1972_National_Linear_Integrated_Circuits 1972 National Linear Integrated Circuits

User Manual: 1972_National_Linear_Integrated_Circuits

Open the PDF directly: View PDF PDF.
Page Count: 488

Download1972_National_Linear_Integrated_Circuits 1972 National Linear Integrated Circuits
Open PDF In BrowserView PDF
Introduction

Here is the new Linear Data Handbook from National. It gives complete specifications
for devices useful in. building nearly all types of electronic systems, from communications and consumer-oriented circuits to precision instrumentation and computer designs.
For information regarding newer devices introduced since the printing of this handbook, or for further information on listed parts, please contact our local representative,
distributor, or regional office.

LINEAR

I

I

I

Voltage
Regulators

Operational
Amplifiers

I

I

I

I

Sense
Amplifiers

Comparatorsl
Buffers

Communication
Circuits

Hvbrids
Op Amps

DIGITAL

I

I

I

I

Analog
Switches

Read Onlv
Memories
Shift
Registers

Logic
Elements

I

I
I

Series
54/74

Series
74H

Hvbrid
Clock
Drivers

I

I

DTL

TTL

MOS

I

I

I,*

Tri-State
Logic

Series Hvbrid
54L/74L Drivers

HYBRIDS

Interface
Circuits
Series

Drivers

Analog
Switches

930

TRANSISTORS

I

NPN & PNP Small Signal
Silicon Transistors

I

I

Field Effect Transistors

~

Amplifiers &
Switches

Monolithic
Duals

Operational!
Amplifiers

Table of Contents

Introduction . . . . . . . . . . . .
Alpha-Numerical Index . . . . .
Edge I ndex by Product Family

vii
xi

Product Guides
Military High Speed Operational Amplifiers
Military General Purpose FET Operational Amplifiers
Military Special Purpose Operational Amplifiers
Military Sample & Hold Amplifiers . . . . . . . . . .
Military Operational Amplifier Selection
Industrial High Speed Operational Amplifiers . . . .
Industrial General Purpose FET Operational Amplifiers.
Industrial Operational Amplifier Selection . . . . . .
Commercial Operational Amplifier Selection . . . .
Commercial Special Purpose Operational Amplifiers
Commercial Sample and Hold Amplifiers
Voltage Regulators .. .
Voltage Comparators . . . . . . . . . . . .
Interface Devices
............. .
FET Operational Amplifier Cross Reference
Linear Cross Reference . . . . . . . . . . .

7
7
8
9
10
12
13

Voltage Regulators
LM100/LM200/LM300 Voltage Regulator
LM103 Regulator Diode . . . . . .
LM104/LM204 Negative Regulator . . . .
LM304 Negative Regulator
LM105/LM205/LM305 Voltage Regulator
LM305A Voltage Regulator . . .
LM109/LM209 5-Volt Regulator ..
LM309 5-Volt Regulator . . . .
LMl13 Reference Diode . . . . .
LM340 Series Voltage Regulators
LM376 Voltage Regulator . . . . .
LM723/LM723C Voltage Regulator

20
23
26
29
32
34
37
40
43
48
51

Operational Amplifiers
LHOOOl Low Power Operational Ampl ifier . . . . . . . . .
LHOOOl A/LHOOOl AC Micropower Operational Amplifier
LH0002/LH0002C Current Amplifier . . . . . . . . . . . .
LH0003/LH0003C Wide Bandwidth Operational Amplifier
LH0004/LH0004C High Voltage Operational Amplifier
LH0005/LH0005A Operational Amplifier . . . . . . . . . . .
LH0005C Operational Amplifier . . . . . . . . . . . . . . .
LH0020/LH0020C High Gain Instrumentation Operational Amplifier.
LH0021/LH0021 C 1.0 Amp Power Operational Amplifier . . . . .
LH0022/LH0022C High Performance FET Operational Amplifier.
LH0023/LH0023C Sample and Hold Circuit . . . . . . . .
LH0024/LH0024C High Slew Rate Operational Amplifier
LH0032/LH0032C Ultra Fast FET Operational Amplifier
LH0033/LH0033C High Speed Buffer . . . . . . . . . . . .
LH0041/LH0041C 0.2 Amp Power Operational Amplifier ..
LH0042/LH0042C Low Cost FET Operational Amplifier
LH0043/LH0043C Sample and Hold Circuit . . . . . . . . . .
LH0052/LH0052C Precision FET Operational Amplifier .. .
LH0062/LH0062C High Speed FET Operational Amplifier ..
LH10l Operational Amplifier . . .
LH201 Operational Amplifier .
LM10l Operational Amplifier ..
LM201 Operational Amplifier

1

1
2
2
3
4
4
5

6

17

57
60
63

66
68
71
74
76

78
85
92
100
103
108

78

85
92

85
112
114
117
120
123

iii

Operational Amplifiers (Con't)
LM101A/LM201A Operational Amplifier
LM301 A Operational Amplifier
LM102 Voltage Follower ..
LM202 Voltage Follower ... .
LM302 Voltage Follower ... .
LM 107 /LM207 Operational Ampl ifier
LM307 Operational Amplifier . . .
LM108/LM208 Operational Amplifier
LM308 Operational Amplifier . . .
LM108A/LM208A/LM308A Operational Amplifier
LM110/LM210 Voltage Follower .. .
LM310 Voltage Follower . . . . . .
LM112/LM212 Operational Amplifier
LM312 Operational Amplifier . . .
LM216/LM216A/LM316/LM316A Operational Amplifier
LM118/LM218 Operational Amplifier
LM318 Operational Amplifier •.
LM709 Operational Amplifier " .
LM709A Operational Amplifier .
LM709C Operational Amplifier .
LM725A/LM725/LM725C Instrumentation Operational Amplifier.
LH740A/LH740AC FET Input Operational Amplifier
LM741 /LM741 C Operational Amplifier . . . .
LM747/LM747C Dual Operational Amplifier .
LM748/LM748C Operational Amplifier . . . . .
LM1558/LM1458 Dual Operational Amplifier.
LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifier
LH2108/LH2208/LH2308 Dual Super Beta Operational Amplifier.
LH2110/LH2210/LH2310 Dual Voltage Follower .. .
LH2111 /LH2211 /LH2311 Dual Voltage Comparator .. .
LM3900 Quad Amplifier . . . . . . . . . . . . . . . . . . .
LM4250/LM4250C Programmable Operational Amplifier
LH24250/LH24250C Dual Programmable Micropower Operational Amplifier

Voltage Comparators/Buffers
LM 106/LM206 Voltage Comparator/Buffer
LM306 Voltage Comparator/Buffer
LM111/LM211 Voltage Comparator
LM311 Voltage Comparator .
LM710 Voltage Comparator . . .
LM710C Voltage Comparator
LM711 Dual Comparator . . . . .
LM711C Dual Comparator
LM1514/LM1414 Dual Differential Voltage Comparator
Consumer Circuits
LM170/LM270/LM370 AGC/Squelch Amplifier . . .
LM171 /LM271 /LM371 Integrated RF/IF Amplifier
LM172/LM272/LM372 AM IF Strip . . • . . . . . .
LM273/LM373 AM/FM/SSB IF Amp/Detector
LM274/LM374 AM/FM/SSB IF Video Amp/Detector
LM175/LM275/LM375 Oscillator and Buffer with TTL Output
LM380 Audio Power Amplifier . . . . . .
LM381 Low Noise Dual Preamplifier
LM382 Low Noise Stereo Preamplifier . .
LM565/LM565C Phase Locked Loops . .
LM566/LM566C Voltage Controlled Oscillator
LM567/LM567C Tone Decoder . . . . . . . . .
LM703L Low Power Drain RF/IF Amplifier .
LM733/LM733C Differential Video Amplifier.
LM746 Color Television Chroma Demodulator
LM1303 Stereo Preamplifier . . . . . . . . . .
LM1304 FM Multiplex Stereo Demodulator .
LM1305 FM Multiplex Stereo Demodulator .
LM1307/LM1307E FM Multiplex Stereo Demodulator
LM1310 FM Stereo Demodulator . . . . . . . . . . . .
LM1310E FM Stereo Demodulator . . . . . . . . . . . .
LM1351 FM Detector, Limiter and Audio Amplifier .
LM1496/LM1596 Balanced Modulator-Demodulator
LM1800 FM Stereo Demodulator
LM1845 Signal Processing System
LM2111 FM Detector and Limiter
LM2113 FM Detector and Limiter
LM3028A/LM3028B Differential RF/IF Amplifier
LM3053 Differential RF/IF Amplifier . . . . . . . .

iv

126
131
135
138
141
144
148
152
155
158
161
166
171
174

177
180
185
190
193
196
199
205
207
209
213
216
218
220
222
224
226
234
239

241
244
247
252
257
260
263
266
269

271
275
281
285
285
293
298

302
305
309
314
317
321
323
327
329
331
331
331
337
339
341
343
347
349
351
353
355
355

Consumer Circuits (Con't)
LM3064 Television Automatic Fine Tuning
LM3065 Television Sound System
LM3066 Chroma Signal Processor
LM3067 Chroma Demodulator
LM3070 Chroma Subcarrier Regenerator
LM3071 Television Chroma IF Amplifier
LM3075 FM Detector/Limiter and Audio Preamplifier

359
361
363
366
369
373
375

Transistor Pairs
LMl14/LMl14A Match-ed Dual Monolithic Transistors
LM'115/LM 115A Matched Dual Monolithic Transistors

377
377

Analog Switches
AH0014/AH0014C DPDT MOS Analog Switch . . . . . . . . . . . . . . . . .
AH0015/AH0015C Quad SPST MOS Analog Switch . . . . . . . . . . . . . . .
AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch .
AH0120 Series Analog Switches .
AH0130 Series Analog Switches.
AH0140 Series Analog Switches.
AH0150 Series Analog Switches.
AH0160 Series Analog Switches ..
MM450/MM550 MOS Analog Switch
MM451/MM551 MOS Analog Switch
MM452/MM552 MOS Analog Switch
MM454/MM554 4-Channel Commutator . . . .
MM455/MM555 MOS Analog Switch . . . . . . . . . . . . . .
AM1000 Silicon N-Channel High Speed Analog Switch
AM1001 Silicon N-Channel High Speed Analog Switch.
AM1002 Silicon N·Channel High Speed Analog Switch.
AM2009/AM2009C 6-Channel MOS Multiplex Switch ..
AH2114/AH2114C DPST Analog Switch . . . . . . . . .
AM3705/AM3705C 8-Channel MOS Analog Multiplexer.

393
389
396
396
396
398
400
402

Interface Circuits
LM350 Dual Peripheral Driver
LM1489/LM1489A Quad Line Receiver
LM75450A Dual Peripheral Driver
LM75451 A Dual Peripheral Driver
LM75452 Dual Peripheral Driver
LM75453 Dual Peripheral Driver
DM7820/DM8820 Dual Line Receiver
DM7820A/DM8820A Dual Line Receiver
DM7822/DM8822 Dual Line Receiver ..
DM7830/DM8830 Dual Differential Line Driver
DM7831/DM8831 TRI-STATE Line Driver
DM7832/DM8832 TRI-STATE Line Driver . . .

405
407
405
409
409
409
411,
414
418
421
424
424

Sense Amplifiers
LM5520/LM7520
LM5521/LM7521
LM5522/LM7522
LM5523/LM7523
LM5524/LM7524
LM5525/LM7525
LM5528/LM7528
LM5529/LM7529
LM5534/LM7534
LM5535/LM7535
LM5538/LM7538
LM5539/LM7539

Dual
Dual
Dual
Dual
Dual
Dual
Dual
Dual
Dual
Dual
Dual
Dual

Mil Standard 883

.

Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core

Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory

Sense
Sense
Sense
Sense
Sense
Sense
Sense
Sense
Sense
Sense
Sense
Sense

Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier
Amplifier

379
379
379
382
382
382
382
382
389
389

389

431
432
436
436
438
438
440
440

442
442
444
444
451

Mil Standard 38510

451

New Products

453

Definition of Terms

461

Physical Dimensions
Additional Linear Information Available
Linear Applications Catalog
Literature Index

465

v

Alpha-Numerical Index

AH0014/AH0014C DPDT MOS Analog Switch . . . . . . . . . . . . . . . . . . . .
AH0015/AH0015C Quad SPST MOS Analog Switch . . . . . . . . . . . . . . . .
AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch ..
AH0120 Series Analog Switches.
. ....... .
AH0130 Series Analog Switches.
. ..... .
AH0140 Series Analog Switches.
AH0150 Series Analog Switches.
AH0160 Series Analog Switches.
AH2114/AH2114C DPST Analog Switch . . .
AM10bo Silicon N-Channel High Speed Analog Switch
AM1001 Silicon N-Channel High Speed Analog Switch
AM1002 Silicon N-Channel High Speed Analog Switch
AM2qQ9/AM2009C 6-Channel MOS Multiplex Switch .
AM3705/,LXM3705C 8-Channel MOS Analog Multiplexer.
DM7820/DM8820 Dual line Receiver . . . .. . . . . . . .
DM7820A/DMS820A Dual line Receiver . . . .
DM7822/DMSS22 Dual Line Receiver . . . . . .
DM7830/DM8830 Dual Differential line Driver
DM7831/DM8831 TRI-STATE line Driver
DM7832/DM8832 TR I-STATE line Driver
DM7833 Quad TRI-STATE Transceiver
DM7834 qu~d TRI-STATE Transceiver ..
DM7835 di.Jad TR I-STATE Transceiver ..
DM7836 dLiad NOR Unified Bus Receiver
DM7837 HEX Unified Bus Receiver . . . .
DM7838 Quad TRI-STATE Transceiver . . . . . . .
DM7839 Quad TRI-STATE Party Line Transceiver
LH0001 /LH0001 C Low Power Operational Ampl ifier
LH0001 A/LHO'o01 AC Micropower Operational Amplifier
LH0002/LH0002C Cur-rent Amplifier . . . . . . . . . . . .
LH0003/LH0003C Wide Bandwidth Operational Amplifier .
. ...... .
LH0004/LH0004C High Voltage Operational Amplifier. .
. ....... .
LH0005/LH0005A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . .
LH0005C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0020/LH0020C High Gain Instrumentation Operational Amplifier . . . .
LH0021 /LH0021 C 1.0 Amp Power Operational Amplifier . . . . . .
LH0022/LH0022C High Performance FET Operational Amplifier ..
LH0023/LH0023C Sample and Hold Circuit . . . . . . . . .
LH0024/LH0024C High Slew Rate Operational Amplifier . . . . . .
LH0032/LH0032C Ultra Fast FET Operational Amplifier . . . . . .
LH0033/LH0033C High Speed Buffer . . . . . . . . . . . . . . . . . . .
LH0041 /LH0041 C 0.2 Amp Power Operational Amplifier
LH0042/LH0042C Low Cost FET Operational Amplifier
........ .
LH0043/LH0043C Sample and Hold Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0052/LH0052C Precision FET Operational Amplifier. . . . . . . . . . . . . .
diOQ62/LH0062C High Speed FET Operational Amplifier. . . . . . . . . . .. . . . . . . . . . . . . . . .
LH101 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH201 Operational. Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH21 01 A/LH2201 A/LH2301 A Dual High Performance Operational Amplifier
LH210S/LH2208/LH2308 Dual Superbeta Operational Amplifier. . . . . . .. . . . . . . . . .
LH2110/LH2210/LH2310 Dual Voltage Follower . . . . . . . . . . . . . . . . .
LH2111 /LH2211 /LH2311 Dual Voltage Follower . . . . . . . . . . . . . . . . . . . . . . .
LH24250/LH24250C Dual Programmable Micropower Operational Amplifier . . . . . . .
LM100/LM200/LM300 Voltage Regulator. .
. ................. .
LM101 Operational Amplifier . . . . . . .
LM101 A/LM201A Operational Amplifier
LM102 Voltage Follower
LM103 Regulator Diode . . . . . . . . . .

379
379
379
382
382
382
382
382
400
396
396
396
398
402
411
414
418
421
424
424
458
458
458
459
460
460
458
57
60
63
66
68
71
74
76
78
85
92
100
103
10S
78
85
92
85
112
114

117
218
220
222
224
239

17
120
126
135
20

vii

LM104/LM204 Negative Regulator . . . . .
LM105/LM205/LM305 Voltage Regulator.
LM106/LM2d~ Voltage Comparator/Buffer
LMl 07 /LM207 Operational AmpHfier. . ..
LM10S/LM208 Operationat Amplifier .. '.'.
LM108A/LM208A/LM308A Operational Amplifier
LM109/LM20!;} 5-Volt Regulator . .
LMll0/LM21l'> Voltage Follower . . .
LMll1/LM211 Voltage Comparator.
LMl12 Operational Amplifier . . . . .
LM113 Reference Diode . . . . . . . .
LM114/LM114A Matched Dual Monolithic Transistors
LM 115/LM 115A Matched Dual Monolithic Transistors
LMl18/LM218 Operational Amplifier . . . . . . . . . .
LMl19/LM219 High Speed Dual Comparator . . . . . .
LM125 Dual Complimentary Tracking Voltage Regulator
LM126 Dual Complimentary Tracking Voltage Regulator
LM127 Dual Complimentary Tracking Voltage Regulator
LM143 High Voltage Operational Amplifier
LM160 High Speed Differential Voltage Comparator.
LM161 High Speed Differential Voltage Comparator
LM 170/LM270/LM370 AGC/Squelch Amplifier ..
LM171/LM271/LM371 Integrated RF/IF Amplifier.
LM172/LM272/LM372 AM IF Strip : . . . . . . . . . .
LM175/LM275/LM375 Oscillator and Buffer with TTL Output
LM201 Operational Amplifier . . . . . . . . . . . . . . . .
LM202 Voltage Follower . . . . . . . . . . . . . . . . . . .
LM216/LM216A/LM316/LM316A Operational Amplifier
LM273/LM373 AM/FM SSB IF Amp/Detector
LM24~/LM374 AM/FM SSB IF Video Amp/Detector
LM301 A Operational Amplifier . . . . . . . . . . . . .
LM302 Voltage Follower ..
LM304 Negative Regulator
LM305A Voltage Regulator
LM306 Voltage Comparator/Buffer
LM307 Operational Amplifier ..
LM308 Operational Amplifier . .
UVJ309 5-Volt Regulator .. .
LM310 Voltage Follower . . . . .
LM311 Voltage Comparator .
LM312 Operational Amplifier
LM318 Operational Amplifier
LM320 Series Three Terminal Negative Voltage Regulators.
LM340 Series Voltage Regulators
LM350 Dual Peripheral Driver
LM376 Voltage Regulator . . . . . . . . .
LM377 2-Watt/Channel Stereo Amplifier
LM378 4-Watt/Channel Stereo Amplifier
LM380 Audio Power Ampl ifier . . . . .
LM381 Low Noise Dual Preamplifier
LM382 Low Noise Stereo Preamplifier.
LM383 5-Watt Power Ampl ifier . . . . .
LM565/LM565C Phase Locked Loops .
LM566/LM566C Voltage Controlled Oscillator
LM567/LM567C Tone Decoder
....... .
LM709 Operational Amplifier
LM709A Operational Amplifier
LM709C Operational Amplifier
LM710 Voltage Comparator ..
LM710C Voltage Comparator .
LM711 Dual Comparator . . ..
LM711 C Dual Comparator
LM723/LM723C Voltage Regulator .
LM725/LM725A/LM725C Instrumentation Operational Amplifier ..
LM733/LM733C Differenti~,I, Video Amplifier . . . . . . .
LM740A/LM740AC FET Input Operational Amplifier ..
LM741 /LM741 C Operational Amplifier . . . . .
. LM746 Color Television Chroma Demodulator
LM747/LM747C Dual Operational Amplifier
LM748/LM748C Operational Amplifier . . . .
LM1303 Stereo Preamplifier . . . . . . . . . .
LM1304 FM Multiplex Stereo Demodulator
LM1305 FM Multiplex Stereo Demodulator
LM1307/LM1307E FM Multiplex Stereo Demodulator
LM1310 FM Stereo Demodulator . . . . . . . . . . .
LM1310E FM Stereo Demodulator . . . . . . . . . . .
LM1351 FM Detector, Limiter and Audio Amplifier

"iii

23
29
241
144
152
158
34
161
247
171
40
377
377
180
453
453
453
453
454
454
454
271
275
281
293
123
138
177
285
285
131
141
26
32
244
148
155
37
166
252
174

185
455
43

4~~
455
455

298
302
305
456
309
314
317
190
193
196
257
260
263
266
51

199
323
205
207
327
209
213
329
331
331
331
337
339

341

LM1488 EIA Quad Line Driver . . . . . . . . . . . .
LM1496/LM1596 Balanced Modulator-Demodulator
LM1489/LM1489A Quad Line Receiver . . . . . . .
LlV11514/LM1414 Dual Differential Voltage Comparator
LM1558/LM1458 Dual Operational Amplifier ..
LM1800 FM Stereo Demodulator
LM 1805 TV Signal Processor. . . .
LM1845 Signal Processing System
LM2111 FM Detector and Limiter
LM2113 FM Detector and Limiter
LM3028A/LM302~B Differential RF/IF Amplifier
LM3053 Differential RF/I F Amplifier . . .
LM3064 Televisioh" Automatic Fine Tuning
LM3065 Television Sound System
LM3066 Chroma Signal Processor
LM3067 Chroma Demodulator ..
LM3070 Chrpma Subcarrier Regenerator
LM3071 Teh~vi's,jon Chroma IF Amplifier
LM3075 FM" Detector/Limiter and Audio Preamplifier
LM390q Quad Amplifier . . . . . . . . . . . . . . . . . .
LM39Q~ Quad Comparator
............... .
LM4250/LM4250C Programmable Operational Amplifier
LM5520/LM7520 Dual Core Memory Sense Amplifier
LM5521/LM7521 Dual Core Memory Sense Amplifier
LM5522/LM7522 Dual Core Memory Sense Amplifier
LM5523/LM7523 Dual Core Memory Sense Amplifier
LM5524/LM7524 Dual Core Memory Sense Amplifier
LM5525/LM7525 Dual Core Memory Sense Amplifier
LM5528/LM7528 Dual Core Memory Sense Amplifier
LM5529/LM7529 Dual Core Memory Sense Amplifier
LM5534/LM7534 Dual Core Memory Sense Amplifier
LM5535/LM7535 Dual Core Memory Sense Amplifier
LM5538/LM7538 Dual Core Memory Sense Amplifier
LM55~9/LM7539 Dual Core Memory Sense Amplifier
LM75.45QA Dual Peripheral Driver . . . . . . . . . . .
LM75451:A Dual Peripheral Driver
LM75452 Dual Peripheral Driver.
LM75453 Dual Peripheral Driver ..
LM75454 Dual Peripheral Driver ..
MM450/MM550 MOS Analog Switch
MM451/MM551 MOS Analog Switch .. .
MM452/MM552 MOS Analog Switch .. .
MM453/MM553 4-Channel Commutator.. .
MM~54/!VIM554 MOS Analog Switch . . . .

456
343
407
269
216
347
457
349
351
353
355
355
359
361
363
366
369
373
375
226
457
234
431
432
436
436
438
438
440

440
442
442
444
444
405
409
409
409
458
389
389
389
393
389

ix

Edge Index
by Product Family

Voltage Regulators

II

Operational Amplifiers

~

Voltage Comparators/Buffers

~

m

Consumer Circuits

~

Transistor Pairs

m

Analog Switches
Interface Circuits

fJ

Sense Amplifiers

I:]
xi

MILITARY TEMPERATU RE RANGE: -55°C ~ T A ~ +85°C

HIGH SPEED OPERATIONAL AMPLIFIERS

GENER.AL PURPOSE FET OPERATIONAL AMPLIFIERS

PRECISION

ULTRA FAST

VOLT. FOLL.

ULTRA FAST

PRECISION

FET

FET

FET

BIPOLAR

BIPOLAR

LH0062

LH0032

LH0033

LH0024

LHOOOSAtt

PARAMETER**

Offset Voltage (Max)

S

2

Offset Current (Max)

0.001

0.01

0.1

3x 10

Bias Current (Max)

0.005

0.02

0.1

20 x 103

Open loop Gain (Min)

4

LH0003

UNITS

10

3

mV

Offset Voltage (Max)

0.2

20

200

nA

Offset Voltage Drift (Max)

S

25

50

2000

nA

Offset Current (Max)

0.1

4

4

2

15

V/mV

50

30 t

30 t

30 t

MHz

(Typ)

80

SOO

lSoo

400

30 t

Transient Response (Typ)

40

8

15

±100

±5

Slew Rate AV

= +1

50

20t

20t

Bias Current (Max)

1.0

Open loop Gain (Min)

= +1

V/I/oS

Bandwidth - AV

10

100

100

400

ns

Slew Rate - AV

±1oo

±100

±50

±50

±50

mA

±5

±5

±9

±9

±9

±5

V

18

± 18

±20

±18

±20

±20

±20

V

Supply Current (Max)

8

20

22

14

5

5

3

Compensation Components

0

2

0

3

3

2

Output Current limit

Int

Ext

Ext

Ext

Output Current limit
Simple Offset Null

Peak Output Current (Typ)

!

Min Supply Voltage
Max Supply Voltage

Output Voltage Clamp
Package Types

!

Ext

3.5

Ext

Ext

LHOOS2

S

100

1 (Typ)

PRECISION

PARAMETER**

3

50

=i

0.97***

3

LHOOOStt

BIPOLAR

15

Bandwidth AV

1.5

10

BIPOLAR

No

Yes

Yes

Yes

Yes

Yes

Yes

TO-5, DIP

TO·8

TO-8

TO-5

TO-5

TO-5

TO-5

rnA

= +1

100

HIGH

LOWEST

LOW

PERF.

COST

COST

LH0022

LH0042

LH740A

4.0
10
2.0

20

lS

20
S.O

mV
I/ovtc

100

pA

10

25

200

pA

100

50

50

V/mV

(Typ)
(Typ)

UNITS

MHz
3

3

3

3

V/I/oS

±10

±10

±10

±5

mA

Min Supply Voltage

±5

±5

±5

±5

V

Max Supply Voltage

±22

±22

±22

±22

V

Input Voltage Range (Min)

±12

±12

±12

±12

V

0

0

0

0

Yes

Yes

Yes

Yes

Output Current Drive (Min)

Compensation Components

Package Types

Yes

Yes

TO-5, DIP

TO·5, DIP,
FP

Yes
TO-5, DIP,
FP

Yes
TO-5

• ·Specified for Vs = ± 15V and T A = 25°C. See data sheet for detailed specifications.
•• ·Closed loop voltage follower gain
tSpecified for AV = -10
ttSpecified for Vs = +12

SJa!I!ldwV leUO!JeJado ~3:1 asodJnd leJaUa~/ paads 4 6 !H AieJ!I!1I\I

M ilitarySpecial Purpose/Sample & Hold Operational Amplifiers
"-l

SPECIAL PURPOSE OPERATIONAL AMPLIFIERS

SAMPLE AND HOLD AMPLIFIERS

HIGH OUTPUT CURRENT
PARAMETER**

Offset Voltage (Max)

HIGH

LOW POWER

100mA

MEDIUM

200mA

1 Amp

BOOSTER
LHOO02 t

CURRENT

OPAMP

SERVO DR.

LH0020

LH0041

LH0021

VOLTAGE

O.5mW

O.5mW

LH0001

LHOOO1A

20

nA

Drift Rate - ±20V (Max)

100

100

nA

Acquisition Time - 5V (Typ)

70

70

70

dB

Acquisition Time - 20V (Max)

80

70

70

70

dB

Aperature Time (Typ)

100

25

25

30

V/mV

50

100

100

20

20

250

300

300

100

CMRR (Min)

90

70

70

PSRR (Min)

90

80

100

100

Offset Current (Max)

10 x 10

Bias Current (Max)

10 x 10

Open Loop Gain (Min)
Bandwidth (Typ)
Slew Rate (Typ)

3

0.95 t

2

MHz

50
3

3

±100

±100

±200

±1000

±5

±5

±15

Min Supply Voltage

±5

±5

±5

±5

±5

±5

±5

Max Supply Voltage

±22

±22

±lS

±lS

±20

±20

±45

Output Current (Min)

Supply Current (Max)
Compensation Components
Output Current limit
Package Types

100

10

4.5

3.5

3.5

0

0.25

0.25

0.25

0.12

0.12

0.15

2

2

2

Ext

Int

Int/Ext

Int/Ext

Ext

Ext

Ext

TO-5

TO-S

TO-S

TO-3

TO-5

TO-5, DIP,
FP

TO-5

·Specified for Vs = ±15V and T A = 25°C. See data sheet for detailed specifications.
tVoltage follower closed loop gain

PRECISION
LHOO23

LHOOO4

Drift Rate - ±5V (Typ)

3

2.5
3

PARAMETER**

mV

3

30

+60V PEAK

UNITS

Sample Accuracy (Max)
Analog Range (Min)

HIGH
SPEED

UNITS

LH0043

10

mV/s

20

25

mV/s

30

4

}.IS

100

15

}.IS

150

20

ns

0.5

0.01
±10

0.1
±10

%
V

V/}.IS

Control Logic Level (Max)

mA

Offset Error (Max)

±20

±40

mV

V

Power Supplies Req.

±15

±15

V

V

Simple Offset Null

mA

Package Type

TTL

TTL

Yes

Yes

TO-S

TO-S

MILITARY TEMPERATURE RANGE: -55°C S TA S +125°C

OPERATIONAL AMPLIFIER SELECTION

PARAMETER**

Input Offset Voltage

LH101

6

LM101A
LM101 LH2101A tt LM1.02

6

Drift
I nput Offset Current

500

500

Drift

LM108
LM110
LM107 LH210Stt LM108A LH2110tt LM112

3.0

3

3

1.0

15

1~

15

5

15

20

20

0.4

0.4

0.4

200

200

2.5

2.5

2.5

3

7.5

6

LM118

LM709

4

6

LM725

LM741

LM747

LM748

1.5

6

6

6

LM 1558 LM4250
LH24250 tt UNITS

6

4.0

50

500

40

mV
p,V/oC

5.0
500

500

500

500

5.0

nA

pArC

150

Input Bias Current

1500

1500

100

100

100

3.0

3.0

10

3.0

500

1500

200

1500

1500

1500

1500

15.0

nA

Voltage Gain t

50k

50k

50k

0.999

50k

50k

80k

0.999

50k

50k

25k

1000

50k

50k

50k

50k

100k

v/v

0.25

MHz

0.1

0.025

MHz

Bandwidth

Av = 1

10

1

(typ. at 25°C) Av = 10

0.1

1

Av= -1

0.5

10

10***

Av = 1

0.5

0.5

0.5

(typ. at 25°C) Av = 10

0.5

5

Av =-1

0.5

20
0.1
0.5

3***

0.5

0.3

0.3

5

0.5

3

3

15

15* * *

0.5

1.3* * *

5

5

7.5

7.5

Min. Supply Voltage

±3

±3

Max. Supply Voltage

±22

3

Common Mode Range
Diff. Input Voltage

Slew Rate

Output Current

10

3***

1.3* * *

0.1

0.1

0.5

25***

0.5

0.5

0.5

10

0:5

0.12

MHz

0.2

50 Min.

0.3

0.005

0.5

0.5

0.5

0.5

0.16

V/p,s

0.2

50 Min.

3

0.05

0.5

0.5

0.5

0.16

V/p,s

0.2

150***

0.6

0.005

0.5

0.5

5
15

0.5

0.16

V/p,s

5

5

5

5

5

5

5

0.75

mA

±1.0

v

±9

±3

±3

±3

±3

±3

±20

±18

±20

±18

±18

±22

±22

±22

±22

±22

±18

V

0.6

5.5

0.6

7

5.5

3.5

2.9

5.6

2_9

2.9

0.03 set

mA

±14

±14

±10

±14

±8

t±13.5

±12

±12

±12

±12

±12

V

:j:

:j:

±5

±5

±30

±30

±30

±30

±15

V

o

o

o

3

4

o

o

o

o

Yes

Yes

Yes

Yes

,Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

±3

±2

±22

±22

±18

1022

±20

3

3

5.5

3

0.6

±12

±12

±12

±10

±12

±30

±30

±30

±30

Input Protection

Yes

Yes

Yes

Yes

Output Protection

Yes

Yes

Yes

Yes

o

• Not applicable or not specified.
··Guaranteed for ±15V supplies and _55°C ~ T A ~ 125°C unless otherwise specified.

* *. Feedforward

0.5

±5

±2

o

0.5

1.5

±2

±3

Compensation Components

15

±5

±12

Supply Current t

30

1

0.1

:j:

±11.5
:j:

t t Dual version of device

tGuaranteed at 25°C.
:j:'nputs have shunt-diode protection, current must be limited ..

compensation.

w

UOrl.3919S J9!J!ldWV leUOrl.eJado AJe:a.!I! 11\1

Industrial High Speed IGeneral Purpose FET Operational Amplifiers
~'

INDUSTRIAL TEMPERATURE RANGE: -25°C::;;: T A ::;;: +85°C

HIGH SPEED OPERATIONAL AMPLIFIERS

PARAMETER"

Offset Voltage (Max)

GENERAL PURPOSE 'FET OPERATIONAL AMPLIFIERS

PRECISION

ULTRA FAST

VOLT. FOLL.

ULTRA FAST

FET

FET

FET

BIPOLAR

LHOO62C

LHOO32C

LHOO33C

LHOO24C

10.

3

20

8
3

Offset Current (Max)

0.002

0.02

0.15

5x 10

Bias Current (Max)

0.010

0.50

0.15

3
22 x 10

Open Loop Gain (Min)

25

0.96***

BIPOLAR

LHOOO5Ctt

LHOOO3C

mV

Offset Voltage (Max)

nA

Offset'Voltage Drift (Max)

100

2000

nA

Offset Current (Max)

2

15

V/mV

30 t

MHz

Open Loop_Gain (Min)

75

30 t

V/IJ,S

CMRR(Min)

50

.1400

400

20 t

. Transient Response (Typ)

40

10

3.5

10

100

400

ns

Bias Current (Max)

-PSRR (Min)

±15

±loo

±100

±loo

±50

±50

mA

Bandwidth - AV = +1 (Typ)

±5

±5

±5

±9

±9

±5

V

Slew Rate - AV = +1 (Typ)

Max Supply Voltage

±18

±20

±20

±18

±20

. ±20

11

22

24

14

5

3

V
mA

Output Current Drive (Min)

mV

20

IJ,vtc

25

pA

10

150

25

50

500

75

25

50

V/mV

76

70

70

70

dB

76

70

70

70

dB

3

3

3

3

V/lJ,s

0.2

5.0

20

pA

MHz

mA

±5

V

Max Supply Voltage

±22

±22

±22

±22

V

±12

±12

±12

±12

V

0

0

0

0

Output Current Limit

Yes

Yes

Yes

Yes

Simple Offset Null

Yes

Yes

Yes

Yes

Ext

Ext

Ext

Ext

Input Voltage Range (Min)

Yes

Yes

Yes

Yes

Compensation Components

TO-5, DIP

T0-8

TO-8

TO-5

TO-5

TO-5

Package Types

ttSpecified for Vs = +12V

6.0
15

UNITS

±5

Ext

tSpecified for AV = -10

LH740AC

±5

Yes

"Speeified for Vs = ±15V and T A = 25°C. See data sheet for detailed specifications.

LH0042C

±10

No

•• • Closed loop voltage follower gain

LHOO22C

±5

Int

Package Types

COST

±10

Output Current Limit

2

LOW

COST

±5

Output Voltage Clamp

3

LOWEST

±10

0

0

HIGH
' PERF.

Min Supply Voltage

Compensation Components

2

0.5
10

5.0

Min Supply Voltage

Supply Current (Max)

LH0052C

3

50

80

. PRECISION

200

500

Slew Rate AV = +1 (Typ)

PARAMETER"

10

30 t

,15

UNITS

25

100

Bandwidth AV = +1 (Typ)

Peak Output Current.(Typ)

3.5

"BIPOLAR

TO-5, DIP

TO-5, DIP,
FP

TO-5, DIP,
FP

TO-5

• N ot specified
··Specified for Vs

= ±15V and TA = 25°C.

See data sheets for detailed specifications

INDUSTRIAL TEMPERATURE RANGE: -25°C ~ T A ~ 85°C

OPERATIONAL AMPLIFIER SELECTION

PARAMETER**

LM201A/
LH2201Att

LM202

LM207

LM20S/
LH220Stt

LM20SA

10

2
20

2
15

O.S
5

20
100

0.2
2.5

0.2
2.5

LM210/
LH2210tt

LM212

LM216

LM216A

2
15

10

3

0.2
2.5

0.050

LM21S

LM72SB

UNITS

4

1.5
10

rnV
p.V/oC

0.015

SO

20
300

nA
pA/oC

Input Offset Voltaget
Drift

2

I nput Offset Current t
Drift

20

Input Bias Current t

75

15

75

2

2

3

2

0.150

0.05

500

100

nA

25k

.999

2Sk

50k

SOk

0 ..999

50k

10k

20k

50k

500k

VIV

10

1
0.1
0.5'

20
3***

3***

1
0.1
0.5

1
0.1
0.5_

0.1
0.5

15
1.5
25***

0.5
0.5
0.5

MHz
MHz
MHz

10

O.S
0.5
0.5

0.3
3
1.3***

0.3
3
1.3***

30

0.3
0.3
0.3

0.3
0.3
0.3

0.3
0.3
0.3

50 Min.
50 Min.
150***

0.005
0.05
0.005

V!lls
V!lls
V!lls

Voltage 'Gain t
Bandwidth
Av= 1
(typ. at 25°C) Av = 10
Av=-l

10***

Slew Rate
Av = 1
(typ. at 2SoC) Av = 10
Av=-l

0.5
'S
15'***

Output Current

4

5

5

rnA

5

5

Min. Supply Voltage

±3

±12

±3

±2

±2

±5

±2

±5

±5

±5

±3

V

Max. Supply Voltage

±22

±18

±22

±20

±20

±18

±20

±20

±20

±18

±22

V

3

5.5

3

0.4

0.4

5.5

0.6

0.8

0.6

7.5

4

±12

±10

±12

±14

±14

±10

±14

±13

±13

±11.5

±13.5

V

±30

t

t

±5

V

Supply Current t
Common Mode Range
" Diff. Input Voltage

±30

Compensation Components

0

0

*

*

0

0

0

*

t

0

0

4

I nput Protection

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

<,IOutput Protection

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

*Not applicable or not specified.

* * Industrial guaranteed for ± 15V supplies and" -2SoC S. T AS. 8Soe unless otherwise specified.
Commercial guaranteed for ±15V supplies and oOe
* •• Feedforward c.ompensation.

s. T AS. 70

0

e unless otherwise specified.

rnA

tGuaranteed at 25°C.
:j:lnputs have shunt-diode protection. Current must be limited.
ttDual version of device.

Ul

UOra.3919s J9!1!ldWV leUo!:a. eJ9d O le!J:a.SnpUI

Commercial Operati'onal Amplifier Selection
m

COMMERCIAL TEMPERATURE RANGE: O°C ~ TA ~ +70°C

OPERATIONAL AMPLIFIER SELECTION

PARAMETER**

I nput Offset Voltage t

LH201

7.5

LM301AI
LM30S/
LM310/
LM4250C/
LM201 LH2301A tt LM302 LM307 LH230Stt LM30SA LH2310 tt LM312 LM316 LM316A LM31S LM709C LM725C LM741C LM747 LM74SC LM145S LH24250C UNITS

7.5

tnput Offset Current t

7.5

15

30

Drift
500

500

Drift

7.5

7.5

0.5

30

30

5

30

10

50

50

600

600

10

10

Input Bias Current t

1500

1500

250

30

250

7

7

Voltage Gain t

20k

20k

25k

0.9985

25k

25k

80k

Bandwidth

Av = 1

10

(typ. at 25°'C) Av = 10

0.1

Av =.;..1

0.5

7.5

7
'~:>O.999

0.5

10***

3***

3***

2.5

6.0

6.0

6.0

6.0

6

rnV

10

3

12

0.050

0.015

200

500

35

200

200

200

200

10

nA
pAtC

7

0.150

0.050

600

1500

125

500

500

500

500

30

nA

25k

20k

40k

25k

25k

250k

20k

20k

50k

20k

7.5

iJ.vtc

15

0.5

0.1

0.1

0.1

25***

0.5

0.1

0.1

0.5

0.5

0.5

7.5

0.5

0.5

0.5

0.5

0.5

20
0.1

10***

7.5

75k

VIV

0.25

MHz
MHz

0.1

0.025

10

0.5

0.12

MHz

0.16

V/j.J.s

0.5

0.5

0.5

0.5

0.3

0.3

0.3

0.3

0.3

50 Min.

0.3

. 0.005

0.5

0.5

(typ. at 25°C) Av = 10

0.5

5

5

0.5

3

3

0.3

0.3

0.3

50 Min.

3

0.05

0.5

0.5

5

0.5

0.16

V/j.J.s

Av =-1

0.5

15***

15***

0.5

1.3***

0.3

0.3

0.3

150***

0.6

0.005

0.5

0.5

15

0.5

0.16

V/j.J.s

5

5

5

5

5

5

5

5

5

5

5

0.75

rnA

Min. Supply Voltage

±3

±3

±3

±12

±3

±2

±5

±9

±3

±3

±3

±3

±3

±1

Max. Supply Voltage

±22

±22

±18

±18

±18

± 18

± 20

±18

±18

±20

±20

±18

±18

±22

±18

±18

±18

±18

±18

3

3

3

5.5

3

0:8

0.8

5.5

0.8

0.8

0.6

10

6.6

5

2.9

5.6

2.9

2.9

.03 Set

Common Mode Range

±12

±12

±12

±10

±12

± 14

±14

±10

± 14

± 13

± 13

± 11.5

±8

±13.5

±12

±12

±12

±12

±12

V

Diff. Input Voltage

±30

±3O

±30

±30

t

t

t

t

t

t

1:5

±5

±30

±30

±30

±30

±15

V

o

o

o

3

4

o

o

o

o

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Slew Rate

Av = 1

Output Current

Supply Current t

10

1.3***

o

o

Input Protection

Yes

Yes

, Yes

Yes

Yes

Yes

Output Protection

Yes

Yes

Yes

Yes

Yes

Yes

Compensation Components

0

±2

30

±5

!2

±5

±5

o

o

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

* Not appl icable or not specified.
* * I ndustrtal guaranteed for! 15V supplies and -25° C ~ T A ~ 85°C unless otherwise specified.

Commercial guaranteed for ± 15V supplies and O°C ~ T A ~ 70°C unless otherwise specified.
** * Feedforward compensation.

tGuaranteed at 25°C.
tlnputs have shunt-diode protection. Current must be limited.
tt Hybrid duals.

V

V
rnA

SAMPLE AND HOLD AMPLIFIERS

SPECIAL PURPOSE OPERATIONAL AMPLIFIERS

HIGH OUTPUT CURRENT
PARAMETER··

Offset Voltage (Max)

HIGH

LOW POWER

100mA

MEDIUM

200mA

1 Amp

BOOSTER

CURRENT

OPAMP

SERVO DR.

LHOOO2C t

LHOO2OC

LH0041C

LHOO21C

VOLTAGE
UNITS

O.5mW

O.5mW

±60V PEAK

LHOOO1C

LHOOO1AC

LHOOO4C

Drift Rate - ±5V (Typ)

nA

Drift Rate - ±10V (Max)

200

120

nA

Acquisition Time - 5V/ (Typ)

70

70

70

dB

Acquisition Time - 20V (Max)

80

70

70

70

dB

Aperature Time (Typ)

150

100

20

20

30

V/mV

6

5

5

200

200

200

60

60

500

500

500

200

CMRR (Min)

90

70

70

PSRR (Min)

90

80

50

100

. Offset Current (Max)
Bias Current (Max)

Open Loop Gain (Min)
Bandwidth (Typ)
Slew Rate (Typ)
Output Current (Min)

10 x 10

3
10 x 10

O.95

t

1.5

MHz

50
100
±100

±100

3

3

±200

±1000

0.25
±5

0.25
±5

0.25
±15

Sample Accuracy (Max)
Analog Range (Min)

±5

V

Power Supplies Req.

±45

V

Simple Offset Null

10

5

4

4

Package Types

Int/Ext

Int/Ext

Ext

Ext

Ext

TO-5, DIP

TO-8

TO-8, DIP

TO-3

TO-5

TO-5, DIP,
FP

TO-5

V

V

±5

±20

Int

%

±10

0.01

±15

±5

±20

Ext

0.3

±10

±1~

±5

Output Current Limit

ns

mV

±18

2

J.lS

20

±40

±5

2

J.lS

TTL

±18

2

4
15

TTL

±5

0

30
100

±20

±18

Compensation Components

mV/s
mV/s

Control Logic Level (Max)

±5

0.15

20
50

0.5
50

Offset Error (Max)

±22

0.13

UNITS

LH0043C

mA

Min Supply Voltage

0.13

HIGH
SPEED

V/J.lS

Max Supply Voltage
Supply Current (Max)

LH0023C

45

6

3

PRECISION

mV

6

30

PARAMETER·*

mA

Package Type

Yes

Yes

TO-8

TO-8

• ·Specified for Vs = ± 15V and T A = 25° C. See data sheet for detailed specifications.
tVoltage follower closed loop gain .

.....
SJa~J~ldw" leUO!~eJado

PIOH 18 aldwes/asodJnd le~3ads le!3JaWW0:l

Voltage Regulators
OJ

Specifications Are Worst Case Over Operating Temperature Unless Noted.

Product
Type No.

Input Voltage
Range
(V)
Min

GI

8. ~

:E s.i

i ~ a:i

 f

a:

1000

LM209

7

35

4.6

5.4t

0.6

500

0.005

0.005

2

30

0.4 (typ.) -25

150

6.0

>1000

LM309

7

35

4.75

5.25t .0.6

500

0.005

0.005

2

30

0.4 (typ.)

125

6.0

>1000

>~

.~

u.

c5

f

a:

Note: The maximum power dissipation for the LM100. LM105 and LM104 regulators is
800 mW. For the LM109, and in most cases for the LM100, LM105 and the LM104,
output current will be limited by maximum junction temperature and thermal resistance
as indicated.

Package

Thermal Resistance
Junction to Air

TO-5
Flat Pack
Solid Kovar TO-5
TO-3

150°C/W
185°C/W Mounted
1500 C/W
35°C/W

Thermal Resistance
Junction to Case
45°C/W

15°C/W
1.5°C/W

Package Type

20
20
20
20
20
20
45
25
150
150

-55
-25
0
-55
-25
0
0

o
0.015%tC
0.015%tC

Max

Standby Current
Drain
(rnA)
Typ.

0

Flat Pack
Flat Pack
Flat Pack
Cavity & Molded DIP
Cavity & Molded DIP

TO-5 (3-lead)
TO-3
TO-5 (3-lead)
TO-3
TO-5 (3-lead)
TO-3

*The output currents given, as well as the load regulation for the LM100, LM105,
LM723 and LM104 family of regulators can be increased by the addition of external
transistors. The increase will be roughly equal to the composite current gain of the
added transistors.

t Can be adjusted to higher voltage by external resistors.

SUPPLY
VOLTAGE
(typ)

MAXIMUM
INPUT
BIAS CURRENT
(+2SoC)

DEVICE NO.

TEMPERATURE
RANGE
(Note 1)

DTL/TTL
FANOUT

LM106
LM206
LM306

Military
Industrial
Commerical

10
10
10

LMlll
LM211
LM311

Military
Industrial
CQmmerical

5
5
5

±15V
to+5V
and GND

LM160
LM260
LM360

Military
Industrial
Commerical

2
2
2

±4.5V
to
±6.5V

10 JJ,A
10 JJ,A
15 JJ,A

LM161
LM261
LM361

Military
Industrial
Commerical

2
2
2

±5V to
±15Vand
+5V

LM162
LM262
LM362

Military
Industrial
Commerical

2
2
2

LM710
LM710C

V+ = +12V
V =-3V
to -12V

MAXIMUM
INPUT OFFSET
CURRENT
(+2S0C)

MAXIMUM
INPUT OFFSET
VOLTAGE
(+2S0C)

RESPONSE
TIME
(typ)
(Note 2)

VOLTAGE
GAIN
(typ)

COMMENTS

20JJ,A
20JJ,A
25JJ,A

3JJ,A
3JJ,A
5JJ,A

2.0 mV
2.0mV
5.0mV

40 ns (max)
40 ns (max)
40 ns (max)

0.1 JJ,A
0.1 JJ,A
0.25JJ,A

0.04JJ,A
O.04JJ,A
0.06JJ,A

0.7 mV
0.7mV
2.0mV

200 ns
200 ns
200 ns

2 JJ,A*
2 JJ,A*
4 JJ,A*

2.0 mV*
2.0 mV*
4.0 mV*

16 ns
16 ns
16 ns

3k
3k
3k

Very high speed, outputs compatible
with DTLfTTL logic levels.

10 JJ,A
10JJ,A
15 JJ,A

2 JJ,A*
2 JJ,A*
4JJ,A*

2.0 mV*
2.0 mV*
4.0 mV*

16 ns
16 ns
16 ns

3k
3k
3k

Very high speed, with individual
strobes, DTL/TTL compatible

+4.5V to
+15Vand
-5.2V to -15V

10JJ,A
10 JJ,A
15 JJ,A

2JJ,A*
2 JJ,A*
4JJ,A*

2.0 mV*
2.0 mV*
4.0 mV*

12 ns
12 ns
12 ns

800
800
800

Very high speed differential, single
strobe,output compatible with Series
10,000 ECL

Military
Commerical

V+ = +12V
V =-6V

20JJ,A
25JJ,A

3JJ,A
5JJ,A

2.0mV
5.0mV

40 ns
40 ns

1750
1500

Single, differential in, single output.

LM711
LM711C

Military
Commercial

V+ = +12V
V- = -6V

75JJ,A
looJJ,A

10JJ,A
15 JJ,A

3.5mV
5.0mV

40 ns
40 ns

1500
1500

Dual differential, common output,
individual strobes.

LM1514
LM1414

Military
Commerical

V+ = +14V
V- = -7V

20JJ,A
25JJ,A

3JJ,A
5pA

3.0mV
4.0mV

30 ns
30 ns

1250

1000

Dual LM710 with separate strobes,
individual outputs.

-

Note 1:

Temperature Ranges
Military
= -55°C to +125°C
_25° C to +85° C
Industrjal
Commerical
O°C to +70°C

Note 2:

Response time is specified for 100 mV step input with 5 mV overdrive.

40k
40k
40k

Single comparator with strobe, high
speed and sensitivity, large fanout.

200k
200k
200k

Single, with strobe, will work from
single supply, low bias current.

*Typical

co

SJo:a.eJedwo:l a6e:a.IOA

Interface Devices
.....
o

DATA COMMUNICATION CIRCUITS
LINE DRIVERS
DEVICE NO.

LINE RECEIVERS
DEVICE NO.

LM1488/LM1588

LM1489A/LM1589A (quad)
or DM7822/DM8822 (dual)

Communication to EIA standard RS 232C.

DM7830/DM8830

DM7820A/ DM8820A

Dual differential line driver and receiver.

+5V

True differential. ±15 volt common mode rejection. Unidirectional. Use of internal receiver
termination recommended up to 100 feet.

DM7831/DM8831

DM7820A/DM8820A

Dual differential line driver and receiver.

+5V

True differential, bidirectional. Driver includes
. upper and lower level clamps to combat transients. Use of internal receiver termination
optional.

DM7832/DM8832

DM7820A/DM8820A

Dual differential line driver and receiver.

+5V

As above, but without upper .Ievel clamping,
so party line buses may be used, even with
some peripherals powered down.

DM7831/DM8831

DM7837/DM8837 (hex)
or DM7836/DM8836 (quad)

Quad single-ended line driver and hex receiver,
or a quad 2 input NOR receiver.

+5V

If used unidirectionally, receiver should be
terminated. In party line .applications disabled
driver clamps line. Receiver input current is
15 J.l.A typical, has no hysteresis.

DESCRIPTION

TRANSCEIVER
DEVICE NO.

DESCRIPTION

POWER SUPPLY
±12V
LM1489A & DM7822
+5Vonly.

COMMENTS
Twisted pair single ended. Unidirectional

POWE R SUPPLY

COMMENTS

DM7838/DM8838

Quad open collector transceiver.

+5V

Receiver has typical 15 J.l.A input current onevolt hysteresis. Driver will. pull down double
terminated 1200 line.

DM7839/DM8839

Quad TRI-STATETM transceiver. Four transmitters all disabled by control NOR gate.

+5V

Drivers have 10.4 mA forward drive at 2.4V,
sink 32 mA at 0.4 volts. Receivers have 1 volt
hysteresis, input current is 15 J.l.A typical. Disabled driver clamps undershoots. A transceiver
on the bus may be powered down without
affecting bus logic levels.

DM7833/DM8833

Quad TRI-STATE transceiver. One control
disables all transmitters; one control disables
all receiver outputs.

+5V

DM7834/DM8834

Quad TRI-STATE transceiver. Controls same
as DM7839 but driver and receiver are inverting.

+5V

DM7835/DM8835

Quad TRI-STATE transceiver. Controls same
as DM7833 but driver and receiver are inverting.

+5V

SENSE AMPLIFIER CIRCUITS

PERIPHERAL DRIVERS

The core sense amplifiers are monolithic circuits comprising a reference amplifier and two sense channels. The output circuit changes state when the absolute difference in input voltage to the sense amp
exceeds the absolute difference in voltage applied to the reference amplifier (threshold voltage). These
parts with even numbers have a tighter guaranteed input threshold uncertainty.

The peripheral drivers are dual monolithic circuits, each consisting of a logic gate and a large geometry
NPN transistor. The transistor is guaranteed to sink 300 mA and to hold off collector vohage of 30
volts even when powered down.
DEVICE NO.

DEVICE NO.

OUTPUT FORM

COMMENTS

LM7520,
LM7521

AND.QR common output and complement

By coupling back complement output
to true gate, latch may be formed. Set
by (Strobe A. Memory A + Strobe B.
Memory B) reset by complement gate.

LM7522,
LM7523

AND.QR-INVERT common output high
current open collector

Convenient for wire.QR'ed memory ex-pansion.

L!Aaa a:>eIJa:).ul

FET.OP AMP Cross Reference
-"

~

DEVICE NO.

PACKAGE

NEAREST NATIONAL
EQUIVALENT

Ana log Devices
ADS03-(J, KI
ADS03-(SI
ADS06-(J, K)
ADS06-(S)
ADS11
ADS13-(J, K)
ADS13-(S)
ADS16-(J, K)
ADS16-(S)
ADPS17
MS01-(A, B, C,I
40-(J, K,)
41-(J,K, Ll
42-(J, K, L)
43-(J)
44-(J, K)
4S-(J, K)
142-(A, B, C)
146-(J, KI
149-(,1, K)

TO-S
TO-S
TO-S
TO-S
MOD
TO-S
TO-S
TO-S
TO-S
MOD
TO-8
TO-8
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

LH0042C
LH0042
LH0022C
LH0022C*
LH0042C
LH0042C *
LH0042*
LH0022C *
LH0022 *
LH0042C
LHOO22C
LH0042C
LHOOS2C
LH0052C
LH0022C
LH0062C
LH0062C
LH0042C
LHOO22C
LH0062C

pin
pin
pin
pin

for
for
for
for

pin
pin
pin
pin

pin
pin
pin
pin

for
for
for
for

pin
pin
pin
pin

DEVICE NO.

Siliconix
L120A
L120C
L137AA
L137CA

(~A7401
(~A740C)

LH0042C
LH0042C
LH0042C
LH0042C
LH0032C
LHOO32C
LH0052C
LH0026C
LH0042C
LHOO32C
LH0062C
LH0062C
LH0042C
LH0052C
LH0052C

LH0042 pin for pin

TO-S

LH0042C pin for pin

2404BG
240SBG
2709BG
2809BG
2740BE
2841 BE
2741BF
2741BH

ICH8S00
ICH8S00A
ICH8S00c
ICL8007C
ICL8007M
ICL8007AM
ICL8007AC

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

LH0042C
LH0042C
LHOO22C
LH0022C
LHOOS2
LH0052
LH0052C
LH0062C
LH0062C
LH0062C
LH0062C
LH0042C
LH0022C
LHOO22C

NEAREST NATIONAL
EQUIVALENT

TO-S
TO-S
TO-S
TO-S
TO-S
TO-S
TO-S

LHOOS2
LHOOS2
LH0052C
LH0042C
LH0042
LH0042
LH0042C

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

LH0042C
LH0062C
LH0042C
LH0042C
LH0062C
LH0032C
LH0042C
LH0032C

TO-5
TO-S

LH0042C pin for pin
LH0042C pin for pm

pin
pin
pin
pin
pin
pin
pin

for
for
for
for
for
for
for

pin
pin
pin
pin
pin
pm
pin

OEI
9714
971S
9716
9717
9718
9720
9721
9723
Signetics
SUS36T
SU740C

QFT
QFT
QFT-2B
OFT-S
OFT-5
Q2SAH
PP2SA
1003
100301
1006
1008
1009
100901
100902
1011
101101
101102
1019
1021
1023
102301
102S
1408
140801
140802
140810
1402
140201
140202
1407
140701
1414
141410
1421

DEVICE NO.

PACKAGE

NEAREST NATIONAL
EQUIVALENT

Zeltex
TO-S
TO-S
TO-S
TO-S

LH0042
ItH0042C
LH0022
LH0022C

TO-8
TO-8
TO-8
TO-8
TO-S
TO-S
TO-8
TO-8

LH0042C
LH0042C
LH0042C
LH0042C
LH0042C
LH0042C
LH0042C
LH0042C

Teledyne Nexus Phillrick

Burr-Brown
3307/12C
3308112C
3312112C
3313/12C
3341/1SC
3342/1SC
3348/03
3349/03
33S0/03
34OQ-(A, BI
340HA, B)
3402-(A, B)
3403-(A, B)
3420-(J, K, L)
3421-IJ, K, L)

PACKAGE

Teledyne Semiconductor (Amelco)
Intech

Intersil

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

TO-S

USB7740393

Bell and Howell
LH0042C
LH0042C
LH0022
LHOO22C

DEVICE NO.

USB7740312

*These amps use feed forward compensation to boost slew
rate. For true high slew rate amp see LH0062/LH0062C.

MOD
MOD
TO-8
TO-8

NEAREST NATIONAL
EQUIVALENT

Fairchild

Al00
Al01
Al02
Al03
A122
A123
A12S
A130
A131
A136
A137
A148-(A, B, C)
Al026
Al027

20-008
20-108
20-208
20-248

PACKAGE

MOD
MOD
MOD
MOD
MOD
TO-8
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
TO-8
TO-8
TO-8
TO-8
TO-8
TO-8
MOD
DIP
TO-S

LH0042C
LH0042C
LHOOS2C
LH0042C
LH0042C
LH0042C
LH0042C
LHOOS2C
LHOOS2C
LH0042C
LH0042C
LH0042C
LH0042C
LH0042C
LH0062C
LH0062C
LH0062C
LH0032C
LH0022C
LHOOS2C
LHOOS2C
LH0032C
LH0052C
LHOOS2C
LH0052C
LH0052C
LH0042C
LH0042C
LH0042C
LH0042C
LH0042C
LH0062C
LH0062C
LH0042C

DIP
DIP
DIP
Z~OHT1)
TO-S
ZA802-IM1, M2}
MOD
MOD
ZA803-IM1)
ZA804-IM1, M2)
MOD
MOD
ZA903-IM1, M2)
_ MOD
133
MOD
133-03
133-04
MOD
134
MOD
MOD
1340
MOD
13S
ZA80HD1, Ell
ZA80HM1, M2)
ZA8QHM3)

LH0042C
LH0042C
LH0022C
L::H.0042C
LH0022C
LH0052C
LH0042C
LHOOS2C
LH0022C
LH0052C
LH0022C
LH0042C
LH0042C
LH0062C

TEXAS
INSTRUMENTS
DEVICE NUMBER
SN5500F
SNG510F
SN5510L
SN5511F
SN5511L
SN5524J
SN5525J
SN7500F
SN7501F
SN7502F
SN7510F
SN7510L
SN7511L
SN7520J
SN7520N
SN7521J
SN7521N
SN7522J
SN7522N
SN7523J
SN7523N
SN7524J
SN7524N
SN7525J
SN7525N
SN7528J
SN7528N
SN7529J
SN7529N
SN52101AJ
SN52101AL
SN52101AZ
SN52107J
SN52107L
SN52107Z
SN52558L
SN52702AF
SN52702AL
SN52702AN
SN52702F
SN52702L
SN52702N·
SN52702Z
SN52709AF
SN52709AL
SN52709AN
SN52709F
SN52709L
SN52709N
SN52710J
SN52710L
SN52710N

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

TEXAS
INSTRUMENTS
DEVICE NUMBER

LM5524J
LM733H
LM733H
LM733H
LM733H

SN52710S
SN52711J
SN52711 L
SN52711N
SN52711S
SN52733L
SN52741J
SN52741L
SN52741Z
SN52747J
SN52747Z
SN52748J
SN52748L
SN52748Z
SN52770J
SN52770L
SN52770Z
SN52771J
SN52771L
SN52771Z
SN55107J
SN55108J
SN55109J
SN55110J
SN55182J
SN55183J
SN56514L
SN72301AJ
SN72301AL
SN72301AN
SN72301AP
SN72301AZ
SN72307J
SN72307L
SN72307N
SN72307P
SN72307Z
SN72558L
SN72558P
SN72702F
SN72702L
SN72702N
SN72709L

LM5524J
LM5525J
LM7524J
LM7524J
LM7524J
LM733CH
LM733CH
LM733CH
LM7520J
LM7520N
LM7521J
LM7521N
LM7522J
LM7522N
LM7523J
LM7523N
LM7524J
LM7524N
LM7525J
LM7525N
LM7528J
LM7528N
LM7529J
LM7529N
LM101AD
LM101AH
LM101AF
LM107D
LM107H
LM107F
LM1558H
LM101AF
LM101AH
LM301A
LM101AF
LM101AH
LM301A
LM101AF
LM709H
LM709AH
LM709AH
LM709H
LN/709H
LM709H
LM710H
LM710H
LM710H

SN72709N,~.

SN72709P
SN72709S
SN7271 OJ
SN72710L
SN72710N
SN72710S
SN72711J
SN72711L

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
,EQUIVALENT

TEXAS
INSTRUMENTS
DEVICE NUMBER

LM710H
LM711H

SN72711N
SN72811S
SN72720N
SN72733L
SN72733N
SN72741J
SN72741 L
SN72741N
SN72741P
SN72741Z
SN72747J
SN72747N
SN72748N
SN72748P
SN72748J
SN72748L
SN72748Z
SN72770J
SN72770L
SN72770N
SN72770P
SN72770Z
SN72771L
SN72771N
SN72771P
SN72771Z
SN75100L
SN75107J
SN75107N
SN75rl08J
SN75108N
SN75109J
SN75109N
SN75110J
SN75110N
SN75150J
SN75150N
SN75150P
SN75182J
SN75182N
SN75183J
SN75183N
SN75450N
SN75450AN
SN75451P
SN75451AP
SN75452P
SN75453P
SN75454P
SN76514L
SN76514N

LM711H
LM711H
LM711H
LM733H
LM741H
LM741H
LM741F
LM747D
LM747F
LM748H
LM733H
LM748H
LM108D
LM108H
LM108F
LM112D
LM108H
LMl12F
DM7820J
DM7820J
DM7830J
DM7830J
DM7820AJ
DM7830J
LM1496H
LM301AD
LM301AH
LM301AN
LM301AH
LM301AF
LM307D
LM307H
LM307N
LM307H
LM307F
LM1458H
LM1458N
LM301AF
LM301AH
LM301AH
LM709CH
LM709CN
LM709CN
LM7~H

LM710CH
LM710CH
LM710CN
LM710CH
LM711CH"-

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM711CN
LM711CH
LM1414N
LM733CH
LM733CN
LM741CH
LM741CH
LM741CN·14
LM741CN
LM741CF
LM747CD
LM747CN
LM748CN
LM748CH
LM748CH
LM748CH
LM748H
LM308D
LM308H
LM308H
LM308H
LM308F
LM308H
LM308H
LM308H
LM312F
DM8820D
DM8820J
DM8820N
DM8820J
DM8820N
DM8830J
DM8830N
DM8830J
DM8830N
DM8830J
DM8830N
DM8830N
DM8820AJ
DM8820AN
DM8830J
DM8830N
LM75450AN
LM75450AN \
LM75451N
LM75451AN
LM75452N
LM75453N
LM75454N
LM1496H
LM1496H

LM711CH

93U9J9j.9H SSOJ:) Je9U!1

Linear Cross Reference
~

FAIRCHILD
DEVICE
NUMBER
U3F7101311 [UA101AF)
U3F7101333 [UA201AF]
U3F7702312
U3F7702313
U3F7709311
U3F77093f2
U3F7709313
U3F7710312
U3F7710313
U3F7711312U3F7711313
U3F7733312
U3F7733313
U3F7741312
U3F7741313
U3F7748312
U3F7748313
U31962051X
U31962059X
U31962151X
U31962159X
U31962251 X
U31962259X
U3M7722333
U3M7722334
U4L961451X
U4L961459X
U4L961551X
U4L961559X
U4L961651X
U4L961659X
U4L961751X
U4L961759X
U5A7064394 [UA3064]
U5B7101312 [UA101H)
U5B7101311 [UA101AH]
U5B7101333 [UA201AH]
U5B7101392 [UA301AH]
U5B7201393 [UA201H]
U5B7702312
U5B7702393
U5B7709311
U5B7709312
U5B7709393
U5B7710312
U5B771 0393
U5B7716393
U5B7730312
U5B7730393
U5B7735312
U5B7735333
U5B7735393
U5B7740312
U5B7740393
U5B7741312
U5B7741393
U5B7748312
U5B7748393
U5B7749394
U5B7776312
U5B7776393
U5B7777312

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM101AF
LM201AF
LM101AF
LM101AF
LM7Q9AH
LM709H
LM709H
LM710AH
LM710CH
LM711H
LM711H
LM733H
LM733H
LM741F
LM741F
LM101AF
LM201AF
DM7820D
DM8820N
DM7830D
DM8830N
DM7820D
DM8820N
LMDAC-Ol
LMDAC-Ol
DM7830D
DM8830D
DM7820D
DM8820N
LM1488N
LM1488N
LM1489AN
LM1489AN
LM3064H
LM101H
LM101AH
LM201AH
LM301AH
LM201H
LM101AH
LM301AH
LM709AH
LM709H
LM709CH
LM710AH
LM710CH
LM380N_
LM114AH
LM114H
LM4250H
LM4250H
LM4250CH
LH740AH
LH740AC
LM741H
LM741CH
LM748H
LM748CH
LM1303N
LM4250H
LM4250CH
LM101AH

FAIRCHILD
DEVICE
NUMBER
U5B7777393
U5D7703312
U5D7703393
U5E7064394 [tJA3064]
U5E7746394
U567754393
U5E7796312
·U5E7796393
U5F7711312
U5F7711393
U5F7715312
U5F7715393
U5F7719312
U5F7719393
U5F7733312
U5F7733393
U5F7734312
U5F7734393
U5F7747312
U5F7747393
U5R7723312
U5R7723393
U5T7725311
U5T7725312
U5T7725333
U5T7725393
U5U7726312
U5U7726323
U5U7727312
U5U7727333
U5Z7703394
U6A7065394 [UA3065]
U6A7101311 [UA101AD]
U6A7101312 [UA101D]
U6A7101333 [UA201AD]
U6A7101393 [UA301AD]
U6A7201393 [UA201D]
U6A7702312
U6A7702393
U6A7709311
U6A7709312
U6A7709393
U6A7710312
U6A771 0393
U6A7711312
U6A7711393
U6A7715312
U6A7715393
U6A7723312
U6A7723393
U6A7729394
U6A7732394
U6A7733312
U6A7733393
U6A7739312
U6A7739393
U6A7741312
U6A7741393
U6A7746394
U6A7748312
U6A7748393
U6A7749312

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM301AH
LM703LH
LM703LH
LM3064H
LM746CN
LM3065N
LM1596H
LM1496H
LM711H
LM711CH
LM118H
LM318H
LM273H
LM373H
LM733H
LM733CH
LMlllH
LM311H
LM747H
LM747CH
LM723H
LM723CH
LM725AH
LM725H
LM725H
LM725CH
LM114A
LM114H
LHl725H
LHl725H
LM703LH
LM3065N
LM101AD
LM101D
LM201AD
LM301AD
LM201D
LM101AD
LM301AD
LM709AH
LM709H
LM709CN
LM710AH
LM710CN
LM711H
LM711CN
LMl18D
LM318D
LM723D
LM723CD
LM1304N
LM1305N
LM733D
LM733CD
LM1303D
LM1303N
LM741D
LM741CN-14
LM746CN
LM101AD
LM301AD
LM1303N

FAIRCHILD
DEVICE
NUMBER
U6A7749393
U6A7750312
U6A7750393
U6A7754394
U6A7757312
U6A7757393
U6A7760312
U6A7777312
U6A7767394
U6A7760393
U6A7777393
U6A7781394
U6A7784354
U6A962051X
U6A962059X
U6A962151X
U6A962159X
U6A962251X
U6A962259X
U6B7780394
U6W7747312
U6W7747393
U7A7747312
U7A7747393
U7B7524392
U7B7525393
U7B7761391
U7B7761392
U7B7761393
U7B961551X
U7B961559X
U7B964451X
U7B964459X
U7B961451X
U7B961459X
U7B961651X
U7B961659X
U7B961751X
U7B961759X
U7F7065394 [UA3065] .
U7F7784354
U9T7101393 [UA301AN]
U9T7201393 [UA201T]
U9T7741393
U9T7748393
U9T7777393
UBN7109312 [UA109H]
UBN7109333 [UA209H]
UBN7109393 [UA309H]
UGH7805393
UGH7808393
UGH7812393
UGH7815393
UGH7818393
UGH7824393
UGJ7109312 [UA109K]
UGJ7109333 [UA209K]
UGJ7109393 [UA309K)
UXX7791312
UXX7791393

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM1303N
LMlllH
LM311H
LM3065N
LM374H
LM374H
LM160J
LM101AD
LM1304N
LM360J
LM301AD
LM3071N
LM3065N
DM7820D
DM8820N
DM7830D
DM8830N
DM7820D
DM8820N
LM3070N
LM747D
LM747CD
LM747D
LM747CD
LM7524J
LM7525J
LM7524J
LM7524J
LM7525J
DM7820D
DM8820N
DHOOllH
DHOO11N
DM7830D
DM8830N
LM1488N
LM1488N
LM1489AN
LM1489AN
LM3065N
LM3065N
LM301AN
LM201N
LM741CN
LM748CN
LM301AN
LM109H
LM209H
LM309H
LM340-05K
LM340-08K
LM340-12K
LM340-15K
LM340-18K
LM340-24K
LM109K
LM209K
LM309K

I

I

LHOO21K
LHOO21CK
I

MOTOROLA
DEVICE
NUMBER

....

CJ'1

MC1303L
MC1304P
MC1305P
MC1306P
MC1307P
MC1326P
MC1326PQ
MC1328G
MC1328P
MC1328PQ
MC1350P
MC1351P
MC1358P
MC1358PQ
MCl380P
MC1410G
MC1414L
MC1420G
MC1430F
MC1430G
MC1430P
MC1431F
MC1431G
MC1431P
MC1433F
MC1433G
MC1433L
MC1435F
MC1435G
MC1435L
MC1436CG
MC1436G
MC1437L
MC1437P
MC1438R
MC1439G
MC1439L
MC1439P2
MC1440F
MC1440G
MC1440L
MC1441F
MC1441L
MC1454G
MC1456CG
MC1456G
MC1458CG
MC1458Ct:
MC1458CPl
MC1458CP2
MC1458G
MC1458L
MC1458Pl
MC1458P2
MC1460G
MC1460R
MC1461G
MC1461R
MC1463G
MC1463R
MC1466L
MC1469G
MC1469R

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM1303N
LM1304N
LM1305N
LM380N
LM1307N
LM3067N
LM3067N
LM3067N
LM3067N
LM3067N
LM703L
LM1351N
LM3065N
LM3065N
LM380N
LM733CH
LM1414J
LM733CH
LM301AF
LM301AH
LM301AN
LM301AF
LM301AH
LM301AN
LM301AF
LM301AH
LM301AN
LM1303N
LM1303N
LM1303N
LM1436CH
LM1436H
LM1415N-14
LM1415N-14
LHOOO2H
LM301AH
LM301AH
LM301AH
LM7524J
LM7524J
LM7524J
LM7524J
LM7524J
LM380H
LM308H
LM308H
LM1458H
LM1458N-14
LM1458N
LM1458N-14
LM1458H
LM1458N-14
LM1458N
LM1458N-14
LM305H
LM305H
LM305H
LM305H
LM304H
LM304H
LM304H
LM305H
LM305H

MOTOROLA
DEVICE
NUMBER
MC1488L
MC1489AL
MC1489L
MC1496G
MC1496L
MC1509F
MC1510F
MC1510G
MC1514L
MC1519G
MC1520F
MC1520G
MC1530F
MC1530G
MC1531F
MC1531G
MC1533F
MC1533G
MC1533L
MC1535F
MC1535G
MC1536G
MC1537L
MC1538R
MC1539G
MC1539L
MC1504F
MCl540G
MCl540L
MC1541F
MC1541L
MC1550F
MC1550G
MC1552G
MC1553G
MC1554G
MC1556G
MC1558G
MC1558L
MC1560G
MC1560R
MC1561G
MC1561 R
MC1563G
MC1563R
MC1566L
MC1569G
MC1569R
MC1580L
MC1582L
MC1583L
MC1584L
MC1509G
MC1596G
MC15961
MC1709CF
MC1709CG
MC1709CL
MC1709CPl
MC1709CP2
MC1709F
MC1709G
MC1709L

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM1488J
LM1489AJ
LM1489J
LM1496H
LM1496N
LM733H
LM733H
LM733H
LM1514J
LM733H
LM733H
LM733H
LM101AF
LM101AH
LM101AF
LM101AH
LM101AF
LM101AH
LM101AD
LM1303N
LM1303N
LM1536H
LM1415N-14
LHOOO2H
LM101AH
LM101AD
LM5524J
LM5524J
LM5524J
LM5524J
LM5524J
LM171H
LM171H
LM733H
LM733H
LM380N
LM108H
LM1558H
LM1558D
LM105H
LM105H
LM105H
LM105H
LM104H
LM104H
LM104H
LM105H·
LM105H
DM7831J
DM7830J
DM7820J
DM7820AJ
LM170H
LM1596H
LM1596H
LM709CH
LM709CH
LM709CN
LM709CN
LM709CN
LM709H
LM709H

MOTOROLA
DEVICE
NUMBER
MC1710CF
MC1701CG
MC1710CL
MC1710F
MC1710G
MC1710L
MC1711CF
MC1711CG
MC1711CL
rll1C1711F
MC1711G
MC1711L
MC1712CF
MC1712CG
MC1712CL
MC1712F
MC1712G
MC1712L
MCl723CG
MCl723CL
MCl723G
MCl723L
MC1733CG
MC1733CL
MC1733G
MC1733L
MC1741CF
MC1741CG
MC1741CL
MC1741CPl
MC1741CP2
MC1741F
MC1741G
MC1741L
MC1748CG
MC1748G
MFC40000D
MFC4010A
MFC4050
MFC4060
MFC6010
MFC6030'
MFC6070
MFC8000
MFC8001
MFC8002
MFC8010
MFC8030
MFC8040
MFC9020
MLM101AG
MLM105G
MLM107G
MLM109K
MLM201AG
MLM205G
MLM207G
MLM209K
MLM301AG
MLM305G
MLM307G
MLM309K

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT
LM710CH

LM710CH
LM710CH
LM710H
LM710H
LM710H
LM711CH
LM711CH
LM711CH
LM711H
LM711H
LM711H
LM733CH
LM733CH
LM733CH
LM733H
LM733H
LM733H
LM723CH
LM723CD
LM723H
LM723D
LM733CH
LM733CD
LM733H
LM733D
LM741CH
LM741CH
LM741CH
LM741CN-14
LM741CN
LM741F
LM741H
LM741H
LM748CH
LM748H
LM380N
LM381N
LM380N
LM3761\1
LM2111N
LM376N
LM380N
LM703LN
LM703LN
LM703LN
LM380N
LM703LN
LM381N
LM380N
LM101AH
LM105H
LM107H
LM109K
LM201AH
LM205H
LM207H
LM209K
LM301AH
LM305H
LM307H
LM309K

LM709H

a:»uaJaJaH

SSOJ~

JeaU!l

Linear Cross Reference
0>

SIGNETICS
DEVICE
NUMBER

N5201A
N5307T
N5308T
N53AH
N53MV
N53AST
N5556V
N555SF
N5558T
N5596K
N5596K
N5709A
N5709T
N5709V
N5710A
N5710T
N5711A
N5711K
N5723A
N5723L
N5733A
N5733K
N5740T
N5741A
N574H
N5741V
N5747A
N5747F
N5747K
N574SA
N5748T
N574SV
N7520B
N7521B
N7522B
N7523B
N7524B
N7525B

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM301AD
LM307H
LM308H
LM301AH
LM301AN
LM308AH
LM307N
LM145SN
LM145SH
LM1496H
LM1496N
LM709CN
LM709CH

NATIONAL
PIN-FOR-PIN
EQUIVALENT

LM710CN
LM710CH
LM711CN
LM711CH
LM723CN
LM723CH
LM733CN
LM733CH
LH740CH
LM741CN-14
LM741CH
LM741CN
LM747CN
LM747CD
LM747CH
LM74SCH

NE526G
NE526K
NE531G
NE531T
NE531V
NE533G
NE533T
NE533V
NE536T
NE537G
NE537T
NE540L
NE550A
NE550L
NE565A
NE565B
NE566T
NE566V
NE567T
NE567V
PA239A
S5101T
S5107T
S510ST
S51A1T
S51AST

NATIONAL
FUNCTIONAL
EQUIVALENT

LM733CN
LM733CH
LM733CH
LM371H
LM371H
LM733CN
LM733CH
LM733CH
LM306H
LM306H
LM306H
LM306H
LM306H
LM306H
LM31SH
LM31SH
LM31SH
LM4250CH
LM4250CH
LM4250CH
LM316H
LM30SH
LM30SH
LHOO21CK
LM723CH
LM723CH

NE501A
NE501G
NE501K
NE510A
NE510J
NE515A
NE515G
NE515t<
NE51SA
NE51SG
NE51SK
NE526A

LM709CN

LM748CH
LM74SCN
LM7520N
LM7521N
LM7522N
LM7523N
LM7524N
LM7525N

SIGNETICS
DEVICE
NUMBER

LM565CN
LM565CH
LM566CH
LM566CN
LM567CH
LM567CN
LM3S1 N
LM101H
LM107H
LM10SH
LM101AH
LM10SAH

SIGNETICS
DEVICE
NUMBER

S5556L
S555ST
S5596K
S5709T
S5710T
S5711K
S5711T
S5723L
S5733F
S5733K
S5740T
S5741T
S5747K
S574ST
SE501G
SE501K
SE510A
SE510J
SE515G
SE515K
SE51SA
SE51SG
SE51SK
SE526A
SE526G
SE526K
SE531G
SE533G
SE533T
SE537G
SE537T
SE540L
SE550L
SE565K
SE566T
SE567T
SU536G
SU536T

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM107H
LM155SH
LM1596H
LM709H
LM710H
LM711H
LM711H
LM723H
LM733D
LM733H
LM740H
LM741H
LM747H
LM74SH
LM733H
LM733H
LM171H
LM171H
LM733H
LM733H
LM106H
LM106H
LM106H
LM106H
LM106H
LM106H
LM11SH
LM4250CH
LM4250H
LM10SH
LM10SH
LHOO21K
LM723H
LM565H
LM566H
LM567H
LM216H
LM216H

r-

3:

Voltage Regulators

...&

o
o

"r-

3:

N

o

LM100/LM200/LM300 voltage regulator
general description
The LM 100, LM200 and LM300 are integrated
voltage regulators designed for a wide range of
applications from digital power supplies to precision regulators for analog circuitry. Built on a
single silicon chip, these devices are encapsulated
in either an 8-lead, low profile TO-5 header or a
1/4 x 1/4 metal flat package. Outstanding characteristics are:
• Output voltage adjustable from 2V to 30V
(LM300 adjustable from 2V to 20V)
• Better than one percent load and line regulation
• One percent temperature stability
• Adjustable short-circuit limiting
• Output currents in excess of 5A possible by
adding external transistors

o

"r-

3:

• Can be used as either a linear or high-efficiency
swi tch i ng regu Iator .

W

o
o

Additional features are fast response to both load
and line transients, small standby powe, dissipation, freeclom from oscillations with varying
resistive and reactive loads, and the ability to start
reliably on any load within rating.
The LM 100 is specified for operation over, the
-55°C to +125°C military temperature range. The
LM200 and LM300 are low cost, commercialindustrial versions of the LM 100. They are identical
to the .LM100 except that they are specified for
operation from -25° C to 85° C and from 0° C to
70° C respectively.

schematic and connection diagrams
'BOOSTER
OUTPUT

Metal Can

D

Flat Package

REG
OUTPUT

..

~""""IVV--"-U; ':~RENT

BOOSTER,OUTPUT

CURRENT LIMIT

.-vV'v-<~""I'Y-""----+-~~i:UuTlATEO

REG OUTPUT
GROUNO

COMP

REF BYPASS

""'-----1

'EEDBACK

NOTE· P1n4connKttdtobottomofJIIChft
COMPENSATION

TOP VIEW

GROUND
NOTE: "n4connectecltoceM
TOP VIEW

+-_ _ _ _ _ _ _

1--_ _

::::~RENCE

Order Number LM100H
or LM200H or LM300H
See Package 11

Order Number LM100F
or LM200F or LM300F
See Package 3

Pin connections shown are for TO-5 package

typical applications

2A Regulator With Foldback Current Limiting
r---+--......_J\IIJ'I.-......------+--...-VOUT' 28V
R3
01

Basic Regulator Circuit
RS

RC

68

82

R.

33<

r--.....- - - - - - . . . . . - vou ,

C2
47pF

v,.
R2

2.41<

---.....----.4.-.---+_

GROUND

4A Switching Regulator

200 mA Regulator

===L1*

R3
1

D'
1NJ8IO

C,f

'.'

-----.....-----e-.....

GROUND

tSohdtant.!um

Ri
1M

'&oturns#20onArnoldEntinltfi ..

A930151·2molyltd••umptf""ltoy

tSefMlT.rrtIIM.

17

0
0
C")

absolute maximum ratings

~

....
"0

Input Voltage
LM100, LM200
LM300
Input-Output Voltage Differential
LM100, LM200
LM300
Power Dissipation (Note 1)
LM100, LM200
LM300
Operating Temperature Range
LM 100, LM200
LM300
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

0

N

~

....
"0
0

~

~

....

electrical characteristics

40V
3SV
40V
30V
800mW
SOOmW
-SSoC to +lS0°C
O°C to 70°C
-6SoC to lS0°C
300°C

(Note 2)

PARAMETER

CONDITIONS

Input Voltage Range
LM100/LM200
LM300
Output Voltage Range
LM 100/LM200
LM300
Output-Input Voltage
Differential
LM 100/LM200
LM300
Rsc = 0, 10

Line Regulation

V 1N
V 1N

MAX

-

40
30

V

2_0

30
20

V

3_0

30
20

V OUT ~ SV
V OUT ~ SV

-55°C ~ T A ~ +125°C
-25°C ~ T A ~ 85°C

O°C~TA ~70°C
1.63

v

0.1

O.S

%

0.1
O.OS

0.2
0.1

%/V
%/V

0.3
0.3
0.3

1.0
1.0
2.0

%

1.7

1.81

V

10Hz~f~10kHz

a

C REF =
C REF = 0.1 f..LF
Long Term Stability

%
%

O.OOS
0.002
0.1

1.0

%

Standby Current Drain
LM100/LM200
LM300

V 1N = 40V
V 1N = 30V

1.0

3.0

mA

Minimum Load Current
LM 100/LM200
LM300

V 1N
V 1N

1.5

3.0

mA

-

V OUT = 30V
V OUT = 20V

Note 1: The maximum junction temperature of the LM 100 is 150°C, while that of the LM200 is
o
100 e, and the LM300 is 85°C. For operating at elevated temperatures, devices in the TO-5 package
must be derated based on a thermal resistance of 150o C/W junction to ambient or 45°C/W, junction to
case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on
a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. Peak
dissipations to 1.0W are allowable providing the dissipation rating is not exceeded with the power
averaged over a five second interval for the LM 100 and LM200, and a two second interval for the
LM300.
Note 2: These specifications apply for an operating temperature between -55°e to +1250 e for the
LM100, between -25°e to 85°C for the LM200 and between oOe to 700 e for the LM300 devices for
input and output voltages within the ranges given, and for a divider impedance seen by the feedback
terminal of 2 kn, unless otherwise specified. The load and line regulation specifications are for
constant junction temperature. Temperature drift effects must be taken into account separately when
the unit is operating under conditions of high dissipation.
Note 3: The output currents given, as well as the load regulation, can be increased by the addition of
external transistors. The improvement factor wi II be roughly equal to the composite current gain of
the added transistors.

18

UNITS

8_S
8_S

< 12 mA

Feedback Sense Voltage
Output Noise Voltage

TVP

•

Load Regulation (Note 3)

Temperature Stability
LM100
LM200
LM300

MIN

r-

3:
o
o
~

typical performance characteristics

8.0

40

I---

lO

r-

u

z
<
....

I
I

4

1

L

I

<

a:

"-

.... "

6 10

1

~

~

7.0

....:::I

~

---

~

0

l

i=

u

...
...
!!l

...:>

~

i=
<

0.2

~

.02

Q..

o

1

~

0.1
~

-0.1

> -0.2
:::I

Q..

""'r--., Jo,;.'

I:::I

0

.. ......

-0.4

,

0.5
CD

<

~
0

...>
en
...
en

0.4

Z

...

:i

CD
<
.... 1000

...

,

0

>

'\

l-

i

O.l

IZ

...
u

....:::I

,,

~

i=

<

-""

999

:-TJ =70 C\

0

40

80

"'" ~

I-

...z

II:
II:
:::I
U

I-

:;

20

~

r'"
~~

U
II:

II:
0

10

-

-,.....

...

CD

<

~

0

>

'

.......

12.0

, .......
..

I-

I I

. . . . ..t..
~

:::I
Q..

15

10

Rsc = 10n
IVorT = 10V

~

:!:
- I l =20mA

I

Il = 10 mA
'(LM100) _

... .......... r-..... .... ......
~

- - -

.....

- ti20j'LjlOj )

1 I

(LM100 ONt V)

~

...
...<....

1.0

CD

""..........

0

>

~~
~

....:::I
.....
~

~ 0.99

~~

:::I
0

...>
i=
......<

...... 1"-

....

~

:

-

11.0
-80

20

-40

40

80

120

160

JUNCTION TEMPERATURE (OC)

Current Limiting Characteristics

"'
~~~,

1

J=

TJ = 150°C

o
40

80

120

JUNCTION TEMPERATURE (OC)

160

10

...

I

~

<

~
:::I

,

....

Q..

:::I
0

...>

\

l

15

25

,I

"

~

-I

,

0.6

OUTPUT CURRENT (mA)

l5

1""'1

1

1

TJ = 150°C
-I,....-

0.2

1

~VI

II:

40

--

"'\

TJ ~ 12~oC
vl

0.4

II

1\
lO

,'.

TJ = 25°1:

i=

~

\

20

0.8

>

I-

\

1\
1

1.0

CD

0

1~5°C\

\
\
\

0.98

~

,

"T"~TJ = 55°C

"'\r

Rsc = 10n
1 - -55°C

(LM100 ONL V)

Rsc = 10n

j J = 2~oC'I

II:

-40

20

Regulator Drbpout Voltage
vs Junctio!:, T,erhperature

Regulation Characteristics
Current Limiting

en

-80

t5

10
TIME (ps)

Wi~h

(LlM100 ONL V)

Rsc = 20i!' ....... .......

U
I-

.......

D

~VIN = 5V
VOVT = tOV

-0.2

LOAD CURRENT (mA)

........

....."-

0

20

,/ ->-..
TJ =-55'0 C-

o

160

II~

....

Cl = 11lF
Rsc= 10n

:::I

1

TJ = DoC ......
r-.,;
....... ~ TJ = 150°CI'

II:

120

..~

1.2

I'k.Rsc = 10n

lO r-Rsc = 15n

1

15

~

998

Short Circuit Current
vs Junction Temper~ture

<
.!

....:::I

""'"

Q..

~

JUNCTION TEMPERATURE (oC)

40

INl =lmA -

r-- ...... I!....J..

997
-40

~

> -0.1
....

TJ = 25~C \

,n·

0.2
-80

....
,

CD

1l.0

~

~

V

0

!

I

:::I
0

...>
~

II:
II:
:::I

-

40

lO

r-f-- f-C l = 0

Reguhition Characteristics
Without Current Limiting

~

I'

0.1

Rsc= 10n I
IFl =20mA-

10

20

10

TIME (ps)

1001

"'"

~

...

1

--

~

0.2

0

VOUT= 10V-

50

10

z
0
i=
<

<

r

-O.l

o

I

/

Line Transient Response

VCl = 11lF

I

I-

Current Limit Sense Voltage
vs Junction Temperatur~

...

o

I

INPUT·OUTPUT VOLTAGE DIFFERENTIAL (V)

.~ ./.

INPUT·OUTPUT VOLTAGE DIFFERENTIAL (V)

~

I

80 100 120

Cl =O'?

0

~

20 40 60

~

CD

<

~

:::I

en

O.l

0

0

>
~
Q..

0

0.4

0

...

~

.04

~
:::I
~

Load Transient Response

\

CD

<

1.0

JUNCTION TEMPERATURE (OC)

~
z

II:

<

::
z

6.0
-60 -40 -20

20 lO 50

,

.06

~

0

r-

3:
W
o
o

V

u

:i

!\

.08

"""'"

II111

Supply Vdltage Rejection vs
Input-Output Voltage
Differential

~z

~

"-

I

:::I

I illl

OUTPUT VOLTAGE (V)

0.1

1/

II:

Q..

1

R111R2 = t2!~§2

10

0

>

r-

3:
N
o
o

~

E

...
~

R2-

I

1\

...

ct
i='
~

~
CD

1

20

iii

II:

1
J

,,

en

VOUT = 2V

I

R1

"-

2.0

I

~...

Minimum Load Current vs
Input-Output Voltage
Differential

Minimum Input Voltage
vs Junction Temperature

Optimum Divider Resistance'
Values vs Output Voltage

10

15

20

25

30

l5

40

45

OUTPUT CURRENT (mA)

19

M

o....

Voltage Regulators

~

...J

LM103 regulator diode **
general description
The LM103 is a two-terminal monolithic regulator
diode electrically equivalent to a breakdown diode.
The device makes use of the reverse punch-through
of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction
zener diodes at low voltages. Breakdown voltages
from 1.8V to 5.6V are available; and, although the
design is optimized for operation between 100 JlA
and 1 mA, it is completely specified from 10 JlA to
10 mAo Noteworthy features of the device are:
•

Exceptionally sharp breakdown

•

Low dynamic impedance from 10 J.lA to 10 mA

•

Performance guaranteed over full military temperature range

•

Planar, paSsivated junctions for stable ,operation

•

Low capacitance.

The LM 103, packaged in a hermetically sealed,
modified TO-46 header is useful in a wide range of
circuit applications from level shifting to simple
voltage regulation. It can also be employed with
operational amplifiers in producing breakpoints to
generate nonlinear transfer functions. F inai'ly, its
unique characteristics recommend it as a reference
element in low voltage power supplies with input
voltages down to 4V.

schematic and connection diagrams

R1
10K

NOTE: Pin 2 connocted to c...
TOPVIEW

Order Number LM103H
See Package 8

typical applications
200 mA Positive Regulator

Saturating Servo Preamplifier
with Rate Feedback

r---------.....- ...- -.....- R7
10K

.....-

Q2
2N3964

V'N>S,SV

....---VOUT·SV

OUTPUT

C2

30pF

01
lM103

.3.3V

+
R8

220

R4t

150
1%

C1'

2.2"F
·Solid tlntllum
tSetttt for minimum
'Imptrlturedrift,
il .......,

**Covered by U.S. Patent Number 3,571,630

20

r-

s:
~

o

eN

absolute maximum ratings
Power Dissipation (note 1)
Reverse Cu rrent
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

electrical characteristics
PARAMETER
Reverse Breakdown Voltage Change

Reverse Dynamic Impedance (Note 3)

250rnW
20 rnA
100 rnA
-55°C to 125°C
-65°C to 150°C
300°C

(Note 2)
TYP

MAX

UNIT

10 JiA :::; I R '.S 100 JiA

60

120

mV

100 JiA :::; I R :::; 1 mA

15

50

mV

1 mA.'.S I R ~ 10 mA

50

150

mV

5

25

Q

15

60

Q

2

5

0.8

1.0

CONDITIONS

MIN

IR = 3 mA
IR = 0.3 mA

Reverse Leakage Current

V R = V z -0.2V

Forward Voltage Drop

IF = 10 mA

Peak-to-Peak Broadband Noise Voltage

10 Hz.'.Sf< 100 kHz, IR = 1 mA

Reverse Breakdown Voltage Change
(Note 4)

10 JiA :::; I R :::;. 100 JiA

200

mV

100 JiA :::;'1 R ~ 1 mA

60

mV

1 mA ~ I R .'.S 10 mA

200

mV

Breakdown Voltage Temperature
Coefficient (Note 4)

100 JiA ::; I R::; 1 rnA

0.7

II

V
JiV

300

-5.0

JiA

mVfC

NOTE 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of BO°C/W junction to
case or 440°C/W junction to ambient (see curve).
NOTE 2: These specifications apply for T A = 25°C and 1.BV < Vz < 5.6V unless stated
otherwise. The diode should not be operated with shunt capacitances between 100 pF
and 0.01 pF, unless isolated by at least a 50J:2resistor, as it may oscillate at some currents.
NOTE 3: Measured with the peak-to-peak change of reverse current equal to 10 percent
of the dc reverse current.
NOTE 4: These specifications apply for -55°C < T A < 125°C.

21

M

o

~

~

guaranteed reverse characteristics

..J

0.3

u.J

'"z

J

!/

g
~

1.10

-0.1

/r

1
'

~

0

>

-

~P!f"J= ..

'--f-

u.J

'"

.,

0.1

L.....f~

~

0.1

u.J

'"z

g

.41- ~

'"
~
0

MAXIMUM

-0.1

>

~

..

~

~f-

~

0.1

1.0

0.1

-

)

~ ~

-

l.....IIII ~~

~==1oI

~I'" ; ~AXIMUM

-0.1

lI~

-0.2

II
II

-0.3
0.1

REVE RSE CU RRENT (rnA)

LI

2.4V C:. Vz ::;'5.6V
TA ~ 125°C

>- TYPICAL

II

-0.3
0.01

10

)
If'"

MAXIMUM

-

0.01

0.2

~

-0.2

-0.3

-r:.::;:. F""""

1111

-

I-

.....o.I~

TYPICAL

u.J

0.3

~ 51.6~1-

TA~25°C

0.2

IJI'

-0.2

tL d

vz

-

TA ~ -55°C

0.2

~

0.3

121.4V~ VzI5U~-

10

1.0

0.1

0.01

REVERSE CURRENT (rnA)

10

1.0

REVERSE CURRENT (rnA)

typical performance characteristics
Reverse Characteristics

Reverse Dynamic Impedance

·I .

I
LM103·3.0

10K

I

•

I

•
I
•· •
I •
I

I~

~

25°C

10-8

lK

"
•

u

z

~

·

~

100

I -550C

~
10

REVERSE VOLTAGE (V)

2.4V5VzNJ~-

12

II I

10

~IJPc

""",,.~
~

0.5

TA

...-!Ioo

~

T A = 125°C

II""

o
0.01

100

25 °c Ii"'"

0

~~~

I'- ....TA

=

~

125°c

r-........ r-r-Io

~

0.1

0

"

~

-0.2

>

....

-0.4

~

1.0

-0.6
-75

10

,~

I

".....
J

~

"

"'"'

~

~
o

..... 1·

75

125

TEMPERATU RE (C)

400 ..------,.----,..---..,..----,

~
6

~!~U!~

u.J

~

25

--r-- f - -

~
~

'"«

-25

Maximum Power Dissipation

INPUT

4

'--

300

z

~'"'.

0

f=
~ 200

~

'J

Ci

I'

>

a:

~

IT
III I
I'T

100

~
1.0

10

oL...----L--~---'---~

100

10

FORWARD CURRENT (rnA)

22

w
t!l

«

I~""

0.1

.....

'" ~

a:

Response Time

I I
TA

4~

0.2

REVERSE CURRENT (rnA)

Forward Characteristics

1.0

t

I,

1
0.01

1.5

0.4

?:

TA ~ -55°C

~,

~

is

o

10-

\

TA ~ 25°C'

u

0.6

JLI, J,,, ~60
II - -

~~

u.J

I'

,
---- 11'·

125°C

10-7

-

Temperature Drift

TIME (ps)

25

50

100

75

125

AMBIENT TEMPERATURE (OC)

BREAKDOWN
VOLTAGE*

PART
NUMBER

1.8
2.0
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6

LM103-1.8
LM103-2.0
LM103-2.2
LM103-2.4
LM103-2.7
LM103-3.0
LM103-3.3
LM103-3.6
LM103-3.9
LM103-4.3
LM103-4.7
LM103-5.1
LM103-5.6

*Measured at IR

=

1 mAo

Standard to lerance is ± 10%.

Voltage Regulators
LM104/LM204 negative regulator
general description
The LM104 and LM204 are precision voltage
regulators which can be programmed by a single
external resistor to supply any voltage from 40V
down to zero while operating from a single
unregulated supply. They can also provide
O.Ol-percent regulation in circuits using a separate,
floating bias supply, where the output voltage
is limited only by the breakdown of external
pass transistors. Although designed primarily as
linear, series regulators, the circuits can be used as
switching regulators, current regulators or in a
number of other control appl ications. Typical
performance characteristics are:

• 0.3% temperature stability over military temperature range
The LM 104 and LM204 are complements of the
LM 100 and LM 105 positive regulators, intended
for systems requiring regulated negative voltages
which have a common ground with the unregulated supply. By themselves, they can deliver
output currents to 25 mA, but external transistors
can be added to get any desired current. The
output voltage is set by external resistors, and
either constant or foldback current limiting is
made available.
The LM 104 is specified for operation over the
-55°C to +125°C military temperature range. The
LM 204 is specified for operation over the _25° C to
+85°C temperature range.

• 1 mV regulation no load to full load
• 0.01 %/V line regulation
• 0.2 mV /V ripple rejection

schematic and connection diagrams

Metal Can
NC

ADJUSTMENT
.--------.-----.-------~___"1_::_:_::_ GROUNO

R15
15K

11

UNREG
INPUT

8 REGULATED
OUTPUT

Note. Pin 5 connected to case.
TOPVIEW

R13

lK
7 BOOSTER

Order Number LM104H or LM204H
See Package 12

OUTPUT

Flat Package

6 CURRENT

'----<~----+-I-+-t__--~-- LIMIT
L -_ _ _ _ _ _ _+-_~

AOJ

NC

REF

GROUNO

REf
SUPPLY

REG
OUTPUT
BOOSTER

COMP

5 UNREGULATED
.'o-'-=-----1>--,NPUT

UNREG
INPUT

CURRENT LIMIT

Note: Pm 5 connected to bottom of package.
TOPVIEW

CDMPENSATION

REFERENCE
SUPPL Y

REFERENCE

Order Number LM104F or LM204F
See Package 3

typical applications

Basic Regulator Circuit
.....- ....- - GNO

.-------41~-

Operating with Separate Bias Supply
. . . - - - -..........- - -......- - G N O

Cit
4.7iJF

>-......- - VOUT "s¥o

,------t----1~~---VOUT"~

' - -_ _ _. . . . ._ _ _- - - VON

Switching Regulator
r--_~-.--~~~~---GNO

tSohdhntalum

High Current Regulator
r - - - -....-

.....---~r-- GNO

>---.-.....- -

VOUT "-10V
lOUT

<2A
01
lN3880

t SohdTantalum
·601urn5#20
on Arnold

Englneermg
A9301572
tSohdTantalum

L - -.....- - - - - V oN <-12V

Molvbdenum

Permalloy Core

L-------~........~~--VON <-85.

23

absolute maximum ratings
Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
LM104
LM204
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

50V
50V
500mW
_55° C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

electrical characteristics

(Note 2)

CONDITIONS

PARAMETER

MIN

MAX

UNITS

I nput Voltage Range

-50

-8

V

Output Voltage Range

-40

-0.015

V

Output-Input Voltage
Differential (Note 3)
Load Regulation (Note 4)

10

= 20 rnA

2.0

50

V

10

=

5 rnA

0.5

50

V

O~ 10 ~ 20 rnA

= 15n

Rsc

Line Regulation (Note 5)

Ripple Rejection

mV

0.056

0.1

%

VIN

< -15V

0.2

0.5

mV/V

-7V

?:: VIN ?:: -15V

0.5

1.0

mV/V

2.0

2.2

V/kr2

0.3

1.0

%

= 2.4k

R 23

Temperature Stability

Vo ~ -lV

Output Noise Voltage

10Hz ~ f ~ 10kHz

1.8

Vo~-5V,C19=0

C19 =10pF

IL

=

5 rnA, V 0 = 0
Vo = -40V

Long Term Stability

5

C19 = 10pF, f = 120 Hz

Output Voltage Scale Factor

Standby Current Drain

1

VOUT :::; -5V
.6V IN = 0.1 VIN

Vo ~ -lV

Note 1: The maximum junction temperature of the LM104 is 150°C, while that
of the LM204 is 100°C. For operating at elevated temperatures, devices in the
TO-5 package must be derated based on a thermal resistance of 150 o C/W,
junction to ambient, or 45°C/W, junction to case. For the flat package, the
derating is based on a thermal" resistance of 185°C/W when mounted on a
1/16-inch-thick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper
conductors.
Note 2: These specifications apply for junction temperatures between -55°C and
150°C (between -25°C and 100°C for the LM204) and for input and output
voltages within the ranges given, unless otherwise specified. The load and line
regulation specifications are for constant junction temperature. Temperature drift
effects must be taken into account separately when the unit is operating under
conditions of high dissipation.
Note 3: When external booster transistors are used, the minimum output-input
voltage differential is increased, in the worst case, by approximately 1V.
Note 4: The output currents given, as well as the load regulation, can be
increased by the addition of external transistors. The improvement factor will be
roughly equal to the composite current gain of the added transistors.
Note 5: With zero output, the dc line regulation is determined from the ripple
rejection. Hence, with output voltages between OV and -5V, a dc output
variation, determi ned from the ripple rejection, must be added to find the
worst-case line regulation.

24

TYP

%

0.007

pV

15
1.7

2.5

rnA

3.6

5.0

rnA

0.1

1.0

%

typical performance characteristics

Load Regulation

.§.
Z

Q

-1

-=~ ~

~

w

~~~

Q

c(

\

,

Q

o

5

10

15

-6

~

-8 t--t---+---tt- r;;

~
z

0

\
\

;:::

~a:

0.06

t:l
c(

~

0.04

~ 0.02

o

1\

a:
w
t:I
c(

"" ......

0.02

o

,

o

"10

20

--

o~ 0.01

50

0

>

12

0.9

:;:j

..:.
~

a:
a:

~

0

c(

""

0.7

~
0
>

........

"-

0.6
0.5

:I

30

40

50

60

1 1_ J 1_

V ripple - 1V p.p. r--I-f=120Hz
CI 9= lO I1 F

0.6

ffi

\

0.4

"-

"

~

-~

30

20

40

....
a:

II

~

LL.

LU
.........

-r--

I

....

~

r""o..

0.2

50

20

10

30

50

40

DC INPUT VOLTAGE (V)

Minimum Input Voltage

, , .L

8.0

~

0

" "- ,

25 50

.,t\\rt\P-

y ....
~

"

t:l
c(

~

Q

-20

....~

40

'1
.,I

z
0
;:::
C19 = 0

20

c(

~

~,\

Q

tC

t:l
c(

1:

l...,...ooo"

:::

LU

= o.Ol11F

~

n
\
-

I-

0

25 50 75 100 125 150

Standby Current Drain

Il

VIN = -5OV

J
V

-20

"""'""

JUNCTION TEMPERA:rURE (OC)

-

Q

>

~

........

~~

6.0
-75 -50 -25

VOUT = loV
COUT = l11FINL = 5 mA_
IFL = 15 rnA
t,:::; 5 ns

.§.

!-COUT = lllF

1,...000"

~

--- - .,

........

7.0

....

Load Transient Response

:;-

r\

~
>

0

./

/

LU
t:l
c(

JUNCTION TEMPERATURE (OC)

~VIN

~

~

J

!--IL = 5 mA,i-" ~,":l-~- •
10
-75 -50 -25 0 25 50 75 100 125 150

75 100 125 150

I',

VOUT = 10V
= lV
20 r t, S 5 ns
f-

V

11

....
~
:::
~

0.4
-75 -50 -25

w

I-

I
I

0.8

:I:

c(

Q

>

1

t:l

t:I

Line Transient Response

;:::

II

-Rsc =0

40

:;-

:;

:I:

w

JUNCTION TEMPERATURE rC)

.§.
z

.§.

~

...

0.8

."

i

:1

-VOUT = loV

w

~....

:;-

Regulator Dropout Voltage

1.0

~

20

DC INPUT VOL TAGE (V)

~

I
I

Ripple Rejection

a:

10

Current Limit Sense Voltage

t:l
c(

10

::I
0

~

40

30

~~- n_lin

LOAD CURRENT (rnA)

39

~

.,-

DC INPUt VOL TAGE (V)

w

40

J 2-9J

>
~

~-~,"

1.0

~z

>
~

30

Supply Voltage Rejection With
Preregulated Reference Supply

,

"

~-

;

0.03

0

~

o

_':-t'-

-

I

;:::

\

w

Rsc = 15n

LOAD CURRENT (rnA)

,

0.08

"I ..;' I - -

20

10

Supply Voltage Rejection

:;-

_-4

....
....
::I

~

-10

LOAO CURRENT (rnA)

0.1

--:

I

25

20

r-t-~ r--

-4

1"6~r
n
1---+----1I---+:... n -I~I---+---I

::I

o

Rsc = 25n

1---+----1I---+~I·-" -

I-

~

-5

~

~
o
>

....

\

-4

~
o
>

I

t:I

Rsc = 15n

I..;'

c(

w

c(

....>
....~
::I

t:I

~
Q

-

I"
I 5i

w

<

,,*..~ .....
'}(.

~

;:::

1j1"'2)O

Iloo

-2

-3

~ ~':-t -

Z
Q

t:I

~

10

.§.

c(

Q

Current Limiting

:;-

:;;:::

Load Regulation

,

~

",.""".

~

.....

~~

~

~

I-

::I
0

::I

0

-40
10
TIME (115)

20

30

o

-40
10
TIME (lIS)

20

30

o

10

20

30

40

OUTPUT VOLTAGE (V)

25

Voltage Regulators
LM 304 negative regulator
general description
The LM304 is a precision voltage regulator which
can be programmed by a single external resistor to
supply any voltage from 30V down to zero while
operating from a single unregulated supply. It can
also provide 0.01-percent regulation in circuits
using a separate, floating bias supply, where the
output voltage is limited only by the breakdown
of external pass transistors. Although designed
primarily as a linear, series regulator, the circuit
can be used as a switching regulator, a current
regulator or in a number of other control applications. Typical performance characteristics are:

• 0.2 mV /V ripple rejection

The LM304 is a complement of the LM300 and
LM305 positive regulators, intended for systems
requiring regulated negative voltages which have a
common ground with the unregulated supply. By
itself; it can deliver output currents to 25 mA, but
external transistors can be added to get any desired current. The output voltage is set by external
resistors, and either constant or foldback current
limiting is made available. The LM304 is a
commercial/industrial version of the LM 104 and
LM204.

• 1 mV regulation no load to full load
• 0.01 %/V line regulation

schematic and connection diagrams

Metal Can
NC

r-___<~---....------.---

-r:-----~---......~~- VOUT " ~

VOUT

"No

sealeflCtor.

'--___+-_......___ V

VS1AS = 10V

"
O

Switching Regulator

I

r--~~---<'---'-_--GNO
VIN

tSolidT.ntalum

High Current Regulator

......- - G N O

,..----4~-.----

} - _ . . . . . -......- - Your = -10V
lOUT

<2A
01

R2

lNlaBD

24K
1%

tSohdT.nt.lum
* 60 Turns #20
on Arnold
Englneenng
A9lD151·2
Molybdenum

'---_----- V

O"

26

<-12V

Perm.lloyCore.

'----4__- - VO" <-8.5V

r

s:

CN
0

absolute maximum ratings

~

Input Voltage
I nput-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

40V
40V
500mW
oOe to 70°C
_65° C to 150°C
300°C
(Note 2)

CONDITIONS

MIN

TYP

MAX

UNITS

Input Voltage Range

-40

-8

V

Output Voltage Range

-30

-0.035

V

Output-input Voltage
Differential (Note 3)

10 = 20 mA

2.0

40

V

10 = 5 mA

0.5

40

V

Load Regulation (Note 4)

O~ 10~20

mA

Ric = 15Q
Line Regulation (Note 5)

1

5

0.056

0.1

%

V 1N <-15V

0.2

0.5

mV/V

-7V ~ V 1N ~ -15V

0.5

1.0

mV/V

2.0

2.2

V/KQ

0.3

1.0

%

V OUT ~ -5V
LlV 1N = 0.1 V 1N

Ripple Rejection

R23 = 2.4K

Temperature Stability

V 0::; -1 V, 0° C ~ T A ~ 70° C

1.8

10 Hz "

...s
z
i=

c:t

-

~~

0

-1

I
-.,~

:>
w
0

-2

.....
0
>

-3

~

r

~~

-2~+-~~.~~~~.~+--r~

I~ ~
/
I
."

I

2:
w
t:I

r-~~--+-4~~~\~~--1-~

-4

Ti = O°C_

~}

c:t

--:-I -~

~

....
eo

0

>

n

I-

-

II-

L

Current Limiting

I

Ti = 70°C
I
~ 11:::..

Ti = 25°C

w
t:I
c:t

I-

Load Regulation

r.--+-+--+ --:-I
Rsc = 25£1- C!,

-6

I
I

-4

I

I

:::I

--:-I

II

I- Rsc = 15£1

c..

t

--:-I
II

-

~n

I--

-

n-I-- eo

I-

"

-8 t---lt----Jt----+ n

II
N

~
n 1-+-+--1---1

:::I

'-Rsc = 15£1
1 ~ I

0

:::I

0

-5

-lo~~--~~--~~£-~~~

o

10
15
20
LOAD CURRENT (rnA)

o

25

0.10

0

~

II:

w
t:I
c:t

0.08

0.06

z

0

t

~
w

.....
0
>

~

0.02

\

0.02

II:

\.

"' "

w
c:t

t:I

~

0

>

.......... .......

:::I
CI.I

10
30
20
DC INPUT VOLTAGE (V)

Current Limit Sense Voltage

o

w

0.9

-

CI.I

w

CI.I

2:

0.8

Z

0.7

::;
w

10
20
30
DC INPUT VOLTAGE (V)

r--...

~

- ........

0

r""'-- .......

0.6

10.5

~ r""""'"

I-

>"

...s
z
i=
0

c:t

80

~

0

>
I-

~

-20

w
c:t

,..",.

40

t:I

~

0

7.0

>

-

w

I

..--~

~

~

---

i"""""

-.------

6.5

~

20
4 0 , 60
JUNCTION TEMPERATURE (OC)

Load Transient Response

z

0

i=

20

c:t

r\C 19 =O

~
c

..~\

t C~=O.Ol J.lF

I

~

80

Standby Current Drain

\-

w
t:I

c:t

~
0
>

I-

n

-20

VOUT "" lov
tOUT = 1 J.l.FINL =5rnA_
IFL = 15 rnA
tr~5ns-

-

0

10

TIME (J.ls)

20

30

V,IN

<
II:

=

-Jov

w

I
V

------~

:::I

U

>
CD

"

C
Z

c:t

k---"'

Ii;

:::I

-40

z

IZ

I-

0

E

II:
II:

c..

:::I

<
C

~

:::I

I-

28

o

>"

'1

c:t

.........

~

I-

I

E

r- COUT = l:J.lF

t:I

10
20
30
DC INPUT VOLTAGE (V)

40

~V'N = lV
20 r-tr~5ns

~
0

,,--

",'1:\\",1>,..",.

JUNCTION TEMPERATURE (OC)

J.

I

o

Minimum Input Voltage

~

10.0

20
40
60
JUNCTION TEMPERATURE (OC)

r- VOUT = loV

w

o

40

IL = 5 rnA

o

" r---._

0.2

c..
~

Line Transient Response
40

a:

:::I

0.5
0.4

c..
c..

~

:::I

U

\

2:

\\..

>

.......... r--...

1

0.4

~

VOUT = loV
Rsc = 0

w
c:t

IZ
II:
II:

" " --

t:I

I-

~

~

0.6

7.5

w

.....
o
>

0
II:
%:
I-

11.0

I-

II

Vripp,e = lV, pk-pk_
f = 120 Hz
C19 = 10 /IF

t:I
:::I

Regulator Dropout Voltage

1.0
~

0.8

%:

~

o

40

...s

1\

0.01

:::I
CI.I

>"

V3~ = ~9V

~

i"""""- ~

c..

60

Ripple Rejection

~

\
\
\

20
30
40
50
LOAD CURRENT (rnA)

1.0

>"

0.04

I-

10

0.03

i=
w

0

40

Supply Voltage Rejection With
Preregulated Reference Supply

Supply Voltage Rejection

~z

30
10
20
LOAD CURRENT (rnA)

o

-40
20

30

o

10
20
OUTPUT VOLTAGE (V)

30

r-

~

Voltage Regulators

~

o

U1

..........

r-

~

N

o

LM10S/LM20S/LM30S voltage regulator

U1

..........

general description

r-

The LM105, LM205 and LM305 are positive voltage regulators simi lar to the LM 100, except that
an extra gain stage has been added for improved
regulation. A redesign of the biasing circuitry
removes any minimum load current requirement
and at the same time reduces standby current
drain, permitting higher voltage operation. They
are direct, plug-in replacements for the LM100 in
bot'- linear and switching regulator circuits with
output voltages greater than 4.5V. Important
characteristics of the circuits are:

~

• DC I ine regulation guaranteed at 0.03%/V

W

o

• Ripple rejection of 0.01 %/V

U1

Like the LM 100, they also feature fast response to
both load and line transients, freedom from
oscillations with varying resistive and reactive
loads and the ability to start reliably on any load
within rating. The circuits are built on a single
silicon chip and are supplied in either an 8-lead,
~O-5 header or a 1/4" x 1/4" metal flat package.

• Output voltage adjustable from 4.5V to 40V
• Output currents in excess of 10A possible by
adding external transistors
•

Load regulation better than 0.1 %, full load with
current limiting

The LM205 is identical to the LM 105 except that
it is specified for operation from _25° C to 85° C.
The LM305 is specified for operation from O°C to
70° C and for output voltages to 30V.

schematic and connection diagrams

11

Metal Can

r-----.....

-------1---~- UNREGULATED INPUT

REGULATED OUTPUT
BOOSTER OUTPUT

.....¥r-...-- CURRENT LIMIT

GROUND

Note: Pin 4 connected to case
TOP VIEW

Order Number LM105H
or LM205H or LM305H
See Package 11

REGULATED OUTPUT

. . .-

_ _~--- COMPENSATION
SHUTDOWN

Flat Package
NO CONNECTION
BOOSTER OUTPUT

]---+-......--'- FEEDBACK

UNREGULATED INPUT
GROUND
REFERENCE BYPASS

NO CONNECTION
CURRENT LIMIT
REGULATED OUTPUT
COMPENSATION
FEEDBACK

Note: Pin 4 connected to bottom of package

' - - - + - - t - - - - + - - - R E F E R E N C E BYPASS

Order Number LM105F
or LM205F or LM305F
See Package 3

L..---"--4I~-4--"""---4I~------":" GROUND

Pin connections shown are for metal can.

typical applications
10A

~egulator

with Foldback Current Limiting

1.0A Regulator with Protective Diodes
D2t
UTR3305

r-----1.--....._ .....- - -.....Ct

Ct·
Rt
555K

1

500PF
tOV

Q2

..........-VOUT ~ 28V
+

R3

47jJF

02

35V

Dt

2N3055

UTR3305

Rt
3tK

1%

1%

R2

v,.

_,---<,---...J

213K
1%

tProtectsaqalnslshorted Input or
mdUCllve loads on unregulated
supply

·;~:;,e~~s al}alnst Input voltage

tSohdtantalum
·Electrolytlc

PrOlfctsagamsloutput
yoltagerl'Versal

29

in

o

M

absolute maximum ratings

~

o

Input Voltage
LM105, LM205
LM305
Input·Output Voltage Differential
Power Dissipation (Note 1)
LM105, LM205
LM305
Operating Temperature Range
LM105
LM205
LM305
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

~

electrical characteristics

...J
.........

in

o
N

~

...J
.........

in
~

...J

50V
40V
40V
BOOmW
500 mW
O°C to 70°C
-55°C to +125°C
-25°C to +B5°C
O°C to 70°C
_65°C to 150°C
300°C

(Note 2)

PARAMETER

MIN

CONDITIONS

TYP

MAX

Input Voltage Range
LM 105, LM205
LM305

B.5
8.5

50
40

V
V

Output Voltage Range
LM105, LM205
LM305

4.5
4.5

40
30

V
V

Output·lnput Voltage
Differential

3.0

30

V

Load Regulation (Note 3)
LM105

OSlo S 12 mA
c
Rsc = lOn, T A = 25
Rsc = lOn, TA = 125°C
Rsc = lOn, T A = _55°C

0.02
0.03
0.Q3

0.05
0.1
0.1

%

0<::10<; 12mA
Rsc = lon, T A = 25°C
Rsc = lon, T A = 85°C
Rsc = lon, T A = -25°C

0.02
0.03
0.Q3

0.05
0.1
0.1

%
%
%

Os I oS12mA
Rsc = lon, T A = 25°C
Rsc = 15n, T A = 70ve
Rsc = 10n,T A =O°C

0.02
0.03
0.03

0.05
0.1
0.1

%

V IN
V IN

0.025
0.015

0.06
0.03

%/V
%/V

0.003

0.01

%/V

0.3
0.3
0.3

1.0
1.0
1.0

%
%

1.7

1.Bl

V

c

LM205

LM305

Line Regulation

-

V OUT S 5V
V OUT > 5V

Ripple Rejection

CREF = 10 11 F , f

Temperature Stability
LM105
LM205
LM305

-55°CSTA S 125°C
-25°C S T A S 85°C
0°CSTAS70u C

Feedback Sense Voltage
Output Noise Voltage

Current Limit Sense
Voltage
Standby Current Drain
LM 105, LM205
LM305
Long Term Stability

=

120 Hz

1.63
10HzSfSl0kHz
CREF = 0
CREF >O.lI1F
Rsc = lOn, T A = 25°C,
V OUT = OV
V 1N
V IN

=
=

50V
40V

0.005
0.002
225

%

%

%
%

%

%

%
315

mV

O.B
0.8

2.0
2.0

mA
mA

0.1

1.0

%

300

Note 1: The maximum junction temperature of the LM105 is 150°C, while that for the LM205 is
100°C, and that for the LM305 is 85°C. For operating at elevated temperatures, devices in the TO-5
package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W,
junction to case. For the flat package, the derating is based on a thermal resistance of 185° C/W when
mounted on a 1 /16-inch-thick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors.
Peak dissipations to 1Ware allowable providing the diSSipation rating is not exceeded with the power
averaged over a five second interval for the LM 105 and LM205, and averaged over a two second
interval for the LM305.
Note 2: These specifications apply for input and output voltages within the ranges given, and for a
divider il\lpedance seen by the feedback terminal of 2 kn, unless otherwise specified. The load and
line regulation specifications are for constant junction temperature. Temperature drift effects must be
taken into account separately when the unit is operating under conditions of high dissipat·ion. Unless
otherwise specified, T A = 25°C.
Note 3: The output currents given, as well as the load regulation, can be increased by the addition of
external transistors. The improvement factor will be roughly equal to the composite current gain of
the added transistors.

30

UNITS

r
~

......

o

typical performance characteristics



~ ~ ~... ....

..... ..... -

T, = 150°C

..",~ ........ ~

,

-0.01

-0.02

:::>

1-,

-0.03

~
>

-0.04

~

I' ,

:::>

~

15

10

~ ~.

I

(J1
..........

r
~

=~5n

T

.",

I

W

,

o

'.

,

1\

(J1

, , ,
j

I

I
10

1.

20

40

30

LOAD CURRENT (rnA)

OUTPUT CURRENT (rnA)

Optimum Divider Resistance
Values

Short Circuit Current
3.2

0.6

~

'"

~
>

0.5

~

"""'" ~

0.4

l-

i

:::.
I-

z

w

50

"""'" ~ ......",....,

75

100 125 150

-75 -50 -25

0

25

50

75 100 125 150

1

'"
7.0

I-

:::>
;z

~

,

:;
~

'lise = 10!2

z

,

~

",

12

1/"'"

~a:

IL = 20 rnA

~

::i_-

w

1-

-25

25

50

75

100

11
-75 -50 -25

125

IL = 10 mA-

... ~ ~

Minimum Output Voltage

~

.....

.......

~

3.5

:::>

C>.

I-

:::>

3.0

.15

.... ~

~

,

V

'/

0.005

I'' ' '000o..

>

~

0.002

/

«

.§

1.1
-55?C~

""a:
a:

:::>
u

1.0

>
CD
;z

~

~

~.

C

0.9

Cre , = 10 J.lF,

r--- f > 120 Hz

~ ~"'"

~

.." ..

..........

Transient Response

_.

~

LINE

Z
Q

;:::

~
c

.'" ----r-

-40

---

w

25'e

c.:J



I-

100 125

20

40
30
INPUT VOLTAGE (V)

50

I

o

I -

Rsc= 10n

CL = 0
~'FL=20mA
CL = 1 J.lF
-'NL= 1.0mA
~

VOUT= 10V

"""--"""--""""-I
I

~-

I-

::I

-400
25 50 75
TEMPERATURE rc)

VOUT - 10V

LOAD

~

~

Rsc = 10n
t.V 1N = 5V -

~

r



1.2

'"

~>

25

I
....,,~

c.:J

TEMPERATURE ee)

TEMPERATURE (C)

4.5

,

0.02



8.0

"

Ii;

u

0

,

\.

~ 2.6

0.3

0.2
-75 -50 -25

1\

2.8

Co>

"""'" ~

RlIIR2 = 2 kn
Rl = 1.11 VOUT

1\

w

a:
a:

~>

3.0

""",-

en

~

40~~-4--+-~~--+--+--~~

10 ~5 rnA

w

o

I • T = 125°C

20

Limit Sense Voltage

I\.)

-Ion

~.

T, = 25'C

I ,

-0:08

LOAD CURRENT (rnA)

Cu~rent

....~ ...

I

-0.1

o

Rse

~T,= 150'C, \
-0.06

IC>.

:::>
0

-0.04

~,'-

 18V .....--+---'

Cl
47 pF

R2
2.27K
1%

R3
68

R2
2K

Rl
1.8
2W

R3
510

Shunt Regulator

IOUT"-

lA

Switching Regulator
R4

2M

11+

==1.7mH

.--..--......,.........- .......---+-~~......_- V
01
UTX210

OUT

= 5V

Cl
47 PF
35 V

1

C2
0.1
pF .".

V'N >8.5V

32

R2
3.2K
1%
tSohd tantalum
125 turns:r22 on Arnold Engineering
A262123·2 molybdenum permalloy core.

r~
tAl

absolute maximum ratings

o

I nput Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics

l>

(Note 2)

CONDITIONS

PARAMETER

U1

50V
40V
BOOmW
O°C to 70°C
0
0
_65 C to 150 C
300°C

MIN

TYP

MAX

UNITS

Input Voltage Range

8.5

50

V

Output Voltage Range

4.5

40

V

Output-Input Voltage
Differential

3.0

30

V

Load Regulation
(Note 3)

Line Regulation

Ripple Rejection

o :; I 0
Rsc
Rsc
Rsc

=

V 1N
V 1N

-

=
=

-

C REF

:; 45 m A
OD., T A = 25°C
OD., T A = 70°C
OD., T A = O°c

0.02
0.03
0.03

0.2

%

0.4
0.4

%
%

V OUT
V OUT

0.025
0.015

0.06
0.03

=

:;

5V

> 5V

10 ,u F, f

=

Temperature Stability
Feedback Sense Voltage
Output Noise Voltage

1.55
10Hz < f < 10kHz
CREF = 0
CREF > 0.1 ,uF

Current Limit Sense
Voltage (Note 4)

Rsc = 1OD., T A
V OUT = OV

Standby Current Drain

V 1N

=

=

25°C ,

%/v

0.003

120 Hz

0.3

1.0

%

1.7

1.B5

V

%
%

0.005
0.002
225

50V

Long Term Stability

300

11

%/V
%/V

375

mV

O.B

2.0

mA

0.1

1.0

%

Note 1: For operating at elevated temperatures, the device must be derated·based
0
on a .150 C maximum bunction temperature and a thermal resistance of 45°C/W
Junction to case or 150 C/W Junction to ambient.
Note 2: These specifications apply for an operating temperature between OOC
0
and 70 C, for input and output voltages within the ranges given, and for a divider
impedance seen by the feedback terminal of 2 Kr2, unless otherwise specified.
The load and line regulation specifications are for constant junction temperature.
Temperature drift effects must be taken into account separately when the unit is
operati.ng under conditions of high diSSipation.
Note 3: The output currents given, as well as the load regulation, can be
Increased by the addition of external transistors. The improvement factor will be
roughly equal to the composite current gain of the added transistors.
Note 4: With no external pass transistor.

33

Voltage Regulators
LM109/LM209 five-volt regulator
general description
The LM 109 and LM209 are complete 5V
regulators fabricated on a single silicon chip. They
are designed for local regulation on digital logic
cards, eliminating the distribution problems associated with single-point regulation. The devices are
available in two common transistor packages. In
the solid-kovar TO-5 header, it can deliver output
currents in excess of 200 mA, if adequate heat
sinking is provided. With the TO-3 power package,
the available output current is greater than 1A.
The regulators are essentially blow-out proof.
Current limiting is included to limit the peak
output current to a safe value. In addition, thermal
shutdown is provided to keep the IC from
overheating. If internal dissipation becomes too
great, the regulator will shut down to prevent
excessive heating.

response somewhat. Input bypassing is .needed,
however, if the regulator is located very far from
the filter capacitor of the power supply. Stability
is also achieved by methods that provide very good
rejection of load or line transients as are usually
seen with TTL logic.
Although designed primarily as a fixed-voltage
regulator, the output of the LM 109 and LM209
can be set to voltages above 5V, as shown below.
It is also possible to use the circuits as the control
element in precision regulators, taking advantage
of the good current-handling capability and the
thermal overload protection.
To summarize, outstanding features of the regulator are:
• Specified to be complete, worst case, with TTL
and DTL

Considerable effort was expended to make these
devices easy to use and minimize the number of
external components. It is not necessary to bypass
the output, although this does improve transient

• Output current in excess of 1A
• I nterngl thermal overload protection
• No external components required

schematic diagram

typical applications
High Stability Regulator*

9Retul.tlon bttt.rth.n 0.01%,
1000d,hn, and t.mper.ture, Cln
btobtiUlld

to,"rmlnHl,nerCUff,nt,Mly
~i~IUs1'd to mmlmllt thrrm.1

·Sohdtantllu.m

Order Number LM109H or LM209H
See Package 9
Order Number LM109K or LM209K
See Package 18
Fixed 5V Regulator

Adjustable Output Regulator

Current Regulator

OUTPUT
5V

-D'ttrmlf\ft output CUff.nt

34

·RtquII'"ffr...l.toris

tAlmo"", no output

IOCltttl.n.ppr. . . ..

ClptCl1or" .....d

thstlnClfrompOWlf

to,subihty,ftdon

supp!yfitt....

tnlprovetT.nMnl

r-

s:
.....

absolute maximum ratings

o

CD
...........

r-

Input Voltage
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

desi.gn characteristics

35V

CD

300°C

CONDITIONS

.MIN
4.7

Output Voltage

Tj

TYP
5.05

MAX
5.3

UNITS
V

= 25°C

4

7V S V 1N S 25V

Load Regulation

N

o

Internally Limited
-55°C to 150°C
-65°C to 150°C

(Note 1)

PARAMETER

Line Regulation

s:

Tj

50

mV

= 25°C

LM109H

5 mA S lOUT S 0.5A

20

50

mV

LM109K

5 mAS lOUTS 1.5A

50

100

mV

Output Voltage

IJ

7VSV 1N S25V
5 mA S lOUT S Imax
P

Quiescent Current
Quiescent Current Change

< P max

7V S V 1N S 25V
7V

S V 1N S

5.4

4.6
5.2

25V

5 mA S lOUT S Imax

Output Noise Voltage

TA = 25°C
10Hz
f

< < 100 kHz

10

mA

0.5

mA

0.8

mA

40

• Long Term Stability

V

IlV
10

mV

Thermal Resistance
Junction to Case (Note 2)
LM109H

15

°C/w

LM109K

3

°C/W

Note 1: Unless otherwise specified, these specifications apply for -55°C STj S 150°C (-25°C STj
S 150°C for the LM 209), V IN = 10V and lOUT = 0.1 A for the TO·5 package or JOUT = 0.5A for the
TO·3 package. For the TO·5 package, I max = 0.2A and Pmax = 2.0W. For the TO·3 package,
Imax = 1.0A and P max = 20W.
Note 2: Without a heat sink, the thermal resistance of the TO·5 package is about 150 o C/W, while that
of the TO·3 package is approximately 35°C/W. With a heat sink, the effective thermal resistance can
only approach the values specified, depending on the efficiency of the sink.

35

typical performance characteristics
Maximum Average
Power Dissipation

Maximum Average
Power Dissipation

50
rTO·3

~

20

0

10 1000..

z

j:::

INFINITE
HEAT

oct

iii
CI)

~

""

~

~NO HEAT.
SINK

Fe

f::

I

0.5

"'.-

"-

r---......

a:

~

.......

~680-75

Ci

CI.

"

~

\

\\

iii
CI)

1.0

50

75

100

125

=

",

--..i""'--....."",

w
u

z

a:

WAKEFIELD r-£
:;..-........
-HEAT SINK

~

~

150

it'"

......

.....
1
~ 10.....

\

\

"- ~\
~

:::;)

0

-

50

100

75

125

10

150

~

10k

1k

100k

1M

~
.....

:::;)

.....
:::;)
CI.
.....
:::;)

0

0

100K

1M

0

j:::

~a:
~

a:

VOUT = 4.5V
15

10

20

25

30

60

w

0
5

80

z

~
a:
a:
~

.....

35

10

INPUT VOLTAGE (V)

40

IL = 200 rnA
V1N = 10V
!::.VIN = 3V p.p

20

15

20

25

30

10

35

100

Dropout Voltage

Output Voltage

Dropout Characteristic

5.5

2.0

~

~

w

(:l

5.1

~

5.0

w

(:l

:;

.....

>
.....

~

5.0

"-~

'\

o

~

4.5

:::;)

1\

4.9

:::;)

o

0.5

.......

oct

:;
o
>

1.0

-

TO·3
IL = 1A

oct

1.5

Ci

10K

1K

FREQUENCY (Hz)

.INPUT VOL TAGE (V)

2.5

o

CI.

V1N = 10V
IL = 20 rnA

~

o

4.8

4.0

-75 -50 -25 0

25

~5~0~5

50 75 100 125 150

JUNCTION TEMPERATURE (OC)

Quiescent Current

Qu iescent Cu rrent
IL

V 1N = ;OV

~ 200lrnA

.§
5.5

~

a:
a:
:::;)
u

' /~

~

I

,

....
5.0

.....

IL = 0

~

~
a:
a:

::::: ~

d

~

u

.....

~

~~

~

4.5
-75

u

~

5.0

0

JUN~TION

25 50

~~~ ~ ~~
Ti= -55 C

75 100 125 150

TEMPERATURE (OC)

~

1001~1~

r-.... .....

2:

:;

0.1

0

>

w

i

CI)

Ci
z

Ti=150°C

d

~

n

Ti = 25°C
CL 0

~>
w
(:l
oct

-~

5

4.5
-~O -~5

-~

r - - Ti = 25°C

:::;)

IL=1~

5

5.5

~

1.0

;(

.§

~

Output Noise Voltage

6.0

;(

0

JUNCTION TEMPERATURE rC)

INPUT VOLTAGE (V)

6.0

36

100

Ripple Rejection

5.....

w

u
~

IL

100

a:
a:
~

.....
zw

500 rnA
I

FREQUENCY (Hz)

Peak Output Current

z

o
~

~

L

/

/'

I L =20rnA

=

AMBIENT TEMPERATURE (OC)

5.....

~
.....
:::;)

~

NO HEAT SINK /

25

Peak Output Current

~

r-

~

4

j:::

-

:§

AMBIENT TEMPERATURE (OC)

~
~

./

10°

oct

Ci

0.1

25

V1N 10V ~
TA - 25°C

§

INFINITE HEAT SINK

j:::

WAKEFIELD
r-HEAT SINK

CI.

z

0

10 1

TO·5

~

~SINK

oct

Output Impedance

10.0

I

~r-

0.01
10

15

20

INPUT VOLTAGE (V)

25

10

100

1k

FREQUENCY (Hz)

10k

~---------------------------------------------------------------------------------------------,

Voltage Regulators

r-

s:W
o

'CD

LM309 five-volt regulator
general description
The LM309 is a complete 5V regulator fabricated
on a single silicon chip. It is designed for local
regulation on digital logic cards, eliminating the
distribution problems associated with single-point
regulation. The device is available in two common
transistor packages. I n the sol id-kovar TO-5
header, it can deliver outpu.t currents in excess of
200 mA, if adequate heat sinking is provided. With
the TO-3 power package, the available output
current is greater than 1 A.
The regulator is essentially blow-out proof.
Current limiting is included to limit the peak
output current to a safe value. In addition, thermal
shutdown is provided to keep the IC from
overheating. If internal dissipation becomes too
great, the regulator will shut down to prevent
excessive heating.
Considerable effort was expended to make the
LM309 easy to use and minimize the number of
external components. It is not necessary to bypass
the output, although this does improve transient

schematic diagram

response somewhat. Input bypassing is needed,
however, if the regulator is located very far from
the filter capacitor of the power supply. Stability
is also achieved by methods that provide very good
rejection of load or line transients as are usually
seen with TTL logic.
Although designed primarily as a fixed-voltage
regulator, the output of the LM309 can be set to
voltages above5V, as shown below. It is also
possible to use the circuit as the control element in
precision regulators, taking advantage of the good
current-handling capability and the thermal overload protection.
To summarize, outstanding features of the regulator are:
• Specified to be compatible, worst case, with
TTL and DTL

II

• Output current in excess of 1 A
• Internal thermal overload protection
• No external components required

typical applications
High Stability Regulator*

C3'
lOI-lF

*Ra.,.I'llonbenerth.n001%.

~':b~~;d lemp''''tun, Cln

fOetermmeszenercurrent Mly

ISohdtlnt.lum

=I~dluned to mmlmlle tilerm.1

Order Number LM309H
See Package 9
Order Number LM309K
See Package 18
Fixed 5V Regulator

Adjustable Output Regulator

Current Regulator

OUTPUT

5V

"'300
1%

,..2
*R.qutrtd if r...l.torlS

tAlttlo.... nooutput

IOCitecl.n.pp,eciMit

csPKitorIS nttded
for stlbil,ty,it don
IfhprOvtlr.na.nt

drstlnc.fromp_
supplyfiltlf,

*Determmfl outpul current

37

en

o

~

absolute maximum ratings

...J

Input Voltage
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

design characteristics
PARAMETER

35V
I nternally Limited
aOc to 125°C
-65°C to 150°C
300°C

(Note 1)

COND'lTIONS

Output Voltage

T j = 25°C

Line Regulation

Tj = 25°C

MIN
4.8

T j = 25°C
5 mA:::; lOUT:::; 0.5A
5 mA~ lOUT:::; 1.5A

Output Voltage

7V:::; VIN :::; 25V
5 mA:::; lOUT:::; 1m ax
P < Pmax

Qu iescent Cu rrent

7V:::; VI N :::; 25V

Qu iescent Current Change

7V:::; VIN :::; 25V
5 mA:::; lOUT:::; Imax

Output Noise Voltage

T A = 25°C
10 Hz < f < 100 kHz

MAX

5.05

4.0

7V:::; VIN:::; 25V
Load Regulation
LM309H
LM309K

TYP

20
50

5.2

mV

50
100

mV
mV

5.25
10
0.5
0.8

40

Long Term Stability

15
3.0

:::;tj:::;

Note 1: Unless otherwise specified, these specifications apply for OOC
125°C, VIN = 10V and
lOUT = O.lA for the LM309H or lOUT = O.5A fo~ the LM309K. For the LM309H, Imax = O.2A and
Pmax = 2.0W. For the LM309K, I max = 1.0A and Pmax = 20W.

Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about l50 o C/W, while that
of the TO-3 package is approximately 35°C/W. With a heat sink, the effective thermal resistance can
only approach the values specified, depending on the efficiency of the sink.

38

V
mA
mA
mA

MV
20

Thermal Resistance
Junction to Case (Note 2)
LM309H
LM309K

V

50

4.75
5.2

UNITS

mV

°C/W
°C/W

typical performance characteristics
Maximum Average
Power Dissipation

Maximum Average
Power Dissipation

50 ,----,---,...---r--"""T-----,

Output Impedance
10 1

10.0

V'N -10V:::::
TA - 25°C ~

TO·5==

~
z
i=
~
0

20

WAKEFIElD HEAT
f---SINK 207 r--INFINITE HEAT
I
SINK-

10

j----....

C;;

lL

~

§
UJ

u

z

~

10°

~

~

CI)

7

J

~

Q
a:

...........

~

~

I-

~

......

NO HEAT SINK
0.1
50

75

100

125

25

150

I

I

50

75

IL
1
~ 10- i::::::::==

\

~

::J

100

125

~

0

I----

150

10

Peak Output Current

IL - 500 mA
I

100

AMBIENT TEMPERATURE (OC)

AMBIENT TEMPERATURE (OC)

/J~

=20 mA

I-

'~\

A

/

lk

10k

lOOk

1M

lOOk

1M

FREQUENCY (Hz)

Peak Output Current

Ripple Rejection
100

TO·3
f--f--I--f-- V

OUT

=4.5V

;

80

z

0

~

60

a:

..........a:
UJ

40

II

20
10

15

2Q

25

30

35

10

INPUT VOLTAGE (V)

Dropout Voltage

Output Voltage
5.1

5.5
IL = lA
TO·3

UJ
t:l

1.5

~

5.0

>

1.0

T, = 125°(:J

I-

~

I-

4.5

Il

::J

o

0.5

50

75

100

125

Quiescent Current

T, = 25°C

I-

~

r

::J

I-

~

a:

a:

::J
U

::J
U

~

5.0

~

100

Tj 25°C
CL 0

~>

5.5

UJ
t:l
~

:;

JUNCTION TEMPERATURE f'C)

125

,..",

0.1

0

>

5.0

UJ
CI)

Q
Z

L-_.......L._ _-'--_.......L._ _.l....-_---I

100

~

.3-

CI

CI

125

Output Noise Voltage

::J

::J

75

75

1.0

I-

l-

50

50

JUNCTION TEMPERATURE ( C)

a:

a:

25

I

4.8

.§

5.5

o

V'N = 10V _
IL = 20 mA

0

~

4.5

4.9

I-

10V

.§

"'~

>

Quiescent Current

~

i

~

6.0
=

~ r--....

~

INPUT VOLTAGE (V)

6.0

~

5.0

25

JUNCTION TEMPERATURE ('C)

V'N

......

0

VI

4.0
25

UJ
t:l

n
VI

~

~
o

I-

~

~_..I::::---+-

~

10k

lk

FREQUENCY (Hz)

Dropout Characteristic

2.5

2.0

100

INPUT VOLTAGE (V)

0.01
10

15

20

INPUT VOL TAGE (V)

25

10

100

lk

10k

FREQUENCY (Hz)

39

M

..-

:?!
...J

Voltage Regulators
LM113 reference diode
general description
The LM 113 is a temperature-compensated, lowvoltage reference diode. It features extremely-tight
regulation over a wide range of operating currents
in addition to an unusually·low breakdown voltage
and good temperature stability.
The diode is synthesized using transistors and resistors in a monolithic integrated circuit. As such, it
has the same low noise and long term stabil ity as
modern IC op amps. Further, output voltage of
the reference depends only on highly-predictable
properties of components in the IC; so it can be
manufactured and supplied to tight tolerances.
Outstanding features include:
•

Low breakdown voltage: 1.220V

• Dynamic impedance of 0.3D from 500 fJ.A to
20mA
• Temperature stability typically 1% over -55°C
to 125°C range
• Tight tolerance: ±5% standard, ±2% and ±1 %
on special order.
The characteristics of this reference recommend it
for use in bias-regulation circuitry, in low-voltage
power supplies or in battery powered equipment.
The fact that the breakdown voltage is equal to a
physical property of silicon-the energy-band-gap
voltage-makes it useful for many temperaturecompensation and temperature-measurement
functions.

schematic and connection diagrams

NOTE: Pm 2 connected to case.
R2

TOP VIEW

200

Order Number LM113H
See Package 8

typical applications
Level Detector for Photodiode

_-------+---+-

Low Voltage Regulator

R2

620

'5V

Rl
19K

Q2

2N2905

TTL
OUTPUT

01
LM113
1.2V

01

LM113
1.2V

....W'\r-f-.....:...---....._VOUT = 2V
R3

12.3K
1%

1%

tSolidtantalum

40

r-

....3:

....W

absolute maximum ratings
Power Dissipation (Note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

100 mW
50mA
50mA
-55°C to 125°C
-65°C to 150°C
300°C

electrical characteristics

PARAMETER

(Note 2)

CONDITIONS

MIN

TYP

MAX

UNITS

1.160

1.220

1.280

V

Reverse Breakdown Voltage

IR = 1 mA

Reverse Breakdown Voltage
Change

0.5 mA ~ I R ~ 20 mA

6.0

IR = 1 mA
IR = 10 mA

0.2
0.25

1.0
0.8

Q

Reverse Dynamic Impedance

Forward Voltage Drop

IF = 1.0 mA

0.67

1.0

V

RMS Noise Voltage

10 Hz ~ f ~ 10 kHz
IR = 1 mA

5

Reverse Breakdown Voltage
Change

0.5 mA ~ IR ~ 10 mA
-55°C ~ T A ~ 125°c

Breakdown Voltage Temperature
Coefficient

1.0 mA ~ I R ~ lamA
-55°C ~ TA ~ 125°C

mV

15

Q

II

J.1V

mV

15

%tc

0.01

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C
maximum junction and a thermal resistance of 80 o C/W junction to case or 440 o C/W junction to
ambient.
Note 2: These specifications apply for T A = - 25°C, unless stated otherwise. At high currents,
breakdown voltage should be measured with lead lengths less than 1/4 inch. Kelvin contact sockets are
also recommended. The diode should not be operated with shunt capacitances between 200 pF and
0.1 MF, unless isolated by at least a 100 Q resistor, as it may oscillate at some currents.

typical performance characteristics
Temperature Drift

Reverse Dynamic Impedance
IR

?

=1 rnA

-

f230

(.)

~

I-

~

1.220

w

l/

'"~
:>

~

".....,.

z

-

-

I AI

0.3

~

~

TA

~

/'

(.)

~

0.2

=2loJ
~

;/"-

Z

1.210

~'l=ll25JCI

/

w

w

t:l

Reverse Characteristics

>
c

rr

TA

w
t:l

~
c

~

:>

=-5!lC

I

0.1
5

25

45

65

TEMPERATURE (OC)

85 105 125

0.3

1

3

~

I-

1111
10

REVERSE CURRENT (rnA)

2

_tr ~~

I-

1111111

:::l
0

1.200
-55 -35 -15

4

~

0
-2

30

0.3

1

3

10

30

REVERSE CURRENT (rnA)

41

M

~
~

~

typical performance characteristics (con't)
Reverse Characteristics

Reverse Dynamic Impedance
100

IR = S rnA
TA = 2SoC

-

~

W

~ 10- 3
ex:
ex:

t.:I

-

10

z

Noise Voltage

ct

~

~~

~

~

::::I

~

t.:I
W

en

w
en

~
ct

~

z
>0

ex:

0

)

t.:I

~ 10-4

Z

0.1
0.4

0.6

0.8

1.0

1.2

80

-

70
60

-

\

-

.......

SO

10k

lk

REVERSE VOLTAGE (V)

~

lOOk

1M

'--

10

100

FREQUENCY (Hz)

Maximum Shunt Capacitance
30

2.0

2.0

lOOk

10k

lk

FREQUENCY (Hz)

Response Time

Forward Characteristics

f-

1---

30
100

1.4

-

40

.... '"

I"""

90

I

INPUT

1.S

2w

l.S

2

t:J

.-111'

t:J

~ ~'"
.",

~
en

ct

!::;
0
> 1.0
0

ex:

ct
~

ex:

~ O.S

~
~

TA = -SSoC

I~

~::: ~~

.".~

~

Z

~,

O.S

I,.J

OUTPUT --,

w
t:J
ct

OUTPUT

t-

~

INPUT

B

w
en
~ 0.3

>

>

~

TA = 12SoC

Lillll

~

.i~~

ex:
ex:

<

0

~.

10

..§

\..

!::; 10

'T A =2SoC

1

f- '::'

ex

0.1

0.,,-,

f'..."-"-'

so

10

12

4

FORWARD CURRENT (rnA)

16

"

~ ~

,,,-,

20

TIME (Ils)

_-4t--+15V

10K
OUTPUT

-15V

Constant Current Source

Amplifier Biasing for Constant Gain with Temperature
250Kt

* Adjust for OV at 0' C
tAdjust for 100 mViC

-15V

Thermometer

42

0.,,-,

• UNSTA

:~ ~0

"

,~"-"-"-"-~""""~"""'J
111"
lOS

CAPACITANCE (pF)

typical applications (con't)

~-4""--

,~,,-,,-,

Voltage Regulators
LM340 series voltage regulators
general description
Considerable effort was expended to make the
LM340-XX series of regulators easy to use and
minimize the number of external components. It
is not necessary to bypass the output, although
this does improve transient response. Input bypassing is needed only if the regulator is located
far from the filter capacitor of the power supply.

The LM340-XX series of three terminal regulators
is available with several fixed output voltages making them useful in a wide range of applications.
One of th~se is local on card regulation, eliminating the distribution problems associated with single
point regulation. The voltages available allow these
regu lators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage
regulators these devices can be used with external
components to obtain adjustable voltages and
currents.

features
•
•
•
•
•
•

The LM340-XX series is available in two power
packages. Both the plastic TO-220 and metal TO-3
packages allow these regulators to deliver over 1.0A
if adequate heat sinking is provided. Even with
over 1.0A of output current available the regulators
are essentially blow-out proof. Current limiting is
included to limit the peak output current to a
safe value. Safe area protection for the output
transistor is provided to limit internal power dissipation. If internal power dissipation becomes too
high for the heat sinking provided, the thermal
shutdown circu it takes over preventing the IC
from overheating.

Output current in excess of lA
Internal thermal overload protection
No external components requ ired
Output transistor safe area protection
Internal short circuit current limit
Available in plastic TO-220 and metal TO-3
packages

D

voltage range
LM340·05
LM340-06
LM340-08
LM340-12

5V
6V
8V
12V

LM340-15
LM340-18
LM340-24

15V
18V
24V

schematic and connection diagrams
r-------------.....

--e..,;....INPUT

TO-220 (T)

TOPVIEW

RI6
.3~ I

....-----+-----..,:.... OUTPUT
Rll
RI
30K

Order Numbers:
LM340-05T LM340-15T
LM340-06T LM340-18T
LM340-08T LM340-24T
LM340-12T
See Package 26
TO-3 (K)

OUTPUT~/
RIB
2.6K

GND

,",~J

(3)

BOTTOM VIEW

R4

1.2K

GND

3

Order Numbers:
LM340-05K LM340-15K
LM340-06K LM340-18K
LM340-08K LM340-24K
LM340-12K
See Package 18

43

o

~

M

:E

absolute maximum ratings

...I
Input Voltage (V ~ = 5V through 18V)
(Va = 24V)
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
TO-3 Package
TO-220 Package
Storage Temperature Range
Lead Temperature
To-3 Package (Soldering, 10 sec)
TO-220 Package (Soldering, 10 sec)

35V
40V
Internally Limited
oOe to 70°C

-65°C to

l50~e
125°C
150°C

electrical characteristics
LM340-05 (V IN = 10V, lOUT = 500 mA,OOe

s: T A s: 70°C, unless otherwise specified)

CONDITIONS

PARAMETER
Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 7V ~ VIN ~ 25V
lOUT = 100 mA
lOUT = 500 mA

MIN
4.S

TYP

MAX

UNITS

5.0

5.2

V

Load Regulation

T j = 25°C, 5 mA ~ lOUT ~ 1.5A

Output Voltage

7V ~ VIN ~ 20V, 5 mA ~ lOUT ~ 1.0A
PD~ 15W

Quiescent Current

T j = 25°C

Quiescent Current Change

7V ~ VIN ~ 25V
5 mA ~ lOUT ~ 1.5A

Output Noise Voltage

T A = 25°C, 10 Hz ~ f ~ 100 kHz

40

Ripple Rejection

lOUT = 20 mA, f = 120 Hz

70

Dropout Voltage

T j = 25°C, I OLJT = 1.0A

4.75

mV
mV

100

mV

5.25

6.0

10
1.3
0.5

Long Term Stability

LM340-06 (V IN

50
100

lOUT

= 500 rnA,

PARAMETER

aOe

mA
mA
mA
/1V

20

= 11 V,

V

mV
dB
V

2.0

s: T A s: 70°C, unless otherwise specified)

CONDITIONS

MIN

TYP

5.75

6.0

MAX

UNITS

Output Voltage

T j =25°C

Line Regulation

T j = 25°C, SV ~ VIN ~ 25V
lOUT = 100 mA
lOUT = 500 mA

60
120

mV
mV

T j = 25°C, 5 mA ~ lOUT ~ 1.5A

120

mV

Load Regulation
Output Voltage

SV ~ VIN ~ 21V, 5 mA ~ IOUT~ 1.0A
15W

6.25

6.3

5.7

V

V

PD~

Quiescent Current

T j = 25°C

Quiescent Current Change

SV ~ VIN ~ 25V
5 mA ~ IOUT~ 1.5A

Output Noise Voltage

T A = 25°C, 10 Hz ~ f~ 100 kHz

6.0

10
1.3
0.5

45

Long Term Stability
Ripple Rejection

lOUT = 20 mA, f = 120 Hz
T j = 25°C, lOUT = 1.0A

65
2.0

mA
mA
/1V

24

Dropout Voltage

mA

mV
dB
V

Note 1: Thermal resistance without a heat sink for junction to case temperature is 4.0°C/W for the TO-3 package and 2.0°C/W
for the TO-220 package. Thermal resistance for case to ambient temperature is 35°C/W for the TO-3 package and 50°C/W for
the TO-nO package.

44

electrical characteristics (con1t)
LM340-08 (V ,N

= 14V,

lOUT

= 500 rnA, oOe ~ T A

PARAMETER

~ 70

o

,

e, unless otherwise specified)

CONDITIONS

MIN

TYP

MAX

7.7

8.0

8.3

UNITS

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 10.5V ~ V 1N ~ 25V
IOUT= 100 mA
lOUT = 500 mA

80
160

mV
mV

T j = 25°C, 5 mA ~ IOUT~ 1.5A

160

mV

Load Regulation
Output Voltage

10.5V ~ V 1N ~ 23V, 5 mA ~ lOUT ~ 1.0A
15W

7.6

8.4

V

V

Po~

Quiescent Current

T j = 25°C

Quiescent Current Change

10.5V ~ V 1N ~ 25V
5 mA ~ lOUT ~ 1.5A

Output Noise Voltage

TA = 25°C, 10 Hz~ f~ 100 kHz

6.0

1.0
0.5

32

Ripple Rejection

lOUT = 20 mA, f = 120 Hz

Dropout Voltage

T j = 25°C, lOUT = 1.0A

= 19V,

lOUT

= 500 rnA, oOe ~ T A

PARAMETER

mV

V

2.0

o

mA
mA

dB

62

~ 70

mA

pV

52

Long Term Stability

LM340-12 (V ,N

10

e, unless otherwise specified)

CONDITIONS

MIN

TYP

MAX

UNITS

11.5

12.0

12.5

V

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 14.5V ~ V 1N ~ 30V
lOUT = 100 mA
lOUT = 500 mA

120
240

mV
mV

4
°
T j = 25 C, 5 mA

240

mV

Load Regulation

~ IOUT~

1.5A

Output Voltage

14.5V ~ V 1N ~ 27V, 5 mA ~ lOUT ~ 1.0A
Po ~ 15W

Quiescent Current

T j = 25°C

Quiescent Current Change

14.5V ~ V 1N ~ 30V
5 mA ~ IOUT~ 1.5A

Output Noise Voltage

T A = 25°C, 10 Hz ~ f~ 100 kHz

11.4

12.6

6.0

1.0
0.5

48

Ripple Rejection

= 23V,

lOUT =

500 rnA,

oOe S T A

~ 70

o

e, unless otherwise specified)

CONDITIONS

PARAMETER

mV

V

2.0

T j = 25°C, lOUT = 1.0A

mA
mA

dB

61

lOUT = 20 mA, f = 120 Hz

Dropout Voltage

mA

pV

75

Long Term Stability

LM340-15 (V ,N

10

MIN

TYP

MAX

UNITS

14.4

15.0

15.6

V

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 17.5V ~ V 1N ~ 30V
lOUT = 100 mA
lOUT = 500 mA

150
300

mV
mV

T j = 25°C, 5 mA ~ lOUT ~ 1.5A

300

mV

Load Regulation
Output Voltage

II

V

17.5V ~ V 1N ~ 30V, 5 mA ~ lOUT ~ 1.0A
15W

14.25

15.75

V

Po~

Quiescent Current

T j = 25°C

Quiescent Current Change

17.5V ~ V 1N ~ 30V
5 mA ~ IOUT~ 1.5A

dutput Noise Voltage

T A = 25°C, 10 Hz ~ f ~ 100 kHz

90

Ripple Rejection

lOUT = 20 mA, f = 120 Hz

60

Dropout Voltage

T j = 25°C, lOUT = 1.0A

6.0

10
1.0
0.5

Long Term Stability

mA
mA
pV

60

2.0

mA

mV
dB
V

45

0

~
('I)

electrical characteristics (con It)

~

..J

LM340-18 (V IN

= 27V,

lOUT

= 500 rnA, oOe ::;:: T A::;:: 70°C, unless otherwise specified)

PARAMETER

CONDITIONS

Output Voltage

T j = 25°C

Line R egu lation

T j = 25°C, 21V ~ V 1N ~ 33V
lOUT = 100 mA
lOUT = 500 mA

MIN

TVP

17.3

Load Regulation

T j = 25°C, 5 mA ~ lOUT ~ 1.0A

Output Voltage

21V ~ V 1N ~ 33V, 5 mA ~ lOUT ~ 1.0A
P D ~ 15W

Quiescent Current

T j = 25°C

Quiescent Current Change

21V ~ V 1N ~ 33V

MAX

UNITS

18.7

V

18.0

180
360

mV
mV

360

mV

17.1

18.9

6.0

10

T A = 25°C, 10 Hz ~ f ~ 100 kHz

Output Noise Voltage

110

72
lOUT = 20 mA, f = 120 Hz

Dropout Voltage

T j = 25°C, lOUT = 1.0A

= 33V,

lOUT

PARAMETER

mV
dB

59

V

2.0

= 500 rnA, oOe::;:: T A::;:: 70°C,

unless otherwise specified)

CONDITIONS

TVP

MIN

MAX

UNITS

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 27V ~ V 1N ~ 38V
lOUT = 100 mA
lOUT = 500 mA

240
480

mV
mV

Load Regulation

T J = 25°C, 5 mA .:;; lOUT':;; 1.0A

480

mV

Output Voltage

27V < V 1N
PD ~ 15W

24.0

23.0

< 38V, 5 mA ~

lOUT ~ 1.0A

Quiescent Current

T j = 25°C

Quiescent Current Change

27V ~ V 1N ~ 38V
5 mA':;; lOUT ~ 1.0A

Output Noise Voltage

T A = 25°C, 10 Hz ~ f ~ 100 kHz

25.0

22.8

25.2

6.0

10

170

lOUT = 20 mA, f = 120 Hz

Dropout Voltage

T j = 25°C, lOUT = 1.0A

dB

2.0

V

typical performance characteris_tics

30

~

5.0

~
C

2.0

~

1.0

;;:
a::

~

30
INFINITE
HEAT SINK-====

-

-

--

=
WITH 10°C/W
- HEATSINK

INFINITE

~~

NOHEAT~ i-- -......

10

i=

5.0

i3c

2.0

;;:

~-~§~~;?!H~E§AT~S~I~N~Kf~~
WITH 10°C/W

I

~ HEAT SINK
NO HEAT SINK

---I'---

a::

~
~

1.0
0.5

0.5
0.3

TO-3

20

10

z
0
i=

Maximum Average Power
Dissipation

TO-220

20

0.3

o

15

30

45

AMBIENT TEMPERATURE

60

n)

75

15

30

mA
mA

mV

56

Maximum Average Power
Dissipation

V

JJ.V
96

Ripple Rejection

V

mA

1.0
0.5

Long Term Stability

46

mA
mA
JJ.V

Long Term Stability
Ripple Rejection

LM340-24 (V IN

mA

1.0
0.5

5mA~loUT~1.0A

V

45

60

AMBIENT TEMPERATURE (OC)

75

typical applications

Fixed Output Regulator
INPUT

--"---I

LM340·XX

1--"'-- OUTPUT

GND
C2**

*Required if the regulator is located far from the power supply filter.
**Although no output capacitor is needed for stability, it does help transient response.
(If needed use 0.1 J.1F, ceramic, disc.)

Adjustable Output Regulator
INPUT

OUTPUT
Rl
300
1%

VOUT = 5V + (16.7 rnA + 10 ) R2
= 1.5 rnA over line and load changes

610

R2
lK

II
Current Regulator
INPUT

--,,---I
V2-3
lOUT = If,"" + 10

Rl
610

= 1.5 rnA over line and load changes

---

L...--------4Ia-__ OUTPUT
lOUT

High Current Voltage Regulator
INPUT - -. .- - ' "
5V, IDA
LM340·05
3 ,

~-...- - OUTPUT

C2
O.l/lF

TA

=25°C

10V, OA <:: IL <:: lOA
Load Regulation =.2 mV
@ IL = lOA, 9V s:; V1N f 12V
Line Regulation = 20 mV
@ V1N

t SOLIO TANTALUM

47

Voltage Regulators
LM376 voltage regulator
general description
The LM376 is a positive voltage regulator designed
primarily for commercial product applications. The
device is especially useful because it is packaged in
an 8-pin mini-DIP which has the advantage of
reduced size and low cost. Used independently,
the device will supply 25 mA; but with the addition of external pass elements any desired load
current can be achieved. The circuit features extremely low standby current drain, and provision

is made for either I inear or foldback current
limiting. Important characteristics of the LM376
are:
+5V to 37V

•

Output voltage range

•

Output cu rrent

25mA

•

Load regulation

0.2%

•

Line regulation

0.03%/V

simplified schematic and connection diagrams

...--__4t_--...- -...

r----.~~.------

UNREGULATED INPUT

3

--~:p~~GULATED
600

Dual-In-Line Package
12 BOOSTER
OUTPUT
CURRENT LIMIT

1-_""""""""....-...,...

~~~ENT

8 REGULATED
L..--------OUTPUT

BOOSTER
OUTPUT

7

UNREG
INPUT

6

. . ._ _ _ _ _ _ _ _7_~~~~~~~~TlONI

4.9K

REGULATED
OUTPUT

I

GROUND

4

COMPENSATION

fEEDBACK

REFERENCE
BYPASS

t--------FEEDBACK
1.5K

Order Number LM376N
See Package 20

2.2K

...

L----t~--....-__4~------_

----------GROUND

typical applications
Basic Positive Regulator with Current Limiting
Rsc

R2

1.0A Regulator with Protective Diodes

Linear Regulator with Foldback Current Limiting

D2t
UTR3305

......--~Ie-----4.....-

....- -....._ ....._-VOUT :28V
01!

UTR3305

Rl

31K
1%

V'N~"""_""----I
C3

hf
35V

48

R2
2.13K
1%

tProtects iilgainst shorted input or
inductive loads on unregulated
supply.
*Protectsagainstinputvoltage
reversal.
!Protectsagainstoutput
voltagerevet'sal

V1N >18V

absolute maximum ratings.
40V
40V
400mW
O°C to 70°C
-65°C to +150°C
300°C

Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 2)
CONDITIONS

MIN

TYP

MAX

UNITS

Input Voltage Range

9.0

40

V

Output Voltage Range

5.0

37

V

Output-I nput Voltage
Differential

3.0

30

V

Load Regulation

0::::;: 10

25 mA
0.2

%

Rsc = on, T A = 70°C

0.5

%

on, TA =

0.5

%

Rsc =
Line Regulation

::::;:

Rsc = on, T A = 25°C
O°C

T A = 25°C

.03

%/V

.1

%/V

Ripple Rejection

f= 120 Hz, TA = 25°C

0.1

%/V

Standby Current Drain

V 1N = 30V, TA = 25°C

2.5

mA

Reference Voltage

1.60

Current Limit Sense Voltage

1.72
.360

1.80

D

V
V

Note 1: For operating at elevated temperatures, the device must be derated based
on a laaoe maximum junction temperature and a thermal resistance of 187°e/W
junction to ambient.
Note 2: These specifications apply for an operating temperature between aOe
and 70°.

49

CD
I'
M

:E

typical performance characteristics

..J

Load Regulation
~

0.4

c:r:

0.3

z
c
i=

~

I I
Rsc = 0

t:l

c:r:

UJ

c:r:

TA = DoC,

~\

TA = 25°C
0.2

".

TA=70OC,~

!:;
0.1

~

~ --::::-~'"

~~ ~-

I-

::;)

C

".~

.......

.-

.

~.

TA = 70°C- :--~

I-

TA = 25°C

I-

TA - DoC

> 0.75

~

c

-.~'

20

12.1
UJ

>

6.8

~

-

6.7
6.6

-~

V

~

z

UJ

a:
a:

;

(.)

.200

30

25

V

11.7

'I·

~ 11.6
~

11.4

g

1""'\00 1'-0....

"mA~
1

UJ

IL

I

5

z
c:r:

t"..

I-

en

~
a:

....:.

1, .•

~

50

I

25

I-

1.85

E5

a: 1.80
a:

::;)

(.)

~o=,l0~

1.75

>
co 1.70
c

z 1.65
c:r:

I-

en

1.60
1.55

/

~ i-"'"

A-1I
I/~
...J- ~
~

~

~

~II

10

---

V~UTI= 10V_
TA = 25°C

z

f::;: 120 Hz -

~
~

CREF = 0

\

c:r:

Vo= 5V

~

L 1 I

~ 0.010
en

r-.

35

~

:;

-

. ..

f------! Rsc = 10n

c:r:

c:r:

" ...... -I"-

0.015

30

..

LINE

-40

t:l

'\

I-

25

40

UJ

t:l

~

-

:;
.§
z
c
i=
c

0.020

.....

20

Transient Response

~ 0.030
c
i= 0.025

15

OUTPl!T VOLTAGE (V)

Supply Voltage Rejection

1.50

400

c

>

I----' 6V ,N =5V
V OUT = 10V

-

~

IFL = 20 mA
INL = 1.0 mA

•••• CL = 1 /IF

k···.

I~.,

I-

Rsc = 10D.

CL=O

VOUT= 10V
•
.1 ••••

LOAD

::;)

c

-400
10

15

20

25

30

INPUT VOLTAGE (V)

50

1"' . . . ........

AMBIENT TEMPERATURE (OC)

1.95

+~

-~ ~2

70

50

2.00
1.90

2.4
2.3

Vo=l.72x (R,
R;

\

2.1

jA

70

Standby Current Drain
TA = 2SoC

~

2.5

,

\

2.0

AMBIENT TEMPERATURE (OC)

.§

2.6

2.2

11.3
25

2.7

(.)

'. ...

R, = 1.11 Vo KD.
1.72 x R,
R2 =V o -l.72

2.9
2.8

- ...
---. - . --....

,~

6.5

70

Optimum Divider Resistance

1\

!:; 11.8
I-

50

AMBIENT TEMPERATURE eC)

I L =20mA\

c:r: 11.9

11.5

o

.250

::;)

3.0

t:l

",

!
!

VOUT = 10V_
Rsc = 10D.

12.2

~ 12.0

I-

.300

:::i

12.3

7.2

c

:E

-

....... r--.."""

I-

Regulator Dropout Voltage

UJ

::;)
Q.

I-

!

25

~

E5
en

I

.i
20

15

'" .......

~ .350

OUTPUT CURRENT (mA)

I

I
mA

c:r: .400

..

:I
10

~ 7.1
6.9

I
lo~5

UJ

,

~

0.25

30

I

:;

I

i=

VOUT = 5V

7.0

I

!:;
c
>

I

Minimum Input Voltage

c:r:

i

0.50

LOAD CURRENT (mA)

t:l

I

.. '.

a:

7.3

~

>

~

."

10

I
I
Rsc = 10D.

UJ

~.

Current Limit Sense Voltage

t:l

1.00

!:;
c

::;)

~. 10-"

c

>

I-

~
t:l

c

UJ

Current Limiting Characteristics

35

40

5

10

15

20

25

30

INPUT·OUTPUT VOLTAGE DIFFERENTIAL (V)

10

20
TIME (/ls)

30

Voltage Regulators
lM723/lM723C voltage regulator
general description
The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By
itself, it will supply output currents up to 150 mA;
but external transistors can be added to provide
any desired load current. The circuit features extremely low standby current drain, and provision
is made for either linear or foldback current limiting. I mportant characteristics are:
•

150 mA output current without external pass
transistor

•

Output currents in excess of 10A possible by
adding external transistors

•

I nput voltage 40V max

•

Output voltage adjustable from 2V to 37V

•

Can be used as either a linear or a switching
regulator.

The LM723/LM723C is also useful in a wide range
of other applications such as a shunt regulator, a
current regulator or a temperature controller.
The LM723C is identical to the LM723 except
that the LM723C has its performance guaranteed
over a aOc to 70°C temperature range, instead of
-55°C to +125°C.

schematic and connection diagrams *
Dual-In-Line Package

V·

8

Rl
500

RJ
25K

R5
lK

R4
lK

NC

1

14

NC

CURRENT LIMIT

2

13

FREQUENCY
COMPENSATION

CURRENT SENSE

3

12

V·

INVERTING INPUT

4

11

Vc

NON·INVERTING
INPUT

5

10

VO UT

VREF

6

9

V,

V-

7

8

NC

Vc

01
6.2V

D

TOPVIEW

Order NumberLM 723D or LM723CD
See Package 1
Order Number LM723N or LM723CN
See Package 22
Metal Can Package

v,

_------=-1-_ _ _ _'_0

NON·INVERTING
INPUT

CURRENT
LIMIT

COMPENSATION

~~~~ENT

INVERTING
INPUT

Note. Pm 5 tsconnected to case
TOPVIEW

Order Number LM723H or LM723CH
See Package 13

equivalent

circuit *
FREQUENCY
COMPENSATION
9

Vc

TEMPERATURE
COMPENSATED
ZENER

VOUT

10
CURRENT
LIMIT

I

CURRENT
SENSE

Pm numben for metal can package onlv_
Note 7

51

absolute maximum ratings
Pulse Voltage from V+ to V- (50 ms)
Continuous Voltage from V+ to VInput-Output Voltage Differential
Maximum Amplifier Input Voltage (Either Input)
Maximum Amplifier Input Voltage (Differential)
Current from V z
Current from V REF
I nternal Power Dissipation Metal Can (Note 1)
Cavity DIP (Note 1)
Molded DIP (Note 1)
Operating Temperature Range LM723
LM723C
Storage Temperature Range Metal Can
DIP
Lead Temperature (Soldering, 10 sec)

electrical characteristics

50V
40V
40V
7.5V
5V
25 mA
15mA
800 mW
900mW
660 mW
_55°C to +125°C
O°C to +70°C
-65°C to +150°C
-55°C to +125°C
300°C

(Note 2)
LM723

PARAMETER

UNITS
MIN

Line Regulation

LM723C

CONDITIONS
TYP

V 1N = 12V to V 1N = 15V

.01

-55°C ~ T A ~ +125°C

MAX

TYP

MIN

0.1

.01

V 1N = 12V to V 1N = 40V

.02

0.2

I L = 1 mA to I L = 50 mA

.03

0.15

-55°C ~ TA ~ +125°C

Average Temperature
Coefficient of Output Voltage
Short Circuit Current Limit

0.1

.03

%V OUT

0.2

0.6

% V OUT
%V

OUT

%V

OUT

74

74

dB

f = 50 Hz to 10 kHz, C REF = 5J..LF

86

86

dB

-55°C ~ T A ~ +125°C

.002

%/oC

.015

0°C:::;TA:::;+70°C

.015

.003

Rsc = 10D., V OUT = 0

65
6.95

BW = 100 Hz to 10 kHz, CREF = 0

7.15

65
7.35

6.80

20

Long Term Stability
I L = 0, V 1N = 30V

7.15

%/C
mA

7.50

20

V
J..LVrms

2.5

2.5

J..LVrms

0.1

0.1

%/1000 hrs

1.3

3.5

1.3

4.0

mA

Input Voltage Range

9.5

40

9.5

40

V

Output Voltage Range

2.0

37

2.0

37

V

Input-Output Voltage Differential

3.0

38

3.0

38

V

Note 1: See derating curves for maximum power rating above 25°C.
Note 2: Unless otherwise specified, TA = .25°C, VIN = V+ = Vc = 12V, V- = 0, VOUT = 5V,
IL = 1 mA, RSC = 0, C1 = 100 pF, CREF = 0 and divider impedance as seen by error amplifier
-:;: 10 kQ connected as shown in Figure 1. Line and load regulation specifications are given for the
condition of constant chip temperature. Temperature drifts must be taken into account separately
for high dissipation conditions.
Note 3: L1 is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core
or equivalent with 0.009 in. air gap.
Note 4: Figures in parentheses may be used if R1 /R2 divider is placed on opposite input of error amp.
Note 5: Replace R1 /R2 in figures with divider shown in Figure 13.
Note 6: V+ must be connected to a +3V or greater supply.
Note 7: For metal can applications where Vz is required, an external 6.2 volt zener diode should be
connected in series with VOUT.

52

%V OUT

0.5

0.6

BW = 100 Hz to 10 kHz, C REF = 5J..LF

Standby Current Drain

0.3

f = 50 Hz to 10 kHz, C REF = 0

Reference Voltage
Output Noise Voltage

%V OUT
%V OUT

O°C ~ T A ~ = +70°C
Ripple Rejection

0.1

0.3

O°C ~ T A ~ +7(J°C

Load Regulation

MAX

maximum power ratings
LM723

LM723C

Power Dissipation vs
Ambient Temperature

Power Dissipation vs
Ambient Temperature

1000

1000

DIP

900

,\

TD·5

700

3:

cE

400
300
200
100

0

25

J,......

600 t-- - t i P

3:

cE

'\~

~

TJ MAX 125°C
RTH = 125°CIW (TO·5)
RTH = 155°CIW (DIP)
No HEAT SINK

200
100

-55 -25

75 100 125 150

~

I

400
300

1'-"l

50

\

,\

.5 500

~

~~

TJMAX = 150°C
RTH = 160°CIW (TO·5)
RTH = 140°C/W (DIP)
No HEAT SINK

0
-55 -25

I

700

'\'

.5 500

TO·5

800

,,~

600

I

900

\

800

0

25

50

75

100 125 150

TA AMBIENT TEMPERATURE rC)

TA AMBIENT TEMPERATURE rC)

typical performance characteristics
Load Regulation
Characteristics with
Current Limiting

Load Regulation
Characteristics with
Current Limiting

0.05

0.1

...::J

I""I1II !III;; :::--

o
~ -0.05

TA =25°C-

-0.1

/.....

I

~
i=

....

~

I

1'4....[--",
T~ = ~25~ ~

'"

-0.1

S

-0.15

f-

Vou~ = +5V, V1N = +12V
~sc ~ 1~r!

o

10

I-

-0.25

~
a:

20

_ITA
25

30

LLI

t:I

I

o

VOUT = 5V. VIN = +12V
Rsc = lOr!

~



CI)

I-

~

40

60

a:

80

0.4

I
II

i=

,.~

'-

t:I



I-

~

-2.0

I-

:::;)

0

-4.0

-5

-t

0

<
0

i=

r-

I-

~

~
a:
a:

1.4

120

.,..,

~
>
co
c

c:

~ I'-.

::0

80

~

~

2:

z


45

r-

:to

f\

I

~

-5

15

-10
VIN = +12V
VOUT = +5V
IL = 40 rnA
v
TA = 25 C
Rsc = 0

\ f

-8.0

30

40

25

35

50

Output Impedance vs
Frequency

c

:1

-4.0

I-

:::;)

20

INPUT VOLTAGE (V)

10

/'t-~

0

0

-6.0

r--

IL = 0
10

0

4.0

LLI

~

T~=1~5oJ-

'--

r- VOUT = VREF

150

\

C

I-

T~ =~5od-

0.6
0.4

10



~ .5
c: z
-t

'"
25

.5

::::j

"""'" ~

25

T~=j5oJ- -

1.8
~

160 r~

12

4.0

i""- t-r--

15

2.0

Load Transient Response

OUTPUT VOLTAGE-

VIN = +12V
VOUT = +5V
IL = 1 rnA
TA = 25°C
Rsc = 0

15

Standby Current Drain vs
Input Voltage

t:!..

R
sr5i2

...

VIN - VOUT (V)

JUNCTION TEMPERATURE ("C)

l

2.0

LLI

-5

100

SENSE VOLTAGE

-50

2.0

II



I

V

I

I"'- r-... ' l

0.6

::::;

I II
I II
I
20

0.7

~

---l

I--TA=-55°C ~

o

~

0

LLI

I

-0.2

o

~

"""'"

""'"

0.8

LLI

t:I

I-

>
i=

~

0.2

>

~
a:

\ \J

40

20

S
::>

I

LINE

~

i=

~\ TA = _55°C_
"'" '\
~I I 1

I

0.1

Current Limiting
Characteristics vs
Junction Temperature



\"iii ~

:::;)

-0.2

...

VOUT =+5V
Rsc = 0
TA=+25°C
t,V = +3V
IL = 1 rnA

::J
0

2:
0

i=

0.3

VOUT = 5V. VIN = +12V
Rsc = lOr!

....... ~

0

>

Load & Line Regulation vs
Input-Output Voltage
Differential

45

~
<

j;

::j
0

2:

-20

-

LLI

'-'
2:
--------- OUTPUT
r----l~->-~

__-

-V 1

OUTPUT

*Mav be zero or equal to source
resistance for minimum offset.

Integrator with Bias Current Compensation

-30 VOLTS

External Current limiting Method

CF
Dl

02

D3

04

Cl

INPUT-~""""--""';~
~~""---OUTPUT

~-IIt,/'V,\/-----4""'-

<.'!.L
LIM

* 2Mfl

IOUT -R

-15V

*Adjust for zero integrator drift.

0 UTPUT

*V f

=average forward
voltage drop of
diodes Dl to 04
at 20 to 50 IJA.

*Previously called NH0001

57

~

o
o

absolute maximum ratings

o

:I:

Supply Voltage

...J

±20V

Power Dissipation (see Curve)

400 mW
±7V

Differential Input Voltage
Input Voltage

Equal to supply

Short Circuit Duration (Note 1)
Operating Temperature Range

Continuous
-55°C to +125°C

Storage Temperature Range

-65°C to +150°C

Lead Temperature (Soldering 10 sec.)

300°C

electrical characteristics

(Note 2)

TEMP (oC)

PARAMETER

CONDITIONS

MIN

TYP

MAX

0.2
0.6

1.0
2.0

UNITS

Input Offset Voltage

25
-55 to 125

Input Offset Current

25 to 125
-55

20
100

nA
nA

Input Bias Current

25 to 125
-55

100
300

nA
nA

Supply Current (+)

25
125

Vs = ±20V
Vs = ±20V
Vs =±20V

90
70
100

125
100
150

p.A
p.A
p.A

25
125

Vs = ±20V
Vs = ±20V
Vs = ±20V

60
45
75

90
75
125

p.A
iJ. A
p.A

-55
Supply Current (-)
-55
Voltage Gain

-55 to 25
125
25

V OUT
-55

125

Rs'::;;5K
Rs '::;;5K

RL = 100 KD., Vs = ±15V, V OUT = ±10V
RL = 100 KD., Vs = ±15V, V OUT = ±10V

25
10

60
30

Vs = ±15V, RL = 2K
Vs = ±15V, RL = 2K
Vs = ±15V, RL = 2K

10
9
11

11.5
10.5
12.5

mV
mV

V/mV
V/mV
V
V
V

Common Mode
Rejection Ratio

-55 to 125

Vs = ±15V, V 1N = ±10V, Rs'::;; 5K

70

90

dB

Power Supply
Rejection Ratio

-55 to 125

Vs = :±:15V, f::,V = 5V to 20V, Rs =.::;; 5K

70

90

dB

Input Resistance
Average Temperature
Coefficient of Offset
Voltage

-55 to 125

Average Temperature
Coefficient of Bias
Current

-55 to 125

25

Equivalent Input
Noise Voltage

MD.

1.5

0.5

25
Rs~5K

Rs = lK, f = 5 Hz to 1000 Hz, Vs = ±15V

4

/..NtC

0.4

iJ.Atc

3.0

p.Vrms

Note 1: Based on maximum short circuit current of 50 mA, device may be operated at
any combination of supply voltages, and temperature to be within rated power dissipation
(see Curve).
Note 2: These specifications apply for Pin 7 grounded, for ±5V:;' Vs :;, ±20V, with
Capacitor C1 = 39 pF from Pin 1 to Pin 10, and C2 = 22 pF from Pin 5 to ground, unless
otherwise specified.

guaranteed performance
Small Signal Voltage Gain

Input Voltage Range

Maximum Power Dissipation

18
Rl

16

95

'14

~...
'"
C[

~

Q

>

lZ
10

~

V

./

...

'"

~

~

6

==

4 /

zL

~

,'"

MINIMUM~

Q

>

;

10

SUPPLY VOLTAGE (±V)

ZO

~
1=

600

"I\.

a:

~

~

~~

-55°C TO +IZ5°C

15

700

i?l
c

-50

0

+50

+100

TEMPERATURE (OC)

500
400
300
ZOO
100

75
5

800

~

~

MINIMUM .........
85 I - -I - - Vs."±5V

80
TA

lOOK TO THE
NEGATIVE SUPPL Y

.!
90 I- Vs; ±10V TO ±ZOV

~

~~'\

8

~
2:

0

58

;

+150

0
Z5

"."- ~

CASE

AMBIEN~

"""'"
50

75

f'-

"-

~

100

TEMPERATURE (OC)

lZ5

r::I:

o
o
o

typical performance characteristics

...&

Negative Supply Current

1
....

i
i
>

>=

~

Positive Supply Currents

180

180 . . . . - - - - - , . . . . - - - - - . - - - - - . . ,

160

160

t"""------+----+-----I

t----+----+-----;

cr

140

~

140

120

~

120

~

100

>
80

TA = _55°C

60

TA - +25°C

C>.
C>.

=>
en
w

>

TA =+125°C

>=

40

~

20
10

15

-

1
en
ct

30

.......
N1GATIVE LpPLY

20

C>.

~

'"

=>

40 ~~--+----+-----I
20

0

10

t----+----+-----;

20

15

10

20

-55

+50

=-55°C

-

= '15V

1....
z
a:
a:
=>

60

~

u

TA

=+25°C

-

en

o·

....
=>
C>.

20

TA

=+125°C

Z

11)

15

20

10

SUPPL Y VOLTAGE (±V)

15

~

-50

20

18

18
16

12

r

10

'"

14

~

>

100

14
12

;

10

~

z

95

'"

90

~>

....
=>
....
=>
C>.

0

150

Voltage Gain

>

....
=>
....
=>

100

50
TEMPERATURE rC)

Positive Output
Voltage Swing

16

/

V

-

SUPPLY VOLTAGE ('V)

Negative Output
Voltage Swing

~

V

....

40

+150

Input Resistance

Input Offset Current

.. ~

'"

+100

SUPPl Y VOLTAGE (±V)

C>.

f

SIUPPL Y

V"

Vs
TA

co
....
=>
z

P~SITIVE

cr

.s
....
=>
....

60,..=--+

Input Bias Current

80

Vs = ±15V
40

i

100 t-----+
801:::::.._ _""'=f.

SUPPLY VOLTAGE (:V)

i

Short Circuit Output Current

0

85
Rl = lOOK TO THE
NEGATIVE SUPPLY

O~---~------~------~

5

10

15

80
10

20

SUPPL Y VOL TAGE (. V)

;

RL = lOOK

...~

100

~>

60

'"

.,.".

80

RL

-

40

=2K

,,
""'"

Cl =39 pF
.... C2 = 22 pF

I I

20

o
0.1

1

10

100

~
'"z

""
Cl

~

=0, C2 = 0

+8

12

~
....
=>
....
=>
C>.

+6

...~
0

-2

>

-4

'\

-6
lK

10K

lOOK

1M

FREOUENCY (Hz)

10M

IN~UT r-

~
+4
+2

'"~

~ [\

FREOUENCY (Hz)

~
z

'"

0

lK 10K lOOK 1M 10M

20

+10
16
Vs = '15V
TA = 25'C

z

15

Voltage Follower
Pulse Response

I

= ±15V

140
120

10

SUPPL Y VOL TAGE (. VI

Large Signal
Frequency Response
I
Vs

160

5

20

SUPPL Y VOLTAGE (±V)

Open Loop
Frequency Response
180

15

~- -

,1

~

_\

-- -20

~~

40

60

-I ~~

,
I

\

o

~-

OIUTPUT

Vs= HSV
RL =2K
TA =2SOC

I

I

80 100 120 140 160

TIME (//SIC)

59

CJ~



--

-6

5
10
15
SUPPL Y VOLTAGE (±V)

,

-2
-4

20

20

~-- --J

40

I

OUTPUT

1\
\
--

I

~

--

I

INPUT

c::I

Positive Output
Voltage Swing

18

-1\

~

~

TAl = 125°C

Ii

(TYPIC"L~

~

-

:;

~'l
~'l

~
c 10
>
TA = 25°C

+6
~

~

20

Voltage Follower
Pulse Response

I
I
I
I
I
20 - TA = -55°C to 125°C

~

iii

5
10
15
SUPPLYVOLTAGE (±V)

20

15

oct

I-

I I I
I I I

,

c::I

oct

~,

J
Vs = ±15V
RL = 2K
TA = 25°C

60 80 100 120 140
TIME (/1s)

Voltage Ga i n

18

16

16

:;

14

>

14

w

12

w

12

..:t.

c::I

~

~

~
5

en 40

oct

I I I
I II

~

Input Voltage Range

a:
a:

..!..

TA =25°y ~

20
25

-

1

TA = +55°C

TA = 125°C

en 40

Input Bias Current
80

~

:::)

~

100

o

~

a:
a:

oct

...I

80

I II

".,.

~

.3

2:

I-

l:

~ -5~oC

r-- TA

;;t

Input Offset Current

100

;
2:

c::I

oct

10

~
C
>

C

>

l-

c::I

w
c::I

oct

I-

~

l-

I-

c

:::)

90

~

~

:::)

95

:;:

10

C

>

c

85
RL = lOOK TO THE
NEGATIVE SUPPLY
80

- 5

15

10

20

15

10

20

10

SUPPL Y VOLTAGE (±V)

SUPPL Y VOLTAGE (±V)

SUPPL Y VOLTAGE (±V)

Large Signal Frequency
Response

Open Loop Frequency
Response
180 r--;---r-r---r---r--,-,--,---,
16

160

~2

120

~

100 I-iifiiiiiiiiii!.....~

UJ

c::I

80

.~

60

oct

o
>

~---+----4---~----~~

I Vs= ±15V

140

~

-

TA = 25°C
121-........p.-..---+------I1-------t----l

c::I
2

~

~

I:::)

40

o

20

o

o
0.1

1

10 100 lK 10K lOOK 1M 10M
FREQUENCY (Hz)

62

lK

10K

lOOK

1M

FREQUENCY (Hz)

10M

20

ro

::I:

o
o

Op·erational Amplifiers

N

.........

ro

::I:

o

o

LH0002/LH0002C* current amplifier

N

(")

general description
The LH0002/LH0002C is a general purpose thick
film hybrid current amplifier that is built on a
single substrate. The circuit features:

output portion of the circuit also provides a low
output impedance for both the positive and negative slopes of output pulses.

400 kQ

The LH0002 is available in an 8-lead low-profile
TO-5 header; the LH0002C is also available in an
8-lead TO-5 , and a 10-pin molded dual-in-line
package.

• High Input Impedance

6Q

• Low Output Impedance
• High Power Efficiency
• Low Harmonic Distortion

The LH0002 is specified for operation over the
-55°C to +125°C military temperature range. The
LH0002C is specified for operation over the O°C
to +85°C temperature range.

• DC to 30 MHz Bandwidth
• Output Voltage Swing that Approaches Supply
Voltage
• 400 mA Pulsed Output Current

applications

• Slew rate is typically 200V /ps
•
•
•
•
•

• Operation from ±5V to ±20V
These features make it ideal to integrate with an
operational amplifier inside a closed loop configuration to increase current output. The symmetrical

Line driver
30 MHz buffer
High speed D/A conversion
I nstrumentation buffer
Precision current source

schematic and connection diagrams
v,+
2(11

Dual·ln-Line Package

Metal Can Package

E, (lOl----4.......---+---f

J(9IE,

INPUT

v,'

E,

v:

E,

INPUT

OUTPUT

V,-

E,

V,-

E,

5(7IE,
E, (61----4.......-t-----f

OUTPUT
TOPVIEW

TOPVIEW

v,'

v,'
Pm numbersmparenthesesdenoteptn
connections for dual·m·line package

Order Number LH0002CN
See Package 21

Order Number LH0002H or LH0002CH
See Package 11

typical applications
High Current Operational Amplifier

Line Driver

R2

Select Clpacitor to .djust time response of pulse.
Rl

INPUT -...IV",,"__~

OUTPUT

VIN

*Previously called NH0002/NH0002C

,63

o
N
o
o
o

absolute maximum ratings

:t:
...J

Supply Voltage
Power Dissipation Ambient
Input Voltage (Equal to Power Supply Voltage)
Storage Temperature Range
LH0002
Operating Temperature Range
LH0002C
Steady State Output Current
Pulsed Output Current (50 ms On/l sec Off)

"o
N

o
o

:t:
...J

electrical characteristics
PARAMETERS
Voltage Gain

±22V
600mW
-65°C to +150°C
-55°C to +125°C
O°C to +85°C
±100 mA
±400 mA

(Note 1)

CONDITIONS

MIN

Rs = 10 kn, R L = 1.0 kn

TYP

.95

MAX

UNITS

.97

V 1N = 3.0 V pp , f = 1.0 kHz

TA = -55°C to 125°C
AC Current Gain

V 1N

= 1.0 V rms

40

A/mA

f = 1.0 kHz

I nput Impedance

Rs = 200 kn, V 1N = 1.0 V rms,

-

180

400

-

6

±10

±11

-

±10

±30

mV

f = 1.0 kHz, RL = 1.0 kn

Output Impedance

V 1N = 1.0 V rms , f

= 1.0 kHz

10

,

kn

n

RL = 50n, Rs = 10 kn
Output Voltage Swing

RL = 1.0kn,f= 1.0kHz

Output Voltage Swing

Vs = ±15V, V 1N = ±10V,

V

±9,5V

RL = lOOn, TA = 25°C
DC Output Offset Voltage

Rs

= 300n,

RL

= 1.0 kn

-

T A'= -55°C to 125°C

DC Input Offset Current

Rs = 10 kn, RL = 1.0 kn
TA

= -55°C to

-

±6.0

±10

J1A

0.1

-

%

-

MHz

125°C

Harmonic Distortion

V 1N = 5.0 V rms, f = 1.0 kHz

-

Bandwidth

V 1N = 1.0 V rms , RL = 50n,
f = 1 MHz

30

Positive Supply Current

Rs = 10 kn, R L = 1 kn

-

+6.0

+10.0

mA

Negative Supply Current

Rs = 10 kn, RL = 1 kn

-

-6.0

-10.0

mA

50

Note 1: Specification applies for T A = 25°C with +12V on Pins 1 and 2; -12V on Pins 6 and 7 for the
metal can package and +12V on Pins 1 and 2; -12V on Pins 4 and 5 for the dual-in-line package unless
otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of OOC
to +85°C, while parameters for the LH0002 are guaranteed over the temperature range -55°C
to 125°C.

64

r:::t
0
0
0

typical performance characteristics
Frequency Response

Maximum Power Dissipation
1.0

-...

1.4

Iz

0.8
1.2

c 1.0
i=
CI:
0.8

...
""C

0.6

~

0.4

25

50

~
c 0.4

75

/

>

"

0.2

./

0.2

-......L

III
~~

-80

V

TA = 25°C /

/

~"""

>
~

~

4.0

""

2.0

o

./

o

9.0

6.0

10

0.5

~

CI:
I-

~
~

Vs = ±12V
RL = Rs= 50n
TA =25°C

'j1T

-

:;)

~ 4.0
~
!; l.O
c
§l 2.0

~

OUTPUT

!;

1\

-1.0

c
c -2.0

z

\

J

0

~

l

7

1.0

15.0

Vs= ±12V
RL = Rs = 50n
TA=25°C

2w
.....
""
I-

(
~

12.0

Negative Pulse

Positive Pulse

~ 5.0

""

SUPPLY VO~ TAGE (±V)

FREQUENCY (MHz)

2

~

:;)

-20

0.2

~

:;)

o
0.1

100

./

!

c:.>

t/

50.0

J

TA = 25°C,

change from
10.0 less than ±10%
I
C(
-55°C to 125°C
,
8.0
~
a:: 6.0
a::

........

~f

20.0

I-

~

Rs =10kn

10.0

Supply Current
12.0

-100

ZIN = 1.0 kn@ 10 MHz,

...

FREQUENCY (MHz)

Input Impedance (Magnitude & Phase)
VIN=O.lV rm ..

N

n

:3
w
""
<
:I:

o

5.0

2.0

TEMPERATURE (oC)

RL = 50n. Vs = ±12.0V

-8

I

l./
1.0

I
c:I

-16

PHASE _

/"

0.1

100 125 150 175

-;;

-24

I

CI:

r-

:::t
0
0
0

-l2

TA = 25 C

w

"

'-

VIN = 1 ~rms, RL = 50n. Vs = ±12.0V _

c:I

i)

~~

a::

:r

<
c:I 0.6

i\

I
AMBIENT

C;;

, AV

~

z

CASE

N
..........

-40

c:c

I-

Y

\

'OUTjUT

I

-\-,

-l.O

...~-4.0
:;)

V

~

l...-- INPUT

J

~

IJ

-5.0

o

20

40

60

o

80 100

20

40

60

80

100 120

TIME (ns)

TIME (ns)

Input Offset Current

o ~~~--~~--~~--~~
4

10

12

14

16

18

20

SUPPl Y VOL TAGE (±V)

65

(.)

M

o
o
o

Operation.al Amplifiers

::I:
....I
........
M

o
o
o

LH0003/LH0003C* wide bandwidth operational amplifier

....I

general description

::I:

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to
70 volts/psec, a gain bandwidth of up to 30 MHz,
and high output currents. Other features are:
•

Very low offset voltage

•

Large output swing

Typically 0.4 mV
> ±10V into 100[2
load

•

High CMRR

•

Good large signal
frequency response

Typically> 90 dB

50 kHz to 400 kHz depending on compensation
The LH0003 is specified for operation over the
-SSoC to +12SoC military temperature range. The
LH0003C is specified for operation over the O°C
to +8SoC temperature range.

schematic and connection diagrams

Cl

C2~
TOP VIEW

L-..-~-10

COMP

CLAMP
AND
COMPENSATION

Order Number LH0003H or LH0003CH
See Package 14

COMP
R3
10K

R4
10K

Circuit Gain

R5
lK

2'
?
?
?
?

C,

C2

pF

pF

Slew Rate
RL

40

0

70

10

30

30

30

15

5
2

15

Full Output Frequency
2001/ V OUT -10V

> 200n. V'jJsec

RL

400
350

50

50

250
100

90

90

50

l
~.

kHz

Typical Compensation

typical applications
High Slew Rate Unity Gain Inverting Amplifier

Unity Gain Follower
V'

}-----.---OUTPUT

INPU T -

l - -....-

.......JI,I\Iv---4I....---i

lK

20K

lK

...------~I\r--....--AJ\tI\r- INPUT

90PF~
lK

100pF

*Previously calted NH0003/NH0003C

66

OUTPUT

ro

::t

o
o

absolute maximum ratings
Supply Voltage
Power Dissipation
Differential Input Voltage
I nput Voltage
Load Current
Operating Temperature Range NH0003
NH0003C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
<

o
o
o
w

n

300°C

CONDITIONS
Rs

"::t

(Notes 1 & 2)

PARAMETER
Input Offset Voltage

w
r-

±20V
See curve
±7V
Equal to supply
120 mA
-55°C to +125°C
O°C to+85°C
-65°C to +150°C

TYP

MIN

lk

UNITS

MAX

0.4

3.0

mV

Input Offset Current

0.02

0.2

IJ.A

Input Bias Current

0.4

2.0

IJ.A

1.2

3

mA

Supply Current

Vs

Voltage Gain

RL = lOOk, Vs = ±15V, V OUT = ±10V

20

70

V/mV

Voltage Gain

RL = 2k, Vs

15

40

V/mV

Output VOltage Swing

Vs

±10

±12

V

100

kl2 •

=

=

±20V

=

± 15, R L

=

±15V, V OUT = ±lOV

100U

I nput Resistance
Average Temperature
Coefficient of Offset
Voltage

< 5k

Rs

Average Temperature
Coefficient of Bias
Current

< lk, Vs = ±V, V ,N = ±lOV
< lk, Vs = ±15V,!W =.5V to

CMRR

Rs

PSRR

Rs

Equivalent Input
NOIse Voltage

Rs = 1 K, f = 10 kHz to 100 kHz
Vs=±15Vdc

20V

4

IJ.vtc

8

nAtC

70

90

70

90

dB
dB

1.8

<

IJ.Vrms

<

These specifications apply for Pin 7 grounded, fpr ±5V
Vs
±20V, with capacitor
C 1 =90 pF from Pin 1 to Pin 10 and C 2 =90 pF from Pin5 to ground,over
the specified operating temperature range, unless otherwise specified.
Typical values are for tAMBI ENT = 25°C unless otherwise specified.

Note 1.

Note 2.

typical performance characteristics
Maximum Power Dissipation
1000
CASE

~

800

z
t=

600

~
0

I

:

i

~ 400

AMBIENT

C
a::

~

~

,,
i

;

,,

-~

--+-- ~-

0
25

50

-

r---

t:)

~-

TEMPERATURE rC)

12
10

~

8 -

r---

~

6 -

-

l-

,

4

C2 = 90 p

F~

IIIII
104

~
105

Rl = 200S1

Cl

~J

C2 = 0

\

-

I

120

;

100

z

80

UJ

60

cc
t!>
ct

~
>
0

Rl

~ 100~

40
20

RL = 200s~

""'"

"'

1

Cl=O- f - 'r\..C2= 0

90P~

Cl=
C2= 90 pF

'~

1"- \

0

FREOUENCY (Hz)

107

"

\

,~

~

106

-'-

Vs = ±15V ~
= 25°C

tA

"-

t!>

c---

~

Open Loop Frequency Response

! 1111111 _

Vs=±15V
tA = 25°C -

~III

15 pF
IC2 =
30 pF

Cl = 90 p F

2

I

i

[\

I

::>
0

II

Cl='~

l-

0
125

I

-

r---

-- i - -

100

~
z

~-+---tot
-- 1
75

I

14

;'

c-- ~

-

-

~ -'1\ -

+~+.-

200

Large Signal Frequency Response
16

10° 10 1 10 2 103 104 105 106 10 7 108
FREQUENCY (Hz)

67

CJ
~

o
o
o

Operational Amplifiers

:J:
...I
.......
~

LH0004/LH0004C* high voltage operational amplifier

o
o
o

general description

:J:

The LH0004/LH0004C is a general purpose operational amplifier designed to operate from supply
voltages up to ±40V. The device dissipates extremely low quiescent power, typically 8 mW at
25°C and Vs = ±40V. Additional features include:

...I

• Capable of operation over the range of ±5V to
±40V.
• Large output voltage typically ±35V for the
LH0004 and ±33V for the LH0004C into a
2 KS1 load with ±40V supplies
• Low input offset current typically 20 nA for
the LH0004 and 45 nA for the LH0004C
• Low input offset voltage typically 0.3 mV
•

Frequency
capacitors.

compensation

with

two

• Low power consumption 8 mW at ±40V
The LH0004's high gain and wide range of operating voltages make it ideal for applications
requiring large output swing and low power
dissipation.
The LH0004 is specified for operation over the
-55°C to +125°C military temperature range. The
LH0004C is specified for operation over the O°C
to +85°C temperature range.

applications
• Precision high voltage power supply.
• Resolver excitation.

small

• Wideband high voltage amplifier.
• Transducer power supply.

schematic and connection diagrams
I

. - -....- -.....-

9

. . .- -....-.,;.Y+

R6
SDK

R7
SDK

81AS

81AS 7

-+_--,

-INPUT .;.4_ _

COMPENSATION
TOPYIEW

COMP

Note: Pin 7 must be grounded or connected to a
voltage at least 5 volts more negative than the positive supply (Pin 9). Pin 7 may be connected to the
negative supply; however, the standby current will
be increased. A resistor may be inserted in series
with Pin 7 to Pin 9. The value of the resistor should
be a maximum of 100 Kf! per volt of potential
between Pin 3 and Pin 9.

..!..-...._ _~_~_-'=~_1...;,;,,10 m::NSATION

COMP ~-+----4""~

R3
300K

R4
300K

RS
SDK

Order Number LH0004H or LH0004CH
See Package 14

typical applications
Input Offset

Voltage Follower

External Current Limiting Method

High Compliance Current Source

Voltage Adjust
Rl'

01

10K

02
+40

10K

___

>-.....J\o/l"'--.....-OUTPUT

~OUTPUT

·Vf"lverageforwird

I

C2
22

yolt.ge drop of

SM

10K

diodes 01 to D4
It 20 to 50pA.

PF

_

4M1y be zero or equ.l to $Ource

-

reslstlne! for minimum offset.

22PF~
Y-

10K

*Previously called NH0004/NH0004C

68

~

~

o

o

absolute maximum ratings

o

~

Supply Voltage, Continuous
Supply Voltage, Transient (::;;0.1 sec, no load)
Power Dissipation (See curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range LHOO04
LHOO04C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±45V
±60V
400 mW
±7V
Equal to supply
3 sec
-55°C to +125°C
O°C to 85°C
-65°C to +150°C
300°C

..........
~

~

o
o
o
~
n

(Note 1)
LHOOO4C

LHOOO4
PARAMETER

CONDITIONS

MIN

TYP
0.3

MAX MIN

TYP
0.3

1.0
2.0

MAX
1.5
3.0

UNITS
mV
mV

Input Offset Voltage

Rs ::;; 5k, T A = 25°C
Rs::;; 5k

Input Bias Current

T A = 25°C
= -55°C

20

100
300

30

120
300

nA
nA

Input Offset Current

TA = 25°C
= -55°C

3

20
100

10'

45
150

nA
nA

Positive Supply Current

Vs = ±40V, T A = 25°C
Vs = ±40V

110

150
175

110

150
175

pA
pA

Negative Supply Current

Vs = ±4DV, T A = 25°C
Vs = ±40V

80

100
135

80

100
135

pA
pA

Voltage Gain

Vs = ±40V, RL = 100k, T A = 25°C
V OUT = ±30V
Vs =±40V, RL = 100k
V OUT = ±30V

30

60

30

60

10

10

V/mV
V/mV

Output Voltage

Vs = ±40V, RL = 2k
Vs = ±40V, RL = 4k

±30
±34

±35
±36

±30
±33

±33
±35

V
V

CMRR

Vs = ±40V, Rs ::;; 5k
VIN = ±33V

70

90

70

90

dB

PSRR

Vs = ±40V, Rs ::;; 5k
fj,V = 20V to 40V

70

90

70

90

dB

Average Temperature
Coefficient Offset Voltage

Rs ~ 5k

Average Temperature
Coefficient of
Offset Current
Equivalent Input
Noise Voltage

Rs = 1k, Vs = ±40V
f = 500 Hz to 5 kHz, T A = 25°C

4.0

4.0

pvtc

0.4

0.4

pAtC

3.0

3.0

pVrms

Note 1: These specifications apply for ±5V::;; Vs ::;;±40V, Pin 7 grounded, with capacitors
Cl = 39 pF between Pin 1 and Pin 10, C2 = 22 pF between Pin 5 and ground, -55°C to 125°C for the
LH0004, and O°C to 85°C for the LH0004C unless otherwise specified.

69

(.)
~

o
o
o

typical perform"nce characteristics

J:

..J

........
~

o

o
o

Input Voltage Range

J:

80

..J

=_55°C

TA

~w

35

~
>

/

25

!:

15

~

~

z
Ci

w

II:
II:
::;)
(.)

/-~~
~~
V~

~

40

r-- r-

en

cc

iii
~
::;)

a..

~

20

TA

--4-1

1 1-r-

TA

=125°C
I

V
25

45

35

10

120

cc

= 125°C

TA
80

~

-..:

~

~

s:

10

~

..1-

20

~

...- r--

- - ~

40

~ i-"""""

r--

>

~

c:l

o

10

I

120

RL

~

w

t:I

~

80

~

- RL

=2k

20

I--

-

t-- t--

o

0.1

f': K

~

0

40

Cl

10

Cl = 39 pF
C2 = 22 pF

I I
lk

= C2 =0

."
"

-

l-

30

Z

Cl
20 t - - f-C2

FREQUENCY (Hz)

~

0

10M

10

o

= ±4oV
=25°C

I I

10

lk

~

45

30

15

800

[\
\

,CASE

~

.§ 600

z
0

1=

cc·

= C2 =0

a..
v.;
en
Q

AMBIENT

400

200

a..

lOOk

FREQUENCY (Hz)

0
100M

\

\

".'"

II:

~
0

~\

0.1

.!"'A

",7/

Package Power Dissipation
Vs
TA

Cl

,

=2k

SUPPLY VOLTAGE (±V)

1\ ,
II
\\

~

~
::;)

!,
I" ~,

lOOk

=39 pF 1\ \
=22 pF

I

=125°C
=25°C'

40

30
(~V)

\
\[\

~
~

RL

I--

Large Signal
Frequency Response

t:I

i"-

--"'I

15

o

10

I

40

~
/~
/.~ TA = _55°C
/. ~
I
~
1

::0

40

SUPPl Y VOLTAGE

=lOOk

I

30

TA

~

40

30

TA
30

>

en

>

I

20

I

~
o

80

::;)

1=
v.;
~

co

70

I

cc

(.)

Vs = ±4oV

>

=lOOk T O _
MINUS SOURCE

60

~w

120

II:
II:

160

cc

I

RL

40

w

70

1

Open Loop Frequency
Response

t:I

~

= 125°C

0

Output Voltage

::;)

~

"

'-

45

SUPPLY VOLTAGE (±V)

z
Ci

TA

4

SUPPl Y VOLTAGE (±V)

~

~

~~~r- '\~

~
z

...

80

.3

- (---....

=25°C....

TA

::;)
(.)

>
1=

y-

ct

=-55°C

TA

II:
II:

~

~

:....-

TA =-55°C

~

160

ct

a..
a..
::;)
en
w

cc

40

30

20

--

t:I

Positive Supply Current

Negative Supply Current
160

w

-t--

w

SUPPl Y VOLTAGE (±V)

SUPPl Y VOLTAGE (±V)

3
~
z

~ """""
V- TA =25°C

90

t:I

=25°C

~ t-- i--J.

!:

15

100

60

z

V

0

~

1

/

t:I

cc

Voltage Gain

Input Bias Current

45

0

50

\

\

"

100

TEMPERATURE (OC)

150

r-

:I:

o
o

Operational Amplifiers

o

CJ1

......
r:I:

LHOOOS/LHOOOSA * operational amplifier

o
o
o

general description

l>
• Full operating range: -55°C to +125°C

The LH0005/LH0005A is a hybrid integrated circuit operational amplifier employing thick film
resistors and discrete silicon semiconductors in its
design. The sel~ct matching of the input pairs of
transistors results in low input bias currents and a
very low input offset current, both of which exIrlibit excellent temperature tracking. I n addition,
the device features:

• Good high frequency response: unity gain at
30 MHz

With no external roll-off network, the amplifier is
stable with a feedback ratio of 10 or greater. By
adding a 200 pF capacitor between pins 9 and 10,
and a 200 ohm resistor in series with a 75 pF
capacitor from pin 4 to ground, the amplifier is
stable to unity gain. The unity gain loop phase
margin with the above compensation is typically
70 degrees. With a gain of 10 and no compensation
the loop phase margin is typically 50 degrees.

• Very high output current capability: ±50 mA
into a 100 ohm load
• Low standby power dissipation:
60 mW at ±12V

CJ1

typically

• High input resistance: typically 2M at 25°C

schematic and connection diagrams
INPUT FREQUENCY
COMPENSA TlO N
10

OUTPUT FREQUENCY
COMPENSATION
9

r--e~--+-+-~---e~----~----~----~~2 v+

NC
TOP VIEW

~------------~~__--------~--

Order Number LH0005H or LH0005AH
See Package 14

V-

6
GROUND

typical applications
External Current Limiting

Voltage Follower

Dl

D2

*V f

=

~

1m~

~e-""-DUTPUT

INPUT

*May be zero or equal to the
input resistance for minimum
offset.
**To minimize crossover distortion
at higher frequencies. May be
omitted for low frequency
application or selected to suit
design requirements

Cl

~15PF

Average forward voltage drop
of diodes D, to D4 at approx.

>--'\NIt-.........-DUTPUT

For continuous short circuit
protection (V s = ±12V,
-55 DC:; TA :::: +100 DC)
RLlM ::;> 50n

Integrator with Bias Current Compensation

C2
200pF

-fe,d.

·0 =R,c;-

Offset Balancing Circuit
50 -lOOK

R;

OUTPUT

OUTPUT

*Typical value, RB = 100K.
RB may be increased for greater
sensitivity with reduction in
range.

*Previously called NH0005/NH0005A

Cl
RD
1M

JM

v'

"J"15 PF

*Adjust RD for zero integration
drift.

71

«
it)

o
o

absolute maximum ratings

o

J:

...I

±20V
400mW
±15V
Equal to supply voltages
±100 mA
-65°C to +150°C
-55°C to +125°C
300°C

Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Peak Load Current
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

........
it)

o
o
o

J:
...I

electrical characteristics

(Note 1)
LHOOO5A

LHOOO5
PARAMETER

Input Offset Voltage
25°C
-55°C, 125°C

CONDITIONS

MIN

Rs ::; 20 kn
Rs::; 20 kn

Input Offset Current
25°C to 125°C
-55°C
Input Bias Current
25°C to 125°C
-55°C
Large Signal Voltage Gain
-55°C to 25°C
125°C
Output Voltage Swing
-55°C to 125°C
25°C to 125°C
-55°C

RL = 10K, R2= 3K, VOUT = ±5V

RL = 10 kn
RL = 100n
RL = lOOn

Input Resistance
25°C
Common Mode Rejection Ratio
25°C

V1N = ±4V, RS < 20 kn

Power Supply Rejection Ratio
25°C

2
1.5

TYP MAX MIN TYP MAX UNITS

5

10
10

1

3
4

mV
mV

10
25

20
75

2
10

5
25

nA
nA

15
100

50
250

8
60

25
125

nA
nA

4
3

-10
-5
-4

4
3
+6
+5
+4

V/mV
V/mV

5.5
5

-10
-5
-4

+6
+5
+4

V
V
V

1

2

55

60

60 66

dB

55

60

60 66

dB

1

Mn

2

Supply Current (+)
-55°C to 125°C

3

5

3

5

mA

Supply Current (-)
-55°C to 125°C

2

4

2

4

mA

Average Temperature Coefficient
of Input Offset Voltage
-55°C to 125°C
Rs::; 20 kn

20

10

uvtc

Output Resistance
25°C

70

70

n

Note 1: These specifications apply .for pin 6 grounded, Vs = ±12V, with Resistor R1 = 200n in series
with Capacitor C1 = 75 pF from pin 4 to ground, and C2 = 200 pF between pins 9 and 10 unless
otherwise specified.

72

r-

::I:

o
o
o

guaranteed performance characteristics

U1

Supply Current

........

Maximum Power Dissipation

r-

::I:

o

900

~ 800

"

;; 700
o
i= 600

o
o

Ci 400

~

....... .......

a::
~ 300

.......

100
11

12

13

14

o

15

o

25

SUPPLY VOLTAGE (±V)

50

»

,,

~

AMBIENT..............

~ 200

10

U1

,CASE



o

~

:::

~HOO05

~
~

~

o

::::I

o

2

10

DC Output Voltage Swing

Z

~

t::I



I

15

15

z

~

-8
10

~

1-

~~

-12

o

TA = +125°C - - - r----1t----l
TA = -55°C - - -

11

r--r--.---.---~-~~

z

~ -13

w

~ -11 f---,-------r-c-o~'I"'_-+--+-____1

:;

:;

>

....

o
>

::::I

....
::::I

w

LU

o

>
i=

>
i=

""

~ 60
z 50

i'.

40
30
20
10

o
lK

-5

~

Z

10

11

12

13

14

15

10

SUPPLY VOLTAGE (±V)

40

III

11I11111
"'"
UNCOMPENSATED
R2 = 3K C, = 0
RL = 10K C2 = 0

~
I

z

~
'",-G

30

<

~

t::I
LU

t::I

'"



20

~~i'o

:;

COMPENSATED'" ,
R2 = 3K
C, = 75 pF
RL = 10K C2 = 200 pF
R, =200n

~

Vs = ±12V IC2 = 0
IR, = 00
R2 = 3K l RL = 10K
rTA = 25°C

> 10
c..

G\ f"-I/>

0

:::

\

~
0

~

12

13

14

15

90

Inverting Pulse Response

1
e
LU
(I)



c..

~

-10
-55 -35 -15



>

~

~ -2

-0.2 ~

::::I
0

0.4

~

-4

~

-6

-10
10K

lOOK

1M

FREQUENCY (Hz)

10M

1

10
FREQUENCY (MHz)

100
TIME (.usee)

73

(.)
Lt)

o

Operational Amplifiers

o
o

:I:
..J

LH0005C* operational amplifier
general description
0

• Operating range: 0° to 70

The LH0005C is a hybrid integrated circuit operational amplifier employing thick film resistors
and discrete silicon semiconductors in its design.
The select matching of the input pairs of transistors results in low input bias currents and a very
low input offset current both of which exhibit
excellent temperature tracking. In addition, the
device features:

• Good high frequency response: unity gain at
30 MHz

With no external roll-off network, the amplifier is
stable with a feedback ratio of 10 or greater. By
adding a 200 pF capacitor between pins 9 and 10,
and a 200 ohm resistor in series with a 75 pF
capacitor from pin 4 to ground, the amplifier is
stable to unity gain. The unity gain loop phase
margin with the above compensation is typically
70 degrees. With a gain of 10 and no compensation
the loop phase margin is typically 50 degrees.

• Very high output current capability: ±40 mA
into a 100 ohm load
• Low standby power dissipation:
60 mW at ±12V

e

typically

• High input resistance: typically 2M at 25° e

schematic and connection diagrams
INPUT FREQUENCY
COMPENSATION
10
4

OUTPUT FREQUENCY
COMPENSATION

r -__~--~~~---e------

__

9
----~----~~V+

NC
TOP VIEW

Order Number LH0005CH
See Package 14
L-------------4---e---------~~

v-

6
GROUNO

typical applications

External Current Limiting

Voltage Follower
R,o

Dl

DZ

R,

~--"""'I\r-""'''''- OUTPUT

~""''''''-OUTPUT

·V f ::

For continuous shon circuit
O°C <:;T A <:;lO°C
RUM 2: SDn

input rllilllnc, for minimum

I

Cl
75 pF

-::"

ott.t.
··To minimize cfOllO't'.didortion
ath .... " .....nciILMlyb.
omitttd for low frtqu.ncy

A~

forwwd

vohlte drop

ofdiodllO,to O.. I1.,,,ox.
1 mAo

protlCtion(Vs = ±12V.

*Mly btmo or tquII to the

I ntegrator With Bias Current Compensation

.ppliCation ... lIIlCtIdtosuit
dllilnrequinmtnts

C,

Offset Balancing Circuit
50-lOOK

-f',1It
"'R;C;'"
R,

. OUTPUT

OUTPUT

....

*Previously called NH0005C

74

'or._

°Ty,. ...... R. = lOOK.
R. moy be i.........
ItftIitiwitywilllrtlluctionin

-Allj.... Ro for r.o ' ....mienl

',iIt.

r:J:
0
0
0

absolute maximum ratings
Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Peak Load Current
Stor~ge Temperature Range
Operating TemperatL:re Range
Lead Temperature (soldering, 10 sec)

±20V
400mW
±15V
Equal to supply voltages
±100 mA
_55°C to +125°C
O°C to 85°C
300°C

c.n
n

electrical characteristics
LHOOO5C
PARAMETER

CONDITIONS

MIN

TYP
(Note 2)

Rs ~ 20 kn

I nput Offset Voltage

Large Signal Voltage Gain

RL = 10K, R2 = 3K, V OUT = ±5V

Output Voltage Swing

R L =10kn

-10

RL = lOOn

-4

UNITS

3

10

mV

5

25

nA

20

100

nA

I nput Offset Cu rrent
Input Bias Current

MAX

2

V/mV

5

±6

+6

V

+4

V

I nput Resistance

T A = 25°C

Common Mode Rejection Ratio

V 1N = ±4V, Rs ~ 20 kn,T A = 25°C

50

60

dB

Power Supply Rejection Ratio

TA = 25°C

50

60

dB

0.5

Mn

2

Supply Current (+)

3

5

mA

Supply Current (-)

2

4

mA

~

Note 1: These specifications apply for pin 6 grounded, Vs = ±12V, with Resistor R1 = 200[2 in series
with Capacitor C1 = 75 pF from pin 4 to ground, and C2 = 200 pF between pins 9 and 10, over the
temperature range of O°C to +85°'C unless otherwise specified.
Note 2: Typical values are for 25°C only.
1000
900
800

""-

700

CASE

'"""

600
500
400

!, '" "
~

300
200 "
100

I

i'.

AMBIENT

0
0

25

50

75

100

125

TEMPERATURE ( C)

Maximum Power Dissipation

75

CJ

o
N
o
o

Operational Amplifiers

l:
..J

"'o"
N

o
o

LH0020/LH0020C* high gain instrumentation
ope-rational amplifier

::t
..J

general description
The LH0020/LH0020C is a general purpose operational ampt'ifier designed to source and sink 50 rnA
output currents. In addition to its high output
capability, the LH0020/LH0020C exhibits excellent open loop gain, typically in excess of 100 dB.
The' parameters of the LH0020 are guaranteed
over the tem~erature range of -55°C to +125°C
and ±15V ~ Vs ~ ±22V, white those of the
LH0020C are guaranteed over the temperature
range of O°C to 85°C and ~ ±5V ~ Vs ~ ±18V.
Additional features include:
• Low offset voltage typically 1.0 mV at 25°C
over the entire common mode voltage range.

schema~ic

• Low offset current typically 10 nA at 25°C for
the LH0020 and 30 nA for the LH0020C.
• Offset voltage is adjustable to zero with a single
potentiometer.
• ±14V, 50 rnA output capability.

Output current capability, excellent input characte'ristics, and large open loop gain make the
LH0020/LH0020C suitable for application in a
wide variety of applications from precision dc
power supplies to precision medium power
comparator.

and connection diagrams

COMPENSATION

OFFSET AOJUST

INVERTING
INPUT

~8----"'"

4
9
INPUT GND
COMPEN,
SATION

10
V-

TOP VIEW

Order Number LH0020G or LH0020CG
See Package 6

typical applications
Offset AcJjustment

Unity Gain Frequency Compensation

+15

~--4I~DUTPUT

"Rs
1K
INPUT-J\M""""--i

11

"Rs C2 = 3 X 10-7
"C2
300 pF
-15

*Previously called NH0020/NH0020C

76

r::I:

o
o
N
o

absolute maximum ratings
±22V
1.5W
±30V
±15V
Continuous
-55°C to +125°C
O°C to 85°C
-65°C to +150°C
300°C

Supply Voltage
Power Dissipation
Differential Input Voltage
Input Voltage (Note 1)
Output Short Circuit Duration
Operating Temperature Range LH0020
LH0020C
Storage Temperature
Lead Temperature (Soldering, 10 sec)

.........

r::I:

o

o
N

o

(")

electrical characteristics
LHOO20C

LHOO20
PARAMETER

UNITS

CONDITIONS
TEMpoC

Input Offset
Vortage

MIN

1.0
2.0

25
-55 to +125

Rs:-::;: 10k

TYP

MAX

TEMpoC

2.5
4.0

MIN

TYP

25
o to 85

1.0
3.0

MAX

6.0
7.5

mV
mV

Input Offset
Current

25
-55 to +125

10

50
100

25
o to 85

30

200
300

nA
nA

Input Bias
Current

25
-55 to +125

60

250
500

25
o to 85

200

500
800

nA
nA

Supply Current

25

Vs =±15V

25

Input Resistance
Large Signal
Voltage Gain

V 5 = ± 15 V, R L = 300n, V 0 = ± lOV
25
Vs = ±15V, RL = 300n, Vo = ±10V -55 to +125

Output Voltage
Swing

Vs = ±15V, RL = 300n

25
-55 to +125

Output Short
Vs = ±15V
Circuit Current RL = on
Input Voltage
Range

3.5
0.6
100
50
14.2
14.0

25

Vs = ±15V

5.0

25
25

1.0
300

14.5

100

130

0.3

25
o to 85

50
30

25
o to 85

14.0
13.5

25

-55 to +125 ±12

3.6

25

o to 85

±12

6.0

Mn

1.0

V/mV
V/mV

150

14.2

120

mA

V
V
140

mA

V
V

Common Mode
Rs:-::;: 10k
Rejection Ratio

-55 to +125

90

96

o to 85

90

96

dB

Power Supply
Rs:-::;: 10k
Rejection Ratio

-55 to +125

90

96

a to 85

90

96

dB

Note 1: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.

.:s

.:s

.:s

.:s

Note 2-: These specifications apply for ±5V
Vs
±22V for the LH0020, ±5V
Vs
± 18V for
the LH0020C, pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.

77

(,)
~

~

o

Operational Amplifiers

o

:E:

...

...I

.........
~

o
o

:E:

LH0021/LH0021C 1.0 amp power operational amplifier
LH0041/LH0041C 0.2 amp power operational amplifier

...

general description

...I

(,)

N

o
o

The LH0021/LH0021C and LH0041 ILH0041 Care
general purpose operational amplifiers capable of
del ivering large output currents not usually associated with conventional IC Op Amps. The ,LH0021
will provide output currents in excess of one
ampere at voltage levels of ±12V; the LH0041
delivers currents of 200 rnA at voltage levels
closely approaching the available power supplies .
I n addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free
of any unusual oscillation or latch-up problems.

:E:

...
...I

.........
N

o
o

:E:

...I

features
1.0 Amp (LH0021)
0.2 Amp (LH0041)

•

Output cu rrerit

•

Output voltage swing ±12V into 10[2 (LH0021)
±14V into 100[2 (LH0041)

•

Wide fu II power bandwidth

15 kHz

•

Low standby power

100 mW at ±15V

•

Low input offset
voltage and current

1 mV and 20 nA

3.0V Ills

•

High slew rate

•

High open loop gain

100 dB

The excellent input characteristics and high output capability of the LH0021 make it an ideal
choice for power applications such as DC servos,
capstan drivers, deflection yoke drivers, and programmable power supplies.
The LH0041 is particularly su ited for applications
such as torque driver for internal guidance systems,
diddle yoke driver for alpha-numeric CRT displays,
cable drivers, and programmable power supplies
for automatic test equipment.
The LH0021 is supplied in a 8 pin TO-3 package
rated at 20 watts with suitable heatsink. The
LH0041 is supplied in both 12 pin TO-8 (2.5
watts with clip on heatsink) and a power 8 pin
ceramic DIP (2 watts with suitable heatsink). The
LH0021 and LH0041 are guaranteed over the
temperature range of -55°C to +125°C while the
LH0021C and LH0041C are guaranteed from -25°C
u
to +85 C
For information on other National op amps, see
listing on last page.

schematic and connection diagrams
JNVE~;~~~o--+-_-t--,
NONINV
INPUT

*Rscexternll on TO-81nd TO·3 packages. fisc internal on "J" package.
Offset Null connec:tions available only onTO·8 "G"package.

TO-3 Package

'm'
Ceramic DIP

TO-8 Package

v·,
Nt

2

..

_

GND 3

V'

78'

Order Number
LH0021K or LH0021CK

Order Number
LH0041G or LH0041CG

See Package 19

See Package 6

4

~N~ ~NV

7

INY.INPUT

6

OUTPUT

5

COMP

Order Number LH0041CJ

See Package 15

r-

J:

o
o

absolute maximum ratings

N

~

Supply Voltage
Power Dissipation
Differential I nput Voltage
Input Voltage (Note 1)
Peak Output Current (Note 2)

LH0021/LH0021C
LH0041 /LH0041 C
Output Short Circuit Duration (Note 3)
Operating Temperature Range LH0021/LH0041
LH0021 C/LH0041 C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

"r-J:

±18V
See curves
±30V
±15V
2.0 Amps
0.5 Amps
Continuous
-55°C to +125°C
-25°C to +85°C
-65°C to +150°C
300°C

o

o
N

~

n

rJ:

o

o

~
~

"r-J:
o
o

dc electrical characteristics

~

for LH0021/LH0021C (Note 4)

~

n

LIMITS
PARAMETER

MIN

TYP

MAX
3.0
5.0

I nput Offset Voltage

Rs<:::: 10 kD, TA ~ 25°C
Rs <::::10kD

1.0

Voltage Drift with Temperature

Rs <:::: 10 kD

3

Offset Voltage Change with Output Power
T A ~ 25°C

Common Mode Rejection Ratio

0.3

Rs <:::: 10 kD, I':, V CM ~ ± 1OV
~

20
200
500

0.2

1.0

Vs

Rs <:::: 10 kD, I':,V s ~ ±10V

Voltage Gain

Vs ~ ±15V, Va ~ ±10V
RL ~ 1 kD, T A ~ 25°C
Vs ~ ±15V, Va ~ ±10V
RL ~ 100D,
Vs
Vs

±15V

~

±15V, RL ~ 100D
~ ±15V, RL ~ lOD

Output Short Circuit Current

Vs ~ ±15V, T A ~ 25°C, Rsc ~ 0.5D

Power Supply Current

Vs

~

±15V, V auT

~

0

Power Consumption

Vs

~

±15V, V auT

~

0

ac electrical characteristics
Slew Rate

Av ~ +1, RL

Power Bandwidth

RL ~ 100D

200
0.3

1.0

Harmonic Distortion

f

Input Noise Voltage

Rs ~ 50D, B.W.

Input Noise Current

B.W.

~

1 kHz, Po

~

nA
/.lA
MD

1.0
3

pF

90

dB
V

dB

100

200

100

200

Vim V

14
±12

±13
110

20

25
±13.5
±11.0
0.8

1.1

1.2

2.5

3.5

1.5

4

0.8

105

= 25°C,

3.0

5

Overload Recovery Time

500
1.0

90

for LH0021/LH0021C (T A

+1

nAtC

70

Small Signal Overshoot
~

nA
nA

nA/week

±12

VlmV

±14
±12

Vs

V
V

1.1

1.2

Amps

3.0

4.0

mA

90

1.0

40

10V, Av

/.lV/watt

96

0.3

~

/.lvtc

80

Small Signal Transient Response

I':,V1N

70

90

75

= 100D

1.0

2
300
1.0

mV
mV

/.lV /week

5

±12

I nput Voltage Range

Output Voltage Swing

70

30

5

3

Power Supply Rejection Ratio

Settling Time (0.1%)

5

50

100

T A ~ 25°C

6.0
7.5

15

2

Input Capacitance

3.0

100
300

0.1

T A ~ 25°C

MAX

5

Offset Current Drift with Time

Input Resistance

25

UNITS

TYP

30

Offset Current Drift with Temperature

Input Bias Current

MIN

5

Offset Voltage Drift with Time

I nput Offset Current

LHOO21C

LHOO21

CONDITIONS

120

= ±15V, Cc = 3000 pF)
3.0

VI/.ls

40
1.0
20

mW

0.3
10

kHz
1.5
30

/.ls
%

4

/.lS
/.ls

3

3

0.5W

0.2

0.2

= 10 Hz to 10 kHz

5

5

/.lVlrms

0.05

0.05

nA/rms

= 10 Hz to 10 kHz

%

79

dc electrical characteristics

for LH0041/LH0041C (Note 4)

LIMITS
PARAMETER

CONDITIONS
MIN

LHOO41
TYP

MAX

MIN

LHOO41C
TYP

Input Offset Voltage

Rs ~ 10 kD., T A = 25°C
Rs ~ 10 kD.

1.0

Voltage Drift with Temperature

Rs ~ 10 kD.

3

5

jJ.vtc

5

5

jJ.V/week
jJ.V/watt

Offset Voltage Drift with Time

3.0
5.0

3.0

(.)

.,..

Offset Voltage Change with Output Power

15

15

N

Offset Voltage Adjustment Range

(Note 5)

20

20

o

Input Offset Current

T A = 25°C

30

~
.oJ

Offset Current Drift with Temperature

0.1

Offset Current Drift with Time

2

o

........
.,..
N

o
o

Input Bias Current

TA = 25°C

Input Resistance

TA = 25°C

100
300

0.3

0.2

Rs ~ 10 kD., IWcM = ±10V

I nput Voltage Range

V s =±15V

Power Supply Rejection Ratio

Rs

Voltage Gain

Vs = ±15V, Vo = ±10V
RL = 1 kD., T A = 25°C
Vs = ±15V, Vo = ±10V
RL = 100D.

~

70

300
1.0

1.0

200
0.3

Output Voltage Swing

Vs = ±15V, RL = 100D.

Output Short Circuit Current

Vs = ±15V, TA - 25°C
(Note 6)

Power Supply Current

Vs = ±15V, V OUT = 0

Power Consumption

Vs = ±15V, V OUT = 0

ac electrical cha racteristics
Slew Rate

Av = +1, RL = 100D.

Power Bandwidth

RL = 100D.

90

70

±12

10 kD., IWs = ±10V

6.0
7.5

mV
nA
nA

1.0

nAtC
nA/week
nA
jJ.A

500
1.0

1.0

MD.

3

pF

90

dB

±12

V

80

96

70

90

dB

100

200

100

200

V/mV

25
±13.0

20
14.0
200
2.5

V/mV
±14.0
200

3.5

3.0

105

for LH0041 /LH0041 C (T A
1.5

±13.0
300

75

90

V
300

3.0

0.3

Small Signal Overshoot

5

mA

4.0
120

1.0

3.0

mW

1.0
20

0.3
10

pF)
V/jJ.s

40

Small Signal Transient Response

mA

= 25°C, Vs = ±15V, Cc = 3000

40

kHz
1.5
30

jJ.s
%

t:;.V 1N = 10V, Av = +1

4

Harmonic Distortion

f = 1 kHz, Po = 0.5W

Input Noise Voltage

Rs = 5OD., B.W. = 10 Hz to 10 kHz

5

5

jJ.V/rms

I nput Noise Current

B.W. = 10 Hz to 10 kHz

0.05

0.05

nA/rms

Overload Recovery Time

Note
Note
Note
Note

4

jJ.s

3

3

jJ.s

0.2

0.2

%

1: Rating applies for supply voltages above ±15V. For supplies less than ±15V, rating is equal to supply voltage.
2: Rating applies for LH0041 G and LH0021 K with RSC = on.
3: Rating applies as long as package power rating is not exceeded.
4: Specifications apply for ±5V ~VS ±18V, and -55°C ~ TC

=~

125°C for LH0021 K and LH0041G, and -25°C ~

TC ~ +85°C for LH0021CK, LH0041CG and LH0041CJ unless otherwise specified. Typical values are for 25°C only.

Note 5: TO-8 "G" packages only.
Note 6: Rating applies for "J" DIP package and for TO-8 "G" package with RSC

80

mV
mV

200
500

2

3

Common Mode Rejection Ratio

Settling Time (0.1%)

50

1.0

100

Input Capacitance

~
.oJ

UNITS
MAX

= 3.3 ohms.

r-

::I:

o

typica I performance cha racteristics

o

N

~

Power Derating-lH0021
2.0

~
z

1.5

25

INFINITE HEAT SINK

-;;;

E

20

5-

~

15

a:
a:

a:

10

c

I-

j:::

~

~

~

C

~

-0.5

I-

-1.0

J

~

0.5

I-

~
c

l ----

1.0

50

75

125

100

~
Vs=±15V Te =25°C

~

-

z
c

j:::

~

L~
-15

-10

TEMPERATURE rC)

"...,..,....

----

~

2.1

1

-2.0
25

~

2.4

~
C

-1.5

o\

~

",.......... ;;;0--

1.8
1.5

a:

0.9

3:

0.6

~

~

1.2

10

o

o

TO·8 WITH CLIP ON HEAT
SINK ANO "J" PACKAGE
WITH A STRIP OF ALUMINUM
3/4 x 3 x 1/16 IN. EPOXYEO
~ BOTTOM OF PACKAGE

'\

N

~

(")

r::I:

\.
'\

o
o

" "
FREEAI~

~

~

0.3

-5

'"::I:r-

Package Power Dissipation
lH0041/lH0041C

Safe Operating Area - lH0021

25

15

50

75

100

~

'"::I:
r-

125

o
o

150

TEMPERATURE (OC)

OUTPUT VOLTAGE (V)

~
~

large Signal Frequency
Response

Open loop Frequency
Response

Output Voltage Swing

16

18
16

~
LU

CI
c(

:;
c

>

120

14
12

~

100

;;;:

80

z

CI

10

~

~lK

I-

c(

60

c
>

40

:;

J

:=
J

c

12

14

16

18

SUPPLY VOLTAGE (±V)

c
>

~

I-

,

~
LU

CI

I

4

c(

:;
c

I

>

I-

~
I-

-4

INPUT

B

\

~

\

c
-8

,

25

Short Circuit Current vs
Temperature lH0021/lH0021C

1.4

~

a:
a:

1.2

J

u

1.0

!::
~
a:

0.8

c:;

1.0

175

30

0.4

en

0.2
-75 -50 -25 0

20

r--

~
a:
a:

B

-

--Te

i5SOC

co

-=

I-

75

~

c:(

:;

Te = 25°C

c

>

100

~

50

100

CI

c(

Te=-55

;;;:
CI
LU

iii

I l

110

z

en

100

75 100 125 150

120

......
200

50

Voltage Gain

Input Bias Current

300

25

CASE TEMPERATURE (OC)

400

I-

J

c
~

Rsc= 1.0n- .......:.

o
15

10

1

~ 125
:;

li:

.......

0.6

a:
c

Rsc = 0.5n

"" -.... r----. 1'. . . r--...

SUPPL Y VOLTAGE (±V)

~. 150

~

...

r--... ~

I-

35

.§.

c:;

"'r-...,

:l:

Vs = ±15V

I-

Vs = ±15V

1.6

1
I-

~

225

~

1M

FREQUENCY (Hz)

2.0

Short Circuit Current vs
Temperature lHO~41/lH0041C
200

lOOk

10k

lk

2.0

TIME (!Is)

<"

~

o

l .....
20

~

10k lOOk 1M

-12
15

4

J

~
a:
a:

1\

J

10

-

RL = lon
(LHo021 ONL YI

c

<"
I-

\ OUiPUT

I

:=

\..

3.0

E

\

I
I

J

I

\

No load Supply Current

Vs = ±15V
~ RL = lOOn
1Ce = 3000 pF

'--

lk

III

\ \ R L = loon-

FREQUENCY (Hz)

Voltage Follower Pulse
Response
12

12
10

:;

~

100

CI

ien
c(

'\

10

Vs= ±15V
Ce = 3000 pF
TA = 25°C

CI

RL = lOOn' \

20

III

14

LU

20

10

~
z

',-

LU

CI

Vs = ±15V
Ce = 3000 pF--i
TA = 25°C

I

(")

90

Te = L5°C

,~

~

~

---

~

- ----

Tc

Te

==

=25°C

=125°C

80

25
-50 -25

25

50

75

CASE TEMPERATURE (OC)

100

125

10

15

SUPPL Y VOLTAGE (±V)

20

5

10

15

20

SUPPL Y VOL TAG E (±V)

81

typical performance characteristics (con't)

Input Noise Voltage

Input Voltage Range

Input Current

N

20

400

%:

;::;-

Vs = ±15V

1

....
N

(J

~

,

300

o
o

toO

""-

I-

~
~

l:
..J
........

100

~

a:

12

/

LU

toO

........

~T

~

,

~
I-

~

.....

ell

c(

!:;
o
>

o

25

50

CASE TEMPERATURE

o

~

en

is

!III

z

....
a:

....

.... '"

c(

/'

....

J

-

d

en

~

z

~

....c(
:::IE

-75 -50 -25

r\

LU

./1/'

0

>

-----

LU

~

/7

C(

BIAS

........ r--

....
N

7

2

C(

200

~

16

LU

I-

~
a:
a:
~

10-15

75 100 125

10

re)

15

20

10-1.6
10

100

1k

10k

FREQUENCY (Hz)

SUPPL y VOLTAGE (±V)

l:
..J

Input Noise Current

Distortion vs Frequency
4.0

",

3.0

C
2

a:

2.0

--

e/)

C

1k

10k

RL = 10n
(LH0021 ONLY)

,

I,

1.0

"""
100

I

0

i=
0
l-

10

I 1 11111.11
_Vs=±15V
Av = 10
~ Cc = 3000 pF

.-~
100k

1k

100

RL = 100n

III
10k

II
100k

FREQUENCY (Hz)

FREQUENCY (Hz)

typical applications

.. I

.1
1.1
1

I

I
I
I

r

t15V~

-15V~

Programmable One Amp Power Supply

82

35 WATT (rms) Audio Amplifier

10l)k

rJ:

o

typical applications (con't)

o
N

...a

.........

rJ:

+16 TO +J6V

o
o

0-...- - -.....- - - . . . . . ,

N

+lSV

...a

n

""'"-"~-r.+15V

A2
8.87K
1%

rJ:

_ 6.2IA2+ A1I

VOUT,

-

Rt

o
o

Al
6.19k
1%

~

DEFLECTION YOKE

...a

.........

rJ:

AJ
15K
1%

o
o

Al

~

lohm
lW

...a

n

A4
15K
1%
-16 TO -J6V

Dual Tracking One Amp Power Supply

CRT Deflection Yoke Driver

+lSV

r-----

-----,

I

I

I

I

I

I

I

I
I

(C

A2
lK

A2

-15V
STATION
1

AJ

lIT'jj4

lOOK

~--{\AJI\r---O

STATION
2

lOUT "

~ (~)

=20mAIV

lK

20nF

Two Way Intercom

Programmable High Current Source/Sink

10K

+t5V

lK

20K

SIZE 9SERVO MOTOR

-15V

10

-Tvpe327 Lamp

Power Comparator

DC Servo Amplifier

83

....

(J

II:t

auxiliary circuits

o
o

l:

..J

....
II:t

"-

o

v'

v'

o

l:
...J

(.)

....

OUTPUT

N

o
o

INPUT

l:

" 1.4 AMPS

V-

...J

"....

lH0041G Unity Gain with
Short Circuit limiting

lH0021 Unity Gain Circuit with
Short Circuit limiting

N

o
o

l:

R2

R2

...J

Rl

Rl

OUTPUT

OUTPUT

v'

R3

R3
lOOK

10012
Rl· R3
Av· -

M

lH0041/lH0021 Offset Voltage Null Circuit
(lH0041CJ Pin Connections Shown)*
POSITIVE

lH0041G Offset Voltage Null Circuit

NEGATIVE

J6V, V". 10V

V'-lV

100

....

45

c(

.......

I-

10

~

1==

....

;:)

N
N

lHo052_ ~ ~

~
~

~

.".

-500

)"r

w

-6

-10

~
..J

V

. /lH0042
-60

10

Offset Error (Without
VOS Null)
1000

>

i
e

100

400

w

300

~

10

~
e
>

lHo022 - MAXIMUM

w

en

C
z

~
~

~
>

:;

TA

=

100M

100

c(

50

16

/

12

~

~
w

c
e

Total Input Noise Voltage*
vs Frequency

/'

V

V

~
e
>

/.~
/

w

~
-'

~

-3

TAI= 25°C I

ILlillil

Rs =100n

IiHfIlII.
100

~

/'

e

I

30

I

>

i

20

e

I-

~

'\

"I'1'"",

10

w

tON

~

Z

::z::
....

lk

lOOk

10k

FREQUENCY (Hz)

Change in Input Offset
Voltage Due to Thermal
Shock vs Time

>

-3
w

~

150

25°C
1--

60°C

1/


~

I

100

Vs = ±15V
PREVIOUS QUIESCENT
Vos~ ll1V

I

~

u.

e

I-

~

I

50

~
~

' - tAPPlY

w

~

Z
c(

::z::
....

-10

20

-20
TIME FROM POWER APPLICATION (MIN)

*Noise Voltage Includes Contribution from Source Resistance

90

"10

10M

Vs = ±15
PREVIOUS Vos ~ ll1V

~
~

SUPPLY VOLTAGE (±V)

100

c(

1M

..........

1111111

e

40

w

/V
15

Rs= 1M
200

I-

lOOk

......

300

l-

10k

"'"

"

400

~

~

Vs = ±15V
TA = 25°C

Rs = 10M

en

C
z

c(

10

500

Stabilization Time of Input
Offset Voltage from Power
Turn-On

~
~

e
....

INPUT SOURCE RESISTANCE (n)

I-

- mrTll

c(

I-

c

140

100

~!

II

~

>

~

60

fo= 10 H;...~

lk

>

~

z

~

>
:;
~

SOURCE RESISTANCE (n)

T A ='25°C

w

~
e

~

fo=lKHz

lo0oM

20

c(

10

I-

~

150

Common Mode Input Voltage
vs Supply Voltage

Z

a:

u.

e

w

INPUT SOURCE RESISTANCE (n)

~

~
~

25°C

20.0

e

10M

100

~

250

I-

.1

1M

>

c(

l-

lOOK

~
e

I-

JSI~ ~;I~V

350

~
~
-'

c(

c(

~ ~g22

~~

20

I-

I-

~w

~

c(

c(

I-

~

~
~

c(

~
e

..If

Total Input Noise Voltage*
vs Source Resistance

w

125

....

TEMPERATURE (OC)

~

105

c(

-20

COMMON MODE INPUT VOLTAGE (V)

~

85

Offset Error (Without
VOS Null)

~

~

::z::
....

I-

-2

65

TEMPERATURE (OC)

...... /'V

c(

z -1000

lH0052, TA = 25°C
~ I"-+-.J.
i I

45

25

125

n)

~

~

o
o

105

E 1000

500

I-

lH0022, TA - 25°C

85

L/1.

e

l'.....

65

Vs = ±15V
I- Vos ~ 511V AT 25°C

i

~

en

1000

c(

......

;:)

;;

;:::::==

>

>

Vs -+15V

(J

~
..J

".",
lH0052

"

r

I-

Input Offset Current
vs Temperature

1000

o
o

~ ............ lH0022

~

TEMPERATURE

Input •Bias Current vs Input
Voltage

~
a:
a:

10

c(

.1

25

200

TEMPERATURE (OC)

I-

...

;::::: lH0042

en

_01
50

N
N

I/" """,

100

~

.......

~
..J

EVs -+15V

20

40

60

80

100

TIME FROM HEAT APPLICATION (sec)

r::I:

o
o

typical performance characteristics (con't)

Supply Voltage vs
Supply Current

Output Swing vs Supply
Voltage

Voltage Gain

3.0

w

l

--

.-.-:

_k:::==- ~"'""

100

TA

0

90

t::I

32

~

28

~

24

0
I-

16

SUPPLY VOLTAGE (±V)

t:I

z

3:
CI)

I-

~

I-

:;:)

0

::.::

~

0
I-

::.::

~

28
26
24
22
20
18
16
14
12
10
8

'""--

... 1~

~

-0:::::::::

10

t::I
Z

:::--r-...
'\

~
I-

II

Vs='±15V

~

"'

0.2

0.5

1.0

2.0

5.0

I

J
I

t:I

12

~

10

~

U'I

N

..........

~

r::I:

0

>

,

~

~

10

I

,
I

20

25

o
o

U'I

o

30

lk

10k

I

J

Vs = ±15V

15

,,-

10

I

-..~

/

:;-

l - INPUT!

I

I-

\OU+PU'T- t--

V

~

:;:)

I
I

0

-5

" "~

-10

1.2

w

"

>
w
>
i=

1.0

~a::

IOUTPUT

0.8

Vs=±15V- r-RL = 2k - rCL = 100 pF

I

TiRAJSlElT
RESPONSE

3c(

I-

~

!""'-- r-....

~

".,.

~R.

......

~

..............

SLEW RATE

.200

.400

TIME (I's)

~

CLOSEO LOOP
BANDWIDTH

I I I
-60

160

'11111111

1.2

S
w

120

z

100

(.)

3
c(

c(

~

I-

CI)

1.0

i1i

80

~

I-

0.8

:;:)

11111111

60
40

...

20

SUPPL Y VOLTAGE (±V)

20

100

lk

10k

cct:I

II

w
c(

~~

rAX, = 1

FREQUENCY (Hz)

103

~

10 2

>

10

0

~

lOOk

104

t::I

Av = 100/

~
k::

o
15

Z

Av'~"10

0

0.6

105

III~III

a::

I-

140

n)

10"

1,11111111

~

100

60

Open loop Transfer
Characteristics vs Frequency

f1S1.

140

20

-20

TEMPERATURE

Output Resistance vs
Frequency

1.4

10

.800

T(l's)

Frequency Characteristics vs
Supply Voltage

5

.600

I I

-.......J

0.6
10

4

("')

Frequency Characteristics vs
Ambient Temperature
1.4

I

N

10M

1M

lOOk

FREQUENCY (Hz)

Transient Response

.§

II

15

-12

~a::

o
o

w

OUTPUT CURRENT (±mA)

INPUT

0

>
>
i=

r::I:

t:I

I-

10

Vs = ±15V
RL = 2K
TA = 25°C

1\
1\
1

c(

w

RL = 2K
TA = 25°C

("')

0

w

w

14

:;:)

~

-8

"'"Vs = ±15V'"

I-

,

0

~

N

c(

I

12

-4

o
o

16

t::I

z

:;:)

Voltage Follower large
Signal Response

:;:)

20

SUPPLY VOLTAGE (±V)

TA = 25°C

LOAO RESISTANCE (kn)

>

15

10

5

0

I

~

N

........
r::I:

Output Voltage Swing vs
Frequency

TA = 125°C

~

j

0.1

~
I-

20

Current limiting
15

~

/

SUPPLY VOLTAGE (±V)

Output Voltage Swing
vs load Resistance
Vs = ±15V
TA = 25°C

15

10

5

18

o
o

10'

o

80
14

("')

r::I:

VOUTPUT VO LTAGE_
SWING - VP1l

/

8

~

N
N

/t"

12

::.::

12

/"

V

16

~

TA = 125°C

,..
10

o
o

./

20

::.::

-

RL = 2 KD
TA = 25°C

I-

:;:)

0

.:--~

~

36

I-

=25°C

~

c(

~
z

T1 =_55 C -

110

t::I

>

r::I:

40

120

~
z
cct::I

N
N
........

Vs = ±15V
TA = 25°C
RL22 Kn

-.....
~AIN

~

~
'PHA~~

"" "
SHIFT

-45

~ . . . . t'

10-1
1M

10

100

45

lk

10k

'"

1\

-90

j

t

~
w

CI)

-135 ~
-180

lOOk 1M 10M

FREQUENCY (Hz)

91

o perationa lAm plifiers
LH0023/LH0023C, LH0043/LH0043C
sample and hold circuits
general description
CJ
M
N

o
o

::J:

...I

"NM
o
o

::J:
...I

The LH0023/LH0023C and LH0043/LH0043C
are complete sample and hold circuits including
input buffer amplifier, FET output amplifier,
analog signal sampling gate, TTL compatible logic
circuitry and level shifting. They are designed to
operate from standard ±15V DC supplies, but
provision is made on the LH0023/LH0023C for
con,nection of a separate +5V logic supply in
minimum noise applications. The principal difference between the LH0023/LH0023C and the
LH0043/LH0043C is a 10: 1 trade-off, in performance on sample accuracy vs sample acquisition
time. Devices are pin compatible except that TTL
logic is inverted between the two types.

hold applications including data acquIsition,
analog to digital conversion, synchronous demodulation, and automatic test setup. They offer
significant cost and size reduction over equivalent
module or discrete designs. Each device is available
in a hermetic TO-8 package and are completely
specified over both full military and instrument
temperature ranges.

The LH0023/LH0023G and LH0043/LH0043C
are ideally suited for a wide variety of sample and

For information on other National analog products, see Available Linear Applications Literature.

The LH0023 and LH0043 are specified for operation over the -55°C to +125°C military temperature range. The LH0023C and L,H0043C are
specified for operation over the -25°C to +85°C
temperature range.

features
features

LH0043/LH0043C

LH0023/LH0023C

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

Sample accuracy-0.01% max
Hold draft rate-0.5mV/sec typ
Sample acquisition time-1 00 j1s max for 20V
Aperture time-150 ns typ
Wide analog range-± 1OV min
Logic input-TTL/DTL
Offset adjustable to zero with singie 10k pot
Output short circuit proof

Sample acquisition time-15 j1s max for 20V
4 j1s typ for 5V
Aperture time-20 nS typ
Hold drift rate-1 mV /sec typ
Sample accuracy-0.1 % max
Wide analog range-±10V min
Logic input-TTL/DTL
Offset adjustable to zero with single 10k pot
Output short circuit proof

block and connection diagrams
LH0043/LH0043C

LH0023/LH0023C

Order Number LH0023G or
LH0023CG or LH0043G or
LH0043CG

N.C
TOPVIEW·

See Package 6

,....
OffSET

ADJUST

ANAlOG~~,OFfS3ETA~JUST

R2
ANALOG
INPUT

5

20K

INPUT

I

I

lOGIC~J
INPUT

·Tu~

III pm 8 for operatIOn Without Vee supply

~--R'--o C~Tp~~~TG~R

C:".
9
--aGNO

,.

---oV-

92

+
Al

-

OUTPUT

~

lOGICfi
INPUT

I
I
I

_..J

~

11

_A2

OUTPUT

, STORAGE
CAPACITOR
12V+

--0
10

- - - 0 v9
---<>GNO

r-

::I:

absolute maximum ratings

0
0

N
W

±20V
Supply Voltage (V+ and V-)
+7.0V
Logic Supply Voltage (V cc) LH0023, LHOO23C
Logic Input Voltage (V 6 )
+5.5V
±15V
Analog Input Voltage (V 5)
See graph
Power Dissipation
Continuous
Output Short Circuit Duration
-55°C to +125°C
Operating Temperature Range LH0023, LHOO43
LH0023C, LHOO43C -25°C to +85°C
-65°C to +150°C
Storage Temperature Range
300°C
Lead Soldering (10 sec)

electrical cha racteristics

........
r-

::I:

0
0

N
W

.(")
r-

::I:
0
0
~

LH0023/LH0023C (Note 1)

W
........

r::I:

LIMITS
PARAMETER

LHOO23C

LHOO23

CONDITIONS
MIN

MAX.

TYP

2.0

MIN

TYP

UNITS

0
0

MAX

2.0

Vce = 4.5V

Sample (Logic "1 ")
Input Current

V6= 2.4V, Vee= 5.5V

5.0

5.0

J1A

Hold (Logic "0")
Input Voltage

Vee = 4.5V

0.8

0.8

V

Hold (Logic "0")
Input Current

V6 = O.4V, Vee = 5.5V

0.5

0.5

rnA

Supply Cu rrent - 112

±10
V 5 = OV, V 6 = 2V,
V 11 = OV
V5 = OV, V6 = O.4V,
V 11 = OV

±1O

±11

±11

V

4.5

6

4.5

6

rnA

4.5

6

4.5

6

rnA
rnA

Supply Current - Is

Vs =5.0V, V5 =0

1.0

1.6

1.0

1.6

Sample Accuracy

V OUT = ±1 OV (Full Scale)

0.002

0.01

0.002

0.01

DC Input Resistance

Sample Mode
Hold Mode

Input Cu rrent - 15

Sample Mode

500
20

0.3

1.0

V5 = ±10V; V 11 = ±10V,
TA = 25°C
V 5.= ±10V; V 11 =±10V

Drift Rate

V OUT = ±5V, Cs = 0.01 J1F,
T A =25°C

Drift Rate

V OUT = ±10V,
Cs = 0.01 J1F, T A- = 25°C
V OUT = ±10V,
Cs = 0.01 J1F

200

10

25

20

50
1.5

Rs::; 10k, V5 =OV, V6 =OV

Analog Voltage
Output Range

R L 21k,T A =25°C
RL22k

2

5

50

50
1.5

3.0

100

3.0

mV/s
mV/ms

J1S

V/J1S
±20

±20

nA

ns

150
100

pA

mV/s

0.2

150
LlV OUT = 20V,
Cs = 0.01 J1F

Output Offset Voltage
(without null)

500

0.1

Aperture Time

Output Amplifier
Slew Rate

200

20

J1A
pF

0.5

0.5
10

1.5

3.0

100

~

%
kr2
kr2

1000
25

3.0

Leakage Current pin 1

Sample Acquisition
Time

300
20

1000
25
0.2

I nput Capacitance

Drift Rate

W
(")

Analog Input
Voltage Range
Supply Current - 110

~

V

Sample (Logic "1 ")
Input Voltage

mV

±10

±11

±10

±11

V

±10

±12

±10

±12

V

NOTE 1: Unless otherwise noted, these specifications apply for V+ = +15V, Vee ~ +5V, V- = -15V, pin 9 grounded,

0.01
-25°C

a

J.LF capacitor connected between pin 1 and ground over the temperature range
to 85°C for the LH0023C. All typical values are for T A = 25"C_

-55" e

to

+125" e

for the

LH0023;

and

93

.(.)
('I)

q-

electrical characteristics

o
o

LH0043/LH0043C: (Note 2)

::I:

LIMITS

...J
..........
('I)

CONDITIONS

PARAMETER

q-

o
o

LHOO43
MIN

Hold (Logic "1")
Input Voltage

::I:
...J

Hold (Logic "1")
Input Current

-

(.)

('I)

N

Sample (Logic "0")
Input Voltage

::I:

Sample (Logic "0")
Input Current

o
o

...J

..........

Analog Input

('I)

Voltage Range

N

V 6 =O.4V
±10
V 5 = OV, V 6 = 2V, V 11 = OV
V5 = OV, V6 = O.4V,
V11 =OV

...J

Sample Accuracy

V OUT

= ±10V

10 10

T c =25°C

I nput Current - 15
I nput Capacitance

MAX

UNITS
V

5.0

J.l.A

0.8

0.8

V

1.5

1.5

mA

±10

20
14

22
18

0.02
10 12

0.1

1.0

5.0

±11

10 10

1.5

V
mA
mA

22
18

0.02
10 12

0.3

%

2.0

10.0

nA

50

pA

S1
pF

1.5

= ± 10,

10

25

= ±10V
= 0.001 pF,

10

25

2

5

10

25

20

50

10

25

2

5

mV/m~

2

5

mV/s

Leakage Currentpin 1

V 5 = ± 1OV; V 11
T c = 25°C
V5 = ±10V; V 11

Drift Rate

V OUT = ±10V, Cs
TA = 25°C

Drift Rate

V OUT

= ±10V, Cs = 0.001 pF
V OUT = ±10V, Cs = 0.01 pF,

Drift Rate

TYP

5.0

±11
20
14

(Full Scale)

MIN
2.0

V6=2.4V

Supply Current

DC Input Resistance

LHOO43C
MAX

2.0

o
o

::I:

TYP

1

20

2.5

nA

mV/s

T A = 25°C
Drift Rate

V OUT

= ±10V, Cs = 0.01

pF

1

Aperture Time
Sample Acquisition
Time

~VOUT = 20V, Cs = 0.001 J.l.F
~VOUT = 20V, Cs = 0.01 pF

/:,V OUT = 5V, Cs = 0.001 pF

= 0.001 J.l.F

Output Amplifier
Slew Rate

V OUT = 5V, Cs

Output Offset Voltage.
(without null)

Rs ~ 10k, V5 = OV, V 6 = OV

Analog Voltage
Output Ran~e

RL 2 lk, T A = 25°C
RL22k

1.5

2.5

0.2

mV/ms

60

20

60

ns

10
30
4

15
50

10
30
4

15
50

ps
ps
J.l.s

3.0

1.5

±11
±12

VIps

3.0
±40

±40
±10
±10

0.5

20

±10
±10

±11
±12

Note 2: Unless otherwise noted, these specifications apply for V+ = +15V, V- = -15V, pin 9 grounded, a 5000 pF capacitor connected
between pin 1 and ground over the temperature range -55°C to +125°C for the LHOO43, and _25°C to 85°C for the LH0043C. All
typical values are for T C = 25°C.

94

mV
V
V

r-

::I:

o
o

typical performance characteristics
Sample Acquisition
Time-LH0043

Power Dissipation
2.0

I\. STill AIR WITH CLlP·ON -

1.75

~
z

~

?:

"-

"

0

i= 1.25
~
1.0
en
CI)
is
a: 0.75

~

I
t- v! = ;15V
Cs = o.oollJF
t-V L = 5.oV
I- TA =25°C

~EATSINK

1.5

w

>
~

0.25
50

75

a:
o
~

~

100

oV
-10

125

::I:

o
o

N
W

ex:

e:: +loV

"

r-

I

t:I

l-

~"-

I

I

- Vs = ±15V
_ CL = o.ollJ F
VL = o.ov
-TA = 25°C

?:
w

t:I

0.5

25

I

ct

~ ~
STill AIR' ~'\

N
W
........

Sample Acquisition
Time-LH0043

l-

l.ft.

- -

I
II

I

I

2

3

4

TEMPERATURE (OC)

6

oV

~

7

8

-

F

J

1/

If

-- - "-i'o!...

5

+loV

~
a:
o

'\

INPUT~

1

>

'Il-- OUTPUT

I

If

150

e::

-~~

I"\.

,

INPUT--l
I

-loV
+

9 10

o

o

r-

~ _OUTPUT

I

::I:

o
o

'""~

~

w
r-

5 10 15 20 25 30 35 40 45 50

........

TIME {JJs)

TIME {JJs)

::I:

Sample Acquisition
Time-LH0023

?:
w

Pin 1 Leakage Current
vs Output Voltage

10
Vs= ±15V
TA = 25°C_

t:I

ex:
~

-2

0

>

I-

~
~

?:
w
t:I

ct

~

0

>

I-

~

-4

+10
+5
-5
-10

r'\

/

0

\

/

ct

:.:::

~

J

o

TIME (IJS)

~
c:J

z

-

~

'\

..... "- r--......

10.0

I-

~

I-

::::I
0

TA = 125°C

ct

1"0.

:.:::

;

!"..

""

"

z

1"0.

I--- >-I--- >--

Vs = ~15V

"

.01
-75 -50 -25

"'

25

I
50

Vs +15
VOUT ±lD

ill

VOUT -+10
11111

.§.
w
ct

a:

TA 25°C
VOUT = ±5

t::
a:

~

-111111

100

w
Ict

a:

t::
a:

11111

0

lll!ll

0.1
0.001

25°C
·±lo
-(11111111

30

OUTPUT CURRENT (:±mA)

0.01

f-

0.1
0.001

10

~~

10

:fi,~ 25°C

f--

111111

0.1

I III

Tc +125°C

.§.

~I

10

I-

I

75 100 125

Drift vs Capacitance-LH0043

1+~I'+lW~1

100

5l

3>

TA = 25°C

20

25

TEMPERATURE (OCl

OUT -

15

'f'

V~

ml~A
V
10

0

-10

1000
1111

c

o

'11

j"/ I
OUT

Drift vs Capacitance-LH0023

5.0

o

VOUT 0._

.1

a::

1000

I'

~

II.rl

U,

w

OUTPUT VOL TAGE (V)

Output Current Limiting
15.0

"

0-

~

t:I

-16
-12V -10 -8 -6 -4 -2 0 2 4 6 8 lo12V

20 40 60 80 100 UO 140 160 200

10

+10,

(.)

-14

I-

VOUT

::::I

-12

1/

1\

""

-10

::::I

0

~

-8

~

1

~

w

Vs +15V

a:
a:

i"'oo..

t:I

Cs = 0.01 ).IF
TA = 25°C
VSAMPLE = 5.OV
1\

100

I-

%
-6
w

-5
-10

o
o

Pin 1 Leakage Current
vs Temperature

1111111

0.01

-

r"
I

II

0.1

==
'--

10

CAPACITANCE {JJF)

CAPACITANCE {JJF)

typical applications

,------------,

I
I
I

V-I-15VI

ANALOG
INPUT
SAMPLE!
HOLO
LOGIC
INPUT

I

j..;..4>--'---..!....-OUTPUT

6

I
I

....- . - + - - 4 - - v+ (+15V)

I
I
I
IL ___________ -.JI
GUARO SHIELD

GROUNO

P.C. BOARO

Note1: Cllspolystyrene

Note2: C2,C3,C4 are ceramic disc
Note3: Jumper 7-8 and C4 not requIred for lH0043
Note4: Rloptlonallfzerotnmisrequlred

How to Build a Sample and Hold Module

95

()

M

typical applications (con't)

~

o
o

J:

..J

........

DIGITAL{
INPUT
CODE

M
~

DEMUL TIPLEXER
AHOOI5.
AHOI20.
AM3705.
AM2009

O/A
CONVERTER

o
o

DEVICE
PINS
}

Forcing Function Setup for Automatic Test Gear

J:

..J

()

M

N

o

ANALOG SWITCH
MUL TlPLEXERS
AHOOI5.
AM3705.
AM2009.
OR AH0120 SERIES

o

J:

..J

........
M
N

DIGITAL
} OUTPUTS

S/H LOGIC
CHANNEL SELECT

o
o

'See op. amp. selection 9uide for details. Most popular types include LH0052. LHI725, LM108, LM112 and LM116.

Data Acquisition System

J:

..J

ANALOG
PULSE INPUT

. . .- - - - - - - - - - -....---1

DIGITAL
OUTPUTS

ANALOG
OUTPUTS

MULTIPLEXER

:~~~~~:

"M" STAGE TTl
SEnUENCER-OM5493
ANO OM54154

I

L _ _A~O _ _ ...J

t

CLOCK

Single Pulse Sampler

1.fV1r.J1JL r

- - - - - - - - ---,
I

COM~~~!~ o-___~..5-1=----f

11

I
I
I

"UUUl..f'

REFCtRRE~~~ o-..___-+-6-::~--1

L ____ _

L~3_ _

SIGNAL 'II OUTPUT

I

.....J

1

CS

T

5'---------l
+

I
I
I

SIGNAL "2 OUTPUT

L~3 _ _

.J

1

T

CS

Two Channel Double Sideband Demodulator-

96

rJ:

o

schematic diagrams

o

LH0043/LH0043C

N
W

SAMPLE

____________-t__

-1~,-_______r------CA-PAtCl~Tl01R~------_r----------r_----------~~--_r~12Vi

.........

rJ:

o
o

N
W

.n

rJ:

o

11

L------+-_-r~OUTPUT

o
~
w

.........

rJ:

o
o

~

w

n

LH0023/LH0023C

GROUND

2---------------t-------,

ANALOG ().5...JVVV-""",,,,,,
INPUT

1+"V\I~4----------I--T~

OUTPUT

97

CJ

('t)
~

applications information

o
o

1.0 Drift Error Minimization

::J:

..J

In order to minimize drift error, care in selection
of Cs and layout of the printed circuit board is
required. The capacitor should be of high quality
Teflon, polycarbonate, or polystyrene construction. Board cleanliness and layout are critical
particularly at elevated temperatures. See AN-63
for detailed recommendations. A guard conductor
connected to the output surrounding the storage
node (pin 1) will be helpful in meeting severe
environmental conditions which would otherwise
cause leakage across the printed circuit board.

"('t)
~

o
o
::J:
..J
.
CJ

('t)

N

o
o

::J:

..J

"('t)

2.0 Capacitor Selection

N

o
o

The size of the capacitor is dictated by the required Clrift rate and acquisition time. The drift is
determined by the leakage current at pin 1 and
dV
IL
.
may be calculated by crt = C ' where I L IS the

::J:

..J

s

total leakage current at pin 1 of the device, and
Cs is the value of the storage capacitor.

2.1 Capacitor Selection - LH0023
At room temperature leakage current for the
LH0023 is approximately 100 pA. A drift rate of
10 mV Isec would require a 0.01 IlF capacitor.
For values of Cs up to 0.01 IlF the acquisition
time is limited by the slew rate of the input buffer
amplifier, A 1, typically 0.5 V /Ils. Beyond this
point, current availability to charge Cs also enters
the picture. The acquisition time is given by:

will be stored on the capacitor, in much less time as
dictated by the slew rate and current capacity of
the input amplifier, but it will not be available at
the output). F or larger values of storage capacitance, the limitation is the current sinking capability of the input amplifier, typically 10 mA. With
Cs = 0.01 IlF, the slew rate can be estimated by
dV
10 10- 3
'
dt = 0.01 • 10-6 = 1 V IllS or a slewing time for a
0

5 volt signal change of 51ls .

3.0 Offset Null
Provision is made to null both the LH0023 and
LH0043 by use of a 10k pot between pins 3 and 4.
Offset null should be accomplished in the sample
mode at one half the input voltage range for
minimum average error.

4.0 Switching Spike Minimization-LH0043
A capacitive divider is formed by the storage
capacitor and the capacitance of the internal F ET
switch which causes a small error current to be
injected into the storage capacitor at the termination of the sample interval. This can be considered
a negative DC offset and nulled out as described in
(3.0), or the transient may be nulled by coupling
an equal but opposite signal to the storage
capacitor. This may be accomplished by connecting a capacitor of about 30 pF (or a trimmer)
between the logic input (pin 6) and the storage
capacitor (pin 1). Note that this capacitor must be
chosen as carefully as the storage capacitor itself
with respect to leakage. The LH0023 has switch
spike minimization circuitry built into the device.

5.0 Elimination of the 5V Logic Supply-LHOO23

where: R = the internal resistance in series with Cs
~eo

= change in voltage sampled

An average value for R is appr:oximately
600 ohms. The expression for tA reduces to:

tA

'" .J~eo Cs

= 20

For a -10V to +10V change and Cs
acquisition time is typically 50 IlS.

.05IlF,

2.2 Capacitor Selection-LH0043
At 25°C case temperature, the leakage current for
the LH0043G is approximately 10 pA, so a drift
rate of 5 mV Is. would require a capacitor of
Cs = 10 • 10- 12 /5 . 10- 3 = 2000 pF or larger.
For values of Cs below about 5000 pF, the
acquisition tim~ of the LH0043G will be limited
by the slew rate of the output amplifier (the
signal will be acqu ired, in the sense that the voltage

98

The 5V logic supply may be eliminated by
shorting pin 7 to pin 8 which connects a 10k
dropping resistor between the + 15V and V c'
Decoupling pin 8 to ground through 0.1 IlF disc·
capacitor is recommended in order to min imize
transients in the output.

6.0 Heat Sinking
The LH0023 and LH0043G may be operated
without damage throughout the military tempera0
ture range of -55 to + 125° C (-25 to +85 C for
the LH0023CG and LH0043CG) with no explicit
heat sink, however power dissipation will cause the
internal temperature to rise above ambient. A
simple clip-on heat sink such as Wakefield
#215-1.9 or equivalent will reduce the internal
temperature about 20°C thereby cutting the leakage current and drift rate by one fourth at max.
ambient. There is no internal electrical connection
to the case; so it may be mounted directly to a
grounded heat sink.

7.0 Theory of Operation-LH0023
The LH0023/LH0023C is comprised of input
buffer amplifier, Al, analog switches, Sl and S2, a

I'

:::E:

applications information (con#t)
TTL to MOS level translator, and output buffer
amplifier, A2. In the "sample" mode, the logic
input is raised to logic "1" (V 6 ~ 2.0V) which
opens S 1 and closes S2. Storage capacitor, Cs , is
charged to the input voltage through S2 and the
output slews to the input voltage. I n the "hold"
mode, the logic input is lowered to logic "0"
(V 6 ~ 0.8V) opening S2 and closing S1. Cs
retains the sample voltage which is applied to the
output viaA2. Since Sl is closed, the input signal
is overridden, and leakage across the MOS switch is
therefore mi-riimized. With S2 open, drift is primarily determined by input bias current of A2,
typically 100 pA at 25°C.

7.1 Theory of Operation-LH0043
The LH0043/LH0043C is comprised of input
buffer amplifier Al, FET switch Sl operated by a
TTL compatible level translator, and output buffer
amplifier A2. To enter the "sample" mode, the
logic input is taken to the TTL logic "0" state
(V 6 = 0.8V) which commands the switch Sl

ANALOG
INPUT

lOGIC
INPUT

ANALOG
OUTPUT

o
o

closed and allows A 1 to make the storage capacitor voltage equal to the analog input voltage. In
the "hold" mode (V 6 = 2.0V), Sl is opened
isolating the storage capacitor from the input and
leaving it charged to a voltage equal to the last
analog input voltage before entering the hold
mode. The storage capacitor voltage is brought to
the output by low leakage amplifier A2.

N
W

........
I'

:::E:

o

o

N
W

..("')

8.0 Definitions

I'

:::E:

o
o
~
w
........

The voltage at pin 5, e.g., the analog
input voltage.
The voltage at pin 6, e.g., the logic
control input signal.
The voltage at pin 11, e.g., the output
signal.
The temperature of the ambient air.
The temperature of the device case at
the center of the bottom of the header.

I'

:::E:

o
o

~

w

("')

Acquisition Time:
The time required for the output (pin 11) to settle
within the rated accuracy after a specified input
change is applied to the input (pin 5) with the
logic input (pin 6) in the low state.
Aperture Time:
The time indeterminacy when switching from
sample mode to hold including the delay from the
time the mode control signal (pin 6) passes
through its threshold. (1.4 volts) to the time the
circuit actually enters the hold mode.
Output Offset Voltage:
The voltage at the output terminal (pin 11) with
the analog input (pin 5) at ground and logic input
(pin 6) in the "sample" mode. This will always be
adjustable to zero using a 10k pot between pins 3
and 4 with the wiper arm returned to V-.

99

CJ
~
N

Operational Amplifiers

o

o

J:

...J

..........

~

N

o

o

LH0024/LH0024C high slew rate operational amplifier

J:

...J

general description
The LH0024/LH0024C is a very wide bandwidth,
high slew rate operational amplifier intended to
fulfill a wide variety of high speed applications
such as buffers to A to 0 and 0 to A converters
anq high speed comparators. The device exhibits
useful gain in excess of 50 MHz making it possible
to use in video applications requiring higher gain
accuracy than is usually associated with such
amplifiers.

features
•

Very high slew rate -

500 V//1s at Av

•

Wic:le small signal bandwidth -

70 MHz

•

Wide large signal bandwidth -

15· MHz

•

High output swing - ± 12V into 1 K

+1

•

Offset null with single pot

•

Low input offset - 2 mV

•

Pin compatible with standard IC op amps

The LH0024/LH0024C's combination of wide
bandwidth and high slew rate make it an ideal
choice for a variety of high speed applications
including active filters, oscillators, and comparators as well as many high speed general purpose
applications.
The LH0024 is guaranteed over the temperature
range -55°C to +125°C, whereas the LH0024C
is guaranteed -25°C to +85°C.
For information on other National operational
amplifiers, see listing on last page.

schematic and connection diagrams
COMP/NULL

5
)

--+4.......-------4I---O V'

r - -.....

A1

Metal Can Package
COMP/NULL

VTOPVIEW

Order Number LH0024H or LH0024CH
See Package 11

typical applications
TTL Compatible Comparator

Video Amplifier

Offset Null
1pF

+12V

10K

'15V

A1
100

100

AJ
10K

A1
.1 K

V,N

A1
10K

AI

1pF

10K

INPUT o--.)VIr-....~

o--.tllv---I
O.hF

INPUT~ . . . ....A.IV'v-+--~
R1

-=100

~

A1

Av =

~

AJ

=

A4

A~;J\~J<'~:t)

=5

r::I:

o
o

absolute maximum ratings
Supply Voltage
Input Voltage
Differential Input Voltage
Power Dissipation
Operating Temperature Range

N

~

........

±18V
Equal to Supply
±5V
600mW
-55°C to +125°C
-25°C to +85°C
-65°C to +150°C
300°C

lH0024
lH0024C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

dc electrical characteristics

r::I:

o
o
N

~

(")

(Note 1)

lH0024
PARAMETER

Input Offset Voltage

CONDITIONS

Rs
Rs

=
=

50n, T A
50n

=

MIN

25°C

Average Temperature
Coefficient of Input
Offset Voltage

Vs = ±15V, Rs = 50n
-55°C to 125°C

Input Offset Current

TA

'T'

25°C

Input Bias Current

TA

=

25°C

2.0

2.0

large Signal Voltage
Gain

Vs
Vs

=
=

±15V, RL
±15V, RL

I nput Voltage Range

Vs

=

±15V

Output Voltage
Swing

Vs
Vs

=
=

±15V, RL
±15V, RL

Slew Rate

Vs = ±15V, RL = 1k,
C 1 = C2 = 30 pF
Av = +1, T A = 25°C

Common Mode
Rejection Ratio

Vs
Rs

Power Supply
Rejection Ratio

±5V ~ Vs ~ ±18V
Rs = ~on

=

=
=

=
=

±15V, LW IN
50n

1k, T A
1k

1k, T A
1k

=

=

=

25°C

25°C

±10V

Note 1: These specifications apply for ±5V
the LH0024C.

S.

MAX

MIN

TYP

4.0
6.0

5.0

20

Supply Current

=

TYP

lH0024C

Vs

S.

MAX
8.0
10.0

25

5.0
10.0

4.0

UNITS

mV
mV
JiV

tc

15.0
20.0

JiA
JiA

15

30
40

18

40
50

JiA
JiA

12.5

13.5

12.5

13.5

mA

4

4
3

5

±12

±13

±12

±13

V

±12
±10

±13

±10
±10

±13

V
V

400

500

250

400

V/Jis

60

60

dB

60

60

dB

3
2.5

V/mV
V/mV

~

±18V and -55°C to +125°C for the LH0024 and -25°C to +85°C for

frequency compensation
TABLE I
CLOSED
LOOP GAIN

Frequency Compensation Circuit

C1

C2

C3

100

0

0

0

20

0

0

0

10

0

20 pF

1 pF

30 pF

30 pF

3 pF

1

RI

R1

=

R2 'R3

101

u

~

N

typical performance characteristics

o
o

:I:

Large Signal Frequency
Response

Maximum Power Dissipation

...J
........
~

800
700

N

o

o

z 600
o
~ 500

...J

~ 400
C

J:

~

"-

AMBIENT""'-

~

~ 200

100
50

25

-

2! 20

-

-

'-

f-

t!l

CASE

""'"

75

100

TEMPERATURE

125

15

C(

>

:=

5

:::;)

o

C(

o
1M

~
w

I
I~

o
>

)~

10

f
300

~
z
§:
(I)

1

5

I-

17'

I-

0

V
20

15

o

10

SUPPLY VOLTAGE (±V)

15

20

SUPPL Y VOLTAGE (±V)

Input Bias Current vs Voltage

14 r--"""T'"-.,....---r--.---.-..........--.

25

Tl=-5~oc

13 1--+-+-~_......-l-+-----4

.....-

ct

~

T T

~--+-"""''F--

;:: 12
~
~ 11

I---+-+--+--+----I--+-----l

~

I---I-~~­

10

10

:::;)

Supply Current vs Supply
Voltage

B

...-V

)7
17

~

V
10

500

TIME (ns)

E

15

o
400

100M

~I/

V

~

A

\~

/

/V

>

~ -5

o

10M

Output Voltage Swing

/V

~
o

0

1M

t!l

w
~

200

lOOk

/

15

t!l

\

10k

FREQUENCY (Hz)

R~ = 1~
I--TA = 25°C

zC(

-10

100M

20

a:

100

10M

Input Voltage vs Supply
Voltage

~ +5

f

III
FREQUENCY (Hz)

Cl = C2 = 30 pF

,

-

~
0
> 20

1\

lOOK

rc)

Av = +1

t!l

-

10K

"

40

C(

Av = +1,11

150

RL = 1k
TA = 25°C

60

t!l

Vs = ±15V
Cl = C2 = 30 pF
RL = lK

I-

:::;)

'\'Is = :t15

z

crt!l
w

-

~ 10
o

r- TA = 25°C_ I---- I----RL = lK

>

......

w

20

;:;;+11r

,

t!l

Vollage Follower Pulse
Response
Vs = ±15

80

Z

~

~

a: 300

-

-rr

~,

~

25

Open Loop Frequency
Response

TA = +25°C

--I"""

I 1:_I--TA = +125°C

-

~

:::;)
(I)

o
10

12

14

16

18

SUPPLY VOLTAGE (±V)

4

10

12

14

16

18

SUPPLY VOLTAGE (±V)

applications information
1. Layout Considerations

102

-1, C3 may requ ire adjustment in order to perfectly cancel the input capacitance of the device.

The LH0024/LH0024C, like most high speed circu itry, is sensitive to layout and stray capacitance.
Power supplies should be by-passed as near the
device as is practicable with at least .01 pF disc
type capacitors. Compensating capacitors should
also be placed as close to device as possible.

The case of the LH0024 is electrically isolated from
the circuit; hence, it may be advantageous to drive
the case in order to minimize stray capacitances.

2. Compensation Recommendations

3. Heat Sinking

Compensation schemes recommended in Table 1
work well under typical conditions.. However, poor
layout and long lead lengths can degrade the performance of the LH0024 or cause the device to
oscillate. Slight adjustments in the values for
C1, C2, and C3 may be. necessary for a given
layout. In particular, when operating at a gain of

The LH0024/LH0024C is specified for operation
without the use of an explicit heat sink. However,
internal power dissipation does cause a significant
temperature rise. Improved offset voltage drift
can be obtained by lim iting the temperature rise
with a clip-on heat sink such as the Thermalloy
22288 or equivalent.

When operating the LH0024/LH0024C at a gain
of + 1, the value of R 1 shou Id be at least 1 K ohm.

r
:::I:

o
o

Operational Amplifiers

W
N

..........

r
:::I:

o

o

W

LH0032/LH0032C ultra fast FET operational amplifier

N

(")

genera I description
The LH0032/LH0032C is a high slew rate, high
input impedance differential operational amplifier
su itable for diverse appl ication in fast signal handling. The high allowable differential input voltage,
ease of output clamping, and high output drive
capability particularly suit it for comparator applications. It may be used in applications normally
reserved for video amplifiers allowing the use of
operational gain setting and frequency response
shaping into the megahertz region.

features
•

High slew rate

•

High bandwidth

•

High input impedance

500 V l/1s

•

Low input bias current

•

Offset null with single pot

20 pA max
2 mV max

•

Low input offset voltage

•

No compensation for gains above 50

The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal
choice for applications such as summing amplifiers
in high speed 0 to A's, buffers in data acquisition
systems, and sample and hold circuits. Additional
applications include high speed integrators and
video amplifiers. The LH0032 is guaranteed over
the temperature range -55°C to +125°C and the
LH0032C is guaranteed from _25°C to +85°C.

70 MHz
1012[2

schematic and connection diagrams
Metal Can Package

OUTPUT

COMPENSATION

Order Number LH0032G or LH0032CG
See Package 6

typical applications
DC to Video Log Amplifier
1 MHz Function Generator

103

CJ
·N
M

o
o

absolute maximum ratings

J:
...J
.......

Supply Voltage
Input Voltage
Differential I nput Voltage
Power Dissipation
Operating Temperature Range LH0032
LH0032C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

N
M

o

o

J:

...J

±18V

±Vs
±30V
See curve
-55°C to +125°C
-25°C to +85°C
_65° C to +150°C
300°C

dc electrical characteristics
PARAMETER
I nput Offset Voltage

(Note 1)

CONDITIONS

MIN

Vs = ±15V, Rs S lOOk, T A = 25°C
Vs = ±15V, Rs S lOOk

LHOO32
TYP
0.5

I

MAX

MIN

LHOO32C
TYP

MAX

1.0

2.0
10

Average Offset Voltage Drift

Rs

S lOOk

25

I nput Bias Current

TA = 25°C

10

25

T A =25°C

25

5

Vs = ±15V, V OUT = ±10V
RL =lkQ,TA =25°C

63

Vs = ±15V, V OUT = ±10V
RL = 1 kQ

60

mV

!1vtc

10

25
Large Signal Voltage Gain

mV

5

200

50
Input Offset Current

3.0

25
100

70

pA

15.0

nA

50

pA

5

60

UNITS

70

nA
dB
dB

57

Input Voltage Range

Vs = ±15V

±10

±12

±10

±12

V

Output Voltage Swing

Vs = ±15V, RL = 1 kQ

±10

±13.5

±10

±13

V

Power Supply Rejection Ratio

Vs = ±15V, !:Ns = ±10V

50

60

50

60

dB

60

dB

Common Mode Rejection Ratio

Vs = ±15V, 6.V 1N = 10V

Supply Current

Vs = ±15V, TA = 25°C

ac electrical characteristics
PARAMETER

50

50

60
18

20

22

20

rnA

(Note 2)
MIN

CONDITIONS

TYP

MAX

UNITS

Slew Rate

Av

= +1,

~VIN

= 20V

500

V /J.1s

Settling Time to 1% of Final Value

Av

= -1,

~VIN

= 20V

100

ns

Settling Time to 0.1% of Final Value

Av

= -1,

~VIN

= 20V

300

ns

Small Signal Rise Time

Av

= +1,

~VIN

= 1V

8

ns

Small Signal Delay Time

Av

= +1,

~VIN

= 1V

10

ns

Note 1: These specifications apply for ±5V.s VS.s ±18V and -55°C to +125°C for the LH0032 and -25°C to +85°C for the
LH0032C.
Note 2: These specifications apply for Vs

104

= ±15V,

RL

= 1 kn

and T A

= 25°C.

r:J:

o

o

typical performance characteristics

W
N

.........

Maximum Power Dissipation
2.0

-

~
'\

~

z
c
i=

~
u;

CI)

;;

"
'"

1.5

1.0

a:

~
~

co.
co.
CI)

:;

~ASE

25

50

75

18

t::I

16

z

~

""

0.5

100

125

22 -~
20 -

c

~

AMBI~ '- '!~

-

II
II

-

I;:)

;:)

c

~"'1O

III

III
Av = +1

-

1111

:!::

t::I

<

z

:;

c

>

"<

1\

20

10M

1M

100M

10K

1M

lOOK

10

S

10M

100M

FREQUENCY (Hz)

FREQUENCY (Hz)

large Signal Pulse Response

~
C")

_l

100

TEMPERATURE (OC)

100

---'

1111111

10

40

w

~~

Vs = ±15
RL = lK
TA = 25°C

8

150

r-I

l:>

t::I

~

14

10

1000 <:
c

z
C(
~

12

...

'-

60

W
N

Vs = ±15V
RL = lK
TA = 25°C

-

~

o

o

10K

~
-

III

I II

-

0..

I-

80

II
II

r:J:

Open loop Frequency
Response

large Signal Frequency
Response

Input Bias and Offset Current
vs Temperature

large Signal Pulse Response
10,000

+10

?:
w

I

"

Vs=±15_
Av=+l
RL = lK -

+5

10

~
t::I

:;

:;

<

;:)

;:)

c

~

a:
a:

I-

;:)

\
\
\

-5
-10

I;:)

c

200

300

10

100

500

20

TA

t::I

<
:;

=25

10

/'f'
,
C/

~

>

~
~

4

25

500

~

/

~

/'f'
/'f'

I;:)

C

85

105

125

22

/
/"

15

10

65

24

lk

z

I-

45

TEMPERATURE (OC)

20

t::I

/"

c

,..-V

Supply Current vs Supply
Voltage

RIL =
---T A = 25°C

/
c

400

Output Swing

16

12

300

200

TIME (ns)

Input Voltage Range

~
w

los

1

400

TIME (ns)

14

18:; ~ ~ r

l

-10

'I-'

100

-5

~~

I

100

;:)
Co.)

0..

±15

I-- r-- I-

I-

>

0..

~Vs

1000

i

c

II-

I

<

c
>

I

I

w

t::I

Vs=±15V_
Av = +10
RL = lK -

18

/

/"

16

,/"

14
12

/'

10
10

12

14 16

SUPPLY VOLTAGE (±V)

18 20

10

15

SUPPL Y VOLTAGE (±V)

20

10

15

20

SUPPL Y VOLTAGE (±V)

105

n

CJ

N
M

o
o

auxiliary circuits

:I:
...I

"

N
M

Output Short Circuit Protection

Offset Null

o
o

V+

r--"'---V+

LMl13

:I:
...I

'''~ {

OUTPUT

V-

typical applications (con't)
10X Buffer Amplifier

Unity Gain Amplifier

30 pF

10K

INPUT
OUTPUT

9K

V-

100X Buffer Amplifier

High Impedance,

Hig~

Speed

lOOK

lK

Ref-""VVY-+--4

INPUT

11
INPUT-----~

IN4148

106

rJ:

o

typical applications (con't)

o

Co\)

N

.........

rJ:

High Speed Sample and Hold

o
o

Co\)

N

;>';.;..'....- - 0

n

OUTPUT

200£2

INPUT

o--J\I'\/'v-..::.j

LOGIC
CONTROL

·Usepolystyrene dtelectnc for minimum drift

------..,.,------...___

Current Mode Multiplexer
3-BpF

,OK

>-'-"...._-0 OUTPUT

applications information
Power Supply Oecoupling
The LH0032/LH0032C like most high speed circuits is sensitive to layout and stray capacitance.
Power supplies should be by-passed as near to
Pins 10 and 12 as practicable with low inductance
capacitors such as 0.01 J.1F disc ceramics. Compensation components should also be located close to
the appropriate pins to minimize stray reactances.

I nput Capacitance
The input capacitance to the LH0032/LH0032C is
typically 5 pF and thus may form a significant
time constant with high value resistors. For optimum performance, the input capacitance to the
inverting input should be compensated by a small
capacitor across the feedback resistor. The value
is strongly dependent on layout and closed loop
gain, but will typically be in the neighborhood of
several picofarads.

In the non-inVerting configuration, it may be
advantageous to bootstrap the case and/or a guard
conductor to the inverting input. This serves both
to divert leakage cu rrents away from the noninverting input and to reduce the effective input
capacitance. A unity gain follower so treated will
have an input capacitance under a picofarad.
Heat Sinking
While the LH0032/LH0032C is specified for operation without any explicit head sink, internal power
dissipation does cause a significant temperature
rise. Improved bias current performance can thus
be obtained by limiting th is temperature rise with
a small head sink such as the Thermalloy No. 2241
or equivalent. The case of the device has no internal connection, so it may be electrically connected
to the sink if this is advantageous. Be aware, however, that th is will affect the stray capacitances
to all pins and may thus require adjustment of
circuit compensation values.

107

(.)
C"')
C"')

Operational Amplifiers

o
o

~
..J

"

C"')
C"')

o
o

LH0033/LH0033C high speed buffer

~
..J

general description
mum -55°C to +125°C, 1 nA

The LH0033/LH0033C is a very high speed, high
input impedance, unity gain buffer. It is intended
to fulfill buffer applications such as high speed
line driving, anq interface to fast A to 0 converters
or high speed comparators. Outstand ing typical
design features include:

• Large output voltage range: ±13V
• High input impedance: ' 10 11 S1
• Wide bandwidth: dc to 100 MHz
• Low output impedance: 6S1

• Very high slew rate, greater than 1500V Ips

The LH0033/LH0033C is capable of operation
over the voltage range ±5V ~ Vs ~ ±20V. The
LH0033 is guaranteed over the temperature range
-55°C to +l25°C; whereas, the LH0033C is guaranteed over the temperature range 0° C to 85° C.

• Low propagation delay: 1.2 ns
• Low output offset voltage: 25°C, 5.0 mV;
maximum -55°C to +125°C, 15.0 mV
• Low input bias current: 25°C, 50 pA; maxi-

connection diagrams
Dual-In-Line Package

12 PIN TO-8

v'
7 V+(COLlECTOR)

v~

He

(COLLECTOR)

·JumperPms2and3fornormaloper81ion

TOPVIEW

Order Number LH0033G or LH0033CG
See Package 6

Order Number LH0033CJ
See Package 15

typical applications
"

*Select C, for Optimum Pulse Response

Coaxial Cable Driver

I nstrumentation Shield/Line Driver
v'

ANALOG
INPUT

NOGO=lOGIC"l"
GO=LOG1C"O"

*PolvcarbonateorTeflon
lOGIC
INPUT

L
High Input Impedance Comparator
With Offset Adjust

1/20H0034

1
High Speed Sample & Hold

108

~

:::E:

o
o

absolute maximum ratings
Supply Voltage (V+·- V-)
Maximum Power Dissipation
Input Voltage
Maximum Output Current
Operating Temperature Range LH0033
LH0033C
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

w
w

40V
1.5W
Equal to Supply Voltage
±100 mA
-55°C to +125°C
O°C to +85°C
-65°C to +150°C
300°C

"'~
:::E:

o
o
w
w

o

electrical 'characteristics
LHOO33
TYP

PARAMETER

CONDITIONS

Output Offset
Voltage

Rs = 100 kn, TA = 25°C
Rs = 100kn

Average Temperature Coefficient of
Offset Voltage

Rs = 100 kn,
-55°C ~ T A ~ 125°C

25

Input Bias
Current

TA = 25°C

50

Voltage Gain

VIN = 1.0V rms,
f= 1.0kHz, RL = 1 kn,
Rs = 100kn

Input
Impedance

VIN = 1.0V rms,
f= 1.0kHz, RL = 1 kn

Output
Impedance

VIN = 1.0V rms,
f = 1.0 kHz, Rs = 100 kn
RL = 1 kn

Output
Voltage Swing

Rs = 100kn, RL = 1 kn

Output
Voltage Swing

VIN = ±10.0V, RL = lOOn,
T A =25°C

Propagation
Delay

VIN = ±10V, Rs = 50n,
RL = 1 kn

Slew Rate

Rs =50n, RL = 1 kn
TA = 25°C

Bandwidth

VIN = 1.0V rms, Rs = 50n l
RL = 1 kn

Supply
Current

VIN = OV

MIN

5.0

.97

10 10

MIN

MAX
20.0
25.0

100
1.0

10 11

10 10
10

±13

150
1.5

50
.98

.96

10

±13

1000

100
20

22

n

V
V
ns

1.5

1500

pA
nA

n

1:9.5
1.2

mV
mV

V/V

10 11
6

±12

UNITS

pvlc

25

±9.5

1000

LHOO33C
TYP
12.0

10.0
15.0

0.98

6

±12

MAX

1400

Vips

100

MHz

21

24

mA

Note 1: Unless otherwise noted. these specifications apply for +15.0V applied to pins 1 & 12.
-15.0V applied to pins 9 & 10. pin 6 shorted to pin 7 over the temperature range -55"C to +125 C
u
for the LH0033 and O°C to +85 C for the LH0033C.
Note 2: Unless otherwise noted. typical values are for TA

= 25"C .

.,

109

o
M
M

typical performance characteristics

o
o

::E:
...J

Supply Current vs
Supply Voltage

Power Dissipation

""M

Output Voltage vs
Supply Voltage

21

M

o
o

18

r-

~

1.5
z
c 1.25
i=

::E:
...J

::
~
C

II:

'"'"

1.00
.75

w

:==
c

.50

<

E

~w

20

I-

c.:J

~

~

II:
II:

u

~

CI.
::)
CI)

CI.

I

12
10

I-

/

::)

CI.

I-

18

::)

c

/

4

.25

/
/
/V

/

c(

~
C
>

19

::)

~

I

RL = 1 kn
Rs = 100 kn
14 '- TA = +25°C

16

V

~

17

25

50

75

100

125

150

10

TEMPERATURE (OC)

~
w

c.:J

~

r~

10

c(

~
c

>

~

::)

c

,

T
I

I

~

CI.

:!

~
c

>

I::)

CI.

I-

"

I

:::l

c(

~

4

-;::

::)

20

30

-;::

\~

::)

40

Vs = ±15V
~'-Rs =50n
RL = 1 kn
-2
rT A = +25°C
I
-4
'INPUT - - - 1
-6
a-- ,--- OUTPUT

-8

C

II

-

10

:;

...!..
c.:J

INPUT - - ,

50

-10

CI.

:! -12

Frequency Response

".

,':

-

,

:;

2

10

20

30

,

;;;:
c.:J

w

6.0 rRL = 1 kn

i=

.....
u..

~

4.0

..--

~~

40

50

u

CI)

c(

Z

(I)

a:

±20V\..

~ .010

t,

."

2.0

. /~

./

E
w
c.:J

10.0

20.0

50

"vs =±15V=

~

Rs

'" "-

c

~

20
15

~ 4.0

.............

~
C

Vs = ±10V

~

CI.

:!

100

~

2.0

CI.

I:::l

C

o
-50

o

.001
50

100

150

25

TEMPERATURE eCI

50

75

TEMPERATURE (OC)

100

125

-50

50
TEMPERATURE

100

150

n)

applications information
1. Offset Adjustment
The LH0033 provides two terminals to adjust
the output offset voltage. Offset null may be
accomplished by connection a 100 ohm pot
between pin 7 and V-. In non-critical or ac
coupled applications pin 6 should be shorted to
pin 7. The resulting output offset is typically
5 mV at 25°C.

2. Operation with Asymmetrical Suppl ies
The LH0033 may be readily used in applications where symmetrical supplies are unavailable or may not be desirable. A typical
application might be an interface to an MOS
shift register where V+ = 5.0V and V- = -25V.
I n this case, an apparent output offset occurs.
In reality, the output voltage is due to the
(continued on next page)

110

g;
~

f'... .....

w

C')

C

10 ;

=±15.0V
=100 kn

Vs

"',

6.0

~
.....

::)

2.0

5.0

V

l>

Output Offset Voltage
vs Temperature

."

.."

25 ~

FREQUENCY (MHz)

./ ./'
.-

::)

c(

V
1.0

60

:;

~
0.100
w

II:
II:

A

B.O
~Vs

1

~

C

w

0.4

l'

>

1.00

~

.....
c(

0.6

~
c

c(

Vs = ±15V

w

O.B

c.:J

&;

--tI

z

Input Bias Current vs
Temperature

B.O

30 ~
Av

TIME (ns)

Rise and Fall Time vs
Temperature

35

1.0

0.2

TIME (ns)

]

_ Vs = ±15V
Rs = 50n
_ RL = son
VIN = 1.0V rms

...

-- --

'_0-.....-

OUTPUT

-T5V-....- - - - - - - -_ _...

**Pin connections shown are for metal can.

114

*Select for zero integrator drift

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics
PARAMETER

±22V
500mW
±30V
±15V
Indefinite
-55°C to +125°C
-65°C to +150°C
300°C

(note 4)
CONDITIONS

MIN

TYP

MAX

1.0

5.0

UNITS

Input Offset Voltage

T A = 25°C, Rs:::;' 10k.Q

Input Offset Current

T A =25°C

40

200

nA

Input Bias Current

TA = 25°C

120

500

nA

Input Resistance

T A =25°C

Supply Current

T ~ = 25°C, Vs = ±20V

Large Signal Voltage Gain

TA = 25°C, Vs= ±15V
V ouT =±10V, RL~2k.Q

300

800
1.8

50

mV

k.Q
3.0

160

mA

V/mV

Input Offset Voltage

Rs~ 10k.Q

Average Temperature
Coefficient of Input Offset
Voltage

Rs:S 50.Q

3.0

Jivtc

Rs:S 10k.Q

6.0

Jivtc

6.0

mV

Input Offset Current

T A = +125°C
T A = -55°C

Input Bias Current

T A = -55°C

0.28

1.5

JiA

Supply Current

TA = +125°C, Vs= ±20V

1.2

2.5

mA

Large Signal Voltage Gain

Vs= ±15V, VOUT= ±10V
RL~ 2k.Q

10
100

25

200
500

~

nA
nA

V/mV
±14
±13

Output Voltage Swing

Vs= ±15V, RL = 10k.Q
RL = 2k.Q

±12
±10

Input Voltage Range

V s =±15V

±12

Common Mode Rejection Ratio

Rs:S 10k.Q

70

90

dB

Supply Voltage Rejection Ratio

Rs:S 10k.Q

70

90

dB

V
V
V

Note 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 150°C/W junction to
ambient or 45°C/W junction to case for the metal-can package. For the flat package, the
derating is based on a thermal resi.stance of 185°C/W when mounted on a 1/16-inch-thick,
epoxy-glass boa~d.with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient
temperatures to +70° C.
Note 4: These specifications apply for -55°C S T A S 125°C, ±5V, S Vs S ±20V and
C1 = 30 pF unless otherwise specified.

115

....

o....

::t

guaranteed performance characteristics

..J

Input Voltage Range

Output Swing

Voltage Gain
100

~

94

16

./

V ..

~

z

/
./..~.

,

~

88

..~

~

<.0

~~~i

~

~

- 55"C ~ TA ~

10

82

""

76

+ l25°C
10

15

15

-"~'U~

- 55"C

20

TA

10

~

+ 125°C
20

15

SUPPLY VOLTAGE (:!:: V)

SUPPLY VOLTAGE (:!:: V)

SUPPLf VOLTAGE (:!::V)

<"

typical performance characteristics
Supply Current

Voltage Gain

Input Bias Current
400

25

c

~

z

15

I""""

=>
<.>

LO

-

-

-~

~ ~ ~25°C

Go:
Go:

~

~ 55°C

TA -

2.0

110

.---

-~

I

~

l25°C

TA

~

~

90
0.5

10

::>

~

~

125°C

TA =25O C

Vs

300

20

J

\25°C
15

10

20

SUPPLY VOLTAGE (:!:: V)

Maximum Power Dissipation

30

25

500

...

'. " , ,
1',

~

BIAS

i5

'"',,-""'III, . .
....... ~ ......

-75 - 50 - 25

'. , '-r\..

~
~ 400
z
0
;::
~
300

25

50

75

""

~

r--100

-_.

200

~-

100

o

125

25

"

,~"

METAL CAN

~~

_.MOUNTED FLAT PACKAGE
INOTE 11
I
I

85

65

45

105

125

AMBIENT TEMP£RATURE (OC)

TEMP£RATURE (0C)

Large Signal
Frequency Response

Voltage Follower
Pulse Responsa
10

16

8

~

1

I

~

TA :25"c -

'"'"

CD

I--

Vs =!.15V

z ' 60

~

4U

~
20

10

100

lK

12

TA

~

:

z:

~

~

10K

lOOK

FREQUENCY (Hz)

,~

~

1M

o
10M

~

~

§

~

~
)

~

<.0

~

~

~

5K

10K

FREQUENCY (Hz)

INPUT-i

-4

,

-6

i 'f--:OUTPUT
~

~

-2
io.

J

~

~.

~~
lOOK

TAl:

2~

_

Vs = ±15V

-8
-10

lK·

-1

I-

25"{;

V,=:t15V

<.0

-20

116

15

.......... ~SET

o

120

1

= 25°C

100
TA

Vs= =15V

'\
I"

Open Loop
Frequency Response

~

Z

,

OUTPUT CURRENT (:!:: mAl

80

TA

=>

Q.

=± 15V

100

15

--

TA - ' 55°C

600

is 5.0

100

TA = 1250(;

Input Current

,

10

f--.-

400

~

=

Til

300

SUPPLY VOLTAGE (:!:: V)

Current Limiting

......~

!

TA = 250 C
_1

10

SUPPLY VOLTAGE (:!::V)

15.0

~-

-----

20

15

-

TA = l550 C I - -

o

10

~

~

~

50

TIME (,as)

ro ro

~

r::I:
N

Operational Amplifiers

o

~

LH201 operational amplifier
general description
The LH201 is a general-purpose operational amplifier which is iriternally compensated for unity-gain
feedback. The device combines a LM201 operational amplifi~r and t.he 30 pF compensation capacitor in a single package. As such, it is a direct,
plug-in replacement for both the LM201 and the
LM709C in the majority of applications. It is identical to the LH101 except that operation is specic
fied over a 0 to 70 C temperature rClnge. Features
of the amplifier include:
•

Operation guaranteed for supply voltages from
±5V to ±20V

•

Low current drain - even with the output saturated

•

No latch-up when common-mode range is exceeded

•

Continuous short-circuit protection

•

Input transistors protected from excessive input
Voltage.

The LH201 is available in either an 8-lead, lowprofile TO-5 header or a 1/4" x 1/4" metal flat
package.

schematic** and connection diagrams
7
~~~---.--~~----~-----.------v+

Metal Can

Note PIO 4 connected laease

'----+-_ OUTPUT
Flat Pack

V-

Order Number LH201H
See Package 11

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

.t::::::::t-::.--I

INPUT

V+

INPUT.s::=:~--I

OUTPUT
NO CONNECTION

V- - - " " ' _ _ _ _...J

NOTE Pin 5 connected to bottom of packdge

L---4--4---4----------4-------~~~--~-----v-

typical applications **

Order Number LH201 F
See Package 3
Low Drift Thermocouple Amplifier

FET Operational Amplifier

:j:

R6
10K
1%
+15V

INPUTS

2N3955

+

R5"t 5K

R3"
24K
1%

01
OUTPUT

Rl
120K

R3
50K

R2
24K
L----'-~VI/I_--15v

SAL

v-

"Must have matched temperaturecoefhcients
tAdJust for zero IOput offset voltage

Temperature Probe

_Drifts less than
R6
35.5K
1%

R2"
l.5M

R4
931

a 5}.NI"Ccan beobtalOed consistently

Integrator with Bias Current Compensation
V+-~VI/I

__

1%

R2
12K

R3
250K

Rl
INPUT-~W_-lf--+-~
R5
24.3K
1%

>;........-OUTPUT

- 1 5 V - - + , - - - - - - -_ _ _..1

**Pin connections shown are for metal can ..

117

~

o

N

::I:

absolute maximum ratings

....J

Supply Voltage
Power Dissipation (Note 1)
Different:ial Input Voltage
'Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics

±22V
250mW
±30V
±15V
Indefinite
O°C to +70°C
-65°C to +150°C
300°C

(note 4)

PARAMETER

CONDITIONS

Input Offset Voltage

TA =,25C;>C, Rs~ 10kn

Input Offset Current

T A = 25°C

Input Bias Current

T A = 25°C

Input Resistance

T A = 25°C

Supply Current

T A = 25°C, Vs = ±20V

Large Signal Voltage Gain

T A = 25°C, Vs:::; ±15V
VOUT= ±10V, RL2: 2kn

Input Offset Voltage

Rs::; 10kn

Average Temperature
Coefficient of Input Offset
Voltage

Rs::; 50n

TYP

MAX

2.0

7.5

100,
0.25'
150

1.5

mV
nA

pA
kn

400
1.8

20

500

UNITS

3.0

mA
V/mV

150
10

mV

6

p.vtc

Rs::; 10kn

10,

p.vfc

Input Offset Current

T A = +70°C
T A = O°C

50
150

Input Bias Current

TA =

Large Signal Voltage Gain

V s =±15V, V ouT =±10V
RL2: 2kn

O°C

0.32

400
750
2.0

nA
nA
p.A

V/mV

15

Output Voltage Swing

Vs= ±15V, RL = 10kn
R L = 2kn

±12
±10

Input Voltage Range

V s =±15V

±12

Common Mode Rejection Ratio

Rs::; 10kn

65

90

dB

Supply Voltage Rejection Ratio

Rs::; 10kn

70

90

dB

Note 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 150° C/W junction to
ambient or 45°C/W junction to case for the metal'can package. For the flat package, the
derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick,
epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve).
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equ'al
to the supply voltage,
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and'ambient
temperatures to +70°C.
Note 4: These specifications apply for -55°C S T A S 125°C, ±5V, ::; Vs S ±20V and
C1 = 30 pF unless otherwise specified,

118

MIN

±14
±13

V
V
V

r:t
N

o....

guaranteed performance characteristics
Input Voltage Range

Voltage Gain

Output Swing

20

94

16

~

88

.JII"

~

12

~

,

./

/
~...~...

~

~

....

"""~~

-

82

z

~
:::>

-'

~\\~
~\

"

:::>

o

70

7
10

15

10

20

SUPI'lY VOLTAGE (± V)

15

64

20

5

10

20

15

SUPPLY VOLTAGE (::' V)

SUPPLY VOLTAGE (±V)

typical performance characteristics
120

-

2.0
<
~
z:

!
a..
a..

Input Bias Current

Voltage Gain

Supply Current
2.5

-"",..."..

15

,.,.--

400

110

- -".....,..

".

1.0

!

,.".,;;;;-

~

..
a
a..
z

TA

T A = 2f!C

10

15

10

20

SUPPLY VOLTAGE (c>: V)

Current Limiting

30

z

"~

=>
z

100

Vs _:::I~V

40

60

120

'" '"

80
60

~

4U

~
20

-20
1

10

100

I I
TA =25"c YS=±15Y

-

10K

lOOK

FREQUENCY (Hz)

60

~

,

200

--.,,~

is

i

--

I -I100

o
80

---

1M

10M

z:

~

~

C)

8

~ -2
5
-4
-6
-8

,~

-10

o
lK

5K

10K

FREQUENCY (Hz)

I

55

65

-,

:"

~

:»

\~

(NOTE 1)

75

10

8

\

I

45

Voltage Follower
Pulse Response

TA =25"c

4

"

I
MOUNTED FLAT PACKAGE

AMBIENT TEMPERATURE (Oe)

Ys = c>:ISV
~

I-

METAL CAN

35

25

HI

12

'"'" ,
'"

lK

""'IIiiii

~ ...... ..........

16

~

~

"-

40

',:~

0

~

Large Signal
Frequency Response

Open Loop
Frequency Response

~

~

300

TEMPERATURE (C)

JUNCTION TEMPERATURE ( C)

z:

"-

~
~
z:

~ BIA~

OFFSET

20

100

80

20

Vs=±ISV

'"

10

IS

SUPPLY VOLTAGE (:' V)

Maximum Power Dissipation

-..-,

300

..... ....... ~

20

II>

10

20

400

,,~

--

20

100

IS

Input Current

u

i

TA=250 C

400

-

100

2!tc

=

SUPPLY VOLTAGE (+:V)

40

~

-

:::>

90
0.5

:::>
<.>

200

iii

:::>

..:
~

-

300

z

lOOK

:

1

\

-- '"'10 20

'-'OUTPUT

~

\.

o

I

INPUT-.

~

TA

=25't_

Ys ,= ±ISV
~

~

~

~

ro

~

TIME (,.S)

119

Operational Amplifiers
LM101 operational amplifier
general description
The LM 101 is a general-purpose operational amplifier built on a single silicon chip. The resulting close
match and tight thermal coupling gives low offsets
and temperature drift as well as fast recovery from
thermal transients. In addition, the device features:
•

Frequencv compensation with a single 30 pF
capacitor

•

Operation from ±5V to ±20V

•

Low current drain: 1.8 rnA at ±20V

•

Continuous short-circuit'protection

•

Operation as a comparator with differential inputs as high as ±30V

•

No latch-up when common mode range is exceeded

•

Same pin configuration as the LM709.

The unity-gain compensation specified makes the
circuit stable for all feedback configurations, even'
with capacitive loads. However, it is possible to
optimize compensation for best high frequency performance at any gain. As a comparator, the output
can be clamped at any desired level to make it
compatible with logic circuits. Further, the low
power dissipation permits high-voltage operation
and simplifies packaging in full-temperature-range
systems.

schematic** and connection diagrams
BALANCE

COMPENSATION

Metal Can
COMPENSATION

r--1----~~----_+--~----~~-----v·

v-

Note: Pin 4 connected to case

Order Number LM101H
See Package 11

~~~..... OUTPUT

Flat Package
NO

NO CONNECTION

~--~~--~~--------~--------~~

__

......

INPUT c=:~-

v- __

~------v-

CONNECTlO~

COMFENSATION

BALANCE/COMPENSATION

~

OUTPUT

_ _ _ _ _- - '

BALANCE

NOTE Pin 5 connected 10 bottom of package

BALANCE

Order Number LM101 F
See Package 3

typical applications **
I nverting Amplifier
with Balancing Circuit

Voltage Comparator for Driving
DTL or TTL Integrated Circuits

Rl
R2
INPUT o-A.N~""-..JVV'v----.

OUTPUT
OUTPUT

Low Drift Sample
and Hold

OUTPUT ....._ _ _ _ _ _ _ _ _ _....._ _ _ _- - ,

v·

Voltage Comparator for Driving
RTL Logic or High Current Driver
OUTPUT

INPUTS

CI
30pF

·Polycarbonate dlelecTfIC capacitor

**Pin connections shown are for metal can.

120

01

2N2222

r-

s:

~

0

absolute maximum ratings

~

Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering,,60 sec)

electrical characteristics
PARAMETER

±22V
500 mW
±30V
±15V
Indefinite
-55°C to +125°C
-65°C to +150°C
',,300°C

(note 4)
CONDITIONS

MIN

TYP

MAX

1.0

5.0

UNITS

Input Offset Voltage

T A = 25°C, Rs:::; 10kD.

Input Offset Current,

T A = 25°C

40

200

nA

Input Bias Currer'lt

T A = 25°C

120

500

nA

Input Resistance

T A = 25°C

Su ppl y Cu rrent

T A = 25°C, Vs = ±20V

Large Signal Voltage Gain

TA = 25°C, Vs= ±15V
VOUT= ±10V, RL2:: 2kn

300

800
1.8

50

mV

kn
3.0

160

mA

V/mV

Input Offset Voltage

Rs::;' 10kn.

Average Temperature
Coefficient of Input Offset
Voltage

Rs::;' 50n

3.0

Ilvtc

Rs::;' 10kn

6.0

Ilvtc

6.0

mV

Input Offset Current

TA = +125°C
TA = -55°C

Input Bias Current

T A = -55?C

0.28

1.5

IlA

Supply Current

T A = +125°C, Vs = ±20V

1.2

2.5

mA

Large Signal Voltage Gain

Vs= ±15V, VOUT= ±10V
RL2:: 2kn

10
100

25

200
500

~

nA
nA

V/mV

Output Voltage Swing

Vs= ±15V, RL = 10kn
R L = 2kn

±12
±10

±14
±13

Input Voltage Range

V s =±15V

±12

Common Mode Rejection Ratio

Rs::;' 10kn

70

90

dB

Supply Voltage Rejection Ratio

Rs::;' 10kn

70

90

dB

V
V
V

Note 1: For operating at elevated temperatures, the device must be derated based on a
c
150°C maximum junction temperature and a thermal resistance of 150 C/W junction to
ambient or 45° C/W junction to case for the metal-can package. For the flat package, the
derating is based on a thermal resistance of 185°C/W when mounted on a 1116-inch-thlck,
epoxy-glass board with ten, 0.03-inch·wide, 2·ounce copper conductors (see curve).
Note 2: For supply voltages less'than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient
temperatu res to +70° C.
Note 4: These specifications apply for -55°C S T A S 125°C, ±5V, S Vs S ±20V and
C1 c 30 pF unless otherwise specified.

121

guaranteed performance .characteristics
Input Voltage Range

Output Swing

Voltage Gain

20

100

16

94

L

+1

~

'/
./'

12

""

z:

'"
""

"~~i

~

~

z:

/'

88

~

/..,'M+

::>

..

a>

~:;;.~~

82

",

Ci

:>

- 55OC.5 TA $ +

10

~

76

moc

s..

- S5°C::. TA

15

20

IS

SUPPLY VOLTAGE k V)

SUPPLY VOLTAGE (

20

IS

10

20

SUPPLY VOLTAGE (-': V)

V)

!

+ 125°C

typical performance characteristics
Voltage Gain

Supply Current
2.S

2.0
c

.s

z
co:

IS

::>

<->

10
CL

::>

'"

Input Bias Current

120

TA-~.5SoC

-

-

....-,---:: ~ -r:::25OC

-

400

j

110

~

z:

I

~ 100

7

c
'"

TA . l250C

-'" ~

",..,.,.. ~

0

~P""""

~

TA

--

-

TA = - 55°C

a>

2SOC

~

co:
co:

a

'1

200

c
iii

,......

TA

12SOC

cc

TA

20

15

10

"

TA = 12SoC

::>
CL

!.

Maximum Power Dissipation

15V

~

,

300

z:

100

25

.s

........ -......

o

30

-75 ··50 - 25

OUTPUT CURRENT (+ mAl

25,

--

50

\

~
::>
CL

~

::>

122

lOOK

co:

~

r - - -

-r-100

o

I

1M

10M

o

1K

l~

10K

I

I

I

I

85

I

105

125

10

~III

8

=

,,

~

~

~

"'""" ~
\

z:
'"

C,' 3pf

I

INPUT-i

i

\

~ -2
~ -4
io.

I-:OUTPUT

!J
J

\

_.L

--'

-6

I

TA

1

=25"C

Ys=:!:ISY

--""",

~~

lOOK

1M

FREQUENCY (Hz)

I

65

45

AMBIENT TEMPERATURE, (OC)

:>

~

~)

METALCAN
MOUNTEO FLAT PACKAGE (Note: 1) _

I. I

25

125

""'"

,~~

200
100 r

25 C Ys ~ ~ 15V

,

l~
10K

300

0

7S

TA

C,= 3Opf\

0

IK

~

~

~

~

~

I"-

I'.1',

0

I I

'"
z:

~,

Voltage Follower
Pulse Response

,

12

+1

fREQUENCY (Hz)

400

Large Signal
Frequency Response
16

100

z:

TEMPERATURE (OC)

Open Loop
Frequency Response

10

"

~

BIAS

::>

20

500

Ys = ·-15V

'\
I"
"'~..... , ...
r--.- ~SET

TA = 2SoC

is so

IS

2f

600

CL

10

15

SUPPLY VOLTAGE (. V)

Input Current
Vs =

J1250C

10

(~V)

400

r--- .........~ .....

,:, 10.0

20

15

SUPPLY VOLTAGE

Current Limiting
IS 0

25°C

z: 100

05

10

~

TA

::>

CL

90

SUPPLY VOLTAGE C':: V)

I 550C

TA -

-

~300
z:

10M

-10

o

10

20

30 40

50

TIME ("S)

60

70

80

Operational Amplifiers
LM201 operational amplifier
general description
The LM201 is a general-purpose 9perational amplifier built on a single silicon chip. It is identical to
the LM101 except that operation is specified over
o
a 0 to 70 C temperature range. The device features:
~

•

Frequency compensation with a single 30 pF
capacitor

•

Operation from ±5V to ±20V

•

Low current drain: 1.8 mA at ±20V

•

Contihuous short-circuit protection

•

Operation as a comparator with differential inputs as high as ±30V

•

No latch-up when common mode range is exceeded

•

LM709 lead configuration in metal cans and
flat·packages.

The unity·gain compensation specified makes the
circuit stable for all feedback configurations, even
with capacitive loads. However, it is possible to
optimize compensation for best high frequency performance at any gain. As a comparator, the output
can be clamped at any desired level to make it compatible with logic circuits. Further, the low power
dissipation permits high-voltage operation and simplifies packaging.

COMPENSATION

schematic** and connection diagrams
Metal Can
COMPENSATION

8

INPUTS

Note' Pin 4 connected to case

V'

Order Number LM201H
See Package 11

Flat Pack

NO CONNECTION

NO CONNECTION
BALANCE/COMPENSATION

COMPENSATION

..

INPUT s:::::~--INPUT

s::::::::::::::1---....

OUTPUT

V-

BALANCE

\,

NOTE Pin 5 connected to bottom 01 package

Order Number LM201F
See Package 3

typical applications**
Voltage Comparator for Driving
DTL or TTL Integrated Circuits

Inv~trting Amplifier
with Balancing Circuit
Rt

--JV""--...,
R2

INPUT O-JVV'V'....

>------

INPUTS

OUTPUT

01
LM103
3.9V

"">=-""'-0 OUTPUT

Low Drift Sample and Hold
OUTPUT . . ._ _ _ _ _ _ _~~----....

V+

tMav be zero or equal to paraliel combinatIon
of R1 and R2 for minimum offset.

RJ
50 k12

Voltage Comparator for Driving
RTL Logic or High Current Driver
OUTPUT

INPUTS

Ql

2N2222

Cl
30 pF

·Polycarbonate-dielectric

caoacltor

**Pin connections shown are for metal can.

123

~

0
N

absolute maximum ratings

~

...J

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead T em peratu re (Sol deri ng, 10 sec)

electrical characteristics

±22V
250mW
±30V
±l5V
Indefinite
O°C to +70°C
-65°C to +150°C
300°C

(note 4)

PARAMETER

CONDITIONS

Input Offset Voltage

T A = 25°C, Rs ~ 10kn

Input Offset Current

T A = 25°C

Input Bias Current

T A = 25°C

Input Resistance

T A = 25°C

Supply Current

T A = 25°C, Vs = ±20V

Large Signal Voltage Gain

T A = 25°C, Vs = ±15V
VOUT= ±10V, RL?: 2kn

Input Offset Voltage

Rs:S 10kn

Average Temperature
Coefficient of Input Offset
Voltage

Rs:S 50n

TYP

MAX

2.0

7.5

100
0.25
100

1.5

mV
nA
p.A
kn

400
1.8

20

500

UNITS

3.0

mA

V/mV

150
10

mV

6

J1vtc

Rs:S 10kn

10

J1vtc

Input Offset Current

T A = +70°C
TA = O°C

50
150

Input Bias Current

TA =

Large Signal Voltage Gain

V s =±15V, V ouT =±10V
RL?: 2kn

O°C

0.32

400
750
2.0

nA
nA
p.A

V/mV

15

Output Voltage Swing

Vs= ±15V, RL = 10kn
R L = 2kn

±12
±10

Input Voltage Range

V s =±15V

±12

Common Mode Rejection Ratio

Rs:S 1Ok~2

65

90

dB

Supply Voltage Rejection Ratio

Rs :Sl0kn

70

90

dB

Note 1: For operating at elevated temperatures, the device must be derated based on a
100°C maximum jun~tion temperature and a thermal resistance of 150°C/W junction to
ambient or 45°CIW junction to case for the metal·can package. For the flat package, the
derating is based on a thermal resistance of 185° C/W when mounted on a 1/16·inch·thick,
epoxy·glass board with ten, O.03·inch·wide, 2·ounce copper conductors (see curve).
Note 2: For supply voltages less than ± 15V, the.absolute maximum input voltage is equal
to the supply voltage.
",ote 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient
temperatures to 55° C.
Note 4: These specifications apply for O°C ~ T A ~ 70°C, ±5V, ~ Vs ~ ±20V and Cl
~ 30 pF unless otherwise specified.

124

MIN

±14
±13

V
V
V

guaranteed performance characteristics
Input Volta~ Range

Output Swing

Voltage Gain

2Or---r---r---r---r---r-~

20

94

16

/'

l/

>tl

;

....z

L ..~"

~

82

~

~

",,~~

~

88

15

./

~

::::>

"-

~

76

..- ~\\'"
io""""

::::>
0

.J!I~

70

/'
10

64

20

15

SUPPLY VOLTAGE (± V)

5

20

15

10

SUPPLY VOLTAGE (± V)

SUPPL Y VOLTAGE ( '" V)

typical performance characteristics
Voltage Gain

Supply Current

-

2.0

1 15
z

!

Input Bias Current
400

120

25

-"."..,...

...--~

110

-

""""
10

""::::>

-~

...--I'-""'"

z

B 200 I'-'"
""a;

80

20

15

5

Short Circuit Current

30

z:

-

Maximum Power Dissipation
4110

300

-~ ~

t......

~

200

-, ~

u

10
V~

20

40

100

= :t15V
80

60

Vs= ±15V

",

z

!

BIAS

""'"

~

40

,,

40r--+--4---r-~~~--+-~

o

CI~

"FREQUENCY (Hz)

',.:

~

~

1-

·IM

10M

o

IK

100

---

45

I

55

65

75

AMBIENT TEMPERATURE (OC)

Voltage Follower
Pulse Response
10

~

15V

1--

,,
C,

'-"
z

3pF

~

~

lOOK
FREQUENCY (Hz)

'-"

~

-2
--4

-6

~

....

1M

- 10
10M

,
, ,
-. _.
~
INPUT-.

""""" i\

>

.... ~
10K

--<~

I
J (NOH 11

35

25

"'.

• MOUNTED FLAT PACKAGE

o

80

Vs=

~

III

METAL CAN

=

JOPF\

III
lOOK

"""""~

T~ 1251,~~~

\

+1

10K

200

Large Signal
Frequency Response

12

lK

~

i5

60

16

100

300

TEMPERATURE ( C)

Open Loop
Frequency Response

10

i'

~
z:
0
;::
~

]"--: ....... -....

20

100

~

OFFSET

.........

JUNCTION TEMPERATURE ( C)

~

20 )

SUPPLY VOLTAGE ( • V)

Input Current

,,~.

.....

=250 C

15

10

20

IS

10

400

20

0

TA

SUPPLY VOLTAGE (± V)

40

""~

2!i"c

TA =

TA = 25"C

10

100

z:

90
0.5

SUPPLY VOLTAGE (= V)

-

~ 300

-

I
i 'f-- OUTPUT

:J

\

o

10

20

30

40

50

60

TA - 250 e
Vs = ::':: 15V
70

80

TIME ("S)

125

Operational Amplifiers
LM101A/LM201A operational amplifier
general description
The LM 101 A and LM201 A are general purpose
operational amplifiers which feature improved performance over industry ~tandards like the LM 101
and the 709. Advanced processing techniques
make possible an order of magnitude reduction in
input currents, and
redesign of the biasingcircuitry reduces the temperature drift of input current. I mproved specifications incl ude:

a

• Offset voltage 3 mV maximum over temperature
• Input current 100 nA maximum over temperature
• Offset current 20 nA maximum· over temperature
• Guaranteed drift characteristics
• Offsets guaranteed over entire common mode
and supply voltage ranges
• Slew rate of 1OV /J,J.s as a summing amplifier
This amplifier offers many features which make its
application nearly foolproof: overload protection
on the input and output, no latch-up when the
common mode range is exceeded, freedom from
oscillations and compensation with a single 30 pF

capacitor. I t has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application.
For example, in low frequency circuits it can be
overcompensated for increased stability margin. Or
the compensation can be optimized to give more
than a factor of ten improvement in high frequen.
cy performance for most applications.
The LM 101 A series offers the features of the
LM101, which makes its application nearly foolproof. In addition, the device provid~~ better
accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or
timers, sample and hold circuits and low frequency
waveform generators. Further, replacing circuits
where matched transistor pairs buffer the inputs of
conventional I C op amps, it can give lower offset
voltage and drift at a lower cost.
The LM201 A is identical· to the LM 101 A, except
that the LM201 A has its performance guaranteed
over a -25°C to 85°C temperature range, instead
of _55° C to 125° C.

schematic** and connection diagrams
Flat Package

Metal Can
C{lMPEN$ATlON

BALANCEI

COMPENSATION

COMPENSATION
INPUT

V'

INPUT

OUTPUT
BALANCE
Note: Ptn 5 connected to bottom of package

TOP VIEW

Order Number
LM101AH or LM201AH
See Package 11

Order Number
LM101AF or LM201AF
See Package 3
Dual-In-Line
14
13

BALANCEI

12 COMPENSATION

COMPENSATION

3

INPUT

4

11

INPUT

&

10 OUTPUT

V-

6

9

y+

BALANCE

Note: Pm 6conntcted to bottom of plcklf!

TOP VIEW

Order Number LM101AD or LM201AD
See Package 1

typical applications**
Fast AC/DC Converter*

Instrumentation Amplifier
~,

20K
1%

C2
lD~f

R3 t

"K

1.1%

AI -R4;RZ"R3

"'v"I+~

CJ

* lESS THAN I%EARORTO l00.Hl

lhf
-

* *Pin connections shown are for metal can.

126

_ - I N P U T $ -_ _

+
• t MATCHING DETERMINES eMRA

r-

3:

~

absolute maximum ratings

0

~

electrical characteristics
PARAMETER

>

±22V
500mW
±30V
±15V
Indefinite
-55°C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range LM101A
LM201A
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

.........

r-

3:

N

0

~

>

(Note 4)

CONDITIONS

MIN

Rs ~ 50 kn

Input Offset Voltage

TA

= 25° C,

Input Offset Current

TA

= 25°C

Input Bias Current

TA

= 25°C

Input Resistance

TA

= 25°C

Supply Current

TA

= 25°C,

Large Signal' Voltage
Gain

T A = 25°C, Vs = ±15V
VOUT = ±10V; RL ~ 2 kn

Input Offset Voltage

Rs~ 50 kn

TYP

MAX

0.7

2.0

1.5
30
1.5
Vs

= ±20V
50

75

nA
Mn

,

3.0

160

3.0

I nput Offset Current
Average Temperature
Coefficient of Input
Offset Current

nA

2SoC ~ TA S 125°C
-55°C ~ TA :::; 25°C

0.01
0.02

Input Bias Current

mV

15

p.V/oC

20

nA

0.1
0.2
100

= ±20V

mA

V/mV
3.0

Average Temperature
Coefficient of Input
Offset Voltage

mV

10

4
1.8

UNITS

nA

Supply Current

TA

= +125°C,

Large Signal Voltage
Gain

Vs
RL

= ±15V, V OUT = ±10V

Output Voltage Swing

Vs

= ±15V, RL = 10 kn
RL = 2 kn

±12
±10

Input Voltage Range

Vs

= ±20V

±15

Common Mode
Rejection Ratio

Rs~50kn

80

96

dB

Supply Voltage
Rejection Ratio

Rs:::; 50 kn

80

96

dB

Vs

2:: 2 kn

1.2

2.5

~

nA/oC
nA/oC

mA

V/mV

25
±14
±13

V
V
V

Note 1: The maximum junction temperature of the LM101A is 150°C, while that of the LM201A
is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated
based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case.
For the flat package, the derating 'is based on a thermal resistance of 185°C/W when mounted
on a 1/16-inch-thick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The
thermal resistance 'of the dual-in-line package is 100°C/W, junction to ambient.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +75°C.
Note 4: These specifications apply for ±5V < Vs < ±20V and -55°C < T A < 125°C, unless
otherwise specified. With the LM201A, however, ali temperature specifiCations are limited to
-25°C ~ T A ~ 85°C.

127

guaranteed performance characteristics
Input Voltage Range

!

c::I

Voltage Gain

Output Swing

20r---r-~~~--~---r--,

20

r--~~---r-----r-----T--'"""T'-_

161-1-1-I--:J;;;=~~

15

r---ir-~-~--+--+~~

z
C

12 t----if---

w

~

,.,,-

II

c::I

r--r--.:

10

c::I

w

c::I

c
I-

Q

12

"7

~

>

Q

~~~
~\,,\-

>

I-

::I

~

94

iii
~

z

~

100

16

4

-55°C:::; TA

~-~-~-r--r--~~

10

15

20

10
15
SUPPL Y VOLTAGE (±V)

SUPPLY VOLTAGE (±V)

S: 125°C

10

20

10
15
SUPPL Y VOLTAGE (±V)

5

20

typical performance characteristics
Supply Current

ct

-

I _ssd c
-"'~

2.0 I--- I-- 1 0:

~ b---' ~oc

I-

z 1.5
w

I

a:
a:

1.0 I""""'"

en

0.5

T~ 0:_~5lc-

110

z

C
c::I

~~
1,. 0: \2So C - I---

::I

~
A.

;

A.
::I

w

--

100

V

c::I

C

!:;
Q
>

-

0

120

.!

u

Input Current

Voltage Gain

2.5

-

~ ~-

30

~
I-

1,. 0: 25"C

~
a:
a:
u

4

I-

::I
A.

:!

....... .......J.

BIAS ...... ~

20
0

::I

T,. 0: \25°C
~ ~-

90

40

.

"'I

..

3
2

~

20

Current Limiting
15.0

'"--

~

...........

- """-

z

~

I::I

:=
~

TA

=125°C

20

OFFSET

N

I'

Vs

=±15V

TA

,

~

Q

>

~

~

w
en

oZ

I"-

w

~~

.... -

a:
C

"-

::I

l"'1li.

CI

z

C

TA = 25°C

w

o

Common Mode Rejection

z

;
Z

60

z

40

~
::I
en

C

40

c

u

20
10

100

lk

10k

FREQUENCY (Hz)

128

a:

~

:!E

lOOk

1M

"

~v.~"'.\
I (('or.

PO~E

20 f-SINGLE
COMPENSATION
C1 = 30 pF I
TA =25°C
10

100

.1k

,

10k

FREQUENCY (Hz)

u

z

102
10'

C[

~

10°

Av = 1

I

~ 10-'

SINGLE POLE
COMPENSATION
Cl = 30 pF
TA = 25°C
lOUT = ±5 mA

I::I

c

~

"

w

l-

~

lOOk

§

!

~

?)- " -

100k

Closed Loop Output Impedance

~(('or.
"'~~,IX)- I - -

~10'

10k

1k

FREQUENCY (Hz)

,iI}~

",)...
60 I--'--«"~~~

~

w

:!E
:!E

100

~.o().

",.

80

~

Q

80

a:

c

10k
1k
FREQUENCY (Hz)

-"- -

100
100

~

Q

100k

100

Power Supply Rejection

Q

~

L

10

30

120

;

TA = 26° C

:!E 10-16

5
10
15
20
25
OUTPUT CURRENT (±rnA)

,...

~

en

o

15 100 125

",

w

c::I

!:;

5.0

50

I nput Noise Current

C

=25°C

25

10-15

!-?

'"

0

TEMPERATURE rCI

Input Noise Voltage

\

~
; 10.0

10
15
SUPPL Y VOLTAG~ (±V)

5

~

1'"1--.....

1
10
15
·SUPPL Y VOLTAGE (±V)

':""

0

0
-15 -50 -25

80

~

10- 2

~

1M

10-3
10M

10

100

lk

10k

FREQUENCY (Hz)

lOOk

1M

compensation circuits **
Single Pole Compensation

Two Pole Compensation

Feedforward Compensation
C2

R2
R2

Rl

YOUT
YOUT

YOUT

Cl

2:R'I+~2

CI2:~

Cs

= 30pF

Cs =30pF

C2=~

C2' 10 Cl

f.

=3 MHz

**Pin connections shown are for metal cano

typical performance characteristics (con't)
Open Loop Frequency Response

Open Loop Frequency Response
120
100

;
z
C

...

180 ~

80

JIo

en

135 ::

60

JIo

CD
CD

c

~
Q

>

G)

90

40

45

20

~\

iii 10
~
80

...

CD

c 40

Q

> 20

GAINTA
Vs
... Cl
C2

lk

10k lOOk 1M 10M

= 25°C
=±15V
= 30 pF
~300 ,pF

10

100

Large Signal Frequency
16

=25 C
Vs =±15V

12

l

1\

z

I-

=

Q

C, =30PF\
4

III
III

o
lK

I-o~
10K

lOOK

~

1\

z

~

...=

I-

=

I...

,

c

~

-2

' ....

>

-4

Q

100.

-6

10M

I

SINGLE
P?LE.

-8
-10

o

~

I

-

I/~

V
I

-

-

°IUTPIUT

45

Q

>

,

!.

10

100

lk

I...
c

I

I

TA = 25°C
Vs = ±15V
1
°
1

4

Large Signal Frequency Response

,

16

12

2
-2

~ -4
>
-6
Q

Vs =1±I~V
TA = 25°C

\,

FEEDFORWARD

~

11

1M

lOOk

-

T T

__ INPUT

~L

1

Respon~

Inverter Pulse Response
10

I

I

I I
1 I

I

I

I

TA = 25°C Vs =±15V
Cl =30 pF C2 =300 pF...,

~~

-8

I

-10

II

OU~PU~\ f-- -

8

I I

~OrO~E-

1,

10M

FREQUENCY (Hz)

OUTPUT

.......... ~

III

' ...... lU

1M

lOOk

I I

-- r-

10k lOOk 1M 10M 100M

FREQUENCY (Hz)

:

Voltage Follower Pulse

~
CD
z

i

~

10k

CD

10 20 30 40 50 60 70 80
TIME (J.IS)

20

I.

C

~

FREQUENCY (Hz)

r-J
INPUT-.I

\

JIo
90 G)

45

N

1M

\

40

...

TWO POLE

10

CD

CD

i

1\

r'\

Q

Voltage Follower Pulse Response

-~

90

m
,...

I-

10

4

CD

\

FREQUENCY (Hz)

~
CD
z

135 ~

Vs =±15V
TA =25°C
Cl = 30 pF
C2 = 300 pF

l

I

1\

, ,

2:

60

I I I

12

...

c

1l1li lOOk 1M 10M

16

CD

C, = 3pF
1111 I
SINGLE
POLE

1

I-

...=

180

z

Large Signal Frequency Response

Respon~

I I "!I

CD

iii 80

~

r\.

1k

TA

I

225

135::JIo
G)

"

100

FREQUENCY (Hz)

FREQUENCY (Hz)

~

JIo

en

~

-20
100

10

110 ~

J

,--'
\

J

~

225

PH~SE

~~

Z

c

CD

i

TWhOJ PO~E

......

100

225

Open Loop Frequency Response

~
z

4

CD

I...

2

- .-

.- -r
/

-INPUT

TA
Vs

CD

c -2
~

Q

>

-4
-6
-8

-

f

I

FEED FORWARD

=25°C ....,
=±15V

- --

~-

-10

o 10 20 30 40 50 60 70 80

012345678

TIME VLS)

TIME (IlS)

129

«
....
o

typical applications **

N

~
........

Variable CapaCitance Multiplier

Simulated Inductor

-I

....o«
....

Rl

R2

1K

10K

Fast I nvinting Amplifier With High
I nput Impedance
Cl
'pF

~

-I

C2
l50pF

Cl
O.I$AF

~ ~'-------------i~------------------~

Inverting Amplifier
with Balancing Circuit

l ~At AZet
As· H2
R,,"Al

Integrator with Bias Current Compensation

Sine Wave Oscillator
SINE OUTPUT
R3

lOOK
1%

...--...-JVVY--v·

C3

R4
SK

R4
1,K

'~,r

v," --'\11.,.".......--------------,

VOUT

CS

·AdiustforltrOmte••tordrih.
Currlntdf.h typically 0.1, nArC
onr-5S0Cto12S0Ctemper.tur' rl ftII·

150pF
RS

RI
220'

01
1.3Y

1%

2.
fo,,'OkHz

02
UV

application hints**
Protecting Against Gross
Fault Conditions

,....---JII..,.,.--.....___... DUTrUT
R3

Although the LM 101 A is designed for trouble free operation, experience has
indicated that it is wise to observe certain precautions given below to protect the
devices from abnormal operating conditions. It might be pointed out that the
advice given here is applicable to practically any IC op amp, although the exact
reason why may differ with different devices.

C2

R"

*ProtlCbouqlut-not
nttdtd .....n R4isUltd

Compensating For Stray Input
Capacitances Or Large Feedback
Resistor
C2

When driving either input from a low-impedance source, a limiting resistor should
be placed in series with the input lead to limit the peak instantaneous output
current of the source to something less than 100 mAo This is especially important
when the inputs go outside a piece of equipment where they could accidentally be
connected to high voltage sources. Large capacitors on the input (greater than
0.1 ,u.FI should be treated as a low source impedance and isolated with a resistor.
Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned
off, so the isolation is usually needed.
The output circuitry is protected against damage from shorts to ground. However,
when the amplifier output is connected to a test point, it should be isolated by
a limiting resistor, as test points frequently get shorted to bad places. Further,
when the amplifier drives a load external to the equipment, it is also advisable
to use some sort of limiting resistance to preclude mishaps.
Precautions should be taken to insure that the power supplies for the integrated
circuit never become reversed-even under tran.sient conditions. With reverse voltages greater than 1 V, the IC will conduct excessive current, fuzing internal
aluminum interconnects. If there is a possibility of this happening, clamp diodes
with a high peak current rating should be installed on the supply lines. Reversal of
the voltage between V+ and V- will always cause a problem, although reversals
with respect to ground may also give difficulties in many circuits.

Isolating Large Capacitive Loads

INPUT

The minimum values given for the frequency compensation capacitor are stable
only for source resistances less than 10 kn, stray capacitances on the summing
junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these
conditions are not met, it becomes necessary to overcompensate the amplifier
with a larger "ompensation capacitor. Alternately, lead capacitors can be used in
the feedback network to negate the effect of stray capacitance and large feedback
resistors or an RC network can be added to isolate capacitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot
be i'gnored altogether. Generally it is necessary to bypass the supplies to ground at
least once on every circuit card, and more bypass points may be required if more
than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low
inductance capacitors because of the higher frequencies involved.

**Pin connections shown are for metal can.

130

r-

s:

Operational Amplifiers

eN

o

~

»

LM301A operational amplifier
general description
example, as a summing amplifier, slew rates of
10 Vips and bandwidths of 10 MHz can be
realized. I n addition, the circuit can be used as a
comparator with cfifferential inputs up to ±30V;
and the output can be clamped at any desired level
to make it compatible with logic circuits.

The LM301 A is a general-purpose operational
amplifier which features improved performance
over the 709C and pther popular amplifiers.
Advanced processing techniques make possible an
order of magnitude reduction in input currents,
and a redesign of the biasing circuitry reduces the
temperature drift of input current.

The LM301 A provides better accuracy and lower
noise than its predecessors in high impedance
circuitry. The low input currents also make it
particularly well suited for long interval integrators
or timers, sample and hold circuits and low frequency waveform generators. Further, replacing
circuits where matched transistor pairs buffer the
inputs of cOhventional IC op amps, it can give
lower offset voltage and drift at reduced cost.

This amplifier offers many features which make its
application nearly foolproof: overload protection
on the input and output, no latch-up when the
common mode range is exceeded, freedom from
oscillations and compensation with a single 30 pF
capacitor. It has advantages over internally compensated amplifiers in that the compensation can
be tailored to the particular application. For

schematic** and connection diagrams
COMPENSATION

Note· Pin 4 connected to case
TOPVIEW

Order Number LM301AH
See Package 11

BALANCEI I

B

COMPENSATION

I

V'

6

OUTPUT

5

BALANCE

COMPENSATION
INPUT

2
LMJOIAN

v· 4

TOPVIEW

Order Number LM301AN
See Package 20

typical applications **
Integrator with Bias Current Compensation
...--_..JV\I'v--V'

Low Frequency Square Wave Generator

Voltage Comparator for Driving
DTL or TTL Integrated Circuits

RI
1M

R4

15K

Rl
V'N-JV\fY-. .- - - - - - - - .

VOUT

*AdiUst for zero int.,tor drift.
Current drift typic:llly 0.1 nA/oe
over O°Cto 70°Ctemper.ture
range.

**Pin connections shown are for metal can.

131



"

~
""""
i..o-" ~

~
~

Voltage Gain
100

20

'"

"

~

15

~

~

t:l

z
~
en

-

~
~
~~
~~\~\~
-r--

~

:::;.. I--"" ~\~\~I I

~ ,~'4-

10

....

~
~
c

DoC ::;TA ::;70°C

i.---"

~_t'4~~ \\\.-1

z

~

C(

~

t:l

88

t:l

-

82

c:(

~
c

,...".. ~

lIt\~\lItulit

",...

r--

....... ~"""""



76

DoC :S:TA ::;WC

DoC :S:TA ::;70°C
70
15

10

10

SUPPLY. VOLTAGE (±V)

10

15

15

SUPPL Y VOLTAGE (±V)

SUPPLY VOLTAGE (±V)

typical performance characteristics
Supply Current

Voltage Gain

Input Current
100

120

2.5

-

80

;;t
.§.

....
~

2.0

TA-

1.5

,....

l--

a:
a:

B

~

-

I

1250~

;
z
C(
t:l

100 " .



~

90

OFFSET

o

80
15

-

.....

"

10.0

~
~

Input Noise Current

,~
C"'I

N-

~

~

....



\~ ,~

::I

en

C
z

l>l

C

........ ~



1M

FREQUENCY (Hz)

-4

INPUT"'I

lOOK

--

-10

I

I

I

TAI= 2JoC
Vs = ±15V

-8
'10M

OUTPUT

I

\

~-

I--~

I

I/~

!I

\

-2

-6

" 1'""",

1"'-

!\

t:l
c:(

IC

,

~

~
en

C1 = 3pF

~

20

2:
Z

I-

40

10K

8

t:l

1\

§:

en

lK

10

, '''1'

t::I

100

100

Voltage Follower
Pulse Response
TA =25 ·C

80

10

10

FREQUENCY (Hz)

t--~----"'''_I_--+---+-


.:!:!.

";.

0.5

10

--

..

::I

:;

r--

BIAS

20

~

c:(

r-~

40

a:
a:

t:l

1.0

~

~

110

60

I I
o

10 20 30 40 50 60 10 80
TIME (JAS)

133

«
~

o

typical applications ** '(con't)

M

....~
Standard Compensation and
Offset Balancing Circuit

Fast Summing Amplifier
R2

lOK
Rl

lOK

VOUT

Rl
10M

01

lOp'

PowtrBandwidth: 250kHz

R2

SmlIISIgnalBlndwldth: 35MHz

51M

Slew Rltl!: 10V!/.ls

R3
50K

Bilateral Current Source

Fast Voltage Follower

Rl
lOOK

VOUT

v,.

IOUT=

~~1~:

R3=R4+ Rs

R,=R 2
PowerSandw.dth 15kHl
Slew Rate' 1V/ps

R2
lOOK
01%

**Pin connections shown are for metal can.

134

R.
495K

r-

s:.....
o

Operational Amplifiers

N

lM102 voltage follower
general description
The LM102 is a high-gain operational amplifier designed specifically for unity-gain voltage follower
. applications. Built on a single silicon chip, the device
incorporates advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at
zero collector-base voltage to virtually eliminate
high temperature leakage currents. It can therefore
be operated in a temperature stabilized component
oven to get extremely low input currents and low
offset voltage drift. Other outstanding characteristics of the device include:
•

Fast slewing - 1OV Ips

•

Low input current - 10 nA (max)

•

High input resistance - 10,000 Mr2

•

No external frequency compensation required

•

Simple offset balancing with optional 1 K potentiometer

•

Plug-in replacement for both the LM101 and
LM709 in voltage follower applications.

The LM102, which is designed to operate with supply voltages between ±12V and ±15V, also features
low input capacitance as well as excellent small signal and large signal frequency response - all of
which minimize high frequency gain error. Because
of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

schematic** and connection diagrams
r---~-+-+~------------------~--~--~

TOPVIEW

NOTE' Pin 4 connected to case

Order Number LM102H
See Package 11
BIAS

Sample and Hold With
Offset Adjustment

typical applications **
Low Pass Active Filter
CI·
940pF

OUTPUT
INPUT

OUTPUT

RI
24K

INPUT

-w""'""".....JV\.J>v-......--::.t

I

C2·
470
PF

·PQlyc.rbonlte-di,'tctric capacitor.
·Valuesare for 10KHz cutoff. Use

silvered mica capacitors for good
temperaturestabl'lty

High Pass Active Filter

High Input Impedance
AC Amplifier

OUTPUT
OUTPUT

metalizedpolycarbonatecapacitors
for good temperature stability

**Pin connections shown are for metal can.

135

N

o....

~

absolute maximum ratings

-I

Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short-Circuit
Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature
(soldering, 10 sec)

±18V
500mW
±15V
Indefinite
-55°C to 125°C
,..-65°C to 150°C
300°C

electrical characteristics (Note 4)
PARAiOIETER

CONDITIONS

MIN

TYP

Offset Voltage

2

Average Temperature Coefficient of
Offset Voltage

6

Input Current

3
10 10

Input Resistance
Voltage Gain

RL~ 10 kQ

0.999 '

Output Resistance
Output Voltage Swing (Note 5)

±10

Supply Current,

5

mV
flVtC

10

nA
Q

0.9996
2.5

3.5

Q

V

±13
5.5

mA

Positive Supply Rejection

60

dB

Negative Supply Rejection

70

dB

Input Capacitance
Offset Voltage

-55°C ~ T A ~ 125°C

Input Current

T A = 125°C
T A = -55°C

Voltage Gain

-55°C ~ T A ~ 125°C
RL 2. 10 kQ

Output Voltage Swing (Note 5)

RL ~ 10 kQ

Supply Current

T A = 125°C

Note 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 45°C/W junction to
case or 150°C/W junction to ambient (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient
temperatures to 70°C. It is necessary to insert a resistor greater than 2 kH in series with
the input when the amplifier is driven from low impedance sources to prevent damage
when the output is shorted.
Note 4: These specifications apply for T A = 25°C, V s = ± 15V and C L :::; 100 pF unless
otherwise noted
Note 5: Increased output swing under load can be obtained by connecting an external
resistor between the booster and V- terminals.See curve.

136

UNIT

10 12

0.8
RL~8 kQ

MAX

3
30

3.0

pF

7.5

mV

10
100

nA
nA

0.999
V

±10
2.6

4.0

mA

guaranteed performance characteristics
Input Current

Supply Current

Output Swing
15

100

V~:

I±15V
I- VOUT : ± 10V

~~

~

1'.

1

'.

I-

""

a:

~

10

" I\..

~

,

~

" -MAXIMUM

l-

=>

C>.

""

TYPICAL~

,

1.0
-55 -35 -15

5

I~''''r'-

25

45

65

~
~

_.... Wr>-~ ,- ,

~

a:
o

~

J

5

~

--

.-

I

~

I- Vs: ±15V

1I

1
1
25

45

65

85

-55 -35 -15

105 125

TEMPERATURE ('C)

TEMPERATURE ('C)

"""""

~~\Cr'
I

........

-. ....

.1--

""'"I

0
-55 -35 -15 -5

85 105 125

M1xIM~M

N--L I"""'"

... - .... T~PIC~L
,," ... -~

.....

~

........

5

25

45

65

85 105 125

TEMPERATURE (C)

typical performance characteristics
Voltage Gain
0.9999

Voltage Gain

....

-

~~

"" 0.999

--~

~

<.:l

~>

,

TA : 25°C
TA : 125°C

II

r-~

-

...

~

~

II
lOOK

I-I--

-15 -

~

-20

1M

lOOK

~

-15

"'.i

10

""

"'"

Vs: ,'5V ......

1 II

=>

n

I~'

l-

tn-

=>
a

-<

I-- r--~- I-- r--~- I-- r---

::t>11-

""

~

l-

=>
a

··5

c>,('>

30

40

J--

I--

~.-~

---

~.

,~

,,

~,'

0.1
1M

10K
lOOK
FREQUENCY (Hz)

lK

VOUT

: ± 1OV

-+-f--+--+-f--I

Vs: ± 15V

~

~50 __~~~+--+-1-+--+-1---1

~

~
~ 20

\ 1\

,,

\~

\

1.0 L--L.---l._..I..---L.--I_..I..---L._l...-J
-55 -35 -15 5 25 45 65 85 105 125

LOAD CU RRENT (mAl

Large Signal Frequency Response

--I-

L-~

o

\
'-.

20

I- TA =25'C ......

~

Output Swing

\\

a
a

LOAD CURRENT (mAl

~

TA : 125°C ....

- ..

Vs: ±15V
Rs - 10K

\

:
10

=>

0

10M

\

!

a

1.0

l-

1M

Vs: +15V

11

=

~
=>
C>.

-

III I

~TA = -55'C.

l-



=>

I-

!•

a

10

~

-";_~ ;LIJ-'-i'j,
':. ~l~"'.,,&_

<.:l

!~,i;:::;_

l-

...-, ,
"'""'"

~ -10

t-<_ -<
»

~

u

;z

;':0 kfl

Negative Output Swing

15

<.:l

"-J~

=

FREQUENCY (Hzl

Positive Output Swing

-

.....
=>

a

10K

a: 200

~

""

-10

I""",,~

lOOK

FREQUENCY (Hzl

1M

-15

'"

Cl

-5

0

~

~

100

U--L-L..2::=====-~LU
10

TIME (llsl

25

45

65

85

105

125

AMBIENT TEMPERATURE eel

137

N

o

Operational Amplifiers

N

:E
..J

LM202 voltage follower
general description
The LM202, a limited temperature range version of
the LM 102, is a high-gain operational amplifier designed specifically for unity-gain voltage follower
applications. Built on a single silicon chip, the device incorporates advanced processing techniques
to obtain very low input current and high input
impedance. Further, the input transistors are operated at zero collector-base voltage to virtually
eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized
component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:
•

Fast slewing: 1OV /J.1s

•

Low input current: 15 nA (max)

•

High input resistance: 10,000 MQ

•

No external frequency compensation required

•

Simple offset balancing with optional
potentiometer

•

Specified for operation from -25°C to 85°C

•

Plug-in replacement for both the LM201 and
LM709C voltage follower applications.

The LM202, which is designed to operate with
supply voltages between ±12V and ±15V, also features low input capacitance as well as excellent
small signal and large signal frequency response all of which minimize high frequency gain error.
Because of the low wiring capacitances inherent in
monolithic construction, this fast operation tan be
realized without increasing power consumption.

schematic and connection diagrams

TOPVIEW

6

J-.........- - t - " " ' - - - - - OUTPUT

NOTE Pm 4 connected to case

Order Number LM202H
See Package 11
.....- - - - B I A S

. . . . .- -_____

~--~----

4

~~-----V-

typical applications

Sample and Hold With
Offset Adjustment

Low Pass Active Filter
CI·
940pF

OUTPUT
INPUT
Rt
24K
INPUT-W""""....-¥4".,.......~

C2"
'I410PF

OUTPUT

·Valuis are for lOKHr cutoff. Use
silvered mlCII c.pacitors for good
temper.turest.bility.

High Pass Active Filter

·Polyurbonate·di,ltCtrlccapaCllor.

High Input Impedance
AC Amplifier

Rt

110K

Ct
O.Ot "F
Ct"
O.G2"F

OUTPUT

-n-......-~.

INPUJ--1I-.....

• Values are for 100 Hz cutoff. Use
metalizedpolycarbonatecapacitors
for good temperature stability

138

1K

INPUT---i

OUTPUT

r-

s:N

absolute maximum ratings

o

N
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circ1uit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

electrical characteristics

±18V
500mW
±15V
Indefinite
-25°C to 85°C
-65°C to 150°C
300°C'

(Note 4)

PARAMETER

CONDITIONS

MIN

Offset Voltage

3

Average Temperature Coefficient of Offset Voltage

7
10 10

Input Resistance
RL ~8 KQ

.999

Output Resistance
Output Voltage Swing

MAX
10

RL ~8 KQ

10 12

Positive Supply Rejection

60

Negative Supply Rejection

70

1.000

0.8

2.5

-25°C::; T A ~85°C

Input Current

T A = 85°C
T A =-25°C

nA

Q
V

5.5

15
1.5
30

mA

pF

3.0

Offset Voltage

mV

Q

0.9995

3.5

Input Capacitance

15

±10

Supply Current

UNITS

Ilvtc

15

Input Current

Voltage Gain

TYP

5.0
50

mV
nA
nA

Note 1: For operating at elevated temperatures, the device must be derated based on a
100°C maximum junction temperature and a thermal resistance of 45°C/W junction to
case or 150° C/W junction to ambient (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 85° C and ambient
temperatures to 55°C. It is necessary to insert a resistor greater than 2 kn in series with
the input when the amplifier is driven from low impedance sources to prevent damage
when the output is shorted.
Note 4: These specifications apply for T A = 25° C, Vs = ± 15V and C L < 100 pF unless
otherwise noted.
-

139

N

o
N

guaranteed performance characteristics

~

..J
Input Current

Output Swing

100

Supply Current

10
VOUT = ±10V
f- V, = ±15V

~

~

. '"

"" "

.~.,

I-

:::l
a:

a

10

a:!!.
~

!Io...MAX1MUM

«

-10

10

30

50

TEMPERATURE

~

4

c

g

_i""'"

- ..~'"'"'

~

-I""'-

".

... ~

....

TYPICA~_

--

I-o.!AXIMUM

-r- -TYPICAL

r-

I--f--

~,-,

3

....

-'.

~

v, = ±15V

"'-'II
1.0
-30

5 I-~

in

TYPICAL-II"-

......

6

I;;

~

,,~

7 1--1-- -IMAlIMUM

w

I

I'

70

o

90

-30

-10

rc)

10

30

50

70

o

90

-30

-10

10

TEMPERATURE (OC)

~O

30

TEMPERATURE

70

90

rc)

typical performance characteristics
Voltage Gain

Output Resistance

Voltage Gain

0.9999

10

100
I

~

0.999

0.99
TA = 25°C
V, = +15V

~

" ,,

~
~

lK

-15

10K

II

~ -10

"

lOOK

TA
-20
lOOK

1M

FREOUENCY'(Hz)

-v,

Positive Output Swing

~

~

lK

10K

Output Swing

LOAD CURRENT (mA)

\.

I

10

1

V,=o15V_
R,= 10K _

VOUT = ±10V
V, = ±15V I
I
I
I-- RS4 = 00

........,....

,\.

RS4 = 300n

I
I
I

o

-~

~-.l~ ~~- I-lUI
\

-'.
o

n

R54LJon

1.0
-30

-10

LOAD CURRENT (mA)

Large Signal"Frequency Response

l

-H-rr

'"n

10

~ ±115V' , ,

500

i'
.5
~

400

~
........

~ 300

~

30

'" i'.

i:lQ

I-

:::>
a..

g

a:

FREOUENCY (Hz)

..... .... ~ ..... 1..-0 ~"'"
50

70

90

I'"

~

lOOK

..... .... 1--

600

'"z

10K

~

Maximum Power Dissipation

Large Signal Pulse Response

10

o

-

I""""

TEMPERATURE ("C)

TA = 25°C
Distortion < 5%

"-I'"""

.... ~

_I""""

II

\\

I-- V, ; ±15V +-+-c.........+-c+-+-.J-+-l

°0~~~~-1~0~-IL5~~2LO~J25~~3O

-, "

1M

lOOK

FREOUENCY (Hz)

?" \ -

-5

l./

0.1
10M

....\.
""' ..... ?~ ~;':- 'j.o
\~- -

~

140

~

1.0

Q

1M
, FREOUENCY (Hz)

'"

'"

~

i iI

\

:2

v,

~

1\'''1-

-- -- --

~ -10

12

II

= ±15V
25 C

~

10

Negative Output Swing
-15

14

z

«

I;;

~,

R, = 100 kn

~

I

0.9

-5

u

~~~~d·~

~"'"

:2

= +15V
>-T: = 25°C

g

R'ITt~

0

r-v

~

....,.",
~

200

~..",.

100

,

~

1M

10
TIME (/Is)

35

45

55

65

75

AMBIENT TEMPERATURE (OC)

85

r

s:
CAl

Operational Amplifiers

o

N

~M302 voltage follower

general description.
The LM302, an epoxy encapsulated version of the
LM 102, is a high gain operational amplifier designed specifically for unity-gain voltage follower
applications. Built on a single silicon chip, thp device incorpor<;ltes advanced processing techniques
to obtain very low input current and high input
impedance. Further, the input transistors are operated at zero collector-base voltage to virtually
eliminate high temperature leakage currents. It can
therefore be operated in a t,emperature stabilized
component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:
•
•

Fast Slewing - 1OV l,us
Low input current - 30 nA (max)

•
•
•
•
•

High input resistance - 1,000 Mn
No external frequency compensation required
Simple offset balancing with optional 1 K
potentiometer
Specified for operation from O°C to 70°C
Plug-in replacement for both the LM201 and
LM709C in voltage follower applications.

The LM302, wh ich is designed to operate with
supply voltages between ±12V and ±15V, also features low input capacitance as well as excellent
small signal and large signal frequency response all of which minimize high frequency gain error.
Because of the low wiring capacitances inherent in
monolithic construction, this fast operation can be
realized without increasing power consumption.

schematic and connection diagrams
BALANCE
~

____

-+-4~

__________________

~

__

~

___
7 v+

TOP VIEW

}--+-_--+-------6::....0UTPUT

NOTE Pin 4 connected to case

Order Number LM302H
See Package 11
t-::-c----- BIAS
~----~------~~------------~--------V-

typical applications

Sample and Hold With
Offset Adjustment

Low Pass Active Filter

OUTPUT
INPUT
OUTPUT

RI
24K

INPUT -~I\,-+-.JV'.tI'v-......-..::j

1

C2'

470
PF

·Valuesare for 10KHz cutoff Use
silvered mica capacitors for good
temperature stability

High Pass Active Filter

"Polycarbonate-dlelectmcapacltor

High Input Impedance
AC Amplifier

RI
IIOK
OUTPUT

OUTPUT

RI
lOOK

R2

R2

IIOK
"Values are for 100 Hz cutoff. Use

lOOK

metaliledpolycarbonatecapacitors
forgoodtemperaturestablltty

1111

N

o

M

absolute maximum ratings

~

...J

±18V
400mW
±15V
Indefinite
0
O°C to 70
0
-65°C to 150
0
300

Supply Voltage
Power Dissipation (Note 1)
lilPut Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

electrical characteristics

e
e
e

(Note 4)

PARAMETER

CONDITIONS

MIN

Offset Voltage

TYP
5

Average Temperature Coefficient of Offset Voltage

20

I nput Current

10
109

I nput Resistance
Voltage Gain

RL> 8

Kn

0.9985

Output Resistance
Output Voltage Swing

RL28

Kn

MAX
15

mV

J.1vtc
30

nA

n

10 12
0.9995

1.000

0.8

2.5

±10

Supply Current

UNITS

n
V

3.5

5.5

mA

Positive Supply Rejection

60

dB

Negative Supply Rejection

70

dB

I nput Capacitance
Offset Voltage
Input Current

S. T A S. 70°C
T A = 70 e

O°C

0

T A = O°C

Note 1: For operating at elevated temperatures, the device must be derated based on a
85°C maximum junction temperature and a thermal resistance of 45°C/W junction to
case or 150°C/W junction to ambient (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient
temperatures to 55°C. It is necessary to insert a resistor greater than 2 Kn in series with
the input when the amplifier is driven from low impedance sources to prevent damage
when the output is shorted.
Note 4: These specifications apply for T A = 25°C, Vs = ±15V and C L
100 pF unless
otherwise noted.

S

142

pF

3.0

3.0
20

20

mV

15
50

nA
nA

r-

s:

guaranteed performance characteristics

eN

o

N
Input Current

Supply Current

Output Swing

100

10

~

~

....

-

~

..
:i

MAXIIMUM- f--

""""'~

' ' '---,

'"

r--~

....
~

~ f=TYPICAL

~

"" -

20
40
60
TEMPERATURE (OC)

±l~V

VOUT = ±10V

----- ...... -

6
5

~ 4

'"
1.0

_ Vsl=

8

MA~IMUIM

.§

--~ 1-'" .1.. ....

,-

--

ct 6

",

~-

TYPICAL

~

5

~

4

-... -. -.~~h

:::; 3

~

3

~M

en 2

:--

-

Vs = ±15V
1
20
40
60
TEMPERATURE (OC)

80

20
40
60
TEMPERATURE rc)

80

80

typical performance characteristics
Voltag~

Voltage Gain

Gain

Output Resistance

10

0.9999

100

"

0.99

11..1,.,1
2

~

'\

II
lK

10K

R, = 100 kH

;:

II

-20
lOOK

1M

FREQUENCY (Hz)

-10

-

2

..,'"

-'

-10

-5

~
::
0

c:(

\

~

~ I-"'

I

R = llon

..-,......

..- ~~

-~

1.0

4

80

20
40
60
TEMPERATURE rC)

Maximum Power Dissipation

~z

2

i=

:::>

<>.
I-

<>.
....
:::>

:::>

0

-5

1M

5a: 200
~

-10

I' .... ... ~

'-...""'~

:iii

I-

:::>

400

0300

~

~

I-

lOOK
FREQUENCY (Hz)

I

10

..,'"

10K

--,-

2.0

Large Signal Pulse Response

v, ~ !t'5v I I
TA = 25"C
Di,tortion < 5%

"-

I

R54=3~

500

..,'"

o

3

~~

-......,..... _I"'"

~ ~ I-" I--

l

10

0

-R~""!'

LOAD CURRENT (mA)

Large Signal Frequency Response

12

2

5.0

zc:(

1\

o
o

~
ti;

\

30

VOUT = ±10V
- V = ±15V
I

- i

\

<>.

~

Output Swing

1\

:::>

1M

lOOK

10

..

,

~

14

10K

FREQUENCY (Hz)

l

I-

25

lK

10M

Vs = ±hv
TA =25°C
Rs= 10K

-~

.....

"

0.1

1M
FREQUENCY (Hz)

I

Vs = ±15V
TA = 25°C

10
15
20
LOAD CURRENT (mA)

~

1.0

0

1 II

-1~

i'ooo.

~

....
:::>
....
:::>

~r ..I-I-

1

-~

~

ti;

Negative Output SWing

Positive Output Swing
1~

"

-15 -Vs = :15V
TA = 25"C

"

lOOK

II

I--T: = 25'C
10

C[

Rs = 30 kn

'" -5

"-

-"+~J.

~~

~

TA = 25'C
V, = ,'5V

0.9

....,

R, = 10 kS1

I'"'-

0.999

II
r- Vi ~ ~;5V

:

....

C(
w
t:I

<
!:;
C
>

C

~

BB

t:I

10

~

B2

~~~
"7 ~\"'\~
I

76

-

I

r--- LM107: -55°C :S;TA :::;125°C
I-- LM207: -25°C :S;T A :::;85°C

-

O~--~--~--~--~~--~

. 5

15

10

0

20

5

10

SUPPLY VOLTAGE (±V)

15

I

70

20

~

I

I

10

SUPPl Y VOLTAGE (±V)

I

15

20

SUPPL Y VOLTAGE (±V)

typical performance characteristics
Supply Current

"'....

2.0

.!

:::l
a::

1.5

~

--

--"~

~

~,. :'i5°c

1.0

110

C(

I

t:I

t:
::I
CI)

~

I l
---T,.:-55=

z

-~~ r - -

::I
C,)

0

J

I
I--T ,,-55 C

-

a::

::;

Input Cu rrent

Voltage Gain
120

2.5

w

100

t:I

<

!:;
c
>

V

-~

",...--

90

0.5

-

~-

--""'"'

...

0

-

......... ~
BIAS --

0

T,. : 25°C

20

5

..

T,.: 125°C

..

3

-.......

2

SUPPl Y VOLTAGE (±V)

OFFSET

-r---t--

0
-75 -50 -25

- ,-'\
~

~
t:I

10.0

"'\

TA:125°C

TA

<
!:;
c
>

=

::I

~ 10- 25

""

w

is

~I'-o

2

w

a:

1"00 . .

a::

~

CI)

15

20

25

30

~

~

10-16
10

OUTPUT CURRENT (±mA)

100 ~

~

80

z

C(
t:I

60

"-~

<
!:;
c
>

40
20

10

100

~

FREQUENCY (Hz)

W

t:I

....
::I
....
::I

1\

0.;.

4

"

\

<
!:;

-2

>

-4

c

,

... - j

INPUT __

!\

Z

z

1K 10K lOOK 1M 10M

~

t:I

~
C

B

~

12

t:I

-20

146

Voltage Follower
Pulse Response
10

T~I:25ob _

'""-

lOOk

10k

FREQUENCY (Hz)

TA : 25°C
Vs: ±15V

~

lk

100

10

Large Signal
Frequency Response

Vs: ±15V

r'\.

10-26

lOOk

10k

lk

16

w
t:I

~

100

,...

~

FREQUENCY (Hz)

Open Loop
Frequency Response
120

~

2

Z

10

'"'-

<

::I

d

<
w

\

C,)

~

w

CI)

I'

a::

<
::I

o

75 100 125

I'-.

:::l
a::

~

is
z

25°C

5.0

o

--

50

,

....

w

t:I

I'

3E

....

....
::I

25

I.

Vs = ±15V

..........

CI)

c

0

Input Noise Current

Input Noise Voltage

2

~

20

15

~

SUP!'l Y VOLTAGE (±V)

Current Limiting
15.0

10

I'"

0

1
15

~

4

BO
10

r--..

0

-6

V

\

,..- -'"

10K
FREQUENCY (Hz)

lOOK

OUTPUT
I

I

T,.I: 2JoC
Vs: ±15V

~

I I

-10

lK

--

I if~

\

-8

~~

I I

o 10 20 30 40 50 60 70 Bo
TIME (14)

typical applications ** (con1t)

Tunable Notch Filter

Differential Input Instrumentation Amplifier

R2

R4

IK

lOOK

0.'%

0.1%
VON

OUT~UT

RJ
1K

R5
100K

0.1%

0.1%
R2

R4

-,

SDK

01%

R5
50K
01%

fO=b\.-1f:1~2(R5)2
C2

6"'

**Pin connections shown are for metal can.

147

Operational Amplifiers
LM307 operational amplifier
general description
The LM307 is a complete, general purpose operational amplifier, with the necessary frequency
compensation built into the chip. Advanced pro·
cessing techniques make the input Currents a factor
of ten lower than industry standards like the
709C. Yet, it is a direct, plug-in replacement for
the 709C, LM201, MC1439 and 741 in most
appl ications.

foolproof: overload protection on the input and
output, no latch·up when the common mode range
is exceeded, as well as freedom from oscillations.

The LM307 provides better accuracy and lower
noise than its predecessors in high impedance
circuitry. The low input currents also make it
particularly well suited for long interval integrators
or tim~rs, sample and hold circuits and low frequency waveform generators. Further, replacing
circuits where matched transistor pairs buffer the
inputs of conventional IC op amps, it can give
lower offset voltage and drift at reduced cost.

In additi'on to reduced input current, the offset
voltage and offset current are guaranteed over the
entire common mode range and maximum drift
specifications are given. The amplifier also offers
many features which make its application nearly

schematic** and connection diagrams
Metal Can

Flat Package
Ne
Ne

INPUTS
NOTE Pm 5 conllected to bottom of package
TOP VIEW
NOTE Ptn 4 connected to ease
TOPVIEW

Order Number LM307H
See Package 11

Order Number LM307F
See Package 3

Cavity Dual-In-Line· Package

Molded Dual-In-Line Package
8 Ne

NC 1
13

v+

INPUT 2

7

INPUT 3

6 OUTPUT

12

v+

INPUT

4

11

INPUT

5

10 OUTPUT

V'

6

5 NC

V' 4

NOTE: Pin 4 connected to bottom of plCklge.
TOP VIEW

NOTE: Pm 6 connected to bottom of pachge.
TOPVIEW

Order Number lM307D
See Packag~ 1

typical applications,**
Tunable Notch Filter

VON

Differential Input Instrumentation Amplifier

R2
lK
0.1%

lOOK
0.1%

R3
lK
0.1%

R5
lOOK
01%

VOU1'

Rl
R4
50K
01%

~

R2

~

R3

R4;: R5 = ~2J

fO=2Tr"f~C2(R5)2

R5
50K

01%

**Pin connections shown are for metal can.

148

Order Number LM307N
See Package 20

R4

absolute maximum ratings
±18V
500mW
±30V
±15V
Indefinite
O°C to 70°C
-65°C to 150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration '(Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics

(Note 4)

:

PARAMETER

MIN

CONDITIONS

:s;; 50

kr2

TYP

MAX

2.0

7.5

UNITS

I nput Offset Voltage

T A -= 25°C, Rs

I nput Offset Cu rrent

T

A'= 25°C

3

50

nA

I nput Bias Current

T A:;::; 25°C

70

250

nA

Input Resistance

T A = 25°C

Supply CurJent

T A ~ 25°C, Vs = ±15V

Large Signal Voltage
Gain

T A = 25°C, Vs = ±15V
V OUT = ±10V, RL2 2 U2

I nput Offset Voltage

Rs:S;; 50 kr2

0.5

2
1.8

25

Average Temperature
Coefficient of Input
Offset Voltage
Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

25°C < T A < 70°C
O°C ~T A '::;-25°C

Mr2
3.0

160

6.0

0.01
0.02

I nput Bias Current

mV

mA

V/mV
10

mV

30

}1vtc

70

nA

0.3
0.6
300

nAtC
nAtC
nA

= ±10V

Large Signal Voltage
Gain

Vs =;: ±15V, V OUT
RL2: 2 kn

Output Voltage Swing

Vs = ±15V, RL = 10 kn
R L =2kD

±12
±10

Input Voltage Range

Vs = ±15V

±12

Common Mode
Rejection Ratio

Rs:S;; 50 kr2

70

90

dB

Supply Voltage
Rejection Ratio

Rs:::; 50 kr2

70

96

dB

15

V/mV
±14
±13

V
V
V

Note 1: For operating atelevated temperatures, the device must be derated based
o
on a 100°C maximum junction temperature and a thermal resistance of 150 C/W
junction to ambient or 45°C/W junction to case.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage
is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 70°C and
ambient temperatures to 55°C.
Note 4: The specifications apply for OoC ~ T A ~ 70°C and ±5V ~ Vs~±15V,
unless otherwise specified.
149

......

o

guaranteed performance characteristics

M

~

..J

Output Swing

Input Voltage Range
20

~...

l,...;'

l/~

Z

c:(

12

V'
./
,~t:.>
~~
:\\~,;.... ~

t:I

c:(

:;

i.,..-" ~

0

....>

t...,...- i'"

"""

~

~

>

15

;

t:I

z

~

....

~
....

f--

z

~

~

t:I

~

~;;....-

82

c:(

:;

~~\\\.-

1.,...00 ~

'~

~\~\~

...
t:I

~_1.'f..

~ ~ I-" ~~'I\'~I

88

;:

~

~
~~ f---f--- f-~\'I\\~
f----

::;)

::;r A ::; 70°C

DoC

~

~ \Ii:)'f..

10

0

:.,..- ~

~

100
94

16

t:I

...a::

Voltage Gain

20

,.",.,.

~~

0

>

I

76

DoC ::;TA ::;70°C

Doe::; TA ::; 70°C
70
15

10

10

SUPPLY VOLTAGE (±V)

15

10

SUPPLY VOLTAGE (±V)

15

SUPPL Y VOL TAGE (±V)

typical performance characteristics
Supply Current

Voltage Gain

Input Current
100

120

2.5

;t

T

;

T A ~ 25°C

.§

....

1

1

~
a::
a::

1.5

u

1.0

L-- +-"

~

110

z

;:
t:I

w

::;)

~

-

~

100

~

t:I
c:(

:;

i = 2~oc
~,.........-

0-

1....

20

~
a::
a::

:;>

u

....

~
~

90

.......
o

80
10

15

Input Noise Voltage

"

10.0

~
....
~
....
::;)

c:(

:;

...
>

cz

(")

a::

c:(

~

C

.... ~ .........

Z

w

a::

o

o
zc:(

CI)

CI)

!:E

o

10

15

2025

30

z

c:(

10- 16
10

OUTPUT CURRENT (±mA)

~

80

;:

60

I

~

z

...
t:I

t:I
c:(

:;
0

>

lk

J

Vs = ±15V

~

40
20

100

lK

10
TA = 25°C
Vs

=

8

±15V

~

12

i

6
4
2

,

~

~

...
CI)

t:I

c:(

FREQUENCY (Hz)

:;

1\

~

10K lOOK 1M 10M

lOOK

10K

Voltage Follower
Pulse Response

z

~

lK

100

FREQUENCY (Hz)

16

0

>

"~ ~,...

f\
10

10

t:I

'"

10-26

lOOk

10k

TA = 25 C._

-20

150

100

Large Signal
Frequency Response

120
100

!:E
FREQUENCY (Hz)

Open Loop
Frequency Response

r-.....

.....

c:(

::;)

::;)

o

"

~ 10-25

~

w

5.0

0

r\

::;)

u

i'

CI)

N

°0 ""0
(")

~

o

II

1\

,~

80

60

10-24

~
a::
a::

t:I

\: ~~

40

20

~
....

~

...

l\

t:I
Z

o

Input Noise Current

i:

~

=±15V

Vs

A

TEMPERATURE (OC)

... 10- 15

~~

OFFSET

SUPPL Y VOL TAGE (±V)

Current Limiting

~

15

10

SUPPLY VOLTAGE (+V)

-

-I"-- I--

BIAS

40

::;)

0

>

60

0.5

15.0

-I--..J..:

80

I
2.0

lK

10K
FREQUENCY (Hz)

-4

,-

~-

IV~

-10

°IUTPIUT

I

I

IV

1

10

TA = 25 C
Vs = ±15V

-8

"" lOOK

~~

I I

!I

1\

-2

-6

rINPUT __

• -I 1

o

10 20 30 40 50 60 70 80
TIME (J..5)

typical applications ** (con1t)
Inverting Amplifier

Non-Inverting Amplifier

Non-Inverting AC Amplifier
Rl

R2

R2

1M

R2
10M

**Pin connections shown are for metal can.

151

co

o
N

Operational Amplifiers

~

-'
.........
CO

o

~

~

-'

LM10S/LM20S operational amplifier
general description
The LM 108 and LM208 are precision operational
amplifiers having specifications a factor of ten
better than FET amplifiers over a -55°C to. 125°C
temperature range. Selected units are available
with offset voltages less than 1.0 mV and drifts
less than 5 pV/oC, again over the military temperature range. This makes it possible to' eliminate
offset adjustments, in most cases, and obtain
performance approaching chopper stabilized
amp I ifiers.

• Maximum input bias current of 3.0 nA over
temperature
• Offset current less than 400 pA over temperature
• Supply current of only 300 pA, even in saturation
• Guaranteed drift characteristics
The low current error of the LM 108 series makes
possible many designs that are not practical with
conventional amp Iifiers. In fact, it operates from
10 MQ source resistances, introducing less error
than devices like the 709 with 10 kQ sources.
Integrators' with drifts less than 500 pV /sec and
analog time delays in excess of one hour can be
made using capacitors no larger than 1 pF.

The devices operate with supply voltages from
±2V to ±20V and have sufficient supply rejection
to use unregulated supplies. Although the circuit
is interchangeable with and uses the same compensation as the LM101A, an alternate compensation
scheme can be used to make it particJ,.llarlyinsensitive to power supply noise and to make supply
bypass capacitors unnecessary. Outstanding characteristics include:

The LM208 is identical to the LM 108, except that
the LM 208 has its performance guaranteed over a
_25° C to 85° C temperature range, instead of
-55°C to 125°C.

connection diagrams *

Dual-In-Line

Metal Can

Flat Package

COMP2

NC

1

14 NC

COMP 1 2

OUTPUT

NC

COMP 1

-- GUARD

COMP 2

-- GUARO
Y·

INPUT
INPUT

INPUTS

OUTPUT
Y-

-- GUARD

12 COMP 2

INPUT 4

11

INPUT 5

10 OUTPUT

-- GUARD

6

Y- 1

NOTE: Pin 6 connected to bottom of pickage
Y-

13 NC

3

TOPYIEW

Y·

9

NC

•

NC

NDTE: Pin 4 connected to ca•.
NOTE: Pin 1 connected to bottom of pickage

·Pm connections shown on schematic diagram are for TO-5 package.

-'Unused pin (no internal connection) to allow for input anti-leakage
guard ring on printed circuit board layout

Order Number LM108H or LM208H
See Package 11

TOPYIEW

Order Number LM108F or LM208F
See Package 3

Order Number LM108D or LM208D
See Package 1

schematic diagram* and compensation circuits
....---..--f-.............--.-+'--..-------.---'-' v'
Standard Compensation Circuit

Alternate* Frequency Compensation

...A"
152

...

An

r

s:- '

absolute maximum ratings

o

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range LM10B
LM20B
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics (Note
PARAMETER

00

±20V
500mW
±10mA
±15V
Indefinite
_55°C to 125°C
-25°C to B5°C
-65°C to 150°C
300°C

"r-

s:
N

o

00

4)

CONDITIONS

MIN

TYP

Input Offset Voltage

MAX

UNITS

0.7

2.0

mV

(Note 5)
Input Offset Current

TA = 25°C

0.05

0.2

nA

Input Bias Current

TA =25°C

O.B

2.0

nA

Input Resistance

TA = 25°C

Supply Current

TA = 25°C

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V

30

0.3

V OUT = ±10V, RL ~ 10 kD

MD

70

50

0.6

V/mV

300
3.0

Input Offset Voltage

mA

mV

(Note 5)
Average Temperature
Coefficient of Input
Offset Voltage (Note 5)

3.0

Input Offset Current

15
0.4

Average Temperature
Coefficient of Input
Offset Current

0.5

Input Bias Current
Supply Current

T A = +125°C

Large Signal Voltage Gain

Vs = ±15V, V OUT = ±10V

0.15

RL ~ 10 kD

2.5

p.V/oC
nA

~

pA/oC

3.0

nA

0.4

mA

V/mV

25
±14

Output Voltage Swing

Vs = ±15V, RL = 10 kD

±13

Input Voltage Range

Vs = ±15V

±13.5

V
V

Common Mode Rejection
Ratio

85

100

dB

Supply Voltage Rejection
Ratio

80

96

dB

Not~ 1: The maximum junction temperature of the LM10B is 150°C, while that of the LM20B is
100 C. For operating at elev~ted temperatures, devices in the Tg-5 package must be derated based on
a thermal resistance of 150 C/W, junction to ambient, oro 45 C/W, junction to case. For the flat
package, the derating is based on a thermal resistance of lB5 C/W when mounted on a 1/16-inch-thick
epoxy glass board with te);, 0.03-inch-wide, 2-ounce copper conductors_ The thermal resistance of the
dual-in-line package is 100 C/W, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore,
excessive current wi Ii flow if a differential input voltage in excess of 1 V is appl ied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.

S

S

S

S

Note 4: These specifications apply for ±5V
Vs
±20V and -55°C
TA
125°C, unless otherwise specified. With the LM20B, however, all temperature specifications are limited to
_25°C 

ti

r--

F

10

~

I-

~
~

"""..... ~

1.0

ET~plJ~~

~

OFFSET

5

25 45

65

S

85 105 125

~

1M

100

~

~""

w

Co.)

~
~

1=

Rs

ff-

RsT=

l-

1111111

I-

lOOK

40

~~
~~

:[1

lK

100

10K

;;:
~

w

lOOK

lK

10K

100

~

~
~

r--

~

/

TA

~
a:
a:
~

V /v

300
200

90

."

:z:

~

r;po
c;,

~

.;

~

45

V

v

TA = 25 C

~ --~

TA = 125"C

.....~

!

~

Voltage ~ollower Pulse Response

IIIII

TA = 25°C
VS = ±15V

~

Cf = 3 pF

~

~

i

z

en

~

w

"~f = 30 pF

~

~

I-

;:,

e:(

~

-2

>

-4

0

....
lK

10K lOOK 1M

FREQUENCY (Hz)

154

10M

lK

10K

"""

)

INPUT

1I0UTPUT

~

~

0

~

1\
\

z

~

l-

20

10

, IIIII

1

12

15

SUPPL Y VOLTAGE (±V)

)

if TA = ~5oL-

1\
\

Vs=:':15V~

-6

100

10M

100

Large Signal
Freq~,lency Response

40

10

1M

~55°C

10

60

20

lOOK

;iii"

OUTPUT CURRENT (±mA)

z

w

~

TA =
400

20

135

~

~

V

./'
~25~C./
~ -55'oC V

180

>

500

~

~

lA'

10K

600

r"'ooo

16

80

lK

1'1

100

0

, , r\

V'"
TA

15

100

Supply Current

Vs = ±15V

~

TA = 125°C

Cf = 0
f=looHz

mA

FREQUENCY (Hz)

I-

I-

;:,
0

120

~

~

10

Open Loop
Frequency Response

e:(

10

10M

~

~o
TA = 125 C

10

...

SUPPL Y VOLTAGE (±V)

;;:

1M

z

90

~

lOOK

Output Swing

i
J
TA = 25°C

= ±1

10-2 L-_..L...-_..L...-_..L...-_....
V_s_=_±1...5_V----I

FREQUENCY (Hz)

- ' ~C

e:(

~
>
0

I----+--j..,j[..~

~ 10-' ~-HL-I----I~-

100

15

-

10°

~

I-

-20

120

~

~I-

10' ~--~~~\,--~--+\.--+-~

lOUT

.....

1111111

~-_+_--",OOI____",O""""--+---I

20

Voltage Gain

z

100M

10M

~-"'oo'-+---I__--+--

FREQUENCY (Hz) ,

110

1M

Closed Loop Output Impedance

IIIIIII

10

~

lOOK

INPUT RESISTANCE (n)

t;;;;; Rs =w~M

I-

10

100M

co '

~~

~

10M

...

""'l-

~

.~

1.0
lOOK

Power Supply Rejection

ff-

Z

~TY ~I

120 r---,--,--,----.....--.....,..,

l-

I-

~

INPUT RESISTANCE (n)

1000 F

100

10

0.1

Input Noise Voltage

en

t;:

a:0

>

TEMPERATURE (OC)

0

100

e:(

:;

-55 -35 -15

~w

:;
3
a:
0
a:
~

""

I-

"-....

o

~

-

MAXIMUM

o

~

0.15
0.10

.1~5°C

:-55°(: "
.!

Drift Error
1000

1000

u.J

O'C 
i"""- ..........

TA = 25°C

~

BIAS

:;;

100.

~

.-

I-

~

r- ~~- f - -

~

0.15

MAXIMUM

10

t:

a:c

I-

~

0.10


5
10

20

30

40

50

60

70

8

80

TyJI~AIL

1.0 ' - - ' lOOK

100M

10M

1M

TEMPERATURE (C)

10

1M

INPUT RESISTANCE (S2)

Input Noise Voltage

"""

r--i-

II

1.0
lOOK

MAXIMUM

....

TYPICAL

V

II

100

3a::
0
a::
::::;

/

o

<70°C

I I ill

c::;-

10M

100M

INPUT RESISTANCE (Q)

Power Supply Rejection

Closed Loop Output Impedance

120

10 \

100
10'

~

80

U

~
u.J

(I)

0

u.J

~

60

~

100

~

40

Z
I-

I-

~

10"

~

I-

20

~

10'

~ 10-'
lOUT =

100

lK

FREQUENCY (Hz)

15

z

TA =
110

C(
t:l

w



0

1M

10

10M

~oc

~

D

~

-

~C::

?:

--~

lK

~ 70t-

A I

10

~
I-

TAl = olc

:::;)

C, = 0
,= 100 Hz

1

300

~
a::
a::

250

B

200

~

150

I-

--.

1

~

350

"

I

TAI= 25 cI
I

lOOK

1M

10M

400

Vs=±15V

IT

10K

Supply Current

~

t:l
Z

T A = 25"C

100

100

FREQUENCY (Hz)

~ .....;::~

-1: = 170°C

t:l

lOOK

Output Swing

Voltage Gain

~

10K

FREQUENCY (Hz)

120

±1 mA

10- 2 L....-_-'-_....I..-_........._ _...
Vs_=_±1~5_V----'

-20

0

~

TA lo"c_

--

V

,,- -~-

TA - 25 C

" --- ~

TA =

~

----

~O°C

100
50

90
15

10

OUTPUT CURRENT (±mA)

Open Loop
Frequency Response

10

2



0

40
20

45

."

:J:

\

~

rl>

C>

I

~

12

1

10

100

lK

10K lOOK 1M

FREQUENCY (Hz)

10M

1111

-

~

C, = 3 pF

t:l

Z

t:l

\

z

~

~
u.J

~

~

I:::;)

0

lK

~

-2

>

-4

0

I\-

-6

...... i'!'-

-8

10K

r-- ~- r

1\
\

t-....
lOOK

FREQUENCY (Hz)

I

INPUT

-

VOUTPUT

t:l

'C, = 3D pF

o

-20

TA = 25°C
Vs = ±15V

1111

100

~

Voltage Follower
Pulse Response

16
180

135

20

SUPPLY VOLTAGE (±V)

Large Signal
Frequency Response

120

80

15

10

20

SUPPLY VOLTAGE (±V)

\\

J
V TA =~5 J-

Vs='15V_
C, = 30 pF

""'""

-10
1M

o

20 40 60 80 100 120 140 160
TIME (!ls)

157

«

co

o

Operational

M

:E

Amplifi~rs

...J

..........

«
CO

LM108A/LM208A/LM308A operational amplifier
general description

N

The LM10SA, LM20SA and LM30SA are precision
operational amplifiers having specifications about
a factor of ten better than FET amplifiers over
their operating temperature range. I n addition to
low input currents, these devices have extremely
low offset voltage, making it possible to eliminate
offset adjustments, in most cases, and obtain
performance a pproaching chopper stabilized
amplifiers.

o

:E
...J

..........

«

CO

o
""""
:E
...J

• Offset current less than 400 pA over temperature
• Supply c.urrent ot only
saturation

300MA,

even

in

• Guaranteed 5 MV t C drift.

The low current error of the LM 1OSA series makes
possible many designs that are not practical with
conventional amplifiers. In fact, it operates from
10 MQ source resistances, introducing less error
than devices like the 709 with 10 kQ sources. I ntegrators with drifts less than 500 MV /sec and analog
time delays in excess of one hour can be made
using capacitors no larger than 1 MF.

The devices operate with supply voltages from
±2V to ±20V and have sufficient supply rejection
to use unregulated supplies. Although the circuit is
interchangeable with and uses the same compensation as the LM 101 A, an alternate compensation
scheme can be used to make it particularly insensitive to power supply noise and to make supply
bypass capacitors unnecessary. Outstanding characteristics include:

The LM20SA is identical to the LM 1OSA, except
that the LM20SA has its performance guaranteed
over a -25°C to S5°e temperature range, instead
of -55°C to 125°C. The LM30SA has slightlyrelaxed specifications and has its performance
guaranteed over a oOe to 70°C temperature range.

• Offset voltage guaranteed less than 0.5 mV
• Maximum input bias current of 3.0 nA over
\ temperature

Dual-In-Line

connection diagrams *
Metal Can

Flat Package
1

14 Nt

COMP 1 2

13 Nt

Nt

COMP 2

Nt

COMP 1

•• GUARD

COMP2

•• GUARD

3

12 COMP 2

INPUT

4

11 y+

INPUT.c:::::~~-I

OUTPUT

INPUT ~::::;---I

10 OUTPUT

INPUT 5

OUTPUT

INPUTS
•• GUARD

6

9

Nt

Y-

7

•

Nt

NOTE: Pin 6 connected to bottom of pocko..
TOPYIEW

NOTE: Pin 4 connlCted to co•.
·Pm connections shown on schematiC diagram are for TO,S package.

NOTE: Pin 7 connected to bottom of pock"",

"Unused pin (no internal connection) to allow for input anti·leakage
guard ring on printed circuit board layout

TOPYIEW

Order Number.LM108AH or
Llvi208AH or LM308AH
See Package 11

schematic diagram

Order Number LM108AD
or LM208AD or LM308AD
See Package 1

Order Number LM108AF or
LM208AF or LM308AF
See Package 3

*.

and compensation circuits
Standard Compensation Circuit

-v,.--'II""""+-_"""'--,
iJr-+-"\N\o-..:-6 OUT'UT
Your

Ct~:~ ~oR2
Co=lhF

Alternate* Frequency Compensation
·v,.----'\NIr.....~\N¥o-...,

--+-----i

+"'-'

YOUT

-litI". . rItlC110nof
. . - .. "Iy no.. Illy

.fIC1Ofofl.n

...""
15S

.

""

..

""

r

s:
~

LM108A/LM208A
absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range LM10BA
LM20BA
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

0
(X)

»
........
r
s:

±20V
500 mW
±10 mA
±15V
Indefinite
_55°C to 125°e
-25°C to B5°e
0
-65°C to 150 e
0
300 e

N

0

(X)

»
........
r
s:
UJ

electrical characteristics
PARAMETER

0

(Note 41

CONDITIONS

(X)

MIN

TYP

MAX

UNITS

Input Offset Voltage

T A = 25°C

0.3

0.5

mV

Input Offset Current

TA = 25°C

0.05

0.2

nA

Input Bias Current

TA =25°C

O.B

2.0

nA

I nput Resistance

T A = 25°C

Supply Current

T A = 25°C

Large Signal Voltage Gair1

TA = 25°C, Vs = ±15V
V OUT = ±10V, RL ~ 10 kn

30

70
0.3

BO

Mn
0.6

300

Input Offset Voltage

1.0

Input Offset Current

5.0
0.4

Average Temperature
Coefficient of Input
Offset Current

0.5

Input Bias Current
Supply Current

T A =+125°C

Large Signal Voltage Gain

Vs = ±15V, V OUT = ±10V
RL~10kn

0.15

40

Output Voltage Swing

Vs = ±15V, RL = 10 kn

±13

Input Voltage Range

Vs = ±15V

±13.5

mA

V/mV
1.0

Average Temperature
Coefficient of Input
Offset Voltage

»

2.5

mV

j.1V/oC
nA

~

pA/oC

3.0

nA

0.4

mA

V/mV
±14

V
V

Common Mode Rejection
Ratio

96

110

dB

Supply Voltage Rejection
Ratio

96

110

dB

Note 1: The maximum junction te~perature of the LM108A is 150°C, while that of the LM208A is
100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
0
a thermal resistance of 150 C/W, junction to ambient, or 45°C/W, junction to case. For the flat
,
°
package, the derating'is based on a thermal resistance of 185 C/W when mounted on a 1/16-inch-thick
epoxy glass board with te~, O.03-inc~-wide, 2-ounce copper conductors, The thermal resistance of the
dual-in-line package is 100 C/W, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore,
excessive current wi II flow if a differ~ntial input voltage in excess of 1 V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.

A:::;

Note 4: These specifications apply for ±5V :::; V s ':::; ±20V and -55°C:::; T
125°C, unless otherwise specified. With the LM208A, however, all temperature specifications are limited to
_25°C ~T A :S;85°C.
''

159

 10 kr2

60

Output Voltage Swing

V s =±15V,R L = 10kr2

±13

Input Voltage Range

Vs = ±15V

±14

V/mV
±14

V

Common Mode Rejection
Ratio

96

110

dB

Supply Voltage Rejection
Ratio

96

110

dB

Note 1: The maximum junction temperature of the LM308A is 85°C. For operating at elevate~ temperatures, devices in the Tg-5 package must be derated based on a thermal resistance of 150 C/W,
junction to ambient, or 4~ C/W, junction to case. For the flat package, the derating is based on a
thermal resistance of 185 C!W when mounted on a 1/16-inch-thick epoxy glass board with ten,
O.O~inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100 C/W, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V
specified.

160

V

~

Vs::;±15V and

OOC

I

w

~~
100

Rs

Ci
z
a:

~

C[

I

I

I

5

25

45

-"

I~

c

-15
10

100

1k

10k

100k

1M

10M

FREQUENCY (Hz)

TIME (lIS)

Voltage Gain

Voltage Gain
10

0.99999
270

~ 0.9999
~

225

;;:

180

z

c.:J

135

~ 0.999
C[

~
C)

co.

90

.;

>

45

!

c

0.99

c.:J

~

~
c

>

I I

T = 125°C

C[

l-

f/)

~-

~

...,

25°C~

TA

f---

a:

....

I-

~~

c

~==

C

10k

- '1

z

i

1
-55 -35 -15 5 25

1M

J

Respons~

65 85 105 125

I
f-

--

TA = 25°C ;s =I

-..

I

~
~

-

. DISTORTION < 5%

,

~

60

~

50

~
w

40

~
~

~
f/)

"- ......
1M
FREQUENCY (Hz)

~

30

Supply Current

~~

~

70

z

(.)

~

20
CURRENT (mA)

80

a:
~

I-

10

Power Supply Rejection

c

C

85 105 125

n)

90

il~s
= ±15~JJJl1
TA = 25°C

~

100k

45 65

TEMPERATURE

I-

o

r--..

!.--'""""
f- TAl = -5r C

~

c.:J

:--~

~

,1ook

Large Signal Frequency

10

25 45

I

10

~

I-

FREQUENCY (Hz)

~

~~
.~

I-

-JIIIIIIII

0.1 ' - - 1k

12

........

-T - -55°C-

f---

14

5

i

..

~r

1.0

~

1""-

~
c.:J
z

~

tl

10

+Jv

....... TA = 125°C f - Vs = ±15V-

r-

VOUT = ±10V"'1"-+--+-+-+--1
Vs=±15V

III

w

vJ

15

+15V

§

+15V

Positive Output Swing

Symmetrical Output Swing
10

Vs

Vs

TEMPERATURE (OC)

FREQUENCY (Hz)

Output Resistance

~

-

0.999
-55 -35 -15

100M

1M

100k

100

~

"

0

FREQUENCY (Hz)

I-

0.9999

C[

0.9

(.)

RIS = 110k I
f= 200 Hz -

....
>
::t:
~
~,.... ;;:z

:;

10k

\

-10

10

Voltage Gain

1k

,

Z
C[

65 85 105 125:E

0.99999 r--T""TTnTIII"'-'-rTTTIm"'-'-rTTTTTI"'-'-rTTm"II

z

-5

\

Vs = ±15V
TA = 25°C

f/)

TEMPERATURE (OC)

100

I

~

d

I I I

0.1
-55 -35 -15

Rs = 10K

~

I

i

I-

I

"

w

!:

z

100K

~

I

c.:J

~

f/)

I '~I I I

10

~

:;

~

a:
a:
~

Large Signal Pulse Response
15

_ 1000

100

4

~

~
Vs = ±5V.......

~ ~ Vs = ±15V
~

30
20
10 .

~ ~......

TA = 25°C
Vs = ±15V

·10
10M

100

1k

10k

100k

FREQUENCY (Hz)

1M

10M

-55 -35 -15

5

25 45 65

TEMPERATURE

85 105 125

n)
163

...

o
N

:e

auxiliary ·circuits

...J

.......

...
:e

o

RI
I•

...J

OUTPUT

RZ·
S.1K

-MlylMl4Ntcltortclue.
Inl... nII . . . .tlon

Offset Balancing Circ·uit

Increasing Negative Swing Under Load

typical applications** (con't)
I.RZ

~-~
Rl

R3

Simulated Inductor

Differential Input Instrumentation Amplifier

I.RZ

OUTPUT

VOUT

O.'.'J
CZ

v,.-.......J\o""".........J\o"""...-=-i
Bandpass Filter
1

0

=

271"R~Cl

"60Hz
Rl=R2=2RJ

(:, :C2=¥CZ

CI
270pF

CI·
MG"

270pF

High Q Notch Filter
RI
Z4.

....- v' -15V

r----~

RI
l.6K
·VlllltllR'orlDkHzcMtoH,Use
til"," mtca c.,aciton for IOCHI
lIm,.,otuttstllllhty

Low Pass Active Filter
01
1N4&11

tUseU,.Clto,wlthpolyurboJlile

Buffered Reference Source

teflon or polyrthylrnedlele<:tllc

Sample and Hold
RI
110K

v·

CI·
O.OlpF

OUTPUT

INPUT~
tT.flon, polyethylene or polycarbonlle
ditiecintCiPKIIOr

·VolulS.,.fo,l00Hzcutoff.U.

·Wofltcaw dnft

mtt8lilHpolytl,bonlt'CllIKrtors

Ins than 3 mV/sec

fOfeoodt.mpw.turestillility.

Low Drift Sample and Hold*
**Pin connections shown are for metal can.

164

High Pass Active filter

r-

,~

typical applications·· (con't)

-II
-II

0

........

'
Rl
1.6K

r~

R2
1.SK
1%

N

-II

0

SV REFERENCE TO
REMAINING SWITCHES

Comparator for Signals of Opposite Polarity

DIGITAL
SWITCH

DRIVE

<

Driver for AID Ladder Network

Zero Crossing Detector
ANALOG INPUTS

Rl
4JK

ANALOG
OUTPUT

r

·Swltchsubstrateslreboot
stllppedto,educeoutput
caplcttlnceofSWllch

Buffer for Analog Switch*
Comparator for AC Coupled Signals

INPUT~
C2

Rl
lOOK

Rl
10K

2"'

R2

R'

80K

lOOK

01
IN914

R3
4CK

High Input Impedance AC Amplifier

Comparator for AID Cpnverter
Using a Binary-Weighted Network

lOUT

R2

~ ~~ VR~

lOOK
01%

R]=R4'R5

Rl=R2

Bilateral Current Source

R'

R6
5K

R2
5K

5K

R3

R7
10K

R5
10K

lOOK

R4

1%

SK

R3
10K

TO
LOGIC
Cl

'OOPF

I ""
,

Rl
10K

~5

IS0pf
ANALOG

INPUT

R6
220K
1%'

01

63V

fo=10kHz

02
6.3V

Comparator for AID Converter
Using a Ladder Network

Sine Wave OscillCltor

**Pin connections shown are for metal can.

165

Operational Amplifiers

LM310 voltage follower
general description
The LM310 is a monolithic operational amplifier
internally connected as a unity-gain non-inverting
amplifier. It uses super-gain transistors in the input
stage to get low bias current without sacrificing
speed. Directly interchangeable with 301, 741 C
and 709C in voltage follower applications, this
device has internal frequency compensation and
provision for offset balancing. Outstanding characteristics include:
• Input current: 10 nA max. over temperature
• Small signal bandwidth: 20 MHz

• Slew rate: 30V Ills
• Supply voltage range: ±5V to ± 18V
The LM310 is useful in fast sample and hold
circu its, active filters or as a general-purpose buffer.
Further, the frequency response is enough better
than standard IC amplifiers that the follower can
be included in the feedback loop without introducing instability. It is a plug-in replacement for
the LM302 voltage follower, offering lower offset
voltage, drift, bias current and noise in addition to
higher speed and wider operating voltage range .

schematic** and connection diagrams
Al

'"0

,.

Metal Can

'"0

Flat Package

BALANCE

R2

'3

1K

1K

BALANCE

BALANCE

V·

NC
INPUT r-""1-''----l

OUTPUT

v-

BOOSTER

vNOTE PIO 4 connected 10 case

NOTE' Pm 5 connected to bottom of package

TOPYIEW

TOPV1EW

Order Number LM310H
See Package 11

Order Number LM310F
See Package 3

Dual-In-Line

BALANCE

3

NC

4

INPUT

5

v-

6

NOTE: Pm 6 connected to bonom of package.
TOPVIEW

Order Number LM310D
See Package 1

typical applications **
Y'

tTefton,polytthylfneor POIYClfbomilf

dlltIKtncc.p.cltol
tUucilpilCllorWllhpolynrboniitt
ItflonorpOlytthylenedrtltClrIC

Sample and Hold
**Pin connections shown are for metal can.

166

·Worst~wdllh

Insth'nlmV'wc

Low Drift Sample and Hold*

absolute maximum ratings
±18V
500mW
±15V
Indefinite
oOe to 70°C
-65°C to 150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
I nput Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 4)

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

TA = 25°C

2.5

7.5

mV

Input Bias Current

T A = 25°C

2.0

7.0

nA

I nput Resistance

T A = 25°C

10 10

I nput Capacitance

10 12

n

1.5

pF

0.9999

V/V

Large Signal Voltage
Gain

TA = 25°C, Vs = ±15V
V OUT = ±10V, RL = 8Kn

Output Resistance

T A = 25°C

0.75

2.5

n

Supply Current

T A = 25°C

3.9

5.5

mA

0.999

Input Offset Voltage

10

Offset Voltage
Temperature Drift

10

Input Bias Current
Vs = ±15V, V OUT = ±10V
RL = 10Kn

Output Voltage Swing
(Note 5)

Vs = ±15V, RL = 10Kn

Supply Voltage
Rejection Ratio

JJ.V/C
10

Large Signal Voltage
Gain

±5V:::; Vs :::; ±18V

0.999

mV

nA

VIV

±10

V

80

70

dB

Note 1: The maximum junction temperature of the LM310 is 85°C. For operating at elevated
o
temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150 C/W,
junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a
thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
O.03-i nch-wide, 2-ou nce copper conductors. The thermal resistance of the dual-i n-I i ne package is
o
100 C/W, junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures
to 55°C. It is necessary to insert a resistor greater than 2 k.s1 in series with the input when the
amplifier is driven from low impedance sources to prevent damage when the output is shorted.
o

Note 4: These specifications apply for ±5V :::; VS:::; ±18V and OOC:::;T A :::;70 C, unless otherwise
specified.
Note 5: I ncreased output swing under load can be obtained by connecting an external resistor
between the booster and V- termi nals. See cu rve.

167

~

o

'I"""

(W)

::E

typical performance characteristics

...I
Input Current

~

I-

-

~
t:I

a:
a:

~

-

r--

:::I
IU

I-

=

Vs - +15VTA=25'C

c:t

~
o

>

r--

1.0

:!

w
en

10

100

3:

en
I-

w

--,

1000.

a:

c:t

Rs = 10K

Vs = ±15V
TA = 25C

~

I

,....",

:::I

\

Z

I:::I
0

,

~

t:I

Rs = lOOK

Z

I

~

~"- ~

o

~

,

15

1000

~w

Vs = ±15V10

~

Large Signal Pulse Response

Output Noise Voltage

100

-5

~

-10

d

en

z

0.1

c:t

o

10

20

30

40

50

60

70

80

~

10'

-15
100

10

lk

TEMPER~URE (OC)

--

-

~

~

C(

t:I

w

=

"
Rs = 10K

-20

>

-25 r--I-

lk

10k

lOOk

1

-40
lOOk

=---Y;-;"+15V

135
90

I'

11111111

45

~

r'
):00

c;,

Ii:

~

>

~
z

C(
t:I

w
t:I
c:t

0.9999

. /~-

~ 0~

>

Rs =30kS1

ll

1111111

0.999

5

100M

10M

1M

10

20

~utPut

Positive

Swing

15

'-

~

~
Z

~

J

~

I-

~

1.0

-... ~

Vs = ±15V-

,

~

10

t:I

a:

15

SUPPl Y VOL TAGE (tV)

10

~

~

:'\,

~

):00

Va U T = ±10V --+--+---+--+----i
Vs = ±15V

c:t
Ien
I-

""::I:

180

Symmetrical Output Swing

~
Z

225

f = 200 Hz
TA = 25°C

10

TA - 25°C
IU

\ \,

270

FREQUENCY (Hz)

Output Resistance

w

~

PHASE

FREQUENCY (Hz)

100

Rs = 10K

\

~ FI = 3 kS1 - .J)4.H11T

Vs = ±\5V ' 11
TA =25C

-35
1M

f

Rs = 10kS1~

-30

~

0.9

0.99999

Rs =3kS1.lJ

~

~

TA - 25 C
100

TIME (ps)

!\,.I

-10
-15

0

~

-....

-5

t:I

c:t

-

Vs - t15V

0.99

z

=
~

0.999

~

~

~

-

z

w
t:I
c:t

4

10M

Voltage Gain

10

=

I\..

~

1M

Voltage Gain

--

>0.9999

lOOk

FREQUENCY (Hz)

Voltage Gain
0.99999

10k

~

"

I

_ TA = 25°C

f - - -TA = O°C
f - - TA = 70°C .......

....... :
......

I

~

I:::I
0

I:::I
0

1-1_- f---, i

I

:

I,

0.1
lk

10k

10

1M

lOOk

20

,

Large Signal Frequency Response
14
I--

12

%

10

t:I

"\

IIVs = ±l~~'JJm
TA = 25 C
DISTORTION < 5%

~

I-

,
\

~

I:::I

o
lOOk

60

70

80

20

30

40

CURRENT (rnA)

Supply Current

80

;

70

C(

z

60

E

~

50

~

40

~

20

I-

a:
a:

~ t--...

. . . . .s::: ~

Vs = ±5V

Vs

=

±15V

-

::::::: ~Iooo.

B

30

~

~

:::I

en

u

10

TA = 25 C
Vs = ±15V

0

r---I-o

1M

10

Power Supply Rejection

~

FREQUENCY (Hz)

168

50

90

a:

,

0

40

0

\

Z

30

TEMPERATURE (OC)

FREQUENCY (Hz)

-10
10M

100

lk

10k

lOOk

FREQUENCY (Hz)

1M

10M

10

20

30

40

50

TEMPERATURE

60

n)

70

80

auxiliary circuits **
R1
1K

R2'

"K
-Mlybtad.tdtolitduce
In1l.MI .... palI0n

Offset Balancing Circuit

Increasing Negative Swing Under Load

typical applications** (con1t)
C1
5pF

Vou ,

1
2"R1Cl
60Hz
R2'2RJ

RI

.,

C3
C1
210pF

C2
210pF

High

Q

Fast Inverting Amplifier with
High Input Impedance

Notch Filter

R2
1K

R,"

Simulated Inductor
C2
lS0pF

Fast Integrator with Low Input Current

R2
1K

o'"'J
C2

Bandpass Filter
A.

Al
Av

AS

"'

C1'
!MOpF

R4

'R"2

R1

Differential Input Instrumentation Amplifier

14K

'J"OPF

Low Pass Active Filter

A1
36K

A1
110K

R2
15K
1%

01
IN4611

·V16utlutfo,10kH,cutoH UM!
lII¥1'fedmtc.c",Kltor1faIIOOd

tlmptfltureJt.tuhty

. - - - - - _ - V' ·15V

A3
3K

C1'
002 .. F

INPUT~
·V.lues,relor 100 HI cutotf Use
metahl"polyCilbonat'CII~c'tors

fOl!Oodtempeutuftrtlblilty

Buffered Reference Source

High Pass Active Filter

**Pin connections shown are for metal can.

169

o

~

~

typical applications** (con1t)

...J
RI
J6K

R2
11K

""

Comparator for Signals of Opposite Polarity

OIGITAl
SWITCH
ORIVE

Driver for AID ladder Network
Zero Crossing Detector
Rl
41K

'SwltchsubstfilfSllebool
stnpptd to Itducl.' output
capacltlnce01 SWllch

Buffer for Analog Switch*
Comparator for AC Coupled Signals

CI

001 ... ,"

ANALOG
INPUT

INPUT

---1

10K

RI
lOOK

01

R2
lOOK

RI

R4
10K

RJ
40K

R2
10K

IN914

C2

2,.

High Input Impedance AC Amplifier

Comparator for AID Converter
Using a Binary-Weighted Network

Bilateral Current Source

.
Rl
10K

R•

R'

10K

C2
200pF

..

.

R6

CJ

10~,,;F

I~

R2

RJ
lOOK

R4

,',.

!lK

RJ
10K

TO
lOGIC

RI
10K

C5
l!10pf

ANALOG
INPUT

Comparator for AID Converter
Using a ladder Network
**Pin connections shown are for metal can.

170

R6

220K

01

1%

6JV

R'
2K

02
6JV

Sine Wave Oscillator

to"DkHl

r~

.....
.....

Operational Amplifiers

N

.......
r~

LM112/LM212 operational amplifier
general description
The LMl12 and LM212 are micropower operational amplifiers with very low offset-voltage and
input-current errors-at least a factor often better
than FET amplifiers over a -55°C to 125°C
temperature range. Sim ilar to the LM 108 series,
that also use supergain transistors, * they differ in
that they include internal frequency compensation
and have provisions for offset adjustment with a
single potentiometer.
These amplifiers will operate on supply voltages of
±2V to ±20V, drawing a quiescent current of only
300 MA. Performance is not appreciably affected
over this range of voltages, so operation from
unregulated power sources is easily accomplished.
They can also be run from a single supply like the
5V used for digital circuits. Some noteworthy
features are:
• Maximum input bias current of 3.0 nA overtemperature

N
.....

N
• Offset current less than 400 pA over temperature
• Low noise
• Guaranteed drift specifications
The LMl12 series are the first IC amplifiers to
improve reliability by including overvoltage protection for the MOS compensation capacitor.
Without this feature, IC's have been known to
suffer catastrophic failure caused by shortduration overvoltage spikes on the supplies. Unlike
other internally-compensated IC amplifiers, it is
possible to overcompensate with an external
capacitor to increase stability margin.
The LM212 is identical to the LM 112, except that
the LM212 has its performance guaranteed over a
-25°C to 85°C temperature range instead of
-55°C to 125°C.
*Patent pending

schematic diagram**

auxiliary circuits **
COMPENSATIONt

Offset Balancing
Rl

lOOK

...-+--v+

R9
100

L..-.----lf-4""'6 OUTPUT

Overcompensation for Greater Stability
Margin

"J

Cs
1000pF

**Pin connections shown are for f1letal can.
Dual-In-Line

connection diagrams
Flat Package

Metal Can

>

BALANCE

GUARD

INPUT

V·

INPUT

OUTPUT

GUARD

-""'------'-

BALANCE

2

13 NC

GUARD

J

12 BALANCE

INPUT

4

10 OUTPUT

INPUT S
GUARD

6

NOTE' Pin 6 connected to bottom of pilckilge.

VNOTE: Pin 4 connlCted to ca••

TOPVIEW

Order Number LM112H or LM212H
See Package 11

,

COMPENSATION

•

NC

Compensationtermmal not
brought out on flat package.
NOTE

TOP VIEW

Order Number LM112F or LM212F
See Package 3

Pin 7 connected to bonom of pack.

TOP VIEW

Order Number LM112D or LM212D
See Package 1

171

...
N
N

absolute maximum ratings

~
.......
..J

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short·Circuit Duration
Operating Temperature Range LM 112
LM212
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

...
~

N

..J

±20V
500mW
±10mA
±15V
Indefinite
-55°C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

electrical characteristics (Note
PARAMETER

4)

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

T A = 25°C

0.7

2.0

mV

Input Offset Current

T A = 25°C

0.05

0.2

nA

Input Bias Current

T A = 25°C

0.8

2.0

nA

Input Resistance

TA = 25°C

Supply Current

T A = 25°C

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V

0.3

V ouT =±10V,R L :::::l0kU

0.6

3.0

Average Temperature
Coefficient of Input
Offset Voltage

3.0

I n,Jut Offset Current
Average Temperature
Coefficient of Input
Offset Current

0.5

Input Bias Current
Supply Current

0.15

15

mV

fJ,V/oC

0.4

nA

2.5

pA/oC

3.0

nA

0.4

mA

Vs = ±15V, V OUT = ±10V
RL

:::::

10 kSl

25

V/mV

Output Voltage Swing

Vs = ±15V, RL = 10 kU

±13

Input Voltage Range

Vs = ±15V

±13.5

±14

V
V

Common Mode Rejection
Ratio

85

100

dB

Supply Voltage Rejection
Ratio

80

96

dB

Not~ 1: The maximum junction temperature of the LMl12 is 150°C, while that of the LM212 is
100 C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150°C/W, junction to ambient, oro 45°C/W, junction to case. For the flat
p'ackage, the derating is based on a thermal resistance of 185 C/W when mounted on a 1/16-inch-thick
epoxy glass board with tep, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the
dual-in-line package is 1 00 C/W, j unction to ambient.
Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive
current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless
some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.

S

S

S

S

Note 4: These specifications apply for ±5V
VS
±20V and -55°C
TA
125°C, unless· otherwise specified. With the LM212, however, all temperature specifications are limited to
- 25° C :ST A ::S;85°C.

172

mA

V/mV

300

50

Input Offset Voltage'

Large Signal Voltage Gain

MU

70

30

r-

......~

typical performance characteristics

N

Input Currents

Offset Error

"

r~

Drift Error

"'"~~

1

1.0

z

0.5

w

..... r-...,

U

fBIAJ

-

r-.~

IX
IX
::::I

r--

r=~

0.10

""

""

-55 -35 -15

1111

....OFFSET
25 45

65 85 105 125

1M

..-..-

Ci

100

Power Supply Rejection

g
~
!
I::::I

20

""""'"
10

iSlf

,\1

III

10

100

lK

1111

10K

I::::I
C

100

15
f = 1 Hz

I

;;:

~

I- TA = 25°C
~I"'"

c:I
W

ex:

100

~

"""

-

10

15

'"

z

;;:
c:I

ex:

c
>

1_--:,

"
Z"'r\.. -.......

40

~,

'" .'"

Cs =' 1000 pF ' \

20

t

I

" - "IIiI"",

"

I

-20
0.1

10

100

lJ5

1K

Joo

~
Q,

200

(,)

~-5~OC~

Q,

~

V
~

~

::::I

en

::I:
):>

90

~

...
):>

el

45

-

>
.:!:!.

~
~

z

I::::I

Q,

1\

I::::I

I'

"

100

w

c:I

ex:

-2

c
>

-4

:;

~- 'r-J 'r--'r--

~

Z

10K

20

TA = 25°C
Vs = ±15V
I--

~

-6

II

INPUT

"
\

J OUTPUT
V

~

-8

~"'"
lK

15

B

c:I

FREQUENCY (Hz)

10

10

~

4

o

I

TA=+125C

Voltage Follower Pulse
Response

\
\

~

J

SUPPLY VOLTAGE (±V)

t- Vs = ±15V

\

12

--

I

TA =+25 C

10

4

c:I

c

10M

100

......

10K lOOK 1M

FREQUENCY (Hz)

IX
IX
::::I

TA = 25°C

~

1M

TA = -55°C
400

~

o

180

Cs = 1000 p~~

~,

w
c:I

:;

I

1"-

60

I-

16

,~

~,

3-

large Signal Frequency
Response

-

~~

~

OUTPUT CURRENT (±mA)

GAIN
PHASE - - - -

L..-.

lOOK

500

~

1

TA

Open loop Frequency
Response

10K

Vs = +15V

I::::I
C

20

1K

Supply Current

I
°
TA =25 C i

~

o

80

100

FREQUENCY (Hz)

J

SUPPL Y VOLTAGE (±V)

;

10M

TA=125°C

~

10

100

1M

600

"

I-

TA = 125°C_ f----

90

120

lOOK

~ !I..

t:l
Z

TA = _55°C

c:I

10K

lK

Output Swing

120

110

10-1 ~~+-_+-_+-_+-_+-~

FREQUENCY (Hz)

Voltage Gain

c
>

10° I---+-~+--+--+---+--~

-20

lOOK

FREQUENCY (Hz)

~

I---+--+-++--+---+--~

Q,

!:

z

10 1

w

40

lit.

~

102

w

(,)

Q,

~ As = lOOK

~~

Z
I::::I

100M

Closed loop Output Impedance

60

111111

10M

103 r---...---...---...---...---~----.

80

As = 1M .
I;...

1=

IIIII
1M

INPUT RESISTANCE (n)

100

t--~

TYPICAL

1.0
lOOK

100M

10M

120

~

w

r-

INPUT RESISTANCE (n)

Input Noise Voltage

~

c

I [1lI1
5

~

10

~

III

1000 j:::F

0

t;:

I 11111

TEMPERATURE (OC)

S

ffi

TYPICAL ::

I'--

~ MAXIMUM

IX

I\..

0.05

100

c

....-

0.15

Q,

~

~
3a:

MAXIMUM

(,)

I::::I

N
N

'_55°(: 

BALANCE

174

3

12

BALANCE

,NPUT 4

11

v·

INPUT _ _ _- , ' "

OUTPUT

'NPUT S

10 OUT'UT

6

I

COMPENSATION

V'l

•

NC

GUARD

NOTE Pin 6 COnr'letted to bottom of package.

Order Number LM312H
See Package 11

13 NC

GUARD

Y'

GUAAO

TOPVIEW

2

'N'UT

GUAAO

YNOTE: Pin4connectedtoCl•.

BALANCE

Compensation terminal not
brought out on flat package.
NOTE: Pin 1 connected to bonum of plCh.

TOPY'EW

Order Number LM312F
See Package 3

TOPY'EW

Order Number LM312D
See Package 1

absolute maximum ratings
±18V
500 rnW
±10 rnA
±15V

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

Indefinite

O°C to 70°C
-65°C to 150°C
300°C

(Note 4)

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

T A = 25°C

2.0

7.5

mV

I nput Offset Current

T A = 25°C

0.2

1

nA

1.5

7

nA

Input Bias Current
I nput Resistance

T A = 25°C

10

Supply Current

T A = 25°C, Vs = ±l?V

Large Signal Voltage

TA = 25°C, Vs = ±15V

Gain

V OUT = ±10V, RL

2. 10 kSl

0.3

25

MS2

40
0.8

300

Input Offset Voltage

mA

V/mV
10

mV

30

IlV/oC

1.5

nA

10

pA/oC

10

nA

Average Temperature
Coefficient of Input
Offset Voltage

6.0

Input Offset Current

~

Average Temperature
Coefficient of Input
Offset Current

2.0

Input Bias Current
Large Signal Voltage

Vs = ±15V, V OUT = ±10V

Gain

RL ~ 10 U2

15

Output Voltage Swing

V s =±15V,R L = 10 kSl

±13

Input Voltage Range

Vs = ±15V

±14

Common Mode

V/mV
±14

V
V

80

100

dB

80

96

dB

Rejection Ratio
Supply Voltage
Rejection Ratio

Note 1: The maximum junction temperature of the LM312 is 85°C. For operating at elevateq, temperatures, devices in the Tg-5 package must be derated based on a thermal resistance of 150 C/W,
junction to ambient, or 4~ C/W, junction to case. For the "flat package, the derating is based on a
thermal resistance of 185 C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
0
100 C/W, junction to ambient.
Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive
current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless
some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V
specified.

~ Vs :S±15V and OOC.:S.T A ~700C, unless otherwise

175

N
~
M

~

typical p.erformance characteristics

..oJ

I nput Currents

Offset Error

~

Drift Error
1000

1000

-

2.

1
.....

25°C

TA

w
c.:I

C[

r:;

!:;

BIIAS

c

>

;;

100

3a::
c

~

a::
a::

:::I

.25

c..>

.....

.........

.20

~

~

r--

_O~ET- I---

.15

TYPICAL

.10

.........,.,..,1
o

10

20

30

40

50

60

70

80

lOOK

1M

TEMPERATURE (OC)

Input Noise Voltage

Rs

w

100

-

:::I

IIIIIII

60

Rs - lOOK

40

=0

III

-20

lK

lOOK

10K

'"-

f = 1 Hz

I
TA - 25°C
",..,....-

C[

!:;
>

c

~
c.:I

100

10M

100

10K

lOOK

1M

10M

FREQUENCY (Hz)

,

Vs

'I'

L

TA 1=

400

= ±15V

]

~A - olc

350

1

Oo~

1.....
~

a::
a::

i

t =~ooci

.....
~
.....

lK

Supply Current

~ .....;;; ~

TA =25°C

~

TA = 70°C

...

10

z

~A -DoC

w

1M

Output Swing

120

c.:I

lOOK

FREQUENCY (Hz)

15

110

10K

lK

100

Voltage Gain

III

=1

20
Rs

FREQUENCY (Hz)

c.:I

100M

(m

Closed Loop Output Impedance

Power Supply Rejection

=1M

100

10

;;:

10M

INPUT RESISTANCE

80

10

z

1M

:70'C

Vs = ±15V
100 k---+-----1r---t-- TA =2SoC

~

...

100M

10M

Av

"~

I~

o C
1.0
lOOK

120

s
C
z
.....

TYPICAL '"

10

INPUT RESISTANCE (n)

1000

(I)

t:
a:
c

III

o

JIll

~

10 = MAXIMUM

'"

IXIMUM

a::

~

r----.. .

",

100

:::I

300

.- -~--L" ~

250

---

200

c..>

~

:::I
C

~

150

~

-

,

TA = 2SoC
TA = 70°C

100
50

o

90
10

20

15

1

o

SUPPL Y VOLTAGE (±V)

io-.

'" ""l'-

100

;

,'-,,

80

z

;;:
c.:I

60

w

c.:I
C[

!:;
c
>

180

,
,1000 P~,p
'~

135

Cs

~,

-

~"I'-

40

'"

Cs = 1000 pF"

20

I

'"""'"

-20
0.1

10

100

lK

45

'"

10K lOOK 1M

FREQUENCY (Hz)

17h

90

......

."

::c

..

=

Voltage Follower Pulse
Response

16

---

~

(SUPPLY VOLTAGE (±V)

Large Signal Frequency
Response

GAIN
PHASE - - - -

>
~
,....
>
I:)

-

~

1

12

\

z

~

.....
~
.....

i

,

(I)

w
c.:I

1\

4

100

lK

10K

FREQUENCY (Hz)

0

C[

-2

!:;
c
>

-4
-6

-

TA = 25°C
Vs = ±15V

,

\
\

..

I

,.- 'r-L
INPUT

r--

'(

I

OUTPUT

if

-8

~~

o

8

~
c.:I
z

I\.

:::I

10

=25°C
= ±15V

\

c.:I

c

TA
Vs

20

15

10

5

OUTPUT CURRENT (±mA)

Open Loop Frequency
Response
120

o

4

-10
lOOK

50 100 150 200 250 300 350 400
TIME (!ls)

Operational Amplifiers
LM216/LM216A/LM316/LM316A, operational amplifier
general description
Further, unlike most other internally compensated
amplifiers, the MOS compensation capacitor is
protected to prevent catastrophic failure from
overvoltage spikes on the supplies.

These devices are precision, high input impedance
operational amplifiers designed for applications
requiring extremely low input-current errors. They
use supergain transistors in a Darlington input
stage to get input bias currents that are equal to
high-quality FET amplifiers-even in limited temperature range operation. The low input current is,
however, obtained with some sacrifice to offset
voltage, offset voltage drift and noise when compared to the non-Darlington LM 112 series. Noteworthy specifications include:
•

Guaranteed bias currents as low as 50 pA

•

Maximum offset currents down to 15 pA

•

Operates from supplies of ±3V to ±20V

•

Supply current only 300 MA at ±20V

The low current error of these amplifiers make
possible many designs that were previously impractical with monolithic amplifiers. They will
operate from 100 MD source resistances, introducing less error than general purpose amplifiers
with 10 kD sources. Integrators with worst case
drifts less than 10 MV /sec and analog time delays in
excess of one day can also be made using capacitors no larger than 1 MF.
The LM216A and LM316A are high performance
versions of the LM216 and LM316. The LM216
and LM216A are specified for operation from
-25°C to 85°C, while the LM316 and LM316A
are specified from 0° C to 55° C.

These operational amplifiers are internally frequency compensated and have provisions for offset
balancing with a single external potentiometer.

auxiliary circuits **

schematic diagram

Overcompensation for Greater
Stability Margin

Cl
Tl000PF

Offset Balancing
Rl
lOOK

RI6
500

RI5
2.6K

**Pin connections shown are for metal can.

Dual-In-Line

connection diagrams
Metal Can

NC

Flat Package

Y'
INPUT

OUTPUT

GUARO - " " ' -_ _ _. . . J -

I

BALANCE

2

13 NC

GUARD

3

12 BALANCE

INPUT

4

11

GUARD

v+

10 OUTPUT

INPUT 5
&

NOTE: Pm 6 connected to bottom of package.

I

COMPENSATION

I

NC

Y-

Compensatlontermmalriot
brought out on flat package.

NOTE: Pin4connectedtoCise.
TOPYIEW

TOPYIEW

TOPYIEW

Order Number LM216F or
LM216AF or LM316F or
LM316AF
See Package 3

Order Number LM216D
or LM216AD or LM316D
or LM316AD
See Pack!'lge 1

Order Number LM216H or
LM216AH or LM316H or
LM316AH
See Package 11

NOTE

PIn 1 connected to bonom of PICk.

177

«
CD
....

absolute maximum ratings

M

:E
...J

±20V
500mW
±10 mA
±15V
Indefinite
-25°C to 85°C
aOc to 70°C
-65°C to 150°C
300°C

Supply Voltage
Power Dissipati9n (Note 1)
Differential I nput Current (Note 2)
Input Voltage (Note 3)
O~tput Short-Circu it Duration
Operating Temperature Range LM216/LM216A
LM316/LM316A
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

'"....
CD
M

:E
...J

'"«CD
....

N

:E
...J

'"N....
CD

electrical characteristics

:E
...J

PARAMETER

(Note 4)
CONDITIONS

LM216

LM216A

LM316

UNITS

Input Offset Voltage

TA

= 25°C

10

3

10

3

mV

Input Offset Current

TA

= 25°C

50

15

50

15

pA

Input Bias Current

TA

= 25°C

150

50

150

50

pA

Input Resistance

TA

= 25°C

1

5

1

5

GU

Supply Current

TA

= 25°C

0.8

0.6

0.8

0.6

mA

Large Signal Voltage Gain

TA

= 25°C, Vs = ±15V
VOUT = ±10V, RL 2: 10 kr2

20

40

20

40

Input Offset Voltage

15

6

15

6

mV

In put Offset Current

100

30

100

30

pA

Input Bias Current

250

100

250

100

pA

= TMAX

Supply Current

TA

Large Signal Voltage Gain

Vs = ±15V, V OUT
RL 2: 10 kU

0.5

0.5

V/mV

mA

= ±10V
V/mV

10

20

15

30

±13

±13

±13

±13

V

±13

±13

±13

±13

V

Common Mode Rejection Ratio

80

80

80

80

dB

Supply Voltage Rejection Ratio

80

80

80

80

dB

Output Voltage Swing

Vs

= ±15V,

Input Voltage Range

Vs

= ±15V

RL

= 10 kr2

Note 1: The maximum junction temperature of the LM216 and LM216A is 100°C, while that of the
LM316 and LM316A is 70°C. For operating at elevated temperatures, devices in the TO-5 package
must be derated based on a thermal resistance of 150oC/W, junction to ambient, or 45°C/W, junction
to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted
on a 1/16-inch-thick epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The
thermal resistance of the dual-in-line package is 100oC/W, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V < Vs <±20V and -25°C 

BIAS

~

.... :---......

~

........... t---

:;

!

r- MAXIMUM.LM2t~~
I \\\11111 Ll

~
to

I-

~

-3~

-Hi

t0

~

~

c:(

3D

50

:;

~ 1.0

70

\.

20

~

r-- r-- ~

.........

-60
-80

>

T""'- ~

\

40

~ -40

I-

OFFSET
"- ..... ~j

TA =1 25oC

\

I-

Z

"-

60

a:
a:
:;:)
(.) -20

MAXIMUM LM2t5A1LM3t6A ~

~

1

80

CI
c:(

.""-

!

o

TA -25°C

w

'\.

tOO

90

-tOO
tM

tooM

tOM

-0.3 -0.2

toooM

INPUT RESISTANCE (n)

TEMPERATURE (OC)

o.t

0.3

0.2

Closed loop Output
Impedance

Power Supply Rejection

Input Noise Voltage

-O.t

DIFFERENTIAL INPUT VOLTAGE (V)

t20 r---.....,...---,;---"T'"--.---,

to,ooo

tOO

~z

80

c

I'~

~ t,OOO ~

Rs= tOM

o
Z

I-

~

60
40

~

20

Q..

Rs= 0-

~

~
a:

~

IIIJ[-

lit

tOO
to

tOO

tk

-20
to

tOOk

tok

tOO

tk

FREQUENCY (Hz)

t5

10k

lOOk

tOM

1M

Supply Current
500 ,....---,---,.--.-....,-.....,...--,

Vs - +15V
~

tt5

~

~

TA =-25°C_ r - -

~ tto

CI

to

3E

TA = 85°C ....
I
I

I-

TA =25°C-

z

_I °
TA - 25 C

10-...

Il

CI

c:(

~ t05
c

lk

FREQUENCY (Hz)

", ,

10-....

f = It Hz

CI

100

1M

tOOk

Output Swing

Voltage Gain
t20

w

tok

FREQUENCY (Hz)

CI)

I

~

I

I

I-

TA = 85°C

:;:)

I

tOO

o

95
to

t5

--

TA = -25°C

0

>

,.---r.-

J

20

I

o

o

SUPPL Y VOLTAGE (±V)

4

SUPPL Y VOLTAGE (±V)

large Signal
Frequency Response

Open loop
Frequency Response

Voltage Follower
Pulse Response
10

16
~

",

t80

.....

,"" ,
, ,

r- Cs = tODD pF'

....l>

CI

90

C)

CI)

Q.

I-

1-_, . '
~

....I

,~

'.,"

1
1

-40
O.t

1

45

"" '"

r- GAIN I
r- PHASE---

> 12

~
'"
J!.

CI

i\

z

tOO

tk

tok tOOk

FREQUENCY (Hz)

tM

2

w

0

CI
c:(

~

~
c

I:;:)

0

>

o
to

z

~

.........::

·1

.....,

~

..:!:!..

3E

100

10 k

FREQUENCY (Hz)

-2

,

~

INPUT

\

-

'r--

IOUTPUT

i/

-4
-6

,.- 'r-/
J
'I

~-

-8

1'"
. lk

TA = 25°C
Vs = ±15V'

TA = 25°C
Vs = ±15V

\

-

t35

, j

.6~

.....

I
I

Cs=tooopF;

20

15

10

5

OUTPUT CURRENT (±mA)

lOOk

-10
100

200

300

400

TIME (I1S)

179

...cO

N

::E'
.....

Operational Amplifiers

...co
::E

........

LM118/LM218 operational amplifier

.....

general description
The LM118 and LM218 are precision high speed
operational amplifiers designed fdr applications,
requiring wide bandwidth and high slew rate. They
feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

features
•

15 M Hz small signal bandwidth

•

Guaranteed 50V Ills slewrate

•

Maximum bias current of 250 nA

•

Operates from supplies of ±5V to ±20V

•

I nternal frequency compensation

•

Input and output overload protelHed

•

Pin compatible with generai purpose bp amps

compensated amplifiers, external frequency com
pensation may be ad,ded for optimum performance
For inverting applications, feedforward compen,
sation will boost the slew rate to over 150V Ills
and almost double the bandwidth. Overcompensation can be used with the amplifier for greater
stability when maximum bandwidth is not needed.
Furt~er, a single capacitor can be added to reduce
the 0.1 % settling time'to under 1 IlS.
The high speed and fast settling time of these op
amps make them useful in AID converters, oscillators, active, filters, sample and hold circuits, or
general purpose amplifiers. These devices are easy
to apply and offer an order of magnitude better
AC performance than industry standards ,such as
the LM709.

I

The LM 118 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary
for operation. However, unlike most internally

The LM218 is identical to the LM118 except that
the LM218 has its performance specified over a
-25°C to 85°C temperature range, instead of
-55°C to 125°C.

schematic diagram and connection diagrams

Metal Can Package*
COMPENSATlON,2

TQPVIEW

Order Number LM118H or LM218H
See Package 11

Flat Package
NC
BALANCE!

NC
COMPENSATION,2

COMPENSATION-'

OUTPUT
BALANCE/
COMPENSATION-3

TOPVIEW

Order Number LM118F or LM218F
See Package 3
Dual-In-Line Package

typical applications

INPUTS

<
V'

6

12 COMPENSATION-2

11 V·
10 OUTPUT
9

~6~~~~~~TION-3

INPUT

*Pin connections shown on schematic
diagram and typical applications are for
TO-5 package.

OUTPUT

Order Number LM118D or LM218D
See Package 1

INPUT

Fast Voltage Follower

180

Fast Summing Amplifier

Differential Amplifier

absolute maximum ratings
Supply Voltage
,
Power Dissipation (I\idie 1)
Differential Inpu,t Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range LM 118
LM218
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics

±20V
500mW
±iOmA

±15V
Indefinite
-55°C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

(Note 4)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

T A =25°C

2

4

mV

Input Offset Current

T A = 25°C

6

50

nA

Input Bias Current

T A = 25°C

120

250

nA

Input Resistance

T A = 25°C
~(

1

MQ

3

0

Supply Current

TA = 25 C

Large Signal Voltage Gain

T A = 25°,C, VS = ±15V
V OUT == ±10V, RL ~ 2 H1

50

200

V/mV

Slew Rate

TA = 25°C, Vs= ±15V, Av = 1

50

70

V Ills

Small Signal Bandwidth

T A = 25°C, Vs = ±15V

15

MHz

5

8

mA

Input Offset Voltage

6

mV

Input Offset Current

100

nA

Input Bias Current

500

nA

7

mA

Supply Current

T A =+)25°C

Large Signal Voltage Gain

Vs = ±H~V, V OUT = ±10V
RL ~ 2 kQ

±15\1, R L = 2 kQ

Output Voltage Swing

Vs =

Input Voltage Range

Vs = ±15V

4.5

V/mV

25
±12

~

±13

±11.5

V
V

Common Mode Rejection Ratio

80

100

dB

Supply Voltage Rejection Ratio

70

80

dB

Note 1: The riiaximum junction temperature of the LMl18 is 150°C, while that of ,the LM218 is
100°C. For oper~ting at elevated temperatures, devic~s in the TO-5 package must be derated based on
a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance, of 185°C/W when mounted on a 1/16-inch-thick
epoxy glass board with ten, 0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the
dual-i~-line packag~ is 100°C/W, junction to ambient.
Note 2: The Jnputs are shunted with back-to-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of lV is applied between the inputs
unless some limiting resistance is use8.
Note 3: For sUpply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V :s. Vs :s. ±20V and -55°C :s. T A :s. 125°C, unless otherwise specified. With the LM218, however, all temperature specifications are limited to -25°C:s. T A:s.
85°C. Also, power supplies must be bypassed with 0.1 J.LF disc capacitors.

181

co
....
N

~

typical performance characteristics

...I
.........

co
....

Input Current

....

200

~

150

...I

~

100

1

I

r-!e.:

I-

100 .---....,....-......,,....--...-----.,..----,

1

.. "

"7

10

--

z

C[
::

1

r---- ~CL

~ 110

50

I-

~
a:
a:
~

Power Supply Rejection

Voltage Gain
115

I
I
Vs=+15V-

....

TA =25 " C

~--~--~~--+---~---4

60

.,..--..... ~........ ~
40

105 f--TA = 125°C

t:I

8

c:(

10-.

~

OFFSET

-

~

:;

20~--~--~----+-~~---4

Q

>

100

2

o

95

-55 -35 -15

5

25 45

65

85 105 125

5

10

TEMPERATURE ( C)

Input Noise Voltage
TA = 25 C
Vs = '15V

~
z

'is =

~

100

'"
C

30

a:
w

w

z

~

lk

---

100

-

~

zQ

10

3
10

lk

100

~
~

8

Supply Current

80
60

~
'1\

\

40

~

20

o
10k

4.0

100

lOOk

lk

10k

FREQUENCY (Hz)

lOOk

1M

10M

Current limiting

~

Input Current
600
Vs = ±15V

~

"""'I

T}=25!C400

"1

10

~
I-

0l

TA = 25 C

t:I

z

Z

i

a:
a:

TA=125"C

'"

I-

~

:;)

Q

10k

lOOk

1M

10

FREQUENCY (Hz)

Unity Gain Bandwidth
130

22

I-+--+---I--+--+~~+-~-l

120 t-- t-

20

I.-""""''"' ' ' __-I-----_+_.,

110
-;;;
~

16

~_+_-+--""'ool.:--_+_~~I"""',.p.,.,.+_~

14

1--+--+--+-+-~~~+=!oo.I.::,.3I

12

I--+--+--+-+--+--I---f"'o..d----l

10

~_+_-+---I-----_+_-+--f--+--+--t
~....I----'--~....I-~-~~~~

5

25 45

TEMPERATURE

182

65

rc)

85 105 125

~
~

~

'"

-

1

10mV

~"""

r.....

V

~

lo0m~

f-

\OJ

t:I

:;

~

Q

Vs=±15V

I-

TA = 25°C
Rs = 5 kn

>

90
NEGATIVE SLEW

70

Inverter Settling Time

10

100

Vs = ±15V
Rs = Rf = 10 kn
Cf = 5 pF

60
-55 -35 -15

-I"-

:;)

0.

I-

-5

~ I"'---

25 45 65 85 105 125

TEMPERATURE (OC)

.....

Y

1\ I... ~

Rf = 5 kn 10orV~

:;)

Q

-10

-15
5

0.2 0.4 0.6 0.8

15

c:(

80

0

DIFFERENTIAL INPUT (V)

P~SI~IVE ~LE~

1--"'-

\

-600'
-0.8 -0.6 -0.4 -0.2

25

Voltage Follower Slew Rate

~......-....."..-....-....--............,,....-...--....,....--.

-55 -35 -15

20

15

OUTPUT CURRENT (rnA)

24

8

[\
\
\

-400

L-_....I__---'-_ _.l..-_....I__--'

lk

~
-200

!!

~--_+_---+--..,.t£-I-------_+_--~

100

~

(.)

I-

10

\

\

:;)

:;)
Q..

10-3

200

\OJ

I-

10- 2

20

SUPPLY VOLTAGE (!V)

14
12

15

10

5

FREQUENCY (Hz)

Closed loop Output
Impedance

10M

Rs = 2 kSl
TA = 25°C-

Q
Q

~~

1M

5.5 .---.---.---.----,---,.---,

Q

300 ~

lOOk

FREQUENCY (Hz)

120

1000

10k

lk

Common Mode Rejection

3000

~

20

15

SUPPL Y VOLTAGE (tV)

Cf =10pF

CS •7 = O.l/lF
0.03

0.1

lOir
0.3
TIME (liS)

1 mV I-

lmV I-

1\

r-

...3:

typical performance characteristics (con't)
Large Signal Frequency
Response
14

'-

12

~

120

I I I
TA = 25'C
Vs = d5V

\

10

~

\

c.:J

z

~

"'"

80

z

\

....
~
....

100

<
c.:J

,

c

40

>

20

S
c

1\

:::)

60

c.:J
'"
«I:

'"'~

:K'

1M

2M

5M

10

50M

100

- "",

f

10

z

~

~
45

TIA

~ J51 ~I

...
III

S
c
>

1\
\

0

INPUT--

1

FEEDFDRWARD
I

I

V

-12

Vs=±15V
TA = 25°C 0.2

16

225
180 ~

80

>
en

135 ::

'"
«I:

40

90

20

45

>
C')

III

FREQUENCY (Hz)

1.0

1.4

1.8

Inverter Pulse Response

~

ien
t:I
'"
«I:

;;;
~

>

S
c

. --- -~--

1k

10k

100k 1M 10M 100M

\1- I -

-8

\
\

~-

-20
-0.1

I-OUTPUT

I
I

\
-4

~

\"

'. -

FEEDFORWARD

-16
100

r\

INPUT--

\

Z

...

.g:

~

c.:J

-12

100M

0.6

20

~lll
30M

[

~

-8

~ I-

l--oUTPUT

TIME ().Is)

60

c
>

N
00

il

-4

-20
-0.2

<

c.:J

,., -

-16

Z

10M

c.:J
'"
«I:

"

S

3M

ien

8
4

12

:::)

1M

z

10k 100k 1M 10M 100M

100

VS 7"5V

t:I

o

!.

c.:J

120

....
....~

c

Ii:

~

Open Loop Frequency
Response

~

c.:J

1k

3:

...

~

~

FREQUENCY (Hz)

Large Signal Frequency
Response

12

>
C')
90

\

FREQUENCY (Hz)

14

>
en
135 ::

~

-20

10M 20M

12

180 ~

PHASE /

~
0
0.5M

I

GAIN"

....

16

Vs =±15V- 225

I

"r-

20

T~ = 25!C

........ i"o..

00

Voltage Follower Pulse
Response

Open Loop Frequency
Response

0.1

0.3

0.5

~-

-

TA = 25 C
Vs ='15V

0.7

0.9

FREQUENCY (Hz)

auxiliary circuits
I,F

'SlrwJndstlthnghmt
to 0 1'10101 • I OV ~ttp
thingt II

Feedforward Compensation for Greater
Inverting Slew Rate t

800

n~

Compensation for Minimum
Settling t Time

R,

10pf

Offset Balancing

r

Isolating Large Capacitive Loads

Overcompensation

183

co
~

N

:?i

typical applications (con1t)

-I
.........

co
~
~

:?i

10 pF

-I

5pF

5K

5K

5K

5K

OUTPUT
10K

INPUT ~t-----,

10K

10K

OUTPUT

FROM SWITCHES

SAMPLE

D/A Converter Using Ladder Network

Fast Sample and Hold

INPUT

...JW"'-....- - - -....---'lM..-----4t- OUTPUT

5pF
150K

oK

40K

20K

10K

OUTPUT

FROM SWITCHES
·Optional·Reduces
settling time,

D/A Converter Using Binary Weighted Network

V'

Fast Summing Amplifier
with Low Input Current

,

+15V

lOOK
1%

Rl
750

>~""--OUTPUT

u*
R2
20K
1%

"U-l0V -14mA
bulb ELOEMA 1869
Rl = R2
Cl = C2
f

= 2rr~ICl

•

200K

GAIN"'R- for
II

1 !iK

<>

a

~

T

w 105

c,:,

TA

c:r
~
o

OFFSET

~ 20

=O"C

I

~

z

~

a:
a:

Power Supply Rejection

115

200

\

-

TA = 70'C

~~~----~--~--~----1

60

~--~--~~--~--~----,

i=

..........

~

=25"C

80

~

40

~

20

~---~----~--~--~----1

-20

I...-_-'-_ _ _L...-_....I-__---!_ _ _..J

a:

> 100

~

10

o

o

95
10

20

30

40

50

60

70

10

5

TEMPERATURE (OC)

120

TA = 2!j°C
Vs = +15V

~

---"

100

z

100

'"
C

30

w

i=

z

~a:

-

.==

=-

S~
r-

oo;;;; ...

w

80
60

0
0

:;;

.!!: 100n'I~~ = ~k,

z
:;;
:;;
0

'\

Supply Current

10k

\

40

5.0

~
a:
a:

~

::::I

u

>

~ 4.5

"

20

TA

~

=

70 C

......

100

lOOk

5.5

~

o
lk

100

10M

1M

;;(

u

10

lOOk

Rs = 2 kSl
TA =25'C--I

0

10

=
3 -

10k

lk

FREQUENCY (Hz)

T

0

300 .......

~

100

Common Mode Rejection

1000

~

20

SUPPLY VOLTAGE ('V)

Input Noise Voltage
3000

Rs = lOOk

15

10k

lk

FREOUENCY (Hz)

lOOk

1M

FREQUENCY (Hz)

4.0
10

10M

Current Limiting

Closed Loop Output Impedance

20

15

SUPPl Y VOL TAGE (, V)

I nput Current

14
12

~-+-+--+--+--

'---

400

"""Ii

-

-

TA,=70"C

1
~

- f---- f- --f---- - ---f---

~-+-+---+---+--

...---t---..;f---+----

~

200

f----f---

--f-----I--

1 \ _ +__ f--- - - I - -

~ t=\\~~t::t==t=~;;--~----;;--~===:=j
1\

1

TA =25'C- -:..-,

~ -200
~

Vs=~15V

10-3

o

I...-_-'-_---l_ _...l...-__---l._--...l

10

lk

100

10k

lOOk

1M

o

-400
-600

10

20

15

\

~-+----+-+--+--+---+---+t

-0.8 -0.6 -0.4 -0.2

25

FREQUENCY (Hz)

0

0.2 0.4

0.6

0.8

DIFFERENTIAL INPUT (V)

OUTPUT CURRENT (mA)

i

Unit Gain Bandwidth

POSITIVE SLEW

N

:J:

~ 20

110

:J:

~

18

z

c:(

co

z

<
c,:,

:g.

100

~

90

?

0

16

CI)

>
~
14
2

80

-

20

30

40

50

TEMPERATURE ('C)

60

70

10

20

30

r---40

50

TEMPERATURE rC)

60

100m;

I

/

~
0
>

Vs

~

TA

70

-5

::::I

0

-10
-15

I

1

c:(

~

10 mV

I'

c,:,

a..

I

II

10

?:
w

NEGA~IVE S,LEW

70
10

r--

::::I

::::I

12

-

15

Vs = ±15V
Rs = Rf =10 KH
Cf = 5 pF

~

0

Inverter Settling Time

Voltage Follower Slew Rate
120

22

= ±15V
=25°C

~

\ '\

Rs = 5 kn
Rf =5kH 100jV\

c, = 10 pF
C5 ,7
0.03

=0.1 pF
0.1

1 mV -

/
1 mV -

\

10mV

I I
0.3
TIME (ps)

187

co
~

(W)

:E

typical performance characteristics (con1t)

...I

•
Large Signal Frequency
Response

9pen Loop Frequency
Response

14

to-

12

~

\

10

Z

1i:

I

\,

CI)

I-

ir
I~

4

,

i

I

;;;:

60

"'""'~

z

t:I
~

0

>

I:

-

i

I

10M 20M

20

10

100

--'",

:>

10

Z

1i:

TA = 25'C
Vs = >15V

~

I-

I

~

45

0

-0

~

>

10k lOOk 1M 10M 100M

f
il

~

I

20

V

TA =25"C0.2

-\

12

135 ~

»
In

l

~-4-~-+--~-+~~~45 ~

ro-

~
t:I

Z
CI)

w
t:I

~

~
~

-4

--

-0

100

lk

10k

lOOk 1M

10M 100M

-20
-0.1

\
\
\"

1.0

0.1

FEEOFORWARD

0.3

01,.F

OUTPUT

tSlpwralP!yprcally 150VI,s

tSlewand~1thngllme
100.1%101 a lOV ~tep
changersaOOns.

Compensation for Minimum
Settling t Time

Feedforward Compensation for Greater
Inverting Slew Rate t

R,

10pF

r

Isolating Large Capacitive Loads

-

I

;pf

.~:~:~;:e~r:~;:t n~m$arv fur

~-

f-OUTPUT

I
I

FREQUENCY (Hz)

v·

"

INPUT--

auxiliary circuits

188

1.4

-- ----

:t

1i:

-16

FREQUENCY (Hz)

Offset Balancing

1.0

16

225

-12

100M

0.6

Inverter Pulse Resp~nse

III
30M

--

20

40

-.--++

r-

~~-l--Vs = ± 15V

.l

-12

[

~

\

i""-

f--OUTPUT

TIME (/1s)

60

10M

-4

-20
-0.2

CI)

~
3M

~

INPUT--

-16

FEEDFORWARD

1M

f

»

\

o

w

,

1\
\

~

t:I

!

0

z

In

80 1__--+--t="~+--I__--+--+---Il00 ~

I

I

0

90

100

~

---t--tI

»

:,:,

120

_I I !I,II

CI)

CI)

135 ~

~

Open Loop Frequency
Response

\

t:I

»

r-

FREOUENCY (Hz)

Large Signal Frequency
Response
12

lk

100 ~

,-, - ~
~

12

"

-20

50M

16

225

--/

GAI~

FREQUENCY (Hz)

14

I I
_ PHAS~ I

\

~

I

20

I

TA =25°C _
Vs = ~15V

)('

40

I'

5M

2M

00

T

r----. .....

w

I

o
1M

~
t:I

\

0.5M

100
I

\

t:I

0

120

I I I

TA = 25"C
Vs = _t15V

"-

Voltage Folrower Pulse
Response

Overcompensation

0.5

-- -- TA = 25 C
Vs= '15V

0.7

0.9

typiCfll applications (con1t)
5p'

5p'

10K

OUTPUT

OUTPUT

Differential Amplifier

Fast Summing Amplifier

fast Voltage Follower

5p'

lOp'

5K

5K

10K

OUTPUT

5K

10K

10K

OUTPUT

'ROM SWITCHES

SAMPLE

DIA Converter Using
Ladder Net~ork

Fast Sample and Hold
,5V

50K
1%

50K

30K

3p'

30K
1%

110K
1%

180K

1%
120K
1%

xv
10

110K
X
INPUT

T

5OP
'

100

V
INPUT

140K
1""

140K
15K'"

-

l'

"

15K

150K

OUTPUT ZERO
Y'ZERO
T'ZERO

r FUll SCALE ADJUST

I'"

25K'

•
,

Four Quadrant Multiplier
R,
-JW.,..-4t------<.------'WIr-----4~ OUTPUT

DOl,,'

Rl
)50

lOOK
150K

001.'

5K

Rl
10K
T".

hulh ELDEMA 1869

RI

R2

Cl

Cl
1
2AIC1

Fast Summing Amplifer
with Low I nput Current

Wein Bridge Sine Wave
Oscillator

189

Operational Amplifiers
LM709 operational amplifier
general description
The LM709 is a monolithic operational amplifier
intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design,
in addition to providing high gain, minimizes both
offset vol tage and bias currents. Further, the class-B
output stage gives a large output capability with
minimum power drain.
External components are used to frequency compensate the amplifier. Although the unity-gain com-

pensation network specified will make the amplifier
unconditionally stable in all feedback configurations, compensation can be tailored to optimize
high-frequency performance for any gain setting.
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift
at minimum cost. It also ensures negligible drift
due to temperature gradients in the vicinity of the
amplifier.

schematic and connection diagrams
INPUT FREQUENCY COMPENSATION
~

____~__~I~____~8~________~__~__~.--v+
R6
10K

Metal Can

...--....--4"'"""'W"'...- OUTPUT

OUTPUT
"lr--f----+--FREQUENCY
COMPENSATION

..

INPUTS

+-----£

........- - -

Order Number LM709H
See Package 11
Rl3
75

~~~-4----------'----'--V-

Rll

24K

typical applications*
Offset Balancing Circuit

Voltage Follower

01

R3t

VeM (MAXI-~~""---~M,.....·-""--- OUTPUT

R5
160K

R4
lOOK

V---JV~-~~----

R2"

51

INPUT

-------I
INPUTS

'To be used with any
capacitive loading on output

C2
200 pi

To be used With any capacitive
loadrngonoutput

tShould be eQual to
dc source resrstance on rnput

Unity Gain Inverting Amplifier

>-.;;......-I\IYv- OUTPUT
C2
200 pi

FET Operational Amplifier

R4
20K

r-----'w\r--. .- - OUTPUT
C1
2700 pi
R2"

INPUT

-'W~"'--1

'To be used wrth any
capacitIVe loadrng on output

*
1Q(l

_

Pin connections shown are t;r Metal Can package.

51

>----+--"tMl- OUTPUT

'To be used with any capacitive
loadrng on output

r-

s:-....I

o

absolute maximum ratings

CD

Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
I nput Voltage
Output Short-Circuit Duration (T A = 25°C)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 60 sec)

±18V
300 mW
±5V
±10V
5 sec
-65°C to +150°C
-55°C to +125°C
300°C

electrical characteristics
PARAMETER

MIN.

CONDITION

TYP.

~MAX.

UNITS

Input Offset Voltage

TA = 25°C, Rs::S;10 kU

Input Bias Current

TA=25°C

200

500

nA

I nput Offset Current

TA = 25°C

50

200

nA

Input Resistance

TA = 25°C

Output Resistance

TA=25°C

Supp!y Current

TA = 25°C, Vs = ±15V

Transient Response

1.0

150

5.0

mV

400

kU

150

U

2.6

5.5

mA

1.0

JlS

VIN = 20 mV, CL::; 100 pF

!-

Risetime

TA=25°C

0.3
10

Overshoot
Sle'{ying Rate

TA=25°C

Illput Offset Voltage

Rs::;10 kU

30

0.25

%
V/JlS

6.0

mV

Average Temperature
Coefficient of Input

R~ = 50 U

3.0

pffset Voltage

Rs = 10 kU

6.0

Large-Signal
Voltage Gain
Output Voltage Swing

I npul Voltage Range
Common Mode
Rejection Ratio

JlVfC
JlVfC

Vs = ±15V, RL2::2 kU
25,000

45,000

Vs = ±15V, RL =10 kU

±12

±14

V

Vs=±15V,R L =2kU

±10

±13

V

±10

V

VOUT = ±10V

Vs = ±15V

±8.0

Rs::;10 kU

70

70,000

db

90

Supply Voltage
Rejection Ratio
I npl}t pffset Current

Rs::S;10 kU

25

150

JlV/V

TA =+125°C

20

200

nA

TA =-55°C

100

500

nA

Input Bias Current

TA = -55°C

I nput Resistance

TA=-55°C

0.5
40

100

1.5

p.A
kU

Note 1: For operating at elevated temperatures, the device must be derated based
o

a 150°C maximum junction temperature and a thermal resistance of 150 C/W
junction to ambient or 450 C/W junction to case for the metal-can package.
, °
For the flat package, the derating Is bl;lsed on a thermal resistance of 185 C/W
when mounted on a 1/16-lnch-thlck;' epoxy-glass board with ten, 0.03-inchwide, 2-ounce copper conductors (see curve).
00

Note 2: These specifications apply for -55°C:::; T A ::; + 125°C, ± 9V ::; Vs
~ +15V,

C1 = 5000 pF, R1 = 1.5K; C2 = 200 pF and R2 = 510 unless otherwise specified.

101

0)

o

I'

~

guaranteed performance characteristics

...J

Input Common Mode
Voltage Range

Output Voltage Swing
10.0

15
-55°C <; T. <; + 125°C

13

:;;-

:;;-

-55'C

9.0

+1

~

T. <; +125'C



+1

~ II"'"



z:

11

~

~\\)~~

~~~~'
.,;:.'l.'t-':.:"" ~ ~
- '--~~
~~~;-.~
~\,,~~

~§?
~

8.0

~§?

7.0

g

~~

~\,,\t... ~
~~

z:
0

~
5.0 1IIIIIIII

~

~ ~ ......

~~

~~

~~

6.0

~

~~ l.....1li ~II"'"

§

~

8

4.0
10

11

12

13

14

10

15

11

~

\" ~

5-

z

z:

,'"~

0

200

'~

C

~

~

IJ

~\~~ """'"

95

~

~g;
z:

\00
- - METAL CAN I'N:KAGE
-- - - MOUNTED fLAT I'N:KAGE (NOTE II

1

o
25

1 J

1 1 1 I

45

65

~

-

I

I..I1II ~ ~

....

T. = 25 C

~~~

,,-

_....

~~\~\\~ ~,..,"""'"

~

-~

t!.~"""'"

90

~~~

85

80

\05

85

15

Supply Current

9

0::

14

6

100

~ 300

~

13

Voltage Gain

Maximum Power Dissipation
400

~

12

SUPPLY VOLTAGE (tV)

SUPPLY VOLTAGE (± V)

..... .... ~ ~

12

11

10

125

~

AMBIENT TEMPERATURE (OC)

II"'"

i...IIIII ~

13

~

14

l...-

... -

15

II

10

SUPPLY VOLTAGE (± V)

L-

1~I'\C~l

12

14

13

SUPPLY VOLTAGE

1~

(± VI

typical performance characteristics
Input Bias Current

I nput Offset Current
200

~

V, = ± 15V

160

1-

z:
ct:
ct:

:::>

ct:
ct:

1

""II"

80

:::>

~

40

-75 -50 -25

'-'
V)
co:
iii

.........

0

..... .......

25

50

:::>

0.4

"'"

0.2

~

~
z

:;;:
(9

-75 -50 -25

(9

~

~

40

>

~

o--l
~
(fJ

o

Cl

~lllOlprlll

Rl

= 0,C 2 = 3pF

i

I

~1I5do~ ~ :1 11 l J

...... ~

1.5kS! 'C 2 = 20pF

1111 I WLlIIII
100

lK

10K

0

25

50

75

15
12

Output Voltage Swing
I

lOOK

""'II~

""II ....

I

!,

,

""" ""'l1lI

,

1M

125

V,= ±15V_ T. = +25 C- -

......

:::>

"-

=>
o

,.,

~

Il
II

1111

FREQUENCY (Hz)

100

TEMPERATURE ( CI

"II1II

C l = 5000pF, I 1111
R l = 1.5k12,C 2 =200pF

I

-75 -50 -25

+1

"""-]I\.

1111

125

:;;-

J

I

100

Vs= ±. 15V
u
TA = 25 C

C l = 100pF:l
Rl = 1.5k12,C 2 = 3pF

d -20 1111

1Q?

75

Output Voltage Swing as

R 1=

0

50

TEMPERATURE (OC)

a Function of Frequency

20

I

25

Frequency Responce For

C'l

0

0

Various Closed-Loop Gains

60

w

--

10

......

OL----'-----'~--'----L_-L--___'__.L--.J

125

TEMPERATURE (C)

80

~

""II~

:::>

100

-

2.0

>-

z:

75

V, = ±15V

....

ct:
ct:

'-'

"-

~-

3.0

z:

0.6

:::>

V)

0

V, = ± 15V

0.8

z:

120

'-'

"z:

Supply Current
40

10

10M

IK

10K

lOOK

FREQUENCY (Hz)

1M

10M

10

20

30

OUTPUT CURRENT

(± mAl

40

50

Operational Amplifiers
LM7,09A operational amplifier
general description
The LM709A is a monolithic operational amplifier
intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design,
in addition to providing high gain, minimizes both
offset voltage and bias currents. Further, the class-B
output stage gives a large output capability with
minimum power drain.
External components are used to frequency compensate the amplifier. Although the unity-gain com-

pensation network specified will make the amplifier
unconditionally stable in all feedback configurations, compensation can be tailored to optimize
high-frequency performance for any gain setting.
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift
at minimum cost. It also ensures negligible drift
due to temperature gradients in the vicinity of the
amplifier.

schematic and connection diagrams
INPUT FRE'QUENCY COMPENSATION

I

8

y+

R6
10K

Metal Can
R7
IK

RIS
30K
OUTPUT

OUTPUT
r-+-------i~FREQUENCY

COMPENSATION
INPUTS
+----(
1 - - - - -..

Order Number LM709AH
See Package 11

~~~~----------,---~--yRII
24K

typical applications
Offset Balancing Circuit

Voltage Follower

01

R3t

VeM (MAX)-~H""'---...I\M_·-""--- OUTPUT
C1
5000 pi

R5
160K

R4
lOOK

R2'
51

INPUT----~

INPUTS
'To be used With any
capacll1ve loading on output

C2
200 pi

To be used With any capacI\1ve
loading on output

tShouldbeequalto
dc source resistance on Input

Unity Gain Inverting Amplifier

>--.....~~"r- OUTPUT
C2
200 pi

FET Operational Amplifier

R4
20K

r----.Jw\r--. .- - OUTPUT
C1
2700 pI
R2"
INPUT -W\r-........

'To be used With any
capacitive loading on output

":"

51

>--"'~M~OUTPUT

*To be used with any capacitive
loading on output

193

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
I nput Voltage
Output Short-Circuit Duration (T A == 25° C)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 60 sec)

±18V
300 mW
±5V
±10V
5 sec
-65°C to +150°C
-55°C to +125°C
300°C

electrical characteristics
PARAMETER

CONDITIONS

MIN

TYP

MAX

Input Offset Voltage

TA = 25°C, Rs ~ 10 kQ

Input Bias Current

T A = 25°C

100

200

I nput Offset Current

TA = 25°C

10

50

I nput Resistance

T A = 25°C

Output Resistance

TA = 25°C

Supply Current

T A = 25°C, Vs = ±15V

Transient Response

V 1N = 20 mV, C L ~ 100 pF

Risetime

0.6

350

TA = 25°C
Rs ~ 10 kQ

Q

2.5

Rs = 50Q

Rs=10kQ
Large-Signal Voltage Gain

3.6

mA

1.5

fJ.S

0.25

%

V/Ms
3.0

T A = 25°C to +125°C

nA

150

30

I nput Offset Voltage

nA

kQ

TA = 25°C

Slewing Rate

mV

700

Overshoot

Average Temperature Coefficient
of Input Offset Voltage

2.0

UNITS

mV

1.8

10

MV 1°C

T A = 25°C to -55°C

1.8

10

MV 1°C

TA = 25°C to +125°C

2.0

15

MV 1°C

T A = 25°C to -55°C

4.8

25

MV 1°C

V s =±15V, RL~2kQ

25,000

70,000

V OUT = ±10V
Output Voltage Swing

Vs = ±15V, RL = 10 kQ

±12

±14

V

V s =±15V,R L =2kQ

±10

±13

V

Input Voltage Range

V s =±15V

±8.0

Common Mode Rejection Ratio

Rs ~ 10 kQ

80

Supply Voltage Rejection Ratio

Rs ~ 10 kQ

I nput Offset Current

T A=' +125°C

V
110
40
3.5

dB
100
5.0

MV/V
nA

T A = -55°C

40

250

nA

Input Bias Current

T A =-55°C

300

600

nA

Input Resistance

T A = -55°C

170

85

,
Note 1: F or operating at elevated temperatu res, the device must be derated based
o

on a 150°C maximum junction temperature and a thermal resistance of 150 C/W
0
junction to ambient or 45 C/W junction to case for the metal-can package.
0

Note 2: These specifications apply for -55°C::; T A::; +125 C, ± 9V ::;VS
~ +15V, C1 = 5000 pF, R1 = 1.5K, C2 = 200 pF and R2 == 510 unless otherwise specified.

194

kQ

guaranteed performance characteristics
I nput Common Mode
Voltage Range

Output Voltage Swing

;;:

;;:

-55'C < T. <: + 125°C

13

11

~

'-"
c<

f-- f-- f---'_

~'h
~\~YS

~

",\\J~~

,....

jIIII'"
1:\\. -::;.'1::::...
~1
~

~~ ~\~\\t.!~jIII'"

a

:>-

=>

CL-

'"'"

~

8.0

""

=
~

~

50 ~

,....

a
a

~~

z:
CL-

12

11

13

14

10

15

85

a

80 l.....I .... 1-10

4.0
10

~

=

I...I1II jIIII'"

60

..... ~

90

~\~t.. ~

z:

8

~,....

~~

70

t:~~

~

~jIIII'"

0

,. J ,... l.....I ~ ~ ~

95

z:

c<

a

~ -.... .....

=>
a

'-"
z:

a

~ :..... ~jIII'"

-55'C -:: T. <: +125 C

9.0

+1

+1

'-"
z:

Voltage Gain
100

10.0

15

11

SUPPL Y VOLT AGE (± V)

13

12

14

15

~

-*

~

t.."..

14

13

12

11

l..IIIIiI ~

15

SUPPLY VOLTAGE It V)

SUPPL Y VOLT AGE I ± V)

typical performance characteristics
I nput Bias Current as a Function
of Ambient Temperature

Input Offset Current as a Function
of Ambient Temperature

500

~

1

400

I-

z

IZ

40

w

~ 300
a:

a:
a:

1,\
1\.

:::J

u

~ 200

:::J
U

30

LL

0

t'....

~ 100

I-

. . . . r--. ......

z

~
z

o

§; 300

.s

,-20

20

60

100

140

TA = 25°C

«
.5 100

~
~~

-2:

-I-"'"

2:

-20

~...J

10

11

cIYlO~r"l

z

60

>

~

12

13

14

o...J
I

8

1

R, = 0,C 2 = 3pF
C, ~1I100pF:' ,
R, = 1.5kS! 'C 2 = 3pF

~5010ml

"'

§

65

I

I

85

105

125

3.0

........

0:
0:

:::>

c..>

~

1.0

2.0

CL-

":::>

V>

~

10

10

.....

IIII I IIIII

III

d -20

III

100

lK

10K

lOOK

FREQUENCY (Hz)

16

1000

-75 -50 -25

0

25

50

75

100

125

TEMPERATURE I CI

Output Voltage Swing

,,~rr-,,~~~~~~~~

12

12

,

15

14 ~~~~~~kH*
+1

IIiIIo..

V.= ±15V _ +---T.=+25C- I--

~
"'II ...

~

10

"

" ""-

8.0

"'II

60

""
1M

100

Output Voltage Swing as
a Function of Frequency

;;:

I III

1111 111111

C/l

+--

I

V. = ±15V

c

CLOSED-LOOP GAIN

/""'001\.

C, :':'5000~F,
R, = 1.5kS!,C 2 = 200pF

0

o

I

z:

15

Vs= ± 15V
TA=25"C

R, = 1.5kS! 'C 2 = 20pF
20

45

~KAGE

0.1

00- 80

0

I

II

::s

40

I

Supply Current

I/""

Frequency Responce For
Various Closed -Loop Gains

...J

25

I

AMBIENT TEMPERATURE (OC)

1.;'"

SUPPLY VOLTAGE (± V)

«

o

140

...... ~I"'"

C/l

9

I-

100

I

40

10

85
80

;;(

60

100
- - METAL CAN

V s =± 15V

tta:

co

0
w
0

~

.... ~ ;.....

20

w

I-

z

<>::

~ .... I"""

1--""'"

:::J

~

\

T A = 25'C

IZ

90

c;

Slew Rate as a Function of
Closed-Loop Gain Using
Recommended
Compensation Networks
100

,

~

200

(/)

TEMPERATURE ('C)

105

~

(/)

I"

-60

Input Bias Current as a Function
of Supply Voltage

95

~

1\

10

TEMPERATURE (" C)

w

0

o

-60

~

z:

'"

~ 20

~

co

,

1\

~

I-

a:
a:
u

Maximum Power Dissipation
400

50

10M

1'-

4.0

...

20

"

IK

10K

lOOK

FREQUENCY (Hz)

1M

10M

10

20

30

.,
I

"

40

OUTPUT CURRENT I ± mAl

195

(J

en
o

Operational Amplifiers

r....

~

...J

LM709C operational amplifier
gener~1

description

The LM709C is a monolithic operational amplifier
intended for general-purpose applications. Operation is completely specified 'over the range of voltages commonly used for these devices. Th~ design,
in addition to providing h'igb gain, mi~,mf~~s both
offset vpltage and bias currents. Further, the class-8
output stage gives a large oLitput capabiiity with
minimum power drain.

configurations, compensation can be tailored to
optimize high-frequency pertormiulce for any gain
;;etting.
The fact that the amplifier is built on a single
silicon ship provides low offset and temperature
drift pt minimum cost. It als9 ~nsures negligible
drift due to temperatllr.e gradients in the vicinity
of the amplifier.
;

External components are used to frequency compensate the amplifier. Although the unity-gain
compensation network specified will make the
ampli!ier unconditionapy. stable in all feedback

The LM709C is commercial-industrial version of
the LM709. It is identical to the LM709 except
that it is specified for 'operation from 0° C to
70°C.
'.

,,",,

"I

schel1latic* an~ connectiq'n diagrams
'J

.'

INPUT FREQUENCY COMPENSATION

e-______e--.____~_v·

~____- .__'~IA~I__~'~'~I.I__

Metal Can

INPUT
FREQUE~CY

COMPENSATION
IA)

_OUTPUT
FREQUENCY
COMPENSATION

vNOTE: Pin 4 connec1td to cast

Order Number LIVJ709CH
See Package 11
Dip Package
~

14

OUTPUT

..--+----~;.. fREQUENCY
COMPENSATION

13
3

INPUT FREQUENCY
12 COMPENSATION IB)

INPUT

4

11

INPUT

5

lD OUTPUT

Y-

6

~~:pTE::!~I~~N~~

RI3
IS

typical applications **

y.

OUTPUT FREQUENCY
COMPENSATION

Order Number LM709CN
See Package 22

Voltage Follower

Offset Balancing Circuit
R3t

01

--......JW"""-..--

VCMIMAXI-..........

OUTP,UT

Cl
5000 pF

v-

R5
R4
160K
lOOK
-.J\jM.._JVV\o----

v+

R2*
51

INPUT

------I

INPUTS

*T Q be used with any
capacitive loading on output
tShould be equal to
dc source resistance on input,

"To be used with any capacitive
loading on' output

Unity Gain I nverting Amplifier

,~"";'_....JVV\o-

0 UTPUT

, C2
200 pF ,

FET Operational Amplifier
R4
20K

_----Jw\,--...
-- OUTPUT
Cl
2700 pF

R2"
INPUT

~Wv-"'~

*T 0 be used with any
capacitive loading on output,
* "Pin connections ;hown are for
metal can package,

51

~..;............M""-

"To be used with any capacitive
loading on output.
"

196

OUTPUT

r-

~
......

absolute maximum ratings

o

±18V

Supply Voltage
Power Dissipation (Note 1)
Differentia! rnput Voltage
Input Voltage
Output Short-Circuit Duration (T A = 25°C)
Storage Temperature Range
Operating Temp~rature Range
Lead Temperature (soldering, 60 s~~)

electrical characteristics

("')

250mW
±5V
±10V
5 sec
-65°C to +150°C
O°C to +70°C
300°C

(Note 2)

CONDITION

PARAMETER
TA

= 25°C,

I nput Offset Current

TA

= 25°C

Input Bias Current

T A = 25°C

Input Resistance

T A = 25°C

Output Resistance

TA

Supply Current

T A = 25°C, Vs

Transient Response
Risetime
Overshoot

V IN = 20 mV, C L ~ 100 pF
TA = 25°C

Slewing Rate

TA

Input Offset Voltage

Rs ~ 10 kn

Average Temperature
Coefficient of 'I nput
Offset Voltage

Rs
Rs

Large-Signal
Voltage Gain

Vs = ±15V, RL~ 2 kn
V OUT = ±10V

Output Voltage Swing

Vs = ±15V, RL = 10 kn
Vs =±15V,R L =2kn

MAX

TYP

MIN

Rs~ 10 kn

Input Offset Voltage

Voltag~

CD

2.0

7.5
500

100
0.3
50

= 25°C
= ±15V

= 25°C

1.5

mV
nA
pA

250

kn

150

n

2.6

6.6

0.3
10

1.0
30

mA

ps
%

Vips

0.25
10

= 50n
= 10 kn

UNITS

mV

pV;oC
pV;oC

6.0
12

15,000

45,000

±12
±10

±14
±13

V
V

±10

V

Vs =±15V

±8.0

Common Mod~
Rejection Ratio

Rs ~ 10 kn

65

Supply Voltage
Rejection ~atio

Rs ~ 10 kn

25

200

pV/V

Input Offset Current

TA=+70°C
T A = O°C

75
125

400
750

nA
nA

Input Bias Current

T A = O°C

Input

Range

dB

90

0.36

,

2.0

pA

I

For operating at elevated temperatures, the device must be derated
based on a 100°C maximum junction temperature and a thermal resistance
of 4SoC/W junction to caSe or 1S0oC/W jUnction'to ambient for the metal
can package. For the flat' package, the d'erating is based on a thermal
resistance of 18SoC/W when mounted on a 1/16-inch-thick, epoxy-glass
board with ten, 0.03-inch-wide, 2-ounce co~er conductors.
Note 2: These specifications apply for OoC T A ~+70oC, ±9V ~ Vs ~±1SV,
C1 = SOOO pF, R1 = 1.SK, C2 = 200 pF ,and R2 = ~H1 unless otherwise
specified.

Note 1:

..."

197

u

0)

R

guaranteed performance characteristics

~

..J
Input Common Mode
Voltage Range

Output Voltage Swing

~

Voltage Gain

_10.0

15

13

~

S TA S +125°C

-55°C

~

90

I

_55°C

9.0

< TA < +125°C_

:2

--

:2

ex:

Cl

:2

3:

CI)

1(,,,1

11

w

.... ,,- JIIIII""

~~ ~
'l..'f.(,l.~ 'ill'
~~

Cl

ex:
~
c

-

>

I-

~~

...

~\.."~

~\~ ~\~\~~""",.....

I--

~~

~~

Cl

ex:
c~ 7.0
>

g

~\~v.~~

6.0

1..11 ~

:2

5.0

1..11

"

c

12

13

14

15

~"

10

SUPPL Y VOLTAGE (±V)

11

....'t!! "'~i

c

~ 75

~c
12

13

14

'"

9

15

-~

~~~ III"'"

>

70

9

~

Cl

4.0

u

11

i

w

~

:2

10

85

Cl

ex:
~ 80
c

~
~~~ i.IIIIII

:2
~

jIIIII"'"

5

9

;;:

8.0

w

l-' ~~~,.....

~

I:::l
C

0:

w

..,...

10

11

12

13

-

14

15

SUPPL Y VOLTAGES (±Vl

SUPPLY VOLTAGE (±V)

typical performance characteristics

I nput Current

Output Voltage Swing

500

15

~

Vs = ±15V

400

1
~

0:
0:
:::l

~

3:

~ 200
~

~

100

o

o

....

~

~

w

-

..!FFSET

"'""

Cl

ex:
~
c

~

>

I-

40

"-

~

60

........

.. ,

~

I

o

20

10

30

40

Frequency Responce For
Various Closed- loop Gains

9

;;: 60 """""'""............~~~..j.i;~++H

10

12

~

c

~ 8.0
~
~ 6.0

g 20
~

~~~~~~~~~~~~

I

ffi

CI)

~

~

100

lK

10K

lOOK

FREQUENCY(Hz)

1M

10M

4

Cl

ex: -2
~
c -4
>
~
-6

I-

~ '4.0

2.0

l-

2

w

13

14

,iI

15

:\

:

I
'L

.L.....I....L...L.I..I-!---'--...J...I..I..I-~'-'..U-u-~L..J,..J~

lK

10K

100K

FREQUENCY (Hz)

1M

10M

,-OUTPUT

i \

INPUT

I

\

Vs=±15V

-8

o

-20

12

10

~
Cl
z

10

w

I:::l
C

u

198

Cl

:2

>

11

~ 14

<.:>

~ 40 """'.,.".........t-t~I'!f-.,...,"MId--ftH

=25c C

Voltage Follower Pulse
Response

16~~n-~~~~rn~r-rn~

w

TA

SUPPL Y VOLTAGES (±V)

Output Voltage Swing as
a Function of Frequency

Cl

--

o
50

OUTPUT CURRENT (±mA)

z

~

l

80

..,...

... -

-.."" ~".

~

I:::l
C

o
20

...

CI)

:::l

!:

""I ....

:2

"""'l1lI" ........... ~.qs
r-- ~

Vs = +15V - I-TA = +25°C- I - -

IIIiIIo..

12

Cl

300

Supply Current

I

-10
20

40

60

80 100 120

TIME (I-/s)

Operational Amplifiers
LM725A/LM725/LM725C instrumentation operational amplifier
general decription

features

The LM725A/LM725/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate
closed-loop gain are required. With high common
mode rejection and offset null capability, it is
especially suited for low level instrumentation
applications over a wide supply voltage range.

•

High open loop gain

3,OOO,OOq

•

Low input voltage drift

O.6p.vtC

•

High common mode rejection

The LM 725A has tight~ned ele,ctrical performance
with higher input accuracy and like the LM725, is
guaranteed over a -55°C to +125°C temperature
range. The LM 725C has sl ighily relaxed specifications and has its performance guaranteed over a
O°C to 70°C temperature range.

120dB
0.15 pA/YHz

•

Low input noise current

•

Low input offset current

2nA

•

High input voltage range

±14V

•

Wide power supply range

±3V to ±22V

•

Offset null capability

•

Output short circuit protection

Metal Can Package

schematic and connection diagrallls
1

V'

TOP VIEr,(

."
.

Order Number LM725H or
LM725AH or L.M725CH
See Pack;:me 11
Dual-In-Line Package
OF:~~~

1

• OFFSET
NULL

INVE~~;~~

2

1 V'

NON INVE~~~~~ 3

6 OUTPUT

5 COMPo

V' 4

TOP VIEW

Order Number LMi25CN
See Package 20

auxiliary circuits
Voltage Offset Null Circuit

Compensation Component Values
R1

C1

R2

C2

AVCL

(n)

(j.lF)

(n)

(PF)

10,000
1,000
100
10
1

10K
470
47
27
10

50 pF
.001
.01
.05
.05

V'

-

270

39

Frequency Compensation Circuit

R3·

-

-

.0015
.02

·u.

R3 = 5111 when the "'plifier

tloperltedwlthClPlCltweload

199

LM725A

absolute maximum ratings
Supply Voltage
Internal Power Dissipation (Note.l)
Differential I nput Voltage
Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
500mW
±5V
±22V
-65°C to +150°C
-55°C to +125°C
300°C

(Note 3)

PARAMETER

CONDITIONS

MIN

TYP

Input Offset Voltage (Without External Trim)

TA = 25°C, Rs~ 10kD

Input Offset Current

T A = 25°C

Input Bias Current

TA = 25°C

42

I nput Noise Voltage

T A = 25°C, fa = 10Hz
fo=100Hz
fa = 1 kHz

15
9.0
8.0

Input Noise Current

T A = 25°C, fa = 10 Hz
fo=100Hz
fa = 1 kHz

I nput Resistance

TA = 25°C

Input Voltage Range

T A = 25°C

2.0

mV

5.0

nA

80

nA
nV/VHZ
nV/VHZ
nV/VHZ
pA/VHZ
pA/YHz
pA/YHz
MD

1.5
±13.5

UNITS

0.5

1.0
0.3
0.15

V

±14

Large Signal Voltage Gain

T A = 25°C, RL:2 2 kD, V OUT = ±10V

Common Mode Rejection Ratio

T A = 25°C, Rs ~ 10 kD

Power Supply Rejection Ratio

T A = 25°C, Rs ~ 10 kD

Output Voltage Swing

T A = 25°C, R L :210kD
RL:2 2 kD

Power Consumption

T A = 25°C

Input Offset Voltage (Without External Trim)

Rs~ 10kD

0.7

mV

Average Input Offset Voltage Drift
(Without External Trim)

Rs = 50D

2.0

pV/oC

Average Input Offset Voltage Drift
(With External Trim)

Rs = 50D

0.6

1.0

pvtc

Input Offset Current

T A =+125°C
T A = -55°C

1.2
7.5

4.0
18.0

nA
nA

35

90

pA/oC

20
80

70
180

1,000,000

Input Bias Current

T A = +125°C
TA = -55°C

Large Signal Voltage Gain

R L :22kD,T A =+125°C
RL:2 2 kD, T A = -55°C

Common Mode Rejection Ratio

Rs ~ 10 kn

Power Supply Rejection Ratio

Rs ~ 10 kn

Output Voltage Swing

RL:2 2 kn

3,000,000
dB

120
2.0
±12.5
±12.0

pVIV
V
V

105

mW

nA
nA

1,000,000
500,000
dB

110
8.0
±12

Note 1: Derate at 150°C/W for operation at ambient temperatures above 75°C.
Note 2: For supply voltages less than ±22V. the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ± 15V unless otherwise specified.

5.0

±13.5
±13.5
80

Average Input Offset Current Drift

200

MAX

pVIV
V

r-

3:
......

LM725

N

en

»
'"r-

absolute maximum ratings
Supply Voltage
Internal Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

3:
......

N

±22V
500mW
±5V
±22V
-65°C to +150°C
-55°C to +125°C
300°C

en

'"r3:
......

N

en
n

(Note 3)

PARAMETER

CONDITIONS

MIN

TYP

Input Offset Voltage (Without External Trim)

TA = 25°C, Rs ~ 10 kD

0.5

Input Ottset Current

TA = 25°C

2.0

Input Bias Current

TA = 25°C

42

I nput Noise Voltage

T A = 25°C, to = 10Hz
fo = 100 Hz
to = 1 kHz

15
9.0
8.0

Input Noise Current

T A = 25°C, to = 10 Hz
to = 100 Hz
to = 1 kHz

I nput Resistance

TA = 25°C

Input Voltage Range

TA = 25°C

Large Signal Voltage Gain

TA = 25°C, RL 2 2 kD, V OUT = ±10V

1,000,000

Output Voltage Swing

T A = 25°C, R L 210kD
RL 2 2 kD

Power Consumption

TA = 25°C

Input Offset Voltage (Without External Trim)

Rs~

Average Input Offset Voltage Drift
(Without External Trim)

Rs = 50D

2.0

Average Input Offset Voltage Drift
(With External Trim)

Rs = 50D

0.6

Input Offset Current

T A =+125°C
T A = -55°C

1.2
7.5

2.0
±12
±10

Common Mode Rejection Ratio

Rs~ 10kD

Rs ~ 10 kD

Output Voltage Swing

RL22 kD

pA/~
pA/y'Hz
pA/y'Hz
MD
V

dB
10

±13.5
±13.5
80

Average Input Offset Current Drift

Power Supply Rejection Ratio

nV/~
nV/~
nV/~

120

10kD

RL 22 kD, T A = +125°C
RL 2 2.kD, T A = -55°C

nA

3,000,000

T A = 25°C, Rs ~ 10 kD

Large Signal Voltage Gain

nA

±14

T A = 25°C, Rs ~ 10 kD

110

mV

100

1.5
±13.5

Power Supply Rejection Ratio

T A = +125°C
TA = -55°C

1.0

UNITS

20

1.0
0.3
0.15

Common Mode Rejection Ratio

Input Bias Current

MAX

IlVN
V
V

105

mW

1.5

mV

5.0

IlVtC
IlVtC

20
40

nA
nA

35

150

pAtC

20
80

100
200

nA
nA

1,000,000
250,000
dB

100
20
±10

IlVN
V

Note 1: Derate at 150°C/W for operation at ambient temperatures above 75°C.
Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±15V unless otherwise specified.

201

LM725C

absolute maximum ratings
Supply Voltage
Internal Power Dissipation (Note 1)
Differential I nput Voltage
Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
500mV
±5V
±22V
-65°C to +150°C
O°C to +70°C
300°C

(Note 3)

PARAMETER

CONDITIONS

MIN

TYP

Input Offset Voltage (Without External Trim)

T A = 25°C, Rs ~ 10 kS1

0.5

Input Offset Current

T A = 25°C

2.0

= 25°C

I npu t Bias Cu rrent

TA

In~ut

T A = 25°C, fo
fo
fo

Noise Voltage

l.nput Noise Current

T A = 25°C,

I nput Resistance

TA = 25°C

42

= 10Hz
= 100 Hz
= 1 kHz
fo = 10Hz
fo = 100 Hz
fo = 1 kHz

= 25°C

2.5

UNITS
mV

35

nA

125

nA
nV/y'HZ
nV/y'HZ
nV/y'HZ

15
9.0
8.0
1.0
0.3
0.15

pA/y'HZ
pA/y'Hz
pA/y'Hz

1.5

MS1

V

±14

Input Voltage Range

TA

Large Signal Voltage Gain

T A = 25°C, RL 2 2 kS1, V OUT = ±10V

Common Mode Rejection Ratio

T A = 25°C, Rs ~ 10 kS1

Power Supply Rejection Ratio

T A = 25°C, Rs ~ 10 kS1

Output Voltage Swing

T A = 25°C, R L 210kS1
RL 22 kSl

Power Consumption

TA

Input Offset Voltage (Without External Trim)

Rs~ 10 kS1

Average Input Offset Voltage Drift
(Without External Trim)

Rs

= 50S1

2.0

/lV/DC

Average InpLlt Offset Voltage Drift
(With External Trim)

Rs

= 50S1

0.6

/lV/DC

Input Offset Current

TA
TA

= +70°C
= O°C

1.2
4.0

±13.5

250,000 3,000,000
94

±12
±10

= 25°C

dB

120
2.0

35

150
3.5

35
50

= +70°C
= O°C

TA
TA

Large Signal Voltage Gain

RL 22 kS1, T A = +70°C
RL 22 kS1, T A = O°C

Common Mode Rejection Ratio

Rs:::;: 10 kS1

Power Supply Rejection Ratio

Rs:::;: 10 kS1

Output Voltage Swing

RL2 2 kS1

125
250

mV

nA
nA

nA
nA

125,000
125,000
115
20
±10

Note 1: Rating applies for case temperature to 70°C.
Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±15V unless otherwise specified.

mW

pAtC

10

Input Bias Current

INN
V
V

±13.5
±13.5
80

Average Input Offset Current Drift

202

MAX

dB

/lVN
V

typical performance characteristics
Open Loop Voltage Gain vs
Temperature for Various
Supply Voltages
140

~
z
<
CI

120

0

~
CI

~
o

Vs= ±5V

>

1-

I

80

...

I

0

~

-

I

Z

w

II:
II:

60

~
Co)
fI)

«

40

iii

I-

~
~

20

o

0

~
0

0.4
I .....

I"'"

I-

~
~

w

~ -100

--

--

+

-

Vs = ±15V

l:,....7

~"".",

~

"".

"

0.2

«

...
:J:

-20

20

60

100

140

-60

20

-20

60

100

Input Offset Current
vs Temperature

ti~s=1

1\

~

~
~ ~ ~ - Vs = ±15V
~~
~
.
t-V = ±1oP ~ ~
.....
IS I I
~

" rs

...
~

~

100

4

0
I-

I

I

o
-60

-20

TEMPERATURE (OC)

100

140

20

w

«

II:

16

w
c:J

!

-.-

«

~

/

12

V

f--I--

I

>

I-

-'"

~
~

'/'

/

w

C
C

I

V

V~

0

!

+-

TA=125°C

~

Z
C
~

I

:IE

20

100

60

140

...c

10

15

20

SUPPLY VOLTAGE (±V)

TEMPERATURE rC)

Input Noise Voltage
vs Frequency

60

z

j"....... ""'"

I

20

c:J

\l I i
]\! :
IN

~

140

~

Vs= ±15V

I

~

~~~~~--~~~~~--'

60

-20

Common Mode Input Voltage
vs Supply Voltage

i

I

I

\

II:
II:

Vs= ±5V-1=

20

-~Q

TEMPERATURE (OC)

I I

1

1

±26v

-20

140

TEMPERATURE rC)

I nput Bias Current
vs Temperature

-60

0.6

>

-50

I-

I-

~

~~

100
80

J-

«

V

TEMPERATURE (OC)

1

w

0.8

CI

,/

I-

!

E-

/fI"

~

~

!

i

:>

V

50

~
o

RL ;;:>2 Kn

I

60
-60

1.0
Vs = ±15V
Vos ~ 5 !IV AT 25°C

100

«

--j--

...>
~

:>

Vs - +10V

100

0

:!

I

---~-

CI

...

-

Vs= ±15V

::~ _I"""

w

«
I-

-

I ...l\\;:!...~

\Js'" :;;..

Un nulled Input Offset
Voltage vs Temperature

Nulled Input Offset
Voltage vs Temperature

Values for Suggested
Compensation Networks for
Various Closed Loop
Voltage Gains

Input Noise Current
vs Frequency
100k

!Z

w

Vs - +15V
TA = 25°C

...z

1k

=

eI)

100

w

w

fI)

i5

«
I-

"

~ 1Ir-25

II:

«

~

z

"- II

§

~
Co)

5l

10k

1O- Z3

II:
II:

100k

~

10

10k

~C~

1k

..,
~
..,l>

100

~

=i

,,-

l>
Z

R1

R2

II:

10- 26

C1

.

"C
."

10

«

~
100

1k

10k

10- 27

100k

I'

10

100

FREQUENCY (Hz)

1k

10k

Ulllilll 1
11)4

Frequency Response for
Various Closed-Loop Gains
Using Recommended
Compensation Networks

Open Loop Voltage Gain vs
Frequency Using Recommended
Compensation Networks
150

~

1It!

CLOSED LOOP GAIN (v/V)

FREQUENCY (Hz)

Output Voltage Swing vs
Frequency for Recommended
Compensation NetWorks

11)2

10

100k

80
120

Rl = 10~!

c! =

~!>!.

TA = 25°C

....."",-.,..,.'''''''''''"I''-'......_±...+i'I.Vs = ±15V

z

<

CI

w

90

c:J

~

60

...o

30

o

>

:!

...o~
-30 '--__

~........I

10
FREQUENCY (Hz)

I I

_ _- - "_ ____'__ _.....u'--~

11)2

11P

1114

FREQUENCY (Hz)

1Ir

10S

11)4

4

1Ir

2

1iJ6

FREQUENCY (Hz)

203

typical performance characteristics (con1t)
Change in Input Offset
Voltage Due to Thermal
Shock vs Time

:;

30

w

2~OC

C(

I- f-

.3
~

~
c
~

...

I-

~

i!!!:
i!!!:
Z

C(

Co)

Vs = ±15V
PREVIOUS QUIESCENT
Vos::::: 111V

I I

-10
-20

20

~
.§.
z
c
i=
C(
c..

~

500

a::

c..

~

!i::::I

--t--~

I--

r-- ---

40

60

80

10~

45

65

85

911"10

c~

I
If

>

400

re)

~

i!!!:
i!!!:

:=

10-d

::::I

c

(... t--

20

60

TEMPERATURE

100

re)

140

--[---

f':

10
I---

-~

tON

1-- --

~Io..

t-- RISE TIME

4
TIME (115)

-1-- I--

-~+---+

I '

125

4
TIME FROM POWER APPLICATION (MIN)

Transient

Vs =±15
TA =25°C
~L =2 Kn
CL = ;50 pF
AvcL = 100

J

I-

40

/

-400

204

105

800

w

::::I

20

I - - L-- 1--- -

::c

Transient Response

.§.

-20

1-- - . --I-- 1---

20

Co)

1200

~

-60

I-

~

TEMPERATU~E

a::

~

~

30

C

w

100

25

:;

60

~
c
>
~

C(

100

cCo)

~

"

~

200

o

120

CI)

z

t----

140

80

__ TA = 25°C
Vs = ±15
PREVIOUS Vos::::: ll1V

I - - ' - - ---1--

Z

160

z
c
i=

- r--

~

300 1--

Power Consumption
vs Temperature

.§.

C(

1'-.

400

TIME FROM HEAT APPLICATION (5"C1

i"

40

~

C

~
c

-1

~

::c

V

1- ~ tAPPLY

w

..3
w

I - I--

I
1/II

10

:;

600

20

C

Stabilization Time of Input
Offset Voltage from Power
Turn-On

6ri°C

>

~

Absolute Maximum Power
Dissipation vs Am bient:-Temperature

R~sponse

Test Circuit

r-

:r:

~s

Operational Amplifiers

~
o

»

.......

r-

:r:
.......
~

o

LH740A/LH740AC FET input operational amplifier

»
(")

general description
The LH740A/LH740AC is a FET input, general
purpose operational amplifier with high input
impedance, closely matched input characteristics,
and good slew rates. I nput offset voltage is typically 10.0 mV at 25°C, while input bias current is
less than 100 pA at 25°C. Offset current is typically less than 40 pA at 25°C. Other important
design features include:

• Output is continuously short-circuit proof

• Internal 6 dB/octave frequency compensation

The LH740A/LH740AC is intended to fulfill
wide variety of applications requiring extremely
low bias currents such as integrators, sample and
hold amplifiers, and general purpose operational
amplifier applications.

• Excellent open loop gain, typically in excess of
100 dB
• Guaranteed over the full military temperature
range

a

• Unity gain slew rate in excess of 6 V /lls
• Unity gain bandwidth of 1 MHz
• I nput offset is adjustable with a single 10k pot
• Pin compatible with LM741, LM709, LM1 01 A,
and llA740

The LH740A is specified for operation over the
-55°C to +125°C military temperature range. The
LH740AC is specified for operation over the O°C
to +85°C temperature range.

• Excellent offset current match over temperature, typically 100 pA

connection diagram
. Ne

TOP VIEW

Order Number LH740AH or Ui740ACH
See Package 11

typical applications
Integrator

r- - - - - - - - - - - - - - - - - - - - --- RESET

Transient Response

NHOOi.i

r---------...- ....

--~

I
I

I
I

I

YINo---~

Offset Null
y.

INPUT

OUTPUT

V-

VOUT

absolute maximum ratings
Supply Voltage
Maximum Power Dissipation
Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range

±22V
500mW
±5V
±15V
Continuous
-55°C to +125°C
O°C to +85°C
-65°C to +150°C
300°C

LH740A
LH740AC
Storage Temperature Range
Lead Temperature (soldering, 10 sec.)

electrical characteristics
PARAMETER

(Notes 1 & 2) (Vs

= ±15V, T A = 25°C unless otherwise noted)

CONDITIONS

LH740A
TVP

MAX

UNITS

10

15

10

20

mV

Input Offset Current

40

100

60

150

pA

100

200

100

500

Input Current (either input)
Input Resistance

MIN

LH740AC
TVP

Input Offset Voltage

MIN

MAX

1,000,000

Large Signal Voltage Gain

50,000

50,000

100,000

Mn

100,000

VIV

Output Resistance

75

75

n

Output Short·Circuit Current

20

20

mA

Common Mode Rejection Ratio

80

80

Supply Voltage Rejection Ratio

80

80

dB
dB

Supply Current

3.0

Slew Rate

6.0

6.0

V/jJ.s

Unity Gain Bandwidth

1.0

1.0

MHz

300
10

ns

Transient Response (Unity Gain)
Risetime
Overshoot

CL :::; 100 pF, RL

<:::::

Input Voltage Range

Supply Voltage Rejection Ratio
Large Signal Voltage Gain
AL~ 10kH

20

%

±12

±12

V

80

80

dB

80

80

dB

40,000

40,000

VIV

±12
±10

RL ~ 2 kH

±14
±13

±14
±13

±12

±ID

Input Offset Voltage

15

20

30

Input Offset Current

100

500

60

Input Current (either input)

mV
500
5.0

Note 1: Unless otherwise noted these specifications apply to ±5V ~ Vs ±20V and -55°e to +125°e
for the LH740A and oOe to 85°e for the LH740Ae.
Note 2: For supply voltages less than ±10V, the absolute maximum input voltage is equal to the
supply voltage.

typical performance characteristics
Open Loop Frequency
Response

Maximum Power
Dissipation
800

160 '---"--"--"--""'-""'-1"""""1""--'

'I--+--+_+--+ Vs =±15V -

140 I-~

100
~
.! 600

~

500

:

400

,

i=

iii
Ci
ex:

~

_",
~

z

...~

1\

300

1\

200
100

100

TA = 25°C _
RL = 2k
~

~

80

'"~

60

>

40

C)

\

~

120

~

"

~

20

0
0

50

100

150

TEMPERATURE (OC)

200

1

100

10k

"

FREQUENCY (Hz)

1M

pA
nA
jJ.V(C

5.0

5.0

As:::; lOOK

V
V

1.1

4.0

2.5

Offset Voltage Dnft

mA

LH740A and O°C:S: T A:S: 85°C for the LH740AC unless otherwise noted.)

Common Mode Rejeciion Ratio

Output Voltage Swing

4.0

= 2 kH, V ,N = 100 mV

:s: 125°C for the

TA

3.0

4.0

110
10

(These specifications apply for -55°C

'lna

pA

1,000,000

100M

Operational Amplifiers

LM741/LM741C operational amplifier
general description
The LM741 and LM741 C are general purpose
operational amplifiers which feature improved performance over industry standards like the LM709.
They are direct, plug-in replacements for the
709C, LM 20 1, M C1439 and 748 in most
applications.

their application nearly foolproof: overload protection on the input and butput, no latch-up when
the common mode range is exceeded, as well as
freedom from oscillations.
The LM741 C is identical to the LM741 except
that the LM741 C has its performance guaranteed
over a O°C to 70°C temperature range, instead of
-55°C to 125°C.

The offset voltage and offset current are guaranteed over the entire common mode range. The
amplifiers also offer many features which make

schematic and connection diagrams
~~------------~------~------------------~------__--~~V'

NON INVERTING J
INPUT

R9

25

OUTPUT

010
011

NUll
Rl
1K

RJ
50 K

R2
1K

R4
5K

R12
50 K

Rll
50

v-

NC

TOPVIEW

NOTE PI04 connected to case

Order Number LM741H or LM741CH
See Package 11

?07

absolute maximum ratings
±22V
±18V
500mW
±30V
±15V
Indefinite
_55°C to 125°C
O°C to 70°C
-65°C to 150°C
300°C

Supply Voltage

LM741
LM741C
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short·Circuit Duration
Operating Temperature Range LM741
LM741C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 3)

CONDITIONS

MIN

Input Offset Voltage
Input Offset Current

T A ~ 25°C

Input Bias Current
0.3

Input Resistance
Supply Current

T A ~ 25°C, Vs = ±15V

Large Signal Voltage Gain

T A = 25°C, Vs = ±15V
V OUT = ±10V, RL? 2 kn

LM741
TYP

MAX

1.0

5.0

nA

200

500

200

500

nA

0.3

1.0

1.7

2.8

25

160

RL =2kn

±10

±14
± 13

7.5
300

nA

V/mV

± 12
±10

±14
±13

V

V
V

Input Voltage Range

Vs=±15V

Common Mode
Rejection Ratio

Rs <10kSl

70

90

70

90

dB

Supply Voltage
Rejection Ratio

Rs <10kSl

77

96

77

96

dB

Note 1: The maximum junction temperature of the LM741 is 150°C, while that of the LM741C is
100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150°C/W, junction to case.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±15V and -55°C.:S TA.:S 125°C, unless otherwise
specified. With the LM741 C, however, all specifications are limited to O°C .:S T A.:S 70°Cand Vs =±15V.

208

mV

0.8

±12

±12

mA

V/mV

15

25
± 12

2.8

160

1.5

Input Bias Current

Mn

1.0

500

Vs~±15V,RL=10kSl

mV

200

6.0

Vs = ±15V, V OUT ~ ±10V
RL> 2 kn

6.0

30

Input Offset Current

Output Voltage Swing

1.0

UNITS

200

Input Offset Voltage

Large Signal Voltage Gain

LM741C
TYP
MAX

30

1.7

50

MIN

Operational Amplifiers

LM747/LM747C dual operational amplifier
general description
The LM747 and the LM747C are general purpose
dual operational amplifiers. The two amplifiers
share a common bias network and power supply
leads. Otherwise, their operation is completely
independent.

Low-power consumption

•

No latch-up

•

Balanced offset null

Additional features of the LM747 and LM747C
are: no latch-up when input common mode range
is exceeded, freedom from oscillations, and package flexibility.

features
•

No frequency compensation required

•

Short-circuit protection

•

Wide common-mode and differential voltage
ranges

schematic diagram

•

The LM747C is identical to the LM747 except
that the LM747C has its specifications guaranteed
over the temperature range from O°C to 70°C
instead of -55°C to +125°C.

(each amplifier)
r-~------------'-------~----------------~

__

13191

----------~--v'

R9
25

r------~t-_fo

___fo__- -. .-

OUTPUT

RIO
50

020

RI
IK

R3

50K

R4

R2
IK

RI2
,OK

5K

RII
50

Note' Numbers In Parelltheses Ale Pill Numbers lor Amplifier B DIP Only,

connection diagrams
Metal Can Package

Flat Package

Dual-I n-Line Packages

Nt
14

INVERTING INPUT A

INVERTING INPUT A

NON·INVERTING INPUT A

NON·INVERTING INPUT A

OFFSET NULL A

OffSET NULL A

14

OFFEST NULL A
V+A··

OUTPUT A

V-

Nt

OfFSET NULL B

OUTPUT B

OFFSET NULL B

NON·INVERTING INPUT B

V+B··

NON·INVERTING INPUT B

INVERTING INPUT B
V-

TOP VIEW

INVERTING INPUT B

OffSET NULL B

TOPVIEW
TOPVIEW

Order Number LM747H or LM747CH

Order Number LM747F or LM747CF

See Package 14

See Package 4

Order Number LM747D or LM747CD

See Package 1
Order Number LM747CN

**V+A and V+S are internally connected.

See Package 22

209

.absolute maximum ratings
±22V
±18V
800 mW
±30V
±15V
Indefinite
-55°C to 125°C
O°C to 70°C
-65°C to 150°C
300°C

Supply Voltage

LM747
LM747C
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration
Operating Temperature Range LM747
LM747C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

(Note 3)
LM747

PARAMETER

CONDITIONS

MIN

Input Offset Voltage
Input Offset Current
Input Bias Current
Input Resistance

T A = 25°C

0.3

Supply Current Both
Amplifiers
Large Signal Voltage Gain

Input Offset Voltage

MAX

1.0

5.0

50

1.0

200

500

200

500

nA

1.0

0.3
5.6

160

3.0

50

mA

V/mV
7.5
300
0.8

mV
nA

pA

±10V

RL~2 kn

25

Output Voltage Swing

Vs = ±15V, RL = 10 kn
R L =2kn

±12
±10

Input Voltage Range

V s =±15V

±12

V/mV

25
±14
±13

±12
±10

±14
±13

±12

V
V
V

70

90

70

90

dB

77

96

77

96

dB

Note 1: The maximum junction temperature of the LM747 is 150°C, while that of the LM747C is
100°C. For dp~rating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. For the flat
package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inchthick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of ~he ,dual-in-line package is 100°C/W, junction to ambient.
Note 2: Fdf supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: Thes~ specifications apply for Vs = ±15V and -55°C S. T A
125°C, unless otherwise
specified. With the LM747C, however, all specifications are limited to O°C S. T A S. 70°C Vs = ±15V.

s.

210

5.6

160

1.5

Rs~ 10 kn

Mn

1.0

500

Common Mode
Rejection Ratio

mV
nA

6.0

';'

6.0

UNITS

200

Rs ~ 10 kn

Vs = ±15V, V OUT

MAX

80

Input Bias Current

Supply Voltage
Rejection Ratio

TYP

200

Input Offset Current

Large Signal Voltage Gain

MIN

80

3.0
T A = 25°C, Vs = ±15V
V OUT '" ±10V, RL ~ 2 kn

LM747C

TYP

typical performance characteristics
Input Bias and Offset Currents
vs Ambient Temperature
200

Vs ±15V

180

~

120

a:
a:

w

~

~

c

100

~

~

80
60
40 I"
,~
20

o
-60

II

1.2

ct

::::I

~

~

1.4

I,

140

c..>
I-

"",,-

"'"

>
w
>

~N:~:E~:S- I--

~

~a:

INPUT OFTsJ'::: ~ ~
CURRENT
- c-- I--

-20

20

60

100

TEMPERATURE

r.o:::;

.

,

0.8

0.6

,

c.:I

z

28
24

I-

20

~
en

~

::::I

c

~

~
a..

~
c.:I

z

~
en
I-

~

I-

::::I

c

~

~

~

C

c

I-

I-

~

~

~

r-

o

a:

z

c

Iw=

~

c..>

~

a:

-----

w

Is
IB
los
Vas - - RIN

c
c

-----

:IE

z

c

:IE
:IE

-

c

c..>

~

,,~

a..

10

1k

10k

lOOk

~

~

c.:I

II:

z

~

24

::::I

20

~

c

~r'
OUTPUT VOLTAGE
SWING - Vi>il ~ ~'

C

12

16

10

RANGE ±V

0.2

1.0

0.5

2.0

5.0

-I

c

3:
3:

c

z

3:

c
~
<
~
-I

-;

A

l>o

~

~'

~

/

~.

c:
n

12

0~NPUTVOLTAGE_

~

18
14

¥

16

:..::

:D

2
10

10

m
1+

20

15

l>o
Z
Cl

.$

SUPPL Y VOLTAGE (±V)

LOAD RESISTANCE (kn)

Frequency Characteristics vs
Ambient Temperature

Transient Response
1.4

IVS =±15V

15

~ r"""'ol-o.,

10

1.4

/

s;-

1.2

o!

1.0

I-

,

-

INPUT!

::::I

a..

w

~
ct
>
w
>
i=

/

'I

I-

0.8

::::I

-5

0.6

/

I

C

I

Vs = ±15VRL = 2k CL = 100 pF

I

-10

........
1.0

RESPONSE

l..-t-::::t::I

r--..~

~ ~""'"

....... i'....

jLEW RATE

t-.....

;"-s'R.

II:

-

TIRAJSIE~T

1.2

~

OUTPUT

0.8

20

-20

60

100

140

.200

.400

.600

Frequency Characteristics vs
Supply Voltage
160

111111111•.

1.2

S
w

120

z

100

1.0

ct
Ien
in

.

w

~

-

::::I

I-

::::I
C

SUPPL Y VOLTAGE (±V)

20

c.:I

1-1-

w

Av = 10
40

!:i
C

~~

100

lk

10k

>

'I

~~

~~

104
103

c.:I

ct

60

o
15

Z

<

Av= 1001

20
0.6

105

I-

80

,a..

0.8

lOS

-:-

a:
I-

~

r--

l-

'.

""..,.

c..>

~
ct
>

20

-20

140

100

60

Open Loop Transfer
Characteristics vs Frequency

III

rt?l

140

I'N

TEMPERATURE lOCI

Output Resistance vs
Frequency

1.4

10

-60

.800

T (ps)

AMBIENT TEMPERATURE (OC)

L

I I I

0.6
-60

I

CLOSED LOOP
BANDWIDTH

-

0

II:

32

I-

/

0.2

~

20

~

28 I-

c
:..::

/

0.1

0.4

w

10k lOOk 1M 10M

RL = 2 KQ

36

~

I-

1M

1.6

:3
w

lk

0

1.8

i=

100

Output Swing and Input
Range vs Supply Voltage

2.0

>
w
>

~
~

I-

Normalized DC Parameters
vs Ambient Temperature

....
ct

,

'\.

FREQUENCY (Hz)

....

i-""""

FREQUENCY (Hz)

w

1\

'--

100

::::I

\..
'\.

40

Vs = ±15V
TA=25°C

28
26
24
22
20
18
16
14
12
10
8

Vs = ±15V
TA=25°C

,

20

15

Output Voltage Swing
vs Load Resistance

\
\

12

"

J'"

ct

120
110
100
90
80
70
60
50
40
3D
20
10
0

SUPPL Y VOLTAGE (±V)

1\

16

,,

10

140

TA=+25°C
Vs = ±15V
RL = 10 KQ

32

,

,

!-'

,

n)

36

I-

-

1.0

Output Voltage Swing
vs Frequency
~

Common Mode Rejection
Ratio vs Frequency

~

160

1
I-

DC Parameters vs
Supply Voltage

102
10

-....

,"
"-,
~AIN

Vs = ±15V
TA=25°C
RL ;:>2 KQ

PH~

SHIFT

-

~~= 1
lOOk

FREQUENCY (Hz)

~

::c
l>o

-45

.......

,

"

\

10-1
1M

10

100

lk

10k

45

::

::

-90

:j

-135

~
!!.

...

-180

lOOk 1M 10M

FREQUENCY (Hz)

211

typical performance cHaracteristics (con1t)
!'

,

Broadband Noise for
Various Bandwidths

Input Resistance and Input
Capacitance vs Frequency

~

100

10M

:>

100

Vs = +15V
TA - 25°C

..3

~

~

10

1M

(.)

~

-I

CI

....
):>

:2:

):>

):>

5

:::;

:2:

~

..,

~

...

~

~~

~

a::

I

;

t-

C")

ffia::

t- 100k

~

c:
C")

ct
ten

t-

Ii kHz

10 1

i--r- 10 10'kHz

"

~

.,/

10-1 kHz

a::
w

en

o:2:
.....
ct

:=t-

.1

10k

0.1
100

1k

.

w

100

100

ct

CI

~

10

10

w

CI

:l:I
:l:I

'":2:-I

~

1.0

1.0

:E
.1

.1

10

100

1k

FREQUENCY (Hz)

10k

100k

~I~

~

>

1---

t0-

1---

::;)

1---

CI

\

'I

::;)

t-

1\

,I

w

t:I

C")

en

I

~
ct

c:

LM747 SLEW RATE
Vs =±15V
TA =25°C

r-+·I~pJT

~

:2:

o

212

~
):>
:2:
:2:

t:I

~

100k

Voltage Follower Large
jSignal Pulse Response,

Input Noise VQltage and
Current vs Frequency

s; II:!:
">

10k

SOURCE RESISTANCE

FREQUENCY (Hz)

-5 1---

r--

II

\

OUTPUT
I

~,

I

~~"

20

40

60
TIME (Ils)

\
\

80

100

120

Operational Amplifiers
LM748/LM748C operational amplifier
general description
• No latch-up
exceeded.

The LM748/LM748C is a general purpose opera·
tional amplifier built on a single silicon chip. The
resulting close match and tight thermal coupling
gives low offsets and temperature drift as well as
fast recovery from thermal transients. I n add ition,
the device features:

when common mode range is

• Same pin configuration as the LM101.
The unity-gain compensation specified makes the
circuit stable for all feedback configurations, even
with capacitive loads. However, it is possible to
optimize compensation for best high frequency
performance at any gain. As a comparator, the
output can be clamped at any desired level to make
it compatible with logic circuits.

• Frequency compensation with a single 30 pF
capacitor
• Operation from ±5V to ±20V
• Low current drain: 1.8 mA at ±20V

The LM748 is specified for operation over the
-55°C to +125°C military temperature range. The
LM748C is specified for operation over the O°C
to + 70°C temperature range.

• Continuous short-circuit protection
• Operation as a comparator with differential inputs as high as ±30V

connection diagram

vNOTE: Pin 4 connected to case.

Order Number LM748H or LM748CH
See Package 11

typical applications
Inverting Amplifier with Balancing Circuit
R1

Voltage Comparator for Driving
DTL or TTL Integrated Circuits

R2

INPUT o-..J\j'V\f"""4....- - ' V ' \ I \ r - - - ,

>-4......-0 OUTPUT
R5

5.1 Mil

tMay be zero or equal to parallel combinallon
of R1 and R2 for minimum offset.

Low Drift Sample and Hold

Voltage Comparator for Driving
RTL Logic or High Current Driver

OUTPUT-4~------"----~

v+

OUTPUT

INPUTS

INPUT--...o.t

Cl
30 pF

·Polycarbonate·dielectric clp.citor.

213

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range: LM748
LM748C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
500mW
±30V
±15V
Indefinite
-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

(Note 4)
CONDITIONS

PARAMETER

I

MIN

TYP

MAX

UNITS

I nput Offset Voltage

TA = 25°C, Rs::; 10 kn

I nput Offset Cu rrent

TA=25°C

40

200

nA

I nput Bias Current

TA = 25°C

120

500

nA

I nput Resistance

TA = 25°C

Supply Current

TA = 25°C, Vs = ±15V

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, RL::::: 2 kn

Input Offset Voltage
Average Temperature
Coefficient of I nput Offset
Voltage

1.0

300

-s; 10 kn
Rs -s; 50n
Rs -s; 10 kn

T A = 0° C to 70° C
T A = -55°C to 125°C

Input Bias Current

T A = O°C to 70°C
T A = -55°C to 125°C

Supply Current

T A = +125°C, Vs = ±15V
T A = -55°C to 125°C

Large Signal Voltage Gain

Vs = ±15V, VOUT = ±10V
RL:::::2 Kn

2.8

160

mA

V/mV
6.0

Rs

Input Offset Current

mV

800
1.8

50

5.0

3.0

mV

Ilvtc

6.0
300
500

1.2
1.9

25

nA
nA

0.8
1.5

IlA
IlA

2.25
3.3

mA
mA

V/mV
±14
±13

Output Voltage Swing

Vs = ±15V, RL = 10n
RL = 2 kn

±12
±10

Input Voltage Range

Vs = ±15V

±12

Common Mode Rejection Ratio

Rs

-s; 10 kn

70

90

dB

Supply Voltage Rejection Ratio

Rs< 10 kn

77

90

dB

V

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum
junction to case thermal resistance of 45° C per watt, or 150° C per watt junction to ambient. (See Curves).
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +70°C.
Note 4: These specifications apply for ±5V ~ Vs ~ +15V and -55°C ~ TA ~ 125°C, unless
otherwise specified. With the LM748C, however, all temperature specifications are limited to
O°C ~ TA ~ 70°C.

214

V
V

guaranteed performance characteristics
Input Voltage Range

(Note 4)
Voltage Gain

Output Swing

20

~w
c:I
Z

cc

a::

100

16

94

./
12

c:I

cc
!:;
Q
>

~

./

/

w

iii

z

<
c:I

1o....-~--

~~'"

c:I

cc
!:;
Q
>

...... ~~

V

~

:I
A.

82

~~~
~\~\~

"7

v

76

/'

~

88

w

OL--'------''---'-----''-----I-~

10

15

15

10

5

20

70

20

10

5

SUPPLY VOLTAGE (±V)

SUPPLY VOLTAGE (±V)

15

20

SUPPl Y VOLTAGE (±V)

typica I performance characteristics
Supply Current

<

2.0

.!
~

zw

a::
a::

1.5

>

1.0

..J

J
_S5 C
.-:'r--r

-

f-11

-

0:

.....-:. ~ ~C
1,. -

--

I

0:

~

100

c:I

r---

cc
!:;
Q
>

t

I

-

110

T A = -55 .:.::

z

<
c:I
w

---'-"':':.
1,. \2So C -

~

t

~

400

120

:I
Co)

Input Bias Current

Voltage Gain

2.5

-~

~
~

90

0.5

"",----

---

TA

0:

1

300

I----

~

zw

a::
a::

25°C

:I
Co)

200

---

TA =I_wc

rn

cc

TA = 25°C

iii

TA = 125°C

~

~

100

I---- - -

~

~~ = J25°C

80
20

10
15
SUPPl Y VOLTAGE (±V)

Curr~nt

15.0

~

.....

:;
.:!:!.
c:I
z

10.0

5.0

15

20

25

,

oS
z

"-

3D

100 ~

-75 -50 -25

........

0

~

50

75 100 125

cc
!:;
Q
>

Vs = ±15V

8

w

c:I

III

cc
!:;
Q
>

\

100

1K

10K 100K 1M 10M

FREQUENCY (Hz)

~

III

o
10

1K

4

!

c, = 3pF

C, = 30PF\
4

~
z

40
20

10K

125

10

c:I

\

60

105

85

Voltage Follower
Pulse Response

,

w

c:I

65

AMBIENT TEMPERATURE rC)

, '''!'

12

45

25

n)

TA =25 C

80

"

100

Large Signal
Frequency Response

z

<
c:I

A.

r--

100

;

~
Q

....

16

120

I\.

C 200
a::

r---.

25

I"\..

lM748C

rn

,

lM748

'\

u;

BIAS

TEMPERATURE

Open Loop
Frequency Response

~

cc
300
A-

~r.........

OUTPUT CURRENT (±mA)

400

i=

~

:I
A.

"" ,

500

Q

Co)

~

10

200

~

:I

TA = 25°C

TA = 125°C

~

~
a:
a:

"

~

Q

1

,

300

~

:I
A.
:I

600
Vs = ±15V

1'\

!

Maximum Power Dissipation

400

Vs = ~'5V

.........

20

10
15
SUPPLY VOLTAGE (±V)

20

I nput Current

Limiting

--- - \-

15
10
SUPPl Y VOLTAGE (±V)

5

-2
-4
-6

~
1"00 ...

'-1'-0.

100K

1M

FREQUENCY (Hz)

- !\

,

r

INPUT~I

-10

~

_. \ ...
o

I

--

I /4-;-\.

\

OUTPUT
I

I

TAI= 2JoC
Vs = ±15V
-I
1

-8
10M

-J

10 20 3D 40 50 60 70 80
TIME (14)

215

Operational Amplifiers

LM1558/LM1458 dual operational amplifier
general description
The LM1558 and the LM 1458 are general purpose
dual operational amplifiers. The two amplifiers
share a common bias network and power supply
leads. Otherwise, their operation is completely
independent. Features include:

• Low-power consumption
• 8-lead TO-5 and 8-lead mini DIP
• No latch up when input common mode range is
exceeded

• No frequency compensation required
• Short-circuit protection
• Wide common-mode and differential voltage
ranges

The LM 1458 is identical to the LM 1558 except
that the LM 1458 has its specifications guaranteed
over the temperature range from
to 70°C
instead of _55° e to + 125° e.

oOe

schematic and connection diagrams

RI
25

117)

OUTPUT
RIO
50

020

RI
IK

R3
5DK

R2
IK

RII
III

RI2
50K

yNot,: Human In h ...nth... Art Pin Humlttn for Amplifier •.

Metal Can Package

Dual-In-Line Package

y'

v,

OUTPUT A

OUTPUT B

INVERTING INPUT A
NON.INOERTING
INPUT A
Y-

3

INYERTING INPUT B

V-.....o.t'--_...J

NON·INVERTING
INPUTB

TOP VIEW
TOP VIEW

Order Number LM1458H or LM1558H
See Package 11

216

Order Number LM1458N
See Package 20

absolute maximum ratings
Supply Voltage LM 1558
LM1458
Power Dissipation (Note 1) LM 1558H/LM 1458H
LM145SN
Differential Input Voltage
Input Voltage (Note 2)

electrical characteristics
PARAMETER

Indefinite
_55° C to 125° C
O°C to 70°C
_65°C to 150°C
300°C

Output Short-Circuit Duration
Operating Temperature Range LM 1558
LM1458
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±22V
±18V
500mW
400mW
±30V
±15V

(Note 3)

CONDITIONS

MIN

LM1558
MAX
TYP

LM1458
TYP
1.0

5.0

MAX
6.0

UNITS
mV

Input Offset Voltage

T A = 25°C, Rs:::; 10 kn

Input Offset Current

T A = 25°C

SO

200

SO

200

nA

Input Bias Current

TA = 25°C

200

500

200

500

nA

Input Resistance

TA = 25°C

Supply Current Both
Amplifiers

T A = 25°C, Vs = ±15V

Large Signal Voltage Gain

T A = 25°C, Vs = ±15V
V ouT =±10V, RL~2kn

Input Offset Voltage

1.0

MIN

0.3

3.0

50

20

300
O.S

1.5
Vs = ±15V, VOUT = ±10V
RL~ 2 kn

±14
±13

±12
±10

mV
nA
pA

V/mV

15

25

mA

V/mV
7.5

500

Input Bias Current

5.6

160

6.0

Rs :::;10kn

Mn

1.0
3.0

5.0

160

Input Offset Current

Large Signal Voltage Gain

0.3

1.0

±14
±13

V
V

Output Voltage Swing

Vs = ±15V, RL = 10 kn
R L =2kn

±12
±10

Input Voltage Range

Vs = ±15V

±12

Common Mode
Rejection Ratio

Rs:::; 10 H2

70

90

70

90

dB

Supply Voltage
Rejection Ratio

Rs:::; 10 kn

77

96

77

96

dB

V

±12

Note 1: The maximum junction temperature of the LM1558 is 150°C. while that of the LM1458 is 100°C. For operating at
elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to
ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187°C/W,
junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for Vs = ±15V and _55°C ~ TA ~ 125°C, unless otherwise specified. With the LM1458,
however, all specifications are limited to O°C ~ TA ~ 70°C and Vs = ±15V.

Operational Amplifiers
LH2101A/LH2201A/LH2301A dual high performance op amp
general description
The LH2101A series of dual operational amplifiers
are two LM101A type op amps in a single hermetic
package. Featuring all the same performance characteristics of the single, these duals offer in addition
closer thermal tracking, lower weight, reduced
insertion cost, and smaller size than two singles.
For additional information, see the LM101A data
sheet and National's Linear Application Handbook.
The LH2101A is specified for operation over the
-55°C to +125°C military temperature range. The
LH2201A is specified for operation over the

-25°C to +85°C temperature range. The LH2301 A
is specified for operation over the 0° C to +70° C
temperature range.

features
• Low offset voltage
• Low offset current
• Guaranteed drift characteristics
• Offsets guaranteed over entire com mon mode
and supply voltage ranges
•

Slew rate of 10V/J,.Ls as a summing amplifier

connection diagram
......-----..:.oV·
_---...:.;:14.() BALANCE
INV. INPUT

4

----~20~g~~~~SATION
>-_......:.:.160

NON.INV. INPUT

OUTPUT

L-_ _..:!.Q BAL/COMPENSATION

5

"'---""'::'0
1
INV. INPUTo-.:.::..,2- - - I

V-

__--.:.0 BALANCE
10

OUTPUT
COMPENSATION
OUTPUT

NON.INV. INPUT

~13~_~

Order Number LH2101AD or
LH2201AD or LH2301AD
See Package 2

BAL/COMPENSATION

.......--..:.oV·
Order Number LH2101AF or
LH2201AF or LH2301AF
See Package 5

auxiliary circuits
Inverting Amplifier with Balancing Circuit
Rl

Single Pole Compensation

Alternate Balancing Circuit

R2

R2

INPUT-JIt,/I,""--4I~-~tI'tI--.....,

VOUT

Cl

Cl
30pF

tMay be zero or equal to parallel combination
of Rl and R2 for minimum offset

Two Pole Compensation

Feedforward Compensation
C2

R2

Rl

Cl

~R~\l2

Cs

= 30 pF

C2 = lOCI

218

2:R~\C~2

Cs = 30 pF

C2=~
f. =3 MHz

r:t

...
...»
N

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short·Circuit Duration

±22V
500 mW
±30V
±15V
Continuous

electrical characteristics

Operating Temperature Range

LH2101A
LH2201A
LH2301A

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o

-55°C to 125°C
-25°C to 85°C
O°C to 70°C
_65°C to 150°C
300°C

.......

r:t
N
N

each side (Note 3)

...»o

LIMITS
CONDITIONS

PARAMETER

Rs ~ 50 kU

= 25°C,

LH2101A

LH2201A

TA

T A = 25°C

10

10

50

= 25°C

75

75

250

TA

Input Resistance

T A = 25°C

Supply Current

TA

Large Signal Voltage Gain

rA

Input Offset Voltage

Rs ~ 50 kU

= 25°C, Vs = ±20V

= 25°C, Vs = ±15V
V OUT = ±10V, RL 2 2 kU

2.0

7.5

Input Offset Voltage
Input Offset Current
Input Bias Current

2.0

LH2301A

UNITS

0.5

M!"2Min

3.0

3.3

3.0

mA Max

3.0

3.0

25

V/mV Min

10

mV Max

Average Temperature
Coefficient of Input
Offset Voltage

15

15

30

/J.V/OC Max

Input Offset Current

20

20

70

nAMax

Average Temperature
Coefficient of Input
Offset Current

25°C ~ T A ~ 125°C
-55°C ~ T A ~ 25°C

100

Input Bias Current
Supply Current
Large Signal Voltage Gain

Output Voltage Swing

= +125°C, Vs = ±20V
Vs = ±15V, V OUT = ±10V
RL 2 2 kU
Vs = ±15V, RL = 10 kU

TA

RL = 2 kU

= ±20V

Input Voltage Range

Vs

Common Mode
Rejection Ratio

Rs ~ 50 kU

Supply Voltage
Rejection Ratio

0.1
0.2

2.5

0.1
0.2
100

0.3
0.6
300

N
W

nA Max

1.5

50

r:t

nA Max

1.5

50

.......

mV Max

...o»

nA/OC Max
nAloC Max
nA Max
mA Max

2.5

25

25

15

±12
±10

±12
±10

±12
±10

V Min
V Min

±15

±15

±12

V Min

80

80

70

dB Min

80

80

70

dB Min

V/mV Min

Note 1: The maximum iunctlon temperature of the LH2101A IS IS0°C, while that of the LH2201A is 100°C. For operating
temperatures. devIces In the flat package, the derating IS based on a thermal resistance of 185°C/W when mounted on a
1/16·inch-thick epoxy glass board with O.03-inch-wide; 2-ounce copper conductors. The thermal resistance of the dual-in-Itne
package is l00°C/W. junction to ambient.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage IS equal to the supply voltage.
Note 3: These specif,cations apply for ,SV S Vs S ,20V and -SSoC S TA S 12SoC, unless otherwISe specIfied. W,th the
LH2201A, however, all temperature specifications are limited to - 2SOC S TA S 8SoC. For the LH2301A these specificatIons
apply for 0° CST A S 70° C, ± SV and S V S S ,1SV. Supply current and input voltage range are specified as V S = "SV for
the LH2301A. Cl = 30 pF unless otherwise specified.

219

co

o

M
N

Operational Amplifiers

J:

...J

"oCO
N
N

LH210S/LH220S/LH230S dual super beta op amp

J:

...J

"oCO
....
N

general description
The LH2108/LH2208/LH2308 series of dual operational amplifiers are two LM 108 type op amps
in a single hermetic package. Featuring all the
same performance characteristics of the single
device, these duals also offer closer thermal tracking, lower weight, reduced insertion cost, and
smaller size than two single devices. For additional information see the LM 108 data sheet and
National's Linear Application Handbook.

J:

...J

fied for operation over the O°C to +70°C temperature range.

features

The LH2108 is specified for operation over the
-55°C to +125°C military temperature range. The
LH2208 is specified for operation over the -25°C
to +85°C temperature range. The LH2308 is speci-

•

Low offset current

50pA

•

Low offset voltage

0.7mV

•

Low supply current

300 MA

•

Wide input voltage range

•

Wide operating supply range

±15V
±3V to ±20V

connection diagram
r------........;..OV+
INV
INPUT

r----~ ~~~~UT
> - - - - - 0 OUTPUT

NON·INV
INPUT

'----...;..0

"'---""";"0

~N:~:
V-

OUTPUT
COMP
OUTPUT
COMP
INPUT
'--..;....-~

v+

Order Number LH2108D or
LH2208D or LH2308D
See Package 2
Order Number LH2108F or
LH2208F or LH2308F
See Package 5

auxi liary circuits
Standard Compensation Circuit

Alternate * Frequency Compensation

Feedforward Compensation
C2

Rl

R2

Rl

R2

VOUT

R3

VOUT
R3

Rl Co
e'LRl +R2
Co =30 pF

C,

"Improves rejection 01
power supply noise by
• lactor 01 ten

Cs

~'00PF

C2 = 21TI!R2
10

220

=3 MHz

.-%
N

absolute maximum ratings

~

±20V
500mW
±10mA
±15V
Continuous

Supply Voltage
Power Dissipation (Note 1)
Differentia! Input Current (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration

electrical characteristics

Operating Temperature Range LH2108
LH2208
LH2308
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o

00

-55°C to 125°C
-25°C to 85°C
O°C to +70°C
-65°C to 150°C
300 C

........

.-%
N
N

o

(Note 4)

00

........

.-%

LIMITS
PARAMETER

CONDITIONS

UNITS
LH2108

LH2208

LH2308

Input Offset Voltage

T A = 25°C

2.0

2.0

7.5

mV Max

Input Offset Current

T A = 25°C

0.2

0.2

1.0

nA Max

2.0

I nput Bias Current

T A =25°C

Input Resistance

T A.= 25°C

Supply Current

T A = 25°C

Large Signal Voltage Gain

TA=25°CVs= ±15V
V OUT = ±10V, RL ~ 10 kH

30
0.6
50
3.0

Input Offset Voltage

15

Average Temperature Coefficient
of Input Offset Voltage

2.0
30

7.0
10

0.6
50
3.0
15

0.8
25

mA Max

10

mV Max
/J.vtc Max
nA Max

Inpu·t Offset Current

0.4

0.4

2.5

2.5

10

pAtC Max

3.0

3.0

10

nA Max

0.4

0.4

-

mA Max

15

Vim"
V Min

Input Bias Current
T A = +125°C

Large Signal Voltage Gain

Vs = ±15V, V OUT
RL ~ 10 kD

Output Voltage Swing

Vs

Input Voltage Range

Vs = ±15V

= ±lOV

25

25

±13

±13

±13

±13.5

±13.5

±14

Common Mode Rejection Ratio

85

85

80

dB Min

Supply Voltage Rejection Ratio

80

80

80

dB Min

~

±15V, RL = 10 kD

00

V/mV Min

Average Temperature Coefficient
of Input Offset Current

Supply Current

o

nA Max
MDMin

30
1.5

N

W

Min

VMin

Note 1: The maximum junction temperature of the LH2108 is 150°C, while that of the LH2208 is 100°C and the LH2308 is
85°C. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of
185°C/W when mounted on a 1/16-inch-thick epoxy glass board with O.03-inch-wide, 2-ounce copper conductors. The
thermal resistance of the dual-in-line package is l00°C/W, junction to ambient.
Note 2: The inputs are shunted with back-ta-back diodes for avervoltage protection. Therefore, excessive current will flow if
a differential input voltage in excess of lV is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for ±5V ~ Vs ~ 120V and _55°C ~ T A ~ 125°C, unless otherwise specified. With the
LH2208, however, all temperature specifications are limited to -25°C ~ T A ~ 85°C and with the LH2308 for ±5V ~ Vs ~
15V and O°C ~ TA ~ 70°C.

221

...

o

M
N

Operational Amplifiers

,::t:
...J

...o

N
N

,o::t:
...J

...

LH2110/LH2210/LH2310 dual voltage follower

N

::t:

genera I description

...J

The LH2110 series of dual voltage followers are
two LM110 type followers in a single hermetic
package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced
insertion cost and smaller size than two singles.
For additional information, see the LM110 data
sheet and National's Linear Application Notebook.

fied for operation over the O°C to +70°C temperature range.

features
•

1 nA

Low input current

•

High input resistance

•

10 10 ohms

High slew rate

30V Ills

The LH2110 is specified for operation over the
-55°C to +125°C military temperature range. The
LH2210 is specified for operation over the -25°C
to +85°C temperature range. The LH2310 is speci-

• Wide bandwidth

20MHz

connection diagram

auxiliary circuits

±5V to ±18V

• Wide operating supply range
• Output short circuit proof

v+

,.....----0
4
INPUT 0-__.--1

I

8 _ _ OUTPUT
;>1...
6'-4

BALANCE

OUTPUT

INPUT

R2*
5.1K

BOOSTER

v-

_.. ;. ;.() I

BALANCE

12
INPUT 0-...- - - - I

R1 >100

*May be added to reduce
internal dissipation.

Increasing Negative Swing Under Load

OUTPUT
BOOSTER

R1

v+

1K

"'~I---

Order Number LH2110D or
LH2210D or LH2310D
See Package 2

v+

~-4"""- OUTPUT

16,8

Order Number LH2110F or
LH2210F or LH2310F
See Package 5
Offset Balancing Circuit

222

r-

:t:
N
.;..,.

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)

±18V
500mW
±15V
Continuous

electrical characteristics

(Note 4)

.;..,.

CONDITIONS

r-

:t:
N
N
.;..,.

o

LIMITS
PARAMETER

o
........

-55°C to 125°C
c
-25 C to 85°C
O°C to 70°C
_65°C to 150°C
300°C

Operating Temperature Range LH2110
LH2210
LH2310
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

........

UNITS

LH2110

LH2210

LH2310

r-

:t:

Input Offset Voltage

TA = 25°C

4.0

4.0

7.5

mV Max

Input Bias Current

TA = 25°C

3.0

3.0

7.0

nA Max

W

Input Resistance

TA = 25°C

1010

1010

10 10

ilMin

o

1.5

1.5

1.5

Input Capacitance
T A = 25°C, Vs = ±15V

Output Resistance

TA = 25°C

2.5

2.5

2.5

Supply Current (Each Amplifier)

TA = 25°C

5.5

5.5

5.5

6.0

6.0

10

mV Max

6

10

p.vfc Typ
p.vfc Typ

10

nA Max

.999

.999

.;..,.

pF Typ

Large Signal Voltage Gain

.999

N

V/V Min

V OUT = ±10V, RL = 8 kil

Input Offset Voltage
-55°C ~ T A ~ 85°C
T A = 125°C

Offset Voltage
Temperature Drift
Input Bias Current

6
12

12

10

10

.999

Vs = ±15V, V OUT = ±10V
RL = 10 kil

Large Signal Voltage Gain
Output Voltage Swing (Note 5)

Vs = ±15V, RL = 10 kil

Supply Current (Each Amplifier)

T A = 125°C

Supply Voltage Rejection Ratio

±5V S Vs S ±18V

.999

±10

4.0
70

±10

.999

rnA Max

V/V Min

±10

V Min

70

dB Min

rnA Max

4.0
70

il Max

Note 1: The maximum junction temperature of the LH2110 is 150°C, while that of the LH2210 is 100°C and the LH2310 is
85°C. For- operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of
185°C/W when mounted on a 1/16-inch-thick epoxy glass board with O.03-inch-wide, 2-ounce copper conductors. The
thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70°C. It is necessary
to insert a resistor greater than 2 kn in series with the input when the amplifier is driven from low impedance sources to pre·
vent damage when the output is shorted.
Note 4: These specifications apply for ±5V S Vs S ±18V and -55°C S TA S 125°C, unless otherwise specified. With the
LM210, however', all temperature specifications are limited to -25°C S TA S 85°C and for the LH2310, all temperature
specifications are limited to O°C
T A S 70°C.
Note 5: Increased output swing under load can be obtained by connecti[lg an external resistor between the booster and Vterminals,

s

223

......

M
N

Operational Amplifiers

l:
-I
........

...

LH2111/LH2211/LH2311 dual voltage comparator
general description

N
N

l:
-I
........

......

fied for operation over the 0° C to 70° C temperature range .

The LH2111 series of dual voltage comparators are
two LM 111 type comparators in a single hermetic
package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced
insertion cost and smaller size than two singles.
For additional information see the LM 111 data
sheet and National's Linear Application Handbook.

N

l:
-I

features
•

Wide operating supply range

•

Low input currents

•

High sensitivity

•

Wide differential input range

•

High output drive

The LH2111 is specified for operation over the
-55°C to +125°C military temperature range. The
LH2211 is specified for operation over the -25°C
to +85°C temperature range. The LH2311 is speci-

connection diagram

±15V to a
single +5V
6nA
10MV
±30V
50 mA, 50V

auxiliary circuits

INV INPUT
OUTPUT

GNO (EMITTER)
10N·INV INPUT

BALISTROBE
BALANCE
V-

0-:.::-----'

0-;.----.

R2
JK

INV INPUT
OUTPUT

V+

TTL
STROBE

10 GNO (EMITTER)
jON·INV INPUT
BALISTROBE
BALANCE

0-;.---'"
v'

Order Number LH2111D or
LH2211D or LH2311D
See Package 2

Strobing

Offset Balancing

Order Number LH2111 F or
LH2211 F or LH2311 F
See Package 5

FROM
LAOOER-4'-~"""";;:';~
NETWORK

01

02

L,

·'ncreIStstypicalcommonmode
slew from 7.0V/JlSto 18V/JJS.

Increasing Input Stage Current*

Driving Ground-Referred Load

Using Clamp Diodes to Improve Responses

FROM OtA NETWORK

r - - -....- -.... V•

01
lN4001

--4............-

...- ~~TPUT

Rl
240K
INPUT'JItIV'v-....

o5V

R5
lK

--.--::+.:t

ANALOG
INPUT

TO TTL LOGIC
01
2NJ740

TTL
STROBE

·Valuesshown are for a
Oto30Vloglcswingind
a 15Vthreshold
tMaybeaddedtocontrol
+TYPlcllinputcurrentis
50 pAwith inputsstrobtd off.

Comparator and Solenoid Driver

224

Strobing off Both Input*
and Output Stages

speed and reduce SlIsceptibility
to noise spikes.

TTL Interface with High Level Logic

absolute maximum ratings
Total Supply Voltage (V+ - V-I
Output to Negative Supply Voltage (V OUT - V-I
Ground to Negative Supply Voltage (GND - V-I
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)

36V
50V
30V
±30V
±15V
500mW

electrical characteristics -

Output Short Circuit Duration
Operating Temperature Range LH2111
LH2211
LH2311
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

10 sec

-55°C to 125°C
-25°C to 85°C
O°C to 70°C

-65°C to 150°C
300°C

each side (Note 3)
LIMITS

PARAMETER

CONDITIONS

LH2111

LH2211

UNITS
LH2311

Input Offset Voltage (Note 4)

T A = 25°C, Rs ~ 50k

I nput Offset Current (Note 4)

T A = 25°C

10

10

50

nA Max

Input Bias Current

TA

= 25°C

100

100

250

nA Max

Voltage Gain

TA = 25°C

200

200

200

V/mV Typ

Response Time (Note 5)

TA = 25°C

200

200

200

Saturation Voltage

V IN ~ -5 mV, lOUT
TA = 25°C

Strobe On Current

TA

Output Leakage Current

V IN

= 50 rnA

= 25°C
~

5 mV, V OUT = 35V

3.0

3.0

1.5

1.5

3.0

3.0

10

10

7.5

mVMax

ns Typ

1.5

V Max

3.0

mATyp

50

nA Max

T A = 25°C
Input Offset Voltage (Note 4)

As ~ 50k

4.0

4.0

10

mV Max

20

20

70

nA Max

Input Bias Current

150

150

300

nA Max

Input Voltage Range

±14

±14

±14

VTyp

Input Offset Current (Note 4)

Saturation Voltage

v+ ~ 4. 5V,

V- = 0
V IN ~ -5 mV, ISINK ~ 8 rnA

0.4

0.4

0.4

V Max

Positive Supply Current

TA = 25°C

6.0

6.0

7.5

mAMax

Negative Supply Current

T A = 25°C

5.0

5.0

5.0

mAMax

Note 1: This rating applies for ± 15V supplies. The positive input voltage limit is 30V above the negative supply. The negative
input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is 150°C. For operating at elevated temperatures, devices in the flat package. the
derating is based on a thermal resistance of 185°C/W when mounted on a 1/16·inch·thick epoxy glass board with 0.03·inch·
wide, 2 ounce copper conductor. The thermal resistance of the dual·in·line package is l00°C/W, junction to ambient.
0

0

Note 3: These specifications apply for V S ; ± 15V and -55" C <;. T A <;. 125° C for the LH 2111, _25 C <;. T A <;. 85 C for the
LH2211, and O°C <;. T A <;. 70°C for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current
specifications apPly for any supply voltage from a single 5V supply up to '±15V supplies. For the LH2311, VIN;±10mV.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of
either supply with a 1 rnA load. Thus, these parameters define an error band and take into account the worst case effects of
voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

225

o
o
en

~

~s
LM3900 quad amplifier
features

general description

•

The LM3900 consists of four independent, dual
input, internally compensated amplifiers which
were designed specifically to operate off of a
single power supply voltage and to provide a
large output voltage swing. These amplifiers make
use of a current mirror to achieve the non-inverting
input function. Application areas include: AC
amplifiers, RC active filters; low frequency triangle,
squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage
digital logic gates.

•

Wide single supply
voltage range
or dual su ppl ies

4 Voc to 36 Voc
±2 Voc to ±18 Voc
Supply current drain independent of supply
voltage

•

Low input biasing current

•
•

High open-loop gain
Wide bandwidth

30 nA

70 dB
2.5 MHz (Unity Gain)

•

Large output voltage swing

•

I nternally frequency compensated for unity gain

(V+ -1) V p_p

•

Output short-circu it protection

schematic and connection diagrams
Dual-In-Line Package

V'

....~~-o

OUTPUT

IN,'

IN,

I'N2-

OUT 2

GNO

IN,

OUT,

TOP VIEW
CURRENT
MIRROR

Order Number LM3900N
See Package 22

typical applications

(v+= 15V oc )
1M

V' (.)-"'V\I"v-.....-t

39K

2R2
2M

V'

V'N..f"Lf Y
V'
Vooc=y

I'N "---AAA--1
v-;O~I

Ay,,-~

Inverting Amplifier

VoDe

_

O.005.F

I,

Frequency-Doubling Tachometer

Triangle/Square Generator

-

I

Vo

V'
R2

VODe =

Ay

0

2

w,.

f"'

r-

Vo

V-

V+/2

Low VIN-VOUT Voltage Regulator

226

Non-I nverti ng Ampl ifier

Negative Supply Biasing

.3:

absolute maximum ratings

w

CD
Supply Voltage
Power Dissipation (T A = 25°C) (Note 1)
Input Currents, IIN+ or IINOutput Short Circuit Duration - One
Amplifier T A = 25°C
(See Application Hints)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrica I cha racteristics

o°C to +70°C
-65°C to +150°C
300°C

(v+ = +15 VDC and T A

CONDITIONS

PARAMETER

o
o

+36 VDC
±18 VDC
570mW
20 mA PC
Continuous

= 25°C unless otherwise

MIN

TYP

Open Loop
Voltage Gain
Input Resistance
Output Resistance

f = 100 Hz
Inverting Input

Unity Gain Bandwidth

Inverting Input

Input Bias Current

Inverting Input

30

Slew Rate

Positive Output Swing
Negative Output Swing

0.5
20

Supply Current

R L = 00 On All Amplifiers

Output Voltage Swing

RL = 5.1k

V OUT High
V OUT Low

800

= 0, IIN+ = 0
IIN- = 10pA, IIN+ = 0
IIN-

13.5

(Note 2)

= 100 Hz

f

Mirror Gain

IIN+

Mirror Current

(Note 4)

Negative Input Current

(Note 5)

= 200 pA

MHz
200

10

0.80

0.2

~

VDC

mADC

10

mADC

1.3

dB
1.16

1
10

mADC

VDC

14.2

70
(Note 3)

nA
V Ips
Vips

0.09

0.5

UNITS

V/V
MS1
kS1

2800
1
8

6.2

3

Power Supply Rejection

MAX

2.5

Output Current Capability
Source
Sink

noted)

500

1.0

pA/pA
pA DC
mADC

Note 1: For operating at high temperatures, the device must be derated based on a 125°C maximum junction temperature and
a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient.
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This
is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
Note 4: Input VBE match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting
input current) of approximately 10 IJA. This is therefore a typical design center for many of the application circuits.
Note 5: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than
approximately -0.3 VDC. The negative input currents which may result from large signal overdrive with capacitahce input
coupling need to be externally limited to values of approximately 1 mAo Negative input currents in excess of 4 mA will cause
the output voltage to drop to a low voltage. This maximum current applies to anyone of the input terminals. If more than one
of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; see for example the "Differentiator Circuit" in the applications section.

227

o
o

en

typical performance characteristics

M

:E
....I
Voltage Gain

Open-Loop Gain
100

Voltage Gain
100

100
NO LOAD

!z

!z

80

;;;:
~

w

>

60

~

w

60

~

'"b

40

0

0

20

0;

'"~

40

'"

20

15

20

25

30

25

80

00

.1

f---7T A = DoC

'l:
:i:!

j TA = 25°C

1

z

ien

I.

:::I

(.)

UTA = 7o°C

40

14

~

L

60

I

12

rOk ~RL ~oo

I-

~

I:::I
0

I'-....

------

\

~

........

0

>

o
25

75

50

100

125

o

10

15

20

25

"

10k

30

100k

Output Sink Current

.s<
I~
a:
a:

:::I
(.)

40

liN = 100J.LA

I
I

30

:.::

z

in
I-

0

3.0

::

10

"
r

:::I
~.

IIN-= 1 J.LA

o

10

I

20

25

1.0

z

i=
(.)

~
a:
~

60
40

i:
:::I

en

20

I-

~

.
r

I
T = 70"C

10

r

15

20

25

10

.

-

I""

I

1.08

<
..s

16

~
a:
a:

12

:::I
(.)

C[

1.04

0

-- r

I-

:::I

.£
0.96

50

~ ~:~0.90

~

.

:!:

IIN+ = 10J.LA

1.00

25

f, FREQUENCY (Hz)

30

I-

z

:E

25

Maximum Mirror Current

'"a:

Vo

20

20

:::; 1.12

:ti

15

V·, SUPPLY VOLTAGE (Vocl

:E

ci:
a:
a:

yo
TA ='75°C

30

~
N

~

~ 25°C /

:9

V+, SUPPL Y VOLTAGE (Vocl

0
~

TA

0

Mirror Gain

L\\

,

10

I-

=
+•

1.16

.".

228

---t TA =25°C-

(I

Supply Rejection

0

TA=Oo~~

2.0 _

30

100

80

r

15

:::I

V+, SUPPLY VOLTAGE (Vocl

~

zw

a:
a:

(.)

.2
15

TA =rOC\
20

I-

Z

0

.2

<
..s

(.)

:=
0
IIN-= 1oJ.LA

o

~
a:
a:

:::I

20

~

I-

:::I

4.0

I-

(Hz)

25

5.0

<
..s

10M

Output Souce Current

Output Class-A Bias Current

6 t~
V

1M

1. FREQUENCY

V+,SUPPLY VOLTAGE (Vocl

50

125

16

I-

I

100

75

50

Large Signal Frequency
Response

Supply Current
10

20

-

60

>
..:.
o

RL =

~

80

V+, SUPPLY VOLTAGE (Vocl

100

~

~

20

Input Current

:!:

C[

w

40

10

I-

~
z
~

f, FREQUENCY (Hz)

~
a:
a:

-

>
..:.

0

1

-

~

.:;

'"

.---

C[

~

'"0
S

80

~

o
75

100

125

-

4

o

25

50

75

100

125

application

hin~s

When driving either input from a low-impedance
source, a limiting resistor should be placed in series
with the input lead to limit the peakinp~t current.
Currents as large as 20 rnA wi II not damage the
device, but the current mirror on the non-inverting
input will saturate and cause a loss of mirror gain
at mAcurrent levels - especially at hi~h operating
temperatures.
Precautions should be taken to insure that the
power supply for the integrated circuit never
becomes reversed in polarity or that the unit is
not inadvertently installed backwards in a test
socket as an unlimited current surge through the
resulting forward diode within the' IC cpuld cause
fuzing of the internal conduGtors and result in a
destroyed unit.
Output short circuits either to grounq or to the
positive power supply should be of short time
duration. Units can be destroyed, not as a result
of the short circu it curr~nt causing metal fuzing,
but rather due to the large increase in IC chip
dissipation which will cause eventual failure due
to excessive junction temperatures. For example,
when operating from a well-regulated +15 VDC
power supply at T A = 25°C with a 100 kn shuntfeedback resistor (from the output to the inverting
input) a short directly to the power supply will not
cause catastrQphic failure but the current magnitude will be approximately 50 mA and the junction
temperature will be above T J max. Larger feedback
resistors will reduce the current, 11 Mn provides
approximately 30 mA, an open circuit provides
1.3 mA, and' a direct connection from the output
to the non-inverting input will result in catastrophic failure when the output is shorted to V+ as
this then places the base-emitter junction of tre
input transistor directly across the power supply.
Short-circuits to ground will have magnitudes 'of
approximately 30 mA and will not cause catastrophic fai!ure at T A = 25°C.

Unintentional signal coupling from the output to
the non-inverting input can cause oscillations.
This is likely only in breadboard hook-Ups with
long component leads and can be prevented by a
more careful lead dress or by locating the noninv~rting input biasing resistor close to the IC.
A quick check of this condition is to pypass the
non-inverting input to groul"!d with a capacitor.
High impedance biasing resistors used in the noninverting input circuit make this input lead highly
susceptible to unintentional AC signal pickup.
Operation of this amplifier can be best understood
by noticing that input currents are differenced at
the inverting-input terminal and this difference
current then flows through the external feedback
resistor to produce the output voltage. Common
mode currert biasing is generally use'ful to allow
operating with signal levels near ground or even
negative as this maintains the inputs biased at
+V SE ' Internal clamp transistors (see note 5)
catch negative input voltages at approximately
-0.3 VDC but the magnitude of current flow has
to be limited by the external input networ~. For
operation at high temperature, this limit should
be approximately 100 J.lA.
This new "Norton" current-differencing amplifier
can be used in most of the' applications of a
standard IC op amp. Performance as a DC amplifier using only a single supply is not as precise as
a standard IC op amp operating with split supplies
but is adequate in many less critical applications.
New functions are made possible with th is amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the ACgain as was shown in the
"inverting amplifier", the "difference integrator"
allows controlling the chargillg and the discharging
of the integrating capacitor both with positive
voltages, and the "frequency doubling tachometer"
provides a simple circuit which reduces the ripple
voltage on a tachomet:er output DC voltage.

typica I applications (con't)

lOOK
RAMP DOWN

n

o--'VIOOVKV-. . . . . .-I
470K

RAMP UP

J l L o -__~IO~OK~__~

1M

ZERO
DRIFT
ADJ

470K

V'
VOBP

1M

Low-Drift Ramp & Hold Circuit

Q = 50
10= I kHz

Bi-Quad Active Filler
(2nd Degree State-Variable Network)

229

o
o0)

typical applications (con1t)

M

::E

----

10 " lA

V'

....I

910K

lK
1M

4.7K

r

+

lOPF

":'

1M

270K

I

I

~

~ 10

l.GV

910K

= 1 mANolt V,N

Voltage-Controlled Current Source
(Transconductance Amplifier)

Hi VIN. Lo (VIN-VO) Self-Regulator

V'

lK

10M
910,!

Rl

IV

10M
1M

IlK

Ground-Referencing a
Differential Input Signal

Fixed Current Sources

Voltage Regulator

V'

V+

180K

200K

180K

1M

>-IIH-"'~O +Vooc

f'NrLSL
+V'N

0--'\1""...........- - - - - 1
200K
VoDe = A fiN

*AllowsVo to gota zero

Voltage-Controlled Current Sink
(Transconductance Amplifier)

Tachometer

Buffer Amplifier

V'

V'
NO NEGATIVE
VOLTAGE LIMIT
IF PROPERLY
BIASEO

1M

LAMP

lOOK

NO POSITIVE
VOL TAGE LIMIT
+O. 2Voc

Low-Voltage  - -....-oVooc
Vo

Frequency Averaging Tachometer

Frequency Differencing Tachometer

V'

5M

RESET

1M

SL
150K

Vo·
150K

SET

10M

IL

V'

Squaring Amplifier (W/Hysteresis)

Differentiator (Common-Mode
Biasing Keeps Input at +VBE)

Bi-Stable Multivibrator

15K

24K

15K

24K

15K

24K

Difference Integrator

"AND" Gate

"OR" Gate

-

1M

•

RESET
1M

JL

210K

'I

3K

3f1OPF

+~'.I-F_""",..,..........

'0= 1 kHz

VI~SlJl..

1.5M

v+

V.. =D.5·Voc

-2 Steps/cycle

OUTPUT
BIAS
ADJUST

VOOC=V8'

Low Pass Active Filter

2M

Vo

Vo

Staircase Generator

(1+~)
V BE Biasing

1M

1M

('2-',1

One-Shot Multivibrator

Low-Frequency Mixer

231

o
o

en

typical applications (con't)

(V)

:E
....I

Supplying 'IN with Aux. Amp
(to Allow High Z Feedback Networks)

Free-Running Staircase Generator/Pulse Counter

1M
1.5M

39K

Non-Inverting DC Gain to (0,0)
fo= 1 kHz
Q =25

V'

62K

V'

Bandpass Active Filter

10M
10M

10M

lOOK

V'

)
Power Amplifier

V'

1.5M
100pF

10M
DUT2

V"/2
10M

lOOK

TRIPS AT
Y'N - O.BV·
V1Nmustf.1I

V'

...::O.BV+ prior
tot2

Channel Selection by DC Control
(or Audio Mixer)

232

One-Shot w/ DC Input Comparator

r-

3:

w
o

typical applications (con 't)

CD

o

470pF
39K

VIN~OPF

CONTROL
INPUT

Vo
2M
HOLO

10M

SAMPLESL

to.

'0= 1 kHz

ZERO
DRIfT
ADJ
1M

I,

High Pass Active Filter

3K

V'

o---..M,----I

Sample-Hold & Compare with New +VIN

Sawtooth Generator

split-supply applications

(v+= +15V DC & v-= -15V DC )

+15.00 Voc'

1M

200K

Av= 10

'COMPLEMENTARY
TRACKING

AC Amplifier

Non-Inverting DC Gain

233

LM4250/LM4250C programmable operational amplifier
general description
The LM4250 and LM4250C are extremely versatile
programmable monolithic operational amplifiers.
A single external master bias current setting resistor
programs the input bias current, input offset Cl:lrrent, qu iescent power consumption, slew rate,
input noise, and the gain-bandwidth product.
The device is a truly general purpose operational
amplifier.

• Standby power consumption as low as 500 nW
• No frequency compensation required
• Programmable electrical characteristics
• Offset Voltage nulling capability
• Can be powered by two flashlight batteries
•

Short circuit protection

The LM4250C is identical to the LM4250 except
that the LM4250C has its performance guaranteed
over a O°C to 70°C temperature range instead of
the -55°C to +125°C temperature range of the
LM4250.

features
• ±1V to ±18V power supply operation
• 3 nA input offset current

schematic and connection diagrams
Metal Can Package
QUIESCENT
CURRENT SET

RI

RU

UK

100

V-

TOP VIEW

Order Number LM4250H or LM4250CH
See Package 11

RIl
100

Dual-In-Line Package
OFFSET
NULL 1

I

INVERTING Z
INPUT

QUIESCENT
CURRENT SET

7 V·

NON.INVE~~~~~ 3

6 OUTPUT

5 OFFSET

V- 4

NULL
TOP VIEW
R3

Order Number LM4250CN
See Package 20

5K

typical applications
RZ
lSOK

RZ
3.3M

VD

QUIESCENT PD = 6mW

-15V

X5 Difference Amplifier

234

500 Nano-Watt X10 Amplifier

r~
~

absolute maximum ratings

N

(J'I

Supply Voltage
Power Dissipation (Note 1)
Differenital Input Voltage
Input Voltage (Note 2)
ISET Current

±18V
SOOmW
±30V
±lSV
lS0/lA

Output Short-Circuit Duration
Operating Temperature Range

o

Indefinite
-SSoC"::T A ":: 12SOC
O°C.,:: T A''':: 70°C
-6SoC to 150°C
300°C

LM42S0
LM42S0C

Storage Temperature Range
Lead Temperature (Soldering,l 0 sec)

"r-~

~

N

(J'I

electrical characteristics

LM4250 (-55°C

sT

A

o
o

S 125°C unless otherwise specified)
Vs = ±1.5V

PARAMETERS

ISET

CONDITIONS

= 1 /lA

MIN

ISET
MAX

= 10/lA

MIN

MAX
SmV

Vos

T A = 25° Rs":: 100 kn

3mV

los

TA = 25°

3 nA

10 nA

Ibias

TA = 25°

7.S nA

SO nA

Large Signal Voltage Gain

T A = 25°

R L = 100 kn

40k
SOk

Vo = ±0.6, RL = 10 kn
Supply Current

TA = 25°C

7.S/lA

Power Consumption

TA = 2E,oC

23/lW

240/lW

Vos

Rs::;: 100 kn

4mV

6mV

los

TA = 12SoC

S nA

10 nA

TA = -5SoC

3 nA

10 nA

7.S nA

SO nA

Ibias

Input Voltage Range
Large Signal Voltage Gain

±0.7V
Vo = ±0.6V RL = 100 kn
RL

Output Voltage Swing

80/lA

±0.7V

30k

= 10 kn

30k

RL = 100 kn

±0.6V

R L =10kn

±0.6V

Common Mode Rejection Ratio

Rs":: 10 kn

70 dB

Supply Voltage Rejection Ratio

Rs":: 10 kn

76 dB

70 dB
76 dB

Supply Current

8/lA

90/lA

Power Consumption

24/lW

270/lW

~

Vs = ±15V
PARAMETERS

ISET = 10/lA

ISET = 1 /lA

CONDITIONS
MIN

MAX

MIN

MAX
SmV

Vos

T A = 25°C Rs":: 100 kn

3mV

los

TA = 25°C

3 nA

10 nA

Ibias

TA = 25°C

7.S nA

50 nA

Large Signal Voltage Gain

TA = 25°C

RL = 100 kn

lOOk
lOOk

Vo = ± 10V RL = 10 kn

90/lA

Supply Current

TA = 25°C

10/lA

Power Consumption

TA = 25°C

300/lW

2.7mW

Vos

Rs":: 100kn

4mV

6mV

los

TA= 12SoC

2S nA

2S nA

TA = -5SoC

3 nA

10 nA

7.S nA

SO nA
±13.SV

±13.SV

Input Voltage Range
Large Signal Voltage Gain

Vo = ±10V RL = 100 kn

Output Voltage Swing

RL = 100 kn

SOk
SOk

RL = 10 kn
±12V

±12V

RL = 10 kn
Common Mode Rejection Ratio

Rs":: 10 kn

70dB

Supply Voltage Rejection Ratio

Rs":: 10 kn

76dB

70 dB
76dB

Supply Current

11/lA

100/lA

Power Consumption

330/lW

3mW

Note 1: The maximum junction temperature of the LM4250 is 150°C, while that of the LM4250C is 100°C. For operating
at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of l50°C/W junction to
ambient, or 45°C/W junction to case. The thermal resistance of the dual-in-line package is l2SoC/W.
Note 2:' For supply voltages less than ± l5V, the absolute maximum input voltage is eqllal to the supply voltage.

235

LM4250e (ooe ~ T A ~ 70 e unless otherwise specified)

electrical characteristics

0

Vs = ±1.5V
PARAMETERS

CONDITIONS
MIN

= 25°C

ISET = 10 pA

ISET = 1 pA
MAX

Rs ~ 100 kD

MIN

MAX
6mV

5mV

Vas

TA

los

T A = 25°C

6 nA

20 nA

TA = 25°C

10 nA

75 nA

Large Signal Voltage Gain

TA

= 25°C RL = 100 kS1

25k

Va = ±O.6V RL = 10 kD

25k

Supply Current

T A = 25°C

8pA

Power Consumption

T A = 25°C

24pW

270pW

Vas

Rs ~ 10 kD

6.5mV

7.5mV

los
Input Voltage Range

90pA

8 nA

25 nA

10 nA

80 nA

±0.6V

Large Signal Voltage Gain

Va = ±O.6V RL = 100 kD

±0.6V

25k

RL = 10 kS1
Output Voltage Swing

25k
±0.6V

RL = 100 kD

±0.6V

RL = 10 kD
Common Mode Rejection Ratio

Rs

~

10 kS1

70 dB

70 dB

Supply Voltage Rejection Ratio

Rs

~

10 kS1

74 dB

74 dB

Supply Current

8pA

90uA

Power Consumption

24pW

270uW
V S - ±15V

PARAMETERS

CONDITIONS

ISET = 10pA

ISET =.1 pA

MIN

MAX

MIN

Vas

T A = 25°C Rs ~ 100 kD

5mV

los

TA = 25°C

6 nA

20 nA

TA = 25°C

10 nA

75 nA

Large Signal Voltage Gain

T A =25°C RL =100kD

6mV

60k
60k

Va = ±10V RL = 101m
Supply Current

T A = 25°C

llpA

100J..lA

Power Consumption

TA = 25°C

330pW

3mW

Vas

Rs~

6.5mV

7.5mV

8 nA

25 nA

10 kS1

los

10 nA
Input Voltage Range
Va = ±10V RL = 100 kS1

50k

RL = 10 kD
Output Voltage Swing

80 nA
±13.5V

±13.5V

Large Signal Voltage Gain

50k
±12V

RL = 100 kD

±12V

RL = 10 kD
Common Mode Rejection Ratio

Rs~ 10 kD

70dB

70dS

Supply Voltage Rejection Ratio

Rs~ 10 kD

74 dB

74 dB

Supply Current

11 uA

100uA

Power Consumption

300uW

3mW

resistor biasing
Set Current Setting Resistor to VISET
Vs
±1.5V
±3.0V

236

MAX

0.1 pA

0.5pA

1.0pA

25.6 MD

5.04 MD

2.5MD

55.6 Mil

5pA
492 kD

10pA
244 kD

11.0 Mil

S.5Mil

1.09MD

±6.0V

116MD

23.0 MD

11.5Mil

2.29 MD

544kil

±9.0V

176MD

35.0MD

17.5MD

3A9 MD

1.74MD

±12.0V

236MD

47.0MD

23.5 MD

4.69MD

2.34MD

±l!?OV

296MD

59.0MD

29.5 MD

5.89 MD

2.94MD

1.14MD

typical performance characteristics

-40

1000

~
~

-

"~s=±15V-

>----- Vs=±1.5~

1

-10

Unnulled Input Offset Voltage
Change vs ISET
:E

f--

a:>
... E

f--

0_

11111111 I II
TA = 25°C I I II

1.5V·~vs~iW'

w:;
~


Vs = ±1.5V

~ ~~ i"""""TTlIIIIII

IJo"'I'"I"T

24

-200

.....
~ -600
:) -800

100

32

200

u

liD

Peak to P~ak Output Voltage
Swing vs~oad Resistance

400

-12

20

Unnulled Input Offset Voltage
Change vs Temperature

600

-16

-20

TEMPERATURE (OC)

W

-8

60

TEMPERATURE (OC)

800

:3

,

20

-20

Vs = ±15V

-10

1000

>
:E
o
~

(I)

~

~
~
!;(

::t

lj7."

-5

I I

10
-60

100

1

(I)

.2

~
Vs = 15V """

10

I

1\1"0-

1

Vs= 1.5V

ISET = 1 j.lA

I

Vs = ±1.5V

I Il

~

.1

ISET ~ 1oj.lA
I

~

iii""

.1

~

Vs = ±15V

-20

(I)

J

1 j.lA

T~

I

'f

10

I I I I I

Vs = ±1.5V

ISET = 1oj.lA

-30

1

10

I I

TA = 25°C

100

Input Offset Current vs
Temperature

Input Bias Current vs
Temperature

Input Bias Current vs ISET

ISET = 1 j.lA

2.0

I
IseT = 10 j.lA

1.6

<

12

1.2

.8

II

4

1.0

.1

100

10

:)

3

.4

o

~ -1000

-20

l

-60

-20

20

100

60

1k

140

10k

1M

100k

TEMPERATURE (OC)

Quiescent Current (lq) vs
Temperature

Peak to Peak Output Voltage
Swing vs Supply Voltage
30

:..:

<

RL = 10 Kn

~

20
~

/

:..:

<
W

a.

~

10

~

50

_I;

30

~

0

--

±6

I

-60

±8 ±1o ±12 ±14 ±16

=

f--

ISET = 1 j.lA

o
±4

I

-20

f--

~

=Vs=±15VVs = ±1.5V-

J

.1

20

100

60

140

Open Loop Voltage Gain
107

~TA=25°C

N

=

f: R~ ~ ~~~ I~n

U

1.0

IIIIIII

:)

g
g:

100k

::: Vs=+15V

:c

i

Z

~

.01

ioIJIIII

~

ioI"!

~

10k

~

. R~ =:'~~I~I~

11111111

1111111

11111111

~Vs= ±15V. Vo= ±10V

C
ell

ilL

Uof'I'I

0
0

.....
~
a.

105

Vs - +1.5V.Vo- +0.6V

c:

C

I

ell

.1

7

f---

I

1k

10

,.
II

1Q4

'---

1.0

~

T
~IIIIIIII

a.

Vs= ±1.5V

Z

100

106

Z

iIIl

ICI

.1

TA = 25°C

~.

I-

ISET lilA)

100

VS ISET

1M
1oP,ffnlm

10

10

.1

Gain Bandwidth Product
vs ISET

Slew Rate vs ISET

1.0

Vs = +15V

,, "

TEMPERATURE (OC)

SUPPLY VOLTAGE (V)

.1

~

100

-

10

±2

_~._

10

20

~

>

T

Vs= +1.5V_

40

~

0
I-

TA =25°C

ISET = 1oj.lA _ f - - >----- Vs= ±15V_

60

~

~

-

70

1j.lA~ISET~1oj.lA

~

I

I

TA = 25°C

Quiescent Current (lq) vs ISET
1000

100

.1

10

1.0

100

ISET lilA)

237

typi ca I pe rform ance ch a racte ristics (con't)

I nput NoiSe Current (I n) and
Voltage (~n) vs :requenc y

Phase Margin vs IS'ET

en

TA = 25°C U!
RL = 100 kn

84

a: 72
CD

IoU

e

60

a:



~

>
C')

\Is = ±1.5V

en 24


20 mV

~

10mV

r--

w

a:
a:

-

~>

~

:;:)
(.)

I-

C

~

0

~

:::::l
0

VIN

~)J, --5 '\IVl

I I

~

,

...

?:V- ?:-12V
V1,N = +~mV

~

~

~ ~FSEI

-75 -50 -25 0 -125 +50 -1·75 +100 +125+150
JUNCTION TEMPERATURE (C)

~
w

(:I

C

Your

-

"l"

15pF

-75 -50 -25 0 25 50 75
TEMPERATURE (OC)

~
o

>

~

~

~

-

:::::l

~

>"

.!
~ 100 .......+-+--+-++-+--+-+-+

n~~=+12i
V =-6V

-50

0

Tt i +,5O[C

> -100
~

~

I

o

o

Respon~ Tim~ For
Various:lnput Overdrives

.

C

~

~

o
>

:::::l
L

!!

!!

20

100 125

40

60

80

40

60

80

100 120

TIME (ns)

Power Consumption

Negative Supply C'urrent
120

'
V+= +12V

110

C(

C(

.!

.!

~

~

~
a:
a:
~
~

as

t
;:

...>
f

20

100 120

TIME (ns)

Positive Supply Current

;;; 2

J-+-I-+-+--+-++-H-+-+

50

~

10

i=

"

~ 0.1

o

l' ,

>"

.!

....

B0.2
~

\: 2 mV-

II

'", ,

~

U.

rll'
1 ~

v+.= +12V
V-=-6VVIN = -5 mV

~

I

w

c::J

"-

~
a:

V+ =+12V

c::J

:;:)
Q.

~

0 +25 +50 +75 +100 +125
TEMPERATURE (OC)

•

40

0 +25 +50 +75 +1001+125

""""IiI

•

=:;

Response Time Fo~_
Various Input O"erdrives

I nput Current

"~
J

_ 0.3

I I

-75 -50 -25

-75 -50 -25

~~

Ti

I

IL = 0 mA

o

-5

Short Circuit Output Current

--- -

IL = 16 mA

~

-4

TEMPERATURE (OC)

......-;;;.--

I I

....

:::::l

L

I

I

0.4

O'---L.._.l--L.._.l--L.._.l--L..~

-3

0.4

~

IL = 50 mA

c

~
a:

20 ~-+-+--+-~~--+---=po."d

>

--r-

V+=+12V
-3V?: V- ?: -12V
VIN = -5 mY,

I I

........

~ 0.6
z

~

c

-3V ?:V- ?:-12V

INPUT VOLTAGE (mV)

I

I

40

Positive Output Level

= 100 mA

I

w

V+=+12V _ _

7

I I

-

~ 0.8
c

(:I

(:I

10- 9
+3

0 +0.1 +0.2 +0.3 +0.4 +0.5

60

z

«

10- 7 TA = 25°C
Jjr

Saturation Voltage

;;;;;;:: f - -

~

• -1--I'Y
5

INPUT VOLTAGE (mV)

1.2

>"
~

10- 6

~

:::::l
0

.J

-0.3

~'

10- 4 TA = 125°C

B 10-

~~.,

o

,r

I"

10- 2

5

0')

--' -

.:..;;;.

10-'

V~ =-6V-

Till = 25°C_I----:-.

~~

....

10°
V+ =+12V

o

Voltage Gain

Transconductance

II

a:
a:
~
>-

z
;>

:::::l

--...-,.....

...>
i=
c

II

z
;>

".~

CIt

E

:!
z

-3V ?:V- ?:-15V

.......
...... .. ...

;:..-

....... :; ~~
,. ~".

it

>

-

TA = -5!j'lC

~.

",.

.....

--

10'" ",-

TA = +25°C
~

TA = +125°C

+15

.!
z
i=
~

0

~

100
90
80

V- = -6V

r--t--- ......... .........
I . I~

~

70 -VIN =+,5mV

Ci
a:

60

f

40

~

----.

50

........... .........

......

,
........

30

o
+10
+12
POSITIVE SUPPLY VOLTAGE (V)

~

VIN ,= -5mV

-3

-6

-9

-12

NEGATIVE SUPPLY VOLTAGE (V)

-15

-75 -50 -25

0

+25

+50 +75 +100 +125

TEMPERATURE (OC)

243

CD

o
M
:!:

Voltage Comparators/Buffers

..J

LM 306 voltage com pa rator Ibuffer
general description
The Llvi306 is a high-speed voltage comparator
designed to accurately detect low-level a,nalog signals and drive a digital load. It is equivalent to an
LM710C, combine,d with a two input NAND gate
and an output buffer. The circuit can drive RTL,
DTL or TTL integrated circuits directly. Furthermore, the output can switch voltages up to 24V at
currents as high as 100 rnA. Other features
include:

• Plug-in replacement for the LM710C.
•

40 ns maximum response time

The device has short-circuit protection which
limits the inrush current when it is used to drive
incan,descent lamps, in addition to preventing
damage from accidental ,shorts. The speed is
equivalent to that of an LM710C. However, it is
even faster where buffers and additional logic
circuitry can be eliminated by the increased flexibility of the LM306. It can also be operated from
any negative supply voltage between -3V and
-12V with Iittle effect on performance. The LM306
is identical to the LM 106, except that it is specified
over a O°C to 70°C temperature range.

• Improved accuracy: 5 mV (max) offset
• Fan-out of 10 with DTL or TTL
• Added logic or strobe capability
• Useful as a relay or lamp driver

schematic and connection diagrams **

Metal Can
TOP VIEW

STROBE

V-

Note: Pin.4 connected to case.

Order Number LM306H
See Package,11

03
6.3V

Flat Package
INPUT

7

OUTPUT

NC

NC

GROUNO

NC

INPUT r:--';::"----4

NC

INPUT r-"""1o.::""'--I
RB
600

RIO

NC

NC

17K

OUTPUT

GROUNO

STROBE
NOle: Pin 6 connected to bottom 6f package.
TOP VIEW
V-.=.4 _

......_---1

Order Number LM306F
See Package 4

"Pin connections shown are for TO·S package

typical applications* *

y'=12V

Fast Response Peak Detector

Level Detector and Lamp Driver
v'

Rl
01
F06666

v++< 24V
OUTPUT

Rl

2K

-.--41.---.....- -..

11

INPUT
R2

OVERRIDE

Adjustable Threshold Line Receiver
Relay Driver

YTH

OUTPUT
F.0.Sl0

Rl"
INPUT

INPUTS

Cl"J

STROBE
INPUTS

·OptioRiI for responsetiml control.

244

r-

3:
w
o
en

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Output Voltage
Output to Negative Supply Voltage
Differential I nput Voltage
I nput Voltage
Power Dissipation (Note 1)
Output Short Circuit Duration
Qperating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

15V
-15V
24V
30V
±5V
±7V
600mW
10 sec
O°C to 70°C
-65°C to +150°C
300°C

electrical characteristics

(Note 2)

PARAMETER

CONDITIONS

MIN

TYP

MAX

Input Offset Voltage

Note 3

1.6

5.0

I nput Offset Current

Note 3

1.B

5.0

I nput Bias Current
Response Time

Note 4, RL = 390[2 to +5V,
C L =15pF

Saturation Voltage

V 1N ~ -5 mV, lOUT = 100 mA

Output Leakage Current

V 1N

2: 5 mV, BV ~ V OUT ::; 24V

UNITS
mV
f..lA

16

25

f..lA

2B

40

ns

O.B

2.0

V

0.02

2.0

f..lA

6.5

mV

electrical characteristics
The following specifications apply for o°c::; T A'::; 70°C (Note 5)
Input Offset Voltage

Note 3

Average Temperature Coefficient
of Input Offset Voltage
I nput Offset Current

5
Note 3, O°C ~ T A < 25°C

2.4

25° C ~ T A ~ 70° C

20
7.5
5.0

f..lvtc
f..lA
f..lA

Average Temperature Coefficient
of I nput Offset Current

25°C~TA~70°C
O°C::; T A::; 25°C

15
24

50
100

nAtC

I nput Bias Current

0°C~TA<25°C

25

40

f..lA

25

f..lA

25°C~TA~70°C

Input Voltage Range

-7V

2: V- ~ -12V

Differential Input Voltage Range
Saturation Voltage

V 1N .::; -5 mV, lOUT = 16 mA

Positive Output Level

V 1N

Output Leakage Current

±5.0

V

±5.0

V
1.0

V 1N ::; -5 mV, lOUT = 50 mA

Saturation Voltage

2: 5 mV, lOUT = 400 f..lA
V 1N 2: 5 mV, BV::; V OUT S 24V

nAtC

2.5

V

0.4

V

5.5

V

2.0

0°C~TA~25°C

100

~

f..lA
f..lA

25° C < T A ~ 70° C
Strobe Current

-1.7

V strobe = 0.4V

Strobe ON Voltage

0.9

1.4

Strobe OFF Voltage

I sink ::; 16 mA

1.4

Positive Supply Current

V 1N

5.5

=

-5 mV

Negative Supply Current

-3.2

-1.5

mA
V

2.2

V

10

mA

-3.6

mA

Note 1: For operating at elevated temperatures, the device must be derated based on a 85°C maximum
junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to
ambient.
Note 2: These specifications apply for -3V ~ V- ~ -12V, V+ = 12V and T A
wise specified. All currents into pins are considered positive.

= 25° C

unless other·

Note 3: The offset voltages and offset currents given are the maximum values required to drive the
output down to 0.5V or up to 5.0V. Thus, these parameters actually define an error band and take
into account the worst·case effects of voltage gain, and input impedance, specified supply voltage
variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.

·245



I::I

1

J

z
a:

20

80

~
a:
a:

10

u

~

......

---

I

0

>

BIAS

~

......

I::I
Q.
I::I
0

4

20

80

0

..
>

40

60

80

T·



~

I-

:::I

w


I::I

!!

10 100 120

20

40

I-

Z

a:
a:

'a:

:::I

u

u

>~

>~

-~ :;..

::I

en
w

>

>

i=
;;;

i=

0

w

..

~~~
!'-

Z

o
-l

-6

-9

...

fill'

I

I

I

-

NEGATIVE SUPPLY VOLTAGE (V)

r- ~=-5mv

z



I::I

...

~
a:

w

~ .......1000...

~

o

-lV ~V- ~-12V

40

iII

l

.!
I-

r-.... r--..

:::I

1m r20mV
J II(Lt>t~,
,'"
...



......

:!:

w

~

<>

I-

Q.

I-

~

:::I
:::I

Q.

TEMPERATURE (OC)

V- = -6V

1'00...

:::I

Y'N =+5mV

t:I

V'N=-SmV

I-

Response Time for Various
Input Overdrives

lO
20

O.l

........ .........

I-

Input Current

.3

u

-

4

o

V+ = +12V

V<+1~V
V- = -6V

a:

:::I

IL = -400 /lA

TEMPERATURE (OC)

I-

0.4

w

I

40

80

60

I-

IL =OmA

60

40

Short Circ~it Output Current

IL = 0

I

"'

20

~

I

'---

-

I I
I I
TEMPERATURE (OC)

Q.

40

>

-4 -5

I::I

IL = 16 mA

20

-l


z

::I
I-

~

V+ =+12V- -

~

~ .......

~

0

Output Level

I
~

I-

20

V+
1
r--.. roo- ~"'10V



.§

t:I

10-6 TA = 700C

10-8

80

--

>JiiJ/Ir i i i - ~-

10-2

IZ

Voltage Gain

,"

10°
10-1

60

....

V'N

w

~
0

Q.

=+5m~

r-r-- ~ I'""-

40

20
-15

20

40

60

TEMPERATURE (OC)

80

typical performance characteristics

Transfer Function
V+ = +12V

I

V~=-6V-

1

TA = -55°C

, ,,

,~ ~e ~
_,
!~

If/ ,

-

10- 5

TA = 125°C r---

10-8

1.0

~

f-

c(

~

~ 0.6
z

CI

~
a:

0.4

...

:;:)

I

r

+2

-

IL = 50 rnA

~

IL = 16 rnA

'-

IL = 0 rnA

I

+1

>

-2

-3

-4

-5

~
~
T
I
IL = -400!AA_

-75 -50

-25

Blls

r---.....


..s

"

o

c(

..........

~

+
V_ =+1Z~r
IIV =-6V

-50

CI

~El

> -100

...

~

0

25 .. 50 .75

~
100
c(

I

~ 50 ~--+-+-!-+--++-!-+--+-+

Tt i +j5°f

...>

CI

:;:)

L

!:

!:

-75 -50 -25

...>
...~

:;:)

~

 >

~
to.)

VIN

~J. ~511,1VI

I I

10mV

'

1 \

CI

f-

~

-75 -50 -25 0 -125 +50 +75 +100 +125 +150
JUNCTION TEMPERATURE (OC)
Respon~ Time For
Various I nput Overdrives

ti

w

'>

-<

~
Q.

o

0 +25 +50 +75 +100 +125
TEMPERATURE (OC)

~
c(

20

100 125

40

60

80

120

...

f

100 120

'
V+ = +12V

!.

~

80

110

C(

iii 2

60

Power Consumption

Negative Supply C'urrent

Positive Supply Current

>

40

TIME (ns)

10

t
5:
w

20

100 120

TIME (ns)

TEMPERATURE (OC)

~
a:
a:
~
~

""'-,

Ti~V-~-12V

Response "Fime Fot
Various Input Overdrives
I
I
Vi; =+12V_
V- =-6V

,~

"""

V'IN = +~ mV

30

w

•

-

-

V""=+12V
V-=-6VVIN = -5 mV

~~

V+ = +12V

!

I

J~

"",..

~

~

I

0 +25 +50 +15 +100 +125
TEMPERATURE rC)

10

0 +25 +50 +15 +1001+125

Short Circuit Output Current

I

a:
a:

-75 -50 -25

TEMPERATURE (OC)

I -'

['....:

20

~~

VIN = -:5 mV,

40

f2:

-1

1 I

"'''-

~

CI

TA = -55°C
I
I

~

I nput Current

20

40

c(

0.4

I I

-75 -50 -25

_I-----

-3V 2V- 2-12V

~-'

1 I V+=+12V ~
T T -3V~V-~-12V

o

j

w

V+ = +12V

Positive Output Level

JL = 100 rnA

,

~ 0.2



~

~-f--I""

10-9
+3

0 +0.1 +0.2 +0.3 +0.4 +0.5

80

~

10- 7 TA = 25°C j

J
41.3 -8.2 41.1

r

10- 6

j~~

o

--

~.

10- 4 TA =125°C

,~

r,

I"

2

TJI= 25°C_f--::-"

-

Voltage Gain

Transconductance
10°

I

TA = -55'''lC
","'

,.......

"z
->

"",

. ,...

>

E

- "z

->

.~r; ~

..:;.,e

~~

~~
~_J--

...

.. I-TA

=

_....

-... . .....

~ 1--

~-I-

TA = +25°C
~

~

..s
z

CI

~

100
90
80

I ,,_

70 -VIN =~.5 mV

Q

60

13
~,

f

V- = -6V

r-i'""-- ~ .........

::
a:

+125°C

-3V~V-~-15V

--I--

50

~

r--o.. ~

.....

,

...,

40
30

o
+12
+10
POSITIVE SUPPL Y VOLTAGE (V)

~

VIN,= -5 mV

+15

-3

-6

-9

-12

NEGATIVE SUPPLY VOLTAGE (V)

-15

-75 -50 -25

0

+25

+50 +75 +100 +125

TEMPERATURE (OC)

243

Voltage Comparators/Buffers
LM306 voltage comparator/buffer
general description
The Llvi306 is a high-speed voltage comparator
designed to accurately detect low-level qnalog signals and drive a digital load. It is equivaient to an
LM710C, combine,d with a two input NAND gate
and an output buffer. The circuit can drive RTL,
DTL or TTL integrated circuits directly. Furthermore, the output can switch voltages up to 24V at
currents as high as 100 rnA. Other features
include:

• Plug-in replacement for the LM710C.
•

40 ns maximum response time

The device has short-circuit protection which
limits the inrush current when. it is used to drive
incalldescent lamps, in addition to preventing
damage from accidental ,~horts. The speed is
equivalent to that of an LM710C. However, it is
even faster where buffers and additional logic
circuitry can be eliminated by the increased flexibility of the LM306. It can also be operated from
any negative supply voltage between -3V and
-12V with little effect on performance. The LM306
is identical to the LM 106, except that it is specified
over a O°C to 70°C temperature range.

• I mproved accuracy: 5 mV (max) offset
• Fan-out of 10 with DTL or TTL
• Added logic or strobe capability
• Useful as a relay or lamp ddver

schematic and connection diagrams**

Metal Can
TOP VIEW

STROBE

V-

Note: Pin.4 connected to case.

Order Number LM306H
See Package,11

03
6.3Y

Hit Package
INPUT

. - _ - + - _ . . ; . 7 OUTPUT

NC

NC

GROUND

NC

INPUTr-~~--I

NC

INPUT 1--::';:'--1

V+

NC

NC

RIO
17K

~~"".JV\"""-""'---""'-"'-'----4"""-

OUTPUT

GROUND

STROBE

Note: Pm 6 connecled to bottom 61 package.
TOP VIEW

Order Number LM306F
See 'Package 4

··Pin connections shown are lor TO·5 package

Y_.;..4_....._ - - '

typi'cal applications* *

Fast Response Peak Detector

Level Detector and Lamp Driver

RI
01

---4.._-....- -...

OUTPUT RI

RZ

ZK

F06666

v++< 24V

Y'

....

L1

OVERRIDE

Adjustable Threshold Line Receiver
Relay Driver

YTH

OUTPUJ
F.O.SID

RIO
INPUT

CIO
INPUTS

J

STROBE
INPUTS

*Op1ioMlforresponsetimecontrol.

244

r-

s:w

absolute maximum ratings

o

15V
-15V
24V

Positive Supply Voltage
Negative Supply Voltage
Output Voltage
Output to Negative Supply Voltage
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Output Short Circuit Duration
qperating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

en

30V

±5V
±7V
600mW
10 sec
O°C to 70°C
-65°C to +150°C
300°C

electrical characteristics

(Note 2)

CONDITIONS

PARAMETER

MIN

TYP

MAX

UNITS

Input Offset Voltage

Note 3

1.6

5.0

mV

Input Offset Current

Note 3

1.8

5.0

J.1A

Input Bias Current
Response Time

Note 4, RL = 390n to +5V,
C L = 15 pF

Saturation Voltage

V 1N ~ -5 mV, lOUT = 100 mA

Output Leakage Current

V 1N

2:: 5 mV, 8V::; V OUT ::; 24V

16

25

J.1A

28

40

ns

0.8

2.0

V

0.02

2.0

J.1A

6.5

mV

electrical characteristics
The following specifications apply for o°c::; T A::; 70°C (Note 5)
Input Offset Voltage

Note 3

Average Temperature Coefficient
of Input Offset Voltage
Input Offset Current

5
Note 3, O°C ~ T A < 25°C

2.4

25°C ~ T A ~ 70°C
Average Temperature Coefficient
of I nput Offset Current

25°CS TA ~ 70°C
O°C::; T A::; 25°C

Input Bias Current

O°C~ TA

-7V

~

V-

15
24

< 25°C

25

2:: -12V

Differential Input Voltage Range

7.5
5.0

25°C~TA~70°C

Input Voltage Range

20

50
100

J.1vtc
J.1A
J.1A
nAtC
nAtC

40

J.1A

25

J.1A

±5.0

V

±5.0

V

Saturation Voltage

V 1N ::; -5 mV, lOUT = 50 mA

1.0

V

Saturation Voltage

V1N "::; -5 mV, lOUT

0.4

V

Positive Output Level

V 1N

5.5

V

2.0

J.1A

Output Leakage Current

= 16 mA

2 5 mV, lOUT = 400 J.1A
V 1N 25 mV, 8V:$ V OUT ::; 24V

2.5

0° C ~ T A ~ 25° C

100

J.1A

25° C < T A ~ 70° C
Strobe Current

-1.7

V strobe = O.4V

Strobe ON Voltage

0.9

Strobe OFF Voltage

' sink :::;

Positive Supply Current

V 1N

1.4
1.4

16 mA

= -5 mV

5.5

Negative Supply Current

-1.5

Note 1: For operating at elevated temperatures, the device must be derated based on a 85°C maximum
junction temperature and a thermal resistance of 45°C/W junction to case or 150°C/W junction to
ambient.

Note 2: These specifications apply for -3V ? V- ? -12V, V+
wise specified. All currents into pins are considered positive.

=

12V and T A

= 25°C

-3.2

unless other-

Note 3: The offset voltages and offset currents given are the maximum values required to drive the
output down to 0.5V or up to 5.0V. Thus, these parameters actually define an error band and take \
into account the worst-case effects of voltage gain, and input impedance, specified supply voltage
variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.

mA

V
2.2

V

10

mA

-3.6

mA

8]

typical performance characteristics

Transfer Function

Transconductance
V+ =+12V

V~=-6~

I.

-

IT A = 2~~....._:_.;;..
1 ~~v TA -70 c_
I - - I- TA

= o°c .J

3....
~

r

u

10-5

0.1

0.2

10-7 TA = 25°C
10-a
TA = O°C '"
10-9 1-0,-1
+3 +2 +1

~

....
....
o
>
z
o

~

c:[

t--1-;;;;;;;f=*,I;.:;L~=..:5;;,0.:;:m;;.;A~~~;----1
1

0.4

1

~--+--+--+--+-I--+--+-~
IL = 16mA

a:

::;)

S

Po~itive

1.2 r---r---'--l-r-....,J.""'-"1-'----''''''-''---'
~+-+-IIL = 100 mA-+--+--I----l
1~
I
I--+--+-+--+-- V+ = +12V -+0.8 1-+--+-+_-1-- -3V ~ V- ~-12V
VIN = -5 mV
0.6

0.2

:;;-

~

...

~

~

...

-1

-2

20

~
a:
a:

10

....

....
~

I

-r-- ~~

....
....

~
a:
a:
::;)

....

IL = -400 IlA

....

~

~

::;)

-3V~V-~-12V

a:
U
....a:

VIN =+5 mV

a;

V+= +12V

40

60

0

4

::;)

3

~

<1,>

80

...s

::;)

CI

S

~

-50

....>

-100

V+=+12V
y- =-8V I
•TA = +25°C

ll!

o

20

40

80

c:[

!::.
CI
>
....

100
50

::;)

A-

!:

10 100 120

20

40

Negative Supply Current

IT 1_
A-

...z
a:

::;)

u

>
....

I-

- ...

~~ I""'"

~
~~. ~ ~
j.oo

t

:::I

...>

en
~

...
~

+15

••

• 1--.

....

..

~~I-- """" ~ ... I'"

... /-"I'"

z

o
-3

-6

'*I

T = 70°C ~ ~ ~

-9

i

S

100

z

V+=+12V_
V- = -6V

~~~

I - ~"-5m~

-,...--

0

~

~

~

Ci

(II

c:[

-3V ~V- ~-12V

'.!::

100 120

Power Dissipation

ot C

:rA =' 25~C\

11:

80

120

I

~

s....

80

TIME (ns)

TIME "w)

4

246

',,;:"

T '

...

~

Positive Supply Current

POSITIVE SUPPLY VOLTAGE (V)

~

:;

TEMPERATURE (OC)

+12

80

c:[

.\\\

.'..
10mV
~i:-I 5mV 1
It 1\.'2;"V

c:[

60

60

...

r-

!I1f 1\ 120 mV

A-

40

40

Response Time for Various
Input Overdrives

!::.
CI
>
....
:::I
A....

::;)

+10

20

JUNCTION TEMPERATURE (OC)

1IJ:t>l:

Il~

:;;-

0

........

0.2

80

~

~ r- ......

"'"~""

~

c:[

>
....
....

VIN=-5 mV

o

...

I"-- 10....

r....."""

~

~

V- =-6V

<>

20

0.3

V- = -6V

o

::;)

8

r--..

::;)

::;)

....
....

80

V+ ~ +12V

::;)

20

60

0.4

....

4

o

40

Short Circ~it Output Current

I

0

r--...Io...

20

u

~

-

-l"1

5
....

c:[

>

~~

TEMPERATURE (OC)

~

o

~ ........
~"'~'2t ~

V+ 1
r--.. r- joo...;,.":
lOV

-5

-4

~
V+ = +12V

::;)

~

20

TEMPERATURE (OC)

::;)

u

-3

IL = 0

80

60

40

~

>

Response Time for Various
Input Overdrives

30

r--.. r-....

I

~

Input Current

.3-

0

-3V~V-~-12V -

Output Level

~~

TEMPERATURE (OC)

~

~

V+ =+12V

t--

\

40

40

c:[

~+--+--+-IL ~ 0 ~A -+--+--+~
20

60

~

INPUT VQL TAGE (mV)

Saturation Voltage

c:[

-3V ~V- ~-15V

..... ~ ~~.,.I

~

r~-~'r

INPUT VOLTAGE (mV)

...~

1-<

700~~1•

0

0.3 0.4 0.5

~ jiO- r--

J

10-6 TA =

::;)

Voltage Gain
80

z

~
....

~

-0.2 -0.1 0.0

10-3
10-4

....

'f}

10-2

a:
a:

::;)

',rT!

.....- -- ....

,

10°
10-1

...a:

80
60

........

VIlli" +5 mJ
'--1""-0

~

0

A-

~~

r- t-.

40

20
-12

NEGATIVE SUPPLY VOLTAGE (V)

-15

20

40

60

TEMPERATURE (OC)

80

Voltage Comparatorsl Buffers
LM111/LM211 voltage comparator
general description
• Differential input voltage range: ±30V

The LM 111 and LM211 are voltage comparators
that have input currents nearly a thousand times
lower than devices like the LM106 or LM710.
They are also designed to operate over a wider
range of supply voltages: from standard ±15V op
amp supplies down to the single 5V supply used
for IC logic. Their output is compatible with RTL,
DTL and TTL as well as MOS circuits. Further,
they can drive lamps or relays, switching voltages
up to 50V at currents as high as 50 mAo Outstanding characteristics include:

• Power consumption: 135 mW at ±15V
Both the inputs and the outputs of the LM 111 or
the LM211 can be isolated from system ground,
and the output can drive loads referred to ground,
the positive supply or the negative supply. Offset
balancing and strobe capability are provided and
outputs can be wire OR'ed. Although slower than
the LM106 and LM710 (200ns response time vs
40 ns) the devices are also much less prone to
spurious oscillations. The LM 111 D,as the same pin
configuratiqn as the LM106 and LM710.

• Operates from single 5V supply

The LM211 is identical to the LM 111, except that
its performance is specified over a -25°C to 85°C
temperature range instead of -55°C to 125°C.

• Input current: 150 nA max. over temperature
• Offset current: 20 nA max. over temperature

schematic diagram and auxiliary circuits **
,.
02

BALANCE/STROlE
6

BALANCE
•

R3

Ae

JOO

300

v'

r--+--~~-1~-+---'---'------~-'--------------~'v'

Offset Balancing

TTl
STROBE
OUTPUT

1

Strobing

.

013

1

GROUND

°lncr...styptufcommonmo"
slew from 1,OV/,.sto 11V/j4

Increasing Input Stage Current*
Dual-ln-Line

connection diagrams* *
Metal Can

typical application

Flat Package

v'

.-----e_--e~v··.v

v'

03
2<

INPUT.

TTL
BALANCE!
STROBE

NOTE

Pm4connlCt.dto~SI

9

OUTPut

OUTPUT

• ::~~:iEI

NOTE Pin 5 connected to botlom 01 pKkage

TOPVIEW

TOPVIEW

Order Number
lM111H or lM211H
See Package 11

Order Number
lM 111 F or lM211 F
See Package 3

NOTE Pin 6 connected tobonom ofpackltt

Order Number
lM111D or lM211D
See Package 1

MAGNETIC
PICKUP

Detector for Magnetic Transducer

**Pin connections shown are for metal can.

247

absolute maximum ratings
Total Supply Voltage (V 84 )
Output to Negative Supply Voltage (V 74 )
Ground to Negative Supply Voltage (V 14)
Differential Input Voltage
I nput Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range LM 111
LM211
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics
PARAMETER

36V
50V
30V
±30V
±15V
500mW
10 sec
-55°C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

(Note 3)

CONDITIONS

MIN

TYP

MAX

0.7

3.0

UNITS

Input Offset Voltage (Note 4)

T A = 25°C, Rs ~ 50k

Input Off.set Current (Note 4)

TA = 25°C

Input Bias Current

T A = 25°C

60

Voltage Gain

T A = 25°C

200

V/mY

Response Time (Note 5)

TA = 25°C

200

ns

Saturation Voltage

V IN ~ -5 mV, lOUT = 50 mA
TA = 25°C

0.75

T A = 25°C

3.0

Strobe On Current
Output Leakage Current

VIN~5mV,

4.0

0.2

Rs ~ 50k

nA
nA

1.5

Input Bias Current

10

V+ ~ 4.5V, V- = 0
V IN ~ -6 mV, ISINK ~ 8 rnA
5 rnV, V OUT = 35V

nA
mV

20

nA

150

nA

±14

Input Voltage Range

~

V
mA

4.0

Input Offset Current (Note 4)

Saturation Voltage

10
100

V OUT = 35V

TA = 25°C
Input Offset Voltage (Note 4)

mV

V

0.23

0.4

V

0.1

0.5

fJA

Output Leakage Current

V IN

Positive Supply Current

T A =25°C

5.1

6.0

rnA

Negative Supply Current

T A = 25°C

4.1

5.0

rnA

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the
negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below
the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM111 is 150°C, while that of the LM211 is
110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150o C/W, junction to ambient, or 45°C/W, junction to case. For the flat
package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16-inch-thick
epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the
dual-in-line package is 100o C/W, junction to amt>ient.
Note 3: These specifications apply for Vs = ±15V and -55°C ~ T A ~ 125°C, unless otherwise stated.
With the LM211, however, all temperature specifications are limited to -25°C ~T A ~85°C. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V
supply up to ±15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the
output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band
and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

248

typical performance characteristics
Input Offset Current

I nput Bias Current
400

1
~

.....

I
I

"""

300

ffi

II:
II:
:::I

(.)

en

Il

"",,41.r~
"""lJ

<
;;

~

w

~
CI

~

~

!:

100

20

(.)

~

I

o

-55 -35 -15

5

25

I
I I

45 65 85 105 125

-55 -35 -15 5

TEMPERATURE (OC)

1
~

zw

II:
II:
:::I
(.)

~
~

~

:::I

II.

!:

i

100

w
CI
CI

-1.5

~I'-~

~

z

60

CI
~
~

40

CI

(.)

12

4

... ~

-55 -35 -15

16

~

:::I

4
3

II.
~

1

>

0

w

100

.5
t.:I

<
!:;
CI
>

5mV
2mV

:::I

CI

2( mV

~J
~

I

J'IY

•

50

-

4

~

0.2

0.4

20~V

0.6

Sm,V .....
2mV

>
.5

c

!:;
CI
>
~

:::I

II.

~

:::I

CI

...

~

CI

>

•

..

0.4

t.:I

c

!:;
CI
>

10
5

~

10
5

SmV.u

>
.5

-5
-10

w

-15
100

-SO

<
!:;

50

-100

CI

t.:I

\.

2m".!. ~

I

-

-

0.5

!!
TIME (liS)

TA = -S5°C,

0.2

-

~~

7.~-

o

50

40

30

20

10

Output limiting Characteristics

-

YOUT

ZK -

ILM111

_

vI

I

0.7

140
TA ='2SoC-

C 120
~

z

100

II:
II:
:::I

80

w

~

:;
~

CI

:z:

I

,

40

0.4

.x.

/ s-$tO}-,. c,ilCUIT
r

"CI
~

::a

~..

II.

I

-.5

Output Saturation Voltage

~-

~

\..

0.6

V'N·

~

:::I

CI

-15

20~V' \

"-

I ........ \

~

-5

\

II.

:::I

0

15

"

0.8 __-r-...,...."""T""--r-I...,.....,....,Ir---r-...,...."""T""......
~

Response Time for Various
Input Overdrives

~

I
\.

0.7

I I I
0.2

Vs = 30V
TA = 2SoC-

I
I

....,.

I

TIME (liS)

15

C

t.:I

...

5J

Vs = ±1SYTA = 2SoC_

w

0

I

-1

""'~

~

10M

DIFFERENTIAL INPUT VOLTAGE (mV)

w

-50

I
I

EMITTER
FOLLOWER
OUTPUT
RL = 600n

:::I

t-~

:::I

Response Time for Various
I nput Overdrives

w

20

~

t

1

I
I

CI

~

0.8 ~

-10

>
.5

."""..

LM111

t-o

~ -100

w

t.:I

~

_\ ~ ,,\
\
Y'N

TIME (liS)

~

30

RL = 1K
V++ = SOV

-I

I

t.:I

...~

-

I I I I
I I

:::I

II.

YOUT

LMlll

0

!!

-

~~"-

V'N -

<
!:;
CI
>

85 105 125

I

1M

N~RMkL O~TPUIT

r---

10

1\

I )

I 5VI

~

5 25 45 65

I

I I

(11

40

Response Time for Various
Input Overdrives

Vs = ±15V f-TA = 25°C

IJ

100k

50

TEMPERATURE rC)

I I

rr ,£

10k

~

---

0.2

Response Time for Various
Input Overdrives

t.:I

lllllllli 1 1ill

0.1

Transfer Function

....

0.4

1

INPUT RESISTANCE (n)

t.:I

DIFFERENTIAL INPUT VOLTAGE (V)

w

~

85 105 125 w

25 45 65

11111

,
"'
I-+-i-ttttffir- Vos = Vos + Rslos

>

w

20
-4

...<

60

V-

<
!:;
CI
>

'"""""

:::;

-16 -12 -8

........ ~

~
-1.0

~

..... i""""'oo

-0.5 '- RhE~REri TO ISUP~L Y ~OL hG~S-

120

80

1-+-1-+1~1I---h~ TYPICAL

:::I

II.

!!
~
zw

en

en

<
;;

~ MAXIMUM

Common Mode limits

J l ±~5~

II"

10~~';"~"~1I~~1I

~

V+

rs
TA = 25°C
r-

160
140

--

I Jill'

TEMPERATURE (OC)

I nput Characteristics
180

RAISED

" "' ......... .......

~

:::I

!:

1

Cl

~ -NORMAL

II.

I

<
!:;

y,
=:t
;

10

~

NORMAL

t.:I

I"

II:
II:
:::I

"""

200

,
'"

~

zw

Offset Error
100

w

Vs = ±15V-

~

1

"""

>

.5

30

I
Vs = ±15V

I
10

I

o
15

OUTPUT VOLTAGE (V)

249

...
N

:E

typical performance characteristics' (conlt)

...I

......
:E

.......

Supply Current

Supply Current

Leakage Currents

10

....

Vs = ±15V

I

<
.!

.......

~

z

~

........ ~

w

a:
a:

::;:)

u

~

4

20

25

30

I

===t;;~'\

J'--..._ -....
rI

-

r--

5

25 45 65

TEMPERATURE

SUPPL Y VOLTAGE (V)

... ~~~/

85 105 125

~

... ,~~~ ~
~\\'\

~,~
.JI1

'''Y

I

........

-55 -35 -15

~OV~

~\\~

o

O'--_I...----J_---J_---I._--L._....II

15

i '~

~IUT7TTGH

en

10

POSITIVE SUPPL Y.......... ~UTPUT LOW - r -

POSITIVE AND ~
r-NEGATIVE SUPPLY

i:
::;:)

o

FVs= +15V

I

I

45

65

rc)

85

105

TEMPERATURE (Oc)

typical applications (con It)
Y+"5V

AI
20'

,.

RS

R1

....--.....- - -....-V·

10.

INPUT
SQUARE
WAVE
OUTPUT-

-TTLorOTlflnoutoftwo

100 kHz Free Running Multivibrator

Zero Crossing Detector Driving MOS Switch

Cl

l000pFt

V·

AI

10.

INPUTS·
TRIANGULAR
.....- - - - - - - W A VOUTPUT
E

>=~

A2

SfRY ---.. 5V

22.

.......--+-----I\III'¥---...~

!iml:~~:v_-4

·,,,,,,1 PG_ity is,..........,.
!IIi ....."t."I"'I.

02

01
2NlI12

2N!iD19

01
IN1S1

y-

Driving Ground-Referred Load

A1

130'

04
lN751

SQUARE

L--~....- - - - - - - -.....--+------~t- WAVE

OUTPUT
fROM
LAOoER ......~_-....:.j
NETWOR'

R.
10.
·AdlunfofsymlMtrtcatsqu ....
IIIHYItnn• •,nV 1N

,.

:!imY

M.lumum

fr~u.nc.,

,.

AID

tMtftlmUmUtNCltlltC120,F

so kHz

All

Using Clamp Diodes to Improve Response

10 Hz to 10 kHz Voltage Controlled Oscillator

fh
11111'

v· -sy

A4

2•

....--....--+-V··5V
Rl

2...

A5

"
A2

OUTPUT

11111.

·V..... dllltwn . . f.r.

Dt.lOY'..........
• 15VtflrtsfloN.
t ...y . . . . . tOclHltr.r

.....n.'...uctsu.., ..."ity
to ....... I1.. .

TTL Interface with High Level Logic

250

Crystal Oscillator

Comparator and Solenoid Driver

125

typical applications (con't)

AI
UK

Y+·IV

A4
III

0'

UK

R4

...

OJ'

'K
05

'K

~""~~-""--_~-OUTPUT
TTL

'IIPUT

._t~I ...

Low Voltage Adjustable Reference Supply

deRt, ......

Precision Squarer

Zero Crossing Detector driving MOS logic

Positive Peak Detector

OUTPUT

Digital Transmission Isolator
Negative Peak Dectector

FROM Of. NETWORK

,.

OJ

ANALOG

TTL
OUTPUT

IN'UT

TTL

STROlE
·R2.tsth.c .....lSOtt .....
At c....... n.ttI.,h.IOM.
ltn ... ttt... 5IftVlCuts,t.
. . . . . . . . . . !tylllltf....

• t ....."" ..

-TYI"UlI",Ulcurr.nllS

so ,A with Inpuf1,s1robed oH

·A.... MIn4UCtlftk"kMcllof

INyanll"ot«tsICfrOftltlWft

Strobing off Both I nput*
and Output Stages

wtltlfttflMllntsonV++IIM

Relay Driver with Strobe

Precision Photodiode Comparator

....--+------4...-----4... v·

v·

02
'10K
OUTPUT
OJ

'10K

0'
'00
0,
510

e,

.,

R4

01"F

0'
JDO

.,

_K

RIl
R9
ltK

0'
ltK

JOO'

0"
510

0'

m

e'

022pF

0'
15K

R'
15K
IN'UT

Switching Power Amplifier

Switching Power Amplifier

251

Voltage Comparators/Buffers
LM311 voltage comparator
general description
• Differential input voltage range: ±30V

The LM311 is a voltage comparator that has input
currents more than a hundred times lower than devices like the LM306 or LM710e. It is also designed to operate over a wider range of supply
voltages: from standard ±15V op amp supplies
down to the single 5V supply used for Ie logic. Its
output is compatible with RTL, DTL and TTL as
well as MOS circuits. Further, it can drive lamps or
relays, switching voltages up to 40V at currents as
high as 50 mAo Outstanding characteristics include:

• Power consumption: 135 mW at ±15V

Both the input and the output of the LM311 can
be isolated from system ground, and the output
can drive loads referred to ground, the positive
supply or the negative supply. Offset balancing
and strobe capability are provided and outputs can
be wire OR'ed. Although slower than the LM306
and LM710e (200 ns response time vs 40 ns) the
device is also much less prone to spurious oscillations. The LM311 has the same pin configuration
as the LM306 and LM710e.

• Operates from single 5V supply
• Maximum input current: 250 nA
• Maximum offset current: 50 nA

schematic diagram and auxiliary circuits **
BALANCE/STROlE

.2
3'

BALANCE

I

5

.3

••

lOG

lOG

v'

Offset Balancing

TTl
STROBE

OUTPUT

1

Strobing

.

All

""""---"11:-.- -..... ,
Y-

·lnCfUlfl,yplCllca.~monrno"

BAOU.u

sllWlroml.0V/.I4 to IlVl.14

Increasing Input Stage Current*

connection diagrams* *
Metal Can

typical application

Dual-In-Line

Flat Package

Nt

v'
v'

,

vt

GROUND

2

Il

Nt

INPuT

3

12

Nt

11

v'

A'
45.

OUTPUT

BALANCEI
STROlE

NOTE " .. 4cNl..u4l1cnt.

TOP VIEW

Nt

5

BALANCE

1

,.
A2

I

OUTPUT

I

BALANCEI
STROlE

-tV

A3
2"
TTL
OUTPUT

NOTE "n5connectt4lo ..oltomofPIC....
TOP VIEW
NOTE Pin I con'*t~ 10 IIIonom of PHil...

TOP VIEW

Order Number LM311 H
See Package l1

Order Number LM311 F
See Package 3

**Pin connections shown are for metal can.

252

Order Number
LM311D or LM311N
See Package 1

MAGNETIC
PICKUP

Detector for Magnetic Transducer

absolute maximum ratings
36V
40V
30V
±30V
±15V
500mW
10 sec
O°C to 70°C
-65°C to 150°C
300°C

Total Supply Voltage (V 84)
Output to Negative Supply Voltage (V 74 )
Ground to Negative Supply Voltage (V 14)
Differential Input Voltage
I nput Voltage (Note 1)
Pqwer Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics
--

PA~AMETER

(Note 3)

MIN

CONDITIONS

TYP

MAX
7.5

Input Offset Voltage (Note 4)

T A = 25°C, Rs ..:; 50K

2.0

Input Offset Current (Note 4)

T A = 25°C

6.0

50

UNITS
mV
nA

Input Bi'as Current

T A =25°C

100

Voltage Gain

T A = 25°C

200

V/mV

Response Time (Note 5)

T A = 25°C

200

ns

Saturation Voltage

V IN ":; -10 mV,
T A = 25°C

Strobe On Current

TA

Output Leakage Current

V IN ::::: 10mV,
TA = 25°C

Input Offset Voltage (Note 4)

=

nA

lOUT = 50 mA
0.75

1.5

25°C
V OUT

=

V
mA

3.0
35V
0.2

Rs":; 50K

Input Offset Current (Note 4)
I nput Bias Current

50

nA

10

mV

70

nA

300

nA

±14

Input Voltage Range
Saturation Voltage

250

V+ ::::: 4.5V, V- = 0
V IN -::; -10 mV, ISINK -::; 8 mA

i

V

0.23

0.4

V

Positive Supply Current

TA

=

25°C

5.1

7.5

mA

Negative Supply Current

TA

=

25°C

4.1

5.0

mA

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the
negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below
the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM311 is 85°C. For operating at elevated
temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150o C/W,
junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a
thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100o C/W, junction to ambient.

<

<

Note 3: These specifications apply for Vs = ±15V and OOC
TA
70°C, unless otherwise specified.
The offset voltage, offset current and bias current specifications apply for any supply voltage from
a single 5V supply up to ±15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the
output within a volt of either supply with 1 mA load. Thus, these parameters define ari error band and
take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

253

....
....
M
~

typical performance characteristics

...I

Input Bias Current

I nput Offset Current

500

~

400

-

RAISED

~~

~

~
a:
a:

I--

300

--

C

iii
A-

~

NORMAL - r -

-

100

30

40

50

~
~

60

70

1
~

~
a:
a:

~

175

~

:;
10

20

30

40

50

60

70

80 ...

...o

--1--.

o

~
~
~

o

o

R~FERIREO ~O StiPPL ~ VO~ TAGIES~

-4

12

4

....

:;

.

~

0

3

A.

20 mV

~

tJ IJJ
5 mV
fJJ
I
2mV
'lJ1f
J.1b

.!
~

100

:;

50

c

20

::::I
0

0.2

10

16

10

20

I

>

VOUT

-

0.2

, J-

0.4

80

20~V
, ...

...

:!
~

I

TA= 25°C t--

-

...
\ Y'N~Y~c
\ - :;
~
\
>
z
t-t-ol
... a:c

~

0.2

\

VOUT

_

~

0

~

~

::::I

Vs = ±15V- TA = 25°C_

-50
-100
0.2

0.4

c

1/

0.6

1/

0.5
0.4

./

0.1

,

10

~

c

:;
0

>

~

::::I

15
10
5

~

-5
-10

>"

.!

...

~

-15
0

c
:; -50
0

>

':,."

5m V"
I,J
2mV 'j

A.

::::I
0

1

-100

I

VI

If

/
j

~V

jlJ

I'

!!

c

15

0

10

'~

>

v-

>"

~

::::I

5

A.
~

::::I
0

VOUT

2K

I

I I

c

50

:;
0

>

~
::::I

4

-10

...

~

Vs = ±15V
TA = 25°C f--

-5
-15
100

.!

~

::::I

A.

,,

~

:;

I

I v. ~

I

Response Time for Various
Input Overdrives

E
...

I I

20~V

30

20

40

A.

!!

0

20

~V 'L\

~

'--1\ \ \.
5mV~

-w-\

'~=
-

,
I

Output Limiting Characteristics

VOUT

2K-

-

~

-

v-

\ -...""" I

TA = 25°C-

"'

.!
~

120

~

100

::::I

80

a:
a:

n
~

:;

I

J
Vs = ±15V- r-

TA = 25°C r--

I

I I

u

60

,

a:

c::;

~

a:
:z:
en
0

40

,
0

0.6
"V

0.5

A

0.3

/.r..,.~

"c(" CUIT- CURRENT
,

0

~

:II

0.4

1/

20
0

4

...
'\..7

~''V

~

f---

~~

\.

~

~

~~'t-... ,

I

U

I

I

0.7

140

I
I
10

OUTPUT VOLTAGE (V)

254

50

OUTPUT CURRENT (mA)

Response Time for Various
Input Overdrives

...

/

~

TIME (jJ5)

~

1/

/

0.8

0.6

1/

/

~

0.3

en

-

1 1 1

~

::::I

0.8 ~

0.6

Output Saturation Voltage

0

~

"l

.5

0.8

~

•

'\.. i.

DIFFERENTIAL INPUT VOLTAGE (mV)

5J

I

Vs = 30V
TA = 25°C

-.5

-1

0.7

~

I I

~

!!

70

1 \

5mV ......
2 n:V

~ooo- .!...

::::I
A.

4
3

5Vl

,

60

50

Response Time for Various
I nput Overdrives

>"

,

40

I

•

0

30

TEMPERATURE (OC)

I I

, ,I
"I ",
J

0

V~ = ±15V r-TA =2n:-

j

>"

...

'r/ r

1

~

::::I
0

"

EMITTER
FOLLOWER
OUTPUT
RL = 600n

~

A-

I I

~

c

::::I

I

J

30

>

::»

0.4

Response Time for Various
Input Overdrives

...
~

40

c

DifFERENTIAL INPUT VOLTAGE (V)

>

Nj)RMAL OUTPUT
RL = lk
V++ =40V

50

V-

-16 -12 -8

10M

1M

Transfer Function

25

4

lOOk

60

...

~

r"""I

u

0

10k

INPUT RESISTANCE (n)

~
-1.5

Illllll

1111111

-'-

CI

o

'!' ,

I

- Vos = Vos + Rslos

-

>

-1.0

:::;

I III

'f"

~

~c

~ -D.5 f-

50

:;

TYPICAL

A-

!!

Common Mode Limits

i

Li

10

::::I

NORMAL

V+

100

~

V

-f-

TEMPERATURE eC)

150

75

~o

::::I

I I II

125

MAXIMU_M-*,~++H++H--+-.IIIH++++tf

t;:;

A-

80

Vs = ±15V fTA = 25°C _

I-I- --""'I

-

25°C

=~ -t-t-tt.IHtlt-+-I-H:1tffI

o

>

!:

I nput Characteristics
200

TA

~

~

r-. """-

TEMPERATURE (OC)

225

...

:;

10

0

100

c

i'--r--

o
20

.!

.......!!!IISEO

~
a:
a:

...

10

........

::::I

200

::::I

!:

Offset Error

>"

I
I
VS = ±15V-

~

i"""'-o

u

~

.......

1

::::I

u
en

20

I
I
Vs = ±15V-

I

0.2

o
15

~
::;
J»

-4

C;

0.1

I

c

z

!

typical performance characteristics (con1t)
Supply Current

Leakage Currents

Supply Current
10

C

.s

Vs

= ±15V

S

I-

~ 10-9
w

zw

I-

~

II:
II:

=

II:
II:

=

u

4

::;

U

::;

A.
A.

en

o

0
10

0

15

20

25

POSITIVE SJpPL
OUTPUT LOW

.......
"""""""
......."-

--r-

~:-+--

- POSITIVE
..:. NEGATIVE SUPPLVOUTPUT HIGH

=

A.
A.

=

en

.~

C

.s

4

Vs = +15V

30

i-

I

OUTPUT VOUT = 40~ ~

II:
II:

=

-

I"'"

u

~

w

~--+--+--~--~-~

INPUT VIN = 15V JIll'

t:I

~10-10

~
....

l

_

I

l......-r

I

I

35

55

65

10-11~
o

10

SUPPL V VOLTAGE (V)

20

30

40

50

60

70

.....

25

80

45

75

TEMPERATURE (OC)

TEMPERATURE (OC)

typical applications (con1t)

.,

y.

= 5V

10K

.---.....___....._v·

AS

1.

.J
10.

INPUT
SQUARE
WAVE

OuTPUT·

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

C1
l000pft

V·

"K"
.NPUT
SmVIOSV

TRIANGULAR

.2

SmV~SV

>~~-------WAV'

".

OUTPUT

- - 4 I - - - - + - - . J y ' t / l r - -....~
01
INJ912

Driving Ground-Referred Load

02
2NSOl9

OJ
IN1S1

.J
110K

..

O'
lN1S!

20K·
L....._~

_-+______

_ _ _ _ _ _ _ _ _ _.....

..

~...-

WAV'

SQUARE
ouTPUT

fROM

LAOo,.-tlI--.....-.....!4

10'
• .......".OI'S,lftlMlf1ulS.Ulft

.... ' .........nV. N

:

NETWORK

,.

SillY

"0

tMlnl"u,,"ca,.cl,.ne.10,F
M.. Hftumtrftlu.nc,SOIlHI

Using Clamp Diodes to Improve Response

10 Hz to 10 kHz Voltage Controlled Oscillator

.,

100'

y"Sy

..

2'

r----+--.... v· - SV

..1.

"

2eOK

01
lN4001

INPUT -'VI~I---""-+'"

.2

OUTPUT

lOOK

·y.htts shown If,fol'
OtoJOYlo.cM1"I,nd
.'~V threshold
fMl,b ••ddtdto cOnUol
"Hd.ndrtducisusc,pt.blilty
10

no,sestn",

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

255

......
M

~

typical applications (con 't)

...I

R1

v+&Sy

R4

U.

110

RI
39.

RJ

RJI

"'

R.I.

20.

YOUT

">-.....~. .-

.....--~I---OUTPuT

CI
1 S~F"

TTl

INPUT

Low Voltage Adjustable Reference Supply
tAdlUstl0Sftcflmplev,1

Precision Squarer

Zero Crossing Detector driving MOS logic

Positive Peak Detector

Digital Transmission Isolator
Negative Peak Dectector

FADM D/A NETWORK

RJ

I.
TTL
OUTPUT

TTL

STROlE
• RZ • ., ... ,

CO ..... llOft

1",11

A'CO,",lfiton.th.,hOlO'IO.

1","''''.n5mYIC'tII't
'-c,"uftlMtIl.,by.no,'tt
·TY,ICII'"PUICUfI,nllJ
SO,A"'lhIIt.ut"Hoitcl011

OIIMI"ltulll

• AMa,M In'uCIWI IlIcllll«lI of
""ylft'"OIec:IIIChomttftf.
'IOhip tf,.,,,,ntl on Y" 11M

Strobing off Both Input*
and Output Stages

......-

Precision Photodiode Comparator

Relay Driver with Strobe

. .--~.....-~.... v·

v·

A2
I••

AJ

lDO'

AI

"'

IN'UT~M""'---t---'-t

R.
010

A.

47

A'
lID

R4

lID'

A'

AI
It.

It.

RIl

300.

AI
120

CI

0.11 ~F

A7
15.

Switching Power Amplifier

256

A'

IS'

Switching Power Amplifier

A,.
SID

Voltage Comparators! Buffers
LM710 voltage comparator
general description
saturating comparator applications. I n fact, the low
stray and wiring capacitances that can be realized
with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710 is a high-speed voltage comparator
intended for use as an accurate, low-level digital
level sensor or as a replacement for operational
amplifiers in comparator applications where speed
is of prime importance. The circuit has a differential input and a single-ended output, with saturated
output levels compatible with practically all types
of integrated logic.

The LM710 is useful as a pulse height discriminator, a voltage comparator in high-speed AID converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types. In addition"the low
cost of the unit ,suggests it for applications replacing relatively simple discrete component circuitry.

The device is built on a single silicon chip which
insures low offset and thermal drift. The use of
a, minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in

schematic* and connection diagrams
~

______

~~

__- '__

~

__ V'

Metal Can
TOPYIEW

Y'

T

--+-------~r:.

INPUTS
OUTPUT

GROUNO

------------+----.....-c..

Y-

NOTE Pm 4 connetted 10 case

Order Number LM710H
See Package 11

typical applications i*,
Schmidt Trigger

Line Receiver With
Increased Output
Sink Current

"2Y

OUTPUT

>-.......t - - - OUTPUT

Pulse Width Modulator

INPUT--+--f

Level Detector With
Lamp Driver

DC INPUT

*Pin connections shown are for metal can.

257

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power Dissipation
TO-99 (Note 1)
Flat Package (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

14.0V
-7.0V
10 rnA
±5.0V
±7.0V
300mW
200mW
-55°C to +125°C
-65°C to +150°C
300°C

electrical characteristics
PARAMETER
Input Offset Voltage

"

(Note 3)
CONDITIONS

MIN.

TA = 25°C. Rs$200n

TYP.

MAX.

UNITS

0.6

2.0

mV

0.75

3.0

/JA

VCM ='OV
Input Offset Current

TA = 25°C. VOUT = l.4V

Input Bias Current

TA = 25°C

13

Voltage Gain

TA = 25°C

1700

Output Resistance

TA = 25°C

Output Sink Current

1250

pA

20

n

200

TA = 25°C. ~VIN~5 mV

2.0

mA

2.5

VOUT = 0
Response Time

ns

40

TA = 25°C

(Note 4)
Input Offset Voltage

Rs $200n l• VCM = OV

Average Temperature

-55°C$T A~ 125°C

Coefficient of Input

3.0

10

mV

Rs~50n

3.0

TA = 125°C

0.25

3.0

pA

TA = -55°C

1.8

7.0

pA

/Jvtc

Offset Voltage
Input Offset Current

25

nAtC

-55°C$.TA$.25°C

15

75

nAtC

Input Bias Current

TA = -55°C

27

45

pA

Input Voltage Range

V- = -7.0V

±5.0

Common Mode Rejection

Rs:-::;: 200n

80

Average Temperature
Coefficient of Input

25°C$,T A~125°C

5.0

Offset Current

Differential Input
Voltage Range

V
100

dB
V

±5.0V

Voltage Gain

1000

Positive Output Level

~VIN~5mV.

Negative Output Level

~VIN~5mV

Output Sink Current

T A = 125°C.~VIN~5mV

0~louT'=::;5

4.0

V

0

V

2.5

3.2

-1.0

-0.5

0.5

1.7

mA

1.0

2.3

mA

mA

VOUT = 0.2V
TA = -55°C. ~VIN~5 mV
VOUT = 0
Positive Supply Current

VOUT = OV

Negative Supply Current
Power Consumption

T A = 125°C. louT:::;O

5.2

9.0

mA

4.6

7.0

mA

90

150

mW

-5V~~VIN:::;5V

Note 1: Rating applies for case temperatures to +12SoC; derate linearly at 5.S mwtC for ambient
temperatures above +10SoC.
Note 2: Derate linearly at 4.4 mwtC for ambient temperatures above +100°C.
Notel: These specifications apply for V+ = 12.0V. V- = -S.OV. -SSoC ~ TA ~ +12SoC unless
otherwise specified. The input offset voltage and input offset current (see definitions) are specified
for a logic threshold voltage of 1.8V at -5SoC. l.4V at +2SoC. and 1.0V at +12SoC.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

258

/

typical performance characteristics
Transfer Function
4.0

I

Voltage Gain

I

V+ = 12V
V- = -S.OV

~

~

3.0

(!)

« 2.0
0

>
~

1.0

I

I-

::;)

0

1700

--

l - ..
~
-1
-5.0

~J

z

...

a

en

I-

~

10

-25

,

~

a
§

,

N
NEGAtIVJ-

~
~

I-

......

-75

25

-50 -25

50

75

~

~
~

-75 -5b

100 125

--

-25

25

50

75

~

100 125

-0.4

-0.2

TEMPERATURE (OC)

(!)

«

4.0
3.0

~ 2.0

2Jm~

fl., ,J~ .......

~

> 1.0
~

I-

~o~vl_-

IIIIE~'

::;)

0

I

.§.

...
«

~

I

~ 2.0
o
;:: 1.0

,

2.0mV
~-c--- 5.0 mV

10mV20mV

r.\

I"

;:)

0-1.0

~

20

40

SO
80
TIME (ns)

100

120

I IJ 1

~

20

~

Output Voltage
Level
4.0

!

-'

JIJ

40

SO
80
TIME (ns)

1

~
~

1.0

--lOG

__

r-~

I-

100

l-

e;

3.0
2.5

::;)

'-'
:..:

~ 2.0

1'_
NEGATIVE OUTPUT LEVEL

-

-1.0
-75 -50 -25
25 50 75
TEMPERATURE (OC)

100

125

VOUT

son

-

-

I--

-

I--

~~

1.0

>

~

I-

;:)

120

o

40

80
TIME (ns)

120

ISO

400

-r·

~

-

~ 300

V

.........

I

I

~~
Nv,.~

I-

;:)

o

~

lM710

I-

V+ = 12V
~- = OV

I-

....... ~ THRESHOLD VOL

VI~

Maximum Power
Dissipation

3.5

V+= 12V

3.0

I-

r

Output Sink
Current

-1~,!!WE OUTPUT lEVEL -V-= -S.OV

-

I-~-

~

V+ = 12V
V- =-S.OV+TA = 25°C l -

I-

;j 2.0

~

~

~ 2.0

~-100

>

~

1

I-

uJ

~ - 50

I-

2.0

> 1.0

:>
(!)

50

~

o

" """

uJ

0

~

-f--+-

.§.

100

~+ = I12V I
V-= -6.0VTA = 25 C -

~ 3.0

'['1 \'~ ..,
~~ \...

«

I-

I

:>

~ 3.0

~

V+=12V _
V- = -S.OV
TA = 25 C -

:>

(!)

~ 4.0

~I- 1-2.0 mV
J
JI( I~"

0

I-

0.4

Common Mode Pulse
Response

Response Time For
Various Input Overdrives

I I

10mV-

0.2

INPUT VOLTAGE (V)

Response Time For
Various Input Overdrives

...~

V~ = I~V
V- = -S.OV
lOUT = 0
TA = 25 C

-phSIT!VE

'\..

1;0

14

Supply Current
V+ = 12V
V- = -S.OV-

0

"

13

12

11

POSITIVE SUPPLY VOLTAGE (V)

10

u..

..... -..--.

L-.-L._'---L._'---L._'---L.---I

10

25 50 75 100 125
TEMPERATURE (OC) .

o

o

1000

~

.3

""'III

>

500
-50

I-

V+ = 12V
V- = -S.OV-

i'

iii

~

;;(

"

20

«

,

~
0

Input Offset Current

,

~

« 1500

\.

1300
-75

5.0

3.0

2.0

a:

(!)

1400

1.0

2000

...

(!)

\

Input Bias Current

;;(

z

;(

\.

« 1500
~

40

I-

,

~

>

-1.0

_

2500

0

INPUT VOLTAGE (mV)

.3 30

~

(!)

J

3000

V- = -S.OV

1600

:;(

-i""""

-3.0

~

(!)

TA = -55°C

G

V~= dv

..

~

."J~ ~

~

I-

..

.~ ~ ~rr
= 125°C
f.i.J ~ I-TA
TA = 25°C

...

Voltage Gain

1800

~

X

'\ ~

,

i=

~ 200

~
C

a:

~ 100

f-- _

0

I-

0..

~ 1.5

1.0
-75 -50 -25
25 50 75
TEMPERATURE (oC)

.§.
z
0

METAL.CAN·PACKAGE

f-- - - - MOUNTED FLAT PACKAGE

o
100

125

25

I I (~OTElll I I I I

105
65
85
45
AMBIENT TEMPERATURE (OC)

l-

r125

259

Voltage Comparators/Buffers
LM710C voltage comparator
general description
with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710C is a high-speed voltage comparator
intended for use as an accurate, low-level digital
level sensor or as a replacement for operational
amplifiers in comparator applications where speed
is of prime importance. The circuit has a differential input and a single-ended output, with saturated
output leVels compatible with practically all types
of integrated logic.

The LM710C is useful as a pulse height discriminator, a voltage comparator in high-speed AID converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types: In addition, the low
cost of the unit suggests it for applications replacing
relatively simple discrete component circuitry.

The device is built on a single silicon chip which
insures low offset and thermal drift. The use of a
minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in
saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized

The LM710C is the commercial/industrial version
of the LM710A. It is identical to the LM710A except that operation is specified over a O°C to 70°C
temperature range.

schematic:* and connection diagrams
r-------~~--~--~--V·

Metal Can
TOP VIEW
V'

INPUTS

+

-+---......jr=OUTPUT

GROUND

-------+----....

_£..

V-

NOTE Pin 4 connlct.d to CI •.

Order Number LM710CH
See Package 11

' - - - - -.....- V -

typical applications *
Schmidt Trigger

Line Receiver With
Increased Output
Sink Current

+12V

OUTPUT

>-...........-OUTPUT

Level Detector With
Lamp Driver

Pulse Width Modulator

JUUL
DC INPUT

"Pin connections shown are for metal can.

260

+12V

V+

absolute maximum ratings
14.0V
-7.0V
10 mA
±5.0V

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
TO-99
Flat Package
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

±7.0V
300mW
200mW
10 sec
O°C to 70°C
-65°C to +150°C
300°C

electrical characteristics
PARAMETER
Input Offset Voltage

(Note 2)
CONDITIONS

TYP.

MIN.

T A = 25°C, Rs <200n
V CM

1.6

MAX.

UNITS

5.0

mV

5.0

J.LA

= OV

I nput Offset Current

TA

= 25°C, VOU~

Input Bias Current

TA

= 25°C

Voltage Gain

TA = 25°C

Output Resistance

TA = 25°C

Output Sink Current

TA = 25°C, ~VIN~ 10 mV

1.8

= 1.4\1

16

25

J.LA

1500

1000

200
1.6

n

2.5

mA

V OUT = 0
Response Time

TA = 25°C

40

ns

(Note 3)
Input Offset Voltage

Rs $.200n, V CM = OV

Average Temperature

O°C~T AS70°C

Coefficient of Input

6.5

5.0

Rs S50n

20

mV

J.Lvtc

Offset Voltage
7.5

I nput Offset Current
Average Temperature
Coefficient of Input

J.LA

25°C:S.T A:S.70°C

15

50

nAtC

O°CST AS25°C

24

100

nAtC

25

40

Offset Current

= O°C

Input Bias Current

TA

Input Voltage Range

V- = -7.0V

±5.0

Common Mode Rejection

Rs ~ 200n

70

Differential Input
Voltage Range

Positive Output Level

V
dB

98

±5.0

Voltage Gain

J.LA

V

800
~VIN~10mV

2.5

3.2

-1.0

-0.5

4.0

V

0

V

0:S.l ouT S5 mA
Negative Output Level

~VIN~10mV

Output Sink Current

~VIN~10 mV, V OUT

Positive Supply Current

-5V~~VINS5V,loUTSO

= OV

mA

0.5

Negative Supply Current
Power Consumption

5.2

9.0

mA

4.6

7.0

mA

150

T A = 70°C, louTSO

mW

-5V'::;~VIN$..5V
\

Note 1: Ratings apply for ambient temperatures to 70° C.
Note 2: These specifications apply for V+ = 12.0V, V- = 6.0V, O°C ~ TA ~ 70°C unless otherwise
specified. The input offset voltage and input offset current (see definitions) are specified for a logic
threshold voltage of 1.5V at O°C, 1.4V at 25°C and 1.2V at 70°C.
Note 3: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

261

typical performance characteristics

1700

4.0
V+ = 12V
- V- = -S.OV
3.0 - TA = 25°C

,I

w

t:I

2.0

~
0

>

~

~

;;(
t:I

.....

t:I

10
= 25 C

I,

~,,~~

t:I

........

<{

~

~ IS00
.~

'-

~

~

o

> 1200

1300

800

~

~I

;;(

~

>

~

1

TA

z 2000

~
0 1400

,

S
0

-~

1500

w

1

I-

2400

IS00

z

J

1.0

2800

r

I

V+= 12V _
V- = -S.OV

......

-

If

~
<{

Voltage Gain

Voltage Gain

Transfer Function

~

~

",~.".

~
~

,{"'~~""'""

.....
.--

.,~I~- ~
",-

~
~

V
1200

-1
-5.0

-3.0

!.O

-1.0

5.0

3!0

o

400
10

20

INPUT VOLTAGE (mV)l

Input Bias Current

~

~a:

20

......

"'"

,

..........
~ ..........

a;
10

.........

~

o

o

20

30

40

5'0

-

SO

70

w

3.0

<{

~ 2.0
0
> 1.0
~
~
~
~

2Jm~

o

10

10

20

,

f.f if-'j .

.

---~
~>--

nil

5.0mV - 1-2.0 mV

III( II~"
IfoIL..III'~

0

:>
.§

30

I r r
V+= 12 V _
V- = -S.OV
TA = 2SoC -

~ 2.0
o
;: 1.0

40

SO

~
~
~

SO

70

50

-..: ....

,

f-I-f-

262

SO
80
TIME (ns) 'f

100' 120

20

40

SO
80
TIME (ns)

0.4

3.0

v'

~

2.0

~+ =112
V- =-S.OVTA =2SoC I

~

~

IiIIo.

~

1 1 1 1
40

0.2

> 1.0

V+ = 12V
V- = -S.OV-TA = 2SoC f-

~

20

~

r--- ~~v,...
I-LM71

~

~
~

-0.2

o

0-1.0

-

>

-0.4

NEGA~IVJ-

Common Mode Pulse
Response

w 100
<{

""

:>

t:I

~
0

V- = -S.OV
=0

lOUT

T A = 2Soc

INPUT VOLTi\PE (V)

,...- 2.0mV
":'1 ~~ ..... l"
S.OmV
~~
\
10mV~
1~
20mV

'I'

14

v; = I~V

""'- ~ """""-

4.0

~ 3.0

13

12

Supply Current

Response Time For
Various Input Overdrives
~

10mV-

11

POSiTIVE SUPPLY VOLTAGE (V)

TEMPERATURE (OC)

Response Time For
Various Ini>ut O,!erdrives

~ 4.0

10

-pbS)IVE

""""- ........

TEMPERATURE (OC)

t:I

70

V+ = 12V
V- = -s.ov

o
10

SO

,~

~
~

50

V+ = 12V
V- = -s.OV

a
~

40

Input Offset Current

30

<
3

30

TEMPERATURE rc)

100

120

~
i5

I-

2.0

~

>

~

~

~
~

o

1.0

--

Vout

-

son

-

~

40

80
TIME (ns)

120

ISO

Voltage Comparators/Buffers
LM711 dual comparator
general description
The LM 711 contains two voltage comparators
with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features
low offset and thermal drift, a large input voltage
range, low power consumption, fast recovery from
large overloads and compatibility with most integrated logic circuits.
With the addition of an external resistor network,
the LM711 can be used as a sense amplifier for
core memories. The input thresholding, combined
with the high gain of the comparator, eliminates
many of the inaccuracies encountered with con"

ventional sense amplifier designs. Further, it has
the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711 is also useful in other applications
where a dual comparator with OR' ed outputs is
required, such as a double-ended limit detector. By
using common circuitry for both halves, the device'
can provide high speed with lower power dissipation than two single comparators. The LM711 is
available in either an 10-lead low profile TO-5
header or a 1/4" by 1/ 4" metal flat package.

schematic** and connection diagrams
STROBE

STROBE
B'

2,

r---~----------~~--~----e-----~--~----------~.---~~~V+

V+

INPUTS

NOTE' Pm 5 connected toeise

~----------------"-----------------6------------~V-

Order Number LM711 H
See Package 14

typical applications**
Double-Ended Limit Detector
With Lamp Driver

Sense Amplifier With Supply Strobing
for Reduced Power Consumption*
. - - - - - - . - - - - - - - - +12V
R7
620

01
lN7&&

Q2
2N4032

7.&V
LM111

~~~~~I~E_It-1I~_.
BUS
Rl
12K

UPPER
LIMIT
VOLTAGE

STROBE

.n..

3R

R2
12K

INPUT,

R&
100
FROM
SENSE
LINES

R3
14
LOWER
LIMIT
VOL TAGE
OUTPUT

R6
100
R4
14

·StandbydissipltionIS

about40mW

**Pin connections shown are for metal can.

263

absolute maximum ratings
+14.0V
-7.0V
50mA
±5.0V
±7.0V
o to +6.0V
300mW
-55°C to 125°C
-65°C to 150°C
300°C

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
I nternal Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

electrical characteristics

CONDITIONS (Note 2)

PARAMETER
Input Offset Voltage

(These specifications apply for -55°C ~ T A ~ +125°C)
MIN.

iRs ~ 200n, V CM = 0

1.0
1.0

IRs ~200n,-5V~ V CM ~+5V
I nput Offset Current

TYP.

0.5

I

Input Bias Current

25

Voltage Gain

750

MAX.

UNIT

3.5
5.0

mV
mV

10.0

J.1A

75

J.1A

1500

Response Time (Note 3,)

40

ns

Strobe Release Time

12

ns

I nput Voltage Range

V = ·7.0V

Differential Input
Voltage Range

±5.0

V

±5.0

V

Output Resistance

200

n

Negative Output Level

2:: 10 mV
V 1N ? 10 mV, 10 = 5 mA
V 1N 2:: 10 mV

-1.0

0

Strobed Output Level

VSTROBE ~ 0.3V

-1.0

0

Positive Output Level
Loaded Positive Output Level

4.5

V 1N

2:: 10 mV, V OUT ? 0

2.5

0.5

5.0

V
V

3.5

V
V
mA

0.8

Output Sink Current

V 1N

Strobe Current

VSTROBE = 100 mV

1.2

Positive Supply Current

V OUT ~ OV

8.6

mA

3.9

mA

Negative Supply Current

130

Power Consumption

2.5

200

mA

mW

The following specifications apply for _55°C ~ T A ~ 125°C:
I nput Offset Voltage

IRs S 200n, V CM = 0

4.5
6.0

Rs S200n
I nput Offset Current
Input Bias Current
Average Temperature
Coefficient of Input
Offset Voltage
Voltage Gain

5.0
500

Note 1: Rating applies for "ase temperatures to +125°C; derate linearly at 5.6 mW;oC for ambient
temperatures above 105° C.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic
threshold voltage of 1.8V at -55°C, 1.4V at +25°C, and 1.0V at +125°C.
Note 3: The response time specified is for a 100 mV input step with 5 mV overdrive (see definitions).

264

mV
mV

~O

J.1A

150

J.1A

J.1vtc

,..
s:
........"

typical performance characteristics

Transfer Function
5.0
4.0

~
w

--

L
f-

n'

V:; 12V
V ; -6.0V

-55°C -

2.0

~ ...J:,.:-

z

,

~

w

'"~

-,-r -"

~

"-

1600

-1.0

l.O

1.0

-25

5.0

'"

4.0

w

~
>

....

.......
:>

:>
0

-10

2.0
1.0 -

mV-f/IJ
'IJ J

IV. 'i/

5.0mV

. . . ~-±

;;

-i-

.5

.


w
c

""
a:

....
:>

...

z

80

1.0

100

w



1.0

~~

5.0 mV 1.0

I
10

!!

I

30

40

'"~
>

....
:>
I>-

~
0

-2.0

I

so

100

40

r

~
w

~

"-~

20

~

~

0

~

Power Consu mption
140

0

1.0

100

J

~

.!
z

-

~ 140

~

-

~
,.,.~

~

120
-75 -50 -25

i
25

50

75

100 125

8
f!i

~

I
-2~

120

I--+--+--+---+---,I--+--+--+--If---I

110

I---+--+--+-+-r-+--+--+--If---I

~

.!

lOO

100

'---'--L---'---'-_'--~-'---L.--''---'

~

EiQ
a:

10

30

INPUT VOL TAGE (mV)

50

~

-

r-t-

-

-

200

~

-10

50

75

100

125

re)

400

~
>=

~~+-+-+-~r~-~~~-+~

-30

25

Maximum Power Dissipation

1.;" .....

-50

~EGA~IVE ~UTP~llEVEl l:=

TEMPERATURE

v' = 12V
I--+--+-+--+:---I--+- v' ; -6.0V ~=WC
1--+--+-+--+-I--+--r'-'--t----1r----l

130

z

~~

a:

f--

-1.0
-75 -50

1~

z
o

c

~

~fG/sr..HRfS~~~
-- ~.+--+I

~

Power Consumption

V = 12J
V-=-6.0V-

-"",-

I

2.0 r-- •

TEMPERATURE eC)

TIME (ns)

130

V·; 12V
V' =-6.0V-

r--.... ~

~"

-+-+-

l.O

....:>

I>....
:>

i""'-~

POSITIVE OUTPUT lEVEl

4.0 '---

,

lO

500

400

300

200

Output Voltage Level
5.0

I\,

~

160

120

80

~

2.0

0

10

~

4.0

w

V· = 12V
V'; -6.0V

,

14

13

TIME (ns)

f--- t-----

~

0

8

20

I

r

50

~

ill
z

~

I I

+f'

-1.0

12

6.0

~mJ

2.0mV

I~ ~

~

40

11

Output Pulse Stretching With
Capacitive Loading

I I

2.0

....

w

0

10

POSITIVE SUPPl Y VOL TAGE (V)

12V
v- = -6.0V TA ; 25"C

60

j

1.0

~
c(

500

125

Input Bias Current

0

'"

~

100

J 1

120

v· ; 12V
V' ; -6.0V
TA ; 25°C

3.0

c(

~

1000

'\.

TIME (ns)

~

>

75

1500

v~;

I

Common Mode Pulse
Response

'"~

"'

I I
I I

,

TIME (ns)

w

50

~

0

60

25

>

1~

2.0

t;;

~

>

40

i\..

Strobe Release Time for
Various Input Overdrives

>

20

0

~0

"' "

TEMPERATURE ( C)

Response Time for Various
Input Overdrives
~

C(
~ 2000

'-

""

1200
-75 -50

5.0

2500

z

1500

INPUT VOL TAGE (mV)

c(

V·; 12V _
V-; -6.0V

1300

""'!!I

-3.0

TA; 25°C

"-

c 1400
>

ItJ

-25°C

-5.0

125°C

~

1.0

-1

J.1l.
/,r
,1 :

Voltage Gain
3000

1700

H:~

3.0



Voltage Gain
1800

100

---

,

\. ~

M~TAl.CAN

PACKAGE
MOUNTED flAT PACKA1GE (jOTfl)

I 11 I I

o
25

45

65

85

105

125

AMBIENT TEMPERATURE rC)

265

Voltage Comparators/ Buffers
LM711C dual comparator
general description
The LM711 C contains two voltage comparators
with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710C, the device features
low offset and thermal drift, a large input voltage
range, low power co'nsumption, fast recovery from
large overloads and compatibility with most integrated logic circuits.
With the addition of an external resistor network,
the LM711 C can be used as a sense amplifier for
core memories. The input thresholding, combined
with the high gain of the comparator, eliminates
many of the inaccuracies encountered with con-

ventional sense amplifier designs. Further, it has
the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711C is also useful in other applications
where a dual comparator with DR'ed outputs is
required, such as a double-ended limit detector. By
using common circuitry for both halves, the device
can provide high speed with lower power dissipation than two single comparators. The LM711C is
the commercial/industrial version of the LM711.
It is identical to the LM711, except that operation
is specified over a O°C to 70°C temperature range.

schematic** and connection diagrams
STROBE

STROBE
10

~--'-----------~--~~--~----~--~----------~~--~----V·

V·

INPUTS

VNOTE: Pin 5 connected 10 ....

~--------------~~--------------~~-------------V-

Order Number LM711CH
See Package 14

typical applications **~
Double-Ended Limit Detector
With Lamp Driver

Sense Amplifier With Supply Strobing
for Reduced Power Consumption*
r - - - - - -....- _.....01
lN155
1.5V

.,2V

Q2
2N4032

LM111

:~~~~I~E~M~__•

STROBE

BUS

J1.
Rl
12K

UPPER
LIMIT
VOLTAGE

3R

R2
12K

11

INPUT

R5
100
FROM
SENSE
LINES

RJ
14
LOWER
LIMIT
VOLTAGE
OUTPUT

":'

R6
100
R4
14

·Stlndbydissipa1ionts
HOUI40 mW

266

**Pin connections shown are for metal can.

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
I nternal Power Dissipation (Note 1)
Operating Temperature Range
Storage T emperatu re Range
Lead Temperature (soldering, 60 sec)

+14.0V
-7.0V
50mA
±5.0V
±7.0V
o to +6.0V
300 rnW
O°C to 70°C
-65°C to 150°C
300°C

electrical characteristics
(The following specfications apply for TA
PARAMETER
Input Offset Voltage

= 25°C, V+ = 12.0V, V- = -6.0V

CONDITIONS (Note 2)

MIN.

'As ~ 200[2, V CM = 0
IRs ~ 200[2, -5V~VCM ~+5V

unless otherwise specified)
TYP.
1.0
1.0

MAX.
5.0
7.5

UNIT
mV
mV

I

I nput Offset Current

0.5

Input Bias Current

25

Voltage Gain
Response Time (Note 3)

700

I
I

Strobe Release Time
Illput Voltage Range

V- =-7.0V

Differential Input
Voltage Range

15

pA

100

pA

1500
40

ns

12

ns

±5.0

V

±5.0

V

Output Resistance

n

200

2:: 10 mV

Positive Output Level

VIN

Loaded Positive Output Level

VIN ~ 10 mY, 10 = 5 mA

4.5
2.5

3.5
-0.5

5.0

V
V

Negative Output Level

VIN~10mV

-1.0

Strobed Output Level

VSTROBE ~ 0.3V

-1.0

Output Sink Current

VIN

Strobe Current

VSTROBE = 100 mV

1.2

Positive Supply Current

V OUT ~ OV

8.6

mA

3.f:)

mA

2:: 10 mY, V OUT 2:: 0

0.5

Negative Supply Current
Power Consumption

0
0

V
mA

0.8

130

V

2.5

230

mA

mW

The following specifications apply for _55° C ~ T A ~ 125° C:
Input Offset Voltage

Rs ~ 200[2, V CM = 0
Rs ~200[21, -5V~VCM ~+5V

6.0

I nput Offset Current
Input Bias Current
Average Temperature
Coefficient of Input
Offset Voltage
Voltage Gain

5.0

mV

10

mV

25

pA

150

pA

pvtc

500

Note 1: Ratings apply for ambient temperatures to 70°C.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic
threshold voltage of 1.5V at O°C, 1.4V at 25°C, and 1.2V at +70°C.
Note 3: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

267

CJ
~
~

'"~

typical performance characteristics

Transfer Function
5.0
4.0

~
w

_I

I I_

y+ = 12Y
-_ Y-=
-6.0Y

I

~

,,

2.0

CL

.....

::>

1.0

--

100 .. -

-1
-5.0

-3.0

,I

~

1600

'"c~

1500

...
>

1.0

-

t--

3.0

~

~

S.O

3.0

~ ~::
~

20 mV

-+..

0

I

-10 mVj-JIJ
'{J

J

-

..... ~ ......
2.0 mV

~

4.0

'"c

3.0

...
~

2.0

...>

1.0

Q

10

30

'"

Q

100

5.0mV 1.0

~

2.0

>

1.0 f--

Q

~

f--

w

~

2.0

>

1.0

I-

::>

::::>
Q

I

-

~

Q

I

E,

•

268

'"c~

2.0

>

~

~
Q

~

I
10

4.0

Q

~mJ'

2.0mV

20

30

I

I

I

I

40

-2.0
50

100

~

1

120

160

~

400

500

I

V+ = 12V

I

I--+-+--+--+--+----l- V- = -6.0V TA =25°C

140 I--+-+-+--+--+- +-.......-'-'-+--+---1

z

I"- ~

~
iii
~

300

Power Consumption

Y- = -6.0Y
30

200

TIME(M)

1

Ci
3

ffi
a:

-

TIME (ns)

...

y+ = 12Y

I-

l.1

80

~

Input Bias Current

V+ = 12V
V- = -6.0V
TA = 2SoC

-;:::+--'
....r- ---"
I
40

6.0

v· =12V
V- = -6.0VTA =2SoC

IA f"

120

- ~~'~'

!:

'"c

I

Output Pulse Stretching With
Capacitive Loading

I I

~~

14

13

12

t1

TIME (ns)

~

I

~

10

70

I I

2.0

-1.0

N

~'" ,iii.\) ;..- ~ I'-'"

POSITIVE SUPPl Y VOLTAGE (V)

40
3.0

60

1 1

Common Mode Pulse
Response
w

50

1I

I

TIME (ns)

'"c

40

~~
I(

t;

~
80

20

~

c
.....

....-

~ ~ .,~

."..

J'

a:

...

-

500

Q

>
~

60

V t.....-'"

1000

o

Q

40

~ 1500

1200

CD

r- llif 'f lJI'
I
I-t-l-+-H-+-+--+-+ v+ =12V _
V- = -6.0V
I-t-l-+-H-+-+--+-+ TA =25°C -

20

-... 100...

Strobe Release Time for
Various Input Overdrives

I I

..... v.~r-

~,\~-l~~

~~~
~

c

I-

TEMPERATURE rC)

~~ /r- 5.0 mV

4.0

_i,..-o-

~ 2000

I'-.. .........
~

1400

Response Time for Various
Input Overdrives

I

2500

1300

5.0

TA = 2SoC

z

~~

INPUT VOL TAGE (mV)

~

I

<

Q

TIA = ~5°~-

-1.0

z

3000

y+= 12YY- = -6.0Y-

1700

J Vo' TA = 70°CIi

3.0

Q

I

o

'.l ;...

::>

Voltage Gain

-TA =0 C ~r;r

'"
>
.....

Voltage Gain
1800

1

~:E

..........

20

5l

.......... ..........

130

8 120 I--+-+--+--+--ilrc..-r.--+--+-+_+---I

....-..

~

~

~

ItO
100

10
o

10

20

30

40

50

TEMPERATURE (OC)

60

1-+-++-+-+-if--b
....-+-111111111
,~

70

I-+--+--I---+-+----il-+-+--+--I
L..--4---'---'---'----L--''--.L..-...L....-L..---I

-50

-30

-10

10

30

INPUT VOL TAGE (mV)

56.

~s

Voltage Comparators/Buffers

LM1514/LM1414 dual differential voltage comparator
general description
The LM1514/LM1414 is a dual differential voltage
comparator intended for applications requiring
high accuracy and fast response times. The device
is constructed on a single monolithic silicon chip.
The LM1514/LM1414 is useful as a variable threshold Schmitt trigger, a pulse height discriminator,
a voltage comparator in high-speed A-O converters,
a memory sense amplifier or a high noise immunity
line receiver. The output of the comparator is
compatible with all integrated logic forms. The
LM 1514/ LM 1414 meet or exceed the specifications
for the MC1514/MC1414 and are pin-for-pin replacements. The LM1514 is available in the ceramic
dual-in-line package. The LM 1414 is available in
either the ceramic or moided dual-in-line package.

The LM1514 is specified for operation over the
_55°C to +125°C military temperature range. The
LM 1414 is specified for operation over the O°C
to + 70°C temperature range.

features
•

Two totally separate comparators per package

•

Independent strobe capability

•
•

High speed 30 ns typ
Low input offset voltage and current

•

High output sink current over temperature

•

Output compatible with TTL/OTL logic

•

Molded or ceramic dual-in-line package

schematic and connection diagram

v'

STROBE

Dual-In-Line Package

INPUTS

STROBE

OUTPUT

A

A

.

OUTPUT

Order Number LM1414J or LM1514J
See Package 16
Order Number LM1414N
See Package 22

~

:;:

absolute maximum ratings

(Note 1)

~

~
........
...J
~

~

it)

+14.0V
-7.0V
10mA
±5.0V
±7.0V

Positive supply voltage
Negative supply voltage
Peak output current
Differential input voltage
Input voltage

Power dissipation (Note 2)
Operating temperature Range:

LM15l4
LM14l4

Storage temperature range
Lead temperature (Soldering, 60 sec)

600mW
-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

~

~

...J

electrical characteristics
PARAMETER

for T A

= 25°C,

CONDITIONS

Input Offset Voltage

Rs::;: 200n, V CM

Input Offset Current

V CM

V+

= +12V,
TYP

= OV, V OUT = l.4V

V-

= -7.0V
= -7.0V

Common Mode Rejection Ratio

Rs::;: 200n, VV ,N

~

7.0 mV, 0::;: lOUT::;: 5.0 mA

Negative Output Voltage

V ,N

~

-7.0 mV

Strobed Output Voltage

VSTROBE ::;: 0.3V

Strobe "0" Current

VSTROBE

Positive Supply Current

V'N~-7mV

Negative Supply Current

V ,N

~-7

2.0

1.0

5.0

mV

1.2

5.0

fJ.A

25

200

n
V

±5.0

±5.0

V

80

100

2.5

3.2

-1.0

-0.5

-1.0

dB

100
3.2

0

-1.0

-0.5

0

V

-0.5

0

-1.0

-0.5

0

V

-1.2

-2.5

-1.2

-2.5

mA

18

18

mA

-14

-14

mA

300

mW

mV

(Note 3)

70
2.5

180

4.0

300

180

30

4.0

30

V

ns

T A ~ T H (Note 4) unless otherwise specified

Rs::;: 200n, V OUT = 1.8V for T A = T L
V CM = OV, V OUT = 1.0V·forTA = T H

3.0
3.0

Temperature Coefficient of
Input Offset Voltage

6.5
6.5

3.0

V CM
V CM

fJ.A

1000

±5.0

= 100 mV

::;:

UNITS

±5.0

Power Consumption

LM1514/LM1414: The following apply for T L

MAX

3.0

200

Positive Output Voltage

= OV, VOUT = 1.8V, T A = T L
= OV, V OUT = 1.0V, TA = T H

Voltage Gain
Output Sink Current

TYP

20

Differential Input Voltage Range

Input Offset Current

MIN

0.6

1250

Output Resistance

Input Offset Voltage

LM1414
MAX

0.8

Input Bias Current

Response.Jime

= -6V, unless otherwise specified

LM1514
MIN

= OV, V OUT = l.4V

Voltage Gain

Input Voltage Range

V-

1000
V ,N ~ -7.0 mV, V OUT ~ OV

2.8

fJ.V/oC

5.0

7.0
3.0

mV
mV

7.5
7.5

fJ.A
fJ.A

800
4.0

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: LM1514 ceramic package: The maximum junction temperature is +150°C, for operating at elevated temperatures,
devices must be derated linearly at 12.5 mWtC. LM1414 ceramic package: The maximum junction temperature is +95°C for
operating at elevated temperatures, devices must be derated linearly at 12.5 mW/oC. LM1414 molded package: The maximum
junction temperature IS +115°C, for operating at elevated temperatures, devices must be derated linearly at 6.7 mwtC.
Note i The response time specified (see Definitions) for a 100 mV input step with 5 mV overdrive.
Note 4: For LM1514, TL = _55°C, TH = +125°C. For LM1414, TL = O°C, TH = t70°C.

1.6

2.5

mA

r-

s:
....a

Consumer Circuits

.......

o

.........

r-

s:N

LM170/LM270/LM370 agc/squelch amplifier

.......

general description

o

.........

r-

The LM 170 is a direct coupled monolithic amplifier whose voltage gain is controlled by an external
DC voltage. The device features:

• Sensitive squelch threshold set by single
nal resistor.

exter~

s:tAl

• Large Gain Control Range

In addition to communication system squelch and
AGC applications, the LM 170 is useful as constant-amplitude audio oscillator, linear low frequency modulator, single-sideband automatic load
control, and as a variable DC gain element in
analog computation.

o

• Self-contained AGC/Squelch system, with fastattack, slow-release.
• Low Distortion
• Minimum DC output shift as gain is varied
• Differential inputs, with large common-mode
input range
• Outputs of several amplifiers may be directly
summed in multichannel systems.
• Dissipates only 18 mW from +4.5V supply,
usable with supply up to +24V.

.......

The LM 170 is specified for operation over the
-55°C to +125°C military temperature range. The
LM270 is specified for operation over the -25°C
to + 75°C temperature range. The LM370 is specified for operation over the 0° C to +70° C temperature range.

schematic ~* and connection diagrams

'--+--+'--0 OUT

10K

o

GROUND

TO·5
TOPVIEW

Order Number LM110H
or LM210H or LM310H
See Package 14

>INPUT

I

+Vcc

m

CONTROL C
CONTROL B
10 SOUELCH
THRESHOLD

N.C.

9 SOUELCH OUT

CONTROL A

N.C.

GROUND
LM370N
TOPVIEW

Order Number LM310N
See Packa~e 22

typical applications**
AGe Using Built-in Detection, Driven By Additional
System Gain

Squelched Preamplifier with Hysteresis

r--.------+--+

12V

r-----.---..

- +12V

lOOK
OUT

2K

OUT

2K

CHARGING
RESISTOR

1- 5mVOUT

SOUElCH
THRESHOLD

AGC
THRESHOLD

* ·Pin connections shown are for metal can.

')"71

absolute maximum ratings
Supply Voltage
Storage Temperature
Operating Temperature LM 170
LM270
LM370
Differential Input Voltage
Common-mode Input Voltage
Output Short Circuit Duration
Voltage applied to Pin 3 or 4
Voltage applied to Pin 2
Surge power into Pin 6 (1 second max.)
Continuous power into Pin 6

electrical characteristics
PARAMETER

SYMBOL

24V
-65°C to +150°C
-55°C to +125°C
-25°C to + 75°C
O°C to +70°C
±19.5V
(Vee + O.4)V
Indefinite
+6.0V
+12.0V
1000 mW
100 mW

(Note 1)
MIN

CONDITIONS

TYP

MAX

UNITS

DC CHARACTERISTICS
DC Output Voltage

DC Output Voltage

Vo(DC)

Vo(DC)

V 1N (dd) = 0,
V (gain control)

+5.0

+6.0

+7.0

V

+5.0

+6.0

+7.0

V

=0

V 1N (dd) = 0

V (gain control) = +3.0
DC Output Shift

~Vo(DC)

V 1N (dd) = 0

V (gain control) changed
from 0 to +3.0V

Power Supply Drain

Ips

LM170

-200

0

+200

mV

LM270

-SOO

0

+500

mV

LM370

-1000

0

1000

Vee = +24V
Vee = +4.5V
Vee = +12V

(LM170, 270)
(LM370)

Input Bias Current

LM170, 270
LM370

mA

13.5
4.0
8.0
8.0

10.0
12.0

mA
mA

5.0
5.0

10.0
12.0

p.A

AC CHARACTERISTICS
Voltage Gain

Av

V (gain control)

=0

LM170, 270

37.5

40.0

LM370

35.0

40.0

dB

-80.0

dB

f = 1 KHz
Gain Reduction Range

Note 1: TA

~Av

V (gain control) changed
from 0 to +3.0V. Gain
reduction occurs for
control voltages between
+2.1 and +2.5 volts, pin 3
or pin 4. f = 1 KHz

= 2SoC. Vee = +12V. V1N(cm) = +6V

operating notes
Voltage gain is continuously variable from a maximum value, dependent upon supply voltage, to a
minimum value, by application of a DC control
voltage at Pin 3 or 4. DC output voltage is substantially independent of gain changes, provided
that differential DC input voltage is minimized, so
that direct-coupled or fast gain-control operation
is possible with minimum disturbance of succeeding ampl ifiers.
Input characteristics are similar to those of an
operational amplifier, with common-mode input
range extending from +4.5 volts up to and including the positive supply voltage. Lowest distortion
occurs at input levels of 20 mV p-p or less. Outputs of several amplifiers, which will have quiescent DC levels approximately half of the positive

?7?

supply, may be directly connected together in
multi-channel summing systems, without damage.
Emitter-follower control inputs, Pins 3 and 4, may
be used as positive peak detectors by connecting a
smoothing capacitor at Pin 2, in AGC applications.
A sensitive squelch detector, inoependent of the
amplifier's gain, provides fast-attack, slow release
control at Pin 6, with threshold set by an external
resistance from Pin 7 to ground. I njecting a portion of the control voltage at Pin 6 into this threshold results in a hysteresis, reducing response to
erratic inputs. Since threshold is dependent on DC
levels, differential DC input voltage should be held
constant for squelch operation.

variable gain characteristics
Voltage Gain vs Control Voltage

Total Harmonic Distortion
vs Gain Reduction

Bandwidth vs Gain Reduction

+50
+40
+30

~~

"'\,1\,

~

~ +20
z"
+10

..,ell

+125°C

ell

-10

0

-20

~

>

\

:c
~
:cO

l

-40
-50
+1.6

+2.0

~

0

1.5

I-

0

Ci

Z

1.0

z

0

..,~
I

0.5

+2.8

+30
~
z"

<
..,

MAXIMUM GAIN

+20
+10

Vee = +12V
f = 1 KHz

ell
ell

<

~
0

>

-

I

J

-30

- MINIMUM GAIN

~

-40

2.5

N

:c

-

-

iQ

0

-

r--- I---~

Z

..
<

ID
ID

..,
I

1.5

~
z"

Vin(cml=~

..,ell
ell

<

40

0

>

/

~

~

)(

<

30

~

+4

""
.-

Vee = ":in(cml = +BV -

+12

/'1'

2.0
1.5

V
./
~

Vin(cml = +12V
60

~
u

I

I'

+16

+20

~

/

/
Vee = +12V
f=1 KHz -

~

-55 -35 -15 +5 +25 +45 +65 +85 +105 +125

Vin(cml = +6~

0

Vin(cml = vee
I f= 1 KHz I
TEMPERAT'URE = +25°C

+8

V

2.5

1.0

./

~
....
....

40

~

20

~

VGe=O

3.0

0.5

0
~
<
~
z

/'V
./

:;,

3.5
Vee =Vin(cml = +12V

0.5

~

V..;~

~

Total Harmonic Distortion
vs Input Amplitude

I I I "

10

20

50

40

30

Vin(p.ph mV

Output Dynamic Range
vs Control Voltage

80

/

~/

<

GAIN REDUCTION, dB

Common-Mode Rejection Ratio
vs Temperature

/

--

-80 -70 -60 -50 -40 -30 -20 -10

0

TEMPEMTURE,oC

I

V

\.

0

1.0

Maximum Voltage Gain
vs Supply Voltage

I

I'

-

,,

I-

III~

TEMPERATURE,oC

I

r--

~II-~~

2.0

:.

-50
-55 -35 -15 +5 +25 +45 +65 +85 +105+125

50

Vin(cml = +12V

<
:c
....
<
I-

Bandwidth vs Temperature

:
I-

Yin = 20 mV p.p-

-10
-20

.....

/

GAIN REDUCTION, dB

Maximum and Minimum Voltage
Gain vs Temperature
+50

I--

-80 -70 -60 -50 -40 -30 -20 -10

+3.2

CONTROL VOLTAGE (V), PIN 3 OR 4

+40

Vee = +12V

I I I

+2.4

4

:.
~

<
ID

\
\

Vin(p.pl - 10 mV
f = 2 KHz
Vee = +12V

~

u

i0

"

Vee = +12V

z

0

0

\

I 1 J .1._

~

..til

I-

_55°C

1\ \
\ 1\

-30

_I""

N

\ +25°C ,

<
<

2.0

~

Q
Q

z

0
~
~
0

u

+24

'"

~

........

-

r-.....

\

I\.

~

>

,

~

f
Vin(cml = +4.5V

.......

~

\

.......

,

1,

+2~oC

\

~

-,

Vee = +12V _
f= 1 KHz I
I
I

~.

.....

-55 -35 -15 -5 +26 +45+65 +85 +105 +125

\

+125°C

2.0

-

2.5

TEMPERATURE,oC

SUPPLY VOLTAGE, Vee, V

1_5Joc

3.0

CONTROL VOLTAGE, V

squelch characteristics
Squelch Threshold Voltage
vs Threshold Resistance

Squelch Release Time vs
Time Constant Capacitance

Squelch Hysteresis Voltage vs
Squelch Threshold Voltage
1.75

1.0

r--,.......,....-r--r-....,..~--,-r--,....."'lII

~

-5~OC

..,"
:.

..... ~

g

~).; 1'+125°C

J. rJ

r/.

h r/

z

.7

< ....

.6

~~
~ :::

.5

- Vee =+12V

0

/

.... 0

+25OC .~ ~

~ V-

0
Q

.8

u

..,~
o

1..I'!i ~

r--r--

TEMP~RATU~E = +2~oC

.9

~,

V~e=+12V fi 1 ~HZ I -

2.5
1.5
2.0
SQUELCH THRESHOLD RESISTANCE, Rso, Kn

:c

.... 9z

.4

.... 0
:;,1-

.3

d0

.2

u

I

.1

O. 75 ...............£..._ _~--'-........---l"--"'-.............
10
20
30
50
40
SQUELCH TURN·ON THRESHOLD VOLTAGE, mV rms

V

~

/

/

/

V

/

RESI~TOR

//cHARGI,G
=100Kn
(SEE SCHEMA'flC, TYPICAL
APPLICATIONS) ~
10

15

20

25

TIME CONSTANT CAPACITANCE, pF

273

input and output characteristics

Input Resistance vs
Common-Mode Input Voltage
90

Input Resistance
vs Supply Voltage

~~~~__~~~~-r~

60

80
~

70

I

I

....
u

50

I-

z

CIiI

30~~~~~~~~~~

iii
....
a:
I:=
Q.

20~~~~~~4-~~~~~

~

50

.. ~

30

-

10

I

I

I

12

70

u

z
c

I-

iii
....
a:
I:=
Q.
~

I

I

16

~

60

)'

50
~

40
30
20
10

~

V

V

1/

-

Vee = +12V

Vinlcml = +6V -

I I I I

I

20

24

-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
TEMPERATURE.oC

SUPPL Y VOLTAGE. V

Input Bias Current
vs Supply Voltage

Output Resistance
vs Temperature

~

20

1/

\

1.
1--

15

a:

:=

CIiI

I--" ~[., ~

f= 1 KHz

4

12

/

~

.....

TEMPERATURE = +25°C

Input Bias Current
vs Temperature

c

~

IIIII

10

/

80

CIiI

20

COMMON·MODE INPUT VOLTAGE, V

u

~~

Vinlcml = Vee

I

4

90

~

I

~~

40

10~~~~~~~T-~-+~

2

I

Vee
Vinlcml=T ~

C

40

....a:z

I

~

60

Input Resistance
vs Temperature

10

Vee = +12V
Vinlcml = +6V -

1\

\

i\.

4

/~

\.

iii
I:=
Q.

',,-"~

~

V

V

/

V

l/

'fI"

TEMPERATURE

Vee =+12V

=+25°C

-

Vinlcml = +6V,_

I I I I
-55 -35 -15 +5 +25 +45 +65 +85 +105+125

4

12

16

Output Dynamic Range
vs Temperature

~

0

j:
:::I

~

0

0

>

>

4
3

Power Supply Current
vs Supply Voltage

I~ ~

U
4

TEMPERATURE.oC

-55°C

>

iL

~

:::I

-55 -35 -15 +5 +25 +45 +65 +85 +105 +125

Quiescent DC Output Voltage
vs Supply Voltage
11
10

II.

24

SUPPLY VOLTAGE, Vee, V

TEMPERATURE.oC

>

20

I"

~

~I

+25°C- I-

"~

)

16

1/

c

e
II.

1I ~I/

12

..I~ ~ ~

1-'

I-

z
....
a:
a:

~~

:::I

u

~

Q.
Q.

I'

:=

CIiI

4

~ r::::: 10-""

~

-5SO~~
I
I
~V
+25°C /
I

1I

+125OC

I

oL-...L--L.._.............._.L........L...-L.....I

-55 -35 -15 +5 +25 +45 +65 +15 +105 +125
TEMPERATURE.oC

274

4

12

16

SUPPLY VOLTAGE. V

20

24

i

4

12

16

20

SUPPL Y VOLTAGE. Vee. V

24

Consumer Circuits
LM171/LM271/LM371 integrated rf/if amplifier
general description
The LM171/LM271/LM371 is a monolithic RF-IF
amplifier capable of emitter coupled or cascode
operation from DC to 250 MHz_ Wide versatility is
offered by having all inputs and outputs brought
out so many circuit configurations are possible.

•

features

•

•
•
•

•
•

Low internal feedback, allowing high stabilitylimited gain
Versatility through user-connected configurations
As emitter coupled amplifier, symmetrical, nonsaturated limiting

As cascode, wide AGC range with constant input
admittance
As differential DC amplifier, low input offset
voltage and wide dynamic range
As video amplifier, externally selected gain,
and high. gain-bandwidth product
100 MHz tuned power gain
(Emitter Coupled)
24.6 dB
(Cascode)
27.5 dB

In addition to amplifier service, the circuit is useful
in mixer, oscillator, detector, modulator, and numerous other ~pplications. The LM271 is a plug-in
replacement for the 911 C type.

'schematic and connection diagrams
Metal Can Package
R2
SOH

OUTPUT
lOW

GROUND

Order Number LM171H
or LM271H or LM371H
See Package 14

typical applications
100 MHz Cascode Test Circuit
VAGC= 0
FOR GAIN TEST

100 MHz Emitter Coupled Test Circuit

Vee=+12V

*

Vee = 12V
10
l2

10

r---

"I

-,

r----

C4

I

SOn
OUT

I

1

I
I =

C3

I

1=

I

I

I

I

1
OJ

OUT

son

I
I

OJ

I

I

I
I

1
1

I

I

.J

--.J
son
IN

Cl = C3 = 9·36 pF TRIMMER
C2 = C4 = 2·8 pF TRIMMER

11 = l2 = 7t. #16' •.w.g.
SPACED 1 TURN, 1/4" INSIDE DIAM.

FIGURE 1

Cl = C3 = 9·36 pF TRIMMER
C2 =C4 = pF TRIMMER

z.s

,,'6

11 = l2 7t.
I.w.g.
SPACED 1 TURN •. 1/4" INSIDE DIAM.

FIGURE 2
Note: All unmarked byp....p..itors 1000 pF.

275

absolute maximum ratings
Supply Surge Voltage
Supply Operating Voltage
Storage Temperature
Operating Temperature
LM171
LM271
Power Dissipation
Voltage between 1 and 7
Voltage between 4 and 6

30V
24V
-65°C to +150°C
-55°C to +125°C
O°C to + 100°C
230mW
±5V
±5V

electrical characteristics

These specifications apply for V+
LM171

PARAMETER

CONDITIONS

MIN

TYP

= +12V

and TA

LM271
MAX

MIN

TYP

= 25°C
LM371

MIN

MAX

TYP

UNITS
MAX

DC CHARACTERISTICS
I nput Offset Voltage (Vos)

Is

= 110 = 500 J.1A
1.30

2.65

1.3

2.65

1.3

2.65

Ratio of R 1/R2

0.895

1.12

0.895

1.12

0.895

0.895

Voltage at Pin 3 (V 3 )

V2

= +12V

Current Through
Current Source 03 (Icl

Ie

= Is + 1'0

Current Gain ({3)

2.45

5.70

Ips

2.45

EMITTER COUPLED CHARACTERISTICS (Input Signal
PARAMETER

rnA

5.70

rnA

40

40
9.0

= ISlAS + Is + 1'0

2.45

5.70

rnV

V

2.0

2.0

2.0

40

Power Supply Current Drain (Ips)

10.5

9.0

rnA

< 10 mVrms) LM111, LM271, LM371
CONDITIONS

MIN

TYP

MAX

UNITS

Input Conductance (G 11 )

455 kHz

0.30

0.40

mmhos

Output Conductance (G 22 )

455 kHz

0.01

0.04

mmhos

Magnitude of Forward Transadmittance (IY 21 1l

455 kHz

Magnitude of Reverse Transadmittance (IY 12 1)

200 MHz

Tuned Power Gain (Ap)
Tuned Power Gain (Ap)

CASCODE CHARACTERISTICS (Input Signal

27.0

mmhos

0.1

mmhos

10.7 MHz
BW = 470 kHz

24.6

dB

100 MHz
BW = 5 MHz

22.7

dB

17.0

< 10 mVrms) LM171, LM271, LM371

Input Conductance (G 11 )

455 kHz

1.1

2.5

mmhos

Output Conductance (G 22 )

455 kHz
Connect Pin 1
to 7

0.01

0.04

mmhos

Magnitude of Forward Transadmittance (IY 211)

455 kHz
Pin 1 GND

Magnitude of Reverse Transadmittance (IY 12 1)

200 MHz
100 MHz

Tuned Power Gain (Ap)

Pin 1 GNb
BW = 5 MHz

27.5

dB

Tuned Power Gain (Ap)

Pin 1 GND
BW = 6 MHz

25.0

dB

THE FOLLOWING PARAMETERS APPLY FOR THE LM171 FOR -SSoC

276

10

3

3

Input Bias Current (ISlAS)

25.0

50.0

0.001

mmhos

mmhos

< TA < +12SoC

Magnitude of Forward Transadmittance
(Emitter Coupled) (IY 211)

455 kHz
ein < 10 mV rms

17.0

mmhos

Magnitude of Forward Transadmittance (Cascode) (lY 21 1)

455 kHz
ein < 10 r:nV rms
Pin 1 GND

21.0

mmhos

biasing considerations
Typical Biasing for Emitter. Coupled Amplifier

The active portion of the 171 is biased by monolithic matching of constant-current transistor 03
and diode D1. R1 and R2 may be connected in .one
of four ways to force a current from Vee through
three diodes. Alternatively, an external resistor may
be used. If pin 4 is connected to pin 6, directly, or
through an inductor or resistor having less than
100 ohms DC resistance, the current drawn by 03
will approximately equal that forced through D1.

RI

'D

Uk

I

Pin 3 may be used as a DC reference voltage, to bias
pins 1 and 7, and is approximately the minimum
voltage required to guarantee proper current source
collector characteristics.
FIGURE 3
Current Source - Diode
Current Ratio vs Current
Forced Through Diode .
Chain

DC Reference Voltage (3 to 5)
vs Diode Chain Current and
Supply Current

Total Supply Current
vs Supply Voltage
3D ...-..---rr-r--r--r--r---r--..,.---,---,

1.3

L

1.2

I
c
i=

~

;;::.
a:

g;

"'r--....

1.1

1.0

~~-4_+--+_~~~J~~
V

. . . . . . . r--..'-

0.9

/

0.8

(.)

o

1

2

3

4

5

6

7

8

9

~

g

8

~z
3'
~

-I

4

o

1.....;;......

//'
-'_..1..-.........--1.._.1....--'----'-..........

0

10

2.0 2.1

2.2

2.3

2.4

~

12

t---+--4-+-7"f--~-+---t--t

2.5 2.6

2.7

10
'psFOR FIGUR,E

J

~V

xI

I .Xupp~y VOlTAGE-(X'CEEOING
".... .~24 VOL TS NOT RECOMMENDED

o

2.8

3

6

REFERENCE VOLTAGE, PIN 3 TO 5 (V)

CURRENT FOR CEO THROUGH OIODE CHAIN (rnA)

Tlml,JATIJN
mW - - I - - -

I \l/.CDMMENDED

c::

2
0.7
0.6

/

I---+---t--+--+--~-+---t---t

\

..--f---+--"'I\ ~tEEDING 230

16

9 12 15 18 21 24 27

3D

SUPPLY VOLTAGE Vee (V)

typical temperature characteristics
Magnitude of Forward
Transadmittance vs
1em perature, Vce =+12V,

Total Supply Current vs
Temperature, VCC = +12V

455 kHz

«

..!
~

z

~

a:
a:
:::)

8
7
6

(.)

5

~

4

A.
A.

::I

-

~

c
(.)

120

ffi

100

~

\

~

!

80

;
E

60

I

en

<
~

2

.!

1

>

0

~

140

A.

::I

3

....

320

160

9

N

0

40

280

\

"- ,CASCODE

r

I-

-

_E;~ t-

-

I

I

-20

20

60

TEMPERATURE (OC)

100

140

3'

I
I

120

C">

l>

en

-~

80

C">

c
0

m

40
0

0
-60

;-

200
160

l-

COUPLED
I

20

I"-

240

-60

-20

20

60

100

140

TEMPERATURE (OC)

277

cascode configuration
The common-emitter; common-base, or cascode,
configuration is useful as a tuned R F or iF amplifier to 250 M Hz. Two common-base stages ar.e
formed by the differential pair, 01 and 02, which
may be used as a gain control system by applying
a differential gain control voltage between pins 1
and 7. With 01 cut off, maximum gain is obtained,
being redUced as 01 is progressively turned on and
02 turned off. The input common-emitter transistor presents a nearly constant input admittance as
AGe is appl ied.

Pin 3 may be used as the DG.;reference for the AGe
input, to assure adequate bias voltage for the collector of 03. Where large AGe voltages are use.d, an
external resistive divider, from pin 3 to 1 to the
AGe voltage may be used to optimize the De AGe
requirements. V AGe is defined as the voltage between pin 1 and 7.
At some frequencies, bypassing may be required at
pins 1, 3, 4 or the Vee connection.

De input bias is obtained through the input inductor from the bias chain, pin 4.

Input Resistance and
Capacitance vs VCC
2000 r--~-'-""'-.--'--'--'---r---r-' 16
100 MHz
1750 1--1---+--+-+-+--+----+--+-+--1 14

a

~
~ 1500 t-t-t-t-t:j;.;;;o;Ioo--Fo;±=t~ 12 c::

a:

a

a:
V-~
r-~. 1250 t-1-/-7-t-t---i-r-t--t-+--i 10
Cp

~

1000 I--ll.VI-+-+-+--t-~t-+-+---1 8

~ 750 r-il--+--+-+-+--+---+--+-+--I 6

~

~

500 t-t-\\-t-+-t--l-t--t--t-+--i 4
250

I

Output Resistance and
Capacitance vs VCC
550

Forw~rd

Transadmittance vs
AGC Voltage
I

60

I

10.7 MHz-

-I

~. 350
Z
....«

C"'l

l>

-.:0

l>

C"'l

eI)

::::j

~ 250
a:

l>

~ ....~
..P ....
::::I

...
r-+-~~-..:+
...... ,.....,--t--t-f--t-+-+---1 2
Rp

c::

C"'l

i'-.

3

,
~

50

2

4

6

8 10 12 14 16 18

l>

2
1

--I"- t--

~

28

r\ Cp

,

8 10 12 14 16 18

g
::>

,

..

200

.....
1

10

100

"

~

20 e

" r"

~~

0
-200

-100

~

100

0

-

10
0

200

-

16

~ ~

C"'l

::::j

«

~~~-+-~+Cp++H-~~~

Ii;

~

i'

....

~

....
::::I

4

C"'l

l>

Z

12 .~

a:

"V'

50

~

Co>

::::j

30

c::

w'

l>
Z

60

c

-I

1

~~~++~I~~1-rH~1

l>

.~

C"'l

1

JI\

40

,

20 _!

G
21

~

~

30

153"

c:
-l

...

20

"

10

~

.."

C

0
1000

g.

i\

N

CD

25

0

~

io""~ B21
0
0.1

FREQUENCY (MHz)

FREQUENCY (MHz)

35 .....-,---r--r---r--r-.--_....-.-.....,
Vee =+12V
30 I--+--+-+-+--+--+--+----t----t--l
25 t - t -.......:t--+-+--+----+--+-+--f

~

~

CD

ffi

~
Q..

-~

201--+--+-+--f>II<-+--+--+---+--+--I
15

'\
'\

10 I-+--+-+-+-+--\'I~-+--t--lf----l

5

o
-5
-10

501~~f'~

BIASING MATCHED TO
OHM SOURCE AND LOAD:
BANDWIDTH APPROX. 4.5'MHz

t--

L-...L.1_J........I..11_L-..J...11_L-..L.11_L-..L.I;....J
-200

-100

0

100

VAGe (mV) PIN 1 TO PIN

1

10

100

FREQUENCY (MHz)

Tuned Power Gain vs AGe
Voltage

278

10

.."

c::

a:

C"'l

8

1\

...

~

30 3"

Forward Tr~~sadmittance vs
Frequency, VAGC = OV

0

C"'l

R;"

""""'r--...

20

~

VAGe (mV) PIN 1 TO 7

....

l>

400

0
0.1

Z

;i

20 ~
~

CD

~
i"'

20

100 .........,..,.,-..._-=:t:-,-"TTTT"""...-r-rr~ 100
r---~
-.:0

24

1\
\

I I I

G21 , 100 MHz

N

40

,i'"

1

~
a: 600
~

6

Output Resistance and
Capacitance vs Frequency

z
«
.... 800
eI)

Q..

4

Input Resistance and
Capacitance vs Frequency
@ 12 VoltsVCC

a:
~'1000

....::::I

2

SUPPLY VOLTAGE Vee (V)

~1200

B21 , 100 MHz

.! 30

0
0

20

1600 rlrTrr-T--rTii-r""Ti""TI.-TTTTI 32

a

z

~ 40

i

Rp

SUPPL Y VOLTAGE, Vee (V)

1400

C"'l

::::j

r-- Cp

\

150

l>
-.:0
l>

50

~ I,

G21 , 45 MHz

-.:0

0

o

50

-I

c::
4 -I

c

.."

-~

c

~ 450

60

B21 , 4~ MHz

200

'1

10
5
0
1000

~

emitter coupled configuration
nal, and is equally divided when no signal is present,
assuring inherently symmetrical operation. DC bias
for pin 7 is obtained from the divider chain, and
through the input inductor, the same bias isapplied
to pin 1.

The common-collector, common-base, or emittercoupled configuration is useful as a symmetrically n.on-saturated limiting R F or I F amplifier to
150 MHz. Basically a differential amplifier, this
configuration is especially suited to FM I F strips
using 'conventional interstage tuning. While available gain is lower and noise figure higher than the
cascode, emitter coupled operation may be considered wherever fast recovery from large-signal overdrive or excellent AM rejection is required.

For non-saturated operation, the output load must
be chosen so that the collector voltage of the output transistor is higher than the DC reference voltage, with all source current shunted into the output, for the particular bias levels used.

03 is used as a current source, obtaining its bias
from the diode chain. Current available from 03 is
shunted through 01 or 02, depending on input sig-

Output Resistance and
Capacitance vs VCC

Input Resistance and
Capacitance vs VCC

,

15
~

:.::
-;;'11

i\
1\

a:

\

u,j
(.)

2

oct

12

,

~

",

5

V

~

~

~

~

\. ~

~

f:1a:

18

10.7 MHz- 14

........

--..,

!:

-

--

~

8

=il

Q.

4 =i

~'35o

l>

(")

oct

=t

~

~ 250

2

3

\

~

4 ~

~

...,

~

~

"CI

2

150

:l

l>

2

0

50

6

8

10 12 14

16 18

1=

~Il k_

L

12
10

i-r-.

\

Cp

I'
R~

0.1

10

~

0

a:

~

6

100

2
~

6

6 ~

8

"CI

Rp

8 10 12 14 16 18

....

~

10

20

100

-

oct
~

II)

2

f:1a:

.~
~

~

1\

Cp

1

...,

r-r--

:l

0

~
~

~
r£

~

10
8

FREQUENCY (MHz)

...,

"CI

G21 (Vee

FREnUENCY (MHz)

10

=6V)

7 r-I-

~

~

i"""~

8 21 (Vee = 6V)

/" III I Lill

2

o

~; (Jee l= 111~V)

III
~~1 (Vee = 12V!,.."

4

0.1
1000

100

10

16

111\

~ E 12

~

Vee =12V, VMEAS =20 mVrms r-PINS 1 ANO 7 TIEO TOGETHER r--

0.1

1000

'§' 14

(")

~

o

16

~

o

~

:l
0-

"CI

."

c::

10

.... i'oo...

18

o
Rp

2

=t

20
c::

(.)

(")

14

Forward Transadmittance
vs Frequency

,

10

12

SUPPLY VOLTAGE, Vee (V)

I

UJ'

l>
l>

"

4

~ :!...
c::
(")

4

o

10~
8 3'
~

10

...,

-r--. ...... 10..

100

~

t---

I\.

12

Output Resistance and
Capacitance vs Frequency

~

-I-"'"

14

SUPPLY VOLTAGE Vee (V)

Input Resistance and
Capacitance vs Frequency
ee

14

o
2

20

SUPPLY VOLTAGE, Vee (V)

l
V

J

.~

16

~

o
4

....--.....---r'--r--....,....--.-~....",_

16

1

~

=t

Cp

,

\

UJ

6, 7, or

'§' 12

~

"-

2

(")

l>

-

c::

~ a:
Rp

o

a:

10 ~

Cp

lri.7 JHz

g 450

~

c::

3,

Forward Transadmittance
vsVCC

550

\

_ 13

At some frequencies, bypassing of pins
the Vee connection may be required.

II

I-~I-'
0.1

10

III

100

o
1000

FREQUENCY (MHz)

I nput Resistance and
Capacitance v5 Input
Signal Level
14
I
I
Vee =12V
10.7 MHz- 12

35
30
~

Q.

a:

25

1\,

20

~

II)

f:1a:
~

:l
0-

15
10

i,...-'

~

~

V
.......... ;r
......
~
./

l>

,/

(")

=t

l>
2

.~

~

1!

Z
."

c::

(")

Rp /

:\.:

(.)

2

Cp

",

UJ

oct

10

~

",~

...,

"CI

".

o
100

200

300

400

500

rms INPUT VOLTAGE (mV)

279

dc, audio and video configuration
Direct Coupled Test Circuit
(Connect R L Between Pins 8
and 10, or Connect Pin 2 to 8
for Internal R L)

Convenient self-contained biasing, excell.ent monolithic matching, and high gain-bandwidth product
make a wide variety of applications possible using
resistive loads.

Vee = 12V

lhf

OUT

IN-1 .......--+----o

10

I-

I

The biasing shown in Figure 3 uses R2 as collector
load for a single-ended output, differential input
amplifier. By choosing the proper external load
resistor, bias configuration, and supply voltage,
video amplifiers may be constructed to meet
specific gain and bandwidth requirements, in
either cascade or emitter coupled form.

I

&00
OHMS

lhf~

I

R2

4

With matched pairs of external load resistors, true
differential DC amplifiers may be constructed, with
large common-mode input range, input offset voltages typically 0.3 mV,and monolithically matched,
self-contained current sources easily tailored to specific operating point requirements.
FIGURE 4
Cascode and Emitter Coupled
Video Amplifiers Voltage Gain
and Load Resistance vs
Bandwidth

Voltage Gain, DC Output
Voltage (RL = R2) &
Dynamic Range vs VCC

v

14
12

.,..,...

?
V/

Av (d,!!.. ",....,-

V~
OUT (DC)

... V

./

~

40

~V

~

50

<
40 C)
r-

30
20

/VOUT (p·P)

10

",

o

o
2

4

8

10

12

14

16

18

Av(dB)

:--..... ~

w

30

-'
C)

10

>

~
VOUT (P·P) 'r"'J

-~
_~455kHz

Vee = +12V

j

-10
-200

I I

-100

\

\

/

~

10

/

100
LOAO RESISTANCE (kn)

physical dimensions

\

""100

VAGC (mV) (PIN 1 TO 7)

280

Z

10

I '\

20

CD

ct
1-

l>

~

~

C(
CD

20

12

50

z

C(
CD

l>

V

Z

-4

~
en

~

V

3 dB BANDWIDTH (MHz)

Cascode Video Amplifier Voltage
Gain & Dynamic Range vs AGC
Voltage

~

Vee =12V
1
_I
(AGC =0 mV FOR CASCO DE)

~

10

SUPPL V VOLTAGE, Vee (V)

40

10

30

~

/

Cascode & Emitter Coupled Video
Amplifiers Dynamic Range vs
Load Resistance

\

o
200

Metal Can Package
Order Numbers: LM171H, LM271H, or LM371H

Consumer Circuits
LM172/LM272/LM372 am if strip
general description
The LM172/LM272/LM372 is a broadband AM
receiver subsystem, including a high gain amplifier,
an active detector, and self-contained automatic
gain control. It is intended for IF or TRF applications from 50 kHz to 2 MHz. Bandpass shaping is
performed by a single, external filter, which may
be ceramic, crystal, mechanical, or LC, having
single or multiple poles. The I F strip features:

• AGC time constant and audio frequency response selected by choice of external capacitors.

• AGC Range: 60 dB

The LM 172 is specified for operation over the
-55°C to +125°C military temperature range. The
LM272 is specified for operation over the -25°C
to +75°C temperature range. The LM372 is specified for operation over the O°C to + 70°C temperature range.

• Audio Output of 0.8V p-p for 80% modulated
inputs, at carrier levels as low as 50 pV rms.
• Total dissipation only 8.4 mW from +6V supply,
usable with supply up to +15V.

• Internal supply regulators eliminate individual
stage decoupling.
• AGC voltage available to drive receiver "front
end."

schematic and connection diagrams

+Vcc

Vee

GROUND

TOP VIEW

Order Number LM172H
or LM272H or LM372H
See Package 11

typical application
Vee

CERAMIC
Fil TER

281

N
r0oM
I~

absolute maxium ratings

...J

........
N

roo-

Supply Voltage Range
Storage Temperature
Operating Temperature

N

~

...J
.........

N

roo-

+6V to +15V
-65°C to +150°C
-55°C to +125°C
-25°C to +75°C
0°Cto+70°C
500 mV rms

LM172
LM272
LM372

R F Input Level, Pin 2

~

~

...J

electrical characteristics
PARAMETER
Power Supply Drain

(T A

SYMBOL

= 25°C)

Ips

TYP

MIN

CONDITIONS
Vee = 6V, Input
= 455 kHz

= 50 mV

Vee = 6V, Input
= 455 kHz

= 50 pV

f

f

Vee = 15V, Input
f = 455 kHz
LMl72/272
LM372

1.4

mA

1.7

mA

2 .. 5
2.5

50
47

AGC Threshold

VIN(th)

Vee

= 6V, f = 455 kHz

Maximum Usable
Frequency

MUF

Vee

= 6V

V OUT

V IN Between 50 J,J.V and
50 mV, 455 kHz, SO% modulated by 100 Hz,

Audio Output
Voltage

UNITS

= 50 mV

Vee = 6V, f = 455 kHz
LMl72/272
LM372

AGCR

AGC Range

MAX

mA
mA

2.65
3.2

69
69

dB
dB

50

pV, rms

2.0

MHz

Vee = 6V
LMl72/272
LM372

0.4
0.35

O.S
O.S

V, POp
V, POp

Vee = 15V
LMl72/272
LM372

0.45
0.40

0.9
0.9

V, POp
V, p-p

input-output impedance characteristics
AGC Stage Output Resistance
vs Temperature

AGC Stage Input Resistance
vs Temperature

Detector Output Resistance
vs Temperature

205 r--r--.--""--r-~~"""--'--/
...
Ie = 455 kHz, Vee =6V

Ie = 455 kHz, Vee =6V

g
~

175 .....-+--+--+--+--+-+----+--,H-'--t

/

z

i!

~

1.BB

z

~

~~~~~~~-+-+~

I~

;:)

115 .....-+--+-+--+--+--+---+-+--t

t;

:

/"
I

~

V-+-+--I
711F--

BO% MOO, 400 Hz

V
/

c[

145 I--t-+-+--t-~-+:I'"~--;-t----I

~

Vee = 9V, VIN = 5 mV ims
Ie = 455 kHz

y

~V

....... _

,..--.....--....--....--.-....,...-,.-~---,""'7t

w

~

a:

1.9

1.B6

a:

f~

/

1.84 ~+/~-----+-I--+-+-+--+--f

Q

3.0

~~~~"""""--~~~--"~

-55

+25

TEMPERATURE (OCI

282

+125

B5

~~~~~~~~~~

-55

+25

TEMPERATURE ('CI

+125

1.B2

V

IL....~-'--....i---I---'---L..---"----I---'

-55

+25

TEMPERATURE ("CI

+125

typi'C'al characteristics

AGC Threshold vs Vec
85

~

>
3c
.....
c

V'

75

55

~

45

::

69

I

...

'L

CI

fc;; 455 kHz
80% MOD, 400 Hz

z

35
25

CI

" "'- ...

57

53
12

::
~
::
~

125

+12~oC ~

12

-, ... ....

50

Audio Distortion vs Input
Carrier Voltage

c
i=
a:

u

Z
o

V

:IE

a:

c:(

::

57

...

30

fe = 455 kHz, Vee: 9V
25

50% MOD, 400 Hz

/~
10 -r-.

~

~~

o

~

5000

+125

+25

50llV

TEMPERATURE (OC)

...

Ii
~
~

~

1.0

0.6

=

0.4

~

=
Ci
=
0
0

0.2

~

0.4

e:=

51lV

0.2

Ci

50mV

5mV

=

o
o

=
c:(

SOIlV

5 mV

.5 mV

OUTPUT AUDIO BW 5 kHz
~~""""'-'--""""""""'-'--""""~~

-55

50 mV

.

;~~

Audio Output Noise vs Input
Carrier Voltage

Smoo~hing Capacitance
.95

1.1

+125

.

p--p Audio Output vs Output

p.p Audio Output vs Carrier
Frequency
,

+25
TEMPERATURE (OC)

Vee (V)

CARRIER VOL TAGE (rms)

"

10. _ .........,..,.nmr--......."TTnmr--T"""'I"TT"

.......... i'oo..

.......
~

.

~

~-

4.5 H'+--+--:::;;~~~......t!!I1~+--+--t

2

=
=
Ci
=

-

~
>
.g
Ci

0.6

c:(

c:(

~

.1~5~
0.5mV

.

...en

0.8

f

=

~

-~
......

1.2

A.

o
o
Ci

+125°C

~~

Audio Output Noise vs
Temperature
.IV IN =50 mV

0.8

~

~'

CARRIER VOL TAGE (rms)

: /1'

1.2

~

I

c:(

~ r-~25~~.

Car~~rVoltage

/

-55YC

15 -r-

P~P~~diO Output ~s:,lnput

1.0

IIIII

20 - r - '

.....

~Ij

500

80

PERCENT MODULATioN

o

~: ~I-'~.

70

50

30

~
z

FREQUENCY (kHz)

.......

.--- i--"" ~

Ci

65

25

15

to
-55°C IVee = +7.5V)

45

1

61

u
c:(

-55°C

65

85

CI

I I

69

>
3- 105
~
a:

/

V

/V

AGC Range vs Temperature

145
Vee: 6V
80% MOD, 400 z

~/

I

Vee (V)

AGC Threshold vs Carrier
Frequency

c

I

t

r--.. ~ ....

6

15

Vee (V)

~

'-r"r'
,

V
V

f mod : 400 Hz

fe : 455 kHz
80% MDD'1400~z

u

+25°C

~25°~

r fc: 455 kHz

+125°C

61

~~_Ol-·

I/o

-

c:(

c:(

I
I I I
I I
I
Vee: 9V, VIN : 5 mV rms

I I

'"-.

a:

J125 JC

c:(

'"

~~

1

CI

1'"

65

-55°~/;

~a:

u

-

/

/

65

",.,...' ~

Audio Distortion vs %
Modulati6n

AGC Range vs Vce

~

i"~

"

A.
~

"-

0
0

0.7

c:(

7.5

>
.g

0.9

...en

Ci

\

80% MOD, 400 Hz
~
Vee = 6V. VIN = 5 mV rms

z

,

50 kHz

0.5 MHz
CARRIER FREQUENCY

=
=

A.
~

.65 1---+--+---+-+-""'*::--+

IIIII

0.5

5.0

~

.55
5MHz

0

L - .........- - ' - _ ' - -................._ L - ....................-.

0.01

0.05
COUT (IlF)

0.1

2.5

OL.-.l....L..........u.u.L_I......L..........ULL.---L...............W

50lAV

0.5 mV

5mV

CARRIER VOL TAGE (rms)

50mV

N

........
(W)

power ~upply characteristics

:E
....I

........
N

Power Supply Current vs
Input Cartier Voltage

........

N

2.1 ,.........,....,....,.-,................................

:E

Power Supply Current
vs Temperature

Power Supply Current vs VCC
2.4

....I

........
N

...:E

"'

.!

1.8

........

"'

2.0

.!
I-

l-

Z

~

w

II:
II:
;:)

II:
II:

1.6

;:)

Co)

Co)

>-

....I

t
en

1.5

;:)

1.2
51lV

>-

t
en

;:)

1.2

0.8
50 IlV

.5 mV

5 mV

12

50 mV

15

Vee (V)

CARRIER VOL TAGE (rms)

+25

TEMPERATURE 1°C)

?R4.,

+25

TEMPERATURE (OC)

Minimum Operating VCC
vs Temperature

-55

-55

+125

+125

Consumer Circuits
LM273/L",,373 am/fm/ssb if amp/detectqr
LM274/LM374 am/fm/ssb if video amp /detector
general description
The LM273/LM373 and LM274/LM374 are broadband communications subsystems, capable of performing the diverse functions required in AM, FM
or single sideband receivers and transmitters. In
addition, the LM274/LM374 may operate as high
gain AGC'd video amplifier. Bandpass shaping ~ay
be performed by a single external filter, connected
between amplifier sections, at frequencies from
audio up to 3Q MHz. The first' section of the
LM273/LM373!s optimized to drive low impedance loads, such as mechanical or ceramic filters.
The LM274/LM374 has a high output impedance,
ideal for high-Z crystal, LC or ceramic filters.

•

Low feedthrough between amplifier sections,
typically better than 65 dB

CONNECTED FOR FM OPERATION
•

Three emitter coupled limiting stages and simple
quadrature detector

•

Detection of ±5 kHz deviation FM at either
455 kHz or 10.7 MHz

•

Two separated amplifier blocks, allowing filtering in two or more blocks

•

No DC paths required through external filters or
through quadrature netvyork

CONNECTED FOR SSB OPERATION
The LM273 and LM274 are specified for operation
over the -25°C to +100°C military temperature
range.'1The LM373 and LM374 are specified for
operation over the O°C to + 70°C temperature range.

features

Double balanced product detector

•

Self contained audio peak AGC system

•

Easy external tailoring of AGC characteristic
for desired AGC figure of merit

CONNECTED FOR VIDEO AMPLIFIER
OPERATION

CONNECTED FOR AM OPERATION
•

•

High gain; typical
455 kHz

sensitivity of

10 J,lV at

•

Wide bandwidth; 30 MHz capability

•
•

Self-cpntained d~tector and AGC system
Wide AGC range, greater than 60 dB for a 10 dB
output change at 27 MHz

•

Less than ±1 dB change in audio output -20°C
to +1 OO°C, typically

•
•

• I nternal video peak detector for video AGC
• High and low level video outputs
•. Gated video AGCcapability
In addition, these versatile microcircuits may be
used as:
•

Constant amplitude or amplitude modulated
RF oscillator

Access to detector input for SIN improvement

•
•

Synchronous demodulating I F strip
Mixer and IF, using AGC section as a mixer

No DC paths required through external filters

•

Double sideband modulator with audio AGC

schematic diagram
AGCSTAGEOUTPUT
lM:!741l14

FMOUAOAATUREo/AMMIXfA

QUAORATUREOHECTORI
AMPllFIERIPROOUCT

U,.I"L,,"CEISSI If 0 IN'UT

OETECTOROUTPUT

tl0

f.

-rn-

.u·~·i:.~~..L~l

.fI. ,

lO.LEVEL~~

"t_-~· _~

t

L

I"

~

1

111 1

Pin connections shown are for TO-5 package only.

285

absolute maximum ratings
Supply Voltage, Operating
Supply Voltage, Surge (100 ms max)
AC Voltage Applied to Any Pin
DC Voltage Applied to AGCiSection Output Piri
'\~M273/LM373
:
LM274/LM374

18V
24V
l.4V p_p
+10V, -0.5V
+180, -0.5V

DC Voltage Applied to Any Other Pin
Junction Temperature (Note 1)
Storage Temperature Range
Operating Temperature Range
LM273,LM274
LM373, LM374

+8V, -0.5V
150°C
-65°C to +150°C
_25°C to +100°C
O°C to +70°C

electrical characteristics
(T A = 25°C, Vcc = +12V unless otherwise noted) (Subscript numbers in parentheses are DIP pin numt;>ers)
DC CHARACTERISTICS
PARAMETER

LM273/LM274

SYMBOL

CONDITIONS

MIN

Power Supply Current

TYP

VCC = 12V, AM Mode

110(14)

14

-20°C:'::::: T A ~ +1 OO°C
AGC I nput Current

V AGC

~

50

5V

V 9(12)

V AGC = OV, LM273/LM373

19 (12)

V AGC = OV, LM274/LM374

AGC Section Output Shift

MAX

MIN

20

TYP

14

MAX
20

21

-20°C:'::::: T A:'::::: +100°C
AGC Section Qu!~scent Output

LM373/LM374

~--~----~----~~--~----~----~ UNITS

mA
mA

110

50

110

110
4.75

4.75
0.7

0.5

1.0

0.7

0.5

1.0

mA

V AGC = OV to V AGC = 5V
LM273/LM373

0.1

0.1

61 9 (12)

LM274/LM374

-0.1

-0.1

3.8

3.8

V

3.8

3.8

V

Second Section Quies<;ent
Output Voltage
Peak Detector Quiescent
Output Voltage

V

6V 9 (12)

V a (10)

mA

VIDEO CHARACTERISTICS
AGC Section Voltage Gain

V AGC = OV, f = 455 kHz

AGC Sectiqn Transconductance

gm2-9(11)

V AGC = OV, f = 455 kHz

28

-20°C ~ T A ~ 100°C
LM274/LM374

28

RL = lk, V AGC = OV,
V 2 = ±300 mV,

0.95

-20°C:'::::: T A ~ 100°C

0.7

A4 -

f=455kHz

0.78

1.4

22

37

32.5

T A = 100°C

MHz

29.5

39

1.4

22

dB

37

dB

20

MHz

31

Second Section Bandwidth

ZL = 100k 113 pF

Second Section Output Swing

V3 -

4

mmhos

30

30

fl = 30 MHz, f2 =
30.455 MHz, e2 = 800mVrms
(See Figure;S)

7 (11)

40

mmhos

ZL=lk113pF

Second Section Voltage Gain

28

40

AGC Section Output Swing

AC,AGC

dB
dB

28

AGC Section Bandwidth

AGC Section Conversion
Voltage Gain

-40

-40

-20°C:'::::: T A ~ 100°C
LM273/LM373

dB

32

29

32

30

V AGC = 4.5V

= ±100 mVp-p

-20°C ~ T A ~ 100°C

20
0.93

1.4

.83

1.4

Vp-p

0.75

Vp-p

AC PORT PARAMETERS (Typical, elN = 20 mVrms)
LM273/LM373

TERMINAL

.'

,:.",

f

=455 kHz

f

= 10.7 MHz

LM274/LM374
f

= 27 MHz

f

= 455 kHz

f

= 10.7 MHz

= 27 MHz

2 (V AGC = OV)

1.2k 112.5 pF

1.2k 112.5 pF

1.15k 112.6pF

1.2k 112.5 pF

1.2k 112.5 pF

1.15k 112.6 pF

2 (V AGC = 5V)

1.18k 113 pF

1.18k 113 pF

1.1k 112.7 pF

1.18k113pF

1.18k113pF

1.1k 112.7 pF

4

4.5k 114 pF

5k 115 pF

4.3k 115.5 pF

4.5k 114 pF

5k 115pF

4.3k 115.5 pF

6(8)

3.0k 117.7 pF

3.0k II 7.7 pF

3.0k 118.0 pF

3.0k 117.7 pF

3.0k 117.7pF

3.0k 118.0 pF

7(9)

1.0k 116 pF

1.0k 116 pF

1.0k 115 pF

1.0k 116 pF

1.0k 116 pF

1.0k 115 pF

9(12)

70n 11-100 pF

60n 115 pF

200n 11-90 pF

600k 115.5 pF

100k 113.3 pF

10k 113.5 pF

Note 1: For operation at elevated temperatures, derate devices based on 150°C maximum junction
temperature and 150° C/W junction to ambient or 45° C/W junction to case thermal coefficients for
the metal can.

286

f

~

3:

electrical characteristics (con1t)

N

TYPICAL AM PERFORMANCE (See Figures 1 and 2)

.......

'"

W

PARAMETER

CONDITIONS

~

f = 455 kHz

f = 27 MHz

f = 10.7 MHz

3:

UNITS

Sensitivity

(Signal + Noise)/Noise = 10 dB

10

15

30

/.Nrms

AGC Threshold

Output 3 dB below extrapolated
low level gain curve value for
same input

35

.55

110

IlVrms

AGC Figure of Merit

Number (dB) input change from
100 mVrms for 10 dB output change

68

Gain Control Range

V 1 = 0 to V 1 = +5 V

Audio Output

RAGe = 2.4k, VIN 100 mVrms
f m =lkHz,m=0.7

W

"W..
~

60

63

dB

80

70

66

dB

100

100

100

mVrms

As above, T A = 100°C
LM273 ~nd LM274 only

90

90

90

mVrms

Signal to Noise Ratio

M = 0.7 to M = 0
elN = 30 mVrms

42

38

40

dB

Audio Distortion

M = 0.7, fm = 1 kHz, .
elN = 10 mV

5

3.5

2.8

3:
N

'"
~

.......
~

3:
W

"

~

%

TYPICAL FM PERFORMANCE (See Figures 3 and 4)
Limiting Threshold

eo = 3 dB from value' at
elN = 100 mVrms
t.f

= ±75 kHz

t.f=±5kHz

800

800

IlVrms

800

IlVrms

45

dB

Mfm = 1, Mam = 0.3
elN = 10 mVrms

AM Rejection Ratio

t.f = ±75 kHz

Audio Output

t.f = ±5 kHz

35

= 10 mVrms
t.f = ±75 kHz
t.f = ±5 kHz

70

dB

elN

@T A = 100°C, t.f

= ±75 kHz

@ T A = 100°C, 6f = ±5 kHz
LM273 and LM274 only
Audio Distortion

40

80

mVrms

38

mVrms

50

mVrms

19

mVrms

elN = 10 mVrms
t.f = ±75 kt:!z
2

t.f = ±5 kHz

1.5

%

1.0

%

TYPICAL SSB PERFORMANCE (See Figures 5 and 6)
25

30

60

IlVrms

300

300

500

IlVrms

60

60

50

dB

elN = 100 mVrms

60

80

85

mVrms

TA = 100°C
LM273 and LM274 only

40

55

60

mVrms

Sensitivity

(Signal + No,ise)/Noise = 10 dB
eLO = 60 mVrms

AGC Threshold

Same as AM

AGC Figure of Merit

Same as for AM

Audio Output Voltage

~

connection diagrams
Dual-I n-Line Package

Metal Can Package
+Vcc

+ycc

I

PEAKOETECTOA
OUTPUT

OUTPUT FROM QUAD

1

OETECTORfAMPlIFlERI

10

~~~~:TETECTOR

I

OUTPUT fROM QUAO

PAOOUCTOETECTOR

~~~~~~~RO~;~~;I~~~Rf
~~a;TRATEI

1

I--~_-+'- g.a1~L~~~::::

SUBSTRATE
lCASEI
GN.

Order Number lM273H or lM373H
lM274H or lM374H

See Package 14

Order Number lM373N or lM374N

See Package 22

287

typical performance characteristics
Power Supply Current
vs Supply Voltage
14

<

12

....a::

10

.!
!2;

LM2~_
LM274

--

Power Supply Current vs
Ambient Temperature
14

-- ~-

Vee = +12V

<
.!

-~

13

;2

<
a::

TA = 25°C

a::

CI

~ 12

~

:::;)

"""

......

""

:E

~ 11

==

I

3.0

I-

Q.

CI

(AM MODE)

~

Q

....;.:*.:.¥ ....

3.5 I--~ PIN 8(10)

;2

a::

4

I- (FM/SSB MODES)

4.0

...J

en

::;)

PIN 7(9)

I-

~

PIN 9(12) (LM273 ONLY)
(V AGe =0)-

"""

en
~ 4.5

.........

....

~
LM274· .... ~

t

t

~ 5.0
~

........ r--.....LM273

- r--..

1--"'"

::;)
Co)

....~

Output Terminal Voltage
vs Temperature

-,-

I

Q.

o

10

6

10

12

14

16

18

20

-20

SUPPLY VOLTAGE

Fi rst Section Voltage Gain
or Transconductance
vs Temperature

CD

....

;2

<
c.::J
....
c.::J

""

t-

36
",.,.

/-fur

-

-::-.. ....

34

...J

CI

>

'----::

--1-

~ 9V---==

-

32

~

<
c.::J

I-T~=25~C

....

./

~

~

-40

-20

0

20

40

60

80

AMBIENT TEMPERATURE

-60

100

50

30

i\

~ 20

""

t-

...J

CI

> 10

4.1

4.2

1.0

10
RF INPUT FREQUENCY (MHz)

J I III

".

80

,

t-

Q.

z

t~ -10

~

..

:J

~

~

-30 f--'

II:

r-

.

T~'lC

I-

o

r-

r-

!

~~

I-

IF INPUT VOLTAGE (IlV)

w

>

i=

:3
w

II:

-30

l-

TA = 100°C l -

I-

~

111111

-

-

100

1k

'"'-

100k

G.

If -

10

0 r-

r

-2

'~~U!fI~

:::3
Q
Q

60
l>

50

:::3

Vee =+12V
ffF = 455 kHz

I""" '"''''

100k

3:

~

m

-4 r-

r-

40 n-4

-6 r-

-

30

""> -8
i=
""...~ -10

0

rr-

20 0
10

"IIIIU I 11111
0.1

1.0

10

100

IF INPUT VOLTAGE (mV)

z

:Jl

l>
-4

ffF = 10.1 MHz
t.f = ±75 kHz
Vee = +12V
TA = 25°C

w

IF INPUT VOLTAGE (sAV)

30

I-

Ci

10k

10

Wide Band FM Audio
Output vs I F Input Voltage

TA = 25°C

Q

1111

1.0

FREQUENCY (MHz)

:::3

Q.

10k

111111111

0.1

100

::;)

III'

1k

10

Relative AM Audio Output
vs IF Input Voltage, Referred
to 100 mV Inpu'ts

II

100

1.0

LM274/LM374
Vee = 12V, TA = 25°C

i ,'j;,

FREQUENCY (MHz)

"'""" ffF = 27 MHz
I II
70% MODULATION
Vee = 12V
TA = 25°C

'-'-

10

'"

0.1

Ci
~ -20

~~

~ 40

> 20

100

l-

,...,.

~

VJe

t~ -10

r"

CI

10

:s

~
ffF = 10.7 MHz
I I I I I 111111 I I~ II
~ ~f~,~,~~,5 k,H~

:::;)

~L: ~ "'OO'~

--

<

'.

TA=100°C

~II"""

~ 60

CI

-

:s

100

RL2 = 1k

>

CD

10

Cascaded Sections Video
Gain vs Frequency,
LM274/LM374 Only

...J

AM I F Audio Output
vs I F Input Voltage

CD

1.0

0.1

FREQUENCY (MHz)

~ 20

0.1

Vee = 12V
RL = 1k
V, =0
I IIIII

~--

"

t-

Vee = 12V
TA = 25°C
ffF = 455 kHz
R = 1k
IIIIL I 11111

Co)

288

~

r!!l.~4~Hli . . . .

""

CI

>

c.::J

4.0

W

>
z

i=

3.9

c.::J

....

Q

""""

TA = 25°C

15

~ 10
a::

:3
w

~

:! 30

>
z

w

,

40

c.::J

Ci
~ -20

3.8

TA = -2ooC

25

<

~

3.7

11111

Second Section Voltage
Gain vs Frequency

CD

CI

3.6

...

TA = 25°C

~ 20 - r -

AGC VOLTAGE, VAGe (V)

First Section Conversion
Voltage Gain vs Frequency

:s
z

o

n)

I

,T,A = _20°C

1111

<

\~~

~

~

30

~

TA=+100°C

z

\\
~\

CI

"1111111 .~

~ 30

'\

~

>

11111111

,

~

~ -20

C")

45 ~
40

TA = -2o°C::t;~

t-- I
I
,.,.-'F
I-TA=1OooC~

z

60 ~
55 g

·····i~_ 50

~

40

20

65 C")
~

n)

First Section Voltage
Gain vs Frequency

Vee = +12V_
f= 455 kHz
RL = 1k

'~

~

-4
:Jl
l>

0 +20 +40 +60 +80 +100

AMBIENT TEMPERATURE

40

§

I.!_
Vee = 18V

:s

-20

First Section Voltage
Gain vs AGC Voltage

40
r- f= 1 MHz
RL = 1k
38 r- V, = DV

0 +20 +40 +60 +80 +100

AMBIENTTEMPERATURE rC)

1k

"'~

typical performance characteristics (con't)
455 kHz N FM I F Audio Output,
AM RejeCtion Ratio, and Signal
to Noise vs IF Inpl,lt Voltage

AM Rejection Ratio vs I F
Input Voltage for Wide
Band FM

10.7 MHz NFM IF Audio
Output vs I F Input Voltage
-r-

-

,~

50

I(

~

40

;

~

~I

J

....D.

IllIt 1

o
1.0

10

-

~ -20
>

-

....
flF = 10.7 MHz
flf = ±75 kHz
m= 0.3 (AM)
Vee = 12V
T = 25°C

10

~

~ -10

"

20

~
....
....
a:

1k

= 12V
f= 10.7 MHz
-+++HlIII-+++ flf = ±5 kHz
1111111 1111111
1.0

0.1

100

_

~ -10

-60

:: -20

:::J

>

oct

~ -40

100

1k

10k

100k

IF INPUT VOLTAGE (PV)

--

I I I T II
flF = 455 kHz
Vee = 12V
TA = 25°C
elF = 10 mVrms

~

flF = 455 kHz
fAUDIO = 1 kHz
Vee = +12V
VBFO = 60 mVrms

:3

10

~

:::J

2i -20

i=

L-L.UJ.LIII.L......I...LJ.W.LII....I....LJ.WJIII....I....UJ.LIIIL....L..L.J..LWII

A~DIO

....D.

CI
CI

~ -50

1 kHz

0

~

~ -30

-50

1M

100k

SSB I F Audio Output
vs BFO Voltage

SSB I F Audio Output
vs I F Input Voltage

:::J

-40

10k

1k

IF INPUT VOLTAGE !J.IVrms)

~ -10

~ -30

100

1k

~
....

~ -20
2i

....
~
oct
....

10

IF INPUT VOLTAGE (mV)

SSB I F Audio Output and
Intermodulation Products vs
IF Input Level

:::J

+l+IIHl--1-++

--+I+Hl#l--~Vee

-40

-10

I 1111111

_

-30

IIIII

100

TA =-20°C
IIllll II
TA=25°C

:TA = 125°C~~-+--l-+l+UII

IF INPUT VOLTAGE (mV)

~
....
....ie

I

.-

~ -30
a:
-40

NOISE _

~-

. --- ........ ---

.... -, ...

~..LWII......LJ..

10

100

1k

10k

100k

IF INPUT V.OLTAGE (pVrms)

10

30

50

100

BFO INPUT VOLTAGE (mVrms)

APPLICATION HINTS
The LM273/LM373 and LM274/LM374 devices
have been designed for stability and minimum
usage of external components, while at the same
time offering wide versatility through access to
inputs and outputs of nearly every major functional block of the device. This makes possible the
detection of AM, FM,and SSB signals with a single
device with a minimum of circuitry switching.
Experience has shown that for optimum performance of the multiple mode IF strip, the following
suggestions should be noted.
First, as with any radio frequency gain device,
proper layout and minimum lead length should be
observed. The first gain block, Pin 2 to Pin 9, shows
a typical gain of 32 dB and the second gain
block, Pin 4 to Pin 7, shows a typical gain of 37
dB so it is clear why any stray coupl ing or long
leads should be kept clear from any of the gain
input pins. Despite it's high gain, however, the
device does not require any shielding between
stages. Construction on a copperclad printed circuit type board is more than adequate. It should
also be observed that good power supply bypassing directly at Pin 10 and DC feedback bypassing
at Pin 3 is always necessary.

The devices can be wide-band coupled to provide
video gain response up to approximately 50 MHz.
For AM operation, however, it is much more desirable to limit the IF bandwidths. This will greatly
increase both input sensitivity and AGC figure of
merit by preventing the device from AGCing on
wideband detected noise. There are two ways of
accomplishing this. One is to insert filtering from
the first gain block to the second, Pin 9 to Pin 4,
but the most effective way is to AC couple an L-C
tank from the input of the active peak detector to
ground. A lossy filter from Pin 9 to Pin 4 should be
avoided as this will greatly reduce the audio output
and AGC figure merit. In addition the tank on Pin
7 should have high enough Q to limit noise yet
low enough to pass the full IF signal. It should
also have a high enough impedance (>5k) to avoid
affecting the gain of that stage. Proper audio output is attained by a small capacitor at Pin 8 to
peak detect the R F envelope, followed by a series
RC roll off to shape the audio response. Here
again excessive loading will reduce available output. There is a trade off available between audio
level out and AGC range so the feedback resistor
from Pin 8 to the AGC feedback, Pin1, should be
adjusted to give the desired results. Pin 1 must

289

be filtered well with approximately 15 J.1F capacitor or larger to prevent any AC variation from
causing erratic AGC action.

place symmetrically around the resonant frequency
of the tank. Since the audio output for FM is at
Pin 7, it should be R F bypassed along with audio
roll off and de-emphasis.

For proper FM operation, the input level needs to
be larger, on the order of 1 mV to give full limiting
which is necessary for good AM rejection. Here
again low loss coupling from Pin 9 to Pin 4 is
desired. The phase shift network on Pin 6 should
be shielded to prevent any extraneous R F pickup
or radiation. Also the Q of the network should be
adjusted to give the proper bandwidth for the
type of signal to be detected, whether wideband or
narrowband FM. Obviously, it should be tuned
to the same center frequency as the I F input and
the Pin 9 to Pin 4 filtering so that detection takes

For SSB operation, the devices operate almost
the same as in the AM mode, with the exception that the product detector which was unbalanced and used as a simple gain stage for
AM is now balanced and used for detection. The
local oscillator signal is fed into Pin 6 at an optimum level around 60 mVrms. For better AGC, a
capacitor may be added to Pin 8 in addition to
the one already at Pin 1 to provide even more
filtering for AGC feedback voltage. The output
level and AGC figure of merit is still adjusted by
the feedback resistors from Pin 8 to Pin 1.

typical applications
01

·CIpa(:ltorsnotedb.,.utertskareO.l,t455ItH,. llsMIUflNo.4JA105C8Ifor455kH"

8 IUlns No 26 AWG on, Mlcrometlls T25-1 Carbonyle Core (.255 00

k

.IBO ID

k

.096W) lor 10 1 MHl, ]·1/2 turns No. 20 AWG 5/16"

dill 1/4" long lor 21 MH,.

1000012

001

1000250

1000

500

1000

300

500

180

r---~~------------------------------------------l

r--------

I
I
I
I

I

I
I
I

iI

I
I

Vee
+I2V

~
01,'1'

I
J

o-!-,

':"

FIGURE 1. lM273/lM373 AM IF Connection

r-----------------------------------------------l
r--------

I

I

I

I
I
I
I

I
I
I
I
Vee
+12V

I
I

I

~1' ':"
01,'

o-!-,

J

. -......JIII.I.,......-o() ~~~~T

.01"r

R2r101''·C··T

51'

L.,:"

T

C3

•

':"

-SetFllUre1 forcomponentVlluts

FIGURE 2. lM274/lM374 AM IF Connection

r-----------------------------------------------l
r-------T Pr. S turnl No. J2. SK JOlurns No. 32, COleMIclomrulsT25·2 IRef. F... " 1).

I
I
I
I

I

10.7MHI

fIT,
-

I

I
I
I

4-:-~

I
J

I
Vee

5-

+12V~

oo,"'~

':"

oOI"t

0l"

[t1'30.'

1.1'
0-21HIt

FIGURE 3. lM273/lM373 Wide Band FM IF Connection

290

1'.0075"

typical

applicat~~ns (con1t)

·For455kH,.Tls8t&60tNo.36AWGonMlc,ometalsT2S-3COIeICa,bonyIHP.. 255001l.1201O
lI.096W),Lls680turnsunlversalwoundNo 38 enamel With 10-32)1 1/4" Carbonyl HPcoie. For
10.7 MHz, T Is51& lOt of No. 32 AWGon M.crometals T2ft.'2 Cote; lls31tNo.]6 AWG on 20Dd"

r-----------------------------------------------l
r-------C1
101m with 10-32.11 114" Carbonyl E CorelQAV '" 1101.

I
I

I

mkH'Srr

I
I
I
I

101MHz
5kHz

~

I

51

V"
+12V

I

~1,,~5-

01"T

I

I
J
fMAUOIO
OUT

':"

FIGURE 4. LM273/LM373 Narrow Band FM IF Connection

r---~-------------------------------------------l

r-------I

I

I
I
I
I
I

I
I
I
I
Vee
+12V

I

I

I
J

O-!-,

~

Oo01"~

':"

L...---+-...--o ~~~~~T

001.'

MANUAL

I

MANU~~

GAIN
CONTROL

FIGURE 5. LM273/LM373 SSB & CW I F Connection

r-----------------------------------------------l
r--------

I
I

o

I

I
I
I
I

I
I

I

I

I
I

I

Vee
+12V

~

J

O-!5-,

oOI"~

Vee

':"

L..----+-...--o ~~~~~T

1

001

.,

FIGURE

MANUAL!
CW

SK ::I:UAl
CONTROL

1'2M

6. LM274/LM374 SSQ & CW IF Connection

291

typical applications (con't)
r-------------r~~====~~~------------------------l

I

I
I

!

I

yr',

I

I
R,

:

i

I

I

.~~~~_!_

.J

0,0'"'1' ':"
HIGH
LEVEL

VIDEO
OUT
MANUAL

5K

J'O'"'
FIGURE

GAIN
CONTROL

7. LM274/LM374 Video Amplifier Configuration

·C.plcltorsnotedhyaste,.sII areO.I.1455kHz l "Mllier No.4JA10SCBI for 455 kHz,
8 turns No. 26 AWG on MlCfometals T25 2 Carbonyle COIl' (.255 00 It .180 10 It 096W) 10110 7 MHz. 3-1/2 turns No. 20 AWG 5/16"
dlax 114" lon!/IOI 21MHI

r-----------------------------------------------l
r--------

I
I

I

R'

tr

I
I
I

I
I
I
I
.J

I

II
~--q:r-

Vee

1

+12v~1
.

OlUF

T

' ':' '

51K

-:;

.OI..,F

ilOCAl¥,8V

osc.

INPUT

RMS

'"
";0
:;" rO'h'

IDS

,

lO,
OSe.TERM

OOl"'T
_

.-----------.-----------~~----------------------------~

1',0'"'
FIGURE 8. LM274/LM374, LM273/LM373 First Stage Converter Operation for AM Signal Detection @ 455 kHz

292

Consumer Circuits
LM175/LM275/LM375 oscillator and buffer with TTL output
general description

featur~s

The LM175/LM2i5/LM375 is a monolithic, differential pair, general purpose oscillator. It may be
used with crystal control or with LC or RC tanks.
Two output configurations are po~sible. It may be
connected to the internal isolating buffer to provide sine or square wave outputs, or to the internal
logic buffer with output levels and ,switching times
compatiqle with TTL and DTL logic circuitry. It
provides extremely high temperature and power
supply versus frequency rejection.

•

Oscillation up to 200 MHz

•

Operation from supplies from 4.5V to 24V
(Logic buffer maximum supply at 7.0V)

•

High supply voltage rejection, typically
0.1 ppm/V

•

Low temperature coefficient, typically
0.05 ppm/oC
.

•

Variable drive to crystal to limit dissipation

•

Capable' of fundamental or overtone, series or
PClrallel mode of operation

•

Separate po¥"er supply lead for logic buffer for
!19ise isolation

•

Low ppwer dissipation

The LM 175 is specified for operation over the
-55°C to +125°C military temperature range. The
LM275 is specified for operation over the -25°C
to +85°C temperature range. The LM375 is specified for~oper:ation over the O°C to +70°C temperature range.

schematic and connection
diagrams
.,

Dual-!n-Line Package

1

14

OSCillATOR Vee

BUFFER LIMITING INPUT 2

BUFFER OUTPUT

13

LOGIC BUFFER Vee

12 'LOGIC BUFFER OUTPUT

BUFFER LINEAR INPUT 3
OSCILLATOR' INPUT 4

11

OSCILLATOR OUTPUT 5

10

lOGIC
BUFFER

LOGIC BUFFER INPUT

~I~~ ;~pRRENT
MEDIUM CURRENT
BIAS TAP

OSCILLATOR-INPUT 6
B

GNO 7

DC REF BYPASS

TOP VIEW

Order Number LM175D
or LM275D or LM375D
See Package 1
Order Number LM375N
See Package 22

typical applications
+Vcc

+Vcc

01p·F

*,BYPASS

....-_ _ _ _-<) ~~~I~~:TOR

OSCILLATOR
OUTPUT

01 ... F

*,BYPASS

Oh,F

~BYPASS

FIGURE 1. 10 MHz L-C Sine Wave Oscillator

oI""'T",01#F
~IYPASS

FIGURE 2. 1 MHz Crystal Oscillator with TTL Output

293

U)

r-..

(W)

:E

absolute maximum ratings

....I

"Nr-..

U)

Supply Operating Voltage (Pin
Supply Operating Voltage (Pin
Differential Input Voltage 6.V
6.V
Power Di~sipation (Note 1)

:E
....I

'"...r-..

14)
13)
P4 to Pin 6
P2 to Pin 3

24V
7V
5V
5V
500mW

Storage Temperature Range
Operating Temperature' Range LM175
Lfl,1275
LM375
Lead Temperature (aoldering, 10 sec)

o

-65°C to +150 e
-55°C to +125°e
-25°C to +85°e
oOe to 70°C
300°C

U)

electrical characteristics

:E
....I

(T A

= 25~C,

Vee

= 5V

unless otherwise noted)

'"

·PARAMETER

TYP

MIN

CONDITIONS

SYMBOL

MAX

UNITS

DC CHARACTERISTICS
4.0

6.0

12.0

mA

No Load at Pin 12

4.0

6.0

14.0

mA

AL (Pin 5) = 1 kn
p'jn 9 Open, Pin 10 Open
lS'in 9 Tied to Pin 10
~in 9 Grounded, Pin 10 Open
Pin 10 Grounded, Pin 9 Open

120
160
300
750

140
190
360
1000

Power SLppl y Current (Pin 14)

Ips14

Vee

Power Supply Current (Pin 13)

Ips13

Oscillator Output ~~rrent

lose

Buffer Output Current

lauF

Logic Buffer Output Voltage

V TTL

(

The Following Specifications apply to -55°C
Oscillator Output Current

Buffer Ouptut Current

los~

= 24V

Input LOW
Input HIGH
ISINK = 1.6 mA

2.5

3.0

2.1

2.7
200

IlAp-p
IlAp-p
IlAp-p
IlAp_p
mAp-p

400

mV

< TA < +125(;,6
R~
Pin
Pin
Pin
Pin

(pin 5) = 1 kn
9 Open, Pin 10 Open
9 Tied to Pin 10
9 Grounded, Pin 10 Open
10 Grounded, Pin 9 Open

lauF

100
130
250
600

IlAp-p
IlAp_p
IlAp-p
IlAp_p

2.0

mA p_p

AC CHARACTERISTICS
Oscillator Gain (at 1 kHz)

gmose

Pin
Pin
Pin
Pin

9
9
9
9

Open, Pin 10 Open
Tied to Pin 10
Grounded, Pin 10 Open
Open,' Pin 10 Grounded

Oscillator 3 dB Bandwidth

BWose

Rs

Buffer Gain (at 1 kHz)

gmauF

RL (Pin 1) = 500n
, Li near Mode
Limiting Mode

s

Buffer 3 dB Bandwidth

BW auF

= RL

(Pin 5)

= RL (Pin 1)
Linear Mode

~s

mmhos
mmhos
rnmhos
mmhos

1.4
1.9
3.6
10.0

= 50n

MHz

200

8

mmhos
mmhos

30

= 50n
MHz
MHz

200
80

I-i~.!ting M~ode
Logic Buffer Rise Time

20

50

ns

Logic Buffer Fall Time

20

50

ns

,
0

Note 1: For operation at elevated temperatures, the device must be operated based on a 150 e maximum junction temperature
with a thermal resistance of 140°C/W for the metal DIP package and 100°C maximum junction temperature with a thermal
resistance of 150°C/W for the plastic DIP package.
.

294

r-

3:
....
.......

(con't)

electrical characteristics

c.n
........
r-

PARAMETER

SYMBOL

OSCILLATOR CHARACTERISTICS

CONDITIONS

3:

UNITS

MAX

TYP

MIN

N

.......

c.n
........

(See Oscillator Circuit)

r-

Frequency vs Power Supply
Rejection

3:

ppmlV

0.1

5V-3.0,HI

*'50"

'TtyP. ss
.Dl",F

01/lF

~BYPASS

typical performance characteristics
1PS14 vs Temperature
(VCC = 12V)
8.5

8.0

,...

7.5
7.0

<
.!

..
j

6.5

~

".

~~

.JII' ~

~

8.0

""""'"

7.5

(P 10 GND)

<
.!

6.0

........ ~

5.5
5.0

"

1,...0-' ~

,."...,

~~

(P9 OPEN
P10 OPEN

r

~ ......

-...--cl

""

(P10GND)- -

5.5

J

........

4

12

16

Vee (VI

20

24

-35

(P9 OPEN )
P10 OPEN -

~

r--

-

45

85

TEMPERATURE reI

-

~ I-

~

800
600
400

r\

-I-- I-

1000

<
.3

6.5
6.0

1200

-

7.0

5.0

4.5

296

..
j

1400

.-- ""."..

-

200
125

P9GND

-

P9 OPEN
P10 OPEN

12

16

Vee (PIN 141

20

24

typical performance characteristics (con 't)
lose vs Temperature
= 12V

Vee
1400
1200

~

.....

1000

--

J.-+-

Phase Shift from Pin 6
to Pin 5

-

I - P10 GNO_
-

CI.I
....
....
a:

~
CI

C 800

~

..=:

j

t;:
600
400

i:

P9 GND

Vee = 5V
Rs= 50n
RL = 50n
TA = 25°C

-120
-70

....
CI.I

<

if:

P10 OPEN

45
TA

~

85

/

30

a:

~

-200

100

10

CI.I

<
:z:
Q.

II

10

~
~

-

Buffer Bandwidth

RL = 50n
TA = 25°C

....
~

cc

:;

,.,.
,,/ ~ \

CI

....>
>

~

~a:

...... 1-'
100

1000

_ Rs = 50n

::::I
CI

/

10

4

r-

J
I""""

100

Ve~ = ~V I

z

/

-100

o

Vee = 5V
Rs = 50n
RL = 50n
TA = 25°C

FREQUENCY (MHz)

CI

-150

-50

.2

1000

ose
II

i:
:

.4

FREQUENCY (MHz)

CI

~

~

:3
....
a:

~I"""

125

Vee = 5V
Rs= 50n
RL = 50n
TA=25°C

-250

.6

CI

>

/

130

Phase Shift from Pin 4
to Pin 5

ffi

.8

>
....

J

80

rCI

-300

....
<
:;
~

-20

180
-35

1.0

z

;;:

CI.I

r-- r-- r- P9 OP~N

200

ose Stage Bandwidth
1.2

-180

1000

o

10

1000

100
FREQUENCY (MHz)

FREQUENCY (MHz)

dc test circuit
OSC

TTl BUFFER Vee

Vee

S5

lose
14

13

10K

S4
12

O.U.T.

"
S6

10

lOOK

51, S2
53
54
S5

~.Ol

10K

Used to select desired astill.toreuuent
Used to swing oscillator output and measure lose.

Used to swing buffer output and measure IBUF '
Used to ...itch TTl buffe, to high and low state,

56 Switches in maximum guaflnteed TTL load to measure VTTl in the low stlte

297

o

CO
M

Consumer Circuits

~

....I

LM380 audio power amplifier
general description
The LM380 is a power audio amplifier for consumer application. In order to hold system cost to
a minimum, gain is internally fixed at 34 dB. A
unique input stage' allows inputs to be ground
referenced, The output is automatically self entering to one half the supply voltage.

alarms, ultrasonic drivers, TV sound systems, AMFM radio, small servo drivers, power converters,etc.

features
•

The output is short circuit proof with internal
thermal limiting. The package outline is standard
dual-in-line. A copper lead frame is used with the
center three pins on either side comprising a heat
sink. This makes the device easy to use in standard
p-c layout. A mini du'al-in-line package version
with reduced power capability also available.
Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs,

Wide supply voltage range

•

Low quiescent power drain

•

Voltage gain fixed at 50

•

High peak current capability

•

Input referenced to GND

•

High input impedance

•
•

Low distortion
Quiescent output voltage is at one-half of the
supply voltage

•

Standard dual-in-line package

block and connection diagrams
Dual-I n-Line Package

Dual-In-Line Package

BYPASS

BYPASS 1

14 Vs

NON·INVERTING INPUT 2

13 NC

Vs

BYPASS

INPUT
VOUT

.~{

")

B BYPASS

Vs

' NON·INVERTING INPUT 2

INPUT

Your
INVERTING INPUT 3

10
INPUT

6 Your

INPUT
INVERTING INPUT 6

B NC

GNO 1
GNO

5 GNO

GNO 4

8 VOUT

GND

GND

*Hlltsink Pins

GNO
TOP VIEW

TOP VIEW

Order Number LM380N

Order Number LM380N

See Package 22

See Package 20

schematic diagram
. - - - - - - - - - - . . . . . " . . -....- - -....-oVs (14)

.--__-J\o"""___--t_ _ _

-.--o~~TPUT

BYPA~o-----.

-IN

18)

III
13,4,5,10,11, 12)GNO

298

1 Vs

11 GNO *

GNU

r-

3:
w
00
o

absolute maximum ratings
Supply Voltage
Peak Current
Package Dissipation 14 Pin DIP (Note 6)
Package Dissipation 8 Pin DIP (Note 7)
Input VOltage
'Storage Temperature
Operating Temperature
Junction Temperature
Lead Temperature (Soldering, 10 sec)

22V

1.3A
5.0W
660mW
±0.5V
-65°C to +150°C
O°C to +70° C
+150°C
+300°C

electrical characteristics I(Note 1)
PARAMETER

SYMBOL

CONDITIONS

Output Power

~OUT(RMS)

Gain

Av

Output Voltage Swing

V OUT

Input Resistance

ZIN

Total Harmonic Distortion

THO

(Note 4,5)

Power Supply Rejection Ratio

PSRR

(Note 2)

Supply Voltage

Vs

= 3%

TYP

IQ

50

Quiescent Output Voltage

V OUTQ

Bias Current

I BIAS

Short Circu it Current

Isc

60

Vp-p

150k

n

%
dB

38

= 8n

22

V

7

25

mA

9.0

10

V

Hz

lOOk

8
Inputs Floating

V/V

14

0.2

POUT = 2W, RL

UNITS
W

8

BW

MAX

2.5

RL = 8n

Bandwidth

Note~:

= 8n, THD

40

Qu!es~ent Supply Current

Note 1: Vs

(Notes 3, 4) RL

MIN

100
l.3

nA
A

= 18V and T A = 25°C unless otherwise specified.

Rejection ratio referred to the output with CBYPASS = 5 J.LF.

Note 3: With device eins 3, 4, 5, 10, 11, 12 solderrd into a 1/16" epoxy glass board with 2 ounce copper foil with a minimum
surface of 6 square i n c h e s . "
" '.
Note

4:

If oscillation exists under some load conditions, add 2.7il and 0.1 J.Lfd series network from Pin 8 to Gnd.

Note 5: CBYPASS = 0.47 J.Lfd on Pin 1.
Note 6: Pins 3,4,5, 10, 11, 12 at 25°C derate 25°C/W above 25°C case.
Note 7: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature
and a thermal resista;'~~ of 187°C/W junction to ambient.
.
,

heat sink dimensions

,
3D"

Y

-~

/"

"-

r-1.5"~
II

II

I

I
I

I

n
'

1.5"

1.55

U J I

COPPE R WINGS
2 REQUIRED
SOLDERED TO
PINS 3, 4,5,
10,11; 12
THICKNESS 0.04
INCHES

--l0.251--

299

o

CO

('I)

:E

typical p~rformance characteristics

....I
Maximum Device Dissipation vs Ambient Temperature
6.0

Tc MEASURED
ONPIN4'ORll
5.0 .............,...ou--r--+--+(N OTE: 6)

4.0
3.0
2.0
1.0

o
010 20 30 40 50 60 70 80 90 100
TA - AMBIENT TEMPE~AT~RE (OC)
Device Dissipation vs Output
Power - 4n Load
3.5

3% OIST.
LEVEL

~ f---

3.0

Ci)
l-

3,5

r--

e:(

2.0

0

;:::

::Cii

14V

1.5

/'"

12V
10VJoo""
1.0 f-9V

CI)

C
w

u

~

",

/

/--r

/

-

/.

I-

t

/~ 10%

,/

~

~~

o1ST.

/1/

:.:::

LEVEL

~

~f-

x

~f-

0.5

Q

--

a::
a::

0.5 1.0 1.5 2.0

2.5 3.0

/

2.5

e:(

2.5

~
z

3.0

Ci)
lI-

J'

I-

~
z

~

~
C
w

~ /'
,/'
~

u

~

3.5 4.0

10.0
9.0

I-

8.0

a::
a::

7.0

u

6.0

~

5.0

~

::;)

~
::;)
CI)

~
I
.E

-

-"

\

3% OIST.
I--f- LEVEL

T

-I

10%
OIST.
LEVEL

I

=25°C-

-

z

1.8

;:::

1.6

0
I-

1.4

C

1.2

;2

1.0

0

a::

u
0

18

20

e:(

-

~
c

jW

>

100 200

500

1k

2k

5k

25
20

0.5
Ci)
Il-

1/1'

0.4

e:(

az
0

;:::

lL
J

0.3 f--

::en

en 0.2
C
w

u

~

Q

10

P~~T ~ ~Wl
10

100

0.1

I

V

g 30dB

'"
3%THO f--

~
c

~ 20dB

./{'"

1/

lk

II

5/lF

~

/'

./

10k

~

V I- ~'3%THO

10dB

RL = 40H

~

a::

0:5, 1.0

2.0

5.0

Po - OUTPUT POWER (WATTS)
l'

10

0.1

0.2

0.3

lOOk

/
~

~ 1,,00100'

~2/lF

""

1M

-,.,.

-

0.4

0

300

0

~r

10M

OUTPUT POWER (WATTS,)

fI'"

V

~ 0.4 7/lF

I ilill
NO BY~l~~I~APACITOR
111111

0.5

10 Hz

100 Hz

1 kHz

FREQUENCY

0

240

~

1

0.2

l

180

II

40dB

z

/

f-

120"

Supply Decoupling vs Frequency
50dB

(!I

I-- RL = 1612

,~~

~~

FREQUENCY (Hz)

RL =8H_ f--

V

60"

l\

IVeel = 9V0.1

~\

II I
I I I
Y
RL =8H I

15

0

C>" ~T\\

o

10k 20k

Q

300

0

RL = ~
I I I
PHASE

I.J

J.

J

Device Dissipation vs Output
Power

I 1.0

I-

,,~

30

FREQUENCY (Hz)

•

... ~

10% OIST.
LE1VEL
1

Vee = 18V

w

0.2

22

10
1,1 1111111
z 9.0 f-f=lkHz'
0
Vee'" 22V
;:::
a:: 8.0 f- RL = 8n
0
I- 7.0 f- CBYPASS = 5/lF
CI)
HEATSINK = TWO
C
u 6.0 f- COPPER WINGS;2
5.0 f- SEE FIG'. PAGE 4
0
:E
a:: 4.0
e:(

~

>

35

1W'
16

~

"'y

Output Voltage Gain and
Phase vs Frequency

C(

0.6 -?lomWI0.4

e:(

14

0.5

~

~ .....

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

z

::c

~

2.0

1:~ ~

u

(!I

Total Harmonic Distortion
vs Output p'ower

3.0

w

C 1.0

~

V+SUPPLY VOLTAGE (V)

.....
e:(

20\1 ",

OUTPUT POWER (WATTS)

o

I0
I-

CI)

....

(!I

.....

1.0

::c

::en

j,

40

0.8

I0
I-

12

-....;,-

;::: 1.5
22\1 ~
I--

RL = 8S2
18V

:E
a::

e:(

2.0

--

z

c

~
c

CI)

, .JII'V

10

3% OIST.
LEVEL ...

~ 2.0

2.0

I

TA

~
.-"

8.0

2.5

Ie:(

-- /' {'~...
-- - k' '> --\'\
....,. ,,-"
~

Ci)
l-

Total Harmonic Distortion
vs Frequency

3.0

3:

"":' r-.....

OUTPUT POWER (WATTS)

4.0

a::

3.0

0.5 1.b 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.,0

Power Supply Current vs
Supply Voltage
-=----''--0

.sv rms

240K

Typical Tape Playback Amplifier

Typical Magnetic Phono Preamp.

24V

24V

AO-rl-F~W~F~
B6-_fI-F...JjJVVo......

\I

C~"I-F~500~K~Il~~_~J.~JKr-_-.

220K

2K

2K
24K

-:- '1'
~

,;:

2"F

,~

!"!

.500K!!

:

No--4~-~-'"
I,

2"F-:-

Two-Pole Fast Turn-On NAB Tape Preamp

302

220K

Audio Mixer

24K

absolute maximum ratings
+40V
800mW
oOe to 70°C

Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o

-65°C to +150 e
300°C

electrical characteristics TA = 25°C,

Vee

=

14V, unless otherwise stated.

CONDITIONS

PARAMETER

MIN

TYP

MAX

UNITS

,--

Open Loop (Differential Input)

160,000

V/V

Open Loop (Single Ended)

320,000

V/V

10

mA

(Positive Input)

100

kn

(Negative Input)

200

kn

Voltage Gain

Supply Current

Vee 9 to 40V, RL

= 00

Input Resistance

I nput Current
0.5

(Negative Input)

IlA
n

150

Output Resistance

Open Loop

Output Current

Source

8

mA

Sink

2

mA

Output Voltage Swing

Peak-to-Peak

V

Vee - 2

Small Signal Bandwidth

= 24V)

15

MHz

75

kHz

Power Bandwidth

20 V p_p (Vee

Maximum Input Voltage

Li'near Operation

Supply Section Ratio

f

= 1 kHz

120

dB

Channel Separation

f

= 1 kHz

60

dB

Total Harmonic Distortion

75 dB Gain, f

Total Equ iva lent Input
Noise

Rs

300

= 1 kHz

%

0.1

= 600n, 10 - 10,000 Hz (Single Ended Input)

mVrms

0.5

0.7

IlVrms

LM381A

0.5

0.7

IlVrms

LM381

0.5

1.0

IlVrms

Noise Figure

50 kn, 10 - 10,000 Hz }
10 kn, 10 - 10,000 Hz
5 kn, 10 - 10,000 Hz

(Single Ended Input)

1.0

dB

1.3

dB

1.6

dB

303

...

00
M

:E

typical performance characteristics

....I
Large Signal Frequency
Response
C!I

z

22

3:

20

w

18

(I)

C!I

c:(

16

0

~

14

>
I-

12

~

I-

;:)

0
~

~
:.0:

,

\

I

Gain vs Temperature
I

Vee = 40V. Av = 1000
<1% DISTORTION

12

~

-

115

z

«

~

C!I

1\
\

10
8

w

.2

\

105

"1M

100

10M

25

100M

(I)

/v

30

c:(

0

~

I-

;:)

0
~

~

1.1
I
1.0 I- Vee

/
z

10

~

.9

60

.8

50

.6

o

:~ I--+--+--+--+--It-~ 6 ~

40

30

NAB EOUIVAlEN~ ' "

I--+--I---+--

120
110
a:
a:

60 dB~/","""",V'--:;;,o.f----i

100

~

90
!.OIl"

80
70
10

100

~

~

l'

lk

z

«

. 1

10k

C!I

':"'

.. ~..

100

lOOk

~

1\

NOTE: Rs = 0
MODE-SINGLE ENDED

\

'"

I
lOOk

10k

10

1001kHz 10 kHz 100 kHz 1 MHz
FREQUENCY (Hz)

Voltage Gain vs Supply
Voltage

'"

"-

80
\. ~~AIN
70
rPHASE'
.....
i"'I.
60 I---50
40
30
20
10

~"
,,'-.

10

10M

Noise Voltage vs Frequency

10

1k

~~
~

100

lk

10k _1M

15
30
45
60
75
90
105
120
135

110

1M

~

100
."

::I:

l>

iii

90

z

80

:=!-'

m

«

70

Z
~
C')

w
C!I

60

(I)

C!I

c:(

~

0

>

150
165
~
180
10M

'\.\

0
1M

",,-

I- Av = 1000
Vee = 12V

120

\.

-

-

50
40
30
20
10
10

15

FREQUENCY (Hz)

FREQUENCY (Hz)

12

10

Gain and Phase Response
120
110
100
90

'"
to-

25

30

35

40

Pulse Response
I

NOTE: Rs= 50k
MODE-SIGNAL ENDED

t--- t--t-

20

SUPPLY VOLTAGE (V)

Noise Current vs Frequency

/---

40

"

FREQUENCY (Hz)

PSRR vs Frequency

~

.............

~

20

40 dB

SUPPLY VOLTAGE (V)

35

30

~~J.-'

10

130

30

40

1--+--1---+----+-+--+-+----1

o
20

25

.7

.2
.1

10

20

70

I

=12V --+----l---t-----+--t----i

.5

~

15

Channel Separation

o

/v

:.0:

10

SUPPLY VOLTAGE (V)

a:
o

~

/v

20

75

% Distortion

40

z

3:
~

50

TEMPERATURE (C)

P-P Output Voltage Swing vs
VCC

>

i--"'"

\

FREQUENCY (Hz)

I-

-

-

~

V
./

~

>

1 kHz 10 kHz 100 kHz

C!I

10

u

0

~

w

«'

.§

110

c:(

\

6

11

C!I

Q.

C!I

VCC vs ICC
13

120

Av

I

=lO- r--

•

I-

~

r-- t-I-o

I-

;:)

o

t----

w
~

4

"
1\

3

1\

;:)
Q.

,

\
100

lk

f (Hz)

100

lk
f (Hz)

10k

-1
-20 -10 0

V
10 20 30 40 50 60 70 80
TIME (f-ls)

Consumer Circuits
LM382 low noise dual preamplifier
general description
The LM382 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two
amplifiers is completely independent, with individual internal power supply decoupler-regulator,
providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include
high gain (100 dB), large output voltage swing
(V cc -2V) p-p, and wide power bandwidth
(75 kHz, 20 Vp-p)' The LM382 operates from a
single supply across the wide range of 9 to 40V.

circuit is supplied in the 14 lead dual-in-line
package.

features

A resistor matrix is provided on the chip to allow
the user to select a variety of closed loop gain
options and frequency response characteristics
such as flat-band, NAB or R IAA equilization. The

•

Low noise - 0.8 JlV total equivalent input noise

•

High gain - 100 dB open loop

•

Single supply operation

•

Wide supply range 9 to 40V

•

Power supply rejection - 120 dB

•
•

Large output voltage swing
Wide bandwidth - 15 MHz unity gain

•

Power bandwidth - 75 kHz, 20 V p_p

•

I nternally compensated

•

Short circuit protected.

schematic and connection diagrams
Dual-In-line Package

+IN(1) 1

14 +IN(2)

-IN(1) 2

13 -IN(2)
12 GAIN CONTROL(2)

GAIN CONTROL(I) 3

11

GNO 4

(1.81

Vee

GAIN CONTROL(I) 5

10 GAIN CONTROL(2)

GAIN CONTROL(I) 6

9

GAIN CONTROL(2)

OUTPUT(I) 7

8

OUTPUT(2)

TOP VIEW

Molded Dual-In-line Package (N)
Order Number LM382N

typical applications

lK

Tape Reamplifier (NAB Equilization)

.OOI5jlF

Phono Pre-Amp (RIAA Equilization)

Flat Response - Fixed Gain
Configuration

305

absolute maximum ratings
Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

oOe

o

e

-65°C to +150
300°C

electrical characteristics

TA

= 25°C,

Vee;= 14V, unless otherwise stated.

CONDITIONS

PARAMETER'

+40V
800mW
to 70°C

Voltage Gain

Open Loop (Differential Input)

Supply Current

Vee 9 to 40V, RL

=

MIN

TYP

MAX

100,000
10

00

UNITS

V/V
16

mA

Input Resistance
(Positive Input)

100

kQ

(Negative Input)

200

kQ

I nput Current
0.5

(Negative Input)

Q

150

Output Resistance

Open Loop

Output Current

Source

8

mA

Sink

2

mA

Output Voltage Swing

Peak-to-Peak, R = 10k

V

Vee - 2

Small Signal Bandwidth

306

I1A

= 24V)

15

MHz

75

kHz

Power Bandwidth

20 V p _p (Vee

Maximum Input Voltage

Linear Operation

Supply Rejection Ratio

f

= 1 kHz

Channel Separation

f

= 1 kHz

Total Harmonic Distortion

60 dB Gain, f

Total Equivalent Input
Noise

Rs

Noise Figure

50 kQ, 100 - 10,000 Hz

1.0

dB

10 kQ, 100 - 10,000 Hz

1.6

dB

5 kQ, 100 - 10,000 Hz

2.8

dB

= 600Q,

300

40

= 1 kHz

100 - 10,000 Hz

mVrms

120

dB

60

dB

. 0.1

0.3

%

0.8

1.2

I1 Vrms

r-

3:
w

typical performance characteristics

00
N
Large Signeil Frequency
Response
t:l

z

3:
en

22

cc

16

~
c

>

I-

~

I-

::::I

c

14

12

!z

t:l

\

10

w

>

\

~

'-.....
1 kHz 10 kHz 100 kHz

1M

100M

25

/v

30

>

::::I
~

I-

::::I

C

::.::

~

/

~
z

i=

.6

c

a:
c

.5

en

.4

I-

C

10

/'"'

:0::

~

90
1000"

80
70
10

100

~

rtb

l'

lk

z

;;;:

. 1
'. ~*

10k

t:l

':'

lOOk

1M

14
I~

12

~
z
;;

40

10

Av
I- Vce

lk

10k .1M

\.\

15
30
45
60
75
90
105
120
135
150
165
180
10M

,\,

1M

110 [=Jk~~;::::r=:E=f::J

100 ~
90 I---I------<~--I---I--+-~

:z:
"

~

~

;;;:

l>

Z
c
m

C)

z

au

1---4--+---+--1---+---1

70 I---+----If----I--+--f--I
60 I---I------<~__I-__I-_+-~

t:l

w

50

cc

40

t:l

....
c

I-

>

....

30
20
10
0
10

15

~

r---....

~

0.8

~

0.6

I""'- ~i"

25

1k

I (Hz)

10k

I

..

I-

::::I
~

r-- t-~

I-

::::I

C

w
~

4

40

I

"
1\

1\

::::I

0.4

100

35

Av = 10- I--

~

,

\

0.2

100

30

PLllse Response

1.0

::?

20

SUPPLY VOLTAGE (V)

NOte; J ~s~ ~~~

N:JT~: ~~ ~ ~ I

1 k\:,z 10 kHz 100 kHz 1 MHz

Voltage Gain vs Supply
Voltage

"

100

"

100

Noise Current vs Frequehcy

I~

'\

= 1000
= 12V

FREQUENCY (Hz)

"~ roo-

10

cc

~

FREQUENCY (Hz)

\. "\.

10

10M

\

::?

a:

lOOk

,\.

Noise Voltage.vs Frequency

1\

40

-... ....

'"
I

10k

80
\. ~AIN
70
_ PHASE' ....
~
60 t--~~
50
~"\.
40
30
20
10

FREQUENCY (Hz)

16

50

Gain and Phas~ Resp'onse

110

Ie

z
i=

FREQUENCY (Hz)

120

35

~
....enw

lk

100

120
110 ~
100
90

10ri

c

40 dB
10

130

30

Z
Z

PSRR vs Frequency

a:
a:

60

~

cc

SUPPLY VOLTAGE (V)

~

§

:z:
t.)

40

30

.$"

.3

o
20

25

70

NAB EQUIVALENT"

.2
.1

10

20

Channel Separation

.8
.7

15

SUPPLY VOLTAGE (V)

1.1
I.d
1.0 I- Vee = 12V -+-----11---+--+-+---1
.9

/v

20

10

75

% Distortion

40

~
c

50

TEMPERATURE rC)

Z

I-

-

~

90

10M

3:
en
cc

-

"... i-""""

95

P-P Output Voltage Swing vs
VCC

t:l

/

Jl

FREQUENCY (Hz)

w

10

\

~

t:l

C[

E

100

cc

~
c

\

::.::
~
:0::

11

t:l

\

8

-

105

;;;:

~

12

VCC vs ICC
13

110

I

Vee = 40V. Av = 1000
<1% DISTORTION

\

18

t:l

,

20

w

r

Gain vs Temperature

1k

I (Hz)

10k

-1
-20 -10 0

...
V

10 20 30 40 50 60 70 BO
TIME (iJs)

307

m

I'

s:

c.n
0)
c.n

Consumer Circuits

........
I'

LM565/LM565C phase locked loops

~

c.n
0)
c.n

general description
The LM565and LM565C are general purpose phase
locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM
demodulation, and a double balanced .phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10: 1 can be obtained
with the same capacitor. The characteristics of the
closed loop system-bandwidth, response speed,
capture and pull in range-may be adjusted over a
wide range with an external resistor and capacitor.
The loop may be broken between the VCO and
the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.

•

0.2% linearity of demodulated output

•

Linear triangle wave with in phase zero crossings
available

•

TTL and DTL compatible phase detector input
and square wave output

•

Adjustable hold in range from ±1% to> ±60%.

("')

applications
•

Data and tape synchronization

•
•

Modems
FSK demodulation

The LM565H is specified for operation over the
-55°C to +125°C military temperature range. The
LM565CH and LM565CN are specified for operation over the O°C to + 70°C temperature range.

•

FM demodulation

•

Frequency synthesizer

•
•

Tone decoding
Frequency multiplication and division
SCA demodulators

features

•

•

200 ppmtC frequency stability of the VCO

•

Telemetry receivers

•

Power supply range of ±5 to ±12 volts with
100 ppm/% typical

•

Signal regeneration

•

Coherent demodulators.

schematic and connection diagrams
REFERENCE
OUTPUT

,..
R12

R'

".

RlO
1.15K

R14

1.

RJ

200

R'

200

R15

205

-Vee

Metal Can Package

Dual-In-Line Package
-Vee

yeo

4

OUTPUT

PHASE COMMRATOR
VCOINPUT

PHASE COMPARATOR
VCOINPUT

Order Number LM565H or LM565CH
See Package. 14

5

REF~~~~~~

6

yeo ~~~~:~~

7

10

+Vcc

....-----.,.,,, "'TIMING
CAPACITOR

a

TIMING

RESISTOR

Order Number LM565CN
See Package 22

309

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differe~tial Input Voltage
Operating Temperature Range LMS6SH
LMS6SCH, LMS6SCN
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±12V
300ml1tt
±lV
-S5°C to +125°C
O°C to 70°C
-65°C to +150°C
300°C

(AC Test Circuit, T A

= 25°C,

Vc

= ±6V)

LM565
PARAMETER

UNITS
MIN

Power Supply Current

< V2 =

Input Impedance (Pins 2,3)

- 4V

VCO Maximum Operating
Frequency

Co = 2.7 pF

LM565C/LM565CN

M

CONDITIONS

< OV

TYP

MAX

8.0

12.5

MIN

TYP

MAX

8.0

12.5

mA

5

5

krl

500

SOO

kHz

Operating. Frequency
Temperature Coefficient

100

200

ppm/oC

Frequency Drift with
Supply Voltage

100

200

ppm/%

V3

Triangle Wave Output Voltage

2

2.4

Triangle Wave Output Linearity

2.4

2

.2

Square Wave Output Level

4.7

Output Impedance (Pin 4)
45

5.4

50

%

.5
4.7

V p.p

5.4
5

S

Square Wave Duty Cycle

V p.p

55

40

krl

50

60

%

Square Wave Rise Time

20

20

ns

Square Wave Fall Time

50

50

ns

Output Current Sink (Pin 4)
VCO Sensitivity

fo = 10 kHz

Demodulated Output Voltage
(Pin 7)

± 10% Frequency Deviati6h

Total Harmonic Distortion

±10% Frequency Deviation

250

1

1

6600

6600

Hz/V

300

mVpp

200

300
0.2

0.75

mA

0.2

1.5

%

Output Impedance (Pin 7)

3.5

3.5

krl

DC Level (Pin 7)

4.5

4:5

V

Output Offset Voltage
IV 7 - V6 1
Temperature Drift of IV 7

30
-

V61

AM Rejection
Phase Detector Sensitivity Ko

100

50

1"

50

100

40

40

dB

~ ~

Note 1: The maximum junction temperature of the L:~S6S is lS0oC, while that of the LM565C
and LM56SCN is 100°C. For operation at elevated temperatures, devices in the TO-S package rHust
be derated based on a thermal resistance of 150oC/W junction to ambient or 4SoC/W junction to case.
Thermal resistance of the dual-in·line package is 100o C/W.

310

mV
mV/oC

.68
'·0

200

.68

V/radian

typical performance characteristics
Power Supply Current as a
Function of Supply Voltage

T~ = 2~oC-

<"

UJ
~

.§.
I2

Lock Range as a Function
of Input Voltage

15

,

/

UJ

a:
a:

R1=2~

...
~

::::I

/
~

~ 10
a:

~

a: 1.5

... 1.4
:.0::

/

/

::

l:

I

~
N
::; 1.3

io""'"/R1 = 10K- -

12

14

2

1.1

16

18

20

22

24

"

~ 10K

ct

+1.0

C:?:
> ...

1-2
::::1Q..Q..

I-

-1.0

/

/' "'-

::::I
C
UJ
~

ct

1--

4

100

10

-.....

Vee = ±1ZVI/ "'.J.

~

fi '/ ~6V

c;; 160

c
2

ct

...>
c

~

~

~~

~

I-

i:
CI)

::::I
C

UJ

60
40

~

20

./ ""/

/'j

~

~

r-

r-

C~.01j.1F
I I illl

~

1111
1K

10K

Vee

0.5

Z
2

::::I

a:
~

-0.5

~ -1.0
c

tI

100K

~

..V

-1.5

V

V

V

V

/

=±6V

./

:-Z.O

~,

~

0
0.8

0.6

ct

~

1.0

1.2

2

1.4

ct

-50 -25

...
:3::

NORMAllZED FREUUENCY

Loop Gain vs Load
Resistance
I

~

VCO Frequency as a
Function of Temperature

2

~".
~,

80

=

::::I

~~

100

CI)

3rr/2

wot--

3.0 fo

100

. HJ

IllJ

= ::-

~ 2.0
8 1.5
~ 1.0

9V

120

Iii

~

=
--

...>

A

TA = 25°C

~

IU

C'~ 1000 pF

FREQUENCY (Hz)

~

I-

/

2rr

10

Phase Shift vs Frequency

TA=7

1-2

3rr/4

111111 1i

1K

1000

2

..... >
c> ....

rr/2

~o

PEAK TO PEAK INPUT VOLTAGE (mV)

~ 140

'"

t-

r--

lillil

ct 180

I-

i=

I ""I

Vee = ±6V

UJ

--

1111111

26

Oscillator Output Waveforms
~

~

2

:E

1 111111

./

TOTAL SUPPL Y VOLTAGE (V)

,

I-

Vee = ±12V
TA =25°C

.,.TA

C = 0.1 j.lF

CI)

, ""

a: 1.2
c

'l'
10

J

§
a:
c

~

ct
:E

If: V
/ /'

Vee = +6V
25°C

WI

Vee = ±6V
TA = 25°C

ct

V V"

cQ..

I""

1.6

2

./

VCO Frequency
100K

0

25

50

75

1DO 125

TEMPERATURE n)

Hold in Range as a Function
'of RS-7

1.111

t-TA=Z5°C

r Vee =±6V

?:

l...'

2

I

~

:>
w

Q..

C

I 1'\

~

::

ct

~

C
UJ

~

8:.0:::.0:::.0:::.0:: 0

r-- ~~~~~~
II II a:a:

C

>

N

::; 1.0 fo

~

a:
c

::::I

I

c

-1.0
100

10K

1K

100K

RESISTANCE BETWEEN PINS 7 AND 8 (n)

K.

I

I-

2

1\:1

r--- _a: a:

I-

ct
:E

Vee = ±6V
TA=Z5°C -

""

>'"

/

~ 2.0fo

+1.0

""-

I

0.2

0.6

1.0

1.4

1.8

RELATIVE FREE RUNNING VCO FREQUENCY

ac test circuit

-+-+I

SA~U~~~~<>-_ _ _ _ _ _

INPUT

(~~~~~~~i~
SIGNAl)

o--t ~--+--{
.01

OffSET
VOLTAGE

DEM(ci~~lV:~EO
OUTPUT

NOle S,OpenlorDulpulOHwtVolt'fl!
(V , -V.;IMeasu,ement

311

typical applications

DEMODULATED
OUTPUT

500

FSK Demodulator (2025-2225 cps)

0.1

~F

2400 Hz Synchronous AM Demodulator

15K

+24V

50~V

!10K

ZOOK

FSK Demodulator with DC Restoration.

....---...............-----~t---.__o+6V

INPUT

'0

.01

,......_....._ _ _4 _ _....;.,._ _ _ _ _ _ _ _

~_o~OU~UT

IN~ ~......"'-_~

'::OK'

IRIG Channel 13 Demodulator

Frequency Multiplier (x10)

312

"*'"'

r-

3:
(J'I

applications information
In designing with phase locked loops such as the
LM565, the important parameters of interest are:

en
c.n

The natural bandwidth of the -closed loop response
may be found from:

"3:r-

l/"i<:"Ko

FREE RUNNING FREQUENCY

fn = 2rr

J

(J'I

-R,"c,

en
(J'I

f

=

o

2.7 RaCa

LOOP GAIN: relates the amount of phase change
between the input signal and the VCO signal for a
shift in input signal frequency (assuming the loop
remains in lock). In servo theory, this is called
the "velocity error coefficient".
Loop gain

KoKo

Ko

o

Associated with this is a damping factor:

[, _ __
~j

- 2

l __
R 1 C 1 KoKo

For narrow band applications where a narrow noise
bandwidth is desired, such as applications involving
tracking a slowly varying carrier, a lead lag filter
should be used. In general, if 1/R 1 C 1
KoKd,
the damping factor for the loop becomes quite
small resulting in large overshoot and possible
instability in the transient response of the loop.
In this case, the natural frequency of the loop
may be found from

<

(s~c)

oscillator sensitivity (

radians/sec)
volt

Ko = phase detector sensitivity (VOdl.ts )
ra Ian
The loop gain of the LM565 is dependent on
supply voltage, and may be found from:

KoKo
fo

33.6 fo
Vc

R2 is selected to produce a desired damping factor
[" usually between 0.5 and 1.0. The damping
factor is found from the approximation:

= --=

VCO frequency in Hz

Vc = total supply voltage to circuit.
Loop gain may be reduced by connecting a resistor
between pins 7 and 8; this reduces the load impedance on the output amplifier and hence the loop
gain.
HOLD I N RANGE: the range of frequencies that
the loop will remain in lock after initially being
locked.

These two equations are plotted for convenience.
11)4

f-KOKD'~ .......

"-

105

N

:-c
~

8 fo

~

~

+ --

103

free running frequency of VCO

102

-

Vc

~ (RAD)
RAD

~

Vc

= total

r-

SEC

§~

"

"-

"

~

'loo..

N.

supply voltage to the circuit.
T,

10

+ T2 (sec)

Filter Time Constant vs Natural Frequency

THE LOOP FILTER
In almost all applications, it will be desirable to
filter the signal at the output of the phase detector
(pin 7) this filter may take one of two forms:

lQl
N

:r----+--+~ +Vcc

10
C1

.E

102

Rlo3.6K

lM565

10'

Simple Lag Filter

Lag-Lead Filter

10-4

10-2

1(tl

10-'

T2

A simple lag filter may be used for wide closed
loop bandwidth applications such as modulation
following where the frequency deviation of the
carrier is fairly high (greater than 10%), or where
wideband modulating signals must be followed.

Damping Time Constant vs Natural Frequency

Capacitor C2 should be much smaller than C1 since
its function is to provide filtering of carrier. In
general C2 ~ 0.1 C1 .
313

(J

CD
CD

Consumer Circuits

Ln

:E
....I

........
CD
CD

Ln

LM566/LM566C voltage controlled oscillators

:E
....I

general description
The LM566/LM566C are general purpose voltage
controlled oscillators which may be used to generate square and triangular waves, the frequency of
which is a very linear function of a control voltage. The frequency is also a function of an external
resistor and capacitor.

•
•

Excellent supply voltage rejection

•

10 to 1 frequency range with fixed capacitor

•

Frequency programmable by means of current,
voltage, resistor or capacitor.

The LM566 is specified for operation over the
-55°C to +125°C military temperature range. The
LM566C is specified for operation over the O°C
to +70°C temperature range.

applications

features

High temperature stability

•

FM modulation

•

Signal generation

•

Function generation

•

Wide supply voltage range: 10 to 24 volts

•

Frequency shift .keying

•

Very linear modulation characteristics

•

Tone generation

schematic and connection diagrams

Metal Can
Vee

MODULATION
INPUT

TIMING
RESISTOR

TIMING
CAPACITOR

SQUARE WAVE
OUTPUT

'15

4.JK

TRIANGLE
WAVE
OUTPUT
TOP VIEW

Order Number LM566H or LM566CH
See Package 11

Dual-In-Line Package
8 Vee

1 TIMING CAPACITOR

8 TIMING RESISTOR

6 MODULATION
INPUT

TOPVIEW

Order Number LM566CN
See,Package 20

typical application

applications information

1 kHz and 10 kHz TTL Compatible
Voltage Controlled Oscillator

The LM566 may be operated from either a single supply
as shown in this test circuit, or from a split (±) power
supply. When operating from a split supply, the square
wave output (pin 4) is TTL compatible (2 mA current
sink) with the addition of a 4.7 kn resistor from pin 3 to
ground.
A .001 ~F capacitor is connected between pins 5 and 6
to prevent parasitic oscillations that may occur during
switching.

veo

QUADRATURE

~~---~1~~~~PATIBl~

L--_ _ _ _ _ _ _ _ _ _ _ _

314

IN'HASE

~1~~~~PATI8LE

absdlute maximOm ratings
PoWer Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range

LM566
LM566C
L~ad temperature (Soldering, 10 sec)

26V
300 rtlW
-55°C to +125°e
oOe to 70°C
300°C

315

typical performance characteristics
Operating Frequency as a
Function of Timing Resistor

Operating Frequency as a
Function of Timing Capacitor

1IioK

10
TA - 25°C
AC TEST CIRCUIT

a:

..,w
2:

c:;

...c.:o

I'

.1

" "-

ct

I-

ct
Ien

ct
c.:o

1\

0.1

1.0

'\

10

I

I

I

r-

C(
I-

15

;/

"

~

:::I

~

I

~

./

"'"

~

e:

15

.)V

t:I
2:

-1.0
-2.0

20

lL

V

/

~V
/
.5

ct

3:1->

+6

~~~

+5

... :::1....... 013'

a:t-

~YPICIAL

./

...>

~

...>

0

25

50

+4

/
/

/

+8

+6

-

~~

+4

1\

~
w

t:I
2:

+6

>
c.:o

t:I
2:

~

ct
::

..,

...

d

w

e:

ffi

lk

e:

-t

/'"

?
2.3

I
I,

a::

w
t:I
ct

:;
c

2.2

>

t-

....

:::I

t-

:::I
C

2.1

1
AC TEST CIRCUIT
TA = 25°C

Co)

ct

I

2.0

too

I

111111

lk
RL2 PIN 4 TO GROUND (n)

316

I

-0.6

J

I
100

AC TEST CIRCUIT
TA = 25°C
RLl = 10K

10k

/

5.0

:::I
....
t-

:::I
C

4.0
;"

Co)

~

ct

3.0

lk

10k

ac test circuit

2.4

~ ...

t-

J

RL2 PIN 4 TO GROUND (n)

Triangle Wave Output
Characteristics

./

>

-0.4

-0.7
10k

~

c

:::I

RL 1 PIN 3 TO GROUND (n)

2:

ct

:;

~ -0.5

"'- . . . r--""

6.0

t:I

> -0.3

100

013'

2:

Co)

+2

-

~

AC TksTI CiRC~:T'
TA =25°C

...a::

/"

Co)

+4

ffi

:::I

...

....... ""

ct
:: -0.2

/

Square Wave Output
Characteristics

?

-0.1

1/

1/r\.

wt--.

'1

~

3.0

75 100 125

Frequency Stability vs Load
Impedance (Triangle Output)

AC TEST CIRCUIT
TA=25°C
RL2 = 10K

2.5

~

+10

7.0
+8

2.0

", "
- --

TEMPERATURE rC)

Frequency Stability vs Load
Resistance (Square Wave
Output)

1.5

TA = 25°C
AC TEST CIRCUIT

+12

;5~
~I=~
~~a::
en

SUPPLY VOLTAGE (V)

1.0

CONTROL VdlTAGE IVa - Vsl (V)

d

-2.5
-75 -50 -25

25

V

VCO Wavef?rms

--- -- -- -./

V

,/

.5

lOS

V
VI

1.0

-0.5

1111111
10

105

AC TEST CIRCUIT

+.5

ct
:: -1.5
c.:o

TA = 25°C
AC TEST CIRCUIT

5

1[J4

1.5

~

w

1

Rl =4 K I I

""'"

..,>
~

TYPICAL f - I I I

10

en

g
:::I

~

c.:o

103

2.0

:..t

~
a:
a:

....:::I~

"

1.0

Temperature Stability

.)

MAXIMUM

102

2.5

/

I

~V

FREQUENCY (Hz)

Power Supply Current

/~

I

1.5

2:

'\~

NORMALIZEO FREQUENCY

20

~
N
::::;
ct
:;;
a:
c

\.

.001

10

I

AC TEST CIRCUIT

d

.0001

1.OK

.§.

...
e:

~

"-

T~ = ~50~

:::I

.01

C3

~

a:

>
c.:o
z

...

'\

z

10K

2.0
TA = 25°C
AC TEST CIRCUIT

'\

2,

'"

S

'\

Normalized Frequency as a
Function of Control Voltage

100

lk
RLl PIN 3 TO GROUND (n)

10k

Consumer Circuits
LM567/LM567C

tone decoders

general description
The LM567 and LM567C are general purpose tone
decoders designed to provide a saturated transistor
switch to ground when an input signal is present
within th§:passband. The circuit consists of an I
and Q detector driven by a voltage controlled
oscillator which determines the center frequency
of the decoder. External components are used to
independently set center frequency bandwidth
and output delay.
I

features
•

20 to 1 frequency range with an external resistor

•

Logic compatible outppt with 100 mA current
sinking capability

•

BarH::Iwidth
adjustable from 0 to 14%
;,

•
•
•
•

High rejection of out of band signals and noise
Immunity to false signals
Highly stable center frequency
Center frequency adjustable from 0.01 Hz to
500 kHz

applications
•
•
•
•
•
•
•

Touch tone decoding
Precision oscillator
Frequency monitoring and control
Wide band FSK demodulation
Ultrasonic controls
Carrier current remote controls
Communications paging decod~rs

schematic and connection diagrams
Metal Can Package

Dual-In-Line Package

OUTPUT

v+
TOP VIEW

TOPVIEW

Order Number LM567H or LM567CH

Order Number LM567CN

See Package 11

See Package 20

317

absolute maximum ratings
10V
300mW
15V
-10V
Vg + O.5V
-65°C to +150°C

Supply Voltage Pin
Power Dissipation (Note 1)
Vg
V3
V3
Storage T~mperature Range

i ~.

electrical c.~ ClFPcteristics

(AC Te~t Circuit, T A = 25°C, Ve = 5V)

~\ ~
,~

LM567C/LM567CN

LI\iI567

"

PARAMETERS

CONDITIONS

9.0

6

TYP

MAX
9.0

4.75

UNITS
V

8

7

10

mA

13

12

15

mA

RL = 20k

Activated

11

Input Resistance

20

Smallest Detectable I nput Voltage

IL = 100 mA, f; = fo

Largest No Output Input Voltage

Ie = 100 mA, f; = fo

10

Bn = 140 kHz
12

Largest Detection Bandwidth
Largest Detection Bandwidth Skew

kS1

20

20

Largest Simultaneous Outband Signal to Inband Signal Ratio
Minimum Input Signal to Wideband Noise Ratio

MIN

RL = 20k

Quiescent
Power Supply Current

MAX

TYP

4.75

Power Supply Voltage Range
Power Supply Current

MIN

20

25

25

mVrms

15

mVrms

6

6

dB

-6

-6

dB

10

15

14

16

1

2

10

14

18

% of fo

2

3

% of fo

%tc

Largest Detection Bandwidth Variation with Temperature

±0.1

±0.1

Largest Detection Bandwidth Variation with Supply Voltage

±2

±2

%V

500

kHz

Highest Center Frequency
Center Frequency Stability

100
O
Co)

ffi

I

14
12.5

1.0

::I

U-

0.5

CI

z
Z
Z

::I

..,..,

-0.5

~

-1.0

V

V~

10

7.5

8

~

--

%:
l-

'1\

e

;:
e

z

2.5

~

0

25

50

75

100 125

..,

-75 -50 -25

TEMPERATURE (OC)

0

25

50

!

~

..,~

-1.0

Z
c:C

~

-1.5
-75 -50 -25

0

25

50

75

Bandwith vs Input Signal
Amplitude

Largest Detection Bandwidth
15

300
+V = 7.0V (1)

>

Co)

~

::I

2.5

..,d
~

Cl

Z

~ -2.5

~

-

:g

-~

..,

..........

Cl

c:C

......

::I

~

a:

CI

-5
~
..,~ -7.5

;:

..,..,
Cl
Z
c:(

~

~
u-

200

CI

10

~

150

%:
l-

100

e
z

e

;:
c:C

::I

CD

o:s;

~

TA = 25°C
Vee = 5V

50

-75 -50 -25

0

25

50

75

100 125

10

12

14

16

100

Typical Supply Current vs
Supply Voltage

Greatest Number of Cycles
Before Output
1000
500

20
300
105

g

Co)

I

.9

..,.....en

15

I

>
Co)

10

104

200
100
50
30
20
10

10

12

1'4

1M

lOOk

10k

lk

CENTER FREQUENCY (Hz)

BANDWIDTH (%OF fa)

25

Co)

I

o

-10

Detection Bandwidth as a
Function of C2 and C3

::t

'\,

250

TEMPERATURE rC)

U-

100 125

TEMPERATURE (OC)

TEMPERATURE rC)

Typical Frequency Drift with
Temperature (Mean and S.D.)

V-

V

f-

4

Cl

75 100 125

---

. "~

a:
.., -0.5

-

BANDWIDTH AT 25°C
-75 -50 -25

0.5

z
Z

-r--,

-1.5

Co)

~

Cl

::I

2

Z

8

1""'---

4

Cl

I

Z

6

CD

I

+V = 4.75V
1.0

::I

-

5.0

c:C

~

..,

ffi

12

10

1.5

>
Co)

~

Cl

a:

~

15

I

+V = 5.75V

..,d

~

Typical Frequency Drift with
(Mean and S.D.) Temperature

Typical Bandwidth Variation
with Temperature

10

16

"-

~ c- BANDWIDTH LIMITED BY C2 ~

'\

1\

I'ro-..

I~

I III

I

I

I

I

"

BANDWIDTH LIMITED BY
EXTERNAL RESISTOR
~. (MINIMUM C2)
.

""i\.'"
--

10

20 30

50

100

BANDWIDTH (% OF fa)

SUPPL Y VOLTAG~ (V)

BANDWIDTH (% OF fa)

Vee = 5V
TA=25"C-

Typical Output Voltage vs
Temperature
1.0

I

I

0.9 r- Vee = 5V

~
co
z

0.7

w

0.6

ii:
Cl

c:C

~

CI

:>
I-

O.B

0.5

/

IL = 100 rnA
.......... -r-- " ,

/

0.4

~

0.3

::I
CI

0.2

I-

... ~

..

--- """

IL = 30 rnA

~

0.1

o

-75 -50 -25

0

25

50

75 100 125

TEMPERATURE rC)

319

typical applications
Touch-Tone Decoder

Oscillator with Quadrature Output

~90

""1JL

Oscillator with Double Frequency Output
O.5mfd

l00-Z00 mVrml

0-1

nfW21

0

RI

Precision Oscillator Drive 100 rnA Loads

vco
TERMINAL
(,6%)

COMPONENT VALUES (TYPICAL)

R,

R,

I.BTO 15 Kn

4.1Kn

R3

20Kn

C,
C:z

O.lOmfd
1.0 mfd 6V

C3

2.Zmfd8V

c.

ZiOmfdlV

applications information

ac test circuit

The center frequency of the tone decoder is equal
to the free running frequency of the VCO. This is
given by

5V

r

C1*
o

"33
The bandwidth of the filter may be found from
the approximation

BW

lIT
-

-

SIGNAL +5V
INPUT

tj =100 kHz +5V

*Note: Adjust tor to

320

=100 kHz

1070

Vrv:t:i;

Where:
I nput voltage (volts rms)
Capacitance at Pin 2 (IlF)

Consumer Circuits
LM703L low power drain rf/if amplifier
general description
The LM703L is a monolithic RF-IF amplifier,
having an efficient DC biasing system, reducing
demands upon power supply and decoupling elements. Its low internal feedback guarantees a high
stability-limited gain.
Applications include limiting and nonlimiting amplifiers, mixers, and RF oscillators. The LM703L
is specifically characterized for operation in consumer applications such as TV sound IF, FM-IF

limiter amplifier, and Chroma reference oscillator
for color TV.

features
•

Power Consumption

•

Forward Transadmittance

96 mW (max.)
33 mmhos

• I nput Conductance
• Output Conductance
• Peak-to-Peak Output Current

0.35 mmhos
0.03 mmhos
5.0mA

schematic and connection diagrams
ITOPYIEWI
Y+

GROUNO
NOTE: Pin 4 connected to case.

Order Number LM703LH
See Package 10

typical applications
RC Coupled Video Amplifier

100 MHz Narrow Band Amplifier
+12Y

+12Y

~~-"'-OUT

511.11 IN

511.11 OUT

.11'1'

l, - l2 -11. #16,1/4" i.d., - " I lU,"

Four Stage 10.7 MHz FM-IF Amplifier
_ - - - - - - -....- - - - - - - -....- - - - - - -....-...-+12V

~.05~F

RECEIVER
I Mgl
FRD
FRONT END I

lK

L ____ .J
220pF

321

absolute maximum ratings
Supply Voltage
Output Collector Voltage
Voltage Between Input
Terminals
Internal Power Dissipation

±5.0V
200mW

electrical characteristics

(Note 1)

Operating Temperature
Range
Storage Temperature
Range
Lead Temperature
(soldering - 60 seconds)

20V
24V

PARAMETER

MIN

CONDITIONS
ein

au iescent Output Current

el n = 0

Peak-to-Peak Output Current

ein

-65°C to 150°C
300°C

TYP

=0

Power Consumption

O°C to 70°C

71

= 400 mV rms, f = 10.7 MHz

1.5

2.5

3.0

5.0

MAX

UNIT

96

mW
mA

3.3

mA

Output Saturation Voltage

1.7

V

Forward Transadmittance

ein

= 10 mV rms, f:::;

10.7 MHz

Reverse Transadmittance

ein

= 10 mV rms, f~

10.7 MHz

I nput Conductance

ein

=<

I nput Capacitance

~n<10mVrm~fSl~7MHz

9.0

12.5

pF

Output Capacitance

f< 10.7 MHz

2.6

4.0

pF

Output Conductance

f< 10.7 MHz

0.03

0.05

mmho

Noise Figure

Rs
Rs

Maximum Stable Gain

f

Note 1:

These specifications apply for TA

24.0

mmho

0.002
0.35

10 mV rms, f:::; 10.7 MHz

= 500n, f = 10.7 MHz
= 500n, f = 100 MHz

= 100 MHz

= 2SoC, V+ = 12V

mmho

33.0

1.0

mmho

6.0
8.0

dB
dB

28.0

dB

unless otherwise specified.

typical performance characteristics
Power Consumption as a
Function of Supp,y Voltage
250
TAl.

Output Current as a Function
of Ambient Temperature
5

2~oC
C
.!
II:
II:

~

4

.!

50

0

....
7

I

---9

~~~

10

SUPI'l Y VOL TAGE (V)

Note:

322

11

12

~

50

V"12~

I
s
20mVrms
"1 kHz

• ln

40

0

0-

:>

200

Forward Transadmittance as a
Function of Ambient
Temperature

z

i

3

:>
u

100

V,I. I~V
0.. ·0

.-

0Z

150

250

V"12V
.~~o

200

Power Consumption as a
Function of Ambient
Temperature

2

160

30

I

100

20

~

50

10

r"""t--

-~~

r--..,

II:

1
0
-60 -40 -20 0 20

40 60 80 100 120 140

0
-60 -40 -20

TEMPERATURE (OC)

For additional performance curves, and packaging, see LM703/C/E data sheet.

0

20 40 60 80 100 120 140

TEMPERATURE ("C)

0
-60 -40 -20 0 20

40 60 80 100 120 140

TEMPERATURE ("C)

Consumer Circuits'
"

LM733/LM733~

I

differential video amp

general description

features

The LM733/LM733C is a two-stage, differential
input, differential output, wide-band video amplifier. The use of internal series-shunt feedback gives
wide bandwidth with low phase distortion and high
gain stability. ErtTitter-f()llower outputs provide a
high current drive, low impedance capability. It's
120 MHz bandwidth and selectable gains of 10,
100, and 400, without need for frequ~ncy compensation, make it a very useful circuit for memory
element drivers, pulse amplifiers, and wide band
linear gain stages.

•

120 MHz bandwidth

•

250 kn input resistance

•

Selectable gains of 10, 100, 400

•
•

No frequency compensation
High common mode rejection ratio at high
frequencies.

The LM733 is specified for operation over the
-55°C to +125°C military temperature range. The
LM733C is specified for operation over the O°C
to + 70°C temperature range.

applications
• . Magnetic tape systems
II Di~k file memories
•

Thin and thick film memories

•
•

Woven and plat~d wire memories
Wide band video a~plifiers.
Dual-In-Line Package

schematic and connection diagrams

HI

UK

H2
2.4K

---GAIN
SElECT

INPUT
1

G2,A

INPUT
Z

--...-

10K

Ga

OUTPU12 1(1)

HU
lK
H8

510

NC

G",.

OUlPUT
Z

GAIN

' - -_ _+-~V1V\K,---4I......._ _ _--f.;;OU:.:.:TP.;;UT~1 1(1)

R4

OUTPUT
1

V·

HI

HII

510

G'A

SELECT
TOP VIEW

Order Number LM733D or LM733CD
See Package 1
Order Number LM733C.!'I
See Package 22
Metal Can Package

5~~)

Numbers in "'''n1ll.... show OIP e.nn.......
Y'

NOTE: Pin 5 connected toca5e.
TOPYIEW

Order Number LM733H· or LM733CH
See Package 14

test circuits
Voltage Gain Adjust Circuit
Test Circuit 2

Test Circuit 1

YOUT

51ltage Swing

1

RL = 2k

RL = 00

0.4

20

9.0

12

pF
5.0
30

j.J.A
j.J.A
j.J.Vrms

12

V

±1.0

60

86
60

60

86
60

dB
dB

50

70

50

70

dB

0.6
0.35

1.5
1.5

V
V

2.4

2.9

3.4

V

3.0

4.0

0.6
0.35

1.5
1.0

2.4

2.9

3.4

3.0

4.0

2.5

3.6

2.5

3.6

20

1

kn
kn
kn

4.0
30
250
2.0

3.0

±1.0

Output Resistance

MHz
MHz
MHz

10

Input Bias Current

Output Sink Current

600
120
12

= 1 V p_p

2

Input Noise Voltage

400
100
10

10.5
4.5
2.5

0.4

Power Supply Current

MIN

40
90
120

2

I nput Capacitance

400
100
10

Input Offset Current

Supply Voltage Rejection Ratio
Gain 2

LM733C
MAX

~

Input Resistance
Gain 1
Gain 2
Gain 3

324

LM733

TEST CONDITIONS

= ±6.0V)

18

mA

20
24

18

n
24

mA

~

electrical characteristics
(The following specifications apply for -55°C < T A < 125°C for the LM733 and oOe < T A < 70°C for the LM733e, Vs
TEST
CHARACTER ISTICS

TEST CONDITIONS

CIRCUIT

MAX

MIN

200

600

250

600

80

120

80

120

MIN

TYP

=

±6.0V)

LM733C

LM733

MAX

TYP

UNITS

Differential Voltage Gain
Gain 1
Gain 2

1

RL

= 2 kn, VOUT = 3 Vp-p

Gain 3

12.0

8.0

Input Resistance Gain 2

12.0

8.0

kn

8

8

Input Offset Current

5

Input Bias Current

40

Input Voltage Range

1

6

pA

40

pA

±1

±1

V

Common Mode Rejection Ratio
Gain 2

1

VCM

= ±1V, f ~ ,100 kHz

50

50

dB

1

6V s

= ±O.5V

50

50

dB

1

RL

SUePly Voltage Rejection Ratio
Gain 2
Output Offset Voltage
Gain 1

= 00

Gain 2 and 3
Output Voltage Swing

1

RL

= 2k

1

RL

= 00

1.5

1.5

1.2

1.5

2.5

Output Sink Current

V

2.8

Vpp

2.5

2.2

Power SupplY'Current

V

rnA

27

rnA

27

Note 1: The maximum junction temperature of the LM733 is 150°C, while that of the LM733C is
100°C. For operation at elevated temperatures, devices in the TO-100 package must be derated based
on a thermal resistance of l50°C/W junction to ambient or 45°C/W junction to case. Thermal resistance of the dual-in-line package is lOO°C/W.
Note 2: Pins G1A and Gl B connected together.
Note 3: Pins G2A and G2B connected together.
Note 4: Gain select pins open.

typical performance cha racte ristics

1.&

Vs =±&V
TA =25°C
RL = 1 Kn

1.4
1.2

~
w

t.:I

~

~
0

>
l-

~

1.0

GAIN 2-

0.&
0.&
0.4

a..

0.2

0

0

~

/

I GAIN 1
'I

GAIN 2
Vs = ±&V
R = l Kn
TA =-55°C LI
l

1.2
1.0

~

TA 25°C
0.& I-- TA = 70°C

0

0.&

t.:I

~

>

l-

0.4

I-

0.2

~

J

::;)

1.&
1.4

w

I

::;)

I-

~

GAIN 3

::;)

I

0

0

TA = 125°C

"

~

0.&

~

0

0.&

I-

0.4

I-

0.2

>

~

I'

1.2
1.0

T

::;)

IJ

-0.2
-l~-10

-5

0

5 10 15 20 25 30 35

~

-10

" "',"',-

0

-20

-50

:c

~

w

CI)

~

-25

il:

"'

-250

1

2

3

4

5

& 7

FREQUENCY (MHz)

& 9 10

~
>
0

~
a:

GAIN 3

\tW2-

-300
GAIN

-350
0

i=
>

,

-200

1

5 10

70
c

~

~

~,

-150

CI)

"-

il:

Differential Overdrive
Recovery Time

Vs - +&V
TA =25°C

~~

C -100
t;:

" '"

-15

~

5 10 15 20 25 30 35
TIME (ns)

Phase Sh ift vs F requ ency

~

~

0

TIME (ns)

GAIN 2
Vs =±&V
TA =25°C

Vs =±3V

I'

0
-0.4
-15 -10 -5

5 10 15 20 25 30 35

Vs - ±&V

J

0

-0.2
0

,

r.J.

-0.4

-5

w

~

t.:I

-0.4
-15 -10 -5

0

~

UJ. L

GAIN 2
TA =25°C
Vs = ±&V RL =lKn

J

-0.2

Phase Shift vs Frequency

CI)

1.&
1.4

w

rj

TIME (ns)

-t;:

Pulse Response vs
Supply Voltage

Pulse Response vs
Temperature

Pulse Response

It/ rrr

50 100

FREQUENCY (MHz)

500 1000

w

>

a:
c

&0

Vs =±&V
TA =25°C
GAIN 2

40

/

30

>
0

10

~

V

/'1'

20

a:
w

/

50

I--I-- /

V

0
0 20 40 &0 &0 100 120 1401&01&0200
DIffERENTIAL INPUT VOLTAGE (mV)

325

perfor~ance

typical

characteristics (con't).
Gain vs Frequency
Temperature

Voltage Gain vs Frequency
60

!z

«
ClJ
W

IGAI~

-

50

....
'".....

1

,~""

I

40

GAIN 2

ClJ

3D

Z

!If

20 f--

-"

·L13

ClJ

z

en

40

'".........

30

;

1.15

1000
Vs = ±6V
TA = 25°C

ClJ

'"~

I'

0

>
.....
i=
~

100

1.10

ClJ
W
ClJ

1.05

'"

~

~

~

I'

(5

10

V~ ~ ~3V
-10
5 10

SOD 1000

1.0

>
w
>
i=

.95

~""

I""10k

-"-

Voltage Gain vs
Supply Vol~~ge

«

1.2

'"

1.0

ClJ
W
ClJ

~
Tt3

60

V'"GAIN 1

.5
.4

100

140

4

'1

6.0

ClJ

5.0

2
z

3:

tI)

W

'"~
....
....

~
~

....

-

.... z

4.0

""

3.0
2.0

0..

0

~

0 ....

0

>

....

~'"
°E
ex:-

ClJ

ZW

\

SUPPLY VOLTAGE (±V)

Supply Current, Output Voltage
and Current Swing vs Supply
yoltage

Vs = ±6V
TA=25°C
RL = 1 Kn

wex:
ex: ex:

,

ex:~
~(.)

Vs = ±6V --t----+--t7t£-......
TA =25°C_+-__
4

14
12
10

i=

'"zex:
o

i=

80

""'" .....

~

40

:!:

3D

o

z

20

:!:
:!:

o

(.)

5.0

~

>
~

............

~
>

90
80

~q
60

0

50

W

40

tI)

6.0

7.0

3D

~

20

0..

~

10

1.0

)1
~ .....

10

100M

do.

50 100

i . . . ,,!\i

1.

~
ex:
ex:

.,

"

20

....

19
18

~

(.)

~
~

17
16

tI)

10
100

lk

SOURCE RESISTANCE (n)

10k

I

I

70

I',;,"

Vs = ±6V
GAIN 2

ct

15

10

5k 10k

Supply Current and Input
Resistance vs Temperature

.§

~

SOD lk

~OAD R~~~STANCE (n)

o
10M

0

8.0

GAIN 2
Vs = ±6V
TA=25°C
BW= lOMHz

"

z

....

1M

2.0

21

100

W

FREQUENCY (Hz)

326

4.0

(5

. lOOk

....
....~

~

Input Noise Voltage vs
Source Resistance

......

10k

~

>

SUPPLY VOLTAGE (V)

Q

o

V

3.0

0

o

'3.0

SOD 1000

4.0

ClJ

'"

s

4

5.0

W

C')

0..

.$

11'-""

60

W

'

~

~

Vs = ±6V
TA = 25°C

6.0

3:

2

~
tI)

GAIN 2
Vs = ±6V
TA = 25°C

......

70
50

ex:

....

:=

tI)

-I

::

~tI)

Common Mode Rejection
Ratio vs Frequency
100
90

<

tI)

FREQ~ENCY (MHz)

o

:ac:

2
ClJ
z

-I
1>

o

~

c:

>~

50 100

a.
a.

Q

18

l~

~
5 10

Output Voltage Swing vs
Load Resistance
7.0

24
22
20

(.)lIo::

1.0

~"
/"

'"

~i/L

.6

TEMPERATURE (OC)

7.0

..-

.....GAIN2/

.7

~
ex:

'{
20

~

.8

I"..-

./

~

.9

0

>
W
>
i=

FAI~ 2

JI'

V

1.1

~

""i\ \ ~
-20

TA = 25°C

1.3

z

~

.90

Output Voltage Swing vs
Frequency

SOD 1000

1.4

--

.80
-60

50100

FREQUENCY (MHz)

Vs = ±6V

.85

lk

100

V~ ~ ~6V

en

[\GAINl

~

~
ex:

."

ex:

Vs = ±8V

z

50 100

1\

0

'"

10

z

«

"-

W

10

~

ClJ

Voltage Gain vs Temperature

Voltage Gain vs RADJ

ClJ

zW

FREQUENCY (MHz)

FREQUENCY (MHz)

«

W

TA = 125°C
LII ~

, i 5 10

N

20

Q

0

Tiiwct

SOD 1000

30

0

>

TA = 7o°C--TI
10

-10

z

'"~

"

20

z

'50100

40

ClJ

~ TA = _55°C

en
5 10

ClJ
W

ClJ

-10

«

I I

~

GAIN 2
TA := 25°C
RL = 1 KG

50

z

G~I~12L

0

\

~

ClJ
W
ClJ

60

......

Vs = ±6V
RL = 1 KG

Q

\~

10

50

>
~

"

-""

",

60

z

«

~

Q

>
~
Q

......

Vs = ±6V
TA = 25°C
RL = 1 KG

Gain vs Frequency vs
Supply Voltage

60

l/

-

50

~UP~L Y CURRENT l/ /'
/~l~~~ ~ ~ .....
L~7
~
~~ "

40
3D

'c

~

14
-60

20

,~

-20

~

c:
-I

~

tI)

en

-I
1>

z

~
~

2
10

I

~D

60

100

TEM~~RATURE eC)

140

Consumer Circuits
LM746 color television chroma demodulator
general description
features
The LM746 is a monolithic silicon integrated
circuit which demodulates the chroma subcarrier
information contained in a color television video
signal and provides color-difference signals at the
outputs
The low DC voltage drift of the outputs insures
excellent performance in direct-coupled chrominance output circuitry.

•

Low output voltage drift with temperature

•

Doubly balanced demodulation

•

Internal color-d ifference matrix for NTSC color
television

•

10V peak-to-peak Es - Ey output

schematic and block diagrams
Dual-I n-Line Package

CHRO~: --=..3t -......-i

Order Number LM746N or LM746N-01
See Packages 22 and 24

typical application
CRT
CATHODE

56K
-5%
lW

test circuit 1
TORED
CRT
CATHODE

IOGREEN

18K

27K

5%

fl%

fl6K
5%

lW

TOBlUE
CRT
CATHODE

18K

5·,.

!'16K

!i%
lW

lK
5%
SETUP

SWITCH

CHROMA
INPUT

REFERENCE B IN

>-----11---------'

REFERENCE A IN

>-----11----------......J

00l.F

001 F

Pm oumbersshown lor Dual In lmePackage

327

absolute maximum ratings
Power Dissipation
T A = 10°C or less
T A = 10°C or more

450mW
Derate Linearly
8.2mWtC
O°C to +lO°C

Operating Temperature

electrical cha racteristics
PARAMETER

SYMBOL

(T A

=

-65°C to +150°C
+30V
5V
5V

Storage Temperature
Supply Voltage
Reference Input Volt (p.p)
Chroma Input Voltage (p.p)

25°C) (Vee

TEST
CKT

= 24V)

(R L

= 3.3K

CONDITIONS

MIN

TYP

MAX

UNITS

5.5

9.0

12.5

mA

13.0

mA

25.5

mA

STATIC
Supply Current

Is

1

ec = 0 RL = 1M

Supply Current

Is

1

ec = 0 RL = 1M T A = 10°C

Supply Current

Is

1

ec = 0 RL = 3.3k

Supply Current

Is

1

ec = 0 R L = 3.3 k T A = 10° C

Power Dissipation

Po

1

ec = 0

340

430

mW

Power Dissipation

Po

1

ec = 0 T A = 10°C

340

445

mW

DC Output Volts

V9, V11, V13

1

ec=O RL=3.3k

13.2

14.5

15.8

V

DC Output Volts

V9, V11, V13

1

ec = 0 T A = 10°C RL = 3.3k

13.0

14.5

16.0

V

Absolute Value of DC Difference
Voltage Between any 2 Output
Terminals

ILWol

.6

V

9.0
16.5

22

.15

ec=O RL=3.3k

Temperature Coefficient

ec = 0

mA

22

-5.0

-.3

+5.0

mVfC

.4

.7

3.8

4.2

Vp-p

1.0

1.25

Vp-p

DYNAMIC
Chroma Input Voltage Sensitivity

ec

1

Es - Ey = 5 Vp-p

ER - Ey Output Voltage

Vl1

1

Es - Ey = 5 Vp-p

EG - Ey Output Voltage

V9

1

Es - Ey = 5 V pop

Maximum Es - Ey Output
Voltage

V13

1

ec = 1.5 Vp-p

Es - Ey Demod Angle Relative

ER

0 C N :::; -10 od: ~ 25/JF/J,OV VoltlgegllA .. Inpuloverloadpoint. Outputvolt.gesWlng. Output nOI5e level 14dBatlKHl i\ -20 >' od: 100mV,msatl KHz . ;e~t~;~:,~t ;O~~lbae~::'l':~~O L...--II---4--l 10 pllono mput (lOputshortedl 100 1.0k 10k lOOk f. FREOUENCY (Hz) FIGURE 1 329 M o ...::E M absolute maximum ratings Supply Voltage Power Dissipation (Note 1) Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) ...I ±15V 415mW to 75°C -65°C to 150°C 300°C o electrical characteristics PARAMETER (Note 2) MIN TYP Input Offset Voltage 1.5 Input Offset Current 0.2 Input Bias Current 1.0 Large Signal Voltage Gain 6,000 10,000 60 70 Output Voltage Swing RL = 10 kn 4.0 UNITS 10 mV 0.4 Supply Current Both Amplifiers V OUT = OV Channel Separation f= 10kHz MAX IJA 10 IJA 15 mA V/V dB 5.5 Vrms Note 1: The maximum"junction temperature of the LM1303 is 100°C. For operating at elevated temperatures, devices must be derated based on a thermal resistance of 150°C/W, junction to ambient. Note 2: These specifications apply for Vs = ±13V and T A = 25°C, unless otherwise specified. typical application and characteristic Tape Head Playback Preamplifier/NAB Equalization 820pF :s '" !! +20 ~ ...~ +10 ~> 3·3/4 ips ...co ia -10 c( lS>JF/J.OV :IE ~ -20 C=1500pFfor33f410/s ~ C ~ 910 pF for71/2 In/s VoltageGam=3SdBatl.0kHl Output Vol!ageSwmg = !i.OVrms 10 100 1.Ok 10k lOOk f, FREQUENCY (Hz) FIGURE 2 typical performance characteristics Input Noise Voltage vs Frequency Input Noise Current vs Frequency ~ 21 '1111~m~~~1 ~ 10- F ~ ~ 10- 22 ...en ~ 10-23 .... ;W 24 ~ ;l -2 100 lk 10k FREQUENCY (Hz) 330 lOOk ~ 10-25 1111 L.....L...1..lllJ.W.......I....L.LWlJL.....J..J.. 10 100 lk 10k FREQUENCY (Hz) lOOk Consumer Circuits LM1304/LM1305/LM1307/LM1307E FM multiplex stereo demodulator general description The LM1304, LM1305, LM1307 and LM1307E are designed to derive the left and right channel audio information from the detected composite stereo signal. The LM 1304 eliminates the need for an external stereo-channel separatiqn control. The LM 1305 is similar to the LM 1304 but permits the use ofan external stereo-channel separation control for 'maximum separation. The LM1307 is al'so sim liar to the LM 1304 but does no~ pave the aud io mute ~ontrol, or the stereo/mono switch. The LM1307E is similar to the LM1307 but has the option of emitter-·follower output drivers for buffers or high current applications. features • Operation over a wide power supply range • Built in stereo-indicator lamp driver 120 mA typical • Automatic switching between stereo and monaural • Audio mute control circuit schematics liKe OOU8LERTANK ~_ROUTPUT r 1 1 2 ~~ ~~ 02 lK 01,Lr ~u. t- 02" .~ ." G ~ ..-;;, ~' I'Jii , 0'" o.,..;' ~O 01 20K ZDK:~ . . ,Lr 0' " 013 'K o. 0' 'K ....~ 20K O' IK ..... O'~~ R' 'K i 01 IK , 1 ~ 1" "t 026 'K 021 'DO ''" 'K OIS lK .; ~ F 014 'K IK 021 ,K ":' ~ 031 2K ~ 029 2K ::0 [ , sao , ~w~ ". DUlLER 0 ECOUPLE ~o. 022 2K. 023 'K 02!l- SIGNAL 024 1K 112' lK ReO '10 011 " ~ 032 H" , O. 010" 4' 0" lK , 11 ~. I 01 011 IK 014 12 13 !." ~. 5K SK lK ' ~ ~32 ~ 031 l .36 034 037 035 03' 034 2K 035 lK . AUDIO STEREO MUTE SWITCH 037 '00 1 G ':" lM1304 prder Number LM1304N or LM1305N or LM1307N or LM1307EN Order Number LM1304N-01 or LM1305N-01 or LM1307N-01 or LM1,307EN'-qf' See Package 22 See Package 24 331 w r.... o ...:E absolute maximum ratings (It) Power Supply Voltage Lamp Driver Current Power Dissipation Derate Above T A = +25°C Operating Temperature Range (Ambient) Storage Temperature Range Output Current (LM1307E) Lead Temperature (Soldering, 10 sec) ....I ""r.... o(It) ... :E ....I "Il) +22V 120 rnA 625 mW 5.0 mW/oC O°C to +75°C -65°C to +150°C 25mA 300°C o ... :E (It) electrical characteristics ....I ........ (Vee = 12V, T A = 25°C, '75 JiS de-emphasis unless otherwise noted) ~ o PARAMETER ... :E CONDITIONS MIN TYP Input Impedance f = 1 kHz 12 20 kn Stereo Channel Separation (Note 1) (Note 3) f = 100 Hz f = 1 kHz f= 10kHz 30 35 45 30 dB dB dB Channel Balance Monaural Input = 200 mV 0.2 0.5 dB Total Harmonic Distortion (Note 1) f MOD = 1 kc 0.5 1.0 % Ultrasonic Frequency Rejection (Note 2) 19 kHz 38 kHz Inherent SCA Rejection (Without De·Emphasis) 60 kHz, 67 kHz, 74 kHz Lamp Indicator RA = 180n Min 19 kHz Input Level for Lamp On Max 19 kHz Input Level for Lamp Off (It) ....I Power Dissipation 20 5.0 Without Lamp MAX UNITS 30 25 dB dB 50 dB 16 14 25 mVrms mVrms 150 300 mW Audio Muting (LM 1304/5 Only) Stereo·Monaural Switching (LM1304/5 Only) Mute On (Pin 5 Voltage) Mute Off (Pin 5 Voltage) Attenuation in Mute Mode 0.6 1.3 .8 1.6 55 1.0 2.0 V V dB Stereo (Pin 4 Voltage) Monaural (Pin 5 Voltage) 1.3 0.6 1.6 .8 2.0 1.0 V V Note 1: Measurement made with standard multiplex composite signal. L = 1, R = 0 or L = 0, R = 1; composite signal defined as 564 mV peak to peak (100 mVrms as read on Ballantine 310-A voltmeter) with a 20 mVrms 19 kHz pilot carrier. Note 2: Referenced to 1 kHz output signal with signal per Note 1. Note 3: Stereo channel separation is adjusted for maximum separation in the LM 1305 with a resistor from Pin 9 to GND. (R A = 180n, All (Vee Pins 1 2 3 4 5 6 7 8 12 2.3 3.0 1.9 1.9 0.8 0 LM1305 12 2.3 3.0 1.9 1.9 0.8 LM1307 12 2.3 3.0 - - 0.8 LM1307E 12 2.3 3.0 - .8 LM1304 332 voltages measured with respect to GND) = 12V, 2.7 kn in series w/Pin 8) 12 9 10 11 12 13 14 4.6 12 3.9 9.7 9.7 3.9 1.9 0 12 0.36 3.9 9.7 9.7 3.9 1.9 0 - 12 3.9 9.7 9.7 3.9 1.9 9.0 9.7 3~9 3.9 1.9 0 9.7 9.0 r- 3: ...a. circuit schematics (con't) W o ~ ........ r- 3: ...a. W o r, en liKe OQUBLERTANK 19KCTANKZ 2 'K ~1 01 ~r ~ 02 " 19KCTANKI 1 l U U ........ 11 r- 1 R2 '00 ~ ---- W o ~ "" ~4 ~, ~' 3: ...a. ........ r- 0'" COMf'OSIf! l $lGItAl INPUT AI 10K ~. A, RlD '" D' " 0, ,~ All 'K 'K,......... D. " 0' 'K f=? 0" 'K Rll B< R" lK 011 1 R24 lK R22 2K 010 " A' 'K 3: ...a. W ofr .....Q19 I 01 ~ A. 0~" ..__-+____+-_-o14 ~~~~~:~E 'K~'D9 V' ~ r!. ~ A' 20K Rl 'K '1lK5 o ""m R25 lK R2l 'K " ~, lER£Q SEPARATION 'K ~~R36R18' l'5K 11( t 036 034 037 ..,- QJ5 ~' . , AUOIO ST£~En MUff SWITCH lM1305 Rl 45K lK ANK2 1 ~1 1 R2 200 0" lK 01 , . ..!, ..,.03 COMPOSITE 3 SIGNAL INPUt ~' f~'~' 'K_ . 'K gO H" R' 'Ok R12 .K . 8K Lf' Rll 8K ~~~ " '0. 'K R13"R15 'K R3 IK RO' 0'" Q" 'OK o. , , , 11 1 rG ~ 03 , . 0' 12 13 I "i 02 , . lCHANNELOUTl'UT DOT -T'~ 1 2 , DOUBtER DECOUPLE '0' ~' A14'R"~ ,K RlD 'K R~ RM lK 02!r ~' I 010" m Rll 'K 2K R25 lK R24 lK ROD 310 011" ~ 51( lK QlI -G OJ3 Q34 • 037 03' ~Rl1 500 G lM1307 333 circuit schematics (con't) ,.." -r:: " 1 " R2I lK ~, 01 ~9 01' -----<0' "03 RI 20K ~04 " D. R15 'K ,. Ri R4 IK UD6 B ....~ ~I R14t RI IK R;~ ~ ,K ~' I ---< R, 'K R., UK '0' Rut R. 20. R.3 ~ H16 R12 'K R' 20. ';' ~31-.-J.~ ~ I--....03 " D. J.~ . ..... '~D' 11 y R' R16 RI1 'K 1~' lK ~ 'D. ~~DlO ,. R22 " Q~ ""-.Q19 R24 lK R23 .K R41 "K R25 lK RW UK ;i:!! 011 'j .-. ~ 51( 11( Ql6 ./ 031 QJ.4 ~031 035 ..." R31 LM1307E typical performance characteristics Channel Separation vs Composite Input Level Channel Separation vs VCC 70 70 to = 1 kHz !z !z 60 < A. 50 W en ..... w z z < : 60 o 0 i= < a: to ~ 1 k~Z t- Vee = 12V .......... ~ ~ ~ ~ ...... a: < A. 50 W fQ r Z Z :< 40 Co) 30 30 9 10 11 12 13 300 14 Total Harmonic Distortion vs Composite Input Level 100 Vee = 12V z l> 0 3.0 t- ..... en w Ci Z ~ 2.0 ~~ 0 ~ a: :< ..... < to t- 1.0 SIER~ ~ ~ ./ ~ I I I I' Vee = 12V , ~ 60 , \ ..... .... ~ 0:: 40 t- ::) A. ~ n200 20 ~ -- ~ LAMP ON .1 1 LAMP OFF 400 600 800 COMPOSITE INPUT LEVEL (mVnns) 334 80 , oS 0 Co) 900 700 Multiplex Sensitivity vs 19 kHz Gain Adjustment 4.0 l 500 COMPOSITE INPUT (mVnns) Vee (V) i= ~ ..... w 40 Co) II: ~ ~",. 1000 100 150 200 RA • 19 kHz GAIN ADJUSTMENT (n) 250 circuit configurations Ll,U, 333"'''',Q."55 '.DmHnomiftli L3 r - -. . .- ..... . .- - -....--------------4I~--~ M~"'No.1361 .. equnent ,4Z0 ... ",No.31AWG, .... 1142turltJ.O u ·SS '.OmHnominlll, MtHer No. 1362 0.01 3.9K ~F ---o()+12V O.02pF OfequntnL 3.9K 5.0"F COMPOSITE~ SIGNAL INPUT ~---....---+_----o()LEFTCHANNEL OUTPUT t--+---t ~-------. .----o()R1GHTCHANNEL OUTPUT ~------, r - - - - - _ O + 1 2 V STEREO INDICATOR LAMP 'MAX s120mA -R A = 180!! nominll.adiusted fOI limp senSitivity 10 19.Hzpilot LM 1304 Typical Circuit Configuration L1, U, 333",,,,0.'55 '.0 mH nominal, Miller L3 ..... r - - - -. .- - -.....~-------------4 ..... --~ ----o+12V No. 13610requiulent : 420 turns, No. 31 AWG, ..,0142"''',0.'55 •• 0 mH nominl!, Milltf No. 1362orequ",lIent 3.9K D.02/lF o--J 5.0"F COMPOSITE SIGNAL INPUT ~---....- - - + _ - - - - o LEFT CHANNEL OUTPUT ~-+---I 12 ~-------. .---~RIGHTCHANNEL OUTPUT ~------, r - - - - - - o ( ) +12V 14 STEREO INDICATOR LAMP 'MAX ~ l20mA -R A " l8Ds! nomlnal.adlusted tOf lamp senSillYlty to t9kHzpllot UR SEP = 310U nonllnal,adlustedfof maximum channeJ sepiliration. ......._ _ _. . ._ _ _ _ _ _ _ _ _ _ _ _ _......_ _ _...._ _ _ ~ LM1305 TYjlicai Circuit Configuration +12V L1,L2,333",... 0.·55 I.OmH nomin" MintrNo.U6t or L3 equiYllent : 420 tums No. 38 AWG,..,ot42 turns.Ilu=55 3.9K O.02/lf 8.0mH nominal, MintrNo.t362or equivllent 3.9K 111----. .---+---~ LEFT CHANNEL OUTPUT 0--1 5.01olF COMPOSITE SIGNAL INPUT 1 2 1 - - - - - - - -. . .---~ RIGHT CHANNEL OUTPUT ~------, r - - - - - - o ( ) + 1 2 V 14 STEREO INDICATOR LAMP 'MAX S l20mA 4.7K O.OljJF -R A " ~Iamp "'Sl nommal.adlusted for sensitivity to 19kHl pilot. LM1307 Typical Circuit Configuration 335 W I' o circuit configurations (con 't) .... (W) :E ...J ....... I' o(W) Ll.12: 3331urns,Q" "55 .... 8.0mH nominal Miller No. 1361 :E ...J L3 ....... orequivllent : 420 turns No. 38 AWG. tIp@42turns,Q u :55 8.0mH nomm" Miller No. 1362 orequivllent. r----....- - - - - - - - - - - - -...- - -...- - - - o + 12V O.OI"F 3.9K U') 3.9K o .... (W) 12 5"F :E COMPOS1TE~ SIGNAL INPUT ...J 13 ~---....- - - + - - - - o L E F T C H A N N E L OUTPUT 11 ~-------.....----oR1GHTCHANNEL OUTPUT 1--------------0 LEFT BUFFERED OUTPUT .... ....... L~---~~--__i~---~21- ~ -----------oRIGHTBUFFEREOOUTPUT o .... (W) L-_ _ _ _ _ _... , . . - - - - - - o + 1 2 V :E STEREO INOICATOR LAMP ...J 'MAX ~ l20mA .oRA" 180HnomlOal,adiUSIedforiamp sensitivity to 19kHzpliot. LM 1307E Typical Circuit Configuration 336 r- ....3: w .... o Consumer Circuits LM1310 FM stereo demodulator general description The LM1310 is a unique FM stereo demodulator which uses phase locked techniques to derive the right and left audio channels from the composite signal. Using a phase locked loop to regenerate the 38 kHz subcarrier, it requires no external L-C tanks for tuning. Angnment is accompHshed with a single potentiometer. • Simple, noncritical tuning by single potentiometer adjustment • I nternal stereo/monaural switch with 100 rnA lamp driving capability • Wide dynamic range: 600 mVrms maximum composite input signal • Wide supply voltage range: 10 to 24 volts features • Excellent channel separation • Requires no inductors • Low distortion • Low external part count • Excellent SCA rejection 'schematic diagram Order Number LM1310N See Package 22 Order Number LM1310N·01 See Package 24 typical circuit configuration 18kH. MONITOR 470 .33 11 10 LM1310 STEREO LAMP (100 mAl Vee 337 o.... .... M absolute maximum ratings ~ ~ Supply Voltage Power Dissipation (Note 3) Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical characteristics PARAMETERS Supply Current 24V 575mW O°C to 70°C -55°C to +150°C 300°C (Note 1) CONDITIONS 10 100 mA lamp current 16 Pilot Level for Lamp "OFF" 5 400 Hz (Note 2) 1000 Hz (Note 2) 10000 Hz (Note 2) UNITS 30 mA 24 V V 20 mV 40 30 dB dB dB 0.2 Recovered Audio 200 mVrms monaural input Total Harmonic Distortion 1 kHz, 600 mVrms composite with 10% pilot Capture Range 25 mV of 19 kHz pilot Input Resistance 200 mVrms composite at 67 kHz 160 mV 8 30 Monaural Channel Unbalance SCA Rejection MAX 1.2 Pilot Level for Lamp "ON" Stereo Channel Separation TYP Lamp "OFF" Operating Supply Voltage Lamp Driver Saturation Voltage MIN 200 dB 250 1.0 ±2 ±6 mVrms % % 40 kn 50 dB Note 1: T = 2SoC and Vee = 12.0 volts unless otherwise specified. Note 2: 100 mVrms composite as measured on average responding meter with 10% pilot (i.e., 20 mVrms pilot with 100 mVrms signal). Note 3: The maximum junction temperature is 12Soe and should be derated at 17Soe/w junction to ambient. 338 Consumer Circuits LM1310E FM stereo demodulator genera I description The LM1310E is a unique FM stereo demodulator which uses phase locked techniques to derive the right and left audio channels from the composite signal. Using a phase locked loop to reg~nerate the 38 kHz subcarrier, it requires no external L-C tanks for tuning. Alignment is accomplished with a single potentiometer. • Simple, noncritical tuning by single potentiometer adj ustment • I nternal stereo/monaural switch with 100 mA lamp driving capability • Wide dynamic range: 600 mVrms maximum composite input signal • Wide supply voltage range: 10 to 24 volts features • Excellent channel separation • • • Low distortion • Emitter follower outputs Requires no inductors Low external part count schematic diagrams Order Number LM1310EN See Package 22 Order Number LM13iOEN-01 See Package 24 LM1301 E Stereo Decoder typical circuit configuration LEFT OUTI'tIT RIGHT OUTPUT 339 w ... o ... :E M absolute maximum ratings ...I Supply Voltage Power Dissipation(Note 3) Operating Temperature Range 'i Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical characteristics PARAMETERS Supply Current 24V 575mW O°C to 70°C -55°C to +150°C 300°C (Note 1) CONDITIONS 10 100 mA lamp current 16 Pilot Leliel for Lamp "OFF" 5 400 Hz (Note 2) 1000 Hz (Note 2) 10000 Hz (Note 2) UNITS 30 mA 24 V V 20 mV 8 mV 40 30 dB dB dB 30 Monaural Channel Unbalance 0.2 Recovered Audio 200 mVrms monaural input Total Harmonic Distortion 1 kHz, 600 mVrms composite with 10% pilot Capture Range 25 mV of 19 kHz pilot 160 200 dB 250 mVrms 1.0 ±2 ±6 40 Input Resistance Output Resistance SCA Rejection MAX 1.2 Pilot Level for Lamp "ON" Stereo Channel Separation TYP Lamp "OFF" Operating Supply Voltage Lamp Driver Saturation Voltage MIN 1300 200 mVrms composite at 67 kHz 50 Note 1: T = 25°C and Vee = 12.0volts unless otherwise specified. Note 2: 100 mVrms composite as measured on average responding meter with 10% pilot (i.e., 20 mVrms pilot with 100 mVrms signal). Note 3: The maximum junction temperature is 125°e and should be derated at 175°e/W junction to ambient. 340 % % kn n dB Consumer Circuits LM1351 FM detector, limiter and audio amplifier general description features The LM1351 is a monolithic integrated circuit FM detector, limiter and audio amplifier that requires a minimum of external components for operation. It includes three stages of I F limiting and a balanced product detector. The audio amplifier is capable of driving a single external transistor class A-audio output stage. • A direct replacement for MC1351 • Simple detector alignment: one coil or ceramic filter. Sensitivity: 3 dB limiting voltage 80 pV typo • • Low harmonic distortion • High I F voltage gain • High audio preamplifier open loop gain schematic diagram A16 A20 200 10K A1' 200 A25 "K A26 200 A18 200 A1' "K A22 '" Order Number LM1351N See Package 22 Order Number LM1351N-01 See Package 24 block diagram r------- 14 12 -------------"'---, I I I I I I I I I I I I ,~,:JJI HI--.....-o OUTPUT lOOK lK 47K I.l./JF 341 absolute maximum ratings Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation T A = 25°C or less T A = 25°C or more Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 16V 0.7 Vrms O°C to 75°C -65°C to +150°C 300°C 850mW Derate Linearly 6.67 mWtC electrical cha racteristics (TA = 25°C, Vee = 12V, unless otherwise ,noted) LIMITS PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS STATIC CHARACTERISTICS Supply Current 114 I z = 5 rnA 31 Power Dissipation Po I z = 5 rnA 300 Nominal Zener Voltage V 14 I z = 5 rnA DYNAMIC CHARACTERISTICS fo V 1N ~ 0.3 mVrms AV(AF) V 1N = 500 mV @ 400 Hz Input Limiting Threshold V1N(LlM) FM = 400 Hz Recovered Audio Output VO(AF) Recovered Audio Output VO(AF) fo = 5.5 MHz, AF = ±50 kHz THO OL Audio Preamplifier Open Loop Gain Total Harmonic Distortion V 65 dB 40 dB 80 0.35 Maximum Undistorted = 24, flf = 7.5 kHz 160 /.tVrms 0.50 Vrms 0.8 Vrms 1.0 % 3.5 Vrms OL = 24 = 10 Audio Output Voltage V OMAX Audio Gain AM Suppression AMR AM: 1 kHz @ 30%, V 1N test circuit = 20 mV 38 -IUtJ~If~ IZ To. AUDIO ~ 10 BA~~~CE ~_v_. .Q....":' l~ .J =r~': 1.... -_., C.W. 14 <--_ _..I 50........,!. O'IPFT-~o.,"FT ":" 10 ~ 112 • lOOK ~~ "::- RdC= 3.8 ohms ~h ~LMI35~ GENERATOR"- L'45-BOpH O·60nomat2.5MHz 8 3300pF":" 4..... GENERATOR FM 1 J.lF 3":" 11 13 GENERATOR 342 mW 11.6 = 4.5 MHz, flF = ±25 kHz, unless otherwise noted AV(lF) Amplifier Voltage Gain rnA 375 ":" 10K !.OK 47K ~IPF ~"::- 45 dB Consumer Circuits LM1596/LM1496 balanced modulator-demodulator general description features The LM 1596/LM 1496 are double balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping. • Excellent carrier suppression 65 dB typical at 0.5 MHz 50 dB typical at 10 MHz The LM 1596 is specified for operation over the -55°e to +125°e military temperature range. The LM 1496 is specified for operation over the 0° e 0 to + 70 e temperature range. • Adjustable gain and signal handling • Fully balanced inputs and outputs • Low offset and drift • Wide frequency response up to 100 MHz Metal Can Package schematic and connection diagrams BIAS TOP VIEW Note: Pin 10 is connected electrically to the case through the device substrate. Order Number LM1496H or LM1596H See Package 11 CARRIER INPUT SIGNAL INPUT Dual-I n-Line Package 1(1) e----------------;----~O GAIN ADJUST BIAS o-.e-_-+---------~ +SIGNAL IN 1 14 GAIN ADJUST 2 13 GAIN ADJUST 3 12 -SIGNAL IN 4 11 BIAS 5 10 -CARRIER INPUT + OUTPUT 6 I +CARRIER INPUT 500 10(14) V- o---4I~_-------' Numbers in Parentheses Show DIP Connections. V- -OUTPUT TDPVIEW Order Number LM1496N See Package 22 typical application and test circuit _-.... ..- .... lK -_~~t------w\,---- O.l"F CARRIER r -= lK 51 .47"F 51 ~ ~------....-----------t 1110) _ _ _--t 1111 (14) 3.9K 10K 51 9(12) I--------------~t___o -Yo 10(14) 515) 51 50K __ CAR:~i~ 3.9K LM1596 c>=Vs. ._ _ _~t-- 10K T 616) ~------.....----+-_o +Vo INPUT~ 0.1 "F MODUL~:~~~ 313) 711)212) -~,...--O +12V M tL..---S0'r'"o----------."T L~ Numbers m Parentheses Show DIP Connections ~ -BV NOTE: S,15 Closed tor "Adlusted" Measurements. Suppressed Carrier Modulator 343 absolute maximum ratings Internal Power Dissipation (Note 1) Applied Voltage (Note 2) Differential Input Signal (V7 - Va) Differential Input Signal (V4 - V1) Input Signal (V2 - V1, V3 - V4) Bias Current (15) Operating Temperature Range LM 1S96 LM1496 Storage Temperature Range Lead Temperature (Soldering, 10 sec) SOOmW 30V ±S.OV ±(S+lsR.)V S.OV 12mA -SSoC to +12SoC O°C to +70°C -6SoC to +lS0°C 300°C electrical characteristics (T A = 2SoC, unless otherwise specified, see test circuit) LM1596 PARAMETER Carrier Feedthrough CONDITIONS MIN MIN TYP MAX UNITS 40 40 ~Vrms Vc = 60 mVrms sine wave fc = 10 MHz, offset adjusted 140 140 ~Vrms 0.04 Vc = 300 mVpp square wave fc = 1.0 kHz, offset not adjusted fs = 10 kHz, 300 mVrms fc = SOO kHz, 60 mVrms sine wave offset adjusted 20 so fs = 10 kHz, 300 mVrms fc = 10 MHz, 60 mVrms sine wave offset adjusted Transadmittance Bandwidth LM1496 MAX Vc = 60 mVrms sine wave fc = 1.0 kHz, offset adjusted Vc = 300 mVpp square wave fc = 1.0 kHz, offset adjusted Carrier SIJPpression TYP RL = son 0.04 0.2 20 100 so 65 0.2 150 mVrms mVrms 65 dB 50 so dB 300 300 MHz 80 80 MHz Carrier Input Port, Vc = 60 mVrms sine wave fs = 1.0 kHz, 300 mVrms sine wave Signal Input Port, Vs V7 - Vs = O.SVdc = 300 mVrms sine wave = 1.0 kHz Vs = 100 mVrms, f V7 - Vs = O.SVdc Input Resistance, Signal Port f = S.O MHz V 7 - Vs = O.S Vdc Input Capacitance, Signal Port f = S.O MHz V7 - Vs = O.S Vdc Single Ended Output Resistance f = 10 MHz Single Ended Output Capacitance f = 10 MHz Input Bias Current (11 + 14)/2 12 25 12 30 ~A Input Bias Current (17 + Is)/2 12 25 12 30 ~A 2.5 3.5 2.5 200 3.5 200 2.0 2.0 40 pF kn 40 S.O 5.0 pF Input Offset Current (11 - 14) 0.7 S.O 0.7 5.0 I nput Offset Current (17 - Is) 0.7 5.0 5.0 5.0 Average Temperature Coefficient of Input Offset Current (-SSoC < T A < +12SoC) (O°C < T A < +70°C Output Offset Current (16 - 19) Average Temperature Coefficient of Output Offset Current (-SSoC < T A < +12SoC) (O°C,( T A < +70°C) Signal Port Common Mode Input Voltage Range fS = 1.0 kHz Signal Port Common Mode Rejection Ratio V7 - Vs = O.S Vdc 2.0 50 ~A nAtC nA/oC 2.0 14 p.A 14 90 90 5.0 5.0 -85 Vp-p -85 dB Common Mode Quiescent Output Voltage 8.0 8.0 Vdc Differential Output Swing Capability 8.0 8.0 Vp-p Positive Supply Current 2.0 3.0 2.0 3.0 Negative Supply Current 3.0 4.0 3.0 4.0 Power Dissipation 33 Note 1: LM1596 rating applies to case temperatures to +125°C; derate linearly at 6.5 mW/oC for ambient temperature above 75°C. LM1496 rating applies to case temperatures to +70 oC. Note 2: Voltage applied between pins 6-7,8-1,9-7,9-8,7-4,7-1,8-4,6-8,2-5,3-5. 344 VIV Voltage Gain, Signal Channel 33 rnA rnA mW typical performance characteristics Carrier Feedthrough vs Frequency Carrier Suppression vs Frequency Carrier Suppression vs Carrier I nput Level E 10 .... "" .5 w 20 ;2 c en ~ g: 30 ::::I 40 a.. Ci) ~ 50 a:a: c:c 60 (.) 70 , "- -" .... - .... '" 100 200 300 400 500 E .. c :i ;2 1.6 0.8 w C ::::I I- ::::; 0.4 ~ c:c I- ~ I- /~ / V V VV ~~ :i!l- l - 400 mv :e 300 mV Ci) Tm T TTTII lOUT V'N N Y21 > 150 w "\ 0.1 10 1.0 ,1/ > ~ -10 ~ l R , =,WII,R., -20 Z 1000 H kll J, ~ IJ. 1 Ucl = 0.5 ~ ~ \ "" , Av=~ t:I en , ""- IIII I III c ~ rrr- 100 1 Rl = 3.9K. R. = 50011 c:c ~ c - VOUT = 0 ii" Rl = 3.9 kll. R. = 1.0 kll Rl = 3.9 kll. R. = 2.0 kll t:I v, - V. = 0.5 Vdc lOUT (EACH SIDEBAND) = ---v,;(SIGNAL) - o 200 t:I SIDEBAND TRANSADMITTANCE a: ~ 0.2 100 mV VOUT = 0 Y21=- ~ 10 ~ SIGNAL PORT TRANSAOMITTANCE ~ 0.4 ex: ...."" 7· - SIDEBAND 0.6 50 Signal-Port Frequency Response n "" 5.0 10 0.5 1.0 CARRIER FREQUENCY (MHz) 20 ~lq~fLlpoN, 0.8 z 200 mV 100 /' 0.01 0.05 0.1 50 5.0 10 0.5 1.0 I- ~ 50 ~ ex: u IIII I III (.) SIGNAL INPUT = 600 mV ~ ...c 1.0 w en a:a: 3fe Sideband and Signal Port Transadmittances vs Frequency ~ 2.0 c ~ ~~ J CARRIER FREQUENCY (MHz) Sideband Output vs Carrier Levels ::c 1.2 (.) fe ~ 1/ ::::I " ,/ I ~ ~ Ic 0.1 ~ ,/ ~ i--"'" ....... fe = 500 kHz ".. > fe=loMHz ", o ex: 1.0 ~ c I- /V 1 I I ~T t:I ,/ / ~ ;:;;;;;;0 ~ ....... ~- CARRIER INPUT LEVEL (mVrms) ~ 10 :> -30 0.01 0.1 1.0 10 100 ::::I C FREQUENCY (MHz) CARRIER FREQUENCY (MHz) CARRIER LEVEL (mVrms) typical applications (con't) +8 Vdc IK --------4 CARR~~~ ~:r~~ 0 - -..... 71BI l.9K 3111 2121 51 6161 BIIDI 0.005 T"F LMIS96 '"F SSBSIGNAL ~J-_------~ 1111 INPUT ...,....., '"F IK ~ DEMODULATED \""""" AF OUTPUT 91121 5151 0.005 "F-:r 6.BK 0.005 "FT NumbersmParentheses Show DIP Connections -B Vdc SSB Product Detector This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation. 345 typical applications (con1t) +12 Yd. Y I lK -'"'A lK lK 51 2(2) 3(3) RL 1(1) ~ RL 51 II 1(10) CI\ II 6(6) AVlo cos 2 wt lM1596 cl\ 9(12) 1(1) eocOIwt -AVloCosZwt 1 4(4) 10(14) 10K 10K 51 5(5) 51 Numbers io Parenthese 50K l 6.8K ~ ShowDIPConneetlOns ~ ~ -8 Yd. Broadband Frequency Doubler The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operati ng frequency. Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input. 346 r- s: -A Consumer Circuits 00 o o LM1800 FM stereo demodulator general descr,iption The LM 1800 is a unique FM stereo demodulator which uses phase locked techniques to derive the right arid left audio channels from the composite signal. Using a phase locked loop to regenerate the 38 kHz subcarrier, it requires no external L-C tanks for tuning. Alignment is accomplished with a single potentiometer. • Simple, noncritical tuning by single potentiometer adjustment • Internal stereo/monaural switch with 100 mA lamp driving capability • Wide dynamic range: 600 mVrms maximum composite input signal • Wide supply voltage range: 10 to 24 volts • Excellent channel separation features • • Low distortion Excellent SCA rejection • Requires no inductors • Low external part count • • Emitter follower outputs Excellent supply ripple rejection schematic diagram Order Number LM1800N See Package 22 Order Number LM1800N-01 See Package 24 typical circuit configuration Vee 19 kHz MONITOR STEREO LAMP (100mA) LM1800 3.9K ":'" LEFT OUTPUT RIGHT OUTPUT 0:- 347 o o CO absolute maximum ratings 'P"" ~ Supply Voltage Power Dissipation (Note 3) Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) ...I electrica I characteristics PARAMETERS Supply Current 24V 575mW O°C to 70°C -55°C to +150°C 300°C (Note 1) CONDITIONS 10 100 mA lamp current 16 Pilot Level for Lamp "OFF" 5 400 Hz (Note 2) 1000 Hz (Note 2) 10000 Hz (Note 2) MAX UNITS 30 rnA 24 V 1.2 Pilot Level for Lamp "ON" Stereo Channel Separation TYP Lamp "OFF" Operating Supply Voltage Lamp Driver Saturation Voltage MIN V 20 8 mV 40 30 dB dB dB 30 Monaural Channel Unbalance 0.2 Recovered Audio 200 mVrms monaural input Total Harmonic Distortion 1 kHz, 600 mVrms 160 mV 200 dB 250 1.0 mVrms % composite with 10% pilot Capture Range 25 mV of 19 kHz pilot Supply Ripple Rejection 100 Hz ripple Input Resistance Output Resistance SCA Rejection ±2 ±6 45 dB 40 kn 1300 200 mVrms composite at 67 kHz % of fo 50 n dB Note 1: T = 25° C and V CC = 12.0 volts unless otherwise specified. Note 2: 100 mVrms composite as measured on average responding meter with 10% pilot (i.e., 20 mVrms pilot with 100 mVrms signal). Note 3: The maximum junction temperature is 125°C and should be derated at 175°C/W junction to ambient. 348 Consumer Circuits LM1845 signal processing system general description The LM 1845 is a signal processing system for television receivers which performs the functions of AGe and sync separation. It provides both positive and negative going sync signals and in· cludes an internal AGe amplifier with noise cancell ing. AGe outputs are available for both I F and tuner. features • Video internally delayed for total noise inversion • Low impedance noise cancelled positive and negative going sync outputs • No noise threshold or AGe detector level adjustment • Low impedance video output for driving luminance channel or a video output stag~ • Two delayed tuner AGe outputs; one for an NPN bipolar tuner and one for a FET, tube, or PNP schematic diagram NOISE CANCEllED VIDEO SYNC OUTPUT INPUT 5 VIDEO INPUT • n. """LI 1 6V" SYNC STROBE IN 1 HORIZONTAL STROBE IN 16 . +24V a , 11 AGe fiLTER VIDEO OUTPUT 12 MAX IF :~: AGe 1J 14 15 FETTUIE NPN ""I'POlAR IIPOLAR DElAYEDTUNERAGC OUTPUTS Order Number LM1845N See Package 23 Order Number LM1845N-01 See Package 25 typical circuit con·figuration SEPARATED SYNC TO SET IlU 349 absolute maximum ratings 30V 625 mW O°C to 70°C -55°C to +150°C 300°C Supply Voltage Power Dissipation (Note 2) Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical cha racteristics (Note 1) PARAMETERS CONDITIONS AGC Threshold MIN 4.65 Threshold Separation MAX UNITS 5.3 1.7 Negative Sync Output (High) = 100 J.1A V P4 = bv Positive Sync Output (Low) V P4 = OV Positive Sync Output (High) IP4 Negative Sync Output (Low) TYP Ip,\ = 100 J.1A V 2.5 23.9 20.5 rnA 20 rnA Reverse Tuner AGC Maximum Current 3.2 rnA Forward Tuner AGC Maximum Current 9.8 rnA Internal AC Coupled Noise Gate Lockout Interval Supply Current 1 1 Kohm between P6 and P7 55 10 Note 1: T = 25°C and Vcc = 24V. Note 2: The maximum junction temperature of the LM1845 is 125°C. For operating at elevated temperatures the derating factor is 175° C/W junction to ambient. 350 V V 1.70 AGC Filter Charge Current V V 0.1 AGC Filter Discharge Current V J.1s rnA Consumer Ci·rc,uits LM2111 FM detector and limiter general description The LM2111 is a monolithic integrated circuit FM detector and limiter that requires a minimum of external components for operation. It includes three stages of IF limiting and a balanced product detector. features • A direct MC1357 replacement • Simple detector alignment: one coil or ceramic filter • Sensitivity: 3 dB limiting voltage 300 J.1V typo • Low harmonic distortion • High I F voltage gain for ULN2111A and schematic diagram 13 12 R21 200 R16 8,8K R14 200 R18 200 R22 5K D6 10 Order Number LM2111 N See Package 22 Order Number LM2111 N-01 See Package 24 block diagram V' r------I I I I I 13 ---------,I I 'I 1 1 1 I 351 ...... N ~ -I absolute maximum ratings O°C to +85°C _65°C to +150°C 300°C Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 15V 3.5V Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation T A = 25°C or less T A = 25°C or more 850 mW Derate Linearly 6.67 mWtC electrical characteristics PARAMETER SYMBOL (T A = 25°C, Vee = 12V) LIMITS TEST CIRCUIT CONDITIONS MIN TYP MAX 12 17 22 UNITS STATIC CHARACTERISTICS Supply Current Amplifier I nput Reference 1.45 Detector Input Reference 3.65 V V Amplifier High Output Level 1.25 1.45 1.65 V Amplifier low Output Level 0.125 0.145 0.18 V Detector Output Level 4.3 5.0 5.7 V De·emphasis Resistance 7.2 8.8 10.8 kS2 fo = 4.5 MH L'.IF = ±25 kHz, Peak Separation = 15.0 kHz, Source Resistance = 50n DYNAMIC CHARACTERISTICS DYNAMIC CHARACTERISTICS A 1F / 1 V 1N V 1O(IF) 1 V 1N = 10 mV V1N(LIM) 2 FM = 400 Hz VO(af) 2 V 1N = 60 mV, FM = 400 Hz THD AMR 2 100% FM Modulation 2 AM: 1 kHz ~ 0.3 mVrms @ 55 1.25 58 1.45 400 30%, V 1N = 10 mV 0.5 800 0.6 1.5 40 46 fo = 10.7 MHz, L'.IF = ±75 kHz, Peak Separation = 1 MHz, Source Resistance = 50S2 ~ 0.3 mVrms 53 AIF 1 V 1N V 1O (IF) 1 V 1N = 10 mV V1N(LlM) 2 FM = 400 Hz VO(af) 2 V 1N = 60 mV, FM = 400 Hz 0.3 THD AMR 2 100% FM Modulation 0.3 2 AM: 1 kHz @ 30%, V 1N = 10 mV 1.45 300 40 test circuit HP202H FM/AM BOONTON91H Rf VTVM GENERATOR HPl01H UNIVERHR TEST CIRCUIT 1 352 mA TEST CIRCUIT 2 Consumer Circuits LM2113 FM detector and limiter general description The LM2113 is a monolithic integrated circuit FM detector and limiter that requires a minimum of external components for operation. It includes three stages of IF limiting and a balanced product detector. • Simple detector alignment:' one coil or ceramic filter • Sensitivity: 3 dB limiting voltage 300 MV typo • Low harmonic distortion features • High I F voltage gain • • Nominal 8V supply A direct replacement for ULN 2113A schematic diagram 12 13 R21 200 RIg 8K R22 ~K 06 10 Order Number LM2113N See Package 22 Order Number LM2113N-01 See Package 24 block diagram V' r------- ---------,I 13 I I I I I I I I I I I '"·~:IJl lCH 353 absolute maximum ratings Supply Voltage Input Signal Voltage (Pin 4) Power Dissipation T A = 25°C or less T A = 25°C or more o°C to +85°C -65°C to +l50°C 3OQ°C 850mW Derate Linearly 6.67 mWfC electrical characteristics PARAMETER Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 14V 3.5V SYMBOL (T A = 25°C, Vee = 8.2V) LIMITS TEST CIRCUIT CONDITIONS MIN TYP MAX 11 16 22 UNITS STATIC CHARACTERISTICS Supply Current 113 Amplifier Input Reference V6 1.45 Detector Input Reference V2 3.65 Amplifier High Output Level VlO 1.25 1.45 1.65 V Amplifier Low Output Level Vg 0.125 0.145 0.180 V Detector Output Level V, 3.0 3.8 4.5 V De'emphasis Resistance Rd 7.2 8.8 10.8 kSl DYNAMIC CHARACTERISTICS fo = 4.5 MH, 6f AIF 1 VIN <::;: 0.3 mVrms Amplifier Output Voltage V'OIIF) 1 VIN Input Limiting Threshold 2 FM = 400 Hz Recovered Audio Output VINILlM) V Olafl 2 VIN Output Distortion THO 2 100% FM Modulation AM Suppression AMR 2 AM: 1 kHz @ 30%, VIN fo V 58 = 10 mV = J.1Vrms Vrms 0.5 1.5 = 10 mV 1 VIN <:::: 0.3 mVrms Amplifier Output Voltage Vl011F) 1 VIN Input Limiting Threshold VINILlM) 2 FM Recovered Audio Output V Olaf ) 2 VIN Output Distortion THO AMR 2 100% FM Modulation 2 AM: 1 kHz @ 30%, VIN = 10 mV = 50Q dB 53 10 mV = 400 Hz = 60 mV, FM = 400 Hz % dB 46 550 kHz, Source Resistance AIF ~ V p_p 300 = 60 mV, FM = 400 Hz = 10.7 MHz, 6f = ±75 kHz, Peak Separation dB 1.45 Amplifier Voltage Gain AM Suppression V = ±25 kHz, Peak Separation = 150 kHz, Source Resistance = 50Q Amplifier Voltage Gain DYNAMIC CHARACTERISTICS 1.45 230 0.3 300 0.4 Vp n 500 0.5 1.0 40 test c ircu its 800NTON91H RFVTVM TEST CIRCUIT 1 354 mA TEST CIRCUIT 2 JlV Vrms % dB r- ~ Consumer Circuits W o N CO » ........ r- ~ LM3028A/LM3028B/LM3053 differential rf/if amplifier W o general description The LM3028A/LM3028B/LM3053 is a monolithic R F/I F amplifier intended for emitter-coupled (differential) or cascode amplifier operation from DC to 120 MHz in industrial and communications equipment. The LM3028A/LM3028B and LM3053 are plug-in replacements for the CA3028A/ CA3028B and CA3053 respectively. The LM3028B is similar to the LM3028A but has premium performance with tighter limits in offset voltage and current, bias current and voltage gain. The LM3053 is similar to the LM3028A/LM3028B but is recommended for IF ampl ifier operation with less critical DC parameters. features • • Controlled for input offset voltage, input offset current, and input bias current * Balanced differential amplifier configuration with controlled constant-current source to provide unexcelled versatility N CO • Single- and dual-ended operation .• Operation from DC to 120 MHz * • Balanced-AGC capabil ity * • Wide operating-current range. OJ ........ r- ~ W o w *Does not apply to the LM3053. (J1 applications • R F and I F I inear amplifiers, both differential and cascode • • • Mixers Oscillators Converters in commercial FM • DC, audio and sense amplifiers • Limiting I F amplifiers • Hybrid building block • Emitter coupled switches schematic and connection diagrams Metal Can Package OUTPUT LOW ,KAI CURRENT SOURCE EMITIER A2 2.8K TOP VIEW Order Number LM3028AH or LM3028BH or LM3053H See Package 11 typical applications Wco .Vco o----+--~ .VccO-.....- - - - -...... c, A Balanced Differential Amplifier with a Controlled Constant-Current-Source Drive and AGC Capability Oscillator Wee AGCo-_ _ _ _ _ ~ EAEFo------..... +vcco------"""i A Cascode Amplifier with a Constant-Impedance AGC Capability Mixer 355 M It) o M ::E absolute maximum ratings LM3028AI LM3028B ...I ....... Supply Operatmg Voltage Differentldl Input Voltage Voltage Between 1 & 8 Vol tage 8etween 5 & 6 Voltage 8etween 2 & 3 Va! tage Between 2 & 4 CO CO N o M ::E ...I ±15V ±5V OV to +20V OV to +20V +5V to -11V +5Vto-1V LM3053 ±12V ±5V OV to +15V OVto+15V +5V to -11V +5V to -lV Storage Temperature Operating Temperature Power Dissipation @ 25°C Derate 5 mWfC Above 85°C Lead Temperature (Soldering, 10 sec I _65° C to 200° C _55°C to 125°C 450mW 300°C dc electrica I characteristics ....... 60 dB • Sensitivity: 3 dB limiting voltage-200 J1V typically • High stability • Low harmonic distortion • Audio drive capability: 6 mA p-p • Undistorted audio output voltage: 7V p-p • Differential peak detector • Simple detector alignment: one coil • Internal zener diode regulator • Excellent AM rejection-50 dB typo @ 4.5 MHz schematic and connection diagrams Dual-In-line Package IN,uTlowl loECoU;LEI 1 r::------+"~ AUDIO INPUT .,.--;--~ToNE CONTROL AUDIO OUTPUT SUBSTRATE IGNol Vee • 5 10 (REGULATED) VOLUME CONTROL DETECTOR INPUT • IF OUTPUT • DETECTOR OUTPUT TOPVIEW Order Number LM3065N See Package 22 Order Number LM3065N-01 See Package 24 block diagram ", s. II.' 1""" 361 absolute maximum ratings Input Signal Voltage (Between Pin 1 and 2) Power Supply Current (Pin 5) ±3V 75 mA Power Dissipation T A = 25°C or less T A = 25°C or more Operating Temperature Range Storage Temperature Range 850mW Derate Linearly 6.67 mWtC _40° C to +85° C _65°C to +150°C electrical characteristics PARAMETER SYMBOL TEST CIRCUIT LIMITS CONDITIONS MIN TYP MAX UNITS Static Characteristics Zener Regulating Voltage 10.3 Ouiescent Supply Current 11.5 12.2 4.0 5.2 10.0 12.3 Voltage @ Pin 12 Current into Terminal 5 V5 = 9V V mA 28 5.8 V 24 mA 400 IJ.V Dynamic Characteristics I F Amplifier/Detector Input Limiting Voltage (-3 dB point) Recovered Audio V IN (lim) Vo(af) fo = 4.5 MHz fm: 400 Hz @ ±25 kHz fo = 4.5 MHz, V IN = 100 mV 1m: 400 Hz @ ±25 kHz AM Rejection AMR fo = 4.5 MHz, fm: 400 Hz @ ±25 kHz AM: 1 kHz @.30% Total Harmonic Distortion Attenuator THD fo.=4.5MHz, V IN = 100mV fm: 400 Hz @ ±25 kHz Volume Reduction Range 200 500 750 mVrms 40 50 dB .9 fo = 4.5 MHz fm: 400 Hz @ ±25 kHz 2 60 % dB RA = 0 for max·volume; RA = 00 for minimum volume Audio Driver Voltage Gain Total Harmonic Distortion Av(af) V IN = 100 mV @ 400 cps THD Vo = 2V rms@ 400 cps Undistorted Output Voltage THD = 17.5 5% @ .. 00 cps dB 20 1.5 % 2.5 V rms test circuits ... m:"~ ,,!..r' ~FT.. 8 :;:',:~~:,.,,~',',~ ,.'N, ±:r ""' , . . 0 ' '.". Lf1 DISTORTION """" L-"_"_'''_''_"._''....J TESTS AUDtDOAIY(AYOlTAG£QAIN AUDIO OIUIIUI THO UNOISTOFITEDOU"UT TEST CI RCUIT 1 362 TEST CI RCUIT 2 Consumer Circuits LM3066 chroma signal processor general description The LM3066 is a monolithic integrated circuit designed for color signal processing in color television receivers. It includes gain controlled chroma and bandpass amplifiers, chroma output stage, gated burst amplifier, 3.58 MHz injectionlocked oscillator, automatic chroma control (ACC) detector-amplifier, killer detector-amplifier, and a zener-regulated voltage reference. The input chroma signal is applied to the chroma amplifier which is controlled by the ACC detector-amplifier maintaining a constant chroma level at terminal 16. The chroma amplifier feeds the chrQma signal in parallel to the bandpass and burst amplifiers. The bandpass amplifier is gain controlled by the DC chroma gain control and is also controlled by the killer detector-amplifier. The horizontal keying pulse gates the burst signal from the bandpass amplifier to the burst amplifier which then injects the burst signal into the 3.58 oscillator. The ACC and killer detectors sense the oscillator amplitude. Thresholds are set independently at terminals 9 and 4. The LM3066 and the LM3067 Chroma Demodulator constitute a complete chroma system for color television receivers. features • Complete color sync circuitry • Blanked chroma amplifier • Chroma bandpass amplifier • Low output impedance chroma driver • . Color killer • Automatic color control • DC chroma gain control • Zener regulated voltage reference • Aligned independently • Short circuit protection schematic diagram 16 12 15 Aj4 200 13 14 10 11 028 A22 5K A7 500 ,A18 820 R8 5K A21 5K A11 100 A19 270 014 A30 500 D3 R29 4K R20 R28 5K lK 015 Z5 R31 2K Z4 SUBSTRATE Note: All resistance values are in ohms. Order Number LM3066N See Package 23 Order Number LM3066N-01 See Package 25 363 absolute maximum ratings Power Dissipation T A = 70°C or less Above 70°C Ambient Temperature Range Operating Storage Power Supply Voltage (Pin 12) Power Supply Current (Pin 12) 600 mW derate linearly 7.7 mWtC -40 to +85°C -65 to +150°C +12V 50 mA electrica I ch aracteristics PARAMETERS (T A = 25°C and V+ = 11.2V) CONDITIONS LIMITS MIN TYP MAX UNITS STATIC CHARACTERISTICS (Test Circuit 1) .5 V Burst-Chroma Bias (V 3 ) 2.9 V Killer Reference (V 4) 1.0 V ACC Reference (V 2 ) Zener Reg. Reference (V 6) 10.6 11.9 12.6 V Oscillator Input (V 7 ) 1.3 V Oscillator Output (V g ) 2.3 V Balance (ACC Control) (V g ) 1.65 V Chroma Output (V 14) 4.6 V 6.5 mA 4.8 mA 1.27 mA S1 Closed Burst-Sperator O.utput (111) Bandpass Amplifier Output (1'3) Chroma Amplifier Output (116) Quiescent Supply Current (15) DYNAMIC CHARACTERISTICS 14 ~Test mA 33 Circuit 2) V1 V1 = 0 Vp-p Chroma Output (V 14) 100% Killed V1 V, = 1.25 V p-p ACC Detector Output (V 2 ) V, = 1.25 Vp-p Oscillator Output (V g ) 24 0.8 = 1.25 V p-p 0.5 1.05 2.5 1.0 = .025 V p_p Small Signal Input Resistance (ri) Small Signal I nput Capacitance (C i) Small Signal Output Impedance ~r 0) 3.5 Vp-p .02 0.9 50 2.4 250 Vp-p Vp-p Vp _p V kn pF n DYNAMIC CHARACTERISTICS TEST PROCEDURE Note 1: V 1 = 0 V p_p (A) Adjust V2 = +O.65V (8) AdjustV4=+1.2V (C) Adjust Cx so fOSC = 3.579545 MHz. Note 2: Chroma input test signal (V 1) is a 52 J.Ls line at subcarrier frequency and 10 cycles of burst at 46.5% of line amplitude. 364 test circuits _ -. .- - - - . -.......~...- ...- - - - - - - - +11.2V 3K '---JVV\,.....---1.....- - +20V TEST CIRCUIT 1 ,-, '11.2V 3.9K 4.3 MHz 16 21K r-- 1.2 LM3066 I I CHROMA OUTPUT I I I •I .01 CHROMA~ INPUT m -= OSCILLATOR OUTPUT All resistance values are in OHMS Unless otherwise indicated, all capacitance values less than 1.0 are in microfarads, 1.0 or greater are in picofarads All coils have a Qou > 30 TEST CIRCUIT 2 365 Consumer Circuits LM3067 chroma demodulator general description The LM3067 is a monolithic integrated circuit designed primarily for color signal demodulation in color television receivers. A DC tint control is also included. The reference subcarrier and chroma signals are applied and the three demodulated R-Y, G-Y, B-Y color difference signals are delivered with close DC balance and proper amplitude ratios. The tint control achieves a 100°+ phase adjustment by means of a customeroperated DC control. A limiting amplifier and phase shift network provide constant amplitude carriers phase shifted 76° which then feed demodulator drive amplifiers. The demodulators consist of two sets of balanced detectors which receive the reference subcarrier and chroma signal. The chroma signal is then demod~lated, matrixed, and DC shifted in voltage. The LM3067 and LM3066 Chroma Signal Processor constitute a complete chroma system for color television receivers. features • Balanced chroma demodulators • DC tint control • Color difference matrix • Low output coupling impedance drivers for direct • Reference subcarrier I im iter • Zener regulated voltage reference • Internal R F filtering of demodu lation components schematic diagram 13 R39 2.1K 10 i '03 zs z, Note ~~lr:~:~aUngche ~!~:::r:~~t~e~~:lIowers Alicapaclt3l1cevalLll'SarempF 16 Order Number LM3067N See Package 23 366 Order Number LM3067N-Ol See Package 25 absolute maximum ratings Power Dissipation T A = 70°C or less Above 70°C Ambient Temperature Range Operating Storage Power Supply Voltage (Pin 13) Power Supply Current (Pin 13) 600 mW derate linearly 7.7 mW/oC electrical characteristics -40 to +85°C -65 to +150°C +12V 50 mA (T A PARAMETERS = 25°C and V+ = 11.2V) CHARACTER ISTICS MIN LIMITS TVP MAX UNITS Static Characteristics (Test Circuit 1) Voltage Inputs Tint Control Input (V 2) 12 = 0.25 mA 3.5 2.1 Reference Subcarrier (V 3) Zener Regulator Ref. (V 4) 10.6 11.9 12.6 V 5.7 B-V, R-V Oscillator Ref. Inputs (V 6,V 12 ) Balance (B-V, R-V) (V 7 ,V 11 ) 5.0 4.2 B-V, G-V, R-V Outputs (V a,9,10) 5.0 -0.3 Difference Outputs (Note 1), U:Na.tNg.tN 10) 5.8 0.3 Chroma Inputs (V 14,V 15 ) 3.0 Tint Amplifier Balance (V 16) 4.7 Input Currents Tint Amplifier Output (min.) (l1(min.)) V'6 = 8V 0.16 15 Total Supply (11 + 113) 0.37 24 mA 33 Dynamic Characteristics (Test Circuit 2) Tint Amplifier Output Sensitivity (V 1) V3 = 7 mVRMS Limiting Knee IV 1) V3 = 35 mVRMS Limiting (V 1) V3 = 350 mVRMS Tint Amplifier Phase Ref. (Note 2) (1/>6) V3 = 70 mVRMS 185 220 Tint Amplifier Phase Ref. (Note 3) (.64>6) V3 = 70 mVRMS 90 105 160 250 mVRMS 300 380 235 degrees degrees Demodulated Chroma Outputs R-V (V 10 ) Ratio of G-V to R-V (V 9/V10) Ratio of B-V to R-V (V a/VlO) VRMS 0.15 0.25 0.28 0.36 0.44 1.0 1.2 1.4 V3 = 70 mVRMS V 14 = 35 mVRMS Color Difference Output 450 BW at 3.3 dB (BWOjff.l 550 kHz Color Difference Outputs (max. input signals): 3.0 R-V (V,o) G-V (V g ) B-V (Va) = 70 mVRMS 1.1 V'4 212 mVRMS 3.6 V3 V p _p Small Signal I nput Resistance Terminal Number 3 (rj) Terminal Numbers 6 and 12 (rj) 550 22 Small Signal Output Resistance Terminal Numbers 8, 9, and 10 (r o ) V V V V l' 6V8--V 8- (V8+ 39+ lO) ,6Vg-Vg_ (V8+ 39+ lO) , 6V lO=VlO- (V8+ V39+ V lO) Note. Note 2: Terminal No.3 is phase reference Note 3: Read phase shift as tint control IS varied 5 n block and functional diagram 21K -w""""".... ---~~- .---t-<.....-t-..J\IV'V-..... -112V REFERENCE~ ,UBCARRIER INPUT ~"""j'-- __- - V R-V OUTPUT .01 CHROMA--.) lNPUT~ .01 G-YOUTPUT B-YOUTPUT I I ----------------~~~ All rtsis1lnce values.r. In ohms. Unl.aothtfWiseindiCltld,.lItipacitince Vllutl Ita th.n 1.0"'1 in mtcfof'rlCls 1.0orgrt.t.r.reinpM:oflf.ds. test circuits ) - - - - - - ; - . <11.2V LMJ067 '--------"'VVY---- +20V TEST CIRCUIT 1 -w""""".... ,....-t-<.....-+-..J\IV'V-..... ---~~- +112V REFERENCE~ 'UBCARRIER INPUT ... '"'_ _._---.... R-Y OUTPUT 01 CHROMA--.) INPUT~ 05 G-Y OUTPUT B-Y OUTPUT _____________ ___ All resistlncev.lues.re in ohms. Unlessothet'wlseindltlud,.lIclplcitlnce Vlluesl.ssth.nl.01l'.inmlcro'lr.ds 1.0 orgreet.rtretn ptcoflf.ds. REG REF "':M~6~ Note 1: Reference subcarrier input (V 3 ) is a 3.58 MHz CW signal from 50S! source. Note 2: Chroma input (V 1.) is a 3.53 MHz CW signal from 50S! source. Note 3: Phase and amplitude at terminal numbers 1,3,6, and 12 measured with HP8405A (or equivalent) vector voltmeter. Note 4: Signals at t.rminal numbers 8, 9, and 10 measured with HP400E (or equivalent) voltmeter or an oscilloscope. Note 5: Tint control at maximum unless otherwise noted. TEST CIRCUIT 2 368 I I r- 3: w o o Consumer Circuits " LM3070 chroma subcarrier regenerator genera I description The LM3070 integrated circuit is a phase locked loop oscillator controlled by an Automatic Phase Control (APC) detector, and an Automatic Chroma Control (ACC) detector which generates the correction voltage for the ACC amplifier of the LM3071. Both the APC and the ACC detectors are piloted by the burst signal present in the NTSC. color video signal applied at Pins 13 and 14 in quadrature. The APC error output voltage controls the phase shift at Pin 7 in the oscillator feedback loop and locks the frequency of oscillation to the burst signal frequency. The APC and ACC detectors are keyed by the horizontal pulse applied at Pin 4, which also inhibits the oscillator output amplifier during the burst interval. Balance adjustment of DC offsets are provided to establish an initial no-signal offset control in the ACC output, and a no-signal, on-frequency adjustment through the APC detectoramplifier circuit which controls the oscillator frequency. The oscillator output stage is differentially controlled at Pins 2 and 3 by the HUE control to Pin 1. The circuit also includes a shunt regulator to establish a 12V DC supply. schematic d iag ram OSCILLATOR OSCILLATOR OUTPUT FEEDBACK OSCillATOR CONTROL ~ , 3 R31 390 HUE CONTROL, GATE INPUT 4 R1 22K A8 2.2K R12 22K A20 R21 3JK 22K GROUNDC>,_~~~~ R22 33< R3 22K Order Number LM3070N See Package 23 Order Number LM3070N·01 See Package 25 block diagram ......1IIh.......+c! 250K HUE !-_--, '01' CHROMA INPUT 4' D1S L-- HORIZ KEVPUlSE ~.4V 45 .. , INPUT ~~-----------------~---------~ Unless otherwIse mdtcated,all capacitance values lesslhanl0aremmlclofarads 10 01 gruterarem picofarads 369 o r-. o M :E ...I absolute maximum ratings I Supply Current Internal Power Dissipation up to 70°C Above 70°C Derate at 7 mWtC Operating Temperature Storage Temperature 40 mA 550mW -40°C to +85°C -65°C to +150°C electrical characteristics PARAMETER T A = 25°C SYMBOL v+ = 24V CONDITIONS MIN LIMITS TYP MAX UNITS STATIC (Refer to Test Circuit 1) Supply Current Voltage at Supply Terminal VlO Supply Regulation /':,V lO V+ = 21 V to V+ = 27V 12 + 13 S, "OFF': S2 Position 1, Pins Total Current into Oscillator mA 25.5 Is 11.3 Output Terminals 12 12.8 mV 30 4.2 5.8 V 7.8 mA 2 and 3 shorted together APC Output Current I", 1'2 S, "ON", S2 Position 1 ACC Output Current 1,5, 1'6 S, APC Output Balance V" S, "ON", S2 Position 1 -350 0 +350 mV -300 0 +300 mV 0 +300 mV - V'2 "ON'~, S2 Position 1 ACC Output Balance V'5- V '6 S, "ON", S2 Position 1 Oscillator Control Balance V7 S2 Position 2, V" =V '2=9.5V -300 Voltage at Hue Control Terminal V, - VB Voltage at Oscillator Feedback Terminal V6 Voltage at APC and ACC Input Terminal V'3, V'4 S, "OFF" 7.1 1.45 mA 1.45 mA 7.7 8.3 2.8 S2 Position 3 5.8 6.3 V V 6.9 V DYNAMIC (Refer to Test Circuit 2) Oscillator Pullin Range ±650 12 Oscillator Control Sensitivity Oscillator Output at Pin 2 V2 S" Position 1 .75 1.0 Vp _p Oscillator Output at Pin 3 V3 S" Position 2 .75 1.0 Vp _p ACC Detected Output 370 Hz Hz/mV 120 150 mV r- 3: o-..... o w typical performance characteristics Differential DC Voltage at ACC Detector Output as a Function of Burst I nput Level Frequency Pull"ln Range as a Function of Burst Input Level 1000 g 800 ~ z 600 ~ 400 ~ 200 I ........ ~ -200 > ~ -400 is / ,I . J fo =3.579545 MHz \ -y- r- STANDARD NTSC SIGNAL --- , -600 ~ -800 -1000 '""" o 200 400 600 800 I fo = 3.579545 MHz, OSCillATOR LOCKEO STANDARD NTSC SIGNAL 1000 400 200 PEAK·TD·PEAK BURST INPUT lEVel AT APC OETECTOR INPUT (mV) 600 800 PEAK·TO·PEAK BURST INPUT. lEVel AT ACC DETECTOR INPUT (mV) de test circuit 470/1W '" . 2K • 2K 16 15 14 13 ,. v' = 24V 11 12 10 LM3070 "" t,:, ~,:,-.",,' n'FF,J ( : s, 12K L-_ _ _ _ _ _ _..L _ _ _ _.45_1_O . _1_00_K.' . 38~ "I 03 TEST CIRCUIT 1 371 o....... o M :?i ..J ac test circuit NTSC GENERATOR NTSC STANDARD SIGNAL MINUS LUMINANCE SET ec FOR BURST OF 0.4 Vpp ON ~----~ 43K __----------O\ IBO 36K OFF 0 FERRITE BEAD ':' XTAL 270K "'--'-_rY' IK SI 56 2 .OIVF ... T ':' UK 4 5ps +4V peak pulse centered on thebuist TEST CIRCUIT 2 372 65pF Consumer Circuits LM3071 television chroma IF amplifier general description may be gated "OFF" to provide "color killing" action in the absence of color signal at the output of the first stage. The killer trip point is adjusted externally. The LM3071 is a two stage chroma I F amplifier on a single silicon chip encapsulated in a 14 lead molded-Dual-In-Line Package. The first stage is an automatic gain controlled amplifier, and its output from Pin 6 is used to drive the ACC detector of the LM3070 or an equivalent circuit. The output from the ACC detector is applied to Pins 1 and 14 to control the gain of the stage. The second amplifier stage is driven from the output of the first at Pin 7, and the gain is controlled by adjusting the DC voltage at Pin 10. The output from Pin 9 supplies the chroma drive signal to the chroma demodulator circuit. I n addition, the second stage features • Very • Good signal handling capability effective gain control of both stages • Excellent gain stability with temperature and supply voltage variations • Low distortion schematic and functional diagrams Order Number LM3071N See Package 22 Order Number LM3071N-01 See Package 24 ." ." ]6, '" OUTPUl2 --oV··2.V r-------------4~-_+--...... GAIN test circuits CONTROL ,. 1 62K m RI SETSU"lYFOR Vt." 10V 10M • l.S.MHz INPUT 2 Test Circuit 1 Test Circuit 2 373 absolute maximum ratings V+ = 30V Supply Voltage Internal Pow;r Dissipation at 70 °C 0 Above 70 C derate at 7 mW/ C Operating Temperature Storage Temperature 550mW _40° C to +85° C -65°C to +150°C electrical characteristics PARAMETER = 25°C TA v+ = 24V SYMBOL CONDITIONS MIN LIMITS TYP MAX UNIT STATIC (Refer to Test Circuit 1) Supply Current Is 17 24 31 rnA Bias Voltage at Pin 12 V 12 14 15.3 16.5 V Voltage at Input 1 V2 1.7 Voltage at Input 2 V7 1.4 Voltage at Output 1 V6 V Ace = VI - V 14 = OV 15.5 17.5 20 V Voltage at Output 2 V9 VlO = OV 17.25 18.25 19 V SA Position 1, VI = V 14 = 10V 14 16.5 19 db DYNAMIC (Refer to Test Circuit 2) V f = 3.58 MHz Gain, ACC Amplifier Stage AVI Gain Reduction of ACC Amplifier Maximum Gain, Chroma Level Amplifier AV2 S8 Position 1, V 10 = OV 90% Chroma Gain Control VlO S8 Position 1, R2 set for 90% of Maximum Gain 10% Chroma Gain Control Reference Voltage VlO S8 Position 1, R2 Set for 10% of Maximum Gain Maximum Chroma Output Before Distorting V9 S8 Position 1, V 10 = OV ACC Amplifier Bandwidth BW 1 SA Position 1 Level Amplifier Bandwidth BW 2 Killer on Threshold V 13 S8 Position 2, Adjust R3 to Kill Output Gain Variation with V+, Level 6.A V2 R2 set for 10% of maximum Gain db 14 SA Position 2, Rl set for V 14 - VI = 75 mV Reference Voltage 13 2.3 17 15.5 3.5 20 5.5 17 db 4.8 Voc 21.7 Voc V p _p 12 MHz 30 MHz 16.5 Voe 0.3 db 0.5 db v+ = 24 ± 3V Amplifier Stage Gain Variation with Temperature, 6.A v2 R2 set for 10% of Maximum Gain Level Amplifier Stage T A = 25°C to T A = 70°C ACC Amplifier Input Resistance Rj l 2.0 kn ACC Amplifier Input Capacitance Cjl 5 pF Level Amplifier Input Resistance Rj2 2.2 kn Level Amplifier Input Capacitance Cj2 4.2 pF typical performance characteristics Ace Amplifier Gain as a Chroma Level Amplifier Gain as a Function of DC Voltage at Chroma Level Control Terminal Function of Differential DC Voltage at ACC Input Terminals 35.5 ~ 14 :r. 32 ~ I:) > 12 H--+-+-I--+--t-t+i--+-+-I--I 26 ,2 ~10rr~-r++J~~-r+-+-I--I 20 ~ 8 H--+-+-I--+--tl-H--+-+-I--I 18 ~ I--+-+-+--+--+/""*I--+-+-+-+-+---I ~ < ~ 6 z 4 H--+-+-I--I--t-HH-+-+--I 12 ~I 2 6 ~ 15.5 H--+-+~J4--t-HH-+-+--I o _ _-~~...I....--I...-.I.-I...-'--I-JI.-I._I o -300 -200 -100 o 100 200 300 DIFFERENTIAL DC VOLTAGE AT ACC INPUT TERMINALS (V, - V'4) (mV) 374 V DC VOLTAGE AT CHROMA lEVEl CONTROL TERMINAL (V) Consumer Circuits LM3075 FM detector/limiter and audio preamplifier genera I description The LM3075 is a monolithic integrated circuit FM detector/limiter and audio preamplifier that requires a minimum of external components for operation. It includes three stages of I F limiting and a differential-peak-detection circuit. • Simple detector alignment: one coil • Sensitivity: 3 dB limiting voltage 250 I1V typical at 10.7 MHz • Low harmonic distortion features • Excellent AM rejection 55 dB typo at 10.7 MHz • • Internal audio preamplifier A direct replacement for the CA3075 schematic diagram " ]I< All "",WlCe"'u.,"."'oh".\ All COPd"""<" ".1"., ... "'pf Order Number LM3075N See Package 22 Order Number LM3075N-01 See Package 24 block diagram typical application 'O"on PU'JJ 375 absolute maximum ratings Power Supply Current (Pin 5) Supply Voltage (Pin 5) Power Dissipation T A = 25°C or less T A = 25°C or more 30mA 12.5V -40°C to +85°C -65°C to +150°C 300°C Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 sec) 850mW Derate Linearly 6.67 mWtC electrical characteristics TA = 25°C PARAMETER UNITS CONDITIONS STATIC CHARACTERISTICS Supply Current Vee = 8.5V Vee= 11.2V Vee = 12.5V Detector Output Level (High) V7 Detector Output Level (Low) Audio Amplifier Output Level Vee = 11.2V V'2 8.5 15 17.5 19 29 mA mA mA 6.1 V 5.4 V 5.2 V DYNAMIC CHARACTERISTICS AT V+ = 11.2V, fo = 10.7 MHz, l:If = ±75 kHz, fm = 400 Hz Input Limiting Threshold 250 VIN(LlM) AM Rejection AMR Recovered AF Voltage (At Terminal 12) Vo (AF) Total Harmonic Distortion THD AM: 1 kHz @30% VIN = 100 mV 55 1.5 600 MV dB V % Audio Preamplifier Voltage Gain AV(af) Total Harmonic Distortion THD 2 VIN = 100 mV, f = 400 Hz V OUT = 2V, f = 400 Hz 21 1.5 test circuits 'l Mill EA 4~O~ OR (OUIVAlENT 'R !30~US~RQ~~C;o;t~~E~~O ""'1' TEST CIRCUIT 1 376 TEST CIRCUIT 2 dB % Transistor Pairs LM114/LM114A/LM115/LM115A matched dual monolithic transistors general description These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely-tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn nOise," low leakages and improved long-term stability. Some of the major features of these pairs are indicated by the following specifications: • High current gain-500 minimum at 10 p.A • Tight beta match-10% maximum • High breakdown voltage-to 60V • Matching guaranteed over a OV to 45V collectorbase voltage range. Although designed primarily for high breakdown voltage and exceptional dc characteristics, these transistors have surprisingly good high-frequency performance. The gain-bandwi~th product is 450 MHz with 1 rnA collector current and 5V collector-base voltage and 22 MHz with 10 p.A collector current. Collector-base capacitance is only 1.3 pF at 5V. • Low offset voltage-0.5 mV maximum • Low drift-2 p.V 125°C tc maximum from -55°C to connection diagram 0 7 2 3 6 5 TOP VIEW Order Number LM114H or LM114AH LM115H or LM115AH See Package 10 absolute maximum ratings Collector-Base Voltage (BV C BO) Collector-Emitter Voltage (BV C E R) Collector-Collector Voltage Emitter-Emitter Voltage Emitter-Base Voltage (BV E BO) Collector Current Total Power Dissipati.on (Note 1) Operating Junction Temperature Storage Temperature Lead Temperature (soldering, 10 sec) LM114 LM114A 45V 45V 45V 45V LM115 LM115A 60V 60V 60V 60V 6V 20mA 1.8W -55°C to 150°C -65°C to 150°C 300°C Note 1: The maximum dissipation given is for a 25°C case temperature. For operation under other conditions, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 70° C/W junction to case or 230° C/W junction to ambient. 377 ct it) ~ ~ electrical characteristics :E (Note 2) ...I ........ PARAMETER CONDITIONS ~ ~ MAXIMUM LIMITS LM115 LM11§A LM114 it) UNITS LM115A Offset Voltage 1 jJ.A$l c $l00jJ.A 0.5 mV Offset Current Ic = 10jJ.A Ic= 1 IlA 10 2.0 0.5 10 2.0 O.S nA ilA ct Bias Current Ic = 10jJ.A Ic= 1 jJ.A 40 20 3.0 40 40 6.0 nA nA ~ ~ Offset Voltage Change OV $ V ce $ V max Ic = 10jJ.A loS 0.2 2.0 0.3 mV ...I Offset Current Change OV$Vce$Vmax Ic = 10jJ.A 4.0 1.0 4.0 1.0 nA ~ Offset Voltage Drift -S5°C $ TA $ 12SoC Ic = 10jJ.A 10 2.0 jJ.vtc Offset Current _55°C $ T A ~ 125°C Ic = 10jJ.A 50 12 SO 20 nA Bias Current -55°C $ TA $ 12SoC Ic = 10jJ.A 150 60 150 150 nA Collector·Base Leakage CUl:rent Vce = V max T A = 2Soc TA = 125°C SO 50 10 50 10 50 10 10 pA nA :E ...I ........ ~ :E ........ ~ ~ :E ...I 2.0 0.5 2.0 2.0 10 Collector· Emitter Leakage Current VCE = V max • VEe = 0 T A = 25°C TA = 125°C 200 200 50 50 200 200 50 50 pA nA Collector·Collector Leakage Current Vcc = V max T A = 25°C TA =125°C 300 300 100 100 300 300 100 100 pA nA Note 2: These specifications apply for T A = 25°C and OV .s VCB.s V max, unless otherwise specified. For the LMl14 and LMl14A, V max = 30V. For the LMl15 and LMl15A, V max = 45V. typical performance characteristics Noise Voltage Noise Current 10'· Saturation Voltage 10.0 10·'0 I=T A ' 25°C '" '"en 'I ~ :l: 10. Ie = 10 IlA 10' 10 2 103 10' FREQUENCY (Hz) 10" Iii' """ 10 2 '" ....... le=l~A= l'o.. 10. 13 105 2: I I---Ie,= 101lA I I 12 ~ ~ f::::= Ie = 100 IlA 10. 9 "l ~ S::.'e= 1 mA 10. 8 ~ 378 ~10'" I 1 il0. 7 ~> TA = 25°C= ........ ~l -- 103 105 . ~ § Ij 12'~~IC~ .~ ~55°C~ ;;; ~ §§ f= 0.1 ~ r-::.= II 0.01 10 6 Ij Q ~I- I 10' Z '2·5·'c~ ~ rr- > >= Ie =100jlA- FREQUENCY (Hz) ~ 1.0 10.5 10" 10.3 COLLECTOR CURRENT (A) 10. 2 » ::I: o o..... Analog Switches ~ ........ » ::I: o o..... ~ AH0014/ AH0014C* DPDT, AH0015/ AH0015C quad SPST, AH0019/AH0019C* dual DPST-TTL/DTL compatible (") .. l> ::I: MOS analog switches o o ..... general description (J1 This series of TTL/DTL compatible MaS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circu it chips: the MaS analog chip is similar to the MM450 type which consists of four MaS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in both hermetic dual-in-line package and flatpack. features • ±10V Large analog voltage switching 500 ns • Fast switching speed • Operation over wide range of power supplies • Low ON resistance • High OFF resistance 200n • Fully compatible with DTL or TTL logic • I neludes gating and level shifting ........ l> ::I: o o ..... These switches are particularly suited Jor use in both mil itary and industrial appl ications such as commutators in data acquisition systems, multiplexers, AID and D/A converters, long time constant integrators, sample and hold circu its, modulators/demodulators, and other analog signal switching applications. For information on other National analog switches and analog interface elements, see listing on last page. (J1 (") » ::I: o o ..... CD ........ » The AH0014, AH0015 and AH0019 are specified for operation over the -55°C to +125°C military temperature range. The AH0014C, AH0015C and AH0019C are specified for operation over the -25°C to +85°C temperature range. ::I: o o..... CD (") block and connection diagrams r---------,I ,...---------, ...""... ~ ,I L """lO'I.'I~~""'lOCOU'1 .. "I I I ...... " . ~ ...".'''' "",,~ijl ~:: I L__ -; , __ ::~::_ l lO:IC Yoo; ...."".LO'''"~; "" .. ~ ...'"'''' ...... " .. ~ ...""'" . . "",,--T-----ijl ~" : tt::cc 1 I I QuadSPST Il--,.o _ __ .J I L___ "n ".. u._.. ~ '0:1( ... ' Order Number AH0014F or AH0014CF See Package 4 I ... ' Order Number AH0014D or AH0014CD See Package 1 Dual DPST ,r--------i ...",,,,,~..,,,,,,,, AfIA~OCI_A' I I I I ""''''''~II: ...... lOG.1t1l I: I L ~I ~ __ 'I LOGIC .. Order Number AH0015D 'or AH0015CD See Package 2 typical applications Integrator .'I . . . " 'I~~IC IJ I lOGIC .. 10ColUTI L!!-,,, :t::' l!...-CIID __..J I,~~IC " •• "ACO_"_ •• _'''''' '" 0""" F...... U.,_b._"".. I Order Number AH0019F or AH0019CF See Package 4 Order Number AH0019D or AH0019CD See Package 1 Reset Stabilized Amplifier *Previously called NH0014/NHOO14C and NHOO19/NHOO19C 379 U en o 0r- absolute maximum ratings 0 ~ ,« Vee Supply Voltage V~ Supply Voltage V Supply Voltage V+/V- Voltage Differential Logic Input Voltage Storage Temperature Range Operating Temperature Range AH0014, AH0015, AHOO19 AH0014C, AH0015C, AHOO19C Lead Temperature (Soldering, 10 sec) en or0 0 ~ « U it) 0r- 7.0V -30V +30V 40V 5.5V ·-65°C to +150°C -55°C to +125°C -25°C to +85°C 300°C O 0 ~ electrical characteristics ,« (Notes 1 and 2) it) or- PARAMETER 0 0 Logical" 1" I nput Voltage ~ CONDITIONS = 4.5V Vee = 4.5V Vee = 5.5V Vee = 5.5V Vee = 5.5V Vee = 5.5V Logical "0" Input Voltage ~ Logical "1" Input Current O Logical "0" I nput Current ~ Power Supply Current Logical "1" Input - each gate (Note 3) ~ or- Power Supply Current Logical "0" Input - each gate (Note 3) AH0014, AHOO14C AH0015, AHOO15C AH0019, AHOO19C Vee Analog Switch ON Resistance - each gate V 1N (Analog) V 1N (Analog) U 0r- 0 ,« 0 0 ~ « AH0014, AH0015, AHOO19 AH0014C, AH0015C, AHOO19C Analog Switch Output Leakage Current - each output (Note 4) V 1N = 2.4V = 5.5V = O.4V = 4.5V V 1N = OV V 1N V 1N V 1N = 5.5V = +10V = -10V JJ.A 1 mA 0.2 0.4 mA 0.85 1.6 mA 1.5 0.22 0.22 3.0 0.41 0.41 mA mA mA 200 600 n n n 25 25 200 200 pA nA 0.1 30 10 100 nA nA 40 40 400 400 pA nA 0.05 4 10 50 nA nA = -10V V 1N = 25°C = 125°C T A = 25°C T A = 70°C V OUT = -10V TA TA TA TA AH0014C, AH0015C, AHOO19C TA TA V 5 10 11 AH0014, AH0015, AHOO19 UNITS V 75 150 = 25°C = 125°C = 25°C = 70°C Analog Input (Drain) Capacitance 1 MHz @ Zero Bias 8 10 pF Output Source Capacitance 1 MHz @ Zero Bias 11 13 pF Analog Turn-OFF Time - tOFF See test circu it; T A 400 500 ns Analog Turn-ON Time - tON See test circuit; T A 350 100 425 150 150 ns ns ns = 25° C = 25°C AH0014, AHOO14C AH0015, AHOO15C AH0019, AHOO19C 100 Note 1: Min/max limits apply across the guaranteed temperature range of _55°C to +125°C for AHOO14, AHOO15, AH0019 and -25°C to +85°C for AH0014C, AH0015C, AH0019C. V- = -20V. V+ = +10V and an analog test current of 1 mA unless otherwise specified. Note 2: All typical values are measured at TA = 25°C with VCC = 5.0V. Note 3: Current measured is drawn from VCC supply. Note 4: All analog switch pins except measurement pin are tied to V+. 380 MAX 0.8 Analog Switch OF F Resistance Analog Switch Input Leakage Currenteach input (Note 4) TYP 2.0 Vee «. Logical "1" Input Current MIN V+ = +10V, V- = -22V. » :I: analog switch characteristics RON vs Temperature RON vs Temperature 125 I I I 125 ! .1 I- VIN = VOUT = +10V 1 .g. w u z C I- fn ~ II: ~ P I- VIN 100 ~ 15 50 ~ ./ 1 z 100 c 15 - fn ~ I .l ~ ~ r-- III: .I. i"'" l/ 225 1/ 25 I I I '" » J. :I: I- VIN = VOUT = -10V I ~ w u z o o 200 ...". 115 C I- en ;; 50 w 150 V II: ~ P ~ RON vs Temperature = VOUT = OV .g. w u ~~ ...~ ...- o o...". (Note 2) ~ P 25 ~ o V V » :I: ","" 125 o . - '~ ~ o ...". iooo"" U1 AMBIENT TEMPERATURE (OC) AMBIENT TEMPERATURE (OC) Leakage vs VIN (Channel "OFF") 50 "'" ... 20 50 CHANNel "ON" - CHANNel "ON"-V-=-OV V- = -20V ~(jIO" ~ Z c:; ~ / co. V J 10 C Z «I: w c:I . . . f' 25 ,I. c II II ':="" F-CHAN~El "ON"- I-CHANNEl "OFF" o > w > iC ~ ~~ "-.. -25 1 -10 -8 -& -4 -2 0 +2 +4 +6 +B +10 '~5°C o 25°C » :I: -55°C f- o en o -10 o o ~ -15 CD z -5 ...". '":I:» II: -50 ~ ~ V- = -20V V- = -10V U1 I Vee = 5.0V V- = -22V V+ = B.OV ~ :z:: u I +5 ~ ... ~ II~ ~ ~ w z z +10 V+ =+10V V- = NO EFFECT _ I"- c~ c ~ c:I ~ ! ~ o o...". Driver Gate V I N vs V OUT 15 V+ = 10V '" » :I: AMBIENT TEMPERATURE (OC) -15 +10 ANALOG VIN (V) -20 -25 -10 o 0.5 ANALOG VIN (V) 1.0 1.5 2.0 2.5 3.0 o o 3.5 ...". INPUT VOLTAGE (V) CD o Schematic (Single Driver Gate and MOS Switch Shown) Analog Switching Time Test Circuit ""OV~VOUT vc I V'.~.J A.ALOG OUT UK DV \5V I I , I I !, UK ':' 5V V'J5V IV RL IOV ,, '----,, A, l-too_', I selecting power supply voltage The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V- is shown on the X axis. It must be between -25V and -8V. The allowable range for power supply V+ is governed by supply V-, With a value chosen for V-, V+ may be selected as any value along a vertical line passing through the V- value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5V should be maintained for adequate signal swing. 25 20 15 10 5 V- 0 -5 -10 -15 -20 -25 381 en Q) 0':::: Analog Switc"es Q) en o CD o ~ ::I: « "- AH0120/ AH0130/ AH0140 / AH0150/ AH0160 series analog switches ~ genera I description oLC') o The AH0100 series represents a complete family of junction FET analog switches. The inherent flexibility of the family allows the designer to tailor the device selection to the particular application. Switch configurations available include dual OPST, dual SPST, OPOT, and SPOT. r ds(ON) ranges from 10 ohms through 100 ohms. The series is available in both 14 lead flat pack and 14 lead cavity 01 P. I mportant design features include: ::I: « "- o ~ ~ o ::I: « "- o M o ~ • TTL/OTL and RTL compatible logic inputs • Up to 20V p-p analog input signal « • rds(ON) less than 10D. AH0145, AH0146) o • Analog signals in excess of 1 MHz ~ • "OF F" power less than 1 mW ::I: "N o ::I: (AH0140, AH0141, • Gate to drain bleed resistors eliminated • Fast switching, tON is typically .4 J1S, tOFF is 1.0 J1s • Operation from standard op amp supply voltages, ±15V, available (AH0150/AH0160 series) • Pin compatible with the popular OG 100 series. The AH0100 series is designed to fu Ifill a wide variety of analog switching applications including commutators, multiplexers, 0/ A converters, sample and hold circuits, and modulators/demodulators. The AHO 100 series is guaranteed over the temperature range -55°C to +125°C; whereas, the AHOl OOC series is guaranteed over the temperature range -25°C to +85°C. schematic diagrams « DUAL DPST and DUAL SPST Note Dotted line portions are not applicable to the duaiSPST. DPDT (diff,) and SPDT (diff.) Note. Dotted line portions are not applicable to the SPOT (differential) logic and connection diagrams Order any of the devices below using the part number with a 0 or F suffix. See Packages 1 and 4. DUAL DPST DPDT (Diff) SPDT (Diff) HIGH LEVEL (±10V) HIGH LEVEL (±10V) HIGH LEVEL (±10V) HIGH LEVEL (±10V) AH0140 (10n) AH0129 (30n) AH0126 (SOn) AH0141 (10n) AH0133 (30n) AH0134 (!JOn) AH0145 (10n) AH0139 (30n) AH0142 (Son) AH0146 (10n) AH0144 (30n) AH0143 (son) MEDIUM LEVEL (±7.5V) MEDIUM LEVEL (±7.5) MEDIUM LEVEL (±7.5V) AH0163 (15n) AH0164 (50Hl AHO'61 (15n) AH0162 (50!!) MEDIUM LEVEL (±7.5V) AH0153 (15n) AHOl54 (50n) 382 DUAL SPST AH0151 (15n) AH0152 (50n) » :::t o absolute maximum ratings ~ N High Level o Medium Level ........ » ::E: Total Supply Voltage (V+ - V-) 36V 34V Analog Signal Voltage (V+ - V A or V A - V-) 30V 25V Positiv~ Supply Voltage to Reference (V+ - V R) 25V 25V Negative Supply Voltage to Reference (V R - V-) 22V 22V Positive Supply Voltage to Input (V+ - V IN ) 25V 25V ±6V ±6V Input Voltage to Reference (V IN - VR) Differential I nput Voltage (V IN - V IN2 ) ±6V ±6V Input Current, Any Terminal 30mA 30mA Power Dissipation See Curve Operating Temperature Range AH0100 Series -55°C to +125°C AH01 OOC Series -25°C to +85°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C o w o ~ , » l: o ~ ~ o ........ » ::E: o ~ U'I electrical characteristics DEVICE TYPE PARAMETER Logic "1" Input Current SYMBOL DUAL DPST DUAL SPST DPDT (DIFF) ........ » ::E: LIMITS CONDITIONS v+ = l2.0V, V- = -1S.OV, VR = O.OV Note 2 TA = 25°C Over Temp. RangP Logic "0" Input Current IIN(OFF) All Circuits Note 2 TA = 25°C Over Temp. Range Positive Supply Current Switch ON I+(ON) All Circuits One Driver ON Note 2 TA = 25°C Over Temp. Range Negative Supply Current Switch ON I-(ON) All Circuits One Driver ON Note 2 Reference Input (Enable) ON Current IR(ON) All Circuits Positive Supply Current Switch OFF 1+(oFF) All Circuits V IN1 ~ Negative Supply Current Switch OFF 1-(oFF) All Circuits Reference Input (Enable) OFF Current IR(oFF) All Circuits Switch ON Resistance rds(ON) AH0126 AH0134 AH0142 AH0143 Switch ON Resistance rds(ON) AH0129 AH0133 AH0139 Switch ON Resistance rds(ON) AH0140 AH0141 AH0145 Driver Leakage Current (1 0 + Is)oN Switch Leakage Current IS(OFF) OR 10(OFF) AH0126 AH0129 AH0134 AH0133 AH0142 AH0139 AH0143 AH0144 Switch Leakage Current IS(OFF) OR 10(OFF) AH0140 AH0141 AH0145 Switch Turn-ON Time tON AH0126 AH0129 AH0134 AH0133 AH0142 AH0139 TYP MAX 2.0 60 120 I1A I1A 2.2 3.0 3.3 mA mA TA = 2SoC Over Temp. Range -1.0 -l.B -2.0 rnA mA One Driver ON Note 2 TA = 25°C Over Temp. Range -1.0 -1.4 -1.6 mA mA = O.BV TA = 25°C Over Temp. Range 1.0 10 25 I1A I1A V IN1 = V IN2 = O.BV TA = 25°C Over Temp. Range -1.0 -10 -25 I1A I1A V IN1 = V IN2 = O.BV TA = 25°C Over Temp. Range -1.0 -10 -25 I1A I1A Vo 10 = 10V = 1 mA T A = 25°C Over Temp. Range 45 BO 150 AH0144 Vo 10 = 10V = 1 mA TA = 25°C Over Temp. Range 25 30 60 AH0146 Vo IF = 10V = 1 mA TA = 25°C Over Temp. Range B 10 20 n n n n n n = Vs = -10V TA = 25°C Over Temp. Range 1 100 nA nA Vos = ±20V TA = 25°C Over Temp. Range 0.8 "1 100 nA nA AH0146 Vos = ±20V TA = 25°C Over Temp. Range 4 AH0143 AH0144 VA = ±10V All Circuits Vo tON AH0140 AH0141 AH0145 AH0146 Switch Turn-OFF Time tOFF AH0126 AH0129 AH0134 AH0133 AH0142 AH0139 AH0143 AH0144 Switch Turn-OFF Time tOFF AH0140 AH0141 AH0145 AH0146 V IN2 .01 .01 10 1.0 nA I1A See Test Circuit TA = 25°C D.5 O.B I1S See Test Circuit VA = ±10V TA = 25°C O.B 1.0 I1S See Test Circuit TA = 25°C 0.9 1.6 I1S See Test Circuit TA = 25°C 1.1 2.5 I1S VA = ±10V VA = ±10V ~ rn CD I1A I1A .1 2.0 Switch Turn-ON Time o CJ) o UNITS SPOT (DIFF) All Circuits IIN(ONI o for "HIGH LEVEL" Switches (Note 1) ~ CD fn Note 1: Unless otherwise specified these limits apply for -55°C to +125°C for the AH0100 series and -25°C to +85°C for the AH0100C series. All typical values are for T A = 25°C_ = 2.5V; the OFF condition is for VIN = O.8V. For the differential switches and SW1 and 2 ON. VIN2 = 2_5V. VIN1 = 3.0V_ For SW3 and 4 ON. VIN2 = 2_5V. VINt = 2.0V. Note 2: For the DPST and Dual DPST, the ON condition is for VIN 383 ... electrical characteristics Q) tn o for "MEDIUM LEVEL" Switches (Note 1) DEVICE TYPE CD PARAMETER ~ o SYMBOL ::I: « DUAL DPST DUAl. SPST DUAL DPDT CONDITIONS SPOT (DIFF) LIMITS UNITS V+ = +15.0V. V- = -15V, VR = OV Logic "1" Input Current IIN(ON) All Circuits Note 2 T A = 25°C Over Temp. Range Ln Logic "0" Input Current IIN(OFF) All Circuits Note 2 TA = 25°C Over Temp. Range o Positive Supply Current Switch ON I+(ON) All Circuits One Driver ON Note 2 TA = 25°C Over Temp. Range « Negative Supply Current Switch ON I-(ON) All Circuits One Driver ON Note 2 Reference In pu t (Enable) ON Current IR(ON) All Circuits o Positive Supply Current Switch OFF I+(OFF) All Circuits « Negative Supply Current Switch OFF I-(OFF) Reference Input (Enable) OFF Current IR(OFF) o Switch ON Resistance rds(ON) AH0153 AH0151 AH0163 AH0161 Vo 10 « ......... Switch ON Resistance rds(ON) AH0154 AH0152 AH0164 AH0162 Driver Leakage Current (1 0 + IS)ON o Switch Leakage Current 10(oFFIOR IS(OFF) AH0153 AH0151 AH0163 AH0161 « Switch Leakage Current 10(OFF) OR IS(oFF) AH0154 AH0152 AH0164 AH0162 Switch Turn-ON Time tON AH0153 AH0151 AH0163 AH0161 Switch Turn-ON Time tON AH0154 AH0152 AH0164 Switch Turn-OFF Time tOFF AH0153 AH0151 Switch Turn-OFF Time tOFF AH0154 AH0152 ......... o ~ ::I: ......... o ~ ~ J: ......... o M ~ ::I: 60 120 3.0 3.3 mA mA T A = 25°C Over Temp. Range -1.0 -1.8 -2.0 mA mA One Driver ON Note 2 TA = 25°C Over Temp. Range -1.0 -1.4 -1.6 mA mA V IN1 = V IN2 = 0.8V TA = 25°C Over Temp. Range 1.0 10 25 /1A /1A All Circuits V IN1 = V IN2 = 0.8V TA = 25°C Over Temp. Range -1.0 -10 -25 /1A /1A All Circuits V IN1 = V IN2 = 0.8V TA = 25°C Over Temp. Range -1.0 -10 -25 /1A /1 A = 7.5V = 1 mA TA = 25°C Over Temp. Range 10 15 30 Vo = 7.5V 10 = 1 mA T A = 25°C Over Temp. Range 45 50 100 n n n n = Vs = -7.5V T A = 25°C Over Temp. Range 2 500 nA nA All Circuits Vo _--=---- .01 /1A /1A 2.2 .01 ±15V TA = 25°C Over Temp. Range 5 ±15.0V TA = 25°C Over Temp. Range 10 1.0 /1 A 1.0 2.0 200 nA nA See Test Circuit VA = ±7.5V TA = 25°C 0.8 1.0 /1s AH0162 See Test Circuit VA = ±7.5V TA = 25°C 0.5 0.8 /15 AH0163 AH0161 See Test Circuit VA = ±7.5V T A = 25°C 1.1 2.5 /15 AH0164 AH0162 See Test Circuit VA = ±7.5V TA = 25°C 0.9 1.5 /15 Vos Vos = = Note 1: Unless otherwise specified, these limits apply for -55°C to +125°C for the AH0100 series and -25°C to +85°C for the AH01 OOC series. All typical values are for T A = 25°C. Note 2: For the DPST and Dual DPST, the ON condition is for VIN = 2',5V; the OFF condition is for VIN = O.8V. For the differential switches and SW1 and 2 ON, VIN2 For SW3 and 4 ON, VIN2 = 2.5V, VIN1 = 2.0V. 384 20 /1A /1A ::I: N MAX 0.1 2 ~ o TYP = 2.5V, VIN1 = 3.0V. nA » ~ o typical performance characteristics ~ N Power Dissipation vsTemperature o rds(ON) vs Temperature AH0120 thru AH0140 Series ON Supply Current vs Temperature ........ » 2.4 500 Z Q j: f ~ Q 400 300 ""~ " II: ~ C 2.0 .! ~ 1.6 w ~ II: § 1.2 " 200 A. 100 25 50 u 75 100 l: - o ~I ~ w - o w - _1-: "''" ON1 ffj o II: Z ~ Q IRIONI ~ 0.4 10 I- ~,..... ~ » l: Z - -- >- ~ o.B ........ U ~ o I -75 -50 -25 125 TEMPERATURE (OC) ........ 0 25 50 TEMPERATURE -75 -50 -25 75 100 125 rc) 0 25 50 TEMPERATURE » 75 100 125 l: re) o o ~ Leakage Current vs Temperature AH0120, AH0130, & AH0140 rds(ON) vs Temperature AH0150/AH0160 Series 1000 100 .- s 111= Z "' I- '"ffj 10 ~ Z -- 10 Q II. II. ~ .E V- = -15V r- Vo = 7.5V Is = 1 rnA 1.0 -, ~",. .... '(xCEPT AH014o, l: AH0141i~ - o " .......r ~ en o "..- fA ~ o i5 ........ » Ey+ = +15V V- = -15V Vo OR Vs - ±7.5V i=AH0153, AH0151, i==.AH0163, AH0161 ,.... o I- y+ = +15V 1.0 -75 -50 -25 0 AH014o, AH0141, f= AH0145, AH0146 j II: C ..s 100 ~ F II. II. AH0153, AH0151,= AH0163, AH0161= II: Q - L...-- --AH0154, AH0152AH0164, AH0162_ r-- w U 1000 y+ = 12.oV V- = -1B.oV Vo OR Vs = ±1oV U1 Leakage Current vs Temperature AH0150 & AH0160 ..,~ 1.0 ... CD ...... AH0154, AH0152,AH0164, AH01_62~ CD AH0145, AH0146 (I) 1 0.1 25 50 75 100 125 25 ~ TEMPERATURE (Oc) I I ~ I H I 0.1 125 1M 25 45 TEMPERATURE (Oc) 65 I I 105 B5 TEMPERATURE I 125 re) Differential Switch Input Threshold vs Temperature Single Ended Switch Input Threshold vs Temperature ~ 2.0 2.0 I\... ~ ~ :z: 1 ........ ~~- w '" II: :z: I-- ALL lN J AL~ SWltcHE~ ON - ~ ~ !!PI..: "I Q ~~ SWITCHE~ @ 1"""'1- ~ 1.0 II: Q IV IN1 - VIN212 0.3V VR = oV --t-+--t-----t y+ - V-= 30V Z ;; o -75 -50 -25 0 25 50 75 100 125 -75 -50 -25 TEMPERATURE (OC) 25 50 75 100 125 TEMPERATURE rC) switching time test circuits Single Ended Input Differential Input 3.0V r-t v,. ov I I I .IV 2.IV 'VA I I I .... I I ov I I I -l,,,,,!OUTPUT OUTPUT I I I VON' VtN2- Z,IV "'='r,.,....---+-+-... OUTPUT Iwn4 OUTPUT IWlU 385 o Q) ".:: applications information Q) CJ) o 1. INPUT LOGIC COMPATIBILITY o ~ A. Voltage Considerations « ......... ::t: In general, the AH0100 series is compatible with most DTL, TTL, and RTL logic families. The ONinput threshold is determined by the V BE of the input transistor plus the V f of the diode in the emitter leg, plus I x R 1, plus V R. At room temperature and V R == OV, the nominal ON threshold is: O. 7V +0. 7V+0.2V,== 1.6V.Over temperature and manufacturing tolerances, the threshold may be as high .as 2.5V and as low as 0.8V. The rules for proper operation are: U) oit) ~ o ::t: « ......... o ~ ~ o V IN - V R ~ 2.5V All switches ON ::t: « V IN - V R ~ 0.8V All switches OFF ......... o ('t) ~ o ::t: « ......... o terminal will open all switches. The Vp. (ENABLE) signal must be capable of rising to within 0.8V of VIN(ON) in the OFF state and of sinking· I R(ON) milliamps in the ON state (at VIN(ON) - V R 2.5V). The V R terminal can be driven from most TTL and DTL gates. > 3. DIFFERENTIAL INPUT CONSIDERATIONS The differential switch driver is essentially a differential amplifier. The input requirements for proper operation are: IV IN1 - V IN2 1 ~ 0.3V 2.5 ~ (V IN1 or V IN2 ) - V R ~ 5V The differential driver may be furnished by a DC level as shown below. The level may be derived from a voltage divider to V+ or the 5V Vee of the DTL logic. I n order to assure proper operation, the divider should be "stiff" with respect to IIN2' Bypassing R1 with a 0.1 /IF disc capacitor will prevent degradation of tON and to FF. N ~ o ::t: « B. Input Current Considerations IIN(ON), the current drawn by the driver with V IN == 2.5V is typically 20 /lA at 25°C and is guaranteed less than 120 /lA over temperature. DTL, such as the DM930 series can supply 180 /lA at logic "1" voltages in excess of 2.5V. TTL output levels are comparable at 400 /lA. The DTL and TTL can drive the AH0100 series directly. However, at low temperature, DC noise margin in the logic "1" state is eroded with DTL. A pull-up resistor of 10 kn is recommended when using DT~ over military temperature range. Alternatively, the differential driver may be driven from a TTL flip-flop or inverter. If more than one driver is to be driven by a DM930 series (6K) gate, an external pull-up resistor should be added. The value is given by: ~ 11 Rp == N _ 1 for N >2 where: Rp == value of the pull-up resistor in kn Connection of almA current source between V R and V- will allow operation over a ±10V common mode range. Differential input voltage must be less than the 6V breakdown, and input threshold of 2.5V and 300mV differential overdrive still prevail. N == number of drivers. C. Input Slew Rate The slew rate of the logic input must be in excess of O.3V l/ls in order to assure proper operation of the analog switch. DTL, TTL, and RTL output rise times are far in excess of the minimum slew rate requirements. Discrete logic designs, however, should include consideration of input rise time. 2. ENABLE CONTROL The application of a positive signal at the V R 386 olOVI CMAANGE » ::J: The rules for operating the AH0100 series at supply voltages other than those specified essentially breakdown into OFF and ON considerations. The OFF considerations are dictated by the maximum negative swing of the analog signal and the pinch off of the JFET switch. In the OFF state, the gate of the FET is at V- + VSE + V SAT or about 1.0V above the V- potential. The maximum V p of the FET switches is 7V. The most negative analog voltage, V A, swing which can be accomodated for any given supply voltage is: Iv A I~ Iv-I- V p - o o VA ~ V+ - V SAT - VSE - 1.0V or 4. ANALOG VOLTAGE CONSIDERATIONS """"' N V A ~ v+ - 2.0V or V+ ~ V A + 2.0V For the standard high level switches, VA 2.0V = +10V. ......... » ::J: = 12 - o """"' w o 5. SWITCHING TRANSIENTS ......... » ::J: Due to charge stored in the gate-to-source and gate-to-drain capacitances of the FET switch, transients may appear in the output during switching. This is particularly true during the OFF to ON transition. The magnitude and duration of the transient may be minimized by making source and load impedance levels as small as practical. VSE - V SAT or Iv AI~IV-I-8.0 or IV-I~IV AI+8.0V o """"' ~ o ........ » ::J: ~ :r-rv- For the standard high level switches, VA <1- 181 +8 = -10V. The value for V+ is dictated-by the maximum positive swing of the analog input voltage. Essentially the collector to base junction of the turn-on PNP must remain reversed biased for all positive value of analog input voltage. The base of the PNP is at V+ - V SAT - VSE or V+ - 1.0V. The PNP's collector base junction should have at least 1.0V reverse bias. Hence, the most positive analog voltage swing which may be accommodated for a given value of V+ is: o c.n """"' o """---" ,NPUT ~: --{;./""...I T '::' ......... l> C ' ::J: o """"' en o Furthermore, transients may be minimized by operating the switches in the differential mode; i.e., the charge delivered to the load during the ON to OFF transition is, to a large extent, cimcelled by the OF F to ON transition. en CD ~ ai' fA typical applications Programmable One Amp Power Supply ,,\ ....-___--=-11_+-_-+-_1::....& "I -;:H~J I I r I I I '00' +15V~ -15V~ lERO ADJUST (±PoIIrity) x (BCD Cod,) x V. E • 2A pule, I Acontinuous VOUT Rln. - ±12V Full SuI, Acquisition Time - h. VOUT ' lOUT nL/DTlICDIN'UT$ Four to Ten Bit 0 to A Converter (4 Bits Shown) ANALOG R1II 2. 2DK OUTPUT R10K 2R !OK 2R 2R 2DK 2DX ,..-_-+_-+__+-_.--_-+_....... , ---<)V'UF I 151.12.53.50 I AR' AH"" I .J 2"' Sotti",Tia:114 Accoincy: 0.2% -llota: All noistIInln D.I% 387 t/) Q) ... typical applications (con't) Q) tJ) Four Channel Differential Transducer Commutator o CD ~15' 0"1".=-:-1, 61~ I, 8 (0------....:... ~ TRANSD~~'~lo o J: c:( TRANSDUCER NO.2 ......... l oU') r __ 0 81 TRANSDUCER! 0 ND"Lo ~ o ,.1--0--(.: I, I '1-' II I, r <0 I AH01S] I -1--<7'":&---;""'1--"":":1-+-+----'\Nv-~ 2 a-f. rd/. : I' J: I I TRANSOUCER ' ND'l~ c:( ) ......... .'5Vo--.!2.l o I -15V~ ~ ~ I : I I I ~, 6 o J: 1 'OUT I , I I I, I I I I,; I!!-o I I" I , ~ Glin: 22 Commutation Rlt.: SOD kHz c:( ......... o(If) DM14954·BITS/R ~ o 4 J: X 4 Cross Point Analog Switch All CHANNEL BLANKING c:( ......... '-I o N o ~r-~~--~I ,I I I ,I o-~-T-'---T-'---r-'---r-' I ~ o J: c:( 1 I INI I ~~;~ I 'I : ,I ~NZ IL_ ~ DM14154 __ r-,....+......:...--:--.:..j 4T018 DECODER I I IN' 1 I I .1 I I L.-, Switching Timo - 800 n, "ON" Rllislln.. - 4Sn "OFF" RlIiston.. - 10,on "S"CHANNELS Delta Measurement System for Automatic Linear Circuit Tester 'OUT N... : 51 !MISt .. .,... 1M 10 "'. Min 10 • • lrist rltlli,. .dli L • 50 rnA. SecOY BNi", ISI,b...tll 52 clotH. ~ 51 .... ott.. 111'11, forei", functiON .. ,.. cam,.tIr contrlll. system will "' ...." Ii .... IMIINd r....latlon on ~ ,......IOft. YOhIpllin. offwtcurrem. PlRA on ot..'circUllifftiulflnl .'.m....... eM"".M IMfItolthlc......f.PlflfNtlfwiththtc .......'.forci"'hlltction. Analo.lnput Rln .. - ±7oSV EouT ' 10. (Anllo,lnput 2 - Anllo, Input I) Erro, Roll - 0001% FoSJ... menu,. Precision Long Time Constant Integrator with Reset Four Channel Commutator ,...------., • I I ~-+---o-r ! I I I : • I I I .. ,,,..~~\~..:t! ":::l~~ -Note: Vos adjusted to lero 388 1""'1 Lr·-!ro-r ~~T\~ y' y Int••ation Internll· 10 sec °lnll...ion Erro, = 100"V Reset Time: 30", Analo. Signor Rln.. : ISV p-p SImple Rita: I MHz Acquisition Time: 25 J,lS D,ift Rite: 005 mVl... A~alog Switches MM450/MM550, MM451/MM551 MM452/MM552, MM455/MM555 MOS analog §witches general description The MM450, and MM550 series each contain four p channel MOS enhancement mode transistors built on a single monolithic chip. The four transistors are arranged as follows: MM450, MM550 Dual Differential Switch Four Channel Switch Four MOS Transistor Package Three MOS Transistor Package MM451, MM551 MM452, MM552 MM455, MM555 These devices are useful in many airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors (VTH = 2 volts) permits operations with large analog input swings (± 10 volts) at low gate voltages (-20 volts). Significant features, then, include: • Large Analog Input Swing • Low Supply Voltage • Low 0 N Resistance • ±10 Volts = +10 Volts VGG = -20 Volts VBU LK V IN -10V 150n VIN +10V 75n 200 pA @ 25°C Low Leakage Current • I nput Gate Protection • Zero Offset Voltage Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bul~. The MM450, MM451, MM452 and MM455 are specified for operation over the -55°C to +125°C military temperalure range. The MM550, MM551, MM552 and MIY!555 are specified for operation over the ..:..25°C to + 70°C temperature range. schematic and connection diagrams TOP VIEW 14 BULK TOP VIEW N.C. SOURCE 4 DRAIN 1 GATE 4 GATE 1 ORAIN4 SOURCE 1 SOURCE J ORAINZ GATE J GATE Z DRAIN J SOURCE Z BULK NOTE 1: Pins 1 and 8 connected to case and device bulk. Drain and Souree may be interchanged. MM452F. MM552F. NOTE 2: MM452D and MM552D (dual·in·line packages) have same pin connections as MM452F a~d MM552F shown above. IULK NOTE: Pin 5 connected to caselnd device bulk. I!o1M450. MM550 Order Number MM450H or MM550H See Package 12 Order Number MM452F or MM552F See P~ckage 4 Order Number MM452D or MM552D See Package 1 TOP VIEW TOP VIEW OUTPUT ISOURCE) GATE Z BULK IULK NOTE: Pin 5 connected to case Ind device bulk. NOTE: Pin 5 connected to case Ind device bulk. Drain and Source m.y be interch.nged. MM455. MM555 MM451. MM551 Order Number MM455H or MM555H See Package 12 Order Number MM451H or MM551H See Package 12 typical applications EOUIVALENT ~'r I I I TOGGLE C>--t-+---+---4....--+--+--t-... I~PUT 0-+-...-+---t-..1 I I I _J DPDT Analog Switch 389 absolute maximum ratings MM450, MM451, MM452, MM455 MM550, MM551, MM552, MM555 +lOV to -30V Gate Voltage (VGG) Bulk Voltage (V BULK) Analong Input (V IN ) Power Dissipation Operating Temperature Storage Temperature +10V +10V to -20V +10V to -30V +10V +10V to -20V 200 mW -5SoC to +125°C 0 -6SoC to +150 C 200 mW _25° C to 70° C -65°C to +150°C electrical characteristics STATIC CHARACTERISTICS (Note 1) CONDITION PARAMETER Analog Input Voltage Threshold Voltage (V GS(T)) VOG ON Resistance VIN = 0,10 = 1 IlA MIN = -10V Input (Drai n) Leakage Current MM450, MM451, MM452, MM455 Input (Drain) Leakage Current MM550, MM551, MM552, MM555 MAX UNITS ±10 3.0 V V 150 600 n 75 200 n 2.2 1.0 ON Resistance OF F Resistance Gate Leakage Current (I GSB ) TYP n V GS = -25V, Vas = 0, T A = 25°C pA T A = 25°C TA = 85°C <> T A = 125 C TA TA = = 25°C 70°C Output (Source) Leakage Current MM450, MM451, MM452, MM455 100 1.0 Il A 1.0 IlA 0.1 .030 100 1.0 IlA 100 nA .040 Output (Source) Leakage Current MM450 MM451 MM452, MM455 MM450, MM451, MM452, MM455 TA TA TA TA Output (Source) Leakage Current MM550 MM551 MM552, MM555 T A = 70°C T A = 70°C T A = 70°C nA .025 .002 .025 = 85°C = 85°C = 85°C =125°C nA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 DYNAMIC CHARACTERISTICS VOS = -10V, 10 = 10 mA Large Signal Transconductance 4000 Ilmhos f = 1 kHz f - - - - - - - - - - - - - - - - - . . . . I . - - - - - - - - - - - - - - . . . L - - - - - - L - - - . . . L . - . - -... --'---_ _--i CAPACITANCE CHARACTERISTICS (Note 2) PARAMETER DEVICE TYPE MIN TYP MAX UNITS Analog I nput (Drain) Capacitance (COB) ALL 8 10 pF Output (Source) Capacitance (C se ) MM450, MM451, MM452, MM455, MM550 MM551 MM552 MM555 11 20 7.5 7.5 14 24 11 11 pF pF pF pF MM550 MM551 MM552 MM555 10 5.5 5.5 5.5 13 Gate I nput Capacitance (C GB} MM450, MM451, MM452, MM455, 8 9 9 pF pF pF pF Gate to Output Capacitance (C Gs ) ALL 3.0 5 pF Note 1: The resistance specifications apply for -55°C::;: T A ::;: + 85°C, VGG = -20V, V BULK = +10V, and a test current of 1 mAo Leakage current is measured with all pins held at ground except the pin being measured which is biased at -25V. Note 2: All capacitance measurements are made at 0 volts bias at 1 MHz. 390 typical dynamic input characteristics CONDITION 1: ANALOG INPUT VOL TAGE AT +10 VOLTS Vaa (TA=25°CUnlessOtherwiseNoted) Dynamic Ron Ron vs VGG 10,000 =+10V 55°C - t-- ~ TA ~L=TA =25°C r-- ~ 1000 VIN +10V VOUT j .. a: ~rTA =S5°C ~ Vaa - +loV= VIN = +lov= "- CI .~ 100 T f--'-- ;::::.. ..... 10 -S +S -16 -22 VGG (V) CONDITION 2: ANALOG INPUT VOLTAGE AToVDlTS 10,000 Vaa+ 1oV t=::: I=Vaa = +loV ~ ~ VIN = OV - 1 I I 1000 I L,- TA = S5°C ~TA =25°C~ .~~ ~- = -55 C L . ~ ~- c: CI a: aF TA .,...'1-;; 1""'- 100 I 10 o -4 -S -12 -16 -20 VGG (V) CONDITION 3: ANAlDG INPUT VOL TAGE AT -10 VOLTS 10'0,000 Vaa +lOV Vaa - +loV =V IN = loV 10,000 VIN -lov TA =S5°C J.. t?=-TA = 25°C ~ CI a: 1000 T i/j - ==== == - TA '" -55°C_ ;{ ..s 0 ~ 2 1"-- ;::!!! 10 100 -16 -18 -H -19 L--.L.-.......-.........~...........---"_'--.L.---'--' -1.0 -20 -!I.6 -02 10,000 ....E -50 1.1;p- 1ODD I- 100 = ~ "---- 10 I ... o I- ~ Ill: a: ::;:) -25 I ..E I I I I S.O -S -12 -16 -20 ~ 1 6.0 / Z ;;( a: c 4.0 I 1 -15 '{ ..E -10 2.0 -5 o -4 1 I u a: -20 c Vaa = oV::::t:=i Vaa - 2.5V I -40 -30 +1.0 II. r-Vss"'ov z C( I r- Vos = -2oV ::;:) u r........~ CI 10 -45 ~ a: -35 Ill: :!c: a: Vaa - 5V Vaa = 7.5V Vaa = loV +0.6 Drain Current vs Gate To Source Voltage Typical Drain Characteristics Ron vs VGG +0.2 II VIN (V) VGG (V) -20 -40 -60 -SO -100 Vos - DRAIN TO' SDURCE VDl TAGE - VDl TS / o -1.0 -2.0 V -3.0 -4.0 -5.0 VGS - GATE TO' SDURCE VDl TAGE - VDl TS 391 typical input capacitance characteristics 50 40 30 20 ....co. z MM450, MM550 MM451, MM551 C1N vs V 1N C1NvS VIN Vaa VGG = -20V =+10v ~ :--.. IC" VGG - -10V 10 U I =::: VGG .......rIll"" r - OV- VGG --.,. '\ =+10V- 5 4 3 20\1 I ,I..- 7 1 50 40 30 20 ~ ~'-- VGG = -·10V I I" 1 I I ....co. VGG = OV U z vGG 10 - i =+lti~- +10V VGG - 10V =-20V 1\ I VGG Vaa .......-!(I vGG ...... =OV_ _I"": I -6 -2 +2 +6 +10 Y'N (V) -10 -6 -2 +2 V ,N (V) +6 +10 -10 - VGG -6 -2 +2 ~ A // I =+10V 1 '1 " 1 1 -10 i = 10 ~ C 1N vs V 1N Vaa - +10V VGG 20 ....co. z I0III:0 • ...- ::;;'P 50 40 30 MM452, MM552 , MM455 , MM555 +6 1 +10 V ,N (V) typical applications (con't) 1MM451------- i r - - - - - -..... I 1 I , - - - -. . . . . . 1 1 OUTPUT INTELLIGENCE DPST High-Frequency Switch 4-Channel Multiplexer* "Expansion in the numbel of data input lines is posSIble by using multiple level series switches allowing the same decode gates to be used for all lower rank decoding. 392 Analog Switches MM454/MM554 four-channel commutator general description The MM454/MM554 is a four-channel analog commutator capable of switching four analog input channels sequentially onto an output line. The device is constructed on a single silicon chip using MaS P Channel enhancement transistors; it contains all the digital circuitry necessary to sequentially turn ON the four analog switch transistors permitting multiplexing of the analog input data. The device features: ±10V 500 kHz • High Analog Voltage Handling • High Commutating Rate • Low Leakage Current (T A = 25° C) (T A = 85°C) 200 pA 50 nA • All Channel Blanking input provided • Reset capability provided • Low ON Resistance 200n In addition, the MM454/MM554 can easily be applied where submultiplexing is required since a 4:1 clock countdown signal is provided which can drive the clock inputof subsequent MM454/MM554 units. The MM454 is specified for operation over the -55°C to +125°C military temperature range. The MM554 is specified for operation over the -25°C to + 70°C temperature range. schematic and connection diagrams ANALOG INPUTS 4 ANALOG OUTPUT CLOCK INPUT OUTPUT 4:1 COUNTOOWN RESET---....- - - - - - - -......... NO CONNECTION Voo CLOCK INPUT RESET All CHANNel BLANKING NO CONNECTION Vss 14 13 12 11 10 Voo OUTPUT 4'1 COUNTOOWN NO, 1 ANALOG INPUT NO 2 ANALOG INPUT NO 3 ANALOG INPUT NO 4 ANALOG INPUT ANALOG OUTPUT NOTE- Pm 1 tonnected to ca5eo1nd to devICe bulk. NomuMiI Operl!!", Volt.ges: VGG = -24V. Voo ~ OV; Vss ~ +12V. RESET BIAS ~ +12V (OV f.r RESET). ALL CHANNel BLANKING BIAS ~ +12V (OV f.r BLANKING) Order Number MM454F or MM554F See Package 4 393 absolute maximum ratings (Note 1) +10V to -30V +10V +10V to -20V 200mW -55°C to +125°C -25°C to +70°C -65°C to +150°C Gate Voltage (V GG) Bulk Voltage (V ss) Analog Input (V IN) Power Dissipation Operating Temperature MM454 MM554 Storage Temperature static characteristics (Note 2) PARAMETER CONDITION MIN TYP Analog input Voltage ON Resistance ON Resistance V IN = -10V 170 90 10 10 V IN = Vss OFF Resistance Analog Input Leakage Current MM454 T A = 25°C MM454 TA =85 C T A =25°C MM554 MM554 Analog Output Leakage Current MM454 .050 .006 .0001 .030 0.100 u T A = 70°C MM454 T A = 25°c T A =85°C MM554 T A =25°C 30 .0001 MM554 T A = 70°C .030 V ss Supply Current Drdin Vss = +12V V GG Supply Current Drain VGG = -24V MAX UNITS ±10 V 600 200 n n n 100 nA 1.0 100 1.0 100 1.0 J1A nA J1A nA 100 1.0 nA J1A 5.5 mA mA 3.8 2.4 3 .S J1A capacitance characteristics PARAMETER CONDITION a ~ a =a Analog Input Capacitance Channel OFF liN = Analog Input Capacitance Channel ON liN Analog Output Capacitance liN Clock Input Vel Reset Input VRESET = +12V Blanking Input clock characteristics MIN = TYP MAX UNIT 4 6 pF 20 24 pF 20 24 pF pF 2.0 +12V VBlANK = +12V 2.0 pF 2.0 pF (Note 3) PARAMETER Clock Input (HIGH)(4) Clock Input (LOW) CONDITION MIN TYP Vss - 2 -5 Clock Input Rise Time (POS GOING) MAX UNIT Vss v +5 V 20 J1sec a No requirement Clock Input Fall Time (NEG GOING) Countdown Output (POS) V OH Vss -2 a Countdown Output (NEG) VOL Maximum Commutation Rate Vss 0.5 +10.0 V MHz 2.0 +12 +14 Note 1: Maximum ratings are limiting values above which the device may be damaged. All voltages referenced to VOO = O. Note 2: These specifications apply over the indicated operating temperature range for VGG = -24V, VOO = OV, VSS = +12V, VRESET = +12V, VSLANK = +12V. ON resistance measured at 1 mA, OFF resistance and leakage measured with all analog inputs and output common. Capacitance measured at 1 MHz. Note 3: Operating conditions in Note 2 apply. VSS to VOO (OV) voltage is applied to counting and gating circuits. VGG is required only for analog switch biasing. All logic inputs are high resistance and are essentially capacitive. Note 4: Logic input voltage must not be more positive than VSS. 394 V V typical performance characteristics RON vs Analog Voltage .... 260 I Co> ~ 220 en ~ a: 1z~ ~! 180 i\ ~ ~ 140 en I' ~ ~ 100 11 -12 -8 10 C, I7h ~W JIf Cl III /,V ~ ~ -16 Cl > U, I 1/1. -20 ::;) 0 +2 +4 +6 +8 +10 Minus VIN (max) vs VGG __ 12 "... -2 ~ I i Von ANALOG INPUT VOLTAGE (V) Plus VIN (max) vs VSUlK ....---r----.------r--~- ..; ~ ." CHANNEl"O~ Von ANALOG INPUT VOL TAGE (V) 14 I I -~ 6 4 2 r- 60 -10 -8 -6 -4 -2 I I CHANNEl "ON" TA =+25 'C- --~ =~55~- ~~1Oi"'" ~ -4 o +9 +9 10 12 11 13 14 Von MAXIMUM POSITIVE GOING ANALOG EXCURSION (V) o -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 Von MAXIMUM NEGATIVE ANALOG EXCURSION (Ron = 1 KH) (V) timing diagram CLOCK 0 IN 1 CHl CH2 ON ON OFF I~------~ r-, • n ~.--------~ ON CH3 OFF _______~n~ CH4 O~: OUTPUT "0" COUNTDOWN " 1 " , n n r--1 OFF~ _____. .n n n n rL-rl-- n ..___.......nL.___.......nL.___ r ---I r-I NOTE: "0" LEVEl = +12V "1" LEVEl = oV (GND) 395 Analog Switches .... o o :i AM1000,AM1001,AM1002 silicon N-channel high speed analog switch Order Number AM2009F or AM2009CF See Package 4 ',). ,5 6 G' Order Number AM2009D or AM2009CD See Package 1 typical applications INPUT CHANNELS ANALOG INPUTS AM2009/AM2009C TTL INPUTS ANALOG OUTPUT AOORESS SELECT 1-6 TTL Compatible 6 Channel MUX 398 AODRESS SELECT 7-12 32 Channel MUX ANALOG OUTPUT absolute maximum ratings Voltage on Any Source or Drain Voltage on Any Gate Positive Voltage on Any PiM Source or Drain Current Gate Current (forward direction of zener clamp) :t> 3: Total Power Dissipation (at T A = 25°C) Power Dissipation - each gate circuit Operating Temperature Range AM2009 AM2009C Storage Temperature Range Lead Temperature (Soldering, 10 sec) -30V -35V +0.3V 50 mA 0.1 mA electrical characteristics N (V SULK = OV) o o 900mW 150mW _55°C to +125°C -25°C to +85°C -65°C to +150°C 300°C CD ........ :t> 3: N o o (Note 1) CD (") LIMITS PARAMETER UNITS CONDITIONS MIN = Vos, los = -l!lA Threshold Voltage V GS DC ON Resistance V GS = -20V, los T A = 25°C DC ON Resistance V GS = -10V, V SB = -20V, los = -100 !lA, T A = 25°C TYP -1.0 -3.0 V = -100 !lA, 150 250 n 500 1250 S1 325 n = -20V, los = -100!lA DC ON Resistance V GS DC ON Resistance V GS = -10V, V SB los = -100 pA Gate Leakage V GS V GS = -20V, Note 2 = -20V, Note 2, T A = 25°C 100 I nput Leakage Vos V DS = -20V, Note 2 = -20V, Note 2, T A = 25°C 100 Vso = -20V, Note 2 Vso = -20V, Note 2, T A = 25"C 500 Output Leakage MAX = -20V, = -10pA, Note 2 Gate-Bulk Breakdown Voltage 1GB Source-Drain Breakdown Voltage Iso = -10 !lA, V GD Note 2 Drain-Source Breakdown Voltage IDS S1 1500 1.0 pA pA 1.0 pA pA 3.0 pA pA -35 V -30 V -30 V = 0, = -10pA, V GS = 0, Note 2 Transconductance 4000 mhos Gate Capacitance Note 3, f = 1 MHz 4.7 8 pF I nput Capacitance Note 3, f = 1 MHz 4.6 8 pF Output Capacitance Note 3, f 20 pF = 1 MHz 16 Note 1: Ratings apply over the specified temperature range and VBULK = 0, unless otherwise specified. Note 2: All other pins grounded. Note 3: Capacitance measured on dual·In·line package between pin under measurement to all other pins. Capacitances are guaranteed by design. typical performance characteristics "ON" Resistance vs Gate-toSource Voltage "ON" Resistance vs T Temperature Input Leakage Current vs Temperature '" C[ '"~ o ~~--~--~--~~~~ -30 -25 -20 -15 V GS (V) -10 10 -5 TEMPERATURE ( C) ./ 100 o 25 50 75 100 125 TEMPERATURE (OC) 399 ...CJ -.:t Analog Switches N ::t: « ........ ......-.:t AH2114/AH2114C DPST analog switch general description N ::t: « The AH2114 is a DPST analog switch circuit comprised of two junction FET switches and their associated driver. The AH2114 is designed to fulfill a wide variety of high level analog switching applications including multiplexers, A to D Converters, integrators, and choppers. Design features include: • • Low ON resistance, typically 75[2 • High OFF resistance, typically 10 11 [2 • Large output voltage swing, typically ±1 OV The AH2114 is guaranteed over the temperature range -55°C to +125°C whereas the AH2114C is guaranteed over the temperature range O°C to +85°C. Powered from standard op-amp supply voltages of ±15V • Input signals in excess of 1 MHz • Turn-ON and turn-OFF times typically 1 /J.s schematic and connection diagrams G4 Metal Can Package Cl Rl CirculI tsShown 10aK With Vsw logic ''I' Rl 10aK V<,\', R5 10aK '------4~"""'_+_--___.-_O C1 Order Number AH2114G or AH2114CG See Package 7 11 ac test circuit and waveforms V1N2 -15V 15V 5K "5V YOUTZ Vsw Vsw lOOK ......- .....-V.N. 5K ":' Vsw 50% -15V 50% +15V Vsw OV Vou"I--_ _ _~-I_~ FIGURE 1. 400 FIGURE 2. absolute maximum ratings Vplus Supply Voltage Vminus Supply Voltage Vplus-Vminus Differential Voltage "Logic Input Voltage Power Dissipation (Note 3) Operating Temperature Range AH2114 AH2114C Storage Temperature Range Lead Temperature (Soldering, 10 sec) +25V -25V 40V 25V 1.36W -55°C to +125°C O°C to +85°C -65°C to +125°C 300°C electrical characteristics PARAMETER (Notes 1 and 2) AH2114 AH2114C CONDITIONS MIN TYP MAX MIN TYP MAX UNITS n n Static Drain-Source "On" Resistance ID = 1.0 mA, V GS = OV, T A = 25°C ID = 1.0 mA, V GS = OV Drain-Gate Leakage Current VDS = 20V, V GS = -7V, T A = 25°C F ET Gate-Source Breakdown Voltage IG = 1.0J..LA VDS = OV Drain-Gate Capacitance V DG = 20V, Is = a f= 1.0MHz, T A =25°C 4.0 5.0 4.0 5.0 pF Source-Gate Capacitance V DG = 20V, 10 = a f = 1.0 MHz, T A = 25°C 4.0 5.0 4.0 5.0 pF Input 1 Turn-ON Time V 1N1 = 10V, T A = 25°C (See Figure 1) Input 2 Turn-ON Time V 1N2 = 10V, T A = 25°C (See Figure 1) 1.2 1.5 1.2 1.2 J..Ls Input 1 Turn-OFF Time V 1N1 = 10V, T A = 25°C (See Figure 1) 0.6 0.75 0.6 0.75 J..Ls 75 0.2 100 150 1.0 60 35 125 160 0.2 5.0 60 35 35 Input 2 Turn-OFF Time V 1N2 = 10V, T A = 25°C (See Figure 1) 75 50 V 35 60 50 80 nA nA 60 80 ns ns DC Voltage Range TA = 25°C (See Figure 2) ±9.0 ±10.0 ±9.0 ±10.0 V AC Voltage Range T A = 25°C (See Figure 2) ±9.0 ±10.0 ±9.0 ±10.0 V Note 1: Unless otherwise specified these specifications apply for pin 12 connected to +15V, pin 2 connected to -15V. -55°C to 125°C for the AH2114. and OoC to 85°C for the AH2114C. Note 2: All typical values are for T A = 25°C. Note 3: Derate linearly at 100oC/W above 25°C. 401 Analog Switches AM370S/AM370SC 8-channel MOS analog multiplexer general description The AM3705/AM3705C is an eight-channel MOS analog multiplex switch. TTL compa,tible logic inputs that require no level shifting or input pull-up resistors and operation over a wide range of supply voltages is obtained by constructing the device with low threshold P-channel enhancement MOS technology. To simplify external logic requirements, a one-of-eight decoder and an output enable are included in the device. Important design features include: • TTLlDTL compatible input logic levels • Operation from standard +5V and -15V supplies • Wide analog voltage range - ±5V • One-of-eight decoder on chip • Output enable control schematic and connection diagrams • Low ON resistance - 150[2 • I nput gate protection • Low leakage currents - 0.5 nA The AM3705/AM3705C is designed as a low cost analog multiplex switch to fulfill a wide variety of data acquisition and data distribution applications including cross-point switching, MUX front ends for AID converters, process controllers, automatic test gear, programmable power supplies and other military or industrial instrumentation applications. The AM3705 is specified for operation over the -55°C to +125°C military temperature range. The AM3705C is specified for operation over the -25°C to +85°C temperature range. ---lOGIClfrlPUTS--- 2' 2' 1" Dual-I n-Line Package 1 162' Vss 2 152' OUT 3 142° OE Vss 4 13 Voo S.5 12 S, S,6 11 S, S.7 10 S3 9 S, TOPVIEW Order Number AM3705D or AM3705CD See Package 2 block diagram (MIL-STD-8068) truth table , LOGIC INPUTS IlAT A INPUT CHANNEL NO:S Lbbbbbbb o DATA OUTPUT CHANNEL 2° 2' 22 OE ON L H L H L H L H L L H H L L H H L L L L H H H H H H H H H H H H S, S2 S3 S4 S5 S6 S, Sa X X X L OFF typical application ONE OUT·OF·EIGHT OECODER I·Vss Buffered a-Channel Multiplex, Sample and Hold Voo 2' 2' ANALOG OUTPUT ENABLE ANAlOGI 1NPUTS ·Both Vss hnesare Jnternally lOGIC INPUT connected; either one both maybe used. 402 OJ '" OUTPUT » ~ w absolute maximum ratings Positive Voltage on Any Pin (Note 1) Negative Voltage on Any Pin (Note 1) Source to Drain Current Logic Input Current Power Dissipation (Note 2) Operating Temperature Range AM3705 AM3705C Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical characteristics PARAMETER ".......o +0.3V UI -35V » ±30mA ±0.1 mA 500mW -55°C to +125°C -25°C to +85°C -65°C to +150°C 300°C (Note 3) SYMBOL ~ w o " UI n j CONDITIONS MIN LIMITS TYP MAX UNITS 80 250 160 400 n n 400 400 n n ON Resistance RON VIN = Vss; lOUT = 100pA ON Resistance RON VIN = -5V; lOUT = -100pA ON Resistance AM3705 AM3705C RON VIN = -5V; lOUT = -100pA TA = +125°C T A =+70°C ON Resistance RON VIN = +5V; VOO = -15V; lOUT = 100 pA 100 n ON Resistance RON VIN = OV, VOO = -15V, lOUT = -100pA 150 n ON Resistance RON VIN = -5V; VOO = -15V; lOUT = -100 pA 250 OFF Resistance ROFF n n Output Leakage Current AM3705 AM3705C I LO I LO I Lo Vss - V OUT = 15V Vss - V OUT = 15V; TA = 125°C Vss - V OUT = 15V; TA = 70°C Data I nput Leakage Current AM3705 AM3705C I LOI I LOI I LOI Vss - VIN = 15V Vss - VIN '" 15V; T A = 125°C Vss - VIN = 15V; T A = 70°C Logic I nput Leakage Current AM3705 AM3705C III III III Vss - VLogic In = 15V Vss - VLogic In = 15V; T A = 125°C Vss - V Logic In =15V; T A = 70°C Vss = +5.0V Logic I nput LOW Level V IL Logic Input LOW Level Logic Input HIGH Level Logic Input HIGH Level V IL V IH V IH Channel Switching Time-Positive t+ Channel Switching Time-Negative t - Channel Separation Vss = +5.0V l , 10 10 0.5 150 35 0.1 25 0.5 .001 .05 .05 0.5 V DO 3.0 Vss - 2.0 Switching Time J Test Circuit 10 500 500 nA nA nA 3.0 500 500 nA nA nA 1 10 10 pA pA pA 1.0 Vss - 4.0 3.5 Vss + 0.3 V V V V 300 ns 600 ns f = 1 kHz 62 dB Output Capacitance Cdb Vss - V OUT = 0; f = 1 MHz 35 pF Data I nput Capacitance Csb Vss - V OIP = 0; f = 1 MHz 6.0 Logic I nput Capacitance Ccg Vss - VLogic In = 0; f = 1 MHz 6.0 Power Dissipation Po Voo = -31V, Vss = OV 125 pF pF 175 m mW Note 1: All voltages referenced to VSS. Note 2: Rating applies for ambient temperatures to +2SoC, derate linearly at 3 mwtC for ambient temperatures above +25°C. Note 3: Specifications apply forT A =25°C, -24V ~ VOO ~ -20V, and +5.0V ~ VSS ~ +7.0V; unless otherwise specified (all voltages are referenced to ground). 403 typical performance characteristics ON Resistance vs Analog Input Voltage 300 ~ITE1TLiT 250 Voo = -20V I I-- I-- Vss = +7V o a: ...... ~ r--. 100 400 - TA = +25°e louT = -100 ",A_ 200 ~ 150 """- ON Resistance vs Ambient Temperature 350 ~ c: ~I- 10-. 50 -3 -1 0 +1 +3 +5 +7 INPUT (V) 250 VINPUT = -5V L.oo~ 100 1,..0 .... ~""'" 50 &.."'" 1-1- r- 200 ""'' ' ' .... -; 150 o ~~ ... ... 100 1-1- 10-1-'1"" a: , ~ '" "'- c: ~ .... TA = 25°e Vss = +5V louT = -100 ",A , \ I " I I ! \..VOUT = -5.0V- -- " ........... ~~ ~OUT = ~.OV- I - - 50 VINPUT" +7V l- IIIII o -10 -15 -20 -25 Voo SUPPL Y (V) switching time test circuit VOUT - Vi;s 15V T~TPot:r~ GND~VSS IIV~ INPUT /1 1/ v- 25 I L- --.J ' '::--JtJr I 100 50 75 TEMPERATURE (OC) V,N1 ··5V t' I t- 10pF 125 typical applications (con't.) Differential Input MUX INVERTING INPUT CHANNElS 16-Channel Commutator I 181 CHANNEll SElECTITTU INVERTING NON INPUT CHANNELS III I ~::!~~i~n::~wn.nce: 10'O!! InputCullent=05nA. 8-Channel Demultiplexer with Sample and Hold Wide Input Range Analog Switch '.v ANALOG INPUT !lOGmA OUTPUT ANALOG! INPUTS t1DV ~5mA OUTPUT 404 ~ _V or = + 5 r , -75 -50 -25 0 25 50 75 100 125 TEMPERATURE re) Output Leakage Current vs Ambient Temperature 10S 230 .~K o -5 y ..... 1 f', TiSi POINTS -; 200 o a: 150 - l - I- o \ Voo = -20V Vss = +7V IOUT=-100",A 300 JEJJJ~ ON Resistance vs VDD Supply Voltage -ANALOG OUTPUT r- s:w Interface Circuits U1 o r- s: '" U1 LM350,LM75450A dual peripheral driver ~ U1 o » general description features The LM350 and LM75450A are general purpose dual peripheral drivers. The design employs two standard TTL gates (NOR in LM350, NAND in LM75450A) and two totally uncommitted, highvoltage, high-current n-p-n transistors. These transistors are capable of sinking 300 mA and will withstand 30V in the OFF state. Inputs are fully DTL/TTL compatible. The LM75450A meets or exceeds the specifications for both the SN75450 and the SN75450A and is a pin-for-pin replacement. • • • • High speed High sink current 300 mA Separate gates and transistors Both transistors can sink 300 mA simultaneously • Transistors withstand 30V collector to emitter in the OFF state • Input clamp diodes schematic and connection diagrams LM350 LM350 ......- - o ( ) v e e r----~~-~-+- .---0 Vc.( SUB A2 SUBSTRATE Positive Logic: A+S = X Note' 1/2 of umt shown. Order Number LM350N See Package 22 LM75450A LM75450A "---+--,--",,,,---0 Vee ..._---0 SUBSTRATE SUBSTRATE Note: 112 of unit shown. Positive Logic: A·S =X Order Number LM75450AN See Package 22 405 r:bsolute maximum ratings (Note I :~PIY 1) Emitter-Base Voltage Continuous Collector Current Continuous Total Power Dissipation (Note 3) Operating Free-Air Temperature Range Storage Temperature Range 7V 5.5V 35V 35V 35V 30V Voltage Vee Input Voltage Vee -to-Substrate Voltage Collector-to-Substrate Voltage Collector-Base Voltage Collector-Emitter Voltage (Note 2) 5V 300mA . 800 mW DoC to 70°C _65°C to 150°C electrica I cha racte ristics oit) The following apply for oOe ~ T A ~ 70 e, Vee = 5V ±5%, for LM350 and LM75450A unless otherwise specified. 0 M TTL GATES ~ ...J PARAMETER LOGIC INPUT COMMENTS Logical "1" Input Voltage Logic Output:S: O.4V Logical "0" Input Voltage Logic Output;:" 2.4V 16mA -400J1A Logical" 1" Output Voltage 0.8V Logical "0" Output Voltage 2V Logical "1" Input Current LOGIC OUTPUT SUPPLY VOLTAGE MIN 4.75V 2 TYP 4.75V 16mA UNIT V 4.75V -400J1A MAX 0.8 2.4 V V 4.75V 0.4 V A Input 2.4V 5.25V 40 S Input 2.4V 5.25V 80 J1A A Input 5.5V 5.25V 1 mA S Input 5.5V 5.25V 2 mA A Input O.4V 5.25V -1.6 mA S Input 0.4V 5.25V -3.2 Output Short Circuit Current Note 4 OV Supply Current: Output Low LM350 Per Package 5V 5.25V Per Package 5V 5.25V Per Package OV 5.25V 4 7 mA Per Package OV 5.25V 2 4 mA TA = 25°C, V SUB ='OV -12 mA -1.5 V MAX UNIT Logical "0" I nput Current LM75450A Output High LM350 LM75450A Input Diode Clamp Voltage OV 5.25V -18 J1A mA -55 mA 8 14 mA 6 11 mA 5V TRANSISTORS BASE COMMENTS PARAMETER EMITTER COLLECTOR MIN 100J1A 35 OV 100J1A 30 V 5 V OV BV CBO RBE :S: 500n BVCER VCE(s.t) VeE VCE VeE VCE = = = = 3V, 3V, 3V, 3V, TA = TA = TA = TA = DoC, O°C, 25°C, 25°C, Note Note Note Note V OV 100J1A 10 mA 30 mA OV OV 100 mA 300mA 0.85 1.05 1 1.2 V V 10mA 30mA OV OV 100mA 300 mA 0.25 0.5 0.4 0.7 V V IB IB IB IB OV OV OV OV 100mA 300 mA 100 mA 300mA BV EBO V BE TYP 5 5 5 5 20 25 25 30 The following apply for Vee = 5V, T A = 25°e TTL GATES (Note 6) PARAMETER TYP MAX 10 ns 22 ns 5 ns 15 ns tr TYP MAX PARAMETER TYP 6 ns 15 ns tpd1 14 ns 12 ns 20 ns tpdO 18 ns 6 ns 15 ns tr 5 ns 8 ns 15 ns tf 10 ns Note 1: All vOltage values are with respect to ground terminal. Positive current IS defined to be current Into referenced pin. Note 2: With base-emitter resistance < 50051. Note 3: The maximum junction temperature is 150"C. for operatong at elevated temperatures the package must be derated based on a thermal resistance of 150°C/W {)JA. Note 4: Only olle output should be shorted at a time. Note 5: These parameters are to be measured with less than 2% duty cycle. Note 6: Delays measured with fanout of 10,15 pF total load capacitance; measured from 1.5V Input to 1.5V output. Note 7: Delays measured with 50H load to lOV, 15 pF total load capacitance; measured from 1.5V input to 50% of output. 406 GATES AND TRANSISTORS (Note 7) TRANSISTORS PARAMETER Interface Circuits LM1489/LM1489A quad line receiver general description features The LM 1489/LM 1489A are quad line receivers designed to interface data terminal equ ipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of E IA standard No. RS232C. The LM1489/LM1489A meet and exceed the specifications of MC 1489/MC 1489A and are pin-for-pin replacements. The LM 1489/ LM1489A are available in 14 lead ceramic dualin-line package. • Four totally separate receivers per package • Programmable threshold • Built-in input threshold hysteresis • "Fail safe" operating mode • I nputs withstand ±30V schematic and connection diagrams Dual-In-Line Package RESPONSE INPUT CONTROL OUTPUT Vee ......----4~-~....--O 11/4 OF UNIT SHOWN) 0 13 Vee RESPONSE INPUT CONTROL OUTPUT DOC 12 11 C C 10 2K ~~S:~~~~ OUTPUT O---------...---+---'W\r-.. 4K INPUT O--..J\M....-....--~....---t L---~--~~-lM1489: RF lM1489A: RF ~ __ .... --~ INPUT RESPONSE OUTPUT A CONTROL A A --oGND 10K 2K , INPUT RESPONSE OUTPUT 8 CONTROL 8 8 GNO TOPVIEW Order Number LM1489J or LM1489AJ See Package 16 ac test circuit and voltage waveforms RESPONSE CONTROL = OPEN OUTPUT ~-----~-------------JV Vee INPUT -J '------oV ~tlr OUTPUT t tpdQ typical applications T'liOTl 1/4lM14B91 lM1489A 1/4 LM1488 --~-, ---t k>-- __ ..r-, T'L/OTl k:~-- --.. --"1.._" --"1.._" T'L/OTl T'L/OTl '-"'L __ ,-",--0--'_ZO-- --·~t... _~:: -~:f 5V r-----,~ I MOSLOGIC L ____ .J I tl4LM14891 LM1489A INTERFACE DATA TERMINAL EQUIPMENT SIGNAL GROUNO MODEM ,..-, r--, T'liOTl ~1._) .... I J 1.-" I 'OPTIONAL FOR NOISE FILTERING RS232C Data Transmission 2 MOS to T l/DTL Translator 407 absolute maximum ratings (Note 1) The following apply for T A = 25°C unless otherwise specified. electrical ch aracteristics LM1489/LM1489A: The following apply for Vee = 25°C, lW O°C to +75°C -65°C to +175°C (Note 3) = 5.0V ± 1%, O°C.:;:;: T A':;:;: +75°C CONDITIONS PARAMETER Input High Threshold Voltage TA Input Low Threshold Voltage T A = 25°C, V OUT ~ 2.5V, Input Current Power Dissipation·(Note 2) Operating Temperature Range Storage Temperature Range lOV ±30V 20mA Power Supply Voltage Input Voltage Range Output Load Current MIN VOUT:S;: 0.45V, lOUT = 10 mA lOUT unless otherwise specified. = -0.5 mA LMl489 TYP MAX MIN LM1489A TYP MAX UNITS 1.0 1.5 1.75 2.25 V 0.75 1.25 0.75 1.25 V VIN = +25V +3.6 VIN = -25V -3.6 -5.6 VIN = +3V +0.43 +0.53 +0.43 +0.53 VIN = -3V -0.43 -0.53 -0.43 -0.53 VIN = 0.75V, 2.6 3.8 5.0 2.6 3.8 5.0 V 2.6 3.8 5.0 2.6 3.8 5.0 V 0.33 0.45 0.33 0.45 +5.6 +8.3 +3.6 +5.6 +8.3 -8.3 -3.6 -5.6 -8.3 mA mA Output High Voltage Input = Open, lOUT = -0.5 mA = -0.5 mA lOUT Output Low Voltage VIN = 3.0V, Output Short Circuit Current VIN = 0.75V Supply Current VIN = 5.0V 14 26 14 26 mA Power Dissipation VIN = 5.0V 70 130 70 130 mW 28 85 28 85 ns 20 50 20 50 ns 110 175 110 175 ns 9 20 9 20 ns lOUT LM 1489/ LM 1489A: The following apply for Vee = 10 mA 3.0 = 5.0V ± 1%, T A = 25°C Input to Output "High" Propagation Delay (t pd1 ) RL = 3.9k (Figure 1) Input to Output "Low" Propagation Delay (t pdO ) RL = 390n (Figure 1) (AC Test Circuit) Output Rise Time RL = 3.9k Output Fall Time RL = 390n (Figure jFigure 1) 1) (AC Test Circuit) (AC Test Circuit) (AC Test Circuit) I Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin. Note 2: For operation at elevated temperatures, the device must be derated based on a 125°C maximum junction temperature and a thermal resistance of 85°C/W junction to case. Note 3: These specifications apply for response control pin = open. 408 V mA 3.0 Interface Ci rcuits rperiphera~ LM75451A, LM75452, LM75453 dual 3: --.. driver U1 ~ U1 genera I description features These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300 mA loads to ground. In the off state (or with Vee = OV) the outputs will withstand 30V. Inputs are fully DTL/TTL compatible. The LM75451A meets or exceeds the specifications for both the $N75451 and SN75451A and is a pin-for-pin replacement. The LM75452 and LM75453 meet or exceed the specifications for SN75452 and SN75453, respectively, and are pin-for-pin replacements. • Highspeed-20nsmax (LM75451A, LM75453) 25 ns max (LM75452) • Both outputs can sink 300 mA simultaneously • Withstands 30V on output with Vee = OV for power strobing applications • Input clamp diodes • Two separate drivers per package N schematic diagrams LM75453 LM75452 LM75451A connection diagrams Vee A1 Vee GNO GNO TQPVIEW TOP VIEW Order Number LM75451AN See Package 20 X1 B1 Vee TOP VIEW Order Number LM75452AN I See Package 20 Order Number LM75453AN See Package 20 truth tables Positive logic: AB=X B OUTPUT X* A B 0 0 0 0 0 0 0 , , , , 0 * "0" Output ~ 0.7V "," Output ~ '00 IlA , 0 Positive logic: A + B = X Positive logic: AB=X A OUTPUTX* , , , , 0 0 * "0" Output ~ 0.7V "," Output ~ '00 IlA , , , 0 A B OUTPUT X* 0 0 0 , , , , 0 0 , , , * "0" Output ~ 0.7V "'''Output~ 'OOIlA 409 M it) ~ it) absolute maximum ratings (Note 1) ::E ....I Supply Voltage Vee Input Voltage Output Voltage (Note 2) Continuous Output Current 7V 5.5V 30V 300mA r-- N Continuous Total Power Dissipation (Note 3) Operating Free Air Temperature Range Storage Temperature Range Lead Temperature (soldering, 10 sec) 800mW O°C to 70°C _65°C to 150°C 300°C it) electrical characteristics ~ it) r-- The following apply for O°C S T A S 70°C, Vee = 5V ±5%, unless otherwise specified. (Note 4) ::E ....I PARAMETER LOGIC INPUT OUTPUT SUPPLY VOLTAGE COMMENTS MIN 2 «... Logic "1" Input Voltage V IN 30V (300 mAl 4.75V Output S 100 J.LA (SO.7V) Logic "0" Input Voltage V IN 300 mA (30V) 4.75V Output S 0.7V (Sl 00 J.LA) ~ Output Leakage Currents 2V (0.8V) 30V 30V 4.75V OV Output LOW Voltages 0.8V (2V) 0.8V (2V) 100mA 300mA 4.75V 4.75V it) it) r-- ::E ....I Logic "1" Input Currents 2.4V 5.5V 5.25V 5.25V MAX UNIT V 0.8 100 100 0.25 0.5 0.4 0.7 V J.LA J.LA V V 40 1 J.LA mA -1 -1.6 mA Logic "0" Input Current O.4V 5.25V Supply Currents: Output Low LM75451A LM75452 LM75453 OV 5V OV 5.25V 5.25V 5.25V Per Package Per Package Per Package 48 51 50 60 65 63 mA mA mA Output High LM75451A LM75452 LM75453 5V OV 5V 5.25V 5.25V 5.25V Per Package Per Package Per Package 7 9 9 11 14 14 mA mA mA Input Diode Clamp Voltage -12mA 5V T A = 25°C The following apply for Vee = 5V, T A = 25°C -1.5 V Propagation Delay Times: Input to Output HIGH LM75451A & LM75453 LM75452 (Note 5) (Note 5) 11 13 20 25 ns ns Input to Output LOW LM75451A & LM75453 LM75452 (Note 5) (Note 5) 16 19 20 25 ns ns Output Risetime 4 ns Output Falltime 10 ns Note 1: All voltage values are with respect to ground terminal. Positive current is defined to be current into referenced pin. Note 2: Maximum voltage to be applied to either output in the off state. Note 3: The maximum junction temperature is 150°C. For operating at elevated temperatures. the package must be derated based on a thermal resistance of 110°C/W 0JA. Note 4: Test conditions in parentheses pertain to LM75451A and LM75453. LM75452, other test conditions pertain to Note 5: Delays measured with 50.0. load to 10V, 15 pF total load capacitance; measured from 1.5V input to 50% of output. 410 TYP c ~s 3: -...J Interface Circuits CO N o ........ c 3: CO CO N DM7820/DM8820 dual line receiver o general description The DM7820, specified from -55°C to 125°C, and the DM8820, specified from O°C to 75°C, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include: • • • • • • High input resistance Fan out of two with either DTL or TTL integrated circuits Outputs can be wire OR'ed The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DM7820 and the DM8820 are specified, worst case, over their full operating temperature range, for ±10-percent supply voltage variations and over the entire input voltage range. Operation from a single +5V logic supply Input voltage range of ±15V Each channel can be strobed independently schematic and connection diagrams TOPVIEW INPUT RESPONSE·TIME CONTROL Vee INPUT TERMINATION TERMINATION INPUT STROBE INPUT RESPONSE TIME STROBE OUTPUT RESPONSE TIME GROUNO OUTPUT RI~ 320 ....- ....- - OUTPUT Note: Pin 7 connected to bonom of package R7 170 Order Number DM7820J or DM8820J See Package 16 TERMINATION R4 IK R3 167 R~ RI4 IK 7~0 ... .... -----1---'---~~- INVERTING INPUT ----GROUNO R2 167 RI ~K Order Number DM7820W See Package 27 Order Number DM8820N See Package 22 Order Number DM8820W See Package 26 STROBE typical application e1 t 0.002 !iF Line Driver and Receiver* 1/2 DM7830 INPU~{_4__ TWISTED PAIR LINE OUTPUT tv cc is 4.5V to 5.5V for both the DM7820 and DM7830 tExact value depends on line length STROBE ·Optional to control response time 411 o N CO CO absolute maximum ratings C Supply Volta.ge ~ " o 8.0V ±20V ±20V Input Voltage Differential Input Voltage N CO .-..... 8.0V 25 rnA Strobe Voltage Output Sink Current :E c 600mW -55°C to 125°C O°C to 70°C Power Dissipation (Note 1) Operating Temperature Range (DM7820) Storage Temperature Range (DM8820) 300°C Lead Temperature (soldering, 60 sec) electrical characteristics PARAMETER Input Threshold Voltage (Notes 2 & 3) CONDITIONS V IN MIN =0 -0.5 -1.0 -15V~VIN~ 15V 0 0 MAX UNITS 0.5 1.0 V V High Output Level lOUT ~ 0.2 mA 2.5 5.5 V Low Output Level Isink ~ 3.5 mA 0 0.4 V Inverting Input Resistance 3.6 5.0 kn Non-inverting Input Resistance 1.8 2.5 kn = 25°C Line Termination Resistance TA Response Time Cdelay Cdelay Strobe Current V strobe V strobe Power Supply Current V IN V IN V IN Non-inverting Input Current V IN = 15V V IN = 0 V IN = -15V Inverting Input Current V IN V IN V IN 120 =0 = 100 pF Note 2: These specifications apply for 4.5V < Vcc < 5.5V, -15V < VCM < 15V and _55° C S;; T A S;; 125° C for the OM 7820 or (f C :::; T~ S;; 70°C for the OM 8820 un less otherwise specified: typical values given are for Vcc = 5.0V, T A = 25°C and VCM = 0 unless stated differently. Note 3: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions. 250 n ns ns 1.0 1.4 -5.0 mA p.A 3.2 5.8 8.3 6.0 10.2 15.0 mA mA mA 5.0 -1.0 -7.0 7.0 -1.4 -9.8 mA mA mA 4.2 0.5 -4.2 3.0 0 -3.0 mA mA mA = 15V =0 = -15V = 15V =0 = -15V 170 40 150 = 0.4 V = 5.5V Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100°C/Wand a maximum junction temperature of 160°C for the OM7820 or 105°C for the OM8820. 412 TVP c typical performance characteristics s: " (Note 3) 00 N o ........ 0.3 ~ w c:I TA = 25°C ~ 0.4 c:I '" '" ~ ~ ~ 0 > 0.1 0.2 > ~ ~ :;:) Do. :! ~ '"~ -0.1 ~-+--~-+-~>---+---l==-""",.......-I w ~ ~ -0.2 ~-+-~-+-~f--+-----l-+----l 2i ~ '"~-0.2 ~ • V. 4.5 5 :; '" r :; '" > \ Cd • loy = 0 "- ~ ::I ::I Do. ~ 0 0 -~ 0.4 0.8 0.6 TIME (PS) w 180 y z < ~ z w ex: ex: ::I y 4 > ~ "~ '" ~ ~ ./' i""IIIoo. ~ l./ OUTPUT LOW 160 -75 -50 -25 0 25 50 150 -75 -50 -25 75 100 125 0 25 50 Internal Power Dissipation Maximum Power Dissipation 700 '" "" '" "'" """- """I ~ ~//"A ~i0Il- - ~ .!..//ll K 10// """I --!.ItI " QIt - I: ::I '-.: en "- -2 -20 -10 10 INPUT VOLTAGE (V) , Vee = 5.0V OUTPUT LOW Vee = 5V .s 600 \ z e-- 20 ~ 500 - Do. ,...-- '"~ ~ '" 75 100 125 TEMPERATURE (OC) 10 .s L ~ TEMPERATURE (OC) Positive Supply Current 0.4 190 en C;; 170 w . 0.2 § ~~ o 0.2 - 0.2 0.1 o -0.2 DIFFERENTIAL INPUT VOLTAGE (V) ~ > ~ -0.4 200 ~ ::I 0 \ il o Do. ~ / I J 20 Vee = 5.oV 0 25°C - Termination Resistance I OUlPUT HIGH c:I ' \ Cd • IOy = 100 pF 4 10 -10 . w r--125°C- ."/,'n ~ ::I 0 INPUT VOLTAGE (V) ~ c:I o ~ Do. 0 ~ o ...~ .' jO -20 o ~ !J r..- > ~ Vee = 5V TA = 25°C - 2· ~ -4 55°C, 0 Output Voltage Levels 4 ::I :; '" ~-0.4 5.5 w ;: -2 ~A- ~ ~ Response Time :; '~ ::I Ot/7' .. 35-,......... . SUPPLY VOLTAGE (V) ~ r--- V~ I f-~ 00 N ~. w ~"D.2",.4 s:00 , - 4 c:I L------L_L--.....I..----.JL--.....I..-----l_....I----I 4 ~ ~ ~ ~v. I--- ~Jt/7'''2.5V I ~ :;:) Do. :! -0.3 Vee =5V I I-FAN OUT=2 w 0.2 c Transfer Function Common Mode Rejection Supply Voltage Sensitivity 2i 400 ex: ~~ ~ ~ ~, -cp..\ --\ 1\ \ ~ ~ Joo f-- , '= BOTH SIDES 200 -10 10 INPUT VOLTAGE (V) 20 25 45 65 85 105 125 AMBIENT TEMPERATURE (OC) 413 ~ o N Interface Circuits CO CO :E c ........ ~ o DM7820A/DM8820A dual line receiver N CO I' :E general description c The DM7820A and the DM8820A are improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. I ntended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with BTL, DTL or TTL integrated circuits. Some important design features include: • I nput voltage range of ± 15V • Strobe low forces output to "1" state • High input resistance Fanout of ten with either DTL or TTL integrated circuits • Outputs can be wire OR'ed • Series 54/74 compatible The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic "1" for both inputs open. Termination resi,stors for the twisted pair line are also included in the circuit. Both the DM7820A and the DM8820A are specified, worst case, over their full operating temperature range (-55°C to 125°C and oOe to 70°C respectively), over the entire input voltage range, for ± 10% su pply voltage variations. Operation from a single +5V logic supply • • schematic and connection diagrams Dual-In-Line Package RESPONSE·TIME CONTROL .-----...-~.....--+-...- - - -...- ...- - - V c c - INPUT --1------, RIO 167 + INPUT R9 5K STROBE + INPUT RESPONSE TIME STROBE RI5 NON·INVERTING INPUT 320 OUTPUT-+-------' RESPONSE TIME 1+1 . . .R7 170 . . . .---OUTPUT R8 5K L....--+-OUTPUT GROUND Note: PII17connectedtobottomofcav1tV package. TOP VIEW TERMINATION R4 IK R5 IK Order Number DM7820AD See Package 1 RI4 750 RJ 167 ...-------J--~I------4...._-...- - - - - G R O U N O INVERTING INPUT I-I RI 5K Order Number DM8820AN See Package 22 R2 167 Note: Schematic shows one·half of Unit. STROBE typical applications Single Ended (EIA-RS232C) Receiver with Hysteresis FOIOO Differential Line Driver and Receiver CI .01vF OUTPUT OUTPUT 4.V IOUTPUT ~ "I" FOR OPEN INPUTI 0.2V • Optional to control response time. 414 o 0.8V V'N 2.5V c 3: ~ absolute maximum ratings Supply Voltage Com mon-Mode Voltage Differential I nput Voltage Strobe Voltage Output Sink Current Power Dissipation (Note 1) Operating Temperature Range DM7820A DM8820A Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical characteristics PARAMETER Differential Threshold Voltage » ....... c 3: 00 00 N o » -55°C to 125°C O°C to 70°C -65°C to 150°C 300°C (Notes 2,3 & 4) CONDITIONS OUTPUT -3V ~ V CM ~ +3V ~ o 8.0V ±20V ±20V 8.0V 50mA 600mW VCM -15V 00 N V CM ~ +15V OTHER MIN V OUT ~ 2.5V +0.06 +0.5 V V OUT ~ 2.5V +0.06 +1.0 V -3V ~ V CM ~ +3V +16mA VouT~0.4V -O.OB -0.5 V -15V ~ V CM ~ +15V +16mA V OUT ~ O.4V -O.OB -1.0 V -15V ~ V CM ~ +15V 3.6 -15V ~ V CM ~ +15V 1.B T A =25°C Line Termination Resistance 120 +15V 5 2.5 170 250 kn kn n +3.0 +4.2 mA 0 -0.5 mA -15V -3.0 -4.2 mA +15V +5.0 +7.0 mA OV -1.0 -1.4 mA -15V -7.0 -9.B mA OV Power Supply Current UNITS -400J.lA Inverting Input Resistance Non-I nverting I nput Current MAX -400J.lA Non-Inverting I nput Resistance Inverting Input Current TYP Logic "0" Logic "0" V 01FF = -lV V OIFF = -0.5V +3.9 +6.5 +6.0 +10.2 mA OV -15V Logic "0" V OIFF = -lV +9.2 +14.0 mA Logical" 1" Output Voltage -400J.lA V 01FF = +lV 2.5 4.0 5.5 V Logical "0" Output Voltage +16mA V01FF = -lV 0 0.22 0.4 V Logical" 1" Strobe I nput Voltage +16mA V OUT ::; O.4V, V D1FF = -3V Logical "0" Strobe Input Voltage -400J.lA VbUT +15V ~ VSTROBE = 5.5V, V 01FF = +3V Logical "0" Strobe Input Current VSTROBE = O.4V" V 01FF = -3V OV V 0.9 2.5V, V 01FF = -3V Logical '''1 " Strobe Input Current Output Short Circuit Current 2.1 Vce = 5.5V, VSTROBE = OV mA 0.01 V 5.0 J.lA -1.0 -1.4 mA -2.B -4.5 -6.7 mA Propagation Delays: (see waveforms) Differential Input to "0" Output VCC = 5V, T A = 25°C 30 45 Differential Input to "1" Output V cc =5V,T A =25°C 24 40 ns Strobe Input to "0" Output Vcc = 5V, T A = ~5°C 16 25 ns Strobe I nput to "1" Output Vcc = 5V,T A = 25°C 18 30 ns ns Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of 100°C/Wand a maximum junction temperature of 160°C for the DM7B20A, or 150°C/Wand 115°C maximum junction temperature for the DMB820A. i Note 2: These specifications apply for 4.5V ~ VCC ~ 5.5V, -15V ~ V CM ~ 15V and -55°C ~ T A ~ 125°C for the DM7820A or oOe ~ T A ~ 70°C for the DM8820A unless otherwise specified. Typical values given are for V CC = 5.0V, T A = 25°C and V CM = OV unless stated differently. Note 3: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions. Note 4: Min and max limits apply to absolute values. 415 ~ o N typical performance characteristics CO CO (Note 3) :E c "o~ Common-Mode Voltage Sensitivity Supply Voltage Sensitivity Temperature Sensitivity N CO ~ ":Ec ~ ct ~ ~ TA =1 250C ~ VeM = OV t:I 0.2 w ::c I J 1 _ .1. I VOUT - 0.4V, lOUT = 16 rnA ~ C > -0.1 ~a:: i= ... ~ -0.2 ~ ~ _-4Jo.6 0.2 'l."J'J \01.1"- ::c ~a::i= ...ct Vee = 5V _ ct 1----:;;;;;;;;:: c-VOUT -2 - .5V, lOUT = -400 /1A 0.1 T~ = 2~oC- 0.4 ~ -D.2 ~ --I""'" 5.5 5.D 6.0 ~C a:: ~ -2D +lD -lD +20 ~ c 1-~25)C -..., ~ ~ ~~ ~ w 19D z ct 1;; ~ a:: z 180 c..> 25°C- - c ~ ct -55°C_ ..... .', ~ ffi -- ", Input Characteristics L ./ "- ~ ~ ~ a:: a:: l/ 0.4 D.2 16D ~ -6 -75 -5D -25 25 ........ 01/); ,01/)- ~ .§ z ~(o~ c 200 ~ 'X ;t ~1''O~1' i'... '~/6'/t " ~ C ........ +lD a:: ~ -20 c ~ c· ...ct ~ ~ t- 34 I--TO "D" OUTPUT 3D ~u.. 26 C 22 f"" ~ 18 -75 -50 -25 . /'r7 j / c > ~ c "" c a:: ./ I-- , 26 ~ 50 75 lDD 125 --~ ~ 1l\}1i--- .. f-"""" \.OG\Ct>.\. ",£I ",t>. -, -75 -50 -25 20 25 50 75 100 125 TA eC) Noise Rejection 1000 1 , / 1 -STIROB~ TO "1" OUTPUT 22 18 / 14 ./ \ V :l: II / c §: w ... / en ~ ........K 7STROBE TO "0" -II l 10 -75 -50 -25 Vee 5V TA - 25°C VOIFF =±2.5V PULSE c I- / / O~TPUT ~ " 25 ::::~ \01.1" Vee = 5V 30 = -400 /1A- e - - lOUT _~ "O"O\}1~+ 0.2 10 -10 w / , . / DIFFERENTIAL TO "1" OUTPUT TA (OC) 416 ~. I' 34 J ~'fI" ~ ...- . / 1 ./ 01, FFEIRENTIAL F"::": LOGICAL "1" OUTPUT, 0.3 Strobe Delays I 38 ~~ 20 1 I I- Vee = 5V COMMON·MOOE VOLTAGE (V) Differential I nput Delays > ~ 10 O. 1 COMMON·MODE VOLTAGE (V) 42 t- Vee = 5V I -10 :::::::; Il' o +20 A 4 A ~OC I /~ /~+INPUT t--- r--- 125°C' ~ " te =15.0V OUTPUT LOW- J'I 100 V] Output Voltage Levels 5 I ~ ", - ~ INPUT VOLTAGE (WITH RESPECT TO GROUND) (V) 3DO 1 Vee = 5V I- TA = 25°C_ -10 -lD -20 75 100 125 Internal Power Dissipation 1 " i'... -2D 50 TA eC) Power Supply Current "' "'- , -8 OIFFERENTIAL INPUT VOLTAGE (V) ?J- I -2 -4 . / ~ /~ V- ~ -INPUT~ ~'f" c..> I- :::;) / /'f" I .§ I- -D.2 4 I- ./ 17D <" ~ "'- TA (OC) V~e = 5V -TA = 25°C z I i' -15D L--'----''---'----''---'---''---L...----' -75 -50 -25 25 50 75 10D 125 Termination Resistance ·1 lD I---+---+-+-- -10D ~ COMMON·MODE VOLTAGE (V) IJ -0.4 -50 :l: I- SUPPLY VOLTAGE (V) FANOUT = lD Vee = 5.0V VeM = DV :l: :i Transfer Function 501-+--+- ~ c > f--- _:....--- ct 4.5 w ~ ::c ~ _'.Iou" 1DO r--......",.......,r---r---.r---r---...---.----, .§ - ~~6\11"'~ " O.IW, \ou!,.- - ~ -0.4 ~c :; 100 w , en C z X ct :; 10 0 25 50 TA (OC) 75 100 125 10 100 1000 CRESPONSE TIME CONTROL (pF) lD,OOD c 3: ac test circuit and waveforms PULSE GEN. PULSE GEN. -....I 00 N o ~ :t> ......... c ~ ~ 3: 00 00 N o A " O.fferenllallnput to "0" Output B " Olfferentlallnpul to"t" Output C " Strobe Input to "0" Output :t> o = Strobe Input to "1" Output 417 N N 00 00 Interface Ci rcuits :E c "N N 00 r... DM7822/DM8822 dual line receiver C general description :E The DM7822/DM8822 is a dual inverting line receiver wh ich meets the requ i rements of E I A specification RS232 Revision B. The device contains both receivers on a single monol ithic silicon chip. The receivers share common power supply and ground connections, otherwise their operation is fully independent. high state independent of the information being received at the input. The output of the DM7822/DM8822 is completely compatible with five volt DTL and TTL logic families. The DM7822 is specified for operation over the -55°C to +125°C military temperature range. The DM8822 is specified for operation over the O°C to + 70°C temperature range. In addition to meeting the requirements of RS232, the DM7822/DM8822 also has independent strobe inputs which allow the receiver to be placed in the connection diagram Vee 14 INPUT STROBE OUTPUT 13 INPUT STROBE OUTPUT "Make no connection to these pins. ""For operation requiring "Mark Hold" with the input open connect a 470U resistors Irom each 01 these pinS to ground. Order Number DM7822J or DM8822J See Package 16 Order Number DM8822N See Package 22 typical connection TWISTED PAIR LINE *For Mark Hold Rl = 47052, otherwise connect pin 3 to ground. 418 GND c 3: --... absolute maximum ratings 00 N N ........ c Supply Voltage I nput Voltage Strobe Voltage. Output Sink Current Power Dissipation (Note 1) Operating Temperature Range DM7822 DM8822 Storage Temperature Range Lead Temperature (Soldering, 10 sec) electrical characteristics PARAMETER Negative I nput Threshold Voltage PARAGRAPH IN RS-232 4.8 (8) CONDITIONS MIN V OUT ~ 2.5V TYP 4.5 and 4.8 (5) 3.0 V 1N = 25V V 1N = OV V 1N = -25V 4.5 and 4.8 (4) MAX -2.0 3.57 -8.33 5.0 5 0 -5 V 1N = OV .03 Logical "1" Output Voltage louT ~ -0.2 mA Logical "0" Output Voltage lOUT = 3.5 mA Strobe Current VSTROBE = 0.4V VSTROBE = 5.5V Power Supply Current (Both Receivers) -25V ~ V 1N ~ 25V Response Time, tl or t2 T A =25°C Vee = 5.0V Input Ramp Rate UNITS V V OUT ~ O.4V I nput Current Open Circuit Input Voltage 00 00 N N (Note 2) Positive Input Threshold Voltage (Note 3) Input Resistance 3: 8.0V ±30V 8.0V 25 mA 600 mW -55°C to +125°C O°C to 70°C -65°C to +150°C 300°C 2.0 V 7.0 kU 8.33 -3.57 mA mA mA 0.5 V 2.5 V 0.4 1.0 -5.0 pA 65 V 1.4 -1.0 mA mA 24.0 mA 125 ns < 10 ns Note 1. For operating at elevated temperatures, the device must be derated in accordance with the "Maximum Power Dissipation" curve. Note 2. Min/Max limits apply across the guaranteed temperature range of -55°e to +125°e for the DM7822 and oOe to 700 e for the DM8822 unless otherwise specified. Likewise the limits apply across the guaranteed Vee range of 4.5V to 5.5V for the DM7822 and 4.75V to 5.25V for the DM8822 unless otherwise specified. Typical values are given for Vee = 5.0V and TA = 25°e. Note 3. Since the EIA RS-232 specification requires the threshold to be between -3V and +3V, the immunity limits shown here guarantee 1 volt additional noise immunity. 419 N N co co :E typical performance characteristics c ......... N N Threshold Voltage vs Supply Voltage co ,...... :E 650 c :; .§ w 10,000 600 550 ~ t,:, ;;:; 1,000 ~ ~ ... (I) ...l 0 TA = 25 C 470U RI::SISTOR - CONNECTEO FROM PIN 3 TO GROUNO ANO FROM PIN 11 TO GROUND 400 350 x I- Vee = 5.0V Vee = 5.0V TA=25'C 470U RESISTOR CONNECTED FROM PIN 3 TO GROUND AND FROM PIN 11 TO GROUND - TA = 25 C ~ .§ 400 z 0 350 ~ 300 llIIU_ ..... 300 250 4.0 4.5 5.5 5.0 0 ~ a: ~ 150 a: ~ PIN3 TO GROUND AND FROM PIN 11 TO GROUND 7 , ~ 250 ~ C 200 F'I -' 100 ~~O~~:~~I:ri~~OM - : z 0 ~a: Internal Power Dissipation Response Time vs Input Ramp Time 100 ". "- ~ 50 10 6.0 100 1,000 Threshold Voltage vs Supply Voltage ....... -25 -20 -15 -10 -5 10,000 V V 0 +5 +10 +15 +20 +25 INPUT VOL TAGE (V) INPUT RAMP TIME (ns) SUPPL Y VOL TAGE (V) ~ ~~ Output Voltage Levels Transfer Function I 0.2 t----+--+----+--+----+--+----+-----i ~ ... - I Vee = 5V FAN OUT = 2 I:::I Q.. 0.2 :::I 0 0.1 0.4 OUTPUT LOW - o -75 -25 25 75 TEMPERATURE eC) switching time waveforms ~ DM8822 500 , (I) ~ 25°C I--- DIFFERENTIAL INPUT VOL TAGE (V) Maximum Power Dissipation DM7822 Vee t:I I- 0.2 700 600 -r- ... ct ,..-125°C- 0-- ~ :; ilJ L---'-_"------'-_"------'-_"------'-~ SUPPLY VOLTAGE (V) :iii to-I-' .' " -0.2 t----+--+----+--+---+-+--+----i 4 0 ~~ .~ ~" -0.3 ~ .§ ~. ~ .-:-"" 55°C "- :; > , 0.1 t---+-----1r-::-~ t,:, - OUTPUT HIGH 125 c 3: -..... Interface Circuits 00 W o c 3: "DM7830/DM8830 dual differential line driver 00 00 W general description o Key Features: • Single 5 volt power supply The DM7830/DM8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50n to 500n. The differential feature of the output eliminates troublesome ground-loop errors normally associated with single-wire transmissions. • Diode protected outputs for termination of positive and negative voltage transients • Diode protected inputs to prevent line ringing • High Speed • Short Circuit Protection The DM7830 is specified for operation over the -55°C to +125°C military temperature range. The DM8830 is specified for operation over the O°C to +70°C schematic*and connection diagram "'""""4~_NAND OUTPUT Order Number DM7830J or DM8830J See Package 16 Order Number DM7830W or DM8830W See Package 27 Order Number DM8830N See Package 22 typical application Digital Data Transmission CIt 0.01 pF *2 per package Line Driver Ind Receiver t OUTPUT t Exlet Vllue depends ori tr.nsmission rite tVee is 4.5V to 5.5V for both the DM7820 Ind DM7830 ·Optiollli to control response time STROBE 421 0 p) absolute maximum ratings CO CO ::E 7.0V Vee Input Voltage C ........ 0 Operating Temperature CO Storage Temperature 5.5V DM7830 -55°C to +125°C DM8830 p) "::EC O°C to 70°C -65°C to +150°C Lead Temperature (soldering, 60 sec) 300°C Output Short Circuit Duration (125°C) electrical characteristics PARAMETER Logical "1" 1 second (Note 1) CONDITIONS Input Voltage MIN TYP MAX 2.0 UNITS V Logical "0" I nput Voltage 0.8 V Logical" 1" Output Voltage V IN = 0.8V lOUT = -0.8 mA 2.4 Logical "1"Output Voltage V IN = 0.8V lOUT =-40 mA 1.8 Logical "0" Output Voltage V IN = 2.0V lOUT = +32 mA 0.2 0.4 V Logical "0" Output Voltage V IN = 2.0V lOUT = +40 mA 0.22 0.5 V Logical" 1" I nput Current V IN = +2.4V Logical" 1" I nput Current V 2.9 V 120 f.1A V IN = 5.5V 2 mA Logical "0" Input Current V IN = O.4V 4.8 mA Output Short Circuit Current Vee = 5.0V Supply Current Vee = 5.0V V IN = 5.0V (Each Driver) Propagation Delay AN D Gate tpd 1 tpdO Propagation Delay NAND Gate tpd 1 tpdO Differential Delay t1 Differential Delay t2 } Note 2 -40 -100 mA 11 18 mA 8 12 ns Vee = 5.0V 11 18 ns C L = 15 pF 8 12 ns See Figure 1 and 1A 5 8 ns 12 16 ns 12 16 ns TA = 25°c } Load, lOOn and 5000 pF See Figure 2 Note 1: Specifications apply for DM7830 -55 0 e ~ TA ~ +125 0 e,Vee = +5V ±10%, DM8830 oOe S T A S 70o e, Vee = +5V ±5% unless otherwise stated. Typical values given are for T A = 25 0 e, Vee = 5.0V. Note 2: Applies for T A = +125 0 e only. 422 Note 2 -120 c 3: typical performance characteristics -....I CO W o ....... Output High Voltage (Logical ",") Vs Output Current 4.0 ?: ... 3.0 "'" ~ ........ ~ c( ~ 2.0 <: t', l~ hl I- ~ I0 > ~ c 25 'C 1.0 ~ t:I 1.8 ~ 1.6 > 1.4 0 1.2 :: ~ ~ II: ~ .... :J: I- 40 60 80 1. 1" CO CO W f-- o ~ IIiiiii::: ~ .... r;;::~~ ~ANO~ GATE~ GATE AND 1.0 ~ .S GUARANTEED LOGICAL "0" \NP~T V?L T~GEI I 20 100 120 140 ·50 ·25 OUTPUT SOURCE CURRENT (rnA) 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 TEMPERATURE (OC) TEMPERATURE (OC) Differential Output Voltage (IV AND - VNANDI) VS Differential Output Current Output Low Voltage (Logical "0") Vs Output Current Maximum Power Dissipation ~ .§ , 800 w c en 700 :J: I- ~ , 1\ ~M7~30 ~ ~ Z 500 , 400 'I , , ~ en II) c J 1\ IDMSS30 600 0 i= ~ , , 1 -SSOC-, f 50 75 100 ~ OUTPUT CURRENT (rnA) J - 300 25 45 65 V 25° i ~ 25 ~ ~ II: 85 105 125 20 V- ~b ~5C 40 60 80 100 120 140 OUTPUT SINK CURRENT (rnA) AMBIENT TEMPERATURE (OC) Power Dissipation (No Load) Vs Data Input Frequency ~ .§ w c en :J: I0 "" ;2 200 lS0 I 160 0 140 i= c( 120 l/ Go en II) C II: w ac test circuit r--------------., Vee I 100 112 DM7IJOIDMlI30 _ ..._ _ v. I I I I I I I I I ~~I~~ I 5000 pf .......--V. SO :: 0 Go 0.12 571.02 5710.020.05710 DATA INPUT FREQUENCY (MHz) switching time waveforms "1____ ".~" ~t'1~ov v._v.-./ FIGURE' c 3: INPUT VOLTAGE 0 c o 2.0 c( ...,~ ,~ 10 ?: w ~ ~~ 15 c( i= ~ , -55'C o 20 -' ~ > ;:) GU~R1NTJEO I LoLclL ~ ~ ~ ~125jC t:I 0 Threshold Voltage Vs Temperature Differential Delay Vs Temperature DV "- FIGURE 2 423 N (W) 00 00 Interface Circuits :E c "'N DM7831/DM8831,DM7832/DM8832 TRI-STATETM line driver M CO "c:E general description • High impedance output state which allows many outputs to be connected to a common bus line. Through simple logic control, the DM7831/ DM8831, DM7832/DM8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DM7832/ DM8832 does not have the V cc clamp diodes found on the DM7831/DM8831. mode of operation To operate as a quad single-ended line driver apply logical "O"s to the Output Disable pins (to keep the outputs in the normal low impedance mode) and apply logical "O'''s to both Differential/ Single-ended Mode Control inputs. All four channels will then operate independently and no signal inversion will occur between inputs and outputs. The DM7831 & DM7832 are specified for operation over the -55°C to +125°C military temperature range. The DM8831 & DM8832 are specified for operation over the O°C to + 70°C temperature range. To operate as a dual differential line driver apply logical "O"s to the Output Disable pins and apply at least one logical "1" to the Differential/Singleended Mode Control inputs. The inputs to the A channels should be connected together and the inputs to the 8 channels should be connected toI n this mode the signals applied to the resulting inputs will pass non-inverted on the A2 and 8 2 outputs and inverted on the Al and 8 I outputs. Key features include: • Series 54/74 compatible • 17 ns propagation delay • Very low output impedance-high drive capability • 40 mA sink and source currents • Gating control to allow either single-ended or differential operation When operating in a bus-organized system with outputs tied directly to outputs of other (continued on page 3) connection and logic diagram "A" OUTPUT ENABLE Vee OUTPUT A2 INPUT A2 OUTPUT A, INPUT A, DIFFERENTIAL! SINGlE·ENOEO MODE CONTROL Order Number DM7831J or DM8831J or DM7832J or DM8832J See Package 17 Order Number DM7831W or DM8831W or DM7832W or DM8832W See Package 28 Order Number DM8831 N or DM8832N See Package 23 "B" OUTPUT ENABLE OUTPUT B2 truth-table INPUT B2 OUTPUT INPUT DIFFERENTIAl! GND B, B, SINGLE·ENDED MODE CONTROL (Shown for A Channels Only) 01 FFERENTIALI "AU OUTPUT DISABLE 0 X 424 0 0 0 1 X X 1 = Don't Care SINGLE·ENDED MODE CONTROL INPUT A1 OUTPUT A1 INPUT A2 OUTPUT A2 Logical" 1" or Logical "0" Same as Input A, Logical "1" or Logical "0" Same as X Logical" 1" or Logical "0" Opposite of Input A, Logical "1" or Logical "0" Same as Input A2 X X High impedance state X 0 0 X 1 1 X Input A2 High impedance state c 3: ".... absolute maximum ratings CO W electrical characteristics 3: CO CO W .... c '3: " CO W N (Note 1) CONDITIONS Logical "," Input Voltage DM7831.DM7832 Vee = 4.5V DM8831.DM8832 Vee = 4.75V Logical "0" Input Voltage DM7831,DM7832 Vee = 4.5V DM8831,DM8832 Vee = 4.75V Vee = 4.5V DM7831.DM7832 MIN TYP MAX 2.0 10 = -40 mA 10 = -2 mA 10 = -5.2 mA 2.3 2.7 2.5 2.9 1.8 2.4 1.8 2.4 10 = 40 mA 10 = 32 mA 10 - 40 mA 10 = 32 mA Logical "0" Output Voltage DM7831.DM7832 DM8831.DM8832 Logical "1" I nput Current DM7831,DM7832 Vee = 5.5V V IN = 5.5V DM8831,DM8832 Vee = 5.25V V IN =2.4V Logical "0" Input Current DM7831.DM7832 Vee = 5.5V V IN = O.4V DM8831.DM8832 Vee = 5.25V Output Disable Current DM7831,DM7832 Vee = 5.5V Vo = 2.4V or O.4V DM8831,DM8832 Vee = 5.25V Output Short Circuit Current DM7831.DM7832 Vee = 5.5V DM8831.DM8832 Vee 5.25V Supply Current DM7831.DM7832 Vee = 5.5V DM8831,DM8832 Vee = 5.25V 0.29 0.29 -1.0 -40 -40 (Note 2) -100 65 Vce=5.0V, T A =25°C liN =-12mA DM7831,DM7832 lOUT = -12 mA,V ee = 5.0V, T A = 25°C DM8831,DM8832 lOUT = +12 mA,V ee = 5.0V, T A = 25°C Propagation Delay to a Logical "0" from Inputs A 1 , A 2 , B1, B2 DifferenVee=5.0V, T A =25°C tial Single-ended Mode Control to Outputs, tpdO ....... C UNITS 3: V 0.8 ~D~M~8~8=3~1.=D~M~8=8=32~V-e-e-=--4-.7-5-V-710~=---4~0~m~A----' Input Diode Clamp Voltage c 10ms PARAMETER Logical "1" Output Voltage ....... 7V 5.5V 5.5V -65°C to +150°C -55°C to +125°C O°C to +70°C 300°C Supply Voltage Input Voltage Output Voltage Storage Temperature Range Operating Temperature Range DM7831. DM7832 DM8831. DM8832 Lead Temperature (Soldering. 10 sec.) Time that 2 bus-connected devices may be in opposite low impedance states simultaneously Output Diode Clamp Voltage CO CO W V N V v V V 0.50 .40 0.50 .40 V V V V 1 40 mA J.1A -1.6 mA 40 J.1A 120 (Note 2) mA 90 mA -1.5 V -1.5 V V Vee +l.5 13 25 ns Propagation Delay to a Logical "1" from Inputs A 1, A 2 , B1• B2 Differential Single-ended Mode Control to Outputs, tpd 1 Vee = 5.0V, TA = 25°C 13 25 ns Delay from Disable Inputs to High Impedance State (from Logical "1" Level), t1 H Vee = 5.0V, T A = 25°C 6 12 ns Delay from Disable Inputs to High I mpedance State (from Logical "0" Level), tOH Vee = 5.0V, TA = 25°C 14 22 ns Propagation Delay from Disable Inputs to Logical "1" Level (from High Impedance State), tH 1 Vee = 5.0V, TA = 25°C 14 22 ns Propagation Delay from Disable Inputs to Logical "0" Level (from High Impedance State), tH a Vee = 5.0V, TA = 25°C 18 27 ns fJ Note 1: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DM7831. DM7832 and across the O°C to 70°C temperature range for the DM8831. DM8832_ All typicals are given for Vce = 5.0V and T A = 25°C. Note 2: Applies for T A = 125°C only. Only one output should be shorted at a time. 425 N M 00 00 mode of operation (cont.) ~ DM7831/DM8831's, DM7832/DM8832's (Figure 1), all devices except one must be placed in the "high impedance" state. This is accomplished by ensuring that a logical "1" is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/ DM7442, BCD-to-decimal decoders, to decode as many as 100 DM7831/DM8831's, DM7832/ DM8832's (Figure 2). The unique device whose Disable inputs receive two logical "0" levels assumes the normal low C ....... N M 00 I' ~ C ... M 00 00 ~ C ... ....... impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical "a" to logical "1" state. The other outputs-in the high impedance state-take only a small amount of leakage current from the low impedance outputs. Since the logical "1" output current from the selected device is 100 times that of a conventional Series 54/74 device (40 mA vs. 400/lA), the output is easily able to supply that leakage current for several hundred other DM7831 /DM8831 's, DM7832/DM8832's and still have available drive for the bus line (Figure 3). M ~ ::E c BUS LINES ~ SELECTED AS DRIVING~ DEVICE GATED INTO THIRD STATE ~ GATED INTO THIRD STATE ---. Figure 1 Figure 2 FOR DRIVING OTHER TTL INPUTS SELECTED AS DRIVING DEVICE GATED INTO HI IMPEDANCE STATE GATED INTO HI IMPEDANCE STATE Figure 3 426 c ~ ~ typical performance characteristics Propagation Delay from Input to Output (Channel 1) Propagation Delay from Input to Output (Channel 1) lO I I I I I Ve,e = 5;OV DIFFERENTIAL/SINGLE·ENDED MODE CONTROL INPUTS AT LOGICAL "0" I 25 c > ~ 20 z 15 c c i= C[ c:I C[ A- lO 10 -::::::: ~ tpdl ./ I I'" t p.:!!.,. ".,. ~ ~ 20 zQ 15 c - tpdO 25 i= C[ c:I C[ A- .~ A- o I 0 25 50 75 100 125 -75 -50 -25 lO 1 25 50 N ~ ~ - -.--- - _tOH 10 " > ~ 0 25 50 ----- tHO - -- 15 10 = ",..... ".,. --- -' > ~ 40 Z lO Q i= C[ 20 c:I C[ A- a: A- 111111111 - '11111111 ",,"m 1 - - - ;1' ~ - .1 .01 Vee ~ ~""" F" ~ ~25°C 1 \ - 40 100 10 f(MHzl Vee +40 I DM78l1 T I =5V lO I T ,iJ .... .E ~31 -20 I I :OM78l2 I -2 0.4 I 10,000 , l/25°C'/ 1 I I I I___/ / I- 1250C ~ To r--..... ~-55C \ \ I I I Vee = 5.0V O.l / 0 0.2 0.1 ~ ~ > ~ 15 ~ ~" ~~ /0 ,.~ \ 120 80 160 0 20 40 60 OUTPUT A, INPUT A, V, 100 OMll311 OMI131 SOOOpF +--- - ' .... ...-- f I 100 80 lOUT (mA) INPUT 10 r/ V ~ ~-55°C .... :I > ~ / l~V tpd2 :,~. T 25°C ~125°C -40 , 0.5 I TT 20 Q -55°C 1000 Logical "0" Output Voltage vs Sink Current =5.0V T 25 -55°C~ :I 100 Vee = 5.0V 25°C~ < .g iiiI 11111 10 Propagation Delay in Differential Mode 125°C~ +20 100 125 lOUT (mA) lOUT vs VOUT High Impedance Output State I """'I 125°C_ - - 10 r ~ - - 20 - - - lO 75 =5.0V =25°C ~~ 10 Logical "1" Output Voltage vs Source Current Total Supply Current vs Frequency Vee = 5.0V TA = 25°C ALL CHANNELS SWITCHING 50 3: CO CO W N ,J Q Q 25 c 100 125 TEMPERATURE (OC) TEMPERATURE (OCI 70 Vee TA c """,- .......·t H1 0 75 60 :r: 5.0V o -75 -50 -25 75 100 125 50 Propagation Delay vs Load Capacitance o -75 -50 -25 25 50 tlH o 0 TEMPERATURE rCI T 20 Q - -75 -50 -25 75 100 125 Vee ./ 15 40 0 25. 20 < .g Jl A- lO Vee = 5~OV j 50 a: Delay from Disable to Low Impedance State 25 60 ~ CO W t d1 Pl Q TEMPERATURE (OC) Delay from Disable to High . Impedance State ~ 3: ....... TEMPERATURE (OCI c C[ A- c o -75 -50 -25 > 10 c:I tpdO g: a: tpdO 15 .... - 20 ~ Q Q Q Q c > z """'-- ~ CO CO W 25 i= C[ 10 C Ve~ = 5~OV Vee = S.OV DIFFERENTIAL/SINGLE·ENDED MODE CONTROL INPUTS AT LOGICAL "1" c > Propagation Delay from Input to Output (Channel 2) lO I I I I I W .... ....... ".", - V, INPUT A, OUTPUT A, tpdl I 4 V OUT (V) -50 50 100 TEMPERATURE (OC) 427 N (It') 00 00 switching time waveforms :?i c " N tpd1 & tpdO (It') 00 I' :?i INPUT c ... OV--_.....I (It') 00 00 :?i I c "... I I INVERTED OUTPUT I I I I I (It') 00 I' ~t.dl*-- :?i I c NONINVERTEO OUTPUT I I I I I I I I I I Input charactenstic Amplitude = 3V frequency'" 1 MHz, 50010 duty cycle. t, ~ t,"; 10 nsec (10% to 90%1 tOH t1H 3V 3V INPUT INPUT I I I ov I I I I I Y-r --, OUTPUT ACTUAL 'OGICAL "0" OLTAGE '" 1.SV tHO ACTUAL LOGICAL "1" VOLTAGE t'H OUTPUT ~ :_1 -l '\t "".SV tH1 INPUT Xv I I INPUT OV X. I I -lI OUTPUT I OUTPUT 428 I OV ---.J tOH 1-4-- IHI ov 5V I ac load circuit 5, 4 ~ Switch S, 400 0, ...... ....... DM7B32! DMBB32 - r~ ~'K ~t ~t ~t 4 All diodes are FD100 1 tpd1 closed Switch S, closed CL 50 pF tpdO closed closed 50 pF tOH closed closed • 5 pF t'H closed closed • 5 pF tHO closed open 50 pF tH' open closed 50 pF c ~ ....... CO W • jig capacitance N ......... 52 C ~ CO CO W N 429 r 3: CJ1 CJ1 N Sense Am pi ifiers o "r3: LM5520/LM7520 series dual core memory sense amplifiers general description The devices in this series of dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTLlTTL compatible. All devices of the series have identical preampl ifier configurations, while various logic connections are provided to suit the specific application. "'-01 CJ1 N o en Features of the series include: CD • High speed • Guaranteed narrow threshold uncertainty including temperature and supply voltage variation • Adjustable input threshold voltage • Fast overload recovery times • Two ampl ifiers per package • Molded or cavity dual-in-line package The LM5520/LM7520 has output latch capability and provides sense, strobe, and memory function for two sense lines. The LM5522/LM7522 contains a single open collector output which may be used to expand the number of inputs of the LM5520/LM7520, or to drive an external Memo~y Data Register (MDR). Intended for small memories, the two channels of the LM5524/LM7524 are independent with two separate outputs. The LM5534/LM7534 is similar to the LM5524/ LM7524 but has uncommitted, wire-aRable outputs. The LM5528/LM7528 has the same logic configuration of the LM5524/LM7524 and in addition provides separate low impedance Test Points at each preampl ifier output. A similar device having uncommitted, wire-aRable outputs is the LM5538/LM7538. • Six logic configurations The part number ending with an even number (e.g., LM5520) designates a tighter guaranteed input threshold uncertainty than the subsequent odd number ending (e.g., LM5521). The remaining specifications for the two are identical. All devices meet or exceed the specifications for the corresponding device (where applicable) in the SN5520/SN7520 series and are pin-for-pin replacements. absolute maximum ratings All critical characteristics are guaranteed for operation within normal system parameter variations of temperature, supply voltages, and output loading. Supply Voltage Differential or Reference Input Voltage Logic Input Voltage Operating Temperature Range LM55XX LM75XX Storage Temperature Range ±7V ±5V +5.5V -55°C to +125°C O°C to +70°C -65°C to +150°C typical application STROBE MEMORY DATA REGISTER i--l I I )O----+....~---1 BIT 1 I I I L __ .J Expanded Small Memory System 431 LM5520/LM7520 and LM5521/LM7521 electrical characteristics LM5520/LM5521 : The following apply for -55°C ~ T A ~ 125°C, v+ = 5V ±5%, V- = -5V ±5%. (Note 1) TEST CONDITIONS (EACH AMPLIFIER) PARAMETER Differential Input Threshold Voltage (V TH ) (Note 2) MIN TYP 10(S) 15 15 40 40 35(33) Differential & Reference Input Bias Current MAX 20(22) 45(47) 100 30 GATE a INPUT DIFF. INPUT REF. INPUT mV mV mV mV ±VTH ±VTH ±VTH ±VTH 15mV 15mV 40mV 40mV +5V +5V +5V +5V +5V +5V +5V +5V J..IA OV OV +5.25V +5.25V UNIT STROBE INPUT LM7520/LM7521 : The following apply for O°C ~ TA ~ 70°C, V+ Differential Input Threshold Voltage (V TH ) (Note 4) 11(S) 36(33) Differential & Reference Input Bi~s Current 15 15 40 40 30 LOGIC OUTPUT (NOTE 3) +16 mAIO)' -400J..lA(O) +16 mAIO) -400 J..IA(O) +5.25V SUPPLY VOLT. ±5V ±5V ±5V ±5V ±5% ±5% ±5% ±5% COMMENTS Logic Logic Logic Logic Output 2.4V Output <0.4V Output >2.4V Logic Logic Logic Logic Output <0.4V Output >2.4V Output <0.4V Output >2.4V ±5.25V = 5V ±5%, V- = -5V ±5% 44(47) mV mV mV mV ±VTH ±VTH ±VTH ±VTH 15mV 15mV 40mV 40mV +5V +5V +5V +5V +5V +5V +5V +5V 75 J..IA OV OV +5.25V +5.25V 19(22) GATE a INPUT +16 mAIO) -400J..lA(O) +16 mAIO) -400J..lA(O) +5.25V ±5V ±5V ±5V ±5V ±5% ±5% ±5% ±5% ±5.25V LM5520/LM5521: The following apply for -55°C ~ T A ~ 125°C, V+ = 5V ±5%, V- = -5V ±5% LM7520/LM7521: The following apply for O°C ~ T A ~ 70°C, V+ = 5V ±5%, V- = -5V ±5% Differential Input Offset Current Logic "1" Input Voltage (Strobes) (Gate a) (Gate a) 0.5 Logic "0" Input Current -1 Logic "1" I nput Current (Strobe & Gate a) (Gate a) 5 .02 5 .02 2.4 2.4 2.4 Circuit Current a Output Short Circuit Current +5.25V +5.25V V V V 40mV 40mV 40mV 20mV 20mV 20mV +2V OV OV +4.75V .f2V OV O.S O.S O.S V V V 40mV 40mV 40mV 20mV 20mV 20mV +O.SV OV OV +4.75V +O.SV OV +O.SV -1.6 mA 40mV 20mV +0.4V +O.4V 40 1 40 1 J..IA mA J..IA rnA OV OV 40mV 40mV 20mV 20mV 20mV 20mV +2.4V +5.25V +5.25V +5.25V +5.25V +5.25V +2.4V +5.25V V V V 40mV 40mV 40mV 20mV 20mV 20mV +2.0V OV +4.75V +5.25V +0.8V OV V V V 40mV OV OV 20mV 20mV 20mV +O.8V OV OV +4.75V +2V OV 3.9 3.9 3.9 Logic "0" Output Voltage (Strobe) (Gate a) (Gate a) a Output Short OV 2 2 2 Logic "0" Input Voltage (Strobes) (Gate a) (Gate a) Logic "1" Output Voltage (Strobe) (Gate a) (Gate a) OV J..IA 0.25 0.25 0.25 0.40 0.40 0.40 -3 -4 -5 mA OV 20mV OV OV -2.1 -2.8 -3.5 mA OV 20mV OV OV -400 J..IA(O) +16 mAIO) +16 mA(a) q, ±4.75V ±4.75V ±4.75V Logic Output >2.4V Logic Output 2.4V Logic Output >2.4~ +0.4V ±5.25V Each Input +2.4V +5.25V ±5.25V ±5.25V ±5.25V ±5.25V Each Input Each Input +2V -400~(O) +0.8V +2V OV -400J..lA(a) -400J..lA(O) -400 J..IA(O) -4ooJ..lA(a) ±4.75V ±4.75V ±4.75V +16 mAIO) +16 mAIO) +16 mA(a) ±4.75V ±4.75V ±4.75V OV(O) ±5.25V OV(a) ±5.25V V+ Supply Current 21 35 mA OV 20mV OV OV OV ±5.25V V- Supply CurreQt -13 -18 mA OV 20mV OV OV OV ±5.25V Note 1: For OOC $ T A $ 70°C operation, electrical characteristics for LM5520 and LM5521 are guaranteed the same as LM7520 and LM7521, respectively. Note 2: Limits in parentheses pertain to LM5521, other limits pertain to LM5520. Note 3: or in parentheses indicate or logic output, respectively. Note 4: Limits in parentheses pertain to LM7521, other limits pertain to LM7520. NoteS: Positive current is defined as current into the referenced pin. a a a a Note 6: Pin 1 to have ~1 00 pF capacitor connected to ground. 432 ±5.25V +5.25V r- ~ U1 U1 N o ........ r- LM5520/LM7520 and electrical characteristics ~ LM5521/LM7521 ~ U1 N o LM5520/LM5521 and LM7520/LM7521: The following apply for T A = 25°C, V+ = 5V, V- = -5V U) CD TEST CONDITIONS PARAMETER AC Common·Mode Input Firing Voltage MIN TYP MAX ±2.5 UNIT DIFF. INPUT REF. INPUT STROBE AND GATE INPUTS V PULSE 20mV +5V a LOGIC OUTPUT AC TEST CIRCUIT SCOPE Propagation Delays Differential Input to Logical "I" Output 20 Differential Input to Logical "0" Output ns 20mV 1 28 ns 20mV 1 Differential Input to Logical "I" 6 Output 36 ns 20 mV 1 Differential Input to Logical "0" 6 Output 28 55 ns 20mV 1 Strobe Input to Logical "1" Output 10 30 ns 20mV 1 Strobe Input to Logical "0" Output 20 ns 20mV 1 Strobe Input to Logical "1" 6 Output 33 ns 20 mV 1 Strobe I nput to Logical "0" 6 Output 16 55 ns 20mV 1 Gate Q I nput to Logical "r' Q Output 12 20 ns 20mV 2 Gate Q Input to Logical "0" Q Output 6 ns 20mV 2 Gate Q Input to Logical "I" 6 Output 17 ns 20mV 2 Gate Q Input to Logical "0" 6 Output 19 ns 20 mV 2 Gate 6 Input to Logical "I" 6 Output 12 ns 20 mV 2 Gate 6 Input to Logical "0" 6 Output 6 ns 20mV 2 a a a a 40 30 20 Diff. Input Overload Recovery Time 10 ns Common·Mode Input Overload Recovery Time 5 ns 200 ns Min. Cycle Time 433 ~ (I) CD ~ LM5520/LM7520 and LM5521/LM7521 CD UJ o N Lt) ....... ~ schematic diagram ...J ........ o N y.O------------.-----4__------~ Lt) Lt) ~ ...J GAT~ 0------+------+-+--------4-------------+--------------, 0----+----------____--+.......1 GAT~ O------+-----------------+----__-+--=~---l OUTPUT STROBE B Ii y- connection diagram y' CeXT STROBE A GATE Q ~ OIFfERENTIAL INPUT A OUTPUT OUTPUT STROBE Q Ii B + '---...--' REFERENCE INPUT GATE Ii ~ GNO y- DIFFERENTIAL INPUTB Order Number LM5520J or LM7520J See Package 17 Order Number LM5520N or LM7520N See Package 23 Order Number LM5521J or LM7521J See Package 17 Order Number LM5521N or LM7521N See Package 23 434 r- s: U1 U1 LM5520/LM7520 and LM5521/LM7521 AC test circuit (1) STROBE INPUT DifFERENTIAL INPUT N o ......... r- s:...... V+=5V 281n 288n 16 ----, 1 U1 N o ---+!_'3_..__+--o~UTPUT JO-. ._ _ en I I I ...CD "'>+\1;;..2_+_~~OOUTPUT . .--4........;..;-1-4'...... 51 " CD Q 1 L-T~I-18---14---1O-_J (I) T"l 'O'r ~ ·lncludlnIJig.ndprobe voltage waveforms (1) ~:m~- £:::\.2DmV QlffERE~:;~~ ----'~~~~·n.-l~~~3Dons, -----l"C- ~ STROBE INPUT r-----;---300ns~ A --I i'0on.~ 2 E ~ OV I----I I+- f I~~II ~'.5V 1.5V 1.5V 1 r,I.5V OUTPUT F\-:';~---'" , f4-- -l :.- B 40mV OV ...:IJ. I 1 1 I I. Q ___ 2 I I 1 I I 1 I I I I I OUTPUTn~1 ~I I 1.5V I c-l I f4- I I ---: 1. Pulse gener.torch'flCteristics: ZOUT = son. t, = tf =15 ~5 ns, PRR 2. PrOpilitiondel.vs: I I 1.5V I 1 I G---.j I-- 0 1 ~V 1.5V 1 t-I 1 I-- H -i = 1 MHz A=O.fferentilllnputtolotic.I'''''outputQ B:: Differential input to IOIM:.I "0" output Q C:: Differential input to IDIU "0" output ii 0:: Diff,rentill input to lotic.1 "1" output 0 E=Strobelnputtol ..... l .. outputQ F =Strob'lnputtololic ....O.. outputQ G=Strob,inputtol .....O.. outputD. H=Strobeinputtol"'''1''outputQ voltage waveforms (2) AC test circuit (2) -------3V GATE INPUT ~ Q 1.5V 1.5V I 1 I4'QOns~ V·:·5V r~t!!!!l. -~-------- GATE I! INPUT nan 211n ~ 1.5V 1 JC>. .-----+.;;..---4......--+--o ~UTPUT 1 1 1 t-- 1 1 I 1 OV ----3V 1 1 1.5V OV I I ~ • 1 1 1 I c--l I 1 X>iF---f--e--o gUTPUT I' 1 A--I 1 OUTPUT Q 50n I ~300n.~ 2(611 3(111 I E_ 1 t-- 1 ~ OUTPUT I! 1---+l1.IB 1.5V I 1 1.5V I 1 1 1-1 1-+1 I : ~O I I I.--f Q~ . C ....I ~'.5V -V-,.5V ,. Pulsegenelitorch.facteflstN:s: lOUT = son. t.~'" tf = 15 ± 5 ns, PRR = 1 MHz 2. PrOpilitiondeiays: A= Glte 0 input to logIC.' "0" output 0 B = G.te Q input to logic.1 "1" output 0 ·'ncludinli"·ndprobe C=G.teOinputtologic:I''''''outputli 0= GlteOinputtololic:aI "0" output 0 E =G.teOmputtologicl'''O''outputli f = G.tellmputtololic.... , .. output a. 435 en CD ... LM5522/LM7522 and LM5523/LM7523 electrical characteristics CD til LM5522/LM5523: The following apply for -55°e ~ T A ~ 125°e, V+ o N = 5V ±5%, V- = -5V ±5% (Note 1) TEST CONDITIONS (EACH AMPLIFIERI II) "....~ PARAMETER Differential Input Threshold Voltage (V TH 1 (Note 21 '"No II) II) MIN 10(SI 35(331 Differential & Reference Input Bias Current ~ TYP 15 15 40 40 30 MAX 20(221 45(471 100 UNIT DIFF. INPUT REF. INPUT STROBE INPUT mV mV mV mV ±VTH ±VTH ±VTH ±VTH 15mV 15mV 40mV 40mV IJA OV OV GATE INPUT LOGIC OUTPUT SUPPLY VOLT. +5V +5V +5V +5V +5V +5V +5V +5V -400IJA +16mA -400IJA +16mA ±5V ±5% ±5V ±5% ±5V ±5% ±5V ±5% +5.25V +5.25V LM7522/LM7523: The following apply for oOe ~ T A ~ 70 e, V+ o ..J Differential Input Threshold Voltage (V TH ) (Note 3) 11(SI 15 15 36(33) 40 40 'Differential & Reterence Input Bias Current 30 44(47) mV mV mV mV ±VTH ±VTH ±VTH ±VTH 75 IJA OV 19(22) 15mV 15mV 40mV 40mV OV COMMENTS Logic Logic Logic Logic Output >2.4V Output <0.4V Output >2.4V Output <0.4V ±5.25V = 5V ±5%, V- = -5V ±5% +5V +5V +5V +5V +5V +5V +5V +5V +5.25V +5.25V -400p.A +16mA -400IJA +16mA - ±5V ±5% Logic Output >2.4V ±5V ±5% Logic Output <0.4V ±5V ±5% Logic Output >2.4V ±5V ±5% Logic Output 2.4V O.S O.S V V 40mV 40mV 20mV 20mV +O.SV OV +4.75V +O.SV -400IJA -+16mA ±4.75V ±4.75V Logic Output >2.4V Logic Output <0.4V -1.6 mA 40mV 20mV +O.4V +O.4V ±5.25V Each Input 40 1 40 1 IJA mA IJA mA OV OV 40mV 40mV 20mV 20mV 20mV 20mV +2.4V +5.25V +5.25V +5.25V +5.25V +5.25V +2.4V +5.25V ±5.25V ±5.25V ±5.25V ±5.25V V 40mV 20mV +O.SV +2V V V 40mV 40mV 20mV 20mV +2V OV mA 40mV 20mV 0.40 0.40 -3.5 -400IJA ±4.75V +4.75V +O.SV +16mA +16mA ±4.75V ±4.75V Tie Pins 10 and 12 Tie Pins 10 and 12 OV +5.25V OV ±5.25V Tie Pins 10 and 12 +5.25V ±4.75V 250 IJA OV 20mV OV +2V V+ Supply Current 23 36 mA OV 20mV OV OV ±5.25V V- Supply Current -13 -lS mA OV 20mV OV OV ±5.25V LM5522/LM5523 and LM7522/LM7523: The following apply for T A AC Common Mode Input Firing Voltage Propagation Delays: Differential Input to Logical "1" Output V 26 ns 20mV AC Test Circuit ns 20 mV AC Test Circuit ns 20mV AC Test Circuit ns 20mV AC Test Circuit ns 20mV AC Test Circuit ns 20mV AC Test Circuit 21 Strobe Input to Logical "1" Output 22 Strobe Input to Logical "0" Output 12 Gate Input to Logical "1" Output 4 Gate Input to Logical "0" Output 15 Differential Input Over· load Recovery Time 10 ns 5 ns 200 ns Min. Cycle Time 45 40 25 PULSE 20mV +5V = 25°e, V+ = 5V, V- = -5V ±2.5 Differential Input to Logical "0" Output Common Mode Input Overload Recovery Time Note 1: For OOC :-:; T A :-:; 70°C operation, electrical characteristics for LM5522 and LM5523 are guaranteed the same as LM7522 and LM7523. respectively. Note 2; Limits in parentheses pertain to LM5523. other limits pertain to LM5522. Note 3: Limits in parentheses pertain to LM7523, other limits pertain to LM7522_ Note 4: Positive current is defined as current into the referenced pin. Note 5: Pin 1 to have 2100 pF capacitor connected to ground. 436 ±5.25V V V 3.9 0.25 0.25 OV = 5V ±5%, V- = -5V ±5% ~ 70 e, V+ = 5V ±5%, V- = -5V ±5% o +5V SCOPE r- 3: U1 U1 N LM5522/LM7522 and LM5523/LM7523 o ........ r- schematic diagram 3: ~ en connection diagram N V·o-----------~~----.---------__, o }----+----------......-o CEXT en ... CD REFERENCE INPUT DIFFERENTIAL INPUT A REFERENCE INPUT DIFFERENTIAL INPUT B Order Number LM5522J or LM7522J See Package 17 Order Number LM5522N or LM7522N See Package 23 r Order Number tM5523J or LM7523J See Package 17 J DIFFERENTIAL INPUT 8, R, Order Number LM5523N or LM7523N See Package 23 OUTPUT STROBE B o------i----------------+_...... L -.....__.....--() GNo Z AC test circuit DIFFERENTIAL INPUT STROBE INPUT r-------...._OV··&V ----, 16 ho nan r·. . ". ' 1& pF INCLUDING voltage waveforms oIFFERE~;~~ AI _ _ _ _oJ --+I 100.. I Zom. /zomv \Zo.:::----comv \.---~2~; I ov 14f4--380.'~ I ~15V STROBEINPUT---'! •• - : : ~2 1--,300"~ GATE INPUT .I :: JiI'"...U V I t----lI E--l A---: i- I I 2l F\::------3V .I --t I 100 •• - - I+- \.,.,;--3V :: I --1--8 ov I . 100 .. c--l I :...-lI t-- o I I i~~ ----l 1. O"'strobtis"oundtdwfl,nthlothtflld.tSlMl"Itesttd 2. Pu...."',.tOfch.flCttftltlCS: ZOUT '" 50U t. "1, " 15~5 M. PRR" 1 MHz 1.ProJlllltlon ....Ys: A:Difftf.nt"'lnputtol~"O"output B=Oitf"lnt_lnputtolotlClI'T'outpul C"Strobtinputtol. . . . .O.. output O=StrolMinputtol..... ' .. output E=G.t.inputlol. . . ··' .. output F=G.t.inputtol. . . . .O.. output OV f-F ~... ~~... ~.-. ~1.&V ~1.&V ~V LOGIC-I15V. OUTPUT 437 LM5524/LM7524 and LM5525/LM7525 electrical characteristics LM5524/LM5525 : The following apply for -55°e ~ T A ~ 125°e, V+ = 5V ±5%, V- = -5V ±5%. (Note 1) TEST CONDITIONS (EACH AMPLIFIER) PARAMETER Differential Input Threshold Voltage (V TH ) (Note 2) MIN 10(S) 35(33) Differential & Reference I nput Bias Current TYP 15 15 40 40 MAX 20(22) 45(47) 100 30 UNIT DIFF. INPUT REF. INPUT mV mV mV mV ±VTH ±VTH ±VTH ±VTH 15mV 15mV 40mV 40mV JJ.A OV STROBE INPUT +5V +5V +5V +5V o 11 (S) 15 15 36(33) 40 -40 Differential & Reference Input Bi~ Current 44(47) mV mV mV mV ±VTH ±VTH ±VTH ±VTH 75 JJ.A OV 19(22) 30 SUPPLY VOLT. +16mA -400JJ.A +16 rnA -400JJ.A ±5V ±5V ±5V ±5V +5.25V OV LM7524/LM7525: The following apply for oOe ~ T A ~ 70 e, V+ Differential Input Threshold Voltage (V TH ) (Note 3) LOGIC OUTPUT Output Output Output Output <0.4V >2.4V <0.4V >2.4V Output Output Output Output <0.4 V >2.4V <0.4 V >2.4 V ±5.25V +16mA -400JJ.A +16mA -400JJ.A ±5V ±5V ±5V ±5V ±5% ±5% ±5% ±5% Logic Logic Logic Logic ±5.25V +5.25V OV Logic Logic Logic Logic = 5V ±5%, V- = -5V ±5% +5V +5V +5V +5V 15mV 15mV 40mV 40mV ±5% ±5% ±5% ±5% COMMENTS LM5524/LM5525: The following apply for -55°e ~ T A ~ 125°e, V+ = 5V ±5%, V- = -5V ±5% o LM7524/LM7525: The following apply for oOe ~ T A S 70 e, V+ = 5V ±5%, V- = -5V ±5% I Diff. Input Offset Current Logic "1" Input Voltage 0.5 -1 Logic "0" Input Current Logic "1" Input Current 5 0.02 2.4 Logic "0" Output Voltage Output Short Circuit Current -2.1 -2.S OV ±5.25V +5.25V -400JJ.A ±4.75V Logic Output >2.4V +16mA ±4.75V Logic Output <0.4V 40mV 20 mV +2V O.S V 40mV 20 mV +O.SV -1.6 rnA 40mV 20 mV +O.4V ±5.25V 40 1 JJ.A rnA OV OV 20 mV 20 mV +2.4V +5.25V ±5.25V ±5.25V V 40mV 20 mV +2.0V -400JJ.A ±4.75V V 40mV 20 mV +0.8V +16 rnA ±4.75V -3.5 rnA 40mV 20 mV +5.25V OV ±5.25V 3.9 0.25 OV V 2 Logic "0" Input Voltage Logic "1" Output Voltage JJ.A 0.40 V+ Supply Current 29 40 rnA OV 20 mV OV ±5.25V Ij- Supply Current -13 -18 rnA OV 20 mV OV ±5.25V LM5524/LM5525 and LM7524/LM7525: The following apply for T A AC Common-Mode Input Firing Voltage V ±2.5 PULSE 20mV +5V = 25°e, V+ = 5V, V- = -5V SCOPE I Propagation Delays: Differential Input to Logical "1" Output 20 Differential Input to Logical "0" Output 28 Strobe Input to Logical "1" Output 10 Strobe Input to Logical "0" Output Differential Input Overload Recovery Time Common-Mode Input Overload Recovery Time Min. Cycle Time ns 20mV AC Test Circuit ns 20mV AC Test Circuit ns 20mV AC Test Circuit 20 ns 20 mV AC Test Circuit 10 ns 5 ns 200 ns 40 30 Note 1: For OoC ~ T A ~ 70°C operation, electrical characteristics for LM5524 and LM5525 are guaranteed the same as LM7524 and LM7525 respectively. Note 2: Limits in parentheses pertain to LM5525, other limits pertain to LM5524. Note 3: Limits in parentheses pertain to LM7525, other limits pertain to LM7524. Note 4: Positive current is defined as current into the referenced pin. Note 5: Pin 1 to have ~ 100 pF capacitor connected to ground. 438 r- ~ UI UI N LM5524/LM7524 and LM5525/LM7525 o ........ schematic diagram r~ ....., connection diagram UI N V· STROlE A OUTPUT A OUTPUT STROlE I GNO 2 I NO CONN. o en 'GNO 1 CD ~ CD en ~ 01FFERENTIAL INPUT A CEXT OUTPUT A + v- ~ ~ OIFFERENTIAL INPUT. REFERENCE INPUT Order Number LM5524J or LM7524J See Package 17 Order Number LM5524N or LM7524N See Package 23 Order Number LM5525J or LM7525J See Package 17 Order Number LM5525N or LM7525N See Package 23 OUTPUT B STROBE B O---t---------+_-' v- GNO 2 AC test circuit voltage waveforms DiffERENTIAL INPUT STROBE INPUT ...-----4.--0 v' ---40mv IV I: ~~ 20 mV OIFFERENTIAL ----lIDO •• sl L-I~:,:, --r 1 P 100 F 1 9 13 B 1-4-- -I I ~ 11 pF INCLUDING JIG AND PROBE STROBE 20 mV 20 mV i INPUT 288~ ! I 20 mV : I,;;\:,~~----3V I~~ 300 •• ~'-----tt---------l[ I I OV f-----lOO •• - - - . j ,.. lC.....- -----lIDO no OV I---- I-- B -..l I----l f-- D A~II~CI: I--~ ~ LOGIC OUTPUT '.SV '.SV l.SV '.SV 1.Pulsegeneratorcharactl!nstics· lOUT = son.. t, = tt = 15 '5 os, PRR = 1 MHz 2. Prop'gltiondel.ys. A= DIHerenti.1 mput to IOltC.1 "'''output 8 = D,fferentillmputtologtClI "O"output C=Strobemputtologlc.I"1"output 0= Strobe mput to 101IcII"0"output 439 LM5528/LM7528 and LM5529/LM7529 electrical characteristics The following apply for LM5528/LM5529: -55°C ~ TA ~ 125°C, v+ = 5V ±5%, V- = -5V ±5%. (Note TEST CONDITIONS (EACH AMPLIFIER) PARAMETER MIN 10(8) Differential Input Threshold Voltage (V'rH) (Note 2) 35(33) Differential & Reference Input Bias Current TYP 15 15 40 40 30 MAX UNIT DIFF. INPUT REF. INPUT mV mV mV mV ±VTH ±VTH ±VTH ±VTH 15mV 15mV 40mV 40mV pA OV OV aOe ~ TA ~ 7aoe, V+ 20(22) 45(47) 100 The following apply for LM7528/LM7529: 11(8) 15 15 36(33) 40 40 Differential Input Threshold Voltage (V TH ) (Note 3) Differential & Reference Input Bias Current 30 44(47) mV mV mV mV ±VTH ±VTH ±VTH ±VTH 75 pA OV 19(22) The following apply for The following apply for LM5528/LM5529: LM7528/LM7529: Diff. Input Offset Current Logic "1" Input Voltage Logic "0" Input Current -1 Logic "1" Input Current 5 0.02 Logic "1" Output Voltage 2.4 Logic "0" Output Voltage Output Short Circuit Current -2.1 -2.8 +16mA -400pA +16mA -400pA ±5V ±5V ±5V ±5V +5.25V V- +16 mA -400pA +16mA -400pA ±5V ±5V ±5V ±5V ±5% ±5% ±5% ±5% aOe OV OV +5.25V ±5.25V ±4.75V Logic Output >2.4 V +16 mA ±4.75V Logic Output <0 4 V 0.8 V 40mV 20mV +0.8V -1.6 mA 40mV 20 mV +0.4V ±5.25V 40 1 pA mA OV OV 20mV 20mV +2.4V +5.25V ±5.25V ±5.25V V 40mV 20mV +2.0V -400pA ±4.75V V 40mV 20mV +0.8V +16mA ±4.75V -3.5 mA 40mV 20 mV +5.25V OV ±5.25V 29 40 mA OV 20 mV OV ±5.25V -13 -18 mA OV 20mV OV ±5.25V AC Common·Mode Input Firing Voltage The following apply for T A V ±2.5 Output <0.4V Output >2.4V Output <0.4V Output >2.4V -400pA +2V LM7528/LM7529: Logic Logic Logic Logic ~ T A ~ 125°C, V+ = 5V ±5%, V- = -5V ±5% ~ T A ~ 7aoe, V+ = 5V ±5%, V- = -5V ±5% V- Supply Current and Output <0.4V Output >2.4V OUi.put <0.4V Output >2.4V ±5.25V +5.25V V+ Supply Current LM5528/LM5529 Logic Logic Logic Logic = -5V ±5% 20 mV 0.40 COMMENTS ±5.25V = 5V ±5%, +5V +5V +5V +5V ±5% ±5% ±5% ±5% 40mV 3.9 0.25 SUPPLY VOLT. V 2 Logic "0" Input Voltage OV +5V +5V +5V +5V LOGIC OUTPUT -55°C pA 0.5 15mV 15mV 40mV 40mV STROBE INPUT PULSE 20mV +5V = 25°C, V+ = 5V, V- = -5V SCOPE Propagation Delays: Differential Input to Logical "1" Output 20 Differential Input to Logical "0" Output 28 Strobe Input to Logical "1" Output 10 Strobe Input to Logical "0" Output Differential Input Over· load Recpvery Time Common-Mode Input Overload Recovery Time Min. Cycle Time ns 20mV AC Test Circuit ns 20mV AC Test Circuit ns 20mV AC Test Circuit 20 ns 20mV AC Test Circuit 10 ns 5 ns 200 ns 40 30 Note 1: For OOC ~ T A ~ 70°C operation, electrical characteristics for LM5528 and LM5529 are guaranteed the same as LM7528 and LM7529 respectivelv. Note 2: Limits in parentheses pertain to LM5529, other limits pertain to LM5528. Note 3: Limits in. parentheses pertain to LM7529, other limits pertain to LM7528. Note 4: Positive current is defined as current into the referenced pin. Note 5: Pin 1 to have ~ 100 pF capacitor connected to ground. Note 6: Each test point to have ~ 15 pF capacitive load to ground. 44a 1) ,... ~ (J1 (J1 LM5528/LM7528 and LM5529/LM7529 N o ,... ........ 3: connection diagram schematic diagram " (J1 N o TEST POINT STROBE A A TEST POINT OUTPUT OUTPUT STROBE A • • • en GNO CD ~ TEST POINT A o-----~----_4~------~ C£XT~~~VDIFFERENTIAL INPUT A REFERENCE INPUT DIFFERENTIAL INPUT B OUTPUT A Order Number LM5528J or LM7528J See Package 17 Order Number LM5528N or LM7528N See Package 23 Order Number LM5529J or LM7529J See Package 17 Order Number LM5529N or LM7529N See Package 23 OUTPUT B STROBE B o - - - - - t - - - - - - - - - - - - - - - - + - . . . J TESTPOINTBo----t--------~ -o GND L - . - - -....---4...- - -.............. voltage waveforms AC test circuit DIFfeRENTIAL INPUT STROBE INPUT ---40mv r-------4t--o V'· SV ~~ DIFfERENTIAL INPUT 28B!! 20 mV ---l lOOns I ~_ _L-)-"':I=::"'-O ~~~~~T :r I I 11S{101 _ IS pF INCLUDING JIG 20 mV 20 mV I. : 20 mV : ~ I i OV f4------300ns~---i ~ ~1~~----3V STROBEI"!!!!.T~300n.~~~ ..• - AND PROBE ~ I 1 A ..., f----+I 1--1 B C -l l'=--ov lOOns I-- I ---l r-- 0 ~~ LOGIC OUTPUT 1.SV I.SV I.SV ' I.SV 1. Pulsegenlf.tolch.rlcttflSlICS lOUT = 50n. t. = I, = 15 -5n5, PRR = 1 MHz 2 'rop,pllond.lays A = Ditferentlll mputtolollc.' "t" output B" OiHerentll1 Inputtologte., "0" output C:St,oblmputtologlc.I"l"output 0= Strobtmputtol01tfC1'''O''output V-· -SV 441 en CD ... LM5534/LM7534 and LM5535/LM7535 electrical characteristics CD en LM5534/LM5535: The following apply for -55°C ~ T A ~ 125°C, v+ ~ 5V ±5%, V- o N = -5V ±5% (Note 1) TEST CONDITIONS (EACH AMPLIFIER) it) ,..... PARAMETER ::E ...I o Differential Input Threshold Voltage (V TH ) (Note 2) it) it) Differential & Reference Input Bias Current ....... MIN 10(8) 35(33) N ::E TYP 15 15 40 40 30 MAX 20(22) 45(47) 100 UNIT DIFF. INPUT mV mV mV mV ±VTH ±VTH ±VTH ±VTH /J. A OV REF. INPUT 15mV 15mV 40mV 40mV OV STROBE INPUT +5V +5V +5V +5V Differential Input Threshold Voltage (V TH ) (Note 3) 11(8) 36(33) Differential & Reference Input Bias Current 15 15 40 40 30 44(47) mV mV mV mV ±VTH ±VTH ±VTH ±VTH 75 /J. A OV 19(22) 15mV 15mV 40mV 40mV OV SUPPLY VOLT. COMMENTS +5.25V +20 mA +5.25V +20 mA ±5V ±5% ±5V ±5% ±5V ±5% ±5V ±5% Logic Output <250 /J.A Logic Output <0.4V Logic Output <250 /J.A Logic Output <0.4V ±5.25V +5.25V LM7534/LM7535 : The following apply for O°C ~ TA ~ 7o°ci V+ ...I LOGIC OUTPUT = 5V ±5%, V- = -5V ±5% +5V +5V +5V +5V +5.25V +20 mA +5.25V +20 mA +5.25V ±5V ±5V ±5V ±5V ±5% Logic Output <250 /J.A ±5% Logic Output ~ :z:: " ' " .JIll' '" ...,. "'.JIII' .,. 15 25 t:I ex .,. ".,,...... "/'\. lM552I1LMSS22! lM5524/lMSS211 :z:: 16 II: :z:: .,,-. / .,,- I- 40 35 15 ~ ~.J .,,- " i""'" rn w .,,- , ""', ., .J . / ~M1S2'o~lMISW ; / ' L..;'" ./ ".,,- I 30 .,,- ...L. 24 ./ ./ ~./ .L. C ~~:~:~~Msm _ .,. .,. .,..,,- lMISlS/lMIS29/' lM1SJS/LM1SJ9 MAXIMUM ./ c > ~ 9 ~~~I:I:~l:ISJ'.7 lM1S21IL~IS2JI 32 :; .JIII',\" LMSS21ILMSS2JI lMSSlS/LMSSlII lMSSJS/LMSSJI MINIMUM 20 .:!:!. ~ ~:::~::~:::~!; s: OC<:T.<10C y"SY,SlI V-'-SV'SII STROlE INPUT' 2V 40 E .,,-~ ~ ~ ~ ~ :; w ./ ~ 48 /. .JIII'.JIII' 16 I- - .,." "'" .,. .,. L .,,-./ , /". 24 :z:: II: ~::=~:ss2 LMSSJS/LMSSJ9 MAXIMUM 32 C ~ ~;;O-::'~~~T ,-2Y ~:!:;~;~:::;:; t:I ex lMSS20/lM55221 LMSS24/lMSS2I1 I w :; -55 C.,T. <12& C _ Y' • SII _ Differential I nput Threshold Voltage \ ~.,,- lM1S21~M1S2JI LM1S24/lM1S211 lM1SJ4/LM1SJIMINI~UM _ LM1S2S/lM1S291 lM1SJS/lM1SJ9 MINIMUM 25 20 30 40 35 REFERENCE VOLTAGE (mV) REFERENCE VOLTAGE (my) typical performance characteristics Transfer Characteristics 5.0 ?: 4.0 ex 3.0 ~ ?: -IV T.· 2S C STROlE ·2V 2.0 r - REFE~E"E VOLTAGE t:I ex REFERENCE YOLTAGE • U .. V :; I REFEREN~E 4.0 LOAOI--r 3.0 .\ v > I:I 2.0 r-- A- c I 1.0 ±1O ±15 ±20 ±25 ±30 ±35 ±4o 21.0 c > 20.0 ~ 19.5 t:I ~ c > - ~ c :z:: . . . . i'... I' ~ ~ '" :z: ~ 19.0 :z:: 18.5 I- II: II: ................ 18.0 _ REFERENCE VOLTAGE = 20 mV V+ = 5V is 17.5 , -V-=-5V :i I -35 f I +5 I I I r--- - :z: rn w II: :z:: LOAol._ '~"'t I-- tt is 14.8 14.6 14.4 -4.75 :z:: Ic w N :::; ex - 50 f 1.1 -- 1.0 II: - C Z +125 r-: 1.3 1.2 IIr- v+ = 5V V- = -5V TA = 25°C LWL 1 L11l11 10K "j, 100K 1M Differential Input Bias Current 55 1.4 ::E I -5.0 V- (V) r- 10M ; SINUSOIDAL INPUT FREQUENCY (Hzi 446 15.4 c 15.2 >: ....c c 15.0 l- -- c;C c 15.6 Differential I nput Frequency F:lesppnse :; '" ~ ±5 ±10 ±15 ±20 ±25 ±30 ±35 ±40 w ~ 20.5 :; DIFFERENTIAL INPUT VOLTAGE (mV) Temperature Coefficient ~ I REFERE!cE VOLTAGE -li .. v v··sv V-'-sv T.· U'C STROlE ?2V OIFFERENTIAllNPUT VOL TAGE (mV) 21.5 ! REFERENCE YOLTAGE I LOAD . " .. A" :; REFElEtcE VOLTAGE . " .. v - ~ -n .. v I:I 1 ±5 1 C VOLTAGE I - • JS .. .,,"'v 1.0 LM5520ILMSl2liLMISlOILMISlIIO OUTPUT ONL VI LMISl21LMSl2JlLMIIWLMISlJ lMISJ4ILMIIJS/LMIIJ4ILMISJSf LMISJIILMISJlILMISJIILMISJI 2k EXT PULLUP w ) I 1. > I:I C ~lJAO'J..",. I v·: sv C I- I v-· w t:I :; lM1120'lM1121 LMI120, LM112' 10 OUTPUT ONL VI • LMSS24'LMSS21,LMI124'lMI121 LMSS21'LMSS2HMI121 lM112! I Power Supply Rejection Transfer Characteristics 5.0 j I- ~ 45 40 II: II: :I 35 Co) en 3D iii 25 ex OIFFERENTIAllNPUT VOLTAGE = OV V+ = 5.25V ~-= -5.25V " ,,~ ~~ .......... r-..... i""""'- 20 - 15 -35 +5 +45 +85 +125 r- ~ (J1 (J1 typical performance characteristics (cont.) N o ......... Differential I nput Offset Current 1.0 D1fFERENTIIAL INPUT VOLTAGE 0.9 1 I- ~ a: a: ::::I 0.7 0.6 ~ 0 0.5 0.2 "'' -.,~ "",- 11 ~ - -- r--..~ v+ = 5.25V ;;[ U I 26 22 ............. IN~UT OIFfIERENilAL vriL TAGE REfERENCE VOLTAGE 20 mV STROBE INPUTS OV V· ~nv V-Tmj r-.... 14 NEG1TlVE LpPL 10 I I E I- ~ a: a: ov ::::I Co) ~ I I ::::I POSITIVE SUPPL ;;[ 0 18 A- en o LM~~1I/LM~~l9/LM7~lIlLM7~l9 28 0 Co) ~ A- - ~ LM~~~/LM~~l~/LM7~~/LMnl~ LM~~lI/LM~~l9/LM7~lIlLM1~l9 I ::::I J en CURR'ENT 24 20 +85 > 30 :3 ... 28 z 26 j::: 24 c "'" cr: OEL~'OUTPUT c.:I 22 ~ 20 0 , j / // I -35 +85 +5 :3 ... I 42 I j::: cr: c.:I cr: A- / 38 DELAY TO "I" OUTPUT -I----' 34 ~ 30 I -35 +125 ~0 26 24 34 32 22 ~0 20 > 30 0 j::: 16 c.:I 24 c.:I cr: cr: A- 14 22 0 12 z a: A- 10 20 +5 +45 +85 ~ -~~ 22 h.~--+-+--+--~~-t--+--t a: A- I 2oL-~~--~~~--~~~~ +5 +45 +85 +125 -35 +125 +45 +5 TA eCI +85 +125 eCI Strobe to Output Propagation Delays 48 LM~llO/LM~~lI/LM7~20/LM7~ll r- ~ ~'::~L~~:/~~~~~~~~~~:4~LN~:~l~ -~ ", l/"" 44 c 40 > ...:3c 36 z 32 j::: 28 o SEE AC TEST CIRCUIT- DELAY TO "I" OUTPUT - I I I L_ ~ IT" 18 -35 ~4--+-4~~-r~--~~-i cr: DELAY TO "0" OUTPUT 26 A- 26 ::o / 18 j::: 0 0 ~~-+--~~-+~~~-+~ j::: o LM~~21/LM~~l9/LM7~lI/LM7~l9 ! 28 a: 30~4--+-4--+--r~~~~-i 28 Strobe to Output Propagation Delays z cr: cr: A- ~o z c.:I TA 36 +125 34 > ./' DELAY TO "0" OUTPUT 26 +85 32 1---+---+-+--+-t--+--t--::1I't--t V V +45 36~--~~--------~~'-' '/ I +5 Differential Input to Output Propagation Delays ) SEE lAC TEtT CIRlUiT c z ~ +85 -35 J 46 SEE AC TEST CIRCUIT +45 -4 +125 LMI~20/LM~~lI/LM7Il0/LM7Il1 > =20 mV -3 (DELAYS TID Ii OUITPUT ONLY) Differential Input to Output Propagation Delays > -1 -2 r - io-. TA (OCI ! z u:: I 50 0 /" ~V REFERENCE VOLTAGE V+ =+5V V- =-5V c.:I a: 0 --- cr: o > -35 c 'OELAJ TO·.,I. OUTPUT/V 18 c.:I :; Differential I nput to Output Propagation Delays 1/-' ...V 0 :: ... , +125 V ~~EI~~:/~~~I~~~~~~~:4?LN~7~~1 LM~~lll\M~~l9~LM7~l~/LM1~l9 c ~ ~"" REfERENCE VOLTAGE" lO mV STROBE INPUTS" OV y." +S.2SV V· "·~.nv 12 LM~~20/LMI~2IlLM7~210/LM7J21 f- I OIFfIEREN~IAL I~PUT VbLTAGE " OV 16 Differential I nput to Output Propagation Delays 32 rCUR~ENT'" ......... ...... NEGATIVE SUPPLY CURRENT -35 34 AC Common-Mode Firing Voltage Power Supply Currents 0 ::::I 11 +125 LM~~l4/LM~~l~/LM7~l4/LM7~l~ I I I- (I) eCI POSI~IVE s~,,7:' ........ r--.. CURjENT CD 15 11 0+-85 +45 ... CD 13 V- = -5.25V +5 en 19 15 Power Supply Currents 30 o 19 TA ~ a: a: """'" N 23 -35 E (J1 21 0.4 0.3 ~ 27 0.8 \. Co) ~ Power Supply Currents Power Supply Currents 23 ~ OV r- -35 ~ cr: ~ 2~ . /V o ~ 20 16 12 +85 +125 TA (OCI 447 typical performance characteristics (cont.) 31 ! > ~ CI z LM5522/LM5523/LM7522/LM7523 _ SEE AC TEST CIRCUIT ~ , 19 15 11 I""'" - ~ ~ 21 CI z CI j:: DELAY TO ''1'' OUTPUT TO "0" OUTPUT ...... DELAY -....... ...--r -35 ! 23 > ./~ ",., j:: - +85 +5 LM553~/LM~535}LMJ534)LM7~35 25 V 23 CI < ~ < Q. CI a: Q. 27 ~ ~~ 27 Gate to Output Propagation Delays Strobe to Output Propagation Delays Strobe to Output Propagation Delays DJLAJ TO "1': OUTPUT 19 17 < ~ < Q. 15 CI 13 a: Q. LM5538/LM5539{LM~538/LM7539 11 ....; 7' '-- -- ~ I V l/ 7 DELAY to CI j:: < < '6 14 z ~ < 12 1---+--+-+--2fC--+-+--+-I--~ ~ 10 ~ CI .1- - f 4 +125 -35 +85 +5 -35 +125 +5 21 19 27 25 ! 17 :3 w 15 > 23 CI z CI 21 j:: 13 LM5522/LM5523/LM7522/LM7523 1 ",; ~ SE~ AC ITES c,~cU'T ~,...... O~AY'TO "'0" JUTPiUT 11 < ~ ~ CI a: Q. 19 17 - OELAY TO "1" OUTPUT 15 -35 +5 +45 +85 -35 +125 TA (OC) typical applications STROBE MORPRESET Large Memory System with Sectored Core Planes 448 +45 Gate to Output Propagation Delays CI a: Q. :3 w " ~ Q. 18 :--. ......,J.:!. OUTPUT .,. z CI 20 ! > SEE AC T~ST ~IRCUIT 29 ..~ 7 CI Gate to Output Propagation Delays 1 22 +5 +45 +85 +125 +85 +125 typical applications (cont.) STROBE MEMORY DATA REGISTER 1----, I I )------- --I BIT I I I )-------.....J BIT2 I I I I I I I------j I I Ir - - - jI I CD en I I BIT3 ~-.......:.----1 I I I I f----1 I I I L ________ .-J I I I --, I I I L __ --.J BIT4 I I Small Memory System EXTERNAL MEMORY DATA REGISTER STROBE - LMm2ii:Mirn - -, I I I r--l I I f--ODATA I I L __ J WIRE·OR CONNECTION Large Memory System 449 roo I en MIL-STD-883/MIL-.M-38510 -I o I 00 00 W ......... 3: roo I 3: MIL-STD-883 Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and M I L-STD-202C for transistors and diodes at about the time that National Semiconductor Gorporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MI L-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's qual ity control procedures almost from the start. Our Quality Assurance Procedures Manual is available upon request. I W 00 We offer a complete line of linear/883 (Class B) products as standard, off-the-shelf items. Special Linear/883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 program. In addition, we will test any of our integrated circuits to any class of MI LSTD-883. U1 ...a o The detailed information concerning M I L-STD-883 screening is contained in Nationals specification NSC10002. MIL-M-38S10 MIL-M-38510 specifies the general requirements for supplying microcircuits. These are; product assurance, which includes screening and quality conformance inspection; design and constructi~n; marking; and workmanship. The screening and quality conformance inspection are conducted in accordance with M.I L-STD-883. SCREENING All microcircuits delivered in accordance with M I LM-38510 must have been subjected to, and passed all the screening tests detailed in Method 5004 of MI L-STD-883 for the type of microcircuit and prod~ct assuranc~ level. The device electrical and package requ irements of MI L-M-38510 are detailed by a device,specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD-883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate. To supply devices to MIL-M-38510, the IC manufacturer must quality the devices he plans to supply to the detai I specifications. Qual ification consists of notifying the qualifying activity of one's intent to qual ify to MIL -M-3851 O. A fte'j- passi ng comprehensiye audits of facilities and documentation systems, the IC manufacturer will subject the ~evice to and demonstrate that they satisfy all of The IVIIL-M-38510 specs for standard linear devices require 100% DC testing at 25°C, -55°C and +125°C. AC testing is performed at +25°C. The electrical parameters specified' are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely'matched maintenance. QUALITY CONFORMANCE Quality conformance inspection is conducted in accordance with the appl icable requ irements of Group A, (electrical test), Group Band C, (environm'ental test) of Method 5005, M I L-STD-883. These tests are conducted on a sample basis with GroupA performed on each sublot, Group B on each lot, and Group C as specified (usually every three months). 451 o.... Lt) MIL-M-38510 (con1t) 00 M I performed on a sample' of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a 100% basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis. the Group A, B, andC requirements of Method 5005 of MIL -STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A, B, and C inspections then shall be performed at intervals no greater tha~ three months. I ...J ~ "M00 00 I C .... In summary, the entire purpose of MIL-M-38510 and MIL-STP-883 is to provide the military, through its contractors with standard devices. The purpose of qual ification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a 'particular device type is demonstrated to be 'acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-88~ 'in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is en I ...J MM38510/ I Specifies the General Requirements of MIL-M-38510 452 XXX T Slash Sheer No. We at National Semiconductor have supplied and are supplying devices to t~e MI L-M-3851 0 specifications. To order a MIL-M-38510 microcircuit, specify the following: ' For example; to specify an LM741 in a DIP processed to the requirements of MIL-M-38510, Class B, with gold plated leads, specify M-38510/ 10101 BCC .. XX I Device Type X T Device Class X T Case Outline X I Lead Finish z ~ ~ LM119/LM219 high speed dual comparator genera I description The LM 119/LM219 are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single !5V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The ljncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mAo Two independent comparators • • Operates from a single 5V supply Typically 130 ns response time • Minimum fan-out of 4 each side Maximum input current of 1 J.1A over temperature • Inputs and outputs can be isolated from system ground • High common mode slew rate "c.o... c: (") ..... en Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to ± 15V. I t features faster response than the LM 111 at the expense of higher power dissipation. However; the high speed, wide operating voltage range and low package count make the LM 119 much more versatile than older devices like the LM711. features • • The LM219 is identical to the LM119, except that its performance is specified over a -25°C to 85°C temperature range instead of -55°C to 125°C. connection diagrams Dual-In-Line Package Flat Package Metal Can Package v, 14 OUTPUT 1 ,2 ..c D.. 0.034 o.m Terminal Connections Pin 1-Ground NOTES: All dimensions in inches. Leads are gold'plated kovar. Pin 2 internally connected to case. Pin2-0utput Pinl-Input Package weight is O.J6 gram. Package 8 Package 9 Package 9A 2 Lead TO-3 Metal Can (H) 3 Lead TO-5 Metal Can (H) 4 Lead TO-72 Metal Can (H) d O'3100IA~ i;OIA1 0'185~ ~ msL ~40 0.500 MAX MIN nn n nn ~ MAX UU U U~ BlEAOS t 0.019 DlA o.m Package 10 . J F~~--I~L~~~~: .~ 8 Lead TO-5 Metal Can (H) C~I OIA' ~ I I .016 OIA 10 LEADS . ~r- .022 .560 IIlDDm~ !!!JL ~ ~ ~~ ~ ~~~:~ ~ -L .016 DlA 10 LEADS' . Package 12 10 Lead TO-5 Metal Can (H) (Low Profile) 370 1 LJ1i11t~ OIA' :ill m ~OIA'~ .240 1 LJmf1I; Package 11 6 Lead TO-5 Metal Can (H) .n!! · F -t L-g~'=b"" J .15 !!!!OIA~ rr;~:'=1 rt~~~IL .500'MIN .265 0 t .2r __L......._ _ ' - -_ _ 0 00 B 019 --II-- :016 I t .150 .120 OIA. 10 LEADS 161 0 .011 Dimensions in parentheses are in millimeters and are derivedfromtheblsicinchdimensionsasindiceted. Package 13 10 Lead TO-5 Metal Can (H) Package 14 10 Lead TO-5 Metal Can (H) Package 14A 10 Lead Metal Can (H-03) (High Profile) Note: Dimension is: ~~~ for all products except as follows: :~g for LHOOOl H/LH0001CH,LH0003/LHOOOCH,and LHOOO4/ LHOO04CH: 466 :~:~ for LHOO05AH/LHOO05H/LH0005CH; :~~g for MH0007H/MHOO07CH. f--1·o------·990"OIO-------l~ I ~~~~~~~~~~~~~ L·310~ I ~c:: MAX 1------.900·DIO---~_1 SEAL~ /~ClID L,...co....L_________ 1_....,.,90MAX .040'.... t~ OLOIO ---,-1 3 GLASS SEALANT "6~ t CD ::J MAX 1_ .335 _ 1 r----t.035~ .100 MAX BOTH ENOS SWAGE PIN CD .. 020' 001 DIA SOLDER COATED Package 15 en o ::J en If .011 t.003 ..L...o .2T L c ' .785 - - - - - - I MAX If...·.----- .175 Package 16 14 Lead Cavity DIP(J) 8 Lead Cavity Package (J) 0.875 MAX rDlAj T ~~~~~-r.~r.T-r.~r.T-r.r I' .280 ~:~~~-'- -rSEATING PLANE T 0.312 MIN c-,.:'''·, . :::~~~ 0.225 0.440 0.135 MAX 0.675 l 0.420Lr.ie----,i Terminal Connections l - 0.188R MAX BOTH ENDS 2 MOUNTING HOLES ~:::: DIA ' Pin I-Ground Pin 2 - Output Cue-Input Dimensions in Inches Package 17 Package 18 16 Lead Cavity DIP (J) 2 Lead TO-3 Metal Can (K) r~:'"d ~~-{ tr~~ .-~ ~IMM~~~ V ~ :ffi DIA' ~ .020-1[- ~ ,~:_ ~h~ 1~~ ~ (2) HOLES ~ ~~ .125IMIN) .. ",---'--- Package 20 8 Lead Molded Mini DIP (N) ------11.,40 .030 TYP ..L .010 t.002 A L~ll ' - - - , 325 +.025---1 I . -.015 - 1 Package 21 10 Lead Molded DIP (N) .075 '.010 Jr~ I r- ~ ~ ~ ~ ~'~~ 1.1001 ---J ,.010r-- II . .01...-1 ~ r- t.003 Package 22 14 Lead Molded DIP (N) 467 o C o o C Q) T E ~~'O,BO~~~~-r~~~~~~~~ 0' ~~~ .010 ±.002 .175 1 1. 140 MAX t=lI~-·---:I:T ~ . ] - 1--.325 +.025---1 I. ~ 1.100 I --J±.01Oi-- .0301 TYPt-- I -.015 II .075 t-- ±.010 --j Package 23 Package 24 16 Lead Molded DIP (N) 14 Lead Molded DIP (N-01) (Staggered Leads) 1 . 0 1 0 = 0022 . 1.030 3 PLACES ,.....,,1-...,....==.......,. 0.080 __ ===r 0.142 01A 0.144 1"=.400=-1 1£ ~ I ~I I .010 ±.002 --l . .200 .200 ~I ~~. ~ TYP ~I I ~ I-- TYP ----1 .300 TYP I · i.t I 784 MAX Jf1ffiFrnt MAX .030 TYP . I I-- 1.100 I II .075 --1 ±.01 0 I-- --1 f-- ±.01 0 ~ 0.050 0.025 RAO 2 PLACES 14O M· AX + 3 PLACES 0.100 2 PLACES I -+IMiN .125 MIN All Dimensions are in Inches Package 25 Package 26 16 Lead Molded DIP (N-OH 3 Lead Power Package (T) (Staggered Leads) 11°. 003 0.006 o~~:~ I- ,- I [ BASE AND SEATING PLANE 14 \ 13 468 10 9 BASE AND SEATING PLANE B 0.B4o 0.86 --0 2 3 4 5 8 16 \ .1 ~ I I - I [ [ . _~.01 o 0.02 5 15 14 13 12 11 10 9 0.960 0.940 • O.OBO 0.015~ ~ 0.019 I 0.247 if.ii5ii; - 1 ,- .L 7 _;0.050 0.080 ~0.020 0.040 -0.050 I r • - 11 I 0.275 MAX 1 - 12 - =li ~- 0.04 0]20 ~ 2 3 4 5 6 r :t 8 I I 0.019~ ~ 0.015 -~- 8.400 0.371 Package 27 Package 28 14 Lead Flat Package (W) 16 Lead Flat Package (W) - --''-- _:0.02 5 if.iffiI 0.01


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2016:08:11 11:42:18-08:00
Modify Date                     : 2016:08:12 16:50:17-07:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Metadata Date                   : 2016:08:12 16:50:17-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:eb5d6a11-6911-5b4d-b3aa-0d85535a72ce
Instance ID                     : uuid:44d750bb-6563-8b4e-b785-9085f2ba778c
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 488
EXIF Metadata provided by EXIF.tools

Navigation menu