1972_TI_Power_Semiconductor_Data_Book_First_Edition 1972 TI Power Semiconductor Data Book First Edition
User Manual: 1972_TI_Power_Semiconductor_Data_Book_First_Edition
Open the PDF directly: View PDF
.
Page Count: 801
| Download | |
| Open PDF In Browser | View PDF |
The Engineering Staff of
TEXAS INSTRUMENTS INCORPORATED
Components Group
The
Power
Semiconduc or
Data Book
for ·
Design Engineers
TEXAS
INSTRUMENTS
INCORPORATED
TERMS, DEFINITIONS, AND TESTING PROCEDURES
CROSS-REFERENCE GUIDE
PRODUCT SELECTION GUIDES
ALPHA-NUMERIC INDEX TO DATA SHEETS
SILICON POWER DATA SHEETS
GERMANIUM POWER DATA SHEETS
THYRISTOR DATA SHEETS
TECHNICAL RESPONSE LAB
POWER FUNCTIONS
POWER SEMICONDUCTOR TECHNOLOGY
APPLICATION INFORMATION
QUALITY AND RELIABILITY INFORMATION
TI worldwide sales offices
AlA8AMA
FLORIDA
MINNESOTA
OHIO
Sahara Office Park Bldg,. Suite 111
601 W. Oakland Park Blvd.
Fort Lauderdale, Florida 33311
7615 Metro Blvd.
Suite 202, Analysis Inc., Bldg.
Edina, Minn. 55435
612·941·4384
23811 Chagrm Blvd., SUite 100
Cleveland, Ohio 44122
216·464·1192
3313 Memoria! Parkway, S.W.
Huntsville. Alabama 35S01
205-8814061
305-566-3294
5400 Diplomat Circle
ARIZONA
United Bank; Bldg., Suite 1702
3550 North Central Avenue
Phoenix, Arizona 85012
Diplomat Bldg., SUite 252
Orlando, Florida 32810
305·644·3535
602-279-5531
300 Bldg. West, Suite 204
3151 Third Ave., North
St. Petersburg, Floflda 33713
CALIFORNIA
813-898-0807
11222 South La Cienega.
Suite 360
Inglewood, California 90304
213-649-2710
230 California Ave., Suite 201
Palo Alto, California 94:J06
415-326-6770
1505 East 17th St., Suite 201
Santa Ana, California 92701
714-547-6506
Balboa Towers Sldg., Suite 805
5252 Balboa Avenue
San Diego. California 921 17
714-279-2622
COLORADO
2149 South Holly St.
Denver, Colorado 80222
303-758-2151
ILLINOIS
1701 Lake Street. SUite 300
Glenview. Illinois 60025
8539 E ncanto Way
Ft. Wayne, Indiana46805
219485·1959
MASSACHUSETTS
60 Hickory Drlve
Waltham, Mass·. 02154
617·891·8450
Effective Oct. 30; 617·890·7400
MICHIGAN
Central Park Plaza
26111 Evergreen, SUite 333
Southfield, Michigan 48075
313·352·5720
ARGENTINA
CANADA 'Cont'd)
Texas Instruments Argentina S.A.I.C.F.
SF Caesar Avenue
Ottawa 12
Ontario, Canada
613·825-3716
ASIA
SF Aovama Tower Bldg.
24-15 Minami Aoyama Chome
Minato-ku. Tokyo 107, Japan
402·6171
Room 1502, Star House
Harbour Center. Kowloon
Hong Kong
K673139
Texas Instruments Taiwan Limited
P. O. Box 3999
Taipei, Chung Ho, Taiwan
923904
AUSTRALIA.
Texas Instruments Australia Ltd.
P.O. Box 63. 171-175 Philip Highway
Elizabeth, South Australia
5529 14
Aoom 5, Rural Bank Bldg.
38 Rai/way Parade
Burwood N.S.W. Australia
74-1859
BRAZIL
Texas Instrumentos Electronicos
do Brasil Ltda.
Rua Cesario At\lim 770
Caixa Postal 30.103
Sao Paulo 6, 8rasil
93-8278
CANADA
Texas Instruments Incorporated
2750 Pitfield Blvd.
St. Laurent 386
Quebec, Canada
514·332-3550
NEW MEXICO
SUite 9, Marberry Plaza
6101 Marble Avenue, N.W.
Albuquerque, New Mexico 87110
505·265·8491
NEW YORK
INDIANA
CONNECTICUT
Texas Instruments Asia Limited
25 U.S. Highway #:2.2
Springfield, New Jersey 07081
201 ·376-9400
312-729-5710
300 Amity Aoad
Woodbridge, Connecticut 06525
203-389-4521
C.C. Box 2296-Correo Central
Buenos Aires, Argentina
744-1041
NEW JERSEY
280 Centre Str. East
Richmond Hill (Toronto)
Ontario, Canada
416-889-7373
P.O. Box 618,112 Nanticoke Ave.
Endicott, New York 13760
607-785-9987
245 Newtown Road
Plainview, New York 11803
516-293·2560
167 Main Street
Fishkill, New York 12524
914-896-6793
6563 Ridings Rd.
Syracuse, New York 13206
315-463-9291
460, Marlelundvej
2730 Herlev, Denmark
91 7400
PENNSYLVANIA
275 Commerce Drive
Fort Washington, Pa. 19034
215·643-6450
TEXAS
MS366-P.O. 80x 5012
Dallas, Texas 75222
214-238·6805
3939 Ann Arbor
Houston, Texas 77042
713-785-6906
VIRGINIA
8512 Trabue Road
Richmond, Virginia 23235
703-272-0246
WASHINGTON
5801 Sixth Ave. S.
Seattle Washington 98108
206· 762-4240
NORTH CAROLINA
WASHINGTON, D.C.
4310 Starmount Dr.
Greensboro, N.C. 27410
919·299·9112
1500 WI/son Blvd .• Suite 1100 A.M. Bldg.
Arlington, Virginia 22209
703·525·0336
GERMANY
Texas Instruments Deutschland GmbH
MEXICO
Texas Instruments de Mexico S.A.
Haggerty Str. 1
8050 Freising. Germany
08161(7531
Poniente 116 #489
Col. Industflal Vallejo
Mexico City, O.F., Mexico
567-92·00
Arabellastrasse 4, SternhausIV
8000 Munich 81, Germany
0811/91 1061·9
Texas Instruments Holland N.V.
DENMARK
Texas Instruments A/S
SUlte 205, Paul Welch Bldg.
3300 South Dixie Dr,
Dayton, OhiO 45439
513-298·7513
Lazarettstr,19
4300 Essen, Germany
2141/20916
Krugerstrasse 24
1000 Berlin 49, Germany
0311/7444041
NETHERLANDS
Entrepot Gebouw-Kamer 223
P.O. Box 7603
Schiphol·Centrum
020-159293
SWEOEN
Texas Instruments Sweden AB
FINLAND
Texas Instruments Finland QV
Fredrikinkatu 56, 0 38
Helsinki 10. Finland
44 12 75
Westendstrasse 52
6000 Frankfurt a.M., Germany
0611/726441
Am Mittetfelde 169
S-104 40 Stockholm 14
Skeppargatan 26
679835
UNITED KINGDOM
3000 Hannover, Germany
05111861016
Texas Instruments limited
Texas Instruments France
1m Kaisemer 5
7000 Stuttgart 1. Germany
0711/22 38 20
Manton Lane
Bedford, England
67466
Boite Postale 5
ITALY
FRANCE
06 Villeneuve-Loubet, France
310364
379 Av de la liberation
92 Clamart, France
644 5530
3(}.31 Quai Rambaud
69 Lyon, France
427850
165 Bath Road
Slough, Bucklnghamshire, England
Slough 33411
Texa.$ Instruments Italia SpA
Via Salafia per l'Aquila Clttaducale
02100 Rieti, Italy
0746·41314
Viale Lunigiana 46
20125 Milano. Italy
02·6883141
Cas des Fourches
Boulevard Frederic Chapplet
53 Laval, France
900946
Via Padre Semeria 63
00154 Roma, Italy
06-5120437
20, AVenue Honore'SerreS
31 Toulouse. France
628285
Via Montebello 27
10122 Torino, Italy
011-832276
2259 Coventry Road
Sheldon, 8irmingham 26, England
021-743-~293
24 Rutland Street
Edinburgh EH 12AN, Scotland
031-229-1481
46 F. Nichols Road
Southampton, Hants, England
0703-27267
Meney House
Heaton Mersey
Stockport, Cheshire, England
(0611432-0645
For Continuing Information on TI Power Semiconductors
This catalog provides technical descriptions and specifications on power
semiconductor devices and functions manufactured by Texas Instruments.
As a leading manufacturer of power devices, TI is continually developing and
introducing new products to the electronics industry.
So that we can register your name as a holder of this new data book and to
inform you of other catalogs as they become available, please complete and
return the form provided below.
Texas Instruments Incorporated
Components Group, Market Communications Dept.
P. O. Box 5012, M. S. 84
Dallas, Texas 75222
o Please register my name as a recipient of The Power Semiconductor Data
~
Book for Design Engineers.
o Please inform me of availability of other power device catalogs and supple-
.~
ments.
I
NAME _______________________________________
TITLE ______________________________________
FIRM ________________________________________
ADDRESS
I
CITY
I
I
I
•JI
•
STATE
ZIP _ _
:
! - - -------- ------------ - ----- - - -------- --,.;,~
$3 95
The
Power
Semiconductor
Data Book
for
Design Engineers
First Edition
TEXAS INSTRUMENTS
INCORPORATED
CC-404
70977-22-IS
Printed in U.S.A.
IMPORTANT NOTICES
Texas Instruments reserves the right to make changes
at any time in order to improve design and to supply
the best product possible.
TI cannot assume any responsibility for any circuits
shown or represent that they are free from patent
infringement.
THE POWER SEMICONDUCTOR DATA BOOK
From the earliest days of transistors, semiconductor circuit designers have needed devices capable of handling the
power functions of their equipment.
The past twenty years in the semiconductor industry have brought extensive development of power productsgermanium power transistors, silicon power transistors, thyristors, and more recently, power function modules. The
future will certainly bring even further developments in power devices and functions.
Along with advancements in integrated circuit technology, improvements in power devices will aid equipment design
engineers in their efforts toward continual enhancement of functional utility, cost effectiveness, and reliability of
designs.
In this a~O-page data book, Texas Instruments is pleased to catalog important power semiconductor products available
in the industry, and to present technical information on Tl's broad line of power transistors, thyristors, and power
function products.
You will find essential design information on Germanium and Silicon Power Transistors, SCR's, Triaes, and Power
Function modules. In Silicon Power, Tl's extensive product line encompasses high-voltage as well as low-voltage, highsafe-operating-area (SOA) designs, power Darlingtons, fast switching types, radiation-tolerant designs, JAN and JANTX
types, and both metal can and plastic package types.
Most of the silicon power devices, as well as a broad range of SCR's and Triacs, are offered in Tl's specially designed
plastic packages. These designs incorporate glass-passivated junctions with thermally-matched epoxy and piece-parts, for
high reliability-plus the adaptability for high-volume, cost-effective production.
Section a features the Technical Response Lab (TRL). The TRL facility provides a broad capability for custom designs
to meet special needs. This capability includes custom silicon chip design for specific electrical performance, together
with custom packaging techniques for reliable performance of devices under unique environmental conditions. These
high-volume, low-cost, highly-reliable devices, on one hand, and high-performance, custom designs for special
applications, on the other, represent TI's two-fold approach to the power market. Thus product coverage is broad, with
the capability of serving a very wide range of customer needs.
The data book indices are designed with margin tabs for ease in location of data sheets for specific products, as well as
general information categories. Included are an alpha-numeric index to product data sheets and product cross-reference
and selection guides.
We sincerely hope you will find this Power Semiconductor Data Book for Design Engineers a valuable addition to your
technical library. It represents TI experience since the early 1950's in the design and manufacture of power
semiconductor products.
•
Terms, Definitions,
and
Testing Procedures
•
TERMS AND DEFINITIONS
POWER TRANSISTORS
POWER TRANSISTORS
POWER TRANSISTOR SAFETY CONSIDERATIONS
The designer, maker, and user of electrical equipment containing power transistors should give attention to the
following points relative to the safety of personnel that may operate the equipment.
•
The electrical potentials of the collector, emitter, and base terminals on the transistor present an electrical shock hazard
when the equipment is energized.
The normal operating case temperature of energized transistors is often high enough to present burn hazards to both
operating personnel and flammable material touching the transistor.
If the transistor is falsely turned "on" or fails, power will be applied to the equipment load. Operator safety may be
affected by an unexpected energizing of the load.
In the event that an equipment output short or internal fault condition develops, very high surge current can be passed
through the transistor. If this condition exceeds transistor ratings for magnitude and duration, the transistor may be
damaged; and if the surge is severe enough, internal heating can cause the transistor to rupture and perhaps sustain an
arc.
POWER TRANSISTOR STANDARDS
Following are sources of standard material relating to Power Transistors:
EIA and JEDEC Standards:
Electronic Industries Association
2001 Eye St. N.W., Washington, D.C. 20006
Telephone: 202-659-2200
JG-25 Power Transistor Registration Formats RDF-1 to RDF-6
Test Procedures for Verification of Maximum Ratings of Power Transistors-JEDEC Publication No_65
Thermal Resistance Measurements of Conduction Cooled Power Transistors-EIA Standard RS-313-A
JEDEC Recommendations for Letter Symbols, Abbreviations, Terms, and Definitions for Semiconductor Device
Data Sheets and Specifications-JEDEC Publication No. 77
Standard List of Values to be used in Power Transistor Device Registration and Minimum Differences for
Discretness of Registration-JEDEC Publication NO. 74
IEC Standards
American National Standards Institute, Inc_
1430 Broadway
New York, N. Y. 10018
Telephone: 212-868-1220
IEC Publication 147: Essential Ratings and Characteristics of Semiconductor Devices and General Principles of
Measuring Methods.
IEC Publication 148: Letter Symbols for Semiconductor Devices and Integrated Microcircuits
IEC Publication 191: Mechanical Standardization of Semiconductor Devices.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1-1
TERMS AND DEFINITIONS
POWER TRANSISTORS
•
Military Standards
Commanding Officer, U.S. Naval Publications and Forms Center,
5801 Tabor Avenue, Philadelphia, Pa., 19120.
MIL·S·19500: Semiconductor Devices, General Specification for
MI L·STD·1 05: Sampling Procedures and Tables for Inspection by Attributes
MI L·STD·202: Test Methods for Electronic and Electrical Component Parts
MIL·STD·750: Test Methods for Semiconductor Devices
MI L·STD·883: Test Methods and Procedures for Microelectronics
1-2
TEXASINCORPORATEO
INSTRUMENTS
.
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
POWER TRANSISTORS
POWER TRANSISTOR TERMS, DEFINITIONS, AND LETTER SYMBOLS
Introduction
This part contains letter symbols, abbreviations, terms, and definitions commonly used with Power Transistors. Most of
the information was obtained from JEDEC Publication No. 77. This document and the JC-25 JEDEC registration
formats have over-riding authority where any conflict may occur.
•
Power Transistor Terms and Definitions
Definition
Term
base (B, b)*
A region which lies between an emitter and collector of a transistor
and into which minority carriers are injected. (Ref. 60 IRE 28.S1)
breakdown
A phenomenon occurring in a reverse-biased semiconductor junction, the initiation of which is observed as a transition from a region
of high small-signal resistance to a region of substantially lower
small-signal resistance for an increasing magnitude of reverse current.
(Ref RS-282 par. 1.38)
breakdown region
A region of the volt-ampere characteristic beyond the initiation of
breakdown for an increasing magnitude of reverse current. (Ref
RS-282 par. 1.37)
breakdown voltage
The voltage measured at a specified current in a breakdown region.
(Ref MIL-S-19500D par. 20.3)
collector (C, c)*
A region through which a primary flow of charge carriers leaves the
base_ (Ref. 60 IRE 28.S1)
emitter (E, e)* . . . . . . . . . . . . .
A region from which charge carriers that are minority carriers in the
base are injected into the base. (Ref. 60 IRE 28.S1)
junction, collector
A semiconductor junction normally biased in the high-resistance
direction, the current through which can be controlled by the
introduction of minority carriers into the base. (Ref. 60 IRE 28.S1)
junction, emitter
A semiconductor junction normally biased in the low-resistance
direction to inject minority carriers into the base. (Ref. 60
IRE 28.S1)
open-circuit
. . . . _ . . . . . . . _ .
A circuit shall be considered as open-circuited if halving the
magnitude of the terminating impedance does not produce a change
in the parameter being measured greater than the required accuracy
of the measurement. (Ref MIL-S-19500D par. 20.8)
reverse current . . . _ . . . . . . . . .
The current that flows through a semiconductor junction in the
reverse direction.
"NOTE: References to base, collector, and emitter symbolism
(B, b, C, c, E, and e) refer to the device terminals connected to those
regions.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
1-3
TERMS AND DEFINITIONS
POWER TRANSISTORS
Definition
Term
II
reverse direction
The direction of current flow which results when the n-type semiconductor region is at a positive potential relative to the p-type region.
saturation
A ba!;e-current and a collector-current condition resulting in a
forward-biased collector junction.
second breakdown
A condition of the transistor, resulting from a lateral current
instability, in which the electrical characteristics are determined
principally by the spreading resistance of a thermally maintained
current constriction. The initiation of second breakdown is observed
as a decrease in the voltage sustained by the collector.
NOTE: Second breakdown differs from thermal failure in that its
initiation can not be predicted from low-voltage thermal resistance
measurements.
Unless the current and duration in second breakdown are limited, the
high junction temperature at the current constriction will result in
failure, usually as a collector-to-emitter short-circuit.
Second breakdown can occur at postitive, negative, or zero base
current.
(To protect a transistor against second breakdown, see section:
"Safe Operating Areas for Power Transistors. ")
semiconductor device . . . . . . . . . . . A device whose essential characteristics are due to the flow of charge
carriers within a semiconductor. (Ref. RS-282 par. 1.09)
1-4
semiconductor junction
A region of transition between semiconductor regions of different
electrical properties (e.g., n-n+, p-n, p-p+ semiconductors), or
between a metal and a semiconductor. (Ref. R9-282 par. 1.0)
short-circuit . . . • . . . . . . . . . .
A circuit in which doubling the magnitude of the terminating
impedance does not produce a change in the parameter being
measured that is greater than the required accuracy of the
measurement. (Ref. MIL-9-19500D par. 20.16)
small-signal
A signal which when doubled in magnitude does not produce a
change in the parameter being measured that is greater than the
required accuracy of the measurement. (Ref. MIL-S-19500D .
par. 20.17)
static value
A non-varying value or quantity of measurement at a specified fixed
point, or the slope of the line from the origin to the operating point
on the appropriate characteristic curve. (Ref. IEEE #255 par. 2.2.1)
terminal
An externally available point of connection to one or more
electrodes. (Ref. RS-282 par. 1.14)
thermal resistance (steady-state)
The temperature difference between two specified points or regions
divided by the power dissipation under conditions of thermal
equilibrium. (Ref. IEEE #223)
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
POWER TRANSISTORS
Definition
Term
transient thermal impedance
The change of temperature difference between two specified points
or regions at the end of a time interval divided by the step function
change in power dissipation at the beginning of the same time
interval causing the change of temperature difference.
(Ref. IEEE #223)
transistor
An active semiconductor device capable of providing power amplifi·
cation and having three or more terminals. (Ref. lEG #147·0
par. 0·2.8)
. . . . . . . . . . . . . . .
transistor, junction, multijunction type
•
A transistor having a base and two or more junctions.
Graphic symbols
(Ref. ANS Y32.2)
for
emitter,
base,
collector
transistors:
NOTE: In the graphic symbols, the envelope is optional if no
element is connected to the envelope.
N·P·N
P·N·P
Collector
ease
~
Emitter
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALI..AS, TEXAS 75222
1·5
TERMS AND DEFINITIONS
POWER TRANSISTORS
Power Transistor Letter Symbols, Terms, and Definitions
II
Symbol
Definition
Cibo
open-circuit input capacitance
The capacitance measured across the input terminals
(emitter and base) with the collector open-circuited
for ac. (Ref. IEEE #255)
Cobo
open-circuit output capacitance
The capacitance measured across the output terminals
(collector and base) with the input open-circuited to
ac. (Ref. IEEE #255)
small-signal short-circuit forward
current transfer ratio cutoff frequency (common-emitter)
The lowest frequency at which the magnitude of the
small-signal short-circuit forward current transfer
ratio is 0.707 of its value at a specified low frequency
(usually 1 kHz or less). (Ref. IEEE #255)
transition frequency
or
frequency at which small-signal forward
current
transfer ratio
(common-emitter) extrapolates to
unity
The product of the modulus (magnitude) of the
common-emitter small-signal short-circuit forward
cu rrent transfer ratio, hfe, and the frequency of
measurement when this frequency is sufficiently high
so that the modulus (magnitude) of hfe is decreasing
with a slope of approximately 6 dB per octave.
(Ref. IEEE #255)
large-signal insertion power gain
(common-emitter)
The ratio, usually expressed in dB, of the signal
power delivered to the load to the large-signal power
delivered to the input.
static forward current transfer ratio
(common-emitter)
The ratio of the dc collector current to the dc base
current. (Ref. MIL-S-19500D par. 30.28)
small-signal short-circuit forward
current transfer ratio (commonemitter)
The ratio of the ac collector current to the
small-signal ac base current with the collector
short-circuited to the emitter for ac. (Ref.
MIL-S-19500D par. 30.20)
static input resistance (commonemitter)
The ratio of the dc base-emitter voltage to the dc base
current. (Ref. MIL-S-19500D par. 30.29)
small-signal short-circuit input impedance (common-emitter)
The ratio of the small-signal ac base-emitter voltage to
the ac base current with the collector short-circuited
to the emitter for ac. (Ref. MIL-S-19500D
par. 30.24)
hie(imag)
imaginary part of the small-signal
short-circuit
input impedance,
(common-emitter)
The ratio of the out-of-phase (imaginary) component
of the small-signal ac base-emitter voltage to the ac
base current with the collector terminal
short-circuited to the emitter terminal for ac.
hie(real)
real part of the
short-circuit
input
(common-emitter)
s/llall-signal
impedance,
The ratio of the in-phase (real) component of the
small-signal ac base-emitter voltage to the ac base
current with the collector terminal short-circuited to
the emitter terminal for ac.
hoe
small-signal open-circuit output admittance, (common-emitter)
The ratio of the ac collector current to the
small-signal ac collector-emii!:ter voltage with the base
terminal open-circuited to ac. (Ref. MIL-S-19500D
par. 30.15)
hfe
1·8
Term
TEXASINCORPORATED
INSTRUMENTS
~'T O"~ICI
.ox
IOU • DALLA •• TIX.I 711••
TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol
Term
Definition
hOe(imag)
imaginary part of the small-signal
open-circuit output admittance,
(common-emitter)
The ratio of the ac collector current to the
out-of-phase
(imaginary)
component of the
small-signal collector-emitter voltage with the base
terminal open-circuited to ac.
hoe(real)
real part of the small-signal
open-circuit output admittance,
(common-emitter)
The ratio of the ac collector current to the in-phase
(real) component of the small-signal collector-emitter
voltage with the base terminal open-circuited to
ac.
current, dc (base-terminal, collectorterminal, emitter-terminal)
The value of the dc current into the terminal
indicated by the subscript.
II
current, rms value of alternating The root-mean-square value of alternating current
component (base-terminal, collector- into the terminal indicated by the subscript.
terminal, emitter-terminal)
current, instantaneous total value
(base-terminal, collector-terminal.
emitter-terminal)
The instantaneous total value of alternating current
into the terminal indicated by the subscript.
DIAGRAM ILLUSTRATING FOREGOING CURRENTS (Ref IEEE # 255)
I-
~~--~~--~~
a
II:
~
~
-
8
I
I 'ClAVI
IDC VALUE WITH
IctRMS)
ROOT·MEAN-SQUARE
TOTAL VALUE
Ie
ALTERNATING
DC VALUE
COMPONENT
'eM
NO ALTERNATING'
MAXIMUM (PEAK)
COMPONENT
TOTAL VALUE
I
I
I
i,
INSTANTANEOUS
TOTAL VALUE
I
I
I
NOC~~:::e~T;NG -~_ _ _ _ _~_____
TIME
WITH ALTERNATING
COMPONENT
leBO
collector cutoff current, dc, emitter
open
The dc current into the collector terminal when it is
biased in the reverse direction with respect to the
base terminal and the emitter terminal is
open-circuited. (Ref. IEEE #255)
TEXASINCORPORATED
INSTRUMENTS
POIT O.... ICI BOX Ion • DALLAl, TIXAI 11122
'·7
TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol
The dc current into the collector terminal when it is
biased in the reverse direction * with respect to the
emitter terminal and the base terminal is (as indicated
by the first subscript letter as follows):
ICES
collector cutoff current, dc (base
open
resistance
between base and
emitter,
base short-circuited to emitter,
o
open-circuited
ICEV
voltage between base and emitter,
R
returned to the emitter terminal through a
specified resistance_
ICEX
circuit between base and emitter)
ICEO
II
Definition
Term
ICER
S = short-circuited to the emitter terminal.
V = returned to the emitter terminal through a speified voltage.
X = returned to the emitter terminal through a speified circuit.
(Ref. IEEE #255)
lEBO
POE
emitter cutoff current, dc, collector
open
The dc current into the emitter terminal when it is
baised in the reverse direction with respect to the
base terminal and the collector terminal is
open-circuited. (Ref. IEEE #255)
power input, dc
common-emitter)
(to the base,
The product of the dc input current and voltage with
the common-emitter circuit configuration.
power input; instantaneous total
(to the base, common-emitter)
The product of the instantaneous input current and
voltage with the common-emitter circuit configuration.
large-signal output power (commonemitter)
The product of the large-signal ac output current and
voltage with the common-emitter circuit configuration.
total nonreactive power input to all
terminals
The sum of the products of the dc input currents and
voltages, i.e ..
VBE ' IB + VCE' IC or
VBE ' IE + VCB ' IC
nonreactive power input, instantaneous total, to all terminals
The sum of the products of the instantaneous input
currents and voltages.
collector-base time constant
The product of the intrinsic base resistance and
collector capacitance under specified small-signal conditions.
'For these parameters, the collector terminal is considered to be biased in the reverse direction when it
is made positive for N-P-N transistors or negative for
P-N-P transistors with respect to the emitter terminal.
1-8
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
POWER TRANSISTORS
Term
Symbol
Definition
RO
(formerly 0)
thermal resistance
Refer to thermal resistance (steady state), page 1-4.
R(JCA
thermal resistance case-to-ambient
The thermal resistance (steady-state) from the device
case to the ambient.
ROJA
(formerly OJ-A)
thermal
ambient
resistance junction-to-
The thermal resistance (steady-state) from the semiconductor junction (s) to the ambient.
ROJC
(formerly 0J-el
thermal resistance junction-to-case
ROJM
thermal resistance
mounting surface
The thermal resistance (steady-state) from the semiconductor junction (s) to a stated location on the
case.
The thermal resistance (steady-state) from the semiconductor junction (s) to a stated location on the
mounting surface.
junction-to-
ambient temperature or free-air
temperature
The air temperature measured below a device, in an
environment of substantially uniform temperature,
cooled only by natural air convection and not
materially affected by reflective and radiant surfaces.
(Ref. MIL-S-19500D par. 20.20.1)
TC
case temperature
The temperature measured at a specified location on
the case of a device. (Ref. MIL-S-19500D
par. 20.20.2)
TJ
virtual junction temperature
A theoretical temperature based on a simplified
representation of the thermal and electrical behavior
of the semiconductor device.
NOTE: This term (and its definition) is taken from
IEC standards. It is particularly applicable to
mUlti-junction semiconductors and is used in
this publication to denote the temperature of
the active semiconductor element when
required in specifications and test methods.
The term "junction temperature" is used
interchangeably with the term "virtual
junction temperature" in this publication.
Tstg
storage temperature
The temperature at which the device, without any
power applied, is stored. (Ref. MIL-S-19500D
par. 20.20.3)
delay time
The time interval from the point at which the leading
edge of the input pulse has reached 10 percent of its
maximum amplitude to the point at which the
leading edge of the output pulse has reached 10
percent of its maximum amplitude. (Ref. MIL-S195000 par. 20.13)
fall time
The time duration during which the trailing edge of a
pulse is decreasing from 90 to 10 percent of its
amplitude.
(Ref. MIL-S-19500D
maximum
par. 20.12)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
•
1-9
TERMS AND DEFINITIONS
POWER TRANSISTORS
•
Definition
Symbol
Term
toff
turn-off time
The sum of ts + tf.
ton
turn-on time
The sum of td + t r .
tp.
pulse time
The time duration f~om the point on the leading edge
which is 90 percent of the maximum amplitude to
the point on the trailing edge which is 90 percent of
the maximum amplitude. (Ref. MIL-S-195OO0
par. 20.15)
rise time
The time duration during which the amplitude of the
leading edge of a pulse is increasing from 10 to 90
percent
of
its
maximum
amplitude.
(Ref. MIL-S-195000 par. 20.13)
storage time
The time interval from a point 90 percent of the maximum amplitude on the trailing edge of the input
pulse to a point 90 percent of the maximum amplitude
on the trailing edge of the output pulse. (Ref. MIL-S195000 par. 20.14)
pulse average time
The time duration from the point on the leading edge
which is 50 percent of the maximum amplitude to a
point on the trailing edge which is 50 percent of the
maximum
amplitude.
(Ref. MIL-S-195000
par. 20.10)
DIAGRAM ILLUSTRATING PULSE TIME SYMBOLOGY
tp
w
o
...::;
:;)
..«
::;;
~
~
TIME
1·10
TEXASINCORPORATED
INSTRUMENTS
poaT
O~"'IC.
BOX 1012 • DALLA., Tlx.a '7S1b
•
TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol
Definition
Term
V(BR)CBO
(formerly BV CBO)
breakdown voltage
base, emitter open
collector-to-
The breakdown voltage between the collector terminal and the base terminal when the collector terminal
is biased in the reverse direction with respect to the
base terminal and the emitter terminal is
open-circuited. (Ref. IEEE #255)
V(BR)CEO,
(formerly BVCEO)
breakdown voltage, collector-toemitter with (base open,
V(BH)CER,
(formerly BVCER)
resistance between base and em itter,
The breakdown voltage between the collector terminal and the emitter terminal when the collector
terminal is biased in the reverse direction* with
respect to the emitter terminal and the base terminal
is (as indicated by the last subscript letter as follows):
V(BR)CES,
(formerly BVCES)
base short-circuited to emitter,
°
V(BR)CEV,
(formerly BVCEV)
voltage between base and emitter,
V(BR)CEX
(formerly BVCEX)
circuit between base and emitter)
R
•
open-circuited.
returned to the emitter terminal through a
specified resistance.
S : short-circuited to the emitter terminal.
V : returned to the emitter terminal through a
specified voltage.
X: returned to the emitter terminal through a
specified circu it.
(Ref. IEEE #255)
V(BR)EBO,
(formerly BVEBO)
breakdown voltage, emitter-to-base,
collector open
The breakdown voltage between the emitter and base
terminals when the emitter terminal is biased in the
reverse direction with respect to the base terminal
and the collector terminal is open-circuited.
(Ref. IEEE #255)
VBB,
VCC,
VEE
supply voltage, dc (base, collector,
emitter)
The dc supply voltage applied to a circuit connected
to the reference terminal.
VBC,
voltage, dc or average (base-tocollector,
base-to-emitter,
The dc voltage between the terminal indicated by the
first subscript and the reference terminal (stated in
terms of the polarity at the terminal indicated by the
first subscript).
collector-to-base,
collector-to-emitter,
emitter-to-base,
emitter-to-collector)
VB E(sat)
saturation Voltage, dc, base-to-emitter The dc voltage between the base and emitter terminals for specified base-current and collector-current
conditions which are intended to ensure that the
collector junction is forward-biased.
• For these parameters, the collector terminal is considered to be biased in the reverse direction when it
is made positive for N-P-N transistors or negative for
P-N-P transistors with respect to the emitter terminal.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1-11
TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol
•
Definition
Term
VCBO
collector-to-base voltage, dc, emitter open
The dc voltage between the collector terminal and the
base terminal when the emitter terminal is
open-circuited_
VCE(sat)
saturation voltage, dc, collector-toemitter
The dc voltage between the collector and the emitter
terminals for specified saturation conditions_
(Ref. IEEE #255)
VCEO
collector-to-emitter voltage, -dc, with
(base open,
VCER
resistance between base and emitter,
The dc voltage between the collector terminal and the
emitter terminal when the base terminal is (as
indicated by the last subscript letter):
VCES
base short-circuited to emitter,
R = returned to the emitter terminal through a
specified resistance_
VCEV
voltage between base and emitter,
S = short-circuited to the emitter terminal_
VCEX
circuit between base and emitter)
VCEO(sus}
sustaining voltage, collector-toemitter with (base open,
VCER(sus)
resistance between base and emitter,
VCES(sus}
base short-circuited to emitter,
VCEV(sus}
voltage between base and emitter,
VCEX(sus}
circuit between base and emitter}
o
= open-circuited_
v
= returned to the emitter terminal through a
x
= returned to the emitter terminal through a
specified circu it_
specified voltage_
The collector-to-emitter breakdown voltage at relatively high values of collector current where the
breakdown voltage is relatively insensitive to changes
in collector current_ The base terminal is (as indicated
by the third subscript letter as follows):
o
= open-circuited
R = returned to the emitter terminal through a
specified resistance
S = short-circuited to tHe emitter terminal
V= returned to the emitter terminal through a
specified voltage
X= returned to the emitter terminal through a
specified circuit_
NOTE: This would be the transient voltage between
the collector and emitter terminals during switching
with an inductive load from a forward-biased baseemitter to an external condition described by the
third subscript letter_
VEB(fI}
1-12
dc open-circuit voltage (floating potential) (emitter-to-base)
The de open-circuit voltage (floating potentialj between the emitter terminal and the base terminal
when the collector terminal is biased in the reverse
direction with respect to the base terminal •.
(Ref. IEEE #255)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol
Term
Definition
VEBO
emitter-ta-base voltage, dc, collector open
The de voltage between the emitter terminal and the
base terminal with the collector terminal
open-circuited.
ZO(t)
(formerly 6(t))
transient thermal impedance
Refer to transient thermal impedance, page 1-5.
ZOJA(t)
(formerly 6J-A(t))
transient thermal impedance, junction-to-ambient
The transient thermal impedance from the semiconductor junction (s) to the ambient.
ZOJC(t)
(formerly 6JC(t))
transient thermal impedance, junction-to-case
The transient thermal impedance from the semiconductor junction (s) to a stated location on the
case.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
•
1-13
TERMS AND DEFINITIONS
THYRISTORS
THYRISTORS
•
. Thyristor Standards
The documents listed below have overriding authority where any conflict may occur with this dati' book.
EIA and JEDEC Standards
The thyristor terms and definitions presented in this data book were obtained from EIA Standards Proposal
No. 1101. This standard is in the process of publication and will be available from:
Electronic Industries Association
2001 Eye St. N.W.,
Washington, D.C. 20006
Telephone: 202·659·2200
IEEE Standards
Institute of Electrical and Electronic Engineers, Inc.
345 East 47th. Street
New York, N.Y. 10017
IEEE No. 233: Standard Definitions of Terms for Thyristors
International Electrotechnical Commission Standards
American National Standards Institute, Inc.
1430 Broadway
New York, N.Y. 10018
IEC Publication 147·IC: Essential Ratings and Characteristics of Semiconductor Devices and General
Principles of Measuring Methods
IEC Publication 148: Letter Symbols for Semiconductor Devices and Integrated Circuits
IEC Publication 191: Mechanical Standardization of Semiconductor Devices.
Military Standards
Commanding Officer, U.S. Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, Pa., 19120
MIL·S·19500: Semiconductor Devices, General Specification for
MIL·STD·105: Sampling Procedures and Tables for Inspection by Attributes
MI L·STD·202: Test Methods for Electronic and Electrical Component Parts
MIL·STD·750: Test Methods for Semiconductor Devices
1·14
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75":22
TERMS AND DEFINITIONS
THYRISTORS
Classes of Thyristors
Bidirectional Diode Thyristor
A two-terminal thyristor having substantially the same switching behavior in the first and third quadrants of the
principal voltage-current characteristic_ (See Figure 4).
Bidirectional Triode Thyristor
A three-terminal thyristor having substantially the same switching behavior in the first and third quadrants of the
principal voltage-current characteristic_ (See Figure 4)_
•
N-Gate Thyristor
A thyristor in which the gate terminal is connected to the N-region adjacent to the region to which the anode
terminal is connected and which is normally switched to the on-state by applying a negative signal between gate
and anode terminals_
P-Gate Thyristor
A thyristor in which the gate terminal is connected to the P-region adjacent to the region to which the cathode
terminal is connected and which is normally switched to the on-state by applying a positive signal between gate
and cathode terminals_
Reverse-Blocking Diode Thyristor
A two-terminal thyristor which switches only for positive anode-to-cathode voltages and exhibits a reverseblocking state for negative anode-to-cathode voltages_
Reverse-Blocking Triode Thyristor
A three-terminal thyristor which switches only for positive anode-to-cathode voltages and exhibits a
reverse-blocking state for negative anode-to-cathode voltages.
Reverse·Conducting Diode Thyristor
A two-terminal thyristor which switches only for positive anode-to-cathode voltages and conducts large currents
at negative anode-to-cathode voltages comparab'le in magnitude to the on-state voltage.
Reverse-Conducting Triode Thyristor
A three-terminal thyristor which switches only for positive anode-to-cathode voltages and conducts large currents
at negative anode-to-cathode voltages comparable in magnitude to the on-state voltage.
Semiconductor Controlled Rectifier (SCR)
An alternative name used for the reverse-blocking triode thyristor.
NOTE: Although not an official definition, the term unidirectional is sometimes used to describe the single
switching class of thyristors consisting of' reverse-blocking and reverse-conducting thyristors. This term is
useful for comparing or contrasting this class of thyristor with bidirectional thyristors.
Thyristor
A bistable semiconductor device comprising three or more junctions, which can be switched from the off-state to
the on-state or vice versa, such switching occuring within at least one quadrant of the principle voltage-current
characteristic. (See Figures 1 through 5).
Turn-Off Thyristor
A thyristor which can be switched from the on-state to the off-state and vice versa by applying control signals of
appropriate polarities to the gate terminal, with the ratio of triggering power to triggered power appreciably less
than one.
TEXAS INSTRUMENTS
I NCQRPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
1-15
TERMS AND DEFINITIONS
THYRISTORS
•
I
SEMICONDUCTOR REGIONS
FIRST QUADRANT
ANODE +
ON STATE
NEGATIVE
RESISTANCE
REGION
BREAKOVER
'VOLTAGE, CURRENT
MINIMUM ON "STATE VOLTAGE
HOLDING CURRENT
REVERSE
BLOCKil~N~G~S;;T,;A;,;T,;:E==;:;;;;;r'=-=-=r-~b~-~-=-,,;a!L_
REVERSE
BREAKDOWN
VOLTAGE,
CURRENT
V
OFF"STATE
THIRD QUADRANT
ANODE-
Schematic
triode
Principal voltage-current characteristics (anode-to-cathode
thyristor.
Note: The gate electrode is connected to the N-type base
region in some structures or omitted in the case of a
representation
of
a
reverse-blocking
voltage-current characteristic) of a typical reverse-blocking
thyristor.
Note: Curve "a" applies for zero gate current or a diode
thyristor. Curve "b" is with gate trigger current
present when off-state voltage is V 1.
diode thyristor.
FIGURE 1
FIGURE 2
FIRST QUADRANT
MAIN TERMINAL 2 +
I
ON"STATE
[
m"L{;
___ OFF"STATE
MAIN
MAIN
I
~''''
N
~~,::;:.
..,
_-=;aE1-~V~l~=9~====b~=-;a~= V
BREAKOVER_
OFF"STATE
'-~
'
BREAKOVER
VOLTAGE,
""'"
GATE TERMINAL
ON"STATE
THIRD QUADRANT
MAIN TERMINAL 2Principal
Schematic
representation
of
typical
bidirectional
voltage~curren't
characteristic of a typical bidirec-
tional thyristor.
Note: Curve ua" applies for zero gate current or a diode
triode
thyristor.
Note: Gate is omitted in a diode bidirectional thyristor.
bidirectional thyristor. Curve "b" applies for the case
of gate trigger current applied when the off-state
voltage is ± V l'
FIGURE 4
FIGURE 3
1·16
IEXAsINSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
THYRISTORS
Physical Structure Nomenclature
Anode
The electrode by which current enters the thyristor when the thyristor is in the on-state with the gate
open-circuited.
NOTE: This term does not apply to bidirectional thyristors.
Anode Terminal
•
The terminal which is connected to the anode.
NOTE: This term does not apply to bidirectional thyristors.
Cathode
The electrode by which current leaves the thyristor when the thyristor is in the on-state with the gate
open-circuited.
NOTE: This term does not apply to bidirectional thyristors.
Cathode Terminal
The terminal which is connected to the cathode.
NOTE: This term does not apply to bidirectional thyristors.
Collector Junction
The junction across which the polarity of the voltage reverses when switching occurs. (See Figure 1).
Electrode (of a Semiconductor Device)
An electrical and mechanical contact to a region of a semiconductor device.
Gate
An electrode connected to one of the semiconductor regions for introducing control current.
Gate Terminal
A terminal which is connected to a gate.
Junction (of a Semiconductor Device)
A region of transition between semiconductor regions of different electrical properties (e.g., n-n+, p-n, p-p+
semiconductors). or between a metal and a semiconductor.
Main Terminals
The terminals through which the principal current flows.
Main Terminal 1 (of a Bidirectional Thyristor)
The main terminal which is named "1" by the device manufacturer. This is normally the referance terminal for all
voltages.
Main Terminal 2 (of a Bidirectional Thyristor)
The main terminal which is named "2" by the device manufacturer.
Terminal (of a Semiconductor Device)
The externally available point of connection to one or more electrodes.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE SOX 5012
•
DALLAS, TEXAS 75222
1-17
TERMS AND DEFINITIONS
THYRISTORS
•
Electrical Characteristic and Rating Terms (See Note at end of section)
Anode-to·Cathode Voltage (Anode Voltage)
The voltage between the anode terminal and the cathode terminal.
NOTE: It is called positive when the anode potential is more positive than the cathode potential, and called
negative when the anode potential is less positive than the cathode potential.
Anode-to·Cathode Voltage·Current Characteristic (Anode Characteristic)
A function, usually represented graphically, relating the anode·t~.cathode voltage to the principal current with
gate current, where applicable, as a parameter.
NOTE: This term does not apply to bidirectional thyristors.
Breakover Point
Any point on the principal voltage·current characteristic for which the differential resistance is zero and where
the principal voltage reaches a maximum value. (See Figures 2 and 4).
Negative·Differential·Resistance Region
Any portion of the principal voltage·current characteristic in the switching quadrant(s) within which the
differential resistance is negative. (See Figures 2 and 4).
Off·1 mpedance
The differential impedance between the terminals through which the principal current flows when the thyristor
is in the off-state at a stated operating point.
Off-State
The condition of the thyristor corresponding to the high-resistance, low-current portion of the principal
voltage-current characteristic between the origin and the breakover point(s) in the switching quadrant(s).
On-Impedance
The differential impedance between the terminals through which the principal current flows when the thyristor
is in the on-state at a stated operating point.
On-State
The condition of the thyristor corresponding to the low-resistance, 'low-voltage portion of the principal
voltage-current characteristic in the switching quadrant(s).
NOTE: In the case of reverse-conducting thyristors, this definition is applicable only for a positive
anode-to-cathode voltage.
Principal Voltage
The voltage between the main terminals.
NOTES: 1. In the case of reverse-blocking and reverse-conducting thyristors, the principal voltage is called
positive when the anode potential is more positive then the cathode potential, and called negative
when the anode potential is less positive than the cathode potential.
2. For bidirectional thyristors, the principal voltage is called positive when the potential of main
terminal 2 is more positive than the potential of main terminal 1.
Principal Voltage-Current Characteristic (Principal.Characteristic)
The function, usually represented graphically, relating the principal voltage to the principal current with gate
current, where applicable, as a parameter.
1·18
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TERMS AND DEFINITIONS
THYRISTORS
Reverse-Blocking Impedance (of a Reverse-Blocking Thyristor)
The differential impedance between the two terminals through which the principal current flows when the
thyristor is in the reverse-blocking state at a stated operating point_
Reverse-Blocking State (of a Reverse-Blocking Thyristor!
II
The condition of a reverse-blocking thyristor corresponding to the portion of the anode-to-cathode voltage-current
characteristic for which reverse currents are of lower magnitude than the reverse breakdown current. (See
Figure 2).
QUADRANT DEFINITIONS
-=- Vs
+
vG
-=-
+Vs
QUADRANT II
QUADRANT I
VS=+
VG=-
VS=+
VG=+
-----------------------+-----------------------+VG
QUADRANT III
QUADRANT IV
VS=VG=-
VS=VG =+
-VS
The polarities of
Vs and VG are with respect to Main Terminal 1.
FIGURE 5
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1-19
TERMS AND DEFINITIONS
THYRISTORS
Symbols, Terms and Definitions
•
Symbol
Definition
Term
ItBO)
Static Breakover Current
i(BO)
Instantaneous Breakover Current
I(BR)R
Static Reverse Breakdown Current
i(BR)R
Instantaneous Reverse Breakdown Current
10(RMS
RMS Off·State Current
10
Static Off-State Current
10(AV)
Average Off-State Current
iO
Instantaneous Off-State Current
10M
Peak Off-State Current
10RM
Repetitive Peak Off-State Current
The maximum instantaneous value of the off-state
current that results from the application of repetitive
peak off-state voltage.
IG
Static Gate Current
IG(AV)
Average Gate Current
The current that results from the gate voltage.
NOTES: 1. Positive gate current refers to conventiona I current entering the gate terminal.
iG
Instantaneous Gate Current
IGM
Peak Gate Current
IGO
Static Gate Nontrigger Current
iGO
Instantaneous Gate Nontrigger Current
IGOM
Peak Gate Nontrigger Current
IGO
Static Gate Turn-Off Current
iGO
Instantaneous Gate Turn-Off Current
IGOM
Peak Gate Turn-Off Current
IGT
Static Gate Trigger Current
iGT
Instantaneous Gate Trigger Current
IGTM
Peak Gate Trigger Current
The principal current at the breakover point.
The principal current at the reverse breakdown
voltage.
The principal' current when the thyristor is in the
off·state.
-'
2. Negative gate current refers to conventional current leaving the gate terminal.
The maximum gate current which will not cause the
thyristor to switch from the off·state to the on-state.
The minimum gate current required to switch a
thyristor from the on-state to the off-state.
The minimum gate current required to switch a
thyristor from the off-state to the on-state.
'·20
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
THYRISTORS
.
Symbol
IH
Term
Definition
Static Holding Current
The minimum principal current required to maintain
the thyristor in the on-state_
iH
Instantaneous Holding Current
IL
Static Latching Current
iL
Instantaneous Latching Current
IR(RMS)
RMS Reverse Current
IR
Static Reverse Current
IR(AV)
Average Reverse Current
iR
Instantaneous Reverse Current
IRM
Peak Reverse Current
IRRM
Repetitive Peak Reverse Current
The maximum instantaneous value of the reverse
current that results from the application of repetitive
peak reverse voltage.
IT(RMS)
RMS On-State Current
The principal current when the thyristor is in the
on-state.
IT
Static On-State Current
IT(AV)
Average On-State Current
iT
Instantaneous On-State Current
ITM
Peak On-State Current
IT(OV)
Overload Peak On-State Current
An on-state current of substantially the same
waveshape as the normal on-state current and having
a greater value than the normal on-state current.
ITRM
Repetitive Peak On-State Current
The peak value of the on-state current including all
repetitive transient currents.
ITSM
Surge (Nonrepetitive) Peak On-State Current
An on-state current of short-time duration and
specified waveshape.
PG
Static Gate Power Dissipation
PG(AV)
Average Gate Power Dissipation
PG
Instantaneous Gate Power Dissipation
PGM
Peak Gate Power Dissipation
The minimum principal current required to maintain
the thyristor in the on-state immediately after
switching from the off-state to the on-state has
occurred and the triggering signal has been removed_
•
The current for negative anode-to-cathode voltage.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1-21
TERMS AND DEFINITIONS
THYRISTORS
•
1·22
Symbol
Term
Definition
TA
Free-Air Temperature
(Ambient Temperature)
The air temperature measured below a deviee, in an
environment of substantially uniform temperature,
cooled only by natural air convection and not
materially affected by reflective and radiant surfaces_
(Ref_ MIL-S-19500D par_ 20_20.1)
TC
Case Temperature
The temperature measured at a specified location on
the case of a device. (Ref. MIL-S-19500D par.
20.20.2)
TJ
Virtual Junction Temperature
(Junction Temperature)
A theoretical temperature based on a simplified
representation of the thermal and electrical behavior
of the semiconductor device.
NOTE: This term (and its definition) is taken from
IEC standards. It is particularly applicable to
multi-junction semiconductors and is used in
this publication to denote the temperature of
the active semiconductor element when
required in specifications and' test methods.
The term "junction temperature" is used
interchangeably with the term "virtual
junction temperature" in this publication.
Tstg
Storage Temperature
The temperature at which the defice, without any
power applied, is stored. (Ref. MIL-S-19500D par.
20.20_3)
tgt
Gate-Controlled Turn-On Time
The time interval between a specified point at the
beginning of the gate pulse and the instant when the
principal voltage (current) has dropped (risen) to a
specified low (high) value during switching of a
thyristor from ,the off-state to the on-state by a gate
pulse.
tgq
Gate-Controlled Turn-Off Time
The time interval between a specified point at the
beginning of the gate pulse and the instant when the
principal current has decreased to a specified value
during switching from the on-state to the off-state by
a gate pulse.
tq
Circuit-Commutated Turn-Off Time
The time interval between the instant when the
principal current has decreased to zero after external
switching of the principal voltage circuit, and the
instant when the thyristor is capable of supporting a
specified principal voltage without turning on_
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TERMS AND DEFINITIONS
THYRISTORS
Symbol
Term
Definition
Re
Thermal Resistance
The temperature difference between two specified
points or regions divided by the power dissipation
under conditions of thermal equilibrium_
ReJA
Thermal Resistance, Junction-to-Ambient
ReJC
Thermal Resistance, Junction-to-Case
ReCA
Thermal Resistance, Case-to-Ambient
V(BO)
Static Breakover Voltage
V(BO)
Instantaneous Breakover Voltage
V(BR)R
Static Reverse Breakdown Voltage
V(BR)R
Instantaneous Reverse Breakdown Voltage
VD(RMS
RMS Off-State Voltage
VD
Static Off-State Voltage
VO(AV)
Average Off-State Voltage
vO
Instantaneous Off-State Voltage
VOM
Peak Off-State Voltage
VORM
Repetitive Peak Off-State Voltage
The maximum instantaneous value of the off-state
voltage which occurs across a thyristor, including all
repetitive transient voltages, but excluding all nonrepetitive transient voltages.
VOSM
Nonrepetitive Peak Off-State Voltage
The maximum instantaneous value of any nonrepetitive transient off-state voltage which occurs
across the thyristor.
VOWM
Working Peak Off-State Voltage
The maximum instantaneous value of the off-state
voltage which occurs across a thyristor, excluding all
repetitive and nonrepetitive transient voltages.
VG
Static Gate Voltage
VG(AV)
Average Gate Voltage
The voltage between a gate terminal and a specified
main terminal.
NOTE: Gate voltage polarity is referenced to the
specified main terminal.
vG
Instantaneous Gate Voltage
VGM
Peak Gate Voltage
•
The principal voltage at the breakover point.
The value of negative anode-to-cathode voltage at
which the differential resistance between the anode
and cathode terminals changes from a high value to a
substantially lower value.
The principal voltage when the thyristor is in the
off-state.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
1-23
TERMS AND DEFINITIONS
THYRISTORS
•
Symbol
Term
Definition
VGD
Static Gate Nontrigger Voltage
vGD
Instantaneous Gate Nontrigger Voltage
VGDM
Peak Gate Nontrigger Voltage
VGO
Static Gate Turn-Off Voltage
vGO
Instantaneous Gate Turn-Off Voltage
VGOM
Peak Gate Turn-Off Voltage
VGT
Static Gate Trigger Voltage
vGT
Instantaneous Gate Trigger Voltage
VGTM
Peak Gate Trigger Voltage
The gate voltage required to produce the gate turn-off
current.
The gate voltage requ ired to produce the gate trigger
current.
VR(RMS) RMS Reverse Voltage
'-24
The maximum gate voltage which will not cause the
thyristor to switch from the off-state to the on-state.
A negative anode-to-cathode voltage.
VR
Static Reverse Voltage
VR(AV)
Average Reverse Voltage
vR
Instantaneous Reverse Voltage
VRM
Peak Reverse Voltage
VRRM
Repetitive Peak Reverse Voltage
The maximum instantaneous value of the reverse
voltage which occurs across the thyristor, including
all repetitive transient voltages, but excluding all
non repetitive, transient voltages.
VRSM
Nonrepetitive Peak Reverse Voltage
The maximum instantaneous value of any nonrepetitive transient reverse voltage which occurs
across a thyristor.
VRWM
Working Peak Reverse Voltage
The maximum instantaneous value of the reverse
voltage which occurs across the thyristor, excluding
all repetitive and nonrepetitive transient voltages.
VT(RMS)
RMS On-State Voltage
The principal voltage when the thyristor is in the
on-state.
VT
Static On-State Voltage
VT(AV)
Average On-State Voltage
vT
Instantaneous On-State Voltage
VTM
Peak On-State Voltage
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TERMS AND DEFINITIONS
THYRISTORS
Symbol
VT(MIN)
Term
Definition
Static Minimum On-State Voltage
The minimum positive principal voltage for which the
differential resistance is zero with the gate
open-circuited.
zeIt)
Transient Thermal Impedance
ZOJA(t)
Transient Thermal Impedance, Junction-to-Ambient
ZOJC(tl
Transient Thermal Impedance, Junction-to-Case
The change of temperature difference between two
specified points or regions at the end of a time
interval divided by the step function change in power
dissipation at the beginning of the same time interval
causing the change of temperature difference.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
•
DALLAS. TEXAS 75222
1-25
•
1·26
ELECTRICAL CHARACTERISTIC TESTS
POWER TRANSISTOR ELECTRICAL CHARACTERISTIC TESTS
INDEX
Page
General.
.
.
1-28
Measurements
1-28
Cut-off Current [lCEO. lEBO. ICBO. ICEV. IEB1. IEB2. IB1B21
1-28
Breakdown Voltage [V(BR)CEX. V(BR)CEO or VCEO(susl. V(BR)CES. V(BR)EBO. V(BR)CERl
1-30
Floating Potential [VEB(fl)l
1-32
Current Gain [hFE 1.
1-34
.
.
Saturation Voltage [VCE(sat)l
1-34
Base-to·Emitter Voltage [VBEl
1-35
Open·Circuit Output Capacitance [Cobol
1-36
Small-Signal Short-Circuit Input Impedance [hie. hie(real). hie(imag)l
1-37
Small-Signal Open-Circuit Output Admittance [hoe(realll
1-38
.
.
.
.
•
Small-Signal Forward Current Transfer Ratio [hfel. Cut-Off Frequency [fhfel. and Frequency at
Which Ihfel Extrapolates to Unity [fTl .
1-39
Switching Time ltd. t r • ts. tf 1
1-40
TEXAS INCORPORATED
INSTRUMENTS
~O.T
0 .... 101
.ox
IOU: • CALLAS, TIXA. 71111
'·27
ELECTRICAL CHARACTERISTIC TESTS
•
GENERAL
In this section, accepted test practices are described as a guide to making power transistor characteristic tests. The
material has been adapted from the forthcoming JEDEC Publication Suggested Standards on Power Transistors. Only
those electrical characteristics included in EIA JC·25 registration formats are listed.
MEASUREMENTS
All measurements should be made at thermal equilibrium. A condition of thermal equilibrium is achieved if halving the
time between application of power and measurement causes no change in the result within the required accuracy.
The connecting lines shown in the circuit diagrams have no resistance compared to their lowest terminating impedance.
Shown are resistors, inductors, and capacitors having an id\!al characteristic at the used frequency range. Voltage
sources have zero impedance, and current sources have an infinite resistance. All voltmeters and scopes have infinite
input resistance and all ammeters have zero resistance, unless otherwise noted.
The listing of the following tests does not imply that all must be performed by either the manufacturer or the user. It is
the responsibility of the user and manufacturer to agree to any series of specific tests or test conditions, and the further
responsibility of the user to establish meaningful relationship between these tests and the performance of the power
transistor in a particular application.
An npn transistor is used in the test methods below. These test methods will also apply to pnp devifes by changing
polarities. For small-signal measurements, a signal is used which, when doubled in magnitude, does not produce a
change in the measured parameter that is greater than the required accuracy.
The transistor connections are shown separate from the test circuits for "DC", "CT". and "P" techniques.
"DC" - D-C continuous condition
"CT" - Curve tracer (60 cycle full rectified sinewave)
"P" - Pulsed by a 300 j.!s, 2% duty cycle pulse
CUT-OFF CURRENT [lCEO, lEBO, ICBO, ICEV, IEB1, IEB2' IB1B2]
Description
The reverse voltage is applied and the cut-off current is measured. The cut-off current is temperature sensitive. If
testing is done at elevated temperature, a heat sink may be necessary to prevent thermal runaway.
Transistor Connections
1-28
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
I¥LLAS. TEXAS 76222
ELECTRICAL CHARACTERISTIC TESTS
DARLINGTON
ICEV
ICEV
C
B1
C
C
B2
B2
B2
RB2E
E
E
E
II
VB1E
•
ICEV
VB1E
VB1E
IB1B2
E
ICEV
C
C
E
I----~III---.....
VB1E
Test Circuits
The supply voltage Vs should equal RS ICUT-OFF plus the specified test voltage_ The current of the transistor in
the pulse test circuit has to be small compared to the measured cut-off current. The cut-off current is measured
with an ammeter or with an oscilloscope.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1·29
ELECTRICAL CHARACTERISTIC TESTS
•
DC
p
CT
Vs
~
SCOPE
V
•
SCOPE
V
'CUT-OFF
tw= 300 I-lS
f
V
= 60 Hz
Vs
RS
OF
AMMETER
,
SCOPE
SCOPE
Test Conditions to be Specified
Case temperature if not TC = 25°C
Voltage applied to the device: VCEO. VEBO. VCBO. VCEV. VEB1. VB1B2. VEB2
Base termination: VEB. VB2E. RB2E. VB1B2. RB1B2
Technique: DC.
ct. pi
BREAKDOWN VOLTAGE [V(BR)CEX. V(BR)CEO OR VCEO(sus). V(BR)CES. V(BR)EBO. V(BR)CERl
Description
For breakdown measured in the sustaining region. the current should be high enough to ensure that the
breakdown voltage is relatively insensitive to current changes.
1·30
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
ELECTRICAL CHARACTERISTIC TESTS
Transistor Connections
V(BR)CEO OR VCEO(sus)
V(BR)CEO OR VCEO(sus)
V(BR)CEX
•
RBB2
V(BR)CES
V(BR)CER
V(BR)EBO
RBE
Test Circuits
P
CT
DC
IS
Vs
SCOPE V
tan
SCOPE V
Ln.
Vs
RL
f = 60 Hz
POWER
SUPPLY
V
tw= 300 I'S
f = 60 Hz
Vs
SCOPE I
SCOPE I
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1-31
ELECTRICAL CHARACTERISTIC TESTS
•
SCOPE V
INDUCTIVE SWEEP
RBB1
INCREASE tw
FOR SPECIFIED
L
SCOPE I
In addition to the test circuits for "DC", "CT", and "P", an inductive sweep circuit is shown. This test circuit is
particularly useful to measure transistors in their sustaining region.
Test Conditions To Be Specified
Case temperature if not TC = 2SoC
Current applied to the device: ICEX, ICED, ICES, lEBO, ICER
Base termination: VBB2, VBB1, RBB2, RBB1, RBE, pulse width, duty cycle
Technique: DC, CT, P, Inductive Sweep:
Load resistance, inductance, and supply voltage where applicable: RL, L, Vs
FLOATING POTENTIAL [VEB(fOl
Description
This measurement is related to the thickness of the base region.
'·32
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAS. TEXAS 75222
ELECTRICAL CHARACTERISTIC TESTS
Test Circuit
Vs
CT
DC
SCOPE VCB
l---------- Vs
VCB
•
v
TUT
1 - - -...- - - -..
SCOPE
VEB(fI)
p
Vs
SCOPE VCB
SCOPE VEB(fI}
Test Conditions To Be Specified
Case temperature if not TC = 2SoC
Collector-base voltage: VCB
Base-emitter resistance: RBE
Technique: DC, CT, P
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1-33
ELECTRICAL CHARACTERISTIC TESTS
•
CURRENT GAIN [hFEl
Descri ption
The static forward current transfer ratio in the common-emitter configuration is one of the most important gain
characteristic for power transistors. It measures the ratio of collector current to base current.
Test Circuit
SCOPE
SCOPE
VCE
Vs
VCE
f----Vs
Vs
VS~
IC
DC
CT
RBB
p
VS~
RBB
RS
VBB
-=
-=
VBB
SCOPE
Ie
SCOPE
IC
The current gain is given by hFE ~ ICIIB. For the CT and P tests, VBB» Ll. VBE* 'so that IB is constant and
relatively independent of VBE.
*.aVBE is the range of VBE for various devices to be tested.
Test Conditions To Be Specified
Case temperature if not T C ~ 25° C
Collector-emitter voltage: VCE
Collector current: IC
Technique: DC, CT, P
SATURATION VOLTAGE [VCE(sat)l
Description
The collector-to-emitter saturation voltage is especially important for switching applications. Together with the
collector current, it is the basis to calculate the power dissipation in the "on" state.
1-34
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
ELECTRICAL CHARACTERISTIC TESTS
Test Circuit
SCOPE VCElsatl
SCOPE
CElsat)
,,""---VS
J----VS
Vs
p
RBB
•
I0
RBB
RS
VBB
VBB
SCOPE IC
SCOPE IC
For the CT and P tests, VBB» VBE in order to make IB independent of VBE changes during the "on"
condition.
Test Conditions To Be Specified
Case temperature if not TC = 25°C
Collector current: IC
Base current: IB
Technique: DC, CT, P
SASE-TO-EMITTER VOLTAGE [VSE]
Description
There are two conditions of interest for the static base-to-emitter voltage:
1. The transistor in saturation (commonly referred to as VBE(sat»
2. The transistor out of saturation (VB E)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1·35
ELECTRICAL CHARACTERISTIC TESTS
•
Test Circuit
,
SCOPE
DC
CT
SCOPE
VCE
P
Vs
TUT
Vs
Vs
Vs
Iyyy)
In
RS
SCOPE
SCOPE
IC
IC
For the CT and P tests, VBB» VBE in order to make IB independent of VBE changes during the "on"
condition. The base terminal for Darlington transistors is B1.
Test Conditions To Be Specified
Case temperature if not T C = 25° C
1. The transistor in saturation: (VBE(sat))
Collector Current: IC
Base Current: IB
2. The transistor out of saturation: (VBE)
Collector current: IC
Collector-to-emitter voltage: VCE
Technique: DC. CT, P
OPEN·CIRCUIT OUTPUT CAPACITANCE [Cobol
Descri ption
The open-circuit output capacitance indicates the frequency limitations of a transistor.
1·36
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
ELECTRICAL CHARACTERISTIC TESTS
Test Circuit
TUTr-__________________
~
II
c
VCB
Capacitor C has to be sufficiently large to provide a short-circuit at the test frequency _The bridge has to be
nulled with the base-to-collector open_ The base terminal for Darlington transistors is B1.
Test Conditions To Be Specified
Case temperature if not TC; 25°C
Collector-to-base voltage: VCB
Frequency: f
SMALL-SIGNAL SHORT-CIRCUIT INPUT IMPEDANCE [hie, hie(real). hie(imag)]
Descri ption
The input impedance is hie; Vbe/lb with Vce ; 0_ The real and imaginary components are important for input
matching networks_
Circuits
Capacitors Cl and C2 must represent a short-circuit at the measuring frequency_ The bridge must be nulled with a
short across the base and emitter terminals and VBB ; 0_ When hie is measured at 1 kHz, Ib can be measured with
a current probe and Vbe with a scope_
C1
+
RBB
I...-----III~_+_-_lil
VBB
VCC
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1-37
ELECTRICAL CHARACTERISTIC TESTS
•
Test Conditions To Be Specified
Case temperature if not TC ~ 25°C
Collector-to-emitter voltage: VCE
Collector current: IC
Frequency: f for hie(real) and hie(imag)
SMALL-SIGNAL OPEN-CIRCUIT OUTPUT ADMITTANCE [hoe(real)]
Description
The purpose of this test is to determine the real part of the output admittance.
Test Circuit
veE
-'
I
It---e----flI1------'
Vee
Vee
The L-C network in the base circuit must have a large impedance compared with hie at the test frequency.
Capacitor C1 shall present a short-circuit at the test frequency.
Test Conditions To Be Specified
Case temperature if not TC ~ 25°C
Collector-to-emitter voltage: VCE
Collector current: IC
Frequency: f
1·38
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
ELECTRICAL CHARACTERISTIC TESTS
SMALL-SIGNAL FORWARD CURRENT TRANSFER RATIO [hfel. CUT-OFF FREQUENCY [fhfel.
AND FREQUENCY AT WHICH Ihfel EXTRAPOLATES TO UNITY [fTl
Description
These measurements indicate the gain hfe and the frequency response capability of transistors. Both
measurements are dependent on the operating point.
hfe = Icllb (with Vce = 0) at low frequency.
•
fhfe = frequency at which hte is 3 dB down from its 1-kHz measurement
fT =
Ihfe l x f. The absolute small·signal Ihfel has to be measured at a frequency f where Ihfel is decreasing
approximately 6 dB per octave.
The measurement as specified does not assure the 6-dB-per-octave region. The 6-dB·per-octave region can be
determined by plotting Ihfel versus f.
Test Circuit
CURRENT
PROBEl c
C2
....------1 ;:Cl
L-_~~~ + ~-~~----~V}---~,
VBB
VCC
IC
The L·C networks must have a very large impedance compared to the capacitors C1 and C2. The amplitude of Ib
and Ic is measured with a current probe.
The ac impedance represented by C2. the current probe for Ic. and associated wiring shall be small compared to
the output impedance of the Transistor Under Test.
Test Conditions To Be Specified
Case temperature if not TC = 25°C
Collector·to·emitter voltage: VCE
Collector current: IC
For hfe and
fT only: f
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1-39
ELECTRICAL CHARACTERISTIC TESTS
•
SWITCHING TIME ltd, tr, ts,
ttl
Description
It is desirable to minimize the large possible variations in switching circuits. A circuit similar to the following is
recommended for switching times registered on the JC-25 RDF·2 format. For definition of ld, t r, t s, and tf, see
section on "Letter Symbols, Abbreviations, Terms, and Definitions." The transistor parameter "rise time" refers
to the time interval during which the magnitude of the collector current is increasing and the magnitude of the
collector voltage is-descreasing.
Test Circuit
SCOPE
(OUTPUT PULSE)
SCOPE
(INPUT PULSE)
~----~~--~----~TUT
RBB1
RBB2
~PULSE
GENERATOR
Vee
VBB1
The rise and fall time of the input pulse shall be smaller than 10% of the maximum specified rise and fall time of
the output pulse. Changing the pulse width tw by a factor of two should not change the storage time ts by more
than the desired accurancy of the measurement.
Test Conditions To Be Specified
case temperature if not TC = 25°C
VSS1, VSB2, Vcc, RSB1, RBB2, RL, tw and f of pulse generator.
1-40
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
•
Cross'"Reference
Guide
•
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
2N68
TI3027
PNP-Ge
2N418
TI3031
PNP-Ge
2N101
2N1038
PNP-Ge
2N419
TI3029
PNP-Ge
2N102
2N1038
PNP-Ge
2N420
TI3029
PNP-Ge
2N141
2N1038
PNP-Ge
2N424
2N424
2N424
NPN-Ge
2N142
2N1038
PNP-Ge
2N424A
2N424A
2N424A
NPN-Ge
2N143
2N1038
PNP-Ge
2N441
2N511
PNP-Ge
2N144
2N1039
PNP-Ge
2N442
2N512
PNP-Ge
2N155
TI3027
PNP-Ge
2N443
2N513
PNP-Ge
2N2552
PNP-Ge
2N456
2N456
2N456
PNP-Ge
2N158
2N2552
PNP-Ge
2N456A
2N456A
2N456A
PNP-Ge
2N158A
2N2552
PNP-Ge
2N456B
2N456B
2N456B
PNP-Ge
2N173
2N512
PNP-Ge
2N457
2N457
2N457
PNP-Ge
2N174
2N513
PNP-Ge
2N457A
2N457A
2N457A
PNP-Ge
2N174A
2N513A
PNP-Ge
2N457B
2N457B
2N457B
PNP-Ge
2N176
TI3027
PNP-Ge
2N458
2N458
2N458
PNP-Ge
2N178
TI3027
PNP-Ge
2N458A
2N458A
2N458A
PNP-Ge
2N234A
TI3027
PNP-Ge
2N458B
2N458B
2N458B
PNP-Ge
2N235A
TI3027
PNP-Ge
2N459
2N3146
PNP-Ge
2N236A
TI3028
PNP-Ge
2N459A
2N3146
PNP-Ge
2N242
Tl3029
PNP-Ge
2N497
2N497
2N497
NPN-Si
2N156
TI156
2N250
2N250
2N456
PNP-Ge
2N497A
2N497A
2N497A
NPN-Si
2N250A
2N250A
2N456
PNP-Ge
2N498
2N498
2N498
NPN-Si
2N251
2N251
2N456
PNP-Ge
2N498A
2N498A
2N498A
NPN-Si
2N251A
2N251A
2N456
PNP-Ge
2N511
2N511
2N511
PNP-Ge
2N255
Tl3027
PNP-Ge
2N511A
2N511A
2N511A
PNP-Ge
2N256
TI3027
PNP-Ge
2N511B
2N511B
2N511B
PNP-Ge
2N257
TI3027
PNP-Ge
2N512
2N512
2N512
PNP-Ge
2N268
TI3027
PNP-Ge
2N512A
2N512A
2N512A
PNP-Ge
2N277
2N512
PNP-Ge
2N512B
2N512B
2N512B
PNP-Ge
PNP-Ge
2N278
2N513
PNP-Ge
2N513
2N513
2N513
2N285
TI3027
PNP-Ge
2N513A
2N513A
2N513A
PNP-Ge
2N285A
TI3027
PNP-Ge
2N513B
2N513B
2N513B
PNP-Ge
2N296
TI3030
PNP-Ge
2N514
2N514
2N514
PNP-Ge
2N297
TI3028
PNP-Ge
2N514A
2N514A
2N514A
PNP-Ge
2N301
TI3027
PNP-Ge
2N514B
2N514B
2N514B
PNP-Ge
2N307
TI3027
PNP-Ge
2N538
TI3031
PNP-Ge
2N326
TI3027
PNP-Ge
2N539
TI3031
PNP-Ge
2N350
TI3028
PNP-Ge
2N539A
TI3031
PNP-Ge
2N351
TI3028
PNP-Ge
2N540
TI3031
PNP-Ge
2N375
TI3031
PNP-Ge
2N553
TI3027
PNP-Ge
2N376
TI3028
PNP-Ge
2N554
TI3027
PNP-Ge
2N378
TI3027
PNP-Ge
2N555
TI3027
PNP-Ge
2N379
TI3029
PNP-Ge
2N561
TI3031
PNP-Ge
2N380
TI3030
PNP-Ge
2N574
TI3031
PNP-Ge
2N389
2N389
2N389
NPN-Si
2N574A
TI3031
PNP-Ge
2N389A
2N389A
2N389A
NPN-Si
2N575
TI3031
PNP-Ge
2N392
TI3027
PNP-Ge
2N575A
TI3031
PNP-Ge
2N399
TI3028
PNP-Ge
2N618
TI3031
PNP-Ge
2N400
TI3028
PNP-Ge
2N627
TI3027
PNP-Ge
2N401
T13028
PNP-Ge
2N628
TI3028
PNP-Ge
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
•
2-1
CROSS-REFERENCE GUIDE
TYPE
•
FOR NEW DESIGN
TI DIRECT
REPLACEMENT
CLASS
TYPE
2N1029A
TI3027
PNP-Ge
FOR NEW DESIGN
CLASS
2N629
TI3030
PNP-Ge
2N630
TI3031
PNP-Ge
2N10298
TI3031
PNP-Ge
2N637
TI3027
PNP-Ge
2N1029C
2N456A
PNP-Ge
2N637A
TI3031
PNP-Ge
2N1030
2N456A
PNP-Ge
2N6378
TI3146
PNP-Ge
2N1030A
2N456A
PNP-Ge
2N638
TI3027
PNP-Ge
2N1031
TI3027
PNP-Ge
2N638A
Tl3028
PNP-Ge
2N1031A
TI3027
PNP-Ge
2N6388
TI3029
PNP-Ge
2N10318
TI3031
PNP-Ge
2N639
TI3028
PNP-Ge
2N1031C
TI456A
PNP-Ge
2N639A
2N3146
PNP-Ge
2N1032
2N456A
PNP-Ge
2N6398
2N3146
PNP-Ge
2N1032A
2N456A
PNP-Ge
PNP-Ge
2N656
2N656
2N656
NPN-Si
2N1038
2N 1038
2N1038
2N656A
2N656A
2N656A
NPN-Si
2N 1038-1
2N2552
2N2552
PNP-Ge
2N657
2N657
2N657
NPN-Si
2N1038-2
2N2556
2N2556
PNP-Ge
2N657A
2N657A
2N657A
NPN-Si
2N 1039
2N1039
2N1039
PNP-Ge
2N663
TI3027
PNP-Ge
2N1039-1
2N2553
2N2553
PNP-Ge
2N665
TI3029
PNP-Ge
2N 1039-2
2N2557
2N2557
PNP-Ge
2N669
TI3027
PNP-Ge
2N1040
2N1040
2N1040
PNR-Ge
2N677
2N511
PNP-Ge
2N104Q-1
2N2554
2N2554
PNP-Ge
2N677A
2N512
PNP-Ge
2N104Q-2
2N2558
2N2558
PNP-Ge
2N6778
2N513
PNP-Ge
2N1041
2N1041
2N1041
PNP-Ge
2N677C
2N514
PNP-Ge
2N1041-1
2N2555
2N2555
PNP-Ge
2N678
2N511
PNP-Ge
2N1041-2
2N2559
2N2559
PNP-Ge
2N678A
2N512
PNP-Ge
2N1042
2N1042
2N1042
PNP-Ge
2N6788
2N513
PNP-Ge
2N1042-1
2N2560
2N2560
PNP-Ge
2N678C
2N514
PNP-Ge
2N 1042-2
2N2564
2N2564
PNP-Ge
2N876
2N3005
SCR
2N 1043
2N1043
2N1043
PNP-Ge
2N877
2N3005
SCR
2N 1043-1
2N2561
2N2561
PNP-Ge
2N878
2N3006
SCR
2N1043-2
2N2565
2N2565
PNP-Ge
2N879
2N3007
SCR
2N1044
2N1044
2N 1044
PNP-Ge
2N880
2N3008
SCR
2N 1044-1
2N2562
2N2562
PNP-Ge
2N881
2N3008
SCR
2N1044-2
2N2566
2N2566
PNP-Ge
2N884
2N3001
SCR
2N1045
2N1045
2N1045
PNP-Ge
2N885
2N3001
SCR
2N1045-1
2N2563
2N2563
PNP-Ge
2N886
2N3002
SCR
2N1045-2
2N2567
2N2567
PNP-Ge
2N887
2N3003
SCR
2N1046
2N1046
2N1907
PNP-Ge
2N888
2N3004
SCR
2N1046A
2N1046A
2N1907
PNP-Ge
2N889
2N3004
SCR
2N10468
2N10468
2N1907
PNP-Ge
2N948
2N3001
SCR
2N1047
2N1047
2N1047
NPN-8i
2N949
2N3002
SCR
2N1047A
2N1047A
2N1047A
NPN-8i
2N950
2N3003
SCR
2N10478
2N10478
2N10478
NPN-Si
2N1011
TI3028
PNP-Ge
2N1048
2N1048
2N1048
NPN-Si
2N1014
2N456A
PNP-Ge
2N1048A
2N1048A
2N1048A
NPN-8i
2N1015
2N3713
NPN-Si
2N 10488
2N10488
2N10488
NPN-Si
2N1016
2N3713
NPN-Si
2N1049
2N1049
2N1049
NPN-Si
2N1021
2N1021
2N456A
PNP-Ge
2N1049A
2N1049A
2N1049A
NPN-8i
2N1021A
2N1021A
2N456A
PNP-Ge
2N 10498
2N10498
2N10498
NPN-Si
2N1022
2N1022
2N456A
PNP-Ge
2N1050
2N1050
2N1050
NPN-Si
2N1022A
2N1022A
2N456A
PNP-Ge
2N1050A
2N1050A
2N1050A
NPN-8i
TI3027
PNP-Ge
2N10508
2N10508
2N 10508
NPN-Si
2N 1029
2-2
TI DIRECT
REPLACEMENT
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
2N1069
FOR NEW DESIGN
2N3713
TI DIRECT
REPLACEMENT
CLASS
TYPE
NPN-Si
2N1293
Tl3028
PNP-Ge
FOR NEW DESIGN
CLASS
2N1070
2N3713
NPN-Si
2N1295
2N3146
PNP-Ge
2N1120
TI3031
PNP-Ge
2N1297
2N3146
PNP-Ge
2N1136
TI3027
PNP-Ge
2N1314
TI3027
PNP-Ge
2N1136A
TI3028
PNP-Ge
2N1320
2N1038
PNP-Ge
2N11366
Tl3027
PNP-Ge
2N1322
2N1038
PNP-Ge
2N1137
2N456A
PNP-Ge
2N1324
2N1038
PNP-Ge
2N1137A
2N456A
PNP-Ge
2N1326
2N1041
PNI'-Ge
2N11376
2N456A
PNP-Ge
2N1328
2N1038
PNP-Ge
2N1138
TI3027
PNP-Ge
2N1359
CTI
TI3027
PNP-Ge
2N1138A
2N456A
PNP-Ge
2N1360
CTI
TI3027
PNP-Ge
2N11388
2N456A
PNP-Ge
21'11362
CTI
PNP-Ge
2N1146
2N456A
PNP-Ge
2N1364
CTI
2N3146
2N3146
2N1146A
2N456A
PNP-Ge
2N1365
CTI
21'13146
PNP-Ge
2N11466
2N4566
PNP-Ge
2N1437
2N3146
PNP-Ge
2N1146C
2N456A
PNP-Ge
2N'1438
21'13146
PNP-Ge
2N1147
2N456A
PNP-Ge
21'11465
21'13146
PNP-Ge
PNP-Ge
2N1147A
2N456A
PNP-Ge
2N1466
2N3146
PNP-Ge
2N11478
2N456A
PNP-Ge
2N1470
2N3713
NPN-Si
2N1147C
2N456A
PNP-Ge
21'11487
2N3713
NPN-Si
2N1159
2N456A
PNP-Ge
2N1488
2N3714
NPN-Si
2N1160
2N456A
PNP-Ge
2N1489
2N4913
NPN-Si
2N1162
2N456A
PNP-Ge
21'11490
2N4914
NPN-Si
2N1162A
2N456A
PNP-Ge
21'11501
T13028-
PNP-Ge
2N1163
2N456A
PNP-Ge
2N1502
TI3028
PNP-Ge
2N1163A
2N456A
PNP-Ge
2N1504
21'13146
PNP-Ge
2N1168
TI3027
PNP-Ge
2N1529
2N1529
2N1529
PNP-Ge
2N1172
TI3027
PNP-Ge
2N1530
21'11530
2N1530
PNP-Ge
2N1176
2N1038
PNP-Ge
2N1531
2N1531
21'11531
PNP-Ge
2N1183
2N1038
PNP-Ge
2N1532
2N1532
2N1532
PNP-Ge
2N1183A
2N1038
PNP-Ge
2N1533
21'11533
21'11533
PNP-Ge
2N11838
2N1039
PNf'-Ge
2N1534
21'11534
21'11534
PNP-Ge
2N1184
2N2564
PNP-Ge
2N1534A
Tl3027
PNP-Ge
2N1184A
2N2564
PNP-Ge
2N1535
2N1535
PNP-Ge
2N11848
2N2565
PNP-Ge
2N1535A
TI3027
PNP-Ge
2N1202
2N3146
PNP-Ge
2N1536
2N3028
PNP-Ge
2N1203
2N3146
PNP-Ge
2N1536A
TI3028
PNP-Ge
2N1208
2N3715
NPN-Si
21'11537
TI3030
PNP-Ge
2N1209
2N1724
NPN-Si
2N1537A
TI3030
PNP-Ge
2N1210
2N1722
NPN-Si
2N1538
21'11538
21'13146
PNP-Ge
2N1211
2N1722
NPN-Si
2N1539
2N1539
TI3027
PNP-Ge
2N1212
2N1724
NPN-Si
2N1540
2N1540
TI3027
PNP-Ge
2N1227
TI3027
PNP-Ge
2N1540A
TI3028
PNP-Ge
TI3028
PNP-Ge
TI3028
PNP-Ge
TI3031
PNP-Ge
TI3031
PNP-Ge
2N1535
2N1536
2N1537
2N1235
2N1235
2N1235
NPN-Si
2N1541
2N1260
2N1260
2N1260
NPN-Si
2N1541A
2N1261
TI3030
PNP-Ge
2N1542
2N1262
TI3030
PNP-Ge
2N1542A
2N1263
T13030
PNP-Ge
21'11543
2N1543
2N3146
PNP-Ge
2N1291
TI3027
PNP-Ge
21'11544
2N1544
TI3027
PNP-Ge
2N1541
2N1542
•
CTI-Contact Texas Instruments.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
2-3
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
TYPE
TI3027
PNP-Ge
2NI647
21'.12150
NPN-Si
TI3027
PNP-Ge
2NI648
2N2150
NPN-Si
TI3027
PNP-Ge
2NI649
2N2150
NPN-Si
T13029
PNP-Ge
2N1650
2N2151
NPN-Si
TI3029
PNP-Ge
2N1660
2N1722
NPN-Si
TI3031
PNP-Ge
2N1661
2N1722
NPN-Si
TI3031
PNP-Ge
2N1662
2NI722
NPN-Si
2N3146
PNP-Ge
2N1666
TI3027
PNP-Ge
2NI549
TI3027
PNP-Ge
2N1667
TI3027
PNP-Ge
2NI549A
TI3027
PNP-Ge
2N1668
TI3027
PNP-Ge
2N1550
TI3027
PNP-Ge
2N1669
TI3027
PNP-Ge
2N1550A
Tl3027
PNP-Ge
2N1690
2NI690
2N1690
NPN-Si
2N1551
TI3029
PNP-Ge
2N1691
2NI691
2N1691
NPN-Si
2N1551A
TI3029
PNP-Ge
2N1702
2N4913
NPN-Si
2N1552
TI3031
PNP-Ge
2N1714
2N1714
2N1714
NPN-Si
2N1552A
TI3031
PNP-Ge
2N1715
21'.11715
2N1715
NPN-Si
2N1553
TI3027
PNP-Ge
2N1716
2N1716
2N1716
NPN-Si
2Nl.553A
TI3027
PNP-Ge
2N1717
2N1717
2N1717
NPIII-Si
2N1554
TI3027
PNP-Ge
2N1718
2N1718
2N1718
NPN-Si
2N1554A
TI3027
PNP-Ge
2N1719
2N1719
2N1719
NPN-Si
2N1556
2N456B
PNP-Ge
2N1720
2N1720
2NI720
NPN-Si
2N1555A
2N456B
PNP-Ge
2N1721
2NI721
2NI721
NPN-Si
2N1556
2Nl021A
PNP-Ge
2N1722
2NI722
2NI722
NPN-Si
2N1556A
2Nl021A
PNP-Ge
2N1722A
2N1722A
2NI722A
NPN-Si
2N1557
2N514
PNP-Ge
2NI723
2NI723
2N3716
NPN-Si
2N1557A
2N514
PNp:(3e
2NI724
2NI724
2NI724
NPN-Si
2N1558
2N514
PNP-Ge
2N1724A
2NI724A
2NI724A
NPN-Si
2N1558A
2N514A
PNP-Ge
2NI725
2NI725
2N1725
NPN-Si
2N1559
2N514A
PNP-Ge
2N1755
2N2552
PNP-Ge
2N1559A
2N514A
PNP-Ge
2N1756
2N2554
PNP-Ge
2N1560
2N514B
PNP-Ge
2N1757
2N2555
PNP-Ge
2NI560A
2N514B
PNP-Ge
2N1758
2N2555
PNP-Ge
2NI545
2NI545
2N1545A
•
2-4
TI DIRECT
REPLACEMENT
CLASS
2NI544A
2NI546
2NI546
2NI546A
2NI547
2NI547
2NI547A
2NI548
2NI548
FOR NEW DESIGN
FOR NEW DESIGN
CLASS
2N1595
2N1595
2N1595
SCR
2N1759
2N2564
PNP-Ge
2N1596
2N1596
2N1596
SCR
2N1760
2N2566
PNP-Ge
2N1597
2N1597
2N1597
SCR
2N1761
2N2567
PNP-Ge
2NI598
2NI598
2N1598
SCR
2N1762
2N2567
PNP-Ge
2NI599
2N1599
2N1599
SCR
2NI772A
TlC116A
SCR
2N1600
TIC116A
SCR
2NI773A
TlC116B
SCR
2N1601
TIC116B
SCR
2NI774A
TlC116B
SCR
2N1602
TIC116B
SCR
2NI775A
TIC116C
SCR
2N1603
TIC116C
SCR
2NI776A
TIC116C
SCR
2N1604
TIC116D
SCR
2NI777A
TIC116D
SCR
2N1616
2NI724
NPN-Si
2NI778A
TIC116E
SCR
2N1616A
2NI724
NPN-Si
2N1870A
TIC39Y
SCR
2N1617
2NI724
NPN-Si
2N1871A
TIC39F
SCR
2N1617A
2NI724
NPN-Si
2N1872A
TIC39A
SCR
2N1618
2NI724
NPN-Si
2N1873A
TIC39B
SCR
2N1618A
2N1724
NPN-Si
2N1874A
TIC39B
SCR
2N1620
2N1724
NPN-Si
2N1876
TIC39Y
SCR
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 15222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TI DIRECT
REPLACEMENT
2N1877
TIC39F
SCR
TYPE
2N2111
FOR NEW DESIGN
2N1878
TIC39A
SCR
2N2112
2N3846
NPN·Si
2N1879
TIC39B
SCR
2N2113
2N3846
NPN·Si
2N1880
TIC39B
SCR
2N2114
2N3846
NPN·Si
2N1881
2N1595
SCR
2N2116
2N3846
NPN·Si
2N1882
2N1596
SCR
2N2117
2N3846
NPN·Si
2N1883
2N1596
SCR
2N2118
2N3846
NPN·Si
2N1884
2N1597
SCR
2N2119
2N3846
NPN·Si
2N1885
2N1597
SCR
2N2120
2N3846
NPN·Si
2N1899
2N4002
NPN·Si
2N2123
2N4002
NPN·Si
2N1901
2N4002
NPN·Si
2N2124
2N4002
NPN·Si
2N1905
2N1046
PNP·Ge
2N2125
2N3847
NPN·Si
2N1906
2N1907
PNP·Ge
2N2126
2N3847
NPN·Si
2N3846
CLASS
NPN·Si
2N1907
2N1907
2N1907
PNP·Ge
2N2127
2N3847
NPN·Si
2N1908
2N1908
2N1908
PNP·Ge
2N2130
2N4002
NPN·Si
2N1931
2N1596
SCR
2N2131
2N4002
NPN·Si
2N1932
2N1597
SCR
2N2132
2N3847
NPN·Si
2N1933
2N1598
SCR
2N2133
2N3847
NPN·Si
2N1934
2N1598
SCR
2N2137
2N2552
PNP·Ge
2N1935
2N1598
SCR
2N2138
2N2552
PNP·Ge
2N1936
2N1936
2N3846
NPN·Si
2N2138A
2N2552
PNP·Ge
2N1937
2N1937
2N3846
NPN·Si
2N2139
2N2554
PNP·Ge
2N1940
TI3027
PNP·Ge
2N2139A
2N2554
PNP·Ge
2N2008
2N2987
NPN·Si
2N2140
2N2555
PNP·Ge
2N2009
TIC39Y
SCR
2N2140A
2N2555
PNP·Ge
2N2010
TIC39F
SCR
2N2141
2N2555
PNP·Ge
2N2011
TIC39A
SCR
2N2141A
2N2555
PNP·Ge
2N2012
TIC39B
SCR
2N2147
2Nl907
PNP·Ge
2N2013
TIC39C
SCR
2N2148
2N1908
PNP·Ge
2N2014
TIC39D
SCR
2N2150
2N2150
2N2150
NPN·Si
2N2015
2N3713
NPN·Si
2N2151
2N2151
2N2151
NPN·Si
2N2016
2N3714
NPN·Si
2N2196
2N2987
NPN·Si
2N2017
CTI
2N2989
NPN·Si
2N2197
2N2987
NPN·Si
2N2018
CTI
CTI
NPN·Si
2N2201
2N2987
NPN·Si
2N2019
CTI
CTI
NPN·Si
2N2202
2N2987
NPN·Si
2N2020
CTI
CTI
NPN·Si
2N2203
2N2987
NPN·Si
2N2021
CTI
CTI
NPN·Si
2N2204
2N2987
NPN·Si
2N2032
CTI
CTI
NPN·Si
2N2226
2N4002
NPN·Si
2N2033
CTI
CTI
NPN-Si
2N2227
2N4003
NPN·Si
2N2034
CTI
CTI
NPN·Si
2N2288
2N1046
PNP·Ge
2N2035
CTI
NPN·Si
2N2291
2N1907
PNP·Ge
2N2036
CTI
NPN·Si
2N2294
2N1907
PNP·Ge
2N2067
2N2553
PNP·Ge
2N2304
CTI
NPN·Si
2N2068
2N2555
PNP·Ge
2N2305
2N3713
NPN·Si
2N2106
2N497
NPN·Si
2N2308
CTJ
NPN·Si
2N2107
2N656
NPN·Si
2N2322
TIC39Y
SCR
2N2108
2N656
NPN·Si
2N2323
TIC39F
SCR
2N2109
2N3846
NPN·Si
2N2324
TIC39A
SCR
2N2110
2N3846
NPN·Si
2N2325
TIC39B
SCR
•
CTI-Contact Texas Instruments.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
2·5
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
2N2326
TIC39B
SCR
2N2327
TIC39C
2N2328
TIC39C
2N2329
2N2338
TYPE
TI DIRECT
REPLACEMENT
CLASS
2N2667
2N2667
PNP-Ge
SCR
2N2668
2N2668
2N2668
PNP-Ge
SCR
2N2669
2N2669
2N2669
PNP-Ge
TIC39D
SCR
2N2670
2N2670
2N2670
PNP-Ge
2N3713
NPN-Si
2N2679
2N3001
SCR
2N2339
CTI
NPN-Si
2N2680
2N3002
SCR
2N2344
TIC39C
SCR
2N2681
2N3003
SCR
2N2345
TIC39F
SCR
2N2683
2N3001
SCR
2N2346
TIC39A
SCR
2N2684
2N3002
SCR
2N2347
TIC398
SCR
2N2685
2N3003
SCR
2N2348
TIC39B
SCR
2N2687
2N3005
SCR
2N2383
2N1722
NPN-8i
2N2688
2N3006
SCR
2N2384
2N1724
NPN-8i
2N2689
2N3007
SCR
2N2405
2N2987
NPN-8i
2N2690
2N3008
SCR
2N2434
2N3146
PNP-Ge
2N2811
CTI
2N4301
NPN-8i
2N2444
2N3146
PNP-Ge
2N2812
CTI
2N4301
NPN-8i
2N2445
2N3146
PNP-Ge
2N2813
CTI
2N4301
NPN-8i
2N2472
2N2987
NPN-Si
2N2814
CTI
2N4301
NPN-8i
2N2482
2N797
NPN-Ge
2N2815
CTI
2N4002
NPN-8i
2N2552
2N2552
2N2552
PNP-Ge
2N2816
CTI
2N4002
NPN-8i
2N2553
2N2553
2N2553
PNP-Ge
2N2817
CTI
2N6324
NPN-8i
2N2554
2N2554
2N2554
PNP-Ge
2N2818
CTI
2N6324
NPN-8i
2N2555
2N2555
2N2555
PNP-Ge
2N2819
CTI
2N4002
NPN-8i
2N2556
2N2556
2N2556
PNP-Ge
2N2820
CTI
2N4002
NPN-8i
2N2557
2N2557
2N2557
PNP-Ge
2N2821
CTI
2N6324
NPN-8i
2N2558
2N2558
2N2558
PNP-Ge
2N2822
CTI
2N6324
NPN-8i
2N2559
2N2559
2N2559
PNP-Ge
2N2823
CTI
2N4002
NPN-8i
2N2560
2N2560
2N2560
PNP-Ge
2N2824
CTI
2N4002
NPN-8i
2N2561
2N2561
2N2561
PNP-Ge
2N2825
CTI
2N6324
NPN-8i
2N2562
2N2562
2N2562
PNP-Ge
2N2B28
CTI\
2N3998
NPN-Si
2N2563
2N2563
PNP-Ge
2N2829
CTI
2N3998
NPN-8i
2N2584
2N2563
2N2564
2N2584
PNP-Ge
2N2832
2Nl908
PNP-8i
2N2565
2N2565
2N2565
PNP-Ge
2N2835
2N2564
PNP-8i
2N2566
2N2566
2N2566
PNP-Ge
2N2836
TI3029
PNP-8i
2N2567
2N2567
2N2567
PNP-Ge
2N2866
CTI
2N3998
NPN-8i
2N2632
CTI
2N3998
NPN-8i
2N2867
CTI
2N3999
NPN-8i
2N2633
CTI
2N3998
NPN-8i
2N2869
T13030
PNP-8i
2N2634
CTI
2N3998
NPN-8i
2N2870
TI3030
PNP-8i
2N2657
CTI
2N3418
NPN-8i
2N2875
CTI
2N3998
NPN-8i
2N2658
CTI
2N3418
NPN-8i
2N2877
CTI
2N3998
NPN-Si
2N2659
2N2659
2N2659
PNP-Ge
2N2878
CTI
2N3998
NPN-8i
2N2660
2N2660
2N2660
PNP-Ge
2N2879
CTI
2N3998
NPN-8i
2N2661
2N2661
2N2661
PNP-Ge
2N2880
2N2880
2N2880
NPN-8i
2N2662
2N2662
2N2662
PNP-Ge
2N2881
CTI
2N5333
PNP-8i
2N2663
2N2663
2N2663
PNP-Ge
2N2882
CTI
2N5333
PNP-8i
2N2664
2N2664
2N2664
PNP-Ge
2N2890
CTI
2N4000
NPN-8i
2N2665
2N2665
2N2665
PNP-Ge
2N2891
CTI
2N4000
NPN-8i
2N2666
'2N2666
2N2666
PNP-Ge
2N2892
CTI
2N5004
NPN-8i
CTI-Cont&ct Texas Instruments.
2·6
FOR NEW DESIGN
2N2667
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
2N5004
NPN-Si
2N3144
T! DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
2N2893
CTI
2N2983
CT!
2N3418
NPN-Si
2N4145
2N2984
CT!
2N3418
NPN-Si
2N3146
2N3146
2N2985
CTI
2N3418
NPN-Si
2N3147
2N3147
2N2986
CT!
2N3418
NPN-Si
2N3149
2N2987
2N2987
2N2987
NPN-Si
2N3150
CT!
NPN-Si
2N2988
2N2988
2N2988
NPN-Si
2N3151
CT!
NPN-Si
2N2989
2N2989
2N2989
NPN-Si
2N3163
2N3789
PNP-Si
2N2990
2N2990
2N2990
NPN-Si
2N3164
CTI
PNP-Si
2N2991
2N2991
2N2991
NPN-Si
2N3165
CT!
PNP-Si
2N2992
2N2992
2N2992
NPN-Si
2N3166
CT!
PNP-Si
2N2993
2N2993
2N2993
NPN-Si
2N3167
CT!
PNP-Si
2N2994
2N2994
2N2994
NPN-Si
2N3168
CT!
PNP-Si
2N3001
2N3001
2N3001
SCR
2N3169
CT!
PNP-Si
2N3002
2N3002
2N3002
SCR
2N3170
CT!
PNP-Si
2N3003
2N3003
2N3003
SCR
2N3171
2N3789
PNP-Si
2N3004
2N3004
2N3004
SCR
2N3172
2N3789
PNP-Si
2N3005
2N3005
T!C44
SCR
2N3173
2N3790
PNP-Si
2N3006
2N3006
T!C45
SCR
2N3174
2N3790
PNP-Si
2N3007
2N3007
T!C46
SCR
2N3175
CT!
PNP-Si
2N3008
2N3008
T!C47
SCR
2N3176
CT!
PNP-Si
2N3021
2N3021
2N3789
PNP-Si
2N3177
CT!
PNP-Si
2N3022
2N3022
2N3789
PNP-Si
2N3178
CT!
PNP-Si
2N3023
2N3023
2N3789
PNP-Si
2N3179
CT!
PNP-Si
2N3024
2N3024
2N3791
PNP-Si
2N3180
CT!
PNP-Si
2N3025
2N3025
2N3791
PNP-Si
2N3181
CT!
PNP-Si
2N3026
2N3026
2N3791
PNP-Si
2N3182
CT!
PNP-Si
2N3027
T!C44
SCR
2N3183
2N3789
PNP-Si
2N3028
T!C45
SCR
2N3184
2N3789
PNP-Si
CT!
NPN-Si
CT!
NPN-Si
2N3146
PNP-Ge
2N3147
PNP-Ge
CT!
NPN-Si
2N3029
T!C46
SCR
2N3185
2N3790
PNP-Si
2N3030
T!C44
SCR
2N3186
2N3790
PNP-Si
2N3031
T!C45
SCR
2N3187
CT!
PNP-Si
2N3032
T!C46
SCR
2N3188
CT!
PNP-Si
2N3054
T!P31A
NPN-Si
2N3189
CT!
PNP-Si
T!P3055
NPN-Si
2N3190
CT!
PNP-Si
NPN-Si
2N3055
2N3055
2N3074
CTI
PNP-Ge
2N3191
CTI
2N3075
CT!
PNP-Ge
2N3192
CTI
NPN-Si
2N3076
CTI
NPN-Si
2N3193
CT!
NPN-Si
2N3079
CT!
NPN-Si
2N3194
CT!
NPN-Si
2N3080
CT!
NPN-Si
2N3195
PNP-Si
2N3125
2N3146
PNP-Ge
2N3196
2N3789
2N3789
2N3126
2N3146
PNP-Ge
2N3197
2N3790
PNP-Si
2N3132
T!3031
PNP-Ge
2N3198
2N3790
PNP-Si
2N3138
CT!
NPN-Si
2N3199
CT!
2N3139
CT!
NPN-Si
2N3200
CT!
PNP-Si
NPN-Si
2N3140
CTI
NPN-Si
2N3201
CT!
NPN-Si
2N3141
CTI
NPN-Si
2N3202
CT!
NPN-Si
2N3142
CT!
NPN-Si
2N3203
CT!
NPN-Si
2N3143
CT!
NPN-Si
2N3204
CT!
NPN-Si
•
PNP-Si
CTI-Contact Texas Instruments.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
2-7
. CROSS-REFERENCE GUIDE
TYPE
•
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
TI DIRECT
REPLACEMENT
CLASS
CTI
NPN-5i
2N3445
2N3713
NPN-5i
2N3206
CTI
NPN-Si
2N3446
2N3714
NPN-5i
2N3207
CTI
NPN-Si
2N3447
2N3715
NPN-5i
2N3208
CTI
NPN-Si
2N3448
2N3716
NPN-5i
2N3220
CTI
NPN-5i
2N3469
CTI
NPN-5i
2N3221
CTI
NPN-Si
2N3470
NPN-5i
2N3222
CTI
NPN-Si
2N3471
CTI
CTI
2N3223
CTI
NPN-Si
2N3472
CTI
NPN-5i
NPN-5i
2N3226
2N3713
NPN-5i
2N3473
CTI
NPN-5i
2N3228
TIC106B
SCR
2N3474
CTI
NPN-5i
2N3230
CTI
NPN-5i
2N3475
CTI
NPN-5i
2N3231
CTI
NPN-5i
2N3476
2N3232
CTI
NPN-5i
2N3487
CTI
CTI
NPN-5i
2N3233
CTI
NPN-5i
2N348B
CTI
NPN-5i
2N3234
NPN-5i
2N3489
CTI
NPN-5i
2N3235
CTI
·CTI
NPN-5i
2N3490
CTI
NPN-5i
2N3236
CTI
NPN-Si
2N3491
CTI
NPN-5i
2N3237
CTI
NPN-Si
2N3492
CTI
NPN-5i
2N3238
CTI
NPN-5i
2N3525
2N1599
2N1597
SCR
NPN-5i
2N3239
CTI
NPN-5i
2N3528
2N3240
2N3255
CTI
NPN-5i
2N3551
2N3551
2N3551
NPN-5i
2N3001
SCR
2N3552
2N3256
2N3002
SCR
2N3552
2N3555
2N3552
TIC39Y
SCR
2N3258
2N3004
2N3005
2N3556
2N3557
TIC39F
SCR
TIC39A
SCR
2N3558
TIC39B
SCR
2Nj3259
2N3260
SCR
CTI
SCR
NPN-5i
SCR
NPN-5i
2N3263
2N3263
CTI
NPN-5i
2N3559
TlC39Y
SCR
2N3264
2N3264
CTI
NPN-5i
2N3560
TlC39Y
SCR
2N3265
2N3265
CTI
NPN-5i
2N3561
TlC39A
2N3266
2N3266
NPN-5i
2N3562
TIC39B
SCR
SCR
2N3273
CTI
TIC106A
SCR
2N3583
2N3583
2N3583
NPN-5i
2N3274
TlCl06B
SCR
2N3584
2N3584
2N3584
NPN-5i
2N3275
TIC106C
SCR
2N3585
2N3585
2N3585
NPN-5i
2N3297
CTI
NPN-5i
2N3589
CTI
CTI
NPN-Si
2N3327
NPN-5i
2N3590
CTI
CTI
NPN-5i
2N3418
2N3418
CTI
2N3418
NPN-Si
2N3591
CTI
CTI
NPN-5i
2N3419
2N3419
2N3419
NPN-Si
2N3592
CTI
CTI
NPN-5i
2N3420
2N3420
2N3420
NPN-5i
2N3593
CTI
CTI
NPN-5i
2N3421
2N3421
2N3421
NPN-5i
2N3594
CTI
CTI
NPN-5i
2N3429
CTI
NPN-5i
2N3595
CTI
CTI
NPN-5i
2N3430
CTI
NPN-5i
2N3596
CTI
CTI
NPN-5i
2N3431
CTI
NPN-Si
2N3597
CTI
2N4002
NPN-5i
2N3432
CTI
NPN-5i
2N3598
CTI
2N4002
NPN-51
2N3433
CTI
NPN-5i
2N3599
CTI
2N4003
NPN-5i
2N3434
CTI
NPN-5i
2N3611
TI3027
PNP-Ge
2N3439
2N3439
CTI
NPN-5i
2N3612
TI3028
PNP-Ge
2N3440
2N3441
2N3440
CTI
CTI
NPN-5i
NPN-5i
2N3613
2N3614
TI3027
T13028
PNP-Ge
PNP-Ge
CTI
NPN-5i
2N3615
TI3021
PNP-Ge
2N3442
CTI-Contact Taxas Instruments.
2·8
FOR NEW DESIGN
2N3205
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 715222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
2N3616
2N3146
PNP-Ge
2N3846
2N3617
TI3030
PNP-Ge
2N3618
2N3146
PNP-Ge
2N3660
2N5333
2N3661
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
2N3846
2N3846
NPN-Si
2N3847
2N3847
2N3847
NPN-Si
2N3848
2N3848
2N3848
NPN-Si
PNP-Si
2N3849
2N3849
2N3849
NPN-Si
2N5333
PNP-Si
2N3850
2N5938
NPN-Si
2N3667
2N3713
NPN-Si
2N3851
2N5938
NPN-Si
2N3675
2N3420
NPN-Si
2N3852
2N5938
NPN-Si
2N3676
2N3421
NPN-Si
2N3853
2N5938
NPN-Si
2N3713
2N3714
NPN-Si
2N3861
2N4240
NPN-Si
NPN-Si
2N3863
2N3715
NPN-Si
2N3713
'2N3713
2N3714
2N3714
2N3715
2N3715
2N3715
NPN-Si
2N3864
2N3716
NPN-Si
2N3716
2N3716
2N3716
NPN-Si
2N3865
CTI
CTI
NPN-Si
2N3719
2N3719
2N3719
PNP-Si
2N3878
CTI
TIP41A
NPN-Si
2N3720
2N3720
2N3720
PNP-Si
2N3879
CTI
TIP41C
NPN-Si
2N3730
CTI
CTI
PNP-Ge
2N3902
2N3902
2N3902
NPN-Si
2N3731
CTI
CTI
PNP-Ge
2N3916
2N3583
NPN-Si
2N3732
CTI
CTI
PNP-Ge
2N3917
2N3583
NPN-Si
2N3738
2N3584
NPN-Si
2N3918
CTI
TIP33
NPN-Si
2N3739
2N3585
NPN-Si
2N3919
CTI
TIP33
NPN-Si
2N3740
CTI
TIP30A
PNP-Si
2N3920
CTI
TIP33
NPN-Si
2N3741
CTI
TIP30B
PNP-Si
2N3996
2N3996
2N3996
NPN-Si
2N3743
CTI
CTI
PNP-Si
2N3997
2N3997
2N3997
NPN-Si
2N3744
2N3996
NPN-Si
2N3998
2N3998
2N3998
NPN-Si
2N3745
2N3997
NPN-Si
2N3999
2N3999
2N3999
NPN-Si
NPN-Si
2N3746
CTI
CTI
NPN-Si
2N4000
2N4000
2N4000
2N3747
CTI
CTI
NPN-Si
2N4001
2N4001
2N4001
NPN-Si
2N3748
CTI
CTI
NPN-Si
2N4002
2N4002
2N4002
NPN-Si
2N3749
CTI
CTI
NPN-Si
2N4003
2N4003
2N4003
NPN-Si
2N5938
NPN-Si
2N4004
2N4004
2N4004
NPN-Si
2N4005
2N4005
NPN-Si
2N3750
2N3751
CTI
CTI
NPN-Si
2N4005
2N3752
CTI
CTI
NPN-Si
2N4063
2N3440
NPN-Si
2N3766
CTI
TIP29A
NPN-Si
2N4064
2N3440
NPN-Si
2N3767
CTI
TIP29B
NPN-Si
2N4070
CTI
NPN-Si
2N3771
2N3771
2N3771
NPN-Si
2N4071
CTI
NPN-Si
2N3772
2N3772
2N2772
NPN-Si
2N4075
2N4998
NPN-Si
2N3773
CTI
CTI
NPN-Si
2N4076
2N4998
NPN-Si
2N3774
2N3719
PNP-Si
2N4096
TIC39F
SCR
2N3775
2N5333
PNP-Si
2N4097
TIC39A
SCR
2N3776
2N5333
PNP-Si
2N41 08
2N3006
SCR
2N3777
2N5333
PNP-Si
2N4109
2N3007
SCR
2N3778
2N5333
PNP-Si
2N4111
TIP3055
NPN-Si
2N3779
2N5333
PNP-Si
2N4112
TIP3055
NPN-Si
2N3780
2N5333
PNP-Si
2N4113
TIP33B
NPN-Si
2N3781
2N5333
PNP-Si
2N4114
TIP33B
NPN-Si
2N3782
2N5333
PNP-Si
2N4115
CTI
NPN-Si
2N3788
CTI
TIP53
NPN-Si
2N4116
CTI
NPN-Si
2N3789
2N3789
2N3789
PNP-Si
2N4130
TIP36B
NPN-Si
2N3790
2N3790
2N3790
PNP-Si
2N4131
TIP35C
NPN-Si
2N3791
2N3791
2N3791
PNP-Si
2N4150
2N4300
NPN-SI
2N~792
2N3792
2N3792
PNP-Si
•
CTI-Contact Texa. 1n.trumant•.
TEXASINCORPORATED
INSTRUMENTS
'-OST OjrP'ICE BOX 5012 • DALLA', TEXAS 71222
2·9
CROSS-REFERENcE GUIDE
TYPE
•
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
TI DIRECT
REPLACEMENT
CLASS
TlCl16F
SCR
2N4201
TIC106E
SCR
2N4153
TICl16A
SCR
2N4202
CTI
SCR
2N4154
TICl16B
SCR
2N4210
2N4002
NPN-Si
2N4155
TIC116C
SCR
2N4211
2N4003
NPN-Si
2N4156
TIC116b
SCR
2N4212
TIC39Y
SCR
2N4157
TIC116E
TIC39F
SCR
TICl16M
SCR
SCR
2N4213
2N4158
2N4214
TIC39A
SCR
2N4159
TIC116F
SCR
2N4215
TIC39B
SCR
2N4160
TICl16F
SCR
2N4216
TIC39B
SCR
2N4161
TICl16A
SCR
2N4217
TIC39C
SCR
2N4162
TIC116B
SCR
2N4218
TIC39C
SCR
2N4163
TIC116C
SCR
2N4219
TIC39D
SCR
2N4164
TICl16D
SCR
2N4231
TIP3l
NPN-Si
2N4165
TIC116E
SCR
2N4232
TIP31A
NPN-5i
2N4166
TIC116M
SCR
2N4233
TIP31B
NPN-5i
2N4167
TICl16F
SCR
2N4234
TIP30
PNP-5i
2N4168
TIC116F
SCR
2N4235
TIP30A
PNP-5i
2N4169
TIC116A
SCR
2N4236
TIP30B
PNP-Si
2N4170
TIC116B
SCR
2N4240
2N4171
TICl16C
SCR
2N4172
TIC116D
2N4173
TIC116E
2N4174
TIP48
NPN-Si
2N4241
TI3027
PNP-Ge
SCR
2N4242
TI3029
PNP-Ge
SCR
2N4243
TI3028
PNP-Ge
TICl16M
SCR
2N4244
TI3027
PNP-Ge
2N4175
TICl16F
SCR
2N4245
TI3030
PNP-Ge
2N4176
TICl16F
seR
2N4246
TI3028
PNP-Ge
2N4177
TIC116A
SCR
2N4247
TI3027
PNP-Ge
2N4178
TIC116B
SCR
2N4271
2N657
NPN-Si
2N4179
TICl16C
SCR
2N4272
2N657
NPN-Si
2N4180
TICl16D
SCR
2N4273
2N4240
2N41Bl
TICl16E
SCR
2N4296
2N4182
TICl16M
SCR
2N4183
TICl16F
SCR
2N4184
TIC116F
2N4185
CTI
NPN-Si
TIP47
NPN-Si
2N4297
TlP47
NPN-Si
2N4298
TIP49
NPN-Si
SCR
2N4299
TlP49
NPN-Si
TICl16A
SCR
2N4300
2N4300
2N4300
NPN-Si
2N4186
TIC116B
SCR
2N4301
2N4301
2N4301
NPN-Si
2N4187
TICl16C
SCR
2N4305
CTI
2N5154
NPN-Si
2N4188
TIC116D
SCR
2N4307
CTI
2N5154
NPN-Si
2N4189
TIC116E
SCR
2N4309
CTI
2N5154
NPN-Si
2N4190
TIC116M
SCR
2N4311
CTI
2N5154
NPN-5i
2N4191
TICl16F
SCR
2N4316
TIC116A
SCR
2N4192
TICl16F
SCR
2N4317
TIC116B
SCR
2N4193
TICl16A
SCR
2N4318
TICl16C
SCR
2N4194
TIC116B
SCR
2N4319
TICl16D
SCR
2N4195
TICl16C
SCR
2N4322*
2N300l
SCR
2N4196
TICl16D
SCR
2N4333*
TIC39F
SCR
2N4197
TIC116E
SCR
2N4334*
TIC39A
SCR
2N4198
TIC116M
SCR
2N4335*
TIC39B
SCR
2N4199
TIC106C
SCR
2N4337*
TIC39C
SCR
2N4200
TIC106D
SCR
2N4346
TI3031
PNP-Ge
* Asterisk denotes 2N numbers not JEDEC registered through December 1970.
CTI-Contact Texas Instruments.
2·10
FOR NEW DESIGN
2N4152
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
CTI
CROSS-REFERENCE GUIDE
Type
TI DIRECT
REPLACEMENT
FOR NEW DESIGIII
CLASS
NPN-5i
TYPE
2N5006
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
2N6128
CLASS
NPN-5i
2N4347
CTI
2N4348
CTI
2N3716
NPN-5i
2N5007
2N6127
PNP-5i
2N4387
CTI
TIP30
PNP-5i
2N5008
2N6128
NPN-Si
2N4388
CTI
TIP30A
PNP-5i
2N5009
2N6127
PNP-Si
2N3713
NPN-Si
2N5010
CTI
2N3439
NPN-Si
2N4395
2N3716
2N3713
NPN-5i
2N5011
CTI
2N3439
2N4398
2N4398
2N4398
PNP-5i
2N5012
CTI
2N3439
NPN-Si
NPN-Si
2N4399
2N4399
2N4396
2N4399
PNP-Si
2N5013
2N3439
NPN-5i
2N4441
TIC116F
SCR
2N5014
2N3439
NPN-Si
2N4442
TIC116B
SCR
2N5015
21113439
NPN-Si
2N4443
TIC116D
SCR
2N5034
TIP33
NPN-5i
2N4444
TIC116M
CTI
SCR
NPN-5i
2N5035
2N5036
TIP33
TlP33A
NPN-Si
2N5148
NPN-5i
2N5037
TlP33A
NPN-Si
CTI
NPN-Si
2N5038
2N5038
2N5038
NPN-Si
CTI
CTI
NPN-Si
2N5039
2N5039
2N5039
NPN-Si
2N5048
21116128
NPN-5i
CTI
NPN-5i
NPN-Si
TIP30
PNP-5i
2N5049
2N5050
CTI
2N6128
TIP47
NPN-5i
NPN-5i
NPN-5i
2N4862
2N4863
2N4864
CTI
CTI
21114865
2N4866
21114877
NPN-Si
2N4898
CTI
2N4899
CTI
TIP30A
PNP-5i
2N5051
CTI
TlP47
2N4900
CTI
TIP308
PNP-5i
2N5052
CTI
CTI
NPN-Si
21114901
2N4901
TlP34
PNP-5i
2N5060
2N5060
TIC60
SCR
2N4902
2N4902
TIP34A
PNP-5i
2N5061
2N5061
TlC61
SCR
2N4903
21114903
TIP34B
PNP-5i
2N5062
2N5062
TIC62
SCR
2N4904
2N4904
TIP34
PNP-5i
2N5063
2N5063
TIC63
SCR
2N4905
2N4905
TIP34A
PNP-5i
2N5064
2N5064
TIC64
SCR
-2N4906
21114906
TIP34B
PNP-5i
2N5067
2N5067
TIP33
NPN-5i
2N4907
CTI
TIP34
PNP-5i
2N5068
2N5068
TIP33A
NPN-5i
2N49Q8
2N491 0
CTI
CTI
TIP34A
PNP-5i
2N5069
TIP33B
NPN-5i
TIP33
NPN-Si
2N5147
2N5069
2N5147
PNP-5i
PNP-5i
2N4911
CTI
TIP33A
NPN-5i
2N5148
2N5148
2N5147
2N5148
21114912
CTI
TIP33B
NPN-Si
2N5149
2N5149
2N5149
2N4913
2N4913
TIP33
NPN-Si
2N5150
2N5150
NPN-Si
2N4914
21114914
TIP33A
NPN-Si
2N5151
2N515O
2N5151
2N5151
PNP-5i
2N4915
21114915
NPN-Si
NPN-5i
TIP33B
NPN-5i
2N5152
2N5152
2N4918
TIP30
PNP-5i
2N5153
2N5153
2N5152
2N5153
PNP-5i
2N4919
TIP30A
PNP-5i
2N5154
2N5154
2N5154
NPN-Si
2N4920
TIP30B
PNP-5i
2N5157
2N5157
2N5157
NPN-Si
2N4921
TlP29
NPN-Si
2N5190
TIP31
NPN-Si
2N4922
2N4923
TIP29A
TIP29B
NPIII-5i
2N5191
TIP31A
NPN-5i
2N5192
TIP31B
2N5193
2N5194
TIP32
NPN-Si
PNP-5i
TIP32A
PNP-Si
PNP-5i
21114998
2N4998
2N4998
NPN-5i
NPN-Si
2N4999
2N4999
2N5000
2N4999
NPN-5i
2N5ooo
2N5001
NPN-5i
NPN-Si
2N5195
2N5202
CTI
TIP32B
CTI
2N5002
2N5237
CTI
CTI
NPN-5i
2N5003
NPN-5i
PNP-5i
2N5238
CTI
CTI
NPN-5i
NPN-5i
CTI
NPN-Si
2N50oo
2N5001
2N5002
2N5003
2N 5901
2N5OO2
2N5003
21115004
21115004
2N5004
NPN-Si
2N5239
CTI
CTI
2N5005
2N5005
2N5OO5
PNP-5i
,2N524O
CTI
NPN-Si
CTI-Contact. T~a.s Instruments.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE
.,ox
5012 •
DALLAS. TeXAS 75222
2-11
CROSS-REFERENCE GUIDE
TYPE
TYPE
2N5241
NPN·Si
2N5349
CTI
2N5273
TIC2638
TRIAC
2N5384
2N5384
2N5384
2N5274
TIC263D
TRIAC
2N5385
2N5385
2N5385
PNP,Si
2N5275
TIC263M
TRIAC
2N5386
2N5386
2N5386
PNP-Si
2N5241
FOR NEW DESIGN
TI DIRECT
REPLACEMENT
CLASS
2N5241
•
TI DIRECT
REPLACEMENT
CLASS
NPN-Si
PNp·Si
2N5279
CTI
2N3439
NPN·Si
2N5387
2N5387
2N5387
NPN·Si
2N5280
CTI
2N3439
2N5388
2N5388
2N5388
NPN·Si
2N5284
CTI
2N5002
NPN·Si
NPN,Si
2N5389
2N5389
2N5389
NPN·Si
2N5285
CTI
2N5004
NPN-Si
2N5390
2N5390
2N5390
NPN·Si
2N5286
CTI
2N5003
PNP·Si
2N5404
CTI
2N5153
PNP-Si
2N5287
CTI
2N5005
PNP-Si
2N5405
CTI
2N5153
PNP-Si
2N5288
CTI
2N6128
NPN·Si
2N5406
CTI
2N5153
PNP-Si
2N5289
CTI
2N6128
NPN-Si
2N5407
CTI
2N5153
2N5290
CTI
2N6127
PNP-Si
2N5408
CTI
2N5005
PNP·Si
PNP-Si
2N5291
CTI
2N6127
PNP·Si
2N5409
CTI
2N5005
PNP-Si
2N5293
TIP318
NPN·Si
2N5410
CTI
2N5005
PNP-Si
2N5294
TIP318
NPN·Si
2N5411
CTI
2N5005
PNP-Si
2N5295
TIP31
NPN-Si
2N5412
CTI
CTI
NPN·Si
2N5296
TIP31
NPN·Si
2N5427
CTI
TIP318
NPN·Si
2N5297
TIP31A
NPN·Si
2N5428
CTI
TIP318
NPN·Si
2N5298
TIP31A
NPN·Si
2N5429
CTI
TIP31C
NPN-Si
2N5301
2N5301
2N5301
NPN·Si
2N5230
CTI
TIP31C
NPN-Si
2N5302
2N5302
2N5302
NPN·Si
2N5466
CTI
TlP54
NPN-Si
2N5303
2N5303
2N5303
NPN·Si
2N5467
CTI
TIP54
NPN·Si
2N5312
CTI
2N6127
PNP·Si
2N5468
CTI
TIP530
NPN-Si
2N5313
CTI
2N6128
NPN-Si
2N5469
CTI
TlP530
NPN·Si
2N5314
CTI
2N6127
PNP-Si
2N5477
CTI
CTI
NPN-Si
2N5315
CTI
2N6128
NPN·Si
2N5478
CTI
CTI
NPN·Si
2N5316
CTI
2N6127
PNP-Si
2N5479
CTI
CTI
NPN·Si
2N5317
CTI
2N6128
NPN·Si
2N5480
CTI
CTI
NPN-Si
2N5318
CTI
2N6127
PNP·Si
2N5489
CTI
NPN-Si
2N5319
CTI
2N6128
NPN-Si
2N5490
TIXP547
TIP41
2N5326
CTI
CTI
NPN·Si
2N5491
TlP41
NPN-Si
2N5327
CTI
CTI
NPN·Si
2N5492
TlP41 A
NpN-Si
2N5328
CTI
CTI
NPN·Si
2N5493
TIP41A
NPN-Si
2N5329
CTI
CTI
NPN·Si
2N5494
TIP41
NPN-Si
2N5330
CTI
,CTI
NPN-Si
2N5495
TIP41
NPN-Si
2N5331
CTI
CTI
NPN·Si
2N5496
TIP418
NPN-Si
2N5333
2N5333
2N5333
NPN·Si
2N5497
TIP418
NPN-Si
2N5334
CTI
CTI
NPN·Si
2N5529
CTI
2N5938
NPN-Si
2N5335
CTI
CTI
NPN-Si
2N5530
CTI
2N5938
NPN-Si
2N5336
CTI
2N5152
NPN·Si
2N5531
CTI
CTI
NPN-Si
2N5337
CTI
2N5154
NPN·Si
2N5532
CTI
2N5938
NPN-Si
2N5338
CTI
2N5152
NPN·Si
2N5533
CTI
2N5938
NPN-Si
2N5339
CTI
2N5154
NPN·Si
2N5534
CTI
2N5938
NPN-Si
2N5344
CTI
CTI
PNP·Si
2N5535
CTI
2N5939
NPN-Si
NPN-Si
2N5345
CTI
CTI
PNP-Si
2N5536
CTI
2N5939
NPN-Si
2N5346
CTI
CTI
NPN·Si
2N5537
CTI
2N5939
NPN-Si
2N5347
CTI
CTI
NPN-Si
2N5538
CTI
2N5939
NPN-Si
2N5348
CTI
CTI
NPN-Si
2N5539
CTI
2N4002
NPN-Si
CTI-Contact Texas Instruments.
2·12
FOR NEW DESIGN
CTI
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TeXAS 75222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
2N5540
CTI
2N5389
NPN-Si
2N5632
CTI
2N5885
NPN-Si
2N5541
CTI
2N3421
NPN-Si
2N5633
CTI
2N5885
NPN-Si
2N5542
CTI
2N4301
NPN-Si
2N5634
CTI
2N5885
2N5552
CTI
CTI
NPN-Si
2N5655
TIP47
NPN-Si
NPN-Si
2N5553*
CTI
CTI
NPN-5i
2N5656
CTI
CTI
NPN-Si
2N5657
TIP48
TIP49
NPN-Si
2N5554*
2N5559
CTI
CTI
NPN-Si
2N5658
CTI
2N3997
NPN-Si
2N5560
CTI
2N4002
NPN-Si
2N5659
CTI
2N3997
NPN-Si
2N5567
TIC236B
TRIAC
2N5660
CTI
CTI
NPN-Si
2N5568
TIC236D
TRIAC
2N5661
CTI
CTI
NPN-Si
2N5569
TIC236B
TRIAC
2N5662
CTI
CTI
NPN-Si
2N5570
TIC236D
TRIAC
2N5663
CTI
CTI
NPN-Si
2N5571
TlC246B
TRIAC
2N5664
CTI
CTI
NPN-Si
2N5572
TlC246D
TRIAC
2N5665
CTI
CTI
NPN-Si
2N5573
TIC246B
TRIAC
2N5666
CTI
CTI
NPN-Si
2N5574
TIC246D
TRIAC
2N5667
CTI
CTI
NPN-Si
2N5597
TIP30A
PNP-5i
2N5671
2N5671
2N5671
NPN-Si
2N5598
TIP31A
NPN-Si
2N5672
2N5672
2N5672
NPN-Si
2N5599
TIP30B
PNP-Si
2N5675
CTI
2N5333
PNP-Si
CTI
2N5384
PNP-Si
NPN-Si
2N5600
CTI
TIP31B
NPN-Si
2N5676
2N5601
CTI
TIP30B
PNP-5i
2N5677
CTI
2N5386
PNP-Si
2N5602
CTI
TIP31B
NPN-Si
2N5678
CTI
CTI
PNP-Si
2N5603
CTI
TIP30C
PNP-Si
2N5679
CTI
2N5333
PNP-Si
2N5604
CTI
TIP31C
NPN-Si
2N5680
CTI
2N5333
PNP-Si
2N5605
CTI
TIP42A
PNP-Si
2N5681
CTI
2N2990
NPN-Si
2N5606
CTI
CTI
NPN-Si
2N5682
CTI
2N2990
NPN-Si
2N5607
CTI
TIP42B
PNP-5i
2N5683
2N5683
2N5683
PNP-Si
2N5608
CTI
CTI
NPN-Si
2N5684
2N5684
2N5684
PNP-Si
2N5609
CTI
TlP42C
PNP-5i
2N5685
2N5685
2N5685
NPN-Si
2N5611
TIP42C
PNP-Si
2N5686
2N5686
2N5686
NPN-Si
2N5613
2N3791
PNP-Si
2N5692
CTI
CTI
PNP-Ge
2N5614
TIP33A
NPN-Si
2N5693
CTI
CTI
PNP-Ge
2N5615
2N3792
PNP-5i
2N5694
CTI
CTI
PNP-Ge
2N5616
TIP33B
NPN-Si
2N5695
CTI
CTI
PNP-Ge
2N5617
2N3792
PNP-Si
2N5696
CTI
CTI
PNP-Ge
2N5618
TIP33B
NPN-Si
2N5719
2N3002
SCR
2N5619
2N3792
PNP-5i
2N5720
2N3003
SCR
2N5620
TIP33C
NPN-Si
2N5721
2N3004
SCR
2N5621
2N3791
PNP-Si
2N5722
CTI
SCR
2N5622
TlP35A
NPN-Si
2N5724
TIC39F
SCR
2N5623
PNP-Si
2N5725
TIC39A
SCR
2N5624
2N3792
TIP35B
NPN-Si
2N5726
TIC39B
SCR
2N5625
2N5884
PNP-Si
2N5727
TIC39C
SCR
2N5626
TIP35B
NPN-Si
2N5729
CTI
2N3420
NPN-Si
2N5627
2N5884
PNP-5i
2N5730
CTI
2N5004
NPN-5i
CTI
NPN-Si
2N5731
CTI
2N6128
NPN-Si
2N5628
CTI
2N5629
CTI
2N5885
NPN-5i
2N5732
TIP35C
NPN-Si
2N5630
CTI
2N5885
NPN-Si
2N5734
2N5885
NPN-Si
2N5631
CTI
2N5885
NPN-Si
2N5737
2N3791
PNP-Si
CTI
•
• Asterisk denotes 2N numbers not JEOEC registered through December 1970.
CTI-Contact Texas Instruments.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
2·13
CROSS-REFERENCE GUIDE
TYPE
•
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
2N5738
CTI
2N3792
2N5739
CTI
2N5740
CTI
2N5741
CTI
2N5742
2N5743
2N5744
2N5745
CLASS
TYPE
TI DIRECT
REPLACEMENT
CLASS
2N5888
CTI
CTI
PNP-Ge
CTI
PNP-8i
2N5889
CTI
CTI
PNP-Ge
CTI
PNP-8i
2N5900
CTI
CTf
PNP-Ge
2N5883
PNP-8i
2N5901,
CTI
CTI
PNP-Ge
CTI
2N5884
PNP-8i
2N5926
CTI
CTI
NPN-8i
CTI
CTI
CTI
PNP-8i
PNP-8i
PNP-8i
2N5927
2N5928
CTI
CTI
CTI
CTI
NPN-8i
NPN-8i
CTI
CTI
2N5883
2N5929
CTI
CTI
NPN-8i
2N5758
2N5758
2N5758
NPN-8i
2N5930
CTI
CTI
NPN-8i
2N5759
2N5759
2N5759
NPN-8i
2N5931
CTI
CTI
NPN-8i
2N5760
2N5760
2N5760
2N5932
CTI
CTI
NPN-8i
2N5781
CTI
CTI
NPN-8i
PNP-8i
CTI
CTI
NPN-8i
2N5782
2N5783
CTI
CTI
PNP-8i
2N5933
2N5934
CTI
CTI
NPN-8i
CTI
CTI
PNP-8i
2N5935
CTI
CTI
NPN-8i
2N5784
CTI
CTI
NPN-8i
2N5936
CTI
CTI
NPN-8i
2N5785
CTI
CTI
NPN-8i
2N5937
CTI
CTI
NPN-8i
2N5786
CTI
CTI
NPN-8i
2N5938·
2N5938
CTI
NPN-8i
2N5787
TIC44
SCR
2N5939
CTI
NPN-8i
2N5788
TIC45
SCR
2N5939
2N5940
2N5940
CTI
NPN-8i
2N5791
CTI
SCR
2N5954
CTI
TIP41A
NPN-8i
2N5792
TIC39D
SCR
2N5955
CTI
TIP41A
NPN-8i
2N5804
CTI
TIP52
NPN-8i
2N5956
CTI
TlP41
NPN-8i
2N5805
CTI
TIP54
NPN-Si
2N5957
CTI
CTI
NPN-8i
2N5838
TIP52
NPN-8i
NPN-8i
TlP52
NPN-Si
CTI
CTI
CTI
2N5839
2N5958
2N5959
CTI
NPN-8i
2N5840
TIP54
NPN-8i
2N5960
CTI
CTI
NPN-8i
2N5853
CTI
2N5386
PNP-8i
2N5966
CTI
CTI
NPN-8i
2N5854
CTI
2N4301
NPN-8i
2N5967
CTI
CTI
NPN-8i
2N5867 ,
2N5867
2N5867
PNP-8i
2N5968
CTI
CTI
NPN-8i
2N5868
2N5868
2N5868
PNP-8i
2N5969
CTI
CTI
NPN-8i
2N5869
2N5869
2N5869
NPN-8i
2N5970
CTI
CTI
NPN-8i
2N5870
2N5870
2N5870
NPN-8i
2N5971
CTI
CTI
NPN-8i
2N5871
2N5871
2N5872
2N5871
PNP-8i
PNP-8i
2N5972
CTI
CTI
CTI
NPN-8i
NPN-8i
2N5974
2N5975
2N5872
2N5873
2N5872
2N5873
2N5875
2N5874
2N5875
2N5874
2N5875
NPN-8i
PNP-8i
2N5876
2N5876
2N5876
PNP-8i
2N5877
2N5877
2N5877
2N5873
2N5874
CTI
NPN-Si
TIP34
TIP34A
PNP-8i
PNP-8i
2N5976
TIP348
PNP-8i
2N5977
TIP33
NPN-8i
2N5978
TIP33A
NPN-8i
2N5979
TIP33B
NPN-8i
TIP34
PNP-8i
TIP34A
PNP-8i
TIP34B
PNP-8i
NPN-8i
2N5973
2N5878
2N5878
2N5878
NPN-8i
NPN-8i
2N5879
2N5879
2N5879
PNP-8i
2N5880
2N5880
PNP-8i
2N5881
2N5880
2N5881
2N5980
2N5981
2N5881
NPN-8i
2N5982
2N5882
2N5882
2N5882
NPN-8i
2N5983
TIP33
2N5883
2N5883
2N5883
PNP-8i
2N5984
TIP33A
NPN-8i
2N5884
2N5884
2N5884
PNP-8i
2N5985
TIP33B
NPN-8i
2N5885
2N5885
2N5885
NPN-8i
2N5986
TIP36
PNP-8i
2N5886
2N5886
2N5886
NPN-8i
2N5987
TIP36A
PNP-8i
2N5887
CTI
CTI
PNP-Ge
2N5988
TIP36B
PNP-8i
CTI-Contact Texas Instruments.
2-14
FOR NEW DESIGN
PNP-8i
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
CROSS-REFERENCE GUIDE
TYPE
TI DIRECT
REPLACEMENT
2N5989
FOR NEW DESIGN
TIP35
CLASS
TYPE
NPN-Si
2N6125
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TIP32A
PNP-Si
2N5990
TIP35A
NPN-Si
2N6126
TIP32B
PNP-5i
2N5991
TIP35B
NPN-Si
2N6127
2N6127
2N6127
PNP-Si
2N6021
TIP32B
PNP-Si
2N6128
2N6128
2N6128
NPN-Si
2N6022
TIP32B
PNP-Si
2N6129
TIP41
NPN-Si
2N6023
TIP32
PNP-Si
2N6130
TIP41A
NPN-Si
2N6024
TIP32
PNP-Si
2N6131
TIP41B
NPN-Si
2N6025
TIP32A
PNP-Si
2N6132
TIP42
PNP-5i
2N6026
TIP32A
PNP-Si
2N6133
TIP42A
PNP-Si
2N6032
CTI
CTI
NPN-Si
2N6134
TIP42B
PNP-5i
2N6033
CTI
CTI
NPN-Si
2N6139
TIC236B
TRIAC
2N6046
CTI
2N4002
NPN-Si
2N6140
TIC236D
TRIAC
2N6047
CTI
2N4002
NPN-Si
2N6141
CTI
TRIAC
2N6048
CTI
2N4002
NPN-5i
2N6142
TIC236B
TRIAC
2N6049
CTI
CTI
PNP-Si
2N6143
TIC236D
TRIAC
2N6060
CTI
2N4002
NPN-Si
2N6144
CTI
TRIAC
2N6061
CTI
2N4002
NPN-Si
2N6148
TIC236B
TRIAC
2N6062
CTI
2N4002
NPN-Si
2N6149
TRIAC
2N6063
CTI
2N4002
NPN-Si
2N6150
TlC236D
CTI
2N6064
CTI
CTI
PNP-Ge
2N6154
TIC236B
TRIAC
2N6065
CTI
CTI
PNP-Ge
2N6155
TIC236D
TRIAC
2N6066
CTI
CTI
PNP-Ge
2N6156
cn
TRIAC
2N6068
TIC226B
TRIAC
2N6157
TIC263B
TRIAC
2N6069
TIC226B
TRIAC
2N6158
TIC263D
TRIAC
2N6070
TIC226A
TRIAC
2N6159
TIC263M
TRIAC
2N6071
TIC226B
TRIAC
2N6160
TIC263B
TRIAC
2N6072
TIC226D
TRIAC
2N6161
TIC263D
TRIAC
2N6073
TIC226D
TRIAC
2N6162
TIC263M
TRIAC
2N6074
TIC226M
TRIAC
2N6175
TIP47
NPN-Si
2N6075
TIC226M
TRIAC
2N6176
TIP48
NPN-Si
•
TRIAC
2N6077
CTI
CTI
NPN-Si
2N6177
TIP49
NPN-Si
2N6078
CTI
CTI
NPN-Si
2N6178
TIP29B
NPN-Si
2N6079
CTI
CTI
NPN-Si
2N6179
TIP29A
NPN-Si
2N6098
TIP31A
NPN-Si
2N6180
TIP30B
PNP-5i
2N6099
TIP31A
NPN-Si
2N6181
TlP30A
PNP-5i
2N6100
TIP41B
NPN-Si
2N6182
CTI
2N5003
PNP-Si
2N6101
TIP41B
NPN-Si
2N6183
CTI
2N5005
PNP-5i
2N6102
TIP41
NPN-Si
2N6184
CTI
2N5003
PNP-Si
2N6103
TIP41
NPN-Si
2N6185
CTI
2N5003
PNP-5i
2N61 06
TIP32B
PNP-Si
2N6186
CTI
2N5003
PNP-Si
2N6107
TlP32B
PNP-Si
2N6187
CTI
2N5005
PNP-Si
2N6108
TIP32A
PNP-Si
2N6188
CTI
2N5003
PNP-5i
2N6109
TIP32A
PNP-Si
2N6189
CTI
2N5005
PNP-Si
2N6110
TIP32
PNP-Si
2N6233
CTI
CTI
NPN-Si
2N6111
TIP32
PNP-Si
2N6234
CTI
CTI
NPN-5i
2N6121
TIP31
NPN-Si
2N6235
CTI
CTI
NPN-Si
2N6122
TIP31A
NPN-Si
2N6236
TlC106Y
SCR
2N6123
TIP31B
NPN-Si
2N6237
nCl06F
SCR
2N6124
TlP32
PNP-Si
2N6238
TIC106A
SCR
CTI-Contact Texas Instruments.
TEXAS1 NCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
2-15
CROSS-REFERENCE GUIDE
TYPE
•
TI DIRECT
REPLACEMENT
FOR NEW DESIGN
CLASS
TYPE
TI DIRECT
REPLACEMENT
CLASS
TIC106B
SCR
2N6288
TIP41
NPN-Si
2N6240
TIC106D
SCR
2N6289
TIP41
NPN-Si
2N6241
CTI
SCR
2N6290
TIP41
NPN-Si
2N6246
CTI
2N5879
PNP-Si
2N6291
TIP41
NPN-Si
2N6247
CTI
2N5880
PNP-Si
2N6292
T!P41B
NPN-Si
2N6248
CTI
CT!
PNP-Si
2N6293
TlP41B
2N6249
CT!
CTI
NPN-Si
2N6322
2N6322
2N6322
NPN-Si
NPN-Si
2N6250
CT!
CT!
NPN-Si
2N6323
2N6323
2N6323
NPN-Si
2N6251
CT!
CT!
NPN-Si
2N6324
2N6324
2N6324
NPN-Si
2N6253
CT!
2N3713
NPN-Si
2N6325
2N6325
2N6325
NPN-Si
2N6254
CTI
2N3713
NPN-Si
2N6326
2N6326
2N6326
NPN-Si
2N6257
CT!
CT!
NPN-Si
2N6327
2N6327
2N6327
NPN-Si
2N6258
CT!
CT!
NPN-Si
2N6328
2N6328
2N6328
NPN-Si
2N6259
CT!
CT!
NPN-Si
2N6329
2N6329
2N6329
PNP-Si
2N6260'
CT!
CT!
NPN-Si
2N6330
2N6330
2N6330
PNP-Si
2N6261'
CT!
CT!
NPN-Si
2N6331
2N6331
2N6331
PNP-Si
2N6262
CT!
2N5885
NPN-Si
2N6332
2N6332
2N6332
SCR
2N6263
CT!
CT!
NPN-Si
2N6333
2N6333
2N6333
SCR
2N6264
CT!
CT!
NPN-Si
2N6334
2N6334
2N6334
SCR
2N6270
2N6270
2N6270
NPN-Si
2N6335
2N6335
2N6335
SCR
2N6271
2N6271
2N6271
NPN-Si
2N6336
2N6336
2N6336
SCR
2N6272
2N6272
2N6272
NPN-Si
2N6337
2N6337
2N6337
SCR
2N6273
2N6273
2N6273
NPN-Si
'" Asterisk denotes 2N numbers not JEOEC registered through December 1970.
CTI-Contact Texas Instruments.
2-16
FOR NEW DESIGN
2N6239
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
KEY TO MANUFACTURERS
ECC-Electronic Control Corporation
TYPE
RCA-Radio Corporation of America
FSC-Fairchild Semiconductor Corporation
SOD-Solitron Devices, Incorporated
GE-General Electric Company
TEC-Transitron Electronic Corporation
MOTA-Motorola Semiconductor Products, Incorporated
UN I-Unitrode Corporation
MANUFACTURER
40250
RCA
FOR NEW DESIGN
CLASS
TIP31
NPN-5i
40531
RCA
TIC205A
TRIAC
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
40251
RCA
2N5881
NPN-Si
40532
RCA
TIC205B
TRIAC
40310
RCA
TIP31
NPN-Si
40533
RCA
TIC106B
SCR
40312
RCA
TIP31A
NPN-Si
40534
RCA
TIC205A
TRIAC
40313
RCA
TIP48
NPN-Si
40535
RCA
TIC205B
TRIAC
40316
RCA
TIP31
NPN-Si
40536
RCA
TIC205D
TRIAC
40318
RCA
TIP48
NPN-Si
40553
RCA
TIC116B
SCR
40322
RCA
TIP48
NPN-Si
40554
RCA
TIC106D
SCR
40324
RCA
TIP31
NPN-Si
40575
RCA
TIC246B
TRIAC
40325
RCA
2N5877
NPN-Si
40576
RCA
TIC246D
TRIAC
40328
RCA
TIP48
NPN-Si
40613
RCA
TIP31
NPN-Si
40363
RCA
2N5877
NPN-Si
40618
RCA
TIP31
NPN-Si
40364
RCA
TIP31A
NPN-Si
40621
RCA
TIP31
NPN-Si
40369
RCA
2N3713
NPN-Si
40622
RCA
TIP31
NPN-Si
40372
RCA
TIP31A
NPN-Si
40624
RCA
TIP41
NPN-Si
40374
RCA
TIP47
NPN-Si
40627
RCA
TIP41A
NPN-5i
40375
RCA
TIP31A
NPN-Si
40629
RCA
TIP31
NPN-Si
40378
RCA
TIC1068
SCR
40630
RCA
TIP31
NPN-Si
40379
RCA
TIC116D
SCR
40631
RCA
TIP31
NPN-Si
40411
RCA
2N5878
NPN-Si
40632
RCA
TIP41A
NPN-Si
40429
RCA
TIC2268
TRIAC
40633
RCA
TIP33A
NPN-Si
40430
RCA
TIC226D
TRIAC
40636
RCA
2N5878
NPN-Si
40431
RCA
TlC2268
TRIAC
40638
RCA
TIC226B
TRIAC
40432
RCA
TIC226D
TRIAC
40654
RCA
TICl16B
SCR
40433
RCA
TIP48
NPN-Si
40655
RCA
TIC116D
SCR
40464
RCA
2N3715
NPN-Si
40656
RCA
TICl16B
SCR
40465
RCA
2N3715
NPN-Si
40657
RCA
TIC116D
SCR
40466
RCA
2N3715
NPN-Si
40658
RCA
TIC116B
SCR
40485
RCA
TIC2268
TRIAC
40659
RCA
TIC116D
SCR
40486
RCA
TIC226D
TRIAC
40664
RCA
TIC216D
TRIAC
40502
RCA
TIC2268
TRIAC
40667
RCA
TIC216D
TRIAC
40503
RCA
TIC226D
TRIAC
40668
RCA
TIC226B
TRIAC
40504
RCA
TIC106B
SCR
40669
RCA
TIC226D
TRIAC
40505
RCA
TIC106D
SCR
40684
RCA
TIC205A
TRIAC
40507
RCA
TIC106B
SCR
40685
RCA
TIC205B
TRIAC
40508
RCA
TIC116D
SCR
40686
RCA
TIC205D
TRIAC
40509
RCA
TIC226B
TRIAC
40691
RCA
TIC215B
TRIAC
40511
RCA
TIC226B
TRIAC
40692
RCA
TIC205D
.TRIAC
40512
RCA
TIC226D
TRIAC
40693
RCA
TIC205A
TRIAC
40513
RCA
TIP33
NPN-Si
40694
RCA
TIC205B
TRIAC
40514
RCA
TIP33
NPN-Si
40696
RCA
TIC205A
TRIAC
40526
RCA
TIC205B
TRIAC
40697
RCA
TIC205B
TRIAC
40529
RCA
TIC205B
TRIAC
40698
RCA
TIC205D
TRIAC
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
•
2-17
CROSS-REFERENCE GUIDE
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
FOR NEW DESIGN
CLASS
TlC246B
TRIAC
40803
RCA
TIC246D
TRIAC
RCA
TIC2460
TRIAC
40804
RCA
TIC253M
TRIAC
RCA
TIC2468
TRIAC
401i07
RCA
TIC253M
TRIAC
40714
RCA
TIC246D
TRIAC
40810
RCA
2N1595
SCR
40715
RCA
TIC2468
TRIAC
40811
RCA
2Nl597
SCR
40716
RCA
TIC2460
TRIAC
40812
RCA
2N1599
SCR
40717
RCA
TIC236B
TRIAC
40816
RCA
TIP41
NPN-Si
40718
RCA
TIC236D
TRIAC
40829
RCA
TIP32B
PNP-Si
40719
RCA
TlC236B
TRIAC
40830
RCA
TIP32A
PNP-Si
40720
RCA
TIC236D
TRIAC
40831
RCA
TIP32
PNP-Si
40721
RCA
TIC2261!l
TRIAC
40840
RCA
TlP52t
NPN·Si
40722
RCA
TIC226D
TRIAC
40850
RCA
TIP48
NPN·Si
40723
RCA
TIC216D
TRIAC
40851
RCA
TIP49
NPN-Si
40725
RCA
TIC2268
TRIAC
40852
RCA
NPN-Si
40726
RCA
TlC216D
TRIAC
40853
RCA
TIP53 t
TIP53 t
40727
RCA
TIC226B
TRIAC
40867
RCA
TIC116B
SCR
40728
RCA
TIC226D
TRIAC
40868
RCA
TIC116B
SCR
40729
RCA
TIC226B
TRIAC
40869
RCA
TlCl16D
SCR
40731
RCA
TlC205B
TRIAC
40872
RCA
TIP32C
PNP-Si
40733
RCA
TIC226B
TRIAC
40874
RCA
TIP32B
PNp·Si
40737
RCA
TICl16A
SCR
40876
RCA
TlP32A
PNP-Si
40738
RCA
TlCl16B
SCR
40884
RCA
TIP41A
NPN-Si
40739
RCA
TIC126D
SCR
1'.01001
ECC
TIC206B
TRIAC
40740
RCA
TICl26M
SCR
1'.01002
ECC
TIC206B
TRIAC
40741
RCA
TIC116A
SCR
1'.01003
ECC
TIC206D
TRIAC
40742
RCA
TIC116B
SCR
A01004
ECC
TIC206D
TRIAC
40743
RCA
TIC126D
SCR
1'.01021
ECC
TIC216B
TRIAC
40744
RCA
TlC126M
SCR
A01022
ECC
TIC216D
TRIAC
40745
RCA
TlCl16A
SCR
1'.01061
ECC
TIC226B
TRIAC
40746
RCA
TICll6B
SCR
1'.01062
ECC
TIC226D
TRIAC
40747
RCA
TIC126D
SCR
1'.01101
ECC
TIC236B
TRIAC
40748
RCA
TIC126M
SCR
1'.01102
ECC
TIC236D
TRIAC
40761
RCA
TIC215B
TRIAC
1'.01141
ECC
TlC246B
TRIAC
40773
RCA
TIC2Q5B
TRIAC
1'.01142
ECC
TIC246D
TRIAC
40774
RCA
TIC205D
TRIAC
1'.01181
ECC
TIC253B
TRIAC
40775
RCA
TIC216B
TRIAC
1'.01182
ECC
TIC253D
TRIAC
40776
RCA
TlC226D
TRIAC
1'.03001
ECC
TIC206B
TRIAC
40778
RCA
TIC226D
TRIAC
1'.03002
ECC
TIC206B
TRIAC
40779
RCA
TlC236B
TRIAC
1'.03003
ECC
TIC206D
TRIAC
40780
RCA
TIC236D
TRIAC
1'.03004
ECC
TIC206D
TRIAC
40781
RCA
TIC236B
TRIAC
1'.1'.100
UNI
2N3OO2
SCR
40782
RCA
TIC236D
TRIAC
1'.1'.101
UNI
2N3OO3
SCR
40783
RCA
TIC246B
TRIAC
1'.1'.103
UNI
2N1598
SCR
40784
RCA
TIC246D
TRIAC
1'.1'.107
UNI
2N3002
SCR
40785
RCA
TlC246B
TRIAC
AA108
UNI
TIC39A
SCR
40786
RCA
TIC246D
TRIAC
1'.1'.110
UNI
2N1598
SCR
40797
RCA
TIC253M
TRIAC
AA114
UNI
2N3OO2
SCR
40798
RCA
TIC253M
1'.1'.115
UNI
2N3OO7
SCR
40799
RCA
TIC236B
TRIAC
. TRIAC
1'.1'.117
UNI
2N1598
SCR
40802
RCA
TIC246B
TRIAC
ADloo
UNI
TIC39F
SCR
40711
RCA
40712
40713
TYPE
MANUFACTURER
Refer to page 2-17 for key to manufacturers.
t Contact Texas Instruments for direct replacement.
2·18
TEXAS INSTRUMENTS
INCORPORATEO
POST OFFICI; BOX 5012
•
DAl.LAS. TEXAS 75222
NPN-Si
CROSS-REFERENCE GUIDE
TYPE
MANUFACTURER
AD10l
UNI
AD103
AD107
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
B04025
ECC
TIC106D
SCR
B04026
ECC
TIC106D
SCR
SCR
B05001
ECC
TlCl16B
SCR
TIC39A
SCR
805002
ECC
TICl16B
SCR
2N1598
SCR
B05003
ECC
TICl16D
SCR
UNI
TlCl06D
SCR
B05OO4
ECC
TICl16D
SCR
ADl14
UNI
TlC39F
SCR
B05005
ECC
TICl16M
SCR
SCR
TIC39A
SCR
UNI
TIC106C
UNI
TIC39F
AD108
UNI
ADll0
UNI
ADlll
SCR
ADl15
UNI
TIC39A
SCR
B05006
ECC
TICl16M
ADl17
UNI
2Nl598
SCR
B05021
ECC
TICl26B
SCR
ADl18
UNI
TlCl06D
SCR
805022
ECC
TIC126B
SCR
B01021
ECC
TIC106B
SCR
B05023
ECC
TIC126D
SCR
B01022
ECC
TlCl06B
SCR
B05024
ECC
TIC126D
SCR
B01023
ECC
TIC106B
SCR
805025
ECC
TIC126M
SCR
B01024
ECC
TlCl06D
SCR
B05026
ECC
TICl26M
SCR
B01025
ECC
TIC106D
SCR
B05041
ECC
TICl26B
SCR
B01026
ECC
TIC106D
SCR
B05042
ECC
TIC126B
SCR
B01051
ECC
TlCl16B
SCR
B05043
ECC
TIC126D
SCR
B01052
ECC
TlCl16B
SCR
B05044
ECC
TIC126D
SCR
B01053
ECC
TICl16D
SCR
B05045
ECC
TIC126M
SCR
SCR
801054
ECC
TICl16D
SCR
B05046
ECC
TIC126M
B01055
ECC
TlCl16M
SCR
UNI
2N3005
SCR
B01056
ECC
TlCl16M
SCR
Bl50
8151 '
UNI
2N3006
SCR
B01071
ECC
TICl26B
SCR
B152
UNI
2N3007
SCR
B01072
ECC
TIC126B
SCR
BAl50*
UNI
2N3005
SCR
B01073
ECC
TICl26D
SCR
BA151"
UNI
2N3006
SCR
B01074
ECC
TlC126D
SCR
BA152"
UNI
2N3007
SCR
B01075
ECC
TIC126M
SCR
BD100'
UNI
2N3005
SCR
B01076
ECC
TIC126M
SCR
BD10l"
UNI
2N3006
SCR
B01091
ECC
TICl26B
SCR
BD102"
UNI
2N3007
SCR
B01092
ECC
TICl268
SCR
8TD0105
TEC
TIC205A
TRIAC
B01093
ECC
TICl26D
SCR
BTDOll0
TEC
TIC205A
TRIAC
B01094
ECC
TIC126D
SCR
BTD0120
TEC
TlC205B
TRIAC
B01095
ECC
TICl26M
SCR
BTD0130
TEC
TIC205D
TRIAC
B01096
ECC
TIC126M
SCR
BTD0140
TEC
TIC205D
TRIAC
B03001
ECC
TIC106B
SCR
BTD0150
TEC
CTI
TRIAC
B03002
ECC
TIC106B
SCR
BTD0160
TEC
CTI
TRIAC
B03003
ECC
TIC106B
SCR
BTD0205
TEC
TIC205A
TRIAC
803004
B03OO5
ECC
TIC106D
SCR
BTD0210
TEC
TIC205A
TRIAC
ECC
TIC106D
SCR
BTD0220
TEC
TIC205B
TRIAC
B03OO6
ECC
TIC106D
SCR
BTD0230
TEC
TIC205D
TRIAC
B04001
ECC
TIC39B
SCR
BTD0240
TEC
TIC205D
TRIAC
B04OO2
ECC
TIC39B
SCR
BTD0250
TEC
CTI
TRIAC
B04003
ECC
TIC39B
SCR
BTD0260
TEC
CTI
TRIAC
B04OO4
ECC
TIC39D
SCR
BTR0205
TEC
TIC206A
TRIAC
B04005
ECC
TIC39D
SCR
BTR0210
TEC
TIC206A
TRIAC
B04OO6
ECC
TIC39D
SCR
BTR0220
TEC
TIC206B
TRIAC
B04021
ECC
TIC106B
SCR
BTR0230
TEC
TIC206D
TRIAC
B04022
ECC
TIC106B
SCR
8TR0240
TEC
TIC206D
TRIAC
B04023
ECC
TIC106B
SCR
BTR0250
TEC
CTI
TRIAC
CTI
TEC
SCR
B04024
BTR0260
TIC106D
ECC
Refer to page 2~17 for key to manufacturers.
"'These are the designations of the indicated manufacturer and should not be confused with Pro Electron designations.
TRIAC
•
CTI-Contact Texas Instruments.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
2·19
CROSS·REFERENCE GUIDE
FOR NEW DESIGN
CLASS
TYPE
BTR0305
TEC
TIC206A
TRIAC
BTU0410
TEC
TlC226B
TRIAC
BTR03l0
TEC
TIC206A
TRIAC
BTU0420
TEC
TlC226B
TRIAC
BTR0320
TEC
TIC206B
TRIAC
BTU0430
TEC
TIC226D
TRIAC
BTR0330
TEC
TIC206D
TRIAC
BTU0440
TEC
TIC226D
TRIAC
BTR0340
TEC
TIC206D
TRIAC
BTU0450
TEC
CTI
TRIAC
BTR0350
TEC
CTI
TRIAC
BTU0460
TEC
CTI
TRIAC
BTR0360
TEC
CTI
TRIAC
BTU0505
TEC
TIC236B
TRIAC
BTR0405
TEC
TIC206A
TRIAC
BTU05l0
TEC
TIC236B
TRIAC
BTR0410
TEC
TIC206A
TRIAC
BTU0520
TEC
TIC236B
TRIAC
TYPE
I
MANUFACTURER
MANUFACTURER
BTR0420
TEC
TIC206B
TRIAC
BTU0530
TEC
TIC236D
TRIAC
BTR0430
TEC
TIC206D
TRIAC
BTU0540
TEC
TIC236D
TRIAC
BTR0440
TEC
TIC205D
TRIAC
BTU0560
TEC
CTI
TRIAC
, BTR0450
TEC
CTI
TRIAC
BTU0605
TEC
TIC246B
TRIAC
BTR0460
TEC
CTI
TRIAC
BTU06l0
TEC
TIC246B
TRIAC
BTS0205
TEC
TIC2l6A
TRIAC
BTU0620
TEC
TIC246B
TRIAC
BTS02l0
TEC
TlC2l6A
TRIAC
BTU0630
TEC
TIC246D
TRIAC
BTS0220
TEC
TIC2l6B
TRIAC
BTU0640
TEC
TIC246D
TRIAC
BTS0230
TEC
TIC2l6D
TRIAC
BTU0650
TEC
CTI
TRIAC
BTS0240
TEC
TIC2l6D
TRIAC
BTU0660
TEC
CTI
TRIAC
BTS0250
TEC
CTI
TRIAC
C5A
GE
2N1596
SCR
BTS0260
TEC
CTI
TRIAC
C5B
GE
2N1597
SCR
BTS0305
TEC
TlC226B
TRIAC
C5D
GE
2N1599
SCR
BTS03l0
TEC
TIC226B
TRIAC
C5F
GE
2N1595
SCR
BTS0320
TEC
TIC226B
TRIAC
C5G
GE
2N1597
SCR
BTS0330
TEC
TIC226D
TRIAC
C5H
GE
2N159B
SCR
BTS0340
TEC
TIC226D
TRIAC
C5U
GE
2N1595
SCR
BTS0350
TEC
CTI
TRIAC
C6A
GE
2N1596
SCR
BTS0360
TEC
CTI
TRIAC
C6B
GE
2N1597
SCR
BTS0405
TEC
TIC226B
TRIAC
C6F
GE
2N1595
SCR
BTS0410
TEC
TIC226B
TRIAC
C6G
GE
2N1597
SCR
BTS0420
TEC
TIC226B
TRIAC
C6U
GE
2N1595
SCR
BTS0430
TEC
TIC226D
TRIAC
Cl0A
GE
TICl16A
SCR
BTS0440
TEC
TIC226D
TRIAC
Cl0B
GE
TICl16B
SCR
BTS0450
TEC
CTI
TRIAC
ClOC
GE
TIC116C
SCR
BTS0460
TEC
CTI
TRIAC
ClOD
GE
TICl16D
SCR
BTSO.505
TEC
TIC236B
TRIAC
Cl0F
GE
TICl16F
SCR
BTS05l 0
TEC
TIC236B
TRIAC
ClOG
GE
TICl16B
SCR
BTS0520
TEC
TIC236B
TRIAC
Cl0H
GE
TIC116C
SCR
BTS0530
TEC
TIC236D
TRIAC
Cl0U
GE
TICl16F
BTS0540
TEC
TIC236D
TRIAC
CllA
GE
TIC116A
,SCR
SCR
BTS0550
TEC
CTI
TRIAC
CllB
GE
TIC116B
SCR
BTS0560
TEC
CTI
TRIAC
CllC
GE
TICl16C
SCR
BTU0305
TEC
TIC226B
TRIAC
CllD
GE
TICll6D
SCR
BTU03l0
TEC
TIC226B
TRIAC
CllE
GE
TICll6E
SCR
BTU0320
TEC
TIC226B
TRIAC
CllF
GE
TICl16F
SCR
BTU0330
TEC
TIC226D
TRIAC
CllG
GE
TICl16B
SCR
BTU0340
TEC
TIC226D
TRIAC
CllH
GE
TICl16C
SCR
BTU0350
TEC
CTI
TRIAC
CllM
GE
TICl16M
SCR
BTU0360
TEC
CTI
TRIAC
Cl1U
GE
TICl16F
SCR
BTU0405
TEC
TIC226B
TRIAC
C12A
GE
TICll6A
SCR
Refer to page
2~17
for key to manufacturers.
CTI-Contact Texas Instruments.
2-20
FOR NEW DESIGN CLASS
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
C12B
GE
TICl16B
SCR
C12C
GE
TIC116C
C12D
GE
TICl16D
C12F
GE
C12G
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
C122E
GE
TICl16E
SCR
SCR
C122F
GE
TIC116F
SCR
SCR
C220A
GE
TIC126A
SCR
T1Cl16F
SCR
C220B
GE
TIC126B
SCR
GE
TICl16B
SCR
C220C
GE
TIC126C
SCR
C12H
GE
TICl16C
SCR
C220D
GE
TIC1260
SCR
C12U
GE
TICl16F
SCR
C220E
GE
TIC126E
SCR
C15A
GE
TICl16A
SCR
C220F
GE
TIC126F
SCR
C15B
GE
TICl16B
SCR
C220U
GE
TIC126F
SCR
C15C
GE
TICl16C
SCR
C222A
GE
TIC126A
SCR
C15D
GE
TICl16D
SCR
C222B
GE
TIC126B
SCR
C15E
GE
TIC116E
SCR
C222C
GE
TIC126C
SCR
C15F
GE
TICl16F
SCR
C222D
GE
TIC1260
SCR
C15G
GE
TICl16B
SCR
C222E
GE
T1C126E
SCR
C15M
GE
TICl16M
SCR
C222F
GE
TIC126F
SCR
C15U
GE
TICl16F
SCR
C222U
GE
TIC126F
SCR
C20A
GE
TICl16A
SCR
C611A
GE
2N1596
SCR
C20B
GE
TICl16B
SCR
C611B
GE
2N1597
SCR
C20C
GE
TICl16C
SCR
C6l1F
GE
2Nl595
SCR
C20D
GE
TICl16D
SCR
C611G
GE
2N1597
SCR
C20F
GE
TICl16F
SCR
C611U
GE
2N1595
SCR
C20U
GE
TICl16F
SCR
CB200
UNI
2N3005
SCR
C22A
GE
TICl16A
SCR
CB201
UNI
2N3006
SCR
C22B
GE
TICl16B
SCR
CB202
UNI
2N3007
SCR
C22C
GE
TICl16C
SCR
CB203
UNI
SCR
C22D
GE
TICl16D
SCR
CD200
UNI
2N3008
TIC39Y
C22F
GE
TICl16F
SCR
CD201
UNI
TIC39A
SCR
C22U
GE
TICl16F
SCR
CD202
UNI
SCR
Cl03A
GE
TIC46
SCR
CD203
UNI
TIC39A
'1"1 (;39B
Cl03B
GE
TIC47
SCR
CM100
UNI
TIC106A
SCR
Cl03Y
GE
T1C44
SCR
CM10l
UNI
TIC106A
SCR
Cl03YY
GE
TIC45
SCR
CM102
UNI
TIC106B
SCR
Cl06A
GE
TIC106A
SCR
CM103
UNI
TIC106C
SCR
Cl06B
GE
TIC106B
SCR
CM104
UNI
TIC1060
SCR
Cl06C
GE
TIC106C
SCR
CM106
UNI
TIC106A
SCR
Cl06D
GE
TIC106D
SCR
CM107
UNI
TIC106A
SCR
Cl06F
GE
TIC106F
SCR
CM10B
UNI
TIC106B
SCR
SCR
•
SCR
SCR
Cl060
GE
TIC106Y
SCR
CM109
UNI
TIC106C
Cl06Y
GE
TIC106Y
SCR
CM110
UNI
TIC1060
SCR
Cl07A
GE
TIC106A
SCR
D40Dl
GE
TIP29
NPN-Si
GE
GE
GE
TIP29
TIP29
NPN-Si
NPN-Si
Cl07B
GE
TIC106B
SCR
Cl07C
GE
TIC106C
SCR
Cl07D
GE
TIC106D
SCR
D4002
04004
040D5
TIP29
NPN-Si
Cl07F
GE
TIC106F
SCR
04007
GE
TIP29A
NPN-Si
Cl070
GE
TIC106Y
SCR
04008
GE
TIP29A
NPN-Si
Cl07Y
GE
TIC106Y
SCR
D40010
GE
TIP29B
NPN-Si
C122A
GE
TICl16A
SCR
D40011
GE
TIP29B
NPN-Si
C122B
GE
TICl16B
SCR
D40Nl
GE
TIP47
NPN-Si
C122C
GE
TICl16C
SCR
D40N2
GE
TIP47
NPN-Si
C122D
GE
TICl16D
SCR
D40N3
GE
TIP48
NPN-Si
Refer to page 2-17 for key to manufacturers.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
2-21
CROSS-REFERENCE GUIDE
TYPE
•
MANUFACTURER
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
CLASS
GE
TlP48
NPN-5i
D44H8
GE
TIP41A
NPN-5i
D40PI
GE
TIP47
NPN-5i
D44Hl0
GE
TIP418
NPN-5i
D4OP3
GE
TIP47
NPN-5i
D44Hl1
GE
TIP41B
NPN-5i
D40P5
GE
TIP47
NPN-Si
D44Rl
GE
TIP47
NPN-5i
D41Dl
GE
TIP30
PNP-5i
D44R2
GE
TIP47
NPN-5i
D41D2
GE
TIP30
PNP-5i
D44R3
GE
TIP48
NPN-Si
O41D4
GE
TIP30
PNP-5i
D44R4
GE
TlP48
NPN-5i
D41D5
GE
TlP30
PNP-Si
D45Cl
GE
TIP32
PNP-5i
D41D7
GE
TlP30A
PNP-Si
D45C2
GE
TIP32
PNP-5i
D41D8
GE
TIP30A
PNP-Si
D45C3
GE
TIP32
PNP-5i
D41Dl0
GE
TIP30B
PNP-5i
D45C4
GE
TlP32
PNP-5i
D41Dl1
GE
TIP308
PNP-5i
D45C5
GE
TIP32
PNP-5i
D42Cl
GE
TIP31
NPN-5i
D45C6
GE
TIP32
PNP-5i
D42C2
GE
TIP31
NPN-5i
D45C7
GE
TlP32A
PNP-5i
D42C3
GE
TIP31
NPN-Si
D45C8
GE
TIP32A
PNP-5i
D42C4
GE
TIP31
NPN-Si
D45C9
GE
TIP32A
PNP-5i
D42C5
GE
TIP31
NPN-Si
D45Cl0
GE
TIP32B
PNP-5i
D42C6
GE
TIP31
NPN-5i
D45Cl1
GE
TlP32B
PNP-5i
D42C7
GE
TlP31A
NPN-5i
D45Hl
GE
TIP42
PNP-5i
D42C8
GE
TIP31A
NPN-5i
D45H2
GE
TIP42
PNP-5i
D42C9
GE
TIP31A
NPN-Si
D45H4
GE
TIP42
PNP-Si
D42Cl0
GE
TIP31B
NPN-5i
D45H5
GE
TIP42
PNP-5i
D42Cl1
GE
TIP318
NPN-5i
D45H7
GE
TlP42A
PNP-5i
D43Cl
GE
TIP32
PNP-5i
D45H8
GE
TIP42A
PNP-5i
D43C2
GE
TIP32
PNP-5i
D45Hl0
GE
TIP42B
PNP-5i
D43C3
GE
TIP32
PNP-Si
D45Hl1
GE
TIP42B
PNP-5i
D43C4
GE
TIP32
PNP-Si
FT1869
FSC
TIC39Y
SCR
D43C5
GE
TIP32
PNP-Si
FT2009
FSC
TIC39Y
SCR
D43C6
GE
TIP32
PNP-5i
FT2010
FSC
TIC39Y
SCR
D43C7
GE
TIP32A
PNP-5i
GA200
UNI
TIC45
SCR
D43C8
GE
TIP32A
PNP-Si
GA200A
UNI
TIC45
SCA
D43C9
GE
TIP32A
PNP-5i
GA201
UNI
TIC39A
SCA
D43ClO
GE
TIP32B
PNP-Si
GA201A
UNI
TlC39A
SCA
D43Cl1
GE
TIP32B
PNP-5i
GA300
UNI
TIC45
SCA
D44Cl
GE
TIP31
NPN-5i
GA300A
UNI
TIC45
SCA
D44C2
GE
TIP31
NPN-Si
GA301
TIC39A
SCA
D44C3
GE
TIP31
NPN-5i
GA301A
UNI
UNI
TIC39A
SCA
D44C4
GE
TIP31
NPN-Si
GB200
UNI
TIC116A
SCA
D44C5
GE
TIP31
NPN-Si
GB200A
UNI
TIC116A
SCR
D44C6
GE
TlP31
NPN-Si
GB300
UNI
TIC106A
SCA
D44C7
GE
TIP31A
NPN-5i
GB300A
UNI
TlCl06A
SCA
D44C8
GE
TIP31A
NPN-5i
HR878
UNI
2N3006
SCA
D44C9
GE
TlP31A
NPN-5i
HR878A
UNI
2N3002
SCR
D44Cl0
GE
TIP31B
NPN-5i
HR879A
UNI
TlC39A
SCA
D44Cl1
GE
TIP31B
NPN-5i
HR879B
UNI
TIC39A
SCR
D44Hl
GE
TIP41
NPN-5i
HR3028
UNI
TIC46
SCR
D44H2
GE
TIP41
NPN-5i
HR3029
UNI
TIC39A
SCA
D44H4
GE
TIP41
NPN-5i
HR3031
UNI
TIC46
SCR
D44H5
GE
TIP41
NPN-5i
HR3032
UNI
TIC39A
SCR
D44H7
GE
TIP41A
NPN-Si
MACH
MOTA
TIC226B
TAIAC
Refer to page 2-17 for key to manufacturers.
2-22
FOR NEW DESIGN
D40N4
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
MANUFACTURER
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
MAC1·2
MOTA
TIC226B
TRIAC
MAC7-4
MOTA
TIC226B
TRIAC
MAC1·3
MOTA
TIC226B
TRIAC
MAC7-5
MOTA
TIC226D
TRIAC
MAC1·4
MOTA
TIC226B
TRIAC
MAC7-6
MOTA
TIC226D
TRIAC
MAC1·5
MOTA
TIC226D
TRIAC
MAC7-7
MOTA
CTI
TRIAC
MACH>
MOTA
TIC226D
TRIAC
MAC7·8
MOTA
CTI
TRIAC
MAC1·7
MOTA
CTI
TRIAC
MAC8·1
MOTA
TIC2268
TRIAC
MAC1·8
MOTA
CTI
TRIAC
MAC8-2
MOTA
TIC2268
TRIAC
MAC2·1
MOTA
TIC2268
TRIAC
MAC8-3
MOTA
TIC226B
TRIAC
MAC2·2
MOTA
TIC226B
TRIAC
MAC8-4
MOTA
TlC226B
TRIAC
MAC2·3
MOTA
TIC226B
TRIAC
MAC8-5
MOTA
TIC226D
TRIAC
MAC2-4
MOTA
TIC226B
TRIAC
MAC8-6
MOTA
TIC226D
TRIAC
MAC2·5
MOTA
TIC226D
TRIAC
MAC8-7
MOTA
CTI
TRIAC
MAC2-6
MOTA
TIC226D
TRIAC
MAC8-8
MOTA
CTI
TRIAC
MAC2·7
MOTA
CTI
TRIAC
MAC9-1
MOTA
TIC226B
TRIAC
MAC2·8
MOTA
CTI
TRIAC
MAC9-2
MOTA
TIC226B
TRIAC
MAC3·1
MOTA
TIC226B
TRIAC
MAC9-3
MOTA
TIC226B
TRIAC
MAC3-2
MOTA
TIC226B
TRIAC
MAC9-4
MOTA
TIC2268
TRIAC
MAC3·3
MOTA
TIC2268
TRIAC
MAC9·5
MOTA
TIC226D
TRIAC
MAC3-4
MOTA
TIC226B
TRIAC
MAC9·6
MOTA
TIC226D
TRIAC
MAC3·5
MOTA
TIC226D
TRIAC
MAC9·7
MOTA
CTI
TRIAC
MAC3-6
MOTA
TIC226D
TRIAC
MAC9·8
MOTA
CTI
TRIAC
MAC3·7
MOTA
CTI
TRIAC
MAC10-1
MOTA
TIC226B
TRIAC
MAC3·8
MOTA
CTI
TRIAC
MAC10-2
MOTA
TIC226B
TRIAC
MAC4·1
MOTA
TIC226B
TRIAC
MAC10-3
MOTA
TIC226B
TRIAC
MAC4-2
MOTA
TlC226B
TRIAC
MAC10-4
MOTA
TIC226B
TRIAC
MAC4·3
MOTA
TIC226B
TRIAC
MAC10-5
MOTA
TIC226D
TRIAC
MAC4·4
MOTA
TIC226B
TRIAC
MAC10-6
MOTA
TIC226D
TRIAC
MAC4·6
MOTA
TIC226D
TRIAC
MAC10-7
MOTA
CTI
TRIAC
MAC4·6
MOTA
TIC226D
TRIAC
MAC10-8
MOTA
CTI
TRIAC
MAC4·7
MOTA
CTI
TRIAC
MAC11·1
MOTA
TIC226B
TRIAC
MAC4-8
MOTA
CTI
TRIAC
MACll·2
MOTA
TIC226B
TRIAC
MAC5-1
MOTA
TIC226B
TRIAC
MACll·3
MOTA
TIC226B
TRIAC
MAC5-2
MOTA
TIC226B
TRIAC
MAC11-4
MOTA
TIC226B
TRIAC
MAC5-3
MOTA
TIC226B
TRIAC
MAC11-5
MOTA
TIC226D
TRIAC
MAC5-4
MOTA
TlC2268
TRIAC
MAC11-6
MOTA
TIC226D
TRIAC
MAC5-5
MOTA
TIC226D
TRIAC
MAC11·7
MOTA
CTI
TRIAC
MAC5-6
MOTA
TIC226D
TRIAC
MAC11-8
MOTA
CTI
TRIAC
MAC5·7
MOTA
CTI
TRIAC
MAC35-1
MOTA
TIC263B
TRIAC
MAC5·8
MOTA
CTI
TRIAC
MAC35-2
MOTA
TlC263B
TRIAC
MACS·1
MOTA
TIC226B
TRIAC
MAC35·3
MOTA
TIC263B
TRIAC
MAC6-2
MOTA
TIC226B
TRIAC
MAC35-4
MOTA
TIC263B
TRIAC
MAC6-3
MOTA
TIC226B
TRIAC
MAC35-5
MOTA
TIC263D
TRIAC
MAC5-4
MOTA
TIC226B
TRIAC
MAC35-6
MOTA
TIC263D
TRIAC
MAC6·5
MOTA
TIC226D
TRIAC
MAC35·7
MOTA
TIC263E
TRIAC
MAC6-6
MOTA
TIC226D
TRIAC
MAC36·1
MOTA
TIC263B
TRIAC
MAC6·7
MOTA
CTI
TRIAC
MAC36-2
MOTA
TIC263B
TRIAC
MAC6·8
MOTA
CTI
TRIAC
MAC36·3
MOTA
TIC263B
TRIAC
MAC7-1
MOTA
TIC226B
TRIAC
MAC36-4
MOTA
TIC263B
TRIAC
MAC7·2
MOTA
TIC226S
TRIAC
MAC36·5
MOTA
TIC263D
TRIAC
MAC7-3
MOTA
TIC226B
TRIAC
MAC36-6
MOTA
TIC263D
TRIAC
TYPE
•
Refer to page 2-17 for key to manufacturers.
CTI-Contact Texas Instruments.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
2·23
CROSS-REFERENCE GUIDE
I
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
MAC36-7
MOTA
TIC263E
TRIAC
MCR3000-4
MAC37-l
MOTA
TIC263B
TRIAC
MAC37-2
MOTA
TIC263B
TRIAC
MAC37-3
MOTA
TIC2638
MAC37-4
MOTA
MAC37-5
MAC37-6
TYPE
MANUFACTURER
FOR NEW DESIGN
MOTA
TICl168
SCR
MCR3000-5
MOTA
TICl16D
SCR
MCR3000-6
MOTA
TICl16D
SCR
TRIAC
MCR3000-7
MOTA
TICl16E
SCR
TlC263B
TRIAC
MCR3000-8
MOTA
TICl16M
SCR
MOTA
TIC263D
TRIAC
MJ400
MOTA
TIP49
NPN-8i
MOTA
TlC263D
TRIAC
MJ413
MOTA
TIP54
NPN-Si
NPN-Si
MAC37-7
MOTA
TIC263E
TRIAC
MJ423
MOTA
TlP54
MAC38-l
MOTA
TIC2638
TRIAC
MJ431
MOTA
TIP54
NPN-Si
MAC38-2
MOTA
TIC2638
TRIAC
MJ450
MOTA
TlP32
PNP-8i
MAC38-3
MOTA
TIC2638
TRIAC
MJ480
MOTA
2N3713
NPN-Si
MAC38-4
MOTA
TIC2638
TRIAC
MJ481
MOTA
2N3714
NPN-Si
MAC38-5
MOTA
TIC263D
TRIAC
MJ490
MOTA
TIP34
PNP-8i
MAC38-6
MOTA
TIC263D
TRIAC
MJ491
MOTA
TIP34
PNP-8i
MAC38-7
MOTA
TIC263E
TRIAC
MJ500
MOTA
TIP42
PNP-8i
MAC77-l
MOTA
TIC206A
TRIAC
MJ501
MOTA
TIP42A
PNP-Si
MAC77-2
MOTA
TIC206A
TRIAC
MJ802
MOTA
2N3716
NPN-8i
MAC77-3
MOTA
TIC206A
TRIAC
MJ900
MOTA
2N3789
PNP-Si
MAC77-4
MOTA
TlC2068
TRIAC
MJ901
MOTA
2N3790
PNP-Si
MAC77-5
MOTA
TIC206D
TRIAC
MJ1000
MOTA
2N3713
NPN-Si
MAC77-6
MOTA
TIC206D
TRIAC
MJ100l
MOTA
2N3714
NPN-Si
MAC77-7
MOTA
CTI
TRIAC
MJ1800
MOTA
TIP51
NPN-8i
MAC77-8
MOTA
CTI
TRIAC
MJ2249
MOTA
TIP31A
NPN-Si
MCR10l
MOTA
TIC44
SCR
MJ2250
MOTA
TlP318
NPN-Si
MCR102
MOTA
TIC44
SCR
MJ2251
MOTA
TlP47
NPN-Si
MCR103
MOTA
TIC45
SCR
MJ2252
MOTA
TIP48
NPN-Si
MCR104
MOTA
TIC46
SCR
MJ2253
MOTA
TIP32
PNP-8i
MCR106-l
MOTA
TIC106Y
SCR
MJ2254
MOTA
TIP32B
PNP-8i
MCR 106-2
MOTA
TlCl06A
SCR
MJ2267
MOTA
2N3789
PNP-Si
MCR106-3
MOTA
TIC106A
SCR
MJ2268
MOTA
2N3790
PNP-8i
MCR106-4
MOTA
TIC106B
SCR
MJ2500
MOTA
TIP145
PNP-8i
MCRl15
MOTA
TIC47
SCR
MJ2501
MOTA
TIP146
PNP-8i
MCR120
MOTA
TIC47
SCR
MJ2840
MOTA
TIP41A
NPN-Si
MCR406-l
MOTA
TlC106Y
SCR
MJ2841
MOTA
TIP4l8
NPN-8i
MCR406-2
MOTA
TIC106A
SCR
MJ2901
MOTA
2N3055
NPN-8i
MCR406-3
MOTA
TIC106A
SCR
MJ2940
MOTA
TIP41A
NPN-Si
MCR406-4
MOTA
TlCl06B
SCR
MJ2941
MOTA
TIP4l8
NPN-8i
MCR407-l
MOTA
TIC106Y
SCR
MJ3000
MOTA
TIP140
NPN-Si
MCR407-2
MOTA
TIC106A
SCR
MJ3001
MOTA
TIP14l
NPN-Si
MCR407-3
MOTA
TIC106A
SCR
MJ3010
MOTA
TIP5l
NPN-Si
MCR407-4
MOTA
TIC1068
SCR
MJ30ll
MOTA
TIP53
NPN-8i
MCR23l5-l
MOTA
TICl16F
SCR
MJ3029
MOTA
TIP5l
NPN-8i
MCR2315-2
MOTA
TlCl16F
SCR
MJ3030
MOTA
TIP53
NPN-Si
MCR2315-3
MOTA
TICl16A
SCR
MJ3l0l
MOTA
TIP31
NPN-Si
MCR2315-4
MOTA
TICl168
SCR
MJ3201
MOTA
TIP47
NPN-Si
MCR2315-5
MOTA
TICl16D
SCR
MJ3202
MOTA
TIP48
NPN-Si
MCR2315-6
MOTA
TICl16D
SCR
MJ3701
MOTA
TlP32
PNP-Si
MCR3000-l
MOTA
TICl16F
SCR
MJ3771
MOTA
2N530l
NPN-8i
MCR3000-2
MOTA
TlCl16F
SCR
MJ3772
MOTA
2N5301
NPN-Si
MCR3000-3
MOTA
TICl16A.
SCR
MJ3801
MOTA
TlP338
NPN-Si
Refer to page 2-17 for key to manufacturers.
CTI-Contact Texas Instruments.
2-24
CLASS
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
CROSS-REFERENCE GUIDE
TYPE
CLASS
TYPE
MANUFACTURER
MJ3802
MANUFACTURER
MOTA
FOR NEW DESIGN
TIP338
NPN-Si
MJE 1101
MOTA
FOR NEW DESIGN
TIP120
NPN-Si
CLASS
MJ4000
MOTA
TIP120
NPN-Si
MJE1102
MOTA
MOTA
TIP121
NPN-Si
MJE1103
MOTA
TIP121
TIP121
NPN-Si
MJ4001
MJ4010
MOTA
TIP125
PNP-Si
MJE1290
MOTA
TIP34
PNP-Si
MJ4011
MOTA
TIP126
PNP-Si
MJE1291
MOTA
TIP34A
PNP-Si
MJ4030
MOTA
TIP145
PNP-Si
MJEl660
MOTA
TIP33
NPN-Si
MJ4031
MOTA
TIP146
PNP-Si
MJE1661
MOTA
TIP33A
NPN-Si
MJ4032
MOTA
TIP147
PNP-Si
MJE2010
MOTA
TIP34
PNP-Si
MJ4033
MOTA
TIP145
PNP-Si
MJE2011
MOTA
TlP34A
PNP-Si
MJ4034
MOTA
TIP146
PNP-Si
MJE2020
MOTA
TIP33
NPN-Si
MJ4035
MOTA
TIP147
PNP-Si
MJE2021
MOTA
TIP33A
NPN-Si
MJ4101
MOTA
TIP31
NPN-Si
MJE2360
MOTA
TIP54
NPN-Si
MJ4502
MOTA
2N4399
PNP-Si
MJE2361
MOTA
TIP54
NPN-Si
MJ6700
MOTA
TIP41
NPN-Si
MJE2370
MOTA
TIP34
PNP-Si
MJ6701
MOTA
TIP41A
NPN-Si
MJE2371
MOTA
TIP34A
PNP-Si
MJ7000
MOTA
2N5303
NPN-Si
MJE2480
MOTA
TIP33
NPN-Si
MJ7200
MOTA
CTI
NPN-Si
MJE2481
MOTA
TIP33A
NPN-Si
MJ7201
MOTA
CTI
NPN-Si
MJE2482
MOTA
TIP33
NPN-Si
MJ8100
MOTA
CTI
PNP-Si
MJE2483
MOTA
TIP33A
NPN-Si
MJ8101
MOTA
CTI
PNP-Si
MJE2490
MOTA
TIP34
PNP-Si
MJ8400
MOTA
CTI
NPN-Si
MJE2491
MOTA
TIP34A
PNP-Si
MJ9000
MOTA
CTI
NPN-Si
MJE2520
MOTA
TIP33
NPN-Si
MJE101
MOTA
TIP34
PNP-Si
MJE2521
MOTA
TIP33A
NPN-Si
MJE102
MOTA
TIP34A
PNP-Si
MJE2522
MOTA
TIP33
NPN-Si
MJE103
MOTA
TIP34A
PNP-Si
MJE2523
MOTA
TIP33A
NPN-Si
MJE104
MOTA
TIP348
PNP-Si
MJE2801
MOTA
TIP41A
NPN-Si
MJE105
MOTA
TIP34A
PNP-Si
MJE2901
MOTA
TIP42A
PNP-Si
MJE201
MOTA
TIP33
NPN-Si
MJE2955
MOTA
TIP2955
PNP-Si
MJE202
MOTA
TIP33A
NPN-Si
MJE3050
MOTA
TIP33A
NPN-Si
MJE203
MOTA
TIP33A
NPN-Si
MJE3055
MOTA
TlP3055
NPN-Si
MJE204
MOTA
TIP338
NPN-Si
MJE3370
MOTA
TIP32
PNP-Si
MJE205
MOTA
TIP33A
NPN-Si
MJE3371
MOTA
TIP32
PNP-Si
MJE340
MOTA
TIP48
NPN-Si
MJE3439
MOTA
TIP51
NPN-Si
MJE370
MOTA
TIP32
PNP-Si
MJE3440
MOTA
TIP52
NPN-Si
MJE371
MOTA
TIP32
PNP-Si
MJE3520
MOTA
TIP33
NPN-Si
MJE520
MOTA
TIP31
NPN-Si
MJE3521
MOTA
TIP33
NPN-Si
MJE521
MOTA
TIP31
NPN-Si
MJE3738
MOTA
TIP51
NPN-Si
MJE700
MOTA
TlP110
NPN-Si
MJE3739
MOTA
TIP52
NPN-Si
PNP-Si
NPN-Si
MJE701
MOTA
TIPl15
PNP-Si
MJE3740
MOTA
TIP34A
MJE702
MOTA
TIP116
PNP-Si
MJE3741
MOTA
TIP348
PNP-Si
MJE703
MOTA
TIP116
PNP-Si
02001P
ECC
TIC2158
TRIAC
MJE800
MOTA
TIP110
NPN-Si
02001PS
ECC
TIC2158
TRIAC
MJE801
MOTA
TIP110
NPN-Si
02001 PST
ECC
TIC2158
TRIAC
MJE802
MOTA
TlP111
NPN-Si
02001PT
ECC
TIC2158
TRIAC
MJE803
MOTA
TIP111
NPN-Si
02003P
ECC
TIC2268
TRIAC
MJE1090
MOTA
TlP125
PNP-Si
02003PT
ECC
TIC2268
TRIAC
MJE1091
MOTA
TIP125
PNP-Si
02004
ECC
TIC2268
TRIAC
MJE1092
MOTA
TIP126
PNP-Si
02004A
ECC
TIC2268
TRIAC
MJE1093
MOTA
TIP126
PNP-Si
020048
ECC
TIC2268
TRIAC
MJE1100
MOTA
TIP120
NPN-Si
02004T
ECC
TIC2268
TRIAC
•
Refer to page 2-17 for key to manufacturers.
CTI-Contact Texas Instruments.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
2-25
CROSS-REFERENCE GUIDE
FOR NEW DESIGN
CLASS
ECC
ECC
TIC253E
TIC253E
TRIAC
TRIAC
05006TA
ECC
TIC253E
TRIAC
TRIAC
05006TB
ECC
TIC253E
TRIAC
TIC22aB
TRIAC
05008
ECC
TIC253E
TRIAC
ECC
TIC226B
TRIAC
05008A
ECC
TIC253E
TRIAC
ECC
ECC
TIC226B
TIC226B
TRI'AC
TRIAC
05008B
ECC
TRIAC
ECC
ECC
TIC236B
TRIAC
ECC
TIC253E
TRIAC
02008B
ECC
TIC236B
TRIAC
05OO8T
05008TA
05OO8TB
TIC253E
TIC253E
ECC
TIC253E
TRIAC
02008TA
ECC
TIC236B
TRIAC
06015
ECC
TIC253M
TRIAC
0200BTB
ECC
TIC236B
TRIAC
06015A
ECC
TIC253M
TRIAC
02010
02010A
ECC
ECC
TlC246B
TIC246B
TRIAC
06015T
ECC
TRIAC
OaOl5TA
ECC
TIC253M
TIC253M
TRIAC
TRIAC
020108
ECC
TIC246B
TRIAC
TIC253M
TRIAC
ECC
TIC236B
TRIAC
06015TB
RTA010l
ECC
02010T
TEC
2N3005
SCR
02010TA
ECC
TIC236B
TRIAC
RTA0103
TEC
2N3OO5
SCR
02010TB
ECC
TlC24aB
RTA0106
TEC
2N3006
SCR
02015
ECC
ECC
TRIAC
RTAOll0
RTAOl15
TEC
TEC
TIC39A
02015A
TlC253B
TIC253B
TRIAC
TRIAC
2N3008
SCR
SCR
02015B
ECC
TIC253B
TRIAC
RTA0120
TEC
2N3008
SCR
02015T
ECC
TIC253B
TRIAC
RTB010l
TEC
2N3005
SCR
02015TA
ECC
TIC253B
TRIAC
RTB0103
TEC
2N3005
SCR
2N3006
TIC39A
SCR
FOR NEW DESIGN
CLASS
TYPE
TRIAC
TRIAC
05008A
ECC
TIC226B
TIC226B
ECC
TIC226B
TRIAC
02OO6A
ECC
TlC226B
02006B
ECC
02006T
02006TA
TYPE
MANUFACTURER
02004TA
ECC
02004TB
02006
02OO6TB
0200BA
MANUFACTURER
05006B
02015TB
ECC
TIC253B
TRIAC
RTB0106
TEC
02025
ECC
TRIAC
RTBOll0
02025C
020250
ECC
ECC
TIC253B
TIC253B
TRIAC
RTBOl15
TEC
TEC
TIC263B
TRIAC
RTB0120
TEC
04004
ECC
TIC226D
TRIAC
RTB0125
04004A
ECC
TIC226D
TRIAC
RTB0130
04004B
ECC
TIC226D
04004T
ECC
TIC226D
TRIAC
TRIAC
04004TB
ECC
TIC226D
04006A
ECC
04008A
ECC
SCR
2N3008
SCR
2N3008
SCR
TEC
2Nl598
SCR
TEC
2N159B
SCR
RTB0201
RTB0203
TEC
TEC
2N3OO5
SCR
2N3005
SCR
TRIAC
RTB0206
TEC
SCR
TIC226D
TRIAC
TIC246D
TRIAC
RTB0210
RTB0215
TEC
TEC
2N3006
TIC39A
2N3008
SCR
SCR
04oo8B
ECC
TIC246D
TRIAC
RTB0220
TEe
2N3OO8
SCR
04008TA
ECC
TIC246D
TRIAC
RTB0225
TEC
2N159B
SCR
0400BTB
ECC
TIC246D
TRIAC
RTB0230
TEC
2Nl598
SCR
04010
ECC
TIC24aD
TRIAC
RTB0301
TEC
2N3005
SCR
04010A
ECC
TIC246D
TRIAC
RTB0303
TEC
2N3005
SCR
04010B
ECC
TIC246D
TRIAC
RTB0306
TEC
2N3006
SCR
04010T
ECC
TIC246D
TRIAC
RTB0310
TEC
TIC39A
SCR
04010TA
04010TB
ECC
ECC
TIC246D
TRIAC
RTB0315
TEC
2N3008
SCR
TIC246D
TRIAC
RTB0320
TEC
2N3008
04025
ECC
TRIAC
RTB0325
TEC
2N159B
SCR
SCR
04025C
ECC
TIC263D
TIC263D
040250
ECC
TIC263D
TRIAC
TRIAC
RTB0330
RTB0401
TEC
TEC
2Nl598
2N3OO1
SCR
SCR
05004
ECC
TIC216D
TRIAC
RTB0403
TEC
2N3OO1
SCR
05004A
ECC
ECC
TIC216D
TRIAC
TRIAC
TEC
TEC
2N3002
TIC39A
SCR
TIC216D
RTB0406
RTB0410
05004B
Refer to page 2-17 for key to manufacturers.
2-26
TRIAC
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
SCR
CROSS-REFERENCE GUIDE
TYPE
MANUFACTURER
FOR NEW DESIGN
TYPE
CLASS
MANUFACTURER
FOR NEW DESIGN
CLASS
SCR
RTC0430
TEC
2N1598
SCR
2N3008
SCR
RTC0501
TEC
2N3001
SCR
2N1598
SCR
RTC0503
TEC
2N3001
SCR
TEC
2N1598
SCR
RTC0506
TEC
2N3002
SCR
RTB0501
TEC
2N3001
SCR
RTC0510
TEC
2N3003
SCR
RTB0503
TEC
2N3005
SCR
RTC0515
TEC
2N3004
SCR
RTB0506
TEC
2N3002
SCR
RTC0520
TEC
2N3004
SCR
RTB0510
TEC
TIC39A
SCR
RTC0525
TEC
2N1598
SCR
RTB0515
TEC
2N3004
SCR
RTC0530
TEC
2N1598
SCR
RTB0520
TEC
2N3004
SCR
RTC0601
TEC
2N3001
SCR
RTB0525
TEC
2N1598
SCR
RTC0603
TEC
2N3001
SCR
RTB0530
TEC
2N1598
SCR
RTC0606
TEC
2N3002
SCR
RTB0601
TEC
2N3001
SCR
RTC0610
TEC
2N3003
SCR
RTB0603
TEC
2N3001
SCR
RTC0615
TEC
2N3004
SCR
RTB0606
TEC
2N3002
SCR
RTC0620
TEC
2N3004
SCR
RTB0608
TEC
2N3002
SCR
RTD0101
TEC
TIC39Y
SCR
RTB0610
TEC
TIC39A
SCR
RTD0103
TEC
TIC39Y
SCR
RTB0615
TEC
2N3004
SCR
RTD0106
TEC
TIC39F
SCR
RTB0620
TEC
2N3004
SCR
RTD0110
TEC
TIC39A
SCR
RTC010l
TEC
2N3005
SCR
RTDOl15
TEC
TIC39B
SCR
RTC0103
TEC
2N3005
SCR
RTD0120
TEC
2N1598
SCR
RTC0106
TEC
2N3006
SCR
RTD0125
TEC
2N1597
SCR
RTC0110
TEC
2N3007
SCR
RTD0130
TEC
2N1598
SCR
RTCOl15
TEC
2N3004
SCR
RTD0135
TEC
2N1599
SCR
RTC0120
TEC
2N3004
SCR
RTD0140
TEC
TIC106D
SCR
RTC0125
TEC
2N1598
SCR
RTD0201
TEC
TIC39Y
SCR
RTC0130
TEC
2N1598
SCR
RTD0203
TEC
TIC39Y
SCR
RTC0201
TEC
2N3005
SCR
RTD0206
TEC
TIC39F
SCR
RTC0203
TEC
2N3005
SCR
RTD0210
TEC
TIC39A
SCR
RTC0206
TEC
2N3006
SCR
RTD0215
TEC
TIC39B
SCR
RTC0210
TEC
2N3009
SCR
RTD0220
TEC
TIC39B
SCR
RTC0215
TEC
2N3008
SCR
RTD0225
TEC
2N1598
SCR
RTC0220
TEC
TICl16B
SCR
RTD0230
TEC
2N1598
SCR
RTC0225
TEC
2N1598
SCR
RTD0235
TEC
2N1599
SCR
RTC0230
TEC
2N1598
SCR
RTD0240
TEC
TIC106D
SCR
RTC0301
TEC
2N3005
SCR
RTD0301
TEC
TIC39Y
SCR
RTC0303
TEC
2N3005
SCR
RTD0303
TEe
TIC39Y
SCR
RTC0306
TEC
2N3006
SCR
RTD0306
TEC
TIC39F
SCR
RTC0310
TEC
2N3007
SCR
RTD0310
TEC
TIC39A
SCR
RTC0315
TEC
2N3008
SCR
RTD0315
TEC
TIC39B
SCR
RTC0320
TEC
2N3008
SCR
RTD0320
TEC
TIC39B
SCR
RTC0325
TEC
2N1598
SCR
RTD0325
TEC
2N1598
SCR
RTC0330
TEC
2N1598
SCR
RTD0330
TEC
2N1598
SCR
flTC0401
TEC
2N3001
SCR
RTD0335
TEC
2N1599
SCR
RTC0403
TEC
2N3001
SCR
RTD0340
TEC
TIC106D
SCR
RTC0406
TEC
2N3002
SCR
RTD0401
TEC
TIC39Y
SCR
RTC0410
TEC
2N3003
SCR
RTD0403
TEC
TIC39Y
SCR
RTC0415
TEC
2N3008
SCR
RTD0406
TEC
TIC39F
SCR
RTC0420
TEC
2N3008
SCR
RTD0410
TEC
TIC39A
SCR
RTC0425
TEC
2N1598
SCR
RTD0415
TEC
TIC39B
SCR
RTB0415
TEC
2N3004
RTB0420
TEC
RTB0425
TEC
RTB0430
Refer to page
2~17
•
for key to manufacturers.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
2·27
CROSS-REFERENCE GUIDE
TYPE
•
MANUFACTURER
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
CLASS
TEC
TIC39B
SCR
RTF0340
TEC
TIC39D
SCR
RTll0425
TEC
2Nl598
SCR
RTF0401
TEC
TIC39Y
SCR
RTD0430
TEC
2N1598
SCR
RTF0403
TEC
TIC39Y
RTD0435
TEC
2Nl599
SCR
RTF0406
TEC
TIC39A
SCR
SCR
RTD0440
TEC
TIC106D
SCR
RTF0410
TEC
TIC39A
SCR
RTD0501
TEC
TIC39Y
SCR
RTF0415
TEC
TIC398
SCR
RTD0503
TEC
TIC39Y
RTF0420
TEC
TIC398
SCR
RTD0506
TEC
TIC39F
SCR
SCR
RTF0425
TEC
TIC39C
SCR
RTD0510
TEC
TIC39A
SCR
RTF0430
TEC
TIC39C
SCR
RTD0515
TEC
TIC39B
SCR
RTF0435
TEC
TIC39D
SCA
RTD0520
TEC
TIC39B
SCR
RTF0440
TEC
TIC39D
SCR
RTD0525
TEC
2N1598
SCR
RTF0501
TEC
TIC39Y
SCR
RTD0530
TEC
2N1598
SCR
RTF0503
TEC
SCR
RTD0535
TEC
2Nl599
SCR
RTF0506
TEC
TIC39Y
TIC39A
RTD0540
TEC
TIC106D
SCR
RTF0510
TEC
TIC39A
SCR
RTD0601
TEC
TIC39Y
SCR
RTF0515
TEC
TlC398
SCR
RTD0603
TEC
TIC39Y
SCR
RTF0520
TEC
TIC398
SCR
RTD0606
TEC
TIC39F
SCR
RTF0525
TEC
TIC39C
SCR
RTD0610
RTD0615
TEC
TEC
TIC39A
RTF0530
TEC
TEC
RTD0620
TEe
SCR
RTF0535
RTF0540
TIC39C
TIC39D
SCR
TIC39B
TIC398
SCR
SCR
TEC
TIC39Y
SCR
RTF0601
TIC39D
TIC39Y
SCR
RTF0101
TEC
TEC
RTF0103
RTF0106
TEC
TEC
TIC39Y
TIC39A
SCR
SCR
RTF0603
TEC
TIC39Y
RTF0606
TEC
TIC39A
SCR
SCR
RTF0110
RTF0115
TEC
SCR
SCR
RTF0610
RTF0615
TEC
TEC
TlC39A
SCR
TEC
TIC39A
TIC39B
RTF0120
TEC
TIC39B
SCR
RTF0620
TEC
TIC398
TIC39B
SCR
RTF0125
TEC
TIC39C
SCR
RTN0102
TEC
TIC116F
SCR
RTF0130
TEC
TIC39C
SCR
RTN0105
TEC
TIC116F
SCR
RTF0135
TEC
TIC39D
SCR
RTNOll0
TEC
TlC116A
SCR
RTF0140
TIC39D
TIC39Y
SCR
SCR
RTN0120
TEC
TIC1168
SCIl
RTF0201
TEC
TEC
RTN0130
TEC
TlC116C
SCR
RTF0203
TEC
TIC39Y
SCR
RTN0140
TEC
TIC116D
SCR
RTF0206
TEC
TIC39A
SCR
RTN0150
TEC
TlC116E
SCR
RTF0210
TEC
TIC39A
SCR
RTN0160
TEC
TIC116M
SCR
RTF0215
TEC
TIC398
SCR
RTN0202
TlC126F
RTF0220
TEC
TIC398
SCR
RTN0205
TEC
TEC
TlC126F
SCR
SCR
RTF0225
TEC
TIC39C
SCR
RTN0210
TEC
TlC126A
SCI'!
RTF0230
TEC
TIC39C
SCR
RTN0220
TEC
TIC1268
SCR
RTF0235
TEC
TIC39D
SCR
RTN0230
TEC
TIC126C
SCR
RTF0240
TEC
TIC39D
SCR
RTN0240
TEC
TIC126D
SCR
RTF0301
TEC
SCR
RTN0250
TEC
TIC126E
SCI'!
RTF0303
TEC
TIC39Y
TlC39Y
SCR
RTN0260
TEC
TIC126M
SCR
RTF0306
TEC
TIC39A
SCR
RTN0302
TEC
TIC126F
SCR
RTF0310
TEC
TIC39A
SCR
RTN0305
TEC
TlC126F
SCR
RTF0315
TEC
TIC398
SCR
RTN0310
TEC
TlC126A
SCR
RTF0320
TEC
TIC398
SCR
RTN0320
TEC
TIC1268
SCR
RTF0325
RTF0330
TEC
TEC
TIC39C
SCR
TIC126C
TIC126D
SCR
SCR
TEC
SCR
SCR
TEC
TEC
RTF0335
TIC39C
TIC39D
RTN0330
RTN0340
RTN0350
TEC
TIC126E
SCR
Refer to page 2-17 for key to manufacturers.
2·28
FOR NEW DESIGN
RTD0420
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
SCR
SCR
SCR
SCIII
CROSS-REFERENCE GUIDE
TYPE
RTN0360
MANUFACTURER
FOR NEW DESIGN
CLASS
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
TEC
TIC126M
SCR
RTR0405
TEC
TIC106F
SCR
RTN0402
TEC
TIC126F
SCR
RTR0410
TEC
TIC106A
SCR
RTN0405
TEC
TIC126F
SCR
RTR0420
TEC
TlCl06B
SCR
RTN0410
TEC
TIC126A
SCR
RTR0430
TEC
TIC106C
SCR
RTN0420
TEC
TIC126B
SCR
RTR0440
TEC
TIC106D
SCR
RTN0430
TEC
TIC126C
SeR
RTR0450
TEC
CTI
SCR
RTN0440
TEC
TIC126D
SCR
RTR0460
TEC
CTI
SCR
RTN0450
TEC
TIC126E
SCR
RTR0502
TEC
TIC106F
SCR
RTN0460
TEC
TIC126M
SCR
RTR0505
TEC
TIC106F
SCR
RTN0502
TEC
TIC126F
SCR
RTR05l0
TEC
TIC106A
SCR
RTN0505
TEC
TIC126F
SCR
RTR0520
TEC
TIC106B
SCR
RTN05l0
TEC
TIC126A
SCR
RTR0530
TEC
TIC106C
SCR
RTN0520
TEC
TIC126B
SCR
RTR0540
TEC
TIC106D
SCR
RTN0530
TEC
TIC126C
SCR
RTR0550
TEC
CTI
SCR
RTN0540
TEC
TIC126D
SCR
RTR0560
TEC
CTI
SCR
RTN0550
TEC
TlC126E
SCR
RTS0102
TEC
TIC106F
SCR
RTN0560
TEC
TIC126M
SCR
RTS0105
TEC
TIC106F
SCR
RTN0602
TEC
TIC126F
SCR
RTSOll0
TEC
TIC106A
SCR
RTN0605
TEC
TIC126F
SCR
RTS0120
TEC
TIC106B
SCR
RTN0610
TEC
TIC126A
SCR
RTS0130
TEC
TIC106C
SCR
RTN0620
TEC
TIC126B
SCR
RTS0140
TEC
TIC106D
SCR
RTN0630
TEC
TIC126C
SCR
RTS0150
TEC
CTI
SCR
RTN0640
TEC
TIC126D
SCR
RTS0160
TEC
CTI
SCR
RTN0650
TEC
TIC126E
SCR
RTS0202
TEC
TIC106F
SCR
RTN0660
TEC
TIC126M
SCR
RTS0205
TEC
TIC106F
SCR
RTR0102
TEC
TIC106F
SCR
RTS02l0
TEC
TIC106A
SCR
RTR0105
TEC
TIC106F
SCR
RTS0220
TEC
TIC106B
SCR
RTROll0
TEC
TIC106A
SCR
RTS0230
TEC
TIC106C
SCR
RTR0120
TEC
TIC106B
SCR
RTS0240
TEC
TIC106D
SCR
RTR0130
TEC
TIC106C
SeR
RTS0250
TEC
CTI
SCR
RTR0140
TEC
TIC106D
SCR
RTS0260
TEC
CTI
SeR
RTROl50
TEC
CTI
SCR
RTS0302
TEC
TIC106F
SCR
RTR0160
TEC
CTI
SCR
RTS0305
TEC
. TIC106F
SCR
RTR0202
TEC
TIC106F
SCR
RTS03l0
TEC
TIC106A
SCR
RTR0205
TEC
TIC106F
SCR
RTS0320
TEC
TIC106B
SCR
RTR02l0
TEC
TIC106A
SCR
RTS0330
TEC
TIC106C
SCR
RTR0220
TEC
TIC106B
SCR
RTS0340
TEC
TIC106D
SCR
RTR0230
TEC
TIC106C
SCR
RTS0350
TEC
CTI
SCR
RTR0240
TEC
TIC106D
SCR
RTS0360
TEC
CTI
SCR
RTR0250
TEC
CTI
SCR
RTS0402
TEC
TIC106F
SCR
RTR0260
TEC
CTI
SCR
RTS0405
TEC
TIC106F
SCR
RTR0302
TEC
TIC106F
SCR
RTS0410
TEC
TIC106A
SCR
RTR0305
TEC
TIC106F
SeR
RTS0420
TEC
TIC106B
SCR
RTR0310
TEC
TIC106A
SCR
RTS0430
TEC
TIC106C
SCR
RTR0320
TEC
TIC106B
SCR
RTS0440
TEC
TIC106D
SCR
RTR0330
TEC
TIC106C
SCR
RTS0450
TEC
CTI
SCR
RTR0340
TEC
TIC106D
SCR
RTS0460
TEC
CTI
SCR
RTR0350
TEC
CTI
SCR
RTT0102
TEC
TICl16F
SCR
RTR0360
TEC
CTI
SCR
RTT0105
TEC
TICl16F
SCR
RTR0402
TEC
TIC106F
SCR
RTTOll0
TEC
TICl16A
SCR
•
Refer to page 2-17 for key to manufacturers.
CTI-Contact Texas Instruments,
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
2-29
CROSS.;REFERENCE GUIDE
TYPE
RTT0120
•
MANUFACTURER
FOR NEW DESIGN
CLASS
TICl16B
SCR
RTT0130
TEC
TEC
TICl16C
RTT0140
TEC
TICll6D
RTTOl50
TEC
RTT0160
TYPE
MANUFACTURER
CLASS
TEC
TlC126D
SCR
SCR
TEC
TIC126E
SCR
SCR
RTU0160
TEC
TICl26M
SCR
TICl16E
SCR
RTU0202
TEC
TIC126F
SCR
TEC
TICl16M
SCR
RTU0205
TEC
TIC126F
SCR
RTT0202
TEC
TICl16F
SCR
RTU02l0
TEC
TIC126A
SCR
RTT0205
TEC
TICl16F
SCR
RTU0220
TEC
TIC126B,
SCR
RTT02l 0
TEC
TICll6A
SCR
RTU0230
TEC
TIC126C
SCR
RTT0220
TEC
TIC116B
SCR
RTU0240
TEC
TIC126D
SCR
RTT0230
TEC
TICl16C
SCR
RTU0250
TEC
TIC126E
SCR
RTT0240
TEC
TIC116D
SCR
RTU0260
TEC
TIC126M
SCR
RTT0250
TEC
TICl16E
SCR
RTU0302
TEC
TICl26F
SCR
RTT0260
RTT0302
TEC
TlCl16M
RTU0305
TEC
TICl26F
TEC
TICl16F
SCR
SCR
RTU03l0
TEC
TIC126A
SCR
SCR
RTT0305
TEC
TICl16F
SCR
RTU0320
TEC
TIC126B
SCR
RTT0310
TEC
TICl16A
SCR
RTU0330
TEC
TIC126C
SCR
RTT0320
TEC
TICl16B
SCR
RTU0340
TEC
TlC126D
SCR
RTT0330
TEC
SCR
RTU0350
SCR
TEC
TEC
SCR
SCR
RTU0360
TEC
TEC
TIC126E
RTT0340
RTT0350
TlC116C
TICl16D
TICl16E
RTU0402
TEC
TIC126M
TIC126F
SCR
RTT0360
TEC
TEC
TICl16M
SCR
TIC126F
SCR
SCR
RTU0420
TEC
TEC
TIC126A
TEC
SCR
SCR
RTU0405
RTU0410
TEC
TICl16F
TIC126B
SCR
SCR
RTU0430
TEC
TlC126C
RTT0402
RTT0405
SCR
RTT0410
TEC
TICl16i
TICll6A
RTT0420
TICl16B
TICl16C
SCR
SCR
RTU0440
RTU0450
TEC
TEC
TIC126D
SCR
SCR
RTT0430
TEC
TEC
TIC126E
SCR
RTT0440
TEC
TICl16D
SCR
RTU0460
TEC
TIC126M
SCR
RTT0450
TEC
TICl16E
SCR
RTU0502
TEC
TIC126F
SCR
RTT0460
TEC
TICll6M
SCR
RTU0505
TEC
TIC126F
SCR
RTT0502
TEC
TIC116F
SCR
RTU05l0
TEC
TIC1,26A
SCR
RTT0505
TEC
TICl16F
SCR
RTU0520
TEC
TlC126B
SCR
RTT05l 0
TEC
TICll6A
SCR
RTU0530
TEC
TIC126C
SCR
RTT0520
TEC
TICl16B
SCR
RTU0540
TEC
TIC126D
SCR
RTT0530
TEC
TICl16C
SCR
RTU0550
TEC
TIC126E
RTT0540
TEC
TIC116D
SCR
RTU0560
TEC
TIC126M
RTT0550
TEC
TlCll6E
SCR
TEC
TICl16M
SCR
TEC
TEC
TIC126F
RTT0560
RTU0602
RTU0605
TIC126F
SCR
SCR
RTT0602
TEC
TICl16F
SCR
RTU0610
TEC
TIC126A
SCR
RTT0605
TEC
TICl16F
SCR
RTU0620
TEC
TICl26B
SCR
RTT0610
TEC
TICll6A
SCR
RTU0630
TEC
TICl26C
SCR
RTT0620
TEC
TICl16B
SCR
RTU0640
TEC
TIC126D
SCR
RTT0630
TEC
TICll6C
SCR
RTU0650
TICl26E
SCR
RTT0640
TEC
TIC116D
SCR
RTU0660
TEC
TEC
TIC126M
SCR
RTT0650
TEC
TlCl16E
SCR
SC60B
GE
TIC263B
TRIAC
RTT0660
TEC
TICl16M
SCR
SC60D
GE
TIC263D
TRIJ\C
RTU0102
TEC
TIC126F
SCR
SC60E
GE
TIC263E
TRIAC
RTU0105
TEC
TIC126F
SCR
SC61B
GE
TIC263B
TRIAC
RTUOll0
RTU0120
TEC
TEC
TIC126A
TIC126B
SCR
SCR
SC6lD
SC61E
GE
GE
TIC263D
TIC263E
TFClAC
TRIAC
RTU0130
TEC
TIC126C
SCR
SC141B
GE
TIC226B
TRIAC
Refer to page 2-17 for key to manufacturers.
2·30
FOR NEW DESIGN
RTU0140
RTU0150
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
SCR
•
SCR
CROSS-REFERENCE GUIDE
TYPE
MANUFACTURER
FOR NEW DESIGN
CLASS
TYPE
GE
TIC226D
TRIAC
SDT3510
SC141E
GE
TIC226D
TRIAC
SC146B
GE
TIC226B
TRIAC
SC146D
GE
TIC226D
SC146E
GE
SC240B
GE
SC240D
SC141D
MANUFACTURER
FOR NEW DESIGN
CLASS
SOD
TIP32A
PNP-Si
SDT3511
SOD
SOD
TIP32B
. TIP32C
PNP-Si
SDT3512
TRIAC
SDT3513
SOD
TIP32
PNP-Si
TIC226D
TRIAC
SDT3514
SOD
TIP32A
PNP-Si
TIC226B
TRIAC
SDT3515
SOD
TIP32B
PNP-Si
GE
TIC226D
TRIAC
SDT3516
SOD
TIP32C
PNP-Si
SC240E
GE
TIC226D
TRIAC
SDT3575
SOD
TIP30
PNP-Si
SC241B
GE
TIC226B
TRIAC
SDT3576
SOD
TIP30A
PNP-Si
SC241D
GE
TIC226D
TRIAC
SDT3577
SOD
TlP30B
PNP-Si
SC241E
GE
TIC226D
TRIAC
SDT3578
SOD
TIP30
PNP-Si
SC245B
GE
TIC226B
TRIAC
SDT3579
SOD
TIP30A
PNP-Si
SC245D
GE
TIC226D
TRIAC
SDT3701
SOD
TIP42
PNP-Si
SC245E
GE
TIC226D
TRIAC
SDT3702
SOD
TIP42A
PNP-Si
SC246B
GE
TIC226B
TRIAC
SDT3703
SOD
TIP42
PNP-Si
SC246D
GE
TIC226D
TRIAC
SDT3704
SOD
TIP42A
PNP-Si
SC246E
GE
TlC226D
TRIAC
SDT3705
SOD
TIP42B
PNP-Si
SC250B
GE
TIC236B
TRIAC
SDT3706
SOD
TIP42
PNP-Si
SC250D
GE
TIC236D
TRIAC
SDT3707
SOD
TIP42
PNP-Si
PNP-Si
SC250E
GE
TIC236D
TRIAC
SDT370B
SOD
TIP42A
PNP-Si
SC251B
GE
TIC236B
TRIAC
SDT3709
SOD
TIP42
PNP-Si
SC251D
GE
TIC236D
TRIAC
SDT3710
SOD
TIP42
PNP-Si
SC251E
GE
TIC236D
TRIAC
SDT3711
SOD
TIP42A
PNP-Si
SCC321
FSC
TIP35A
NPN-Si
SDT3712
SOD
TIP42
PNP-Si
SCC421
FSC
TIP36A
PNP-Si
SDT3713
SOD
TIP42A
PNP-Si
SCD321
FSC
TIP33B
NPN-Si
SDT3714
SOD
TIP42A
PNP-Si
SCD421
FSC
TIP36B
PNP-Si
SDT3715
SOD
TIP42
PNP-Si
SCE321
FSC
TIP33C
NPN-Si
SDT3716
SOD
TIP42
PNP-Si
SCE421
FSC
TIP36C
PNP-Si
SDT3717
SOD
TIP42A
PNP-Si
SDI345
FSC
TIP41
NPN-Si
SDT3718
SOD
TIP42B
PNP-Si
SDI445
FSC
TIP42
PNP-Si
SDT3719
SOD
TIP42C
PNP-Si
SDJ345
FSC
TIP41
NPN-Si
SDT3720
SOD
TIP42
PNP-Si
SDJ445
FSC
TIP42
PNP-Si
SDT3721
SOD
TIP42
PNP-Si
SDK345
FSC
TIP41
NPN-Si
SDT3722
SOD
TIP42A
PNP-Si
SDK445
FSC
TIP42
PNP-Si
SDT3723
SOD
TIP42B
PNP-Si
SDL345
FSC
TIP41A
NPN-Si
SDT3724
SOD
TIP42C
PNP-Si
SDL445
FSC
TIP42A
PNP-Si
SDT3725
SOD
TIP42
PNP-Si
SDM345
FSC
TIP41
NPN-Si
SDT3726
SOD
TIP42
PNP-Si
SDM445
FSC
TIP42
PNP-Si
SD1"3727
SOD
TIP42A
PNP-Si
SDN345
FSC
TIP41A
NPN-Si
SDT3728
SOD
TlP42B
PNP-Si
SDN445
FSC
TIP42A
PNP-Si
SDT3729
SOD
TIP42
PNP-Si
SD0345
FSC
TIP41B
NPN-Si
SDT3730
SOD
TIP42A
PNP-Si
SD0445
FSC
TIP42B
PNP-Si
SDT3731
SOD
TlP42A
PNP-Si
SDP345
FSC
TIP41C
NPN-Si
SDT3732
SOD
TIP42C
PNP-Si
SDP445
FSC
TIP42C
PNP-Si
SDT3733
SOD
TIP42
PNP-Si
SDT402
SOD
TIP54
NPN-Si
SDT3750
SOD
TIP34
PNP-Si
SDT41 0
SOD
TIP51
NPN-Si
SDT3751
SOD
TIP34A
PNP-Si
SDT411
SOD
TIP52
NPN-Si
SDT3752
SOD
TIP34
PNP-Si
SDT423
SOD
TIP54
NPN-Si
SDT3753
SOD
TIP34A
PNP-Si
SOD
TIP32
PNP-Si
SDT3754
SOD
TIP34B
PNP-Si
SDT3509
Refer to page
2~17
•
for key to manufacturers.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS, TEXAS 75222
2-31
CROSS-REFERENCE GUIDE
TYPE
•
MANUFACTURER
FOR NEW DESIGN
TYPE
TIP34C
CLASS
PNP-8i
SOD
TIP34
PNP-Si
SDT7602
SDT7603
SOD
TIP33B
NPN-Si
SOD
TIP34
PNP-8i
SDT7607
SOD
TIP33
NPN-8i
NPN-Si
SDT3755
SDT3756
SOD
SDT3757
MANUFACTURER
SOD
CLASS
NPN-Si
SDT3758
SOD
TIP34A
PNP-Si
SDT760S
SOD
TIP33A
SDT3759
SOD
TIP34B
PNP-Si
SDT7609
SOD
TIP338
NPN-Si
SDT3760
SOD
TIP34C
PNP-Si
SDT7731
SOD
2N5301
NPN-Si
SDT3761
SOD
TIP34
PNP-Si
2N5301
SOD
TIP34
PNP-8i
SDT7732
SDT7733
SOD
SDT3762
SOD
2N5301
NPN-Si
NPN-Si
SDT3763
SOD
TIP34A
PNP-Si
SDT7734
SOD
2N5301
NPN-Si
SDT3764
SOD
TIP34B
PNP-8i
SDT9201
SOD
TIP35
NPN-Si
SDT3765
SOD
TlP34C
PNP-Si
SDT9202
SOD
TIP35B
NPN-Si
SDT3766
SOD
TIP34
PNP-Si
SDT9203
SOD
TIP35C
NPN-Si
SDT3825
SOD
TIP34
PNP-Si
SDT9204
SOD
2N5301
NPN-Si
SDT3826
SOD
TIP34B
PNP-Si
SDT9205
SOD
TIP35
NPN-Si
SDT3827
SOD
TIP34
PNP-Si
SDT9206
SOD
TIP35A
NPN-Si
SDT3875
SOD
TIP36
PNP-Si
SDT9207
SOD
TIP35B
NPN-Si
SDT3876
SOD
TIP36A
PNP-Si
SDT9208
SOD
TIP35C
NPN-Si
SDT3877
SOD
TIP36
SDT9209
SOD
2N5301
NPN-Si
SDT5901
SOD
SOD
TIP41
PNP-8i
NPN-Si
SDT921 0
SOD
TIP35
NPN-Si
TIP41A
NPN-Si
SDT9801
SOD
TIP35
NPN-Si
TIP41B
NPN-Si
SDT9802
SOD
TIP35A
NPN-Si
TIP41C
TIP33
NPN-Si
SDT9803
SDT9804
SOD
TIP35B
SOD
TIP35C
NPN-Si
NPN-Si
SDT5902
SDT5903
SDT5904
SOD
SOD
SDT7601
SOD
NPN-Si
Refer to page 2-17 for key to manufacturers.
2-32
FOR NEW DESIGN
TIP33A
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
•
Product
Selection
Guides
•
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TYPE
2N497
2N497A
2N656
2N656A
IC
POLARITY CONTINUOUS
A
NPN
0.5
NPN
0.5
NPN
0.5
NPN
0.5
hFE
V
MIN MAX
60
60
60
60
100
100
100
2N498
2N498A
2N657
NPN
NPN
NPN
2N657A
2Nl714
2N1716
2N2987
NPN
NPN
NPN
NPN
2N2989
NPN
1
1
2N4000
2N1715
1
2N1717
2N2988
NPN
NPN
NPN
NPN
80
80
80
1
1
1
100
100
100
2N2990
2N4001
NPN
NPN
1
1
100
2N3583
T14B6
1
1.5
175
TI4B7
NPN
NPN
NPN
1.5
TIP541 t
NPN
2N5333
PNP
2
2
2N 1047
2Nl047A
NPN
NPN
2N 1049
2Nl049A
2Nl049B
2N2150
2N2151
2N43oo
NPN
NPN
NPN
NPN
2N499S
2N5000
2N514S
NPN
NPN
NPN
NPN
0.5
0.5
0.5
0.5
1
1
@ IC
VCEO
12
12
30
30
12
12
30
36
36
90
90
36
36
A
V
0.2
0.2
0.2
0.2
0.2
0.2
10
10
10
10
10
10
10
10
0.2
0.2
0.2
0.2
0.2
0.2
75
0.2
0.5
5
2
O.S
O.S
0.3
20
40
25
60
30
60
120
75
0.2
5
5
2
2
120
120
0.2
0.5
O.S
O.S
0.2
0.2
60
40
20
200
SO
0.5
0.2
5
5
2
10
0.3
0.5
2
O.S
1
0.2
60
45
'20
40
80
0.2
1
5
4
2
30
12
1
4
2
80
80
0.2
1
1
2
2
2
SO
80
80
30
2
SO
30
90
90
2
2
2
2
2
SO
20
40
30
30
70
30
100
80
SO
30
0.2
0.2
200
120
36
0.5
12
36
30
90
0.5
0.5
0.5
0.5
1
60
120
120
1
5
10
10
10
10
5
5
70
90
200
1
1
30
70
90
200
1
1
30
70
90
200
1
1
30
2.5
5
2.S
5
10
10
10
10
2N5149
2N5152
NPN
2
2N5154
NPN
2
2Nl04S
NPN
2
120
12
90
200
36
2Nl048A
NPN
2
120
12
36
0.5
O.S
2Nl048B
2Nl050
NPN
NPN
2
2
120
120
12
30
36
90
0.5
0.5
70
2
2
0.3
0.45
10
7.5
90
200
2
2
2
5
5
5
1
1
1
PNP
PNP
2N5001
2N5147
5
5
5
5
5
5
120
120
PNP
2N4999
0.2
0.2
25
30
20
40
2
2
2
NPN
NPN
PNP
5
5
60
60
60
80
80
80
80
80
80
80
80
80
80
2N5150
VCElsat)
MAX@ IC
V
A
0.2
0.2
0.2
0.2
0.2
100
90
90
60
120
VCE
2
5
P-r
TC= looD C
W
4
PACKAGE
2.3
2.S
IITO-5)
IITO-5)
2.3
2.S
2.3
2.S
IITO-5)
IITO-5)
IITO-5)
2.3
5
4
5
4
5
4
5
2.S
IITO-5)
0.2
0.2
0.2
0.2
15
15
IITO-5)
IITO-5)
IITO-5)
IITO-5)
15
15
IITO-5)
IITO-5)
O.S
0.2
15
15
15
IITO-5)
IITO-5)
0.2
15
15
15
35
IITO-5)
IITO-5)
IITO-5)
IITO-S)
20
5BITO-66)
15
15
4
S
PPP(TO-39)
15
IITO-5)
IITO-5)
F(TO-57)
0.5
40
23
7.5
0.5
0.5
0.5
0.5
40
40
40
40
23
23
23
23
F(TO-57)
7.5
7.5
DDITO·lll)
DD(TO-ll1)
IITO-5)
35
35
30
30
15
20
20
7.5
1
1
1
1
0.3
1
0.S5
0.S5
0.S5
2
2
2
5 0.S5
5 0.S5
5 0.S5
S 0.S5
5 0.S5
2
2
5
5
P-r
TC - 25D C
W
2
2
2
7
7
35
35
7
4
4
20
20
4
0.75
0.75
2.5
7
11.7
4
2.5
11.7
7.5
0.5
40
7.5
0.5
40
23
23
7.5
7.5
0.5
0.5
40
40
23
23
6.7
6.7
F(TO-57)
F(TO-57)
FITO-57)
YYYY(TO-59)
YYYYITO-59)
PPP(TO-39)
PPP(TO-39)
YYYY(TO-S9)
YYYY(TO-S9)
PPPITO-39)
PPPITO-39)
PPPITO-39)
PPP(TO-39)
F(TO-57)
F(TO-57)
F(TO-57)
F(TO-57)
t Radiation tolerant
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
3-1
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TVPE
TIP503
hFE
V
MIN MAX
IC
VCE
A
V
VCElsatl
MAX@ IC
V
A
P-r
P-r
TC=25·C
W
TC·100·C
PACKAGE
W
2
120
120
40
200
1
4
40
200
1
4
0.6
0.6
1
1
20
2
20
VVVV(TO-591
2
2
150
150
40
40
200
1
.1
0.6
0.6
1
1
2
2
150
150
30
30
1
1
200
20
1
4
4
4
1.5
1.5
2
120
120
100
2.5
2
2
2
20
20
20
4
5B(TO-661
200
4
4
TIP508
TIP521
NPN
NPN
PNP
PNP
PNP
TIP522
2N3584
PNP
NPN
2
200
20
100
1
4
2.5
2
20
4
YYYY(TO-591
PPP(TO-391
80
80
1
1
0.75
1
35
20
5B(T0-661
300
8
8
2
NPN
2
2
250
2N3585
2N4240
2N3902
2
0.75
1
35
NPN
NPN
2
2.5
2N3021
PNP
PNP
3
3
3
300
400
30
30
40
10
30
20
50
25
100
90
60
180
180
0.75
1
1
1
1
2
1
5
0.8
2
1.5
2
1
1.5 0.75
0.75
1
3
20
20
58(T0-661
5B(T0-661
K(TO-31
K(TO-3)
40
45
45
25
20
50
25
25
20
180
1
1
1
1
1
1
1
1.5 0.75
2
1.5
2
1
1.5 0.75
1.5 0.75
2
1.5
2
1
2 0.25
2 0.25
15
5
TIP504
TIP506
TIP507
2N3024
TIP501
2N3719
2N3022
2N3025
TIP502
2N372O
2N3023
2N3026
2N3418
2N342O
2N389
2N389A
2N3419
2N3421
2N424
2N424A
TIP529
NPN
PNP
PNP
PNP
PNP
3
3
3
3
3
3
3
NPN
NPN
3
3
IIIPN
NPN
NPN
3
3
3
NPN
NPN
NPN
3
80
3
3
80+
80+
300
PNP
NPN
PNP
80
60
60
60
60
60
60:1:
60+
80
50
10
15
12
12
10
60
180
60
120
60
60
60
120
1
1
1
1
15
25
67
12.5
3
25
12.5
1
1
6
6
3.4
3
3
1
1
25
25
6
6
3.4
12.5
12.5
3
25
3.4
3.4
12.5
3
1
1
25
12.5
15
15
85
1
1
YYYY(TO-591
VVYY(TO-591
PPP(TO-39)
K(TO-31
PPP(TO-391
I(TO-51
K(TO-31
K(TO-31
PPP(TO-391
I(TO-51
K(TO-31
K(TO-31
I(TO-5)
I(TO-51
D(TO-531
D(TO-53)
2
5
0.25
2
0.25
1
1
60
60
1
1
15
15
5
5
1
1
85
85
25
125
1.5
67
N(TO-6ll
1.5
1
2.6
2.5
3
125
4
4
0.8
0.75
0.6
20
67
5B(TO-661
K(TO-3)
3
2
20
30
K(TO-3)
15
12
12
TIP530
2N5157
3
3.5
300
500
25
30
3
60
180
180
180
35
1OO§
5B(T0-661
1
1
NPN
NPN
NPN
85
15
15
3
1OO§
I(TO-51
I(TO-51
D(TO-53)
D(TO-53)
2N5938
NPN
4
TIP509
TIP511
NPN
NPN
4
50
120
30
40
200
1
2
5
3
4
120
150
200
2
4
0.6
2
30
40
40
4
0.6
0.6
2
2
N(TO-6ll
K(TO-31
150
2
2
30
4
200
200
4
TIP512
NPN
NPN
4
4
40
TIP510
30
N(TO-6ll
2N4913
2N4914
NPN
NPN
5
5
40
25
25
100
100
2.5
2
0.75
2.5
87
K(TO-31
NPN
PNP
5
5
40
20
120
0.75
0.25
2.5
1
80
2
2
2
4
87
2N288O
2N5385
2.5
1
50
50
2N1722
2N1723
2N1724
NPN
5
5
5
80
80
90
150
2
2
15
15
0.6
1
1
2
2
2
80
20
50
·20
90
5
80
50
150
2
2
15
15
1
1
2
2
2N1725
3·2
A
@
VCEO
NPN
NPN
TIP505
•
IC
POLARITY CONTINUOUS
NPN
NPN
NPN
60
70
80
90
150
1
TEXASINCORPORATED
INSTRUMENTS
POST OFFICI! BOX SOU: • DALLAS, TaXAS 71222
30
30
ZZZZ
K(TO-31
DD(TO-1111
DD(TO-111l
50
50
50
D(TO-531
50
N(TO-6ll
D(TO-531
N(TO-61l
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TVPE
IC
POLAR lTV CONTINUOUS
2N3996
NPN
2N3997
2N3998
NPN
2N3999
2N4915
2N53B4
2N5002
2N5004
2N5003
2N5005
2N5151
2N5153
2N1722A
2N1724A
TIP513
NPN
NPN
NPN
PNP
NPN
NPN
PNP
PNP
PNP
PNP
NPN
NPN
PNP
TIP514
TIP523
TIP524
TIP525
PNP
PNP
PNP
NPN
TIP526
TIP544
NPN
PNP
2N5758
TIP545
NPN
PNP
2N5759
NPN
TIP546
PNP
2N5760
NPN
TI1135
Tlll36
TI1155
Tlll56
NPN
NPN
NPN
NPN
NPN
NPN
NPN
NPN
A
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
hFE
V
MIN MAX
40 120
80 240
40 120
80
80
80
80
80
20
30
80
80
70
30
80
90
200
90
80
80
80
120
120
70
200
2
2.5
2.5
2.5
2.5
30
90
200
2.5
2.5
2
2
150
150
30
90
90
150
150
30
30
30
20
20
0.75
0.75
0.75
5
0.75
15
0.6
15
0.6
4
1
BB(TO-lll)
30
30
BB(TO-l11)
DD(TO-lll)
30
DD(TO-lll)
K(TO-3)
1
2.5
87
50
2
2.5
58
30
33.3
2.5
2.5
2.5
2.5
58
58
58
11.7
2.5
2
2
11.7
33.3
33.3
33.3
6.7
6.7
BB(TO-lll)
VVVV(TO-59)
VVVV(TO-59)
VVVV(TO-59)
VVVV(TO-59)
PPP(TO-39)
50
PPP(TO-39)
D(TO-53)
N(TO-61)
VYYY(TO-59)
2.5
50
30
100
100
2.5
2.5
2.5
4
4
4
1
1.5
1.5
2.5
2.5
2.5
20
30
6
5B(TO-66)
YYVY(TO-59)
PPP(TO-39)
1.2
1.2
2.5
2.5
60
60
K(TO-3)
N(TO-61)
2.5
200
30
30
150
150
2.5
2.5
4
200
6
6
100
100
25
25
100
100
3
2
1
3
K(TO-3)
2
120
120
140
20
20
15
80
80
2
3
3
85
6
6
6
1
1
150
150
150
85
3
3
3
2
1
3
150
85
K(TO-3)
K(TO-3)
K(TO-3)
3
2
1
3
150
85
K(TO-3)
6
7.5
140
15
1
1
150
80#
85
30
2
4
4
3
50
50
3
2
2
50
K(TO-3)
N(TO-61)
1
2
50
N(TO-61)
5
5
4
4
2.5
2.5
5
N(TO-61)
2
4
1
5
2
50
50
2
5
5
4
4
4
1
2.5
2
5
2
2
4
4
2.5
1
1
5
2
5
4
2.5
5
4
2.5
2
5
4
2
1.2
5
4
2
1.2
5
4
2
1.2
4
4
4
4
4
7.5
7.5
15
20
10
100
20
100
10
NPN
200
25
2N5388
NPN
NPN
7.5
7.5
200
250
20
25
TIP536
NPN
7.5
300
20
2N5389
TIP537
NPN
7.5
300
25
NPN
7.5
TIP519
TIP520
PNP
8
8
400
150
20
30
150
30
200
20
PNP
PNP
5
5
5
5
PACKAGE
5
5
7.5
7.5
TIP527
5
0.25
0.75
0.6
0.75
0.75
PT
Tc= 100°C
W
30
200
200
15
2N5387
TIP535
2
2
4
PT
Tc-25°C
W
5
5
100
TI1151
TI1152
1
1
2.5
7.5
7.5
TI1132
1
1
240
100
15
20
10
30
NPN
NPN
NPN
NPN
A
80
25
70
VCE(satl
MAX@ Ic
V
V
A
1
2 0.25
2 0.25
1
1
2 0.25
VCE
80
80
50
50
75
75
75
75
100
Tlll33
Tlll34
T11153
Tlll54
TI1131
@ IC
VCEO
7.5
7.5
7.5
7.5
7.5
7.5
8
30
60
60
120
60
80
40
120
60
80
40
120
60
80
40
100
100
100
100
100
100
150
150
100
5
2
5
2
5
4
4
2
5
5
5
80#
80#
80#
80#
80#
80#
80#
80#
80#
80#
80#
50
50
50
50
50
50
50
N(TO-61J
N(TO-61)
N(TO-61)
N(TO-61)
N(TO-61).
N(TO-61)
N(TO-61)
N(TO-61)
50
100
N(TO-6ll
N(TO-61l
5
5
100
100
K(TO-3)
N(TO-61)
5
5
100
100
N(TO-61)
1
5
4
100
50
K(TO-3)
1
1.5
4
4
60
TEXASINCORPORATED
INSTRUMENTS
POST OFII',ICE BOX 5012 •
2
85
DALLAS, TEXAS 715222
50
•
K(TO-3)
K(TO-3)
N(TO-6ll
K(TO-3)
3-3
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TYPE
•
IC
POLARITY CONTINUOUS
A
@ IC
VCEO
hFE
V
MIN MAX
A
VCE(sat)
MAX@ IC
V
V
A
4
1.5
4
VCE
PT
TC = 100°C
W
W
PACKAGE
TIP528
PNP
8
200
20
100
4
TIP542t
NPN
10
45
40
200
5
4
0.8
10
2N3789
PNP
10
60
25
90
1
2
1
4
150
2N3713
NPN
10
60
25
75
1
2
1
5
150
85
K(TO-3)
2N3715
NPN
10
60
50
150
1
2
1
5
150
85
K(TO-3)
150
60
N(TO·61)
40
YYYYCTO-59)
K(TO-3)
85
2N3791
PNP
10
60
50
180
1
2
1
5
TIP543t
NPN
10
65
40
200
5
4
0.8
10
2N5940
NPN
10
70
40
200
5
4
1
10
2N3790
PNP
10
80
25
90
1
2
1
4
150
2N3792
PNP
10
80
50
180
1
2
1
5
150
85
K(TO-3)
2N5939
NPN
80
40
200
5
4
1
10
40
CC(TO·llll
80
30
120
5
5
0.9
5
10011
67
N(TO-61)
80
30
120
5
5
0.9
5
10011
67
N(TO-61)
80
25
75
1
2
1
5
150
85
K(TO-3)
150
85
K(TO-3)
N(TO-61)
85
K(TO-3)
40
YYYY(TO-59)
40
CC(TO-ll1)
85
K(TO·3)
2N6127
PNP
2N6128
NPN
2N3714
NPN
10
10
10
10
2N3716
NPN
10
80
50
150
1
2
1
5
2N4301
2N3551
NPN
10
80
120
0.4
12
60
90
5
10
4
NPN
30
20
2
1
5
10
50
40
2N3552
NPN
12
80
20
90
10
2
1
10
40
DOD
DOD
2N5386
PNP
12
80
20
80
6
4
0.6
6
50
N(TO-61l
TIP515
NPN
12
120
40
200
6
4
0.8
6
80
K(TO-3)
TIP517
NPN
12
120
40
200
6
4
0.8
6
80
TIP516
NPN
12
150
40
200
6
4
0.8
6
80
N(TO-61)
K(TO·3)
TIP518
NPN
12
150
40
200
6
4
0.8
6
80
N(TO-61)
TIP538
NPN
200
20
100
7.5
4
0.75
7.5
125
K(TO-3)
TIP539
NPN
15
1'5
300
20
100
7.5
4
0.75
7.5
125
KCTO-3)
TIP531
NPN
15
300
20
120
7.5
4
1.5
15
150
K(TO-3)
TIP533
NPN
15
300
20
120
7.5
4
1.5
15
150
P(TO-63)
K(TO-3)
TIP540
NPN
15
400
20
100
7.5
4
0.75
7.5
125
TIP532
NPN
15
400
20
120
7.5
4
1.5
15
150
K(TO-3)
TIP534
NPN
15
400
20
120
7.5
4
1.5
15
150
P(TO·53)
2N1936
NPN
20
60
10
50
10
3
0.75
10
150
P(TO-63)
2N5039
NPN
20
75
20
100
10
5
2.5
20
2N1937
NPN
20
80
10
50
10
3
0.75
10
2N5303
NPN
20
80
15
60
10
2
1.5
15
2N4004
NPN
20
80
30
150
10
4
1
20
2N5038
NPN
20
90
20
100
12
5
2.5
20
2N4005
NPN
20
100
30
150
10
4
1
20
2N3846
NPN
20
200
10
60
10
3
0.75
2N3847
NPN
20
300
10
60
10
3
0.75
2N3263
NPN
25
60
20
55
15
2
1
20
2N3265
NPN
25
60
20
55
15
2
1
20
125
100
2N3264
NPN
25
90
20
80
15
3
1.6
20
83.3
66.7
P(TO-63)
QQ
2N3266
NPN
25
90
20
80
15
3
1.6
100
P(TO-63)
PNP
30
40
15
60
15
4
1
20
15
125
2N4398
200
114
K(TO-3)
2N5301
NPN
30
40
15
60
15
2
2
20
200
114
K(TO·3)
2N4399
PNP
30
60
15
60
15
4
1
15
200
114
K(TO·3)
DALLAS, TEXAS 75222
K(TO-3)
150
P(TO-63)
114
K(TO-3)
QQ
40
10
150
P(TO-63)
10
150
P(TO-63)
QQ
TEXAS INCORPORATED
INSTRUMENTS
•
200
80
K(TO·3)
QQ
lITC= 50°C
POST OFFICE BOX 5012
140
40
t Radiation tolerant
3-4
PT
TC = 25°C
140
83.3
80
66.7
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TYPE
IC
POLARITY CONTINUOUS
@ IC
VCEO
hFE
A
V
MIN MAX
A
VCE
V
VCE(satl
MAX@ IC
V
A
PT
TC= 25°C
PT
TC·'00°C
W
W
200
PACKAGE
2N5302
NPN
30
60
15
60
15
2
2
20
114
K(TO·3)
2N4002
NPN
30
30
80
80
20
80
15
4
1.2
30
100
P(TO-63)
20
100
15
4
1
15
150
K(TO·3)
80
100
20
20
100
4
1
15
80
15
15
4
1.2
30
150
100
P(TO·63)
P(TO-63)
100
100
20
100
15
4
1
15
150
K(TO-3)
20
100
15
4
1
150
200
P(TO-63)
P(TO·63)
2N6270
NPN
2N6272
2N4003
NPN
NPN
30
2N6271
2N6273
2N6322
NPN
30
NPN
30
NPN
30
200
40
150
5
5
1.5
15
20
2N6323
NPN
30
200
40
150
5
5
1.5
20
200
2N6324
2N6325
NPN
NPN
30
300
30
K(TO·3)
5
1.5
20
20
200
30
5
5
1.5
300
150
150
5
30
200
P(TO-63)
2N5685
NPN
50
60
15
60
25
2
1
25
300
171
K(TO·3)
50
50
2N5683
PNP
2N5684
PNP
2N5686
NPN
NPN
TIXP547
TIXP548
TIXP549
NPN
NPN
30
50
100
100
100
K(TO·3)
60
15
60
25
2
1
25
300
171
K(TO·3)
80
80
15
60
25
2
1
25
300
171
K(TO·3)
15
60
25
2
1
25
300
171
K(TO-3)
60
15
100
50
1.5
5E(TO·114)
15
100
1.5
200
5E(TO·114)
100
15
100
50
50
50
50
200
80
4
4
4
1.5
50
200
5E(TO.114)
D(TO-53)
F(TO-57)
K(TO-3)
N(TO·61)
TEXAS1NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
•
3·5
PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
•
II
Ii
ii'
,
S
BB(TO-lll )
t
/
aa
DOD
VVVV(TO-59)
5B(TO-66)
DD(TO-lll)
PPP(TO-39)
zzzz
3·6
CC(TO-lll)
5E(TO-114)
TEXAS INCORPORATED
INSTRUMENTS
POST, OFFICE BOX 5012
•
DALLAS, TEXAS 75222
PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS
DEVICE
TYPE
IC
CONTINUOUS
VCEO
A
V
@
hFE
IC
VCE
MIN
MAX
A
V
VCE(satl
MAX!@ IC
V
A
PT
Tc = 25°C
PACKAGE
W
2N2659
3
30
30
90
0.5
0.5
0.2
0.5
15
2N2662
3
30
30
90
0.5
0.5
0.2
0.5
15
C
2N2665
3
30
50
150
0.5
0.5
0.2
0.5
15
IITO-5)
2N2668
3
30
50
150
0.5
0.5
0.2
0.5
15
C
2N 1038
3
40
20
60
1
0.5
0.25
1
20
IITO-5)
C
IITO-5)
2N2552
3
40
20
60
1
0.5
0.25
1
20
2N2556
3
40
20
60
1
0.5
0.25
1
20
B
2N2660
3
40
30
90
0.5
0.5
0.2
0.5
15
IITO-5)
2N2663
3
40
30
90
0.5
0.5
0.2
0.5
15
C
2N2666
3
40
50
150
0.5
0.5
0.2
0.5
15
IITO-5)
2N2669
3
40
50
150
0.5
0.5
0.2
0.5
15
C
2N2661
3
50
30
90
0.5
0.5
0.2
0,5
15
IITO-5)
2N2664
3
50
30
90
0.5
0.5
0.2
0.5
15
C
2N2667
3
50
50
150
0.5
0.5
0.2
0.5
15
IITO-5)
2N2670
3
50
50
150
0.5
0.5
0.2
0.5
15
C
2Nl039
3
60
20
60
1
0.5
0.25
1
IITO-5)
2N2553
3
60
20
60
1
0.5
0.25
1
2N2557
3
60
20
60
1
0.5
0.25
1
20
20
20
2Nl040
3
80
20
60
1
0.5
0.25
1
20
IITO-5)
C
B
IITO-5)
2N2554
3
80
20
60
1
0.5
0.25
1
20
2N2558
3
80
20
60
1
0.5
0.25
1
20
C
B
2Nl041
3
100
20
60
1
0.5
0.25
1
20
2N2555
3
100
20
60
1
0.5
0.25
1
20
C
2N2559
3
100
20
60
1
0.5
0.25
1
20
B
B
C
IITO-5)
2N1042
3.5
30
20
60
3
1
0.75
3
20
2N2560
3.5
30
20
60
3
1
0.75
3
20
2N2564
3.5
30
20
60
3
1
0.75
3
20
2N 1043
3.5
40
20
60
3
1
0.75
3
20
2N2561
3.5
40
20
60
3
1
0.75
3
20
2N2565
3.5
40
20
60
3
1
0.75
3
20
2N 1044
3.5
50
20
60
3
1
0.75
3
20
2N2562
3.5
50
20
60
3
1
0.75
3
20
B
C
B
C
I (TO-5)
2N2566
3.5
50
20
60
3
1
0.75
3
20
UTO-5)
2N1045
3.5
60
20
60
3
1
0.75
3
20
B
2N2563
3.5
60
20
60
3
1
0.75
3
20
C
2N2567
3.5
60
20
60
3
1
0.75
3
20
I (TO-5)
2N1529
5
20
20
40
3
2
1.5
3
106
K(TO-3)
2Nl534
5
20
35
70
3
2
1.2
3
106
K(TO-3)
2N1539
5
20
50
100
3
2
0.3
3
106
K(TO-3)
2N1544
5
20
75
150
3
2
0.2
3
106
K(TO-3)
2Nl530
5
30
20
40
3
2
1.5
3
106
K(TO-3)
2Nl535
5
30
35
70
3
2
1.2
3
106
K(TO-3)
2Nl540
5
30
50
100
3
2
0.3
3
106
K(TO-3)
2N1545
5
30
75
150
3
2
0.2
3
106
K(TO-3)
2Nl531
5
40
20
40
3
2
1.5
3
106
K(TO-3)
2Nl536
5
40
35
70
3
2
1.2
3
106
K(TO-3)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
•
3·7
PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS
DEVICE
TYPE
2N1541
•
V
40
MIN
50
100
40
50
50
75
20
150
40
35
50
75
70
100
5
5
5
2N1537
2N1542
5
5
2N1547
5
50
50
2N1533
5
5
5
60
60
60
2N250A
2N251A
5
7
7
60
25
35
2N456A
7
30
30
2N456B
2N457A
2N457B
TI3027
7
7
30
30
40
40
45
45
30
30
40
30
30
50
50
50
55
40
30
30
30
55
55
60
65
30
40
40
40
50
65
60
75
40
50
30
2N1543
2N1548
2N458A
2N458B
T13028
2N1021
2N1021A
7
7
7
7
7
7
7
40
2N1022
2N1022A
T13029
7
7
TI3030
T13031
7
7
2Nl046
2N3146
2N3147
12
2N1907
20
2NI908
2N511
20
25
30
2N512
25
30
2N513
2N514
25
30
2N511A
2N512A
25
25
25
30
40
2N513A
2N514A
2N511B
2N512B
2N513B
2N514B
7
15
15
@
hFE
VCEO
2N1546
2N1532
2N1538
tTc
IC
CONTINUOUS
A
20
35
50
75
25
25
30
30
MAX
IC
VCE
A
V
3
3
3
2
2
2
3
3
3
2
70
100
150
3
3
3
3
2
100
100
3
3
1.5
1.5
90
90
5
5
1.5
90
90
250
90
5
1.5
1.5
150
40
5
3
1.2
0.3
3
3
106
106
106
2
0.2
1.5
3
106
KITO-3)
3
3
106
106
106
KITO·3)
KITO-3)
KITO-3)
KITO-3)
2
2
1.5
2
2
1.5
1.5
90
250
3
2
250
250
3
3
200
90
5
2
2
1.5
1.5
5
10
1.5
1.5
1.5
1.5
1.2
0.3
0.2
0.7
0.7
0.5
3
3
3
KITO-3)
KITO-3)
5
5
5
5
150
150
150
KITO-3)
KITO-3)
KITO-3)
0.5
0.5
0.5
0.5
0.5
0.5
3
5
5
3
5
106
150
150
106
150
KITO-3)
KITO-3)
5
5
5
3
3
150
150
150
106
106
KITO-3)
KITO-3)
KITO-3)
KITO-3)
KITO·3)
3
106
KITO·3)
5
10
50 t
150
KITO-3)
10
150
0.5
0.5
0.5
0.5
0.5
0.4
0.5
0.5
60
2
0.5
20
20
60
60
15
20
2
2
1
15
1.5
20
20
60
25
2
2
20
60
20
60
2
2
25
25
40
40
10
15
20
60
20
40
20
60
25
25
45
25
45
20
20
60
60
25
25
45
20
20
60
60
1.5
0.4
0.4
60+
60*
KITO-3)
KITO·3)
KIT0-3)
KITO-3)
KITO-3)
KITO-3)
KITO-3)
KITO·3)
150
150
Q
Q
25
150
150
0.5
1
10
150
Q
15
150
Q
2
2
1.5
2
20
150
Q
150
Q
10
15
2
150
Q
2
0.5
1
25
10
15
150
Q
20
2
2
1.5
2
20
150
150
Q
25
= 75°C
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
KITO-3)
0.5
0.5
0.5
5
5
10
45
106
90
KITO-3)
90
150
+TC=70oC
3·8
3
10
10
30
20
KITO·3)
KITO-3)
KITO-3)
2
2
3
5
5
5
5
5
PACKAGE
3
3
1.5
1.5
90
170
170
Pr
TC - 25°C
W
106
106
0.2
1.5
5
5
90
250
90
90
90
VCElsatl
MAX @ Ic
V
A
0.3
3
DALLAS, TEXAS 75222
25
Q
Q
Q
PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS
c
B
KIT0-31
liTO-51
Q
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
•
DALLAS, TEXAS 75222
3-9
PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS
plastic single-diffused silicon power transistors
TYPE NO.
NPN
•
PNP
IC
CONTINUOUS
VCEO
A
V
@
hFE
MIN
MAX
IC
A
VCE
V
VCE(satl
MAX @ IC
V
A
PT
25°C
PACKAGE
W
TIP29
TIP30
1
40
15
75
1
4
0.7
1
TIP29A
TIP30A
1
60
15
75
1
4
0.7
1
30
TIP29B
TIP30B
1
80
15
75
1
4
0.7
1
30
TIP29C
TIP30C
1
100
15
75
1
4
0.7
1
30
TIP31
TIP32
3
40
10
50
3
4
1.2
3
40
TlP31 A
TIP32A
3
60
10
50
3
4
1.2
3
40
TIP31B
TIP32B
3
80
10
50
3
4
1.2
3
40
TIP31C
TIP32C
3
100
10
50
3
4
1.2
3
40
TIP41
TIP42
6
40
15
75
3
4
1.5
6
65
TlP41A
TIP42A
6
60
15
75
3
4
1.5
6
65
TIP41B
TIP42B
6
80
15
75
3
4
1.5
6
65
TIP41C
TIP42C
6
100
15
75
3
4
1.5
6
65
TIP3055
TIP2955
15
60
20
70
4
4
3
10
90
TIP33
TIP34
10
40
20
100
3
4
4
10
80
TIP33A
TlP34A
10
60
20
100
3
4
4
10
80
TIP33B
TIP34B
10
80
20
100
3
4
4
10
80
TIP33C
TIP34C
10
100
20
100
3
4
4
10
80
TIP35
TIP36
25
40
10
50
15
4
4
25
125
TIP3!;)A
TIP36A
25
60
10
50
15
4
4
25
125
TIP35B
TIP36B
25
80
10
50
15
4
4
25
125
TIP35C
TIP36C
25
100
10
50
15
4
4
25
125
30
GG
H
plastic high-voltage power transistors
TIP47
1
250
30
150
0.3
10
1
1
300
30
150
0.3
10
1
1
.1
40
TIP48
TIP49
1
350
30
150
0.3
1
1
40
TIP50
1
400
30
150
0.3
10
1'0
1
1
40
TIP!;l
3
250
30
150
0.3
10
1.5
3
100
TIP52
3
300
30
150
0.3
10
1.5
3
100
TIP53
3
350
30
150
0.3
10
1.5
3
100
TIP54
3
400
30
150
0.3
10
1.5
3
100
H
3-10
40
GG
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
GG
H
PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS
power darlingtons
TYPE NO.
NPN
PNP
IC
A
TIPll0
TIPl15
TIPlll
@
18
mA
PT t
2
8
50
2
8
50
2
8
50
2
3
12
65
IC
A
VCE
V
60
1000
1
4
2.5
80
1000
1
4
2.5
2
100
1000
1
4
2.5
TIP125
5
60
1000
3
3
VCEO
V
hFE
MIN
2
TIPl16
2
TlPl12
TIPl17
TIP120
VCE(sat)
MAX V
@
IC
A
W
PACKAGE
GG
TIP121
TIP126
5
80
1000
3
3
2
3
12
65
TIP122
TIP127
5
100
1000
3
3
2
3
12
65
TIP140
TIP145
10
60
1000
5
4
2
5
10
125
TlP141
TIP146
10
80
1000
5
4
2
5
10
125
TIP142
TIP147
10
100
1000
5
4
2
5
10
125
TIP640
TIP645
10
60
1000
5
4
2
5
10
175
TIP641
TIP646
10
80
1000
5
4
2
5
10
175
TIP642
TIP647
10
100
1000
5
4
2
5
10
175
H
K(TO-3)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
H
•
K
(TO-3)
GG
3-11
PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS
power transistors in TO·3 hermetic cases
TYPE NO.
•
IC
CONTINUOUS
@
hI'S
VCEO
20
80
IC
A
1
20
20
80
1
80
60
25
25
5
80
5
5
60
80
Nf>N
PNP
·2N5067
2N4901
5
V
40
2N5068
2N4902
5
60
2N5069
2N4903
5
80
2N4913
2N4914
5
5
40
2N4915
2N4904
2N4905
2N4906
2N5869
2N5870
2N5867
2N5868
A
MAX
MIN
MAX
V
@l
IC
25°C
A
W
2
1.5
5
87.5
1.5
1
2
2
5
5
87.5
87.5
2.5
2.5
2.5
2
2
2
1.5
5
87.5
25
100
100
100
1.5
1.5
5
5
8"1.5
87.5
20
20
100
100
1.5
1.5
4
4
2
2
3
3
87.5
87.5
1.5
2N5873
2N5871
7
60
2.5
4
2
5
115
2N5872
7
80
20
20
100
2N5874
100
2.5
4
2
5
115
2N5877
2N5878
2N5875
10
10
60
80
20
20
100
100
4
4
4
4
3
3
8
2N5876
8
150
150
2N3713
2N3714
2N3789
10
25
25
4
10
75
1
1
2
10
80
80
75
2N3790
2
4
10
150
150
2N3715
2N3791
50
10
150
50
1
1
4
80
150
150
2
2N3792
10
10
60
2N3716
2
4
10
150
15
60
20
70
4
4
8
10
115
2N5879
2N5880
15
15
60
20
6
6
4
4
4
12
12
160
20
100
100
4
60
20
200
20
200
30
200
200
200
150
150
2N3055
2N!i881
2N5882
2N5885
2N5883
25
60
20
100
10
2N5886
2N5884
25
80
20
100
10
4
4
4
4
2N6326
2N6327
2N6329
2N6330
2N6331
60
80
100
12
12
12
15
15
15
4
4
4
3
3
2N6328
30
30
30
3
30
30
30
20
40
60
.15
15
10
4
4
4
4
30
20
2N3771
2N3772
15
60
60
K(T0-31
3·12
Pi
vce/satl
VCIl
V
TtxAsINSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
160
PACKAGE
K
(TO·3)
PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
plastic triacs
TYPE NO.
ITIRMS)
VORM
ITSM
A
V
A
IGTMAX IGTMAX VGTMAX VGTMAX
IVt
I. II. lilt
I. II. lilt
IV
rnA
rnA
V
V
VTM
MAX
V
@
ITM
IH
MAX
A
rnA
TIC205A
2
100
20
5
10
2
2
1.9
2.8
30
TIC205B
2
200
20
5
10
2
2
1.9
2.8
30
2
1.9
2.8
30
TIC205D
2
400
20
5
10
2
TIC206A
3
100
20
5
10
2
2
2.2
4.2
30
TlC206B
3
200
20
5
10
2
2
2.2
4.2
30
TIC206D
3
400
20
5
10
2
2
2.2
4.2
3\J
TIC215A
3
100
20
5
10
2.2
3
2
4.2
30
TIC215B
3
200
20
5
10
2.2
3
2
4.2
30
TIC215D
3
400
20
5
10
2.2
3
2
4.2
30
TIC216A
6
100
60
5
10
2.2
3
1.7
8.4
30
TIC2168
6
200
60
5
10
2.2
3
1.7
8.4
30
TlC216D
6
400
60
5
10
2.2
3
1.7
8.4
30
TIC226B
8
200
70
50
2.5
2.1
12
60
TlC226D
8
400
70
50
2.5
2.1
12
60
TIC236B
12
200
100
50
2.5
2.1
17
50
TIC236D
12
400
100
50
2.5
2.1
17
50
TIC246B
16
200
125
50
2.5
1.7
22.5
50
TIC246D
16
400
125
50
2.5
1.7
22.5
50
TlC253B
20
200
150
50
2.5
1.7
28.2
50
TIC253D
20
400
150
50
2.5
1.7
28.2
50
TIC253E
20
500
150
50
2.5
1.7
28.2
50
TIC253M
20
600
150
50
2.5
1.7
28.2
50
50
TIC263B
25
200
175
50
2.5
1.7
35.2
TIC263D
25
400
175
50
2.5
1.7
35.2
50
TIC263E
25
500
175
50
2.5
1.7
35.2
50
TIC263M
25
600
175
50
2.5
1.7
35.2
50
tRoman numerals d~signate the VG,
PACKAGE
PPP
ITO-39)
GG
PPP
ITO-39)
•
GG
GG
GG
GG
H
H
Vs quadrants as explained on page 1-19.
GG
PPPITO-39)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
3-13
PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
economy SeR's
IGTMAX
rnA
VGTMAX
V
IHMAX
rnA
VTMAX@
6
0.02
0.7
3
1.2
0.35
60
6
0.02
0.7
3
1.2
0.35
100
6
0.02
0.7
3
1.2
0.35
200
6
0.02
0.7
3
1.2
0.35
30
6
0.2
0.8
5
1.2
0.35
0.35
60
6
0.2
O.B
5
1.2
0.35
0.35
100
6
0.2
O.B
5
1.2
0.35
0.35
200
6
0.2
O.B
5
1.2
0.35
TIC44
0.6
30
6
0.2
0.8
5
1.4
0.3
TIC45
0.6
60
6
0.2
O.B
5
1.4
0.3
TIC46
0.6
100
6
0.2
O.B
5
1.4
0.3
6
0.2
O.B
5
1.4
0.3
IT
A
VORM
V
2N3001
0.35
30
2N3002
0.35
2N3003
0.35
2N3004
0.35
2N3005
0.35
2N3006
2N3007
2N300B
TYPE NO.
•
3·14
ITSM
A
V
IT
A
PACKAGE
TIC47
0.6
200
TIC60
O.B
30
6
0.2
O.B
5
1.7
1.2
TIC61
O.B
60
6
0.2
0.8
5
1.7
1.2
TIC62
O.B
100
6
0.2
0.8
5
1.7
1.2
TIC63
O.B
150
6
0.2
0.8
5
1.7
1.2
TIC64
O.B
200
6
0.2
0.8
5
1.7
1.2
R
(TO·18)
AAA
LLL
2N5060
O.B
30
6
0.2
0.8
5
1.7
1.2
2N5061
O.B
60
6
0.2
0.8
5
1.7
1.2
2N5062
O.B
100
6
0.2
0.8
5
1.7
1.2
2N5063
0.8
150
6
0.2
0.8
5
1.7
1.2
2N5064
0.8
200
6
0.2
0.8
5
1.7
1.2
2N1595
1
10
3
25
2
1
1
50
100
15
2N1596
15
10
3
25
2
1
2N1597
1
200
15
10
3
25
2
1
2N1598
1
300
15
10
3
25
2
1
2N1599
1
400
15
·W
3
25
2
1
(TO-92)
I
(TO-5)
TI145AO
1.6
50
30
25
2
1
1.6
100
30
25
3.5
3.5
25
TI145A1
25
2
1
TI145A2
1.6
200
30
25
3.5
25
2
1
TI145A3
1.6
300
30
25
3.5
25
2
1
TI145A4
1.6
400
30
25
3.5
25
2
1
TIC39Y
2
30
20
0.2
1
5
1.75
2
TIC39F
2
50
20
0.2
1
5
1.75
2
TIC39A
2
100
20
0.2
1
5
1.75
2
PPP
TIC39B
2
200
20
0.2
1
5
1.75
2
(TO-39)
TIC39C
2
300
20
0.2
1
5
1.75
2
TIC39D
2
400
20
0.2
1
5
1.75
2
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
I
(TO-5)
PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
economy SCR's
TYPE NO.
2N6332
2N6333
2N6334
2N6335
2N6336
2N6337
IT
A
2
2
2
2
2
2
VORM
V
30
50
100
200
300
400
ITSM
A
20
20
20
20
20
20
IGTMAX
mA
0.2
0.2
0.2
0.2
0.2
0.2
VGTMAX
V
0.7
0.7
0.7
0.7
0.7
0.7
IHMAX
mA
5
5
5
5
5
5
VTMAX@
V
1.75
1.75
1.75
1.75
1.75
1.75
IT
A
2
2
2
2
2
2
PACKAGE
PPP
ITO-39)
TlC106Y
TIC106F
TIC106A
TIC106B
TIC106C
TIC106D
5
5
5
5
5
5
30
50
100
200
300
400
30
30
30
30
30
30
0.2
0.2
0.2
0.2
0.2
0.2
1
1
1
1
1
1
5
5
5
5
5
5
1.7
1.7
1.7
1.7
1.7
1.7
5
5
5
5
5
5
GG
TICl16F
TICl16A
TICl16B
TICl16C
TICl16D
TICl16E
TICl16M
8
8
8
8
8
8
8
50
100
200
300
400
500
600
80
80
80
80
80
80
80
20
20
20
20
20
20
20
1.5
1.5
1.5
1.5
1.5
1.5
1.5
40
40
40
40
40
40
40
1.7
1.7
1.7
1.7
1.7
1.7
1.7
8
8
8
8
8
8
8
GG
TICl26F
TIC126A
TIC126B
TICl26C
TIC126D
TIC126E
TIC126M
12
12
12
12
12
12
12
50
100
200
300
400
500
600
100
100
100
100
100
100
100
20
20
20
20
20
20
20
1.5
1.5
1.5
1.5
1.5
1.5
1.5
40
40
40
40
40
40
40
1.4
1.4
1.4
1.4
1.4
1.4
1.4
12
12
12
12
12
12
12
GG
n
I(TO-5)
n
AAA
1
RITO-18)
m
LLLITO-92)
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
•
IL
GG
~
PPPITO·39)
3-15
PRODUCT SELECTION GUIDE
RADIATION-TOLERANT SCR's
radiation-tolerant SeR's
1 X 1014 n/cm2
DEVICE
IT
VD
IHMAX
IGTMAX·
MAX
TYPE
A
•
TIC35
TIC36
0.4
0.4
TIC67
20
20
TIC68
@
IT
V
15
mA
4
mA
V
0.02
30
4
0.02
1.6
1.6
1
1
60
20
20
1.5
80
20
20
1.5
20
20
R(TO-I8)
3-16
POST IRRADIATION
VT
A
IGTMAX
mA
V
5
5
40
1.6
1.6
1.5
40
1.5
YYYY(TO-59)
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
PACKAGE
VT
MAX
@
IT
A
1
1
20
20
R(TO-18)
R(TO-18)
YYYY(TO-59)
YYYY(TO-59)
II
Alpha-Numeric Index
to
Data Sheets
•
ALPHA-NUMERIC INDEX
ALL TYPES
TYPE NO.
TYPE NO.
SEC.·PAGE
SEC.·PAGE
2N389
5-11
2N1533
6-41
2N424
5-11
2N1534
6-41
2N456A
6-1
2N1535
6-41
2N456B
6-5
2N1536
6-41
2N457A
6·1
2N1537
6·41
2N457B
6-5
2N1538
6·41
2N458A
6·1
2N1539
6·41
2N458B
6·5
2NI540
6·41
2N497
5-13
2N1541
6-41
2N498
5-13
2NI542
6·41
2N511
6·11
2NI543
6·41
2N511A
6·11
2NI544
6-41
2N511B
6-11
2Nl545
6-41
2N512
6·15
2Nl546
6-41
2N512A
6-15
2NI547
6-41
2N512B
6-15
2NI548
6-41
2N656
5-13
2N1595
7·1
2N657
5-13
2N1596
7·1
2Nl021
6-1
2N1597
7·1
2Nl021A
6-5
2N1598
7-1
2Nl022
6-1
2N1599
7-1
2Nl022A
6·5
2N1714
5-23
2N 1038
6·19
2N1715
5-23
2Nl039
6-19
2N1716
5·23
2N 1040
6·19
2N1717
5·23
2Nl041
6·19
2N1718
5-23
2Nl042
6-27
2N1719
5-23
2Nl043
6·27
2Nl720
5·23
2Nl044
6·27
2N1721
5·23
2Nl045
6-27
2Nl722
5-31
2Nl046
6·35
2Nl722A
5·39
2Nl047
5-15
2N1723
5-41
2Nl047A
5-15
2Nl724
5·31
2Nl047B
5·15
2Nl724A
5-39
2Nl048 .
5·15
2Nl725
5-41
2Nl048A
5·15
2N1907
6-49
2Nl048B
5-15
8N1908
6-49
8N 1049
5·15
2N1936
5-43
2Nl049A
5-15
2N1937
5-43
2Nl049B
5·15
2N2150
5·51
2Nl050 .
5-15
2N2151
5·51
2Nl050A
5·15
2N2552
6·19
2Nl050B
5·15
2N2553
6·19
2N1529
6-41
2N2554
6·19
2N1530
6-41
2N2555
6-19
2N1531
6-41
2N2556
6·19
2N1532
6·41
2N2557
6·19
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
•
4·1
ALPHA-NUMERIC INDEX
2N2558
6-19
TYPE NO.
2N3264
2N2559
6-19
2N3265
6-77
2N2560
6-27
2N3266
6-77
2N2561
6-27
2N3418
6-81
2N2562
6-27
2N3419
6-81
2N2563
2N2564
2N3420
2N3421
6-81
2N~65.
6-27
6-27
6-27
2N2566
6-27
2N3440
6-87
2N2567
6-27
2N3551
5-91
2N2659
6-57
2N3552
6-91
2N2660
6·57
2N3583
5-95
2N2661
2N2662
6-57
6-57
2N3564
2N3585
5-95
2N2663
6-57
2N3713
5-99
2N2664
6-57
2N3714
5-99
2N2665
6-57
2N3715
6-99
2N2666
6-57
2N3716
6-99
2N2667
6-57
2N3719
6-105
2N2668
6-57
2N3720
6-105
2N2669
6-57
2N3771
5-109
2N2670
6-57
2N3772
5-109
2N2880
6-57
2N3789
6-111
2N2987
6-63
2N3790
2N2988
6-63
2N3791
6-111
., 6-111
2N2989
5-63
2N3792
5-111
2N2990
5-63
2N3846
5-117
2N2991
5-63
2N3847
6-117
TYPE NO.
•
2N3439
SEC.·PAGE
6-77
6-81
6-87
5-95
2N2992
6-63
2N3902
6-123
2N2993
5-63
2N3996
2N2994
2N3001
5-63
7-5
2N3997
6-127
6-127
2N3998
6-127
2N3002
7-5
6-127
2N3003
7-5
2N3999
2N4000.
2N3004
7-5
7-11
2N4001
7-11
2N4003
6-139
5-139
2N3007
7-11
2N4004
6-145
2N3008
7-11
2N4005
6-145
2N3021
6-71
2N4240
2N3022
6-71
2N4300
6-95
6-151
2N3023
2N3024
6-71
5-71
2N4301
2N4398
6-157
6-163
6-163
2N3005
2N3006
4-2
SEC.·PAGE
2N4002
6-133
6-133
2N3025
5-71
2N4399
2N3026
6-71
2N4901
6-167
2N3055
6-75
2N4902
6-167
2N3146
6-65
2N4903
5-167
2N3147
6-65
2N4904
5-171
2N3263
6-77
2N4905
6-171
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
ALPHA-NUMERIC INDEX
TYPE NO.
SEC.·PAGE
2N4906
5-171
2N4913
2N4914
5-175
5-175
2N4915
2N4998
2N4999
2N5000
2N5001
2N5002
2N5003
2N5004
2N5005
2N5038
TYPE NO.
2N5758
2N5759
2N5760
5·251
5-251
5-251
5·175
5-181
2N5867
5-253
2N5868
5-2~
5-185
5-181
5-185
2N5869
2N5870
5-255
5-255
2N5871
2N5872
2N5873
5·257
5·257
~.2s9
2N5874
5·259
2N5875
5-261
5-261
5·189
5-193
5-189
5-193
5-197
2N5039
5-197
2N5876
2N5877
2N5060
7·19
2N5878
2N5061
7·19
2N5879
2N5062
2N5063
2N5064
7·19
7·19
7·19
5-199
5-199
5-199
5·185
5-181
5-185
2N5880
2N5881
2N5882
2N5883
2N5884
2N5067
2N5068
2N5069
2N5147
2N5148
2N5149
2N5150
2N5151
2N5152
2N5153
SEC.·PAGE
5·181
5-193
5-189
2N5885
2N5886
2N5938
2N5939
2N5940
2N6127
2N6128
5-263
5·263
5-265
5·265
5-267
5-267
5-269
5-269
5·271
5-271
5·273
5-279
5-279
5·285
5-289
2N5154
5-193
5-189
2N6270
2N6271
2N5157
5-203
2N6272
2N5241
2N5301
5-207
5-211
2N6273
2N6322
2N5302
2N5303
5·211
5-211
2N6323
5·297
5-297
2N5333
2N5384
5-217
5-223
2N6324
2N6325
5-297
2N6326
5-301
2N5385
2N5386
5-223
5-227
2N6327
2N6328
2N5387
2N5388
5-231
5-231
2N5389
5-231
2N5390
2N5671
2N5672
5·237
5·243
5-243
2N6329
2N6330
2N6331
2N6332
2N6333
2N6334
2N5683
2N5684
2N5685
2N5686
5·247
5-247
5-249
5-249
2N6335
2N6336
2N6337
T1145AO.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
•
5-293
5·293
5·293
5-293
5-297
5-301
5-301
5-305
5-305
5-305
7·23
7·23
7·23
7·23
7·23
7·23
7·25
4·3
ALPHA-NUMERIC INDEX
TYPE NO.
•
7-25
TYPE NO.
TIC216
SEC•.pAGE
T1145Al
T1145A2
7-25
TIC2268
7-61
T1145A3
7-25
TIC226D
7-61
T1145A4
Tll56
7-25
TIC236
7-65
6-67
TIC246
7-65
Tll56L
6-67
TIC253
7-67
Tll59
TI160
6-69
6-69
TIC263
TIP29
7-67
5-319
TI161
6-69
6-69
TIP29A
5-319
TI162
TIP298
5-319
T1486
5-309
TIP29C
5-319
TI4B7
5-309
TI1131
5-315
TIP30
TIP30A
5-323
5-323
Tll132
5-315
TIP308
5-323
TI1133
5-315
TIP30C
5-323
T11134
5-315
TIP31
5-327
TI1135
5-315
TIP31A
5-327
TI1136
5-315
TIP318
5-327
TI1151
5-317
TIP31C
5-327
7-59
TI1152
5-317
TIP32
5-331
Tlll53
5-317
TIP32A
5-331
T11154
5-317
TIP328
5-331
TI1155
5-317
TIP32C
5-331
T11156
TI3027
5-317
TIP33
6-73
TlP33A
5-335
5-335
TI3028
6-73
TIP338
5-335
T13029
6-77
TIP33C
5-335
Tl3030
6-77
TlP34
5-339
TI3031
6-77
TIP34A
5-339
TIC35
7-27
7-27
TIP348
TIP34C
5-339
5-339
7-35
7-37
TlP35
5-343
TIP35A
5-343
TIC45
TlC46
7-37
TIP358
5-343
7-37
TIP35C
5-343
TlC47
TIC60
7-37
TIP36
5-347
7-19
TlP36A
5-347
TlC61
7-19
TIP368
5-347
TIC62
7-19
TIP36C
5-347
TIC63
7-19
TIP41
5-351
TlC64
7-19
TIP41A
5-351
TIC67
7-43
TIP418
5-351
TIC68
7-43
TIP41C
5-351
TIC106
7-45
TIP42
5-355
TICl16
TIP42A
5-355
TIC126
7-51
7-51
TIP428
5-355
TIC205
7-57
TIP42C
5-355
TlC206
7-57
TIP47
5-359
TlC215
7-59
TIP48
5-359
TlC36
TlC39
TIC44
4-4
SEC.·PAGE
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
ALPHA-NUMERIC INDEX
TYPE NO.
TVPENO.
SEC.·PAGE
SEC.-PAGE
TIP49
5-359
TlP524
5409
TIP50
5-359
TIP525
5-411
TIP51
5-363
TlP526
5-411
TIP52
5-363
TlP527
5-413
TIP53
5-363
TIP528
5-413
TIP54
5-363
TIP529
5-415
TIP110
TIP530
5-415
TIP111
5-367
5-367
TIP531
5-417
TIP112
5-367
TlP532
5-417
TIP115
5-371
TlP533
5-417
TIP116
5-371
TlP534
5-417
TIP117
5-371
TlP535
5-419
TIP120
5-375
TIP536
5-419
5-419
TIP121
5-375
TIP537
TIP122
5-375
TIP538
5-421
TIP125
5-379
TIP539
5-421
TIP126
5-379
TIP540
5-421
TIP541
TlP542
5-423
5-425
TIP127
5-379
TIP140
5-383
TIP141
TIP142
5-383
TIP543
5-427
TIP544
5429
TIP145
5-383
5-387
TIP545
5-429
TIP146
Tlp147
5-387
5-387
TIP546
5-429
TIP640
5-433
TIP501
5-391
TIP641
5-433
TlP502
5-391
TIP642
5-433
TlP503
5-395
TlP645
5-437
TIP504
5-395
TIP646
5-437
TIP505
5-395
TIP647
5-437
TlP506
TIP2955
5-441
TIP507
5-395
5-397
TIP3055
5-445
TlP508
5-397
TIXH601
9-3
TlP509
5-399
TIXH602
9-5
TIP510
5-399
TIXH603
9-7
TIP511
5-399
TIXH604
9-7
TIP512
5-399
TIXH701
TIP513
5-401
TIXH702
9-9
9-11
TIP514
5-401
TlXH703
9-13
TIP615
5-403
TIXH704
9-15
TIP516
5-403
TIXH801
9-17
TIP517
TlXH802
9-17
TIP518
5-403
5-403
TlXH803
TIP519
5-406
TIXH804
9-19
9-19
TIP620
5-405
nXH805
TIP521
5-407
TIXH806
9-21
9-25
TIP522
TlP523
5-407
TIXP547.
5-431
5409
TIXP548.
TIXP549.
5-431
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
II
5-431
4-5
ALPHA-NUMERIC INDEX
SILICON POWER TRANSISTORS
TYPE NO.
2N389
TYPE NO.
SEC.·PAGE
2N4399
5-71
5-75
2N4902
2N3055
2N3263
2N3264
5-77
5-77
2N4904
2N4905
2N424
2N497
2N498
5-13
5-13
2N656
2N657
5-13
2N 1047
5-15
5-15
5-15
2N3265
2N3266
5-77
5-77
2N3418
5-81
5-15
5-15
2N3419
5-81
2N3420
2N3421
2N3439
5-81
5-81
5-87
5-87
2Nl047B
2Nl048
2Nl048A
2N 10488
2Nl049
2Nl049A
2Nl0498
2Nl050
2Nl050A
2Nl050B
2N1714
2Nl715
2Nl716
2Nl717
5-13
5-15
5-15
5-15
5-15
5-15
5-15
5-15
5-23
5-23
5-23
5-23
2Nl718
2N1719
2N1720
2Nl721
5-23
5-23
5-23
2Nl722
2Nl722A
5-31
5-39
2N1723
5-41
5-31
5-39
5-41
5-43
5-43
5-51
5-51
5-57
5-63
5-63
5-63
5-63
5-63
5-63
5-63
5-63
5-71
5-71
5-71
2N1724
2N1724A
2N1725
2N1936
2N1937
2N2150
2N2151
2N28BO
2N2987
2N2988
2N2989
2N2990
2N2991
2N2~2
2N2993
2N2994
2N3021
2N3022
2N3023
5-23
TYPE NO.
5-71
5-71
5-11
5-11
2Nl047A
4-6
SEC.·PAGE
2N3024
2N3025
2N3026
2N3440
2N3551
2N3552
2N3583
2N3584
2N3585
2N4901
SEC.·PAGE
5-163
5-167
2N5760
2N5867
2N5868
5-251
5-253
2N4906
5·171
5-171
5-171
2N4913
2N4914
5-175
5-175
2N5869
5-255
5-255
2N4915
2N4998
2N4999
5-175
2N5871
2N5872
2N5873
5-257
2N5874
2N5875
2N5876
5-259
5-261
2N5000
2N5001
5-181
5-185
5-181
5-185
5-189
5·193
5-189
5-193
5-197
5-99
5-99
5-99
2N5039
2N5067
2N5068
5-199
5-199
5·99
5-105
2N5069
2N5147
5-199
5-185
2N3720
5-105
5-109
2N5148
2N5149
5-181
2N3771
2N3772
2N3789
5-109
2N5150
5-111
5-111
2N5151
2N5152
2N5153
2N;;154
2N3715
2N3716
2N3719
2N3790
2N3791
2N3792
2N3846
2N3847
2N3902
2N3996
2N3997
2N3998
2N3999
2N4000
2N4001
2N4002
2N4003
2N4004
2N4005
2N4240
2N4300
2N4301
2N4398
5·111
5-111
5-117
5-117
2N5157
5-123
2N5301
2N5302
5-127
5-127
5-127
2N5241
2N5303
2N5333
5-127
5-133
5-133
5-139
2N5384
2N5385
2N5386
2N5387
5-139
5-145
2N5388
2N5389
2N5390
2N5671
5-145
5-95
5-151
5-157
5-163
2N5672
2N5683
2N5684
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
5-249
5-249
2N5758
5-95
5-95
5-95
2N3713
2N3714
2N5686
SEC•.pAGE
5·167
5-167
2N4903
2N5002
2N5003
2N5004
2N5005
2N5038
5-91
5-91
TYPE NO.
2N5685
DALLAS, TEXAS 75222
5-197
2N5759
2N5870
2N5877
2N5878
2N5879
2N5880
5-251
5-251
5-253
5-257
5-259
5-261
5-263
5-263
5-265
5·265
2N5881
2N5882
5-267
5-267
2N5883
2N5884
2N5885
2N5886
5-269
5-269
5-271
5-185
5-181
2N5938
5-271
5-273
2N5939
5-279
5-193
2N5940
2N6127
2N6128
2N6270
5-279
5·285
5-203
5-207
2N6271
2N6272
5·293
5-293
5-211
2N6273
2N6322
5-293
5-297
2N6323
5-297
5-223
2N6324
2N6325
5·297
5-297
5-223
5-227
2N6326
2N6327
5-301
5-301
5·231
5-231
2N6328
5-301
5·305
5·231
5-237
5-243
2N6330
2N6331
T1486
5-305
5-305
5-309
5-243
5-247
5-247
TI487
TI1131
5-309.
5-315
TI1132
5-315
5·189
5-193
5-189
5-211
5-211
5-217
2N6329
5-269
5-293
ALPHA-NUMERIC INDEX
TYPE NO.
SEC.·PAGE
TYPE NO.
SEC.·PAGE
TYPE NO.
SEC.·PAGE
TYPE NO.
SEC.·PAGE
Tlll34
5-315
TIP35
5·343
TIP125
5-379
TlP525
TI1135
5-315
TIP35A
5-343
TIP126
5·379
TIP526
5-411
TI1136
5·315
TIP35B
5-343
TIP127
5·379
TIP527
5-413
5-411
TI1151
5-317
TIP35C
5-343
TIP140
5·383
TIP528
5-413
TI1152
5-317
TIP36
5-347
TIP141
5-383
TIP529
5-415
5-415
TI1153
5-317
TIP36A
5-347
TlP142
5·383
TIP530
Tlll54
5-317
TlP36B
5-347
TlP145
5-387
TIP531
5·417
TI1155
5-317
TIP36C
5-347
TIP146
5-387
TIP532
5-417
Tlll56
5-317
TIP41
5-351
TIP147
5-387
TIP533
5-417
TIP29
5-319
TlP41A
5-351
TIP501
5-391
TIP534
5-417
TIP29A
5-319
TIP41B
5-351
TIP502
5-391
TlP535
5-419
TIP29B
5-319
TlP41C
5-351
TIP503
5-395
TIP536
5-419
TIP29C
5-319
TIP42
5-355
TIP504
5-395
TIP537
5-419
TIP30
5-323
TIP42A
5-355
TIP505
5-395
TIP538
5-421
TIP30A
5-323
TIP42B
5·355
TIP506
5-395
TIP539
5-421
TIP30B
5-323
TIP42C
5-355
TIP507
5-397
TIP540
5-421
TIP30C
5-323
TIP47
5-359
TIP508
5-397
TIP541
5-423
TIP31
5-327
TIP48
5-359
TIP509
5-399
TIP542
5-425
TlP31A
5-327
TIP49
5-359
TIP510
5-399
TIP543
5-427
TIP31B
5-327
TIP50
5-359
TIP511
5-399
TIP544
5-429
TIP31C
5-327
TIP51
5-363
TIP512
5-399
TIP545
5-429
TIP32
5-331
TIP52
5-363
TIP513
5-401
TIP546
5-429
TIP32A
5-331
TIP53
5-363
TIP514
5-401
TIP640
5-433
TIP32B
5-331
TIP54
5-363
TIP515
5-403
TIP641
5-433
TIP32C
5-331
TIP110
5-367
TIP516
5-403
TIP642
5-433
TIP33
5-335
TIP111
5-367
TIP517
5-403
TIP645
5-437
TIP33A
5-335
TIP112
5-367
TIP518
5-403
TIP646
5-437
TIP33B
5-335
TIP115
5-371
TlP519
5-405
TIP647
5-437
TIP33C
5-335
TIP116
5-371
TIP520
5-405
TIP2955
5-441
TIP34
5-339
TIP117
5-371
5-407
5-407
TIP3055
TIXP547
5-445
5-431
TIP34A
5-339
TIP120
5-375
TIP521
TIP522
TIP34B
5-339
TIP121
5-375
TIP523
5-409
TIXP548
5-431
TlP34C
5-339
TIP122
5-375
TIP524
5-409
TIXP549
5-431
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALL.AS. TEXAS 75222
•
4-7
ALPHA-NUMERIC INDEX
GERMANIUM POWER TRANSISTORS
TYPE NO.
TYPE NO.
SEC.-PAGE
2N456A
6-1
2Nl044
6-27
2N456B
6-5
2Nl045
2N457A
6-1
2N457B
6-5
2N458A
6-1
2N458B
6-5
TYPE NO.
SEC.-PAGE
TYPE NO.
SEC.-PAGE
6-41
2N2662
6-57
6-27
2Nl54B
2N1907
6-49
2N2663
6-57
2Nl046
6-35
2N190B
6-49
2N2664
6-57
2N1529
6-41
2N2552
6-19
2N2665
6-57
2N1530
6-41
2N2553
6-19
2N2666
6-57
2N1531
6-41
2N2554
6-19
2N2667
6-57
6-11
2N1532
6-41
2N2555
6-19
2N266B
6-57
2N511A
6-11
2N1533
6-41
2N2556
6-19
2N2669
6-57
2N511B
6-11
2N1534
6-41
2N2557
6-19
2N2670
6-57
6-15
2N1535
6-41
2N2558
6-19
2N3146
6-65
2N512A
6-15
2N1536
6-41
2N2559
6-19
2N3147
6-65
2N512B
6-15
2N1537
6-41
2N2560
6-27
TI156
6-67
2Nl021
6-1
2N153B
6-41
2N2561
6-27
TI156L
6-67
2Nl021A
6-5
2N1539
6-41
2N2562
6-27
TI159
6-69
2Nl022
6-1
2Nl540
6-41
2N2563
6-27
Tl160
6-69
2Nl022A
6-5
2N1541
6-41
2N2564
6-27
Tl161
6-69
2Nl038
6-19
2Nl542
6-41
2N2565
6-27
TI162
6-69
2Nl039
6-19
2Nl543
6-41
2N2566
6-27
Tl3027
6-73
2N 1040
6-19
2Nl544
6-41
2N2567
6-27
TI3028
6-73
2Nl041
6-19
2N1545
6-41
2N2659
6-57
TI3029
6-77
2Nl042
6-27
2Nl546
6-41
2N2660
6-57
TI3030
6-77
2Nl043
6-27
2N1547
6-41
2N2661
6-57
TI3031
6-77
2N511
2N512
•
SEC.-PAGE
.
.
THYRISTORS
TYPE NO.
SEC.-PAGE
TYPE NO.
SEC.-PAGE
2N1595
7-1
2N5061
7-19
TI145A4
7-25
TIC6B
2N1596
7-1
2N5062
7-19
TIC35
7-27
TIC106
7-45
2N1597
7-1
2N5063
7-19
TIC36
7-27
TICl16
7-51
2N1598
7-1
2N5064
7-19
TIC39
7-35
TIC126
7-51
2N1599
7-1
2N6332
7-23
TIC44
7-37
TIC205
7-57
2N3001
7-5
2N6333
7-23
TIC45
7-37
TIC206
7-57
2N3002
7-5
2N6334
7-23
TIC46
7-37
TIC215
7-59
2N3003
7-5
2N6335
7-23
TIC47
7-37
TIC216
7-59
2N3004
7-5
2N6336
7-23
TIC60
7-19
TIC226B
7-61
2N3005
7-11
7-23
TIC61
7-19
TIC226D
7-61
2N3006
7-11
2N6337
TI145AO
7-25
TIC62
7-19
TIC236
7-65
2N3007
7-11
TI145Al
7-25
TIC63
7-19
TIC246
7-65
2N300B
7-11
TI145A2
7-25
TIC64
7-19
TIC253
7-67
2N5060
7-19
TI145A3
7-25
TIC67
7-43
TIC263
7-67
SEC.-PAGE
TYPE NO.
TYPE NO.
SEC.-PAGE
TYPE NO.
SEC.-PAGE
7-43
POWER FUNCTIONS
TYPE NO.
4·8
SEC.-PAGE
TYPE NO.
SEC_-PAGE
TYPE NO.
SEC_-PAGE
TIXH601
9-3
TIXH701
9-9
TIXHBOI
9-17
TIXHB04
9-19
TIXH602
9-5
TIXH702
9-11
TIXHB02
9-17
TIXHB05
9-21
TIXH603
9-7
TIXH703
9-13
TIXH803
9-19
TIXHB06
9-25
TIXH604
9-7
TIXH704
9-15
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
Silicon Power
Data Sheets
•
SILICON POWER TRANSISTORS
STANDARD TEST CIRCUITS
The circuits shown below are used to test many of the silicon power transistors manufactured by Texas Instruments.
They are taken from the forthcoming JEDEC publication Suggested Standards on Power Transistors.
OUTPUT
V on - -
-r~90%
INPUT OVJio%- -VBB2
I 10%
56n
-
~~
I
~i
270 pF
30n
OUTPUT
~t~:f-
90%~~
VBB2= •
-=- VCC
~----------------------~---+.
VBBl
ADJUST FOR
SPECIFIED Von AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. V gen is a ~30-V pulse (from 0 V) into a 50-n termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr";::;;; 15 ns, tf ~ 15 ns, Zout
duty cycle ~ 5%.
C. Waveforms are monitored on an ocsilloscope with the following characteristics: tr
:0;;;;:
10 ns, Rin ~ 1
Mn,
= 50
n
tw == 5 115,
•
Cin ~ 11.5 pF.
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
F. Circuit shown is for testing n-p-n transistors. For p-n-p transistors, all voltage supplies and waveforms are reversed and the driver
transistor is type 2N6128.
FIGURE l-SWITCHING TIMES
VCE MONITOR
......l
INPUT
VOLTAGE
L
0u::-J-r
-5 V-
TUT
I.-- tw (See Note A)
i+-{-
100 ms
I
I
COLLECTORICM~:--I-------t- I - +
CURRENT
0
I I
VCc-=IC MONITOR
V(BR)CEX-I--
I
COLLECTOR
VOLTAGE
I
I
I
I
I I
------\--
I
I
I
I
VCC
VCE(sat) -
TEST CIRCUIT
NOTES:
VOLTAGE AND CURRENT WAVEFORMS
A. Input pulse width is increased until the peak collector current reaches the specified value of leM.
B. Circuit shown is for testing n-p-n transistors. For p-n-p transistors, all voltage supplies and waveforms are reversed and the driver
transistor is type 2N6128.
FIGURE 2-INDUCTIVE LOAD SWITCHING
1071
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX '5012 •
DALLAS. TEXAS 75222
5-1
I
5·2
STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS
This data sheet identifies those standard hardware kits which are supplied with each device. At additional
cost, nonstandard hardware items will be supplied.
The mounting hardwore assembly drawings of Section A (Figures 1 through 8) specify the individual hardware items that are included in each mounting hardware kit. Section A also references the package
outlines for which each kit is designed and shows the typical thermal resistance associated with the
mounting hardware.
Section B contains mechanical drawings of the individual hardware items that are referenced in Figures 1
through 8.
DIRECTORY
OUTLINE
KIT
TO-3
TO-5
7
I
TO-33
I
TO-39
I
4
3
8
8
5
6
2
8
TO-53
TO-57
TO-59
TO-60
TO-61
Unisolated
TO-63
TO-Ill Unisolated
TO-ll1 Isolated
Texas Instruments reserves the right to substitute similar parts at any lime in order to expedite delivery or improve design.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-3
STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS
SECTION A
MOUNTING HARDWARE ASSEMBLY DRAWINGS
Item 1 -Cadmium-Plated! Beryllium-Copper
Alloy-25 Mounting Clomp, Owg. 10-31-052-007
MOUNTING KIT I
for
TO-5, TO·33, AND TO·39
PACKAGE OUTLINES
Chossis or Heat Sink
•
FIGURE 1
MOUNTING KIT 2
for
TO·III AND OTHER
7/16·INCH STUD PACKAGE OUTLINES
(INSULATION REQUIRED)
Item 17 -Cadmium-Plated, Chromate-Treated,
Carbon-Steel Flat Washer, Owg. 10-31-188-040
Item 20 - Cedm i urn-PI oted f Chromate-Treoted,
Carbon-Steel Internal-Tooth lock Washer,
Owg. 10-31-152-006
Item 25 -Cadmium-Plated, Chromate-Treated,
Carbon-Steel Hex Nut, Owg. 10-31-036-009
TYPICAL THERMAL RESISTANCEt
IJC•HS
3.8
deg/W
FIGURE 2
tO C_HS is the thermol resistance from the mounting bose of the semiconductor·device (ose 10 the mounting surfo" of the heat sink. The heal sink used to
determine this yalue was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch below the mounting surface in an area beneath the device.
The deyjce was mounted directly to a clean, dry, heat-sink surface, without the use of a thermal compound and a torque of ten inch.pounds was applied to
the stud or each of the mounting screws.
:t Trademork of E. I. duPont
971
5-4
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS
SECTION A - MOUNTING HARDWARE ASSEMBLY DRAWINGS
MOUNTING KIT 3
for
TO-57 PACKAGE OUTLINE
~
I:l'
~
'-
_.
'-" ~
~
TYPICAL .THERMAL RESISTANCEt
Il C•HS
I
Item 12 -Fiberfil§ Nylon G-3lnsulatingSleeve
Owg.10-31-483-025
Item 5a-Mica Insulator Owg. 10-31-188-108
Item 16-Cadmium-Plated, Chromate-Treated,
B-
24 0
200
'"'"::>
0
110
'"0
120
00
80
I
40
....
....
4
Ve• -
12
16
20
COLLECTOR VOLTAGE -
o
o
24
28
VOLTS
~
'"
"'
::>
il
160
~
00
I
I
/
/
80
60
_u
,
40
II
20
o
V
It'
II,
V
E
160
I
....
140
"'"'::>
"'0
~
1;
«
~
....
/
100
o
«E
J
120
0
'"0....
180
,
,
200
,
I
140
,,'0
8
12
16
20
24
28
V CE , - COLLECTOR VOLTAGE - VOLTS
COMMON EMlnER CHARACTERISTICS
TYPES 2N6S6. 2N6S7
10
180
E
2mA
ImA
TYPES 2N497. 2N498
I
....
I
40
200
«
•
80
COMMON EMlnER CHARACTERISTICS
I
OmA
e~
120
....
.....
0
r-T
160
_u
0
1--
20 0
13
~
TYPES 2N656. 2N657
28 0
"'"'
0
0
:;:
:i
ti
::>
E
....I
~
120
'"'"
::>
o
100
w
VI
~
-~
«
I
00
80
I
60
:i
I
..2
-Collector Currtn' VII,.",I
40
BnelJol'ou,
'Ier·IOV
T-2i5·C
---8ne Current venus
Bou VoltGp
Vel "tOV
r-2S·C
20
0
0
v.. -
BASE VOLTAGE -
v.. -
VOLTS
typical design characteristics at Tj
Forward Current Gain
@
h" Reverse Voltage Gain
h.. Output Admittance
TEST CONDITIONS
Ike
Input Impedance
hI,
Ike
@
@
Ike
Ike
2N497·98
2N656.57
ullit
ohm
Vc = 30V
Ie = 30 mA
250
350
ve = 30V
Ie = 30 mA
30
60
Ve = 30V
Ie = 30 mA
200
400
Ve = 30V
Ie = 30 mA
70
90
h..
Forward Current Gain @ 2 megacycle.
Vc = 30V
Ie
= 30 mA
9
6
',,0
Emitter Cutoff Current
VEl
@
VOLTS
= 2S o c
PARAMETER
hi,
BASE VOLTAGE -
Icoo Collector Cutoff Current @ ISO·C
/Lmho
-
= 5V
Ic= 0
0,1
0.1
/LA
Vel = 30V
I. = 0
60
60
/LA
PRINTED IN US,A
5·14
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,
TYPES 2Nl047 THRU 2Nl050 2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
• Dissipation Capability in excess of 22 W
at VCE 40 V, Te 100°C
• Typical VeE(S.') of 0.15 V at Ie = 500 mA
• Typical fT of 50 MHz at VCE 10 V, Ie
=
=
=
= 100 mA
* mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
COLLECTOR
~:~::
OIA
BASE
0.100 TP
ALL JEDEC TO-57 DIMENSIONS AND NOTES ARE APPLICABLE
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1048 2N1047A 2N1048A 2N1047B 2N1048B
2N1OSO 2N1049A 2N1OSOA 2N1049B 2N1OSOB UNIT
2N1047
2N1049
Collector-Bose Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Bose Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Bose Current
Continuous Emitter (urrent
Safe Operating Region at (or below)
100·( (ase Temperature
(ontinuous Device Dissipation at (or below)
2S 0 ( (ase Temperature (See Note 3)
Continuous Oevice Dissipation ot (or below)
2S 0 ( Free-Air Temperature (See Note 4)
Operating (ollector Junction Temperature
Storage Temperoture Range
Lead Temperature Ya Inch from (ase for 10 Sec.
80'
80'
10'
120'
120
6'
80'
80
6'
120'
120'
10'
2t
0.5'
8
0.5
2t
0.5'
8
0.5'
2
2
80'
80'
10'
120'
120'
10'
2t
0.75'
8
0.5'
2t
0.75'
V
V
Y
A
A
A
A
See Figure 10
W
40'
l'
200'
-6S to 200'
230'
230
W
O(
O(
230'
O(
NOTES: 1. These values apply when the base-emitter diode is open..(ircuited.
2. This value applies for Ip ::::; 0.3 ml, duty cycle::::; 10%.
3. Derate linearly 10 200°C case temperature at the rate of 228 mW/deg.
4. Derate linearly to 200°C free-air temperature at the rate of 5.7 mW/deg.
*Indicotes JEDEC registered data
tlexas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-15
TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DrFFUSED PLANAR SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
VIII<)CEO Breakdown Voltage
"Ieao
Collector Cutoff Current
"lcev
Collector Cutoff Current
"Ino
Emitter Cutoff Current
I>hF£
I>VBE
•
Static Forward
Current Transfer Ratio
Base-Emitter Voltage
Collector-Emitter
"'VeE/sat) Saturation Voltage
2NI049
2NIOSO
2NI047
2NI048
MIN MAX MIN MAX MIN MAX MIN MAX UNIT
TEST CONDITIONS
Ic = 30mA,
Is = 0,
See Note 5
Ie - 0
Ie - 0,
Vca Vca Tc =
VeE Vce Vea Vce -
120
80
30V,
30 V,
1S0oC
80 V, VIlE - -1.5 V
120 V, VIlE - -1.5 V
6 V,
Ic - 0
laV, Ic - 500 mA,
See Notes 5 and 6
Vee - 10V, Ie - SOOmA,
Te = _55°C, See Notes 5 and 6
Vce - 10V, Ic - SOOmA,
See Notes 5 and 6
la - 100 mA, Ic - SOOmA,
See Notes 5 and 6
Y
IS
IS
IS
350
350
350
350
250
250
250
250
250
12
120
80
IS
36
12
8
8
30
p.A
250
250
250
36
90
30
p.A
p.A
90
20
20
6
6
6
6
V
7_5
7.5
7.5
7.5
V
"electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
VIII<)CEo Breakdown Voltag.e
2NI047A 2NI048A 2NI049A 2NIOSOA
MIN MAX MIN MAX MIN MAX MIN MAX UNIT
TEST CONDITIONS
Is - 0,
See Note 5
Vca = 3 V,
Ie = 0
t-;;=----;O;--Vea = 30 V, Ie - 0
Vca = 80 V, Ie = 0
Collector Cutoff Current Vea - 120 V, Ie - 0
ICBO
Ves = 30 V, Ie = 0,
Tc = 1S0oC
VeE - 80 V, VBE - -1.5 V
Collector Cutoff Current
lcev
Vee - 120 V, VBE = -1.5 V
Ie = 0
VES = 3 V,
Emitter Cutoff Current
leBO
VES = 10 V,
Ie = 0
Ves - 80 V, Ie - 0
Emitter-Base
VEB)fl) Floating Potential
Ves - 120 V, IE - 0
Vee - 10V, Ie - 500 mA,
See Notes 5 and 6
Static Forward Current
hFE
Transfer Ratio
Vee - 10 V, Ie - 500 mA,
Tc = _55° C, See Notes 5 and 6
VeE - 10V, Ie - 500 mA,
VBE
Base-Emitter Voltage
See Notes 5 and 6
Collector-Emitter
Is - 100 mA, Ie - 500 mA,
VCEls.t) Saturation Voltage
See Notes 5 and 6
Common·Emitter
i hfe
VCE = 30 V, Ic = 30mA
Beta-Cutoff Frequency
Ie - 30mA,
120
80
IS
15
350
120
80
IS
IS
350
IS
IS
IS
IS
350
350
350
350
350
250
250
250
250
250
0.5
250
250
250
250
250
0.5
0_5
36
12
36
8
8
0.5
30
90
p.A
350
250
250
I2
V
30
p.A
p.A
Y
90
20
20
6
6
6
6
y
7_5
7.5
7.5
7.5
Y
75
75
75
75
kHz
NOTES: S. These parameters must be measured using pulse techniques. Ip = 300 /Ls, duty eyda ::;. to;..
6. These parameters are measured with voltage-seosing contacts separate from the (urrent-carrying contacts.
·'ndicotes JEDEC registered data
971
5-16
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2Nl047 THRU 2N1050,2Nl047A THRU 2N1050A,
2N1047B THRU 2N1050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
electrical characteristics at 2S·C case temperature (unless atherwise nQted)
PARAMETER
Colledor-Eminer
V,III\CEO Breakdown Voltage
Colledor Cutoff Current
IclO
2NI047B 2NI048B 2NI049B 2NI050B
MIN MAX MIN MAX MIN MAX MIN MAX UNIT
TEST CONDITIONS
Ic - 30 rnA,
1.- 0,
See Note 5
IE
VCI - 30 V,
Vel - 80 V,
IE - 0
IE - 0
VCI - 30 V,
Tc = 150·C
IE - 0,
VCE = 80 V,
VIlE
Eminer Cutoff Current
VEl = 3 V,
VEB(fI\
Eminer·Base
Floating Potential
VEI -l0V,
VCI - 80 V,
VCI - 120 V,
Vee - 10V,
hFE
Static Forwa rd Current
Transfer Ratio
VIlE
Base- Emiller Voltage
Colledor-Eminer
VCE'sa'\ Saturation Voltage
Small-Signal
Common-Emiller
Ihlel
Forward Current
Transfer Ratio
Common-Emiller
fhle
Beta-Cutoff Frequency
Ic
100'
sot
100'
sot
200'
200'
250'
sot
10'
4t
10'
le- 0
IE - 0
IE - 0
Ic - 500 rnA,
See Notes 5 and 6
VCE - 10 V, Ie - 500 rnA,
Te = -SS··C, See Notes 5 and 6
Vee - 10 V, Ic - 500 rnA,
See Notes 5 and 6
I. - 100 rnA, Ic - 500 rnA,
See Notes 5 and 6
= lDOmA,f =
Ie
VCE = 30 V,
Ic=30mA
p.A
250'
sot
10'
4t p.A
10'
10'
4t
10'
0.5'
0.5'
12 MHz
p.A
200'
250'
sot
10'
4t
10'
0.5'
=0
Vee = 10V,
200'
250'
sot
= -1.5 V
NOTES: 5. These param.ters must be measured using pulse techniques. t.p
10'
st
IS'
10'
st
IS'
50'
IS'
VeE = 120 V, VIlE = -l.SV
IEIO
V
120'
80'
10'
st
=0
Colledor Cutoff Current
ICEV
120'
10'
st
15'
50'
=0
VCI = 3 V,
VCI = 120 V, IE
80'
0.5'
12'
36' 12'
36' 30'
90' 30'
8'
S'
20'
20'
V
90'
1.6'
1.6'
1.6'
1.6'
V
2'
It
2'
It
2'
It
2It
V
I-
I-
I-
I-
125'
125'
125-
125-
•
kHz
= 300 p.s, duty cycl. ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the curren I-carrying (ontacts.
*thermal characteristics
ALL TYPES
MAX
4.375
175
PARAMETER
Ihe
IhA
Junction-to-Cose Thermal Resistance
Jundion-to-Free-Air Thermal Resistance
UNIT
de!llW
·Indlu... JEDEC regis'ered da'a
tlexas Imtruments guarantees these values In addition to the JEDEC registered yalues which are also shown.
971
TEXASINCORPORATED
INSTRUMENTS
FlOST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-17
TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
tm
tolf
Tum·On TIme
Tum·Off rune
TEST CONDITIONs:j:
Ie - 500mA,
IB(1) - 50 mA,
VEloff) = -4.1 V, RL = 100 .0,
IB(2)
-
2NI049
2NI050
2NI049A 2NI050A
2NI0498 2NI0508
TYP
UNIT
0.225
3
p.S
-50 mA,
See Figure 1
:l:Vol,a.1 and currin' values shown are nominal; exact values vary s!iglrtl,. with transistor param.t.rs.
PARAMETER MEASUREMENT INFORMATION
.----_--0
OUTPUT
3000
1000
560
185 0
~=50V
TEST CIRCUIT
'BV --~90%
-0.3 V
~'--
--'10%
I
INPUT
I
-.t'on ......... toff
.....
~l
11::
90%~
OUTPUT
.f'
VOLTAGE WAVEFORMS
FIGURE I
NOTES. a. Th. inpul wa..form I. suppll.d by a g.neral., wilh Ih. following ,ha,a,'ed.tI". ',S; 15 n., If S; IS n•• loul
= 50 0, Ip = 10 /10'.
duly ,ycle S; 2%.
b. Waveforms an monitored on an oscilloscope with the following characteristics: 'r ::::; 15 ns, Rin ~ 10 MO, Cln S; 11.5 pF.
c. Resistors must b. nonlndudlve type.
d. Th. doC powe, .upplles may require addlti .. al bypa.. lng in anlor I. mInimize ringing.
971
5-18
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1047 THRU 2N1050 2Nl047A THRU 2N1050A,
2N1047B THRU 2N10SOB
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2NI047, 2NI047A, 2NI0471
2NI04I, 2N104IA, 2NI048B
2NI049, 2NI049A, 2NI049B
2NI050, 2NI050A, 2NI050B
STATIC FORWARD CURRENT TRANSFER RATIO
STATIC FORWARD CURRENT TRANSFER RATIO
vs
vs
COLLECTOR CURRENT
70
.t
0
i
60
,g
50 ~
'"
-!lc
'E
~
d
40
~
~
:g
20
~
120
'5
~e=~·~
t!:
"."
C
a
~
"J
...
60
j
40
I
Te=-SS·C
II! 10
II! 20
.s::
.s::
-
~
0.04 0.07 0.1
0.02
0.2
0.4 0.7 1
Ie-Collector Current-A
0.04 0.07 O. 1
0.2
0.4 0.7
Ie - Collector Current - A
t
~
::
::::...........
SteNotesS&6-
...................
-......::: ~
le·20m~
--
~e-SOOmA
0.4
.......
.
I
i'..
~ 0.2
See Notes S & 6
.I
./
!
0.7
l5
0.4
j
0.2
.;
.Ii
0.1
~
r....., ~ r-..
'-
CASE TEMPERATURE
2
>
VeE = 10 V
:::::::::-. ~~ 7
']
j
vs
I
~.2A
•
COLLECTOR-EMmER SATURATION VOLTAGE
CASE TEMPERATURE
1.0
I
FIGURE 3
vs
~ 0.6
\\
"'
Te- SS·C
.... ....
BASE-EMmER VOLTAGE
I
~
".
FIGURE 2
> 0.8
-
o
o
0.02
V
::.1
-;:::oJ;:...
~~
","
1!
~~
i-'
80
t:
u
Ii
u
I
I-'
2
a 100
~,
~~
VeE -l0V
See Notes Sand 6
Te=lsoJc
""
.!
30
u
j;
0
~e=l~·lc
1!0
J
VeE ·10 V
fee Notes 5 and 6
Te· 15O• C
Io-f-
COLLECTOR CURRENT
140
!
~IB
0.4 A, Ie
2A
r---I I
I'
,I.
!
0.2 A, Ie
llA
I, • 0.1 A, Ie = O.S A
~ 0.07
i
==1,
--
-- --
4 mA, Ie - 20 mA
~ 0.04
I
:! 0.02
o
-7S'
>'tJ
-SO -25
0
2S
SO
7S
100
Te -Case Temperature _·C
125
ISO
0.01_75
-50
FIGURE 4
-25 0
25
SO
75
100
Te - Case Temperature - ·C
125
150
FIGURE 5
NOTES: 5. These parameters must be measured using pulse techniques. tp
=
300 IlS, duty cyde :::::; 2%.
6. These parametars are metlsured with voltage-sensing contads separate from the (urrent·carrylng contacts.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·19
TYPES 2N1047 THRU 2N1050,2N1047A THRU 2N1050A,
2N1047B THRU 2N1050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
1.2
III~I = I~~
"Uw
~
v.
REVERSE BIAS VOLTAGE
1000
JO
:>
I
Te
1.0
v
0)
0.8
c
~
0
800
See Note 6
"
.2
~
Q.
"
,
1£ 0.6
'"
V(BR)CBO '" V(BR)CER at RBE
~
"-
.
=1Q
.2
~u
600
'u
&. 400
(J
0.4
0.2
-0
o
E
5
z
C- b
1
10
RaE -
100
1k
10,k
Base-Emitter Resistance -
(Ie
"
= 0)
I'.
200 b -
-0
u
"
c
~
""
.~
Tc = 25'C
u
]
•
"'-
...
-'"
0
I'
~
35
I-
~
u"
1
~
u..
~
"'-"
25
20
'E
w
I
~E
(l
=IU
r\.
1£ 30
5
u
"
~
~ 20
w
I
5
4
0.4
10
f - Frequency- MHz
"\
TC= 25"C
~
'E
c
0
E
E
0
U
CE
IC = 100 rnA
,
e
~
~
\
Il"II=lol
1< 35
l-
"
10
0.1
r-- t--"
6 25
]
oS
""
~c
15
o
v.
FREQUENCY
40
'0
!it
-:E
'0
TC = 25'C
"0
l1
'"
I
..g
CE
IC = 100 mA
30
2NI049, 2NI049A, 2NI0498
2NI050, 2NI050A, 2NI050B
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
0
II~I
c
40
V
FIGURE 7
FREQUENCY
1<
20
Reverse Bia. Voltage -
Q
v.
~
r--
24710
100 k
2NI047, 2NI047A, 2NI047B
2NI048, 2NI048A, 2NI0488
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
"'"I
r--"
1ft
FIGURE 6
.2
= l'MHz
f
= 25'C
15
1\
10
" 1\
-0
c
~
0)
"
40
Vi
..!.
-0
5
V>
0
E
100
~
0.1
£..
FIGURE 8
0.4
4
10
40
100
f - Frequency- MHz
FIGURE 9
971
5-20
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION
10
TC
7
"
,
4
\
l00'C
~.
I,
"
2
~ l r-.~V
~ O-C OPERATION
<
I
0.7
1
~tp = 1 ms, d = 0.5 (50%)
r - - - t p = 0.3 ms, d = 0.1 (10%)_ 1-#
\\
0.4
i
_
~
i
I
0.2
I
I
I
.2
•
')
I
o. 1
0.07
0.04
2NI047,2NI047A,2NI047B
2NI049,2NI049A,2NI049B
0.02
2NI048,2NI048A,2NI048B
IIIII
I
I
i~'~~~ '12NI05~A, 2~IO~O~
0.0 1
2
4
7
10
Vc E -
20
40
70 100
Collector-Emitter Voltage - V
200
400
700 1000
FIGURE 10
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-21
TYPES 2N1047 THRU 2N1050, 2N1047A THRU 2N1050A,
2N1047B THRU 2N1050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
.THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
45
~
I
0.7
40
~
c:
0
135
.,.
..
Zi
30
0.4
'u
~ 0.2
" "'I\..
~ 25
!l0
=> 20
.5
8
u 15
E
=>
E
~
~
u
'>
'g
•
,c
5
0
13
J
0.1
o
so
25
TC -
75
100 125
Cose Temperature -
0.07
Jc 0.07
o;~
~
O.~
10.04 ~
"'
10
~
I
0.50 50% DUly Cycle
'"
"'\
150
·C
"
175
FIGURE 11
/,1
l_e- Ip/T
-ddT
1-. P'
~
/
Ip = Pulse widlh in ms
0.02 1-+-t++ilIft--+- d = Duty cycle ratio
0.01
200
SYMBOL DEFINITION
/ " '/ K =
Hi
Thermal time constant =5 ms
.1
4
7 10 20
0.2 0.4
T =
0.020.04
0.1
tp -
Pulse Width -
ms
FIGURE 12
Equation No.1 - Application: d·c power dissipation,
heat sink used.
SYMBOL
VALUE
DEFINITION
liN IT
PTlav)
Average Power Dissipation
W
Pllmaxl
Peak Power Dissipation
W
(hA
JUllction-lo·Free-Air Thermal Resistance
III
d,glW
(hc
Junction·fa·Cose Thermal Resistance
4.3ll
deglW
(}C.A
(ase-fo-Free-Air Thermal Resistance
111
(}C.HS
Case-ta-Heat-Sink Thermal Resistance
deglW
deglW
(}HS.A
Heal-Sink-to-Free-Air Thermal Resistance
TA
Free-Air Temperatu,e
_
PTlovl -
TJlovl - TA
lor 2l·C :::; TC :::; 200°C,
(JJ.C + (JC.HS + (JHS.A as in liguro11
Equation No.2 - Application: doc power dissipation,
no heat sink used.
deg/W
·C
TC
(ase Temperature
TJlovl
Average Junction Temperature
:::; 200
·C
TJlmaxl
K
Peak Junction Temperature
:::; 200
·C
I.
Pulse Widlh
ms
Ix
d
Pulse Period
ms
Equation No.3 - Application: Peak power dissipation,
heat sink used.
·C
Peak·Power (oefficient
See Figure 12
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
Duly·Cycle Ralio (Ip/'x'
Solulion:
Example - Find PT(max) (design limit)
OPERATING CONDITIONS,
liC _HS
+
From Figure 12, Peak-Power Coefficient
8 HS _A = .(deg/W (From information supplied
K = 0.11 and by use of equation No.3
with heat sink.)
TJlavl (design limit) = 200 o (
= lOoC
d = 10% (0.1,
Ip
TJ(maxl- fA
PTlmaxl
=
PTlmoxl
= -0-.1-(4-'-+:-(0-.-11-,-4.-31-5-
TA
--d-(9"'c-H-S--'+=9"'H'-S'-A-'"+:--K-9J-.c
-200-lO
= 0.1 ms
170W
PRINTED IN USA
5·22
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
II cannot onume any responsibility for any circuits shown
represenl fhal they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
HIGH·FREQUENCY INTERMEDIATE·POWER TRANSISTORS
•
•
•
•
15 Watts at 100°C Case Temperature
Typ VCE(sat) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA
z
* mechanical data
2N1714
THRU
O.2~
D.'"
2NI717
I
I
or.
t !~
M'Ni1
0.370
0.335 0.305 DI.
OIA ~
I
I "
MIN ~
r YEM~E1ATU.E
0.100
DI;:'~LSz:no:~:~~~~
f
T
=
~
I
I..
3 COLLECTOR
~'
.. MEAS !'OINT
==
SEATING ::::: OIA
~"'-- 0.045
..>./
~
0200
3 UADS'
'\
- i\:
'1' BASE
0.029
_0.034
4S·~V
0.018
I EMITTEI
i
THE COllECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.
All lEDEC TO·S DIMENSIONS
AND NorES ARE APPLICABLE.
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
PLANE
CASE TEMPERATURE IS MEASURED 0.144 INCH ± 0.010 INCH DOWN FROM TOP OF CAN.
2N1718
•
Sf'ECIJlIED
THE COllECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.
THRU
2N1721
::::
POSITION OF THE LEADS IN RELATION
TO THE HEX IS NOT CONTROLLED.
MAXIMUM RECOMMENDED MOUNTING
TORQUE, IS IN.·LB.
ALL DIMENSIONS AlE
IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1714 2N1715 2N1718 2N1719
2N1716 2N1717 2N1720 2N1721
90 V*
60 V*
150 V* 90 V*
100 V* 60 V*
-oE('------ 6 V*
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage .
150 V*
100 V*
)
1-----+
1---+)
'+(_ _ 11 At
0.75 A*
-«(~_ _ 11.5 At
1 A*
1AtA* I ---+-)
-«(--- 10.75
Continuous Collector Current •
Peak Collector Current (See Note 2) .
Continuous Emitter Current .
-«(:---See Figure 10---)~
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100°C Case Temperature
m~!l---~)
(See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
+-2W*-+
(See Note 4) .
0
-+<- - 200 Ct
Operating Collector Junction Temperature.
175°C*
Storage Temperature Range
+-- -65°C to 200°C *--+-
(
+10~8~* 1+
!
NOTES: 1.
2.
3.
4.
These values apply when the base·emitter diode is open-circuiled.
This value applies for tp ~ 0.3 ms, duty cycle S In~o.
For operation above 10no( case temperature refer to Dissipation Derating (urve. figure 13.
For operation above 2S o ( free-air temperature refer to 'Dissipation Derating Curves, figures 11 and 12.
·Indicates JEDE( registered dolo
tTexas Instrumen" guarantees these valulS in addition to the JEDE( registered values which afe also shown.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1--+)
TYPES 2N1714 THRU 2N1721
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
*electrical characteristics at 25·C case temperature (unless otherwise noted)
MIN MAX MIN MAX MIN M,U IMIN MAX
V
Colledor-Emitter
IBAICEO Breakdown Vollage
Icao
ICEO
ICES
Ic = 30 rnA, la = 0,
Colledor (utoff Currenl
I
SO
Colledor Culoff Currenl
. VEalll1
Emiller-Base Floaling Polenlial
Sialic Forward Currenl
Transler Ralio
I
VCE = 60 V, VIE = 0
2
VCE = 90 V, VIE = 0
SO
SO
2
2
SO
500
500
500
500
VEa = 3 V,
Ic = 0
10
10
10
10
VEa = 6 V,
Ic = 0
10
10
10
10
Vca = 60 V, IE = 0
I
I
Vca = 100 V, IE = 0
2
2
VCE = 5 V,
Ic = 10 rnA,
VCE = 5 V,
Ic = 200 rnA, See Noles 5 and 6 20
See Nole 5
10
10
60
pJ.
pJ.
V
20
20
20 60 40 120
40 120
20
20
10
pJ.
2
SO
SO
Tc = 170·C
V
I pJ.
SO
VCE = 5 V, Ic = 200 rnA, See Noles 5 and 6
10
Tc = -55·C
la = 20 rnA, Ic = 200 rnA, See Noles 5 and 6
J.6
1.6
J.6
1.6
V
VCEI••tl Colleclor-Emiller Saluralion Vollage la = 20 rnA, Ic = 200 rnA, See Notes 5 and 6
2
2
2
2
V
SO
pF
VIE
Bo.se-Emiller Vollage
100
SO
VCE = ISO V, VIE = 0
Emiller Culoff Currenl
60
I
VCE = 90 V, la = 0
lEBO
hFE
100
60
IE = 0
Vca = 3 V,
Colledor Culoff Currenl
See Nole 5
VCE = SO V, la = 0
VCE = 60 V, VeE = 0,
•
2N1714 2N1715 2N1716 2N1717
2N1718 2N1719 2N1720 2N1721 UNIT
TEST CONDITIONS
PARAMETER
Ihlel
Small-Signal Common-Emitter
Forward Current Transfer Ratio
VCE = 10 V, Ic = 100 rnA, 1= 16 MHz
Cobo
Common-Base Open-Circuit
Oulput Capacilance
Vca = 10 V, IE = 0,
1
I
1= J MHz
SO
I
I
SO
SO
NOTES: S. These parameters mus' be measured using pulse techniques. tp = 300 p.s, duty cyde .s::; 2%.
6. These parameters are measured wllh voltoge-sensing contads s'parate from the cunent-carrying contacts.
thermal characteristics
PARAMETER
2NI714, 2N1715 2N1718, 2N1719
2N1716, 2NI717 2N1720, 2N1721
MAX
MAX
6.67t
7.5'"
6J- c Junction-to-Case Thermal Resistance
mt
6J- A Junction-to-Free-Air Thermal Resistance
187.5*
UNIT
u7t
7.5*
deg/W
75'"
• Indicates JEDEC registered data
tTexas Instruments guaran.ees these values in addition to the JEDEC registered values whidl are also shown.
971
5-24
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
I"" Turn-On Time
loff Turn-Off Time
Ie = 200 rnA,
I'PI = 20 rnA, 1'121 = -20 rnA,
YBEloffl = -3.4Y, Rl = 150n,
See Figure 1
TYP
UNIT
0.14
2.6
J1-S
tVollogf and (urrent values shown ore nominol; exact values vary ~li9htly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
r-~_---O
lkO
INPUT
510
•
OUTPUT
1500
3000
+
-=- 30 V
TEST CIRCUIT
+37.3 V
-0_1 V
---~90%
-:1-I 10%
~ton}--
INPUT
1'---
--1I
~I
toff : -
10%..y---
90%~
OUTPUT
VOLTAGE WAVEFORMS
FIGURE I
NOTES: a, The input waveform is supplied by a generator with the following characteristics: 'r ~ IS os, If ~ 15 os, lout = 50 fl, Ip
b. Waveforms ore monitored on an oscilloscope with the following characteristics: Ir .::; 15 os, Rin ~ 10 Mn, (in
c. Resistors must be noninductive types.
S
=
10 JLs, duty cyde .::; 2%.
11.5 pF.
d. The d·, power supplies may require additional bypassing in order to minimize ringing.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·25
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N1714, 2NI715, 2N1718, 2N1719
2N1716, 2NI717;
180
100
VeE = 5V
See Notes 5 and 6
.~
0
'"
,.-
80
~c
r---
....E
C
....-
60
~
U
0
~
Te = 100·C
I II
Te
o
".....
25'C
u
~
-~ ~
20
w
~
..c
----
.=
f-- I-
Tel=IIW
120
~
Te '-
'5 100
u
80
~
.2
60
.~
~
40
\
w
~
..c
20
0.02
o. I
0.04
0.4
0.2
Collector Current -
0.7
0.01
I
0.02
Ie -
A
1.0
.............
"0 0.6
>
~ 0.5
]
I
!:
I
8
=
r'......
1 mA, IC = 10 mA'-...
18 = 20 mA, IC
K
= 200 mAl'
0.4
.........
............
I
0.7
I
I
T
I
IS
I
= 50
I
I
_I
mA, IC = 500 mA
-IS
= 20
mA, IC
'"
E
"0
>
c
.~
0.7
E
i
0.4
~
ij
to
~
= 200
mA
0.2
0.1
E
u
.! 0.07
0.3
-
See Notes 5 and 6
~
.....
.g
4
I
--....
...........
0.7
'"
E
>
= 500 mA
_S~otes 5 and 6
r--
0.8
0.4
A
COLLECTOR-EMITTER SATURATION VOLT AGE
vs
CASE TEMPERATURE
---- --- -- 7 -- --IS = 50 mA, IC
0.2
Collector Current -
FIGURE 3
SASE-EMITTER VOLT AGE
vs
CASE TEMPERATURE
0.9
o. I
0.04
FIGURE 2
I
~\
1\\
Ie = -55°C
&
-~
Ie -
~
~
"0
o
0
0.01
>
-
'~
~J~
c
0
See Notes 5 and 6
-.....
r --..t\
140
a
-\~
Te = -55'
~
'"
~c
~
TJLqJ
0
40
.2
•
r--....
1eE~~lTTn
160
.~
TJJjJl
I~ f--
"0
2N1720, 2N1721
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
=
Isl=
T
I
1 mA, IC
= 10
I
~
~
~
-
mA
"0
u 0.04
w
>'" 0.2
I
gO.02
0.1
u
>
0
-75 -50
25
-25
0
50
75
100
TC - Case Temperature - O(
125
150
0.01
-75
-50
-25
FIGURE 4
0
75
100
25
50
TC - Case Temperature - °C
125
150
FIGURE 5
NOTES: 5. These parameters must be measured using pulse techniques. tp
=
300 pI, duty cycle ::::; 2%.
6. These parameters ore measured with voltage-sensing contacts separate from the current-carrying contacts.
971
5-26
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
J
1.2
Ilc
I
.. 1.0
:g
~ 0.8
j
mt
D..
I 120
.
~
V
~
~
~ 100
'u
&.
a
l-
80
V
at RaE = 100 kQ '" V(BRICEO
60
J!
o
C ibo (IC = 0)
u
,;
"'SRICER
f= I MHz I TC=25°C
....
u.
~
~ 0.4 f-
"- ""
160
140
ro 0.6
Jj
r
180
Te = 25°C
See Nole 5
"
D>
.l!
200
I~II\I~ I
..............
40
0.2
r--
Cobo (IE = 0)
I"-t-t-
."
.~
~
l;
o
0
1
Z
10
RIE -
100 k
10 k
1k
100
Base-&nitter Resistance -
2
Q
4
FIGURE 6
I
0
.!
l'!
,g
40
35
1:
~
"'-
30
"
V
]
~
25
~
::: 20
]
.2
~
II "II I
Vee= 10 V
...
le=100mA
c
~
~
"
.
20
:::
]
I
4
10
15
E
0
V
10
,
~
0c
l\.
0.4
c
~
,
~
TC=25°C
i\.
"
0
0
0.1
'\
25
u.
5
Il"II=1J
CE
IC = 100 mA
r\.
30
~
0
.!.
'0
I
""'r-.
"E
D>
1
r--
V
I
Jj
40
l? 35
Te=25°C
0C
•
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
vs
FREQUENCY
'"I
."
~c
c 15
0
E
E
0
V 10
Vi
40
FIGURE 7
i\
u..
20
10
2N1716.2N1717.
2N1720.2N1721
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
vs
FREQUENCY
'"
."
7
Reverse Bias Voltage - V
2N1714.2N1715.
2N1718.2N1719
j
"-
20
"
40
~I
l\.
5
I'
0
E
on
100
f-frequency- MHz
0
.!
0.1
0.4
4
10
40
100
f - Frequency- MHz
~
FIGURE 9
FIGURE 8
NOTE 5: This parameter must be measured using pulse techniques. tp
=
300 ps, duty cycle
~
!'Yo.
971
TEXAS INSTRUMENTS
INCORPO~RATEO
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·27
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION
2
---
1-- ~:: f---
...
~
0.7
«
I
1:
~
0.4
1/
1 = 0.3 ms; d = 0.1 (10%)"
0.2
2u
.!!
"0
0.1
u
1-1 = 1 ms; d = 0.5 (50%)
I- P
u
~
I- D-C OPERATION
P
0.07
"
11111
I-
~TC ,,100·C
I
I
_uO.04 ff0.02
r-
MAX V CEO 2N1714, 2N1716,
2N1718,2N1720
MAX VCEO 2N1715, 2N1717,
I I I f~:~II~' 2N1r
0.01
•
2
4
7 10
20
40
70 100
200
VCE - Collector-Emitter Voltage - V
FIGURE 10
THERMAL INFORMATION
2N1714 TIIRU 2N1717
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
2NI718 THRU 2N1721
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
1.2
2.2
~
~
I
I
c
0
1
~
..
'>.
"'~
0.8
0
~
~c
0
u
0.4
E
~
E
0
o
25
50
:!l
1.6
u
1.4
"
1.2
.
""
TI Guaranteed
mW/deg
'>
1'..:.72
~
75
0
"""
JEDEC
Registered " ' "
5.33 mW/deg
I'\..
j 0.2
......
1.8
~
~
0
""
0.6
.2
8.
~
0
~
'""
c
1.0
u
~
2.0
100
125
'30
u
0.8
E
~
E
0.6
......
'"
j
~
175
200
TA - Free-Air Temperature - °C
FIGURE"
1.0
1:0
~
~
150
.:
""
TI Guaranteed
~1.4mW/deg
~,
JEDEC " \ ~
Registered
13.3 mW/deg
I'\..
0.4
...I... 0.2
0
~
","""
'\
o
25
50
75
100
125
150
TA - Free-Air Temperature - ·C
"
175
200
FIGURE 12
971
5-28
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
16
~
I
0.7
l\.
14
c
' \ . . TI Guoronteed
0.15 W/deg
.~
"0
.~ 12
<5
~
'\
0
~
.0
C
0
L>
E
~
4
E
~
2
a.>-
0
75
125
100
TC -
150
FIGURE 13
o
0
"
"
I---~
'"
~
0.02
H2t
0.01
Hi
I--
1-. -tpiT
f-f--
1_. -tp!dT
VI
f--
V
tp = Pul se width in ms
L--.
d = Duty cycle ratio
= Thermal time constant =5 ms
,I
01
T
0.2 0.4
0.1
0.020.04
200
~
~ K =
./
,I,
10.04
l/
-
OIJ(IIJ~
tf.
"
"\
I I III
0.07
a.
175
Case Temperature -
0.1
..:. 0.07
'~
.~
::E
i;
"'"
JEDEC l\.
Registered ~
0.133 W/deg
6
(3"
'\..
~
v
0
E 0.2
V
lislo~o)
0 123
c
.~
"'I\.
v
.:;u 10
0.50 (50% Duty Cycle
0.4
O(
Pulse Width -
tp -
4
7 10
ms
FIGURE 14
SYMBOL DEFINITION
SYMBOL
DEFINITION
Pr{av)
Average Power Dissipation
PT{maxl
Peak Power Dissipation
()J.A
Junction-fo-Free-Air Thermal Resistance
()J.e
VALUE
2N1714 2NI718
UNIT
THRU
THRU
2N1717 2N1721
W
W
11S
7S
deg/W
Junction-la-Case Thermal Resistance
6.67
6.67
deg/W
()e.A
Case-fo-Free-Air Thermal Resistance
168
68
deg/W
()e.HS
(ose-to-Heol-Sink Thermal Resistance
deg/W
()HS.A
Heat-Sink-Io-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
Te
(ase Temperature
~ 200
°c
°c
°c
°c
TJlavl
Average Jundion Temperature
TJ(max)
Peak Junction Temperature
K
Peak-Power Coefficient
Ip
Pulse Width
ms
I,
Pulse Period
ms
d
Duty·Cycie Rolio (Ip/I,)
~
200
See Figure 14
20
•
Equation No.1 - Application: d·c power dissipation,
heat sink used.
TJlavl PTI"I =
TA
(he + Oe.HS + OHS.A
for 100 0 C ~ Te ~ 200 0 C
as in Figure 13
Equation No.2 - Application: doc power dissipation,
no heat sink used.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
Equation No.4 - Application: Peak power diSSipation,
no heat sink used.
TJlmaxl -
TA
PTlmaxl
Solution:
Example - Find PTlmax ) (design limit)
OPERATING CONDITIONS,
8C-HS
OHS-A = 7 deg/W (from information supplied
+
From Figure 14, Peak-Power Coefficient
K = 0.11 and by use of equation No.3
with heat sink.)
TJ{avl (design limil)
= 200Ge
TA = SOOC
d = 10% (0.1)
Ip = 0.1 ms
971
TJ{max)-
PTlma'l -
200 -
PT(max)
TA
d (Oe.HS + OHS.AI
+
K OJ.C
SO
~0-;.I-;:(7:C)-+""-;0:-;.lcc1-;(6~.6=7) = lOS W
PRINTED IN U S.A.
TI cannot assume cny responsibility for ony drcuils shown
or rep,e~enl thol they are free from palent infringement.
lEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRO DUO POSSIBLE.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-29
•
5·30
TYPES 2N1722, 2N1724
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS
• Minimum It of 10 Megacyles
• SO WaHs at l00·C Case Temperature
• Maximum Res of O.S Ohm at 2 Amperes Ie • Maximum VBE of 2 Volts at 2 Amperes Ie
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
2N1722
: : IMA, .. MOllS)
ALL JEDEC TO-53
DIMENSIONS AND
NOTES ARE
, .......
.....
APPLICABLE
, COUIClOl
DIMENSIONS ARE IN I CHES
•
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
2H172 ..
CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
O.I2S" FROM STUD
ALL JEOEC TO-61
DIMENSIONS AND
NOTES ARE
APPLICABLE
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25·C ambient temperature (unless otherwise noted)
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage
Collector Current, Continuous
Collector Current, Peak (See Note 2)
.
Total Device Dissipation at 100°C Case Temperature (See Note 3)
Total Device Dissipation at 25°C Ambient Temperature (See Note 4)
Collector Junction Operating Temperature
Storage Temperature Range
Nol. I
NoI.2
NoI.3
NoI.o4
NoI.5
NoI.6
Nole 7
NoI.8
NoI.9
80 v
10 v
5 a
7.5 a
SOw
3w
+ 175°C
- 65°C to
+ 200·C
This is the voltage at which /hFSI approaches one when the emitter-base diode is open-circuited. Maximum allowable colledor-ami"er voltage shall be derated with increasing collector current os shown in the maximum VeE curve
which appears with the collector choracteristja. Av.rage power dissipatio" shall not exceed the maximum ratings
for this device.
Maximum peak coUector current may be allowed if maximum junction temperature is not exceeded. See Figure 2,
"Junction Temperature Response VI Pulse Width and Duty Cycle."
Derate linearly to l7SoC case temperature at the rate of 0.67 w/C·.
Derate linearly to l7'·C ambient temperature at the rate of 20 mw IC·.
For correct measurement of ICESt the base must be shorted to the emitter. The current meter must not be placed in
the base-emitter short-circuit loop. ICES may be used in place of leBO for circuit-stability calculations.
For typical BVCER at finite values of RB~ refer to BVCER VI RaE curve. Peak collector-emitter voltage of 120 v may be
allowed in the eutoff-current region if the emitter·base diode is short-circuited.
Heat • sinking sufficient to limit case temperature to "O·C or less over a 10.second measurement period must be
used for this test.
DC collector current should not be applied longer than S seconds ta mointain case temperature less than 40·C
without a heat sink.
To obtain fT, the ihfel response with frequency is extrapolated at 6 db/octave to Ihfel = 1 from f = 10 me. The
product of fr x 1 hos be.n referred to as the gain-bandwidth product.
171
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·31
TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C ambient temperature (unless otherwise noted)
TOlt Co.llitloni
'arameter
ICES
Colledor Reverse (urrent
ICES
Colledor Reverse (urrent
ICES
(olledor Reverse (urrent
IEio
-BVCEo
Emitter Reverse (urrent
(olledor·Emitter Breakdown
Voltage
D( Forward (urrent Transfer
Ratio
DC Forward (urrent Transfer
Ratio
DC Forward (urrent Transler
Ratio
Bose·Emitter Voltage
Collector·Emitter Saturation
Voltage
A( (ommon·Emitter Forward (urrent
Transfer Ratio
(ommon·Base Output (apacitance
°hFE
ohFE
°hFE
•
°VeE
oVCE(sot)
Ih,.1
(ob
VCE - 60 v, VIE - 0
(See note 5)
VCE - 60 v, VIE - 0,
Tc = + 1S00( (See note 5)
VCE - 120v, VIE - 0,
Tc = + ISOO( (See note 5)
VEl - lOv,lc - 0
Ic - 200ma,l. - 0
(See notes 6 & 7)
VCE - 1S"lc - 20
VCE - 1Sv,lc - 20,
TA =-SSO(
VCE - lSv,lc -l00ma
Min
VCE - 1Sv, Ic - SOO rna,
= 10 mc (See note 8)
VCI - lSv,IE-O,f-lmc
Unit
1
rna
2
rna
10
rna
10
rna
,
80
90
2D
12
20
1.0
,
,
SSO
pf
2.0
- 200ma,Ic - 20
- 211Oma,Ic - 20
II
I.
Mo ..
1.0
I
thermal characteristics
I
W/wJ
() J-C
Thennal Resistonce, Junction to (ase (Bottom, (enter of (ase)
1.S
-Semi·automatic tasting is facilitated by using pulse techniques to measure these parameters. A300 p.sec pulse (approxl·
mately 2"10 duty cyda) Is utilized.
TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR CHARACTERISTICS
5
a
/~ 100L
u--- 1-1
II \ 75 .:", -
'"....- "'
1/
V
Pul!..
2% Duty Cycle 300 ~s Pulse Width
TA
I~
Ie
= 25 ma
0
I.
Ie
=
20
I
I
"'-
r-....
,2ST
I--- Maximum VeE
I
J
~~
I
o
o
I
SO ma
\.
Me~ure':"'nt
12dmaJ-
4
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low - Voltage)
I
·f
I
-
4
a
Curve
I
.1
I
..
.1
SO watt MaXImum Rated
Dissipatian (100·C Case
Temperature ar Less)
I\,
'\.
r----:
"- ~
Minimum BV CE
60
80
VeE - Collector-Emiller Voltage - v
IB= 0
100
°0~~--O~.-4--~-O·.8--~-I~.~2--~-I-.6~--~2.0
VeE - Collector-Emiller Voltage - v
971
5·32
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAS. TEXAS 75222
TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE vs COLLECTOR CURRENT
2.0
I
DC FORWARD CURRENT TRANSFER
RATIO vs COLLECTOR CURRENT
a 100
.~
Pulse Measurement
2% Duty Cycle
~80 300 ~s Pulse Width
VeE = 15 v
'"
....~
1.6
a\TAI 112f~C
TA = 150°C
.....
~
u
---
-rTA
1
,;
I
r 1.2
40
- I TA
Minimum hF~ .......
at TA = 25°C
g20
_Minimum hFE
~ 0
0.01
at TA
= 25°C
0.03
-
1
I
I I II"
Minimum hFE
at TA
~
~
"
~
-
~
1.0
~
0.8
~
'tlOm~
~~ V
f.-~
P~lse Measurement
./
2% Duty Cycle
300 ~s Pulse Width
TA = 25"C
'"
...
~ 0.4
= -55°C'
0.1
300 m:/
~ .~
~
/
..a ~ ~
~
= _25°("= -~'C- ........
~4)
500 ma400 ma .........::
~ ~~
. / coma
>
/ ; TA = 75°C ..........
I .....-r TA = 25o'C ........ .....
1t 60
...
Maximum hFE _
-
I
_ Maximum VeE
at Ie = 200 ma
5.0
10
Ie - Collector Current - a
5
3
2
Ie ... Collector Current ..
•
COLLECTOR-EMITTER SATURATION
VOLTAGE YS AMBIENT TEMPERATURE
BASE-EMITTER VOLTAGE vs AMBIENT TEMPERATURE
3.0
Pulse Measurement
>
f--2% Duty Cycle
~O ~s ~ulse fidth
I
i
~ 2.0/--''--+--+-....,...-1
Ie
=5 a,
Ie =
sao ma
I I I I
Ie - 2 a, 18 - 200 ma
Ie - 1 a, la - 100 m
:}
Q
O~-L
-75
__
-25
~~
__
~~~-L
25
75
__
~-L
125
__L--J
175
o-75
-25
25
V
V
-; f.--
Maximum VCEt,otl at_ _
Ie ,2 a',1 8
r
=j ma
=
1e 500 ma~la- jU ma
Ie - 1011 ma'TI8~ ~
75
125
175
TA .. Ambient Temperature - °C
TA .. Ambient Temperature ... °C
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
5-33
TYPES 2N1722, 2N1724
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER BREAKDOWN
VOLTAGE vs BASE-EMITTER RESISTANCE
TRANSITION CAPACITANCE vs REVERSE VOLTAGE
200
2500
~ 160
Q. 2000
~
2'
~
-
..g
~
~ 120
"
~
-0
80
40
Pulse Measurement
I---
2% Duty Cycle
300 ~s Pulse Width
•
ffi 0
'"
T. = 25'C
r----
u
~
Ie = 200 ma
1
II"""
fI
10
- Emitter Transition
Capacitance (C'b, Ie = 0)
f'.,..
I
~
i'-
U
c
Typical
- I--
~
~
~CTE
E 1500
'g
10th Percentile
g.
Illf
Minimum BVCER
~tl ~BE =00 ~BVeEO
~ 1000
IIII
IIII
>-
1
100
:~
~
---t.....
eTC ... Collector Transition
Capacitance (C,b, IE = 0)
-I'--
-
III
TT
o
10000
I
-F~tnnCi'i
E 500
II
II
1000
f = 1 me
TA = 25'C
1 ttl
3
1
5
10
100
50
30
Reverse Voltage ... v
ReE - Base-Emitter Resistance - ohms
CONTOURS OF CONSTANT
TRANSADMITTANCE, IYr,1
CONTOURS OF CONSTANT
GAIN-BANDWIDTH PRODUCT, fT
1
IYr.1
f = 5 me TA = 25'C
(see note 8)
I
::;.0.83 mho
/'
\... I--
\
\
0.8
1.6
HI
\
V IYr.1
= 0.5 mho
I
0.4
2.0
lYle I = 0.72 mho
0.8
1.2
1.6
2.0
Ie'" Collector Current ... a
Ie ... Collector Current ... a
971
5·34
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1722, 2N1724
N.P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
THERMAL INFORMATION
TYPICAL JUNCTION TEMPERATURE RESPONSE
PULSE WIDTH AND DUTY CYCLE
DISSIPATION DERATING CURVES
1.0
f---
~
~
I
.... 0
a.
0
100
50
u
0-
~
.. .
I
I--
•
...
q,
)( a
150
0.75 (75%)
0.50 (50%)
TeJperat~re_
Te 1= ca!e
8 J·e = 1.5 CO/w
= Ambient
I Temperatur~"
1\
8J- A= 50 CO/w = 8 J •C+ 8 e ............
(8 e-A= 48.5 CO/w)
~
TA
!
"\
i""-,
YO
0.1
1==
».WJ
()'\
~~
200
",-
0.01
0.01
FIGURE 1
V
,0%
:Ilia.
Temperature - °C
L~
0.25Q:
(,~
~\e
~
~"';;\
().
crt
I
0.1
1.0
100
10
t. - Pulle Width - msec
FIGURE 2
TYPICAL HEAT-SINK THERMAL
RESISTANCE VI POWER DISSIPATION
5
TYPICAL HEAT-SINK THERMAL
RESISTANCE vs COOLING AIR VELOCITY
2.0
I
t--
4x
1 1/~" C~er
x
Jlate
J
1
10 x 10 x 1/8,t Capper Plat'=._ I-This curve is
indepe~dent ~f
ambient temperature within
the range of 25°C - 100°C
o
1 '1
o
10
- ConJectial Coaling
Fins and Plate.
_
Pa.ittned VertlallY
-
U
I\..
.
'r-...
u
~1.2
!
1
l! 0.8
30
.u>
or Equivolent
.......
(Unfinished or Anodized)
Centrally Palitianed in
i'-.
6" Diameter Duct
-- l"'-
t--
0I
.
~
%
CI:> 0.4
This curve il independent of
t-- r-ambient
temperature within
the range of 25°C - 100°C
I
1 1 1
20
Farced-Air Cooling,
Heat Sink:
Madine IE l1SSB,
Delbert Blinn '113, _
~ 1.6
Heat Sink:
I--' V Madine IE1155B,
Delbert-Blinn '113,
r-.... ~ed'"
~Aned' ,'-. or Equivalent
:.i: IZed Finish.1
6><6xl 8" Capper Plate
I
8 x 8 >< 1/8" Capper Plate
1
11
50
200
400
600
800
Cooling-Air Velocity - FPM at Sea Level
FIGURE 4
PT - Power Dissipation - w
FIGURE 3
1000
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-35
TYPES 2N1722, 2N1724
N.. P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
THERMAL INFORMATION
TABLE I
2Nl722 mounted with four 2-56 screws ot 4 in-Ib torque
2Nl724 mounted at 30 in.-Ib. torque
Unfinished Alum.
Alum. or Copper with
Anodized
Anodized Alum.
.0025" mica ins.
Aluminum
or Copper
with OC-200 Oil
Mounting
Conditions
contact
thermal resistance
Co/w
Oe.Hs -
•
0.45
0.15
Symbol
Definition
Unit
'T
'T_
DC .r avtrag' ,otal power dissipation
w
Peak total pow.r dissipation (pulsed operation)
w
CO/w
CO /w
",of·sink·I.-ombi.n' thermol ,,,islanet
OHS.'"
Oe.HS
OJ.C
Case·lo-h.at-sink «ontoe') thermol reslstanu
Junction·'.cose thermal resistance
CO/w
OJ.'"
Junclion.I,-ambi.n' thermol Itlis.ance (no heat sink)
CO /w
Oe.,.,
(all-Io-ambient thermal resistanu Ino heat sink)
CO /w
TA
THS
Ambient temp.rafu,.
Te
Case t,mp.,.'urt (transisto, mounling surface)
'Jm.lf
1o
Maximum junction temperature
°c
°c
°c
°c
'ul" wldlh
mse(
H•• '-sink mounting sur'CK. temp.r,'ur,
TJ ...,
Heat sink _ Modine lEI1SSI, Delbert Ilinn 113, or equivolent, onodized
finish, (onve(fion (ooling
TJm..
= T,., + 'To..k' duly ,yd. . (OCH.S + OHS.A) +
=0
From Figur. I, OJ.e
From Figu,. 3, OHS.'"
From Toblo I, Oe.HS
+ OC.HS + OHs.,.,f
From Figure
2.[
Ihe.
J
0
'T....
= I.S /w
= 3.1l CO /w
= 0.40 CO/w
J·C
(0
;Jrn.x-'c
Tpo"
TJma ,
(PT
= PTp.'"
duly cycl.)
]= 0.20
0J·e
= SOOC + SOw, 0.10, (3.IS + 0.40)Co/w + 0.20, SOw,
I.SCo/w
= SO + 17.7 + Il
= 82.7 C
0
Example 2. Find PToe•
Operating Conditions
heat sink
'duty
0 (ycle
'Jmall (design limit)
T,.,
'Jm.x
== none
= 10 mse(
= 0.01 (1%)
= mOc
= 2SoC
== 'A + PTp ••k I
duty (yele
'Jmall-'C
PTo• ak 8J _C
From Figu" I. Oe.,.,
From Figure I, OJ.e
From Figure 2.
~'Jmax
=
J·C
I
OC-A
+
PTo." OJ.e
= 48.5 CO /w
=
-
'e]_
I.S C· /w
_ O.SO
17S0C
2SoC + 'To,,"' 0.01 ,48.SCo/w
'Too'" IJCo/w
,
_
ISO
To..k 0.48S
0.7S ==!l!..!:2!!.!
0
]
PTo,," OJ.e
then
+ PTo"" ' duly ,yclo , (Oe.HS + OHS'''') +
[ TJm,,-Te ]p
PTo ." OJ.e Too"
0" if no heat sink is used,
mit(
~Jma,-TC
~TO"" OJ.e
As to exceeds 100 psec during pulsed operation, the instan.
taneous variation of the junction-to-case temperature gradient
increases sharply. Therefore, maximum rather than average jundion
temperature must be considered. Figure 2 shows the ratio of
maximum instantaneous case·to-junction temperature rise at any
puis. width and duty cycle to the rise which would occur at
100% duty cycle. Use of this curve is best explained by the
equations below and by the example problems. Provided the
other operating conditions are known, TJmax or PToe• may be
found using the relation
T,.,
'Toe"
T,.,
=
1
= 0.10
(10%)
= SOSOOCw
'0
duly ,y,lo
and mounting conditions is given in Table 1. These figures rep.
resent maximum values encountered on surfaces equivalent to
those of most commercially available heat sinks. Note that in
some cases, as with the anodized aluminum finish, 8e-HS can be
reduc~ substantially by the application of a fitm of silicone
grease between transistor and heat sink.
=
+ 'Too" ' duly ,yd. x Oe.,., +
Operating Conditions
TJm.. == T,., + 'TOJ.,.,
8J •e, 8J• A, and 8e .A are shown in Figure 1. To minimize
contact thermal resistance, 8e •Hs, the heat sink mounting sur·
face should be as smooth as possible. 8e -Hs for several surface
TJma,
T,.,
Example 1, find TJmax
<
+
=
0
[ TJm,,-Te ]
PToo" 0J.e 'Too" J·e
Note thai the ambient·lo-fransistor case temperature rise remains
constan' at a value proportional to average power dissipation
throughout the pulse width and duty cycle range shown in
Figure 2. Values for 8HS - A taken from Figures 3 and -4 are used
in the example problems. However, the curves in Figures land
2 may be used for any heat sink provided its thermal resistance
is known. Under no circumstances should peak power dissipation
exceed the value indicated by the maximum VCE curve on the
collector characteristics .
For steady-state power dissipation or pulsed dissipation with
to
100 j.tsec, maximum junction temperature may be consid·
ered equal to the ambient temperature plus the product of
avttrage power dissipation and total junction .. to_ambient thermal
resistance. Under these pulse conditions, the junction,to·case
temperature gradient varies so slightly with instantaneous power
dissipation that average dissipation may be used in thermol
calculations. When a heat sink is used, junction-to.ambient
thermal resistonce may be broken down into three quantities:
8J • e , Be -Hs, and BHS• A' Thermal performance can then be col·
culated using the following equation:
TJma, =0 T,.,
'T(OJ.C
Or, jf no heat sink is used,
0.28
0.40
+ O.SO,
+
971
5-36
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1722, 2N1724
N-P-N TRIPLE-DiffUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA, TA =-55°C TO 125°C
35 watt, 400 cps SERVO AMPLI FI ER
+12 v
-40 v
Circuit Characteristics at 35 w
Power O\Jtput:
'l
Power Gain - 45 db min.
Voltage Ampl ification -
36.5±1.5db
Circuit Input Resistance .. 700 Q
min.
Total Harmonic Distort~on .. 5%
.4
RL
Rl
R2
R3
R4
-
NOTES:
n:
Cl - 40 ~I, 25 v
C2 - 500 pi, 100 v
C3 - 1000 ~I, 25 v
C4 - 2.0 ~I, 100 v
01 & 02 - TI lN538
Ql, Q2, & Q3 -Tl 2NI716
OR Tl 2NI72O
Q4 & Q5 - Tl 2NI722
OR TI 2NI724
R5 - 2.21 K, 1/2 w
R6 - 390, 1/2 w
R7 & R8 - 2.00 K, 1 w
R9 & RIO - 1.00, 2 w
Rll - 1 .00 K, 1/2 w
68, 35 w
4.32 K, 1/2 w
3.32 K, 1/2 w
1.00 K, 1 w
33.2,1/2 w
Nl = 755 T, '30 AWG; N2 = N3 = 330T,
'28 AWG Bililar Wound.
Core - Magnetic Metals 75EI SL14 or
equivalent .. 1 x 1 interleaved.
T2: Nl = N2 = 100 T, '20 AWG Bililar
Wound; N3 = 67 T, '28 AWG.
Core - Magnetic Metals 100 EI SL14 or
equivalent .. Butt Joint.
1. All Resistance Values in ohms .. 5% Tolerance
2.
3.
4.
5.
6.
Resistor Wattage Ratings at 125°C Ambient
Capacitor Voltage Ratings at 125°C Ambient
Ql on Heat Sink with OC-HS + OHS-A:;;:4O CO/w
Q2 and Q3 on same Heat Sink. 0 C-HS + () HS-A '" 4Oco/w each. hFE'S matched within 10%.
Q4 and Q5 on Heat Sinks with OC-HS + OHS-A '" 1 .5Co/w. hFE'S matched within 10%.
120 watt 10 Kc OC-OC CONVERTER
01
RI
Circuit Characteristics at 120 w Power Output:
TI
Input Current .. 50
CI
Total Efficiency - 85%
Self-Starting and Short-Circuit Protected
Output Ripple - 0.6 v max.
LI
C4
N,
Np
co+
400 v, 120 'II
C7
Ql & Q2 - TI 2N1722
OR TI 2N1724
01 - 03 - TI lN645
04 - 07 -TIIN1096
Cl &C2 -22~1, 15v
C3 - 100 ~I, 35 v
C4-510pl,500v
NOTES:
1.
2.
3.
4.
C5 - 0.1 ~I, sao v
C6 - 3 ~I, 500 v
C7 - 0.01 ~I, 500 v
Ll -151'h
Rl -2.74, 2w
R2 - 3.32, 2 w
R3-511,2w
n:
Np = 18 T '16 AWG
NS = 290 T '25 AWG
NF = 3 T '22 AWG
Core: Toroid, Magnetic Metals Inc. 51026-10
or equivalent.
All Resistance Values in ohms, 5% Tolerance.
All Resistor Wattage Ratings at 125°C Ambient.
Capacitor Voltage Ratings at 125°C Ambient.
Ql and Q2 on Same Heat Sink, ()C-HS + OHS-A '" 4 CO/w each.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·37
TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA, TA =-55°C TO 125°C
3O-volt, 0 - 2.5-0 VOLTAGE REGULATOR
Circuit Characteristics:
I
l:J.VOUT
l:J.TOUT
l:J. VIN = 0
= Output Resistance ~ 0.007 ohm
Il:J. IOUT = 0
lOOX
~~~;
lOOX
l:J.VOUT/
1l:J.IOUT = 0
l:J. TA VOUT l:J. VIN = 0
= Input Regulation $. 0.05% at lOUT = 2.0 a
= Output Voltage Temperature Coefficient $. 0.007%/·C at IOUT= 2.0 a, VIN = 45 v
Input Rieele
I
OUtput Rfpple = Ripp e Reduction ~ 10,000
30v
0- 2.5 0*
R7
•
R8
+ C2
R9
R3
Ql - TI 2N726
Q2 - TI 2N1722 OR
n 2NI724
Q3 - n 2N1714 OR
n 2N1718
NOTES:
R4
Q4 - Tl 2N343B
Q5 & Q6 - TI 2N338
01 - TI lN746
02 & 03 - TI lN751
04 - D6 - TI lN752A
Cl
C2
Rl
R2
R3
~f, 50 v
-IOO~f, 50 v
- 0.01
-5.11 K, 1/2w
-681, 1/4w
- 2.00 K, 1/4 w
R5
R4 - 2.43 K, 1/4w (Wirewound)
R5 - 35.7 K, 1/4 w
R6 - 35.7 K, 1/4 w
R7 & R9 - 3.57 K, 1/4 w (Wirewound)
R8 - 200, 1/4 w (Wirewound)
1.
2.
3.
4.
All Resistor Values in ohms, 5% Tolerance.
Resistor Wattage Ratings at 125'C Ambient.
Capacitor Voltage Ratings at 125'C Ambient.
Q2and Q30n Same Heat Sink: Q2: 8C-HS+ 8HS-AS2C'/w
Q3: 8 C-HS + 8 HS-A S 22 C'/w
5. Q5 and Q6 on Same Heat Sink: Each,8c-HS + 8HS-AS 80 CO/w
*See Voltage - Current Derating Curves Below
MAXIMUM ALLOWABLE INPUT VOLTAGE vs OUTPUT
CURRENT - 0-2.5 a VOLTAGE REGULATOR
>
..
I
r 50 I--+~f---'''II--f~-+-"!Iood--..::l~
~
~
1-
E 401-4-+--1~+-:;"....d-
~
i
3OL--L__~-L__~-L~~~~__~~
o
0.5
1.5
2
2.5
Output Current - a
5·38
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 6012 •
DALLAS, TEXAS 75222
PRINTED IN U.S A
TI cannot assume any responsibility for any circuits shown
or represent that they ore free from po'ent infringement.
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N1722A, 2N1724A
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
•
50 Watts at 100°C Case Temperature
•
Maximum res of 0.3 Ohm at 2 Amperes IC
•
Maximum VBE of 2 Volts at 5 Amperes IC
•
Minimum fT of 10 Megahertz
:xl ttI-I
m c:<
< ,...-0
,...m
iii mCll
m -IN
C
cIl
m
"0
-I
•O~
:r>
m
s:ttl c·
m ~~
:xl .... ....
*meehanieal data
The transistors are in hermetically sealed welded packages with glass-to-metal seal between case and leads.
* THE COllECTOR
-z
z.
z ....
iD
....
... ..
N
. -"":r> :r>
IS IN ELECTRICAL CONTACT WITH THE CASE
N
CIl
c:
Cl
c:
~
2N1722A
~
CIl
W
•
*ALL J£DEC To-!53
DIMENSIONS AND
NOTES ARE
APPLI CABL E
2N1724A
CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
flAT SURFACE WITHIN
0.12S" FROM STUD
* ALL.
JEDEC To-61
DIMENSIONS AND
NOTES ARE
APPLICABLE
ALL DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current, Continuous
Collector Current, Peak
Emitter Current, Continuous
Base Current, Continuous
Safe Continuous Operating Region at (or below) 100°C Case Temperature
Collector Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Collector Power Dissipation at (or below) lOO°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range
NOTES:
180V
120V
10V
5A
7.5A
6A
1A
See Figure 1
3W
50W
175°C
-65°C to +200°C
1. This value applies when base-emitter diode is open-circuited.
2. Derate linearly to 175°C free-air temperature at the rate of 20 mW/oC.
3. Derate linearly to 175°C case temperature at the rate of 0.67 w/oe.
"'JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
'5·39
TYPES 2N1722A, 2N1724A
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(BR)CEO Collector-Emitter Breakdown Voltage
•
ICBO
Collector Cutoff Current
ICES
Collector Cutoff Current
lEBO
Emitter Cutoff Current
VEBfl
Emitter-Base Floating Potential
hFE
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
VCE(set) Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
Ihfel
Forward Current Transfer Ratio
Common-Base Open-Circuit
Cabo
Output Capacitance
MIN MAX UNIT
See Notes 4 and 7
IC= 200 rnA,
IB =0,
VCB=3V,
IE = 0
V
VCE-GOV,
VBE -0,
See Note 5
VCE - 100 V,
VBE =0,
See Note 5
VCE - 100 V,
VBE -0,
Tc - 150°C,
See Note 5
2.0
VCE - 180 V,
TC = 150°C,
See Note 5
10
VEB -9V,
VBE =0,
IC-O
VEB - 10V,
IC-O
10
VCB-180V,
IE - 0
1.0
VCE=15V,
Ic-l00mA,
See Note 4
30
VCE - 15 V,
IC-2A,
See Note 4
30
VCE -15V,
IC-2A,
TC= -55°C, See Note 4
18
VCE - 5V,
IC- 5A,
See Note 4
20
IB- 200 rnA,
IC- 2A,
See Note 4
1.2
IB- 500 rnA,
IC- 5A,
See Note 4
2.0
IB - 200 rnA,
IC-2A,
See Note 4
0.6
120
0_1
rnA
0.1
1.0
0.5
rnA
V
90
IB- 200 rnA,
IC- 2A,
TC= -55°C, See Note 4
0.8
IB - 500 rnA,
IC-5A,
See Note 4
1.5
VCE=15V,
IC= 500 rnA,
f= 10 MHz,
VCB = 15V,
IE =0,
f= 1 MHz
See NoteG
rnA
V
V
1.0
550
pF
*thermal characteristics
PARAMETER
MAX
UNIT
R8JC
Junction-to-Case Thermal Resistance
1.5
°C/W
R8JA
Junction-to-Free-Air Thermal Resistance
50
°C/W
FIGURE I - MAXIMUM SAFE
CONTIN UOUS OPERA liNG REGION
«
1
5
*
~--~---.---.---.---.
4ffHl-+--+--I--t---i
3 ffH~+--+--I--t--~
~
.~
~
2 IHfHfHl-_ _+-_1"'c_...,.1-'00-'-°C-=-t--_--i
E
~
'x
~
I..
J
0
WJJ.L1JJ1.fJ.JJLL1l1LfJ.JJLIlJJ.LI.l1ll!!mlmJ
0
25
50
75
100
125
VCE - Collector - Emitter Volloge - V
NOTES:
4. These parameters must be measured using pulse techniques. PW = 300 JJ.S8C, Duty Cycle'" 2%.
5. For correct measurement of ICES. the base must be shorted to the emitter. The current meter must not be placed in the
base·emitter, short-circuit loop. ICES may be used in place of leBO for circuit-stability calculations.
6. If tested without a heat sink, DC collector current must not be applied longer than 5 seconds.
7. Other pulse widths or duty cycles may be used for the measurement of collector-emitter breakdown voltage with results similar to
those obtained using the conditions specified In Note 4, providing that collector current is limited to 200 rnA and case
temperature is limited to less than 40°C over 8 5 second (or less) measurement period.
*JEDEC registered data
PRINTED IN U.S.A
5·40
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TEXAS INSTRUMENTS RESERYES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROYE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N1723, 2N1725
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
High-Frequency Power Transistors
50 WaHs at 100°C Case Temperature
Maximum Res of 0.5 Ohm at 2 Amperes Ie
Maximum VIE of 2 Volts at 2 Amperes Ie
Minimum fT of 10 Megacycles
mechanical data
The transistors are in a hermetically sealed welded package with glass-to-metal seal between case and
leads.
* THE COLLECTOR IS IN
=
ELECTRICAL CONTACT WITH THE CASE
: . : DIA{4 HOUS)
, f'=±--R,r-'"
~
"L I
Tf--:f=l:,=rfl
0715
2.:!!!
''''.1. T T u
- , " ""10.2:!Z2.
,.
,
2Nl723
0.355
l O.3;F:420 Ii:::!
0:765
0.670
PIA
;:;;0
~:::
oi;1
-t~
---'
....
* DIMENSIONS AND
ALL JEDEC TO-sa
NOTES ARE
1 EMITTER
APPLICABLE
3 toUECTOR
2N1725
CASE lEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE ,OF
FLAT SURFACE WITHIN
0.125" FROM STUD
•
*ALL JEDEC TO.6t
DIMENSIONS AND
NOTES ARE
APPLICABLE
ALL DIMENSIONS ARE IN INCHES
*ab50lute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
.120 V
Collector-Emitter- Voltage (See Note 1)
80 V
Emitter-Base Voltage .
10 V
Collector Current, Continuous .
5 a
Emitter Current, Continuous .
5 a
See Fig. 1
Safe Continuous Operating Region at 100°C Case Temperature
3 w
Continuous Collector Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Continuous Collector Dissipation at (or below) 100°C Case Temperature (See Note 3) .
.50 w
Operating Collector Junction Temperature
175°C
Storage Temperature Range.
- 65° to 200°C
NOTES: 1. This value applies when bas.·emitter diode Is open circuited.
2. Derate Itnearly ta l1SoC free-air 'emperatur. at the ,ate of 20 mw/oC.
3. Derate linearly to 17SoC case temperatura at the rate of 0.61 w/O(,
4. These parameters are measund using pulse tethniques. PW = 300 P.SI(, Duty Cycle :S 2%.
5. If tested without a heat sink, DC (olll(tor (Urrent must not be applied longer tha~ 5 se(onds.
"Indicat.. JEDEC reglltered data.
971
TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-41
TYPES 2N1723, 2N1725
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
'electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
BVeEO
•
leBo
Coliector·Emilier
Rreokdown Voltage
Colleclor Cutoff Current
ICES
Collector Cutoff Current
TEST CONDITIONS
Ie
VeB VeE VeE =
VeE =
VeE VEO VEB =
VEO =
VeE VeE VeE -
lEBO
Emiller Cutoff Currenl
h'E
Slatic Forward Current
Transfer Ratio
VOE
VeEI"'1
Base-Emiller Voltage
Coliector·Emiller
Saturation Voltage
Small·Signal Common-Em iller
Forward Current Transfer Ratio
Common· Base Open-Circuit
Output Capacitance
ihf.i
Cob
= 0.20 0,
3 v,
30 v,
60 V,
60 v,
120 v,
3 v,
9 v,'
10 v,
15 v,
15 v,
15 v,
0.20 0,
IB= 0,
(See Note 4)
IE - 0
VBE - 0
VBE = 0
VBE = 0,
VOE - 0,
Ie - 0
Ie - 0
Ie = 0
Ie - 2 0,
Ie - 2 0,
Ie - 0.1 0,
Ie - 2.0 a,
MIN
MAX
UNIT
80
-
v
-
0.1
0.1
1.0
2.0
10
0.5
0.5
10
150
rna
rna
rna
rna
rna
rna
rna
rna
-
Te = ISO·C
Te - 150°C
-
--
-
-
-
2.0
v
-
1.0
V
VeE = 15 v, Ie = 0.50 a, f = 10 mc, (See Note 5)
1.0
-
-
Veo = 15 v, I. = 0,
-
550
pf
MIN
MAX
UNIT
-
1.5
(o/w
-
SO
CO/w
10 10
= 0.20 a, Ie = 2.0
0,
(See
TA (See
(See
Note 4)
_55°C, (See Note 4)
Note 4)
Nole 4)
(See Note 4)
f=1.0mc
50
25
50
'thermal characteristics
PARAMETER
(he
FhA
Junclion-to-Case
Thermal Resistance
Junclion-to-Free-Air
Thermal Resistance
MAXIMUM SAFE CONTINUOUS OPERATING REGION
5rn:;'7r----,~--....,.----,----,
o
I
~
4157W-;t---t-----t__---_+------,j
~
u
~
.!
3
3 ~~w.;'"""""_+----t__---_+---__1
~
g
c
~
2
~~~~~---+__---+_---_I
0
~~~~~~~~~~~~~~~
.i
J
I
!
u
______J
25
50
75
Vee - Collector-Emitter Voltage - v
100
Figure 1
·Indicates JEDEC registered dota.
PRINTED IN U.S.A
5·42
TEXAS INCORPORATED
INSTRUMENTS
,,"OST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
lEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS
• High Power Dissipation: 150 waHs at Te = 100 C
• low Thermal Resistance: 0.5 CO /w max
• low Saturation Voltage: VeE =0.75 V max @ Ie = 10 a
18 me min at 10 V, 1 a
• High fT :
0
mechanical data
Str~ss effects caused by the difference in thermal coefficients of expansion between the silicon wafer and
copper header are minimized by the use of a molybdenum platform brazed to the header. The wafer is
mounted to the molybdenum platform by means of a special high-temperature gold alloy in an oxygenfree atmosphere, thus eliminating flux. Final encapsulation of the device is carried out in an ultra-clean,
controlled atmosphere dry-box utilizing extremely-high-reliability techniques.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
•
* ALL
JEDEC TO-63 DIMENSIONS
AND NOTES ARE APPLICABLE
CASE TEMPERATURE MEA_
SUREMENT POINT IS UNDERSIDE OF FLAT SURFACE
WITHIN 0.125" FROM STUD
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1936
...
• Collector-Base Voltage
'Collector-Emitter Voltage (See Note 1)
* Emitter-Base Voltage
* Collector Current, Continuous
* Base Current, Continuous .
Emitter Current, Continuous .
• Safe Continuous Operation Region at 100°C
Case Temperature
* Total Device Dissipation at (or below) 100°C
Case Temperature (See Note 2)
'Operating Case Temperature Range
'Storage Temperature Range.
......
...
2N1937
125v~
60v
SOv
6v-""'"
20a~
10a~
{25 at}------+20a*
See Figure 5
..
150w---.-65°C to + 175°C....
...... -65°C to +2oo°C ....
~
NOTES: 1. This value applies when the bose-emitter diode is open-c
18 -1,00
'8- 500
~
Is-200ma
0.6
0.4
<
, :: 50 ma
0.2
le=25mo
See
lote
8
oL-__~I.~=~0~______~__~Se~e~N.o~te~8~__~
10
20
30
o
10
veE - Collector-Emitter Voltage - v
Ie - Collector Current - a
COLLECTOR-EMITTER SATURATION VOLTAGE
•
CASE TEMPERATURE
BASE-EMITTER VOLTAGE vs CASE TEMPERATURE
1.2
I
1.0
--
r--
Ie'" 1.60, Ie'" 100
t--t-I--
j
0.8
~
~
..
0.6
I
0.4
r---r--.----,.---,----,-----r----,---.,
0.8
I
1
~O.5a,lc ~
-";~t::::
~~30
'8",0.20, Ic~
~
IB-O.10,~
J
I'c = 10
I
0.2
See Note 8
I
o
-SO
-25
25
Tc - Case Temperol'ure _ °C
Te
STATIC FORWARD CURRENT TRANSFER RATIO
50
75
WO
125
150
- Case Temperature - °c
STATIC FORWARD CURRENT T!NSFER RATIO
v.
'"
COLLECTOR CURRENT
COLLECTOR CURRENT
100
II
0
~
80
=x
J!
hFE
~
,g
~
60
90 Percentile
11
j
40
20
~
o
0.1
1.0
10
------
v
E
'1
0.1
Ie - Collector Current - a
I---"
~
IIII
50 Percentile
IIII
10
t.&Al1tile
min
hFE
V~E '" 3
Te 25°C
--
v
=
.....
I
I
mox
hFE
.....
minhfE
See Note 8
1.0
10
I e -Collector Current-a
Nole 8: These characteristics were measured using pulse techniques. PW:S 300 p.see, Duty (yete
2%.
971
5·48
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE
SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO
YO
YO
REVERSE BIAS VOLTAGE
FREQUENCY
12,000
I 111111
le= 2 a
VeE = 20 v
Tc = 25'"C
~
~
10,000
~~
~~
8000
'1i.
..3
l
1'1
6000
u
'"
= 25°C
,LL'=bi '
I'~
2000
~
,~
10
100 me
lOme
Te
4000
~
lme
t= IOOkc
III
20
50
100
Reverse Bias Voltage - v
Frequency
SMALL-SIGNAL COMMON-EMITTER
FORWARD TRANSFER ADMITTANCE
"
TRANSITION FREQUENCY
COLLECTOR-EMITTER VOLTAGE
24
5 ~ =7.
4
COLLECTOR-EMITTER VOLTAGE
-
22
f- 9mc
~~
....
Ie
VI
'e- 3 •Oa
= 5.
Ie =0.50
Te = 25 D C
""""'"
~
20
f
I
18
~
10
!
Ie - 1 a
14
12
°5~~I~e_=_0~.5~.~______~______~______~
10
15
20
2S
- 5.0 a
"
-
--
1,=7.00
•
f = 9 me
Te = 25'"<:
...........
~a
105L---~1~0----~'5~---2~0L---~~L-----~~
VeE -Collector-Emitter Voltage-v
Vce-Collector-Emitter Voltage-v
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
~'tj
1. 2 r-T"TTremr-'TTrrmr-T"TTTTmr-'''TTTTITII
NOTE 8: These charlKterlstics were measured using
pulse .edlniques. PW = 300 p.SIC.
Duty Cyd. ~
2%.
RBE - Base-Emitter Resistance - ohm
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·49
TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA
FIGURE A - 225 WA TT 10 kc DC-DC CONVERTER
Operates from -55°C to +l25°C
I NI124
TlX442
+150 v
1.0
~fd
25 v
4.02Q
10 w
10%
INI124
Transformer Core = Arnold 2T -6847-51 or equivalent
•
NOTE:
TYPICAL PERFORMANCE AT TA = 25°C
Efficiency = 80%
Output ripple
1.0 volt
Minimum usable hFE = lOot VeE = 3v, le= 100, TA = 25°C
Both transistors use heat sinks, 9C-HS+ 9 HS_A S2°C/w
each. All diodes must have adequate heat sinks.
FIGURE B-3 mc POWER AMPLIFIER
Air Dux #504 or Equivalent
Air Dux #1010 or Equivalent
~
To 50
n Source
8T~0.27~h
5.1 ~h
~
!
1 IJf
~
6 T
or Equivalent
2T
I ~f
111 Plexiglass Form ~ 64 IJh
TYPICAL COLLECTOR EFFICIENCY 30%
NOTE:
All dato taken with transistor mounted
on Delbert Blinn '113 block pcinted
heat sink.
TYPICAL ONE-STAGE COMMON-EMITTER
AMPLIFIER PERFORMANCE CAPABILITY
40
1 ,,'1
a
./
20
~
"
o
,,~,.
~~ ~
o
~
k:f""
"
10
.'
1.0 mc
,.
.;
"7
0;
1 ... ,1. ...
- --12 db
30
.......-:=
--
1.0
I-"'"
2.0
.;
10db
-
3.0mc
-
5.0 m<
6.0 db
Vee = 20 v
See Nole 9
3.0
4.0
Power In-w
NOTE 9: This data was taken in amplifiers with configuration simil~r
to Fig. B with component values optimized ot each frequency.
PRINTED IN U.S A.
5-50
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
971
TI (annol assume any responsibility for any circuits shown
or represenl tha' Ihey are free from po'en' infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
:Jl 111-1
C<
,.",
< ,.m
m
iii
mV>
m -IN
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
V'CEI.all
-Z
'"-I
.0'"
.0
m ON
3: ,.Z
• Dissipation Capability of 30 W at 40 V, Tc = 100°C
• Typ
0
V> ZN
m Z~
III /J)~
m
:Jl ~~
~
of 0.2 V at I A
~
0
'" '"en
::t
~
0
n
-I
0
III
*mechanical data
m
:Jl
iii
'"
00
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
l-COLLlCTOR
o.I15NOM
•
(SEE NOTES A & B)
10-32 UNF-'lA
MAX STUO TORQUE,
IS IN·les
ALL JEDEC TO·ll I
DIMENSIONS AND
NOTES ARE
APPLICABLE
NOTES:
A.
B.
C,
D.
Position of terminals with respect to hexagon is not controlled.
Terminals located on true position within 0.030 inch relative to diameter of can.
t
This dimension applies to the location of the center ,line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
E. All dimensions are in inches unless otherwise specified.
absolute maximum ratings at 25'C case temperature (unless otherwise noted)
*Coliector·Base Voltage .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage.
*Continuous Collector Current
Peak Collector Current (See Note 2) .
*Continuous Base Current
*Continuous Emitter Current.
Safe Operating Region at (or below) 100· C Case Temperature
*Continuous Device Dissipation at (or below) 100'C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range
*Terminal Temperature Va Inch from Case for 10 Seconds
125V
SOV
SV
SA
1A
2A
• See Figure S
.30W
• 2W
-65°C to 175°C
-65°C to 200°C
230°C
NOTES: 1. This value applies when the baSB-emUter diode is open-circuited.
2. This volue opplles for Ip :0:; 0.3 ms, duly (hc
(hA
MAX
2.5
75
PARAMETER
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
UNIT
deg/W
·'ndicates JEDEC registered data
971
5-52
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N2150, 2N2151
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
switching characteristics at 25·C case temperature
PARAMETER
Ion Turn-On Time
loff Turn-Off Time
TEST CONDITIONSt
Ie - 1 A, IBI1 ) - 100 mA,IB(2) - -100 mA,
V8E1off) = - 3.7 V, RL = 20 n, See Figure 1
2N2151
TVP
UNIT
130
1100
ns
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
~-_----oOUTPUT
•
820
INPUTo--~~~--~~
200
820
TEST CIRCUIT
+16V-~90%
I
I
-I V
1 10%
,I
-+l
_t",,~
I
INPUT
tolf
J.o-
I
IO%
~
I
OUTPUT
90%
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: a. The input waveform is supplied by a generator with the following characteristics: 'r ~ 15 ns, If ~ 15 ns, lout
=
500, tp = 10 J1.s, duty cycle ~ 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: Ir ~ 15 ns, lin;::: 10 MO, (in ~ 11.5 pF.
C. Resistors must be nonindudiYe types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
5-53
TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TUNSISTORS
TYPICAL CHARACTERISTICS
2N2151
2N2150
STATIC FORWARD CURRENT TRANSFER RATIO
STA TIC FORWARD CURRENT TRANSFER RATIO
v.
vs
COLLECTOR CURRENT
VCE = 5 V
See Note. 5 aid 6
JJ.J
.2 60
lc
oj
~c _'lOolcl
~
50 L...- 1-1-
...~
1
a
11
40
COLLECTOR CURRENT
140
70
~
~,
---
I~ I-
Tc = 25·C
~
u
I- ... 1--
...
""
I
Ii
,:
,/
i
~
60
~0
40
0.04 0.07 0.1
0.2
0.4
0.7 1
-
0.02
2
1.0
VCE
.
•
1
~ 0.6
=5V
.......... ..........
........ .........
..........
I
~1
r--...
2
0.7 1
CASE TEMPERATURE
See Notes 5
r-.....
0.4
VI
CASE TEMPERATURE
I
0.2
,
=-SS·C
COLLECTOR-EMITTER SATURATION VOLTAGE
VI
........
TC
Th
\\
FIGURE 3
BASE-EMITTER VOLTAGE
~ r---....
~
-
Ic - Co lIector Cu rrent - A
FIGURE 2
0.8
--
0.04 0.07 0.1
IC - Collector Current - A
>
loIJ·~
T)=tl
,..,..- ~
_I--"
20
o
0.02
.. i-'
,..... ...
I
""~
o
.....
,/
V
Tc = -SS·C
10
J15~.~
:L..l
C..I.
"... ...--r
80
:>
i7;
~
~
100
~
~ 20
t
Tc;
~
11
30
j
VCE =5 V
See Notes 5 and 6
.2 120
r--.....
0•4
rd
6
~
~
IC - I
Ie
oS
I
=~O mA
......
r--...
~0.2
>
10
7
t
4
I
~
i"
2
18 = 0.2 A, Ie = 2 A
J/
0.7
li
0.4
fi
~
I
See Note. 5 and 6
~
~
.....
I - - 18- 0.7 A, Ie ~II A
0.2
0.1
0.07
0.04
=
18 - 2 mA, Ie - 20 mA
iiU 0.02
u
'!75
-so
-25
0
25
50
75 100
Tc - Ca.. Temperature _·C
125
150
:> 0.01
-75 -50
-25
0
25 50
75 100
Te -Case T_peroture _DC
125
150
FIGURE 5
FIGURE 4
NOTES, 5. Th... param.'.rs musl b. m.asur.d using p.l" lachnlquos. Ip
= 300 1", duly cyd.
~
2%.
6. Th ... param.'.rs ... m....red wllh voltago-s.n,lng canl.cI, ..par.'. from I•• c.rronl-carrylng cDnlacl••
971
5·54
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLT AGE
vs
BASE-EMITTER RESISTANCE
~ 1.2
Ie =30mA
:I
..
:>
Te = 25·C
I
8, 1.0
.l!
c: 0.8
j
~
•
See Note 5
"
~
.:0
1000
800
I
•
~
~
!
"""
::
~ 0.4
600
V(BR)CER at R BE = 100 kQ '" V(BRICEO
]
1111111
200
u 0.2
11111111
-
r--.
100
I k
10k
Base-emitter Resistance - Q
~
I'r--
Cobo (IE = O)
11111111
II lilli' ""'"'' ""'"'' " """
10
RBE -
"
400
j
o
01
C;bo (Ie = O)
r-...
Q.
]
J
.........
...
0.6
11111111
~
f ~ I M~z
TC = 25·C
2
100 k
r- l-
t-
4
10
Reve ... Bias Voltage -
FIGURE 6
-
~
20
V
40
.,
FIGURE 7
NOTE 5: This parameter must be measured using pulse techniques: tp
=
300 J1.s, duty cycle ~ 2%.
MAXIMUM SAFE OPERATING REGION
10
7
,
4
«
,,
I
-.).
1
2
1
o-C Operation
~
tp = I ms, d= 0.5 (50%)
"/
Ftp 0.3 ms, d - 0.1 (IO%)
11,
K,
,
0.7
J
I
0.4
~
~
0.2
Tc '" 100°C
MAX VCEO -
I
O. II
1-(
2
4
7 10
20
40
70 100
VCE - Colleetar-Emitter Voltage - V
FIGURE 8
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·55
TYPES 2N2150, 2N2151
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
PEAK-POWER COEFFICIENT CURVE
DISSIPATION DERATING CURVE
0.7
~
1:
~
g
•5 15
·u"
]
~
"\
~
§ 10
E
1I
I
5
100
Tc -
125
~
150
Co,e Temperature
1 '"'
0.2
0.1
.....:.~ 0.07
...il
~ 0
75
0.50 50% Duty Cycle
0.4
0.07
--
o
~
175
tp
0.02
:rt
0.01
0.020.04
T =
0.1
_·c
PTlavl
Prima,)
6J.A
6J. e
6e •A
ge . Hs
9HS .A
VALUE
UNIT
Average Power Dissipation
W
W
75
degjW
Thermal Resistance
2.5
degjW
Case-to-.Free-Air Thermt;ll Resistance
72.5
deg/W
Jundion-to~Ca$e
Cose-Ia-Heal-Sink Thermal Resistance
deg/W
Heol-Sink-to-Free-Air Thermal Resistance
degjW
°c
°c
TA
Te
Free-Air Temperature
TJ(av)
Average Junction Temperature
:0:; 175
TJ(max)
Peak Junction Temperature
:0:; 175
K
Peak-Power (oeffleient
'p
Pulse Width
ms
Pulse Period
ms
"
d
(ase Temperature
°c
°c
See Figure 10
Du'y·Cycie Ratio (tp/")
Example - Find Pl(ma,) (design limit)
OPERATING CONDITIONS:
(Je.Hs + (JHS.A = 4 deg/W (From information supplied
with heat sink'>
TJ(av) (design limit)
TA'= SooC
d = 10% (0.1)
tp = 0.1 ms
5·56
= 17SoC
-
4
7 10
20
Pulse Width - ms
Equation No. 1 - Application: doc power dissipation,
heat sink used.
PT(av)
= (JJ.e
P
Tlavl
= TJlavi - TA for 250C < T < 17SoC
(J J.A
- A-
Equation No.3 - Application: Peak power dissipation,
heat sink used.
TJlma,) -TA
f
°
P
_
Tlmax) - d ((Je.HS + (JHS.A) + K (JJ.e or 100°C :0:; Te :0:; 17S C
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
_
TJ(max) - TA
PT(m,,) - d (J
+ K (J
for 2SoC :0:; TA :0:; 175°C
J·C
e·A
Solution:
From figure 10, Peak·Power Coefficient
K = 0.11 and by use of equation Na. 3
PT(max) =
DALLAS, TEXAS 75222
TJlav) - TA
for 100°C :0:; Tc :0:; 17SoC
(JC.HS + (JHS.A as in figure 9
+
Equation No.2 - Application: doc power dissipation,
no heat sink used.
PT(max)
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
Thermal time constant~; ms
FIGURE 10
Peak Power Dissipation
Junction-to-Free-Air Thermal Resistance
width in ms
0.2 0.4
tp
SYMBOL DEFINITION
DEFINITION
= Pulse
d = Duty cycle ratio
FIGURE 9
SYMBOL
I-I--
10.04
'"
d «(Je.Hs
+ (JHS_A) + K (JJ.e
175- SO
0.1 (4) + (0.11) 2.S
= 185 W
PRINTED IN USA
Tf (annat assume any responsibility for any circuits shown
971
represent fhol they ore free from po'enl infringement.
TEXAS INSTRUMENTS RESERVES IHE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 2N2880
N-P-N EPn AXIAL PLANAR SILICON POWER TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
30 W at 100°C Case Temperature
•
Max VCE(sat) of 0.25 V at IC = 1 A
•
Max tr of 80 ns at I C = 1 A
•
Min fT of 50 MHz at 10 V, 1 A
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
3-COL1ECTOR
0.175 NOM
(SEE NOTH A & 8)
1()'32 UNF.2A
MAX STUD TORQUE,
IS IN.las
ALL lEDEC TO-Ill
DIMENSIONS AND
NOTES ARE
APPLICABLE
NOTES:
A. Position of terminals with respect to hexagon is not controlled.
B. Terminals located on true position within 0.030 inch relative to diameter of can.
t •
C. This dimension applies to the location of the center line of the terminals.
D. The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
E. All dimensions are in inches unless otherwise specified.
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
*Safe Operating Region at (or below) 100°C Case Temperature
*Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
This value applies
This value applies
Derate Jjnearly to
Derate linearly to
100 V
80V
8V
5A
0.5 A
See Figure 7
30W
2W
-65°C to 200°C
-65°C to 200°C
. . . . 230°C
when the base-emitter diode is open-circuited.
for tp ~ 1 ms. duty cycle 50%.
200De case temperature at the rate of 0.3 WIDe.
200 0 e free~air temperature at the rate of 11.4 mW/De.
<
*JEDEe registered data
1269
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·57
TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CBO
V(BR)CEO
Collector-Emitter Breakdown Voltage
IC= lOI'A,
IE =0
IC= 10mA,
IB =0
IC= 100mA,
IB =0
MIN MAX
100
See
Note 5
UNIT
V
BO
V
70
V(BR)EBO
Emitter-Base Breakdown Voltage
IE = 10,uA,
IC=O
ICBO
Collector Cutoff Cu rrent
VCB=60V,
IE =0
0.1
I'A
ICEO
Collector Cutoff Current
VCE = 50 V,
IB=O
100
I'A
VCE = 100 V,
VBE = -0.5 V
10
VCE = 60 V,
VBE =-0.5 V, TC = 1500C
50
ICEV
lEBO
I
TEST CONDITIONS
Collector-Base Breakdown Voltage
hFE
VBE
VCE(sat)
Collector Cutoff Current
Emitter Cutoff Current
Ihfe l
IC=O
0.1
IC= 0
10
VCE = 2 V,
IC = 10mA
IC= 1 A
Transfer Ratio
VCE =5V,
IC=5A
Small-Signal Common-Emitter
hfe
VEB= 5V,
VCE=2V,
Collector-Emitter Saturation Voltage
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
V
VEB = 8V,
Static Forward Current
Base-Emitter Voltage
8
VCE = 2 V,
IC= 1 A,
IB = l00mA,
IC= 1 A
VCE =2V,
IC = 1 A
I'A
I'A
30
40
See Notes
5 and 6
Tc = -55°C
120
15
10
1.2
See Notes
5 and 6
IB = 100mA,
IC= 1 A
IB =500mA,
IC=5A
VCE =5V,
IC = 50mA,
f = 1 kHz
VCE = 10V,
IC= 1 A,
f= 10MHz
VCB = 10V,
IE =0,
f= 1 MHz
V
1.2
0.25
See Notes
5 and 6
V
2
40
140
5
Common-Base Open-Circuit
Cobo
NOTES:
Output Capacitance
150
pF
5. These parameters must be measured using pulse techniques, tp = 330 ,",s, duty cycle ~2%.
6. These parameters are measured with voltage--senslng contacts separate from the current--carrylng contacts.
thermal characteristics
PARAMETER
MAX
6J-C
Junction-to-Case Thermal Resistance
3.33
6J-A
Junction-to-Free-Air Thermal Resistance
87.5
UNIT
°C/W
°JEDEC registered data
,1269
5-58
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
* switching characteristics at 25°C case temperature
PARAMETER
tr
Rise Time
ts
Storage Time
!t
Fall Time
TEST CONDITIONS
IC~lAt,
VCC~25V,
MAX
UNIT
80
ns
See Figure 1
60
ns
80
ns
tThis value of on-state collector current is nominal. Actual value will vary slightly with transistor parameters.
*PARAMETER MEASUREMENT INFORMATION
lN914
OUTPUT
20n
•
INPUT Q----it---l t---.AAIV-----...-I'...-f--~f-+_I
200n
+
50n
-=-
100n
25 V
lN9141;!
TEST CIRCUIT
50V---~90%
I
0--
INPUT
I
. --t l-- \--t~
-... 101-- t f
tr
-10%~1
10%
I
I
90%
OUTPUT
90%
VOLTAGE WAVEFORMS
FIGURE 1
NOTES:
a. The input waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf ~ 15 ns, Zout
tp = 10 ,",S, duty cycle ~ 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics; tr <; 15 ns, Rin
1 MO. Cin ~ 15 pF.
c. Resistors must be nonlnductive types.
= 1.5 kil,
>
*JEDEC registered data
1269
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·59
TYPE 2N2880
N-P-N EPn AXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
YS
COLLECTOR CURRENT
160
ia:
140
!;
'to
"
I!
."
120
I-
t
"
()
"E
~
u.
~"
'1w
•
100
80
-L .l-l+t
40
u. 20
.t:
o
See Notes 5 and 6
- TC = jJJJ .
I
-
~
f.-
\
-
TC = 25°C.
60
VCE=2V
TC= 150°C
0
I-
~
~
~
I--
_lltt
TC=-55°C
0.04
0.01
0.1
0.2
\
r-..~
2
0.4
4
710
I C-Collector Current-A
FIGURE 2
BASE-EMITTER VOLTAGE
1.2
~
1.0
>I
8.
B
0.8
0
Iii
.~
III
CASE TEMPERATURE
IJ=5~
-......:;...
- --
I"'--- '-..... ...... i'-.............
~
0.6
t--...
Ie = 50mA
>
I
8.
I
VCE = 2 V
See Notes 5 and 6
I
r-.... -........:
w
~OJ
vs
CASE TEMPERATURE
Id=l::--
>
COLLECTOR·EMITTER SATURATION VOLTAGE
vs
'-.....
>
r--
0.4
I
~
.~E
r-.... ----......
w
III
-
""-
'0.2
IB =0.1 A,IC= 1 A
0.07
M
;3
0.04
iiii
0.02
IB =5 mA,lc= 50 mA
()
>
o
-75 -50 -25
0
25
50
75
100 125 150 175
sei NotjS 5 Td 6
0.01
-75 -50 -25
T C-Case Temperature-°c
0
25
50
75 100 125 150 175
T C-Case Temperature-° C
FIGURE 3
NOTES:
--- -
..........
I
0.2
I--
0.1
.:.
e
w
>
IB = 0.5 A, IC = 5 A
0.4
.~"
'-.....
I'--
0.7
B
0
FIGURE 4
5. These parameters must be measured ",sing pulse techniques. tp = 330,u" duty'cycle "2%.
6. These parameters are measured with voltage'*Sensing contacts separate from the current-carrving contacts.
1269
5·60
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER
COMMON-BASE OPEN-CI RCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE
BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
1200
1.2
1,'.IC~
.'111'
i TC ~ 25° C
1.0
.......
1000
See Note 5
0.8
f ~ 1 MHz
T C ~ 25°C
10mA
'"
BOO
LL
0.
"-
I\.
I
"c0
19
O.S
\,.
i'
SOO
·0
(lC~O)
C· b
,,' 0
.
to
0.
u
400
0.4
V(BR)CBO ",V(BR)CER at RBE ~ 1
n
200
0.2
o
t--
Cobo (IE ~ 0)
"1-fI
r-
II
0
1
10
1k
100
10 k
100 k
2
4
7
10
--
20
Reverse Bias Voltage-V
RBE-Base-Emitter Resistance-D.
FIGURES
FIGURES
NOTE 5: These parameters must be measured using pulse techniques. tp = 330 ;.LS, duty cycle ~ 2%.
40
70 100
•
*MAXIMUM SAFE OPERATING REGION
10
7
TC';;:; 100°C
....
4
«
1-c
~::I
u
20
.!!!
0
U
I
_u
I""'\.
2 D-C OPERATION
:::::;:::::t
0.7 = p
0.4 - t
p
0.2
.
~
I1 ms,I dI I0.5 (50%) "- ......... ~\.
0.5 ms, d
0.1 (10",1,)-
"1'\
\.
1'1
0.1
0.07
0.04
MAX V CEO
0.02
I In
I
0.D1
1
2
4
7 10
20
40
V CE -Collector-Emitter Voltage-V
70 100
FIGURE7
*JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-61
TYPE 2N2880
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
PEAK-POWER COEFFICIENT CURVE
DISSIPATION DERATING CURVE
35
0.7
~Cl
30
''211
~
25
C
~
.
il
e 15
.~
8
E 10
:J
E
'ij
•
"""
i
o
50
75
125
100
150
FIGURE 8
"
0,01
200
Average Power Dissipation
Peak Power Dissipation
Junction-to-Free·Air Thermal Resistance
Junction-to-Case Thermal Resistance
Case-to-Free-Air Thermal Resistance
87.5
3.33
84,;7
Case-to-Heat-Sink Thermal Resistance
Heat-Sink-to·Free-Air Thermal Resistance
TC
Free-Air Temperature
Case Temperature
TJ(av)
Average Junction Temperature
TJ(max)
Peak Junction Temperature
0.1
0.07
0.05
1-e tp/T
l.,..;
~..- r.;.. /
~
()~...
0.04
0.1
/
:--
0_2
K
1_e-tpidT
tp = Pulse width in ms
d = Duty cycle ratio
r= Thermal time constant = 10 ms
0.4
2
4
7 10
20
40
tp-Pulse Width-ms
FIGURE 9
Equation No.1-Application: d·c power dissipation. heat sink used.
~lma"J
9C-HS
9HS-A
TA
..... 1--'
',/
~
111111
0.02
VALUE
DEFINITION
9J_A
9 -C
9c_A
duty cycle
0.10 (10%)
~ 0.04
SYMBOL DEFINITION
PT(av)
0.25 (25%
~0,07
175
T C-Case Temperature-oC
SYMBOL
0.2
l
\.
5
:E
I
.t'
~c3
~
20
fi~~1I(50%)
1:
"
.~
0.4
<;;200
<;;200
See Figure 9
UNIT
W
W
°CIW
°C/W
°C/W
°CIW
°CIW
°c
°c
°c
°c
K
Peak·Power Coefficient
tp
Pulse Width
m.
tx
d
Pu lse Period
m.
Duty-Cycle Ratio (to/. x )
T J(av) - TA
for 100°C ";;TC < 200°C
PT(av) = 8J-C + 8C-HS + 8HS·A as in Figure 8
Equation No.2-Application: d-c power dissipation, no heat sink
used.
PT(av) = T J(';'l- T A for 25°C ";;TA";; 2000C
·A.
Equation No_ 3-Application: Peak·power dissipation. heat sink
used.
Equation No.4-Application: Peak-power dissipation, no heat sink
used.
TJ(max) -TA
0'
PT(max) = d8C-A + K8J_C for 25 C oi;;;T A";; 2000C
Solution:
From Figure 9, Peak·Power Coefficient
K = 0.103 and by use of equation No.3
Example-Find PT(max) (design limit)
OPERATING CONDITIONS:
8C-HS + 8 HS-A = 3.8°C/W (From information supplied
with heat sink.)
TJ(av) (design limit) = 2000C
TA =500C
d= 10% (0.1)
tp= 0.1 ms
TJ(max) -TA
~(max)------------------
d(8C-HS + 8HS-A) + K8J-C
200-50
_
P
_
T(max) 0.1 (3.8) + 0.103(3.33) - 207 W
PRINTED IN U.S.A.
5-62
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS, TEXAS 75222
1269
TI (annot assume any responsibility for any circuit1 shown
or represent thot they ore free hom po lent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.
TYPES 2N2987 THRU 2NZ994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANmlORS
HIGH-FREQUENCY INTERMEDIATE-POWER TRANSISTORS
•
•
•
•
15 Watts at 100°C Case Temperature
Typ VCE(sat) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA
* mechanical data
2N2987
THRU
2N2990
I
0;:
0
,
I
1.5
~OJJ5
~
0100 MIN
/'\\\'\.-
1~-J-1 ~ ~
O~T~~Lszg~EO~~~:~~~~
,-.'\(
~
=t=L
I
SEATING
I
.?:
0200
3 LEADS
~.~;:
OIA
2 BASE
l;/~ 0.045
/
0.029
"
_0034
45··y
002iI
1 EMITTER
PlANE
CASE TEMPERATURE IS MEASURED 0.144 INCH
....
:0
3 COlLECTOR
== T'
0.335 0.305 0IA
OIA
MIN ~
i: TEMPERATURE
,-~M'" ~
±
0.010 INCH DOWN FROM TOP OF CAN
2N2991
THRU
2N2994
THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
ALL JEDEC TO-S DIMENSIONS
AND NOTES ARE APPLICABLE
•
ALL OIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
g:::~ tTI!r:I
10303
i
POSITION OF THE LEADS IN RELATION
TO THE HEX IS NOT CONTROLLED
1-1.50 MIN1
I
NC'10_32UNf_2~111111 ~DIA
:I LlADS
MAXIMUM RECOMMENDED MOUNTING
TORQUE, 15 IN.-LB_
THIEAD
001'. MAX
AU DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
TEMPERATURE MEASUREMENT POINT
I
!
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N2987 2N2988 2N2991 2N2992
2N2989 2N2990 2N2993 2N2994
* Collector-Base Voltage
95V
155V
95V 155V
* Collector-Emitter Voltage (See Note 1)
_ 80 V
100 V
80 V 100 V
* Emitter-Base Voltage _
. (
7V
>
* Continuous Collector Current
(
1A
Peak Collector Current (See Note 2)
(
1.5 A ----..r>
* Continuous Base Current.
0.2A---~)
<
Safe Operating Region at (or below) 100°C Case Temperature.
See Figure 10
* Continuous Device Dissipation at (or below) 100°C Case Temperature
(See Note 3)
. ~(c------- 15W---+>
* Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4)
. ~ 1 W -->- ~ 2 W -->* Operating Case Temperature Range .
.+-- -65°C to 200°C ---+
* Storage Temperature Range.
. +-- -65°C to 2000C ---+
* Lead Temperature ){. Inch from Case for 10 Seconds
. (
230°C
>
NOTES: 1.
2.
3.
4.
This value applies between 1 rnA and 30 rnA collector current when the base-emitter diode is open-circuited.
This value applies for tp ~ 0.3 ms, duty cycle S 10%.
Derate linearly to 200°C case temperature at the rale of 150 mWjdeg.
Derate linearly to 200°C free·air temperature at the rale of 5.7 mW/deg for the 2N2987 through 2N2990 and 11.4 mW/deg for the 2N2991 through 2N2994.
*'ndicotes JEDEC registered data
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-63
TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
Colledor-Emitter
V'IRICEO Breakdown Voltage
ICEO
ICEv
lEBO
•
hFE
VIE
VCE,..t)
hfe
Ihfel
c.....
2N2987 2N2988 2N2989 2N2990
2N2991 2N2992 2N2993 2N2994 UNI
MIN MAX MIN MAX MIN MAX MIN MAX
TEST CONDITIONS
PARAMETER
Ic - 30 rnA, I. - 0,
See Note 5
VCE = 50 V, I. = 0
Colledor Cutoff Current
VeE = 90 V, I. = 0
VCE = 90 V, VIE = -1.5 V
VCE = 150 V, VIE = -1.5 V
VCE - 90 V, VIE - -1.5 V,
Colledor Cutoff Current
Tc = 175°C
VCE ~ 150 V, VIE - -1.5 V,
Te = 175°C
Emitter Cutoff Current
VE• = 7 V, Ic = 0
VCE - 5 V, Ic-lmA
VCE = 5 V, Ie = 200 rnA,
See Notes 5 and 6
VeE = 5 V, Ic = 500 rnA,
Static Forward Current
See Notes 5 and 6
Transfer Ratio
VeE = 10 V, Ie = 100 rnA,
See Noles 5 and 6
VCE = 5 V, Ic = 200 rnA,
Te = _55°C,
See Notes 5 and 6
VCE - 5 V, Ie - 200 rnA,
See Notes 5 and 6
I. - 20 rnA, Ic = 200 rnA,
Base-Emitter Voltage
See Notes 5 and 6
11 = 50 rnA, Ic = 500 rnA,
See Notes 5 and 6
I. - 20 rnA, Ic - 200 rnA,
See Notes 5 and 6
Collector-Emitter
Saturation Voltage
I, = 50 rnA, Ic = 500mA,
See Notes 5 and 6
Smail-Signal Common-Emitter VCE - 10 V, Ic -IOOmA,
Forward Current Transter Ratio f = I kHz
Smail-Signal Common-Emitter VeE - 10 V, Ic -IOOmA,
Forward Current Transfer Ratio f=30MHz
Common-80se Open-Qrcuit
VCI - 10 V, IE- 0,
f = I MHz
Output Capacitance
HOTES, S. The.. poramet." must b. m.asured .sl.g p.lst tech.lq .... tp
80
100
80
0.1
100
0.1
0.1
25
25
25
15
15
15
25
25
25
20
75
25
/LA
15
25
25
40
75
60
120
60 120
20
40
40
25
25
50
50
10
10
20
20
0.9
0.9
0.9
0.9
I
1
1
1.4
1.4
1.4
1.4
0.8
0.8
0.8
0.8
3
3
3
3
85
25
85
50
50
170
50
1 V
50
V
170
I
I
I
I
nA
40
20
25
/LA
nA
25
20
V
0.1
50
50
pF
= 300 p.s, d.ty cycle :5: 2%.
6. These parameteR art Aleasur. with volta ....senslng contads separate from the currenl-carrying (ontacts.
"I.dicatts JEDEC ",Istered data
thermal characteristics
PARAMETER
(hc Junction-to.(ase Thermal Resistance
(hA Junction-to-Free-Air Thermal Resistance
2N2987
THRU
2N2990
MAX
2N2991
THRU
2N2994
MAX
UNIT
6.67
175
6.67
87.5
deg/W
971
5-64
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONSt
TYP
UNIT
200 rnA, IBll1 = 20 rnA, IBI21 = -20 rnA,
VBEloffl = -3.4 V, Rl = 150 n.See Figure I
0.14
2.6
Jl-S
Ie
=
tVoltage and cUTrenl values shown are nominal; exacl values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
1500
o-_.-'Wv-....;;
510
•
r-_.-----o OUTPUT
1 kO
3000
+
-=-30 V
TEST CIRCUIT
+37.3 V
---~.y9u0"70%
-0.1 V
-:J.10%!L
I
I
~ton
f-t- --i toff
~I
INPUT
j..-
10%..y-
90%~
OUTPUT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: a. The input waveform Is supplied by a generator with the following charaderistlcs: Ir ~ 15 ns, tt ~ 15 os, lout
b. Waveforms af, monitored on an oscilloscope with the following characterislics: 'r'::::; 15
RS,
= '50
0, tp
=
10 p.s, duty cycle ~ 2%.
Rin ~ 10 MO, (in ~ 11.5 pF.
c. RHistors must be noninduclive types.
d. The d·c power supplies may require additional bypassing in order 10 minimize ringing.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-65
TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N2989. 2N2990
2N2993. 2N2994
2N2987. 2N2988
2N2991. 2N2992
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
180 ...---,---'-"'r"""T"""''''TTr---,---,--,r''''''T'''''''rTT'I
~CE ~5~ I I "I
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100
!°
----
80
~c
TC
e
~
1:
60
~
160
1""00..
= 100·C
II
-~
~
1!a
!
40
°
.!!
u-
Tc
:f
'"
.......-10-
20
w
u-
-
1----t--i Tc
.......
~,
120 1----t--i-i~~1+t_--~~~~~~
.J
a~
100
t:::~~~~;,4tf===~:j~~~ltil~
-N
80~-+~~~~--~-W~~~
]
60
u
a
on
40
r---r-ir-r+~~+----r-i-i~~+H
b-__~-+T~c*=~-~5~5.~C~====~~4\~~~
I
20 1-----t--i~~~1+t_--_+_i-4~~~
.s;
OL-_...L--L.-L....I....I...J..L.u...._-L......J......J....J....L.J...u.J
0.02
0.04
0.1
0.7
0.2
0.4
Ie - Collector Current - A
0.01
I
0.02
0.04
-- -
1.0
...........
0.8
I'-...
........
0.7
~
I
~ 0.6
t"---...
0.5
1
l7
K ..........
...........
-
............
---
I 0.3
0.2
0.1
o
-75 -50
I
4
>
0.4
ll!
0.7
0.4
A
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
r-- r-.-S;:.:otes 5 and 6
I"'-- :-...
= I mAo IC =10 ,.;;:-....
IS =20 mA, IC = 200 mAl'
18
0.2
FIGURE 3
18 = 50 mAo IC = 500 mA
0.9
0.1
Ie - Collector Current -
SASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
>
'~
Te 1= 151
;
I'-r-.
-......t\
I II
FIGURE 2
'E
I](~I;!~-H-r-....-=....r-+-+-H-+++l
~
0.01
~
and 6
ie
\
= -55
I - - See Notes 5
140 1----I--ITe 1=
o
!
= 150.C
j
.s;
>
IIJ.JJ
°
-
TC • 25·C
a
•
VCE =5V
See Notes 5 and 6
TcUJJl
I
18
'0
'= 50 ~A,
Id = 506 mA
>
i
0.7
.i!
a
0'.4
:I:
0.2
'"Ii
'E
I
!l
~
~
-IS = 20 mA, IC - 200 mA
w
.e
-
See Notes 5 and 6
2
I"
0.1
=
Isl= I
~A, I~= 10 LA
0.07
8, 0.04
10.02
>'(3
-25
0
25
so 75 100
TC - Case Temperature - ·C
125
150
0.01
-75
-SO
-25
0
25
SO
75 100
TC - Case Temperature - ·C
FIGURE 4
125
150
FIGURE 5
NOTES: 5. These parameters must b. measured using pulse techniques. 'p
=
300 p.s, duty cycle
s;:
2%.
6. Thes. parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
971
5-66
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 7!5222
TYPES 2N2987 THRU 2N2994
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
~
vs
vs
REVERSE BIAS VOLTAGE
BASE-EMITTER RESISTANCE
1.2
200
I
J
I
& 1.0
r-...
j!
Ilc tll\l! mil
Tc = 25·C
180
See Note 5
160
~
... 140
i
.I 120
~ O.S
~
a:.
t\
§
'u
8.
r-..
~
'.(MICER
01
13
Rae = 100 kO" V(IRICEO
.".
0.2
=0)
i'.
~
SO
40
--.... I""-
.... Coba (IE
o
= 0)
"'"
20
~
1
z
Ciba (IC
'-
0
1
10
10 k
100
1k
RIE - Base-Emitter Resistance - Q
100 k
2
4
111111
FREQUENCY
- ""'r-.
I
IlIIII=J
Vce= 10V
CE
IC = 100 mA
r\.
IC = 100 mA
"\
TC =25·C
'\
Te= 25°C
r\.
i\.
~
~
f\,
f\
'\
1\
o
I
1\
l'
~
..!.
1.
•
vs
FREQUENCY
"'-
40
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
vs
a
20
2N2989, 2N2990
2N2993, 2N2994
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
:a
"'40
~,g3S
10
FIGURE 7
2N2987, 2N2988
2N2991, 2N2992
"'"I
7
Reverse Bias Voltage - V
FIGURE 6
~
f-
100
60
~
~
TC = 25·C
u
~
~ 0.4
"'- . . . 1'....
"-
0.6
.£
I
f= 1 MHz
0
0.1
0.4
4
10
40
100
0.4
4
10
40
100
1- Frequency- MHz
I-Frequency-MHz
FIGURE 9
FIGURE 8
NOTE S. This p.ram,ter musl be measured using p.l.. It
.!
Ii
50
75
100
125
150
T" - Free-Air Temperature _·C
175
200
j
1.0
!i
0.8
.s
""
lO.6
I
0.4
"'- ~
,
,.:- 0.2
a
o
\..
"\.
25
50
75
100 125
150
T" - Free-Air Temperature _·C
175
200
FIGURE 12
FIGURE 11
971
5-68
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
16
~
I
'" '"
0
l12
is
~ 10
~
!l 8
0
~
.5
6
E
~
E
4
c
.~
~ 0.2
I
_
J,0.07
0.1
\.
'" '\
r\.
2
~
125
100
oIJW. _~
J£ ~IEiP'~ffimt§
.3
.~
~
0.50 (50% Duty Cyel e
0.4
"r\.
;:
5
u
0.7
"-
14
c:
150
Tc - Case Temperatur. -
I--
o0
I 0.04 ~
0.02
1..7 ~ K -
V
ffi
0.01
1
I--
t. = Pulse width in ms
I--
d = Duty cycle rotio
'--
T
l_e-t~dT
= Thermal
.1
0.020.04
O. I
time constant =5 ms
,I
0_ 2 0.4
Pulse Width -
tp -
·C
~
-tp/T
~-:.e..,:..,..,.-
VI
~
><
200
175
0.07
0
7 10
20
ms
FIGURE 14
FIGURE 13
SYMBOL DEFINITION
VALUE
SYMBOL
PT(av)
DEFINITION
2N2987
THRU
2N299o
2N2991
THRU
2N2994
Average Power Dissipation
UNIT
W
Prlmax)
Peak Power Dissipation
OJ./>.
OJ_C
OC-A
Junction-fo-free-Air Thermol Resistance
17S
87.S
deg/W
Junction-Io-Case Thermal Resistance
6.67
6.67
deg/W
Case-Io-Free-Air Thermal Resistance
168
81
deg/W
W
OC-HS
(ase-to-Heal-Sink Thermal Resistance
deg/W
OHS-A
Heal-Sink-to-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
TC
TJlovl
(ase Temperature
TJjmax)
Peak Junction Temperature
Average Junction Temperature
°c
200
200
°c
°c
K
Peak-Power Coefficient
Pulse Width
ms
t,
Pulse Period
ms
d
Duty-Cycle Ratio (t.lt,)
See Figure 14
Example - Find PT(maxl (design limit)
OPERATING CONDITIONS,
+ 8Hs- A =
TJlavl (design limit)
TA = SooC
d
10% (0.1)
tp = 0.1 ms
=
Equation No. 1 - Application: doc power dissipation,
heat sink used.
Prlavl = OJ-C
S
200 0 C
S
Tc S; 200 0 C
+
Equation No.2 - Application: doc power dissipation,
no heat sink used.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
7 deg/W ( from information supplied
with heat sink)
200'C
_
Prima,) -
TJ(max)- TA
d (OC_HS
+
+
OHS-A)
0
K OJ_C for 100 C
Equation No.4 - Applicotion: Peak power dissipation,
no heat sink used.
PT(max\
Solution:
From Figure 14, Peak-Power Coefficient
K = 0.11 and by use of equation No.
Prima'i = d (OC_HS
=
971
TJlavl- TA
for 100 0 C S TC
OC-HS
OHS-A as in figure 13
+
·C
S
S
t.
OC-HS
•
Prlm"l
TJlmaxl-TA
OHs_",l + K OJ_C
+
200 - SO
0.11 (6.67)
= 0.1 (7) +
= IDS W
PRINTED IN U.S A.
TI (annal aHume any respon~ibilily for any circuits shown
or represent that they ore free f~om polenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5-69
•
5·70
TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
Max toff 400 ns at IC = 1 A
•
3-A Rated Continuous Collector Current
•
25 Watts at 25°C Case Temperature
•
Min fT of 60 MHz at 15 V. 0.5 A
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
O'525
~
O
o
-1
M'N~
~--0_'2_50_j-+ro=r-I~~~DIA
~
0.450
R MAX
0
r-0.312
1.573 MAX
2 LEADS
o~
1.050 MAX
-£
MAX
0.225
OlA
-'--_ _
~__
BOTH ENDS
h
-I
I
0.188 R MAX
0.135 MAX
0.205
0.675
~
~:~~~
_ EMITTER
"/~, \,~
------=r - 0-',-it
-"
0 . 4 4 0 ' 1 ~I
0.420
I
0.200
SEATING PLANE
1 - BASE
~
,- 0 -
t
I
r-
•
0.161 DIA
0.151
'1 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3021 2N3022 2N3023
2N3024 2N3025 2N3026
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
-30 V -45 V -60 V
-30 V -45 V -60 V
-4V
-4V
-4V
_-3A_
--0.5 A See Figures 3 thru 5
-25W-65°C to 175°C
-65°C to 175°C
-250°C-
1. These valUes apply when the base-emitter diode is open-circuited.
2. For operation above 25°C case temperature, refer to Dissipation Derating Curve, Figure 6.
·JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5-71
TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics of 2N3021. 2N3022. 2N3023 at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
Collector-E mitter
V(BR)CEO
Breakdown Voltage
Collector Cutoff Current
ICEV
Emitter Cutoff Current
lEBO
Static Forward Current
hFE
Transfer Ratio
Base-Emitter Voltage
VBE
Collector-Emitter
VCE(sat)
•
Saturation Voltage
IC= -l00mA,
IB = 0
IC= -50mA,
IB = 0
IC= -20mA,
IB = 0
VCE = -25 V,
VBE = 2V
VCE = -40 V,
VBE = '!V
VCE =-54V,
VBE = 2 V
VCE = -15 V,
VBE = 2V,
TC= 150°C
VCE =-25V,
VBE = 2 V,
TC = 150°C
VCE =-35V,
VBE = 2V,
TC= 150°C
VEB = -4 V,
IC=O
2N3021
2N3022
2N3023
MIN MAX MIN MAX MIN MAX
-30
See Note 3
-45
UNIT
V
-60
-0.2
-0.2
-0.2
mA
-2
-2
-2
-1
20
60
-1
20
60
-1
20
mA
VCE= -2 V,
IC = 1 A,
See Notes 3 and 4
60
IC = -3A,
IB = -0.3A,
See Notes 3 and 4
-1.5
-1.5
-1.5
V
IC=-3A,
IB = -0.3A,
See Notes 3 and 4
-1.5
-1.5
-1.5
V
VCE = -15 V,
IC= -0.5A,
f= 30MHz
Small-Signal
Common-Emitter
~fel
Forward Current
2
2
2
Transfer Ratio
*electrical characteristics of 2N3024. 2N3025. 2N3026 at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-E mittsr
V(BR)CEO
ICEV
lEBO
Breakdown Voltage
Collector Cutoff Current
Emitter Cutoff Current
Static Forward Cu rrent
hFE
VBE
Transfer Ratio
Base-E mitter Voltage
Collector-Emitter
VCE(sat)
Saturation Voltage
TEST CONDITIONS
2N3024
2N3025
2N3026
MIN MAX MIN MAX MIN MAX
-30
UNIT
IC= -100 rnA,
IB =0
IC= -50 rnA,
IB - 0
IC= -20mA,
IB =0
VCE = -25 V,
VBE = 2V
VCE - -40 V,
VBE - 2V
VCE - -54 V,
VBE - 2 V
VCE = -15V,
VBE - 2V,
TC = 150°C
VCE = -25 V,
VBE=2V,
TC = 150°C
VCE - -35V,
VBE - 2V,
TC - 150°C
VEB - -4 V,
IC-O
VCE=-2V,
IC= lA,
See Notes 3 and 4
IC - -3A,
IB - -0.3A,
See Notes 3 and 4
-1.5
-1.5
-1.5
V
IC=-3A,
18 = -0.3A,
See Notes 3 and 4
-1
-1
-1
V
VCE = -15V,
IC= -0.5A,
f= 30 MHz
-45
See Note 3
V
-60
-0.2
-0.2
-0.2
-2
rnA
-2
-2
-1
50
180
-1
50
-1
180 ,50
rnA
180;
Small-8ignal
~fel
Common-Emitter
Forward Current
2
2
2
Transfer Ratio
NOTES:
3. These parameters must be measured using pulse techniques. tw = 300 ,",S, duty cycle'" 2%.
4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body .
• JEDEC registered data
1271
5·72
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
*switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
IC--1 A,
Turn-On Time
ton
RL = 12 n,
MAX
IB(1) - -0_1 A, VBE(off) = 4 V,
See Figure 1
100
325
t.
Storage Time
IC--l A,
IB(l) - -0_1 A, IB(2) = 0_1 A,
tf
Fall Time
RL=12n,
See Figure 2
UNIT
n.
75
t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.
*PARAMETER MEASUREMENT INFORMATION
". )
-12V
RL
12
OUTPUT
100 n
INPUT
+SV,
n
-11 V - -
~"'
J/
INPUT
___
•
~tr~
o--_"V'v--+i
I
'
:fiO%\
~10%
TEST CIRCUIT
'---=-
OUTPUT
VOLTAGE WAVEFORMS
FIGURE l-RISE TIME
-12V
+SV,
OUTPUT
100 n
-11
V- - ~___--"/sO%
INPUT
--Its ....
INPUT <>-_VV-__-t
41tf~
+3V ":'
TEST CIRCUIT
f9ci%\ : OUTPUT
----I
10%~
VOLTAGE WAVEFORMS
FIGURE 2-5TORAGE AND FALL TIMES
NOTES:
The input waveforms are supplied by 8 generator with the following characteristics: tr <. 10 ns, t, OS;;;; 10 ns,- tw ... 10
Zout = 50 n, duty cycle .. 2%_
b. Waveforms BrB monitored on an oscilloscope with the following characteristics: t, < 5 nli. Aln ~ 10 kil, Cin <. 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing •
8.
JJ,S,
• JEDEC registered data
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
5·73
TYPES 2N3021 THRU 2N3026
P-N-PSILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
2N3022. 2N3025
2N3021.2N3024
-100
-40
.
tw = 500 p5.
~y- tw =5 ms
"'Q
-0.4
8I
5j.1S ~
.tw-:50~
()
1)
.!!l
TC';;;25°C
See Note 5
-40
-
--
5
u
6
-100
ql}b ~\',.'.
"
1:
~
-10
-
-4
.....
:::l
u
~
-1
"'$01'.1
60Y
"-:::,!'~~~~ - \~ \
()~s
0
~"'qri"""""
c.r
!:? -0.1
~
-0.04
01)
-0.01
o
-5
o
-10 -15 -20 -25 -30 -35 -40
VCE-Coliector·Emitter Voltage-V
-6 -10-15 -20 -25 -30-35 -40 -45-60
VCE-Coliector·Emitter Voltage-V
FIGURE 3
FIGURE 4
~HERMAL
s:I
-100
TC ';;;25°C
See Note 5
-40
~
:::l
-4
~
-1
....c:I
.!!l
.~ 25
'iii
~~
i:5
1)""~oS~
~
.',
._~,~ k~ ~
'~":~tw=50Ps
~oS--:;g!s.~
()",
Q
-0.4
q
'=
~
or
~,..~
ql}b
!:? -0.1
">
\
'-
.s:.,2!
c
on
:::l
g
15
'g
,
8
\
E
:::l
E
.
-10 -20 -30 -40 -50 -60 -70 -80
VCE-Coliector·Emitter Voltage-V
FIGURE 5
[\.
10
'x
5
~
0
'"
:2
-0.01.
"" '\
20
c:
-0.04
o
30
c:
o
~
U
INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
2N3023.2N3026
-10
~,'~.\
-0.04
-0.01
j
0.1
0.2 OA
10
11111
11111
D.2
1
2
4
10
1.2
1.0
...
".! ...
".
,
0.8
~ lof-H-++HH!-~+H~-4~H+~
0.1 0.2 0.4
I ,..
Tc-:isIC "n
s.. Notes fi .nd 6
1.8
1.4
!
2.0
1.8
1.8
~
"~
>
Tc- 2Ii"C
S_Not8lSend6
1.8
11111111
li
J
2.0
TC -26·C
SN
COLLECTOR.eMITTER SATURATION VOLTAGE
w
COLLECTOR CURRENT
"
~
20
40
100
Ic-COllector Current-A
FIGURE 2
!£.'0
1'0 11
0.6
II
0.2
Ioh
f'\
IC" 5
'a
0.1 0.2 OA
1
2
4
10
20 40
100
'C-COllector Curnlnt-A
FIGURE 3
NOTES: 6. These parameteo must be measured using pulse techniques. 'tw = 300 /Js, duty cycle :e;; 2%.
6. These parameters are measured with voltaga... nsing contacts separate from the current-carrylng contacts and located within 0.125
inch from the device body.
671
5·78
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
OALLAS. TEXAS 75222
TYPES 2N3263, 2N3264, 2N3265, 2N3266
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
56 a.
Von = 25.5 V--;r;s---,;90%
OV-- ____ ~~
-6.3 V
1 10%
I
-I ton I-:\.-toff..l
INPUT
270 pF
lOa.
VBB2=
6.3 V
Vgen
+
-=- VCC= 30 V
~------------------------~----t+
VBB1" 27 V
ADJUST FOR
Von = 25.5 V AT
INPUT MONITOR
TEST CIRCUIT
NOTES:
~:r
OUTPUT
+
VOLTAGE WAVEFORMS
A. Vgen is a -30-V pulse (from 0 V) into a 50-0 termination.
B. The V gan waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf '" 15 ns, Zout = 50 fl, tw = 20 #JS,
duty cycle <; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r '" 15 ns, Rio ~ 10 MO, Cin .so; 11.5 pF.
D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
•
FIGURE 4
INDUCTIVE LOAD SWITCHING
VCE MONITOR
-..t
Ie-- tw '" 20 ps
~
INPUT 0
VOLTAGE
-5VTUT
f.---}-
100 ms
I
I
COLLECTo~OA~:1--"1- I-+
CURRENT
0
I I
VCC= 20 V-=-.
50 a.
(seeNoteAI
IC MONITOR
V(BRICEV
-I-- I
COLLECTOR
VOLTAGE
RS=O.l a.
I
l
I
I
I
- - - - -1-I
I
I
20V
VCE(satl-
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width Is increased until I eM
= 10 A.
FIGURE 5
671
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-79
TYPES 2N3263, 2N3264, 2N3265, 2N3266
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREA
2N3263,2N3264
2N3265,2N3266
100
70
100
70
Nonrepetitive Pulse Operat ion
tw = 250 ps, TC';;; 25'C
40
-
20
1
"~
(.)
"
(;
U
.!!!
0
t--
1
(.)
'\
2
4
.!!!
2
0
"-
D-C Operation
TC';;; 75°C
I
F
I'\.
~
I
!:!
0.7
2N3263
I
2N3264--1--
0.2
1-1..
(.)
0.7
0.4
•
~
~
I'\.
cr
!:!
10
7
"~
"
-- ...
~H
20
I----c--c D·C Operation
10
~TC';;;75°C
7
4
Nonrepetitive Pulse Operat ion
tw - 250 ps, TC';;; 25°C
40
0.4
2N3265
0.2
i't-
~N32~6
0.1
0.1
2
4
7
10
40
20
70 100
2
VCE-Coliector·Emitter Voltage-V
7 10
4
20
70 100
40
VCE-Collector-Emitter Voltage-V
FIGURE 6
FIGURE 7
THERMAL INFORMATION
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
5
160
~
"0
N.
li
0
1!
.:;;
..
~c:
140
120
0
.;::
f----
'S"
c:
80
(.)
0
60
E
E
40
"
'xIII
::;:
I
ln.
0.
4
..
..
I""
i5
•11
100
0
30
III
'iii
~N3265' 2N3266
ROJC';;; 1 ~C/W
~
'"
~"
>
0
"0
"
~
c:
.;::
c:
0
"
........
0
125
150
'I'..
2
E
E
1'-.........'"
100
~
u
l'...." l'.
20
75
3
~
2N3263, 2N3264 ~
ROJC .;;; 1.5° C/W
50
2N3265,2N3266
~JA .;;; 43.75 °C/W
I---
'xIII
175
200
T c-Case Temperature-° C
FIGURE 8
-
"'"
2N3263,2N3;;;~ 1--.
::;:
~
"l'..
I
,t-
I- R8JA .;;; 146°C/W
O
o
",
·,i
25
50
75
-'"
1-- ~
100
125
150
175 200
TA-Free·Air Temperature-oC
FIGURE 9
PRINTED IN U.S A.
5-80
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
671
TI cannol assume any responsibility for any circuits shown
or represent that they ore free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
...
'" '"
S
...m ...m~ ...m
'" Zz ...z
HIGH· FREQUENCY MEDIUM·POWER TRANSISTORS
..
..
...... ...'" ....
......... ...-....
.. ....
00(
Formerly TIX3033, TIX3034, TIX3035, TlX3036
~
»00(
•
•
•
•
=
15 watts at Tc 100°C
0.5 JL a at max voltage
VCE(sal}= 0.25 v max at Ic = 1 a
40 Mc min at 10 v, 100 ma
High.Power Dissipation in TO·5 Package:
Low.Leakage Current:
Low·Saturation Voltage:
High f T :
:0
~
~ !!'
0;- Z
.. ::0
:- z
c:
.
Z ,0
m
...... ......
~
:0 z
mechanical data
These transistors are in precIsIon welded, hermetically sealed enclosures. Extreme cleanliness during the
assembly process prevents sealed·in contamination. The approximate unit weight is 1.8 grams .
!J,l!!!t:tT5MIN~
0.240
,
TEMP
-.-----~_
~~~~~"M'N'
~O.335
O~!5 0.305 DIA
I
--L0.100 MIN
*THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.
=~
=~
,
B!:~
0.009
DETAILS Of OUTLINE IN
THIS ZONE OPTIONAL
=t
SEATING
PLANE
. ".
•
* ALL JEDEC TO-$ DIMENSIONS
AND NOTES ARE APPLICABLE.
o:ol"6
DIA
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current, Continuous .
Collector Current, Peak (See Note 2)
Base Current .
Safe Operating Region .
Total Device Dissipation at (or below) lOOoC Case Temperature (See Note 3)
Total Device Dissipatiom at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Case Temperature Range
Storage Temperature Range .
lead Temperature ){, I~ch from Case for 10 Seconds
2N3418
2N3420
2N3419
2N3421
85 v
60v
125 v
BOv
+---+---+---+----
--+
--+
--+
+---+----
--+
+----
--+
Bv ~
3a
Sa
1a
See Figures 8 and 9
15w
1w ~
-65°C to 200°C
_65°C to 200°C
230°C
NOTES: 1. These values apply when the bose-emitter diode is open-circuited.
2. This value applies fo( PW ::::; 1 msec, Duty Cycle::; 50%.
3. Derate linearly to 2000 e case temperature 01 the rale of O.lS w/Co.
4. Derate linearly fa 200°C free-air temperature at the rate of S.72 mw/Co,
*'ndicates JEDEC registered data.
971
TEXAS INSTRUMENTS
INCORPORATED
-POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·81
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N·P·N EPITAXIAL PLANAR SILICON MEDIUM·POWER TRANSISTORS
*electrlcal characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
IYCEO
ColI.dor·Emlller
Ireakdown Voltag.
2N3418
2N3419
2N3420
2N3421
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
TEST CONDITIONS
Ic =50ma, 1.=0,
500 No'e 5
YCE =80., YIE=-O.Sv
leex
Coltector Cu'off
CUrrtn'
80
60
hFE
I
VIE
Eml'ter Cutoff
Current
p.a
YCE -12O., VIE =-0.5.
0.5
Va=80v, YII =-0.5v, Tc =150·C
S,atlc Forward
Current Transfer
Ratio
Bas.·Emltter
Voltage
Y
ColI.ctor·Emlller
ahall Sa,uratlon Voltag.
Ihfel
SmaIl·Slgnal
Common-Emltftr
Forward Current
Vu =6v,
•
80
0.5
0.5
0.5
50
50
YCE = 120 v, YIE =-0.5v, Tc =I50·C
lEBO
60
50
50
"a
Ic=O
500
500
500
500
na
YEB=av,
Ic=O
10
10
10
10
poa
YCE=2v,
IC=IOOma,
Soe Notes 5 and 6
20
VCE =2v,
Ic=la,
S.. No'es 5 and 6
20
VCE = 2v,
Ic =2a,
S.. No'es 5 and 6
15
20
60
20
40
40
60
15
40
120
40
30
30
VCE =5v,
IC=5a,
5.. No'es5 ..d 6
10
10
15
15
VCE = 2v,
IC=la,
Tc =-55·C
So. No,es 5 and 6
10
10
10
10
120
1.=IOOma,lc=la,
S.. No'.. 5 and 6 0.6
1.2
0.6
1.2
0.6
1.2
0.6
1.2
1.=200ma,IC =2a,
Soe No'es 5 and 6 0.7
1.4
0.7
1.4
0.7
1.4
0.7
1.4
1.= 100 ma, le=la,
Soe No'es 5 and 6
0.25
0.25
0.25
0.25
1.=200ma,I C =2a,
500 No'.. 5 and 6
OJ
0.5
0.5
OJ
VCE = lOw, Ic = 100 ma,
f=2OMc
2
2
2
•
v
2
Transfer Rallo
Cob
Commen·la..
Open·Clrcult
Vc . = 10 v, IE=O,
Output Capacitanci
ISO
f=IMc
ISO
ISO
ISO
pi
NOTES. 5. Thes. param.'ers must bt m.... red using pulse 'echnlqu",PW = 300 "sec, Du,y Cycl. :::;; 2%.
6. Thes. parameteR are measur.d with voltagHendng contacts located 0.25 In. from the header of Ihe transistor. Voltage-I.,slng contacts are
separate from currll'lt- carrying contacts.
*switchlng charac:terlstlcs at 25°C free-air temperature
PARAMETER
ton
Tum-On
Time
toff
Tum·Off Time
ton
Tum-On
Time
toff
Tum-Off
TIme
TEST CONDITIONSt
TYP
MAX
= 1 0, 11(1) = 100 rna, 18(2) = -100 rna,
VIE(off) = -3.7 Y, lit. = 20 fl, See Rgura 10
Ie = 2 0, 11(1) = 200 rna, 11(2) = -200 rna,
VIE(off) = -4.7 Y, lit. = 20 fl, See FIgure 10
165
300
540
1200
Ie
UNIT
nsec
200
350
tVoltag. and curren' valu.. shown are nominal, exact val... vary slightly with ,ransls'or param.'ers.
'Indlca'es JEDEC regls'ered data
971
5·82
TEXAS,NCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALL.AS, TEXAS 75222
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
125
TeJ5U
J,~
50
.~
~
Te = 25°C
I
I
25
I
r- Min
w
at1e~~
..r::
o
MinhFE_
at Te = -55°C
Te =1 -5r1CI
0.01
"'-
Min hfE
at Te = 25°C
I
hFE
0.03
0.3
0.1
~
~c:
Tc
"
_ll06o~
!:!
~
120
Max hFE
at Te = 25°C
5
u
1.£ so
~
Te
- Min hFE
. at Te = 25°C
E
V'>
~ r--t--
Te = -55°C
~
..r::
10
3.0
I
o
0.01
Min hFE
:
at Te = -55°C
0.03
Ie -
c:
..........
Ie - 2 a
~
18 = 100
0.4
m~~
f--' Ie = I
\
.!!!
0
u
I
"
]'
0.2
'Max VeEI,o') at
18 = 200 mo, Ie
~
"-
'-
-I
]
= 2 0- -
E
u
.!!!
ou
I
Max VeE l>a') at
-1 8 = 100 rna, Ie = I a
-75
I
-50
-25
0
Tc -
25
50
75
100 125 150
Case Temperature -
= 200
=2 a
mo,'
V
li=2o~m~
"'I.""',-
-
Ie = 1 a
_
I
f--
,Max VeE I,a') at
18=100 rna, Ie = 1 a
I
18 - 3 rna, Ie = 30 rna
o
o
-75 -50 -25
175
-
............
18 = 100 rna,
0.2
]
:-Y
•
"Max VeEI,a') at
L 0.4
+--r--!
I
18
Ie
~
18 =.? rna, Ie = 30 rna
o
10
2 N3420, 2N3421
See Notes 7 and 8
3a
\
!:!
] 0.6
a
~
3.0
1\
.~
--
\
!:!
.20 0.6 1--18 = 200 rna,
V'>
.Eu
18 = 300 rna, Ie
~ 0.8
O.S
.~
~
I
See Nates 7 and S
=3 a
I I I= I
>
2N341S, 2N3419
I
~
...... r-,
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
1.0
1.0
18 = 300 rna, Ie
~
N
f--
FIGURE 2
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
'""
~
0.1
0.3
1.0
Collector Current - a
FIGURE I
E
r\\
""
t
Min hFE
at Te = 25°C
40
w
r-..
~
~
=125~
Ie -Collector Current-o
>
2N3420, 2N34211
VeE = 2 v
See Notes 7 on dS
I-
I\~
1.0
l
IH"
T ='15l o
e
o
':: 160
~
~~
Max hFE
at Te = 25°C
l:!
i
200
2N341S, 2N3419
VeE = 2 v
See Notes 7 and S
25
50
75
100
Tc - Case Temperature -
°t
125 150 175
°C
FIGURE 4
FIGURE 3
NOTES: 7. These parameters were measured using pulse techniques, PW == 300 p.stc. Duty Cyde ~
2"%.
8, Separate voltage-sensing and currenf.carrying contacts wen used.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-83
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
..
..
BASE-EMITTER VOLTAGE
COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE
l000'-_r-~'TEV~:~~S~:~:~A~S~VO~l~TA~G~E~~~~
CASE TEMPERATURE
1.4,--,---,--,-------,-"
I-+--+-frt 16 "' 300 ma,
1.2
Ie" 3 o_-'--'-----i
__ ,;/j
_
_ r-'-
7t -- -- -- -
1.0
f-bj-t-'-'P--"..:.q
,,-0:"-'+-----1-r-=1=-i-------1
~
0.8
f--t--d:-t---Jf1"-j4-F--"'f~I::-c=t:---t---i
~
0.6
1-+----1+1/'-t.lJ;I'7J'1t"-'~-",-""'-'*:-1-+--+-1
~
J
II
r--r-: ----
'""'""f-':.--_
h..
-Solid line is Typical Volue
I--+-++----Ooshed line is 90th Percentile
800
~
F
I--+-++T c" 25"C
la=200mo,lc=20_
r-:: -
1/
/,
V
~L1 ',-:"~I~oo::m..;.',--,.-'."-,-"_'-'I---jR_I 0.4 1--+-11I+--c-..:
-"'-'1--1
IL1 s"'3rna,lc -30mo
>'tt.
1-+1 Is.! N"l, 7 ,"dB
1 1 Solid Line is Typical Valve
1-+-+-1---
0.21--+-+
o L--.L..-.L.J....JII..U...L-"L--"It"~--l-.I...J..J...U..J.J
! I ---- Dashed Line is 90th Percentile
o
~
~
~
0
Tc -
~
~
~
1~
100
Case Temperature -
l~
I
1~
10
Reverse Bio$ Voltage -
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
°C
FIGURE 5
BASE EMITTER
~ 1.0
30
100
\I
FIGURE 6
RESI~rANCE
1111111111
•
IC '" SO me
Te'" 25°C
See Note 7
BYC80 ::. BVCER 01
10
RBf -
RBE '"
100
I Q
lk
10k
lOOk
1M
Base-Emitter Resistance -ohm
FIGURE 7
MAXIMUM SAFE OPERATING REGION
,.
0
2N3418, 2N3420
2N3419,2N3421
.
3. 0
,
I
"
1. 0
i
I
1
0.3
u
0.3
3
0.1
O-C Operotlon,
I
Tc,s; 100·e
.Y
0.03
0.0 1 1
~
]
~I o. 1
3
10
Mox
V~.O
30
Collector-Emitter Voltage -
D< Operation,
TC,s; l00"C
0.00
~oT
Vcr -
i'..
1.0
V
V
~
3.0
0.01 I
100
y
3
VCE -
FIGURE 8
10
30
100
Collector-Emitter VoIt.-y
FIGURE 9
971
5·84
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
INPUT
~
820
____~~__-J~~__- '__~
200
RI
820
0.01
~f
TEST CIRCUIT
V;n(1)
•
IiC--90%
I
V
,n (2)
I
10%
INPUT
I
I
1+
-+l ton \+-
1
I
toll-+l
I
IOTa
90%:
OUTPUT
VOLTAGE WAVEFORMS
Nominal Ie
RI
Vee
V;n(1)
0
820
20.3 v
+16.0 v
-1.0 v
2 a
410
40.5
+32.0 v
-1.3 v
I
v
V;n(2)
CIRCUIT CONDITIONS
FIGURE 10
NOTES: o. The input waveform is supplied by a generator with the following characteristics: tr :SlS nsec, tf S15 nsec,
zou.= 50 0,
PW=2~sec,
b. Waveforms are monitored
Duty Cycle S2%.
dn an oscilloscope with the following characteristics:
tr S15 "sec, Rin ~10 NO, C in S11.S pf;
c. Resistors must be non-inductive types.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-85
TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
and
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES
16
I
i\
I
PEAK-POWER COEFFICIENT CURVE
LO
I
~
~
f" r-...
I--PT vS TA
9J_A:S175
•
"',
C·/w
50
25
·u"
r\
75
TA ·or Tc
u"
~
0
4i
""
100
125
150
Temperature - °C
-
V
l=-
I--
I
TJ (max)
g
K=
<>-
I
'"
r\
'~
200
175
VDuty Cycle = 0.01
/'
(1 %)
II
11I1111
0.01
0.01
Tc
PT (moxI 9 J-C
1.0
0.1
tp _ Pulse Width - msec
10
FIGURE 12
Equation No J Application , d ( power dissipation
heat sink used.
-
SYMBOL DEFINITION
DEFINITION
---
I/V'
~O~ )'
FIGURE 11
~YMBOL
/
-"
\
I'--.
0.1
l
r\
Pmill
0.25 (25%)
E
\
r7
f-° •5
1
c
r
0,7f 5%)
I--
PT vs T C _
'\J-C:S 6J C·/w
VALUE
UNIT
PT(.vgl
Average Power Dissipation
w
PTfmilxl
Peak Power Dissipation
w
8J _A
Junction-fo-Free-Air Thermal Resistance
8J-c
8C-A
8C-HS
8HS•A
Junction-la-Case Thermal Resistance
6.67
C·/w
Case-to-Free-Air Thermal Resistance
168.33
COjw
TA
Free-Air Temperature
PT{avg)
17S
C'jw
(ase-fa-Heat Sink Thermal Resistance
CO /w
Heat-Sink-to-Free-Air Thermal Resistance
COjw
°c
==
TJI.vgJ - TA
{hc
+ 8C-HS + 8Hs- A
Equation No.2 - Application: doc power dissipation,
no heat sink used.
_
PTlavgJ -
TJ(.vgJ - TA for 2SoC::::; TA ::::; 200°C,
as In Figure 11
8J-A
Equation No.3 - Application: Peak power diSSipation,
heat sink used.
°c
Tc
Case Temperature
TJI.vgJ
Average Junction Temperature
TJlmaxl
Peak Junction Temperature
K
Peak-Power Coefficient
tp
Puise Width
msec
tx
Pulse Period
msec
d
Duty Cyde Ratio (tp/txl
~200
°c
~
°c
200
See Figure 12
Example - Find PTfmaxl (design limit)
OPERATING CONDITIONS,
8C. HS 8HS -A = 7 C· jw (From Information s.pplied
wllh heat sink.)
+
TJ1•vg I (d..ign limit) = lOO·C
TA
50·C
d=JO% (0.11
tp
0.1 ms.e
PTlmaxl
d (8C-HS
TJfmaxl- TA
8HS_A
+
=
)+ K 8J•c
for 100°C::::; TC ::::; 200°C
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTfm• d
=
TJlmaxl-TA
d
8C-A
+ K 8J . c
for 2SoC ::::; TA ::::; 200°C
Solullon:
From Figure 12, Peak-Power Coeffident
K = O. ISS and by .se of equation No.3
_~_-,TJ"lm""1X1- TA
+ 8HS -A) + K8J_c
d (8C. HS
=
for 100'C ::::; TC ::::; 200'C,
as in Figure 11
0.1 (7]
200- SO
0.1SS(6.67] =86w
+
PRINTED IN U.S.A.
5·86
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
11 (annot anume any responsibility for any circuits shown
or represent thot they are free from patent infringetnent.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3439, 2N3440
N-P-N SILICON POWER TRANSISTORS
HIGH-VOLTAGE POWER TRANSISTORS
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•
Min V{BR)CEO of 350 V (2N3439)
•
Max VCE{sat) of 0.5 V at IC
fT of 15 MHz at 10 V,
= 50 rnA
•
Min
•
1 A Continuous Collector Current
20 rnA
•
5 W at TC
= 25°C
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
,
I
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
•
ALL JEDEC TO-5 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3439 2N3440
*Collector-Base Voltage
..... .
*Collector.Emitter Voltage (See Note 1)
*Emitter·Base Voltage . . . . . .
*Continuous Collector Current
Peak Collector Current (See Note 2)
*Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
*Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
450 V
350 V
300 V
250 V
--7 V -1 A-
-1.5 A +--0.5 A See Figure 5
-5W-lW-
-65°C to 200°C
-65°C to 200°C
----255°C-
These values apply between 0 and 50 rnA collector current when the base~emitter diode is open-circuited.
This value applIes for tw < 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 28.6 mWfC.
Derate linearly to 200°C free~air temperature at the rate of 5.71 mWfC.
* JEDEC registered data. Th:is data sheet contains all applicable registered data in effect at the time of publication.
571
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·87
TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
TEST CONDITIONS
PARAMETER
V(BR)CBO
'V(BR)CEO
Collector-Base Breakdown Voltage
IC=5oo/.lA,
IE =0
Collector-Emitter Breakdown Voltage
'c=50mA,
VCB - 360 V,
'B =0,
'E = 0
20
VCB - 250V,
'E =0
IC-O
20
"ICBO
Collector Cutoff Cu rrent
"lEBO
Emitter Cutoff Current
"hFE
Static Forward Current Transfer Ratio
"VBE
B ese-E mitter Voltage
'VCEJ$lIt)
Collector-Emitter Saturation Voltage
Small-Signal Common-E mitter
"hfe
Forward Current Transfer Ratio
Small-Signal Common-E mitter
"Ihfel
Forward Current Transfer Ratio
Common-Bese Open-Circuit
"Cobo
Output Capacitance
Common-Bese Open-Circuit
•
"Cibo
I nput Capacitance
Real Part of Small-Signal
"hie(real)
2N3439
Common-E mitter I nput Impedance
VEB - 6 V,
VCE = 10V,
See Note 5
2N3440
MIN MAX MIN MAX
450
300
V
350
250
V
20
Ic-20mA, See Note 5
UNIT
40
160·
20
40
/.IA
/.IA
160
'C- 50mA, See Note 5
1.3
1.3
V
50mA, See Note 5
0.5
0.5
V
10
10
pF
f= 1 MHz
75
75
pF
f= 1 MHz
300
300
'B - 4mA,
'B 4mA,
IC
VCE = 10V,
IC = 5 mA,
VCE = 10V,
IC= 20mA, f= 5 MHz
VCB= 10V,
'E =0,
f= 1 MHz
VEB=5V,
'C=O,
VCE = 10V,
IC = 5 mA,
f = 1 kHz
25
25
3
3
n
NOTE 5: These parameters must be measured using pulse techniques. tw = 300 /1.&, duty cycle"" 2%.
thermal characteristics
PARAMETER
MAX
R8JC
Junction-to-Case Thermal Resistance
R8JA
Junction-to-Free-Air Thermal Resistance
35
175
UNIT
·C/W
switching characteristics at 25°C case temperature
PARAMETER
ton
Turn-On Time
toff
Turn..Qff Time
TEST CONDITIONSt
TYP
'B(1) - 10 mA, IB(2) = -10 mA,
See Figure 1
VBE(oft) = -4.3 V, RL = 2 kn,
0.3
IC= 100mA,
2.9
UNIT
/.IS
tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data
671
5-88
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
Von=S.7V
INPUT 0 V
-4.3 V
560
---r~90%
- - ~~
:.::J,~I 10%
I
~ ·il~
270 pF
t~f~~
f::r\.-
OUTPUT
300
90%
Von =S.7 V AT
INPUT MONITOR
NOTES: A. Vgen is a -30 V puis. (from 0 V) into a 60-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr C;; 15 ns, tf
<
15 ns, Zout
= 60 0, tw = 20 p.s,
~
10 M.G, Cin
<:
duty cycl. <: 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;; 15 ns, Rin
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.
11.5 pF.
•
FIGURE 1
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
VI
COLLECTOR CURRENT
CASE TEMPERATURE
100
0
"iii
II:
~
~c:
e
VCE =10V
90 TC = 25°C
See Note 5
SO
t--
70
i
l-
e
~
u"
50
~
40
"Eto
0
LL
"
~w
LL
30
~
/'
60
See Note 5
V
IS = 20 mA,lc=200 mA
I'-
1\
\
V
\
,
1
...... t:::::::
I
. IS = 4 mAo Ie = 50 mA.
I
2
4
710 20 40
100
Ic-Collector Current-mA
r-
IS - 0.5 mA,lc- 5 mA
1\
,
~
~
t:::f-- ~ ~
~
r- ,
\
20
oi
"....
IS = 10mA,lc= 100 m~ ~ ~
/f'
.s: . 10
-
r---
L I-'
V
400
1000
0.04I
-75
l
-50 -25 0 25 50 75 100 125 150' 175
T c-Case Temperature-° C
FIGURE2
FIGURE 3
NOTE 6: These parameters must be measured using pulse techniques. 'tw = 300 /Js, duty cycle <. 2%.
571
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-89
TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANa,STORS
TYPICAL 'CHARACTERISTICS
BASE-EMITTER VOLTAGE
vs
CAS," TEMPERATURE
1.0
I
VCE =2 V
0.9
>I
0.7
"0
>
0.6
2l
IC= 100 rnA-V
0.5 f-- IC=50 rnA
~
"
Ii!
0.4
I.
w
0.3
>
0.2
ID
~c=200rnA
t'--- hL --- r:::--- r---.
"i'--- r::t'---
"
S
.~
sej Notj 5 -
~ r:::::- r--.
I'---- I'--........... r:::::: t-=::
0.8
.........
i'-....
........
r---......
r-...
IC=5 rnA
ID
0.1
I
o
-75 -50 -25
0
25
50
75
100 125 150 175
Tc-Case Ternperature-OC
FIGURE 4
NOTE 5: These parameters must
be measured
using pulse techniques. tw
=
300 J.ls, duty cycle
< 2%.
MAXIMUM SAFE OPERATING AREA
10000
7000
TC <;25°C
4000
2000
1000
700
400
"-
200
~
D·C OPERATION
100,
70
40:
'\.
10
1
2N3439
1...11
20I
2
4
7 10
20
40
2N344O
~II
100
400
1000
V CE-Coliector·Ernitter Voltage-V
FIGURE 5
PRINTED IN U.S A
5-90
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
571
11 cannot assume any responsibility for any circuits shown
or represenl that they are free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3551, 2N3552
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·SPEED POWER SWITCH, ISOLATED COLLECTOR
FORMERLY IIX210, TIX211
• 40 Watts at 100'C Case Temperature
• Maximum res of 0.1 Ohm at 10 Amperes Ie
• Maximum VIE of 1.4 Volts at 10 Amperes Ie
• Maximum ton of 300 nsee
mechanical data
These transistors are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the
assembly process prevents sealed·in contamination. The approximate unit weight is 3.S grams.
'OUTLINE DRAWING
'ALL LEADS INSULATED FROM CASE
ALL DIMENSIONS IN INCHES
UNLESSOTHERWtSE
_ _.......
~_
SPECIFIED
9O":t5"
90":t5"
0.180 MAX.
•
TEMP. MEASUREMENT POINT
DIMENSIONS ARE IN INCHES UNLESS OTHERWISE SPECIFIED
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3551
2N3552
Collector-Bose Voltage .
115 v
140v
Collector-Emitter Voltage (See Note 1) .
60v
SOv
Emitter-Base Voltage
•(
7v
Continuous Collector Current .
• 0(
12 a
Continuous Bose Current •
• 0(
5a
Continuous Emitter Current. .
.-
I.~ -
See Notes 5 and 6
. OB
j
40
1
~
30
.,.~
20
~
10
:---
\
0 ••
'!
0.'
.~
0.3
i,
0.'
~
\
!£ "'8
t
'.
TC" 2s"'C
See Notes 5 and 6
~
0••
l!
•
vs
COLLECTOR CURRENT
1.2
Vee-1O V
TC" 2SOC
See Notes 5 and 6
50
~
COLLECTOR-EMITrE R
SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
0.2
;3
0.2
!
1l
0.1
>
0.01 0.02 0,04
0.1
0.2
0.4 0.7 1
0.01
0,04 0.07 0.1
0.02
Ic-Collector CUmlnt-A
0.2
0.'
0.01
0.7 1
0.Q2
0.04 0.010.1
0.2
0.'
Ie-Collector Current-A
'c-CoJlector Current-A
FIGURE 3
FIGURE 4
FIGURE 2
0.7 1
NOTES: 5. These parameters must be measured using pulse techniques. tw == 300 JJ,S, duty cycle'" 2%.
6. These parameters are measured with voltage-sensl"g contacts separate from the current-carrylng contacts and located within 0 .. 126
inch from the device body.
MAXIMUM SAFE OPERATING AREA
THERMAL INFORMATION
DISSIPATION DERATING CURVE
4
2
«I
0.7
~
0-4
1;;
"
U
~
S
-
~r::
0
.~
35
'"
0.
2N35B3
'=
C
fl
.s;
.
!l0
0.2
0.1
I
0.07
E
~240.
40
30
25
0
"
'6"
u
D-C Operation
TC = l00"C
2N3584
2N35B5
.g"
'\
liir~r
0.01
4
7
10
20
40
70100
u
0
15
E
E
"
10
::;:
I
5
.~
2N35851
10.02
~
r::
2N3583,
2N35R4
0.04
20
~
.t-
r--.r--.
'"
~
~
O
400
VCE-Collector-Emitter VOltage-V
o
25
50
75
100
125
T C-Case Temperature-0 C
FIGURE 6
FIGURE5
150
'"
175
200
PRINTED IN U.S.A
5-98
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
871
TI (annol assume any responsibility for any circuits shown
Dr represent thaI they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3713, 2N3714, 2N3715, 2N3716
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND SWITCHING APPLICATIONS
• 150 W at 25°C Case Temperature
• lOA Rated Collector Current
• Min f hIe of 30 kHz
• Min fT of 4 MHz
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
0525 R MAX
~oo "
0250
11- t
~=='O'OMAX
t
""
0188 R MAX
60TH ENOS
0875
MAX
OlA
...L........-
m:
o,312 MIN
0043
~
1.573 MAX
1~38DIA2lEADS
I
0 135 MAX ----1
h
-
,
~
0.675 1 177
0'6"55
I
... 4-
- - ' - , ,'- .
2-EMtTTER
'\
'
-.i
".'2.' ......._::T-0-\-I:-'-00205
)~
- ...0440
0420
SEATING PLANE
I - BASE
I
I
I
t~.161
•
D1A
0 lSI
\
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage .
*Continuous Collector Current .
Peak Collector Current (See Note 2) .
*Continuous Base Current.
*Safe Operating Region at (or below) 25°C Case Temperature.
*Cantinuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
*Operating Collector Junction Temperature Range.
*Storage Temperature Range
Lead Temperature J{, Inch from Case for 10 Seconds.
NOTES: 1.
2.
3.
4.
2N3713 2N3714 2N3715 2N3716
SOV
lOOV
SOV
lOOV
60V
SOV
60V
SOV
(
7V
>
(
lOA ----r>
<
l5A ----r>
4A
>
See Figures Sand 9
<
l50W
---~
4W
-----+>
+-----65°C to 200°C----+
+-----65°C to 200 oC----+
<
235°C
>
This value applies when the bose-emitter diode is open-circuited.
This yalue applies for tp = (t.3 ms, duly (yele :::::; 10%.
Derate linearly to 200°C case temperature at tbe rate of 0.855 W/deg.
Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.
*Indicates J£DEC registered dala
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-99
TYPES 2N3713, 2N3714, 2N3715, 2N3716
N..P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
•
2N3713
2N3714
2N3715
2N3716
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
TEST CONDITIONS
Co!ledor-EmIHer
See Note 5
VjlR)CEO Breakdown Voltage Ic'= 200 rnA, I. = 0,
VCE
=
30
V,
I.
=
0
Colledor Cutoff
lao
Current
VCE = 40 V, 1.=0
VCE - 80 V, VIE - -1.5 V
Va = 100 V, VIE = -1.5 V
Colledor Cutoff
ICEv
Current
VCE - 60 V, VIE - -1.5 V, Tc - HOoC
VCE = 80 V, VIE = -1.H, Tc = HOoC
Emitter Cutoff
VEa=7V, Ic=O
lEBO
Current
Vee - 2 V, Ic-l A,
See Notas 5 and 6
Static Forward
Current Transfer
Vee - 2 V, Ic - 3A,
Sea Notes 5 and 6
hFE
Ratio
VCE - 4 V, Ic -lOA, Sae Notes 5 and 6
VCE = 2 V, Ie = 5A,
See Notes 5 and 6
Base-EmiHer
VIE
Voltage
VCE = 4 V, Ie = lOA, Sae Notes 5 and 6
I. - 0.5 A, Ic - SA,
See Notes Sand 6
Coliedor-EmiHer
VCEj••I ) Saturation Voltage I. - 2A,
Ic -lOA, See Notas 5 and 6
Small-Signal
Common-EmlHer
Va = 10V, Ic = O.SA, f = 1kHz
hie
Forward Current
Transfer Ratio
Small-Signal
Common-Emitter
VCE = 10V, Ic = O.SA, f = 1 MHz
[hle[
Forward Current
Transfer Ratio
Small-Signal
Common-EmiHar
Forward Current
VeE = 10V, Ic = O.SA
fhfe
Transfer Ratio
Cutoff Frequency
Common-Base
f= 100kHz
Open-Grcuit
VCI = 10V, IE = 0,
Cobo
Output Capacitance
80
60
80
60
0_7
1
10
10
1
25
15
5
250
75
1
50
30
5
2
4
1
4
25
2S0
25
1
150 • 50
30
5
150
1.8
1.8
4
0.8
4
4
0.8
4
2S0
25
4
4
4
4
30
30
30
30
250
250
rnA
10
1
2
4
1
4
25
rnA
1
1
10
75
rnA
0_7
0.7
1
25
15
5
V
0.7
250
rnA
V
V
250
kHz
250
pF
NOTES: S. Thesl pGramelen must be measured using puisl techniques. tp = 300 p.s, duty cyd. ~ 2%.
,. These parameters are measured with yaltagl·senslng contacts siparat. from the currenl-carrylng contacts.
thermal characteristics
PARAMETER
(hc
(hA
Jundion·to{ase Thermal Resistance
Junction·to-Frae-Air Thermal Resistance
,
..
MAX
UNIT
1.17
43.7
deg/W
-Indicafes JEDEC ngisfered data
971
5·100
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3713, 2N3714, 2N3715, 2N3716
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
switching characteristics at 25·C case temperature
PARAMETER
I..,
toff
I
TEST CONDITIONSt
Turn·On TIme
Turn·Off TIme
I
I
Ic= 1 A.
11111 = 100 mAo 11(21 = -100 mAo
See Figure 1
VlElofq = -3.7 V.... = 20 n.
TYP
450
350
I
UNIT
I
ns
I
tVoltag. and (urrent values shown are nominal; oad values vary slighlly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
OUTPUT
820
•
INPUT o----
I
See Note. 5 and 6/
3.0
>
"
2.5
r-
.2'"
~
11
]
-
Ic: lOA
, 1_~ ~
2.0
II
-i
1.5
I
"I'l
'"I
w
>"'
o
-75
= 100mA
4
I
I
"
'"
E
V
~
=I B -0.5A,le- 5A
c
0.7
~,
0.4
a
0
~
./
.;
.IiI
0.2
00/ ~
la : O. 1 A, Ic: 1 A
-'I
0.1 E=_IB - 10
E
u 0.07
.-'
--
See Note, 5
ria,: 2 A',le: lOA
V>
t---
I'
~A,
Ie: 100 mA
.!
-0
u 0.04
I
ii
I I
-50
--
V
---
II
-f:F:
0,5 - I c
--
= 51
II:
1.0
7 10
FIGURE 3
FIGURE 2
I
4
A
0,02
;li
>u
-25
0
25
50
75
100
Te - Case Temperature - °C
125
150
0,01
-75
-50
-25
Te -
a
25
50
75
100
Ca.e Temperature _·C
125
150
FIGURE 5
FIGURE 4
NOTES: S. These parameters must be measured using pulse techniques. tp = 300 In, duly cycle :S 2%.
6. These parameters ale measured with yoltage-sensing contacts separate 'rom the currenl-carrying contacts.
971
5·102
TEXAS INCORPORATED
INSTRUMENTS
F"OST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3713, 2N3714, 2N3715, 2N3716
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
VI
vs
BASE-EMITTER RESISTANCE
..
9 1.2
'I~ = 30 mA
:F
.'"I
COLLECTOR-BASE VOLTAGE
500
See Note 5
I"-
u.
Q.
.2
~
0.8
i
~
..
::::
]
,
6
VIS.ICBO
'" VIS'ICE. at RSE = 1
n
"0
-c
300
.e-
200
o
0.4
"
Tc = 25°C
~
r-...
I'>,
~ i'-
I
]
U
..g
~
(l
'5
'" 0.6
f = 0.1 to 1 MHz
400 ~
.gI
"0
~
IIII
IEI= 0 1
Tc = 25°C
1.0
o
u"J 100
0.2
.~
~
6
Z
o
1
1k
100
10
RaE -
o
100 k
10 k
Base-Emitter Resistance -
1
Q
VCS -
4
7 10
20
Collector-Base Voltage -
FIGURE 6
40
V
70 100
FIGURE 7
•
MAXIMUM SAFE OPERATING REGIONS
2N3713,2N3715
2N3714. 2N3716
10
10
.
/
7 1-- Tc s 25°C
~
D-C Operation
I
tp = 1 ms, d
1:
tp = 0.5 ms, d
0.5 (50%)"
!l\ll
/
I
tp
S
I
c
0.3 (30%)
..!!
"0
0.7
_v
0.7
I
-~'
0.2
1
0.1
1
VCE -
4
7 10
20
40
Collector-Emitter Voltage - V
J--
tp = 1 ml, d
S
PIli
/
0.5 (50%)
S
0.3 (30%)/
V
/
tp = 0.25 ms, d " 0.25 (25%)
t==
J--
~
tp = 0.05 ml, d" 0.2 (20%)
0.4
0.2
MAX VCEO
.2
D-C Operation
~
u
0.4
L
lL
tp = 0.5 ml, d
~
u
I
2
~
~
U
0.05 ml, d" 0.2 (20%)
lJ!.
TC " 25°C
4
«
I
I
P\"I
tp = 0.25 ms, d" 0.25 (25%)/ 1/1
~
..!!
"0
S
7
I
/
4
«
~
u
l5
U
,
"\
0.1
70 100
MAX VCEO -
2
VCE -
4
7 10
20
40
Coll.ctor-Emitter Voltoge - V
70 lOG
fiGURE 9
FIGURE 8
NOTES: 5. This parameter must be measured using pulse techniques.
tp
= 300 P.5, duty cycle ::;; 2%.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·103
TYPES 2N3713, 2N3714, 2N3715, 2N3716
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMAffON
DISSIPATION DERATING CURVE
PEAK-POWER COEffiCIENT CURVE
175
3
0.7
1
'" '"
""[
.~
15 125
.~
~
Cl
100
75
0
"- ~
Q;
~
0
<>.
75
50
25
Te -
100
125
Case Temperature -
0.04
"
0.02
"
175
150
°C
FIGURE 10
200
SYMBOL DEFINITION
DEFINITION
SYMBOL
VALUE
UNIT
PTI" )
Average Power Dissipation
W
PTjmaxl
Peak Power Dissipation
W
OJ_A
Junction-fo·Free·Air Thermal Resistance
OJ-C
Junction-fa-Case Thermal Resistance
OC-A
Cose-ta-Free-Air Thermal Resistance
OC-HS
Cose-to-Heal-Sink Thermal Resistance
deg/W
OHS-A
Heat-Sink-Io-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
°c
TC
(ase Temperature
°c
TJla, )
Average Junction Temperature
TJlma,)
Peak Junction Temperature
K
Peak-Power Coefficient
tp
Pulse Width
tx
Pulse Period
~
<>.
~
o
0.07
"
~
25
I
-"
c
43.7
1.11
42.5
+
OHS-A
°c
:<:;
°c
See Figure 11
m.
m.
= 2.25 deg/W
l_e-tpiT
~
K =
/
tp ==
I-e -tf)ldT
//
~
".
~
0.01
0.02 0.04
0.1
Pulse width in ms
d
= Duty cycle
~
I r~~;T~1 ti7 clonr~ltll~I·4 m
ratio
0.2 0.4
4
Pulse Width -
tp -
710
20
ms
FIGURE 11
Equation No 1 - Application- d ( power dissipation
heat sink used.
PTI.. )
=
TJlov)-TA
OJ_C
+
OC-HS
+
OHS-A
for 25 °c ~ TC ~ 200 0 C,
as in figure 10.
Equation No.2 - Application: doc power dissipation,
no heat sink used.
deg/W
Example - Find PT(maxl (deSIgn limit)
OPERATING CONDITIONS,
OC-HS
r'1
'a 'cd
PTI.. ]
=
TJlov ) - TA
for 25 0 C ~ TA ~ 2oa·C
OJ_A
Equation No.3 - Application: Peak power dissipation,
heat sink used.
_
PTlm,,) -
TJ(maxl- TA
d (OC-HS
+
OHS.A)
+
K 0 J-C
for 25 °c ~ TC ~ 200 0 C
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTlmax)
=
Duty (ycle Ratio (tp/txl
d
~;
deg/W
deg/W
~ 200
200
-
0.U(UJ1)
0.1
0.07
I
'\
/
" ""
0.2
u"
I"\.
,;'/
0. 1251
C
·u"
E
'?
'"(UU)
0.4
50
o
~
0.50 (50%) Duty Cycle
§ 150
TJ{maxl-TA
d (}C_A
+
for 25 0 C ~ TA ~ 200°!
K OJ-C
Solution:
(From information supplied
From figure II, Peak-Power Coefficient
K = 0.11 and by use of equation No.3
with heat sink.'
TJlov ) (design limit) = 200 0 C
PTlm,,)
= 50 0 C
d = 10% (0.1)
Ip = 0.1 ms
=
d (OC-HS
+ OHS-A) + K 0J.c
TA
Prim,,)
=
200 - 50
0.1 (2.25)
0.11 (1.17)
+
= 424 W
PRINTED IN U.S A
5-104
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI (onnol aSsume any responsibility for any circuits shown
or represenl thai they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3719, 2N3720
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP501, TIP502
•
Max toff of 0.4 j.lS at IC = 1 A
•
3-A Rated Continuous Collector Current
•
6 Watts at 25°C Case Temperature
•
Min fT of 60 MHz at 10 V, 0.5 A
*mechanical data
.....
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
:::
3 COLLECTOR
•
AU DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
0 . 1 2 5 1 0 .200
3 LEADS
Q.iiii9
~DIA
SEATING 0.016
PLANE
I EMmER
ALL JEDEC TO-5 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage . . . . .
*Continuous Collector Current
*Peak Collector Current (See Note 2)
*Continuous Base Current . . . .
*Safe Operating Areas at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 SEconds
2N3719 2N3720
-40V -60V
-40V -60V
-4V
-4V
--3A_-10A_
_-0.5 A _
See Figures 3 and 4
-6W-lW-65°C to 200°C
-65~C to 200°C
_300o C _
1. "These values apply when the base... mitter diode is open~clrcuited.
2. This value applies for 1:w .. 0.5 ms. duty cvcle .. 10%.
3. Derate linearly to 200°C case temperature at the rate of 34.3 mWfC or refer to Dissipation Derating Curve, Figure 6.
4. Derate linearly to 200°C free-air temperature at the rate of 5.71 mWfC or refer to Dissipation Derating Curve, Figure 6 •
• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
NOTES:
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-105
TYPES 2N3719, 2N3720
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO
ICEV
ICBO
Breakdown Voltage
lEBO
hFE
•
VBE
VCE(sat)
IC=-20mA,
IB = 0,
VCE - -40 V,
VBE - 2V
VCE = -60 V,
VBE = 2V
Current
VCE - -40 V,
VBE - 2V,
TC= 150°C
VCE - -60 V,
VBE-2V,
TC - 150°C
Collector Cutoff
VCB= -40 V,
IE =0
Current
VCB- -60 V,
IE -0
VEB = -4 V,
IC= 0
Static Forward
VCE =-1.5V,
IC = -0.5 A
Current Transfer
VCE - -1.5V,
IC- -1 A
Ratio
VCE =-1.5V,
IC--l A,
IB- -100 rnA,
Ic=-l A,
Current
Base-Emitter Voltage
MIN
See Note 5
Collector Cutoff
Emitter Cutoff
2N3719
TEST CONDITIONS
MAX
-40
2N3720
MIN
MAX
-60
V
-10
-10
-1
-1
-10
-10
-1
20
See Notes 5 and 6
TC- -40°C
TC = -40°C to 1Oo"C
IB= -100 rnA,
IC=-l A,
T C = _40°C to 100°C
Saturation Voltage
IB - -300 rnA,
-1
180
15
25
rnA
IJA
rnA
180
16
-1.6
-1.6
-2.3
-2.3
-0.76
-0.76
-1.6
-1.6
V
See Notes 6 and 6
IC=-3A,
IJA
20
See Notes 6 and 6
IB--300mA,
IC--3A,
T C = _40°C to 100°C
Collector-Emitter
25
UNIT
V
TC = -40°C to 100°C
Small-5ignal
~fel
Common-Emitter
Forward Current
VCE =-10V,
'C= -0.6A,
f= 30MHz
VCB = -10 V,
IE =0,
f= 100 kHz
120
VEB =-0.6 V,
'C= 0,
f= 100kHz
1000
2
2
Transfer Ratio
Common-Base
Cobo
Open-Circuit
120
pF
1000
pF
Output Capacitance
Common-Base
Cibo
Open-Circuit
, nput Capacitance
NOTES:
6. These parameters must be measured using pulse techniques. tw "'" 300 /oLs, duty cycle < 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.126
inch from the device body.
*switching characteristics at 25°C case temperature
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
TEST CONDITIONSt
IC=-lA,
MAX
VBE(off) = 4 V,
RL = 120,
'B(l) = -0.1 A,
See Figure 1
'C- -1 A,
RL=120,
'B(l) = -0.1 A,
See Figure 2
'B(2) = 0.1 A,
UNIT
0.1
IJS
0.4
'tVoltage and current values shown are nominal exact values vary slightly with transistor parameters.
"'JEDEC registered data
1271
5-106
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N3719. 2N3720
P-N-P SILICON POWER TRANSISTORS
*PARAMETER MEASUREMENT INFORMATION
-12V
INPUT
OUTPUT
--.ltr_
loon
I
INPUT 0-....",.,..-+-1
I
I
OUTPUT
~
90%
10%
TEST CIRCUIT
•
VOLTAGE WAVEFORMS
FIGURE l-TURN-ON TIME
-12V
12
n
OUTPUT
INPUT
loon
0-""",..,...,1--1
IN916
+3V
TEST CI RCUIT
VOLTAGE WAVEFORMS
FIGURE 2-TURN-OFF TIME
NOTES:
The input waveforms are supplied by 8 generator with the following characteristics: tr <; 10 ns, tf C;;; 10 ns, Zout'"" 60
tw = 10 "s, duty cycle .. 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;; 6 ns, Rin;iirl 10 k.o, ein <; 11.5 pF.
c. Resistors must be non inductive types.
B.
.n.,
d. The d-c power supplies may require additional bypassing in order to minimize ringing •
• JEDEC registered data
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-107
TYPES 2N3119, 2N3120
P-N-P SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
2N3719
2N3720
-100
-100
TC"'; 25°C
See Note 7
-40
<{
-10
1-c
e:;
-4
... ... ...
r-...
\
u
'\
-1
(;
'0
2
-0.4
"0
u
tw 5 ps
50 pS7
/
1-c
e
:;
u...
,
\
\
"-
',,-
-0.04
"
2
-0.4
I
~
o
'"'
"
tw - 500)JS
-0.04 ~~tw 5ms
D-C Operation
tw -5 ms
I I I
-,
~
/ /
-0.1
r-t: D-C Operation'
r-
...,..
u
'i
/\ " \
'-,
"
\
-1
"0
tw =5 ps
=50 ps 7 /
...
-4
~
"
tw
-10
<{
/ / I Ltw = 500)JS~ \'
-0.1
-0.01
=
.....,
j
I
~
.,
tw
TC"'; 25°C
See Note 7
-40
\
\ I
~
-0.01
o
-5 -10 -15 -20 -25 -30 -35 -40 -45 -50
-10 -20 -30 -40 -50 -60 -70 -80
VCE-Collector-Emitter Voltage-V
VCE-Collector-Emitter Voltage-V
FIGURE 3
FIGURE 4
NOTE 7: Areas defined by dashed lines apply for nonrepetitiveRpulse operation. The pulse may be repeated after the device has regained
thermal equilibrium.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
3:
8
0
'';::;
7
I
c
'"
.~
is
Q)
I""
5
4
::J
C
'';::;
c
0
3
u
E
::J
E
'" '"
I~
.s:~ 0.8
o
~ 0.6
.~
'"
'"
0
25
50
75
""
c
.......
2
o
"-
::J
'x
Q.
1.0
Q)
:2:
I
I-
~
is
Rl/JC"'; 29.2°C/W
-
to.16101A
0i5i
'2 HOLES
0420
0 135 MAX --j ~
SEATING PLANE
I - BASE
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3771
2N3772
Collector-Base Voltage _
50 V*
100 V*
Collector-Emitter Voltage (See Nate 1)
50 V*
Vt(
1100
80 v*1
Collector-Emitter Voltage (See Note 2)
Emitter-Bose Voltage.
Continuous Collector Current .
Peak Collector Current (See Note 3) .
Continuous Base Current
Peak Base Cu rrent
Safe Operating Region .
Continuous Dissipation at (or below) 25°C Case Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature ),{, Inch from Case for 10 Seconds
40 V*
60 V*
5 V*
7 V*
30A*
20A*
~ 30A*--+
7.5A*
5A*
~ 15A*--+
See Figure l'
~150W*-+
-65°C to 200°C'
-65°C to 200°C*
~235°C*--+
NOTES: 1. These values apply when the bose-emitter voltage VBE = -1.5 Y.
2. These values apply when the base·emitter diode is open-circuited.
3. This value applies for a nonrepelitive pulse of any duration for the 2N3771, or of SOO-ms maximum duration for the 2N3772.
4. Derate linearly to 200 o ( case temperature at the rate of 0.8SS W/deg see figure 2.
"'Indicates JEDEC registered data
tTexas Instruments guarantees this value in addition 10 the JEDH registered volue which is also shown.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-109
TYPES 2N3771, 2N3772
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
* electrical characteristics at 25°C case te,"perature (unless otherwise noted)
VI.RICEO
(olledor Emitter Breakdown Vollage
ICED
(olledor (utoff Current
Ic•o
Colledor (utoff (urrent
ICEV
Colledor (utoff (urrent
Emitter Cutoff Current
lEaD
Static Forward Current
Transler Ratio
hF/l
•
Base-Emitter Voltage
VIE
VCE1••'1
Colledor-Emiller Saturation Vollage
h,.
Small-Signal Common-Emitter
Forward Currenl Transler Ratio
Smail-Signal Common-Emitter
Forward Currenl Transler Ratio
Ihlel
2N3771
2N3772
UNIT
MIN MAX MIN MAX
40
V
60
10
mA
10
2
mA
5
2
5 mA
10
10
5
mA
TEST CONDITIONS
PARAMETER
Ic = 200 mA,
VCE = 30 V,
VCE = 50 V,
Vca = SO V,
Vc • = 100 V,
VCE = SO V,
VCE = 100 V,
VCE = 30 V,
VEl = 5 V,
YE• - 7 Y,
VCE = 4 V,
VCE = 4 V,
VCE = 4 V,
VCE -- 4 V,
VCE = 4 V,
VCE = 4 V,
la - 1 A,
la = 1.5 A,
la = 4A,
la - 6 A,
I. = 0,
la = 0
la = 0
IE = 0
IE = 0
Vee = -1.5 V
Vee = -1.5 V
VIE = -1.5 V,
Ic = 0
Ic - 0
Ic = IDA,
Ic = 15 A,
Ic = 20 A,
Ic = 30 A,
Ic = IDA,
Ic = 15 A,
Ic = IDA,
Ic = 15 A,
Ic = 20 A,
Ic = 30 A,
See Note 5
VCE = 4 V,
Ic = 1 A,
1= 1 kHz
40
40
VCE = 4 V,
Ic
1= 50kHz
4
4
= 1 A,
Tc = 150°C
5
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Noles 5 and 6
15
15
60
60
5
5
2.2
Y
2.7
1.4
2
V
4
4
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 p,s, duty cycle .s;; 2%.
6. Thase parameten ore measured with vollage-sensing contacts separate from 'he (urrenl-carrying (ontads.
·'ndlcates JEDEC registered data
THERMAL INFORMATION
MAXIMUM SAFE OPERATING REGION
DISSIPATION DERATING CURVE
175
100
TC!::25°C
70
Nonrepetitive Pul~-
. .
..
....
40
«
I
i
,
2N3771
20
I
10
F
I
~
O-C Operation
i r==
~
I
~
tp =500m.
tp= 100m.
tp= 1 ms
r-- tp = 200~.
r-- tp = l00~.
7
VeE -
10
.
.~
0
i
J
~
"
r40
20
Collector-Emitter Voltage -
125
t
.
2N3771
2N3772
••
0
,
r--tp=40~.
11
I""'~
IX'S: ~ ~~
~
2N3772
u
150
].
'J,
'
"5I
1
100
75
""
"- t\..
"\
50
25
"
~Ve!= -L I
I
~ Te= 25°C
;g
See Notes 5 ond 6
~--~'-"rrnTr---r-'-IIIn~
-0.8
r- Is = 5 -+-I-HrtttH----+-t--HH-++H
r- Te = 25°C -++-t+tH----t--+-+-+++++l
6
Ie
See Notes 5 and 6
.~
-1.2
j
~
~ -1.0
'E
~ -0.8
1I
-1
l
I -1.4
;gt
A
YS
COLLECTOR CURRENT
-1.6
-7-10
COLLECTOR-EMITTER SATURATION VOLTAGE
ys
>
-2
FIGURE 3
BASE-EMITTER VOLT AGE
-1.8
""
-0.4 -0,7-1
FIGURE 2
-2.0
i'['
"'"
o
-0.2
~
.f
I'
20
-0.1
60
~
'I\.
u
•
. . r--.
100
I
"'.2V ' , ,
i
a
~
u
...
V~E
~
V
-0.6
t----t--t-++-I+l-H---+-+-+-H+lIH
~ -0.4
t---;--r-t-+Mttt---+-+-++Jt'-l-I+I
~
~
j..;'
'E
w
V
u
.!
-0.6
~
>~ -0.4
I
I -0.2 r---t--r-rrt+H~---r~~~~~
........ V"
-0.2
o
-0.1
-0.2
-0.4 -0.7 -1
Ie -
-2
-4
-7 -10
Ie -
Collector Current - A
Collector Current - A
FIGURE 5
FIGURE 4
NOTES: 6. These parameter. must be measured using pulse techniques. tp
= 300 p.s. duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
971
5-114
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N3789, 2N3790, 2N3791, 2N3792
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS
2N3789, 2N3791
-10
TC < 25°C
-7 -
I
-4
..:
I
C
r-r--
tp
-2
-1
r - - r-
tp - 0.05 ms, d < 0.2 (20%)
~
= 1 ms, d < 0.5 (50%) /
= 0.5 ms, d < 0.3 (30%)
1I
tp = 0.25 ms, d < 0.25 (25%); /11
2
-\1
tp
d
~ -0.7
1
I
I
I
1\
D-C OPERATION
(;
u
I
_v
-0.4
-0.2
MAXVCEO
-0.1
I
I
-4
-7 -10
-20
-40 -70 -100
VCE - Collector-Emitter Voltage - V
-2
-1
FIGURE 6
•
2N3790, 2N3792
-10
-7
..:
~
.g
~
/
D-C OPERATION
-2 -
tp
u
tp
=
-1
~
~
"
"\.
/
-4
I
C
~
TC < 25°C
-0.7
u
I
===
-
tp
tp
/
= 1 ml, d < 0.5 (50%)
/
= 0.5 ml, d < 0.3 (30%)/ /
= 0.25 mI, d < 0.25 (25%)
= 0.05 ml, d < 0.2 (20%)
~~.
v~
~-0.4
-0.2
-0.1
MAX VCEO
-1
-r--
I I I
-2
VCE -
-4
-7 -10
-20
-40 -70-100
Collector-Emitter Voltage - V
FIGURE 7
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·115
TYPES 2N3789, 2N3790, 2N3791, ,2N3792
P-"N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
175
0'7~~~~~~~~~~~~~~~~~
25+++IJU+l11i-4-+-+++l-!+++:~';1I'1~I-tt+ttHr---I
~
I
5
i'i
o
~O, 50
150
"" " ,
125
~
u
.;: 100
c!l
!S
a
i!
~
50
j
25
!iE
0,2
~
75
1.f.
I
~
t'\.
•
a
25
75
50
100
125
175
FIGURE 8
SYMBOL DEFINITION
SYMBOL
DEFINITION
'"
0, 02
'"
150
Te - ease Temperature - ·C
VALUE
200
~IEi~~$JI~
UNIT
W
PTlmo'l
Peak Power Dissipation
W
lIJ."
Junctlon-to-Fr.Af, Thermal lulstane.
43.7
dtg/W
lIJ•e
Junction-Io-Casa Thermal Resistance
1.17
dtg/W
lie."
(Gsa-to-Free-llr Thermal Rlsistance
42.5
dtg/W
lIe •Hs
(asl-to-Heat-Sink Thermal R,slstonte
dog/W
lIHs."
Heat-Sink-loaFr,,-Alr Thermal Resistance
deg/W
T"
Frtl·Air T.mperatur.
Te
Case T.mperatur.
TJlavJ
Average Junction Temperature
~
~200
°c
°c
°c
°c
TJ1ma'l
Peak Junction Temperature
K
Peak·P ..er Co.fflclenl
Ip
Pul.. Widlh
ms
t.
Pulse Period
ms
'0 103
~
I~
ril
o. 0b. 02 0,04
5" Figure'
TJ(ovl (design IImil)
T"
d
Ip
=
=
K = 1-. -tPld~
V
tp = Pulse width in m.
0,1
= Duty cycle ratio +!-ttI+--t
0,2 0.4
Pul •• Width -
7 10
4
20
ms
Equation No. 1 - Application: ck power dissipation,
heal sink used.
PT(avl
=
TJlavl - T"
lIJ•e
+ lIe •HS + lIHS."
for 25 °c ~ Te ~ 2OO0 C,
as in Figur. 8.
Equalion No.2 - Application: d·c pow" dissipation,
no he.' sink used.
PT{ovl
=
TJlavl-T" for 2SoC < T
lI J."
.
Equation No.3 - Application, Poak power
heat sink used.
PTlmax)
< 2OO 0 C
-,,-
~Isslpatlon,
T"
for
= d (lIe.HS +TJI""IlIH5-") + K lI u ;
UoC ~ Te ~ 2OO 0 C
Equation No.4 - Application, Peak power dissipation,
no heat sink used.
PT1muJ
=
TJI""I- T"
d lie."
+ KlIJ•e
for 2S o C ~ TA ~ 2OO0 C
Solulion.
Example - Frnd PTI""I (d.~gn IImltl
OPERATING CONDITIONS:
+ lIHS." =
I_e-tpl~
~L
t-H-Hillftt---1- d
Duty Cycl.'Ralio (IP/t,.)
lIC.HS
..o/l
rI
0,05
FIGURE 9
Average Power Dissipation
d
O,U(J~} _,~
tp -
'Tlav)
200
l-++HffiU
-lt--++++t7IS1"<---+-t-t++tttt--1
0.07
0,07
0.1
1 0.04
I
o
(50%) Duty Cycle
0. 4 1-0+,
I,
2.25 d.g/W (From llfonnalion .uppllod
with heal .ink.1
2OO0 C
From Figure', 'eak·Power Cotfflclenl
I = 0.11 and by us••f .quallan No. 3
PT{muJ
SOOC
= 10% (0.1)
= 0.1 m.
=
d (lIe.HS
+ lIfotS.,v + KIIJ.e
200-50
= 424W
0.1(2.25)
O.lI( 1.171
+
PRINTED IN U.S,A.
5·116
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX S012
•
DALLAS, TEXAS 7S222
.971
TI cannot assume any responsibility for any circuits shown
or represent that they Ofe free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
ID-I
c:<
,....,.
FOR POWER·AMPLIFIER APPLICATIONS
•
•
•
•
•
,...m
mtn
:::1S!!
150 Watts at 100°C Case Temperature
200 V, 300 V Rated Coliector·Emitter Voltages
Max VCE(sat) of 0.75 V at 10 A Ic
Max Thermal Resistance of 0.5 deg/W
Min fT of 10 MHz at 10 V,lA
~_I
ON
,...z
inl
i ...
j
om
n
*mechanical data
m
!:
ID
m
:II
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
i
ALL JEDEC TO·63 DIMENSIONS
AND NOTES ARE APPLICABLE
•
CASE TEMPERATURE MEA·
SUREMENT POINT IS UN·
DERSIDE OF FLAT SURFACE
WITHIN 0.125" FROM STUD
ALL DIMENSIONS AlE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3846
2N3847
.
300 V
400 V
Collector-Emitter Voltage (See Note 1) .
200 V
300 V
Collector-Base Voltage.
.
. .
.
.+-
Emitter-Base Voltage
10V-+
Continuous Collector Current .
.+-- 20A-+
Continuous Base Current .
.+-- IOA-+
.
Sofe Operating Region at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (or below) 100°C Case Tempe,rature (See Note 2).
See Figure 7
.+--150 W-+
Continuous Device Dissipc;rtion at (or below) 25°C Free-Air Temperature (5ee Note 3) . + - - .4 W - +
Operating Case Temperature Range .
.
.
.
. .
-65°C to 175°C
Storage Temperature Range.
.
.
.
. .
-65°C to 200°C
. +--260oC--+
.
.
.
Terminal Temperature ){. ~nch from Case for 10 Seconds
NOTES, I. These .alues apply who. Iho ba..·.mlll.r dlado Is .p••·circuit.d.
2.
Deralo 1I••a~y I. 175°C ,a.. lomp"aluro '" Ih••at••, 2 W/d.g.
3. Derail n.,arly to 175°C fr ..~alr temperature at the rate of 26.6 mW/deg.
·Indlmes JEDEC regislered dat.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-117
TYPES 2N3846, 2N3847
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
Vee - 3V,
I. -1.6A,
.2N3846 2N3847
MIN MAX MIN MAX UNIT
200
300
V
I. - 0, See Note 4
I. - 0
5
rnA
I. = 0
5
VIE - 0
2
VIE - 0
2
mA
VIE - 0, Tc - HOoC
10
VIE = 0, Tc = 150°C
10
Ic - 0
250
250
p.A
Ie - 5 A, See Notes 4 and 5 40 200
40 200
Ic = 10 A, See Notes 4 and 5 10
60
60
10
Ic - 10 A, Tc - -SSoC,
10
See Notes 4 and 5 10
V
Ie - 10 A, See Notes 4 and 5
1.2
1.2
Ic - lOA, See Notes hnd 5
0.75
V
0.75
Vee = 10V,
Ic = SA, I = 1kHz
SO
Vee = 10 V,
Ic= 1 A, 1= 1 MHz
10
Ve. = 10V,
Ie = 0,
PARAMETER
TEST CONDITIONS
VIBR)ceo Collector-Eminer Breakdown Voltage Ie - 200 rnA,
Va; - 200 V,
Collector Cutoff Current
Iceo
Vee = 300 V,
Vee - 300 V,
Vee - 400 V,
Collector Cutoff Current
lees
Va - 300 V,
Vee = 400 V,
Emiller Cutoff Current
Vea - 10 V,
Ino
Vee - 3 V,
Static Forward Current
Vee = 3 V,
hFe
Transfer Ratio
Vce - 3V,
•
Base-Emitter Voltage
VIE
Veelsat) Collector-Emiller Saturation Voltage
Small-Signal Common-Emitter
hie
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihlel
Forward Current Transfer Ratio
Common-Bose Open-Circuit
Cobo
Oulput Copadtance
NOTES: 4. Th." paramel." musl b. m.asured using pulse te,hnlqu". Ip
5. Thes. parameters
all
1= 1 MHz
250
SO
250
10
750
750
pF
= 300 p.s. duty ,yd. :0:; 2%.
measured with vollage-sanslng contacts separate from Ih. (urrent-carrying contacts.
thermal characteristics
(hc
8J.A
PARAMETER
Junction-to-Case Thennal Resistance
Junction-to-Free-Air Thennal Resistance
·Jndicatas JEDEC registered data
971
5-118
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
*switching characteristics at 25°C case temperature
PARAMETER
ton
tofl
TEST CONDITIONSt
Turn-On Time
Turn-Off Time
Ie - 10 A,
YBElolij """ -7.5 Y,
IBlll - 2 A,
18(21 - -2 A,
lit. = 15 n,
See Figure 1
tlls•• emitter volta" and colledor cu,rent values shown are nomlnalj exad values vary slightly with transistor param.t.rs.
*PARAMETER MEASUREMENT INFORMATION
tr
....-------1COJ OUTPUT
10 /LF
Adjust
INPUT
amplitude
of input
~ (l-=
pulse
for1811l=2A
V88=7.SV
Adjust for
18\21 = -2 A
•
POINT "A"
TEST CIRCUIT
,-----"L9O%
POINT "AU
----i-
1'--_ _
10%
I
ton... j4'"
I
j4-toff-!
1O%
~
I
OUTPUT
90%
VOLTAGE WAVEFORMS
FIGURE 1
NOTES, •• Th. wa.efarm 01 poinl "A" has Ih' faUowing charGelerislics, t, ~ 100 ns, If ~ 100 ns, tp
=
20 p.s, duty cycle ~ 0.2%.
b. Waveforms an monitored on an oscilloscope with the following characteristics: tr ::;: 5 ns, Rin ;::: 1 MO, (in ~ 5 pF.
e:. Resistors must be nonlnductlve types.
d. Th. d·c power supplies rna, require additional bypassing in ord.r to minimize ringing.
~
~ )( .ss·C11
I'
r\
~
1\
1,\
I~
,L.. ~c~
.. '"
•
I
30
;-
20
~
....
10
o
0.1
0.2
0.4
4
0.7 1
Ic- Collector Current -
7
10
20
A
FIGURE 2
COlLECTOR-EMITTER SATURATION·VOLTAGE
BASE-EMmER VOLTAGE
vs
vs
>
1.0
I
.
'"
.l!
0.8
~
!
~I
..............
.............
..........
.
~
Ic
VJE=3~
J1S4
~
--- -
-..!C=S4
.........
0.6
~
~ ""'.........
...
>
0.4
-- ..........
.......... ........
0.2
0.4
f-I~ = 2.1 A, I~ = ISlA
f..-.T
\
Ir = I.~ A,
0.2
i
:t:
:G
I
j
-
See Note. 4 and 5
0.7
I.
See Notes 4 "nd 5
iii
'""
CASE TEMPERATURE
CASE TEMPERATURE
1.2
18
=0.5 A,
\c = lOA_ f--
IC
- -.:.;.....
!
=5 A
~
T
0.1
==
--
0.07 f:=:18 - O. I A, IC - I A
;j
I
0.04
ii
0.02
;i;
~
o
-75 -50
-25
Te -
0
25
50
75
Cose Temperature -
100
125
150
0.01
-75
-50
·C
-25
o
25
50
75
100
125
150
TC - Co.. Temperoture _·C
FIGURE 4
FIGURE 3
NOTES: 4. These parameters must be measured using puisl techniques. tp = 300 p.s, duty cycle :::; 2%.
5. These parameters art measured with YOUagl.sensing conlads separate from the current·carrylng contacts.
971
5·120
TEXAS INCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3846, 2N3847
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
v.
NORMALIZED COLLECTOR-EMmER BREAKDOWN VOLTAGE
v.
COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE
BASE-EMITTER RESISTANCE
REVERSE BIAS VOLTAGE
3500
I'I~
I""'--
3000
...
"
II
~
= 10'm'1'
Tc = 25°C
See Note 4
~ 1':6012 1
(':1
~
Tc
=25·C
~~ q;
I....
2500
0.
....
f-l MHz
2000
c
2
t
I
1500
13
1000
Lo.
11
.~
~
l
0.2
n
BR c
o f- ~IBil,C,ift,," "'I 1 ,,~~
10
Rae -
-..... ~~O)
500
RBj =1
~~
100
1
o
Base-Emitter Resistance -
4
1
10000
1000
Q
10
20
Reverse Bias Vol toge FIGURE 6
FIGURE 5
1I
40
V
70
100
•
MAXIMUM SAFE OPERATING REGION
100
70
Tc" 100·C
40
20
«
I
~
~
i'.." ...
10
7
4
5
2
C5
1
0.7
0.4
D-C OPERATION- V
u
U
..!
'0
u
I
tp = 1 ms, d = 0.5 (50%)
tp =0.3 ms, d -0.1 (10%)
'\.\
0.2
~
11111
_u 0.1
0.07
MAX VCEO 2N3846
0.04
MAX VCEO 2N3847
0.02
,
.....
I""
0.01
1
2
4
7 10
20 40 70100 200 400
VCE - Collector-Emitter Voltage - V
1000
FIGURE 7
NOTES: 4. Thl. paramttor mu.t ba m,a.ur,d .,jng pulsa techniques, tp
= 300 p.', duty eyd, :..; 2%.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·121
TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWEll TlANSISTORS
THERMAL INF,ORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~
I
c
.2
150
.,
125
~
~
100
75
C
0
u
~
50
g
•
25
I
0:-
.!!!
u
o
100
75
125
Tc -
150
Case Temperature -
0.2
ff
I
II
~
0
U
~
O. I
~
0.07
-'"
c
~
0.04
~
E
~
c
"I'"
'" '\
I
~
~
0.4
I'"
8.
."
is
PEAK-POWER COEFFICIENT CURVE
175
'"
0.02
Q.O~
ta·QZ~
~V
()./
tp =
Pul se width in ms
d
Duty-cycle ratio
=
0.01
175
I
O. I 0.2 0.4
tp -
O(
FIGURE 8
2
4
7 10 20
Pulse Width - ms
100
FIGURE 9
SYMBOL DEFINITION
SYMBOL
DEFINITION
VALUE
UNIT
PT(avl
Average Power Dissipation
W
Primal)
Peak Power Dissipation
W
(hA
Junction-fo-Free-Air Thermal Resistance
37.5
deg/W
(h-c
Jundion-to-Case Thermal Resistance
0.5
deg/W
8C_A
Case-ta-Free-Air Thermal Resistance
37
deg/W
He-Hs
Case-to-Heat·Sink Thermal Resistance
d,gJW
8HS.A
Heat-Sink·to-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
Equation No.1 - Application: d·c power dissipation,
heal sink used.
TJlavl-TA
Tc
Case Temperature
TJlavl
Average Junction Temperature
TJlm,nl
Peak Junction Temperature
K
Peak-Power Coefficient
I,
Pulse Width
S 175
S175
°c
°c
°c
°c
See Figure 9
m,
m,
Pulse Period
"
= --8:-J-.c-+-;--:-8c-.-H,-+-;--:8-H,-.A-
Pytav)
for l00 0 C S Tc
S
175 0 C
as in Figure 8
Equation No.2 - Application: doc power dissipation,
no heot sink used.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
Prlmax)
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PYjmaxl
Duly·Cycie Rali. (1,/t.)
d
Solution:
Example - Find Prlmax) (design limit)
OPERATING CONDITIONS,
OC-HS
+ 6HS.A =
From Figure 9, Peak·Power Coefficient
2.S degjW (From information supplied
with heal sink.)
T"", (design limit) =
I(
= 0.10S and by use of equation No.3
PTlmexl
175°C
TA = 50°C
d = 10% (0.1)
Ip = 0.1 m,
5·122
40
d (8e.Hs + 8H'.A)
+ K 8J.c
175- 50
--,--,-----= 413 W
0.112.5) + 0.105 (0.5)
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
PRINTED IN U.S.A.
TI (annal aSSume ony responsibility for any circuits shown
represent thol they ore free from paten I infringement.
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 2N3902
N-P-N SILICON POWER TRANSISTOR
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
*mechanical data
•
100 W at 75°C Case Temperature
•
400 V Collector-Emitter Off-State Voltage
•
Min V(BR)CEO of 325 V
=1 A
•
Max toff of 1.7p.s at IC
•
Typ VCE(sat) of 0.25 V at IC
•
Typ fT of 5 MHz at 10 V, 0.2 A
= 2.5 A
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
Ao
o.m •
02s0
"'AX
0
~
0.188 R
10S0 "'AX
j
ro
M1N~
I I~DIA' LOADS
-1
1 573 MAX
•
'
~~~£::"-=r
-0~~~
~Ut===
MAX'~--=== I t--;
BOTH ENDS
312
0.135 MAX -j
0205 0440
-,- I
['4'20
0.200
SEA TlNG PLANE
1 ~BA5E
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
* Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage
'Continuous Collector Current
'Continuous Base Current
Safe Operating .A.rea at (or below) 7SoC Case Temperature
'Continuous Device Dissipation at (or below) 7SoC Case Temperature (See Note 2)
Continuous Device Dissipation at (or below 2SoC Free-Air Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
400 V
SV
2.S A
1A
See Figure 6
100W
4W
180 mJ
-6SoC to 1S0°C
-6SoC to 200°C
300°C
1. This value applies only when the collector-emitter voltage is applied with the transistor in the off-state and the base-emitter diode
is open-circuited or reverse-biased. In operation, the limitations of Figure 7 must be observed.
2. Derate linearly to 1500 C case temperature at the rate of 1.33
C.
3. Derate linearly to 1500 C free~air temperature at the rate of 32 mwt C.
4. This rating 15 based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 40 mH, RSB2 = 3 kil,
VBB2 ~ 1.5 V, RS ~ 0.1 .n, VCC ~ 50 V. Energy"" IC 2 L/2.
wt
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-123
TYPE 2N3902
N-P-N SILICOti POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP MAX UNIT
Collector-Emitter Breakdown Voltage
IC= 100 rnA,
ICEO
Collector Cutoff Current
VCE = 400 V, IB -0
0.25
rnA
ICEV
Collector Cutoff Current
VCE -400 V, VBE - -1.5V
0.25
rnA
0.5
rnA
lEBO
Emitter Cutoff Current
5
rnA
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter Forward
hel
fhfe
NOTES:
IB =0,
See Note 5
325
V
VCE -400 V, VBE - -1.5 V, Tc = 125°C
hFE
VCE(sat)
•
MIN
V(BR)CEO
Current Transfer Ratio
Small-Signal Common-Emitter Forward
Current Transfer Ratio Cutoff Frequency
VEB - 5 V,
IC-O
VCE-5V,
IC= 1 A.
See Notes 5 and 6
30
VCE-5V,
IC = 2.5A,
See Notes 5 and 6
10
IB-0.5A,
IC-2.5A,
See Notes 5 and 6
1
2
IB - 0.1 A,
IC-l A,
See Notes 5 and 6
0.2
0.8
IB = 0.5A,
IC= 2.5A,
See Notes 5 and 6
0.25
2.5
VCE = 10V,
IC = 0.2 A,
f = 1 MHz
VCE=12V,
IC=0.2A,.
See Note 7
90
V
V
5
40
kHz
5. These parameters must be measured using pulse techniques. 'tw = 300 JJS, duty cycle'" 2%.
6. These parameters are measured with voltage..-senslng contacts separate from the current-carrying contacts and located within
0.125 Inch from the device body.
7. fhfe Is the frequency at which the magnitude of the small-signal forward currant transfer ratio is 0.707 of Its low-frequency value.
For this device, the reference measurement Is made at 1 kHz.
thermal characteristics
PARAMETER
MAX UNIT
R8JC
Junction-to-Case Thermal Resistance
R8JA
Junction-to-Free-Air Thermal Resistance
0.75
31.25
°CIW
*switching characteristics at 25°C case temperature
PARAMETER
tr
Rise Time
ts
Storage Time
tf
Fall Time
TEST CONDITIONSt
IC=1 A,
IB(l) =0.1 A,
VBE(off) = -5 V,
RL=125Sl,
IB(2) = -0.1 A,
See Figure 1
MAX UNIT
0.8
~
-2!.-
ps
0.8
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters .
• JEDEC regIstered data
1271
5·124
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPE 2N3902
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION
OUTPUT
INPUT
32V __ .~90%
500
OV
J
I
10%
_tonr-
:1'-
INPUT
...... toff ~
~~
10%r-90%L-..;
OUTPUT
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. The Input waveform is supplied by 8 generator with the following characteristics: tr ~ 20 ns, "tf.:s:;; 20 ns, Zout = 50 fl, tw = 5
duty cycle .. 5%.
B. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 20 ns, Aln;;a. 100 kG, Cln" 50 pF.
C. Resistors must be nonlnductlve types.
",,5,
•
D. The d-c power supply may require add1t1onal bypassing In order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
.....-I
INPUT
VOLTAGE
01
I4--tw"2ms
~
COLLECTOR
CURRENT
+
500
VCC=50V-=ICMONITOR
0-1' i)------t' i)-
VIBRICEv-l--
I
I
I
COLLECTOR
VOLTAGE
RS=0.10
VBBl = 10V
r
~
I
I
~ lOOms
3A-:-~----- T~~--
- 5 V - t i 100ms
I
-----1-
I
I
I
50V
VCElsatl-
TEST CIRCUIT
NOTES:
A. L 1 is. 40-mH inductor.
S. Input pulse width is Increased until leM
=3
VOLTAGE AND CURRENT WAVEFORMS
A.
FIGURE 2
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 752::::!2
5-125
TYPE 2N3902
N-P-N SILICON POWER TRANSIS10R
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
'00
i
~
vs
vs
vs
COLLECTOR CURRENT
CASE TEMPERATURE
CASE TEMPERATURE
'.2
IIII
VeE- 6V
See Notes 5 and 6
1111
80
~
,..
1.lj50·C
.. ~
1 . llill
iI
•!
d
ITC~
~
,
1
I'\..
1\\\
:
TCI~1 5&.C
~
20
Tnll
0.04 0.07 0.1
"-
t--
0.8
Ii
QA
0.7
-76 -60 -25
1
0
26
0.3
'B.~
0.2
1
0.2
~
jNj'6!,'di
0.2
0.6
OA
;
OA
60
6
5
A.,
0.6
~
•
ScI No
0..
~
--
0.8
0.8
i
r- H-Ut,r;;:-- r-
f..-
V V
f..- l-
~'A
I II I
0.'
-75 -60 -26
7& 100 125 160 1715
...-
0
25
75 100 126 160 175
!IO
Tc-c...T.m~l'81ura-"C
'c-Collector Current-A
FIGURE 3
•
,
,I. _016At J.. AI
'S"'O,1 A,lc ..
11111
NOTES:
COLLECTOR-EMITTER
SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
FIGURE4
FIGURES
5. These parameters must be measured using pulse techniques. tw = 300 fJs, duty cycla '" 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current.-carrvlng contacts and located within
0.126 inch from the device body.
MAXIMUM SAFE OPERATING AREA
THERMAL INFORMATION
DISSIPATION DERATING CURVE
120
10
D-C Operat ion
TC'; 7SoC
7
4
~c:
.2
1;;
1
2
~
0.7
0.4
_u.,!5
8I
!:J
1\
"'~
is
!l
1
o"
100
·i
80
.~
0
0
"
c:
0
\.
0.2
"
\
0.1
0.07
~
60
.~
0
0
40
""'~
E
E
."
.j(
0.04
0.02
0.01
10
20
40
70100
200
II
~
II
.t
400
700 100
'" "'
"-
20
I
o
70
80
90
100
110
120
130
V CE -Collector-E mitter Voltage-V
Tc-Cese Temperature-OC
FIGURE 6
FIGURE 7
~
140
PR'NTED 'N
5·126
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
150
u.s A
1271
TI (onno' assume ony responsibility for any circuih shown
or represen, ,ho, they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES' AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
fOR HIGH·SPEED POWER SWITCHING APPLICATIONS
•
•
•
•
30 W at 100·C Case Temperature
Isolated·Stud Package (2N3996, 2N3997)
Max VCE(sat) of 0.25 V at 1 A Ie
Max ton of 300 ns at 1 A Ie
• Min It of 40 MHz
* mechanical data
r----------------------------------------.--------~
THE ACTIVE elEMENTS ARE elECTRICALLY INSULATED fROM THE CASE
10.32 UN,-2A
MAX STUD I'OIQUE:
151M-LIS
ALL JEDEC TO-111
DIMENSIONS AND
NOTES ARE
APPLICABLE
2N3996
2N3997
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~
10·32 UNf..2A
MAX STUO TORQUE,
'.".OA
MAX
Q,l7SNOM
(SEE NOTESA& I)
/0
-12N3998
2N3999
NOTES: A.
B.
(.
D.
E.
3_(:OLUCTOR
ALL JEDEC TO-ll1
DIMENSIONS AND
NOTES ARE
APPLICABLE
t
•
t
Position of terminals with respec' to hexagon is not controlled.
Terminals located on true position within 0,030 inch relative to diameter of (On.
This dimension applies to the locolion of the center line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
All dimensions are in inches unless otherwise specified.
*absolute maximum ratings at 25·C case temperature (unless otherwise noted)
Collector-Base Voltage
100V
Collector-Emitter Voltage (See Note 1)
BOV
Emitter-Base Voltage .
8V
Continuous Collector Current
5A
Peak Collector Current (See Note 2) .
lOA
Continuous Base Current.
lA
Safe Operating Region at (or below) 100·C Case Temperature
See Figure B
Continuous Device Dissipation at (or below) 100·C Case Temperature (See Note 3) _
.30W
Continuous Device Dissipation at (or below) 25·C Free-Air Temperature (See Note 4) _
2W
Operating Collector Junction Temperature Range _
-65·C to 200·C
Storage Temperature Range
-65°C to 200·C
Lead Temperature ){. Inch from Case for 10 Seconds _
230·C
NOTES: 1.
%.
3.
4.
This value applies when the base-emitter diode is open-circuited.
This value applies for fp ~ 1 ms, duty cycle ~ 50%.
Derate linearly to 200 o ( (ose temperature at the rate of 0.3 W/deg.
Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/deg.
·'ndicates JEDEC registered data.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·127
TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
* electrical characteristics at 25°C case temperature (unless otherwise noted)
Collector-Emitter
V1aR)CEO 8reakdown Voltage
Collector Cutoff
ICEO
Current
Collector Cutoff
ICES
Current
--Emitter Cutoff
IEao
Current
hFE
•
VBE
VCE1 ••t)
ihf.i
Cobo
Static Forward
Current Transfer
Ratio
8ase-Emitter
Voltage
Collector-Emitter
Saturation Voltage
Small-Signal
Common-Emitter
Forward Current
Transfer Ratio
Common-Base
Open-Circuit
Output Capacitance
2N3997
2N3996
2N3999 UNIT
2N3998
MIN MAX MIN MAX
TEST CONDITIONS
PARAMETER
Ic = 50 rnA,
la = 0,
VCE = 60 V,
la = 0
See Note 5
VCE - 90 V,
VCE - 90 V,
VEB - 5 V,
VEB - 8 V,
VCE - 2 V,
VCE = 2 V,
VCE - 5 V,
VCE - 2 V,
la - 100 rnA,
la - 500 rnA,
la - 100 rnA,
la = 500 rnA,
VaE - 0
VaE - 0, Tc - 150°C
Ic - 0
Ic - 0
Ic - SOmA
Ic = 1 A,
See Note 5
Ic - 5 A,
See Note 5
Ic - 1 A, Tc - _55°C, See Note 5
Ic - 1 A,
See Note 5
See Note 5
Ic = 5 A,
See Note 5
Ic - 1 A,
See Note 5
Ic = 5 A
VCE = 5 V,
Ic = 1 A, f = 10 MHz
Vca = 10 V,
IE = 0,
NOTE S: This parameter must be measured using pulse techniques:.l p
f = 1 MHz
= 300 Jls, duty cycle
~
80
V
80
10
10
5
5
50
0.5
10
50
0.5
10
30
40
15
10
0.6
120
1.2
1.6
0.25
2
4
60
80
20
20
0.6
ILA
ILA
ILA
240
1.2
1.6
0.25
2
V
V
4
pF
150
150
2N3996
2N3998
MAX
2N3997
2N3999
MAX
UNIT
0.3
1.5
0.3
2
ILs
2%.
* thermal characteristics
PARAMETER
(hc
(hA
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
*switching characteristics at 25°C case temperature
PARAMETER
ton
toff
Turn-On Time
Turn-Ott Time
TEST CONDITIONSt
Ic = 1 R,
VaElof~ =
lal'l = 100 rnA, la(2) = -100 rnA,
See Figure 1
-3.7 V, RL = 20 n,
tVoliage and (urrent values shown are nominal; exact values yory slightly with transistor parameters.
*Indicates JEDEC registered data.
971
5-128
TEXAS INCORPORATED
INSTRUMENTS
F'OST OFFICE BOX 5012
•
DALLAS, TEXAS 15222
TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*PARAMETER MEASUREMENT INFORMATION
r--_-----oOUTPUT
82 Q
INPUT
o--............M -....-H
+16V--~90%
20 Q
-I V
-:1-10%
.10%
82 Q
-
Ion
:LINPUT
I
r- -' rloff
I
OUTPUT
~
90%
IO%
TEST CIRCUIT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: o. Th. input waveform is supplied by a generator with the following [haraderls'in: Ir ~ lS ns, If ~ 1S ns, lout = SO 0, tp
dUly
See Note 5
2
.2'"
>
•
4
>
.2u
~
'0
u 0.04
I
§
0.2
0 :;--~:!;----;!::---:7'=5--:-::12'=5--~175
-75
-25
25
TC -- Case Temperature -
r---18 - 5 rnA, IC - 50 rnA
0.02
J O. Ot-75
,.,..
-
---~
-25
25
75
125
TC - Case Temperature _·C
°C
FIGURE 4
FIGURE 5
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESI STANCE
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE
700
Ie = 10 mA
TC = 25·C
See Note 5
600
~
500
LL
Q.
~ 400
u
f
"
V(8R)CBO
~
V(8R CER at R8E = 1 0
'"
Cib.(lC= 0
'\..
'"
1300
o
u
r-
100
1k
10 k
Base-Emitter Resistance - Q
f= 1 MHz
TC=25°C
'\
200
-......-.
100
10
R8E -
175
o
100 k
1
Cobo(IE = 0)
---....
2
r--
--
4
7 10
20
Reverse Bias Voltage - V
FIGURE 6
40
70100
FIGURE 7
NOTE 5, This param.ter must b. m.asured using pul" techniques, 'p
= 300 p.s, duly ,yd. ::; 2%.
971
5·130
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAS, TEXAS 715222
TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION
2N3996-2N3999
MAXIMUM SAFE OPERATING REGION
20 r------r--r--r-'T"'T""rrn---r----r--.-..........1""T"T1
Tc ~ 100°C
O. 21---+-+---j-t+t+t+_ MAX VCEO ;...c~+1
O. 1 L..----L.____L~.J..-L..w...u_
I
7
____LI----LI~.L..J..L..L.J.J
2
4
VCE -
Collector-Emitter Voltage -
10
20
40
•
70 100
V
FIGURE 8
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·131
TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
35
0
..
0
0
PEAK-POWER COEFFIC)ENT CURVE
0.711DUlmi
3:
I
l5
3
'iii 25
o
2
13
I\:'\
~
E
•
1i
'"
15
~
i
10'
I 11111
~ 0.2
"l
gc
0.50 (50%) duty cycleHt_+::p"~!#H--!-H-++!+H
.!
1\
u
~
0.4
1\'\
'i
5
tp = Pulse width in ms
f\
d = Duty cycle ralio
'\
I
~ 0
50
75
TC -
175
100
125
150
Case Temperature - ·C
T = Thermal time constant = 10 ms
200
2
SYMBOL DEFINITION
DEFINITION
AYlrage Power DIssipation
PTI""91
PTI....)
Peak 'ower Dissipation
VALUE
UNIT
W
(hA
Junctlon-Io-Fre.-Air Thermal Resistance
87.5
d.gJW
Junctlon-to-Case Thermal Resistance
d.g/W
(Je.A
Case-Io-Free-Alr Thermal leslslante
3.33
84.17
(Je.HS
(asl-to-Heal-Sink Thermal Resistance
d.g/W
(JHS.A
TA
Heat-Slnk-IOoFr"-Air Thermal Resistance
dag/W
·C
Te
(as. Temp'"'tur.
TJloV9)
TJlmo.)
K
Average Junction Temperatun
~200
·C
'eak Junction Temperature
~
·C
Ip
Pulse Wldlh
ms
Ix
Puis. ",Iod
ms
d
Duty Cyd. Ralio (1.lIJ
Fre...Alr Temperature
dag/W
·C
200
Se. Figure 10
Example - Find PTI...x) (dosign limit)
OPERATING CONDITIONS,
(Je.HS
OHS.A = 7 dag/W (From informal Ion supplied
with hoal sink.)
TJloV9) (design limit) = 2OO'C
TA = 50'C
+
d
Ip
TJlavg) - TA
PTlavg)
= (he
+ Oe.HS + (JHS.A
Equation No.2 - Application:
no heat sink used.
'Tlavg)
=
40
d~c
for 100°C:'; Te ~ 200°C
as in Figure 9
power dissipation,
TJlavg) - TA for 25'C < T < 2OO·C.
(JJ.A
- A-
Equation No. 4 - Application: 'aak powar diSSipation,
no heat sink used.
Solullon,
From Figure 10, 'eak·Power ( .."Ieienl
K = 0.103 and by use of equation No.3
PTlmuJ
TJlmax) -TA
= ---:--:-::--~~--:~-::-".-
d (Oe.HS
0.1 ms
PTI ....)
=
+ (JHS.N + K 0J.e
200-50
0.1 (7)
(0.103) 3.33
+
143W
PRINTED IN
5·132
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
10
Equation No. 3 - Application: '10k power dissipation,
heat sink used.
= 10% (0.1)
=
20
Equation No.1 - Applicalion: d·c power dissipation,
heat sink used.
W
(he
Peak-Power Coefficient
7 10
FIGURE 10
FIGURE 9
SYMBOL
4
Pulse Widlh -ms
Ip -
DALLAS, TEXAS 75222
U.S.A.
971
TI cannot assume any responsibility for any circuits shown
or represen' that they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPrlY"THE BEST PRODUCT POSSIBLE.
TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
FOR HIGH·SPEED POWER SWITCHING APPLICATIONS
• 15 W at 100°C Case Temperature
• Max VeE (sat) of 0.3 V at 0.5 A Ie
• Max ton of 300 ns at 0.5 A Ie
• Min f, of 40 MHz
* mechanical data
THE COLLECTOR IS IN ElECTRICAL
CONTACT WITH THE CASE
11
All lEDEC TO·5 DIMENSIONS
AND NOTES ARE APPLICABLE
All DIMfNSIONS ARf
IN INCHES
UNLESS OTHERWISE
SPEClfl~D
CASE TEMPERATURE IS MEASURED 0.144 INCH ±O.010 INCH DOWN FROM TOP OF CAN.
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N4000 2N4001
Collector-Base Voltage
IOOV 120Y
Collector-Emitter Voltage (See Note 1)
SOV IOOY
Emitter-Base Voltage .
+-SV ~
Continuous Collector Current
+-IA ~
Peak Collector Current (See Note 2) .
+-3A ~
Continuous Base Current.
+-O.5A~
Safe Operating Region at (or below) lOOoC Case Temperature
See Figure S
Continuous Device Dissipation at (or below) lOOoC Case Temperature (See Note 3)
+-15W~
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4) . +- I W-+
Operating Collector Junction Temperature Range.
-65°C to 200°C
Storage Temperature Range.
-65°C to 200°C
Lead Temperature ){. Inch from Case for 10 Seconds.
+- 230 0 C-+
NOTES: 1. These values apply when
2. This value applies for tp
3. Derate linearly to 200 o (
4. Derate linearly to 200 o (
• JEDEC registered data
the bose-emitter diode is open·drcuited.
.::;: 1 ms, duly cyde ::; 50%.
(ose temperature at the rate of 0.15 W/°c.
free-air temperature at the rate of 5.72 mW/°c.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX SOU
•
DALLAS, TEXAS 75222
5-133
TYPES 2N4000, 2N4001
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*electrlcal characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collattor-Emltter
VIlRlcEO Breakdown Vollage
•
Ic = 30mA, I. = 0,
ICEO
Colledor Cutoff Current
ICES
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Stalic Forward Current
Transfer Ratio
VIE
VCEllotl
Ihal
C-
2N4000
2N4001
UNIT
MIN MAX MIN MAX
TEST CONDITIONS
8ase-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal
Common-Emitter
Forward Current
Transfer Ratio
Common-Base
Open-Circuit
Output Capacitance
See Note 5
VCE = 60 V, I. = 0
VCE = 80 V, I. = 0
Vee - 90 V, VIE - 0
VCE - 110 V, VIE - 0
VCE - 90 V, VIE - 0, Tc = HOoC
VCE - 110 V, VIE = 0, Tc = HOoe
VEa - S V, Ic -0
Vg = 8 V, Ic = 0
VCE - 2 V, Ic-SOmA
See Note S
VeE - 2 V, I" - O_SA
See Note S
VCE - S V, Ic -1 A,
VCE = 2V, Ie = O.S A, Tc = -SS°(,
See Note S
I. - SO mA, Ic - o.s A,
See Note S
See Note S
I. - 100 mA, Ic - 1 A,
I. - SO mA, Ic = 0.5 A,
See Note 5
la - 100mA, Ic =1 A,
See Note 5
Ic = 0.5 A, f=20MHz
Vee = S V,
Vca = 10V, IE = 0,
NOTE S, Th... paramotlrs musl be mea.ured u.lng pullliechnique•• Ip
f = 1 MHz
= 300 PS. duly cycll
~
V
100
80
10
10
p.A
2
2
50
50
SOO
10
SOO
10
10
30
10
120
20
40
20
p.A
nA
p.A
120
15
10
1
1.2
0.3
0.5
2
1
1.2
0.3
0.5
V
V
2
60
60
pF
2%.
*thermal characteristics
PARAMETER
(hc
(hA
Junction-to·Case Thennal Resistance
Junction-to-Free-Air Thennal Rasislance
MAX
UNIT
6.67
175
deglW
MAX
UNIT
0.3
2
p.s
*swltchlng characteristics at 25°C case temperature
PARAMETER
t..
toff
Turn-On Time
Tum-Off Tim.
TEST CONDITIONst
11(,) - SO mA, 11(21 - -SOmA,
Ic - 0.5 A,
See Figure 1
VlEloIf) = -4 V, R,. = 20 n,
tVoitagl and currenl ,aluR shown are nominal; ..." ,.Iues
,.'y .lIghtly wllh Iran.I.IO, paramlllrs.
"IEDEC ",1.lered dol.
971
5-134
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
, - -.....----QOUTPUT
200 Q
20 Q
INPUTo--~~~~~~
~O
Q
.... TEST CIRCUIT
J
-0.4 V
•
1 1 90%
+20V--.
:L
10%
I
---+-Iton.....
INPUT
I
......,
I
toff ....
I
~~
10%,-90%L--.;
OUTPUT
VOLTAGE WAVEFORMS
FIGURE
NOTES: a. The input waveform is supplied by a generator with the following characteristics: tr ~ 10 ns, If ::; 10 ns, lout =
duly ,yeie :::; 2'Yo.
b. Waveforms
Ofe
SO 0, Ip
= 10 p,s,
monitored on an oscilloscope with the following characteristics: Ir ::; 15 ns, Rjn ~ 10 MO, (in::; S pF.
c. Resistors must be noninductive types.
d. The d·c power supplies may require additional bypassing In order to minimize ringing.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX SOU •
DALLAS. TEXAS 75222
5·135
TYPES 2N4000, 2N4001
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N4oo1
STATIC FORWARD CURRENT TRANSFER RATIO
2N4oo0
STATIC FORWARD CURRENT TRANSFER RATIO
v,
vs
COLLECTOR CURRENT
120
JJ
'a 100
""
~c
I! 80
0-
e
/'
60
1V
... 40
u
V
j
•
~ 20
V
V-
o
0.01
~
i-'"
)c !112S oC
See Note S
11125 0 C
0
l
iI!
~ \
0-
e
Tc = 7SoC
~
1
T~lll25°C
.f
~
\\
TC =-SsoC
0.2 0.4 0.7 I
0.1
0.02 0.04
IC -Collector Current-A
40
I
~
..<:
/'
V
V ""
Te - 2SoC
r\
+-'
1\
Te = -55°C
20
I-o
0.01
2
i'-
ffifC
...... ~
~
V
2
VI
~
-1111
60
~
~
10-"
VCE = 2 V
~ t-r-. See Note S
....,,1-'
80
:>
U
/
100
~
i'-
I---'
!-'-
..<:
l
VCE = 2 V
o
~
u
COLLECTOR CURRENT
120
t'"
~
[ 1111
0.02
0.04
O. I
0.2 0.4 0.7 I
Ie - Collector Current - A
2
FIGURE 3
FIGURE 2
COLLECTOR-EMITTER SATURATION VOLTAGE
BASE-EMITTER VOLT AGE
v,
vs
CASE TEMPERATURE
>
0.9
I
~
0.8
;
See
~ote 5
~ 0.7
6
i 0.6
~
~_ 0.5
•
], 0.4
.2
.! 0.3
..
>..
~
0.2 I-~--+-+--+-~--+-+--+--
O~~-~~-~-~~-~~--
-7S
-SO
-25 0
25
SO 7S 100
TC - Case Temperature - °C
125
ISO
I
\
\
1\
Is ~ 100jA,
1
0.2
"""-
Io.1 t--Ia
~
1-0..
0
-7S
-
Ie= I A
·1
I
-
_t-
,I
I s I SO miA, Ie SOO mA
20 mA, Ie - 200 moO
I
la - 5 mA, le- SO mA
-50 -25
0
25 50
75 100
Te - Case Temperature - °C
125
ISO
FIGURE 5
FIGURE 4
NOTE So These pa,amota.. must be mea,ured u,lng pulse 'ochnlq.... tp
= 300 p.s, duty ,yda =:; 2%.
971
5·136:
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
" 1.0
U
r-
J
I
!"
~
j
300
See Note 5
.....
O.B
:=
u..
a.
0.6
I
"uc
.... to-
[ 150
0.4
(l
100
0.2
V(BRle~?I""V(BRI~~'~lIat
Il
.~
-1.
= 0)
200
.2
.!
~
C;bo (Ie
I'
2
I
d
f= 1 MHz
Te = 25°C
"-i'...
250
Ii
]
,
350
Ic = 10 mA
Te = 25°C
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE
J1111'"
o
1
II
10
RBE -
IIII~
BE
~"IIIQ
50
11111111
o
1k
100
100 k
10k
Base-Emitter Resistance -
n
---
Cobo (IE = 0)
:-- ~..LIIII
4
2
1
~
7
~
10
20
Reverse Bias Voltage -
FIGURE 6
FIGURE 7
HOTE $: These parameters must h. measured using pulse techniques. tp
=
300 p,s. duty cyd. ~
2%.
40
V
70 100
•
MAXIMUM SAFE OPERATING REGION
4
,
-<
I
i
0.7
~
0.4
~
"
D-C Operat ion
tp - 1 ms, d - 0.5
I
~
tp
8 0.2
I I II
0.5 ms, d
1\
,
2
Te s 100°C
\
im
\
0.1 (10%)
~
.5
j
0.1
0.07
I
Max VCEO (2N4000
Max VeEO (2N4001)
2 0 . 04
III
0.02
1
2
veE -
4
7
I
10
20
40
Collector-Emitter Voltage -
70 100
200
V
FIGURE 8
971
TEXASINeORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·137
TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
PEAK-POWER COEFFICIENT CURVE
CASE TEMPERATURE DISSIPATION DERATING CURVE
16
~
I
8
\
:a
ll2
Ci
G
U
'>
"
0.7
1\
14
0.4
G
~
a~
8
C
(3
E
~
E
!I
j
6
0.07
0.1
~
0.04
~
\
2
~
I
100
125
75
Case Temperature -
ISO
°C
1_
~ ...
J 0.07.~1~fI~~~~~
Q.
J.
175
~
l-e -tpiT
;:: ~ K = -:1....::-.:....-t';"p7""'d-T
.+to
~
V
1.
00
~
r\
50
Te -
10%)
I'
_
4
25
gy
0.2
~
\
•!;
IIII
·u
\
0
VI.I
b.l~dl25%)1
C
1\
10
0.50 (50%) Duty Cycle
tp = Pulse width in ms
101
d = Duty cycle ratio
0.02
1
T = Th<;rmol time constant ,= 6 ms
0.0 ~~~~~~-u~,,__~~~~.I~~~
2
4
7 10 20 40
0.04 O. I 0.2 0.4
-"
200
tp -
Pulse Width -
SYMBOL DEFINITION
SYMBOL
'Tlovgl
DEFINITION
VALUE
UNIT
Average Power Dissipation
W
Peak Power Dissipation
W
'TI"""I
()J.A
Junctlon-Io-Free-Alr Thermal Resistance
175
d.gJW
()J.C
Junctlon-Io-Case Thermal Resistance
6.67
d.g/W
()C.A
Case-Io-Free-Air Thermal Resistance
168.33
d.g/W
()C.HS
Case-to-Heat-Slnk Thermal Resistance
d.g/W
d.g/W
()HS.A
Heat-Sink-Io-Free-Air Thermal Resistance
TA
Free-Air Temparature
Tc
(ase Temperature
TJlovgl
AYerage Junction
TJlmo'i
Peak Junction Temperature
°c
Equation No.1 - Application: doc power dissipation,
heat sink us.d.
,
_
Tlovgl -
fa, 100°C ~ Tc ~ 200°C
TJlovg) - TA
()J.C
+ ()C.HS + ()HS-A as in Figu,e 9
Equation No.2 - Application: d-, power dissipation,
no heat sink used.
,
_
Tlavg) -
TJlavgl - TA for 25°C ~ TA ~ 200°C
---;r;;:-
Equation No.3 - Application: Peak power dissIpation,
heat sink used.
°c
T~perature
<200
°c
<200
°c
K
Peak·Power Coefficient
Ip
'ulse Wid'"
ms
I,
'ul" 'erlod
ms
d
Duty Cycle Ralio (tp/t,)
Sa. Figu" 10
Example - Find PT(max) (design limit)
O'ERATING CONDITIONS,
()C.HS
()HS.A = 7 degJW (From infonnolion supplied
with h.ot sink.)
TJlavgl (design limit) = 200°C
TA = SOoC
d = 10%(0.1)
+
'p =
ms
FIGURE 10
FIGURE 9
Equation No.4 - Application: Peak power dlnip.'lon,
no heat sink used.
Solution,
From Figure 10, Peak-Power Coefficient
K 0.19 and by use of equation No.3
=
d (()C.HS
'Tlmo'l
1 ms
=
+ ()HS.A) +
200 - SO
0.1 (7)
(0.19) (6.61)
+
K ()J.C
= 76 W
PRINTED IN U.S A.
5·138
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS. TEXAS 75222
971
TI (onnot anume any responsibility for any circuits shown
or represent Ihat they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.
)
TYPES 2N4002, 2N4003
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
,. ~
'" ;:!
~c ~...Z ......
z
iii: z ,.
m
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
0
•
•
•
•
•
l>
-< ~ ~
:0 c
30·A Rated Continuous Collector Current
100 Watts at 100·C Case Temperature
Maximum V CE(sat) of 1.2 V at 30 A
Maximum VBE of 1.8 V at 30 A
Maximum t on of 1 p,s at 15 A
'"
co
::;;
'"
'"
!>'
...z
,.
0
co 0w
co
0
3:
l>
-<
:0
'"'"
*mechanical data
•
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
All JEDEC TO-&3 DIMENSIONS
AND NOTES ARE APPLICABLE
CASE TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF FLAT SURFACE
WITHIN 0_125" FROM STUD
ALL DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25·C case temperature (unless otherwise noted)
2N4002
Collector-Bose Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current .
Peak Collector Current (See Note 2)
Continuous Base Current .
Continuous Emitter Current
•
.
Safe Operating Region at (or below) 100·C Case Temperature
.
Continuous Device Dissipation at .(Clr below) 100·C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25·C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range .
Storage Temperature Range .
.
.
Terminal Temperature){, Inch from Case for 10 Seconds .
NOTES: 1.
2.
3.
4.
2N4003
100 V
120 V
80 V
100 V
• -+--- 8 V--+
. ~ 30 A--+
. ~ 40 A--+
. ~ 10A--+
. ~ 30 A--+
See Figure 7
_*-100 W----+. -+---4 W----+. -65·C to 200·C
. -65·C to 200·C
. *-230·C----+-
These v<1lues apply when the base-emitter diode is open-circuited.
This value applies for Ip ~ 0.3 ms, duty cycle::; loo/o.
Derate linearly to 200°C case temperature at the rate of 1 W/deg.
Derate linearly to 200°C free-air temperature at the rale of 22.9 mW/deg.
*Indicates JEDEC registered data.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·139
TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V{IIII)CEO Colleclor-Emitter Breakdown Voltage
ICEO
Collector Cutoff Curren!
ICES
Colleclor Cutoff Current
lEBO
Emitter Cutoff Curren!
Static Forward Current
Transler Ratio
Base-Emitter Voltage
VIE
VCE(sat) Colleclor-Emitter Saturation Voltage
Small-Signal Common-Emitter
hie
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihlel
Forward Current Transfer Ratio
hFE
I
Ic - 30 rnA,
Vee - 40 V,
Vee - 50 V,
Vee - 90 V,
Vee - 110 V,
VCE - 90 V,
Vee - 110 V,
VES - 5 V,
VES - BV,
VCE - 4 V,
Vee - 4 V,
Vee - 4 V,
Is - U,
Is - 0,
Is - 0
Is - 0
VIE - 0
VIE - 0
VIE - 0,
VIE - 0,
Ic - 0
Ic - 0
Ic - 30 A,
Ic = 15 A,
Ie - 30 A,
Ic- 30 A,
VCE = 4 V,
Ic = 1 A, I = 1 kHz
See Note 5
Tc - lSOoC
Tc - lSOoC
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Noles 5 and 6
Vee = 10 V, Ic = 1 A, 1= 10 MHz
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 fLs, duty cycle
~
2N4002
2N4003
UNI'
MIN MAX MIN MAX
80
100
V
2
rnA
2
1
1
rnA
2
2
100
100
p.A
rnA
50
50
10
10
20
80 20 80
1_8
1.8
V
1_2
V
1.2
30
30
3
3
2%.
6. These parameters are measured with yoltage-sansing (ontaetl separole from the currenl·corrying contacts.
*thermal characteristics
OJ_C
OJ_A
MAX
PARAMETER
Junclion-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
1
43.7
UNIT
deg/W
deg/W
*Indicates JEDEC registered data.
971
5-140
TEXAS INCORPORATED
INSTRUMENTS
post
OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR' SILICON POWER TRANSISTORS
*swltchlng characteristics at 25·C case temperature
PARAMETER
Ian Tum.()nTIme
loff Tum.()ff TIme
TEST CONDInONSt
Ie - 15A,
= -2 V,
V. lof~
111111 - 1.S A,I1I21 - -l.H,
... = 3 n, See Figure 1
tVoltege alld current ,,1_ shown are ".Inll; ,ud valulS vary slightly witit transistor p.ram,ten.
*PARAMETER MEASUREMENT INFORMATION
tr
r-----~~)
OUTPUT
IOILF
Adjust INPUT
~ Q-=
amplitude
of input
pulse
for 'Bill = 1.5 A
•
= -2 V
POINT "A"
P~NT"A"
~
I
0-
----;-
10%
I I
1.1
I-::'!,,",,",
,~« {
90%
VOLTAGE WAVEFORMS
FIGURE I
=
IIOTES, I. Tho lopll .Inlo.. a. ,.,•• "A" h...ho Ililowl .. ,hl,a"orl ••k., " ::s; 100 ", " ::s; 100 n., 'p
20 1", duly cyel.
b. Wanlorms a...... ltored an an osclnoscope .1...110 Ionawl.. ,h.,aelorls'i", " '::s; S n., Rin ~ 1 Mil, Cin ::s; 5 pF.
,. hsI.lGr. must .. n..lndadln .ypos.
d. Tho Ik POW" .uppllo, ..ay .....Ir. additi..al bypasslnl i.....or mlnlmlll 'inllog.
::s;
0.2%.
'0
·lndl,",1S lEDEC
",I"...
d do'".
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-141
TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
260
Te = 150°C
240
'"
200
~
t-
160
o
~
140
5
v
~
Te
120
"E
c
-
"
25°C
..... ~
100
~
See Notes 5 and 6
I'.
.....
180
~
\
~
80
.~
'5
v;
•
r~~ lllW~
220
0
''5
VCE = 4 V
.......
Te
if
= -55°C
-rrrII IIIIII
40
20
"'"
.,
\.
60
o
0.2
0.4
-........ ~
7
4
0.7'1
20
10
40
Ie - Collector Current - A
FIGURE 2
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
1.4
1.2
1.0
I
E
~
:u
::
]
~
I
~
~
II
!
Is = 30 mA, Ie = 300 mA
0.8
r- r---
0.6
r---
~
~
~
E
-l-.
- r-i--
--r-
§
-
'-5
5
I--.
0.4
]
-
I
(;
]
-
==Is
0.2
-
15 A
0.1
0.04
I
0.2
1.5 A, Ie
f...- V
I
0.07
::3
>'"
'P
~
o
"l-J
0.7
0.4
-
Is = 3 A, Ie = 30 A
~
~
See Notes 5 and 6
I
I
30A
I
~
>
Is = 1.5 A, Ie = 15A
>
Cl
4
See Notes 5 and 6
Is - 3 A, Ie
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
==:~}O m~,
-
Ie 1= 300 mA
0.02
~0.01
-75
-50
-25
TC -
0
25
50
75
Case Temperature -
100
125
150
-75
-50
-25
Tc
O(
0
-
25
50
75
100
125
150
Case Temperature - O(
FIGURE 4
FIGURE 3
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 IlS, duty cycle ~ 2%.
6. These parameters are measured with voltage-senSing contacts separate from the current-carrying (ontacts.
971
5·142
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
~ 12r-TTITITm-"OTImr-rrnnm-.,,~~~~
¥Ie = 10 mA
~
Te = 25'C
I
•
350 0
f
1.0~1-H-++H+-++~IoW::-+H+H+ll--+-H-;,:Setffie~N~o,:.:te;-;5m-Hll
Te
3000 ' "
r--..
Ic;
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE
f'.
2500
~ 0.8
C,b, (Ie
0-
I
o
g 2000
~
«; 0.6 f-1-+-1++H-lI-+++WiW--+I-++f+Hl--I-++1fffil1-I-+-1++Hl1
0)
=
0)
1'\.
U.
]
=
= 1 MHz
= 25'C
.2
~
11500
t
(l
]
, 0.41--H-I++Hl+-++++HIHI----f-I-H-I1+lI--+++H-lllI-H-I++I+ll
.
r,
~
Z
1000
C abo (IE
1~.lJ.IL. .L lI~J.- l J L. . L·I~ ~Iii
L-..LL.W11
[
10
RSE -
500
iiLilJ..lllL..Jlil'--LLlJ..WL]--Ll..lll.1llJ
lk
100
r----... 1"- t---'I--
10k
Bose-Emitter Resistance -
t-- t-
o
4
I
lOOk
7
10
20
Reverse Bias Yol toge -
(2
FIGURE 6
FIGURE 5
40
V
70 100
•
NOTE 5. These parameters must be measured using pulse techniques. tp = 300 f.ls, duty cycle::; 2'%.
MAXIMUM SAFE OPERATING REGION
100
70
40
<{
I
"E
~
u
a
u
20
=
-
1 ms, d - 0.5 (50%).~
0.3 ms, d = 0.1 (10%)
10
Iit--"=
Tc
~
100'C
r~
~
V
~
o-C Operation
4
TTTll
~
-0
u
MAX VCEO (2N4002)
MAX VCEO (2N4003)
I
_u
tp
tp
0.7
0.4
0.2
0.1
7 10
veE -
20
40 70 100 200 400 700 1000
Collector-Emitter Voltage -
V
FIGURE 7
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·143
TYPES 2N4002, 2N4003
N~P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
125
0.7
~
I
r:
io
0.4
100
1\
1\
1\
1,\
'iii
o
G
U
7.5
.~
o
~
g
.=
~
50
§
E
i
25
I
I
o
O.SO (50%) Duty Cycle
SO
100
75
125
150
175
7:
..
'u
0.25 (25%)
.
1 II
8
O.IO'()JJ)
&: 0.2
i
0.1
£I
0.07
~
-"
~
I
'"
0.04
-
1..-""
lI'
~
0.07
0.05
1-e-tpiT
0.03
K=
~
100"
~
0.02 0.01 I-,Y
d = Duty-cycle ratio
= Thermol time constant = 13 ms
T
0.010 . 1 0.2 0.4
III
I
tp -
PT(ovg)
VALUE
UNIT
W
43.7
d.gfW
Peak Pawor DI"lpa"..
Juncfion-to-Frll-Alr Thermal leslstance
OJ-C
JI.I1c1lon-to-Case Thermal Resistance
I
d.g/W
OC.A
Case·to-Fre.·lIr Th,rmal aeslstanc.
42.7
dealW
OC-HS
Case-t..Heat-Slnk nannal R,slstance
deg/W
H,al-Slnk-lo·Fr...Alr Th.rmal a"i.lanco
dog/W
OHS-A
TA
Frea-Air Temperatur.
°c
Tc
Case Temp.ratur.
°c
TJ(ovg)
Average Junction Temperature
<200
°c
TJ(mox)
Peak Junction Temperatun
~200
°c
Peak-Powlr (oefflclent
Pulso Wldlh
IDS
Ix
d
Pulso Porlod
IDS
'p
=
=
100
Pulse Width -m.
Equa"on No.2 - Appll,a"on, d·, powor dlssipa"on,
no hoal .Ink used.
,
Ylovg)
= TJ(ovv)-TA lor 2SoC < T ~ 2000C
0J-A
- A
Equa"on No.3 - Appll,a"on, P,ak power 11"lpalion,
hoal .Ink ur....
'Ylmul
=
TJlmo,)- TA
d (OC.HS
+ OHs-J + I
lor 100°C
OJ.(;
~
T < 200°C
C-
Equa"on No.4 - Appli,a"on, Poak power d1"ipatlon,
no hool .Ink us.d.
=
TJ!mox) - TA
d
BC • A
+ K BJ •c
for 2SoC < T
-
~
2000C
A
Solullon,
Exampl' - Find PYlmo,) (design limit)
OPERATING CONDITIONS,
d
40
EqUali .. Ho. I - Appll,allon: d·, power d1"lpa"..,
h,al .Ink u.....
PTlmul
Duly-Cyd, 10"0 (IP/I")
TJ (OV9) (de.ign limit)
TA = 50°C
20
See Figure ,
I
tp
+ OHS.A =
7 10
W
PTlmaxl
OJ.A
OC.HS
I 11111
FIGURE 9
FIGURE 8
SYMBOL DEFINITION
'DEFINITION
Av..ago Pow.. Dlsslpallon
I
4
TC - Case Temperature - ·C
SYMBOL
1-e -tp7dT
Ip = Pulse width in ms
V
200
r;-
2.5 d.g/W (From Inlorma"om .uppll'"
wllh hlO' .Ink.)·
= 200°C
From Figure 9, Peak-Power Coefficient
I = o. i and by USI of IqUlllon No. 3
PTlmul
10% (0.1)
PT(mul
0.1 m.
= d (OC-HS
=
+ 8H5-J + K0J-C
200-50
---=-:-:=--::-:---:-:--
0.1(2.51
+ 0.1(1)
= 428 W
PRINTED IN
5·144
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
u.s.A.
971
TI (onnol assume any responsibility for any drcuits shown
or represent that they are free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.
TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
20 A Rated Collector Current
40 WaHs at l00·C Case Temperature
a Maximum VCE(sat) of 1 V at 20 A
a Maximum VIE of 1.6 V at 20 A
a Maximum ton of 1 p's at 10 A
a
a
*mechanlcal data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
NOTIS,
_
.. ......--..ctiM
..........
A.
_
c.
-
D.
I.
..........,. ............. __ .........
and . . . .
_""'--Ift IhiI
Specified IecMI wldlh"" thI. . . . apply wlthilll
th"4~"""""'.
Contour fill pockq. h ............'" th.. a_.
DillleMlonl a... III inch.. uIII... elherwi..
*absolute maximum ratlnBs at 25·C case temperature (unless otherwise noted)
2N4004
Collector-Base Voltage. . . . . .
Collector-Emitter Voltage (See Note 1)
\.'
Emitter-Base Voltage . . . • . .
Continuous Collector Current. • . .
Peak Collector Current (See Note 2) .
Continuous Base Current. . • • •
Continuous Emitter Current . . . .
Safe Operating Region at (or below) 100·C Case Temperature
Continuous Device Dissipation at (or below) 100·C
Case Temperature (See Note 3). • . . • •
Continuous Device Dissipation at (or below) 25·C
Free-Air Temperature (See Note 4). . • . •
Operating Collector Junction Temperature Range.
Storage Temperature Range. . • . . . . •
Lead Temperature Ji'. Inch from Case for 10 Seconds •
.
NOTES, I.
2.
3.
4.
'(
2N400S
100V
120V
BOV
100V
+-- BV--+
+--20A--+
+--30A--+
+--10A--+
+--20A--+
See Figure 7
+--40W--+
+--1.2W--+
-65·C to 200·C
-65·C to 200·C
+- 230·C ----+
.he.
Thill .al... apply
Iho ......... 1110' diodo is ope."i"uil••
This .al.. appli" lor Ip ~ 0.3 ..., duly cy,1e ~ 10%.
Deralo 1i...,1y 10 2OD·C 'lSI ","p"al.re allhe rato" 0.4 W/d".
Do..10 1i••a,1y 10 BO·C "M..I, I........... allho ,alo ., 6.'7 roW/dol.
'I.dl,at.. JEDEC ,,,Islored dola.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-145
TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V,BR)CEO Collector-EmiHer Breakdown Vollage Ic - 30 rnA,
VCE - 40 V,
Collector Cutoff Current
ICEO
VCE - 50 V,
VCE - 90 V,
VCE - 110 V,
Colledor
Cutoff
Current
ICES
VCE-90V,
VCE - 110 V,
VEa - 5 V,
Emitter Cutoff Current
lEBO
VEa - 8 V,
VCE - 4 V,
Static Forward Current
hFE
Transfer Ratio
VCE - 4 V,
Base-Emitter Voltage
VCE - 4 V,
VIE
VCElII,) Colledor-Emitter Saturation Voltage la- 3A,
Small-Signal Common-Emitter
- -~CE = 4 V,
hie
Forward Current Transfer Ralio
Small-Signal Common-Emitter
VCE = 10 V,
Ihlel
Forward Current Transfer Ratio
I
HOTES: 5. These parameters must be measured using pulse techniques. 'p
la - 0,
la - 0
la - 0
VBE - 0
VIE - 0
VBE - 0,
VIE - 0,
Ic - 0
Ic - 0
Ic - 20 A,
Ic - 10 A,
Ic - 20 A,
Ic - 20 A,
See Nole 5
2N4004
2N400S
UNIT
MIN MAX MIN MAX
80
100
2
1
Tc - HOoC
Tc - HOoC
2
100
50
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
15
30
150
1.6
1
15
30
= 1 A, f = 1 kHz
30
30
Ic
= 1 A, f = 10 MHz
3
3
~
rnA
1
Ic
= 300 p.s, duly tydl
V
2
rnA
2
100
50
/LA
rnA
150
1.6
1
V
V
2%.
6. Thase parameters are measured with Yoltage--sensing (Ootads. The yolla.a-saDslng contacts an separate from currtll'-carrylng contacls.
*thermal characteristics
PARAMETER
() J.C
() J-A
JunCtion-lo-Case Thennal Resislance
Jundion-to-Free-Air Thermal Resistance
'Indica.IS JEDE( rogis'ered da.a.
971
.5-146
TEXAS.NCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*switching characteristics at 25°C case temperature
PARAMETER
ton Tum-On Time
toff
TEST CONDInONSt
Ie - 10 A,
la(1) - 0.8 A,l a(2) - -0.8 A,
VBeloff) = -1 V, lit. = 3 n, See Figure 1
Turn-Off Time
tVoltage and current valuls shown are nominal; exad values vary slightly with transistor parame.ers.
*PARAMETER MEASUREMENT INFORMATION
r------t<) } OUTPUT
INPUT~10 jLF 51 n
Adjust
amplitude
~n
af input
pulse
_
for IB(1) O.8A
=
=-1 V
Adjust for
I B (2)= -0.8 A
•
+
-=-
' - - - - - - - - - -.....t(l} POINT "A"
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: a.
b.
c.
d.
=
The input waveform at point "A" has Ih, fallOWing characteristics: 'r ~ 100 ns, If ~ 100 ns, Ip
20 ,.,.5, duty cycle::;: 0.2%.
Waveforms afe monitored on GIl oscilloscope with the following characteristics: I, ~ 5 ns, lin ~ 1 Mn, (in ~ 5 pF.
I.sistors must be noninductivI Iypes.
The doC power supplies may require additional bypassing in order to minimize ringing.
*Indicates JEDEC regislered data.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·147
TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
200
~
~
II II
fe 1=lllsl,~
160
ie
--1:
~
1!
~
-
80
.f
u
:2
V>
40
........
\
Tc = lOO'C
-.....,
-
Te = 25"<:
,.-
II
E -55.b
~
=
-'
II
w
I
-
II
-
120
~
u
VeE = 4 V
See Notes 5 and 6
.<:
o
0.2
........
II
0.4
0.7 1
2
7
4
10
20
Ie - Collector Current - A
FIGURE 2
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
CASE TEMPERATURE
1.8
Se!
1.6
>
I
1.4
~
'"
.2 1.2
"0
>
..
18
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
2A, Ie
4
Not~s 5 an~ 6
See Notes 5 and 6 -
--
120A
L1 A lie Jo A
"rI.
2
18
2 A, Ie - 20 A
18
lA,l e -l0A
0.7
0.4
~
~
~
:::
'E
w 0.8
I
S 0.6
'"
:j
-
............ I'---.
:::
'E
I. = 20 mA, Id = 200 mA
-- -----
"r- t""- "'-
0.4
0.2
0.2
";'
~
..!
0.1
0.07
"0
u
I
0.04
r--18 = 20 mA, Ie = 200 mA
], 0.02
w
u
o
-75 -50
-25
o
25
50
75
100
125
>
150
0.01
-75
-50
-25
Te - Case Temperature - ·C
o
25
50
75
100
125
150
Te - Case Temperature - ·C
FIGURE 4
FIGURE 3
971
5·148
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT
NORMALIZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
.
~
vs
BASE-EMITTER RESISTANCE
1.2
"
1.0
'"
E
> 0.8
c
""'"
"0
300
I
"u
0
~
"-"
2000
1000
1111111
~
"0
u 0.2
""
"0
.~
5
= 0)
Cl
0.4
U
z
C;bo(lC
&. 1500
:t:
E
1\
= 25°C
~
'u
.;;" 0.6
I
f= I MHz
TC
u.
0-
r-..
~
0
"
5
o~
2500
r...""
oX
]
REVERSE BIAS VOLT AGE
3500
Ic = 10 mA
Tc = 25°C
See Note 5
>e
I
AND OUTPUT CAPACITANCE
vs
0
"tBR)CBO ~ '{aR)C ER
at R8E
500
111111111 IIIIIIIII-j-IIIIIIII II
10
o
10 k
Ik
100
C (IE
f""... r..... 1"'-,...
= 0)
1
7
obo
= IQ
100 k
4
r-- t-10
20
Reverse Bios Voltage -
RaE - Base-Emitter Resistance - Q
FIGURE 6
FIGURE 5
NOTE 5: These parameters must be measured using pulse techniques. tp
=
40
V
70 100
•
300 p.s, duty ,yde ::; 2%.
MAXIMUM SAFE OPERATING REGION
100
70
TC
,
<
l00'C
40 I--tp - 0.3 ms, d = 0.1 (10%)
-<
20
~
10
7
1"0- ~
u"
2
j
'0
4
D-CIOr"Ti
2
n 110..
"
II
u
I
1\
~I'
tp - 1 ms, d =0.5 (50%)
.Y 0.7
0.4
III
MAX VCEO (2N4004)
0.2
0.1
,
1'\
I
MAX VCEO (2No4OO51
1
2
4
VCE
7 10
20
40 70 100 200
400
1000
- Collector-Emitter Voltoge - V
FIGURE 7
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-149
TYPES 2N4004, 2N4005
N..P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
so
PEAK-POWER COEFFICIENT CURVE
0.7
~
O.SO (50%) Duly Cycle
I
.2
i
1\
°ia
15
.
u
J
30
20
.
·u
~0
•
25
so
75
Te
100
1\
125
£I
ISO
-"
~
0.10I(l~%
I
0.07
0.04
><
\
175
--
DEFINITION
o. I
UNIT
W
W
(JJ_A
Junction-ta-Free-lir Thermal Resistance
146
deg/W
(JJ-C
Junction-fa-Case Thermal Resistanc.
2.S
deg/W
(JC-A
Case-Ia-Free-Air Thermal Resistance
143.5
deg/W
(JC-HS
Case-to-Haal-Sink Thermal Resistanc.
deg/W
(JHS-A
Heat-Slnk-t.Free-Air Thennal Resistance
deg/W
TA
free-Air Temperature
Te
Case Temperatur.
TJI..;)
Average Junction Temp.ratura
S; 200
°c
TJlma,)
Peak Junction Temperature
S; 200
°c
K
Peak-Power Coefficieat
Ip
Pulse Widlh
1M
I.
Pulse Period
m.
°c
PTlovg)
=
100
TJ(ovg) - TA
(hc
+ (JC-HS + (JHS-A
for 100°C S; Tc S; 200°C,
as in Figure 8
Equalion No.2 - Applicallon, d-c power dissipation,
no he.t sink usad.
'Tlovg)
= TJlavg(JJ-A) - TA for 250C -< TA-< 2000C
Equation No. 3 - Application, Peak power dI"lpall ..,
heal sink used.
See Figure 9
PT(...,)
,) - TA
= d ((JC_HS +TJI...(JH5-A)
+ K (JJ-C
for 100°C S; Te S; 200°C
Equation No. 4 - Application, ',ak power dlsslpallan,
no haal sink used.
'T(mul
=
TJ(mo,)-TA
d (}C-A
+
for !SoC S; TA S; 200°C
K (JJ_e
5olutlon,
2.5 d'g/W (From Informalion suppliod
wilh ,heal .Ink.)
From Figure 9, Peak-Power (oaffldent
K = 0.1 and by us, of equatio. No.3
'T(mul
200°C
= -:-:-=-_T-7J!!!lmul?--_T.;.A~___
d ((JC-HS
=
=
40
°c
Exampl' - Find PT(mex) (deSIgn limit)
OPERATING CONDITIONS,
=
20
Equation No I
ApprlearIon.. d0( power dli
n paIIOR,
heal sink used.
Duly Cyde Rallo (I,,!I,)
=
7 10
Pulse Width -ms
-
VALUE
Average Power Dissipation
Ip
4
0.2 0.4
FIGURE 9
Peak Power Dissipation
+ (JHS-A =
= Thermal time constant = 13 ms
T
tp -
PTI...,)
d
tp = Pulse width in ms
d -= DU!y.cycle ratio
V
PTI";I
TJlav;1 (design limit)
TA
SOoC
I-e -IPIdT
~ /V""
200
~
I-e -tpiT
K;
0.03
~
0.02 0.01
0.01
~
~
- Case Temperature - ·C
FIGURE B
SYMBOL
(JC-HS
~
0.07
"
SYMBOL DEFINITION
d
0.2
u
i 0.1
~
1\
o
0.25 (25%)
C
10
o
...
0.4
40
10% (0.1)
'T(mul
O.Ims
=
+ (JHS-A) + K(JJ-C
200-50
--:-:::-::-,:-:-::c::0.1(2.5)
0.1(2.5)
+
= 300W
PRINTED IN U.S A,
5·150
TEXAS INCORPORATED
INSTRUMENTS
POST Of'FICE BOX 5012 •
DALLAS, TEXAS 75222
971
II (annal anume any responsibility for ony circuits shown
or represent that they ore free from polent infrinrement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPl nHE BEST PRODUCT POSSIBLE.
TYPE 2N4300
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
• 15 W at 100°C Case Temperature
• Max VCE(sat) of 0.3 V at I A I C
• Typ tonof 130 ns at 1 A Ic
• Min fT of 30 MHz
*mechanical data
oO~-t~ lis MIN
l
3 COllECTOR
Okob,[t===
==
-*-===r= T
'''\
~0{ ~
0335 030S D1A
piA
D-
I
o 100
MIN
-I~-t-t~~~:
D~T~~LSzg~EO~;~:~~~~
SEATING
I
~ ~::
\. /: '/ -
0200
3 LEADS
DIA
THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.
"
2 B-"SE/
0.045
0.029
_ 0.034
4S''''~V"OO'2B
All JEDEC TO·5 DIMENSIONS
AND NOTES ARE APPLICABLE.
L, EMITTER
PLANE
I
All DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
CASE TEMPERATURE IS MEASURED 0.\4" INCH 10.010 IMeH DOWN FROM TOP Of CAN.
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
lOOV
Collector-Emitter Voltage (See Note l)
SOV
Emitter-Base Voltage
SV
Continuous Collector Current
2A
Peak Collector Current (See Note 2) .
4A
Continuous Base Current.
lA
Continuous Emitter Current
3A
Safe Operating Region at (or below) lOOoC Case Temperature
Continuous Device Dissipation at (or below) lOOoC Case Temperature (See Note 3).
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
See Figure 7
l5W
lW
Operating Collector Junction Temperature Range
-65°C to 200°C
Storage Temperature Range.
-65°C to 200°C
Lead Temperature )I. Inch from Case for lO Seconds
230°C
NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tp ~ 0.3 ml, duty cycle ~ 10%.
3. Derale linearly to 200 0 e case temperature at the rate of 0.15 W/deg.
4. Derate linearly 10 200°C free·air temperature al the rate of 5.72 mW/deg.
·Indl,••es JEDEC regis.".d dat••
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-151
TYPE 2N4300
N·P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V'BRICEO
Collector-Eminer Breakdown Voltage
Ic = 30 mA, la = 0,
ICEO
Collector Cutoff Current
VCE = 40 V, la = 0
Ices
Collector Cutoff Current
MIN
See Note 5
I
V
1
pJ.
10
pJ.
VCE = 90 V, VIE = 0,
hFe
UNIT
80
VCE = 90 V, VIE = 0
lEBO
MAX
Tc = 150
75
0(
VEa = 5 V,
Ic
=0
0_5
VEa = 8 V,
Ic= 0
10
VeE = 2 V,
Ic= 1 A, See Notes 5 and 6
30
VCE = 2 V,
Ic
= 2A,
Ic = 2A,
15
Eminer Cutoff Current
pJ.
Static Forward Current Transfer Ratio
See Notes 5 and 6
VIE
Base-EmiHer Voltage
VCE''''I
Collector-Emiller Saturation Vollage
hie
Small-Signal Common-Eminer
Forward Current Transfer Ratio
VeE = 5 V,
Ih,.1
Small-Signal Common-Emiller
Forward Current Transfer Ratio
VeE = 10 V, Ie = 1 A, f = 15 MHz
120
See Notes 5 and 6
1.2
la = 100 mA, Ic = 1 A, See Notes 5 and 6
0_3
VCE = 2 V,
I.
= 200 mA, Ic =
V
V
0_5
2 A, See Notes 5 and 6
Ie = 1 A, f = 1 kHz
30
2
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 p.s, duty cycle ~ 2%.
6. These paramet.rs are measured with voltage-sensing contacts separate 'rom the current-carrying contacts.
*thermal characteristics
PARAMETER
(he
(hA
lunction-to-Case Thermal Resistance
lunction-to-Free-Air Thermal Resistance
MAX
UNIT
6_66
175
deg/W
"'ndlca'os JEDEC regls'ered da'a.
971
5-152
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2N4300
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton Turn-On TIme
toft Turn-Off TIme
Ie = 1 A,
YBEtofij = -3.7 Y,
ISI1 I = 100 rnA,
RL = 20 n,
Ist'l = -100 rnA,
See Figure 1
TYP
UNIT
0.13
1.5
/Ls
tVoltage and current values shown are nominal: exad values vary slightly wllh transistor parameters.
PARAMETER MEASUREMENT INFORMATION
•
. - - _ - - - - - - < 0 OUTPUT
82 Q
20 Q
82 Q
TEST CIRCUIT
+16V-~90%
I
I
I
-I V
, 10%
-+tton~
......,.j
I
INPUT
toff ~
I
IO%
~
I
OUTPUT
90%
VOLTAGE WAVEFORMS
FIGURE 1
S 15 ns, If ::; 15 ns, lout = SO 0, tp
cycl. S; 2%.
b. Waveforms are monitored OR an oscilloscope with the following characteristics: Ir ::; 15 ns, Rin ~ 10 MO, (in S 11.S pF.
e, Resistors must b. nonindudin types.
NOTES: a. The input waveform is supplied by a generator with the follOWing characteristics: Ir
= 2 p,s, duty
d. The dac power supplies may require additional bypassing in order to minimize ringing.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.L.AS. TEXAS 75222
5-153
TYPE 2N4300
N-P-N· EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
200
v
~
.l!
~~
160
~
Tc~~
~c:
5t
V
I
...
I!
120
V
~
-... r-..... r\
./""
f'~
I--'
,....
Tc= 100'>--
..........
ce =2VI
I I
See Notes 5 and 6
\~
~
:>
U
"E
~
a
~
~
~
~
Tc- 25'S- f..-
-=r-
.~
:e
Vl
•
-r-.
~
80
II.
I
~
..c
40
Tc- -55'C
o
20
70
40
100
200
700
400
1000
2000
IC - Collector Current - mA
FIGURE 2
BASE-EMITTER VOLTAGE
COLLECTOR-EMITTER SATURATION VOLTAGE
~
~
CASE TEMPERATURE
1.2
--- ---- --- I ---Vce = 2 V
I
See Notes 5 and 6
1.0
>
I
w
.e'"
0.8
...........
-0
>
i;
:t:: 0.6
·f
"I'
11
'"I
~
j"'-...
~
Ic= I A
...........
- 20mA
-r--.....
1'-- ~
0.4
.........
w
::
-75
1"w
r
-0
>c:
0.7
e
j
0.2
- J.,
See Notes 5 and 6 -
la=?00m,A,lc- 2A
0.4
.2
-
la = 100
Ie 1= 1 A
--
~
I;
t
~
.e
..!!
d
0.1
0.07
la=2mA,lc=20mA
0.04
I
-=.."..
0.2
o
CASE TEMPERATURE
D
0.02
U
>
0.01
-50
-25
0
25
50
75
100
125
150
-75
-50
-25
0
25
50
75
100
125
150
Tc - Case Temperoture -'C
TC- Case Temperature -'C
FIGURE 4
FIGURE 3
NOTES. 5. Th... p.ram.t"s musl b. m••surod usl.g pol" t.ch.iq.... tp = 300 (.Is, duty ,yd. ::; 2%.
6. Th... ,.,-ton are ......red with ..Ita_sl.. ,.,tach ..,.r.te Inm till ,uno.I".nyl.. conl.,I•.
971
5-154
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2N4300
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
NORMALIZED COLLECTOR - EMITTER BREAKDOWN VOLTAGE
vs
vs
BASE - EMITTER RESISTANCE
REVERSE BIAS VOLTAGE
:z
~ 1.2
""
.e
:or
~
F
-
1.0
o
>
~
."
Te= 25'C
f = I MHz
400
'"
t'-..
0.8
c
500
""
le= 10mA
Te = 25'C
See Note 5
.....
.
r--.
1
~
300
u
'" 0.6
c
~
]
E
'u
&. 200
(j
, 0.4
~bo(lc=O)
'I'-
E
j!
V (SR)CSO ",V (U)CER at RSE=11l
o
100
u 0.2
r---......
ifffi
11
.~
la
Z
o
I
10
10 k
Ik
100
o
100 k
4
I
7
r-10
20
Reverse Bios Voltage -V
Rse -Base - Emitter Resistance - {1
FIGURE 6
FIGURE 5
NOTE 5: These parameters must be measured using pulse techniques. Ip = 300 p.s, duly cycle
40
70 100
•
S !Ok.
MAXIMUM SAFE OPERATING REGION
10
7
Te" 100'C
f=tp 0.3 ms, d
0.1 (10%)
,
4
D-C Operation
1
"E
1!
5
u
E
u
~
.....
-........'-.
I
2
I
0.7 I=tp
I
1 ms, d
I
.~
"
0.5 (50%)
0.4
I\:
0.2
0
u
I
_0
0.1
0.07
Max V CEO
0.04
I
0.02
0.01
1
2
4
7 10
20
40
VCE - Collector-Emitter Voltage -V
70 100
FIGURE 7
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-155
TYPE 2N4300
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICI ENT CURVE
20
0.7
tc
0.50 (50%) Duty Cycle
0.4
.2
8.
:~
v
u
.~
if 0.2
~
.3
\
~
I
100
75
125
150
0.07
0.05
~
\\
5
50
0.1
CIJ
J
\
25
u
'u
10
o
o
I.!
0.25 (25%)
v
\
o
o
J .l
i:
15
fQ.0'7~
0.04
0.01
200
175
O~ .L
~y
0.02
1\
l-e -tpiT
K = -1'--~e-""'t'-P;-'d"'-Ttp ::
Pulse width in ms
d :: Duty-cycle rotio
~l Ll iterm'l'
6.4
0.1 0.2
1
Te -Case Temperoture-"C
tp -
FIGURE 8 •
VALUE
DEFINITION
UNIT
W
'TfavgJ
Average Power Dissipation
'T{max)
Peak Power Dissipation
(hA
Junclion-to-Free-Air Thermal Resistance
115
d.gJW
(hc
Junction-Io-Cose Thermal Resistance
6.66
d.gJW
(}C-A
(ase·to-Free-Air Thermal Resistance
168
deg/W
(}e-Hs
rose·la-Heat-Sink Thermal Resistance
d.g/W
(}HS-A
Heot-Sink-Io-Free-Air Thermal Resistance
d.g/W
TA
Free-Air Temperature
·C
Tc
Case Temperature
·C
W
TJI•vg)
Average Junction Temperature
~ 200
·C
TJlm,,)
Peak Junction Temperature
~ 200
·C
K
Peak-Power Coefficient
Ip
Pulse Width
ms
I,
Pulse Period
ms
d
Duly-Cycle Ratla (IP/I,)
4
7 10
20
40
100
ms
Equation No.1 - Application: d-c power dissipation,
heat sink used.
_
PYlovg) -
TJlevg)-TA
(} J-C
+ (}C-HS + (}HS-A
for 100·C ~ Tc ~ 200·C
as in Figure 8
Equation Ho. 2 - Application: doc power diSSipation,
no heat sink used.
Equation No.3 - Application: Peak power dissipolion,
heat sink used.
Set Figure 9
Equation Ho... - Application: Peak power dissipation,
no heat sink used.
P
YI
Exampl. - Find PYlm• x) (design limit)
OPERATING CONDITIONS,
(}C-HS
2
Pulse Width -
FIGURE 9
SYMBOL DEFINITION
SYMBOL
I
tilmi 'llsti',"t = ~ mSI
max
_
) -
TJlmax) - TA
d 8C-A
+
K (}J-C
•
for 25 C <_ TA
_<
ZOO·C
Solution,
From Figure 9, Peak-Power (oefficlent
+ (}HS-A = 1 deg/W (From information supplied
K
=
O.IOS and by use of equation No.3
with heat sink.)
TJlovg) (design limit)
TA =
TJlma,)-TA
= 200·C
Pylma ,)
so·e
d = 10% (0.1)
'p = 0.1 ms
Pylma,)
+ (}HS-N + K (}J-C
=
d {(}C-HS
=
200 - 50
0.1 (1)
0.105 (6.66)
+
= 101 W
PRINTED IN U.S A.
5-156
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
971
TI (onnol assume any responsibilily for any cir
.........
r-..... r-....
0.4
~
See Notes 5 and 6
.~
0.4
r-- I--Is = 1.3
-
A, Ic= 10 A
IS - 0.5 A, Ic-5 A
0.2
.20
-
~
V>
:--
r--....
=
0.7
c
a
I-- ~
A
...........
"
.;: 0.6
I
t-- t-- t--
r-- r-.
r~'"
Ic~
>
VCE = 4 V
J
I
CASE TEMPERATURE
See Notes 5 and 6
Ic= 10 A
I - - .....
>
.l!
vs
vs
CASE TEMPERATURE
~ 0.1
·E
-
";' 0.07
(;
t;
.! 0.04
oV
I
0.2
-
Is -10mA, Ic-1OOmA
~ 0.02
o
w
~
-75
-50
-25
0
25
50
75
Te - Case Temperature -
100
°C
125
150
0.01
-75
-50
-25
Te -
25
0
50
75
Case Temperature -
100
125
150
°c-
FIGURE 4
FIGURE 3
NOTES: 5. ,lhese parameters musl be measured using pulse techniques. Ip = 300 ps, duty cycle ~ 2%.
4'. These parameters arl measured with yoltage-sensing con'acts separate from the current-carrying (ontacts.
971
5·160
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPE 2N4301
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
vs
BASE-EMITTER RESI STANCE
51.2
Ic: 30 mA
;'"
Tc: 25'C
I
" I. a
~
~
c: 0.8
~
2500
See Note 5
1\
'5.
g
ci!5 0.6
.E
!!
'<3
......
]
~
&.
o
= 25'C
f
: I MHz
C,bo (lC: 0)
"
~
1500
TC
t-....
u 1000
L 0.4
.eu
2000
I
"u
J1
VIBRICBO '" VIBRICER at RBE = I Q
..!
J..,
REVERSE BIAS VOLTAGE
3000
0.2
500
t----- Cobo (IE = 0)
ntt
"
.~
1
aI
10
RaE -
10 k
I k
100
Base-Emitter Resistance -
a
100 k
I
4
2
Q
-
7
10
20
Reverse Bias Voltage -
FIGURE 5
FIGURE 6
40
V
70 100
•
MAXIMUM SAFE OPERATING REGION
100
TC s
40
20
..:
i
1:
10
r---
"
4
~
,
O-C Operation
u
is
U
..!
- ,-
100'C '
totp
tp -
"0
0.4
I
0.2
'"
0.5 (50%)
1 ms, d
0.1 (10%)
0.3 ms, d
u
.2 0.1
0.04
MAX VCEO
0.02
I
0.01
7
4
1
VCE -
10
,.....
I
20
Collector-Emitter Voltage -
40
70 100
V
FIGURE 7
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-161
TYPE 2N4301
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
~ 60
0.7
i
.2 50
&.
'i:j
1\
Q 40
1:
r\
'S 30
o
~
~c
(l 20
~,"
U
Qj
\
~
0
Q..
I
0.2
I
k?
O. I
o. \oUoJ
.:-
"
110
1\
175
50
75
100
125
150
Te-Case Temperature _oC
0.07
'f05
0.04
0.0':1 ~
1-"""01.
\).
K =
tp ::::
Pulse width in ms
V
d
Duty-cycle ratio
""
I
200
~
0.07
Q..
\
E
•
-"
0
~
~
25
V
0
E
o
0.25 1(21%1)
c
~
o
0.50 i50%) Duty Cycle
0.4
0.02
O.Ql
I_e-tp/T
v(l
~" V
l_e-tPldT
:=
T :::: Thermol time constant
1111
0.1 0.2 0.4
tp -
4
7 10 20
Pulse Width - ms
FIGURE 8
DEFINITION
VALUE
UNIT
Prlavgl
Average Power Dissipation
W
Prima'i
Peak Power Dissipation
W
(hA
Junction-to-Free-Air Thermal Resistance
50
degjW
(he
Junction-la-Case Thermal Resistance
2
degjW
(Jc.A
Case-to-Free-Air Thermal Resistance
48
degjW
OC.HS
Case-to-Heat~Sink
OHS.A
Heat-Sink-Io-Free-Air Thermal Resistance
TA
Free-Air Temperature
Te
Case Temperature
TJlavg)
Average Junction Temperature
TJ{max)
Peak Junction Temperature
K
Peak-Power Coefficient
'p
degjW
Thermal Resistance
degjW
< 200
< 200
°c
°c
°c
°c
See Figure 9'
Pulse Wid,h
ms
ms
Pulse Period
"d
Du'y.Cycie Ra'io
('"I',)
+ (iHS.A = 1.3 degjW
TJlavgl (design limit)
TA = 50 0 ,
d
10% (0.1)
Ip =0.1 ms
=
2000
100
Equation No 1 _ Application' d·c power dissipation
heat sink used.
Prlavgl
- TA
= (he +TJlavgl
(ie.HS +
for 100 0 C ::; Te ::; 200 0 C
(iHS.A as in Figure 8
Equation No.2 - Application: doc power dissipation.
no heat sink used.
P
_ TJlavg) - TA for 2S o C ::; TA ::; 200°C
TI.vgl -
e;;:-
Equation No. 3 - Application: Peak power dissipation,
heat sink used.
P
_
TJlm"l- TA
for 100 0 C ::; Te ::; 200 0 C
Tim..} - d ((ie.HS + OHS.A) + K OJ.e
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTlma,}
=
TJ1mu} - TA
d Oe.A
+
for 2S o C ::; TA ::; 200°C.
K OJ.e
Solution:
From Figure 9 , Peak-Power Coefficient
K = 0.101 and by use of equation No.3
Example - Find PT{max) (de~ign limit)
OPERATING CONDITIONS,
Oe.HS
40
FIGURE 9
SYMBOL DEFINITION
SYMBOL
= 12 ms
(From Informano. supplied
with heat sink.)
P
_
TJlma,}-TA
Tim.,} - d ((ie.HS
OHS.A)
+
C
=
+
K 0J.e
200 - 50
PRIN1ED IN U,S,A
5-162
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI cannot assume any responsibilily for any circuits shown
or represent tho I they are free from polenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE 8EST PRODUCT POSSIBLE.
TYPES 2N4398, 2N4399
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5301. 2N5302
• 200 Watts at Z5°C Case Temperature
• 30 A Rated Continuous Collector Current
• Min fT of 4 MHz at 10 V. 1 A
*mechanical data
The case outline is the same as JEDEC TO-3 except for lead diameter.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
oO
~
0
~O'312MIN~1'573
....-rn="}'.
O.450j'"
0.525 R MAX
r-
. -_ _0_.2_50_-1
I.OSO MAX
0.875
MAX
-
~
0.188 R M A X : - ' - - - - -
I
0.135 MAX -t
BOTH ENDS
0.052 DIA 2 LEADS
h
MAX
I
"""""""'AI-'-"w"- 2-
I
-1.8
>
VCE =-4V
-2.2
~
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
COLLECTOR CURRENT
-1.4
I- k.= 5
I
IB
Tc = 25°C
I- Tc = 250C
r- See Notes 6 and 7
I
I- See Notes 6 and 7
I
I
I
J
~
.£ -1.6
~ -1.4
I
I
II
~ -1.2
~
31o
'"I
~
>
~
]
--
-1.0
-0.8
-0.6
-0.4
-0.2
-0.4 -0.7-1
Ie -
-2
-0.6
~
-0.4
~
"0
J
/
/
u
I
-0.2
o
,
-4
-7 -10
Collector Current -
-20
-40
A
11
-0.2
~
o
-0.2
-0.4 -0.7-1
-
-2
'"
-4
-7 -10
Ie - 'Collector Current -
-20
-40
A
FIGURE 6
FIGURE 5
NOTES: 6. These parameters must be measured using pulse techniques. tp = 300 p.s, duty cycle :::;2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
5-166
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
PRINTED IN U.S.A.
cannol a~5ume ony responsibility for any drcuits shown
or represent thaI they are free from polenl infringement.
n
169
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPL YTHE BEST PRODUCT POSSIBLE.
TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND SWITCHING APPLICATIONS
• 87.5 W at Z5°C Case Temperature
• 5 A Rated Collector Current
fr of 4 MHz at 10 V, 1 A
• Min
*mechanical data
ALL JEDEC TO 3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
o
~
aO
~
o.52SRMAX
0
-1
1- ~0312MIN~IS73
~
f - r.;1.050
L
~AX ~A?1
0
~DIA2LIAD5
m=,,}38
4
t:~::
-,-,
0420
r;:
0.135 MAX--t
2-EMImR
--=r . 0~~lt ~- ~
0205 0440
tI
0.18. R MAX
10TH ENDS
0675 1177
"O"ii"i
,It
- 0 225
~
!..!!l.
MAX
I
DIA
2 HOLES
0.200
SEATING nANE
I - lASE
CASE TEMPERATURE
MEASUREMENT ~INT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at Z5°C case temperature (unless otherwise noted)
*CollectoroBase Voltage .
*Collector·Emitter Voltage (See Note 1) .
*Emitter-Base Voltage ...
*Continuous Collector Current
Peak Collector Current (See Note 2) ....
*Continuous Base Current .......
Safe Operating Region at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C
Case Temperature (See Note 3) ........
Continuous Device Dissipation at (or below) 25°C
Free-Air Temperature (See Note 4) .........
*Operating Collector Junction Temperature Range ...
*Storage Temperature Range ..
*Terminal Temperature 1/16 Inch from Case for 10 Seconds ..
0
0
0
•
0
•
0
•
0
0
0
0
0
••
0
0
••
0
0
0
•
0
0
••
0
0
0
0
••
0
••
0
0
0
0
•
••••
0
0
•
0
0
0
0
0
••
0
0
0
0
0
0
0
•
0
0
•••••••••••••
0
0
•
0
0
•
0
0
••
0
••
0
0
0
••
0
•
0
0
•
0
0
•
0
0
••
0
••
0
•••••••••
0
•
•••
0
0
•
0
NOTES:
0
0
•
0
••
0
•
0
••
0
0
•
0
0
••••
0
•
•••
0
0
0
••
0
•••
0
•
0
•••
0
••
0
•••
0
••••••••••
0
•
••
0
••••••••••••••••
0
0
•••
0
0
••••••••
0
0
0
•••
0
•
0
0
•
0
0
••••
2N4901 2N4902 2N4903
-40 V
-60 V
-so V
-40 V
-60 V
-so V
-5V
-5V
-5V
(
-5A--+
,*(---15A - - +
-1 A
)
,*-See Figure 2 - +
+---S7.5W--+
(
4W--+
+ - -65°C to 200o C-+
+--65°Cto 200°C-+
(
235°C--+
1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for tp ~O.3 ms, duty cycle 51 0%.
3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.
*Indicates JEDEC
ragister~d
data
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·167
TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25° C free·air temperature (unless otherwise noted)
PARAMETER
V(BR)CEO
I CEO
Coliector·Emitter
2N4Q02 2N4QO::t
2N4901
MIN MAX ·MIN MAX MIN MAX UNIT
TEST CONDITIONS
See Note 5
Ic = -200 mA,lB = 0,
-40
-80
-60
Collector Cutoff
VCE = -40 V, IB = 0
Currant
VCE - -60 V, IB = 0
=-80 V, IB - 0
VCE =-40 V, V BE -
-1
-1
mA
-1
VCE
-0.1
1.5 V
-0.1
VCE = -60 V, VBE - 1.5 V
ICE V
Collector Cutoff
Current
Vr.~
= -80 V,
VR~
-0.1
= 1.5 V
Vr.~ = -40 V, VR~ = 1.5 V,T... = 150°C
Vr.~ = -60 V, VR~ = 1.5 V, T ... - 150°C
hFE
V BE
VCE(sat)
Emitter Cutoff
VEB--5V,
mA
-2
-2
-2
VCE = -80 V. VBE - 1.5 V.Tc = 150 C
lEBO
V
Breakdown Voltage
-1
Ic=O
-1
-1
mA
Current
Static Forward Current
VCE =-2V,
Ic =-1 A,
Sae Notes 5 and 6
20
Transfer Ratio
Ve~
Ie = -5 A,
Sae Notes 5 and 6
7
Base-Emitter Voltage
VCE =-2V,
Ic - -1 A,
See Notas 5 and 6
-1.2
-1.2
-1.2
Coliector·Emitter
IB - -0.1 A,
Ic=-1A,
See Notes 5 and 6
-0.4
-0.4
-0.4
Saturation Voltage
IB - -1 A,
Ic= -5A.
Sae Notas 5 and 6
-1.5
-1.5
-1.5
=-2V,
80
20
80
20
80
7
7
V
V
Small,Signal
hfe
Common-Emitter
Transfer Ratio
Common-Emitter
--
.
Small·Signal
Ihfel
20
20
20
VCE =-10V, Ic=-0.5A. f= 1 kHz
Forward Current
VCE =-10V, Ic=-1 A,
f - 1 MHz
4
4
4
Forward Current
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques: tp = 300 #5, duty cycle =S;2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
·Indicates JEDEC registered data
thermal characteristics
MAX UNIT
PARAMETER
8 J·c
Jl,lnction·to-Case Thermal Resistance
oJ-A
Junction-to-Free-Air Thermal Resistance
2
deglW
43.7
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
TYP UNIT
ton
Turn·On Time
Ic = -1 A,
IB(1) - -0.1 A, IB(2) = 0.1 A,
toff
Turn·Off Time
VBE(off) - 3.7 V,
R L =20n,
See Figure 1
0.35
0.8
I"
tVoltage and current values shown are nominal; exact values vary slightly with device parameters.
1068
5·168
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
82 Cl
INPUT o----~--JVl,..,..--
....-+t
20 Cl
82 Cl
82 Cl
-=- 20.3 V
-=- 6.4 V
TEST CI RCUIT
lV~
I 10%
f
INPUT
-16 V--I ...._ _ _ _-".J90%
I
I
14-
I
I
*
OUTPUT
~
10%~
ton
O%-
..l
toff
I
I
VOLTAGE WAVEFORMS
FIGURE 1
NOTES:
a. The input waveform is supplied by a generator with the following characteristics: tr S 15 ns, tf :5.15 ns, Zout
tp
::=
10 1J,S, duty cycle ~ 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: t r
c.
= 50 n,
:5 15 ns,
Rin
2::: 10 Mil
, Cin
•
.:5. 11.5 pF.
Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.
MAXIMUM SAFE OPERATING REGION
-10
-7
TC ~25·C
-4
..:
I
C
-2 ' - - - -
D-C OPERATION
~
13
~
~
-1
..!!
0
-0.7
I
-0.4
"' 1\
u
..!:'
2N4901
2N4902 ..
-0.2
2N4903 ..
Hl
r- ...
r-- r-. 1'~00 ......
-2
-4
-7 -10
-20
-40
veE - Collector-Emitter Voltage - V
-70 -100
FIGURE 2
1068
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 15222
5·169
TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
VI
COLLECTOR CURRENT
100
VC'E =
'-
~
0
j
J!
80
See Notes 5 ond 6
~
0
"
o.!::
60
~
5
u
'\.
1!
0
~
40
'~
of
u
i
•
, , ,
Tc = 25°C
i'!
-::
~2 ~
20
,
i""I
w
~
"'"
o
-0.1
-0.2
-2
-0.4 -0.7-1
-4
Ie - Collector Current - A
-7 -10
FIGURE 3
COLLECTOR-EMITTER SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
VS
VI
COLLECTOR CURRENT
COLLECTOR CURRENT
-2.0
VeE = -2V
-1.8
Te
>
-1.6
..
-1.4
"0
-1.2
~
-1.0
= 25°C
!
..
~
I.
=5
I
~ -0.8 - Te = 25°C
See Notes 5 ond 6
~
~
j
,/
-
-0.8
-0.6
~
-0.6
~
."
]
~ -0.4
.!
8
w
>-
-
j
See Notes 5 end 6
]
I
Ie
I
I
>
-1
>
I
II
-0.4
I -0.2
./'
-0.2
o
-0.1
-0.2
-0.4 -0.7-1
Ie -
-7 -10
-0.1
-0.2
-0.4
-0.7-1
-2
-7 -10
Ie - Collector Current - A
A
FIGURE 5
FIGURE 4
NOTES:
II
o
-2
Collector Current -
!;;7'
5. These parameters must be measured using pulse techniques. tp
=
300 IlS, duty cycle :::;2%.
6. These parameters Brs measured with voltage-sensing contacts separate from the current-carrying contacts.
PRINTED IN U.S.A.
5·170
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 6012 •
DALLAS, TEXAS 75222
1068
TI (annol assume any respon'ibility for any circuits shown
or represent ,hal they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
ttl
C
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4913, 2N4914, 2N4915
....
....
m
-i
<
."
m
til
::!
Z Z
~
Z
N
9
'"
.g
0
z~
....
N
• 87_5 W at 25°C Case Temperature
In
• 5 A Rated Collector Current
en
!:!l
~
• Min fT of 4 MHz at 10 V, 500 mA
'"
.5l
N
Z
~
.'z" g'"
*mechanical data
0
<
m
;;:
ttl
m
-
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
"
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
i 1- t1"}38 ~ ,,,"
~ ---=r . 0'~-1~-"
lco!l
1.573MAX
l.J!l.
o.312 MIN
0.450
0.250
0.525 It MAX
QO
0
'"
~
1.S.
"
0.188 It MAX
80TH ENDS
-
0.87S
MAX MAX
,D!A
-'--
0.135 MAX
ro=
--I h
0.043 0IA :2 LEADS
-
~
'if.iIT
I
. -,'-
0.205
0.675 1.177
-,-
0.420
seA TlNG PLANE
1 - BASE
. -
t
_"
I
I
I
•
2 - EM,""
---.L
\
\
0.161 OIA
0.151
:2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*Collector-Emitter Voltage (See Note 1) . . . . . . . . . . . . . . . . .
*Emitter-Base Voltage ..... _ . . . . . . . . . . . . . . . . . . . . . . .
*Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . .
Peak Collector Current (See Note 2) . . . . . . . . . . . . . . . . . . .
*Continuous Base Current . . . . . . . . . . . . . . . . . . . . . . . . . .
Safe Operating Region at (or below) 25°C Case Temperature ...
*Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Devicll Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . . . . . . . . . . . . . . . . . . .
*Operating Collector Junction Temperature Range . . . . . . . . . .
*Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 Seconds ......
NOTES:
.
.
.
.
.
.
.
2N4904 2N4905 2N4906
-40 V -60 V -80 V
-40 V -80 V -80 V
(
-5V--+
(
-5A--+
(
-15A--+
(
-lA--+
+- See Figure 2 - +
.
+--
.
.
.
.
+-- -65°C to 200°C -+
+-- -65°C to 200°C -+
87.5 W - - +
~4W~
(
235°C - - +
1. This value applies when the base-emitter diode Is open-circuited.
2. This value applies for tp;::; 0.3 ms, duty cycle::; 10%.
3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.
*1 ndicates JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·171
TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER
v
(SA)CEO
Collector-Emitter
TEST CONDITIONS
Ic
Breakdown Voltage
=-200 mAo Is = O.
See Note 5
2N4904
-40
-60
2N4906 UNIT
I MAX
-80
V
-1
VCE --40V. Is -0
Collector Cutoff Current
ICEO
2N4905
MIN MAX :MIN
-1
VCE --60V. IS -0
mA
-1
VCE =-80V. Is=O
-0_1
VCE --40V. VSE -1_5 V
-0.1
VCE =-60V. VSE = 1_5 V
Collector Cutoff Current
ICE V
=
VCE =-60V. VSE =1_5 V. Tc
VCE =-80V. VSE = 1_5 V. Tc
IESO
•
hFE
VSE
VCE(sat)
hfe
Ihfel
-0_1
VCE - -80 V. VS E • 1.5 V
VCE • -40 V. VBI" 1_5 V. Tc·150C
Emitter Cutoff Current
VES --5V.
Static Forward Current
VCE =-2V.
Transfer Ratio
Base-Emitter Voltage
VCE· -2V.
VCE =-2V.
=150°C
=150°C
-2
-2
-1
-1
-1
Ic·O
Ic. -2_5A.
See Notes 5 and 6
25
Ic·-5A.
See Notes 5 and 6
7
Ic =-2_5 A,
See Notes 5 and 6
-1_4
-1_4
-1.4
Collector-Emitter
Is - -0.25 A. Ic - -2.5A.
See Notes 5 and 6
-1
-1
-1
Saturation Voltage
Is· -1 A.
See Notes 5 and 6
-1.5
-1.5
-1.5
Small-Signal Common·Emitter
Forward Current Transfer Ratio
Small-5ignal Common-Emitter
Ic--5A.
mA
-2
100
25
100
7
25
mA
100
7
VCE - -10V. Ic=-0.5A.
f- 1 kHz
40
40,
40
VCE=-10V. Ic--0.5A.
f-1 MHz
4
4
4
V
V
Forward Current Transfer Ratio
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 Ils, duty cycle 52%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
*'ndicatesJEDEC registered data
thermal characteristics
PARAMETER
8J-C
8 J_A
MAX
Junction-to-Case Thermal Resistance
2
Junction-to-Free-Air Thermal Resistance
UNIT
deg/W
43.7
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
=-2.5A.
VSE(off) =4.1 V.
Ic
IS(1) - -250-mA. IS(2) - 250 mA,
See Figure 1
RL = 100.
TYP
0.4
UNIT
IJS
0.7
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1168
5-172
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4904~ 2N4905, 2N4906
P·N-P SINGLE·DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
820
INPUT ~----~~--~~~---.---ti
100
270
1300
+
-=-
.:=.. 5 V
25 V
+
1.2 V
--r
TEST CI RCUIT
I
10%
f
-38 V - - : \
I
-+t
I
'on 14%-
+I
INPUT
90%
I
'off 14-
I
OUTPUT
~
10%- I
VOLTAGE WAVEFORMS
FIGURE 1
NOTES:
a. The input waveform is supplied by a generator with the following characteristics: tr::;: 15 ns,
tp
'tf:::; 15 ns, Zout =
50
n,
= 10 I's. duty cycle:::; 2%.
b. Waveforms ara monitored on an oscilloscope with the following characteristics: t r :516 ns, Ain;;:::' 10 MO, Cin $11.5 pF.
c.
Resistors must be non Inductive types.
d. The d-c power supplies may require additional bypassing In order to minimize ringing.
MAXIMUM SAFE OPERATING REGION
-10
-7
TC .:25°C
-4
«
I
'C
-2
~
I"
-
O-C OPERATION
~
~
d
-I
15
U
~ -0.7
;3
I
-Y
-0.4
-0.2
2N4904
2N490S ..
r- ~
ii
r--.
4906
r-~
1"-1'"
-2
-7 -10
-20
-40 -70-100
veE - Collector-Emitter Voltage - V
: .1
FIGURE 2
1168
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-173
TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON· POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100
...
VCIE =~2~ I II
i"'-
0
j
J!
80
"
ii
,!:
~
Te
60
=2SoC
See Notes 5 and 6
~
~
u
"'"
~
~ 40
.f
u
11
.:;
•
...
I
~,
20
I'
.r:;
o
-0.1
-0.2
-0.4 -0.7-1
-2
-4
Ie - Collector Current - A
-7 -10
FIGURE 3
COlLECTOR-EMITTER SATURATION VOLTAGE
BASE-EMmER VOLTAGE
-2.0
-1.8
> -1.6
I
t
= -2 V
Te
= 25°C
VI
COUECTOR CURRENT
COLLECTOR CURRENT
-1.2
!
-1.0
I
J
-0.8
.
-0.6
::'
-0.4
-I
>
Ie
I
II
t
~
See Notes 5 and 6
.~
-1.4
~
!
veE
vs
-
I.
=5
I
-0.8 _ Te = 25°C
See Notes 5 and 6
1
-0.6
~
]
I.;'
i""'"
~
"
i
-0.4
.!
8
I -0.2
./
-0.2
o
-0.1
-0.2
-0.4 -0.7-1
-2
",
I
o
-7 -10
-0.1
-0.2
-0.4 -0.7-1
-2
Ie - Collector Current - A
Ie - Collector Current - A
FIGURE 4
FIGURE 5
-4
-7 -10
NOTES: 5. These parameters must be me.sured using pulse techniques. tp == 300 IlS, duty cycle :$;2%,
6. These parameters are me.sured with voltage-sensing contacts separate from the current·carrying contacts.
PRINTED IN U.S.A.
5·174
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE !lOX 5012 •
DALLAS. TEXAS 75222
1168
TI (annal assume any responsibility for any circuits shown
or reprlSen' that they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUCT POSSIBLE.
TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
~ ~
.. ;g
5
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4904 THRU 2N4906
Z
eft
~
z~
~;
.
- z..
• 87.5 W at 25°C Case Temperature
• 5 A Rated Collector Current
• Min fT of 4 MHz at 10 V,lA
1:1 ..
I'" Z
...
... ...
GO -
o·
...
:g
.
~
zU:
o
<
~
*mechanical data
~
'"
All JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COllECTOR IS IN ElECTRICAL CONTACT WITH THE CASE
G
O
0.450
0525RMAX
o
0
~
f
1 OSO MAX
t
0250
j 1- I__ 0312MIN;}~"57J MAX
0043
~~r:;380IA2lEADS
087S
MAX
~
0188 It MAX-'----==== I
80TH ENDS
0 '35 MAX -1
-
h
".:'2'
-----.l.
I
.... 1+
~
0.675 1.177
~
2 - EMITTER
~
-,1- . \
------=r . 0·',-I: X ·0-
0205 0440
-,,-
I;~
0420
I
t ~.!~~
\
•
DIA
2 HOLES
j
SEATING PLANE
I - BASE
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
'Collector-Base Voltage .
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage .
'Continuous Collector Current .
Peak Collector Current (See Note 2)
'Continuous Base Current.
Safe Operating Region at (or below) 25°C Case Temperature.
'Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
'Operating Collector Junction Temperature Range.
* Storage Temperature Range
'Lead Temperature J1,lnch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
2N4913
2N4914
2N4915
40 V
40 V
BOV
BO V
~
60V
60 V
5V
5A
15 A
1A
See Figure 6
~
B7.5W
~
~
~
~
~
,,,
~
~
4W
~
· ~
235°C
~
· +--- -65°C to 200°C --+
· +---- -65°C to 200°C --+"
This '1olue applies when the base·emitter diode is open-circuited.
This value applies for tp = 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200 o ( case temperature at the rate of O.S W/deg.
Derate linearly to 200°C free·air temperature at the rate of 22.9 mW/deg.
*Indicales JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-175
TYPES 2N4913, 2N4914, 2N4915
N-P..N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrlcal characteristics at 25 G C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
VI8IlICEO Breakdown Voltoge
ICEO
I
ICEV
lEBO
•
~ h~
VIE
E
h,.
~
Colledor Culoll
(urrent
(olledor Culoff
(urrent
Emitter (utoff (urrent
Stolic Forword Current
Tronsler Ralio
Base-Emiller Voltoge
Collector-Emiller
Saturotion Voltoge
Small-Signol
(ommon-Emiller
Forword Currenl
Tronsler Rotio
Smoll-Signol
(ommon-Emiller
Forword Currenl
Tronsler Rotio
Ie
= 200mA,
VCE - 40 V,
VCE = 60 V,
VCE - 80V,
VCE - 40 V,
VCE = 60 V,
VCE = 80 V,
VCE = 40 V,
VCE - 60 V,
Vee - 80 V,
VEB - 5 V,
VCE - 2 V,
VCE = 2 V,
VCE - 2 V,
I. - 0.25 A,
I. - 1 A,
I. = 0,
Gfe
See Note 5
40
I. - 0
I. = 0
I. - 0
VIE VIE =
VIE =
VIE =
VIE VIE Ic
Ic
Ic
Ic
Ic
Ic
=
-
60
mA
1
1
-1.5 V
-1.5 V
-1.5 V
-1.5 V, Te = HO G(
-1.5 V, Tc - HO G(
-1.5 V, Te = HOGC
0.1
0
2.5 A,
SA,
2.5 A,
2.5 A,
1
100
SA,
0.1
0.1
2
mA
2
See Notes 5 ond 6 25
See Notes 5 ond 6 7
See Notes 5 ond 6
See Noles 5 ond 6
See Notes 5 ond 6
25
7
1.4
0.75
1
100
25
7
1.4
0.75
1.5
1.5
2
1
100
1.4
0.75
1.5
Ie = 0.5 A,
1= 1 kHz
20
20
20
VCE = 10 V,
Ic = 1 A,
1= 1 MHz
4
4
4
=
V
80
1
VCE = 10 V,
NOTES: 5. These para~ters must be measured using pulse letbniques. tp
6. These parameters
2N4913
2N4915
2N4914
MAX MIN
MAX MIN
MAX UNIT
MIN
TEST CONDITIONS
mA
V
V
300 ILs, duty eyda :$ 2%.
measured with voltage-sensing (ontacts separate from the current-carrying contacts.
• thermal characteristics
PARAMETER
6J.C
6J.A
Junction-to-Cose Thermal Resislonce
Junction-to-Free-Air Thermol Resistonce
*Indicales JEDE( registered data
971
5-176
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAS, TEXAS 75222
TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONSt
~I...
",--_T~u:..crn--,-O--,n--,T",im::..:e_ _ _ _ _ _-l
lofl
Turn-Off Time
Ie = 2.5 A,
VlE10lfl = -4.1 V,
IB(1} = 250 rnA,
RL = 10 n,
18(21 = -250 rnA,
See Figure 1
tvoltoge and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
r-----.---------<> OUTPUT
82 Cl
INPUT
o----..,..--"""V'o.,.,..--......---H
10 Cl
•
27 Cl
130 Cl
+
-=-+ 5 V
-=- 25 V
TEST CIRCUIT
'''v ___~ ...
1'--
_1.2V--.i- IO%
I
---..I
tOft
INPUT
I+-
I
14-
tofl
-..j
l0{ml
I
\:
OUTPUT
90% \ .
"
"-------'
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: o. The input waveform is supplied by a genera.tor with the follow)ng characteristics: Ir ~ 15 ns, h ~ 15 ns, lout
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, Rin ~ 10 Mfl, (in
=
~
50 0, t p
11.5 pf.
=
10 ps, duly cyde ~ 2%.
c. Resistors must be nonlnductive Iypes.
d. The d·, power supplies may require addftlonal bypassing In order to minimize Tinging.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 501_2 •
DALLAS, TEXAS 75222
5-177
TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
V'
COLLECTOR CURRENT
100
.~
~
~c
£
1:
~
a
1!
c
~
.f
.~
o·G
- \':>
~\~
~
70
60
~«
50 ~
a
I
20
-
~
~I
_'>'>.c.....
40 ~
30
="~
V
~
"'"
io"
w
.c
I
= 2)
See Noles 5 and 6
80
.1;
•
IJ~E
90
Te = 150·C
10
I
o
0.05
~
4 5
2
0.2
0.4 0.7
Ie - Collector Current -
0.1
,
A
FIGURE 2
BASE-EMITTER VOLTAGE
COLLECTOR-EMITTER SATURATION VOLTAGE
V'
VI
CASE TEMPERATURE
1.2
VeE
>
1.0
I
~
0>
.l! 0.8
"0
>
~
]
0.6
--
.......... .........
I
I
>
I
- --
f--_
r-
........... ~=50mA
0.4
............
i"--.
0.2
o
c
~
~
~
~
-25
Tc -
0
25
50
75
Case Temperature -
'A, Ie - 5 A
--i-"'r
la = 0.25 A, Ie
0.2
~
-
=2.5 A
~~
~
1----
0.1
0.07
5
] 0.04
"0
u
100
125
150
-II
~
0.02
~
0.01
~
-50
r-Ia - 1
0.4
>
=
I
>'AI
-75
'"
"0
]
r-..... .......
C
See Noles 5 and 6
0.7
~
.l!
r-!-e= 2.5 A
~
'"
=2 V
See Note, 5 and 6
le= lA
r--
CASE TEMPERATURE
-75
=5 mA, Ie - 50 mA
-SO
-25
Te -
°C
FIGURE 3
0
25
SO
75
Case Temperalure -
100 125
150
·C
FIGURE 4
NOTES, S. These paramele" mull be m.... red u.lng pul .. lechniques. I,
== 300 p.', duly ,yde
:::; 2%.
6. Thesl paramet,n are measured with ,ollage-senslng contacts separal. f,om the currenl-carrylng contacts.
971
,5-178
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4913, 2N4914, 2N4915
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
vs
COLLECTOR-BASE VOLTAGE
500
IIII
le'= 0'
...
"\!\.
Q.
I
j
f = 0.1 to 1 MHz
MlO \.
300
lo
I
TC = 25"C
~
~ro-.
200
"
.g
u
100
o
1
2
VCI
-
.......
4
7 10
20
40
Collector-8o.. Voltage - V
70 100
FIGURE 5
•
MAXIMUM SAFE OPERATING REGION
10
TC" 25°C
7
«
.....
4
..........
I
~
~~
2
D-C OPERATION
u
5
"U
.!!
0.7
I
0.4
;S
J:'
\
2N4913 ~
I
2N4914
0.2
I
10
r\
i\
2N4915
0.1
"'\
'--
20
VCE -
40
70
Collector-Emitter Voltage - V
100
FIGURE 6
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·179
TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
THERMAL INFORMATION
DISSIPATION DERATING CURVE
90
I--
~
I
80
~
70
.
"i
is
60
u
.;:
~
e
40
U
30
~
i
E
~
E
0.50 (50%) Duty Cyclo
0.4
'u•
'\.
i
,
I
o
o
SO
Te -
r\.
,
0.02
175
200
SYMBOL DEFINITION
VALUE
UNIT
Prl•v I
Average Power Dissipation
W
Prlm" 1
Peak Power Dissipation
W
6J•A
Junction-to-Free-Air Thermal Resistance
43.7
deg/W
6J•e
Junction·lo-Case Thermal Resistance
2
deg/W
6e •A
(asl-to-Free-Alr Thermal Resistance
41.7
deg/W
6e •Hs
Case-to-Heal-Sink Thermol Resistance
deg/W
6Hs.A
Heat-Sink-to-Free-Air Thermal Resistance
deg/W
TA
Free~Air Temperature
·C
Te
Case Temperature
·C
TJI•v)
Average Junction Temperature
:::; 200
·C
Peak Junction Temperature
:::; 200
·C
TJlmax'
See Figure 8
K
Peak· Power Coefficient
tp
Pulse Width
ms
tx
Pulse Period
ms
d
Duly Cycle Ratio (lpll,.)
+ 6HS•A =
TJlovl (design IImlti
O.U«(W)
0.07
0.05
V
-
~~
rI
V
~
M
1-0 -lpiT
K·
V/
V
~
1-. - lp!dT
tp = Pulse width in ms
= Duty cycle ratio
d
\l.
~ ;= r~m~1
0.01
0.020.04
!'7
0.1
lim,"
0.2 0.4
Pulse Width -ms
I III
c~"tf71 ~~1·4 ml
4
7 10
20
tp -
FIGURE 8
Equation No 1 - Application" de power dIssipation
heat sink used.
Prlovl
=
TJI,vl-rA
(he
+ 6e •Hs + (lHS.A
lor 25'C :::; Te :::; 2OO'C,
as In figure ,.
Equation No.2 - Applicalion: doc power dissipation,
no heal sink used.
'rl.vl
=
TJlov,- TA
for 25'C :::; TA :::; 200'C
6J•A
Equation No.3 - Application: Peak power dissipation,
heat sink used.
_
PTimaxl
TJlmaxl-TA
-!6
d e.HS
+ 6HS.AI + K 6J.e
for 25'C :::; Te :::; 2OO'C
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
'rlmox)
=
TJlmaxl- TA
d 6e •A
K6J _e
+
lor 25'C :::; TA :::; 200'C'
Solullon:
example - Find Prlmaxl (deSign IImlti
OPERATING CONDITIONS,
6e •Hs
0.07
><
"
75
100
125
150
Cose Temperature - ·C
DEFINITION
1...
0.04
~
FIGURE 7
SYMBOL
0.1
...
10
at"
~
.....
(~U!
0.2
l
u
20
l
0. 1251
i:
"
SO
~
•
,
0.7
"'l\.
.~
i
PEAK-POWER COEFFICIENT CURVE
2.25 deg/W (From informalion supplied
wilh heat sink.)
= 200'C
From figure 8. Peak·Power (oefficient
K = 0.11 and by use 01 equation Na. 3
I
TJlmexi - TA
PrlmuJ = -:-::7"--7'''?'---:-:-:--;-d (6 e _Hs
= 50'C
d = 10% (0.1/
tp = 0.1 ms
TA
+ 6Hs..Al + K 6J•e
200-50
0.1(2.251
0.11(2)
+
= 337W
PRINTED IN U.S.A
5-1801
TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
971
TI (annot Quume any responsibility for any df(uils shown
or represen, thot they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N4998. 2N5000. 2N5148. 2N5150
N-P-N SILICON POWER TRANSISTORS
ENCY
TRANSISTORS WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•
For Complementary Use With 2N4999, 2N5001, 2N5147, and 2N5149
• 6 mJ Reverse Energy Rating with IC
*mechanical data
2N499B,2N5000
= 5 A and 4 V
Reverse Bias
ALL TERMINALS ARE INSULATED FROM THE CASE
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
•
D. All dimensions are in Inches unless otherwise specified.
2N514B,2N5150
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED.
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N4998
2N5000
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:
2N5148
2N5150
_100V"_
-80V*_6V*_
2A*
2A*
5A*
5A*
lA*
lA*
See Figures 7* and 8
30W*
6W*
20W
4W
2W
1 W*
6mJ_65°C to 200°C*
-65°C to 200°C*
_300°C*_
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw < 8.3 ms, duty cycle < 1 %.
3. For operation above (or below) 50° C case temperature, refer to Dissipation Derating Curves Figures 9 and 10.
4. Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/C for 2N4998 and 2N5000, 5.7 mW/C for 2N5148 and
2N5150.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L=0.48 mH, RBBl =20 U, RBB2= 100 U,
VBBl = 10 V, VBB2 = 4 V, RL = 0.1 U, VCC = 10 V, ICM = 5 A. Energy'" IC2 L/2.
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.
1171
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-181
TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25° C case temperature (unless otherwise noted)
2N4998
TEST CONDITIONS
PARAMETER
MIN
Coliector·E mitter
V(BR)CEO
Breakdown Voltage
ICEO
Collector Cutoff Current
ICES
Collector Cutoff Current
ICEV
Collector Cutoff Current
lEBO
Emitter Cutoff Current
Static Forward Current
hFE
•
VBE
Transfer Ratio
Base-Emitter Voltage
Collector·E mitter
VCE(sat)
Saturation Voltage
IC= loomA,
See Note 6
IB = 0,
2N5000
2N5148
2N5150
MAX
80
MIN
UNIT
MAX
V
80
VCE =40V,
IB =0
50
50
!lA
VCE - 60V,
VBE - 0
1
1
!lA
VCE = 100V,
VBE - 0
1
1
rnA
VCE = 60 V,
VBE = -2V,
500
500
!lA
VEB - 5 V,
IC -0
1
VEB - 6 V,
IC - 0
1
TC = 150°C
1 !lA
1 mA
VCE - 5 V,
IC- 50mA
20
VCE - 5 V,
IC-l A
30
VCE - 5 V,
IC-2A
VCE -5 V,
IC-3A
VCE = 5 V,
IC = 1 A,
IB - 100 mA,
Ic-l A
1.2
1.2
IB - 200mA,
IC-2A
See Notes
1.5
1.5
VCE - 5 V,
IC-2A
6and 7
1.5
1.5
VCE-5V,
Ic-3A
3
3
IB - 100 mA,
IC-l A
0.46
0.46
IB - 2oomA,
IC-2A
0.85
0.85
IB - 600mA,
IC-3A
5
5
VCE=5V,
IC=O.lA,
See Notes
6 and 7
TC = _55°C
50
90
15
70
200
30
5
15
15
35
See Notes
6and 7
V
V
Small·Signal
Common~E mitter
hfe
Forward Current
f = 1 kHz
20
50
2.5
3
Transfer Ratio
e"I
Small·Signal
Common·E mitter
hfe
Forward Current
VCE=5V,
IC = 0.2 A,
f = 20 MHz
VCB = 10V,
IE = 0,
f = 1 MHz
Transfer Ratio
Common·Base
Cobo
o pen·Ci rcu it
70
70
pF
Output Capacitance
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle 0:;;,;;; 1%.
7. These parameters are measured with voltage~sensing contacts separate from the current~arrying contacts and located within 0.125
inch from the device body.
*JEDEC registered data
thermal characteristics
PARAMETER
ReJC
Junction-to-Case Thermal Resistance
ReJA
Junction·to·Free·Air Thermal Resistance
2N4998
2N5148
2N5000
2N5150
MAX
MAX
5
25
87.5
175
UNIT
°C/W
switching characteristics at 25° C case temperature
PARAMETER
ALL TYPES
TEST CONDITIONst
TYP
ton
Turn·On Time
IC=2A,
IB(l) =200mA,
IB(2) = -200 mA,
0.1
toff
Tu rn-Off Time
VBE(off) = -3.7 V,
RL=15n,
See Figure 1
1.1
UNIT
!IS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters,
1171
5·182
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 15222
TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
,NPUT VO"·~~;~x~
,
.
30
n
,5
~:~{
270 pf
OUTPUT
VBB1,.,43V
AOJUST FOR
Von "'41.3VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
A. Vgen Is a -30 V pulse (from
R
a V)
VOLTAGE WAVEFORMS
into a 50-U termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr < 15 ns, tf < 15 ns, Zout = 50 n, tw = 20
duty cycle :0;,;; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 15 ns, Rin :> 10 Mn, Cin < 11.5 pF.
D. Resistors must be non inductive types.
}.LS,
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
TYPICAL CHARACTERISTICS
2N4998, 2N5148
2N5000, 2N5150
STATIC FORWARD CURRENT TRANSFER RATIO
STATIC FORWARD CURRENT TRANSFER RATIO
COLLECTOR CURRENT
£
~
'"
'j
60
i'-
veE" 5 V
z 180
TC
"
m
2S"C
See Notes 6 and 7
'\
/'
'"' V
1
."
~
160
~
140
j
120
\
~
t
20
VCE '" S V
TC - 2S·C
See
Notes
6 and 7
,
'\
l-
100
1
~
!
11
COLLECTOR CURRENT
200
100
80
\
60
40
J!-
J!-
0.1
0.01
0.2
0.01
0.4
0.04
0.1
0.2
0.4
IC-COllector Currenl-A
IC-Collector Current-A
FIGURE 2
FIGURE 3
COMMON·BASE OPEN·CIRCUIT
BASE.EMITTER VOLTAGE
COLLECTOR·EMITTER SATURATION VOLTAGE
OUTPUT CAPACITANCE
COLLECTOR CURRENT
COLLECTOR.BASE VOLTAGE
2.0 "-~TTTTlrT"rr,,--rrTTTTTl--rTl
1.8
.:£'"
IB
1.6
TC" 2S"C
::r
i
1.2
1.0
0.2
Notes
,ll
6 and 7
-,,5
1--++t+tHtt---t---H-tftltt--t-H
r-- - t+Htltt--t-t+tttt-tt---::
___VH
-
:--
1 0.6 F>--::""";H+tttttl--++t-H+ttl--+-H
0.4
See
~ 0.4
.~
~
~ 0.8
~
I
TC "2S Q C
See Notes 6 and 7
~ 1.4
~
0.5
>
~
10
1--+-H+tH1t-t---H-tttltt--t-t-j
1--+-H+tH1t-t---H-tttltt--t-t-j
OL-J-LLUilll-~~LUWL~-U
0,01
NOTES:
0.04
0.1
0.2
0.4
~
"
'e -10
0.3
~
"
E
ll;l
j
0.2
f
I,
Ij
0.1
~
90
TC '" 25~C
""'-
80
70
60
50
'---
40
t---
20
1>
~
j
J
;3
!..
100
10
a
0,01
0.04
0.1
0.2
0.4
Ic-Collector Current-A
IC-Collector Current-A
FIGURE 4
FIGURE 5
7
10
20
40
VCa-Collector·BaSl! Voltage-V
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 1 %.
7. These parameters are measured with voltage-sensing contacts separate from the current~carrying contacts and located within 0.125
inch from the device body.
1171
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·183
TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P.;N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
10
10
7
«I
D·C Operat ion
TC" 25°C
4
...c:
~
2
u
1
0.7
......
8
0
jl
'x
I
0.04
"
:2E
•
5:?
4
U
2
'\
t-
:>
E
'x
rl iiii
I
IIIII
5
0.01
2
1
,
"'
0.4
II See Note 8_
I
5:?
I
0.2
2N51r-
7 10
4
""
40
20
0.1
0.4
70100
0.7 1
7 10
4
2
20
40
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 8
FIGURE7
NOTES:
Note 9
, V BB2= 0
'\
4V'-
"
:2E
2N4998, 2N50oo
0.02
VBB2
0.7
E
~b(
,ir
I'\.
0
0.2
0.1
0.07
...c:I
...jl...
8
0.4
E
:>
E
18
..........111"
«
~
:>
~
r--"
:>
VCC-10V
RBB2 -100n
TC = 25°C
7
S. Above these points the safe operating areas have not been defined,
9. These curves are based on the capabilitv of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication
RL
= 0.1 n. Energy
Suggested Standards on Power Transistors. t
Raa1 = 10'Vaa1/lc, Vaa1 = 10 V,
'" IC:;!L/2.
tThis circuit appears on page 5-1 of this data book.
THERMAL CHARACTERISTICS
2N4998, 2N5000
2N5148,2N5150
DISSIPATION DERATING CURVE
DISSIPATION DERATING CURVE
40
~c
0
'!
35
:~ 30
c
8
.~
c
~
25
.,
20
8
15
0
~
.c
c
E
~
E
10
::ii
I
5
.
'x
J:"
o
o
8
'"'"
25
~c
0
7
.~
Co
'ii 6
i5
'"'"
.s:8
c"
~
0
..,
~
c
c
'"'"
50
75
100 125 150
T c-Case T emperature-0 C
FIGURE 9
8
5
'"
~
4
~
:I
~
E
~
E 2
..
'x
::ii
'"
175
200
I
J:"
o
o
25
50
75
100
'"'"
125
150
I'(
175
200
T C-Case Temperature-0 C
FIGURE 10
PRINTED IN U.S A
5-184
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1173
TI (anno' Qssume any responsibility for ony circuits shown
or represent 'hot they afe free from polen' infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.
TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
HIGH-FREQUENCY POWER TRANSISTORS WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•
For Complementary Use With 2N4998, 2N5000, 2N5148, and 2N5150
•
6 mJ Reverse Energy Rating with IC
=5 A
and 4 V Reverse Bias
*mechanical data
2N4999,2N5001
NOTES:
ALL TERMINALS ARE INSULATED FROM THE CASE
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
A. Within this dimension, case diameter may vary,
B. Posit'ion of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
•
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.
2N5147,2N5149
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL OIMENSIONS ARE IN ltolCHES
UNLESS OTHERWISE SPECIFIED
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
..
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:
2N4999 2N5l47
2N5001 2N5l49
--100V*_
_-80V*_
_-5.5V*_
-2A*
-2A*
-5 A*
-5 A*
-lA*
-lA*
See Figures 7* and 8
30W*
6W*
20W
4W
2W
1 W*
-SmJ_
-65°C to 200°C*
-65°C to 200°C*
~300°C*_
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw ..;;;; 8.3 ms, duty cycle ";;;;,1 %.
3. For operation above (or below) 50° C case temperature, refer to DiSSipation Derating Curves Figures 9 and 10.
4. Derate linearly to 200°C free~air temperature at the rate of 11.4 mwtC for 2N4999 and 2N5001, 5.7 mwtC for 2N5147 and
2N5149.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L = 0.48 mH, RBS1 =20 0, RBB2 = 1000,
VSS 1 = 10 V, VBB2 = 4 V, RL = 0.1 0, VCC = 10 V, leM = 5 A. Energy'" IC2 L/2.
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5·1 of this data book.
1171
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·185
TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
2N4999
PARAMETER
TEST CONDITIONS
MIN
Collector-Emitter
V(BR)CEO
Breakdown Voltage
ICEO
Collector Cutoff Current
ICES
Collector Cutoff Current
ICEV
Collector Cutoff Current
lEBO
Emitter Cutoff Current
Static Forward Current
hFE
Transfer Ratio
•
Base-E mitter Voltage
VCE(sat)
Saturation Voltage
MIN
UNIT
MAX
-80
V
-50
-50
/LA
VBE =0
-1
-1
VCE = -100 V, VBE = 0
-1
-1
/LA
rnA
/JA
IB = 0
VCE =-60V,
VCE =-60V,
VBE = 2V,
-500
-SOO
VE8 = -4 V,
IC=O
-1
-1
/LA
VEB=-5_5V, IC=O
-1
-1
rnA
VCE =-SV,
Ic=-50mA
VCE = -5V,
IC=-1 A
VCE =-5V,
IC=-2A
VCE =-5V,
IC=-3A
VCE=-5V,
IC=-1 A,
TC = IS0°C
50
20
See Notes
6 and 7
TC= -55°C
30
90
5
15
15
35
See Notes
IB = -200 rnA, IC =-2A
6 and 7
IB = -600 rnA, IC=-3A
200
-1.2
-1.2
-1.5
-1.S
-1.5
-1.5
-3
-3
-0.46
-0.46
-0.85
-0.85
-5
-5
IC- -3A
IB =-I00mA, IC=-I'A
70
30
15
See Notes
6 and 7
IB =-200mA, IC = -2A
IC- -2A
VCE--5V,
VCE = -5V,
Collector-E mitter
2NSI49
MAX
See Note 6 -80
IC = -100 rnA, IB = 0,
VCE =-40V,
IB --100mA, IC--1A
VBE
2NSOOI
2NS147
V
V
Small.signal
Common-Emitter
hfe
Forward Current
VCE=-5V,
IC = -0.1 A,
f = 1 kHz
20
SO
VCE = -5V,
IC= -0.2 A,
f = 20 MHz
2.S
3
VCB = -10V,
IE =0,
f= 1 MHz
Transfer Ratio
Small.signal
~fel
Common-E mitter
Forward Current
Transfer Ratio
Common-Base
Cobo
Open-Circuit
120
120
pF
Output Capacitance
NOTES:
6. This parameter must be measured using pulse techniques: tw = 300 }Js; duty cycle E:;;; 1 %.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
'" JE DEC registered data
thermal characteristics
PARAMETER
RaJC
Junction-to-Case Thermal Resistance
RaJA
Junction-to-Free-Air Thermal Resistance
2N4999
2NS147
2NSOOI
2NSI49
MAX
MAX
S
2S
87.5
175
UNIT
°CIW
switching characteristics at 25°C case temperature
PARAMETER
ALL TYPES
TEST CONDITIONSt
TYP
ton
Turn-O n Time
IC=-2A,
IB(1) = -200 rnA,.
IB(2) = 200 rnA,
0.2
toff
Turn-Off Time
VSEloffJ = 3.7 V,
RL=15!1,
See Figure 1
0.4
UNIT
/LS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1171
5·186
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
INP;'~ ~~2~%_ - - - ~
_:~~ 90%
V on =-41.3V
:
I
ton-lo-ot
270 pF
OUTPUTYL
-=-+Vee - 30 V
VBB1,"43V
ADJUST FOR
Von =-41.3 V AT ' - " - - -.....
INPUT MONITOR
!.-toff--l
--+----'
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a 30-V pulse (from 0 V) into a
soon termination.
B. The V gan waveform is supplied by a generator with the following characteristics: t r '" 15 ns, tf '" 15 ns, Zout
= 50 n, tw = 20 Ils,
duty cycle";; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr " 15 ns, Ajo ;;a. 10 Mil. Cin" 11.5 pF.
D. Resistors must be non inductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.
•
FIGURE 1
TYPICAL CHARACTERISTICS
2N5001.2NS149
STATIC FORWARD CURRENT TRANSFER RATIO
2N4999.2NS147
STATIC FORWARD CURRENT TRANSFER RATIO
"
"
COLLECTOR CURRENT
COLLECTOR CURRENT
100
90
VdE ~ ~51~11I1
ie
80
TC = 2S o C
See Notes 6 and 7
I
00
-i
'"
200
o
~
70
l-
V
50
j
40
~
20
r\
e
~
\
180
::
TC = 25°C
f- See Notes 6 and 7
120
100
f--
j:
\
30
~
.~
'"
I-V~E ~~~IJIII
1\
i:
10
-0.01
-0.04 -0.1
-0.4
o
.....
-1
-0.01
Ic-Collector Current-A
-0.04 -0.1
BASE·EMITTER VOLTAGE
COLLECTOR·EMITTER SATURATION VOLTAGE
"
COLLECTOR CURRENT
>
t
~
~
!
'"
>
-1.6
!£
=
-0.4
l!
-0.7
&
j
-1.2
-<1.6
-O.B
>
-1.4
-<1.8
't
..
10
18
TC '"' 25°C
See Notes 6 and 7
-1.0
I
-
j
'I~.12~.ld IIII
III
*.
r- See Notes 6 and 7
-0.5
Ie
-0.4
j
""'.1
~II
IB - 10
-0.3
;3
-0.01
NOTES:
-0.04 --0.1
-4
>
lBO
~
~
5
I. ~
I
140
120
'[
100
.3
80
~
j
W
100
.!!
&
1III
'E!O I
'"
"-
f= 1 MHz
TC "" 25°C
".............
00
40
20
~
-1
"
COLLECTOR·BASE VOLTAGE
200
-0.6
-0.2
I
-0.2
-0.4
COMMON·BASE QPEN-CI RCUIT OUTPUT CAPACITANCE
"
-2
-4
-1
FIGURE 3
COLLECTOR CURRENT
-1.8
-0.4
Ie-Collector Current-A
FIGURE2
-0.01
-0.04 -0.1
-0.4
-1
Ic-Collector Current-A
Ic-Collector Current-A
FIGURE 4
FIGURES
.....
-1
-2
-4
-7 -10
-20
VCs-Collector·Sase Voltage-V'
-40
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 1lS, duty cycle ~ 1~.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body,
1171
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·187
TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
-10
-10
-7
-4
«
.LI:
-2
~:l
u
-1
-0.7
S
-0.4
.
"
(5
•
.........
:=
u
E
:l
E
-0.1
-0.07
:2:
-0.04
5:?
-0.02
...
-4
~
~
u
.......
...5
"
8
-2
L
.!!:?
ir
\
~
1\
-0.7
'xca
Note 9
1\ VBB2= 0
VBB2- 4 V ...........
-1 f-
E
:l
E
\.
",
-0.4
See Note 8_
:2:
I
5:?
I
-0.2
-0.01
-1
NOTES:
'8
..........11J"
'\.
:l
,
VCC-10V
RBB2 - 100 n
TC = 2SoC
-7
«I
I:
2N4999, 2NSOO1
-0.2 I- 2NS147, 2NS149
.!!:?
'xca
D-C Operation
TC';;; 2SoC
-2
-4
-10
-20
-40
-0.1
0.4
-100
0.7 1
2
7 10
4
20
VCE-Coliector·Emitter Voltage-V
L-Unclamped Inductive Load-mH
FIGURE 7
FIGURE 8
40
8. Above these points the safe operating areas have not been defined.
9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication
R L = 0.1 n, Enargv '" IC2 L/2,
Suggested Standards on Power TramIistors. t
RBBl - 10-VBB1/IC. VBBl
= 10 V.
tThls circuit appears on page 5-1 of this data book.
THERMAL CHARACTERISTICS
2N6147,2N6149
2N4999, 2N5001
DISSIPATION DERATING CURVE
DISSIPATION DERATING CURVE
40
~c:
0
'!
8
35
~
:~ 30
c
·fc
&
'."c:,
c:
8
25
20
15
E
E 10
"
~c:
0
'"'"
'xII
~
.t"
5
o
o
25
50
75
7
'ilQ.
'iii 6
Ci
~
!l 5
.
';;
C
~
0
""
100
..,"c:
c:
~
125
0
tJ
'"
150
TC-Case Temperature-OC
4
'"
~
3
E
E 2
"
'j(
II
~
175
200
FIGURE 9
::i!
I
'"
~
.t"
o
o
25
50
75
100
125
FIGURE 10
""'"
150
TC-Case Temperature-OC
175
200
PRINTED IN U.S A.
5-188
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAs, TEXAS 75222
1171
11 cannol assume any responsibility for any circuits shown
or reprelent that they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS WITH
COMPUTER·DESIGNED ISOTHERMAL GEOMETRY
•
For Complementary Use with 2N5003. 2N5005. 2N5151. and 2N5153
•
15 mJ Reverse Energy Rating with IC
= 10 A and 4 V
Reverse Bias
*mechanical data
2N5002, 2N5004
ALL TERMINALS ARE INSULATED FROM THE CASE
ALL JEDEC TO-59 DIMENSIONS AND NOTES AAE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C, The ~ase temperature may be measured anywhere on the seating plane within
0_125 Inch of the stud.
D. All dimensions are in inches unless otherwise specIfied.
2N5152,2N5154
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
'fI; I
ALL DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED.
•
ALL JEDEC TO-39 DIMENSIONS AND NOTES AAE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas . .
. . . ..
.
..
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:
2N5002 2N5152
2N5004 2N5154
-100V*-80V*-6V*5A*
2A*
10A*
10 A
1 A*
2 A*
See Figures 7* and 8
50W*
10W*
33.3W
6.7 W
1 W*
-15mJ-65°C to 200°C*
-65°C to 200°C*
4----300°C*~
1. This valu.e applies when the base-&mitter diode is open-circuited.
2. This value applies for tw < 8.3 mSt duty cycle < 1%.
3. For operation above (or below) 50°C case temperature, refer to Dissipation Derating :Curves, Figure 9 and 10.
4. Derate linearly to 200°C free-air temperature at the rate of 5.7 mW/oC.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L = 0.3 mHo ABBl
VBBl = 10 V, VSS2=4 v, AL=O.l.n. VCC=10 v, ICM=10A. Energy'" IC 2 L/2 •
= 10.n,
ABB2 = 100.n,
• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.
1171
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·189
TYPES 2N5002, 2N5004, 2N5152, 2N5154
N·P·N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
2N5002
2N5004
2N5152
2N5154
MIN
Collector-Emitter
V(BR)CEO
Breakdown Voltage
ICED
Collector Cutoff Current
ICES
Collector Cutoff Current
ICEV
Collector Cutoff Current
lEBO
Emitter Cutoff Current
IC= loomA,
IB = 0,
VCE -40V,
IB -0
See Note 6
VBE - -2V, TC- 15o"C
VEB -5V,
IC-O
VEB-6V,
IC-O
Static Forward Current
VCE - S V,
IC - 2.SA
Transfer Ratio
VCE -SV,
IC-SA
VCE - S V,
IC-2.5A,
IB
VBE
•
VCE(sat)
Base-E mitter Voltage
= 250mA,
See
Notes
TC = -55°C
2.5A
6 and 7
V
50
50
1
1
500
1
1
1
1
500
1
1
20
p.A
p.A
mA
p.A
p.A
mA
SO
30
90
20
70
200
40
15
35
See
1.45
IB - 500mA.
IC=5A
Notes
VCE = 5V,
IC=2.5A
6and 7
1.45
2.2
1.45
0.75
0.75
1.5
1.5
IC
UNIT
MAX
80
VBE - 0
VCE -100V, VBE -0
VCE -60V,
MIN
80
VCE -60V,
VCE - S V, I IC - SOmA
hFE
MAX
2.2
Collector-E mitter
IB = 250mA,
IC= 2.5A
See Notes
Saturation Voltage
IB = 500mA,
IC=5A
6and 7
VCE = 5V,
IC=O.l A,
f = 1 kHz
20
50
VCE=5V,
IC=0.5A,
f=20MHz
3
3.S
VCB= 10V,
IB=O,
f= 1 MHz
V
1.45
V
Small-5ignal
Common-E mitter
hfe
Forward Current
Transfer Ratio
Small-5ignal
Common-E mitter
Ihfel
Forward Current
Transfer Ratio
Common-Base
Cobo
Open-Circuit
250
250
pF
Output Capacitance
6. These parameters must be measured using pulse techniques. tw "" 300 IJS, duty cycle'" 1%.
7. These parameters are measured with voltageooSenslng contacts separate from the current..carrylng contacts and located within
0.125 Inch from the device body.
·JEDEC registered data
NOTES:
thermal characteristics
PARAMETER
ReJC
Junction-ta-Case Thermal Resistance
2N5002
2N5152
2N5004
2N5154
MAX
MAX
3
15
UNIT
°C/W
switching characteristics at 25°C case temperature
All TYPES
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC=5A,
IB(I) = 500 mA,
toff
Turn-Off Time
VBE(off) = -3.7 V, RL = 6
n,
TYP
IB(2) = -500 mA,
0.5
See Figure 1
1.3
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
5-190
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
UNIT
p.s
TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
VSB1"43V
ADJUST FOR
Von "'41.3VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. Vgen is a -30 V pulse (from 0 VI In10 a 50
B.
C.
D.
E.
n
termination.
The Vgen waveform is supplied by a generator with the following characteristics: tr.=o;; 15 ns, tf E; 15 ns, Zout = 50 n. tw = 20 }ls, duty cycle
Waveforms are monitored on an oscilloscope with the following characteristics: tr <; 15 ns, RIO ;;... 10 MO. Cin '" 11.5 pF.
Resistors must be noninductive types.
The doc power supplies may require additional bypassing in order to minimize ringing.
<: 2%.
FIGURE 1
•
TYPICAL CHARACTERISTICS
2N5002. 2N5152
STATIC FORWARD CURRENT TRANSFER RATIO
2N5004,2N5154
STATIC FORWARD CURRENT TRANSFER RATIO
" CURRENT
COLLECTOR
COLLECTOR CURRENT
120
24 0
VeE ""5 v
See Notes 6 and 7
0
o
~.,:,.~
"I 1 1•
0
~
--
TC= 1scfc
Tel.
o
1
,\
r
~
I III
r-T~'~'·~
a
f-
VeE =5 V
22 0
See Notes 6 and 7
200
TC'" 150°C ,.,.....
180
140I-120
] ':
j 11~
I III
~.;.~
-I II t=r
I--
T~! lli!r""
2~,161
f 1 H1tt
1111111
-~~c
01-- TC=
0
0
llltt1tf
0
11111111
I III
0.01
0.04
0.1
0.4
0.01
10
0.04
Ie-Collector Current-A
0.1
COLLECTOR-EMITTER SATURATION VOLTAGE
CASE TEMPERATURE
CASE TEMPERATURE
VCE"'5 V
--r-.
2 1.......
0 1- -
~
D_ 8
r-
E
1 D6
"i'
ill
>
0
lej1AJ
• Ie I
o. 2
o
-75
NOTES:
I I
50 -25
0
25
50
75
100 125 150 175
Ie "0
f",MHz
350
Ie = 0.5A,IC= 5A
TA = 2!t'C
4
IB
2
IC"'2.5A
.::::::
40 0
7
6 ,"" 7
---1- t7: -- ::::-CJ- -:::::
o··t-' ~ -I I
COLLECTOR·BASE VOLTAGE
1
le' SA 1
I::::: r- --,
COMMON-BASE OPEN·CIRCUIT OUTPUT CAPACITANCE
w
6
10
FIGURE3
FIGURE 2
w
ISe. i°'"'
0.4
IC-Collector Current-A
BASE-EMITTER VOLTAGE
4
'-
TC =
o Te l=
o
I'\.
11111111
160
1
c
0.25 A,le = 2.5 A
300
I I L1-l- I-- I--"
18 =0.1 A,IC
1 o~
1A
• 2.
,l
_
4
'B"0.D1A,IC=0.1A
2
-75 -50
25
0
25
""''-...
.......
50
Sei N°T 6 'I"" 71
0.0 1
200
~ ::
7
50
75
100
Tc-Case Temperature-' C
T C-C8se Temperature-°c
FIGURE 4
FIGURE 5
7
126 150 175
6. These parameters must be measured using pulse techniques. tw = 300 }.ls, duty cycle
7. These parameters are measured with voltage-sensing contacts separate from the
0.12·6 inch from the device body.
10
20
40
Vea-Collector-e.se Voltap-V
FIGURE 6
~
1%.
current~arrylng
contacts ana located within
1171
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
D'ALLAS, TEXAS 75222
5-191
TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
40
10
7
«I
4
....c
5
15
1
0.7
.!!:
0.4
u
1:>
'0
u
E
:J
E
'x
'"
:aE
I
•
..........
2
1:!
VCC = 10 V
RBB2 = 100
TC = 25°C
See Note 9
D-C Operation
TC"':25°C
r--.....
20
1:!
10
u
7
....c
I)
i'
«I
5
0
f- -
2N5OO2,2N5004-,
0.2
.!!:
2N5152, 2N5154
r7
E
:J
E
t\
!d
0.02
0.4
0.1
7
10
20
40
70 100
VCE-Collector-Emitter Voltage-V
1\
4
7 10
0.4 0.7 1
2
0.2
L-Unclamped Inductive Load-mH
FIGURE 8
FIGURE'
NOTES:
f\
f'."
See Note 8
0.7
0.01
4
'"
1
I
~
=0
[\
I',.
2
'x
'"
:aE
0.04
\.\VBB2
r-- VBB2 = 4 V
u
0.1
0.07
1\
4
'0
I'
1rJ.;
.......
1:>
r-....
I
.f,?
n
8. Above these points the safe operating areas have not been defined.
9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication Suggested Standards on Power Transistors. t RSB1 = lO-VSB1/le, VSS1 = 10 V,
RL
~
n.
0.1
Energy'" IC2L/2.
tThis circuit appears on page 5-1 of this data book.
THERMAL CHARACTERISTICS
60
~c:
.,
0
c.
'"
r---
50
.~
i5
"
0"
(J
.;;
40
~
:J
0
..,c:
30
:J
"""" "'\
:r---""
!\-.
0
E
20
E
'x
'"I
~
'"'""
10
.t
o
o
5:J
.,
25
50
75
100
125
150
Tc-Case Temperature-OC
FIGURE 9
6
!\-.
.c:
c:
o
C..l
4
E
~
:J
::;
"" "'\
8
c:
C..l
2N5152,2N5154
DISSIPATION DERATING CURVE
2N5002, 2N5004
DISSIPATION DERATING CURVE
:J
E
'x
~
""
175
200
2
'" '"
'\
l25
50
75
100
125
Tc-Case Temperature-OC
FIGURE 10
'"
150
""
175
200
PRINTED IN USA
5-192
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TI (onnol aSSume ony responsibility for ony (ircuits shown
Dr represenf thot they Ofe free from potent infringement.
1171
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5003, 2N5005, 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS WITH
COMPUTER·DESIGNED ISOTHERMAL GEOMETRY
•
For Complementary Use With 2N5002, 2N5004, 2N5152, 2N5154
•
15 mJ Reverse Energy Rating with IC = 10 A and 4 V Reverse Bias
*mechanical data
2N5003, 2N5005
i ALL TERMINALS ARE INSULATED FROM THE CASE
*
~.l._
I
ALL JEDEC TO·59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, caSB diameter may vary.
B. Position of terminals with respect to the hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 Inch of the stud.
1"
•
D. All dimensions are In Inches unless otherwise specified.
2N5151,2N5153
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL DIMENSIONS A.RE IN INCHES
UNLESS OTHERWISE SPECIFIED.
I!f
err
Ii \
ALL JEDEC T0-39 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5003
2N5005
Coliector·Base Voltage . . , . . .
Coliector·Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas .
. . . . ...
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:
2N5151
2N5153
_-100V*_
_-80V*_
_-5.5V"_
-5 A*
-5A*
-lOA" -lOA
-2 A* -2.5 A "
See Figures 7" and 8
lOW"
50W*
33.3 W
6.7 W
1 W"
-15mJ_65°C to 200°C*
_65°C to 200°C*
_300°C*_
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw ~ 8.3 ms, duty cycle ~ 1 %.
3. For operation above (or below) 50°C case temperature, refer to Dissipation Derating Curves, Figures 9 and 10.
4. Derate linearly to 200°C free~air temperature at the rate of 5.7 mW/oC.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors t . L = 0.3 mH, RBB1 = 10 n, RBB2 = 100n,
VBB1 = 10 V, VI;IB2 = 4 V, RL =0.1 n, VCC = 10 V, ICM = 10 A. Energy'" IC 2 L/2.
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.
1171
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·193
TYPES 2N5003. 2N5005.
. 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
'
*electrical characteristics at 25°C case temperature (unless otherwise noted)
2N5003
PARAMETER
TEST CONDITIONS
MIN
Collector-E mitter
V(BR)CEO
Breakdown Voltage
IC = -100mA, IB = 0,
Collector Cutoff Current
VCE - -40 V,
ICES
Collector Cutoff Current
SO V, VBE 0
VCE
VCE - -100 V, VBE - 0
ICEV
Collector Cutoff Current
VCE - -SO V,
lEBO
Emitter Cutoff Current
hFE
VBE:- 2 V,
IC-O
VCE--SV,
IC - -SOmA
Static Forward Current
VCE - -5 V,
IC- -2.SA
Transfer Ratio
VCE - -S V,
Base-Emitter Voltage
TC - lS0°C
,·IC - -SA
IC=-2.SA,
•
VCE(sat)
-50
TC -
30
6and 7
20
-s5"c
-1
-1
-SOO
-1
p.A
-1
-1
mA
SO
IB - -2S0mA, IC - -2.5 A
See Notes
IB - -SOOmA, IC--SA
6 and 7
200
3S
-l.4S
See Notes
Collector-Emitter
70
40
15
Saturation Voltage
mA
p.A
-1
90
Sand 7
IC= -2.SA
p.A
1 p.A
-SOO
20
IB =-500mA, IC--SA
VCE=-SV,
V
1
See Notes
UNIT
MAX
-50
IB -0
IB - -2!;;OmA, IC--2.SA
VBE
MIN
-80
VEB = -S.SV, IC=O
VCE--SV,
2N5153
MAX
See Note S -80
ICEO
VEB - -4 V,
2N5005
2N5151
-1.4S
-2.2
-2.2
-1.45
-1.4S
-0.75
-0.7S
-l.S
-l.S
V
V
Small-Signal
Common-Emitter
hfe
Forward Current
VCE = -SV,
IC = -0.1 A,
f = 1 kHz
VCE=-5V,
IC=-O.SA,
f = 20 MHz
VCB = -10 V,
IE =0,
f= 1 MHz
20
SO
3
3.S
Transfer Ratio
Small-Signal
~fel
Common-E mitter
Forward Current
Transfer Ratio
Common-Base
Cobo
Open-Circuit
2S0
250
pF
Output Capacitance
NOTES:
6. These parameters must be measured using pulse techniques.
'tw = 300 JJ$, duty
cycle
CS;;;
1%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from"the device body.
*JEDEC registered data
thermal characteristics
PARAMETER
R6JC
2N5003
2N51S1
2N5005
2NS1S3
MAX
MAX
3
lS
Junction-to-Case Thermal Resistance
UNIT
°C{W
switching characteristics at 25°C case temperature
PARAMETER
ALL TYPES
TEST CONDITIONSt
ton
Turn-On Time
IC =-SA,
IB(l) = -SOO mA,
toff
Turn-Off Time
VBE(off) = 3.7 V,
RL = 6 U,
TYP
IB(2) = 500 mA,
See Figure 1
O.S
1.3
UNIT
p.s
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1171
5-194
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N5003, 2N5005, 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
Von~-41.3VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. Vgen is a 30-V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr '" 15 ns, tf ,.;;;;; 15 ns, Zout
= 50 n, tw = 20 ,",s,
duty cycle::;;;:; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
D. Resistors must be noninductive types.
E.
< 15 ns,
Rin ;;;.. 10 Mn, Cin
< 11.5
.,
pF.
The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
TYPICAL CHARACTERISTICS
2N5OC3,2N5151
STATIC FORWARD CUAAENTTAANSFER RATIO
2N5005and 2N5153
STATIC FORWARD CURRENT TRANSFER RATIO
COl.LECTOR CURRENT
COLLECTOR CURRENT
100
~
i
I
I
1111
Q 180
TC
80
m
l00
G
~
I'-...
TC=250C
60
~
e
II
70
50
~
U
II
40
TC~ 150°C
160
~ 140
1\
II
~
j
200
TC~ 160'"c
90
TC
120
I'lli
t:--..
~
TC= 2SoC
100
III
so
Tcg~55°C
TC" -5SoC
30
I
20
VCE=-5V
See Notes ~I~rld 7
10
-0.01
-0.04 -<1.1
VeE = -5 V
See Notes 6 and 7
-<1.4-1
-4
-10
-0.Q1
Ie-Collector Current-A
-<1.04 -<1.1
I
-4
-0.4-1
-10
Ie-Collector Current-A
FIGURE 2
FIGURE 3
BASE·EMITTER VOLTAGE
COMMON·BASE OPEN·CIRCUIT OUTPUT CAPACITANCE
COLLECTOR·EMITTER SATURATION VOLTAGE
~
CASE TEMPERATURE
COLLECTOR·BASE VOLTAGE
CASE TEMPERATURE
-1.6
-1.4
>1
~
~
~
E
500
-1.2
-1.0
-0,8
-...
"-
~
m
~
t
VeE =-5 V
See Notes 6 and 7
-0.6
-0.4
:--
- - r-
E
r-
t--
~~lA
Y l'A
-0,2
i~
~
0
25
50
75
100 125 150 175
TC-Case Temperature"'oC
FIGURE4
NOTES:
400
IB - -0.25 A, IC=
-0.7
2.SA
-0.4
IB=
0.1 A, IC-
1A
-0.2
I I I I I
-0.1
~ -0.07
Y -0,04
5W -
'0
u
-0.2
E
::l
E
'x<0
::iE
I
•
D-C Operation
TC";;2SoC
.........
«
-20
J.c:
i"'...
IF
~::l -10
'\
~
V
2NS1Sl,2NS1S3
-0.1
-0.07
3< ~.J
U
r-...
f0- r- 2NSOO3,2NSOOS.I
VCC = 10 V
RBB2 = 100 n
TC = 2SoC
See Note 9
1\
\
\. VBB2 = 0
\
r-- VBB2 =4 V
"-
~
-0.04
!:?
i\
~
r-..
'\
See Note 8
-0.Q2
-0.01
-4
-7 -10
-20
-40
-0.4
0.1
-70 -100
0.7 1
0.4
0.2
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 8
FIGURE7
NOTES:
7 10
4
2
8. AbovB these points the safe operating areas have not been defined.
9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
Suggested Standards on Power Transistors. t
of the forthcoming JEDEC publication
RL - 0.1
Energy '" IC 2 L/2.
RBBl - 10'VBB1/IC, VBBl = 10 V,
n.
tThis circuit appears on page 5~1 of this data book.
THERMAL INFORMATION
2N5003, 2N5005
DISSIPATION DERATING CURVE
60
~c:
0
.~
12
r---
40
"
0
::J
..,
30
c:
c:
0
tJ
0
'!
':
c
""
0
!!l
~c:
""I""
50
coBi
C
8
.s;
20
'x
~
"\
.t
60
76
!!l
6
100
125
"" "\
"\.
.~
["\
10
25
8
c:
0
tJ
"\
o
""""
10
8
0
::J
I
o
-
'~
0
E
::J
E
~
2N5151,2N5153
DISSIPATION DERATING CURVE
4
"\
E
::J
E
""
150
T C-Case Temperature-°c
'x.,
:;
""
2
I
""
175
200
FIGURE9
.t
o
o
"\
25
50
75
100
126
150
T c-Case Temperature-°c
""
175
200
FIGURE 10
PRINTED IN U.S A
5-196
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TI connol assume any responsibility for any circuits shown
or repre,senl thor they are free from polent infringement.
1171
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,
TYPES 2N5038, 2N5039
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
•
Min V(BR)CEO of 90 V (2N5038)
•
Min fT of 60 MHz at 10 V, 2 A
•
20-A Rated Continuous Collector Current
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
000,
O
o S25
0.4S0
R MAX
j
.,--_ _
0_"_0_-+
1- ~OJI2M1N~1573
0 043 0lA lliADS
~m=OY38
10SOMAX
"
~!~
-o'''--=r
~
0188 R MAX-'---===-.l
80TH ENDS
0 \ 35 MAX
1
h
0205 0440
_,_.
.!.....!!l
MAX
0.61.5 I 177
~
I
4
,
0-:-1·--\·0~
-\-I'~/
0420
•
l~::;DIA
1 HOLIES
I
SlATING PLANE
1 - BASE
2-EMITTER
CASE TEMPERATURE
MEASUREMfNT POINT
DIMENSIONS ARE IN INCHES
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Emitter Voltage (VBE = -1.5 V. See Note 1)
Collector-Emitter Voltage (Base Open, See Note 1)
*Emitter-Base Voltage
.....
*Continuous Collector Current
*Peak Collector Current (See Note 2)
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
*Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range _ . . . . . . .
Terminal Temperature 1/32 Inch from Case for 10 Seconds
NOTES:
2N5038 2N5039
150 V 120 V
90 V
75 V
7V
7V
-20A_
-30A-5A--140W--80W-5W-65°C to 200°C
-65°C to 200°C
_230°C_
1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode
reverse~iased
or open-circuited, as specified.
2. This value applies for tw ~ 10 ms, duty cycle ~ 50%.
3. Derate linearly to 200 0 C case temperature at the rate of 0.8 wf C.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mWfC.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·197
TYPES2N5038, 2N5039
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
2N5038
TEST CONDITIONS
V(BRICEO Collector-Emitter Breakdown Voltage
IC= 200 rnA,
90
See Note 5
IB =0,
50
1.5V, TC - 150·C
VCE S5V, VBE
VCE - 100 V, VBE = -1.5 V, TC-15o"C
10
rnA
10
VEB - 5 V.
IC-O
5
15
VEB = 7 V.
IC=O
50
50
VCE=5V.
IC= lOA,
See Notes 5 and 6
VCE = 5 V.
IC= 12A,
See Notes 5 and 6
Base-Emitter Voltage
IB-5A.
IC=20A,
See Notes 5 and 6
3.3
3.3
V
Coliector·Emitter Saturation Voltage
IB -5A.
IC= 20A.
See Notes 5 and 6
2.5
2.5
V
IC=2A.
f= 5 MHz
lEBO
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VBE
VCE(satJ
~fel
Small-Signal Common-Emitter
VCE = 10V,
Forward Current Transfer Ratio
NOTES:
V
50
VCE-ll0V, VBE - -1.5V
Collector Cutoff Current
UNIT
75
VCE = 140 V, VBE - -1.5V
ICEV
2N6039
MIN MAX MIN MAX
20
20
rnA
100
100
12
12
5. These parameters must be measured using pulse techniques. tw = 300 IlS, duty cycle <; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
*switching characteristics at 25° C case temperature
I
PARAMETER
tr
Rise Time
ts
Storage Time
tf
Fall Time
ton
Turn·On Time
toft
Turn-Off Time
TEST CONDITIONSt
MAX
2N5038
0.5
IC= 12A.
IB(1I = 1.2 A.
VBE(offl = -6.3 V.
RL=2.5n.
IC= lOA.
IB(1I = 1 A.
VBE(offl = -6.3 V,
RL =3n.
IB(21 = -1.2 A,
See Figure 1
UNIT
1.5
0.5
2N5038
/.IS
0.5
IB(21 =-1 A,
See Figure 1
2
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters •
• JEDEC registered data
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
lN914
OUTPUT
MONITOR
Von = 25V· - r~9O%
INPUT
0V
-6.3 V
56n
::i:1fN.
- - ~~
10%
1
I
--t ton t.-
~:r
OUTPUT
270pF
30n
VBB2=_ 6.3V - +
1 pF
I.-tott-.l
VOLTAGE WAVEFORMS
+
.:.VCC=30V
~------------------------~--~+
VBB1",27V
ADJUST FOR
V on =25VAT
INPUT MONITOR
CIRCUIT CONDITIONS
IC
lOA
RL
3n
RBBl
12n
RBB2
7.32n
12A
2.5n
100
60
TEST CIRCUIT
NOTES:
A. Vgen is. -30·V pulse (from 0 VI into a 50·0 termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr"" 15 ns, tf '" 15 ns, Zout
= 50 n, tw = 20 ps,
duty cycle ... 2%.
C. Waveforms are mounitored on an oscillioscope with the following characteristics: tr <: 16 ns, Rin;> 10 MSl, Cln '" 11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
PRINTED IN U.S.A.
5-198
TEXASINCORPORATED
INSTRUMENTS
POS~
OFFICE BOX 5012 •
DALLAS, TEXAS 75222
671
TI connat assume any responsibility for Gny circuits shown
or represent thar they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4901 THRU 2N4903
•
87_5 W at 25°C Case Temperature
•
5-A Rated Collector Current
•
Min fT of 4 MHz at 10 V. 1 A
•
62_5 mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
O.4S0j
i.2sO
0.525 R MAX
oO 0
~
1- ~O'312MIN~1'573
~ DIA 2 LEADS
-r--------j~O.038
1.0SO MAX
1.197
0.675 1.177
if.65s
~
2-EMlnER
•
or,;-.:t0.225 ~ • 0·\-1
-,'~,,, --.l
. -,.- • -
MAX
DIA
~
0.188 R MAX,.>--------
BOTH ENDS
MAX
I
0.205
II
0,440
0.420
-"..
1
t
:
0.135 MAX--t lsEATlNG PLANE
'
1 - BASE
0.161 DIA
0.151
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5067 2N5068 2NS069
'Collector·Base Voltage . . . . . .
'Coliector·Emitter Voltage (See Note 1)
'E m itter· Base Vo Itage
.....
'Continuous Collector Current
Peak Collector Current (See Note 2)
'Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
'Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
40V
60V
80V
40V
60V
80V
5V
5V
5V
-5A--15A-_1A_
.. See Figures 6 and 7+
-B7.5W•
4W
..
-62.5mJ_-6SoC to 200°C_
_-65°C to 200°C_
_235°C_
1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for
tw
';:;;;;;'0.3 ms, duty cycle ~ 10%.
3. Derate linearly to 200°C case temperature at the rate of 0.5 W/C or refer to Dissipation Derating Curve, Figure 8.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/C or refer to Dissipation Derating Curve, Figure 9.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 5. L = 20 mH, RSB2 = 100
VBB2 ~ 0 V, RS~ 0.1 fl, VCC ~ 10 V. Energy'" IC2 U2.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
on,
172
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5-199
TYPES 2NS067, 2NS068, 2NS069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
Collector-Emitter
V(SR)CEO
IC= 200 rnA, IS = 0,
Sreakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
ICEV
lEBO
hFE
VBE
VCE(satl
I
See Note 6
VCE = 60 V,
VCE = 80 V,
IS = 0
VCE = 40 V,
VBE = -1.5 V
VCE = 60 V,
VBE = -1.5 V
VCE=80V,
VBE = -1.5 V
VCE = 40 V,
VSE = -1.5 V,
TC = 150'C
VCE = 60 V,
VSE = -1.5 V,
TC=150'C
TC = 150'C
40
60
80
V
1
rnA
1
1
1
1
2
VBE = -1.5 V,
Ie = 0
Static Forward Current
VCE = 2 V,
IC= 1 A,
See Notes 6 and 7
20
Transfer Ratio
VCE = 2 V,
IC= 5A,
See Notes 6 and 7
7
Base·Emitter Voltage
VCE=2V,
IC= 1 A,
See Notes 6 and 7
1.2
1.2
1.2
Collector-Emitter
IS = 0.1 A,
IC= 1 A,
See Notes 6 and 7
0.4
0.4
0.4
Saturation Voltage
IB - 1 A,
IC- 5A,
See Notes 6 and 7
1.5
1.5
1.5
VCE = 10 V,
IC= 0.5A,
f = 1 kHz
20
20
20
VCE = 10 V,
IC= 1 A,
f = 1 MHz
4
4
4
Forward Current Transfer Ratio
rnA
2
VEB = 5 V,
Forward Current Transfer Ratio
UNIT
1
IS =
VCE = 80 V,
Small-Signal Common-Emitter
hel
2N5069
Emitter Cutoff Current
Small·Signal Common-Emitter
hfe
2N5068
MIN MAX MIN MAX MIN MAX
a
IS = a
VCE = 40 V,
ICEO
2N5067
TEST CONDITIONS
PARAMETER
2
1
1
80
20
80
1
20
7
rnA
80
7
V
V
*JEDEC registered data
switching characteristics at 25° C case temperature
PARAMETER
TEST CONDITIONSt
TYP
ton
Turn-On Time
IC= 1 A,
IS(1) = 100 rnA,
IS(2) = -100 rnA,
toff
Turn·Off Time
VBE(off) = -4.3 V,
RL=30n,
See Figure 4
UNIT
0.5
I"S
~
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR CURRENT
IIVCE-2~
0
0
It---J
,,0
~
~
'ye
",c.",:;...r
0
I
•
S 0.8
~
~
~
"- ~
0
~
0
0.05
~
~
II
0.1
0.2
0.4 0.7 1
IC-Collector Current-A
4 5
FIGURE 1
NOTES:
0.6
~
TC _150°C
0
1.0
>
~C
0
I
See Notes 6 and 7
~
0.4
COLLECTOR·EMITTER SATURATION VOLTAGE
CAse TEMPERATURE
1.2
-r--
::::
CASE TEMPERATURE
Vee"" 2 V
See Notes 6 and 7
Ic=lA
IC~2~A
r-i'--4.
~
........ J'!9
~50 mA
1'--",
-........
--
-........
0.2
o
-75 -50 -25
0
25
50 75 100
TC-Cas8 Temperature-QC
125 150
FIGURE 2
>I
•
~
See Notes 6 and 7
0.7
0.4
I--ls""A,IC-5A
--
-1--1'
r-
IS .. 0.25 A, Ic ~ 2.5 A
1 H-r
0.2
~
]
J
Is=0.1 A,IC = 1 A
0.04
Y
! 0.02
il
>
~
0.1
0.07
ISL5~
0.01 75
III
50
25
0
25
50
75
100 125
150
T c-Case Temperature-Qc
FIGURE 3
6. These parameters must be measured using pulse techniques. tw = 300 Ms, duty cycle ~ 2%.
7. These parameters are measured with voltage~sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
172
5-200
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N5067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
V on =8.5V - -
r~90%
INPUT OV-Jl0%- -4.3 V
1 10%
56n
..j ton
RBB2=
56n
270 pF
30n
~~
I
I.-- toft....J
I
so%1
~I
OUTPUT
VBB2 =-=4.3V
I-
-
90%
.=. VCC=30V
VBBl '" 10 V
ADJUST FOR
Von = 8.5 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES;
•
A. V gen is a -30~V pulse (from 0 V) into a 50-fl termination.
B. The
Vgen
waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf ~ 15 ns, Zout"" 50
tw = 20 Ils, duty cycle
n,
< 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 n5, Rin ~ 10 Mil, Cin ~ 11.5 pF.
O. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE4
INDUCTIVE LOAD SWITCHING
--l
! . - tw '" 5 ms (See Note AI
INPUTO~
VOLTAGE
-5V-
~ lOOms
I
I
COLLECTOR2.5A~:--I----t- I-50
n
+
loon
CURRENT
0
I
IC MONITOR
V(BRICER-I--
I
COLLECTOR
VOLTAGE
RS=O.ln
VBB1= 10V
I
I I
VCC=10V-=-
I
I
I
10 V
I
-----1--
I
I
I
I
VCE(sati VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE:
A. Input pulse width is increased until
'eM
= 2.5 A.
FIGURE 5
172
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
OALLAS, TEXAS 75222
5-201
TYPES2NS067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
vs
UNCLAMPED INDUCTIVE LOAD
40
10
«
.!.I:
~
D-C Operation
TC';;;; 25°C
7
.....
4
~
:;J
u
u
j
;3
\
2
1
E 0.7
:;J
E
.~ 0.4
:2:
2N5067
I
2N5068
I
5:} 0.2
•
I
20
10
1-1--
5
10
7
"0
VCC = 10V
RBB2 = 100
TC =25°C
See Figure 5
20
..!!!
ti
---
E
:;J
E
,
·xco
.. i\.
5:}
:2:
I
on
6'<'$
u
Cho/
N..:
4
r-....
seeNJte8~
2
\
2N5069
0.1
...
I:
..........
:;
«I
70
40
100
0.4
2
0.7 1
4
7 10
20
40
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 7
FIGURES
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~
·1
.=
o8
.~
..
g
o
100
s:I
90
0
.;;
co
I:
o
u
E
-
"
Co
.~
",
80
70
60
"
50
:2:
~
.,
..
0
,,-R eJc .;;;; 2°C/W
I:
.;;
I:
10
o
100 125
"'-"
u
E
:;J
E
"-
·xco
:2:
""
150 175 200
Tc-Case Temperature-°c
ReJA .;;;; 43.75°C/W
~
2
0
"
20
75
"
0
f'\.
50
3
:;J
f',.
30
25
"- ~
:;J
~
40
o
4
0
8
.s;
:;J
·xEco
5
I:
:;J
..g
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
FIGURE,S
~ 0
0..
o
25
50
75
'"
'"'"
100 125 150 175 200
T A-Free-Air Temperature-°c
FIGURE 9
PRINTED IN U.S.A
5-202
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
172
11 (annol assume any responsibility for ony circuits shown
or represent thaI they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY·THE BEST PRODUCT POSSIBLE.
TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•
100 W at 75°C Case Temperature
•
700 V Collector-Emitter Off-State Voltage
•
Min V(BR)CEO of 400 V
•
Max toff of 1_7 jJ.S at IC = 1 A
•
Typ VCE(sat) of 0_3 V at IC = 3.5 A
•
Typ fT of 5 MHz at 12 V, 0.2 A
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
o
~o
0.525 • MAX
1- I0312MIN~1573
-r--_O:..2_.o-1-lm=lrDIA
~
ili
-0225----.:::T-0~~I~
2 UADS
•
MAX
...
I050MAX
0.:;: :':.,~
~
0205 0 . . . . 0 - '
0420
0.135 MAX-II
I
0.200-
lsEATlNG 'LANE
1 - lASE
CASE TEMPERATUIE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Emitter Voltage (VBE = -1.5 V, See Note 1)
*Collector-Emitter Voltage (Base Open, See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
Safe Operating Area at (or below) 75°C Case Temperature
·Continuous Device Dissipation at (or below) 75°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
Unclamped Inductive Load Energy (See Note 4)
*Operating Collector Junction Temperature Range
·Storage Temperature Range . . . . . . . .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
700 V
500 V
6V
3.5 A
2A
See Figure 6
100W
4W
180 mJ
-65°C to 150°C
-65°C to 200°C
300°C
1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode reverse-biased or open-circuited, as specified. In operation, the limitations of Figure 6 must be observed.
2. Derate linearly to 150°C case temperature at the rate of 1.33 wf C.
3. Derate linearly to 150°C free..air temperature at the rate of 32 mWf C.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2, condition 1. L = 40 mH,
RBB2=3kn, VBB2=1.5V, RS=O.l n, VCC=50V. Energy'" IC2 L12.
'" JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
571
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAIi. TEXAS 75222
5-203
TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Collector-Emitter
V(BR)CEO
Breakdown Voltage
Collector-E mitter
V(BR)CER
Breakdown Voltage
ICEO
Collector Cutoff Current
ICEV
Collector Cutoff Current
Static Forward Current
hFE
VCE(sat)
•
NOTES:
400
ICM = 3_5 A,
RBE = lOn,
See Figure 2 (Condition 2)
500
V
V
0_25
VCE = 700 V, VBE = -1_5 V
0_5
VCE = 400 V, VBE = -1_5 V, TC= 125"C
0_5
VEB -6V,
IC- 0
VCE =5V,
IC-l A
5
30
IC-2_5A
IC-l A,
Base-E mitter Voltage
IB - 0_7 A,
IC- 3_5 A,
See Notes 5 and 6
Collector-Emitter
IB=O_l A,
Saturation Voltage
IB - 0_7 A,
IC=l A
IC- 3_5 A
See Notes 5 and 6
VCE = 12V,
IC= 0_2 A,
f= 1 MHz
VCB = 20 V,
IE =0,
f= 1 MHz
Forward Current Transfer Ratio
Common-Base Open-Circuit
Cobo
See Note 5
VCE -5 V,
Small-5ignal Common-E mitter
Ihfel
IB =0,
VCE-5V,
Transfer Ratio
VBE
IC= 100mA,
TYP MAX UNIT
VCE -500V, IB -0
Emitter Cutoff Current
lEBO
MIN
Output Capacitance
See Notes 5 and 6
TC - -55°C
mA
mA
mA
90
10
10
2_8
1.1
0_2
2
0_8
0.3
2_5
V
V
5
100
150
pF
5. These parameters must be measured using pulse techniques."tw = 300 JJs, duty cycle oE;; 2%.
6, These parameters are measured with voltage~sensing contacts separate from the current~carrylng contacts and located within
0_125 Inch from the device body_
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Thermal Resistance
ROJA
Junction-to-F ree-Air Thermal Resistance
0_75
31.25
UNIT
°CIW
*switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC= 1 A,
toff
Turn-Off Time
VBE(off) = -6 V, RL = 125n,
IB(1) = 0_1 A, IB(2) = -0_5 A,
See Figure 1
MAX
0_8
1_7
UNIT
JLS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters•
• JEDEC registered data
571
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION
Von = 34.1 V- INPUT
560
RBB2=
120
270 pF
300
-r~ 90%
OVJ10%- -6V
1 10%
..-( ton I-
~~
-
I
\.- toff ...J
10%r
~90%:
90%~~
:1
,OUTPUT
VBB2 =-:6V
-=- VCC = 125 V
VBBl "'36V
ADJUST FOR
Von = 34.1 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
•
A. V gen is a -3Q-V pulse (from 0 V) into a 50-0 termination.
B. The Vgen waveform is supplied by a generator with the following chal"8ctel'"istics: tr
duty cycle .s;:;; 5%.
< 15 ns, tf <; 15 ns,
C. Waveforms are monitored on an ocsilloscope with the following characteristics: tr:e;;; 10 ns, Rin ;;;at. 1
D. Resistors must be non inductive types.
Mn.
Zout = 50 n tw = 5",5,
Cin
~
11.5 pF.
E. The d-c power supplies may require additional bypassing in order to mil"!imize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
.....-I
INPUT
VOLTAGE
I.-- tw (See Note Al
0u-=-J-r
-5 V-
I---{--
100 ms
I
I
COLLECTORICM~:1- ---"1- I-+
500
CURRENT
0
I
VCC = 50 V-=ICMONITOR
VtBRICER-I--
I
COLLECTOR
VOLTAGE
RS =0.10
VBBl = 10 V
50V
I
I
1
I
I
I
-----\---
I
I
I
I
VCEtsatl-
CONDITION
L
1
RBB2
3kO
VBB2
1.5V
40mH
ICM
3A
2
100
OV
10mH
3.5A
tw
'" 2.4 ms
"'0.7ms
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width Is increased until the peak collector current reaches the specified value of leM.
FIGURE 2
571
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·205
TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
vs
COLLECTOR CURRENT
'00
~
j
80
~
60
1
40
20
18'" 700 rnA,le '" 3.5 A
>
J±tlC
~
'.0
·1
0$
T'T" '::.s-
11111
TC"
~
,
t
.)~!1,150·C
1\\\
_\
55°C
0 .•
!f
0.'
'-'::
11111
1.2
{
'T
See Notes 5 and 6
,.,
See Notes 5 and 6
11111
a
i
,..
VeE" 5 v
11111
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
t-
t-- r--
B
:;
!
7- - -
--
16'" 500 rnA,le
I
1\
t-- r--
2.5 A
'BI.,..\mA~'C-'A V
ij
--
~
,
0.'
0.8
0.7
0 .•
SeiI Notes 5 and 6
-
18
i' II '"
D.SIA,
2.5 A
\
0..
./
le=O.7A,lc=3.5A
0.'
') ,..-: :::s V
0.3
0.'
-:: ~ ;:::::
;::::: V
f-"'
-f--
!
0.'
7
--
V
It=r A'I IC ' ',1A
~
11111
0.04 0.07 0.1
COLLECTOR-EMITTER
SATURATION VOLTA'tE
vs
CASE TEMPERATURE
0.'
0.2
0.4
0.7 1
-75 -50 -25
0
25
50
-75 -50 -25
75 100 125 150 175
0
25
50
75 100 125 150 175
Ie-Collector Current-A
•
FIGURE 3
FIGURE 4
FIGURE 5
5. These parameters must be measured using pulse techniques. tw = 300 ~s. duty cycle -< 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body,
NOTES:
MAXIMUM SAFE OPERATING AREA
THERMAL INFORMATION
DISSIPATION DERATING CURVE
10
7
120
D-C Operation
TC .; 75°C
4
r-...
2
<{
.!.c:
"l:
u"
5
tl
.!!l
0
~c:
..,0
'"0.
'i2
0
.>"u
r\
0.7
100
"~
80
I"" "'-
"
0
0.4
!30
"\
0.2
..,"c:
\
U
I
0.1
!:? 0.07
60
c:
0
u
40
"~
E
"
'"
~
E
·x
0.04
1"\
0.02
.t
0.01
0
10
20
40
70 100
200
400
7001000
'" '"
~
20
I
70
80
90
100
110
120
130
VCE-Collector-Emitter Voltage-V
Tc-Case Temperature-OC
FIGURE 6
FIGURE 7
~
140
150
PRINTED IN U.S.A.
5·206
TEXAS)NSTRUMENTS
,
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
571
TI cannol assume any responsibility for any circuits shown
or rt'presenl fhal 'hey aTe free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•
125 W at 62.5°C Case Temperature
•
400 V Coliector·Emitter Off-State Voltage
•
Min V(BR)CEO of 325 V
•
•
= 2.5 A
Typ VCE(sat) of 0.35 V at IC = 5 A
•
TypfTof5MHzat12V,O.2A
Max toft of 1.7 ps at IC
*mechanical data
ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
o
~
I I~DIA2 UAOS
. -_ _'_'_50_j_
ffi:::l38
obs
0"
I 050 MAX
"
IOlI2MIN~
--1
0450
0.525 R MAX
MAX
0 225
~
10TH ENDS
I
_/. 1+
0 '\~I~
0205 0440
I~
0.188 R MAX
-------=r
I 573 MAX
•
~ ~~~
. -
t~:::
--..- I
0.420
0.ll5 MAX--j
0615
~
~2-EM,"fR
OJ...
'2 HOLES
0.200SEATING PLANE
1 --- BASE
CASE UMPUATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage
'Continuous Collector Current
'Continuous Base Current
Safe Operating Area at (or below) 162.5°C Case Temperature.
'Continuous Device Dissipation at (or below) 62.5°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
400 V
5V
5A
2A
See Figure 6
125W
4W
180 mJ
-65°C to 150°C
-65°C to 200°C
300°C
1. This value applies only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter diode
reverse-biased or open-circuited. In operation, the limitations of Figure 6 must, be observed.
2. Derate linearly to 150° e case temperature at the rate 1.43 W/ C.
3. Derate linearly to 150°C free-air temperature at the rate 32 mW/oC.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L
VSB2
= 1.5
V, RS = 0.1
.n,
Vee
= 50
= 40 mH,
RSB2
=3
kn,
V. Energy ~ IC2L/2.
'" JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
571
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-207
TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICED
ICEV
IC - 100mA,
Collector Cutoff Current
lEBO
Emitter Cutoff Current
Static Forward Current Transfer Ratio
VBE
Base-E mitter Voltage
VCE(sat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
NOTES:
Forward Current Transfer Ratio
MIN
TVP MAX UNIT
325
V
VCE - 400 V, IB - 0
2.5
VCE = 400 V, VBE - -1.5 V
0.5
VEB - 5 V,
IC = 0
VCE-5V,
IC-2.5A
VCE = 5 V,
IC = 3.5 A
IB-0.5A,
IC = 2.5 A
IB-l A,
IC- 5 A
IB=0.5A,
IC=2.5A
IB -1 A,
IC - 5 A
VCE = 12 V,
IC=0.2A,
5
2
See Notes 5 and 6-
15
rnA
rnA
35
10
See Notes 5 and 6
See Notes 5 and 6
f = 1 MHz
mA
2.6
1
1.5
1.2
0.25
2
0.7
0.35
2.5
V
V
5
5. These parameters must be measured using pulse techniques. tw == 300 J.Ls, duty cycle .s;:;; 2%.
6. These parameters are measured with
•
See Note 5
VCE - 400 V, VBE - -1.5 V, TC - 125°C
hFE
ihfel
IB - 0,
voltage~sensing
contacts separate from the current-carrying contacts and located within
0.125 inch from the device body .
thermal characteristics
MAX
PARAMETER
ReJC
Jucntion-to-Case Thermal Resistance
ReJA
Junction-to-Free-Air Thermal Resistance
0.7
31.25
UNIT
°C/W
*switching characteristics at 25°C case temperature
TEST CONDITIONst
PARAMETER
ton
Turn-On Time
IC = 2.5 A,
toft
Turn-Off Time
VBE(off) = -6 V, RL = 50 U,
IB( 1) = 0.25 A, IB(2) = -0.5 A,
See Figure 1
MAX
UNIT
0.8
1.7
j.lS
tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data'"
571
5-208
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION
OUTPUT
Von~42.5V- - -r~90"1o
INPUT
5sn
OVJ10%- -S V
I 10%
30n
:r~t~f~:
~
OUTPUT
VBB2~ _-
sv
I
-I ton :11-
RBB2 ~
12 n
270 pF
~~
-
-
90%
-=-VCC~
125V
VBB1"'44V
ADJUST FOR
Von = 42.5 V AT
INPUT MONITOR
VOL TAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf~ 15 ns, Zout = 50
duty cycle ~ 5%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
D. Resistors must be noninductive types.
~
10 ns, Rin
~
1 Mn, Cin
~
n, tw
= 5 ,",5,
11.5 pF.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
•
FIGURE 1
INDUCTIVE LOAD SWITCHING
VCE MONITOR
-../
I.-- tw '" 2 ms
seeNoteAI
INPUT
VOLTAGE
40mH
TUT
n
VCC
=
~
-5 V-
i----+
CURRENT
0
I
I
I
VIBRICER-I--
I
RS~O.l
I
I I
50V"="
IC MONITOR
VBBl = 10V
100 ms
COLLECTOR3A~:--I---1"- I - +
50
0
COLLECTOR
VOLTAGE
n
50 V
I
I
I
I
-----1-I
I
I
I
VCElsatl -
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width is increased until leM
=3
A.
FIGURE 2
571
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·209
TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
vs
COLLECTOR CURRENT
I .•
100
j
i
•
11111
80
j
J
t
I.'
II
+~;\~'C
~
till?
eo
TC.=2~
40
["::
11Tl1
11111
0.(14 0,070.1
!
,:
\'(\
55°C
20
~
i
1""-\0
11111
TC=
.1
VCE=5V
S_Notes5end6
IIIII
,; =
1.2
1.0
0.6
t::,.
-
le'"600mA,
O.B
...
,l J"0NO""'MdO
1
0..
0.6
See Not1ls5 Ind8
0.'
~_"lA.1
0.6
O.B
1\
....
-lz r-
V
IS-100mA,IC·'A
.. 5A--=
~
:::':. 1..-'"
Is-a.7A,lc· 3•6A
-
la=O.6A,lc=2.5A
0.2
0.4
0.7 1
-75 --60 -25
0
26
50
0.1
-75 -60 -25 0
75 100 125 150 176
L
It
'"j0" ,A.
'r'i~
0.2
..z
l- f- ~ ~ ~
.....I-::::
;:::. ~ I- lf- t-
IC=2.5~ t'- h0.2
25
50
V
75 100 125 160 175
TC--Case Tlmperature-"C
FIGURE 4
FIGURE 3
•
VS
CASE TEMPERATURE
,i", ~:.-'::'3'~:;,1c::;r-r-
r- r--
Ic-CoIlector Current-A
NOTES:
COLLECTOR-EMITTER
SATURATION VOLTAGE
BASE·EMITTER VOLTAGE
vs
CASE TEMPERATURE
5. These parameters must be measured using pulse techniques. tw
FIGURE5
= 300 /JS, duty cycle ~ 2%.
6. These parameters are measured with voltage-senslng contacts separate from the current..carrylng contacts and located within
0.126 Inch from the device body.
MAXIMUM SAFE OPERATING AREA
THERMAL INFORMATION
DISSIPATION DERATING CURVE
160
10
7
4
~::1
()
~
.!!
0
If
~c:
140
.61
t;;
I'
2
'f1:
D-C Operation
TCO<;62.5°C
.....
c. 120
:~
I'
c.,
1
0.7
"
.~
t--
'"
100
~
C
0.4
on
::1
0
\
0.2
.~
0
u
E
::1
E
0.04
1
0.02
I
0.01
10
20
40
1"'......
c:
\
0.1
E 0.07
80
::1
70 100
200
400 700 1000
'x.,
:;;
I
I'..
60
f"
40
20
d:"
0
50
60
70
80
'"
i"'-.
~
90 100 110 120 130 140 150
VCE-Collector-Emitter Voltage-V
Tc-Case Temperature-OC
FIGURE 6
FIGURE 7
PRINTED IN U.S A
5-210
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
571
TI cannot assume any responsibility for any circuits shown
or represent tha' they are free from paten' infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
2N5301, 2N5302 DESIGNED FOR COMPLEMENTARY USE WITH 2N4398, 2N4399
200 W at 25°C Case Temperature
30·A Rated Continuous Collector Current (2N5301, 2N5302)
20·A Rated Continuous Collector Current (2N5303)
MinfT of2MHzat10V, 1 A
*mechanical data
The case outline is the same as JEDEC TO·3 except for lead diameter.
THE COllECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
o.~ -1-1 ~O'312M1N~1.S73
o0
~
r--.--m:,38
.
0
I
~
0525 R MAX
1,050 MAX
0,188 R MAX
BOTH ENDS
t
0.052 DIA?: HADS
~~~
~
-
0.225
0.135 MAX-----1
~:~;j
0.675
•
o.6"SS
_,-"",1+,
2-EMITIER
~ 0-(- -l~ _-)- " .-.l
=-r~:~:~
-
0.205 0.440
I~
MAX
I
-" I'"
0.420
SEATING PLANE
DIA
2 HOLES
I
CASE TEMPERATURE
MEASUREMENT POINT
I-SASE
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
'Collector-Base Voltage ..... .
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage . . . . . . . . . .
'Continuous Collector Current ... .
'Peak Collector Current (See Note 2)
'Continuous Base Current . . . . . . . .
Safe Operating Region at (or below) 25°C Case Temperature ...
'Continuous Device Dissipation at (or below) 25°C Case Temperature
(See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4) . . . . . . . . . . . . . . . . . . . . .
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . . . . . . . . .
NOTES:
1.
2N5301 2N5302 2N5303
40 V
60 V
80 V
80 V
40 V
60 V
5V
5V
5V
30A
30A
20A
+--50A---+
+--7.5A---+
See Figures 7 and 8
~200W~
~5W---+
_65° C to 200° C
_65° C to 200° C
These values apply when the base-emitter diode is open-circuited.
2. This value applies for tp::; 0.3 ms, duty cycle::; 1 0%.
3.
Derate linearly to 200°C case temperature at the rate of 1.14 W/deg.
4.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/deg.
·Indicates JEDEC registered data
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·211
TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER
V(SR)CEO
Collector-Emitter
Breakdown Voltage
TEST CONDITIONS
Ic
= 200 rnA,
Vcs
Collector Cutoff Current
Icso
= 40 V,
Is
= 0,
IE
=0
See Note 5
2N5301
2N5302
2N5303
UNIT
MIN MAX MIN MAX MIN MAX
40
60
80
1
Vcs - 60V, IE - 0
1
rnA
Vcs - 80V, IE - 0
VCE - 40 V,
Collector Cutoff Current
ICED
1
5
Is - 0
= 60 V,
Is
=0
VCE - 80 V,
Is
0
VCE
5
1
1
VCE - 60 V, VSE - -1.5 V
•
Collector Cutoff Current
1
VCE - 80 V, VSE - -1.5 V
VCE
Emitter Cutoff Current
= 60V,
VCE = 2V,
IC = 10 A
Transfer Ratio
VCE - 2V,
Ic - 15 A
VCE = 2 V,
Ic - 20A
VCE - 2V,
I c = 30 A
Base·Emitter Voltage
VCE(s_t)
hfe
5
15
See Notes 5 and 6
15
60
15
60
60
5
5
5
1.7
1.7
1.7
1.8
1.8
2
Is = 2A,
Ic - 20 A
2.5
2.5
Is - 4A,
Ic - 20 A
VCE = 2V,
Ic - 10 A
2.5
See Notes 5 and 6
1.7
Ic - 30 A
3
3
0.75
0.75
Ic - 15 A
VCE - 4V,
Ic - 20A
V cE -4V,
Ic - 15 A
Saturation Voltage
Is - 2A,
Ic - 20 A
Is - 4A,
Ic - 20A
Is - 6A,
I C = 30A
2.5
1
1.5
2
2
See Notes 5 and 6
V
2
3
f
VCE = 10 V, IC = 1 A,
VCE = 10V, Ic
V
1.5
1.7
VCE = 2V,
rnA
40
Ic - 15 A
I c = 10 A
Forward Current Transfer Ratio
40
Ic - 10 A
Is - 1 A,
Small-Signal Common-Emitter
Ihfel
40
5
Is = 1 A,
Is = 1.5 A,
Forward Cu rrent Transfer Ratio
10
5
Is = 1.5A,
Collector-Emitter
Small-Signal Common-Emitter
10
Tc = 150 C
Ic - 1 A
Static Forward Current
~c
VSE
= -1.5 V,
VCE = 80 V, VSE = -1.5 V:Tc = 150°C
VES - 5 V,
Ic - 0
VCE - 2 V,
hFE
VSE
rnA
10
VCE - 40 V, VSE - -1.5 V, Tc -150u C
IESO
mA
5
VCE - 40 V, VSE - -1.5 V
I CEV
V
= 1 A,
= 1 kHz
f = 1 MHz
3
40
40
40
2
2
2
NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 Ils, duty cycle $2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
*lndicatesJEDEC registered data
269
5·212
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N5301, 2N5302, 2N5303
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
thermal characteristics
PARAMETER
MAX UNIT
Junction-to-Case Thermal Resistance
Junction-to-Free.Air Thermal Resistance
aJ.e
aJ·A
0.875
deg/W
35
*switching characteristics at 25°C case temperature
PARAMETER
t,
Rise Time
ts
Storage Time
tf
Fall Time
MAX UNIT
TEST CONDITIONSt
Ie = 10A.
I S(1) = 1 A.
RL =3 n.
See Figure 1
Ie = 10 A.
I B (1) = 1 A.
RL = 3n.
See Figure 2
VBE(off) = -2 V.
1
I B(2) = -1 A.
2
Il'
r--,---
tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.
*PARAMETER MEASUREMENT INFORMATION
•
+11 V
-2 V
~--o OUTPUT
10 Q
IN PUT O-.l\l'.i'v--i-i
TEST CIRCUIT
VOL TAGE WAVEFORMS
FIGURE 1 - RISE TIME
,~,
+11 V - - - r - i \ 9 0 %
t---o
IN PUT
OUTPUT
_9V ________
<>-'VV'_-....+I
L~PUT
,
I
,
...
"
tt . .
_t.~IIO%
~
I
I
OUTPUT
I
1
TEST CIRCUIT
90%
VOLTAGE WAVEFORMS
FIGURE 2 - STORAGE AND FALL TIMES
NOTES:
8.
The input waveforms are supplied by a generator with the following characteristics: t r S20 ns, tfS20 ns, Zout
tp
= 10 1-'5 to
= 50.a,
100 1l5, duty cycle ~ 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 20 ns, R in;;;::: 10 kO, Cin ~ 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.
III
Indicates JEDEC registered data
269
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·213
TYPES 2N5301, 2N5302, 2N5303
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N5301, 2N5302
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100
f"
.~
~c
See Noles 5 and 6 -
~
1;
'"
80
C
~
~
~
u
'Ec
/
1\
40
"1"\
60
~
~
is
u
40
I'
U
ti
I'\.
,J;
20
r.....
,J;
20
f'
..c
w
o
0.2
0.4
0.7 I
Ie -
4
7
Collector Current -
10
20
0.2
40
0.7 I
0.4
Ie -
A
FIGURE 3
.I
I.B I--
;
1.4
1.2
]
~
'"I
1.4
I 111111
VeE = 4 V
>
F 1.2 I -
1/
/
I!
I
J
Te = 25"C
See Noles 5 and 6
~ t-"
0.6
10
20
18
j
V
Te = 25°C
"0
I
I
I 11111
-=5
>
5
1.0 I -
j
0.8
See Noles 5 and 6
~
1
I
1.0
0.8
7
A
FIGURE 4
1. 6
~
!
~
4
Collector Current -
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
COLLECTOR CURRENT
BASE-EMITTER VOLTAGE
vs
COLLECTOR CURRENT
2.2
2.0
........
..c
o
>
"'f\.
lL
~
·W
See Noles 5 and 6 -
2
C
=25"C
Te
80
~
l\
c
•
~
J!
~
60
u
'E
.E
0
ie = 25"C
~
,g
';
100
I
.1,'
VeE ="2"V
2N5303
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
I I I I 1111
veE = 2 V
-
'"
0.4
.; 0.4
!
0.2
o
~
0.2
0.4
0.7 I
Ie -
4
7
Collector Current -
10
20
40
0.2
o
~
0.2
0.4
A
0.7 I
Ie -
~~
4
7
Collector Current -
10
20
40
A
FIGURE 6
FIGURE5
NOTES: 5. These parameters must be measured using pulse techniques. tp
= 300 J.l.s,
duty cycle ::::;2%.
6. These parameters are measured with voltage·sensing contacts separate from the current-carrying contacts.
269
5·214
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS
2N5301,2N5302
100
J.70
Tc "25 °C
40
I
~
-1.0
~
-0.8
!!'"
i
:::
]
..
I
--
I
>
VCE=-2V
-4
I
See Notes 5 aOd 6-
See Notes 5 and 6
.......... r-..!.e --2 A
..........
r- ....
~r--r-
r....!.;. = -20 mA
.......... r--...
-0.6
!
--r-......
r- r-
-0.4
-
.~ -0.3 A, Ie = -3 A
.....!£..=-3 A
.......... ........
~Ia
-0.2 A, Ie
-2 A
I--Ia
-0.1 A, Ie
-1 A
::::::;
-2 mA,le
1
la
I,
tmJ
>m'"
-0.2
·0
-75 -SO -25
Te -
0
25
50
75
Case Temperature -
100
125
]
- 0.02
~
-0.01
150
-75
-50
°C
0
25
SO 75
Te - Case Temperature -
-25
100
125 150
°C
FIGURE 4
FIGURE 3
NOTES: 5. These parameters must be measurea using pulse techniques. tp = 300 p.s, duty cyde ::; ZOic.
6. These parameters are measured with yoltage-sensing contacts separate from the current-carrying (ontacts.
971
5·220
TEXASINeORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DAL~S.
TEXAS 75222
TYPE 2N5333
P·N·P EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR - EMITIER
BREAKDOWN VOLTAGE
COMMON-BASE OPEN-<:IRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
vs
600
>;
~
!
1.0
f-
c
0.8
r--
~
~
REVERSE BIAS VOLTAGE
BASE-EMITTER RESISTANCE
'" 1.2
U
IC =-30 rnA
Tc = 2SoC
Tc = 25°C
f = I MHz
See Note
SOO
5
~
u..
0-
o
~
........
1
~
u
II
c
E 300
f-
0.6
olI
u
~
=
]
&.
0
u
0.4
I
5
]
t"'- t-....
N~=O)
.......
200
V(BRICBO'" V(BRICER at RBE = I Q
au
0.2
Il
.~
a
~bO(IC=O)
400
g
0
I
10
Z
R BE -
i'--..
100
II~ 111111111111111
f;;;;:
o
10 k
Base-Emitter Resistance - Q
Ik
100
r... r--io-
100
-2
-1
k
-7 -10
-4
-20
Reverse Bias Voltage -
V
FIGURE 6
FIGURE 5
NOTE 5: These parameters must be measured using pulse techniques. Ip
=
300 J.Ls. duly cycle ~ ~k·
-40
•
MAXIMUM SAFE OPERATING REGION
-10
-7
-4
«
-----
-2
TC s 100·C
--- --
'
1
C
~
-1
u
5
U
..!!
-0.7
5
E
1\
::;
./
...
D-C Operation
-0.4
tp -
-0.2
....
V
1 ms, d - 0.5 (SO%)./
IIIIII
/'
tp = 0.3 ms, d = 0.1 (10%)./
~
.§
I....,
p-.
'-"'"
a
u
........
...
-0.1
"' "-
-0.07
1
~ -0.04
MAX VCEO -
-.;
'"
I-
-0.02
-0.01
-1
-2
-4
VeE -
-7
-10
-20
Colleetor-Emitter Voltage - V
-40
-70
-100
FIGURE 7
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·221
TYPE 2NS333
P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
20
0.7
f
c
0.5? (510%) Duty Cycle
0.4
.2
'0
15
:§
o
~
o
v
~
50
25
75
100
FO.07
0
";- 0.07
-"
0. 00
0
125
150
fo.ci7~
~
\\
0.04
~
tp
= Pulse
I-e -tp!dT
\)/ 9'
P"\)'
0.02
::: Thermal time constant::: 8 ms
111111
tp -
SYMBOL DEFINITION
VALUE
DEFINITION
PTlavl
Average Power Dissipation
Peak Power Dissipation
UNIT
W
W
(hA
Junction-Io-Free-Air Thermal Resistance
175
deg/W
(he
Junction-fa·Case Thermal Resistance
6.66
deg/W
Oe.A
Case-to-Free-Air Thermol Resistance
168
deg/W
Oe.HS
(ase-to·Heal-Sink Thermal Resistance
deg/W
OHS.A
Heol-Sink·to-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
o(
Te
Case Temperature
o(
TJlavl
Average Junction Temperature
~ 200
o(
~ 200
o(
TJ(max)
Peak Junclion Temperature
K
Peak-Power Coefficient
tp
Pulse Width
ms
Pulse Period
ms
"d
100
ms
Equation No.1 - Appli(ation: d-c power dissipation,
heat sink used.
TJlov·-TA
PTlav ) =
0J-e
+ f) C-HS
,
+ 0HS-A
for 100o( ~ Te ~ 200·(
as in Figure 8
Equation No.2 - Application: d-c power dissipation,
no heat sink used.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTlma,)
Example - Find PTlmax} (design limit)
TJlmax) - TA
= _--,-==_-'0..
__
d Oe.A
+
K OJ.e
Solution:
OPERA TlNG (ONDITIONS.
+
Pulse Width -
I I
20
40
See Figure 9 ,
Duty-Cycle Ratio (tp/tx)
Oe.HS
I 1111111
7 10
FIGURE 9
FIGURE 8
PT(maxj
I
O. I 0.2 0.4
Te -Case Temperature-"C
SYMBOL
width in ms
d ::: Duty-cycle ratio
T
0.01
200
175
I_e-tp/T
K
\)5\
'"
1\
II
V'
~
~1""
O. I
~
II
j \\~O!OJ I
0
\
o
o
T
0.2
;;
r\
10
•
~
i\
.~
.....
J
.I!
0.25 (25%)
C
'u
<;:
From Figure 9, Peak-Power Coefficient
OHS.A = 7 deg/W (From information supplied
k
= 0.105 and by use of equation No.3
with heat sink.)
TJI" I (design limit) = 200'(
TA
d
tp
= sO'e
= 10"/.
PTlmaxl
_ _ __
= _d~_~~~lma~')L-_T~A
(Oe.HS + (JHS.A) + K OJ.e
PTlma,)
=
200- SO
(0.1)
= 0.1 ms
0.1 (7)
+ 0.105 (6.66) = 107 W
PRINTED IN U.S A.
5-222
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
Tf
~
6~
+-___100 W---~
~
3.5 W
~
+---65°C to 200 0 C--+
+---65°C to 200°C-----++ _ _ _260°C
~
NOTES: 1. This value applies when the bose-emitter diode is open-circuited.
2. This value applies for tp ::; 0.3 ms, duty cycle ::; 10%.
3, Derate linearly to 200 0 e case temperature at the rate of 1 Wjdeg.
4. Derate linearly to 200 0 e free-air temperature at the rale of 20 mW / deg.
*Indicates JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·231
TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIP'LE-DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(BRICEO Collector-Emitler Breakdown Voltage
Ic = 30mA, la = 0,
See Note 5
2N5387
2N5388
2N5389
MIN MAX MIN MAX MIN MAX UNIT
200
Colledor Cutoff Current
leeo
250
300
V
30
VCE = 180 V, la = 0
30
VCE = 225 V, la = 0
mA
VCE = 270 V, la = 0
30
I
VCE = 180 V, VIE = 0
VCE = 225 V, VIE = 0
I
I
VCE = 270 V, VIE = 0
VeE = 100 V, VIE = 0, Tc = 1S0oC
Collector Cutoff Current
ICEs
10
mA
VCE = 125 V, VIE = 0, Tc = ISO°C
VCE = ISO V, VIE = 0,
•
IEao
Emitter Cutoff Current
hFE
Static Forward Current Transler Ratio
Bose-Emitter Voltage
VIE
10
Tc = 1S0oC
10
VEl = 8 V,
Ic = 0
0.1
0_1
8.1
VEa = 10 V,
Ic = 0
I
I
1
VCE = 5 V,
Ic = 2 A, See Notes 5 and 6
25
25
100 25
VCE = 5 V,
Ie = 5 A, See Notes 5 and 6
15
IS
IS
VCE = 5 V,
Ie = 7A, See Notes 5 and 6
5
5
5
100
100
VCE = 5 V,
Ie = 7A, See Notes 5 and 6
2_5
2_5
2.5
la = 1 A,
Ie = 5 A, See Notes 5 and 6
2
2
2
la = 1.4 A;
Ie = 7 A, See Notes 5 and 6
2_2
2.2
2.2
VCE("'I
Collector-Emitter Saturation Voltage
hie
Small-Signal Common-Emitter
Forward Current Transfer Ratio
VCE = 10 V,
Ic=IA,I=1kHz
20
20
20
Ih,.1
Small-Signal Common-Emitter
Forward Current Transfer Ratio
VCE = 10 V,
Ic = 1 A, I = 10 MHz
1.5
1.5
1.5
NOTES: 5. Thes. parameters must be measured using pulse t&(hniques. fp
=
mA
V
V
300 p.s, duly cycle :::; 2%.
6. These parameters: are measured with voltage-sensing contacts separate from the (urrent-corrying contacts.
*thermal characteristics
PARAMETER
(hc
Junction-to-Case Thermal Resistance
(hA
Junction-to-Free-Air Thennal Resistance
MAX
1
UNit
deg/W
50
"ndlca'es JEDEC regls'ered da'a
971
5-232
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N5387, 2N5388, 2N5389
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONSt
f----'lon"'-_~T~u-rn-.O~n~T=i-m-e-----~ Ie - 2 A,
1'11) = 200 mA, IBizl - -200 rnA, '--":::':"'--1
loff
Turn·Off Time
VBElofij = -4.7 V, RL = 20 n,
See Figure 1
tVoltage and current values shown are nominal; exatt values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
r--~~---o
82
n
20
OUTPUT
•
n
INPUT
82
n
TEST CIRCUIT
+32V~-90%
-1.3 V
,
,10%
,
INPUT
:
-eoIton (4- +t toft 14I
I
~!
10%~
9O%L--; OUTPUT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: o. The input waveform is supplied by a generator with the following characteristics: tr ~ lS ns, If ~ 15 ns, lout = SO n, Ip
duty cycle S 2%.
b. Wovefonns are monitored on an oscilloscope with the following characteristics: Ir ~ 15 ns, Rin
2:
10 P.S,
10 MO, (in ~ 11.5 pF.
c. Resistors must be noninductive types.
d. The d·, power supplies may require additional bypassing in order to minimize ringing.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·233
TYPES 2N5387, 2N5388, 2N5389
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
v.
COLLECTOR CURRENT
100
TC=
.2
"0 80
LJJmg
lLJ .
See Note. 5 and 6
""
r'\.
~c
.....e
e
~
.,.
~~
60
;:Y
~J(.
u
1!
~
40
u
'" ~~~
.(.
~S~
"0
J;
•
~~
?Y i--"
.f
..
\
\~
.(.
20
~
"-
or;
o
0.070.1
0.2
0.4 0.7 1
Ie - Collector Current
4
-
7
10
A
FIGURE 2
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
.-=-tIe = 7 A
Ie - 5 A
-
~r--
.~~
I'--.r-...,
I
VeE = 5 V
>
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
4
See Note. 5 and 6
I
See Notes 5 and 6
.2"
0>
- - -- --
~
c
------ -- -.............
:--......
.~
0.7 ===i8
j
0.4
~
0.2
0
-18
t£
..........
1.4 A, Ie
- ---
/"
=7 A
1 A, Ie - 5 A
r-
18 - 0.2 A, Ie - 2 A
0.1
..!! 0.07 r-18 =7 rnA, Ie 70 rnA
:--...... ......
..........
;§
I
0.04
~ 0.02
o
>u
-75 -50
-25
TC -
0
25
50
75
Case Temperature -
100
125
150
0.01
-75
°c
-50
-25
0
25
50
75
100
Te - Case Temperature _·C
FIGURE 3
150
FIGURE 4
NOTES: S. These parameters musl be measured using pulse techniques. Ip
6. Thes. parameters are measured with
125
yoltage~5ensing
=
300 p.s, duty cycle
:s;
2%.
contacts separate from the current-carrying contacts.
971
5·234
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
OUTPUT CAPACITANCE
vs
COLLECTOR-BASE VOLTAGE
600
500
"-
'I"" 400
~
u
o
o
"- i'.
.;; 300
Ie =
a
f= 1 MHz
~
8.
Te = 25°C
"
(3
I
~ 200
...........
u
r-....
100
a
4
Ves -
20
40
7 10
Collector-Base Voltage - V
70
100
•
FIGURE 5
MAXIMUM SAFE OPERATING REGION
20
Te .: l00·C
10
7
4
«
/
<:
~
u
~
2
.!
'0
lit..
V
I
\
1 D-C Operation
0.7 tp = 1 ms, d = 0.5 (50%)
,
0.4 tp = 0.3 ms, d = O. 1 (10%)-
i
0.2
.1
\.
u
I 0.1
_v 0.07
2N5387
2N5388
0.04
2N5389
0.02
0.01 1
II
.......,
..........
4
7 10
20 40 70100 200 400
Vee - Collector-Emitter Voltage-V
1000
FIGURE 6
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !5012
•
DALLAS. TEXAS 15222
5-235
TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
PEAK-POWER COEFFICIENT CURVE
DISSIPATION DERATING CURVE
~
120
0.7
I
.~ 100
.~
~
~
~
.S
§
.
u
.
'v
.
~
'\
40
o
E
.~
•
::i 20
I
Te -
-'"
~
E
100
DEFINITION
'" '"
175
°C
200
VALUE
Peak Power Dissipation
Junclion-to-Free-Air Thermal Resistance
(he
W
SO
deg/W
Junction-Io-Case Thermal Resistance
1
deg/W
()C-A
Case-to-Free-Air Thermal Resistance
49
()C-HS
(ase-to-Heal-Sink Thermal Resistance
deg/W
d.g/W
()HS-A
Heol-Sink-to-Fre8·Air Thermal Resistance
Free-Air Temperatur.
Te
(ase Temperalura
rJ{ev)
AYarage Junction Temperature
~200
°c
TJI ....)
Peak Junction Temperature
~200
°c
K
Peak-Power Coefficient
Ip
Pul•• Widlh
m.
I,
Pulse Period
m.
d
Duly-Cycle Roll. (Ip/lx)
°c
=
~
0.07
FO.07
0.
0.04
"o.07~
K
VI;)'
tp = Pulse width in ms
'"
0:'
l_e-lpI-r
=
l-e -'Pld-r
O~ /
~:/
0_02
d
.=
Duty-cycle ratio
~II=I ;term~1 'it~ ~~~sl'~ln. = ~ m'l
0.01
O. I 0.2 0.4
1
tp -
2
4
7 10 20
Pulse Width - ms
40
100
FIGURE 8
_
Prlav ) -
for 100°C ~ TC ~ 200°C
TJlev)- TA
9J -e
+ 9C-HS + 9HS-A o. in Figure 7
Equation No.2 - Application: doc power dissipation,
no heat sink us.d.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
See Figure 8
Prim,,)
=
d (ge - HS
TJI "",,)- TA
+ 9HS-A) + K()J-C
for 1000C
< T < 2000C
-
e-
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
Prlm"1
4 d.g/W (From informolion supplied
Solution:
From Figure 8, Peak-Power Coefficient
K
0.105 ond by uso of equollon No.3
=
with heat sink.)
TJlav) (design limit)
TA = 50°C
d
10% (0.1)
Ip = 0.1
r
1~'O%)
~i""
7
°c
Exomple - Find Prima,) (design limit)
OPERATING CONDITIONS,
+ ()HS-A =
~
II
I 1,1
d.g/W
TA
()e-HS
r
UNIT
W
Prima,)
I
T~!
Equation No.1 - Application: doc power dissipation,
heat sink used.
Average Power Dissipation
(hA
0.1
2
SYMBOL DEFINITION
PYlev
I
0_2
C>-
125
150
Case Temperature FIGURE 7
SYMBOL
J
0
u
i
~
C>-
(50%) Duty Cycle
0.25 (25%)
0
'",
60
g
0.4
'"
80
0_5~
TJlmaxj - TA
= 200 o(
m.
Prlm..1
=
PT(maoeJ
=
d (ge -Hs
+ 9HS-A) + K 9J.e
200-50
0.1 (4)
0.105 1(1)
+
= 296W
PRINTED IN U.S A.
5-236
TEXASINCORPORATED
INSTRUMENTS
pOST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
971
TI canna' assume any responsibili,y for any circui's shown
Of represent tho' they are free from po'en' infringement.
TEXAS INSTRUMENTS RESERVES litE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY litE BEST PRODUCT POSSIBLE.
TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
• Very High Gain -1000 Min at 5 A
• High-Speed Switching - 0_3 fJ-S Typ ton
*device schematic
Bose 1
Bese 2
* mechanical data
-
~LD='
I
03700~
1 SOO M1N
l
~=
~
"~~I
OIOOMIN-Y-it~~~~ 0019
D:A
Del AilS OF OUTliNE IN -+-
THIS ZONE OPTIONAL
00'i'b
•
- 4 COLLECTOR
THE COllECTOR IS IN elECTRICAL
CONTACT WITH THE CASE.
T
~=
0335 0305 0lA
ALL JEDH TO·33 DIMENSIONS
AND NOTES ARE APPLICABLE.
3 BASE 1
0200
All DIMENSIONS ARE
IN INons
DIA
SEATING
UNlgS OT"ERWISE
PLANE
CASE TEMPERATURE IS MEASURED 0.144 INCH ±O.OlO INCH DOWN FROM TOP OF CAN
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector - Base-1 Voltage
Collector - Emitter Voltage (See Note 1)
Emitter - Base-1 Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Commutating-Diode Current (See Note 3)
Continuous Base-One Current .
Continuous Base-Two Terminal Current .
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) lOO°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range.
Storage Temperature Range
Lead Temperature K.lnch from Case for 10 Seconds
120V
BOV
15V
2A
5A
-2 A
0.1 A
1A
. See Figure 7
15W
1W
-65°C to 200°C
-65°C to 200°C
. 300°C
NOTES: 1. This value applies when both base terminals are open-circuited.
2. This value applies for Ip ~ 0.3 ms, duty cycle'::;; 10%.
3. This applies to the total collector-terminal current when the collector is at negative potential with respect to the emitter.
4. Derate linearly to 200°C case temperature at the rate of 150 mW/deg.
5. Derate linearly to 200°C free-air temperature at the role of 5.71 mW/deg.
"'Indicates JEDEC registered data
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-237
TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V[BR!CEO
Colleclor-Emiller
Breakdown Voltage
'CES
Collector Cutoff Current
''''0
Emitter Cutoll Current
hFE
Static Forward Current
Transler Ratio
V"_E
Base-One Emitter Voltage
VCE[.. ,!
Coliector·Emitter
Saturation Voltage
TEST CONDITIONS
Ic = 30 rnA, I" = I" = 0,
VCE - 120 V, V"_E
VCE = 80 V, V"_E
V." ~ 15 V, Ic VCE - 5 V, Ic =
VCE - 5 V,
Ic =
VCE - 5 V,
Ic -
VCE = 5 V,
Ic =
VCE - 5V,
Ic -
I" - 2 rnA, Ic -
•
Ihf.1
(oblO
Small-Signal CommonEmitter Forward
Current Transler Ralio
Common-Bose-One
Open-Circuit Output
Capacitance
I" - 10 rnA, Ic -
See Note 6
MIN
MAX
80
V
- VB2-E - 0
10
= V"_E = 0, Tc = 150°C
1
0,
10
I" - 0
1 A,
I" - 0,
See Notes 6 and 7 1000
2A,
I" = 0,
See Notes 6 and 7 2000 20000
5 A,
I" = 0,
See Notes 6 and 7 1000
1 A,
I" - 0,
1.8
See Notes 6 and 7
IS2 - 0,
2A,
1.1
2.2
See Notes 6 and 7
2A,
I" - 0,
1.4
See Notes 6 and 7
5 A,
I" - 0,
2.5
See Notes 6 and 7
VCE = 10 V, Ic = 1 A,
IB2 = 0,
1= 20 MHz
Vc" = 10V, IE = 0,
IS2 = 0,
1= 1 MHz
UNIT
}-'A
rnA
}-'A
V
V
2
100
pF
NOTES: 6. These parameters must be measured using pulse techniques. Ip = 300 Jls, duly cycle:::;; 2<'10.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
"'Indi(otes JEDEC registered dala
thermal characteristics
,I
(hc
I (hA
PARAMETER
Junction·to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resislance
MAX
UNIT
6.67
175
deg/W
deg/W
971
5·238
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
switching characteristics at 25°C case temperature
PARAMETER
too
toff
TEST CONDITIONSt
Turn-On Time
Turn-Off Time
Ie - 2A,
IBlin - 4 rnA, IB1I21 = -8 rnA,
VB"'loffl = -10 V, Rl = 14 n, See Figure 1
TYP
UNIT
0.3
1.5
P.s
tvoltoge and current values shown ore nominol; exoel values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
140
+28 V
3.3 kO
7500
OUTPUT
r
I N PUT (",---""...--.--..,.,......,.+--1
•
B1 I
I
7500
'- B2
470
TE ST CI RCU IT
tBS V
---~I
-.-J.I 10%
-3 V
ln O/_
-......tton
~
I
~!
9900%%
iL
i
INPUT
t...toff~
I
10%1:.
9 0 % L - - / OUTPUT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: a. The input waveform is supplied by a generator with the following characteristics: tr
Ip
=
:S
15 nsf If
:S
15 ns, Zout
=
1500 0,
5 !,-S, duly cycle ~ 2"/...
b. Waveforms ore monitored on an oscilloscope with the following characteristics: tr
S; lS ns, Kin
~ 10 Mo, (in::; 11.5 pF.
c. Resistors must be non inductive types.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
CALLAS, TEXAS 75222
5-239
TYPE 2N5390
N·P·N DARLINGTON·CONNECTED PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100000
veE - 5 V, IB2 - 0
70000
.~
C
'"
J!
40 000
Ie
~
e
e-
20 000
'E
10 000
.£
7 000
Te
V
~
r""'oooo.
~ 100'C
r--
o
,~
See Notes 6 and 7
150'C
Te
r-....
~~
_
~ Joc ....
i
......
I"
~
.~
C
4000
~
Te ~ -55~
w
2000
-"
I
r-
1000
0.04 0.07 0.1
0.2
Ie -
0.7
0.4
4
I
Collector Current -
7
A
FIGURE 2
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
BASE-ONE-EMlTTER VOLTAGE
vs
CASE TEMPERATURE
2.2
11~5J:-- ~~
I
2.0
>
I
1.8
~
~
]
I
1.4
1.2 I---
~
1.0
9
0.8
c
~
~
r--....
f"..1-o-..
........
~
7
.........
2
.......... ~
IBI
~
IB2 - 0
:
See Notes 6 and 7
-
lOrnA,
le~5A
-
r-...... r""- ~
IBI ~ 2 rnA, Ie ~ 2 A
~
r-...... ;-........
.........
.......
oS 0.6
,"
~
]
I..
2u
..!!
I
-
I., - 50
0.7
lolA, Ie
~ 50 mA :
"-
0.4
'0
V
't' 0.4
~
I
4
---
......... ~~
~A ............ ..........
Ie = 50 mA
10
>
See Nates 6 and 7
I~:;:"-
r:::::: :----
~
2'" 1.6
I
VeE ~5 V, IB2 =0_
~
0.2
0.2
W
0
-75
.y
-50
-25
Te -
25
50
75
Cose Temperature -
100
125
150
0.1
-75
-50
-25
°C
Te -
FIGURE 3
o
25
50
75
100
Case Temperature - °C
125
150
FIGURE 4
NOTES: 6. These parameters must be measured using pu'lse techniques. fp
=
300 J.ls, dUly cycle ~ 2%.
7. These parameters ore measured with voltage-sensing (ontacts separate from the current-carrying contacts.
971
5-240
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMAllZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
v.
BASE-TWO -
w
u
~
~
111111 II
1
IIIIII II
~
1.0
f-
c
O.B !-
>
~
IE ~ 0
,.
t-
u.
0..
'"~
Tc
~
'g."
See Note 6
\
"'
%
~
1
(IBI ~ 0)
'"C ob 20
o
0.4
'f'
...........
100
§
C ob10 (lB2 ~ 0)
E
"0
"U
Te ~ 25°C
8 150
~
u
200
u
0.6
Jj
I
\
2
25·C
o
~
.;
5
t
f" 1 MHz
~ 250
IBI ~ 0
0
"U
~
300
Ie ~ 10 mA
"0
-"
0
COLLECTOR-BASE VOLT AGE
350
::;-
'"
E
v.
EMITTER RESISTANCE
1.2
E
J
0.2
~
~J.JI
50
-
.~
"0
E
0
Z
0.1
10
RS2E -
100
1k
10 k
Base-Two- Emitter Resistance-O
a
100 k
1
4
Vc B -
10
20
40
Collector-Bose Voltage - V
FIGURE 6
FIGURE 5
MAXIMUM SAFE OPERATING REGION
10
4
---
0.4
~
~
0.2
"0
u
1
.Y
D-C Operatio
=: 1 ms,
d ~ 0.5 (50%)
1
0.7
:;
u
•
,,
«
1
70 100
Te ~ 100·C
7
c
~
I'---
~ Iy'
tp
tp
d
= 0.3
= 0.1
ms,
(10%)
0.1
0.07
0.04
Max V CEO
0.02
I
0.01
1
4
7 10
20
40 70 100
VeE - Collector-Emitter Voltage -
1000
V
FIGURE 7
NOTE 6: This parameter must be measured using pulse techniques: tp
=
300 p.s, duty eyde ::; 2%.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·241
TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICI ENT CURVE
16
3:
[\.
I 14
.~
12
~
is
.,
~ 10
~
0.7
~
~
0
.9
8
0
0.4
c
.~
u
~
0
.~
6
C
0
u
c:
"i;
~
[\.
""
I
oC
0
lOa
125
TC -
Case Temperature -
150
O(
FIGURE 8
VALUE
W
FhA
Junction-fo-Free-Air Thermal Resistance
175
deg/W
(he
Junction-fa-Case Thermal Resistance
6.67
deg/W
Be •A
Case-Ia-Free-Air Thermol Resistance
168
deg/W
Be-fiS
Cose-Ia-Heal-Sink Thermal Resistance
deg/W
BHS-A
Heat-Sink-fo-Free-Air Thermal Resistance
deg/W
TA
Free-Air Temperature
Peak Junction Temperature
Ip.
Pulse Width
I,
Pulse Period
d
Duly·eycle Rolio (Ip/I,)
°e
Peak· Power Coefficient
(design limit)
TA = 50°C
d
10% (0.11
tp = 0.1 ms
TJ(.v)
=
V
~
0.07
0. 0 '>
o.07~
J-e tp/T
K -
--;gT-
J-e - tP/dT
7C)'\!T
C)/
tp -,;; pur se width in ms
d
~'Duty-cycle
T
-= Thermal time constant = 8 ms
I
ratio
I IIIIIII
0.01 0 . 1 0.2 0.4
710
Pulse Width -
tp -
I
20
I
40
100
ms
FIGURE 9
=
(he
+
for 100°C ::0; Te ::0; 200°C
TA
TJ(.v) -
PTI, vl
Oe.fiS
+
OfiS-A os in figure 8
Equation No.2 - Application: d·c power dissipation,
no heat sink used.
Equation No.3 - Application: Peak power dissipation,
heat sink used.
°e
°e
See Figure 9
m.
m.
+ BHS- A =
V
°e
::0; 200
::0; 200
Example - Find PT(maxl (design limit)
OPERATING CONDITIONS,
BC _HS
II
UNIT
W
TJlmax,
K
....... 1""/
Equation No.1 - Application: doc power dissipation,
heat sink used.
Peak Power Dissipation
Average Junction Temperature
I. ~
IIIIII
""
PT(max}
Case Temperature
0.07
200
Average Power Dissipation
Te
c:'-"
0.02
PT/avl
TJfavl
O. I
'"
SYMBOL DEFINITION
DEFINITION
~
0.04
0
:;;
II
1\\ ~o/~) I
~
.§
x
SYMBOL
0.2
0
§ 4
•
.l .1
0.25 (25%)
U
'\
75
0.50 (50%) Duty Cycle
deg/W {From information supplied
with heat sink.}
200°C
Equation No.4 - Appli(ation: Peak power diSSipation,
no heat sink used.
Solution:
From figure 9, Peak-Power Coefficient
K = 0.105 and by use of equation No.
7
=
PT{maxl
=
P
Tim,,)
=
TJ(rna,) - TA
d
(8C . HS
+
200 -50
0.1 (7)
8HS . AJ
+
+ 0.105 (6.67) =
K 8J_c
107 W
PRINTED IN U.S A
5-242
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI (onnot assume any responsibility for any circuits shown
represenf fhat they afe free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED SWITCHING APPLICATIONS
•
20 mJ Reverse Energy Rating
•
Min V(BR)CEO of 120 V (2N5672)
•
Min fT of 50 MHz at 10 V, 2 A
m-l
c:<
r'"O
rm
mil>
•
-IN
zill
-
Z~
~.
ON
30·A Rated Continuous Collector Current
rZ
~~
::N
*mechanical data
~
~
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
,0
o
m
n
m
0.525. MAX
(
o ()
0",
1 050 MAX
MAl(
i
tlFo
~
0 225
~.:
O.llS
---=r
0205 0440
~-~==~
0.;;:
s:
-i j0312MIN~IS13 MAX
.-_-,-0'-C2S~O I" I~OIA 2 UAOS
I
P1
0'1"
_,'__' 'I' '-+' ' - L l 0450
m
m
:%l
0- -1"
1
-\.:: I
~"20
MAX~ I
0.200-
•
lsEA TlNG PLANt
I -lASE
ALL JEDEC TO·3 DIMESNIONS AND NOTES ARE APPLICABLE
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5671
Collector·Emitter Voltage (VBE; -1.5 V, See Note 1)
Collector-Emitter Voltage (Base Open, See Note 1)
Emitter·Base Voltage
Continuous Collector Current
Continuous Base Current
Safe Oper.ating Area at Specified Temperatures
Continuous Device Dissipation at (or below) 25°C Case Temperature (see Note 3)
Continuous Device Dissipation at 100°C Case Temperature (see Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (see Note 4)
Undamped Inductive Load Energy (see Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/32 Inch from Case for 10 Seconds
NOTES:
2N5672
120 V*
150 V*
90V
120 V
7 V*
7 V*
-30A*-10A*See Figure 6
_140W*_
-aow*-5W-20mJ*~65°C to 200°C*
-65°C to 200°C*
_230°C*_
1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode reverse-biased or open-circuited, as specified. I n operation, the limitations of Figure 6 must be observed.
2. This value applies for tw < 0.3 mS,duty cycle < 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.8
C or refer to Dissipation Derating Curve, Figure 7.
4. Derate linearly to 2000 C free air temperature at the rate of 28.6 mWf C or refer to Dissipation Derating Curve, Figure 8.
5. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5, condition 1. L = 180 ,uH,
wt
8
RBB2
ill
= 20 n, VBB2 = 4
V, RS
= 0.1
n, Vee
= 10 V,
Energy
= le2L/2.
JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·243
TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CEO Collector-Emitter Breakdown Voltage
IC = 200mA.
V(BR)CEV Collector-Emitter Breakdown Voltage
IC- 2oomA. See Figure 5 (Condition 2)
VCE
Collector Cutoff Current
ICEV
2N5671
TEST CONDITIONS
See Note 6
IB = O.
= 110V.
2N5672
MIN MAX MIN MAX
UNIT
90
120
V
120
150
V
12
VBE = -1.5 V
10
VCE - 135 V. VBE - -1.5 V
VCE -100V. VBE = -1.5 V. TC - 150°C
15
mA
10
lEBO
Emitter Cutoff Current
VEB
hFE
Static Forward Current Transfer Ratio
VCE=2V.
VBE
Base-Emitter Voltage
IB -l.2A.
IC-15A.
See Notes 6 and 7
1.5
1.5
V
VCE(sati
Collector-Emitter Saturation Voltage
IB - 1.2 A.
IC-15A.
Se. Notes 6 and 7
0.75
0.75
V
~fel
Small-Sighal Common-Emitter
VCE = 10V.
IC= 2 A.
f = 5 MHz
Forward Current Transfer Ratio
=
7 V.
10
IC= 0
See Notes 6 and 7
IC= 15A.
20
10
100
20
10
rnA
100
10
*switching characteristics at 25°C case temperature
I
PARAMETER
tr
Rise Time
ts
Storage Tirre
tf
Fall Time
TEST CONDITIONS
IC'" 15A.
IB(1) = 1.2 A.
VBE(off) = -6 V.
RL = 2
n.
MAX
UNIT
0.5
IB(2) '" -1.2 A.
See Figure 4
1.5
ItS
0.5
*JEQEC registered data
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR CURRENT
COLLECTOR CURRENT
100
2.0
0
;r
90
~
80
e
f-
~
u
"E
1
l
Te '" 2SoC
See Notes 6 and 7
I
>
1.6
1.4
60
I
~
g
•
1.2
~
1.0
!
0.8
I
VeE'" 5 V
40
~
f-
VeE - 2 v
30
I'V
"
~
~
>
1\
20
10
COLLECTOR CURRENT
l'
Te '" 2SoC
See Notes 6 and 71
1.8
70
50
COLLECTOR·EMITTER SATURATION VOLTAGE
"
0.6
2,0
E 1.8
Te '" 25°C
See Notes 6 and 7
0:
>
V
I
Ie
is '"
5
{/
, !£ =
10
18
.§
1.6
~
1.4
Ji
1.2
'E~
1.0
~
0.8
j
~
':-"
0.4
~
£
0.2
Ie
0.6
TB '"
0.4
0.2
u
0.4
10
Ie-Collector Current-A
FIGURE 1
NOTES:
40
100
0.1
10
0.4
Ic~Collector
40
100
Cl,Jrrent-A
FIGURE 2
~'"
18
5
[11111
>
0.1
10 / ;
II LIJllr
0.1
0.4
10
40
100
Ie-Collector Current-A
FIGURE 3
6. These parameters must be measured using pulse techniques. tw = 300 #.LS, duty cycle ~ 2%.
7. These parameters are measured with voltage~sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
1271
!i·244
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
2n
VCC
51
Channel A
= 30 V C>---4.-----'Vvv---....---
·11
X-
4
c:
See Note 8
~ ~',~
~ ~,I',~ ~'~~
~:s ~J ~~
, 0 ,J>~---'''',~ !,6'00
~~
,/);,J'
,is' is',~)
7
"f...
III
~
.,
'\~
---
2N5671
\l--
2N5672
~\
0.4
\~
I
1\
0.2
1
~
0.1
7
4
2
10
20
40
70 100
400
200
VCE-Collector-Emitter Voltage-V
NOTE 8: Areas defined by dashed lines apply for nonrepetitive-puise operation at TC" 25°C. The pulse may be repeated after the device
has regained thermal equilibrium.
FIGURE 6
THERMAL INFORMATION
FREE·AIA TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
;0
.~ii.
'iii
is
5
~
g
•
~
~
160
140
~
120
100
~
80
60
'"
40
t 2:
o
25
50
1"-
R9JC 0;;;;; 1.25°CIW
75
~
R9JA ..;; 35°C/W
"
~
'" '"
~
"'i'.I'"
100 125 150 175 200
TC-Case Temperature-°c
o
25
50
75
'"
100 125 150 175 200
TA-Free-Air Temperature-°c
FIGURE 8
FIGURE7
PRINTED IN U.S.A
5·246
TEXAS INCORPORATED
INSTRUMENTS
POST ,OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TI cannot aSSume any responsibility for any circuits shown
or represenl thor they are free from palenr infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5683, 2N5684
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5685, 2N5686
•
300 Watts at 25°C Case Temperature
•
50-A Rated Continuous Collector Current
•
Min fT of 2 MHz at 10 V, 5 A
*mechanical data
.:g'"
The case outline falls within JEDEC-TO-3 except for lead diameter.
om
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
(')
m
s:CO
m
g:;~g j 1- t::~~AM~:~ADS
0.525' MAX
oO
~
0
.------.-------Im=1~38
0.875
1.050 MAX
MAX
--'-__~
===-- I h
-1
0,188 R MAX
BOTH ENDS
0.135 MAX
1573, MAX
,4-
0.225 ----.J" 0.205 0.440
. -,'-
0-',-1;
I
0.200
SEATING PLANE
1 - BASE
~ ~:~;~
:::J
2- EMInE,
'\
---.l..
,- 0 -
-,- I 1/
0.420
"iD
I
r--
t.Q.J£
0151
•
DIA
2. HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . _ . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . _ .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
2N5683 2N5684
-60V
-80 V
-60 V
-80 V
-5V
-5V
_-50A_
_-15A_
-300W_5W_
-65°C to 200°C
-65°C to 200°C
_235°C_
1. These values apply when the base~emitter diode is open-circuited.
2. Derate linearly to 200°C case temperature at the rate of 1.715 wtc or refer to Dissipation Derating Curve, Figure 1.
3. Derate linearly to 200°C free-air temperature at the rate of 28.6 mwtC or refer to Dissipation Derating Curve, Figure 2,
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-247
TYPES 2N5683, 2N5684
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
Collector-Emitter
V{8R)CEO
•
8reakdown Voltage
Collector Cutoff Current
ICEO
ICEV
Collector Cutoff Current
ICBO
Collector Cutoff Current
IC = -200 rnA.
18 = O.
VCE = -30V.
18 = 0
IB= 0
VCE - -60V.
VBE-l_5V
VBE - 1.5 V
VBE - 1.5 V.
TC - 150°C
TC = 150°C
VCE = -80V.
VBE = 1_5 V.
IE - 0
VCB - -80V.
IE - 0
IC = 0
IC--25A
hFE
VCE = -5V.
IC= -50A
VBE
Base-Emitter Voltage
IC = -25A
IC--25A
60
15
5
15
See Notes 6 and 7
-2
-2
-2
-2
Collector-Emitter
IB - -2.5 A.
IC--25A
IB - -lOA.
IC - -50A
VCE = -5 V.
IC = -lOA.
f = 1 kHz
15
15
VCE = -10V.
IC = -5A.
f = 1 MHz
2
2
VCB = -10V.
IE = O.
f=0.1 MHz
Forward Current Transfer Ratio
Forward Current Transfer Ratio
Common-Base Open·Circuit
Output Capacitance
60
5
Saturation Voltage
Small-Signal Common-Emitter
NOTES:
IB = -2.5 A.
See Notes 6 and 7
rnA
-5 rnA
-5
VCE - -2V.
rnA
-10
-2
VEB= -5V.
Cabo
-10
2
VCE - -2 V.
jhfel
-2
VCE - -80V.
VCB- -60V.
rnA
-2
VCE - -60V.
Emitter Cutoff Current
Small-Signal Common-Emitter
V
-1
VCE = -40V.
UNIT
-80
-SO
-1
Static Forward Current
Transfer Ratio
hfe
2N5684
MIN MAX MIN MAX
See Note 6
lEBO
VCE{sat)
2N5683
TEST CONDITIONS
PARAMETER
See Notes 6 and 7
-1
-1
-5
-5
2000
2000
V
V
pF
6. These parameters must be measured using pulse techniques. tw = 300 Jls, duty cycle < 2%.
7. Ihese parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
s:I
400
'+=i
'"
:~Cl
0
'N.
350
'iii
Q)
"'"
250
Cl
'";;:J0 200
;;:J
c:
'+=i
c:
0
""-,
E
100
;;:J
E
I-
0
I
c..
o
25
.,
50
75
Cl
~
ROJC ,;;;; 0.58°CIW
""-
u
50
~,
';;
150
'x
'"
:2:
5
i:5
8 4
300
Q)
(J
.s;
6
c::
c:
0
s:I
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
0
...
;;:J
"
' " ROJA ,;;;; 35°CIW
3
c::
'"'"
c:
0
u
""
2
E
;;:J
E
"'"
'x
~
100 125 150 175 200
'"
:E
I
I-
c..
0
o
25
50
75
'" "'"""
"~
100 125 150 175 200
Tc-Case Temperature-OC
T A-Free-Air Temperature-°c
FIGURE 1
FIGURE 2
PRINTED IN U.S A
j-248
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5685, 2N5686
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5683, 2N5684
•
300 Watts at 25°C Case Temperature
•
50-A Rated Continuous Collector Current
•
Min fT of 2 MHz at 10 V, 5 A
*mechanical data
The case outline falls within JEDEC-TO-3 except for lead diameter.
o
m
n
THE COLLECTOR IS ELECTRICAL CONTACT WITH THE CASE
m
s:
III
0.450
0.525 R MAX
oD
~
0
j -1 ~O'312 MIN~
r-
-.--_ _ _0_.2_50_-+
0.043 OIA 2 LEADS
.1
-.----- ro:,,}3.
1.050 MAX
O.a7S
MAX
-
.-'--_ _D_:A__
0.188 R MAX
80TH ENDS
0.225 ~ -
!I
:II
~
0.655
2- EMITTER
.-,1- ,",- 0 -~
0-',-lt
-,- 'I ;1/
0.420
r-;:
m
~: ~;~
0.675
,>.f
0.205 0.440
O. , 35 MAX -1
1.573 MAX
t ~ :~:
I
r-
I
0.200
SEATING PLANE
1 - BASE
•
DIA
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5685
*Collector-Base Voltage . . _ . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
'Continuous Collector Current
*Continuous Base Current
'Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1. These values apply when the
base~emitter
diode is
2N5686
60V
80 V
60V
80V
5V
5V
_50A_
-15A--300W-5W-65°C to 200°C
-65°C to 200°C
__ 235°C_
open~circuited.
2. Derate linearly to 200°C case temperature at the rate of 1.715 W/C or refer to Dissipation Derating Curve, Figure 1.
3. Derate linearly to 200°C free-air temperature at the rate of 28.6 mwt C or refer to Dissipation Derating Curve, Figure 2.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5-249
TYPES 2N5685, 2N5686
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO
Breakdown Voltage
Collector Cutoff Current
ICEO
Collector Cutoff Current
ICEV
IC= 200mA.
IB= O.
VCE = 30V.
IB=O
2N5686
MIN MAX MIN MAX
See Note 6
60
80
VCE - 40V.
IB - 0
VCE-60V.
VBE - -1.5V
1
VCE - 80V.
VBE - -1.5V
VCE - 60V.
VBE - -1.5V.
TC - 150°C
2
VCE-80V.
VBE - -1.5V.
TC- 15ifc
VCB- 60V.
IE - 0
VCB-80V.
IE = 0
10
2
lEBO
VEB-5V.
Static Forward Current
VCE - 2V.
IC= 0
IC 25A
Transfer Ratio
VCE - 5V.
IB 2.5A.
IC- 25A
VeE - 2V.
IC= 25A
Collector-Emitter
IB-2.5A.
IC- 25A
Saturation Voltage
IB-l0A.
IC=50A
VCE = 5V.
IC= lOA.
f= 1 kHz
15
15
VCE = 10V.
IC= SA.
f= 1 MHz
2
2
VCB= 10V.
IE = O.
f= 0.1 MHz
VCE(sat)
Small-5ignal Common-Emitter
Ihfel
Forward Current Transfer Ratio
Small-5ignal Common-Emitter
hfe
Forward Current Transfer Ratio
Common-Base Open·Circu it
Cobo
Output Capacitance
NOTES:
2
See Notes 6 and 7
IC- 50A
rnA
10
Emitter Cutoff Current
Base-Emitter Voltage
rnA
2
COlleCtor Cutoff Current
VBE
UNIT
V
1
ICBO
hFE
•
2N5685
TEST CONDITIONS
15
5
60
5
5
15
rnA
rnA
60
5
See Notes 6 and 7
See Notes 6 and 7
2
2
2
2
1
1
5
5
1200
1200
V
V
pF
6. These parameters must be measured using pulse techniques. tw.= 300 }Js, duty cycle <;; 2%.
7. These parameters afe measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.126
i nc~ from the device body.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~ 400
c:
.12
~
350
i5
1l
300
~
~
g
f'--
250
200
c:
.~
(3
150
100
'"
50
!
Q..
6
l'iii
6
i5
f!
';; 4
""'~"-
R8JC";;; 0.5SoC/W
E
::I
E
'x
~c
0
'jli
';;
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
!
g
25
' " ROJA ..;;; 35°C
3
'" '"
c
""
.~
"-
o
o
"'""
..
0
<3
"~
'j(
...
'"
50 75 100 125 150 175 200
Tc-Case Temperature-OC
FIGURE 1
2
E
::I
E
:!!
I
et-
0
o
26
60
76
~
'~
100 126 160 176 200
T A-Free-Air Temperature-°c
FIGURE 2
PRINTED IN U.S.A
5-250
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CIIANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5758, 2N5759, 2N5760
N-P-N SINGLE-DiffUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH TlP544. TlP545. TIP546
•
150 W at 25°C Case Temperature
•
6-A Rated Continuous Collector Current
•
Min fT of 1 MHz at 20V. 0.5 A
*mechanical data
The case outline falls within JEDEC TO-3.
j
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~
oO
O.4S0j
O'S2S R MAX
0
-1 I~'.:~"
1~~~DlA 2 LEADS
-.---...--_0._2S_0_m='
1.050 MAX
=
0.875
MAX
-'-_--=D=lA==_
0.188 R MAX
BOTH ENDS
0.135
II
MAX -1 ~
0.22S
1.573 MAX
0.675
~~
~::;i
~ _ EMITTER
,,'- , \ . ~
---.:::r - 0-'-1' ,- 0 -
0.205 0.440
-\,.- I'
0.420
I
0.200
SEATING PLANE
I - BAse
-I"
I
' t~: ~::
r-
•
DIA
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage
..... .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage . . . . .
*Continuous Collector Current . .
*Peak Collector Current (See Note 2)
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range
.... _ . . .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds.
NOTES:
1.
2.
3.
4.
2N5758 2N5759 2N5760
100V 120V 140V
100V 120V 140V
7V
7V
7V
-6A_10A_
_4A_
-150W_5W_
-65°C to 200°C
_65°C to 200°C
_235°C_
These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle"'; 1 0%.
Derate linearly to 2000 C case temperature at the rate of 0.857 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.
*JE DEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
172
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-251
TYPES 2N5758, 2N5759, 2N5760
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO
ICBO
ICEO
ICEV
•
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
2N5758
TEST CONDITIONS
IC= 200mA,
IB = 0,
VCB= 100 V,
IE =0
VCB= 120V,
IE =0
VCB- 140 V,
IE - 0
VCE = 50 V,
IB =0
VCE-60V,
IB-O
VCE -70V,
IB - 0
2N5759
See Note 5
120
100
hFE
VBE
VCE(sat)
1
1
~fel
1
VCE - 100 V,
VBE - -1.5V
VCE -120V,
VBE --1.5V
VCE = 140 V,
VBE --1.5V
VCE - 100 V,
VBE - -1,5 V, TC - 15o"C
1
1
VBE - -1.5 V, TC - 150°C
IC=O
Static Forward Current
VCE - 2V,
IC-3A
Transfer Ratio
5
IC-6A
VCE = 2V,
IC=3A,
Collector-Emitter
IB-0.3A,
IC-3A
Saturation Voltage
IB= 1.2A,
IC=6A
VCE = 10V,
IC=2A,
f= 1 kHz
VCE = 20 V,
IC=0.5A,
f= 0.5 MHz
VCB = 10V,
IE = 0,
f=O.1 MHz
Common-Base Open-Circuit
Cobo
NOTES:
: See Notes 5 and 6
VCE - 2V,
Output Capacitance
mA
5
5
1
Base-Emitter Voltage
Forward Current Transfer Ratio
mA
1
VEB = 7 V,
Forward Current Transfer Ratio
mA
1
VCE = 140 V,
Small-Signal Common-Emitter
V
1
Emitter CutOff Current
Small-Signal Common-Emitter
hfe
140
UNIT
1
VCE = 120V, VBE - -1,5 V, TC = 150°C
lEBO
2N5760
MIN MAX MIN MAX MIN MAX
25
100
5
See Notes 5 and 6
: See Notes 5 and 6
1
20
80
5
1
15
5
1.5
1.5
1.5
1
1
1
2
2
2
15
15
15
2
2
2
300
mA
60
300
300
V
V
pF
5. These parameters must be measured using pulse techniques. tw = 300 IJ.s, duty cycle ~ 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from device body.
"'JEDEC registered data
PRINTED IN U.S.A.
5-252
172
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5867, 2N5868
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5869. 2N5870
•
87.5 Watts at 25°C Case Temperature
•
5-A Rated Continuous Collector Current
•
Min fT of 4 MHz at 10 V, 0.25 A
•
62.5-mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~_·f_.~_j_+1- ~::~~:~:~ADS
0.525 R MAX
o
~
0
. -_ _ _
0~~")38
1.0SO MAX
MAX
~
0.22'
h
--I
0.188 R M A X · - L - - - - BOTH ENDS
0.135 MAX
~ ~:~;~
•
---=r . 0-\-lt
0.205 0440
I
1573, MAX
-;,.:-4-
-..,- I 1"
0.420
I
0.200
SEATING PLANE
1 - BASE
I
I-
CASE TEMPERATURE
MEASUREMENT POINT
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°(: case temperature (unless otherwise noted)
2N5867 2N5868
-60 V· -SO V·
-60 V· -80 V·
-5 V·
-5 v·
5A
-{
-3 A*
_-7A _
_
-lA'_
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
t}-
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1. These values apply when the
base~emitter
See Figure 1
-S7.5W*-5W_62.5mJ _
_ 65°C to 200°C'
-65°C to 200°C*
_250°C'_
diode is open-circuited.
2. This value applies for tw ..;; 1 ms, duty cycle :0;;; 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.5 mW/ C.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
Suggested Standards on Power Transistors. t L = 20
= 0.1 n, VCC = 10 V, ICM = -2.5 A, Energy'" IC 2 L/2 .
the forthcoming JEDEC publication
VBB1
= 10
V, VBB2
=0
V, RL
mH, RSS1
=
20
n,
RSB2
=
100
n.
• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value In addition to the JEDEC registered value which is also shown.
:f:This circuit appears on page 5-1 of this data book.
271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-253
TYPES 2N5867, 2N5868
P-N-P SINGLE-O.IFFUSEO SILICON POWER TRANSISTORS
* electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
VIBR)CEO
IC~
Collector Cutoff Current
ICEV
Collector Cutoff Current
ICBO
lEBO
Emitter Cutoff Current
hFE
Static Forward Current
Transfer Ratio
,
Base-Emitter Voltage
VBE
•
Collector-Emitter
Breakdown Voltage
Collector Cutoff Current
ICEO
VCElsat)
hfe
Ihfel
Cobo
NOTES:
2N5867
2N5868
UNIT
MIN MAX MIN MAX
TEST CONDITIONS
Collector-Emitter
Saturation Voltage
Small-Signal Common·Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance
-100mA,
IB
~
0,
See Note 6
-SO
-60
IB - 0
IB 0
VBE L5V
VBE ~ L5 V
VBE ~ L5 V.
VBE - L5 V,
IE - 0
IE - 0
IC - 0
IC - -300 rnA
TC-150 C
TC - 150 C
IC~-1.5A
See Notes 6 and 7
VCE~-4V,
IC
~
-0.25 A .
f
~
1 kHz
20
20
VCE~-10V,
IC
~
-0.25 A.
f
~
1 MHz
4
4
IE
~
0,
f
~
1 MHz
VCB
~
-10 V,
V
-0_5
VCE - -30 V,
VCE -40 V,
VCE - 60V,
VCE - -SO V,
VeE - -60V.
VCE - -SOV,
VCB - 60 V,
VCB ~ -SO V,
VEB - -5 V,
VCE - -4 V,
VCE - -4 V,
4V,
VCE
IB - -200 mA,
VCE ~ -4 V,
IB - -200mA,
IR - -0.6 A,
0_5
mA
0.1
-0.1
-2
0.1
-0.1
-1
-1
IC - 3A
IC - -2 A
IC--3A,
IC - -2 A
IC - -3 A
mA
2
35
20
5
35
20
5
100
-1.6
-2
-1
-2
See Notes 6 and 7
See Notes 6 and 7
mA
mA
100
-L6
-2
-1
-2
200
200
V
V
pF
6. These parameters must be measured using pulse techniques. tw = 300 J.,LS, duty cycle ~ 2%.
7'. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
*switching characteristics at 25°C case temperature
PARAMETER
Rise Time
Storage Time
Fall Time
tr
ts
tf
I
MIN MAX UNI
0.7
1
IlS
TEST CONDITIONSt
IC ~ -1.5 A,
VBE(off) ~ 5 V,
IBll) ~ -0.15 A,
RL~20\1,
IBI2) ~ 0.15 A,
See Note S
O.S
tVoltage and current values shown are nominal; exact values vary slightly with tranSistor parameters.
* JEDEC registered data.
'NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication
Power Transistors.
*VSSl ~ 25 V, VSS2 ~ 5 V, Vee = 30 V, Von ~ -23 V, RSSl ~ 73 .11, RSS2 ~ 39 n.
Suggested Standards on
+This circuit appears on page 5-1 of this data book.
MAXIMUM SAFE OPERATING AREA
-10
-7
;5:100
-2
"~
u
-1
-0.7
-0.4
j
-0.2
"0
u
b
-
-4
«I
THERMAL CHARACTERISTICS
0.1 ms
tw
tw"'0.5~
tw""l ms
D-C Operation
[),.
- ---1-Nonrepetitive
Pulse Operation
o
70
.~
60
8
o
r- "'\.
::; 50
TC';;25'C
-0.1
I -0.07
~
~
'w
2N5B67~
40
8E 30
2N5B6B
1""'-
'"""'-
AOJC';; 2'CIW
I'..
I"
E 20
-0.04
-0.02
-0.01
-10
i :~
'x
~ 10
I
-20
-40
-70
-100
VeE-Collector-Emitter Voltage Voltage-V
t" oo
""""
20 40 60 80 100120140 160 180 200
Tc-Case Temperature-°c
FIGURE2
FIGURE 1
""'-
PRINTED IN U.S.A.
5-254
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5869, 2N5870
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5867, 2N5868
•
87.5 Watts at 25°C Case Temperature
•
5-A Rated Continuous Collector Current
•
Min fT of 4 MHz at 10 V, 0.25 A
•
62.5-mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0.450
~
oD
O'525 R MAX
0
j -l
10.312
MIN~
1.573 MAX
0_.2_50_-+QFIISj~~ DlA 2 LEADS
~
-.-_ _ _
o~:£
1.050 MAX
MAX
0.225
-'-_---'D=jA==_
---=r - 0-~-lt
0.205 0.440
I I.
0.188 R MAX
BOTH ENDS
0.135 MAX -1
t:'"";
2 _ EMITTER
-,/~, \
I
0.200
SEATING PLANE
1 - BASE
•
,- .
tw=0.5~~
-:-;
-4 ==tw-0.1 ms
- tw o.~ ms-'"
/
-2
- tw =1 ms---"" /
D-C
Operation---"'"
-1
\
-0.2
Ib
140
~
120
.~
100
"g,
80
''§
60
c
-0.7
-0.4
THERMAL CHARACTERISTICS
;: 160
8
§
2N5875
- "'-
'"'"
ROJC
< 1.167°CIW
'" "
40
E
2N5876-
'~
TC<25°C
-0.1
-10
-20
-40
-70 -100
VCE-Collector-Emitter Voltage-V
FIGURE 1
20
'" i'-.
::;;
I
t'
"'"
20 40 60 80 100120 140160 180200
T c-Case Temperature-DC
FIGURE 2
PRINTED IN U.S A.
5·262
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRolluCT POSSIBLE.
TYPES 2N5877, 2N5878
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5875, 2N5876
•
150 Watts at 25°C Case Temperature
•
10-A Rated Continuous Collector Current
•
Min fT of 4 MHz at 10 V, 0.5 A
•
62.5-mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0.450
0.525 R MAX
oO
~
0
j
---I
0.250
r-
~O'312 MIN~
1.573 MAX
0.675
I
il.65s
0.043 OIA 2 LEADS
4-
.-----Irn=o.038
1.050 MAX
o~
-::t0.225 --=r - 0-',-lt
,,'-'~"\
,-
MAX
~
0.188 R M A X · - ' - - - - - - I
BOTH ENDS
0 135 MAX -1
~:~~~
h
0.205 0.440
- " 'I 1.1
0.420
I
0.200
SEATING PLANE
1 - BASE
I
•
r-
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
...... _ .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1. These values apply when the
base~emitter
2N5877
2N5878
60 V*
60 V*
5 V*
80 V*
BOV*
5 V*
_{10At}_
B A*
-15A-2A*See Figure 1
-150W*-5W---62.5mJ_
-65°C to 200°C*
-65°C to 200°C*
_250°C*_
diode is open-circuited.
2. This value applies for tw <; 1 ms, duty cycle';;;;; 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.857 wt C.
4. Derate linearly to 2000 C free-air temperature at the rate of 28.6 mwt C.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors.t L ~ 20 mH, RBBl ~ 20 n, RBB2~ lOOn,
VBBl ~ 10 v, vBB2 ~ 0 V, RL ~ 0.1 n, VCC ~ 10 V, ICM ~ 2.5 A. Energy'" IC 2 L12.
III JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which-is also shown.
+This circuit appears on page 5-1 of this data book.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-263
TYPES 2N5877, 2N5878
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(SR)CEO
Collector Cutoff Current
ICEV
•
Collector-Emitter
Sreakdown Voltage
Collector Cutoff Current
ICEO
ICSO
Collector Cutoff Current
IESO
Emitter Cutoff Current
hFE
Stati c Forward Cu rrent
Transfer Ratio
VBE
Base·Emitter Voltage
Collector· Emitter
Saturation Voltage
Small·Signal Common·Emitter
Forward Current Transfer Ratio
Small-Signal Common·Emitter
Forward Current Transfer Ratio
Common-Sase Open·Circuit
Output Capacitance
VCE(sat)
hfe
[hfe[
Cobo
NOTES:
2N5877
2N5878
UNIT
MIN MAX MIN MAX
TEST CONDITIONS
IC = 0.2 A,
IS = 0,
VCE - 30V,
VCE -40V,
VCE - 60V,
VCE - SOV,
VCE 60V,
VCE-SOV,
VCB-60V,
VCS-SOV,
VES - 5 V,
VCE 4 V,
VCE 4V,
VCE-4V,
IB-O.SA,
VCE-4V,
IB 0.5A,
IS -1.6A,
IS -0
IS - 0
VSE - -1.5 V
VSE - -1.5 V
1.5 V,
VBE
VSE - -1.5 V,
IE - 0
IE - 0
IC - a
IC 1 A
IC 4A
IC-SA
IC - 5 A
IC-SA
Ie 5A
IC-SA
See Note 6
VCE = 4 V,
IC= 1 A,
f = 1 kHz
20
20
VCE=10V,
IC = 0.5 A,
f = 1 MHz
4
4
VCS=10V,
IE = 0,
f = 1 MHz
60
80
V
1
1
mA
0.5
0.5
TC 150 C
TC-150C
5
mA
5
0.5
0.5
1
1
35
20
5
See Notes 6 and 7
100
35
20
5
1.6
2.5
1
3
See Notes 6 and 7
See Notes 6 and 7
mA
100
1.6
2.5
1
3
300
mA
300
V
V
pF
6, These parameters must be measured using pulse techniques. tw "'" 300 p,s, duty cycle ~ 2%.
7. These parameters are measured with voltageNsensing contacts separate from the
current~carrying
contacts and located within 0.125
inch from the device body.
*switching characteristics at 25° C case temperature
PARAMETER
Rise Time
Storage Time
Fall Time
tr
t5
tf
TEST eONDITIONst
IC=4A,
IS(1) = 0.4 A,
VBE(off) = -5 V, RL=7.5n,
MIN MAX UNIT
0.7
1
11 5
0.8
IS(2) = -0.4 A,
See Note S
tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data.
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication
Suggested Standards on
Power Transistors. t V BB l = 24 V, VBB2 = 5 V, Vee = 30 V, Von = 22 V, RBBl = 26 n, RBB2 = 15 n.
+This circuit appears on page 5-1 of this data book.
'MAXIMUM SAFE OPERATING AREA
40
;w ~0.65Im;
20 Nonrepetitive Pulse Operation
«I
1:
~
5
tJ
r'-----r ....::::::- - -:::- ?'t-::
10
"0
'T
E
'i5=
4 ~tw-O,1ms
/' V
r--tw ms-'"
0,5
1
0.7
'~
~
°c
100
80
~
"g
60
0
tJ
§
2N5878-
E
1\
"~
TC';25°C
r- I"\..
~
~
ROJC'; 1.167°CIW
"-
"
40
~
"-
20
:;
..
I-
0.1
10
120
Cl
\
2N5877
0.4
02
B
/
t-----';;;,~i;;,,- /
D·e Operation-'
I
c
.2 140
1;;
Q.
7
6
]
THERMAL CHARACTERISTICS
;: 160
20~
40
7.0
VCE-Collector-Emitter Voltage-V
100
FIGURE 1
0
~
20 40 60 80 100120 140 160 180 200
Tc-Case Temperature-°c
FIGURE 2
PRINTED IN U.S A.
5-264
127
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5879, 2N5880
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5881, 2N5882
•
160 Watts at 25°C Case Temperature
•
15-A Rated Continuous Collector Current
•
MinfTof4MHzat 10V, 1 A
•
90 mJ-Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
04S0j-1
0.525 R MAX
oO
~
0
r-
~0312MINJI573 MAX
...-------m:0038
0-:-:;;0250
1.0SO MAX
0.188 R MAX
BOTH ENOS
£
MAX
~
h
-1
I
0.135 MAX
~ DIA 2 LEADS
0225
0.675
~:~~~
Q.6s5
I
-,'~ 4: \ J.2-EMITTER
------=r - 0-\-lt ,-.-
0205 0440
-, I
1~
I
0.420
0.200
SEATING PLANE
1 - BASE
l~:~;~
•
DIA
2 HOLiS
ICASE tEMPERATUH
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5879
2N5880
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
-60 V*
-60V*
-5 V·
-80 V*
-80V*
-5 V*
Continuous Collector Current
_{-15Att_
-12 A*f
_-20A _ _
_
-4A* _ _
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
6.
See Figure 1
_160W* __
5W _ _
_90mJ _ _
-65°C to 200°C*
_65°C to 200°C*
_250°C*_
These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 1 ms, duty cycle < 10%.
Derate linearly to 2000 C case temperature at the rate of 0.915 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.
This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors.~ L ~ 20 mH, RBBl ~ 20 n, RBB2 ~ 100 n,
VSSl -10 V, VBB2 - 0 V. RL ~ 0.1 n, VCC -10 V, ICM ~ -3 A. Energy'" IC2 L/2 •
• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
4:This circuit appears on page 5-1 of this data book.
~71
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-265
TYPES 2N5819, 2N5880
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(8R)CEO Breakdown Voltage
Collector Cutoff Current
ICEO
ICEV
Collector Cutoff Current
ICBO
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current
Transfer Ratio
VBE
Base-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance
VCE(sat)
•
hfe
Ihfel
Cobo
NOTES:
2NS87S
2NS876
UNIT
MIN MAX MIN MAX
TEST CONDITIONS
IC= -0_2 A,
IB = 0,
VCE = -30 V,
VCE - -40 V,
VCE -60 V,
VCE - -SO V,
VCE = -60 V,
VCE - -SO V,
VCB - -60V,
VCB - -SOV,
VEB=-5V,
VCE -4V,
VCE--4V,
VCE--4V,
IB - -0.7 A,
VCE - -4 V,
IB - -0.7 A,
IB - -2.4 A,
IB = 0
IB = 0
VBE = 1.5 V
VBE-l_SV
VBE - 1_5 V,
VBE - 1_5 V,
IE - 0
IE - 0
IC- 0
IC- -2 A
IC- -6A
IC=-12A
IC- -7 A
IC- -12A
IC- -7 A
IC--12A
VCE = -4V,
IC=-2A,
f = 1 kHz
20
20
VCE = -10V,
IC= -1 A,
f = 1 MHz
4
4
VCB= -10V,
IE = 0,
f = 1 MHz
See Note 6
-60
-80
V
-1
-1
mA
-O_S
-O_S
-S
Tc-150C
TC-1S0C
mA
-S
-0.5
-O.S
-1
-1
See Notes 6 and 7
35
20
5
100
35
20
5
-1.6
-2.5
-1
-4
See Notes 6 and 7
See Notes 6 and 7
mA
100
-1.6
-2.S
-1
-4
600
mA
600
V
V
pF
6, These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle ,s;;;; 2%.
7. These parameters are measured with voltageMsensing contacts separate from the current-carrying contacts and located within 0.125
Inch from the device body.
*switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
Rise Time
Storage Time
Fall Time
tr
ts
tf
IC= -6A,
VBE(off) =
5Y,
IB(1)=-0.6A,
RL = 50,
MIN MAX UNIT
0_7
1
tJs
O.S
IB(2) = 0.6 A,
See Note S
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data.
NOTE 8: These characteristics arB measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication Suggested Standards on
Power Transistors.+ ,VBBl = 23 V, VBB2 = 5 V, Vee = 30 V, Von = -20_5 V, RBBl = 16 il, RBB2 = 10 il.
:t:This circuit appears on page 5-1 of this data book.
MAXIMUM SAFE OPERATING AREA
-40
-20
Nonrepetitive Pulse Operatioritw = 0.05 ms
........
-10
1 =:
u~
~
-2
-1
<
',)--...
tw-O.1 ms
-'t~ :.. '0.5 ms
~
I 'w=l ms~
~
~
~
"0
u
- -0.2
-0.1
-0.07
-0.04
-4
TC';25°C-
-7 -10
2N~879
u
E
-20
-40
"R6JC ';1.0g0CIW
120
100
80
60
~
~
'x
:IE 20
2~58~0
I111
200
.2 180
1;;
.~ 160
Ci
B 140
D-C Operation
.!!-0.7
'1-0.4
THERMAL CHARACTERISTICS
~
40
-70-100
VeE-Collector-Emitter Voltage-V
FIGURE 1
...I-
~
0
o
'"
20 40 60 80 100 120140 160 180 200
Te-Case Temperature-°c
FIGURE 2
PRINTED IN U.S A
5·266
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
127
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5881, 2N5882
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5879, 2N5880
•
160 Watts at 25°C Case Temperature
•
15·A Rated Continuous Collector Current
•
Min fT of 4 MHz at 10 V, 1 A
•
90·mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~O'312MIN~"573
O.450j-l
0.525 R MAX
oO0
~
0 250
r-
~ DIA 2 LEADS
D~.£
1.050 MAX
MAX
DtA
....l.--
0.188 R M A X : - ' - - - - - - I
BOTH ENDS
0.135 MAX -+j
h
MAX
-;'~
1+
0-';-lt
~:~~~
2-+
0
0205 04~
~---===~
0 , lS MAX
0043 01A :I liA05
- 0 '25
~
o ~~~: ~~~
~OlI2MIN~~IS73
'----0}:"J38
. - -_ _
~~I+
-,- I
~
~I
0.200
lsEA TlNG PLANE
I - lASE
CASE UMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5883
2N5884
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
-60 V*
-60 V*
-5 V*
-80 V*
-80 V*
-5 V*
Continuous Collector Current
_f-25At}_
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3,
4.
1-20 r(*
_-30A_
--6A*See Figure 1
-200W*-5W_90mJ _
_ 65°C to 200°C*
_65°C to 200°C*
_250°C*_
These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 1 ms, duty cycle';;;;' 10%.
Derate linearly to 2000 C case temperature at the rate of 1.14 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEOEC publication Suggested Standards on Power Transistors.:j: L = 20 mH, RSB1 = 20 0, RSB2 = 100.0.,
VBB1 - 10 V, VBB2 - 0 V, R L - 0.1
n,
VCC - 10 V, ICM - -3 A, Energy""
IC2L/2.
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
+This circuit appears on page 5-1 of this data book.
271
,
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-269
TYPES 2N588~ 2N5884
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
Breakdown Voltage
V(BR)CEO
Collector Cutoff Current
ICEO
Collector Cutoff Current
ICEV
•
ICBO
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current
Transfer Ratio
VBE
Base-En:litter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common· Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open·Circuit
Output Capacitance
VCE(sat)
hfe
Ihfel
Cobo
NOTES:
2N5883
2N5884
UNIT
MIN MAX MIN MAX
TEST CONOITIONS
IC=-0.2 A,
IB = 0,
VCE = -30 V,
40 V,
VCE
VCE - -60 V,
80 V,
VCE
60V,
VCE
VCE - -80 V,
VCB - 60V,
VCB - -80V,
VEB--5V,
4V,
VeE
VCE - -4 V,
VCE - -4 V,
IB - -1.5 A,
VCE - -4 V,
IB - -1.5 A,
IB--4A,
IB - 0
IB 0
VBE - 1.5 V
VBE-l.5V
VBE 1.5 V,
VBE - 1.5 V,
IE 0
IE - 0
IC- 0
Ie - 3A
IC- -lOA
IC- -20 A
IC--15A
IC--20A
IC- -15A
IC- -20 A
VCE = -4 V,
IC=-3A,
f = I kHz
20
VCE = -10 V,
IC= -1 A,
f = 1 MHz
4
VCB=-10V,
IE = 0,
f = I MHz
See Note 6
-60
-80
V
-2
-2
rnA
-1
-1
Tc 150 C
TC-150 C
-10
rnA
-10
1
-1
-1
-1
35
20
5
See Notes 6 and 7
100
35
20
5
-1.8
-2.5
-1
-4
See Notes 6 and 7
See Notes 6 and 7
rnA
rnA
100
-1.8
-2.5
-1
-4
V
V
20
4_
800
800
pF
6. These parameters must be measured using pulse techniques. tw ::: 300 JJs, duty cycle:;;;;;; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
*switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
tr
RioeTime
t.
tf
Storage Time
IC=-10A,
VBE(off) =4V,
Fall Time
MIN MAX UNIT
0.7
IB(2) = 1 A
IB(l) = -1 A,
RL =3 n,
1
See Note 8
I"S
0.8
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication Suggested Standards on
Power Transistor&"+: VBB1 = 25 V, VBB2 = 4 V, Vee = 30 V, Von = -23 V, RBB1 = 11 n, RBB2 = 5 n.
+This circuit appears on page 5-1 of this data book.
MAXIMUM SAFE OPERATING AREA
-40
-20
«
~
u
:;
]
8I
-10
-7
D!C ~!e!a~i~
-2
TC';;2S·C
!i -0.4
-0.2
-~
Dashed Lines Apply
for Nonrepetitive
Pulse Operation
, ,
"
/' I>~
-
,
-7 -10
240
.2
N.
'~
200
"",
is
'~
g
'.g
=
8
80
E
E
40
,
2N5883 ~
2N5884
-20
120
c
1\
'~
1 1 1 .1
R8JC ..; 0.875 C/W
1"'-
Cl
/'
'"
'"
:::;
~
-0.1
-4
THERMAL CHARACTERISTICS
B 160
0.05 ms
0.1 ms
0.5 ms
1 ms
-4
-1
-0.7
--, --
1
-70 -100
-40
VCE-Collector-Emitter Voltage-V
FIGURE 1
0
o
'" '""'-
20 40 60 80 100120140160 180200
T c-Case T emperature-0 C
FIGURE 2
PRINTED IN U.S A.
5·270
12~
TEXAS INCORPORATED
INSTRUMENTS
POST OFFiCE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSiRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5885. 2N5886
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5883. 2N5884
• 200 Watts at 25°C Case Temperature
•
25-A Rated Continuous Collector Current
•
Min fT of 4 MHz at 10 V. 1 A
•
90-mJ Reverse Energy Rating
*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~.~~~ j 1- t::~~:~:~ADS
0.525 R MAX
oD
~
0
-.--------j~I~,.
LOS. MAX
o~
-
MAX
_-'----D~-A-I
0.188 R MAX
BOTH ENDS
0.135 MAX
--I
h
0.225
1.57', MAX
,If
2-EMITTER
,,'- , "
~
--=r - 0-';-lt ,- <;l- ...- 'I _I'"
0.205 0.440
0.420
I
0.200
SEATING PLANE
1 - BASE
I
I--
l~~:!
DIA
•
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5885
2N5886
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
60V*
60V*
5 V*
80 V*
80V*
5 V*
Continuous CollectQr Current
_{25 At}_
20A*
-30A--6A*-See Figure 1
-200W*---5W--_90mJ __
-65°C to 200°C*
-65°C to 200°C*
_250°C* __
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperatu re Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1. These values apply when the
base~emitter
diode is open-circuited.
2. This value applies for tw";;;; 1 ms, duty cycle';;;;; 10%.
3. Derate linearly to 200°C case temperature at the rate of 1.14 W/C.
4. Derate linearly to 2000 C free-air temperature at the rate of 28.6 mW/ C.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication
VSSl
= 10
V, VSS2
= a V,
RL
= 0.1
Suggested Standards on Power Transistors.
fl, VCC
= 10 V,
ICM
=3
+L = 20 mH, RSSl
= 20
fl, RSS2
= 100
fl,
A. Energy'" IC 2 L/2.
*J EDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
:j:This circuit appears on page 5-1 of this data book.
271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-271
TYPES 2N5885, 2N5886
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CEO
ICEO
ICEV
ICBO
•
Collector-Emitter
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current
Transfer Ratio
VBE
Base-Emitter Voltage
VCE(sat)
hfe
Ihfel
Cabo
NOTES:
2N5885
2N5886
UNIT
MIN MAX MIN MAX
TEST CONDITIONS
Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance
See Note 6
IC=0_2A,
IB = 0,
VCE - 30V,
VCE -40V,
VCE - 60V,
VCE - 80V,
VCE - 60V,
VCE-80V,
VCB - 60V,
VCB - BO V,
VEB - 5 V,
VCE=4V,
VCE = 4 V,
VCE-4V,
IB - 1.5 A,
VCE - 4 V,
IB - 1.5 A,
IB = 4 A,
IB - 0
IB - 0
VBE - -1_5 V
VBE - -1.5 V
VBE - -1.5 V,
VSE--1.5V,
IE = 0
IE - 0
IC - 0
IC 3A
IC= lOA
IC- 20A
IC = 15 A
IC- 20A
IC-15A
IC- 20 A
60
BO
VCE=4V,
IC = 3 A,
f = 1 kHz
20
20
VCE = 10V,
IC= 1 A,
f = 1 MHz
4
4
VCB=10V,
IE = 0,
f = 1 MHz
V
2
2
mA
1
1
TC-150C
TC-150 C
10
mA
10
1
1
1
1
See Notes 6 and 7
35
20
5
100
35
20
5
See Notes 6 and 7
1.8
2.5
1
4
500
mA
100
1.8
2.5
1
4
See Notes 6 and 7
mA
500
V
V
pF
6. These parameters must be measured using pulse techniques. tw = 300 IJ,S, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
*switching characteristics at 25°C case temperature
tr
ts
tf
PARAMETER
Rise Time
Storage Time
Fall Time
MIN MAX UNIT
0.7
1
!1s
0.8
TEST CONDITIONSt
1&(2) = -1 A,
IC= lOA,
IB(l) = 1 A,
VBE(off) = -4 V, RL = 3 n,
See Note 8
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
"'JEDEC registered data.
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication
Suggested Standards on
Power Transistors.;': VBB1 = 25 V, VBB2 = 4 V, Vee = 30 V, Von = 23 V, RBB1 = 11 n, RBB2 = 5 n.
+This circuit appears on page 5-1 of this data book.
MAXIMUM SAFE OPERATING AREA
40
20
«I
10
7
~
4
~
-+++-I.
D!C ~~e~'~i~~
0.05 ms
0.1 ms
0.5 ms
1 ms
u
j
'0
u
I
~
'"
"
" r:;>
:~
/'
\
200
"~ R~JC 10.~75t)
160
I'" ~
gc 120
i
u°
80
~
'x
40
..
O
:EI
70 100:
10
20
40
VCE-Collector·Emitter Voltage-V
FIGURE 1
'"
E
t-
4
240
~
for Nonrepetitive
Pulse Operation
0.1
.~
3
.;:
/' /'
2N5885 ~
Dashed Lines Apply C- 2N5886
0.2
THERMAL CHARACTERISTICS
~
Cl
1 ETC~25°C
0.7
0.4
, ,
,
,
a
'" "
'"
20 40 60 80 100 120 140 160 180200
TC-Case Temperature-QC
FIGURE 2
PRINTED IN U.S A
5-272
127
TEXAS INSTRUMENTS
INCORPORATED
!=tOST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 215938
N·P·N SILICON POWER TRANSISTOR
RADIATION-TOLERANT TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
Min hFE of 10 at 3 V, 1 A after 1 X 1014 Fast Neutrons/cm 2
•
20 W at 100°C Case Temperature
•
Max VCE{sat) of 0.4 Vat IC = 1 A
•
Min fT of 150 MHz at 5 V, 1 A
description
The 2N5938 transistor offers· a significant advance in radiation-resistant-device technology. Unique construction
techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through
10 14 n/cm 2 .
*mechanical data
Ir
•
ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE
g~;~~
10·32 UNF-2A
.L:::::
0.1697 0lA
01658
·0.189
0.163
0.215
0.320
I.I
01.
III
n r-O'2S0\~
0.2701
0.078 MAX-J
NOTES A ALL DIMENSIONS ARE IN INCHES
B CASE TEMPERATURE IS MEASURED AT A
POINT ON THE INTERSECTION OF THE
STUD AND THE HEX SEATING PLANE.
0046 CIA 3 PINS
0030
l
0.165 MAX
SEATING PLANE
0.480
0.355
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current . . .
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Terminal Temperature 1116 Inch from Case for 10 Seconds
SOV
50V
4V
3A
5A
1A
4A
See Figure 6
20W
. . . 2.5W
_65°C to 200°C
-65°C to 200°C
230°C
NOTES:
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw " 10 ms, duty cycle < 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.2 wI C.
4. Derate linearly to 200°C free-air temperature at the rate of 14.3 mW/oC.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of .publication.
670
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-273
TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector~Emitter
ICEO
Collector Cutoff Current
ICES
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
VCE(sad
Collector-Emitter Saturation Voltage
hfe
lhfel
•
TEST CONDITIONS
Breakdown Voltage
V(BR)CEO
Cobo
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance
IC -lOrnA,
IB - 0,
VCE -30V,
IB-O
VCE = 55 V,
VBE = 0
VCE =30V,
VBE = 0,
VEB - 2 V,
VEB -4 V,
VCE - 3 V,
VCE - 3V,
MIN
See Note 5
MAX
UNIT
500
IJA
50
V
100
TC = 150°C
200
IC-O
10
IC-O
IC - 1 A,
See Notes 5 and 6
30
100
150
IC-3A,
See Notes 5 and 6
20
VCE = 3 V,
IC=3A,
See Notes 5 and 6
1.4
IB - 0.1 A,
IC-l A,
See Notes 5 and 6
0.4
IB - 0.3 A,
IC=3A,
See Notes 5 anc;i 6
0.75
VCE=5V,
IC = 1 A,
f = 1 ! 10 keV (reactor spectrum).
NOTES: 5. These parameters must be measured using pulse techniques. tw = 300 /-ts, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
670
5·274
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
0
'il
a:
20
~
~
u"
"E
~
u
';
'fw
COLLECTOR CURRENT
-
I-
10
7
~
0
II.
vs
COLLECTOR CURRENT
100
E .. 10 keV (Reactor Spectrum)
70
!I> Neutron Fluence (n/cm 2 )
40
~c
4
2
....
1
0.7
l00~V-CE~I=~iv~,I~II~II~I~~I~II~III~~
0
.~
III
<1>= 1.1 X 1014
-
a:
j
-tttmll
~
2 X 1014
~
""
-;;= 5 2 X
...-
.
'1014 I!'..
lill
~2IXli~~~
0.4
J:u. 0.2
STATIC FORWARD CURRENT TRANSFER RATIO
vs
90
See Notes 5 and 6 +--+-+-+J-+I+
IHjltt
III-+-t-l
80 1-----t-H+t+t1+--l--rTC = 1 ~~C -1--1-
r. . . . . .
70 1---+-+-+++I:::I.M....",--::::r----++-IHIf++
Iftl---""d-_l_-i
60
50
\.o-"'-=+~-+......_HH:::Jo;lol-l"--=--t!--t-r-:rC = l00°C--':::-- ~I-
\.--~!-+-++.J.+I+l__+_::bJ_I-H-lllm.ill~J_...d__j
~!- TC= 25°C
"E
~
4O~,~
__ ~~~Rtt~4-~-tI~Llil~-r~
.fu
30 1--1-+-11-+-H:J~.....,"F'_l_TC = _55°C _ _
~
20
~
I-
......--1-
w
J:u. 10~-+-_t_~11~-~1--+-r++++H-~-~
VCE = 3V
TC = 25°C
See Not~, ~ and 6
0.1
0.4
0.001 0.004 0.01 0.04 0.1
IC-Collector Current-A
FIGURE 1
OL-~~~UUliL
4
0.01
10
__~~LL~ll-__L-~
0.1 0.2 0.4
0.02 0.04
IC-Collector Current-A
2
4
FIGURE 2
SASE·EMITTER VOLTAGE
vs
CASE TEMPERATURE
•
COLLECTOR·EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE
1.2
V CE =3V
See Notes 5 and 6
1.0
i
0.8
0
>
~
'E
0.6
r::- r--.........
~r-...
III
III
I
w
---....."
0.4
IC= 3A_
:---t--
IC=l~
"
I--
-...
>c
"0
0.4
I!
0.2
g
III
0.2
i
ti
I
~,IC~ 1 A
0.1
w 0.07
r---....
I
1/0.1
UI
~
See Notes 5 and 6
_IS = 0.3A,IC= 3A
..,0
'E
..........
>
:= IS - 3 rnA, IC - 30 mA
0.04
0.02
>i{j
o
-75 -50 -25
0.7
t
r-:-I-I'--.
--IC=30~
~
>I
0
25 50
75 100 125 150
TC-Case Temperature-OC
0.01
-75 -50 -25
0
25
50
75 100 125 150
TC-Case Temperature-OC
FIGURE 4
FIGURE 3
NOTES:
5. These parameters must be measured using pulse techniques.
tw,= 300 ,",S, duty cycle < 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
670
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·275
TYPE 215938
I·P·I SlliCOl POWEI TIAISISTOI
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE
500
400
f = 1 MHz
""'-
c.1
"bO
T C ·25°C
(~ 1d)
C
LL
'jI'300
g
.~
a
•
200
100
o
--1
--
Cobo (IE = 0)
7
4
2
10
20
40
Reverse Bias Voltage-V
FIGURE 5
MAXIMUM SAFE OPERATING REGION
10
7
T C <; 100°C
4
, ,
2
1
I!!
S
1 ===D-C OPERATioN
OA
j
0.2
_u
~'-
\
\
,
,,
0.7
'i.
~
\
t w ·l0 ms, d- 0.1 = 10%
tw= 1.0 ms, d= 0.1 = 10%~ L "'>,.
~ = 0.3 ms, d = 0.1 = 10%'-/
,
,
0.1
0.07
0.04
MAXVCEO
II
0.02
I
II
0.01
1
2
4
7
10
20
40
VCE-Collector-Emitter Voltage-V
70100
FIGURE 6
971
5-276
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •
DALLAS. TEXAS 75222
TYPE 2N5938
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
TURN-ON and TURN-OFF TIMES
vs
COLLECTOR CURRENT
400
IB(1)
350
. ~tOff\
R
300
Te
250
'\
E
i=
'"c 200
:;:
l:!
.~
150
i\.
'"1'-."
CIl
r--
100
50
o
= 20V
'Ie
= 25°e
See Figure B
c
.J.
L
IC
= IB(2) = 10
~
o
2
-
r-- t-- r--
3
4
•
5
IC-Collector Current-A
FIGURE 7
r--~~---OOUTPUT
INPUT
o---.....
75n
-JVlt>r~
100n
I
I
_ _,......,H
I
+
-=-20V
-
OV
I
I
I
ton
I-- -
-------------9-0%~~
I
I
toff
~
10%~~O~U-T-P-U-T--
FIGURE a-TEST CIRCUIT AND VOLTAGE WAVEFORMS FOR FIGURE 7
NOTES: a. Adjust the input voltege for the desired values of IB(1) and I B(2)'
b. The input voltage is supplied by two generators connected in parallel. Each generator has the following characteristics:
tr < 15 ns,"tf <; 15 ns, Zout = 50 0, duty cycle <; 1%.
c. Waveforms are monitored on an oscilloscope with the following characteristics: tr ..;;;; 15 ns, Rln " 10 MO, Cin < 11.5 pF.
d. Resistors must be noninductive types.
e. The d-c power supplies may require additional bypassing in order to minimize ringing.
670
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5·277
TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
PEAK-POWER COEFFICIENT CURVE
DISSIPATION DERATING CURVE
25
0_7
OA
\
~
c
... 10
8E
"
E
•
~
5
'i:
.!!!
1\
1\
,t-
o
o
25
50
75
100 125 150
T C-Case Temperature-OC
~
0.2
j
0.1
8"
.>l<
~
~
\
175
0.04
0.01
JW~110%
,·ill _ .-
PTlma.)
Average Power Dissipation
Peak Power Dissipation
R9JA
Junction-to-Free-Air Thermal Resistance
l'T(av)
~
111
fn
0.04
1-e twIT
. / i/,
K=
/'
-tw/dT
1-e
/
tw = Pulse width in ms
d = Duty cycle ratio
T = Thermal ti me constant = 6 ms
0.1
0.2 0.4
2
4
710
20
40
FIGURE 10
Equation No.1-Application: d-c power dissipation, heat sink used.
VALUE
_
TJ(av)-TA
for 100°C <; TC" 200°C
PT(av) - ReJC + ReCHS + ReHSA as in Figure 9
UNIT
W
70
5
65
W
·CIW
Equation No.2-Application: d-c power dissipation, no heat sink
used.
·CIW
R9JC
Junction-ta-Case Thermal Resistance
R9CA
Case-to-Free-Air Thermal Resistance
R9CHS
Case-to-Heat-Sink Thermal Resistance
·CIW
·CIW
PT(av) = TJ(av) - TA for 25°C .. TA" 200°C
ReJA
·CIW
Equation No.3-Application: Peak power dissipation, heat sink
R9HSA
Heat-Sink-to-Free-Air Thermal Resistance
TA
Free-Air Temperature
·C
used.
TC
Case Temperature
·C
"-
TJ(av)
Average Junction Temperature
TJ(ma.)
K
Peak·Power Coefficient
Peak Junction Temperature
17
\v-Pulse Width-ms
SYMBOL DEFINITION
DEFINITION
'"
TITTTT
FIGURE 9
SYMBOL
r/
V
J.~M~125%
0.07
0.07 0.05
0.02
200
50% Duty Cycle
0.50
.. 200
·C
.. 200
·C
• I
_
TJ(max) - TA
(max) - d(ReCHS + ReHSA) + K • ReJC
Equation No.4-Application: Peak-power dissipation, no heat sink
See Figure 10
tw
Pulse Width
ms
'.d
Pulse Period
ms
Duty·Cycle Ratio (tw/tx)
Example-Find ~(max) (design limit!
used.
~(max) =
TJ(max) -TA
d. ReCA + K • R6JC
for 25"C .. TA .. 2Oo"C
Solution:
OPERATING CONDITIONS:
From Figure 10. Peak-Power Coefficient
ReCHS + ReHSA = 4°C/W (From information
supplied with heat sink.)
TJ(av) (design limit! = 200°C
K = 0.151 and by use of equation No.3
~(max)
TJ(max) -TA
d(ReCHS + ReHSA) + K • R8JC
TA=5o"C
d=10%=0.1
PT(max)
tw = 0.6 ms
200-50
W= 130W
0.1(4) + 0.151(5)'
PRINTED IN U.S A
5-Z78
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
11 (annof assume any responsibility for any circuits shown
or represent that they are free from polenl infringement.
670
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5939. 2N5940
N-P-N SILICON POWER TRANSISTORS
RADIATION-TOl ERANT TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
Formerly TIXP39, TIXP40
•
Min hFE of 10 at 4 V, 5 A after 1 X 10 14 Fast Neutrons/cm2
•
Max VCE(sat) of 1 Vat IC
= 10 A
•
40 Watts at 100°C Case Temperature
•
Min fT of 120MHzat5V, 1 A
description
The 2N5939, 2N5940 transistors offer a significant advance in radiation-resistant-device technology. Unique
construction techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences
through 1014 n/cm 2
*mechanical data
•
THE ACTIVE ELEMENTS ARE ELECTRICALLY INSULATED FROM THE CASE
I-EMmER
10-32 UNF_2A
MAX STUD TOROUE:
151H_Las
2-BASE
ALL JEDEC TO - 111
DIMENSIONS AND
NOTES ARE
APPLICABLE
NOTES: A.
B.
C.
D.
E.
Position of terminals with respect to hexagon is not controlled.
Terminals located on true position within 0.030 inch retative to diameter of (an.
This dimension applies 10 the location of the cenler line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
All dimensions are in inches unless otherwise specified.
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current . . .
Safe Operating Region . . . . .
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
2N5939
2N5940
80V
70V
80V
70 V
4---- 5 V ______
4----10A~
4---- 20 A----.
4 - - 4 A ______
4--12 A----.
See Figure 7
..-40W----.
4--2W---.
-65°C to 200°C
-65°C to 200°C
4-230°C~
NOTES:
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for 'tw ~ 0.3 ms, duty cycle'" 10%.
3. Derate linearly to 200°C case temperature at the rate of 0.4 W~C.
4. Derate linearly to 200° C free-air temperature at the rate of 11.4 mW/ C.
·JEDEC registered data. This data sheet contains all applicable registered data in effect at time of publication.
1270
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-279
TYP.ES 2N5939, 2N5940'
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Collector-Emitter
V(8R)CEO
ICED
Breakdown Voltage
Collector Cutoff Current
Ic=30mA,
IB =0,
VCE - SO V,
IB -0
VCE -40V,
IB -0
See Note S
2N5939
MIN
lEBO
hFE
VBE
•
VCE(satl
VCE=6SV,
Collector Cutoff Current
Emitter Cutoff Current
Ihfe l
SOO
VBE -0
VCE -40V, VBE -0,
TC = IS0°C
VCE =35V, VBE -0,
TC -IS0°C
IC-O
200
200
IC-O
1
1
IC-SA
VCE =4 V,
IC-SA
VCE =4 V,
Ic= lOA
Collector-Emitter
IB=O.SA,
IC=SA
Saturation Voltage
IB-l A,
IC= lOA
VCE=5V,
IC= 1 A,
f = 1 kHz
VCE =SV,
IC= 1 A,
f = 20 MHz
Forward Current Transfer Ratio
2
VEB -3 V,
Ic-l0A
Small-Signal Common-Emitter
2
VEB-SV,
VCE -4V,
See Notes 5 and 6
40
200
40
3S
See Notes Sand 6
mA
/lA
mA
/lA
mA
200
3S
1.2
See Notes Sand 6
UNIT
V
2
VCE -4 V,
Forward Current Transfer Ratio
70
SOO
Transfer Ratio
Small-Signal Common-Emitter
hfe
MAX
2
-Static Forward Current
Base-Emitter Voltage
MIN
80
VCE =7SV, VBE =0
ICES
2N594O
MAX
1.2
1.6
1.6
0.6
0.6
1
1
30
30
6
6
V
V
*post-irradiation electrical characteristics at 25°C case temperature
TEST CONDITIONS
PARAMETER
Static Forward Current
hFE
Transfer Ratio
VCE =4 V,
IC=SA,
See Notes Sand 6
RADIATION
MIN
FLUENCEt
1 X 10 14
n/cm 2
MAX
UNIT
10
t Radiation is fast neutrons (n) at E ;;;. 10 keV (reactor spectrum)~
*thermal characteristics
PARAMETER
R/JJC
Junction-to·Case Thermal Resistance
R/JJA.
Junction-to-Free·Air Thermal Resistance
NOTES:
5. These parameters must be measured using pulse techniques.
MAX
2.S
87.5
UNIT
°CIW
'tw = 300 IJS, duty cycle"';;; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
*JEDEC registered data.
1270
5-280
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N5939, 2N5940
N-P-N SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONS:!:
ton
Turn-On Time
IC=5A,
IB(1) = 500 rnA,
toff
Turn-Off Time
VBE(off) = -5 V,
RL = 5
:I: Voltage and current values shown are
TYP
IB(2) = -500 rnA,
See Figure 1
n,
UNIT
135
ns
800
nominal; exact values vary slightly with transistor parameters,
PARAMETER MEASUREMENT INFORMATION
,---...-----0
OUTPUT
o----...-Wl...-1.-"-"1H
30n
INPUT
50n
5n
+
-=-
11
25V
TEST CIRCUIT
INPUT
OUTPUT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES:
a. The input waveform is supplied by a generator with the following characteristics: tr
~
15 ns, 'tf" 15 ns, Zout
=
50 fl.,
tw =
10 JJs,
duty cycle" 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;. 15 ns, Rin ;;> 10 Mil, Cin <:; 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-281
TYPES 2N5939, 2N5940
N-P-N SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD ~URRENT TRANSFER RATIO
STATIC FORWARD CURRENT TRANSFER RATIO
vs
vs
NEUTRON FLUENCE
200
120
~aU~l~': 0
.g
co 100
a: 70
t-- V CE : 4 V
0
;;; 100
cr
Ii;
c:
~
E 40
f-
f"\
~
c:
20
u"
"E
~
7
0
.,co
.u
4
enI
•
w
u.
.c:
·2
"~
"
l-
V
80
u 60
~
10
u.
TC: 25°C
f-- See Notes 5 and 6
~c:
1;;
~
COLLECTOR CURRENT
"
V
E
~
~VCE:4V
0
u. 40
~ IC: 5A
f-- E ;;'10 keY (Reactor Spectrum)
f-- TC: 25°C
See Notes 5 and 6
I I 1111111
I I I 111111
o
0.Q1
0.04
-Neutron Fluence-n/cm 2
FIGURE 2
4
710
20
FIGURE 3
BASE·EMITTER VOLTAGE
COLLECTOR·EMITTER SATURATION VOLTAGE
vs
vs
COLLECTOR CURRENT
1.4
0.1 0.2 0.4
2
I C-Collector Current-A
COLLECTOR CURRENT
>
.
I
1.2
I)
>
~
o
1.0
0.7
>
0.4 f - TC: 25°C
f - See Notes 5 and 6
c:
.g
:I
~IC
'"
:I
'0
r--I B : 1O
..L
/
E
aco
>
~ 0.8
E
~ 0.6
l-
1--1-
I--
0.2
Ul
~
E
)1
0.1
"! 0.07
B
u
iG
aJ
I
.!!
wO.4
~
'0 0.04
u
V CE : 4 V
0.2 f -
o
0.Q1
]0.02
w
TC: 25°C
I Sj"
tNilii
0.04
-~
t--
I
anj 6
U
1I
>
0.1 0.2 0.4
2
IC-Collector Current-A
4
710
20
0.Q1
0.01
0.04
FIGURE 4
NOTES:
0.1 0.2 0.4
2
I C- Collector Current- A
4
7 10
20
FIGURE 5
5. These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle'" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
1270
5·282
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N5939. 2N5940
N-P-N SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
vs
500
,
COLLECTOR BASE VOLTAGE
600
~
IE'
'"
~~
= 0.1
f
to 1 MHz -
I-
T C = 25°C
r--..
"~ r-...
"
I'-..
""--. ...........
100
o
1
2
7
4
10
20
40
V CB-Collector-Base Voltage-V
FIGURE 6
•
MAXIMUM SAFE OPERATING AREA
40
T C';;l00oC
20
.-1.
See Notes 5 ard 6
illl
"
2
~
!
:-
TC"
40
IIIIII
20
Tc-~_C
0
-0
.,
- ---- ---
4
-0. 2
111111;
-0.2 -0' -, - -
~
~ 75
7' 0 2- 0 4 0
50
25
Ie-Collector Current-A
•
M-+-:c-
-'B"'-1A. IC .. -tOA-
,
~
-0, 7
j
-0. 4
'. -
Ffr-
..
'
7
-0.0 4
O.6A,le"
~6A=
=
F=
10mA,le
'OOmA=:
F
i
iii -0.02
~
,
,50 175
-0.0 75
- 50 - 25
0
25 50 7 5 100 126 150 175
T c-Ca. Temperature-·C
FIGURE 4
FIGURE 3
I-
IN:I~5and6
2
-
-
2
i-D.
,
j,' ~~
-6A
0
25 50 75 100 125
Tc-C8saTemperature-oC
- -
i
I
IC=-7ot- ' -
t--
-0.6
vs
CASE TEMPERATURE
See1Notes 5 and 6
t--
t
•:-0.
2506
vc~--~v
-
·1-0.•
1IIIIi
60
-1. 0
COLLECTOR-EMITTER
SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
FIGURE 5
6. These parameters must be measured using pulse techniques. t w "" 300 /J.S, duty cycle" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body,
NOTES:
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
MAXIMUM COLLECTOR CURRENT
COLLECTOR-EMITTER VOLTAGE
-100
-70
«
-20
"
5
-10
-7
.!!
-4
~
U
D-C Operation
-40
.Lc
TC" 50"C
·x"co
::!;
-1
-0.7
J:?
-0.4
I
-20
5
-10·
U
U
...........
\.
i\
E
"
E
·x.,
FIGURES·
\
-4
"""
VBB2=4V
.vBB2 = 0
i'-..
1\
::!;
-2
-70 -100
-20
-40
-7 -10
VCe-Coliector-Emitter Voltage-V
'll"
1
-0.2
-4
6'0
-7
1>
-0.1
'\'I'
.!!
0
TC= 100"C
-2
«
.Lc
~
u"
U
0
u
E
E
UNCLAMPED.INDUCTIVE LOAD
-40
-,.
0:1
VCC=20 V
RBB2= lOOn
Tc = 25°C
See Note 8
0.2
seelNrr
0.4 0.7 1
2
4
L-Unclampad Inductive Load-mH
7 10
FIGURE 7
NOTES: 7. Above these points the safe operating areas have not been defined.
8. This curve Is based on the capability of the transistor to operate safely In the circuit of Figure 2 ,.,Ith..RBB.l '" 10' VBB.l/lc.
PRINTED IN U.S.A.
5-288
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
11'11
Tf (onnot assume any responsibility for any tiHuits shown
or represent thar they are free from palenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 2N6128
N-P-N SILICON POWER TRANSISTOR
HIGH-FREQUENCY, HIGH-POWER TRANSISTOR WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•
40 mJ Reverse Energy Rating with IC = 20 A and 4 V Reverse Bias
•
Isolated Stud Package
•
100 W at 50°C Case Temperature
•
Min fT of 50 MHz at 5 V, 2 A
•
Designed for Complementary Use with 2N6127
*mechanical data
ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE
•
AU. DIMENSIONS ARE IN INCHH
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas. . . . . . .
Continuous De~ice Dissipation at (or below) 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at HXtC Case Temperature (See Note 3)
Unclamped Inductive Load Energy (VBE(off) = 0, See Note 4). .
Unclamped Inductive Load Energy (VBE(off) = -4 V, See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Terminal Temperature 1/B Inch from Case for 60 Seconds
NOTES:
100 V
80V
6V
10A
20A
3A
See Figures 6 and 7
100W
67W
50mJ
40mJ
-65°C to 200°C
-65°C to 200°C
300°C
1. This value applies when the base-emltter.I
.....
TC" 150°C
0'--
1j,
•
~
c
li
~
TC" 26°C
0
1
IIIII
0
I--
t
TC" _55°C
~
IIIII
0
0.1
0.2
02
,
7 10
0.4
'e-Collector Current-A
'I'-- .........
0, 7
g
o.
2
-
-See Notes 5 and 6
7
'B"'O.OlA.IC"O.1A
IC~IO.ll
See Notes 5 and 6
0.2
20
--IIBiO.5i·'CI~5i
1
~
v
'B"'lA,IC""OA
•
-~ r--
0.'
o
40
75
2
I
50 -25
0
25 SO 75 100 125 150
TC-Case Temperature-OC
FIGURE 3
0.0 1
75
175
25
50
0 25 50 75 100 125 150 175
T c-Case Temperature-°c
fiGURE 5
FIGURE4
5. These parameters must be measured using pulse techniques. tw
NOTES:
l'
~
oA
le,
r----....
VeE '"5
1
1l -
----- r--- r--'--i"- !'--
0.6
>
IIIII
0
•
1.2
II
II
.~ 180
'"~ 160
vs
CASE TEMPERATURE
CASE TEMPERATURE
COLLECTOR CURRENT
200
COLLECTOR-EMITTER
SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
= 300 jJs. duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body.
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
UNCLAMPED INDUCTIVE LOAD
40
100
70
20
"
10
7
U
(;
1:)
.!!!
D-C Operation
40
«
.!.
"~
«
.!.
"~
U"
(;
TC'; 50°C
4
.!!!
TC = 100°C
..........
'0
2
~
0.7
~
5:?
0.4
5:?
E
E
'\
"
'x
I
10
\
t'--- "
VBB2 =0
t
r---
$0
"
..
'x
2
0.2
0.1
4
40
20
7
10
VCE-Collector-Emitter Voltage-V
70
100
FIGURE 6
1\
4
I
1
0.1
'»./
"-
7
u
\
E
E
.
20
1:)
'0
U
MAXIMUM COLLECTOR CURRENT
vs
VCC=20V
RBB2 = 100
TC = 25°C
See Note 8
0.2
II
VBB2 =4 V
n
0.4
"-
0.7
1
r-......
seelNr(
2
4
7
10
L-Unclamped Inductive Load-mH
FIGURE 7
NOTES: 7. Above these points the safe operating areas have not been defined.
8. This curve is based on the capability of the transistor to op~rate safely in the circuit of Figure 2 with ASB 1
::::::I
10 • VSS1/1 C.
PRINTED IN U.S.A.
5·292
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS '75222
1171
11 cannot assume any responsibility for ony circuits shown
or represent thaI they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
• 100-mJ Reverse-Energy Rating
• 30-A Rated Continuous Collector Current
• 150 Watts at 100°C Case Temperature
• Min fT of 75 MHz at 10 V, 1 A
*mechanical data
2N6270,2N6271
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
~j
0.525 R MAX
oAa
~
1- ~O'312MIN~1'573
.-------+QFO.038
0.250
1.050 MAX
~DIA 2 LEADS
o~
~
MAX
DIA
-*--
0.188 R MAX'~----- I
BOTH ENDS
0.135 MAX -l
h
~--=r
0.205
~
0.675 1. 177
0.655
~
2-EMITTER
-,'.!" '\ --.l
- 0-\-1: ,-0,-
0.420
"t
I
0.200
SEATING PLANE
ALL DIMENSIONS ARE IN INCHES
1.!!!.
MAX-l
I
~
I
t-
t
0.161 DIA
Q.i5i
2 HOLES
CASE TEMPERATURE
I-SASE
•
MEASUREMENT POINT
2N6272,2N6273
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALLJEDEC TO-53 DIMENSIONS
~
J~
~
, J~
"'"
AND NOTES ARE APPLICABLE
~.'"
• _+ __
~
-~Il:lll
CASE TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF FLAT SURFACE WITHIN 0.125" FROM
STUD
ALL DIMENSIONS ARE IN INCHES
*absolute -maximum ratings at 25°C case temperature (unless otherwise noted)
2N6270
2N6272
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas . . . . . .
Unclamped Inductive Load Energy (See Note 3 and Figure 7)
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range . . . .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw <; 0.3 ms, duty cycle'" 1 0%.
3. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L
VBB2
=0
V, RS
= 0.1 n.
VCC
= 20 V,
2N6271
2N6273
100V
120V
BOV
100V
BV
BV
_30A_
_40A _
10A_
_
See Figures 6 and 7
-100mJ-_150W_
-5W-65°C to 200°C
_65°C to 200°C
_300°C_
= 1 mH, RSB2 = 100 .0,
Energy'" IC 2 L/2.
4. For operation above 1 000 C case temperature, refer to Dissipation Derating Curve, Figure 8.
5. For operation above 250 C free-air temperature, refer to Dissipation Derating Curve, Figure 9.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication ..
1071
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-293
TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
2N6270
2N6271
2N6272
2N6273
UNIT
MIN MAX MIN MAX
Collector-Emitter
V(SR)CEO
ICEO
Collector Cutoff Current
ICES
Collector Cutoff Current
Emitter Cutoff Current
IESO
hFE
VSE
VCE(sat)
•
Ic=30mA,
Sreakdown Voltage
IS = 0
VCE = 50 V,
IS = 0
100
V
1
1
VCE -100V,
VSE - 0
VCE = 120V,
VSE = 0
VCE =60V,
VSE = 0,
1
TC = 150°C
2
2
VES = 5 V,
IC = 0
0.1
0.1
VES = 8 V,
IC = 0
1
1
VCE=4V,
IC = 15A,
See Notes 6 and 7
20
VCE = 4 V,
IC=30A,
See Notes 6 and 7
10
100
20
VCE =4 V,
IC = 30A,
See Notes 6 and 7
2.2
2.2
IS = 1.5 A,
le= 15A,
See Notes 6 and 7
1
1
Saturation Voltage
IS = 6A,
IC=30A,
See Notes 6 and 7
2
2
VCE = 10V,
IC = 1 A,
f = 1 kHz
30
30
VCE = 10 V,
IC= 1 A,
f = 5 MHz
15
15
Common-Emitter
mA
100
Sase-Emitter Voltage
Forward Current Transfer Ratio
mA
10
Collector-Emitter
Small~Si9nal
mA
1
Transfer Ratio
Forward Current Transfer Ratio
Ihfe l
VCE=40V,
80
Static Forward Current
Small-Signal Common-Emitter
hfe
See Note 6
IS = 0,
V
V
*JEDEC registered data
switching characteristics at 25°C case temperature
2N6270
2N6271
2N6272
2N6273
TYP
TYP
IS(2) = -1.2 A,
0.5
0.5
See Figure 1
1.3
1.3
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC = 15 A,
IS(1) = 1.2 A,
toff
Turn-Off Time
VSE(off) = -6.3 V,
RL = 2
n,
UNIT
!-IS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR CURRENT
CASE TEMPERATURE
250
.2
"•
0:
">-~
E
•5
u
175
150
T:rm
.
~
>
--TC; 'jiC
75
25
E
">~
I II
,
"
0
TC;-~5Ie
0.1
0.2 0.4 0.7 t
4
7 10
20
40
FIGURE 1
NOTES:
1.2
~
>
0.8
r-- 1=
-0
>
---
Ie = 30 A
-----
~
r--t:h- - - -
0.4
-75 -50 -25 0
25
"1 I I
See Notes 6 and 7
=
0.7
~
0.4
~
0.2
"'j
0.1
0.07
;3
0.04
~
0.02
E
-
f-
== F
I B - 1.5 A, Ie - 15 A
18
=0.1
A, Ie
1A
I
W
u
> 0.01
1 1
16'" 6 A, Ie '" 30 A
_
.2
~
1 1
'--_'-_
Ie-Collector Current-A
~
1
1.6
E
"'~
Te '" 25°C
50
2.0
I
1-1+
100
.~
VeE' 4 v
71
See Notes 6 and 7
See Notes 6 and 7
I Ii
125
1
~
"
CASE TEMPERATURE
>I
2.4
VeE"" 4 V
225
200
COLLECTOR-EMITTER SATURATION VOLTAGE
"
50 75 100 125 150175
Te-Case Temperature-OC
FIGURE 2
-75-50 -25
0
-
25 50 75 100 125 150 175
Te-Case Temperature-°c
FIGURE 3
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate 'from the current-carrying contacts and located within 0.125
inch from the device body.
1071
5·294
TEXASINCORPORATED
INSTRUMENTS
POST OFF1CE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
1N914
Von = 25.5 V - - -r~90%
56 fl
R L = 2 fl
RBB2 = 4 fl
620 pF
30 fl
VBB2 =
6.3 V
Vgen
L -______________________
1/LF
-=-
+
OV-J1n'~
INPUT
-6.3 V
~~
I
\.-toff..J
:,
-:L
:;-0%'
OUTPUT
90%
+
-=-
••
- I 10%
--i ton I-
Vec
=
31 V
~~--
;g'
VBB1 '" 27 V
ADJUST FOR
Von = 25.5 V AT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. Vgen is a -30-V pulse (from 0 V) into a 50-0. termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle ~ 2%.
~
15 ns, tf
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin
D. Resistors must be noninductive types.
~
~
15 ns, Zout = 50
10 Mil, Cin
:0;;;;;
n,
tw
= 20
Jls.
11.5 pF.
•
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 4
INDUCTIVE LOAD SWITCHING
VCE MONITOR
-;
L= 1 mH
•
VCC=20V-=-
=
I
I
I
-7i\- - _. - -- -i 7i\--
A .:
CURRENT
o-Y:~
IC MONITOR
V(BR1CER
VOLTAGE
0.1 fl
,I
......---.- 100 ms -----,
I,
COLLECT6~·1
COLLECTOR
RS
(See Note Al
r----I I
L-J
INPUT
0-,
VOLTAGE
_~
-10V - I
I
TUT
50 fl
tw '" 0.7 ms
i
20V
;
1---
I
i-
- - - - -
I
~
--
1';~
I
--
I
I
I
1
VCE(satl VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width is increased untillcM
= 14.1
A.
FIGURE 5
1071
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
5·295
TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
MAXIMUM COLLECTOR CURRENT
vs
vs
COLLECTOR-EMITTER VOLTAGE
UNCLAMPED INDUCTIVE LOAD
100
1
20
u
5
10
~
4
;3
2
~
...
.!!!
E
E
"
'x
..
I
40
c:
:::iE
I
:::iE
E
40
~tw-300tls,d=0.1 =10%
I
,
f'i..J. I
l J II [It- ~
1...c:
,
7
~
VCC=20V
10 =RBB2 = 100 n
7 =TC = 25°C
-See Figure 5
0
I
1
"0
u
\
E
E
\
0.4
2
7 10
4
20
40
\
\
.
See
:::iE
Not~ 8 - . /
2
I
0.1
~\
\
'x
:::iE
E
2N6270
2N6272
0.2
r--
4
"
2N6271
2N6273
0.7
11'1./
u
1;
.!!!
TC";; 100°C
20
I
"
D-C Operation
I
....... ~OO 1.1
70100
200
0.1
0.2
VCE-Collector-Emitter Voltage-V
0.4
0.7
1
2
4
L-Unclamped Inductive Load-mH
FIGURE 6
FIGURE 7
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~o
.~
'iii
C
.s:2l
CI>
C
~
o
"c:
8
E
"
E
.~
..
'x
!
160
140
-
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
,
=rc:
..
.;:::;
c.
. " ' \ROJC";; 0.67°CIW
'iii
i5
120
CI>
""" "'\
100
"
.;;
60
40
"'"0
"
~
0
[\..
o
120
140
"'" "'"
4
160
3
c:
.;:::;
c:
" "\
100
ROJA ..;; 35°CIW
C
20
80
5
CI>
[\..
80
6
0
180
200
Tc-Case Temperature-oC
u
E
"E
2
"" ~
"" "'-
.
'x
:::iE
I
IQ.
0
o
25
50
75
100 125
"-
""
150 175 200
TA-Free-Air Temperature-oC
FIGURE9
FIGURE 8
PRINTED IN U SA
5-296
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE !lOX 5012 •
DALLAS. TEXAS 75222
1071
TI cannol anume any responsibility for any circuits shown
or reprelent 'hat they are free from pafent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
• 100-mJ Reverse-Energy Rating
• 30-A Rated Continuous Collector Current
• 200 Watts at 100°C Case Temperature
• Min V(BR)CEO of 300 V (2N6323, 2N6325)
*mechanical data
2N6322, 2N6323
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
0450
O
0.525. MAX
o
o~
1_1 ~
~/.:"4
~---------=r
0 1,-1+
MAX
~
-'-_-===.c
0135 MAX
0205 0 ....0
I
- ...- I
0420
11
-i
1197
O. 67S
~_-,-o:.::.,,_o
o D04J D1A '1 LEADS
o~rn:o;3'
1.0SO MAX
0.188 • MAX
80TH ENDS
~
IS73MAX
0312MIN
,
1'""'i'77
0.655
~2-lMI"ER
•
=---r
l~:i~: DIA
'2 HOLES
0.200
rsEATlNG PLANE
1 -lASE
CASf TfMPERATURE
MEASUREMENT POINT
•
ALL DIMENSIONS ARE IN INCHES
2N6324, 2N6325
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-63 DIMENSIONS
.
~
.,.. AND NOTES ARE APPLICABLE
~
~rbJ:~
~02.o
I
'
CASE TEMPERATURE MEASUREMENT POINT IS UN-
00
DERSIDE OF FLAT SURFACE WITHIN 0.125" FROM
--I~~
STUD
ALL DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N6322
2N6324
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
Unclamped Inductive Load Energy (See Note 3 and Figure 7)
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range . . : .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
2N6323
2N6325
300 V
400 V
200 V
300 V
5V
5V
_30A ___
-40A---10A--See Figures 6 and 7
-100mJ-200W-5W-65°C to 200°C
-65°C to 200°C
-230°C-
1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for tw " 0.3 ms, duty cycle" 1 0%.
3. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L = 30 mH, RBB2 = 100 il,
VBB2 ~ 0 V. RS ~ 0.1 n, VCC ~ 20 V, Energy'" IC 2 L/2.
4. For 'operation above 1 oaoc case temperature, refer to Dissipation Derating Curve, Figure 8.
5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curve, Figure 9.
'" JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication ..
172
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-297
TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
2N6322
2N6323
2N6324
2N6325
UNIT
MIN MAX MIN MAX
Collector-Emitter
V(BR)CEO
Breakdown Voltage
Collector Cutoff Current
ICED
Collector Cutoff Current
ICES
Emitter Cutoff Current
lEBO
Static Forward Current
hFE
Transfer Ratio
Base-Emitter Voltage
VBE
Collector-E mitter
VCE(sat)
•
Saturation Voltage
Small-Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihfe l
Forward Current Transfer Ratio
IC= 30mA,
IB = 0,
See Note 6
VCE - 100 V,
IB - 0
VCE - 150V,
IB - 0
VCE = 300 V,
VBE-O
VCE = 400 V,
VBE - 0
VCE - 200 V,
VBE - 0,
200
300
V
5
mA
5
2
2
TC - 150°C
10
5
VEB = 5 V,
IC - 0
VCE = 5V,
IC- 5A
I
40
See Notes 6 and 7
VCE = 5 V,
IC = 20 A
VCE = 5 V,
IC= 30A
VCE = 5 V,
IC-30A,
IB = a.5A,
IC=5A
5
150
30
12
See Notes 6 and 7
IB = 2A,
IC = 20 A
IB = 6A,
IC= 30A
VCE = 10V,
IC= 1 A,
f = 1 kHz
VCE = 10V,
IC= 1 A,
f=
6
2.5
2.5
0_5
0.5
1.5
1_5
3
3
35
5 MHz
mA
150
12
6
See Notes 6 and 7
mA
10
V
V
30
2
2
*JEDEC registered data
switching characteristics at 25°C case temperature
TEST CONDITIONSt
TYP
ton
Turn-On Time
IC= 20A,
IB(1) = 2A,
0.8
toff
Turn-Off Time
VBE(off) '" -3 V,
RL = 2
PARAMETER
IB(2) = -2A,
n,
See Figure 4
UNIT
IJs
3
tVoltage and current values shown are nominal; exact values vary slightly with transistor'parameters.
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR·EMITTER SATURATION VOLTAGE
'"
COLLECTOR CURRENT
"
COLLECTOR CURRENT
COLLECTOR CURRENT
VeE =5 V
Tc" 26 c C
See Notes 6 and 7
1.8
-
i
>I
1.6
.,
1.2
~
0.8
!:i:
!
\
20
~
>
10
j
VeE =·5 v
Tc = 25°C
See Notes 6 and 7
:3
~I
1.'
..,.
.~E
w
NOTES:
10
20
40
1.4
1.2
~ 0.'
0.2
0.2
0.1
0.4
10
Ic-Collector Current-A
FIGURE 1
FIGURE 2
40
100
~
Ie "" 10
0.8
0.'
Ie-Collector Curtent-A
I
'8
j
!
r- T6! ~~j6111
See Notes 6 and 7
0.6
o
0.1 0.2 0.4
1.8
1.6
0.6
°0.1
1#
0.'
10
~
=
5
'f III
40
100
Ie-Collector Current-A
FIGURE 3
6. These parameters must be measured using pulse techniques. tw = 300 J.ls, duty cycle < 2%.
7. These parameters are measured with voltage*sensing contacts separate from the current·carrying contacts and located within 0.125
inch from the device body.
172
5·298
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
lN914
OUTPUT
MONITOR
5611
Von =41 V
INPUT
RSS2=211
620 pF
3011
VSS2= __ 3V
- +
~~
I
'--toff..J
----=::1
10%t90%'----.;;----1
OUTPUT
+
=- VCC=40V
~------------------------~--~+
VSS1",45V
ADJUST FOR
Von =41 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
--r~90%
OV::J1£W. - -3V
1 10%
--I ton j.--
A. Vgen is a -30-V pulse (from 0 V) into a 50-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr <; 15 ns,
'tf < 15 ns, Zout = 50 Of tw = 20 iJ,s,
duty cycle .. 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr EO;; 15 ns, Rin ~ 10 MO, Cin '" 11.5 pF.
D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.
•
FIGURE 4
INDUCTIVE LOAD SWITCHING
-t
L=30mH
J.,-tw "'4ms
(See Note AI
INPUT 0
VOLTAGE
-10V
I
100 ms
I
I
- - T~-
i)------f"" i)-
COLLECT;:S A - l - X - - - CURRENT
5011
0-("
V(BRICER-I-COLLECTOR
VOLTAGE
I
I
I
I
VSSl = 10V
-----1-I
I
I
I
20V
VCE(satl-
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width Is increased until leM
= 2.58
A.
FIGURE 5
172
TEXASINCORPORAT'ED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-299
TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
100
«I
«I
~:::J
~
....c
U
o
o
40
5
u
0
20
0
10
u
u
E
E
:::J
E
:::J
E
'xco
'xco
•
....c
t)
2
t)
2
~
~
u
!:?
I
I
VCC 20 V
RBB2 -100 n
TC = 25°C
See Figure 5
70
"
,",<00
~v'
7
4
'" /
2
,se,e
100
1
0.1
400 1000
0.4
Irm~-./
4
10
40
100
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE7
FIGURE 6
NOTE 8: Above this point the safe operating area has not baen defined.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~
g
.;;
~
.~
is
fl
.;;:
Q)
o
FREE-AIR TEMPERATURE
DISSIPATION DERAtiNG CURVE
250
~
225
o
.;;
200
.~
6
c
~
""'"
175
150
125
100
75
50
120
..g
4
Q)
"" "" '"
o
100
~r--.
is
fl
.;;:
ROJC';; 0.5°C/W
25
80
5
140
::>
c
.;;
c
8
"" '"
160
180
Tc-Case Temperature-OC
FIGURE 8
"'"
o
3
2
ROJA .;; 35°C/W
""
E
::>
E
'"
200
~
~
1:
"" '" "
"-
'xco
o
o
25
50
75
100 125 150 175 200
T A-Free-Air Temperature-OC
FIGURE9
PRINTED IN U.S.A.
5-300
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
172
11 (on not assume ony responsibility for any circuits shown
or represent thol they ore free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N6329, 2N6330, 2N6331
•
200 W at 25°C Case Temperature
•
30-A Rated Collector Current
•
200-mJ Reverse Energy Rating
•
High SOA Capability, 20 V and 10 A
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
D'S25
~
O
o
R MAX
0
-,-----~-:~-~~-j--1rn=1-~~;~~AM~:~AD5
1.050 MAX
MAX
DIA
...l...--
0.188 R M A X · - ' - - - - - - I
BOTH ENDS
0.135 MAX-1
h
1.57: MAX
, I'~
o-::;-.:f
0.225
0.205
---..::r - 6-\-lt
\
-,-"
I '1
0.440
0.420
I
0.200
SEATING PLANE
1 _ BASE
I
•
2- EMlnER
~
,-.-
lO.161 DIA
0.151
'2 HOLES
r-CASE TEMPERATURE
MEASUREMENT POINT
ALL DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
.. _ . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . , . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3) I. . . .
Continuous Device Dissipation at (or below) 25°C F~ee-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
2N6326 2N6327 2N6328
60 V
80 V
100V
60V
80V
100V
5V
5V
5V
30A
40A
10 A
-See Figures 3 and 4 ..
200W
•
...---114 W -----<...
•..~--5W---··
_200mJ
..
_-65°C to 200°C __
_
-65°C to 200°C..
250°C
..
..
.
.
.
.
1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for "tw ~ 1 oms, duty cycle';;;:;; 10%.
3. Derate linearly to 200°C case temperature at the rate of 1.14 W/OC or refer to Dissipation Derating Curve, Figure 5.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC or refer to Dissipation Derating Curve, Figure 6.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100
VBB2 ~ 0 V, RS ~ 0.1 n, VCC~ 20 V. Energy'" I C2L12.
n,
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
172
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-301
TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO
ICEO
ICES
lEBO
•
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
Emitter Cutoff Current
Static Forward Current
hFE
Transfer Ratio
VBE
Base-Emitter Voltage
VCE(sat)
Collector-Emitter Voltage
Small-Signal Common-Emitter
hfe
hel
NOTES:
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
TEST CONDITIONS
Ic=30mA,
IB= 0,
VCE-30V,
IB - 0
VCE 40 V,
VCE - 50 V,
IB 0
IB - 0
2N6326
2N6327
2N6328
MIN MAX MIN MAX MIN MAX
See Note 6
60
80
100
UNIT
V
1
1
mA
1
0_5
VCE - 60 V,
VBE - 0
VCE = 80 V,
VBE-O
VCE = 100 V,
VBE=O
VCE - 30 V,
VBE - 0,
TC - 150°C
VCE - 40V,
VBE - 0,
TC-150°C
TC - 150°C
0_5
0.5
VCE - 50 V,
VBE - 0,
VEB - 5 V,
IC- 0,
VCE - 4 V,
IC-5A
VCE - 4 V,
IC-15A
VCE = 4 V,
IC- 30A
VCE - 4 V,
IC - 15 A
VCE - 4 V,
IC- 30A
5
mA
5
5
0.5
25
See Notes 6 and 7
25
12
6
See Notes 6 and 7
0.5
6
12
30
6
30
2
2
2
4
4
4
1.5
1.5
1.5
3
3
3
IB-2A,
IC - 15 A
IB-7.5A,
IC- 30A
VCE = 10 V,
IC= 1 A,
f = 1 kHz
30
30
30
VCE = 10 V,
IC= 1 A,
f = 1 MHz
3
3
3
See Notes 6 and 7
mA
25
12
30
0.5
V
V
6. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cycle :so;; 2%.
7. These parameters are measured with voltage·sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body .
• JE DEC registered data
switching characteristics at 25° C case temperature
PARAMETER
TEST CONDITIONst
= 2 A,
ton
Turn-On Time
IC= 15A,
IB(1)
toff
Turn-Off Time
VBE(off) = -4 V,
RL,= 2n,
TYP
IB(2) = -2A,
See Figure 1
UNIT
0.6
0.9
!-IS
tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.
172
5·302
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
56n
-r~90%
Von = 42 V - RBB2 = 3 n
270 pF
30n
+
90%
+
-=- VCC=30V
~~~+
,
~ tOi~1 ,:TI.-~o~~-l
OUTPUT
Vgen
L-______________________
~~
INPUT OV::J.1no/" - RL=2n
-4V
,10%
VBB1 ""44 V
ADJUST FOR
Von=42VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty eye Ie ~ 2%.
~
15 ns, tf
~
15 ns, Zout = 50
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .:;;;;; 15 ns, Ain ~ 10 MO, Cin
=s;;;;
n,
tw = 20 Its,
11.5 pF.
D. Resistors must be noninductive types.
•
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
VCE MONITOR
--.j
20mH
INPUT
VOLTAGE _
0
5
I"- tw"" 4.5 ms (See Note A)
-i
r--------, r-
v_...L.J
I
TUT
U
I
I
~100ms---'
I
,
I
I
I
I
COLLECTOR4 .5A : - . . / ' \ - - - -
+
VCC = 20 V-=- IC MONITOR
50n
CURRENT
V(BR)CER
COLLECTOR
VOLTAGE
RS =0.1 n
---iA--
O-y:~
20V
,
1---
'I
- - - - - -
I
~
,
--
11~
I
--
I
I
I
VCE(sat) VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width is increased until
'eM
= 4.5 A.
FIGURE 2
172
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·303
TYPES 2N6326, 2N6321, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
100
70
c(
40
'~"
20
...I
:::>
5
..
'5
~
'j(
E
7
u
N6 28
"-
20
~
.!!
1"<00~o/
4
'j(
See Note 8 V
2N6326
0.4
VCC =20 V
RSS2 = 100 n
TC = 25°C
See Figure 2
70
-- --- -~ ~ x,. -
1
0.7
100
r- TC';; 25°C
10 tw - 0.05 ms
7 tw ='().1 ms
4 tw =0.5 ms ./
tw= 1 ms"'"
.,/
2 D·C Operation ....
u
u
E
:::>
E
Nonrepetitive Pu Ise Operation
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
I
2
!:?
,
1
40
70100
200
0.1 0.2 0.40.71
400
2
4
710 20 40
100
L-Unclamped Inductive Load-mH
VCE-Coliector·Emitter Voltage-V
FIGURE 3
FIGURE 4
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL INFORMATION
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
250
~
225
0
',p
I
'ca"
200
175
150
125
"'"
~ R8JC .;; 0.875°C/W
"I'...
100
"
75
.!:!
~
C
..
4
..
:::>
0
:::>
3
50
75
,
""
r--.
"" " R8JA .;; 35°C/W
'"
"-
25
25
5
',p
50
o
o
c.
:~
c
~
6
8'"
'" "-
"'-
'j(
ca
::E
"'"
100 125 150 175 200
Tc-Case Temperature-oC
"" "
2
E
:::>
E
FIGURE 6
I
ct'
0
o
25
50
75
"""
100 125 150 175 200
TA-Free·Air Temperature-oC
FIGURE 6
PRINTED IN U.S.A.
5·304
TEXASINCORPOR')HED
INSTRUMENTS
.
POST OFFICE BOX 5012 •
DALLAS,
T~XAS
75222
172
11 cannol assume any responsibility for any circuits shown
01 represent that they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N6326, 2N6327, 2N6328
•
200 W at 25°C Case Temperature
•
30-A Rated Collector Current
•
200-mJ Reverse Energy Rating
•
High SOA Capability, 20 V and 10 A
*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
0.525 R MAX
oO
~
0
~_:~_~~_j_11- t::~~:~:~ADS
-r-_ _ _
1.0SO MAX
o~
MAX
~
ru=h
iSj38
I
0.188 R M A X · - L . - - - - BOTH ENDS
0.' 35 MAX -1
~
0.225 ---.:::r
1.573, MAX
... 1+
.-,'- ' \
0.205 0.440
- , 'j l '
0.420
I
0.200
SEATING PLANE
1 - BASE
I
I-
•
2-EMlnER
--+-
- 0-\-lt ,- ~ -
t
~:~:~
DIA
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
ALL DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at lOO°C Case Temperature (See Note 3). . . .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
2N6329 2N6330 2N6331
-60 V -80 V -100 V
-60V -80V -100V
-5 V
-5 V
-5 V
_-30A--_.
_ - 4 0 A - - -••
10A•
-See Figures 3 and 4 •
200W
•
....~~-114 W - - -••
....>-----5 W - - - -••
-200mJ
•
_-65°C to 200°C _ _
_ _ 65°C to 200°C _ _
•
250°C-
1. These value apply when the base-emitter diode is open-circuited.
2.
3.
4.
5.
This value applies for 'tw ~ 1 ms, duty cycle ~ 10%.
Derate linearly to 2000 C case temperature at the rate of 1.14 w/o C or refer to Dissipation Derating Curve, Figure 5.
Derate linearly to 2000 C free-air temperature at the rate of 28.6 mW/ C or refer to Dissipation Derating Curve, Figure 6.
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L"'" 20 mH, RSB2 "'" 100
n,
VBB2=OV, RS= 0.1 fl, VCC=20V. Energy'" IC 2 L12.
*JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
172
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-305
TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise, noted)
PARAMETER
Collector-Emitter
V(BR)CEO
ICEO
Breakdown Voltage
Collector Cutoff Current
TEST CONDITIONS
Ic=-30mA.
IB=O,
VCE =-30V,
IB=O
See Note 6
2N6329
lEBO
Collector Cutoff Current
Emitter Cutoff Current
Static Forward Current
•
hFE
VBE
VCE(satl
Transfer Ratio
Base-Emitter Voltage
Collector-Emitter Voltage
Small-5ignal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-E mitter
hfe
NOTES:
Forward Current Transfer Ratio
-80
-60
VCE - -40 V, IB=O
VCE- 50 V, ,IB- 0
V
mA
-0.5
VCE - -40 V.
VBE - 0,
TC - 150°C
VCE = -50 V,
VeE - 0,
TC - 150°C
VEe - -5 V,
IC=O,
IC-
UNIT
1
Tc -150 C
4V,
-100
1
VBE-O
SO V, VSE 0
VCE
VCE - -100 V, VeE-O
30 V, VeE -0,
VCE
VCE-
2N6331
-1
VCE - -60 V,
ICES
2N6330
MIN MAX MIN MAX MIN MAX
-0.5
-0.5
5
mA
-5
-5
-0.5
SA
25
See Notes 6 and 7
-0.5
25
-0.5
VCE--4V,
IC=-15A
VCE=-4V,
IC=-30A
VCE =-4V.
IC=-15A
VCE- 4V,
IB--2A,
IC-
30A
IC-
15A
le=-7.5A,
IC--30A
VCE = -10 V.
IC=-l A,
f = 1 kHz
30
30
30
VCE =-10V,
IC=-l A,
f= 1 MHz
3
3
3
12
6
6
-2
See Notes 6 and 7
See Notes 6 and 7
12
12
30
mA
25
30
6
-2
30
-2
-4
-4
-4
-1.5
1.5
1.5
-3
-3
-3
V
V
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle t;;;;; 2%.
7. These parameters are measured,wlth voltage-sensing contacts separate from the currant-carrying contacts and located within 0.125
inch from the device body.
"'JEDEC registered data
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONst
ton
Turn-On Time
IC--15A,
IB(1) - -2 A,
toff
Turn-Off Time
VSE(off) = 4 V,
RL = 2fi,
TYP
IB(2) =2A,
See Figure 1
0.6
0.9
UNIT
1'$
tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.
172
5-306
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
5611
4VJCO%
OV----~------INPUT
V
= -42 V -I
90%
on
I
'
i
RBB2= 3 l1
1
270 pF
ton -k----.i
30 l1
O%I
~
+
VBB2
4V
=-=-
I---toff--\
LII
OUTPUT
-=- VCC=30V
10%
+
VBBl "'44V
ADJUST FOR
+
Von=-42VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
•
VOLTAGE WAVEFORMS
A. V gen is a 30-V pulse (from 0 V) into a 50-0 termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle 0;;;;;: 2%.
~
15 ns, tf
~
15 ns, Zout
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr";:;;; 15 ns, Ain ~ 10 Mil, Cin
=
0;;;;;:
50
n, tw = 20 j.ts,
11,5 pF.
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
./
~
-10
E
-7
u
......
::l
E
'x
'"
:2:
2N6329
2N6330
See Note 8
I
!:? -2
I
I
-4
12N13311
-0.1
-4
-7-10
-20
-40
-1
0.1 0.2 0.4 0.7 1
-100 -200 -400
2
4
710 20 40
100
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 3
FIGURE 4
NOTE 8: Above this point the safe operating area has not been defined:
THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
s:I
250
s:I
0
225
.g
a.
200
'u;
c
.~
.~
is
(I)
"
.s;
(I)
Cl
C
.;::;
c
100
u
E
::l
E
75
::l
0
'x
'"
.2
I
I-
a.
(I)
"
.~
'"0::l
""-"'-
C
0
u
E
::l
E
'"
' " ROJA';;; 35°C/W
100 125
2
"'"
'x
............
0
75
3
.;::;
25
50
I'....
4
::l
C
'"
25
!~
Cl
~ ROJC .;;; 0.875°C/W
50
o
5
is'"
""
150
125
'"a.
~
175
'"0
::l
6
c
~
150 175 200
Tc-Case Temperature-°c
FIGURE 5
'"
:2:
I
Ia.
a
o
25
50
75
~
'-....
100 125 150
"~
175 200
TA-Free-Air Temperature-oC
FIGURE 6
PRINTED IN U.S.A.
5-308
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
172
TI cannot assume any responsibility fOf any circuits 'shown
or represent that they ore free from palent infringemenf.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES T1486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
HIGH·FREQUENCY INTERMEDIATE·POWER TRANSISTORS
•
•
•
•
15 Watts at 100°C Case Temperature
Typ VeE(sal) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA
mechanical data
THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
ALL JEDEC TO·l DIMENSIONS
AND NOTES ARE APPLICABLE
•
DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED
CASE TEMPERATURE IS MEASURED 0.144 INCH ± 0.010 INCH DOWN FROM TOP OF CAN.
TI487
,m H
THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
0.467
I.SO_oj
0.407 ~cl
I
.......
O.OW IASI
POSITION OF THE LEAOS IN RELATION
TO THE HEX IS NOT CONTROLLED
~IIIII ~
NO"._"UNF_ ...
TH.....
0.01S • MAX
TEM'EU. TUitE
MIAS. 'OINT
MAXIMUM RECOMMENDED MOUNTING
TORQUE, IS IN.·LB.
0.200
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI486
T1487
)
• (
80 V
Collector-Base Voltage
.~(---- 60V
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage .
· (
6V
)
· (
1A
Continuous Collector Current
. ...c:(----1.5A
Peak Collector Current (See Note 2)
See Figure 8
Safe Operating Region at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (or below) 100°C Case Temperature
~(---- 15 W ---~
(See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
1W
2W
(See Note 4)
·+ ·+ -
Operating Case Temperature Range
Storage Temperature Range.
-65°C to 200°C
-65°C to 200°C
---+
---+
NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for tp ~ 0.3 ms, duty cycle :S 10%.
3. Derate linearly to 200°C case temperature at the rate of 150 mW/deg.
4. Derate linearly t.o 20aoe free-air temperature at the rate of 5.1 mW/deg for the Tl486 and 11.4 mW/deg for the T1487.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 15222
5-309
TYPES TI486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETI1R
V,BRICBO Collector-Base Breakdown Voltage
V''''ICEO Collector-Emitter Breakdown Voltage
ICES
Collector Cutoff Current
lEBO
hFE
VaE
VCE,sall
Emitter Cutoff Current
Static Forward Current Transler Ratio
Base-Emlttar Voltage
COllector-Emitter Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transler Ratio
Common-Base Open-Circuit
Output Capacitance
hie
•
Cobo
TEST CONDITIONS
Ic - 100ItA, IE = 0
See Note 5
Ic - 30 mA, la = 0,
VCE - 60 V, V.. - 0
Tc - lSOoC
VCE - 60 V, VIE - 0,
VEa - 6 V, Ic - 0
VCE - 5 V, Ic - 200 rnA, See Notes 5 and 6
la - 20 mA, Ic = 200 rnA, See Notes 5- and 6
la - 20 mA, Ic = 200 rnA, See Notes 5 and 6
MIN TYP MAX UNIT
BO
V
60
V
3
itA
300
20 }LA
20
80
0.8
2
V
0.2
2 V
VCE = 10 V, Ic = 100 mA, 1= 10 MHz
Vca =10 V, IE = 0,
HOTES. 5. These parameters must be measured using pulse techniques. tp = 300 p.s, dut, cyde
~
5
1= 1 MHz
30
pF
2%.
6. These parameten are measured with vollaga-sensing (ontads separate from the current-carrying contacts.
thermal characteristics
TI486
PARAMETER
(hc
(hA
MAX
Junclion-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
6.67
175
TI487
MAX
6_67
87.5
UNIT
deg/W
971
5-310
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES T1486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
Ion Turn-On Time
loff
Ie
Turn-Off Time
=
TEST CONDITIONSt
200 rnA,
1'111 = 20 rnA, "121 = -20 rnA,
VBEloffl = -3_4 V ,
RL = 150 n, See Figure 1
TYP
UNIT
0.14
2_6
J1-S
tVolioge and (urrent values shown ore nominol; exoel value§ vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
•
,-----1r---O OUTPUT
1 kQ
150 Q
INPUT
51
Q
300 Q
+
-=-30 V
=
TEST CIRCUIT
+37_3 V
---~90%
---"4ton
INPUT
iI L
-0.1 V Jl0%
I
I- ~
~I
toff
1-
10%-r-
90%~
OUTPUT
VOLTAGE WAVEFORMS
FIGURE 1
NOTES: a. The input waveform is supplied by a generator with the following characteristics; Ir ~ 15 os, If ~ 15 ns, lout = SO fl, Ip
b.' Waveforms are monitored on an oscilloscope with the fOoliowing characteristics: Ir ~ 15 ns, Rin
10 fli, duty (yde :::;; 2%.
2. 10 Ma, (in::; 11.S pF.
c. Resistors must be nonindudive types.
d. The
d~(
power supplies may require additional bypassing in order to minimize ringing.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 15222
5-311
TYPES T1486, TI487
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
SASE-EMITTER VOLTAGE
STATIC FORWARD CURRENT TRANSFER RATIO
•
vs
100
.2
0
'"
~c
~
c
.=
1:
60
~
13
~
"Ec
~
40
.zu
&
w
w
•
TJ
.... -
80
.,...........
20
"'"
0
0.01
-
Te
Te
JJJl
= 100·C
II
-\
-
=
!
r
'~
'c -
0.7
............
~ 0.5
j
0>
J
I
I
I
IS = 50 mA, 'C = 500 mA
)1
(5
>
c
.~
0.7
l?
2
0.4
..
0.2
~
.;
-IS = 20 mA, 'C = 200 mA
I
1== 's-
Jj
I
£u
0.1
I
I
....
0.2
See Notes 5 and 6
"
0.1
o
-75 -50
0.7 1
-25
0
25
50
75
100
TC - Case TemperotlJre - °C
125
150
FIGURE 3
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
J
--
I,IJII~ lb ~~
1.2
I
Te = 25°C
!l, 1. 0 1-+++++f+tl-+~NII;::""",::+++f!+I!f-+ See Note 5
I--
)1
~
J
O,S
~
_I'""
~
a:o 0.6r-~~~~~~-+++~~~~~++~~
....
~
:::
1
1 mA, 'C = 10 mA
]
~ 0.4 r-~~~~~~-+++~-I+~~++~~
.! 0.07
]
(5
u 0.04
(5
I
u 0.2r-~~~~~~-+++~-1+~~++~~
-g
]:0.02
.~
tj
>
r-....
0.3
See Notes 5 and 6
2
I--
w
vs
.
.........
r-
a:o
>
CASE TEMPERATURE
4
~
0.4
I
COLLECTOR-EMITTER SATURATION VOLTAGE
I
----V
--
IS = 20 mA, 'C = 200 mA/
FIGURE 2
>
.........
I = 1 mA, 'C = 10 mA"-.
B
]
--~
0.4
0.2
0.04 0.070.1
Collector Current - A
0.8
~ 0.6
'\ "
-55
I-
0.02
>
-~
= 25°C
-
'r- IS = 50 mA, 'C = 500 mA
r- .......... r- t--.
r---....
'I'-.,
0.9
.......
I-
Tc
1.0
VeE = 5V
See Notes 5 and 6
r---....
vs
CASE TEMPERATURE
COLLECTOR CURRENT
0.01
-75
g
-50
-25
0
25
50
75
100
TC - Case Temperature - O(
125
~
150
V'BRICE' at RBe = 1 Q " V'BRICBO
0 .............
11 .......
1I1111111L11.. -1..j.II.....
111111Il&..-1..011IL.UJIIIII~
111....w.ua
1--'-U.JJ.Wl
10 k
100 k
1
10
100
1k
R.ae - Base-Emitter Resistance -
FIGURE 4
0
FIGURE 5
NOTES: S. These parameters must be measured using pulse fechniques. Ip = 300 p,s, duty cycle
~
2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-currying contads.
971
5·312
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
..
DALLAS. TEXAS 75222
TYPES TI486, TI487
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE
200
180
160
140
'li
I 120
60
40
20
Vee= 10 V
1:
--
le= 100 mA
I\..
~ 30
'\
~
u
Te =25"C
r\.
i\
~
u
80
i--
35
t"-
E 100
.~
~
.g
C ibo (lC = 0)
~
u
11m T
..1!
f = 1 MHz I TC =25 "C
"-
vs
FREQUENCY
J 40
I
'"
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
"'"oI
~ 15
o
,
E
r-.
1\
§
u 10
Cobo (IE=O)
t--
g
'",
iii
i--
c
Ji
.
o
4710
20
1\
0
I
40
r\.
5
0.1
0.4
10
f- Frequency- MHz
d!..
Reverse Bias Voltage - V
FIGURE 7
FIGURE 6
40
100
•
MAXIMUM SAFE OPERATING REGION
1
..:
I
0.7
---:¥-tt-tt.}
---- -
I-t.
0.2
Te
J2
u
O. 1
I
0.07
;§
--- I",
I- D-C OPERA TI ON
0.4 -to
..!
--- -I-- -
1 ms, d
= 0.3
ms,
0.5 (50%)
d = O. I (10%) I-"
:,
"
JIO~J
~ 0.04
MAX VeEO .../
0.02
0.0 1
4
VeE -
7
10
20
40
70
Collector-Emitter Voltoge -
100
200
V
FIGURE 8
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·313
TYPES TI486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
PEAK-POWER COEFFICIENT CURVE
16
0.7
I\..
"
....
~
'u
~ 0.2
r\.
~
1
0.1
~
0.07
..:. 0.07
o
~
~
10.04
'"
r\.
•
0.50 50% Duly Cycle
0.4
'\
100
125
150
175
TC - ease Temperature -'C
tp ;: Pulse width in ms
0.02
0.01
200
d = Duty-cycle ratio
~
T
0.02 0.04
0.1
= The:7allime con.lant =5 m•
0.2 0.4
Ip -
4
7 10
20
Pulse Width - ms
FIGURE 10
FIGURE 9
SYMBOL DEFINITION
VALUE
SYMBOL
DEFINITION
TI486 TI487 UNIT
PTlav)
Average Power Dissipation
W
W
PTlmax)
Peak Power Dissipation
fhA
fJ J-C
Junctlon-Io-Free-Air Thermal Resistance
17S
8·7,$
deg/W
Junctlon-Io-Case Thermal Resistance
6.67
6.67
deg/W
fJC _A
Case-Io-Free-Air Thermal Resistance
168
81
d'g/W
fJC_HS
Case-to-Heol-Slnk Thermal Resistance
d.g/W
fJ H5-A
Heat-Sink-fo-Free-Air Thermal Resistance
d.g/W
TA
Free-Air Temperature
°c
Tc
(ase Temperature
°c
TJ/av)
Average Junction Temperature
~ 200
°c
TJlmax)
Peak Junction Temperatur.
~200
°c
K
Peak-Power Coefficient
Ip
Pul•• Widlh
m.
Ix
Pulse Period
m.
d
Duly-Cy". Ratio (IP/lx)
S.. Figure 10
_
PTlov) -
for 100°C ~ TC ~ 200°C
TJlavi - TA
6J _c
+ 6C-HS + 6HS-A a. in Figu.. ,
Equation No. 2 - Application: d-c power dissipation,
no heat sink used.
No. 3 - Application: Peak powar dissipation,
heat sink used.
~quation
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTlmax)
Exampl. - Find PTlmaxl (design limit)
OPERATING CONDITIONS,
fJC _HS
fJ HS-A = 7 d.g/W (From informalion suppll.d
with h.al .ink.)
TJ(illvJ (design limit)
200°C
TA = SOoC
d = 10% (0.1)
Ip = 0.1
+
=
m.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
Equation No.1 - Application: d-c power dissipation,
heal sink usad.
DALLAS, TEXAS 75222
Solution:
From Figure 10, Peak-Power Coefficient
K
0.11 and by use of equation No. 3
=
PTlma,)
=
d
(6C-HS
TJ/max)- TA
6HS-A)
+
200-$0
+
+ 0.11 (6.67) =
~~~-~~
0.1 (7)
K 6J-c
lOS W
PRINTED IN U.S.A.
II (anno' anume any responsibility for any circuits shown
or represent Ihal Ihey are free from patenl infringement.
971
TEXAS INSTRUMENTS RESERVES TIlE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST· PRODUCT POSSIBLE.
TYPES Tl1131, T11132, Tl1133, TI1134, T11135, TI1136
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH-VOLTAGE, HIGH-FREQUENCY POWER TRANSISTORS
FOR INDUSTRIAL APPLICATIONS
•
•
•
•
80 WaHs at 55°C Case Temperature
Maximum res of 0.5 Ohm at 2 Amperes Ie
Maximum VBE of 2 Volts at 2 Amperes Ie
Minimum f1 of 7.5 Megacycles
mechanical data
The transistors are in hermetically-sealed welded packages.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
0.125" FROM STUD
•
*ALL JEDEC TO.61
DIMENSIONS AND
NOTES ARE
APPLICABLE
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI1131 TI1133 TII135
TI1132 TI1134 TI1136
Collector-Base Voltage .
Collector-Emitter Voltage (See Note I)
Emitter-Base Voltage
Collector Current, Continuous.
~
150v lOOv
75v
50v
Bv ---+
7.5a ---+
Emitter Current, Continuous .
~
7.5a ---+
Safe Continuous Operating Region at (or below) 55°C Case Temperature.
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Total Device Dissipation at (or below) 55°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range. .
See Figure I
200 v
100v
~
~
3w ---+
BOw ---+
~ 175°C---+
-65°C to +200°C
~
NOTES: 1. This value applies when base-emitter diode is open-circuited.
2. Derale linearly to l7SoC free-air temperature at the rate of 20 mw/Co.
3. Derate linearly to 175°C case temperature at the fate of 0.67 w/Co,
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-315
TYPES Tl1131, T11132, T11133, Tl1134, 111135, Tl1136
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
BVc,o
BVcEo
Collector· Base
Breakdown Voltage
Ic =10ma, h=O
Ic = 0.20, 1,=0,
(See Note 4)
Coliector·Emitter
Breakdown Voltage
TYPE
MIN
TIl 131, TIl 132
200
v
TIl 133, TIl 134
150
v
TIl 135, TIl136
100
v
II
Collector Cutoff Current
lEBO
Emitter Cutoll Current
UNIT
TIl 131, TIl 132
100
v
T11133, TIl 134
75
v
TIl13S, TIl 136
SO
VCE = 30v, VBE = 0
ICES
MAX
All
v
100
p.o
VCE = 100 v, VBE = 0, Tc = 150·C
TIl 131 , TIl 132
10
ma
VCE = 75 v, VIE = 0, Tc = 150·C
TIl 133, TIl 134
10
ma
VCE = SO v, V'E = 0, Tc = 150·C
TI113S, TI1136
10
lila
All
1.0
ma
--
VEB = 8 v,
Ic = 0
Ic = 2.00,
(See Note 4)
TIl 131 , TIl 133
Tl1135
30
120
TI1132, TI1134
TI1136
15
60
Static Forward Current
Transler Ratio
VCE = 4 v,
VBE
Base·Emitter Voltage
IB = 0.200, Ic = 2.00,
All
2.0
v
rCE( .."
Static Collector· Emitter
Saturation Resistance
I, = 0.2!l0, Ic = 2.!la,
(See Note 4)
All
!l.5
ohm
I hie I
Small·Signal Common·
Emitter Forward Current
Transler Ratio
VCE = 15 v, Ic = 0.50, 1= 7.5mc,
(See Note 5)
All
C.b
Common·Base Open·
Circuit Output Capacitance
VCB = 15 V, IE = 0
1= 1.0mc
All
550
pi
hFE
(See Note 4)
1.0
NOTES: 4. These parameters must be measured using pulse techniques. PW = 300,usec, Duty Cycle $7%.
5. If tested without a heat sink, DC collector current must not be applied longer Ihan S seconds.
thermal characteristics
MAX
UNIT
(hc
Junction·to·Case Thermal Resistance
TYPE
All
1.5
C·/w
(JJ.A
Junction·to·Free·Air Thermal Resistance
All
SO
C·/w
PARAMETER
MIN
Vee -Collector-Emitter Voltage-v
Figure 1
PRINTED IN U.S A.
5-316
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE
sox
5012 •
DALLAS. TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES Tl1151, T11152, T11153, T11154, T11155, TI1156
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH-VOLTAGE, HIGH-FREQUENCY POWER TRANSISTORS
FOR INDUSTRIAL APPLICATIONS
• 80 WaHs at 55°C Case Temperature
• Maximum res of 0.5 Ohm at 5 Amperes Ie
• Maximum VBE of 2 Volts at 5 Amperes Ie
• Minimum f1 of 7.5 Megacycles
mechanical data
The transistors are in
~ermetically-sealed
welded packages.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
0.125" FROM STUD
•
*ALL JED£C To.e1
DIMENSIONS AND
NOTES ARE
APPLICABLE
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25 0 C case temperature (unless otherwise noted)
TIl 151 TIl 153 111155
,TIl 152 TIl 154 111156
Collector-Base Voltage .
200 v
150v
100v
Collector-Emitter Voltage (See Note I)
100v
75v
50v
Emitter-Base Voltage
Collector Current, Continuous.
++-
8v
7.5a
------+
------+
Emitter Current, Continuous
+-
7.5a
------+
•
Safe Continuous Operating Region at (or below) 55°C Case Temperature.
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Total Device Dissipation at (or below) 55°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range .
See Figure I
+++-
3w
SOw
------+
------+
------+
175°C
-65°C to + 200°C
NOTES: 1. This value applies when base-emitter diode is open-circuited.
2. Derate linearly to 115°C free-air .emperature allhe rate of 20 mw/Co.
3. Derate linearly 10 175°C (ose lemperulure at the rate of 0.67 w/(o.
171
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-317
TYPES T11151, Tl1152, T11153, T11154, T11155, TI1156
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
BVclo
BVCEO
Collector-Base
Breakdown Voltage
Colledor-Emiller
Breakdown Voltage
TEST CONDITIONS
Ic = 10 rna, IE = 0
Ic = 0.20, II = 0,
(See Note 4)
TYPE
MIN
TI1151, TI1152
200
v
TI1IS3, TI1154
ISO
v
TI1155, TI1156
100
y
TI1151, TI1152
100
v
TI11S3, TI1154
75
v
TIl 155, TIll 56
50
v
--
VCE = 30 v, VIE = 0
ICES
lEBO
•
Colledor Cutoff Current
Emiller Cutoff Current
UNIT
All
100
/La
VCE = 100 v, VIE = 0, Tc = 150°C
TIl 151, TI1152
10
rna
VCE = 75 v, VIE = 0, Tc = 150°C
TIl1S3, TIl 154
10
rna
VCE = 50 v, VIE = 0, Tc = 150°C
TI1155, TIl iS6
10
rna
All
1.0
rna
VEl = 8 v,
Ic =0
Static Forward Current
Transler Ratio
VCE = 4 v,
VIE
Base-Emitter Voltage
II = 0.500, Ic = 5.0 a, (See Note 4)
rCEI ••II
Slatic Colledor-Emitter
Satumtion Resistance
18 = 0.500, Ic = 5.00,
Ihi. I
Cob
hFE
MAX
Ic = 5.00,
(See Note 4)
TI1151, TIl 153
TIl 155
20
80
TI11S2, TI1154
TIll56
10
40
All
2.0
v
(See Nole 4)
All
0.5
ohm
Small-Signal CommonEmitter Forward Current
Transler Ratio
VCE = 15 v, Ic = 0.5 a, I = 7.5 mc,
(See Note 5)
All
Common-Base OpenCircuil Output Capacitance
VCI = 15 v, IE = 0,
All
550
pI
1= 1.0mc
1.0
NOTES: 4. These parameters must be measured using pulse techniques. PW == 300ps!c, Duty Cycle ~2%.
S. If tested without a heat sink, DC collector turrent must not be applied longer thon 5 s"ands.
thermal characteristics
MAX
UNIT
(hc
Jundion-Io-Case Thermal Resistance
All
1.5
C·/w
8J _A
Junction-to-Free-Air Thermal Resistance
All
50
CO/w
PARAMETER
~
g
·E
TYPE
MIN
o5.0~---+--~4----4----~----~---L----~--~----+----4----4---~
1
g 1:
u
~
E 5 2 .5
'u
.~ E
t----t----+---,.....::--+-+1----,.--
o u
~.E
1;3
VeE -
_u
Collector-Emitter Voltage -
v
Figure I
PRINTED IN U.S A.
5-318
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP29, TIP29A, TIP298, TlP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP30, TIP30A, TIP30B, TIP30C
•
30 W at 25°C Case Temperature
•
1 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 200 rnA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THIS PORTION OF
LEAOS~
I
FREE OF FLASH
I
r- ~ ~:1
I
COLLEcBT~i=:~0
0 20
EMITTER__
0380
"",II.JL02"
iJ110 -1 r- o13sl I
019ii
MECHANICAL INTERCHANGEABILITY OF TIP29
PLASTIC PACKAGE WITH 10·66 OUTLINE
0.105
0.018
0.375
o.~
.-----
~_:
O.OO6J!
•
0045
0.035
0.029
0.190
RO.35~--L t o.165
CASE TEMPERATURE
0,030 MIN
12 PLACES)
r-----,
C'='=)~'
0110
0090
L
~.;:; DlA
0 540MIN
0,060
0.040
RAD (2 PLACES)
(TO-66 DIMENSIONS)
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP29
40V
40V
4
4
4
4
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Tempe"rature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
..
4
TlP29A TIP29B
60V
80V
60V
80V
5V
1A
3A
OAA
See Figure 5
TIP29C
100V
100V
30W
..
2W
32 mJ
4 - - - -65°C to 150°C
4 - - - -65°C to 150°C
260°C
4
4
This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of 0.24 W/ C.
Derate linearly to 1500 C free-air temperature at the rate of 16 mWI C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RS82 = 100
VBB2
=0
V, RS
= 0.1
n, Vee
= 10 V.
•
•
••
~
~
~
•
~
~
~
n,
Energy'" le2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-319
TYPES TIP29, TIP29A, TlP29., TlP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO
ICES
Collector-Emitter
Ic=30mA,
Breakdown Voltage
See Note 6
Collector Cutoff
VCE=30V,
IB -0
Current
VCE=60V,
IB
VCE-40V,
Collector Cutoff
VCE-60V,
VBE 0
VBE -0
Current
VeE -80V,
VBE-O
VCE -100V,
VBE -0
Emitter Cutoff
lEBO
Current
Static Forward
hFE
Current Transfer
Ratio
•
VBE
VCE(sad
TEST CONDITIONS
IB -0,
See Notes 6 and 7
IC-l A,
VCE =4V,
See Notes 6 and 7
Collector-Emitter
IB = 125mA,
See Notes 6 and 7
100
BO
UNIT
V
0.3
0.3
mA
0.2
0.2
mA
0.2
0.2
40
15
IC-l A,
Seturation Voltage
60
40
1
IC=O
VCE=4V,
TIP29C
0.3
IC=0.2A,
See Notes 6 and 7
TIP29B
0
VCE=4V,
Voltage
TIP29A
0_3
VEB=5V,
Base-Emitter
TIP29
MIN MAX MIN MAX MIN MAX MIN MAX
IC= 1 A,
1
40
75
15
1
15
mA
40
40
75
1
75
15
75
1.3
1.3
1.3
1.3
V
0.7
0.7
0.7
0.7
V
Small-8ignal
hfe
Common-Emitter
VCE = 10V,
Forward Current
f = 1 kHz
IC=0.2A,
20
20
20
20
3
3
3
Transfer Ratio
Small-8ignal
"
Ihfe l
Common-Emitter
Forward Current
IC=0.2A,
VCE=10V,
f= 1 MHz
3
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300}J.S, duty cycle'" 2%.
7. These parameters are measured with voltage--sensing contacts separate from the current-carrying contacts.
thermal characteristics
MAX
UNIT
R8JCI
Junction-to-Case Thermal Resistance
PARAMETER
4.17
R8JAI
Junction-to-Free-Air Thermal Resistance
62.5
·C/W
switching characteristics at 25° C case temperatare
TEST CONDITIONS
TVP
IB(1) - 100 mA, IB(2) = -100 mA,
See Figure 1
VBE(off) = -4.3 V, RL = 30n,
0.5
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
IC= 1 A,
~
UNIT
J.lS
tVoltage and curient values shown are nominal; exact values vary slightly with transistor parameters.
1070
5·320
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES lIP29, lIP29A, TIP29B, TIP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
lN914
V on =8.5V- INPUT
-r~90%
OV:::J:.17,o/o- -4.3 V
I 10%
-
~~
I
~i
OUTPUT
~to::i-
90%'L-,r--J
vaal'" 10V
ADJUST FOR
Von~8.5VAT
INPUT MONITOR
VdLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
-30~V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform -is supplied by a generator with the following characteristics: tr .;;;;; 15 ns, tf " 15 ns, Zout
A. Vgen is a
= 50 n , tw
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .;;;;; 15 ns, Rin ~ 10 Mn, Cin " 11.5 pF.
D. Resistors must be noninductive types.
= 20 #Ls,
•
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
~tw""4ms
I
(See Note B)
INPUT
VOLTAGE
I
'2
(See Note A)
Vee
~
100 ms
----j
I
I
1.8A--/-- - - - COLLECTOR
I
I
CURRENT
I
I
TUT
INPUT
,
I'
(See Note A)
o
10 V ..::..
-
!e MONITOR
VIBRICER -
I
I
-1- --
I
1
1
Rs"O.1 n
COLLECTOR
VOLTAGE
10V
TEST CIRCUIT
NOTES:
A. L 1 and L2 are 10 mH, 0.11
n,
VOLTAGE AND CURRENT WAVEFORMS
Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until
'eM = 1.8 A.
FIGURE 2
1070
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-321
TYPES TlP29, TIP29A, TIP291, TIP29C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTlC~
STATIC FORWARD CURRENT TRANSFER RATIO
THERMAL INFORMATION
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
1000
700
40
s:I
4V
VCE
TC 25°C
See Notes 6 and 7
400
..,0
c
..
c.
200
:~ 30
!~
Cl
100
70
""
.~
20 ,
~
Cl
40 I
'"0
..,c
./
~
./
20
~
c
0
10 I
7
E
~
E 10
.
:<
'x
4
•
'"
f"'-
I
2
I-
1
0.001
NOTES:
"~
()
"-
0.004
0.01
0.04
0.1
o
o
0.4
25
50
75
100
"'" ~
Ic-Collector Current-A
T c-Case T emperature-° C
FIGURE 3
FIGURE4
125
150
6. These parameters must be measured using pulse
techniques. tw
=
300 MS,' duty cycle '" 2%.
7. These parameters are measured. with voltage-
sensing contacts separate from the currentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
4
2I
,
-- - -- - -
--- -D
-- --1 ~r'
0.7I tw 300l/s, d 0.1 10%
tw 1 ms, d 0.1 10010' I
0.4 I tw= 10ms,d=0.1= 10%/
!,-See
Note 8
\
,
D-C OPERATION
0.2 i
Td.,;
~5!d
0.1
0.07
TIP29
0.04
TIP29A
TIP298
0.02
IW
0.01
1
2
4
7 10
I
29C
20
40
100
200 400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load,
PRINTED IN U.S A.
5-322
TEXAS INSTRUMENTS
1070
TI (onnof assume any responsibility for any circuits shown
or represent thol they ore free from palent infringement.
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TlP30, TIP30A, TIP308, TlP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPI-IFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP29, TIP29A, TIP29B, TIP29C
•
30 W at 25°C Case Temperature
•
1 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 200 mA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP30
PLASTIC 'PACKAGE WITI'! TO.e:e OUTLINE
THISPORTIONOFLEA~
I
FREE OF FLASH
1-:::-11
I I
COLlE~:===~'
o.
EMITTER_
0.380
I
0.130
0110-1
-----l
01:E]
1i.105
======)~ ,
!.~~~
0.210
r
cI.19O
j-----1- ~.:: {::~:
•
~~..L
t---
0570
ITO·56 DIMENSIONSI
3lEADS
L
D.~
o.~TT
0,095
0.045
CASE TEMPERATURE
0036
002i
MEASUREMENT POINT
!.~:~DIA
0.000
0.040
RAO (2 PLACES)
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TlP30
-40 V
-40 V
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free·Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
••
•••
•
••
•
TlP30A TIP30B
-80 V
-60 V
-60 V
-80 V
-5V
-1 A
-3A
-OAA
See Figure 5
30W
2W
32 mJ
-65°C to 150°C
4 - - -65°C to 150°C
260°C
C
TIP30C
-100 V
-100 V
..•
•
••
•
•
..
-------•
-------
This value applies when the base·emitter diode is open-circuited.
This value applies for tw '" 0.3 ms, duty cycle'" 1 0%.
Derate linearly to 150° C case temperature at the rate of 0.24 W/o C.
Derate linearly to 150°C freewair temperature at the rate of 16 mW/oC.
5. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RBB2 = 100
VBB2 = 0 V. RS = 0.1 n. Vee = 10 V. Energy'" le2L/2.
n,
971
TEXASINCORPORATED
INSTRUMENTS
'POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-323
TYPES TlP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
TIP30A
TIP30
PARAMETER
V(SR)CEO
Collector-Emitter
IC= -30 rnA,
Sreakdown Voltage
See Note 6
Collector Cutoff
ICEO
TEST CONDITIONS
Current
VCE =-30 V,
IS =0
IS - 0
40 V,
VSE = 0
VSE =0
VCE =-100V,
VSE =0
VEB = -5V.
IC= 0
VCE =-4V,
IC= -0.2 A,
Ratio
I
VSE
VCE(sad
VCE=-4V,
See Notes 6 and 7
Collector-E mitter
IS - -125 rnA,
Saturation Voltage
See Notes 6 and 7
MAX
-100
UNIT
V
-0.3
-0.3
rnA
rnA
-0.2
-1
IC--l A,
Voltage
-SO
TIP30C
MIN
-0.2
40
15
See Notes 6 and 7
Base-Emitter
MAX
-0.2
See Notes 6 and 7
VCE--4V,
-60
TIP30B
MIN
-0.3
VCE = -SO V.
Current Transfer
MAX
-0.2
0
Current
Static Forward
MIN
-0.3
VCE - -60 V.
Current
hFE
VBE
MAX
-40
Collector Cutoff
Emitter Cutoff
IESO
IB - 0,
. VCE - -60 V,
VCE
ICES
MIN
IC=-l A,
IC=-l A,
-1
40
75
-1
40
15
75
15
-1
rnA
40
75
15
75
-1.3
-1.3
-1.3
-1'.3
V
-0.7
-0.7
-0.7
-0.7
V
Small-Signal
hfe
Common-Emitter
VCE =-10V,
Forward Current
f = 1 kHz
IC =-0.2A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-Signal
Ihfe I
Common-Emitter
VCE = -10 V,
Forward Cu rrent
f = 1 MHz
IC=-0.2A,
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 f.ls, duty cycle :!!O; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Thermal Resistance
4.17
ROJA
Junction-to-Free-Air Thermal Resistance
62.5
UNIT
°C/W
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONSt
ton
Turn-On Time
IC=-l A,
IS(l) = -100 rnA, IS(2) = 100 rnA,
toft
Turn-Oft Time
VSE(off) = 4.3 V,
RL= 30n,
See Figure 1
TYP
UNIT
~
p.s
1.0
tVoltage and current values sh9wn are nominal; exact values vary slightly with transistor parameters.
1270
5-324
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 715222
TYPES TIP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
S6n
RSB2 = 5~
'NPU;~~~~
n
V on
270 pF
30n
"-85V--l
I
I
I
1on""--t
+
Ve82'" 43 V
=-
I--toff-.{
9O%r---r~,_:
:1
OUTPUT
--'
10%L,
veSl = 10V
ADJUST FOR
V on "'-85VAT
INPUT MONITOR
+
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a 30-V pulse (from 0 V) into a 50-Sl termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr <.; 15 ns, tf <.; 15 ns, Zout = 50 n, tw = 20 1'5,
duty cycle" 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin' 10 Mil, Cin" 11.5 pF.
D. Resistors must be noninductive types.
•
E. The doc power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
~tw"'4ms
INPUT
I
I
VOLTAGE
L1
I
l.---t--l00 ms~
I
I
I
I
L
I
1
I
I
r
CURREN_T,8A_+¥: _____ +~+_
a
L2
COLLECTOR
(See Note Al
INPUT
I (See Note B)
5v--H
n
o--l L - - - J
(See Note A)
TUT
I
~
~~
J
I+-_ - - - - - -
Vee = 10 V'":'"
+
'CMONITOR
0-
I
I
I
I I
-t- I
-10V
Rs=O 1 U
;
COLLECTOR
VOLTAGE
I
VtBR1CER-....L--
TEST CIRCUIT
NOTES:
-
-- -
-
---
VOLTAGE AND CURRENT WAVEFORMS
A. L 1 and L2 are 10 mH, 0.11 .0, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width Is increased until leM
= -1.8 A.
FIGURE 2
1270
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·325
TYPES TIP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
1000
700
."a:o.
400
s:I
VCE = 4V
TC-25°C
'See Notes 6 and 7
40
c
.g
.
c.
.~
200
i5
1l
100
70
30
~
.~
0
~
~
:0
40
0
20
."
:0
C
20
C
0
u
E
:0
E
10
7
..
'x
4
:;:;
2
d:"
10
"-
""""
"-
I
•
1
-0.001
NOTES:
o
-0.004 -0.01
-0.4
-0.04 -0.1
-1
o
50
25
75
100
"'" ~
125
IC-Collector Current-A
Tc-Case Temperature-OC
FIGURE 3
FIGURE 4
150
6. These parameters must be measured using pulse
techniques. tw = 300 iJ,s, duty cycle
~
2%.
7. These parameters are measured with voltage-
sensing contacts separate from the current·
carrying contacts.
MAXIMUM SAFE OPERATING REGION
-4
-2
-- - -- - -
--- -
-0.7
~
:0
-0.4
<;
-0.2
1>
-0.1
I
-0.07
2
10%
1.0%
tw= 10ms,d=0.1 = 10%
T6 .;;
"0
U
0.1
0.1
\
\
D-C OPERATION
U
oS!
tw = 300)Js, d
tw - 1 ms, d
'--See
Note 8
-- - - /~
-1
«
1.c
,
~51c'
TIP30
-0.04
TIP30A
TIP30B
-0.02
~IP3°1
-0.01
-1
-2
-4
-10
-20 -40
-100
-400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved on'lv when switching from saturation to cutoff with a clamped
inductive load.
PRINTED IN U.S.A.
5·326
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012
•
DALLAS, TEXAS 75222
1270
TI connol Qssume ony re~ponsibi1ity for any circuits shown
Ot represent thaI they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP31, TIP31A, TIP31B, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP32. TIP32A. T1P32B. TlP32C
•
40 W at 25°C Case Temperature
•
3 A Rated Collector Current
•
Min fT of 3 MHz at 10 V. 500 rnA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP)l
PLASTIC PACKAGE WITH TO·66 OUTLINE
THISPOATIONOFLEAD~ r--~~~-I
I
FREE OF FLASH
I
I
I
COLLE~'6S:=~--0
0420
EMITTEA_
0.380
0>"
II
--J L ,.'"
OliO -1 r- o.l::i5l I
0.190
'"ell
0.105
0.018 3 LEADS
o.~
~.:0035
H
0.315
1~·3~
'"
0.190
jO.l65
•
~.~:~
CASE TEMPERATURE
0.029
~.~:~ DIA
All DIMENSIONS ARE IN INCHES
'-'OO
'-',.
RAD (2 PLACESI
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP31
40 V
40V
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature.
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
..
..
04
04
..
......
TlP31A TlP31B
60 V
80V
60V
80V
5V
3A
5A
1A
See Figure 5
40W
2W
32 mJ
0 4 - - -65°C to 150°C
04---- -65°C to 150°C
260°C
.
TIP31C
100 V
100 V
.-...
....-
...
...
---------------...
This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of O.32Wt C.
Derate linearly to 150 0 C free-air temperature at the rate of 16 mwt C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSS2 :::: 100 &1,
VBB2 = 0 V, RS = 0.1 !1, Vee = 10 V. Energy ~ IC2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5Q12
•
DALLAS, TEXAS 75222
5·327
TYPES TIP31, TIP31A, TIP31B, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
V(BR)CEO
ICEO
ICES
Collector-Emitter
Ic=30mA,
Breakdown Voltage
See Note 6
Collector Cutoff
VCE=30V,
IB = 0
Current
VCE = 60 V,
IB =
lEBO
VBE - 0
VCE=60V,
VBE =0
Current
VCE=BOV,
VBE = 0
VCE = 100 V,
VBE =0
VEB = 5 V,
IC = 0
VCE = 4 V,
IC= 1 A,
Static Forward
hFE
Current Transfer
Ratio
•
VBE
VCE(sat)
VCE=4V,
See Notes 6 and 7
Collector-E mitter
IB - 375 mA,
Saturation Voltage
See Notes 6 and 7
60
MIN
TIP31C
MAX
MIN
MAX
100
BO
V
0.3
0.3
UNIT
0.3
mA
0.2
0.2
mA
0.2
0.2
1
1
25
25
IC=3A,
Voltage
TIP31B
MAX
0.3
10
See Notes 6 and 7
Base-Emitter
MIN
40
See Notes 6 and 7
VCE = 4 V,
TIP31A
MAX
a
VCE -40 V,
Current
MIN
IB = 0,
Collector Cutoff
Emitter Cutoff
TIP3l
TEST CONDITIONS
PARAMETER
IC=3A,
IC-3A,
50
10
1
25
50
10
1
mA
25
50
10
50
1.8
loB
1.8
1.B
V
1.2
1.2
1.2
1.2
V
Small-Signal
hfe
Common-Emitter
VCE = 10V,
Forward Current
f = 1 kHz
IC=0.5A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-Signal
Ihfel
Common-Emitter
VCE = 10V,
Forward Current
f = 1 MHz
IC=0.5A,
Transfer Ratio
NOTES: 6. These parameters must be measured using pulse techniques. tw = 300 !J5, duty cycle < 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
MAX
PARAMETER
3.125
RaJC
Junction-ta-Case Thermal Resistance
RaJA
Junction-to-Free-Air Thermal Resistance
62.5
UNIT
°C!W
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONSt
TYP
ton
Turn-On Time
IC= 1 A,
IB(l)=loomA,
IB(2) = -100 mA,
toff
Turn-Off Time
VBE (off) = -4.3 V,
RL=30n,
See Figure 1
0.5
~
UNIT
p.s
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
,
5-328
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1270
TYPES TIP31, TIP31A. TIP318. TIP31C
N-P-N SINGLE-DiffUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
Von = 8.5 V- -
OV:::J,~%-
INPUT
56"
-r~ 90%
-4.3 V
-
-
~~
I 10%
I
~i
OUTPUT
~to,f::r-
90%~~
..::..VCC~30V
"881 ""0V
ADJUST FOR
V on "85VAT
INPUT MONITOA
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform -is supplied by a generator with the following characteristics: tr < 15 ns, tf ~ 15 ns, Zout == 50 fl, tw = 20 J.Ls,
duty cycle'" 2%.
C. Waveforms are monitored on an oscilloscope-with the following characteristics: tr < 15 ns, Ain ~ 10 MO, Cin <; 11.5 pF.
D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing In order to minimize ringing.
•
FIGURE 1
INDUCTIVE LOAD SWITCHING
o
I---
tw ~ 4 ms
I
(See Note B)
INPUT
VOLTAGE
-5V--,
io,ot--i--
!Sea Note A!
I
!See Note AI
VCC~10V":="
-
COLLECTOR
CURRENT
I
I
I
I
o
I
I
I
I
Ie MONITOR
VIBRICER -
-1- -I
R,"O.1 n
COLLECTOR
VOLTAGE
10V
TEST CIRCUIT
NOTES:
ms
18A---I-- - - - -
"
INPUT
100
I
-
-
~
__ I
I
I
I
I
I
VOLTAGE AND CURRENT WAVEFORMS
A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pl.!lsewidth is increased untillcM = 1.8 A.
FIGURE 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·329
TYPES TIP31, TIP31A, TlP318, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
o
';:;
a:'"
1000
700
400
:s:I
VCE 4V
TC 25°C
See Notes 6 and 7
c::
0
';:;
'"Cl
~
~c::
200
I-
100
70
:~
c::
~
"
()
l'
~
o
u.
•
~
"
u
'~
Cl
20
30
"-
"'"
40
"" '" '"
0
.......
"c::
';:;
c::
0
20
()
10
.~
7
E
E
'1w
4
::;;'"
"
40
Cl
~
~
50
u.
.c
"
'x
10
~
I-
2
-~
0.
1
0.001
o
0.0040.01
0.04 0.1
4
0.4
10
o
25
Ic-Collector Current-A
50
75
100
125
150
T c-Case Temperatu re-° C
FIGURE 3
NOTES:
~
I
FIGURE4
6. These parameters must be measured using pulse
techniques. tw = 300
,",5,
duty cycle
<
2%.
,7. These parameters are measured with voltage-
sensing contacts separate from the currentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
10
7
See Note 8
--
4
...... '
"I~
2
«
.Lc::
~
"
()
tw
0.7 tw
tw
0.4
0.2
'0
0.1
0.D7
TC';; 25°C
~
I.,
10o/Jn ~~
10%
10%
D-C~PE~yIOIIII
t
()
= 300 I'S, d = 0.1
= 1 ms, d = 0.1
= 10 ms, d = 0,1
IIII
TIP31
TIP31A
TIP31B
TIP31C
O.OA
0.02
IIII
0.Q1
1
2
4
7 10
20
40
70 100 200
400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.
5·330
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
PRINTED IN U.S A
TI (an not assume any mpon5ibilily for any circuits shown
or represenl Ihol Ihey are free from palenl infringemenl.
1270
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP32, TIP32A, TlP32B, TlP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMP.LlFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP3l, TIP31A, TIP31B, TIP31C
•
40 W at 25°C Case Temperature
•
3 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 500 rnA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP32
PLASTIC PACKAGE WITH TO'66 OUTLINE
THISPORTIONOF
LEAD~ r-~::~-1
FREE OF FLASH
I
I
I
I
COLLEC~~~=:~+
0.420
EMITTER-__
0.380
0.>30 I I
.-J L ,.2>0
0.110-1 r- o.1:i5l r
0.190
~:~~~
, ""
3 LEADS
r--t- ~.~;
"'en00
f~:~:
~~..L
o.~
O,05il"f
0095
11
0.045
CASE TEMPERATURE
MEASUREMENT POINT
0.035
O.~29
_0161 DIA
0.151
0.060
0040
RAD (2 PLACES)
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted) <+
.1> .\
TIP32
-40 V
-40 V
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1. This value applies when the base-emitter diode is
2.
3.
4.
5.
4
4
TlP32A TlP32B
-60 V
-80 V
-60V
-80 V
-5V
-3A
-5A
-1A
See Figure 5
TIP32C
-100 V
-100 V
..
•
••
•
...1
. 1 - - - - - 40 W - - - - - I••
4
2W
•
..
41----32mJ
•
. . . - - -65°C to 150°C ---,I".
. - - -65°C to 150°C - - - , I
...
4
260°C
..
open~circuited.
This value applies for tw';;;; 0.3 ms, duty cycle';;;; 10%.
Derate linearly to 150°C case temperature at the rate of 0.32 W/oC.
Derate linearly to 150°C free~air temperature at the rate of 16 mWlC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100
VBB2~O V, RS~O.l fl, VCC~ 10V. Energy'" IC2L/2.
n,
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-331
TYPES TIP32, TIP32A, TIP32B, TlP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO
ICES
Collector-Emitter
IC = -30 mA,
Breakdown Voltage
See Note 6
Collector Cutoff
VCE =-30V,
Current
VCE - -60 V,
IB - 0
VCE --40V,
VBE =0
VCE = -60 V,
VBE =0
VCE --BOV,
VBE - 0
Static Forward
hFE
Current Transfer
Ratio
•
VBE
VCE(sat)
IC,=-l A,
10
IC- -3 A,
IB --375mA,
-0.3
mA
mA
IC--3A,
50
-1
-1
25
25
IC- -3A,
See Notes 6 and 7
UNIT
V
-100
-0.3
-1
See Notes 6 and 7
Collector-E mitter
MAX
-0.2
VCE =-4 V"
Saturation Voltage
-80
TIP32C
MIN
-0.2
See Notes 6 and 7
See Notes 6 and 7
MAX
-0.2
IC =0
Voltage
-60
TIP32B
MIN
-0.3
VBE -0
VCE =-4 V,
MAX
-0.2
VEB=-5V,
Base-Emitter
MIN
-0.3
VCE - -100 V,
VCE - -4 V,
TIP32A
MAX
-40
IB = 0
Current
Current
MIN
IB = 0,
Collector Cutoff
Emitter Cutoff
lEBO
TIP32
TEST CONOITIONS
25
10
50
10
-1
mA
25
50
10
50
-1.8
-1.8
-1.8
-1.8
V
-1.2
-1.2
-1.2
-1.2
V
MAX
UNIT
Small-Signal
hfe
Common-Emitter
VCE =-10 V,
Forward Current
f = 1 kHz
IC=-0.5A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-Signal
Common~Emitter
hel
Forward Current
VCE = -10 V,
f = 1 MHz
IC= -0.5 A,
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
ReJC
ReJA
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
3.125
62.5
°C/W
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONSt
TYP
ton
Turn-On Time
IC=-l A,
IB(l) = -100 mA, IB(2) = 100 mA,
toff
Turn-Off Time
VBE(off) = 4.3 V,
RL =30.11,
See Figure 1
UNIT
0.3
1:'0
IJS
tVoltages and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5·332
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TIP32, TIP32A, TIP32B, TIP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
56 H
RL
RSB2'" 56.11
=
30
INPUT4~~~~
n
Von" - 8 5 V_ - :
270 pF
I
30 n
+
VS S 2
=
ton~
1"
I
I
~tOff~
IL
4 3 V.=OUTPUT
"':""VCC=30V
VSSl" lOV
ADJUST FOR
Von=-85VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. V gen is a 30-V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr:e:;:;; 15 ns, tf
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
~
~
15 ns, Zout = 50 il, tw = 20 jJs,
11
Mn, Cin';;;; 11.5 pF.
15 ns, Ain # 10
D. Resistors must be noninductive types.
E. The doc power supplies may require additio,nal bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
I4------.J- t w"'4ms
veE MONITOR
I
INPUT
I
(See Note B~
5v~_11
VOLTAGE 0
L1
I
I
I
I..---t-l00 ms----flli
(See Note AJ
TUT
L2
(See Note
INPUT
A~
I
1
o~:~:r
~:
l_v_L_
+
__ :+_
CURREN~'8A_+_:_: _ _ _ _ _
COLLECTOR
__ :_
VCC = 10 V-=-
_____
I
+
IC MONITOR
0-
I
I
L - 1 +- - - - - - - L -
-10 V
I
I I
- - rI
COLLECTOR
VOLTAGE
TEST CIRCUIT
NOTES:
A. L 1 and L2 are 10 mH, 0.11
n,
'VOLTAGE AND CURRENT WAVEFORMS
Chicago Standard Transformer Corporation C~2688, or equivalent.
B. Input pulse width is increased until leM = -1.8 A.
FIGURE 2
1270
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5·333
TYPES TIP32, TIP32A, TlP32B, TIP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
1000
700
o
.ii; 400
a:
~
50
4V
VCE
TC 25°C
See Notes 6 and 7
~
I
.,.
c:
.0
c.
~
I~
c:
~
::>
(.)
"E!
•
""
100
70
.~
"""
30
0
~
40
::>
0
.,c:
::>
~
u..
..,"
10
7
~
4
..
~
0
20
o
40
:~
200
c:
.c:
.~
20
0
"'""'"
(.)
w
u..
.s:
E
::>
§
.
:;;;
x
10
I
I-
2
0..
1
-0.001
-0.01
-0.1
o
-10
-1
o
25
IC-Collector Current-A
50
100
TC-Case Temperature-OC
FIGURE 3
NOTES:
75
""
"~
125
""
150·
FIGURE 4
6. These parameters must be measured using pulse
techniques. tw = 300 I1S, duty cycle ~ 2%.
7. These parameters are measured with vOltagesensi ng contacts separate from the cu rrentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
-10
-7
-4
See Note 8
I-
- ---
==
--."
'"
-2
«
1-c:
~
::>
(.)
~
~
!!!
0
(.)
L
~~
-1 tw = 300 liS, d = 0.1 - 10%iffl
-0.7 tw = 1 ms, d = 0.1 10%
tw = 10 ms, d = 0.1 10%
-0.4
D·C ~PE~yIOIIII
-0.2
TC<25°C
td
III
-0.1
-0.07
TlP32
TIP32A
TIP32B
TIP32C
-0.04
-0.02
-0.01
-1
III
-2
-4
-7-10 -20 -40
-100
-400
VCE-Coliector·Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.
PRINTED IN U.s A
5·334
TEXAS INSTRUMENTS
11 (annat assume any responsibility for any circuits shown
or represent that they are free from potenl infringement.
1270
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS .INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP33, TlP33A, TIP33B, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-5PEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP34, TIP34A, TIP34B, TIP34C
•
80 W at 25°C Case Temperature
•
10 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 500 rnA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
ME(;IUINICAlINT!RctlANGEABILlTVOF HPJ]
PLASTICPACKAGEVVITHTO-30UTtINE
•
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP33
40V
40V
4
4
4
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature l/B Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
04
4
TIP33A TIP33B
60V
BOV
60V
BOV
5V
lOA
15A
:3A
See Figure 5
4
BOW
....-
This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ort;;; 10%.
Derate linearly to 150°C case temperature at the rate of:0.64 WtC.
Derate linearly to 1500 C free-air temperature at the rate ot' 28 mW/o c.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L
= 20 mH"
••
•
~
•
~
3.5W
62.5 mJ
-65°C to 150°C
04-- -65°C to 150°C
260°C
4
4
4
TIP33C
100V
100V
..
~
~
~
•
RBB2 = 100
n,
VBB2 = 0 V, RS - 0.1 n, VCC-10 V. Energy'" i1c2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-335
TYPES TIP33, TIP33A, TIP338, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICED
Collector-Emitter
Ic=30mA,
Breakdown Voltage
See Note 6
Collector Cutoff
VCE =30V,
Current
ICES
IB - 0
Collector Cutoff
VCE =60V,
VBE =0
Current
VeE -80V,
VBE -0
VeE = 100 V,
VBE = 0
VEB = 5V,
IC=O
Current Transfer
Ratio
•
40
60
80
0.7
100
V
0.7
0.7
0.7
0.4
rnA
0.4
0.4
1
40
IC=3A,
VCE -4V,
See Notes 6 and 7
20
IC=3A,
1
40
100
1
40
100
20
20
1
100
20
100
1.6
1.6
1.6
1.6
See Notes 6 and 7
Voltage
VCE =4V,
IC= lOA,
See Notes 6 and 7
3
3
3
3
IB = 0.3 A,
IC=3A,
1
1
1
1
Collector-Emitter
See Notes 6 and 7
IC-l0A,
4
4
4
4
IB-2.6A,
rnA
40
Base-Emitter
Saturation Voltage
rnA
0.4
IC= 1 A,
VCE =4 V,
See Notes 6 and 7
VeE =4V,
VCE(satl
TIP33
TIP33A
TIP33B
TIP33C
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
IB = 0
VBE -0
Static Forward
VBE
= 0,
VCE =1l0 V,
Current
hFE
18
VCE =40V,
Emitter Cutoff
lEBO
TEST CONDITIONS
V
V
See Notes 6 and 7
Small-Signal
hfe
Common-Emitter
Forward Current
VCE = 10V,
f = 1 kHz
IC=0.5A,
VeE = 10V,
f = 1 MHz
IC = 0.5 A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-Signal
~fel
Common-Emitter
Forward Current
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw - 300 #5,' duty 'cycle'" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Tharmal Resistance
1.56
ROJA
Junction-to-Free-Air Thermal Resistance
35.7
UNIT
°C/W
switching characteristics at 25°C case temperature
TEST CONDITIONSt
TVP
UNIT
ton
Turn-On Time
PARAMETER
IC=6A,
IB(l) = 0.6 A,
Turn-Off Time
VBE(off) = -4 V,
RL =50,
--,
p.s
toff
IB(2) = -0.6 A,
Se,e Figure 1
0.6
tVoltage and current values shown are nominal; eXact values vary slightly with transistor parameters.
I;
\;.,
1270
5-336
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
~,
\:
TYPES TIP33, TIP33A, TIP338, TlP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
56 H
Voe
0
-r~90%
-
-4 V
RBB2= Wi!
270 pF
l4V -
OV=::J.l~%-
INPUT
-
-
I 10%
I
~r
3D!!
OUTPUT
+
~~
~'o::}-
90%L-,s---l
+
...::-VCC=30V
VS81 """6V
ADJUST FOR
Von
=
14 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle ~ 2%.
~
~
15 ns, tf
15 ns, Zout == 50
n,
tw = 20
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin.;;a.10 M51, Cin 0;:;;; 11.5 pF.
D. Resistors must be noninductive types.
IJs~
•
E. The doc power supplies may require additio,nal bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
---I
L1
I
I
tw '" 5 ms
(See Note B)
VOLTAGE
(See Note A)
-5V-
I
I
I
,.....-.- lOOms
TUT
I
L2
INPUT
to--
INPUTl----r-wo
~
I
I
I
I
---i"7i\-~ '---------t" I\-
COLLEiT~~-l-A----
(See Note A)
+
CURRENri-Y
VCC= 10V"::"
I
IC MONITOR
I I
I
I I
1_- ____ ~ __ I I__
V(BR)CER--I--- 1
I
I
COLLECTOR
VOLTAGE
I
I
I
10V
0--
TEST CIRCUIT
NOTES:
A. L 1 and L2 are 10 mH, 0.11
n,
-------
VOLTAGE AND CURRENT WAVEFORMS
Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until ICM "" 2.5 A.
FIGURE 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222
5-337
TYPES TIP33, TIP33A, TIP33B, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATic FORWARD'CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100
1000
700 VCt=: -4V
TC 25°C
400 See Notes 6 and 7
.2
~c
"
Ci
70
.~
0
'E!
'"0"
..,c"
40
~
0
u.
20
1~"
u.
.::
4
E
30
'x.,
20
.t-
10
::l!
I
2
1
0.01
0.04
0.4
0.1
4
10
"-
""
50
40
"E
~
60
c
8
10
7
'?w
•
80
""
100
70
..
c.
'm
200
(J
90
0
.~
';j
a:
E
~
DISSIPATION DERATING CURVE
o
o
25
50
~
'"
75
'"""
"
125
100
150
T c-Case T emperatu re-° C
IC-Collector Current-A
FIGURE 3
FIGURE4
NOTES: 6. These parameters must be measured using pulse
techniques. tw = 300 jJ.s. duty cycle "" 2%.
7. These parameters are measured with voltagesensing contacts separate from the currentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
40
~ee ~o~eI8
20
-------
10
1
7
~
4
,
- -J-
/:
TC" 25°C
c
,
C
0-'
"
~
(J
j
~
2
KEY FOR FIGURE 5
CURVE
A
8
C
D
~
'0
(J
I
E
0.7
0.4
TIR33
TIP33A
TIP338
0.2
im
0.1
1
2
4
33C
7 10
--
CONDITIONS
tw = 300"s, d = 0.1 = 10%
tw = 1 ms, d = 0.1 = 10%
tw= 10ms,d=0.1 = 10%
D-C OPERATION
'-
20
.40
701100
200
400
VCE-Collector-Emitter Voltage-V,
FIGURE 5
NOTE 8: This combination of maxir:num voltage and current may be achieved only when switching from saturation to cutoff with a clamped
Inductive load.
PRINTED IN U.S A.
5-338
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1270
TI (annal assume any resP9nsibility for any circuits shown
or represenl that they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP34, TIP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP33, TIP33A, TIP33B, TIP33C
•
80 W at 25°C Case Temperature
•
10 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 500 mA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
... eCHANICAL INTERCHANGEABILITV OF TlP34
PlASTICPACKAGEWITIlTO_30UTLINE
•
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
NOTES:
1.
2.
3.
4.
5,
~
TlP34A TIP34B
-60 V
-80 V
-60 V
-80 V
-5V
-lOA
-15 A
-3A
See Figure 5
04
80W
04
04
3.5W
62.5 mJ
-65°C to 150°C
-65°C to 150°C
260°C
TIP34
-40 V
-40 V
Collector-Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
04
04
04
04
----.04
TIP34C
-100 V
-100 V
......
..........
...
......
~
This value applies when the base-emitter diode is upen-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 150°C case temperature at the rate of 0.64 wlc.
Derate linearly to 150°C free-air temperature at the rate of 28 mwt c.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, ,RSB2
VB B 2 ~ 0 V, RS ~ 0.1 n, Vee ~ 10 V. Energy'" 1/2 le2L/2.
....
....
= 100.n.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-339
TYPES TlP34, TIP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO
ICES
Coliector·Emitter
IC=-30mA,
Breakdown Voltage
See Note 6
IB =0
IB =0
VBE -0
Collector Cutoff
VCE --60V,
VBE -0
Current
VCE --80V,
VBE -0
lEBO
Current
Static Forward
Current Transfer
hFE
Ratio
•
VCE=-4V,
IC=-1 A,
40
20
IB- -0.3 A,
VCE(satl
IC=-3A,
Saturation Volt"!!e'
IB =-2.5 A,
V
-0.7
0.7
mA
mA
-1
40
100
-1
40
20
100
20
-1
mA
40
100
20
100
-1.6
-1.6
-1.6
-1.6
-3
-3
-3
-3
-1
-1
-1
-1
-4
-4
-4
-4
V
See Notes 6 and 7
See Notes 6 and 7
UNIT
0.4
IC-l0A,
Coliector·Emitter
-100
-80
-1
IC=-3A,
VCE =-4 V,
MAX
-0.4
IC=-3A,
Voltage
TIP34C
MIN
-0.4
See Notes 6 and 7
See Notes 6 and 7
MAX
-OA
See Notes 6 and 7
8ase-E mitter
-60
TIP34B
MIN
0
IC=O
VCE =-4V,
MAX
0.7
VEB=-5V,
VCE =-4V,
VBE
VBE
TIP34A
MIN
-0.7
VCE =-30V,
VCE - 60V,
VCE --40V,
100 V,
MAX
-40
Collector Cutoff
VCE -
MIN
IB =0.
Current
Emitter Cutoff
TIP34
TEST CONDITIONS
V
IC=-10A,
See Notes 6 and 7
Small-Signal
h~
Common·E mitter
VCE ;o-10V,
Forward Current
f = 1 kHz
IC =-0.5 A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small·Signal
~fel
NOTES:
Common·Emitter
Forward Current
Transfer Ratio
VCE =-10V,
f = 1 MHz
IC=-0.5A,
6. These parameters must be measured using pulse techniques. tw'" 300 ps, duty cycle'" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
MAX
PARAMETER
R8JC
Junction·to·Case Thermal Resistance
1.56
R8JA
Junction·to·Free-Air. Thermal Resistance
35.7
UNIT
°C/W
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
TYP
ton
Turn·On Time
IC=-6A,
IB(1) = -0.6 A,
IB(2) = 0.6 A,
toff
Turn-Off Time
VBE(off) = 4 V,
RL=50.
See Figure 1
UNIT
0.4
1--0:7"
",S
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5·340
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX
!Son •
DALLA~,
TEXAS 75222
TYPES TIP34, TIP34A, TIP348, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
56n
RSB2 = 10
RL = 5
n
INPUT~~~~
n
V on =-14 V - - :
270 pF
I
30n
'on*--l
+
VSB2 = 4 V-=-
1
,
lo-'oH--I
9O%r--'~,~;
---1
10%L
1,1
OUTPUT
"':"'Vcc = 30V
+
veSl "'16V
ADJUST FOR
Von "'-114 VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
•
+
VOLTAGE WAVEFORMS
A. V gen is a 30-V pulse (from 0 V) into a 50-n termination.
B. The Vge" waveform is supplied by a gener(ltor with the following characteristics: t r :<; 15 ns, 'tf" 15 ns, Zout == 50 0, tw == 20
duty cycle";; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin ~ 10 MO, Cin <;; 11.5 pF.
O. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.
",,5,
FIGURE 1
INDUCTIVE LOAD SWITCHING
Mt-----.I- tw ",,·5 ms
I
INPUT
VOLTAGE
LI
,
n
,
I
L
I
'---+--100 ms-----.j
I
I
I
,
I
O~!~:r
~:
+~j
__ , __
L2
ISee Note AI
INPUT
(See Note Bl
I
o....J . . ~
(See Note A)
TUT
I
--n
5V--1
COLLECTOR __ :_
_____
CURRE::2J5A _ - : - _ : - : - _ _ _ _
VCC"'10V~
+
0--'
IC MONITOR
-10V
Rs"'O 1 U
I
'
1 +I
I I
I }------ ___ 1-_
I
I
COLLECTOR
VOLTAGE
I
V!BR1CEA-~ - -
TEST CIRCUIT
N-OTES:
VOLTAGE AND CURRENT WAVEFORMS
A. L 1 and L2 are 10 mH, 0.11 0, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width Is increased until ICM = -2.5 A.
IFIGURE; 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 715222
5·341
TYPES TlP34, TlP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
0
1000
700
.a:
400
.~
~
f?"
...
I-
"~
u"
.
"E
~
0
100
VCE - 4V
TC - 25°C
See Notes 6 and 7
~
"
0.
20d
'iii
C
8
100
70
.~
20
"
""
50
.~
L1.
0
.~
E
E
"
'i
4
L1.
::!
I
.s::
2
I
.t
1
-0.01
NOTES:
"
40
u
10
7
"I'w
~
70
60
0
r-.
80
c
.
40
0
90
0
.~
-0.04 -0.1
-0.4
-1
-4
-10
30
'"
i'-.
20
o
"'"
"\~
10
o
25
50
75
100
IC-Collector Current-A
T C-Case Temperature-OC
FIGURE 3
FIGURE 4
125
'"
150
6. These parameters must be measured using pulse
tw -
technique ••
300 /-Is. duty cvcle .. 2%.
7. These parameters are measured with voltage-
J
sensing contacts separate from the currentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
-40
S~ N~t~8
-20
I
-10
1l:
~
"
~.!!
TT
--!, .LA
-----
B
TC" 25°C
-7
-4
D.,/
u
~
~
-2
;3
-1
E
-0.7
I
,
C
.
-0.4
TIP34
,T1P34A
TIP34B
-0.2
ITI P34C
-0.1
-1
CURVE
A
B
C
~
-2
-4
-10
--
0
KEY FOR FIGURE 5
CONDITIONS
tw = 300/-ls, d 0.1 =10%
tw = 1 ms, d = 0.1 = 10%
tw= 10ms,d=0.1 = 10%
D·C OPERATION
=
-
-40
-100
-400
VCE-Collector-Emitter Voltege-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
Inductive load.
PRINTED IN U.S.A.
5·342
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
II cannot assume any responsibility for any circuih: shown
or represen; thot they are free from potent infringement.
1270
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP35, TIP35A, TIP35B, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP36, TIP36A, TIP36B, TIP36C
•
125 W at 25°C Case Temperature
•
25 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 1 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INUACHANGEABILIlV OF TIP35
PLASTIC ~AC~AGE yOlTl'! To-a DUTL.N£
(2-:~~
.,
::i:~t~~~p
.--
""",;::~~
.-
~
iiQ4ii
01\0
1"l
~
_
251
._MINIULACESI
-
CASE TEMPERATURE
~EASUREMENTPOINT
°
111:'"
0
0
~RAD
~U06li
O2O!i
0'i)i5
3 LEADS
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP35
40 V
40V
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature.
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped .Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
4
4
4
4
4
TlP35A TIP35B
60V
80V
60V
80V
5V
25 A
40 A
5A
See Figure 5
4
125W
3.5W
90 mJ
4-------- -65°C to 150°C
4-------- _65°C to 150°C
260°C
C
4
4
TIP35C
100 V
100 V
•
...•
•
•
•
......
•
••
This value applies when the base-emitter diode is open-circuited.
This "alue applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of '1 W/ C.
Derate linearly to 1500 C free-air temperature at the rate of 28 mW/ C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSS2 = 100
n,
VBB2 ~ 0 V. RS ~ 0.1 n. Vee ~ 10 V. Energy'" le2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-343
TYPES TlP35, TIP35A, TIP358, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR/CEO
ICEO
ICES
Collector-E mitter
IC=30mA,
Breakdown Voltege
See Note 6
Collector Cutoff
VCE -30V,
Current
VCE -60V,
VBE =0
VCE =60V,
VeE =0
Current
VCE =80V,
VBE -0
VCE = 100 V,
VBE =0
lEBO
Current
Static Forward
Current Transfer
hFE;
Ratio
I
Base-Emitter
VBE
Voltage
VCE(satl
Saturation Voltege
MIN
TIP36C'
TIP36B
MAX
MIN
MAX
80
60
1
MIN
MAX
100
UNIT
V
1
1
1
mA
0.7
0.7
mA
0.7
0.7
1
VEB = 5 V,
IC=O
VCE-4V,
IC·l.5A,
25
See Notes 6 and 7
IC= 15A,
VCE =4V,
See Notes 6 and 7
10
25
50
1
1
10
25
50
10
1
,mA
25
50
10
50
IC-15A,
VCE =4V,
See Notes 6 and 7
2
2
2
2
VCE =4V,
IC= 25A,
See Notes 6 and 7
4
4
4
4
1.8
1.8
1.8
1.B
4
4
4
.4
V
IC= 15A,
IB = 1.5A,
Collector-E mitter
MAX
40
"B =0
IB =0
VCE =40V,
Emitter Cutoff
MIN
IB =0,
Collector Cutoff
TIP36A
TIP36
TEST CONDITIONS
: See Notes 6 and 7
IB=5A,
V
IC-25A,
See Notes 6 and 7
Small-Signal
Common-Emitter
hfe
Forward Current
VCE = 10V,
f = 1 'kHz
IC= 1 A,
VCE = 10V,
f = 1 MHz
IC= 1 A,
25
25
25
25
3
3
3
3
Transfer Ratio
Small-Signal
~fel
Common-Emitter
Forward Current
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 IJs, duty cycle <;; 2%.
7. These parameters are measured with yoltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Thermal Resistence
ROJA
Junction-to-Free·Air Thermal Resistence
1
35.7
UNIT
°CIW
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC= 15A,
IB(1) = 1.5 A,
toft
Turn-Off Time
VBE(oft/ = -4.15 V,
RL=2.!l,
TYP
IB(2/ = -1.5A,
See Figure 1
~
0.9
UNIT
""
t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5-344
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALL.AS. TEXAS 7!5222
TYPES TIP35, TIP35A, TIP35B, TlP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
~INPUT
T
~
MONITOR
OUTPUT
MONITOR
lN914
56<1
V"
<
11V--
RSB2=4Hl
270pF
-r~90%
J ,;",- - - ~~
INPUT
OV
- 415 V
I 10",(,
I
~r
30 n
OUTPUT
9D"~~s-1
VSB2'" 4. 1SIV-=-
+
~to,f~}-
+
-=-VCC=30V
L---------------------------~--__t+
VSS1'" 13V
ADJUST FOR
Von" 11 VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
-30~V pulse (from 0 V) into a 50-U termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
A. Vgen is a
~
15 ns, tf
~
15 ns, Zout = 50 U , tw
= 20
Jls,
II
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, R in ~ 10 Mil. Cin .s;;; 11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
o
~
I
tw""'6 ms
(See Note B)
r--I
I
LJ
INPUT!
VOLTAGE_--L-.J
Ll
(See Note A)
-5V
TUT
L2
INPUT
t--I
I'
r----r-
I
I
---j
I
I
I
I
I
I
I I
I
~
I
100 ms
A--
COLLECT3~-l-A-- - - - - - ;
CURRENeJ--Y"
~~
(See NoteAI
+
VCC~10V-=-
Ie MONITOR
V(BRICER--I---'
,_ _ -
COLLECTOR
VOLTAGE
Rs= 0.1 n
-
__
__
1\I I
I
I_-
I
I
I
10V
I
0--
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTES:
A. Ll and L2 are 10 mH, 0.11
.n,
Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM = 3 A.
FIGURE 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·345
TYPES TIP35, TIP35A, TIP35B, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
DISSIPATION DERATING CURVE
vs
COLLECTOR CURRENT
0
.~
IX:
1000
VCE - 4V
700 TC 25°C
See
Notes 6 and 7
400
200
I-
100
70
'C
~
"
I
c:
.2
..
:~
120
~
C
!l
.~
.."
0
'"
20
10
7
0
LL
.!'!
:!
4
LL
2
'1w
.c
""
100
C
40
~
•
140
t;j
tJ
"E
160
0.
i
'In
c:
I!!
l:
"
80
c:
.~
......
0
tJ
~
60
~
E
"E
.
40
I
20
'x,
~
'"
~
l-
lL
0
1
0.1
0.2
2
0.4 0.71
4
7 10
20
40 70'100
o
25
50
100
'" ""
125
150
TC - Case Temperature - °c
I c-Collector Current-A
FIGURE 4
FIGURE 3
NOTES:
75
6. These parameters must be measured using pulse
techniques. tw = 300 IJ.s, duty cycle t;;;;; 2%.
7. These
parameters
are
measured
with
voltage-sensing contacts separate from
the
current-carrying contacts.
MAXIMUM SAFE OPERATING REGION
100
70
See Note 8
-- -- ----
40
«
.!.c:
~
"
tJ
j
'0
20
.I~
~, '
10
7
TC'; 25°C
4
C
D
't'
2
KEY FOR FIGURE 5
CURVE
CONDITIONS
A
tw = 300 ItS, d = 0.1 = 10%
8
tw = 1 ms, d = 0.1 = 10%
C
tw= 10ms,d=0.1 = 10%
D
D-C OPERATION
•
tJ
I
E
0.7
0.4
TIP35
TIP35A-i-
0.2
IITIP358 TIP35C-i-
0.1
1
2
4
7 10
20
40
70100
200
400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturatl'on to cutoff with a cl~mped
inductive load.
PRINTED IN U.S A.
5-346
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1270
TI cannor assume any responsibility for any circuits shown
or represent Ihol they Ofe free from potenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP36, TIP36A, TIP36B, TIP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP35, TIP35A, TIP35B, TIP35C
•
125 W at 25°C Case Temperature
•
25 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 1 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTEIICHANGEAElILITY OF TI'36
PLASTICPACKAGEWITHTO-30UTLINE
,,,,,,,;;;~
•
. ,. "",J
"--0.655
(TQ-3DIMENSIONI
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TlP36
-40 V
-40 V
41
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
......
...
41
TIP36A TlP36B
-60 V
-80 V
-60 V
-80 V
-5V
-25 A
-40 A
-5 A
See Figure 5
41
125W
...
3.5W
90mJ
-65°C to 150°C
-65°C to 150°C
260°C
41
~
~
41
TlP36e
-lOOV
-100 V
~
~
••
•
~
•
~
~
~
~
1. This value applies when the base-emitter diode is open-circuited.
2.
3,
4.
5.
This val~e applies for ~w '" 0.3 ms, duty cycle'" 10%.
0
Derate linearly to 150 C case temperature at the rate of 1 WI C.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100 il,
VSS2
=0
V, RS
= 0.1
n, Vee ~ 10 V. Energy ~ le2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-347
TYPES TIP36, TlP36A, TIP36B, TlP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO
ICES
IC =-30 rnA,
Breakdown Voltage
See Note 6
Collector Cutoff
VCE - -30 V,
Current
VCE = -60 V,
IB -0
VCE = -40 V,
VBE -0
Collector Cutoff
VCE - -60 V,
VBE -0
Current
VCE = -80 V,
VBE -0
VCE =-100V,
VBE =0
VEB =-5V,
IC=O
VCE = -4 V,
IC--l.5A,
Current
Static,Forward
hFE
Current Transfer
Ratio
IB
•
~O,
VCE - -4 V,
VCE(sat}
Voltage
UNIT
V
-100
-1
-1
-1
25
10
-1
mA
rnA
25
50
25
10
50
-1
-1
mA
25
10
50
10
50
-2
-2
-2
-2
-4
-4
-4
-4
-1.8
-1.8
-1.8
-1.8
-4
-4
-4
-4
V
IC = -15A,
See Notes 6 and 7
IB=-5A,
MAX
-0.7
IC=-25A,
IB = -1.5 A,
-80
TIP36C
MIN
-0.7
See Notes 6 and 7
Collector-Emitter
MAX
-0.7
IC=-15A,
See Notes 6 and 7
-60
TIP36B
MIN
-1
IC=-15A,
Voltage
MAX
-0.7
See Notes 6 and 7
Base-Emitter
TIP36A
MIN
-1
See Notes 6 and 7
VCE =-4 V,
MAX
-40
IB - 0
VCE=-4V,
VBE
MIN
Collector-Emitter
Emitter Cutoff
lEBO
TIP36
TEST CONDITIONS
V
IC=-25A,
See Notes 6 and 7
Small-Signal
hfe
Common-E mitter
Forward Current
VCE =-10 V,
f = 1 kHz
IC=-l A,
VCE=-10V,
f = 1 MHz
IC=-l A,
25
25
25
25
3
3
3
3
Transfer Ratio
Small-Signal
~fel
Common-Emitter
Forward Current
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 IJ.s, duty cycle <; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
MAX
R8JC
Junction-to-Case Thermal Resistance
R8JA
Junction-to-Free-Air Thermal Resistance
1
35.7
UNIT
°CIW
switching characteristics at 25° C case temperature
PARAMETER
TEST CONDITIONst
ton
Turn-On Time
IC=-15A,
IB(1) =-1.5A,
toff
Turn-Off Time
VBE(off) = 4.15 V,
RL =2!1,
IB(2) = 1.5 A,
See Figure 1
TYP
UNIT
~
0.8
j,lS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5-348
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TIP36, TIP36A, TIP36B, TIP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
56n
Rl
RSB2'" 4.tH
=
2
INPu:'~~42O::: ----~
n
V on =-11 v-
270 pF
_lL.;J90%
,
,
I
30
n
VSB2
,
ton~
+
-:"' Vee" 30 V
~toff--i
90%r---r~!
415V'=-
10%L
---1
OUTPUT
+
•
VSB1""13V
ADJUST FOR
+
Von'" - 11 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A.
Vgen is a 30-V pulse (from
a
V) into
"8
50-n termination.
B. The V gen waveform -is supplied by a generator with the following characteristics: tr .;;;; 15 ns, tf '" 15 ns, Zout == 50 il, tw "" 20 /Js,
duty cycle
~
2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr :;:;;; 15 ns, Ain ~ 10
Mn.
Cin ~ 11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
~tw~6ms
VCE MONITOR
I
INPUT
1 (See Note Bl
5v~_11
VOLTAGE 0
L1
"I.---t---l00 ms----------tI
{See Note AI
TUT
I"
COLLECTORO~
L2
(See Note AI
INPUT
II
I 'I
CURRENT_3 A _ - : - _ : _ : _ _ _ _ _
VCC= 1OV-=-
+
, ,
IC MONITOR
0- -' -
-
1
I
-l- - - - - - - L I
-10 V
+--,+I I
- -
rI
COLLECTOR
VOLTAGE
I
I
V(BR~CER-....L - -
TEST CIRCUIT
NOTES:
VOLTAGE AND CURRENT WAVEFORMS
A. L 1 and L2 are 10 mH, 0.11 il, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until ICM::' -3 A.
FIGURE 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·349
TYPES TIP36. TlP36A. TIP368. TIP36C
P-N-P .SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
DISSIPATION DERATING CURVE
vs
COLLECTOR CURRENT
1000
700
o
.~
::
VCE - 4V
TC 25"C
400 See Notes 6 and 7
I
c
0
'j
a:
~c
:~
120
"u
100
-
~
0
100
~
70
.~
."
"- ........
20
~
o
~
80
0
60
E
E
'j(
co
40
I
20
u
"
4
:;
W
LL
.s;;;
0
'S"c
10
7
LL
I""
0
40
u"
11
•
140
c.
200
e!
I-
160
2
'""
"-
I-
0..
1
-0.1
NOTES:
0
-0.4
-1
-4
-40
-10
-100
.0
25
50
75
100
'" ""
125
IC - Collector Current - A
TC - Case Temperature - DC
FIGURE 3
FIGURE4
150
6. Tf;1ese parameters must be measured using pulse
techniques. tw
~
300 /Js, duty cvcle .; 2%.
7. These parameters are measured with voltagesensing contacts separate from the current-
carrying contacts.
MAXIMUM SAFE OPERATING REGION
-100
-70
-40
1
c
~
"
u
-20
-10
-7
~
-4
!?
-2
_~ee Note 8
---- ---
A
Is
~,
~
Tc.; 25DC,
C
D
tl
0
u
I
~
KEY FOR FIGURE 5
CONDITIONS
CURVE
A
tw= 300/Js,d=0.1 = 10%
S
tw = 1 ms, d = 0.1 = 10%
C
tw = 10 ms, d = 0.1 = 10%
D-C OPERATION
D
•
-1
-0.7
-0.4
TIP36
TlP36ATIP36SI iTIP36C-
-0.2
-0.1
-1
-2
-4
-7 -10 -20 -40
-100 -200 -400
VCE-Collector.Emitter Voltage-V
FIGURE5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a cl~mped
Inductive load.
PRINTED IN U.S.A
5·350
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1270
TI (an not assume any responsibility for any circuits shown
or represent that they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE OIANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP41, TIP41A, TIP41B, TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP42, TIP42A, TIP42B, TIP42C
•
65 W at 25°C Case Temperature
•
6 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 500 mA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP41
PLASTIC PACKAGE WITH TO-66 OUTLINE
THISPORTIONOFLEAO~ r-~:~-l
FREE OF FLASH
I
I
I
I
COLLEcBT~S:=:~+
0.420
EMITTER___
0.380
I
0.130 1
0.110-1
0.018 3 LEADS
o.~
r--
.-l L
01351
"05
H
0.210
r
0.;00
0.375
o.~
•
0.190
fO.l65
o.~
o.IJ5!'iTT
0,095
0.045
0.035
CASE TEMPERATURE
0.029
MEASUREMENT POINT
~:;:; OIA
0,060
0.040
RAD
~2
PLACES}
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
NOTES:
1.
2.
3.
4.
5.
4
TIP41A TIP41B
60V
80V
60V
80V
5V
6A
10 A
3A
See Figure 5
4
65W
TIP41
40V
40V
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Undamped. Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds
.........
...
...
4
2W
62.5 mJ
4 - - - -65°C to 150°C
~ -65°C to 150°C
260°C
4
TIP41C
100V
100 V
••
~
~
~
•
~
•
~
•
~
This value applies when the base-emitter diode is open~circuited.
This value applies for tw ~ 0.3 ms, duty cycle < 10%.
Derate linearly to 150°C case temperature at the rate of 0.52 wtC.
Derate linearly to 150°C free-air temperature at the rate of 16 mwtC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, iRSB2 = 1000,
V B B2
=0
V, RS
= 0.1
fl, Vee ~ 10 V. Energy ~ le2L/2.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-351
TYPES TIP41, TIP41A, TIP418, TIP41C
I·P·I SIIGLE·DIFFUSED MESA SILICOI POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BRICEO
ICEO
ICES
Collector-Emitter
IC=30mA,
Breakdown Vol tage
See Note 6
Collector Cutoff
VCE -30V,
IB =0
Current
VCE=60V,
IB =0
VCE=40V,
VBE -0
VCE=60V,
VBE -0
Current
VCE -SOV,
VBE - 0
VCE = 100 V,
VBE -0
VES=5 V,
IC=O
VCE -4 V,
IC - 0.3 A,
Current
Static Forward
Current Transfer
hFE
Ratio
•
Base-Emitter
VBE
Voltage
Collector-Emitter
VCE(satl
IB = 0,
Collector Cutoff
Emitter Cutoff
lEBO
TEST CONDITIONS
Saturation Voltage
See Notes 6 and 7
VCE =4 V,
IC=3A,
See Notes 6 and 7
TIP41A
TIP41
TIP41S
TIP41C
MIN MAX MIN MAX MIN MAX MIN MAX
40
60
80
0_7
100
UNIT
V
0_7
0_7
0.7
rnA
0,4
0,4
rnA
0.4
0,4
1
30
15
1
30
75
1
30
15
75
15
1
rnA
30
75
15
75
VCE =4V,
Ic=6A,
See Notes 6 and 7
2
2
2
2
V
IC-6A,
IS -0.6A,
See Notes 6 and 7
1.5
1,5
1,5
1.5
V
Small-8ignal
hfe
Common-Emitter
Forward Current
VCE = 10V,
f = 1 kHz
IC = 0.5 A,
VCE=10V,
f= 1 MHz
IC=0.5A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-8ignal
~fel
Common-Emitter
Forward Current
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300,",5, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
Junction..to..Case Thermal Resistance
MAX
R8JC
R8JA
Junction-to-Free-Air Thermal Resistance
62,5
1,92
UNIT
°C/W
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC-6A,
toff
Turn-Off Time
VSE(off) = --4 V,
IS(11- 0.6A,
RL = 5.n,
IB(21 = -0.6 A,
See Figure 1
TYP
0,6
-,--
UNIT
/.Is
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5-352
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES TlP41, TIP41A, TIP418, TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
II~PUT
MONITOR
OUTPUT
MONITOR
56 n
VOOO 14V- -
OV~,~%-
INPUT
RSB2
270pF
=
10
-4 V
n
__
I 10%
OUTPUT
~'O:::r---
90%~r--l
Vgen
-=-+
~~
I
~i
30n
L-______________________
-r~90%
VCC=30V
~~--++
VBB1""'6V
ADJUST FOR
V on = 14VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30·V pulse (from 0 V) into a 50-il termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf < 15 ns, Zout
duty cycle < 2%.
C. Waveforms 'are monitored on an oscilloscope with the following characteristics: tr < 15 ns, R in ~ 10 Mil, Cin
D. Resistors must be noninductive types,
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
= 50 il,
.:s;;;;
tw
= 20 /-Ls,
•
11.5 pF.
FIGURE 1
INDUCTIVE LOAD SWITCHING
--l
o
..- t w ""5ms
I
(See Note Bl
r----l I
L-.J
INPUTI
VOLTAGE_-L-J
L1
(See Note Al
-5V-
TUT
L2
INPUT
I
I
I
I
I
~100ms~
I
I
I
I
I
I I
I
COlLE~T~~-l-7i\- - - - - - - ; - "7\--CURREN~--y ~ ~ 1 \ 0 -
(See Note Al
+
VCC"10V":'"
IC MONITOR
V(BRICER--I--- 1 ' - - -
-
__
I
~
I I
__
I
,--
I
COLLECTOR
VOLTAGE
I
I
I
I
TEST CIRCUIT
NOTES:
VOLTAGE AND CURRENT WAVEFORMS
A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM = 2.5 A.
FIGURE 2
1270
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·353
TYPES TIP41. TIP41A. TIP41B. TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
1000
700
400
.2
iii
a:
t:
~::l
u
1!
CD
80
VCE 4V
TC - 25°C
See Notes 6 and 7
~c:
200
100
70
"
.~
'1w
i---
60
'ill
i5
8
.;
50
."
40
::l
0
::l
20
'Sc:
10
7
4
u
E
::l
E
2
:E
I
LL
..c
•
""-
0
40
~
0
LL
70
.2
iii
c.
30
0
'" '"
20
'x
"
10
.t
1
0.01 0.02' 0.04
0.1
2
0.2 0.4 0.7'1
4
o
7'10
o
25
50
IC-Coliector Current-A
75
~
100
T C-Case Temperature-° C
FIGURE 4
FIGURE 3
NOTES:
"" "
"\
""
125
150
6. These parameters must be measured using pulse
techniques. tw = 300 #s, duty cycle'" 2%.
7. These parameters are measured with voltagesensing contacts separate from the currentcarrying contacts.
MAXIMUM SAFE OPERATING REGION
40
I I III
Sel ~o~eIJ
20
10
«
.!.c:
e:;
u
9
~
"
.!!
"6
u
I
E
7
4
TcriCI
~
2
tw=300ISS,d=0.1 = 10%
tw = 1 ms, d - 0.1 = 10%-'
t -l0ms,d 0.1 10%
0.7 w
D-C OPERATION
,~
0.4
0.2
0.1
1
2
4
TIP4i
TlP41A
TIP41B
TlP41C
7 10
20
40
70 100 200
400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved onlv when switching from saturation to cutoff with a clamped
inductive load.
5-354
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
PRINTED IN U.S A.
TI can no' assume any responsibility for any circuits shown
or repre~ent that they are free from polent infringement.
1270
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND 10 SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP42, TIP42A, TlP42B, TlP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP41, TIP41A, TIP41B, TIP41C
•
65 W at 25°C Case Temperature
•
6 A Rated Collector Current
•
Min fT of 3 MHz at 10 V, 500 mA
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
MECHANICAL INTERCHANGEABILlTV OF TIP42
PLASTIC PACKAGE WITH T0066 OUTLINE
THISPORTIONOFLEA~ I-g~-!
FREE OF fLASH
I
I
I
I
COLLE~:=:~'
•.O.
EMITTER_
'.130 II
~
o.i1ii-l
~3LEADS
.~
if.ifI5
H
o.r,;--0,095
--J L
O.1:j5\
r
0.375
'.21'
0.190
•
0,190
'.~{rni
o.05§TT
0.046
0.035
CASE TEMPERATURE
ii:ii2i
MEASUREMENT POINT
~:~:~ DIA
.....
....
RAD 12 PLACES)
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise notedt
TIP42
-40 V
-40 V
4
4
4
4
4
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
TIP42A TIP42B
-60 V
-80 V
-60 V
-80 V
-5V
-6A
-10A
-3A
See Figure 5
4
4
2W
4
62.5 mJ
4 - - -65°C to 150°C
-65°C to 150°C
4
260°C
4
This value applies when the base-emitter diode Is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle < 10%.
Derate linearlv to 150°C case temperature at the rate of 0.52 wtC.
Derate linearly to 150°C free-air temperature at the rate of 16 mWfC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L
VBB2
=0
V, RS = 0.111, Vee
= 10 V.
65W
TIP42C
-100V
-100V
....
~
..
..
..•
~
~
..
~
= 20 mH, IRBB2 = 100 n,
Energy.'" ,le2L/2.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 76222
5-355
TYPES TIP42, TIP42A, TIP42B, TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO
ICES
Collector-Emitter
IC - -30 mA,
Breakdown Voltage
See Note 6
Collector Cutoff
Current
VCE --30V,
IB -0
VCE =-60V,
18 = 0
VCE =-40V,
VBE = 0
VCE =-60V,
VBE = 0
Current
VCE = -80 V,
VBE =0
VCE - -100 V,
VBE - 0
VEB = -5V,
IC= 0
Current
Static Forward
Current Transfer
Ratio
hFE
•
VBE
VCE(sat)
MIN
IB = 0,
Collector Cutoff
Emitter Cutoff
lEBO
TIP42
TEST CONDITIONS
-0.7
Collector-E mitter
IB - -0.6 A,
Saturation Voltage
See Notes 6 and 7
-80
TIP42C
MIN
MAX
-100
UNIT
V
-0.7
-0.7
-0.4
mA
mA
-0.4
-0.4
-1
15
IC--6A,
-1
30
30
IC--6A,
VCE--4V,
See Notes 6 and 7
MAX
-0.4
IC--3A,
Base-Emitter
TIP42B
MIN
-0.7
See Notes 6 and 7
Voltage
MAX
MIN
-60
-40
IC=-0.3 A,
VCE =-4 V,
See Notes 6 and 7
VCE--4V,
TIP42A
MAX
75
75
mA
30
30
15
-1
-1
15
75
15
75
-2
-2
-2
-2
V
-1.5
-1.5
-1.5
-1.5
V
MAX
UNIT
Small-5ignal
hfe
Common-Emitter
VCE = -10 V,
Forward Current
f - 1 kHz
IC=-0.5A,
20
20
20
20
3
3
3
3
Transfer Ratio
Small-5ignal
Common-Emitter
Ihfel
Forward Current
VCE =-10V,
f.= 1 MHz
IC=-0.5A,
Transfer Ratio
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 J.l.s, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
thermal characteristics
PARAMETER
ReJC
ReJA
·1.92
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
62.5
'C/W
switching characteristics at 25°C case temperature
PARAMETER
TYP
TEST CONDITIONSt
ton
Turn-On Time
IC=-6A,
IB(1) = -0.6 A,
toff
Turn-Off Time
VBE(off) = 4 V,
RL = 5 fl,
IB(2) = 0.6 A,
See Figure 1
0.4
f--o:l
UNIT
itS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
, 1270
5·356
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TIP42. TIP42A. TIP42B. TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
INPUT~~~~
5en
Von=-14V-
RSB2'" lon
270pF
-I
I
I
,
'o,-Io---.i
JOn
Vgen
lo-'oH--I
90%r--r~,0%:
:,
--1
10%L
+
OUTPUT
veSl "" lBV
ADJUST FOR
V on ",-14VAT
INPUT MONITOR
+
TEST CIRCUIT
NOTES:
•
VOLTAGE WAVEFORMS
A. V gan is a 30-V pulse (from 0 V) into a 50~n termination.
B. The V gen waveform is supplied by a generator with the following characteristics; tr -E;;; 15 ns, "tf <: 15 ns, Zout
duty cycle .. 2%.
C. Waveforms are moni~ored on an oscilloscope with the following characteristics: tr
< 15 os, Ain
D. Resistors must
non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
be
~
= 50 n, tw = 20 ,",5,
10 MO, Cin <;. 11.5 pF.
INDUCTIVE LOAD SWITCHING
I4-----..+I
INPUT
VOLTAGE
Ll
(See Note A)
TUT
I
o--l
o
L
I
I
I.----t---l00 ms----.oj
I
,
I
I
I
I
I
I
I
COLLECTOR~
L2
(See Note Al
INPUT
t w "'"5ms
I (See Note B)
--nL---.Jn
5V--1
CURRE~T25A_+_:_: _ _ _ _ _
VCC"10V"':'"
+
o_J
Ie MONITOR
,
I
I
I I
I -I-------L- -f-I
-10V
+__ ,+_
I
COLLE;CTOR
VOLTAGE'
I
I
VtBR)CER- --L - -
TEST CIRCUIT
NOTES:
VOLTAGE AND CURRENT WAVEFORMS
A. L1 and L2 are 10 mH, 0.11 S'l, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM <= -2.6 A.
FIGURE 2
1270
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE
sox
5012 •
DALLAS, TEXAS 7!5222
5·357
TYPES TlP42, TIP42A, TIP42B, TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
1000
700
400
DISSIPATION DERATING CURVE
80
VCE~ 4V'
TC - 25°C
See Notes 6 and 7
s:I
70
r:
0
.~
200
C-
l"-
100
70
50
.~
- "'
"'"
C
40
I'..
on
:>
40
'Er:
30
0
':>
r....
20
0
u
E
:>
E
10
7
20
.
4
•
OO
0'=
3
'j(
:ii:
I
2
-0.04 -0.1
-0.4
-1
-2
-4
o
-10
o
25
I C-Co lIector Cu rrent-A
50
'~
75
100
T C-Case Temperature-OC
FIGURE 3
NOTES:
~
10
.t
1
-0.01
'"
FIGURE 4
6. These parameters must be measured using pulse
techniques. tw = 300 JJs, duty cycle ~ 2%.
7. These parameters are measured with voltage~
sensing contacts separate from the current~
carrying contacts.
""
'"
125
150
MAXIMUM SAFE OPERATING REGION
-40
-20
se!
~oie'J
/',
~
-10
«
-7
~
-4
...r:
:>
U
S
"
.!!!
'0
u
I
E
TC i25iCI
-2
tw = 3OO,.s, d = 0.1 = 1~~
-1 tw = 1 ms, d = 0.1 = 10%
tw 10 ms, d 0.1 10%
-0.7
D-C OPERATION
I'
-0,4
TIP42
TIP42A
TIP428
TIP42C J
-0.2
-0.1
-1
-2
-4. -7 -10 -20 -40
-100
-400
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
Inductive load.
PRINTED IN
5-358
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
us. A
TI canno' assume any responsibility for any circuits shown
or represent thot they are free from polent infringement.
1270
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN' ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP41 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND CONSUMER APPLICATION
•
20 mJ Reverse-Energy Rating
•
250 V to 400 V Min V (BR)CEO
•
40 W at 25°C Case Temperature
•
1-A Rated Collector Current
•
10 MHz Min fT at 10 V, 0.2 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THIS PORTION OF LEADS+-------!
FREE OF FLASH
I
I- ~1
I\
COLLEC~~:=:~0
0420
EMITTER_
0380
,n, ~ ~
M~~~~:~~~~:~~~C~~~GTE::!'6~~~~;IN7
01i0
::=====)~'
,...
.II.
~ ~:I
r
""
0i90
•
~ ~:~ CIA
0060
,0<0
0.570
RAD (2 PLACES.
(TO-61 DIMENSIONSI
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Un clamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . . .
Storage Temperature Range . . . . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
TIP47
350 V
250 V
5V
•
..
TIP48
400 V
300 V
5V
I
TIP49/flP50
450 Vi 500 V
350 400 V ,.
5V\ 5~/
t
1A
2A
'.-.
•
----0.6 A
•
-See Figures 6 and 7 _
----40W
•
...1-----2
+_---20mJ
•
_-65°C to 150°C_
_-65°C to 150°C_
..
260°C
•
W----.
These values apply when the base~emitter diode is open-circuited.
This value applies for tw .s;;;; 1 ms, duty cycle ~ 10%.
For operation above 25°C case temperature, refer to Dissipation Derating Curve, Figure 8.
For operation above 2SoC free-air temperatur., refer to Dissipation Derating Curve, Figure 9.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L = 100 mH, RBB2 == 100
VBB2 = 0 V. RS = 0.1 n. Vee = 20V.
Energv '"
n.
le2 1./2.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-359
TYPES TIP41 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
Collector-Emitter
V(eR)CEO
TIP47
TEST CONOITIONS
PARAMETER
Breakdown Voltage
Ic=30mA,
See Note 6
Ie = 0,
250
Collector Cutoff Cu rrent
TIP49
TIP50
300
350
400
V
1
VCE = 200 V, Ie = 0
rnA
1
VCE = 250 V, Ie = 0
1
VCE = 300 V, Ie = 0
1
VCE = 350 V, VeE = 0
Collector Cutoff Current
ICES
1
VCE = 400 V, VeE = 0
rnA
1
VCE = 450 V, VeE = 0
1
VCE = 500 V, VeE = 0
IEeO
hFE
VeE
Emitter Cutoff Current
VEe - 5 V,
IC= 0
Static Forward Current
VCE=10V,
IC = 0.3 A
Transfer Ratio
VCE = 10V,
IC- 1 A
Base-Emitter Voltage
VCE = 10 V,
IC= 1 A
Ie = 0.2A,
IC= 1 A
Collector-Emitter
VCE(sat)
•
Saturation Voltage
Small·Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihfel
Forward Current Transfer Ratio
UNIT
1
VCE=150V, Ie = 0
ICEO
TIP48
MIN MAX MIN MAX MIN MAX MIN MAX
1
See Notes 6 and 7
30
150
10
1
1
30
150
10
1
150
30
10
rnA
150
30
10
See Notes 6 and 7
1.5
1.5
1.5
1.5
V
See Notes 6 and 7
1
1
1
1
V
VCE = 10 V,
IC= 0.2A:' f= 1 kHz
VCE = 10 V,
IC=0.2A,
25
25
25
25
5
5
5
5
f = 2 MHz
switching characteristics at 25°C case temperature
TE$T CONDITIONSt
PARAMETER
toff
Turn-On Time
IC= 1 A,
leo) = 100 rnA,
le(2) = -100 rnA,
Turn-Off Time
veE (off) = -5 V,
RL = 200 fl.,
See Figure 4
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
TYPICAL CHARACTERISTICS
!
..
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR·EMITTER
SATURATION VOLTAGE
" CURRENT
COLLECTOR
'" CURRENT
COLLECTOR
COLLECTOR CURRENT
80 See Notes 6 and 7
! ~~~-+~~~--+-+-~H+H
! : f--i-i-+++I-H-f---+--+-+++1tH
J : f--i-i-+++I-H-f---+--+-l-++ttH
~
20
1---+--+-tJf-ttttt---++t+t+tH
~ 10
0.9 - VC~' Jo VI II++--+-+--I-H-tttl
l' 0.8 -~;~!~:C6and7+t---++t+ttI:Il
I 0.7 f---+--++f±±!14--"'I"''f'-t-+H+H
0.02 0.04 0.070.1
0.2
0.4 0.7 1
IC-Collector Current-A
FIGURE 1
NOTES:
!£ •
'.
5
TC= 2SoC
See
Notes 6and 7
~ 0.6 _ I -
·1 f--i--l-i-++++++---+--+-+++ttH
0.4 I--+++++++t+-----t--++f-ttftl
! 0.3 f---+-i-+++I-H4---+-++++ftH
r: 0.2 1---+--++++\tH-----+--++++ftH
1
0.5
0.1
L-~~liilL-~~llW
0.01
"
1.0 ,----,---,-rTT'ITTr---,---,-,-n-TTTl
100 VCE -10V
90 TC _25°C
~
1--+--++++I-H4r--+-++++H-H
OL--L~LU~L--L~LUiW
0.01 0.02
0.04 0.070.1
0.2
0.4
0.71
Ic-Collector Current-A
FIGURE 2
0.01
0.02
0.04 0.070.1
0.2
0.4 0.7 1
Ic-Collector Current-A
FIGURE3
6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle <;; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
1271
5·360
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TIP47 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
lN914
Von~8V
56n
--r~90%
10%- - ~~
I
INPUT 0 V::/:.
RL ~ 200 n
-5 V
I
--I ton io-
270 pF
30n
1 J.lF
VBB2 ~~ 5V
+
Io-toff...l
I
YO%'
~I
OUTPUT
90%
+
-=- VCC
~
200 V
VBBI "" 9 V
ADJUST FOR
V on =8VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. V gen is a -30 V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr';;;; 15 ns, Zout"'" 50 fl, tw = 20 J.,Ls, duty
cycle
~
2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr 0;;;; 15 ns, R in
D. Resistors must be non inductive types.
~
10 Mil, Cin
~
11.5 pF.
•
E. The d-c power supplies may require additional bypassing in order to minimize ringing,
FIGURE 4
INDUCTIVE LOAD SWITCHING
VCE MONITOR
~
tw"" 3 ms
(See Note A)
r----I I
VOLTAGE -5V_--'u
L-JI
I
I
INPUT
100mH
i
0 V --,
I
TUT
,..-.-,-- 1 00 ms ------j
I
I,
I
I
COLLECTO~63A-:-~--------i~-+
VCC = 20 V-=- IC MONITOR
son
RS =0.1
CURRENT
o-Y:~
V(BR)CER
COLLECTOR
VOLTAGE
n
10 V
I
1---
1\
- - - - - -
I}-
I
!
~ --
I
--
I
I
I
I
VCE(sati VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width is increased until leM
=
0.63 A.
FIGURE 5
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·361
TYPES TIP47 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDl,ICTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
4
10
VCC =20 V
RBB2 = 100 n
TC = 25°C
See Figure 5
TC":25°C
«I
4
I I 11.1.1111
I.! 1111.111 SeeNote 8
rNonrepetltlve Pulse Operation
1\
2
I I 1.1 IIIII tw = 0.1
ms
1\\
1-.
:
tw - 0.5 ms
...c:
~
5
u
(;
0.4
u
0.2
E
::>
E
'x
'"
:2
I
u
•
tw
t>
..!!!
"0
2
I~
..!!!
"0
II
\
0.1
}.
TIP47
'x
'"
:2
TlP48 I
!:?
~
E
'-
0.7
I
TIP49
TIP50+
0.Q1
~
5
u
t>
.1
r-- f..-I D.CIO"peratlon
0.02
...c:
(;
1 ms
0.04
«I
"
See Note 90.4
2
4
10 20
40
100200 400 1000
4
7
10
20
70 100
40
L-Unclamped Inductive Load-mH
VCE-Coliector·Emitter Voltage-V
FIGURE 6
FIGURE 7
'8. This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a
NOTES:
clamped inductive load. ,
9. Above this point the safe operating area has not been defined.
THERMAL INFORMATION
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
:s:I
:s:I
60
c:
0
'';::;
'';::;
'"a.
.~
50
'" 2.0
.~
is
40
~
.:;;
is
~
.:;;
~
CD
CI
'"::>0
30
0
u
E
::>
E
20
'x
10
I-
0
'"
:2
I
0..
CD
o
25
50
CI
ROJC ..: 3.12°CIW
~
::>
c:
'';::;
c:
2.5
c:
0
"" """
75
~
1.5
~
'"
::>
0
::>
'Ec:
ROJC ..: 62.5°CIW
1.0
~
0
u
""
100
E
::>
E
~
125
150
Tc-Case Temperature-OC
FIGURE 8
'x
0.5
'"
'"
:2
I
I-
0..
0
o
25
50
75
"" ~
100
125
150
T A-Free·Air Temperature-OC
FIGURE 9
PRINTED IN U.S.A.
5·362
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
1271
11 (an not assume any respon$ibilify for ony circuits shown
or represent thot they ore free from patenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND CONSUMER APPLICATIONS
•
100 mJ Reverse-Energy Rating
•
250 V to 400 V Min V(BR)CEO
•
100 W at 25°C Case Temperature
•
5 A Peak Collector Current
•
2.5 MHz Min
tr at 10 V, 0.2 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP5'
PLASTIC PACKAGE WITH TO·3 OUTLINE
THIS PORTION OF LEA
fREE OF FLASH
•
3 LEADS
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP51 TIP52 TIP53 TIP54
350 V 400 V 450 V 500 V
250 V 300 V 350 V 400 V
5V
5V
5V
5V
3A
~
5A
~
0.6 A
~
+--See Figures 6 and 7~
Collector-Base Voltage _ . . . . .
Collector-Emitter Voltage (See Note 1)
.....
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
. . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
...
..
..
....
100W
3.5W
100mJ
4 - -65°C to 150°C
4 - -65°C to 150°C
260°C
.
~
~
~
---+
---+
~
1. These values apply when the base-emitter diode Is open-circuited.
2. This value applies for tw '" 0.3 ms, duty cycle'" 1 0%.
3. For operation above 26° C case temperature, refer to Dissipation Derating Curve, Figure 8.
4. For operatl?" above 25°C free-air temperature, refer to Dissipation Derating C.urve, Figure 9.
5. This rating Is based on the capability of the transistor to operate safely In the circuit of Figure 5. L - 30 mH, ABB2
VBB2 = 0 V, AS = 0.1 n, Vce = 20 V. Energy'" Ic2L12./
= 100 n,
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 7!S222
5·363
TYPES TlP51 THRUTIP54
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
VIBR)CEO
TIP51
TEST CONDITIONS
Ic=30mA,
Breakdown Voltage
See Note 6
IB =0,
250
300
TIP54
350
VCE = 200 V, IB =0
Collector Cutoff Current
TlP53
400
V
1
VCE = 250 V, IB =0
rnA
1
VCE - 300 V, IB -0
1
1
VCE - 350 V, VBE -0
VCE - 400 V, VBE =0
Collector Cutoff Current
ICES
1
VCE = 450 V, VBE =0
rnA
1
VCE = 500 V, VBE =0
lEBO
hFE
1
Emitter Cutoff Current
VEB = 5V,
Static Forward Current
VCE = 10V, Ic = 0_3 A,
See Notes 6 and 7
Transfer Ratio
1
IC=O
VCE = 10V,
30
IC=3A,
•
Base-Emitter Voltage
VBE
IB = 0.6 A,
IC=3A,
See Notes 6 and 7
Saturation Voltage
1
3,0
1
150
30
10
IC=3A,
1
150
30
10
rnA
150
10
1.5
1.5
1.5
1.5
V
1.5
1.5
1.5
1.5
V
See Notes 6 and 7
Collector-Emitter
VCElsat)
150
10
See Notes 6 and 7
VCE = 10V,
UNIT
1
VCE = 150 V, IB =0
ICEO
TIP52
MIN MAX MIN MAX MIN MAX MIN MAX
Small-5ignal
Common-Emitter
hfe
Forward Current
VCE = 10V,
IC=0.2A,
f = 1 kHz
30
30
30
30
VCE = 10V,
IC=0.2A,
f = 1 MHz
2.5
2.5
2.5
2.5
Transfer Ratio
Small-Signal
Common-E mitter
~fel
Forward Current
Transfer Ratio
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
TYP
ton
Turn-On Time
IC= 1 A,
IBll) = 100 rnA,
IB(2) = -100 rnA,
toff
Turn-Off Time
VBEloff) = -5 V,
RL = 200.n,
See Figure 4
UNIT
0.25
5
/,S
tVoltage and current values snown are nominal; exact values vary slightly with transistor parameters. '
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE
STATIC FORWARD CURRENT TRANSFER RATIO
vs COLLECTOR CURRENT
VI COLLECTOR CURRENT
i
1000
700
II:
.;
i
!=
E
j
1!
!
of
I
NOTES:
400
Vee- 1OV
VeE 10V
TC=25°C
See Notes 6 and 7
0.9
TC- 25°C
See Notes 6 and 7
>
200
0.8
100
70
i
0.7
0.5
20
Ii
E
.
~ 0••
1I.
10
7
:
V
=
onl
0,04
0.1
0.'
0.01
+H-HHII---h1H
i"R
~::~tft~~~I,~1 ~~~z
IC.
0.2
I.'
Y'
O~~ ~~II~'~I"~
t:~
0.3
0.'
'&
o
10
TC ·25D C
See Notes 8 and 7
S
·i
0.'
0.1
1
~ol;:
COLLECTOR-EMITTER SATURATION VOLTAGE
lIS COLLECTOR CURAENT
0,04
0.1
0.4
~ onl ~~~~~~ww~~~~
On!
0.04 0.1
OA
IC-Collector Current-A
IC-Collector Currant-A
Ic-COllec:tor Current-A
FIGURE 1
FIGURE 2
FIGURE 3'
6. These parameters must be measured using pulse techniques. 'tw = 300 ,",s, duty cycle <; 2%.
7. These parameters are measured with voltage"",ensing contacts separate from the current-carrylng contacts and located within
0.125 Inch from the device body.
971
5-364
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222
TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
270pF
30 Il
+
-=-
Vee ::::200 V
VBB1"' 9V
ADJUST FOR
Von=8VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. V gen is a -30 V pulse (from 0 V) into a 50~n termination.
B. The Vgen waveform is supplies by a generator with the following characteristics: tr < 15 ns, Zout "'" 50 n, tw = 20 J,ls, duty
cycle < 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 15 ns, Rin ~ 10 Mn, Cin < 11.5 pF.
D. Resistors must be non inductive types,
E. The.d-c power supplies may require additional bypassing in order to minimize ringing.
•
FIGURE 4
INDUCTIVE LOAD SWITCHING
veE MONITOR
30 mH
IN~U~=i ~LJr-
VOLTAGE
.~
-5 V '
TUT
+
VCC" 20 V.=..
Ie MONITOR
r-----rI
I
lOOms
I
I
~
I
I
I
--1-A---- ---;7i\-CURREN~ -Y ~ ~ I\I
I
I
I I
"1__ I 1_ _ _ _ _ ~ __ I __
COLlE2C~~~
INPUT
I'
V(BR)CER
I
I
R s "Ol
COLLECTOR
VOLTAGE
n
10 V
I
I
I
I
VCE(satl- -
TEST CIRCUIT
NOTE A: Input pulse width is increased until leM
VOL TAGE AND CURRENT WAVEFORMS
=
2.58 A.
FIGURE5
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5-365
TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs COLLECTOR·EMITTER VOLTAGE
10
7
«
.!.c
2
3
u
5
t>
.!!!
0.1
0.07
I
0.04
:2
•
-tw
~
0.3 ms,
d 0.1
~
~ lp~
0.2
'xco
!:?
:::l
II \
1\
~
.
,
,
,
!
.!!!
8
"
E
"
II
:::l
0.7
co
0.5
I
0.4
.Ex
"
TIP51
TIP52
TIP53'--
0.02
\
U
D·C Operation
0.4
"0
u
E
:::l
E
'"t:
...
,
:2
!:?
Ijlm~-
0.01
1
4
10
40
100
20 V
RBB2 ~ 100 n
TC = 25°C
See Figure 5
3
...c
\
1
0.7
VCC~
~Ifl/J
r\
2
«I
.
.
4
e
5
4
TC";;2 5°C
'"
0.3
""-rlSee Nlote ~
0.2
20
400 1000
30
50
70
200 300
100
500
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 7
FIGURE 6
NOTE 8: Above this point, the safe operating area has not been defined ..
THERMAL INFORMATION
CASE TEMPERATURE
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
DISSIPATION DERATING CURVE
4.0
120
~o
'!
~c:
0
'!
"=
Ci
.
.s;
..
u
100
~
80
0
~
::J
0
..,c:c:
60
::J
0
u
40
R8JC'; 1.25°C/W
.
:;
~
20
25
2.5
~
"I'\.
::J
c:
8
~
100
75
50
Tc-Case Temperature-OC
ReJA .; 35fc/W -
"" ~
~ 2.0
.~
.t
o
.~
..
I
o
3.0
o
E
::J
E
'x
"=
Ci
~
3.5
1.5
E
E L,O
~
125
150
FIGURES
~I
.t
~
"'\
0.5
o
'"
~
o
25
50
75
100
125
150
TA-Free·Air Temperature-OC
fiGURE9
PRINTED IN U.S.A
5-366
TEXAS INCORPORATI':D
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
971
II cannot assume any responsibility for any circuits shown
or represent that they ore free from polen! infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP110, TlP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP115, TIP116, TIP117
.-
High
soA
Capability, 40 V and 1.25 A
•
50 W at 25°C Case Temperature
•
Min hFE of 500 at 4 V, 2 A
•
2-A Rated Collector Current
•
25-mJ Reverse Energy Rating
device schematic
COLLECTOR
r--------- -,
BASE
I
I
I
I
I
I
I
I
L_________
I
I
.. 10 kn
I
.. 150 n
.JI
EMITTER
mechanical data
•
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP110
PLASTIC PACKAGE WITH T0-66 OUTLINE
TH1SPORTIONOFLEA~ 1-~-1
FREE OF fLASH
I
II
1
COLLEC~~:==~+
0.420
EM1TTER_
0
01'"
I
I
ii1'iii-l r-
~~~~
!lEADS
....J
01:45l
ifiii5
L
r
r---t- g~
0210
Q.iiO
{g:~:
~~..L
o.r,;-o.~Tf
i)]iiij
0046
0035
0029
~~::DIA
0.060
0.040
ALL DIMENSIONS ARE IN INCHES
RAe 12 PLACES)
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 2SoC Case Temperature
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note S)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
6.
TIP110 TIP111 TIP112
100 V
60V
80V
60V
80V
100V
SV
SV
SV
2A
4A
_SOmA
_ See Figures 7 and 8 -SOW
2W
_2SmJ
•
_-6SoC to 1S0°C _
_ -6SoC to 1S0°C _260°C
•
..
..
..
...
..
....
These values apply when the base-emitter diode Is open-circuited.
This value applies for tw IIIii; 0.3 ms, duty cycle < 10%.
Derate linearly to 150°C case temperature at the rate of ,0.4 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C fre.aJr temperature at the rate of 16 mW/C or refer to Dissipation Derating Curve, Figure 10.
This rating Is based on the capability of the transistors to operate safely in the circuit of Figure 2. L"'" 100 mH, RBB2 = 1000,
VBB2 - 0 V. RS - 0.1 n. Vce = 20 V. Energv AI IC2L/2.
271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS •• TEXAS 75222
5·367
TYPES TIP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-E mitter
V(BR)CEO
ICEO
ICBO
TlP110
TEST CONDITIONS
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
IC = 30mA,
IB= 0,
VCE = 30 V,
IB - 0
VCE = 40 V,
IB = 0
VCE=50V,
IB = 0
VCB-60V,
IE - 0
IE = 0
VCB=SOV,
TIP111
TIPl12
MIN MAX MIN MAX MIN MAX
See Note 6
60
SO
V
100
2
2
mA
2
1
1
mA
1
VCB= 100 V, IE = 0
lEBO
hFE
VBE
IC=O
VCE=4V,
IC-1A
Tr.nsfer Ratio
VCE -4V,
IC= 2A
B.....Emitter Voltage
VCE-4V,
IC-2A,
See Notes 6 .nd 7
2.S
2.S
2.S
V
IB = SmA,
IC=2A,
See Notes 6 and 7
2.5
2.5
2.5
V
•
NOTES:
I
1000
See Notes 6 .nd 7
2
mA
VEB=5V,
Satur.tion Volt.ge
2
2
Emitter Cutoff Current
Stetic Forward Current
Coliector·Emitter
VCE(set)
UNIT
1000
,500
500
1000
500
6. These parameters must be measured using pulse techniques. tw = 300 1'5, duty cycle'" 2%.
7. These parameters are measured-with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
toff
Turn-On Time
IC= 2A,
Turn-Off Time
VBE(off) = -5 V,
TYP
UNIT
2.6
18(2) = -8 mA,
See Figure 1
IB(1) = SmA,
RL=15n,
f.£S
4.5
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
5611
Von
= 42
INPUT
~r
270pF
VIII"
300
+
OUTPUT
-=- VCC"30V
VBB1~44V
r~90%
OV:::i10%- -5 V
I 10%
RL = 15n
RaB2 -85011
V- -
-
~~
I
~t::1-
90%L-,~
ADJUST FOR
Von -42 VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. V gen is a -30-V pulse (from 0 V) Into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr <;; 16 ns, "tf <;; 16 ns, Zout = 50 .0, tw
duty cvcle .. 2 %.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 16 ns, Ain :> 10.Mn. el n <;; 11.6 pF.
D. Resistors must be nonlnduct,lve 'tYpes.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
= 20 liS,
FIGURE 1
1271
5-368
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE
sox
5012 •
DALLAS, TEXAS 75222
TYPES TlP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
VCEMONITOR
..-tw "=" 3.5 ms (Sea Note Al
~
INPUTO~
VOLTAGE
100mH
-6V-
INPUT (O+---'VI,.......--H
I
COLLECTOOFi71 A
+
-=-
I
I
~IOOms~
I
I
1
I
-!"A------T.7i\°-1'1 I:
i ~ i}I
11
VIBR)CER-;-- ------1--
5011
I
CURRENT
Vec= 20 V
IC
MONITOR
COLLECTOR:
VOLTAGE
I
I
I
I
I
I
lOV
VCElsat) --
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
Input pulse width is increased until leM = 0.71 A.
NOTE A:
FIGURE 2
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
BASE·EMITTER VOLTAGE
"
"
CASE TEMPERATURE
COLLECTOR CURRENT
7000
~
4000
i
2000
E
1000
ex:
l-
j
I
a
~
700
I
I
2.8
"-......TC=I00'C-
V
Vv
/
t;z
3.2
TC -
5SoC
~
'i
Te 25°C
~
f
-
2.4
t--r-.
>
~
~
400
J
200
>
~
100
0.4
VeE = 4 V
See Notes 6 and 7
VeE =4 V
See Notes 6 and 7
"-
-..:: .::::::
1.6
I'C
"13A
~~A
le= 1 A
1.2
0.8
0.4
-75 -60 -25 0
0.7
----
•
25
50 75 100 125 150 175
Te-Case Temperature-°c
Ie-Collector Current-A
FIGURE4
FIGURE 3
COLLECTOR-EMITTER
SATU RATION VOLTAGE
SMALL·SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
"
CASE TEMPERATURE
'"
FREQUENCY
18=8 rnA
IC=2A
See Notes 6 and 7
VCE = 10V
IC= 1 A
TC = 25 DC
r'\.
"0.4 L-L-L-L---.l_L-.L....L.--L-L-J
-75 -50 -25 a
25
50 75 100 125150 175
"-
" I'-...
10
TC-Case Temperature-DC
f-Frequency-MHz
FIGURE 6
FIGURE 5
1271.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·369
TYPES TlP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
10
4
1...
2
t
U
o
o
.
o
"~
~
E
::l
E
.
'x
•
::i!:
I
~
0.7
VCC = 20 V
RBB2 = 100 n
TC = 25°C
See Figure 2
7
<:
::l
o
8
10
D-C Operation
TC E;;25°C
7
~
8
r--
0.2
"'
......
1'-...."'$
"'''
2
'"
E
~TIPll0
0:4 I - - TIPlll
4
::l
E
..
'x
r...
i'-..
TIP112 ~ I........ ~
::i!:
1\
L,
"'~
0.7
........
See Note 8 ....
0.1
0.4
10
20
40
70 100
200
400
4
2
20
7 10
40
4 100
200
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURES
FIGURE 7
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~<:
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
60
3:
I
l0ij
50
40
~
C
g
30
<:
.~
8
..
!
20
o
25
50
.
CI>
c
~
10
o
'"'"
u
::l
'x
2.0
i5
.,.
E
E
....c.
CI>
CI>
!S
'iii
~OJC E;; 2.5°CIW
i5
.,.f!
2.5
<:
0
o
75
1.5
::l
0
::l
<:
.;;
~
100
<:
0
1.0
U
~
125
150
Tc-Case Tetnperature-oC
FIGURE 9
E
::l
E
.
0.5
I-
0
'x
ROJA E;; 62.5°CIW
'"
~
'"
::i!:
I
D..
o
25
50
75
'"
100
'~
125
TA-Free-Air Temperature-oC
"
150
FIGURE 10
PRINTED IN U.. S A
5·370
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1271
TI (annal assume any responsibility for any circuits shown
or represent that they are free from patenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP115, TIP116, TlP11I7
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP110, TIP111, TlP112
•
High SOA Capability, 40 V and 1.25 A
•
50 W at 25°C Case Temperature
•
Min hFE of 500 at 4 V, 2 A
•
2·A Rated Collector Current
•
25-mJ Reverse Energy Rating
COLLECTOR
device schematic
r--BASE
-----
I
-,,
I
I
I
I
I
I
L
I
I
'" 150n
'" 10Hl
---
..J
EMITTER
mechanical data
•
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP115
PLASTIC PACKAGE WITH TO'66 OUTLINE
THISPORTIONOFLEA~ j-~:::-1
I
FREE OF fLASH
I
I
I
COLLEC~'6S:==~+
0.420
EMITTER_
0.380
I
0.130
O.110--l
~.~~~
I
r--
...J
0.1351
0.105
L
r
i - - I - 0,375
3 LEADS
0.>10
0.190
0.190
~~':t. 10 .'"
o.~
O.05~
0.095
0.045
0035
0.029
CASE TEMPERATURE
MEASUREMENT POINT
~:~:~ DIA
0.060
0040
RAD (2 PLACES)
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
TIP115
-60 V
-60 V
-5 V
TIP116 TIP117
-80 V -100V
-80 V -100 V
-5V
-5V
2A
-4A
•
_-50mA_
_See Figures 7 and 8 _
_--50W
•
2W---.
•
•
25 mJ
..
_ _ 65°C to 150°C_
_-65°C to 150°C_
•
•
2600
•
1. These values apply when the base-emitter diode is open~circuited.
2. This value applies for tw :::;;;; 0.3 ms. duty cycle::;;:;; 10%.
3, Derate linearly to 150°C case temperature at the rate of 0.4 W/OC or refer to Dissipation Derating Curve, Figure 9 •
. 4. Derate linearly to 1500 C freeRair temperature at the rate of 16 mW/o C or refer to Dissipation Derating Curve, Figure 10.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, ASS2
VBB2 = 0 V, RS = 0.1 n, Vee = 20 V. Energy'" le2L/2.
•
= 100 0,
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·371
TYPES TlP115, TlP116, TIP117
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
Collector-Emitter
V(BR)CEO
ICEO
ICBO
TIPl15
TEST CONDITIONS
PARAMETER
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
IC= -30 mA,
IB = 0,
VCE - -30 V,
IB - 0
VCE = -40 V,
IB = 0
VCE = -50 V,
IB = 0
VCB = -60 V,
IE = 0
-so V,
IE = 0
VCB =
TIP116
TIPl17
MIN MAX MIN MAX MIN MAX
See Note 6
-60
-SO
100
V
-2
-2
mA
-2
-1
-1
mA
-1
VCB = -100V, IE = 0
lEBO
hFE
VBE
•
NOTES:
-2
-2
Emitter Cutoff Current
VEB = -5V,
IC= 0
Static Forward Current
VCE = -4 V,
IC = -1 A
Transfer Ratio
VCE = -4 V,
IC= -2 A
Base--Emitter Voltage
VCE = -4 V,
IC=-2A, See Notes 6 and 7
-2.S
-2.S
-2.S
V
IB =-S mA,
IC= -2A, See Notes 6 and 7
-2.5
-2.5
-2.5
V
Collector-E mitter
VCE(sat)
UNIT
Saturation Voltage
JI See Notes 6 and 7
6. These parameters must be measured using pulse techniques. tw = 300 Jis, duty cycle
7. These parameters are measured with voltage-sensing contacts separate from the
inch from the device body.
~
1000
1000
500
-2
mA
1000
500
500
2%.
current~carrying
contacts and located within 0.125
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC = -2 A,
toff
Turn-Off Time
VBE (off) = 5 V,
IB(l) - -8 mA,
RL=15!1,
TVP
IB(2) -S mA,
See Figure 1
UNIT
2.6
4.5
I'S
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
56n
INPUT~~~~
1N9141N9141N914
Von "'-42V--:
I
I
I
RBB2 =850n
ton~
270 pF
30n
OUTPUT
1.--101'--'1
f~
-:-- Vee = 30 V
+
VBB1~44V
AOJUST FOR
Von = -42 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. V gen is a 30-V pulse (from 0 V) into a 50-il termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf :s;;;; 15 ns, Zout = 50 .0, tw = 20 /oLs,
duty cycle < 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr:S;;;; 15 ns, Rin;;;" 10 Mn, Cin
11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
<
FIGURE 1
1271
5-372
TEXAS INSTRUMENTS
INCORPPRATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES TIP115, TIP116, TIP117
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
t.----..I-6V-
I
I
_I
I
O~
100mH
CUR~:~
,
I
1
I
~
A-
!--
1.--t-1001111----t
I
COLLECTOR
~~
I
r
-l-'¥:- - -- - +-~~-I I
I
I+- _ _ _ _ _ _ I
VCEIMtI __ I
Ie
I
-20Y
MONITOR
n
~
I
•
-:-- Vee = 20 V
Is..NottIAl
--rI
INPUT
VOLTAGE
INPUT
",",3.5-
;
I I
I_t-_
I
COLLECTOR
RS=O.ln
VOLTAGE
I
I
I
VjBR}CER -
TEST CIRCUIT
NOTE A: Input pulse width is increased untillCM
...I- -
-
VOLTAGE AND CURRENT WAVEFORMS
= -0.71
A.
FIGURE 2
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
BASE-EMITTER VOLTAGE
"
"
COLLECTOR CURRENT
4000
CASE TEMPERATURE
-3.2
Jill
VeE = -4 V
See Notes 6 and 7
TC "'100°C
-2.8
t-H.
Te=25oe~
==
i
Te
-55°C
-2
.~E
-1.6
I".,
t-
--- r-: - ~J2A
~~
r-
-0.8
o
-75 -50-25 0
25
FIGURE 3
FIGURE 4
SMALL·SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
..
SATURATION VOLTAGE
"
CASE TEMPERATURE
FREQUENCY
-4r-~~~---'-.-'-'-'-'
~ 40
IB--8mA
IC =-2 A
See Notes 6 and 7
a:
•
~ 20
~
~r-r-r-r-+-+-+-+-+-~
;;
~
-
.aE
-
~
10
1
.
~
!...
'Y
J
~
-0.7 r+-+-+-I~+-++--+~f-I
!
~ -0.4 ~-'--'---"---'~.I-...L..-'--'~'--'
>
-75 -50 -25 0 25 60 75 100 125 150 175
4
oI! 1
VeE -10V
IC=-1 A
TC = 25°C
i""-
"-
"
10
f-Frequency-MHz
TC-Case Temperature-"C
FIGURE 5
NOTES:
50 75 100 125150 175
Tc-Case Temperature-°c
COLLECTOR·EMITTER
~
IC=-3A-
-0.4
Ie-Collector Current-A
1
j
•
t--
-1.2
-4
-2
~~EN~~: ~arwj J
>
"\
100
-1
~
1.,
,\
200
-0.7
-2.4
~
"-
-0.4
>I
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle -< 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
1271
TEXAS INSTRUMENTS
INCORPORATED
• DALLAS, TEXAS 75222
POST OFFICE BOX 5012
5·373
TYPES TIP115, TIP116, TIP11I7
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
-10
-10
D-C Operation
TC';;;;25°C
-7
r---"""~
COLLECTOR
+
-=- Vee'" 20 V
CURRENT
I
I
I
I
I
t+-T- 100 ms ----,
I
I
lA-iA-------;/'K""-+' i ~ i}I:
I
I
0
I
VIBRICER - ; - -
'C
MONITOR
I
------,--
I
COLLECTOR
1
I
VOLTAGE
20V
I
I
I
,
I
'
I
VeE(sat) - -
TEST CI RCUIT
NOTE A: Input pulse width is increased until
VOLTAGE AND CURRENT WAVEFORMS
'eM""
1 A.
FIGURE 2
TYPICAL CHARACTERISTICS
'"
'"
COLLECTOR CURRENT
.2
,;;
~
100°C
TC
4000
>,
Te -25°C
1\
1000
700
1
~
~
>
400
.~
~
200
0.7
veE'" 3 V
See Notes 6 and 7
2.4
1.6
t-- I-- t--
'c '
r-
Ie = 3A
1.2
0.8
7
1
10
FIGURE 4
SMALL-5IGNAl COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
COLLECTOR-EMITTER SATURATION VOLTAGE
'"
'"
CASE TEMPERATURE
FREQUENCY
.2
1
t
,;;
See Notes 6 and 7
i,::
I
,\",,18'" 20 rnA, IC '" 5 A
"
~
.2
Ji
•
:::
·E
u
0.7
"!
j
~
0.4
r- _'8 = 12
mi' S j:'
3
11
I,\- -
j
r-
40
20
10
".~
7
.2'
"'~
0.2
~
'1
W
0
1
25 50 75 100 125 150 175
1
Tc-Case Temperature-°c
10
f-Frequency-MHz
FIGURE 5
NOTES:
VCE'" 10 V
IC '" 1 A
TC '" 25°C
"~
18 -2 mA, IC -1 A
~ 0.1
-75-50 -25
25 50 75 100 125 150 175
Te-Case Temperature-°c
FIGURE 3
;g
r-- --- -!f '" 1 l:- t---- r-- t--
-75 -50 -25 0
Ie-Collector Current-A
>
=51
I-- t--
0.4
VCE-3V,
See Notes 6 and 7
100
0.4
2.8
> 2.0
Te;o _55°C ~
u
t
j
III
2000
~';
CASE TEMPERATURE
3.2
10000
7000
~
•
BASE-EMITTER VOLTAGE
STATIC FORWARD CURRENTTAANSFER RATIO
FIGURE 6
6, These parameters must be measured using pulse techniques. tw = 300 }.Ls, duty cycle ~ 2%.
7. These paramet"rs are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·377
TYPES TIP120, TIP121, TIP122
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
10
20
«
.!.c
/
~
5
D-C Operation
2
0
E
See Note 8
.)0"
4
u
tl
.J!!
0
u
III III
tw 300 p.s,
0.7 d 0.1 -10%
1\11
f\
V
TCEO:: 2S OC
E
'"
•
5d
...cI
4
tl
2
...0
.J!!
$0
E
E
'x
TIP121-
::2E
I
'"
I1}J
K
0.7
See Note 9-
0.4
I
5d
I
~IP1~2
0-.1
0.2
0.1
7
4
10
20
40
70 100
200
2
400
4
7 10
20
40
70100 200
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 8
FIGURE7
NOTES:
n
u
TIP120- r--.
0.2
10
7
~
::l
u
::l
0.4
::2E
I
«
0
::l
'x
VCC =20 V
RBB2 = 100
TC = 2SoC
See Figure 2
7
8. This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a
clamped inductive load.
9. Above this point the safe operating area has not been defined.
THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~
c
~c
80
o
.~
IS
.s;
Q)
c
~
o
'';::;
70
.~
i5
I--60
~
"
"
50
40
::l
C
'';::;
C
o
30
'i5=
::l
'"
t-
'"
C
'';::;
c
50
75
100
u
~
E
::l
E
"
125
Tc-Case Temperature-oC
R6JA EO:: 62.SoC/W
"
1.0
0
"
10
25
"-
::l
"f'-
o
'"
1.S
::l
~
20
o
c
0
::2E
Il.
Q)
~R6JC EO:: 1.92°C/W
E
'x
2.0
IS
.s;
u
E
2.S
0
150
'x
O.S
""",-
'"
::2E
I
I-
Il.
'" "
0
o
25
so
75
100
125
~
150
T A-Free-Air Temperature-°c
FIGURE 10
FIGURE9
PRINTED IN U.S.A
5-378
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1271
II (annat assume any responsibility for any circuits shown
or represent thai they are free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST· PRODUCT POSSIBLE.
TYPES TIP125, TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP120, TIP121, TlP122
• Min hFE of 1000 at 3 V, 3 A
• 65 W at 25°C Case Temperature
•
• 5 A Rated Collector Current
device schematic
50 mJ Reverse Energy Rating
COLLECTOR
--,,
,r- - - - - - -
BASE
,,I
I
I
I
I
'" 10 kn
I
I
'" 150n
IL _ _ _ _
.J
EMITTER
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECH,t,NICAlINTERCHANGEABILITY OF TIPl25
PLASTIC PACKAGE WITH TO-86 OUTLINE
THIS PORTION OF
LEA~--!
FREE OF FLASH
I
I
II
r- ~.:~~-lI
I
COLLEc~'6Si==~0
~21l
EMITTER.__
0380
~",==)Fft?
~~~~
r ~:~~~
r--t-~~;:
lLEADS
~~--'--
!,
r--~~~~~
(TO-66 DIMENSIONS)
~~~~~ ~ 01~
"'"
0210
0190
L
0035
0029
t~'~:
o~
0055Jr
0095
0045
0030MIN
(2PLACES)
J~DIA
0040
ALL DIMENSIONS ARE IN INCHES
RAD {2 PLACES)
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage _ _ . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
.
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature liS Inch from Case for 10 Seconds
NOTES:
TIP125 TIP126 T1P127
-60 V -SO V -100 V
-60V -SO V -100 V
-5V
-5V
-5V
-5A
-SA
--O.lA- See Figures 7 and S •
65 W
..
•
2W
..
•
50mJ
..
_-65°C to 150°C--+
__ -65°C to 150°C-•
260°C -
.
1. These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms, duty cycle,s;;;; 10%.
2.
3.
4.
5.
Derate linearly to 150°C case temperature at the rate of 0.52 wtc or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 1500 C free-air temperature at the rate of 16 mwt C or refer to Dissipation Derating Curve, Figure 10.
ThiS" rating is based on the capability of the transist,?rsto operate safely in the circuit of Figure 2. L = 100 mH; RSB2 = 100 il,
VBB2~ a v, RS~O.l n, VCC~20 V. Energy'" IC 2 L/2.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
5·379
TYPES TIP125, TIP126, TlP127
P-.N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
Collector-Emitter
V(BR)CEO
ICEO
ICBO
TIPI25
TEST CONDITIONS
PARAMETER
IC =-30 rnA,
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
VCE - -30 V,
IB- 0
VCE=-40V,
IB- 0
VCE = -50 V,
IB= 0
VCB =-60V,
IE = 0
VCB= -80V,
IE - 0
-60
See Note 6
IB= 0,
TIPI26
TIP127
MIN MAX MIN MAX MIN MAX
-80
100
hFE
VBE
VCE(set)
•
NOTES:
V
-0.5
-0.5
rnA
-0.5
-0.2
-0.2
mA
-0.2
VCB = -100 V, IE - 0
lEBO
UNIT
-2
-2
-2
Emitter Cutoff Current
VEB = -5 V,
Static Forward Current
VCE = -3 V,
Transfer Ratio
VCE =-3V,
IC-O
1000
IC- 0.5 AI,
Isee Notes 6 and 7
1000
IC--3A
Base-Emitter Voltage
VCE= -3 V,
IC - -3 A, See Notes 6 and 7
-2.5
-2.5
-2.5
Collector-Emitter
IB- -12mA,
-2
-2
-2
Saturation Voltage
IB- -20mA,
IC--3A I,
Isee Notes 6 and 7
IC--5A
-4
-4
-4
1000
rnA
1000
1000
1000'
V
V
tw = 300 ,",s, duty cycle <; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
6. These parameters must be measured using pulse techniques.
inch from the device body.
switching characteristics at 25° C case temperature
TEST CONDITIONst
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
IC= -3A,
VBE(off) = 5 V,
TVP
IB(2)=-12mA,
IB(2) = 12 rnA,
1.5
RL=10n,
See Figure 1
8.5
UNIT
!,S
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
INPUT~~--~---~
56!!
Von--30V~ _:
~90%
I
I
RL '" 10n
RBB2 =560n
ton.\.-.f
270 pF
JlVgen
lOu
OUTPUT
~- VCC=30V
TEST CIRCUIT
A. V gen is a
30~V
O%I ~II
~
10%
+
VBB1"=' 32V
ADJUST FOR
Von" -30VAT
INPUT MONITOR
NOTES:
I.--toff~
pulse (from 0 V) into a
VOLTAGE WAVEFORMS
50~n
termination.
B. The V gen waveform Is supplied by a generator with the following characteristics: tr <.; 15 ns, 'tf <.; 16 ns, Zout = 50 ,0, tw
= 20 jJ.s,
duty cycle'; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr :a;;;; 15 ns, Rin
D. Resistors must be non inductive types.
E. The
d~c
;;a. 10 Mn, ein
:a;;;; 11.5 pF.
power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
1271
5-380
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES TIP125, TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
I..----.I- lw,.,5ms
I
VeE MONITOR
I (See Note A!
--n
5V __ 1
INPUT
VOLTAGE
I
O~
II
L
~
I
I
'--+-100 ms
100 mH
I
o
INPUT {O:t-JVlIV-....- H
I
----!
I
I
I
I
I
I
I
COLLECTOR
CUARE~~A __ : _ _ :_:_
Ie
VCE(Siltl __
MONITOR
I
I
I
-20V
RS=O.1
-
-
-
I
_
f--'l--
t-----I
I
I I
I
'_1-_
I
u
COLLECTOR
VOLTAGE
I
V{BR!CER-...L--
'eM = -1
NOTE A: Input pulse width in increased until
--------
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
A.
FIGURE 2
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIt.
g
'Iii
a:
10000
VeE
7000
CASE TEMPERATURE
-3.2
--3 V
See Notes 6 and 7
Vce=-3V
See Notes 6 and 7
-2.8
'l'
-'"
f
~ 0.:
VTe=loJO~\ \ :\" ~
Te
•
BASE-EMITTER VOLTAGE
"
COLLECTOR CURRENT
>
-~
2SOC
1
Te- ,55oe
~
>
-2.4
-2.0
- F
-1.6
;;::::
~
--..
-1.2
IC- 5A
~
't
lei
-{1,8
~
-0.4
100
-0.4
-0.7-1
-2
-4
-7 -10
-75 --50-25 0
Ie-Collector Current-A
FIGURE 3
FIGURE 4
SMALL·SIGNAL COMMON·EMITTER
FORWARO-CURRENT TRANSFER RATIO
COLLECTOR·EMITTER SATURATION VOLTAGE
"
"
CASE TEMPERATURE
--4
See Notes 6 and
25 50 75 100 125 150 175
Te-Case Temperature-°c
FREQUENCY
1
I\-
-2
"\
VCE=-10V
IC=-l A
TC = 26°C
-1
-O.~
-0.2
18
2~m~, Iq"'-;:;A
~_18=-12mA.'e=-3A~r--ts-
-I' I ' ,-2 , ,
IS =
-0.1
-75 -50 -25 0
NOTES:
rnA, IC" -1 A
10
25 50 75 100 125160 175
TC-Case Temperature-oC
f-Frequenc:v-MHz
FIGURE5
FIGURE6
6. These parameters niust be measured using pulse techniques. tw = 300 ,",S, duty cycle <;; 2%.
7. These parameters are measured with voltage~senslng contacts separate from the current~carrylng contacts and located within 0.125
Inch from the device body.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-381
TYPES TIP125,TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
VS
COLLECTOR-EMITTER VOLTAGE
-10
-20
«
.Lc:
:;
u
-2
(;
See Note 8
~
-4
D-C Operation
~
tw ~ 300 /ls,
d 0.1 10%
-1
o
u
E -0.7
c:
-7
:;
\ V
-4
u
TC
« 25°C
(;
1:)
E
TI~ly
-0.1
-4
-7-10
-20
-40
See Note 9-
.~ '-0.4
:2
I
.S:'-0.2
TIP126 .....
!:? -0.2
i'-
-1
§ .-0.7
TIP125_
I
So
-.....!!.!.J
-2
~
(5
u
::J
.~ -0.4
'"
:2
-10
~
/ 1\
111111
1:)
«I
+"
V
/'
~
•
VCC ~20 V
RBB2 ~ 100 n
TC = 25°C
See Figure 2
-7
-0.1
-100 -200 -400
2
1
4
7 10
FIGURE 7
NOTES:
20
40
70100 200
L-Unclamped Inductive Load-mH
VCE-Collector-Emitter Voltage-V
FIGURE 8
8, These combinations of maximum voltage and current may be achieved only when switching from saturation to cutoff with a
clamped inductive load,
9, Above this point the safe operating area has not been defined.
THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
$
I
c:
80
"'e..
70
Ci
60
0
.;::;
$
I
c
.~
-
.;::;
~
C1>
~
0
40
C
.;::;
c
30
::J
0
u
E
::J
E
'x
'"
:2
I
I-
0.
~
75
0
.;::;
'"
c
'"
100
"" ~
125
150
'x
'"
:2
I
I-
0.
0.5
« 62.5°C/W
""
0
o
25
50
75
""
100
~
125
T A-Free-Air Temperature-°c
""
150
FIGURE 10
TEXAS INCORPORATED
INSTRUMENTS
•
1.0
0
u
E
::J
E
ROJA
"" ""
~
FIGURE9
POST OFFICE BOX 5012
"'-
0
Tc-Case Temperature-OC
5-382
1.5
::J
::J
C
0
50
C1>
~ROJC « 1.92°CIW
10
25
~
C1>
.;;
"
20
o
2.0
Ci
""
50
0
::J
.~
~
C1>
"
.;;
2.5
0
DAL.LAS, TEXAS 75222
PRINTED IN U.S.A.
T! (annot assume any responsibility for any circuits shown
or represent thaI they are free from potenl infringement.
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP145, TIP146, TIP147
•
125 W at 25°C Case Temperature
•
10-A Rated Collector Current
•
•
111-1
c:<
,.....,
,..m
mill
::!::!
z...,
MinhFEof1000at4V,5A
100-mJ Reverse Energy Rating
z:C:
c~
,.....,
OQ
COLLECTOR
device schematic
BASE
r--------- -,I
c>-!...I+---i
cn~
"-I
•i~
N
I
I
'" 150!1
'" 10k!1
________
_
C
I
I
I
I
I
I
I
IL
.........
m
n
m
:s::
III
m
:II
..J
EMITTER
•
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECIlANICALINTEIICtIANa~AOILITVOfTIPlq
PLASTICPACICAGEWITHTO_JOI,ITLIN~
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Coliector·Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 2SoC Case Temperature
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free·Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note S)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . • . . . . .
Lead Temperature l/B Inch from Case for 10 Seconds
'NOTES:
1.
2.
3.
4.
5.
TIP140 TIP141 TIP142
BOV
100V
60V
60V
BOV
100 V
SV
SV
5V
10 A
•
15A
O.SA
-See Figures 7 and B 12SW
•
3.SW
----'100 mJ
..
_ _ -65°C to lS0°C__ -6S0Cto lS0°C_
•
260°C
..
•
..
•
..
•
These values apply when the base-emitter diode is open-circuited.
This value applies for 'tw ~ 0.3 ms, duty cycle <;; 10%.
Derate linearly to 1500 C case temperature at the rate of 1 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC or refer to Dissipation Derating Curve, Figure 10.
This rating is based on the capability of the :translstors to operate safely in the circuit of Figure 2. L = 100 mH, ABB2
VSS2=OV. RS=O.1il. VCC=20V. Energy'" IC 2 L/2.
..
= 1000,
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-383
TYPES TIP140, TIP141, TIP142
N·P·N-OARLINGTON·CONNECTEO SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO
ICEO
ICBO
lEBO
hFE
VBE
VCE(sat)
•
NOTES:
TIP140
TEST CONDITIONS
Breakdown Voltage
Collector Cutoff Current
Ic=30mA,
IB = 0,
VCE-30V,
IB- 0
VCE-40V,
IB = 0
VCE=50V,
IB - 0
VCB-60V,
IE = 0
VCB-80V,
IE = 0
VCB = 100 V,
IE - 0
Emitter Cutoff Current
VEB- 5V,
10- 0
Static Forward Current
VCE -4V,
Collector Cutoff Cu rrent
TlP141·
TIP142
MIN MAX MIN MAX MIN MAX
See Note 6
60
80
100
UNIT
V
2
2
mA
2
1
1
mA
1
2
II See Notes 6 and 7
2
1000
1000
Transfer Ratio
VCE =4V,
Base-Emitter Voltage
VCE =4V,
IC= lOA, See Notes 6 and 7
3
Collector-Emitter
IB-l0mA,
2
Saturation Voltage
'B - 4OmA,
I See Notes 6 and 7
I
3
2
3
3
IC - 5 A
IC-l0A
500
2
mA
3
2
V
3
1000
IC-5A
IC= lOA
500
500
6. These parameters m~st be measured using pulse tBchniques. tw = 300 JJs, duty cycle" 2%.
7. These parameters are measured with voltage~senslng contacts separate from the current~carrying contacts and
~ocated
V
within 0.125
Inch from the device body .
switching characteristics at 25°C case temperature
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
TEST CONDITIONSt
TYP
'B(1) = 40 mA, IB(2) = -40 mA,
See Figure 1
VBE(off) = -4.2 V, R L = 3 fl,
0.9
IC= lOA,
11
UNIT
/.IS
tVoltaga and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT·
MONITOR
von=
660
42V
INPUT
-X--~O%
____ ~ _____ _
OV--
-4.2 V
1
10%
~r
RBB2=1500
270pF
OUTPUT
300
+
I
~t:::r-
90%L-,~
-=- VCC-3OV
VSS1" 44V
ADJUST FOR
Von=42VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a -30-V pulse (from 0 V) Into a 50-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr <;; 15 ns, tf '" 15 ns, Zout = 50 .0, tw ... 20 ,",S,
dutV cvcla .. 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin ;.;;, 10 MO, Cin <; 11.5 pF.
D. Reslstor~ must be noninductlve types.
E. The d-c power supplies may require additional bypassing In order to minimize rlngh1g.
FIGURE 1
1271
5·384
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TIP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
.....
,... ... ~7 ... (Sae_AI
INPUTO~
VOLTAGE
-6Y-
100mH
I
. - - . - 100 . . - - - .
I
I
lA2A~J--I--___ + _ I __
50n
COLLECTOR
CURRENT
+
-=- VCC-20V
I
0
I
I
::
V(BRICER-;--
IC
MONITOR
VOLTAGE
I
I
I
------j-
iI
COLLECTOR
'
I
I
-
I
I
I
I
I
20V
VCE(. .I - -
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A: Input pulse width is increased until
'eM
= 1.42 A.
FIGURE 2
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
.
TRANSFER RATIO
'"
CASE TEMPERATURE
40000
40
veE;4 V
.2
~
'"
j
20000
3.6
See Notes 6 and 7
>I
J
10000
!
;;
7000
4000
~
X
2 000
Te
700
400
0.4
2.8
Ie - 10 A
2.4
2.0
--5S"C
"........
1.6
I
1.2
>
0.6
:ll
VeE -4 V
See Notes 6 and 7
32
1
TC·'O(tc
\..Ty-25,e
1000
~
.~
y
11
1
•
BASE·EMITTER VOLTAGE
COLLECTOR CURRENT
f.--r
r-
--r--
lel5 A
~
-= c",.
c-
I
0.4
o
0.7
1
1
10
-75-60-26 0
26 60 76 100 125 160 175
Ic-Collector CurrBnt-A
Tc-Case Temperature-DC
FIGURE 3
FIGURE 4
COLLECTOR·EMITTER SATURATION VOLTAGE
FORWARD CURRENT TRANSFER RATIO
SMALL·SIGNAL COMMON·EMITTER
..
"
CASE TEMPERATURE
1
See Notes 6 and
;;
i
i
~
!
~
NOTES:
1~'4bml"cl=IJA
~ '-
.~E
FREQUENCY
.2
f- r-
.,......
I I
veE -10V
le= 1 A
Te = 25'C
S ~
1..
.~
"I
IB"'2mA 10A
0.4
-76 -60 -25 0
J
20
10
lB· 10 mA, Ie - 6 A
........
0.7
./
4D
~
V
./
-- ./
;
'"
'I (
25 50 75 100 125 160 175
~
1
"-
~
~
i
10
TC-Case Temperature-°e
f-Frequancy-MHz
FIGURE 5
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cyc.le < 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrYlng contacts and located within 0.125
inch from the device body.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·385
TYPES TlP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
40
20
D-C Operation
TC EO; 25°C
10
7
'" '\\
U
....
0
tJ
•
7
E
:::J
E
4
~OO
~
"" ",
'x
TIP145
'"
:2:
I
TIP146,
0.4
.!!!
'0
u
\
0.7
'"
10
~
2
1
20
~:::J
"4
«
.!.<:
VCC= 20V
RBB2 = 100 n
TC = 25°C
See Figure 2
9
r
2
TI, 14
10
20
40
70 100
200
Ifee ~otf?
1
0.4
0.2
400
4
10
40
100
VCE-Collector-Emitter Voltage-V
L-Unclamped Inductive Load-mH
FIGURE 7
FIGURE 8
400
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
150
<:
o
'i
'iii
.~
~
100
o
'"
5:::J
25
~
0
'>
~
25
50
75
0
<:
';J
~
100
<:
0
U
~
125
150
FIGURE 9
1.5
E
:::J
E
'x
0.5
I
I-
0
2'"
c.
o
25
ROJA EO; 35fcIW
'" '"
2
:::J
T C-Case Temperature-° C
50
75
~
100
'\
"'~
125
150
T A -Free-Air Temperature-°c
FIGURE 10
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
"' ~
2.5
'"
:::J
I
o
'"
3
0
III
50
'x
2'"
0
8
~8JCEO;l0CIW
75
<:
5·386
3.5
.~
.;:
E
:::J
E
';J
'"c.
<:
8
4
0
125
o
fl
~<:
DALLAS, TEXAS 75222
PRINTED IN U.S A
TI (onnot ossume Dny responsibility for any circuits shown
or represent rhat they are free from palent infringement.
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE:
TYPES TIP145. TIP146. TIP141
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
•
•
DESIGNED FOR COMPLEMENTARY USE WITH T1P140, TIP141, TIP142
125 W at 25°C Case Temperature
• Min hFE of 1000 at 4 V, 5 A
10-A Rated Collector Current
• 100 mJ Reverse Energy Rating
COLLECTOR
r--- - ----- --,
device schematic
I
BASE
I
~--------~
0--'-+---1
I
I
I
I
I
I
I
IL
'" 10 k.!l
I
'" 150.!l
________
..JI
EMITTER
mechanical data
•
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICALINTEIICKANGEABILITYOF TIP'.
PLAS1l(:PACII:ACIEWITHT0-30UTLINE
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
. . . . . . . .
Safe Operating Areas at (or below) 25°C Case Temperature . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
TlP145 TIP146 TlP147
-60 V -80 V -100V
-60 V -80 V -100V
-5V
-SV
-SV
a
lOA
a
15A
a
0.5 A
See Figures 7 and 8
125 W
•
a
3.5W
..
100mJ _
_
-65°C to 150°C_
_-65°C to 150°C_
..
260°C
a
..
.
..
....
These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms,duty cycle <; 10%.
Derate linearly to 150°C case temperature at the rate of 1 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC or refer to Dissipation Derating Curve, Figure 10,
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, ASB2 = 100
VBB2 ~ 0 V, AS ~ 0.1 n, Vee ~ 20 V. Energv '" le2L/2.
n,
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
5-387
TYPES TIP145, TIP146, TIP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
Collector-Emitter
V(BR)CEO
ICEO
ICBO
TlP145
TEST CONDITIONS
PARAMETER
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
IC = -30mA,
IB = 0,
VCE = -30 V,
IB = 0
VCE--40 V,
IB - 0
VCE - -50 V,
IB - 0
VCB - -60V,
IE - 0
VCB - -BOV,
IE - 0
TlP146
TIP147
MIN MAX MIN MAX MIN MAX
See Note 6
-60
-BO
-100
hFE
VBE
VCE(sat)
•
NOTES:
V
-2
-2
mA
-2
-1
-1
mA
-1
VCB - -100 V, IE - 0
lEBO
UNIT
-2
Emitter Cutoff Current
VEB = -5 V,
IC- 0
Static Forward Current
VCE=-4V,
IC= -5A
Transfer Ratio
VCE=-4V,
, Isee Notes 6 and 7
IC= -10 A
Base-Emitter Voltage
VCE - -4 V,
IC - -10 A,See Notes 6 and 7
Collector-Emitter
IB - -10mA,
Saturation Voltage
IB - -40mA,
I.
1000
-2
-2 mA
1000
1000
500
500
IC - -5 A ISee Notes 6 and 7
IC--l0AI
500
-3
-3
-3
-2
-2
-2
-3
-3
-3
V
V
6. These parameters must be measured using pulse techniques. tw '= 300 p.s, duty cycle';:;;; 2%.
7. These parameters are me~sured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body,
switching characteristics at 25°C case temperature
TEST CONDITlONSt
PARAMETER
ton
Turn-On Time
IC= -lOA,
IB(1) = -40 mA,
toff
Tu rn-Off Time
VBE(off) = 4.2 V, R L = 3
n,
TYP
IB(2) = 40 mA,
0_9
See Figure 1
11
UNIT
/-IS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
INPU:·~~~~oo.: -
56n
V
on
'-42V -
-
-
-
-
I
I
I
I
'on -l.---.j
270 pF
Jl
Vgen
OUTPUT
300
~
iL;;.-..l-so%
I.--'off--!
f~
VaB1 "'" 44V
ADJUST FOR
Von=-42VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a 30-V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr
::s;;;;
15 ns, tf
::s;;;;
15 ns, Zout "" 50,0, tw = 20 p,s,
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
15 ns, Rin
~
10 Mn, Cin
~
~
11.5 pF.
D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.,
FIGURE 1
1271
5-388
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TIP145, TIP146, TlP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
~ tw "" 7 ms (See Note Al
I
I
--nl.----1r IL
5V __ !
VeE MONITOR
INPUT
I
VOLTAGE 0 - - '
100mH
o
-t-i
INPUT (C>t---'VIIv-.....
COLLECTOR
I
I
I
L.---,--100 ms -------I
I
I
I
I
I
I
~
~ ~
1
I
;
~
___
CUR~~:~A __ :_~I!I __________ 1
.1. __'V_I~_L
-:-- Vee = 20 V
I
Ie
I
VeElytl __ 1
MONITOR
~ _ _ _ _ _ -!
I
-20 V
Rs'" 0.1.11
I
I!
!-~I
COLLECTOR
VOLTAGE
I
V(BR)CER -
TEST CIRCUIT
...L -
-
VOLTAGE AND CURRENT WAVEFORMS
NOTE A: Input pulse width is increased until leM "'" -1.42 A.
FIGURE 2
•
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
BASE·EMITTER VOLTAGE
COLLECTOR CURRENT
'a:g
4000
I
Te = 1(xtc
]
2000
~
1000
8
II
CASE TEMPERATURE
-4.0
25°1
Te =
700
-3.6
.~
In
~
~
-2.0
~
Iu
>"
VeE'" -4 V
~~IN1'i\6,.nd
100
-0.4
-2.8
~
400
200
~
7
and1
IC=-10A
I
'--
le= -5 A
-1.6
-1.2 '-- -
-
-0.8
-7 -10
FIGURE4
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
'"
FREQUENCY
CASE TEMPERATURE
.2 100
a: 70
•
See Notes 6 and 7
V
V
18=-40mA. le=-10A
i'--
j
y
1iiii
-0.7
~ -0.4
--- ~
I. I
2 rnA, Ie
25
]
40
~
20
8
j
10
~
4
~
2
o
lA
I I
1
I I I I
-75 -50-25 0
IOV
VeE
Ie '" 1 A
Te - 25°e
"-
I"'-.
11 1
50 75 100 125150 175
10
f-Frequency-MHz
Te-Case Temperature-oc
FIGURE 5
NOTES:
255075100125150175
Te-Case Temperature-°e
COLLECTOR-EMITTER SATURATION VOLTAGE
---
---
I
I
FIGURE3
I
---
~
-75-50-250
Ie-Collector eurrent-A
........
I
-'t--L
o
-4
i/'
I
'--I--
-0.4
-2
-0.7-1
VeE = -4 V
See Notes 6
"0
> -2.4
"E!
!
-3.2
8,
f-
5S<>C
TC
>I
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0_125
inch from the device body.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
5-389
TYPES TIP145, TIP148, TlP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
-20
-40
D-C Operation
TC';;; 25°C
.!!
(5
~ D-C Operation
I I I
0_01
o
5
10
/
I
~
"
0.4
u
5 ms
tw
\.
5
"
--,
\
U
\
tw 5 ~s
tw = 50~s7
/
::J
Ltw=500~~ .•'\~
/ /
0_1
/
\
-
0.4
Y
u
•
....
1' ....
'\
~
....
....
~
5
.!!
5 ~s
tw
tw -50~s7
TC';; 25°C
See Note 7
40
/
0_1
'. \
/\
,
"'"
/
\
\
\
~,.
tw -: 500~s
0_04 ~Etw 5 ms
D-C Operation
,
~
0.01
15
20
25
30
35 40 45
o
50
10
20
30
40
50
60
70
VCE-Collector-Emitter Voltage-V
VCE-Collector-Emitter Voltage-V
FIGURE 3
FIGURE 4
80
NOTE 7: Areas defined by dashed lines apply for nonrepetitive-puise operation. The pulse may be repeated after the device has regained
thermal equilibrium.
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
~c:
8
~c:
1.2
l
7
.~
1.0
6
.,
5
o
i:5
2l
·S
o
I""
Cl
'"
::J
g
.g
c:
o
u
E
::J
4
3
'"
2
·iii
i:5
2l
·s
"-
.~
"- ~
<3
~
'"
:E
I
o
o
25
50
75
0.6
~OJA';; 175°C/W
c:
E
l-
g
::J
.l(
e..
C3
ROJC';; 29.2°C/W
'"
"" '"
'\..
0.8
100
E
::J
E
.l(
~
125 150 175 200
0.4
~
"" "
I"\..
0.2
'"
:E
I
~
0
o
25
50
75
'"
100 125 150 175 200
Tc-Case Temperature-°c
T A-Free-Air Temperature-°c
FIGURE 5
FIGURE 6
PRINTED IN USA
5·394
TEXAS INSTRUMENTS
INCORPORA:rED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
1271
TI (annot assume ony responsibility for any drcuits shown
or represent that they ore free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP503 THRU TIP506
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
Ill-l
e<
•
120 V and 150 V Min V(BR)CEO
•
2-A Rated Continuous Collector Current
•
20 Watts at 100°C Case Temperature
•
Min fT of 70 MHz at 5 V, 0.25 A
'-'"
,-m
mm
-1-1
z=ii
z~
OW
.-1
C:I:
o:":u
me
.... '"..,
~:::!
mechanical data
"'0
TIP503
TIP504
;~
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
C
m
(')
m
;:
III
m
:u
.....'"
..
0360RMAX
•
ALL DIMENSIONS ARE IN INCHES
ALL JEDEC TO-66 DIMENSIONS AND NOTES ARE APPLICABLE
TIP505
TIP506
ALL TERMINALS ARE INSULATEO FROM THE CASE
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The caSI! temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector· Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Operating Collector Junction Temperature Range . . . . . . .
.............. .
Storage Temperature Range
Lead or Terminal Temperature 1/161nch from Case for 10 Seconds
NOTES:
1.
2.
3,
4.
TIP503 TlP504
TIP505 TlP506
160V
130 V
150 V
120 V
,6V
6V
_2A_
-5A-1A-20W-2W _
_ 65°C to 200°C
-65°C to 200°C
-300°C-
These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms, duty cycle < 10%.
Derate linearly to 200°C case temperature at the rate of 0.2 wtC.
Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/oC.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-395
TYPES TIP503 THRU TIP506
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TIP503
TIPS04
TIPS05
TIP506
UNIT
MIN MAX MIN MAX
V(BR)CEO Collector-Emitter Breakdown Voltage
ICEO
Collector Cutoff Current
IC= 30mA,
IB = 0,
VCE - 60 V,
IB - 0
VCE-75V,
IB- 0
See Note 5
120
50
•
VCE
VCE - 150 V, VBE = 0
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
VCE(sat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-5ignal Common-Emitter
"'fel
NOTES:
Forward Current Transfer Ratio
p,A
400
120V,VBE-0
ICES
V
150
50
400
. VCE-60V,
VBE - 0,
TC - 150°C
VCE - 75 V,
VBE - 0,
TC - IS0°C
VEB= 3 V,
IC- 0
20
SOO
20
VEB=6V,
IC=O
200
200
500
VCE - 4 V,
IC-l A,
See Notes 5 and 6
40
VCE =4 V,
IC= 2A,
See Notes Sand 6
20
VCE = 4 V,
IB 0.1 A,
IC= 2A,
See Notes Sand 6
1.4
1.4
See Notes Sand 6
0.6
0.6
IB- 0.2A,
IC lA,
IC- 2A,
VCE=SV,
IC= 250mA, f= 1 kHz
VCE=SV,
IC= 2S0mA, f= 10MHz
See Notes 5 and 6
200
40
p,A
p,A
200
20
1.2
1.2
40
40
7
7
V
V
5. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle,so;; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Thermal ResiStance
ROJA
Junction-to-Free-Air Thermal Resistance
S
87.S
UNIT
°CIW
PRINTED IN U.S A
5·396
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP507, TIP50B
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
150 V Min V(BR)CEO
•
2-A Rated Continuous Collector Current
•
20 Watts at 100°C Case Temperature (TIP507)
•
4 Watts at 100°C Case Temperature (TIP508)
•
Min fT of 50 MHz at 5 V, 0.2 A
mechanical data
TIP507
ALL TERMINALS ARE INSULATEO FROM THE CASE
•
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.
TIP508
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL. DIMENSIONS ARE 1M INCHES
UNLESS OTHERWISE SPECIFIED
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
T1P507
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . • . .
Continuous Collector Current . . •
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (~r below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range . . . . . . .
Storage Temperature Range
....•..........
Lead or Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
TIP508
_-1S0V__
_-1S0V_
_-SV _ _
_-2A_
_-3A_
See Figure 1
20W
4W
2W
1W
-6So C to 200° C
-6SoC to 200°C
_300°C--,.
This value applies when the baseRemitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle >(; 10%.
Derate linearly to 200°C case temperature at the rate of 200 mW/C for TIP507 and 40 mW/C for TIP50B.
Derate linearly to 200°C free-air temperature at the rate of' 11.4 mwtC for TIP507 and 5.7 mW/oC for TIP50S.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-397
TYPES TIP507, TIP50B
P-N-P SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted) .
PARAMETER
TEST CONDITIONS
V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICED
ICES
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VSE
Sase-Emitter Voltage
Collector-Emitter Saturation Voltage
Small-Signal Common-E mitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter
hel
NOTES:
II
IS = 0,
VCE - -75V,
IS - 0
See Note 5
MIN
Forward Current Transfer Ratio
MAX
UNIT
-200
IJ.A
-150
V
-1
VCE - -150V, VSE - 0
Collector Cutoff Current
IESO
VCE(sat)
IC= -30mA,
TC - 150°C
-2
mA
VCE = -75 V,
VSE - 0,
VES= -2.5 V,
IC= 0
-100
IJ.A
VES= -5 V,
IC= 0
-1
mA
VCE = -4 V,
IC=-l A,
See Notes 5 and 6
30
VCE = -4 V,
IC= -2A,
See Notes 5 and 6
10
120
VCE = -4 V,
IC= -2A,
See Notes 5 and 6
-1.5
IS = -0.1 A,
IC=-lA,
See Notes 5 and 6
-1
IS = -0.4 A,
IC=-2A,
See Notes 5 and 6
-1.5
VCE = -5V,
IC= -0.2 A,
f = 1 kHz
30
VCE = -5 V,
IC= -0.2 A,
f = 5 MHz
10
V
V
5. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current·carrying contacts and located within 0.125
inch from the device body.
thermal characteristics
PARAMETER
ROJC
Junction-to-Case Thermal Resistance
ROJA
Junction-to-Free-Air Thermal Resistance
TIP507
TIP508
MAX
MAX
5
25
87.5
175
UNIT
°C/W
MAXIMUM SAFE OPERATING AREA
MAXIMUM COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE
-10
-7
--+-.
1
I EMITnI
! ~I
_~_~~
_P!_!~I-
017: 617
0ii7
TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF
FLAT SURFACE WITHIN 0,125"
FROM STUD
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature
(See Note 3)
................. .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4)
......... .
Operating Collector Junction Temperature Range . . . .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
TIP515 TIP516 TIP517 TIP518
130V 160V 130V 160V
120V 150V 120V 150V
6V
6V
6V
6V
...>-----12 A - - - - ..
...> - - - - - 25 A - - - -••
...- - - - 6 A - - - - - .
80W
BOW
BOW
BOW
4W
4 W 3.5 W 3.5 W
- - -65°C to 200°C_
- - -65°C to 200°C•
300°C
..
These values apply when the base-emitter diode is open-circuited.
This value applies for "tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 0.8 W/C.
Derate linearly to 200°C free-air temperature at the rate of 22.8 mW/oC for TIP515 and TIP516, 20 mW/oC for TIP517 and
TIP518.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 7!5222
5-403
TYPES TIP515 THRU TIP518
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TIP515
TIP516
TIP517
TIP518
UNIT
MIN MAX MIN MAX
V(SR)CEO Collector-Emitter Sreakdown Voltage
ICEO
Collector Cutoff Current
Ic=30mA,
IS = 0,
VCE - 60V,
IS - 0
VCE - 75 V,
IS - 0
See Note 5
120
150
1
IESO
•
VCE = 150V, VSE -0
Collector Cutoff Current
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VSE
Sase-Emitter Voltage
VCE(sat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
hte
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihtel
NOTES:
Forward Current Transfer Ratio
mA
5
VCE - 120 V, VSE - 0
ICES
V
1
5
VCE=60V,
VSE = 0,
TC = 150°C
VCE = 75V,
VSE = 0,
TC = 150°C
VES = 3 V,
IC- 0
VES = 6 V,
IC= 0
VCE = 4V,
IC= 6A,
5
5
0.2
0.2
2
See Notes 5 and 6
40
30
200
2
40
mA
mA
200
VCE - 4 V,
IC-12A,
See Notes 5 and 6
VCE - 4 V,
IC-12A,
See Notes 5 and 6
1.4
1.4
IS = 0.6 A,
IC-6A,
See Notes 5 and 6
0.8
0.8
IS = 1.2A,
IC= 12A,
See Notes 5 and 6
1.5
1.5
VCE = 5 V,
IC= 1 A,
t = 1 kHz
VCE=5V,
IC = 1 A,
t= 10MHz
30
40
40
7
7
V
V
5. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cycle" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
thermal characteristics
PARAMETER
ROJC
Junction-to-Case Thermal Resistance
ROJA
Junction-to-Free-Air Thermal Resistance
TIP515
TIP517
TIP516
TIP518
MAX
MAX
1.25
1.25
43.75
50
UNIT
°C/W
PRINTED IN U.S.A
5-404
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP519, TIP520
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
150 V Min V(BR)CEO
•
B-A Rated Continuous Collector Current
•
50 Watts at 100°C Case Temperature
•
MinfTof40MHzat5V,l A
mechanical data
TlP519
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0.525 RMAX
T---~-:~-~-j-11- t::~~AM~:JAD5
1.573, MAX
1~38
oOa
1.050 MAX MAX m:
~
1+
2-EMITTER
o~:£ ~ 0-\-lt
,~~ ",-.--*~
0.205 0.440
-'-I "I"
t~:!::
0.188 R MAX
BOTH ENDS
I
0.135 MAX -1
to
0.225
-
0.420
I
0.200
SEATING PLANE
1 - BASE
I
OJA
2 HOLES
t-
•
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
TIP520
ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE
FLAT SURFACE
FROM STUD
WITHIN 0.125"
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current _ . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature.
Continuous Device Oissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
... _ . . . .
Storage Temperature Range
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
TIP519 TlP520
__ -1S0V___
__ -150 V _
--SV--BA_-12 A _
--3ASee Figure 1
-SOW4W
3.SW
-65°C to 200°C
-6SoC to 200°C
_300°C_
This value applies when the base~8mitter diode is open-circuited.
This value applies for 'tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 0.5 W/oC.
Derate linearly to 200°C free-air temperature at the rate of 22.8 mW/oC for TIP519 and 20 mWtC for TIP520.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-405
TYPES TIP519, TIP520
P-N-P SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
VIBR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICEO
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
Collector-Emitter SaturaHon Voltage
Forward Current Transfer Ratio
Small-Signal Common-Emitter
hel
•
NOTES:
VCE = -75 V,
IB = 0
VCE = -75V,
Small-Signal Common-Emitter
hfe
IB = 0,
MIN
See Note 5
Forward Current Transfer Ratio
VBE = 0,
MAX
UNIT
-500
!LA
-150
V
-1
VCE=-150V, VBE = 0
ICES
VCElsat)
IC= -30mA,
TC = 150°C
-3
mA
VEB = -2.5 V,
IC = 0
-100
!LA
VEB = -5 V,
IC= 0
-1
mA
VCE = -4 V,
IC=-4A,
See Notes 5 and 6
30
VCE=-4V,
IC= -SA,
See Notes 5 and 6
10
VCE=-4V,
IC = -SA,
See Notes 5 and 6
-2
IB = -0.4 A,
IC=-4A,
See Notes 5 and 6
-1
IB=-1.6A,
IC=-SA,
See Notes 5 and 6
-2.2
VCE = -5 V,
IC= 1 A,
f = 1 kHz
30
VCE=-5V,
IC=-lA,
f = 5 MHz
S
150
V
V
5. These parameters. must be measured using pulse techniques. tw = 300 fJ,s, duty cycle";;; 2% .
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
thermal characteristics
PARAMETER
ROJC
Junction-to-Case Thermal Resistance
ROJA
Junction-to-Free-Air Thermal Resistance
TIP519
TIP520
MAX
MAX
2
2
43.8
50
UNIT
°C/W
MAXIMUM SAFE OPERATING AREA
MAXIMUM COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE
-10
-7
10 keV
MAX
2.5
S7.5
UNIT
°CIW
(reactor spectrum).
6. These parameters must be measured using pulse techniques. tw "" 300 /Js, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
PRINTED IN U.S A.
5-426
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE TIP543
N-P-N SILICON POWER TRANSISTOR
RADIATION-TOLERANT TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
Min hFE of 10 at 4 V, 5 A after 2 X 10 14 Fast Neutrons/cm 2
•
40 W at 100°C Case Temperature
•
Max VCE(sat) of 0.8 V at IC = 10 A, IB = 1 A
•
Min fT of 120 MHz at 5 V, 1 A
•
4 mJ Reverse Energy Rating
description
C
m
om
The TIP543 transistor offers a significant advance in radiation-tolerant-device technology. Unique construction
techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through
2 X 1014 n/cm2.
im
--'"
;J]
....
mechanical data
ALL TERMINALS ARE INSULATEO FROM THE CASE
•
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
75 V
Collector-Base Voltage . . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load En.rgy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
This value applies when the baSBMemitter diode is openMcircuited.
This value applies for tw ~ 0.3 ms, duty cycle'" 1 0%.
Derate linearly to 200°C case temperature at the rate of 0.4 W/C.
Derate linearly to 200°C free~air temperature at the rate of 11.4 mWl C.
This rating is based on the capability of the transistor to operate safely in the
the forthcoming JEDEC publication
VBBl
= 10 V, VBB2 = 0
V, RL
unclamped~inductive
Suggested Standards on Power Transistors.:j:
= 0.1 n, VCC = 20 v.,
L
=
65V
5V
lOA
20A
5A
40W
2W
4mJ
_65° C to 200° C
-65°C to 200°C
300°C
load circuit of Section 3.2 of
1251'H, RBBl
= 5 n,
RBB2
= 100 n,
ICM = B A, Energy'" IC 2 L/2.
;This circuit appears on page 5-1 of this data book.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 7!i222
5-427
TYPE TIP543
N-P-N SILICON POWER TRANSISTOR
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICEO
ICES
Collector Cutoff Current
lEBO
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
VBE
Base-Emitter Voltage
VCE(sat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter
ihfei
•
Forward Current Transfer Ratio
IC= 30mA,
IB = 0,
VCE - 40 V,
IB - 0
VCE 75 V,
VCE=40V,
VBE
See Note 6
IC = 0
VEB - 5 V,
IC=O
65
V
2
0
VBE = 0,
VEB = 3 V,
MIN MAX UNIT
1
TC = 150°C
2
0_2
1
VCE - 4V,
IC- 5A,
See Notes 6 and 7
40
VCE - 4V,
IC - lOA, See Notes 6 and 7
40
rnA
rnA
rnA
200
VCE - 4V,
IC= lOA, See Notes 6 and 7
1.4
IB - 0_5A,
IC- 5A,
See Notes 6 and 7
0.5
IB-l A,
IC-l0A, See Notes 6 and 7
0.8
VCE = 5 V,
IC = 1 A,
f = 1 kHz
40
VCE = 5 V,
IC = 1 A,
f= 10MHz
12
V
V
post-irradiation electrical characteristics at 25°C case temperature
PARAMETER
Static Forward Current Transfer Ratio
hFE
TEST CONDITIONS
VCE = 4V,
IC= 5A,
See Notes 6 and 7
RADIATION
FLUENCEt
2 X 10 14 n/cm 2
MIN MAX UNIT
10
thermal characteristics
PARAMETER
MAX
Thermal Resistance
RoJC
Junction~to-Case
ROJA
Junction-to-Free-Air Thermal Resistance
2.5
87.5
UNIT
°C/W
tRadiation is fast neutrons (n) at E ~ 10 keV (reactor spectrum).
NOTES:
6. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle';;; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
PRINTED IN U.S.A.
5·428
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BESTPRODUCT POSSIBLE.
TYPES TIP544, TlP545, TIP546
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH 2N5758. 2N5759. 2N5760
•
150 W at 25°C Case Temperature
•
6-A Rated Continuous Collector Current
•
Min fT of 1 MHz at 20 V. 0.5 A
mechanical data
The case outline falls within JEDEC TO·3.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~
oO
O'S25 R MAX
Q
j 1-
~
0_'25_0--iITF~~~DIA'
0.450
' -_ _
1.050 MAX
or.~
aoTH ENDS
0.135
0.440
-
MAX
I I.
MAX -I r:--;:
0.188 R M A X · - ' - - - - -
O'480 ~1'573
-"!,,
- 6-'-1+
0.205 0 .440
0.420
0.200
SEATING PLANE
1 - BASE
T.'i77
~-'Mlm.
"
•
,-.---*-
-\"'-1''''1''
I
1.197
0.675
~
LEADS
0.'25 --.::T
MAX
I
t-
t~:!::
DIA
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Coliector·Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
TIP544 TIP545 TIP546
-100V -120V -140V
-100V -120V -140V
-7 V
-7 V
-7 V
_-6A _
-10A_
_
_-4A_
-1S0W-SW_-6SoC to 200oC _
_
-6SoC to 200°C_
_23SoC_
These values apply when the base~emitter diode is open-circuited.
This value applies for"tw '" 0.3 ms, duty cycle'" 10%.
Derate linearly to 200°C case temperature at the rate of 0.857 wtC.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-429
TYPES TIP544, TIP545, TIP546
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
electrical oharacteristics at 25°C case temperature (unless otherwise noted)
Collector-Emitter
V(SR)CEO
Sreakdown Voltage
TlP544
TEST CONDITIONS
PARAMETER
IC = -200 mA, IS = 0,
See Note 5
-100
Collector Cutoff Current
TIP546
-140
-120
mA
-1
-5
VCE = -50 V, IS = 0
Collector Cutoff Current
-5
VeE = -60 V, IS=O
mA
-5
VCE = -70 V, IS =0
-1
VeE = -100 V, VSE = 1.5 V
-1
VCE = -120 V, VSE = 1.5 V
ICEV
•
IESO
hFE
VSE
VCE(sat)
Collector Cutoff Current
hfe
~fel
NOTES:
TC= 15o"C
VCE = -120 V, VSE = 1.5 V,
TC = 150°C
VCE = -140 V, VSE = 1.5 V,
TC = 150°C
IC= 0
Static Forward Current
VCE = -2 V,
IC= -3A
Transfer Ratio
VCE=-2V,
IC=-SA
Sase-Emitter Voltage
VCE=-2V,
IC=-3A,
Collector-Emitter
IS = -0.3 A,
IC= -3A
Saturation Voltage
IS=-1.2A,
IC= -SA
Forward Current Transfer Ratio
Small-5ignal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Cobo
VCE = -100 V, VSE = 1.5 V,
VES=-7V,
Small-5ignal Common-Emitter
Output Capacitance
-1
VCE = -140 V, VSE = 1.5 V
Emitter Cutoff Current
V
-1
VCS=-120V,IE=0
VCS=-140V,IE=0
ICEO
UNIT
-1
VCS = -100 V, IE - 0
ICSO
TIP545
MIN MAX MIN MAX MIN MAX
I
.
I See Notes 5 and 6
-5
-5
-1
25
100
-1
20
80
5
5
-1
15
5
-1.5
-1.5
-1.5
1See Notes 5 and 6
-1
-1
'-1
-2
-2
-2
f = 1 kHz
VeE = -20 V, IC= -0.5 A,
f=0.5MHz
VCB= -10V, IE = 0,
f= 0.1 to 1 MHz
15
15
15
2
2
2
300
mA
60
See Notes 5 and 6
VCE = -10V, IC=-2A,
mA
-5
300
300
V
V
pF
5. These parameters must be measured using pulse techniques. tw = 300 J,J.s, duty cycle <; 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
PRINTED IN U.S.A
5·430
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.
TYPES TIXP547. TIXP548. TIXP549
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•
60 V, 80 V, and 100 V Min V(BR)CEO
•
100-A Rated Continuous Collector Current
•
200 Watts at 100°C Case Temperature
•
Min fT of 3 MHz at 5 V, 5 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
•
1 EMITTER
2 BASE
3 COLLECTOR
NOTES
A. Seahngflangeill'ldcan.rregularltlesliewlthmthlsdlman$.on
8. POlrtlonoftermmalsmrelatl(lntothehaxagonlsnotcontrolled
C Case temparatllre measurement pomt IS on the undars,de of flat surface wlthm
D.
~'~~~:'~~Smar~~'lnchesunleHOthelWlliespeclfled
ALL JEDEC
TO~114
DIMENSIONS AND
NOTES ARE
APPLl~
CABLE.
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIXP547TIXP548 TIXP549
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ _ _ _ _ _
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100·C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range _ _ _ .
Storage Temperature Range . . . . . . . _ . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
aov
l00V
120V
aov 100 V
60V
5V
SV
SV
_100 A
•
-150 A
•
..
2SA
•
_
See Figure 1 _
-200W-
-a.sw
•
_-6S0Cto 200°C_
_-6S0Cto 200°C_
-300°C-
These values apply when the base-emitter diode is open-circuited.
This value applies for tw .eo;; 0.3 ms, duty cycle'.s;;; 10%.
Derate linearly to 200°C case temperature at the rate of 2 WIDe,
Derate linearly to 200°C free~air temperature at the rate of 48.5 mW/oC.
1271
PRELIMINARY DATA SHEET:
Supplementary data may "'be
published at a later date.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-431
TYPES TIXP547, TIXP548, TIXP549
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO
ICEO
ICES
lEBO
hFE
•
VBE
VCE(sat)
hfe
~fel
NOTES:
TIXP547
TIXP548 TIXP549
UNIT
MIN MAX MIN MAX MIN MAX
TEST CONDITIONS
Breakdown Voltage
Collector Cutoff Current
Ic=200mA,
IB =0,
VCE=30V,
VCE=40V,
IB=O
IB=O
VCE =50V,
IB=O
Emitter Cutoff Current
Static Forward' Current
Transfer Retio
Bese-Emitter Voltage
Collector-Emitter
Seturation Voltage
Small-8ignal Common-Emitter
Forward Current Transfer Retio
Small-8ignal Common-Emitter
Forward Current Transfer Ratio
60
SO
V
100
10
10
mA
10
VCE -SOV, VBE=O
VCE -l00V .. VBE =0
VCE = 120V, VBE-O
VCE =40V, VBE =0,
VCE=50V, VBE =0,
VCE=60V, VBE =0,
VEB=4V,
IC=O
IC-O
VEB - 5 V,
IC- 50A
VCE-4V,
Collector Cutoff Current
See Note 5
IC= l00A
IC=100A,
5
5
5
TC = 150°C
25
25
TC = 150°C
TC = 150°C
2
5
2
5
: See Notes 5 and 6
15
100
5
16
5
100
15
IC=50A
I
c= l00A
VCE = 5 V,
IC=5A,
f = 1 kHz
15
15
15
VCE=5V,
IC=5 A,
f= 1 MHz
3
3
3
See Notes 5 and 6
4
II See Notes 5 and 6
1.5
3
25
2
5
100
mA
5
VCE-4V,
VCE =4 V,
IB=5A,
IB=25A,
5. These parameters must be measured using pulse techniques. tw = 300 ,",s, duty cycle
mA
4
1_5
3
4
V
1.5
3
V·
< 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
thermal characteristics
PARAMETER
R8JC
R8JA
MAX
0.5
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
20.6
UNIT
°CIW
MAXIMUM SAFE OPERATING AREA
1000
<
,!.
~D-C O~,
ow ...
400 :TC';;;;100°C
c
~ 100
:::I
(,J
~
.!!
40
"5
10
E
:::I
E
4
u
""'-
..
'x
:E
£,
111"041
0,4
0.1 1
'1"0"0
Ilr
p5 j9 1
4
10
40 100
400 1000
VCE-Collector-E mitter Voltage-V
FIGURE 1
PRINTED IN U.S.A
5-432
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUCT POSSIBLE.
TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP645, TIP646, TIP647
•
•
175 W at 25°C Case Temperature
•
10-A Rated Collector Current
......l!~m
MinhFEof1000at4V,5A
•
."
mill
100-mJ Reverse Energy Rating
::!::!
z."
zz!
device schematic
P?
o::!
COLLECTOR
~i
......
...
r - - -_------------------...
BASE
o--=I~_--I
I
L_________
"'10kO
.
;
I
I
I
I
I
I
I
"-I
i:;;
~Z!
"'15011
m
!:
III:0
...I
•
EMITTER
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
=~
0o.525R
=::~:~jITF1-~::~:~h
MAX
o
a
1.050 MAX
0.225
DIA
....l..--
0.188 R
D.2iIs
MAX:-'---~==- I
0.135 MAX -I
80TH ENDS
---=r 0.440
0.420
-1-1+ 1-·
-\.,
1
,
0.200
SEAtiNG PLANE
I - BASE
I
I-
~
lo.161 DIA
0.151
2 HOLES
CASE TlMPERATURE
MEASUREMENT POINT
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous'Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:
1.
2.
3.
4.
5.
TIP640 TIP641 TIP642
80V
100V
60V
60V
80V
100V
5V
5V
5V
10A
•
15A
0.5A
+-lSee Figures 7 and 8 _
175W
•
5W
•
-100mJ_
-65°C to 200°C -65°C to 200°C _
_
_260°C_
-
•
..
•
•
•
..
These values apply when the baseRemitter diode is open-clreuited.
This value applies for !w " 0.3 ms, duty cycle" 1 0%.
Derate linearly to 200°C case temperature at the rate of 1 W/oC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC or refer to Dissipation Derating Curve, Figure 10.
This rating is based on the capability of the ltranststors tci operate safely in the circuit of Figure 2. L = 100 mH, RBB2 = 100 0,
VBB2=OV, RS=0.111, VCC=20V. Energy "'IC2L/2.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
~
tI
m
o
DALLAS, TEXAS 715222
5-433
TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO
ICEO
ICBO
lEBO
hFE
VBE
VCE(sat)
•
NOTES:
TIP640
TEST CONDITIONS
Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
IC=30mA,
IB = 0,
VCE - 30 V,
IB - 0
VCE -40V,
IB - 0
VCE - 50 V,
IB - 0
VCB-60V,
IE - 0
VCB-80V,
IE = 0
VCB-l00V,
IE - 0
TIP641
TIP642
MIN MAX MIN MAX MIN MAX
See Note 6
60
UNIT
100
80
V
2
2
rnA
2
1
1
mA
1
Emitter Cutoff Cu rrent
VEB - 5 V,
IC,- 0
Static Forward Current
VCE = 4 V,
Transfer Ratio
VCE = 4 V,
IC=5A
IC= lOA
Base-Emitter Voltage
Collector-Emitter
VCE = 4 V,
IB=10mA,
IC= 5A
Saturation Voltage
IB = 40mA,
IC= lOA
2
1I See Notes 6 and 7
1000
2
1000
500
2
rnA
V
1000
500
500
IC = 10 A, See Notes 6 and 7
3
3
3
II See Notes 6 and 7
2
2
2
3
3
3
~
6. These parameters must be measured using pulse techniques. tw = 300 JAs, duty cycle
V
2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
switching characteristics at 25°C case temperature
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
TEST CONDITIONSt
TYP
IB(l) = 40 mA, IB(2) = -40 mA,
See Figure 1
VBE(off) = -4.2 V, RL = 3 n,
0.9
IC=10A,
UNIT
11
/LS
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
Von=42V- -
r~90%
56n
OV:::/:.,--o%- -4.2 V
I '0%
INPUT
270 pF
OUTPUT
30 {I
-
~~
I
...jton:l~ ~'~J
~
90%
+
-=- VCC=3OV
VBB1"'44 V
ADJUST FOR
Von =42 VAT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. V gan is a -31).V pulse (from 0 V) into a 50-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr '" 15 ns, 'tf '" 15 ns, Zout
= 50 n, tw = 20 Jl.s,
duty cycle';; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, Rin;;;;' 10 Mil, Cin '" 11.5 pF.
D. Resistors'must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
1271
5-434
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
-..
,....tw"" 7 ms (See No. A)
INPUT'O~
VOLTAGE
~V-
I
100mH
I
-.-'00 .. --.,
I
I
I
I
I
COLLECTO~42A-i-A------TA-
SOn
+
CURRENT
-=- VCC=20V
0
-+' I:i ~
-"1-I
V(BR)CER
IC
MONITOR
I
I
I
COLLECTOR
VOLTAGE
lOV
i)OI
I
------1--
I
I
:
:
I
I
VCE(satl--
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTE A:
Input pulse width is increased until 'eM"" 1.42 A.
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
40 000
"
~
': 20000
!
CASE TEMPERATURE
4.0
veE - 4 V
See Notes 6 and 7
.2
f
10 000
>
·i
4000
"E
j
X
2000
V
~w~
1000
700
~
1
..
Te" 100°C
'-T
2
io c
~
>
Te - -5SOC
3.2
2.8
Ie = 10 A
2.'
f--r
........
2.0
.......
1.6
IC 'SA
r--
1.2
~
0.8
0.'
0.7
1
Ie-Collector Current-A
7
-75-50-25 0
'0
25
50 76 100 125 150 175
COLLECTOR·EMITTER SATURATION VOLTAGE
SMALL-SIGNAL COMMON·EMITTER
FORWARD CURRENT TRANSFER RATIO
"
FREQUENCY
0
t
See
Note~
~
6 and 7
~
§
I~'.'O ml. IC"
~
~
~ "-
.~
~
j
~
VV
r-
0.7
I
,d A
~
SA
IC'" 1 A
!
~
10
Te = 25°C
I\.
l
't--
~
.'l'
I I' T I
-75 -60 -25 0
VeE - 10 V
20
1
l- f--
IB=2mA le:fA
0.'
40
~
VV
IB'" 10 mA, Ie
~
u
r-
FIGURE 4
"
iii
"".
Tc-Case Temperature-°c
CASE TEMPERATURE
>
f-
FIGURE 3
>I
;3
=
I
400
0.4
NOTES:
I
I
I
VeE =4 V
See Notes 6 and 7
3.6
>I
C 7000
~
u
•
BASE-EMITTER VOLTAGE
"
COLLECTOR CURRENT
"'" ~ f'.-
1
25 50 75 100 126 150 175
10
Te-Case Temperature-DC
f-Frequency-MHz
FIGURE 5
FIGURE 6
6. These parameters must be measured using pulse techniques. tw = 300 /Js. duty cycle :e;;; 2%.
7. These parameters are measured with voltage*sensing contacts separate from the current*carrying contacts and located within 0.125
inch from the device body.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
5-435
TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
vs
UNCLAMPED INDUCTIVE LOAD
40
20
D-C Operation
TC';;;25°C
10
«I
20
....c
7
VCC=20V
RBB2 = l00.n
TC = 25°C
See Figure 2
1:
L\
4
,
\
•
10
7
TIP641 "TI, 64
u
NOTE 8:
20
40
200
70 100
'rIlfee
1
0.4
0.2
10
"-
2
I
r
~qj
~'"
4
'x
:a;'"
TlP640
0.4
...
0
~
"0
u
E
::J
E
0
2
0.7
'"
3
u
\
400
4
~otr 7
10
400
100
40
VCE-Collector-Emitter Voltage-V
L-Unclamped Inductive Load-mH
FIGURE 7
FIGURE 8
Above this point the safe operating area has not been defined.
THERMAL INFORMATION
s:I
c
.g
0'"
.~
Ci
Q)
"
.:;
CASE TEMPERATURE
DISSIPATION DERATING CURVE
'"0
~c
200
180 I - 160
120
'""
::J
::J
C
....c
0
100
',j:;
'"0'il!
I
20
'x
:a;'"
'"
.~
4
Q
'" "'"
5'"
C
'g
::J
""
40
8
'\
1'\
3
"-
ROJA';;; 35°CIW
I"'"
2
~
'"
E
::J
.SX
"-
:a;'"
I
I-
0..
I~ I"-
Q)
"
ROJC';;; l°C/W
u
60
5
Ci
80
E
::J
E
6
o
1'\
140
Q)
Q
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
0
o
25
50
75
100
125 150
Tc-Case Temperature-OC
"'"
175 200
FIGURE 9
t"
0
o
25
50
75
100
~
'\~
125 150 175 200
T A-Free-Air Temperature-OC
FIGURE 10
PRINTED IN USA
5·436
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
11 (onnol assume any responsibility for any circuits shown
or represent thot they are free from polen! infringement.
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE OESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
•
•
DESIGNED FOR COMPLEMENTARY USE WITH TIP640, TIP641, TI~642
175 W at 25°C Case Temperature
• Min hFE of 1000 at 4 V, 5 A
10-A Rated Collector Current
• 100 mJ Reverse Energy Rating
r------------------ -.,
COLLECTOR
device schematic
BASE
I
I
I
I
I
I
I
I
I
I
:
I
:
I
'" 10 kn
II
'" 150 n
L ________________ J
EMITTER
mechanical data
•
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
~~;~j 1- ~:::':~:~ADS_'_57_3,_M_A_X+t-·-:-O~ : :;-:-~ ~:~;~
.525RMAX
o
~
0
'---.-:7-5---Iffi=,,}38
_/.:-41..5. MAX MAX
•225 ~ -0-,-1'
~
h
-1
0.188 R M A X - - ' - - - - - BOTH ENDS
0.135 MAX
1
-\- i'
0205 0440
0.420
I
0.200
SEATING PLANE
I -BASE
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage _ _ _ _ _ _
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ _ _ _ _ _
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range _ _ _
Storage Temperature Range _ _ _ _ _ _ _ _ _ _ _
Terminal Temperature 1/8 Inch from Case to 10 Seconds
NOTES:
1.
2.
3.
4.
5.
T1P645 T1P646 TIP647
-60 V -80 V -100V
-60 V -80 V -100V
-5V
-5 V
-5V
10A
•
15 A
•
_-0_5 A
See Figures 7 and 8
175W
5W
_100mJ
-65°C to 200°C
_65°C to 200°C
_
260°C
.
.
...
•
•
...
..
...
These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200 0 C case temperature at the rate of 1 W/ C or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C or refer to Dissipation Derating Curve, Figure 10,
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, RSS2 "" 1 00 ,0,
VBB2 = 0 V, RS = 0.1 n, Vee = 20 V_ Energy'" le2U2_
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-437
TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO
ICED
Breakdown Voltage
Collector Cutoff Current
IC=-30mA,
IB= 0,
VCE - -30 V,
IB- 0
VCE =-40 V,
VCE = -50V,
IB= 0
VCB= -60V,
ICBO
lEBO
hFE
VBE
VCE(sat)
•
NOTES:
TIP645
TEST CONDITIONS
Collector Cutoff Current
VCB- -SOY,
TIP646
TIP647
MIN MAX MIN MAX MIN MAX
See Note 6
-60
-SO
•
100
UNIT
V
-2
-2
mA
-2
IB- 0
-1
IE - 0
IE = 0
-1
Emitter Cutoff Current
VCB- l00V, IE - 0
VEB--5V,
IC=O
Static Forward Current
VCE--4V,
Transfer Ratio
VCE--4V,
1000
IC- -5A
o A I see Notes 6 and 7 500
IC--1
Base-Emitter Voltage
VCE=-4V,
IC = -lOA, See Notes 6 and 7
Collector-Emitter
IB - -10mA,
Saturation Voltage
IB= -40mA,
IC--5A
,Isee Notes 6 and 7
IC=-10A
mA
-1
-2
I.
-2
1000
500
-3
I,
-2
-3
-2
mA
-3
-2
-3
V
1000
500
-3
-2
-3
V
6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle"" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device bodV.
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
Turn-On Time
IC=-10A,
toff
Turn-Off Time
VBE(off) = 4.2 V, RL = 3 U,
TVP
IB(1) = -40 mA,
IB(2) = 40 mA,
See Figure 1
0.9
11
UNIT
IlS
tvoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
5611
270pF
Vgon
3011
OUTPUT
-:-- Vcc- 30V
+
VSB,,",44V
ADJUST FOR
Von =-42 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS
TEST CIRCUIT
NOTES:
A. Vgen is a 3O-V pulse (from 0 V) into a 50-0 termination.
B. The V gan waveform is supplied by a generator with the following characteristics: tr
< 15 ns, 'tf '" 15 ns, Zout = 50 0, tw = 20 ,",s,
duty cycle .. 2%.
~. Waveforms are monitored on an oscilloscope with the following characteristics: tr <; 15 ns, Rin ;.. 10 MO, Cln '" 11.5 pF.
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.
FIGURE 1
1271
5-438
TEXAS INSTRUMENTS
INCORPO~ATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES TIP645, TlP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
~tw"'7ms ($a. Note AI
1
1
'
--nL - - - Jn
VeE MONITOR
5V--1
INPUT
I
VOLTAGE 0.-1
100mH
I
1
1
I
I
1
1
L.---t-.OO ... ------t
I
o
I
I
COLLECTOR~
INPUT (C>~"'V\fV-...-H
CUR~~~A_+_:_: _ _ _ _ _
-=-- Vee'" 20 V
Ie
MONITOR
RS= 0.1
L
I
VCEI... I __ I
n
+__ 1+_
1 I
1
II
I
I
1_1-_
tI
-20 V
1
COLLECTOR
VOLTAGE
I
I
V(BRICER-...l.. -
NOTE A: Input pulse width is Increased until leM
= -1.42 A.
-
FIGURE2
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
.~
'"
I~
8
"
CASE TEMPERATURE
-4.0
4000
VeE = -4V
-3.6
Te = 100°C
2000
~C=25~C
1000
1
700
Te- ssOe
-
t
'0
> -2.4
.~
1
-2.0
w -1.6
j
VCE=-4V
"i INl'ilsl·
nd
100
-0.4
-1.2
~
> -0.8
·15
~
-2.8
E
200
-0.4
7
-0.7-1
-4
-2
./
I
V-
~ 10
j
e
I
!
~
> -0.4
-75 -50-25 0
1
7
~
4
~
2
o
lA
I I
'1
I
I I
25
50 75 100 125160175
VeE -
10V
Ie - lA
TC =
25 c C
'" ~
11 1
10
f-Frequancy-MHz
T c-Case Temperature- C c
FIGURE 6
FIGURE 5
NOTES:
I I
40
20
8
IS= -10mA, IC'" -5 A
2mA,
-:--
25 50 15100125150175
100
70
~
~
18
~
'I 'I'
I
FREQUENCY
~
See Notes 6 and 7
-0,7
I~-r
"
"
~
IC= -lOA
I
I
I--: ::::::: r-
SMALL·SIGNAL COMMON· EMITTER
FORWARD CURRENT TRANSFER RATIO
CASE TEMPERATURE
-..... r--
,/
FIGURE4
COLLECTOR·EMITTER SATURATION VOLTAGE
./
r
I
Te-Case Temperature-°c
FIGURE 3
I
--I--
-75-50-25 0
-7 -10
Ie-Collector Current-A
I'--.
See Notes 6 and
> -3.2
400
J!
•
BASE·EMITTER VOLTAGE
'"
COLLECTOR CURRENT
6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
5-439
TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAX~MUM
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
-20
-40
D-C Operation
<{
...cI
<{
...cI
-7
~
\
o
]
r--- TIP645
-1
.~ -0.7
•
co
.......
\
-2
5
-10
0
1\
~V'
(5
E
::J
E
-4
""
'xco
~TIP647
:?i
:?i
(, -0.4
-2
I
-40
r-.
!d
I'.
-20
~OO
-7
()
.!!?
t)
1==== TIP646
-0.2
-10
~
5
t)
(5
t)
-20
~
\
-4
::J
t)
VCC= 20V
RBB2 = 100 n
TC = 25°C
See Figure 2
TC';; 25°C
-10
-100
--'200
I~ee ~o~ ~
-1
0.4
-400
4
VCE-Collector-Emitter Voltage-V
10
40
100
400
L-Unclamped Inductive Load-mH
FIGURE 7
FIGURE 8
NOTE 8: Above this point the safe operating area has not been defined.
THERMAL 'INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
:s:I
200
0
'';:::
180 , - -
c
co
Co
'Bi
i5
Ql
~c
160
co
\,.
..
Cl
::J
Co
"-
0
120
100
::J
C
'';:::
80
8
60
c
E
::J
.§
40
co
:?i
20
k"
0
..
i5
'in
'i'...
140
Ql
.s;()
ROJC'';; l°C!W
..
'"
::J
i"",
75
100
0
3
0
2
::J
C
'';:::
C
'I'-
t)
I
50
"'" "
i'...
4
ROJA';; 35°C!W
~
Cl
""
25
5
Ql
x
o
6
0
'';:::
()
.~
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
"" '"
E
::J
E
"" ~
125 150 175 200
Tc-Case Temperature-oC
FIGURE 9
-xco
:?i
I
t-
Q.
O
o
25
50
75
l"-.
'""
100 125 150 175 200
T A-Free-Air Temperature-°c
FIGURE 10
PRINTED IN USA
5-440
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
1271
11 cannol Qssume any responsibility for any circuits shown
or repre~en' thaI they ore free from potenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUn POSSIBLE.
TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
til ....
c-<
FOR POWER AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH TIP3055
mechanical data
•
90 Watts at 25°C Case Temperature
•
15 A Rated Collector Current
•
62.5 mJ Reverse Energy Rating
,... ....
,...m
~::!
ztS
zlll
pUl
c
,...
In
-
"~
'"
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHAN!CALINTERCHANGUBlllTYOF
PLASTIC PACKAGE WITH TO-lOUTlINE
.f(!
...l>
TI~2955
Z
~
-<
:u
~
•
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
_ _ . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . . . .
.....
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2)
........_
Continuous Device Dissipation at (or below) 25°C Free-Air
...... .
Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Lead Temperature 1/8 Inch from Case For 10 Seconds
NOTES:
1. This value applies when the base-emitter resistance RBE = 100
-100 V
· -70V
· -7V
· -15 A
_ -7 A
See Figure 5
90W
3.5W
. . . 62.5 mJ
_65°C to 150°C
-65°C to 150°C
260°C
n.
2. Derate linearly to 150°C case temperature at the rate of 0.72 wtC.
3. Derate linearly to 150°C free-air temperature at the rate of 28 mwtC.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, ABB2 = 100 il,
VBB2 ~ 0 V, RS ~ 0.1 n,Vee ~ 10 V. Energy ~ le2L/2.
172
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5·441
TYPE TlP2955
P-N-P SINGLE-DiffUSED MESA SILICON POWER TRANSISTOR
electrical characteristics at 25° C case temperature
TEST CONDITIONS
PARAMETER
VIBRICEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICER
IC= -30 rnA,
IB=O,
VCE--70V,
RBE -lOOn
ICED
Collector Cutoff Current
VCE - -30 V,
IB=O
ICEV
Collector Cutoff Current
VCE=-100V, VBE=1.5V
lEBO
Emitter Cutoff Current
VEB=-7V,
IC= 0
VCE--4V,
IC-
hFE
Static Forward Current Transfer Ratio
VCE=-4V,
VBE
Base-Emitter Voltage
VCE = -4 V,
VCElsat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter Forward Current
fhfe
•
NOTES:
Transfer Ratio Cutoff Frequency
See Note 5
MIN MAX UNIT
-60
V
-1
rnA
-0.7
rnA
-5 rnA
-5 rnA
See Notes 5 and 6
20
IC= -lOA,
See Notes 5 and 6
5
4A,
70
IC= -4A,
See Notes 5 and 6
-1.8
IB= -400 rnA, IC= -4 A,
See Notes 5 and 6
-1.1
IB = -3.3 A,
IC=-10A,
See Notes 5 and 6
-3
VCE =-4V,
Ic=-l A,
f = 1 kHz
15
VCE = -4 V,
IC=-l A,
See Note 7
10
V
V
kHz
5. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle"';;; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
7. fhfs is the frequency at which the magnitude of the smail-signal forward current transfer ratio is 0.707 of its low-frequency value.
For this device, the reference measurement is made at 1 kHz.
thermal characteristics
MAX
PARAMETER
R8JC
Junction-to-Case Thermal Resistence
1.39
R8JA
Junction-to-Free-Air Thermal Resistence
35.7
UNIT
°C!W
switching characteristics at 25°C case temperature
TEST CONDITIONSt
PARAMETER
ton
toft
Turn-On Time
Turn-Oft Time
IC=-6A,
IBll1 = -(l'.6 A, IBI21 = 0.6 A,
See Figure 1
VBEloff)=4V, RL=5n,
TYP
UNIT
0.4
0.7
/,S
tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
172
5-442
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
56 n
RBB2 = 10
RL" 5
n
INPUT~~JC~
n
V on
270pF
JOn
=-14V--1
I
I
I
ton-l.---.t
+
VSB2 = 4 v-=-
90%t=--'~,O%!
:
---1
10%L
OUTPUT
VBB1'"'16V
ADJUST FOR
•
+
V on '"'-14VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:
\.-toff--i
VOLTAGE WAVEFORMS
A. V gen is a 30-V pulse (from 0 V) into a 50-0 termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf eo;;; 15 ns, Zout == 50 n, tw = 20 ""s,
duty cycle'; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin ;;a= 10 MO, Cin " 11.5 pF.
D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
INDUCTIVE LOAD SWITCHING
J..--.......l-
INPUT
I
I
5V--1
-
I
rI
L
-ri
~
VOLTAGE 0--1
20mH
o
TUT
tw "" 5 ms (See NoteAJ
I
I
I
I.----t--l00ms-----t
I
I
I
I
I
1
I
I
COLLECTOR~
INPUT
CURRE~T25A_ - : - _
VCC=10V"':'"
+
IC MONITOR
VCE(satl-.....
I
I
+__
I
1+_
1'1
11
-t"'--'----- ..... - -
-10V
Rs"'O 1 n
:-:- _ _ _ _
I
I
I I
-+.- ....
I
COLLECTOR
VOLTAGE
I
V(BRICER- -L
TEST CIRCUIT
NOTE A: Input pulse width is increased until leM
--
VOLTAGE AND CURRENT WAVEFORMS
= -2.5 A.
FIGURE: 2
172
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS. TEXAS 75222
5-443
TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATIC FORWARD CURRENT TRANSFER RATIO
vs
DISSIPATION DERATING CURVE
COLLECTOR CURRENT
.2
:;;
a:
1000
700
400
"c:
1?
tc:
~
~
"
0
.
'E
~
0
•
80
"u
70
0
60
'iii
0
100
70
.~
~
'\,
~
~
40
"
50
0
40
0
~
I
w
4
'g"
c:
"
20
10
7
VJ
c.
200
LL
u
90
0
'ti
~
't;
100
~c:
4V
VCE
TC - 25°C
See Notes 5 and 6
0
E
E
LL
20
I
tQ.
2
1
-0.01
-0.04 -0.1
-0.4
-4
-1
"'- r\.
30
."
:;
'x
.<=
~
I\.
1.0
o
-10
o
25
50
75
100
125
~
150
T C-Case Temperature-° C
IC-Collector Current-A
FIGURE 3
NOTES:
'\
FIGURE 4
5. These parameters must be measured using pulse
techniques. tw = 300 IJ,s, duty cycle ~ 2%.
6, These parameters are measured with voltagesensing contacts separate from
the current-
carrying contacts and located within 0.125
inch from the device body,
MAXIMUM SAFE OPERATING REGION
-100
-70
See Note 8
-40
«
.!.c:
~
"
0
-20
--- -
-10
-7
:;
-4
~
tw=300ILS,d=0.1 = 10%;./
"/
-2 tw = 1 ms, d = 0.1 = 10%
ti
0
0
E
\
-
~\
~
tw=_10ms,d=0.1~
I
..
\
,
~
-1 D-C Operation'
-0.7
-0.4 TC <; 25°C
-0.2
-0.1
-1
-2
-4
-10
-20
-40
-100
VCE-Collector-Emitter Voltage-V
FIGURE5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.
PRINTED IN U.S.A
5-444
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS, TEXAS 75222
172
TI cannol assume any responsibilily for ony circuits shown
or represent thai they are free from patent infringemenf.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
FOR POWER AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
PLASTIC-CASE REPLACEMENT FOR 2N3055
•
90 Watts at 25°C Case Temperature
•
15 A Rated Collector Current
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECIIANICALINTERCHANII£ABILITYOFTIP305S
PLAS'TICPACKAGEWITHTO_30UTLINE
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
100V
70V
7V
15A
7A
See Figure 5
Collector-B'ase Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . . . .
Continuous Base Current
.....
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2)
.......... .
Continuous Device Dissipation at (or below) 25°C Free-Air
...... .
Temperature (See Note 3)
Unclamped Inductive Load Energy (See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead Temperature 1/8 Inch from Case For 10 Seconds
NOTES:
1.
2.
3.
4.
90W
3.5W
62.5 mJ
-65°C to 150°C
-65°C to 150°C
260°C
This value applies when the base-emitter resistance RBe = 100 O.
Derate linearly to 150°C case temperature at the rate of 0.72 W/oe.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RBB2
VBB2 = 0 V, Rs = 0.1 a,Vee = 10 V. Energy'" le2L/2.
=
100
n,
971
TEXAS
INSTRUMENTS
.
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
5-445
TYPE TlP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
electrical characteristics at 25° C case temperature
PARAMETER
TEST CONDITIONS
MAX UNIT
Collector-Emitter Breakdown Voltage
IC=30mA,
IB =0,
ICER
Collector Cutoff Current
VCE=70V,
RBE = 100
ICEO
Collector Cutoff Current
VCE =30 V,
IB =0
ICEV
Collector Cutoff Current
VCE = 100 V,
VBE=-1.5V
5
mA
lEBO
Emitter Cutoff Current
VEB -7 V,
IC -0
5
mA
hFE
Static Forward Current Tra.nsfer Ratio
VBE
Base-Emitter Voltage
VCE(sat)
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
hfe
Forward Current Transfer Ratio
Small-Signal Common-Emitter Forward Current
fhfe
•
MIN
V(BR)CEO
NOTES:
Transfer Ratio Cutoff Frequency
See Note 5
60
V
n
1
mA
0.7
mA
VCE=4V,
IC=4A,
See Notes 5 and 6
20
VCE-4V,
IC-l0A,
See Notes 5 and 6
5
VCE -4V,
IC-4A,
See Notes 5 and 6
1.8
IB -400mA,
IC-4A,
See Notes 5 and 6
1.1
IB - 3.3 A,
IC-l0A,
See Notes 5 and 6
3
VCE =4 V,
IC= 1 A,
f = t kHz
15
VCE =4V,
IC= 1 A,
See Note 7
10
70
V
V
kHz
5. These parameters must be measured using pulse techniques. tw "" 300 JJs, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-.carrving contacts.
7. fhfe is the frequency at which the magnitude of the small-signal forward current transfer ratio is 0.707 of Its low-frequency value.
For this device, the reference measurement is made at 1 kHz.
thermal characteristics
PARAMETER
MAX
ROJC
Junction-to-Case Thermal Resistance
1.39
ROJA
Junction-to-Free-Air Thermal Resistance
35.7
UNIT
·C/W
switching characteristics at 25°C case temperature
PARAMETER
ton
Turn-On Time
toff
Turn-Off Time
TEST CONDIT!ONSt
TYP
IB(1) = 0.6 A, IB(2) = -0.6 A,
See Figure 1
VBE(off) = -4 V, RL = 5 n,
0.6
IC=6A,
1
UNIT
ps
t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.
1270
5-446
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR
Voo-'4V--r~90%
56 n
OVJ1~-
INPUT
RBB2= 10
270 pF
RL = 5
n
-4V
n
30 n
-
+
L-__________________________
-
~I
OUTPUT
VBB2=4V
Vgen
-
I 10%
+
~~
JI
•
..:..VCC=30V
~--__.+
vee1"" 1SV
ADJUST FOR
Von'" 114 V AT
INPUT MONITOR
TEST CIRCUIT
NOTES:
VOLTAGE WAVEFORMS
A. V gen Is a -30-V pulse (from 0 V) into a 50-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, 'tf
duty cycle
~
:e;;;;
15 ns, Zout = 50 51, tw = 20 /Js,
~
10,MS'l, Cin
2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r '" 15 ns, Rin
D. Resistors must be non inductive tv pes.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1
-< 11.5 pF.
INDUCTIVE LOAD SWITCHING
-.j
o
I
INPUTI
t---
tw "" 5 ms
I
(See Note B)
r-I I
L-.J
VOLTAGE_~
-5V- I '
'I
~100ms~
I
I
I
I
I
I
I I
I
I I
COLLE&r~~-l-A--- ---:7\--CURRENci-Y'
~ ~ I\-
INPUT
Ie MONITOR
V(BRICER--I- __ I
1- _ _ _ _ _
l- __ I
I __
I
COLLECTOR
VOLTAGE
lOV
I
VOLTAGE AND CURRENT WAVEFORMS
TEST CIRCUIT
NOTES:
I
I
I
A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM = 2.5 A.
FIGURE 2
1270
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
5-447
TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
THERMAL INFORMATION
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
.,
.o
'"
Cl:
DISSIPATION DERATING CURVE
1000
4V
700 VCE
TC-25'C
400 See Notes 5 and 6
100
s:I
200
..,0
c:
90
'"c.
:~
80
Cl
70
Q)
"
100
70
~
.~
60
Cl
'"
~
40
::>
0
::>
50
0
40
E
::>
E
30
.~
c:
20
(,)
10
7
4
•
'x
:a:"
20
,t-
10
""
'\,
~
'\.
~
I
2
1
0.01
0.04
0.1
0.4
4
o
10
o
25
50
100
T C-Case Temperature-'C
I C-Collector Current-A
FIGURE 4
FIGURE 3
NOTES:
75
'"
125
""
150
5. These parameters must be measured using pulse
techniques. tw = 300 p,s, duty cycle";;; 2%.
6. These parameters are measured with
sensing contacts separate from the
carrying contacts.
voltage~
current~
MAXIMUM SAFE OPERATING REGION
100
70
See Note 8
40
«
20
-- - - ", -
.I,
c:
~::>
(,)
10
7
~
~
~
'0
(,)
I
2
4
~
tw= 300l's,d= 0.1 = 10%;:;:
2 tw = 1 ms, d = 0.1 = 10'..6
tw=
D-CO!'J'BATJON
0.7
r\'
10ms,d=0;~
0.4
\
\
TC';; 25'C
I
0.2
0.1
1
2
4
7
10
20
40
70 100
VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.
PRINTED IN U.S,A
5-448
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1270
TI cannot assumE' any responsibility for ony
I
Cl
~
o
>
-120
-100
z
~
-80
~
«w
-60
Q!
'"
ffi
1=
~
g
w
-'
o
u
-40
V ...
/ / ....-
-~
-2.()
I--
2Nl021
-
2N458A
2N457AI
r-
r-::r--po r::: t--_
t--
1J~~
2Nl022
2Nl02iJ
2N458A
2N4
I-~
lL.llllt/ /VV
t-.
r-- t--
I--.
I~ ~ ~~OO ~a
V
BVCEX
A
-
j
f-BV CER
2N457t:/
I J 11111
2N456A
o
1
10
lK
100
10K
lOOK
RaE - BASE-EMITTER RESISTANCE - ohms
0.Q1
0.1
1.0
10
VBE-REVERSE BASE-EMITTER VOLTAGE-v
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.L.AS, TEXAS 75222
6-3
TYPES 2N456A, 2N457A, 2N458A, 2Nl021 AND 2Nl022
P-N-P ALLOY -JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
GUARANTEE D COMMON-EMITTER DC
FORWARD-CURRENT TRANSFER RATIOVS
COLLECTOR CURRENT
COLLECTOR REVERSE-CURRENT
CHARACTERISTICS
_1.2
/
~ -1.0
I / [7 11
I
/
a~ -0.8
~
IK
il ~1 ~ 7~
"
II 15VI;
vv1/Vv~l/
I;
-0.6
I
u -0.4
I
J
-0.2
•
o
i,...oI
~~
~~
-20
-<0
o
,t
-60
100
/
GUARANTEED MAX
80
$J
;-
VeE
_~ARANTEED
'0
20
-80
-100
1- t-- t--
H
100
80
60
.0
20
"
S.O
\
POWER DISSIPATION DERATING CURVE
\
30
c
200
V
VCE=-l.Sv
'.0
1/
1\
160
V
----
- 0.1
I~
g
100
~
i\
u
120
.;; 80
~
a
~G"
Q,
~
66
-0 60
80
1/
0
.....
,
~
h"
.0
............
- 0.3
Maximum Thermal Resistance:::: O.5°C/w
~
1\
1.0
0
"i120
1\
Y FE /
2.0
160
, 140 t'....
'\.
\
-0.,5
-
1.0
40
20
a
- 3.0 -5.0 -7.0
Q
180
240
1"1.
COLLECTOR CURRENT -
DISSIPATION DERATING
280
\
-7
-5
-3
-I
-120
Ie -
1.0
~
-1.5 v
MIN hFf
f---
COMMON-EMITTER" DC FORWARD CURRENT
TRANSFER RATIO, DC INPUT RESISTANCE/AND
DC FORWARD TRANSFER ADMITTANCE
VS COLLECTOR CURRENT
'.0
=:-;
60
Vel - COLLECTOR -BASE VOLTAGE - v
120
hFE
25 30
40
50
60
I~
~
70
80
T8 - Mounting-Base Temperature - °C
~
90
100
Ie - COLLECTOR CURRENT - a
PRINTED IN USA
6-4
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
High.Power Transistors
for
Military and Industrial Applications
mechanical data
The use of silver alloy to assemble the mounting base and the use of resistance welding to seal the can,
pravide a hermetically sealed enclosure. During the assembly process the absence of flux, combined
with extreme cleanliness, prevents sealed-in contamination.
The mounting base provides an excellent heat path from the collector junction to a heat sink which
must be in intimate contact to permit operation at maximum rated dissipation.
'The transistors are in a JEDEC TO-3 case.
~----++0~.6~7--5 ~:~;~
~,-~
0.655
II
0.188 RAD M..:'AC,X-----
BOTH ENDS
¥
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
tThe TI guaranteed maximum value.
DIMENSIONS ARE IN INCHES
"absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current .
Base Current
Total Device Dissipation at (or below)
25°C Case Temperature (see Note 2)
Collector Junc~on Temperature
Storage Temperature Range
2N456B
~
40 v
30v
60 v
40v
2N458B
~
2NI022A
80 v
100 v
120 v
55 v
45v
50v
30v------_
7 a .....................~.~
3a .........................~
....- - - - - - 1 5 0 w------~.
....- - - - - - 1 0 0 oC - - - - - -...
55°C to + 100°C ----~
•
"Indicates JEBEC registered data
NOTES: 1. This Yalue applies whln the base-emitter diode is open-c:ircuited.
2. Darat. linearly to + lOOoe cas. temperature at the rate of 2w/Co •
971
TEXAS INSTRUMENTS
tNCORPORATED
POST OFFICE SOX 5012 •
DALLAS. TEXAS 75222
6-5
TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
•
TEST CONDITIONS
BVclO Collector-Base Breakdown Vollage
Ic = -2ma,
BVCEO Colledor-Emiller Breakdown Vollage
Ic = - 500 ma, II = 0
(see Nole 3)
IE = 0
BVCES
Colledor-Emilter Breakdown Vollage
Ic = -200 ma, VIE = 0
(see Nole 3)
BVCEX
Colledor-Emllter Breakdown Voltage
Ic = -2ma,
VIE =
BVEBO
Emilter-Base Breakdown Voltage
IE - -2ma,
VCI - -20v,
VCI = -40 v,
VCI = -40v,
Vel - -3OY,
VCI = -60v,
VCI = -60v,
VCI - -40v,
VCI = -80 v,
VCI = -80 v,
VCI - -50v,
VCI = -100 v,
VCI = -100 v,
VCI - -60v,
VCI = -120v,
VCI = -120 v,
VEl - -30v,
VCE - -1.5v,
VCE = -1.5 v,
VCE = -1.5 v,
VCE = -1.Sv,
VCE - -1.Sv,
Vee = -1.5 v,
VCE = -1.5v,
VCE = -1,5v,
II - -700mq,
II = -SOOma,
II = -300ma,
II = -IOOma,
VCE - -2v,
(see Note 4)
Ic - 0
-0
=0
= 0, Tc =
-0
=0
= 0, Tc =
-0
=0
= 0, Tc =
-0
=0
E = 0, Tc =
IE = 0
IE = 0
IE = 0, Tc =
Ic - 0
Ic - -7a
Ic = -Sa
Ic =-30
Ic =~la
Ic - -7a
Ic = -Sa
Ic =-30
Ic =-la
Ic - -7a
Ic = -Sa
Ic = -3 a
Ic =-1 a
Ic --I a
IclO
IEIO
hFl5
VIE
Colledor Culoff Current
Emilter Cutoff Current
Static Forward Current Transfer Ratio
8ase-Emilter Voltage
VCE(sall Colledor-Emilter Satilration Voltage
fT
Transition Frequency
+ O_h
TYPE
MIN
2N456B
2N457B
2N4588
2NI021A
2NI022A
2N456B
2N457B
2N458B
2NI021A
2NI022A
2N456B
2N457B
2N458B
2Nl021A
2Nl022A
2N456B
2N457B
2N458B
2Nl021A
2Nl022A
All
-40
-60
-80
-100
-120
-30·
-40·
-45·
-50·
-55·
-50·
-60·
-65·
-70·
-75"
-40"
-60·
-SO·
-100·
-120·
-30
TYP
v
v
v
v
-0.5"
-2.0·
-7.0·
-0.5"
-2.0·
-7.0·
-0.5·
-2.0·
-7.0"
-0.5"
-2.0·
-7.0·
-0.5·
-2.0·
-7.0"
-2.0·
2N456B
2N457B
70·C
2N458B
70·C
2Nl021A
70·C
2Nl022A
70°C
All
22·
30·
35·
40·
All
All
All
UNIT
v
70·C
All
MAX
45
55
60
100
-1.2
-0.9
-0.7
-0.4
-0.3
-0.2
-0.1
-.05
ma
ma
ma
ma
ma
ma
90·
-
-1.5·
v
-0.5"
v
200·
kc
*Indlcates JEDE£ r'glstered data.
NOTES: 3. If the "transistor is tast.d without a hlat sink, perform this tlst with a 100 mste (urr.nl puis. and a duty cyd, less than
4. To obtain 'T' tbo Ib,.1 rosponso wltb 'requency Is o"'rapolatocl at tb, rat. of - 6 db/octo.. 'rom ,
=
2%.
100 k' to tb, 'roqu,n,y at wbl,b Ib,.1
=
1.
971
TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •
DALLAS. TEXAS 75222
TYPES 2N456B, 2N457B, 2N458B, 2N1021A AND 2N1022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER
Delay Time
Rise Time
Slarage Time
Fall Time
Total Switching Time
Id
I,
I.
If
IT
2N456B, 2N457B, 2N458B,
2N1021A, 2NI022A
MIN
TYP
MAX
TEST CONDITIONSt
Ie = -5 a, IB{II = -0.5 a, V8I;Iofij = 9
RL = 4fi
(See Figure Below)
UNIT
0.7
5
2
y
/Lsec
/Lsec
/Lsec
/Lsac
/Lsec
15
22.7
tVoltage and (urrent values shawn are nominal; Ilad values vary sUg... l, with device parom.ten.
PARAMETER MEASUREMENT INFORMATION
VOLTAGE WAVEFORMS
ton
to,
TO INPUT PROBE
S,
6n 5w
~
INPUT
TO OUTPUT
PROBE
V ,N
O%
:
10%.
I
I
I
: 90%
20~f
35v
4n
40w
0.25~f
20n
SOw
l000~f
OUTPUT
:1~'70r:-
~L.
I
'-t :--t,
'"1
35v
I
td
I
35v
--ttl I-'
: ""It, i"'
Circuit Conditiohs
Tum-0n (td, t, )
Vee=-20v
:
I
i"":
I
90%
I
OUTPUT
Test
l00~f
V..
f
~
INPUT
V..
+9v
-21v
I
I
V,N
-11 v
+9v
NOTES:
Tum -off (t.. t, )
1. Relay 5, has mercury wetted contacts and provides rise times len than 1/10 of the switching times measured.
2. Duty cycle of 5, is such thai the transistor is ON 4 mSle and OFF 12 m5eC in both tum-on and turn-off 'ests.
3. Waveforms monitored on scope with' following (haracterlstlcs: (a) Rise time 14 nsec max, (b) Input capacitance 11.5 pI max, tc) fnput resistance 10 megohms min.
4. All resistors 5% tolerance, nonlnductive type.
TYPICAL CHARACTERISTICS
-7
-6
i -5
L4
a
2
COMMON-EMITTER COLLECTOR
CHARACTERISTICS
COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(Active Region)
(Saturation Region)
T~=25·d
\
1,00"'" ~.
~
\.
\
2N458B . _
,
~~~ ",,
".-/
j-3
P,=150w
r--y
.....
\~ /
"8
'2.5"'"
lu- 2
I
-1
I,
o
=-5ma
I, -0
o
" r-......
--
-20
-30
-40
-50
-60
VeE - Collector- Emitter Voltage - v
-10
•
-70
VeE - Collector- Emitter Voltage - v
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6·7
TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE
vs
COLLECTOR CURRENT
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
-1.Or---.-----,....--r----,---~-~-_
400
300
.~
0
Te = 55· C
~
200
""
I
Te = 25· C
~
i'r-.
"r-.r-,
~
0- 100
e
Te = 70·C
>-0.8~-+_-~-_+-_4-_++_-~~~
~
I
r
:--.. ......
~
~
~
u
"'E
0
~ -0. 6f---+---+-----,H--=~~~
~
]
I'..
f"o=,
50
~ -0.4F-------:;o;o-1""::.,...~'---+----jI__-+_-_+_-__l
~
Ji
.eu
I
'l:
Vee =-1.5v
.l!
V>
20
.s::.~
Te = 25·C
10
-0.1
II
O,~
-0.2
-0.5
-1.0
-2.0
Ie - Collector Current - a
o
-5.0 -7.0
__
~
__
-I
COLLECTOR CUTOFF CURRENT
vs
COLLECTOR-BASE VOLTAGE
Te =25·C
~
___ L_ _- L__
~
__~__~
-2
-3
-4
-5
Ie - Collector Current - a
-6
-7
COLLECTOR CUTOFF CURRENT
vs
COLLECTOR-BASE VOLTAGE
Te = 70·C
-0.4
-3.0~---r----.-------'~-~----~--~
~
I -0.3 f----I---+-
-~
Ie =0
-1.5
o L - - - L -__~_~~__~~_L-__~
o
-20
-40
-100
-60
-80
Veo - Collector- Base Voltage - v
~
o
-120
__- L____ __
__
____L-__
-20
-40
-100 -120
-60
-80
Vc. - Collector- Base Voltage -v
~
~I--
~
~
971
6-8
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N456B, 2N457B, 2N458B, 2N1021A AND 2N1022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
FREE-AIR TEMPERATURE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
DISSIPATION DERATING CURVE
175
il 150
~
~
I
.~
B-
125
·iii
is 100
"
~
'2
75
g
50
lI
...
25
0
o
I
~ 1750
I
'"
B-
~ 1250
B
'"
25
50
Tc - Case Temperature -
~1000
'2
,!! 750
75
0 C
J
"'1\
~
o
o
100
25
50
75
"'"'\
TA - Free-Air Temperature - ·C
PEAK-POWER RATING CURVE
1.0
~42.8 CO/w
'"
500
I 250
'\
J-A
~
E
~
9
~ 9C_A=9J_A-9J_c=42.3Co/w
~ 1500
'\
,!!
E
2000
I
9J_C = 0.5 CO/w
100
•
f-- 75%
f-- 50%
0.5
25%(Du
-'
C cle}
L,....-
1
0.2
J
I
0.1
f--- 5%
I
1
V ~~
10%
0.05
-
I
I
11=1[:=: ~:::::::]
1%
:::vn
K
1111
1
10
t w-
I
I
100
11111
1000
Pulse Width - msec
FI9ure 1
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
6·9
TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION
TABLE II
TABLE I
DEFINITION OF TEIMS
HEAT SINK
t9 HS . A
Dimensions
Typa
2.2 Coy.
PT
Peak Power Dlsslpal1lft
I" x 8" X1/1"
1.1 Coy.
Junctlon-to-Case Thermal R.slstance
w
CO/w
0.1
10" 110" X 1/811
1.4 Coy.
9J.c
9 J•A
(JC_A
Jundlon-'o-Arnbient Thermal R.sistanc.
CO/w
42.1
(ase-to--Amblent Thermal Resis'ance
Co/.
42.3
4"X 4"11/8"
6.5 Coyw
6"1 6" x 1/811
4.1 Co/.
8" x 8" x 1/8"
10" xl0" Xl/I"
3.5 CO/w
:!:(JC.HS
3.7 Coy.
Dalbert Innn #113
or Modine lE1l558, Black
Anodi,od (or Equivalonts)
3.2 Coy.
typlc.1 ,alUls based on convHUon cooling; plotlS and fins
lAII transistors mounted in the (In'.r of Ih. heat sink with two .32
scr.ws al , Inch - pounds of torque.
(asi-io-Heat Sink Thermal R.slsIIlnUTypi,al w/o DC·ll Grease
Typi,al with OC·ll Grea..
2.1 Coy.
mounted in vertical position.
•
Val ..
w
PT
Dalbert llinn #113
or Modina 1Ell Ill.
Unfinlshod (or Equivalents)
t 9 HS-A are
Unit
AYerage Power Dissipation
3.ICo/.
Irlght Copper
.right Aluminum
Definition
Symbol
4" x 4" 11/811
6"x 6"11/8"
9 HS- A
Heat·Slnk Thermal I,slstance
Ul
CO/w " 0.41
H.
CO/.
TaIIl.l
CO
TA
TJ
Ambient Temperatur.
T·
Peak Junction Temperature
CO
T.
Case Temperature
CO
K
Peak·P..er Coefficient
CO
Awerage Junction Temperature
tw
PulH Width
t,
Pulse Period
d
Duty Cyd. (tw/t,)
Sll
Fig. I
mH'
mslt
The PEAK-POWER RATING CURVE shows the ratio af maximum instantn,oul iundion·t.. case temperalure rist at any pulse width and duty cyde t. the
rise which occun at 108% duty cyde. Use of this curve is best explained by .he equations and exampl.s below. See Table II far a definition .f terms.
Equation No. 1 - Application: D.C. power dissipation, heat sink used.
_
PT -
Equation No. 3 - Application: Peak power dissipation, heat sink used.
TJ-TA
(JJ-C
Tj -TA
+ (JC.HS + (JHS_A
Equation No.2 - Application: D.C. pewer dissipation, no heat sink used.
Equation No .• - Application: Peak power diSSipation, no heat sink used.
TJ-T A
'T =-e;;::-
PT
Iy use of .quatlon No. 1
=
Heal Sink
411 x 4" x 1/8" copper, 8HS. A
TJlmo'1 (design limit) = 100 CO
TA =30Co
d = 100% (1.0)
with DC·ll groa... 9 C- HS
0.4lCo/w
= 3.' (o/w
=
Example B - Find PTlme,)
OPERATING CONDITIONS,
=
100-30
PTimul
=
0.1
+ 0.41 + 3.1
=
14.7 w
SOLUTION,
From Figure 1, Peak·Power Coefficient,
I
0.2, and by use of eqUltl", No.3
=
H.at Sink
a" x 8" x 1/8" copper,
(JHS.A
1.1 CO/w
with DC·11 gre.... (JC.HS
0.41 CO /w
TjimOllI (design limit)
100 CO
TA = 31 CO
d = 1% (0.01)
Iw
40 mite
=
TI-TA
d (JC.A I (JJ-C
SOLUTION,
Example A - Find PTlmo'1
OPERATING CONDITIONI,
=
=
Tllme,) -T A
=
=
PTlmo",
100-31
o.oS (0.41 + 1.1) + 0.2 (0.1)
=
306.
PRINTED IN U.S A.
6·10
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
971
TI cannot ossume any responsibility for any circuits shown
or represent Ihol they are free from potenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N511, 2N511A, AND 2N5118
P-N-P ALLOY -JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
40, 60 or 80 VOLTS
10 -AMP COLLECTOR CURRENT
150 -WATT DISSIPATION
LOW Ico LOW VBE
LOW THERMAL RESISTANCE
for
HIGH-POWER CONVERSION • HIGH-CURRENT SWITCHING
AUDIO AMPLIFIER OUTPUT STAGES
mechanical data
The use of high-temperature silver solder to assemble the mounting base and the use of projection
weld to seal the can provide a hermetically sealed
enclosure which can withstand up to 300 psi- During the assembly process the absence of flux and
soft solder, combined with extra cleanliness, prevents sealed-in contamination.
~: ~~~
The mounting base provides an excellent heat path
from the collector junction, which is electrically
attached to the mounting base, to a heat sink
which must be tightly attached to permit operation
ot maximum rated dissipation. The approximate
weight of the unit is 17.6 grams.
DIA 2 HOLES-BASE---\
EMITTER
0.060 MAX DIA
1.561 MAX-----,
0.045 MAX DIA
0.100
MAX
0.100 MAX DIA
~
.TJdd4~
...L.
---'-6-32 SCREW
(G
RECOMMENDED
COLLECTOR
CONNECTION
@)- 6-32
NUT
" " - - SPRING LOCK WASHER
FIBER INSULATING
WASHERS (OPTIONAL)
0.875
~-
0.13S MAX
0.700 MAX
0.530 MIN
INSULATING WAFER. (OPTIONAL)
•
0.400 MAX
I
COLLECTOR IS COMMON TO CASE
absolute maximum ratings for all devices at 25°C mounting-base temperature'
(unless otherwise noted) *
Collector Current
Base Current
Total Device Dissipation**
Collector Junction Temperature
Storage Temperature Range
Thermal Resistance
25a
5a
150w
. 100°C
-55 to
100°C
. 0.5°C/w
+
* Maximum
voltage ratings not specified because exceeding breakdown voltages will not permanently damage transistor
characteristics so long as other maximum ratings are not exceeded.
**Derate at 2.0 w/oC.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-11
TYPES 2N511, 2N511A, AND 2N511B
P-N-P ALLOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
electrical characteristics at 25°C mounting-base temperature (unless otherwise noted)
ICBO
ICBO
•
Collector Reverse-Current, 71
TEST CONDITIONS
TYPE
PARAMETER
0
Collector Reverse-Current
I'Bo
Emitter Reverse-Current
BV cBo
Collector-Base Breakdown Voltage
ma
2N511A
Vcs =-60v
IE =0
-15.0
ma
2N511B
Vcs = -80 v
IE =0
-15.0
ma
2N511
Vcs =-40v
Vco = -20 v
IE =0
IE =0
-2.4
-0.6
-5.0
-2.0
ma
ma
2N511A
Vco =-60v
VCB = -30 v
IE =0
IE =0
-2.4
-0.5
-5.0
-2.0
ma
ma
2NSll B
VCB = -BOv
Vco = -40 v
IE =0
IE =0
-2.4
-0.5
-5.0
-2.0
ma
ma
All
VES = -30 v
Ic =0
-LS
-5.0
ma
VES = -IS v
Ic =0
-0.5
=-Sma
IE =0
2N51lA
Ic
2N511
2NSllA
= -SOOma IB =0
Ic
2NSllB
2NSll
Collector-Emitter Breakdown Voltage
2NSllA
Ie
= -300ma VBE = 0
2N51lB
Collector-Emitter Breakdown Voltage
2NSllA
v
-60
v
-80
v
-30
-40
v
-40
-SO
v
-45
-55
v
-SO
-60
v
-60
-70
v
-65
-BO
v
-45
v
= -300ma RBE = 100 ohms
Ie
2NSllB
BVEOO
Emitter-Base Breakdown Voltage
All
IE
hFE
DC Forward·Current Transfer Ratio
All
VeE =-2v
Ie =-100
VB!;
Bose-Emitter Voltage
All
VeE =-2v
Ic =-100
=-Sma
Is = -LSa
Ie =0
VeE, ..,)
Collector-Emitter Saturation Voltage
All
YFE
DC Common-Emitter Forward Transfer
Admittance
All
VeE =-2v
Ic =-10a
Ir
Internal Cutoff Frequency
(where I hie I = 1)
All
VCE =-2v
Ic =-10
ma
-40
2N51l
BVeER
UNIT
-15.0
2NSll B
BVCES
MAX
IE =0
All
Collector-Emitter Breakdown Voltage
ryp
Vco = -40 v
2NSll
BV cEo
MIN
2N511
-55
V
-65
v
-30
-60
20
25
-0.25
Ic =-100
5
v
60
-
-2.0
v
-D.S
v
mhos
260
kc
971
6-12
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N511, 2N511A, AND 2N511B
P·N·P ALLOY ·JUNCTION GERMANIUM HIGH·POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR REVERSE-CURRENT CHARACTERISTICS
2N511
J
c
E
~
zw
'"''"'
u
I
1/
-2.0
/
w
-1.6
I
G:i
'"' -1.2
w
::j
o
-0.8
-0.4
o
V
/
-
o
./
V" .........:
-10
t::I--
-20
/
V
V
V
..".,.
I
I
/
.,,- V
II
/
/
V
u
I
j
I
/
/
l2u'"'
J
J
II
::::l
:Q
w
2N511 B
2N511 A
-2.4
1/
J'/
/
~
-40
-30
-50
-60
-70
•
-80
Vea - COLLECTOR-BASE VOLTAGE - v
COMMON-EMlnER DC FORWARD-CURRENT TRANSFER RATIO
DC FORWARD TRANSFER ADMlnANCE AND DC INPUT RESISTANCE
VS COLLECTOR CURRENT
70
-
14
l3
..c::
Q 60
0-
«
'"'
ffi 50
~
~
40
00-
Z
~
30
'"'::::l
U
o 20
E 12
I
w
u
z 10
~
~
'"'w
~
«
z
~
:;
go'"' g'"'
o
u..
u
o
I
.1
10
8
6
u..
0
"'""""-
g o
I
" .............
z
~
100 VI
h'E
in
'
LoU
.....
/
-
-0.3
y"
hiE
I""-- ......
~
-0.5
-1.0
-------
-3.0
lL
.......
.......
'"
-0.1
I
120 w
u
........
............
E
..c::
o
VeE = -2.0 v
.........
4
2
-
140
.... ......-
f'
~
~
I'~
80
0..
~
60
"'-
40
20
-5.0
-10.0
5'"'
o
-15.0
ffi
1=
~
't'
z
~
u
u
o
I
Ie - COLLECTOR CURRENT - a
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •
DALLAS, TEXAS 75222
6·13
TYPES 2N511, 2N511A, AND 2N511B
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER BREAKDOWN VOLTAGE CHARACTERISTICS
>.-120
L~!Jl
I
w
<'
~-100
g
~
Z
V
o
c
'/
«
L
~-80
::.:
1lil-60
...
'"w
1=
~
~~
~
2N51 lA
....-
Ic = -300 rna
~NI5\i
-r--
--
t-t--,
r-- 1'-......
~
BVCEX
r
BVCER
2N511B
2~511A
I--
-I---
-,..
-40
~N'5H
j
f2
20
lrl....
8
•
o
0.01
10
1.0
0.1
V BE - REVERSE BASE-EMITIER VOLTAGE - v
10
I
I
100
lK
lOOK
10K
R8E - BASE-EMITIER RESISTANCE - ohms
THERMAL INFORMATION
POWER DISSIPATION DERATING CURVE
180
160
r--....
~
I
c:
140
a
'-5 120
Q.
~
;5
100
Q)
.;
80
Maximum Thermal Resistance = 0.5°C/w
"
~
~
Q)
c
60
~
40
"0
I
t-
o..
20
o
25
30
40
50
"
60
~
70
~
80
~
90
100
Ts - Mounting-Base Temperature - °C
PRINTED IN U.S.A
6·14
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST· PRODUCT POSSIBLE.
TYPES 2N512, 2N512A, AND 2N512B
P·N·P ALLOY·JUNCTION GERMANIUM HIGH·POWER TRANSISTORS
40, 60, or 80 VOLTS
15 -Amp Collector Current
ISO-Watt Dissipation
LOW leo LOW VIE
LOW THERMAL RESISTANCE
for
HIGH-POWER CONVERSION • HIGH-CURRENT SWITCHING
AUDIO AMPLIFIER OUTPUT STAGES
mechanical data
The use of high-temperature silver solder to assemble the mounting base and the use of projection
weld to seal the can provide a hermetically sealed
enclosure which can withstand up to 300 psi. During the assembly process the absence of flux and
soft solder, combined with extra cleanliness, prevents sealed-in contamination.
~: :~:
DIA 2 HOLESBASE
EMITTER
The mounting base provides an excellent heat path
from the collector junction, which is electrically
attached to the mounting base, to a heat sink
which must be tightly attached to permit operation
at maximum rated dissipation. The approximate
weight of the unit is 17.6 grams.
0.060 MAX DIA
1.561 MAX
0.100 MAX DIA
0.100
MAX
SO.160 MAX
L
RECOMMENDED
COLLECTOR
CONNECTION
-,
0.875
•
T~~
I.-
"""T6-32
«D
10.045 MAX DIA
SCREW
@)-- 6-32 NUT
- , , - SPRING LOCK WASHER
FIBER INSULATING
WASHERS (OPTIONAL)
0.135 MAX
~
0.400 MAX
0.530 MIN
INSULATING WAFER (OPTIONAL)
COLLECTOR 15 COMMON TO CASE
absalute maximum ratings for all devices at 25°C mounting-base temperature
(unless otherwise noted)*
Collector Current .
250
.
Base Current
Sa
Total Device Dissipation** . .
150w
Collector Junction Temperature
. 100°C
Storage Temperature Range
-55 to
100°C
Thermal Resistance
. 0.5°Clw
+
.Maximum voltage ratings not specified because exceeding breakdown voltages will nof permanently damage transistor
characteristics so long as other maximum ratings are not exceeded.
"Derate at 2.0 w/oC.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-15
TYPES 2NS12, 2NS12A, AND 2NS128
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
electrical characteristics at 2S o C mounting -base temperature (unless otherwise noted)
PARAMETER
Icso
Icso
1"0
TEST CONDITIONS
TYPE
Collector Reverse·Current, 71 0
Collector Reverse-Current
Emitter Reverse-Current
MIN
II
BVcEo
BVcEl
Colleetcr·~ase
Breakdown Voltage
Collector-Emitter Breakdown Voltage
IE =0
-15.0
rna
2N512A
Vcs = -60v
IE =0
-15.0
rna
2N512B
Vcs = -80v
IE =0
-15.0
rna
2N512
Vcs = -40 v
Vcs = -20v
=- 0
IE
IE =0
-2.4
-0.6
-5.0
-2.0
rna
rna
2N512A
Vcs
Vcs
= -60v
IE =0
IE =0
-2.4
-0.6
-5.0
-2.0
rna
rna
2NS12B
Vcs
Vcs
= -80v
= -40 v
IE =0
IE =0
-2.4
-0.6
-S.O
-2.0
rna
rna
All
V" = -30v
Ic =0
-1.5
-S.O
rna
All
VES = -15v
lc =0
-O.S
= -30 v
-S rna
-60
v
-80
v
2NS12
-30
-40
~,
Ic
IE =0
v
-40
-SO
v
2NS12B
-4S
-S5
v
2NS12
-50
-60
v
2NS12A
2NS12A
= -SOOma Is
Ic
=0
= -300 rna V" = 0
Ic
-60
-70
v
-6S
-80
v
-45
v
2NS12A
= -300 rna
Ie
R" = 100 ohms
2NS12B
BV ESo
v
2N512B
2N512
Colleetor·Emitter Breakdown Voltage
rna
-40
2NS12B
BV cER
UNIT
Vcs = -40 v
2NS12A
Collector-Emitter Breakdown Voltage
MAX
2N512
2N512
BVcso
TYP
Emitter·Base Breakdown Voltage
All
hFE
DC Forward-Current Transfer Ratio
All
VCE =-2v
Ic = -150
V"
Base·Emitter Voltage
All
VCE = -2v
Ic = -ISo
VCE''''I
Collector· Emitter Saturation Voltage
All
Y'E
DC Common·Emitter Forward Transfer
Admittance
All
VCE = -2v
Ie = -ISo
fT
Internal Cutoff Frequency
Iwhere I hi. I = 1)
All
VCE = --2 v
Ie =-1 a
= -5 rna
'E
Is = -2.250
Ic --
0
-30
-5S
v
-6S
v
-60
v
20
Ic = -150
60
-0.5
7.5
-
-2.0
v
-1.0
v
mhos
280
ke
971
6-16
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2NS12, 2NS12A, AND 2NS12B
P·N·P ALLOY ·JUNCTION GERMANIUM HIGH· POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR REVERSE-CURRENT CHARACTERISTICS
2N512
-2.4
o
2N512A
/
/
E
I -2.0
zUJ
'" -1.6
B
<>::
UJ
(/)
<>::
/
UJ
~ -1.2
<>::
<>::
o
/
/
o
./
V
~
-10
t::
./
-20
1
/
1/
/
/
"'"
,,- ......
-30
/
J
j
/
/
~
/
/
/
V
<5
u
I
liI -0.4
/
V
~ -0.8
.2
/
J
o
I-
I
I{
/
I-
2N512B
/"
-40
-50
-60
-70
•
-80
Vel - COLLECTOR-BASE VOLTAGE - v
COMMON-EMITTER DC FORWARD-CURRENT TRANSFER RATIO.
DC FORWARD TRANSFER ADMITTANCE AND DC INPUT RESISTANCE
VS COLLECTOR CURRENT
84
-
o'"
-<=
E
0
I
<{
i= 72
UJ
U
Z
<{
1=
10
o
(5
~
6
'" 36
4
u
0
'" 24
2
o
I
120
r""'-r-.
:::>
~
2
"""
,
I
.f
............
......
-- "'- ---
YFE
.........
......
12
o
-0.1
hFE
........
-0.3
-0.5
.-""
-1.0
--
..-'
-...
-3.0
~
"
i-'
60
<>~
lI-
~
............
-10.0
5'"
~
r-.,
hiE
-5.0
80
/
i'...
............
o
0
~
100 (/)
in
UJ
..........
.........
......
I
UJ
u
Z
-..............
u
LI..
u
48
Z
'"
I-
~
'"
II-
LI..
o
o
2.0 v
VeE
to-
60
<{
8
'UJ
"
!£<{
LI..
(/)
E
-<=
Z
~
<{
'"
UJ
'"
~
140
40
~
20
o
~
o
u
o
u
-15.0
o
I
Ie - COLLECTOR CURRENT - a
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6·17
TYPES 2NS12, 2NS12A, AND 2NS12B
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER BREAKDOWN VOLTAGE CHARACTERISTICS
>-120
I
---- --- ----
w
t')
~-100
o
>
V
-80
z
~
oc
«
~
'"
w
'"
-60
~
-40
12lrl
-20
2N51 2A
...-
I,..-f-I,..-f-."
V
,,/
:..:
LUJj
Ic = -300 rna
~~511~1
~ BVcEX
,
I.- BVcER
r-
L
r-
2N512B
2N512A
r-~
~
J
.....
ou
o
•
0.01
1.0
0.1
2N512
~
10
VBE - REVERSE BASE-EMITTER VOLTAGE - v
I
10
I
100
1K
Rae - BASE-EMITTER RESISTANCE - ohms
10K
lOOK
THERMAL INFORMATION
POWER DISSIPATION DERATING CURVE
180
160
~
I
c:
140 .............
o
~ 120
Maximum Thermal Resistance = 0.5°C/w
~
.~
g 100
~
Ql
~ 80
~
Ql
o 60
C
~
40
I
l-
e..
20
o
25
30
40
TB
-
~
~
~
50
60
70
80
Mounting-Base Temperature - °C
~
90
100
PRINfEO IN
6·18
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
u.s A
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
Guaranteed I CEX at 15°C
LOVV r cs • lOVV IclO • LOVV VIE
40-, 60·, 10-, or lOO-VOLT UNITS
20 VVATTS AT 25°C CASE T~PERATURE
Choice of T0-5, Stud, or Hex Package
Guaranteed Beta at 1 amp and 50 ma Ie
for
RELAY DRIVERS • PULSE AMPLIFIERS
SERVO AMPUFIERS • AUDIO AMPLIFIERS
mechanical data
The transistors are in hermetically sealed, resistance-welded cases with glass-to-metal seals between case
and leads. These devices are available in (1) a round TO-5 package weighing approximately 2.4
grams (2N1038 series), (2) a stud heat-sink package which weighs approximately 5.4 grams (2N2552
series) and (3) a hexagonal flanged-nut heat-sink package which weighs approximately 8.6 grams
(2N2556 series). Mounting hardware available is shown on page 8.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0._ ... 0.01001A.
* OUTUNE -
_________
2N2552 SERIES
~UTU,,!!-.,!!556
....!!RI~
lIMI'EUTUa MEASUlIMINT POINT o.G6O
NOMINAL fIIOM SlAt OF HEAT SINK.
•.
2. tfMPUAtull MEASUUMINT POIN'I ILI60
NOMINAL NOM CINIH: OF MiA1 SlNIL
5
I.
3.
-
ntUAD HUIF "
•
______ _
IHf OIIINTATJQN Of 'fMI UADS .. IllAtION TO
ntI HIX RAn IS NOt CONTIOUID.
AU. OIMINSIONS All IN INCHB UNLIIS cmtRWISE
SI'IC"ID.
G.. MAX. IT o..uo DlA.
·'ndicates JEDEC Registered Data.
971
TEXAS INSTRUMENTS
INCORPORATE!;>
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-19
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
*abs,!lute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage _
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current
Base Current _ _ •
Total Device Dissipation at (or below) 25°C
Case Temperature (see Note 2)
Operating Case Temperature Range
Storage Temperature Range . . .
2NI038
2N2552
2N2556
2NI039
2N2553
2N2557
2NI040
2N2554
2N2558
2NI041
2N2555
2N2559
40 v
40 v
60v
60v
80 v
80 v
100 v
100 v
•
20 v
3 a
1 a
20 w
- 55°C to + 100°C
- 55°C to + 100°C
=
NOTES, 1. This .alu. applies when baSl-.mitt" yoUog. VIE
+ 0_2 y.
2. Derate linearly fa + TOOoC case temperature 01 the rate of 267 mw/Co •
•
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TVPE
2NI038
2N2552
2N2556
2NI039
2N2553
2N2517
Coliector~Bas.
BVeaa
Breakdown
Voltogo
-BV eEO
CoUottor-Emlttor
Breakdown
Voltog.
Ie
Ie
=
=
-650 flo, IE
-100 mo, I.
=
=
0
0
2NI040
2N2554
2N2558
2NI041
2N2555
2N2559
2NI038
2N2552
2N2556
2NI039
2N2553
2N2557
2N1040
2N2554
2N2558
2N1041
2N2555
2N2559
MIN
TVP
MAX
UNIT
-40
-60
•
-80
-100
-30
-40
y
-50
-60
-Indico"s lEDEC R'glsterod Data.
971
6-Z0
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
-I CBO
CoUector
Cutoff
(urrenl
TEST CONDITIONS
Yca = -20 v,
IE = 0
2Ml038
2N2SS2
2N2SS6
Yca = -30 v,
IE
=0
2Ml039
2N2SS3
2N2SS7
p.o
IE
=
0
2Nl041
2NISSS
2N2559
= -IS v,
I. = 0
2Nl031
2N2SS2
2N2SS6
-2S
VCE = -20 v,
I. = 0
2Nl039
2N2SS3
2N2SS7
-20
Y,
la = 0
2Nl040
2N2SS4
2M2SS8
-20
VCE = - 30 v,
la = 0
2Nl041
2N2SSS
2N2SS9
-20
YCE =-40v,
YIE =
VCE =-60v,
VIE
=
-25
=
+
0.2 v
2Nl031
2M2SS2
2N2SS6
+
0.2 v
2Nl039
2N2SS3
2N2SS7
Cutoff
YIE =
+
0.2 v
2Nl04O
2N2SS4
2N2SSB
YCE = -100 v, YIE =
+
0.2 V
2Nl041
2N2SSS
2N2SS9
YCE = - 20 v, YIE =
Tc = + 8S'C
+ 0.2
Currenl
YcE =-80v,
v
2Nl031
2N2SS2
2N2SS6
= + 0.2 v
2Ml039
2N2SS3
2N2SS7
r--------
Emitter Cutoff Current
-12S
Yca=-SOv,
(olledor
·I ElO
UNIT
=0
YeE
-ICE)(
MAX
IE
Colledor
Cutoff
Current
Colledor
Cutoff
Current
TYP
= -40 v,
YCE
·I CEX
MIN
2Nl040
2M2SS4
2N2SS8
Yc •
-I CEO
TYPE
YeE = -30 v, YIE
Tc = + 8S'C
YCE =-4Ov, VIE =
Tc = + ISoC
+
0.2 v
2Nl040
2M2SS4
2N2SS1
YCE = - SO v, YIE =
Tc = + 8SoC
+ 0.2 v
2Nl041
2N2SSS
2N2SS9
VEB
= -20 v,
IC
=
0
All
rna
•
-6SO
p.o
-S
rna
-650
p.a
'Indi(otes lEDH Registered Dota.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-21
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALlOY·JUNCTlON GERMANIUM MEDIUM·POWER TRANSISTORS
electrical characteristics at 25·C case temperature (unless otherwise noted)
PARAMETER
hiE
*hFE
TYPE
MIN
TYP
MAX
VCE = -O.S v, IC = -1 a
(see No.e 3)
All
Static Forward
VCE = -O.S v, IC = -1 a
(see No.e 3)
All
20
60
(urrent Transfer Ratio
UNIT
ohm
60
VCE=-O.Sv, IC = -SO rna
All
33
200
VCE = -O.S v, Ic = -1 a
IC = - SSoC (S .. No•• 3)
All
lS
60
VCE=-O.Sv, IC = -1 a
IC = + BSoC
All
20
7S
Slatic (ommon-Emitter
Forward Transfer Admittance
VCE=-O.Sv, IC = -1 a
(see No.e 3)
All
1.0
*V BE
Base-Emitler Voltage
VCE = -O.S v, IC = -1 a
(see No •• 3)
All
-1.0
v
V.
Base-Emitter Voltage
VCE==-O.Sv, IC = - SO rna
All
-0.3S
•
*VCEIsatl
Collector-Emitter
Saturation Voltage
IS = -100 rna, Ie
(, .. No•• 3)
All
-0.2S
v
*h fe
Small-Signal (ammon·Emitler
Forward (urrent Transfer Ralio
VCE = -1.5 v, Ic = -O.S a
f = 1 kc
All
18
Small-Signal (ommon-Emitter
VCE = -1.5 v, Ic = -O.S a
f = 112.S kc
All
2.0
VCS = - 6 v,
IE = 0
f = 13S kc
All
Static Forward
(urrent Transfer Ratio
hFE
VFE
BE
•
TEST CONDITIONS
Stalic (ommon Emitter
Input Impedance
'lhf.1
Forward Current Transfer Ratio
(ammon-Base Open·Circuit
Cob
Output Capacilance
=
-10
mho
72
pi
100
NOTES: 3. Measurements ore made with voltage sensing contacts located 0.25 inch from header of transistor.
Voltage sensing contacts are separate from current carrying contacts.
*Indicates JEDEC Registered Data.
switching characteristics at 25·C case temperature
PARAMETER
TEST CONDITIONSt
TYPICAL
UNIT
'd
Delay Time
IC = - l a
0.18
,usee
Ir
Rise Time
VllEloifl = 7.40
0.47
,us.c
Storage Time
RL =29!l
0.S9
p.s.c
If
Fall Time
(See circuit on Page 8)
1.21
p.sec
IT
Total Switching Time
2.4S
p.sec
"
tVoliage and current values are nominal; exact values vary slightly with device parameters.
971
6-22
TEXAS INSTRUMENTS
INCORPORATED
POST OFFiCe: BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY-JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(High-Voltage Region)
COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(Low-Voltage Region)
-3
~--~~------~------~----~
0
0
I -2
I -2
1:
~
1:
~
U
U
~
E
~
~
u
~
~
8 -1
"0
I,
u -1
I
I
.::!
.:.'
= -20 mo
.............
-
PT=20w
I, = -5 rna
o
o
VeE -
-40
-30
-20
-10
Ve • - Collector- Emitter Voltage - v
Collector- Emitter Voltage -
v
•
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COMMON-EMITTER TRANSFER
CHARACTERISTICS
-1.0
I
60
"
I
/
/
.~ 50
.l!
/
o
I -0.5
-
.......
/
o
I
-0.2
ViE -
/
.....
F)
,
\
41
II
-0.1
~ximum h
'1\
/
Tc = 25°C
VeE = -0.5 v
-
COLLECTOR CURRENT
Minimum
hFE
~
VeE = -0.5v
T =25°C
C
-0.4
Base-Emitter Voltage -
20
-0.01
-0.6
I
Minim~:. hFE)1
I I
v
-0.05 -0.1
Ie -
-0.5
Collector Current -
-1.0
-3.0
a
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6-23
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
CASE TEMPERATURE
CASE TEMPERATURE
100
.2
~
i
~
-1.00
I
I
I
•
...... Moximum hfE
70
'It.
----
50
l-
I
-
~
5
V
c
30
~
.E
I
20
M!nimU~fE
V>
I
•
..<=
•
V
/
-50
-25
0
Tc -
-.... -t--
Ol
.E
~
-0.50
~
j
f......
~
= -O.Sv, Ie = -1.00
VeE
i'-....
~.
-0.25
-}
I I
10
-75
1
·0.75
~
VeE =-O.Sv, Ic=-1.00
.2
.~
.
>
e
l:!
BASE-EMITTER VOLTAGE
vs
'"
o
25
50
75
100
-75
-50
-25
DC
Case Temperature -
Te -
0
25
50
Case Temperature -
75
100
DC
COLLECTOR CUTOFF CURRENT
vs
COLLECTOR-EMITTER SATURATION VOLTAGE
BASE - EMITTER RES ISTANCE
and
BASE- EMITTER VOLTAGE
vs
CASE TEMPERATURE
-0.20
.
OJ
.E
"0
>
c
.~
./
-0.15
E
/
a"
~
V
,...-
-----
-100
-50
f-
I
-5
~
V
-0.10
tt:
o
..
\(.~
~
-I
r-..,
leEx vs
V
.
t
~
'ii
-0.05
-0.1
,
E.t ....$
V:
Til
I 11111
-0.01
o
-75
-55
-25
Tc -
25
50
Case Temperature -
75
DC
'f
II
50
100
500 1 k
Rae - Base-Emitter Resistance - ohm
10
100
........
T - 25°C
'e
-0.05
>5
V"
\ct'-""~
V
I
--
~.c
."
Te =+55°C
., -0.5
1,= -0.10, Ie = -1.0 a
u
V
-10
v
E
c
~.E
"0
0
-
VCE
+0.01
V 8E
+0.05 +0.1
-
5k
10k
+0.5 +1.0
Base- Emitter Voltage -
v
971
6·24
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
COLLECTOR CUTOFF CURRENT
o
vs
-10.0
-5.0
r-
0
E
I
-1.0
t::
2:>
U
-0.5
-
Iiv
..!!
'0
u
I
~
Ji
-
-0.1
-0.05
-0.03
(2N1038) 0
(2N1039) 0
(2N1040) 0
(2N1041) 0
~
..-
S50C
1c'''::':::-
10"'''70°C
_
--
1 '" .. 55°C
0_
I
'\
,,"
A,00C
~OC
-
-8
'\o", .. ~
----
70
~
.......
~Ioo.
60
~
---- ....r--
COLLECTOR CURRENT
i~
-
+O.2v
--.I
c
~
:>
u
VIE
VI
j
COLLECTOR-EMITTER VOlTAGE
to-
50
,,~
a 40
-e
j
'\
£ 30
,
~
~
~
E 20
~
8
VoE =-1.5v
= 1 kc
j
f
V)
I
Te =rc,
1
V)
-16
-24
-24
-36
-48
-32
-12
-48
-16
-32
-64
-20
-40
-60
-80
VeE - Collector-Emitter Voltage - v
-40
- 60
I 10
!
..<:
-0.01
-0.05 -0.1
10 - Collector Current - a
-0.5
-1.0
- 80
-100
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
20
~
I
c
.~
15
&.
~
Il
~
'2
10
,!!
E
~
'x 5
~
I
o
o
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES
1\.l.."J
1.2
Enclosed In 1 Cubic Foot
~
I 1.0
c
.~
8.
\
'~
\
•
0.8
i:5
~
u
';
\
~ 0.6
'20
>-
5E 0.4
~
25
50
75
Tc - Case Temperature - °C
'x
1\
100
~
I 0.2
a:-
0
0
25
50
75
TA - Free-Air Temperature - °c
100
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 15222
6·25
TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
SWITCHING TEST CIRCUIT
VOLTAGE WAVEFORMS
O.15~f
r- o
IN~10%
INPUT
OUTPUT
._.
:~---90%
L ____ l ~ 10%
~
290
OUTPUT I
I I
I I I
~tr~
+29.6 v
-29.2 v
NOTES: o. The input woveform has th. following characteristics:
-20.4v
90%
't S
+oIts~
-+lId\-.
10 nsee, If ~ 10 nsee, PW
b. Waveforms are monitored on an oscilloscope with the following characteristics:
c, Resistors must be non·indu(f've types.
~tll.
't:S 14
=
1.6 mslt,
Duty Cycle = 10%.
nsec, Rin ;;::: 10 M{} , (in::::; 11.5 pf.
MOUNTING HARDWARE INFORMATION
NO. 1()'32 UNF-2B THREAD
•
0.07%0.01
0.03%0.01
~r.
~
IF ISOLATION WASHERS ARE USED THE
NOTE,
~FH~C:~~T~g~E~~~~~ ::Elk~T ~tED
J~ER~~~~~T~~NT~: ~~: ~~~:
THE CHASSIS HOLE SHOULD BE 13/64 DIA IS NOT CONTROLLED
NO. 1()'32 UNF·2A
T~ C 3 LEADS 0.025 "'0.003 DIA
~
~
0.12±O.01.J
~.245±O.005
~ F
:..jl-
ELECTRICAL ISOLATION WASHERS
OUTSIDE DIA. 0.53 % 0.01
INSIDE DIA. 0.20'" 0.01
0.003
"'0.002
0.035~1---t11-0.445
MAX
%0.010
0.850 MAX
1.500 MIN
-J
EMITTER
0.100
-
-
%o,ol~~ o~
~..""
/
Y
,.".~OIO
~
2N2552 SERIES
1.500
ELECTRICAL ISOLATION WASHERS
DIA. 0.&9", 0.01
INSIDE DIA. 0.51 % 0.01
MIN--~-,...~OUTSIDE
0.500 % 0.015
0.093 % 0.010
NOTE,
THE ORIENTATION OF
THE LEADS IN RELATION
TO THE HEX FLATS
NOT CONTROLLED
15
0.550 MAX-I
~-
L
O.200 ",O.OlO
_1~1':53~±= ..m±~"~~
UNDERCUT
1· NOMINAL
hIJ==t=l=l=jIIM
EMITTER
111""1==t=l=HI~~~.56±0.01
~-:;::~::1
f- ~
--I 1--0.18~H!'~~10
1"
20 UNF - 2A THREAD
0.003 = 0.002
0.03 = 0.01
'1::: 0.07 % 0.01
4-1
0.750=0.010
P
0.875 MAX TYP
IF ISOLATION WASHERS ARE USED THE CHASSIS HOLE SHOULD BE 37/64 DIA
IF ISOLATION WASHERS ARE NOT USED THE CHASSIS HOLE SHOULD BE 1/2 DIA
2N25S6 SERIES
PRINTED IN U.S A
6·26
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
971
11 (annot anume any responsibility for ony dnuifs shown
or represent thai they are free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045. 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
Guaronteed leEx at ISoC
LOVW res • LOVW Iclo • LOVW VIE
40·, 60·, 10., or 100·VOLT UNITS
20 VWATTS AT 2SoC CASE TEMPERATURE
Choice of TO·5, Stud, or Hex Package
Guaronteed Beta at 3 amps and SO ma Ie
for
RELAY DRIVERS • PULSE AMPLIFIERS
SERVO AMPLIFIERS • AUDIO AMPLIFIERS
mechanical data
The transistors are in hermetically sealed, r~sistance-welded cases with glass-to-metal seals between case
and leads. These devices are available in (1) a hexagonal flanged-nut heat-sink package which
weighs approximately 8.6 grams (2Nl042 series), (2) a stud heat-sink package which weighs approximately 5.4 grams (2N2560 series) and (3) a round TO-5 package weighing approximately 2.4
grams (2N2564 series). Mounting hardware available is shown on page 8.
'THE COUECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
* OUTLINE -
•
2Nl042 SERIES
* OUTLlNE-2N2560 SERIES
* OUTLINE NOTUo
2N2564 SERIES
1.
TEM.EIATURf: MfASUlBMNT POOO 0.160
NOMINAl. noM ClNlIII OF H!!AT SM.
4
2
THREAD HuU 1$ 0090 MAX. IY O,QO DIA.
NOMINAl..
5.
S
TEMI'I ....'U.I MlASUllMI\NT POINT 0.060
NOMII'W. 'IOM SEAT OF HlA' SINK
THE OIllliNTATIOH OF 1111 UADS IN ItILATlON TO
THE HEX
FU,n
IS NOT CONllOUlD.
AU DIMINSIONS A" IN INCHES UMUSS OTHllWtSl
SPlC•• D.
·Indicates JEDE( Registered Data.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DAL~S.
TEXAS 75222
6-27
TYPES 2Nl042, 2Nl043, 2N1044, 2N1045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2Nl042
2N2560
2N2564
2Nl043
2N2561
2N2565
2Nl044
2N2562
2N2566
40 v
40 v
60 v
60v
80 v
80 v
Collector-Base Voltage .
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current
Base Current •
Total Device Dissipation at (or below) 25°C
Case Temperature (see Note 2)
Operating Case Temperature Range
Storage Temperature Range •
2Nl045
2N2563
2N2567
100 v
100 v
,.
20 v
3.5 a
1 a
'E
,.
,.
20 w
-55°C to + 100°C
- 55°C to + 100°C
,.
~
~
=
NOTES: 1. This value applies when base-emitter voltage VBE
+ 0.2 Y.
2. Derate linearly to
lOOoe case temperature at the role of 267 mw/Co.
+
•
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Collector-Base
BY CBO
*BY CEO
Breakdown
Voltage
Collector-Emitter
Breakdown
Voltage
lc
lC
= - 6S0 p.a, IE = 0
= -100 rna, IB = 0
TYPE
MIN
2N1042
2N2S60
2N2S64
-40
2N1043
2N2S61
2N256S
-60
2N1044
2N2S62
2N2566
-80
2N104S
2N2S63
2N2S67
-100
2N1042
2N2S60
2N2564
-30
2N1043
2N2561
2N2565
-40
TYP
MAX
UNIT
v
y
2N1044
2N2562
2N2566
-50
2N1045
2N2563
2N2567
-60
·Indicates JEDEC Registered Data.
971
6-28
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045 e2N2560, 2N2561,
2N2562, 2N2563 e 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNOION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
-'CBO
CoII,dor
Cutoff
Currant
TEST CONDITIONS
Yca
= -20 v,
IE
=0
2Nl042
2N2560
2N2564
YCB
= -30 v,
'E
=0
2Nl043
2N2561
2N2565
-I CEX
= -40 v,
'E
=0
YCI
= -50 v,
'E
=0
2Nl045
2N2563
2N2567
YCE
= -15 v,
'a
=0
2N1042
2N2560
2N2564
-25
YCE
= -20 v,
'a
=0
2Nl043
2N2561
2N2565
-20
-20
-20
CutoH
Currenl
YCE
= -25 v,
'a
=0
2N1044
2N2562
2N2566
YCE
= -30 v,
'a
=0
2N1045
2N2563
2N2567
YCE
=
-40 v,
YIE
= +0.2 v
2N1042
2N256O
2N2564
YCE
= -60 v,
YIE
= + 0.2 v
2Nl043
2N2561
2N2565
YIE
= + 0.2 v
2NI044
2N2562
2N2566
Collecto.
CutoH
(urrent
YCE
= -BOv,
YCE
=
-100 v; YIE
= + 0.2 v
2N1D4S
2N2563
2N2567
YCE
=
-20 v,
= + 0.2 v
2NI042
2N256O
2N2564
CoII,"o.
Cutoff
=+
YIE
B5 0 C
= -3Dv, YIE = + 0.2 v
Tc = + B5 C
0
(umnt
YCE
=
Tc
-40 v,
=
YIE
= + 0.2 v
-I- B5 0 C
= -so v, YIE = + 0.2 v
Tc = + B5 C
VEl = -20 v, 'C = 0
YCE
0
Emitter Cutoff Current
MAX
Yca
YCE
*I EBO
TYP
-125
Tc
-'CEX
MIN
2N1044
2N2562
2N2566
(oliidor
-'CEO
TYPE
2Nl043
2M2561
2N2565
UNIT
p.a
ma
•
-650
p.a
-5
mo
2N1044
2N2562
2N2566
2Nl045
2N2563
2N2567
All
-650
p.a
·Indl,ates JEDEC Registered Data.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
6-29
TYPES 2N1042, 2N1043, 2N1044, 2N1045. 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Static (ommon·Emiller
Input Impedance
hiE
Static Forward
Current Transfer Ratio
*hFE
TEST CONDITIONS
All
VeE = -1.0 v, Ie =
(see Nole 3)
- 3•
All
VeE = -1.0 v, Ie =
(see Nole 3)
-I •
=
MIN
TYP
20
150
-1.0 v, Ie = -3.
Te = - 55'C (... Nol. 3)
All
15
60
VCE = -1.0 v, 'e= -3 •
Tc = + 85'C (... Nole 3)
All
20
75
Static Common-Emitter
Forward Transfer Admittance
VCE = -1.0 v, Ie =
(... Nole 3)
-3.
All
2.0
*V SE
Base-Emitler
Voltage
VeE = -1.0 v, Ie =
(... N,I. 3)
- 3•
Vee
Base-Emiller
Voltage
VeE =
Static Forward
(urrent Transfer Ratio
hFE
rFE
I. =
*VCElsatl
Collector-Em iller
Saturation Voltage
-1.0 v, Ie =
-0.3 .,
- 50 m.
'e= - 3 •
All
-1.5
v
All
-0.5
v
All
-0.75
All
- 0.25
VeE = -1.5 v, Ie =
1= 1 kc
All
25
2.0
v
- 0.5 a
*h fe
Small-Signal Common-Emitter
Forward Current Transfer Ratio
'Ihfel
Small-Signal (ommon-Emitter
Forward Current Transfer Ratio
VCE =
1=125kc
All
Common-Base Open-Circuit
Output Capacitance
Ve • = -6 v,
'E = 0
1= 135 kc
All
Cob
mh,
I. = -100 ma, Ic= -1 •
(... Nole 3)
(... Nole 3)
ohm
60
50
VeE
UNIT
30
All
-0.5 v, 'e= - SO rna
MAX
All
VeE =
•
TYPE
VeE = -1.0 v, 'e= - 3 •
(see Nole 3)
-1.5 v, 'e= -0.5 •
100
100
pi
NOTES: 3. Measurements are made with voltage sensing contacts located 0.25 inches from header of transistor.
Voltage sensing (onlods are separate from current carrying (ontacts.
*'ndicates JEDEC Registered Data.
switching characteristics at 25°C case temperature
PARAMETER
rEST CONDITIONS
Id
Delay Time
I,
Rise Time
I,
Siorage Time
= -3.
VSEfoffl = B.2v
RL = 10 n
If
Fall Time
(See circuit on Page 8)
IT
Tolal Switching Time
t
Ie
TYPICAL
0.20
UNIT
JLsec
0.48
JLsec
0.29
p.sec
2.15
JLsec
3.12
JLsec
tVoltage and (urrenl values shown are nominal; exact values vary slightly with device parameters.
971
6-30
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(Law-Voltage Region)
COMMON-EMmER COLLECTOR
CHARACTERISTICS
(High-Voltage Region)
-3
-3.0
~\
I, = -80 rna
Tc =25°C
\
I
-2.0
I
1,= -40 rna
C
C
~
I
U
-1.0
I
~
1,=-20ma
-1
r-- P, = 20w
....
/
..::!
1,=-10ma
~ ....... ~ =-lOma
.....
i'"""
18 = -5 rna
I. = -5 rna
~-J. = 0
I, = 0
-0.2
-0.4
-0.6
-0.8
VCE - Collector-Emitter Voltage - y
~~,
~
"0
"0
= -40 rna
l,.--- ~\\.I,,= -30 rnaI
E
u
I, = -20 ma
~
~ 25°C
Tc
= -60 rna
~
a
1,=-30ma
E
u
U
-2
~
~
u
I
18
V'""~II'
a
a
1,1=_OOma
o
-1.0
o
-10
-20
-30
V CE - Collector- Emitter Voltage - y
-40
•
STATIC FORWARD CURRENT TRANSFER RATIO
COMMON-EMITTER TRANSFER
CHARACTERISTICS
-3.0
Tc =25°C
/
VCE = -1.0y
I -1.0
V
yS
COLLECTOR CURRENT
/
L
c
/
~
u
/
~
1/
E -0.5
u
~
8
I
/
..::!
-0.1
o
-0.2
VIe -
/
/
Minimum hFE
VCE = -LOy ~
L--L...-.L-i-..LJ,..J...I..l..I--~TL......II....J..I.1...L.J
111c..u....-....J..f".._
-0.4
-0.6
Base-Emitter Voltage - v
20
-0.01
-0.8
-0.05 -0.1
Ie -
-0.5
Collector Current -
-1.0
-3.0
a
971
TEXAS INSTRUMENTS
INCORPORATED
~OST
OFFICE BOX 5012
•
DALLAS. TEXAS 75222
6·31
TYPES 2Nl042,2Nl043, 2Nl044, 2Nl045- 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
STATIC FORWARD CURRENT TRANSFER RATIO
vs
CASE TEMPERATURE
100
i
i...
I!
-1.00
I
•
........ Maximum h..
"II
----
SO
>
I
j
•
!;
1!
~
30
~
.eu
i
VeE = -1.0 v, Ie = -3 a
~
C
I!
u
- r"""-
-0.75
VeE =-I.Ov,l e =-3.0a
j
I 1
20
I
1
I I I
10
-SO
I
.; -0.25
h"
•
-75
I
~ini:! y~
II>
-O.SO
Jl
o
-25
Te -
25
SO
Case Temperature -
75
o
100
-SO
-75
Te -
VI
CASE TEMPERATURE
-100
-0.5
-SO
I
25
75
SO
Case Temperature -
100
·C
COLLECTOR CUTOFF CURRENT
vs
BASE- EMITTER RESISTANCE
and
BASE-EMITTER VOLTAGE
COLLECTOR-EMITTER SATURATION VOLTAGE
>
o
-25
·C
I:==::::
VeE --I 5v
j
~
-0.4
15
1
-0.3
,V
£
E
V
V
V
v
-10
I
-5
~
d
I
\c"~
-- '"
Te = +55°C
i"'-
~ r-~.t .., k
r--
¥
U
-0.05
o
-75
-SO
-25
o
SO
25
75
100
==
FI
1: -25°C
c~
Case Temperature -
"s
11r
I 1111
-0.01
10
50
RIE -
Te -
~.~
\c.to"
I
~ -0.1
-0.1
..,., ..
~
.2
~
~.~'"
_Ll
I--
..1
1d -0.5
1,= -0.30, le= -3.00
"I' -0.2
I
~
°C
100
500
Ik
5k
10k
Base-Emitter Resistance - ohm
+0.01
+0.05 +0.1
+0.5 +1.0
VIE - Base - Emitter Voltage - v
971
6-32
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES 2N1042, 2N1043, 2N1044, 2N1045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNOION GERMANIUM MEDIUM·POWER TRANSISTORS
TYPICAL CHARACTERISTICS
SMALL-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO
COLLECTOR CUTOFF CURRENT
vs
vs
COLLECTOR-EMITTER VOLTAGE
-10.0
-
E
I
~
:>
U
~:>
u
-1.0
-0.5
..!!
(;
u
J
SS·C
k";:::'-
--- 'k=+7
J O·C
_
.eu
I
-- -
VIE =+0.2v
-5.0
a
-0.05
~
~-
~
I .. ",.0....
\:-'1c.-:::.-t
100
'J,S·C
----
~
V
-16
-24
- 8
-12
-16
-20
-32
-40
I'
..[.......-'
-24
-32
-40
-36
-48
-64
-80
- 60
-48
-60
.....
.....
Vc.=-1.5v
r-('tl
_i"'"
-0.03
(2Nl042)0
(2N 1043) 0
(2Nl044) 0
(2N 1045) 0
I/'
.......
1 =+SS·C
~
-0.1
COLLECTOR CURRENT
150
20
-0.01
-O.OS
Ie -
-0.1
Collector Current -
-0.5
-1.0
a
- 80
-100
Collector-Emitter Voltoge - v
Vc• -
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
1\.L."c.l
\
1\
~
I
&.
15
'iii
Q
II
~
10
\
]
~
l
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES
1.2
20
~
•
o
SO
8.
'Bi 0.8
15
..
u
';;
t!l
'2
0.6
5 0.4
\.
5
25
I 1.0
c
,~
,2
I
o
Enclosed In 1 Cubic Foot
~
75
E
'x
\
~
I 0.2
t1:
100
Tc - Case Temperature _·C
0
0
25
50
75
TA - Free-Air Temperature _oC
100
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6·33
TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045. 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
VOLTAGE WAVEFORMS
SWITCHING TEST CIRCUIT
0.47
~f
INPUT
OUTPUT
IN~
I
190%
I
~ ___
100
-.!.+
I I
I
1+,1,.....
I I
+29.3
-30.3
v
1I
NOTES: o. The input waveform has the following characteristics: tr ~ 10 nsec, t f ~ 10 115ec, PW
v
10%
I
I
;..!I,~
1
I 1
....., Id'~
v
o
1----- -24.1
I
+-il s ....
= L&
msec,
Duty Cyde = 10%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: Ir::::; 14 nsec, Rin ~ 10 MQ. 'in:::; 1I.S pt.
c Resistors must be Ron-inductive types.
MOUNTING HARDWARE INFORMATION
•
ELECTRICAL ISOLATION WASHERS
OUTSIDE DIA. 0.89:!:; 0.01
1.500 MIN
INSIDE DIA. O.SI::!:: 0.01
0.500±O.01S
0.093 ± 0.010
UNDERCUT
I· NOMINAL
g:-
fY
D.IDO=O.OIO~
-lDIA 3 LEADS
THE ORIENTATION OF
THE LEADS IN RELATION
TO THE HEX FLATS
IS NOT CONTROLLED
::~::::~;~~~:F04.56±0.01
0.550 MAX-l
I
f--
Vi - 20 UNF - 2A THREAD
0.003 = 0.002
-1
Jl ~ rr:=
II
0'100~~:~:1
~
Yz-20 UNF-2B
-j
0.200::!::OOIO
~ASE
O.02S±O.D03
1--0.1;7H~~~10
~
J·'Y"·
0.03 = 0.01
0.875 MAX TYP
0.07 ± 0.01
IF ISOLATION WASHERS ARE USED THE CHASSIS HOLE SHOULD BE 37/64 DIA
IF ISOLATION WASHERS ARE NOT USED THE CHASSIS HOLE SHOULD BE 1/2 DIA
2Nl042 SERIES
NO. 10-32 UNF - 2B THREAD
0.07=001
0.03=0.01
0.12±O.01-!
if. ~
f
~
L~
IF ISOLATION WASHERS ARE USED THE
NOTE,
0200 =0.010
CHASSIS HOLE SHOULD BE 1/4 DIA
THE ORIENTATION OF THE L E A D s : 2
IF ISOLATION WASHERS ARE NOT USED
IN RELATION TO THE HEX FLATS
0100 =0010
THE CHASSIS HOLE SHOULD BE 13/64DIA IS NOT CONTROLLED
':>BASE
~
I-."'[~I--ELECTRICAL ISOLATION WASHERS
NO. 10-32 UNF-2A
~
0.003
=0.002
0.D35~
F,,_·m, ..- .• "A"-,
/
~
~
0.445 =0.010
MAX
COLLECTOR
0.B50 MAX
OUTSIDE DIA. 0.53 ± 0.01
1.500 MIN
INSIDE OIA. 0.20:::t; 0.01
2N2S60 SERIES
PRINTED IN USA
6-34
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI (onnot assume any responsibility for any circuits shown
or repre!en' 11'101 they ore free from patent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPE 2Nl046
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTOR
~'"
HIGH-FREQUENCY POWER TRANSISTOR
FOR
MILITARY AND INDUSTRIAL APPLICATIONS
!!l
...
...-<
..
m
Z ~
z
!> ~
:i:"
t...
'"
~
.
~
~
mechanical data
This transistor is in a precision -welded, hermetically sealed enclosure. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extre me cleanliness during the assembly process prevents
sealed-in contamination. The approximate weight of the unit is 18 grams.
:;;
......
*
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
1.050 MAX
•
0.188 R MAX
BOTH ENDS
t TI GUARANTEED MAXIMUM
1 -BASE
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
100 v*
50v*
\ 1.5 v* t
12.0 vt ~
12 a*
20a*
3a*
See Figure 13*
50w
50w*
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Cantinuous Collector Current
Peak Collector Current (See Note 2) .
Base Current
Safe Continuous Operating Region .
Continuous Collector Dissipation at (or :below) 75°C Case Temperature (See Note 3)
Continuous Collector Dissipation at (01' 'below) 50°C Case Temperature (See Note 4)
Peak Collector Power Dissipation at (or below) 25°C Case Temperature
(See Notes 2 and 5) .
600w*
Operating Collector Junction Temperatilre .
1000C*
.
I -55°C to + 1OOoC*
Storage Temperature Range .
/ -55°C to + 1100Ct~
230°C*
Lead Temperature, 1/8 inch ± 1/32 inch tro.m case for 10 seconds.
t
NOTES: 1. This value applies when the bose-emitter diode is open-circuited.
2. This value applies for a rectangular woveshape, pulse width::::; 270 11-1e(, duly (yde ::::; 10%. See figure 12 for other allowable pulse width and duty
cycle combinations.
3. Derate linearly 10 lOOoe case temperature 01 the rote of 2 w/C o .
4. Derate linearly to lOOoe (ose temperature at the rate of 1 w/Co, This corresponds to the JEDEC registered maximum value of thermal resistance, 8J - c , 1.0
S. Derate linearly to 1000e case temperature at the rate of 8 w/Co.
*Indicotes JEDEC registered data.
eO /w.
tIexDs Instruments guarantees these values in addition to the lEDEC registered values which are also shown.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-35
TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
electrical characteristics at 2S·C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
BV CBO
Collector-Base Breakdown Voltage
BVc,o
Coliector·Emitter Breakdown Voltage
BVEBO
Emitter-Base Breakdown Voltage
'CBO
Collector Cutoff Current
MIN
'c,x
(all ector Cutoff Current
"BO
Emitter (utoff (urrent
V'B--O.s v, 'C- O
Static Forward (urrent
Transfer Ratio
hFE
•
==- S a,
,
-2.0
mo
-0.1'
mo
40'
60t
40'
See Note 7
60t
60
Seo Fig. 4
Vc ,--1.5v, 'C--So, Tc--SS·C,
See Note 7
Vc ,--1.5" 'C--So, TC -+70 o C,
See Nole 7
200t
40
See Fig. 4
-0.4'
'8 - - 500 rna, Ie - - S a, See Nole 7
- 0.7*
Collector-Emiller
Saluration Voltage
'8 --= - SO mo, Ie - - 0.5 a, See Nole 7
'B--SOOmo, 'C--So, See Nol. 7
- 0.4'
Small-Signal Common-Emitter
Forward Current Transfer Ratio
VC,=-lSv, IC=-O.so, f=10mc
Base-Emitter Voltage
VeElsat!
Ihl.1
mo
-12
'B--SOma, 'C--O.5a, See Note 7
VBE
,
,
-0.3'
-2.0'
Vc ,=-1.5v, 'c=-O.So, See Note 7
YCE=-1.5 v, Ie
UNIT
- 50'
-1.5'
-2.0
2 mo, 'C-O
',',--10 mo, 'C-O
VCB --3" ',-0
Vc .--7S" ',-0
VcB --7Sv, ',-0, Tc -+70 o C
VC,--7Sv, VBE - + 0.2,
MAX
-100'
'c--'O mo, ',-0
'c - - 200 mo, lB - 0, See Nole 6
,
,
-0.2'
1.0'
2·ot
=
NOTES: 6. This parameter must be measured using pulse techniques. PW
300 /Lsecs; Duty Cycle:::; rio.
7. If these parameters are measured without a heat sink, doc collector currenl must not be applied longer than 250 msec.
switching characteristics at 2S·C case temperature
PARAMETER
TEST CONDITIONS:/:
TYPICAL
UNIT
0.1
p.sec
IC=-So, IBIII=-O.So, 18I21 =0.So,
0.2
p.sec
VBEI.III=2" RL=40,
2.0
p.sec
See Figure 1
0.4
p.sec
2.7
p.sec
Delay Time
Id
I,
Rise Time
I,
Storage Time
'I
fall Time
IT TOfal Switching Time
:t.Voltage and current values are nominal; exact values vary slightly with device parameters.
PARAMETER MEASUREMENT INFORMATION
"A"
See Note a
I ...
r; 1'"
-5.5
v
VOLTAGE WAVEFORMS
SWITCHING TEST CIRCUIT
EO'-~--"1I>---""· OUTPUT
1 1'"
r-
POINT -;;;?t 10%
~,~
:90%
~
OUTPUT I
'90%
~ _____ .!.~
I '
I II I
I~r~
-+-lld'''-
Vse=+2 v
, I
10%
I
l.JI I
~fi..
...lts ....
FIGURE 1
=
NOTES: {oj The pulse 01 point "A" has the following characleristics: 'r ::; 20 nsec, If :5' 20 nsec , PW
5 ",sec, duty cycle:::;: 5%.
(b) The waveforms are monitored on an oscilloscope with the following characteristics: tr ::::; 15 n~ec., Rin ;;::: 1 MO, (in::; 2D-pf.
·'ndicates JEDEC registered data.
tTexas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.
971
6·36
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Low-Voltage Region)
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Hlgh:Voltage Region)
-12~----------~----?-~-----r-----'
-12
-10
V
a
I -8
'f
C
~
Is~-70ma
/
"t:
U"
I
',rIS=-IOOma
Tc = 2SOC
See Note 8
10--SOma
-
-6
.eu
..!!
"0
u -4
I
10=Jma
_u
-2
-2~~~~~--~-----+----~----~
1.=
-0.4
-0.8
VCE - Collectar - Emitter Voltage - v
o
-1.0
I/"
o
.,.-
~
j
COLLECTOR CURRENT
-0.8.----,,----,-----r----,-----~--_,
--~
~
~
u" SO
I -0.6r---~-----r----t,~~~~~~~
j
......... Tc =+70°C-
"-
1
]
•
TC =2SoC
See Note 8
+2So~
Tc
.......
c
10 ~ -1300ma
~
-1~=-IOOma
~ -0.4 (-~-:~7=-~t-'"-----.------1fcloo..=_-_SO_mt-a_ _-t-_ _--1
" I~
~
51
JI
I
~
~
-SO
VI
I
t-VCE = -1.Sv
f- See Note 8
-I--"'""
-Ib ma
8ASE -EMITTER VOLTAGE
COLLECTOR CURRENT
><
,...---
FIGURE 3
VI
.2
-
~
-10
-20
-30
-40
VCE - Collector - Emitter Voltage - v
STA TIC FORWARD CURRENT TRANSFER RATIO
:i 100
~
lL.lo= 0
FIGURE 2
200
TC ~ 2SoC
See Note 8
;-0.2t---+---+---r---r---r--~
20
w
~
..c
10
o
-2
-4
-6
-8
-10
o
-12
I c- Collectar Current - a
o
-2
-4
-6
-8
-10
IC - Collector Current - a
-12
FIGURE S
FIGURE 4
HOTE 8: These characteristics wen measured Ising pulse techniques. PW
= 300#,* , Duty Cycle :5 2%.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6·37
TYPE 2N1046
P-N-P AllOY-DIFFUSED GERMANIUM POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER SA TURA TlON VOLTAGE
vs
CASE TEMPERATURE
BASE - EMITTER VOLTAGE
vs
CASE TEMPERATURE
-0.8 r---,---;---,----,---,r---,--,
-0.5
See Note 8
>
.
!
i -O. 6 I--oo;;;:::+-i
-0.4
j
i
IBz-la,lc=-IOa
i'! -0.3
j
-~~
JI
! -O. 4 I----t--=""'""'k:---=~oo;;::-+__-+__-+____I
!
18 = -SOOma, Ie=- -5a
J
I..
-::'
~60~---~40~--~2~0----0~--~20~--4~0--~60--~80
Tc - Case Temperature -
I
-~
-
-0.2 I--;:-!--,-,.---I-::---I---t--+---I----I
IB •
°-60
·C
~
-40
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
~
3.0
!
j
-20
o
20
40
Tc - Case Temperature - ·C
j
60
~
Tc =+70·C
2.5
--
B
\
I
C
~
-lxlO
Tc =+2S·C
-1
u
l
.e
-lxlO -2
1.0
..!!
-lxlO
0.5
_u
1.5
' ....
~
U
See Note 8
u
"0
u
-3
~~
I
iil
-lxlO -4
V
BVCEO .. BVCER at RaE = 10 kQ
01
I I 1111111
80
COLLECTOR-BASE VOLTAGE
-I
8
1:
/
VI
]l
1
/
COLLECTOR CUTOFF CURRENT
IC'';;'SO ma
Tc = 2S·C
See Note 8
2.0
~
-----
oma , I ( -o'r
-10
j
V
FIGURE 7
'"I
t
-
r
FIGURE 6
III
//
V
UJJll1ll L
Ik
100
10
RaE - Bose-Emiller Resistance - ohm
-lxlO -s
10 k
o
-25
-50
/
-75
-100
VCB - Collector-Base Voltage - v
FIGURE 8
FIGURE 9
NOlE I, lh... cha ..cteri.tics .1" ml..ureel u.ing pui.. t"hniques. PW
=
300,...". Duly Cycll ::::;
2%.
971
6·38
TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVES
50
1\
\
~
~l~
~
30
-0
u
~'\
o
20
U
E
~
10
~
0
E
50
1500
..
1250
.=
.
1000
E0
\
'"
.;;u
0
I
25
~Q.
i5
~~
1\
~
~
0
0
·0(' '-"'l-
~
I\.
I
c:
",1\
~
1750
E
~':\~ (''t.!~
2
.e
2000
~
~
J!
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
\
\
750
>-
·x
'\
~
~
I
'\.
250
~
25
50
75
TA-Free-Air Temperature-OC
FIGURE 10
FIGURE 11
-20
r50% Duty Cxele
V
20%
I
j
0
'"
~' ~
I-e T
---tw
c
-1
.
~
I
1-17
.11
~ Duty Cye Ie Ratio II
~lty c),l1
M1::l::r:llTm,t
~
1.0
tw - Pulse Width - msee
0.01
\
.{l.5
........
0.10
riii
r--...
-0.2
1-
.1.1
tw~ Pulse WIdth In mseell
d
\
u
S
I
0.01
-2
2
iSee Note 9
"
I
c:
~
~
~
;.
Te:5: 7S·Q
Te:5:50·C·
u
r5%
..I<
.,
•
-5
I-e d'T
t?
~
0.10
-10
-tl-
......
'"
100
MAXIMUM SAFE CONTINUOUS
OPERATING REGION
COEFFICIENT
1.00
I
'\.
500
Te - Case Temperature _·C
PEAK - POWER
'\.
E
~
E
100
75
6,.....:::42.8C·/w
~
0• 1
-0.05
~
//, r/////I ~
-0.02
-0.01
10.0
o
IlL
SeeNot.10~
-fIJ
-so
VeE - Collector-Emitter Voltage - v
-20
-40
-100
FIGURE 13
FIGURE 12
'w >
3.0 mil( or d > 0.5 (50%1, operation must be confined to the continuous operating region of Figur. 13.
10.0p.ration in Ihls region Is permissible when bast-emitter resistance RIE S 50
NOTES: 9. Wh..
·'ndicales JEDEC regis'ered data.
tlolS Instruments guaranlles litis ,alul In addition to the JEDEC registered value which Is also shown.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
6·39
TYPE 2N1046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
THERMAL INFORMATION
TABLE I
TABLE II
HEAT SINK
Typ.
Dimensions
4" x 4" x 1/8"
6" X 6" X 1/8"
8" x 8" X 1/8"
10" X10" X 1/8 11
4" x4" x 1/8"
611 x 6" X 1/811
8"x 8" x 1/8"
10" x 10" X 1/8/1
Irighl Copper
Brlghl Aluminum
3.8 CO /w
2.2 CO /w
1.8 CO /w
1.Ho/w
6.5 CO /w
4.5 CO /w
3.SCo/w
2.8 CO /w
Prlmaxl
DEFINITION
Averag. Pow.r Dissipation
UNIT
w
Peak Pow.r Dissipation
w
CO/w
OJ-C
Junctlon·tOo(as, Thermal Resislante
OJ.A
Junctlon-to-Free-Air Thermal Resistance
(as.-fa-Free-Air Thermal Resistance
Cas.-to-Heat-Slnk Thermal Resistance
Typical wllh Dry Maunllng Ba..
OC.A
toe •Hs
0.5
42.8
CO/w
42.3
0.65
CO/w
c--wSH
Heat-Sink-fo·Free-Air Thermal Resistance
TA
Free·Air Temp.rature
TJ I'-g)
TJ Cmax
Te
Av.rage Junction Temperature
°c
°c
::5100
Peak Junction Temperature
°c
::5100
Cas. Temperature
°c
K
Peak~Power
Iw
Ip
Pulso Period
d
Duly Cyd. lotio (Iw/lpl
0' Ih. heal sink wllh Iwo 6·32
VALUE
CO/w
3.2 CO/w
mounted In vlrtical position.
CO/w
Typlc.1 with DC·ll Silico'" Grea..
3.7 CO /w
typical valuls based on conldian cooling; plates and fins
:tAli Iranslslo" mounled In Ih. cenler
scnws at , Indl' pounds of torque.
I
SYMBOL
Prl._g)
OHS.A
D.lb.rt Blinn #113
or Modin. 1EllSSI.
Unfinished (or Equlv.lents)
D.lb.rt Blinn #113
.r Modln. 1Ell sn. 81.ck
Anodized (or Equlv.lenls)
t9Hs_ A are
tOHS•A
T.bl. 1
so.
Coefficient
Fig. 12
Puis. Width
msoc
msec
For doc operation these transistors are voltage limited as well as thermally limited. Figure 10 or 11 and
Figure 13 are recommended as a guide for selecting safe voltage and current .combinations.
These transistors have a very low thermal resistance that may be fully utilized in a pulse-power application pravided the pulse width is equal to (or less than) 3 milliseconds. If the power pulse is longer than
3 milliseconds, then the operating path is limited to the safe operating region described by Figure 10 or
11 and Figure 13.
The PEAK~POWER~COEFFICIENT CURVE shows the ratio of maximum instantaneous lundion~to-case temperaturt rise for any pulse width and duty cycle to
the rise which occurs at 1000/11 duty cycle. Use of this curve Is best explained by fhe equations and example below. See Tabl. II for a defInition of terms.
Equation No. 1 - Application:
Equation No. 2 - Application:
d~c
d~c
power dlsslpalion, hea' sink used.
Equalion No. 3 - Application: Peak pow.r diSSipation, heal sink used.
power diSSipation, no heat sink used.
Equation No. 4 - Application: Peak power diSSipation, no heat sink used.
SOLUTION,
Exampl. - Find Prlmoxl (design limit)
OPERATING CONDITIONS,
From Figure 12, Peak·Power Co.fficient,
K = 0.24••nd by u.. of equation N•• 3
H.al Sink = t' x t' x 1/t' copper.
OHS.A
1.8 CO /w
wllh DC·ll gre.... OC.HS = 0.45 CO /w
TJrmaxi (dosign limit) = 100°C
TA
35°C
d = 20% (0.2)
tw
0.1 mstc
=
=
Prima.)
=
d (Oe.HS
=
Prlmoxl
=
0.2 (0045
+ OHS.Al + K OJ.e
100-35
+ 1.8) + 0.24 (O.S)
=
114 w
PRINTED IN U.S A.
6-40
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
971
TI canna. assume any responsibility for any circuits shown
or reprelent that they ale free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLnHE BEST PRODUCT POSSIBLE.
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
..
~
c ...
ED:
::! ..
Zz
zU:
.
0"
...
.....
FOR HIGH-POWER SWITCHING
AND AMPLIFIER APPLICATIONS
,:":':
.,.~
0-
CD"
-
Z
~
:oi
mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness and the absence of flux during the
assembly process prevents sealed-in contamination.
"THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
"ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
0450
0.525 R MAX
~o
0
-i
~~
0.135 MAX--J
_/,~."I'--++-_
"ADS
1050 MAX ~!;t ~~0::2S ---=:.-
O'~~HR'~~~
•
r0311MINiJij'573 MAX
~_'_50_j-j I 1~430'"
. -_ _
0
0205 0440
0.420
H~
-,- I
1
0.200lsEA TlNG PLANE
1 - SASE
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 2S·C case temperature (unless otherwise noted)
2N1529
2N1534
2N1539
2N1544
-40V*
-30V*
-20V*
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1) .
Emitter-Base Voltage
Continuous Collector Current.
Continuous Emitter Current
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2) .
2N1530
2N1535
2N1540
2N1545
2N1531
2N1536
2N1541
2N1546
2N1532
2N1537
2N1542
2N1547
-60V* -80 V* -100 V* -120V*
-45V* -60V'" -75V' -90V·
-30V· -40V* -50V· -60V·
-5A*
~
~
5~
+
106W
~
{ l00·C*}
110·Ct
Operating Collector Junction Temperature
Storage Temperature Range .
2N1533
2N1538
2N1543
2N1548
~
- 65·C to 1OO·C·
>
>
NOTES: 1. This value applies when base-emitter diode is short-c1r(ulted.
2. Derate linearly to 1l0oe case temperature at the rate of 1.25 Wjdeg.
*Indicotes JEDEC registered data
tThis value is guaranteed by Texas Instruments in addition to the JEDEC regislered value whi(h is also shown.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
6-41
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
2N1529 THRU 2N1533
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
I
Ic = -3A
All
1.2
18 - -300 mA, Ic = -3 A
IB - -300 mA, Ic - -3 A
All
All
Collector-Emiller Breakdown Voltage
Ic = -500 mA, 18 = 0
'V(BR)CES
Colledor-EmiHer Breakdown Voltage
Ic = -500 mA, V.. = 0
'V(BR)EBO
Emitter-Base Breakdown Voltage
I. = -25 mA,
'lcBo
Colledor Cutoff Current
"CBO
Colledor Cutoff Current
"CBO
Colledor ,utoff Current
"CBO
Colledor Cutoff Current
'ICEv
Colledor Cutoff Current
'lEBO
'hFE
Emiller Cutoff Current
Static Forward Current Transfer Ratio
Static Common-Emiller
Forward Transfer Condudance
Base-Emitter Voltage
Colledor-Emitter Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff Frequency
VCB - -2 V,
IE - 0
VCB - -25 V
VCB = -40 V
YCB = -55 V
IE = 0
VCB = -65 V
VCB = -80 Y
VCB - -40 Y
VCB = -60 V
IE = 0
VCB = -80 V
VCB = -100 V
VCB = -120 V
VCB = -15 V
VCB = -22.5 V
IE = 0,
VCB = -30 V
Tc = 90°C
YCB = -37.5 V
VCB = -45 V
VCE - -40 V
VPE = -60 V
VCE = -80 V
V.. = 1 V
VCE = -100 V
VCE = -120 V
VEB - -12 V,
Ic - 0
VCE - -2 V,
'e = -3 A
'gFE
'fhfe
fr
Transition Frequency
MIN MAX
-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60
'V(BR)CEO
'VBE
'VeEr.. ')
TYPE
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
All
2iU529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1S30'
2N1531
2N1532
2N1533
All
All
VeE = -2 V,
Ic = 0
UNIT
Y
V
V
-200
p.A
-2
mA
-20
mA
-20
mA
-20
mA
-D.5
40
mA
20
mho
-1.7
-1.5
V
V
VCE = -2 V,
Ic =-3A
All
2
kHz
VeE = -2 V,
Ic = -1 A,
eSee Note 4
All
200
kHz
thermal characteristics
PARAMETER
«hc
Jundion-to·Case Thermal Resistance
NOTB,4. To obtai. fr, the Ih,.1 respo.se with freque.cy is extrapolat.d at the rat. of - 6 dB/octav. from f
*Indicates JEDEC registered data
=
100 kHz to the frequ ••cy at whloh Ih,.1
= 1.
869
6-42
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
2N1534 THRU 2N1538
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Ic=-3A
All
I.S
la = -300 mA, Ic = -3 A
la = -300 mA, Ic=-3A
All
All
Collector-Emitter Breakdown Voltage
Ic = -500 mA, la = 0
·V(IIl)CES
Collector-Emitter Breakdown Voltage
Ic = -500 mA, VIE = 0
·V(IIl)EBO
Emitter-Base Breakdown Voltage
IE = -25 mA,
·ICBO
Collectar Cutaff Current
·I cao
Collector Cutoff Current
·Icao
Collector Cutoff Current
·Icao
Collector Cutoff Current
·lcEy
Collectar Culoff Current
·IEao
·h OE
Emitter Cutoff Current
Static Forward Current Transfer Ratio
Stolic Common-Emitter
Forward Transfer Conductance
Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff Frequency
Vca = -2 V,
IE = 0
Vca = -25 V
Vca = --40 V
Vca = -55 V
IE = 0
Vca = -65 V
Vca = -80 V
Vca = --40 V
Vca = -60 V
IE = 0
Vca = -80 V
Vca = -100 V
Vca = -120 V
Vca - -15 V
Vca = -22.5 V
IE = 0,
Vca = -30 V
Tc = 90°C
Vca = -37.5 V
Vca = --45 V
VCE = --40 V
VCE = -60 V
VIE = 1 V
VCE = -80 V
VCE = -100 V
Vee = -120 V
Vu = -12 V,
Ic = 0
VCE = -2 V,
Ic = -3 A
·gOE
·fltfe
fT
Transition Frequency
MIN MAX
-20
-30
--40
-50
-60
-30
--45
-60
-75
-90
-20
-30
--40
-50
-60
·V(IIl)CEO
·V aE
·VCE(sat)
TYPE
2"1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536
2N1537
2N1538
All
2N1534
2N1535
2N1536
2N1537
2N1S38
2NI534
2N1535
2N1536
2NI537
2NI538
2N1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536,
2N1537
2N1538
All
All
Vee = -2 V,
Ic = 0
UNIT
V
V
V
-200
pJ.
-2
mA
-20
mA
-20
mA
-20
mA
-D.5
70
mA
35
•
mho
-1.5
-1.2
V
V
VCE = -2 V,
Ic=-3A
All
2
kHz
VCE - -2 V,
Ic--1 A,
See Note 4
All
200
kHz
thermal characteristics
PARAMETER
·(hc
Junction-to-Case Thermal Resistance
NOTE,4. ro obtai. fr, Ih. Ih •• 1 ,,,po.so wllh fr.quoncy is ext,apolated at tho rate 01 - 6 dB/octav. lrom I = 100 kHz to Ih. lrequency at which Ih•• 1 = 1.
'l.a,,", .. JEDEC reglst.red dato
869
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-43
TYPES 2N1529 THRU 2N1548
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
2N1539 THRU 2N1543
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
•
TEST CONDITIONS
'VIBRICEO
Collector-Emiller Breakdown Voltage
Ie = -500 rnA, II = 0
'V'IBR}eES
Collector-Emiller Breakdown Voltage
Ie = -500 rnA, VIE = 0
'V1BR}EIO
Emitter-Base Breakdown Voltage
IE = -25 rnA,
'Ielo
Collector Cutoff Current
'leBO
Collector Cutoff Current
'Ielo
Collector Cutoff Current
'lelo
Collector Cutoff Current
'leEv
Collector Cutoff Current
'lEBO
'hFe
Emiller Cutoff Current
Stotic Forward Current Transfer Ratio
Static Common-Emiller
Forward Transfer Conductance
Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Common-Em iller Forward Current
Transfer Ratio Cutoff Frequency
Ie - 0
Vel - -2 V,
Vel - -25 V
Vel = -40 V
Ie = 0
Vel = -55 V
Vel = -65 V
Vel = -80 V
Vel - -40 V
Vel = -60 V
IE = 0
Vel = -80 V
Vel == -100 V
Vel = -120 V
Vel--15V
Vel = -22.5 V
IE == 0,
Vel = -30 V
Te == 90°C
Vel == -37.5 V
Vel = -45 V
VeE - -40 V
VeE == -60 V
VeE == -80 V
VIE == 1 V
VeE == -100 V
VeE == -120 V
Vea - -12 V,
Ie - 0
VeE - -2 V,
Ie - -3 A
'gFE
'VaE
'VeE1"'}
'fhle
fT
Transition Frequency
Ie = 0
VeE == -2 V,
TYPE
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
All
2N1539
2N154O
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
All
All
MIN MAX
-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60
-200
UNIT
V
V
V
p.A
-2
rnA
-20
rnA
-20
rnA
-20
rnA
,
50
-0.5
100
rnA
le==-3A
All
la - -300 rnA, le--3 A
la - -300 rnA, Ic--3A
All
All
VeE = -2 V,
Ie =-SA
All
1
kHz
VeE == -2 V,
Ie == -1 A,
See Note 4
All
200
kHz
3
mho
-0.7
-0.3
V
V
thermal characteristics
>(he
PARAMETER
Junction-to-Case Thermal Resistance
Nor~'4. ro obtain fr. the Ihf.1 respan" with frequency is extrapolated at the rate of - 6 dB/octave from'
'Indicates JEDEC registered dato
== 100 kHz to the 'requency at which Ib,.1 == 1.
869
6-44
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNaION GERMANIUM POWER TRANSISTORS
2N1544 THRU 2N1548
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
'VllRlceo
Coliertor-EmiHer Breakdown Voltage
Ic = -500 rnA, II = 0
'VIBRICES
Collector-Emitter Breakdown Voltage
Ic = -500 rnA, VIE = 0
'VIBRIEIO
EmiHer-Base Breakdown Voltage
IE = -20 rnA,
"Iclo
Collector Cutoff Current
"lcBO
Collector Cutoff Current
"Iclo
Collector (utoff (urrent
'Iclo
(olleclor Cutoff Current
'I av
(ollector (utoff (urrent
'IEIO
"hFE
Emitter Cutoff Current
Static Forward Current Transfer Ralio
Static Common-Emitter
Forward Transfer Conductance
Base.Emitter Voltage
Coliedor-EmiHer Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff frequency
VCI - -2 V,
IE - 0
VCI - -25 V
VCI = -40 V
VCI = -55 V
IE = 0
VCI = -65 V
VCI = -80 V
VCI - -40 V
VCI = -60 V
VCI = -80 V
IE = 0
VCI =; -100 V
VCI = -120 V
VCI - -15 V
VCI = -22_5 V
IE = 0,
VCI = -30 V
Tc = 90°C
VCI = -37.5 V
VCI = -45 V
VCE - -40 V
VCE = -60 V
VCE = -80 V
VIE = I V
VCE = -100 V
Vee = -120 V
VEl - -12 V,
Ic - 0
VCE - -2 V,
Ic - -3 A
"gFE
"VIE
'VCE1,o'l
"fhfo
fT
Transition Frequency
VCE = -2 V,
Ic = 0
TYPE
2N1544
2N1545
2N1546
2NI547
2N1548
2N1544
2NIS45
2N1546
2NI547
2NI548
2N1S44
2NI545
2N1546
2NI547
2N1548
All
2N1544
2NI545
2N1S46
2NI547
2NI548
2N1544
2N1545
2N1546
2N1547
2NI548
2HI544
2N1S45
2H1546
2N1547
2NI548
2NI544
2NI545
2N1546
2NI547
2NI548
All
All
Ic=-3A
All
11 - -300 rnA, Ic - -3 A
11 - -300 rnA, Ic--3A
All
All
MIN MAX
-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60
75
UNIT
V
V
V
-200
p.A
-2
rnA
-20
rnA
-20
rnA
-20
rnA
-0.5
150
rnA
•
mho
4
-0.6
-0.2
V
V
VCE = -2 V,
Ic =-5A
All
I
kHz
VCE - -2Y,
Ic--I A,
iSee Note 4
All
200
kHz
thermal characteristics
PARAMETER
*(hc
Junction-Io-Case Thennal Resistance
NOTE, 4. To obtain IT, the Ih•• 1 respon.. with lrequency is extrapoiated at the rate 01- 6 dB/o'tavolrom 1= 100 kHz to the lreq•••,y at whi,h Ih •• 1 = 1.
;'Indi,ates JEDEC regist,red data
869
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
6-45
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNaION GERMANIUM POWER TRANSISTORS
2N1539 THRU 2N1548
switching characteristics at 25°C case temperature
PARAMETER
ton Tum-On Time
t, Stomge Time
tf Fall Time
TEST CONDITIONS
TYP
1c""3A,Il=1!l,
See Figure 1
5
3
5
UNIT
p.S
p.S
'pos
PARAMETER MEASUREMENT INFORMATION
0.5
~F
,.--,....---...- - - 0 OUTPUT
2N1539
THRU
21'11548
INPUT~---~-~~-~-~
1650
•
10
-3 V
TEST CIRCUIT
OV
111!\
-20 V- -
W(%
-
~---';"I-
I-
INPUT
/
¥-90%
ton
-I
/ 90%
-.I
....I
ts
I
r9O%X-
______
tf
10%
OUTPUT
VOLTAGE WAVEFORMS
NOTES, a. Th. input pul.. Is supplied by a g.norotor with Ih. "'"owlng ,hora""lstl", I, ::; 0.1 ,",s, I. ,= 50
b. Th. wa..forms aro monilored on an os,lIIoscope with Ih. "'lIowlng ,hara""lstl", I, ~ 0.1
,",S,
,",S,
duty ,yel. ::; 10%.
I •• ;::: 100 kll, (,. ~ 20 pF.
FIGURE 1
869
6-46
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION
PEAK -POWER COEFFICI ENT CURVE
I
125
~
0.7
I
0.50 (5C!*> Duty Cycle
S
i
100
'ii
~
15
"u
~
75
!!I0
~
!
50
0.25 (25%
~
I
..!"
o
50
25
Te -
~ ~~
o.IOI(I~!)
O. I
~'"'\
25
o
~~
0.2
E
~
E
~
.L
0.4
~
~t"'"
0.02
!\.
0.01
125
~
I
I_e-tp/T'
K=
0.04
100
75
Case Ternperature -
0.07
0.07 0.05
I-e -tp7dT'
Pul se width in ms
tp =
d .:: Duty-cycle rotio
~
T
= Thermal
47102040
VALUE
UNIT
PT(lv)
Average Power Dissipation
W
PT(mul
Peak Power Dissipation
W
BJ.c
Junction-to-Case Thermal Resistance
Be.Hs
Case-to-Haat-Slnk Thermal Resistance
degfW
8 HS _A
Heat-Slnk-to-Free-Air Thermal Resistance
deg/W
Free-Air Temperature
Te
Case Temperature
TJ(lv)
Average Junction Temperature
TJlmu)
Peak Junction Temperature
K
Peak-Power Coefficient
t,
Pulse Width
d
Duly-Cycle Ratio
0.8
~ 110
~
TJI'" (design limit)
= sooe
d = 10% (0.1)
I, = IDms
2.25 delllW (From information supplied
with heat sink.)
=
110
Equation No. 1 - Application: doc power dissipation,
heat sink used.
TJI.vl-lA
Prl.vl
= --O=-J-.c-+-''=OC':'''-H'-+-'-:O-HS-''-
II
for 2SoC ~ Te ~ 11Do e
as in Figure 2
degfW
°e
°e
°e
°e
Equation No.2 - Application: Peak power dissipation,
heat sink used.
Prlll'llXl
110 0 e
Solull.n,
From Figure 3, Peak-Power (oeffldent
K
= 0.125 and by use 0' equallon No.2
Prlllldl
TA
971
1000
m.
OPERATING CONDITIONS,
=
400
See iFigure 3
Example - Find PTI_l (design limit)
Oe.H. + OHS.A
200
m,
'FIGURE 3
SYMBOL DEFINITION
TA
100
Pulse Width -
FIGURE 2
DEFINITION
time constant =200 ms
°C
tp -
SYMBOL
-
d (Oe.H' + OH'.A)
+ KOJ_e
llD-SO
Prlm••1
= ---,---:----0.1(2.25) + 0.125 (D.B)
PRINTED IN U.S,A,
II canno' anume any responsibili,y for any circuits shown
or represent that they are free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS. TEXAS 75222
6·47
•
6-48
TYPES 2N1907, 2N1908
P-N-P AllOY-DIFFUSED GERMANIUM POWER TRANSISTORS
HIGH· FREQUENCY POWER TRANSISTORS
for
MILITARY AND INDUSTRIAL APPLICATIONS
mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness during the assembly process prevents
sealed·in contamination. The approximate weight of the unit is 18 grams.
*ALL JEDEC 10·3 DIMENSIONS AND
* THE COLLECTOR
NOTES ARE APPLICABLE
IS IN ELECTRICAL CONTACT WITH THE CASE
i 1- I
0450 MAX
~
000
0.188 R MAX
BOTH ENDS
f
f
0'250 MIN
1.050 MAX
1--0 312
MIN~
I S13 MAX
-r-OF'!}38l!~_~~-----=r_ 0-(-lt--~-c.;>. ~
0"350
0525RMAX
0043D1A2LEAOS
~
0205 0.440
II.
G
t~!:~
- , I'.."
0420
\
DIA
2 HOLES
•
--1
SEATING PLANE
I - BASE
TI GUARANTEED MAXIMUM
2-EMITUR
-
-
~ ~;;
0655
_,-,1+ ,
~~~
0 135 MAX
0.675
I
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1907
100v*
40v
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
2N1908
130v*
50v
+-g:g;t}~
Emitter-Base Voltage
Collector Current
Base Current.
Safe Continuous Operating Region
Total Device Dissipation at (or below) 70°C Case Temperature (See Note 2)
Peak Collector Power Dissipation at (or below) 25°C
Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range.
+-20a*~
+-
3a*~
See Figures 15 and 16
+- 60w ~
800w
1000w
+-100 0 C* ~
0
{ -55°C to + 100 0 C*}
- 55°C to + 110 Ct
NOTES: 1. This value applies when the basa-amitter diode is open-circuited.
2. Derate linearly to 100°C case temperatura 01 the rate of 2 w/Co . This corresponds to the JEDEC registered maximum value of thermal resistance,
OJ.e, 0.5 COIw.
3. These values apply for rectangular wavashape. Sae Figure 14.'for allowable pulse width and duty cyele combinations. Derate linearly to lOOoe
case temperature.
"Indicatos JEDEC registered data.
tTaus Instruments guarantees this value In addition to the JEDEC registered valul which Is also shown.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DA\.LAS, TEXAS 75222
6-49
TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
BVcBo Collector-Base
Breakdown Vollage
Ic
= -10 rna,
IE
BVcEO Collector-Emiller
Breakdown Voltage
Ic
BVEBO
= -200 rna,
= -2 rna,
IE
IE - -10 rna,
= 0,
Ic = 0
ICDo
Emiller-Base
Breakdown Voltage
Collector Cutoff Current
•
lEBO
Emitter Cutoff Current
hFE
Static Forward Current
Transfer Ratio
See Note 4
la
Ic - 0
= -3v,
Vcs = -75 v,
IE
Vca - -100 v,
Vcs = -75 v,
IE - 0
IE - 0,
= -3v,
= -100 v,
=0
IE = 0
Vcs
Vcs - -130 v,
VCD = -100 V,
Collector Cutoff Current
=0
VCD
Vcs
ICEX
2N1907
MIN
MAX
TEST CONDITIONS
PARAMETER
Tc
= -75v,
= -100 v,
VES = -0.5 v,
VIE
VIE
VEa - -1.5 v,
Ie - 0
VCE = -1.5 v,
VCE - -1.5 v,
VCE - -1.5v,
VCE - -1.5 v,
VeE - -1.5 v,
See Note 4
VeE - -1.5 v,
See Note 4
Ie = -1 a,
le--5a,
le-- 1Oa,
Ie - -15 a,
Ie - -10 a,
VCE
VCE
-130
v
-40·
-50·
v
-1.5
-2.0
-1.5
-2.0
v
-0.5·
-0.3t
-2.0
-10·
-12
= + 70°C
-0.5·
-0.3t
-2.0
-10·
-12
IE
IE - 0
IE = 0,
= + 70°C
= + 0.2 v
= + 0.2 v
Ic = 0
-2;0
-2.0
-0.2·
-O.lt
-2.0·
-0.2·
-O.lt
-2.0·
See Note 4
See Note 4
See Note 4
See Note 4
Te = _55°C,
Ie - -10 a, Te =
UNIT
-100
=0
IE = 0
Tc
2N1908
MIN
MAX
+ 70°C,
80
90
30
170
20
30
(See Fig. 4)
15
100
(See Fig. 4)
80
90
30
170
20
30
(See Fig. 4)
15
100
(See Fig. 4)
rna
rna
rna
=-100ma,
- -500 rna,
- -1 a,
- -1.5 a,
Ie
Ie
Ie
Ie
=
-
-1 a,
-5 a,
-100,
-15 a,
See Note 4
See Note 4
See Note 4
See Note 4
-0.4
-0.7
-1.0
-1.5
-0.4
-0.7
-1.0
-1.5
v
= -100 rna,
=
=
-1 a,
-5 a,
-100,
-15 a,
See Note 4
See Note 4
See Note 4
See Note 4
-0.2
-0.4
-0.7
-1.0·
-0.2
-0.4
-0.7
-1.0·
v
VIE
Base-Emitter Voltage
VCE, .. ,)
Collector-Emiller
Saturation Voltage
- -500 rna,
= -1 a,
la = -1.5 a,
Ie
Ie
Ie
Ie
JhfeJ
Small-Signal CommonEmiller Forward Current
Transfer Ratio
VCE = -15 v,
Ie = -0.5 a, f
= 10 me
1.0·
1.0·
2.0t
2.0t
NOTE',4,:: If these parameters are measured!without a heat sink, doc collector current must not be applied longer than '250 msee.
*'ndicofes JEDEC registered data.
tYexas Instruments guarantees these values In addition to the JEDEC, registered Ivalues which are also shown.
971
6-50
TEXAS)NSTRUMENTS
INCORPORATED
F>OST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONS t
TYPICAL
UNIT
0.1
{-Lse(
Ie =-100, lap) =-1.330, lal2) =1.330,
0.8
{-Lse(
Y.Elofij=2v, RL =2fi,
2.5
{-LSet
See Figure 1
1.0
{-Lse(
4.4
{-Lse(
PARAMETER
Id Delay Time
Ir Rise Time
Is Sloroge Time
If Fall Time
IT Tolol SWil(hing Time
t
Voltage and current values are nominal: exact values vary slightly with device parameters.
PARAMETER MEASUREMENT INFORMATION
"A"
VOLTAGE WAFEFORMS
SWITCHING TEST CIRCUIT
';:-::~----1~--""
20
OUTPUT
Hg Relay
(or equ;valent(
see Note a)
20
20
-6v
+2 v
Vec
= -20.7 v
FIGURE)
II
NOTES: o. The pulse at point "A" has the following characteristics: Ir ~ 20 nsec, If ::::; 20 nsec, PW ~ 50 f.lsec, duly cycle:::; S%.
b. The waveforms are monitored on an oscilloscope with the following characteristics: Ir ::::; 15 nsec, Rjn 2 1 MO, (in:::; 20 pf.
TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Low-Voltage Reg;on)
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(H;gh-Voltage Reg;on)
-20
-15r----,------r--~r;r_--~~--__,
/
/
a
a
C
c
~
~
V
2u
2u
(;
(;
I
V
-5
I
I
/'
I
I
18 = -30 rna
-5
I
I.
o
-0.2
-0.6
-0.8
-0.4
VeE-Collector-Emitter Voltoge-v
FIGURE 2
NOTE 5: These characteristics were measured using pulse technlqdes. PW
-1.0
-,00 rna
I
_v
...Y
Tc = 25°C
See Note 5
1.= -50 ma
-10
..!!
..!!
m~
MaxImum VCEO 2NI907_
I
~
~
V
/~ I.
I(
I
I -10
V
-15
le= -200
-10 me
18= 0
o
-10
-20
-30
-40
-50
VeE-Collector-Emitter Voltage-v
= 300 p.sec
FIGURE 3
I
Duty Cycle:::, 2%.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6-51
TYPES 2N1907, 2N1908
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE
STATIC FORWARD CURRENT TRANSFER RATIO
vs
vs
COLLECTOR CURRENT
COLLECTOR CURRENT
200
I...:::::::
l' '\
.2
~
100
.............
'I.
i
-
~
~
"-
\.
....~
i:
~
u
"\
""E
0
~
.E
I~
20
"'"
10
•
.
I ...........
.E
I
Ol
~
rZ,.-+-
"'" ""
.~
VI
""-
-0.8
>
_
,"'SSo
"-
Te = 25°C
See Note 5
"'~,.~
'!....C'
\..
50
5
-1.0
veE = -1.5v
See Note 5
-0.6
!!
~-
]
I
1J
'"I
I
K,:..>.DoC
r.
~
r'"
-0.4
-0.2
0
o
-5
-10
-15
-10
-5
0
-20
Ie-Collector Current-a
Ie-Collector Current-a
FIGURE 4
FIGURE 5
COLLECTOR-EMITTER SATURATION VOLTAGE
BASE-EMITTER VOLTAGE
vs
vs
CASE TEMPERATURE
CASE TEMPERATURE
-1.0 ,....---,---,.--,----,---,----:C>'"-..,
.I
18 = -1.50, le= -150
2'
-0.8
~
.~
18 =-lo,l e =-IOo
Ol
.E
~
-0.6
~
~
-0.6
~
£
!!
]
]
I
&
.& -0.4
I
~
-0.8
>
See Note 5
.
-15
-0.4
I
E
Jl
d
18 = - 100 rna, Ie = - 10
18 = -500 mo, Ie = -5
-0.2
!
~
0
-60
-40
-20
0
20
40
60
a
I
-0.2
80
18= -100 mo, Ie = -10
o
-60
-40
-20
o
20
40
Te -Case Temperature _oC
Te-Case Temperature-OC
FIGURE 6
FIGURE 7
60
80
NOTE 5, The.. characteristics were m....red using pul.. lochnlq.... PW = 300 p.m., Duly (ydl ::: 2%.
971
6-52
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2NI907
NORMALIZED COLLECTOR-EMlTTER BREAKDOWN VOLTAGE
2NI9P18
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
..
ei
BASE-EMITTER RESISTANCE
~
vs
BASE-EMITTER RESISTANCE
3.0
I 1111111
Tc = 25°C
See Note 5
-
1\
Ic = -50 ma
1.5
......
:1!
'ew
~
L
E 1.0
u
..!!
"0
~G
0.5
lilir i rlTil~1 RBnlll~
.~
~
5
Z
Rae -
Base-Emitter Resistance -
0
1
10
RBE -
ohm
100
Base-Emitter Resistance -
FIGURE 8
FIGURE 9
2N1908
COLLECTOR CUTOFF CURRE NT
vs
vs
COLLECTOR-BASE VOLTAGE
COLLECTOR-BASE VOLTAGE
-10
.1
See Note 5
-Ic = +70°C
+25°C
Tc
--
I
/
V
E
u
~a -lxl0 -3
U
I
Sl
---
.J.
See Note ~
TC = +70°C
-1
~
i:
o
-25
---
-/
TC = +25·C
~ -lxl0-1
u
]
a -lxl0-2
/
V
TC = - 5 5 ° ; , /
~
-lxl0-5
------
I
I
TC=-55 0 C /
..Y -lxlO-4
•
ohm
2NI907
COLLECTOR CUTOFF CURRENT
-10
10 k
1k
~
...........
-lxl0-5
-50
-75
o
-100
-25
Vea-Collector-Base Voltage-v
-50
-75
-100
-130
Vea-Collector-Bose Voitoge-v
FIGURE 10
FIGURE 11
NOTE 5, Those ,haracleristics were measured using pulse technlquos. PW = 300 ,...., •• Duty eyd.
S 2%.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-53
TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
60
I
c
.ce
3
E
40
\
CI)
E0
l-
20
1250
CI)
Cl
~
E0
l-
,E
E
1\
I
o!:
'x
~
I
o!:
1\
o
•
(5
'"
.:;u
'x0
50
1500
CI)
::;:
25
"0a.
'Zi
Cl
E
I~
c
.ce
:'l
.:;
,E
1750
I
\
eJ_c =" 0.5CO/w
"0
(5
2000
~
3
Q.
.~
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
1000
750
I\.
""
'\
500
250
o
100
75
e J_A =" 42.8 CO/w
'\
o
25
50
75
Te-Case Temperature-OC
TA-Free-Air Temperature-OC
FIGURE 12
FIGURE 13
""
""
100
PEAK-POWER- COEFFICIENT CURVE
1.00
50"10 Duty Cycle
c
CI)
~ ~
'8
-
10"10
u
~
r--- d
20%
0.10
cl:
f-f-
-........-:: ."
V
K·
5%
-"
o
,/
0.01
~ty
0.01
- -d,
tw = Pulse Width in msec
:= Duty Cycle Ratio
= Thermol Time Constant = 1.0 msec
,/'
l%.A
tw
I - e
V
~
See Note 6
-,
tw
1- e
d
,
",
Cycle (Nomecuning)
1111
0.10
tw -
1.0
Pulse Width -
10.0
msec
FIGURE 14
NorE 6, When tw
> 3.0 msec or d > 0.5 (10%). operation must be conflned to
the contln.o.s operating ..gions of Figu.. 15 or 16.
971
6-54
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1907, 2N1908
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS
2N1907
MAXIMUM SAFE CONTINUOUS
OPERATING REGION
-20
-20
\
-10
2N1908
MAXIMUM SAFE CONTINUOUS
OPERATING REGION
Te S 70°C
I
C
~
\
-2
E
u
.!
"0
u
0
\
-I
';
u
Te S 70°C
-5
-5
0
\
-10
I
-2
c
~
-1
';
U
-0.5
.....
-0.2
I
_v -0.1
E
u
"'-
.!
"0
u
I
~
\
\
-0.5
.......
-0.2
_v
-0.05
~
-0.1
--
-0.05
'/./7'>..
'////
~ See Note 7 ~
-0.02
-20
-40
-60
-80
'/ r///7
' / See Note 7 'l.
-0.02
~~ ~
-0.01
o
7>...
-0.01
o
-100
.....
~~ Wh ~
-20
Vee -Collector-Emitter Voltoge-v
-60
-40
-80
-100
Vee-Collector-Emitter Voltage-v
FIGURE 15
FIGURE 16
MAXIMUM SAFE PULSE OPERATING REGION
0
-130
•
-15
I
C
~
E
u
u
.!
0
u
TA = 25°C
See Note 6
I
.Y
17''-7'-7~~-s--t-------+-------+-------+-PTlma'l = 160 w
tw ~ 3.0 msec
Moximum VeEO 2Nl907
d S 0.5
I
-10
-20
veE -
-30
Collector-Emitter Voltage -
-40
-50
v
FIGURE 17
NOTES: 6. When Iw ~ 3.0 msee or d ;;::: 0.5 (50%). operation must be confined to the continuous operating regions of Figure 15 or 16.
7. Operation in this region is permissible when base·emitter reslstance Rae ~ S n.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6-55
TYPES 2Nl907, 2N190a
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION
TABLE II
TABLE I
HEAT SINI
Brighl Copper
Bright Aluminum
611 X 611 X 1/811
8" x 8" X 1/8/1
10" , 10" '1/8"
I.Ho/w
9 J•e
9J • A
4"z4"xl/8"
6" X 6" X 1/8"
8"x 8" X 1/8/1
6.lCo/w
g e •A
4.lCo Iw
3.lCo/w
10" x 10" x 1/8"
2.8 CO Iw
D.lb,rt llinn #113
or Modln. I ElmB,
Unfinished (or Equlvalenls)
PTlo.g )
P _
TI
I
tge •Hs
9Hs. A
UNIT
Ayerag. Power Dissipllfion
VALUE
w
Peak Power Dissipation
w
Junction-la-Case Thermal Resistance
CO/w
0.5
Junction-lo-F,...Air Thermal Resistance
CO/w
42.B
Case-to-Fre..AIr Thermal Resistance
CO/w
42.3
Cas...to-Heat-Slnk Thermal Resistance
Typl,al Wilh Dry Mounling Ba..
CO/w
Typl,al with DC·11
3.7 CO Iw
sm,'"
Grea..
Heat-Slnk-to-Free-Air Thermal Resistance
COl_
0.65
r---wsee
Tabl,1
(0
TA
Free-Air Temperature
TJ I.vg)
Average Junction Temperatur.
(0
~·IOO
TJ hnax 1
Peak Junction Temperafure
(0
:;:100
Te
(ase Temperature
(0
t9HS.A a.. Iypl,al
I
Peak·Power (oefficIent
tAli Iranslsta" mounl.d In Ilia Clnler of Ih, h.al sink with two 6·32
screws al , In,h· pounds of lorqu••
Iw
Pulso Widlh
msec
I,
Pulse Period
mset:
d
Duty (yde Ralio (Iw/l,)
D.lberl Blinn #113
or UDdin. I EmSB, Ila,k
Anadized (or Equlvalenls)
3.2 CO Iw
valu.. based on , ..",tlon cooling; plales and fins
mOUllt.d ill vertlt:a) position.
•
DEF·INITION
SYMBOL
t6HS.A
3.8 CO Iw
2.2 CO Iw
1.8 CO Iw
Dimensions
411 x 4" X 1/8"
Type
58'
Fig. 14
For doc operation, these transistors are voltage limited as well as thermally limited. Figure 12 and Figure
15 or 16 are recommended ,as a guide for selecting safe voltage and current combinations.
These transistors have a very low thermal resistance that may be fully utilized in a pulse.power application provided the pulse width is equal to (or less than) 3 milliseconds. (f the power pulse is longer than
3 milliseconds, then the operating path is limited to the safe operating region described by Figure 12
and Figure 15 or 16.
The PEAK·POWER·(OEFFICIENT (URVE shows Ih. ratio of maximum inslanlan .. us 'un,tlon·lo·, ... lemp"alu,. rlso far any pulso widlh and duly ,yd. lolh.
rlso which a,,",, al 100% duly ,yd •• U.. 01 Ihls ,u", Is besl explain.d by Ihe ,quatlons and ..ample below. See Tabl. II for a d.llnlllon of I.rms.
Equation No. 1 - Application: d·c power dissipation, heal sink used.
_
PT (.vo) -
9J •e
=
TJIIIIIIXI-TA
9J •A
SOLUTION,
From Figure 14 P,ak·Power ( ..Hldonl,
= 8" , 8" , 1/8" ,opper,
9HS.A = 1.8 CO/w
with DC·ll grease, g e •Hs = 0.45 CO Iw
TJ I...x I (design limit) = lOOo(
TA = 35°C
d = 20% (0.2)
Heal Sink
6-56
Equation No. 4 - Application: Paak power dissipation, no heal sink used.
TJ(o.g)-TA
Exampl. - Find PT I...x I (design limit)
OPERATING (ONDITIONS,
'w =
TJ I...xl- TA
+ ge.Hs + 9H5-A
Equallon No. 2 - Appll,atlon, ok power dissipation, no h.al sink u..d.
PT (.vg)
Equation No. 3 - Appli,allon, Peak power dissipation, h.al sink u..d.
TJ(.vg)-TA
K
0.1 msac
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
= 0.24, and by uso of equation No.3
TJlmaxl - TA
PT I...x I
=
d
PT I""", I
=
0.2 (0.45
(ge .Hs
+ 9HS.Al + K 9J •e
100 - 35
+ 1.8) + 0.24 (0.5)
114w
PRINTED IN U.S.A
TI (onnol onume any responlibilily for any dr(uits shown
or represenl thai they are free from polenl infringement.
971
TEXAS INSTRUMENTS ·RESERVES THE RIGHT TO MAKE CHANGES AT ANY T(ME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
.~
Guaranteed ICEX at 15°C
LOW rcs-LOW Iclo-LOW VIE
50-, 70.., or 90-VOLT UNITS
15 WAnS at 25°C CASE TEMPERATURE
Choice of TO·5 or Stud Package
Guaranteed Beta at 1 amp and 500 ma I c
t!I
~~
.. ;!!
§:
Zz
...... Z ..
olt
,. .CO ..
'"-< ti
... c
. ..
: ..
,. ....
m
C
for
RELAY DRIVERS - PULSE AMPLIFIERS
SERVO AMPLIFIERS - AUDIO AMPLIFIERS
;
_ Z
,.0
c
I"~
@
mechanical data
The tronsistors are in hermetically sealed, resistance-welded cases with glass-to-metal seals between case
and leads. The 2N2659-2N2661 and 2N2665-2N2667 are in a round TO-5 package weighing approximately 2.4 grams. The 2N2662-2N2664 and 2N2668-2N2670 are in a stud" package weighing approximately 5.4 grams.
=
i
'THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
....
mil
..
~..'•.
~=-
1.P:
[3~;;;~~
0.100'.'.
_..l...
y;
ALI. DfMIiNSIONS AlII IN INCHES
UHUSS otHhWlSf "WilD
1.......
•
"'ODY.',
* OUTLINE -
2N2659-61, 2N2665-67 SERIES
A. TIMPtIIATUil MEASUIlIMINT
POINT o.GMI NOMINAl. FIIOM
SlAT O' HlATSINK,
I. Ttil OtIIINTA'ION OF THI LliA8S
IN lunON 10 Ttl! HII( FLAtt
IS NOI CONTIOI.UO.
C.
AU DlMINJION5 AllIN INCHES
UNLISS OrHlltWlSE SPICII'IRI
* OUTLINE -
2N2662-64, 2N2668-70 SERIES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N2659
2N2662
2N2665
2N2668
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current • . . .
Base Current. . . . . .
Tatal Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Operating Case Temperature Range.
Storage Temperature Range. . . . . . . . . . . . . . • .
2N2660
2N2663
2N2666
2N2669
2N2661
2N2664
2N2667
2N2670
50v
70v
90v
50v
70v
90v
+ - - 20v---+
+ - - 3a---+
+ - - 1a--+
+--15w --+
- 55°C to 100°C
- 55°C to lOO°C
+
NOTES: 1. This value applies when base·emiller voltage VaE =
0.2 Y.
2. Derate linearly f.· 100°C case temperature at the role of 200 mw/Co.
·Indlcatls JEDEC resist.r.d data.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-57
TYPES 2N26S9, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N266S, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
BVc,o
*BV CEO
*BVCES
Ic,o
*I CEO
*ICEX
*ICEX
II
*ICEX
*IE,o
Colledor-Base Break~own Voltage
Collector-Emitter
Breakdown Voltage
Collector-Emitter
Breakdown Voltage
Collector Cutoll Current
Colledor Cutoff Current
Colledor Cutoff Current
CoUector Cutoff Current
Colledor Cutoff Current
Emitter (utoff (urrent
*hFE
Static Forward (urrent
Transler Ratio
hFE
Static Forward (urrent
Transler Ratio
*V'E
Bose-Emitter Voltage
*VCE(.. ,} Colledor-Emitter
Saturation Voltage
*hfe
*lh,.1
(ob
Small-Signal Common-Emitter
Forward (urrent Transfer Ratio
Small-Signal (ommon-Emitter
Forward Current Transler Ratio
Common-Bose Open-Circuit
Output (apacitance
I TO-5
I STUD
TEST
CONDITIONS
PARAMETER
-600~a,
(ASE
(ASE
2N2659
2N2660
2N2661
2N2662
2N2664 UNIT
2N2663
MIN MAX MIN MAX MIN MAX
IE = 0
-50
-70
-90
v
Ic = -IOOma, I, = 0,
(See Note 3) -30
-40
-50
v
Ic = -SOma,
V'E = 0,
(See Note 3) -50
-70
-90
v
Vc, = -25 v,
Vc, = -35v,
Vc , = -45 v,
VCE - - 15 v,
VcE =-20v,
VCE = - 25 V,
VCE = -50 v,
VCE = -70 V,
VCE = - 90 v,
VCE=-25v,
VCE = - 35 v,
VCE = -45 v,
VCE - - 25 v,
VCE = - 35 v,
VCE = -45 v,
VE, - - 20 v,
VCE = -0_5 v,
VCE = -0.5 v,
VCE = -0.5 v,
VCE - -0.5 v,
Tc = - 55°C,
VCE = -0.5 v,
Tc = + 85°C,
VCE - -0.5 v,
I, = -50 rna,
I. = - 50 rna,
Tc = + 85°C,
IE = 0
IE = 0
IE = 0
I. = 0
I, = 0
I, = 0
V.. =+0.2v
V.. = + 0.2 v
V'E = + 0.2 v
V'E - + 0.2 v
V'E = + 0.2 v
V'E = + 0.2 v
V'E - + 0.2 v,
VBE = + 0.2 v,
V'E = + 0.2 v,
Ic = 0
Ic =-10,
Ic = -500ma,
Ic = -250 rna,
Ic - -500 rna,
VCE = -3 v,
Ic = -100ma, 1= lkc
30
VCE = -3 v,
Ic = -100ma, 1=140kc
2.0
2.0
2.0
Vc, = -3v,
IE = 0,
100
(typical)
100
(typical)
100
(typical)
Ic =
-125
-125
~a
-125
- 20
-20
rna
-20
-600
-600
~a
-600
-125
-125
~a
-125
Tc - 85°C
Tc = 85°C
Tc = 85°C
-5
-5
-100
(See Note 4)
(See Note 4)
(See Note 4)
(See Note 4)
Ic = -500 rna,
(See Note 4)
Ic - -500 rna, (See Note 4)
Ic = -500 rna, (See Note 4)
Ic = -500 rna,
(See Note 4)
1= 135kc
15
rna
-5
-100
-100
15
30
90
125
15
30
30
90
125
20
90
20
90
20
90
30
110
30
110
30
110
90
125
-0.6
-0.2
-0.6
-0.2
-0.6
-0.2
-0_25
-0.25
-0.25
120
30
120
30
~a
v
v
120
pi
NOTES: 3. These characlerisfiu are measured by a % sine wave sweep method.
4. These measurements are made with voltage sensing contocts located 0.2S inches from header of transistor. Voltage sensing contacts are separate from current
carrying contacts.
·'ndicoles JEDEC registered data.
971
6-58
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
BVcBO
·BVCEO
·BVCES
Collector-Base Breakdown Voltage
Coliector-EmiHer
Breakdown Voltage
Collector-Emitter
Breakdown Voltage
Icao
Colledor Cutoff Current
·,CEO
Colledor Cutoff Current
·'cEl(
·,CEX
Collector Cutoff Current
Colledor Cutoff Current
·'cEl(
Collector Cutoff Current
·'Elo
·h FE
Emitter Cutoff Current
hFE
·V IE
Static Forward Current
Transfer Ratio
Static Forward Current
Transfer Ratio
Base-Emitter Voltage
·VCE1"'1 Collector-Emitter
Saturation Voltage
·hfe
·Jh,.J
Cab
Small-Signal Common-Emitter
Forward Current Transler Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance
TEST
CONDITIONS
J TO-5 CASE
I STUD CASE
2N2665
2N2666
2N2667
2N2668
2N2669
2N2670 UNIT
MIN MAX MIN MAX MIN MAX
Ic - - 600 /La, IE - 0
-50
70
-90
v
Ic = -100ma, I. = 0,
(See Note 3) -30
-40
-50
v
Ic = -50ma, VIE = 0,
(See Note 3) -50
-70
-90
v
VCI = -25 v,
Vc• = -35 v,
VCI = -45 v,
VCE - -15v,
VCE = -20v,
VCE = -25v,
VCE = -50 v,
VCE = -70v,
VCE = -90v,
VCE - - 25v,
VCE = - 35 v,
VCE = -45 v,
VCE - -25 v,
VCE = - 35 v,
VCE = -45v,
VEl - -20 v,
VCE - -0.5 v,
VCE = -0.5 v,
VCE = -0.5 v,
VCE - -0.5 v,
Tc = -55°C,
VCE = -0.5 v,
Tc = + 85°C,
VCE - -0.5 v,
11 - -25ma,
la = -25ma,
Tc = + 85°C,
IE = 0
IE = 0
IE = 0
I. - 0
I. = 0
I. = 0
VIE - + 0.2 v
VIE = + 0.2 v
VIE = + 0.2 v
VIE - + 0.2 v
VIE = + 0.2 v
VIE = + 0.2 v
VIE - + 0.2 v,
VIE = + 0.2 v,
VIE = + 0.2 v,
Ic - 0
Ic - -la,
Ic = - 500 ma,
Ic = - 250 ma,
Ic - -500ma,
-125
-125
/La
-125
-20
-20
ma
-20
-600
-600
/La
-600
-125
-125
-125
Tc = 85°C
Tc = 85°C
Tc = 85°C
-5
-5
-100
ma
-5
-100 JLO
-100
(See Note 4)
(See Note 4)
(See Note 4)
25
50
(See Note 4)
30
(See Note 4)
Ic - -500ma, (See Note 4)
Ic - -500ma, (See Note 4)
Ic = -500ma,
(See Note 4)
50
VCE = -3 v,
Ic =-100ma, 1=.1 kc
50
VCE = -3 v,
Ic = -100ma, 1=150kc
2.0
2.0
2.0
100
(typical)
100
(typical)
100
(typical)
Vc• = -3v,
Ic = -500ma,
IE = 0,
1= 135kc
JLO
150
200
25
50
150
30
170
50
150
200
25
50
150
30
170
50
150
200
150
170
-0.6
-0.2
-0.6
-0.2
-0.6
-0.2
-0.25
-0.25
-0.25
200
50
200
50
•
v
v
200
pi
NOTES: 3. These characteristics are measured by a % sine wave sweep method.
4. These measurements ora made with voltage sensing contacts located 0.25 inches from header of transistor. Yoltage sensing contacts are separate from (urrent
carrying contads.
·Indicates JEDEC registered data.
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-59
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P·N·P AllOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONS t
PARAMETER
TYPICAL
UNIT
0.10
p.sec
0.22
p.sec
0.30
p.sec
Id Delay Time
Ie = -SOD ma
I, _Rise Time
VIE IOFFI
I. Slorage Time
RL =60n
If Fall Time
(See Figure I)
1.25
p.sec
1.9
p.sec
= 7.4 v
IT Tolol Swilching
Time
t
Voltage and current values are nominal, except values vary slightly with device parameters.
PARAMETER MEASUREMENT INFORMATION
SWITCHING TEST CIRCUIT
VOLTAGE WAVEFORMS
o
.02~f
INPUT
INPUT't 10%
,--- I~_-_- -6v
190%
I 90%
OUTPUT
60
Q
OUTPUT :
it----l K
I I
-30.1
+29.6 v
•
I It I
I+' 't+
v
FIGURE 1
-+-l tdl---
NOTES,
(al Th. Inpul w...form ha. Ih, follOWing ,hara,lorlsllcs,
" S 10 1"0<. If S 10 1''''. PW = 1.6
Duly Cyd, = 111%
(b) WlIYeforms are monitored on an oscilloscope with the following characteristics:
I, '" 141''''. Rin ~ 10 MO. Cln :;; 11.5 pl.
(e) Resistors must be non-Inductl" types.
I I I
.Ltfl
10%
7j . .
+-Its t-+
m.".
TYPICAL CHARACTERISTICS
2N2659 - 2N2664
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low -Voltage Region)
-3.0 ,----,----,----.:.-,.:....--...------.
.""
I
2N2665 - 2N2670
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low-Voltage Region)
-3. 0
"I
-2.0
~
1:
~
U
U
"
~u
.!
I
-2.0
"
~u
8
r---~---,----,.-----,.--____.
.!
8
-1.0
I
~
-1.0
..)t
-0.2
-0.4
-0.6
-0.8
VeE - Collector-Emitter Voltoge - v
-1.0
-0.4
-0.6
-0.8
VeE - Collector-Emilter Voltoge - v
-0.2
-1.0
971
6-60
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N2665 - 2N2670
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(High-Voltage Region)
2N2659 - 2N2664
COMMON -EMITTER COLLECTOR CHARACTERISTICS
(High-Voltage Region)
-3.0 r-::;,......--,-----,-----,---,----,
-3.0
nil!
Te =25·C
,......\ I ) -SO mo
0
"
I -2.0
E
~
Maximum
Vc£o
~
U
I -2.0
C
~~
u
~.I~=-SO_
~\I'=-4°i
\.
u
~
~
"0
u
;3
~
oJ!
I -1.0
I
~
-1.0
I
1,= -5
o
2N2659 - 2N2664
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
~c
II " III
tUJuLIJ~_ I -
..
c3
u"
1!
~
.e
'"
.~
VI
20
Minimum h"r--
I
~
..c
~c
~
,.....
~
1!
2
~
Ii
VeE = -O.SY
Te =25·C
10
-0.01
-O.OS
-0.1
-0.5
Ie - Collector Current - 0
-1
2N2~
~-
-50
j
1
imum h'E
r-....
SO
Minimum h..
I"'\
I
20
II!
..c
-3
I\.
'\
u
~
•
100
I!
50
r
"Met
...
...I!
C
~
2N2667
~.L
-10
-20
-30
-40
VeE - Colleclor-Emilter Voltage - v
200
100
/;
.........
mo
2N2666
2N2669
2N2665 - 2N2670
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
200
~
"- I-......
I, = 0\
VeE - Collector-Emitter Voltage - v
~
&
P, = 15w
1,--20..,
1,= -10..,
o
Maximum
Veoo
2N2665
2N2668
I, = -30..,
.e
2u
-70..,
Veo =-O.SY
Te = 25'C
10
-0.01
-O.OS -0.1
-0.5
Ie - CoII.ctar Currenl - 0
-1
-3
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6·61
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N2659 - 2N2664
2N2665 - 2N2670
STA TIC FORWARD CURRENT TRANSFER RATIO
STATIC FORWARD CURRENT TRANSFER RATIO
VI
VI
CASE TEMPERATURE
CASE TEMPERATURE
200
200
I I
-.
___ Maximum hn -
100
so
....-~
-
20
~
Minim!m
h,,-
•
~c
-25
0
25
C
~
~
u"
50
~
I
75
,...,
~
~
/i"""'
Ve
20
10
-75
100
-so
-25
Te -
·C
0
50
100
75
Case Temperature _ °C
v.
vs
CASE TEMPERATURE
CASE TEMPERATURE
-0.20
-0.20
>
>
I
I
t
-0.15
.~
-
S
J!
!
25
_
2N2665 - 2N2670
COLLECTOR-£MITTER SATURATION VOLTAGE
2N2659 - 2N2664
~
,= -0.5v
"(OJ
..c~
COLLECTOR-£MITTER SATURATION VOLTAGE
t
--
.~
'"I
....
V
Minilum h,,/
!
.f
2
50
Te - Case Temperature -
100
...I!
~r""
I
-SO
-
VeE = -O.SV
Ie = -500 rna
..c
10
-75
-
....--
~
·",lJ.L
!--!--
.g
....--
-0.10
~
--
"0 -0.15
>
-
~ r-
.~
e.i!
J!
!
...V
-0.10
--- -- --
~
j
2
J
~ -0.05
L
8
le= -500 rna
I = -SO rna
!
'I
>rJ
o
-75
-so
-25
0
25
SO
Te - Case Temperature -
Ie = -500 ma
I = -25 rna
II
.;
J
75
-0.05
o
-75
100
-so
I' I
-25
Tc -
·C
0
25
Case Temperature -
50
75
100
°C
971
6·62
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY -JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR CUTOFF CURRENT
COMMON-EMITTER TRANSFER CHARACTERISTICS
YI
-3.0
-1.0
C
G
-0.5
I
.!
I
u"
_u
-0.1
~
1
o
/
-0.2
-0.3
I
J
I I
-0.4
-0.6
-0.8
VI. - Base-Emitter Voltage -
~
-0.1
-0.03 0
-1.0
- ----
1< ,,+
~
-10
I
-5
~
i
1
u
a
-50 t--Ve.
~
I--
~
I
leu
VS
VIE
\c.t~"!t~
-0. 1
Te - 25 C
-0.05
ICE"" ...
[II'
•
-lSv
-10
~.
-5
\
~':' •
a -0.5
50
100
2
.!
~
v.,
500
I
5K 10K
1K
......
leu vs RIE
-0. 1
I
+0.5 +1
VI. - Base-Emitter Voltage -
r=!s",
Vs
I
+5
100
50< lK
RIE - Base -Emitter Resistance - ohm
I
+0.01
11111
50
!
+10
Tc = 2S·C
V••
III
-0.0 1
10
ohm
+0.05 +0.1
Tc -+5S C
-1
-0.05
Base~mitter Resistance -
! !
]
-
I Ilil
RaE -
+0.01
,..
Te = +SS·C
-0.5
-0.01
10
1.0
JoC::
i'
~u
.!
0.8
BASE-EMITTER RESISTANCE
and
BASE-EMITTER .VOLTAGE
_.
-100
-15v
~.
~
YS
BASE-EMITTER RESISTANCE
and
BASE-EMITTER VOLTAGE
\c.t."
0.6
~
2N2665 - 2N2670
COLLECTOR CUTOFF CURRENT
YS
-SO ·Ve•
---
~
Normalized Collector-Emitter Voltage - Ve •
Y
2N2659 - 2N2664
COLLECTOR CUTOFF CURRENT
-100
').5· C
0.4
0.2
~
~
~ ,,+40· C
~
~
Ve• = -O.SY
Te = 2S·C
SS.C
1<"":'::- I""""
~:Ik,,+7 O·C
~
~
...,......
1
1 ,,+55· C
< -
d
I
-0.2
-
-1
i
I
II
-0.3
-3
I
L
u"
I
~
II
t:
~
collector-emitter voltage.
-Kl.2v
V BE
.1
V
0
2u
veE normalized to 1.0 at maximum-rated
/
-2.0
I
NORMALIZED COLLECTOR-EMITTER VOLTAGE
-10
I
+0.05 +0.1
I
t
+0.5
+1
5K 10K
I
,
+5 +10
VIE - Base-Emitter Voltage - v
Y
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 50~2 •
DALLAS, TEXAS 75222
6-63
TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N2665 - 2N2670
SMAll-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO
2N2659 - 2N2664
SMALL-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO
vs
vs
·2
COLLECTOR CURRENT
COLLECTOR CURRENT
.l! 100
~c
vV
....e
~
"" ""
~
c
~
u
l!
75
i--
~0
LL
£
°e
ri"--..
50
..........
't'
IiE
~
E
0
U
0c
0>
,
•
'"
T
"r- r-
o
I
C
-0.1
-003
Ie - Collector Current - a
~
"'"
r\~
Vc.=-3v
f = 1 kc
Tc = 25°C
=25°C
I I I
-0.03
t"-. ~
i'.
VeE = -3v
i-f =1 kc
Vi
~
f'.,
25
r--....
-0.1
-1
Ie -
-1
-0.3
Collector Current - a
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
FREE-AIR TEMPERATURE
DISSIPA TlON DERATING CURVE
1.0,...------,----...,-----,----,
20
~
~
I
c
0
i
I
c 0.80 I-----+~r_-+-----J-----l
15
:l!
0
~
u
.~
0
10
li0
....
~
E
~
E
.~
~
I
'"
o
o
25
o
i
9,_c= 5 CO/w
0=
~ 0.60
I-----+----'k------J-----l
u
~
50
~
~
....
I~
75
Tc - Case Temperoture -
0.40
I---_.-----=--+-~r-I_------l
E
~
E
100
°C
o~
~ 0.20 I----+----~~.,__-+~-___i
I
°0L-----L---J50---~75--~~100
TA - Free-Air Temperature - °C
PRINTED IN U,S.A
6-64
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI (annot o~sume any responsibility for any circuits shown
or represent thaf they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.
TYPES 2N3146, 2N3147
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
HIGH·VOLTAGE HIGH· POWER TRANSISTORS
for
MILITARY AND INDUSTRIAL APPLICATIONS
mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness and the absence of flux during the
assembly process prevents sealed-in contamination.
* ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0.450 MAX
0.188 R
O.350t
~D1A2LEADS
0.250 MIN
1.050 MAX
~A~
MAX
I
_'-,
-{--I --)- ..
- O.225----=r - +
0.205 0.440
-,,,
~
MAX~.L.--===
BOTH ENDS
t
1- ~O'312MIN~1'573
j
;:r.;-ffi=,38
R MAX
~
000
D'525
II.
0.420
0.135 MAX-j lsEATING PlANE
11 GUARANTEED MAXIMUM
1 -lASE
I
I
0.675
!:!;~
0655
.
2-EMmER
~
t g:~:~ DIA
•
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3146
2N3147
Collector-Base Voltage
-150 V
-180 V
-140 V
-160 V
Collector-Emitter Voltage (See Note 1).
Emitter-Base Voltage.
-60 V
-80 V
Continuous Collector Current .
~-15A ~
Peak Collector Current (See Note 2)
~ -25 A ~
Continuous Base Current
~ -3 A
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
~ 1SOW---+
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)~1.75W~
Operating Case Temperature Range
- 65°C to 100°'
Storage Temperature Range .
- 65°C to 100°C
Lead Temperature 14 Inch from Case for 10 Seconds
+---- 230°C ~
---+
NOTES: 1.
2.
3.
4.
These values apply when the bose-emitter voltage VIE: ~ 0.2.V.
This yalue applies for "tp :=:; 100 ms, duty cycle .5 21%.
Derale linearly to lOOoe case temperature at the rate of 2 wi de,.
Derate linearly to lOOoe free-air temperature at the rate of 23.3 mWI deg.
"Indlcalos JEDEC reglslered dala
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DAL'-AS, TEXAS 75222
6-65
TYPES 2N3146, 2N3147
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
* electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
VIBRICEO
IcBo
Collector Cutoff Current
ICEO
Collector Cutoff Current
ICES
Collector Cutoff Current
ICEY
II
Collector-Emitter
Breakdown Voltage
Collector Cutoff Current
lEBO
Emitter Cutoff Current
VEBIII)
Emitter-Base Floating Potential
hI'S
Static Forward Current
Transfer Ratio
V""
VeEI",)
hie
hi.
Base-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
TEST CONDITIONS
Ie = -500 rnA, IB= 0
VCB = -150 V,
VCB - -180 V,
VCE - -45 V,
VCE - -50 V,
VCE = -110 V,
VeE - -130 V,
VCE = -100 V,
VCE = -120 V,
VCE = -140 V,
VeE - -160 V,
VCE - -80 V,
VeE - -100 V,
VEa - -60 V,
VEB - -80 V,
VCB = -150 V,
VCB - -180 V,
Vee = -1.5 V,
VCE = -1.5 V,
VeE - -1.5 V,
V'CE - -1.5 V,
IB = -0.5 A,
IB - -1 A,
IE = 0
IE - 0
IB - 0
IB - 0
V"" = 0
VBE = 0
VIlE - 0_2 V
VIlE = 0_2 V
VIlE = 0_2 V
VBE - 0_2V
V"" - 0_2 V, Te - 70°C
V"" - 0_2 V, Te - 70 0 (
Ic = 0
Ie - 0
IE = 0
IE - 0
Ic = -1 A
Ic = -SA
Ie - -lOA
Ic =-SA
Ie = -SA
Ic - -lOA
VCE = -1.5 V,
Ic = -3 A, f = 1 kHz
Vee = -1.5 V,
Ic=-3A, f= 100kHz
2N3146
MIN
MAX
2N3147
MIN
MAX
-65
-75
UNIT
V
-10
-10
-60
-60
-5
-5
rnA
rnA
rnA
-1
-1
-10
-10
rnA
-5
-5
-5
-5
-1
-1
40
30
25
90
40
30
25
V
90
-1.5
-0.4
-0_5
-1.5
-0_4
-0.5
rnA
20
100
20
100
2
5
2
5
V
V
thermal characteristics
(hc
() J-A
PARAMETER
Junctioq-to-Case Thennal Resistance
Junction-to-Free-Air Thermal Resistance
*Indicales JEDEC registered data
PRINTED IN U S.A
6-66
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES T1156, TI156L
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
JlIII-l
mC:<
"lJr-"'CI
,r- m
25 WATTS at 25°C CASE TEMPERATURE
for
RELAY DRIVERS. PULSE AMPLIFIERS. AUDIO AMPLIFIERS
and
DIRECT ELECTRICAL EQUIVALENTS of 2N156
l>m Ul
C"l-l-l
rn-",z~
Clzlil
co'
"rC:::
-I
mr-UI
-lin'"
Z ::r-
mechanical data
z~
o~
The transistors are in hermetically sealed welded cases with glass-to·metal seals between case and leads. Approximate
weight: 5 grams.
03:
."'1Il
",m
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THa CASE
TIl 56
r
0.410
~L'lO
m:2l
"lJ~
-I",
m ....
~;::q'.'OOM'Nl
r.
TEMI'ERANRE
"inUl
mm
~~
",m
The transistors are furnished with either wire leads (T1156) or with welded lugs (Tl156L)
MEASU~::"'\.
'i!
0",
s:~
III
2-BASE
0 300
m
Jl
co
m
-----h
,I ,\
'"
~
-- :'
_____ • ..J
--~
..
\4-28 UNF-28 TAP 0.200 MIN. Dll'
•
'
A~L
DIMENSIONS ARE
IN INCHES
TI156L
UNLUS OTHERWISE
.200
I"----~::------>I
S"CIFIED
0.100
,-
~:DIA.
....
...
NOlI: Leod. hewing maxi_ diaMeNr 0.028" _ - - ' In gaging plane 0.054" + 0.001"
- 0.000" below .... _Hnt pia... of .... Hvlca shall 1M. within G.OO7" of th.r h'u. ' tkln. ,.latiYe to a malli;"' ..... wllllth lab
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current
Base Current
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
...... .
Operating Case Temperature Range
Storage Temperature Range
. . ... . . .
Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
· -30 V
· -30 V
· -15 V
-3A
-1 A
25W
1W
-55°C to 100°C
-55°C to 100°C
230°C
1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 100°C case temperature at the rate of 333 mW/oC.
3. Derate linearly to 100° C free-air temperature at the rate of 13.3 mW~ C.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
6·67
TYPES T1156, TI156L
P~N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IWIRE LEAD
Tllll6
I LUG
Tllll6L
MIN
Collector-Emitter
V{BR)CEO Breakdown Voltage
ICBO
Collector Cutoff Current
ICES
Collector Cutoff Current
ICEV
Collector Cutoff Current
lEBO
Emitter Cutoff Current
'hFE
•
Ic=-250mA, IE = 0,
VBE
static Forward Current
Transfer Ratio
Ba....Emitter Voltage
Collector-Emitter
VCE(sat)
Saturation Voltage
See Note 4
UNIT
MAX
-30
V
VCB= -2 V,
IE = 0
-0.08
VCB= -30 V,
IE = 0
-0.65t
VCB=-30V,
IE = 0,
TC=50°C
-1.6t
VCB= -30 V,
IE = 0,
TC = 85"C
-8t
-1.5
VCE = -30 V,
VBE=O
VCE = -30 V,
VBE = 0,
TC= 5o"C
-5
VCE = -30 V,
VBE - 0.5 V,
TC - 85°C
-8 t
VEB- -2 V,
IC=O
VEB= -15V,
IC- 0
VEB - -15V,
IC- 0,
rnA
rnA
rnA
-0.08
-0.5
-1
TC= 5o"C
-5
VEB= -15V,
IC= 0,
TC = 85°C
VCE = -2 V,
IC=-1 A,
See Note 5
VCE = -2V,
Ic=-500mA, See Note 5
25
75
VCE=-2V,
Ic=-250mA, See Note 5
30
100
VCE=-2V,
IC= -500 rnA, See Note 5
VCE--2V,
IC--l A,
See Note 5
IB = -100 rnA, IC=-1 A,
See Note 5
rnA
15
-0.6t
-1
-0.25t
V
V
Common--Emitter
Forward Current
fhfe
Transfer Ratio
VCE = -2V,
IC = -500 rnA, f = 1 kHz(ref)
VCE=-2V,
IC = -250 rnA, f = 100 kHz,
6
kHz
220
kHz
Cutoff Frequency
fT
Transition Frequency
See Note 6
thermal characteristics
PARAryJETER
R9JC
Juncti~n-t()oCase
R9JA
Junction~tG-Free-Air
NOTES:
Thermal Resistance
Thermal Resistance
MAX
UNIT
3
75
°CIW
°CIW
4. These characteristics are measured by a halfRsine-wave sweep method.
5. These measurements are made with voltagsMsensing contects located 0.25 Inches from header of transistor. Voltage-sensing
contacts are separate from current-carrying contacts.
6. To obtain fT. the Ihfe I response with frequency is extrapolated at the rate of -6 dB per octave from f = 100 k Hz to the frequency
at which Ihfel = 1.
tThese values surpass JEDEC registered values of the 2N156.
PRINTED IN U.S.A.
6-68
971
TEXASINCORPORATED
INSTRUMENTS
POST oFFICE BOX 5012 •
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN OROER TO IMPROVE OESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TnS9, Tl160, TU61, TI162
P·N·P ALLOY ·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
40, 60, 80 or 100 VOLT UNITS
20 WAnS AT 25°C CASE TEMPERATURE
1.4 WATTS IN FREE AIR
Guaranteed Beta at 1 amp and 50 ma Ie
Guaranteed ICEX at 85° C
LOW res. LOW leo· LOW VaE
for
RELAY DRIVERS. PULSE AMPLIFIERS
SERVO AMPLIFIERS· AUDIO AMPLIFIERS
mechanical data
The transistors are in hermetically-sealed welded cases with glass-to-metal seals between case and
leads. Approximate weight: 4.S grams.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
A1U\",RA1I,1UMEA$I,IlfMENTPa.<\'
01.uNI),OoIINALROMCENTElloPCAH
... LLIIWoIINSlQHSAIEIMI...: .... S U _
I
•
OI'lIaWISESNC1fED
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage. . . . . . .
Collector Current. . . . . . . .
Base Current • . • . . . • . .
rotal Device Dissipation at (or below)
25°C Case Temperature (See Note 2)
Total Device Dissipation at (or below)
25°C Free-Air Temperature (See Note
Operoting Case Temperature Range .
Storage Temperature Range . . . .
Lead Temperature, J<. Inch from Case for
NOTES: 1. This value applies when base-emitter voltage VIE =
+ 0.2
TIl 59
11160
11161
11162
40 v
40 v
60 v
60 v
SO v
SO v
100 v
100 v
~
20 v
3 a
1 a
~
20 w
~
~
3)
.
. • . .
10 Seconds
..
1.4 w
~
~
. . - -55°C to + 100oC_
_
- 55°C to + 100°C _
~
230°C
~
v.
2. Derate linearly to lOOoe case temperature at Ih' rate of 267 mw/Co.
3. Derate linearly to lOOoe free-air temperature at the rale of 18.7 mw/Co.
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-69
TYPES T1159, Tn60, T1161, T11162
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
BVcBO
Coliector·Base
Breakdown Voltage
Ic = -650 p.a,IE= 0
BVCEO
Coliector·Emilter
Breakdown Vollage
Ic = -100 rna, Is = 0
IcBO
•
Collector Cutoff Current
ICEO
Collector Cutoff Current
IcEX
Collector Cutoff Current
ICEX
Collector Culoff Currenl
lEBO
Emitter Cutoff Current
Static Common- Emiller
Input Impedance
hiE
hFE
Static Forward
Currenl Transler Ratio
Vcs - -20 Y,
Vcs - -30 Y,
VCI - -40 Y,
Vcs = -50 Y,
VCE - -15 Y,
VCE - -20 Y,
VCE - -25 Y,
VCE = -30 Y,
VCE = -40 Y,
VCE = -60 Y,
VCE - -80 Y,
VCE - -100 Y,
VCE = -20 Y,
VCE = -30 Y,
VCE = -40 Y,
VCE - -50 Y,
VEl = -20 Y,
IE - 0
IE - 0
IE - 0
IE - 0
Is - 0
Is - 0
Is - 0
Is = 0
VIE = + 0.2
VIE = + 0.2
VIE - + 0.2
VIE = + 0.2
VIE = + 0.2
VIE = + 0.2
VIE = + 0.2
VIE - + 0.2
Ic - O.
VCE = -0.5
Y,
Ic =-1
VCE - -0.5
VCE = -0.5
VCE = -0.5
(See Note 4)
VCE = -0.5
(See Note 4)
Y,
Y,
Ic=-1 0,
Ic = -50 rna
Ic =-1 0,
Tc = _55°C,
Y,
Ic =-1
0,
Tc =
0,
(See Note 4)
Y,
Y
Y
Y
Y
Y,
Y,
Y,
Y,
Static Common-Emiller
Forward Transfer Admittance
VCE = -0.5
Y,
Ic =-1
VIE
Base·Emitter Voltage
VCE = -0.5
VCE - -0.5
Y,
Ic =-1 0,
Ic - -50 rna
VCE(satJ
hie
Ihlel
CoJ.
Colledor-Emitter
Satumlion Vollage
Smail-Signal Common-Emiller
Forward Current Tmnsfer Ratio
Small-Signal Common-Emiller
Forward Current Transfer Ratio
Common-Bose Open-Circuit
Output Capacitance
I. = -100 rna, Ic =-1
+ 85°C
+ 85°C
+ 85°C
+ 85°C
MIN
TI159
TI160
TIl 61
TIl 62
TIl 59
TIl 60
TIl 61
TIl 62
TIl 59
TIl60 '
TIl 61
TIl 62 ,
TIl 59 ,
TIl60 .
TIl 61
TIl62 '
TIl 59 '
TIl 60
TIl 61
TIl62 I
TIl 59 i
TI160 :
TIl 61
TIl 62
-40
-60
-80
-100
-30
0,
(See Note 4)
+ 85°C,
-40
-125
pAl
-25
-20
-20
-20
rna
-650
p.a
-5
rna
-650
p.a
60
ohm
60
200
60
20
75
mho
1.0
(See Note 4)
-1.0
-0.35
Y
(See Nole 4)
-0.25
Y
Ic = -0.5
0,
1=1 kc
18
VCE = -1.5
Y,
Ic = -0.5
0,
I = 112.5 kc
2.0
IE = 0,
Y
20
33
15
Y,
Y,
UNIT
Y
-50
-60
VCE = -1.5
Vcs = -6
MAX
(See Nole 4)
0,
YFE
Y,
Tc =
Tc =
Tc =
Tc -
TYPE
1= 135 kc
100
(typical)
72
pi
NOTE 4: MHsvrements are made with tollage sensing (onlacts located 0.25 Inches from header of transistor.
Yoltage sensing contacts Gre SIp. rate' from currenl carrying contacts.
971
6-70
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •
DALLAS. -TEXAS 75222
TYPES T1159, T1160, T1161, TI 162
P·N·P ALLOY ·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
I
TYPICAL CHARACTERISTICS
COMMON-EMITTER TRANSFER
CHARACTERISTICS
COMMON -EMITTER COLLECTOR
CHARACTERISTICS
-3r----r~-------r------r-----_.
-1.0
7
VCE = -0.5 v
"I
"
~
~
- 2 1t-:~-::7I\
1
~
u
2u
.!
/
-0.5
/
2u
.!
u
Is= -5 rna
o~--~~~~~==~~==~
o
-20
-30
-40
VCE - Collector-fmltter Voltoge - v
050
'"
.!J.
-
--
i
/
c =+25 C/
D
II
/
Tc
= -55°C
II
o
-0.2
-0.4
-0.6
VSE - Base-fmitter Voltoge - v
100
I
7
II
STATIC FORWARD CURRENT TRANSFER RATIO
vs
CASE TEMPERATURE
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
60
/
/
/
-0.1
/
II IT
= +85°C
I
--
I
Tc
d
-0
u -1 I " - - - - - - - ' f - - = - - " . . . - - - - t - - - - - - j
/
I
/
~
u
I
/
I
11.1 1, )
Moxlmum hFE
~
.!J.
'\
I
.!
E 50
~
~ 40
•
__ Moximum h FE
70
'\.
----
1
~
u
~
Minimum hFE
\
1!
..c
VCE = -0.5v
Tc = 25°C
20
-0.01
I I
1--1.0
of
u
::
R
1\
w
30
~
VCE a -r5V, 1
20
'"
JimuaE----
w
a
V
..c
I
Minimumh~
-0.05 -0.1
-0.5 -1.0
IC - Collector Current - a
10
-75
-3.0
-50
-25
Te - Case
o
I
25
Temperature -
50
·c
75
100
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6·71
TYPES T1159, T1160, T1161, TI162
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR CUTOFF CURRENT vs BASE-EMITTER RESISTANCE
COLLECTOR CUTOFF CURRENT
v.
and
BASE-EMITTER VOLTAGE
-50 VCE
I
c
:>
1
'0
u
~
~.\l.¢
I
~
:>
"-
-0.5
It:
J!
:>
u
f •.yv, v. C
-0.05
'0
u
Ix
-0.1
-~
111111
50 100
RBE -
•
+0.01
VBE -
500
Ik
Base-Emitter Resistance -
+0.05 +0.1
Sk
10k
ohm
+0.5 + 1.0
Base-Emitter Voltage -
5°C
1c.">'-
il 8.
.-
- ~ ---t....----
..!
2S o C
---
~'1 I,00C
-
u
~
ICERV~
-0.1
-0.5
.e
V E
ICEX VI
10
-1.0
U
Tc= +55 0 C
'it>°C
1c."'::::..-....
~-11C."' .. ~ l.--- ~
c
-I
-0.01
-
~
\c.~\l
~
~
u
:>
i
u
.e
-5.0
-5
-
~VBE - +0.2v
T1 160t
=-ISv
-10
~
COLLECTOR-EMITTER VOLTAGE
-10.0
-100
-0.05
-+-"
-0.03
TIlS9
0
TIl60
0
TIl 61
0
TIl62
0
- 8
-12
-16
-20
VCE -
v
~
'15· C
-16
-24
-32
-24
-36
-48
-40
-60
-32
-48
- 40
-60
-64
-80
-100
-80
Collector-Emltter Voltage - v
THERMAL CHARACTERISTICS
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
CASE TEMPERATURE
DISSIPATION DERATING CURVE
20 ~----~~-----r------'------'
1.4
~
I _ 1.2
I
~ IS ~-----+----~~------+-----~
1-
Ii
1.0
0.8
"2
"2
0.6
e
e
~
II
~ 10~----4------+--~~----~
~
'i
~
,!!
,!!
~
5 b-------~-----4------_+~~--~
i
I
.......
"c
OL-----~-------L------~----~
o
25
Tc -
50
75
100
Cos. Temperature _·C
"-
~
c
•u
1
f\
~
9 J-A=
53.)
CO/w
I\.
"-\
Enclosed In I Cubic Foot
Chamber
0.4
0.2
o
o
25
TA -
50
Free-Air Temperature -
"-'\
75
100
·C
PRINTED IN U.S.A.
6-72
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PROOUCT POSSIBLE.
TYPES TI3027, TI3028
P-N-P ALLOY -JUNCTION GERMANIUM POWER TRANSISTORS
HIGH·POWER TRANSISTORS
for
CONSUMER APPLICATIONS
mechanical data
These transistors are in a resistance-welded, hermetically sealed enclosure. The mounting base provides
an excellent heat path from the collector junction to a heat sink. The entire mounting base must be in intimate contact with the heat sink for maximum heat transfer. A minimum torque of 10 inch-pounds applied
to each of the mounting screws is recommended for mounting the device to the heat sink. Extreme cleanliness and the absence of flux during the assembly process prevents sealed-in contamination.
All JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
0.525 R MAX
000,
()
0250
'"
t
1- ~OJ12 MIN~
1 57l MAX
0043 OIA 2 l£ADS
T-m=~J8
I
1050 MAX
0.188 II MAX
80TH ENDS
j
~~~
-
~e__
0675
~
_/__ 4- ,
_
~2_ ...=r - 0-(-1~ ~.<;) ~
-,- I "
020S 0440
I~
I
•
2~fMITTER
l ~ :::
0420
0 135 MAX -j
~ ~~~
OIA
2 HOLES
0,200--
SEATING PLANE
CASE TEMPERATURE
MEASUREMENT POINT
1 - BASE
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25'C case temperature (unless otherwise noted)
TI3027
TI3028
Collector-Base Voltage .
-45 v
-60 v
Collector-Emitter Voltage (See Note 1) .
-40 v
-50 v
Emitter-Base Voltage
. ~ -20 v --+
Continuous Collector Current .
. ~ -7 a --+
Continuous Base Current
. +-- -3 a --+
Continuous Device Dissipation at (or below) 25'C Case Temperature (See Note 2) . +-- 106 W --+
Continuous Device Dissipation at (or below) 25'C Free-Air Temperature (See Note 3) +-2 w --+
Operating Case Temperature Range.
. -65'C to + 100'C
Storage Temperature Range
. -65'C to + 100'C
Lead Temperature Ys Inch from Case for 10 Seconds
. ~ 230'C --+
NOTES: 1, These v,alues apply when the base-emitter resistance RaE:::; 68 O.
2. Derate linearly to 1l0oe case temperature at the rate of 1.25 w;oc.
3. Derate linearly to lIooe free-air temperature 01 the rate of 235 mw/°t.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
6-73
TYPES T13027, TI3028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
eJectrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
BVcBo
BVCER
Coliedor·Base Breakdown Voltage
Coliedor·Emitter Breakdown Voltage
leBo
Colledor Cutoff Current
leao
Emitter Cutoff Current
hFE
Static Forward Current Transfer Ratio
Vae
Base·Emitter Voltage
VCE!"t)
Coliector·Emitter Saturation Voltage
Ihfel
Small·Signal Common·Emitter
Forward Current Transfer Ratio
Ic - -Sma, IE = 0
-60
-45
-SO
Ic = -600 rna, Rae = 680 , See Note 4 -40
VCB - -2 v, IE = 0
-0.15
-0.15
VCB - -30 v, IE = 0
-I
Vca = -40 v, IE = 0
-I
Vea - -20 v, Ic - 0
-I
-I
VCE = -2 v, Ic =-1 0, See Note 4
70
70
VCE = -2 v, Ic = -30, See Note 4 40 250 40 250
VCE - -2 v, Ic - -I 0, See Note 4
-0.5
-0.5
VCE - -2 v, Ic = -30, See Note 4
-1.0
-1.0
la - -100 mG, Ic = -I a, See Note 4
-0.4
-0.4
la = -300 rna, Ic = -3 a, See Note 4
-0.5
-0.5
Ie = -I a, f = 100 kc
VeE = -2 v,
NOTE 4: These parameters must be measured using pulse techniques. PW
•
TI3027
TI3028
UNIT
MIN MAX MIN MAX
==
300
JL58(,
v
V
rna
rna
V
v
2
2
Duty Cycle ~ 2'%.
thermal characteristics
PARAMETER
IJJ•c
(hHS
(hA
lundion·to·Case Thermal Resistance
lunction·to·Heat·Sink Thermal Resistance
lunction·to·Free·Air Thermal Resistance
TEST CONDITIONS
MAX
UNIT
See notes in Thermal
Characteristics section
0.8
1.4
42.5
°C/w
°C/w
O(/w
NUMERICAL SYSTEM FOR hFE CODING
Upon request the transistors will be numerically coded to identify matched pairs. The transistors are
in·house classified into 2-db (ratio 1.26 to 1) hFE brackets and any two units within a bracket constitute a
matched pair. A 10% tolerance is included in the bracket limits shown below to allow for test·set correlation.
No hFE-bracket distribution is implied by this classification system.
BRACKET
NUMBER
hFE RANGE at
VCE = -2 v, Ic = -3 a
1
40- 60
50 - 80
65 - 100
80 - 125
100 - 150
125 - 200
160 - 250
2
3
4
5
6
7
569
6-74
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES T13027, T13028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
ond
HEAT-SINK TEMPERATURE
DISSIPATION DERATING CURVES
120
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
.---....,.---r--,----,....---,
2.5
f
Ii
1001---t"r-+--+---I1---j
t
'::
2.0
~
0
~
.~
1.5
9J-A
~
42.5°C/w
0
.~
""""-
1.0
8
40 1--::--+---l~--JI!.,...--1---f
v
E
~
~
~1---t---r--f3~"rI---j
0.5
'\
I
.r:
o
125
o
25
75
50
i'\.
125
100
T( or THS -1 emperature-OC
1/4, -Free-Air Temperoture-OC
FIGURE I
FIGURE 2
is the thermal resistance from the junction of the transistor to free-air. The curve shown above was determined by
positioning the transistor in the center of a box 12 inches by 12 inches by 12 inches with the temperature measured
two inches below the transistor.
(hA
lIJ• e is the thermal resistance from the junction of the transistor to the point on the mounting base of the transistor case
specified on the outline drawing.
lIe .Hs is the thermal resistance from the mounting base of the transistor case to the mounting surface of the heat sink.
The heat sink used to determine this value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch
below the mounting surface in an area beneath the center of the transistor. The transistor was mounted directly to a
cI"an, dry, heat-sink surface, without the use of silicone grease, and a torque of ten inch-pounds was applied to each
of the mounting screws.
•
lIJ- HS is the thermal resistance from the junction of the transistor to the mounting surface of the heat sink.
lIJ•HS = lIJ•e + lIe •Hs
The dissipation levels shown above are
v~rjfied
statistically by operating-life tests.
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
COLLECTOR CURRENT
300
.~
200
.11
--
,
I
I -0.9
>1-0.8 f-l,g
Tc= 250C
i
~ 100
j
i
i Jl -0.4
cB
5
~~ -0.3
20
:::a (J -0.2
J
VeE
10
-0.2
-0.4
L
/
1-
~
],... 0.1
=<-r v
-2
-0.7 -1
Ie-Collector Current- a
-7
>u
V
/'
/ ' \-Ie- Vm";,(1,= To)
I '- -
/'
lL
/
.......-
L\
/'
a
].~ -0.5
50
.,../
Va. (Ib= -2v)
~.2 -0.6
u
'i
i
I II
t.~ -0.7
~
a
12
BASE-EMITTER VOLTAGE and
COLLECTOR-EMITTER SATURATION VOLTAGE '"
COLLECTOR CURRENT
-1.0
",-
...-'
V
Te= fOC
0
o
-1
-2
-3
-4
-5
Ie - Collector Current - a
-6
-7
FIGURE 4
FIGURE 3
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX SOU •
DALLAS, TEXAS 15222
6-75
TYPES T13027, TI3028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL APPLICATION DATA
CLASS B AUDIO AMPLIFIER
vee'
{ -40 v (TI3027)
-45 v (T13028)
IoAaximum Collector Power
Dissipation per Transistor:
5.0 w (T13027)
6.25 w (T13028)
=
•
TYPICAL CIRCUIT PERFORMANCE CHARACTERISTICS
TA = 2S·C, f = 1000 cps (except where noted)
TI3027
Minimum RMS Power Output at S% Total Harmonic Distortion
Minimum Power Gain
Frequency Response .
D-C Collector Current with Zero Signal .
D-C Collector Current with Maximum Signal
Peak Collector Current with Maximum Signal .
Inpul Impedance, Base-Io-Base
TI3028
20w
2Sw
18 db
20 db
20 to 20,000 cps
-O.OS a
-O.OS a
-1.2Sa
-l.10a
-3.9 a
-3.S a
730
680
CIRCUIT COMPONENT INFORMATION
R,:
R,:
R,:
Speaker
Impedance:
TI3027
TI3028
0.S60, 1 w
12S0, Sw
1.1 0, V. w
0.S6fi, 1 w
1500,5w
1.20, V. w
80
80
All resistors ± 10% tolerance
C: Selected 10 meet desired low-frequency response. Working voltage equals 40 v.
T: Driver transformer primary-winding impedance, currenlcarrying capacity, and doc resistance are determined by
large-signal characteristics of driver stage. Secondary
windings are bifilar wound. The a-c impedance of each
secondary winding equals 18 ohms for TI3027 and 17
ohms for T13028.
PRI~TED IN U.S A.
6-76
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
569
TI con not assume any responsibility for any circuits shown
or represent thot they are free from polenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES T13029, T13030, TI3031
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
HIGH-POWER TRANSISTORS
for
CONSUMER APPLICATIONS
mechanical data
These transistors are in a resistance-welded. hermetically sealed enclosure. The mounting bose provides
on excellent heat path from the collector junction to a heat sink. The entire mounting bose must be in intimate contact with the heat sink for maximum heat transfer. A minimum torque of 10 inch-pounds applied
to each of the mounting screws is recommended for mounting the device to the heat sink. Extreme cleanliness and the absence of flux during the assembly process prevents sealed-in contamination.
ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
04S0
"""'02'50
052SRMAX
oOa
~
j
1- 1-
0312 MIN
I0043DIA2lEADS
~--I--rn=oJ3B
0875':::'
1050 MAX
-/-
0205 0440
II
0 135 MAX
0675
~
I
1+
\
~
~ ;;~
•
2--EMITTER
022S~-0·'-I~-I-~-
MAX
-,-_--=O=IA==
0188 R MAX
BOTH ENDS
.
--1
r-;:
-\- !
~~
0410
SEATING PLANE
1 BASE
t ~:~::
DIA
2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT
DIMENSIONS ARE IN INCHES
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI3029
TI3030
Tl3031
-BOv -100v -120v
Collector-Base Voltage .
-65 v
-60 V
-55v
Collector· Emitter Voltage (See Note 1)
-20 V
~
+-Emitter-Bose Voltage
-7a
~
+-Continuous Collector Current
-30
~
+-Continuous Base Current
~
106w
+-Continuous Device Dissipation at (or below) 25°C Case Temperature(See Note 2)
2w
~
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) +--65'C to + 100'C
Operating Case Temperature Range.
-65°C to + 100'C
Storage Temperature Range
230'C
~
+-Lead Temperature 'Is Inch Irom Case lor 10 Seconds
NOTES: 1. These values apply when the base-emitter resistance RBE :::; 68 n.
2. Derate linearly to nooc (ase temperature at the rate of 1 2S w/0c.
3. Derate linearly 10 nooc free-air temperature at .he rate of 235 mw/o(.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
6-77
TYPES T13029, T13030, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
electrical characteristics at 25·C case temperature (unless otherwise noted)
TI3029
TI3030
TI3031
TEST CONDITIONS
PARAMETER
MIN MAX MIN MAX MIN MAX
Ic = -Sma, IE = 0
BVcao Coliector·Base Breakdown Vollage
-80
100
-120
BVCER
Ic = -600 ma, RIE = 68 n, See Nole 4 -SS
Coljector·Emiller Breakdown Voltage
Vca = -2 V,
ICBO
IEao
IE = 0
-0.15
Vca = -SO v,
=0
-I
Vca = -60 v,
=0
= -70 v,
=0
Vca
Collector Cutoff Current
Emiller Culoff Current
•
VIE
Sase·Emilter Voltage
Coliector·Emiller
VCE( .. I) Saturation Vollage
Ihlel
Small·Slgnal Common·Emiller
Forward Current Transfer Ratio
,
-0.15
-0.15
-I
= 0, Tc = +70·C
Vca = -60 v,
= 0, Tc = +70·C
Vca = -70"
= 0, Tc = +70·C
-10
-10
-I
Ic = -I a, See Note 4
-I
-I
70
70
70
VCE = -2 v,
Ic = -3 a, See Note 4
40
2S0 40
2SC 40
VCE = -2 v,
Ic = -S a, See Note 4
30
30
30
VCE = -2 v,
Ic = -3 a, See Note 4
-1.0
-1.0
-1.0
VCE = -2 v,
Ic = -S a, See Note"
-1.5
-1.5
-1.5
la = -300 ma, Ic = -3 a, See Note 4
-O.S
-O.S
-0.5
la = -SOO ma, Ic = -5 0, See Note 4
-0.7
-0.7
-0.7
VCE = -2 v,
NOTE 4: Thesa parameters must be measured using pul" techniques. PW
=
Ic = -I 0,1 = 100kc
300 p.sec, Duty Cyde
thermal characteristics
PARAMETER
2
2
Junction·to·Case Thermal Resistance
8J • HS
Junction·lo·Heat·Sink Thermal Resistance
8J •A
Junction·to·Free·Air Thermal Resistance
ma
2S0
,
v
2
::5 2%.
TEST CONDITIONS
8J •c
ma
-10
VEa = -20 v, Ic =0
Static Forward Current
Transfer Ratio
,
-6S
-I
Vca = -SO v,
VCE = -2 v,
hFE
-60
UNIT
See noles in Thermal
Characteristics sedion
NUMERICAL SYSTEM FOR
hFE
MAX
UNIT
0.8
·C/w
1.4
·C/w
42.S
·C/w
CODING
Upon reque.st the transistors will be numerically coded to identify matched pairs. The transistors are in·house classified
into 2·db (ratio 1.26 to I) hFE brackets and any two units within a bracket constitute a matched pair. A 10% tolerance
is included in the bracket limits shown below to allow for test·set correlation.
No hFE·bracket distribution is implied by this classification system.
BRACKET
NUMBER
I
2
3
4
5
6
7
VCE
hFE RANGE at
= -2 v, Ic = -3 a
40- 60
50- 80
65 -100
80-125
100-150
125-200
160-250
569
6·78
TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TI3029, T1303O, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
and
HEAT -SINK TEMPERATURE
DISSIPATION DERATING CURVE
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
120
2.5
•I
f
~
~
i
:t•
100
~
·
80
~
2.0
'" "
0
9J-A
u
't
.~
1.5
0
0
~
,
60
~
..
1
1.0
~
40
U
E
20
~
E
~
~
~
~
"\
0.5
I
.t
I
a
125
s: 42.SOC/w
a
25
50
"-'\
75
\.
125
100
Te or THS-Temperoture-OC
TA -Free-Air Temperature-aC
FIGURE 1
FIGURE 2
OJ-A is the thermal resistance from the junction of the transistor to free-air. The curve shown above was determined by
positioning the transistor in the center of a box 12 inches by 12 inches by 12 inches with the temperature measured
two inches below the transistor.
OJ-e is the thermal resistance from the junction of the transistor to the point on the mounting base of the transistor
case specified on the outline drawing.
Oe-Hs is the thermal resistance from the mounting base of the transistor case to the mounting surface of the heat sink.
The heat sink used to determine tbis value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch
below the mounting surface in an area beneath the center of the transistor. The transistor wos mounted directly to a
clean, dry, heat-sink surface, without the use of silicone grease, and a torque of ten inch-pounds was applied to each
of the mounting screws.
•
OJ-HS is the thermal resistance from the junction of the transistor to the mounting surface of the heat sink.
8J-Hs = 8J-e + Oe-Hs
The dissipation levels shown above are verified statistically by operating-life tests.
TYPICAL CHARACTERISTICS
BASE- EMITTER VOLTAGE
and
COLLECTOR-EMITTER SATURATION VOLTAGE
STATIC FORWARD CURRENT TRANSFER RATIO
COLLECTOR CURRENT
COLLECTOR CURRENT
1.0
300
.2 200
~
~
!
100
-
I
0.9
Tc= 25"C
-r-
J
c
0.7
!
] ·i
SO
I
I
Vel;
-0.4
""-1''
-2
-0.7 -1
Ie-Collector Current- a
-4
-7
J.. -2.1
/'
0.5
0,4
~
0.3
L
~
:Y
~
IVa.
0.1
o
V
~V
/'
/
:::~
> u 0.2
20
10
-0_2
f--
0.6
w
j ~
u
.~
'7
,0.8
Ii~
~
.3
..
t
,,g
>
/
/
'/
o
-1
/'
,./"
./
V
V
V~ Ie
vCEf5CI11(le=
I
Te '" 25"C
T
10)
-2
-3
-4
-5
Ie - CoHector Current - a
- r--
-6
-7
FIGURE 4
FIGURE 3
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
6·79
TYPES TI3029, TI3030, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL APPLICATION DATA
CLASS B AUDIO AMPLIFIER
-50 v (Tl3029)
Vee = { -60 v (Tl3030)
-74 v (Tl303I)
Nlaximum Collector Power
Dissipation per Tran sistor:
8.75 w (T13029)
12.5 w (T1303O)
17.5 w (TI3031)
•
I
TYPICAL CIRCUIT PERFORMANCE CHARACTERISTICS
TA = 25'C, f = 1000 cps (except where noted)
TI3029
35 w
26 db
Tl3030
TI3031
50w
70 w
25 db
20 db
+- 20 to 20,000 cps----+
· -0.05 a
-0.05 a
-0.05 a
.-0.95a
-1.10a
-2.22 a
· -3.0 a
-3.5 a
-7.0 a
· 88.5 fl
74.5 fl
69
Minimum RMS Power Output at 5% Total Harmonic Distortion
Minimum Power Gain
Frequency Response .
D-C Collector Current with Zero Signal
D-C Collector Current with Maximum Signal
Peak Collector Current with Maximum Signal
Input Impedance, Base-to-Base
n
CIRCUIT COMPONENT INFORMATION
R,:
R,:
RJ :
Speaker
Impedance:
All resistors
±
TI3029
TI3030
TI3031
0.27 fl, V. w
330 fl, 2 w
2.2 n, V, w
0.27 fl, V. w
250 fl, 5 w
1.2 fl, V. w
0.47 fl, 3 w
1500, lOw
0.56 n, V2 w
8n
8n
4n
10% tolerance
C: Selected to meet desired low-frequency response. Working voltage should be greater than 85% of Vcc.
T: Driver transformer primary-winding impedance, currentcarrying capacity, and d-c resistance are determined by
large-signal characteristics of driver stage. Secondary
windings are bifilar wound. The a-c impedance of eoch
secondary winding equals one-fourth of base-to-base input impedance.
PRINTED IN U.S.A.
6-80
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
569
TI (annal assume any responsibility for any circuits shown
or represenf fhat they are free from polen' infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
Thyristor
Data Sheets
•
I
TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
:JJ
m
....""0
»
()
1 AMP DC. 50 to 400 VOLTS
~:<
,..",
,..m
mtn
-I ..
-Z
Z
..
OJ Z!B
c p",
m
'"
.... 0-1
....
m ,..:1:
':tJ
::! ~c:
Z
*mechanical data
Z
....
.. z
....
9 en",
a enIC
r$Or,g
en 0
.,
Ol
Ol
THE ANODE IS IN ELECTRICAL
CONTACT WITH THE CASE.
Ol
U1
:"
m
0
m
s:
til
..
m
'- :tJ
C
THE GATE TERMINAL IS
CONNECTED TO A P REGION.
Z
m
to
IC
~
Ol
Ol
All JEDEC TO·S DIMENSIONS
AND NOTES ARE APPLICABLE.
I CATHODE
All DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
*absolute maximum ratings over operating case temperature range (unless otherwise noted)
2N1595 2N1596 2N1597 2N1598 2N1599 UNIT
100
50
200
300
400
V
50
100
200
300
400
V
50
100
200
V
300
400
100
200
400
V
50
300
Static Off-State Voltage, VD (See Note 1)
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Static Reverse Voltage, VR (See Note 1)
Repetitive Peak Reverse Voltage, VR RM (See Note 1)
Continuous or RMS On-5tate Current at (or below) 80°C
Case Temperature (See Note 2)
1
A
1
A
15
A
°c
°c
Average On-5tate Current (180° Conduction Angle) at (or below) 80°C
Case Temperature (See Note 3)
Surge On-5tate Current (See Note 4)
Operating Case Temperature Range
-65 to 125
-65 to 150
Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
300
1. These values apply when the gate-cathode resistance RGK ,.;;;
•
°c
00,
2. This value applies for continuous doc operation with resistive load. Above 80° C derate according to Figure 1.
3. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 80°C derate
according to Figure 1.
4. These values apply for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
*JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7·1
TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25"C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
MIN MAX UNIT
*ID
Static On-State Current
VD = Rated YD. IG = 0,
TC= 125"C
1
rnA
*IR
Static Reverse Current
VR = Rated YR. IG = O.
TC = 125°C
1
rnA
rnA
*IGT Gate Trigger Current
*VGT Gate Trigger Voltage
VAA=6V,
RL = 12
o.
!:P(g);;' 20l's
10
VAA-6V.
RL-120.
tp(g) ;;. 20l's
3
V
25
rnA
2
V
IH
Holding Current
RL -1 kO.
IG-O
*VT
On-State Voltage
IT=1 A.
RGK;;'1 kO
*JEDEC registered data
THERMAL INFORMATION
MAXIMUM AVERAGE ANODE POWER DISSIPATION
AVERAGE ON-STATE CURRENT DERATING CURVE
•
~
.Lc::
1.0
~::>
0.9
i
0.8
U
'"
c::
0
"'"
I
Continuous DC and
=
I °
180
q. - 120°
-\
-90
E
0.4
::>
'xCD
::ii
I
">
.!!!
.t-
c.
'i2
0.2
75
1.8
c::
!
~
100
Tc-Case Ternperature-oC
-
0
a
50
2.0
0
0.1
25
2.2
.....,~ 1.6 " 1.4 i5
~
~
0.3
~
2.4
CD
,\\ !\
~
E
-g
\~
'\\~
'\\~
0.6
0.5
II
Conduction
Angle
= 30°
0.7
~
~\ 0° 1+<1> ....1180°
= 60°
;>
\IS
AVERAGEON-STATECURRENT
1.1
TJ = 125°C
= 30°
= 180°
Continuous DC
1.2
1.0
h
E 0.6
~ 0.4
"> 0.2
.!!!,
~'
...
125
/
.//
/V/,
/
/
/
/ ///. :/
A ~/17
~7
/. ~
::>
",
//
= 120°
E 0.8
'x
Z. 7
7
J
1/ 1/ v/
= 60°
cJ> =90°
-
0' /
~
0
~
0.2
004
0.6
0.8
1.0
IT(av)-Average On-State Current-A
FIGURE2
FIGURE 1
1271
7-2
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
STATIC REVERSE CURRENT
STATIC OFF-5TATE CURRENT
<{
:t
lc:
vs
vs
CASE TEMPERATURE
CASE TEMPERATURE
100
100
40
40
10 ~ VD
IG
f-- VR
/
= Rated VD
0
:t
4
~
::J
0
~
..,
cil
I
.t-
7
"7
~
::J
(.)
~
0.4
/'
0.1
0.4
~
CJ
to
Rated VR
~IG-O
4
lc:
/
(.)
~
10
<{
'"
c:
..,CJ
0.1
en
0.04
~
0.04
I
0.01
!f-
./'
0.004
0.004
0.001
,./
0.D1
-75 -50 -25
0
25
50
75
100
0.001
125
~~
~
~
0
~
~
•
HOLDING CURRENT
vs
CASE TEMPERATURE
12
<{
E
lc:
8
~
::J
(.)
'"c:
a::t
------
r--
6
RL = 1 kn
IG = 0
I--- I---
'0
I
~
1~
FIGURE 4
FIGURE 3
10
100
Tc-Case Temperature-OC
Tc-Case Temperature-OC
--
-
4
2
o
-75
-50
-25
o
25
50
75
100
125
T c-Case Temperature-° C
FIGURE 5
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7-3
TYPES 2N1595. THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT
GATE TRIGGER VOLTAGE
vs
vs
CASE TEMPERATURE
CASE TEMPERATURE
8
7
~
6
~"
5
1.8
........
1.6
I'--
.........
'I'--
.!.
"
.S!'
'"
4
~
3
VAA =6V
RL = 12Sl
tp(g)" 20 ps
""'-
-
1.4
>I
.,
'"
t!:
0.8
Cl
Cl
0.&
.t;
I-
~
.,
'"'"
~
...............
~
~
1.2
$
1.0
~
.......
'0
>
u
-
..
""
VAA=6V
RL=12Sl tp(g)" 20 ps
~
'\,.
r\.
l!l
I
I.
2
Cl
>
"
0.4
0.2
o
-75 -50
-25
0
25
50
75
100
o-75
125
-50
-25
0
25
50
75
TC-Case Temperature-OC
Tc-Case Temperature-oC
FIGURE&
FIGURE7
I
100
125
GATE VOLTAGE
vs
POSITIVE GATE CURRENl
10
7
4
IA -0
2
>I
~
1!0
>
~
~
1
0.7
=::- ",:..as. c
_'tC
0.4
0.2
I
Cl
>
-
~~
-~
"'"
~C
0.1
0.07
V"
..... ~
-
~
.....
-
~ ~ 1-'"
~
oC
===--'", ,dl
0.04 ~~C.I""
0.02
-/1
",
0,01
0.1
0.2
0.4
0.7
4
7
10
1
2
+IG-Positive Gate Current-mA
20
40
70
100
FIGURES
PRINTED IN U.S.A
7-4
TEXASINCORPORATED
INSTRUMENTS
pOST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3001, 2N3002, 2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
350 rnA • 30 to 200 VOLTS. 20 p.A GATE SENSITIVITY
ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS
NO SOLDER OR FLUXES
•
High Operating Temperatures
•
High Surge Current Capability
•
Fast Switching Speeds
•
Low Forward Voltage Drop
mechanical data
The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate
weight is 0.35 grams.
'THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
3 LEADS 0.019 DIA
0.016
0.100
g:~~~ - + - - - - - - - j
ALL DIMENSIONS ARE
=
IN INCHES UNLESS
OTHERWISE SPECIFIED
=
=
l---==:='==:=tll 0.500
t-
I
MIN-l
"ALL JEDEC TO-18 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
,
'Static Off-State VOltage, Vo (See Note 1)
'Repetitive Peak Off-State Voltage, VORM (See Note 1)
'Static Reverse Voltage, VR (See Note 2)
'Repetitive Peak Reverse Voltage, VRRM (See Note 2)
'Continuous or RMS On-State Current at (or below) 55°C Free-Air Temperature (See Note 3)
*Average On-State Current (180° Conduction Angle) at (or below)
55' C Free-Air Temperature (See Note 4)
'Surge On-State Current (See Note 5)
Peak Negative Gate Voltage
'Peak Positive Gate Current (Pulse Width';; 8 ms)
* Average Gate Power Dissipation
*Operating Free-Air Temperature Range
*Storage Temperature Range
'Lead Temperature 1/16 Inch from Case for 10 Seconds
2N3001 2N3002 2N3003 2N3004 UNIT
30
30
30
30
60
60
60
60
100
100
100
100
350
V
V
V
V
mA
250
mA
6
8
A
V
250
100
mA
mW
-65 to 150
-65 to 200
'c
'c
'c
300
200
200
200
200
•
1. These values apply when the gate-cathode resistance RG K ~ 1 kil.
2. These values apply when the gate-cathode resistance RG K -< 00.
3. This value applies for continuous d-c or single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, derate
according to Figure 1.
4. This value may be applied continuously under single·phase, 60·Hz, half·sine·wave operation with resistive load. Above 55°C,
derate according to Figure 1.
5. This value applies for one 60·Hz half sine wave when the device is operating at (or below) rated values of peak reverse VOltage and
on*state current. Surge may be repeated after the device has returned to original thermal equilibrium.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
NOTES:
1271
TEXAS iNSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
7-5
TYPES 2N3001, 2N3002, 2N3003, 2N3004
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
*electrical characteristics at 25°C free-air temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
10
Static Off-8tate Current
IR
Static Reverse Current
IG
IGT
Gat. Current
Gate Trigger Current
VGT
Gate Trigger Voltage
IH
Holding Current
On-8tate Voltage
VT
dv/dt Critical Rate of Rise of Off-8tate Voltage
Vo = Rated VO,
Vo - Rated VO,
VR = Rated VR,
VR = Rated VR,
VG - -5 V"
VAA=5V,
VAA=5V,.
VAA 5V,
VAA-5V,
RGK-lkn,
RGK= 1 kn,
IT-350mA,
VO-l V
RGK = 1 kn
RGK-l kn,
RGK - 00
RGK = 00,
IA=O
RL -12 n,
RL -12n,
RL 12n,
RL=12n,
RL =2 kn
RL-2kn,
RGK;;'1 kn,
TA - 150°C
TA = 150°C
tp(g) ;;.
!PIg) ;;.
!P(g);;'
tp(g) ;;.
10 ps
10 ps, TA - -65°C
10 ps
10 ps, TA - 150°C
TA - -65°C
See Note 6
NOTE 6: The initial Instantaneous value is measured using pulse techniques. On-state pulse width
= 300 IJ.$,
MIN TYP MAX
0.1
100
0.1
100
-5
5 20
0.9
0.55 0.7
0.2
1.2
3
4
1.2
400
UNIT
pA
pA
iJA
pA
V
mA
V
VIps
PRR = 100 pps •
• JEDEC registered data
switching characteristics at 25° C free-air temperature
PARAMETER
2N3004
TYPICAL
TEST CONDITIONS
tgt
Gate·Controlled Turn·On Time
tq
Circuit-Commutated Turn·Off Time
VAA - 200 V,
RL - 2.2kn,
RG = 100 n,
See Figure 14
VAA =50 V,
RL = 140n,
1N645 between gate and cathode, See Figure 15
Vin=3V,
UNIT
0.3
ps
3.5
thermal characteristics
I
PARAMETER
R8JC Junction-to-Cese Thermal Resistance
R8JA Junction-to-Free-Air Thermal Resistance
TYPICAL
75
275
UNIT
°C/W
ON-STATE CURRENT DERATING CURVES
400
«
E
I
1:
~
::>
350
.,
300
U;
250
tJ
Va
~
~
1;;
c
0
.,
~
200
E
::>
E
150
:;;
100
~
50
~
'xco
va
~a t:r
~\
C'-" '\.
. .01-
'~\.
"\ ~
I
E
0
o
25
50
75
100
125.
T A-Free-Air Temperature-oC
'\
150
FIGURE 1
1271
7-6
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3001, 2N3002, 2N3003, 2N3004
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
ANODE CHARACTERISTICS
STATIC OFF-STATE CURRENT
vs
FREE-AIR TEMPERATURE
100
Vo= RATEO Vo
RGK = 1 kn
10 I-TJ"'TA
«
I
I
vs
-
FREE-AIR TEMPERATURE
100
VR = RATED VR
RGK = 00
10 _TJ"'TA
,/'" " ,'"
/
/
VI
I
I
STATIC REVERSE CURRENT
GUAIRANTEED MAXIM ~M......
~
::J
TYPICAL,
U
~
~
0
0.1
"
N
0.01
til
I
E
-
0.001
--....
l"~
,/
0.0001
-75 -50 -25
V
/
/'
."
I
«:t
.Lc
GUA1RANTEED MAXiMUM......
:;
TYPICAL
~
.,
.,I!!
0
0.1
a;
[;1
a:
'tilN"
I
!E
0.001
25
50
75
100
l"-
-
0
2.0 -
..
~
vs
FREE-AIR TEMPERATURE
RGK =00
TJ"'TA
See Note 7
~
TA=-5So C_
O.S
Tp,=1SOo C_
1.2
'0
O.S
:>
U
c
'6
V
Ta.=2So C
*'"
~
,.;:t%
:I"
~
:I:
I
f-f-'
:0.4
0.4
0.01
•
1.6
1.2
o
1~100
TYPICAL HOLDING CURRENT
1.6
ti,i
c
0
I
100
2.0 r--v--Y--,..--,--Y--,--,--,--,
_
J!!
~
FIGURE 3
2.4
>
00
FIGURE 2
vs
.
~
T A-Free-Air Temperature- °C
ON-STATE CURRENT
!'
'0
...
~
T A-Free-Air Temperatur.-°c
TYPICAL ON-STATE VOLTAGE
>I
-'"
... V
-~-OO-~
125 150
/
V
/
/
-"
~
0.01
0.0001
0
VII
I
I
V
V
o LLLDt::B~=-J
0.1
-75 -50 -25
10
0
25
50
75
100
125 .150
TA-Fr.... AirTemper.tur.-oC
IT-On-State Current-A
FIGURE 4
FIGURES
NOTE 7: These parameters were measured using pulse techniques.
'tw =
300 jJ&, PRR = 10 pps.
1271
TEXASINCORPORATED
INSTRUMENTS
PQS]:: OFFICE BOX 5012 •
DALl.AS, TEXAS 75222
J.7
TYPES 2N3001,2N3002,2N3003,2N3004
P·N-P-N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
GATE CHARACTERISTICS
GATE TRIGGER CURRENT
GATE TRIGGER VOLTAGE
\IS
\IS
FREE-AIR TEMPERATURE
140
120
«
te
100
c
:;
u
a;
80
!!l
60
j!:
~i
I,
FREE-AIR TEMPERATURE
1.0
1
VAA~5V
RL=120- r-TJ'" TA
See Note 8 r--
-~\
.
40
t!)
E
"-
20
GUA,IIAN
~
"~f"..
-20
-75 -50 -25
•
0
25
--
50
"'"
:I
0.8
i--
75
100
0.6
I
r--
I0.4
-
r--.......
..........
"
r--.......
G/JA,IIANTEEO MINIMUM
........
............
0.2
-75 -50 -25
0
25
50
75
100
FIGURE 7
TYPICAL GATE VOLTAGE
TYPICAL GATE TRIGGER VOLTAGE
\IS
vs
POSITIVE GATE CURRENT
GATE PULSE,WIDTH
__"roo C
~~
,.lroo~
:'it>-
"
rJ\l~ c"
5
>I
.,
4
~
V
!!l
~.,
a;
TA =_55°C
1111
3
1\
_)
1=121~1~
1\
1ii
9'l-
J;;"=50V
RL=1400
TJ"'TA
See Note 8
1\
I
V
2
/'
All
"""
TA=I50°C
t!)
>
RL=TJ",TA
Sjj
o
r--....
125 150
FIGURE 6
,..,..
'"
-r--. r-- I--
T A-Fre .. Air Temperature-oC
~I""
II~I~
~
"7
0.1
10
100
+IG-Positive Gate Current-mA
to-
r-
o
1000
0.01
0.1
10
tp(g)-Gate Pulse Width-1'5
FIGURE 8
NOTES:
r---
TA-Fre .. Air Temperature-OC
0.2
0.01
...........
o
150
I
I-
t!)
>
125
I;
r--
joe Note 8
t!)
>
1.0
>
~
t!)
0.4
r---
~-\'I4t
~4t
r-...:.{
0.6
I
1.2
"0
~f"D
.........
~ ~Plct
l-
1.4
>I
I'-- G~
VAA=5V
RL = 120
TJ '" TA
J
~
"
."I-'"'"
:;;
"
t!)
~ED MINIMuA:;--
0
I
>
1
I
0.8
!"
-\'\-\
\~
l-
>
"0
q,("
~
........
100
FIGURE9
7. These parameters were measured using pulse techniques. tw "" 300 J.,Ls, PRR = 10 pps.
8. These parameters were measured using single-pulse techniques. tw = 300 /J.s, duty cycle = O.
1271
7-8
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 15222
TYPES 2N3001, 2N3002, 2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL SWITCHING CHARACTERISTICS, T A = 25°C
2N3004
GATE-CONTROLLED TURN-ON TIME
2N3004
GATE-CONTROLLED TURN-ON TIME
vs
vs
GATE INPUT PULSE AMPLITUDE
ANODE SUPPLY VOLTAGE
1.0
2.5
VAA =200 V
RL =5700
See Figure 14
2.0
f-
"E
~ 1.5
i=
i=
\
c:
0
E
~ -....
..............
0.8
f-
'T"
;.
r--- J I
1.0
l=1.sl
T~
0.6
c:
q
-'
"
L
.5"
~~Rm
G'~
J.
Vin= 3 V
E
f'r-.
0.5
V;n
"'-
0.4
-r-- r-....
VAA
0.2
RL =
1OOl)
¢')
0.1
Se~ Figur~ 14
0
10
Vin-Input Pulse Amplitude-V
o
100
100
150
50
V AA-Anode Supply Voltege-V
FIGURE 10
2N3004
CIRCUIT COMMUTATED TURN-OFF TIME
vs
vs
ON-STATE CURRENT
f-
16
,..'-
--- ---
~
i=
,.....- _I-'
II:
0
"E
~
'T"
E
12
l-
e>
c:
VAA =2OOV
200 V
RL=-IT
0.1
1
10
100
IT-On-Stete Current-mA
8
E
8I
4
oF
RG = 1000
Vin=3V
See Fi~U;. 1~
o
~E
o
1000
flGK\eff
)'01<.0
~
flG~\.ffl =1, 1<.0
•
~
/'
"
0.2
srI>
I
See Fi ure 15
i=
c:
50 V
RL=-,IT
V
V
f-
ON-STATE CURRENT
20
/
0.3
200
FIGURE 11
2N3004
GATE-CONTROLLED TURN-ON TIME
0.4
35Q;;;A
RG = 1000
"0
o
r-......
o
50
FIGURE 12
flGK\effl = ,00 0
-
,J645
Je
Note
91
100
150
200
250
IT-On-State Current-mA
300
,350
FIGURE 13
turn~oH: time of the 2N3001 seriss thyristor is significantly aff9ct~d by the source impedance of the gate firing
circuit as shown In Figure 13. Faster turn-off times arB achieved when this impedance is low. However, some circuits require the use
NOTE 9: The commutating
of a high source impedance, even though fast turn-off Is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in the circuit in Figure 15. This diode improves commutating turn-off time by eliminating the effect
of the gate-cathode recovery time.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1-9
TYPES 2N3001, 2N3002,2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
n....
V2 o---f"1
V1 0 • D
INPUT
-
IRM
VD
10%
I
I
DUTPUT
IT
~
Vin
tgt
-.,j
I
'\t.
VT
90%
VR
See Notes A, B, and C
NOTES:
O·
Lrr
oLI
~
-II+- tq
WAVEFORMS
VOLTAGE WAVEFORMS
•
n--
OUTPUT
TEST CIRCUIT
TEST CIRCUIT
FIGURE 14-TURN·ON TIME
FIGURE 15-COMMUTATING TURN-OFF TIME
is measured with gate and cathode terminals
connected as shown and anode terminal open.
A. Vi"
B. The input waveform of Figure 14 has the following
characteristics: tr';;;; 40 ns, tw;;" device turn-on time
at the operating point.
C. Waveforms are monitored on an oscilloscope with the
following characteristics: tr';;;; 14 ns, Ri"
~
NOTES:
E. Pulse generators for V1 and V2 are synchronized to
provide an anode current waveform with the
following characteristics:
tw= 50 to 300,",s. duty
cycle = 1%. The pulse widths of V1 and V2 are
;;. 101'5.
F. Resistor R1 is adjusted for IRM = 1 A.
10 MO,
ein';; 12 pF.
D. RG includes the total resistance of tile generator and
the external resistor.
NOTE 9: The commutating turn-off time of the 2N3QQ1 series thyristor is significantlv affected by the source impedance of the gate firing
circuit as shown in Figure 13. Faster turn-off times are achieved when this impedance is low. However, some circuits require the use
of a high source impedance, even though fast turn-off is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in thtt circuit in Figure 15. This diode improves commutating turn-off time by eliminating the effect
of the gate-cathode recovery time.
PRINTfO IN U.S.A.
7·10
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
T/ (onnot ossume any responsibility for ony cir(uit~ shown
or represent tnot they ore free from patenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
350 rnA • 30 to 200 VOLTS. 200 p.A GATE SENSITIVITY
ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS-NO SOLDER OR FLUXES
•
High Operating Temperature
•
Low Forward Voltage Drop
•
High Surge Current Capability
•
Gate Turn-Off Capability
•
Fast Switching Speeds
mechanical data
The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate
weight is 0.35 grams.
*THE ANODE.IS IN ELECTRICAL CONTACT WITH THE CASE
3 LEADS 0.0\9 DIA
0.0\6
1
ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED
""
1- MIN -II
0.500
*ALL JEDEC TOo1S DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
2N3005 2N3006 2N3007 2N300S UNIT
'Static Off-State Voltage. VD (See Note 1)
30
60
100
200
V
'Repetitive Peak Off-State Voltage. VDRM (See Note 1)
30
60
100
200
V
'Static Reve,..., Voltage, VR (See Note 2)
30
60
100
200
V
'Repetitive Peak Reverse Voltage, VRRM (See Note 2)
30
60
100
200
V
'Continuous or RMS On-State Current at (or below) 55°C Free-Air Tempersture (See Note 3)
'Average On-State Current (180° Conduction Angle) at (or below)
55°C Free-Air Temperature (See Note 4)
'Surge On-State Current (See Note 5)
Peak Negative Gate Voltage
350
mA
250
mA
6
A
8
V
'Peak Positive Gate Current (Pulse Width .. 8 ms)
250
mA
*Average Gate Power Dissipation
100
'Operating Free-Air Temperature Range
-65 to 200
mW
°c
'Storage Temperature Range
-65 to 175
°c
300
°c
'Lead Temperature 1/16 Inch from Cese for 10 Seconds
•
1. These values apply when the gate~cathode resistance RGK < 1 kil.
2. These values apply when the gate-cathode resistance RG K ~ 00,
3. This value applies for continuous d-c or single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, derate
according to Figure 13.
4. This value may be applied continuously under singleMphase, GO-Hz, half-sineMwave operation with resistive load. Above 55°C.
derate according to Figure 13.
Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
5. This value applies for one 60M
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
NOTES:
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
·7-11
TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
*elec~rical
characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER
10
Static Off-5tate Current
IR
Static Reverse Current
IG
IGT
Gate Current I
Gate Trigger Current
VGT
Gate Trigger Voltage
IH
TEST CONDITIONS
Vo = Rated VO,
Vo = Rated VO,
VR - Rated VR,
VR = Rated VR,
VG - -5 V,
VAA-5V,
VAA-5V,
VAA=5V,
VAA 5V,
RGK 1 k~,
Holding Current
On-5tate Voltage
IGO Static Gate Turn·Off Current
VGO Static Gate Turn-Off Voltage
dv/dt Critical Rate of Riso of Off-5tate Voltage
VT
NOTES:
RGK = 1 kO
RGK - 1 k~,
RGK
RGK = ~,
IA-O
RL -12O,
tp(g)" 10 I'S
RL = 120,
tp(g) .. 10 I'S,
RL-120,
tp(g)" 10 I'S
tp(g) .. 10 I'S,
RL 120.
RL = 2 kO
RL - 2 kO,
RGK = 1 kO,
Seo Note 6
RGK;;'1 kG,
IT 350mA,
IT - 200 mA (Soe Note 7),
VAA .. 100 V (Not to exceed rated VO)
VO-1V
~
MIN TYP MAX UNIT
0.1
I'A
100
TA = 150°C
0.1
I'A
TA = 150°C
100
.-5'
90 200
0.9
TA=-65 C
0.6
TA
150 C
0.8
V
0.2
1.8
TA--65°C
5
8
1.2
40
-4
400
6. The initial instantaneous value is measured using pulse techniques. On-state pulse width = 300 ILs, PAR
I'A
I'A
mA
V
mA
V
VII'S
= 10 pps.
7. Anode current should not exceed 200 mA for gate turn-off applications.
*JEDEC registered data
switching characteristics at 25° C free-air temperature
•
2N3008
TYPICAL
TEST CONDITIONS
PARAMETER
RL = 2.2
k~,
RG -1000,
tgt
Gate-Controlled Turn-On Time
VAA = 200 V,
See Figure 14
tq
Circuit-Commutated Turn-Off Time
RL=1400,
VAA=50V,
1N645 between gate and cathode, See Figure 15
Yin - 3 V,
UNIT
0.55
I's
2.2
thermal characteristics
TYPICAL
75
275
PARAMETER
ROJC Junction-to-C_ Thermal Resistance
ROJA Junction-to-Free-Air T/lermal Resistance
UNIT
°C/W
1271
7-12
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX SOU •
DAL'-AS, TEXAS 75222
TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
ANODE CHARACTERISTICS
STATIC OFF-STATE CURRENT
vs
FREE-AIR TEMPERATURE
100
Va = RATEO Va
RGK = 1 kn
10 r-- TJ ",TA
I
0.1
a:
,~
0.01
q'"
0.001
25
50
75
100
I
GUA1RANTEED MAXiMUM.....
E=
0
I
-./
~
/
1/
/
0
~
I-
125 150
vs
4.0 ,.-----,----,----r---,---,.---,--,--,----,
I ~ rlr~gl
3.5 f--"d--+--+--+--r---j---t------'f------l
•
"
E
1.6
~
0.8
>
= _55° C_
iA
i A =25°C -riA = 15O°S- _r-
2.5
~
:l
~~
1.2
CI(
c
0
I
100
FREE-AIR TEMPERATURE
>
~
"0
>.,
75
TYPICAL HOLDING CURRENT
GK
TJ ",TA
2.0 f-- See Note 8
.,I
50
FIGURE 2
TYPICAL ON-STATE VOLTAGE
vs
ON-STATE CURRENT
~
25
T A-Free-Air Temperature-OC
FIGURE 1
f--
/ /
" Y/ /
0.0001
-75 -50 -25
125 150
T A-Free-Air Temperature-OC
2.4
/" ",'"
/' / '
1-c
~
/
V
I
'to
I\~;.
~\
<",
.... ~Jl
g 0.6
.~
.,
l!l 0.4
(!l
"' "
~~NT~O M'~.trb...
i""'- t"--....
J!I
,=
['--...
~
>
I--r-
0
1
-50
-75 -50 -25
0
25
50
75 100 125 150
TA-Free-Air Ternperature-OC
•
0.8
~
VAA=5V
RL = 120
j---tp(g) .. 10 jlS
TJ ""TA
j---See Note 9
J
b~J
~ED~XIMUM..I
~'MUU/
I"--t-.
o
>
~
(!l
I
~
(!l
>
0.4
",_",,,,oC
r--.....
0
~
50
~
100
TA-Free-Air Ternperature-oC
1~150
vs
~
:'( p."'?:""
°C
rJJ1
i-'"
V
f.-'
l/
GATE PULSE WIDTH
5.0
>
.
I
~~""
4.0
V:'=5~~
TA=-55°C
11111
"0
>
:;;
.~
3.0
,=
.
1/
1.0
~
G
Jill
0.1
10
100
+lG-Positive Gate Current-rnA
AIIIIIIII
2.0
>
RL=TJ""TA
See Note 8
1=1;~l~
)
1\
1ii
<;'
RL=I40n
TJ"'TA
See Note 9
1\
'"
!l
C)/
o
j.-TA=150°C
1'''
I--
o
1000
0.01
0.1
10
tp(g)-Gate Pulse Width-jls
FIGURE7
NOTES:
- ........f'.
TYPICAL GATE TRIGGER VOLTAGE
0.2
0.01
f'...
TYPICAL GATE VOLTAGE
1:0
~
0.6 I-
.........
-~-50-~
~
V
t-
f"""-.. t-.....
FIGURE 6
1.2
0.8
1"'-0..
FIGURES
1.4
"0
r.........
I,
t- VAA =5 V
RL = 120
0.2 I- tp(g)" 10 jlS
TJ""TA
See Note 9
vs
..
F
.........
GUARANT
POSITIVE GATE CURRENT
>I
-r--....
100
FIGURE 8
8. These parameters were measured using pulse techniques.
'tw = 300 IJs, PRA = 10 pps.
'tw = 300 p.s, duty cycle = O.
9. These parameters were measured using single-pulse techniques.
1271
7-14
TEXASINCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES 2N3005. 2N3006. 2N3007. 2N3008
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL SWITCHING CHARACTERISTICS, TA = 25°C
2N3008
GATE-CONTROLLED TURN-ON TIME
2N3008
GATE-CONTROLLED TURN-ON TIME
vs
vs
GATE INPUT PULSE AMPLITUDE
ANODE SUPPLY VOLTAGE
3.0
1.6
VAA ~ 200 V
RL = 570 n
See Figure 14
2.5
Vin=1"t--
i
1.4
1.2
!1
I
j.:
c:
1.5
f-
L
~."
i=
c:
q
111
0
0.1
Yin - 3 V
~."
0.4
RL
~
0.2
~
VAA
350 rna
~
100
RG
o
n
50
100
2N3008
CIRCUIT COMMUTATED TURN-OFF TIME
ON-STATE CURRENT
10
0.8
RL
J
/
"
c:
-'
q
0.4
-
L
~."
-
I
E
"
V
i=
~
E
f-"
6
."
."l!l
f-
VAA
= 200 V
"
0
u
I
lOOn
.5'
I-- Yin = 3V
-
2
See Figure 14
o
~
RGKleft)
= , 1<0
f--
RGKleffl
= 100 0
t----
E
E
200 V
0.2 I- RL ~ ~
RG~
4
=,10 I ~ 120°
Q)
0>
e
Q)
750 -
90°
- 60°
>
«
E
::J
E
500
::;:'"
250
~\
~
-30
·x
I
.t"
o
-75
..... ,.
Cood.",oo -
~ 180°C
-50
o
75
50
TA-Free~Air Temperature-OC
-25
25
100
~
125
150
FIGURE 13
PARAMETER MEASUREMENT INFORMATION
--
~
Vin
INPUT
•
,
10%
:...... tgt
-..j
I
OUTPUT
' \ 9()<>A,
VOLTAGE WAVEFORMS
See Notes A, B, and C
OUTPUT
TEST CIRCUIT
FIGURE 14-TURN-ON TIME
NOTES:
A.
B.
C.
D.
Vin is measured with gate and cathode terminals connected as shown and anode terminal open.
The input waveform of Figure 14 has the following characteristics: tr ~ 40 ns, tw ~ device turn-on time at the operating pOint.
Waveforms are monitored on an oscilloscope with the following characteristics: tr:so;;. 14 ns, Rin > 10 Mn, Cin ~ 12 pF.
RG includes the total resistance of the generator and the external resistor.
1271
7·16
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
V~ - - - - -nL____________
6~L--
______________________
~rlL_
rL
______
I~------b.
IRM----J
Vo
r
r
V6=-====~~-----------=====~L-I
I
I
I
I
VR------
..I I. t off
WAVEFORMS
I
IT
0.1 to 51'f
+.....----:lIF----t
VAA=50V
Thyristor Under Test
1 kG
•
I
I
lN645
r.t:\ (See
'+.I Note 10)
(See Note E)
I
0.1 G
(Non inductive
monitor resistor}
(See Note
E)
I
I
I
Generator Synchronization
TEST CIRCUIT
NOTES:
E. Pulse generators for V 1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300 IJ.s, duty cycle = 1%. The pulse widths of V1 and V2 are;;' 10 fJs.
F. Resistor R1 is adjusted for I RM = 1 A.
FIGURE 15-CIRCUIT COMMUTATED TURN-OFF TIME
NOTE 10: The commutating turn-off time of the 2N3005 series thyristor is significantly affected by the source impedance of the gate firing
circuit as shown in Figure 12. Faster turn-off times are achieved when this impedance Is low. However, some circuits require the use
of a high source Impedance, even though fast turn-off Is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in the circuit in Figure 15. This diode improves commutatlng turn-off time by eliminating the
effect of the gate-cathode recovery time.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
7-17
TYPES 2Nl005, 2Nl006, 2Nl007, 2NlOOB
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL GATE TURN·OFF CHARACTERISTICS
TYPICAL GATE-TURN-OFF GAIN
vs
ON-STATE CURRENT
6
The 2N3005 series thyristors exhibit gate-turn-off
gain, in addition to the standard controlled switch
characteristics_
Figure 16 shows
the typical
gate-turn-off gain as a function of on-state current_
This characteristic offers increased flexibility in the
design of pulse-width modulators, pulse-forming
networks, static switches, choppers, bistable circuits,
and inverters_
5
c:
-iii
t!l
4
~
E
~. 3
V
/'
........
Polf = I
~
~
--
I---
IT
GO
TA = 25°C
t!l
~
V
l--
2
1
o
o
150
100
IT-On-State Current-mA
50
200
FIGURE 16
•
+VAA
I I I
IGO
TYPICAL GATE-TURN-OFF CIRCUIT
=.2L
Poff
TYPICAL WAVEFORMS
Improved turn-off time may be realized using the gate-turn-off method_ A combination of gate-turn-off and standard
commutating turn-off will further improve the turn-off time_ For applications requiring a guaranteed 13off, contact your
nearest TI Sales Office for information on special types_
PRINTED IN
7·18
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
u.s A
1271
TI cannot assume any responsibility fOf any circuits shown
or represent thai they are free from palenl infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
SILECTt THYRISTORS:t
800 rnA DC • 30 thru 200 VOL TS
mechanical data
These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly
mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without
deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting
MI L-STO-202C method 1068. The thyristors are insensitive to light.
THE GATE LEAD IS CONNECTED
1
f
0.200
+0.005
- 0.025
*
~£a
r
0.050 (NOTE A)
~!8.8J8+-
----.I: -
+0.005
160 -0.035
+~::~~O'l00 !~:~~
_OO~~5
0.500 MIN.
FO
...,
0100
0200
NOTES:
A P REGION
0.050'" 0 OOS
~
ANODE
GATE
C~~M
3 LEADS 0017 ::
8:gr,
A. Lead diameter is not controlled in this area.
CGA
B. All dimensions are in inches •
• ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings at specified case temperature
"Repetitive Peak Off-State Voltage, VDRM (See Note 1)
"Repetitive Peak Reverse Voltage, VRRM
*Nonrepetitive Peak Reverse Voltage, VRSM (Pulse Width .;; 5 ms)
Continuous On-State Current (See Note 2)
2N5060 2N5061 2N5062 2N5063 2N5064
UNIT
TIC60 TlC61
TlC62 TIC63 TIC64
-65"C to 125"C
30
60
100
150
200
V
-65"C to 125"C
30
100
60
150
200
V
-65"C to 125"C
45
80
125
180
230
V
_65" C to 50" C
800
rnA
"Average On-State Current (180" Conduction Angle, See Note 3)
'Surge On-State Current (See Note 4)
-65"C to 67"C
25"C
510
rnA
6
A
'Peak Positive Gate Current (Pulse Width';; 3001's, f .;; 120 pps)
'Peak Gate Reverse Voltage
25"C
1
-65"C to 125"C
5
A
V
25"C
10
100
-65 to 125
-65 to 150
*Average Gate Power Dissipation ISee Note 5)
'Peak Gate Power Dissipation (Pulse Width <; 3001's)
25"C
*Operating Case Temperature Range
*Storage Temperature Range
'Lead Temperature 1/161nch from Case for 10 Seconds
230
•
rnW
rnW
°c
"C
"C
1. These values apply when the gate-cathode resistance RG K = 1 kn.
2. These values apply for continuous d-c operation with resistive load. Above 50° C derate according to Figure 1.
3. This value may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Above 67°C derate
according to Figure 1.
4. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.
*JEDEC registered data. The asterisk identifies JEDEC registered data for the 2N5060 through 2N5064 only. This data sheet contains all
applicable registered data in effect at the time of publication.
NOTES:
t Trademark of Texas Instruments
tU.S.
Patent No. 3,439,238
1171
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7-19
TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at specified case temperature
2N5060THRU
TEST CONDITIONS
PARAMETER
2N5064
MIN
25°C
RL - 100 fl,
_65°C
MAX
Vo
RGK
= 1 kfl
125°C
50*
50
/J-A
VR
RGK - 1 kfl
125°C
50*
50
/J-A
= 100 fl,
-65°C
350*
VGT
tp(g) ;;. 1 ms
MIN
IRRM Repetitive Peak Reverse Current
Gate Trigger Current
VAA - 7 V,
UNIT
TlC64
MAX
IORM Repetitive Peak Off-State Current
IGT
= Rated VORM,
= Rated VRRM,
VAA = 7 V,
RGK = 1 kfl,
TIC60THRU
RGK
Gate Trigger Voltage
Holding Current
VTM
Peak On-State Voltage
= 1 kfl,
= 1 kfl,
I nitiating IT
ITM
100 fl,
125°C
tp(g) ;;. 1 ms
RGK - 1 kfl, -65°C
VAA - 7 V,
= 20 mA
= 1.2 A,
200
See Note 6
200
/J-A
1.2*
25°C
tp(g) ;;. 1 ms
Vo - Rated VORM, RL
RGK
IH
RL
0.8
0.1*
0.8
V
0.1
10*
25°C
5
25°C
1.7*
5
1.7
mA
V
*thermal characteristics
PARAMETER
ReJC Junction-to-Case Thermal Resistance
NOTE 6: This parameter must be measured using pulse techniques. tw = 300 IJs, duty cycle
current-carrying contacts, .,re located within 0.125 inch from the device body.
•
~
1%. Voltage-sensing contacts, separate from the
*JEDEC registered data
THERMAL INFORMATION
AVERAGE ANODE
FORWARD CURRENT DERATING CURVE
«
E
~ 1000
t::>
900
Contin~ous DC
U
"E 800
o~
700
Q)
600
""" "'-
LL.
'8
ep = 180°
.i
~
500
«
300 I-ep= 90°
~
E
::>
E
'xco
:2:
I
">
~
LL.
00B1800-
ep = 30°
o
25
'\
I~ 1\
~ ~\
-.............: ~
ep= 60°
100
o
'"
.:-.~
400 f-ep= 12r
200
Conduction _
Angie
50
75
100
Tc-Case Temperature-OC
"'"
125
FIGURE 1
1171
7-20
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES 2N5D6D THRU 2N5D64, TlC6D THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
switching characteristics at 25°C case temperature
PARAMETER
TEST CONDITIONS
VAA = 30 V, RL=39n,
tgt Gate-Controlled Turn-On-Time
tq
Vin=20V,
See Figure 2
VAA-30V, RL - 30n,
Circuit-Commutated Turn-Off Time
TVP UNIT
RGK(eff) = 20 kn,
IRM "'7A,
See Figure 3
3
/JS
7
/JS
PARAMETER MEASUREMENT INFORMATION
----"n....
V2 0 ----1'"I"---_ _ _ _ _ _ _
'"'L--
V1 O..n
INPUT
0IR
10%
I
:.- tgt
OUTPUT
IT
~
V·
In
--I
I
~
VT
VR
.LI
L[
r
.....j
f
j..-tq
WAVEFORMS
VOLTAGE WAVEFORMS
0.1 pF
to5pF
IT~ .....--7fF--..
OUTPUT
See Notes A, B, and C
•
t
VI
Generator Synchronization
TEST CIRCUIT
TEST CIRCUIT
FIGURE 2-GATE-CONTROLLED TURN-ON TIME
NOTES:
FIGURE 3-CIRCUIT-COMMUTATED TURN-OFF TIME
A. Vin is measured with gate and cathode terminals open.
B. The input waveform of Figure 2 has the following characteristics: tr <; 40 ns, tw ~ 20 Ils.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .so;; 14 ns, Ain
> 10 MO, ein ,so;; 12 pF.
D. RGK(eff) includes the total resistance of the generator and the external resistor.
E. Pulse generators for V 1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300/Js, duty-cycle = 1%. The pulse widths of VI and V2 are .. 10 ps.
F. Resistor R1 is adjusted for I AM l'I::$ 7 A.
1171
TEXASINCORPORATED
INSTRUMENTS
F'OST OFFICE BOX 5012 •
DALLAS. TEXAS 7!5222
7-21
TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT
GATE TRIGGER VOLTAGE
"
CASE TEMPERATURE
"
CASE TEMPERATURE
1000
VAA"7V
400
1
J"
I
>I
100
I
40
:f;
10
!
,:
1
~
I-
"
0.4
0.1
-75
-60
25
-26
50
'"
>
75
V~A=7V
0.9
lOon
RL
tp(g);;;a'rns
0.8
RV 100 n
RGK"" kG
tplg):>1 ms
'-..
0.7
r-....
0.6
r-....
0.5
'-..
0.4
0.3
0.2
0.1
100
-75 -60 -25
T C-Case Temperatura-°c
0
26
60
76
100 126
Tc-Case Temperature-OC
FIGURE4
FIGURES
HOLDING CURRENT
"
CASE TEMPERATURE
10
"eE
I
VAA-7V
RGK"" 1 kG
Initiating IT '" 20 rnA
"-
~
.........
I""----
.~
•
~
:t
I
I""----
~
r-- r---
0.7
0.4
-75 -50 -26
0
25
50
75
100 125
TC-Case Temperature-OC
FIGURE6
..
.
PEAK ON-5TATE VOLTAGE
GATE-CQNTROLLED TURN-QN TIME
PEAK ON-5TATE CURRENT
GATE CURRENT
TC = 25°C
See Note 6
1.8
> 1.6
i
1.4
0
/"
> 1.2
1/
iii
a 0.8 r - r-
iI
:I
0.6
t" 0.4
0.2
0.1
0.2
0.4
0.7 1
0.2
ITM-Peak On·State Current-A
0.3
0.4 0.6 0.6
DB
1
'o-Gate Current-mA
FIGURE7
FIGURE 8
NOTE 6: This parameter must be measured using pulse techniques. 'tw = 300 JJs, duty cycle
current-carrying contacts, are located within 0.125 inch from the device body.
~
2%. Voltage-sensing contacts, separate from the
PRINTED IN U.S.A
7·22
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE
sox
5012 •
DALLAS, TEXAS 75222
1171
TI (annal Qssume any responsibility for any df(uilS shown
or represent that they are free from polent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUa POSSIBLE.
TYPES 2N6332 THRU 2N6337
PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
2 AMP DC • 30 to 400 VOLTS. 200 J.l.A GATE SENSITIVITY
•
High Operating Temperatures
•
High Surge Current Capability
•
Fast Switching Speeds
•
Low Forward Voltage Drop
mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
THE GATE TERMINAL IS CONNECTED TO A P REGION
2-GATE
a.• MIN ~
3--ANODE
TEMPERATURE
MEAS. POINT
~:~g g:~:
DIA
,
OIA
•
....L.......-..
1~"2'
~
0.100 MIN.j
0,009
3LEADS
g:~~~ DIA
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SEATING
DETAILS OF OUTLINE IN
THIS ZONE OPTIONAL
PLANE
l-CATHODE
SPECIFIED
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
*absolute maximum ratings over operating case temperature range (unless otherwise noted)
UNI
2N6332
2N6333
2N6334
2N6335
2N6336
2N6337
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
30
50
100
200
300
400
V
Repetitive Peak Reverse Voltage, VR RM
30
50
100
200
300
400
V
Nonrepetitive Peak Reverse Voltage (See Note 2)
30
50
100
200
300
400
V
Continuous On-State Current at (or below)
80°C Case Temperature (See Note 3)
Average On-State Current (180° Conduction Angle)
at (or below) 80°C Case Temperature (See Note 4)
Surge On-State Current (See Note 2)
2
A
1.25
A
20
A
5
V
0.2
A
Peak Gate Power Dissipation (Pulse Width';; 300 its)
1.3
W
Average Gate Power Dissipation (See Note 5)
0.3
Peak Negative Gate Voltage
Peak Positive Gate Current (Pulse Width';; 300 its)
Operating Case Temperature Range
-40 to 150
W
°c
Storage Temperature Range
-40 to 175
°c
230
°c
Lead Temperature 1/16 I nch from Case for 10 Seconds
NOTES:
1. These values apply when the gate-cathode resistance AGK = 1
•
kn.
2. This value applies for one 60 Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
M
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
3. These values apply for continuous d-c operation with resistive load. Above 80°C derate linearlv 150°C case temperature at the
rate of 28.6 mA/ C.
4. This value may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Above 80°C derate
linearly to 1500 C case temperature at the rate of 17.9 mAl C.
5. This value applies for a maximum averaging time of 16.6 ms.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
72
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 15222
7-23
TYPES 2N6332 THRU 2N6337
PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IORM Repetitive Peak Off-State Current
IRRM Repetitive Peak Reverse Current
IGM
IGT
Peak Gate Current
5
RGK = 1 kn
Vo - Rated VORM,
RGK - 1 kn, TC - 150°C
VR - Rated VRRM,
IG -0
TC = 150°C
VR - Rated VRRM,
IG -0,
IA-O
VAA-6V,
RL-12n,
VAA = 6 V,
RL= 12n,
tp(g) ;;. 10"s
12n,
tp(g) ;;. 10 "s,
TC = _40°C
Gate Trigger Current
tp(g) ;;. 10 IJ.S,
Gate Trigger Voltage
6V,
VAA - 6 V,
RL
RL-12n,
tp(g) ;;, 10"s
1 kn,
tp(g) ;;. 10 IJ.S,
TC
VTM
250
-10
500
TC = -40°C
V AA - Rated VORM, RL
IH
150
10
VGM--5V,
VAA
VGT
MIN TYP MAX UNIT
VD = Rated VORM,
Peak On-State Voltage
150°C
IJ.A
IJ.A
1
0.55
0.8
V
0.2
RGK = 1 kn, Initiating ITM = 35 mA,
TC = _40°C
VAA=6V,
RGK = 1 kn, Initiating ITM = 25 mA
ITM- 3.9A,
RGK;;' 1 kn, See Note 6
5
2.5
IT= 2A,
RGK;;' 1 kn, See Note 6
1.75
15
3
400
Vo = Rated VORM, VGK - -1 V
IJ.A
200
VAA=6V,
Holding Current
Static On-State Voltage
VT
dvldt Critical Rate of Rise of Off-State Voltage
=
5
IJ.A
mA
V
V
V/lJ.s
*switching characteristics at 25°C case temperature
PARAMETER
•
tgt
tq
TEST CONDITIONS
V AA = Rated VORM, IT = 3.9 A,
Gate-Controlled Turn-On Time
MIN TYP MAX UNIT
RG=100n,
Vin = 3 V
VAA - Rated VORM, IT - 3.9 A,
Circuit-Commutated Turn-Off Time
lN645 between
gate and cathode
0.3
15
2
IJ.S
IJ.S
*thermal characteristics
PARAMETER
ROJC Junction-to-Case Thermal Resistance
NOTE 6: This parameter must be measured using pulse techniques. tw
=2
ms, duty cycle
~
2%. Voltage-sensing contacts, separate from the
current-carrying contacts, are located within 0.125 inch from the device body.
*JEDEC registered data
PRINHO IN U,S.A
7·24
17~
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TI145AO THRU TI145A4
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYISTORS
1.6 AMPS DC. 50 to 400 VOLTS
• High Surge Current Capability
•
Low Forward Voltage Drop
mechanical data
-'---u:;:.-I
0:240
0260
I
1.5
T
~O.335
0.J3S 0305 DIA
CIA
~~
::q±t
~~
==r
~
0.100 MIN
DETAILS OF OUTliNE IN
THIS ZONE OPTIONAL
MIN--j
,
0125
0.009
THE ANOOE IS IN ElECTRICAL
CONTACT WITH THE CASE.
ANODE
THE GATE TERMINAL IS
CONNECTED TO A P REGION.
T"
I
0200
3 tEADS
GATE
~ OIA
SEATING 0016
CATHODE
PLANE
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
ALL IEDH TO·S DIMENSIONS
AND NOTES ARE APPLICABLE.
absolute maximum ratings over operating case temperature range (unless otherwise. noted)
Tl145AO TI145A1 Tl145A2 TI145A3 TI145A4 UNIT
50
100
200
300
400
V
50
100
200
300
400
V
50
100
200
300
400
V
50
100
200
300
400
V
Static Off·State Voltage, VD (See Note 1)
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Static Reverse Voltage, VR (See Note 1)
Repetitive Peak Reverse Voltage, VRRM (See Note 1)
Continuous or RMS On-State Current at (or below) 60°C
Case Temperature (See Note 2)
Average On-State Current (180° Conduction Angle) at (or below) 60°C
Case Temperature (See Note 3)
Surge On-State Current (See Note 4)
Peak Negative Gate Voltage
1.6
A
1.2
A
30
A
V
Operating Case Temperature Range
5
2
300
-65 to 105
Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds
-65 to 150
300
Peak Positive Gate Current (Pulse Width';; 300 .us)
Average Gate Power Dissipation (See Note 5)
NOTES:
•
A
mW
°c
°c
°c
1. These values apply when the gate-cathode resistance RG K " 00.
2. This value applies for continuous d-c operation with resistive load. Above 60° C derate according to Figure 1.
3. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 60°C derate
accord i ng to F igu re 1.
4. These values apply for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage
and on-state current_ Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.
1271
TEXAS INSTRUMENTS
INCORPORATEO
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
7-25
TYPES TI145AO THRU TI145A4
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
ID
Static Off-State Current
IR
Static Reverse Current
MIN MAX UNIT
TEST CONDITIONS
PARAMETER
~
VD,~
Rated VD, IG
VD
Rated VD, IG - 0,
Rated VR, IG
~
0
VR ~ Rated VR, IG
~
0,
VR
~
0.25
0
1
TC-l05C
0.25
TC ~ 105°C
IGT
Gate Trigger Cu rrent
VAA-6V,
RL - 12 fl.,
tp(g) ;;'101's
VGT
Gate Trigger Voltage
VAA-6V,
RL - 12 fl.,
t p (g);;'10MS
IH
Holding Current
RL - 1 kfl.,
IG - 0
VT
On-State Voltage
IT-l A,
RGK;;'l kfl.
1
25
0.25
mA
mA
mA
3.5
V
25
mA
2
V
THERMAL INFORMATION
AVERAGE ON-STATE CURRENT DERATING CURVE
«
!
"
1.6
u
1.4
~
•
1.8
\ 0" 1.-41
\\
.\\ 1\
~ l\\
Q)
E
"I
"
1.2
~,1800,
0
Q)
'"~
~
«
~ 120°
_90°
E
::J
E
0.6
:;;
0.4
'xOJ
I
">
OJ
E
60°
_
"\ ~\
~
0.2
0
-75
~Oo
Conduction Angle
1.0
0.8
:6-=
\
CO,ntinuous DC
:;
~~
-50
-25
o
25
50
75
100
125
Tc-Case Temperature-OC
FIGURE 1
PRINTED IN U.S.A.
7·26
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALL.AS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIC35, TI06
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
RADIATION-TOLERANT THYRISTORS
~:;!
r-"1I
r-m
400 mA DC. 15 and 30 VOLTS
men
-1-1
20
zl!!
o·
• -1
•
Max IGT of 5 mA after 1 x 10 14 Fast Neutrons/cm 2
•
Max VTM of 1.6 V at ITM of 1 A after 1 x 10 14 Fast Neutrons/cm 2
0r-n
cillll
~
description
The TIC35, TIC36 thyristors offer a significant advance in radiation-tolerant-device technology. Unique
construction techniques produce thyristors which maintain useful characteristics after fast-neutron radiation
fluences through 10 15 n/cm 2 .
mechanical data
j
en
m
~
!2III
m
:II
i
0.100
~:~~~-I------I
THE ANODE IS IN ELECTRICAL
CONTACT WITH THE CASE
~
THE GATE TERMINAL IS
CONNECTED TO A P REGION
0.230 0.195
0.209 0.178
OIA
DIA
I
..L
ALL JEOEC TO·1S DIMENSIONS
AND NOTES ARE APPLICABLE
<:>
~~~Io.sool
r-- MIN-I
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Continuous Off-8tate Voltage, VD (See Note 1)
Repetitive P!,ak Off-8tate Voltage, VDRM (See Note 1)
Continuous Reverse Voltage, VR
Repetitive Peak Reverse Voltage, VRRM
Nonrepetitive Peak Reverse Voltage, VRSM (See Note 2)
Continuous On-5tate Currant et (or below) 55°C
Case Temperature (See Note 3)
Continuous On.stete Currant at (or below) 25°C
Free-Air Temperature (See Note 4)
Average On-8tete Current (1800 Conduction Angle)
at (or below) 55°C Case Temperature (See Note 5)
Sullie On-8tate Current (See Note 6)
Peak Negative Gate Voltage
Peak Positive Gate Current (Pulse Width ';;300l's)
Peak Gate Power Dissipation (Pulse Width ';;300 I's)
Average Gate Power Dissipation
Operating Free-Air or Case Temperature Range
Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds
'TlC36
TIC35
15
5
5
5
UNIT
V
V
V
V
V
400
mA
225
mA
320
mA
3
-4
250
500
10
-55 to 125
-65 to 200
260
A
V
mA
mW
mW
°c
°c
·oC
30
15
30 'U
•
NOTES: 1. These values apply when the gate-cathode resistance RGK = 1 kG.
2. This value applies for a 6-ms rectangular pulse when the device is operating at (or below) rated values of peak reverse
voltage and on-stete current. Surge may be repeated after the device has returnad to original thermal equlllbrlum_
3. These values apply for continuous doc operation with resistive load. Above 55°C derate according to Figure 2.
4. These values apply for continuous doc operation with resistive load. Above 25°C derate according to Figure 3.
5. This value may be applied continuously under single-phase, 50-Hz, half-slne-wave operation with resistive load. Above 55°C
derate according to Figure 2.
5. This value applies for one 50-Hz half sine wave when the device Is operating at (or below) rated values of peak reverse
voltage and on-state current. Surge may be repeated after the device has returnad to orIginal thermal equilibrium.
971
TEXASINCORPORATEQ
INSTRUMENTS
POST OFFICE BOX 5012 • CALLAS. TEXAS 75222
7-27
TYPES TlC3S, TlC36
P-N-P-N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
electrical characteristics at 25° C free-air temperature (unless otherwise noted)
10
Static Off-State Current
MAX
UNIT
RGK = 1 kn, l;A = 125°C
20
JJA
100
JJA
5
JJA
MIN
TEST CONDITIONS
PARAMETER
Vo = Rated VO,
IR
Static Reverse Cu rrent
VR = 5 V,
RGK=lkn, TA = 125°C
IGR
Gate Reverse Current
VKG=4V,
IA = 0
VAA = 6V,
RL = lOOn, VGG = 6V,
IGT
Gate Trigger Current
TYP
100
RG(sourcel ;;'10 kn, tp(gl ;;. 20 JJS, T A = -55°C
VAA = 6V,
RL 100 n, VGG 6V,
JJA
20
RG(sourcel ;;. 10 kH, tp(gl;;' 20 JJS
RL = 100 n. RGK = 1 kn,
VAA = 6V,
VGT
Gate Trigger Voltage
VAA - Rated VO,
RL -lOOn,
RGK - 1 kH,
TA = 125°C
tp (gl ;;. 20 JJs.
VAA
0.9
TA = -55°C
tp(gl ;;. 20 I'S,
6V,
RL
100n,
V
0.2
RGK - 1 kn,
0.75
tp(gl;;' 20JJs
RGK = 1 kn, Initiating IT = 10 mA,
VAA = 6V,
IH
•
4
TA = -55°C
Holding Current
VAA=6V,
RGK = 1 kn, Initiating IT = 10 mA
VTM
Peak On-State Voltage
ITM = 1 A,
See Note 7
dv/dt
Critical Rate of Rise
of Off-State Voltage
Vo = Rated VO,
RGK = 1 kn
mA
2
1.6
12
V
VII's
post-irradiation electrical characteristics at 25°C free-air temperature
RADIATION
PARAMETER
IGT
VTM
Gate Trigger Cu rrent
Peak On-State Voltage
MAX
UNIT
1 x 10 14 n/cm 2
5
mA
1 x 10 14 n/cm 2
1.6
V
MAX
UNIT
TEST CONDITIONS
VAA = 6V, RL = 100n
ITM = 1 A,
See Note 7
FLUENCEt
MIN
TYP
t Radiation is fast neutrons (n) at E ~ 10 keV (reactor spectrum).
thermal characteristics
MIN
PARAMETER
TYP
8J-C
Junction-ta-Case Thermal Resistance
124
8J-A
Junction-to-Free-Air Thermal Resistance
345
NOTE: 7.
°C/W
These parameters must be measured using pulse techniques. tw = 300
}.LS,
duty cycle ~ 2%. Voltage-sensing contacts,
separate fro!,," the current-carrying contacts, are used.
971
7·28
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TlC35, TIC36
P·N·P·N PLANAR EPn AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
The minimum heat-sink requirements may be calculated for
any anode-current, heat-sink combination by the following
procedure:
1.
Determine worst-case power dissipation from
Figure 4.
2.
Calculate maximum allowable case-to-free-air
thermal resistance by use of the equation:
HEAT -SINK AREA
vs
CASE-TO-FREE-AIR THERMAL RESISTANCE
1/16"-THICK COPPER HEAT SINK
TJ -TA
OC-A = - - -liJ-C
PA(av)
20
\
where:
TJ = Junction temperature
10
TA = Free-air temperature
7
PA(av) = Average anode power dissipation
(see Figure 4 for worst-case values)
Ii J-C
\
4
Junction-to-case thermal resistance
= 124°C/W maximum.
=
\
N
C
T
Determine area of heat sink from Figure 1.
3.
18
2
\
-d:
-"
c
EXAMPLE
Determine: Minimum size of 1/16"-thick copper heat sink
for safe operation of thyristor at an average
current of 0.3 A with a conduction angle of
180°.
Given:
2'"
"
::J:
\
0.4
"'
f--- Devices soldered directly
on heat sink
f---
Maximum T J = 125°C
TA = 35°C
OJ-C = 124°C/W
•
'\.
'\.
0.7
See Notes 8 and 9
I
0.2
"'-
..
""
~
"-
I
Solution:
From Figure 4, PA(av) = 0.525 W for 0.3 A
with 1800 conduction angle. Using the equation
of step 2 above:
0.1
I
o
40
80
120
160
20
6 C_A - Case-to-Free-Air Thermal Resistance-oC/W
FIGURE 1
Figure 1 shows that for liC-A of 47°C/W, the area is 3.4 in 2 .
The minimum dimensions of the sides should be:
E
E e.
g
-J22- -1-22- =-122- -J2 =1.3" X 1.3"
NOTES: 8. The thyristor is mounted in the center of a square heat sink vertically positioned in still free air with both sides exposed.
The heat-sink area is twice the area of one side.
9. () C-A includes the case-to-heat sink thermal resistance, 8 C-HS' in addition to the heat-sink-to-free-air thermal resistance,
°
HS"A' and is defined by the equation~ 8 C~A ==
(J C-HS
+ 8 HS _A .
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7-29
TYPES TIC35, TlC36
P·N·P·N PLANAR EPII AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
FREE-AIR TEMPERATURE
AVERAGE ON-5TATE CURRENT DERATING CURVE
CASE TEMPERATURE
AVERAGE ON-5TATE CURRENT DERATING CURVE
450
«
E
.!.c:
~
"
250r-----,------r-----.----~----_,
400
'\.
~ 1\
350
N
0
OJ
CO>
~>
«
E
300
180°
250 r-Conduction
Angle
"E
::;;
"I
--F"
50
\
•
i
t
~ 100
E
~\
50
75
-
Conduction
Angle
o
I------f------+-----"od--'''r--l-----j
"
E
'j(
~"
100
50
~
~
25
il
1------f--300....---+----_j_
~ 150
~
o
200
:;
u
'\.\
100
o
;
180°
Conduction
Angle
'j(
">
«
~\
200
150
0°
~
u
=
«
E
E 0.2
'j(
::;;"
I 0.1
~
c..';i
o
V/
V
o
~
Y
0.1
0.2
0.3
0.4
0.5
IT1av)-Average On-5tate Current-A
FIGURE4
971
7-30
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TlC35, TIC36
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-5TATE VOLTAGE
2.0
PEAK ON-5TATE VOLTAGE
vs
vs
PEAK ON-5TATE CURRENT
PEAK ON-5TATE CURRENT
2.0
b
ili
T A =-55 Clllll 4>", I1.361IIIlb
X 10
E;;;>10 keV
(Reactor Spectrum)
See Note 7
nl/2 /
=j
t
1.5
~
~
o
:"i
~
/'
-~
......
1.0
..
>I
'"
V
I , , "
111111
1.5
T A =25°C
E ;;;>10 keV
(Reactor Spectrum)
See Note 7
f
/
V
~
A=o
!
-~
I:
,/
....
".
VV
4>=0-
-~
~0.5
.J" 0.5
>
o
0,01
0.04
0.1
0.2
2
0.4 0.7 1
o
4
0.01
0.04
0.1
FIGURE5
FIGURE 6
PEAK ON-5TATE VOLTAGE
PEAK ON-5TATE VOLTAGE
vs
NEUTRON FLUENCE
2.0
2.0
TA = 125°C
E;;;>10key
J•
111111
I I
specynn
1.5
0
>
,/
...... 10-'1-
V
/
1.0
0
I
a..
I
~ 0.5
~
1-'''''
,/
>
J1
TA =-55 C
(Reactor
See Note 7
4> = 1.36 X 1015 n/cm 2
....
0.4 0.7 1
ITM -Peak On-5tate Current-A
PEAK ON-5TATE CURRENT
>
0.2
ITM -Paak On-5tate Current-A
vs
I:
'2
81
a..
I
:;;
i"
CIjI
V""
~
1.0
0
"U n/cm/
V
4> = 1.36 X 10
---
V
I
TA = 25°C
'III
V
TA = 125°C
r...
~ ~'"
2
4
•
J
'!
...... i-'" 4>=0
ITM=IA
E ;;;>10 keV (Reactor Spectrum)
See
o
0,01
0.04
0.1
0.2
0.4 0.7 1
.2
~otn I I I111
ITM -Peak On-5tate Current-A
FIGURE 7
NOTE:
7.
I I I
1014
1015
4> -Nautron Fluence-n/cm 2
4
FIGURE 8
These parameters must be ~8asured using pulse techniques. "tw
contacts, separate from the current-carrylng contacts, are used.
=
300 ,",S, duty cycle ~ 2%. Volt8ge~sensing
971
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •
DALLAS, TEXAS 75222
7·31
TYPES TI(35, TIC36
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
STATIC OFF-STATE CURRENT
GATE FORWARD VOLTAGE
vs
vs
NEUTRON FLUENCE
GATE FORWARD CURRENT
10-4
2.0
IA =0
1.8
10-5
>
1
10-6
~
10-7
~
1.6
>
~r::
1.2
...a
1.0
5
0.8
o
.,"
u
~
;
:s
10-8
II I I I III
'''~'
J
TA =-55 C
IIiHill IIJI
E ;;;. 10 keV (Reactor Spectrum)
Sea Note 7
I I III
,
C!l
I... 0.6
1M
<1>= 1.36 X 10 '5 n/cm 2
1.4
./ ~JJ
""'"
/
~=O
to-
C!l
_0
>
10-9
o. 2
o
10-10
'0 '5
10"
0.4
0.01
•
GATE FORWARD VOLTAGE
.
IA=O"1l
vs
~::r-~::~25°C I !U!!~ 1++
111111111 I U
,UIIIJI~ IIJ.I
>
'E
1.2
...
1.0
= 1.36 X '0 '5 n/cm 2
0
~
0
5
0.8
I... 0.6
>
0.4
V r-=O
..-
C!l
C!l
>
I III
See Note 7
40 100
GATE FORWARD CURRENT
I- TA =25°C
1.6 I- E ';;;' 10 keV (Reactor Spectrum),
1.4
10
GATE FORWARD VOLTAGE
2.0
f
4
FIGURE 10
GATE FORWARD CURRENT
>I
0.4
FIGURE 9
vs
1.8
0.1
IGF-Gete Forward Current-mA
",-Neutron Fluence-n/cm2
I
i
E ;;;. 10 keV (Reactor Spectrum)
1.6 r- See Note 7 '-t"-H'11I1HiIIlit1-I-rlt-lrtttttt--t-+-ll+tttH
11tttttt--++t+ttttI
II IHftlilliI-+-1++
1.4 1-++++tft!t---1-+++
~
1.2 1-+-I-++If++fI--+-++ = 1.36 X 10 '5 n/cm 2
)
1.0
III!!!!
I I III Ill!
<1>= t.04 X 1014 I
...
5 0.8
~\. '"
IIlk::'
~~
C!l
1:5 0.6 1-+-I-++HftI-f-++++tttt-~-t~--t;;,j!&lI11"'F-=t-o-ttttttltl
I->
0.2
~.j!mlllmttnn~
0.2~
0.4
o
0.01
0.1
0.4
,4
10
40 100
IGF-Gate Forward Current-mA
IGF-Gate Forward Current-mA
FIGU'RE 11
FIGURE 12
NOTE: 7. These parameters must be meaalred using pulse techniques. tw = 300 #,S, duty cycle <2%. Voltage-sansing contacts saparate
from the current-carrying contacts, Bre used.
971
7·32
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
TYPES TIC35, TIC36
P·N·P·N PLANAR EPn AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT
GATE TRIGGER VOLTAGE
vs
VB
NEUTRON FLUENCE
NEUTRON FLUENCE
1.4
V
1.2
tp(g) ;;;0 20 !'.
AA =
RL = 1000
RGK
= 1 kO
E ;;;010 keV (Reector Spectrum)
I I I
TA = _55°C
10-6~~~
0.2
• • • •
10-7~~~~~~~~lla~~llll~~llllW
10 1
1014
10 15
P-'i""'1"-'t'-hmf--+--+-rl-t-JH-tI--+-+-i
~0~1~3~~~~~7.~~~~~1~0~15~~4~X~1015
-Neutron F luence-n/cm 2
-Neutron F luence-n/cm 2
FIGURE 14
FIGURE 13
HOLDING CURRENT
CRITICAL RATE OF RISE OF OFF-STATE VOLTAGE
VB
vs
NEUTRON FLUENCE
NEUTRON FLUENCE
100
RL -100 0
40
«
E
.!.
10
:J
4
~
u
...c
r-:Vo
RGK = 1 kO
1111
I
E;;;o 10 keV (Reeetor Spectrum)
~
55°C'
j
200
'0
.11
100
'0
70
II:
40
"fi
.1.
Values at <1>.- 0
0.1 12
10
~0
e
TA -125°C
0.4
11111111
1013
9
.
,
~
I
>
1015
-Neutron Fluence-n/cm2
10 14
r-: E;;;o 10 keV (Reeetor Spectrum)
IJ
y
II:
TA = 25"C
IIII 1
_'r.
TA = 25°C
s..
.AI
~
Rated Vo
RGK = 1 kO
~
.-:~
:t
I
T..., -
•
1016
"
20
I"
/
I--" ~
~ Value at:. = 0
1013
1014
-Neutron Fluence-n/cm2
FIGURE 15
FIGURE 16
971
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX
!Sou •
DALLAS, TEXAS 75222
7·33
TYPES TI(35, TlC36
P·N·P·N PLANAR EPIIAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE-CONTROLLED TURN-ON TIME
vs
NEUTRON FLUENCE
70
0
c:
I
E
j::
c:
"
60
r--,
--'
f- Value at = 0
50
q
E 40
..."
".!!
gc:
30 I-VAA = 10V
~
20 t-IG = 100mA
~
RL = 10n
9~
tp(g) ,;;;. 20 I'S
~'" 10
f- TA = 25°C
E;;;' 10 keV (Reactor Spectrum)
I I 1111111
'1
I I
1014
1015
·-Neutron Fluence-n/cm2
FIGURE 17
•
ANODE-TO-GATE CAPACITANCE
vs
NEUTRON FLUENCE
40
- Value at = 0
/
r-- ..
......
VAG =0
IK=O
t-f=1MHz
TA = 25°C
E
i
10
tr
,(iITrror SPj'ij)
1014
1015
-Neutron Fluence-n/cm 2
FIGURE 18
PRINTED IN U.S.A
7·34
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !iQ12 •
DALLAS, TEXAS 75222
11 (annat assume any responsibility for any circuits shown
or represent thai they ore free from patent infringement.
971
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SERIES TIC39
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
•
2ADCSCR
•
30V to 400 V
•
20 A Surge-Current
•
Max IGT of 200 /lA
mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
THE GATE TERMINAL IS CONNECTED TO A P REGION
0.240
0.260
I I
••
""------==,==:I==-1III
:1
0.5 MIN
TEMPERATURE
MEAS. POINT
2- GATE
0.210
0.190
3-ANODE
+-*u
I-CATHODE
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
absolute maximum ratings over operating case temperature range (unless otherwise noted)
TIC39Y
TIC39F
TIC39A
TIC398
TlC39C
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
30
50
100
200
Repetitive Peak Reverse Voltage, VRRM
30
50
100
200
300
300
Continuous On-Stete Current at (or below)
2
80°C Case Temperature (See Note 2)
Average On-State Current (180" Conduction Angle)
TlC39D UNIT
400
V
400
V
A
1.25
A
Surge On-State Current (See Note 4)
20
A
Peak Positive Gate Current (Pulse Width.;;; 300 I's)
0.2
A
Peak Gate Power Dissipation (Pulse Width';;; 300 I's)
1.3
W
0.3
at (or below) 80°C Case Temperature (See Note 3)
Average Gate Power Dissipation (See Note 5)
Operating Case Temperature Range
-40 to 150
W
°c
Storage Temperature Range
-40 to 175
°c
230
°c
Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
•
1. These values apply when the gate~cathode resistance RGK = 1 kn.
2. These values apply for continuous d~c operation with resistive load. Above
aooc derate linearly to 150°C case temperature at the
rata of 2B.6 mAt C_
3. This value may be applied continuously under slngle~phase 60-Hz half-sine-wave operation wIth resistive load. Above aooc derate
linearly to 150°C case temperature at the rata of 17.9 mA~C.
4. This value applies for one 60~Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-5tate current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE
sox
5012 •
DALLAS. TEXAS 75222
7-35
SERIES TIC39
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25"C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
IORM Repetitive Peak Off-5tate Current
IRRM Repetitive Peak Reverse Current
Vo = Rated VORM,
RGK = 1 kn, TC= 150°C
VR = Rated VRRM,
IG-O,
TC= 150 C
MIN TYP MAX UNIT
400
IGT
Gate Trigger Current
VAA=6V,
RL - 100 n,
tp(g) ;;. 20",s
VGT
Gate Trigger Voltage
VAA-6V,
RL - 100 n,
tp(g) ;;. 20",s
RGK= 1 kn, Initiating ITM - 50 mA,
Holding Current
VAA-6V,
TC= -40°C
VAA=6V,
RGK = 1 kn, Initiating ITM - 10 mA
ITM- 3.9 A,
RGK;;' 1 kn, See Note 6
2.5
IT-2A,
RGK;;' 1 kn, See Note 6
1.75
Vo = Rated VORM,
RGK= 1 kn, TC-l50 C
IH
VTM Peak On-5tate Voltege
Static On-State Voltage
VT
dv/dt Critical Rate of Rise of Off-5tate Voltage
",A
1 mA
60 .200
0.4
0.6
1
10
",A
V
mA
5
5
V
V
V/",s
NOTE 6: These parameters must be measured using pulse techniques. tw = 300 /Js, duty cycle <; 2%. Voltage-sensing contacts. separate from
the current~carrvjng contacts, are located within 0.125 inch from the device body.
thermal characteristics
PARAMETER
R8JC Junction-to-Case Thermal Resistance
•
PRINTED IN U.S.A.
7-36
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !l012 •
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
SllECTt THYRISTORS:\:
600 mA DC • 30 thru 200 VOLTS
Rugged, One-Piece Construction with Standard TO-1S 100-mil Pin-Circle Configuration
mechanical data
These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly
mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without
deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting
MIL-STO-202C method 106B. The thyristors are insensitive to light.
1r
0.015
1- CATHODE
(NOTE A)
0.18·1
"'0.005
I
___L___-I_-f:'~
o.l00T.P.
z~=D:A' z~(-EJ=2-~
0.500 MIN.
--J
2. GATE
0.017
:!::-::
DIA.
3 LEADS
co
3· ANODE
Ol
Ol
NOllS: A. Lead diameter is not controlled in this area,
B. Lead, having maximum diam.r (0.019) shall be within 0.007 of their true poIitions
measured il'! the gaging plane 0.054 b.low the _'in9 plan. of the deviC8 relatiVII to
a maximum-diameter package.
C. All dimsMianl Off! in inches.
THE GATE IS CONNECTED TO A P REGION
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TIC44 TIC45 TIC46 TIC47 UNIT
Static Off-State Voltage. V 0 (See Note 1)
30
60
100
200
V
Repetitive Peak Off-State Voltage. VDRM (See Note 1)
30
60
100
200
V
Static Reverse Voltage, VR (See Note 1)
30
60
100
200
V
Repetitive Peak Reverse Voltage, VRRM (See Note 1)
30
60
100
200
Continuous or RMS On-State Current at (or below) 55°C
V
600
mA
300
mA
430
mA
Surge On-State Current (See Note 5)
6
A
Peak Negative Gate Voltage
8
V
Peak Positive Gate Current (Pulse Width'; 3001's)
1
A
Peak Gate Power Dissipation (Pulse Width'; 3001's)
4
W
Operating Free-Air Temperature Range
-55 to 125
°c
Storage Temperature Range
-55 to 150
°c
260
°c
Case Temperature (See Note 2)
Continuous or RMS On-State Current at (or below) 25°C
Free-Air Temperature (See Note 3)
Average On-State Current (180° Conduction Angle) at (or below) 55°C
Case Temperature (See Note 4)
Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
•
1.
2.
3.
4.
These values apply when the gate-cathode resistance RG K '" 1 kil.
These values apply for continuous d-c operation with resistive load. Above 55°C derate according to Figure 5.
These values apply for continuous d-c operation with resistive load. Above 25°C derate according to Figure 6.
This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C derate
according to Figure 5.
5. This value applies for one GO-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
tTrademark of Texas Instruments
*U. S. Patent No. 3.439,238
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
7·37
TYPES TIC44, TIC45, TIC46, TlC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN MAX UNIT
ID
Static Off-State Current
VD = Rated VD, RGK = 1 kO,
TA=125°C
50
p,A
IR
Static Reverse Current
VR - Rated VR, RGK - 1 kO,
TA-125°C
50
p,A
IGT
Gate Trigger Current (See Note 6)
VAA-6V,
RL-l000,
tp(g) ;;. 20p,s
200
p,A
VAA=6V,
RL = 1000,
tp(g);;' 20p,s
0.8
VAA=6V,
RL=1000,
tp(g) ;;. 20 p,s, TA = 125°C 0.2
VGT Gate Trigger Voltage (See Note 6)
IH
Holding Current
RL -1000,
RGK -1 kO
VT
On-State Voltage
IT-300mA,
RGK;;'l kO, See Note 7
NOTES:
5
1.4
V
rnA
V
6, When measuring these parameters, a 1-kn resistor should be used between gate and cathode to prevent triggering by random
noise.
7. This parameter is measured using pulse techniques. tw
=
1 ms, duty cycle
~
1%.
switching characteristics at 25°C free-air temperature
PARAMETER
•
TEST CONDITIONS
tgt
Gate-Controlled Turn·On Time
VAA=30V,
See Figure 1
RL = 50 n,
RG = 20 kn, Vin=20V,
tq
Circuit-Commutated Turn·Off Time
VAA-30V,
See Figure 2
RL - 50n,
IRM-l A,
TYP
UNIT
3.5
p,s
6.8
p,s
MAX
UNIT
thermal characteristics
PARAMETER
R8JC Junction·to-Case Thermal Resistance
R8JA Junction·to·Freo·Air Thermal Resistance
75
275
°C/W
1271
7-38
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
V2 0 ---.I"11-_ _ _ _ _ _ _---'r"\....
V1 0
r"L..--
_0
~
--
INPUT
Vin
10%
LC
I
:.- tgt
__
I
OUTPUT
'\;. 90%
~
VOLTAGE WAVEFORMS
WAVEFORMS
See Notes A, B, and C
OUTPUT
•
THYRISTOR
UNDER TEST
TEST CIRCUIT
TEST CIRCUIT
FIGURE 2-COMMUTATING TURN-OFF TIME
FIGURE 1-TURN-ON TIME
NOTES:
A. Vi" is measured with gate and cathode terminals
connected as shown and anode terminal open.
B. The input waveform of Figure 1 has the following
characteristics: tr.s;;;; 40 ns, tw;;' 20
~s.
C. Waveforms are monitored on an oscilloscope with the
following
characteristics:
tr
< 14 ns,
Rin ~ 10 MO,
NOT~S:
E. Pulse generators for V, and V2 are synchronized to
provide
an
anode
current
waveform
with
the
following characteristics: tw = 50 to 300 Ils, duty
cycle = 1%. The pulse widths of V, and V2 are
;. 10 ,",s.
F. Resistor Rl is adjusted for IRM = 1 A.
Cin .;;; 12 pF.
D. RG includes the total resistance of the generator and
the external resistor.
1271
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
7-39
TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM AVERAGE ANODE POWER DISSIPATED
vs
AVERAGE ON-STATE CURRENT
The minimum heat-sink requirements may be calculated for anyon-state current, heat-sink combination
by the following procedure:
~
I
'0
1_ Determine worst-case power dissipation from
Figure 3_
~
i3.
.~
0
2_ Calculate maximum allowable case-to-free-air
thermal resistance by use of the equation_
i;
;:
0
"-
"
'0
0
ReCA =
c:
-ReJC
«
0.5
\'l,
~
g;
where: TJ = Junction temperature
«
E
E
0.3 t---HW+--+-+---+---j---t----i
T A = Free-air temperature
'x~~-:1-=-80::;0>+----~r-----+--
c.> 500 f-----+-----j----...3i"d--
~
cfI=180°
,
r-----.....:----+----+--:'-..J.....I.-~::rl
0° w-fIl-J 80°
Conduction
Angle
o 400
iii
~ 120°
~120°
~
o" 200 1===~:t--..;~d-~~-+--~f-----4
90°
Cf(
~
~
300
<1>=600
~ 150F=~~~~~~~~~~~---+----~
200
= 30°
.~ 100~::::~~~~~~~~~~~----~
E
.~
:;;:'"
~
.f'"
.f
-k 100 f-----+----j------+-----'~~
-k.
~
30°
50~-----r----~r-----+---~~..
0 0...------2'-5------'50----7....5---10
...0---'-125
TC-Case Temperature-0 C
75
100
25
50
T A-Free-Air Temperature-OC
FIGURE 5
FIGURE 6
125
•
TYPICAL CHARACTERISTICS
STATIC OFF-STATE CURRENT
STATIC REVERSE CURRENT
vs
FREE-AIR TEMPERATURE
v.
FREE-AIR TEMPERATURE
10
0.4
1
c
~::J
c.>
$
!!
~ VR
Rated VR
4 : : RGK 1 kU
VD Rated VD
RGK 1 kU
I
V
""
~
c
~
::J
0.4
L
c.>
0.04
~
:0:
"u
./
~
V
u
10.01
V
.'!!"
Vl
L
0.1
0.04
./
Vl
I
I
o
-
/
~
0.1
o
.~
I
I
!!-
0.004
/'
0.01
0.004
0.001
-75
-50
0
25
50
75
100
T A-Free-Air Temperature-OC
-25
0.001
-75
125
-50
-25
0
25
50
75
100
125
T A-Free-Air Temperature-OC
FIGURE 7
FIGURE8
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
7-41
TYPES TIC44, TIC45, TlC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE T.HYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT
GATE TRIGGER VOLTAGE
VS
VS
FREE-AIR TEMPERATURE
1000
400
VAA 6V ::
RL 100n:
tp(g) ., 20 1"RGK = 1 kn
See Note 6 ::
....
"
« 100
1 40
t:
::-
~
"
FREE-AIR TEMPERATURE
0.8
"
U
..
>
I
"
l!l
0.6
........
0
0.5
~'"
0.4
I
>
-25
o 25 50 75
T A-Free-Air Temperature-DC
-50
100
o
-75
125
-50
-25
0
25
50
75
TA-Free-Air Temperature-OC
GATE-CONTROLLED TURN-ON TIME
vs
5
4
~
u" 3
'"
RL=loon
RGK = 1 kn
,
\
t:
'C
2
J:
o
-75
GATE CURRENT
10
6
I
125
When measuring these parameters, a 1-kO resistor should be used between gate and cathode to prevent triggering by random noise.
vs
J:
100
FIGURE 10
HOLDING CURRENT
0
i'
f-
FREE-AIR TEMPERATURE
«
E
.Lt:
'- ......
<:l 0.2
FIGIJRE9
•
"'-.
0.1
-75
6~
"
l!l 0.3
'"
"
0.1
NOTE
..........
VAA=6V
RL = lOOn
tp(g) ., 20 IJS
RGK = 1 kn
See Note 6
<:l
"
0.4
..........
C>
>
:;;C>
'"
•
0.7
-50
'"
-25
o
VAA=30V
RL = 50 n
tp(g) ., 20 IJS
TA = 25°C
'"
1"'-.
~ r-....
.... r-.
..........
............
25
r--.....
50
75
r--.... -......
100
125
T A-Free-Air Temperature-°c
FIGURE 11
o
0.2
0.7
0.4
IG-Gate Current-rnA
2
FIGURE 12
PRINTED IN U.S.A
7-42
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIC67, TIC68
P-N-P-N PLANAR EPITAXIAL SILICON
REVERSE-BLOCKING TRIODE THYRISTORS
RADIATION-TOLERANT THYRISTORS
20 A DC • 60 and 80 VOLTS
•
Max IGT of 40 rnA after 1 X 10 14 Fast Neutrons/cm 2
•
Max VTM of 1.5 V at ITM of 20 A after 1 X 1014 Fast Neutrons/cm 2
description
The TIC67 and TIC68 thyristors offer a significant advance in radiation-tolerant-device technology. Unique construction
techniques produce thyristors which maintain useful characteristics after fast·neutron radiation fluences through
1014 n/cm2,
."
.fct
o
mechanical data
m
n
m
:s:
m
ALL TERMINALS ARE INSULATED FROM THE CASE
m
JJ
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:
A. Within this dimension, case diameter may vary,
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Continuous Off-State Voltage, VD
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Continuous Reverse Voltage, VR
Repetitive Reak Reverse Voltage, VRRM
Nonrepetitive Peak Reverse Voltage, VRSM (See Note 2)
Continuous On·State Current at (or below) 55°C
Case Temperature (See Note 3)
Continuous On-State Current at (or below) 25°C
Free~Air Temperature {See (\Jote 3)
Average On-8tate Current (180° Conduction Angle)
at (or below) 55°C Case Temperature (See Note 4)
Surge On·State Current (See Note 5)
Peak Positive Gate Current (Pulse Width'; 300/ls)
Peak Gate Power Dissipation (Pulse Width'; 300 /ls)
Average Gate Power Dissipation
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/16 I nch tram Case for 10 Seconds
NOTES:
TlCS7
TIC68
UNIT
60
60
80
80
V
V
60
60
60
80
80
80
V
V
V
20
A
1.25
A
12.5
A
75
3
5
1
-55 to 125
-65 to 200
260
A
A
W
W
°c
°c
•
°c
1. These values apply when the gate-cathode resistance RG K = 1 kn.
2. These values apply for a 5-ms rectangular pulse when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
3. This value applies for continuous doc operation with resistive load. Derate linearly to 12SoC case temperature at the rate of 0.286
Ate or 12SoC free-air temperature at the rate of 12.5 mA/oC.
~
4. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 5SoC derate
linearly to 12SoC case temperature at the rate of 0.179 A/C.
5. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7-43
TYPES TIC67, TlC68
P-N-P-N PLANAR EPITAXIAL SILICON
REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IORM Repetitive Peak Off-8tate Current
IRRM Repetitive Peak Reverse Current
MIN TYP MAX UNIT
Vo = Rated VORM.
RGK= 1 kn. TC= 125°C
100 p.A
VR = Rated VRRM.
RGK-l kn. TC= 125°C
500
p.A
IGT
Gate Trigger Current
VAA=6V.
RL=l00n.
tp(g) .. 20p.s
VGT
IH
Gate Trigger Voltage
V AA = Rated VORM. RL = 100 n.
tp(g) .. 20p.s
Holding Current
VAA-6V.
RGK= 1 kn. Initiating ITM - 100 mA
20 mA
VT
Static On-State Voltage
IT- 20A.
RGK" 1 kn. See Note 6
1-5
ITM-39A.
RGK" 1 kn. See Note 6
3
Vo - Rated VORM.
IG-O
VTM Peak On-State Voltage
dvfdt Criti~al Rate of Rise of Off-8tate Voltage
20 mA
1
V
V
V
Vfp.s
100
post-irradiation electrical characteristics at 25° C case temperature
TEST CONDITIONS
PARAMETER
IGT
Gate Trigger Current
VAA=6V.
RL = 100 n.
VT
Static On-8tate Voltage
IT=20A.
See Note 6
tp(g) .. 20 ns
RADIATION FLUENCEt
1 X 1014 nfcm2
1 X 1014 nfcm"
MAX UNIT
40
mA
1.5
V
tRadiation is fast neutrons (n) at E;;;;' 10 keV (reactor spectrum).
thermal characteristics
•
PARAMETER
R8JC
Junc~ion-to-Case
MAX UNIT
Thermal Resistance
2.33
R8JA Junction-to-Free-Air Thermal Resistance
NOTE 6: These parameters must be measured using pulse techniques. tw
87.5
= 300 p.s,
°CIW
duty cycle'" 2%. Voltage-sensing contacts, separata from
the current-carrying contacts, are located within 0.125 inch from the device bOdy_
PRINTED IN U.S.A.
7-44
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SERIES TIC106
P-N-P-N SIL ICON REVERSE-BLOCKING TRIODE THYRISTORS
a""
.5ADC
c:m
r-:r:I
r-mm
• 30 Vto400V
---I
z-
• 30 A Surge-Current
0°
.en
• Max IGT of 200 p.A
r-
--I'"
z!:l
C
ill
....
mechanical data
THE ANODE 15 IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THE GATE TERMINAL IS CONNECTED TO AP REGION
MECHANICAL INTERCHANGEA81L1TV OF TIC106
PLASTIC PACKAGE WITH TO-66 OUTLINE
THISPORTIONOFLEA~ 1-~1
FREE Of FLASH
I
II
CATHODE_~."O
A~~~~:::::
--0
0.380
."0 I I
-I L 0.2to
Q.1iii---i r-- 0.1351 r o.i9O
0""100
0.018 3 LEADS
o.~
•
0.035
0.029
~:~
r---t-
0.375
0.355
0.190
{0:165
CJ~.~tf
M46
CASE T£MPERATURE
MEASUREMENT POINT
~:~:~ DIA
0.060
0.0<0
ALL DIMENSIONS ARE IN INCHES
RAD (2 PLACES)
absolute maximum ratings over operating case temperature range (unless otherwise noted)
TIC106Y
TIC106F
TIC106A
TIC106B
TIC106C
TIC1060
UNIT
Repetitive Peak Off-State Voltage, VORM (See Note 1)
30
50
100
200
300
400
V
Repetitive Peak Reverse Voltage, VRRM
30
50
100
200
300
400
V
•
Continuous On-State Current at (or below)
80°C Case Temperature (See Note 2)
5
A
3.2
A
Average On-State Current (180° Conduction Angle)
at (or below) 80°C Case Temperature (See Note 3)
Surge On-State Current (See Note 4)
30
A
Peak Positive Gate Current (Pulse Width';;; 3001's)
0.2
A
Peak Gate Power Dissipation (Pulse Width';;; 3001's)
1.3
W
Average Gate Power Dissipation (See Note 5)
0.3
W
Operating Case Temperature Range
-40 to 110
°c
Storage Temperature Range
-40 to 125
°c
230
°c
Lead Temperature 1/16 I nch from Case for 10 Seconds
NOTES:
1. These values apply when the gate--cathode resistance RG K = 1 kfl.
2. These values apply for continuous dooe operation with resistive load. Above 80°C derate according to Figure 3.
3. This value may be applied continuously under single-phase GO-Hz hatf-sinewwave operation with resistive load. Above 80°C derate
according to Figure 3.
4. This value applies for one 60-Hz half-sine-wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.
471
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE
sox
5012 •
DALLAS, TEXAS 75222
7-45
SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IORM Repetitive Peak Off-State Cu rrent
IRRM Repetitive Peak Reverse Current
IGT
VR - Rated VRRM, IG -0,
Gate Trigg 10 IJ,s.
F. Resistor R1 is adjusted for I RM ~ 8 A.
471
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
7-47
SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM CONTINUOUS ANODE POWER DISSIPATED
vs
CONTINUOUS ANODE FORWARD CURRENT
AVERAGE ANODE
FORWARD CURRENT DERATING CURVE
c
!!.
3
Angle
2
:;;:'"
30
60
50
40
II
70
90
80
1/
10
7
1/
4
2
I
o
/
20
1,\f\
"E
·x
'>
'"
iL
/
40
'\ \
">
E
110°C
= 180°
E
a:
1
1
2
0.1
4
7 10
20
40
70 100
1
2
4
7
10
20
40
70 100
Consecutive 60-Hz Half-Sine-Wave Cycles
Consecutive 60-Hz Half-Sina-Wave Cycles
FIGURE 6
FIGURE 5
NOTE 7: This curve shows the maximum number of cycles of sl,Jrge current for whh;h gate control is guaranteed provided the device Is Initial IV
at nonoperating thermal equilibrium.
471
7-48
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012
•
DALLAS, TEXAS 15222
SERIES TIC106
P-N-P-N SIL ICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER VOLTAGE
GATE TRIGGER CURRENT
vs
vs
CASE TEMPERATURE
CASE TEMPERATURE
400
r
I
I
VAA=6V
RL = 100f!
RGK = 1 k f!
tp(g) ~ 20 j.tS
VAA=6V
RL=100f!
«
200
r
1c:
~ 100
"
tp(g) ~ 20 j.ts
Iii
0
......
70
........
r-..
40
I
......... ......
l-
S'
-50
o
-25
25
~
0.4
50
100
75
...............
...............
""'" r-...... "'" r......
0.2
o
125
-50
-25
0
FIGURES
vs
GATE FORWARD CURRENT
CASE TEMPERATURE
9
8
7
«
5
~
4
"01
3
E
2
,...,
~
()
.5
0
0.7
"J:
I
::
t!l
004
(!l
>
VAA=6V
RGK = 1 kf!
Initiating IT = 10 mA
~
2
~~
~
0.2
0.1
0.10.4
•
6
LL
I
125
10
f:IA 0
7 rTC 25°C
See Not96
4
~
0
LL
100
HOLDING CURRENT
vs
"E
10"
75
FIGURE 7
"01
>
50
25
TC-Case Temperature-OC
10
19
o
Tc-Case Temperature-OC
GATE FORWARD VOLTAGE
>I
_
(!l
>
20
10
0.6
l'I-
......... r-.,.
(!l
>
8,
-
............
~'"
f'-....
~
"
10
...........:
t
...........
()
.ill
>I
0.8
1
24
10 20 40
100
400 1000
1
-50
-25
o
25
~
50
"'-
75
100
125
Tc-Case Temperature-OC
IGF-Gate Forward Current-mA
FIGURE 10
FIGURE9
NOTE 6: This parameter must be measured using pulse techniques.
tw = 300 ,",5. duty cycle < 2%. Voltage~ansing
contacts. separate from the
current-carrylng contacts, are located within 0.125 Inch from the device body ..
471
TEXASINCORPORATED
INSTRUMENTS
POST OPFleE BOX 5012 • DALLAS, TEXAS 75222
7·49
SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-5TATE VOLTAGE
YO
PEAK-ON-5TATE CURRENT
2.5
TC
~ 2~o~
See Note 6
>I
2.0
)
"'"
19
~
"
1.5
.~
c:
0
i""
1.0
~
I
:.
t
--~
-
0.5
o
0.1
0.2
0.4 0.7 1
2
4
7 10
20
40
ITM-Peak On-5tate Current-A
FIGURE 11
•
CIRCUIT-COMMUTATED TURN-OFF TIME
GATE-CONTROLLED TURN-ON TIME
VB
vs
CASE TEMPERATURE
GATE CURRENT
10
f-
"E
a
i=
c:
Q
E
::J
VAA=30V
Vin= 50V
RL = 6 IJ
RGK(eff) = 5 kIJ
tp(g) ;.. 20ILS
TC = 25°C
See Figure 1
I\,
\
6
i
g
c:
4
Q
E
::J
10
i
a
E
E
"'"
l!!
IV
J>
"E
i=
:t:
14 f- RL = 6 IJ
IRM",aA
12 I- See Figure 2
2
o
0.1
0.2
0.4
0.7 1
........
2
~
::J
1"--1'--
4
e
9J"
7 10
- - --
-
::J
~
'1'
JAA=IJOJ
f-
l-
'\
l-
16
.......
6
4
2
o
20
40
60
100
80
120
TC-Cese Temperature-OC
IG-Gate Current-rnA
FIGURE 13
FIGURE 12
NOTE 6: ThIs parameter must be measured using pulse technlques,t w "" 300 IJs, duty cycle <; 2%. Voltage..ynsing contacts, separate from the
current-carrylng contacts, are located within 0.125 inch from the device bodV..
PRINTED IN U.S.A
7-50
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
471
II (an"ot assume any responsibility for any circuits shown
or represent rhat they are free from porent infringement.
TEXAS INSTRUMENTS RES~VES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SERIES TlCn6, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
•
8 A and 12 A DC
•
80 A and 100 A Surge Current
•
50V to 600 V
•
MAX IGT of 20 mA
mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THE GATE TERMINAL IS CONNECTED TO AP REGION
MECHANICAL INTERCHANGEABILITY OF Tle116, T1CI21
PLASTIC PACKAGE WITH T0-860UTLINE
THLSPORTIONQFLEA~ I-~'=-l
I
J I
I
FREEQFFLASH
CA!~g~~=:~0
0420
GATE_
0380
I
0130
0110"
I
r-
~
-l L
o,:j5I
r
0.190
0105
~~~~
=",=)~,
r-t- ~~:
3LEAOS
~~--L
o.~
D:'095
0.510
(TO·66 DlMENSIONSI
{~.~:
O.05§""""Jf
0045
0035
0029
CASE TEMPERATURE
MEASUREMENT POINT
~.~:~ OIA
0060
0040
RAD {2 PLACESI
ALL DIMENSIONS ARE IN INCHES
absolute maximum ratings over operating case temperature range (unless otherwise noted)
SERIES SERIES
F Suffix
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Repetitive Peak Reverse Voltage, VRRM
TICl16
TIC126
50
50
A Suffix
100
100
B Suffix
200
200
C Suffix
300
300
D Suffix
400
400
E Suffix
500
500
M Suffix
600
F Suffix
50
600
50
A Suffix
100
100
B Suffix
200
200
CSuffix
300
300
D Suffix
400
400
E Suffix
500
500
M Suffix
600
600
UNIT
V
V
Continuous On-State Current at (or below) 7rfC Case Temperature (See Note 2)
S
12
A
Average On-State Current (lSrf .Conduction Angle) at (or below) 70° C Case Temperature (See Note 3)
5
7.5
A
Surge On-State Current (See Note 4)
100
SO
A
Peak Positive Gate Current (Pulse Width';; 300.us)
3
A
Peak Gate Power Dissipation (Pulse Width';; 300 .us)
5
W
Average Gate Power Dissipation. (See Note 5)
1
Operating Case Temperature Range
-40 to 110
W
°c
Storage Temperature Range
-40 to 125
°c
230
°c
Lead Temperature 1/16 Inch from Case for 10 Seconds
•
NOTES: 1. These values apply when the gate-cathode resistance RGK = 1 kn.
2. These values apply for continuous d--c operation with resistive load. Above 70°C derate according to Figure 3.
3. This value may be applied continuously under slngle·phase, 60-Hz, half-slne-wave operation with resistive load. Above 70°C derate
according to Figure 3.
4. This value applies for one 60-Hz half sine wave when the., device is operating at (or below) rated values of'peak reverse voltage and
on"5tate current. Surge may be repeated after the device has returned to original thermal equilibrium .
. 5. Thls,value applies for a maximum a~eraglng time o!.16.~.!f1S.
471
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
7-51
SERIES TICn6, TIC126
P-N-P-N SILICON REVERSE-BlOCKING TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS
PARAMETER
Repetitive Peak
IORM
Off-state Current
Repetitive Peak
IRRM
IGT
VGT
IH
Reverse Current
Gate Trigger Current
Gate Trigger Voltage
Holding Current
dvldt
•
Peak On--8tate Voltage
Critical Rate of Rise
of Off-8tate Voltage
MIN
TYP
MAX
UNIT
Vo = Rated VORM, RGK= 1 kn, TC= 110°C
All
2
mA
TC=110°C
All
2
mA
All
20
mA
VR = Rated VRRM, IG=O,
VAA=6V,
RL = lOOn,
tp(g);;' 20 ps
VAA-6V,
RL -loon,
RGK -1 kn,
tp(g) ;;. 20 ps,
TC= -4Q°C
VAA-6V,
RL= lOOn,
RGK = 1 kn,
RGK = 1 kn,
tp(g);;' 20
5
All
2.5
All
0.8
1.5
V
j.!S
VAA-6V,
RL=loon,
tp(g) ;;. 20 ps,
Tc=110°C
VAA=6V,
RGK = 1 kn, Initiating IT = 100 mA,
TC= -4Q°C
All
0.2
All
70
All
40
ITM =8 A,
RGK = 1 kn. Initiating IT = 100 mA
See Note 6
TICl16
1.7
ITM -12 A,
See Note 6
TIC126
1.4
Vo = Rated VO,
IG=O,
VAA-6V,
VTM
SERIES
TC=110°C
All
100
mA
V
VIps
thermal characteristics
PARAMETER
R8JC
Junction-to-Casa Thermal Resistance
R8JA
Junction-to-Free-Air Thermal Resistance
SERIES
SERIES
TICl16
TIC126
MAX
MAX
3
2.4
62.5
62.5
UNIT
°e/W
NOTE 6: This parameter must be measured uslng pulse techniques,. tw = 300 J.u, duty cycle'" 2%. Voltage-sansing contacts, separate from the
current--carrvlng contacts, are located within 0.125 inch from the davlce body.
471
7·52
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 715222
SERIES TIC116, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
switching characteristics at 25°C case temperature
tgt
tq
TVP
TEST CONDITIONS
PARAMETER
Gate-Controlled Turn-On Time
VAA=30V, RL =6 n,
RGK(eff) = 100 n,
Vin=20V, See Figure 1
Circuit-Commutated Turn-Off Time
VAA= 30 V, RL -6n,
See Figure 2
IRM=10A,
UNIT
0.8
,,"'
11
,,"'
PARAMETER MEASUREMENT INFORMATION
V2 O~~---------------------~~
V10-"
n----
INPUT
IT
~
V·
on
0IR
10%
I
~ tgt ----01
I
OUTPUT
~
VT
VR
aLI
L[
~
f
--t 100- tq
WAVEFORMS
VOLTAGE WAVEFORMS
0.'
~F
to5~F
~ "---.,J~--4
IT
RL
See Note. A, B, and C
OUTPUT
•
v,
Generator Svnchronlzation
TEST CIRCUIT
TEST CIRCUIT
FIGURE 1 - GATE-CONTROLLED TURN-ON TIME
NOTES:
A.
B.
C.
D.
E.
FIGURE 2-CIRCUIT-COMMUTATED TURN-OFF TIME
Vin is measured with gate and cathode terminals open.
The input waveform of Figure 1 has the following characteristics: tr < 40 ns, tw ~ 20 1"5.
Waveforms are monitored on an oscilloscope with the following characteristics: tr < 14 ns, Rin ;;;, 10 MSl, Cin < 12 pF.
RGK(eff) includes the total resistance of the generator and the external resistor.
Pulse generators for V1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300 ,,"S, duty cycle = 1 %. The pulse widths of V 1 and V2 are;' 10 jJ.S.
F. Resistor R1 is adjusted for IRM J:l:j'10 A.
471
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE
sox
5012 •
DALLAS. TEXAS 75222
7-53
SERIES TICnl, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM CONTINUOUS ANODE POWER DISSIPATED
vs
CONTINUOUS ONoSTATE CURRENT
AVERAGE ON-8TATE CURRENT DERATING CURVE
~
16
/1\
I
~
~
~
~
$
.
f
>
..
"
~
2
10
7
4
>I
2
l!!
1
'0.7
..'"
(;
>
"E
~
.
~
CI
0.4
..
0.2
"
IL
CI
........
0.4
VAA=6V
'0.2 f--RL = 100n
RGK = 1 kn
f-- tp(g) ;. 20,""
1-
o
25
50
75
T c-Case T emperature-° C
100
-50
125
,
-25
i50
25
75
100
125
TC-Case Temperature-OC
FIGURE 7
FIGURES
GATE FORWARD VOLTAGE
vs
GATE FORWARD CURRENT
HOLDING CURRENT
•
vs
CASE TEMPERATURE
40
IA=O
TC=25°c
30
See Note6
20
I
.........
.!.c:
'-.
~
"
'"c:
'6
/
7
'0
4
:I:
0.1
0.07
'-.
10
0
I
l
VAA=6V
RGK = 1 kn
Initiating IT = 100 mA
E
---
I
~
CI
>
.....'"
I-
>
$
9'
r......
I
c(
~
0
IL
.............
.0.6
o
-25
...................
~
E
-50
r-....
co
co
IV
9'l-
-
0.04
2
J
0.02
0.Q1
0.1
0.4
4
10
40 100
1
400 1000
-50
-25
o
25
50
75
IGF-Gate Forward Current-mA
TC-Case Temperature-OC
FIGURE9
FIGURE 10
NOTE 6: This parameter must be measured using pulse
t.chniqu~.
100
125
tw = 300 ps, duty cycle <;; 2%. Voltage-sensing contacts, separate from the
current..earrylng contacts,. are located within 0.125 inch from the device body.
471
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 715222
7-55
SERIES TICn6, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-STATE VOLTAGE
vs
PEAK ON-STATE CURRENT
2.5
TC=25'C
See Note 6
2.0
/
~
,/
y Vv
'"
!!l"
a
>
Series TICll
1.5
V
~
C(l
c
0
co
1.0
"""
0-
I
::;;
I-
>
Series TIC126
-
0.5
o
0.1
0.2
0.4 0.7 1
2
4
710
20
40 70100
ITM-Peak On-State Current-A
FIGURE 11
•
CIRCUIT-COMMUTATED TURN-OFF TIME
GATE·CONTROLLED TURN·ON TIME
vs
vs
GATE CURRENT
CASE TEMPERATURE
20
0.9
ji
"
E
0.8
j.:
c:
0.7
E
0.6
I---
Q
:J
--
I
18 _VAA=30V
RL=6n
16 _IRM=10A
r-- I--
./
12
~
~
0
~
0.5
10
0.4
8
0.3
C)
I
.9>
0.2
0.1
o
100
VAA=30V
Vin = IG X 100 n
RL =6n
RGK(eff) ;. 100 n
tp(g) ;. 20 I-'S,
TC = 25°C
200
/
V
14
V
V
./
I-
'0
/
V
.,.;'"
6
4
2
400
700
1000
o
o
25
50
75
100
125
150
Tc-Case Temperature-oC
IG-Gate Current-mA
FIGURE 13
FIGURE 12
NOTE 6: This parameter must be measured using pulse techniques. tw = 300 /Js. duty cycle
current-carrying contacts, Bre located within 0.125 inch from the device body.
OS;;;
2%. Voltage-senslng contacts, separate from the
PRINTED IN U.S A
7-56
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
471
TI (annot assume any responiibility for any drcuih shown
or represent Ihal they ore free from potent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SERIES TlC205, TIC206
SILICON BIDIRECTIONAL TRIODE THYRISTORS
SENSITIVE·GATE TRIACS
•
2 A RMS (Series TIC205)
•
3 A RMS (Series TIC206)
•
100 V, 200 V, and 400 V VORM
description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off·state to the on-state by
either polarity of gate signal with Main Terminal 2 at either polarity.
o
n
m
m
mechanical data
SERIES
TIC205
s:
MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE CASE
III
m
:II
§
ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED
ALL JEDEC TO-39 DIMENSIONS ANDJ'!.DTES_ARE. APPLICABLE
SERIES
TIC206
MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TlC2lO6
PLASTIC PACKAGE WITH TO. OUTLINE
THISPORTIONOFlEA~ I-~-I
I
FREE OF FLASH
I
I
I
MAINTERMINAL1_~
MAIN
TERMI~\~=:
" .. I
ii"11o"-l
~~~~
t=!:
O.t,~
=:::==:~J'
..""
1TO-86 DIMENSIONS)
3LEADS
o:oii
~:
-0
L
~
-lL
O.1Zl
o:iii
r
~:.:
I
I·
CJ
"'.
G.1iO
•
{~
~.~-h
.
0045
iliii
::~:~ OIA
.....
ALL DIMENSIONS ARE IN INCHES
Q.iMO
RAD 12 PLACESI
absolute maximum ratings over operating case temperature range (unless otherwise noted)!t
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Full~Cvcle RMS On-State Current at (or below) 70°C Case Temperature, ITIRMS) (See Note 2)
Peak On-State Surge Current, Full-Sine-Wave, ITSM (See Note 3)
Peak Gate Current, IGM
SERIES
TIC205
TIC206
A Suffix
100
100
B Suffix
200
200
o Suffix
400
400
UNIT
V
2
3
A
20
20
A
;±1
±1
A
Operating Case Temperature Range
-40 to 110
°c
Storage Temperature Range
-40 to 125
°c
230
°c
Lead or Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:
SERIES
1. These values apply bidirectionally for any value of resistance between the gate and Main Termini'll 1.
2. This value applies for 50-Hz to 50-Hz fullMslneMwave operation with resistive load. Above 700 e derate linearly to 1100 e case
temperature at the rate of 50 mAfe for Series TIC205 and 75 mAte for Series TIC206.
3. This value applies for one 6o-Hz full sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
tAli v,?ltage values are with respect to Main Terminal 1.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 7!5222
7·57
SERIES TIC205, TIC206
SILICON BIDIRECTIONAL TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)t
TEST CONDITIONS
PARAMETER
SERIES
SERIES
TIC205
TIC206
UNIT
MIN MAX MIN MAX
Repetitive Peak
IDRM
IGTM
Off-5tate Cu rrent
Peak Gate Trigger Current.
VGTM Peak Gate Trigger Voltage
VDRM = Rated VORM, IG=O,
Vsuppl y = +12 vt
Vsupply - +12 VT,
RL = lOn,
Vsuppl y = -12 VT,
RL = lon,
Peak On-State Voltage
IH
Holding Current
o
±1
±1
tp(g)" 20 "s
tp(g) .. 20 "s
5
5
-5
-5
-5
-5
10
10
Vsupply - -12 V ,
RL = lon,
tp(g)" 20"s
tp(g) .. 20/ols
Vsupply = +12 vt,
RL = lon,
tp(g)'" 20".
2
2
Vsupply - +12 V ,
RL -lOn,
tp(g)" 20".
-2
-2
Vsupply = -12 vt,
RL = lon,
to(a)" 20"s
-2
-2
2
ITM= ±2.8A,
RL = lon, tp(g)" 20".
IG = 50mA, See Note 4
2
ITM= ±4.2A,
IG = 50mA, See Note 4
Vsupply = -12 vt,
VTM
RL = lOn,
TC=110°C
Vsupply = +12 vt,
IG=O,
Initiating ITM = 100 mA
Vsuppl y - -12 V ,
IG-O,
Initiating ITM - -100 mA
±1.9
±2.2
30
30
-30
-30
mA
mA
V
V
mA
t All voltage values are with respect to Main Tannlnal1.
NOTES:
4. This parameter must be measured using pulse techniques. 'tw <.; 1 ms, duty cycle <.; 2%. Voltage-sensing contacts, separate from
the current-carrying contacts, are located within 0.125 inch from the device body.
5. The triaes are triggered bV a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
RG= 100n,'w=20"s,tr O<; 15 ns,ttO<; 15ns,f= 1 kHz .
•
thermal characteristics
PARAMETER
RI/JC
Junction-to-Case Thermal Resistance
RI/JA
Junction-to-Free-Air Thermal Resistance
SERIES
SERIES
TIC205
TlC206
MAX
MAX
13.7
7.8
175
62.5
UNIT
°CIW
PRINTED IN U.S.A.
7-58
TEXASINCORPORATED
INSTRUMENTS
POST OFfI'lCE BOX 5012 •
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESEtlVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY'THE BEST PRODUCT POSSIBLE.
SERIES TIC215, TIC216
SILICON BIDIRECTIONAL TRIODE THYRISTORS
SENSITIVE-GATE TRIACS
3 A and 6 ARMS. 100 V, 200 V, and 400 V
description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off-state by either polarity of
gate signal with Main Terminal 2 at either polarity.
mechanical data
SERIES
TIC215
MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE CASE
ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED
SEATING
PLANE
ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
SERIES MAIN TERMINAL 2 IS IN ELECTRICAL CONT~CT WITH THE MOUNTING TAB
TIC216
MECHANICAL INTERCHANGEABILITY OF TIC~8
Pt..ASTIC PACKAGE WITH TO_OUTLINE
THIS PORTION OF LEADS-t------t
FREE Of flASH
I
I
1-=-1
I
I
MAINTEAMINAL1_~'"
MAIN TERMINAL 2 _
II
iITiO --I r-
--' I..
01,.
~ 3 LEADS
o~
:----~
=:::==:~
0380
.
-0
.
GATE-
0.1361
if.'iOi
I
o,r,;-0 ....
r
0.375
0.210
G.1iii
0.190
•
1~1m5
::TT
0.035
ITO-88 DIMENSIONS)
iili2i
~~:~ DIA
0 ....
ALL DIMENSIONS ARE IN INCHES
D.Gii
RAD (2 PLACES)
absolute maximum ratings over operating case temperature range (unless otherwise noted),t
Repetitive Peak Off-5tate Voltage, VDRM (See Note 11
Full-Cycle RMS On-5tate Current at (or belowl 70DC Case Temperature, IT(RMSI (See Note 21
SERIES
TIC215
TIC216
A Suffix
100
100
B Suffix
200
200
D Suffix
400
400
UNIT
V
3
6
A
60
±1
A
Peak Gate Current, IGM
20
±1
Operating Case Temperature Range
-40 to 110
A
DC
Storage Temperature Range
-40 to 125
DC
230
DC
Peak On-5tate Surge Current, Full-5ine-Wave, ITSM (See Note 31
Lead or Terminal Temperature 1116 Inch from Case for 10 Seconds
NOTES:
SERIES
1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz to 6o-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110° Cease
temperature at the rate of 75 mAfe for Series TIC215 and 150 mAloe for Series TIC216.
3. This value applies far one 60-Hz full sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
t All voltage values are with respect to Main Terminal 1.
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •
DALLAS, TEXAS 7&222
7-59
SERIES TIC215, TIC216
SILICON BIDIRECTIONAL TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)t
PARAMETER
TEST CONDITIONS
SERIES
SERIES
TIC215
TlC216
UNIT
MIN TYP MAX MIN TYP MAX
Repetitive Peak
IORM
Off-State Current
VORM
~
Rated VORM. IG
Vsupply ~ +12
IGTM
~
O.
TC~ 110°C
±2 mA
±2
vt.
RL~10n.
tp(g) ;;. 20 liS
5
5
Peak Gate
Vsuoolv-+12V.
RL~10n.
t[>Lg) ;;. 20 liS
-5
-5
Trigger Current
Vsuoolv - -12
RL-l0n.
to(Q) ;. 20 liS
-5
-5
Vsupply -
vt.
-12 vt.
RL -Ion.
tp(g) ;;. 20 liS
10
10
V Sll2P!y
+12 VT.
RL 10 n.
RL-l0n.
tp(g) ;;. 20 liS
2.2
2.2
tp(g);;' 20 liS
-2.2
-2.2
RL-l0n.
to(o) ;;. 20 liS
-2.2
-2.2
RL ~ Ion.
tp(g) ;;. 20/.ls
IG - 100 mAo See Note 4
3
±2
3
ITM- ±4.2A.
ITM ~ ±8.4A.
IG
~
IG
~O.
Peak Gate
VGTM Trigger Voltage
VTM
Peak On·State Voltage
IH
Holding Current
IL
Latching Current
Vsupply - +12 VT.
12 VT.
Vsuoolv
Vsupply ~ -12 VT.
Vsupply ~ +12
vt.
±1.7
100 mAo See Note 4
Initiating ITM
~
100 mA
Initiating ITM - -100 mA
Vsupply - -12 V •
IG -0.
Vsupply - +12 V •
See Note 5
50
vt.
See Note 5
-20
Vsupply - -12
30
30
-30
-30
50
-20
mA
V
V
mA
mA
t All voltage values are with respect to Main Terminal 1.
NOTES:
4. This parameter must be measured using pulse techniques. tw
< 1 ms,
duty cycle
~
2%. Voltage-sensing contacts, separate from
the current-carrying contacts, are located within 0.125 inch from the device body.
•
5. The triaes are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
AG = 100 on, tw = 20 p,s, tr ~ 15 ns, tf < 15 ns, f = 1 kHz.
thermal characteristics
PARAMETER
ROJC Ju nction~to~Case Thermal Resistance
Junction~to¥Free~Air Thermal Resistance
ROJA
SERIES
SERIES
TIC215
TIC216
MAX
MAX
8.6
5.1
175
62.5
UNIT
°C/W
PRINTED IN U.S.A.
7-60
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
8 ARMS • 200 V and 400 V
TRIACS
for
HIGH-TEMPERATURE, HIGH-CURRENT, and HIGH-VOLTAGE APPLICATIONS
• Typ dv/dt of 500 V/p,s at 25°C
description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off-state to the on-state by
either polarity of gate signal with Main Terminal 2 at either polarity.
mechanical data
MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIC226
PLASTIC PACKAGE WITH TO·66QUTLINE
THISPORTIONOFLEA~ r~:::-1
I
FREE OF FLASH
I
I
I
MAINTERMINAL1_~'"
-0
MAIN TERMINAL 2 _
GATE___
'
""
I I-.J L
0.110---1 r- o.135'l I
~~:~
-
0.380
""
0190
"'"
3LEADS
~
~.~:
r---t-~ t~:~:
P'055=h
0.045
0035
CASE TEMPERATURE
0.029
MEASUREMENT POINT
o~~~ DlA
0:040
ALL DIMENSIONS ARE IN INCHES
RAD (2 PLACESI
absolute maximum ratings over operating case temperature range (unless otherwise noted) t
UNIT
I TIC226B
Repetitive Peak Off-State Voltage. VDRM (See Note 1)
I TlC226D
200
400
V
•
Full·Cycle RMS On-State Current at (or below)
8
A
Peak On·State Surge Current, Full-Sine-Wave, ITSM (See Note 3)
70
A
Peak On-State Surge Current, Half-Sine-Wave, ITSM (See Note 4)
80
A
Peak Gate Current, IGM
1
A
2.2
W
0.9
W
Operating Case Temperature Range
-40 to 110
°c
Storage Temperature Range
-40 to 125
°c
230
°c
85°C Case Temperature, IT(RMS) (See Note 2)
Peak Gate Power Dissipation, PGM, at (or below)
85°C Case Temperature (Pulse Width';; 200 I's)
Average Gate Power Dissipation, PG(av), at (or below)
85°C Case Temperature (See Note 5)
Lead Temperature 1/16 I nch from Case for 10 Seconds
NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz to 60-Hz full-sine-wave operation with resistive load. Above 85°C derate according to Figure 2.
3. This value applies for one GO-Hz full sine wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
4. This value applies for one 60-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
5. This value applies for a maximum averaging time of 16.6 ms.
t All voltage values are with respect to Main Terminal 1.
971
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
7-61
TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)t
IORM
IGTM
PARAMETER
Repetitive Peak
Off-5tate Current
Peak Gate Trigger Current
VGTM Peak Gate Trigger Voltage
VTM
Peak On-5tate Voltage
IH
Holding Current
IL
Latching Current
dv/dt
dv/dt
Critical Rate of Rise
of Off-5tate Voltage
Critical Rate of Rise of
Commutation Voltage
TEST CONDITIONS
VORM = Rated VORM, IG=O
Vsupply - +12 vt,
Vsupply +12 vt,
Vsupply = -12 vt,
12Vt,
Vsupply
Vsupply +12 vt,
Vsupply - +12 vt,
Vsupply - -12 vt,
Vsupply - -12 vt,
ITM -±12A,
Vsupply - +12 vt,
Vsupply -12Vt,
Vsupply - +12 vt,
Vsupply = -12 vt,
MIN TVP MAX UNIT
TC=110DC
±2
RL lOn,
RL -lOn,
RL -lon,
RL -lon,
RL -lOn,
RL-l0n,
RL -lOn,
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g) ;;. 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
RL = lOn, tp(g);;' 20 J-IS
IG 100 mA, See Note 6
IG-O,
Initiating ITM - 500 mA
IG-O,
Initiating ITM - -500 mA
See Note 7
See Note 7
VORM = Rated VORM, IG=O,
15
-25
-30
75
0.9
2.5
-1.2 -2.5
1.2
2.5
1.2
±2.1
20
60
30 -60
30
70
-40 -70
TC= 110DC
VORM = Rated VORM, ITRM = ±12 A,TC = 85DC,
See Figure 3
50
-50
-50
500
mA
mA
V
V
mA
mA
V/J-Is
5
V/J-IS
t All voltage values are with respect to Main Terminal 1.
NOTES: 6. This parameter must be measured using pulse techniques. tw <; 1 ms, duty cycle
•
Il1O';;
2%. Voltage-sensing contacts, separate from the
current-carrying contacts, are located within 0.125 Inch from the device body.
7. The triaes are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
AG = 100 n, tw = 20 J-Is, tr .;; 15 ns, tt .;; 15 ns, f = 1 kHz.
thermal characteristics
R9JC
R9JA
PARAMETER
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance
MAX
1.8
62.5
UNIT
DCIW
971
7-62
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
The rate of rise of commutation voltage is defined as the slope of the line connecting the 10% and 63% test voltage
points.
The critical rate of rise of commutation voltage is the rate above which the device will not sustain the off·state
following conduction but will conduct current in the opposite direction in the absence of a gate·trigger signal. While
this failure to switch to the off-state is not detrimental to the thyristor, it does result in loss of control of power to the
load.
LOAD
60-Hz
SUPPLY
VOLTAGE
TEST CIRCUIT
SUPPLY
VOLTAGE
•
MAIN-TERMINAL
CURRENT
it
MAIN-TERMINAL
VOLTAGE
vd
GATE
CURRENT
VOLTAGE WAVEFORMS
FIGURE l-COMMUTATING dv/dt
NOTE A: The gate~current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed
so that the off-state-voltage duration is approximately 800 }Js.
471
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
7-63
TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM RMS ON-STATE CURRENT
MAXIMUM AVERAGE POWER DISSIPATED
vs
vs
CASE TEMPERATURE
RMS ON·STATE CURRENT
10
32
~
!!
.~
\
\
\
\
0
!
~
26
75
50
2.
20
16
V
~
E
:
o
/
See Note 8
<
~
o
TJ '" 110QC
Conduction Angle" 360°
28
!
/,v
}
\
125
o
150
V
V
V
f
\
100
12
L
V
o
10
TC-Case Temperature-QC
12
14
16
IT(RMS)-RMS On-5tate Current-A
FIGURE 2
SURGE ON·STATE CURRENT
FIGURE 3
vs
CYCLES OF CURRENT DURATION
100
NOTES:
TC" 8S"C
70
-
Figure 4.
See Note 9
9. The dashed curve shows the maximum number of
,
f-
8. For operation at current greater than 8 amps rms, see
cycles of surge current recommended for safe
-.....
See Note 10
opera~
ticn provided the device is initially operating at. or
below, the rated value of on-state current; however,
•
0
during the surge period gate control of the device may
7
be lost .
•
10, The solid curve shows the maximum number of cycles
of surge current for which gate
~ontrol
is guaranteed
provided the device is initially at nonoperating thermal
equilibrium.
2
1
4
710
20
40 70 100
400
1000
Consecutive 50-Hz Full-Sine-Wave Cycles
FIGURE 4
TYPICAL CHARACTERISTICS
PEAK GATE TRIGGER CURRENT
PEAK GATE TRIGGER VOLTAGE
vs
vs
CASE TEMPERATURE
CASE TEMPERATURE
3.0
.--r-..,--,.--,--..,--,.--,---,
IV su'PP lv j-12V
RL -10
2.5
~
2.0
t---I--+--i--I--+--i--I---I
1.6
t--t-t--t-i--!-+-t--I
f
....~
j
~
->~
25
50
75
100
TC-Case Temperature-"C
125
n
l'
1.0
t ptg);>20l's
-t--t--t--t--t--j
r-=~'F'"-+=±--t---t=-;--t--i
v.u~vt !:- ---r--r-
0.5 r-I:=::r.~t-'::--It--t-i--!--i
150
FIGURE 5
TC-Case Temperature_CC
FIGURE 6
tThe supply voltage is called positive when it causes Main Terminal 2 to be positive with respect to Main Terminal 1.
PRINTED IN U.S A
7·64
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
971
TI
.!!!
(5
/
i!0
..
h..
~
:;
l:!
It!
.
40
...,I
()
LL
V
100
VCE =5 V
TC = 25°C
70 - See Notes 4 and 5
.::...,
:;
3
12
vs
It!
~
V
IC = 25 A,
COLLECTOR-EMITTER VOLTAGE
'In
c
c
4
IB = 2.5A,
MAXIMUM COLLECTOR CURRENT
vs
a:
....
mA
MAXIMUM SAFE OPERATING AREA
COLLECTOR CURRENT
It!
mA
IB = 2_5 A,
See Notes 4 and 5
STATIC FORWARD CURRENT TRANSFER RATIO
0
1
4
IC=25A,
TYPICAL CHARACTERISTICS
...
=0
IE
See Notes 4 and 5
Collector-Emitter Saturation Voltage
V
IC -0
VCB =400 V,
VEB - 5V,
VCE-5V,
IC- 25A,
See Notes 4 and 5
Base-Emitter Voltage
VBE
300
See Note 4
Static Forward Current Transfer Ratio
hFE
MIN MAX UNIT
IB = 0,
()
'"\
20
...,It!
en
I
w
LL
.t:
10
0.4
0.4
It!
0.1
"
'x
:2:
I
~
9
\
"
0.04
0.01
0.7 1
2
3
7 10
20
40
Ic-Collector Current-A
10
20
40
100
200
400
1000
VCE-Collector-Emitter Voltage-V
FIGURE 2
FIGURE 1
NOTES:
E
E
4. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle :s;;; 2%.
5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.2
inch from the device body.
PRINTED IN U.S.A
9-12
1271
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SOLID-STATE
POWER fUNCTIONS
•
•
•
•
TYPE TIXH703
DUAL HIGH-CURRENT SWITCH
For High-Gain Complementary Push-Pull Stages
50-A Continuous Collector Current
VCE(sat) ..;; 2.5 V at IC = 50 A, 18 = 0.25 A
300 Watts at 25°C Case Temperature
description
The TIXH703 is a high-current complementarysymmetry power stage which features extremely high
gain. The low drive-current requirements make this
circuit very attractive for linear power applications_
mechanical data
POINT OF CASE TEMPERATURE MEASUREMENT
~~~-------:~~;------------~
gg:~
EQUIVALENT
CIRCUIT
R
4 PLACES
r---------.
r
0200
0240
g~~D
0.067
D.ii!l'l
L:=="
ll2!i __________
3695
0080
6 HOLES
6 TERMINALS
Ij
JL0100
~
B
ALL DIMENSIONS ARE IN INCHES
0.405
0395
APPROXIMATE WEIGHT IS
150g=5.30z
c
o-i-~""'---'
1- ______ _
4~MAX--------__~~
absolute maximum ratings over operating case temperature range (unless otherwise noted, see note 1)
Terminal-to-Case Voltage
_ _ _ _ _
Collector-Base Voltage
_ _ . . •
Collector-Emitter Voltage (See Note 2)
Emitter-Base Voltage . . . . . . .
Continuous Collector Current . . . .
Commutating·Diode Peak Current (tw";; 300 fJ.s, See Note 3)
Continuous Base Current
............ .
....
.
.
Safe Operating Area at (or 'below) 25°C Case Temperature . . .
Continuous Total Package Dissipation at (or below) 25°C Case Temperature (See Note 4)
Unclamped Inductive Load Energy (S!!e Note 5)
Operating Case and Storage Temperature Range . . . . . . . . . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 5 Seconds . . . . . . . . . . . .
NOTES:
±500V
100V
100V
5V
50A
50A
3A
See Figure 2
300W
90mJ
_25°C to 85°C
260°C
•
1. Throughout this data sheet current and voltage polarities are shown for the n.-p~n portion. These are reversed for the p-n-p
portion.
2. This value applies when the base-emitter diode is open-circuited.
3. This applies to the total collector-terminal current when the collector is at negative potential with respect to the emitter.
4. Derate linearly to 120 W at 85° C case temperature at the rate of 3 W/ C. Power may be divided between the two switches in any
proportion subject to the limitations of the Maximum Safe Operating Area, Figure 2.
5. This rating is based on the capability of each switch to operate safely in the unclamped-inductive load circuit of Section 3.2 of the
*
forthcoming JEDEC publication Suggested Standards on Power Transistors.
L - 20 mH, RBBl - 20
VBBl - 10 V. VBB2 - 0 V, RL - 0.2 n, VCC - 10 V, ICM - 3 A. Energy'" IC 2 L/2.
n,
RBB2 - 100
n,
+This circuit appears on page 6-1 of this data book.
1271
TENTATIVE DATA SHEET
This document provides tentative Information
0'1 a product In the developmental stage. Texas
I nstruments reserves the right to change or
discontinue this product without notice.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
9-13
TYPE TIXH703
DUAL HIGH-CURRENT SWITCH
electrical characteristics at 25°C case temperature (see note 1)
PARAMETER
TEST CONDITIONS
VIBR}CEO Collector-Emitter Breakdown Voltage
IB= 0,
ICES
Collector Cutoff Current
VCE = 100 V,
VBE = 0
lEBO
Emitter Cutoff Current
VEB = 5V,
IC= 0
Static Forward Current Transfer Ratio
IC= 50 A,
VCE =4 V,
See Notes 6 and 7
hFE
NOTES:
Ic=30mA,
See Note 6
MIN MAX UNIT
100
IC= 50 A,
See Notes 6 and 7
Base·E mitter Voltage
VCElsad
Coliector·Emitter Saturation Voltage
VECF
Commutating·Diode Forward Voltage
IB = 0.25 A,
IC= 50 A,
See Notes 6 and 7
IC=-50A,
1
mA
10
mA
3
V
2,5
V
1.8
V
1000
IB = 0.25 A,
VBE
V
IB = 0,
See Notes 6 and 7
1. Throughout this data sheet current and voltage polarities are shown for the n-p-n portion. These are reversed for the p-n-p
portion.
6, These parameters must be measured using pulse techniques. tw
= 300 ,",5, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.2
inch from the device body,
MAXIMUM SAFE OPERATING AREA
TYPICAL CHARACTERISTICS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
0
10000
VCE = 4 V
TC = 25°C
See Notes 6 and 7
'.."
co
0::
~
7000
'....*
c:
•
:::I
U
tJ
5
.!!l
'Eco
u
I
UJ
u.
.s::
2000
\
E
:::I
E
~
en
4
'0
0
u
'.."
....co
~
10
5
4000
u
u.
40
~
~
~
1
D·C Operation
TC<25°C
c:
I-
c:
100
'xco
~
1 000
10
\
:2
I
u
0.4
0,1
20
40
70
100
Ic-Collector Current-A
2
4
7 10
20
40
70100
200
VCE-Collector·Emitter Voltage-V
FIGURE 2
FIGURE 1
PRINTED IN U.S.A.
9·14
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,
SOLID-STATE
POWER FUNCTIONS
TYPE TIXH704
TRANSIENT VOLTAGE PROTECTOR
•
Typical Dynamic Impedance ... 0.1 n
•
Clamp Voltage ... 23 V
•
Peak Reverse Current ... 40 A
111-1
c<
r--a
r-m
~::!
z~
~g
c
~
description
..
:::l
~
The T1XH704 is designed to suppress voltage transients having a high energy content_ In case of a
severe transient, the TIXH704 will short circuit
thereby tripping the system's circuit breaker or
blowing the fuse while still protecting the entire
system_
C
m
n
m
3:
m
III
..
:II
'"
:::l
mechanical data
EQUIVALENT
CIRCUIT
TERMINAL
ALL DIMENSIONS ARE IN INCHES
APPROXIMATE WEIGHT IS :J1.2g "'l.32oz
CASE
absolute maximum ratings over operating temperature range (unless otherwise noted)
Continuous Forward Current
Continuous Reverse Current
. _ . . . . . .
Peak Forward Current (One 60-Hz Half Sine Wave)
Peak Reverse Current (One 60-Hz Half Sine Wave)
Average Power Dissipation at (or below) 8SoC Case Temperature (See Note 1)
Continuous Power Dissipation at (or below) 2SoC Free-Air Temperature (See Note 2)
Operating Case Temperature Range
....... .
Storage Temperature Range
. . . . . . . .
Terminal Temperature 1/8 Inch from Case for S Seconds
NOTES:
4A
2A
lOA
40A
40W
2.4W
- 2SoC to 8SoC
- 2SoC to 8SoC
260°C
•
1. This value applies for a maximum averaging time of 150 ms.
2. Derate linearly to 85° C free-air temperature at the rate of 40 mW/o c.
1271
TENTATIVE DATA SHEET
This document provides tentative information
on a product In the developmental stage. Texas
I nstruments reserves the right to change or
discontinue thiS product without notice.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
9-15
TYPE TIXH704
TRANSIENT VOLTAGE PROTECTOR
electrical characteristics at 250 C case temperature
PARAMETER
MIN
TEST CONDITIONS
IZ= 20 rnA
I
IZ- 35A
I
Vz
Regulator Voltage
IR
Reverse Cu rrent
VR - 18 V
VF
Forward Vol tage
IF= 1 A
See Figure 1
20
TYP MAX UNIT
23
25
V
30
V
0.1
rnA
2
V
PARAMETER MEASUREMENT INFORMATION
SINGLE PULSE
21"1, lOW
1 kl"1, 6 W
1
'1M
+
--
100V
6OOO"F
150V
...
+
+
220
lOW
~
Vz
-
~~ TlXH704
.1
•
FIGURE 1
PRINTED IN U.s A.
9·16
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
1271
TI (anna' assume any responsibilily for any circuits shown
or represen, fhol they are free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SOLID-STATE
POWER FUNCTIONS
TYPES TlXHBOl, TIXHB02
AC RELAYS
•
SPST (Normally Open)
•
8 A. 200 V (TIXH801)
25 A. 200 V (TIXH802)
•
Optically-Coupled Isolation between Control and Load Circuits
•
Turn-On Only at a Line Voltage Zero-Crossing Point
description
The TIXH801 and TIXH802 a-c relays can be driven
directly by standard DTL or TTL integrated circuits.
They provide optically-coupled isolation between
control circuitry and the power system. Zero-voltage
switching minimizes RFI generated during load current
turn-on. Absence of electro-mechanical components
provides higher speed and eliminates contact wear and
arcing.
mechanical data
g.g:6
POINT OF CASE
TEMPERATURE
MEASUREMENT
0.017
0.013
L
R,4 PLACES
J]
f
TERMINAL
1
~:~~~
DIA
4 HOLES
2
3,4
FUNCTION
POSITIVE INPUT
NEGATIVE INPUT
OUTPUT
ALL DIMENSIONS ARE IN INCHES
THE LEADS ARE SPACED TO
FIT AN INTEGRATED CIRCUIT SOCKET
APPAOXIMfr,TE WEIGHT IS 52 9 '" 1.86 02
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Input Diode Reverse Voltage . . . . .
Repetitive Peak Off-State Output Voltage
Input-to-Output Voltage
..... .
Terminal-to-Case Voltage . . . . . .
Input Diode Continuous Forward Current at (or below) 25°C Case Temperature (See Note 1)
Full·Cycie RMS On-State Current at (or below) 85°C Case Temperature
Peak On-State Surge Current (See Note 2)
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/8 Inch from Case for 5 Seconds
NOTES:
TlXH801 TIXH802
-3V-±200V-±600V-±600V60mA
60mA
8A
25A
±80A ±175A
-25°C to 85°C
_25°C to 85°C
-260°C-
•
1. Derate linearly to 85° C case temperature at the rate of 1 rnA/DC.
2. These values apply for one GO-Hz full sine wave when the device is operating at (or below) the rated value of on-state current.
Surge may be repeated after 100 m5.
1271
TENTATIVE DATA SHEET
ThiS document provides tentative information
on a product in the developmental stage. Texas
Instruments reserves the right to change or
discontinue this product without notice.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
9-17
TYPES TIXH801, TIXH802
AC RELAYS
electrical charaCteristics at 250 C case temperature (unless otherwise noted)
TIXH801
TEST CONDITIONS
PARAMETER
MIN
Input Voltage for
Vlloff)
TVP
TIXH802
MAX
004
Output in Off-State
VI
Output Voltage
vT
VI
= 0.4 V,
I.S
±10
Peak On-State Output
11= 10mA,
ITM = ±12 A
Voltage
11= 10mA,
ITM = ±2SA
UNIT
10
1.2
±3.S
Vo = ±200V
See Figure 1
at Turn-On
VTM
1.2
II-l0mA
Current
MAX
V
10
Output in On-State
I nput Voltage
Repetitive Peak Off-State
IORM
TVP
0.4
Input Current for
Ilion)
MIN
I
mA
I.S
V
±S
mA
±10
V
±2.S
ISee Note 3
V
±2.S
Critical Rate of Rise
dv/dt
of Off-State Voltage
TC = 8SoC
VORM = ±200 V, VI =0,
V/jJs
SOO
500
>10 9
>10!i
n
30
30
pF
(Exponential)
Rin-out Isolation, Input-to-Output Vin-out = ±1 kV,
Capacitance,
Cin-out
NOTES:
I nput-to-Output
3. This parameter is
Vin-out = 0 V,
measure~
See Note 4
f= 1 MHz,
See Note 4
using voltage-sensing contacts separate from the current-carrying contacts and located within 0.2
inch from the device body,
4. This parameter is measured between both Input terminals shorted together and both output terminals shorted togatt:ler,
PARAMETER MEASUREMENT INFORMATION
II
•
3
~
RL
TRIGGER
VI
//
20Vtol40Vrms
CIRCUIT
lIT
2
47 Hz to 63 Hz
4
TIXH801 RL = 16.6 n
TIXH802 RL = 8 n
FIGURE 1
PRINTED IN U.S.A,
9-18
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE I!IOX 6012 •
DALLAS, TEXAS 75222
1271
TI cannot assume any responsibility for any circuits shown
or I'fpresent that they are free from polen' infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY'THE BEST PRODUCT POSSIBLE.
TYPES TIXH803, TlXH804
POSITIVE-GROUND AND
NEGATIVE-GROUND DC RELAYS
SOLID-STATE
POWER FUNCTIONS
•
•
•
SPST (Normally Open) 80 V, 10 A
Optical Isolation between Control and Load Circuit
Short-Circuit Protected
description
The TIXH803 and TIXH804 are designed to be
driven directly from standard DTL and TTL
integrated circuits_ These relays provide isolation
between control circuitry and power systems. The output may be short-circuited to ground without damage
to the relay. The relay automatically senses the short
circuit, shuts off, and resets on the next input pulse
after the short is removed. The TIXH803 is designed
for use in negative-ground systems; the TIXH804 in
positive-ground systems.
o
m
n
m
s:!XI
m
:D
<;;
mechanical data
::!
g:~~g
4 PLACES
~:~:~
0.115
2~~~'~s-'rttr-Ir.======i=F=1r-~---~~
POINT OF CASE
TEMPERATURE
MEASUREMENT
R 4 PLACES
j
",.
II
0.017
o:on
L
I"
g:g~:
ALL DIMENSIONS ARE IN INCHES
DIA
5 HOLES
THE LEADS ARE SPACED TO FIT
AN INTEGRATED CIRCUIT SOCKET
WEIGHT"" 52 9 = 1.86 oz
~::~~+====+=l
0,455
0.445
TERMINAL
1
g:~: I ~ ~:~:
~2.505
2
3
4
MAX
5
FUNCTION
OUTPUT
SUPPLY VOLTAGE, Vcc
POSITIVE INPUT
NEGATIVE INPUT
GROUND
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Ihput-to-Output Voltage
Terminal-ta-Case Voltage . .
Supply Voltage, VCC
Input-Diode Reverse Voltage . . . . . . . . . . . . . . . .
.. _
Input-Diode Continuous Forward Current at (or below) 25°C Case Temperature (See Note 1)
Continuous On-State Output Current at (or below) 85°C Case Temperature
Inductive Energy during Turn-Off (See Note 2)
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/8 Inch from Case for 5 Seconds
NOTES:
±500 V
±500 V
80V
3V
60mA
lOA
100 mJ
_25°C to 85°C
_25°C to 85°C
260°C
•
1. Derate linearly to 85° C case temperature at the rate of 1 mA/oC.
2. This rating is based on the capability of the relays to turn off a load of 0.2 nand 20 mH operating from a supply voltage of 10 V
at a current of 3.2 A.
recommended operating conditions
MIN MAX UNIT
V
10 50
-25 85°C
Supply Voltage, VCC
Operating Case Temperature, TC
1271
TENTATIVE DATA SHEET
This document provides tentativ_e information
on it product in the developmental stage. Texas
Instruments reserves the right to change or
discontinue this product without notice.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS. TEXAS 15222
9-19
TYPES TIXHB03, TIXHB04
POSITIVE-GROUND AND
NEGATIVE-GROUND DC RELAYS
electrical characteristics at 25° C case temperature
TEST CONDITIONS
PARAMETER
VI (off)
Maximum I nput Voltage for Output Off
I1(0n)
Minimum I nput Current for Output On
MIN
TYP
MAX
UNIT
10
rnA
004
1.2
VI
Input Voltage
II = lOrnA
10(0ff)
Off-State Output Current
VI-004 V,
VCC=80V,
RL = 10
VCC-l0V,
See Note 3
II-lOrnA,
10 -lOA,
VCC-VO Relay Voltage Drop
V
V
1.5
kn
rnA
1
2.5
V
10
rnA
ICC(off)
Standby Supply Current
VI =0,
VCC=80V,
RL = =
ICC(on)
On·State Supply Current
II-lOrnA,
VCC-80V,
RL = =
20
Rin-out
Isolation, Input-to-Output
Vin-out- ±1 k\l,
See Note 4
lOll
n
Capacitance,lnput·to-Output
Yin-out = ±1 kV,
See Note 4
f - l MHz,
1
pF
Cin-out
rnA
NOTES: 3. This parameter is measured using voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inches from the device body.
4. These parameters are measured between both input terminals shorted together and the output.
switching characteristics at 25° C case temperature
-l,
I
PARAMETER
rto:onc:......_ _=T,..u_rn_.o=n:-:T=i,..m_e_ _ _ _ _ _ _ _ _ _ _
toff
Turn-Off Time
TEST CONDITIONS
VCC = 80 V,
, See Figure 1
RL = 8
n,
-,
I1(0n) = 10 rnA,
TYPICAL
T UNIT
11-___1_.5_ _ _-11
IJS
-1
'35
PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input
pulse for I'(on) == 10 rnA
I
O'
If = 400 Hz
1 00 lIS -----4~.---==:::...:..:.:..lii-tOf1...1
INPUT
ton~
~~i
~
OUTPUT
•
10%L-
TIXH803 VOLTAGE WAVEFORM
TIXH803 TEST CIRCUIT
Adjust amplitude of input
pulse for 'I(on) == 10 rnA
INPUT
I
O~
ton :---:
I
Vee
OUTPUT
~
i
100JJS
If=400HZ
.,
I-- toff -.jI
'f1o%
~
TIXH804 VOLTAGE WAVEFORM
TIXH804 TEST CIRCUIT
FIGURE 1-SWITCHING TIMES
PRINTED IN U.S.A.
9-20
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
1271
TI (onnot ossume ony responsibility for any circuits shown
or represent thot they ore free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES ~T ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
SOLID-STATE
POWER FUNCTIONS
•
200 A, 100 V
•
Protected Against:
TYPE TIXH805
HYBRID SWITCH
Short-Circuit Load
~
JS'"
Overheating
•
c
m
Operating Frequency __ . DC to 4 kHz
C'l
~
III
m
:0
mechanical data
'~E;: -,,,.,"o,,===:f:RI
A
B
C
D
E
F
H
J
K
L
M
N
I./4.-----8S00±O.'oo~
_I.
L-+--.-__i+_$_ _ _ _ _ _ _@.....Jftr:"
SWITCH 2 FLOATING GROUND
LOGIC GROUND
LOGIC SUPPLY VOLTAGE
SWITCH 2 POSITIVE SUPPLY VOLTAGE
INHIBIT INPUT 1
LOGIC INPUT 2
SWITCH 1 NEGATIVE SUPPLY VOLTAGE
LOGIC INPUT 1
INHIBIT INPUT 2
SWITCH 1 POSITIVE SUPPLY VDLTAGE
SWITCH 2 NEGATIVE SUPPLY VOLTAGE
SWITCH 1 FLOATING GROUND
CASE GROUND
description
The TIXH805 hybrid switch is designed for precIsion power conversion equipment. The inputs can be driven by
standard DTL and TTL integrated circuits. The TIXH805 contains two switches which may be connected together for a
single push-pull output, or may be operated as two independent switches. It features optically coupled isolation
between input circuitry and power system. Internal circuitry turns off each switch within approximately 10
microseconds if its load is short-circuited. To ensure that the total current (operating and surge) does not exceed
250 amperes within this time, the turn-on di/dt of the load current must be limited to 5 A/MS. Approximately
25 milliseconds after turn-off caused by a short-circuit, the switch becomes operational again. Should the short-circuit
still exist, the switch will turn off again and recycle at a frequency of approximately 40 hertz until the short-circuit
condition is removed_ Protection is also provided against overheating. The signal for this condition is fed into a Schmitt
trigger, which, because of its hysteresis, ensures that the temperature recovers by a safe margin before operation
resumes.
1271
•
TENTATIVE DATA SHEET
This document provides tentative information
on a product in the developmental stage. T~xas
I nstruments reserves the right to change or
discontinue this product without notice.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
9-21
TYPE TIXHB05
HYBRID SWITCH
description (continued)
For operation in the push-pull mode, the logic and
inhibit inputs of each side of the circuit are connected together. This provides inhibit and blanking
functions. A high level at either inhibit input holds
the switch of the opposite side off without regard to
the logic input. If both inhibit inputs are high, both
switches are off thus avoiding "line shoot-through".
A rising transition at an inhibit input blanks or delays
the corresponding switch from turning on for approximately five microseconds. This gives the switch that
is on sufficient time to turn off before the other
switch can turn on. For additional information on
operation in the push-pull mode, see the typical
appl ication data section of this data sheet.
FUNCTION TABLE
logic input 1 connected to inhibit input 1
logic input 2 connected to inhibit input 2
SWITCH
SWITCH
INPUT
INPUT
1
2
1
2
off
off
L
L
off
on
H
L
off
on
L
H
off
H
H
off
H
= high level,
L - low level
For operation as two independent power switches, both inhibit inputs are connected to logic ground. A high level at a
logic input turns that switch on; a low level turns it off. Inhibit and blocking functions are not used since they are not
needed for independent operation.
The hybrid switch enables construction of high-power-density, lightweight power-conversion equipment by eliminating
large commutation capacitors necessary for SCR circuits. Due to the fast switching speed, a considerable weight
decrease in filters can be achieved. The major applications for this device are dc-to-variable-ac inverters, switching
regulators, and d-c choppers.
functional block diagram
LOGIC1
INPUT
o--;;:::=============:r-"'I
INHIBIT
INPUT 1
I
:~~~~~
OPTICALLY-COUPLEO
ISOLATOR
*7<
1f
51"
--+------4>
0-.....
OUTPUT
1
OPTICALLY -COUPLED
ISOLATOR
*7<
LOGIC
INPUT 2
~.
+
OUTPUT
2
• . Dynamic input activated by a transition from a low level to a high level.
1271
9-22
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
TYPE TIXHB05
HYBRID SWITCH
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Logic Supply Voltage (See Note 1) . . . . . . .
Positive Supply Voltage, Each Switch (See Note 2)
Negative Supply Voltage, Each Switch (See Note 2)
Logic and Inhibit Input Voltages (See Note 1)
Output Voltage (See Note 3) . . . . . .
Peak Operating Output Current (See Note 4 .
Rate of Rise of Output Current . . . . .
Average Power DiSsipation at (or below) 25°C Case Temperature (See Note 5)
Operating Case Temperature Range
Storage Temperature Range
NOTES:
. 5.6V
. 5.6V
-5.6 V
5V
100V
200 A
5 A/IlS
500W
-40°C to 85°C
-40°C to 85°C
1. These voltages are with respect to the logic ground terminal.
2. Supply voltages for each switch are with respect to the floating ground terminal of that switch.
3. Output voltages are at the positive output terminal with respect to the negative output terminal of each switch.
4. For pulses narrower than 1 ms derate according to Figure 3. For pulses wider than 1 ms the output current shOUld be limited to
120A.
5. Derate linearly to 140 W at 8SoC case temperature at the rate of 6 W/oC. This value applies for a maximum averaging time of
1 second.
recommended operating conditions
MIN MAX UNIT
5 5.6 V
5 5.6 V
-5 -5.6 V
-40
85 °c
Logic Supply Voltage, VCC . . . . . .
Positive Supply Voltage, Each Switch, VS+
Negative Supply Voltage, Each Switch, VSOperating Case Temperature Range
electrical characteristics at 25°C case temperature (unless otherwise noted, see figure 1)
PARAMETER
VII:!
High-Level Input Voltage
VIL
Low-Level Input Voltage
II
Input Current at Maximum Input Voltage
IIH
High-Level Input Current
IlL
Low-Level I nput Current
10(off)
Off-5tate Output Current
TEST CONDITIONS
MIN
MAX UNIT
2
V
0.8
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
1
VI =5V
2
50
VI=2.4V
80
-2
VI = 0.4 V
VI = 0.8 V,
-3.2
VO=100V,
VI-2V.
10M -200A,
f = 400 Hz,
t w =1001As
ICC
LogiC Supply Current
VCC-5.5V
ISM+
Peak Positive Supply Current, Either Switch
IS(AV)-
Average Negative Supply Current, Either Switch
VS+= 5.5 V
VS_--5.5V
IAA
rnA
10 rnA
TC = 85°C
VOM(on) Peak On-5tate Voltage
V
rnA
2.6
V
0.2
A
15
A
-3
A
•
thermal characteristics
PARAMETER
MIN TVP MAX UNIT
TEST CONDITIONS
R8CA
Case-to-Ambient Thermal Resistance
TC
Thermal Time Constant of Case
Free-Air
Forced·Air Cooling, 35 ft 3 /min,
1
50 Ib/in 2
0.2
8
°C!W
min
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
9-23
TYPE TIXH805
HYBRID SWITCH
PARAMETER MEASUREMENT INFORMATION
SWITCH 1
SUPPLY
~
IS+
LOGIC SUPPLY
l f.s-
SWITCH 1
FLOATING GND
0--..,....-,
LOGIC INPUT 1
INHIBIT INPUT 1
INHIBIT INPUT 2
LOGIC INPUT 2
LOGIC GND
o-"-.L....J
y
SWITCH 2
FLOATING GND
SWITCH 2
SUPPLY
FIGURE 1
TYPICAL APPLICATION DATA
THERMAL INFORMATION
push-pull configuration
The switches are able to turn off current with a di/dt
of 60 A/j.l.s. This results in high voltage spikes with
peaks equal to L • di/dt with very small values of line
inductance. Therefore, the line connecting the
commutating capacitors (Cel must have an
inductance less than 0.05 j.l.H, whereas the load
inductance can be fairly high.
L%
MAXIMUM OUTPUT CURRENT
vs
DUTY CYCLE
200 ............
~ _ _ ~~~ _ _ ~'INDUCTA~ElINE
INPUT
1
+
LOGIC 1
I
E INHIBIT 1
Cc
-
I
•
+
OUTPUT 1
-=- 40 V
.........
...."rvv'--~=============================f--~
SWITCH
NO.1
+
OUTPUT
INHIBIT
INPUT 1
•
INHIBIT
INPUT 2
OPTICALLY·COUPLED
ISOLATOR
*~<
LOGIC
INPUT 2
SWITCH
NO.2
OUTPUT
I
i> ...
Dynamic input activated by a transition from a low level to a high level.
I
1271
9-26
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
TYPE TIXHB06
HYBRID SWITCH
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Logic Supply Voltage (See Note 1) . . . . . . .
Positive Supply Voltage, Each Switch (See Note 2)
Negative Supply Voltage, Each Switch (See Note 2)
Logic and Inhibit Input Voltages (See Note 1)
Output Voltage (See Note 3)
Peak Output Current (See Note 4)
Rate of Rise of Output Current
Average Power Dissipation at (or below) 25°C Case Temperature (See Note 5)
Operating Case Temperature Range
Storage Temperature Range
NOTES:
. 5.6 V
. 5.6 V
-5.6 V
5V
400 V
60A
5 A/IlS
500W
-40°C to 85°C
-40°C to 85°C
1. These voltages are with respect to the logic ground terminal.
2. Supply voltages for each switch .ra with respect to the floating ground terminal of that switch.
3, Output voltages are at the positive output terminal with respect to the negative output terminal of each switch.
4. For pulses narrower than 1 ms derate according to Figure 3. For pulses wider than 1 rns the output current should be limited to
35 A.
5. Derate linearly to 140 W at 85°C case temperature at the rate of 6 W/OC. This value applies for a maximum averaging time of
1 second.
recommended operating conditions
MIN MAX UNIT
5 5.6 V
5 5.6 V
-5 -5.6 V
-40
85 °c
Logic Supply VOltage, VCC . . . . . .
Positive Supply Voltage, Each Switch, VS+
Negative Supply Voltage, Each Switch, VSOperating Case Temperature Range
electrical characteristics at 25° C case temperature (unless otherwise noted, see figure 1)
TEST CONDITIONS
PARAMETER
MIN
MAX UNIT
V
2
VIH
High-Level Input Voltage
VIL
Low·Level Input Voltage
II
I nput Current at Maximum I nput Voltage
IIH
High-Level Input Current
IlL
Low-Level Input Current
10(off)
Off-5tat. Output Current
0.8
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
1
VI =5V
2
50
VI =2.4V
80
-2
VI = 0.4 V
VI = 0.8 V,
-3.2
VO=400V,
VI =2V,
f = 400 Hz,
ICC
Logic Supply Current
VCC=5.5V
ISM+
Peak Positive Supply Current, Either Switch
VS+- 5.5V
VS_=-5.5V
IS(AV)- Average Negative Supply Current, Either Switch
mA
p,A
mA
10 mA
TC= 85°C
VOM(on) Peak On-5tate Voltage
V
10M =60 A,
tw=100p,s
2.6
V
0.2
A
,2
A
'1
A
•
thermal characteristics
MIN TVP MAX UNIT
TEST CONDITIONS
PARAMETER
ReCA
Case-to·Ambient Thermal Resistance
TC
Thermal Time Constant of Case
1
Free·Air
Forced-Air Cooling, 35 ft3/min,
50 Ib/in 2
0.2
8
°C!W
min
1271
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
9-27
TYPE TIXH806
HYBRID SWITCH
PARAMETER MEASUREMI;:NT INFORMATION
SWITCH 1
SUPPLY
r:('-::..
IS+!
LOGIC SlJPPLV
SWITCH 1
FLOATING GND
1,s-
0--..--.
LOGIC INPUT 1
INHIBIT INPUT 1
INHIBIT INPUT 2
LOGIC INPUT 2
LOGIC GND o-L-.L-....J
y
SWITCH 2
SUPPLY
SWITCH 2
FLOATING GND
FIGURE 1
THERMAL INFORMATION
TYPICAL APPLICATION DATA
push-pull configuration
The switches are able to turn off current with a di/dt
of 60 A//ls. This results in high voltage spikes with
peaks equal to L • di/dt with very small values of line
inductance. Therefore the line connecting the
commutating capacitors (Ccl must have an
inductance less than 0.05/lH, whereas the load
inductance can be fairly high.
MAXIMUM OUTPUT CURRENT
vs
DUTY CYCLE
60
............
50
............
............
1 ,I
tw C;; 1 ms
t---.
.........
r--... ............
40
•
t---.
............
............
30
20
The commutating capacitors should be selected
according to:
Cc = 10\
f
icomdt
NOTE: leom is the commutated current which charges the
commutation capacitor an additional 10 V over the
steady-state voltage.
10
o
o
10 20 30 40 50 60 70 80 90 100
Duty Cycle-%
Because of the voltage spikes during commutation,
the supply voltages have to be smaller than 200 volts
so that the peak voltage during switching does not
exceed 400 volts.
FIGURE 2
FIGURE 3
PRINTED IN U.S.A.
9-28
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
1271
TI (annol assume any responsibility for any circuits shown
or represent Ihal they Ofe free from palent infringement.
TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPl nHE BEST PRODUCT POSSIBLE.
Power Semiconductor
Technology
POWER SEMICONDUCTOR TECHNOLOGY
TABLE OF CONTENTS
SILICON POWER TRANSISTORS AND THYRISTORS
Mesa versus Planar versus Glass-Mesa Designs
Forward and Reverse Energy Considerations
Summary of Advantages and Disadvantages of Various Technologies
Chip-Mounting Techniques
Lead-Bonding Techniques
GERMANIUM POWER TRANSISTORS
Alloy Design
Diffused-Alloy Design
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
10-1
POWER SEMICONDUCTOR TECHNOLOGY
TECHNOLOGY DISCUSSION
SILICON POWER TRANSISTORS AND THYRISTORS
Mesa versus Planar versus Glass-Mesa Designs
Contemporary silicon power devices can be classified into two, broad, structurally different categories; planar and
mesa.
A typical double-diffused epitaxial planar transistor structure is shown in Figure 1. The P-N junctions are all
formed by diffusion and passivated by the oxide (Si02). A typical mesa transistor structure is shown in Figure 2.
In this illustration the emitter-base junction is of planar structure. The collector-base junction is formed by
selectively etching the silicon into a mesa-like structure. The exposed junction is usually coated with some
insulating substance to protect it from contamination, humidity, and other adverse environments.
Typically, the planar structure is well-suited for higher frequency and faster switching. This is because the base
width of the planar device can be made very narrow.
For the same reason, however, the breakdown voltage rating is usually limited to only several hundred volts. The
mesa structure, due to its process limitations, is generally used for lower frequency and moderate switching speed.
It does allow higher voltage devices to be built, however.
When operated under high-temperature conditions, the planar structure is generally the superior one. Through the
intensive and fruitful effort in the advancement of the planar process, the oxide-silicon has become the best
understood system in the semiconductor field. As a result, when the knowledge of planar technology is properly
applied, planar devices with extremely low leakage current can be produced routinely and maintained with very
high reliability.
Even though, historically, the mesa devices were among the first devices developed, the passivation of the exposed
junction has not been well understood. As a result, the leakage currents are moderately higher and less stable than
those of the planar devices. The knowledge of the planar technology has impacted the improvement of mesa
junction passivation quite strongly. The development of glass passivation has contributed significantly to the
reduction of leakage currents and improvement in stability in mesa structures. A typical glass'passivated structure
is shown in Figure 3. This glass-passivated device offers the advantages of both the mesa and planar structures.
Once the glass is in place, the unit is sealed against the rigors of assembly and can even be dipped into liquid
solder without damage. ,This advanced concept is used in many power transistors and thyristors manufactured by
Texas Instruments.
I
10-2
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
POWER SEMICONDUCTOR TECHNOLOGY
COLLECTOR FIELD PLATE
NN+
FIGURE 1-PLANAR TRANSISTOR STRUCTURE
FIGURE 2-MESA TRANSISTOR STRUCTURE
EMITTER CONTACT
N
N+
FIGURE 3-GLASS-PASSIVATED STRUCTURE
Forward and Reverse Energy Considerations
A power transistor must be designed not only to meet specific electrical specifications, but also to withstand the
circuit application power requirements. A device with low thermal resistance does not guarantee that the device
will operate in the circuit application. The application may exceed the second breakdown limitations of the
device.
II
Transistors have two basic second breakdown modes. One mode is known as forward second breakdown and the
other is reverse second breakdown. Forward second breakdown may occur when a device is operated in the
amplifying mode. Most devices can handle more power: in the low-voltage, high-current state than at the highvoltage, low-current condition. Second breakdown occurs when localized heating manifests itself in the emitter
region. The cause for the "hot spot" is a non-uniform temperature profile across the emitter surface.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
10·3
POWER SEMICONDUCTOR TECHNOLOGY
Because the VBE characteristic of a transistor has a negative temperature coefficient, the "hot spot" area "hogs"
the emitter current as the power is increased, thus leading to a thermal run-away condition_ When the hot spot
exceeds the eutectic temperature of the silicon-emitter-metal interface, the contact metal will diffuse through the
emitter, causing a catastrophic failure_
Designing the emitter geometry such that the thermal resistance over the entire emitter region is constant will
improve the forward second breakdown characteristics of the devices_ All the recently announced TI power
transistors utilize "isothermal" geometries to optimize the Safe Operating Area (SOA)_
Reverse second breakdown may occur in a transistor during the turn-off transient_ If a transistor is used for
inductive switching, the device must dissipate the energy of the inductor when switching from a conducting state
to an off state unless a protective circuit is used_ The maximum energy that a transistor can dissipate in this
transient condition is known as reverse energy capability_ The reverse energy capability of a transistor can be
increased by several orders of magnitude by using the optimum collector thickness and resistivity profile_ Texas
Instruments has developed a proprietary empirical method for calculating the starting material collector profile
required to produce devices with optimum reverse energy capability versus other desired parameters_
Summary of Advantages and Disadvantages of Various Technologies
Now that these different general structures and design ideas have been discussed, a listing of specific designs and
their advantages and disadvantages is provided below for ready reference_
Single-Diffused (Homogeneous-Base Mesa)
Advantages
•
Excellent forward and reverse energy capability
•
Low manufacturing cost
Disadvantages
II
10-4
•
Low switching speed - excessive power dissipated during switching applications_ Large-area heat
sink required
•
Very poor beta Iinearity versus collector current
•
Inherent junction instabilities of a mesa device
•
Requires at least 50% more silicon area for high-current performance
•
Not practical for use in hybrid functions since junctions need to be passivated after assembly
•
Complementary P-N-P type difficult to produce
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
POWER SEMICONDUCTOR TECHNOLOGY
TI Single-Diffused II (glass-passivated epi-base)
Advantages
•
Excellent forward and reverse energy capability
•
Low manufacturing cost
•
Planar type leakages and stabilities due to glass-passivated junctions
•
Faster switching speeds than homogeneous-base structure
•
Complementary P-N-P types readily available at low cost
•
No special processing required for utilization of chips in hybrid functions
•
More linear beta versus collector current than homogeneous-base structure
•
Less silicon required for high-current performance
Disadvantages
•
Chip costs slightly higher due to additional slice processing
Triple-Diffused Mesa
Advantages
•
Moderate switching speeds
•
Good reverse energy capability
•
Moderate saturation resistance
•
High electrical yields
Disadvantages
•
Mesa junction instabilities
•
Long-duration high-temperature diffusions required for collector
•
Chip must be passivated after being assembled to header
•
Exposed junctions are sensitive to ambient conditions during wafer electrical probe
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALL.AS. TEXAS 75222
10-5
POWER SEMICONDUCTOR TECHNOLOGY
TI Triple-Diffused Glass-Passivated Mesa
Advantages
•
Moderate switching speeds
•
Good reverse energy capability
•
Moderate saturation resistance
•
High electrical yields
•
No passivation of junction required after assembly
•
Planar type leakage and stability due to glass-passivated juncti6ns and N+ guard ring structure
•
No special processing requ ired for use of ch ips in hybrid functions.
•
Wafer electrical probe can be set to tighter limits for high final test yields
Disadvantages
•
Long-duration high-temperature diffusions required for collector
Epitaxial Planar
Advantages
•
Fast switching speeds
•
Excellent beta Iinearty versus collector current
•
Low junction leakage and excellent stability
•
P-N-P complement units, are available
•
Low saturation resistance
Disadvantages
II
10-6
•
General.ly lower energy capability
•
Higher manufacturing costs
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
POWER SEMICONDUCTOR TECHNOLOGY
TI Isothermal Epitaxial Planar Transistors
Advantages
•
Fast switching speeds
•
Excellent beta linearity versus collector current
•
Low junction leakage and excellent stability
•
Good reverse and forward energy capabil ity
•
P-N-P complements available
•
Low saturation resistance
Disadvantages
•
Higher manufacturing costs
Chip-Mounting Techniques
Once the design of the silicon chip geometry has been achieved, the next problem to be addressed is how to
assemble the unit.
The majority of mounting systems for power transistors and thyristors fall into two major categories-"hard"
and "soft" solders. The "hard"-solder systems are often made up of a molybdenum mounting platform with a
gold-base preform used to alloy the chip to the molybdenum. The coefficient of expansion of molYbdenum
approximates that of silicon such that the stresses of temperature excursions are minimized. In the "soft"-solder
system, a lead-base solder is used to mount the chip directly to a copper platform. In this system, the flexible
nature of the solder absorbs the stresses of mismatch between the silicon chip and the upper platform during
temperature cycling. Disagreements exist as to which system is best but as with many similar questions, the
answer depends upon the end use of the product. Both systems have their advantages and disadvantages. The
hard-solder systems do not perform under repeated high-current surges as well as the soft-solder systems, and the
soft systems, unless carefully chosen, tend to work-fatigue. Texas Instruments uses both systems with success.
Lead-Bonding Techniques
In bonding, as in mounting, there are two ways in which most power transistors and thyristors are assembled.
One method utilizes ultrasonic bonding of aluminum wire to the chip. The other technique is solder contact
bonding. Again, each method has its advantages and disadvantages. When low volume and close control are
available, the aluminum bond is very good, but the rugged solder contact method lends itself to volume
production and is very readily process controlled. Texas Instruments uses both types of lead bonding methods in
the construction of power transistors and thyristors,each serving the needs of the desired application.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
..,
_
10-7
POWER SEMICONDUCTOR TECHNOLOGY
GERMANIUM POWER TRANSISTORS
Texas Instruments is a high-volume manufacturer of an extemely broad line of germanium transistors. Manufacturing
capabilities in virtually all areas of germanium semiconductor technology permit the production of devices ranging from
high-power (150 watts) to high-frequency (3 GHz) low-noise amplifiers. Programs in mechanization and automation
extending back to the mid-1950's at the Dallas, Texas, TI facility have permitted production of over 1,000,000,000
germanium transistors to satisfy the market needs for large volumes of high·quality devices.
During the assembly operations for germanium power devices, the collector portion of the element is mounted to the
case (or header) to facilitate the transmittal of heat away from the element during the ultimate application of the
device. After final surface treatment, the devices are hermetically sealed in a controlled, dry atmosphere.
Alloy Design
Germanium high-power and medium-power devices are available in P-N-P types which carry maximum ratings in
the ranges of 180 volts, 25 amperes, and 150 watts. The majority of these devices are produced from alloy device
elements and are particularly useful where low saturation voltage and high emitter-base breakdown voltage are
important considerations. These devices are produced by alloying two (collector and emitter) dopant pellets,
along with a base-contact ring, into a single-resistivity chip of germanium. This alloying operation is performed in
a highly controlled·ambient atmosphere and temperature, in order to assure uniform functions in the devices.
Diffused-Alloy Design
A unique series of germanium power transistors is available in the JAN 2N 1046 and 2N 1908 devices. Their
fabrication rechnique involved both alloying and diffusion technologies which produces devices that can operate at
high frequencies (""30 MHz), high current (""20 A) levels, and that are useful as high-frequency power amplifiers.
10-8
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
Application Information
III
II
APPLICATION INFORMATION
APPLICATION REPORT SUMMARY
Introduction
Listed in this section are several application reports pertaining to the use of power semiconductors. Section A is a listing
of abstracts of application reports previously published by Texas Instruments. Reprints of the full reports may be
obtained by writing Texas Instruments Inc., P.O. Box 5012, M.S. 30B, Dallas, Texas 75222
Section B contains a discussion of Safe Operating Areas and Secondary Breakdown Ratings of Power Transistors and
Section C contains new application information covering Thermal Considerations in the use of Power Semiconductors.
A. APPLICATION REPORT SUMMARY
CA-66-SCR Switching Methods
This report describes various techniques for switching SCR's. Topics covered include: Electrical Characteristics of
SCR's, Turning on SCR's, Effect of loads on switching, Turning off SCR's, and specific SCR switching applications.
CA-82-SCR Ring Counters
This report discusses the design and application of ring counter circuits using SCR's to perform digital logic functions.
CA-105-AII Silicon 35-Watt Audio Power Amplifier
This report describes an all silicon, low·cost power amplifier featuring a transformerless, direct·coupled, comple·
mentary-symmetry, driver·output circuit. The class·AB output stage will deliver 35 watts rms (or 70 watts of peak
power) into an B-ohm load with a 55·volt supply.
With 35 watts (rms) output power, the frequency response is -3 dB at 7.4 Hz and 91 kHz. Total harmonic distortion is
less than 0.5% from 60 Hz to 17 kHz, and less than 1% from 37 Hz to 54 kHz. Sensitivity at 1000 Hz is less than 1 volt
for full power output.
CA-111-Low-Cost Solid-state Audio Amplifiers
This report presents two applications of Tl's new low-cost, medium'power, silicon epitaxial base plastic transistors.
The circuits described in this note are a 15-watt (rms) complementary-symmetry audio power amplifier which is
direct·coupled throughout, and a 3-watt (rms) class-A automotive audio power amplifier which uses a P·N·P output
device.
Emphasis has been placed on obtaining a low-cost amplifier giving the maximum amount of output power possible from
the device while using the minimum number of devices, holding the distortion to a reasonabie level, and keeping the
sensitivity compatable with typical amplifier requirements.
CA-116A-Low-Cost Plastic Power Audio Amplifiers
III
This report provides two examples of amplifier design (5 watts and 2.5 watts rms) using low·cost plastic single-diffused
power transistors. Low-cost plastic power transistors are ideal components for use in the output stage of low-cost audio
amplifiers. Excerpts from the subject data sheets are included.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
11-1
APPLICATION INFORMATION
APPLICATION REPORT SUMMARY
CA-117-Low-Cost Plastic Power Drivers
This report describes two similar approaches to the preliminary design of an SO-watt (rms) audio power amplifier using
low-cost plastic power transistors_
The first has a class-A driver stage and is suitable for a public address system_ The other uses a slightly more
complicated class-AB driver stage to obtain performance suitable for a high-quality music system.
Discussion is centered around design consideration of the driver stage.
CA-118-Economical Servo Control Amplifiers
This note describes a simple, reliable version of a servo amplifier that is particularly economical due to its use of a type
of plastic power output transistor which exhibits high gain, high-dissipation capability, and low saturation voltages.
Devices used are single-diffused epitaxial-base plastic power transistors which are available in N-P-N and P-N-P polarities
over a current range of one to 25 amperes.
CA-119-Economical Reversable D-C Motor Control
This report describes an economical solid-state circuit which regulates a single-polarity doc power source to set the speed
and direction of a reversible doc motor, regardless of its shaft load (within the rating of the motor).
CA-120-Economical Power Voltage Regulators
In this report, an approach to output stage design is presented that is applicable to a wide variety of voltage regulators.
Complete designs are presented and compared for a series-pass and a switching-mode regulator.
CA-121-Fan Motor Thermostatic Speed Control
This report presents a thermostatic control circuit for two types of a-c motors suitable for air cooler, attic fans, and
central air-conditioning blower motors.
The advantage of this circuit is its use of a triac as the power-control element. The circuit requires no power other than
line voltage but uses low-voltage connections to remote-control elements.
A semiconductor thermistor (temperature-sensitive resistor) is the sensing element, and economical plastic transistors
are used in the triac trigger circuit.
CA-123-Low-Cost 400-Watt Converter
This report discusses a converter with a saturating drive transformer and a non-saturating output transformer.
II
11-2
This converter steps up doc from 20 V to 110 V and drives loads as large as 400 watts. Because the critical parts of the
circuit are the power transistors and two transformers, the specifications of these devices are crucial to the design
procedure.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
OALLAS, TEXAS 75222
APPLICATION INFORMATION
APPLICATION REPORT SUMMARY
CA-126-Economical High-Voltage Converters
This report describes the use of plastic-encapsulated single-diffused silicon power transistors in high-voltage converter
applications. Two circuit concepts are discussed. The first one is a two-transistor converter using a single transformer
for the drive and voltage-conversion function.
The second circuit is a single transistor blocking-oscillator type, common to high-voltage energy-discharge systems.
CA-137-Programmable Trigger Circuit for Triac Phase Control
This report discusses the theory and applications of the phase-shift technique of a-c power control using triacs. In this
control system, power delivered to the load is varied by changing the phase angle during which the triac is conducting.
The designer may consider the basic circuit a universal building block which can be programmed for different
applications by using different accessory networks.
CA-13S-Triac Triggering Techniques
This report describes techniques to accomplish the triggering function and illustrates several different methods for
controlling a-c power with triacs.
A sample triac data sheet is appended, and the important ratings of several popular TI triacs are tabulated.
CA-141-Universal Driver for Audio Amplifiers
This report describes a universal audio driver that, in conjunction with properly selected output transistors, can be
made into an amplifier with an rms power capability of five watts to 50 watts.
By using low-cost plastic-encapsulated transistors and the minimum number of components, the cost has been kept to a
minimum.
CA-142-Direct-Coupled Complementary SO-Watt Stereo Amplifier
The 80-watt-per-channel stereo system described in this report is an economical design with excellent performance. All
transistors used are low-cost plastic devices with proven reliability and performance.
All the usual hi-fi inputs and equlization networks are provided.
CA-159-Voltage Feedback Methods to Improve Audio Amplifier Designs
This report examines the factors involved in utilizing voltage feedback, how these factors affect circuit performance,
and how voltage feedback can best be employed to achieve the desired performance from an audio amplifier.
Discussions concern expressions for open-loop, closed-loop, and variations of certain closed-loop parameters with
feedback, as well as boot-strapping and the effect of compensation on closed-loop performance.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
III
11-3
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
B. SAFE OPERATING AREAS FOR POWER TRANSISTORS
The Safe Operating Area encloses all points representing simultaneous values of two variables which a transistor can
safely handle under specified conditions. The majority of transistor applications can be reduced to one or more of the
following operations:
Forward-Biased Continuous Operation
Pulsed Forward-Biased Operation
Switching Between Saturation and Cutoff
Each operation is discussed in reference to:
Presentation
Test Circuit
Test Points
Test Procedu re
Temperature Derating
The maximum operating capability of each individual transistor is a complex function of IC, VCE, IB, TC and tp_ To
characterize the full capability of a device would require an unreasonable number of test points_ Therefore, it is
necessary to simplify a rating and derating theory. No reference to the type of failure mode is made.
'FORWARD·BIASED CONTINUOUS OPERATION
Presentation
Figure 1 shows a Forward-Biased Continuous Safe Operating Area_ For VCE ~ VCE1 the total power dissipation
PT is limited by IC max. At increasing VCE the power dissipation capability of most transistors is decreasing
gradually. Because the rate of decrease depends on the individual transistor, it is suggested to use PT3 for
VCE2 < VCE ~ VCE3 and PT4 for VCE3 < VCE ~ VCE4.
For the area given in Figure 1, safe operation is assured with forward bias only (IB is positive for npn transistors,
negative for pnp transistors)_ High-current germanium transistors may have ICEO leakage currents of 1 A or more
at high junction temperatures. It is not recommended to operate transistors continuously at currents smaller than
ICEO except in a temperature-stable cutoff condition_
Test Circuit
The Forward-Biased Continuous Safe Operating Area can be verified by using the temperature-stable
common-base circuit il.lustrated in Figure 2. The Transistor Under Test (TUT) dissipates PT"" IC VCE for
VCE»1 V.
a
11-4
Test Points
The number of test points is arbitrary. The Safe Operating Area in Figure 1 requires three (3) test points: IC2 at
VCE2, IC3 at VCE3 and IC4 at VCE4. Test points should be selected using the principle that only the verified
PTn is assured for VCE'S smaller than the test point voltage VCEn.
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Test Procedure
Test Point Example:
IC = IC2
VCE = VCE2
Tc = 55°C for TJ max';;; 125°C
TC = 100°C for TJ max> 125°C
Test Duration: 1 minute
Determine:
Test Sequence:
1. Start with VCC and VEE at low voltage.
2. Increase VCC to approximately VCE2.
3. Increase VEE to obtain IC2.
4. Increase VCC to two times VCE2.
5. Adjust VEE to obtain VCE2 and IC2.
6. Operate transistor at specified case temperature for one (1) minute. The transistor is not acceptable if IC varies
more than 0.1 • IC2 during the one (1) minute test.
7. Decrease VCC to VCE2.
8. Turn off VEE.
9. Turn off VCC.
Evaluation:
The device shall be capable of meeting the specification.
•
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
11·5
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Temperature Derating for Continuous Operation
The maximum allowable case temperature for a given PT can be calculated as follows:
T C .;;; TJ max - -PT ITJ max - 55°C) for TJ max';;; 125°C
PTn
PT
TC';;; TJ max - (TJ max - 100°C) for TJ max> 125°C
PTn
TC = Case Temperature
TJ max = Maximum Operating Junction Temperature
PT = Total power dissipation at VCE';;; VCEn
PTn = Total power Dissipation at Test Point VCEn and
TC = 55°C for TJ max';;; 125°C or TC = 100°C
for TJ max> 125°C.
IC
"},
Ie max f----->.!"O
~~
I~d'r
IC2
-------J--~1-)o
I
"},
"0 U'~
I
I
:
IC3
~ 125°C
I
I
I
I ~d'r
~1tr
I
I
I
-------+---/-------f---I
I
I
I
I
I
L -______-L'__-L'----~~I--~~VCE
LOG
VCEI VCE2
VCE3
VCE4
FIGURE 1
VCE
Re
a
Vec=2· VCE
FIGURE 2
11-6
TEXAS INCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
PULSED FORWARD-BIASED OPERATION
Presentation
Figure 3 shows three pulse width areas for tp1 ;;. tp2;;' tp3; however additional pulse width areas may be added.
The presentation in Figure 3 has the advantage of specifying the maximum capability of a transistor type at
IC max whereas the area in Figure 4 is based on maximum capability at highest allowable VCE. The area in
Figure 4 is limited by IC max and curves representing constant IC • VCE product. Therefore, the test point at
highest VCE assures all other operating points within a given tp area, but on the other hand, this method derates
the capability of a transistor at IC max.
Test Circuits
In test circuit Figure 5 the Pulsed Forward-Biased capability of a transistor can be verified. The transistor 01 can
be replaced by a switch such as a mercury relay. Some test circuits require an emitter resistor for the Transistor
Under Test (TUT). Such a resistor is not desirable because it complicates specification writing as well as testing
procedures.
Test Points
The number of test points equals the number of pulse width areas. The following table shows the required
specification for verification at TC = 25°C:
FIGURE
TEST POINT
3
4
IC
VCE
tp
#1
ICmax
VCE5
tp1
#2
ICmax
VCE6
tp2
#3
ICmax
VCE7
tp3
#1
IC1
VCE8
tp1
#2
IC2
VCE8
tp2
#3
IC3
VCE8
tp3
In addition the duty cycle has to be specified.
II!
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALL.AS, TEXAS 75222
11-7
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Test Procedure
Test Point Example:
TC = 25°C
IC= IC max
VCE = VCE5
tp = tpl
Duty Cycle = d 1
Determine:
V.CCl = VCE5 + IC max RS
The collector current capability of al should be approximately:
2
(
VSS2 + 1.5 V
RSS2
+
IC max
)
hFE min (TUT)
The current supplied to the base of al should be sufficient to drive al into saturation for Ical.
Transistor al may be replaced by a rela,. The rise and fall time of the collector current should be small
compared to the pulse width tp.
Test Sequence:
1. With all voltage supplies turned off adjust the pulse generator for tp = tpl and d = dl.
2. TurnonVcctoVCC1.
3. Increase VSSl until ic reaches IC max by applying single pulses.
4. Check that the following conditions are met:
tr«tp
tf«tp
TC= 25°C
5. The transistor is not acceptable if ic varies more than 0.1 • IC max during tpl. The duration of test is only that
time adequate to make the reading.
6. Adjust VSSl to zero and turn off VCC.
For subsequent transistors to be tested, only steps 2, 3, 5 and 6 have to be repeated.
•
11·8
Evaluation:
The device shall still be capable of meeting the specification.
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
IC
I C vs V CE
TC = 2SoC
SINGLE NONREPETETIVE PULSE
IC
Ie vs VCE
TC = 2Soc
SINGLE NONREPETETIVE PULSE
IC( max) I---------.,.-""T'-~~
IC(max)
tpl
tp2
tp3
VCE IC CONSTANT ---~....£..~_
VCE5
VCE6
LOG
VCE7 VCE
FIGURE3
VCEB VCE
FIGURE4
SCOPE
vin + Vec
seOPE
ic
VCC
RS .. 20' IC
SCOPE
COMMON
RSSl
TUT
Ql
RSS2
-
PULSE
GENERATOR
VSS2
II
VSSl
VCC
'='
•
FIGURE 5
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
11·9
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
SWITCHING BETWEEN SATURATION AND CUTOFF
Resistive Load
Presentation
Figure 6 shows the area within which the load line has to be located for safe operation with a resistive load.
Test Circuit
Verification of the Safe Operating Area is performed by switching the transistor on and off with a single
non-repetitive pulse in circuit Figure 7.
Test Points
Only one test point has to be verified. This is accomplished by switching from VCE max to saturation at IC max
and back again to VCE max.
Test Procedure
Test Point Example:
TC; 25°C
IC ; IC max
VCE ; VCE max
RBBl
RBB1(1)
RBB2
RBB2(1)
VBBl
VBBl (1)
VBB2
VBB2(1)
Determine:
VCE max
RL ; ----:c.:;;...;.;-'-IC max
VCC; VCE max
The collector current capability of 01 should be approximately:
ICOl ; 2 (
VBB2 + 1.5 V
RBB2
+
VBBl - 1.5 V)
RBBl
The current supplied to be base of 01 should be sufficient to drive 01 into saturation for IC01.
11-10
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Test Sequence
1. Adjust VBB1. VBB2. and Vee.
2. Apply single pulses with increasing pulse width until
Ie = Ie max using the specified duty cycle.
3. The transistor is not acceptable if the cutoff state after the pulse cannot be maintained. The duration of the
test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation:
The device shall still be capable of meeting the specification.
IC
IC vs VCE
TC = 25°C
SINGLE NONREPETETIVE PULSE
IClmax)
VCElmax)
VCE
FIGURE 6
SCOPE
SCOPE
RBB1
SCOPE
COMMON
Q1
PULSE
GENERATOR
>---------<------+----iII~-_4_--+_--_IIII---.-J
VBB1
VCC
FIGURE 7
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
11-11
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Clamped Inductive Load
Presentation
Figure 8 shows the area within which the load line has to be located for safe operation with a clamped inductive
load.
Test Circuit
The test circuit in Figure 9 is similar to the one shown in Figure 7 except for the load in the collector
R LOAD represents the total resistive part of the load.
circui~.
Test Points
By switching through the worst allowable load line during turn off, the Safe Operating Area of Figure 8 can be
verified.
Test Precedure:
TC = 25°C
Test Point Example:
IC=ICmax
VCE = VCE9
RL = RL1
L = Ll
RBBl = RBB1(l)
RBB2 = RBB2( 1)
VBBl = VBB1(1)
VBB2 = VBB2(1)
CR = lNXXXX
VCc= VCE9
The collector current capability of 01 should be approximately:
2
(,!BB2(1) + 1.5 V
+
VBB1(l) - 1.5 V)
,RBB2(1)
•
11·12
RBB1(l)
The current supplied to the base of 01 should be sufficient to drive 01 into saturation for IC01 .
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Test Sequence
1. Adjust VBB1 to make Vin
=
VBB1(l). VBB2 to VBB2(1). and VCC to VCE9·
2. Apply single pulses with increasing pulse width until ic =
Ie max with duty cycle as specified.
3. The transistor is not acceptable if the cutoff state after the pulse cannot be maintained. The duration of the
test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation:
The device shall still be capable of meeting the specification.
IC
IC vs VCE
TC = 25"C
SINGLE NONREPETETIVE PULSE
IC(max)
VCE
VCE9
FIGURES
SCOPE
SCOPE
Vin
vee
SCOPE
COMMON
r-
RSS2
I
I
I
I
PULSE
GENERATOR
I
I
I
I
">------.....- -......---1111---........- - - - -.... II
VSSl
'::'
l'wAO
CR
III
I
I
IL
I
I
I
'-- -'
seOPE
Vee + ieRs
VCC
FIGURE 9
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
11-13
APPLICATION INFOltMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Unclamped Inductive Load
Presentation
Figure 10 shows three different areas depending on VBB2 and RBB2. The'number of areas is arbitrary. The areas
are limited by IC max. curves representing constant energy. IC 2 L/2. and a reasonable amount of maximum
inductance L1 associated with circuits for which the transistor type is intended for.
Test Circuit
Verification of the Safe Operating Area is performed by switching the transistor from cutoff to saturation to
cutoff with a single non·repetitive pulse in the circuit of Figure 11.
Test Points
Testing transistors with IC4. IC5. and IC6 and L1 assures the respective safe operating areas because the
capability of absorbing inductive energy increases with increasing collector current. This method derates the
capability of a transistor at IC max but decreases the amount of testing at higher currents otherwise necessary to
verify a c,urve which attempts to follow the actual capability of the device.
The energy absorbed by the transistor is given by:
3' L' IC2 • V(BR)CEX
6 V(BR)CEX - 6 VCC + 4 RL IC
where:
EL
= Inductive Energy Stored in
L. EL = IC2 L/2
ES
=
Energy from Power Supply During "Turnoff" Transient
ER
=
Energy Absorbed by Resistive Component of the Load During "Turnoff"
Transient
ET
=
Energy Absorbed by Transistor During "Turnoff" Transient.
V(BR)CEX = Breakdown Voltage of Transistor Under Test (V(BR)CEO. V(BR)CER or
V(BR)CEX - Depending on VBB2 and RBB2).
Transistors with V(BR)CEX»VCC absorb a 'lower energy ET during the test than transistors with
V(BR)CEX "'" VCC. If the ET capability of a transistor has to be predicted without knowing V(BR)CEX. the
following ET can be absorbed at TC = 25°C for a single non-repetitive pulse:
ET =
1
2" L·
IC2
It is desirable to choose VCC" 15 V. This tends to decrease damage to transistors which are unable to pass the
specified test point.
11-14
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Test Procedure
Test Point Example:
TC = 25°C
IC= IC4
VCC= VCC2';;; 15 V
RL = RL2';;;VCC2/2IC4
L= L2
RBBl = RBBl (2)
RBB2 = RBB2(2)
VBBl = VBB1(2)
VBB2 = VBB2(2)
Determine:
The approximate required pulse-width to reach 1C4 is given by:
L2
tp4 = - _ IC
VCC
The collector current capability of Ql should be approxim1'tely:
ICOl = 2
(
VBB2(2) + 1.5 V
+
RBB2(2)
VBB1(2) -
1.5
V)
RBB1(2)
The current supplied to the base of Ql should be sufficient to drive Ql into saturation for ICQ1.
Test Sequence
1. Adjust VBBl to make vin = VBB1(2). VBB2 to VBB2(2). and VCC to VCC2.
2. Apply single pulses with tp « t p4. Increase pulse width until ic = IC4. (Duty cycle should be such that
TJ(AVG) "" 25°C.)
3. The transistor is not acceptable if the collector-emitter voltage collapses or oscillates during the collector
current fall time tf. The transistor must be capable to maintain V(BR)CEX during tf within ±10% of
V(BR)CEX. The duration of the test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation: .
The device shall still be capable of meeting the specification.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
III
11-15
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Icv. L
TC = 25°C. VCC =
V.
SINGLE NONREPETETIVE PULSE
IC
IClm_x)
t--.. . . ~r-"
V; RBB2 =
.n
Cl
9
V; RBB2 =
.n
IC 2 L/2= CONSTANT _L-------~~--4------IIIt---......---.------IIIt---++.....
CURRENT PROBE
TEKTRONIX P 6042
OR EOUIV.
FIGURE 11
11·16
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Temperature Derating for Pulsed Forward-Biased Operation and Switching
A safe maximum case temperature (Tc ~ 25°C) for a given IC and average total power dissipation PT(AVG) due
to repetitive pulses can be calculated as follows:
IC
TC";; TJ max - - - (TJ max - 25°C) ICn
RIIJC PT(AVG)
TC = Case temperature
TJ max = Maximum operating junction temperature.
IC = Collector current during saturation
ICn = Maximum allowed collector current at TC = 25°C
ROJC = Thermal resistance junction to case
PT(AVG) = Average total power dissipation
III
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
11-17
APPLICATION INFORMATION
THERMAL CONSIDERATIONS
C. THERMAL CONSIDERATIONS
Heat Flow
To understand the flow of heat through a solid, it is helpful to use an electrical analogy.
ELECTRICAL TERM
THERMAL TERM
T -Temperature differential rOC]
P-Power [W] ,
RO-Thermal resistance [oCIW]
V-Voltage differential [V]
I-Current [A]
R-Resistance
em
Figure 1 illustrates the thermal circuit as it applies to a semiconductor device dissipating a continuous power into an
air-cooled heat sink_
.--_---".
_ _• T J-Junction Temperature
p
RBJc-Junction-to-Case Thermal Resistance
T c-Case Temperature
ROCHs-Case-to-Heat Sink Thermal Resistance
THs-Heat Sink Temperature
RBHSA-Heat Sink-to-Free-Air Thermal Resistance
'------e T A -Free-Air (Ambient} Temperature
FIGURE 1
The corresponding thermal circuit for a device dissipating continuous powerin free air is shown in Figure 2.
O
P
TJA = TJ - TA
-=-
TJ
RBJC
TC
ReCA
TA
FIGURE 2
The most frequent thermal requirement which must be met is TJ';;; TJ(max)- For a given power dissipation this means
the sum of all thermal resistances from junction-to-ambient must be:
,,;: TJ(max) - TA
R
OJA '"
P
Junction-to-Case Thermal Resistance-ROJC
II
11-18
ROJC is the temperature difference between the power dissipating junction,and a point specified on the case divided by
the power dissipation. Most TI power device data sheets specify ROJC- The case temperature measurement point is
shown under "Mechanical Data", Derating should be performed as outlined in SECTION B, Safe Operating Areas for
Power Transistors, under "Temperature Derating for Continuous Operation"_ This is necessary because ROJC increases
with increasing collector-emitter voltage, Depending on the transistor construction, there is an additional increase or
decrease of ROJC with increasing collector current. In applying the Safe Operating Area concept, ROJC variations with
operating point do not have to be considered_
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
APPLICATION INFORMATION
THERMAL CONSIDERATIONS
Case-to-Heat-Sink Thermal Resistance-ROCHSROCHS is a function of the following conditions:
Torque applied to the machine screw or stud
Use of thermal compound and type of compound
Use of insulator and material of insulator
Flatness of device and heat sink
Surface finish
Heat-sink material
The effect of mounting torque as well as insulator material is shown in Figure 3 and Figure 4 for plastic transistors.
PLASTIC
REPLACEMENT
FOR TO-3
PLASTIC
REPLACEMENT
FOR TO-66
H
GG
CASE-TO-HEAT-SINK THERMAL RESISTANCE
vs
~
MOUNTING TORQUE
u
0
~
U
o
1
~
c
1
1.4
F'"
""
o
1.0
0.8
\~
0.6
1\
c
'"
0:
Q)
J.CA .lsuL1ToR
(0.003 in)
~
~ 0.2
u
0
NO INSULATOR
I
0
2
4
""c
0.6
"
'"
:c
0.4
\
1;l
co
6
8
u
1
CJ)
10
12
:c
14
u
<:D
<:D
0:
0.8
0-..
0.2
o
MICA INSULATOR
(0.003 in)
NO INSLLATbR
DOW CORNING II COMPOUND
6-32 SCREW MOUNTING
o
2
0:
Mounting Torque-inolbs
KAPTONINSULATOR(0.0021 in)
I
t'--- t-.........
I'-I---
"';'
OOW CORNING II COMPOUND
6-32 SCREW MOUNTING
&,
'"
6
I
I
1.0
J:
I-
'2co
'---
1.2
§
~
1;)
:c 0.4
[5
t:
.;;;
(ij
'-r-.
1.4
cco
KAPTON INSULATOR(0.0021 in)
, I'---- t--
'"
0:
§
~
I I I I
t! 1.2
.;;;
(ij
CASE-TO-HEAT-SINK THERMAL RESISTANCE
vs
MOUNTING TORQUE
4
6
8
FIGURE 4
FIGURE 3
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
10
12
Mounting Torque-inolbs
14
•
11-19
APPLICATION INFORMATION
THERMAL CONSIDERATIONS
Following is a table of ReCHS using a mica insulating washer. The heat sink used to determine this value was a smooth,
flat, copper plate, with the thermocouple mounted 0.05 inch below the mounting surface in an area beneath the device.
The device was mounted using a 2-mil mica washer to a clean, dry, heat-sink surface, without the use of a thermal
compound. A torque of ten inch-pounds was applied to the stud or to each of the mounting screws.
PACKAGE
TO-3
TO-53
TO-59, TO-60, TO-lll
TO-61
TO-63
1.5
1.6
3.8
1.3
1.1
By using a thermal compound, the above thermal resistances can be decreased more than 0.6 °C/W, depending upon the
type of.compound used.
Case-to-Free-Air Thermal Resistance-ReCA
ReCA is more of a constant than ReCHS because ReCA is not dependent on so many variables. Most TI power device
data sheets specify RIIJA which is RIIJC + ReCA .
•
11·20
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
Quality and Reliability
Information
II
II
QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
FACILITIES AND EQUIPMENT
A.
LIFE TEST AND BURN-IN FACILITIES
1. Texas Instruments Incorporated is equipped with extensive facilities to provide life test and burn-in capabilities for
germanium power transistors, silicon power transistors, and thyristors.
2. Facilities are available for a wide range of tests including:
a. Storage life testing up to 300°C.
b. Voltage-temperature stress testing at both ambient and elevated temperature conditions.
c. Free·air operating for more than 20,000 silicon power and germanium transistors.
d. Case temperature operating for 8600 silicon power transistors at dissipation levels up to 200 watts.
e. Intermittent operating at various cycle times and power levels.
B.
ENVIRONMENTAL FACILITIES
1. Test capabilities of the Environmental Laboratory are shown in two different ways, First, Military Standard Test
Capability which lists capability per MIL-STD-202, MIL-STD-750, and MIL-STD-883 for each test category; and
second, Overall Test Capability which lists capability limits and, where applicable, combined environment capability
for each test category.
2. Laboratory capabilities required for performance of tests per MIL-STD-202, MIL-STD-750, and MIL-STD-883 are
listed in Table I. Those tests which are noted as exceptions are beyond the capability of the Environmental
Laboratory.
3. Laboratory capability limits, including limits of combined environments, are shown in Table II for each test
category.
•
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS. TEXAS 75222
12-1
QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
TABLE I-MILITARY STANDARD TEST CAPABILITY
TEST CATEGORY
Altitude
MIL·STD·202
MIL·STD·750
MIL·STD·883
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
Dew Point
Flammability
All Conditions
Moisture Resistance
All Conditions
Resistance to Solvents
All Conditions
(Symbolization)
Salt Atmosphere
Salt Spray
All Conditions
*Seal, Gross Leak
All Gross Leak Conditions
(Method 112A, Conditions
A, B, and Procedure I V of
Condition C. Method I04A,
Conditions A, B & C) t
Solderability
All Conditions
Soldering Heat
All Conditions
All Gross Leak Conditions
(Method 1071, Conditions
C, D, E & F)t
All Gross Leak Conditions
(Method 1014, Conditions C
&D)t
All Conditions
All Conditions
All Conditions
Temperature Cycling
All Conditions
EXCEPT: Method 107, Con·
ditions D & F
Terminal Strength
All Conditions
(Lead Integrity)
Thermal Shock (G lass Strain)
Accehiration, Sustained
All Conditions
All Conditions
EXCEPT: Method 1051, Con·
ditions D & E
AU Conditions
EXCEPT: Method 1010, Con·
ditions E & F
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
All Conditions
EXCEPT: Method 2001, Con·
dition J
(Centrifuge)
NOTE:
~ Method 2001, Con·
dition G and H, may
require special.fixtur-
ing. Limitedcapabil.
ity for these condo
tions is avai lable for
special package types.
:j:Shock (Mechanical)
All Conditions
All Conditions
EXCEPT: Method 213, Con·
ditions B, C, G, J,
and K
All Conditions
NOTE:
~ Method 2002, Con·
dition F and G, may
require special fixtur·
ing. Capability for
these conditions is
available for special
package types.
Vibration, Fatigue
All Conditions
All Conditions
Vibration, Noise
All Conditions
All Conditions
"Vib,ation, Random
All Conditions
"Vibration, Variable Frequency
Seal, Fine Leak
(Radioactive Tracer Gas)
All Conditions
ONLY Method 112A, Condi·
tion C, Procedure III.B
All Conditions
ONLY Method 1071, Condi·
tion G only
All Conditions
ONLY Method 1014,Condition
B only
.X·Ray, Film
All Conditions
All Conditions
All Conditions
.X·Rav. Real Time (TV X·Rav)
All Conditions
All Conditions
All Conditions
..
*Sal! Radiographic Inspection Capability for Seal, Fine Leak .
t'tems in parenthesis are the gross leak test conditions performed by Environmental Laboratory. Exception to these particular methods not
listed.
:t:Also perform mechanical shock per MIL-STO-8108, Method 516, Procedures I, III and IV.
.
"'Also perform random vibration and vibration variable frequency per MIL-STO-810B, Method 514.1, Procedures I, II, III, IV, and VII. Omit
paragraph 4.5.1.1, Resonant Search, and paragraph 4.5.1.2, Resonant Dwell for Electronic Components.
1fCapability for testing approxim"ately 15 major microelectric package types per MIL-STD-883, Method 2001, Conditions CO and H (sustained
acceleration) and for testing approximately 30 major microelectronic packages per MI L-STD-883, Method 2002, Conditions F and G
(mechanical shock) are presently available. These high"G" level conditions are used primarily for evaluation tests on small packages such as
I
C·DIP, PIP, 4A header, TO·5, TO-18, etc .
• Radlographic inspection is performed in accordance with many other goverment and customer specifications. Before any new radiographic
specifi.cation is acce~~~!e for use as a ~est s~ndard with Components Group, It must be approved by Environmental Laboratory.
12·2
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012,. DALLAS, TEXAS 75222
QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
TABLE II-OVERALL TEST CAPABILITY
TEST
Acceleration, Sustained (Centrifuge)
CAPABILITY
50-50,000 9 (Standard)
50,000-100,000 9 (Nonstandard)
Altitude (Barometric Pressure, Reduced)
450,000 ft. Simulated Altitude with -125"C to 125"C Capability
Cryogenic Exposure
-75"C to -196"C
Dew Point
-65"C to 150"C
Flammability
900"C to 1100"C
Moisture Resistance
2"C to 96"C, 40% to 100% RH
Radiographic Inspection (X-Ray)
Film
Resolution to 0.001 Inch, 150 kV·5 mA
Real Time
360" Rotation-Resolution to 0.001 Inch
25"C to 71"C, Up to 20% Salt Solution by Weight
Salt Atmosphere/Spray
Seal
>5 X 10-6, 150"C,
Gross Leak
Fluorocarbons, Mineral Oils, Ethylene Glycol
Hydrostatic Pressure-Q.-300 psig
;> 1 X 10- 11
Radioactive Tracer Gas
Symbolization (Resistance to Solvents)
PULSE SHAPE-APPROXIMATELY
Shock (Mechanical)
HALF·SINE
1,500·30,000 9 @ 0.2 ms ± 0.1 ms
1,000·6,000 9 @ 0.3 ms ± 0.1 ms
500-10,000 9 @ 0.5 ms ± 0.15 ms
500-4,000 9 @ 1 ms ± 0.3 ms
500 & 1,000 g@ 1.5 ms ± 0.45 ms
1,800g@3ms±0.6ms
50·100 g@6 ms ± 0.9 ms
50·200 9 @ 7 ms ± 1.05 ms
15·150 9 @ 11 ms ±.1.65 ms
PULSE SHAPE-SAWTOOTH
100g@6ms
Solderability/Soldering
Up to 280"C
T emperatu re Cycling
-185"C to 300"C
Terminal Strength (Lead Integrity)
Lead Fatigue, Tension, Stud Torque, Terminal Torque
Thermal Shock
-196"C to 200"C
Ultrasonics
0-100 psi at 25 kHz or 40 kHz
Ultraviolet Exposure
To 12.5 mW/cm 2
Vibration, Fatigue
10-100 Hz, 5·70 9
Vibration, Random
20-200 Hz, Power Density 1.3 g2/Hz
5·2,000 Hz as Limited by 1 Inch DA and 60 Inches/Second Veloc·
ity. 0-70 9 (Standard), 70-100 9 (Nonstandard)
Vibration, Variable
TEXAS INSTRUMENTS
INCORPORATED
POST OFFLCE BOX 5012
•
DALLAS, TEXAS 75222
II
12-3
I
12-4
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
RELIABILITY DATA
The reliability data in this section covers a cross'section of device types included in this data book. The data is broken
down into four major sections:
Germanium Power Transistors
Silicon Power Transistors
Thyristors
Single·Diffused Plastic Power Transistors
Germanium Power Transistors
2N1041
DEVICE
TEST
HOURS
STORAGE: 100°C
339,000
2 (lCBO)
OPERATING: VCE - 20 V, P - 1.2 W, TC - 55°C
341,000
0
PARAMETER
INITIAL LIMITS
CONDITIONS
F. R. X 10 5
FAILURES
MIN
MAX
60% CONF.
0.89
0.26
POST TEST LIMITS
MIN
MAX
70llA
ICBO
VCB=50V
hFE
VCE - 0.5V, Ic- 1 A
20
60
70llA
20
60
2N1046
DEVICE
TEST
HOURS
STORAGE: 95°C
96,000
0
OPERATING: VCE = 40 V, VBE - 0.2 V, Tstg = 55°C
96,000
0
PARAMETER
INITIAL LIMITS
CONDITIONS
ICBO
VCB=40V
hFE
VCE-1 V,IC-0.5A
F. R. X 10-5
FAILURES
MIN
MAX
60%CONF.
0.93
0.93
POST TEST LIMITS
MIN
MAX
1 mA
40
200
2mA
32
Silicon Power Transistors
2N1049A 2N1050A
DEVICE
TEST
HOURS
F. R. X 10 5
FAILURES
60%CONF.
STORAGE: 200°C
689,080
1 (hFE)
0.29
OPERATING: VCE - 40 V, Pc - 23 W, TC = 100°C
730,080
4 (lCBO)
0.69
PARAMETER
INITIAL LIMITS
CONDITIONS
ICBO
VCB = 30V
hFE
VCE - 10 V, Ie - 500 mA
MIN
MAX
POST TEST LIMITS
MIN
151lA
30
90
MAX
30llA
24
108
II
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
12-5
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N2151
DEVICE
HOURS
TEST
FAILURES
F. R. X 10- 5
60%CONF.
0.19
STORAGE: 200°C
468,000
0
OPERATING: VCE = 40 V. PT = 30 W, TC = 100°C
159,000
1 (ICES)
PARAMETER
INITIAL LIMITS
CONDITIONS
MIN
MAX
VCE=120V
ICES
1.21
POST TEST LIMITS
MIN
MAX
10llA
51lA
100V
V(BR)CEO
le= 50mA
hFE
VCE- 5V,IC= 1 A
100 V
120
40
144
36
2N2880
DEVICE
TEST
HOURS
F. R. X 10 5
FAILURES
60% CONF.
3
STORAGE: 200°C
262,000
(2 hFE)
(1 ICBO)
1.52
OPERATING: VCE - 20 V, PT = 30 W, TC = 100°C
249,000
2 (lCBO).
1.20
2N2880 (BURNED·IN FOR 168 HOURS)
DEVICE
TEST
HOURS
STORAGE: 200°C
944,000
F. R. X 10 5
FAILURES
60%CONF.
0.43
3 (lCBO)
2
OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C
PARAMETER
679,000
INITIAL LIMITS
CONDITIONS
0.44
(1 ICBO)
(1 lEBO)
MIN
MAX
POST TEST LIMITS
MIN
MAX
0.81lA
0.4 IlA
ICBO
VCB= 80V
lEBO
VES - 6V
hFE
VCE- 5V,IC-1 A
0.4 IlA
40
120
0.81lA
36
144
2N1724
DEVICE
TEST
HOURS
STORAGE: 200°C
906,508
1 (ICES)
OPERATING: VCE = 40 V, Pc = 50 W, TC = 100°C
856,248
1 (ICES)
PARAMETER
INITIAL LIMITS
CONDITIONS
ICES
VCE = 60V
MIN
MAX
60% CONF.
0.22
0.23
POST TEST LIMITS
MIN
300llA
VEB- 5V
IC- 200mA
hFE
VCE-15V,IC-2A
BOV
30
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS. TEXAS 75222
MAX
600llA
400ilA
lEBO
V(BR)CEO
II
12·6
F. R. X 10- 5
FAILURES
500llA
80V
90
27
108
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N1722
DEVICE
TEST
HOURS
F. R. X 10-5
FAILURES
60%CONF.
3
STORAGE: 200°C
285,000
(2 lEBO)
1.40
(1 ICES)
2
OPERATING: VCE ~ 10 V, Pc ~ 50 W, TC ~ 100 °c
285,000
(1 lEBO)
1.05
(1 ICES)
PARAMETER
INITIAL LIMITS
CONDITIONS
ICES
VCE
~
MIN
MAX
POST TEST LIMITS
MIN
MAX
300!,A
60 V
lEBO
VEB~
V(BR)CEO
IC~
hFE
VCE~15V,IC~2A
5V
600!,A
500!,A
400!'A
200mA
80V
80 V
30
90
108
27
2N3420 AND 2N3421
DEVICE
TEST
HOURS
STORAGE: 200°C
OPERATING:
I
I
2N3420 VCB - 40 V, PT - 1 W
2N3421 VCB - 60 V, PT - 1 W
F. R. X 10 5
FAILURES
60%CONF.
1,077,540
3 (lCEX)
0.38
1,038,540
7 (lCEX)
0.79
2N3420 AND 2N3421 (BURNED·IN FOR 168 HOURS)
DEVICE
TEST
HOURS
F. R. X 10-5
FAILURES
60% CONF.
3
STORAGE: 200°C
1,360,860
(1 O/S)t
0.30
(2 ICEX)
OPERATING:
I
2N3420 VCB 40 V, PT 1 W
VCB - 60 V, PT - 1 W
PARAMETER
ICEX
MIN
MAX
VCE - 80 V
0.5!'A
2N3421
VCE-120V
0.5!'A
2N3421
2N3420
hFE
INITIAL LIMITS
CONDITIONS
2N3421
IC~
VCE
60V
50mA
~
2 V, IC
1A
POST TEST LIMITS
MIN
MAX
I!'A
l!'A
60V
80V
80V
~
0.22
2 (lCEX)
2N3420
2N3420
V(BR)CEO
1,360,860
I 2N3421
20
60
16
72
40
120
32
144
IE
totS designates open or shorted.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DAL.LAS, TEXAS 75222
12-7
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N3998 AND 2N3999
DEVICE
TEST
HOURS
F. R. X 10- 5
FAILURES
60%CONF.
STORAGE: 200°C
162.000
0
0.54
OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C
162,000
1 (ICES)
1.20
2N3998 AND 2N3999 (BURNED·IN FOR 168 HOURS)
DEVICE
TEST
HOURS
STORAGE: 200°C
710,000
OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C
497,000
hFE
MAX
MIN
12N3999
POST TEST LIMITS
MIN
MAX
10jlA
5jlA
SOV
SOV
'C- 50mA
l2N399S
0.56
0.40
1 (O/S)t
VCE=looV
'CES
V(BR)CEO
60",1, CONF.
3 (ICES)
INITIAL LIMITS
CONDITIONS
PARAMETER
F. R. X 10- 5
FAILURES
VCE = 2 V, IC = 1 A
40
120
36
144
SO
240
72
2SS
2N1714 2N1715 2N1716 AND 2N1717
DEVICE
TEST
HOURS
STORAGE: 200°C
662,000
OPERATING: VCB = 40 V, Pc = O.S W
676,000
F. R. X 10-5
FAILURES
60%CONF.
1 (hFE)
4
0.29
(3 'CES)
0.75
(1 'CEX)
INITIAL LIMITS
CONDITIONS
PARAMETER
MAX
MIN
2N1714,6
V(BR)CEO
2N1715,7
2N1714,5
hFE
2N1716,7
MAX
4jlA
2jlA
VCE=60V
'CES
POST TEST LIMITS
MIN
60V
60V
IC= 30mA
100 V
100V
VCE = 5 V, Ie = 200 rnA
20
60
16
72
40
120
32
144
2N3996 AND 2N3997
DEVICE
TEST
HOURS
60% CONF.
STORAGE: 200°C
110,000
0
O.SO
OPERATING: VCE = 20 V, PT = 30W, TC = 100°C
110,000
0
O.SO
PARAMETER
12N3996
hFE
INITIAL LIMITS
CONDITIONS
MIN
12N3997
MAX
POST TEST LIMITS
MIN
VCE = 2 V, IC = 1 A
120
36
144
SO
240
72
288
totS designates open or shorted"
TEXAS INSTRUMENTS
INCORPORATED
•
SOV
SOV
40
II
POST OFFICE BOX 5012
MAX
10jlA
5/lA
VCE=90V
IC= 50 rnA
'CES
V(BR)CEO
12·8
F. R. X 10-5
FAILURES
DALLAS, TEXAS 75222
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N389 AND 2N424
DEVICE
TEST
F. R. X 10 5
FAILURES
HOURS
6O%CONF.
STORAGE: 200°C
708,000
2 (V(BR)CER)
0.42
OPERATING: P = 4B W, TC = 100°C
353,000
S (V(BR)CER)
2.0
INITIAL LIMITS
CONDITIONS
PARAMETER
\2N389
V(BR)CER \2N424
IC= 20mA, RBE = 33 n
hFE
IC= 1 A, VCE = 15V
MIN
MAX
POST TEST LIMITS
MIN
MAX
SOV
SOV
80V
BOV
15
SO
12
75
2N497 2N498 2N656 AND 2N657
DEVICE
TEST
HOURS
F. R. X 10 5
FAILURES
60%CONF.
2
STORAGE: 200°C
904,250
(1 ICBO)
0.33
(1 V(BR)CEO)
7
OPERATING: P = O.B W, TA = 25°C
904,250
(4ICBO)
0.90
(3 hFE)
PARAMETER
ICBO
2N497, 2NS56
VCB= 50V
2N49B, 2NS57
VCB-80V
2N497,2NS56
hFE
2N49B, 2NS57
2N497,2NS56
V(BR)CEO
2N49B, 2NS57
INITIAL LIMITS
CONDITIONS
MIN
MAX
POST TEST LIMITS
MIN
MAX
10"A
I"A
VCE = 10V, IC= 200mA
Ic=30mA
12
I"A
3S
30
90
9.S
10"A
45
24
117
SOV
SOV
looV
looV
Thyristors
2N3557
DEVICE
TEST
HOURS
OYNAMIC OPERATION: VRRM = 100 V, IT(AV) = 1 A,
TA = 25°C,f= SOHz
PARAMETER
CONDITIONS
F. R. X 10- 5
FAILURES
60%CONF.
1.2
10
944,000
INITIAL LIMITS
MIN
MAX
30nA
POST TEST LIMITS
MIN
MAX
30nA
10
VO=I00V,RGK=1 kn
IR
VR-l00V,IG-0
0.1 "A
0.1 "A
IGT
IH
VAA-5V,RL-12n
200 "A
5mA
200 "A
5mA
RGK-lkn,RL-12n
II
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
12·9
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N3002
F. R. X 10-5
DEVICE
TEST
HOURS
FAILURES
60%CONF.
STORAGE: 150°C
336,000
4
1.5
OPERATING: IT = 200 mA, VD = 30 V, T A = 25° IC
336,000
4
1.5
PARAMETER
INITIAL LIMITS
CONDITIONS
MIN
MAX
POST TEST LIMITS
MIN
MAX
10
IR
VD = 60 V, RGK = 1 kG
VR = -60 V, RGK = ~
20nA
20nA
100nA
100nA
IGR
VGK--5V,RL-~
l00nA
l00nA
IGT
VAA-5V,RL-12G
200pA
200pA
VGT
VAA-5V,RL-12G
SOOmV
SOOmV
IH
RGK 1 kG
IT-2A
5mA
5mA
1.5 V
1.5V
VT
2N1596
DEVICE
TEST
HOURS
OYNAMIC OPERATION: IT(AV) = 250 mA, VORM = 100 V,
TA = 25°C, f= 60 Hz
PARAMETER
247,000
MIN
MAX
1.2
POST TEST LIMITS
MIN
250pA
VO-l00V
10
IR
VR -100V
IGT
VF - 50 V, RGK - 1 kG, RL,- 2 kG
10mA
TEXAS INSTRUMENTS
INCORPORATED
"OST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
MAX
250pA
250pA
6mA
•
12-10
60%CONF.
2
INITIAL LIMITS
CONDITIONS
F. R. X 10 5
FAILURES
250pA
6mA
10mA
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
Single-Diffused Plastic Power Transistors
TIP29-TlP32, TIP41, TIP42
A resistor is in series with the emitter, dropping at least 10%
of the collector-base voltage to set the emitter current. For
intermittent operating tests, the same circuit is used with
the power being interrupted at specific time intervals.
BACKGROUND
Texas Instruments continuing Plastic Single-Diffused
Reliability Program, an evaluation program for plastic
power devices, has resulted in lowering device failure rates_
All devices utilized in the reliability program are standard
product "off-the-shelf' devices which have received no
special screening or electrical tests. Since starting the
reliability program we have generated over 500,000 actual
life-test hours. Over 15,000 devices have undergone testing
in the reliability program. Failures are based on leakage
greater than twice the data sheet limit, hpE outside data
sheet limits by 20%, or VCE( sat) above data sheet limits_
For the test environments listed below, MIL-STD-750 was
used as the applicable test specification.
I.
Mechanical Shock, Method 2016.
2.
Vibration, Variable-Frequency, Method 2056.
3.
Constant Acceleration, Method 2006.
4.
Thermal Shock, Method 1056, Condition B.
5.
Temperature Cycling, Method 1051.
6.
Moisture Resistance (non-operating), Method
1021.
7.
Humidity with Bias, TA
VCES = 45 V.
8.
Humidity TA = 65°C, RH = 100%.
9.
Number
Number
Test
of
Device
Description
Devices
Hours
150° C Storage
25°C Operating
of
Failure Rate Xl0- 5
Failures Paint Est. 60% Conf.
50
100.000
0
0
0.9
140
212,500
2
0.9
1.4
Table 1-2
Summary of Life Testing for PNP Devices
Number
= 85°C, RH = 85%
Number
Failure Rate Xl0-5
of
Hours Failures Point Est. 60% Conf.
Test
of
Description
Devices
150° C Storage
49
73,500
3
4.1
5.6
25° C Operating
50
62,500
3
4.8
6.5
Device
Pressure Cooker, TA = 121°C, IS psi.
10.
Solderability, Method 2026.
II.
Salt Atmosphere, Method 1041.
12.
Terminal Strength, Method 2036, Condition A.
13_
Storage Life, Method 1032, TA = 150°C.
14.
Operating Life, Method 1026, TA = 25°C, P = 2
watts.
15.
Table 1-1
Summary of Life Testing for NPN Devices
Table 1-3
Summary of Intermittent Life Testing
For NPN Devices
Number
Intermittent Operating, Method 1037,
ATC =60°C, P = 1.8 watts,S minutes on, 5
minutes off.
Number
Test
of
Device
Description
Devices
Cycles
88
880,000
t>. 60° C I nterm.
of
Failure Rate Xl0- 5
Failures Point Est. 60% Conf.
0
0
0.1
Operating
LIFE TEST EVALUATIONS
ENVIRONMENTAL TESTING
Test devices employed in this evaluation were
subjected to operational, intermittent operational, and
storage life test conditions that were selected to
demonstrate device capability in excess of normal operating
requirements. The operating life test circuits used for
testing power devices are in the parallel, common-base
configuration. Voltage is applied collector to base.
Environmental evaluations are performed on power
devices in order to establish capability for the mechanical
and thermal stresses considered to be standard in the
electronics industry. Sequential or step-stress testing is
likewise employed to demonstrate package reliability in
excess of standard product requirements. A brief
description of test procedures follows:
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
II
12-11
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
1.
Mechanical Shock ~ Performed from 1500 g to
6000 g in three orientations for 0.2 ms to
0.5 ms duration: 5 blows/plane, 15 blows total
(non-operating).
2.
Vibration, Variable Frequency ~ Performed
from 20 g to 60 g in three orientations at
100 Hz to 2000 Hz (non-operating);
4 sweeps/plane, 4 minutes/sweep.
3.
Constant Acceleration ~ Performed from
10,000 g to 40,000 g in six orientations; I
minute/plane.
4.
Thermal Shock~Performed from O°C to 100°C
for 50 cycles. Extreme times are 5 minutes with
a maximum transfer time of 10 seconds. Liquid
to liquid.
5.
Temperature Cycle .- Performed from
~65°C to 150°C for 100 cycles. Extreme times
are 30 minutes with a maximum transfer time
of 5 minutes.
6.
Temperature Cycle ~ Performed from
~55°C to 125°C for IS cycles. Extreme times
are 10 minutes with a maximum transfer time
of 5 minutes.
Thermal Shock ~ Performed in freezer at
~30°C and boiling water. Extreme times
are 10 minutes with immediate transfer.
Power Surge ~ Performed by storing at
~45°C for 20 minutes and then applying
maximum rated power for I minute.
Total of 15 cycles.
Moisture Resistance ~ Performed in a
non-operating state with the preconditioning
omitted. Temperature cycling chamber
conditions:
25°C for 5 hours.
65°C for 5 1/2 hours.
Chamber maintained at 90 to 98% relative humidity, ~ 10°C chill excursion on
all test cyeles.
8.
Humidity with Bias ~ Performed by placing
devices in humidity chamber at 85°C with 85%
relative humidity for 200 hours. A VCES of
45 V is applied to each device.
12-12
Humidity ~ Performed by placing devices in
humidity chamber at 65°C with 100% relative
humidity for 200 hours.
10.
Pressure Cooker ~ Performed by placing devices in sealed chamber with 100% relative
humidity at 121°C. Air pressure applied at IS
psi over atmosphere. Test repeated in 8-hour
increments.
11.
Solderability- Performed by dipping leads into
typc-W flux at 25°C to within 0.05 inches of
case for a period of 5 to 10 seconds. Leads then
dipped in molten solder at 230°C ± 15°C to
within 0.05 inches of case at rate of
I ± 1/4 inches per second for a period of
5 ± 1/2 seconds.
12.
Salt Atmosphere ~ Performed by exposing
devices to 35°C fog environment. Test dura:
tion: 72 hours (initial conditioning omitted).
DC electrical test and visual examination endpoints.
13.
Terminal Strength ~ Performed by attaching a
5-ounce weight to each external lead at a
distance of 1/16 inch from case.A force is
applied once in each of the 2 mutually perpendicular directions (90° + 10° ~OO). Test duration: 3 bending cycles.
SUMMARY
The Plastic Single-Diffused Reliability Program was
designed to establish reliability data for encapsulated
devices for commercial and consumer applications. The
results of the tests show that these devices can also be used
in military applications.
To obtain this objective over 15,000 transistors have
undergone. tests. Over 500,000 life-test hours have been
accumulated. Detailed results have been listed in this report
with summaries of the test procedures and conditions. If
further information is required, please contact your nearest
TI sales office or address inquiries to Texas Instruments
Incorporated, Quality Reliability Assurance, Power Dept.,
Mail Station 2. P.O. Box 5012. Dallas, Texas 75222.
Humidity ~ Performed by placing devices
in humidity chamber at 40°C with 95%
relative humidity for 96 hours.
7.
9.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •
DALLAS, TEXAS 75222
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
Table 2-1
Summary of Mechanical-Stability Testing for Both
PNP and NPN Devices
Test
No.
(1)
(2)
(3)
Table 3-1
Summary of Thermal-Stability Testing
for Both PNP and NPN Devices
Number of
Test Description
Devices
Failures
Mechanical Shock
1500 g, 0.5 ms
24
0
3000 g, 0.5 ms
24
0
6000 g, 0.3 ms
24
0
Number of
Test
No.
Test Description
(4)
Thermal Shock (O'C to +100'C)
20 9
25
0
25
0
40 9
25
0
50 9
25
0
60g
25
0
10,000 9
24
0
15,000 9
24
0
(5)
Constant Acceleration
(6)
20,000 9
24
0
30,000 9
24
0
40.000 9
24
0
Failures
10 cycles
25
0
20 cycles
25
0
30 cycles
25
0
40 cycles
25
0
50 cycles
25
0
50 cycles
75
0
100 cycles
75
0
Vibration, Var, Freq.
30 9
Devices
Temp Cycle (-65'C to +150'C)
Environmental Test Sequence
Temperature Cycle
15
0
Thermal Shock
15
0
Power Surge
15
0
Humidity
15
0
NOTE: Stressing in each category is sequential. For example,
the devices stressed on shock at 6000 9 were prestresseq on shock at 3000 g,
Table 5-1
Summary of Solderability, Salt-Atmosphere, and
Terminal-Strength Testing for Both
PNP and NPN Devices
Table 4-1
Summary of Humidity Testing for Both
PNP and NPN Devices
Test
No.
(7)
Number
Number of
Test Description
Devices
Failures
Test
Test
of
No.
Descri ption
Devices
Number of Failures
Electrical Visual" Mechanical
MOisture Resistance
(11) Solderabi I ity
50
0
0
N/A
l'
(12) Salt Atmosphere
50'
0
0
0
50
0
(13) Terminal Strength
36
0
N/A
0
50
0
10 cycles
25
0
20 cycles
25
0
30 cycles
25
(8)
Humidity with Bias
(9)
Humidity
*For salt atmosphere, a visual failure is for marking and a mechanical
(10)
failure is for corrosion.
Pressu re Cooker
8 hours
25
0
16 hours
25
0
24 hours
25
0
32 hours
25
0
II
'ICES failure, read 423 !LA, limit is 400 !LA.
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
12-13
QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
Advanced new design for greater reliability:
SOLDER·CLAD, COPPER LEADS FACILITATE
SOLDERABILITY.
PLASTIC CAPANO EPOXY FILL ARE FEATURES
OF THE NEW DESIGN WHICH RESULT IN AN
UNSTRESSED INTERNAL CONSTRUCTION WITH
ALL LEADS LOCKED SOLIDLY INTO THE PACKAGE.
PINNED AND SOLDERED COLLECTOR LEAD
ELIMINATES INTERMITTENT COLLECTOR
LEAD PROBLEMS.
~~~------+----- GLASS-PASSIVATED CHIP IMPROVES MOISTURE
RESISTANCE, PROVIDES LOWER LEAKAGE AND
BETTER STABILITY.
ALL-sDLDERED CONTACTS INCREASE LEAD
CONNECTION RELIABILITY BY IMPROVING
RESISTANCE TO THERMAL SHOCK AND
VIBRATION.
NICKEL-PLATED, COPPER HEAT SINK IMPROVES
THERMAL SINKING CAPACITY .
•
12-14
TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012
•
DALLAS, TEXAS 75222
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:01 15:30:31-08:00 Modify Date : 2017:06:01 16:05:09-07:00 Metadata Date : 2017:06:01 16:05:09-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:04bfd06c-4f8f-0846-9c5e-479e2f2368a1 Instance ID : uuid:2eb49dba-c2e4-6043-8186-b115350ca290 Page Layout : SinglePage Page Mode : UseNone Page Count : 801EXIF Metadata provided by EXIF.tools