
2N4223
2N4224

Re(y IS )

Input Conductance

(V OS = 15Vdc, VGS = 0, 1= 200 MHz)
Output Conductance

Re(yos)

(Vos = 15 Vdc, VGS = 0, 1= 200 MHz)
Input CapaCitance
(VOS = 15Vdc, VGS = 0, f

Clss

= 1 MHz)

Reverse Transfer Capacitance
(VOS= 15Vdc, VGS= 0, f = 1 MHz)

Cras

NOise Figure
(V OS = 15 Vdc, VGS = 0, RS = 1 k ohm, f = 200 MHz)

2N4223

Small-Signal Power Gain
(VOS = 15 Vdc, VGS = 0, f = 200 MHz)

2N4223

'11 'Pulse Test:

IYlsl

NF

Pulse Width ~ 630 ms, Duty Cycle ~ 10%

2-740

Gps

~mhos

3000
2000

7000
7500

2700
1700

Ilmhos

-

800

-

200

J.lmhos

pF

-

6.0

-

2.0

-

5.0

10

pF

dB

-

dll

2N4223, 2N4224 (continued)

FIGURE 2DRAIN CURRENT versus GATE-SOURCE VOLTAGE
25
I
I
~
VDS= 15 Vdc_

'\

20

::<

.s

FIGURE 3TEMPERATURE COEFFICIENT FOR DRAIN CURRENT
+10

-

1'\

15

~

~

G
z

10

~ i'-..."'"

,125 bC

~

C>

E

5.0

~

~OC
)50y

TA = -55°C

'"

.......
-......::: ~
--......;

--

f:::::;;;; ~

\

F--- i--

-40

4.0

5.0

FIGURE 4 -FORWARD TRANSFER ADMITTANCE
versus GATE-SOURCE VOLTAGE

- I--

5000

E

-

~

,.::::

3000

......

~ 2000
~

w

~
~

z

VOS = 15 Vdc
f = 1.0 KHz
lOSS = 10 rnA
TA=25'C

~

0.3

0.5

1.0
2.0 3.0
ID. DRAIN CURRENT (rnA)

10

~~SI=115 Vd)

_
j = 1.0 KHz
TA = 25'C -

G

~ -0.4

." '\

~I- i -

u:

t-

~ -0.3

I-r--.

8
w

~

=>

~ -0.2

1000

500

.............

~

~ -0.1

\.
\

~ 700

~

t:

\

o

0.5

1.0

1.5

2.0

o
0.2

2.5

0.3

0.5

1.0

10

8.0 f--- .

S
«

r-........

5.0

2.0
1.0

2.0

4.0

7.0

=>

6.0

~

0
z

6.0

5.0
4.0

'"

,I

Cosp

V

r-..
........

~-

z

r--

[...X

~
w

'"u::w

Ciss

-

u· 3.0

20

~

r- I -

5 4.0

10

j "105 MHz
VDS= 15V
ID=4.0mA
TA=25'C

9.0

7.0
6.0

5.0

10

T~=25'6-

8.0
w

3.0

FIGURE 7 -COMMON SOURCE
NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 6 - CAPACITANCES

9.0

2.0

ID. DRAIN CURRENT (rnA)

VGS. GATE·SOURCE VOLTAGE (VOLTS)

E.

20

FIGURE 5 - TEMPERATURE COEFFICIENT FOR Yfs
versus DRAIN CURRENT

13

~

~

5.0

;;,

;i

....

0.2

-0.5

r--

w

'-'

i'r-.,

1\

3.0
2.0
1.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

.3

........

I'....

........

~

~

r.....

""250C ' \

§

JD~ ~115 VdCI_

-

I-r-.

3.0

..... 1--'

2.0
1.0

Crss
8.0

10

12

14

16

18

20

VDS. DRAIN·SOURCE VOLTAGE (VOLTS)

2-741

0.1

0.2

0.3

2.0
3.0
0.5
1.0
RS. SDURCE RESISTANCE (k ohms)

5.0

10

2N4223, 2N4224 (continued)

FIGURE 8 -INPUT ADMITTANCE
versus FREQUENCY

'y.' , ,

10

]

1.
w

r..:I

~
I:iii
~

I-

~

~--.

big

~VO;=15VdC

9.0

8.0 _VGS=O
Yig
7.0 -VOG=15Vdc

Jlr

Vis

vos = 15 Vdc
VGS= 0
Vlg
VOG = 15Vdc
VSG =0
TA = 25'C

4.0

~

i- IIlj

3.0

-gig

1.1

~

2.0

~

2D

30

50

300

500

1000

20

10

30

FIGURE 10 - OUTPUT ADMITTANCE
versus FREQUENCY

I

50

:iii

«

2.0

f

,g

.,zw

;:
Ic

I-

C

I)
bog

I

~

I~

t{

1.0

10

2D

30

c

«

~
~

-

14

10 -

~ 12

co

a:

~

~

\. I)

L

0.6

w

i

If I
200

300

500

ffi

0.4

~

0.2

grs

r-

o

1000

10

20

50

3D

-brg

I-' -g
I-' " ~

1[

IU
100

1=:=

200

300

500

1000

I, FREQUENCY (MHz)

FIGURE 13 - COMMON SOURCE NOISE FIGURE
versus FREQUENCY
10

r-

H--

16

!

V

-blS

O. 8

g

FIGURE 12 - POWER GAIN versus FREQUENCY

18

1000

VIS

1.4
Vrg
1.2 I-- t- VOG = 15 Vd,
VSG=O
1.0 I-- t- TA=25'C

:iii

90s & gog

100

500

' - - t- VGS=O

I, FREQUENCY 1M Hz)

20

300

r--- t- VOS =15 Vdc

1.6

~

II

1./
III

50

.,

w

I)

i-J-I-

o

200

2.0

1§ .1.8
,g

II

I

:::0

I!:
:::0

100

FIGURE 11 - REVERSE TRANSFER ADMITTANCE
versus FREQUENCY

B

Yo,
4.0 I-- VOS = 15 Vdc
VGS= 0
I-Yog
VOG = 15 Vdc
3.0 I-VSG =0
I-- TA=25't

1

I, FREQUENCY IMHz)

I, FREQUENCY IMHz)

5.0

'",

I-

o

200

100

[,(
1/

./
I-"

L..

/

1.0

gis

1==

1.0

B

V

-bls

2.0

/ /

3. 0

r--.

~~d Ufs

gig

II j

4.0

10

5.0

I

II Ji/

bis

6.0 -VSG=O
_
TA=25'C
5.0

o

!

FIGURE 9 - FORWARD TRANSFER ADMITTANCE
ver~us FREQUENCY

-.......

Vd~

VOS = 15
'0=4.0 mA
,-- RS=1.0kU
r- TA=25'C

8.0
w

......

g;

co
;;:

.

.......

r-

VOS = 15 Vdc
'0=4.0mA
Rs=1.0kU
TA = 25'C

6.0

w

.......

B.O

-

'"

~

.............

r-- r-

i5 4.0

-

'"zu.:

cf 6.0
4.0

2.0

~
~

2.0

o
40

60

80

100

200

300

400

40

I, FREQUENCY IMHz)

2-742

60

80

100
I, FREQUENCY (MHz)

200

300

400

2N4231

thru 2N4.233 (SILICON)
Medium-power NPN silicon transistors designed
for driver circuits, switching, and amplifier applications.
MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage

CASE 80
(TO-66)

Collector
connected to case

2N4231 2N4232 2N4233 Unit

VCEO

40

Collector-Base Voltage

VCB

50

Emitter-Base Voltage

VEB

5.0

Vdc

IC'

3.0
5.0

Adc

Collector Current - Continuous.
Base Current
Total Device Dissipation T C = 25° C
Derate above 25° C
Operating & Storage Junction Temperature Range

60

80

Vdc

70

90

Vdc

IB

1.0

Adc

PD

35
0.2

Watts
W/·C

T J , T stg

-55 to +200

·C

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

* The 3.0 Amp maximum Ie valUe is based upon JEDEC current

~~.:rin

requirements.

The 5.0 Amp maximum value is based upon actual current-handing capability of the device.

ELECTRICAL CHARACTERISTICS

(Tc

=25°C unless otherwise noted)

Characteristic

Symbol

Min

Max

40
60
80

-

-

1.0

-

1.0

-

O. 1

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(IC = 100 mAdc, IB = 0)

2N4231
2N4232
2N4233

Collector Cutoff Current
(V CE =30 Vdc, IB = 0)

2N4231

(V CE = 50 Vdc, IB = 0)

2N4232

Ia = 0)

2N4233

(V CE = 70 Vdc,

Collector Cutoff Current
(V CE @ rated VCEO' VEB(off) = 1. 5 V dc)

BV CEO(sus)

I CEO

ICEX

(V CE @rated VCEO' VEB(off) = 1. 5 Vdc, T C =150°C)

Vdc

mA

1.0
mA
1.0
mA

Collector Cutoff Current
(VCB @ rated VCB' ~ = 0)

ICBO

-

0.05

Emitter Cutoff Current
(V BE = 5. 0 V dc, IC = 0)

lEBO

-

500

40

-

(IC = 1. 5 Adc, VCE = 2.0 Vdc)

25

100

(IC = 3.0 Adc, VCE = 2.0 Vdc)

10

-

-

0.7

-

1.4

uA

ON CHARACTERISTICS
DC Current Gain (I)
(IC = O. 5 Adc, VCE = 2.0 Vdc)

hFE

Collector-Emitter Saturation Voltage III
(IC = 1. 5 Adc, IB = O. 15 Adc)

VCE(sat)

(IC = 3.0 Adc, IB = O. 3 Adc)
Base-Emitter Voltage III
(IC = 1. 5 Adc, VCE = 2.0 Vdc)

VBE(on)

111 Pulse Test, PW"" 300 IJ.s, Duty Cycle"" 2. 0%

2-743

-

Vdc
2.0
Vdc

2N4231 thru 2N4233 (continued)
ELECTRICAL CHARACTERISTICS

(continued)

Symbol

Characteristic

Min

Max

4.0

-

-

200

20

-

Unit

SMALL·SIGNAL CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC = 0.5 Adc, VCE = 10 Vdc, f = 1. 0 MHz)

fT

Output CapacItance
(VCB = 10 Vdc, ~

Cob

=0,

f =1. 0 kHz)

Small-Signal Current Gain
(IC = 0.5 Adc, VCE = 10 Vdc, f = 1. 0 kHz)

hfe

2.0

i
Z

~

1.0

;
_

0.7
0.5

:s
1

0.3

I

6

3.0
2.0

le-IOmA

25'C

.-

1.0 A

3.0A

\

,
4

0.2

I\.

O. I
0.005

0.01

0.020.03 0.05 0.1
0.2 0.3 0.5
Ie. COLLECTOR CURRENT lAMP)

1.0

0
0.05 0.1 0.2

2.0 3.0 5.0

2.0

,

1.6

I

+2.5
G

En

)
1.2

§

~

~ 0.8

-

"II

0.005

2.0 3.0 5.0

0.005

+~

'A ,.

o---'\II/V----.

--l I,

rI

:

V,. - , - - ,
I

--j

I

I--

I,
TURN·OFF PULSE

......-l

III I
0.01

0.020.03 0.05 0.1
0.2 0.3 0.5
Ic. COLLECTOR CURRENT lAMP)

--

RK

100

(5

70

~

I, < 7.0 ns

-4.0 V

-=

2.0 3.0 5.0

I
TJ=+25'C

~ t'-....
"-

<.)

!

1.0

FIGURE 6 - CAPACITANCE

~
w

C)d« C.b

100-< I, < 500 ~
T1,<150'

::

200

RL
O--'V\/'v-_

V"('H!.-J I- I,
APPROX
+ 11 V

300

'"

8vforV"

~-2.0

FIGURE 5 - SWITCHING TIME EQUIVALENT CIRCUIT
Vee

V

~-I .5
-2.5

0.02 0.03 0.05 0.1
0.2 0.3 0.5
1.0
Ie. COLlECTOR CURRENT IAMPI

APPROX TURN·ON PULSE

'8v forVCE(""

i-I
. .0

J

om

-

w

..... ~

VeEI,,'1 @Ielt-IO

o

,/

V

§-o.5

2.0V

V,,@VeE

0.4

500

0

8

I-'

V"I"') @Iell,= 10

50 100 200

'APPLIES FOR 'cll,:5h,,12
TJ - -55'Clo +175'C 1/

+2 .0

;.: +1 .5
g
~+I .0
13+0.5

TJ - 25'C

~

0.5 1.0 2.0
5.0 10 20
I.. BASE CURRENT (rn41

FIGURE 4- TEMPERATURE COEFFICIENTS

FIGURE 3 - "ON" VOLTAGES

i

I

100 mAl

2

"-

-55'C

-

I'
I

TJ -25'C

2.0V

VeE

175"C

TJ

pF

FIGURE 2- COLLECTOR SATURATION REGION

FIGURE 1- NORMALIZED DC CURRENT GAIN
10
7.0
ffi 5.0

MHz

"
C.b

"-

50
C,b

DUTY CYCLE:::: 2.0%
APPROX -9.0 V
30
0.1

2-744

I
0.2

0.5

5.0
1.0
2.0
YR. REVERSE VOLTAGE (VOLTS)

10

20

50

2N4231 thru 2N4233

(continued)

FIGURE 7 -TURN-ON TIME

FIGURE 8 - TURN-OFF TIME

2.0

2.0

I I

1.0

~Vee

0.7
0.5

~

30V

I=f:= r=

0.7 ~
0.5

'i

:;; 0.3

10 v

t.@Vee

II

1.0

:rt±-----.,

0.3

""'"

lell, ~ 10
TJ 25'C

I""H-+-

""

0.2

I~'

~

~Vee

181 = 182

,1.1 ~

r='~ @Vee

lO,l

le/l,~
I; I, IH
TJ 25'C

f:=l=
1'= f=~

30V

IOV

.......

'" 0.2

I, @ V"I.fll ~ 2.0 V

O. I

O. 1

0.Q7
0.05

0.07
0.05

r-

0.03
0.02
0.05 0.07 0.1

0.03

0.2
0.3
0.5 0.7 1.0
Ie, COLLECTOR CURRENT IAMPI

2.0

3.0

0.02
0.05 0.07 0.1

5.0

0.5 0.7 1.0
0.2
0.3
Ie, COLLECTOR CURRENT IAMPI

2.0

3.0

5.0

TYPICAL "OFF" REGION CHARACTERISTICS

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

FIGURE 9- CUT-OFF REGION

,

10

10

30 V

,rVe,

175'C

Ir--TJ

,

/

.........
......... I.........

......

'"

./
/

100'C

/'
Ie

,
,f--

REVERSE BIAS

FORWARD BIAS-

/

25'C

10

-

- 0.2

0
0.2
V", BASE·EMITIER VOLTAGE IVOLTSI

r-r-10'

0.4

.......

.........

10 X ICES

.......

-ICES

.......

.........

l

-0.4

.......

.......

F== F=2 x icEs
0

VeE~30V-

0.6

o

.......

ITYPICAL icEs VALUES
OBTAINED FROM FIGURE 91
40

20

:-.....

.......
I'-.

60

80
100
120
140
TJ, JUNCTION TEMPERATURE I'CI

160

180

200

FIGURE 11 - ACTIVE-REGION SAFE-OPERATING AREA
10

70
5.0
0

i

0

~

~

~

2

.......

...

0::

~

r...

,

500/.s......

1.0m~ i - -

==- TJ~200°C

~

1.0==

de
SECONDARY BREAKDOWN LIMITED
----BONDING WIRE LIMITED
o. 5 -----THERMALLY LIMITED

7

There are two limitations on the power handling ability 01 a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ic - VCe limits of the transistor that
must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissi·
pation than the curves indicate.
The data of Figurell is based on TJ{pkJ =
200°C; T c is variable depending on conditions.
Pulse curves are valid for duty cycles to 10% pro·
vided TJ[pk) -< 200 e C. TJ[pkJ may be calculated
from the data in Figure 12 .At high case tempera·
tures, thermal limitations will reduce the power
that can be handled to values less than the
limitations imposed by secondary breakdown.

100 ItS

-- _.

'

\ '"

;~- H·"'~~~rH.
3
rAr~D ve~t_

o. r--r---

CURVES APPLY BELOW

0.2

0.1
5.0 6.0

2N4231

2N4232
2N4233

I

10

8.0

20

30

.......

\

40

~

\ ]\

-"I

50 60

80

100

VeE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

O. 7~ f-rO. 5

D· 0.5

O. 3

0.2

0.2

-

0.1

o. 1
0.0 7
0.0 5

0.05
-0.01.....

...

Plp'l

I
0.02 0.03

II
0.05

~

rill OJe
5.0'C/W MAX

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT I,
TJ(pkl

Te

PlpklOJell1

--1,--

DUTY CYCLE, D~ t,/I,

....

0.0 1
0.01

OJelll~·

OJe

OJC ~ 4.l'C/W TYP

~
1 1,---1--1

....,....

0.0 3~, ~
F- SINGLE PULSE
V
0.0 2

:§

-

--

I I
0.1

0.2

0.3

0.5

1.0

2.0

I1II

I
3.0

I, TIMElms)

2-745

5.0

10

20

30

50

100

200

300

J

500

1000

2N4234 (SILICON)
2N4235
2N4236
CASE 31

PNP silicon power transistors ideal for use as drivers, switches, and direct replacement of germanium
medium-power devices. Complement to NPN 2N4237
thru 2N4239.

(TO-5)

Collector connected to ca.e

MAXIMUM RATINGS

Rating

Symbol 2N4234

Collector-Emitter Voltage

2N4235

2N4236

Unit

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-Base Voltage

VEB

I

7.0

•

Vdc

Collector Current - Continuous

IC

I

3.0

Adc

Base Current

Is

I

0.2

•
•

Total Device Dissipation @ TA = 25°C
Derate above 25°C

PD

1.0
5.7

•

4

•

Watt
mW/oC

Total Device Dissipation @ TC = 25°C
Derate above 25°C

PD

•,

6.0
34

•

•

Watts
mW/oC

I

-65 to +200

•

°c

Operating and Storage Junction
Temperature. Range

I

T J , TSq

Adc

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

Symbol

Max

Unit

6JC

29

°C/W

FIGURE 1- POWER-TEMPERATURE DERATING CURVE
6

•

I
z:

0

~

4

i

~

""

r-.....

co

f5

~

2

cS

'"'

...........Te

...........

~

TA

Q..

o
o

25

50

75

100
125
TEMPERATURE 1°C)
Safe Area Curves are indicated by Figure 2.
All limits are applicable and must be observed.
2-746

.........

~

150

~~
175

200

2N4234, 2N4235, 2N4236

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

= 25'C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(IC = 100 mAde, IB = 0)

2N4234
2N4235
2N4236

Collector Cutoff Current
(VCE = 30 Vde,
= 0)
(VCE = 40 Vde,
= 0)

2N4234

(VCE = 60 Vde, IB = 0)

2N4236

'a
'a

BVCEO(sus)

40
60
80

I CEO

-

2N4235

Collector Cutoff Current
(VCE = 40 Vde, VBE(off) = 1. 5 Vde)

I CEX

2N4234

(VCE = 60 Vde, VBE(off) = 1.5 Vde)
(VCE = 80 Vde, VBE(off) = 1.5 Vde)

2N4235
2N4236
2N4234

(VCE = 30 Vde, VBE(Off) = 1. 5 Vde, TC = 150'C)
(VCE = 40 Vde, VBE(off) = 1. 5 Vde, TC = 150'C)
(VCE = 60 Vde, VBE(off) = 1.5 Vde, TC = 150'C)

2N4235
2N4236

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 60 Vde, IE = 0)

2N4234

(VCB = 80 Vde, IE = 0)

2N4236

--

Vde

mAde

1.0
1.0
1.0
mAde
0.1
0.1
0.1
1.0
1.0
1.0
mAde

ICBO

-

2N4235

Emitter Cutoff Current
(V BE = 7 Vde, IC = 0)

-

lEBO

0.1

-

0.1

-

0.5

0.1

mAde

ON CHARACTERISTICS
DC Current Gain 111
(IC = 100 mAde, VCE = I Vde)

hFE

40

(IC = 250 mAde, VCE = I Vde)

30

(IC = 500 mAde, VCE = I Vde)

20
10

(IC = 1.0 Ade, VCE = I Vde)
Collector-Emitter Saturation Voltage 111
(IC = 1.0 Ade,
= 125 mAde)

VCE(sat)

Base-Emitter Saturation Voltagei (1)
(IC = 1.0 Ade, IB = 100 mAde)

VBE(sat)

Base- Emitter On Voltage
(IC = 250 mAde, VCE = 1.0 Vde)

VBE(on)

'a

-

-

-

150

Vde
0.6
Vde
1.5
Vde

-

1.0

3.0

-

-

100

25

-

SMALL·SIGNAL CHARACTERISTICS
Current-Gain - BandWidth Product
(IC = 100 mAde, VCE = 10 Vde, f = 1.0 MHz)

fT

Output Capacitance

Cob

(VCB = 10 Vde, IE = 0, f = 100 kHz)
Small-Signal Current Gain
(IC = 50 mAde, VCE = 10 Vde, i = 1.0 kHz)

hie

MHz
pF

-

111 Pulse Test: PW :s: 300 ~ s, Duty Cycle :s: 2%

.

3.0

FIGURE 2- ACTlVE·REGION SAFE OPERATING AREAS
~,~

'

2.0

.....

r...

1.0
~ 0.7
0.5

I'-...
...

0::

..~
::>

u

~

~

0.3
0.2

. r--

de

...

----;:::;;IicON~~;~ BREAKDOWN LIMITATION
-_ •• THERMAL LIMITATION AT Te = 2S'C.
-

u

""'-

"'I..

.1

'" :....

...~
"

r-...

f-~BASE.EMITIER

DISSIPATION IS
PERCEPTIBLE ABOVE Ie = 1 AMP}.

The Safe Operating Area Curves indio
cate Ic - VCE limits below which the device
will not enter secondary breakdown. Collector load lines for specific circuits must
fall within the applicable Safe Area to
avoid causing a catastrophic failure. To
insure operation below the maximum TJ.
power-temperature derating must be
observed for both steady state and pulse
power conditions.

r-.

r-.

.9 0.1

LIMIT FOR:

0.07
0.05
0.03
1.0

-~ ~/LS
sms:'--...
""
~ "-

2N4234
2N4235
2N423&

2.0

3.0

5.0

7.0

10

20

30

VeE. COLLECTOR·EMITIER VOLTAGE IVOLTS)

2-747

so

70

100

2N4234, 2N4235, 2N4236

(continued)

LARGE SIGNAL CHARACTERISTICS

"OFF" REGION CHARACTERISTICS
FIGURE 5- TRANSCONDUCTANCE

FIGURE 3- TRANSCONDUCTANCE
10

1000

r-

700

Ve.=2V

5.0

/

500

~

300
~

i~
~

8
~

/

I

/
I

/

70

1,1

0

L-Ir-f

B

0.2

I

~

TJ = +100'~

0.2

~

II

-

-+i,SE

0.6

1.0

0.8

0.01
0.2

1.2

r-

Ve•

0.1

0.1

0.2

0.4

0.3

0.5

0.6

VIE. BASE EMITTER VOLTAGE (VOlTS)

FIGURE 6- EFFECTS OF BASE·EMITTER RESISTANCE

/

/
V-

I

/ I

/

0

50

I

/

5.0

J
I

3D

~

TJ = +loo'C

'- -+I

'H- r-I

.....

2D

H
B5
ill
I

........ ......

......... le .. 2 xle..

1c=le~

"-

~

I

""" .........

""" "

!: 10

TJ = +25'C

Ve.= COV

..........

I -.....

I TJ = -55"C

I

J

i .

.......

70

2V

2D

1.0

1/

100

50

~

FOjARr'"

I

FIGURE 4-INPUT ADMITTANCE

20

=

+25'C ~

0.05

100

iB

I
TJ

V... BASE·EMITTER VOLTAGE IVOLTS)

~

1

I

0.1

0.02

0.4

I

....

I

o

I

0.5

!Ii

TJ = +25'C

I

10

I

J

I

~

is

I

TJ=+175'C

TJ = +175'C

1.0

I

0

II

I

2.0

r- "'-I
II
I II

50

I

TJ = -55'C

I

TJ = +1oo'C

I--

COV

Ve.

I

I

I

-

I

/

II

100

I

I

I

200

/

/

t'-..

7.0

I

o. 2

J

J

I

.........

r-...

1c=loxl~

"

r-...

""-

~ 5.0

o. 5

"

"-

'"' "-

"-"-

3.0

I
2.0

o. 1

TJ = +175'C

o

0.2

"\.

I

0.05

0.4

0.6

0.8

1.0

1.2

1.0
25

'\
50

75

100

125

TJ. JUNCTION TEMPERATURE (OCI

V... BASE-EMITTER VOLTAGE (VOLTS)

2-748

"

150

175

2N4234, 2N4235, 2N4236

(continued)

FIGURE 7- CURRENT GAIN
200

~ ~17J,C

-.J

)TJ

100

TJ

+25'C

,...

0
TJ

55'C

--------

-~

'-

"'-

0

10
10

20

30

50

200

100
Ie. COLLECTOR CURRENT (mAl

2V

Vco

+IOO'C

~~
.....
""'- .......

300

:"'"

r-..;; ~

....

...

r-..;1:::

500

1000

SATURATION REGION CHARACTERISTICS
FIGURE 8- COLLECTOR SATURATION REGION
2.0

i

1.8

TJ ~ +2S'C

1.6

~ 1.4

if5

!:

~

~

J

1.2
le~

0.8

\

\

0.4

\

0.2

\.

\.

1.0

2.0

3.0

5.0

7.0

10
I~

30

20
BASE CURRENT (mAl

o.8

~

o.6

TJ~

+1.0

I II

+25'C

P+o.5f- ~ f.r V,'I::'

i

t:J::±:j::::: ~ ......
V.. @Ve ,

~

2V

~
~

o. 4
o.2

J.--

0
0.01

0.02 0.03

100

200

0.2 0.3
0.05 0.07 0.1
Ie. COLLECTOR CURRENT lAMPS)

0.5

.7 1.0

2-749

(+25'Cto +IOO'cl':::::;;;;

,.

, (-55'C to +25'CI

T
To compute saturation voIIqes,
LI...)@operatin,TJ-LI ... )@+25'C+8v_loperatinaTJ-25'CI
..---0.5 U.", aJlllfllllriale 8v f.r voltqe of interest.
Use appropriate curve for temperature ra..e of interast.

i!
~-I.

........

I-- J..--

0

~-I.0

Ve'I"') @ lell, ~ 10

70

I+IIOO'C to +175'CI

.1 .1

~I--

V"lutl @ lei I, - 10

---

50

FIGURE 10-TEMPERATURE COEFFICIENTS

FIGURE 9 - "ON" VOLTAGES
1.0

i

lOOOmA

\

0.6

o

~

le~

le~500mA

le~25OmA

lOOmA

1.0

T

i

I

(l55'C

J+1751

~,forVil~ I--'

5vr~rl

-2.0

o

100

200

300 400 500 600 700
ie. COLLECTOR CURRENT (mAl

800

900

1000

2N4234, 2N4235, 2N4236

(continued)

DYNAMIC CHARACTERISTICS
FIGURE 13 - CAPACITANCE

FIGURE 11 - TURN·ON TIME
3.0

~ee~SOV

2.0

~
1.0

I I

-----

I~

r- Vee

oJ

0.2

24 V

" I'

........ .......

i"r--

c..

"'"

...

:.' ...........

:::10::

.::",--

I\..

~

t.ol\..

o. I
0.07

TJ - +25!C I
TJ - +150'C
200

:"",ee = SO V, V.b-2V

O.3

300

II

r' I"~ ~

0.7

lO.5
i

I

-Vee

0-

'i"-

I\.,

24 V, V..

0

20

30

l'...

50

200 300
50 70 100
Ie, COllECTOR CURRENT (mAl

30
0.1

500 700 1000

0.2

0.5

FIGURE 12 - STORAGE TIME

3.0
2.0

- ..
r-...

I

!~

~

-"

3.0

..."'-... ...
~ li' ,

2.0
:----""""-...,

3.0

Vael,HI

2.0

I,

I)

VI.

- ---I

--

Cjd

<::

<-=~

50 V

I,
Vee 60 V
V'E(oHl - 2.0 V

~

I'

f'

I"

Vee -30V
0.07 VaEI.HI 0
0.05
10
20

APPROX 9.0 V

I,
TURN·OFF PULSE

-

5.0

+11 V I
~

pF

2. O'~.

SWITCHING CHARACTERISTICS
FIGURE 2- SWITCHING TIME EQUIVALENT CIRCUIT
APPRO X I TURN·ON PULSE

MHz

30

50 70 100
200 300
Ie. COLLECTOR CURRENT (mAl

500 700 1000

2N4237 thru 2N4239 (continued)

FIGURE 4 - THERMAL RESPONSE

i'l

1.0
~ 0.7
~ 0.5

D

lE

ici~

'" 0.3
~
~ 0.2

:-'-

0.1

~

0.1
~ 0.0 7

i:;:::'!""'"

....

+-t-

0.05

«

j..d' ~

.....

~

""
i1o,o 3
~

+1"1\
SINGLE PULSE

.....

'2'0.0 Ii"'"
0.01

0.05

0.2

0.3

0.5

t-tt-t-

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME At 11

2.0

1.0

TJI.'I- Te ~ PI.'I 8Jelt)

I I HJL

I II

I

0.1

OJell} ~ rillOJe
OJC ~ 129.0'C/Max
OJe ~ 25'C/W Typ

~r

DUTY CYCLE, D ~ I I It,

III

0.02 0.03

FI=

f=1=
1=1=
HUl
~t-~

0.01

;= 0.0 5
e': 10.02

0.5

3.0

5.0

10

20

30

100

50

200

300

500

1000

t, TIMElmsl

FIGURE
3.0

'i'"

2.0
~

i
~

~

0

f==-------

5r---

I

~

L

....

TJ=200'C

1.0

~ 0.7

I

.... ,

I

5-ACTIVE-REGION SAFE OPERATING

....

"

I

1 I 1
SECONDARY BREAKDOWN
LIMITATION
-I
I

1--'

0.07
0.0 5

f=

I

I

"-

"-

de

...

100-

~ ['."s

~

DC THERMAL
LIMITATION AT Te ... 25'C
I
I
I 1 I I

I

- ....

...
~ ~Jo:;-

I
0.3 r---I
r - - - - - - - SINGLE PULSE THERMAL
0.2
LIMITATION AT Te ~ 25'C

8
..Y O. 1}-- I

AREAS

....

'"

T'lere are two limitations on the power han·

dling ability of a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ic- VeE limits of the transistor that
must be observed for reliable operation; i.e., the
trarisistor must not be subjected to greater'dissipation than the curves indicate .
For this particular transistor family, the thermal curves are the limiting design values, except
for a small portion of the dc curve. The pulse
secondary breakdown curves are shown for
information only.

..

.. ..

... .

I

.

2N4237-2N423' .
2N4239

0.03
1.0

I

2.0

3.0

5.0

7.0

10

30

20

50

70

100

VeE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 65.0
3.0
2.0
_
~
,.

fiGURE 7 - FALL TIME

STORAGE TIME
5.0

t-.Je/l, ·10

I=-':;;+:-

-

lell,

20

2.0

;.,"S

-I- -I""",,::

1. 0

].

,.;::w

: o. 7
~ O. 5
~ O. 3
:.,::'

0.2

1.0

0.7
:::l 0.5
;:t:
+i 0.3

-

- - - TJ~ 25'C
~TJ~150OC
O. 1
. I" --I"
I; t,
\/, I,
0.0 7
0.0 5
20
30
50 70
10

0.2

~

200

300

500 700 1000

Ie, COLLECTOR CURRENT ImAI

0.07
0.05

----- - -

.... lell, ..· 20
r-.... ..::-''3,-- -

-

l '.....

_.

~

).-~-

~lcll •. 10

t-

-

I I

-

TJ~ 15'C
- - - TJ ~ 150'C
Vee 30\'

181
10

20

30

182
50

70

100

200

Ie, COLLECTOR CURRENT ImAI

2-753

-

I--- - -

0.1

100

-_.

I---

3.0

300

500 700 1000

2N4237 thru 2N4239 (continued)

TYPICAL DC CHARACTERISTICS
AGURE 8- CURRENT GAIN
FIGURE 9- COLLECTOR SATURATION REGION
1.0

1000
700
500

VeE

0

III III
III II

0.8

>

I I
I I

Ic~O.1A

TJ -25'C

55'C

I'..

I I

I0
2.0 3.0 5.0

10

\

1\
r-...

20

20 30 50
100 200 300 500
Ie. COLLECTOR CURRENT (rnA)

0
0.2 0.3 0.5

1000 2000

1.0

FIGURE 10-EFFECTS OF BASE·EMITTER RESISTANCE

2.0 3.0 5.0
10
20 30
I•. BASE CURRENT (mAl

50

100

200

FIGURE 11- "ON" VOLTAGE

•

1.5

""

7

.....

"

1.2

..l
I - - ICK VALUES

f= ~ ?BTAINEO FROM

I - - t- FIGU~E12 I

,

20

40

'""'"- ""'"

V"I ..'I@lc/l.

" "'" " "
I"

'" '"
160

ISO

o

2.0 3.0 5.0

200

10

20 30

50

100

200 300 500

1000 2000

FIGURE 13 - TEMPERATURE COEFFICIENTS
"APPLIES FOR Icll,-':'10:-'-2"'"0...,3"'"O~50::-'-'-'u.:-l""00.......,2O::!:0:-':3:!::00~50~0-'-':':100::00:-'-:::12000

0.5

Ic. COLLECTOR CURRENT (mAl

2-754

2N4260 (SILICON)
2N4261

PNP silicon annular transistors, designed for highspeed current-mode logic switching applications and for
complementary circuitry with NPN types 2N3959 and
2N3960.
CASE 20
(10-72)

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Symbol

Value

VCEO

15

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

4. 5

Vdc

Collector Current - Continuous

IC

30

mAdc

Total Device Dissipation @ T A = 25°C

PD

200

mW

1.14

mW/"C

-65 to +200

°c

Rating
Collector-Emitter Voltage

Derate above 25°C
Operating and Storage Junction Temperature Range

2-755

T J' Tstg

Unit

2N4260,2N4261 (continued)

ELECTRICAL CHARACTERISTICS

(TA

=25°C unless otherwise noted)

I F:ig. No. I Symbol I

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter BreakdoWn Voltage

BVCEO

(IC • 10 mAde, IE = 0)
Collector-Base Breakdown Voltage
(IC = 10 "Ade, IE • 0)

BVCBO

Emitter-Base Breakdown Voltage

BVEBO

(IE = 10 "Ade, IC = 0)

I CEX

Collector Cutoff Current

(VCE = 10 Vde, VBE(oll) = 2 Vde)
(VCE = 10 Vde, VBE(oll) = 2 Vde, TA • 150'C)
(VCE' 10 Vde, VEB(on) = 0.4 Vde)
Base Cutoff Current

IBL

(VCE = 10 Vde, VBE(off) = 2 Vde)

-

Vde

15

-

Vde

15

-

Vde

4.5

-

0.005

"Ade

5.0
0.05
"Ade
0.005

ON CHARACTERISTICS
DC Current Gain
(IC = 1 mAde, VCE

1

hFE

25

-

(IC = 10 mAde, VCE '= 1 Vde)

30

150

(IC = 30 mAde, VCE = 2 Vde)

20

-

=1 Vde)

2, 3, 4

Collector-Emitter Saturation Voltage
(IC = 1 mAde, IB = O. 1 Ade)

VCE(sat)

(IC = 10 mAde, IB = 1 mAde)
3, 4

Base-Emitter On VoLtage

(IC = 1 mAde, VCE = 1 Vdc)

VBE(on)

(IC = 10 mAde, VCE = 1 Vde)

-

-

Vde

0.15
0.35
Vde

0.8
1.0

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(IC = 5 mAde, VCE = 4 Vde, I = 100 MHz)
(IC = 10 mAde. VCE = 10 Vde, I. 100 MHz)

5
2N4260
2N4261
2N4260
2N4261

High-Frequency Current Gain

(IC = 10 mAde, VCE = 10 Vde, 1= 100 MHz)
Output Capacitance
(VCB = 4 Vde, IE = 0, I

2N4260
2N4261
8

= 100 kHz)

Input Capacitance
(VBE = O. 5 Vde, IC = 0, f . 100 kHz)

8

Collector-Base Time Constant

(IC

=5 mAde,

VCE = 4 Vde, f = 31.8 ,MHz)

(Ic = 10 mAde, VCE • 10 Vde, I = 31.8 MHz)

6
2N4260
2N4261

IT

1600
2000

--

Ihlel

16
20

--

Cob

-

2.5

Clb

-

2.5

1200
1500

pF

pF

ps

rbC c

--

2N4260
2N4261

' MHz

35
60
30
50

Typical Performance
(voot = 1 V)

TYPICAL SWITCHING TIMES
Turn-On Delay Time

@10mA

Test
Circuit

Rise Time

Turn-Ofl Delay TIme
Fall-Time

@30mA

lon(dslay)

1.0

1.2
0.9

ns

no

Ir

0.5

Test
Circult

loff(dslay)

1.0

1.2

DB

Figure 7

If

1.0

1.2

DB

Figure 7

2-756

2N4260, 2N4261

FIGURE 1 -

(continued)

DC CURRENT GAIN

FIGURE 2 -

3.0

COLLECTOR SATURATION REGION

1.0
TJ~

TJ
2.0

z

~

~

l75'C

~ ioo'c'
ITJ~25'C

~

t-...

ITJ

7
5

tJ

~-

-

55'C

I"'"'

O. 3

1.0

2.0

3.0

5.0

7.0

~ 0.6

r--l---

es

1=

as

......

~

0.4

20

flo is t1'Ie transistor currenlgain at the edge of ~turation obtained
from FiEure I, and 13, (forced gain) is the ratio of le/l", in a circuit. -

P.

le~lmA_

~3!

-

FIGURE 4 -

f-"

~

Dvc for VCElwtl

/'

,.

.5

0.2

~

/

-1.5
-2.0
3.0

5.0

7.0

10

20

30

:;:;.-

-

~

T}

25

10

l.--::

~

A
~

VeE

4V

g

-

i8

P

........ =::::.-

!

~

~

~

~

-

30
20

VeE

4V

VeE~IOV

~

700
500
1.0

25'C- I-

50

w

~IOO0 /

~

TJ

70

!i

ES

~

30

FIGURE 6 COLLECTOR-BASE TIME CONSTANT

~

I

z

20

Ie. COLLECTOR CURRENT ImAI

VeE ~ 10V

r-:

g3000

I

Ov.forV1E

100

lc

~2000

-

- 55'C to 25'C

o

FIGURE 5CURRENT-GAIN - BANDWIDTH PRODUCT
~

25'C

2~

Ie. COLLECTOR CURRENT ImAI

5000

r

j

~

o
2.0

55°C

c..:I_l.O

I
1.0

---

0

Q-O.5

V

VeEI •• tl @Ie/I. = 10

25'CtJIWC

p+O.5

II

0.4

I

+1.0

25'C -"-

0.6

TEMPERATURE COEFFICIENTS

+1.5

.......

TJ

~

I

I

"ON" VOLTAGES

V'Elo"1 @VeE = 1 V

.

10m!-

{301 {3,. OVERDRIVE FACTOR

1.0

0.8

I

'

I~
I

Ie. COLLECTOR CURRENT ImAl

FIGURE 3 -

h.@lVIFil.ll

p;-~

o

30

30m! _

This .raph shows the efled of hase current on collector voltage. -

....... r--

~
~

I

I~

,'\..

~ 0.2

I"'--

10

,,~

~

r- ~ t--.

0

25'C

I

.\
~ 0.8

2.0

3.0

5.0

7.0

10

20

30

10
1.0

2.0

3.0

5.0

7.0

10

Ie. COLLECTOR CURRENT ImAI

Ie. COLLECTOR CURRENT ImAI

2-757

20

30

2N4260, 2N4261

(continued)

FIGURE 7 - SWITCHING TIMES

FIGURE 8. -

30

..........

!

10
FALL
7. 0
5. 0---"" ,RISE

~

3.0

:

2.

.......

-.....

o ""

7.0
5.0

~

Cob

3.0

u

2.0

~

1.0

~

"I...

TURN'()FF
1.0 = DELAY =:
0.7
0.5
0.3
2.0
1.0

--;==

VOUf IV
TJ ~ 25°C
Rs = Rl
V;, Vo..t

20

r--

~

..........
~

5
~

~ TURN·ON
DELAY

5.0

3.0

7.0

10

30

20

0.7
0.5

0.3
0.2
0.1

0.2

0.3

10

.1"'

10
7. 0
5.0

!

V';ut 2V
TJ ~ 25°C
Rs ~ R,
V;, Vo.'

~ALL

RISE
~

~ 3.0
;:::

TURN'()FF .
DELAY

2. 0
1. 0
O.7
o. 5
O.3
1.0

2.0

"

.........
~

FIGURE 9 -

~=

5.0

7.0

10

~ 100°C

30

20

..,

Vec
ReI

vo·n
~
VU:t
_

1

~;OUND

;;;q.,~
-=

simulate a series of cascaded
identical circuits, with input Z

R,

equal to output Z.

VEE

V,n- V""' _ 2V Vo - 1 V ReI - Rei

1
5
10
20
30

R,

Re

1\.,

R"

R,

T

,j.

V;n- V..t-lV

Vu _ O.SV

'ee

10
10
30
20
30

16 l ' 6 , Uk Uk 24'
47 175 lk 200 250 3 ,
26.3 75 300 100 150 3 ,
25 150
16
25
75 l '
13
8 77
0 50 1k

Rc

TJ

V" (_I

R"

1\.,

R,

ReI -

360
160
62
28

6,

3'
3.56 k 400
l ' 200
300 100
157 66

3' 10 ,
450 2'
250 3 ,
150 l '
116 l '

I

I

ReI

'.

'ee

24
15
30
20
30

32
27
17
11
9

I

ohms ohms ohms ohms ohms 'lolls volts ohms ohms ohms ohms ohms volts volts

2,

I

~ 250C/

0.00 I

'.

R,

I
I

R"

The test circuit is ~eSjgned to PLANES

Ie

/

I
/

I

1

INPUT Z

---

I I

RC2

f::'\

R"

IRs

~

I

....
TJ

3.0

10

I II
.I II

I

2.0

5.0 7.0

II

/

Ic, COLLECTOR CURRENT (mAl

rnA

3.0

CUT·OFF CHARACTERISTICS

T}~ 175lCj
1.0

r::::::

1.0

Vc,~1OV

f-f--

.... TURN·ON
DELAY

....::::

0.5 0.7

VR, REVERSE VOLTAGE (VOLTS)

0

.......

I-

C"

Ie. COLLECTOR CURRENT (mAl

0

CAPACITANCE

10

0.000 I
0.6

2-758

l/

0.2
0.4
0.4
0.2
----REVERSE BIAS
FORWARD BIAS---"
VIE, BASE EMITTER VOLTA~E (VOLTSI

0.6

2N4264 (SILICON)
2N4265
NPN silicon annular transistors, designed for lowlevel, saturated logic applications featuring one-piece,
injection-molded plastic package for high reliability.

CASE 29(1)
(TO-92)

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Symbol

Rating

2N4264

Unit

12

Vdc

15

V CEO

Collector-Emitter Voltage

2N4265

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

Collector Current

200

mAdc

350
2.73

mW
mW/oC

-55 to +150

DC

IC

Total Device Dissipation @ T A

= 25°C

Po

Derate above 25°C
Operating and storage Junction
Temperature Range

TJ , T stg

THERMAL CHARACTERISTICS

Characteristic

Symbol

Thermal Resistance, Junction to Ambient

FIGURE 1 -

CO:";'OII

Ie
mA

A

•

C

10
10
100

Vee
V
3
10
10

I,
!l
3300
560
560

Ie CSI ..... 1 'EaloB V,
V
pf
V
!l
270
4
1.5 10.55
960
4
2.0 6.35
96
12

-

8JA

Max

Unit

0.357

°C/mW

SWITCHING TIME EQUIVALENT TEST CIRCUIT

V,
V,
V
V
4.15 10.70
4.65 6.55
4.65 6.55

Vee

-fl;' I i¥,i
V91:~Ftt--- v:'~Q~~
~1:<2M
<2M

PULSE WIDTH It,I ~ 300 11$

2-759

-' .

DUTY CYCLE ~ 2%

R,

2N4264, 2N4265 (continued)

ELECTRICAL CHARACTERISTICS

(TA-250Cunlessotherwisenotedl

IFig. No.1 Symbol I

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC • 1 mAde, IE = 0)

BVCEO

2N4264
2N4265

BVCBO

co(~ctor-Base Breakdown Voltage
( =IOI'Ade, IE' 0)
Emitter-Base Breakdown Voltage
(IE' IOI'Ade, IC =0)
Collector Cutoff Current
(VCE =12 Vde, VEB(otfl • 0.25 Vde)

BV EBO
ICEX

Base Cutoff Current
(VCE = 12 Vdc, VEB(otf) = 0.25 Vde)

IaL

(VCE -12 Vde, VEB(off) .0.25 Vde, TA -100·C)

15
12
30

6.0

-

--

Vde

Vdc
Vde
nAde

100
I'Ade
0.1
10

ON CHARACTERISTICS
DC Current Gain
(IC = 1 mAde, VCE = 1 Vde)

2
2N4264
2N4265

hFE

25
50
40

(IC = 10 mAde, VCE = 1 Vde)

2N4264
2N4265

100

(IC = 10 mAde, VCE • 1 Vde, T A = -55·C)

2N4264
2N4265

20
45

(IC = 30 mAde, VCE = 1 Vde)

2N4264
2N4265

40
90

(IC = 100 mAde, VCE - 1 Vde)

2N4264
2N4265

30
55

(IC = 200 mAde, VCE = 1 Vde)

2N4264
2N4265

20
35

5, 6, 7

Collector-Emitter Saturation Voltage
(IC • 10 mAde, IB = 1 mAde)
(IC = 100 mAde, Ia • 10 mAde)
Base-Emitter Saturation Voltage
(Ic • 10 mAde, Ia = 1 mAde)
(IC • 100 mAde, lB' 10 mAde)

6, 7

VCE(sat)

VBE(sat)

-

-160
400

----

Vde
0.22
0.35
Vdc

0.65
0.75

0.60
0.95

300

-

SMALL SIGNAL CHARACTERISTICS
Current-Gain
Bandwidth Product
(IC = 10 mAde, VCE =10 Vde, f = 100 MHz)
Output Capacitance
(VCB = 5 Vde, IE - 0, f -100kHz)
Input capacitance

(VBE • O. 5 Vde,

Ie =0,

fT
12

Cob

12

C ib

f = 100 kHz)

-

MHz
pF

4.0
pF
8.0

SWITCHING CHARACTERISTICS
Turn-On Time

Figure 1, Test Condition A
VCC • 3 Vde, VEB(otf) = 1.5 Vde,
IC 10 mAde, Ial' 3 mAde
Figure 1, Test Condition A
Vee· 3 Vdc, Ie = 10 mAde,

1

=

Turn-Off Time

storage Time

1

Ial = 3 mAde, Ia2 • 1.5 mAde
Figure 1, Test Condition B
Vee = 10 Vdc, ~c = 10 mAde,

1

Delay Time
Rise Time

storage Time

=

Fall Time

Ial • Ia2 • 10 mAde

Total Control Charge

VCC

=3 Vde, Ie - 10 mAde,

Ia • mAde

-

35

-

20

ns

ns

t.

1, 8

td

1, 9

tr

1, 10

ts

1, 11

tf

3, 13

~

2-760

-

25

toff

=

IBI = Ia2 10 mAde
Figure I, Test Condition C
VCC • 10 Vde, VEB(off) 2 Vde,
IC • 100 mAde, Ial = 10 mAde
Figure 1, Test Condition C
VCC = 10 Vde, IC = 100 mAde,

ns

ton

-

8.0

ns

15

ns

20

os

15

no

80

pC

2N4264, 2N4265

(continued)

CURRENT GAIN CHARACTERISTICS
FIGURE 2 - MINIMUM CURRENT GAIN
100

2114284 I - -

70

Ve,-IV

---

10~

r- r-.
r- I- ~r-.~

TJ - 25°C
~~

TJ=-ISoc

---I"'"

I-- I-" r-

Ii!

... 20

~
~

I0
1.0

I--

TJ = 125°C

2.0

30

5.0

7.0

I""'r-.

-

TJ = -SS"C

10
20
Ie. COLLECTOR CURRfNT !mAl

~

t- 1-1--

~

r--....

--........ f'."
50

30

~

70

100

200

200

2N4265

-- ......

I"'"

1..,...00'"

---

30 ~
20
1.0

--- --

.."......,....1"'"

,....

T, - 2SoC

V

Ve,-IV

"'"

~

~

TJ -

- --

r--

:""-

TJ--ISoC

~

~ i"""'

-......

TJ -125°C

SSoC

r--

~

V I-'"

r-...

~

~~

t'--r-. "'-'"
..... t'-- ~ ~
!'..... ~
..........

2.0

3.0

S.O

7.0

10

20

30

50

70

100

200

Ie. COLlECTOR CURRENT !mAl

FIGURE 4 - TURN·OFF WAVEFORM

FIGURE 3 - IT TEST CIRCUIT
270 n

+IOV~....--J'
b.V
o
1--<1111
PUl.S£ WIDTH tt,l- S,.. DUTY CYClE - 2%

TIME -

NOTE 1
When • tnnllstor Is held In a conclucttve _
by a bII.. current.
I,. a ella.... Q,. is _oped or "stored" In thl tranllstor. Q, may be
_ : Q , =Q, + Qy+Q••
Q, II the chirp requlFld to _lop the required collector current.
Thll ch_ II primarily a function of .Ipha cutoff frequency. Qy II
the ch.... required to ch.... the collactor·bIIse faedbllck cIPIClty.
Qx II _
ch.... rllUlti", from _=

g

50

w

f'... '\

50

ts' ~ ts - \0 4 - f I Ii' ii'll - f -

I

':--'~--'--'-:':....L..J....L"""""''''''''''''''':--'--'--:'--'-'
111..1..1,:,11:--,--::
U
U
10
m
~
~
m

FALL TIME

"

>=

" ""

~ 30

lell,

~20

10

~

~ .....

10

f-

5.0

1.0

JUNCTION CAPACITANCE

-

'"'","

...::::" -....

r3.0

2.0
0.1

'- -

2.0

5.0

10

20

FIGURE 13 -

0.2

1

- - - TYP

~

r--

-

.... r--, i-'
Cob

~i"-\

0.5

1.0

2.0

50

100

MAXIMUM CHARGE DATA

MAX

-

I-'f-

.... -- =

Ie. COllECTOR CURRENT (mAl

r-...

5.0

-

I'

10

C'b

-

7.0

Ie, COLLECTOR CURRENT (mAl

7.0

200

100

I I I Je~ ~ll~V
- - TJ~25°C
- - - TJ~ 125°C

:IE

~

FIGURE 12 -

_I?-

20

lell,~

1--+-+-++t+t+lI+-++-+

-

1'\

.: 20

7.0

...

10

FIGURE 11 -

\\rTTr-\'-'----"'--'

't-.
r--~'"
I.e~,

,
" V

~

Ie. COLLECTOR CURRENT (mAl

FIGURE 10 - STORAGE TIME
11-'lnl'_T1Tl~I ~rT,~"-C.,-,
1--+-+--+--+-+-+
+
+
-+-+-- - TJ ~ 125°C I-1
1
1
1

30

r::,..

5.0

Ie, COLLECTOR CURRENT (mAl

50,-r-r---.-,--"

'"

Vcc~3V

0

ov

7. 0
5. 0
1.0

~
,~

01-- -

2V

f'.. l~

10 V

Vee

3V

I,,@V"loffl

0

5.0

I--

0

0

2E

RISE TIME

~

10

REVERSE BIAS IVdcl

Ie. COLLECTOR CURRENT (mAl

2-763

200

2N4276 (GERMANIUM)
thru

PNP germanium power transistors designed for high
current applications requiring high-gain and low saturation voltages.

2N4283

CASE 3A

CASE 161

(TO-3 modified)

(TO-41)

For units with lugs attached, specify devices
MP4276 etc. (TO-41 package)

MAXIMUM RATINGS
2N4276 2N4278 2N4280 2N4282
2N4277 2N4279 2N4281 2N4283

Symbol

Rating

Unit

Collector-Emitter Voltage

VCEO

20

30

45

60

Vdc

Collector-Emitter Voltage

VCES

30

45

60

75

Vdc

Collector-Base Voltage

VeB

30

45

60

75

Vdc

Emitter-Base Voltage

VEB

20

25

30

40

Vdc

Collector Current - Continuous

*

Total Device Dissipation @ TC =' 25° C

IC•
PD

•
•

Derate above 25°C
Ope rating and Storage Junction
Temperature Range

TJ • Tstg

Adc

60

I

170

Watts

2.0

W/"C
°c

•

-65 to +110

THERMAL CHARACTERISTICS

Symbol

Characteristic
Thermal ReSistance. Junction to Case

8JC

I

Max

Unit

0.5

°C/W

FIGURE l-AVERAGE POWER-TEMPERATURE DERATING CURVE
200

in 160

i

z:
52 120

i

~

is

ffi 80

~

Q

a...

" ""
" ""

40

o
20

40

FOR JRANSIEtfT LERMAL RislSTANCE iNO
SAFE OPERATING AREA INFORMATION.
SEE FIGURES 2 &3.

" ""

" ""

60
80
Te. CASE TEMPERATURE (OC)

"

100

*JEDEC Registered Values, For True Capability See Figure 3.

120

2N4276 thru 2N4283 (continued)

ELECTRICAL CHARACTERISTICS

(Tc

=25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

20
30
45
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltaget
(IC =1. 0 Adc,
=0)

Ia

Collector-Emitter Breakdown Voltage
(IC = 300 mAde, VBE =0)

Floating Potential
(VCIl =30 Vdc, IE
(V CB =45 vdc, IE

=60 Vdc,
(V CB = 75 Vdc,
(V CB

IE
IE

=0)
=0)
=0)
=0)

(V CE
(V CE

=30 Vdc,
=45 Vdc,
=60 Vdc,

2N4277
2N4279
2N4281
2N4283

2N4276,
2N4278,
2N4280,
2N4282,

2N4277
2N4279
2N428l
2N4283

2N4276, 2N4277

VBE(off)

=2.0 Vdc, T C =+71 'C) 2N4276,
=2.0 Vdc, T C = +71' C) 2N4278,
=2.0 Vdc, T C = +71 'C) 2N4280,
=2.0 Vdc,T C = +71 'C) 2N4282,

2N4277

~
~
~

~

2N4281
2N4283
ICBO

=0)
=0)
=0)
=0)

2N4276, 2N4277
2N4278, 2N4279
2N4280, 2N4281
2N4282, 2N4283

Emitter Cutoff Current
(V BE =20 Vdc, IC =0)
(V BE =20 Vdc, IC =0, TC
(V BE
(V BE
(V BE
(V BE
(V BE
(V BE

=25 Vdc,
=25 Vdc,
=30 Vdc,
=30 Vdc,
=40 Vdc,
=40 Vdc,

=0)
IC ·= 0,
Ic =0)
IC =0,
IC =0)
IC =0,

I CEX

2N4279

Collector Cutoff Current
(V CB =2.. 0 Vdc, ~ =0)

=30 Vdc,
=45 Vdc,
(VCB =60 Vdc,
(V CB =75 Vdc,

VEBF

2N4282, 2N4283

VBE(off)

(VCB

BV CES

2N4280, 2N4281

VBE (off)

(V CB

BVCEOt

2N4278, 2N4279

Collector Cutoff Current
(V CE =20 Vdc, VBE(off)
(V CE

2N4276,
2N4278,
2N4280,
2N4282,

2N4276, 2N4277

lEBO

2N4278, 2N4279
TC

= +71 'C)
2N4280, 2N4281

TC

=+71'C)
2N4282, 2N4283

TC

30
45
60
75

=+71'C)

0.5

-

15

-

-

Vdc

Vdc

-

-

=+71' C)

IC

Vdc

0.5
0.5
0.5
mAde
15
15
15
mAde
0.2
4.0
4.0
4.0
4.0
mAde
4.0
15
4.0
15
4.0
15
4.0
15

ON CHARACTERISTICS
DC Current Gain t
(Ic =15 Adc, VCE

=2.0 Vdc)

= 60 Adc,

=2.0 Vdc)

(IC

VCE

2N4276, 2N4278, 2N4280, 2N4282
2N4277, 2N4279, 2N4281, 2N4283

Collector-Emitter Saturation Voltaget
(IC =15 Adc, IB =1. 0 Adc)
(IC

=60 Adc,

IB

VCE(sat)t

=6. 0 Adc)

Base-Emitter Saturation Voltaget
(IC =15 Adc, IB =1. 0 Adc)
(IC

=60 Adc,

IB

hFEt

VBE(sat)t

60
120
15

180
240

-

0.15

-

=6. 0 Adc)

SMALL SIGNAL CHARACTERISTICS
Common-Emitter Cutoff Frequency
(I =15 Adc, VCE =2.0 Vdc)
t To avoid excessive heating of the collector junction, perform test with pulse method.

2-765

-

Vdc
0.3
Vdc
0.6
1.0

2N4276 thru 2N4283

(continued)

FIGURE 2- TRANSIENT THERMAL RESISTANCE
~D 0.5

-

..;

I ~::
1

-

f-- D 0.2
f-- D 0.1

0.I
0.05
i= 0.07r-- D
~ 0.05
f-- D 0.01
0.03
I!! 2 sO.o

i

0.3

0.5'C/W
8JCII,,1 0.4'C/W
-III
I I
8Jc("".. )

..-:
~

I-

ITLJL

0.2
0.1
007
0.05

p.>

,.

/I
0.2 0.3

IIII
1.0

0.5

_SINGLE PULSE, TJI.>I Tc 8Jcrtl,IP.>
;- REPETITIVE PULSES, TJI.>I Tc 8JC nl" DI p.>-

~2--l

SINGLE PULSE
ID-OI

A-1"

~

:: 0.0 11-"""
1.0

1.0
0.7
0.5

III D u r l i r l t i II

I
2.0

3.0

5.0

10

I

20 30
50
I" PULSE WIDTH Imsl

100

I I I II
200 300 500

III
1000

0.03
0.02
0.01
10000

2000 3000 5000

FIGURE 3 - ACTIVE REGION SAFE OPERATING AREA
100
70
0

i

I

0

I ~:

,"

"

0

"\

-.

0
0
0

There are two limitations on the power handling ability
of a transistor: junction temperature and secondary break·
down. Safe operating area curves indicate Ie - VeE limits of
the transistor that must be observed for reliable operation;
i.e. the transistor must not be subjected to greater dissipa·
tion than the curves indicate.

"-

2. or--- CURVES APPLY
f-- BE\OW IRArED ,cE
I.0
5.0 7.0
2.0 3.0
1.0

=1I0·C; Te is

variable depending on conditions. Pulse curves are valid for

100 }Ls

"-

"-

.9 3. O~ TJ ~ 1l0'C

The dala of Figure 3 is based on TJI.>I

I\..

duty cycles 10 10% providedTJlp>1 < 1I0·C. TJI.II may be
calculated from the data in Figure 2. At high case tempera·
tures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by
secondary breakdown,

1.0ms
5.0ms

I

",-

de

10

20
30
VeE, COLLECTOR-EMmER VOLTAGE IVOLTSI

""

50

I I
70 100

FIGURE 5 - SWITCHING TIMES
FIGURE 4 - SWITCHING TEST CIRCUIT
1-1
TO OBTAIN DATA FOR FIGURE 5,
R. & RL WERE VARIED. Vce and V,
LEVELS REMAINED APPROXIMATELY
AS SHOWN.
R,
V,

Vcc ~ 30 V

20

Vo

il2

+9.5V-/\

.

].

10
-' 7.0
5.0

II

.....

,.

~

~~

;:::

Vee

=

1

=1,'::::1,-"8 11

w

i ll

30V
'e!10

r--- '121.K, ~ I"
30
-

..

-

100
70 ~ee
. I"
50

ill

~10.5:JC

3.0

ti"

2.0

"-

1.0
1.0
ill

The switching performance of this transistor is determined primarily

by the gain· bandwidth product, fT·. and the behavior of the base-spreading

resistance, ,"-

In the case of rise time, the base-spreading resistance plays a small
part, and the test circuit delivers a constant current step of turn-on current
to the transistor (111)' Therefore, the curve of I, on Figure 5 follows theory

dosely. i.e.:

::::O.8~. 2;'T

2.0

3.0

5.0 7.0 10

20
30
Ie, COLLECTOR CURRENT IAMPI

necessary to sustain the circuit limited value of Ie. As a ·result, the base
resistivity and consequently r.' become very low. During tu~n off. as the
excess·charge is reduced, the accompanying increase in resistivity causes
a marked reduction in the turn-off current. i 12 , as can be seen from the waveforms of Figure 4. Ouring fall time, the in current is very low causing an
extended fall time.

From thecurv8, ilean be seen that fT is roughly constant with current; using
the equation, its large signal value can be calculated to be approximately
120 kHz at the 20-Amp level. A lower supply voltage will increase rise time

Only a slight improvement in turn·off performance is achieved with a
"speed-up" capaCitor placed across RI_ This unusual behavior occurs be·
cause rl' limits the amount of reverse current which can be achieved. Also,
it seems evident that r,' increases with applied reverse current, so that
efforts to speed up the turn-off behavior are somewhat futile_

slightly,
Turn·offtime is slow because of conductivity modulation which occurs
in the base region. When the transistor is held "01}." in saturation, the base
region becomes filled with excess charge: i.e" charge in excess of that

In most applications, switching time will be close to the values shown
on Fig~re 5. Delay time is not shown as it is negli~ible in comparison to. the
other tImes.

t,

·fT _f •• xh..

2-766

,

'II.

50

70 100

2N4276 thru 2N4283

(continued)

TYPICAL DC CHARACTERISTICS

FIGURE 7 - COllECTOR SATURATION REGION

FIGURE 6- DC CURRENT GAIN
2.0
c

...
N

:::l

TJ -

100'C

WC!- TJ

TJ
WC

2.0

1.0

~ 0.5

~

rT

~ 3.0 A

Ie

~

lOA
Ie

Ie

~

~

50A

f-r~2Jc

I I

30A

INOTE 1)

f- VeE ~ 2.0 V
I-- INOTE 11

z

Ie

11~~110!

'"

:5
z O}

I I II

Ifl

m1

~

'\

~

z

~

~

=>

u

0.3

g

.i

1\

0.2

NORMALIZED TO TJ ~ 25'C, Ie

0.1
O}

2.0

1.0

3.0

~

'\

15 AMP

I II

5.0 7.0

20

10

30

50

70

I'-

r---

o
0.005

0.01

0.02

0.05

Ie, COLLECTOR CURRENT lAMP)

Ie

~

50
30
20

~

0.4

r-....
80

60

40

100

--

o

1.0

~VeE

2.0

VeEI"'1 @ lell, ~ 10

I

3.0

10

I - - - TJ

I--- TJ ~ 100'C

r-----JTJ

- c:---

-" /
/

"

\

_/'\

--

R T J "25,C_ REVERSE BIAS
I r---TJ ~ 25'C
10+0.6
+0.4

+0.2

30

50

70

f-

~

j

V

0
/

l,...- ....

Ie IcEs./ I
-2.0

IV

V

~

V

/

/

A V

0

20

!A~JlIES
flle1. Jhl12
I

+1.0

*BVc for VCE(,dl

¥'

J. 1--......

FIGURE 11 - TEMPERATURE COEFFICIENTS

WC

~;; 60'C1

7.0

/'

-" "./

It

100'C

5.0

V

.......

""IV~Elr'l @:e/I'I~ 1~

+2.0

2.0V= APPROXIMATE LOCUS
20V- e- WHERE Ie Icoo

I

2

'-

~

/

Ie, COLLECTOR CURRENT lAMP)

FIGURE 10 - COLLECTOR CUTOFF REGION
f---;=veE

./

.Y
;:..

-"

-

\

0.6

§;

.........

20

17
V"I'") @ VeE ~ 2.0 V

TJ, JUNCTION TEMPERATURE I'C)

I

5.0

25'C

w

FOR VALUES Of Ic.s SEE fiGURE 10

o

~

~ 0.8

0.2

J

10'

2.0

(NOTElI

f2

to....

2.0 leES

......

10
f!:i 5.0
S 3.0
2.0

TJ

1.0

1.1 leES

Ie

~

IcEs

5.0 IcEs

...... Ie

....."

~ 100

1.0

10

Ie

to

~

1.0

20V-=

VeE

500
300
::;; 200
~

'"

0.5

1.2

g

~

0.2

FIGURE 9 - "ON" VOlTAGES

FIGURE 8 - EFFECTS OF BASE-EMITTER RESISTANCE
1000

t::

0.1

I,. BASE CURRENT lAMP)

fORWARD BIAS
I
-0.2

j..-

flV, for V"

..-

-3.0
1.0

I
2.0

3.0

5.0

7.0

10

20

Ie. COLLECTOR CURRENT lAMP)

V", BASE-EMITIER VOLTAGE IVOLTS)
NOTE 1: Data is obtained from pulse tests and adjusted to nullify the effect of bo-

2-767

30

50

70

2N4342 (SILICON)

P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS

SILICON P-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

(Type A)

Depletion Mode (TypeA) Junction Field-EffectTransistor designed
primarily for high-gain audio frequency applications.

•

High Forward Transadmittance iYfsi = 2.0 mmhos (Min) @VDS = -10 Vdc (2N4342)

•

Low Noise Figure NF = 1.5 dB (Max) @f= 100 Hz

•

Low Drain-Source "ON" Resistance rds(on) = 700 Ohms (Max) @f = 1.0 kHz (2N4342)

=f

*MAKIMUM RATINGS
Symbol

Value

Unit

Drain-Source Voltage

VOS

-25

Vdc

Drain-Gate Voltage

VOG

-25

Vdc

VGS(r)

25

Vdc

Forward Gate Current

IGF

50

mAdc

Total Device Dissipation@TA=2SoC
Derate above 2SoC

Po

200
2.0

mW
mW/oC

TJ.Tstg

-55 to +125

°c

Rating

Reverse Gate-Source Voltage

Operatin~

and Storage Junction
Temperature Range

leads to fit into

0.5
MIN

0.016

illIT9

J
'
J:rt

OIA HOLE ITYPI

0.045
0.055

~:~;:

~

·Indicates JEDEC Registered Data.

Pin 1. Source
2. Drain
3. Gate

-

CASE

29171

TO-92

2-768

2N4342 (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)

I

Charactarinic

Symbol

Min

Max

Unit

V(BRIGSS

25

-

Vdc

1.0

5.5

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
IIG = 10 "Adc, VOS = 01
Gate-Source Cutoff Voltage
(VOS = -10 Vdc, 10 = 1.0 "Adcl

Vdc

VGS(offl

Gata Reve.... Current
(VGS = 15 Vdc, Vos = 01

IGSS

(VGS = 15 Vdc, VOS = 0, T A = 650 CI

-

10

nAdc

-

0.5

,.Adc

4.0

12

0.7

5.0

-

700

2000

6000

1500

-

-

75

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(Vos = -10 Vdc, VGS = 01

lOSS

Gate-5ource Voltage
(VOS = -10 Vdc,lO = 0.4 mAdcl

VGS

mAdc

Vdc

(VOS = -10 Vdc, 10 = 1.0 mAdcl
SMALL-SIGNAL CHARACTERISTICS
Orain-Source "ON" Resistance
(VGS = 0,10 = 0, f = 1.0kHzl

Ohms

rds(onl

Forward Transadmittence
(VOS = -10 Vdc, VGS = 0, f = 1.0 kHzl

Vfs

Forward Transconductance
(VOS = -10 Vdc, VGS = 0, f = 1.0 MHzl

Re(Vfsl

Output Admittance
(VOS = -10 Vdc, VGS = 0, f = 1.0 kHzl

Vos

I nput Capacitance
(VOS= -10 Vdc, VGS = 0, f = 1.0 MHzl

Ciss

-

20

pF

Reverse Transfer Capacitance
(VOS = -10 Vdc, VGS = 0, f = 1.0 MHzl

Crss

-

5.0

pF

Common·Source Noise Figure
(VOS = -10 Vdc, VGS = 0, RG = 1.0 Megohm,
f = 100 Hz, BW = 15 Hzl

NF

-

1.5

"mhos

"mhos

"mhos

dB

Equivalent Short·Circuit I nput Noise Voltage
(VOS = -10 Vdc, VGS = 0, f = 100 Hz, BW= 15 Hzl

En

·lndiC8te1 JEDEC Registered Data.

2-769

-

0.08

"v/VHi

2N4351

(SILICON)

Silicon N - channel MOS field effect transistors, designed for enhancement-mode operation in low
power switching applications. The 2N4351 is complementary with type 2N4352.

CASE 20(2)
(TO-72)

MAXIMUM RATINGS ITA = 25°C unless otherwise notedl

Symbol

Rating

Value

Unit

Drain-Source Voltage

VDS

25

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

ID

30

mAdc

PD

300
1.7

mW
mW/oC

PD

800
4.56

mW
mW/oC

TJ

200

°c

Drain Current
Power Dissipation at T A
Derate above 25°C

= 25°C

Power Dissipation at TC
Derate about 25°C

= 25°C

Operating Junction Temperature
Storage Temperature Range

Tstg

:I;

-65 to +200

°c

HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance_ They can be damaged
by the accumulation of excess static charge_ Avoid possible damage to the devices while
handling. testing. or in actual operation. by following the procedures outlined below:
1. To avoid the build-up of static charge. the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. ,Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

2-770

2N4351

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl
Substr.te connected to source.

Characteristic

Figure

No.1

Symbol

Min

Max

25

-

Unit

OFF CHARACTERISTICS

-

Drain-Source Breakdown Voltage
(lD = 10 p.A, Vas = 0)

V(BR)DSS

Gate Leakage Current
(Vas = ±30Vde, Vos = 0\

'ass

Zero-Gate- Voltage Drain Current
(VDS • 10 V, Vas = 0)

lOSS

Vdc
pAdc

-

10

1.0

5.0

3.0

-

VOS(on)

-

1.0

rds(on)

-

300

1000

-

10
nAdc

ON CHARACTERISTICS
Gate-Source Threshold Voltage
(Vos • 10 V,ID = 10 p.A)

-

vas(TH)

"ON" Drain Current
(Vas = 10 V, Vos = 10 V)

3

ID(on)

Drain-Source "ON" Voltage
(lD • 2 mA, Vas = 10 V)

Vdc
mAde
Vd.

SMALL SIGNAl CHARACTERISTICS
Drain-Source Resistance
(Vas = 10V,ID= O,f- 1kHz)

4

Forward Transfer Admittance
(VDS = 10 V, ID = 2 mA, f = 1 kHz)

1

Reverse Transfer Capacitance
(VOS = 0, VGS = 0, f = 140 kHz)

2

Input CapaCitance
(VOS = 10 V, Vas

2

=

0, f

IYfs I
C rss

Cisa

= 140 kHz)

-

Drain-Substrate Capacitance
(VD(SUB) = 10 V, f = 140 kHz)

Cd(SUb)

-

ohms
p.mho
pF
1.3
pF
5.0
pF
5.0

SWITCHING CHARACTERISTICS
Turn-On Delay ID = 2.0 mAde, V
DS = 10 Vde,

6,10

tdl

Rise Time

7,10

t.

8,10

td2

9,10

It

Vas = 10 Vdc

Turn-Off Delay (See Figure 10; Times
Circuit Determined)
Fall Time

FIGURE 1 - FORWARD TRANSFER ADMITTANCE
5000

I I I

ns

65

ns

60

ns

100

os

.'

,

C",@V".

....... 1--'

VD.= 10V

-f-

45

FIGURE 2 - CAPACITANCE

III
I

-

f=1 kHz

TA = 25°C

1/

,/

'"

"

TA = 25°C

V
300

/
Cm@Vos

200

0.1

0.2

0.5

1.0

2.0

5.0

10

10

20
VOLTAGE !VOLTS)

10• DRAIN CURRENT (mAl

2-771

2N4351

(continued)

FIGURE 3 - TRANSFER CHARACTERISTICS
20
TA~...-SS"C0

10

-"

"/

/.A:
U

I

~

ffi

I.

~

FIGURE 4 - DRAIN SOURCE "ON" RESISTANCE

k::: V V!'

5000

12S"C

2000

~V
TA

\

TA ~ 2S"C

I

vo• ~ 10V

i~l~ -r-

\
\

r-- t-

_t

H\

fh

I.P

\\

I~

~ ~ i""-

0.7
0.5

I

200

~

~

J

0.3

/ II
0.2

100

2

TA=2S"C -

t....

50
3

4

5

6

7

8

9

10

11

12

13

14 IS

l-

SS"C

TA

I

I

TA = 12S"C

~~-..

f' r--. r---- I"t-.... ~~t----.

II II

0.1

!-

I

2

3

V"•• GATE·SOURCE VOLTAGE (VOLTS)

4

S

6

7

8

9 10

11 12

13 14 IS

V"•• GATE-SOURCE VOLTAGE (VOLTS)

FIGURE 5 - "ON" DRAIN-SOURCE VOLTAGE
2.0

\

\

1.8

\

1.6

;

1.4

1.2

'"

1.0

~

.8

~

~

10 = 500 J!A
(0 = 2mA

'"

,

"-

10=SmA

"- =:--;.,

10 = 10mA

\

~

'\.

,

~

1

.6

.2

"-

\
\

C>

.4

TA = 2S"C

\

"-.....

"\

\.

"'"

I'---..

r---

---

-- --

.... 1--.
10
V"•• GATE-SOURCE VOLTAGE (VOLTS)

2-772

12

14

15

2N4351

(continued)

SWITCHING CHARACTERISTICS
(TA = 25°C')

FIGURE 7 - RISE TIME

FIGURE 6 - TURN·ON DELAY TIME
50

,

- --

,

~

'"

20

w

"i=

~z

10

~

r-V-

3

-

"

-,

Rs=b

- -'-,

~

--- Rs-Ro

70

Vos. VGS = 15V
Vos = VGS • IOV

50

I

............

Vos -5V, VGS = lOY

- 1-+-

i=

-

r--

100

I I I I
~

'"'
i=
w

"'

.;

'-

- --

20

... ,

Vos· VGS ~ 15V

=10V!)

Vo, =5V, VG,
1.0

2.0

10

5.0

10 , DRAIN CURRENT ImAl

~

w

200
100

'"
~

- -.

i=

50

~

20

i=

10

...

.:J

--

-

=Vo,

-

-,

,

-

r-: ::--.. ~.L
5V. VG,

Rs

Vo, = 15V, VGS= l5V

500

0':

,

Vo,

... ,RI.--

,.
~

10V

,

.~,

,

VGS

i=

::J

100

.:

~

lOY

200

......

.......

1.0

2.0

t--................

~ ...

~

50
-

5.0

10

'

... .......
~

Vo, = 5V, VG, = IOV .;::-

'

...
,~

.......
........... ....::::..
....

I

I I
VG, ·.. IOV

VOS

,

...

-...;:;,

'-:.-

II
0.5

2.0

1.0

f.f.-

T "1 T

I

...

20
0.5

... ...

I '--I R';= Rr
Vos = VGS = IS V

~,

;:::

r,;;-

-..:::: tf"oo,.

10

5.0

- - Rs=O

..;::

--- Rs=RoI
Vos -- VGS - l5V

,

Vo,"15V, VG,=15V _

'- "

FIGURE 9 - FALL TIME

FIGURE 8 - TURN·OFF DELAY TIME
500

......... .!":

2.0
10 , DRAIN CURRENT (mAl

1.0

0.5

=

I
-- ------ - -. - . f..-t-c:-

10
0.5

~'7RI

I I I

--. --- .

'--

V

,

,--,-

Vos -lOY, vks= lOY

-l,L

30

~

-

=

Vos = VGS lOY
Vos - 5V, VGS _lOY

... ...

w

-

--J

~S=O ' =

5.0

=

-.

~

-

10

10 • DRAIN CURRENT (mAl

10 • DRAIN CURRENT (mAl

FIGURE 10 - SWITCHING CIRCUIT
and WAVEFORMS
Voo
8.2 k

1

10k

10 V t---......- - O
2N4352
IN O-----~4"'~...
k- - ;
50
SET Vo,

o.

I

OUTPUT TO SAMPLING
OSCILLOSCOPE

t,.= I, < 2ns
DUTY CYCLE ~ 2%

Vi.

IOV

The switching characteristics shown above were measured in a test circuit
similar to Figure 10. At the beginning of the switching interval, the gate voltage is
at ground and the gate·source capacitance (C g• == Cin -em) has no charge. The
drain voltage is at Voo, and thus the feedback capacitance (Cm) is charged to
Voo. Similarly, the drain-substrate capacitance (Cdl ..bl) is charged to Voo since
the substrate and source are connected to ground.
During the turn·on interval, Cg. is charged to VGS (the input voltage) through
Rs (generator impedance) (Figure 11). Cm must be discharged to VGS - VOlo,1
through Rs and the parallel combination of the load resistor(Ro) and the channel
resistance (rd.). In addition, Cdl'.'1 is discharged to a low value (VOlo'l) through Ro
in parallel with rd •. During turn·off this charge flow is reversed.
Predicting turn·on time proves to be somewhat difficult since the channel
resistance (rd.) is a function of the gate-source voltage (VGs). As C•• becomes
charged VGS is approaching Vi, and rd. decreases (see Figure 4) and since Cm
and Cdl,,'1 are charged through 'd., turn-on time is quite non·linear.
If the charging time of Cg. is short compared to that of Cm and Cdl'""I, then
rd. (which is in parallel with Ro) will be low compared to Ro during the switching
interval and will largely determine the turn-on time. On the other hand, during
turn·off rd. will be almost an open circuit requiring Cm and Cdl,.bl to be charged
through Ro and resulting in a turn-off time that is long compared to the turn·on
time. This is especially noticeable for the curves where Rs == 0 and C•• is charged
through the pulse generator impedance only.
The switching curves shown with Rs
Ro simulate the switching behavior
df cascaded stages where the driving source impedance is normally the same as
the load impedance. The set of curves with Rs = 0 simulates a low source im·
pedance drive such as might occur in complementary logic circuits.

=

FIGURE 11 - SWITCHING CIRCUIT with
MOSFET EQUIVALENT MODEL
+Voo

R,

----I

Vos

2-773

2N4352 (SILICON)

Silicon P-channel MOS field-effect transistor designed for enhancement-mode operation in low-power
switching applications. The 2N4352 is complementary
with type 2N4351.

CASE 20 (2)
(TO-72)

MAXIMUM RATINGS

(TA

=

250C unless otherwise noted)

Symbol

Value

Unit

Drain-Source Voltage

VDS

25

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

ID

30

mAdc

PD

300

mW
mw/oC

Rating

Drain Current
Power Dissipation at T A
Derate above 25°C

=

Power Dissipation @ TC
Derate above 25°C

=

25°C

±

1.7

Operating Junction Temperature
Storage Temperature Range

800
4.56

mW
mW/oC

TJ

2.00

°c

Tstg

-65 to+ 175

°c

PD

25°C

HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to the devices while
handling. testing, or in actual operation, by following the procedures outlined below:
1. To avoid the build-up of static charge, the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

2-774

2N4352

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=

2SoC unless otherwise noted)

Substrate connected to source.

Characteristic

Symbol

OFF CHARACTERISTICS
Drain-Source Breakdown Voltage
(ID = -10 /lA, VGS = 0)

~

V(BR)DSS

-

loss

-

VGS(TH)

'"
10V ,J:!. ~ r--

' ....... ~ ....

200

I I I I

-2.0

-1.0

-

'7

FIGURE 9 - FALL TIME

~

15V

... ..

~ t5~

i;::

100

~

50

.,;

-5.0

r-;:

~

. . ..

Ves ~ V"S

~

---

>--- Vos - VGS -

-IOV '

., .
...

-10

I
-0.5

I

~

15V

'-

F:: ~~-

r
-5.0

-2.0

-1.0

0

Rs~Ro

~

20
10

-0.5

.... ...

VGs "' -IOV

500

0

--·Rs~Ro

-- --

50

.... ::

10. ORAIN CURRENT ImAI

FIGURE 8 - TURN·OFF DELAY TIME
200

~

-1.0

-0.5

10. DRAIN CURRENT ImAI

500

J...

7'

VDS ~ VGS ~ -15V - ~

~

Rs - 0
--- Rs ~ Ro

15V I

-2.0

-1.0

III

VDS ~ V"S

...

.....

70

-10

10 • DRAIN CURRENT (mAl

10. DRAIN CURRENT ImAl

FIGURE 10 - SWITCHING CIRCUIT
and WAVEFORMS
VOD

SET Vos ~

INO

OUTPUT TO SAMPLING
OSCILLOSCOPE
I
O
10 V t -__..........
k ""'""__-

~~

-

--.

~~
~~

~~
~ I- 80

30 0

600

........

90 0 1200

~Z

t.U

010 0

.......

.........

ffi ~

80

<. C;

60

>~

;;

...., de

f:

60
50
15

/
180 0 . /
120 0
90 0 / ' /

0-

70

o

160

~ ~120

........... r-..,

~

180

~~14 0

-

CONOUCTION
ANGLE

r--

:E

~

de

"'

~
~

~1800_

~~

'\.

90

FIGURE 4 - FORWARD POWER DISSIPATION
200

90

105

120

IT(AV). AVERAGE FORWARO CURRENT (AMP)

~~

"

15

30

45

700 0
500 0
3000
2000

f-'"
,/

0
0

/
/

/
0
0
0
0
0
7. 0

TJ=125 0C -

II

5. 0
3.0

2. 0
I. 0

1.0

2.0

3.0

4.0

VTM. MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

-

; + - 1 1 8 00 _

60

75

90

ITlAV). AVERAGE FORWARO CURRENT (AMP)

FIGURE 5 - FORWARD CONDUCTION CHARACTERISTIC

0

/~

-

CONOUCTION
ANGLE

10.000

0

.L

/.

5.0

105

120

2N4361 thru 2N4368/2N4371 thru 2N4378

(continued)

Terminal 1

Terminal 2
6.850
7.500
5.775
6.265

0.'80~ltO

Min -,0-I-k l---r

0.797
0.827

0.4619
0.4675

1

I_

I

"~

Terminal 4

t

0.827

1227
MAX

,I

I

I

I

~ ~~2~

-

I

~:!~~

1.810

0.260

MAX

~

I

Seating
Plane

Termin,13

To convert inches to millimeters multiply by 25.4

All JEDEC dimensions and notes apply

CASE 219·01
TO·94

CASE 246·01
TO·83

GATE (WHITE)
CATHODE POTENTIAL (RED)
CATHODE (RED)
ANODE

TERMINAL 1 - GATE
TERMINAL 2 - CATHODE
TERMINAL 3 - ANODE

2-783

I

0.180

0.499

~::m--

To convert illches to millimeters multiply by 25.4
All JEOEC dimensions and notes apply

TERMINAL 1 TERMINAL 2 TERMINAL 3 TERMINAL 4 -

~=rt

1031
MAX--i

2N4391 (SILICON)
2N4392
2N4393
N-CHANNEL

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

JUNCTION FIELD-EFFECT
TRANSISTORS
(TvpeA)

Depletion Mode (Type A) Junction Field-Effect Transistors designed
for chopper and high-speed switching applications.
• Low Drain-Source "On" Resistance rds(on) = 30 Ohms (Max) @ f = 1.0 kHz (2N4391 )
• Low Gate Reverse Current IGSS = 0.1 nAdc (Max) @ VGS

= 20 Vdc

• Guaranteed Switching Characteristics

1

0.209

~DlAll ~nr
0.170

i

MAXIMUM RATINGS

Symbol

Value

Unit

Drain-Source Voltage

Rating

VDS

40

Vdc

Drain-Gate Voltage

VDG

40

Vdc

Gate-Source Voltage

VGS

40

Vdc

OIA

STYLE 4
Pin 1. Source
2. Drain
3. Gate and

Forward Gate Current

IG(f)

50

mAde

Total Device Dissipation (!l;T C = 25·C
Derate above 25· C

PD

1.8
10

Watts
mW/'C

Operating Junction Temperature Range

TJ

-65 to +175

·C

T stg

-65 to +200

·C

Storage Temperature Range

j

m

0.500

0.100

Case

45 0

/P~

0.036

if.04ii~

0.028

'J

if.04ii

CASE 22(4)
(TO-18)

FIGURE 1

SWITCHING TIMES TEST CIRCUIT
+10 Vdc

1D~F

q

51

I

1.0~F

i

T.U.T

Rin = 50 Ohms
TEKTRONIX 567
OR EQUIV

-=

INPUT It, = If < 0.5 ns)

.,-0

~
:~_T"_1
:
I
1--r-VGs(on)

INPUT

AB

toll:I

I

I

I

lI

1___ YOO

1

:

I I
I

I

--I If : -

9.6 )

RL = ( 10(on) -51 Ohms

~ Ion

I

:

I

--j

I

OUTPUT WAYEFORM

2-784

VOS(on)

2N4391, 2N4392, 2N4393 (continued)
ELECTRICAL CHARACTERISTICS (T =2S·C unless otherwise noted)
A

Characteristic

Symbol

Min

Max

40

-

-

1.0

4.0
2.0
0.5

10
5.0
3.0

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 1.0 I'Ade, VOS = 0)

V(BR)GSS

Gate-Source Forward Voltage
(IG = 1. 0 mAde, VOS = 0)

VGS(f)

Gate-Source Voltage
(VOS = 20 Vde,
= 1. 0 nAde)

10

2N4391
2N4392
2N4393

Gate Reverse Current
(V GS = 20 Vde, VOS = 0)

VGS

IGSS

(V GS =20Vde, VOS=O, TA =150·C)

Drain-Cutoff Current
(VOS = 20 Vde, VGS = 12 Vde)
(VOS = 20 Vde, VGS = 7.0 Vde)

2N4391

~(Oll)

Vde
Vde

-

nAde
0.1
0.2

I'Ade
nAde

-

0.1

2N4392

-

0.1

(VDS = 20 Vde, VGS = 5.0 Vde)
(VOS = 20 Vde, VGS = 12 Vde, T A = 150· C)

2N4393

-

0.1

(VOS = 20 Vde, VGS = 7.0 Vde, T A = 150·C)

2N4392

-

(VOS = 20 Vde, VGS = 5.0 Vde, T A = 150·C)

2N4393

-

0.2

50
25
5.0

150
75
30
0.4

2N4391

Vde

0.2

I'Ade

0.2

ON CHARACTERISTICS
Zero-Gate Voltage Drain Currentt1l
(VOS = 20 Vde, VGS = 0)

2N4391
2N4392
2N4393

Oraln-Souree "ON" Vollage
= 12 mAde, VGS = 0)

~SS

VDS(on)

mAde

Vde

(10

2N4391

(IO = 6.0 mAde, VGS =0)
VGS = 0)

2N4392

-

2N4393

-

0.4

-

30
60
100

(10 = 3. 0 mAde,

Static Drain-Source "ON" Resistance
= 1.0 mAde, VGS = 0)

(10

2N439 I
2N4392
2N4393

rOS(on)

0.4

Ohms

SMAll·SIGNAl CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = 0, ~ = 0, I = 1. 0 kHz)

2N4391
2N4392
2N4393

Input Capacitance
(VDS = 20 Vde, VGS = 0, 1= 1.0 MHz)

rds(on)

Clss

Reverse Transfer Capacitance

C

rss

Ohms

-

-

30
60
100
pF

14
pF

(VOS =0, VGS = 12 Vde, 1= 1.0 MHz)
(VDS =0, VGS =7.0Vde, I =1.0MHz)

2N4391
2N4392

-

(VOS = 0, VGS = 5.0 Vde, I = 1. 0 MHz)

2N4393

-

3.5

15

3.5
3.5

SWITCHING CHARACTERISTICS
Turn-On Time (See Figure I)
(~(on) = 12 mAde)

ton

ns

(~(on) = 6. 0 mAde)

2N4392

-

(~(on) = 3. 0 mAde)

2N4393

-

15

-

5.0

2N4391

Rise Time (See Figure I)
(Io(on) = 12 mAde)

t
2N4391

(Io(on) = 6. 0 mAde)

2N4392

(~(on) = 3.0 mAde)

2N4393

Turn-Ofl Time (See Figure I)
(VG8(off) = 12 Vdc)

r

toff

(VG8(off) = 7.0 Vdc)

2N4392

(VGS(oll) = 5.0 Vdc)

2N4393

-

Fall Time (See Figure I)
(VGS(olf) = 12 Vdc)

tl

(VGS(oll) = 7.0 Vdc)

2N4392

-

(VGS(oll) = 5.0 Vdc)

2N4393

-

2N4391

(ll,Pulse Test: Pulse Width < 100 I'S, Outy Cycle s 1. 0%.

2-785

ns
5.0
5.0
ns

-

2N4391

15

20
35
50
ns
15
20
30

2N4398 PNP (SILICON)
2N4399
2N5745
PNP SILICON HIGH-POWER TRANSISTORS
20,30 AMPERE
POWER TRANSISTORS

. designed for use in power amplifier and switching circuits; serves
as direct replacements for Germanium high-power devices.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 15 Adc (2N4398, 2N4399)

•

DC Current Gain Specified - 1.0 to 30 Adc

•

Complements to NPN 2N5301, 2N5302, 2N5303

PNP SILICON
40-60-80 VOLTS
200 WATTS

'MAXIMUM RATINGS
Rating

Unit

Symbol

2N4398

2N4399

2N5745

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-Base Voltage

VEB

20
50

Adc

Collector-Emitter Voltage

Collector Current - Continuous

5.0
30
50

IC

Peak

Base Current

Continuous

IB

7.5
15

Adc

PD

5.0
28.6

Watts
mW/oC

PD

200
1.15

Watts

Peak

Total Device Dissipation @TA "" 25°C*"

Derate above 25°C
Total Device Dissipation@Tc

25°C

Derate above 25°C
TJ,T stg _

Operating and Storage Junction

Vdc

30
50

W/OC

-65 to +200---

°c

Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

0.875

°C/W

Thermal Resistance,Junction to Ambient

eJA

35

°C/W

Characteristic

·1 ndicates JEDEC Registered Data
"·Motorola guarantees this data in addition to JEDEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

TA
10
9.0

TC
200
180

g B.O

160

""

14 0

~ 7.0

J'.,.
!

'"

z

~ 6.0

120

~ 5.0

10 0

~ 4.0

80

~

3.0

0

~ 2.0

0

1.0

0

--..........

"""

TC ' "

TA- r--....

"-

r---...

"'" t---."
.........

f'..

0
25

50

125
75
100
T, TEMPERATURE 10C)

150

~

115

200

CASE 12
(TO-3 except Pin Diameter)
(Collector Connected to Case)

Safe Area Curves are indicated by Figure 13. All
limits are applicable and must be observed.

2-786

To convert inches to millimeters multiply by 25.4.

2N4398, 2N4399, 2N5745

(continued)

• ELECTRICAL CHARACTERISTICS (TC::: 25°C unless otherwise noted)

I

Char-=teristic

Symbol

Min

VCEO(sus)

..

OFf CHARACTERISTICS
Collector-Emitter Sustaining Voltage! 1)

(Ie'" 200 mAde, 18 = 01

2N4398
2N4399
2N5745

Mo.

Vd,

60
80

Collector Cutoff Current

mAde

ICEO

0)

2N4398

5.0

(VeE'" 60 Vdc.IB '" 01

2N4399

5.0

(VeE'" 40 Vdc, 18
(VeE

=

80 Vdc, 18

=

=

0)

Collector Cutoff Current
(VeE'" 40 Vdc, VSEioffl
(VeE

=

2N5145

=

5.0
mAde

ICEX
1.5 Vdcl

2N4398

5.0

60 Vdc, VaE (offl = 1.5 Vdc)

2N4399

5.0

2N5745

5.0

=

(VeE::: 80 Vdc, Vse (off! = 1.5 Vdcl

(VeE

30 Vdc. VaEioff) = 1.5 Vdc, TC = lS00C)

(VeE = 80 Vdc, VBEioff) = 1.5 Vdc, TC::: lS00C)

2N4398, 2N4399

10

2N5745

10

Collector Cutoff Current
(Vea::: 40 Vdc, Ie = 0)

2N4398

1.0

(VCB '" 60 Vdc,

Ie = 01

2N4399

1.0

(VCB

Ie

2N5745

=

80 Vdc,

Unit

mAde

ICBO

= 0)

1.0

Emitter Cutoff Current
(VEB = 5.0 Vdc, Ie = 0)

5.0

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain(1)
(lc = 1.0 Ade.'VCE = 2.0 Vde)

h'E
40

All Types

(lC= 10 Ade, VCE '" 2.0 Vde)

2NS74S

15

60

(Ie = 15 Adc, VCE '" 2.0 Vdd

2N4398, 2N4399

15

60

(lc = 20 Adc, VCE '" 2.0 Vde)

2N5745

5.0

(lc = 30 Adc, VCE" 4.0 Vdd

2N4398, 2N4399

5.0

Collector-Emitter Saturation VOltage(1)
(Ie'" 10Adc.IB =1.0Adc\
(Ie

Vd,

VCE(sat)
2N4398, 2N4399
2N5745

0.75

1.0

15 Adc.IB = 1.5 Ade)

2N4398. 2N4399
2N5745

1.0
1.5

(Ie" 20 Adc. Ie = 2.0 Adc)

2N4398, 2N4399

2.0

=

(lc = 20 Adc. 18 '" 4.0 Ade)

2N5745

2.0

(Ie = 30 Ade, Ie = 6.0 Ade)

2N4398, 2N4399

4.0

Base-Emitter Saturation Voltage(1)
(Ie'" 1QAde,le = 1.0 Adc)-*

Vd,

VeE(satl
2N4398, 2N4399
2N5745

1.6
1.7

(lC'" 15 Adc, IS'" 1.5 Adc)

2N4398, 2N4399
2N5745

1.85

(lc = 20 Ade, 18

2N4398,2N4399

2.5

=

2.0 Adc)U

(lC = 20 Adc, Is = 4.0 Add
Sase-Emitter On Voltage(lI
(Ie = 10 Adc, VCE = 2.0 Vde)

Vd,

2N5745

1.5

2N4398, 2N4399

(lC '" 20 Adc, VeE = 4.0 Vdc)
~

2.5
VSE(onl

(lC = 15 Ade, VCE = 2.0 Vdc)
(Ie

2.0

2N5745

30 Adc, VeE'" 4.0 Vdc)

1.7

2N5745

25

2N4398, 2N4399

3.0

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product(2)
(Ie = 1.0 Adc, VCE = 10 Vdc, f = 1.0 MHz)

MH,

tT
4.0
2.0

2N4398, 2N4399
2N5745

Small·Signal Current Gain
(lC'" 1.0 Adt;, VeE'" 10 Vdc, f = 1.0 kHz)

40

ht.

SWITCHING CHARACTERISTICS (See FIgures 2 and 31
Rise Time
Storage Time

(Vec '" 30 Vde,
IC = 10 Adc,
ISl =IS2=1.0Adcl

Fall Time

2N4398, 2N4399
2N5745

"

2N4398, 2N4399
2N5745

"

1.5
2.0

lt

0.6
1.0

2N4398, 2N4399
2N5745

* Indicates JE DEC Registered Data_

0.4
1.0

"'
"'

(1 )Pulse Test: Pulse Width::;; 300 /-LS, Duty Cycle $; 2.0%.

* *Motorola Guarantees this Data in Addition to JE DEC Registered Data, (2)fT is defined as the frequency at which Ihfe1 extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 3 - TURN-OFF TIME

FIGURE 2 - TURN-ON TIME

:=u:
t,,,,J '-

20 ns

I

-I
DUTY

1 -ll.OV
I
f----IO to 100 /los

CYClE~'

Vee

Vee

-30 V
3.0

TO SCOPE
t, :s 20 ns

O~OV

-30 V

3.0
10
TO SCOPE
20 ns

t,.~

-ll.OVU!'·
I
I

_I
I

-I

2.0 %

DUTY CYCLE

I_ t ",20ns
I
'
1- 10 to 100 /los
2.0 %

FOR CURVES OF FIGURES 5 & 6, R" Rl . & Vee ARE VARIEP
INPUT lEVELS ARE APPROXIMATElY AS SHOWN.

2-7.87

R,

V"

+4.0 V

2N4398, 2N4399, 2N5745

(continued)

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL "OFF" REGION CHARACTERISTICS

FIGURE 4 - CAPACITANCES
10
7.0
5.0

~

1.0

5

0.7
0.5

5Of

Fr=

5.0
3.0

-

2.0

ii

25'C

TJ

3.0

FIGURE 7 - TRANSCONDUCTANCE
10
7.0

r-

-~
C.b

C,b

<
.§

",-

0.5

0.2

~

0.2

0.1
2.0

1.0

3.0

5.0

10

20

30

50

REVERSE BIAS IVOLTS)

~

I

II

1.0
0.7

ffi

~

0.3

0.5

I

TJ - 175'C

2.0

-

0.3

100'C

I
V

0.1

25'C

.9 0.07
0.05

I-- REVERSE BIAS -

0.03

FORWARD BIAS
'.1.1
Ic=lcES

0.02

r--

VeE~30V

0.01
0.2

FIGURE 5 - TURN-ON TIME

TJ 25'C
lell, 10

~

'";::::

.;

0.2

0.1

2.0

I'
~

0.7

P

t,@Vee

I"'-

I'\.

30V

10'

.,..

0.2

1,@Vo, ~ 2.0V
0.1 _1111111 I
0.03 0.05 0.1
0.2 0.3

""

0.5

1.0

2.0 3.0 5.0

10

"

20 30

Ie, COLLECTOR CURRENT lAMP)
5

'""
1\

I'\.

"
1'\

'\

I'-

'\

'"

'\

\

•

FIGURE 6 - TURN-OFF TIME

\

'"

10
~@Vee

30V

3.0

ICES

Is'
~

~@Vee

ITYPICALl
VALUES
'=
F ~ OBTAINED eES
FROM FIGURE 7)

Is'

i'"

1.0

I

=Is-"'~
~

10

b-

10 IcES

-",.Ole~~

.....
["'.,.

'\

r-

l"'-

~ I-

10V

\

0.3
0.2
10
0.1
0.03 0.05

=
~

i'\.

_

181=112

].
0.5

Ie

TJ 25'C
lell, 10

5.0

2.0

30 V- r -

VeE

,@
Vee 10V

1M

0.3

~

0.5

I"..

1.0
0.5

~

0.4

0.3

FIGURE 8 - EFFECT OF BASE-EMITTER RESISTANCE
10'

3.0

....E-

0.1

V", BASE·EMITTER VOLTAGE IVOLTS)

10
7.0
5.0

2

25
0.1

0.2 0.3

0.5

1.0

2.0 3.0

5.0

10

20 30

Ie, COLLECTOR CURRENT lAMP)

2-788

50

75

100

125

TJ, JUNCTION TEMPERATURE I'C)

ISO

~

175

2N4398, 2N4399, 2N5745

(continued)

TYPICAL "ON" REGION CHARACTERISTICS

FIGURE 9 - DC CURRENT GAIN

3.0

~

'"

1--

0

1.0

"''""
~

~

---

0.7

-

0.5

~

=>

u
u

---

0

OJ

~

0.2

-\.

-- -

2.0

«
~

I-f-

-

l-

IL

--

. --l25;~'

~-

--

,....

- ---

TJ-IWC

f-:::.::::

WC

I

......
-.

I

r- .......

-.....:

,r-;

-.;:

-.... ~:-...

~

I
0.03

0.05

0.07

0.1

0.2

0.3

I

'~

........
.....

Data shown is obtained from pulse tests
and adjusted to nullify effect of ICBO.

0.1

1

.1

VCE = 10 Vdc VCE = 2.0 Vdc

--

- -....-

-!--

I

---

-........

-.

0.5

0.7

2.0

1.0

3.0

5.0

10

7.0

~

20

30

Ie. COLLECTOR CURRENT IAMPI

FIGURE 10 - COLLECTOR SATURATION REGION

2.0

~
~

~

§!

III
III

1.6
Ie

~

2.0A

TJ

5.0 A

=

25°C

20A

lOA

1\
1.2

'-

ffi

~

15

~:::i

0.8

,'"

\
\.,

8

~

~ 0.4

am

0.02

0.05

0.03

am

0.1

0.2

0.3

0.5

0.7

2.0

1.0

3.0

5.0

7.0

10

I,. BASE CURRENT (AMPI

FIGURE 11 - "ON" VOLTAGES

2.0
1.8

·1111

FIGURE 12 - TEMPERATURE COEFFICIENTS

2.5

I

1.6

~§!

P

'I

1.4

~

r;

1.2

~

1.0

V8E(s~tJ @

0.8

lells = 10

IJJ.....l.+±:ttl

0.6

V,,@Ve,- 2.0

0.4

j

1.0

~

0.5

§"

0.0

0.2 0.3 0.5

/

15
~ -1.5

II

-2.5
10

I

8J'~

-2.0
2.0 3.0 5.0

--

ff~ -1.0

v

1.0

"eve for VCE(.atj

V
/

~ ~O.5

lill~

0.1

1.5

~

VeE(ut) @ lei Is = 10

0.03 0.05

-jppluls IFO~
lell, < h,,/2

8

III 111.1111

0.2

I II

2.0

I I~JI ~ i50~ I

20 30

Ie. COLLECTOR CURRENT IAMPI

0.03 0.05

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5.0

Ie. COLLECTOR CURRENT lAMP)

2-789

10

20 30

2N4398, 2N4399, 2N5745

(continued)

RATINGS AND THERMAL DATA
FIGURE 13 - ACTIVE-REGION SAFE OPERATING AREA
100

_100",
1.0 ms
5.0 ms

50
-

"-

There are two limitations on the power handling ability of a

-...

~ 5.0

'"~

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the tran~istor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 13 is based on T J(pkl ~ 200°C; T C is variable

de

~ TJ 200 0 C
2.0 - - - Secondary Breakdown Limited
-

j 1.0
o
~ 0.5

- --

Bonding Wire Limited
Thermal Limitations
Pulse Duty Cycle <; 10%

~.

==

Te

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pkl"'; 200°C. T J(pkl may be
calculated from the data in Figure 14. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.
(See AN-4151

25 0 C
2N4398
2N4399
2N5745

0.2
0.1
1.0

2.0

5,0

3.0

10

20

30

50

100

VCE, COLLECTOR·EMITTER VOL TAGE (VOLTSI

FIGURE 14 - THERMAL RESPONSE
~

t;

1.0
~ 0.7

D

0.5

0.5

«

'"

~ OJ
!z 0.2

10\

~

~
§

0.1

0.05

0.07
0.05

0.01

~

0.03

~

~

~ 0.01

-

~I

I----'"

0.02

...

---

f-

0.2

f-

--- I

.-----

~

STEADY STATE VALUES
8Jc!ooi

O.7°C/W (TYP)

=

0.8WC/W (MAXI
r(t) eJC(oo)

eJCltJ

(SljNGLE rULi EI

I.---"

V
0.01

I
0.05

0.02

0.2

0.1

0.5

1.0

2.0

10

5.0

20

50

100

200

1000

500

t, TIME OR PULSE WIDTH (m,1

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

l-t'~1

----In" n,--"
I
_I

I

I~-

t,

I

I
I

I

I

I----

1/f_1

DUTY CYCLE D ~ t, f
PEAK PULSE POWER

~

~

P,

t,

t,

A train of periodical power pulses can be represented by the model
asshown in Figure A. Using the model and the device thermal reponse,
the normalized effective transient thermal resistance of Figure 14
was calculated for various duty cycles.
To find eJc(t), multiply the value obtained from Figure 14 by the
steady state value eJC(oo).
Example:
The 2N4398 is dissipating 100 watts under the following conditions:
tl l.0 ms, t, 5.0 ms. (D 0.2)

=

=

=

Using Figure 14, at a pulse width of 1.0 ms and D
of r (t) is 0.28.

= 0.2, the

The peak rise in junction temperature is therefore
6T ret) x p, x eJC(oo) 0.28 x 100 x 0,875

=

2-790

=

reading

= 24.5°C

2N4400
2N4401

(SILICON)

NPN silicon annular transistors designed for
general purpose switching and amplifier applications
and for complementary circuitry with PNP types 2N4402
and 2N4403. Features one - piece, injection - molded
plastic package for high reliability.

CASE 29(1)
(TO- 92)

MAXIMUM RATINGS

(TA ~ 25°C unless otherwise noted)

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

600

mAdc

PD

350

mW

2.73

mW/oC

T J , Tstg

-55 to +150

°c

Symbol

Max

Unit

Thermal Resistance, Junction to Case

8JC

0.137

°C/mW

Thermal ReSistance, Junction to Ambient

9JA

0.357

°C/mW

Rating
Collector-Emitter Voltage

Collector Current - Continuous
Total Device Dissipation T A

= 25°C

Derate above 250C
Operating &: Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

--

Characteristic

2-791

2N4400, 2N4401 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted 1
Fig. No.

Min

MIX

UnIt

to

-

Vde

OFF CHARACTERISTICS
CoUoctor-EmllIer . ._
Oc - I mAde, = 01

Vollap·

18

BVCI£O·

Collector-sa•• BreUdown voltap
CIc - 0.1 mAde,IE =0)
Emltt8r-Baae Brealrdown Voltap.
,(IE - O.IIIIAdo, Ie = 0)'
con.cior Cutol! Curr_
(YCE - al Vdc, VEB(oft) - 0.4 Vdc)
Ba.. Cutoff CW'l'eIlt

(VCE' 31 Vdc, VEB(oft)

BVCBO

10

BVEBO

= 0.4 Vdc)

•. 0

-

lea

-

0.1

isL

-

0.1

10

-

Vde
Vde
"AIle
jIAde

ON CHARACTERISTICS
DC

INttol
IN_
INttol
IN_
INttol'
IN_
INttol

ne - 10 mAde, VCE - I Vdc)
Oc

bn:

11

Current GUn

Oc = O.IIIIAdo, VCE = I Vdc)
Oc - I mAde, VCE = I Vdc)

= 110 IllAdc, VCE - I Vdc)·

ne - 100 mAde, VCE = Z Vdc)·

10

to
to
10
10
100

1_

10

to

IN4tol

CoUecto.-EmItte. SotunUoo Voltace·
Oc • 150 1IIAdc, 18 • 15 mAde)

18, IT, I'

-

VCE(aat)

ne - 100 mAde, 18 • 10 IllAdc)

IT,ll

...... Emltter Saturatloa Volta.. •
Oc • 150 mAde, 18 • 11 mAde)

ne - 100 mAde,is - 10

VBE(At)

O.TS

mAde)

-

---

110
300

-

0.'

Vdc

O.TS
Vde

O.H
1.1

SMALL·SIGNAL CHARACTERISTICS
C.....t-GolD - _
Procllct
Oc • 10 _ , VeE - 10 Vdc, f = IOC lIB.)

'T

IN_
INttol

Collector-Ba.. Capacltance

a

Cob

Eadtter-kH CapaCltaDCI
(YBE - 0.1 Vdc,le' 0, f = 100 1rB., coUocto.....rded)

S

C..,

II

bje

(YCB = 5 Vdc, IE - 0, I • 100 _ , emltte• . . . . - )

Iaput~co

Oc -

IN_
INttol

1 _ _ , VCE = 10 Vdc," 11rBa)

la

Voltace I"_ck Rallo
(Ie' 1 _ , VCE .' 10 Vdc, I - 1 _ )

eur...t GolD
1 _ , VCE • 10 Vdc, I • llrBa)

Oc -

14

SWITCHING CHARACTERISTICS
D.Ia,TImo
VCC • SO Vdc, VEB(aII) • I Vdc,
RIaeTlme

Ie = 110 - , Isl - 15 - ,

Ie -

8torap TIme

VCC = 3D Vdc,

hUTime

IBI - Isl - lllIIAdc

boo

1,1

~

1,5, •

to
t"

I, T

110 mAde,

',8

-U

so

0.5

U

1.0

II

0.1

1,0

10
40

310
100

1.0

SO

-

10
III

IIIIa

pI"

k_
pI"

lIler4

"r.

IN_
IN4to1

Output(Ie - 1 mAde, VCE • 10 Vdc, f - 1_)

-

hr.

11

8ma~

100
110

"

,,....
..

15

SO

SWITCHING TlME EQUIVALENT TEST CIRCUITS
FlGURl I - lURIl-ON Tllll
UIoIOO .... DU1YCItU_211

FICUIU - lUlll-llFFTIIE
+••

+.,

20110

20110

I
IC,' < 10""
___ oJ

I

I

1l1li

..J._
-TIC,'< 10""

_L_

-T-

___ JI

... ...... I i r . _ ... _
.,s..riII_<
.... _ _

2-792

-n

2N4400, 2N4401 (continued)

TRANSIENT CHARACTERISTICS
- - 2S·C

- - - lOO·C

FIGURE 3 - CAPACITANCES

20

I
i

r-r-

FIGURE 4- CHARGE DATA
10
7.0

-

30

5.0

........
....... Colo

3.0

t--

2.0

~

10

III

I
'"d

7.0

~

I""-3.0
2.0
0.1

0.2 0.3

0.5

1.0

2.0 3.0

5.0

~
I I
I

10

20

-

"./
".

:,.""

1.0
0.7
./

/

0.3
0.2
OJ

30

10

50

20

30

REVERSE YOlTAGE MllTS)

70
50

...~
'"'

;::

30

Idl,

""."-..['.,
I,

r- -

10

"'-I"

10

i'-.

1

"
"v
30

- r-

t.@Vee~IOV

i'<

~

"'

~,...

.,/

'10.

t..@V"loff)~2V

- I-- f-

t..@V"loffl- O

~

300

500

50

70

100

-

=--

Vee 30V lell, ~ 10

~~

~ ~~t.

~~

30

~ I~

It

~~

20

,- - -- -~

~

VL/

,

5.0
20

1 1

t.@Vee~30V

7.0
10

"..

70
50

,,[\..

'\

20

200

100

FIGURE 6 - RISE AND FAll TIMES

I\..



i-"

2114401 UNITI
"' 2114401 UNIT 2
"

I

20.

2II44OOUNITI
2Il44OO UNIT 2

I

......

I"'t--

5.

iJ

......

r-...

~
51

i

i

~
~

~

.J

.......

......

n

=E

"'-

~ t-.... ......

="

"' ......

r---..

0.2

0.3

0.5 0.7

1.0

2.0

3.0

500 0.1

5.0 7.0 10

0.2

0.3

O.S

2.0

0.7 1.0

3.0

S.O 7.0 10

Ie. COlLECIOR CURRENT ImAII

mURE 13 - VOLTAGE FEEDBACK RAnO

f~

./

u

Ie. COlLECTOR CURRENT !mill

10
7.0
5.0

2114401 UNIT I
2114401 UIIIT 2'
2Il44OO UIIT I
2Il44OO UNIT 2

./

, II I

.......

20

-- -

.........

r-

70

30

FIGURE 1% -INPUT IMPEDANCE
50.

FISURE 14 - OUTPUT ADMmANCE
100

I

~

"'-

3.0
2.0

........

~

1.0
0.7
O.S

:--...

~

2114401 UIIIT I
2114401 UIIT 2
, / 2Il44OO UNIT I
, / 2Il44OO UIIIT 2

!I
I

t.o'

"'

0.3
0.2

~

50

.J

.A

0.2

0.3

0.5 0.7

1.0

2.0

3.0

,/

V

~

~V

10
5.0
2.0
)j)

0.1

k: V

.5 20

5.0 7Jl 10

- .,...

r--::~

r--

:;..;

"'~

"-

2N4401 UNIT I
2114401 UNIT 2
2N44OO UNIT I
2N44OOU1IIT2

II I II

-I-"

0.1

0.2

OJ

0.5 0.7

)j)

2.0

Ie. COU£CTOII CURRENT IIIIA I

Ie. COU£CTOII CURRENT IlllAI

2-794

3.0

5.0

7.0 10

2N4400, 2N4401 (continued)

STATIC CHARACTERISTICS

FIGURE 15 - DC CURRENT GAIN
3.0

I

i I

~li~

-YeE-IV
---VeE-IOV

2.0

..=. -- - --I i
-- -

-- -- -

--

1--

~
~

<.>

~

1-1-

1.0

0.7

I-

0.5

t-- 1-1-"

I-"

I-"

1---

1-- i-- l- I-

0.3

j.l-l- -

-

-r-

I--- I- ~2~ob

.~}_

J

-t-

250C

-

1' ....

-

0

--

'1
-1"1i

-I--

-

"-

CS

-~

--.......

~

I-"

I'
~,

~

b

I'cs

~

0.2
0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

30

20

50

70

100

200

300

500

Ie. COllECTOR CURRENT (mAl

FIGURE 16 - COLLECTOR $ATUUnON REGION
1.0

;

0.8

i

0.6

TJ = 25°C

1

~

~

Il5
~

~~
8..
~

10mA

1e-lmA

f'...

lOOmA

500mA

.... 1"-

1\

0.4

\

0.2

\

f'.

1\

\

I"'--- t-..

o
0.01

0.02

0.03

0.05

0.07

0.1

0.2

"'-

t0.3

0.5

0.7

1.0

-2.0

t:::: ~

t-t-3.0

5.0

7.0

10

30

20

50

I. BASE CURIIOO (mAl

FIGURE 17 - "ON" VOLTAGES
1.0

r-

'TJ

~ ~do~'

1111111'

;

~
~

0.6

~

1

yl I W"~IIII I~
I~(i)"~i,:~,,j.-I--'

0.8

FIGURE 18- TEMPERATURE COEffICIENTS
~

I-

v..(.. )~J~" 10~

F==

+0.5

'"'

-

//vel«VeE'''')

P

-0.5

~

-1.0

i

-1.5

!

~

0.4

WIll

~
",.

.... 1-'

/

0.2

-2.0

V

VeE("'1 @1eI1, - 10

o

9v~1'::V.

,..-

llllll

-2.5
0.1 0.2

0.5

1.0

2.0

5.0

10

20

50

100 200 500

Ie. COUECTOR CURI!OO !mAl

0.1 0.2

0.5

1.0

2.0

5.0

10

20

Ie. COUECTOR CURI!OO!mAl

2-795

50 100

200

500

2N4402 (SILICON)
2N4403
PNP silicon annular transistors designed for general
purpose switching and amplifier applications and for
complementary circuitry with NPN types 2N4400 and
2N4401.
MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

Symbol

Value

Unit
Vdc

VCEO

40

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

600

Collector Current - Continuous
Total Device Dissipation T A

= 25 0 C

PD

310

mW

2.81

mW/oC

-55 to + 135

°c

Derate above 25°C
Operating & Storage Junction
Temperature Range

CASE 29 (1)

TJ' Tstg

mAde

THERMAL CHARACTERISTICS

TO-92

Symbol

Max

Unit

Thermal Resistance I Junction to Case

BJC

0.137

oC/mW

Thermal Resistance, Junction to Ambient

BJA

0.357

°C/mW

Characteristic

SWITCHING TIME EQUIVALENT TEST CIRCUIT
FIGURE 1 - TURN·ON TIME
-30Y
_

<2ns

_.L_

-T-

lkU

I Cs'

< 10 pf

___ ..JI

-16Y

-I 1-

1.0 to 100 I's, DUTY CYCLE

Scope rise time < 4 ns
'Total shunt capacitance of test lig,
connectors, and oscilloscope

= 2%

FIGURE 2- TURN-OFF TIME

+14Y

-30Y

-

I
I

--'--

-T-

IkU

i Cs' < IOpF

_ _ _ ....JI

-16Y

-I

I-

1.0 to 100 "S, DUTY CYCLE = 2%
+4Y

2-796

_

2N4402, 2N4403

(continued)

ELECTRICAL CHARACTERISTICS

CT."

25·C"'",.th".,,,,,,,.)

Characteristic

Fig. No.

I

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Vollage 111
(Ie' 1 mAde,
= 0)

BVCEO

Collector-Ba.. Breakdown Voltage
(Ie = 0.1 mAde, IE = 0)

BVCBO

Emitter-Ba.. Breakdown Vollage
(IE = 0.1 mAde, Ie = 0)

BVEBO

Is

Collector CutoU Current
(VCE ~ 35 Vdc, VBE(off)

40
40

IeEX

= 0.4 Vdc)

Base CutoU Current
(VCE = 35 Vdc, VBE(off) • 0.4 Vdc)

IBL

5.0

-

-

-

Vde
Vde
Vdc
/lAde

0.1
I'Ade
0.1

ON CHARACTERISTICS
15

DC Current Gain
(Ie = 0.1 mAde, VCE • 1 Vde)

(Ie •
(Ie

1 mAde, VCE = 1 Vdc)

= 10 mAde, VCE = 1 Vdc)

(Ie .. 150 mAde, VCE

(Ie •

= 2 Vdc) 111

hFE

30

2N4402
2N4403
2N4402
2N4403

30
60
50
100

--

2N4402
2N4403

50
100

150
300

20

-

500 mAde, VCE = 2 Vdc)11)
16, 17, 18

Collector-Emitter Saturation Voltage!1l
(Ie = 150 mAde, IB = 15 mAde)

VCE(aat)

(Ie = 500 mAde, IB = 50 mAde)
17,18

Base-Emitter Saturation Voltage (U
(Ie • 150 mAde, IB = 15 mAde)

(Ie

-

2N4403

VBE(sat)

= 500 mAde, IB = 50 mAde)

-

Vdc

-

0.75

0.75

0.95

-

1.3

0.4
Vdc

SMALL·SIGNAL CHARACTERISTICS
Current-GaIn - BandWidth Product
(Ie = 20 mAde, VCE = 10 Vdc, f = 100 MBa)

fT
2N4402
2N4403

Collector-Base CapaCitance
(V CB =10 Vd., IE = 0, f = 140 kHz, emitter guarded)

3

Emitter-Baae CapaCitance
(VBE = 0.5 Vd., Ie = 0, f

3

Input Impedance
(Ie = 1 mAde, VCE

= 140 kHz,

12
• 1 kHz)

Voltage Feedback Ratio
(Ie • 1 mAde, VCE = 10 Vdc, f

= 1 kHz)

2N4402
2N4403
13

--

-

8.5

Ceb

-

30

750
1. 5k

7.5k
15k

0.1

8.0

lite

~e

MHz

pF

Ccb

collector guarded)

= 10 Vde, f

150
200

pF
ohms

X 10- 4

-

---~

Small-Signal Current Gain
(Ie • 1 mAde, VCE • 10 Vde, f = 1 kHz)

11

hfe

2N4402
2N4403

Output Admittance
(Ie = 1 mAde, VCE = ·10 Vdc, f = 1 kHz)

14

hoe

30
60

250
500

1.0

100

= 30 Vdc, VBE(off)

VCC

Rlae Time

1(: = 150 mAde, IBI = 15 mAde

Storage Time

Vee = 30 Vde,

Fall Time

IBI

= 2 Vdc,

Ie = 150 mAde,

= IB2 = 15 mAde

11) Pulae Teat: Pulae Width:i 300 1'1, Duty Cycle ~ 2%

2-797

1,5

~

1,5, 6

tr

2, 7

ta

2,8

tr

-

I'mhoa

SWITCHING CHARACTERISTICS
Delay Time

..

-

-

15

na

20

na

225

na

30

na

2N4402,2N4403

(continued)

TRANSIENT CHARACTERISTICS
--

2S'C

- -

-

IOO'C

FIGURE 4 - CHARGE DATA

FIGURE 3 - CAPACITANCES
10
7.0

30

t-

20

-t"-

~

~

C.b
3.0

~

~

~

.......

10

~

I

I'.

7.0

f-

Cob

d

,

2.0

,

..-

1.0

-

0.7
0.5

5.0

-

-

r"--I'--

aT

3.0

0.2

2.0

0.1
0.2 0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

20

20

V

FIGURE 5 - TURN-ON TIME

~

--'"'

"

lell,

10 - l I -I-

"'-""'\

30
20

'~

50

I'\.

"'",

t.@Vee ~ 30V
t.@Vee ~ 10 V
td @VlEloffl ~ 2 V _
td @ VIE,.HI ~ 0

,

I-

~

- I-

~

"

'"

I'~

- I-

1'..."-

"~

~

.............

/

'"

i'-- V/ /

10

5.0
20

30

50

70

100

200

300

10

500

20

30

Ie. COLLECTOR CURRENT (mAl

50

70

200

100

300

FIGURE 7 - STORAGE TIME

FIGURE 8 - FAll TIME
100

= '-

-

lell, ~ 10

100
lell,

~

~

70

-

1.:.. 1
",,
"

=--

I" ~ I"

~

,.;:::

30

:::J

20

~

\\'

t(~~-1!\4

70

;:l:

20

30

50

70

100

200

300

"
Ie/I,

~

I

" I"
10
I

"

lell,

~

~

lO

=

30V
/12

-

20

-.....:.

"-

\

....::::.

'-

-......:

><

7.0

~
10

181

":..:::.

II}..

20

Vee

"

K

.:f-

,\; ,

30

'\.:

50

\
\1\ \

~

f-

20

50~

Ie. COLLECTOR CURRENT (mAl

200

J

V

7.0

10

50

-,r-

-'

5.0

~
~

500

Vee 30 V - I-Ie/I, ~ 10 _ I-

70

7.0

';:::"'

300

FIGURE 6 - RISE TIME

I"

10

:g

200

100

100

~

;:::

70

Ie. COLLECTOR CURRENT (mAl

100

50

50

30

REVERSE VOLTAGE (VOLTSI

70

/

~
10

30

, 1/

L

0.3

0.1

,

,-

I"
~

=

Vee 30V
Ie/I, 10 -

5.0

I'--

5.0
10

500

Ie, COLLECTOR CURRENT (mAl

20

30

50

70

100

Ie, COLLECTOR CURRENT ImA)

2-798

200

300

500

2N4402,2N4403

(continued)

SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE
FIGURE 10 - SOURCE RESISTANCE EFFECTS

FIGURE 9 - FREQUENCY EFFECTS
10

10

I I I
f~lkHz

\

J

\ [\
1\

\

1\

-------

1\1\
fro'

le~

"-

1 mAo Rs ~ 430(1

Ie ~ 500 p.A. Rs ~ 560 !:l

I~IO~~I~~IM JO~RC~ ~~SISTANCE

I sl I

111111

r1.0JIS
DUTY CYCLE = 2.0%

(l

-10.85 V
PULSE WIDTH = 200 n,
RISE TlME:'O 2.0 n'
DUTY CYCLE:: 2.0%

To obtain data for curves, voltage levels are approximately as shown, RS and RC are varied.

2-802

+3.0 V

RC

59

(l

SCOPE

2N4404, 2N4405

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25'C unless otherwISe noted)

Symbol

Characteristic

Min

Max

80

-

80

-

5.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'(l1
(IC = 10 mAde, IB = 0)

BV CEO

Volta~e

Collector-Base Breakdown
(IC = 10 !lAde, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)

BV EBO

Vde

Collector Cutoff Current
(V CB = 60 Vde, IE = 0)

ICBO

-

25

Emitter Culoff Current
(V BE ~ 3.0 Vde, IC = 0)

lEBO

-

25

30
75

-

Vde
Vde
nAde
nAde

ON CHARACTERISTICS
DC Current Gain
(IC = 0.1 mAde, VCE
(IC

=

10 mAde, VCE

(IC

=

150 mAde, VCE

=

(IC

=

500 mAde, VCE

=

=

hFE

2N4404
2N4405

1. 0 Vde)

=

2N4404
2N4405

40
100

1. 0 Vde) (II

2N4404
2N4405

40
100

120
300

1. 0 Vde) (II

2N4404
2N4405

15
25

-

-

0.15

-

0.8

0.85

1.2

-

0.9

200

600

-

10

-

75

-

15

ns

1. 0 Vde)

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

=

150 mAde, IB

=

15 mAde) (II

(IC

=

500 mAde, IB

=

50 mAde) (11

VCE(sat)

Base-Emitter Saturation VoLtage
(IC = 10 mAde, IB = 1. 0 mAde)
(IC

=

500 mAde, IB

=

-

-

VBE(sat)

50 mAde) 111

Base-Emitter On Voltage*
(IC = 150 mAde, VCE = 1. 0 Vde)

V BE (on)

Vde
0.2
0.5
Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE = 20 Vde, f

=

IT

100 MHz)

Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)

C eb

Emitter-Base Capacitance
(V BE = 0.5 Vde, IC = 0, f

C eb

=

1.0 MHz)

MHz
pF
pF

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

(V CC
IC

=

= 30 Vde, VBE(off) = 2.0 Vde,
500 mAde, I B1 = 50 mAde) (Figure 1)

Storage Time (VCC
Fall Time

IBI

=

=

30 Vde, IC

IB2

=

=

50 mAde)

td
t
t

500 mAde,
(Figure 2)

r
s

tf

(11 Pulse Test: Pulse Width" 300 /JS, Duty Cycle" 2.0%.

2-803

25

ns

175

ns

35

ns

2N4404, 2N4405

(continued)

TRANSIENT CHARACTERISTICS

---25'C

---100'C

FIGURE 3 - CAPACITANCES

FIGURE 4 - CHARGE DATA

100

10
7.0

50

r-r-r--

5.0
..... Ceb

30
u,.

~

20

~

w

...<'"'<3

10

<

5.0

z

'"'

2.0

,..

w

to

I""-

~ 1.0

'"~

Ccb

;t

VCc- 3OV
IcllB = 10

'"

0.7
0.3

2.0

0.2

°A

I--

0.1
0.1

0.2 0.3

0.5

1.0
2.0 3.0 5.0
10
REVERSE VOLTAGE (VOLTS)

20 30

50

100

20

10

FIGURE 5 - DELAY TIME

Icll B = 10

r--..

"

30
20

.:

'" "-

VBE(olf)· 2.0 V

i"-..

5.0
30

r~

30

""

20

.:

~

"'"

7.0
20

,.
;:
w

VBE(ofl) = 0 V"

10

50

]

10

7.0

"-

5.0
500 700 1000

10

20

'"

-

;:
~ 100

<

'"
o

t;

-"

1'"

100

VCC - 30V

!w

r--~

-r--+.. i'-

~
:;t

70

50

~

1;- 1,·1/3 II

70

50 10 100
200 300
IC_ COLLECTOR CURRENT (rnA)

500 700 1000

200

I B1 -I B2
IcllB = 10

-r-.

30

FIGURE 8 - FALL TIME

FIGURE 7 - STORAGE TIME
700
500

..... ,..,,1

......

10

50 70 100
200 300
IC_ COLLECTOR CURRENT (rnA)

1000

200

1000

ICIIB = 10

w

300

500

VCC=30V

70

"-

50

w

50
100
200 300
IC' COLLECTOR CURRENT (rnA)

100

70

:g

30

FIGURE 6 - RISE TIME

100

,.
;:

./

0.5

3.0

1.0

~

IlT

3.0

50

LL.;..

"

VCC = 30V

,

IcllB = 10
IBl -1 62

...... r-

I

30

--

.....

30
20

20
10

10
10

20

30

50 70 100
200 300
IC- COLLECTOR CURRENT (rnA)

500 100 1000

10

20

30

50

70

100

200

300

IC' COLLECTOR CURRENT (rnA)

2-804

500 700 1000

2N4404, 2N440S

(continued)

SMALL-SIGNAL CHARACTER ISTICS

NOISE FIGURE

= 10 Vdc, T A = 25·C

V CE

FIGURE 10 - SOURCE RESISTANCE EFFECTS

FIGURE 9 - FREQUENCY EFFECTS
10

r\'\

9.0

~

8.0

~

6.0

10 MA, RS = 7.0 k ohms

~ 5.0

RS

~ 4.0
2:

~

3.0

=

~ 6.0

r\

to

Optimum Source Resistance

~ 5.0

I

~

I

100"A

1

4.0

i'

I

i

0.01

0.020.03 0.05

\

1. 0

I
2.0 3.0

5.0

f = 1.0 kHz

III

!

50

10

~

IC=1.0mA

o

0.1
0.2 0.3 0.5
1.0
f, FREQUENCY (kHz)

i-'"

V

I'

2.0
I

/

~. 3.0

2.0
1.0

1\

'/

'\

~.

z

V

.I

w

I III

~

~I

7.0

1/

V

101
"11

8.0

~

V

I II

\

9.0

100 MA, RS = 680

u:

o

10

I II
I

IC = 1.0 rnA, RS = 100

1:\

iil 7.0

~

IIII

II

I I

100

200300 500 loOk
2.0k 3.0k 5.0k 10k
RS' SOURCE RESISTANCE (ohms)

20k 30k 50k

h PARAMETERS
VeE = 10 Vdc, f = 1.0 kHz, TA = 25·C
This group of graphs illustrates the relationship of the "h" parameters for this series of transistors. To obtain these
curves,4 units were selected and identified by number - the same units were used to develop curves on each graph.

FIGURE 11 - CURRENT GAIN
300
200

30

I
I

20

-IUNI~4

_I--r-

z

~ 100

~

70

"'G

50

FIGURE 12 - INPUT IMPEDANCE

-

-

3

1

o

-

~

3.0

'"

2.0

~
Z

20

UNIT 1

~

.........

r-., ~ Ill:::,

0.7
O. 5
0.3

0.2

0.3

0.5
1.0
20
3.0
IC, COLLECTOR CURRENT (rnA)

5.0

0.1

10

0.2

FIGURE 13 - VOLTAGE FEEDBACK RATIO

0

25
0

>=
~

~
w

to

""C:;
0

>

j

~

1

30

10

5.0

10

70

50

i'i

1.0
0.5
2.0
3.0
IC. COLLECTOR CURRENT (rnA)

100

70

20

0.3

FIGURE 14 - OUTPUT ADMITTANCE

100
~

~ t-....

;:-'

?E 1.0
~

15
0.1

10

7.0
~ 5.0

~

30

3.......

~
= :=:

t::::= ::1-

2

~

'"i

~ "",,4

r-.......

w
'-'

z

~~

7.0
5.0

ff-

:;;
0

""

"-

2.0

UNIT 1

0.3

0.5

......::

~ '?

lO
7.0

to
0

3.0

j

2.0

r0.2

L

20

;C 5.0

.......

~

30

f-

......"

3.0

1.0
0.1

""

50

-4

.--

1.0

1.0

2.0

3.0

5.0

10

0.1

-

....

3
,.....

2_

1--....
0.2

./
,/

....0.3

r-: r

Unit 1

I I
0.5

1.0

2.0

IC. COLLECTOR CURRENT (rnA)

IC, COLLECTOR CURRENT (rnA)

2-805

3.0

5.0

10

2N4404, 2N4405

(continued)

STATIC CHARACTERISTICS
FIGURE 15 - DC CURRENT GAIN

§

10
7.0
5.0

«

'a:"
'"z

"":;:

3.0

r-

....
'"

::>

0.3

'-'

0.2

'-'
0

;

-

T

2.0
1.0
0.7
0.5

~
~

VCE=1.0V
VCE 10V

Tr 175"C

N

:::;

\

l- f-

'- '-

1-- '-1- i--

i--.

-

-

25'C f--

I-~

"'"

~I:::
--..;:

~

55"C

"f'

I

0.1
1.0

3.0

5.0

7.0

50
70
20
3D
IC' COLLECTOR CURRENT (rnA)

10

200

100

300

500

700

1000

FIGURE 16 - COLLECTOR SATURATION REGION

S
'"
2:
w

'"
:;

1.0

O.S

IC=1.0mA

«

'">

0.6

~

0.4

ffi
....
....

~

500 mA

100 rnA

lOrnA

.........

0.2

\

i\

\

. . . r-.

........ .......

W
'-'

."

"

......

0.02

0.03

0.05 0.07

0.2

0.1

0.3

'-.

"l""-

i-.

.......-

""'-

>

0.005 0.007 0.01

TJ =25"C

T
~

'"
8

I

I I
I I

I II
I II

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

50

IB, BASE CURRENT (mA)

FIGURE 18 - TEMPERATURE COEFFICIENTS

FIGURE 17 - "ON" VOLTAGES
I. 0

I II 111I
I II 1111

O.S

s
'"

2:

r-

Iv I I I I~ Ii II
SE(sat)

O. 6

V

I
I

1_ 110
C S-

+1.0

I I

~V

~

0VC for VCE(sat)
'-'

~

t:::::

.5-1.0

VSE(on)@V CE = 1.0 V-

....

w

'"~
'">

~

«

l-

U
~-2.0

0.4

I~fIE(sa1) @~
1.0

2.0 3.0 5.0

0VS for VSE

8

V

0.2

o

I II

-3.0

....... 1--'

10
20 30 50
100
200 300 500 1000
Ie. COLLECTOR CURRENT (rnA)

2-806

-4.0

1.0

2.0 3.0

5.0

10
20 30 50
100
200 300 500
IC. COLLECTOR CURRENT (mA)

1000

2N4404, 2N4405

(continued)

RATINGS AND THERMAL DATA
FIGURE 19 - SAFE OPERATING AREA
3.0

--

2.0

,.

0:

$

,..

~
a'"
'"

-- ..

The safe operating area curves indicate ,le·V eE
limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

'\. '\

0.5

0.1 ms

"-

0.3

The data of Figure 19 is based upon TJ(pk) '"

200°C; TC is variable depending upon conditions.
Pulse curves are valid tor duty cycles to 10% provided TJ(pk) ~ 200'C. TJ(pk) may be calculated
from the data in Figure 20. At high case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations im-

dc ...... 1.0ms

0

0.2

0

0.1

~

f-- -'1-

1.0

'-'

_uO.07
0.05

------

0.03
1.0

TJ' 200·C
_.....
SECONDARY BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALLY LIMITED
TC = 25"1: (SINGLE PULSE)
CURVES APPLY BELOW
RATED VCEO
2.0

posed by second breakdown.

3.0
5.0 7.0 10
50
20
30
VCE ' COLLECTDR·EMITTER VOLTAGE (VOLTS)

70

100

FIGURE 20 - THERMAL RESPONSE

,..

:5
in

z

1.0

0.7
0.5
D 0.5

~~

0.3
~ ~ 0.2

t~
w'"~
tt

0.1

~ ;i 0.07

w,"

!::::! a: 0.05
-,w


0.2

W

i
fa

-

0 0.5

-

0 0.2

-I-

- -

~

0.07
0.05 - 0 0.05

o
z

0.02

«
~

o
-

0.03

-

0-0.1

0.1

,...

0.01
0.01

-

0.05 0.07 0.1

I

0.3

I II
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
t, TIME DR PULSE WIDTH 1m,)

2-808

I

I
20

I
30

I
50

eJclt) rttl eJC
eJC = 20·CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN I I
READ TIME AT tl
TJlpk)- TC = Plpk) e Jclt)

tl/t2

II
0.2

pEUl
~t2-J
DUTY CYCLE, 0 =

0=0 ISINGLE PULSE)

III
0.02 0.03

--

i-"'"

II
70 100

I

I
200

300

II
500 700 1000

2N4406, 2N4407

(continued)

ELECTRICAL CHARACTERISTICS

(T A

=25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

80

-

80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1.
(IC 0 10 mAde, Is ~ 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 iJAde, IE 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE 0 10 iJAde, IC 0 0)

BV EBO

Collector Cutoff Current
(Vcs = 60 Vde, IE = 0)

ICBO

Emitter Cutoff Current

lEBO

(V BE 03.0 Vde. IC = 0)

5.

a

-

Vde
Vde
Vde
nAde

-

25

-

25

30
80

-

nAde

ON CHARACTERISTICS
DC Current Gain:(U

hFE

-

a Vde)

2N4406
2N4407

1. 0 Vde)

2N4406
2N4407

25
75

a Vde)

2N4406
2N4407

20
35

100
225
-

2N4406
2N4407

10
15

-

2N4406, 2N4407

10

-

-

0.2

-

0.4

-

0.7

-

1.5

-

0.9

(Ie = 1. 0 Ade, IE = 100 mAde)

0.9

1.3

(IC = 1. 5 Ade, IB = 150 mAde)

-

1.5

-

1.0

150

750

-

15

-

160

(IC = 10 mAde, VCE

=

(IC = 150 mAde, V
CE
(IC

~

(IC

= 1. 0 Ade,

1.
=

500 mAde, VCE = 1.

VCE =1.0Vde)

(IC = 1.5 Ade, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage-111
(IC = 150 mAde. IB = 15 mAde)

(IC

=

VCE(sat)

500 mAde. IB = 50 mAde)

(IC = 1. 0 Adc, Is = 100 mAde)
(IC

~

1. 5 Ade, IB

~

150 mAde)

Base-Emitter Saturation Voltage
(IC 0 150 mAde, IB = 15 mAde)

(1)

V BE(sat)

Base-Emitter On Voltage-Ill
(IC = 500 mAde. VCE = 1. a Vde)

V BE (on)

-

Vde

Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE 020 Vde, f

=

fT

100 MHz)

Collector-Base Capacitance
(V CB = 10 Vde, IE = 0, f = 1.0 MHz)

Ceb

Collector-Emitter Capacitance
(VEE = 0.5 Vdc, IC = 0, f = 1.

C eb

a MHz)

MHz
pF
pF

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

(V CC = 30 Vde, V BE (off) = 2. a Vde,
IC = 1. a Ade, lSI = 100 mAde) (Figure 11)

IB1 = IB2 = 100 mAde)

(Figure 12)

(11 Pulse Test: Pulse Width" 300 j.LS, Duty Cycle" 2.

-

15

ns

t

-

60

ns

s

-

175

ns

tf

-

50

ns

t

Storage Time (V CC = 30 Vde, IC = 1.0 Ade,
Fall Time

td

0"0.

2-809

r

2N4406, 2N4407

(continued)

STATIC CHARACTERISTICS
FIGURE 2 - DC CURRENT GAIN
2.5

TJ=1750 C

2.0

z

;;:

~

i:l

~

0.7

~

~ 0.5
0

-

-

z

;::::=.;-

~

w

'"
~
o

~ t\:

I-

II

O.S

0.6

j

g
-

0.2

8
~

>
200300 5007001000

0.1

FIGURE 4 - "ON" VOLTAGES

IIII

I

VBElsat) = IC/IS = 10

~

~

0.2

0.5

5.0
1.0
2.0
10
lB. BASE CURRENT ImA)

....

L--

~H:
-!

100

1.0

VBE Ion) @VCE

= 1.0 V

l-

0.6

o

50

FIGURE 5 - TEMPERATURE COEFFICIENTS

OVC for VCE lsat)

w

""'"~

20

2.0

I

I II 1111

,

\

o

JI

0.8

1000 mA

500 mA

1\

~ 0.4

-. r-....

2.0 3.0 5.07.0 10
20 30 50 70100
IC. COLLECTOR CURRENT ImA)

TJ=25 0 C

TJ = 25 0 C

100 mA

:E

VCE = 1.0 V

1.0

I

IC = 10 mA

!\

ffi

- - VCE = 10 V
0.3
0.25
1.0

1.0

~

----

-

550 C

~

'I"-

.-- ~

oc

en
'::i
o

-I-

~- :.-~

~
1.0 ~

'"

I-

FIGURE 3 - COLLECTOR SATURATION REGION

0.4

0

>
0.2
VCE Isat)@IC/IB

1.0

2.0

5.0

-2. 0

= 10

1m

10

20

50

100

+-0 VB for VBE

r-

11l11U

lJUill

-3. 0
200

500 1000

IC. COLLECTOR CURRENT ImA)

1.0

2.0

5.0

10

20

50
100
IC. COLLECTOR CURRENT ImA)

FIGURE 6 - SAFE OPERATING AREA
3.0
2.0

s::

'"~

1.0

~

0.5

--

~

.. -

.- -

The safe operating area curves indicate
Ie-VeE limits of the transistor that must
be observed for reliable operation. Col·
lector load lines for specific circuits must
fall below the limits indicated by the
applicable curve.
The data of Figure 6 is based upon
TJ(pk) = 20a oC; Te is variable depending
upon conditions. Pulse curves are valid for
duty cycles to 10% provided TJ(pk)~
200 oe. TJ(pkl may be calculated from the
data in Figure 1. At high casetemperatures.
thermal limitations will reduce the power
that can be handled to values less than the
limitations imposed by second breakdown.

1'1.

'\.

'\.

1.0ms'\

1\. 0.1 ms DC

I-

oc
=>
'-'
oc
0

~

oS

-

0.7

I'\..

0.3
0.2
0.1
0.07
0.05
0.03
1.0

-----

'\.

DC
TJ 200'C
SECONDARY BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALL Y LIMITED
TC = 25"C ISINGLE PULSE)
CU RVES APPLY BE LOW
RATED VCEO
2.0

3.0

5.0

7.0

10

20

I'\.

"30

'\.

50

70

100

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

2-810

200

500 1000

2N4406, 2N4407 (continued)

TRANSIENT CHARACTERISTICS
250C - - - 1000C
FIGURE 8 - CHARGE DATA

FIGURE 7 - CAPACITANCES
100

500

50
200

-

~100
w

20
eeb

z
50
!::

'"
u
;t:
u
'"

~

d

20

le/IB = 10

OT

5.0

'"
G

......

f= I~
r-

10

u
c
w

u

1= ~ §1:vee= 30V

2.0
1.0

ecb

0.5

l'

10

OA

0.2
5.0

0.1
0.1

0.2

1.0
2.0
5.0
10
20
REVERSE VOLTAGE (VOLTS)

0.5

50

1.0

100

50
100
5.0
10
20
IC. COLLECTOR CURRENT (mAl

2.0

FIGURE 9 - TURN-ON TIME
1000
700
IC/IB = 10

500

~

~-

Id @VBE (off) = 2.0 V

~

~

-=

-

-

-Is Is 11811

300

300
200

"'~

100
70
50

]

200

........

w

1,@Vec=30V

" 100
-= 70 =11
50

-; ......

~.

30

30

......

20

10

20

50

100

200

-

-

--

Vec=30V
IC/IB --10

20

'" i"-

rld@VBE(off)=O
10

500 1000

FIGURE 10 - TURN-OFF TIME

1000
700
500

200

10

1000

-

I

10
500

.......

20

30

Ie. COLLECTOR CURRENT (rnA)

50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)

500 700 1000

SWITCHING TIME EOUIVALENT TEST CIRCUITS
FIGURE 12 - TURN-OFF TIME

FIGURE 11- TURN-ON TIME
--30 V

- 30 V

I

30 "

+2
. 0- V
l
-- r
OV

'-I

SCOPE

I
I

100 "
--11.1 V

10< 11 < 500!,s
12< 10 ns
13> 1.0!,s
DUTY CYCLE <:; 2.0%

~ 11~:
I

2-811

SCOPE

100"

I--

--I

--11.1 V

PU LSE WIDTH = 200 ns
RISETIME~2.0ns
DUTY CYCLE ~ 2.0%

I
I

13

~12~

30 "

lN916

+4.0 V

2N4409 (SILICON)
2N4410
NPN silicon epitaxial transistors designed for
driving neon display tubes. Features one-piece, injection-molded plastic package for high reliability.
CASE 29(1)
(TO·92)

MAXIMUM RATINGS

(TA ~ 25°C unless otherwise noted)

Rating

Symbol

2N4409

2N441 0

50

80

Vdc

Collector-Base Voltage

VCEO
VCB

80

120

Vdc

Emitter-Base Voltage

V EB

5.0

Collector-Emitter Voltage

Unit

Vdc

5.0

Collector Current - Continuous

IC

250

mAdc

Total Device Dissipation @ TA " 25°C
Derate above 25°C

Po

310
2.81

mW
mW/·C

TJ , Tstg

-55 to +135

·C

Operating & storage Junction
Temperature Range

THERMAL RESISTANCE:

fhA

= O.357°C/mW

ELECTRICAL CHARACTERISTICS

(TA

=25°C unless otherwise noted)

I Symbol I Min IMaxi

Characteristic

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC " 1 mAde,
0)
Collector-Emitter Breakdown Voltage
(IC " 500 J.LAdc, V'BB = 5 Vde. RaE
Collector-Base Breakdown Voltage
(IC = 10 /LAde, IC =0)
Emitter-Base Breakdown Voltage
(IE = 10 /-lAde, IC =0)
Collector Cutoff Current
(VCB =60 Vde, ~ =0)

Ia "

=8.2 k ohms)

2N4409
2N4410

BV CEO

50
80

2N4409
2N4410

BVCEX

80
120

2N4409
2N4410

BV CBO

80
120

---

5.0

-

BV EBO
2N4409

(VCB =60 Vde, ~ =0, TA =l00·C)
(VCB =100 Vde, ~ =0)
(VCB =100 Vde, ~ =0, T A =lOO·C)
Emitter Cutoff Current
(VBE = 4 Vde, IC =0)

ICBO

2N4409
2N4410
2N4410
lEBO

-

-

hFE

60

Vdc

1.0
0.01
1.0
!lAde

0.1

400

60

-

Ia

-

0.2

Ia

VBE(sat)

-

0.8

VBE(on)

-

0.8

2-812

Vdc

!lAde

VCE(sat)

(IC = 10 mAde, VCE " 1 Vde)
Collector-Emitter Saturation Voltage
(IC = 1 mAde,
= 0.1 mAde)
Base-Emitter Saturation Voltage
(IC " 1 mAde,
=0.1 mAde)
Base-Emitter On Voltage
(IC " 1 mAde, V-c& =5 Vde)

Vdc

0.01

ON CHARACTERISTICS
DC Current Gain
(IC " 1 mAde, VCE " 1 Vde)

Vdc

Vde
Vdc
Vdc

2N4409, 2N4410

(continued)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ic = 10 mAde, VCE '" 10 Vdc, I '" 30 MHz)
Collector-Base Capac1taDce
(VCB .. 10 Vdc, ~ '" 0, I" 100 kHz, emitter guarded)
Emitter-Base Capacitance
(VBE • 0,5 Vdc, IC '" 0, I", 100 kHz, collector guarded)

MHz

IT

60

Ccb

300
pF

-

Ceb

12
pF

50

TYPICAL DC CHARACTERISTICS

FIGURE 1- CURRENT GAIN
500
~V",

IV
lJ

300

r- -...

lOO·C
_1

......

"'zoo
~

i

I'

25·C

~
~100

r-- ..........

70

50

--

30
i""'"

20
0.1

0.2

55·C

0.5

0.3

0.7

1.0

2.0

5.0

3.0

7.0

10

50

30

20

70

100

Ie. COUECTOR CURRENT (mAl

FIGURE 3- TEMPERATURE COEFFICIENTS

FIGURE 2- SATURATION VOLTAGES
1.0

;

~ 0.6

~

~ 0.•

i~

I
I1

O.B

,I
v,.,
...,

--

I- 1--'--

1.0

-

8va for V,.

-

io-r-

:.,.,..~

VeE'''''
0.1

fJvc lor Veil"')

-2.0

0.2

o

I-r--

1--' .....

- -r--

-3.0

0.2

0.5

1.0

2.0

5.0

20

10

50

100

0.5

0.2

Ie. COllECTOR CURRENT !mAl

1.0

2.0

5.0

10

20

50

100

Ie. COUECTOR CURRENT !mAl

FIGURE 5- TYPICAL NIXIE" DRIVER APPLICATION

FIGURE 4- CUTOFF CURRENT
100

+B'(l70Vlo300VI

50

~

8

20

~

10

!!5

5.0

B

Vel

./ V

!l 2.0

~
i

..!}

0
I.
O•5

100 V

..,.,

./

./

lJ2""

IOV-

Rt.' (10 "!Ho lOO!IU)
K,

,

. /V

3.9!IU
2N4409

0.2 V

B.2!IU

O. I

25

K'D

o --------------- 0

50

75

100

'VAlUES D£PEIII) UPOII TYPE Of lUst: USED.

125
-5V

T... JUNCTION T8IPfIIATIIRE '·C)

2-813

"Trademlr1l 01 BurrouafI$ Corp.

2N4416 (SILICON)

Silicon N-channel junction field-effect transistor
designed for VHF/UHF amplifier applications.
CASE 20(1)
(TO·72)

MAXIMUM RATINGS

(TA

= 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

Drain-Source Voltage

VDS

30

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

Gate Current

IG

10

mAdc

Total Device Dissipation @ T A @ 25°C

PD

Derate. above 25°C
Storage Temperature Range

·1

Characteristic

(TA

mW

1.7

mW;oC

..;65 to +200

T stg

ELECTRICAL CHARACTERISTICS

300

°c

= 25°C unless otherwise noted)

Symbol

Min

Max

30

-

-

6.0

1.0

5.5

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = -1. 0 /.IAdc, Vns =0)

V(BR)GSS

Gate-Source Cutoff Voltage
(10

=1. 0 nAdc,

Vns

Gate-Source Voltage
(IO =0.5 mAdc, Vns

V
GS(off)

=15 Vdc)
=15 Vdc)

VGS

Vdc
Vdc

Gate-Source Forward Voltage
(IG = 1. 0 mAdc, VOS =0)

VGS(f)

-

1.0

Gate Reverse Current
(VGS = -20 Vdc, Vns
(VGS = -20 Vdc, VOS

IGSS

-

100

=0)
=0,

TA

= +150°C)

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current*
(VOS = 15 Vdc, VGS = 0)

2-814

Vdc

Vdc
pAdc
200

2N4416

(continued)

SMALL·SIGNAL CHARACTERISTICS

Symbol

Characteristic
Forward Transler Admittance,11I
(V DS = 15 Vdc, VGS = 0, 1= 1. 0 kHz)

IYls I

Real Part of Forward Transconductance
(V DS = 15 Vdc, VGS = 0, f = 400 MHz)

RE(yfs )

Real Part of Input Conductance
(VDS = 15 Vdc, VGS = 0, f = 100 MHz)
(VDS = 15 Vdc; VGS = 0, f = 400 MHz)

Min

Max

4500

7500

4000

-

-

100
1000

-

50

-

75

J,J.mhos
Jimhos

RE(y is )

Output Admittance
(V DS = 15 Vdc, VGS = 0, I = 1. 0 kHz)

jimhos

IYos I

Real Part 01 Output Conductance
(VDS = 15 Vdc, VGS = 0, 1= 100 MHz)
(VDS = 15 Vdc, VGS = 0, 1= 400 MHz)

RE(yos)

Imaginary Part 01 Input Susceptance
(VDS = 15 Vdc, VGS = 0, 1= 100 MHz)
(VDS =15Vdc, VGS=O, 1= 400 MHz)

IM(y is )

Imaginary Part 01 Output Susceptance
(VDS = 15 Vdc, VGS = 0, 1= 100 MHz)

IM(yos)

/lmhos
J.lmhos

100
/J.mhos

-

2500
10,000
Jlmhos

(VDS = 15 Vdc, VGS = 0, 1= 400 MHz)

-

4000

1000

Input CapaCitance
(VDS = 15 Vdc, VGS = 0, 1= 1.0 MHz)

Ciss

-

4.0

Common-Source Output CapaCitance
(VDS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)

Cosp

-

2.0

Reverse Transfer CapaCitance
(VDS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)

C

-

0.8

Common-Source Spot Noise Figure
(Figure 1)
(VDS = 15 Vdc, ID = 5.0 mAdc, Rg -1000 ohms, I = 100 MHz)

NF

-

2.0

(VDS = 15 Vdc, ID = 5.0 mAdc, Rg

= 1000 ohms,

Small-Signal Power Gain
(VDS = 15 Vdc, ID = 5.0 mAdc, 1= 100 MHz)

pF
pF
pF

rss

dB

1= 400 MHz)

(Figure 1)

Unit

Gps

(VDS = 15 Vdc, ID = 5.0 mAdc, 1= 400 MHz)

4.0

18

-

10

-

dB

111 Pulse Test: Pulse Width = 300 /lS, Duty Cycle = 1. 0%.

FIGURE 1 - 100 MHz & 400 MHz NEUTRALIZED AMPLIFIER
Reference

Designation

r--------r-----------,I
NEUTRALIZING
COIL

I
INPUT

I
I

'c

~'i-i

SOURCE

I

I
I

I
Ll"

z

C

--;-

L

3

.r1 \ C&

C5

~

_

-=

II..

C4

LZ

S~ SHIELD

-=-=1
CASE

I

COMMON
VOS
+15 V

t

ADJUST VGS FOR

I

0

=

5.0 mA

1.8 pF

17 pF

3.0 pF

1.0 pF

I~
LOAD

C4

1·12 pF

0.8·8.0 pF

C5

1·12 pF

0.8·8.0 pF

,I

C&

0.0015 "F

0.001 "F

C7

0.0015 "F

0.001 "F

Ll

3.0 "W

0.2 "H**

L2

0.15 "W

0.03 "H"

L3

0.14"H*

0.022 "W*

'--- ---=-41 E---=t--=..J~ ~---...I
VGS

7.0 pF

C3

I
I

..I1 C7

z

1000 pF

E--+<

1

C1
C

I

C3

VALUE
100 MHZ
400 MHz

NOTE: The noise source is a hot·cold body
(AI L type 70 or equivalent) with a

test receiver (AI L type 136 or
equivalent).

10 = 5.0 mA
VGS < 0 VOLTS
17 turns, (approx. - depends upon circuit layout) AWG #28
enameled copper wire, close wound on 9/32" ceramic coil
form. Tuning provided by a powdered iron slug.

6 turns, (approx. - depends upon circuit layout) AWG #24
enameled copper wire. close wound on 1132" ceramic coil
form. Tuning provided by an aluminum slug.

4 112 turns, AWG #ISenameled copper wire, 5/1&" long. 3/8"
1.0. (AIR CORE).

1 tum, AWG #16 enameled copper wire. 3/8" 1.0. (AIR
CORE).

3 112 turns, AWG #18 enameled copper wire, 1/4" long. 3/S"
1.0. (AIR COREl.

1/2 turn. AWG #1& enameled copper wire, 114" 1.0. lAIR
COREl.

2-815

2N4427 {SILICON}

NPN SILICON RF POWER TRANSISTOR
designed for amplifier, frequency multiplier, or oscillator
applications in military and industrial equipment. Suitable for use
as output driver or pre-driver stages in VHF and UHF equipment.

NPN SILICON
RF POWER
TRANSISTOR

• Current·Gain-Bandwidth Product tr =500 MHz (Min) @ IC =50 mAdc
• Power Gain Gpe = 10 dB (Min)
•

@

VCE = 12 Vdc

1 Watt Minimum Power Output @ f = 175 MHz

• Multiple·Emitter Construction for Excellent High·Frequency
Performance

*MAXIMUM RATINGS
Rating

Symbol

Col lector·E mitter Voltage

Value

Unit

VCEO

20

Vdc

Coliector·Sase Voltage

VCS

40

Vdc

Emitter·Sase Voltage

VES

2.0

Vdc

IC

400

mAde

Collector Cu rrent - Continuous
Base Current - Continuous

IS

400

mAde

Total Device Dissipation @ T A = 2SoC
Derate above 2SoC

Po

1.0
5.71

Watt
mW/oC

= 25°C

Po

3.5
20

Watts
mW/oC

T stg

-65 to + 200

°c

Total Devica Dissipation @TC
Derate above 250C
Storage Temperature Range

'Indicates JEDEC Registered Data
•• Motorola Iguarantees this data in additontoJEDEC registered Data

FIGURE 1 - POWER OUTPUT versus FREQUENCY

in

0.016 DIA
0.019

0.5
MIN

~

0.190
0.210

1.41--r-...:-+-.po..d--+-"""~4""'::~-+-~=-j

0.100

1.2 ""'-t----t""":I-+-f"...:'='----"Io.---""""""r-::~--j

1.0 f---'l"...:-t-t-"";d---','

~

O.81--t----t-"-I<.-++-"'lo.:----t-"..---t"r-........:-'Irl

~

0.61--t----t-t--+It"....----t-"'o,..--+~-"'<:-....,

~

1l

.E

0.240
0.260

~I
I

0.009
0.125

1.6 r-~,----,.~,-,--,..;;;:----...;:--,o;;;:---,----,

~

~
=

~:~;~DIA~

0.315 CIA
0.335

Pin

0.4 f-----1r-+-+-r-f----p..,,-+---"..--~

CASE 79(1)
(TO-39)

f. FREQUENCY 1M Hz)

2-816

1. Emitter
2. Base
3. Collector

2N4427 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise notedl
Characteristic

Symbol

Min

Max

20

-

40

-

Unit

* OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 5.0 mAde, IB = 0)

VCEO(sus)

Collector-Emitter Sustaining Voltage
(lC = 5.0 mAde, RBE = 10 ohms)

VCER(sus)

Collector Cutoff Current
(VCE = 12 Vdc, IB = 0)

ICEO

Collector Cutoff Current

ICEV

(VCE = 40 Vdc, VBE
(VCE = 12 Vdc, VBE

= -1.5 Vde)
= -1.5 Vdc, TC = +1500C)

Emitter Cutoff Current
(VEB = 2.0 Vdc, IC = 0)

lEBO

Vdc
Vdc
mAde

-

0.02

-

-

0,1
5.0

-

0.1

10
5.0

200

-

0.5

500

-

-

4.0

-

100

10

-

·SO

-

mAde

mAde

*ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAde, VCE = 5.0 Vdc)
(lC = 360 mAde, VCE = 5.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage
(lC= 100mAdc,IB=20mAdc)

VCE(sat)

Vdc

*DYNAMIC CHARACTERISTICS

tr

Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 15 Vdc, f = 200 MHz)
Output Capacitance
(VCB = 12 Vdc, IE

Cob

= 0, f = 1.0 MHz)

MHz
pF

FUNCTIONAL TEST
'Power Input (Figure 1)
(Pout = 1.0W, Zs = SO Ohms, VCC

Pin

= 12 Vdc, f = 175 MHz)

Common-Emitter Amplifier Power Gain
(Pin = 100 mW, Zs = SO Ohms, VCC = 12 Vdc, f
'Collector Efficiency (Figure 1)
(Pout = 1.0 W, Zs = 50 Ohms, VCC

dB

Gpe

= 175 MHz)

%

11

= 12 Vdc, f

= 175 MHz)

mW

-Indicates JEDEC Registered Data

FIGURE 1 - 175 MHz RF AMPLIFIER CIRCUIT FOR POWER-OUTPUT TEST

C3
Cl, C2,
C3, and C4: 3·30 pF

C5: 1,000 pF
C6: O.OI"F
L1: 2 turns No.
16 wire,
3/16"10,
1/4" long
L2: Ferrite choke,
Z=450 ohms

+VCC

2-817

L3: 2 turns No.

16 wire,
1/4"10,
1/4" long
L4: 4 turns No.

16 wire,
3/8"10,
3/8" long
0: 2N4427

2N4428 (SILICON)

NPN SILICON RF POWER TRANSISTOR
NPN SILICON
RF POWER
TRANSISTOR

· .. designed primarily for use in large signal VHF and UHF amplifier
output stages in military and industrial communications applications.
• High Power Output Pout = 0.75 Watt with 10 dB Gain @f=500 MHz
• High Current·Gain-Bandwidth Product fT = 1000 MHz (Typ) @ IC = 50 mAdc
• Multiple Emitter Construction for Excellent High Frequency
Performance

ff

*MAXIMUM RATINGS
Symbal

Value

Unit

VCEO

35

Vdc

Coliector·Base Voltage

VCB

55

Vdc

Emitter·Base Voltage

VEB

3.5

Vdc

Collector Current - Continuous

IC

425

mAde

Base Current - Continuous

IB

150

mAde

Total Device Oissipation@TC=250C
Derate above 25°C

Po

3.5
20

Watts
mW/oC

TJ,Tstg

-65 to +200

°c

Rating
Coliector·Emittar Voltage

Operating and Storage Junction
Temperature Range

~:~~~DIA~

0.315 DIA
0.335

-Indicatel JEOEC Registered Data.

0.240
0.260

O'oosiIl
0.125

0.016 D1A
0.019

0.5
MIN

~

FIGURE 1 - 500 MHz TEST CIRCUIT

0.IS0
0210

+Vcc

VCE"'28VIMU

Pin

Ll - 1 TURN NO. 20 T.C.WIRE 1/4"
DIA TAPPED AT CENTER

Adjust HI for Ic-70mAwith
noRFSignalAppl1ed

CASE 7911)
(TO-39)

2-"-818

1. Emitter
2. Base
3. Collector

2N4428 (continued)

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

1

Unit

Max

Symbol

Min

Typ

Collector-Emitter Sustaining Voltage
(lC = 20 mAde, IB = 0)

VCEO(sus)

35

-

Collector-Emitter Sustaining Voltage
(lC = 20 mAde, RBE = 10 ohms)

VCE R(sus)

55

-

-

-

-

1.0

-

-

Characteristic

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 55 Vde, VBEI = -1.5 Vde)

ICEX

Emitter Cutoff Current
(VEB = 3.5 Vde, IC = 0)

lEBO

Vde
Vde
mAde
mAde

0.1

ON CHARACTERISTICS
DC Current Gain
(lC = 50 mAde, VCE

= 5.0 Vde)
= 5.0 Vde)

(I C = 400 mAde, V CE

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 200 MHz)

IT

700

1000

-

MHz

Output Capacitance
(VCB = 28 Vde, IE

Cob

-

1.2

3.5

pF

Pin

-

-

75

mW

1/

35

-

-

%

= 0, f = 1.0 MHz)

FUNCTIONAL TEST
(Figure 1)
(Pout =750 mW, VCE = 28 Vde, RS
f = 500 MHz)

= 50 Ohms,

Collector Efficiency (Figure 1)
(Pout = 750 mW, VCE = 28 Vde, RS
f = 500 MHz)

=50 Ohms,

Power Input

* Indicates JEDEC Registered Data.

FIGURE 3 - OUTPUT POWER versus FREQUENCY

FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT

i

~

1.5

1500

TEST CIRCUIT FIGURE 1

t;

=>

"

~
~

1000

"
"z;;;'"
.;,
;:;: 500

I

/

V

in

:=

VCE= 15 Vdc

...--

-............

~

~

ffi

't;"

:i:1.0!-=_-=--+------'~'C'----P'.....::-----'~>

"

~

.E

~

,.:.

'"=>
.i

VCE" 28 Vdc
1.25 )...::-----f~=----''''"I'''''---+-----+----

+ ___;4-__=",.,=-_----=O"""..::--__ ....:

0.75 !-_ _ _

~

0.5
20

40

60

80

100

250

300

350

400

f, FREQUENCY (MHz)

IC, COLLECTOR CURRENT (mA)

2-819

450

500

2N4441

(SILICON)

thru

2N4444

PLASTIC SILICON
CONTROLLED RECTIFIERS
PLASTIC THYRISTORS
... designed for high-volume consumer phase-control applications
such as motor speed, temperature, and light controls and for switching applications in ignition and starting systems, voltage regulators,
vending machines, and lamp drivers requiring:
•

Small, Rugged, Thermopad
Construction - for Low Thermal
Resistance, High Heat Dissipation, and Durability.

•

Practical Level Triggering and Holding Characterisitcs IGT = 7.0 mA, I H = 6.0 mA (Typ) @ 25 0 C

•

Low "On" Voltage - VF = 1.0 Volt (Typ) @ 5.0 Amps @ 25 0 C

•

High Surge Current Rating -

MAXIMUM RATINGS ITJ

= 80 Amps

= 100°C unless otherwise noted I

Rating

Symbol

·Peak Reverse Blocking Voltage
INote 11

ITSM

B.O AMPERES RMS
50 thru 600 VOLTS

Value

2N4441
2N4442
2N4443
2N4444

*Non~Repetative

Peak Reverse Blocking
Voltage (t = 5.0 ms (max) duration)
2N4441
2N4442
2N4443
2N4444

,. Forward Cu rrent R MS
IAII Conduction Angles)
·Peak Forward Surge Current

Unit

Volts

VRRM
50
200
400
600

Volts

VRSM
75
300
500
700

Amps

ITIRMS)
8.0

Amps

ITSM

11/2 cycle, 60 Hz)

80

12t

Circuit Fusing Considerations
ITJ = -40 to +100o C;
t = 1.0 to 8.3 msl

A 2s
25

·Peak Gate Power

PGM

5.0

Watts

*Average Gate Power

PGIAVl

0.5

Watt

·Peak Gate Current
·Peak Gate Voltage
·Operating Junction Temperature

IGM

2.0

Amps

VGM

10

Volts

T~

-40 to +100

°c

*Storage Temperature Range

T stg

-40 to +150

°c

Mounting Torque (6-32 screw)
(Note 2)

-

8.0

in.lb

Range

L

r ~:l~l

&ill
I
L
~

0.138 DIA THRU
0.148

#1

0.628
0.658

1

___=r
__j
2

3

SEATING

~NE

0.590
0.650

0.125 MAX
IUNCONTROLLEDl

~

II I I
0.043 (3)--H- H-0.166
0.049
T.P.

PIN 1 CATHODE
2. ANODE
3. GATE

0.075
0.085

003DL~~0.12D
iUi34,
/
_110150

THERMAL CHARACTERISITCS
Symbol

Typ

Max

Unit

*Thermal Resistance, Junction
to Case

R~JC

-

2.5

°C/W

Thermal Resistance Junction

R~JA

40

-

°CIW

Characteristic

to Ambient

HEAT SINK
CONTACT AREA
IBDTTOM)

CASE 90·04

·1 ndicates JE OEC Registered Data.

2-820

2N4441 thru 2N4444 (continued)

ELECTRICAL CHARACTERISTICS

(TC

= 25°C unless otherwise noted)
Symbol

Chara:teristic

'Peak Forward Blocking Voltage
(TJ = 100°C) Note 1

.

400

-

-

-

-

2.0

-

-

2.0

-

7.0

30
60

mA
mA
mA

-

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 Vdc. RL = 100 ohms) TC = 25°C
'(Anode Voltage = 7.0 Vdc. RL = 100 ohms) TC = -40°C
'(Anode Voltage = Rated VFOM. RL = 100 ohms) T J = 100°C

VGT

Forward "On" Voltage

VT

Volts

-

= 5.0 A peak)
= 15.7 A peak)

0.75

-

1.5
2.5

0.2

-

-

-

1.0

1.5
2.0

-

6.0

-

-

-

1.0

-

-

15
20

-

-

50

-

Volts

-

mA

IH

= 7.0 Vdc. gate open)

Turn-On Time
(IF = 5.0 A. IGT
Turn-Off Time
(I F = 5.0 A. I R
(IF = 5.0A.IR

-

IGT

= 100 ohms) TC = 25°C
'TC = -40°C

(IF
"(IF

Unit

-

50
200

IRRM

= 100°C. gate open)

Gate Trigger Current (Continuous del

Holding Current
(Anode Voltage

Max

600
IORM

Peak Reverse Blocking Current

(Anode Voltage - 7.0 Vdc. RL

Typ

Volts

VORM
2N4441
2N4442
2N4443
2N4444

Peak Forward Blocking Current
(Rated VORM@TJ = 1000C. gate open)
(Rated VORM @TJ

Min

TC = 25°C
"TC = -400C

40
70
jlS

ton

= 20 mAl
toff

= 5.0 A)
= 5.0 A. TJ = 100°C)

jlS

V/jls

dv/dt

Forward Voltage Application Rate
(TJ = 100°C)
-Indicates JEDEC Registered Data

Note 1.

Ratings apply for zero or negative gate voltage but positive
gate voltage shall not be applied concurrently with a negative potential on the anode. When checking forward or
reverse blocking capability. thyristor devices should not
be tested with a constant current source in a manner that
the voltage applied exceeds the rated blocking voltage.

Note 2.

Torque rating applies with use of torque washer (Shakeproof W019522 #6 or equivalent). Mounting torque In
excess of 8 in. Ibs. does not appreciably lower case-to-sink
thermal resistance. Anode lead and heatsink contact pad
are common.
For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed

+22So C.

2-821

2N4441 thru 2N4444 (continued)

FIGURE 1 - MAXIMUM FORWARD VOLTAGE

FIGURE 2 - POWER DISSIPATION

10 0

g
./

0

~

/

0

TJ
0

~ 12

/

;::

Vfoooc

i5

IV
= 25 0 C

~

~

CONOUCTION ANGLE 90 0
=

~

"~

4.0

w

>


,;:.

0

~V

I

0

I
1
n

~~
~0

90 _ .

~

1.0

~

«

~

1

U

I

o

4.0

3.0

5.0

o

-

2. 0

..-

~~1. 0

~ ~

~~

O. 3

~w

zin

~

6.0

B.O

I

r

AX

TYPICAL

V

'-'~

~~

"'" A

f-'

z

u

o

0

0
0

'"
'"oti:

o

'"«>

0

~

''""

z
in

VTM 7.0 Vdc
GATE OPEN

0

----

~

t--

I-- r-

.5

-- - -

~

c-

10

'"u=>

7.0

§

5.0

g:

--

..........

---- ----

0
I

0

3.0

1.0

6.0

4.0

3.0

8.0

2.0
-40

10

~
'"u=>
c:::

10

7.0

'"co

'"ii:

r'"r-

5.0

-- -

40

60

80

FIGURE 8 - TYPICAL GATE TRIGGER VOLTAGE

r

1.2
VTM

100

TJ,JUNCTION TEMPERATURE lOCI

FIGURE 7 - TYPICAL GATE TRIGGER CURRENT

.5

10

-20

NUMBER OF CYCLES@60 Hz

~

---- r:::::::::

I

0

10

~

\.0 Vdc

0

VTM

'"

0

7.0 Vdc

~

a

~

1.0

'"co

---

..........

~

----

a

>

-

..........

'"

'"

r'"
'"«r-

---

;3

~ 3.0

0.8

co
'"

---

-

I'--

~ ..........

0.6

~

'"r:

'"

>
1.0
-40

-20

10

40

60

80

0.4
-40

100

-1Q

20

SELECTED THYRISTOR-TRIGGER APPLICATION NOTES
AN-240
-SeR Power Control Fundamentals
AN-290A -Mounting Procedure for, and Thermal Aspects of,

Thermopad
AN-295
AN-422
AN-453

40

60

TJ, JUNCTION TEMPERATU RE lOCI

TJ,JUNCTION TEMPERATURE lOCI

Plastic Power Devices

-Suppressing RFt in Thyristor Circuits
-Testers for Thyristors and Trigger Diodes
-Zero Point Switching Techniques
To obtain copies of these notes list the AN number(s)

on your company letterhead and send your request to:
Technical I nformation Center
Motorola Semiconductor Products, Inc.
P _0. Box 20924
Phoenix, Arizona 85036

2-823

80

100

2N4851 thru 2N4853 (SILICON)

Silicon annular unijunction transistors designed for
pulse and timing circuits, sensing circuits, and thyristor trigger circuits.
CASE 22A
(TO-18 Modified)
lead 3 connected to case

MAXIMUM RATINGS

(TA

=25°C unless otherwise noted)
Symbol

Value

Unit

RMS Power Dissipation*

P *
D

300

mW

RMS Emitter Current

I

Peak-Pulse Emitter Current **

Rating

50

rnA

i e **

1.5

Amp

Emitter Reverse Voltage

VB2E

30

Volts

Interbase Voltage t

VB2B1t

35

Volts

e

Operating Junction Temperature Range

TJ

-65 to +125

°c

Storage Temperature Range

Tstg

-65 to +200

°c

* Derate 3.0 mW IOc increase in ambient temperature.
Duty cycle ~ 1%, PRR = 10 PPS (see figure 6)
t Based upon power dissipation at TA = 25°C

**

FIGURE 1- UNIJUNCTION TRANSISTOR
SYMBOL AND NOMENCLATtJRE

-

FIGURE 2- STATIC EMITTER
CHARACTERISTICS CURVES
VE

IB2
CUTOFF
REGION

FIGURE 3- Y011 TEST CIRCUIT

NEGATIVE
I':ESISTANC: _SATURATION
I
REGION
REGION
I

Vp

+20 V

RU
TOO !l
EMITTER TO
BASE ONE

VB2Bl
VE

I~-A

VBE1(sat)

vuL

Vv
CT
D.2 p.F

RBT
2D !l

-+t-IL-p----'"IV--"-IE

lEO

2-824

2N4851 thru 2N4853

(continued)

ELECTRICAL CHARACTERISTICS

(TA

Figure

Characteristic

.*

2N4851
2N4852, 2N4853
11, 12

=0)

Interbase Resistance Temperature Coefficient
(VB2B1 =3.0 V, IE = 0, TA =-65 to +125°C)

RaB

12

Typ

Max

0.56
0.70

-

0.75
0.85

4.7

-

9.1

0.2

-

0.8

Min

Symbol

No.
4, 8

Intrinsic Standoff Ratio'
(VB2B1 =10 V)
Interbase Resistance
(VB2B1 =3.0 V, ~

=25·C unless otherwise noted)

aRaB

%1°C

VEB1 (sat)--

-

2.5

-

Modulated Interbase Current
(VB2B1 =10 V, ~ =50 mAl

ls2(mod)

-

15

-

-

-

0.1
0.05

-

-

2.0
0.4

---

-

7

I EB20

2N4851,2N4852
2N4853
9, 10

Peak-·Point Emitter Current
(VB2Bl =25 V)

Ip

2N4851,2N4852
2N4853

Valley-Point Current-'
(VB2Bl = 20 V, Ra2 =100 ohms)

Base-One Peak Pulse Voltage

Maximum Frequency of Oscillation

13, 14

IV--

2N4851
2N4852
2N4853
2N4851
2N4852
2N4853

3, 17

5

2.0
4.0
6.0

VOB1

3.0
5.0
6.0

f(max)

·1.0

kohms

Emitter Saturation Voltage-'
(VB2B1 =10 V, ~ =50 mAl

Emitter Reverse Current
(VB2E =30 V, lsi =0)

Unit

Volts
mA
/lA

/lA

-

1.25

mA

Volts

MHz

, .. Intrinsic standoff ratio, is defined in terms of the peak-point voltage. Vp. by means of the equation:V p = 11 VB2B! + VF. where VF is about 0.49 volt at 25~C @
lEe = 10 #LA and decreases with temperature at about 2. 5 mY, "C. The test circuit is shown in Figurli 4. Components RI. C I , and the UJT form a relaxation OSCillator;

~ ~~at~~n:u~~~n~i~t:~~V~~ ~~::f~~:~l!:.e c::~t~~~ .~:~..':;~~~sd::l~:!e~~:e~k~~m~:Si~t~~~rd~~~tl;Of:::: t!!e ~~~~~ .b~ft~~~l i:c-::h:~'th~n~!t\:sr::~~s~~~ .

•• Use pulse techniques: PW

=300 .us, duty cycle:;

FIGURE 4- • TEST CIRCUIT

2.0% to aVOid illternal heating. which may result in

er~oneous

readings.

FIGURE 6 - PRR TEST CIRCUIT
AND WAVEFORM

FIGURE 5- f (1111) TEST CIRCUIT

+10V

DUTY CYCLE"; I'll. PflR";lO pp.

VI

+20 V
CAL.

1

O.IS

Rl
10 k!l

~:=t==F=====t---IC

Rl ADJUSTED

910 k!l

FOR '(m•• '

R81

47!l
/

MI. ID,.A FULL SCALE

10. diode wilb thl tollowing charactlristics:
VF =0.49 V@IF =10 pA
IR"; 2.0 pA 11.1 VR • 20 V

2-825

TO
FREQUENCY
COUNTER

ZD-30V·
IAdjustt.l.5A
,akin Rll

2N4851 thru 2N4853

(continued)

TYPICAL CHARACTERISTICS
«
~

...z
...
'"
......~
12

...~
'"
'"~

FIGURE 7- EMInER REVERSE CURRENT

1.0

~

.!

V8281 = 10 V
SW OPEN FOR IE820
SW CLOSED FOR IE82S

I SWi

o. 2
0.1
0.0

o

A

>=

:

~

u..
u..

'::"

':"

...

/"

./

...

0;

z

:0.001
-60

~

,;

~ P'
-20

-40

20

40

r--

60

80

100

120

i"- r--

o. 6
O. 5
-60

140

r--

~

;;:

:e 0.00 ~ IE82

-

i"-

~ o. 7

./ V

2~

r--

z

ii 0.0 1

~o.oo

o. 8 r -

o
c

0.112

~

FIGURE 8 -INTRINSIC STANDOFF RATIO

o. 9

-40

-20

TJ, JUNCTION TEMPERATURE (DC)

20

---

40

2N4852, 2N4853

-r-..

2N485\

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (DC)

PEAK POINT CURRENT

FIGURE 9- EFFECT OF VOLTAGE
2.5

«

2.0

..:e""

S!: o. 8

...
'"
'"::>
~

,\

1\ \

::>

1.5

\ '\.

1.0

'\..

"- ..........

~

0.5

~

~

o

3.0

6.0

"'

O. 6

~

'\

o

V8281 • 25 V

~

~

...
...z
...'"'"
...'"
~
......ii
z
...0

FIGURE 10- EFFECT OF TEMPERATURE

1.0

TJ =250 C

9.0

12

!

0.4

~
~
~

0.2

!i;

2N4851, 2N4852

--

15

21

"-

~

2N4853

18

\

24

27

0
-60

30

- 40

"""'-

-

-..

r-- r--- ~4851, lN4852

........ r-

2N48~3

- 20

V8281, INTERBASE VOLTAGE (VOLTS)

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (DC)

INTERBASE RESISTANCE

FIGURE ll-EFFECT OF VOlTAGE

FIGURE 12 -EFFECT OF TEMPERATURE

1.5

5l
N
:::i

~

'"cz

2

NORMALIZED II' 3.0 V
TJ = 250 C
1.4 IE = 0

V8281 • 3.0 V

~

ui

ri

1.3

'"

1.2

~
i3

~

'"~

.

~

z

/
~

V

1. 1

!!:

al
a: 1.0

o

,.,
3.0

P"

6.0

./

V
9.0

12

15

~
H3
...'"
~

"

'"

...ffi!!:

18

21

24

27

30

.....:: ::::::::+';4852

10

~

6. 0

4.

.... /

V

V

0 .........

2. 0
-60

-40

-20

20

40

60

80

TJ, JUNCTION TEMPERATURE (DC)

V8281, INTER8ASE VOLTAGE (VOLTS)

2-826

2N4851

./

8. 0

al

~

2N4853

~IE=O

100

120

140

2N4851 thru 2N4853

(continued)

TYPICAL CHARACTERISTICS
VALLEY CURRENT
6
;(

.§.
....

~

a'"
!Z

~

16

TJ l250C
RB2 = loon

4
12

274~

8. a

4.

;(

----

~

1a

..,..

~
~ 6. a
~

FIGURE 14-EFFECT OF TEMPERATURE

FIGURE 13- EFFECT OF VOLTAGE

a

::: ;:?'

-

2. a

a

3.0

6.0

:::;:..---

---~

9.0

12

~

f-

15

V

f.-

~

274851

18

21

24

27

~

VB2Bl =20 V
14 r-RB2 =100 n
12

~
'"

10

!Z

8.0

a

_2N4853

~

@

6.0

;::

4.0

.?

r-- .........

r-

2N485l"

2.0

a

30

---- ::::::--- -- ~ ---- - ..

r-

-60

-40

-20

~

W

~

r--

W

~

..

W

1M

lW

~

TJ, JUNCTION TEMPERATURE (OC)

VB2Bl, INTERBASE VOLTAGE (VOLTS)

VALLEY VOLTAGE
FIGURE 16 - EFFECT OF TEMPERATURE

FIGURE 15 - EFFECT OF VOLTAGE

1.8

1. 8
TJ = 25°C
VB2Bl = 10 V

TJ = 25°C

..,....,.. I--

g 1.7
0

/'

~
W

0

1.6

>

:>

1.5

/

>

1.4

3.0

6.0

~o
>

~
«

Y
9.0

>

:j
12

15

18

r-

to

V
o

l.6 -

W

V

>

~«

~

~

/'

to

«

~

on

".

21

24

27

1.4

-40

-20

V82Bl, INTERBASE VOLTAGE (VOLTS)

~ 7.0
~

... ~-

~ 2.0

""
:5

~ 1.0

....

.....-:

~ O. 7
~

~

W

W

W

1M

lW

~

RBI = lOon

~ 5.0

W

-,..

TJ, JUNCTION TEMPERATURE (OC)

o

~ 10

~ 3.0

r-- r--

FIGURE 17 - OUTPUT VOLTAGE

~ 20

>

....

1. 2

1. a
-60

30

-- -

o. 5

;.; o. 3
~ 0.2
0.001

- -- - -

_i-"
...
..... _r--

--

~ I-"'"

.-~~

~

,~

i--"

f-'"

....-

.--'

-

20n

,- -

Ion

'

;!n

i"~

ISEE fiGURE 31

L

'

0.005

am

0.02

0.05

.-1-- ,-

VI 20~±
RB2 - lOon
TA 25°C
2N4851
- - 2N4852, 2N4853

..._..... .... .....
0.002

....

~.

0.1

0.2

C1_ CIRCUIT CAPACITANCE. EMITTER TO GROUND IjlF~

2-827

0.5

1.0

2.0

5.0

10

2N4854 (SILICON)
2N4855

NPN-PNP
COMPLEMENTARY
SILICON TRANSISTORS

SILICON ANNULAR COMPLEMENTARY-PAIR
DUAL TRANSISTORS
· .. designed for high·speed switching circuits, DC to VH F amplifier
applications and complementary circuitry.
•

Collector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Mini

•

All Leads Isolated Electrically for Design Flexibility

•

DC Cu rrent Gain Specified - 0.1 mAdc to 300 mAdc

•

High Current·Gain-Bandwidth Product fT = 200 MHz (Mini

•

Low Collector·Emitter Saturation Voltage VCE(satl = 0.4 Vdc (Maxi @ IC = 150 mAdc

•

NPN Transistor Similar to the 2N2218 or 2N2219

•

PNP Transistor Similar to the 2N2904 or 2N2905

PINS 4 AND 8 OMITl EU

Pm COI"'~ctOOns
Botton! V,~w

~mDIAf~
0.305 D1A _
I

MAXIMUM RATINGS (Each Sid.)
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VeEO

40

Vdc

Collector-Base Voltage

VeB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current

Storage Temperature Range
Operating Junction Temperature

Total Device Dissipation@TA "" 25°C

Ie

600

mAde

T stg

-65 to +200

°e

TJ

+175

°e

Both

Side

Sides

PD

300
2.0

600
4.0

mW
mWf'e

PD

1.0
6.67

2.0
13.33

mW/oe

Derate above 25°C
Total Device Dissipation@Tc=250C
Derate above 25°C

On.

~~:~

i tt

0.165

o185
.

I'

~MAX
• seating
Plane

0.500
MIN

~~i~

-----.-l

Watts

0.028

iW34
(PinsA and 8 Omitted)
All Leads Electrically Isolated from Case

CASE 654-02

2-828

2N4854, 2N4855 (continued)

ELECTRICAL CHARACTERISTICS (Each Side) (TA "25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

Unit

SVCEO

40

-

Vde

SVCSO

60

-

Vde

SVESO

5.0

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

(lC" 10 mAde, IS" 0)
Collector-Base Breakdown Voltage

(lC" 10)lAde,IE "0)
Emitter-Base Breakdown Voltage

(IE" 10)lAde, IC" 0)

Collector Cutoff Current
(V CE "50 Vde, IS" 0)

ICEO

-

10

nAdc

Collector Cutoff Current
(VCS ~ 50 Vde, IE ~ 0, TA ~ 150°C)

ICSO

-

10

)lAde

Emitter Cutoff Current
(VES ~ 3.0 Vde, IC ~ 0)

IESO

-

10

nAde

ON CHARACTERISTICS

DC Current Gain
(lC ~ 0.1 mAde, VCE

-

hFE
~

10 Vde)

2N4854
2N4855

35
20

-

~

10 Vde)

2N4854
2N4855

50
25

-

10 Vdc)

2N4854
2N4855

75
35

-

(lc ~ 150 mAde, VCE ~ 10 Vde) (1)

2N4854
2N4855

100
40

300
120

(lC ~ 150 mAde, VCE ~ 1.0 Vdc) (1)

2N4854
2N4855

50
20

-

(lc ~ 300 mAde, VCE ~ 10 Vde) (1)

2N4854
2N4855

35
20

-

VCE(sat)

-

0.4

Vde

VSE(sat)

0.75

1.2

Vde

tr

200

-

MHz

Ceb

-

8.0

pF

1.5
0.75

9.0
4.5

60
30

300
150

-

-

50
25

-

8.0

td

-

20

Rise Time

tr

-

40

ns

Storage Time

Is

-

280

ns

'I

-

70

ns

(lC

~

1.0 mAde, VCE

(lC

~

10 mAde, VCE

~

Collector-Emitter Saturation Voltage (1)

(lC

~

150 mAde, IS

~

-

-

-

15 mAde)

Base-Emitter Saturation Voltage (1)
(lC=150 mAde, IS ~ 15 mAde)
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC ~ 20 mAde, VCE ~ 10 Vde, I ~ 100 MHz)

Collector-Base Capacitance
(VCS ~ 10 Vde, IE ~ 0, I

~

1.0 MHz)

Input Impedance
~

k ohms

hie
~

10 Vde, I = 1.0 kHz)

2N4854
2N4855

(IC = 1.0 mAde, VCE = 10 Vde, I = 1.0 kHz)

2N4854
2N4855

(lC

1.0 mAde, VCE

Small-Signal Current Gain

-

hie

Output Admittance
(lC = 1.0 mAde, VCE = 10 Vde, I = 1.0 kHz)

,umhos

hoe
2N4854
2N4855

dS

NF

Noise Figure

(lC = 100)lAde, VCE = 10 Vde, RS = 1.0 k ohm, I = 1.0 kHz!
SWITCHING CHARACTERISTICS
Delay Time

(VCC

~

30 Vde, VSE(off!

~

IC ~ 150 mAde, ISl = 15 mAde)

(VCC = 30 Vde, IC

~

150 mAde,

ISl ~ IS2 = 15 mAde!
Fall Time
(l)Pulse Test:

ns

0.5 Vde,

Pulse WidthS 300 ,us, Duty

Cycle~2.0Yo.

2-829

2N4856, A(SILICON)
thru

2N4861, A

N-CHANNEL JUNCTION
FIELD-EFFECT TRANSISTORS

N-CHANNEL JUNCTION FIELD-EFFECT
TRANSISTORS

(Type A)

Depletion Mode (Type A) symmetrical Field-Effect transistors
designed for low-power switching and chopper applications .
•

Low Drain-Source "ON" Resistance rds(on) ~ 25 Ohms (Max) @ f ~ 1.0 kHz - 2N4856,A, 2N4859,A

•

Low Drain Cutoff Current ID(off) ~ 250 pAdc (Max) @ VDS ~ 15 Vdc

*MAXIMUM RATINGS
Symbol

2N4856,A
2N4857,A
2N4858,A

2N4859,A
2N4860,A
2N4861,A

Unit

Drain-Gate Voltage

VOG

+40

+30

Vdc

Drain-Source Voltage

VOS

+40

+30

Vdc

VGSR

-40

-30

Rating

Reverse Gate-Source Voltage

Vdc

Forward Gate Current

IGF

50

mAde

Total Device Dissipation@TA ~ 25°C

Po

360
2.4

mW
mW/oC

T stg

-65 to +200

°c

Derate above 25°C
Storage Temperature Range
·Indicates JEDEC Registered Data.

CASE 22 (41
(TO-181

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

__

tr';;; 1.0 ns
(2N4856,A,2N4859,A1
12N4857,A.2N4860,A1
(2N4858,A,2N4861,A1

12N4856,A,2N4859,AI
(2N4857,A. 2N4860,AI -6.0
OUTPUT

INPUT

r--f''''r--.---'f--l-..,

v

(2N4858,A,2N4861,Al -4.0 V

,

,

___I ton

td(an) - - :

L---J

I-i- --j

tr~

:- I

I

TEST CIRCUIT

tf";; 1.0 ns

o---r~
r--VGSlonl
-lOVI~
~ ___ ~NPUT

464
953
1910

I---i-

td(off)

~ :-tt
I

I

I

I

I

NOTES a. The input waveforms are supplied by a generator with the following characteristics:
Zout == 50 ohms, Duty Cycle"'" 2.0%.
b. Waveforms are monitored on an oscilloscope with the following characteristics:
tr<0.75 ns, Rin >-1.0 megohm, Cin ,;;;2.5 pF.

2-830

I

-- - - VGS(offl

toff '--

-Je-=---."

VOLTAG'E WAVEFORMS

2N4856, A thru 2N4861, A (continued)

*ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Svmbol

Min

Max

-40
-30

-

-4.0
-2.0
-0.8

-10
-6.0
-4.0

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

Vde

V(BRIGSS
2N4856,A,2N4857,A,2N4858,A
2N4859A,2N4860A,2N4861A

(lG = 1.0 !lAde, VOS = 01
Gate-Source Cutoff Voltage
(VOS = 15 Vde, 10 = 0.5 nAde)

Vde

VGS(off)
2N4856A,2N4859,A
2N4857A,2N4860A
2N4858A,2N4861A

Gate Reverse Current

IGSS

(VGS = -20 Vde, VOS = 0)

2N4856A,2N4857 A,2N4858A
2N4859A,2N4860A,2N4861 A

-

0.25

= -15 Vde, VOS = 0)
(VGS = -20 Vde, VOS = 0, TA = 1500 C)
(VGS = -15 Vde, VOS = 0, TA = 1500 C)

2N4856A,2N4857A,2N4858A

-

0.5

2N4859,A,2N4860A,2N4861 A

-

0.5

-

0.25

nAdc

0.5

!lAde

(VGS

nAdc

0.25
!lAde

I o (of!)

Drain Cutoff Current

= 15 Vde, VGS = -10 Vde)
(VOS = 15 Vde, VGS = -10 Vde, TA = 1500 C)
(VOS

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (Note 1)

50
20
8.0

100
80

2N4856,A,2N4859,A

-

0.75

(10 = 10 mAde, VGS = 0)

2N4857 A,2N4860A
2N4858,A,2N4861,A

-

0.5

(10 = 5.0 mAde, VGS = 0)

(VOS

2N4856A,2N4859,A
2N4857,A,2N4860,A
2N4858,A,2N4861 A

= 15 Vde, VGS = 0)

Drain-Source "ON" Voltage

lOSS

-

Vde

VOS(on)

(10 = 20 mAde, VGS = 0)

mAde

0.5

SMALL·SIGNAL CHARACTERISTICS
Draln·Souree 'ON Resistance
(VGS = 0, 10 = 0, 1= 1.0 kHz)

25

2N4857,A,2N4860,A
2N4858,A,2N4861,A
I nput Capacitance

(VOS = 0, VGS = -10 Vde, I = 1.0 MHz)
Reverse Transfer Capacitance
(VOS = 0, VGS = -10 Vde, I = 1.0 MHz)

Ohms

rds(on)
2N4856,A,2N4859,A

2N4856 thru 2N4861
2N4856 A thru 2N4861 A

Ciss

-

40

_.

60

-

18
10

-

8.0

.-

4.0
3.5

pF

Crss

2N4856 thru 2N4861
2N4856 A,2N4859 A
2N4857 A,2N4858 A,2N4860 A,2N4861 A

pF

-

SWITCHING CHARACTERISTICS (See Figure 1) (Note 2)

Turn-On Delay Time Conditions lor 2N4856,A, 2N4859,A:
(VOO = 10 Vde, 10(on) = 20 mAde,
VGS(on) =0, VGS(off) =-10Vdcl

Rise Time

Conditions lor 2N4857,A, 2N4860,A:
(VOO = 10 Vde, 10(on) = 10 mAde,
VGS(on) = 0, VGS(off) = -6.0 Vde)

Turn-Off Time
Conditions lor 2N4858,A, 2N4861,A:
(VOO = 10 Vde, 10(on) = 5.0 mAde,
VGS(on) = 0, VGS(off) = -4.0 Vdcl

.

2N4856, 2N4859
2N4856A, 2N4859A
2N4857, 2N4860
2N4857 A, 2N4860A
2N4858, 2N4861
2N4858A,2N4861A

td(on)

3.0
4.0
10
8.0

ns

-

tr

2N4856, 2N4859
2N4856A, 2N4859A
2N4857,2N4860
2N4857A,2N4860A
2N4858,2N4861
2N4858A,2N4861A

toff

2-831

-

-

2N4856,A, 2N4859,A
2N4857,A, 2N4860A
2N4858, 2N4861
2N4858A,2N4861A

Indicates JEOEC Registered Data.
Notel: Pulse Test: Pulse Width"" 1 00 ms, Duty Cycle '510%.
Note 2: The 10(on) values are nominal; exact values vary slightly with transistor parameters.

ns

-

6.0
5.0
6.0
6.0
10
8.0

-

-

25

-

20
50
40
100
80

-

ns

2N4870 (SILICON)
2N4871
PN unijunction transistors designed for use in pulse
and timing circuits, sensing circuits and thyristor trigger circuits.
-B

CASE 29(9) \ " E 2
(TO-92)

Bl

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

P *
D

300

mW

I

50

rnA

i **
e

1.5

Amp

VB2E

30

Volts

VB2B1t

35

Volts

TJ

-65 to +125

°c

-65 to +150

°c

RMS Power Dissipation*
RMS Emitter Current
Peak-Pulse Emitter Current**
Emitter Reverse Voltage
Interbase Voltaget
Operating Junction Temperature Range
Storage Temperature Range

T

e

stg

*Derate 3.0 mW /0 C increase in ambient temperature.
**Duty cycle ;':i 1%, PRR = 10 PPS (see Figure 5).
tBased upon power dissipation at TA = 25° C.
FIGURE 2 - STATIC EMITTER
CHARACTERISTICS CURVES

FIGURE 1- UNIJUNCTION TRANSISTOR SYMBOL
AND NOMENCLATURE

-

182

CUTOFF
REGION

Ve

NEGATIVE
'-RESISTANCE- _SATURATION
:
REGION
REGION

Vp .

-

Ie

EMITTER TO
BASE·!
CHARACTERISTIC

E
VB2Bl

Ve81( •• t)
Vv

-++-,L---__:L-----L-I e
Iv

leo

2-832

2N4870, 2N4871 (continued)

ELECTRICAL CHARACTERISTICS

(T.

=25'C unless otherwise noted)

Characteristic
Intrinsic Standoff Ratio'
(VB2Bl = 10 V)

~

Symbol

4, 7

".

2N4870
2N4871
10, 11

Interbase Resistance
(V B2B1 = 3.0 V,

Fig. No.

= 0)

Interbase Resistance Temperature Coefficient
(VB2B1 = 3.0 V, ~ = 0, TA = -65 to +125°C)

11

~B
a~B

••

VEB1(sat)

Modulated Interbase Current
(V B2B1 = 10 V, IE = 50 mAl

IB2(mod)
6

Peak-Point Emitter Current
(VB2Bl = 25 V)

8, 9
12, 13

Valley-Point Current"
(VB2B1 = 20 V, RB2 = 100 ohms)

2N4870
2N4871

Base-One Peak Pulse Voltage

2N4870
2N4871

3, 16

Typ

Max

0.56
0.70

-

0.75
0.85

4.0

6.0

9.1

0.10

-

0.90

-

2.5

-

-

15

-

-

0.005

1.0

-

1.0

5.0

2.0
4.0

5.0
7.0

-

3.0
5.0

6.0
8.0

Unit

kohms

Emitter Saturation Voltage"
(V B2B1 = 10 V, IE = 50 mAl

Emitter Reverse Current
(V B2E = 30 V, IBI = 0)

Min

IEB20

~

%/"C
Volts
mA

IJA
IJA
mA

Iy"
VOB1

-

Volts

• 11 Intrinsic standoff ratiO, is defined in terms of peak-point voltage, VP' by means of the equation: VP= TJ VB2Bl + V F' where

VF is approximately 0.49 volt at 25° C @ I F = 10 IJA and decreases with temperature at approximately 2. 5 mV j"C. The test
circuit is shown in Figure 4. Components HI' e l , and the UJT form a relaxation oscillator, the remaining circuitry serves
as a peak-voltage detector. The forward drop of Diode Dl compensates for VF' To use, the "cal" button is pushed, and Ra
is adjusted to make the current meter, M1 , read full scale. When the "cal" button is released, the value of "is read directly
from the meter, if full scale on the meter reads 1. O•

• , Use pulse techniques: PW'" 300 !lS, duty cycle;; 2.0% to avoid internal heating, which may result in er.roneous readings.

FIGURE 3- V081 TEST CIRCUIT

FIGURE 5 - PRR TEST CIRCUIT
AND WAVEFORM

FIGURE 4- " TEST CIRCUIT
+10 V

DUTY CYCLE";; I'll., PRR ";;10 pps

+20 V

RB2
100D

CAL.

-1

Rl
10 kf!

0.15

~.=*==i=======F---t=

Cl
Cl

0.1 /LF

0.2 p.F

20-30 V
IAdju" tor 1.5 A
p.akinRll

to .. diode with the following ch.rarJI.rtstics:
VF = 0.49 V@ IF = 10 /LA
IR ,,;; 2.0 /LA@VR = 20 V

2-833

2N4870 thru 2N4871

(continued)

TYPICAL CHARACTERISTICS
FIGURE 6 - EMITTER REVERSE CURRENT

~



1.0

ffi

0.8

.

0.6

......

---.

I\.

"

1.0

..........

::

-

~

-- - r-- I--

u

><

~

1.4

TJ = 25 DC

z

~
'"
«

0.5

0.4

~ 0.2

If
3.0

6.0

9.0

12

15

18

21

24

27

o

30

-60

-40

FIGURE IO-EFFECT OF VOLTAGE
1.4

«

'"z

~

1. 3

1. 2

0:
W

...:!;

.

1. 1

~ 1. 0

o

-

/'
./

V

/

/

-'-

6.0

9.0

12

/

w

u

z
I;;

«

S. 0

V
./

i30:
W

~

6. 0

.
::i
:!;

:ii 4. 01--"

V
V V

3.0

VB2Bl = 3.0 V
IE = 0

g

~

~

SO

100

120

140

INTERBASE RESISTANCE
FIGURE ll-EFFECT OF TEMPERATURE

w'

ffi

60

0

u

~

40

TJ, JUNCTION TEMPERATURE (DC)

NO RMALIZEO @3.0 V
TJ = 25DC
IE = 0

ffi

N

::;

20

-20

VB2Blo INTERSASE VOLTAGE (VOLTS)

...,V

~1
2N4B70

V

,/

0:

15

18

21

24

27

30

2.0
-60

-40

-20

20

40

60

SO

TJ, JUNCTION TEMPERATURE (DC)

VB2Bl,INTERBASE VOLTAGE (VOLTS)

2-834

100

120

140

2N4870thru 2N4871

(continued)

TYPICAL CHARACTERISTICS
VALLEY CURRENT
FIGURE 12 - EFFECT OF VOLTAGE

16
14

VB281 = 20 V
41--RB2= 10011

1

12

~

2

~

10

~

10

!Z

8.0

....
z
w
::>

!Zw

~ 8.0

V

"2'r:l -I-- ....-

~

~ 6.0
:; 4. 0

:i-

.....- V

,.V

2. 0
3.0

~

>-

6.0

9.0

12

15

18

6.

j

~

l--I--I--"2N4870

....

0

a

I-- i--

<.>

24

27

r- r-

or--

r-r-...,

l -t"-

4. 0

~ 2Nt71

r--. ~

r- ~

2N487O"

~

21

FIGURE 13-EFFECT OF TEMPERATURE

6

TJ o 250C
R82' loon

2•0

0
-60

30

-40

-20

20

V82Bl.INTERBASE VOLTAGE (VOLTS)

40

60

80

I~

--I"-

100

120

140

TJ. JUNCTION TEMPERATURE (OC)

VALLEY VOLTAGE
FIGURE 14 - EFFECT OF VOLTAGE

1.8

FIGURE 15-EFFECT OF TEMPERATURE

1.8

TJ= 250 C

~

1. 7

'"w

./

~

~

~

1.6

V

>

~
<
>

1. 5

:>

>

v
1.4

o

3.0

/

6.0

I-'"

VB2Bl = 10 V

V V

V

--

r- r-

4

V
9.0

I

sr--

12

15

16

21

2<

27

1. 0
-60

3D

-40

-20

20

40

100

120

140

RBI = lDOIl

o

-

10

~ 1. 0

5. 0

>

~ 3. 0

.....

~ 2. 0

..... I--':: 1-- .....

.....~

~

I-r-'

...1-'

O. 7
~ o. 5

.....

~.

0.002

- .-

r-

.....,.

~

1-:-I---

~

~ o.3
,;' 0.2
0.001

80

FIGURE 16-0UTPUTYOLTAGE

=

~ 1.0

60

TJ. JUNCTION TEMPERATURE (OC)

g 20

'":1i

--

2

VB2U INTERBASE VOLTAGE (VOLTS)

~

r- ~

-

2011

....,-

I---

fo- ....

-_. -

1011

"'" ~

!;!!.Il
ISEE FIGURE 31
Vl- 20~.;f
RB2= 10011
TA = 250 C
2N4870
- - 2N4871

r

.....
0.005

0.01

0.02

0.05

0.1

0.2

0.5

Cl. CIRCUIT CAPACITANCE EMITTER TO GROUND (.F)

2-835

1.0

2.0

5.0

10

2N4877 (SILl.CON)

4 AMPERE
POWER TRANSISTOR

MEDIUM-POWER NPN SILICON TRANSISTOR
. designed for switching and wide band amplifier applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 4.0 Amp

•

DC Current Gain Specified to 4 Amperes

NPN SILICON
60 VOLTS
10 WATTS

• Excellent Safe Operating Area
• Packaged in the Compact TO-39 Case for Critical Space-Limited
Appl ications.

* MAXIMUM RATINGS
Symbol

Rating

Unit

Value

VeEO

60

Collector-Base Voltage

Ves

70

Vdc

Emitter~Base

Collector~Emitter

Voltage

Voltage

Vdc

VES

5.0

Vdc

Collector Current - Continuous

Ie

4.0

Adc

Base Cu rrent

Ie

1.0

Adc

Total Device Dissipation @TC = 2SoC
Derate above 2SoC

Po

10
57.2

Watts
mw/oe

TJ.Tstg

-65 to +200

°e

Operating and Storage Junction
Temperature Range

0'3500IAr-~

Indicates JEOEC Registered Data

0.370
0.315

0.335 OIA -H--I---j

0.240

&'mt=mlll~ ~

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

0.5
MIN

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR

10

"'"""

~ 8.0
z

~ 6.0

iii

~ 4.0

O.016DIA~~
0.019

""

_I

~ H~

Ol001J:1

I'....

~
0.029

"-,

~

:;r
~ 2.0

0

20

40

60

80

100

120

[lilo

"'" ""

140

TC. CASE TEMPERATURE I·C)

160

'"

180

200

Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.

2-836

To conllert inches to miliimeters multiply by 25.4
All JEDEC dimensions and notes apply

CASE 79 111
TO·39

2N4877 (continued)

·E LECTRICAL CHARACTER ISTICS (TC = 25 Q C unless otherwise n01l!d)

I

Symbol

Cha...teri.tic

Min

Max

60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde.IB = 0)

Vdc

VCEO(sus)

Collector Cutoff Current
(VCE = 70 Vdc. VEB(off) = 1.5 Vdc)
(VCE = 70 Vdc. VEB(off) = 1.5 Vdc. TC = l000C)
Collector Cutoff Current
(VCB = 70 Vdc, IE = 0)

ICEX

Emitter Cutoff Current
(VBE = 5.0 Vdc. IC = 01

lEBO

ICBO

-

100
1.0

-

100

-

100

"Adc
mAde
"Adc
"Ad.

ON CHARACTERISTICS(I)

-

hFE

DC Current Gain
(lC = 1.0 Ade. VCE = 2.0 Vdc)
(lc = 4.0 Adc. VCE = 2.0 Vdc)
Collector-Emitter Saturation Voltage
(lc = 4.0 Adc, IB = 0.4 Adt)
Base-E mitter Saturation Voltage
(Ie = 4.0 Adc, IB = 0.4 Adc)

30

-

20

100

VCE(satl

-

1.0

Vdc

VBE(sat)

-

I.B

Vdc

100

ns

"s
ns

DYNAMIC CHARACTERISTICS
CUrrent-Gain-Bandwidth Product

(Ie = 0.25 Adc, VCE = 10 Vdc. f = 1.0 MHz)
(lc = 0.25 Adc, VCE = 10 Vdc. f = 10 MHz)""
SWITCHING CHARACTERISTICS
Rise Time

(Vec = 25 Vdc. IC = 4.0 Adc. IBI = 0.4 Adc)

t,

-

Storage Time

I

ts

-

1.5

Fall Time

I IBI = IB2 = 0.4 Adc)

tf

-

500

(Vec=25 Vdc.IC = 4.0 Adc.

-I ndlcates JEDEC Registered Data.
··Motorola guarantees this value in addition to JEDEC Registered Data.
Note1: Pulse Test: Pulse Width "$ 300 p.s. Duty Cycle~ 2.0%.

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREA
10
5.0

if

....

'"

!S 2.0
>z 1.0
w

.
..

0.5

0

0.2 r-- TJ = 20lJOC

~

0.1 ; . .

=>

'"
>-

de

~

r-~30'"

.Om

t9'0V~
Vin 0- - - - -

-

"'_ 0.05

0

:=::-- - -

P

0.02

0.01

.~oo".

.Oms

1.0

+25 V
-

6.0

-7.0 V

4.0W

Secondary Breakdown Limited
Bonding Wire Limited
Thermal Limitations, TC - 250 C
PUI"O.. tYICyt·I~I~
I

2.0 3.0
5.0
10
20
30
50
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

20
1.0W

Vin Q---JtI',(Y---.--+-i

100

There are two limitations on the power handling ability of a
transistor:

OUTYCYCLE,,2.0%

IN914

-4.0 V

average junction temperature and second breakdown.

Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; i.e .• the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 2 is based on TJ(pk) = 2000C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk)~ 2OO0 C. At high casetemperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second breakdown. (See AN-415)

2-837

2N4890 (SILICON)

PNP SILICON ANNULAR

TRANSISTOR

· .. designed for applications in audio·output feedback control, and
general, medium·current switching and amplifier circuits.
•

Direct Complement to NPN 2N3053

•

Low Coliector·Emiuer Saturation Voltage VCE(sat) = 0.12 Vdc (Typ) @ IC = 150 mAdc

•

High Current·Gain-Bandwidth Product fT = 280 (Typ) @ IC = 50 mAdc

PNP SILICON
SWITCHING AND AMPLIFIER
TRANSISTOR

*MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vde

Collector-Base Voltage

VCB

60

Vde

Emitter-Base Voltage

VEB

5.0

Vde

IC

500

mAde

Collector-Eminar Voltage

Collector Current

Continuous

700**
Total Device Dissipation@TA=2SDC

Po

1.0
5.7

Watt
mW/oC

Po

5.0
26.6

Watts
mW/oC

TJ,T stg

-65 to +200

°c

Derate above 2SoC
Total Device Dissipation @TC= 25°C

Derate above 2SoC
Operating and Storage Junction

Temperature Range
*Indicates JEDEC Registered Data.

* * Motorola Guarantees th is Data in Addition to JE DEC Registered Data.

:;;:OIAE

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

VBB = 27.9

0.315 DlA
0.335

0.240
0.2S0

I l-t
.~--+
O.OIS:-

VCC=-30V

0.009
0.125-:L

1.0 k

0.5
min

0.019

:SCOPE
0.1 ~F

Vi" 0 - ,

I

---L

1.0 k

I

30VU

Rise Time < 5.0 ns
Pulse Width =200 ns
Duty Cycle = 2.0%

Pinl.

SCOPE CHARACTERISTICS
IMPEDANCE 10 MEG MIN
CAPACITANCE 7.0 pF MAX

2.
3.

CASE 79 (11
(TO·39)

2N4890 (continued)

"ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage INote 11
IIC = 100 I'Ade, IS = 01

SVCEO

40

-

-

Vde

Collector-Emitter Breakdown Voltage

SVCER

50

-

-

Vde

SVCSO

60

-

-

Vde

SVESO

5.0

-

-

Vde

ICEX

-

-

0.25

I'Ade

ISL

-

-

0.25

I'Ade

25

130

IIC = 10 mAde, RSE = 10 ohmsl
Collector-Base Breakdown Voltage

IIC = 100 I'Ade, IE = 01
Emitter-Base Breakdown Voltage

liE = 100 I'Ade, IC = 01

Collector Cutoff Current
IVCE = 60 Vde, VSEloffl

=

1.5 Vdel

Base Cutoff Current

IVCE = 60 Vde, VBEloffl = 1.5 Vdel
ON CHARACTERISTICS
DC Current Gain INote 11
IIc = 150 mAde, VCE = 2.5 Vdel
IIc

= 150 mAde,

-

hFE

VCE = 10 Vdel

-

50

140

250

VCElsatl

-

0.12

1.4

Vde

VSElsatl

-

0.82

1.7

Vde

VSE(onl

-

0.74

1.7

Vde

IT

100

280

-

MHz

Cob

-

9.0

15

pF

Cib

-

60

80

pF

t(j

-

15

50

ns

Rise Time

tr

-

20

50

ns

Storage Time

ts

-

110

200

ns

tf

-

20

70

ns

Collector-Emitter Saturation Voltage
IIc = 150 mAde, IS = 15 mAdel
Base-Emitter Saturation Voltage

IIc = 150 mAde, IS = 15 mAdel

Base-Emitter On Voltage
IIC = 150 mAde, VCE = 2.5 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

IIc = 50 mAde, VCE = 10 Vde, f = 20 MHzl

Output Capacitance
IVCS = 10 Vde, IE
Input Capacitance
IVSE = 0.5 Vde, IC

=

=

0, f = 140 kHzl
0, f = 140 kHzl

SWITCHING CHARACTERISTICS
Delay Time
IVec = 30 Vde, VBEloffl = 0.8 Vde,
IC = 150 mAde, ISl = 15 mAdel
IFigure 11

IVee = 30 Vde, Ie = 150 mAde,
ISl = IS2 = 15 mAdel
IFigure 11
Fall Time
*Indicates JEOEC Registered Data.

Nate1: Pulse Test: Pulse Width = 300 /.LS, Duty Cvcle

~

2.0%.

2-839

2N4898

thru

2N4900 (SILICON)

~~

CASE 80
(TO·66)

Medium-power PNP silicon transistors designed
for driver circuits, switching, and amplifier applications. Complement to NPN 2N4910 thru 2N4912.

CdP

Collector connected to case

MAXIMUM RATINGS

Symbol

Rating

Unit

2N4898 2N4899 2N4900

Collector-Emitter Voltage

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-Base Voltage

.

VEB

Collector Current - Continuous

*

I C*

Base Current
25°C

Vdc

-1.0

Adc

-4.0

,

1.0

•

.

IB

Total Device Dissipation T C

5.0

PD

25

Derate above 25° C

0.143

Operating & Storage Junction
Temperature Range

T J , T stg

r--

65 to +200

Adc

·•

W/oC

•

°c

Watts

THERMAL CHARACTERISTICS

Characteristic

Symbol

Thermal Resistance, Junction to Case

8 JC

Max

Unit

7.0

°C/W

• The 1. 0 Amp maximum IC value is based upon .JEDEC current gain requirements.
The 4.0 Amp maximum value is based upon actual current-handling capability of the device
(see Figure 5).

FIGURE 1- POWER·TEMPERATURE DERATING CURVE
25

...~

"

20

~

z0

...
;:::

15

"

i"'-..

~
~

"in

'"
C:i
ffi

10

--

~

",

"0

"-""

"'"

"-

o

o

20

40

60

80

100

120

Tc , CASE TEMPERATURE 1°C)

2-840

140

160

"

~

180

200

2N4898 thru 2N4900

(continued)

ELECTRICAL CHARACTERISTICS

(1,

= 2.·C ,,'''' ,th".". ooted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage' i 11
2N4898
(Ic • o. lAde, IB • 0)
2N4899
2N4900
Collector Cutoff Current
(V CE • 20 Vde, IB .0)

-

BV CEO(sus)

I CEO

2N4898

(V CE ' 30 Vde, lB' 0)
(V CE ' 40 Vde, lB' 0)

--

-

0.5

2N4900
12

ICEX

Collector Cutoff Current
(V CB • Rated VCB' IE .0)

-

Emitter Cutoff Current
(V BE = 5.0 Vde, IC .0)

-

0.5
0.5
mAde

-

(V CE • Rated VCEO' VBE(off) ·1.5 Vdc, T C • I 50' C)

Vde

mAde

-

2N4899

Collector Cutoff Current
(V CE • Rated VCEO' VBE (off) • 1. 5 Vdc)

40
60
80

0.1
1.0
mAde

ICBO

-

0.1

lEBO

-

1.0

mAde

ON CHARACTERISTICS ill
DC Current Gain
(Ic = 50 mAde, VCE = 1. 0 Vde)

8

hFE

40

-

(IC = 500 mAde, VCE • 1. 0 Vde)

20

100

(IC '1.0Ade, VCE .1.0Vde)

10

Collector ... Emitter Saturation Voltage
(IC • 1. 0 Ade, IB = O. lAde)

9
11
13

VCE(sat)

-

0.6

Base ... Emitter Saturation Voltage
(IC • 1. 0 Ade, IB = O. I Adc)

11
13

VBE(sat)

-

1.3

Base-Emitter On Voltage
(IC • 1. 0 Ade, VCE • 1. 0 Vde)

11
13

VBE(on)

-

1.3

3.0

-

-

100

25

-

-

Vdc

Vde
Vdc

SMALL SIGNAL CHARACTERISTICS

-

IT

Output Capacitance
(VCB • 10 Vde, IE = 0, 1= 100 kHz)

-

Cob

Small-Signal Current Gain
(IC = 250 mAde, VCE = 10 Vde, I • 1. 0 kHz)

-

Current-Gain-Bandwidth Product
(IC - 250 mAde, VCE • 10 Vde, I .1.0 MHz)

ill Pulse Test: PW

=300 ~s,

hIe

MHz

pF

-

Duty Cycle = 2.0%

FIGURE 3- TURN·ON TIME

FIGURE 2- SWITCHING TIME EQUIVALENT CIRCUIT
5.0

TURN'()N PULSE

Vce

0---","",,,,,,---.

3.0
2.0

V : .0
IO
- -H
- -l b
- -

lell,

~

.......

....... r-....
lr--.

1.0 Vee- 3OV

APPROX I

-..l ..... I,
I,

APPROX 9.0 V

_

I

I

I
I

I

APPROX I
-11 V

~

30V
= 20

0.3

~

I
I

I
- ' 1,1-TURN·OFF PULSE

0.2

+ 4.0 V

~

Vee

I,

0.1
0.07 V"loffl 0
0.05
20
10

2-841

)---

--

10. UNLESS NOTED
TJ = +25'C
TJ = +1SOOC

60V. V"loffl

Vee

60 V

2.0V

.,."

.....

Ve~ ~

t, < 15ns
100 < I, < 500 p.s
I, < 15 ns
DUTY CYCLE::: 2.0%

-

~.

~ 0.5

I
I I
v· - I- - - -1- + '.

~

]. 0.7

-11 V ,
_

......-:

r"o

Vee
lell,

30

200 300
50 70 100
Ie. COLLECTOR CURRENT ImAI

500 700 1000

2N4898 thru 2N4900

(continued)

FIGURE 4- THERMAL RESPONSE
~ 1.0

I ~:~

0

0.3

0

~ 0.2

0

oJ

lE

iii

~ O. 1
f5 0.0 7
i= 0.05

0

0.05

0

0.01

0.5

OJe(t)

0.2

.....

!!..I-

J-f-

z

g 0.02 r"'"
~

0.0 1
0.01

0Je 5.8°C/W Typ
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AI 1,

HUl
~--J

SINGLE PULSE

ffi
<;; 0.03

rltlOJe

7.0°C/W Max

OJe

j,oo'"

-I"""

Te

PI.IIOJelll

LI 11

LI l

TJI.II

DUTY CYCLE, D= I,ll,

",.

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

, ""'"

3.0

5.0

10

20

30

50

200 300

100

500

1000

I,TlMElms)

FIGURE 5- ACTIVE·REGION SAFE OPERATING AREA
10
7.0

a:

'"

1.0ms

I

3.0

~

1.0

:5

2.

5.0ms

0

The data of Figure 5 is based upon TJI.'I

D-

de

"

~ 0.7

8
..Y

The safe operating area curves indicate Ic-VeE
limits 01 the transistor which must be observed for
reliable operation. Collector load lines for specific
circuits must fall below the limits indicated by the
applicable curve.

100"s

5.0

TJ 200°C
f=:: • SECONDARY
BREAKDOWN LIMITATION
~ THERMAL LIMITATION .!..'. 1.1_
0.3 r-- IBASE·EMITIER
DISSIPATION IS _
LIMIT FOR:
0.5

r--

r--r---

0.2

SIGNIFICANT ABOVE Ie = Hi~
PULSE DUTY CYCL~lI0%
11III
II

O. 1
1.0

2.0

2N4898
2N4899
2N4900

3.0
5.0 7.0 10
20
30
Ve" COLLECTOR·EMITTER VOLTAGE IVOLTSI

50

70 100

FIGURE 6- STORAGE TIME
5.0
-~.J."~~

3.0
2.0

r--- -

lell,

....
;:-..

lell, = 10

20 -

-

-";;:t:::

FIGURE 7- FALL TIME
TJ
- TJ
I"

5.0

+25' CL
+150'C
I"

....

3.0

~ 1.0

'" O. 7

;;:; 0.7

;:::

I o.
0

J

"'""c. . . -...,lell, - 20

2.0 rs.......

1.0

~

~

7."

I ..

~

ff

~4

.:i

o.2

10

TJ = +25'C
TJ = +150'C
Vee=30V

'11= '12

i'~

lell:-IO'

~

O. I
0.0 7
0.05

--

~ 0.5

5
3

=

200·C; Tc is variable depending upon conditions.
Pulse curves are valid for duty cycles to 10% provided TJI.' I "S 200·C. TJI.II may be caleulaled
from the data in Figure 4 . At high case tempera·
tures, thermal limitations will reduce the power
which can be handled to values less than the limita·
tions imposed by secondary breakdown.

"-

---

0.3

-

0.2

O. I
0.07
20

30

200
50 70 100
Ie, COLLECTOR CURRENT ImAI

300

500 700 1000

0.05
10

20

30

50 70 100
200
Ie, COLLECTOR CURRENT ImAl

300

500 700

lOon

2N4898 thru 2N4900

(continued)

FIGURE 8- CURRENT GAIN

FIGURE 9- COLLECTOR SATURATION REGION
1.0

1000
700
SOO

1.0ve-

VCE
!!;

~

~>

300

TJu+~7

~ 200

r-

G 100
g 70
1 50

r-....

55°C

30

~

0.6

l!5

4

10

20 30 50
100 200 300 500
Ic. COLLECTOR CURRENT ImAl

"

0.5

1000 2000

1.0

1. 5

7

"

VCE~30V

.......

1"-

6

""<.
........

Ic~bs

5

lOx ICES

Ic

........

"

•
,

1
40

1. 2

.......

"-

"

..........

1

........

TJ~25°C

,-

.......

.......

10

r-....
160

11

VIE@VCE~ 2.dv
/

O. 3
VCEI,,'I@Ic/I,

......

0
2.0 3.0 5.0

200

10

10

20 30 50
100 200 300 SOO
Ie. COLLECTOR CURRENT (mAl

1000

2000

FIGURE 13 - TEMPERATURE COEFFICIENTS

/

,/

VCE

30V- -TJ

'APPLIES FOR Icli,

..Y

There are two limitations on the power han·
dling ability of a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ie - VeE limits of the transistor that
must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissi·
pation than the curves indicate.

II\.

S.Oms"-

I t

=

~

.0~S\100~

...

'\\

The data of Figurell is based on TJlp'l

0.3

2N4904

0.2

2N490S

vided TJlpk)

200·C. TJlp'l may be calculated

limitations imposed by secondary breakdown.

20
30
3.0
5.0 7.0 10
VeE, COLLECTOR-EMITIER VOLTAGE (VOLTSI

2.0

\.0

<:

from the data in Figure 12 .At high case tempera·
tures, thermal limitations will reduce the power
that can be handled to values less than the

~N4i061

0.1

=

200·C; Te is variable depending on conditions.
Pulse curves are valid for duty cycles to 10% pro-

LIMIT FOR,

50

70

100

FIGURE 12 - TRANSIENT THERMAL RESISTANCE
~ 1.0

'i1

0

~ 0.5

!il

D 0.2

uJ

0.3

~

0.2 F=' 0

~

~~

0.1

0.5

0.1

"ij:' 0.05

---

IS

D 0.01

~O.O

~ (SiNGj-E PULSEI

i= 0.5
!i< 3

:::;;

"....

I-

~O.O2
Q

I I

-,"0.0 1

";:

0.01

I

0.02 0.03

0.050.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

20

30

50

70 100

200 300

500 700 1000

t, TIME (ms)

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

t-~~I

-----In"
I

_I

I
t'l_

I

n"
I
I

I

I

I----

I/f_1

DUTY CYCLE 0 ~ t,-f ~ .!!

t,

PEAK PULSE POWER

~

P,

~------

A train of periodical power pulses can be represented by the model
shown in Figure A. Using the model and the device thermal response,
the normalized effective transient thermal resistance of Figure 12
was calculated for various duty cycles.
To find OJc(t), multiply the value obtained from Figure 12 by the
steady state value OJc.
Example:
The 2N4904 is dissipating 100 watts under the following conditions:
It = 0.1 ms, jp = 0.5 ms. (0'= 0.2)
Using Figure 12, at a pulse width of 0.1 ms and 0 = 0.2, the reading
of r (t"O) is 0.27.
The peak rise in junction temperature is therefore
L'lT= r(t) X PpX OJC =0.27 X 100x2.0= 54"C

2-851

2N4910 thru 2N4912
CASE 80
(TO-66)

~
~
-

(SILICON)

Medium-power NPN silicon transistors designed
for driver circuits, switching, and amplifier applications. Complement to PNP 2N4898 thru 2N4900.

 I,
30

50 70 100
200 300
Ie. COLLECTOR CURRENT ImAl

500 700 1000

-

-

10

-:--:: ,..."

0.3
0.2

~TJ~+J50OC

O. 1
0.0 7
0.0 5
10

20

...~r,t
, t--...
, t-<.r-..,.

>= 0.5 f==..le/ l,
:1:

t? OJ

lell,

0.1
0.07
005

r---- - --

TJ~+25°C

TJ ~ +150°C
Vee 30 V
111

10

20

30

182

50

70

100

200

Ie, COLLECTOR CURRENT (mA)

2-854

300

500 700 1000

2N491 0 thru 2N4912

(continued)

TYPICAL DC CHARACTERISTICS
FIGURE 8- CURRENT GAIN
FIGURE 9- COLLECTOR SATURATION REGION
1.0

1000
700
500

VeE

1.0V

~

f--

z 300

~
ffi

...~

O. 8

~

o. 6

'"
;:]

200

&:1

TJ

+ 175°C

'-'

TJ

+25°C

TJ

-55°C

is 100
~ 10
.Jt 50

III III
III III

I I
I I

le=O.1A

0.25A
I

~

O. 4

8

0.2

~

TJ = 25°C

J

0
10

20 30 SO
100 200 300 SOO
Ie. COLLECTOR CURRENT ImAI

0
0.2 0.3 0.5

1000 2000

1.0

~

i

"7

"
" "

1.2
,e

r-...

"

200

r--

~ 104r.--

1==

o

..l

I", VALUES
OBTAINED FROM
t- FIGU~E 12 I

20

40

"-

i...

""

0.9

~

V" 1,,'1 @ lell,

" 1"-." "
I'.

V,,@Vee

1'1.

0.3

2.0V

II I I: I II
U
I !I II

lL

VeEl,,'1 @Ie/l,= 10

" "
160

180

o

200

2.0 3.0 5.0

10

20 30

50

100100 300 500

FIGURE 12 - COLLECTOR CUTOFF REGION

FIGURE 13 - TEMPERATURE COEFFICIENTS

V

+2.5

/

'APPLIES FOR

0+2.0
+1WC./

lell,~h,,!2

TJ = +100°C TO +200°C j

~+1.5

/

L

~+1.0

I

.~

1000 2000

Ie. COLLECTOR CURRENT ImAl

I

~TJ

~

~

10

!5! 0.6

80
100 120
140
lJ. JUNCTION TEMPERATURE lOCI

,

.../..
!Z

in

60

10

I.d

TJ=.25°C

lOx IcES

"

le- 2xb,'

10

10I

100

III 1

VeE=30V

,r-- le=l~

~

50

1.5

ffi 10•
~

2.0 3.0 5.0
10
20 30
I,. BASE CURRENT ImAl

FIGURE 11 - "ON" VOLTAGE

10'

~ 10
1:3

"

i'.

FIGURE 10 - EFFECTS OF BASE·EMITTER RESISTANCE

I...

lj

LOA

~

0

10
2.0 3.0 5.0

11
0.5A

15

1+

0.5

f- TJ +100°C

SE
10- ,~ Rrr
0.2
0.1

55°C TO +100°C

TJ

~ -0.5

I

,

." 8ve FOR VeE 'lit)

...

TJ

Vee 30V

+25°C

~-1.0

-

~
I

·rORW~RO

0.1
0.2
0.3
VIE. BASE·EMITTER VOLTAGE IVOLTSI

0.4

lL

f

0.5

-1.5

8v. FOR V"

-2.0
-1.52.0 3.0 5.0

10

1
20 30

1-1-"
50

100

200 300 500

Ie. COLLECTOR CURRENT ImAI

2-855

IL

1000

2000

2N4913 (SILICON)
2N4914
2N4915
NPN power transistors for use in power amplifier
and switching circuits. Complement to PNP 2N4904
thru 2N4906.
MAXIMUM RATINGS

Rating

2N491~

2N4915

60

80

Vdc

Collector-BAse Voltage

VCB

40

60

SO

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

5.0

Adc

Base Current - Continuous

IB

1.0

Adc

Total Device Dissipation @T C = 25· C

PD

S7.5

Watts

0.5

W;oC

-65 to +200

·C

2~o C

T J' T stg

Collector connected to case
THERMAL CHARACTERISTICS

Characteristic

Max

Thermal Resistance, Junction to Case

2.0

ELECTRICAL CHARACTERISTICS
Characteristic

(Te = 25°C unless otherwise noted)

Fig. No.

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
2N4913
(IC = O. 2 Ade, IB = 0)
2N2914
2N4915

BVCEO(sus)
11

Vdc

-

40
60
SO

·
·

Collector Cutofr Current
(V CE = Rated VCEO' IB = 0)

'CEO

-

1.0

Collector Cutoff Current
(V CE = Rated VCEO' VEB(off) = 1. 5 Vdc)

'CEX

-

1.0

·

2.0

·

1.0

·

1.0

25

100

7.0

·

·

1.0

·

1.5

-

1.4

4.0

·

20

·

(V CE = Rated VCEO' VEB(off) = 1. 5 Vd., T C= 150·C)

Collector Cutoff Current
(V CB = Rated VCB' ~ = 0)

5,6
5,6

ICBO

~~

Emitter Cutoff Current
(VEB = 5.0 Vdc, IC = 0)

mAde
mAde

mAde
mAde

ON CHARACTERISTICS III
DC Current Gain-

(lC = 2. 5 Ade, VCE = 2. 0 Vde)

1

hFE

(lC = 5.0 Ade, VCE = 2.0 Vde)

Collector-Emitter Saturation Voltage
(IC = 2. 5 Ade, IB = 250 mAde)

2,3,4

VCE(sat)

(IC = 5.0 Ade, IB = \. 0 Ade)
sase-Emitter On Voltage
(IC = 2. 5 Ade, VCE = 2. 0 Vde)

3,4

VBE(on)

.

Vde

Vde

SMALl·SIGNAL CHARACTERISTICS

(1J

Unit

40

Operating &. Storage Junction
Temperature Range

(TO-3)

2N4913

VCEO

Derate above

CASE 11

Symbol

Collector-Emitter Voltage

Current-Gain-Bandwidth Product
(IC ~ 1. 0 Ade, VCE = 10 Vde, I = 1. 0 MHz)

fT

Small-Signal Current Gain
(IC = 500 mAde,. VCE = 10 Vde, 1= 1.0 kHz)

hIe

Pulse Test, PW -300 !lS, Duty Cycle - 2.0%

2-856

MHz

.

2N4913, 2N4914, 2N4915

(continued)
FIGURE 1- NORMALIZED DC CURRENT GAIN

Ii:!

I

10
7.0
5.0
3.0

z

TJ

TJ ~ -55'C

~ 1.0
~ 0.7
~ 0.5
...,

IWC

TJ
[-.;,

-

I

-

-

--

2.0

-

-

--

-

25'C

YeE

2.0Y- I--

YeE

10Y- f-

~ ~

""""- ~

...

~

~

g 0.3

i

0.2
0.1
0.005 0.007

0.01

0.02

0.03

0.05

0.07

0.1
0.3
0.2
Ie. COLLECTOR CURRENT lAMP)

0.5

0.7

1.0

3.0

2.0

5.0

FIGURE 2- COLLECTOR SATURATION REGION
2.0

i...

II
II

1.6

I I
I I

le~IOmA

~

I

J
Ie":' LOA

le~IOOmA

TJ

~

+25'C

le~3.0A

!:j
!i! 1.2

ffi

!:

;

0.8

.

0.4

::::l
<>
...,

\.

\

\

"-

,]I

o
0.05 0.07

0.1

r-..
0.2

0.3

0.5

0.7

1.0

2.0

20

3.0
5.0 7.0 10
I,. BASE CURRENT (mAl

FIGURE 3- "ON" VOLTAGES
2.0

0.4

o
0.005 0.01

70

100

200

500

300

°APPLIES FOR lell.shFEf2

+2. 0

TJ~-55'Cto+175'C

G
;;. +1.5

1/

II.

.5

~+1.0

II
Y'E("'I@lell.

50

--

FIGURE 4- TEMPERATURE COEFFICIENTS

TJ ~ 25'C

r--

30

+2. 5

II
II

1.6

......

10

i

"

III

0

b-'

/Iv lor Ve'(.oll

~-o. 5

i-I.0

~-I. 5
.t-2.0

",'"

0.02 0.03 0.05 0.1
0.2 0.3 0.5
1.0
Ie. COLLECTOR CURRENT lAMP)

r--

0

~

2.0Y

Y.. @YeE

Ye'INII @ lell. ~ 10
",Il'l

§ +0.5

2.0 3.0 5.0

2-857

-2.5
0.005

/Iv 101 Y..

III I
0.01

-

0.020.03 0.05 0.1
0.2 0.3 0.5
Ie. COLLECTOR CURRENT lAMP)

~

1.0

2.0 3.0 5.0

2N4913, 2N4914, 2N4915

(continued)

TYPICAL "OFF" REGION CHARACTERISTICS
FIGURE 5- CUT·OFF REGION

,

10

~

FIGURE 6- EFFECTS OF BASE·EMITTER RESISTANCE

,

10

.......

30V

,-Vel

~

~ 10- I
2

=

,

-u

/

0
U
VIE. BASE·EMIITER VOLTAGE (VOLTS)

A

TURN ON PULSE

le:le>

,

FORWARD

U

10

0.6

o

300

V
ee
RL

200

20

--

~

V"

1

I--

I,
TURN·OFF PULSE

~
,.

-4.0V

-=

.l~

I""'!!

TJ = +25"C

ts r--......... l.....
...:--,

0.2

0.5

!=F=

"'t't+-

0.03
0.02
0.05 0.07 0.1

1.0
2.0
5.0
V•• REVERSE VOlTAGE (VOLTSI

J

20

10

50

FIGURE 10- TURN·OFF TIME

30V

10V
=

200

C,b

lell, = 10
TJ 25"C

I,@ VElI"'1

180

0

30
0.1

II

O. I
0.07
0.05

.:--.
160

0

2.0

03
1.@Vee
;::: 0.2

......

......

FIGURE 8- CAPACITANCE

FIGURE 9- TURN·ON TIME

~Vcc

......

C.b

< 7.0 ns

2.0
1.0
0.7
0.5

~

"

DUTY CYCLE::::: 2.0%
APPROX -9.0 V

1

--j

"

I"

:
::
100-< 1,< 5ool's
-;---,,1,<15.s

I

~

60
80
100
120
140
TJ• JUNCTION TEMPERATURE I"CI

C;' << C.b
I,

~

~

R,

--l I, t--

......
.:--.

I

V" o--.JV\~---1~

V"loH!-.j I- I,
APPROX
+ 11 V

........
~

40

I

+- - - -

V" -

r---

~

(TYPICAL leES VALUES
OBTAINED FROM FIGURE 51

,

FIGURE 7- SWITCHING TIME EQUIVALENT CIRCUIT
APPROX
+11 V

.1

le=IO,leES- r - - Ve • ~ 30V

ICES

+25°C

TJ

.1

........ ~
.......

2 x ICES

,

I:::=REV~SE

-0.4

'r--Ie

/

+IOO"C
Ie

,~

10

/

TJ

~

;0......,

10

~ 10' =

"""-

~

1'-- TJ - +175"C

is

.

•

2.0V

1.0
0.7 ~
O. 5

~
~

0.3

~
..,

0.2

""1"+01.

II
.!J....@Vee

rt-30V

~,

III = 112

lell. = 10.l
I; I.
TJ 25"C

\1" =
=

j~@vcc IOv

.:--.

O. I
0.07
0.05

t-.
0.2 ' 0.3
0.5 OJ 1.0
Ie. COLLECTOR CURRENT CAMP)

2.0

3.0

5.0

2-858

0.03
0.02
0.05 0.07 0.1

0.2 0.3
0.5 0.7· 1.0
Ie. COLLECTOR CURRENT lAMP)

2.0

3.0

5.0

2N4913, 2N4914, 2N4915

(continued)

RATING AND THERMAL DATA
FIGURE 11 - ACTlVE·REGION SAFE OPERATING AREAS
10
7.0
5.0

1.0m,

1001"
There are two limitations on the power handling ability of a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ic- VeE limits of the transistor that
must be observed for reliable operation; Le., the
transistor must not be subjected to greater dissi·
pation than the curves indicate.
The data of Figurel! is based on TJ(pkl =
200°C; Tc is variable depending on conditions.
Pulse curves are valid for duty cycles to 10% provided TJ(pkl < 200·C. TJ{p.1 may be calculated
from the data in Figure 12 .At high case temperatures, thermal limitations will reduce the power
that can be handled to values less than the
limitations imposed by secondary breakdown.

ii:

'"z

:$
~

3.0
2.0 _._TJ 200°C
-_-.-_-. ~~~~~~~R~I:~~~~~E~N LIMITED +-+-+--t~
"I'\H'<++++I
1.0
CURVES APPLY BELOW
RATED VeEo
0.7
0.5
LIMIT FOR,

~
= =
g ==~

~

.9 0.3 f"-=~~+=+=+=+++t:+tt=:::!:=2N4913
.:I
I
~M

U

1---+-t--+-+-+-+-+-I--t-t+-_+--~2N4;15
0.1 ':-....L.....L....LL-.L.JL..LLl..J..L_L-L.JI....l.......L..L.LL.L1J
1.0
2.0 3.0
50 7.0 10
20
30
50 70 100
VeE, COllECTOR·EMlmR VOLTAGE {VOlTSI

FIGURE 12 - TRANSIENT THERMAL RESISTANCE

gj

1.0

:::;

D 0.5

~ 0.5

iii..r 0.3
rz1

D 0.2

~ 0.2 F -

D 0.1

12

~ 0.1 fo:O.05
~
D 0.01

~ 0,05

-

~~

I-"'"

!Z; 3 D- 0 (SINGLE PULSE I
*0.0
z
~ 0.02

~O.O I
-;::

0.01

II
0.02 0.03

0,050.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

20

30

50

70 100

200 300

500 700 1000

t, TIME (m,1

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

1_ _

fl~'U~i

----In"
-I

A train of periodical power pulses can be represented by the model
as shown in Figure A. Using the model and the device thermal response,
the normalized effective transienl thermal resistance of Figure 12
was calculated for various duty cycles.

nL---"

t'l_

I

I

I

I--DUTY CYCLE D~ I,·t
PEAK PULSE POWER

~

lit - _ I

~.!!.
t.

p.

To find 8Je(t), multiply the value obtained from Figure 12 by the
steady state value 8Je.
Example:
The 2N4913 is dissipating 100 watts under the following conditions:
t, = 0.1 ms, IP = 0.5 ms. (D = 0.2)
Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the reading
of r (t"D) is 0.28.
The peak rise in junction temperature is therefore
6T= r(t) X P. X 8Je =0.28 X loox2.0=56'C

2-859

2N4918 thru 2N4920 (SILICON)
MJE4918 thruMJE4920

MEDIUM-POWER PLASTIC PNP SILICON TRANSISTORS
· .. designed for driver circuits, switching, and amplifier applications.
These high-performance plastic devices feature:
• Low Saturation Voltage - VCE(sat) = 0.6 Vdc (Max) @ IC = 1.0
Amp
•

Excellent Power Dissipation Due to Thermopad ConstructionPD = 30 and 40 W @TC =2SoC

•

Excellent Safe Operating Area

•

Gain Specified to I C = 1.0 Amp

•

Complement to NPN 2N4921, 2N4922, 2N4923 and MJE4921,
MJE4922, MJE4923

•

Choice of Packages - 2N4918 thru 2N4920, 30 Watts, Case 77
MJE4918 thru MJE4920, 40 Watts, Case 199

3 AMPERE
GENERAL-PURPOSE
POWER TRANSISTORS
4().SO VOLTS
30 and 40 WATTS

2N4918
2N4919
2N4920

*MAXIMUM RATINGS

2N4918

2N4919

2N4920

Symbol MJE491.8 MJE4919 MJE4920

Ratings
Collector-E mitter Voltage

40

VCEO

Collector-Ba.. Voltage

VCB

Emitter-Ba.. Voltage

VEB

Collector Current - Continuous (1)

IC'

.

40

0

Unit

60

80

Vdi:

60

80

Vde

5.0_

Vde

1.0_

Ade

3.0Base Current

1.0___.

IB

Adc

2N4918 saries MJE4918 series
Total Oeviee oissipation@TC = 25°C
Derate above 25°C
Operating & Storage Junction

30
0.24

Po
TJ' Tstg

_

40
0.32

-65to+150 -

PIN 1. EMITTER
2. COLLECTOR
3. BASE

Watts
WloC
°c

'. Temperature"Range"
THERMAL CHARACTERISTICS 2)

CASE 77-03

Therinai Resistance, Junctioh to 'CaSe
• Indicates JEOeC Registerec:i Data for 2N4918 Series
(1) The 1.0 Amp maximum Ie value is based upon JE oec current gain requirements.
The 3.0 Amp maximum value is based upon actual current-handling capability of the
device (See Figure 5),
(2) Recommend use of thermal compound for lowest thermal resistance.

MJE4918
MJE4919
MJE4920

0.275

o:m
0.142

rnl

FIGURE 1 - POWER DERATING
40

~

30

o

ili~
o

"""'" "r-....
k

z

20

i'---

a:

~

....... I'-.. MJE4918thr. MJE4920

N

V- I'--..

2N4 18thr.2N4920
0

~
0
26

60

16

'"r-.>

............

D.!!!1

~ t--.........

100

126

&-ffi

~r--=,=.

~150

TC. CASE TEMPERATURE (OCI

30
lYP _

~

L.l- .l

,----:::;= ,I it- &-ra ~03'1
O:O~.020
I

. __

TYP
'OlmRnsion is to centffUne 01 taads
CASE 199-04

2-'-860

PIN 1.

BASE

2. COLLECTOR
3. EMITTER

2N4918 thru 2N4920, MJE4918 thru MJE4920 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted 1
Fig. No.

Symbol

Collector·Emitter Sustaining Voltage (11
2N4918,MJE4918
(lC = 0.1 Ade, IS = 01
2N4919,MJE4919
2N4920,MJE4920

-

VCEO(susl

Collector Cutoff Current
(VCE = 20 Vde, IS = 01
(VCE = 30 Vde, IS = 01
(VCE = 40 Vde, IS = 01

-

ICED

Min

Max

40
60

-

Unit

OFF CHARACTERISTICS

80

mAde

-

2N4918,MJE4918
2N4919,MJE4919
2N4920,MJE4920

Collector Cutoff Current
(VCE = Rated VCEO, VSE(offl = 1.5 Vde)
(VCE = Rated VCEO, VSE(offl = 1.5 Vde, TC
Collector Cutoff Current
(VCS = Rated VCS, IE

Vde

-

0.5
0.5
0.5

-

0.1
0.5

-

0.1

40

-

20

100

10

-

-

0.6

-

1.3

-

1.3

3.0

-

13

mAde

ICEX

= 1250 CI

-

= 0)

-

IESO

9

hFE

Emitter Cutoff Current
(VSE = 5.0 Vdc, IC = 0)

mAde

ICSO

mAde

1.0

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)

ICOliector·Emitter Saturation Voltage (11
(lC = 1.0 Ade, IS = 0.1 Ade)
Sase-Emitter Saturation Voltage (1)
(lC= 1.0Ade,IS =0.1 Ade)
, tlase·t:m'tter Un Vo tage \1'
(lC = 1.0 Ade, VCE & 1.0 Vde)

10
12
14

VCE(sat)

12
14

VSE(sat)

12
14

VSE(on)

-

fT

-

Vde

Vde
Vde

SMALL-5IGNAL CHARACTERISTICS
Current-Gain - Sandwidth Product
(lC = 250 mAde, VCE = 10 Vde, f = 1.0 MHz)
,uutput Gapacotance
(Ves = 10 Vde, IE = 0, f= 100kHz)

Cob

ISmall-5ignal Current Gain

.

-

MHz
pF

-

100

25

-

hfe

(lC = 250 mAde, VCE = 10 Vde, f= 1.0kHz)

-

Indicates JEDEC Registered Data for 2N4918 Senes.
(1) Pulse Test: PW ~300 1l5, Dutv Cycle ~2.0"

FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT
5.0
TURN·ON PULSE

2.0

VSE(Off}b
_____ _
Vin
-11 ,

'"

APPROX 9.0 V
II

~

I

-11 V

.::i-

I

I

t1 <15ns

I

100 < 12< 500",

I

13 < 15n.
OUTY CYCLE~2.0%

-.t 131--

~

0.2

+4.0 V

I

vin-I----I- '+-0
I
APPROX I

Ic/lS = 10. UNLESS NOTED
TJ = 25°C
- - - TJ=I50oC

...

-..114-11
12

~

r--.

APPROX I

I
I

....... ........

J cc'=13JJ
f-- IcllB = 20

.I
1.0 Vcc3OV
I,
~ 0.7
Vcc = 60 V
0.5
t=
Vee =60 V VSE(off} = 2.0 V
0.3

-I

-

3.0 ~

Vee O---'VYIr---,

0.1 VCC=3;v-.
0.07 VSE(off} = 0
0.05
10
20
30

TURN·OFF PULSE

~

50

70

100

200

300

IC. COLLECTOR CURRENT (mA)

2-861

500 7001000

2N4918 thru 2N4920, MJE4918 thru MJE4920

(continued)

FIGURE 4 - THERMAL RESPONSE

1.0

~
~
t;

0.7
5.0

~

0.3

~~

0.2

0.5

0

0.2

0.1

0.1

::x::1E
r-~

*

~ ~ 0.07

0.05

z

~

0.03

'2

0.0 2

r-

..,
-

-

r--

~~

w..:

0.05

--

0.0 1
0.01

0.01

8JCII) ,It! eJC
eJC 4.16°CIW Max 2N4918·20
OJC 3.125 0C/W Max MJE4918·20

-:;?

o CURVES APPLY FOR POWER

1fLJL

TC Plpk) 0JCII)

-12
DUTY CYCLE. 0 11/12

II II
0.05

TJlpk)

~11~

SINGLE PULSE

0.02 0.03

PULSE TRAIN SHOWN
READ TIME ATq

I

0.1

0.2

0.3

0.5

2.0

1.0

3.0

IIIII

I

10

20

5.0

30

100

50

200

300

500

1000

I. TIME 1m,)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 6 - MJE4918 thru MJE4920

FIGURE 5 - 2N4918 thru 2N4920
10

,.ii:'

0

5. 0

" "-

!'>
r-

~

I

o

de ' \

~

~

PULSE CURVES APPLY SELOW

O. l 1.0

RAT

tT

2.0

5.0

1. 0

~

o. 5

:3

II
r-.

7.0 10

20

30

50

70

100

SECOND SREAKDOWN·
LIMITED
- - -SONDING WIRE LIMITED
- - - -THERMALLY LlMITED@TC" 25°C
0.2
PULSE CURVES APPLY SELOW
RATED VCEO
O. 1
5.0 7.0 10
20
1.0
2.0
3.0

~

2.0

w

r--- r-

'"~

.....

IC/IS" 20

K......

~.

"

f'.r-.,

~ 0.7
; 0.5
1s' =ts

t:; Q.3

100

"

~ 0.3

1/8 If

TJ" 25°C
TJ"150oC
VCC"30V
ISl "IS2

--

~

IC/I~"l~

~ 1.0

0.5

o

;,,>

-

"

3.0
2.0

-..;::::::::

'C/'S -10

70

5.0

TJ" 25°C L
TJ 150°C
ISl - IS2

'C/IS-20

,. 1.0
;::
L..LJ
0.7

r-.

FIGURE 8 - FALL TIME

FIGURE 7 - STORAGE TIME

.....

50

s:

i.e., the transistor must not be subjected to greater dissipation
than the curves indicate.
The data of Figures 5 and 6 is based on TJ(pk) = 150°C;

~I'

30

Tc is variable depending on conditions. Second breakdown
pulse limits are valid for duty cycles to 10% provided
T J(pk)
150°C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown. (See
AN-415)

There are two limitations on the power handling ability of
a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie' VeE operation

3.0

."-

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

5.0

f\ 1\1\

o

IIII

3.0

de

TJ i15010C

=>

- -

0.2

... , \'\

2.0

~

100 'TIS

5.0m'~ r---1.0 m'

5. 0

r-

SECOND SREAKOOWN
LIMITED
SONOING WIRE LIMITED
::: 0.5
- - - - - - - THERMALLY LlMITED@TC"25OC

:3

,.

0:-

!'>

1\1\

"

j II

1. 0

f--"" 100",

'\

"' ..... 5.0ms ..... ,

TJ"150oC

2.0

=>

u
~

1.0m,-

-

-

0.2

0.2
O. 1

O. 1

0.07
0.0 5
10

O.U 7

20

30

50

70 100

200

300

500 7001000

0.05
10

20

30

50

70

100

200

IC. COLLECTOR CURRENT (mAl

IC. COLLECTOR CURRENT ImA)

2-862

300

500 7001000

2N4918 thru 2N4920, MJE4918 thru MJE4920 (continued)

TYPICAL DC CHARACTERISTICS
FIGURE 9 - CURRENT GAIN

FIGURE 10 - COLLECTOR SATURATION REGION

1000
700

VCE -1.0

~ 1.0

v=

2:

"' 0.8

;'"o

~ 300

'"tffi

TJ = 15~C

20 0

~ 100

70

~

0

ffi

I"-

25°C

~
~

I II
I II

o

500

0

50

100

200 300 500

0.4

~

0.2

~

"\1"1

10

20 30

TJ = 25°C

>

1000 2000

~

o

0.2 0.3 0.5

1.0

f'.... .......

"l.

5

f"'...

IC-ICES"

..........

iCES VA(UES I
OBTAINED FROM
FI1GURE

4

r

~ o.9
o

'"

......

.........

o

VBE@VCE = 21.0

>

II
II

O.3

0
2.0 3.0

150

120

90

1-::::: . . .

IL

~
I I
I I

i."

VCE("tI@ ICIIB = 10
5.0

10

20 30

50

100

200 300 500

1000 2000

IC. COLLECTOR CURRENT (mAl

FIGURE 13 - COLLECTOR CUTOFF REGION

FIGURE 14 - TEMPERATURE COEFFICIENTS

10 2

+2.5
'APPLIES FOR IcIIB
!< -1.0

"'

10 4

'evc FO R VCE(",I

o

/

::: lO- 2

S

'0

I

~ +0.5

/

a: lO- 1

1TJ - 100°C
1111
150°C

~ +1.0

~ 100

t

1 1111

~ +1.5

1/

.L

'"
13

103~
-0.2

200

f-::

111111

VBE(",I@ Ic/lB = 10

TJ. JUNCTION TEMPERATU RE (OCI

j

100

V

"''"
~ o. 6

["'0...

I

60

50

.llll

2:

1'....

10 3
30

20 30

TJ = 25°C

1.2

IC = 2x ICEo

10

II III
ii_ill

VCE=30V

~=10ICES

......

5.0

FIGURE 12 - "ON·' VOLTAGE
1.5

6

2.0 3.0

lB. BASE CURRENT (mAl

10 8

-,....,

1.0 A

~

FIGURE 11 - EFFECTS OF BASE·EMITTER RESISTANCE

....... ........
.....
........

11
II

0.5 A

0.25 A

IC. COLLECTOR CURRENT (mAl

10 7

I I

0.6

alr:C
B

.".

0

10

I I

IC - 0.1 A

~

-55°C

2.0 3.0 5.0

II

1'5
t-

2
1

+0.5

VBE. BASE·EMITTER VOLTAGE (VOLTSI

eVB FOR VBE

-2.0

-2. 5

2.0 3.0 5.0

10

II 50

20 30

100

200 300 500

IC. COLLECTOR CURRENT (mAl

2-863

IL

1000 2000

2N4921 thru 2N4923 (SILICON)
MJE4921 thruMJE4923

MEDIUM·POWER PLASTIC NPN SILICON
TRANSISTORS

3AMPERE
GENERAL PURPOSE
POWER TRANSISTORS

· .. designed for driver circuits, switching, and amplifier applications.
These high·performance plastic devices feature:
• Low Saturation Voltage -VCE(sat)= 0.6 Vdc (Max)

@

IC = 1.0 Amp

40-80 VOLTS

• Excellent Power Dissipation Due to Thermopad
Construction - PD = 30 and 40 W @ T C = 250 e

30 and 40 WATTS

• Excellent Safe Operating Area
• Gain Specified to Ie = 1.0 Amp
• Complement to PNP 2N4918, 2N4919, 2N4920 and MJE4918,
MJE4919, MJE4920
• Choice of Packages - 2N4921 thru 2N4923, 30 Watts - Case 77
MJE4921 thru MJE4923, 40 Watts - Case 199
'MAXIMUM RATINGS
Rating

Symbol

2N4921 2N4922 2N4923
MJE4921 MJE4922 MJE4923

VeEO

40

Collector-Base Voltage

VeB

40

Emitter-Base Voltage

VEe

Collector-Emitter Voltage

Collector Current

Continuous (11

Ie

Unit

60

80

Vdc

60

80

Vdc

5.0

Vdc

1.0

Adc

3.0
Base Current

Continuous

1.0_

Ie

Po

Total Device Dissipation @TC '" 25D C

Derate above 2SoC
Operating & Storage Junction

TJ, T stg

2N4921
Series

MJE4921
Series

30
0.24

40
0.32

I

r~~~

!

0.148

~

0) 15 0IA.THRU

L-'

0.118

~f
0.425

a:m

~--+
g~~:: ~

II

2N4921
2N4922
2N4923

U __ ~

Adc

-1Ji~:""D.O"TP
0025

0.015
PIN 1. EMITTER

Watts
WIDe

- - -65 to +150--

0015

2. COLLECTOR
3. BASE

-

Ulf35

~.

HEATSINK

°e

CONTACT AREA
IBOTTOM)

Temperature Range

~

0.045

13~~DID5
30
TYP

Case 77·03

THERMAL CHARACTERISTICS (2)

Style 1

Characteristic
Thermal Resistance, Junction to Case
(1) The 1.0 Amp maximum Ie value is based upon JEDEC current gain requirements.
The 3.0 Amp maximum value is based upon actual current-handling capability of the device
(see Figure. 5 and 6).

(2) Recommend use of thermal

compou~d

for lowest thermal resistance.

·'ndicates JEDEC Registered Data for 2N4921 Series.

0.275

o;m.
0.142

o:m

FIGURE 1 - POWER DERATING
40

'"""" '"""'~
...........
..........

...... ' " MJE4921thru MJE4923

I'----

r ""- ............
I'-.
.......... ~

2N4921thru 2N4923

0

MJE4921
MJE4922
MJE4923

~

'"'"

~ t.....-.....;:

0
25

50

75

100

TC. CASE TEMPERATURE (DC I

125

PIN 1.

BASE

2. COLLECTOR
3. EMITTER

"

150

Safe Area Curves are indicated by Figures 5 and 6. All limits are applicable and must be ob.rved

2-864

'Oimension is to centerline of leads

C... l99·04
Style 1

2N4921 thru 2N4923, MJE4921 thru MJE4923(continued)

*ELECTRICAL CHARACTERISTICS (TC

=

250 C unless otherwise noted)

Characteristic

OFF CHARACTERISTICS
-

Collector-Emitter Sustaining Voltage (1)
(lC = 0.1 Ade,IB = 0)

Vde

VCEO(sus)

2N4921, MJE4921
2N4922, MJE4922
2N4923, MJE4923

-

Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

40
60
80

-

-

0.5
0.5
0.5

-

0.1
0.5

-

0.1

-

1.0

40
20
10

100

-

0.6

-

1.3

-

1.3

3.0

-

-

100

25

-

mAde

2N4921, MJE4921
2N4922, MJE4922
2N4923, MJE4923

Collector Cutoff Current
(VCE = Rated VCEO, VEB(off) = 1.5 Vde)
(VCE = Rated VCEO, VEB(off) = 1.5 Vde, TC = 1250 C)

13

Collector Cutoff Current

-

mAde

ICEK

mAde

ICBO

(VCB = Rated VCB, IE = 0)

-

Emitter Cutoff Current
(VEB = 5.0 Vde, Ie = 0)

-

ICEO

mAde

lEBO

ON CHARACTERISTICS
DC Current Gain (1)
(lc = 50 mAde, V CE = 1.0 Vde)
(lc = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)

9

-

hFE

Collector-Emitter Saturation Voltage (1)
(lC = 1.0 Ade,IB = 0.1 Ade)

10
12
14

VCE(sad

Base-E mitter Saturation Voltage (1)
lie = 1.0 Ade,IB = 0.1 Ade)

12
14

VBE(sat)

Base-Emitter On Voltage (1)
(lc = 1.0 Ade, VCE = 1.0 Vde)

12
14

VBE(on)

Current-Gain - Bandwidth Product
(lC = 250 mAde, VCE = 10 Vde, f = 1.0 MHz)

-

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

-

Small-5ignal Current Gain
(lC = 250 mAde, VCE = 10 Vde, f = 1.0 kHz)

-

Vde

Vde
Vde

SMALL-SIGNAL CHARACTERISTICS

(1) Pulse Test:

PW~300JJs.

Duty

MHz
pF

Cob

-

hfe

Cvcle~2.0%.

·'ndicates JEDEC Registered Data for 2N4921 Series.

FIGURE 3 -.TURN·ON TIME

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT

f1

5,0
VeeO-~---,

APPROX I ,TURN,-ON PULSE

+llV I

'I

~I,

Vi,

Vi,

o-"WO.--.pf-{

]. 1.0
.... O. 7
~ 0.5 Vee

I
II
I,

APPROX

1,$ 15n.

+llV

100 < I, $ 500 p.s

1,$ 15ns

DUTY CYCLE" 2.0%
APPROX 9.0 V
I,
TURN-OFF PULSE

V~e ~ ~OIV

~

~

- -----I

VlEloHl

Vee-30V
Ie/I, 20

3.0
2.0

t--

0.3
0.2

Ie"; =

11O~ UN~ESsl

NM
TJ = 25°C
.L1TJ=150°C

. .j...

I,

30V

60V
i>- .,- r- Vee
VlEloHI 2.0 V

,

"- i'"

O. 1 Vee 30 V
0.0 7 VlEloHl a
0.05
20
30
10

~

50 70 100
200 300
Ie, COLLECTOR CURRENT ImAI

500 700 1000

2N4921 thru 2N4923, MJE4921 thru MJE4923 (continued)

FIGURE 4 - THERMAL RESPONSE

1'0~~~~~~~~~~~~~i!~~~~~~~1l~~~"~~~~~~~~~~~~~~~~~1l
0.71--1- D 0.5

0.5

....
6
«w

0.3

::EN
a::::l

0.2

W« 0.2

%::E

1-",
1-0

r-0.1

~~

",w
~ ~ 0.07

~ ~ 0.05

~v.;

0.1
0.05

"
~I~~t
~~~ig~III~§~~ttITifLJ1'
....
H+-+-+

-

0.01

•

8Jcltl ,(t)(JJC
8JC 4.I6°C/W Max 2N4921·23H-H+++-t1

-MJE~49121~'2g3~mll~

0

8Jc=3.125
CIWMax
DCURV£S APPLY
FOR POWER
PULSE TRAIN SHOWN
READ TIME AI I •

.......
SINGLE PULSE
~ II,' ~
~=i=t=i1==E~tifit==1~=t=r=t=r~~t:~~~~i,~-r!ia===i=~T~JI~P'~I~-:T~e:;P~IP~11~8~JcI~t~I~l=~~i=~~~
0.021-

""::! 0.03

H

m

I I III
D~Tr lE • D= 1./1, --+I-+++Iffi+---t---t-tl-t---t-tl--+I+-H
11+--1--+1-+++-++++++1
0.01 '-~~~-:-'-~I-L-U:L:---'---::-':-'-7:--'-:':-'...L..l-':':---'-:!--:-'--f::---'-:'-:-'-.J....L.'::':----I.-f:"""~"--:-:-'--u.!'-...J....-:'-~:--'---'-J...J..J....U
0.01
0.02 0.03 0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0
5.0
10
20 30
50
100
200 300 500
1000
I. TIME (msJ
ACTIVE - REGION SAFE OPERATING AREA
FIGURE 5 - 2N4921 thru 2N4923
0
1. 0
~ 5. 0
:$ 3.0

iZ

~
a:

.....

1.0ms-

.....

1' ..... 5.0m" ...

TJ= 150°C

2. 0

i:l

FIGUR E 6 - MJE4921 thru MJE4923

de '\.

-r-- 1OO ps

\

:::>

~ 2.0
~

~

o

II

1.0

jI

II

5.0 1.0

10

20

lOOms
5.0 ms-" I- p-.;-1.0 ms

f-- -

,t... "\.\\.\

TJ1150~C

1. 0

1

~ ~:5

~ ~:

'1 2.0I 3.0T

3.0

I-

o

O. 1

~

\.

1. 0
SECOND BREAKOOWN
1
LIMITED
5 - - - - - BONDING WIRE LIMITED
o
- - - - - - - THERMAllY LIMITED @TC - 25°C
~ O. 3
~lSE CURVES APPLY BELDW
0.2 _RATED VCED
a:

tL

0
1. 0
5. 0

SECDND BREAKDOWN
LIMITED
BONDING WIRE LIMITED
'\.
~r o. 3
- - - - - --THERMAllY lIMITED@TC=25 0 C
I\.
0.2
PULSE CURVES APPLY BElDW
1
RATEO
VCEO
O.
1.0
2.0 3.0
5.0 1.0 10
20
30
50 10 100

H

30

50

10 100

VCE. COLlECTOR·EMITTER VOLTAGE (VOLTS)

VCE. CDllECTOR·EMITTER VOLTAGE (VDLTS)

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate le·VeE operation, i.e., the transistor J.I1ust not be subjected to greater dissipation than the curves indicate.
The dala of Figures 5 and 6 is based on TJjpk) = 15O"C; TC is variable depending on conditions. Second breakdown pulse limits are valid
for duty cveles to 10% provided TJ(pk)';;; 15O"C. At high case temperatures, thermal limitations will reduce the power that can be handled to
values less than the limitations imposed bV second breakdown. (See AN-415)
FIGURE 7 - STORAGE TIME
5.0
3.0
2.0

...~

1.0
~ 0.7
0.5

I
~

=

FIGURE 8 - FALL TIME
5.0

-- - -

-.!s:/I,

10

3.0
lel l,

:..c;.,

1\

Ie/I,

20

20

2.0

-I ..... ~

11.0

0.1
0.07
0.05

lel ,
'

20

'3.

t"" ......

"

~ 0.7
::j 0.5 !==Ie/I, = 10

-

~

0.3
0:2

--

"

r-..

-10-.

.:5 0.3

--::=r=:r

0.2

IJ = 25°C

~~:~r""

I" =1
..
150°C
1;=1, -~!r

10

20

30

50 70 100
200 300
Ie. COllECIOR CURRENT (mA)

500 700 1000

O. I
0.0.7
0.05
10

IJ =25°C
- - - IJ = 150°C
Vee=30V
1,,= I"
20

30

50

70

100

200

Ie. COLLECTOR CURRENT (mA)

2-266

300

500 700 1000

2N4921 thru 2N4923, MJE4921 thru MJE4923 (continued)

FIGURE 10 - COLLECTOR SATURATION REGION

FIGURE 9 - CURRENT GAIN

1.0

1000
700
500

in

vc ,

~ 300
15 200

...
~

TJ -150°C

a

100
2l 70

j

~ 0.8

~

III

r-....

II

Ic~O.lA

0.25 A

I I

~

25°C

TJ ~25°C

0.4

\

\

.

8 0.2
~

III

10
2.0 3.0 5.0

10

20 30

50

100

200 300 SOO

o

1000 2000

0.2 0.3 0.5

1.0

2.0 3.0 5.0
10
20 30
I,. BASE CURRENT ImAl

Ic. COLLECTOR CURRENT ImAl

FIGURE 11 - EFFECTS OF BASE-EMITTER RESISTANCE

1

30V-

Vc,

~ Ic~IOxlcES

I
1.2

7

10

Ie - 2 x le,;-'

...

•

ffi 10

~
J

........

......

Ic-lcES

1!i
10

.........

5

~

10'

100

200

1.5

52

i

50

FIGURE 12 - "ON" VOLTAGE

10'

~

II

1.0 A

0.6

~

55°C

20

I

"

0:5A

~

0
0

IIIII

III I

!:;

1.0V

~BT~f~~~~ROM

=== = I
-

FIGURE 13

•o

10

30

i

"- ......

I'.....

"- .......

r-......

~g

.....

~
0.9

V" 1..+1 @Iell,

.....

VeE 1..+1 @ lell, ~ 10
2.0 3.0 5.0

/

roo

IJES
L/

02

-0.1

"eve FOR Ve, (sit)
55°C TO

+100°C -

VeE

30V_ f---

!'!:! -1. 5

+0.1
+0.2
+0.3
V". BASE-EMITIER VOLTAGE IVOLTSI

Ov. FOR VIE

-2. 0

FIORW'fD
+0.4

1

+0.5

2-867

5
-2. 2.0 3.0 5.0

I)

1./

~
~-l. 0

0

REVfRSE

TJ = 100 0 C to 1500 C

...gs -0.5
./

1000 2000

I "I

~+1. 0
5

25°C

2~
10-:: .

200 300 500

I I II

~+1. 5

1

1

100

"APPLIES FOR lell,,,,hFE!2

<:;+2.0

100°1,

~Ic

50

FIGURE 14 - TEMPERATURE COEFFICIENTS

/

V

20 30

+2. 5

/

2

10

Ie, COLLECTOR CURRENT ImAl

1/

150°C

/

o

150

./

TJ

2.0V

0.3

i""-...
120

~::;.

10

0.6

FIGURE 13 - COLLECTOR CUTOFF REGION

•
•

10

1.4

V,,@VCE

r........

r........
60
90
TJ. JUNCTION TEMPERATURE lOCI

I

TJ ~25°C

10

I I

I--~

20 30 50
100 200 300 500
Ic, COLLECTOR CURRENT ImAl

1000

2000

2N4924 (SILICON)
2N4925
. . . NPN silicon annular transistors designed for
high-voltage, high-frequency amplifier applications.

MAXIMUM RATINGS

Symbol

2N492'4

VCEO

100

Collector-Base Voltage

VCB

100

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

200

mAdc

Total Device Dissipation
Derate above 25"C

TA = 25"C

PD

1.0
5.71

Total Device Dissipation
Derate above 25"C

TC = 25"C

Rating
Collector-Emitter Voltage

CASE 79
(TO-39)

Collector
connected to case

150
150

Vdc
Vdc

W
mw/"C

5.0
2B.6

PD

Unit

W
mW/"C

Operating Junction Temperature Range

TJ

-65 to +175

"C

Storage Temperature Range

T stg

-65 to + 200

"C

ELECTRICAL CHARACTERISTICS

I

2N4925

(1,

= 25'C unl....' .....i.. notod)

Symbol

Characteristic

Min

I Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 10 mAdc, IB = 0)

2N4924
2N4925

BVCEO

100
150

-

Vdc

Collector-Base Breakdown Voltage
(IC = 100 /lAdc, IC = 0)

2N4924
2N4925

BVCBO

100
150

-

Vdc

5.0

-

-

0.1

-

0.1

25
35

-

40

200

-

0.25

-

0.4

-

0.95

100

500

-

10

-

80

Emitter-Base Breakdown Voltage
(IE = 100 /lAdc, IC = 0)

BV EBO

Collector Cutoff Current
(VCB = 50Vdc, IE = 0)
(VCB = 75 Vdc, IE = 0)

ICBO

-

Vdc
/lAde

ON CHARACTERISTICS III
DC Current Gain
(IC = 1. 0 mAdc, VCE = 10 Vdc)
(Ic
(IC

hFE

= 10 mAdc, VCE = 10 Vdc)
= 150 mAdc, VCE = 10 Vdc)

Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)

VCE(sat)

(IC = 50 mAdc, IB = 5.0 mAdc)
Base-Emitter On Voltage"
(IC = 50 mAdc, VCE = 10 Vdc)

VBE(on)

-

Vde

Vdc

.DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 20 mAde, VCE = 20 Vde, f = 100 MHz)

fT

Collector-Base Capacitance
(VCB = 20 Vde, IE = 0, f = 100 kHz)

Ccb

Collector-Emitter Capacitance
(V BE = 1.0 Vdc, IC = 0, f = 100 kHz)

C eb

111 Pulse Test: Pulse Width ~ 300 /ls, Duty Cycle ~ 2. O%.

2-868

MHz
pF
pF

2N4926 (SILICON)
2N4927

. . . NPN silicon annular transistors designed for
high-voltage, high-frequency amplifier applications.

CASE 79
(TO-39)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N4926

2N4927

Unit

Collector-Emitter Voltage

v CEO

200

250

Vdc

Collector- Base Voltage

v CB

200

250

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Collector Current - Continuous

IC

50

mAdc

Total Device Dissipation

TA

~

25°C

PD

Derate above 25°C
Total Device Dissipation

TC

~

25°C

PD

1.0

W

5.71

mW/oC

5.0
28.6

Derate abovb 250C

W
mW;oC

Operating Junction Temperature Range

TJ

-65 to +175

°C

Storage Temperature Range

T

-65 to + 200

°C

stg

2-869

2N4926, 2N4927

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

200
250

--

Unit

OFF CHARACTER)STICS
Collector-Emitter Breakdown Voltage"
(IC= 10 mAde , IB = 0)
Collector-Base Breakdown Voltage
(IC = 0.1 mAde, IC = 0)

2N4926
2N4927
2N4926
2N4927

"

BVCEO

BVCBO

BVEBO

Emitter-Base Breakdown Voltage
(IE = 11. 0 mAde, IC = 0)
Collector Cutoff Current
(V CB = 100 Vde, IE = 0)

2N4926

I CBO

(V CB = 100 Vde, IE = 0, T A = 100°C)
2N4927

(VCB = 150 Vde, IE = 0)
(V CB = 150 Vde, IE = 0, T A = 100°C)
Emitter Cutoff Current
(V BE = 5.0 V
"Pulse

Width~

300 !,s, Duty Cycle

lEBO
~

200
250
7.0

-

Vde

Vde

Vde
!,Ade

-

0.1

-

10

-

0.1

0.1
10

/JAde

1. 0%

ON CHARACTERISTICS
DC Current Gain' 111
(IC = 3.0 mAde, VCE = 10 Vde)

hFE

(Ic = 10 mAde, VCE = 10 Vde)

15

-

(Ic = 30 mAde, VCE = 10 Vde)

20

200

(Ic = 50 mAde, VCE = 20 Vde)

20

-

Collector-Emitter Saturation Voltage 111
(IC = 10 mAde, IB = 1. 0 mAde)

VCE(sat)

(IC = 30 mAde, IB = 3.0 mAde)
Base-Emitter Saturation Voltage (11
(IC = 10 mAde, IB = 1. 0 mAde)

VBE(sat)

10

-

Vde

-

2.0

-

1.2

1.0

Vde
1.5

(IC = 50 mAde, IB = .3. 0 mAde)
Base-Emitter On Voltage
(IC = 30 mAde, VCE = 10 Vde)

VBE(on)

Vde

-

1.5

30

300

-

6.0

75

750

0.1

1.0

25

250

5.0

50

Jimhos

4.0

40

ohms

SMALL·SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 10 mAde, VCE = 20 Vde, f = 20 MHz)

IT

Output CapaCitance
(VCB = 20 Vde, IE = 0, I = 100 kHz)

CCb

Input Impedance
(IC = 10 mAde, VCE = 10 Vde, I = 1. 0 kHz)

h.
1e

Voltage Feedback Ratio
(Ic = 10 mAde, VCE = 10 Vde, I = 1. 0 kHz)

hie

Small-Signal Current Gain
(IC = 10 mAde, VCE = 10 Vdc, f = 1. 0 kHz)

hfe

Output Admittance
(IC = 10 mAde, VCE = 10 Vde, I = 1.0 kHz)

hoe
Re(h ie )

Real Part of Input Impedance
(IC = 10 mAde, VCE = 20 Vde, I = 5.0 MHz)
111 Pulse Width ~ 300 !,s, Duty Cycle ~ 2.0%

2-870

MHz
pF
kohm

-4
XI0

-

2N4928 thru 2N4931 (SILICON)
2N4930JAN &JTX AVAILABLE
2N4931 JAN & JTX

High-voltage PNP silicon annular transistors for
use in general-purpose high-voltage applications.

CASE 79
(TO-39)

Collector connected to case

MAXIMUM RATINGS

Rating

Symbol

2N4928

Collector-Emitter Voltage

VCEO

100

150

200

250

Vdc

Collector-Base Voltage

V CB

100

150

200

250

Vdc

Emitter-Base Voltage

VEB

4.0

4.0

4.0

4.0

Vdc

Collector Current - Continuous

IC

100

500

500

500

mAdc

Total Device Dissipation @TA = 25° C
Derate above 25°C

PD

0.6

1.0

1.0

1.0

Watt

3.4

5.71

5.71

5.71

mW/"C

Total Device Dissipation @T C = 25° C

PD

Watt

De rate above 25 0 C
Operating & Storage Junction
Temperature Range

T

J"

T

stg

2-871

2N4929 2N4930 2N4931

3.0

5.0

5.0

5.0

17.2

28.6

28.6

28.6

-65 to +200

Unit

mW/oC

°c

2N4928 thru 2N4931

(continued)

ELECTRICAL CHARACTERISTICS

(T, ~ 25'C)

Characteristic

Symbol

Min

Max

100
150
200
250

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 10 mAdc, IB = 0)

Collector-Base Breakdown Voltage
(IE = 0, IC = 100 /lAdc)

2N4928
2N4929
2N4930
2N4931
2N4928
2N4929
2N4930
2N4931

Emitter-Base Breakdown Voltage
(IE = 100 /lAdc, IC = 0)
2N4928

= 75 Vdc, IE = 0)
= 150 Vdc, IE = 0)

2N4930, 2N4931

Emitter Cutoff Current
(V BE = 3.0 Vdc. IC = 0)

2N4928, 2N4929

(V BE = 3.0 Vde. IC = 0)

2N4930. 2N4931

(V CB

BV CBO

BVEBO

Collector Cutoff Current
(V CB = 50 Vdc. IE = 0)
(V CB

BV CEO

ICBO

2N4929

lEBO

Vdc

-

Vdc
100
150
200
250

-

4.0

-

-

0.5

-

0.5

-

1.0

20

-

Vdc

/lAdc
0.5
1.0
/lAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 mAdc, VCE

= 10

= 10 Vdc)

All Types

hFE

mAdc, VCE = 10 Vdc) III

2N4928, 2N4929

25

200

= 10 Vde) (1)

2N4930, 2N4931

20

200

(I C = 50 mAde, VCE = 10 Vde) (11

2N4928, 2N4929

20

-

2N4930, 2N4931

20

-

(IC

(IC = 10 mAdc, V CE

(IC

= 30

mAde, V CE = 10 Vdc) 111

Collector-Emitter Saturation Voltage 111
2N4928, 2N4929
(IC = 10 mAde, IB = 1. 0 mAde)
2N4930, 2N4931

VCE(sat)

Base-Emitter On Voltage
(IC = 10 mAdc, V CE = 10 Vde)

VBE(on)

-

Vde
-

-

0. 5
5.0

-

1.0

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Gandwidth Product
(IC = 20 mAdc, V CE = 20 Vdc, f = 100 MHz)
2N4928. 2N4929
(IC = 20 mAde, V CE = 20 Vdc, f = 20 MHz)
2N4930. 2N4931

100

1,000

20

200

-

6.0

-

10

-

20
40

2N4929

-

80

2N4930, 2N4931

-

400

Collector-Base Capacitance
(V CB = 20 Vdc, IE = 0, f = 140 kHz)

2N4928

(V CB = 20 Vdc, IE = 0, f = 140 kHz)

2N4929

Ccb

(V CB = 20 Vdc, IE = 0, f = 140 kHz)
2N4930, 2N4931
Emitter-Base Capacitance
(V BE = 2.0 Vdc, IC = 0, f = 140 kHz)
(V BE

= 1.0 Vdc,

IC = 0, f

(V BE = O. 5 Vdc, IC = 0, f

111 Pulse Width" 300 /ls:

MHz

fT

= 140 kHz)
= 140 kHz)

2N4928

Duty Cycle" 2. 0%

2-872

C eb

pF

pF

2N4937 thru 2N4942 (SILICON)
Dual PNP silicon annular transistors especially designed for low-level, differential amplifier applications.

PNP

~

1

- II

Case 610-02

Case 654-01
2N4937
2N4938
2N4939

2N4940
2N4941
2N4942

Pins 4 and 8 omitted

PNP

Pin Connections, Bottom View
All Leads Electrically Isolated from Case

MAXIMUM RATINGS

(each side) (TA

Rating

= 25°C unless otherwise noted)
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

Vdc

Collector-Base Voltage

VCB

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current -Continuous

IC

50

mAdc

Base Current

IB

10

mAdc

Operating and Storage Junction
Temperature Range

TJ , T

stg

-65 to +200
One
Side

Both
Sides

500
2.9
250
1.5

600
3.4
350
2.0

°c

Total Device Dissipation
@ T A = 25°C
Metal Can
Derate above 25° C
Flat Pack
Derate above 25° C

PD

2-873

mW

mWtC
mW
mW/oC

2N4937 thru 2N4942

(continued)

ELECTRICAL CHARACTERISTICS (TA

=25°C unless otherwise noted)
Symbol

Characteristic

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC =10 mAde, IB =0)

BV CEO

Collector-Base Breakdown Voltage
(IC =10 /.LAde, ~ =0)

BV CBO

Emitter-Base Breakdown Voltage
(IE =10 /.LAde, Ie = 0)

BVEBO

Collector Cutoff Current
(V CB =40 Vde, ~ =0)

ICBO

Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)

lEBO

40

-

50

-

5.0

-

-

2.0

20

-

3.0

20

200

50

-

250

300

400

900

Vde
Vde
Vde
nAde

nAde

ON CHARACTERISTICS
DC Current Gain
(IC = 100 /.LAdc, VCE

hFE

= 10 Vdc)
(IC = 1.0 mAdc, VCE = 10 Vdc)
(IC = 10 mAdc, VCE = 10 Vdc)

40
50

250

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Prnduct
(IC =10 mAdc, VCE =10 Vdc, f
Output Capacitance
(V CB = 10 Vdc, IE

MHz

fT

=100 MHz)

Ccb

=0, f =140 kHz)

pF

-

3.0

5.0

-

7.0

10

1.0

4.0

10

-

3.0

10

Emitter Guarded
Input Capacitance
(V BE =O. 5 Vdc, IC = 0, f
Collector Guarded
Input Impedance
(IC = 1.0 mAdc, VCE

Ceb

=140 kHz)

Voltage Feedback Ratio
(IC =1.0 mAdc, VCE =10 Vdc, f

=1 kHz)

Smail-Signal Current Gain
(IC =1. 0 mAdc, VCE =10 Vdc, f

=1 kHz)

hfe

Output Admittance
(IC" 1. 0 mAde, VCE

=10 Vdc, f =1 kHz)

hoe

Noise Figure
(IC =100 /.LAde, VCE

=10 Vdc,

RS = 3.0 kl"!, f

k!l

hie

= 10 Vdc, f = 1 kHz)

h

pF

re

X 10- 4

50

-

-

5.0

15

50

/.Lmhos

NF

-

= 10 Hz to 15.7 kHz)

-

dB
4.0

MATCHING CHARACTERISTICS
DC Current Gain Ratio 1<
(IC =100 /.LAde to 1. 0 mAde, VCE

= 10 Vde)

2N4937,
2N4938,
2N4939,
(IC = 100 /.LAde to 1.0 mAde, VCE =10 Vdc, 2N4937,
2N4938,
T A = -55°C to +125°C)
2N4939,

Base Voltage Differential
(IC = 100 /.LA to 1.0 mAde, VCE

= 10 Vdc)

Base Voltage Differential Gradient
(IC = 100./.LAdc to 1.0 mAde, VCE

2N4940
2N4941
2N4942
2N4940
2N4941
2N4942

2N493 7, 2N4940
2N4938, 2N4941
2N4939, 2N4942

= 10 Vdc,

2N4937, 2N4940
2N4938, 2N4941
TA =-55°C to +125°C)
2N4939, 2N4942
• The lowest hFE reading .s taken as hFEI for thiS ratio

2-874

hFEl/hFE2

•

0.9
0.8

-

0.85
0.7

-

IVBEI-VBE21

~BEcVBE21
Il.TA

---

0.7
0.6

1.0
1.0

-

-

1.0
1.0

-

mVdc

5.0

3.0
5.0

20

10
20

-

/.LV/"C

-

2N4948 (SILICON)
2N4949
Silicon annular unijunction transistors designed for
military and industrial use in pulse, timing, triggering,
sensing, and oscillator circuits. The annular process
provides low leakage current, fast switching and low
peak-point currents as well as outstanding reliability
and uniformity.
CASE 22A
(TO-18 Modified)

(Lead 3 connected to case)

MAXIMUM RATINGS

(TA

=25°C unless otherwise noted)

Rating

Symbol

Value

Unit

RMS Power Dissipation*

PD

360*

mW

RMS Emitter Current

I

50

mA

Peak Pulse Emitter Current**

i

e

1. 0**

Amp

Emitter Reverse Voltage

VB2E

30

Volts

Storage Temperature Range

T

-65 to +200

"C

e

stg

* Derate 2.4 mW j"C increase in ambient temperature. Total power dissipation
(available power to Emitter and Base-Two) must be limited by external circuitry. Interbase voltage (V B2B1) limited by power dissipation,
VB2B1 = JRaB'PD,
** Capacitance discharge current must fall to 0,37 Amp within 3.0 ms and PRR
~ 10 PPS.

2-875

2N4948, 2N4949

(continued)

ELECTRICAL CHARACTERISTICS

CTA

=2S"C unless otherwise noted)

Characteristic

Symbol

Intrinsic Standoff Ratio
(V B2Bl " 10 V) Note 1

Min

Typ

Max

0.55
0.74

--

0.82
0.86

4.0

7.0

12.0

0.1

-

0.9

-

2.5

3.0

12

15

-

1/
2N4948
2N4949

Interbase Resistance
(V B2B1 "3.0V, IE =0)

Interbase Resistance Temperature Coefficient
(V B2B1 3.0 V, IE" O. TA "-65°C to +100"C)

"R BB

Emitter Saturation Voltage
(V B2B1 " 10 V, IE" 50 rnA) Note 2

VEB1 (sat)

Modulated Interbase Current
(V B2B1 " 10 V, IE" 50 rnA)

IB2 (mod)

Emitter Reverse Current
(V B2E "30 V. IBI ,,0)
(V B2E " 30 V, IBI = 0, TA " 125"C)

IEB20

Peak Point Emitter Current
(V B2Bl ,,25 V)

Ip
2N4948
2N4949

Valley Point Current
(V B2Bl ,,20 V, RB2 " 100 ohms) Note 2

IV

2N4948, 2N4949

Peak Pulse Voltage
(Note 3, Figure 3)

Base~One

VOBI

2N4949
2N4948

-

Maximum Oscillation Frequency
(Figure 4)

-

k ohms

RBB

2N4948, 2N4949

Unit

f(max)

%/"C
Volts
mA

-

5.0

10

nA

-

-

1.0

JlA

-

0.6
0.6

2.0
1.0

2.0

4.0

-

3.0
6.0

5.0
8.0

-

-

1. 25

-

JlA

-

rnA

Volts

MHz

NOTES
1. Intrinsic standoff ratio.
1],is defined by equation:

2. Use pulse techniques: PW = 300 JlS duty cycle 0::;::2% to avoid
internal heating due to interbase modulation which may result in
erroneous readings.

ry~IiL~1
V lllB1

Where Vp = Peak Point Emitter Voltage
Va281 :;:::; Interbase Voltage
V~EBJ) ::-0 Emitter to Base"One Junction Diode Drop
(0<0.5 V @ 10 pAl

FIGURE 1- UNIJUNCTION TRANSISTOR
SYMBOL AND NOMENCLATURE

3. Base·One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in SCR firing circuits and other types of pulse circuits.

FIGURE 2- STATIC EMITTER
CHARACTERISTICS CURVES

FIGURE 3 - VOBI TESTCIRCUIT
(Typical Relaxation Oscillator)

FIGURE 4 - F(max) MAXIMUM
FREQUENCY TEST CIRCUIT

v,

v,
+20 V

+20 V

_1_,-

. B,

B,

v,

C,
0.2 "f

-+-H----t---'-I,

2-876

R"
20 II

R"
20 II

TO
fREQUENCY
COUNTER

2N4957 (SILICON)
2N4958
2N4959

PNP silicon annular small-signal RF transistor designed
for high-gain, low-noise amplifier, oscillator, and mixer
applications.

CASE 20
(TO·72)
Active elements isolated from case

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current

Symbol

Value

Unit

VCEO
VCB

3U

VdC

3U

VdC

VEB

3.U

Vdc

IC
PD

3U

mAdC

<:lUU

mwatt
mW/"C
·c

Continuous

Total Device Dissipation @ T A - 25 C
Derate above 25·C
Operating & Storage Junction Temperature Range

ELECTRICAL CHARACTERISTICS

(TA

1.14

T J , Tstg

-Ii:> to +2UU

=25°C unless otherwise noted)

ISymbol I Min

Characteristic

Typ

Max

30

-

-

30

-

-

3.0

-

-

-

0.1

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAdc,
= 0)
Collector-Base Breakdown Voltage
(IC = 100/LAdc, IE = 0)

HVCEO

Emitter-Base BreaKdOwn VOltage
(IE = 100 !LAdc, IC = 0)
collector Cutoff Current
(VCB = 20 Vdc, IE = 0)
(VCB = 20 Vdc, 0, T A = 150·C)

HV EBO

Ia

BVCBO

ICBO

-

-

VdC
VdC
VdC
/LAdC

100

ON CHARACTERISTICS
(IC

urrent am
= 2. 0 mAdc, VCE

= 10 Vdc)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IE = 2.0 mAdc, VCE = 10 Vdc, f = 100 MHz)
2N4957
2N4958, 2N4959

1600
1500

--

-

0.4

0.8

-

-

8.0

2N4957
2N4958
2N4959

-

2.6
2.9
3.2

3.0
3.3
3.8

2N4957

-

5.0

-

17
16
15

-

-

13

-

C cb

Collector - Base CapaCitance
(VCB = 10 Vdc, IE 0, f = 100 kHz)

=

Time l:onstant
(IE = 2.0 mAdc, VCB = 10 Vdc, f = 63.6 MHz)

l:ouector-~ase

Fig. 1

= 2.0 mAdc,

rb'l:C
NF

Noise Figure
(IC = 2.0 mAdc, VCE = 10 Vdc, f = 450 MHz)
(IC

IT

VCE = 10 Vdc, RG = 50 ohms,

f = 1.0 GHz)

1200
1000

MHz

pF
ps
dH

FUNCTIONAL TESTS
l:ommon-t;mitter Amplilier l'ower LiIlin
(VCE = 10 Vdc, IC = 2.0 mAdc, f = 450 MHz)

2N4957
2N4958
2N4959

(VCE = 10 Vdc, IC = 2.0 mAdc, RG = 50 ohms,
f = 1. 0 GHz)

2N4957

2-877

Gpe

dB

2N4957, 2N4958, 2N4959 (continued)

RF PERFORMANCE DATA
FIGURE 2 - UNILATERALIZED POWER GAIN
versus FREQUENCY

FIGURE 1 - NOISE FIGURE AND POWER GAIN
TEST CIRCUIT
40

'"
~

pF

L2

r-

COMMON EMITTEr

1.0-10

..........

z

of:::-No'-,,71--::f1F--OVout

;;: 30

'"'"

"-

~
~

----,..L
O.OI"F

53

..

ffi

S
Z

~

'"

10

0.375 inches from and parallel to L2.
Note 1: Tap is 0.25 inches from hot end.

10

\

RS~150

~
'"::>

'"

z

4.0

'"

'"u:

6.0

'"
'"(5

(5

u.:

4.0

0.001

1"1

3.0

"/r-.

ro-

"..

,,-

...........

.;

'"

V

/"

NF

""

III
0.01

0.1

10

1000

100

z

'"'"
~

1

~

8.

'"

HUll

1.0

~

;;:
1

5.0

1.0

III 111111

iii

o

lQOOO

0.1

0.2

0.3

0.5 0.7 1.0

2.0

3.0

0
5.0 7.0 10

IC. COLLECTOR CURRENT (rnA)

FIGURE 6 - CONTOURS OF NOISE FIGURE versus
SOURCE RESISTANCE AND COLLECTOR CURRENT
1000
700
500

I'

.....

"- ..... i"""-..

f3 100

'"g::>

2o

TYPICAL

TYPICAL

~ 500

'"~

2

z

FIGURE 5 - CONTOURS OF NOISE FIGURE versus
SOURCE RESISTANCE AND COLLECTOR CURRENT

g

-

3

u: 2.0

1000
700

~ 200

500 700 1000 1500

300

Gpe

I. FREQUENCY. (MHz)

'" 300
~

200

z

2.0

o

70 100

1=450MHz
RS=q50
5.0 VCE= 10V

::>

z

50

6.0

~ 8.0

'"~

30

FIGURE 4 - NOISE FIGURE AND POWER GAIN
versus COLLECTOR CURRENT

Ic=1.0mA

iii

20

I. FREQUENCY (MHz)

V~~ ~1~lg'V

2N4957

I I

o

L3 - 0.5 inch loop of #16 AWG wire

(RS & IC OPTIMIZED FOR BROAD BAND PERFORMANCE)

II

"

VCE = 10 Vdc
IC=2.0mA

~

FIGURE 3 - NOISE FIGURE versus FREQUENCY
12

"

10

::>

Vee

VEE

r-

~

0.1 JlF-=

VCommon

20

N

~~

II - 1.0 inch long silver plated brass bar
stock 0.25 im:hes in diameter.
l2 - 1.625 inch long, same as L1.

COMMON 8ASE

I'.
...... 1'--.

r-

........ ~

......

;'\

1.8 dB,..,

1/2.0 dB
2.5 dB

70
0
0f--2N4957

0.2

~ 300 I\...
o
......
;;; 200
'-'
.........
z:

"'

..
~
~

70

~

50

T i

::>
~

j

0.3

0.5 0.7

1.0

2.0

r-....... .......
100

3.0 dB

3 5d

of-- ::~;5 ~:z
10
0.1

0;

3.0

5.0 7.0

if
10

......
r.....

........

......

r--..
.....

1.8 dB
~

-

i"-

l\ 20dB
II .

3.0 dB

0.2

NF-3.5dB

0.3

0.5

0.7 1.0

2.0

IC. COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

2-878

/

2.5 d8

30 -2N4957
VCE = 10 V
20 -1=200MHz
10
0.1

'\.

3.0

5.0 7.0

10

2N4957, 2N4958, 2N4959 (continued)

COMMON EMITTER CIRCUIT DESIGN DATA

= 10 Vdc. IC = 2.0 mAl

(VCE

FIGURE 7 - TRANSDUCER GAIN
versus FREQUENCY

so

FIGURE 8 - LINVILL STABILITY FACTOR
versus FREQUENCY

I:~lRa"nll~""I.-f_"""

I

4.0:=(N:OT=E:1)=::::::::i'-.::=:=:=::
\
Range of Uncondi·
3.0~-+-I-+-+-++1+H---\-+- Potential tional
_

(NOTE 1)

0

r- to-- k= 1.2

..........

0

t-

I--

r---I-

r-r-- t--

0

r- .............. 2.0 \
r- .............. ;;;-- ~

--

-

t;o....

5

0
'45

70

100

200

~

\

'"c

~

I\.

~

r-.

1.01--++--+--+-++++l-I--++--+--+--+~J+t--~

500 600

300

f. FREQUENCY (MHz)

FIGURE 9 - LOAD ADMITTANCE
versus FREQUENCY (REAL)
2.0

k= 10

11

.....s
u

z
g

1.5 ....

9

4.0
1.0

~

c

....

r--

-

0.5

-'

........

--

2.0

r-

I;c

f

1.2

~

'"

w

..........

'~"'
Q

0
45

1E 6.0
..s

(NOTE 1)

........ i""'"

70

,'"
r-

200

100

'"
........

~

FIGURE 10 - LOAD ADMITTANCE
versus FREQUENCY (IMAGINARY)
(NOlTE

c

~

9" 3.0

"

-::t--..... ....;::

"

500 600

300

k'l,~,

~~~ ~

~

c

i'...

~

2.0

~

1.0

::
z
iii

!...
.,.

"'"

~

o

45

70

~
100

V

~

A~

~

200

0

~V

l- I70

./

k= 10

4.0

V ....

100

200

"-

1.2

300

4.0
10

"

~~

If:

~ 17

A ~V

~
~ t:/
~ .......

0

~
0

SOO 600

70

100

200

300

500 BOO

f. FREQUENCY (MHz)

f. FREQUENCY (MHz)

"c" is less than

NOTE 1

Figures 7 through 18 are included to assist the circuit designer in determining the stability of his particular circuit. Two stability criteria are given in
these figures.
The Linvill "c" factor· is a measure of transistor stability when the input
and output are terminated in the worst-case (open circuit) condition. When
• "Transistors and Active Circuits." Linvill and Gibbons. McGraw-Hili. 1961.

~

k= 1.2

2.0 i""'-- ~

~~

500 600

300

f. FREQUENCY (MHz)

o --INOTE 11

0

V

.A V

FIGURE 12 - SOURCE ADMITTANCE
versus FREQUENCY (IMAGINARY)

(NOTk 1)

0
45

J

c

FIGURE 11 -SOURCE ADMITTANCE
versus FREQUENCY (REAL)

0

i)

5.0

.. 4.0

f. FREQUENCY (MHz)

~V

Stability

2.01---+--J-+-+-++I+H--+-+,Ir.\+-+-++++++-ol

f. FREQUENCY (MHz)

"B

Instar:!ty

1.0, the circuit is unconditionally stable. When "c" is greater
than 1.0, the circuit is potentially unstable.
The Stern "K" factor t has been defined to determine the stability of a
practical amplifier terminated in finite load and source admittances. If UK"
is greater than 1.0, the circuit will be stable. If less than 1.0, the circuit will
be unstable. For funher details, see Application Note AN·215.
t "Stability and Power Gain of Tuned Transistor Amplifiers." Arthur P. Stem. Proc.
I.R.E•• March 1967.

2-879

2N4957, 2N4958, 2N4959 (continued)

COMMON BASE CIRCUIT DESIGN DATA
(VCB = 10 Vdc. Ie = 2.0 mAl
FIGURE 14 - LINVILL STABILITY FACTOR
venus FREQUENCY

FIGURE 13 - TRANSDUCER GAIN
venus FREQUENCY
40
k =1.2
0

5

---

I"-

2.0

r- 1-1-....

r-- .!!.

r- ~ r-

--......

0

r-

~

~

~

1"--1"-

~

~

300

200

700

500

-1 0

-20
45

70

100

12

0.8

10 r-

~

B.O r-

....
z

..
c

«

~ 6.0

c

/
k=lY

0.6

/

./
0.4/

r-

./

0.2

-'

0:

~
~ 2.0

0:;"'200
300

-"

/ ' /' /
2.y / '

/

700

0
200

300

500

~
....
z
;5

/ ...,.
/4.0/ ...
V/y ...

«

..

./

160

~

~ 120
0:

::>

1000

....
0:

~
~

0:

:B

:

4.0

700

1000

~ 2.0

z

~

1500

:!

- - --

k= 1.2thru 1~

>-

~4z

80
40

--

--

0
200

I-

~

.;!

~ 1.2

300

500

700

r\.

k= 1.2

..--

2.0

1000

1500

4.0
10

--

(NOTE 11

i""'"

t-.... r:::::::
I-

....

~~~
.....

0

~'"
~

1000

700

FIGURE 18 - SOURCE ADMITTANCE
venus FREQUENCY (IMAGINARY)

o~

-

500

t. fREQUENCY (MHz)

(NOTE 11

...

300

'I'

0

--

"" ....

~

0
200

-"

-

k~
k-

51

:5

6.0

/

/

0

....
z

!::

10

FIGURE 17 - SOURCE ADMITTANCE
versus FREQUENCY (REAL)

;;; 200

1500

(NOTE 11

12

~

240

~

1000

14

~ 8. 0
~

t. fREQUENCY (MHzl

!

700

FIGURE 16 - LOAD ADMITTANCE
venus FREQUENCY (IMAGINARY)

c

1.2
500

500

300

~

k=11

I I I I U..H:±:t

0:

'"

j

4.Il/

I

S

(NOTE 11

I

.....V /

u.

:: 4.0 r-

/

/

200

t. fREQUENCY (MHz)

FIGURE 15 - LOAD ADMITTANCE
venus FREQUENCY (REAL)

jw

I

II

f

t. fREQUENCY (MHz)

a

I\.
\

I

i

1500

1000

.~

-1 5

1'0...

10

\.

-

t;

r--r--

(NOTE 11

,.....~

Range of Range of
Unconditional Potential
Stability Instability

~-5. 0

r--

I-r-.

-

5.0

(NOTE 11

~

0
0
0

1500

t, fREQUENCY (MHz)

300

500

700

f. fREQUENCY (MHz)

2-880

1000

"

1500

2N4957, 2N4958, 2N4959 (continued)

FIGURE 19 - SMALL-SIGNAL CURRENT GAIN
versus FREQUENCY
2

..,

1

8

z

;;:
CI

24

ffi

0

r-

::::

~
~
~

-8.0
-10
-12

'\

r-......

r- VCE = 10 Vdc

r--

Re Ihlel

20

30

50

70 100

200

75

..........

..........

"'-

50
45

-30
-6.0 -4.0 -2.0

500 700 1000 1500

300

.......

-20
-22
-24
-26
-28

r.::::

I r 2jOnti

-4.0
10

~-18

.....

li.-

4. 0

100"-

:5. -16

-1m (hlel

VCE - 10 Vdc
Ic=2.0mA -

"'

~-14

~

~

1\

8. 0

6i
j

1""- ..... ,

,

12

~«

!hlelldBI

r-..

16

FIGURE 20 - POLAR hfe
-2.0 r--- 1500
- M~o'ls~ooo
700 500
-4.0
~ 300
-6.0
'II 200

2.0

f. FREQUENCY IMHzl

FIGURE 21 -

t

2.0
1.8

'"f

tr versus COLLECTOR CURRENT

1. 6

~

:i
I

~

«

12

14

16

18

./
/

1. 2

1.0

z

;;: 50

/

'">~
'"
3
'"'"'

I

O. 8

~

0.4

a'"

o. 2

2N4957
VeE = 10 Vdc

00

2N4957
VCE 10 Vdc

70

~ O. 6

~

10

FIGURE 22 - DC CURRENT GAIN

I-"'"

/

~ 1.4

z

8.0

100

~

'"

6.0
Re (hlel

i' 2.2
:!

4.0

2.0

4.0

6.0

lO

E 20

r---

8.0

10

10

0.1

0.2 O.l

0.50.71.0

2.0 3.0 5.07.0 10

20 30

50 70100

IC. COLLECTOR CURRENT ImAI

IC. COLLECTOR CURRENT ImA)

FIGURE 23 - CAPACITANCE

FIGURE 24 - COLLECTOR CHARACTERISTICS

3.0
2N4957
Tc = 25°C

2. 0

a.;.

~

1. O~ Cib

w

~

O. 7

5

o. 5

«

~

I"-

i--

VERTICAL SCALE
IC = 1.0 mA/DIV

Cob

J
Ccb

o.3

Ib = 0.02 mA/STEP

o. 2
o. 1

0.1

0.2.

0.5

1.0

2.0

5.0

10

20

50

100

HORIZONTAL SCALE - VCE = 1.0 V/OIV

REVERSE VOLTAGE (VOLTSI

Apply reverse bias between collector
and base and measure capacitance
between these terminals. Emitter is
open.

Apply reverse bias between emitter
and biS8 and measure capacitance
be~een these tenninals. Collector is

open.

2-881

CCb

~

Apply reYane bias between collector
and base and measure capacitance
between these terminals. Emitter is
guarded.

2N4957, 2N4958, 2N4959 (continued)

Y

PARAMETERS versus CURRENT
f= 450 MHz

COMMON BASE

COMMON EMITTER

Ves= 10 Vdc - - Ves= 15 Vde - -

VeE = 10Vde - - VeE = 15 Vde -

-

70
60

..
..

40

~

20

~

10

9ib

w

<.>

z

lI-

i1
0

50

~

30

--=

;r::.::-:: F-

-

-:::-:::: ~~

~'

I-

!!

F~

-

-

~i1

..

o

f-:"::

.§
w

12

..
..'"

<.>

10

z

0

60

I-

:::>

.... ...-:::

;,....-

p r....

4.0

-

FIGURE 28 - FORWARD TRANSFER ADMITTANCE
w

-

<.>

~

..'"
io

~

60

~

~

:f"i

".

/)'1"

80

z

A

~E40
~.§

-1Iib

rT

ii!
~

~

....

b::"=

-

-

/

l-

/

20

-

!!
,;, 2.0
>

+jlltb

c

~

6.0

I--

- :::.

~~

t: 8.0

-jbib

80

~.§

+jbje

I-

~

~e40

!

14

Go

'"~!
'"
~

B

ii

FIGURE 27 - FORWARD TRANSFER ADMITTANCE
w

<.>

-

16

80
:IE
~

-

FIGURE 26 - INPUT ADMITTANCE

FIGURE 25 - INPUT ADMITTANCE
in
0
:c

-

I
-,--

1""-

-jilt•

- -

20

gte

~

!

0

FIGURE 30 - OUTPUT ADMITTANCE

FIGURE 29 - OUTPUT ADMITTANCE
4. 0

0

B

4.0

ii

F-"

.§

+jbob

w
<.>

~-

,-

~-

3.0

+jboe

z

~

..

~ 2.0

0

I-

:::>

:=is

0

1. 0
goo

9Gb

0

FIGURE 32 - REVERSE TRANSFER ADMITTANCE

FIGURE 31 - REVERSE TRANSFER ADMITTANCE
B

6

w

<.>

-jb,b

1.4

~

..'"

i1 1. 2

p.~ b-::::"'"

o

-jb..

~I

4

~E1. 0

.. E

"'.,w

r--

i'

-- -

""11,.":';0,01

I-

ffi

2

O.8

1:;

""1I,b

'"

>~ O. 6

0
2.0

4.0
6.0
IC. COLLECTOR CURRENT (mAdel

8.0

10

o

2.0

4,0

6.0

IC. COLLECTOR CURRENT (mAdel

2-882

8.0

10

2N4957, 2N4958, 2N4959 (continued)

COMMON BASE Y PARAMETER VARIATIONS
(VCB = 10 Vdc.

Ie = 2.0 mAde)

Y PARAMETERS versus FR EQUENCY

POLAR Y PARAMETERS versus FREQUENCY

FIGURE 33 - Yib INPUT ADMITTANCE
60
~

E

.........

9ib

50

FIGURE 34 - Yib INPUT ADMITTANCE
0
-5 .0

.§
~

~

40

'"

~

~ 30
i!
C



2.0

70

~

1-6
1.4

~

100

-200

+jbob

-50

-40

-30

-20

gob

500

8. 0

f-f~oo
/-1000

700

1000

100
45

1500

2.0

4.0

6.0

8.0

10

-jbrb/

V'.
~

~~o. 8
~ O.6

0

45

i.- ~
100

200

16

18

20

22

I

1200
-1. 6

1500

-Q,b

70

14

1000

2

./

'"ffi o.4

12

FIGURE 40 - Yrb REVERSE TRANSFER ADMITTANCE
o
45 MHz
100
200
~oo
-0.4
450
600
8
750

JL J.

0::-

o. 2

30

gob (mmhos)

~.,gI. 0

f

20

300
2. o 200

./

300

~ 1.2

0::

10

-10

450

./

..I--""'"

ffi-;;

i;;

...........

o 750
4. o 600

FIGURE 39 - Yrb REVERSE TRANSFER ADMITTANCE
1. 8

1~

1500 MHz

f. FREQUENCY (MHz)

w

1000

.§ 6.

«

t>

60

/200

~

to- 4.0

~

55

FIGpRE 38 - Yob OUTPUT ADMITTANCE
2
~ 1500 MHz
o I

OUTPUT ADMITTANCE

"'
6.0
C

C

50

9fb (mmhos)

w

u

45

,600

0
-60

1500

~

E

40

0-i~q
45.1.

\
200

-

.§

+ibtb

100

/"
./ 450

]' 30

f. FREQUENCY (MHz)

.§

T

35

V-

FIGURE 36 - Yfb FORWARD TRANSFER ADMITTANCE

.........

llib

70

30

600

50

.

'"z
~
ii

~

-- --

1.01
1.00

V

i-"'"

0.98
0.97
-60

ffi
::l<

:;

'"
0

7.0
6.0

l!S

5.0

'"'"

4.0

'"%z

3.0

...~

~

0.99

0.96
-75

V

....

::>
t.>

t.>

i$

\

2.0

+25

+50

+75

+100

-75

+125

TA, AMBIENT TEMPERATURE (DC}

'" --i"-....

1.0

o
-25

'\.

-50

-25

+25

+50

+75

TA, AMBI ENTTEMPERATU RE (DC}

2-888

+100 +125

2N4993

(continued)

FIGURE 4 - OFF-8TATE BLOCKING CURRENT
versus TEMPERATURE

FIGURE 3 - HOLOING CURRENT vorsus TEMPERATURE
B.O

~:::;
«
~

6.0

~

5.0

~

4.0

0

"=>
'-'
~

or.

I-

~

\

\

=

5.0 v- -

1.0

'"
~

\

~

2.0

'" --

~

-25

+25

+50

/

0.1

«

0

~

1.0
-50

VF

"i3"
'"

3.0

-75

1

to 25 0 C

'"z

§

10.0

Norm~lized

7.0

~
~

0

'"
+75

+100

0.01

+125

-75

-50

./
./
-25

TA, AMBIENT TEMPERATURE laC)

+25

+50

+75

+100

+125

+150

+175

TA, AMBIENT TEMPERATURE 10GI

FIGURE 5 - ON-STATE VOLTAGE.ersus FORWARD CURRENT

FIGURE 6 - PEAK OUTPUT VOL TAGE (FUNCTION OF RL AND C e )

10

7.0

-

1.0

r-

6.0

U;

':;
0

2:
w

'"':;« 4.0
0

>

I-

3.0

0

2.0

~

0.1

r-r--

1-'''\
"
V K I><
5.0

V

r>

V
V

-

~Rl=500n

::::

" Rl=100S1
['.. Rl = 50 n
Rl = 20 n

a

R~=5iOI

>

1.0

o

0.0 1
1.0

2.0

3.0

4.0

TA = 25 0C

0.01

5.0

VF, FORWARO ON-STATE VOLTAGE IVOLTS)

0.02

0.05

0.1

0.2

I

0.5

1.0

2.0

5.0

10

Ce, CHARGING CAPACITANCE I"F)

FIGURE 7 - PEAK OUTPUT VOL TAGE TEST CIRCUIT
Ce

10 K

1/

~~ om.

2-889

+mv

2N4993

(continued)

FIGURE 8 - TURN·ON TIME TEST CIRCUIT
MERCURY RELAY

1.0 kn
ANOOE
VOLTAGE

-=-

12 V

I.okn om

~F

Vs

O.U.T.

I

---..I
I

VF

ton I---I

VF +0.1 IVs-VFI

Turn-on timeismeasuredfromthetime

Vs is achieved to the time when

the anode voltage drops to within 90% of the difference between

Vs and V F.

FIGURE 9 - TURN·OFF TIME TEST CIRCUIT

lOon

500

ANODE
VOLTAGE

n

~------~~------~A2

5.0 V

MERCURY
RELAY
IN.O.I

O.U.T.

' - - - - - -.....- - - - - - - - - - - ' Al

With the SBS in conduction and the relay contacts open, close the contacts to cause anode A2 to be driven negative. Decrease C until the SBS
just remains off when anode A2 becomes positive.

The turn-off time, toff' is the time from initial contact closure and until anode A2 voltage

reaches zero volts.

FIGURE 10 - DEVICE EQUIVALENT CIRCUIT, CHARACTERISTICS AND SYMBOLS
+1

A2

A2

+V

j

Al
CIRCUIT SYMBOL

Al
EQUIVALENT CIRCUIT

IH2

VF2
-I

CHARACTE RISTICS

2-890



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:06 17:31:49-08:00
Modify Date                     : 2017:06:06 18:12:35-07:00
Metadata Date                   : 2017:06:06 18:12:35-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:890e5d39-6c39-f24a-8f8a-208abcda6b9e
Instance ID                     : uuid:8a1929c5-4856-dc46-bc20-84cf640c3c46
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1025
EXIF Metadata provided by EXIF.tools

Navigation menu