1972_TI_Power_Semiconductor_Data_Book_First_Edition 1972 TI Power Semiconductor Data Book First Edition

User Manual: 1972_TI_Power_Semiconductor_Data_Book_First_Edition

Open the PDF directly: View PDF PDF.
Page Count: 801

Download1972_TI_Power_Semiconductor_Data_Book_First_Edition 1972 TI Power Semiconductor Data Book First Edition
Open PDF In BrowserView PDF
The Engineering Staff of

TEXAS INSTRUMENTS INCORPORATED
Components Group

The
Power
Semiconduc or
Data Book
for ·

Design Engineers

TEXAS

INSTRUMENTS

INCORPORATED

TERMS, DEFINITIONS, AND TESTING PROCEDURES

CROSS-REFERENCE GUIDE

PRODUCT SELECTION GUIDES

ALPHA-NUMERIC INDEX TO DATA SHEETS

SILICON POWER DATA SHEETS

GERMANIUM POWER DATA SHEETS

THYRISTOR DATA SHEETS

TECHNICAL RESPONSE LAB

POWER FUNCTIONS

POWER SEMICONDUCTOR TECHNOLOGY

APPLICATION INFORMATION

QUALITY AND RELIABILITY INFORMATION

TI worldwide sales offices
AlA8AMA

FLORIDA

MINNESOTA

OHIO

Sahara Office Park Bldg,. Suite 111

601 W. Oakland Park Blvd.
Fort Lauderdale, Florida 33311

7615 Metro Blvd.
Suite 202, Analysis Inc., Bldg.
Edina, Minn. 55435
612·941·4384

23811 Chagrm Blvd., SUite 100
Cleveland, Ohio 44122
216·464·1192

3313 Memoria! Parkway, S.W.
Huntsville. Alabama 35S01
205-8814061

305-566-3294

5400 Diplomat Circle
ARIZONA
United Bank; Bldg., Suite 1702
3550 North Central Avenue
Phoenix, Arizona 85012

Diplomat Bldg., SUite 252
Orlando, Florida 32810
305·644·3535

602-279-5531

300 Bldg. West, Suite 204
3151 Third Ave., North
St. Petersburg, Floflda 33713

CALIFORNIA

813-898-0807

11222 South La Cienega.
Suite 360
Inglewood, California 90304
213-649-2710

230 California Ave., Suite 201
Palo Alto, California 94:J06
415-326-6770

1505 East 17th St., Suite 201
Santa Ana, California 92701

714-547-6506
Balboa Towers Sldg., Suite 805
5252 Balboa Avenue
San Diego. California 921 17
714-279-2622

COLORADO

2149 South Holly St.
Denver, Colorado 80222
303-758-2151

ILLINOIS
1701 Lake Street. SUite 300
Glenview. Illinois 60025

8539 E ncanto Way
Ft. Wayne, Indiana46805
219485·1959
MASSACHUSETTS

60 Hickory Drlve
Waltham, Mass·. 02154
617·891·8450
Effective Oct. 30; 617·890·7400

MICHIGAN
Central Park Plaza
26111 Evergreen, SUite 333
Southfield, Michigan 48075
313·352·5720

ARGENTINA

CANADA 'Cont'd)

Texas Instruments Argentina S.A.I.C.F.

SF Caesar Avenue
Ottawa 12
Ontario, Canada
613·825-3716

ASIA

SF Aovama Tower Bldg.
24-15 Minami Aoyama Chome
Minato-ku. Tokyo 107, Japan
402·6171
Room 1502, Star House
Harbour Center. Kowloon
Hong Kong
K673139
Texas Instruments Taiwan Limited
P. O. Box 3999
Taipei, Chung Ho, Taiwan
923904

AUSTRALIA.
Texas Instruments Australia Ltd.
P.O. Box 63. 171-175 Philip Highway
Elizabeth, South Australia
5529 14
Aoom 5, Rural Bank Bldg.
38 Rai/way Parade
Burwood N.S.W. Australia
74-1859

BRAZIL
Texas Instrumentos Electronicos
do Brasil Ltda.
Rua Cesario At\lim 770
Caixa Postal 30.103
Sao Paulo 6, 8rasil

93-8278
CANADA
Texas Instruments Incorporated
2750 Pitfield Blvd.
St. Laurent 386
Quebec, Canada
514·332-3550

NEW MEXICO
SUite 9, Marberry Plaza
6101 Marble Avenue, N.W.
Albuquerque, New Mexico 87110
505·265·8491

NEW YORK

INDIANA

CONNECTICUT

Texas Instruments Asia Limited

25 U.S. Highway #:2.2
Springfield, New Jersey 07081
201 ·376-9400

312-729-5710

300 Amity Aoad
Woodbridge, Connecticut 06525
203-389-4521

C.C. Box 2296-Correo Central
Buenos Aires, Argentina
744-1041

NEW JERSEY

280 Centre Str. East
Richmond Hill (Toronto)
Ontario, Canada
416-889-7373

P.O. Box 618,112 Nanticoke Ave.
Endicott, New York 13760
607-785-9987
245 Newtown Road
Plainview, New York 11803
516-293·2560
167 Main Street
Fishkill, New York 12524
914-896-6793
6563 Ridings Rd.
Syracuse, New York 13206
315-463-9291

460, Marlelundvej
2730 Herlev, Denmark
91 7400

PENNSYLVANIA
275 Commerce Drive
Fort Washington, Pa. 19034
215·643-6450

TEXAS
MS366-P.O. 80x 5012
Dallas, Texas 75222
214-238·6805
3939 Ann Arbor
Houston, Texas 77042
713-785-6906

VIRGINIA
8512 Trabue Road
Richmond, Virginia 23235
703-272-0246
WASHINGTON
5801 Sixth Ave. S.
Seattle Washington 98108
206· 762-4240

NORTH CAROLINA

WASHINGTON, D.C.

4310 Starmount Dr.
Greensboro, N.C. 27410
919·299·9112

1500 WI/son Blvd .• Suite 1100 A.M. Bldg.
Arlington, Virginia 22209
703·525·0336

GERMANY
Texas Instruments Deutschland GmbH

MEXICO
Texas Instruments de Mexico S.A.

Haggerty Str. 1
8050 Freising. Germany
08161(7531

Poniente 116 #489
Col. Industflal Vallejo
Mexico City, O.F., Mexico
567-92·00

Arabellastrasse 4, SternhausIV
8000 Munich 81, Germany
0811/91 1061·9

Texas Instruments Holland N.V.

DENMARK
Texas Instruments A/S

SUlte 205, Paul Welch Bldg.
3300 South Dixie Dr,
Dayton, OhiO 45439
513-298·7513

Lazarettstr,19
4300 Essen, Germany
2141/20916
Krugerstrasse 24
1000 Berlin 49, Germany
0311/7444041

NETHERLANDS

Entrepot Gebouw-Kamer 223
P.O. Box 7603
Schiphol·Centrum
020-159293
SWEOEN
Texas Instruments Sweden AB

FINLAND
Texas Instruments Finland QV
Fredrikinkatu 56, 0 38
Helsinki 10. Finland
44 12 75

Westendstrasse 52
6000 Frankfurt a.M., Germany
0611/726441
Am Mittetfelde 169

S-104 40 Stockholm 14
Skeppargatan 26
679835
UNITED KINGDOM

3000 Hannover, Germany
05111861016

Texas Instruments limited

Texas Instruments France

1m Kaisemer 5
7000 Stuttgart 1. Germany
0711/22 38 20

Manton Lane
Bedford, England
67466

Boite Postale 5

ITALY

FRANCE

06 Villeneuve-Loubet, France
310364
379 Av de la liberation
92 Clamart, France

644 5530
3(}.31 Quai Rambaud
69 Lyon, France
427850

165 Bath Road
Slough, Bucklnghamshire, England
Slough 33411

Texa.$ Instruments Italia SpA
Via Salafia per l'Aquila Clttaducale
02100 Rieti, Italy
0746·41314
Viale Lunigiana 46
20125 Milano. Italy
02·6883141

Cas des Fourches
Boulevard Frederic Chapplet
53 Laval, France
900946

Via Padre Semeria 63
00154 Roma, Italy
06-5120437

20, AVenue Honore'SerreS
31 Toulouse. France
628285

Via Montebello 27
10122 Torino, Italy
011-832276

2259 Coventry Road
Sheldon, 8irmingham 26, England
021-743-~293

24 Rutland Street
Edinburgh EH 12AN, Scotland
031-229-1481
46 F. Nichols Road
Southampton, Hants, England
0703-27267
Meney House
Heaton Mersey
Stockport, Cheshire, England
(0611432-0645

For Continuing Information on TI Power Semiconductors

This catalog provides technical descriptions and specifications on power
semiconductor devices and functions manufactured by Texas Instruments.
As a leading manufacturer of power devices, TI is continually developing and
introducing new products to the electronics industry.
So that we can register your name as a holder of this new data book and to
inform you of other catalogs as they become available, please complete and
return the form provided below.

Texas Instruments Incorporated
Components Group, Market Communications Dept.
P. O. Box 5012, M. S. 84
Dallas, Texas 75222

o Please register my name as a recipient of The Power Semiconductor Data
~

Book for Design Engineers.

o Please inform me of availability of other power device catalogs and supple-

.~

ments.

I

NAME _______________________________________
TITLE ______________________________________
FIRM ________________________________________
ADDRESS
I

CITY

I
I

I

•JI
•

STATE

ZIP _ _

:

! - - -------- ------------ - ----- - - -------- --,.;,~

$3 95

The
Power
Semiconductor
Data Book
for

Design Engineers

First Edition

TEXAS INSTRUMENTS
INCORPORATED

CC-404

70977-22-IS

Printed in U.S.A.

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes
at any time in order to improve design and to supply
the best product possible.
TI cannot assume any responsibility for any circuits
shown or represent that they are free from patent
infringement.

THE POWER SEMICONDUCTOR DATA BOOK
From the earliest days of transistors, semiconductor circuit designers have needed devices capable of handling the

power functions of their equipment.
The past twenty years in the semiconductor industry have brought extensive development of power productsgermanium power transistors, silicon power transistors, thyristors, and more recently, power function modules. The
future will certainly bring even further developments in power devices and functions.
Along with advancements in integrated circuit technology, improvements in power devices will aid equipment design
engineers in their efforts toward continual enhancement of functional utility, cost effectiveness, and reliability of
designs.
In this a~O-page data book, Texas Instruments is pleased to catalog important power semiconductor products available
in the industry, and to present technical information on Tl's broad line of power transistors, thyristors, and power
function products.
You will find essential design information on Germanium and Silicon Power Transistors, SCR's, Triaes, and Power
Function modules. In Silicon Power, Tl's extensive product line encompasses high-voltage as well as low-voltage, highsafe-operating-area (SOA) designs, power Darlingtons, fast switching types, radiation-tolerant designs, JAN and JANTX
types, and both metal can and plastic package types.
Most of the silicon power devices, as well as a broad range of SCR's and Triacs, are offered in Tl's specially designed
plastic packages. These designs incorporate glass-passivated junctions with thermally-matched epoxy and piece-parts, for
high reliability-plus the adaptability for high-volume, cost-effective production.
Section a features the Technical Response Lab (TRL). The TRL facility provides a broad capability for custom designs
to meet special needs. This capability includes custom silicon chip design for specific electrical performance, together
with custom packaging techniques for reliable performance of devices under unique environmental conditions. These
high-volume, low-cost, highly-reliable devices, on one hand, and high-performance, custom designs for special
applications, on the other, represent TI's two-fold approach to the power market. Thus product coverage is broad, with
the capability of serving a very wide range of customer needs.
The data book indices are designed with margin tabs for ease in location of data sheets for specific products, as well as
general information categories. Included are an alpha-numeric index to product data sheets and product cross-reference
and selection guides.
We sincerely hope you will find this Power Semiconductor Data Book for Design Engineers a valuable addition to your
technical library. It represents TI experience since the early 1950's in the design and manufacture of power
semiconductor products.

•
Terms, Definitions,
and
Testing Procedures

•

TERMS AND DEFINITIONS
POWER TRANSISTORS

POWER TRANSISTORS
POWER TRANSISTOR SAFETY CONSIDERATIONS
The designer, maker, and user of electrical equipment containing power transistors should give attention to the
following points relative to the safety of personnel that may operate the equipment.

•

The electrical potentials of the collector, emitter, and base terminals on the transistor present an electrical shock hazard
when the equipment is energized.
The normal operating case temperature of energized transistors is often high enough to present burn hazards to both
operating personnel and flammable material touching the transistor.
If the transistor is falsely turned "on" or fails, power will be applied to the equipment load. Operator safety may be
affected by an unexpected energizing of the load.
In the event that an equipment output short or internal fault condition develops, very high surge current can be passed
through the transistor. If this condition exceeds transistor ratings for magnitude and duration, the transistor may be
damaged; and if the surge is severe enough, internal heating can cause the transistor to rupture and perhaps sustain an
arc.
POWER TRANSISTOR STANDARDS
Following are sources of standard material relating to Power Transistors:
EIA and JEDEC Standards:
Electronic Industries Association
2001 Eye St. N.W., Washington, D.C. 20006
Telephone: 202-659-2200
JG-25 Power Transistor Registration Formats RDF-1 to RDF-6
Test Procedures for Verification of Maximum Ratings of Power Transistors-JEDEC Publication No_65
Thermal Resistance Measurements of Conduction Cooled Power Transistors-EIA Standard RS-313-A
JEDEC Recommendations for Letter Symbols, Abbreviations, Terms, and Definitions for Semiconductor Device
Data Sheets and Specifications-JEDEC Publication No. 77
Standard List of Values to be used in Power Transistor Device Registration and Minimum Differences for
Discretness of Registration-JEDEC Publication NO. 74
IEC Standards
American National Standards Institute, Inc_
1430 Broadway
New York, N. Y. 10018
Telephone: 212-868-1220
IEC Publication 147: Essential Ratings and Characteristics of Semiconductor Devices and General Principles of
Measuring Methods.
IEC Publication 148: Letter Symbols for Semiconductor Devices and Integrated Microcircuits
IEC Publication 191: Mechanical Standardization of Semiconductor Devices.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1-1

TERMS AND DEFINITIONS
POWER TRANSISTORS

•

Military Standards
Commanding Officer, U.S. Naval Publications and Forms Center,
5801 Tabor Avenue, Philadelphia, Pa., 19120.
MIL·S·19500: Semiconductor Devices, General Specification for
MI L·STD·1 05: Sampling Procedures and Tables for Inspection by Attributes
MI L·STD·202: Test Methods for Electronic and Electrical Component Parts
MIL·STD·750: Test Methods for Semiconductor Devices
MI L·STD·883: Test Methods and Procedures for Microelectronics

1-2

TEXASINCORPORATEO
INSTRUMENTS
.
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
POWER TRANSISTORS
POWER TRANSISTOR TERMS, DEFINITIONS, AND LETTER SYMBOLS
Introduction
This part contains letter symbols, abbreviations, terms, and definitions commonly used with Power Transistors. Most of
the information was obtained from JEDEC Publication No. 77. This document and the JC-25 JEDEC registration
formats have over-riding authority where any conflict may occur.

•

Power Transistor Terms and Definitions
Definition

Term
base (B, b)*

A region which lies between an emitter and collector of a transistor
and into which minority carriers are injected. (Ref. 60 IRE 28.S1)

breakdown

A phenomenon occurring in a reverse-biased semiconductor junction, the initiation of which is observed as a transition from a region
of high small-signal resistance to a region of substantially lower
small-signal resistance for an increasing magnitude of reverse current.
(Ref RS-282 par. 1.38)

breakdown region

A region of the volt-ampere characteristic beyond the initiation of
breakdown for an increasing magnitude of reverse current. (Ref
RS-282 par. 1.37)

breakdown voltage

The voltage measured at a specified current in a breakdown region.
(Ref MIL-S-19500D par. 20.3)

collector (C, c)*

A region through which a primary flow of charge carriers leaves the
base_ (Ref. 60 IRE 28.S1)

emitter (E, e)* . . . . . . . . . . . . .

A region from which charge carriers that are minority carriers in the
base are injected into the base. (Ref. 60 IRE 28.S1)

junction, collector

A semiconductor junction normally biased in the high-resistance
direction, the current through which can be controlled by the
introduction of minority carriers into the base. (Ref. 60 IRE 28.S1)

junction, emitter

A semiconductor junction normally biased in the low-resistance
direction to inject minority carriers into the base. (Ref. 60
IRE 28.S1)

open-circuit

. . . . _ . . . . . . . _ .

A circuit shall be considered as open-circuited if halving the
magnitude of the terminating impedance does not produce a change
in the parameter being measured greater than the required accuracy
of the measurement. (Ref MIL-S-19500D par. 20.8)

reverse current . . . _ . . . . . . . . .

The current that flows through a semiconductor junction in the
reverse direction.
"NOTE: References to base, collector, and emitter symbolism
(B, b, C, c, E, and e) refer to the device terminals connected to those
regions.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

1-3

TERMS AND DEFINITIONS
POWER TRANSISTORS

Definition

Term

II

reverse direction

The direction of current flow which results when the n-type semiconductor region is at a positive potential relative to the p-type region.

saturation

A ba!;e-current and a collector-current condition resulting in a
forward-biased collector junction.

second breakdown

A condition of the transistor, resulting from a lateral current
instability, in which the electrical characteristics are determined
principally by the spreading resistance of a thermally maintained
current constriction. The initiation of second breakdown is observed
as a decrease in the voltage sustained by the collector.
NOTE: Second breakdown differs from thermal failure in that its
initiation can not be predicted from low-voltage thermal resistance
measurements.
Unless the current and duration in second breakdown are limited, the
high junction temperature at the current constriction will result in
failure, usually as a collector-to-emitter short-circuit.
Second breakdown can occur at postitive, negative, or zero base
current.
(To protect a transistor against second breakdown, see section:
"Safe Operating Areas for Power Transistors. ")

semiconductor device . . . . . . . . . . . A device whose essential characteristics are due to the flow of charge
carriers within a semiconductor. (Ref. RS-282 par. 1.09)

1-4

semiconductor junction

A region of transition between semiconductor regions of different
electrical properties (e.g., n-n+, p-n, p-p+ semiconductors), or
between a metal and a semiconductor. (Ref. R9-282 par. 1.0)

short-circuit . . . • . . . . . . . . . .

A circuit in which doubling the magnitude of the terminating
impedance does not produce a change in the parameter being
measured that is greater than the required accuracy of the
measurement. (Ref. MIL-9-19500D par. 20.16)

small-signal

A signal which when doubled in magnitude does not produce a
change in the parameter being measured that is greater than the
required accuracy of the measurement. (Ref. MIL-S-19500D .
par. 20.17)

static value

A non-varying value or quantity of measurement at a specified fixed
point, or the slope of the line from the origin to the operating point
on the appropriate characteristic curve. (Ref. IEEE #255 par. 2.2.1)

terminal

An externally available point of connection to one or more
electrodes. (Ref. RS-282 par. 1.14)

thermal resistance (steady-state)

The temperature difference between two specified points or regions
divided by the power dissipation under conditions of thermal
equilibrium. (Ref. IEEE #223)

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
POWER TRANSISTORS
Definition

Term
transient thermal impedance

The change of temperature difference between two specified points
or regions at the end of a time interval divided by the step function
change in power dissipation at the beginning of the same time
interval causing the change of temperature difference.
(Ref. IEEE #223)

transistor

An active semiconductor device capable of providing power amplifi·
cation and having three or more terminals. (Ref. lEG #147·0
par. 0·2.8)

. . . . . . . . . . . . . . .

transistor, junction, multijunction type

•

A transistor having a base and two or more junctions.
Graphic symbols
(Ref. ANS Y32.2)

for

emitter,

base,

collector

transistors:

NOTE: In the graphic symbols, the envelope is optional if no
element is connected to the envelope.
N·P·N

P·N·P
Collector

ease

~

Emitter

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALI..AS, TEXAS 75222

1·5

TERMS AND DEFINITIONS
POWER TRANSISTORS
Power Transistor Letter Symbols, Terms, and Definitions

II

Symbol

Definition

Cibo

open-circuit input capacitance

The capacitance measured across the input terminals
(emitter and base) with the collector open-circuited
for ac. (Ref. IEEE #255)

Cobo

open-circuit output capacitance

The capacitance measured across the output terminals
(collector and base) with the input open-circuited to
ac. (Ref. IEEE #255)

small-signal short-circuit forward
current transfer ratio cutoff frequency (common-emitter)

The lowest frequency at which the magnitude of the
small-signal short-circuit forward current transfer
ratio is 0.707 of its value at a specified low frequency
(usually 1 kHz or less). (Ref. IEEE #255)

transition frequency
or
frequency at which small-signal forward
current
transfer ratio
(common-emitter) extrapolates to
unity

The product of the modulus (magnitude) of the
common-emitter small-signal short-circuit forward
cu rrent transfer ratio, hfe, and the frequency of
measurement when this frequency is sufficiently high
so that the modulus (magnitude) of hfe is decreasing
with a slope of approximately 6 dB per octave.
(Ref. IEEE #255)

large-signal insertion power gain
(common-emitter)

The ratio, usually expressed in dB, of the signal
power delivered to the load to the large-signal power
delivered to the input.

static forward current transfer ratio
(common-emitter)

The ratio of the dc collector current to the dc base
current. (Ref. MIL-S-19500D par. 30.28)

small-signal short-circuit forward
current transfer ratio (commonemitter)

The ratio of the ac collector current to the
small-signal ac base current with the collector
short-circuited to the emitter for ac. (Ref.
MIL-S-19500D par. 30.20)

static input resistance (commonemitter)

The ratio of the dc base-emitter voltage to the dc base
current. (Ref. MIL-S-19500D par. 30.29)

small-signal short-circuit input impedance (common-emitter)

The ratio of the small-signal ac base-emitter voltage to
the ac base current with the collector short-circuited
to the emitter for ac. (Ref. MIL-S-19500D
par. 30.24)

hie(imag)

imaginary part of the small-signal
short-circuit
input impedance,
(common-emitter)

The ratio of the out-of-phase (imaginary) component
of the small-signal ac base-emitter voltage to the ac
base current with the collector terminal
short-circuited to the emitter terminal for ac.

hie(real)

real part of the
short-circuit
input
(common-emitter)

s/llall-signal
impedance,

The ratio of the in-phase (real) component of the
small-signal ac base-emitter voltage to the ac base
current with the collector terminal short-circuited to
the emitter terminal for ac.

hoe

small-signal open-circuit output admittance, (common-emitter)

The ratio of the ac collector current to the
small-signal ac collector-emii!:ter voltage with the base
terminal open-circuited to ac. (Ref. MIL-S-19500D
par. 30.15)

hfe

1·8

Term

TEXASINCORPORATED
INSTRUMENTS
~'T O"~ICI

.ox

IOU • DALLA •• TIX.I 711••

TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol

Term

Definition

hOe(imag)

imaginary part of the small-signal
open-circuit output admittance,
(common-emitter)

The ratio of the ac collector current to the
out-of-phase
(imaginary)
component of the
small-signal collector-emitter voltage with the base
terminal open-circuited to ac.

hoe(real)

real part of the small-signal
open-circuit output admittance,
(common-emitter)

The ratio of the ac collector current to the in-phase
(real) component of the small-signal collector-emitter
voltage with the base terminal open-circuited to
ac.

current, dc (base-terminal, collectorterminal, emitter-terminal)

The value of the dc current into the terminal
indicated by the subscript.

II

current, rms value of alternating The root-mean-square value of alternating current
component (base-terminal, collector- into the terminal indicated by the subscript.
terminal, emitter-terminal)
current, instantaneous total value
(base-terminal, collector-terminal.
emitter-terminal)

The instantaneous total value of alternating current
into the terminal indicated by the subscript.

DIAGRAM ILLUSTRATING FOREGOING CURRENTS (Ref IEEE # 255)

I-

~~--~~--~~

a
II:

~

~
-

8

I
I 'ClAVI
IDC VALUE WITH

IctRMS)
ROOT·MEAN-SQUARE
TOTAL VALUE

Ie
ALTERNATING
DC VALUE
COMPONENT
'eM
NO ALTERNATING'
MAXIMUM (PEAK)
COMPONENT
TOTAL VALUE

I
I
I

i,

INSTANTANEOUS
TOTAL VALUE

I
I
I

NOC~~:::e~T;NG -~_ _ _ _ _~_____

TIME
WITH ALTERNATING

COMPONENT

leBO

collector cutoff current, dc, emitter
open

The dc current into the collector terminal when it is
biased in the reverse direction with respect to the
base terminal and the emitter terminal is
open-circuited. (Ref. IEEE #255)

TEXASINCORPORATED
INSTRUMENTS
POIT O.... ICI BOX Ion • DALLAl, TIXAI 11122

'·7

TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol

The dc current into the collector terminal when it is
biased in the reverse direction * with respect to the
emitter terminal and the base terminal is (as indicated
by the first subscript letter as follows):

ICES

collector cutoff current, dc (base
open
resistance
between base and
emitter,
base short-circuited to emitter,

o

open-circuited

ICEV

voltage between base and emitter,

R

returned to the emitter terminal through a
specified resistance_

ICEX

circuit between base and emitter)

ICEO

II

Definition

Term

ICER

S = short-circuited to the emitter terminal.
V = returned to the emitter terminal through a speified voltage.
X = returned to the emitter terminal through a speified circuit.
(Ref. IEEE #255)

lEBO

POE

emitter cutoff current, dc, collector
open

The dc current into the emitter terminal when it is
baised in the reverse direction with respect to the
base terminal and the collector terminal is
open-circuited. (Ref. IEEE #255)

power input, dc
common-emitter)

(to the base,

The product of the dc input current and voltage with
the common-emitter circuit configuration.

power input; instantaneous total
(to the base, common-emitter)

The product of the instantaneous input current and
voltage with the common-emitter circuit configuration.

large-signal output power (commonemitter)

The product of the large-signal ac output current and
voltage with the common-emitter circuit configuration.

total nonreactive power input to all
terminals

The sum of the products of the dc input currents and
voltages, i.e ..
VBE ' IB + VCE' IC or
VBE ' IE + VCB ' IC

nonreactive power input, instantaneous total, to all terminals

The sum of the products of the instantaneous input
currents and voltages.

collector-base time constant

The product of the intrinsic base resistance and
collector capacitance under specified small-signal conditions.
'For these parameters, the collector terminal is considered to be biased in the reverse direction when it
is made positive for N-P-N transistors or negative for
P-N-P transistors with respect to the emitter terminal.

1-8

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
POWER TRANSISTORS
Term

Symbol

Definition

RO
(formerly 0)

thermal resistance

Refer to thermal resistance (steady state), page 1-4.

R(JCA

thermal resistance case-to-ambient

The thermal resistance (steady-state) from the device
case to the ambient.

ROJA
(formerly OJ-A)

thermal
ambient

resistance junction-to-

The thermal resistance (steady-state) from the semiconductor junction (s) to the ambient.

ROJC
(formerly 0J-el

thermal resistance junction-to-case

ROJM

thermal resistance
mounting surface

The thermal resistance (steady-state) from the semiconductor junction (s) to a stated location on the
case.
The thermal resistance (steady-state) from the semiconductor junction (s) to a stated location on the
mounting surface.

junction-to-

ambient temperature or free-air
temperature

The air temperature measured below a device, in an
environment of substantially uniform temperature,
cooled only by natural air convection and not
materially affected by reflective and radiant surfaces.
(Ref. MIL-S-19500D par. 20.20.1)

TC

case temperature

The temperature measured at a specified location on
the case of a device. (Ref. MIL-S-19500D
par. 20.20.2)

TJ

virtual junction temperature

A theoretical temperature based on a simplified
representation of the thermal and electrical behavior
of the semiconductor device.
NOTE: This term (and its definition) is taken from
IEC standards. It is particularly applicable to
mUlti-junction semiconductors and is used in
this publication to denote the temperature of
the active semiconductor element when
required in specifications and test methods.
The term "junction temperature" is used
interchangeably with the term "virtual
junction temperature" in this publication.

Tstg

storage temperature

The temperature at which the device, without any
power applied, is stored. (Ref. MIL-S-19500D
par. 20.20.3)

delay time

The time interval from the point at which the leading
edge of the input pulse has reached 10 percent of its
maximum amplitude to the point at which the
leading edge of the output pulse has reached 10
percent of its maximum amplitude. (Ref. MIL-S195000 par. 20.13)

fall time

The time duration during which the trailing edge of a
pulse is decreasing from 90 to 10 percent of its
amplitude.
(Ref. MIL-S-19500D
maximum
par. 20.12)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

•

1-9

TERMS AND DEFINITIONS
POWER TRANSISTORS

•

Definition

Symbol

Term

toff

turn-off time

The sum of ts + tf.

ton

turn-on time

The sum of td + t r .

tp.

pulse time

The time duration f~om the point on the leading edge
which is 90 percent of the maximum amplitude to
the point on the trailing edge which is 90 percent of
the maximum amplitude. (Ref. MIL-S-195OO0
par. 20.15)

rise time

The time duration during which the amplitude of the
leading edge of a pulse is increasing from 10 to 90
percent
of
its
maximum
amplitude.
(Ref. MIL-S-195000 par. 20.13)

storage time

The time interval from a point 90 percent of the maximum amplitude on the trailing edge of the input
pulse to a point 90 percent of the maximum amplitude
on the trailing edge of the output pulse. (Ref. MIL-S195000 par. 20.14)

pulse average time

The time duration from the point on the leading edge
which is 50 percent of the maximum amplitude to a
point on the trailing edge which is 50 percent of the
maximum
amplitude.
(Ref. MIL-S-195000
par. 20.10)

DIAGRAM ILLUSTRATING PULSE TIME SYMBOLOGY

tp

w

o

...::;

:;)

..«
::;;

~

~

TIME

1·10

TEXASINCORPORATED
INSTRUMENTS
poaT

O~"'IC.

BOX 1012 • DALLA., Tlx.a '7S1b

•

TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol

Definition

Term

V(BR)CBO
(formerly BV CBO)

breakdown voltage
base, emitter open

collector-to-

The breakdown voltage between the collector terminal and the base terminal when the collector terminal
is biased in the reverse direction with respect to the
base terminal and the emitter terminal is
open-circuited. (Ref. IEEE #255)

V(BR)CEO,
(formerly BVCEO)

breakdown voltage, collector-toemitter with (base open,

V(BH)CER,
(formerly BVCER)

resistance between base and em itter,

The breakdown voltage between the collector terminal and the emitter terminal when the collector
terminal is biased in the reverse direction* with
respect to the emitter terminal and the base terminal
is (as indicated by the last subscript letter as follows):

V(BR)CES,
(formerly BVCES)

base short-circuited to emitter,

°

V(BR)CEV,
(formerly BVCEV)

voltage between base and emitter,

V(BR)CEX
(formerly BVCEX)

circuit between base and emitter)

R

•

open-circuited.
returned to the emitter terminal through a
specified resistance.

S : short-circuited to the emitter terminal.
V : returned to the emitter terminal through a
specified voltage.
X: returned to the emitter terminal through a
specified circu it.
(Ref. IEEE #255)

V(BR)EBO,
(formerly BVEBO)

breakdown voltage, emitter-to-base,
collector open

The breakdown voltage between the emitter and base
terminals when the emitter terminal is biased in the
reverse direction with respect to the base terminal
and the collector terminal is open-circuited.
(Ref. IEEE #255)

VBB,
VCC,
VEE

supply voltage, dc (base, collector,
emitter)

The dc supply voltage applied to a circuit connected
to the reference terminal.

VBC,

voltage, dc or average (base-tocollector,
base-to-emitter,

The dc voltage between the terminal indicated by the
first subscript and the reference terminal (stated in
terms of the polarity at the terminal indicated by the
first subscript).

collector-to-base,
collector-to-emitter,
emitter-to-base,
emitter-to-collector)
VB E(sat)

saturation Voltage, dc, base-to-emitter The dc voltage between the base and emitter terminals for specified base-current and collector-current
conditions which are intended to ensure that the
collector junction is forward-biased.
• For these parameters, the collector terminal is considered to be biased in the reverse direction when it
is made positive for N-P-N transistors or negative for
P-N-P transistors with respect to the emitter terminal.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1-11

TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol

•

Definition

Term

VCBO

collector-to-base voltage, dc, emitter open

The dc voltage between the collector terminal and the
base terminal when the emitter terminal is
open-circuited_

VCE(sat)

saturation voltage, dc, collector-toemitter

The dc voltage between the collector and the emitter
terminals for specified saturation conditions_
(Ref. IEEE #255)

VCEO

collector-to-emitter voltage, -dc, with
(base open,

VCER

resistance between base and emitter,

The dc voltage between the collector terminal and the
emitter terminal when the base terminal is (as
indicated by the last subscript letter):

VCES

base short-circuited to emitter,

R = returned to the emitter terminal through a
specified resistance_

VCEV

voltage between base and emitter,

S = short-circuited to the emitter terminal_

VCEX

circuit between base and emitter)

VCEO(sus}

sustaining voltage, collector-toemitter with (base open,

VCER(sus)

resistance between base and emitter,

VCES(sus}

base short-circuited to emitter,

VCEV(sus}

voltage between base and emitter,

VCEX(sus}

circuit between base and emitter}

o

= open-circuited_

v

= returned to the emitter terminal through a

x

= returned to the emitter terminal through a
specified circu it_

specified voltage_

The collector-to-emitter breakdown voltage at relatively high values of collector current where the
breakdown voltage is relatively insensitive to changes
in collector current_ The base terminal is (as indicated
by the third subscript letter as follows):

o

= open-circuited

R = returned to the emitter terminal through a

specified resistance

S = short-circuited to tHe emitter terminal
V= returned to the emitter terminal through a
specified voltage

X= returned to the emitter terminal through a
specified circuit_
NOTE: This would be the transient voltage between
the collector and emitter terminals during switching
with an inductive load from a forward-biased baseemitter to an external condition described by the
third subscript letter_
VEB(fI}

1-12

dc open-circuit voltage (floating potential) (emitter-to-base)

The de open-circuit voltage (floating potentialj between the emitter terminal and the base terminal
when the collector terminal is biased in the reverse
direction with respect to the base terminal •.
(Ref. IEEE #255)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
POWER TRANSISTORS
Symbol

Term

Definition

VEBO

emitter-ta-base voltage, dc, collector open

The de voltage between the emitter terminal and the
base terminal with the collector terminal
open-circuited.

ZO(t)
(formerly 6(t))

transient thermal impedance

Refer to transient thermal impedance, page 1-5.

ZOJA(t)
(formerly 6J-A(t))

transient thermal impedance, junction-to-ambient

The transient thermal impedance from the semiconductor junction (s) to the ambient.

ZOJC(t)
(formerly 6JC(t))

transient thermal impedance, junction-to-case

The transient thermal impedance from the semiconductor junction (s) to a stated location on the
case.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

•

1-13

TERMS AND DEFINITIONS
THYRISTORS

THYRISTORS
•

. Thyristor Standards
The documents listed below have overriding authority where any conflict may occur with this dati' book.
EIA and JEDEC Standards

The thyristor terms and definitions presented in this data book were obtained from EIA Standards Proposal
No. 1101. This standard is in the process of publication and will be available from:
Electronic Industries Association
2001 Eye St. N.W.,
Washington, D.C. 20006
Telephone: 202·659·2200
IEEE Standards

Institute of Electrical and Electronic Engineers, Inc.
345 East 47th. Street
New York, N.Y. 10017
IEEE No. 233: Standard Definitions of Terms for Thyristors
International Electrotechnical Commission Standards
American National Standards Institute, Inc.
1430 Broadway
New York, N.Y. 10018
IEC Publication 147·IC: Essential Ratings and Characteristics of Semiconductor Devices and General
Principles of Measuring Methods
IEC Publication 148: Letter Symbols for Semiconductor Devices and Integrated Circuits
IEC Publication 191: Mechanical Standardization of Semiconductor Devices.
Military Standards
Commanding Officer, U.S. Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, Pa., 19120
MIL·S·19500: Semiconductor Devices, General Specification for
MIL·STD·105: Sampling Procedures and Tables for Inspection by Attributes
MI L·STD·202: Test Methods for Electronic and Electrical Component Parts
MIL·STD·750: Test Methods for Semiconductor Devices

1·14

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75":22

TERMS AND DEFINITIONS
THYRISTORS
Classes of Thyristors
Bidirectional Diode Thyristor
A two-terminal thyristor having substantially the same switching behavior in the first and third quadrants of the
principal voltage-current characteristic_ (See Figure 4).
Bidirectional Triode Thyristor
A three-terminal thyristor having substantially the same switching behavior in the first and third quadrants of the
principal voltage-current characteristic_ (See Figure 4)_

•

N-Gate Thyristor
A thyristor in which the gate terminal is connected to the N-region adjacent to the region to which the anode
terminal is connected and which is normally switched to the on-state by applying a negative signal between gate
and anode terminals_
P-Gate Thyristor
A thyristor in which the gate terminal is connected to the P-region adjacent to the region to which the cathode
terminal is connected and which is normally switched to the on-state by applying a positive signal between gate
and cathode terminals_
Reverse-Blocking Diode Thyristor
A two-terminal thyristor which switches only for positive anode-to-cathode voltages and exhibits a reverseblocking state for negative anode-to-cathode voltages_
Reverse-Blocking Triode Thyristor
A three-terminal thyristor which switches only for positive anode-to-cathode voltages and exhibits a
reverse-blocking state for negative anode-to-cathode voltages.
Reverse·Conducting Diode Thyristor
A two-terminal thyristor which switches only for positive anode-to-cathode voltages and conducts large currents
at negative anode-to-cathode voltages comparab'le in magnitude to the on-state voltage.
Reverse-Conducting Triode Thyristor
A three-terminal thyristor which switches only for positive anode-to-cathode voltages and conducts large currents
at negative anode-to-cathode voltages comparable in magnitude to the on-state voltage.
Semiconductor Controlled Rectifier (SCR)
An alternative name used for the reverse-blocking triode thyristor.
NOTE: Although not an official definition, the term unidirectional is sometimes used to describe the single
switching class of thyristors consisting of' reverse-blocking and reverse-conducting thyristors. This term is
useful for comparing or contrasting this class of thyristor with bidirectional thyristors.
Thyristor
A bistable semiconductor device comprising three or more junctions, which can be switched from the off-state to
the on-state or vice versa, such switching occuring within at least one quadrant of the principle voltage-current
characteristic. (See Figures 1 through 5).
Turn-Off Thyristor
A thyristor which can be switched from the on-state to the off-state and vice versa by applying control signals of
appropriate polarities to the gate terminal, with the ratio of triggering power to triggered power appreciably less
than one.

TEXAS INSTRUMENTS
I NCQRPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

1-15

TERMS AND DEFINITIONS
THYRISTORS

•

I
SEMICONDUCTOR REGIONS

FIRST QUADRANT
ANODE +

ON STATE

NEGATIVE
RESISTANCE
REGION
BREAKOVER
'VOLTAGE, CURRENT

MINIMUM ON "STATE VOLTAGE
HOLDING CURRENT
REVERSE

BLOCKil~N~G~S;;T,;A;,;T,;:E==;:;;;;;r'=-=-=r-~b~-~-=-,,;a!L_
REVERSE
BREAKDOWN
VOLTAGE,
CURRENT

V

OFF"STATE

THIRD QUADRANT
ANODE-

Schematic

triode

Principal voltage-current characteristics (anode-to-cathode

thyristor.
Note: The gate electrode is connected to the N-type base
region in some structures or omitted in the case of a

representation

of

a

reverse-blocking

voltage-current characteristic) of a typical reverse-blocking

thyristor.
Note: Curve "a" applies for zero gate current or a diode

thyristor. Curve "b" is with gate trigger current
present when off-state voltage is V 1.

diode thyristor.

FIGURE 1

FIGURE 2

FIRST QUADRANT
MAIN TERMINAL 2 +

I

ON"STATE
[

m"L{;

___ OFF"STATE

MAIN

MAIN

I

~''''

N

~~,::;:.

..,

_-=;aE1-~V~l~=9~====b~=-;a~= V

BREAKOVER_

OFF"STATE

'-~
'

BREAKOVER
VOLTAGE,

""'"

GATE TERMINAL
ON"STATE
THIRD QUADRANT
MAIN TERMINAL 2Principal
Schematic

representation

of

typical

bidirectional

voltage~curren't

characteristic of a typical bidirec-

tional thyristor.
Note: Curve ua" applies for zero gate current or a diode

triode

thyristor.
Note: Gate is omitted in a diode bidirectional thyristor.

bidirectional thyristor. Curve "b" applies for the case
of gate trigger current applied when the off-state

voltage is ± V l'

FIGURE 4

FIGURE 3

1·16

IEXAsINSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
THYRISTORS
Physical Structure Nomenclature
Anode
The electrode by which current enters the thyristor when the thyristor is in the on-state with the gate
open-circuited.
NOTE: This term does not apply to bidirectional thyristors.
Anode Terminal

•

The terminal which is connected to the anode.
NOTE: This term does not apply to bidirectional thyristors.
Cathode
The electrode by which current leaves the thyristor when the thyristor is in the on-state with the gate
open-circuited.
NOTE: This term does not apply to bidirectional thyristors.
Cathode Terminal
The terminal which is connected to the cathode.
NOTE: This term does not apply to bidirectional thyristors.
Collector Junction
The junction across which the polarity of the voltage reverses when switching occurs. (See Figure 1).
Electrode (of a Semiconductor Device)
An electrical and mechanical contact to a region of a semiconductor device.
Gate
An electrode connected to one of the semiconductor regions for introducing control current.
Gate Terminal
A terminal which is connected to a gate.
Junction (of a Semiconductor Device)
A region of transition between semiconductor regions of different electrical properties (e.g., n-n+, p-n, p-p+
semiconductors). or between a metal and a semiconductor.
Main Terminals
The terminals through which the principal current flows.
Main Terminal 1 (of a Bidirectional Thyristor)
The main terminal which is named "1" by the device manufacturer. This is normally the referance terminal for all
voltages.
Main Terminal 2 (of a Bidirectional Thyristor)
The main terminal which is named "2" by the device manufacturer.
Terminal (of a Semiconductor Device)
The externally available point of connection to one or more electrodes.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE SOX 5012

•

DALLAS, TEXAS 75222

1-17

TERMS AND DEFINITIONS
THYRISTORS

•

Electrical Characteristic and Rating Terms (See Note at end of section)
Anode-to·Cathode Voltage (Anode Voltage)
The voltage between the anode terminal and the cathode terminal.
NOTE: It is called positive when the anode potential is more positive than the cathode potential, and called
negative when the anode potential is less positive than the cathode potential.
Anode-to·Cathode Voltage·Current Characteristic (Anode Characteristic)
A function, usually represented graphically, relating the anode·t~.cathode voltage to the principal current with
gate current, where applicable, as a parameter.
NOTE: This term does not apply to bidirectional thyristors.
Breakover Point
Any point on the principal voltage·current characteristic for which the differential resistance is zero and where
the principal voltage reaches a maximum value. (See Figures 2 and 4).
Negative·Differential·Resistance Region
Any portion of the principal voltage·current characteristic in the switching quadrant(s) within which the
differential resistance is negative. (See Figures 2 and 4).
Off·1 mpedance
The differential impedance between the terminals through which the principal current flows when the thyristor
is in the off-state at a stated operating point.
Off-State
The condition of the thyristor corresponding to the high-resistance, low-current portion of the principal
voltage-current characteristic between the origin and the breakover point(s) in the switching quadrant(s).
On-Impedance
The differential impedance between the terminals through which the principal current flows when the thyristor
is in the on-state at a stated operating point.
On-State
The condition of the thyristor corresponding to the low-resistance, 'low-voltage portion of the principal
voltage-current characteristic in the switching quadrant(s).
NOTE: In the case of reverse-conducting thyristors, this definition is applicable only for a positive
anode-to-cathode voltage.
Principal Voltage
The voltage between the main terminals.
NOTES: 1. In the case of reverse-blocking and reverse-conducting thyristors, the principal voltage is called
positive when the anode potential is more positive then the cathode potential, and called negative
when the anode potential is less positive than the cathode potential.
2. For bidirectional thyristors, the principal voltage is called positive when the potential of main
terminal 2 is more positive than the potential of main terminal 1.
Principal Voltage-Current Characteristic (Principal.Characteristic)
The function, usually represented graphically, relating the principal voltage to the principal current with gate
current, where applicable, as a parameter.

1·18

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TERMS AND DEFINITIONS
THYRISTORS

Reverse-Blocking Impedance (of a Reverse-Blocking Thyristor)
The differential impedance between the two terminals through which the principal current flows when the
thyristor is in the reverse-blocking state at a stated operating point_
Reverse-Blocking State (of a Reverse-Blocking Thyristor!

II

The condition of a reverse-blocking thyristor corresponding to the portion of the anode-to-cathode voltage-current
characteristic for which reverse currents are of lower magnitude than the reverse breakdown current. (See
Figure 2).

QUADRANT DEFINITIONS

-=- Vs

+

vG

-=-

+Vs
QUADRANT II

QUADRANT I

VS=+
VG=-

VS=+
VG=+

-----------------------+-----------------------+VG

QUADRANT III

QUADRANT IV

VS=VG=-

VS=VG =+
-VS

The polarities of

Vs and VG are with respect to Main Terminal 1.
FIGURE 5

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1-19

TERMS AND DEFINITIONS
THYRISTORS
Symbols, Terms and Definitions

•

Symbol

Definition

Term

ItBO)

Static Breakover Current

i(BO)

Instantaneous Breakover Current

I(BR)R

Static Reverse Breakdown Current

i(BR)R

Instantaneous Reverse Breakdown Current

10(RMS

RMS Off·State Current

10

Static Off-State Current

10(AV)

Average Off-State Current

iO

Instantaneous Off-State Current

10M

Peak Off-State Current

10RM

Repetitive Peak Off-State Current

The maximum instantaneous value of the off-state
current that results from the application of repetitive
peak off-state voltage.

IG

Static Gate Current

IG(AV)

Average Gate Current

The current that results from the gate voltage.
NOTES: 1. Positive gate current refers to conventiona I current entering the gate terminal.

iG

Instantaneous Gate Current

IGM

Peak Gate Current

IGO

Static Gate Nontrigger Current

iGO

Instantaneous Gate Nontrigger Current

IGOM

Peak Gate Nontrigger Current

IGO

Static Gate Turn-Off Current

iGO

Instantaneous Gate Turn-Off Current

IGOM

Peak Gate Turn-Off Current

IGT

Static Gate Trigger Current

iGT

Instantaneous Gate Trigger Current

IGTM

Peak Gate Trigger Current

The principal current at the breakover point.

The principal current at the reverse breakdown
voltage.

The principal' current when the thyristor is in the
off·state.

-'

2. Negative gate current refers to conventional current leaving the gate terminal.
The maximum gate current which will not cause the
thyristor to switch from the off·state to the on-state.

The minimum gate current required to switch a
thyristor from the on-state to the off-state.

The minimum gate current required to switch a
thyristor from the off-state to the on-state.

'·20
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
THYRISTORS

.

Symbol
IH

Term

Definition

Static Holding Current

The minimum principal current required to maintain
the thyristor in the on-state_

iH

Instantaneous Holding Current

IL

Static Latching Current

iL

Instantaneous Latching Current

IR(RMS)

RMS Reverse Current

IR

Static Reverse Current

IR(AV)

Average Reverse Current

iR

Instantaneous Reverse Current

IRM

Peak Reverse Current

IRRM

Repetitive Peak Reverse Current

The maximum instantaneous value of the reverse
current that results from the application of repetitive
peak reverse voltage.

IT(RMS)

RMS On-State Current

The principal current when the thyristor is in the
on-state.

IT

Static On-State Current

IT(AV)

Average On-State Current

iT

Instantaneous On-State Current

ITM

Peak On-State Current

IT(OV)

Overload Peak On-State Current

An on-state current of substantially the same
waveshape as the normal on-state current and having
a greater value than the normal on-state current.

ITRM

Repetitive Peak On-State Current

The peak value of the on-state current including all
repetitive transient currents.

ITSM

Surge (Nonrepetitive) Peak On-State Current

An on-state current of short-time duration and
specified waveshape.

PG

Static Gate Power Dissipation

PG(AV)

Average Gate Power Dissipation

PG

Instantaneous Gate Power Dissipation

PGM

Peak Gate Power Dissipation

The minimum principal current required to maintain
the thyristor in the on-state immediately after
switching from the off-state to the on-state has
occurred and the triggering signal has been removed_

•

The current for negative anode-to-cathode voltage.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1-21

TERMS AND DEFINITIONS
THYRISTORS

•

1·22

Symbol

Term

Definition

TA

Free-Air Temperature
(Ambient Temperature)

The air temperature measured below a deviee, in an
environment of substantially uniform temperature,
cooled only by natural air convection and not
materially affected by reflective and radiant surfaces_
(Ref_ MIL-S-19500D par_ 20_20.1)

TC

Case Temperature

The temperature measured at a specified location on
the case of a device. (Ref. MIL-S-19500D par.
20.20.2)

TJ

Virtual Junction Temperature
(Junction Temperature)

A theoretical temperature based on a simplified
representation of the thermal and electrical behavior
of the semiconductor device.
NOTE: This term (and its definition) is taken from
IEC standards. It is particularly applicable to
multi-junction semiconductors and is used in
this publication to denote the temperature of
the active semiconductor element when
required in specifications and' test methods.
The term "junction temperature" is used
interchangeably with the term "virtual
junction temperature" in this publication.

Tstg

Storage Temperature

The temperature at which the defice, without any
power applied, is stored. (Ref. MIL-S-19500D par.
20.20_3)

tgt

Gate-Controlled Turn-On Time

The time interval between a specified point at the
beginning of the gate pulse and the instant when the
principal voltage (current) has dropped (risen) to a
specified low (high) value during switching of a
thyristor from ,the off-state to the on-state by a gate
pulse.

tgq

Gate-Controlled Turn-Off Time

The time interval between a specified point at the
beginning of the gate pulse and the instant when the
principal current has decreased to a specified value
during switching from the on-state to the off-state by
a gate pulse.

tq

Circuit-Commutated Turn-Off Time

The time interval between the instant when the
principal current has decreased to zero after external
switching of the principal voltage circuit, and the
instant when the thyristor is capable of supporting a
specified principal voltage without turning on_

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TERMS AND DEFINITIONS
THYRISTORS
Symbol

Term

Definition

Re

Thermal Resistance

The temperature difference between two specified
points or regions divided by the power dissipation
under conditions of thermal equilibrium_

ReJA

Thermal Resistance, Junction-to-Ambient

ReJC

Thermal Resistance, Junction-to-Case

ReCA

Thermal Resistance, Case-to-Ambient

V(BO)

Static Breakover Voltage

V(BO)

Instantaneous Breakover Voltage

V(BR)R

Static Reverse Breakdown Voltage

V(BR)R

Instantaneous Reverse Breakdown Voltage

VD(RMS

RMS Off-State Voltage

VD

Static Off-State Voltage

VO(AV)

Average Off-State Voltage

vO

Instantaneous Off-State Voltage

VOM

Peak Off-State Voltage

VORM

Repetitive Peak Off-State Voltage

The maximum instantaneous value of the off-state
voltage which occurs across a thyristor, including all
repetitive transient voltages, but excluding all nonrepetitive transient voltages.

VOSM

Nonrepetitive Peak Off-State Voltage

The maximum instantaneous value of any nonrepetitive transient off-state voltage which occurs
across the thyristor.

VOWM

Working Peak Off-State Voltage

The maximum instantaneous value of the off-state
voltage which occurs across a thyristor, excluding all
repetitive and nonrepetitive transient voltages.

VG

Static Gate Voltage

VG(AV)

Average Gate Voltage

The voltage between a gate terminal and a specified
main terminal.
NOTE: Gate voltage polarity is referenced to the
specified main terminal.

vG

Instantaneous Gate Voltage

VGM

Peak Gate Voltage

•

The principal voltage at the breakover point.

The value of negative anode-to-cathode voltage at
which the differential resistance between the anode
and cathode terminals changes from a high value to a
substantially lower value.
The principal voltage when the thyristor is in the
off-state.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

1-23

TERMS AND DEFINITIONS
THYRISTORS

•

Symbol

Term

Definition

VGD

Static Gate Nontrigger Voltage

vGD

Instantaneous Gate Nontrigger Voltage

VGDM

Peak Gate Nontrigger Voltage

VGO

Static Gate Turn-Off Voltage

vGO

Instantaneous Gate Turn-Off Voltage

VGOM

Peak Gate Turn-Off Voltage

VGT

Static Gate Trigger Voltage

vGT

Instantaneous Gate Trigger Voltage

VGTM

Peak Gate Trigger Voltage

The gate voltage required to produce the gate turn-off
current.

The gate voltage requ ired to produce the gate trigger
current.

VR(RMS) RMS Reverse Voltage

'-24

The maximum gate voltage which will not cause the
thyristor to switch from the off-state to the on-state.

A negative anode-to-cathode voltage.

VR

Static Reverse Voltage

VR(AV)

Average Reverse Voltage

vR

Instantaneous Reverse Voltage

VRM

Peak Reverse Voltage

VRRM

Repetitive Peak Reverse Voltage

The maximum instantaneous value of the reverse
voltage which occurs across the thyristor, including
all repetitive transient voltages, but excluding all
non repetitive, transient voltages.

VRSM

Nonrepetitive Peak Reverse Voltage

The maximum instantaneous value of any nonrepetitive transient reverse voltage which occurs
across a thyristor.

VRWM

Working Peak Reverse Voltage

The maximum instantaneous value of the reverse
voltage which occurs across the thyristor, excluding
all repetitive and nonrepetitive transient voltages.

VT(RMS)

RMS On-State Voltage

The principal voltage when the thyristor is in the
on-state.

VT

Static On-State Voltage

VT(AV)

Average On-State Voltage

vT

Instantaneous On-State Voltage

VTM

Peak On-State Voltage

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TERMS AND DEFINITIONS
THYRISTORS
Symbol

VT(MIN)

Term

Definition

Static Minimum On-State Voltage

The minimum positive principal voltage for which the
differential resistance is zero with the gate
open-circuited.

zeIt)

Transient Thermal Impedance

ZOJA(t)

Transient Thermal Impedance, Junction-to-Ambient

ZOJC(tl

Transient Thermal Impedance, Junction-to-Case

The change of temperature difference between two
specified points or regions at the end of a time
interval divided by the step function change in power
dissipation at the beginning of the same time interval
causing the change of temperature difference.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

•

DALLAS. TEXAS 75222

1-25

•

1·26

ELECTRICAL CHARACTERISTIC TESTS

POWER TRANSISTOR ELECTRICAL CHARACTERISTIC TESTS
INDEX
Page
General.

.

.

1-28

Measurements

1-28

Cut-off Current [lCEO. lEBO. ICBO. ICEV. IEB1. IEB2. IB1B21

1-28

Breakdown Voltage [V(BR)CEX. V(BR)CEO or VCEO(susl. V(BR)CES. V(BR)EBO. V(BR)CERl

1-30

Floating Potential [VEB(fl)l

1-32

Current Gain [hFE 1.

1-34

.

.

Saturation Voltage [VCE(sat)l

1-34

Base-to·Emitter Voltage [VBEl

1-35

Open·Circuit Output Capacitance [Cobol

1-36

Small-Signal Short-Circuit Input Impedance [hie. hie(real). hie(imag)l

1-37

Small-Signal Open-Circuit Output Admittance [hoe(realll

1-38

.

.

.

.

•

Small-Signal Forward Current Transfer Ratio [hfel. Cut-Off Frequency [fhfel. and Frequency at
Which Ihfel Extrapolates to Unity [fTl .

1-39

Switching Time ltd. t r • ts. tf 1

1-40

TEXAS INCORPORATED
INSTRUMENTS
~O.T

0 .... 101

.ox

IOU: • CALLAS, TIXA. 71111

'·27

ELECTRICAL CHARACTERISTIC TESTS

•

GENERAL
In this section, accepted test practices are described as a guide to making power transistor characteristic tests. The
material has been adapted from the forthcoming JEDEC Publication Suggested Standards on Power Transistors. Only
those electrical characteristics included in EIA JC·25 registration formats are listed.

MEASUREMENTS
All measurements should be made at thermal equilibrium. A condition of thermal equilibrium is achieved if halving the
time between application of power and measurement causes no change in the result within the required accuracy.
The connecting lines shown in the circuit diagrams have no resistance compared to their lowest terminating impedance.
Shown are resistors, inductors, and capacitors having an id\!al characteristic at the used frequency range. Voltage
sources have zero impedance, and current sources have an infinite resistance. All voltmeters and scopes have infinite
input resistance and all ammeters have zero resistance, unless otherwise noted.
The listing of the following tests does not imply that all must be performed by either the manufacturer or the user. It is
the responsibility of the user and manufacturer to agree to any series of specific tests or test conditions, and the further
responsibility of the user to establish meaningful relationship between these tests and the performance of the power
transistor in a particular application.
An npn transistor is used in the test methods below. These test methods will also apply to pnp devifes by changing
polarities. For small-signal measurements, a signal is used which, when doubled in magnitude, does not produce a
change in the measured parameter that is greater than the required accuracy.
The transistor connections are shown separate from the test circuits for "DC", "CT". and "P" techniques.
"DC" - D-C continuous condition
"CT" - Curve tracer (60 cycle full rectified sinewave)
"P" - Pulsed by a 300 j.!s, 2% duty cycle pulse

CUT-OFF CURRENT [lCEO, lEBO, ICBO, ICEV, IEB1, IEB2' IB1B2]
Description
The reverse voltage is applied and the cut-off current is measured. The cut-off current is temperature sensitive. If
testing is done at elevated temperature, a heat sink may be necessary to prevent thermal runaway.
Transistor Connections

1-28

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

I¥LLAS. TEXAS 76222

ELECTRICAL CHARACTERISTIC TESTS

DARLINGTON

ICEV

ICEV
C

B1

C

C

B2

B2

B2

RB2E
E

E
E

II
VB1E

•

ICEV

VB1E

VB1E

IB1B2
E

ICEV

C

C

E

I----~III---.....
VB1E

Test Circuits
The supply voltage Vs should equal RS ICUT-OFF plus the specified test voltage_ The current of the transistor in
the pulse test circuit has to be small compared to the measured cut-off current. The cut-off current is measured
with an ammeter or with an oscilloscope.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1·29

ELECTRICAL CHARACTERISTIC TESTS

•

DC

p

CT

Vs

~

SCOPE

V

•

SCOPE

V

'CUT-OFF

tw= 300 I-lS

f

V

= 60 Hz

Vs

RS
OF
AMMETER

,

SCOPE

SCOPE

Test Conditions to be Specified
Case temperature if not TC = 25°C
Voltage applied to the device: VCEO. VEBO. VCBO. VCEV. VEB1. VB1B2. VEB2
Base termination: VEB. VB2E. RB2E. VB1B2. RB1B2
Technique: DC.

ct. pi

BREAKDOWN VOLTAGE [V(BR)CEX. V(BR)CEO OR VCEO(sus). V(BR)CES. V(BR)EBO. V(BR)CERl
Description
For breakdown measured in the sustaining region. the current should be high enough to ensure that the
breakdown voltage is relatively insensitive to current changes.

1·30

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

ELECTRICAL CHARACTERISTIC TESTS
Transistor Connections
V(BR)CEO OR VCEO(sus)

V(BR)CEO OR VCEO(sus)

V(BR)CEX

•

RBB2

V(BR)CES

V(BR)CER

V(BR)EBO

RBE

Test Circuits

P

CT

DC

IS

Vs
SCOPE V

tan

SCOPE V

Ln.

Vs
RL

f = 60 Hz
POWER
SUPPLY

V

tw= 300 I'S
f = 60 Hz

Vs

SCOPE I

SCOPE I

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1-31

ELECTRICAL CHARACTERISTIC TESTS

•

SCOPE V
INDUCTIVE SWEEP
RBB1
INCREASE tw
FOR SPECIFIED

L

SCOPE I

In addition to the test circuits for "DC", "CT", and "P", an inductive sweep circuit is shown. This test circuit is
particularly useful to measure transistors in their sustaining region.
Test Conditions To Be Specified
Case temperature if not TC = 2SoC
Current applied to the device: ICEX, ICED, ICES, lEBO, ICER
Base termination: VBB2, VBB1, RBB2, RBB1, RBE, pulse width, duty cycle
Technique: DC, CT, P, Inductive Sweep:
Load resistance, inductance, and supply voltage where applicable: RL, L, Vs

FLOATING POTENTIAL [VEB(fOl
Description
This measurement is related to the thickness of the base region.

'·32

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAS. TEXAS 75222

ELECTRICAL CHARACTERISTIC TESTS
Test Circuit

Vs
CT

DC
SCOPE VCB

l---------- Vs
VCB

•

v

TUT

1 - - -...- - - -..

SCOPE
VEB(fI)

p

Vs
SCOPE VCB

SCOPE VEB(fI}

Test Conditions To Be Specified
Case temperature if not TC = 2SoC
Collector-base voltage: VCB
Base-emitter resistance: RBE
Technique: DC, CT, P

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1-33

ELECTRICAL CHARACTERISTIC TESTS

•

CURRENT GAIN [hFEl
Descri ption
The static forward current transfer ratio in the common-emitter configuration is one of the most important gain
characteristic for power transistors. It measures the ratio of collector current to base current.
Test Circuit
SCOPE

SCOPE

VCE
Vs

VCE
f----Vs

Vs

VS~

IC

DC

CT

RBB

p

VS~

RBB

RS

VBB

-=

-=

VBB

SCOPE
Ie

SCOPE
IC

The current gain is given by hFE ~ ICIIB. For the CT and P tests, VBB» Ll. VBE* 'so that IB is constant and
relatively independent of VBE.
*.aVBE is the range of VBE for various devices to be tested.

Test Conditions To Be Specified
Case temperature if not T C ~ 25° C
Collector-emitter voltage: VCE
Collector current: IC
Technique: DC, CT, P

SATURATION VOLTAGE [VCE(sat)l
Description
The collector-to-emitter saturation voltage is especially important for switching applications. Together with the
collector current, it is the basis to calculate the power dissipation in the "on" state.

1-34

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

ELECTRICAL CHARACTERISTIC TESTS
Test Circuit
SCOPE VCElsatl

SCOPE

CElsat)

,,""---VS

J----VS

Vs
p

RBB

•

I0

RBB

RS

VBB

VBB
SCOPE IC

SCOPE IC

For the CT and P tests, VBB» VBE in order to make IB independent of VBE changes during the "on"
condition.
Test Conditions To Be Specified
Case temperature if not TC = 25°C
Collector current: IC
Base current: IB
Technique: DC, CT, P

SASE-TO-EMITTER VOLTAGE [VSE]
Description
There are two conditions of interest for the static base-to-emitter voltage:
1. The transistor in saturation (commonly referred to as VBE(sat»
2. The transistor out of saturation (VB E)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1·35

ELECTRICAL CHARACTERISTIC TESTS

•

Test Circuit

,

SCOPE

DC

CT

SCOPE

VCE

P

Vs

TUT

Vs

Vs
Vs

Iyyy)

In

RS
SCOPE

SCOPE

IC

IC

For the CT and P tests, VBB» VBE in order to make IB independent of VBE changes during the "on"
condition. The base terminal for Darlington transistors is B1.
Test Conditions To Be Specified
Case temperature if not T C = 25° C
1. The transistor in saturation: (VBE(sat))
Collector Current: IC
Base Current: IB

2. The transistor out of saturation: (VBE)
Collector current: IC
Collector-to-emitter voltage: VCE
Technique: DC. CT, P

OPEN·CIRCUIT OUTPUT CAPACITANCE [Cobol
Descri ption
The open-circuit output capacitance indicates the frequency limitations of a transistor.

1·36

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

ELECTRICAL CHARACTERISTIC TESTS
Test Circuit
TUTr-__________________

~

II
c

VCB

Capacitor C has to be sufficiently large to provide a short-circuit at the test frequency _The bridge has to be
nulled with the base-to-collector open_ The base terminal for Darlington transistors is B1.
Test Conditions To Be Specified
Case temperature if not TC; 25°C
Collector-to-base voltage: VCB
Frequency: f

SMALL-SIGNAL SHORT-CIRCUIT INPUT IMPEDANCE [hie, hie(real). hie(imag)]
Descri ption
The input impedance is hie; Vbe/lb with Vce ; 0_ The real and imaginary components are important for input
matching networks_
Circuits
Capacitors Cl and C2 must represent a short-circuit at the measuring frequency_ The bridge must be nulled with a
short across the base and emitter terminals and VBB ; 0_ When hie is measured at 1 kHz, Ib can be measured with
a current probe and Vbe with a scope_

C1

+

RBB

I...-----III~_+_-_lil
VBB

VCC

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1-37

ELECTRICAL CHARACTERISTIC TESTS

•

Test Conditions To Be Specified
Case temperature if not TC ~ 25°C
Collector-to-emitter voltage: VCE
Collector current: IC
Frequency: f for hie(real) and hie(imag)

SMALL-SIGNAL OPEN-CIRCUIT OUTPUT ADMITTANCE [hoe(real)]
Description
The purpose of this test is to determine the real part of the output admittance.
Test Circuit

veE
-'

I

It---e----flI1------'

Vee

Vee

The L-C network in the base circuit must have a large impedance compared with hie at the test frequency.
Capacitor C1 shall present a short-circuit at the test frequency.
Test Conditions To Be Specified
Case temperature if not TC ~ 25°C
Collector-to-emitter voltage: VCE
Collector current: IC
Frequency: f

1·38

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

ELECTRICAL CHARACTERISTIC TESTS
SMALL-SIGNAL FORWARD CURRENT TRANSFER RATIO [hfel. CUT-OFF FREQUENCY [fhfel.
AND FREQUENCY AT WHICH Ihfel EXTRAPOLATES TO UNITY [fTl
Description
These measurements indicate the gain hfe and the frequency response capability of transistors. Both
measurements are dependent on the operating point.
hfe = Icllb (with Vce = 0) at low frequency.

•

fhfe = frequency at which hte is 3 dB down from its 1-kHz measurement

fT =

Ihfe l x f. The absolute small·signal Ihfel has to be measured at a frequency f where Ihfel is decreasing
approximately 6 dB per octave.

The measurement as specified does not assure the 6-dB-per-octave region. The 6-dB·per-octave region can be
determined by plotting Ihfel versus f.
Test Circuit

CURRENT
PROBEl c

C2

....------1 ;:Cl

L-_~~~ + ~-~~----~V}---~,

VBB

VCC

IC

The L·C networks must have a very large impedance compared to the capacitors C1 and C2. The amplitude of Ib
and Ic is measured with a current probe.
The ac impedance represented by C2. the current probe for Ic. and associated wiring shall be small compared to
the output impedance of the Transistor Under Test.
Test Conditions To Be Specified
Case temperature if not TC = 25°C
Collector·to·emitter voltage: VCE
Collector current: IC
For hfe and

fT only: f

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1-39

ELECTRICAL CHARACTERISTIC TESTS

•

SWITCHING TIME ltd, tr, ts,

ttl

Description
It is desirable to minimize the large possible variations in switching circuits. A circuit similar to the following is
recommended for switching times registered on the JC-25 RDF·2 format. For definition of ld, t r, t s, and tf, see
section on "Letter Symbols, Abbreviations, Terms, and Definitions." The transistor parameter "rise time" refers
to the time interval during which the magnitude of the collector current is increasing and the magnitude of the
collector voltage is-descreasing.
Test Circuit

SCOPE
(OUTPUT PULSE)
SCOPE
(INPUT PULSE)
~----~~--~----~TUT

RBB1

RBB2

~PULSE

GENERATOR

Vee

VBB1

The rise and fall time of the input pulse shall be smaller than 10% of the maximum specified rise and fall time of
the output pulse. Changing the pulse width tw by a factor of two should not change the storage time ts by more
than the desired accurancy of the measurement.
Test Conditions To Be Specified
case temperature if not TC = 25°C
VSS1, VSB2, Vcc, RSB1, RBB2, RL, tw and f of pulse generator.

1-40

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

•
Cross'"Reference
Guide

•

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

2N68

TI3027

PNP-Ge

2N418

TI3031

PNP-Ge

2N101

2N1038

PNP-Ge

2N419

TI3029

PNP-Ge

2N102

2N1038

PNP-Ge

2N420

TI3029

PNP-Ge

2N141

2N1038

PNP-Ge

2N424

2N424

2N424

NPN-Ge

2N142

2N1038

PNP-Ge

2N424A

2N424A

2N424A

NPN-Ge

2N143

2N1038

PNP-Ge

2N441

2N511

PNP-Ge

2N144

2N1039

PNP-Ge

2N442

2N512

PNP-Ge

2N155

TI3027

PNP-Ge

2N443

2N513

PNP-Ge

2N2552

PNP-Ge

2N456

2N456

2N456

PNP-Ge

2N158

2N2552

PNP-Ge

2N456A

2N456A

2N456A

PNP-Ge

2N158A

2N2552

PNP-Ge

2N456B

2N456B

2N456B

PNP-Ge

2N173

2N512

PNP-Ge

2N457

2N457

2N457

PNP-Ge

2N174

2N513

PNP-Ge

2N457A

2N457A

2N457A

PNP-Ge

2N174A

2N513A

PNP-Ge

2N457B

2N457B

2N457B

PNP-Ge

2N176

TI3027

PNP-Ge

2N458

2N458

2N458

PNP-Ge

2N178

TI3027

PNP-Ge

2N458A

2N458A

2N458A

PNP-Ge

2N234A

TI3027

PNP-Ge

2N458B

2N458B

2N458B

PNP-Ge

2N235A

TI3027

PNP-Ge

2N459

2N3146

PNP-Ge

2N236A

TI3028

PNP-Ge

2N459A

2N3146

PNP-Ge

2N242

Tl3029

PNP-Ge

2N497

2N497

2N497

NPN-Si

2N156

TI156

2N250

2N250

2N456

PNP-Ge

2N497A

2N497A

2N497A

NPN-Si

2N250A

2N250A

2N456

PNP-Ge

2N498

2N498

2N498

NPN-Si

2N251

2N251

2N456

PNP-Ge

2N498A

2N498A

2N498A

NPN-Si

2N251A

2N251A

2N456

PNP-Ge

2N511

2N511

2N511

PNP-Ge

2N255

Tl3027

PNP-Ge

2N511A

2N511A

2N511A

PNP-Ge

2N256

TI3027

PNP-Ge

2N511B

2N511B

2N511B

PNP-Ge

2N257

TI3027

PNP-Ge

2N512

2N512

2N512

PNP-Ge

2N268

TI3027

PNP-Ge

2N512A

2N512A

2N512A

PNP-Ge

2N277

2N512

PNP-Ge

2N512B

2N512B

2N512B

PNP-Ge
PNP-Ge

2N278

2N513

PNP-Ge

2N513

2N513

2N513

2N285

TI3027

PNP-Ge

2N513A

2N513A

2N513A

PNP-Ge

2N285A

TI3027

PNP-Ge

2N513B

2N513B

2N513B

PNP-Ge

2N296

TI3030

PNP-Ge

2N514

2N514

2N514

PNP-Ge

2N297

TI3028

PNP-Ge

2N514A

2N514A

2N514A

PNP-Ge

2N301

TI3027

PNP-Ge

2N514B

2N514B

2N514B

PNP-Ge

2N307

TI3027

PNP-Ge

2N538

TI3031

PNP-Ge

2N326

TI3027

PNP-Ge

2N539

TI3031

PNP-Ge

2N350

TI3028

PNP-Ge

2N539A

TI3031

PNP-Ge

2N351

TI3028

PNP-Ge

2N540

TI3031

PNP-Ge

2N375

TI3031

PNP-Ge

2N553

TI3027

PNP-Ge

2N376

TI3028

PNP-Ge

2N554

TI3027

PNP-Ge

2N378

TI3027

PNP-Ge

2N555

TI3027

PNP-Ge

2N379

TI3029

PNP-Ge

2N561

TI3031

PNP-Ge

2N380

TI3030

PNP-Ge

2N574

TI3031

PNP-Ge

2N389

2N389

2N389

NPN-Si

2N574A

TI3031

PNP-Ge

2N389A

2N389A

2N389A

NPN-Si

2N575

TI3031

PNP-Ge

2N392

TI3027

PNP-Ge

2N575A

TI3031

PNP-Ge

2N399

TI3028

PNP-Ge

2N618

TI3031

PNP-Ge

2N400

TI3028

PNP-Ge

2N627

TI3027

PNP-Ge

2N401

T13028

PNP-Ge

2N628

TI3028

PNP-Ge

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

•

2-1

CROSS-REFERENCE GUIDE

TYPE

•

FOR NEW DESIGN

TI DIRECT
REPLACEMENT

CLASS

TYPE
2N1029A

TI3027

PNP-Ge

FOR NEW DESIGN

CLASS

2N629

TI3030

PNP-Ge

2N630

TI3031

PNP-Ge

2N10298

TI3031

PNP-Ge

2N637

TI3027

PNP-Ge

2N1029C

2N456A

PNP-Ge

2N637A

TI3031

PNP-Ge

2N1030

2N456A

PNP-Ge

2N6378

TI3146

PNP-Ge

2N1030A

2N456A

PNP-Ge

2N638

TI3027

PNP-Ge

2N1031

TI3027

PNP-Ge

2N638A

Tl3028

PNP-Ge

2N1031A

TI3027

PNP-Ge

2N6388

TI3029

PNP-Ge

2N10318

TI3031

PNP-Ge

2N639

TI3028

PNP-Ge

2N1031C

TI456A

PNP-Ge

2N639A

2N3146

PNP-Ge

2N1032

2N456A

PNP-Ge

2N6398

2N3146

PNP-Ge

2N1032A

2N456A

PNP-Ge
PNP-Ge

2N656

2N656

2N656

NPN-Si

2N1038

2N 1038

2N1038

2N656A

2N656A

2N656A

NPN-Si

2N 1038-1

2N2552

2N2552

PNP-Ge

2N657

2N657

2N657

NPN-Si

2N1038-2

2N2556

2N2556

PNP-Ge

2N657A

2N657A

2N657A

NPN-Si

2N 1039

2N1039

2N1039

PNP-Ge

2N663

TI3027

PNP-Ge

2N1039-1

2N2553

2N2553

PNP-Ge

2N665

TI3029

PNP-Ge

2N 1039-2

2N2557

2N2557

PNP-Ge

2N669

TI3027

PNP-Ge

2N1040

2N1040

2N1040

PNR-Ge

2N677

2N511

PNP-Ge

2N104Q-1

2N2554

2N2554

PNP-Ge

2N677A

2N512

PNP-Ge

2N104Q-2

2N2558

2N2558

PNP-Ge

2N6778

2N513

PNP-Ge

2N1041

2N1041

2N1041

PNP-Ge

2N677C

2N514

PNP-Ge

2N1041-1

2N2555

2N2555

PNP-Ge

2N678

2N511

PNP-Ge

2N1041-2

2N2559

2N2559

PNP-Ge

2N678A

2N512

PNP-Ge

2N1042

2N1042

2N1042

PNP-Ge

2N6788

2N513

PNP-Ge

2N1042-1

2N2560

2N2560

PNP-Ge

2N678C

2N514

PNP-Ge

2N 1042-2

2N2564

2N2564

PNP-Ge

2N876

2N3005

SCR

2N 1043

2N1043

2N1043

PNP-Ge

2N877

2N3005

SCR

2N 1043-1

2N2561

2N2561

PNP-Ge

2N878

2N3006

SCR

2N1043-2

2N2565

2N2565

PNP-Ge

2N879

2N3007

SCR

2N1044

2N1044

2N 1044

PNP-Ge

2N880

2N3008

SCR

2N 1044-1

2N2562

2N2562

PNP-Ge

2N881

2N3008

SCR

2N1044-2

2N2566

2N2566

PNP-Ge

2N884

2N3001

SCR

2N1045

2N1045

2N1045

PNP-Ge

2N885

2N3001

SCR

2N1045-1

2N2563

2N2563

PNP-Ge

2N886

2N3002

SCR

2N1045-2

2N2567

2N2567

PNP-Ge

2N887

2N3003

SCR

2N1046

2N1046

2N1907

PNP-Ge

2N888

2N3004

SCR

2N1046A

2N1046A

2N1907

PNP-Ge

2N889

2N3004

SCR

2N10468

2N10468

2N1907

PNP-Ge

2N948

2N3001

SCR

2N1047

2N1047

2N1047

NPN-8i

2N949

2N3002

SCR

2N1047A

2N1047A

2N1047A

NPN-8i

2N950

2N3003

SCR

2N10478

2N10478

2N10478

NPN-Si

2N1011

TI3028

PNP-Ge

2N1048

2N1048

2N1048

NPN-Si

2N1014

2N456A

PNP-Ge

2N1048A

2N1048A

2N1048A

NPN-8i

2N1015

2N3713

NPN-Si

2N 10488

2N10488

2N10488

NPN-Si

2N1016

2N3713

NPN-Si

2N1049

2N1049

2N1049

NPN-Si

2N1021

2N1021

2N456A

PNP-Ge

2N1049A

2N1049A

2N1049A

NPN-8i

2N1021A

2N1021A

2N456A

PNP-Ge

2N 10498

2N10498

2N10498

NPN-Si

2N1022

2N1022

2N456A

PNP-Ge

2N1050

2N1050

2N1050

NPN-Si

2N1022A

2N1022A

2N456A

PNP-Ge

2N1050A

2N1050A

2N1050A

NPN-8i

TI3027

PNP-Ge

2N10508

2N10508

2N 10508

NPN-Si

2N 1029

2-2

TI DIRECT
REPLACEMENT

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

2N1069

FOR NEW DESIGN
2N3713

TI DIRECT
REPLACEMENT

CLASS

TYPE

NPN-Si

2N1293

Tl3028

PNP-Ge

FOR NEW DESIGN

CLASS

2N1070

2N3713

NPN-Si

2N1295

2N3146

PNP-Ge

2N1120

TI3031

PNP-Ge

2N1297

2N3146

PNP-Ge

2N1136

TI3027

PNP-Ge

2N1314

TI3027

PNP-Ge

2N1136A

TI3028

PNP-Ge

2N1320

2N1038

PNP-Ge

2N11366

Tl3027

PNP-Ge

2N1322

2N1038

PNP-Ge

2N1137

2N456A

PNP-Ge

2N1324

2N1038

PNP-Ge

2N1137A

2N456A

PNP-Ge

2N1326

2N1041

PNI'-Ge

2N11376

2N456A

PNP-Ge

2N1328

2N1038

PNP-Ge

2N1138

TI3027

PNP-Ge

2N1359

CTI

TI3027

PNP-Ge

2N1138A

2N456A

PNP-Ge

2N1360

CTI

TI3027

PNP-Ge

2N11388

2N456A

PNP-Ge

21'11362

CTI

PNP-Ge

2N1146

2N456A

PNP-Ge

2N1364

CTI

2N3146
2N3146

2N1146A

2N456A

PNP-Ge

2N1365

CTI

21'13146

PNP-Ge

2N11466

2N4566

PNP-Ge

2N1437

2N3146

PNP-Ge

2N1146C

2N456A

PNP-Ge

2N'1438

21'13146

PNP-Ge

2N1147

2N456A

PNP-Ge

21'11465

21'13146

PNP-Ge

PNP-Ge

2N1147A

2N456A

PNP-Ge

2N1466

2N3146

PNP-Ge

2N11478

2N456A

PNP-Ge

2N1470

2N3713

NPN-Si

2N1147C

2N456A

PNP-Ge

21'11487

2N3713

NPN-Si

2N1159

2N456A

PNP-Ge

2N1488

2N3714

NPN-Si

2N1160

2N456A

PNP-Ge

2N1489

2N4913

NPN-Si

2N1162

2N456A

PNP-Ge

21'11490

2N4914

NPN-Si

2N1162A

2N456A

PNP-Ge

21'11501

T13028-

PNP-Ge

2N1163

2N456A

PNP-Ge

2N1502

TI3028

PNP-Ge

2N1163A

2N456A

PNP-Ge

2N1504

21'13146

PNP-Ge

2N1168

TI3027

PNP-Ge

2N1529

2N1529

2N1529

PNP-Ge

2N1172

TI3027

PNP-Ge

2N1530

21'11530

2N1530

PNP-Ge

2N1176

2N1038

PNP-Ge

2N1531

2N1531

21'11531

PNP-Ge

2N1183

2N1038

PNP-Ge

2N1532

2N1532

2N1532

PNP-Ge

2N1183A

2N1038

PNP-Ge

2N1533

21'11533

21'11533

PNP-Ge

2N11838

2N1039

PNf'-Ge

2N1534

21'11534

21'11534

PNP-Ge

2N1184

2N2564

PNP-Ge

2N1534A

Tl3027

PNP-Ge

2N1184A

2N2564

PNP-Ge

2N1535

2N1535

PNP-Ge

2N11848

2N2565

PNP-Ge

2N1535A

TI3027

PNP-Ge

2N1202

2N3146

PNP-Ge

2N1536

2N3028

PNP-Ge

2N1203

2N3146

PNP-Ge

2N1536A

TI3028

PNP-Ge

2N1208

2N3715

NPN-Si

21'11537

TI3030

PNP-Ge

2N1209

2N1724

NPN-Si

2N1537A

TI3030

PNP-Ge

2N1210

2N1722

NPN-Si

2N1538

21'11538

21'13146

PNP-Ge

2N1211

2N1722

NPN-Si

2N1539

2N1539

TI3027

PNP-Ge

2N1212

2N1724

NPN-Si

2N1540

2N1540

TI3027

PNP-Ge

2N1227

TI3027

PNP-Ge

2N1540A

TI3028

PNP-Ge

TI3028

PNP-Ge

TI3028

PNP-Ge

TI3031

PNP-Ge

TI3031

PNP-Ge

2N1535
2N1536
2N1537

2N1235

2N1235

2N1235

NPN-Si

2N1541

2N1260

2N1260

2N1260

NPN-Si

2N1541A

2N1261

TI3030

PNP-Ge

2N1542

2N1262

TI3030

PNP-Ge

2N1542A

2N1263

T13030

PNP-Ge

21'11543

2N1543

2N3146

PNP-Ge

2N1291

TI3027

PNP-Ge

21'11544

2N1544

TI3027

PNP-Ge

2N1541
2N1542

•

CTI-Contact Texas Instruments.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

2-3

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

TYPE

TI3027

PNP-Ge

2NI647

21'.12150

NPN-Si

TI3027

PNP-Ge

2NI648

2N2150

NPN-Si

TI3027

PNP-Ge

2NI649

2N2150

NPN-Si

T13029

PNP-Ge

2N1650

2N2151

NPN-Si

TI3029

PNP-Ge

2N1660

2N1722

NPN-Si

TI3031

PNP-Ge

2N1661

2N1722

NPN-Si

TI3031

PNP-Ge

2N1662

2NI722

NPN-Si

2N3146

PNP-Ge

2N1666

TI3027

PNP-Ge

2NI549

TI3027

PNP-Ge

2N1667

TI3027

PNP-Ge

2NI549A

TI3027

PNP-Ge

2N1668

TI3027

PNP-Ge

2N1550

TI3027

PNP-Ge

2N1669

TI3027

PNP-Ge

2N1550A

Tl3027

PNP-Ge

2N1690

2NI690

2N1690

NPN-Si

2N1551

TI3029

PNP-Ge

2N1691

2NI691

2N1691

NPN-Si

2N1551A

TI3029

PNP-Ge

2N1702

2N4913

NPN-Si

2N1552

TI3031

PNP-Ge

2N1714

2N1714

2N1714

NPN-Si

2N1552A

TI3031

PNP-Ge

2N1715

21'.11715

2N1715

NPN-Si

2N1553

TI3027

PNP-Ge

2N1716

2N1716

2N1716

NPN-Si

2Nl.553A

TI3027

PNP-Ge

2N1717

2N1717

2N1717

NPIII-Si

2N1554

TI3027

PNP-Ge

2N1718

2N1718

2N1718

NPN-Si

2N1554A

TI3027

PNP-Ge

2N1719

2N1719

2N1719

NPN-Si

2N1556

2N456B

PNP-Ge

2N1720

2N1720

2NI720

NPN-Si

2N1555A

2N456B

PNP-Ge

2N1721

2NI721

2NI721

NPN-Si

2N1556

2Nl021A

PNP-Ge

2N1722

2NI722

2NI722

NPN-Si

2N1556A

2Nl021A

PNP-Ge

2N1722A

2N1722A

2NI722A

NPN-Si

2N1557

2N514

PNP-Ge

2NI723

2NI723

2N3716

NPN-Si

2N1557A

2N514

PNp:(3e

2NI724

2NI724

2NI724

NPN-Si

2N1558

2N514

PNP-Ge

2N1724A

2NI724A

2NI724A

NPN-Si

2N1558A

2N514A

PNP-Ge

2NI725

2NI725

2N1725

NPN-Si

2N1559

2N514A

PNP-Ge

2N1755

2N2552

PNP-Ge

2N1559A

2N514A

PNP-Ge

2N1756

2N2554

PNP-Ge

2N1560

2N514B

PNP-Ge

2N1757

2N2555

PNP-Ge

2NI560A

2N514B

PNP-Ge

2N1758

2N2555

PNP-Ge

2NI545

2NI545

2N1545A

•

2-4

TI DIRECT
REPLACEMENT

CLASS

2NI544A

2NI546

2NI546

2NI546A
2NI547

2NI547

2NI547A
2NI548

2NI548

FOR NEW DESIGN

FOR NEW DESIGN

CLASS

2N1595

2N1595

2N1595

SCR

2N1759

2N2564

PNP-Ge

2N1596

2N1596

2N1596

SCR

2N1760

2N2566

PNP-Ge

2N1597

2N1597

2N1597

SCR

2N1761

2N2567

PNP-Ge

2NI598

2NI598

2N1598

SCR

2N1762

2N2567

PNP-Ge

2NI599

2N1599

2N1599

SCR

2NI772A

TlC116A

SCR

2N1600

TIC116A

SCR

2NI773A

TlC116B

SCR

2N1601

TIC116B

SCR

2NI774A

TlC116B

SCR

2N1602

TIC116B

SCR

2NI775A

TIC116C

SCR

2N1603

TIC116C

SCR

2NI776A

TIC116C

SCR

2N1604

TIC116D

SCR

2NI777A

TIC116D

SCR

2N1616

2NI724

NPN-Si

2NI778A

TIC116E

SCR

2N1616A

2NI724

NPN-Si

2N1870A

TIC39Y

SCR

2N1617

2NI724

NPN-Si

2N1871A

TIC39F

SCR

2N1617A

2NI724

NPN-Si

2N1872A

TIC39A

SCR

2N1618

2NI724

NPN-Si

2N1873A

TIC39B

SCR

2N1618A

2N1724

NPN-Si

2N1874A

TIC39B

SCR

2N1620

2N1724

NPN-Si

2N1876

TIC39Y

SCR

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 15222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TI DIRECT
REPLACEMENT

2N1877

TIC39F

SCR

TYPE
2N2111

FOR NEW DESIGN

2N1878

TIC39A

SCR

2N2112

2N3846

NPN·Si

2N1879

TIC39B

SCR

2N2113

2N3846

NPN·Si

2N1880

TIC39B

SCR

2N2114

2N3846

NPN·Si

2N1881

2N1595

SCR

2N2116

2N3846

NPN·Si

2N1882

2N1596

SCR

2N2117

2N3846

NPN·Si

2N1883

2N1596

SCR

2N2118

2N3846

NPN·Si

2N1884

2N1597

SCR

2N2119

2N3846

NPN·Si

2N1885

2N1597

SCR

2N2120

2N3846

NPN·Si

2N1899

2N4002

NPN·Si

2N2123

2N4002

NPN·Si

2N1901

2N4002

NPN·Si

2N2124

2N4002

NPN·Si

2N1905

2N1046

PNP·Ge

2N2125

2N3847

NPN·Si

2N1906

2N1907

PNP·Ge

2N2126

2N3847

NPN·Si

2N3846

CLASS
NPN·Si

2N1907

2N1907

2N1907

PNP·Ge

2N2127

2N3847

NPN·Si

2N1908

2N1908

2N1908

PNP·Ge

2N2130

2N4002

NPN·Si

2N1931

2N1596

SCR

2N2131

2N4002

NPN·Si

2N1932

2N1597

SCR

2N2132

2N3847

NPN·Si

2N1933

2N1598

SCR

2N2133

2N3847

NPN·Si

2N1934

2N1598

SCR

2N2137

2N2552

PNP·Ge

2N1935

2N1598

SCR

2N2138

2N2552

PNP·Ge

2N1936

2N1936

2N3846

NPN·Si

2N2138A

2N2552

PNP·Ge

2N1937

2N1937

2N3846

NPN·Si

2N2139

2N2554

PNP·Ge

2N1940

TI3027

PNP·Ge

2N2139A

2N2554

PNP·Ge

2N2008

2N2987

NPN·Si

2N2140

2N2555

PNP·Ge

2N2009

TIC39Y

SCR

2N2140A

2N2555

PNP·Ge

2N2010

TIC39F

SCR

2N2141

2N2555

PNP·Ge

2N2011

TIC39A

SCR

2N2141A

2N2555

PNP·Ge

2N2012

TIC39B

SCR

2N2147

2Nl907

PNP·Ge

2N2013

TIC39C

SCR

2N2148

2N1908

PNP·Ge

2N2014

TIC39D

SCR

2N2150

2N2150

2N2150

NPN·Si

2N2015

2N3713

NPN·Si

2N2151

2N2151

2N2151

NPN·Si

2N2016

2N3714

NPN·Si

2N2196

2N2987

NPN·Si

2N2017

CTI

2N2989

NPN·Si

2N2197

2N2987

NPN·Si

2N2018

CTI

CTI

NPN·Si

2N2201

2N2987

NPN·Si

2N2019

CTI

CTI

NPN·Si

2N2202

2N2987

NPN·Si

2N2020

CTI

CTI

NPN·Si

2N2203

2N2987

NPN·Si

2N2021

CTI

CTI

NPN·Si

2N2204

2N2987

NPN·Si

2N2032

CTI

CTI

NPN·Si

2N2226

2N4002

NPN·Si

2N2033

CTI

CTI

NPN-Si

2N2227

2N4003

NPN·Si

2N2034

CTI

CTI

NPN·Si

2N2288

2N1046

PNP·Ge

2N2035

CTI

NPN·Si

2N2291

2N1907

PNP·Ge

2N2036

CTI

NPN·Si

2N2294

2N1907

PNP·Ge

2N2067

2N2553

PNP·Ge

2N2304

CTI

NPN·Si

2N2068

2N2555

PNP·Ge

2N2305

2N3713

NPN·Si

2N2106

2N497

NPN·Si

2N2308

CTJ

NPN·Si

2N2107

2N656

NPN·Si

2N2322

TIC39Y

SCR

2N2108

2N656

NPN·Si

2N2323

TIC39F

SCR

2N2109

2N3846

NPN·Si

2N2324

TIC39A

SCR

2N2110

2N3846

NPN·Si

2N2325

TIC39B

SCR

•

CTI-Contact Texas Instruments.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

2·5

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

2N2326

TIC39B

SCR

2N2327

TIC39C

2N2328

TIC39C

2N2329
2N2338

TYPE

TI DIRECT
REPLACEMENT

CLASS

2N2667

2N2667

PNP-Ge

SCR

2N2668

2N2668

2N2668

PNP-Ge

SCR

2N2669

2N2669

2N2669

PNP-Ge

TIC39D

SCR

2N2670

2N2670

2N2670

PNP-Ge

2N3713

NPN-Si

2N2679

2N3001

SCR

2N2339

CTI

NPN-Si

2N2680

2N3002

SCR

2N2344

TIC39C

SCR

2N2681

2N3003

SCR

2N2345

TIC39F

SCR

2N2683

2N3001

SCR

2N2346

TIC39A

SCR

2N2684

2N3002

SCR

2N2347

TIC398

SCR

2N2685

2N3003

SCR

2N2348

TIC39B

SCR

2N2687

2N3005

SCR

2N2383

2N1722

NPN-8i

2N2688

2N3006

SCR

2N2384

2N1724

NPN-8i

2N2689

2N3007

SCR

2N2405

2N2987

NPN-8i

2N2690

2N3008

SCR

2N2434

2N3146

PNP-Ge

2N2811

CTI

2N4301

NPN-8i

2N2444

2N3146

PNP-Ge

2N2812

CTI

2N4301

NPN-8i

2N2445

2N3146

PNP-Ge

2N2813

CTI

2N4301

NPN-8i

2N2472

2N2987

NPN-Si

2N2814

CTI

2N4301

NPN-8i

2N2482

2N797

NPN-Ge

2N2815

CTI

2N4002

NPN-8i

2N2552

2N2552

2N2552

PNP-Ge

2N2816

CTI

2N4002

NPN-8i

2N2553

2N2553

2N2553

PNP-Ge

2N2817

CTI

2N6324

NPN-8i

2N2554

2N2554

2N2554

PNP-Ge

2N2818

CTI

2N6324

NPN-8i

2N2555

2N2555

2N2555

PNP-Ge

2N2819

CTI

2N4002

NPN-8i

2N2556

2N2556

2N2556

PNP-Ge

2N2820

CTI

2N4002

NPN-8i

2N2557

2N2557

2N2557

PNP-Ge

2N2821

CTI

2N6324

NPN-8i

2N2558

2N2558

2N2558

PNP-Ge

2N2822

CTI

2N6324

NPN-8i

2N2559

2N2559

2N2559

PNP-Ge

2N2823

CTI

2N4002

NPN-8i

2N2560

2N2560

2N2560

PNP-Ge

2N2824

CTI

2N4002

NPN-8i

2N2561

2N2561

2N2561

PNP-Ge

2N2825

CTI

2N6324

NPN-8i

2N2562

2N2562

2N2562

PNP-Ge

2N2B28

CTI\

2N3998

NPN-Si

2N2563

2N2563

PNP-Ge

2N2829

CTI

2N3998

NPN-8i

2N2584

2N2563
2N2564

2N2584

PNP-Ge

2N2832

2Nl908

PNP-8i

2N2565

2N2565

2N2565

PNP-Ge

2N2835

2N2564

PNP-8i

2N2566

2N2566

2N2566

PNP-Ge

2N2836

TI3029

PNP-8i

2N2567

2N2567

2N2567

PNP-Ge

2N2866

CTI

2N3998

NPN-8i

2N2632

CTI

2N3998

NPN-8i

2N2867

CTI

2N3999

NPN-8i

2N2633

CTI

2N3998

NPN-8i

2N2869

T13030

PNP-8i

2N2634

CTI

2N3998

NPN-8i

2N2870

TI3030

PNP-8i

2N2657

CTI

2N3418

NPN-8i

2N2875

CTI

2N3998

NPN-8i

2N2658

CTI

2N3418

NPN-8i

2N2877

CTI

2N3998

NPN-Si

2N2659

2N2659

2N2659

PNP-Ge

2N2878

CTI

2N3998

NPN-8i

2N2660

2N2660

2N2660

PNP-Ge

2N2879

CTI

2N3998

NPN-8i

2N2661

2N2661

2N2661

PNP-Ge

2N2880

2N2880

2N2880

NPN-8i

2N2662

2N2662

2N2662

PNP-Ge

2N2881

CTI

2N5333

PNP-8i

2N2663

2N2663

2N2663

PNP-Ge

2N2882

CTI

2N5333

PNP-8i

2N2664

2N2664

2N2664

PNP-Ge

2N2890

CTI

2N4000

NPN-8i

2N2665

2N2665

2N2665

PNP-Ge

2N2891

CTI

2N4000

NPN-8i

2N2666

'2N2666

2N2666

PNP-Ge

2N2892

CTI

2N5004

NPN-8i

CTI-Cont&ct Texas Instruments.

2·6

FOR NEW DESIGN

2N2667

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

2N5004

NPN-Si

2N3144

T! DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

2N2893

CTI

2N2983

CT!

2N3418

NPN-Si

2N4145

2N2984

CT!

2N3418

NPN-Si

2N3146

2N3146

2N2985

CTI

2N3418

NPN-Si

2N3147

2N3147

2N2986

CT!

2N3418

NPN-Si

2N3149

2N2987

2N2987

2N2987

NPN-Si

2N3150

CT!

NPN-Si

2N2988

2N2988

2N2988

NPN-Si

2N3151

CT!

NPN-Si

2N2989

2N2989

2N2989

NPN-Si

2N3163

2N3789

PNP-Si

2N2990

2N2990

2N2990

NPN-Si

2N3164

CTI

PNP-Si

2N2991

2N2991

2N2991

NPN-Si

2N3165

CT!

PNP-Si

2N2992

2N2992

2N2992

NPN-Si

2N3166

CT!

PNP-Si

2N2993

2N2993

2N2993

NPN-Si

2N3167

CT!

PNP-Si

2N2994

2N2994

2N2994

NPN-Si

2N3168

CT!

PNP-Si

2N3001

2N3001

2N3001

SCR

2N3169

CT!

PNP-Si

2N3002

2N3002

2N3002

SCR

2N3170

CT!

PNP-Si

2N3003

2N3003

2N3003

SCR

2N3171

2N3789

PNP-Si

2N3004

2N3004

2N3004

SCR

2N3172

2N3789

PNP-Si

2N3005

2N3005

T!C44

SCR

2N3173

2N3790

PNP-Si

2N3006

2N3006

T!C45

SCR

2N3174

2N3790

PNP-Si

2N3007

2N3007

T!C46

SCR

2N3175

CT!

PNP-Si

2N3008

2N3008

T!C47

SCR

2N3176

CT!

PNP-Si

2N3021

2N3021

2N3789

PNP-Si

2N3177

CT!

PNP-Si

2N3022

2N3022

2N3789

PNP-Si

2N3178

CT!

PNP-Si

2N3023

2N3023

2N3789

PNP-Si

2N3179

CT!

PNP-Si

2N3024

2N3024

2N3791

PNP-Si

2N3180

CT!

PNP-Si

2N3025

2N3025

2N3791

PNP-Si

2N3181

CT!

PNP-Si

2N3026

2N3026

2N3791

PNP-Si

2N3182

CT!

PNP-Si

2N3027

T!C44

SCR

2N3183

2N3789

PNP-Si

2N3028

T!C45

SCR

2N3184

2N3789

PNP-Si

CT!

NPN-Si

CT!

NPN-Si

2N3146

PNP-Ge

2N3147

PNP-Ge

CT!

NPN-Si

2N3029

T!C46

SCR

2N3185

2N3790

PNP-Si

2N3030

T!C44

SCR

2N3186

2N3790

PNP-Si

2N3031

T!C45

SCR

2N3187

CT!

PNP-Si

2N3032

T!C46

SCR

2N3188

CT!

PNP-Si

2N3054

T!P31A

NPN-Si

2N3189

CT!

PNP-Si

T!P3055

NPN-Si

2N3190

CT!

PNP-Si
NPN-Si

2N3055

2N3055

2N3074

CTI

PNP-Ge

2N3191

CTI

2N3075

CT!

PNP-Ge

2N3192

CTI

NPN-Si

2N3076

CTI

NPN-Si

2N3193

CT!

NPN-Si

2N3079

CT!

NPN-Si

2N3194

CT!

NPN-Si

2N3080

CT!

NPN-Si

2N3195

PNP-Si

2N3125

2N3146

PNP-Ge

2N3196

2N3789
2N3789

2N3126

2N3146

PNP-Ge

2N3197

2N3790

PNP-Si

2N3132

T!3031

PNP-Ge

2N3198

2N3790

PNP-Si

2N3138

CT!

NPN-Si

2N3199

CT!

2N3139

CT!

NPN-Si

2N3200

CT!

PNP-Si
NPN-Si

2N3140

CTI

NPN-Si

2N3201

CT!

NPN-Si

2N3141

CTI

NPN-Si

2N3202

CT!

NPN-Si

2N3142

CT!

NPN-Si

2N3203

CT!

NPN-Si

2N3143

CT!

NPN-Si

2N3204

CT!

NPN-Si

•

PNP-Si

CTI-Contact Texas Instruments.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

2-7

. CROSS-REFERENCE GUIDE

TYPE

•

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

TI DIRECT
REPLACEMENT

CLASS

CTI

NPN-5i

2N3445

2N3713

NPN-5i

2N3206

CTI

NPN-Si

2N3446

2N3714

NPN-5i

2N3207

CTI

NPN-Si

2N3447

2N3715

NPN-5i

2N3208

CTI

NPN-Si

2N3448

2N3716

NPN-5i

2N3220

CTI

NPN-5i

2N3469

CTI

NPN-5i

2N3221

CTI

NPN-Si

2N3470

NPN-5i

2N3222

CTI

NPN-Si

2N3471

CTI
CTI

2N3223

CTI

NPN-Si

2N3472

CTI

NPN-5i

NPN-5i

2N3226

2N3713

NPN-5i

2N3473

CTI

NPN-5i

2N3228

TIC106B

SCR

2N3474

CTI

NPN-5i

2N3230

CTI

NPN-5i

2N3475

CTI

NPN-5i

2N3231

CTI

NPN-5i

2N3476

2N3232

CTI

NPN-5i

2N3487

CTI
CTI

NPN-5i

2N3233

CTI

NPN-5i

2N348B

CTI

NPN-5i

2N3234

NPN-5i

2N3489

CTI

NPN-5i

2N3235

CTI
·CTI

NPN-5i

2N3490

CTI

NPN-5i

2N3236

CTI

NPN-Si

2N3491

CTI

NPN-5i

2N3237

CTI

NPN-Si

2N3492

CTI

NPN-5i

2N3238

CTI

NPN-5i

2N3525

2N1599
2N1597

SCR

NPN-5i

2N3239

CTI

NPN-5i

2N3528

2N3240
2N3255

CTI

NPN-5i

2N3551

2N3551

2N3551

NPN-5i

2N3001

SCR

2N3552

2N3256

2N3002

SCR

2N3552
2N3555

2N3552
TIC39Y

SCR

2N3258

2N3004
2N3005

2N3556
2N3557

TIC39F

SCR

TIC39A

SCR

2N3558

TIC39B

SCR

2Nj3259
2N3260

SCR

CTI

SCR
NPN-5i

SCR
NPN-5i

2N3263

2N3263

CTI

NPN-5i

2N3559

TlC39Y

SCR

2N3264

2N3264

CTI

NPN-5i

2N3560

TlC39Y

SCR

2N3265

2N3265

CTI

NPN-5i

2N3561

TlC39A

2N3266

2N3266

NPN-5i

2N3562

TIC39B

SCR
SCR

2N3273

CTI
TIC106A

SCR

2N3583

2N3583

2N3583

NPN-5i

2N3274

TlCl06B

SCR

2N3584

2N3584

2N3584

NPN-5i

2N3275

TIC106C

SCR

2N3585

2N3585

2N3585

NPN-5i

2N3297

CTI

NPN-5i

2N3589

CTI

CTI

NPN-Si

2N3327

NPN-5i

2N3590

CTI

CTI

NPN-5i

2N3418

2N3418

CTI
2N3418

NPN-Si

2N3591

CTI

CTI

NPN-5i

2N3419

2N3419

2N3419

NPN-Si

2N3592

CTI

CTI

NPN-5i

2N3420

2N3420

2N3420

NPN-5i

2N3593

CTI

CTI

NPN-5i

2N3421

2N3421

2N3421

NPN-5i

2N3594

CTI

CTI

NPN-5i

2N3429

CTI

NPN-5i

2N3595

CTI

CTI

NPN-5i

2N3430

CTI

NPN-5i

2N3596

CTI

CTI

NPN-5i

2N3431

CTI

NPN-Si

2N3597

CTI

2N4002

NPN-5i

2N3432

CTI

NPN-5i

2N3598

CTI

2N4002

NPN-51

2N3433

CTI

NPN-5i

2N3599

CTI

2N4003

NPN-5i

2N3434

CTI

NPN-5i

2N3611

TI3027

PNP-Ge

2N3439

2N3439

CTI

NPN-5i

2N3612

TI3028

PNP-Ge

2N3440
2N3441

2N3440

CTI
CTI

NPN-5i
NPN-5i

2N3613
2N3614

TI3027
T13028

PNP-Ge
PNP-Ge

CTI

NPN-5i

2N3615

TI3021

PNP-Ge

2N3442

CTI-Contact Taxas Instruments.

2·8

FOR NEW DESIGN

2N3205

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 715222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

2N3616

2N3146

PNP-Ge

2N3846

2N3617

TI3030

PNP-Ge

2N3618

2N3146

PNP-Ge

2N3660

2N5333

2N3661

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

2N3846

2N3846

NPN-Si

2N3847

2N3847

2N3847

NPN-Si

2N3848

2N3848

2N3848

NPN-Si

PNP-Si

2N3849

2N3849

2N3849

NPN-Si

2N5333

PNP-Si

2N3850

2N5938

NPN-Si

2N3667

2N3713

NPN-Si

2N3851

2N5938

NPN-Si

2N3675

2N3420

NPN-Si

2N3852

2N5938

NPN-Si

2N3676

2N3421

NPN-Si

2N3853

2N5938

NPN-Si

2N3713
2N3714

NPN-Si

2N3861

2N4240

NPN-Si

NPN-Si

2N3863

2N3715

NPN-Si

2N3713

'2N3713

2N3714

2N3714

2N3715

2N3715

2N3715

NPN-Si

2N3864

2N3716

NPN-Si

2N3716

2N3716

2N3716

NPN-Si

2N3865

CTI

CTI

NPN-Si

2N3719

2N3719

2N3719

PNP-Si

2N3878

CTI

TIP41A

NPN-Si

2N3720

2N3720

2N3720

PNP-Si

2N3879

CTI

TIP41C

NPN-Si

2N3730

CTI

CTI

PNP-Ge

2N3902

2N3902

2N3902

NPN-Si

2N3731

CTI

CTI

PNP-Ge

2N3916

2N3583

NPN-Si

2N3732

CTI

CTI

PNP-Ge

2N3917

2N3583

NPN-Si

2N3738

2N3584

NPN-Si

2N3918

CTI

TIP33

NPN-Si

2N3739

2N3585

NPN-Si

2N3919

CTI

TIP33

NPN-Si

2N3740

CTI

TIP30A

PNP-Si

2N3920

CTI

TIP33

NPN-Si

2N3741

CTI

TIP30B

PNP-Si

2N3996

2N3996

2N3996

NPN-Si

2N3743

CTI

CTI

PNP-Si

2N3997

2N3997

2N3997

NPN-Si

2N3744

2N3996

NPN-Si

2N3998

2N3998

2N3998

NPN-Si

2N3745

2N3997

NPN-Si

2N3999

2N3999

2N3999

NPN-Si
NPN-Si

2N3746

CTI

CTI

NPN-Si

2N4000

2N4000

2N4000

2N3747

CTI

CTI

NPN-Si

2N4001

2N4001

2N4001

NPN-Si

2N3748

CTI

CTI

NPN-Si

2N4002

2N4002

2N4002

NPN-Si

2N3749

CTI

CTI

NPN-Si

2N4003

2N4003

2N4003

NPN-Si

2N5938

NPN-Si

2N4004

2N4004

2N4004

NPN-Si

2N4005

2N4005

NPN-Si

2N3750
2N3751

CTI

CTI

NPN-Si

2N4005

2N3752

CTI

CTI

NPN-Si

2N4063

2N3440

NPN-Si

2N3766

CTI

TIP29A

NPN-Si

2N4064

2N3440

NPN-Si

2N3767

CTI

TIP29B

NPN-Si

2N4070

CTI

NPN-Si

2N3771

2N3771

2N3771

NPN-Si

2N4071

CTI

NPN-Si

2N3772

2N3772

2N2772

NPN-Si

2N4075

2N4998

NPN-Si

2N3773

CTI

CTI

NPN-Si

2N4076

2N4998

NPN-Si

2N3774

2N3719

PNP-Si

2N4096

TIC39F

SCR

2N3775

2N5333

PNP-Si

2N4097

TIC39A

SCR

2N3776

2N5333

PNP-Si

2N41 08

2N3006

SCR

2N3777

2N5333

PNP-Si

2N4109

2N3007

SCR

2N3778

2N5333

PNP-Si

2N4111

TIP3055

NPN-Si

2N3779

2N5333

PNP-Si

2N4112

TIP3055

NPN-Si

2N3780

2N5333

PNP-Si

2N4113

TIP33B

NPN-Si

2N3781

2N5333

PNP-Si

2N4114

TIP33B

NPN-Si

2N3782

2N5333

PNP-Si

2N4115

CTI

NPN-Si

2N3788

CTI

TIP53

NPN-Si

2N4116

CTI

NPN-Si

2N3789

2N3789

2N3789

PNP-Si

2N4130

TIP36B

NPN-Si

2N3790

2N3790

2N3790

PNP-Si

2N4131

TIP35C

NPN-Si

2N3791

2N3791

2N3791

PNP-Si

2N4150

2N4300

NPN-SI

2N~792

2N3792

2N3792

PNP-Si

•

CTI-Contact Texa. 1n.trumant•.

TEXASINCORPORATED
INSTRUMENTS
'-OST OjrP'ICE BOX 5012 • DALLA', TEXAS 71222

2·9

CROSS-REFERENcE GUIDE

TYPE

•

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

TI DIRECT
REPLACEMENT

CLASS

TlCl16F

SCR

2N4201

TIC106E

SCR

2N4153

TICl16A

SCR

2N4202

CTI

SCR

2N4154

TICl16B

SCR

2N4210

2N4002

NPN-Si

2N4155

TIC116C

SCR

2N4211

2N4003

NPN-Si

2N4156

TIC116b

SCR

2N4212

TIC39Y

SCR

2N4157

TIC116E

TIC39F

SCR

TICl16M

SCR
SCR

2N4213

2N4158

2N4214

TIC39A

SCR

2N4159

TIC116F

SCR

2N4215

TIC39B

SCR

2N4160

TICl16F

SCR

2N4216

TIC39B

SCR

2N4161

TICl16A

SCR

2N4217

TIC39C

SCR

2N4162

TIC116B

SCR

2N4218

TIC39C

SCR

2N4163

TIC116C

SCR

2N4219

TIC39D

SCR

2N4164

TICl16D

SCR

2N4231

TIP3l

NPN-Si

2N4165

TIC116E

SCR

2N4232

TIP31A

NPN-5i

2N4166

TIC116M

SCR

2N4233

TIP31B

NPN-5i

2N4167

TICl16F

SCR

2N4234

TIP30

PNP-5i

2N4168

TIC116F

SCR

2N4235

TIP30A

PNP-5i

2N4169

TIC116A

SCR

2N4236

TIP30B

PNP-Si

2N4170

TIC116B

SCR

2N4240

2N4171

TICl16C

SCR

2N4172

TIC116D

2N4173

TIC116E

2N4174

TIP48

NPN-Si

2N4241

TI3027

PNP-Ge

SCR

2N4242

TI3029

PNP-Ge

SCR

2N4243

TI3028

PNP-Ge

TICl16M

SCR

2N4244

TI3027

PNP-Ge

2N4175

TICl16F

SCR

2N4245

TI3030

PNP-Ge

2N4176

TICl16F

seR

2N4246

TI3028

PNP-Ge

2N4177

TIC116A

SCR

2N4247

TI3027

PNP-Ge

2N4178

TIC116B

SCR

2N4271

2N657

NPN-Si

2N4179

TICl16C

SCR

2N4272

2N657

NPN-Si

2N4180

TICl16D

SCR

2N4273

2N4240

2N41Bl

TICl16E

SCR

2N4296

2N4182

TICl16M

SCR

2N4183

TICl16F

SCR

2N4184

TIC116F

2N4185

CTI

NPN-Si

TIP47

NPN-Si

2N4297

TlP47

NPN-Si

2N4298

TIP49

NPN-Si

SCR

2N4299

TlP49

NPN-Si

TICl16A

SCR

2N4300

2N4300

2N4300

NPN-Si

2N4186

TIC116B

SCR

2N4301

2N4301

2N4301

NPN-Si

2N4187

TICl16C

SCR

2N4305

CTI

2N5154

NPN-Si

2N4188

TIC116D

SCR

2N4307

CTI

2N5154

NPN-Si

2N4189

TIC116E

SCR

2N4309

CTI

2N5154

NPN-Si

2N4190

TIC116M

SCR

2N4311

CTI

2N5154

NPN-5i

2N4191

TICl16F

SCR

2N4316

TIC116A

SCR

2N4192

TICl16F

SCR

2N4317

TIC116B

SCR

2N4193

TICl16A

SCR

2N4318

TICl16C

SCR

2N4194

TIC116B

SCR

2N4319

TICl16D

SCR

2N4195

TICl16C

SCR

2N4322*

2N300l

SCR

2N4196

TICl16D

SCR

2N4333*

TIC39F

SCR

2N4197

TIC116E

SCR

2N4334*

TIC39A

SCR

2N4198

TIC116M

SCR

2N4335*

TIC39B

SCR

2N4199

TIC106C

SCR

2N4337*

TIC39C

SCR

2N4200

TIC106D

SCR

2N4346

TI3031

PNP-Ge

* Asterisk denotes 2N numbers not JEDEC registered through December 1970.

CTI-Contact Texas Instruments.

2·10

FOR NEW DESIGN

2N4152

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

CTI

CROSS-REFERENCE GUIDE

Type

TI DIRECT
REPLACEMENT

FOR NEW DESIGIII

CLASS
NPN-5i

TYPE
2N5006

TI DIRECT
REPLACEMENT

FOR NEW DESIGN
2N6128

CLASS
NPN-5i

2N4347

CTI

2N4348

CTI

2N3716

NPN-5i

2N5007

2N6127

PNP-5i

2N4387

CTI

TIP30

PNP-5i

2N5008

2N6128

NPN-Si

2N4388

CTI

TIP30A

PNP-5i

2N5009

2N6127

PNP-Si

2N3713

NPN-Si

2N5010

CTI

2N3439

NPN-Si

2N4395

2N3716

2N3713

NPN-5i

2N5011

CTI

2N3439

2N4398

2N4398

2N4398

PNP-5i

2N5012

CTI

2N3439

NPN-Si
NPN-Si

2N4399

2N4399

2N4396

2N4399

PNP-Si

2N5013

2N3439

NPN-5i

2N4441

TIC116F

SCR

2N5014

2N3439

NPN-Si

2N4442

TIC116B

SCR

2N5015

21113439

NPN-Si

2N4443

TIC116D

SCR

2N5034

TIP33

NPN-5i

2N4444

TIC116M
CTI

SCR
NPN-5i

2N5035
2N5036

TIP33
TlP33A

NPN-Si

2N5148

NPN-5i

2N5037

TlP33A

NPN-Si

CTI

NPN-Si

2N5038

2N5038

2N5038

NPN-Si

CTI
CTI

NPN-Si

2N5039

2N5039

2N5039

NPN-Si

2N5048

21116128

NPN-5i

CTI

NPN-5i
NPN-Si

TIP30

PNP-5i

2N5049
2N5050

CTI

2N6128
TIP47

NPN-5i
NPN-5i
NPN-5i

2N4862
2N4863
2N4864

CTI
CTI

21114865
2N4866
21114877

NPN-Si

2N4898

CTI

2N4899

CTI

TIP30A

PNP-5i

2N5051

CTI

TlP47

2N4900

CTI

TIP308

PNP-5i

2N5052

CTI

CTI

NPN-Si

21114901

2N4901

TlP34

PNP-5i

2N5060

2N5060

TIC60

SCR

2N4902

2N4902

TIP34A

PNP-5i

2N5061

2N5061

TlC61

SCR

2N4903

21114903

TIP34B

PNP-5i

2N5062

2N5062

TIC62

SCR

2N4904

2N4904

TIP34

PNP-5i

2N5063

2N5063

TIC63

SCR

2N4905

2N4905

TIP34A

PNP-5i

2N5064

2N5064

TIC64

SCR

-2N4906

21114906

TIP34B

PNP-5i

2N5067

2N5067

TIP33

NPN-5i

2N4907

CTI

TIP34

PNP-5i

2N5068

2N5068

TIP33A

NPN-5i

2N49Q8
2N491 0

CTI
CTI

TIP34A

PNP-5i

2N5069

TIP33B

NPN-5i

TIP33

NPN-Si

2N5147

2N5069
2N5147

PNP-5i
PNP-5i

2N4911

CTI

TIP33A

NPN-5i

2N5148

2N5148

2N5147
2N5148

21114912

CTI

TIP33B

NPN-Si

2N5149

2N5149

2N5149

2N4913

2N4913

TIP33

NPN-Si

2N5150

2N5150

NPN-Si

2N4914

21114914

TIP33A

NPN-Si

2N5151

2N515O
2N5151

2N5151

PNP-5i

2N4915

21114915

NPN-Si

NPN-5i

TIP33B

NPN-5i

2N5152

2N5152

2N4918

TIP30

PNP-5i

2N5153

2N5153

2N5152
2N5153

PNP-5i

2N4919

TIP30A

PNP-5i

2N5154

2N5154

2N5154

NPN-Si

2N4920

TIP30B

PNP-5i

2N5157

2N5157

2N5157

NPN-Si

2N4921

TlP29

NPN-Si

2N5190

TIP31

NPN-Si

2N4922
2N4923

TIP29A
TIP29B

NPIII-5i

2N5191

TIP31A

NPN-5i

2N5192

TIP31B

2N5193
2N5194

TIP32

NPN-Si
PNP-5i

TIP32A

PNP-Si
PNP-5i

21114998

2N4998

2N4998

NPN-5i
NPN-Si

2N4999

2N4999
2N5000

2N4999

NPN-5i

2N5ooo
2N5001

NPN-5i
NPN-Si

2N5195
2N5202

CTI

TIP32B
CTI

2N5002

2N5237

CTI

CTI

NPN-5i

2N5003

NPN-5i
PNP-5i

2N5238

CTI
CTI

NPN-5i
NPN-5i

CTI

NPN-Si

2N50oo
2N5001
2N5002
2N5003

2N 5901
2N5OO2
2N5003

21115004

21115004

2N5004

NPN-Si

2N5239

CTI
CTI

2N5005

2N5005

2N5OO5

PNP-5i

,2N524O

CTI

NPN-Si

CTI-Contact. T~a.s Instruments.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE

.,ox

5012 •

DALLAS. TeXAS 75222

2-11

CROSS-REFERENCE GUIDE

TYPE

TYPE

2N5241

NPN·Si

2N5349

CTI

2N5273

TIC2638

TRIAC

2N5384

2N5384

2N5384

2N5274

TIC263D

TRIAC

2N5385

2N5385

2N5385

PNP,Si

2N5275

TIC263M

TRIAC

2N5386

2N5386

2N5386

PNP-Si

2N5241

FOR NEW DESIGN

TI DIRECT
REPLACEMENT

CLASS

2N5241

•

TI DIRECT
REPLACEMENT

CLASS
NPN-Si
PNp·Si

2N5279

CTI

2N3439

NPN·Si

2N5387

2N5387

2N5387

NPN·Si

2N5280

CTI

2N3439

2N5388

2N5388

2N5388

NPN·Si

2N5284

CTI

2N5002

NPN·Si
NPN,Si

2N5389

2N5389

2N5389

NPN·Si

2N5285

CTI

2N5004

NPN-Si

2N5390

2N5390

2N5390

NPN·Si

2N5286

CTI

2N5003

PNP·Si

2N5404

CTI

2N5153

PNP-Si

2N5287

CTI

2N5005

PNP-Si

2N5405

CTI

2N5153

PNP-Si

2N5288

CTI

2N6128

NPN·Si

2N5406

CTI

2N5153

PNP-Si

2N5289

CTI

2N6128

NPN-Si

2N5407

CTI

2N5153

2N5290

CTI

2N6127

PNP-Si

2N5408

CTI

2N5005

PNP·Si
PNP-Si

2N5291

CTI

2N6127

PNP·Si

2N5409

CTI

2N5005

PNP-Si

2N5293

TIP318

NPN·Si

2N5410

CTI

2N5005

PNP-Si

2N5294

TIP318

NPN·Si

2N5411

CTI

2N5005

PNP-Si

2N5295

TIP31

NPN-Si

2N5412

CTI

CTI

NPN·Si

2N5296

TIP31

NPN·Si

2N5427

CTI

TIP318

NPN·Si

2N5297

TIP31A

NPN·Si

2N5428

CTI

TIP318

NPN·Si

2N5298

TIP31A

NPN·Si

2N5429

CTI

TIP31C

NPN-Si

2N5301

2N5301

2N5301

NPN·Si

2N5230

CTI

TIP31C

NPN-Si

2N5302

2N5302

2N5302

NPN·Si

2N5466

CTI

TlP54

NPN-Si

2N5303

2N5303

2N5303

NPN·Si

2N5467

CTI

TIP54

NPN·Si

2N5312

CTI

2N6127

PNP·Si

2N5468

CTI

TIP530

NPN-Si

2N5313

CTI

2N6128

NPN-Si

2N5469

CTI

TlP530

NPN·Si

2N5314

CTI

2N6127

PNP-Si

2N5477

CTI

CTI

NPN-Si

2N5315

CTI

2N6128

NPN·Si

2N5478

CTI

CTI

NPN·Si

2N5316

CTI

2N6127

PNP-Si

2N5479

CTI

CTI

NPN·Si

2N5317

CTI

2N6128

NPN·Si

2N5480

CTI

CTI

NPN-Si

2N5318

CTI

2N6127

PNP·Si

2N5489

CTI

NPN-Si

2N5319

CTI

2N6128

NPN-Si

2N5490

TIXP547
TIP41

2N5326

CTI

CTI

NPN·Si

2N5491

TlP41

NPN-Si

2N5327

CTI

CTI

NPN·Si

2N5492

TlP41 A

NpN-Si

2N5328

CTI

CTI

NPN·Si

2N5493

TIP41A

NPN-Si

2N5329

CTI

CTI

NPN·Si

2N5494

TIP41

NPN-Si

2N5330

CTI

,CTI

NPN-Si

2N5495

TIP41

NPN-Si

2N5331

CTI

CTI

NPN·Si

2N5496

TIP418

NPN-Si

2N5333

2N5333

2N5333

NPN·Si

2N5497

TIP418

NPN-Si

2N5334

CTI

CTI

NPN·Si

2N5529

CTI

2N5938

NPN-Si

2N5335

CTI

CTI

NPN-Si

2N5530

CTI

2N5938

NPN-Si

2N5336

CTI

2N5152

NPN·Si

2N5531

CTI

CTI

NPN-Si

2N5337

CTI

2N5154

NPN·Si

2N5532

CTI

2N5938

NPN-Si

2N5338

CTI

2N5152

NPN·Si

2N5533

CTI

2N5938

NPN-Si

2N5339

CTI

2N5154

NPN·Si

2N5534

CTI

2N5938

NPN-Si

2N5344

CTI

CTI

PNP·Si

2N5535

CTI

2N5939

NPN-Si

NPN-Si

2N5345

CTI

CTI

PNP-Si

2N5536

CTI

2N5939

NPN-Si

2N5346

CTI

CTI

NPN·Si

2N5537

CTI

2N5939

NPN-Si

2N5347

CTI

CTI

NPN-Si

2N5538

CTI

2N5939

NPN-Si

2N5348

CTI

CTI

NPN-Si

2N5539

CTI

2N4002

NPN-Si

CTI-Contact Texas Instruments.

2·12

FOR NEW DESIGN
CTI

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TeXAS 75222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

2N5540

CTI

2N5389

NPN-Si

2N5632

CTI

2N5885

NPN-Si

2N5541

CTI

2N3421

NPN-Si

2N5633

CTI

2N5885

NPN-Si

2N5542

CTI

2N4301

NPN-Si

2N5634

CTI

2N5885

2N5552

CTI

CTI

NPN-Si

2N5655

TIP47

NPN-Si
NPN-Si

2N5553*

CTI

CTI

NPN-5i

2N5656

CTI

CTI

NPN-Si

2N5657

TIP48
TIP49

NPN-Si

2N5554*
2N5559

CTI

CTI

NPN-Si

2N5658

CTI

2N3997

NPN-Si

2N5560

CTI

2N4002

NPN-Si

2N5659

CTI

2N3997

NPN-Si

2N5567

TIC236B

TRIAC

2N5660

CTI

CTI

NPN-Si

2N5568

TIC236D

TRIAC

2N5661

CTI

CTI

NPN-Si

2N5569

TIC236B

TRIAC

2N5662

CTI

CTI

NPN-Si

2N5570

TIC236D

TRIAC

2N5663

CTI

CTI

NPN-Si

2N5571

TlC246B

TRIAC

2N5664

CTI

CTI

NPN-Si

2N5572

TlC246D

TRIAC

2N5665

CTI

CTI

NPN-Si

2N5573

TIC246B

TRIAC

2N5666

CTI

CTI

NPN-Si

2N5574

TIC246D

TRIAC

2N5667

CTI

CTI

NPN-Si

2N5597

TIP30A

PNP-5i

2N5671

2N5671

2N5671

NPN-Si

2N5598

TIP31A

NPN-Si

2N5672

2N5672

2N5672

NPN-Si

2N5599

TIP30B

PNP-Si

2N5675

CTI

2N5333

PNP-Si

CTI

2N5384

PNP-Si

NPN-Si

2N5600

CTI

TIP31B

NPN-Si

2N5676

2N5601

CTI

TIP30B

PNP-5i

2N5677

CTI

2N5386

PNP-Si

2N5602

CTI

TIP31B

NPN-Si

2N5678

CTI

CTI

PNP-Si

2N5603

CTI

TIP30C

PNP-Si

2N5679

CTI

2N5333

PNP-Si

2N5604

CTI

TIP31C

NPN-Si

2N5680

CTI

2N5333

PNP-Si

2N5605

CTI

TIP42A

PNP-Si

2N5681

CTI

2N2990

NPN-Si

2N5606

CTI

CTI

NPN-Si

2N5682

CTI

2N2990

NPN-Si

2N5607

CTI

TIP42B

PNP-5i

2N5683

2N5683

2N5683

PNP-Si

2N5608

CTI

CTI

NPN-Si

2N5684

2N5684

2N5684

PNP-Si

2N5609

CTI

TlP42C

PNP-5i

2N5685

2N5685

2N5685

NPN-Si

2N5611

TIP42C

PNP-Si

2N5686

2N5686

2N5686

NPN-Si

2N5613

2N3791

PNP-Si

2N5692

CTI

CTI

PNP-Ge

2N5614

TIP33A

NPN-Si

2N5693

CTI

CTI

PNP-Ge

2N5615

2N3792

PNP-5i

2N5694

CTI

CTI

PNP-Ge

2N5616

TIP33B

NPN-Si

2N5695

CTI

CTI

PNP-Ge

2N5617

2N3792

PNP-Si

2N5696

CTI

CTI

PNP-Ge

2N5618

TIP33B

NPN-Si

2N5719

2N3002

SCR

2N5619

2N3792

PNP-5i

2N5720

2N3003

SCR

2N5620

TIP33C

NPN-Si

2N5721

2N3004

SCR

2N5621

2N3791

PNP-Si

2N5722

CTI

SCR

2N5622

TlP35A

NPN-Si

2N5724

TIC39F

SCR

2N5623

PNP-Si

2N5725

TIC39A

SCR

2N5624

2N3792
TIP35B

NPN-Si

2N5726

TIC39B

SCR

2N5625

2N5884

PNP-Si

2N5727

TIC39C

SCR

2N5626

TIP35B

NPN-Si

2N5729

CTI

2N3420

NPN-Si

2N5627

2N5884

PNP-5i

2N5730

CTI

2N5004

NPN-5i

CTI

NPN-Si

2N5731

CTI

2N6128

NPN-Si

2N5628

CTI

2N5629

CTI

2N5885

NPN-5i

2N5732

TIP35C

NPN-Si

2N5630

CTI

2N5885

NPN-Si

2N5734

2N5885

NPN-Si

2N5631

CTI

2N5885

NPN-Si

2N5737

2N3791

PNP-Si

CTI

•

• Asterisk denotes 2N numbers not JEOEC registered through December 1970.
CTI-Contact Texas Instruments.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

2·13

CROSS-REFERENCE GUIDE

TYPE

•

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

2N5738

CTI

2N3792

2N5739

CTI

2N5740

CTI

2N5741

CTI

2N5742
2N5743
2N5744
2N5745

CLASS

TYPE

TI DIRECT
REPLACEMENT

CLASS

2N5888

CTI

CTI

PNP-Ge

CTI

PNP-8i

2N5889

CTI

CTI

PNP-Ge

CTI

PNP-8i

2N5900

CTI

CTf

PNP-Ge

2N5883

PNP-8i

2N5901,

CTI

CTI

PNP-Ge

CTI

2N5884

PNP-8i

2N5926

CTI

CTI

NPN-8i

CTI
CTI

CTI

PNP-8i
PNP-8i
PNP-8i

2N5927
2N5928

CTI
CTI

CTI
CTI

NPN-8i
NPN-8i

CTI

CTI
2N5883

2N5929

CTI

CTI

NPN-8i

2N5758

2N5758

2N5758

NPN-8i

2N5930

CTI

CTI

NPN-8i

2N5759

2N5759

2N5759

NPN-8i

2N5931

CTI

CTI

NPN-8i

2N5760

2N5760

2N5760

2N5932

CTI

CTI

NPN-8i

2N5781

CTI

CTI

NPN-8i
PNP-8i

CTI

CTI

NPN-8i

2N5782
2N5783

CTI

CTI

PNP-8i

2N5933
2N5934

CTI

CTI

NPN-8i

CTI

CTI

PNP-8i

2N5935

CTI

CTI

NPN-8i

2N5784

CTI

CTI

NPN-8i

2N5936

CTI

CTI

NPN-8i

2N5785

CTI

CTI

NPN-8i

2N5937

CTI

CTI

NPN-8i

2N5786

CTI

CTI

NPN-8i

2N5938·

2N5938

CTI

NPN-8i

2N5787

TIC44

SCR

2N5939

CTI

NPN-8i

2N5788

TIC45

SCR

2N5939
2N5940

2N5940

CTI

NPN-8i

2N5791

CTI

SCR

2N5954

CTI

TIP41A

NPN-8i

2N5792

TIC39D

SCR

2N5955

CTI

TIP41A

NPN-8i

2N5804

CTI

TIP52

NPN-8i

2N5956

CTI

TlP41

NPN-8i

2N5805

CTI

TIP54

NPN-Si

2N5957

CTI

CTI

NPN-8i

2N5838

TIP52

NPN-8i

NPN-8i

TlP52

NPN-Si

CTI
CTI

CTI

2N5839

2N5958
2N5959

CTI

NPN-8i

2N5840

TIP54

NPN-8i

2N5960

CTI

CTI

NPN-8i

2N5853

CTI

2N5386

PNP-8i

2N5966

CTI

CTI

NPN-8i

2N5854

CTI

2N4301

NPN-8i

2N5967

CTI

CTI

NPN-8i

2N5867 ,

2N5867

2N5867

PNP-8i

2N5968

CTI

CTI

NPN-8i

2N5868

2N5868

2N5868

PNP-8i

2N5969

CTI

CTI

NPN-8i

2N5869

2N5869

2N5869

NPN-8i

2N5970

CTI

CTI

NPN-8i

2N5870

2N5870

2N5870

NPN-8i

2N5971

CTI

CTI

NPN-8i

2N5871

2N5871
2N5872

2N5871

PNP-8i
PNP-8i

2N5972

CTI
CTI

CTI

NPN-8i

NPN-8i

2N5974
2N5975

2N5872

2N5873

2N5872
2N5873

2N5875

2N5874
2N5875

2N5874
2N5875

NPN-8i
PNP-8i

2N5876

2N5876

2N5876

PNP-8i

2N5877

2N5877

2N5877

2N5873
2N5874

CTI

NPN-Si

TIP34
TIP34A

PNP-8i
PNP-8i

2N5976

TIP348

PNP-8i

2N5977

TIP33

NPN-8i

2N5978

TIP33A

NPN-8i

2N5979

TIP33B

NPN-8i

TIP34

PNP-8i

TIP34A

PNP-8i

TIP34B

PNP-8i
NPN-8i

2N5973

2N5878

2N5878

2N5878

NPN-8i
NPN-8i

2N5879

2N5879

2N5879

PNP-8i

2N5880

2N5880

PNP-8i

2N5881

2N5880
2N5881

2N5980
2N5981

2N5881

NPN-8i

2N5982

2N5882

2N5882

2N5882

NPN-8i

2N5983

TIP33

2N5883

2N5883

2N5883

PNP-8i

2N5984

TIP33A

NPN-8i

2N5884

2N5884

2N5884

PNP-8i

2N5985

TIP33B

NPN-8i

2N5885

2N5885

2N5885

NPN-8i

2N5986

TIP36

PNP-8i

2N5886

2N5886

2N5886

NPN-8i

2N5987

TIP36A

PNP-8i

2N5887

CTI

CTI

PNP-Ge

2N5988

TIP36B

PNP-8i

CTI-Contact Texas Instruments.

2-14

FOR NEW DESIGN

PNP-8i

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

CROSS-REFERENCE GUIDE

TYPE

TI DIRECT
REPLACEMENT

2N5989

FOR NEW DESIGN
TIP35

CLASS

TYPE

NPN-Si

2N6125

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TIP32A

PNP-Si

2N5990

TIP35A

NPN-Si

2N6126

TIP32B

PNP-5i

2N5991

TIP35B

NPN-Si

2N6127

2N6127

2N6127

PNP-Si

2N6021

TIP32B

PNP-Si

2N6128

2N6128

2N6128

NPN-Si

2N6022

TIP32B

PNP-Si

2N6129

TIP41

NPN-Si

2N6023

TIP32

PNP-Si

2N6130

TIP41A

NPN-Si

2N6024

TIP32

PNP-Si

2N6131

TIP41B

NPN-Si

2N6025

TIP32A

PNP-Si

2N6132

TIP42

PNP-5i

2N6026

TIP32A

PNP-Si

2N6133

TIP42A

PNP-Si

2N6032

CTI

CTI

NPN-Si

2N6134

TIP42B

PNP-5i

2N6033

CTI

CTI

NPN-Si

2N6139

TIC236B

TRIAC

2N6046

CTI

2N4002

NPN-Si

2N6140

TIC236D

TRIAC

2N6047

CTI

2N4002

NPN-Si

2N6141

CTI

TRIAC

2N6048

CTI

2N4002

NPN-5i

2N6142

TIC236B

TRIAC

2N6049

CTI

CTI

PNP-Si

2N6143

TIC236D

TRIAC

2N6060

CTI

2N4002

NPN-Si

2N6144

CTI

TRIAC

2N6061

CTI

2N4002

NPN-Si

2N6148

TIC236B

TRIAC

2N6062

CTI

2N4002

NPN-Si

2N6149

TRIAC

2N6063

CTI

2N4002

NPN-Si

2N6150

TlC236D
CTI

2N6064

CTI

CTI

PNP-Ge

2N6154

TIC236B

TRIAC

2N6065

CTI

CTI

PNP-Ge

2N6155

TIC236D

TRIAC

2N6066

CTI

CTI

PNP-Ge

2N6156

cn

TRIAC

2N6068

TIC226B

TRIAC

2N6157

TIC263B

TRIAC

2N6069

TIC226B

TRIAC

2N6158

TIC263D

TRIAC

2N6070

TIC226A

TRIAC

2N6159

TIC263M

TRIAC

2N6071

TIC226B

TRIAC

2N6160

TIC263B

TRIAC

2N6072

TIC226D

TRIAC

2N6161

TIC263D

TRIAC

2N6073

TIC226D

TRIAC

2N6162

TIC263M

TRIAC

2N6074

TIC226M

TRIAC

2N6175

TIP47

NPN-Si

2N6075

TIC226M

TRIAC

2N6176

TIP48

NPN-Si

•

TRIAC

2N6077

CTI

CTI

NPN-Si

2N6177

TIP49

NPN-Si

2N6078

CTI

CTI

NPN-Si

2N6178

TIP29B

NPN-Si

2N6079

CTI

CTI

NPN-Si

2N6179

TIP29A

NPN-Si

2N6098

TIP31A

NPN-Si

2N6180

TIP30B

PNP-5i

2N6099

TIP31A

NPN-Si

2N6181

TlP30A

PNP-5i

2N6100

TIP41B

NPN-Si

2N6182

CTI

2N5003

PNP-Si

2N6101

TIP41B

NPN-Si

2N6183

CTI

2N5005

PNP-5i

2N6102

TIP41

NPN-Si

2N6184

CTI

2N5003

PNP-Si

2N6103

TIP41

NPN-Si

2N6185

CTI

2N5003

PNP-5i

2N61 06

TIP32B

PNP-Si

2N6186

CTI

2N5003

PNP-Si

2N6107

TlP32B

PNP-Si

2N6187

CTI

2N5005

PNP-Si

2N6108

TIP32A

PNP-Si

2N6188

CTI

2N5003

PNP-5i

2N6109

TIP32A

PNP-Si

2N6189

CTI

2N5005

PNP-Si

2N6110

TIP32

PNP-Si

2N6233

CTI

CTI

NPN-Si

2N6111

TIP32

PNP-Si

2N6234

CTI

CTI

NPN-5i

2N6121

TIP31

NPN-Si

2N6235

CTI

CTI

NPN-Si

2N6122

TIP31A

NPN-Si

2N6236

TlC106Y

SCR

2N6123

TIP31B

NPN-Si

2N6237

nCl06F

SCR

2N6124

TlP32

PNP-Si

2N6238

TIC106A

SCR

CTI-Contact Texas Instruments.

TEXAS1 NCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

2-15

CROSS-REFERENCE GUIDE

TYPE

•

TI DIRECT
REPLACEMENT

FOR NEW DESIGN

CLASS

TYPE

TI DIRECT
REPLACEMENT

CLASS

TIC106B

SCR

2N6288

TIP41

NPN-Si

2N6240

TIC106D

SCR

2N6289

TIP41

NPN-Si

2N6241

CTI

SCR

2N6290

TIP41

NPN-Si

2N6246

CTI

2N5879

PNP-Si

2N6291

TIP41

NPN-Si

2N6247

CTI

2N5880

PNP-Si

2N6292

T!P41B

NPN-Si

2N6248

CTI

CT!

PNP-Si

2N6293

TlP41B

2N6249

CT!

CTI

NPN-Si

2N6322

2N6322

2N6322

NPN-Si
NPN-Si

2N6250

CT!

CT!

NPN-Si

2N6323

2N6323

2N6323

NPN-Si

2N6251

CT!

CT!

NPN-Si

2N6324

2N6324

2N6324

NPN-Si

2N6253

CT!

2N3713

NPN-Si

2N6325

2N6325

2N6325

NPN-Si

2N6254

CTI

2N3713

NPN-Si

2N6326

2N6326

2N6326

NPN-Si

2N6257

CT!

CT!

NPN-Si

2N6327

2N6327

2N6327

NPN-Si

2N6258

CT!

CT!

NPN-Si

2N6328

2N6328

2N6328

NPN-Si

2N6259

CT!

CT!

NPN-Si

2N6329

2N6329

2N6329

PNP-Si

2N6260'

CT!

CT!

NPN-Si

2N6330

2N6330

2N6330

PNP-Si

2N6261'

CT!

CT!

NPN-Si

2N6331

2N6331

2N6331

PNP-Si

2N6262

CT!

2N5885

NPN-Si

2N6332

2N6332

2N6332

SCR

2N6263

CT!

CT!

NPN-Si

2N6333

2N6333

2N6333

SCR

2N6264

CT!

CT!

NPN-Si

2N6334

2N6334

2N6334

SCR

2N6270

2N6270

2N6270

NPN-Si

2N6335

2N6335

2N6335

SCR

2N6271

2N6271

2N6271

NPN-Si

2N6336

2N6336

2N6336

SCR

2N6272

2N6272

2N6272

NPN-Si

2N6337

2N6337

2N6337

SCR

2N6273

2N6273

2N6273

NPN-Si

'" Asterisk denotes 2N numbers not JEOEC registered through December 1970.

CTI-Contact Texas Instruments.

2-16

FOR NEW DESIGN

2N6239

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE
KEY TO MANUFACTURERS
ECC-Electronic Control Corporation

TYPE

RCA-Radio Corporation of America

FSC-Fairchild Semiconductor Corporation

SOD-Solitron Devices, Incorporated

GE-General Electric Company

TEC-Transitron Electronic Corporation

MOTA-Motorola Semiconductor Products, Incorporated

UN I-Unitrode Corporation

MANUFACTURER

40250

RCA

FOR NEW DESIGN

CLASS

TIP31

NPN-5i

40531

RCA

TIC205A

TRIAC

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

40251

RCA

2N5881

NPN-Si

40532

RCA

TIC205B

TRIAC

40310

RCA

TIP31

NPN-Si

40533

RCA

TIC106B

SCR

40312

RCA

TIP31A

NPN-Si

40534

RCA

TIC205A

TRIAC

40313

RCA

TIP48

NPN-Si

40535

RCA

TIC205B

TRIAC

40316

RCA

TIP31

NPN-Si

40536

RCA

TIC205D

TRIAC

40318

RCA

TIP48

NPN-Si

40553

RCA

TIC116B

SCR

40322

RCA

TIP48

NPN-Si

40554

RCA

TIC106D

SCR

40324

RCA

TIP31

NPN-Si

40575

RCA

TIC246B

TRIAC

40325

RCA

2N5877

NPN-Si

40576

RCA

TIC246D

TRIAC

40328

RCA

TIP48

NPN-Si

40613

RCA

TIP31

NPN-Si

40363

RCA

2N5877

NPN-Si

40618

RCA

TIP31

NPN-Si

40364

RCA

TIP31A

NPN-Si

40621

RCA

TIP31

NPN-Si

40369

RCA

2N3713

NPN-Si

40622

RCA

TIP31

NPN-Si

40372

RCA

TIP31A

NPN-Si

40624

RCA

TIP41

NPN-Si

40374

RCA

TIP47

NPN-Si

40627

RCA

TIP41A

NPN-5i

40375

RCA

TIP31A

NPN-Si

40629

RCA

TIP31

NPN-Si

40378

RCA

TIC1068

SCR

40630

RCA

TIP31

NPN-Si

40379

RCA

TIC116D

SCR

40631

RCA

TIP31

NPN-Si

40411

RCA

2N5878

NPN-Si

40632

RCA

TIP41A

NPN-Si

40429

RCA

TIC2268

TRIAC

40633

RCA

TIP33A

NPN-Si

40430

RCA

TIC226D

TRIAC

40636

RCA

2N5878

NPN-Si

40431

RCA

TlC2268

TRIAC

40638

RCA

TIC226B

TRIAC

40432

RCA

TIC226D

TRIAC

40654

RCA

TICl16B

SCR

40433

RCA

TIP48

NPN-Si

40655

RCA

TIC116D

SCR

40464

RCA

2N3715

NPN-Si

40656

RCA

TICl16B

SCR

40465

RCA

2N3715

NPN-Si

40657

RCA

TIC116D

SCR

40466

RCA

2N3715

NPN-Si

40658

RCA

TIC116B

SCR

40485

RCA

TIC2268

TRIAC

40659

RCA

TIC116D

SCR

40486

RCA

TIC226D

TRIAC

40664

RCA

TIC216D

TRIAC

40502

RCA

TIC2268

TRIAC

40667

RCA

TIC216D

TRIAC

40503

RCA

TIC226D

TRIAC

40668

RCA

TIC226B

TRIAC

40504

RCA

TIC106B

SCR

40669

RCA

TIC226D

TRIAC

40505

RCA

TIC106D

SCR

40684

RCA

TIC205A

TRIAC

40507

RCA

TIC106B

SCR

40685

RCA

TIC205B

TRIAC

40508

RCA

TIC116D

SCR

40686

RCA

TIC205D

TRIAC

40509

RCA

TIC226B

TRIAC

40691

RCA

TIC215B

TRIAC

40511

RCA

TIC226B

TRIAC

40692

RCA

TIC205D

.TRIAC

40512

RCA

TIC226D

TRIAC

40693

RCA

TIC205A

TRIAC

40513

RCA

TIP33

NPN-Si

40694

RCA

TIC205B

TRIAC

40514

RCA

TIP33

NPN-Si

40696

RCA

TIC205A

TRIAC

40526

RCA

TIC205B

TRIAC

40697

RCA

TIC205B

TRIAC

40529

RCA

TIC205B

TRIAC

40698

RCA

TIC205D

TRIAC

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

•

2-17

CROSS-REFERENCE GUIDE
TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

FOR NEW DESIGN

CLASS

TlC246B

TRIAC

40803

RCA

TIC246D

TRIAC

RCA

TIC2460

TRIAC

40804

RCA

TIC253M

TRIAC

RCA

TIC2468

TRIAC

401i07

RCA

TIC253M

TRIAC

40714

RCA

TIC246D

TRIAC

40810

RCA

2N1595

SCR

40715

RCA

TIC2468

TRIAC

40811

RCA

2Nl597

SCR

40716

RCA

TIC2460

TRIAC

40812

RCA

2N1599

SCR

40717

RCA

TIC236B

TRIAC

40816

RCA

TIP41

NPN-Si

40718

RCA

TIC236D

TRIAC

40829

RCA

TIP32B

PNP-Si

40719

RCA

TlC236B

TRIAC

40830

RCA

TIP32A

PNP-Si

40720

RCA

TIC236D

TRIAC

40831

RCA

TIP32

PNP-Si

40721

RCA

TIC2261!l

TRIAC

40840

RCA

TlP52t

NPN·Si

40722

RCA

TIC226D

TRIAC

40850

RCA

TIP48

NPN·Si

40723

RCA

TIC216D

TRIAC

40851

RCA

TIP49

NPN-Si

40725

RCA

TIC2268

TRIAC

40852

RCA

NPN-Si

40726

RCA

TlC216D

TRIAC

40853

RCA

TIP53 t
TIP53 t

40727

RCA

TIC226B

TRIAC

40867

RCA

TIC116B

SCR

40728

RCA

TIC226D

TRIAC

40868

RCA

TIC116B

SCR

40729

RCA

TIC226B

TRIAC

40869

RCA

TlCl16D

SCR

40731

RCA

TlC205B

TRIAC

40872

RCA

TIP32C

PNP-Si

40733

RCA

TIC226B

TRIAC

40874

RCA

TIP32B

PNp·Si

40737

RCA

TICl16A

SCR

40876

RCA

TlP32A

PNP-Si

40738

RCA

TlCl16B

SCR

40884

RCA

TIP41A

NPN-Si

40739

RCA

TIC126D

SCR

1'.01001

ECC

TIC206B

TRIAC

40740

RCA

TICl26M

SCR

1'.01002

ECC

TIC206B

TRIAC

40741

RCA

TIC116A

SCR

1'.01003

ECC

TIC206D

TRIAC

40742

RCA

TIC116B

SCR

A01004

ECC

TIC206D

TRIAC

40743

RCA

TIC126D

SCR

1'.01021

ECC

TIC216B

TRIAC

40744

RCA

TlC126M

SCR

A01022

ECC

TIC216D

TRIAC

40745

RCA

TlCl16A

SCR

1'.01061

ECC

TIC226B

TRIAC

40746

RCA

TICll6B

SCR

1'.01062

ECC

TIC226D

TRIAC

40747

RCA

TIC126D

SCR

1'.01101

ECC

TIC236B

TRIAC

40748

RCA

TIC126M

SCR

1'.01102

ECC

TIC236D

TRIAC

40761

RCA

TIC215B

TRIAC

1'.01141

ECC

TlC246B

TRIAC

40773

RCA

TIC2Q5B

TRIAC

1'.01142

ECC

TIC246D

TRIAC

40774

RCA

TIC205D

TRIAC

1'.01181

ECC

TIC253B

TRIAC

40775

RCA

TIC216B

TRIAC

1'.01182

ECC

TIC253D

TRIAC

40776

RCA

TlC226D

TRIAC

1'.03001

ECC

TIC206B

TRIAC

40778

RCA

TIC226D

TRIAC

1'.03002

ECC

TIC206B

TRIAC

40779

RCA

TlC236B

TRIAC

1'.03003

ECC

TIC206D

TRIAC

40780

RCA

TIC236D

TRIAC

1'.03004

ECC

TIC206D

TRIAC

40781

RCA

TIC236B

TRIAC

1'.1'.100

UNI

2N3OO2

SCR

40782

RCA

TIC236D

TRIAC

1'.1'.101

UNI

2N3OO3

SCR

40783

RCA

TIC246B

TRIAC

1'.1'.103

UNI

2N1598

SCR

40784

RCA

TIC246D

TRIAC

1'.1'.107

UNI

2N3002

SCR

40785

RCA

TlC246B

TRIAC

AA108

UNI

TIC39A

SCR

40786

RCA

TIC246D

TRIAC

1'.1'.110

UNI

2N1598

SCR

40797

RCA

TIC253M

TRIAC

AA114

UNI

2N3OO2

SCR

40798

RCA

TIC253M

1'.1'.115

UNI

2N3OO7

SCR

40799

RCA

TIC236B

TRIAC
. TRIAC

1'.1'.117

UNI

2N1598

SCR

40802

RCA

TIC246B

TRIAC

ADloo

UNI

TIC39F

SCR

40711

RCA

40712
40713

TYPE

MANUFACTURER

Refer to page 2-17 for key to manufacturers.

t Contact Texas Instruments for direct replacement.

2·18

TEXAS INSTRUMENTS
INCORPORATEO

POST OFFICI; BOX 5012

•

DAl.LAS. TEXAS 75222

NPN-Si

CROSS-REFERENCE GUIDE
TYPE

MANUFACTURER

AD10l

UNI

AD103
AD107

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

B04025

ECC

TIC106D

SCR

B04026

ECC

TIC106D

SCR

SCR

B05001

ECC

TlCl16B

SCR

TIC39A

SCR

805002

ECC

TICl16B

SCR

2N1598

SCR

B05003

ECC

TICl16D

SCR

UNI

TlCl06D

SCR

B05OO4

ECC

TICl16D

SCR

ADl14

UNI

TlC39F

SCR

B05005

ECC

TICl16M

SCR
SCR

TIC39A

SCR

UNI

TIC106C

UNI

TIC39F

AD108

UNI

ADll0

UNI

ADlll

SCR

ADl15

UNI

TIC39A

SCR

B05006

ECC

TICl16M

ADl17

UNI

2Nl598

SCR

B05021

ECC

TICl26B

SCR

ADl18

UNI

TlCl06D

SCR

805022

ECC

TIC126B

SCR

B01021

ECC

TIC106B

SCR

B05023

ECC

TIC126D

SCR

B01022

ECC

TlCl06B

SCR

B05024

ECC

TIC126D

SCR

B01023

ECC

TIC106B

SCR

805025

ECC

TIC126M

SCR

B01024

ECC

TlCl06D

SCR

B05026

ECC

TICl26M

SCR

B01025

ECC

TIC106D

SCR

B05041

ECC

TICl26B

SCR

B01026

ECC

TIC106D

SCR

B05042

ECC

TIC126B

SCR

B01051

ECC

TlCl16B

SCR

B05043

ECC

TIC126D

SCR

B01052

ECC

TlCl16B

SCR

B05044

ECC

TIC126D

SCR

B01053

ECC

TICl16D

SCR

B05045

ECC

TIC126M

SCR
SCR

801054

ECC

TICl16D

SCR

B05046

ECC

TIC126M

B01055

ECC

TlCl16M

SCR

UNI

2N3005

SCR

B01056

ECC

TlCl16M

SCR

Bl50
8151 '

UNI

2N3006

SCR

B01071

ECC

TICl26B

SCR

B152

UNI

2N3007

SCR

B01072

ECC

TIC126B

SCR

BAl50*

UNI

2N3005

SCR

B01073

ECC

TICl26D

SCR

BA151"

UNI

2N3006

SCR

B01074

ECC

TlC126D

SCR

BA152"

UNI

2N3007

SCR

B01075

ECC

TIC126M

SCR

BD100'

UNI

2N3005

SCR

B01076

ECC

TIC126M

SCR

BD10l"

UNI

2N3006

SCR

B01091

ECC

TICl26B

SCR

BD102"

UNI

2N3007

SCR

B01092

ECC

TICl268

SCR

8TD0105

TEC

TIC205A

TRIAC

B01093

ECC

TICl26D

SCR

BTDOll0

TEC

TIC205A

TRIAC

B01094

ECC

TIC126D

SCR

BTD0120

TEC

TlC205B

TRIAC

B01095

ECC

TICl26M

SCR

BTD0130

TEC

TIC205D

TRIAC

B01096

ECC

TIC126M

SCR

BTD0140

TEC

TIC205D

TRIAC

B03001

ECC

TIC106B

SCR

BTD0150

TEC

CTI

TRIAC

B03002

ECC

TIC106B

SCR

BTD0160

TEC

CTI

TRIAC

B03003

ECC

TIC106B

SCR

BTD0205

TEC

TIC205A

TRIAC

803004
B03OO5

ECC

TIC106D

SCR

BTD0210

TEC

TIC205A

TRIAC

ECC

TIC106D

SCR

BTD0220

TEC

TIC205B

TRIAC

B03OO6

ECC

TIC106D

SCR

BTD0230

TEC

TIC205D

TRIAC

B04001

ECC

TIC39B

SCR

BTD0240

TEC

TIC205D

TRIAC

B04OO2

ECC

TIC39B

SCR

BTD0250

TEC

CTI

TRIAC

B04003

ECC

TIC39B

SCR

BTD0260

TEC

CTI

TRIAC

B04OO4

ECC

TIC39D

SCR

BTR0205

TEC

TIC206A

TRIAC

B04005

ECC

TIC39D

SCR

BTR0210

TEC

TIC206A

TRIAC

B04OO6

ECC

TIC39D

SCR

BTR0220

TEC

TIC206B

TRIAC

B04021

ECC

TIC106B

SCR

BTR0230

TEC

TIC206D

TRIAC

B04022

ECC

TIC106B

SCR

8TR0240

TEC

TIC206D

TRIAC

B04023

ECC

TIC106B

SCR

BTR0250

TEC

CTI

TRIAC

CTI
TEC
SCR
B04024
BTR0260
TIC106D
ECC
Refer to page 2~17 for key to manufacturers.
"'These are the designations of the indicated manufacturer and should not be confused with Pro Electron designations.

TRIAC

•

CTI-Contact Texas Instruments.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

2·19

CROSS·REFERENCE GUIDE
FOR NEW DESIGN

CLASS

TYPE

BTR0305

TEC

TIC206A

TRIAC

BTU0410

TEC

TlC226B

TRIAC

BTR03l0

TEC

TIC206A

TRIAC

BTU0420

TEC

TlC226B

TRIAC

BTR0320

TEC

TIC206B

TRIAC

BTU0430

TEC

TIC226D

TRIAC

BTR0330

TEC

TIC206D

TRIAC

BTU0440

TEC

TIC226D

TRIAC

BTR0340

TEC

TIC206D

TRIAC

BTU0450

TEC

CTI

TRIAC

BTR0350

TEC

CTI

TRIAC

BTU0460

TEC

CTI

TRIAC

BTR0360

TEC

CTI

TRIAC

BTU0505

TEC

TIC236B

TRIAC

BTR0405

TEC

TIC206A

TRIAC

BTU05l0

TEC

TIC236B

TRIAC

BTR0410

TEC

TIC206A

TRIAC

BTU0520

TEC

TIC236B

TRIAC

TYPE

I

MANUFACTURER

MANUFACTURER

BTR0420

TEC

TIC206B

TRIAC

BTU0530

TEC

TIC236D

TRIAC

BTR0430

TEC

TIC206D

TRIAC

BTU0540

TEC

TIC236D

TRIAC

BTR0440

TEC

TIC205D

TRIAC

BTU0560

TEC

CTI

TRIAC

, BTR0450

TEC

CTI

TRIAC

BTU0605

TEC

TIC246B

TRIAC

BTR0460

TEC

CTI

TRIAC

BTU06l0

TEC

TIC246B

TRIAC

BTS0205

TEC

TIC2l6A

TRIAC

BTU0620

TEC

TIC246B

TRIAC

BTS02l0

TEC

TlC2l6A

TRIAC

BTU0630

TEC

TIC246D

TRIAC

BTS0220

TEC

TIC2l6B

TRIAC

BTU0640

TEC

TIC246D

TRIAC

BTS0230

TEC

TIC2l6D

TRIAC

BTU0650

TEC

CTI

TRIAC

BTS0240

TEC

TIC2l6D

TRIAC

BTU0660

TEC

CTI

TRIAC

BTS0250

TEC

CTI

TRIAC

C5A

GE

2N1596

SCR

BTS0260

TEC

CTI

TRIAC

C5B

GE

2N1597

SCR

BTS0305

TEC

TlC226B

TRIAC

C5D

GE

2N1599

SCR

BTS03l0

TEC

TIC226B

TRIAC

C5F

GE

2N1595

SCR

BTS0320

TEC

TIC226B

TRIAC

C5G

GE

2N1597

SCR

BTS0330

TEC

TIC226D

TRIAC

C5H

GE

2N159B

SCR

BTS0340

TEC

TIC226D

TRIAC

C5U

GE

2N1595

SCR

BTS0350

TEC

CTI

TRIAC

C6A

GE

2N1596

SCR

BTS0360

TEC

CTI

TRIAC

C6B

GE

2N1597

SCR

BTS0405

TEC

TIC226B

TRIAC

C6F

GE

2N1595

SCR

BTS0410

TEC

TIC226B

TRIAC

C6G

GE

2N1597

SCR

BTS0420

TEC

TIC226B

TRIAC

C6U

GE

2N1595

SCR

BTS0430

TEC

TIC226D

TRIAC

Cl0A

GE

TICl16A

SCR

BTS0440

TEC

TIC226D

TRIAC

Cl0B

GE

TICl16B

SCR

BTS0450

TEC

CTI

TRIAC

ClOC

GE

TIC116C

SCR

BTS0460

TEC

CTI

TRIAC

ClOD

GE

TICl16D

SCR

BTSO.505

TEC

TIC236B

TRIAC

Cl0F

GE

TICl16F

SCR

BTS05l 0

TEC

TIC236B

TRIAC

ClOG

GE

TICl16B

SCR

BTS0520

TEC

TIC236B

TRIAC

Cl0H

GE

TIC116C

SCR

BTS0530

TEC

TIC236D

TRIAC

Cl0U

GE

TICl16F

BTS0540

TEC

TIC236D

TRIAC

CllA

GE

TIC116A

,SCR
SCR

BTS0550

TEC

CTI

TRIAC

CllB

GE

TIC116B

SCR

BTS0560

TEC

CTI

TRIAC

CllC

GE

TICl16C

SCR

BTU0305

TEC

TIC226B

TRIAC

CllD

GE

TICll6D

SCR

BTU03l0

TEC

TIC226B

TRIAC

CllE

GE

TICll6E

SCR

BTU0320

TEC

TIC226B

TRIAC

CllF

GE

TICl16F

SCR

BTU0330

TEC

TIC226D

TRIAC

CllG

GE

TICl16B

SCR

BTU0340

TEC

TIC226D

TRIAC

CllH

GE

TICl16C

SCR

BTU0350

TEC

CTI

TRIAC

CllM

GE

TICl16M

SCR

BTU0360

TEC

CTI

TRIAC

Cl1U

GE

TICl16F

SCR

BTU0405

TEC

TIC226B

TRIAC

C12A

GE

TICll6A

SCR

Refer to page

2~17

for key to manufacturers.

CTI-Contact Texas Instruments.

2-20

FOR NEW DESIGN CLASS

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE
TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

C12B

GE

TICl16B

SCR

C12C

GE

TIC116C

C12D

GE

TICl16D

C12F

GE

C12G

TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

C122E

GE

TICl16E

SCR

SCR

C122F

GE

TIC116F

SCR

SCR

C220A

GE

TIC126A

SCR

T1Cl16F

SCR

C220B

GE

TIC126B

SCR

GE

TICl16B

SCR

C220C

GE

TIC126C

SCR

C12H

GE

TICl16C

SCR

C220D

GE

TIC1260

SCR

C12U

GE

TICl16F

SCR

C220E

GE

TIC126E

SCR

C15A

GE

TICl16A

SCR

C220F

GE

TIC126F

SCR

C15B

GE

TICl16B

SCR

C220U

GE

TIC126F

SCR

C15C

GE

TICl16C

SCR

C222A

GE

TIC126A

SCR

C15D

GE

TICl16D

SCR

C222B

GE

TIC126B

SCR

C15E

GE

TIC116E

SCR

C222C

GE

TIC126C

SCR

C15F

GE

TICl16F

SCR

C222D

GE

TIC1260

SCR

C15G

GE

TICl16B

SCR

C222E

GE

T1C126E

SCR

C15M

GE

TICl16M

SCR

C222F

GE

TIC126F

SCR

C15U

GE

TICl16F

SCR

C222U

GE

TIC126F

SCR

C20A

GE

TICl16A

SCR

C611A

GE

2N1596

SCR

C20B

GE

TICl16B

SCR

C611B

GE

2N1597

SCR

C20C

GE

TICl16C

SCR

C6l1F

GE

2Nl595

SCR

C20D

GE

TICl16D

SCR

C611G

GE

2N1597

SCR

C20F

GE

TICl16F

SCR

C611U

GE

2N1595

SCR

C20U

GE

TICl16F

SCR

CB200

UNI

2N3005

SCR

C22A

GE

TICl16A

SCR

CB201

UNI

2N3006

SCR

C22B

GE

TICl16B

SCR

CB202

UNI

2N3007

SCR

C22C

GE

TICl16C

SCR

CB203

UNI

SCR

C22D

GE

TICl16D

SCR

CD200

UNI

2N3008
TIC39Y

C22F

GE

TICl16F

SCR

CD201

UNI

TIC39A

SCR

C22U

GE

TICl16F

SCR

CD202

UNI

SCR

Cl03A

GE

TIC46

SCR

CD203

UNI

TIC39A
'1"1 (;39B

Cl03B

GE

TIC47

SCR

CM100

UNI

TIC106A

SCR

Cl03Y

GE

T1C44

SCR

CM10l

UNI

TIC106A

SCR

Cl03YY

GE

TIC45

SCR

CM102

UNI

TIC106B

SCR

Cl06A

GE

TIC106A

SCR

CM103

UNI

TIC106C

SCR

Cl06B

GE

TIC106B

SCR

CM104

UNI

TIC1060

SCR

Cl06C

GE

TIC106C

SCR

CM106

UNI

TIC106A

SCR

Cl06D

GE

TIC106D

SCR

CM107

UNI

TIC106A

SCR

Cl06F

GE

TIC106F

SCR

CM10B

UNI

TIC106B

SCR
SCR

•

SCR

SCR

Cl060

GE

TIC106Y

SCR

CM109

UNI

TIC106C

Cl06Y

GE

TIC106Y

SCR

CM110

UNI

TIC1060

SCR

Cl07A

GE

TIC106A

SCR

D40Dl

GE

TIP29

NPN-Si

GE
GE
GE

TIP29
TIP29

NPN-Si
NPN-Si

Cl07B

GE

TIC106B

SCR

Cl07C

GE

TIC106C

SCR

Cl07D

GE

TIC106D

SCR

D4002
04004
040D5

TIP29

NPN-Si

Cl07F

GE

TIC106F

SCR

04007

GE

TIP29A

NPN-Si

Cl070

GE

TIC106Y

SCR

04008

GE

TIP29A

NPN-Si

Cl07Y

GE

TIC106Y

SCR

D40010

GE

TIP29B

NPN-Si

C122A

GE

TICl16A

SCR

D40011

GE

TIP29B

NPN-Si

C122B

GE

TICl16B

SCR

D40Nl

GE

TIP47

NPN-Si

C122C

GE

TICl16C

SCR

D40N2

GE

TIP47

NPN-Si

C122D

GE

TICl16D

SCR

D40N3

GE

TIP48

NPN-Si

Refer to page 2-17 for key to manufacturers.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

2-21

CROSS-REFERENCE GUIDE
TYPE

•

MANUFACTURER

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

CLASS

GE

TlP48

NPN-5i

D44H8

GE

TIP41A

NPN-5i

D40PI

GE

TIP47

NPN-5i

D44Hl0

GE

TIP418

NPN-5i

D4OP3

GE

TIP47

NPN-5i

D44Hl1

GE

TIP41B

NPN-5i

D40P5

GE

TIP47

NPN-Si

D44Rl

GE

TIP47

NPN-5i

D41Dl

GE

TIP30

PNP-5i

D44R2

GE

TIP47

NPN-5i

D41D2

GE

TIP30

PNP-5i

D44R3

GE

TIP48

NPN-Si

O41D4

GE

TIP30

PNP-5i

D44R4

GE

TlP48

NPN-5i

D41D5

GE

TlP30

PNP-Si

D45Cl

GE

TIP32

PNP-5i

D41D7

GE

TlP30A

PNP-Si

D45C2

GE

TIP32

PNP-5i

D41D8

GE

TIP30A

PNP-Si

D45C3

GE

TIP32

PNP-5i

D41Dl0

GE

TIP30B

PNP-5i

D45C4

GE

TlP32

PNP-5i

D41Dl1

GE

TIP308

PNP-5i

D45C5

GE

TIP32

PNP-5i

D42Cl

GE

TIP31

NPN-5i

D45C6

GE

TIP32

PNP-5i

D42C2

GE

TIP31

NPN-5i

D45C7

GE

TlP32A

PNP-5i

D42C3

GE

TIP31

NPN-Si

D45C8

GE

TIP32A

PNP-5i

D42C4

GE

TIP31

NPN-Si

D45C9

GE

TIP32A

PNP-5i

D42C5

GE

TIP31

NPN-Si

D45Cl0

GE

TIP32B

PNP-5i

D42C6

GE

TIP31

NPN-5i

D45Cl1

GE

TlP32B

PNP-5i

D42C7

GE

TlP31A

NPN-5i

D45Hl

GE

TIP42

PNP-5i

D42C8

GE

TIP31A

NPN-5i

D45H2

GE

TIP42

PNP-5i

D42C9

GE

TIP31A

NPN-Si

D45H4

GE

TIP42

PNP-Si

D42Cl0

GE

TIP31B

NPN-5i

D45H5

GE

TIP42

PNP-5i

D42Cl1

GE

TIP318

NPN-5i

D45H7

GE

TlP42A

PNP-5i

D43Cl

GE

TIP32

PNP-5i

D45H8

GE

TIP42A

PNP-5i

D43C2

GE

TIP32

PNP-5i

D45Hl0

GE

TIP42B

PNP-5i

D43C3

GE

TIP32

PNP-Si

D45Hl1

GE

TIP42B

PNP-5i

D43C4

GE

TIP32

PNP-Si

FT1869

FSC

TIC39Y

SCR

D43C5

GE

TIP32

PNP-Si

FT2009

FSC

TIC39Y

SCR

D43C6

GE

TIP32

PNP-5i

FT2010

FSC

TIC39Y

SCR

D43C7

GE

TIP32A

PNP-5i

GA200

UNI

TIC45

SCR

D43C8

GE

TIP32A

PNP-Si

GA200A

UNI

TIC45

SCA

D43C9

GE

TIP32A

PNP-5i

GA201

UNI

TIC39A

SCA

D43ClO

GE

TIP32B

PNP-Si

GA201A

UNI

TlC39A

SCA

D43Cl1

GE

TIP32B

PNP-5i

GA300

UNI

TIC45

SCA

D44Cl

GE

TIP31

NPN-5i

GA300A

UNI

TIC45

SCA

D44C2

GE

TIP31

NPN-Si

GA301

TIC39A

SCA

D44C3

GE

TIP31

NPN-5i

GA301A

UNI
UNI

TIC39A

SCA

D44C4

GE

TIP31

NPN-Si

GB200

UNI

TIC116A

SCA

D44C5

GE

TIP31

NPN-Si

GB200A

UNI

TIC116A

SCR

D44C6

GE

TlP31

NPN-Si

GB300

UNI

TIC106A

SCA

D44C7

GE

TIP31A

NPN-5i

GB300A

UNI

TlCl06A

SCA

D44C8

GE

TIP31A

NPN-5i

HR878

UNI

2N3006

SCA

D44C9

GE

TlP31A

NPN-5i

HR878A

UNI

2N3002

SCR

D44Cl0

GE

TIP31B

NPN-5i

HR879A

UNI

TlC39A

SCA

D44Cl1

GE

TIP31B

NPN-5i

HR879B

UNI

TIC39A

SCR

D44Hl

GE

TIP41

NPN-5i

HR3028

UNI

TIC46

SCR

D44H2

GE

TIP41

NPN-5i

HR3029

UNI

TIC39A

SCA

D44H4

GE

TIP41

NPN-5i

HR3031

UNI

TIC46

SCR

D44H5

GE

TIP41

NPN-5i

HR3032

UNI

TIC39A

SCR

D44H7

GE

TIP41A

NPN-Si

MACH

MOTA

TIC226B

TAIAC

Refer to page 2-17 for key to manufacturers.

2-22

FOR NEW DESIGN

D40N4

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE
MANUFACTURER

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

MAC1·2

MOTA

TIC226B

TRIAC

MAC7-4

MOTA

TIC226B

TRIAC

MAC1·3

MOTA

TIC226B

TRIAC

MAC7-5

MOTA

TIC226D

TRIAC

MAC1·4

MOTA

TIC226B

TRIAC

MAC7-6

MOTA

TIC226D

TRIAC

MAC1·5

MOTA

TIC226D

TRIAC

MAC7-7

MOTA

CTI

TRIAC

MACH>

MOTA

TIC226D

TRIAC

MAC7·8

MOTA

CTI

TRIAC

MAC1·7

MOTA

CTI

TRIAC

MAC8·1

MOTA

TIC2268

TRIAC

MAC1·8

MOTA

CTI

TRIAC

MAC8-2

MOTA

TIC2268

TRIAC

MAC2·1

MOTA

TIC2268

TRIAC

MAC8-3

MOTA

TIC226B

TRIAC

MAC2·2

MOTA

TIC226B

TRIAC

MAC8-4

MOTA

TlC226B

TRIAC

MAC2·3

MOTA

TIC226B

TRIAC

MAC8-5

MOTA

TIC226D

TRIAC

MAC2-4

MOTA

TIC226B

TRIAC

MAC8-6

MOTA

TIC226D

TRIAC

MAC2·5

MOTA

TIC226D

TRIAC

MAC8-7

MOTA

CTI

TRIAC

MAC2-6

MOTA

TIC226D

TRIAC

MAC8-8

MOTA

CTI

TRIAC

MAC2·7

MOTA

CTI

TRIAC

MAC9-1

MOTA

TIC226B

TRIAC

MAC2·8

MOTA

CTI

TRIAC

MAC9-2

MOTA

TIC226B

TRIAC

MAC3·1

MOTA

TIC226B

TRIAC

MAC9-3

MOTA

TIC226B

TRIAC

MAC3-2

MOTA

TIC226B

TRIAC

MAC9-4

MOTA

TIC2268

TRIAC

MAC3·3

MOTA

TIC2268

TRIAC

MAC9·5

MOTA

TIC226D

TRIAC

MAC3-4

MOTA

TIC226B

TRIAC

MAC9·6

MOTA

TIC226D

TRIAC

MAC3·5

MOTA

TIC226D

TRIAC

MAC9·7

MOTA

CTI

TRIAC

MAC3-6

MOTA

TIC226D

TRIAC

MAC9·8

MOTA

CTI

TRIAC

MAC3·7

MOTA

CTI

TRIAC

MAC10-1

MOTA

TIC226B

TRIAC

MAC3·8

MOTA

CTI

TRIAC

MAC10-2

MOTA

TIC226B

TRIAC

MAC4·1

MOTA

TIC226B

TRIAC

MAC10-3

MOTA

TIC226B

TRIAC

MAC4-2

MOTA

TlC226B

TRIAC

MAC10-4

MOTA

TIC226B

TRIAC

MAC4·3

MOTA

TIC226B

TRIAC

MAC10-5

MOTA

TIC226D

TRIAC

MAC4·4

MOTA

TIC226B

TRIAC

MAC10-6

MOTA

TIC226D

TRIAC

MAC4·6

MOTA

TIC226D

TRIAC

MAC10-7

MOTA

CTI

TRIAC

MAC4·6

MOTA

TIC226D

TRIAC

MAC10-8

MOTA

CTI

TRIAC

MAC4·7

MOTA

CTI

TRIAC

MAC11·1

MOTA

TIC226B

TRIAC

MAC4-8

MOTA

CTI

TRIAC

MACll·2

MOTA

TIC226B

TRIAC

MAC5-1

MOTA

TIC226B

TRIAC

MACll·3

MOTA

TIC226B

TRIAC

MAC5-2

MOTA

TIC226B

TRIAC

MAC11-4

MOTA

TIC226B

TRIAC

MAC5-3

MOTA

TIC226B

TRIAC

MAC11-5

MOTA

TIC226D

TRIAC

MAC5-4

MOTA

TlC2268

TRIAC

MAC11-6

MOTA

TIC226D

TRIAC

MAC5-5

MOTA

TIC226D

TRIAC

MAC11·7

MOTA

CTI

TRIAC

MAC5-6

MOTA

TIC226D

TRIAC

MAC11-8

MOTA

CTI

TRIAC

MAC5·7

MOTA

CTI

TRIAC

MAC35-1

MOTA

TIC263B

TRIAC

MAC5·8

MOTA

CTI

TRIAC

MAC35-2

MOTA

TlC263B

TRIAC

MACS·1

MOTA

TIC226B

TRIAC

MAC35·3

MOTA

TIC263B

TRIAC

MAC6-2

MOTA

TIC226B

TRIAC

MAC35-4

MOTA

TIC263B

TRIAC

MAC6-3

MOTA

TIC226B

TRIAC

MAC35-5

MOTA

TIC263D

TRIAC

MAC5-4

MOTA

TIC226B

TRIAC

MAC35-6

MOTA

TIC263D

TRIAC

MAC6·5

MOTA

TIC226D

TRIAC

MAC35·7

MOTA

TIC263E

TRIAC

MAC6-6

MOTA

TIC226D

TRIAC

MAC36·1

MOTA

TIC263B

TRIAC

MAC6·7

MOTA

CTI

TRIAC

MAC36-2

MOTA

TIC263B

TRIAC

MAC6·8

MOTA

CTI

TRIAC

MAC36·3

MOTA

TIC263B

TRIAC

MAC7-1

MOTA

TIC226B

TRIAC

MAC36-4

MOTA

TIC263B

TRIAC

MAC7·2

MOTA

TIC226S

TRIAC

MAC36·5

MOTA

TIC263D

TRIAC

MAC7-3

MOTA

TIC226B

TRIAC

MAC36-6

MOTA

TIC263D

TRIAC

TYPE

•

Refer to page 2-17 for key to manufacturers.

CTI-Contact Texas Instruments.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

2·23

CROSS-REFERENCE GUIDE

I

TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

MAC36-7

MOTA

TIC263E

TRIAC

MCR3000-4

MAC37-l

MOTA

TIC263B

TRIAC

MAC37-2

MOTA

TIC263B

TRIAC

MAC37-3

MOTA

TIC2638

MAC37-4

MOTA

MAC37-5
MAC37-6

TYPE

MANUFACTURER

FOR NEW DESIGN

MOTA

TICl168

SCR

MCR3000-5

MOTA

TICl16D

SCR

MCR3000-6

MOTA

TICl16D

SCR

TRIAC

MCR3000-7

MOTA

TICl16E

SCR

TlC263B

TRIAC

MCR3000-8

MOTA

TICl16M

SCR

MOTA

TIC263D

TRIAC

MJ400

MOTA

TIP49

NPN-8i

MOTA

TlC263D

TRIAC

MJ413

MOTA

TIP54

NPN-Si
NPN-Si

MAC37-7

MOTA

TIC263E

TRIAC

MJ423

MOTA

TlP54

MAC38-l

MOTA

TIC2638

TRIAC

MJ431

MOTA

TIP54

NPN-Si

MAC38-2

MOTA

TIC2638

TRIAC

MJ450

MOTA

TlP32

PNP-8i

MAC38-3

MOTA

TIC2638

TRIAC

MJ480

MOTA

2N3713

NPN-Si

MAC38-4

MOTA

TIC2638

TRIAC

MJ481

MOTA

2N3714

NPN-Si

MAC38-5

MOTA

TIC263D

TRIAC

MJ490

MOTA

TIP34

PNP-8i

MAC38-6

MOTA

TIC263D

TRIAC

MJ491

MOTA

TIP34

PNP-8i

MAC38-7

MOTA

TIC263E

TRIAC

MJ500

MOTA

TIP42

PNP-8i

MAC77-l

MOTA

TIC206A

TRIAC

MJ501

MOTA

TIP42A

PNP-Si

MAC77-2

MOTA

TIC206A

TRIAC

MJ802

MOTA

2N3716

NPN-8i

MAC77-3

MOTA

TIC206A

TRIAC

MJ900

MOTA

2N3789

PNP-Si

MAC77-4

MOTA

TlC2068

TRIAC

MJ901

MOTA

2N3790

PNP-Si

MAC77-5

MOTA

TIC206D

TRIAC

MJ1000

MOTA

2N3713

NPN-Si

MAC77-6

MOTA

TIC206D

TRIAC

MJ100l

MOTA

2N3714

NPN-Si

MAC77-7

MOTA

CTI

TRIAC

MJ1800

MOTA

TIP51

NPN-8i

MAC77-8

MOTA

CTI

TRIAC

MJ2249

MOTA

TIP31A

NPN-Si

MCR10l

MOTA

TIC44

SCR

MJ2250

MOTA

TlP318

NPN-Si

MCR102

MOTA

TIC44

SCR

MJ2251

MOTA

TlP47

NPN-Si

MCR103

MOTA

TIC45

SCR

MJ2252

MOTA

TIP48

NPN-Si

MCR104

MOTA

TIC46

SCR

MJ2253

MOTA

TIP32

PNP-8i

MCR106-l

MOTA

TIC106Y

SCR

MJ2254

MOTA

TIP32B

PNP-8i

MCR 106-2

MOTA

TlCl06A

SCR

MJ2267

MOTA

2N3789

PNP-Si

MCR106-3

MOTA

TIC106A

SCR

MJ2268

MOTA

2N3790

PNP-8i

MCR106-4

MOTA

TIC106B

SCR

MJ2500

MOTA

TIP145

PNP-8i

MCRl15

MOTA

TIC47

SCR

MJ2501

MOTA

TIP146

PNP-8i

MCR120

MOTA

TIC47

SCR

MJ2840

MOTA

TIP41A

NPN-Si

MCR406-l

MOTA

TlC106Y

SCR

MJ2841

MOTA

TIP4l8

NPN-8i

MCR406-2

MOTA

TIC106A

SCR

MJ2901

MOTA

2N3055

NPN-8i

MCR406-3

MOTA

TIC106A

SCR

MJ2940

MOTA

TIP41A

NPN-Si

MCR406-4

MOTA

TlCl06B

SCR

MJ2941

MOTA

TIP4l8

NPN-8i

MCR407-l

MOTA

TIC106Y

SCR

MJ3000

MOTA

TIP140

NPN-Si

MCR407-2

MOTA

TIC106A

SCR

MJ3001

MOTA

TIP14l

NPN-Si

MCR407-3

MOTA

TIC106A

SCR

MJ3010

MOTA

TIP5l

NPN-Si

MCR407-4

MOTA

TIC1068

SCR

MJ30ll

MOTA

TIP53

NPN-8i

MCR23l5-l

MOTA

TICl16F

SCR

MJ3029

MOTA

TIP5l

NPN-8i

MCR2315-2

MOTA

TlCl16F

SCR

MJ3030

MOTA

TIP53

NPN-Si

MCR2315-3

MOTA

TICl16A

SCR

MJ3l0l

MOTA

TIP31

NPN-Si

MCR2315-4

MOTA

TICl168

SCR

MJ3201

MOTA

TIP47

NPN-Si

MCR2315-5

MOTA

TICl16D

SCR

MJ3202

MOTA

TIP48

NPN-Si

MCR2315-6

MOTA

TICl16D

SCR

MJ3701

MOTA

TlP32

PNP-Si

MCR3000-l

MOTA

TICl16F

SCR

MJ3771

MOTA

2N530l

NPN-8i

MCR3000-2

MOTA

TlCl16F

SCR

MJ3772

MOTA

2N5301

NPN-Si

MCR3000-3

MOTA

TICl16A.

SCR

MJ3801

MOTA

TlP338

NPN-Si

Refer to page 2-17 for key to manufacturers.

CTI-Contact Texas Instruments.

2-24

CLASS

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

CROSS-REFERENCE GUIDE
TYPE

CLASS

TYPE

MANUFACTURER

MJ3802

MANUFACTURER
MOTA

FOR NEW DESIGN
TIP338

NPN-Si

MJE 1101

MOTA

FOR NEW DESIGN
TIP120

NPN-Si

CLASS

MJ4000

MOTA

TIP120

NPN-Si

MJE1102

MOTA

MOTA

TIP121

NPN-Si

MJE1103

MOTA

TIP121
TIP121

NPN-Si

MJ4001
MJ4010

MOTA

TIP125

PNP-Si

MJE1290

MOTA

TIP34

PNP-Si

MJ4011

MOTA

TIP126

PNP-Si

MJE1291

MOTA

TIP34A

PNP-Si

MJ4030

MOTA

TIP145

PNP-Si

MJEl660

MOTA

TIP33

NPN-Si

MJ4031

MOTA

TIP146

PNP-Si

MJE1661

MOTA

TIP33A

NPN-Si

MJ4032

MOTA

TIP147

PNP-Si

MJE2010

MOTA

TIP34

PNP-Si

MJ4033

MOTA

TIP145

PNP-Si

MJE2011

MOTA

TlP34A

PNP-Si

MJ4034

MOTA

TIP146

PNP-Si

MJE2020

MOTA

TIP33

NPN-Si

MJ4035

MOTA

TIP147

PNP-Si

MJE2021

MOTA

TIP33A

NPN-Si

MJ4101

MOTA

TIP31

NPN-Si

MJE2360

MOTA

TIP54

NPN-Si

MJ4502

MOTA

2N4399

PNP-Si

MJE2361

MOTA

TIP54

NPN-Si

MJ6700

MOTA

TIP41

NPN-Si

MJE2370

MOTA

TIP34

PNP-Si

MJ6701

MOTA

TIP41A

NPN-Si

MJE2371

MOTA

TIP34A

PNP-Si

MJ7000

MOTA

2N5303

NPN-Si

MJE2480

MOTA

TIP33

NPN-Si

MJ7200

MOTA

CTI

NPN-Si

MJE2481

MOTA

TIP33A

NPN-Si

MJ7201

MOTA

CTI

NPN-Si

MJE2482

MOTA

TIP33

NPN-Si

MJ8100

MOTA

CTI

PNP-Si

MJE2483

MOTA

TIP33A

NPN-Si

MJ8101

MOTA

CTI

PNP-Si

MJE2490

MOTA

TIP34

PNP-Si

MJ8400

MOTA

CTI

NPN-Si

MJE2491

MOTA

TIP34A

PNP-Si

MJ9000

MOTA

CTI

NPN-Si

MJE2520

MOTA

TIP33

NPN-Si

MJE101

MOTA

TIP34

PNP-Si

MJE2521

MOTA

TIP33A

NPN-Si

MJE102

MOTA

TIP34A

PNP-Si

MJE2522

MOTA

TIP33

NPN-Si

MJE103

MOTA

TIP34A

PNP-Si

MJE2523

MOTA

TIP33A

NPN-Si

MJE104

MOTA

TIP348

PNP-Si

MJE2801

MOTA

TIP41A

NPN-Si

MJE105

MOTA

TIP34A

PNP-Si

MJE2901

MOTA

TIP42A

PNP-Si

MJE201

MOTA

TIP33

NPN-Si

MJE2955

MOTA

TIP2955

PNP-Si

MJE202

MOTA

TIP33A

NPN-Si

MJE3050

MOTA

TIP33A

NPN-Si

MJE203

MOTA

TIP33A

NPN-Si

MJE3055

MOTA

TlP3055

NPN-Si

MJE204

MOTA

TIP338

NPN-Si

MJE3370

MOTA

TIP32

PNP-Si

MJE205

MOTA

TIP33A

NPN-Si

MJE3371

MOTA

TIP32

PNP-Si

MJE340

MOTA

TIP48

NPN-Si

MJE3439

MOTA

TIP51

NPN-Si

MJE370

MOTA

TIP32

PNP-Si

MJE3440

MOTA

TIP52

NPN-Si

MJE371

MOTA

TIP32

PNP-Si

MJE3520

MOTA

TIP33

NPN-Si

MJE520

MOTA

TIP31

NPN-Si

MJE3521

MOTA

TIP33

NPN-Si

MJE521

MOTA

TIP31

NPN-Si

MJE3738

MOTA

TIP51

NPN-Si

MJE700

MOTA

TlP110

NPN-Si

MJE3739

MOTA

TIP52

NPN-Si
PNP-Si

NPN-Si

MJE701

MOTA

TIPl15

PNP-Si

MJE3740

MOTA

TIP34A

MJE702

MOTA

TIP116

PNP-Si

MJE3741

MOTA

TIP348

PNP-Si

MJE703

MOTA

TIP116

PNP-Si

02001P

ECC

TIC2158

TRIAC

MJE800

MOTA

TIP110

NPN-Si

02001PS

ECC

TIC2158

TRIAC

MJE801

MOTA

TIP110

NPN-Si

02001 PST

ECC

TIC2158

TRIAC

MJE802

MOTA

TlP111

NPN-Si

02001PT

ECC

TIC2158

TRIAC

MJE803

MOTA

TIP111

NPN-Si

02003P

ECC

TIC2268

TRIAC

MJE1090

MOTA

TlP125

PNP-Si

02003PT

ECC

TIC2268

TRIAC

MJE1091

MOTA

TIP125

PNP-Si

02004

ECC

TIC2268

TRIAC

MJE1092

MOTA

TIP126

PNP-Si

02004A

ECC

TIC2268

TRIAC

MJE1093

MOTA

TIP126

PNP-Si

020048

ECC

TIC2268

TRIAC

MJE1100

MOTA

TIP120

NPN-Si

02004T

ECC

TIC2268

TRIAC

•

Refer to page 2-17 for key to manufacturers.

CTI-Contact Texas Instruments.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

2-25

CROSS-REFERENCE GUIDE
FOR NEW DESIGN

CLASS

ECC
ECC

TIC253E
TIC253E

TRIAC
TRIAC

05006TA

ECC

TIC253E

TRIAC

TRIAC

05006TB

ECC

TIC253E

TRIAC

TIC22aB

TRIAC

05008

ECC

TIC253E

TRIAC

ECC

TIC226B

TRIAC

05008A

ECC

TIC253E

TRIAC

ECC
ECC

TIC226B
TIC226B

TRI'AC
TRIAC

05008B

ECC

TRIAC

ECC

ECC

TIC236B

TRIAC

ECC

TIC253E

TRIAC

02008B

ECC

TIC236B

TRIAC

05OO8T
05008TA
05OO8TB

TIC253E
TIC253E

ECC

TIC253E

TRIAC

02008TA

ECC

TIC236B

TRIAC

06015

ECC

TIC253M

TRIAC

0200BTB

ECC

TIC236B

TRIAC

06015A

ECC

TIC253M

TRIAC

02010
02010A

ECC
ECC

TlC246B
TIC246B

TRIAC

06015T

ECC

TRIAC

OaOl5TA

ECC

TIC253M
TIC253M

TRIAC
TRIAC

020108

ECC

TIC246B

TRIAC

TIC253M

TRIAC

ECC

TIC236B

TRIAC

06015TB
RTA010l

ECC

02010T

TEC

2N3005

SCR

02010TA

ECC

TIC236B

TRIAC

RTA0103

TEC

2N3OO5

SCR

02010TB

ECC

TlC24aB

RTA0106

TEC

2N3006

SCR

02015

ECC
ECC

TRIAC

RTAOll0
RTAOl15

TEC
TEC

TIC39A

02015A

TlC253B
TIC253B

TRIAC
TRIAC

2N3008

SCR
SCR

02015B

ECC

TIC253B

TRIAC

RTA0120

TEC

2N3008

SCR

02015T

ECC

TIC253B

TRIAC

RTB010l

TEC

2N3005

SCR

02015TA

ECC

TIC253B

TRIAC

RTB0103

TEC

2N3005

SCR

2N3006
TIC39A

SCR

FOR NEW DESIGN

CLASS

TYPE

TRIAC
TRIAC

05008A

ECC

TIC226B
TIC226B

ECC

TIC226B

TRIAC

02OO6A

ECC

TlC226B

02006B

ECC

02006T
02006TA

TYPE

MANUFACTURER

02004TA

ECC

02004TB
02006

02OO6TB
0200BA

MANUFACTURER

05006B

02015TB

ECC

TIC253B

TRIAC

RTB0106

TEC

02025

ECC

TRIAC

RTBOll0

02025C
020250

ECC
ECC

TIC253B
TIC253B

TRIAC

RTBOl15

TEC
TEC

TIC263B

TRIAC

RTB0120

TEC

04004

ECC

TIC226D

TRIAC

RTB0125

04004A

ECC

TIC226D

TRIAC

RTB0130

04004B

ECC

TIC226D

04004T

ECC

TIC226D

TRIAC
TRIAC

04004TB

ECC

TIC226D

04006A

ECC

04008A

ECC

SCR

2N3008

SCR

2N3008

SCR

TEC

2Nl598

SCR

TEC

2N159B

SCR

RTB0201
RTB0203

TEC
TEC

2N3OO5

SCR

2N3005

SCR

TRIAC

RTB0206

TEC

SCR

TIC226D

TRIAC

TIC246D

TRIAC

RTB0210
RTB0215

TEC
TEC

2N3006
TIC39A
2N3008

SCR
SCR

04oo8B

ECC

TIC246D

TRIAC

RTB0220

TEe

2N3OO8

SCR

04008TA

ECC

TIC246D

TRIAC

RTB0225

TEC

2N159B

SCR

0400BTB

ECC

TIC246D

TRIAC

RTB0230

TEC

2Nl598

SCR

04010

ECC

TIC24aD

TRIAC

RTB0301

TEC

2N3005

SCR

04010A

ECC

TIC246D

TRIAC

RTB0303

TEC

2N3005

SCR

04010B

ECC

TIC246D

TRIAC

RTB0306

TEC

2N3006

SCR

04010T

ECC

TIC246D

TRIAC

RTB0310

TEC

TIC39A

SCR

04010TA
04010TB

ECC
ECC

TIC246D

TRIAC

RTB0315

TEC

2N3008

SCR

TIC246D

TRIAC

RTB0320

TEC

2N3008

04025

ECC

TRIAC

RTB0325

TEC

2N159B

SCR
SCR

04025C

ECC

TIC263D
TIC263D

040250

ECC

TIC263D

TRIAC
TRIAC

RTB0330
RTB0401

TEC
TEC

2Nl598
2N3OO1

SCR
SCR

05004

ECC

TIC216D

TRIAC

RTB0403

TEC

2N3OO1

SCR

05004A

ECC
ECC

TIC216D

TRIAC
TRIAC

TEC
TEC

2N3002
TIC39A

SCR

TIC216D

RTB0406
RTB0410

05004B

Refer to page 2-17 for key to manufacturers.

2-26

TRIAC

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

SCR

CROSS-REFERENCE GUIDE
TYPE

MANUFACTURER

FOR NEW DESIGN

TYPE

CLASS

MANUFACTURER

FOR NEW DESIGN

CLASS

SCR

RTC0430

TEC

2N1598

SCR

2N3008

SCR

RTC0501

TEC

2N3001

SCR

2N1598

SCR

RTC0503

TEC

2N3001

SCR

TEC

2N1598

SCR

RTC0506

TEC

2N3002

SCR

RTB0501

TEC

2N3001

SCR

RTC0510

TEC

2N3003

SCR

RTB0503

TEC

2N3005

SCR

RTC0515

TEC

2N3004

SCR

RTB0506

TEC

2N3002

SCR

RTC0520

TEC

2N3004

SCR

RTB0510

TEC

TIC39A

SCR

RTC0525

TEC

2N1598

SCR

RTB0515

TEC

2N3004

SCR

RTC0530

TEC

2N1598

SCR

RTB0520

TEC

2N3004

SCR

RTC0601

TEC

2N3001

SCR

RTB0525

TEC

2N1598

SCR

RTC0603

TEC

2N3001

SCR

RTB0530

TEC

2N1598

SCR

RTC0606

TEC

2N3002

SCR

RTB0601

TEC

2N3001

SCR

RTC0610

TEC

2N3003

SCR

RTB0603

TEC

2N3001

SCR

RTC0615

TEC

2N3004

SCR

RTB0606

TEC

2N3002

SCR

RTC0620

TEC

2N3004

SCR

RTB0608

TEC

2N3002

SCR

RTD0101

TEC

TIC39Y

SCR

RTB0610

TEC

TIC39A

SCR

RTD0103

TEC

TIC39Y

SCR

RTB0615

TEC

2N3004

SCR

RTD0106

TEC

TIC39F

SCR

RTB0620

TEC

2N3004

SCR

RTD0110

TEC

TIC39A

SCR

RTC010l

TEC

2N3005

SCR

RTDOl15

TEC

TIC39B

SCR

RTC0103

TEC

2N3005

SCR

RTD0120

TEC

2N1598

SCR

RTC0106

TEC

2N3006

SCR

RTD0125

TEC

2N1597

SCR

RTC0110

TEC

2N3007

SCR

RTD0130

TEC

2N1598

SCR

RTCOl15

TEC

2N3004

SCR

RTD0135

TEC

2N1599

SCR

RTC0120

TEC

2N3004

SCR

RTD0140

TEC

TIC106D

SCR

RTC0125

TEC

2N1598

SCR

RTD0201

TEC

TIC39Y

SCR

RTC0130

TEC

2N1598

SCR

RTD0203

TEC

TIC39Y

SCR

RTC0201

TEC

2N3005

SCR

RTD0206

TEC

TIC39F

SCR

RTC0203

TEC

2N3005

SCR

RTD0210

TEC

TIC39A

SCR

RTC0206

TEC

2N3006

SCR

RTD0215

TEC

TIC39B

SCR

RTC0210

TEC

2N3009

SCR

RTD0220

TEC

TIC39B

SCR

RTC0215

TEC

2N3008

SCR

RTD0225

TEC

2N1598

SCR

RTC0220

TEC

TICl16B

SCR

RTD0230

TEC

2N1598

SCR

RTC0225

TEC

2N1598

SCR

RTD0235

TEC

2N1599

SCR

RTC0230

TEC

2N1598

SCR

RTD0240

TEC

TIC106D

SCR

RTC0301

TEC

2N3005

SCR

RTD0301

TEC

TIC39Y

SCR

RTC0303

TEC

2N3005

SCR

RTD0303

TEe

TIC39Y

SCR

RTC0306

TEC

2N3006

SCR

RTD0306

TEC

TIC39F

SCR

RTC0310

TEC

2N3007

SCR

RTD0310

TEC

TIC39A

SCR

RTC0315

TEC

2N3008

SCR

RTD0315

TEC

TIC39B

SCR

RTC0320

TEC

2N3008

SCR

RTD0320

TEC

TIC39B

SCR

RTC0325

TEC

2N1598

SCR

RTD0325

TEC

2N1598

SCR

RTC0330

TEC

2N1598

SCR

RTD0330

TEC

2N1598

SCR

flTC0401

TEC

2N3001

SCR

RTD0335

TEC

2N1599

SCR

RTC0403

TEC

2N3001

SCR

RTD0340

TEC

TIC106D

SCR

RTC0406

TEC

2N3002

SCR

RTD0401

TEC

TIC39Y

SCR

RTC0410

TEC

2N3003

SCR

RTD0403

TEC

TIC39Y

SCR

RTC0415

TEC

2N3008

SCR

RTD0406

TEC

TIC39F

SCR

RTC0420

TEC

2N3008

SCR

RTD0410

TEC

TIC39A

SCR

RTC0425

TEC

2N1598

SCR

RTD0415

TEC

TIC39B

SCR

RTB0415

TEC

2N3004

RTB0420

TEC

RTB0425

TEC

RTB0430

Refer to page

2~17

•

for key to manufacturers.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

2·27

CROSS-REFERENCE GUIDE
TYPE

•

MANUFACTURER

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

CLASS

TEC

TIC39B

SCR

RTF0340

TEC

TIC39D

SCR

RTll0425

TEC

2Nl598

SCR

RTF0401

TEC

TIC39Y

SCR

RTD0430

TEC

2N1598

SCR

RTF0403

TEC

TIC39Y

RTD0435

TEC

2Nl599

SCR

RTF0406

TEC

TIC39A

SCR
SCR

RTD0440

TEC

TIC106D

SCR

RTF0410

TEC

TIC39A

SCR

RTD0501

TEC

TIC39Y

SCR

RTF0415

TEC

TIC398

SCR

RTD0503

TEC

TIC39Y

RTF0420

TEC

TIC398

SCR

RTD0506

TEC

TIC39F

SCR
SCR

RTF0425

TEC

TIC39C

SCR

RTD0510

TEC

TIC39A

SCR

RTF0430

TEC

TIC39C

SCR

RTD0515

TEC

TIC39B

SCR

RTF0435

TEC

TIC39D

SCA

RTD0520

TEC

TIC39B

SCR

RTF0440

TEC

TIC39D

SCR

RTD0525

TEC

2N1598

SCR

RTF0501

TEC

TIC39Y

SCR

RTD0530

TEC

2N1598

SCR

RTF0503

TEC

SCR

RTD0535

TEC

2Nl599

SCR

RTF0506

TEC

TIC39Y
TIC39A

RTD0540

TEC

TIC106D

SCR

RTF0510

TEC

TIC39A

SCR

RTD0601

TEC

TIC39Y

SCR

RTF0515

TEC

TlC398

SCR

RTD0603

TEC

TIC39Y

SCR

RTF0520

TEC

TIC398

SCR

RTD0606

TEC

TIC39F

SCR

RTF0525

TEC

TIC39C

SCR

RTD0610
RTD0615

TEC
TEC

TIC39A

RTF0530

TEC
TEC

RTD0620

TEe

SCR

RTF0535
RTF0540

TIC39C
TIC39D

SCR

TIC39B
TIC398

SCR
SCR

TEC

TIC39Y

SCR

RTF0601

TIC39D
TIC39Y

SCR

RTF0101

TEC
TEC

RTF0103
RTF0106

TEC
TEC

TIC39Y
TIC39A

SCR
SCR

RTF0603

TEC

TIC39Y

RTF0606

TEC

TIC39A

SCR
SCR

RTF0110
RTF0115

TEC

SCR
SCR

RTF0610
RTF0615

TEC
TEC

TlC39A

SCR

TEC

TIC39A
TIC39B

RTF0120

TEC

TIC39B

SCR

RTF0620

TEC

TIC398
TIC39B

SCR

RTF0125

TEC

TIC39C

SCR

RTN0102

TEC

TIC116F

SCR

RTF0130

TEC

TIC39C

SCR

RTN0105

TEC

TIC116F

SCR

RTF0135

TEC

TIC39D

SCR

RTNOll0

TEC

TlC116A

SCR

RTF0140

TIC39D
TIC39Y

SCR
SCR

RTN0120

TEC

TIC1168

SCIl

RTF0201

TEC
TEC

RTN0130

TEC

TlC116C

SCR

RTF0203

TEC

TIC39Y

SCR

RTN0140

TEC

TIC116D

SCR

RTF0206

TEC

TIC39A

SCR

RTN0150

TEC

TlC116E

SCR

RTF0210

TEC

TIC39A

SCR

RTN0160

TEC

TIC116M

SCR

RTF0215

TEC

TIC398

SCR

RTN0202

TlC126F

RTF0220

TEC

TIC398

SCR

RTN0205

TEC
TEC

TlC126F

SCR
SCR

RTF0225

TEC

TIC39C

SCR

RTN0210

TEC

TlC126A

SCI'!

RTF0230

TEC

TIC39C

SCR

RTN0220

TEC

TIC1268

SCR

RTF0235

TEC

TIC39D

SCR

RTN0230

TEC

TIC126C

SCR

RTF0240

TEC

TIC39D

SCR

RTN0240

TEC

TIC126D

SCR

RTF0301

TEC

SCR

RTN0250

TEC

TIC126E

SCI'!

RTF0303

TEC

TIC39Y
TlC39Y

SCR

RTN0260

TEC

TIC126M

SCR

RTF0306

TEC

TIC39A

SCR

RTN0302

TEC

TIC126F

SCR

RTF0310

TEC

TIC39A

SCR

RTN0305

TEC

TlC126F

SCR

RTF0315

TEC

TIC398

SCR

RTN0310

TEC

TlC126A

SCR

RTF0320

TEC

TIC398

SCR

RTN0320

TEC

TIC1268

SCR

RTF0325
RTF0330

TEC
TEC

TIC39C

SCR

TIC126C
TIC126D

SCR
SCR

TEC

SCR
SCR

TEC
TEC

RTF0335

TIC39C
TIC39D

RTN0330
RTN0340
RTN0350

TEC

TIC126E

SCR

Refer to page 2-17 for key to manufacturers.

2·28

FOR NEW DESIGN

RTD0420

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

SCR

SCR
SCR

SCIII

CROSS-REFERENCE GUIDE
TYPE
RTN0360

MANUFACTURER

FOR NEW DESIGN

CLASS

TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

TEC

TIC126M

SCR

RTR0405

TEC

TIC106F

SCR

RTN0402

TEC

TIC126F

SCR

RTR0410

TEC

TIC106A

SCR

RTN0405

TEC

TIC126F

SCR

RTR0420

TEC

TlCl06B

SCR

RTN0410

TEC

TIC126A

SCR

RTR0430

TEC

TIC106C

SCR

RTN0420

TEC

TIC126B

SCR

RTR0440

TEC

TIC106D

SCR

RTN0430

TEC

TIC126C

SeR

RTR0450

TEC

CTI

SCR

RTN0440

TEC

TIC126D

SCR

RTR0460

TEC

CTI

SCR

RTN0450

TEC

TIC126E

SCR

RTR0502

TEC

TIC106F

SCR

RTN0460

TEC

TIC126M

SCR

RTR0505

TEC

TIC106F

SCR

RTN0502

TEC

TIC126F

SCR

RTR05l0

TEC

TIC106A

SCR

RTN0505

TEC

TIC126F

SCR

RTR0520

TEC

TIC106B

SCR

RTN05l0

TEC

TIC126A

SCR

RTR0530

TEC

TIC106C

SCR

RTN0520

TEC

TIC126B

SCR

RTR0540

TEC

TIC106D

SCR

RTN0530

TEC

TIC126C

SCR

RTR0550

TEC

CTI

SCR

RTN0540

TEC

TIC126D

SCR

RTR0560

TEC

CTI

SCR

RTN0550

TEC

TlC126E

SCR

RTS0102

TEC

TIC106F

SCR

RTN0560

TEC

TIC126M

SCR

RTS0105

TEC

TIC106F

SCR

RTN0602

TEC

TIC126F

SCR

RTSOll0

TEC

TIC106A

SCR

RTN0605

TEC

TIC126F

SCR

RTS0120

TEC

TIC106B

SCR

RTN0610

TEC

TIC126A

SCR

RTS0130

TEC

TIC106C

SCR

RTN0620

TEC

TIC126B

SCR

RTS0140

TEC

TIC106D

SCR

RTN0630

TEC

TIC126C

SCR

RTS0150

TEC

CTI

SCR

RTN0640

TEC

TIC126D

SCR

RTS0160

TEC

CTI

SCR

RTN0650

TEC

TIC126E

SCR

RTS0202

TEC

TIC106F

SCR

RTN0660

TEC

TIC126M

SCR

RTS0205

TEC

TIC106F

SCR

RTR0102

TEC

TIC106F

SCR

RTS02l0

TEC

TIC106A

SCR

RTR0105

TEC

TIC106F

SCR

RTS0220

TEC

TIC106B

SCR

RTROll0

TEC

TIC106A

SCR

RTS0230

TEC

TIC106C

SCR

RTR0120

TEC

TIC106B

SCR

RTS0240

TEC

TIC106D

SCR

RTR0130

TEC

TIC106C

SeR

RTS0250

TEC

CTI

SCR

RTR0140

TEC

TIC106D

SCR

RTS0260

TEC

CTI

SeR

RTROl50

TEC

CTI

SCR

RTS0302

TEC

TIC106F

SCR

RTR0160

TEC

CTI

SCR

RTS0305

TEC

. TIC106F

SCR

RTR0202

TEC

TIC106F

SCR

RTS03l0

TEC

TIC106A

SCR

RTR0205

TEC

TIC106F

SCR

RTS0320

TEC

TIC106B

SCR

RTR02l0

TEC

TIC106A

SCR

RTS0330

TEC

TIC106C

SCR

RTR0220

TEC

TIC106B

SCR

RTS0340

TEC

TIC106D

SCR

RTR0230

TEC

TIC106C

SCR

RTS0350

TEC

CTI

SCR

RTR0240

TEC

TIC106D

SCR

RTS0360

TEC

CTI

SCR

RTR0250

TEC

CTI

SCR

RTS0402

TEC

TIC106F

SCR

RTR0260

TEC

CTI

SCR

RTS0405

TEC

TIC106F

SCR

RTR0302

TEC

TIC106F

SCR

RTS0410

TEC

TIC106A

SCR

RTR0305

TEC

TIC106F

SeR

RTS0420

TEC

TIC106B

SCR

RTR0310

TEC

TIC106A

SCR

RTS0430

TEC

TIC106C

SCR

RTR0320

TEC

TIC106B

SCR

RTS0440

TEC

TIC106D

SCR

RTR0330

TEC

TIC106C

SCR

RTS0450

TEC

CTI

SCR

RTR0340

TEC

TIC106D

SCR

RTS0460

TEC

CTI

SCR

RTR0350

TEC

CTI

SCR

RTT0102

TEC

TICl16F

SCR

RTR0360

TEC

CTI

SCR

RTT0105

TEC

TICl16F

SCR

RTR0402

TEC

TIC106F

SCR

RTTOll0

TEC

TICl16A

SCR

•

Refer to page 2-17 for key to manufacturers.
CTI-Contact Texas Instruments,

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

2-29

CROSS.;REFERENCE GUIDE
TYPE
RTT0120

•

MANUFACTURER

FOR NEW DESIGN

CLASS

TICl16B

SCR

RTT0130

TEC
TEC

TICl16C

RTT0140

TEC

TICll6D

RTTOl50

TEC

RTT0160

TYPE

MANUFACTURER

CLASS

TEC

TlC126D

SCR

SCR

TEC

TIC126E

SCR

SCR

RTU0160

TEC

TICl26M

SCR

TICl16E

SCR

RTU0202

TEC

TIC126F

SCR

TEC

TICl16M

SCR

RTU0205

TEC

TIC126F

SCR

RTT0202

TEC

TICl16F

SCR

RTU02l0

TEC

TIC126A

SCR

RTT0205

TEC

TICl16F

SCR

RTU0220

TEC

TIC126B,

SCR

RTT02l 0

TEC

TICll6A

SCR

RTU0230

TEC

TIC126C

SCR

RTT0220

TEC

TIC116B

SCR

RTU0240

TEC

TIC126D

SCR

RTT0230

TEC

TICl16C

SCR

RTU0250

TEC

TIC126E

SCR

RTT0240

TEC

TIC116D

SCR

RTU0260

TEC

TIC126M

SCR

RTT0250

TEC

TICl16E

SCR

RTU0302

TEC

TICl26F

SCR

RTT0260
RTT0302

TEC

TlCl16M

RTU0305

TEC

TICl26F

TEC

TICl16F

SCR
SCR

RTU03l0

TEC

TIC126A

SCR
SCR

RTT0305

TEC

TICl16F

SCR

RTU0320

TEC

TIC126B

SCR

RTT0310

TEC

TICl16A

SCR

RTU0330

TEC

TIC126C

SCR

RTT0320

TEC

TICl16B

SCR

RTU0340

TEC

TlC126D

SCR

RTT0330

TEC

SCR

RTU0350

SCR

TEC
TEC

SCR
SCR

RTU0360

TEC
TEC

TIC126E

RTT0340
RTT0350

TlC116C
TICl16D
TICl16E

RTU0402

TEC

TIC126M
TIC126F

SCR

RTT0360

TEC
TEC

TICl16M

SCR

TIC126F

SCR
SCR

RTU0420

TEC
TEC

TIC126A

TEC

SCR
SCR

RTU0405
RTU0410

TEC

TICl16F

TIC126B

SCR

SCR

RTU0430

TEC

TlC126C

RTT0402
RTT0405

SCR

RTT0410

TEC

TICl16i
TICll6A

RTT0420

TICl16B
TICl16C

SCR
SCR

RTU0440
RTU0450

TEC
TEC

TIC126D

SCR
SCR

RTT0430

TEC
TEC

TIC126E

SCR

RTT0440

TEC

TICl16D

SCR

RTU0460

TEC

TIC126M

SCR

RTT0450

TEC

TICl16E

SCR

RTU0502

TEC

TIC126F

SCR

RTT0460

TEC

TICll6M

SCR

RTU0505

TEC

TIC126F

SCR

RTT0502

TEC

TIC116F

SCR

RTU05l0

TEC

TIC1,26A

SCR

RTT0505

TEC

TICl16F

SCR

RTU0520

TEC

TlC126B

SCR

RTT05l 0

TEC

TICll6A

SCR

RTU0530

TEC

TIC126C

SCR

RTT0520

TEC

TICl16B

SCR

RTU0540

TEC

TIC126D

SCR

RTT0530

TEC

TICl16C

SCR

RTU0550

TEC

TIC126E

RTT0540

TEC

TIC116D

SCR

RTU0560

TEC

TIC126M

RTT0550

TEC

TlCll6E

SCR

TEC

TICl16M

SCR

TEC
TEC

TIC126F

RTT0560

RTU0602
RTU0605

TIC126F

SCR
SCR

RTT0602

TEC

TICl16F

SCR

RTU0610

TEC

TIC126A

SCR

RTT0605

TEC

TICl16F

SCR

RTU0620

TEC

TICl26B

SCR

RTT0610

TEC

TICll6A

SCR

RTU0630

TEC

TICl26C

SCR

RTT0620

TEC

TICl16B

SCR

RTU0640

TEC

TIC126D

SCR

RTT0630

TEC

TICll6C

SCR

RTU0650

TICl26E

SCR

RTT0640

TEC

TIC116D

SCR

RTU0660

TEC
TEC

TIC126M

SCR

RTT0650

TEC

TlCl16E

SCR

SC60B

GE

TIC263B

TRIAC

RTT0660

TEC

TICl16M

SCR

SC60D

GE

TIC263D

TRIJ\C

RTU0102

TEC

TIC126F

SCR

SC60E

GE

TIC263E

TRIAC

RTU0105

TEC

TIC126F

SCR

SC61B

GE

TIC263B

TRIAC

RTUOll0
RTU0120

TEC
TEC

TIC126A
TIC126B

SCR
SCR

SC6lD
SC61E

GE
GE

TIC263D
TIC263E

TFClAC
TRIAC

RTU0130

TEC

TIC126C

SCR

SC141B

GE

TIC226B

TRIAC

Refer to page 2-17 for key to manufacturers.

2·30

FOR NEW DESIGN

RTU0140
RTU0150

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

SCR
•

SCR

CROSS-REFERENCE GUIDE
TYPE

MANUFACTURER

FOR NEW DESIGN

CLASS

TYPE

GE

TIC226D

TRIAC

SDT3510

SC141E

GE

TIC226D

TRIAC

SC146B

GE

TIC226B

TRIAC

SC146D

GE

TIC226D

SC146E

GE

SC240B

GE

SC240D

SC141D

MANUFACTURER

FOR NEW DESIGN

CLASS

SOD

TIP32A

PNP-Si

SDT3511

SOD
SOD

TIP32B
. TIP32C

PNP-Si

SDT3512

TRIAC

SDT3513

SOD

TIP32

PNP-Si

TIC226D

TRIAC

SDT3514

SOD

TIP32A

PNP-Si

TIC226B

TRIAC

SDT3515

SOD

TIP32B

PNP-Si

GE

TIC226D

TRIAC

SDT3516

SOD

TIP32C

PNP-Si

SC240E

GE

TIC226D

TRIAC

SDT3575

SOD

TIP30

PNP-Si

SC241B

GE

TIC226B

TRIAC

SDT3576

SOD

TIP30A

PNP-Si

SC241D

GE

TIC226D

TRIAC

SDT3577

SOD

TlP30B

PNP-Si

SC241E

GE

TIC226D

TRIAC

SDT3578

SOD

TIP30

PNP-Si

SC245B

GE

TIC226B

TRIAC

SDT3579

SOD

TIP30A

PNP-Si

SC245D

GE

TIC226D

TRIAC

SDT3701

SOD

TIP42

PNP-Si

SC245E

GE

TIC226D

TRIAC

SDT3702

SOD

TIP42A

PNP-Si

SC246B

GE

TIC226B

TRIAC

SDT3703

SOD

TIP42

PNP-Si

SC246D

GE

TIC226D

TRIAC

SDT3704

SOD

TIP42A

PNP-Si

SC246E

GE

TlC226D

TRIAC

SDT3705

SOD

TIP42B

PNP-Si

SC250B

GE

TIC236B

TRIAC

SDT3706

SOD

TIP42

PNP-Si

SC250D

GE

TIC236D

TRIAC

SDT3707

SOD

TIP42

PNP-Si

PNP-Si

SC250E

GE

TIC236D

TRIAC

SDT370B

SOD

TIP42A

PNP-Si

SC251B

GE

TIC236B

TRIAC

SDT3709

SOD

TIP42

PNP-Si

SC251D

GE

TIC236D

TRIAC

SDT3710

SOD

TIP42

PNP-Si

SC251E

GE

TIC236D

TRIAC

SDT3711

SOD

TIP42A

PNP-Si

SCC321

FSC

TIP35A

NPN-Si

SDT3712

SOD

TIP42

PNP-Si

SCC421

FSC

TIP36A

PNP-Si

SDT3713

SOD

TIP42A

PNP-Si

SCD321

FSC

TIP33B

NPN-Si

SDT3714

SOD

TIP42A

PNP-Si

SCD421

FSC

TIP36B

PNP-Si

SDT3715

SOD

TIP42

PNP-Si

SCE321

FSC

TIP33C

NPN-Si

SDT3716

SOD

TIP42

PNP-Si

SCE421

FSC

TIP36C

PNP-Si

SDT3717

SOD

TIP42A

PNP-Si

SDI345

FSC

TIP41

NPN-Si

SDT3718

SOD

TIP42B

PNP-Si

SDI445

FSC

TIP42

PNP-Si

SDT3719

SOD

TIP42C

PNP-Si

SDJ345

FSC

TIP41

NPN-Si

SDT3720

SOD

TIP42

PNP-Si

SDJ445

FSC

TIP42

PNP-Si

SDT3721

SOD

TIP42

PNP-Si

SDK345

FSC

TIP41

NPN-Si

SDT3722

SOD

TIP42A

PNP-Si

SDK445

FSC

TIP42

PNP-Si

SDT3723

SOD

TIP42B

PNP-Si

SDL345

FSC

TIP41A

NPN-Si

SDT3724

SOD

TIP42C

PNP-Si

SDL445

FSC

TIP42A

PNP-Si

SDT3725

SOD

TIP42

PNP-Si

SDM345

FSC

TIP41

NPN-Si

SDT3726

SOD

TIP42

PNP-Si

SDM445

FSC

TIP42

PNP-Si

SD1"3727

SOD

TIP42A

PNP-Si

SDN345

FSC

TIP41A

NPN-Si

SDT3728

SOD

TlP42B

PNP-Si

SDN445

FSC

TIP42A

PNP-Si

SDT3729

SOD

TIP42

PNP-Si

SD0345

FSC

TIP41B

NPN-Si

SDT3730

SOD

TIP42A

PNP-Si

SD0445

FSC

TIP42B

PNP-Si

SDT3731

SOD

TlP42A

PNP-Si

SDP345

FSC

TIP41C

NPN-Si

SDT3732

SOD

TIP42C

PNP-Si

SDP445

FSC

TIP42C

PNP-Si

SDT3733

SOD

TIP42

PNP-Si

SDT402

SOD

TIP54

NPN-Si

SDT3750

SOD

TIP34

PNP-Si

SDT41 0

SOD

TIP51

NPN-Si

SDT3751

SOD

TIP34A

PNP-Si

SDT411

SOD

TIP52

NPN-Si

SDT3752

SOD

TIP34

PNP-Si

SDT423

SOD

TIP54

NPN-Si

SDT3753

SOD

TIP34A

PNP-Si

SOD

TIP32

PNP-Si

SDT3754

SOD

TIP34B

PNP-Si

SDT3509
Refer to page

2~17

•

for key to manufacturers.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS, TEXAS 75222

2-31

CROSS-REFERENCE GUIDE
TYPE

•

MANUFACTURER

FOR NEW DESIGN

TYPE

TIP34C

CLASS
PNP-8i

SOD

TIP34

PNP-Si

SDT7602
SDT7603

SOD

TIP33B

NPN-Si

SOD

TIP34

PNP-8i

SDT7607

SOD

TIP33

NPN-8i
NPN-Si

SDT3755
SDT3756

SOD

SDT3757

MANUFACTURER
SOD

CLASS
NPN-Si

SDT3758

SOD

TIP34A

PNP-Si

SDT760S

SOD

TIP33A

SDT3759

SOD

TIP34B

PNP-Si

SDT7609

SOD

TIP338

NPN-Si

SDT3760

SOD

TIP34C

PNP-Si

SDT7731

SOD

2N5301

NPN-Si

SDT3761

SOD

TIP34

PNP-Si

2N5301

SOD

TIP34

PNP-8i

SDT7732
SDT7733

SOD

SDT3762

SOD

2N5301

NPN-Si
NPN-Si

SDT3763

SOD

TIP34A

PNP-Si

SDT7734

SOD

2N5301

NPN-Si

SDT3764

SOD

TIP34B

PNP-8i

SDT9201

SOD

TIP35

NPN-Si

SDT3765

SOD

TlP34C

PNP-Si

SDT9202

SOD

TIP35B

NPN-Si

SDT3766

SOD

TIP34

PNP-Si

SDT9203

SOD

TIP35C

NPN-Si

SDT3825

SOD

TIP34

PNP-Si

SDT9204

SOD

2N5301

NPN-Si

SDT3826

SOD

TIP34B

PNP-Si

SDT9205

SOD

TIP35

NPN-Si

SDT3827

SOD

TIP34

PNP-Si

SDT9206

SOD

TIP35A

NPN-Si

SDT3875

SOD

TIP36

PNP-Si

SDT9207

SOD

TIP35B

NPN-Si

SDT3876

SOD

TIP36A

PNP-Si

SDT9208

SOD

TIP35C

NPN-Si

SDT3877

SOD

TIP36

SDT9209

SOD

2N5301

NPN-Si

SDT5901

SOD
SOD

TIP41

PNP-8i
NPN-Si

SDT921 0

SOD

TIP35

NPN-Si

TIP41A

NPN-Si

SDT9801

SOD

TIP35

NPN-Si

TIP41B

NPN-Si

SDT9802

SOD

TIP35A

NPN-Si

TIP41C
TIP33

NPN-Si

SDT9803
SDT9804

SOD

TIP35B

SOD

TIP35C

NPN-Si
NPN-Si

SDT5902
SDT5903
SDT5904

SOD
SOD

SDT7601

SOD

NPN-Si

Refer to page 2-17 for key to manufacturers.

2-32

FOR NEW DESIGN
TIP33A

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

•
Product
Selection
Guides

•

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS

DEVICE
TYPE
2N497
2N497A
2N656
2N656A

IC
POLARITY CONTINUOUS
A
NPN
0.5
NPN
0.5
NPN
0.5
NPN
0.5

hFE

V

MIN MAX

60
60
60
60
100
100
100

2N498
2N498A
2N657

NPN
NPN
NPN

2N657A
2Nl714
2N1716
2N2987

NPN
NPN
NPN
NPN

2N2989

NPN

1
1

2N4000
2N1715

1

2N1717
2N2988

NPN
NPN
NPN
NPN

80
80
80

1
1
1

100
100
100

2N2990
2N4001

NPN
NPN

1
1

100

2N3583
T14B6

1
1.5

175

TI4B7

NPN
NPN
NPN

1.5

TIP541 t

NPN

2N5333

PNP

2
2

2N 1047
2Nl047A

NPN
NPN

2N 1049
2Nl049A
2Nl049B
2N2150
2N2151
2N43oo

NPN
NPN
NPN
NPN

2N499S
2N5000
2N514S

NPN
NPN

NPN
NPN

0.5
0.5
0.5
0.5
1
1

@ IC

VCEO

12
12
30
30
12
12
30

36
36
90

90
36
36

A

V

0.2
0.2
0.2
0.2
0.2
0.2

10
10
10
10
10
10
10
10

0.2
0.2
0.2
0.2
0.2
0.2

75

0.2
0.5

5
2

O.S
O.S
0.3

20
40
25
60
30

60
120
75

0.2

5
5

2
2

120
120

0.2
0.5

O.S
O.S

0.2
0.2

60

40
20

200
SO

0.5
0.2

5
5
2
10

0.3
0.5
2

O.S
1
0.2

60
45

'20
40

80

0.2
1

5
4

2

30
12

1

4

2

80
80

0.2
1
1

2
2
2

SO

80
80

30

2

SO

30

90
90

2
2
2
2
2

SO

20
40
30
30
70
30

100

80
SO

30

0.2
0.2

200
120
36

0.5

12

36

30

90

0.5
0.5
0.5
0.5
1

60
120
120

1

5

10
10
10
10
5
5

70

90
200

1
1

30
70

90
200

1
1

30
70

90
200

1
1

30

2.5

5

2.S

5
10
10
10
10

2N5149
2N5152

NPN

2

2N5154

NPN

2

2Nl04S

NPN

2

120

12

90
200
36

2Nl048A

NPN

2

120

12

36

0.5
O.S

2Nl048B
2Nl050

NPN
NPN

2
2

120
120

12
30

36
90

0.5
0.5

70

2
2

0.3

0.45
10
7.5

90
200

2
2

2

5
5
5

1
1
1

PNP
PNP

2N5001
2N5147

5
5
5
5
5
5

120
120

PNP

2N4999

0.2
0.2

25

30
20
40

2
2
2

NPN
NPN
PNP

5
5

60

60
60

80
80
80
80
80
80
80
80
80
80

2N5150

VCElsat)
MAX@ IC
V
A

0.2
0.2
0.2
0.2
0.2

100

90
90
60
120

VCE

2
5

P-r
TC= looD C
W

4

PACKAGE

2.3
2.S

IITO-5)
IITO-5)

2.3
2.S
2.3
2.S

IITO-5)
IITO-5)
IITO-5)

2.3

5
4
5
4
5
4
5

2.S

IITO-5)

0.2
0.2
0.2
0.2

15
15

IITO-5)
IITO-5)
IITO-5)
IITO-5)

15
15

IITO-5)
IITO-5)

O.S
0.2

15
15
15

IITO-5)
IITO-5)

0.2

15
15
15
35

IITO-5)
IITO-5)
IITO-5)
IITO-S)

20

5BITO-66)

15
15
4

S
PPP(TO-39)

15

IITO-5)

IITO-5)
F(TO-57)

0.5

40

23

7.5

0.5
0.5
0.5
0.5

40
40
40
40

23
23
23
23

F(TO-57)

7.5
7.5

DDITO·lll)
DD(TO-ll1)
IITO-5)

35
35

30
30
15
20
20

7.5
1
1

1
1

0.3

1

0.S5
0.S5
0.S5

2
2
2

5 0.S5
5 0.S5
5 0.S5
S 0.S5
5 0.S5

2
2

5
5

P-r
TC - 25D C
W

2
2
2

7
7
35
35
7

4
4
20
20
4

0.75
0.75

2.5

7
11.7

4

2.5

11.7

7.5

0.5

40

7.5

0.5

40

23
23

7.5
7.5

0.5
0.5

40
40

23
23

6.7
6.7

F(TO-57)
F(TO-57)
FITO-57)

YYYY(TO-59)
YYYYITO-59)
PPP(TO-39)
PPP(TO-39)
YYYY(TO-S9)
YYYY(TO-S9)
PPPITO-39)
PPPITO-39)
PPPITO-39)
PPP(TO-39)
F(TO-57)
F(TO-57)
F(TO-57)
F(TO-57)

t Radiation tolerant

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

3-1

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TVPE
TIP503

hFE

V

MIN MAX

IC

VCE

A

V

VCElsatl
MAX@ IC
V
A

P-r

P-r

TC=25·C
W

TC·100·C

PACKAGE

W

2

120
120

40

200

1

4

40

200

1

4

0.6
0.6

1
1

20

2

20

VVVV(TO-591

2
2

150
150

40
40

200

1
.1

0.6
0.6

1
1

2
2

150
150

30
30

1
1

200

20

1

4
4
4

1.5
1.5

2

120
120
100

2.5

2
2
2

20
20
20
4

5B(TO-661

200

4
4

TIP508
TIP521

NPN
NPN
PNP
PNP
PNP

TIP522
2N3584

PNP
NPN

2

200

20

100

1

4

2.5

2

20
4

YYYY(TO-591
PPP(TO-391

80
80

1
1

0.75

1

35

20

5B(T0-661

300

8
8

2

NPN

2
2

250

2N3585
2N4240
2N3902

2

0.75

1

35

NPN
NPN

2
2.5

2N3021

PNP
PNP

3
3
3

300
400
30
30
40

10
30
20
50
25

100
90
60
180
180

0.75
1
1
1
1

2
1
5
0.8
2
1.5
2
1
1.5 0.75

0.75
1
3

20
20

58(T0-661
5B(T0-661
K(TO-31
K(TO-3)

40
45
45

25
20
50
25
25
20

180

1
1
1
1
1
1
1

1.5 0.75
2
1.5
2
1
1.5 0.75
1.5 0.75
2
1.5
2
1
2 0.25
2 0.25
15
5

TIP504
TIP506
TIP507

2N3024
TIP501
2N3719
2N3022
2N3025
TIP502
2N372O
2N3023
2N3026
2N3418
2N342O
2N389
2N389A
2N3419
2N3421
2N424
2N424A
TIP529

NPN
PNP
PNP

PNP
PNP

3
3
3
3
3
3
3

NPN
NPN

3
3

IIIPN
NPN
NPN

3
3
3

NPN
NPN
NPN

3

80

3
3

80+
80+
300

PNP
NPN
PNP

80

60
60
60
60
60
60:1:
60+
80

50
10
15
12
12
10

60
180
60
120
60
60
60
120

1
1
1
1

15

25

67
12.5

3

25

12.5

1
1

6
6

3.4

3
3
1
1

25
25
6
6

3.4
12.5
12.5

3

25

3.4
3.4
12.5

3
1
1

25

12.5
15
15
85

1
1

YYYY(TO-591
VVYY(TO-591
PPP(TO-39)

K(TO-31
PPP(TO-391
I(TO-51
K(TO-31
K(TO-31
PPP(TO-391
I(TO-51
K(TO-31
K(TO-31
I(TO-5)
I(TO-51
D(TO-531
D(TO-53)

2

5
0.25

2

0.25

1
1

60
60

1
1

15
15

5
5

1
1

85
85

25

125

1.5

67

N(TO-6ll

1.5
1

2.6
2.5

3

125

4
4

0.8
0.75
0.6

20
67

5B(TO-661
K(TO-3)

3
2

20
30

K(TO-3)

15
12
12

TIP530
2N5157

3
3.5

300
500

25
30

3

60
180
180
180

35
1OO§

5B(T0-661

1
1

NPN
NPN
NPN

85
15
15

3
1OO§

I(TO-51
I(TO-51
D(TO-53)
D(TO-53)

2N5938

NPN

4

TIP509
TIP511

NPN
NPN

4

50
120

30
40

200

1
2

5
3
4

120
150

200

2

4

0.6

2

30

40
40

4

0.6
0.6

2
2

N(TO-6ll
K(TO-31

150

2
2

30

4

200
200

4

TIP512

NPN
NPN

4
4

40

TIP510

30

N(TO-6ll

2N4913
2N4914

NPN
NPN

5
5

40

25
25

100
100

2.5

2

0.75

2.5

87

K(TO-31

NPN
PNP

5
5

40
20

120

0.75
0.25

2.5
1

80

2

2
2
4

87

2N288O
2N5385

2.5
1

50
50

2N1722
2N1723
2N1724

NPN

5
5
5

80
80

90
150

2
2

15
15

0.6
1
1

2
2
2

80

20
50
·20

90

5

80

50

150

2
2

15
15

1
1

2
2

2N1725

3·2

A

@

VCEO

NPN
NPN

TIP505

•

IC
POLARITY CONTINUOUS

NPN
NPN
NPN

60
70
80

90
150

1

TEXASINCORPORATED
INSTRUMENTS
POST OFFICI! BOX SOU: • DALLAS, TaXAS 71222

30
30

ZZZZ

K(TO-31
DD(TO-1111
DD(TO-111l

50
50
50

D(TO-531

50

N(TO-6ll

D(TO-531
N(TO-61l

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS
DEVICE
TVPE

IC
POLAR lTV CONTINUOUS

2N3996

NPN

2N3997
2N3998

NPN

2N3999
2N4915
2N53B4
2N5002
2N5004
2N5003
2N5005
2N5151
2N5153
2N1722A
2N1724A
TIP513

NPN
NPN
NPN
PNP
NPN
NPN
PNP
PNP
PNP
PNP
NPN
NPN
PNP

TIP514
TIP523
TIP524
TIP525

PNP
PNP
PNP
NPN

TIP526
TIP544

NPN
PNP

2N5758
TIP545

NPN
PNP

2N5759

NPN

TIP546

PNP

2N5760

NPN

TI1135
Tlll36
TI1155
Tlll56

NPN
NPN
NPN
NPN
NPN
NPN
NPN
NPN

A
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

hFE

V

MIN MAX
40 120
80 240
40 120

80
80
80

80
80

20

30

80
80

70

30

80
90
200
90

80
80
80
120
120

70

200

2
2.5
2.5
2.5
2.5

30

90
200

2.5
2.5
2
2

150
150

30

90
90
150
150

30
30
30
20
20

0.75
0.75
0.75

5

0.75
15
0.6
15
0.6
4
1

BB(TO-lll)

30
30

BB(TO-l11)
DD(TO-lll)

30

DD(TO-lll)
K(TO-3)

1
2.5

87

50

2
2.5

58

30
33.3

2.5
2.5
2.5
2.5

58
58
58
11.7

2.5
2
2

11.7

33.3
33.3
33.3
6.7
6.7

BB(TO-lll)
VVVV(TO-59)
VVVV(TO-59)
VVVV(TO-59)
VVVV(TO-59)
PPP(TO-39)

50

PPP(TO-39)
D(TO-53)
N(TO-61)
VYYY(TO-59)

2.5

50
30

100
100

2.5
2.5
2.5

4
4
4

1
1.5
1.5

2.5
2.5
2.5

20
30
6

5B(TO-66)
YYVY(TO-59)
PPP(TO-39)

1.2
1.2

2.5
2.5

60
60

K(TO-3)
N(TO-61)

2.5

200

30
30

150
150

2.5
2.5

4

200

6
6

100
100

25
25

100
100

3

2

1

3

K(TO-3)

2

120
120
140

20
20
15

80
80

2

3
3

85

6
6
6

1
1

150
150
150

85

3
3
3

2

1

3

150

85

K(TO-3)
K(TO-3)
K(TO-3)

3

2

1

3

150

85

K(TO-3)

6
7.5

140

15

1
1

150
80#

85

30

2
4
4

3

50
50

3
2
2

50

K(TO-3)
N(TO-61)

1

2

50

N(TO-61)

5
5

4
4

2.5
2.5

5

N(TO-61)

2

4

1

5
2

50
50

2
5
5

4
4
4

1
2.5

2
5

2
2

4
4

2.5
1
1

5
2

5

4

2.5

5

4

2.5

2

5
4

2
1.2

5
4

2
1.2

5
4

2
1.2

4

4
4

4

4

7.5
7.5

15
20
10

100

20

100

10

NPN

200

25

2N5388

NPN
NPN

7.5
7.5

200
250

20
25

TIP536

NPN

7.5

300

20

2N5389
TIP537

NPN

7.5

300

25

NPN

7.5

TIP519
TIP520

PNP

8
8

400
150

20
30

150

30

200

20

PNP
PNP

5
5
5

5

PACKAGE

5
5

7.5
7.5

TIP527

5

0.25
0.75
0.6
0.75
0.75

PT
Tc= 100°C
W
30

200
200

15

2N5387
TIP535

2
2
4

PT
Tc-25°C
W

5
5

100

TI1151
TI1152

1
1
2.5

7.5
7.5

TI1132

1
1

240
100

15
20
10
30

NPN
NPN
NPN
NPN

A

80
25

70

VCE(satl
MAX@ Ic
V
V
A
1
2 0.25
2 0.25
1
1
2 0.25

VCE

80
80

50
50
75
75
75
75
100

Tlll33
Tlll34
T11153
Tlll54
TI1131

@ IC

VCEO

7.5
7.5
7.5
7.5
7.5
7.5

8

30

60
60
120
60
80
40
120
60
80
40
120
60
80
40
100
100
100
100
100
100
150
150
100

5
2
5
2
5
4

4

2
5
5
5

80#
80#
80#
80#
80#
80#
80#
80#
80#
80#
80#

50
50
50
50
50
50
50

N(TO-61J
N(TO-61)
N(TO-61)
N(TO-61)
N(TO-61).
N(TO-61)
N(TO-61)
N(TO-61)

50
100

N(TO-6ll
N(TO-61l

5
5

100
100

K(TO-3)
N(TO-61)

5
5

100
100

N(TO-61)

1

5
4

100
50

K(TO-3)

1
1.5

4
4

60

TEXASINCORPORATED
INSTRUMENTS
POST OFII',ICE BOX 5012 •

2

85

DALLAS, TEXAS 715222

50

•

K(TO-3)
K(TO-3)
N(TO-6ll
K(TO-3)

3-3

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS

DEVICE
TYPE

•

IC
POLARITY CONTINUOUS
A

@ IC

VCEO

hFE

V

MIN MAX

A

VCE(sat)
MAX@ IC
V
V
A
4
1.5
4

VCE

PT
TC = 100°C

W

W

PACKAGE

TIP528

PNP

8

200

20

100

4

TIP542t

NPN

10

45

40

200

5

4

0.8

10

2N3789

PNP

10

60

25

90

1

2

1

4

150

2N3713

NPN

10

60

25

75

1

2

1

5

150

85

K(TO-3)

2N3715

NPN

10

60

50

150

1

2

1

5

150

85

K(TO-3)

150

60

N(TO·61)

40

YYYYCTO-59)
K(TO-3)

85

2N3791

PNP

10

60

50

180

1

2

1

5

TIP543t

NPN

10

65

40

200

5

4

0.8

10

2N5940

NPN

10

70

40

200

5

4

1

10

2N3790

PNP

10

80

25

90

1

2

1

4

150

2N3792

PNP

10

80

50

180

1

2

1

5

150

85

K(TO-3)

2N5939

NPN

80

40

200

5

4

1

10

40

CC(TO·llll

80

30

120

5

5

0.9

5

10011

67

N(TO-61)

80

30

120

5

5

0.9

5

10011

67

N(TO-61)

80

25

75

1

2

1

5

150

85

K(TO-3)

150

85

K(TO-3)
N(TO-61)

85

K(TO-3)

40

YYYY(TO-59)

40

CC(TO-ll1)

85

K(TO·3)

2N6127

PNP

2N6128

NPN

2N3714

NPN

10
10
10
10

2N3716

NPN

10

80

50

150

1

2

1

5

2N4301
2N3551

NPN

10

80

120

0.4

12

60

90

5
10

4

NPN

30
20

2

1

5
10

50
40

2N3552

NPN

12

80

20

90

10

2

1

10

40

DOD
DOD

2N5386

PNP

12

80

20

80

6

4

0.6

6

50

N(TO-61l

TIP515

NPN

12

120

40

200

6

4

0.8

6

80

K(TO-3)

TIP517

NPN

12

120

40

200

6

4

0.8

6

80

TIP516

NPN

12

150

40

200

6

4

0.8

6

80

N(TO-61)
K(TO·3)

TIP518

NPN

12

150

40

200

6

4

0.8

6

80

N(TO-61)

TIP538

NPN

200

20

100

7.5

4

0.75

7.5

125

K(TO-3)

TIP539

NPN

15
1'5

300

20

100

7.5

4

0.75

7.5

125

KCTO-3)

TIP531

NPN

15

300

20

120

7.5

4

1.5

15

150

K(TO-3)

TIP533

NPN

15

300

20

120

7.5

4

1.5

15

150

P(TO-63)
K(TO-3)

TIP540

NPN

15

400

20

100

7.5

4

0.75

7.5

125

TIP532

NPN

15

400

20

120

7.5

4

1.5

15

150

K(TO-3)

TIP534

NPN

15

400

20

120

7.5

4

1.5

15

150

P(TO·53)

2N1936

NPN

20

60

10

50

10

3

0.75

10

150

P(TO-63)

2N5039

NPN

20

75

20

100

10

5

2.5

20

2N1937

NPN

20

80

10

50

10

3

0.75

10

2N5303

NPN

20

80

15

60

10

2

1.5

15

2N4004

NPN

20

80

30

150

10

4

1

20

2N5038

NPN

20

90

20

100

12

5

2.5

20

2N4005

NPN

20

100

30

150

10

4

1

20

2N3846

NPN

20

200

10

60

10

3

0.75

2N3847

NPN

20

300

10

60

10

3

0.75

2N3263

NPN

25

60

20

55

15

2

1

20

2N3265

NPN

25

60

20

55

15

2

1

20

125

100

2N3264

NPN

25

90

20

80

15

3

1.6

20

83.3

66.7

P(TO-63)
QQ

2N3266

NPN

25

90

20

80

15

3

1.6

100

P(TO-63)

PNP

30

40

15

60

15

4

1

20
15

125

2N4398

200

114

K(TO-3)

2N5301

NPN

30

40

15

60

15

2

2

20

200

114

K(TO·3)

2N4399

PNP

30

60

15

60

15

4

1

15

200

114

K(TO·3)

DALLAS, TEXAS 75222

K(TO-3)

150

P(TO-63)

114

K(TO-3)
QQ

40

10

150

P(TO-63)

10

150

P(TO-63)
QQ

TEXAS INCORPORATED
INSTRUMENTS
•

200

80

K(TO·3)
QQ

lITC= 50°C

POST OFFICE BOX 5012

140

40

t Radiation tolerant

3-4

PT
TC = 25°C

140

83.3

80

66.7

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS

DEVICE
TYPE

IC
POLARITY CONTINUOUS

@ IC

VCEO

hFE

A

V

MIN MAX

A

VCE
V

VCE(satl
MAX@ IC
V
A

PT
TC= 25°C

PT
TC·'00°C

W

W

200

PACKAGE

2N5302

NPN

30

60

15

60

15

2

2

20

114

K(TO·3)

2N4002

NPN

30
30

80
80

20

80

15

4

1.2

30

100

P(TO-63)

20

100

15

4

1

15

150

K(TO·3)

80
100

20
20

100

4

1

15

80

15
15

4

1.2

30

150
100

P(TO·63)
P(TO-63)

100
100

20

100

15

4

1

15

150

K(TO-3)

20

100

15

4

1

150
200

P(TO-63)
P(TO·63)

2N6270

NPN

2N6272
2N4003

NPN
NPN

30

2N6271
2N6273
2N6322

NPN

30

NPN

30

NPN

30

200

40

150

5

5

1.5

15
20

2N6323

NPN

30

200

40

150

5

5

1.5

20

200

2N6324
2N6325

NPN
NPN

30

300

30

K(TO·3)

5

1.5

20
20

200

30

5
5

1.5

300

150
150

5

30

200

P(TO-63)

2N5685

NPN

50

60

15

60

25

2

1

25

300

171

K(TO·3)

50
50

2N5683

PNP

2N5684

PNP

2N5686

NPN
NPN

TIXP547
TIXP548
TIXP549

NPN
NPN

30

50
100
100
100

K(TO·3)

60

15

60

25

2

1

25

300

171

K(TO·3)

80
80

15

60

25

2

1

25

300

171

K(TO·3)

15

60

25

2

1

25

300

171

K(TO-3)

60

15

100

50

1.5

5E(TO·114)

15

100

1.5

200

5E(TO·114)

100

15

100

50
50

50
50

200

80

4
4
4

1.5

50

200

5E(TO.114)

D(TO-53)

F(TO-57)

K(TO-3)

N(TO·61)

TEXAS1NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

•

3·5

PRODUCT SELECTION GUIDE
HIGH-RELIABILITY SILICON POWER TRANSISTORS

•

II

Ii
ii'

,

S

BB(TO-lll )

t

/

aa

DOD

VVVV(TO-59)

5B(TO-66)

DD(TO-lll)

PPP(TO-39)

zzzz

3·6

CC(TO-lll)

5E(TO-114)

TEXAS INCORPORATED
INSTRUMENTS
POST, OFFICE BOX 5012

•

DALLAS, TEXAS 75222

PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS

DEVICE
TYPE

IC
CONTINUOUS

VCEO

A

V

@

hFE

IC

VCE

MIN

MAX

A

V

VCE(satl
MAX!@ IC
V
A

PT
Tc = 25°C

PACKAGE

W

2N2659

3

30

30

90

0.5

0.5

0.2

0.5

15

2N2662

3

30

30

90

0.5

0.5

0.2

0.5

15

C

2N2665

3

30

50

150

0.5

0.5

0.2

0.5

15

IITO-5)

2N2668

3

30

50

150

0.5

0.5

0.2

0.5

15

C

2N 1038

3

40

20

60

1

0.5

0.25

1

20

IITO-5)

C

IITO-5)

2N2552

3

40

20

60

1

0.5

0.25

1

20

2N2556

3

40

20

60

1

0.5

0.25

1

20

B

2N2660

3

40

30

90

0.5

0.5

0.2

0.5

15

IITO-5)

2N2663

3

40

30

90

0.5

0.5

0.2

0.5

15

C

2N2666

3

40

50

150

0.5

0.5

0.2

0.5

15

IITO-5)

2N2669

3

40

50

150

0.5

0.5

0.2

0.5

15

C

2N2661

3

50

30

90

0.5

0.5

0.2

0,5

15

IITO-5)

2N2664

3

50

30

90

0.5

0.5

0.2

0.5

15

C

2N2667

3

50

50

150

0.5

0.5

0.2

0.5

15

IITO-5)

2N2670

3

50

50

150

0.5

0.5

0.2

0.5

15

C

2Nl039

3

60

20

60

1

0.5

0.25

1

IITO-5)

2N2553

3

60

20

60

1

0.5

0.25

1

2N2557

3

60

20

60

1

0.5

0.25

1

20
20
20

2Nl040

3

80

20

60

1

0.5

0.25

1

20

IITO-5)

C
B
IITO-5)

2N2554

3

80

20

60

1

0.5

0.25

1

20

2N2558

3

80

20

60

1

0.5

0.25

1

20

C
B

2Nl041

3

100

20

60

1

0.5

0.25

1

20

2N2555

3

100

20

60

1

0.5

0.25

1

20

C

2N2559

3

100

20

60

1

0.5

0.25

1

20

B
B
C
IITO-5)

2N1042

3.5

30

20

60

3

1

0.75

3

20

2N2560

3.5

30

20

60

3

1

0.75

3

20

2N2564

3.5

30

20

60

3

1

0.75

3

20

2N 1043

3.5

40

20

60

3

1

0.75

3

20

2N2561

3.5

40

20

60

3

1

0.75

3

20

2N2565

3.5

40

20

60

3

1

0.75

3

20

2N 1044

3.5

50

20

60

3

1

0.75

3

20

2N2562

3.5

50

20

60

3

1

0.75

3

20

B
C

B
C
I (TO-5)

2N2566

3.5

50

20

60

3

1

0.75

3

20

UTO-5)

2N1045

3.5

60

20

60

3

1

0.75

3

20

B

2N2563

3.5

60

20

60

3

1

0.75

3

20

C

2N2567

3.5

60

20

60

3

1

0.75

3

20

I (TO-5)

2N1529

5

20

20

40

3

2

1.5

3

106

K(TO-3)

2Nl534

5

20

35

70

3

2

1.2

3

106

K(TO-3)

2N1539

5

20

50

100

3

2

0.3

3

106

K(TO-3)

2N1544

5

20

75

150

3

2

0.2

3

106

K(TO-3)

2Nl530

5

30

20

40

3

2

1.5

3

106

K(TO-3)

2Nl535

5

30

35

70

3

2

1.2

3

106

K(TO-3)

2Nl540

5

30

50

100

3

2

0.3

3

106

K(TO-3)

2N1545

5

30

75

150

3

2

0.2

3

106

K(TO-3)

2Nl531

5

40

20

40

3

2

1.5

3

106

K(TO-3)

2Nl536

5

40

35

70

3

2

1.2

3

106

K(TO-3)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

•

3·7

PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS

DEVICE
TYPE
2N1541

•

V
40

MIN
50

100

40
50
50

75
20

150
40

35
50
75

70
100

5
5
5

2N1537
2N1542

5
5

2N1547

5

50
50

2N1533

5
5
5

60
60
60

2N250A
2N251A

5
7
7

60
25
35

2N456A

7

30

30

2N456B
2N457A
2N457B
TI3027

7
7

30

30

40
40
45
45

30
30
40
30
30

50
50
50
55

40
30
30
30

55
55
60
65

30
40
40
40

50
65

60

75
40
50

30

2N1543
2N1548

2N458A
2N458B
T13028
2N1021
2N1021A

7
7
7
7
7
7
7

40

2N1022
2N1022A
T13029

7
7

TI3030
T13031

7
7

2Nl046
2N3146
2N3147

12

2N1907

20

2NI908
2N511

20
25

30

2N512

25

30

2N513
2N514

25

30

2N511A
2N512A

25
25
25

30
40

2N513A
2N514A
2N511B
2N512B
2N513B
2N514B

7

15
15

@

hFE

VCEO

2N1546
2N1532

2N1538

tTc

IC
CONTINUOUS
A

20
35
50
75
25
25

30
30

MAX

IC

VCE

A

V

3
3
3

2
2
2

3
3
3

2

70
100
150

3
3
3
3

2

100
100

3
3

1.5
1.5

90
90

5
5

1.5

90
90
250
90

5

1.5
1.5

150

40

5
3

1.2
0.3

3
3

106
106
106

2

0.2
1.5

3

106

KITO-3)

3
3

106
106
106

KITO·3)
KITO-3)
KITO-3)
KITO-3)

2
2

1.5

2

2
1.5
1.5

90
250

3

2

250
250

3
3

200
90

5

2
2
1.5
1.5

5
10

1.5
1.5

1.5
1.5

1.2
0.3
0.2
0.7
0.7
0.5

3
3
3

KITO-3)
KITO-3)

5
5
5
5

150
150
150

KITO-3)
KITO-3)
KITO-3)

0.5
0.5
0.5
0.5
0.5
0.5

3
5
5
3
5

106
150
150
106
150

KITO-3)
KITO-3)

5
5
5
3
3

150
150
150
106
106

KITO-3)
KITO-3)
KITO-3)
KITO-3)
KITO·3)

3

106

KITO·3)

5
10

50 t
150

KITO-3)

10

150

0.5
0.5
0.5
0.5
0.5
0.4
0.5
0.5

60

2

0.5

20
20

60
60

15
20

2
2

1

15

1.5

20

20

60

25

2

2

20

60

20

60

2
2

25
25

40
40

10
15

20

60

20

40

20

60

25

25

45

25

45

20
20

60
60

25
25

45

20
20

60
60

1.5

0.4
0.4

60+

60*

KITO-3)

KITO·3)
KIT0-3)
KITO-3)

KITO-3)
KITO-3)
KITO-3)
KITO·3)

150
150

Q
Q

25

150
150

0.5
1

10

150

Q

15

150

Q

2
2

1.5
2

20

150

Q

150

Q

10
15

2

150

Q

2

0.5
1

25
10
15

150

Q

20

2
2

1.5
2

20

150
150

Q

25

= 75°C

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

KITO-3)

0.5
0.5
0.5

5
5
10

45

106
90

KITO-3)

90
150

+TC=70oC

3·8

3

10
10

30
20

KITO·3)
KITO-3)
KITO-3)

2
2

3
5
5
5
5

5

PACKAGE

3
3

1.5
1.5

90
170
170

Pr
TC - 25°C
W
106
106

0.2
1.5

5
5

90
250
90
90
90

VCElsatl
MAX @ Ic
V
A
0.3
3

DALLAS, TEXAS 75222

25

Q
Q

Q

PRODUCT SELECTION GUIDE
GERMANIUM POWER TRANSISTORS

c

B

KIT0-31

liTO-51

Q

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

•

DALLAS, TEXAS 75222

3-9

PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS
plastic single-diffused silicon power transistors
TYPE NO.
NPN

•

PNP

IC
CONTINUOUS

VCEO

A

V

@

hFE
MIN

MAX

IC
A

VCE
V

VCE(satl
MAX @ IC
V

A

PT
25°C

PACKAGE

W

TIP29

TIP30

1

40

15

75

1

4

0.7

1

TIP29A

TIP30A

1

60

15

75

1

4

0.7

1

30

TIP29B

TIP30B

1

80

15

75

1

4

0.7

1

30

TIP29C

TIP30C

1

100

15

75

1

4

0.7

1

30

TIP31

TIP32

3

40

10

50

3

4

1.2

3

40

TlP31 A

TIP32A

3

60

10

50

3

4

1.2

3

40

TIP31B

TIP32B

3

80

10

50

3

4

1.2

3

40

TIP31C

TIP32C

3

100

10

50

3

4

1.2

3

40

TIP41

TIP42

6

40

15

75

3

4

1.5

6

65

TlP41A

TIP42A

6

60

15

75

3

4

1.5

6

65

TIP41B

TIP42B

6

80

15

75

3

4

1.5

6

65

TIP41C

TIP42C

6

100

15

75

3

4

1.5

6

65

TIP3055

TIP2955

15

60

20

70

4

4

3

10

90

TIP33

TIP34

10

40

20

100

3

4

4

10

80

TIP33A

TlP34A

10

60

20

100

3

4

4

10

80

TIP33B

TIP34B

10

80

20

100

3

4

4

10

80

TIP33C

TIP34C

10

100

20

100

3

4

4

10

80

TIP35

TIP36

25

40

10

50

15

4

4

25

125

TIP3!;)A

TIP36A

25

60

10

50

15

4

4

25

125

TIP35B

TIP36B

25

80

10

50

15

4

4

25

125

TIP35C

TIP36C

25

100

10

50

15

4

4

25

125

30

GG

H

plastic high-voltage power transistors
TIP47

1

250

30

150

0.3

10

1

1

300

30

150

0.3

10

1

1
.1

40

TIP48
TIP49

1

350

30

150

0.3

1

1

40

TIP50

1

400

30

150

0.3

10
1'0

1

1

40

TIP!;l

3

250

30

150

0.3

10

1.5

3

100

TIP52

3

300

30

150

0.3

10

1.5

3

100

TIP53

3

350

30

150

0.3

10

1.5

3

100

TIP54

3

400

30

150

0.3

10

1.5

3

100

H

3-10

40

GG

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

GG

H

PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS

power darlingtons
TYPE NO.
NPN

PNP

IC
A

TIPll0

TIPl15

TIPlll

@

18
mA

PT t

2

8

50

2

8

50

2

8

50

2

3

12

65

IC
A

VCE
V

60

1000

1

4

2.5

80

1000

1

4

2.5

2

100

1000

1

4

2.5

TIP125

5

60

1000

3

3

VCEO
V

hFE
MIN

2

TIPl16

2

TlPl12

TIPl17

TIP120

VCE(sat)
MAX V

@

IC
A

W

PACKAGE

GG
TIP121

TIP126

5

80

1000

3

3

2

3

12

65

TIP122

TIP127

5

100

1000

3

3

2

3

12

65

TIP140

TIP145

10

60

1000

5

4

2

5

10

125

TlP141

TIP146

10

80

1000

5

4

2

5

10

125

TIP142

TIP147

10

100

1000

5

4

2

5

10

125

TIP640

TIP645

10

60

1000

5

4

2

5

10

175

TIP641

TIP646

10

80

1000

5

4

2

5

10

175

TIP642

TIP647

10

100

1000

5

4

2

5

10

175

H

K(TO-3)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

H

•

K
(TO-3)

GG

3-11

PRODUCT SELECTION GUIDE
ECONOMY SILICON POWER TRANSISTORS
power transistors in TO·3 hermetic cases
TYPE NO.

•

IC
CONTINUOUS

@

hI'S

VCEO

20

80

IC
A
1

20
20

80

1

80

60

25
25

5

80

5
5

60
80

Nf>N

PNP

·2N5067

2N4901

5

V
40

2N5068

2N4902

5

60

2N5069

2N4903

5

80

2N4913
2N4914

5
5

40

2N4915

2N4904
2N4905
2N4906

2N5869
2N5870

2N5867
2N5868

A

MAX

MIN

MAX
V

@l

IC

25°C

A

W

2

1.5

5

87.5

1.5

1

2
2

5
5

87.5
87.5

2.5
2.5
2.5

2
2
2

1.5

5

87.5

25

100
100
100

1.5
1.5

5
5

8"1.5
87.5

20
20

100
100

1.5
1.5

4
4

2

2

3
3

87.5
87.5

1.5

2N5873

2N5871

7

60

2.5

4

2

5

115

2N5872

7

80

20
20

100

2N5874

100

2.5

4

2

5

115

2N5877
2N5878

2N5875

10
10

60
80

20
20

100
100

4
4

4
4

3
3

8

2N5876

8

150
150

2N3713
2N3714

2N3789

10

25
25

4

10

75

1
1

2

10

80
80

75

2N3790

2

4

10

150
150

2N3715

2N3791

50

10

150

50

1
1

4

80

150
150

2

2N3792

10
10

60

2N3716

2

4

10

150

15

60

20

70

4

4

8

10

115

2N5879
2N5880

15
15

60

20

6
6

4
4

4

12
12

160

20

100
100

4

60

20

200

20

200

30

200
200
200
150
150

2N3055
2N!i881
2N5882
2N5885

2N5883

25

60

20

100

10

2N5886

2N5884

25

80

20

100

10

4
4

4
4

2N6326
2N6327

2N6329
2N6330
2N6331

60
80
100

12
12
12

15
15
15

4
4
4

3
3

2N6328

30
30
30

3

30
30

30
20

40
60

.15

15
10

4
4

4
4

30
20

2N3771
2N3772

15

60
60

K(T0-31

3·12

Pi

vce/satl
VCIl
V

TtxAsINSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

160

PACKAGE

K
(TO·3)

PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
plastic triacs
TYPE NO.

ITIRMS)

VORM

ITSM

A

V

A

IGTMAX IGTMAX VGTMAX VGTMAX
IVt
I. II. lilt
I. II. lilt
IV
rnA

rnA

V

V

VTM
MAX
V

@

ITM

IH
MAX

A

rnA

TIC205A

2

100

20

5

10

2

2

1.9

2.8

30

TIC205B

2

200

20

5

10

2

2

1.9

2.8

30

2

1.9

2.8

30

TIC205D

2

400

20

5

10

2

TIC206A

3

100

20

5

10

2

2

2.2

4.2

30

TlC206B

3

200

20

5

10

2

2

2.2

4.2

30

TIC206D

3

400

20

5

10

2

2

2.2

4.2

3\J

TIC215A

3

100

20

5

10

2.2

3

2

4.2

30

TIC215B

3

200

20

5

10

2.2

3

2

4.2

30

TIC215D

3

400

20

5

10

2.2

3

2

4.2

30

TIC216A

6

100

60

5

10

2.2

3

1.7

8.4

30

TIC2168

6

200

60

5

10

2.2

3

1.7

8.4

30

TlC216D

6

400

60

5

10

2.2

3

1.7

8.4

30

TIC226B

8

200

70

50

2.5

2.1

12

60

TlC226D

8

400

70

50

2.5

2.1

12

60

TIC236B

12

200

100

50

2.5

2.1

17

50

TIC236D

12

400

100

50

2.5

2.1

17

50

TIC246B

16

200

125

50

2.5

1.7

22.5

50

TIC246D

16

400

125

50

2.5

1.7

22.5

50

TlC253B

20

200

150

50

2.5

1.7

28.2

50

TIC253D

20

400

150

50

2.5

1.7

28.2

50

TIC253E

20

500

150

50

2.5

1.7

28.2

50

TIC253M

20

600

150

50

2.5

1.7

28.2

50
50

TIC263B

25

200

175

50

2.5

1.7

35.2

TIC263D

25

400

175

50

2.5

1.7

35.2

50

TIC263E

25

500

175

50

2.5

1.7

35.2

50

TIC263M

25

600

175

50

2.5

1.7

35.2

50

tRoman numerals d~signate the VG,

PACKAGE

PPP
ITO-39)

GG

PPP
ITO-39)

•

GG

GG

GG

GG

H

H

Vs quadrants as explained on page 1-19.

GG

PPPITO-39)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

3-13

PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
economy SeR's
IGTMAX
rnA

VGTMAX
V

IHMAX
rnA

VTMAX@

6

0.02

0.7

3

1.2

0.35

60

6

0.02

0.7

3

1.2

0.35

100

6

0.02

0.7

3

1.2

0.35

200

6

0.02

0.7

3

1.2

0.35

30

6

0.2

0.8

5

1.2

0.35

0.35

60

6

0.2

O.B

5

1.2

0.35

0.35

100

6

0.2

O.B

5

1.2

0.35

0.35

200

6

0.2

O.B

5

1.2

0.35

TIC44

0.6

30

6

0.2

0.8

5

1.4

0.3

TIC45

0.6

60

6

0.2

O.B

5

1.4

0.3

TIC46

0.6

100

6

0.2

O.B

5

1.4

0.3

6

0.2

O.B

5

1.4

0.3

IT
A

VORM
V

2N3001

0.35

30

2N3002

0.35

2N3003

0.35

2N3004

0.35

2N3005

0.35

2N3006
2N3007
2N300B

TYPE NO.

•

3·14

ITSM
A

V

IT
A

PACKAGE

TIC47

0.6

200

TIC60

O.B

30

6

0.2

O.B

5

1.7

1.2

TIC61

O.B

60

6

0.2

0.8

5

1.7

1.2

TIC62

O.B

100

6

0.2

0.8

5

1.7

1.2

TIC63

O.B

150

6

0.2

0.8

5

1.7

1.2

TIC64

O.B

200

6

0.2

0.8

5

1.7

1.2

R
(TO·18)

AAA

LLL

2N5060

O.B

30

6

0.2

0.8

5

1.7

1.2

2N5061

O.B

60

6

0.2

0.8

5

1.7

1.2

2N5062

O.B

100

6

0.2

0.8

5

1.7

1.2

2N5063

0.8

150

6

0.2

0.8

5

1.7

1.2

2N5064

0.8

200

6

0.2

0.8

5

1.7

1.2

2N1595

1

10

3

25

2

1

1

50
100

15

2N1596

15

10

3

25

2

1

2N1597

1

200

15

10

3

25

2

1

2N1598

1

300

15

10

3

25

2

1

2N1599

1

400

15

·W

3

25

2

1

(TO-92)

I
(TO-5)

TI145AO

1.6

50

30

25

2

1

1.6

100

30

25

3.5
3.5

25

TI145A1

25

2

1

TI145A2

1.6

200

30

25

3.5

25

2

1

TI145A3

1.6

300

30

25

3.5

25

2

1

TI145A4

1.6

400

30

25

3.5

25

2

1

TIC39Y

2

30

20

0.2

1

5

1.75

2

TIC39F

2

50

20

0.2

1

5

1.75

2

TIC39A

2

100

20

0.2

1

5

1.75

2

PPP

TIC39B

2

200

20

0.2

1

5

1.75

2

(TO-39)

TIC39C

2

300

20

0.2

1

5

1.75

2

TIC39D

2

400

20

0.2

1

5

1.75

2

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

I
(TO-5)

PRODUCT SELECTION GUIDE
ECONOMY THYRISTORS
economy SCR's
TYPE NO.
2N6332
2N6333
2N6334
2N6335
2N6336
2N6337

IT
A
2
2
2
2
2
2

VORM
V
30
50
100
200
300
400

ITSM
A
20
20
20
20
20
20

IGTMAX
mA
0.2
0.2
0.2
0.2
0.2
0.2

VGTMAX
V
0.7
0.7
0.7
0.7
0.7
0.7

IHMAX
mA
5
5
5
5
5
5

VTMAX@
V
1.75
1.75
1.75
1.75
1.75
1.75

IT
A
2
2
2
2
2
2

PACKAGE

PPP
ITO-39)

TlC106Y
TIC106F
TIC106A
TIC106B
TIC106C
TIC106D

5
5
5
5
5
5

30
50
100
200
300
400

30
30
30
30
30
30

0.2
0.2
0.2
0.2
0.2
0.2

1
1
1
1
1
1

5
5
5
5
5
5

1.7
1.7
1.7
1.7
1.7
1.7

5
5
5
5
5
5

GG

TICl16F
TICl16A
TICl16B
TICl16C
TICl16D
TICl16E
TICl16M

8
8
8
8
8
8
8

50
100
200
300
400
500
600

80
80
80
80
80
80
80

20
20
20
20
20
20
20

1.5
1.5
1.5
1.5
1.5
1.5
1.5

40
40
40
40
40
40
40

1.7
1.7
1.7
1.7
1.7
1.7
1.7

8
8
8
8
8
8
8

GG

TICl26F
TIC126A
TIC126B
TICl26C
TIC126D
TIC126E
TIC126M

12
12
12
12
12
12
12

50
100
200
300
400
500
600

100
100
100
100
100
100
100

20
20
20
20
20
20
20

1.5
1.5
1.5
1.5
1.5
1.5
1.5

40
40
40
40
40
40
40

1.4
1.4
1.4
1.4
1.4
1.4
1.4

12
12
12
12
12
12
12

GG

n
I(TO-5)

n
AAA

1
RITO-18)

m
LLLITO-92)

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

•

IL
GG

~
PPPITO·39)

3-15

PRODUCT SELECTION GUIDE
RADIATION-TOLERANT SCR's

radiation-tolerant SeR's
1 X 1014 n/cm2
DEVICE

IT

VD

IHMAX

IGTMAX·
MAX

TYPE
A

•

TIC35
TIC36

0.4
0.4

TIC67

20
20

TIC68

@

IT

V
15

mA
4

mA

V

0.02

30

4

0.02

1.6
1.6

1
1

60

20

20

1.5

80

20

20

1.5

20
20

R(TO-I8)

3-16

POST IRRADIATION

VT

A

IGTMAX
mA

V

5
5
40

1.6
1.6
1.5

40

1.5

YYYY(TO-59)

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

PACKAGE

VT
MAX

@

IT
A
1
1
20
20

R(TO-18)
R(TO-18)
YYYY(TO-59)
YYYY(TO-59)

II
Alpha-Numeric Index
to
Data Sheets

•

ALPHA-NUMERIC INDEX

ALL TYPES
TYPE NO.

TYPE NO.

SEC.·PAGE

SEC.·PAGE

2N389

5-11

2N1533

6-41

2N424

5-11

2N1534

6-41

2N456A

6-1

2N1535

6-41

2N456B

6-5

2N1536

6-41

2N457A

6·1

2N1537

6·41

2N457B

6-5

2N1538

6·41

2N458A

6·1

2N1539

6·41

2N458B

6·5

2NI540

6·41

2N497

5-13

2N1541

6-41

2N498

5-13

2NI542

6·41

2N511

6·11

2NI543

6·41

2N511A

6·11

2NI544

6-41

2N511B

6-11

2Nl545

6-41

2N512

6·15

2Nl546

6-41

2N512A

6-15

2NI547

6-41

2N512B

6-15

2NI548

6-41

2N656

5-13

2N1595

7·1

2N657

5-13

2N1596

7·1

2Nl021

6-1

2N1597

7·1

2Nl021A

6-5

2N1598

7-1

2Nl022

6-1

2N1599

7-1

2Nl022A

6·5

2N1714

5-23

2N 1038

6·19

2N1715

5-23

2Nl039

6-19

2N1716

5·23

2N 1040

6·19

2N1717

5·23

2Nl041

6·19

2N1718

5-23

2Nl042

6-27

2N1719

5-23

2Nl043

6·27

2Nl720

5·23

2Nl044

6·27

2N1721

5·23

2Nl045

6-27

2Nl722

5-31

2Nl046

6·35

2Nl722A

5·39

2Nl047

5-15

2N1723

5-41

2Nl047A

5-15

2Nl724

5·31

2Nl047B

5·15

2Nl724A

5-39

2Nl048 .

5·15

2Nl725

5-41

2Nl048A

5·15

2N1907

6-49

2Nl048B

5-15

8N1908

6-49

8N 1049

5·15

2N1936

5-43

2Nl049A

5-15

2N1937

5-43

2Nl049B

5·15

2N2150

5·51

2Nl050 .

5-15

2N2151

5·51

2Nl050A

5·15

2N2552

6·19

2Nl050B

5·15

2N2553

6·19

2N1529

6-41

2N2554

6·19

2N1530

6-41

2N2555

6-19

2N1531

6-41

2N2556

6·19

2N1532

6·41

2N2557

6·19

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

•

4·1

ALPHA-NUMERIC INDEX

2N2558

6-19

TYPE NO.
2N3264

2N2559

6-19

2N3265

6-77

2N2560

6-27

2N3266

6-77

2N2561

6-27

2N3418

6-81

2N2562

6-27

2N3419

6-81

2N2563
2N2564

2N3420
2N3421

6-81

2N~65.

6-27
6-27
6-27

2N2566

6-27

2N3440

6-87

2N2567

6-27

2N3551

5-91

2N2659

6-57

2N3552

6-91

2N2660

6·57

2N3583

5-95

2N2661
2N2662

6-57
6-57

2N3564
2N3585

5-95

2N2663

6-57

2N3713

5-99

2N2664

6-57

2N3714

5-99

2N2665

6-57

2N3715

6-99

2N2666

6-57

2N3716

6-99

2N2667

6-57

2N3719

6-105

2N2668

6-57

2N3720

6-105

2N2669

6-57

2N3771

5-109

2N2670

6-57

2N3772

5-109

2N2880

6-57

2N3789

6-111

2N2987

6-63

2N3790

2N2988

6-63

2N3791

6-111
., 6-111

2N2989

5-63

2N3792

5-111

2N2990

5-63

2N3846

5-117

2N2991

5-63

2N3847

6-117

TYPE NO.

•

2N3439

SEC.·PAGE
6-77

6-81
6-87

5-95

2N2992

6-63

2N3902

6-123

2N2993

5-63

2N3996

2N2994
2N3001

5-63
7-5

2N3997

6-127
6-127

2N3998

6-127

2N3002

7-5

6-127

2N3003

7-5

2N3999
2N4000.

2N3004

7-5
7-11

2N4001

7-11

2N4003

6-139
5-139

2N3007

7-11

2N4004

6-145

2N3008

7-11

2N4005

6-145

2N3021

6-71

2N4240

2N3022

6-71

2N4300

6-95
6-151

2N3023
2N3024

6-71
5-71

2N4301
2N4398

6-157
6-163
6-163

2N3005
2N3006

4-2

SEC.·PAGE

2N4002

6-133
6-133

2N3025

5-71

2N4399

2N3026

6-71

2N4901

6-167

2N3055

6-75

2N4902

6-167

2N3146

6-65

2N4903

5-167

2N3147

6-65

2N4904

5-171

2N3263

6-77

2N4905

6-171

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

ALPHA-NUMERIC INDEX

TYPE NO.

SEC.·PAGE

2N4906

5-171

2N4913
2N4914

5-175
5-175

2N4915
2N4998
2N4999
2N5000
2N5001
2N5002
2N5003
2N5004
2N5005
2N5038

TYPE NO.
2N5758
2N5759
2N5760

5·251
5-251
5-251

5·175
5-181

2N5867

5-253

2N5868

5-2~

5-185
5-181
5-185

2N5869
2N5870

5-255
5-255

2N5871
2N5872
2N5873

5·257
5·257
~.2s9

2N5874

5·259

2N5875

5-261
5-261

5·189
5-193
5-189
5-193
5-197

2N5039

5-197

2N5876
2N5877

2N5060

7·19

2N5878

2N5061

7·19

2N5879

2N5062
2N5063
2N5064

7·19
7·19
7·19
5-199
5-199
5-199
5·185
5-181
5-185

2N5880
2N5881
2N5882
2N5883
2N5884

2N5067
2N5068
2N5069
2N5147
2N5148
2N5149
2N5150
2N5151
2N5152
2N5153

SEC.·PAGE

5·181
5-193
5-189

2N5885
2N5886
2N5938
2N5939
2N5940
2N6127
2N6128

5-263
5·263
5-265
5·265
5-267
5-267
5-269
5-269
5·271
5-271
5·273
5-279
5-279
5·285
5-289

2N5154

5-193
5-189

2N6270
2N6271

2N5157

5-203

2N6272

2N5241
2N5301

5-207
5-211

2N6273
2N6322

2N5302
2N5303

5·211
5-211

2N6323

5·297
5-297

2N5333
2N5384

5-217
5-223

2N6324
2N6325

5-297

2N6326

5-301

2N5385
2N5386

5-223
5-227

2N6327
2N6328

2N5387
2N5388

5-231
5-231

2N5389

5-231

2N5390
2N5671
2N5672

5·237
5·243
5-243

2N6329
2N6330
2N6331
2N6332
2N6333
2N6334

2N5683
2N5684
2N5685
2N5686

5·247
5-247
5-249
5-249

2N6335
2N6336
2N6337
T1145AO.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

•

5-293
5·293
5·293
5-293

5-297

5-301
5-301
5-305
5-305
5-305
7·23
7·23
7·23
7·23
7·23
7·23
7·25

4·3

ALPHA-NUMERIC INDEX
TYPE NO.

•

7-25

TYPE NO.
TIC216

SEC•.pAGE

T1145Al
T1145A2

7-25

TIC2268

7-61

T1145A3

7-25

TIC226D

7-61

T1145A4
Tll56

7-25

TIC236

7-65

6-67

TIC246

7-65

Tll56L

6-67

TIC253

7-67

Tll59
TI160

6-69
6-69

TIC263
TIP29

7-67
5-319

TI161

6-69
6-69

TIP29A

5-319

TI162

TIP298

5-319

T1486

5-309

TIP29C

5-319

TI4B7

5-309

TI1131

5-315

TIP30
TIP30A

5-323
5-323

Tll132

5-315

TIP308

5-323

TI1133

5-315

TIP30C

5-323

T11134

5-315

TIP31

5-327

TI1135

5-315

TIP31A

5-327

TI1136

5-315

TIP318

5-327

TI1151

5-317

TIP31C

5-327

7-59

TI1152

5-317

TIP32

5-331

Tlll53

5-317

TIP32A

5-331

T11154

5-317

TIP328

5-331

TI1155

5-317

TIP32C

5-331

T11156
TI3027

5-317

TIP33

6-73

TlP33A

5-335
5-335

TI3028

6-73

TIP338

5-335

T13029

6-77

TIP33C

5-335

Tl3030

6-77

TlP34

5-339

TI3031

6-77

TIP34A

5-339

TIC35

7-27
7-27

TIP348
TIP34C

5-339
5-339

7-35
7-37

TlP35

5-343

TIP35A

5-343

TIC45
TlC46

7-37

TIP358

5-343

7-37

TIP35C

5-343

TlC47
TIC60

7-37

TIP36

5-347

7-19

TlP36A

5-347

TlC61

7-19

TIP368

5-347

TIC62

7-19

TIP36C

5-347

TIC63

7-19

TIP41

5-351

TlC64

7-19

TIP41A

5-351

TIC67

7-43

TIP418

5-351

TIC68

7-43

TIP41C

5-351

TIC106

7-45

TIP42

5-355

TICl16

TIP42A

5-355

TIC126

7-51
7-51

TIP428

5-355

TIC205

7-57

TIP42C

5-355

TlC206

7-57

TIP47

5-359

TlC215

7-59

TIP48

5-359

TlC36
TlC39
TIC44

4-4

SEC.·PAGE

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

ALPHA-NUMERIC INDEX

TYPE NO.

TVPENO.

SEC.·PAGE

SEC.-PAGE

TIP49

5-359

TlP524

5409

TIP50

5-359

TIP525

5-411

TIP51

5-363

TlP526

5-411

TIP52

5-363

TlP527

5-413

TIP53

5-363

TIP528

5-413

TIP54

5-363

TIP529

5-415

TIP110

TIP530

5-415

TIP111

5-367
5-367

TIP531

5-417

TIP112

5-367

TlP532

5-417

TIP115

5-371

TlP533

5-417

TIP116

5-371

TlP534

5-417

TIP117

5-371

TlP535

5-419

TIP120

5-375

TIP536

5-419
5-419

TIP121

5-375

TIP537

TIP122

5-375

TIP538

5-421

TIP125

5-379

TIP539

5-421

TIP126

5-379

TIP540

5-421

TIP541
TlP542

5-423
5-425

TIP127

5-379

TIP140

5-383

TIP141
TIP142

5-383

TIP543

5-427

TIP544

5429

TIP145

5-383
5-387

TIP545

5-429

TIP146
Tlp147

5-387
5-387

TIP546

5-429

TIP640

5-433

TIP501

5-391

TIP641

5-433

TlP502

5-391

TIP642

5-433

TlP503

5-395

TlP645

5-437

TIP504

5-395

TIP646

5-437

TIP505

5-395

TIP647

5-437

TlP506

TIP2955

5-441

TIP507

5-395
5-397

TIP3055

5-445

TlP508

5-397

TIXH601

9-3

TlP509

5-399

TIXH602

9-5

TIP510

5-399

TIXH603

9-7

TIP511

5-399

TIXH604

9-7

TIP512

5-399

TIXH701

TIP513

5-401

TIXH702

9-9
9-11

TIP514

5-401

TlXH703

9-13

TIP615

5-403

TIXH704

9-15

TIP516

5-403

TIXH801

9-17

TIP517

TlXH802

9-17

TIP518

5-403
5-403

TlXH803

TIP519

5-406

TIXH804

9-19
9-19

TIP620

5-405

nXH805

TIP521

5-407

TIXH806

9-21
9-25

TIP522
TlP523

5-407

TIXP547.

5-431

5409

TIXP548.
TIXP549.

5-431

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

II

5-431

4-5

ALPHA-NUMERIC INDEX
SILICON POWER TRANSISTORS
TYPE NO.

2N389

TYPE NO.

SEC.·PAGE

2N4399

5-71
5-75

2N4902

2N3055
2N3263
2N3264

5-77
5-77

2N4904
2N4905

2N424
2N497
2N498

5-13
5-13

2N656
2N657

5-13

2N 1047

5-15
5-15
5-15

2N3265
2N3266

5-77
5-77

2N3418

5-81

5-15
5-15

2N3419

5-81

2N3420
2N3421
2N3439

5-81
5-81
5-87
5-87

2Nl047B
2Nl048
2Nl048A
2N 10488
2Nl049
2Nl049A
2Nl0498
2Nl050
2Nl050A
2Nl050B
2N1714
2Nl715
2Nl716
2Nl717

5-13

5-15
5-15
5-15
5-15
5-15
5-15
5-15
5-23
5-23
5-23
5-23

2Nl718
2N1719
2N1720
2Nl721

5-23
5-23
5-23

2Nl722
2Nl722A

5-31
5-39

2N1723

5-41
5-31
5-39
5-41
5-43
5-43
5-51
5-51
5-57
5-63
5-63
5-63
5-63
5-63
5-63
5-63
5-63
5-71
5-71
5-71

2N1724
2N1724A
2N1725
2N1936
2N1937
2N2150
2N2151
2N28BO
2N2987
2N2988
2N2989
2N2990
2N2991
2N2~2

2N2993
2N2994
2N3021
2N3022
2N3023

5-23

TYPE NO.

5-71
5-71

5-11
5-11

2Nl047A

4-6

SEC.·PAGE

2N3024
2N3025
2N3026

2N3440
2N3551
2N3552
2N3583
2N3584
2N3585

2N4901

SEC.·PAGE

5-163
5-167

2N5760
2N5867
2N5868

5-251
5-253

2N4906

5·171
5-171
5-171

2N4913
2N4914

5-175
5-175

2N5869

5-255
5-255

2N4915
2N4998
2N4999

5-175

2N5871
2N5872
2N5873

5-257

2N5874
2N5875
2N5876

5-259
5-261

2N5000
2N5001

5-181
5-185
5-181
5-185
5-189
5·193
5-189
5-193
5-197

5-99
5-99
5-99

2N5039
2N5067
2N5068

5-199
5-199

5·99
5-105

2N5069
2N5147

5-199
5-185

2N3720

5-105
5-109

2N5148
2N5149

5-181

2N3771
2N3772
2N3789

5-109

2N5150

5-111
5-111

2N5151
2N5152
2N5153
2N;;154

2N3715
2N3716
2N3719

2N3790
2N3791
2N3792
2N3846
2N3847
2N3902
2N3996
2N3997
2N3998
2N3999
2N4000
2N4001
2N4002
2N4003
2N4004
2N4005
2N4240
2N4300
2N4301
2N4398

5·111
5-111
5-117
5-117

2N5157

5-123

2N5301
2N5302

5-127
5-127
5-127

2N5241

2N5303
2N5333

5-127
5-133
5-133
5-139

2N5384
2N5385
2N5386
2N5387

5-139
5-145

2N5388
2N5389
2N5390
2N5671

5-145
5-95
5-151
5-157
5-163

2N5672
2N5683
2N5684

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

5-249
5-249

2N5758

5-95
5-95
5-95

2N3713
2N3714

2N5686

SEC•.pAGE

5·167
5-167

2N4903

2N5002
2N5003
2N5004
2N5005
2N5038

5-91
5-91

TYPE NO.
2N5685

DALLAS, TEXAS 75222

5-197

2N5759

2N5870

2N5877
2N5878
2N5879
2N5880

5-251
5-251

5-253

5-257
5-259

5-261
5-263
5-263
5-265
5·265

2N5881
2N5882

5-267
5-267

2N5883
2N5884
2N5885
2N5886

5-269
5-269
5-271

5-185
5-181

2N5938

5-271
5-273

2N5939

5-279

5-193

2N5940
2N6127
2N6128
2N6270

5-279
5·285

5-203
5-207

2N6271
2N6272

5·293
5-293

5-211

2N6273
2N6322

5-293
5-297

2N6323

5-297

5-223

2N6324
2N6325

5·297
5-297

5-223
5-227

2N6326
2N6327

5-301
5-301

5·231
5-231

2N6328

5-301
5·305

5·231
5-237
5-243

2N6330
2N6331
T1486

5-305
5-305
5-309

5-243
5-247
5-247

TI487
TI1131

5-309.
5-315

TI1132

5-315

5·189
5-193
5-189

5-211
5-211
5-217

2N6329

5-269
5-293

ALPHA-NUMERIC INDEX
TYPE NO.

SEC.·PAGE

TYPE NO.

SEC.·PAGE

TYPE NO.

SEC.·PAGE

TYPE NO.

SEC.·PAGE

Tlll34

5-315

TIP35

5·343

TIP125

5-379

TlP525

TI1135

5-315

TIP35A

5-343

TIP126

5·379

TIP526

5-411

TI1136

5·315

TIP35B

5-343

TIP127

5·379

TIP527

5-413

5-411

TI1151

5-317

TIP35C

5-343

TIP140

5·383

TIP528

5-413

TI1152

5-317

TIP36

5-347

TIP141

5-383

TIP529

5-415
5-415

TI1153

5-317

TIP36A

5-347

TlP142

5·383

TIP530

Tlll54

5-317

TlP36B

5-347

TlP145

5-387

TIP531

5·417

TI1155

5-317

TIP36C

5-347

TIP146

5-387

TIP532

5-417

Tlll56

5-317

TIP41

5-351

TIP147

5-387

TIP533

5-417

TIP29

5-319

TlP41A

5-351

TIP501

5-391

TIP534

5-417

TIP29A

5-319

TIP41B

5-351

TIP502

5-391

TlP535

5-419

TIP29B

5-319

TlP41C

5-351

TIP503

5-395

TIP536

5-419

TIP29C

5-319

TIP42

5-355

TIP504

5-395

TIP537

5-419

TIP30

5-323

TIP42A

5-355

TIP505

5-395

TIP538

5-421

TIP30A

5-323

TIP42B

5·355

TIP506

5-395

TIP539

5-421

TIP30B

5-323

TIP42C

5-355

TIP507

5-397

TIP540

5-421

TIP30C

5-323

TIP47

5-359

TIP508

5-397

TIP541

5-423

TIP31

5-327

TIP48

5-359

TIP509

5-399

TIP542

5-425

TlP31A

5-327

TIP49

5-359

TIP510

5-399

TIP543

5-427

TIP31B

5-327

TIP50

5-359

TIP511

5-399

TIP544

5-429

TIP31C

5-327

TIP51

5-363

TIP512

5-399

TIP545

5-429

TIP32

5-331

TIP52

5-363

TIP513

5-401

TIP546

5-429

TIP32A

5-331

TIP53

5-363

TIP514

5-401

TIP640

5-433

TIP32B

5-331

TIP54

5-363

TIP515

5-403

TIP641

5-433

TIP32C

5-331

TIP110

5-367

TIP516

5-403

TIP642

5-433

TIP33

5-335

TIP111

5-367

TIP517

5-403

TIP645

5-437

TIP33A

5-335

TIP112

5-367

TIP518

5-403

TIP646

5-437

TIP33B

5-335

TIP115

5-371

TlP519

5-405

TIP647

5-437

TIP33C

5-335

TIP116

5-371

TIP520

5-405

TIP2955

5-441

TIP34

5-339

TIP117

5-371

5-407
5-407

TIP3055
TIXP547

5-445
5-431

TIP34A

5-339

TIP120

5-375

TIP521
TIP522

TIP34B

5-339

TIP121

5-375

TIP523

5-409

TIXP548

5-431

TlP34C

5-339

TIP122

5-375

TIP524

5-409

TIXP549

5-431

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALL.AS. TEXAS 75222

•

4-7

ALPHA-NUMERIC INDEX
GERMANIUM POWER TRANSISTORS
TYPE NO.

TYPE NO.

SEC.-PAGE

2N456A

6-1

2Nl044

6-27

2N456B

6-5

2Nl045

2N457A

6-1

2N457B

6-5

2N458A

6-1

2N458B

6-5

TYPE NO.

SEC.-PAGE

TYPE NO.

SEC.-PAGE

6-41

2N2662

6-57

6-27

2Nl54B
2N1907

6-49

2N2663

6-57

2Nl046

6-35

2N190B

6-49

2N2664

6-57

2N1529

6-41

2N2552

6-19

2N2665

6-57

2N1530

6-41

2N2553

6-19

2N2666

6-57

2N1531

6-41

2N2554

6-19

2N2667

6-57

6-11

2N1532

6-41

2N2555

6-19

2N266B

6-57

2N511A

6-11

2N1533

6-41

2N2556

6-19

2N2669

6-57

2N511B

6-11

2N1534

6-41

2N2557

6-19

2N2670

6-57

6-15

2N1535

6-41

2N2558

6-19

2N3146

6-65

2N512A

6-15

2N1536

6-41

2N2559

6-19

2N3147

6-65

2N512B

6-15

2N1537

6-41

2N2560

6-27

TI156

6-67

2Nl021

6-1

2N153B

6-41

2N2561

6-27

TI156L

6-67

2Nl021A

6-5

2N1539

6-41

2N2562

6-27

TI159

6-69

2Nl022

6-1

2Nl540

6-41

2N2563

6-27

Tl160

6-69

2Nl022A

6-5

2N1541

6-41

2N2564

6-27

Tl161

6-69

2Nl038

6-19

2Nl542

6-41

2N2565

6-27

TI162

6-69

2Nl039

6-19

2Nl543

6-41

2N2566

6-27

Tl3027

6-73

2N 1040

6-19

2Nl544

6-41

2N2567

6-27

TI3028

6-73

2Nl041

6-19

2N1545

6-41

2N2659

6-57

TI3029

6-77

2Nl042

6-27

2Nl546

6-41

2N2660

6-57

TI3030

6-77

2Nl043

6-27

2N1547

6-41

2N2661

6-57

TI3031

6-77

2N511

2N512

•

SEC.-PAGE

.

.

THYRISTORS
TYPE NO.

SEC.-PAGE

TYPE NO.

SEC.-PAGE

2N1595

7-1

2N5061

7-19

TI145A4

7-25

TIC6B

2N1596

7-1

2N5062

7-19

TIC35

7-27

TIC106

7-45

2N1597

7-1

2N5063

7-19

TIC36

7-27

TICl16

7-51

2N1598

7-1

2N5064

7-19

TIC39

7-35

TIC126

7-51

2N1599

7-1

2N6332

7-23

TIC44

7-37

TIC205

7-57

2N3001

7-5

2N6333

7-23

TIC45

7-37

TIC206

7-57

2N3002

7-5

2N6334

7-23

TIC46

7-37

TIC215

7-59

2N3003

7-5

2N6335

7-23

TIC47

7-37

TIC216

7-59

2N3004

7-5

2N6336

7-23

TIC60

7-19

TIC226B

7-61

2N3005

7-11

7-23

TIC61

7-19

TIC226D

7-61

2N3006

7-11

2N6337
TI145AO

7-25

TIC62

7-19

TIC236

7-65

2N3007

7-11

TI145Al

7-25

TIC63

7-19

TIC246

7-65

2N300B

7-11

TI145A2

7-25

TIC64

7-19

TIC253

7-67

2N5060

7-19

TI145A3

7-25

TIC67

7-43

TIC263

7-67

SEC.-PAGE

TYPE NO.

TYPE NO.

SEC.-PAGE

TYPE NO.

SEC.-PAGE
7-43

POWER FUNCTIONS
TYPE NO.

4·8

SEC.-PAGE

TYPE NO.

SEC_-PAGE

TYPE NO.

SEC_-PAGE

TIXH601

9-3

TIXH701

9-9

TIXHBOI

9-17

TIXHB04

9-19

TIXH602

9-5

TIXH702

9-11

TIXHB02

9-17

TIXHB05

9-21

TIXH603

9-7

TIXH703

9-13

TIXH803

9-19

TIXHB06

9-25

TIXH604

9-7

TIXH704

9-15

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

Silicon Power
Data Sheets

•

SILICON POWER TRANSISTORS
STANDARD TEST CIRCUITS
The circuits shown below are used to test many of the silicon power transistors manufactured by Texas Instruments.
They are taken from the forthcoming JEDEC publication Suggested Standards on Power Transistors.

OUTPUT
V on - -

-r~90%

INPUT OVJio%- -VBB2
I 10%

56n

-

~~
I

~i

270 pF

30n

OUTPUT

~t~:f-

90%~~

VBB2= •

-=- VCC

~----------------------~---+.

VBBl
ADJUST FOR
SPECIFIED Von AT
INPUT MONITOR
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. V gen is a ~30-V pulse (from 0 V) into a 50-n termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr";::;;; 15 ns, tf ~ 15 ns, Zout
duty cycle ~ 5%.
C. Waveforms are monitored on an ocsilloscope with the following characteristics: tr

:0;;;;:

10 ns, Rin ~ 1

Mn,

= 50

n

tw == 5 115,

•

Cin ~ 11.5 pF.

D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

F. Circuit shown is for testing n-p-n transistors. For p-n-p transistors, all voltage supplies and waveforms are reversed and the driver
transistor is type 2N6128.

FIGURE l-SWITCHING TIMES
VCE MONITOR

......l
INPUT
VOLTAGE

L

0u::-J-r

-5 V-

TUT

I.-- tw (See Note A)

i+-{-

100 ms

I

I

COLLECTORICM~:--I-------t- I - +

CURRENT

0

I I

VCc-=IC MONITOR

V(BR)CEX-I--

I
COLLECTOR
VOLTAGE

I
I
I

I

I I

------\--

I
I
I
I

VCC
VCE(sat) -

TEST CIRCUIT
NOTES:

VOLTAGE AND CURRENT WAVEFORMS

A. Input pulse width is increased until the peak collector current reaches the specified value of leM.
B. Circuit shown is for testing n-p-n transistors. For p-n-p transistors, all voltage supplies and waveforms are reversed and the driver
transistor is type 2N6128.

FIGURE 2-INDUCTIVE LOAD SWITCHING

1071

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX '5012 •

DALLAS. TEXAS 75222

5-1

I

5·2

STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS

This data sheet identifies those standard hardware kits which are supplied with each device. At additional
cost, nonstandard hardware items will be supplied.
The mounting hardwore assembly drawings of Section A (Figures 1 through 8) specify the individual hardware items that are included in each mounting hardware kit. Section A also references the package
outlines for which each kit is designed and shows the typical thermal resistance associated with the
mounting hardware.
Section B contains mechanical drawings of the individual hardware items that are referenced in Figures 1
through 8.

DIRECTORY
OUTLINE

KIT

TO-3
TO-5

7
I

TO-33

I

TO-39

I
4
3
8
8
5
6
2
8

TO-53
TO-57
TO-59
TO-60
TO-61

Unisolated

TO-63
TO-Ill Unisolated
TO-ll1 Isolated

Texas Instruments reserves the right to substitute similar parts at any lime in order to expedite delivery or improve design.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-3

STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS
SECTION A

MOUNTING HARDWARE ASSEMBLY DRAWINGS
Item 1 -Cadmium-Plated! Beryllium-Copper

Alloy-25 Mounting Clomp, Owg. 10-31-052-007

MOUNTING KIT I
for
TO-5, TO·33, AND TO·39
PACKAGE OUTLINES

Chossis or Heat Sink

•

FIGURE 1

MOUNTING KIT 2
for
TO·III AND OTHER
7/16·INCH STUD PACKAGE OUTLINES
(INSULATION REQUIRED)

Item 17 -Cadmium-Plated, Chromate-Treated,
Carbon-Steel Flat Washer, Owg. 10-31-188-040
Item 20 - Cedm i urn-PI oted f Chromate-Treoted,
Carbon-Steel Internal-Tooth lock Washer,
Owg. 10-31-152-006
Item 25 -Cadmium-Plated, Chromate-Treated,
Carbon-Steel Hex Nut, Owg. 10-31-036-009

TYPICAL THERMAL RESISTANCEt
IJC•HS

3.8

deg/W

FIGURE 2

tO C_HS is the thermol resistance from the mounting bose of the semiconductor·device (ose 10 the mounting surfo" of the heat sink. The heal sink used to
determine this yalue was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch below the mounting surface in an area beneath the device.
The deyjce was mounted directly to a clean, dry, heat-sink surface, without the use of a thermal compound and a torque of ten inch.pounds was applied to
the stud or each of the mounting screws.
:t Trademork of E. I. duPont

971

5-4

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

STANDARD MOUNTING HARDWARE FOR POWER TRANSISTORS
SECTION A - MOUNTING HARDWARE ASSEMBLY DRAWINGS
MOUNTING KIT 3

for
TO-57 PACKAGE OUTLINE

~
I:l'

~
'-

_.
'-" ~

~
TYPICAL .THERMAL RESISTANCEt

Il C•HS

I

Item 12 -Fiberfil§ Nylon G-3lnsulatingSleeve
Owg.10-31-483-025

Item 5a-Mica Insulator Owg. 10-31-188-108
Item 16-Cadmium-Plated, Chromate-Treated,
B-

24 0

200

'"'"::>
0

110

'"0

120

00

80

I

40

....

....
4
Ve• -

12
16
20
COLLECTOR VOLTAGE -

o
o

24
28
VOLTS

~

'"

"'

::>

il

160

~

00
I

I

/
/

80
60

_u

,

40

II

20

o

V

It'

II,
V

E

160

I
....

140

"'"'::>
"'0

~

1;

«

~

....

/

100

o

«E

J

120

0

'"0....

180

,

,

200

,

I

140

,,'0
8
12
16
20
24
28
V CE , - COLLECTOR VOLTAGE - VOLTS
COMMON EMlnER CHARACTERISTICS

TYPES 2N6S6. 2N6S7
10

180
E

2mA

ImA

TYPES 2N497. 2N498

I
....

I

40

200

«

•

80

COMMON EMlnER CHARACTERISTICS

I

OmA

e~

120

....
.....
0

r-T

160

_u

0

1--

20 0

13
~

TYPES 2N656. 2N657

28 0

"'"'
0

0

:;:
:i

ti

::>

E

....I

~

120

'"'"

::>

o

100

w

VI

~

-~

«

I

00

80

I

60

:i

I

..2

-Collector Currtn' VII,.",I

40

BnelJol'ou,

'Ier·IOV
T-2i5·C
---8ne Current venus
Bou VoltGp
Vel "tOV
r-2S·C

20
0
0

v.. -

BASE VOLTAGE -

v.. -

VOLTS

typical design characteristics at Tj

Forward Current Gain

@

h" Reverse Voltage Gain
h.. Output Admittance

TEST CONDITIONS

Ike

Input Impedance

hI,

Ike

@
@

Ike

Ike

2N497·98

2N656.57

ullit

ohm

Vc = 30V

Ie = 30 mA

250

350

ve = 30V

Ie = 30 mA

30

60

Ve = 30V

Ie = 30 mA

200

400

Ve = 30V

Ie = 30 mA

70

90

h..

Forward Current Gain @ 2 megacycle.

Vc = 30V

Ie

= 30 mA

9

6

',,0

Emitter Cutoff Current

VEl

@

VOLTS

= 2S o c

PARAMETER
hi,

BASE VOLTAGE -

Icoo Collector Cutoff Current @ ISO·C

/Lmho

-

= 5V

Ic= 0

0,1

0.1

/LA

Vel = 30V

I. = 0

60

60

/LA

PRINTED IN US,A

5·14

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,

TYPES 2Nl047 THRU 2Nl050 2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS

FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
• Dissipation Capability in excess of 22 W
at VCE 40 V, Te 100°C
• Typical VeE(S.') of 0.15 V at Ie = 500 mA
• Typical fT of 50 MHz at VCE 10 V, Ie

=

=

=

= 100 mA

* mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

COLLECTOR

~:~::

OIA

BASE

0.100 TP

ALL JEDEC TO-57 DIMENSIONS AND NOTES ARE APPLICABLE

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1048 2N1047A 2N1048A 2N1047B 2N1048B
2N1OSO 2N1049A 2N1OSOA 2N1049B 2N1OSOB UNIT

2N1047
2N1049

Collector-Bose Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Bose Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Bose Current
Continuous Emitter (urrent
Safe Operating Region at (or below)
100·( (ase Temperature
(ontinuous Device Dissipation at (or below)
2S 0 ( (ase Temperature (See Note 3)
Continuous Oevice Dissipation ot (or below)
2S 0 ( Free-Air Temperature (See Note 4)
Operating (ollector Junction Temperature
Storage Temperoture Range
Lead Temperature Ya Inch from (ase for 10 Sec.

80'
80'
10'

120'
120
6'

80'
80
6'

120'
120'
10'

2t
0.5'
8
0.5

2t
0.5'
8
0.5'

2

2

80'
80'
10'

120'
120'
10'
2t
0.75'
8
0.5'
2t
0.75'

V
V
Y
A
A
A
A

See Figure 10
W

40'

l'
200'
-6S to 200'
230'

230

W
O(
O(

230'

O(

NOTES: 1. These values apply when the base-emitter diode is open..(ircuited.
2. This value applies for Ip ::::; 0.3 ml, duty cycle::::; 10%.
3. Derate linearly 10 200°C case temperature at the rate of 228 mW/deg.

4. Derate linearly to 200°C free-air temperature at the rate of 5.7 mW/deg.
*Indicotes JEDEC registered data
tlexas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-15

TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DrFFUSED PLANAR SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
VIII<)CEO Breakdown Voltage
"Ieao

Collector Cutoff Current

"lcev

Collector Cutoff Current

"Ino

Emitter Cutoff Current

I>hF£
I>VBE

•

Static Forward
Current Transfer Ratio
Base-Emitter Voltage

Collector-Emitter
"'VeE/sat) Saturation Voltage

2NI049
2NIOSO
2NI047
2NI048
MIN MAX MIN MAX MIN MAX MIN MAX UNIT

TEST CONDITIONS
Ic = 30mA,

Is = 0,
See Note 5
Ie - 0
Ie - 0,

Vca Vca Tc =
VeE Vce Vea Vce -

120

80

30V,
30 V,
1S0oC
80 V, VIlE - -1.5 V
120 V, VIlE - -1.5 V
6 V,
Ic - 0
laV, Ic - 500 mA,
See Notes 5 and 6
Vee - 10V, Ie - SOOmA,
Te = _55°C, See Notes 5 and 6
Vce - 10V, Ic - SOOmA,
See Notes 5 and 6
la - 100 mA, Ic - SOOmA,
See Notes 5 and 6

Y

IS

IS

IS

350

350

350

350

250

250
250
250

250
12

120

80

IS

36

12
8

8

30

p.A

250
250

250

36

90

30

p.A

p.A

90

20

20

6

6

6

6

V

7_5

7.5

7.5

7.5

V

"electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
VIII<)CEo Breakdown Voltag.e

2NI047A 2NI048A 2NI049A 2NIOSOA
MIN MAX MIN MAX MIN MAX MIN MAX UNIT

TEST CONDITIONS

Is - 0,
See Note 5
Vca = 3 V,
Ie = 0
t-;;=----;O;--Vea = 30 V, Ie - 0
Vca = 80 V, Ie = 0
Collector Cutoff Current Vea - 120 V, Ie - 0
ICBO
Ves = 30 V, Ie = 0,
Tc = 1S0oC
VeE - 80 V, VBE - -1.5 V
Collector Cutoff Current
lcev
Vee - 120 V, VBE = -1.5 V
Ie = 0
VES = 3 V,
Emitter Cutoff Current
leBO
VES = 10 V,
Ie = 0
Ves - 80 V, Ie - 0
Emitter-Base
VEB)fl) Floating Potential
Ves - 120 V, IE - 0
Vee - 10V, Ie - 500 mA,
See Notes 5 and 6
Static Forward Current
hFE
Transfer Ratio
Vee - 10 V, Ie - 500 mA,
Tc = _55° C, See Notes 5 and 6
VeE - 10V, Ie - 500 mA,
VBE
Base-Emitter Voltage
See Notes 5 and 6
Collector-Emitter
Is - 100 mA, Ie - 500 mA,
VCEls.t) Saturation Voltage
See Notes 5 and 6
Common·Emitter
i hfe
VCE = 30 V, Ic = 30mA
Beta-Cutoff Frequency
Ie - 30mA,

120

80
IS
15
350

120

80
IS
IS
350

IS
IS

IS
IS

350

350
350

350

350

250
250
250

250
250
0.5

250
250
250

250
250
0.5

0_5
36

12

36

8

8

0.5
30

90

p.A

350

250

250

I2

V

30

p.A
p.A

Y

90

20

20

6

6

6

6

y

7_5

7.5

7.5

7.5

Y

75

75

75

75

kHz

NOTES: S. These parameters must be measured using pulse techniques. Ip = 300 /Ls, duty eyda ::;. to;..
6. These parameters are measured with voltage-seosing contacts separate from the (urrent-carrying contacts.
·'ndicotes JEDEC registered data

971

5-16

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2Nl047 THRU 2N1050,2Nl047A THRU 2N1050A,
2N1047B THRU 2N1050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
electrical characteristics at 2S·C case temperature (unless atherwise nQted)
PARAMETER
Colledor-Eminer
V,III\CEO Breakdown Voltage

Colledor Cutoff Current

IclO

2NI047B 2NI048B 2NI049B 2NI050B
MIN MAX MIN MAX MIN MAX MIN MAX UNIT

TEST CONDITIONS
Ic - 30 rnA,

1.- 0,
See Note 5
IE

VCI - 30 V,
Vel - 80 V,

IE - 0
IE - 0

VCI - 30 V,
Tc = 150·C

IE - 0,

VCE = 80 V,

VIlE

Eminer Cutoff Current

VEl = 3 V,

VEB(fI\

Eminer·Base
Floating Potential

VEI -l0V,
VCI - 80 V,
VCI - 120 V,
Vee - 10V,

hFE

Static Forwa rd Current
Transfer Ratio

VIlE

Base- Emiller Voltage

Colledor-Eminer
VCE'sa'\ Saturation Voltage
Small-Signal
Common-Emiller
Ihlel
Forward Current
Transfer Ratio
Common-Emiller
fhle
Beta-Cutoff Frequency

Ic

100'
sot

100'
sot
200'

200'

250'
sot
10'
4t
10'

le- 0
IE - 0
IE - 0
Ic - 500 rnA,
See Notes 5 and 6
VCE - 10 V, Ie - 500 rnA,
Te = -SS··C, See Notes 5 and 6
Vee - 10 V, Ic - 500 rnA,
See Notes 5 and 6
I. - 100 rnA, Ic - 500 rnA,
See Notes 5 and 6

= lDOmA,f =

Ie

VCE = 30 V,

Ic=30mA

p.A
250'
sot
10'
4t p.A
10'

10'
4t
10'
0.5'

0.5'

12 MHz

p.A

200'

250'
sot

10'
4t
10'
0.5'

=0

Vee = 10V,

200'

250'
sot

= -1.5 V

NOTES: 5. These param.ters must be measured using pulse techniques. t.p

10'
st
IS'

10'
st
IS'
50'

IS'

VeE = 120 V, VIlE = -l.SV
IEIO

V

120'

80'
10'
st

=0

Colledor Cutoff Current

ICEV

120'
10'
st
15'
50'

=0

VCI = 3 V,

VCI = 120 V, IE

80'

0.5'

12'

36' 12'

36' 30'

90' 30'

8'

S'

20'

20'

V

90'

1.6'

1.6'

1.6'

1.6'

V

2'
It

2'
It

2'
It

2It

V

I-

I-

I-

I-

125'

125'

125-

125-

•

kHz

= 300 p.s, duty cycl. ~ 2%.

6. These parameters are measured with voltage-sensing contacts separate from the curren I-carrying (ontacts.

*thermal characteristics
ALL TYPES
MAX
4.375
175

PARAMETER
Ihe
IhA

Junction-to-Cose Thermal Resistance
Jundion-to-Free-Air Thermal Resistance

UNIT
de!llW

·Indlu... JEDEC regis'ered da'a
tlexas Imtruments guarantees these values In addition to the JEDEC registered yalues which are also shown.

971

TEXASINCORPORATED
INSTRUMENTS
FlOST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-17

TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature
PARAMETER
tm
tolf

Tum·On TIme
Tum·Off rune

TEST CONDITIONs:j:

Ie - 500mA,
IB(1) - 50 mA,
VEloff) = -4.1 V, RL = 100 .0,

IB(2)

-

2NI049
2NI050
2NI049A 2NI050A
2NI0498 2NI0508
TYP

UNIT

0.225
3

p.S

-50 mA,

See Figure 1

:l:Vol,a.1 and currin' values shown are nominal; exact values vary s!iglrtl,. with transistor param.t.rs.

PARAMETER MEASUREMENT INFORMATION

.----_--0

OUTPUT

3000
1000
560

185 0

~=50V
TEST CIRCUIT
'BV --~90%

-0.3 V

~'--

--'10%
I

INPUT

I

-.t'on ......... toff

.....

~l
11::
90%~

OUTPUT
.f'

VOLTAGE WAVEFORMS

FIGURE I

NOTES. a. Th. inpul wa..form I. suppll.d by a g.neral., wilh Ih. following ,ha,a,'ed.tI". ',S; 15 n., If S; IS n•• loul

= 50 0, Ip = 10 /10'.

duly ,ycle S; 2%.

b. Waveforms an monitored on an oscilloscope with the following characteristics: 'r ::::; 15 ns, Rin ~ 10 MO, Cln S; 11.5 pF.
c. Resistors must b. nonlndudlve type.
d. Th. doC powe, .upplles may require addlti .. al bypa.. lng in anlor I. mInimize ringing.

971

5-18

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1047 THRU 2N1050 2Nl047A THRU 2N1050A,
2N1047B THRU 2N10SOB
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2NI047, 2NI047A, 2NI0471
2NI04I, 2N104IA, 2NI048B

2NI049, 2NI049A, 2NI049B
2NI050, 2NI050A, 2NI050B

STATIC FORWARD CURRENT TRANSFER RATIO

STATIC FORWARD CURRENT TRANSFER RATIO

vs

vs

COLLECTOR CURRENT

70

.t

0

i

60

,g

50 ~

'"
-!lc
'E
~

d

40

~

~

:g

20

~

120

'5

~e=~·~

t!:

"."

C
a
~

"J

...

60

j

40

I

Te=-SS·C

II! 10

II! 20

.s::

.s::

-

~

0.04 0.07 0.1

0.02

0.2
0.4 0.7 1
Ie-Collector Current-A

0.04 0.07 O. 1
0.2
0.4 0.7
Ie - Collector Current - A

t
~

::

::::...........

SteNotesS&6-

...................

-......::: ~

le·20m~

--

~e-SOOmA

0.4

.......

.

I

i'..

~ 0.2

See Notes S & 6

.I

./

!

0.7

l5

0.4

j

0.2

.;
.Ii

0.1

~

r....., ~ r-..

'-

CASE TEMPERATURE

2

>

VeE = 10 V

:::::::::-. ~~ 7

']

j

vs

I

~.2A

•

COLLECTOR-EMmER SATURATION VOLTAGE

CASE TEMPERATURE

1.0

I

FIGURE 3

vs

~ 0.6

\\
"'

Te- SS·C

.... ....

BASE-EMmER VOLTAGE

I

~

".

FIGURE 2

> 0.8

-

o

o
0.02

V

::.1
-;:::oJ;:...

~~

","

1!

~~

i-'

80

t:

u

Ii
u

I

I-'

2
a 100

~,

~~

VeE -l0V
See Notes Sand 6

Te=lsoJc

""
.!

30

u

j;

0

~e=l~·lc

1!0
J

VeE ·10 V
fee Notes 5 and 6

Te· 15O• C

Io-f-

COLLECTOR CURRENT

140

!

~IB

0.4 A, Ie

2A

r---I I
I'

,I.
!
0.2 A, Ie

llA

I, • 0.1 A, Ie = O.S A

~ 0.07

i

==1,

--

-- --

4 mA, Ie - 20 mA

~ 0.04

I

:! 0.02

o

-7S'

>'tJ
-SO -25
0
2S
SO
7S
100
Te -Case Temperature _·C

125

ISO

0.01_75

-50

FIGURE 4

-25 0
25
SO
75
100
Te - Case Temperature - ·C

125

150

FIGURE 5

NOTES: 5. These parameters must be measured using pulse techniques. tp

=

300 IlS, duty cyde :::::; 2%.

6. These parametars are metlsured with voltage-sensing contads separate from the (urrent·carrylng contacts.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·19

TYPES 2N1047 THRU 2N1050,2N1047A THRU 2N1050A,
2N1047B THRU 2N1050B
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
1.2
III~I = I~~

"Uw
~

v.

REVERSE BIAS VOLTAGE

1000

JO

:>

I

Te

1.0

v

0)

0.8

c

~
0

800

See Note 6

"

.2

~

Q.

"

,

1£ 0.6

'"

V(BR)CBO '" V(BR)CER at RBE

~

"-

.

=1Q

.2

~u

600

'u
&. 400
(J

0.4

0.2

-0

o

E

5

z

C- b

1

10
RaE -

100

1k

10,k

Base-Emitter Resistance -

(Ie

"

= 0)

I'.

200 b -

-0

u

"

c

~

""
.~

Tc = 25'C

u

]

•

"'-

...

-'"
0

I'

~

35

I-

~
u"
1
~

u..

~

"'-"

25

20

'E
w
I

~E
(l

=IU

r\.

1£ 30
5
u

"
~

~ 20

w
I

5

4

0.4

10

f - Frequency- MHz

"\

TC= 25"C

~

'E

c
0
E
E
0
U

CE
IC = 100 rnA

,

e

~
~

\

Il"II=lol

1< 35

l-

"

10

0.1

r-- t--"

6 25

]
oS

""

~c

15

o

v.

FREQUENCY
40

'0

!it

-:E

'0

TC = 25'C

"0

l1

'"
I
..g

CE
IC = 100 mA

30

2NI049, 2NI049A, 2NI0498
2NI050, 2NI050A, 2NI050B
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

0

II~I

c

40

V

FIGURE 7

FREQUENCY

1<

20

Reverse Bia. Voltage -

Q

v.

~

r--

24710

100 k

2NI047, 2NI047A, 2NI047B
2NI048, 2NI048A, 2NI0488
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

"'"I

r--"

1ft

FIGURE 6

.2

= l'MHz

f

= 25'C

15

1\

10

" 1\

-0
c

~

0)

"
40

Vi
..!.
-0

5

V>

0

E

100

~

0.1

£..

FIGURE 8

0.4

4

10

40

100

f - Frequency- MHz
FIGURE 9

971

5-20

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2Nl047 THRU 2Nl050,2Nl047A THRU 2Nl050A,
2Nl047B THRU 2Nl050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION

10
TC

7

"

,

4
\

l00'C

~.

I,
"

2

~ l r-.~V

~ O-C OPERATION
<

I

0.7

1

~tp = 1 ms, d = 0.5 (50%)

r - - - t p = 0.3 ms, d = 0.1 (10%)_ 1-#

\\

0.4

i

_

~

i
I

0.2

I

I

I

.2

•

')

I

o. 1
0.07

0.04

2NI047,2NI047A,2NI047B
2NI049,2NI049A,2NI049B

0.02

2NI048,2NI048A,2NI048B

IIIII

I

I

i~'~~~ '12NI05~A, 2~IO~O~
0.0 1

2

4

7

10
Vc E -

20
40
70 100
Collector-Emitter Voltage - V

200

400

700 1000

FIGURE 10

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-21

TYPES 2N1047 THRU 2N1050, 2N1047A THRU 2N1050A,
2N1047B THRU 2N1050B
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
.THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

45
~

I

0.7
40

~

c:
0

135
.,.

..

Zi

30

0.4

'u

~ 0.2

" "'I\..

~ 25
!l0
=> 20
.5

8

u 15
E
=>
E

~

~

u

'>

'g

•

,c

5
0

13

J

0.1

o

so

25

TC -

75
100 125
Cose Temperature -

0.07

Jc 0.07
o;~
~

O.~
10.04 ~

"'

10

~

I

0.50 50% DUly Cycle

'"

"'\

150
·C

"

175

FIGURE 11

/,1

l_e- Ip/T
-ddT
1-. P'

~
/
Ip = Pulse widlh in ms
0.02 1-+-t++ilIft--+- d = Duty cycle ratio
0.01

200

SYMBOL DEFINITION

/ " '/ K =

Hi

Thermal time constant =5 ms
.1
4
7 10 20
0.2 0.4
T =

0.020.04

0.1

tp -

Pulse Width -

ms

FIGURE 12

Equation No.1 - Application: d·c power dissipation,
heat sink used.

SYMBOL

VALUE

DEFINITION

liN IT

PTlav)

Average Power Dissipation

W

Pllmaxl

Peak Power Dissipation

W

(hA

JUllction-lo·Free-Air Thermal Resistance

III

d,glW

(hc

Junction·fa·Cose Thermal Resistance

4.3ll

deglW

(}C.A

(ase-fo-Free-Air Thermal Resistance

111

(}C.HS

Case-ta-Heat-Sink Thermal Resistance

deglW
deglW

(}HS.A

Heal-Sink-to-Free-Air Thermal Resistance

TA

Free-Air Temperatu,e

_
PTlovl -

TJlovl - TA
lor 2l·C :::; TC :::; 200°C,
(JJ.C + (JC.HS + (JHS.A as in liguro11

Equation No.2 - Application: doc power dissipation,
no heat sink used.

deg/W

·C

TC

(ase Temperature

TJlovl

Average Junction Temperature

:::; 200

·C

TJlmaxl
K

Peak Junction Temperature

:::; 200

·C

I.

Pulse Widlh

ms

Ix
d

Pulse Period

ms

Equation No.3 - Application: Peak power dissipation,
heat sink used.

·C

Peak·Power (oefficient

See Figure 12

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

Duly·Cycle Ralio (Ip/'x'

Solulion:

Example - Find PT(max) (design limit)

OPERATING CONDITIONS,
liC _HS

+

From Figure 12, Peak-Power Coefficient

8 HS _A = .(deg/W (From information supplied

K = 0.11 and by use of equation No.3

with heat sink.)
TJlavl (design limit) = 200 o (

= lOoC
d = 10% (0.1,
Ip

TJ(maxl- fA

PTlmaxl

=

PTlmoxl

= -0-.1-(4-'-+:-(0-.-11-,-4.-31-5-

TA

--d-(9"'c-H-S--'+=9"'H'-S'-A-'"+:--K-9J-.c
-200-lO

= 0.1 ms

170W

PRINTED IN USA

5·22

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

II cannot onume any responsibility for any circuits shown
represenl fhal they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
HIGH·FREQUENCY INTERMEDIATE·POWER TRANSISTORS
•
•
•
•

15 Watts at 100°C Case Temperature
Typ VCE(sat) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA
z

* mechanical data
2N1714

THRU

O.2~

D.'"

2NI717

I

I

or.
t !~
M'Ni1

0.370
0.335 0.305 DI.
OIA ~

I

I "

MIN ~
r YEM~E1ATU.E

0.100

DI;:'~LSz:no:~:~~~~

f

T

=

~

I

I..

3 COLLECTOR

~'
.. MEAS !'OINT
==

SEATING ::::: OIA

~"'-- 0.045

..>./

~

0200

3 UADS'

'\

- i\:

'1' BASE

0.029

_0.034

4S·~V

0.018

I EMITTEI

i

THE COllECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.
All lEDEC TO·S DIMENSIONS
AND NorES ARE APPLICABLE.
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE

PLANE

CASE TEMPERATURE IS MEASURED 0.144 INCH ± 0.010 INCH DOWN FROM TOP OF CAN.
2N1718

•

Sf'ECIJlIED

THE COllECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.

THRU
2N1721

::::

POSITION OF THE LEADS IN RELATION
TO THE HEX IS NOT CONTROLLED.
MAXIMUM RECOMMENDED MOUNTING
TORQUE, IS IN.·LB.
ALL DIMENSIONS AlE
IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1714 2N1715 2N1718 2N1719
2N1716 2N1717 2N1720 2N1721

90 V*
60 V*

150 V* 90 V*
100 V* 60 V*
-oE('------ 6 V*

Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage .

150 V*
100 V*
)

1-----+
1---+)

'+(_ _ 11 At
0.75 A*
-«(~_ _ 11.5 At
1 A*
1AtA* I ---+-)
-«(--- 10.75

Continuous Collector Current •
Peak Collector Current (See Note 2) .

Continuous Emitter Current .
-«(:---See Figure 10---)~
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100°C Case Temperature
m~!l---~)
(See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
+-2W*-+
(See Note 4) .
0
-+<- - 200 Ct
Operating Collector Junction Temperature.
175°C*
Storage Temperature Range
+-- -65°C to 200°C *--+-

(

+10~8~* 1+

!

NOTES: 1.
2.
3.
4.

These values apply when the base·emitter diode is open-circuiled.
This value applies for tp ~ 0.3 ms, duty cycle S In~o.
For operation above 10no( case temperature refer to Dissipation Derating (urve. figure 13.
For operation above 2S o ( free-air temperature refer to 'Dissipation Derating Curves, figures 11 and 12.

·Indicates JEDE( registered dolo
tTexas Instrumen" guarantees these valulS in addition to the JEDE( registered values which afe also shown.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1--+)

TYPES 2N1714 THRU 2N1721
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS

*electrical characteristics at 25·C case temperature (unless otherwise noted)

MIN MAX MIN MAX MIN M,U IMIN MAX

V
Colledor-Emitter
IBAICEO Breakdown Vollage
Icao
ICEO

ICES

Ic = 30 rnA, la = 0,

Colledor (utoff Currenl

I
SO

Colledor Culoff Currenl

. VEalll1

Emiller-Base Floaling Polenlial

Sialic Forward Currenl
Transler Ralio

I

VCE = 60 V, VIE = 0

2

VCE = 90 V, VIE = 0

SO

SO

2

2

SO

500

500

500

500

VEa = 3 V,

Ic = 0

10

10

10

10

VEa = 6 V,

Ic = 0

10

10

10

10

Vca = 60 V, IE = 0

I

I

Vca = 100 V, IE = 0

2

2

VCE = 5 V,

Ic = 10 rnA,

VCE = 5 V,

Ic = 200 rnA, See Noles 5 and 6 20

See Nole 5

10

10
60

pJ.

pJ.
V

20

20

20 60 40 120

40 120
20

20

10

pJ.

2

SO
SO

Tc = 170·C

V
I pJ.

SO

VCE = 5 V, Ic = 200 rnA, See Noles 5 and 6
10
Tc = -55·C
la = 20 rnA, Ic = 200 rnA, See Noles 5 and 6

J.6

1.6

J.6

1.6

V

VCEI••tl Colleclor-Emiller Saluralion Vollage la = 20 rnA, Ic = 200 rnA, See Notes 5 and 6

2

2

2

2

V

SO

pF

VIE

Bo.se-Emiller Vollage

100

SO

VCE = ISO V, VIE = 0

Emiller Culoff Currenl

60
I

VCE = 90 V, la = 0

lEBO

hFE

100

60

IE = 0

Vca = 3 V,

Colledor Culoff Currenl

See Nole 5

VCE = SO V, la = 0

VCE = 60 V, VeE = 0,

•

2N1714 2N1715 2N1716 2N1717
2N1718 2N1719 2N1720 2N1721 UNIT

TEST CONDITIONS

PARAMETER

Ihlel

Small-Signal Common-Emitter
Forward Current Transfer Ratio

VCE = 10 V, Ic = 100 rnA, 1= 16 MHz

Cobo

Common-Base Open-Circuit
Oulput Capacilance

Vca = 10 V, IE = 0,

1

I

1= J MHz

SO

I

I
SO

SO

NOTES: S. These parameters mus' be measured using pulse techniques. tp = 300 p.s, duty cyde .s::; 2%.
6. These parameters are measured wllh voltoge-sensing contads s'parate from the cunent-carrying contacts.

thermal characteristics
PARAMETER

2NI714, 2N1715 2N1718, 2N1719
2N1716, 2NI717 2N1720, 2N1721
MAX
MAX
6.67t
7.5'"

6J- c Junction-to-Case Thermal Resistance

mt

6J- A Junction-to-Free-Air Thermal Resistance

187.5*

UNIT

u7t
7.5*

deg/W

75'"

• Indicates JEDEC registered data
tTexas Instruments guaran.ees these values in addition to the JEDEC registered values whidl are also shown.

971

5-24

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER

I"" Turn-On Time
loff Turn-Off Time

Ie = 200 rnA,
I'PI = 20 rnA, 1'121 = -20 rnA,
YBEloffl = -3.4Y, Rl = 150n,
See Figure 1

TYP

UNIT

0.14
2.6

J1-S

tVollogf and (urrent values shown ore nominol; exact values vary ~li9htly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

r-~_---O

lkO
INPUT

510

•

OUTPUT

1500

3000

+

-=- 30 V

TEST CIRCUIT

+37.3 V
-0_1 V

---~90%

-:1-I 10%

~ton}--

INPUT

1'---

--1I

~I

toff : -

10%..y---

90%~

OUTPUT

VOLTAGE WAVEFORMS

FIGURE I

NOTES: a, The input waveform is supplied by a generator with the following characteristics: 'r ~ IS os, If ~ 15 os, lout = 50 fl, Ip
b. Waveforms ore monitored on an oscilloscope with the following characteristics: Ir .::; 15 os, Rin ~ 10 Mn, (in
c. Resistors must be noninductive types.

S

=

10 JLs, duty cyde .::; 2%.

11.5 pF.

d. The d·, power supplies may require additional bypassing in order to minimize ringing.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·25

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

2N1714, 2NI715, 2N1718, 2N1719

2N1716, 2NI717;

180

100
VeE = 5V
See Notes 5 and 6
.~

0

'"

,.-

80

~c

r---

....E
C

....-

60

~

U

0
~

Te = 100·C

I II

Te

o

".....

25'C

u

~
-~ ~

20
w

~

..c

----

.=

f-- I-

Tel=IIW

120

~

Te '-

'5 100

u

80

~

.2

60

.~

~

40

\

w

~

..c

20

0.02

o. I

0.04

0.4

0.2

Collector Current -

0.7

0.01

I

0.02

Ie -

A

1.0

.............

"0 0.6

>

~ 0.5

]

I

!:

I

8

=

r'......

1 mA, IC = 10 mA'-...

18 = 20 mA, IC

K

= 200 mAl'

0.4

.........

............

I

0.7

I

I

T

I

IS

I

= 50

I
I
_I
mA, IC = 500 mA

-IS

= 20

mA, IC

'"
E
"0

>
c

.~

0.7

E
i

0.4

~
ij

to

~

= 200

mA

0.2
0.1

E
u
.! 0.07

0.3

-

See Notes 5 and 6

~

.....

.g

4

I

--....

...........

0.7

'"
E

>

= 500 mA

_S~otes 5 and 6

r--

0.8

0.4
A

COLLECTOR-EMITTER SATURATION VOLT AGE
vs
CASE TEMPERATURE

---- --- -- 7 -- --IS = 50 mA, IC

0.2

Collector Current -

FIGURE 3

SASE-EMITTER VOLT AGE
vs
CASE TEMPERATURE

0.9

o. I

0.04

FIGURE 2

I

~\

1\\

Ie = -55°C

&

-~

Ie -

~

~

"0

o

0
0.01

>

-

'~

~J~

c
0

See Notes 5 and 6

-.....
r --..t\

140

a

-\~

Te = -55'

~

'"

~c

~

TJLqJ

0

40

.2

•

r--....

1eE~~lTTn

160

.~

TJJjJl

I~ f--

"0

2N1720, 2N1721

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

=

Isl=

T

I

1 mA, IC

= 10

I

~

~

~

-

mA

"0

u 0.04

w

>'" 0.2

I

gO.02

0.1

u

>

0
-75 -50

25
-25
0
50
75
100
TC - Case Temperature - O(

125

150

0.01
-75

-50

-25

FIGURE 4

0
75
100
25
50
TC - Case Temperature - °C

125

150

FIGURE 5

NOTES: 5. These parameters must be measured using pulse techniques. tp

=

300 pI, duty cycle ::::; 2%.

6. These parameters ore measured with voltage-sensing contacts separate from the current-carrying contacts.

971

5-26

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE

J

1.2
Ilc

I

.. 1.0

:g
~ 0.8

j

mt

D..

I 120

.

~

V

~
~

~ 100

'u
&.
a

l-

80

V

at RaE = 100 kQ '" V(BRICEO

60

J!

o

C ibo (IC = 0)

u

,;
"'SRICER

f= I MHz I TC=25°C

....

u.

~

~ 0.4 f-

"- ""

160
140

ro 0.6

Jj

r

180

Te = 25°C
See Nole 5

"

D>

.l!

200

I~II\I~ I

..............

40

0.2

r--

Cobo (IE = 0)

I"-t-t-

."

.~

~

l;

o

0

1

Z

10

RIE -

100 k

10 k

1k

100

Base-&nitter Resistance -

2

Q

4

FIGURE 6

I
0

.!
l'!

,g

40

35

1:

~

"'-

30

"

V

]

~

25

~

::: 20

]

.2

~

II "II I
Vee= 10 V

...

le=100mA

c

~
~

"

.

20

:::

]

I

4

10

15

E
0
V

10

,

~

0c

l\.
0.4

c

~

,

~

TC=25°C

i\.

"

0

0
0.1

'\

25

u.

5

Il"II=1J
CE
IC = 100 mA

r\.

30

~

0

.!.
'0

I

""'r-.

"E

D>

1

r--

V

I

Jj

40

l? 35

Te=25°C

0C

•

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
vs
FREQUENCY

'"I

."

~c

c 15
0
E
E
0
V 10
Vi

40

FIGURE 7

i\

u..

20

10

2N1716.2N1717.
2N1720.2N1721

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO
vs
FREQUENCY

'"

."

7

Reverse Bias Voltage - V

2N1714.2N1715.
2N1718.2N1719

j

"-

20

"
40

~I

l\.

5

I'

0

E

on

100

f-frequency- MHz

0

.!

0.1

0.4

4

10

40

100

f - Frequency- MHz

~

FIGURE 9

FIGURE 8

NOTE 5: This parameter must be measured using pulse techniques. tp

=

300 ps, duty cycle

~

!'Yo.

971

TEXAS INSTRUMENTS
INCORPO~RATEO

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·27

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION
2

---

1-- ~:: f---

...

~

0.7

«
I

1:
~

0.4

1/

1 = 0.3 ms; d = 0.1 (10%)"

0.2

2u
.!!
"0

0.1

u

1-1 = 1 ms; d = 0.5 (50%)

I- P

u

~

I- D-C OPERATION

P

0.07

"

11111

I-

~TC ,,100·C

I

I

_uO.04 ff0.02

r-

MAX V CEO 2N1714, 2N1716,
2N1718,2N1720
MAX VCEO 2N1715, 2N1717,

I I I f~:~II~' 2N1r

0.01

•

2

4

7 10

20

40

70 100

200

VCE - Collector-Emitter Voltage - V
FIGURE 10

THERMAL INFORMATION
2N1714 TIIRU 2N1717
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

2NI718 THRU 2N1721
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

1.2

2.2
~

~

I

I
c

0

1
~
..
'>.

"'~

0.8

0

~

~c
0

u

0.4

E
~
E

0

o

25

50

:!l

1.6

u

1.4

"

1.2

.

""

TI Guaranteed
mW/deg

'>

1'..:.72
~

75

0

"""

JEDEC
Registered " ' "
5.33 mW/deg
I'\..

j 0.2
......

1.8

~

~

0

""

0.6

.2

8.

~

0

~

'""

c

1.0

u

~

2.0

100

125

'30
u

0.8

E
~
E

0.6

......

'"

j

~

175

200

TA - Free-Air Temperature - °C
FIGURE"

1.0

1:0

~

~

150

.:

""

TI Guaranteed

~1.4mW/deg

~,

JEDEC " \ ~
Registered
13.3 mW/deg

I'\..

0.4

...I... 0.2
0

~
","""

'\
o

25

50

75

100

125

150

TA - Free-Air Temperature - ·C

"

175

200

FIGURE 12

971

5-28

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1714 THRU 2N1721
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

16
~

I

0.7

l\.

14

c

' \ . . TI Guoronteed
0.15 W/deg

.~

"0
.~ 12
<5

~

'\

0

~

.0

C
0

L>
E
~

4

E

~

2

a.>-

0
75

125

100
TC -

150

FIGURE 13

o

0

"
"

I---~

'"

~

0.02

H2t

0.01

Hi

I--

1-. -tpiT

f-f--

1_. -tp!dT

VI

f--

V

tp = Pul se width in ms
L--.

d = Duty cycle ratio

= Thermal time constant =5 ms
,I
01

T

0.2 0.4

0.1

0.020.04

200

~
~ K =

./

,I,

10.04

l/

-

OIJ(IIJ~

tf.

"

"\

I I III

0.07

a.

175

Case Temperature -

0.1

..:. 0.07

'~

.~

::E

i;

"'"

JEDEC l\.
Registered ~
0.133 W/deg

6

(3"

'\..

~

v

0

E 0.2

V

lislo~o)

0 123

c

.~

"'I\.

v

.:;u 10

0.50 (50% Duty Cycle

0.4

O(

Pulse Width -

tp -

4

7 10

ms

FIGURE 14

SYMBOL DEFINITION

SYMBOL

DEFINITION

Pr{av)

Average Power Dissipation

PT{maxl

Peak Power Dissipation

()J.A

Junction-fo-Free-Air Thermal Resistance

()J.e

VALUE
2N1714 2NI718
UNIT
THRU
THRU
2N1717 2N1721
W
W
11S

7S

deg/W

Junction-la-Case Thermal Resistance

6.67

6.67

deg/W

()e.A

Case-fo-Free-Air Thermal Resistance

168

68

deg/W

()e.HS

(ose-to-Heol-Sink Thermal Resistance

deg/W

()HS.A

Heat-Sink-Io-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

Te

(ase Temperature
~ 200

°c
°c
°c
°c

TJlavl

Average Jundion Temperature

TJ(max)

Peak Junction Temperature

K

Peak-Power Coefficient

Ip

Pulse Width

ms

I,

Pulse Period

ms

d

Duty·Cycie Rolio (Ip/I,)

~

200

See Figure 14

20

•

Equation No.1 - Application: d·c power dissipation,
heat sink used.

TJlavl PTI"I =

TA

(he + Oe.HS + OHS.A

for 100 0 C ~ Te ~ 200 0 C
as in Figure 13

Equation No.2 - Application: doc power dissipation,
no heat sink used.

Equation No.3 - Application: Peak power dissipation,
heat sink used.

Equation No.4 - Application: Peak power diSSipation,
no heat sink used.

TJlmaxl -

TA

PTlmaxl

Solution:

Example - Find PTlmax ) (design limit)

OPERATING CONDITIONS,
8C-HS
OHS-A = 7 deg/W (from information supplied

+

From Figure 14, Peak-Power Coefficient
K = 0.11 and by use of equation No.3

with heat sink.)
TJ{avl (design limil)

= 200Ge

TA = SOOC
d = 10% (0.1)
Ip = 0.1 ms

971

TJ{max)-

PTlma'l -

200 -

PT(max)

TA

d (Oe.HS + OHS.AI

+

K OJ.C

SO

~0-;.I-;:(7:C)-+""-;0:-;.lcc1-;(6~.6=7) = lOS W

PRINTED IN U S.A.

TI cannot assume cny responsibility for ony drcuils shown
or rep,e~enl thol they are free from palent infringement.

lEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRO DUO POSSIBLE.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-29

•

5·30

TYPES 2N1722, 2N1724
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS
• Minimum It of 10 Megacyles
• SO WaHs at l00·C Case Temperature
• Maximum Res of O.S Ohm at 2 Amperes Ie • Maximum VBE of 2 Volts at 2 Amperes Ie
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
2N1722

: : IMA, .. MOllS)

ALL JEDEC TO-53
DIMENSIONS AND
NOTES ARE

, .......

.....

APPLICABLE

, COUIClOl

DIMENSIONS ARE IN I CHES

•

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
2H172 ..

CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
O.I2S" FROM STUD
ALL JEOEC TO-61
DIMENSIONS AND

NOTES ARE

APPLICABLE

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25·C ambient temperature (unless otherwise noted)
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage
Collector Current, Continuous
Collector Current, Peak (See Note 2)
.
Total Device Dissipation at 100°C Case Temperature (See Note 3)
Total Device Dissipation at 25°C Ambient Temperature (See Note 4)
Collector Junction Operating Temperature
Storage Temperature Range
Nol. I

NoI.2
NoI.3
NoI.o4
NoI.5
NoI.6
Nole 7
NoI.8
NoI.9

80 v
10 v
5 a
7.5 a
SOw
3w

+ 175°C

- 65°C to

+ 200·C

This is the voltage at which /hFSI approaches one when the emitter-base diode is open-circuited. Maximum allowable colledor-ami"er voltage shall be derated with increasing collector current os shown in the maximum VeE curve
which appears with the collector choracteristja. Av.rage power dissipatio" shall not exceed the maximum ratings
for this device.
Maximum peak coUector current may be allowed if maximum junction temperature is not exceeded. See Figure 2,
"Junction Temperature Response VI Pulse Width and Duty Cycle."
Derate linearly to l7SoC case temperature at the rate of 0.67 w/C·.
Derate linearly to l7'·C ambient temperature at the rate of 20 mw IC·.
For correct measurement of ICESt the base must be shorted to the emitter. The current meter must not be placed in
the base-emitter short-circuit loop. ICES may be used in place of leBO for circuit-stability calculations.
For typical BVCER at finite values of RB~ refer to BVCER VI RaE curve. Peak collector-emitter voltage of 120 v may be
allowed in the eutoff-current region if the emitter·base diode is short-circuited.
Heat • sinking sufficient to limit case temperature to "O·C or less over a 10.second measurement period must be
used for this test.
DC collector current should not be applied longer than S seconds ta mointain case temperature less than 40·C
without a heat sink.
To obtain fT, the ihfel response with frequency is extrapolated at 6 db/octave to Ihfel = 1 from f = 10 me. The
product of fr x 1 hos be.n referred to as the gain-bandwidth product.

171

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·31

TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C ambient temperature (unless otherwise noted)
TOlt Co.llitloni

'arameter

ICES

Colledor Reverse (urrent

ICES

Colledor Reverse (urrent

ICES

(olledor Reverse (urrent

IEio
-BVCEo

Emitter Reverse (urrent
(olledor·Emitter Breakdown
Voltage
D( Forward (urrent Transfer
Ratio
DC Forward (urrent Transfer
Ratio
DC Forward (urrent Transler
Ratio
Bose·Emitter Voltage
Collector·Emitter Saturation
Voltage
A( (ommon·Emitter Forward (urrent
Transfer Ratio
(ommon·Base Output (apacitance

°hFE
ohFE
°hFE

•

°VeE
oVCE(sot)
Ih,.1
(ob

VCE - 60 v, VIE - 0
(See note 5)
VCE - 60 v, VIE - 0,
Tc = + 1S00( (See note 5)
VCE - 120v, VIE - 0,
Tc = + ISOO( (See note 5)
VEl - lOv,lc - 0
Ic - 200ma,l. - 0
(See notes 6 & 7)
VCE - 1S"lc - 20
VCE - 1Sv,lc - 20,
TA =-SSO(
VCE - lSv,lc -l00ma

Min

VCE - 1Sv, Ic - SOO rna,
= 10 mc (See note 8)
VCI - lSv,IE-O,f-lmc

Unit

1

rna

2

rna

10

rna

10

rna

,

80
90

2D

12
20

1.0

,
,

SSO

pf

2.0

- 200ma,Ic - 20
- 211Oma,Ic - 20

II
I.

Mo ..

1.0

I

thermal characteristics

I

W/wJ

() J-C
Thennal Resistonce, Junction to (ase (Bottom, (enter of (ase)
1.S
-Semi·automatic tasting is facilitated by using pulse techniques to measure these parameters. A300 p.sec pulse (approxl·
mately 2"10 duty cyda) Is utilized.

TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR CHARACTERISTICS

5

a

/~ 100L
u--- 1-1
II \ 75 .:", -

'"....- "'

1/
V

Pul!..
2% Duty Cycle 300 ~s Pulse Width
TA

I~

Ie

= 25 ma

0

I.

Ie

=

20

I
I

"'-

r-....

,2ST

I--- Maximum VeE
I

J

~~

I

o
o

I

SO ma

\.

Me~ure':"'nt

12dmaJ-

4

COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low - Voltage)

I

·f

I

-

4
a

Curve
I

.1
I
..
.1
SO watt MaXImum Rated
Dissipatian (100·C Case
Temperature ar Less)

I\,
'\.

r----:

"- ~

Minimum BV CE

60
80
VeE - Collector-Emiller Voltage - v

IB= 0

100

°0~~--O~.-4--~-O·.8--~-I~.~2--~-I-.6~--~2.0
VeE - Collector-Emiller Voltage - v

971

5·32

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAS. TEXAS 75222

TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS

BASE-EMITTER VOLTAGE vs COLLECTOR CURRENT
2.0

I

DC FORWARD CURRENT TRANSFER
RATIO vs COLLECTOR CURRENT
a 100
.~

Pulse Measurement

2% Duty Cycle
~80 300 ~s Pulse Width
VeE = 15 v

'"
....~

1.6

a\TAI 112f~C
TA = 150°C

.....

~

u

---

-rTA

1

,;

I

r 1.2

40

- I TA
Minimum hF~ .......
at TA = 25°C

g20
_Minimum hFE

~ 0
0.01

at TA

= 25°C

0.03

-

1

I

I I II"

Minimum hFE

at TA

~

~

"

~

-

~

1.0

~

0.8

~
'tlOm~

~~ V

f.-~

P~lse Measurement

./

2% Duty Cycle
300 ~s Pulse Width
TA = 25"C

'"
...

~ 0.4

= -55°C'

0.1

300 m:/

~ .~
~
/
..a ~ ~

~

= _25°("= -~'C- ........

~4)
500 ma400 ma .........::

~ ~~
. / coma

>

/ ; TA = 75°C ..........
I .....-r TA = 25o'C ........ .....

1t 60

...

Maximum hFE _

-

I

_ Maximum VeE
at Ie = 200 ma

5.0

10

Ie - Collector Current - a

5

3

2

Ie ... Collector Current ..

•

COLLECTOR-EMITTER SATURATION
VOLTAGE YS AMBIENT TEMPERATURE

BASE-EMITTER VOLTAGE vs AMBIENT TEMPERATURE
3.0

Pulse Measurement

>

f--2% Duty Cycle
~O ~s ~ulse fidth

I

i

~ 2.0/--''--+--+-....,...-1

Ie

=5 a,

Ie =

sao ma

I I I I
Ie - 2 a, 18 - 200 ma
Ie - 1 a, la - 100 m

:}

Q

O~-L

-75

__
-25

~~

__

~~~-L

25

75

__

~-L

125

__L--J
175

o-75

-25

25

V

V

-; f.--

Maximum VCEt,otl at_ _

Ie ,2 a',1 8

r

=j ma

=

1e 500 ma~la- jU ma
Ie - 1011 ma'TI8~ ~
75

125

175

TA .. Ambient Temperature - °C

TA .. Ambient Temperature ... °C

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

5-33

TYPES 2N1722, 2N1724
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER BREAKDOWN
VOLTAGE vs BASE-EMITTER RESISTANCE

TRANSITION CAPACITANCE vs REVERSE VOLTAGE

200

2500

~ 160

Q. 2000

~

2'

~

-

..g
~
~ 120

"

~

-0

80
40

Pulse Measurement

I---

2% Duty Cycle
300 ~s Pulse Width

•

ffi 0

'"

T. = 25'C

r----

u

~

Ie = 200 ma

1

II"""

fI

10

- Emitter Transition
Capacitance (C'b, Ie = 0)

f'.,..

I
~

i'-

U

c

Typical

- I--

~

~

~CTE

E 1500

'g

10th Percentile

g.

Illf
Minimum BVCER
~tl ~BE =00 ~BVeEO

~ 1000

IIII
IIII

>-

1

100

:~
~

---t.....

eTC ... Collector Transition

Capacitance (C,b, IE = 0)

-I'--

-

III

TT

o

10000

I

-F~tnnCi'i

E 500

II
II
1000

f = 1 me
TA = 25'C
1 ttl

3

1

5

10

100

50

30

Reverse Voltage ... v

ReE - Base-Emitter Resistance - ohms

CONTOURS OF CONSTANT
TRANSADMITTANCE, IYr,1

CONTOURS OF CONSTANT
GAIN-BANDWIDTH PRODUCT, fT

1

IYr.1

f = 5 me TA = 25'C
(see note 8)

I

::;.0.83 mho

/'

\... I--

\

\
0.8

1.6

HI

\

V IYr.1

= 0.5 mho

I
0.4

2.0

lYle I = 0.72 mho

0.8

1.2

1.6

2.0

Ie'" Collector Current ... a

Ie ... Collector Current ... a

971

5·34

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1722, 2N1724
N.P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
THERMAL INFORMATION

TYPICAL JUNCTION TEMPERATURE RESPONSE
PULSE WIDTH AND DUTY CYCLE

DISSIPATION DERATING CURVES

1.0
f---

~

~
I

.... 0

a.

0

100

50

u

0-

~

.. .
I

I--

•

...

q,

)( a

150

0.75 (75%)
0.50 (50%)

TeJperat~re_

Te 1= ca!e
8 J·e = 1.5 CO/w

= Ambient
I Temperatur~"
1\
8J- A= 50 CO/w = 8 J •C+ 8 e ............
(8 e-A= 48.5 CO/w)
~
TA

!

"\

i""-,

YO

0.1

1==

».WJ

()'\

~~

200

",-

0.01
0.01

FIGURE 1

V

,0%

:Ilia.

Temperature - °C

L~

0.25Q:

(,~

~\e

~

~"';;\

().

crt
I

0.1

1.0

100

10

t. - Pulle Width - msec
FIGURE 2

TYPICAL HEAT-SINK THERMAL
RESISTANCE VI POWER DISSIPATION

5

TYPICAL HEAT-SINK THERMAL
RESISTANCE vs COOLING AIR VELOCITY

2.0

I

t--

4x

1 1/~" C~er
x

Jlate

J

1

10 x 10 x 1/8,t Capper Plat'=._ I-This curve is

indepe~dent ~f

ambient temperature within

the range of 25°C - 100°C

o

1 '1
o

10

- ConJectial Coaling
Fins and Plate.
_
Pa.ittned VertlallY

-

U

I\..

.

'r-...

u

~1.2

!

1
l! 0.8

30

.u>

or Equivolent

.......

(Unfinished or Anodized)
Centrally Palitianed in

i'-.

6" Diameter Duct

-- l"'-

t--

0I

.
~

%

CI:> 0.4

This curve il independent of

t-- r-ambient

temperature within

the range of 25°C - 100°C

I

1 1 1
20

Farced-Air Cooling,
Heat Sink:
Madine IE l1SSB,
Delbert Blinn '113, _

~ 1.6

Heat Sink:
I--' V Madine IE1155B,
Delbert-Blinn '113,
r-.... ~ed'"
~Aned' ,'-. or Equivalent
:.i: IZed Finish.1
6><6xl 8" Capper Plate
I
8 x 8 >< 1/8" Capper Plate

1

11

50

200
400
600
800
Cooling-Air Velocity - FPM at Sea Level
FIGURE 4

PT - Power Dissipation - w

FIGURE 3

1000

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-35

TYPES 2N1722, 2N1724
N.. P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
THERMAL INFORMATION
TABLE I
2Nl722 mounted with four 2-56 screws ot 4 in-Ib torque
2Nl724 mounted at 30 in.-Ib. torque
Unfinished Alum.
Alum. or Copper with
Anodized
Anodized Alum.
.0025" mica ins.
Aluminum
or Copper
with OC-200 Oil

Mounting
Conditions
contact
thermal resistance
Co/w

Oe.Hs -

•

0.45

0.15

Symbol

Definition

Unit

'T
'T_

DC .r avtrag' ,otal power dissipation

w

Peak total pow.r dissipation (pulsed operation)

w
CO/w
CO /w

",of·sink·I.-ombi.n' thermol ,,,islanet

OHS.'"
Oe.HS
OJ.C

Case·lo-h.at-sink «ontoe') thermol reslstanu
Junction·'.cose thermal resistance

CO/w

OJ.'"

Junclion.I,-ambi.n' thermol Itlis.ance (no heat sink)

CO /w

Oe.,.,

(all-Io-ambient thermal resistanu Ino heat sink)

CO /w

TA
THS

Ambient temp.rafu,.

Te

Case t,mp.,.'urt (transisto, mounling surface)

'Jm.lf
1o

Maximum junction temperature

°c
°c
°c
°c

'ul" wldlh

mse(

H•• '-sink mounting sur'CK. temp.r,'ur,

TJ ...,

Heat sink _ Modine lEI1SSI, Delbert Ilinn 113, or equivolent, onodized
finish, (onve(fion (ooling

TJm..

= T,., + 'To..k' duly ,yd. . (OCH.S + OHS.A) +

=0

From Figur. I, OJ.e
From Figu,. 3, OHS.'"
From Toblo I, Oe.HS

+ OC.HS + OHs.,.,f

From Figure

2.[

Ihe.

J

0

'T....

= I.S /w
= 3.1l CO /w
= 0.40 CO/w

J·C

(0

;Jrn.x-'c

Tpo"
TJma ,

(PT

= PTp.'"

duly cycl.)

]= 0.20

0J·e

= SOOC + SOw, 0.10, (3.IS + 0.40)Co/w + 0.20, SOw,
I.SCo/w
= SO + 17.7 + Il
= 82.7 C
0

Example 2. Find PToe•
Operating Conditions
heat sink

'duty
0 (ycle
'Jmall (design limit)

T,.,
'Jm.x

== none
= 10 mse(
= 0.01 (1%)
= mOc
= 2SoC
== 'A + PTp ••k I

duty (yele

'Jmall-'C
PTo• ak 8J _C

From Figu" I. Oe.,.,
From Figure I, OJ.e
From Figure 2.

~'Jmax

=

J·C

I

OC-A

+

PTo." OJ.e

= 48.5 CO /w

=
-

'e]_

I.S C· /w
_ O.SO

17S0C
2SoC + 'To,,"' 0.01 ,48.SCo/w
'Too'" IJCo/w
,
_
ISO
To..k 0.48S
0.7S ==!l!..!:2!!.!

0

]

PTo,," OJ.e

then

+ PTo"" ' duly ,yclo , (Oe.HS + OHS'''') +

[ TJm,,-Te ]p
PTo ." OJ.e Too"
0" if no heat sink is used,

mit(

~Jma,-TC
~TO"" OJ.e

As to exceeds 100 psec during pulsed operation, the instan.
taneous variation of the junction-to-case temperature gradient
increases sharply. Therefore, maximum rather than average jundion
temperature must be considered. Figure 2 shows the ratio of
maximum instantaneous case·to-junction temperature rise at any
puis. width and duty cycle to the rise which would occur at
100% duty cycle. Use of this curve is best explained by the
equations below and by the example problems. Provided the
other operating conditions are known, TJmax or PToe• may be
found using the relation
T,.,

'Toe"
T,.,

=
1
= 0.10
(10%)
= SOSOOCw

'0

duly ,y,lo

and mounting conditions is given in Table 1. These figures rep.
resent maximum values encountered on surfaces equivalent to
those of most commercially available heat sinks. Note that in
some cases, as with the anodized aluminum finish, 8e-HS can be
reduc~ substantially by the application of a fitm of silicone
grease between transistor and heat sink.

=

+ 'Too" ' duly ,yd. x Oe.,., +

Operating Conditions

TJm.. == T,., + 'TOJ.,.,
8J •e, 8J• A, and 8e .A are shown in Figure 1. To minimize
contact thermal resistance, 8e •Hs, the heat sink mounting sur·
face should be as smooth as possible. 8e -Hs for several surface

TJma,

T,.,

Example 1, find TJmax

<

+

=

0
[ TJm,,-Te ]
PToo" 0J.e 'Too" J·e
Note thai the ambient·lo-fransistor case temperature rise remains
constan' at a value proportional to average power dissipation
throughout the pulse width and duty cycle range shown in
Figure 2. Values for 8HS - A taken from Figures 3 and -4 are used
in the example problems. However, the curves in Figures land
2 may be used for any heat sink provided its thermal resistance
is known. Under no circumstances should peak power dissipation
exceed the value indicated by the maximum VCE curve on the
collector characteristics .

For steady-state power dissipation or pulsed dissipation with
to
100 j.tsec, maximum junction temperature may be consid·
ered equal to the ambient temperature plus the product of
avttrage power dissipation and total junction .. to_ambient thermal
resistance. Under these pulse conditions, the junction,to·case
temperature gradient varies so slightly with instantaneous power
dissipation that average dissipation may be used in thermol
calculations. When a heat sink is used, junction-to.ambient
thermal resistonce may be broken down into three quantities:
8J • e , Be -Hs, and BHS• A' Thermal performance can then be col·
culated using the following equation:
TJma, =0 T,.,
'T(OJ.C
Or, jf no heat sink is used,

0.28

0.40

+ O.SO,

+

971

5-36

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1722, 2N1724
N-P-N TRIPLE-DiffUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA, TA =-55°C TO 125°C
35 watt, 400 cps SERVO AMPLI FI ER
+12 v

-40 v

Circuit Characteristics at 35 w
Power O\Jtput:

'l

Power Gain - 45 db min.
Voltage Ampl ification -

36.5±1.5db
Circuit Input Resistance .. 700 Q
min.
Total Harmonic Distort~on .. 5%

.4
RL
Rl
R2
R3
R4

-

NOTES:

n:

Cl - 40 ~I, 25 v
C2 - 500 pi, 100 v
C3 - 1000 ~I, 25 v
C4 - 2.0 ~I, 100 v
01 & 02 - TI lN538
Ql, Q2, & Q3 -Tl 2NI716
OR Tl 2NI72O
Q4 & Q5 - Tl 2NI722
OR TI 2NI724

R5 - 2.21 K, 1/2 w
R6 - 390, 1/2 w
R7 & R8 - 2.00 K, 1 w
R9 & RIO - 1.00, 2 w
Rll - 1 .00 K, 1/2 w

68, 35 w
4.32 K, 1/2 w
3.32 K, 1/2 w
1.00 K, 1 w
33.2,1/2 w

Nl = 755 T, '30 AWG; N2 = N3 = 330T,
'28 AWG Bililar Wound.
Core - Magnetic Metals 75EI SL14 or
equivalent .. 1 x 1 interleaved.

T2: Nl = N2 = 100 T, '20 AWG Bililar
Wound; N3 = 67 T, '28 AWG.
Core - Magnetic Metals 100 EI SL14 or
equivalent .. Butt Joint.

1. All Resistance Values in ohms .. 5% Tolerance

2.
3.
4.
5.
6.

Resistor Wattage Ratings at 125°C Ambient
Capacitor Voltage Ratings at 125°C Ambient
Ql on Heat Sink with OC-HS + OHS-A:;;:4O CO/w
Q2 and Q3 on same Heat Sink. 0 C-HS + () HS-A '" 4Oco/w each. hFE'S matched within 10%.
Q4 and Q5 on Heat Sinks with OC-HS + OHS-A '" 1 .5Co/w. hFE'S matched within 10%.
120 watt 10 Kc OC-OC CONVERTER

01

RI

Circuit Characteristics at 120 w Power Output:

TI

Input Current .. 50

CI

Total Efficiency - 85%
Self-Starting and Short-Circuit Protected

Output Ripple - 0.6 v max.
LI

C4

N,
Np

co+

400 v, 120 'II

C7

Ql & Q2 - TI 2N1722
OR TI 2N1724
01 - 03 - TI lN645
04 - 07 -TIIN1096
Cl &C2 -22~1, 15v
C3 - 100 ~I, 35 v
C4-510pl,500v
NOTES:

1.
2.
3.
4.

C5 - 0.1 ~I, sao v
C6 - 3 ~I, 500 v
C7 - 0.01 ~I, 500 v
Ll -151'h
Rl -2.74, 2w
R2 - 3.32, 2 w
R3-511,2w

n:

Np = 18 T '16 AWG
NS = 290 T '25 AWG
NF = 3 T '22 AWG
Core: Toroid, Magnetic Metals Inc. 51026-10
or equivalent.

All Resistance Values in ohms, 5% Tolerance.
All Resistor Wattage Ratings at 125°C Ambient.
Capacitor Voltage Ratings at 125°C Ambient.
Ql and Q2 on Same Heat Sink, ()C-HS + OHS-A '" 4 CO/w each.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·37

TYPES 2N1722, 2N1724
N·P·N TRIPLE·DIFFUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA, TA =-55°C TO 125°C
3O-volt, 0 - 2.5-0 VOLTAGE REGULATOR
Circuit Characteristics:

I

l:J.VOUT
l:J.TOUT
l:J. VIN = 0

= Output Resistance ~ 0.007 ohm

Il:J. IOUT = 0

lOOX

~~~;

lOOX

l:J.VOUT/
1l:J.IOUT = 0
l:J. TA VOUT l:J. VIN = 0

= Input Regulation $. 0.05% at lOUT = 2.0 a

= Output Voltage Temperature Coefficient $. 0.007%/·C at IOUT= 2.0 a, VIN = 45 v

Input Rieele
I
OUtput Rfpple = Ripp e Reduction ~ 10,000

30v
0- 2.5 0*
R7

•

R8

+ C2

R9
R3

Ql - TI 2N726
Q2 - TI 2N1722 OR
n 2NI724
Q3 - n 2N1714 OR
n 2N1718
NOTES:

R4

Q4 - Tl 2N343B
Q5 & Q6 - TI 2N338
01 - TI lN746
02 & 03 - TI lN751
04 - D6 - TI lN752A

Cl
C2
Rl
R2
R3

~f, 50 v
-IOO~f, 50 v

- 0.01

-5.11 K, 1/2w
-681, 1/4w
- 2.00 K, 1/4 w

R5

R4 - 2.43 K, 1/4w (Wirewound)
R5 - 35.7 K, 1/4 w
R6 - 35.7 K, 1/4 w
R7 & R9 - 3.57 K, 1/4 w (Wirewound)
R8 - 200, 1/4 w (Wirewound)

1.
2.
3.
4.

All Resistor Values in ohms, 5% Tolerance.
Resistor Wattage Ratings at 125'C Ambient.
Capacitor Voltage Ratings at 125'C Ambient.
Q2and Q30n Same Heat Sink: Q2: 8C-HS+ 8HS-AS2C'/w
Q3: 8 C-HS + 8 HS-A S 22 C'/w
5. Q5 and Q6 on Same Heat Sink: Each,8c-HS + 8HS-AS 80 CO/w
*See Voltage - Current Derating Curves Below
MAXIMUM ALLOWABLE INPUT VOLTAGE vs OUTPUT
CURRENT - 0-2.5 a VOLTAGE REGULATOR
>

..
I

r 50 I--+~f---'''II--f~-+-"!Iood--..::l~

~
~

1-

E 401-4-+--1~+-:;"....d-

~

i

3OL--L__~-L__~-L~~~~__~~
o
0.5
1.5
2
2.5

Output Current - a

5·38

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 6012 •

DALLAS, TEXAS 75222

PRINTED IN U.S A
TI cannot assume any responsibility for any circuits shown
or represent that they ore free from po'ent infringement.

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N1722A, 2N1724A
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
•

50 Watts at 100°C Case Temperature

•

Maximum res of 0.3 Ohm at 2 Amperes IC

•

Maximum VBE of 2 Volts at 5 Amperes IC

•

Minimum fT of 10 Megahertz

:xl ttI-I

m c:<
< ,...-0
,...m

iii mCll
m -IN

C

cIl

m
"0

-I

•O~
:r>

m
s:ttl c·
m ~~
:xl .... ....

*meehanieal data
The transistors are in hermetically sealed welded packages with glass-to-metal seal between case and leads.

* THE COllECTOR

-z
z.
z ....

iD
....

... ..
N

. -"":r> :r>

IS IN ELECTRICAL CONTACT WITH THE CASE

N

CIl

c:
Cl
c:
~

2N1722A

~

CIl
W

•

*ALL J£DEC To-!53
DIMENSIONS AND
NOTES ARE
APPLI CABL E

2N1724A
CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
flAT SURFACE WITHIN
0.12S" FROM STUD

* ALL.

JEDEC To-61
DIMENSIONS AND
NOTES ARE

APPLICABLE

ALL DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current, Continuous
Collector Current, Peak
Emitter Current, Continuous
Base Current, Continuous
Safe Continuous Operating Region at (or below) 100°C Case Temperature
Collector Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Collector Power Dissipation at (or below) lOO°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range
NOTES:

180V
120V
10V
5A
7.5A
6A
1A
See Figure 1

3W
50W
175°C
-65°C to +200°C

1. This value applies when base-emitter diode is open-circuited.
2. Derate linearly to 175°C free-air temperature at the rate of 20 mW/oC.
3. Derate linearly to 175°C case temperature at the rate of 0.67 w/oe.

"'JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

'5·39

TYPES 2N1722A, 2N1724A
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V(BR)CEO Collector-Emitter Breakdown Voltage

•

ICBO

Collector Cutoff Current

ICES

Collector Cutoff Current

lEBO

Emitter Cutoff Current

VEBfl

Emitter-Base Floating Potential

hFE

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage

VCE(set) Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter
Ihfel

Forward Current Transfer Ratio
Common-Base Open-Circuit

Cabo

Output Capacitance

MIN MAX UNIT

See Notes 4 and 7

IC= 200 rnA,

IB =0,

VCB=3V,

IE = 0

V

VCE-GOV,

VBE -0,

See Note 5

VCE - 100 V,

VBE =0,

See Note 5

VCE - 100 V,

VBE -0,

Tc - 150°C,

See Note 5

2.0

VCE - 180 V,

TC = 150°C,

See Note 5

10

VEB -9V,

VBE =0,
IC-O

VEB - 10V,

IC-O

10

VCB-180V,

IE - 0

1.0

VCE=15V,

Ic-l00mA,

See Note 4

30

VCE - 15 V,

IC-2A,

See Note 4

30

VCE -15V,

IC-2A,

TC= -55°C, See Note 4

18

VCE - 5V,

IC- 5A,

See Note 4

20

IB- 200 rnA,

IC- 2A,

See Note 4

1.2

IB- 500 rnA,

IC- 5A,

See Note 4

2.0

IB - 200 rnA,

IC-2A,

See Note 4

0.6

120
0_1

rnA

0.1
1.0

0.5

rnA
V

90

IB- 200 rnA,

IC- 2A,

TC= -55°C, See Note 4

0.8

IB - 500 rnA,

IC-5A,

See Note 4

1.5

VCE=15V,

IC= 500 rnA,

f= 10 MHz,

VCB = 15V,

IE =0,

f= 1 MHz

See NoteG

rnA

V

V

1.0
550

pF

*thermal characteristics
PARAMETER

MAX

UNIT

R8JC

Junction-to-Case Thermal Resistance

1.5

°C/W

R8JA

Junction-to-Free-Air Thermal Resistance

50

°C/W

FIGURE I - MAXIMUM SAFE
CONTIN UOUS OPERA liNG REGION

«
1

5

*

~--~---.---.---.---.

4ffHl-+--+--I--t---i
3 ffH~+--+--I--t--~
~

.~

~

2 IHfHfHl-_ _+-_1"'c_...,.1-'00-'-°C-=-t--_--i

E

~

'x

~

I..

J

0

WJJ.L1JJ1.fJ.JJLL1l1LfJ.JJLIlJJ.LI.l1ll!!mlmJ
0

25

50

75

100

125

VCE - Collector - Emitter Volloge - V
NOTES:

4. These parameters must be measured using pulse techniques. PW = 300 JJ.S8C, Duty Cycle'" 2%.
5. For correct measurement of ICES. the base must be shorted to the emitter. The current meter must not be placed in the
base·emitter, short-circuit loop. ICES may be used in place of leBO for circuit-stability calculations.
6. If tested without a heat sink, DC collector current must not be applied longer than 5 seconds.
7. Other pulse widths or duty cycles may be used for the measurement of collector-emitter breakdown voltage with results similar to
those obtained using the conditions specified In Note 4, providing that collector current is limited to 200 rnA and case
temperature is limited to less than 40°C over 8 5 second (or less) measurement period.

*JEDEC registered data
PRINTED IN U.S.A

5·40

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TEXAS INSTRUMENTS RESERYES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROYE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N1723, 2N1725
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

High-Frequency Power Transistors
50 WaHs at 100°C Case Temperature
Maximum Res of 0.5 Ohm at 2 Amperes Ie
Maximum VIE of 2 Volts at 2 Amperes Ie
Minimum fT of 10 Megacycles
mechanical data
The transistors are in a hermetically sealed welded package with glass-to-metal seal between case and
leads.

* THE COLLECTOR IS IN

=

ELECTRICAL CONTACT WITH THE CASE

: . : DIA{4 HOUS)

, f'=±--R,r-'"

~

"L I

Tf--:f=l:,=rfl
0715

2.:!!!

''''.1. T T u

- , " ""10.2:!Z2.
,.

,

2Nl723

0.355

l O.3;F:420 Ii:::!

0:765

0.670
PIA

;:;;0

~:::

oi;1

-t~

---'

....

* DIMENSIONS AND

ALL JEDEC TO-sa

NOTES ARE

1 EMITTER

APPLICABLE

3 toUECTOR

2N1725
CASE lEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE ,OF
FLAT SURFACE WITHIN
0.125" FROM STUD

•

*ALL JEDEC TO.6t
DIMENSIONS AND
NOTES ARE

APPLICABLE

ALL DIMENSIONS ARE IN INCHES

*ab50lute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
.120 V
Collector-Emitter- Voltage (See Note 1)
80 V
Emitter-Base Voltage .
10 V
Collector Current, Continuous .
5 a
Emitter Current, Continuous .
5 a
See Fig. 1
Safe Continuous Operating Region at 100°C Case Temperature
3 w
Continuous Collector Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Continuous Collector Dissipation at (or below) 100°C Case Temperature (See Note 3) .
.50 w
Operating Collector Junction Temperature
175°C
Storage Temperature Range.
- 65° to 200°C
NOTES: 1. This value applies when bas.·emitter diode Is open circuited.
2. Derate Itnearly ta l1SoC free-air 'emperatur. at the ,ate of 20 mw/oC.
3. Derate linearly to 17SoC case temperatura at the rate of 0.61 w/O(,
4. These parameters are measund using pulse tethniques. PW = 300 P.SI(, Duty Cycle :S 2%.
5. If tested without a heat sink, DC (olll(tor (Urrent must not be applied longer tha~ 5 se(onds.

"Indicat.. JEDEC reglltered data.

971

TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-41

TYPES 2N1723, 2N1725
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
'electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

BVeEO

•

leBo

Coliector·Emilier
Rreokdown Voltage
Colleclor Cutoff Current

ICES

Collector Cutoff Current

TEST CONDITIONS

Ie

VeB VeE VeE =
VeE =
VeE VEO VEB =
VEO =
VeE VeE VeE -

lEBO

Emiller Cutoff Currenl

h'E

Slatic Forward Current
Transfer Ratio

VOE
VeEI"'1

Base-Emiller Voltage
Coliector·Emiller
Saturation Voltage
Small·Signal Common-Em iller
Forward Current Transfer Ratio
Common· Base Open-Circuit
Output Capacitance

ihf.i
Cob

= 0.20 0,
3 v,
30 v,
60 V,
60 v,
120 v,
3 v,
9 v,'
10 v,
15 v,
15 v,
15 v,
0.20 0,

IB= 0,

(See Note 4)

IE - 0
VBE - 0
VBE = 0
VBE = 0,
VOE - 0,
Ie - 0
Ie - 0
Ie = 0
Ie - 2 0,
Ie - 2 0,
Ie - 0.1 0,
Ie - 2.0 a,

MIN

MAX

UNIT

80

-

v

-

0.1
0.1
1.0
2.0
10
0.5
0.5
10
150

rna
rna
rna
rna
rna
rna
rna
rna

-

Te = ISO·C
Te - 150°C

-

--

-

-

-

2.0

v

-

1.0

V

VeE = 15 v, Ie = 0.50 a, f = 10 mc, (See Note 5)

1.0

-

-

Veo = 15 v, I. = 0,

-

550

pf

MIN

MAX

UNIT

-

1.5

(o/w

-

SO

CO/w

10 10

= 0.20 a, Ie = 2.0

0,

(See
TA (See
(See

Note 4)
_55°C, (See Note 4)
Note 4)
Nole 4)

(See Note 4)

f=1.0mc

50
25
50

'thermal characteristics
PARAMETER

(he

FhA

Junclion-to-Case
Thermal Resistance
Junclion-to-Free-Air
Thermal Resistance
MAXIMUM SAFE CONTINUOUS OPERATING REGION
5rn:;'7r----,~--....,.----,----,

o

I

~

4157W-;t---t-----t__---_+------,j

~

u

~

.!

3

3 ~~w.;'"""""_+----t__---_+---__1

~

g

c

~

2

~~~~~---+__---+_---_I

0

~~~~~~~~~~~~~~~

.i

J
I

!
u

______J

25
50
75
Vee - Collector-Emitter Voltage - v

100

Figure 1
·Indicates JEDEC registered dota.

PRINTED IN U.S.A

5·42

TEXAS INCORPORATED
INSTRUMENTS
,,"OST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

lEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS
• High Power Dissipation: 150 waHs at Te = 100 C
• low Thermal Resistance: 0.5 CO /w max
• low Saturation Voltage: VeE =0.75 V max @ Ie = 10 a
18 me min at 10 V, 1 a
• High fT :
0

mechanical data
Str~ss effects caused by the difference in thermal coefficients of expansion between the silicon wafer and
copper header are minimized by the use of a molybdenum platform brazed to the header. The wafer is
mounted to the molybdenum platform by means of a special high-temperature gold alloy in an oxygenfree atmosphere, thus eliminating flux. Final encapsulation of the device is carried out in an ultra-clean,
controlled atmosphere dry-box utilizing extremely-high-reliability techniques.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

•

* ALL

JEDEC TO-63 DIMENSIONS
AND NOTES ARE APPLICABLE

CASE TEMPERATURE MEA_
SUREMENT POINT IS UNDERSIDE OF FLAT SURFACE
WITHIN 0.125" FROM STUD

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1936

...

• Collector-Base Voltage
'Collector-Emitter Voltage (See Note 1)
* Emitter-Base Voltage
* Collector Current, Continuous
* Base Current, Continuous .
Emitter Current, Continuous .
• Safe Continuous Operation Region at 100°C
Case Temperature
* Total Device Dissipation at (or below) 100°C
Case Temperature (See Note 2)
'Operating Case Temperature Range
'Storage Temperature Range.

......
...

2N1937
125v~

60v

SOv
6v-""'"
20a~
10a~

{25 at}------+20a*
See Figure 5

..

150w---.-65°C to + 175°C....
...... -65°C to +2oo°C ....

~

NOTES: 1. This value applies when the bose-emitter diode is open-c

18 -1,00

'8- 500

~

Is-200ma

0.6
0.4
<

, :: 50 ma

0.2

le=25mo

See

lote

8

oL-__~I.~=~0~______~__~Se~e~N.o~te~8~__~
10
20
30
o

10

veE - Collector-Emitter Voltage - v

Ie - Collector Current - a
COLLECTOR-EMITTER SATURATION VOLTAGE

•

CASE TEMPERATURE

BASE-EMITTER VOLTAGE vs CASE TEMPERATURE

1.2

I

1.0

--

r--

Ie'" 1.60, Ie'" 100

t--t-I--

j

0.8

~
~

..

0.6

I

0.4

r---r--.----,.---,----,-----r----,---.,

0.8

I

1

~O.5a,lc ~

-";~t::::
~~30
'8",0.20, Ic~

~
IB-O.10,~

J

I'c = 10

I

0.2

See Note 8

I

o
-SO

-25

25

Tc - Case Temperol'ure _ °C

Te

STATIC FORWARD CURRENT TRANSFER RATIO

50

75

WO

125

150

- Case Temperature - °c

STATIC FORWARD CURRENT T!NSFER RATIO

v.

'"

COLLECTOR CURRENT

COLLECTOR CURRENT
100

II

0

~

80
=x

J!

hFE

~

,g

~

60
90 Percentile

11

j

40

20

~

o
0.1

1.0

10

------

v

E

'1

0.1

Ie - Collector Current - a

I---"
~

IIII
50 Percentile

IIII
10

t.&Al1tile

min

hFE

V~E '" 3
Te 25°C

--

v

=

.....

I
I
mox

hFE

.....

minhfE
See Note 8

1.0

10

I e -Collector Current-a

Nole 8: These characteristics were measured using pulse techniques. PW:S 300 p.see, Duty (yete

2%.

971

5·48

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE

SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

YO

YO

REVERSE BIAS VOLTAGE

FREQUENCY

12,000

I 111111

le= 2 a
VeE = 20 v
Tc = 25'"C

~
~

10,000

~~
~~

8000

'1i.

..3
l

1'1

6000

u

'"

= 25°C

,LL'=bi '
I'~

2000

~

,~

10

100 me

lOme

Te

4000

~
lme

t= IOOkc

III

20

50

100

Reverse Bias Voltage - v

Frequency

SMALL-SIGNAL COMMON-EMITTER

FORWARD TRANSFER ADMITTANCE

"

TRANSITION FREQUENCY

COLLECTOR-EMITTER VOLTAGE

24

5 ~ =7.

4

COLLECTOR-EMITTER VOLTAGE

-

22
f- 9mc

~~
....
Ie

VI

'e- 3 •Oa

= 5.

Ie =0.50

Te = 25 D C

""""'"

~

20

f

I

18

~

10

!
Ie - 1 a

14
12

°5~~I~e_=_0~.5~.~______~______~______~

10

15

20

2S

- 5.0 a

"

-

--

1,=7.00

•

f = 9 me
Te = 25'"<:

...........

~a

105L---~1~0----~'5~---2~0L---~~L-----~~
VeE -Collector-Emitter Voltage-v

Vce-Collector-Emitter Voltage-v

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

~'tj

1. 2 r-T"TTremr-'TTrrmr-T"TTTTmr-'''TTTTITII

NOTE 8: These charlKterlstics were measured using
pulse .edlniques. PW = 300 p.SIC.

Duty Cyd. ~

2%.

RBE - Base-Emitter Resistance - ohm

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·49

TYPES 2N1936, 2N1937
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
TYPICAL APPLICATION DATA
FIGURE A - 225 WA TT 10 kc DC-DC CONVERTER

Operates from -55°C to +l25°C

I NI124

TlX442

+150 v

1.0
~fd
25 v

4.02Q
10 w
10%

INI124

Transformer Core = Arnold 2T -6847-51 or equivalent

•

NOTE:

TYPICAL PERFORMANCE AT TA = 25°C
Efficiency = 80%
Output ripple
1.0 volt

Minimum usable hFE = lOot VeE = 3v, le= 100, TA = 25°C
Both transistors use heat sinks, 9C-HS+ 9 HS_A S2°C/w
each. All diodes must have adequate heat sinks.

FIGURE B-3 mc POWER AMPLIFIER
Air Dux #504 or Equivalent

Air Dux #1010 or Equivalent
~

To 50

n Source

8T~0.27~h

5.1 ~h

~

!

1 IJf

~

6 T
or Equivalent
2T

I ~f

111 Plexiglass Form ~ 64 IJh

TYPICAL COLLECTOR EFFICIENCY 30%

NOTE:

All dato taken with transistor mounted
on Delbert Blinn '113 block pcinted
heat sink.

TYPICAL ONE-STAGE COMMON-EMITTER
AMPLIFIER PERFORMANCE CAPABILITY
40

1 ,,'1

a

./

20

~

"

o

,,~,.

~~ ~

o

~

k:f""

"

10

.'

1.0 mc

,.
.;

"7

0;

1 ... ,1. ...

- --12 db

30

.......-:=

--

1.0

I-"'"

2.0

.;

10db

-

3.0mc

-

5.0 m<
6.0 db
Vee = 20 v

See Nole 9

3.0

4.0

Power In-w
NOTE 9: This data was taken in amplifiers with configuration simil~r
to Fig. B with component values optimized ot each frequency.

PRINTED IN U.S A.

5-50

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

971

TI (annol assume any responsibility for any circuits shown
or represenl tha' Ihey are free from po'en' infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
:Jl 111-1

C<
,.",
< ,.m

m

iii

mV>
m -IN

FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS

V'CEI.all

-Z

'"-I

.0'"
.0

m ON

3: ,.Z

• Dissipation Capability of 30 W at 40 V, Tc = 100°C
• Typ

0

V> ZN
m Z~

III /J)~
m
:Jl ~~
~

of 0.2 V at I A

~

0

'" '"en
::t
~

0

n

-I

0

III

*mechanical data

m

:Jl

iii

'"

00

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
l-COLLlCTOR
o.I15NOM

•

(SEE NOTES A & B)

10-32 UNF-'lA
MAX STUO TORQUE,

IS IN·les

ALL JEDEC TO·ll I
DIMENSIONS AND
NOTES ARE
APPLICABLE
NOTES:

A.
B.
C,
D.

Position of terminals with respect to hexagon is not controlled.
Terminals located on true position within 0.030 inch relative to diameter of can.

t

This dimension applies to the location of the center ,line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.

E. All dimensions are in inches unless otherwise specified.

absolute maximum ratings at 25'C case temperature (unless otherwise noted)
*Coliector·Base Voltage .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage.
*Continuous Collector Current
Peak Collector Current (See Note 2) .
*Continuous Base Current
*Continuous Emitter Current.
Safe Operating Region at (or below) 100· C Case Temperature
*Continuous Device Dissipation at (or below) 100'C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range
*Terminal Temperature Va Inch from Case for 10 Seconds

125V
SOV
SV
SA
1A
2A
• See Figure S
.30W
• 2W
-65°C to 175°C
-65°C to 200°C
230°C

NOTES: 1. This value applies when the baSB-emUter diode is open-circuited.
2. This volue opplles for Ip :0:; 0.3 ms, duly (hc
(hA

MAX
2.5
75

PARAMETER
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

UNIT
deg/W

·'ndicates JEDEC registered data

971

5-52

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N2150, 2N2151
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25·C case temperature
PARAMETER
Ion Turn-On Time
loff Turn-Off Time

TEST CONDITIONSt

Ie - 1 A, IBI1 ) - 100 mA,IB(2) - -100 mA,
V8E1off) = - 3.7 V, RL = 20 n, See Figure 1

2N2151
TVP

UNIT

130
1100

ns

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

~-_----oOUTPUT

•

820
INPUTo--~~~--~~

200

820

TEST CIRCUIT

+16V-~90%
I

I

-I V

1 10%

,I
-+l

_t",,~

I

INPUT
tolf

J.o-

I
IO%

~
I
OUTPUT
90%
VOLTAGE WAVEFORMS

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: 'r ~ 15 ns, If ~ 15 ns, lout

=

500, tp = 10 J1.s, duty cycle ~ 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: Ir ~ 15 ns, lin;::: 10 MO, (in ~ 11.5 pF.
C. Resistors must be nonindudiYe types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

5-53

TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TUNSISTORS
TYPICAL CHARACTERISTICS
2N2151

2N2150

STATIC FORWARD CURRENT TRANSFER RATIO

STA TIC FORWARD CURRENT TRANSFER RATIO

v.

vs

COLLECTOR CURRENT
VCE = 5 V
See Note. 5 aid 6

JJ.J

.2 60

lc

oj

~c _'lOolcl

~

50 L...- 1-1-

...~

1
a
11

40

COLLECTOR CURRENT
140

70

~

~,

---

I~ I-

Tc = 25·C

~

u

I- ... 1--

...
""

I

Ii

,:

,/

i

~

60

~0

40

0.04 0.07 0.1

0.2

0.4

0.7 1

-

0.02

2

1.0

VCE

.

•

1

~ 0.6

=5V

.......... ..........

........ .........

..........

I

~1

r--...

2

0.7 1

CASE TEMPERATURE

See Notes 5

r-.....

0.4

VI

CASE TEMPERATURE

I

0.2

,

=-SS·C

COLLECTOR-EMITTER SATURATION VOLTAGE

VI

........

TC

Th
\\

FIGURE 3

BASE-EMITTER VOLTAGE

~ r---....

~

-

Ic - Co lIector Cu rrent - A

FIGURE 2

0.8

--

0.04 0.07 0.1

IC - Collector Current - A

>

loIJ·~

T)=tl

,..,..- ~
_I--"

20

o

0.02

.. i-'

,..... ...

I

""~

o

.....

,/

V

Tc = -SS·C
10

J15~.~
:L..l

C..I.

"... ...--r

80

:>

i7;

~

~

100

~

~ 20

t

Tc;

~

11

30

j

VCE =5 V
See Notes 5 and 6

.2 120

r--.....

0•4

rd

6

~
~
IC - I

Ie

oS

I

=~O mA

......

r--...

~0.2

>

10
7

t

4

I

~

i"

2
18 = 0.2 A, Ie = 2 A

J/

0.7

li

0.4

fi

~
I

See Note. 5 and 6

~

~

.....

I - - 18- 0.7 A, Ie ~II A

0.2
0.1
0.07
0.04

=

18 - 2 mA, Ie - 20 mA

iiU 0.02
u

'!75

-so

-25
0
25
50
75 100
Tc - Ca.. Temperature _·C

125

150

:> 0.01
-75 -50

-25
0
25 50
75 100
Te -Case T_peroture _DC

125

150

FIGURE 5

FIGURE 4

NOTES, 5. Th... param.'.rs musl b. m.asur.d using p.l" lachnlquos. Ip

= 300 1", duly cyd.

~

2%.

6. Th ... param.'.rs ... m....red wllh voltago-s.n,lng canl.cI, ..par.'. from I•• c.rronl-carrylng cDnlacl••

971

5·54

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N2150, 2N2151
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLT AGE
vs
BASE-EMITTER RESISTANCE
~ 1.2
Ie =30mA
:I

..

:>

Te = 25·C

I

8, 1.0
.l!
c: 0.8

j

~

•

See Note 5

"

~

.:0

1000

800

I

•
~

~

!

"""

::

~ 0.4

600

V(BR)CER at R BE = 100 kQ '" V(BRICEO

]

1111111

200

u 0.2

11111111

-

r--.

100
I k
10k
Base-emitter Resistance - Q

~

I'r--

Cobo (IE = O)

11111111

II lilli' ""'"'' ""'"'' " """
10
RBE -

"

400

j

o

01

C;bo (Ie = O)

r-...

Q.

]

J

.........

...

0.6

11111111

~

f ~ I M~z
TC = 25·C

2

100 k

r- l-

t-

4
10
Reve ... Bias Voltage -

FIGURE 6

-

~

20
V

40

.,

FIGURE 7

NOTE 5: This parameter must be measured using pulse techniques: tp

=

300 J1.s, duty cycle ~ 2%.

MAXIMUM SAFE OPERATING REGION

10

7

,
4

«

,,

I

-.).

1
2

1

o-C Operation
~
tp = I ms, d= 0.5 (50%)
"/
Ftp 0.3 ms, d - 0.1 (IO%)

11,

K,
,

0.7

J

I

0.4

~

~

0.2

Tc '" 100°C

MAX VCEO -

I

O. II

1-(

2
4
7 10
20
40
70 100
VCE - Colleetar-Emitter Voltage - V
FIGURE 8

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·55

TYPES 2N2150, 2N2151
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION

PEAK-POWER COEFFICIENT CURVE

DISSIPATION DERATING CURVE
0.7

~

1:

~

g

•5 15

·u"
]

~

"\

~

§ 10
E

1I

I

5

100

Tc -

125

~

150

Co,e Temperature

1 '"'

0.2

0.1
.....:.~ 0.07
...il

~ 0
75

0.50 50% Duty Cycle

0.4

0.07

--

o

~

175

tp

0.02

:rt

0.01

0.020.04

T =

0.1

_·c

PTlavl
Prima,)
6J.A
6J. e
6e •A
ge . Hs
9HS .A

VALUE

UNIT

Average Power Dissipation

W
W

75

degjW

Thermal Resistance

2.5

degjW

Case-to-.Free-Air Thermt;ll Resistance

72.5

deg/W

Jundion-to~Ca$e

Cose-Ia-Heal-Sink Thermal Resistance

deg/W

Heol-Sink-to-Free-Air Thermal Resistance

degjW

°c
°c

TA
Te

Free-Air Temperature

TJ(av)

Average Junction Temperature

:0:; 175

TJ(max)

Peak Junction Temperature

:0:; 175

K

Peak-Power (oeffleient

'p

Pulse Width

ms

Pulse Period

ms

"

d

(ase Temperature

°c
°c

See Figure 10

Du'y·Cycie Ratio (tp/")

Example - Find Pl(ma,) (design limit)
OPERATING CONDITIONS:
(Je.Hs + (JHS.A = 4 deg/W (From information supplied
with heat sink'>
TJ(av) (design limit)
TA'= SooC
d = 10% (0.1)
tp = 0.1 ms

5·56

= 17SoC

-

4

7 10

20

Pulse Width - ms

Equation No. 1 - Application: doc power dissipation,
heat sink used.
PT(av)

= (JJ.e

P
Tlavl

= TJlavi - TA for 250C < T < 17SoC
(J J.A
- A-

Equation No.3 - Application: Peak power dissipation,
heat sink used.
TJlma,) -TA
f
°
P
_
Tlmax) - d ((Je.HS + (JHS.A) + K (JJ.e or 100°C :0:; Te :0:; 17S C
Equation No.4 - Application: Peak power dissipation,
no heat sink used.
_
TJ(max) - TA
PT(m,,) - d (J
+ K (J
for 2SoC :0:; TA :0:; 175°C
J·C
e·A

Solution:
From figure 10, Peak·Power Coefficient
K = 0.11 and by use of equation Na. 3

PT(max) =

DALLAS, TEXAS 75222

TJlav) - TA
for 100°C :0:; Tc :0:; 17SoC
(JC.HS + (JHS.A as in figure 9

+

Equation No.2 - Application: doc power dissipation,
no heat sink used.

PT(max)

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

Thermal time constant~; ms

FIGURE 10

Peak Power Dissipation
Junction-to-Free-Air Thermal Resistance

width in ms

0.2 0.4
tp

SYMBOL DEFINITION
DEFINITION

= Pulse

d = Duty cycle ratio

FIGURE 9

SYMBOL

I-I--

10.04

'"

d «(Je.Hs

+ (JHS_A) + K (JJ.e

175- SO
0.1 (4) + (0.11) 2.S

= 185 W

PRINTED IN USA
Tf (annat assume any responsibility for any circuits shown

971

represent fhol they ore free from po'enl infringement.

TEXAS INSTRUMENTS RESERVES IHE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 2N2880
N-P-N EPn AXIAL PLANAR SILICON POWER TRANSISTOR

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

30 W at 100°C Case Temperature

•

Max VCE(sat) of 0.25 V at IC = 1 A

•

Max tr of 80 ns at I C = 1 A

•

Min fT of 50 MHz at 10 V, 1 A

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

3-COL1ECTOR
0.175 NOM
(SEE NOTH A & 8)

1()'32 UNF.2A
MAX STUD TORQUE,

IS IN.las

ALL lEDEC TO-Ill
DIMENSIONS AND
NOTES ARE
APPLICABLE
NOTES:

A. Position of terminals with respect to hexagon is not controlled.
B. Terminals located on true position within 0.030 inch relative to diameter of can.

t •

C. This dimension applies to the location of the center line of the terminals.
D. The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
E. All dimensions are in inches unless otherwise specified.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
*Safe Operating Region at (or below) 100°C Case Temperature
*Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds

NOTES:

1.
2.
3.
4.

This value applies
This value applies
Derate Jjnearly to
Derate linearly to

100 V
80V
8V
5A
0.5 A
See Figure 7
30W
2W
-65°C to 200°C
-65°C to 200°C
. . . . 230°C

when the base-emitter diode is open-circuited.
for tp ~ 1 ms. duty cycle 50%.
200De case temperature at the rate of 0.3 WIDe.
200 0 e free~air temperature at the rate of 11.4 mW/De.

<

*JEDEe registered data

1269

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·57

TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CBO
V(BR)CEO

Collector-Emitter Breakdown Voltage

IC= lOI'A,

IE =0

IC= 10mA,

IB =0

IC= 100mA,

IB =0

MIN MAX
100
See
Note 5

UNIT
V

BO

V

70

V(BR)EBO

Emitter-Base Breakdown Voltage

IE = 10,uA,

IC=O

ICBO

Collector Cutoff Cu rrent

VCB=60V,

IE =0

0.1

I'A

ICEO

Collector Cutoff Current

VCE = 50 V,

IB=O

100

I'A

VCE = 100 V,

VBE = -0.5 V

10

VCE = 60 V,

VBE =-0.5 V, TC = 1500C

50

ICEV

lEBO

I

TEST CONDITIONS

Collector-Base Breakdown Voltage

hFE

VBE

VCE(sat)

Collector Cutoff Current

Emitter Cutoff Current

Ihfe l

IC=O

0.1

IC= 0

10

VCE = 2 V,

IC = 10mA
IC= 1 A

Transfer Ratio

VCE =5V,

IC=5A

Small-Signal Common-Emitter
hfe

VEB= 5V,

VCE=2V,

Collector-Emitter Saturation Voltage

Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio

V

VEB = 8V,

Static Forward Current

Base-Emitter Voltage

8

VCE = 2 V,

IC= 1 A,

IB = l00mA,

IC= 1 A

VCE =2V,

IC = 1 A

I'A

I'A

30
40
See Notes
5 and 6
Tc = -55°C

120

15
10
1.2

See Notes
5 and 6

IB = 100mA,

IC= 1 A

IB =500mA,

IC=5A

VCE =5V,

IC = 50mA,

f = 1 kHz

VCE = 10V,

IC= 1 A,

f= 10MHz

VCB = 10V,

IE =0,

f= 1 MHz

V

1.2
0.25

See Notes
5 and 6

V

2
40

140

5

Common-Base Open-Circuit
Cobo
NOTES:

Output Capacitance

150

pF

5. These parameters must be measured using pulse techniques, tp = 330 ,",s, duty cycle ~2%.
6. These parameters are measured with voltage--senslng contacts separate from the current--carrylng contacts.

thermal characteristics
PARAMETER

MAX

6J-C

Junction-to-Case Thermal Resistance

3.33

6J-A

Junction-to-Free-Air Thermal Resistance

87.5

UNIT
°C/W

°JEDEC registered data

,1269

5-58

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
* switching characteristics at 25°C case temperature
PARAMETER
tr

Rise Time

ts

Storage Time

!t

Fall Time

TEST CONDITIONS
IC~lAt,

VCC~25V,

MAX

UNIT

80

ns

See Figure 1

60

ns

80

ns

tThis value of on-state collector current is nominal. Actual value will vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

lN914
OUTPUT

20n

•

INPUT Q----it---l t---.AAIV-----...-I'...-f--~f-+_I

200n
+
50n

-=-

100n

25 V

lN9141;!

TEST CIRCUIT

50V---~90%

I

0--

INPUT

I

. --t l-- \--t~
-... 101-- t f

tr

-10%~1
10%
I

I

90%

OUTPUT

90%

VOLTAGE WAVEFORMS

FIGURE 1

NOTES:

a. The input waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf ~ 15 ns, Zout
tp = 10 ,",S, duty cycle ~ 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics; tr <; 15 ns, Rin
1 MO. Cin ~ 15 pF.
c. Resistors must be nonlnductive types.

= 1.5 kil,

>

*JEDEC registered data

1269

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·59

TYPE 2N2880
N-P-N EPn AXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO
YS

COLLECTOR CURRENT

160

ia:

140

!;

'to

"
I!

."

120

I-

t
"

()

"E

~

u.

~"
'1w

•

100
80

-L .l-l+t

40

u. 20

.t:

o

See Notes 5 and 6

- TC = jJJJ .

I

-

~

f.-

\

-

TC = 25°C.

60

VCE=2V

TC= 150°C

0

I-

~

~

~

I--

_lltt
TC=-55°C

0.04

0.01

0.1

0.2

\
r-..~

2

0.4

4

710

I C-Collector Current-A
FIGURE 2

BASE-EMITTER VOLTAGE

1.2

~
1.0

>I

8.
B

0.8

0

Iii

.~

III

CASE TEMPERATURE

IJ=5~

-......:;...

- --

I"'--- '-..... ...... i'-.............
~

0.6

t--...

Ie = 50mA

>
I
8.

I

VCE = 2 V
See Notes 5 and 6

I

r-.... -........:

w

~OJ

vs

CASE TEMPERATURE

Id=l::--

>

COLLECTOR·EMITTER SATURATION VOLTAGE

vs

'-.....

>

r--

0.4

I

~
.~E

r-.... ----......

w

III

-

""-

'0.2

IB =0.1 A,IC= 1 A

0.07

M
;3

0.04

iiii

0.02

IB =5 mA,lc= 50 mA

()

>

o
-75 -50 -25

0

25

50

75

100 125 150 175

sei NotjS 5 Td 6
0.01
-75 -50 -25

T C-Case Temperature-°c

0

25

50

75 100 125 150 175

T C-Case Temperature-° C

FIGURE 3

NOTES:

--- -

..........

I

0.2

I--

0.1

.:.

e

w

>

IB = 0.5 A, IC = 5 A
0.4

.~"

'-.....

I'--

0.7

B

0

FIGURE 4

5. These parameters must be measured ",sing pulse techniques. tp = 330,u" duty'cycle "2%.
6. These parameters are measured with voltage'*Sensing contacts separate from the current-carrving contacts.

1269

5·60

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPE 2N2880
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER

COMMON-BASE OPEN-CI RCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLTAGE

BREAKDOWN VOLTAGE

vs
BASE-EMITTER RESISTANCE
1200

1.2

1,'.IC~
.'111'

i TC ~ 25° C
1.0

.......

1000

See Note 5

0.8

f ~ 1 MHz
T C ~ 25°C

10mA

'"

BOO

LL
0.

"-

I\.

I

"c0

19

O.S

\,.

i'

SOO

·0

(lC~O)

C· b
,,' 0

.

to
0.

u

400

0.4
V(BR)CBO ",V(BR)CER at RBE ~ 1

n
200

0.2

o

t--

Cobo (IE ~ 0)
"1-fI

r-

II

0

1

10

1k

100

10 k

100 k

2

4

7

10

--

20

Reverse Bias Voltage-V

RBE-Base-Emitter Resistance-D.
FIGURES

FIGURES

NOTE 5: These parameters must be measured using pulse techniques. tp = 330 ;.LS, duty cycle ~ 2%.

40

70 100

•

*MAXIMUM SAFE OPERATING REGION

10
7

TC';;:; 100°C

....

4

«

1-c
~::I

u
20

.!!!

0

U

I

_u

I""'\.

2 D-C OPERATION
:::::;:::::t
0.7 = p
0.4 - t
p
0.2

.

~

I1 ms,I dI I0.5 (50%) "- ......... ~\.
0.5 ms, d

0.1 (10",1,)-

"1'\

\.

1'1

0.1
0.07
0.04

MAX V CEO

0.02

I In

I

0.D1
1

2

4
7 10
20
40
V CE -Collector-Emitter Voltage-V

70 100

FIGURE7

*JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-61

TYPE 2N2880
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
PEAK-POWER COEFFICIENT CURVE

DISSIPATION DERATING CURVE
35

0.7

~Cl

30

''211

~

25

C
~

.

il

e 15

.~

8

E 10
:J

E

'ij

•

"""

i

o
50

75

125

100

150

FIGURE 8

"

0,01

200

Average Power Dissipation
Peak Power Dissipation

Junction-to-Free·Air Thermal Resistance
Junction-to-Case Thermal Resistance
Case-to-Free-Air Thermal Resistance

87.5

3.33
84,;7

Case-to-Heat-Sink Thermal Resistance
Heat-Sink-to·Free-Air Thermal Resistance

TC

Free-Air Temperature
Case Temperature

TJ(av)

Average Junction Temperature

TJ(max)

Peak Junction Temperature

0.1

0.07
0.05

1-e tp/T

l.,..;

~..- r.;.. /

~
()~...

0.04

0.1

/

:--

0_2

K

1_e-tpidT

tp = Pulse width in ms
d = Duty cycle ratio
r= Thermal time constant = 10 ms
0.4

2

4

7 10

20

40

tp-Pulse Width-ms
FIGURE 9

Equation No.1-Application: d·c power dissipation. heat sink used.

~lma"J

9C-HS
9HS-A
TA

..... 1--'
',/

~

111111

0.02

VALUE

DEFINITION

9J_A
9 -C
9c_A

duty cycle

0.10 (10%)

~ 0.04

SYMBOL DEFINITION

PT(av)

0.25 (25%

~0,07

175

T C-Case Temperature-oC

SYMBOL

0.2

l

\.

5

:E
I

.t'

~c3

~

20

fi~~1I(50%)

1:

"

.~

0.4

<;;200
<;;200
See Figure 9

UNIT

W
W
°CIW
°C/W
°C/W
°CIW
°CIW

°c
°c
°c
°c

K

Peak·Power Coefficient

tp

Pulse Width

m.

tx
d

Pu lse Period

m.

Duty-Cycle Ratio (to/. x )

T J(av) - TA
for 100°C ";;TC < 200°C
PT(av) = 8J-C + 8C-HS + 8HS·A as in Figure 8
Equation No.2-Application: d-c power dissipation, no heat sink
used.
PT(av) = T J(';'l- T A for 25°C ";;TA";; 2000C

·A.

Equation No_ 3-Application: Peak·power dissipation. heat sink
used.

Equation No.4-Application: Peak-power dissipation, no heat sink
used.
TJ(max) -TA
0'
PT(max) = d8C-A + K8J_C for 25 C oi;;;T A";; 2000C

Solution:
From Figure 9, Peak·Power Coefficient
K = 0.103 and by use of equation No.3

Example-Find PT(max) (design limit)
OPERATING CONDITIONS:
8C-HS + 8 HS-A = 3.8°C/W (From information supplied
with heat sink.)
TJ(av) (design limit) = 2000C
TA =500C
d= 10% (0.1)
tp= 0.1 ms

TJ(max) -TA
~(max)------------------­

d(8C-HS + 8HS-A) + K8J-C
200-50
_
P
_
T(max) 0.1 (3.8) + 0.103(3.33) - 207 W

PRINTED IN U.S.A.

5-62

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS, TEXAS 75222

1269

TI (annot assume any responsibility for any circuit1 shown
or represent thot they ore free hom po lent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.

TYPES 2N2987 THRU 2NZ994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANmlORS

HIGH-FREQUENCY INTERMEDIATE-POWER TRANSISTORS
•
•
•
•

15 Watts at 100°C Case Temperature
Typ VCE(sat) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA

* mechanical data
2N2987
THRU
2N2990

I

0;:
0

,

I

1.5

~OJJ5

~

0100 MIN

/'\\\'\.-

1~-J-1 ~ ~

O~T~~Lszg~EO~~~:~~~~

,-.'\(

~

=t=L

I

SEATING

I

.?:
0200

3 LEADS

~.~;:

OIA

2 BASE

l;/~ 0.045

/

0.029

"
_0034
45··y
002iI

1 EMITTER

PlANE

CASE TEMPERATURE IS MEASURED 0.144 INCH

....
:0

3 COlLECTOR

== T'

0.335 0.305 0IA
OIA

MIN ~

i: TEMPERATURE
,-~M'" ~

±

0.010 INCH DOWN FROM TOP OF CAN

2N2991
THRU
2N2994

THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
ALL JEDEC TO-S DIMENSIONS
AND NOTES ARE APPLICABLE

•

ALL OIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED

THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE

g:::~ tTI!r:I
10303

i

POSITION OF THE LEADS IN RELATION
TO THE HEX IS NOT CONTROLLED

1-1.50 MIN1

I

NC'10_32UNf_2~111111 ~DIA
:I LlADS

MAXIMUM RECOMMENDED MOUNTING
TORQUE, 15 IN.-LB_

THIEAD

001'. MAX

AU DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE

TEMPERATURE MEASUREMENT POINT

I
!

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N2987 2N2988 2N2991 2N2992
2N2989 2N2990 2N2993 2N2994

* Collector-Base Voltage
95V
155V
95V 155V
* Collector-Emitter Voltage (See Note 1)
_ 80 V
100 V
80 V 100 V
* Emitter-Base Voltage _
. (
7V
>
* Continuous Collector Current
(
1A
Peak Collector Current (See Note 2)
(
1.5 A ----..r>
* Continuous Base Current.
0.2A---~)
<
Safe Operating Region at (or below) 100°C Case Temperature.
See Figure 10
* Continuous Device Dissipation at (or below) 100°C Case Temperature
(See Note 3)
. ~(c------- 15W---+>
* Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4)
. ~ 1 W -->- ~ 2 W -->* Operating Case Temperature Range .
.+-- -65°C to 200°C ---+
* Storage Temperature Range.
. +-- -65°C to 2000C ---+
* Lead Temperature ){. Inch from Case for 10 Seconds
. (
230°C
>

NOTES: 1.
2.
3.
4.

This value applies between 1 rnA and 30 rnA collector current when the base-emitter diode is open-circuited.
This value applies for tp ~ 0.3 ms, duty cycle S 10%.
Derate linearly to 200°C case temperature at the rale of 150 mWjdeg.
Derate linearly to 200°C free·air temperature at the rale of 5.7 mW/deg for the 2N2987 through 2N2990 and 11.4 mW/deg for the 2N2991 through 2N2994.

*'ndicotes JEDEC registered data

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-63

TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)

Colledor-Emitter
V'IRICEO Breakdown Voltage
ICEO

ICEv

lEBO

•

hFE

VIE

VCE,..t)

hfe
Ihfel

c.....

2N2987 2N2988 2N2989 2N2990
2N2991 2N2992 2N2993 2N2994 UNI
MIN MAX MIN MAX MIN MAX MIN MAX

TEST CONDITIONS

PARAMETER

Ic - 30 rnA, I. - 0,
See Note 5
VCE = 50 V, I. = 0
Colledor Cutoff Current
VeE = 90 V, I. = 0
VCE = 90 V, VIE = -1.5 V
VCE = 150 V, VIE = -1.5 V
VCE - 90 V, VIE - -1.5 V,
Colledor Cutoff Current
Tc = 175°C
VCE ~ 150 V, VIE - -1.5 V,
Te = 175°C
Emitter Cutoff Current
VE• = 7 V, Ic = 0
VCE - 5 V, Ic-lmA
VCE = 5 V, Ie = 200 rnA,
See Notes 5 and 6
VeE = 5 V, Ic = 500 rnA,
Static Forward Current
See Notes 5 and 6
Transfer Ratio
VeE = 10 V, Ie = 100 rnA,
See Noles 5 and 6
VCE = 5 V, Ic = 200 rnA,
Te = _55°C,
See Notes 5 and 6
VCE - 5 V, Ie - 200 rnA,
See Notes 5 and 6
I. - 20 rnA, Ic = 200 rnA,
Base-Emitter Voltage
See Notes 5 and 6
11 = 50 rnA, Ic = 500 rnA,
See Notes 5 and 6
I. - 20 rnA, Ic - 200 rnA,
See Notes 5 and 6
Collector-Emitter
Saturation Voltage
I, = 50 rnA, Ic = 500mA,
See Notes 5 and 6
Smail-Signal Common-Emitter VCE - 10 V, Ic -IOOmA,
Forward Current Transter Ratio f = I kHz
Smail-Signal Common-Emitter VeE - 10 V, Ic -IOOmA,
Forward Current Transfer Ratio f=30MHz
Common-80se Open-Qrcuit
VCI - 10 V, IE- 0,
f = I MHz
Output Capacitance

HOTES, S. The.. poramet." must b. m.asured .sl.g p.lst tech.lq .... tp

80

100

80

0.1

100

0.1

0.1

25

25
25

15

15

15
25

25

25

20
75

25

/LA
15
25

25
40

75

60

120

60 120

20

40

40

25

25

50

50

10

10

20

20
0.9

0.9

0.9

0.9

I

1

1

1.4

1.4

1.4

1.4

0.8

0.8

0.8

0.8

3

3

3

3

85

25

85

50

50

170

50

1 V

50

V

170

I

I

I

I

nA

40

20

25

/LA
nA

25

20

V

0.1

50

50

pF

= 300 p.s, d.ty cycle :5: 2%.

6. These parameteR art Aleasur. with volta ....senslng contads separate from the currenl-carrying (ontacts.

"I.dicatts JEDEC ",Istered data

thermal characteristics
PARAMETER

(hc Junction-to.(ase Thermal Resistance
(hA Junction-to-Free-Air Thermal Resistance

2N2987
THRU
2N2990
MAX

2N2991
THRU
2N2994
MAX

UNIT

6.67
175

6.67
87.5

deg/W

971

5-64

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature
TEST CONDITIONSt

TYP

UNIT

200 rnA, IBll1 = 20 rnA, IBI21 = -20 rnA,
VBEloffl = -3.4 V, Rl = 150 n.See Figure I

0.14
2.6

Jl-S

Ie

=

tVoltage and cUTrenl values shown are nominal; exacl values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

INPUT

1500

o-_.-'Wv-....;;
510

•

r-_.-----o OUTPUT

1 kO

3000

+
-=-30 V

TEST CIRCUIT

+37.3 V

---~.y9u0"70%

-0.1 V

-:J.10%!L
I
I

~ton

f-t- --i toff

~I

INPUT

j..-

10%..y-

90%~

OUTPUT

VOLTAGE WAVEFORMS

FIGURE 1

NOTES: a. The input waveform Is supplied by a generator with the following charaderistlcs: Ir ~ 15 ns, tt ~ 15 os, lout

b. Waveforms af, monitored on an oscilloscope with the following characterislics: 'r'::::; 15

RS,

= '50

0, tp

=

10 p.s, duty cycle ~ 2%.

Rin ~ 10 MO, (in ~ 11.5 pF.

c. RHistors must be noninduclive types.
d. The d·c power supplies may require additional bypassing in order 10 minimize ringing.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-65

TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N2989. 2N2990
2N2993. 2N2994

2N2987. 2N2988
2N2991. 2N2992

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
180 ...---,---'-"'r"""T"""''''TTr---,---,--,r''''''T'''''''rTT'I
~CE ~5~ I I "I

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100

!°

----

80

~c

TC

e

~

1:

60

~

160
1""00..

= 100·C

II

-~

~

1!a

!

40

°
.!!
u-

Tc

:f

'"

.......-10-

20

w
u-

-

1----t--i Tc

.......

~,

120 1----t--i-i~~1+t_--~~~~~~

.J

a~

100

t:::~~~~;,4tf===~:j~~~ltil~
-N

80~-+~~~~--~-W~~~

]

60

u

a
on

40

r---r-ir-r+~~+----r-i-i~~+H

b-__~-+T~c*=~-~5~5.~C~====~~4\~~~

I

20 1-----t--i~~~1+t_--_+_i-4~~~

.s;

OL-_...L--L.-L....I....I...J..L.u...._-L......J......J....J....L.J...u.J

0.02

0.04

0.1

0.7

0.2
0.4
Ie - Collector Current - A

0.01

I

0.02

0.04

-- -

1.0

...........

0.8

I'-...

........

0.7

~

I

~ 0.6

t"---...

0.5

1

l7

K ..........

...........

-

............

---

I 0.3
0.2
0.1

o
-75 -50

I

4

>

0.4

ll!

0.7

0.4
A

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

r-- r-.-S;:.:otes 5 and 6
I"'-- :-...

= I mAo IC =10 ,.;;:-....
IS =20 mA, IC = 200 mAl'
18

0.2

FIGURE 3

18 = 50 mAo IC = 500 mA

0.9

0.1

Ie - Collector Current -

SASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE

>

'~

Te 1= 151

;

I'-r-.

-......t\

I II

FIGURE 2

'E

I](~I;!~-H-r-....-=....r-+-+-H-+++l

~

0.01

~

and 6

ie

\

= -55

I - - See Notes 5

140 1----I--ITe 1=

o

!

= 150.C

j

.s;

>

IIJ.JJ

°

-

TC • 25·C

a

•

VCE =5V
See Notes 5 and 6
TcUJJl

I
18

'0

'= 50 ~A,

Id = 506 mA

>

i

0.7

.i!
a

0'.4

:I:

0.2

'"Ii
'E
I

!l

~

~

-IS = 20 mA, IC - 200 mA

w

.e

-

See Notes 5 and 6

2

I"

0.1

=

Isl= I

~A, I~= 10 LA

0.07

8, 0.04
10.02
>'(3

-25
0
25
so 75 100
TC - Case Temperature - ·C

125

150

0.01
-75

-SO

-25
0
25
SO
75 100
TC - Case Temperature - ·C

FIGURE 4

125

150

FIGURE 5

NOTES: 5. These parameters must b. measured using pulse techniques. 'p

=

300 p.s, duty cycle

s;:

2%.

6. Thes. parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

971

5-66

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 7!5222

TYPES 2N2987 THRU 2N2994
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

~

vs

vs

REVERSE BIAS VOLTAGE

BASE-EMITTER RESISTANCE

1.2

200

I

J
I

& 1.0

r-...

j!

Ilc tll\l! mil
Tc = 25·C

180

See Note 5

160

~

... 140

i

.I 120

~ O.S

~

a:.

t\

§

'u
8.

r-..
~

'.(MICER

01

13

Rae = 100 kO" V(IRICEO

.".

0.2

=0)

i'.
~

SO

40

--.... I""-

.... Coba (IE

o

= 0)

"'"

20

~

1
z

Ciba (IC

'-

0
1

10
10 k
100
1k
RIE - Base-Emitter Resistance - Q

100 k

2

4

111111

FREQUENCY

- ""'r-.

I

IlIIII=J

Vce= 10V

CE
IC = 100 mA

r\.

IC = 100 mA

"\

TC =25·C

'\

Te= 25°C

r\.

i\.
~

~

f\,

f\

'\

1\
o
I

1\
l'

~

..!.

1.

•

vs

FREQUENCY

"'-

40

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

vs

a

20

2N2989, 2N2990
2N2993, 2N2994

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

:a
"'40
~,g3S

10

FIGURE 7

2N2987, 2N2988
2N2991, 2N2992

"'"I

7

Reverse Bias Voltage - V

FIGURE 6

~

f-

100

60

~

~

TC = 25·C

u

~

~ 0.4

"'- . . . 1'....

"-

0.6

.£

I

f= 1 MHz

0
0.1

0.4

4

10

40

100

0.4

4

10

40

100

1- Frequency- MHz

I-Frequency-MHz

FIGURE 9

FIGURE 8

NOTE S. This p.ram,ter musl be measured using p.l.. It
.!

Ii

50
75
100
125
150
T" - Free-Air Temperature _·C

175

200

j

1.0

!i

0.8

.s

""

lO.6
I

0.4

"'- ~
,

,.:- 0.2

a

o

\..

"\.
25

50
75
100 125
150
T" - Free-Air Temperature _·C

175

200

FIGURE 12

FIGURE 11

971

5-68

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N2987 THRU 2N2994
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

16
~

I

'" '"

0

l12
is
~ 10
~
!l 8
0

~

.5

6

E
~
E

4

c

.~

~ 0.2

I

_
J,0.07
0.1

\.

'" '\
r\.

2

~

125

100

oIJW. _~
J£ ~IEiP'~ffimt§

.3

.~

~

0.50 (50% Duty Cyel e

0.4

"r\.

;:

5
u

0.7

"-

14

c:

150

Tc - Case Temperatur. -

I--

o0
I 0.04 ~
0.02

1..7 ~ K -

V

ffi

0.01

1

I--

t. = Pulse width in ms

I--

d = Duty cycle rotio

'--

T

l_e-t~dT

= Thermal
.1

0.020.04

O. I

time constant =5 ms
,I

0_ 2 0.4

Pulse Width -

tp -

·C

~

-tp/T

~-:.e..,:..,..,.-

VI

~

><

200

175

0.07
0

7 10

20

ms

FIGURE 14

FIGURE 13
SYMBOL DEFINITION
VALUE
SYMBOL

PT(av)

DEFINITION

2N2987
THRU
2N299o

2N2991
THRU
2N2994

Average Power Dissipation

UNIT

W

Prlmax)

Peak Power Dissipation

OJ./>.
OJ_C
OC-A

Junction-fo-free-Air Thermol Resistance

17S

87.S

deg/W

Junction-Io-Case Thermal Resistance

6.67

6.67

deg/W

Case-Io-Free-Air Thermal Resistance

168

81

deg/W

W

OC-HS

(ase-to-Heal-Sink Thermal Resistance

deg/W

OHS-A

Heal-Sink-to-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

TC
TJlovl

(ase Temperature

TJjmax)

Peak Junction Temperature

Average Junction Temperature

°c
200
200

°c
°c

K

Peak-Power Coefficient

Pulse Width

ms

t,

Pulse Period

ms

d

Duty-Cycle Ratio (t.lt,)

See Figure 14

Example - Find PT(maxl (design limit)
OPERATING CONDITIONS,

+ 8Hs- A =

TJlavl (design limit)
TA = SooC
d
10% (0.1)
tp = 0.1 ms

=

Equation No. 1 - Application: doc power dissipation,
heat sink used.

Prlavl = OJ-C

S

200 0 C

S

Tc S; 200 0 C

+

Equation No.2 - Application: doc power dissipation,

no heat sink used.

Equation No.3 - Application: Peak power dissipation,
heat sink used.

7 deg/W ( from information supplied
with heat sink)
200'C

_

Prima,) -

TJ(max)- TA

d (OC_HS

+

+

OHS-A)

0

K OJ_C for 100 C

Equation No.4 - Applicotion: Peak power dissipation,
no heat sink used.

PT(max\

Solution:
From Figure 14, Peak-Power Coefficient
K = 0.11 and by use of equation No.

Prima'i = d (OC_HS

=

971

TJlavl- TA
for 100 0 C S TC
OC-HS
OHS-A as in figure 13

+

·C

S
S

t.

OC-HS

•

Prlm"l

TJlmaxl-TA
OHs_",l + K OJ_C

+

200 - SO
0.11 (6.67)

= 0.1 (7) +

= IDS W

PRINTED IN U.S A.

TI (annal aHume any respon~ibilily for any circuits shown
or represent that they ore free f~om polenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5-69

•

5·70

TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

Max toff 400 ns at IC = 1 A

•

3-A Rated Continuous Collector Current

•

25 Watts at 25°C Case Temperature

•

Min fT of 60 MHz at 15 V. 0.5 A

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

O'525

~
O
o

-1
M'N~
~--0_'2_50_j-+ro=r-I~~~DIA
~
0.450

R MAX

0

r-0.312

1.573 MAX

2 LEADS

o~

1.050 MAX

-£

MAX

0.225

OlA
-'--_ _
~__

BOTH ENDS

h
-I
I

0.188 R MAX

0.135 MAX

0.205

0.675

~

~:~~~
_ EMITTER

"/~, \,~

------=r - 0-',-it

-"
0 . 4 4 0 ' 1 ~I
0.420

I

0.200
SEATING PLANE
1 - BASE

~

,- 0 -

t

I

r-

•

0.161 DIA
0.151
'1 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3021 2N3022 2N3023
2N3024 2N3025 2N3026

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

-30 V -45 V -60 V
-30 V -45 V -60 V
-4V
-4V
-4V
_-3A_
--0.5 A See Figures 3 thru 5
-25W-65°C to 175°C
-65°C to 175°C
-250°C-

1. These valUes apply when the base-emitter diode is open-circuited.
2. For operation above 25°C case temperature, refer to Dissipation Derating Curve, Figure 6.

·JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5-71

TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics of 2N3021. 2N3022. 2N3023 at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
Collector-E mitter
V(BR)CEO

Breakdown Voltage

Collector Cutoff Current

ICEV

Emitter Cutoff Current

lEBO

Static Forward Current
hFE

Transfer Ratio

Base-Emitter Voltage

VBE

Collector-Emitter
VCE(sat)

•

Saturation Voltage

IC= -l00mA,

IB = 0

IC= -50mA,

IB = 0

IC= -20mA,

IB = 0

VCE = -25 V,

VBE = 2V

VCE = -40 V,

VBE = '!V

VCE =-54V,

VBE = 2 V

VCE = -15 V,

VBE = 2V,

TC= 150°C

VCE =-25V,

VBE = 2 V,

TC = 150°C

VCE =-35V,

VBE = 2V,

TC= 150°C

VEB = -4 V,

IC=O

2N3021

2N3022

2N3023

MIN MAX MIN MAX MIN MAX
-30

See Note 3

-45

UNIT

V
-60

-0.2
-0.2
-0.2
mA

-2
-2
-2
-1
20

60

-1
20

60

-1
20

mA

VCE= -2 V,

IC = 1 A,

See Notes 3 and 4

60

IC = -3A,

IB = -0.3A,

See Notes 3 and 4

-1.5

-1.5

-1.5

V

IC=-3A,

IB = -0.3A,

See Notes 3 and 4

-1.5

-1.5

-1.5

V

VCE = -15 V,

IC= -0.5A,

f= 30MHz

Small-Signal
Common-Emitter

~fel

Forward Current

2

2

2

Transfer Ratio

*electrical characteristics of 2N3024. 2N3025. 2N3026 at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-E mittsr
V(BR)CEO

ICEV

lEBO

Breakdown Voltage

Collector Cutoff Current

Emitter Cutoff Current
Static Forward Cu rrent

hFE
VBE

Transfer Ratio
Base-E mitter Voltage
Collector-Emitter

VCE(sat)

Saturation Voltage

TEST CONDITIONS

2N3024

2N3025

2N3026

MIN MAX MIN MAX MIN MAX
-30

UNIT

IC= -100 rnA,

IB =0

IC= -50 rnA,

IB - 0

IC= -20mA,

IB =0

VCE = -25 V,

VBE = 2V

VCE - -40 V,

VBE - 2V

VCE - -54 V,

VBE - 2 V

VCE = -15V,

VBE - 2V,

TC = 150°C

VCE = -25 V,

VBE=2V,

TC = 150°C

VCE - -35V,

VBE - 2V,

TC - 150°C

VEB - -4 V,

IC-O

VCE=-2V,

IC= lA,

See Notes 3 and 4

IC - -3A,

IB - -0.3A,

See Notes 3 and 4

-1.5

-1.5

-1.5

V

IC=-3A,

18 = -0.3A,

See Notes 3 and 4

-1

-1

-1

V

VCE = -15V,

IC= -0.5A,

f= 30 MHz

-45

See Note 3

V
-60

-0.2
-0.2
-0.2
-2

rnA

-2
-2
-1
50

180

-1
50

-1

180 ,50

rnA

180;

Small-8ignal

~fel

Common-Emitter
Forward Current

2

2

2

Transfer Ratio
NOTES:

3. These parameters must be measured using pulse techniques. tw = 300 ,",S, duty cycle'" 2%.
4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body .

• JEDEC registered data

1271

5·72

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3021 THRU 2N3026
P-N-P SILICON POWER TRANSISTORS
*switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
IC--1 A,

Turn-On Time

ton

RL = 12 n,

MAX

IB(1) - -0_1 A, VBE(off) = 4 V,
See Figure 1

100
325

t.

Storage Time

IC--l A,

IB(l) - -0_1 A, IB(2) = 0_1 A,

tf

Fall Time

RL=12n,

See Figure 2

UNIT

n.

75

t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

". )

-12V
RL

12

OUTPUT

100 n

INPUT

+SV,

n
-11 V - -

~"'

J/

INPUT

___

•

~tr~

o--_"V'v--+i

I

'

:fiO%\

~10%
TEST CIRCUIT

'---=-

OUTPUT

VOLTAGE WAVEFORMS
FIGURE l-RISE TIME

-12V

+SV,
OUTPUT
100 n

-11

V- - ~___--"/sO%

INPUT

--Its ....

INPUT <>-_VV-__-t

41tf~

+3V ":'
TEST CIRCUIT

f9ci%\ : OUTPUT
----I
10%~
VOLTAGE WAVEFORMS

FIGURE 2-5TORAGE AND FALL TIMES

NOTES:

The input waveforms are supplied by 8 generator with the following characteristics: tr <. 10 ns, t, OS;;;; 10 ns,- tw ... 10
Zout = 50 n, duty cycle .. 2%_
b. Waveforms BrB monitored on an oscilloscope with the following characteristics: t, < 5 nli. Aln ~ 10 kil, Cin <. 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing •
8.

JJ,S,

• JEDEC registered data

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

5·73

TYPES 2N3021 THRU 2N3026
P-N-PSILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
2N3022. 2N3025

2N3021.2N3024
-100
-40
.

tw = 500 p5.

~y- tw =5 ms

"'Q

-0.4

8I

5j.1S ~

.tw-:50~

()

1)

.!!l

TC';;;25°C
See Note 5

-40

-

--

5
u

6

-100

ql}b ~\',.'.

"

1:
~

-10

-

-4

.....

:::l

u
~

-1

"'$01'.1
60Y
"-:::,!'~~~~ - \~ \

()~s
0

~"'qri"""""

c.r
!:? -0.1

~

-0.04

01)

-0.01

o

-5

o

-10 -15 -20 -25 -30 -35 -40

VCE-Coliector·Emitter Voltage-V

-6 -10-15 -20 -25 -30-35 -40 -45-60
VCE-Coliector·Emitter Voltage-V

FIGURE 3

FIGURE 4

~HERMAL

s:I

-100
TC ';;;25°C
See Note 5

-40

~
:::l

-4

~

-1

....c:I

.!!l

.~ 25

'iii

~~

i:5

1)""~oS~
~

.',
._~,~ k~ ~
'~":~tw=50Ps
~oS--:;g!s.~

()",

Q

-0.4

q

'=

~
or

~,..~
ql}b

!:? -0.1

">

\

'-

.s:.,2!
c

on

:::l

g

15

'g

,

8

\

E
:::l
E

.

-10 -20 -30 -40 -50 -60 -70 -80
VCE-Coliector·Emitter Voltage-V
FIGURE 5

[\.

10

'x

5

~

0

'"
:2

-0.01.

"" '\

20

c:

-0.04

o

30

c:

o

~

U

INFORMATION

CASE TEMPERATURE
DISSIPATION DERATING CURVE

2N3023.2N3026

-10

~,'~.\

-0.04

-0.01



j

0.1

0.2 OA

10

11111
11111

D.2
1

2

4

10

1.2
1.0

...
".! ...

".
,

0.8

~ lof-H-++HH!-~+H~-4~H+~
0.1 0.2 0.4

I ,..

Tc-:isIC "n

s.. Notes fi .nd 6

1.8

1.4

!

2.0
1.8

1.8

~
"~

>

Tc- 2Ii"C
S_Not8lSend6

1.8

11111111

li

J

2.0

TC -26·C

SN

COLLECTOR.eMITTER SATURATION VOLTAGE
w
COLLECTOR CURRENT

"

~
20

40

100

Ic-COllector Current-A

FIGURE 2

!£.'0
1'0 11

0.6

II

0.2

Ioh

f'\

IC" 5

'a
0.1 0.2 OA

1

2

4

10

20 40

100

'C-COllector Curnlnt-A

FIGURE 3

NOTES: 6. These parameteo must be measured using pulse techniques. 'tw = 300 /Js, duty cycle :e;; 2%.
6. These parameters are measured with voltaga... nsing contacts separate from the current-carrylng contacts and located within 0.125
inch from the device body.

671

5·78

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

OALLAS. TEXAS 75222

TYPES 2N3263, 2N3264, 2N3265, 2N3266
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

56 a.

Von = 25.5 V--;r;s---,;90%
OV-- ____ ~~
-6.3 V
1 10%
I
-I ton I-:\.-toff..l

INPUT

270 pF
lOa.

VBB2=
6.3 V

Vgen

+

-=- VCC= 30 V

~------------------------~----t+
VBB1" 27 V
ADJUST FOR
Von = 25.5 V AT
INPUT MONITOR
TEST CIRCUIT

NOTES:

~:r

OUTPUT
+

VOLTAGE WAVEFORMS

A. Vgen is a -30-V pulse (from 0 V) into a 50-0 termination.
B. The V gan waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf '" 15 ns, Zout = 50 fl, tw = 20 #JS,
duty cycle <; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r '" 15 ns, Rio ~ 10 MO, Cin .so; 11.5 pF.
D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

•

FIGURE 4

INDUCTIVE LOAD SWITCHING
VCE MONITOR

-..t

Ie-- tw '" 20 ps

~

INPUT 0
VOLTAGE
-5VTUT

f.---}-

100 ms

I

I

COLLECTo~OA~:1--"1- I-+

CURRENT

0

I I

VCC= 20 V-=-.

50 a.

(seeNoteAI

IC MONITOR

V(BRICEV

-I-- I

COLLECTOR
VOLTAGE
RS=O.l a.

I

l

I

I

I

- - - - -1-I
I
I

20V
VCE(satl-

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
NOTE A: Input pulse width Is increased until I eM

= 10 A.
FIGURE 5

671

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-79

TYPES 2N3263, 2N3264, 2N3265, 2N3266
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREA

2N3263,2N3264

2N3265,2N3266

100
70

100
70
Nonrepetitive Pulse Operat ion
tw = 250 ps, TC';;; 25'C

40

-

20

1
"~
(.)
"
(;

U
.!!!
0

t--

1
(.)

'\

2

4

.!!!

2

0

"-

D-C Operation
TC';;; 75°C

I

F

I'\.

~

I

!:!

0.7

2N3263
I
2N3264--1--

0.2

1-1..

(.)

0.7
0.4

•

~

~

I'\.

cr

!:!

10
7

"~
"

-- ...

~H

20

I----c--c D·C Operation
10
~TC';;;75°C
7

4

Nonrepetitive Pulse Operat ion
tw - 250 ps, TC';;; 25°C

40

0.4

2N3265

0.2

i't-

~N32~6

0.1

0.1

2

4

7

10

40

20

70 100

2

VCE-Coliector·Emitter Voltage-V

7 10

4

20

70 100

40

VCE-Collector-Emitter Voltage-V

FIGURE 6

FIGURE 7

THERMAL INFORMATION

FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE
5

160

~

"0

N.

li
0
1!
.:;;

..

~c:

140
120

0
.;::

f----

'S"
c:

80

(.)

0

60

E
E

40

"

'xIII

::;:
I

ln.

0.

4

..
..

I""

i5

•11

100

0

30

III

'iii

~N3265' 2N3266
ROJC';;; 1 ~C/W

~

'"

~"

>
0

"0
"

~

c:
.;::
c:
0

"

........

0
125

150

'I'..

2

E
E

1'-.........'"
100

~

u

l'...." l'.

20

75

3

~

2N3263, 2N3264 ~
ROJC .;;; 1.5° C/W

50

2N3265,2N3266

~JA .;;; 43.75 °C/W

I---

'xIII

175

200

T c-Case Temperature-° C
FIGURE 8

-

"'"

2N3263,2N3;;;~ 1--.

::;:

~

"l'..

I

,t-

I- R8JA .;;; 146°C/W
O

o

",

·,i

25

50

75

-'"

1-- ~

100

125

150

175 200

TA-Free·Air Temperature-oC

FIGURE 9

PRINTED IN U.S A.

5-80

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

671

TI cannol assume any responsibility for any circuits shown
or represent that they ore free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
...
'" '"
S
...m ...m~ ...m
'" Zz ...z

HIGH· FREQUENCY MEDIUM·POWER TRANSISTORS

..
..
...... ...'" ....
......... ...-....
.. ....
00(

Formerly TIX3033, TIX3034, TIX3035, TlX3036

~

»00(

•
•
•
•

=

15 watts at Tc 100°C
0.5 JL a at max voltage
VCE(sal}= 0.25 v max at Ic = 1 a
40 Mc min at 10 v, 100 ma

High.Power Dissipation in TO·5 Package:
Low.Leakage Current:
Low·Saturation Voltage:
High f T :

:0

~

~ !!'

0;- Z

.. ::0

:- z
c:

.

Z ,0

m

...... ......
~
:0 z

mechanical data
These transistors are in precIsIon welded, hermetically sealed enclosures. Extreme cleanliness during the
assembly process prevents sealed·in contamination. The approximate unit weight is 1.8 grams .

!J,l!!!t:tT5MIN~

0.240

,

TEMP

-.-----~_
~~~~~"M'N'

~O.335
O~!5 0.305 DIA

I

--L0.100 MIN

*THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.

=~
=~

,

B!:~
0.009

DETAILS Of OUTLINE IN
THIS ZONE OPTIONAL

=t

SEATING
PLANE

. ".

•

* ALL JEDEC TO-$ DIMENSIONS
AND NOTES ARE APPLICABLE.

o:ol"6
DIA

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current, Continuous .
Collector Current, Peak (See Note 2)
Base Current .
Safe Operating Region .
Total Device Dissipation at (or below) lOOoC Case Temperature (See Note 3)
Total Device Dissipatiom at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Case Temperature Range
Storage Temperature Range .
lead Temperature ){, I~ch from Case for 10 Seconds

2N3418
2N3420

2N3419
2N3421

85 v
60v

125 v
BOv

+---+---+---+----

--+
--+
--+

+---+----

--+

+----

--+

Bv ~
3a
Sa
1a
See Figures 8 and 9
15w
1w ~
-65°C to 200°C
_65°C to 200°C
230°C

NOTES: 1. These values apply when the bose-emitter diode is open-circuited.
2. This value applies fo( PW ::::; 1 msec, Duty Cycle::; 50%.

3. Derate linearly to 2000 e case temperature 01 the rale of O.lS w/Co.
4. Derate linearly fa 200°C free-air temperature at the rate of S.72 mw/Co,
*'ndicates JEDEC registered data.

971

TEXAS INSTRUMENTS
INCORPORATED

-POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·81

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N·P·N EPITAXIAL PLANAR SILICON MEDIUM·POWER TRANSISTORS
*electrlcal characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
IYCEO

ColI.dor·Emlller
Ireakdown Voltag.

2N3418
2N3419
2N3420
2N3421
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

TEST CONDITIONS
Ic =50ma, 1.=0,

500 No'e 5

YCE =80., YIE=-O.Sv
leex

Coltector Cu'off
CUrrtn'

80

60

hFE

I
VIE

Eml'ter Cutoff
Current

p.a

YCE -12O., VIE =-0.5.

0.5

Va=80v, YII =-0.5v, Tc =150·C

S,atlc Forward
Current Transfer
Ratio

Bas.·Emltter
Voltage

Y
ColI.ctor·Emlller
ahall Sa,uratlon Voltag.

Ihfel

SmaIl·Slgnal
Common-Emltftr
Forward Current

Vu =6v,

•

80
0.5

0.5

0.5

50

50

YCE = 120 v, YIE =-0.5v, Tc =I50·C
lEBO

60

50

50

"a

Ic=O

500

500

500

500

na

YEB=av,

Ic=O

10

10

10

10

poa

YCE=2v,

IC=IOOma,

Soe Notes 5 and 6

20

VCE =2v,

Ic=la,

S.. No'es 5 and 6

20

VCE = 2v,

Ic =2a,

S.. No'es 5 and 6

15

20
60

20

40

40

60

15

40

120

40

30

30

VCE =5v,

IC=5a,

5.. No'es5 ..d 6

10

10

15

15

VCE = 2v,

IC=la,

Tc =-55·C
So. No,es 5 and 6

10

10

10

10

120

1.=IOOma,lc=la,

S.. No'.. 5 and 6 0.6

1.2

0.6

1.2

0.6

1.2

0.6

1.2

1.=200ma,IC =2a,

Soe No'es 5 and 6 0.7

1.4

0.7

1.4

0.7

1.4

0.7

1.4

1.= 100 ma, le=la,

Soe No'es 5 and 6

0.25

0.25

0.25

0.25

1.=200ma,I C =2a,

500 No'.. 5 and 6

OJ

0.5

0.5

OJ

VCE = lOw, Ic = 100 ma,

f=2OMc

2

2

2

•
v

2

Transfer Rallo
Cob

Commen·la..
Open·Clrcult
Vc . = 10 v, IE=O,
Output Capacitanci

ISO

f=IMc

ISO

ISO

ISO

pi

NOTES. 5. Thes. param.'ers must bt m.... red using pulse 'echnlqu",PW = 300 "sec, Du,y Cycl. :::;; 2%.
6. Thes. parameteR are measur.d with voltagHendng contacts located 0.25 In. from the header of Ihe transistor. Voltage-I.,slng contacts are
separate from currll'lt- carrying contacts.

*switchlng charac:terlstlcs at 25°C free-air temperature
PARAMETER
ton

Tum-On

Time

toff

Tum·Off Time

ton

Tum-On

Time

toff

Tum-Off

TIme

TEST CONDITIONSt

TYP

MAX

= 1 0, 11(1) = 100 rna, 18(2) = -100 rna,
VIE(off) = -3.7 Y, lit. = 20 fl, See Rgura 10
Ie = 2 0, 11(1) = 200 rna, 11(2) = -200 rna,
VIE(off) = -4.7 Y, lit. = 20 fl, See FIgure 10

165

300

540

1200

Ie

UNIT

nsec

200
350

tVoltag. and curren' valu.. shown are nominal, exact val... vary slightly with ,ransls'or param.'ers.

'Indlca'es JEDEC regls'ered data

971

5·82

TEXAS,NCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALL.AS, TEXAS 75222

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
125

TeJ5U

J,~
50

.~

~

Te = 25°C
I

I

25

I

r- Min

w

at1e~~

..r::

o

MinhFE_
at Te = -55°C

Te =1 -5r1CI

0.01

"'-

Min hfE
at Te = 25°C

I

hFE

0.03

0.3

0.1

~

~c:

Tc

"

_ll06o~

!:!

~

120

Max hFE
at Te = 25°C

5
u

1.£ so
~

Te

- Min hFE
. at Te = 25°C

E

V'>

~ r--t--

Te = -55°C

~

..r::

10

3.0

I

o

0.01

Min hFE
:
at Te = -55°C

0.03

Ie -

c:

..........

Ie - 2 a

~

18 = 100
0.4

m~~

f--' Ie = I

\

.!!!

0
u

I

"
]'

0.2

'Max VeEI,o') at
18 = 200 mo, Ie

~

"-

'-

-I

]

= 2 0- -

E
u

.!!!

ou
I

Max VeE l>a') at
-1 8 = 100 rna, Ie = I a

-75

I
-50

-25

0

Tc -

25

50

75

100 125 150

Case Temperature -

= 200
=2 a

mo,'

V

li=2o~m~

"'I.""',-

-

Ie = 1 a

_

I

f--

,Max VeE I,a') at
18=100 rna, Ie = 1 a

I

18 - 3 rna, Ie = 30 rna

o

o

-75 -50 -25

175

-

............

18 = 100 rna,
0.2

]
:-Y

•

"Max VeEI,a') at

L 0.4

+--r--!

I

18
Ie

~

18 =.? rna, Ie = 30 rna

o

10

2 N3420, 2N3421
See Notes 7 and 8

3a

\

!:!
] 0.6

a

~

3.0

1\

.~

--

\

!:!
.20 0.6 1--18 = 200 rna,

V'>

.Eu

18 = 300 rna, Ie

~ 0.8

O.S

.~

~

I

See Nates 7 and S

=3 a

I I I= I

>

2N341S, 2N3419

I
~

...... r-,

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

1.0

1.0

18 = 300 rna, Ie

~

N

f--

FIGURE 2

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

'""

~

0.1
0.3
1.0
Collector Current - a

FIGURE I

E

r\\

""
t

Min hFE
at Te = 25°C

40
w

r-..

~

~

=125~

Ie -Collector Current-o

>

2N3420, 2N34211
VeE = 2 v
See Notes 7 on dS

I-

I\~

1.0

l
IH"

T ='15l o
e

o
':: 160

~
~~

Max hFE
at Te = 25°C

l:!

i

200

2N341S, 2N3419
VeE = 2 v
See Notes 7 and S

25

50

75

100

Tc - Case Temperature -

°t

125 150 175
°C

FIGURE 4

FIGURE 3
NOTES: 7. These parameters were measured using pulse techniques, PW == 300 p.stc. Duty Cyde ~

2"%.

8, Separate voltage-sensing and currenf.carrying contacts wen used.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-83

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

..

..

BASE-EMITTER VOLTAGE

COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE

l000'-_r-~'TEV~:~~S~:~:~A~S~VO~l~TA~G~E~~~~

CASE TEMPERATURE

1.4,--,---,--,-------,-"

I-+--+-frt 16 "' 300 ma,

1.2

Ie" 3 o_-'--'-----i

__ ,;/j

_

_ r-'-

7t -- -- -- -

1.0

f-bj-t-'-'P--"..:.q
,,-0:"-'+-----1-r-=1=-i-------1

~

0.8

f--t--d:-t---Jf1"-j4-F--"'f~I::-c=t:---t---i

~

0.6

1-+----1+1/'-t.lJ;I'7J'1t"-'~-",-""'-'*:-1-+--+-1

~

J

II

r--r-: ----

'""'""f-':.--_
h..

-Solid line is Typical Volue

I--+-++----Ooshed line is 90th Percentile

800

~

F

I--+-++T c" 25"C

la=200mo,lc=20_

r-:: -

1/

/,

V
~L1 ',-:"~I~oo::m..;.',--,.-'."-,-"_'-'I---jR_I 0.4 1--+-11I+--c-..:
-"'-'1--1
IL1 s"'3rna,lc -30mo

>'tt.

1-+1 Is.! N"l, 7 ,"dB

1 1 Solid Line is Typical Valve
1-+-+-1---

0.21--+-+

o L--.L..-.L.J....JII..U...L-"L--"It"~--l-.I...J..J...U..J.J

! I ---- Dashed Line is 90th Percentile

o
~

~

~

0
Tc -

~

~

~

1~

100

Case Temperature -

l~

I

1~

10
Reverse Bio$ Voltage -

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

°C

FIGURE 5

BASE EMITTER

~ 1.0

30

100

\I

FIGURE 6

RESI~rANCE

1111111111

•

IC '" SO me
Te'" 25°C

See Note 7

BYC80 ::. BVCER 01

10
RBf -

RBE '"

100

I Q

lk

10k

lOOk

1M

Base-Emitter Resistance -ohm

FIGURE 7

MAXIMUM SAFE OPERATING REGION

,.

0

2N3418, 2N3420

2N3419,2N3421

.

3. 0

,
I

"

1. 0

i

I

1

0.3

u

0.3

3

0.1

O-C Operotlon,

I

Tc,s; 100·e

.Y

0.03

0.0 1 1

~

]

~I o. 1

3

10

Mox

V~.O

30

Collector-Emitter Voltage -

D< Operation,
TC,s; l00"C

0.00

~oT
Vcr -

i'..

1.0

V

V

~

3.0

0.01 I

100
y

3
VCE -

FIGURE 8

10

30

100

Collector-Emitter VoIt.-y

FIGURE 9

971

5·84

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

OUTPUT
INPUT

~

820
____~~__-J~~__- '__~

200

RI
820
0.01

~f

TEST CIRCUIT

V;n(1)

•

IiC--90%

I

V

,n (2)

I

10%

INPUT

I
I

1+

-+l ton \+-

1
I

toll-+l
I

IOTa

90%:

OUTPUT

VOLTAGE WAVEFORMS

Nominal Ie

RI

Vee

V;n(1)

0

820

20.3 v

+16.0 v

-1.0 v

2 a

410

40.5

+32.0 v

-1.3 v

I

v

V;n(2)

CIRCUIT CONDITIONS

FIGURE 10

NOTES: o. The input waveform is supplied by a generator with the following characteristics: tr :SlS nsec, tf S15 nsec,

zou.= 50 0,

PW=2~sec,

b. Waveforms are monitored

Duty Cycle S2%.

dn an oscilloscope with the following characteristics:

tr S15 "sec, Rin ~10 NO, C in S11.S pf;

c. Resistors must be non-inductive types.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-85

TYPES 2N3418, 2N3419, 2N3420, 2N3421
N-P-N EPITAXIAL PLANAR SILICON MEDIUM-POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
and
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES

16

I

i\

I

PEAK-POWER COEFFICIENT CURVE

LO

I

~
~

f" r-...
I--PT vS TA
9J_A:S175

•

"',
C·/w

50

25

·u"

r\

75

TA ·or Tc

u"

~

0

4i

""

100
125
150
Temperature - °C

-

V

l=-

I--

I

TJ (max)

g

K=

<>-

I

'"

r\

'~
200

175

VDuty Cycle = 0.01

/'

(1 %)

II

11I1111

0.01
0.01

Tc

PT (moxI 9 J-C

1.0
0.1
tp _ Pulse Width - msec

10

FIGURE 12

Equation No J Application , d ( power dissipation
heat sink used.

-

SYMBOL DEFINITION

DEFINITION

---

I/V'

~O~ )'

FIGURE 11

~YMBOL

/

-"

\

I'--.

0.1

l

r\

Pmill

0.25 (25%)

E

\

r7

f-° •5
1

c

r

0,7f 5%)

I--

PT vs T C _
'\J-C:S 6J C·/w

VALUE

UNIT

PT(.vgl

Average Power Dissipation

w

PTfmilxl

Peak Power Dissipation

w

8J _A

Junction-fo-Free-Air Thermal Resistance

8J-c
8C-A
8C-HS
8HS•A

Junction-la-Case Thermal Resistance

6.67

C·/w

Case-to-Free-Air Thermal Resistance

168.33

COjw

TA

Free-Air Temperature

PT{avg)

17S

C'jw

(ase-fa-Heat Sink Thermal Resistance

CO /w

Heat-Sink-to-Free-Air Thermal Resistance

COjw
°c

==

TJI.vgJ - TA
{hc

+ 8C-HS + 8Hs- A

Equation No.2 - Application: doc power dissipation,
no heat sink used.

_
PTlavgJ -

TJ(.vgJ - TA for 2SoC::::; TA ::::; 200°C,
as In Figure 11
8J-A

Equation No.3 - Application: Peak power diSSipation,
heat sink used.

°c

Tc

Case Temperature

TJI.vgJ

Average Junction Temperature

TJlmaxl

Peak Junction Temperature

K

Peak-Power Coefficient

tp

Puise Width

msec

tx

Pulse Period

msec

d

Duty Cyde Ratio (tp/txl

~200

°c

~

°c

200

See Figure 12

Example - Find PTfmaxl (design limit)
OPERATING CONDITIONS,
8C. HS 8HS -A = 7 C· jw (From Information s.pplied
wllh heat sink.)

+

TJ1•vg I (d..ign limit) = lOO·C
TA
50·C
d=JO% (0.11
tp
0.1 ms.e

PTlmaxl

d (8C-HS

TJfmaxl- TA
8HS_A

+

=

)+ K 8J•c

for 100°C::::; TC ::::; 200°C

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

PTfm• d

=

TJlmaxl-TA
d

8C-A

+ K 8J . c

for 2SoC ::::; TA ::::; 200°C

Solullon:

From Figure 12, Peak-Power Coeffident
K = O. ISS and by .se of equation No.3

_~_-,TJ"lm""1X1- TA

+ 8HS -A) + K8J_c

d (8C. HS

=

for 100'C ::::; TC ::::; 200'C,
as in Figure 11

0.1 (7]

200- SO
0.1SS(6.67] =86w

+

PRINTED IN U.S.A.

5·86

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

11 (annot anume any responsibility for any circuits shown

or represent thot they are free from patent infringetnent.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3439, 2N3440
N-P-N SILICON POWER TRANSISTORS
HIGH-VOLTAGE POWER TRANSISTORS
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•

Min V{BR)CEO of 350 V (2N3439)

•

Max VCE{sat) of 0.5 V at IC

fT of 15 MHz at 10 V,

= 50 rnA

•

Min

•

1 A Continuous Collector Current

20 rnA

•

5 W at TC

= 25°C

*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

,
I

ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED

•

ALL JEDEC TO-5 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3439 2N3440

*Collector-Base Voltage
..... .
*Collector.Emitter Voltage (See Note 1)
*Emitter·Base Voltage . . . . . .
*Continuous Collector Current
Peak Collector Current (See Note 2)
*Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
*Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

450 V
350 V

300 V
250 V

--7 V -1 A-

-1.5 A +--0.5 A See Figure 5

-5W-lW-

-65°C to 200°C
-65°C to 200°C
----255°C-

These values apply between 0 and 50 rnA collector current when the base~emitter diode is open-circuited.
This value applIes for tw < 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 28.6 mWfC.
Derate linearly to 200°C free~air temperature at the rate of 5.71 mWfC.

* JEDEC registered data. Th:is data sheet contains all applicable registered data in effect at the time of publication.

571

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·87

TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
TEST CONDITIONS

PARAMETER
V(BR)CBO
'V(BR)CEO

Collector-Base Breakdown Voltage

IC=5oo/.lA,

IE =0

Collector-Emitter Breakdown Voltage

'c=50mA,
VCB - 360 V,

'B =0,
'E = 0

20

VCB - 250V,

'E =0
IC-O

20

"ICBO

Collector Cutoff Cu rrent

"lEBO

Emitter Cutoff Current

"hFE

Static Forward Current Transfer Ratio

"VBE

B ese-E mitter Voltage

'VCEJ$lIt)

Collector-Emitter Saturation Voltage
Small-Signal Common-E mitter

"hfe

Forward Current Transfer Ratio
Small-Signal Common-E mitter

"Ihfel

Forward Current Transfer Ratio
Common-Bese Open-Circuit

"Cobo

Output Capacitance
Common-Bese Open-Circuit

•

"Cibo

I nput Capacitance
Real Part of Small-Signal

"hie(real)

2N3439

Common-E mitter I nput Impedance

VEB - 6 V,
VCE = 10V,

See Note 5

2N3440

MIN MAX MIN MAX
450

300

V

350

250

V
20

Ic-20mA, See Note 5

UNIT

40

160·

20

40

/.IA
/.IA

160

'C- 50mA, See Note 5

1.3

1.3

V

50mA, See Note 5

0.5

0.5

V

10

10

pF

f= 1 MHz

75

75

pF

f= 1 MHz

300

300

'B - 4mA,
'B 4mA,

IC

VCE = 10V,

IC = 5 mA,

VCE = 10V,

IC= 20mA, f= 5 MHz

VCB= 10V,

'E =0,

f= 1 MHz

VEB=5V,

'C=O,

VCE = 10V,

IC = 5 mA,

f = 1 kHz

25

25

3

3

n

NOTE 5: These parameters must be measured using pulse techniques. tw = 300 /1.&, duty cycle"" 2%.

thermal characteristics
PARAMETER

MAX

R8JC

Junction-to-Case Thermal Resistance

R8JA

Junction-to-Free-Air Thermal Resistance

35
175

UNIT
·C/W

switching characteristics at 25°C case temperature
PARAMETER
ton

Turn-On Time

toff

Turn..Qff Time

TEST CONDITIONSt

TYP

'B(1) - 10 mA, IB(2) = -10 mA,
See Figure 1
VBE(oft) = -4.3 V, RL = 2 kn,

0.3

IC= 100mA,

2.9

UNIT
/.IS

tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data

671

5-88

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

Von=S.7V
INPUT 0 V
-4.3 V

560

---r~90%

- - ~~

:.::J,~I 10%

I

~ ·il~

270 pF

t~f~~

f::r\.-

OUTPUT

300

90%

Von =S.7 V AT
INPUT MONITOR

NOTES: A. Vgen is a -30 V puis. (from 0 V) into a 60-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr C;; 15 ns, tf

<

15 ns, Zout

= 60 0, tw = 20 p.s,

~

10 M.G, Cin

<:

duty cycl. <: 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;; 15 ns, Rin
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.

11.5 pF.

•

FIGURE 1

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

COLLECTOR-EMITTER SATURATION VOLTAGE

vs

VI

COLLECTOR CURRENT

CASE TEMPERATURE

100
0

"iii
II:
~

~c:

e

VCE =10V
90 TC = 25°C
See Note 5
SO

t--

70

i

l-

e
~
u"

50

~

40

"Eto

0
LL

"

~w
LL

30

~

/'

60

See Note 5

V

IS = 20 mA,lc=200 mA

I'-

1\

\

V

\

,

1

...... t:::::::

I

. IS = 4 mAo Ie = 50 mA.

I
2

4

710 20 40
100
Ic-Collector Current-mA

r-

IS - 0.5 mA,lc- 5 mA

1\

,

~

~
t:::f-- ~ ~
~

r- ,

\

20

oi

"....

IS = 10mA,lc= 100 m~ ~ ~

/f'

.s: . 10

-

r---

L I-'

V

400

1000

0.04I
-75

l

-50 -25 0 25 50 75 100 125 150' 175
T c-Case Temperature-° C

FIGURE2

FIGURE 3

NOTE 6: These parameters must be measured using pulse techniques. 'tw = 300 /Js, duty cycle <. 2%.
571

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-89

TYPES 2N3439. 2N3440
N-P-N SILICON POWER TRANa,STORS
TYPICAL 'CHARACTERISTICS
BASE-EMITTER VOLTAGE
vs
CAS," TEMPERATURE
1.0

I
VCE =2 V

0.9

>I

0.7

"0

>

0.6

2l

IC= 100 rnA-V
0.5 f-- IC=50 rnA

~

"
Ii!

0.4

I.
w

0.3

>

0.2

ID

~c=200rnA

t'--- hL --- r:::--- r---.
"i'--- r::t'---

"
S

.~

sej Notj 5 -

~ r:::::- r--.
I'---- I'--........... r:::::: t-=::

0.8

.........

i'-....

........
r---......

r-...

IC=5 rnA

ID

0.1

I

o
-75 -50 -25

0

25

50

75

100 125 150 175

Tc-Case Ternperature-OC
FIGURE 4
NOTE 5: These parameters must

be measured

using pulse techniques. tw

=

300 J.ls, duty cycle

< 2%.

MAXIMUM SAFE OPERATING AREA
10000
7000

TC <;25°C

4000
2000
1000
700
400

"-

200

~

D·C OPERATION
100,
70
40:

'\.

10

1

2N3439

1...11

20I
2

4

7 10

20

40

2N344O

~II

100

400

1000

V CE-Coliector·Ernitter Voltage-V

FIGURE 5

PRINTED IN U.S A

5-90

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

571

11 cannot assume any responsibility for any circuits shown
or represenl that they are free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3551, 2N3552
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH·SPEED POWER SWITCH, ISOLATED COLLECTOR
FORMERLY IIX210, TIX211
• 40 Watts at 100'C Case Temperature
• Maximum res of 0.1 Ohm at 10 Amperes Ie
• Maximum VIE of 1.4 Volts at 10 Amperes Ie
• Maximum ton of 300 nsee

mechanical data
These transistors are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the
assembly process prevents sealed·in contamination. The approximate unit weight is 3.S grams.
'OUTLINE DRAWING
'ALL LEADS INSULATED FROM CASE
ALL DIMENSIONS IN INCHES
UNLESSOTHERWtSE
_ _.......

~_

SPECIFIED

9O":t5"

90":t5"

0.180 MAX.

•

TEMP. MEASUREMENT POINT

DIMENSIONS ARE IN INCHES UNLESS OTHERWISE SPECIFIED

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3551
2N3552
Collector-Bose Voltage .
115 v
140v
Collector-Emitter Voltage (See Note 1) .
60v
SOv
Emitter-Base Voltage
•(
7v
Continuous Collector Current .
• 0(
12 a
Continuous Bose Current •
• 0(
5a
Continuous Emitter Current. .
.-

I.~ -

See Notes 5 and 6

. OB

j

40

1

~

30

.,.~

20

~

10

:---

\

0 ••

'!

0.'

.~

0.3

i,

0.'

~

\

!£ "'8

t

'.

TC" 2s"'C
See Notes 5 and 6

~

0••

l!

•

vs

COLLECTOR CURRENT
1.2

Vee-1O V
TC" 2SOC
See Notes 5 and 6

50

~

COLLECTOR-EMITrE R
SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

0.2

;3

0.2

!
1l

0.1

>
0.01 0.02 0,04

0.1

0.2

0.4 0.7 1

0.01

0,04 0.07 0.1

0.02

Ic-Collector CUmlnt-A

0.2

0.'

0.01

0.7 1

0.Q2

0.04 0.010.1

0.2

0.'

Ie-Collector Current-A

'c-CoJlector Current-A

FIGURE 3

FIGURE 4

FIGURE 2

0.7 1

NOTES: 5. These parameters must be measured using pulse techniques. tw == 300 JJ,S, duty cycle'" 2%.
6. These parameters are measured with voltage-sensl"g contacts separate from the current-carrylng contacts and located within 0 .. 126
inch from the device body.

MAXIMUM SAFE OPERATING AREA

THERMAL INFORMATION
DISSIPATION DERATING CURVE

4
2

«I

0.7

~

0-4

1;;

"

U

~

S

-

~r::
0

.~

35

'"

0.

2N35B3

'=
C
fl
.s;

.

!l0

0.2
0.1

I

0.07

E

~240.

40

30
25

0

"
'6"

u

D-C Operation
TC = l00"C

2N3584
2N35B5

.g"

'\

liir~r

0.01

4

7

10

20

40

70100

u

0

15

E
E

"

10

::;:
I

5

.~

2N35851

10.02

~

r::

2N3583,
2N35R4

0.04

20

~

.t-

r--.r--.

'"

~

~

O
400

VCE-Collector-Emitter VOltage-V

o

25

50

75

100

125

T C-Case Temperature-0 C
FIGURE 6

FIGURE5

150

'"

175

200

PRINTED IN U.S.A

5-98

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

871

TI (annol assume any responsibility for any circuits shown
Dr represent thaI they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3713, 2N3714, 2N3715, 2N3716
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND SWITCHING APPLICATIONS
• 150 W at 25°C Case Temperature
• lOA Rated Collector Current
• Min f hIe of 30 kHz
• Min fT of 4 MHz
*mechanical data

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
0525 R MAX

~oo "

0250

11- t

~=='O'OMAX

t

""

0188 R MAX
60TH ENOS

0875
MAX
OlA
...L........-

m:

o,312 MIN

0043

~

1.573 MAX

1~38DIA2lEADS

I

0 135 MAX ----1

h

-

,

~

0.675 1 177

0'6"55

I

... 4-

- - ' - , ,'- .

2-EMtTTER

'\

'

-.i

".'2.' ......._::T-0-\-I:-'-00205

)~

- ...0440
0420

SEATING PLANE
I - BASE

I
I

I

t~.161

•

D1A

0 lSI

\

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage .
*Continuous Collector Current .
Peak Collector Current (See Note 2) .
*Continuous Base Current.
*Safe Operating Region at (or below) 25°C Case Temperature.
*Cantinuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
*Operating Collector Junction Temperature Range.
*Storage Temperature Range
Lead Temperature J{, Inch from Case for 10 Seconds.
NOTES: 1.
2.
3.
4.

2N3713 2N3714 2N3715 2N3716
SOV
lOOV
SOV
lOOV
60V
SOV
60V
SOV
(
7V
>
(
lOA ----r>
<
l5A ----r>
4A
>
See Figures Sand 9

<

l50W

---~

4W

-----+>

+-----65°C to 200°C----+
+-----65°C to 200 oC----+
<
235°C
>

This value applies when the bose-emitter diode is open-circuited.
This yalue applies for tp = (t.3 ms, duly (yele :::::; 10%.
Derate linearly to 200°C case temperature at tbe rate of 0.855 W/deg.
Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.

*Indicates J£DEC registered dala

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-99

TYPES 2N3713, 2N3714, 2N3715, 2N3716
N..P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

•

2N3713
2N3714
2N3715
2N3716
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

TEST CONDITIONS

Co!ledor-EmIHer
See Note 5
VjlR)CEO Breakdown Voltage Ic'= 200 rnA, I. = 0,
VCE
=
30
V,
I.
=
0
Colledor Cutoff
lao
Current
VCE = 40 V, 1.=0
VCE - 80 V, VIE - -1.5 V
Va = 100 V, VIE = -1.5 V
Colledor Cutoff
ICEv
Current
VCE - 60 V, VIE - -1.5 V, Tc - HOoC
VCE = 80 V, VIE = -1.H, Tc = HOoC
Emitter Cutoff
VEa=7V, Ic=O
lEBO
Current
Vee - 2 V, Ic-l A,
See Notas 5 and 6
Static Forward
Current Transfer
Vee - 2 V, Ic - 3A,
Sea Notes 5 and 6
hFE
Ratio
VCE - 4 V, Ic -lOA, Sae Notes 5 and 6
VCE = 2 V, Ie = 5A,
See Notes 5 and 6
Base-EmiHer
VIE
Voltage
VCE = 4 V, Ie = lOA, Sae Notes 5 and 6
I. - 0.5 A, Ic - SA,
See Notes Sand 6
Coliedor-EmiHer
VCEj••I ) Saturation Voltage I. - 2A,
Ic -lOA, See Notas 5 and 6
Small-Signal
Common-EmlHer
Va = 10V, Ic = O.SA, f = 1kHz
hie
Forward Current
Transfer Ratio
Small-Signal
Common-Emitter
VCE = 10V, Ic = O.SA, f = 1 MHz
[hle[
Forward Current
Transfer Ratio
Small-Signal
Common-EmiHar
Forward Current
VeE = 10V, Ic = O.SA
fhfe
Transfer Ratio
Cutoff Frequency
Common-Base
f= 100kHz
Open-Grcuit
VCI = 10V, IE = 0,
Cobo
Output Capacitance

80

60

80

60

0_7

1
10
10

1
25
15
5

250

75

1
50
30
5

2
4
1
4

25

2S0

25

1

150 • 50
30
5

150

1.8

1.8

4
0.8
4

4
0.8
4

2S0

25

4

4

4

4

30

30

30

30

250

250

rnA

10

1

2
4
1
4
25

rnA

1

1
10

75

rnA

0_7

0.7
1

25
15
5

V

0.7

250

rnA

V
V

250

kHz

250

pF

NOTES: S. Thesl pGramelen must be measured using puisl techniques. tp = 300 p.s, duty cyd. ~ 2%.
,. These parameters are measured with yaltagl·senslng contacts siparat. from the currenl-carrylng contacts.

thermal characteristics
PARAMETER

(hc
(hA

Jundion·to{ase Thermal Resistance
Junction·to-Frae-Air Thermal Resistance

,

..

MAX

UNIT

1.17
43.7

deg/W

-Indicafes JEDEC ngisfered data

971

5·100

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3713, 2N3714, 2N3715, 2N3716
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

switching characteristics at 25·C case temperature
PARAMETER
I..,
toff

I

TEST CONDITIONSt

Turn·On TIme
Turn·Off TIme

I
I

Ic= 1 A.
11111 = 100 mAo 11(21 = -100 mAo
See Figure 1
VlElofq = -3.7 V.... = 20 n.

TYP

450
350

I

UNIT

I

ns

I

tVoltag. and (urrent values shown are nominal; oad values vary slighlly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

OUTPUT

820

•

INPUT o----

I

See Note. 5 and 6/
3.0

>

"

2.5

r-

.2'"

~

11

]

-

Ic: lOA

, 1_~ ~

2.0

II

-i

1.5

I

"I'l

'"I

w

>"'

o

-75

= 100mA

4

I

I

"

'"
E

V

~

=I B -0.5A,le- 5A

c

0.7

~,

0.4

a

0

~

./

.;

.IiI

0.2

00/ ~

la : O. 1 A, Ic: 1 A

-'I

0.1 E=_IB - 10

E
u 0.07

.-'

--

See Note, 5

ria,: 2 A',le: lOA

V>

t---

I'
~A,

Ie: 100 mA

.!
-0

u 0.04

I

ii

I I

-50

--

V

---

II

-f:F:

0,5 - I c

--

= 51

II:

1.0

7 10

FIGURE 3

FIGURE 2

I

4
A

0,02

;li

>u

-25
0
25
50
75
100
Te - Case Temperature - °C

125

150

0,01
-75

-50

-25
Te -

a

25
50
75
100
Ca.e Temperature _·C

125

150

FIGURE 5

FIGURE 4

NOTES: S. These parameters must be measured using pulse techniques. tp = 300 In, duly cycle :S 2%.
6. These parameters ale measured with yoltage-sensing contacts separate 'rom the currenl-carrying contacts.

971

5·102

TEXAS INCORPORATED
INSTRUMENTS
F"OST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3713, 2N3714, 2N3715, 2N3716
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE

VI

vs

BASE-EMITTER RESISTANCE

..

9 1.2

'I~ = 30 mA

:F

.'"I

COLLECTOR-BASE VOLTAGE
500

See Note 5

I"-

u.

Q.

.2
~

0.8

i

~

..
::::

]

,

6

VIS.ICBO

'" VIS'ICE. at RSE = 1

n

"0
-c

300

.e-

200

o

0.4

"

Tc = 25°C

~

r-...

I'>,

~ i'-

I

]

U

..g
~

(l
'5

'" 0.6

f = 0.1 to 1 MHz

400 ~

.gI

"0

~

IIII

IEI= 0 1

Tc = 25°C
1.0

o

u"J 100

0.2

.~

~

6
Z

o
1

1k

100

10
RaE -

o

100 k

10 k

Base-Emitter Resistance -

1

Q

VCS -

4
7 10
20
Collector-Base Voltage -

FIGURE 6

40
V

70 100

FIGURE 7

•

MAXIMUM SAFE OPERATING REGIONS
2N3713,2N3715

2N3714. 2N3716

10

10

.
/

7 1-- Tc s 25°C

~

D-C Operation

I

tp = 1 ms, d

1:

tp = 0.5 ms, d

0.5 (50%)"

!l\ll
/

I

tp

S

I
c

0.3 (30%)

..!!
"0

0.7

_v

0.7

I
-~'

0.2

1

0.1

1
VCE -

4
7 10
20
40
Collector-Emitter Voltage - V

J--

tp = 1 ml, d

S

PIli

/
0.5 (50%)
S

0.3 (30%)/

V

/

tp = 0.25 ms, d " 0.25 (25%)

t==
J--

~

tp = 0.05 ml, d" 0.2 (20%)

0.4

0.2

MAX VCEO

.2

D-C Operation

~

u

0.4

L

lL
tp = 0.5 ml, d

~

u

I

2

~
~
U

0.05 ml, d" 0.2 (20%)

lJ!.

TC " 25°C

4

«

I
I

P\"I
tp = 0.25 ms, d" 0.25 (25%)/ 1/1

~

..!!
"0

S

7

I

/

4

«
~
u
l5
U

,

"\

0.1
70 100

MAX VCEO -

2
VCE -

4
7 10
20
40
Coll.ctor-Emitter Voltoge - V

70 lOG

fiGURE 9

FIGURE 8

NOTES: 5. This parameter must be measured using pulse techniques.

tp

= 300 P.5, duty cycle ::;; 2%.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·103

TYPES 2N3713, 2N3714, 2N3715, 2N3716
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMAffON
DISSIPATION DERATING CURVE

PEAK-POWER COEffiCIENT CURVE

175

3

0.7

1

'" '"

""[
.~

15 125

.~
~

Cl

100

75

0

"- ~

Q;
~

0
<>.

75

50

25

Te -

100

125

Case Temperature -

0.04

"
0.02

"

175

150
°C

FIGURE 10

200

SYMBOL DEFINITION
DEFINITION

SYMBOL

VALUE

UNIT

PTI" )

Average Power Dissipation

W

PTjmaxl

Peak Power Dissipation

W

OJ_A

Junction-fo·Free·Air Thermal Resistance

OJ-C

Junction-fa-Case Thermal Resistance

OC-A

Cose-ta-Free-Air Thermal Resistance

OC-HS

Cose-to-Heal-Sink Thermal Resistance

deg/W

OHS-A

Heat-Sink-Io-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

°c

TC

(ase Temperature

°c

TJla, )

Average Junction Temperature

TJlma,)

Peak Junction Temperature

K

Peak-Power Coefficient

tp

Pulse Width

tx

Pulse Period

~

<>.

~
o

0.07

"

~

25

I

-"
c

43.7
1.11

42.5

+

OHS-A

°c

:<:;

°c

See Figure 11

m.
m.

= 2.25 deg/W

l_e-tpiT

~

K =

/

tp ==

I-e -tf)ldT

//

~
".
~

0.01
0.02 0.04

0.1

Pulse width in ms

d

= Duty cycle

~

I r~~;T~1 ti7 clonr~ltll~I·4 m

ratio

0.2 0.4

4

Pulse Width -

tp -

710

20

ms

FIGURE 11

Equation No 1 - Application- d ( power dissipation
heat sink used.

PTI.. )

=

TJlov)-TA
OJ_C

+

OC-HS

+

OHS-A

for 25 °c ~ TC ~ 200 0 C,
as in figure 10.

Equation No.2 - Application: doc power dissipation,
no heat sink used.

deg/W

Example - Find PT(maxl (deSIgn limit)
OPERATING CONDITIONS,
OC-HS

r'1

'a 'cd

PTI.. ]

=

TJlov ) - TA

for 25 0 C ~ TA ~ 2oa·C

OJ_A

Equation No.3 - Application: Peak power dissipation,
heat sink used.
_
PTlm,,) -

TJ(maxl- TA
d (OC-HS

+

OHS.A)

+

K 0 J-C

for 25 °c ~ TC ~ 200 0 C

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

PTlmax)

=

Duty (ycle Ratio (tp/txl

d

~;

deg/W
deg/W

~ 200

200

-

0.U(UJ1)

0.1
0.07

I

'\

/

" ""

0.2

u"

I"\.

,;'/

0. 1251

C

·u"
E

'?

'"(UU)

0.4

50

o

~

0.50 (50%) Duty Cycle

§ 150

TJ{maxl-TA
d (}C_A

+

for 25 0 C ~ TA ~ 200°!

K OJ-C

Solution:
(From information supplied

From figure II, Peak-Power Coefficient
K = 0.11 and by use of equation No.3

with heat sink.'

TJlov ) (design limit) = 200 0 C

PTlm,,)

= 50 0 C
d = 10% (0.1)
Ip = 0.1 ms

=

d (OC-HS

+ OHS-A) + K 0J.c

TA

Prim,,)

=

200 - 50
0.1 (2.25)
0.11 (1.17)

+

= 424 W
PRINTED IN U.S A

5-104

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI (onnol aSsume any responsibility for any circuits shown
or represenl thai they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3719, 2N3720
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP501, TIP502
•

Max toff of 0.4 j.lS at IC = 1 A

•

3-A Rated Continuous Collector Current

•

6 Watts at 25°C Case Temperature

•

Min fT of 60 MHz at 10 V, 0.5 A

*mechanical data

.....

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

:::
3 COLLECTOR

•

AU DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED

0 . 1 2 5 1 0 .200
3 LEADS

Q.iiii9

~DIA

SEATING 0.016
PLANE

I EMmER

ALL JEDEC TO-5 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage . . . . .
*Continuous Collector Current
*Peak Collector Current (See Note 2)
*Continuous Base Current . . . .
*Safe Operating Areas at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 SEconds

2N3719 2N3720
-40V -60V
-40V -60V
-4V
-4V
--3A_-10A_
_-0.5 A _
See Figures 3 and 4
-6W-lW-65°C to 200°C
-65~C to 200°C
_300o C _

1. "These values apply when the base... mitter diode is open~clrcuited.
2. This value applies for 1:w .. 0.5 ms. duty cvcle .. 10%.
3. Derate linearly to 200°C case temperature at the rate of 34.3 mWfC or refer to Dissipation Derating Curve, Figure 6.
4. Derate linearly to 200°C free-air temperature at the rate of 5.71 mWfC or refer to Dissipation Derating Curve, Figure 6 •
• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
NOTES:

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-105

TYPES 2N3719, 2N3720
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO

ICEV

ICBO

Breakdown Voltage

lEBO

hFE

•

VBE

VCE(sat)

IC=-20mA,

IB = 0,

VCE - -40 V,

VBE - 2V

VCE = -60 V,

VBE = 2V

Current

VCE - -40 V,

VBE - 2V,

TC= 150°C

VCE - -60 V,

VBE-2V,

TC - 150°C

Collector Cutoff

VCB= -40 V,

IE =0

Current

VCB- -60 V,

IE -0

VEB = -4 V,

IC= 0

Static Forward

VCE =-1.5V,

IC = -0.5 A

Current Transfer

VCE - -1.5V,

IC- -1 A

Ratio

VCE =-1.5V,

IC--l A,

IB- -100 rnA,

Ic=-l A,

Current

Base-Emitter Voltage

MIN
See Note 5

Collector Cutoff

Emitter Cutoff

2N3719

TEST CONDITIONS

MAX

-40

2N3720
MIN

MAX

-60

V

-10
-10
-1
-1
-10
-10
-1
20
See Notes 5 and 6
TC- -40°C

TC = -40°C to 1Oo"C

IB= -100 rnA,
IC=-l A,
T C = _40°C to 100°C

Saturation Voltage

IB - -300 rnA,

-1

180

15

25

rnA
IJA
rnA

180

16
-1.6

-1.6

-2.3

-2.3

-0.76

-0.76

-1.6

-1.6

V

See Notes 6 and 6

IC=-3A,

IJA

20

See Notes 6 and 6

IB--300mA,
IC--3A,
T C = _40°C to 100°C

Collector-Emitter

25

UNIT

V

TC = -40°C to 100°C
Small-5ignal

~fel

Common-Emitter
Forward Current

VCE =-10V,

'C= -0.6A,

f= 30MHz

VCB = -10 V,

IE =0,

f= 100 kHz

120

VEB =-0.6 V,

'C= 0,

f= 100kHz

1000

2

2

Transfer Ratio
Common-Base
Cobo

Open-Circuit

120

pF

1000

pF

Output Capacitance
Common-Base
Cibo

Open-Circuit
, nput Capacitance

NOTES:

6. These parameters must be measured using pulse techniques. tw "'" 300 /oLs, duty cycle < 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.126
inch from the device body.

*switching characteristics at 25°C case temperature
PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

TEST CONDITIONSt
IC=-lA,

MAX
VBE(off) = 4 V,

RL = 120,

'B(l) = -0.1 A,
See Figure 1

'C- -1 A,
RL=120,

'B(l) = -0.1 A,
See Figure 2

'B(2) = 0.1 A,

UNIT

0.1
IJS
0.4

'tVoltage and current values shown are nominal exact values vary slightly with transistor parameters.
"'JEDEC registered data

1271

5-106

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N3719. 2N3720
P-N-P SILICON POWER TRANSISTORS
*PARAMETER MEASUREMENT INFORMATION

-12V

INPUT
OUTPUT
--.ltr_

loon

I

INPUT 0-....",.,..-+-1

I

I
OUTPUT
~

90%

10%

TEST CIRCUIT

•

VOLTAGE WAVEFORMS
FIGURE l-TURN-ON TIME

-12V
12

n
OUTPUT

INPUT

loon
0-""",..,...,1--1
IN916

+3V

TEST CI RCUIT

VOLTAGE WAVEFORMS

FIGURE 2-TURN-OFF TIME

NOTES:

The input waveforms are supplied by 8 generator with the following characteristics: tr <; 10 ns, tf C;;; 10 ns, Zout'"" 60
tw = 10 "s, duty cycle .. 2%.
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;; 6 ns, Rin;iirl 10 k.o, ein <; 11.5 pF.
c. Resistors must be non inductive types.
B.

.n.,

d. The d-c power supplies may require additional bypassing in order to minimize ringing •

• JEDEC registered data

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-107

TYPES 2N3119, 2N3120
P-N-P SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
2N3719

2N3720

-100

-100
TC"'; 25°C
See Note 7

-40

<{

-10

1-c
e:;

-4

... ... ...
r-...

\

u

'\

-1

(;

'0

2

-0.4

"0
u

tw 5 ps
50 pS7

/

1-c
e
:;
u...

,

\

\

"-

',,-

-0.04

"

2

-0.4

I

~

o

'"'

"

tw - 500)JS
-0.04 ~~tw 5ms
D-C Operation

tw -5 ms

I I I

-,
~

/ /

-0.1

r-t: D-C Operation'
r-

...,..

u

'i

/\ " \

'-,

"

\

-1

"0

tw =5 ps
=50 ps 7 /

...

-4

~

"

tw

-10

<{

/ / I Ltw = 500)JS~ \'

-0.1

-0.01

=

.....,

j

I
~

.,

tw

TC"'; 25°C
See Note 7

-40

\

\ I

~

-0.01

o

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50

-10 -20 -30 -40 -50 -60 -70 -80
VCE-Collector-Emitter Voltage-V

VCE-Collector-Emitter Voltage-V

FIGURE 3
FIGURE 4
NOTE 7: Areas defined by dashed lines apply for nonrepetitiveRpulse operation. The pulse may be repeated after the device has regained
thermal equilibrium.

THERMAL INFORMATION

CASE TEMPERATURE
DISSIPATION DERATING CURVE

3:

8

0
'';::;

7

I
c

'"
.~
is
Q)

I""

5
4

::J
C

'';::;

c
0

3

u

E
::J
E

'" '"

I~

.s:~ 0.8
o
~ 0.6
.~

'"

'"

0

25

50

75

""

c

.......

2

o

"-

::J

'x
Q.

1.0

Q)

:2:

I
I-

~

is
Rl/JC"'; 29.2°C/W

 -

to.16101A

0i5i

'2 HOLES

0420

0 135 MAX --j ~

SEATING PLANE
I - BASE

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3771

2N3772

Collector-Base Voltage _

50 V*

100 V*

Collector-Emitter Voltage (See Nate 1)

50 V*

Vt(
1100
80 v*1

Collector-Emitter Voltage (See Note 2)
Emitter-Bose Voltage.
Continuous Collector Current .
Peak Collector Current (See Note 3) .
Continuous Base Current
Peak Base Cu rrent
Safe Operating Region .
Continuous Dissipation at (or below) 25°C Case Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature ),{, Inch from Case for 10 Seconds

40 V*
60 V*
5 V*
7 V*
30A*
20A*
~ 30A*--+
7.5A*
5A*
~ 15A*--+
See Figure l'
~150W*-+

-65°C to 200°C'
-65°C to 200°C*
~235°C*--+

NOTES: 1. These values apply when the bose-emitter voltage VBE = -1.5 Y.
2. These values apply when the base·emitter diode is open-circuited.
3. This value applies for a nonrepelitive pulse of any duration for the 2N3771, or of SOO-ms maximum duration for the 2N3772.
4. Derate linearly to 200 o ( case temperature at the rate of 0.8SS W/deg see figure 2.
"'Indicates JEDEC registered data
tTexas Instruments guarantees this value in addition 10 the JEDH registered volue which is also shown.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-109

TYPES 2N3771, 2N3772
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
* electrical characteristics at 25°C case te,"perature (unless otherwise noted)

VI.RICEO

(olledor Emitter Breakdown Vollage

ICED

(olledor (utoff Current

Ic•o

Colledor (utoff (urrent

ICEV

Colledor (utoff (urrent
Emitter Cutoff Current

lEaD

Static Forward Current
Transler Ratio

hF/l

•

Base-Emitter Voltage

VIE

VCE1••'1

Colledor-Emiller Saturation Vollage

h,.

Small-Signal Common-Emitter
Forward Currenl Transler Ratio
Smail-Signal Common-Emitter
Forward Currenl Transler Ratio

Ihlel

2N3771
2N3772
UNIT
MIN MAX MIN MAX
40
V
60
10
mA
10
2
mA
5
2
5 mA
10
10
5
mA

TEST CONDITIONS

PARAMETER

Ic = 200 mA,
VCE = 30 V,
VCE = 50 V,
Vca = SO V,
Vc • = 100 V,
VCE = SO V,
VCE = 100 V,
VCE = 30 V,
VEl = 5 V,
YE• - 7 Y,
VCE = 4 V,
VCE = 4 V,
VCE = 4 V,
VCE -- 4 V,
VCE = 4 V,
VCE = 4 V,
la - 1 A,
la = 1.5 A,
la = 4A,
la - 6 A,

I. = 0,
la = 0
la = 0
IE = 0
IE = 0
Vee = -1.5 V
Vee = -1.5 V
VIE = -1.5 V,
Ic = 0
Ic - 0
Ic = IDA,
Ic = 15 A,
Ic = 20 A,
Ic = 30 A,
Ic = IDA,
Ic = 15 A,
Ic = IDA,
Ic = 15 A,
Ic = 20 A,
Ic = 30 A,

See Note 5

VCE = 4 V,

Ic = 1 A,

1= 1 kHz

40

40

VCE = 4 V,

Ic

1= 50kHz

4

4

= 1 A,

Tc = 150°C

5

See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Noles 5 and 6

15
15

60

60
5

5
2.2

Y

2.7
1.4
2

V

4
4

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 p,s, duty cycle .s;; 2%.
6. Thase parameten ore measured with vollage-sensing contacts separate from 'he (urrenl-carrying (ontads.
·'ndlcates JEDEC registered data

THERMAL INFORMATION

MAXIMUM SAFE OPERATING REGION

DISSIPATION DERATING CURVE
175

100
TC!::25°C

70

Nonrepetitive Pul~-

. .
..
....

40

«
I

i

,

2N3771
20
I

10

F

I

~

O-C Operation

i r==

~
I

~

tp =500m.
tp= 100m.
tp= 1 ms
r-- tp = 200~.
r-- tp = l00~.

7
VeE -

10

.

.~

0

i
J
~

"
r40

20

Collector-Emitter Voltage -

125

t

.
2N3771
2N3772

••

0

,

r--tp=40~.

11

I""'~

IX'S: ~ ~~

~

2N3772

u

150

].

'J,

'

"5I

1

100
75

""

"- t\..
"\

50
25

"



~Ve!= -L I

I

~ Te= 25°C

;g

See Notes 5 ond 6

~--~'-"rrnTr---r-'-IIIn~

-0.8

r- Is = 5 -+-I-HrtttH----+-t--HH-++H
r- Te = 25°C -++-t+tH----t--+-+-+++++l

6

Ie

See Notes 5 and 6

.~

-1.2

j

~

~ -1.0

'E

~ -0.8

1I

-1

l

I -1.4

;gt

A

YS

COLLECTOR CURRENT

-1.6

-7-10

COLLECTOR-EMITTER SATURATION VOLTAGE

ys

>

-2

FIGURE 3

BASE-EMITTER VOLT AGE

-1.8

""

-0.4 -0,7-1

FIGURE 2

-2.0

i'['

"'"

o
-0.2

~

.f

I'

20

-0.1

60

~

'I\.

u

•

. . r--.

100

I

"'.2V ' , ,

i

a

~

u

...

V~E

~

V

-0.6

t----t--t-++-I+l-H---+-+-+-H+lIH

~ -0.4

t---;--r-t-+Mttt---+-+-++Jt'-l-I+I

~

~

j..;'

'E

w

V

u

.!

-0.6

~

>~ -0.4

I

I -0.2 r---t--r-rrt+H~---r~~~~~

........ V"

-0.2

o
-0.1

-0.2

-0.4 -0.7 -1
Ie -

-2

-4

-7 -10
Ie -

Collector Current - A

Collector Current - A

FIGURE 5

FIGURE 4
NOTES: 6. These parameter. must be measured using pulse techniques. tp

= 300 p.s. duty cycle ~ 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

971

5-114

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N3789, 2N3790, 2N3791, 2N3792
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS

2N3789, 2N3791
-10
TC < 25°C

-7 -

I

-4

..:

I

C

r-r--

tp

-2
-1

r - - r-

tp - 0.05 ms, d < 0.2 (20%)

~

= 1 ms, d < 0.5 (50%) /
= 0.5 ms, d < 0.3 (30%)
1I
tp = 0.25 ms, d < 0.25 (25%); /11

2

-\1

tp

d

~ -0.7

1
I
I
I

1\

D-C OPERATION

(;

u

I

_v

-0.4

-0.2

MAXVCEO

-0.1

I

I

-4
-7 -10
-20
-40 -70 -100
VCE - Collector-Emitter Voltage - V

-2

-1

FIGURE 6

•

2N3790, 2N3792
-10

-7

..:

~
.g

~

/
D-C OPERATION

-2 -

tp

u

tp

=

-1

~

~

"

"\.

/

-4

I
C

~

TC < 25°C

-0.7

u

I

===

-

tp
tp

/

= 1 ml, d < 0.5 (50%)
/
= 0.5 ml, d < 0.3 (30%)/ /
= 0.25 mI, d < 0.25 (25%)
= 0.05 ml, d < 0.2 (20%)

~~.

v~

~-0.4

-0.2
-0.1

MAX VCEO

-1

-r--

I I I

-2
VCE -

-4
-7 -10
-20
-40 -70-100
Collector-Emitter Voltage - V

FIGURE 7

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·115

TYPES 2N3789, 2N3790, 2N3791, ,2N3792
P-"N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

175

0'7~~~~~~~~~~~~~~~~~
25+++IJU+l11i-4-+-+++l-!+++:~';1I'1~I-tt+ttHr---I

~

I
5

i'i

o

~O, 50

150

"" " ,

125

~

u

.;: 100

c!l

!S
a

i!

~

50

j

25

!iE

0,2

~

75

1.f.
I

~

t'\.

•

a

25

75

50

100

125

175

FIGURE 8
SYMBOL DEFINITION
SYMBOL

DEFINITION

'"
0, 02

'"

150

Te - ease Temperature - ·C

VALUE

200

~IEi~~$JI~

UNIT
W

PTlmo'l

Peak Power Dissipation

W

lIJ."

Junctlon-to-Fr.Af, Thermal lulstane.

43.7

dtg/W

lIJ•e

Junction-Io-Casa Thermal Resistance

1.17

dtg/W

lie."

(Gsa-to-Free-llr Thermal Rlsistance

42.5

dtg/W

lIe •Hs

(asl-to-Heat-Sink Thermal R,slstonte

dog/W

lIHs."

Heat-Sink-loaFr,,-Alr Thermal Resistance

deg/W

T"

Frtl·Air T.mperatur.

Te

Case T.mperatur.

TJlavJ

Average Junction Temperature

~

~200

°c
°c
°c
°c

TJ1ma'l

Peak Junction Temperature

K

Peak·P ..er Co.fflclenl

Ip

Pul.. Widlh

ms

t.

Pulse Period

ms

'0 103

~

I~
ril
o. 0b. 02 0,04

5" Figure'

TJ(ovl (design IImil)
T"

d
Ip

=

=

K = 1-. -tPld~

V

tp = Pulse width in m.

0,1

= Duty cycle ratio +!-ttI+--t

0,2 0.4
Pul •• Width -

7 10

4

20

ms

Equation No. 1 - Application: ck power dissipation,
heal sink used.

PT(avl

=

TJlavl - T"
lIJ•e

+ lIe •HS + lIHS."

for 25 °c ~ Te ~ 2OO0 C,
as in Figur. 8.

Equalion No.2 - Application: d·c pow" dissipation,
no he.' sink used.
PT{ovl

=

TJlavl-T" for 2SoC < T

lI J."

.

Equation No.3 - Application, Poak power
heat sink used.
PTlmax)

< 2OO 0 C

-,,-

~Isslpatlon,

T"
for
= d (lIe.HS +TJI""IlIH5-") + K lI u ;

UoC ~ Te ~ 2OO 0 C

Equation No.4 - Application, Peak power dissipation,
no heat sink used.
PT1muJ

=

TJI""I- T"
d lie."

+ KlIJ•e

for 2S o C ~ TA ~ 2OO0 C

Solulion.

Example - Frnd PTI""I (d.~gn IImltl
OPERATING CONDITIONS:

+ lIHS." =

I_e-tpl~

~L

t-H-Hillftt---1- d

Duty Cycl.'Ralio (IP/t,.)

lIC.HS

..o/l
rI

0,05

FIGURE 9

Average Power Dissipation

d

O,U(J~} _,~

tp -

'Tlav)

200

l-++HffiU
-lt--++++t7IS1"<---+-t-t++tttt--1

0.07

0,07
0.1

1 0.04

I

o

(50%) Duty Cycle

0. 4 1-0+,
I,

2.25 d.g/W (From llfonnalion .uppllod
with heal .ink.1

2OO0 C

From Figure', 'eak·Power Cotfflclenl
I = 0.11 and by us••f .quallan No. 3

PT{muJ

SOOC

= 10% (0.1)
= 0.1 m.

=

d (lIe.HS

+ lIfotS.,v + KIIJ.e

200-50
= 424W
0.1(2.25)
O.lI( 1.171

+

PRINTED IN U.S,A.

5·116

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX S012

•

DALLAS, TEXAS 7S222

.971

TI cannot assume any responsibility for any circuits shown
or represent that they Ofe free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
ID-I

c:<
,....,.

FOR POWER·AMPLIFIER APPLICATIONS
•
•
•
•
•

,...m

mtn

:::1S!!

150 Watts at 100°C Case Temperature
200 V, 300 V Rated Coliector·Emitter Voltages
Max VCE(sat) of 0.75 V at 10 A Ic
Max Thermal Resistance of 0.5 deg/W
Min fT of 10 MHz at 10 V,lA

~_I
ON
,...z
inl
i ...

j

om
n

*mechanical data

m

!:
ID

m

:II

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

i
ALL JEDEC TO·63 DIMENSIONS
AND NOTES ARE APPLICABLE

•

CASE TEMPERATURE MEA·
SUREMENT POINT IS UN·
DERSIDE OF FLAT SURFACE
WITHIN 0.125" FROM STUD

ALL DIMENSIONS AlE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3846

2N3847

.

300 V

400 V

Collector-Emitter Voltage (See Note 1) .

200 V

300 V

Collector-Base Voltage.

.

. .

.

.+-

Emitter-Base Voltage

10V-+

Continuous Collector Current .

.+-- 20A-+

Continuous Base Current .

.+-- IOA-+

.

Sofe Operating Region at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (or below) 100°C Case Tempe,rature (See Note 2).

See Figure 7
.+--150 W-+

Continuous Device Dissipc;rtion at (or below) 25°C Free-Air Temperature (5ee Note 3) . + - - .4 W - +
Operating Case Temperature Range .

.

.

.

. .

-65°C to 175°C

Storage Temperature Range.

.

.

.

. .

-65°C to 200°C
. +--260oC--+

.

.

.

Terminal Temperature ){. ~nch from Case for 10 Seconds

NOTES, I. These .alues apply who. Iho ba..·.mlll.r dlado Is .p••·circuit.d.
2.

Deralo 1I••a~y I. 175°C ,a.. lomp"aluro '" Ih••at••, 2 W/d.g.

3. Derail n.,arly to 175°C fr ..~alr temperature at the rate of 26.6 mW/deg.

·Indlmes JEDEC regislered dat.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-117

TYPES 2N3846, 2N3847
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)

Vee - 3V,
I. -1.6A,

.2N3846 2N3847
MIN MAX MIN MAX UNIT
200
300
V
I. - 0, See Note 4
I. - 0
5
rnA
I. = 0
5
VIE - 0
2
VIE - 0
2
mA
VIE - 0, Tc - HOoC
10
VIE = 0, Tc = 150°C
10
Ic - 0
250
250
p.A
Ie - 5 A, See Notes 4 and 5 40 200
40 200
Ic = 10 A, See Notes 4 and 5 10
60
60
10
Ic - 10 A, Tc - -SSoC,
10
See Notes 4 and 5 10
V
Ie - 10 A, See Notes 4 and 5
1.2
1.2
Ic - lOA, See Notes hnd 5
0.75
V
0.75

Vee = 10V,

Ic = SA, I = 1kHz

SO

Vee = 10 V,

Ic= 1 A, 1= 1 MHz

10

Ve. = 10V,

Ie = 0,

PARAMETER

TEST CONDITIONS

VIBR)ceo Collector-Eminer Breakdown Voltage Ie - 200 rnA,
Va; - 200 V,
Collector Cutoff Current
Iceo
Vee = 300 V,
Vee - 300 V,
Vee - 400 V,
Collector Cutoff Current
lees
Va - 300 V,
Vee = 400 V,
Emiller Cutoff Current
Vea - 10 V,
Ino
Vee - 3 V,
Static Forward Current
Vee = 3 V,
hFe
Transfer Ratio
Vce - 3V,

•

Base-Emitter Voltage
VIE
Veelsat) Collector-Emiller Saturation Voltage
Small-Signal Common-Emitter
hie
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihlel
Forward Current Transfer Ratio
Common-Bose Open-Circuit
Cobo
Oulput Copadtance
NOTES: 4. Th." paramel." musl b. m.asured using pulse te,hnlqu". Ip

5. Thes. parameters

all

1= 1 MHz

250

SO

250

10
750

750

pF

= 300 p.s. duty ,yd. :0:; 2%.

measured with vollage-sanslng contacts separate from Ih. (urrent-carrying contacts.

thermal characteristics

(hc
8J.A

PARAMETER
Junction-to-Case Thennal Resistance
Junction-to-Free-Air Thennal Resistance

·Jndicatas JEDEC registered data

971

5-118

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS

*switching characteristics at 25°C case temperature
PARAMETER

ton
tofl

TEST CONDITIONSt

Turn-On Time
Turn-Off Time

Ie - 10 A,
YBElolij """ -7.5 Y,

IBlll - 2 A,

18(21 - -2 A,

lit. = 15 n,

See Figure 1

tlls•• emitter volta" and colledor cu,rent values shown are nomlnalj exad values vary slightly with transistor param.t.rs.

*PARAMETER MEASUREMENT INFORMATION

tr

....-------1COJ OUTPUT

10 /LF

Adjust

INPUT

amplitude

of input

~ (l-=

pulse
for1811l=2A

V88=7.SV
Adjust for
18\21 = -2 A

•

POINT "A"
TEST CIRCUIT

,-----"L9O%
POINT "AU

----i-

1'--_ _

10%

I
ton... j4'"

I

j4-toff-!
1O%

~
I

OUTPUT

90%

VOLTAGE WAVEFORMS

FIGURE 1

NOTES, •• Th. wa.efarm 01 poinl "A" has Ih' faUowing charGelerislics, t, ~ 100 ns, If ~ 100 ns, tp

=

20 p.s, duty cycle ~ 0.2%.

b. Waveforms an monitored on an oscilloscope with the following characteristics: tr ::;: 5 ns, Rin ;::: 1 MO, (in ~ 5 pF.
e:. Resistors must be nonlnductlve types.

d. Th. d·c power supplies rna, require additional bypassing in ord.r to minimize ringing.

~

~ )( .ss·C11
I'

r\
~

1\

1,\

I~
,L.. ~c~

.. '"

•

I

30

;-

20

~

....

10

o

0.1

0.2

0.4

4

0.7 1

Ic- Collector Current -

7

10

20

A

FIGURE 2

COlLECTOR-EMITTER SATURATION·VOLTAGE

BASE-EMmER VOLTAGE

vs

vs

>

1.0

I

.

'"

.l!

0.8

~

!

~I

..............

.............
..........

.

~

Ic

VJE=3~

J1S4

~

--- -

-..!C=S4
.........

0.6

~
~ ""'.........

...
>

0.4

-- ..........

.......... ........

0.2

0.4

f-I~ = 2.1 A, I~ = ISlA
f..-.T

\

Ir = I.~ A,

0.2

i

:t:

:G
I

j

-

See Note. 4 and 5

0.7

I.

See Notes 4 "nd 5

iii

'""

CASE TEMPERATURE

CASE TEMPERATURE

1.2

18

=0.5 A,

\c = lOA_ f--

IC

- -.:.;.....

!

=5 A

~

T

0.1

==

--

0.07 f:=:18 - O. I A, IC - I A

;j
I

0.04

ii

0.02

;i;
~

o
-75 -50

-25
Te -

0

25

50

75

Cose Temperature -

100

125

150

0.01
-75

-50

·C

-25

o

25

50

75

100

125

150

TC - Co.. Temperoture _·C
FIGURE 4

FIGURE 3

NOTES: 4. These parameters must be measured using puisl techniques. tp = 300 p.s, duty cycle :::; 2%.
5. These parameters art measured with YOUagl.sensing conlads separate from the current·carrylng contacts.

971

5·120

TEXAS INCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3846, 2N3847
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

v.

NORMALIZED COLLECTOR-EMmER BREAKDOWN VOLTAGE

v.

COMMON-BASE OPEN-CIRCUIT INPUT AND OUTPUT CAPACITANCE

BASE-EMITTER RESISTANCE

REVERSE BIAS VOLTAGE
3500

I'I~
I""'--

3000

...

"

II

~

= 10'm'1'
Tc = 25°C
See Note 4

~ 1':6012 1
(':1

~

Tc

=25·C

~~ q;
I....

2500

0.

....

f-l MHz

2000

c

2

t

I

1500

13
1000

Lo.

11
.~

~

l

0.2

n

BR c
o f- ~IBil,C,ift,," "'I 1 ,,~~
10

Rae -

-..... ~~O)

500
RBj =1

~~

100

1

o

Base-Emitter Resistance -

4

1

10000

1000
Q

10

20

Reverse Bias Vol toge FIGURE 6

FIGURE 5

1I
40

V

70

100

•

MAXIMUM SAFE OPERATING REGION

100
70

Tc" 100·C

40
20

«

I
~
~

i'.." ...

10
7
4

5

2

C5

1
0.7
0.4

D-C OPERATION- V

u

U
..!

'0
u

I

tp = 1 ms, d = 0.5 (50%)
tp =0.3 ms, d -0.1 (10%)
'\.\

0.2

~

11111

_u 0.1
0.07

MAX VCEO 2N3846

0.04

MAX VCEO 2N3847

0.02

,

.....
I""

0.01
1

2

4
7 10
20 40 70100 200 400
VCE - Collector-Emitter Voltage - V

1000

FIGURE 7

NOTES: 4. Thl. paramttor mu.t ba m,a.ur,d .,jng pulsa techniques, tp

= 300 p.', duty eyd, :..; 2%.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·121

TYPES 2N3846, 2N3847
N-P-N TRIPLE-DIFFUSED MESA SILICON POWEll TlANSISTORS
THERMAL INF,ORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE
~

I

c

.2

150

.,

125

~

~

100

75

C
0
u

~

50

g

•

25

I
0:-

.!!!
u

o
100

75

125

Tc -

150

Case Temperature -

0.2

ff

I

II

~

0

U

~

O. I

~

0.07
-'"
c
~

0.04

~

E

~

c

"I'"
'" '\

I

~

~

0.4

I'"

8.

."
is

PEAK-POWER COEFFICIENT CURVE

175

'"
0.02

Q.O~

ta·QZ~

~V
()./

tp =

Pul se width in ms

d

Duty-cycle ratio

=

0.01

175

I

O. I 0.2 0.4

tp -

O(

FIGURE 8

2
4
7 10 20
Pulse Width - ms

100

FIGURE 9

SYMBOL DEFINITION

SYMBOL

DEFINITION

VALUE

UNIT

PT(avl

Average Power Dissipation

W

Primal)

Peak Power Dissipation

W

(hA

Junction-fo-Free-Air Thermal Resistance

37.5

deg/W

(h-c

Jundion-to-Case Thermal Resistance

0.5

deg/W

8C_A

Case-ta-Free-Air Thermal Resistance

37

deg/W

He-Hs

Case-to-Heat·Sink Thermal Resistance

d,gJW

8HS.A

Heat-Sink·to-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

Equation No.1 - Application: d·c power dissipation,
heal sink used.
TJlavl-TA

Tc

Case Temperature

TJlavl

Average Junction Temperature

TJlm,nl

Peak Junction Temperature

K

Peak-Power Coefficient

I,

Pulse Width

S 175
S175

°c
°c
°c
°c

See Figure 9

m,
m,

Pulse Period

"

= --8:-J-.c-+-;--:-8c-.-H,-+-;--:8-H,-.A-

Pytav)

for l00 0 C S Tc

S

175 0 C

as in Figure 8

Equation No.2 - Application: doc power dissipation,
no heot sink used.

Equation No.3 - Application: Peak power dissipation,
heat sink used.
Prlmax)

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

PYjmaxl

Duly·Cycie Rali. (1,/t.)

d

Solution:

Example - Find Prlmax) (design limit)
OPERATING CONDITIONS,
OC-HS

+ 6HS.A =

From Figure 9, Peak·Power Coefficient

2.S degjW (From information supplied
with heal sink.)

T"", (design limit) =

I(

= 0.10S and by use of equation No.3

PTlmexl

175°C

TA = 50°C
d = 10% (0.1)
Ip = 0.1 m,

5·122

40

d (8e.Hs + 8H'.A)

+ K 8J.c

175- 50

--,--,-----= 413 W
0.112.5) + 0.105 (0.5)

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

PRINTED IN U.S.A.
TI (annal aSSume ony responsibility for any circuits shown
represent thol they ore free from paten I infringement.

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 2N3902
N-P-N SILICON POWER TRANSISTOR
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS

*mechanical data

•

100 W at 75°C Case Temperature

•

400 V Collector-Emitter Off-State Voltage

•

Min V(BR)CEO of 325 V

=1 A

•

Max toff of 1.7p.s at IC

•

Typ VCE(sat) of 0.25 V at IC

•

Typ fT of 5 MHz at 10 V, 0.2 A

= 2.5 A

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0450

Ao
o.m •

02s0

"'AX

0

~
0.188 R

10S0 "'AX

j

ro

M1N~
I I~DIA' LOADS

-1

1 573 MAX

•

'

~~~£::"-=r
-0~~~
~Ut===

MAX'~--=== I t--;

BOTH ENDS

312

0.135 MAX -j

0205 0440

-,- I

['4'20
0.200

SEA TlNG PLANE
1 ~BA5E

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
* Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage
'Continuous Collector Current
'Continuous Base Current
Safe Operating .A.rea at (or below) 7SoC Case Temperature
'Continuous Device Dissipation at (or below) 7SoC Case Temperature (See Note 2)
Continuous Device Dissipation at (or below 2SoC Free-Air Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds

NOTES:

400 V
SV
2.S A
1A

See Figure 6
100W
4W
180 mJ
-6SoC to 1S0°C
-6SoC to 200°C
300°C

1. This value applies only when the collector-emitter voltage is applied with the transistor in the off-state and the base-emitter diode
is open-circuited or reverse-biased. In operation, the limitations of Figure 7 must be observed.
2. Derate linearly to 1500 C case temperature at the rate of 1.33
C.
3. Derate linearly to 1500 C free~air temperature at the rate of 32 mwt C.
4. This rating 15 based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 40 mH, RSB2 = 3 kil,
VBB2 ~ 1.5 V, RS ~ 0.1 .n, VCC ~ 50 V. Energy"" IC 2 L/2.

wt

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-123

TYPE 2N3902
N-P-N SILICOti POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

TYP MAX UNIT

Collector-Emitter Breakdown Voltage

IC= 100 rnA,

ICEO

Collector Cutoff Current

VCE = 400 V, IB -0

0.25

rnA

ICEV

Collector Cutoff Current

VCE -400 V, VBE - -1.5V

0.25

rnA

0.5

rnA

lEBO

Emitter Cutoff Current

5

rnA

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter Forward

hel
fhfe
NOTES:

IB =0,

See Note 5

325

V

VCE -400 V, VBE - -1.5 V, Tc = 125°C

hFE

VCE(sat)

•

MIN

V(BR)CEO

Current Transfer Ratio
Small-Signal Common-Emitter Forward
Current Transfer Ratio Cutoff Frequency

VEB - 5 V,

IC-O

VCE-5V,

IC= 1 A.

See Notes 5 and 6

30

VCE-5V,

IC = 2.5A,

See Notes 5 and 6

10

IB-0.5A,

IC-2.5A,

See Notes 5 and 6

1

2

IB - 0.1 A,

IC-l A,

See Notes 5 and 6

0.2

0.8

IB = 0.5A,

IC= 2.5A,

See Notes 5 and 6

0.25

2.5

VCE = 10V,

IC = 0.2 A,

f = 1 MHz

VCE=12V,

IC=0.2A,.

See Note 7

90
V
V

5
40

kHz

5. These parameters must be measured using pulse techniques. 'tw = 300 JJS, duty cycle'" 2%.
6. These parameters are measured with voltage..-senslng contacts separate from the current-carrying contacts and located within
0.125 Inch from the device body.

7. fhfe Is the frequency at which the magnitude of the small-signal forward currant transfer ratio is 0.707 of Its low-frequency value.
For this device, the reference measurement Is made at 1 kHz.

thermal characteristics
PARAMETER

MAX UNIT

R8JC

Junction-to-Case Thermal Resistance

R8JA

Junction-to-Free-Air Thermal Resistance

0.75
31.25

°CIW

*switching characteristics at 25°C case temperature
PARAMETER
tr

Rise Time

ts

Storage Time

tf

Fall Time

TEST CONDITIONSt
IC=1 A,

IB(l) =0.1 A,

VBE(off) = -5 V,

RL=125Sl,

IB(2) = -0.1 A,
See Figure 1

MAX UNIT
0.8
~

-2!.-

ps

0.8

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters .

• JEDEC regIstered data

1271

5·124

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPE 2N3902
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION

OUTPUT
INPUT

32V __ .~90%

500

OV

J

I

10%

_tonr-

:1'-

INPUT

...... toff ~

~~

10%r-90%L-..;
OUTPUT

TEST CIRCUIT

NOTES:

VOLTAGE WAVEFORMS

A. The Input waveform is supplied by 8 generator with the following characteristics: tr ~ 20 ns, "tf.:s:;; 20 ns, Zout = 50 fl, tw = 5
duty cycle .. 5%.
B. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 20 ns, Aln;;a. 100 kG, Cln" 50 pF.
C. Resistors must be nonlnductlve types.

",,5,

•

D. The d-c power supply may require add1t1onal bypassing In order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

.....-I
INPUT
VOLTAGE

01

I4--tw"2ms

~

COLLECTOR
CURRENT

+
500

VCC=50V-=ICMONITOR

0-1' i)------t' i)-

VIBRICEv-l--

I

I
I

COLLECTOR
VOLTAGE
RS=0.10

VBBl = 10V

r

~
I
I

~ lOOms
3A-:-~----- T~~--

- 5 V - t i 100ms

I

-----1-

I
I
I

50V
VCElsatl-

TEST CIRCUIT
NOTES:

A. L 1 is. 40-mH inductor.
S. Input pulse width is Increased until leM

=3

VOLTAGE AND CURRENT WAVEFORMS

A.

FIGURE 2
1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 752::::!2

5-125

TYPE 2N3902
N-P-N SILICON POWER TRANSIS10R
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO

'00

i

~

vs

vs

vs

COLLECTOR CURRENT

CASE TEMPERATURE

CASE TEMPERATURE

'.2

IIII

VeE- 6V
See Notes 5 and 6

1111

80

~

,..

1.lj50·C

.. ~
1 . llill

iI

•!

d

ITC~

~

,

1

I'\..

1\\\

:

TCI~1 5&.C

~

20

Tnll

0.04 0.07 0.1

"-

t--

0.8

Ii

QA

0.7

-76 -60 -25

1

0

26

0.3

'B.~
0.2

1

0.2

~

jNj'6!,'di
0.2

0.6
OA

;

OA

60

6

5

A.,
0.6

~

•

ScI No

0..

~

--

0.8

0.8

i

r- H-Ut,r;;:-- r-

f..-

V V
f..- l-

~'A

I II I

0.'

-75 -60 -26

7& 100 125 160 1715

...-

0

25

75 100 126 160 175

!IO

Tc-c...T.m~l'81ura-"C

'c-Collector Current-A

FIGURE 3

•

,

,I. _016At J.. AI

'S"'O,1 A,lc ..

11111

NOTES:

COLLECTOR-EMITTER
SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

FIGURE4

FIGURES

5. These parameters must be measured using pulse techniques. tw = 300 fJs, duty cycla '" 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current.-carrvlng contacts and located within
0.126 inch from the device body.

MAXIMUM SAFE OPERATING AREA

THERMAL INFORMATION

DISSIPATION DERATING CURVE

120

10
D-C Operat ion
TC'; 7SoC

7

4

~c:

.2

1;;

1

2

~

0.7
0.4

_u.,!5

8I
!:J

1\

"'~

is
!l

1

o"

100

·i
80

.~

0
0

"
c:
0

\.

0.2

"

\

0.1
0.07

~

60

.~

0

0

40

""'~

E
E

."

.j(

0.04
0.02
0.01
10

20

40

70100

200

II

~

II

.t
400

700 100

'" "'
"-

20

I

o
70

80

90

100

110

120

130

V CE -Collector-E mitter Voltage-V

Tc-Cese Temperature-OC

FIGURE 6

FIGURE 7

~

140

PR'NTED 'N

5·126

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

150

u.s A

1271

TI (onno' assume ony responsibility for any circuih shown
or represen, ,ho, they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES' AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
fOR HIGH·SPEED POWER SWITCHING APPLICATIONS
•
•
•
•

30 W at 100·C Case Temperature
Isolated·Stud Package (2N3996, 2N3997)
Max VCE(sat) of 0.25 V at 1 A Ie
Max ton of 300 ns at 1 A Ie
• Min It of 40 MHz

* mechanical data
r----------------------------------------.--------~
THE ACTIVE elEMENTS ARE elECTRICALLY INSULATED fROM THE CASE
10.32 UN,-2A
MAX STUD I'OIQUE:
151M-LIS

ALL JEDEC TO-111
DIMENSIONS AND
NOTES ARE
APPLICABLE

2N3996
2N3997
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~

10·32 UNf..2A
MAX STUO TORQUE,

'.".OA
MAX

Q,l7SNOM
(SEE NOTESA& I)

/0

-12N3998
2N3999
NOTES: A.
B.
(.
D.
E.

3_(:OLUCTOR

ALL JEDEC TO-ll1
DIMENSIONS AND
NOTES ARE
APPLICABLE

t

•
t

Position of terminals with respec' to hexagon is not controlled.
Terminals located on true position within 0,030 inch relative to diameter of (On.
This dimension applies to the locolion of the center line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
All dimensions are in inches unless otherwise specified.

*absolute maximum ratings at 25·C case temperature (unless otherwise noted)
Collector-Base Voltage
100V
Collector-Emitter Voltage (See Note 1)
BOV
Emitter-Base Voltage .
8V
Continuous Collector Current
5A
Peak Collector Current (See Note 2) .
lOA
Continuous Base Current.
lA
Safe Operating Region at (or below) 100·C Case Temperature
See Figure B
Continuous Device Dissipation at (or below) 100·C Case Temperature (See Note 3) _
.30W
Continuous Device Dissipation at (or below) 25·C Free-Air Temperature (See Note 4) _
2W
Operating Collector Junction Temperature Range _
-65·C to 200·C
Storage Temperature Range
-65°C to 200·C
Lead Temperature ){. Inch from Case for 10 Seconds _
230·C
NOTES: 1.
%.
3.
4.

This value applies when the base-emitter diode is open-circuited.
This value applies for fp ~ 1 ms, duty cycle ~ 50%.
Derate linearly to 200 o ( (ose temperature at the rate of 0.3 W/deg.
Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/deg.

·'ndicates JEDEC registered data.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·127

TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

* electrical characteristics at 25°C case temperature (unless otherwise noted)

Collector-Emitter
V1aR)CEO 8reakdown Voltage
Collector Cutoff
ICEO
Current
Collector Cutoff
ICES
Current
--Emitter Cutoff
IEao
Current
hFE

•

VBE
VCE1 ••t)

ihf.i

Cobo

Static Forward
Current Transfer
Ratio
8ase-Emitter
Voltage
Collector-Emitter
Saturation Voltage
Small-Signal
Common-Emitter
Forward Current
Transfer Ratio
Common-Base
Open-Circuit
Output Capacitance

2N3997
2N3996
2N3999 UNIT
2N3998
MIN MAX MIN MAX

TEST CONDITIONS

PARAMETER

Ic = 50 rnA,

la = 0,

VCE = 60 V,

la = 0

See Note 5

VCE - 90 V,
VCE - 90 V,
VEB - 5 V,
VEB - 8 V,
VCE - 2 V,
VCE = 2 V,
VCE - 5 V,
VCE - 2 V,
la - 100 rnA,
la - 500 rnA,
la - 100 rnA,
la = 500 rnA,

VaE - 0
VaE - 0, Tc - 150°C
Ic - 0
Ic - 0
Ic - SOmA
Ic = 1 A,
See Note 5
Ic - 5 A,
See Note 5
Ic - 1 A, Tc - _55°C, See Note 5
Ic - 1 A,
See Note 5
See Note 5
Ic = 5 A,
See Note 5
Ic - 1 A,
See Note 5
Ic = 5 A

VCE = 5 V,

Ic = 1 A, f = 10 MHz

Vca = 10 V,

IE = 0,

NOTE S: This parameter must be measured using pulse techniques:.l p

f = 1 MHz

= 300 Jls, duty cycle

~

80

V

80
10

10

5

5
50
0.5
10

50
0.5
10
30
40
15
10
0.6

120

1.2
1.6
0.25
2

4

60
80
20
20
0.6

ILA
ILA
ILA

240

1.2
1.6
0.25
2

V
V

4

pF

150

150

2N3996
2N3998
MAX

2N3997
2N3999
MAX

UNIT

0.3
1.5

0.3
2

ILs

2%.

* thermal characteristics
PARAMETER

(hc
(hA

Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

*switching characteristics at 25°C case temperature
PARAMETER

ton
toff

Turn-On Time
Turn-Ott Time

TEST CONDITIONSt

Ic = 1 R,
VaElof~ =

lal'l = 100 rnA, la(2) = -100 rnA,
See Figure 1
-3.7 V, RL = 20 n,

tVoliage and (urrent values shown are nominal; exact values yory slightly with transistor parameters.
*Indicates JEDEC registered data.

971

5-128

TEXAS INCORPORATED
INSTRUMENTS
F'OST OFFICE BOX 5012

•

DALLAS, TEXAS 15222

TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
*PARAMETER MEASUREMENT INFORMATION

r--_-----oOUTPUT
82 Q

INPUT

o--............M -....-H

+16V--~90%

20 Q

-I V

-:1-10%
.10%

82 Q

-

Ion

:LINPUT
I

r- -' rloff

I
OUTPUT
~
90%
IO%

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 1

NOTES: o. Th. input waveform is supplied by a generator with the following [haraderls'in: Ir ~ lS ns, If ~ 1S ns, lout = SO 0, tp
dUly 

See Note 5

2

.2'"

>

•

4

>

.2u

~

'0

u 0.04

I
§

0.2
0 :;--~:!;----;!::---:7'=5--:-::12'=5--~175
-75
-25
25
TC -- Case Temperature -

r---18 - 5 rnA, IC - 50 rnA

0.02

J O. Ot-75

,.,..

-

---~

-25
25
75
125
TC - Case Temperature _·C

°C

FIGURE 4

FIGURE 5

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESI STANCE

COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE

700

Ie = 10 mA
TC = 25·C
See Note 5

600

~

500
LL
Q.

~ 400
u
f

"
V(8R)CBO

~

V(8R CER at R8E = 1 0

'"

Cib.(lC= 0

'\..

'"

1300
o
u

r-

100
1k
10 k
Base-Emitter Resistance - Q

f= 1 MHz
TC=25°C

'\

200

-......-.

100

10
R8E -

175

o

100 k

1

Cobo(IE = 0)

---....
2

r--

--

4
7 10
20
Reverse Bias Voltage - V

FIGURE 6

40

70100

FIGURE 7

NOTE 5, This param.ter must b. m.asured using pul" techniques, 'p

= 300 p.s, duly ,yd. ::; 2%.

971

5·130

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAS, TEXAS 715222

TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGION

2N3996-2N3999
MAXIMUM SAFE OPERATING REGION

20 r------r--r--r-'T"'T""rrn---r----r--.-..........1""T"T1
Tc ~ 100°C

O. 21---+-+---j-t+t+t+_ MAX VCEO ;...c~+1
O. 1 L..----L.____L~.J..-L..w...u_

I

7

____LI----LI~.L..J..L..L.J.J

2

4

VCE -

Collector-Emitter Voltage -

10

20

40

•

70 100

V

FIGURE 8

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·131

TYPES 2N3996, 2N3997, 2N3998, 2N3999
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

CASE TEMPERATURE
DISSIPATION DERATING CURVE

35

0
..
0
0

PEAK-POWER COEFFIC)ENT CURVE

0.711DUlmi

3:

I

l5

3

'iii 25

o

2

13

I\:'\

~

E

•

1i

'"

15

~

i

10'

I 11111

~ 0.2

"l

gc

0.50 (50%) duty cycleHt_+::p"~!#H--!-H-++!+H

.!

1\

u

~

0.4

1\'\

'i

5

tp = Pulse width in ms

f\

d = Duty cycle ralio

'\

I

~ 0
50

75
TC -

175
100
125
150
Case Temperature - ·C

T = Thermal time constant = 10 ms

200

2

SYMBOL DEFINITION
DEFINITION
AYlrage Power DIssipation

PTI""91
PTI....)

Peak 'ower Dissipation

VALUE

UNIT
W

(hA

Junctlon-Io-Fre.-Air Thermal Resistance

87.5

d.gJW

Junctlon-to-Case Thermal Resistance

d.g/W

(Je.A

Case-Io-Free-Alr Thermal leslslante

3.33
84.17

(Je.HS

(asl-to-Heal-Sink Thermal Resistance

d.g/W

(JHS.A
TA

Heat-Slnk-IOoFr"-Air Thermal Resistance

dag/W
·C

Te

(as. Temp'"'tur.

TJloV9)
TJlmo.)
K

Average Junction Temperatun

~200

·C

'eak Junction Temperature

~

·C

Ip

Pulse Wldlh

ms

Ix

Puis. ",Iod

ms

d

Duty Cyd. Ralio (1.lIJ

Fre...Alr Temperature

dag/W

·C
200
Se. Figure 10

Example - Find PTI...x) (dosign limit)
OPERATING CONDITIONS,
(Je.HS
OHS.A = 7 dag/W (From informal Ion supplied
with hoal sink.)
TJloV9) (design limit) = 2OO'C
TA = 50'C

+

d
Ip

TJlavg) - TA

PTlavg)

= (he

+ Oe.HS + (JHS.A

Equation No.2 - Application:
no heat sink used.

'Tlavg)

=

40

d~c

for 100°C:'; Te ~ 200°C
as in Figure 9

power dissipation,

TJlavg) - TA for 25'C < T < 2OO·C.
(JJ.A
- A-

Equation No. 4 - Application: 'aak powar diSSipation,
no heat sink used.

Solullon,
From Figure 10, 'eak·Power ( .."Ieienl
K = 0.103 and by use of equation No.3
PTlmuJ

TJlmax) -TA
= ---:--:-::--~~--:~-::-".-­
d (Oe.HS

0.1 ms

PTI ....)

=

+ (JHS.N + K 0J.e

200-50
0.1 (7)
(0.103) 3.33

+

143W

PRINTED IN

5·132

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

10

Equation No. 3 - Application: '10k power dissipation,
heat sink used.

= 10% (0.1)
=

20

Equation No.1 - Applicalion: d·c power dissipation,
heat sink used.

W

(he

Peak-Power Coefficient

7 10

FIGURE 10

FIGURE 9

SYMBOL

4

Pulse Widlh -ms

Ip -

DALLAS, TEXAS 75222

U.S.A.

971

TI cannot assume any responsibility for any circuits shown
or represen' that they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPrlY"THE BEST PRODUCT POSSIBLE.

TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

FOR HIGH·SPEED POWER SWITCHING APPLICATIONS
• 15 W at 100°C Case Temperature
• Max VeE (sat) of 0.3 V at 0.5 A Ie
• Max ton of 300 ns at 0.5 A Ie

• Min f, of 40 MHz
* mechanical data

THE COLLECTOR IS IN ElECTRICAL
CONTACT WITH THE CASE

11

All lEDEC TO·5 DIMENSIONS
AND NOTES ARE APPLICABLE
All DIMfNSIONS ARf
IN INCHES

UNLESS OTHERWISE
SPEClfl~D

CASE TEMPERATURE IS MEASURED 0.144 INCH ±O.010 INCH DOWN FROM TOP OF CAN.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N4000 2N4001

Collector-Base Voltage
IOOV 120Y
Collector-Emitter Voltage (See Note 1)
SOV IOOY
Emitter-Base Voltage .
+-SV ~
Continuous Collector Current
+-IA ~
Peak Collector Current (See Note 2) .
+-3A ~
Continuous Base Current.
+-O.5A~
Safe Operating Region at (or below) lOOoC Case Temperature
See Figure S
Continuous Device Dissipation at (or below) lOOoC Case Temperature (See Note 3)
+-15W~
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4) . +- I W-+
Operating Collector Junction Temperature Range.
-65°C to 200°C
Storage Temperature Range.
-65°C to 200°C
Lead Temperature ){. Inch from Case for 10 Seconds.
+- 230 0 C-+

NOTES: 1. These values apply when
2. This value applies for tp
3. Derate linearly to 200 o (
4. Derate linearly to 200 o (
• JEDEC registered data

the bose-emitter diode is open·drcuited.
.::;: 1 ms, duly cyde ::; 50%.
(ose temperature at the rate of 0.15 W/°c.
free-air temperature at the rate of 5.72 mW/°c.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX SOU

•

DALLAS, TEXAS 75222

5-133

TYPES 2N4000, 2N4001
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

*electrlcal characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

Collattor-Emltter
VIlRlcEO Breakdown Vollage

•

Ic = 30mA, I. = 0,

ICEO

Colledor Cutoff Current

ICES

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Stalic Forward Current
Transfer Ratio

VIE
VCEllotl
Ihal

C-

2N4000
2N4001
UNIT
MIN MAX MIN MAX

TEST CONDITIONS

8ase-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal
Common-Emitter
Forward Current
Transfer Ratio
Common-Base
Open-Circuit
Output Capacitance

See Note 5

VCE = 60 V, I. = 0
VCE = 80 V, I. = 0
Vee - 90 V, VIE - 0
VCE - 110 V, VIE - 0
VCE - 90 V, VIE - 0, Tc = HOoC
VCE - 110 V, VIE = 0, Tc = HOoe
VEa - S V, Ic -0
Vg = 8 V, Ic = 0
VCE - 2 V, Ic-SOmA
See Note S
VeE - 2 V, I" - O_SA
See Note S
VCE - S V, Ic -1 A,
VCE = 2V, Ie = O.S A, Tc = -SS°(,
See Note S
I. - SO mA, Ic - o.s A,
See Note S
See Note S
I. - 100 mA, Ic - 1 A,
I. - SO mA, Ic = 0.5 A,
See Note 5
la - 100mA, Ic =1 A,
See Note 5
Ic = 0.5 A, f=20MHz

Vee = S V,

Vca = 10V, IE = 0,

NOTE S, Th... paramotlrs musl be mea.ured u.lng pullliechnique•• Ip

f = 1 MHz

= 300 PS. duly cycll

~

V

100

80
10

10

p.A

2
2
50
50
SOO
10

SOO
10
10
30
10

120

20
40
20

p.A
nA
p.A

120

15

10
1
1.2
0.3
0.5
2

1
1.2
0.3
0.5

V
V

2

60

60

pF

2%.

*thermal characteristics
PARAMETER

(hc
(hA

Junction-to·Case Thennal Resistance
Junction-to-Free-Air Thennal Rasislance

MAX

UNIT

6.67
175

deglW

MAX

UNIT

0.3
2

p.s

*swltchlng characteristics at 25°C case temperature
PARAMETER

t..
toff

Turn-On Time
Tum-Off Tim.

TEST CONDITIONst
11(,) - SO mA, 11(21 - -SOmA,
Ic - 0.5 A,
See Figure 1
VlEloIf) = -4 V, R,. = 20 n,

tVoitagl and currenl ,aluR shown are nominal; ..." ,.Iues

,.'y .lIghtly wllh Iran.I.IO, paramlllrs.

"IEDEC ",1.lered dol.

971

5-134

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

, - -.....----QOUTPUT
200 Q

20 Q

INPUTo--~~~~~~
~O

Q

.... TEST CIRCUIT

J
-0.4 V

•

1 1 90%

+20V--.

:L

10%

I
---+-Iton.....

INPUT

I

......,

I

toff ....

I

~~

10%,-90%L--.;
OUTPUT

VOLTAGE WAVEFORMS

FIGURE

NOTES: a. The input waveform is supplied by a generator with the following characteristics: tr ~ 10 ns, If ::; 10 ns, lout =
duly ,yeie :::; 2'Yo.
b. Waveforms

Ofe

SO 0, Ip

= 10 p,s,

monitored on an oscilloscope with the following characteristics: Ir ::; 15 ns, Rjn ~ 10 MO, (in::; S pF.

c. Resistors must be noninductive types.
d. The d·c power supplies may require additional bypassing In order to minimize ringing.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX SOU •

DALLAS. TEXAS 75222

5·135

TYPES 2N4000, 2N4001
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2N4oo1
STATIC FORWARD CURRENT TRANSFER RATIO

2N4oo0
STATIC FORWARD CURRENT TRANSFER RATIO

v,

vs

COLLECTOR CURRENT
120

JJ

'a 100

""

~c

I! 80

0-

e

/'

60

1V
... 40
u

V

j

•

~ 20

V
V-

o

0.01

~

i-'"

)c !112S oC

See Note S

11125 0 C

0

l
iI!

~ \

0-

e

Tc = 7SoC

~

1

T~lll25°C

.f
~

\\

TC =-SsoC

0.2 0.4 0.7 I
0.1
0.02 0.04
IC -Collector Current-A

40

I
~
..<:

/'

V
V ""

Te - 2SoC

r\

+-'

1\

Te = -55°C

20

I-o

0.01

2

i'-

ffifC

...... ~

~

V

2
VI

~

-1111

60

~

~

10-"

VCE = 2 V

~ t-r-. See Note S

....,,1-'
80

:>

U

/

100

~

i'-

I---'

!-'-

..<:

l

VCE = 2 V

o

~
u

COLLECTOR CURRENT

120

t'"

~

[ 1111

0.02

0.04
O. I
0.2 0.4 0.7 I
Ie - Collector Current - A

2

FIGURE 3

FIGURE 2

COLLECTOR-EMITTER SATURATION VOLTAGE

BASE-EMITTER VOLT AGE

v,

vs

CASE TEMPERATURE

>

0.9

I
~

0.8

;

See

~ote 5

~ 0.7

6

i 0.6

~

~_ 0.5

•
], 0.4
.2
.! 0.3

..
>..

~
0.2 I-~--+-+--+-~--+-+--+--

O~~-~~-~-~~-~~--

-7S

-SO

-25 0
25
SO 7S 100
TC - Case Temperature - °C

125

ISO

I

\

\
1\

Is ~ 100jA,

1
0.2

"""-

Io.1 t--Ia
~

1-0..

0
-7S

-

Ie= I A

·1

I

-

_t-

,I

I s I SO miA, Ie SOO mA

20 mA, Ie - 200 moO

I

la - 5 mA, le- SO mA

-50 -25
0
25 50
75 100
Te - Case Temperature - °C

125

ISO

FIGURE 5

FIGURE 4

NOTE So These pa,amota.. must be mea,ured u,lng pulse 'ochnlq.... tp

= 300 p.s, duty ,yda =:; 2%.

971

5·136:

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE

" 1.0
U

r-

J
I

!"
~

j

300

See Note 5

.....

O.B

:=

u..

a.

0.6

I

"uc

.... to-

[ 150

0.4

(l
100

0.2

V(BRle~?I""V(BRI~~'~lIat

Il
.~

-1.

= 0)

200

.2
.!

~

C;bo (Ie

I'

2

I

d

f= 1 MHz
Te = 25°C

"-i'...

250

Ii

]

,

350

Ic = 10 mA
Te = 25°C

COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE

J1111'"

o
1

II

10
RBE -

IIII~

BE

~"IIIQ

50

11111111

o

1k

100

100 k

10k

Base-Emitter Resistance -

n

---

Cobo (IE = 0)
:-- ~..LIIII

4

2

1

~
7

~
10

20

Reverse Bias Voltage -

FIGURE 6

FIGURE 7

HOTE $: These parameters must h. measured using pulse techniques. tp

=

300 p,s. duty cyd. ~

2%.

40
V

70 100

•

MAXIMUM SAFE OPERATING REGION
4

,

-<

I

i

0.7

~

0.4

~

"

D-C Operat ion
tp - 1 ms, d - 0.5

I

~

tp

8 0.2

I I II

0.5 ms, d

1\

,

2

Te s 100°C

\

im

\

0.1 (10%)

~

.5

j

0.1
0.07

I

Max VCEO (2N4000
Max VeEO (2N4001)

2 0 . 04

III

0.02
1

2

veE -

4

7

I

10

20

40

Collector-Emitter Voltage -

70 100

200

V

FIGURE 8

971

TEXASINeORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·137

TYPES 2N4000, 2N4001
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
PEAK-POWER COEFFICIENT CURVE

CASE TEMPERATURE DISSIPATION DERATING CURVE
16
~

I
8

\

:a

ll2
Ci
G

U

'>

"

0.7

1\

14

0.4
G

~

a~

8

C

(3
E
~
E

!I

j

6

0.07

0.1

~

0.04

~

\

2

~

I

100
125
75
Case Temperature -

ISO
°C

1_

~ ...

J 0.07.~1~fI~~~~~
Q.

J.

175

~
l-e -tpiT
;:: ~ K = -:1....::-.:....-t';"p7""'d-T

.+to
~

V
1.
00
~

r\
50
Te -

10%)

I'

_

4

25

gy

0.2

~

\

•!;

IIII

·u

\

0

VI.I

b.l~dl25%)1

C

1\

10

0.50 (50%) Duty Cycle

tp = Pulse width in ms

101
d = Duty cycle ratio
0.02
1
T = Th<;rmol time constant ,= 6 ms
0.0 ~~~~~~-u~,,__~~~~.I~~~
2
4
7 10 20 40
0.04 O. I 0.2 0.4

-"

200

tp -

Pulse Width -

SYMBOL DEFINITION

SYMBOL
'Tlovgl

DEFINITION

VALUE

UNIT

Average Power Dissipation

W

Peak Power Dissipation

W

'TI"""I
()J.A

Junctlon-Io-Free-Alr Thermal Resistance

175

d.gJW

()J.C

Junctlon-Io-Case Thermal Resistance

6.67

d.g/W

()C.A

Case-Io-Free-Air Thermal Resistance

168.33

d.g/W

()C.HS

Case-to-Heat-Slnk Thermal Resistance

d.g/W
d.g/W

()HS.A

Heat-Sink-Io-Free-Air Thermal Resistance

TA

Free-Air Temparature

Tc

(ase Temperature

TJlovgl

AYerage Junction

TJlmo'i

Peak Junction Temperature

°c

Equation No.1 - Application: doc power dissipation,
heat sink us.d.
,

_
Tlovgl -

fa, 100°C ~ Tc ~ 200°C

TJlovg) - TA

()J.C

+ ()C.HS + ()HS-A as in Figu,e 9

Equation No.2 - Application: d-, power dissipation,
no heat sink used.

,

_
Tlavg) -

TJlavgl - TA for 25°C ~ TA ~ 200°C
---;r;;:-

Equation No.3 - Application: Peak power dissIpation,
heat sink used.

°c
T~perature

<200

°c

<200

°c

K

Peak·Power Coefficient

Ip

'ulse Wid'"

ms

I,

'ul" 'erlod

ms

d

Duty Cycle Ralio (tp/t,)

Sa. Figu" 10

Example - Find PT(max) (design limit)

O'ERATING CONDITIONS,
()C.HS
()HS.A = 7 degJW (From infonnolion supplied
with h.ot sink.)
TJlavgl (design limit) = 200°C
TA = SOoC
d = 10%(0.1)

+

'p =

ms

FIGURE 10

FIGURE 9

Equation No.4 - Application: Peak power dlnip.'lon,
no heat sink used.

Solution,
From Figure 10, Peak-Power Coefficient
K 0.19 and by use of equation No.3

=

d (()C.HS
'Tlmo'l

1 ms

=

+ ()HS.A) +

200 - SO
0.1 (7)
(0.19) (6.61)

+

K ()J.C

= 76 W

PRINTED IN U.S A.

5·138

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS. TEXAS 75222

971

TI (onnot anume any responsibility for any circuits shown
or represent Ihat they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.
)

TYPES 2N4002, 2N4003
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
,. ~
'" ;:!
~c ~...Z ......
z
iii: z ,.

m

FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS

0

•
•
•

•
•

l>
-< ~ ~
:0 c

30·A Rated Continuous Collector Current
100 Watts at 100·C Case Temperature
Maximum V CE(sat) of 1.2 V at 30 A
Maximum VBE of 1.8 V at 30 A
Maximum t on of 1 p,s at 15 A

'"

co

::;;

'"
'"
!>'

...z

,.

0

co 0w
co
0

3:
l>

-<

:0

'"'"

*mechanical data

•

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

All JEDEC TO-&3 DIMENSIONS
AND NOTES ARE APPLICABLE

CASE TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF FLAT SURFACE
WITHIN 0_125" FROM STUD

ALL DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25·C case temperature (unless otherwise noted)
2N4002

Collector-Bose Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current .
Peak Collector Current (See Note 2)
Continuous Base Current .
Continuous Emitter Current
•
.
Safe Operating Region at (or below) 100·C Case Temperature
.
Continuous Device Dissipation at .(Clr below) 100·C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25·C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range .
Storage Temperature Range .
.
.
Terminal Temperature){, Inch from Case for 10 Seconds .

NOTES: 1.
2.
3.
4.

2N4003

100 V
120 V
80 V
100 V
• -+--- 8 V--+
. ~ 30 A--+
. ~ 40 A--+
. ~ 10A--+
. ~ 30 A--+
See Figure 7
_*-100 W----+. -+---4 W----+. -65·C to 200·C
. -65·C to 200·C
. *-230·C----+-

These v<1lues apply when the base-emitter diode is open-circuited.
This value applies for Ip ~ 0.3 ms, duty cycle::; loo/o.
Derate linearly to 200°C case temperature at the rate of 1 W/deg.
Derate linearly to 200°C free-air temperature at the rale of 22.9 mW/deg.

*Indicates JEDEC registered data.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·139

TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V{IIII)CEO Colleclor-Emitter Breakdown Voltage
ICEO

Collector Cutoff Curren!

ICES

Colleclor Cutoff Current

lEBO

Emitter Cutoff Curren!

Static Forward Current
Transler Ratio
Base-Emitter Voltage
VIE
VCE(sat) Colleclor-Emitter Saturation Voltage
Small-Signal Common-Emitter
hie
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Ihlel
Forward Current Transfer Ratio
hFE

I

Ic - 30 rnA,
Vee - 40 V,
Vee - 50 V,
Vee - 90 V,
Vee - 110 V,
VCE - 90 V,
Vee - 110 V,
VES - 5 V,
VES - BV,
VCE - 4 V,
Vee - 4 V,
Vee - 4 V,
Is - U,

Is - 0,
Is - 0
Is - 0
VIE - 0
VIE - 0
VIE - 0,
VIE - 0,
Ic - 0
Ic - 0
Ic - 30 A,
Ic = 15 A,
Ie - 30 A,
Ic- 30 A,

VCE = 4 V,

Ic = 1 A, I = 1 kHz

See Note 5

Tc - lSOoC
Tc - lSOoC

See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Noles 5 and 6

Vee = 10 V, Ic = 1 A, 1= 10 MHz

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 fLs, duty cycle

~

2N4002
2N4003
UNI'
MIN MAX MIN MAX
80
100
V
2
rnA
2
1
1
rnA
2
2
100
100
p.A
rnA
50
50
10
10
20
80 20 80
1_8
1.8
V
1_2
V
1.2

30

30

3

3

2%.

6. These parameters are measured with yoltage-sansing (ontaetl separole from the currenl·corrying contacts.

*thermal characteristics
OJ_C
OJ_A

MAX

PARAMETER
Junclion-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

1

43.7

UNIT
deg/W
deg/W

*Indicates JEDEC registered data.

971

5-140

TEXAS INCORPORATED
INSTRUMENTS
post

OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR' SILICON POWER TRANSISTORS

*swltchlng characteristics at 25·C case temperature
PARAMETER
Ian Tum.()nTIme
loff Tum.()ff TIme

TEST CONDInONSt

Ie - 15A,

= -2 V,

V. lof~

111111 - 1.S A,I1I21 - -l.H,
... = 3 n, See Figure 1

tVoltege alld current ,,1_ shown are ".Inll; ,ud valulS vary slightly witit transistor p.ram,ten.

*PARAMETER MEASUREMENT INFORMATION

tr

r-----~~)

OUTPUT

IOILF

Adjust INPUT

~ Q-=

amplitude
of input
pulse
for 'Bill = 1.5 A

•

= -2 V
POINT "A"

P~NT"A"
~
I
0-

----;-

10%

I I

1.1

I-::'!,,",,",

,~« {
90%

VOLTAGE WAVEFORMS

FIGURE I

=

IIOTES, I. Tho lopll .Inlo.. a. ,.,•• "A" h...ho Ililowl .. ,hl,a"orl ••k., " ::s; 100 ", " ::s; 100 n., 'p
20 1", duly cyel.
b. Wanlorms a...... ltored an an osclnoscope .1...110 Ionawl.. ,h.,aelorls'i", " '::s; S n., Rin ~ 1 Mil, Cin ::s; 5 pF.
,. hsI.lGr. must .. n..lndadln .ypos.
d. Tho Ik POW" .uppllo, ..ay .....Ir. additi..al bypasslnl i.....or mlnlmlll 'inllog.

::s;

0.2%.

'0

·lndl,",1S lEDEC

",I"...

d do'".

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-141

TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
260
Te = 150°C

240

'"

200

~
t-

160

o
~

140

5
v

~

Te

120

"E
c

-

"

25°C

..... ~

100

~

See Notes 5 and 6

I'.

.....

180

~

\

~

80

.~

'5
v;

•

r~~ lllW~

220

0

''5

VCE = 4 V

.......

Te

if

= -55°C

-rrrII IIIIII

40
20

"'"

.,

\.

60

o
0.2

0.4

-........ ~
7

4

0.7'1

20

10

40

Ie - Collector Current - A
FIGURE 2

BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE
1.4

1.2

1.0

I

E

~
:u
::
]

~

I

~

~

II

!

Is = 30 mA, Ie = 300 mA
0.8

r- r---

0.6

r---

~

~

~

E

-l-.

- r-i--

--r-

§

-

'-5

5

I--.

0.4

]

-

I

(;

]

-

==Is

0.2

-

15 A

0.1

0.04

I
0.2

1.5 A, Ie

f...- V

I

0.07

::3

>'"

'P

~

o

"l-J

0.7
0.4

-

Is = 3 A, Ie = 30 A

~
~

See Notes 5 and 6

I

I

30A

I
~

>

Is = 1.5 A, Ie = 15A

>
Cl

4

See Notes 5 and 6
Is - 3 A, Ie

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

==:~}O m~,

-

Ie 1= 300 mA

0.02

~0.01

-75

-50

-25
TC -

0

25

50

75

Case Temperature -

100

125

150

-75

-50

-25

Tc

O(

0

-

25

50

75

100

125

150

Case Temperature - O(

FIGURE 4

FIGURE 3

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 IlS, duty cycle ~ 2%.
6. These parameters are measured with voltage-senSing contacts separate from the current-carrying (ontacts.

971

5·142

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N4002, 2N4003
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE
~ 12r-TTITITm-"OTImr-rrnnm-.,,~~~~
¥Ie = 10 mA
~
Te = 25'C

I

•

350 0

f

1.0~1-H-++H+-++~IoW::-+H+H+ll--+-H-;,:Setffie~N~o,:.:te;-;5m-Hll

Te

3000 ' "

r--..

Ic;

COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE
vs
REVERSE BIAS VOLT AGE

f'.

2500

~ 0.8

C,b, (Ie

0-

I

o

g 2000

~

«; 0.6 f-1-+-1++H-lI-+++WiW--+I-++f+Hl--I-++1fffil1-I-+-1++Hl1

0)

=

0)

1'\.

U.

]

=

= 1 MHz
= 25'C

.2

~

11500

t

(l

]

, 0.41--H-I++Hl+-++++HIHI----f-I-H-I1+lI--+++H-lllI-H-I++I+ll

.

r,
~

Z

1000

C abo (IE

1~.lJ.IL. .L lI~J.- l J L. . L·I~ ~Iii

L-..LL.W11
[

10
RSE -

500

iiLilJ..lllL..Jlil'--LLlJ..WL]--Ll..lll.1llJ

lk

100

r----... 1"- t---'I--

10k

Bose-Emitter Resistance -

t-- t-

o
4

I

lOOk

7

10

20

Reverse Bias Yol toge -

(2

FIGURE 6

FIGURE 5

40
V

70 100

•

NOTE 5. These parameters must be measured using pulse techniques. tp = 300 f.ls, duty cycle::; 2'%.

MAXIMUM SAFE OPERATING REGION
100
70
40
<{

I
"E

~
u
a
u

20

=

-

1 ms, d - 0.5 (50%).~
0.3 ms, d = 0.1 (10%)

10

Iit--"=

Tc

~

100'C

r~
~

V

~

o-C Operation

4

TTTll

~

-0
u

MAX VCEO (2N4002)
MAX VCEO (2N4003)

I
_u

tp
tp

0.7
0.4
0.2
0.1

7 10

veE -

20

40 70 100 200 400 700 1000

Collector-Emitter Voltage -

V

FIGURE 7

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·143

TYPES 2N4002, 2N4003
N~P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

125

0.7

~

I
r:

io

0.4

100

1\
1\
1\
1,\

'iii

o
G

U

7.5

.~

o
~

g

.=
~

50

§
E

i

25

I

I

o

O.SO (50%) Duty Cycle

SO

100

75

125

150

175

7:

..
'u

0.25 (25%)

.

1 II

8

O.IO'()JJ)

&: 0.2
i

0.1

£I

0.07

~

-"

~
I

'"

0.04

-

1..-""
lI'

~

0.07
0.05

1-e-tpiT

0.03

K=

~

100"

~

0.02 0.01 I-,Y

d = Duty-cycle ratio
= Thermol time constant = 13 ms

T

0.010 . 1 0.2 0.4

III

I

tp -

PT(ovg)

VALUE

UNIT
W

43.7

d.gfW

Peak Pawor DI"lpa"..
Juncfion-to-Frll-Alr Thermal leslstance

OJ-C

JI.I1c1lon-to-Case Thermal Resistance

I

d.g/W

OC.A

Case·to-Fre.·lIr Th,rmal aeslstanc.

42.7

dealW

OC-HS

Case-t..Heat-Slnk nannal R,slstance

deg/W

H,al-Slnk-lo·Fr...Alr Th.rmal a"i.lanco

dog/W

OHS-A
TA

Frea-Air Temperatur.

°c

Tc

Case Temp.ratur.

°c

TJ(ovg)

Average Junction Temperature

<200

°c

TJ(mox)

Peak Junction Temperatun

~200

°c

Peak-Powlr (oefflclent

Pulso Wldlh

IDS

Ix
d

Pulso Porlod

IDS

'p

=

=

100

Pulse Width -m.

Equa"on No.2 - Appll,a"on, d·, powor dlssipa"on,
no hoal .Ink used.

,

Ylovg)

= TJ(ovv)-TA lor 2SoC < T ~ 2000C
0J-A
- A

Equa"on No.3 - Appll,a"on, P,ak power 11"lpalion,
hoal .Ink ur....
'Ylmul

=

TJlmo,)- TA

d (OC.HS

+ OHs-J + I

lor 100°C

OJ.(;

~

T < 200°C
C-

Equa"on No.4 - Appli,a"on, Poak power d1"ipatlon,
no hool .Ink us.d.

=

TJ!mox) - TA

d

BC • A

+ K BJ •c

for 2SoC < T

-

~

2000C

A

Solullon,

Exampl' - Find PYlmo,) (design limit)
OPERATING CONDITIONS,

d

40

EqUali .. Ho. I - Appll,allon: d·, power d1"lpa"..,
h,al .Ink u.....

PTlmul

Duly-Cyd, 10"0 (IP/I")

TJ (OV9) (de.ign limit)
TA = 50°C

20

See Figure ,

I

tp

+ OHS.A =

7 10

W

PTlmaxl
OJ.A

OC.HS

I 11111

FIGURE 9

FIGURE 8
SYMBOL DEFINITION
'DEFINITION
Av..ago Pow.. Dlsslpallon

I

4

TC - Case Temperature - ·C

SYMBOL

1-e -tp7dT

Ip = Pulse width in ms

V

200

r;-

2.5 d.g/W (From Inlorma"om .uppll'"
wllh hlO' .Ink.)·

= 200°C

From Figure 9, Peak-Power Coefficient
I = o. i and by USI of IqUlllon No. 3

PTlmul

10% (0.1)

PT(mul

0.1 m.

= d (OC-HS
=

+ 8H5-J + K0J-C

200-50
---=-:-:=--::-:---:-:--

0.1(2.51

+ 0.1(1)

= 428 W

PRINTED IN

5·144

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

u.s.A.

971

TI (onnol assume any responsibility for any drcuits shown
or represent that they are free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.

TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

20 A Rated Collector Current
40 WaHs at l00·C Case Temperature
a Maximum VCE(sat) of 1 V at 20 A
a Maximum VIE of 1.6 V at 20 A
a Maximum ton of 1 p's at 10 A
a
a

*mechanlcal data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

NOTIS,

_

.. ......--..ctiM
..........

A.

_

c.

-

D.
I.

..........,. ............. __ .........
and . . . .

_""'--Ift IhiI

Specified IecMI wldlh"" thI. . . . apply wlthilll

th"4~"""""'.

Contour fill pockq. h ............'" th.. a_.

DillleMlonl a... III inch.. uIII... elherwi..

*absolute maximum ratlnBs at 25·C case temperature (unless otherwise noted)
2N4004

Collector-Base Voltage. . . . . .
Collector-Emitter Voltage (See Note 1)
\.'
Emitter-Base Voltage . . . • . .
Continuous Collector Current. • . .
Peak Collector Current (See Note 2) .
Continuous Base Current. . • • •
Continuous Emitter Current . . . .
Safe Operating Region at (or below) 100·C Case Temperature
Continuous Device Dissipation at (or below) 100·C
Case Temperature (See Note 3). • . . • •
Continuous Device Dissipation at (or below) 25·C
Free-Air Temperature (See Note 4). . • . •
Operating Collector Junction Temperature Range.
Storage Temperature Range. . • . . . . •
Lead Temperature Ji'. Inch from Case for 10 Seconds •

.

NOTES, I.
2.
3.
4.

'(

2N400S

100V
120V
BOV
100V
+-- BV--+
+--20A--+
+--30A--+
+--10A--+
+--20A--+
See Figure 7
+--40W--+
+--1.2W--+
-65·C to 200·C
-65·C to 200·C
+- 230·C ----+

.he.

Thill .al... apply
Iho ......... 1110' diodo is ope."i"uil••
This .al.. appli" lor Ip ~ 0.3 ..., duly cy,1e ~ 10%.
Deralo 1i...,1y 10 2OD·C 'lSI ","p"al.re allhe rato" 0.4 W/d".
Do..10 1i••a,1y 10 BO·C "M..I, I........... allho ,alo ., 6.'7 roW/dol.

'I.dl,at.. JEDEC ,,,Islored dola.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-145

TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V,BR)CEO Collector-EmiHer Breakdown Vollage Ic - 30 rnA,
VCE - 40 V,
Collector Cutoff Current
ICEO
VCE - 50 V,
VCE - 90 V,
VCE - 110 V,
Colledor
Cutoff
Current
ICES
VCE-90V,
VCE - 110 V,
VEa - 5 V,
Emitter Cutoff Current
lEBO
VEa - 8 V,
VCE - 4 V,
Static Forward Current
hFE
Transfer Ratio
VCE - 4 V,
Base-Emitter Voltage
VCE - 4 V,
VIE
VCElII,) Colledor-Emitter Saturation Voltage la- 3A,
Small-Signal Common-Emitter
- -~CE = 4 V,
hie
Forward Current Transfer Ralio
Small-Signal Common-Emitter
VCE = 10 V,
Ihlel
Forward Current Transfer Ratio

I

HOTES: 5. These parameters must be measured using pulse techniques. 'p

la - 0,
la - 0
la - 0
VBE - 0
VIE - 0
VBE - 0,
VIE - 0,
Ic - 0
Ic - 0
Ic - 20 A,
Ic - 10 A,
Ic - 20 A,
Ic - 20 A,

See Nole 5

2N4004
2N400S
UNIT
MIN MAX MIN MAX

80

100
2
1

Tc - HOoC
Tc - HOoC

2
100
50

See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6
See Notes 5 and 6

15
30

150
1.6
1

15
30

= 1 A, f = 1 kHz

30

30

Ic

= 1 A, f = 10 MHz

3

3

~

rnA

1

Ic

= 300 p.s, duly tydl

V

2

rnA

2
100
50

/LA
rnA

150
1.6
1

V
V

2%.

6. Thase parameters are measured with Yoltage--sensing (Ootads. The yolla.a-saDslng contacts an separate from currtll'-carrylng contacls.

*thermal characteristics
PARAMETER

() J.C
() J-A

JunCtion-lo-Case Thennal Resislance
Jundion-to-Free-Air Thermal Resistance

'Indica.IS JEDE( rogis'ered da.a.

971

.5-146

TEXAS.NCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

*switching characteristics at 25°C case temperature
PARAMETER

ton Tum-On Time
toff

TEST CONDInONSt

Ie - 10 A,
la(1) - 0.8 A,l a(2) - -0.8 A,
VBeloff) = -1 V, lit. = 3 n, See Figure 1

Turn-Off Time

tVoltage and current valuls shown are nominal; exad values vary slightly with transistor parame.ers.

*PARAMETER MEASUREMENT INFORMATION

r------t<) } OUTPUT

INPUT~10 jLF 51 n
Adjust
amplitude
~n
af input
pulse
_
for IB(1) O.8A

=

=-1 V
Adjust for
I B (2)= -0.8 A

•

+

-=-

' - - - - - - - - - -.....t(l} POINT "A"

VOLTAGE WAVEFORMS
FIGURE 1

NOTES: a.
b.
c.
d.

=

The input waveform at point "A" has Ih, fallOWing characteristics: 'r ~ 100 ns, If ~ 100 ns, Ip
20 ,.,.5, duty cycle::;: 0.2%.
Waveforms afe monitored on GIl oscilloscope with the following characteristics: I, ~ 5 ns, lin ~ 1 Mn, (in ~ 5 pF.
I.sistors must be noninductivI Iypes.
The doC power supplies may require additional bypassing in order to minimize ringing.

*Indicates JEDEC regislered data.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·147

TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs

COLLECTOR CURRENT
200

~

~

II II

fe 1=lllsl,~

160

ie
--1:
~

1!

~

-

80

.f
u

:2

V>

40

........

\

Tc = lOO'C

-.....,

-

Te = 25"<:

,.-

II

E -55.b

~

=

-'

II

w

I

-

II

-

120

~
u

VeE = 4 V
See Notes 5 and 6

.<:

o

0.2

........

II

0.4

0.7 1

2

7

4

10

20

Ie - Collector Current - A
FIGURE 2

BASE-EMITTER VOLTAGE

vs

CASE TEMPERATURE

CASE TEMPERATURE

1.8
Se!
1.6

>
I

1.4

~

'"

.2 1.2

"0

>

..

18

COLLECTOR-EMITTER SATURATION VOLTAGE

vs

2A, Ie

4

Not~s 5 an~ 6

See Notes 5 and 6 -

--

120A

L1 A lie Jo A
"rI.

2

18

2 A, Ie - 20 A

18

lA,l e -l0A

0.7
0.4

~

~

~

:::

'E
w 0.8
I

S 0.6

'"

:j

-

............ I'---.

:::
'E

I. = 20 mA, Id = 200 mA

-- -----

"r- t""- "'-

0.4
0.2

0.2

";'

~

..!

0.1
0.07

"0

u

I

0.04

r--18 = 20 mA, Ie = 200 mA

], 0.02
w

u

o

-75 -50

-25

o

25

50

75

100

125

>

150

0.01
-75

-50

-25

Te - Case Temperature - ·C

o

25

50

75

100

125

150

Te - Case Temperature - ·C
FIGURE 4

FIGURE 3

971

5·148

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N4004, 2N4005
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT

NORMALIZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE

.

~

vs

BASE-EMITTER RESISTANCE
1.2

"

1.0

'"
E
> 0.8
c

""'"

"0

300

I
"u

0

~

"-"

2000

1000

1111111

~

"0

u 0.2

""
"0
.~

5

= 0)

Cl

0.4

U

z

C;bo(lC

&. 1500

:t:

E

1\

= 25°C

~
'u

.;;" 0.6

I

f= I MHz

TC

u.
0-

r-..

~
0

"

5

o~

2500

r...""

oX

]

REVERSE BIAS VOLT AGE

3500

Ic = 10 mA
Tc = 25°C
See Note 5

>e
I

AND OUTPUT CAPACITANCE

vs

0

"tBR)CBO ~ '{aR)C ER

at R8E

500

111111111 IIIIIIIII-j-IIIIIIII II
10

o
10 k

Ik

100

C (IE
f""... r..... 1"'-,...

= 0)

1

7

obo

= IQ

100 k

4

r-- t-10

20

Reverse Bios Voltage -

RaE - Base-Emitter Resistance - Q

FIGURE 6

FIGURE 5

NOTE 5: These parameters must be measured using pulse techniques. tp

=

40
V

70 100

•

300 p.s, duty ,yde ::; 2%.

MAXIMUM SAFE OPERATING REGION
100
70

TC

,

<

l00'C

40 I--tp - 0.3 ms, d = 0.1 (10%)

-<

20

~

10
7

1"0- ~

u"
2

j

'0

4
D-CIOr"Ti

2

n 110..

"

II

u

I

1\

~I'

tp - 1 ms, d =0.5 (50%)

.Y 0.7
0.4

III

MAX VCEO (2N4004)

0.2
0.1

,

1'\

I

MAX VCEO (2No4OO51
1

2

4
VCE

7 10

20

40 70 100 200

400

1000

- Collector-Emitter Voltoge - V
FIGURE 7

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-149

TYPES 2N4004, 2N4005
N..P·N EPITAXIAL PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

so

PEAK-POWER COEFFICIENT CURVE
0.7

~

O.SO (50%) Duly Cycle

I

.2
i

1\

°ia
15

.
u

J

30

20

.

·u

~0

•

25

so

75

Te

100

1\

125

£I

ISO

-"
~

0.10I(l~%

I

0.07
0.04

><

\

175

--

DEFINITION

o. I

UNIT
W
W

(JJ_A

Junction-ta-Free-lir Thermal Resistance

146

deg/W

(JJ-C

Junction-fa-Case Thermal Resistanc.

2.S

deg/W

(JC-A

Case-Ia-Free-Air Thermal Resistance

143.5

deg/W

(JC-HS

Case-to-Haal-Sink Thermal Resistanc.

deg/W

(JHS-A

Heat-Slnk-t.Free-Air Thennal Resistance

deg/W

TA

free-Air Temperature

Te

Case Temperatur.

TJI..;)

Average Junction Temp.ratura

S; 200

°c

TJlma,)

Peak Junction Temperature

S; 200

°c

K

Peak-Power Coefficieat

Ip

Pulse Widlh

1M

I.

Pulse Period

m.

°c

PTlovg)

=

100

TJ(ovg) - TA

(hc

+ (JC-HS + (JHS-A

for 100°C S; Tc S; 200°C,
as in Figure 8

Equalion No.2 - Applicallon, d-c power dissipation,
no he.t sink usad.
'Tlovg)

= TJlavg(JJ-A) - TA for 250C -< TA-< 2000C

Equation No. 3 - Application, Peak power dI"lpall ..,
heal sink used.

See Figure 9

PT(...,)

,) - TA
= d ((JC_HS +TJI...(JH5-A)
+ K (JJ-C

for 100°C S; Te S; 200°C

Equation No. 4 - Application, ',ak power dlsslpallan,
no haal sink used.
'T(mul

=

TJ(mo,)-TA
d (}C-A

+

for !SoC S; TA S; 200°C

K (JJ_e

5olutlon,

2.5 d'g/W (From Informalion suppliod
wilh ,heal .Ink.)

From Figure 9, Peak-Power (oaffldent
K = 0.1 and by us, of equatio. No.3
'T(mul

200°C

= -:-:-=-_T-7J!!!lmul?--_T.;.A~___
d ((JC-HS

=

=

40

°c

Exampl' - Find PT(mex) (deSIgn limit)
OPERATING CONDITIONS,

=

20

Equation No I
ApprlearIon.. d0( power dli
n paIIOR,
heal sink used.

Duly Cyde Rallo (I,,!I,)

=

7 10

Pulse Width -ms

-

VALUE

Average Power Dissipation

Ip

4

0.2 0.4

FIGURE 9

Peak Power Dissipation

+ (JHS-A =

= Thermal time constant = 13 ms

T

tp -

PTI...,)

d

tp = Pulse width in ms

d -= DU!y.cycle ratio

V

PTI";I

TJlav;1 (design limit)
TA
SOoC

I-e -IPIdT

~ /V""

200

~

I-e -tpiT

K;

0.03

~

0.02 0.01

0.01

~

~

- Case Temperature - ·C
FIGURE B

SYMBOL

(JC-HS

~

0.07

"

SYMBOL DEFINITION

d

0.2

u
i 0.1
~

1\

o

0.25 (25%)

C

10

o

...

0.4

40

10% (0.1)

'T(mul

O.Ims

=

+ (JHS-A) + K(JJ-C

200-50
--:-:::-::-,:-:-::c::0.1(2.5)
0.1(2.5)

+

= 300W

PRINTED IN U.S A,

5·150

TEXAS INCORPORATED
INSTRUMENTS
POST Of'FICE BOX 5012 •

DALLAS, TEXAS 75222

971

II (annal anume any responsibility for ony circuits shown
or represent that they ore free from polent infrinrement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPl nHE BEST PRODUCT POSSIBLE.

TYPE 2N4300
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

• 15 W at 100°C Case Temperature
• Max VCE(sat) of 0.3 V at I A I C
• Typ tonof 130 ns at 1 A Ic
• Min fT of 30 MHz
*mechanical data

oO~-t~ lis MIN

l

3 COllECTOR

Okob,[t===
==
-*-===r= T

'''\
~0{ ~

0335 030S D1A
piA

D-

I

o 100

MIN

-I~-t-t~~~:

D~T~~LSzg~EO~;~:~~~~

SEATING

I

~ ~::

\. /: '/ -

0200

3 LEADS
DIA

THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE.

"

2 B-"SE/

0.045
0.029

_ 0.034

4S''''~V"OO'2B

All JEDEC TO·5 DIMENSIONS
AND NOTES ARE APPLICABLE.

L, EMITTER

PLANE

I

All DIMENSIONS ARE

IN INCHES
UNLESS OTHERWISE
SPECIFIED

CASE TEMPERATURE IS MEASURED 0.\4" INCH 10.010 IMeH DOWN FROM TOP Of CAN.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage

lOOV

Collector-Emitter Voltage (See Note l)

SOV

Emitter-Base Voltage

SV

Continuous Collector Current

2A

Peak Collector Current (See Note 2) .

4A

Continuous Base Current.

lA

Continuous Emitter Current

3A

Safe Operating Region at (or below) lOOoC Case Temperature
Continuous Device Dissipation at (or below) lOOoC Case Temperature (See Note 3).
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)

See Figure 7
l5W
lW

Operating Collector Junction Temperature Range

-65°C to 200°C

Storage Temperature Range.

-65°C to 200°C

Lead Temperature )I. Inch from Case for lO Seconds

230°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. This value applies for tp ~ 0.3 ml, duty cycle ~ 10%.

3. Derale linearly to 200 0 e case temperature at the rate of 0.15 W/deg.
4. Derate linearly 10 200°C free·air temperature al the rate of 5.72 mW/deg.

·Indl,••es JEDEC regis.".d dat••

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-151

TYPE 2N4300
N·P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V'BRICEO

Collector-Eminer Breakdown Voltage

Ic = 30 mA, la = 0,

ICEO

Collector Cutoff Current

VCE = 40 V, la = 0

Ices

Collector Cutoff Current

MIN

See Note 5

I

V
1

pJ.

10
pJ.

VCE = 90 V, VIE = 0,

hFe

UNIT

80

VCE = 90 V, VIE = 0

lEBO

MAX

Tc = 150

75

0(

VEa = 5 V,

Ic

=0

0_5

VEa = 8 V,

Ic= 0

10

VeE = 2 V,

Ic= 1 A, See Notes 5 and 6

30

VCE = 2 V,

Ic

= 2A,
Ic = 2A,

15

Eminer Cutoff Current

pJ.

Static Forward Current Transfer Ratio

See Notes 5 and 6

VIE

Base-EmiHer Voltage

VCE''''I

Collector-Emiller Saturation Vollage

hie

Small-Signal Common-Eminer
Forward Current Transfer Ratio

VeE = 5 V,

Ih,.1

Small-Signal Common-Emiller
Forward Current Transfer Ratio

VeE = 10 V, Ie = 1 A, f = 15 MHz

120

See Notes 5 and 6

1.2

la = 100 mA, Ic = 1 A, See Notes 5 and 6

0_3

VCE = 2 V,

I.

= 200 mA, Ic =

V
V

0_5

2 A, See Notes 5 and 6

Ie = 1 A, f = 1 kHz

30
2

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 p.s, duty cycle ~ 2%.
6. These paramet.rs are measured with voltage-sensing contacts separate 'rom the current-carrying contacts.

*thermal characteristics
PARAMETER

(he
(hA

lunction-to-Case Thermal Resistance
lunction-to-Free-Air Thermal Resistance

MAX

UNIT

6_66
175

deg/W

"'ndlca'os JEDEC regls'ered da'a.

971

5-152

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2N4300
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER

ton Turn-On TIme
toft Turn-Off TIme

Ie = 1 A,
YBEtofij = -3.7 Y,

ISI1 I = 100 rnA,
RL = 20 n,

Ist'l = -100 rnA,
See Figure 1

TYP

UNIT

0.13
1.5

/Ls

tVoltage and current values shown are nominal: exad values vary slightly wllh transistor parameters.

PARAMETER MEASUREMENT INFORMATION

•

. - - _ - - - - - - < 0 OUTPUT

82 Q
20 Q
82 Q

TEST CIRCUIT

+16V-~90%
I
I

I

-I V

, 10%
-+tton~

......,.j

I

INPUT

toff ~

I

IO%

~
I
OUTPUT
90%

VOLTAGE WAVEFORMS

FIGURE 1

S 15 ns, If ::; 15 ns, lout = SO 0, tp
cycl. S; 2%.
b. Waveforms are monitored OR an oscilloscope with the following characteristics: Ir ::; 15 ns, Rin ~ 10 MO, (in S 11.S pF.
e, Resistors must b. nonindudin types.

NOTES: a. The input waveform is supplied by a generator with the follOWing characteristics: Ir

= 2 p,s, duty

d. The dac power supplies may require additional bypassing in order to minimize ringing.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.L.AS. TEXAS 75222

5-153

TYPE 2N4300
N-P-N· EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
200

v

~
.l!

~~

160

~

Tc~~

~c:

5t

V

I

...

I!

120

V

~

-... r-..... r\

./""

f'~

I--'

,....

Tc= 100'>--

..........

ce =2VI
I I
See Notes 5 and 6

\~

~

:>

U

"E

~

a

~

~
~
~

Tc- 25'S- f..-

-=r-

.~

:e

Vl

•

-r-.

~

80

II.

I

~
..c

40
Tc- -55'C

o
20

70

40

100

200

700

400

1000

2000

IC - Collector Current - mA
FIGURE 2

BASE-EMITTER VOLTAGE

COLLECTOR-EMITTER SATURATION VOLTAGE

~

~

CASE TEMPERATURE

1.2

--- ---- --- I ---Vce = 2 V
I
See Notes 5 and 6

1.0

>
I

w

.e'"

0.8

...........

-0

>

i;

:t:: 0.6

·f
"I'

11

'"I

~

j"'-...

~

Ic= I A

...........

- 20mA

-r--.....

1'-- ~

0.4

.........

w

::
-75

1"w

r
-0
>c:

0.7

e

j

0.2

- J.,

See Notes 5 and 6 -

la=?00m,A,lc- 2A

0.4

.2

-

la = 100

Ie 1= 1 A

--

~

I;

t

~
.e

..!!

d

0.1
0.07
la=2mA,lc=20mA

0.04

I

-=.."..

0.2

o

CASE TEMPERATURE

D

0.02

U
>
0.01
-50

-25

0

25

50

75

100

125

150

-75

-50

-25

0

25

50

75

100

125

150

Tc - Case Temperoture -'C

TC- Case Temperature -'C

FIGURE 4

FIGURE 3
NOTES. 5. Th... p.ram.t"s musl b. m••surod usl.g pol" t.ch.iq.... tp = 300 (.Is, duty ,yd. ::; 2%.
6. Th... ,.,-ton are ......red with ..Ita_sl.. ,.,tach ..,.r.te Inm till ,uno.I".nyl.. conl.,I•.

971

5-154

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2N4300
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE

NORMALIZED COLLECTOR - EMITTER BREAKDOWN VOLTAGE
vs

vs

BASE - EMITTER RESISTANCE

REVERSE BIAS VOLTAGE

:z

~ 1.2

""

.e
:or
~

F

-

1.0

o

>

~
."

Te= 25'C
f = I MHz

400

'"

t'-..

0.8

c

500

""

le= 10mA
Te = 25'C
See Note 5

.....

.

r--.

1

~

300

u

'" 0.6

c

~
]

E

'u

&. 200
(j

, 0.4

~bo(lc=O)

'I'-

E

j!

V (SR)CSO ",V (U)CER at RSE=11l

o

100

u 0.2

r---......

ifffi

11

.~

la

Z

o

I

10

10 k

Ik

100

o

100 k

4

I

7

r-10

20

Reverse Bios Voltage -V

Rse -Base - Emitter Resistance - {1

FIGURE 6

FIGURE 5
NOTE 5: These parameters must be measured using pulse techniques. Ip = 300 p.s, duly cycle

40

70 100

•

S !Ok.

MAXIMUM SAFE OPERATING REGION
10
7

Te" 100'C
f=tp 0.3 ms, d

0.1 (10%)

,

4
D-C Operation

1
"E
1!
5
u
E
u

~

.....
-........'-.

I

2

I
0.7 I=tp

I

1 ms, d

I

.~

"

0.5 (50%)

0.4

I\:

0.2

0

u
I

_0

0.1
0.07
Max V CEO

0.04

I

0.02

0.01

1

2

4
7 10
20
40
VCE - Collector-Emitter Voltage -V

70 100

FIGURE 7

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-155

TYPE 2N4300
N·P·N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICI ENT CURVE

20

0.7

tc

0.50 (50%) Duty Cycle

0.4

.2

8.

:~
v

u

.~

if 0.2
~

.3
\

~

I

100

75

125

150

0.07

0.05

~

\\

5

50

0.1

CIJ

J

\
25

u

'u

10

o
o

I.!

0.25 (25%)

v

\

o

o

J .l

i:

15

fQ.0'7~

0.04

0.01

200

175

O~ .L

~y

0.02

1\

l-e -tpiT
K = -1'--~e-""'t'-P;-'d"'-Ttp ::

Pulse width in ms

d :: Duty-cycle rotio

~l Ll iterm'l'

6.4

0.1 0.2

1

Te -Case Temperoture-"C

tp -

FIGURE 8 •

VALUE

DEFINITION

UNIT
W

'TfavgJ

Average Power Dissipation

'T{max)

Peak Power Dissipation

(hA

Junclion-to-Free-Air Thermal Resistance

115

d.gJW

(hc

Junction-Io-Cose Thermal Resistance

6.66

d.gJW

(}C-A

(ase·to-Free-Air Thermal Resistance

168

deg/W

(}e-Hs

rose·la-Heat-Sink Thermal Resistance

d.g/W

(}HS-A

Heot-Sink-Io-Free-Air Thermal Resistance

d.g/W

TA

Free-Air Temperature

·C

Tc

Case Temperature

·C

W

TJI•vg)

Average Junction Temperature

~ 200

·C

TJlm,,)

Peak Junction Temperature

~ 200

·C

K

Peak-Power Coefficient

Ip

Pulse Width

ms

I,

Pulse Period

ms

d

Duly-Cycle Ratla (IP/I,)

4

7 10

20

40

100

ms

Equation No.1 - Application: d-c power dissipation,
heat sink used.
_
PYlovg) -

TJlevg)-TA

(} J-C

+ (}C-HS + (}HS-A

for 100·C ~ Tc ~ 200·C
as in Figure 8

Equation Ho. 2 - Application: doc power diSSipation,
no heat sink used.

Equation No.3 - Application: Peak power dissipolion,
heat sink used.

Set Figure 9

Equation Ho... - Application: Peak power dissipation,
no heat sink used.
P
YI

Exampl. - Find PYlm• x) (design limit)
OPERATING CONDITIONS,
(}C-HS

2

Pulse Width -

FIGURE 9

SYMBOL DEFINITION

SYMBOL

I

tilmi 'llsti',"t = ~ mSI

max

_
) -

TJlmax) - TA
d 8C-A

+

K (}J-C

•

for 25 C <_ TA

_<

ZOO·C

Solution,

From Figure 9, Peak-Power (oefficlent

+ (}HS-A = 1 deg/W (From information supplied

K

=

O.IOS and by use of equation No.3

with heat sink.)
TJlovg) (design limit)
TA =

TJlma,)-TA

= 200·C

Pylma ,)

so·e

d = 10% (0.1)
'p = 0.1 ms

Pylma,)

+ (}HS-N + K (}J-C

=

d {(}C-HS

=

200 - 50
0.1 (1)
0.105 (6.66)

+

= 101 W

PRINTED IN U.S A.

5-156

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

971

TI (onnol assume any responsibilily for any cir

.........

r-..... r-....

0.4

~

See Notes 5 and 6

.~

0.4

r-- I--Is = 1.3

-

A, Ic= 10 A

IS - 0.5 A, Ic-5 A

0.2

.20

-

~

V>

:--

r--....

=

0.7

c
a

I-- ~

A

...........

"

.;: 0.6

I

t-- t-- t--

r-- r-.
r~'"
Ic~

>

VCE = 4 V

J

I

CASE TEMPERATURE

See Notes 5 and 6

Ic= 10 A
I - - .....

>

.l!

vs

vs
CASE TEMPERATURE

~ 0.1

·E

-

";' 0.07
(;

t;

.! 0.04

oV
I

0.2

-

Is -10mA, Ic-1OOmA

~ 0.02

o

w
~

-75

-50

-25
0
25
50
75
Te - Case Temperature -

100
°C

125

150

0.01
-75

-50

-25

Te -

25

0

50

75

Case Temperature -

100

125

150

°c-

FIGURE 4

FIGURE 3

NOTES: 5. ,lhese parameters musl be measured using pulse techniques. Ip = 300 ps, duty cycle ~ 2%.

4'. These parameters arl measured with yoltage-sensing con'acts separate from the current-carrying (ontacts.

971

5·160

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPE 2N4301
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs

vs

BASE-EMITTER RESI STANCE

51.2

Ic: 30 mA

;'"

Tc: 25'C

I

" I. a

~

~

c: 0.8

~

2500

See Note 5

1\

'5.

g

ci!5 0.6

.E

!!

'<3

......

]

~

&.
o

= 25'C

f

: I MHz

C,bo (lC: 0)

"

~

1500

TC

t-....

u 1000

L 0.4

.eu

2000

I
"u

J1

VIBRICBO '" VIBRICER at RBE = I Q

..!

J..,

REVERSE BIAS VOLTAGE

3000

0.2

500

t----- Cobo (IE = 0)

ntt

"

.~

1

aI

10
RaE -

10 k

I k

100

Base-Emitter Resistance -

a

100 k

I

4

2

Q

-

7

10

20

Reverse Bias Voltage -

FIGURE 5

FIGURE 6

40
V

70 100

•

MAXIMUM SAFE OPERATING REGION

100
TC s

40
20

..:

i
1:

10

r---

"

4

~

,

O-C Operation

u
is

U
..!

- ,-

100'C '

totp
tp -

"0

0.4

I

0.2

'"

0.5 (50%)

1 ms, d

0.1 (10%)

0.3 ms, d

u

.2 0.1
0.04
MAX VCEO

0.02

I

0.01

7

4

1
VCE -

10

,.....

I

20

Collector-Emitter Voltage -

40

70 100

V

FIGURE 7

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-161

TYPE 2N4301
N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

~ 60

0.7

i

.2 50
&.
'i:j

1\

Q 40

1:

r\

'S 30
o
~

~c

(l 20

~,"
U
Qj

\

~
0

Q..

I

0.2

I

k?

O. I

o. \oUoJ
.:-

"

110

1\

175

50
75
100
125
150
Te-Case Temperature _oC

0.07

'f05

0.04

0.0':1 ~
1-"""01.
\).

K =
tp ::::

Pulse width in ms

V

d

Duty-cycle ratio

""

I

200

~

0.07

Q..

\

E

•

-"
0

~

~

25

V

0

E

o

0.25 1(21%1)

c

~

o

0.50 i50%) Duty Cycle

0.4

0.02

O.Ql

I_e-tp/T

v(l

~" V

l_e-tPldT

:=

T :::: Thermol time constant
1111

0.1 0.2 0.4
tp -

4
7 10 20
Pulse Width - ms

FIGURE 8

DEFINITION

VALUE

UNIT

Prlavgl

Average Power Dissipation

W

Prima'i

Peak Power Dissipation

W

(hA

Junction-to-Free-Air Thermal Resistance

50

degjW

(he

Junction-la-Case Thermal Resistance

2

degjW

(Jc.A

Case-to-Free-Air Thermal Resistance

48

degjW

OC.HS

Case-to-Heat~Sink

OHS.A

Heat-Sink-Io-Free-Air Thermal Resistance

TA

Free-Air Temperature

Te

Case Temperature

TJlavg)

Average Junction Temperature

TJ{max)

Peak Junction Temperature

K

Peak-Power Coefficient

'p

degjW

Thermal Resistance

degjW

< 200
< 200

°c
°c
°c
°c

See Figure 9'

Pulse Wid,h

ms
ms

Pulse Period

"d

Du'y.Cycie Ra'io

('"I',)

+ (iHS.A = 1.3 degjW

TJlavgl (design limit)
TA = 50 0 ,
d
10% (0.1)
Ip =0.1 ms

=

2000

100

Equation No 1 _ Application' d·c power dissipation
heat sink used.

Prlavgl

- TA
= (he +TJlavgl
(ie.HS +

for 100 0 C ::; Te ::; 200 0 C
(iHS.A as in Figure 8

Equation No.2 - Application: doc power dissipation.
no heat sink used.
P
_ TJlavg) - TA for 2S o C ::; TA ::; 200°C
TI.vgl -

e;;:-

Equation No. 3 - Application: Peak power dissipation,
heat sink used.

P
_
TJlm"l- TA
for 100 0 C ::; Te ::; 200 0 C
Tim..} - d ((ie.HS + OHS.A) + K OJ.e
Equation No.4 - Application: Peak power dissipation,
no heat sink used.

PTlma,}

=

TJ1mu} - TA
d Oe.A

+

for 2S o C ::; TA ::; 200°C.

K OJ.e

Solution:
From Figure 9 , Peak-Power Coefficient
K = 0.101 and by use of equation No.3

Example - Find PT{max) (de~ign limit)
OPERATING CONDITIONS,

Oe.HS

40

FIGURE 9

SYMBOL DEFINITION

SYMBOL

= 12 ms

(From Informano. supplied
with heat sink.)

P
_
TJlma,}-TA
Tim.,} - d ((ie.HS
OHS.A)

+

C

=

+

K 0J.e

200 - 50

PRIN1ED IN U,S,A

5-162

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI cannot assume any responsibilily for any circuits shown
or represent tho I they are free from polenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE 8EST PRODUCT POSSIBLE.

TYPES 2N4398, 2N4399
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5301. 2N5302
• 200 Watts at Z5°C Case Temperature
• 30 A Rated Continuous Collector Current
• Min fT of 4 MHz at 10 V. 1 A
*mechanical data
The case outline is the same as JEDEC TO-3 except for lead diameter.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

oO
~
0

~O'312MIN~1'573

....-rn="}'.
O.450j'"

0.525 R MAX

r-

. -_ _0_.2_50_-1

I.OSO MAX

0.875
MAX

-

~

0.188 R M A X : - ' - - - - -

I

0.135 MAX -t

BOTH ENDS

0.052 DIA 2 LEADS

h

MAX

I

"""""""'AI-'-"w"- 2-

I

-1.8

>

VCE =-4V

-2.2

~

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
COLLECTOR CURRENT

-1.4

I- k.= 5

I

IB

Tc = 25°C

I- Tc = 250C

r- See Notes 6 and 7

I

I- See Notes 6 and 7

I

I
I
J

~

.£ -1.6
~ -1.4

I
I
II

~ -1.2

~

31o

'"I

~

>

~
]

--

-1.0
-0.8
-0.6

-0.4

-0.2

-0.4 -0.7-1
Ie -

-2

-0.6

~

-0.4

~

"0

J

/

/

u

I

-0.2

o

,

-4

-7 -10

Collector Current -

-20

-40

A

11

-0.2

~

o

-0.2

-0.4 -0.7-1

-

-2

'"
-4

-7 -10

Ie - 'Collector Current -

-20

-40

A

FIGURE 6

FIGURE 5

NOTES: 6. These parameters must be measured using pulse techniques. tp = 300 p.s, duty cycle :::;2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

5-166

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

PRINTED IN U.S.A.
cannol a~5ume ony responsibility for any drcuits shown
or represent thaI they are free from polenl infringement.

n

169

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPL YTHE BEST PRODUCT POSSIBLE.

TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND SWITCHING APPLICATIONS

• 87.5 W at Z5°C Case Temperature
• 5 A Rated Collector Current

fr of 4 MHz at 10 V, 1 A

• Min

*mechanical data
ALL JEDEC TO 3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
o

~
aO

~

o.52SRMAX
0

-1

1- ~0312MIN~IS73

~

f - r.;1.050

L

~AX ~A?1

0

~DIA2LIAD5

m=,,}38

4

t:~::

-,-,

0420

r;:

0.135 MAX--t

2-EMImR

--=r . 0~~lt ~- ~

0205 0440

tI

0.18. R MAX
10TH ENDS

0675 1177

"O"ii"i

,It

- 0 225

~

!..!!l.

MAX

I

DIA

2 HOLES
0.200

SEATING nANE
I - lASE

CASE TEMPERATURE
MEASUREMENT ~INT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at Z5°C case temperature (unless otherwise noted)
*CollectoroBase Voltage .
*Collector·Emitter Voltage (See Note 1) .
*Emitter-Base Voltage ...
*Continuous Collector Current
Peak Collector Current (See Note 2) ....
*Continuous Base Current .......
Safe Operating Region at (or below) 25°C Case Temperature
*Continuous Device Dissipation at (or below) 25°C
Case Temperature (See Note 3) ........
Continuous Device Dissipation at (or below) 25°C
Free-Air Temperature (See Note 4) .........
*Operating Collector Junction Temperature Range ...
*Storage Temperature Range ..
*Terminal Temperature 1/16 Inch from Case for 10 Seconds ..
0

0

0

•

0

•

0

•

0

0

0

0

0

••

0

0

••

0

0

0

•

0

0

••

0

0

0

0

••

0

••

0

0

0

0

•

••••

0

0

•

0

0

0

0

0

••

0

0

0

0

0

0

0

•

0

0

•••••••••••••

0

0

•

0

0

•

0

0

••

0

••

0

0

0

••

0

•

0

0

•

0

0

•

0

0

••

0

••

0

•••••••••

0

•

•••

0

0

•

0

NOTES:

0

0

•

0

••

0

•

0

••

0

0

•

0

0

••••

0

•

•••

0

0

0

••

0

•••

0

•

0

•••

0

••

0

•••

0

••••••••••

0

•

••

0

••••••••••••••••

0

0

•••

0

0

••••••••

0

0

0

•••

0

•

0

0

•

0

0

••••

2N4901 2N4902 2N4903
-40 V
-60 V
-so V
-40 V
-60 V
-so V
-5V
-5V
-5V
(
-5A--+
,*(---15A - - +
-1 A

)

,*-See Figure 2 - +
+---S7.5W--+
(
4W--+
+ - -65°C to 200o C-+
+--65°Cto 200°C-+
(
235°C--+

1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for tp ~O.3 ms, duty cycle 51 0%.

3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.

*Indicates JEDEC

ragister~d

data

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·167

TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25° C free·air temperature (unless otherwise noted)
PARAMETER
V(BR)CEO

I CEO

Coliector·Emitter

2N4Q02 2N4QO::t
2N4901
MIN MAX ·MIN MAX MIN MAX UNIT

TEST CONDITIONS
See Note 5

Ic = -200 mA,lB = 0,

-40

-80

-60

Collector Cutoff

VCE = -40 V, IB = 0

Currant

VCE - -60 V, IB = 0

=-80 V, IB - 0
VCE =-40 V, V BE -

-1
-1

mA
-1

VCE

-0.1

1.5 V

-0.1

VCE = -60 V, VBE - 1.5 V
ICE V

Collector Cutoff
Current

Vr.~

= -80 V,

VR~

-0.1

= 1.5 V

Vr.~ = -40 V, VR~ = 1.5 V,T... = 150°C
Vr.~ = -60 V, VR~ = 1.5 V, T ... - 150°C

hFE
V BE
VCE(sat)

Emitter Cutoff

VEB--5V,

mA

-2
-2
-2

VCE = -80 V. VBE - 1.5 V.Tc = 150 C
lEBO

V

Breakdown Voltage

-1

Ic=O

-1

-1

mA

Current
Static Forward Current

VCE =-2V,

Ic =-1 A,

Sae Notes 5 and 6

20

Transfer Ratio

Ve~

Ie = -5 A,

Sae Notes 5 and 6

7

Base-Emitter Voltage

VCE =-2V,

Ic - -1 A,

See Notas 5 and 6

-1.2

-1.2

-1.2

Coliector·Emitter

IB - -0.1 A,

Ic=-1A,

See Notes 5 and 6

-0.4

-0.4

-0.4

Saturation Voltage

IB - -1 A,

Ic= -5A.

Sae Notas 5 and 6

-1.5

-1.5

-1.5

=-2V,

80

20

80

20

80

7

7

V
V

Small,Signal
hfe

Common-Emitter
Transfer Ratio
Common-Emitter

--

.

Small·Signal
Ihfel

20

20

20

VCE =-10V, Ic=-0.5A. f= 1 kHz

Forward Current

VCE =-10V, Ic=-1 A,

f - 1 MHz

4

4

4

Forward Current
Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques: tp = 300 #5, duty cycle =S;2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
·Indicates JEDEC registered data

thermal characteristics
MAX UNIT

PARAMETER
8 J·c

Jl,lnction·to-Case Thermal Resistance

oJ-A

Junction-to-Free-Air Thermal Resistance

2

deglW

43.7

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER

TYP UNIT

ton

Turn·On Time

Ic = -1 A,

IB(1) - -0.1 A, IB(2) = 0.1 A,

toff

Turn·Off Time

VBE(off) - 3.7 V,

R L =20n,

See Figure 1

0.35
0.8

I"

tVoltage and current values shown are nominal; exact values vary slightly with device parameters.

1068

5·168

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT

82 Cl
INPUT o----~--JVl,..,..--

....-+t

20 Cl

82 Cl
82 Cl

-=- 20.3 V

-=- 6.4 V

TEST CI RCUIT

lV~
I 10%

f

INPUT

-16 V--I ...._ _ _ _-".J90%

I

I
14-

I

I

*
OUTPUT
~
10%~

ton

O%-

..l

toff

I

I

VOLTAGE WAVEFORMS

FIGURE 1

NOTES:

a. The input waveform is supplied by a generator with the following characteristics: tr S 15 ns, tf :5.15 ns, Zout
tp

::=

10 1J,S, duty cycle ~ 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: t r

c.

= 50 n,

:5 15 ns,

Rin

2::: 10 Mil

, Cin

•

.:5. 11.5 pF.

Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

-10
-7

TC ~25·C

-4

..:
I

C

-2 ' - - - -

D-C OPERATION

~

13

~

~

-1

..!!
0

-0.7

I

-0.4

"' 1\

u

..!:'

2N4901
2N4902 ..

-0.2

2N4903 ..

Hl

r- ...
r-- r-. 1'~00 ......

-2
-4
-7 -10
-20
-40
veE - Collector-Emitter Voltage - V

-70 -100

FIGURE 2

1068

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 15222

5·169

TYPES 2N4901, 2N4902, 2N4903
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO
VI

COLLECTOR CURRENT
100
VC'E =

'-

~

0

j
J!

80

See Notes 5 ond 6

~

0

"

o.!::

60

~

5
u

'\.

1!
0
~

40

'~

of
u

i

•

, , ,

Tc = 25°C

i'!

-::

~2 ~

20

,
i""I

w

~

"'"
o

-0.1

-0.2

-2
-0.4 -0.7-1
-4
Ie - Collector Current - A

-7 -10

FIGURE 3

COLLECTOR-EMITTER SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

VS

VI

COLLECTOR CURRENT

COLLECTOR CURRENT
-2.0
VeE = -2V
-1.8
Te

>

-1.6

..

-1.4

"0

-1.2

~

-1.0

= 25°C

!

..
~

I.

=5

I

~ -0.8 - Te = 25°C
See Notes 5 ond 6

~

~

j
,/

-

-0.8
-0.6

~

-0.6

~

."

]

~ -0.4

.!

8

w

>-

-

j

See Notes 5 end 6

]

I

Ie

I

I

>

-1

>

I
II

-0.4

I -0.2

./'

-0.2

o
-0.1

-0.2

-0.4 -0.7-1
Ie -

-7 -10

-0.1

-0.2

-0.4

-0.7-1

-2

-7 -10

Ie - Collector Current - A

A

FIGURE 5

FIGURE 4

NOTES:

II

o

-2

Collector Current -

!;;7'

5. These parameters must be measured using pulse techniques. tp

=

300 IlS, duty cycle :::;2%.

6. These parameters Brs measured with voltage-sensing contacts separate from the current-carrying contacts.

PRINTED IN U.S.A.

5·170

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 6012 •

DALLAS, TEXAS 75222

1068

TI (annol assume any respon'ibility for any circuits shown
or represent ,hal they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
ttl

C

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4913, 2N4914, 2N4915

....
....
m

-i

<

."

m

til

::!
Z Z
~
Z
N

9

'"
.g

0
z~
....
N

• 87_5 W at 25°C Case Temperature

In

• 5 A Rated Collector Current

en

!:!l

~

• Min fT of 4 MHz at 10 V, 500 mA

'"
.5l
N

Z

~

.'z" g'"

*mechanical data

0
<
m

;;:
ttl

m

-

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

"

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

i 1- t1"}38 ~ ,,,"
~ ---=r . 0'~-1~-"

lco!l

1.573MAX

l.J!l.

o.312 MIN

0.450
0.250

0.525 It MAX

QO
0

'"

~

1.S.

"
0.188 It MAX
80TH ENDS

-

0.87S
MAX MAX
,D!A
-'--

0.135 MAX

ro=
--I h

0.043 0IA :2 LEADS

-

~

'if.iIT

I

. -,'-

0.205

0.675 1.177

-,-

0.420

seA TlNG PLANE
1 - BASE

. -

t

_"

I
I

I

•

2 - EM,""

---.L

\

\

0.161 OIA
0.151
:2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*Collector-Emitter Voltage (See Note 1) . . . . . . . . . . . . . . . . .
*Emitter-Base Voltage ..... _ . . . . . . . . . . . . . . . . . . . . . . .
*Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . .
Peak Collector Current (See Note 2) . . . . . . . . . . . . . . . . . . .
*Continuous Base Current . . . . . . . . . . . . . . . . . . . . . . . . . .
Safe Operating Region at (or below) 25°C Case Temperature ...
*Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Devicll Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . . . . . . . . . . . . . . . . . . .
*Operating Collector Junction Temperature Range . . . . . . . . . .
*Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .
* Lead Temperature 1/16 Inch from Case for 10 Seconds ......

NOTES:

.
.
.
.
.
.
.

2N4904 2N4905 2N4906
-40 V -60 V -80 V
-40 V -80 V -80 V
(
-5V--+
(
-5A--+
(
-15A--+
(
-lA--+
+- See Figure 2 - +

.

+--

.
.
.
.

+-- -65°C to 200°C -+
+-- -65°C to 200°C -+

87.5 W - - +

~4W~

(

235°C - - +

1. This value applies when the base-emitter diode Is open-circuited.

2. This value applies for tp;::; 0.3 ms, duty cycle::; 10%.

3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.
*1 ndicates JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·171

TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS

*electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER

v

(SA)CEO

Collector-Emitter

TEST CONDITIONS
Ic

Breakdown Voltage

=-200 mAo Is = O.

See Note 5

2N4904
-40

-60

2N4906 UNIT
I MAX
-80

V

-1

VCE --40V. Is -0
Collector Cutoff Current

ICEO

2N4905

MIN MAX :MIN

-1

VCE --60V. IS -0

mA
-1

VCE =-80V. Is=O
-0_1

VCE --40V. VSE -1_5 V

-0.1

VCE =-60V. VSE = 1_5 V
Collector Cutoff Current

ICE V

=

VCE =-60V. VSE =1_5 V. Tc
VCE =-80V. VSE = 1_5 V. Tc
IESO

•

hFE
VSE
VCE(sat)
hfe
Ihfel

-0_1

VCE - -80 V. VS E • 1.5 V
VCE • -40 V. VBI" 1_5 V. Tc·150C

Emitter Cutoff Current

VES --5V.

Static Forward Current

VCE =-2V.

Transfer Ratio
Base-Emitter Voltage

VCE· -2V.
VCE =-2V.

=150°C
=150°C

-2
-2
-1

-1

-1

Ic·O
Ic. -2_5A.

See Notes 5 and 6

25

Ic·-5A.

See Notes 5 and 6

7

Ic =-2_5 A,

See Notes 5 and 6

-1_4

-1_4

-1.4

Collector-Emitter

Is - -0.25 A. Ic - -2.5A.

See Notes 5 and 6

-1

-1

-1

Saturation Voltage

Is· -1 A.

See Notes 5 and 6

-1.5

-1.5

-1.5

Small-Signal Common·Emitter
Forward Current Transfer Ratio
Small-5ignal Common-Emitter

Ic--5A.

mA

-2

100

25

100

7

25

mA

100

7

VCE - -10V. Ic=-0.5A.

f- 1 kHz

40

40,

40

VCE=-10V. Ic--0.5A.

f-1 MHz

4

4

4

V
V

Forward Current Transfer Ratio

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 Ils, duty cycle 52%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
*'ndicatesJEDEC registered data

thermal characteristics
PARAMETER
8J-C
8 J_A

MAX

Junction-to-Case Thermal Resistance

2

Junction-to-Free-Air Thermal Resistance

UNIT
deg/W

43.7

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

=-2.5A.
VSE(off) =4.1 V.

Ic

IS(1) - -250-mA. IS(2) - 250 mA,
See Figure 1
RL = 100.

TYP
0.4

UNIT
IJS

0.7

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1168

5-172

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4904~ 2N4905, 2N4906
P·N-P SINGLE·DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

OUTPUT

820
INPUT ~----~~--~~~---.---ti

100

270
1300
+

-=-

.:=.. 5 V

25 V

+

1.2 V

--r

TEST CI RCUIT

I

10%

f

-38 V - - : \

I

-+t

I

'on 14%-

+I

INPUT
90%

I

'off 14-

I
OUTPUT
~
10%- I

VOLTAGE WAVEFORMS
FIGURE 1
NOTES:

a. The input waveform is supplied by a generator with the following characteristics: tr::;: 15 ns,
tp

'tf:::; 15 ns, Zout =

50

n,

= 10 I's. duty cycle:::; 2%.

b. Waveforms ara monitored on an oscilloscope with the following characteristics: t r :516 ns, Ain;;:::' 10 MO, Cin $11.5 pF.

c.

Resistors must be non Inductive types.

d. The d-c power supplies may require additional bypassing In order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

-10
-7

TC .:25°C

-4

«
I

'C

-2

~

I"

-

O-C OPERATION

~

~

d

-I
15
U
~ -0.7

;3
I

-Y

-0.4

-0.2

2N4904
2N490S ..

r- ~

ii

r--.

4906

r-~

1"-1'"
-2
-7 -10
-20
-40 -70-100
veE - Collector-Emitter Voltage - V

: .1

FIGURE 2

1168

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-173

TYPES 2N4904, 2N4905, 2N4906
P-N-P SINGLE-DIFFUSED SILICON· POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO
vs

COLLECTOR CURRENT

100

...

VCIE =~2~ I II

i"'-

0

j
J!

80

"

ii

,!:

~

Te

60

=2SoC

See Notes 5 and 6

~

~

u

"'"

~

~ 40

.f
u
11
.:;

•

...
I

~,

20

I'

.r:;

o

-0.1

-0.2

-0.4 -0.7-1
-2
-4
Ie - Collector Current - A

-7 -10

FIGURE 3

COlLECTOR-EMITTER SATURATION VOLTAGE

BASE-EMmER VOLTAGE

-2.0
-1.8

> -1.6
I

t

= -2 V

Te

= 25°C

VI

COUECTOR CURRENT

COLLECTOR CURRENT

-1.2

!

-1.0

I

J

-0.8

.

-0.6

::'

-0.4

-I

>

Ie

I

II

t
~

See Notes 5 and 6

.~

-1.4

~

!

veE

vs

-

I.

=5

I

-0.8 _ Te = 25°C
See Notes 5 and 6

1

-0.6

~
]

I.;'
i""'"

~

"

i

-0.4

.!

8
I -0.2

./

-0.2

o
-0.1

-0.2

-0.4 -0.7-1

-2

",

I

o
-7 -10

-0.1

-0.2

-0.4 -0.7-1

-2

Ie - Collector Current - A

Ie - Collector Current - A

FIGURE 4

FIGURE 5

-4

-7 -10

NOTES: 5. These parameters must be me.sured using pulse techniques. tp == 300 IlS, duty cycle :$;2%,

6. These parameters are me.sured with voltage-sensing contacts separate from the current·carrying contacts.
PRINTED IN U.S.A.

5·174

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE !lOX 5012 •

DALLAS. TEXAS 75222

1168

TI (annal assume any responsibility for any circuits shown
or reprlSen' that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUCT POSSIBLE.

TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
~ ~

.. ;g

5

FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4904 THRU 2N4906

Z

eft

~

z~

~;

.
- z..

• 87.5 W at 25°C Case Temperature
• 5 A Rated Collector Current
• Min fT of 4 MHz at 10 V,lA

1:1 ..

I'" Z
...

... ...
GO -

o·
...

:g

.

~

zU:

o

<
~

*mechanical data

~

'"
All JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COllECTOR IS IN ElECTRICAL CONTACT WITH THE CASE

G
O

0.450

0525RMAX

o

0

~

f
1 OSO MAX

t

0250

j 1- I__ 0312MIN;}~"57J MAX
0043

~~r:;380IA2lEADS
087S
MAX

~

0188 It MAX-'----==== I
80TH ENDS
0 '35 MAX -1

-

h

".:'2'

-----.l.

I

.... 1+

~

0.675 1.177

~

2 - EMITTER

~

-,1- . \

------=r . 0·',-I: X ·0-

0205 0440

-,,-

I;~

0420

I

t ~.!~~

\

•

DIA

2 HOLES

j

SEATING PLANE
I - BASE

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

'Collector-Base Voltage .
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage .
'Continuous Collector Current .
Peak Collector Current (See Note 2)
'Continuous Base Current.
Safe Operating Region at (or below) 25°C Case Temperature.
'Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
'Operating Collector Junction Temperature Range.
* Storage Temperature Range
'Lead Temperature J1,lnch from Case for 10 Seconds

NOTES:

1.
2.
3.
4.

2N4913

2N4914

2N4915

40 V
40 V

BOV
BO V

~

60V
60 V
5V
5A
15 A
1A
See Figure 6

~

B7.5W

~
~
~
~

~

,,,
~

~

4W

~

· ~

235°C

~

· +--- -65°C to 200°C --+
· +---- -65°C to 200°C --+"

This '1olue applies when the base·emitter diode is open-circuited.
This value applies for tp = 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200 o ( case temperature at the rate of O.S W/deg.
Derate linearly to 200°C free·air temperature at the rate of 22.9 mW/deg.

*Indicales JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-175

TYPES 2N4913, 2N4914, 2N4915
N-P..N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

*electrlcal characteristics at 25 G C case temperature (unless otherwise noted)

PARAMETER

Collector-Emitter
VI8IlICEO Breakdown Voltoge
ICEO

I
ICEV

lEBO

•

~ h~
VIE

E
h,.

~

Colledor Culoll
(urrent

(olledor Culoff
(urrent

Emitter (utoff (urrent
Stolic Forword Current
Tronsler Ralio
Base-Emiller Voltoge
Collector-Emiller
Saturotion Voltoge
Small-Signol
(ommon-Emiller
Forword Currenl
Tronsler Rotio
Smoll-Signol
(ommon-Emiller
Forword Currenl
Tronsler Rotio

Ie

= 200mA,

VCE - 40 V,
VCE = 60 V,
VCE - 80V,
VCE - 40 V,
VCE = 60 V,
VCE = 80 V,
VCE = 40 V,
VCE - 60 V,
Vee - 80 V,
VEB - 5 V,
VCE - 2 V,
VCE = 2 V,
VCE - 2 V,
I. - 0.25 A,
I. - 1 A,

I. = 0,

Gfe

See Note 5

40

I. - 0
I. = 0
I. - 0

VIE VIE =
VIE =
VIE =
VIE VIE Ic
Ic
Ic
Ic
Ic
Ic

=
-

60

mA

1
1

-1.5 V
-1.5 V
-1.5 V
-1.5 V, Te = HO G(
-1.5 V, Tc - HO G(
-1.5 V, Te = HOGC

0.1

0
2.5 A,
SA,
2.5 A,
2.5 A,

1
100

SA,

0.1
0.1
2

mA

2

See Notes 5 ond 6 25
See Notes 5 ond 6 7
See Notes 5 ond 6
See Noles 5 ond 6
See Notes 5 ond 6

25
7

1.4
0.75

1
100

25
7

1.4
0.75
1.5

1.5

2
1
100
1.4
0.75
1.5

Ie = 0.5 A,

1= 1 kHz

20

20

20

VCE = 10 V,

Ic = 1 A,

1= 1 MHz

4

4

4

=

V

80

1

VCE = 10 V,

NOTES: 5. These para~ters must be measured using pulse letbniques. tp

6. These parameters

2N4913
2N4915
2N4914
MAX MIN
MAX MIN
MAX UNIT
MIN

TEST CONDITIONS

mA

V

V

300 ILs, duty eyda :$ 2%.

measured with voltage-sensing (ontacts separate from the current-carrying contacts.

• thermal characteristics
PARAMETER

6J.C
6J.A

Junction-to-Cose Thermal Resislonce
Junction-to-Free-Air Thermol Resistonce

*Indicales JEDE( registered data

971

5-176

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAS, TEXAS 75222

TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONSt

~I...
",--_T~u:..crn--,-O--,n--,T",im::..:e_ _ _ _ _ _-l
lofl

Turn-Off Time

Ie = 2.5 A,
VlE10lfl = -4.1 V,

IB(1} = 250 rnA,
RL = 10 n,

18(21 = -250 rnA,
See Figure 1

tvoltoge and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

r-----.---------<> OUTPUT
82 Cl

INPUT

o----..,..--"""V'o.,.,..--......---H

10 Cl

•

27 Cl
130 Cl
+

-=-+ 5 V

-=- 25 V

TEST CIRCUIT

'''v ___~ ...

1'--

_1.2V--.i- IO%

I

---..I

tOft

INPUT

I+-

I

14-

tofl

-..j

l0{ml

I
\:

OUTPUT

90% \ .

"

"-------'

VOLTAGE WAVEFORMS

FIGURE 1

NOTES: o. The input waveform is supplied by a genera.tor with the follow)ng characteristics: Ir ~ 15 ns, h ~ 15 ns, lout
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, Rin ~ 10 Mfl, (in

=
~

50 0, t p
11.5 pf.

=

10 ps, duly cyde ~ 2%.

c. Resistors must be nonlnductive Iypes.
d. The d·, power supplies may require addftlonal bypassing In order to minimize Tinging.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 501_2 •

DALLAS, TEXAS 75222

5-177

TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

V'

COLLECTOR CURRENT
100
.~

~
~c

£
1:
~

a
1!
c
~

.f
.~

o·G

- \':>

~\~
~

70
60

~«

50 ~

a
I

20

-

~

~I
_'>'>.c.....

40 ~
30

="~

V

~

"'"

io"

w

.c

I

= 2)
See Noles 5 and 6

80

.1;

•

IJ~E

90

Te = 150·C
10

I

o
0.05

~
4 5

2

0.2
0.4 0.7
Ie - Collector Current -

0.1

,

A

FIGURE 2

BASE-EMITTER VOLTAGE

COLLECTOR-EMITTER SATURATION VOLTAGE

V'

VI

CASE TEMPERATURE

1.2

VeE

>

1.0

I

~

0>

.l! 0.8

"0

>

~
]

0.6

--

.......... .........

I

I

>

I

- --

f--_

r-

........... ~=50mA

0.4

............

i"--.

0.2

o

c

~

~
~
~

-25

Tc -

0

25

50

75

Case Temperature -

'A, Ie - 5 A
--i-"'r

la = 0.25 A, Ie

0.2

~

-

=2.5 A

~~

~

1----

0.1
0.07

5
] 0.04
"0
u

100

125

150

-II

~

0.02

~

0.01

~

-50

r-Ia - 1

0.4

>

=

I

>'AI

-75

'"

"0

]

r-..... .......

C

See Noles 5 and 6

0.7

~

.l!

r-!-e= 2.5 A

~

'"

=2 V

See Note, 5 and 6

le= lA

r--

CASE TEMPERATURE

-75

=5 mA, Ie - 50 mA

-SO

-25
Te -

°C

FIGURE 3

0

25

SO

75

Case Temperalure -

100 125

150

·C

FIGURE 4

NOTES, S. These paramele" mull be m.... red u.lng pul .. lechniques. I,

== 300 p.', duly ,yde

:::; 2%.

6. Thesl paramet,n are measured with ,ollage-senslng contacts separal. f,om the currenl-carrylng contacts.

971

,5-178

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4913, 2N4914, 2N4915
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
vs
COLLECTOR-BASE VOLTAGE
500

IIII

le'= 0'

...

"\!\.

Q.

I

j

f = 0.1 to 1 MHz

MlO \.

300

lo

I

TC = 25"C

~

~ro-.

200

"

.g

u

100

o

1

2
VCI

-

.......

4
7 10
20
40
Collector-8o.. Voltage - V

70 100

FIGURE 5

•

MAXIMUM SAFE OPERATING REGION

10
TC" 25°C

7

«

.....

4

..........

I
~

~~

2
D-C OPERATION

u

5

"U
.!!

0.7

I

0.4

;S
J:'

\

2N4913 ~

I

2N4914

0.2

I

10

r\

i\

2N4915
0.1

"'\
'--

20

VCE -

40
70
Collector-Emitter Voltage - V

100

FIGURE 6

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·179

TYPES 2N4913, 2N4914, 2N4915
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
THERMAL INFORMATION
DISSIPATION DERATING CURVE
90

I--

~

I

80

~

70

.

"i

is

60

u
.;:
~

e

40

U

30

~

i

E
~
E

0.50 (50%) Duty Cyclo

0.4

'u•

'\.

i

,

I

o

o

SO
Te -

r\.

,

0.02

175

200

SYMBOL DEFINITION
VALUE

UNIT

Prl•v I

Average Power Dissipation

W

Prlm" 1

Peak Power Dissipation

W

6J•A

Junction-to-Free-Air Thermal Resistance

43.7

deg/W

6J•e

Junction·lo-Case Thermal Resistance

2

deg/W

6e •A

(asl-to-Free-Alr Thermal Resistance

41.7

deg/W

6e •Hs

Case-to-Heal-Sink Thermol Resistance

deg/W

6Hs.A

Heat-Sink-to-Free-Air Thermal Resistance

deg/W

TA

Free~Air Temperature

·C

Te

Case Temperature

·C

TJI•v)

Average Junction Temperature

:::; 200

·C

Peak Junction Temperature

:::; 200

·C

TJlmax'

See Figure 8

K

Peak· Power Coefficient

tp

Pulse Width

ms

tx

Pulse Period

ms

d

Duly Cycle Ratio (lpll,.)

+ 6HS•A =

TJlovl (design IImlti

O.U«(W)
0.07

0.05

V

-

~~

rI

V

~
M

1-0 -lpiT

K·

V/
V

~

1-. - lp!dT

tp = Pulse width in ms

= Duty cycle ratio

d

\l.

~ ;= r~m~1

0.01
0.020.04

!'7

0.1

lim,"

0.2 0.4
Pulse Width -ms

I III

c~"tf71 ~~1·4 ml
4

7 10

20

tp -

FIGURE 8
Equation No 1 - Application" de power dIssipation
heat sink used.

Prlovl

=

TJI,vl-rA
(he

+ 6e •Hs + (lHS.A

lor 25'C :::; Te :::; 2OO'C,
as In figure ,.

Equation No.2 - Applicalion: doc power dissipation,
no heal sink used.

'rl.vl

=

TJlov,- TA

for 25'C :::; TA :::; 200'C

6J•A

Equation No.3 - Application: Peak power dissipation,
heat sink used.

_
PTimaxl

TJlmaxl-TA

-!6
d e.HS

+ 6HS.AI + K 6J.e

for 25'C :::; Te :::; 2OO'C

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

'rlmox)

=

TJlmaxl- TA
d 6e •A
K6J _e

+

lor 25'C :::; TA :::; 200'C'

Solullon:

example - Find Prlmaxl (deSign IImlti
OPERATING CONDITIONS,

6e •Hs

0.07

><

"

75
100
125
150
Cose Temperature - ·C

DEFINITION

1...

0.04

~

FIGURE 7

SYMBOL

0.1

...

10

at"

~

.....

(~U!

0.2

l
u

20

l

0. 1251

i:

"

SO

~

•

,

0.7

"'l\.

.~

i

PEAK-POWER COEFFICIENT CURVE

2.25 deg/W (From informalion supplied
wilh heat sink.)

= 200'C

From figure 8. Peak·Power (oefficient
K = 0.11 and by use 01 equation Na. 3
I

TJlmexi - TA
PrlmuJ = -:-::7"--7'''?'---:-:-:--;-d (6 e _Hs

= 50'C
d = 10% (0.1/
tp = 0.1 ms
TA

+ 6Hs..Al + K 6J•e

200-50
0.1(2.251
0.11(2)

+

= 337W

PRINTED IN U.S.A

5-1801

TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

971

TI (annot Quume any responsibility for any df(uils shown
or represen, thot they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N4998. 2N5000. 2N5148. 2N5150
N-P-N SILICON POWER TRANSISTORS
ENCY
TRANSISTORS WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•

For Complementary Use With 2N4999, 2N5001, 2N5147, and 2N5149

• 6 mJ Reverse Energy Rating with IC
*mechanical data
2N499B,2N5000

= 5 A and 4 V

Reverse Bias

ALL TERMINALS ARE INSULATED FROM THE CASE

ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
NOTES:

A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within

0.125 inch of the stud.

•

D. All dimensions are in Inches unless otherwise specified.

2N514B,2N5150

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED.

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N4998
2N5000

Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:

2N5148
2N5150

_100V"_
-80V*_6V*_
2A*
2A*
5A*
5A*
lA*
lA*
See Figures 7* and 8
30W*
6W*
20W
4W
2W
1 W*
6mJ_65°C to 200°C*
-65°C to 200°C*
_300°C*_

1. This value applies when the base-emitter diode is open-circuited.

2. This value applies for tw < 8.3 ms, duty cycle < 1 %.
3. For operation above (or below) 50° C case temperature, refer to Dissipation Derating Curves Figures 9 and 10.
4. Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/C for 2N4998 and 2N5000, 5.7 mW/C for 2N5148 and
2N5150.

5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L=0.48 mH, RBBl =20 U, RBB2= 100 U,
VBBl = 10 V, VBB2 = 4 V, RL = 0.1 U, VCC = 10 V, ICM = 5 A. Energy'" IC2 L/2.

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.

1171

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-181

TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25° C case temperature (unless otherwise noted)
2N4998
TEST CONDITIONS

PARAMETER

MIN
Coliector·E mitter
V(BR)CEO

Breakdown Voltage

ICEO

Collector Cutoff Current

ICES

Collector Cutoff Current

ICEV

Collector Cutoff Current

lEBO

Emitter Cutoff Current

Static Forward Current
hFE

•

VBE

Transfer Ratio

Base-Emitter Voltage

Collector·E mitter
VCE(sat)

Saturation Voltage

IC= loomA,

See Note 6

IB = 0,

2N5000

2N5148

2N5150

MAX

80

MIN

UNIT

MAX
V

80

VCE =40V,

IB =0

50

50

!lA

VCE - 60V,

VBE - 0

1

1

!lA

VCE = 100V,

VBE - 0

1

1

rnA

VCE = 60 V,

VBE = -2V,

500

500

!lA

VEB - 5 V,

IC -0

1

VEB - 6 V,

IC - 0

1

TC = 150°C

1 !lA
1 mA

VCE - 5 V,

IC- 50mA

20

VCE - 5 V,

IC-l A

30

VCE - 5 V,

IC-2A

VCE -5 V,

IC-3A

VCE = 5 V,

IC = 1 A,

IB - 100 mA,

Ic-l A

1.2

1.2

IB - 200mA,

IC-2A

See Notes

1.5

1.5

VCE - 5 V,

IC-2A

6and 7

1.5

1.5

VCE-5V,

Ic-3A

3

3

IB - 100 mA,

IC-l A

0.46

0.46

IB - 2oomA,

IC-2A

0.85

0.85

IB - 600mA,

IC-3A

5

5

VCE=5V,

IC=O.lA,

See Notes
6 and 7
TC = _55°C

50
90

15

70

200

30

5

15

15

35

See Notes
6and 7

V

V

Small·Signal
Common~E mitter

hfe

Forward Current

f = 1 kHz

20

50

2.5

3

Transfer Ratio
e"I

Small·Signal
Common·E mitter
hfe

Forward Current

VCE=5V,

IC = 0.2 A,

f = 20 MHz

VCB = 10V,

IE = 0,

f = 1 MHz

Transfer Ratio
Common·Base
Cobo

o pen·Ci rcu it

70

70

pF

Output Capacitance
NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle 0:;;,;;; 1%.
7. These parameters are measured with voltage~sensing contacts separate from the current~arrying contacts and located within 0.125

inch from the device body.
*JEDEC registered data

thermal characteristics
PARAMETER
ReJC

Junction-to-Case Thermal Resistance

ReJA

Junction·to·Free·Air Thermal Resistance

2N4998

2N5148

2N5000

2N5150

MAX

MAX

5

25

87.5

175

UNIT

°C/W

switching characteristics at 25° C case temperature
PARAMETER

ALL TYPES

TEST CONDITIONst

TYP

ton

Turn·On Time

IC=2A,

IB(l) =200mA,

IB(2) = -200 mA,

0.1

toff

Tu rn-Off Time

VBE(off) = -3.7 V,

RL=15n,

See Figure 1

1.1

UNIT
!IS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters,

1171

5·182

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 15222

TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

,NPUT VO"·~~;~x~
,

.

30

n

,5

~:~{

270 pf
OUTPUT

VBB1,.,43V
AOJUST FOR
Von "'41.3VAT
INPUT MONITOR

TEST CIRCUIT
NOTES:

A. Vgen Is a -30 V pulse (from
R

a V)

VOLTAGE WAVEFORMS

into a 50-U termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr < 15 ns, tf < 15 ns, Zout = 50 n, tw = 20
duty cycle :0;,;; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 15 ns, Rin :> 10 Mn, Cin < 11.5 pF.
D. Resistors must be non inductive types.

}.LS,

E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

TYPICAL CHARACTERISTICS
2N4998, 2N5148

2N5000, 2N5150

STATIC FORWARD CURRENT TRANSFER RATIO

STATIC FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT

£
~

'"

'j

60

i'-

veE" 5 V

z 180

TC

"

m

2S"C

See Notes 6 and 7

'\

/'

'"' V
1
."

~

160

~

140

j

120

\

~

t

20

VCE '" S V
TC - 2S·C

See

Notes

6 and 7

,

'\

l-

100

1

~

!

11

COLLECTOR CURRENT

200

100

80

\

60
40

J!-

J!-

0.1

0.01

0.2

0.01

0.4

0.04

0.1

0.2

0.4

IC-COllector Currenl-A

IC-Collector Current-A

FIGURE 2

FIGURE 3
COMMON·BASE OPEN·CIRCUIT

BASE.EMITTER VOLTAGE

COLLECTOR·EMITTER SATURATION VOLTAGE

OUTPUT CAPACITANCE

COLLECTOR CURRENT

COLLECTOR.BASE VOLTAGE

2.0 "-~TTTTlrT"rr,,--rrTTTTTl--rTl
1.8

.:£'"
IB

1.6

TC" 2S"C

::r

i

1.2
1.0

0.2

Notes

,ll

6 and 7

-,,5

1--++t+tHtt---t---H-tftltt--t-H
r-- - t+Htltt--t-t+tttt-tt---::
___VH

-

:--

1 0.6 F>--::""";H+tttttl--++t-H+ttl--+-H
0.4

See

~ 0.4
.~

~
~ 0.8

~

I

TC "2S Q C

See Notes 6 and 7

~ 1.4

~

0.5

>

~

10

1--+-H+tH1t-t---H-tttltt--t-t-j
1--+-H+tH1t-t---H-tttltt--t-t-j

OL-J-LLUilll-~~LUWL~-U

0,01

NOTES:

0.04

0.1

0.2

0.4

~

"

'e -10

0.3

~

"

E

ll;l

j

0.2

f

I,

Ij

0.1

~

90

TC '" 25~C

""'-

80
70
60

50

'---

40

t---

20

1>

~

j
J

;3

!..

100

10

a
0,01

0.04

0.1

0.2

0.4

Ic-Collector Current-A

IC-Collector Current-A

FIGURE 4

FIGURE 5

7

10

20

40

VCa-Collector·BaSl! Voltage-V

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 1 %.
7. These parameters are measured with voltage-sensing contacts separate from the current~carrying contacts and located within 0.125
inch from the device body.

1171

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·183

TYPES 2N4998, 2N5000, 2N5148, 2N5150
N-P.;N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
10

10
7

«I

D·C Operat ion
TC" 25°C

4

...c:
~

2

u

1
0.7

......
8
0

jl

'x
I

0.04

"
:2E

•

5:?

4

U

2

'\

t-

:>

E

'x

rl iiii
I

IIIII

5

0.01

2

1

,

"'

0.4

II See Note 8_

I

5:?

I

0.2

2N51r-

7 10

4

""

40

20

0.1
0.4

70100

0.7 1

7 10

4

2

20

40

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 8

FIGURE7
NOTES:

Note 9

, V BB2= 0
'\

4V'-

"
:2E

2N4998, 2N50oo

0.02

VBB2

0.7

E

~b(

,ir

I'\.

0

0.2
0.1
0.07

...c:I

...jl...
8

0.4

E
:>
E

18
..........111"

«

~
:>

~

r--"

:>

VCC-10V
RBB2 -100n
TC = 25°C

7

S. Above these points the safe operating areas have not been defined,

9. These curves are based on the capabilitv of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication

RL

= 0.1 n. Energy

Suggested Standards on Power Transistors. t

Raa1 = 10'Vaa1/lc, Vaa1 = 10 V,

'" IC:;!L/2.

tThis circuit appears on page 5-1 of this data book.

THERMAL CHARACTERISTICS
2N4998, 2N5000

2N5148,2N5150

DISSIPATION DERATING CURVE

DISSIPATION DERATING CURVE

40

~c
0

'!

35

:~ 30

c

8

.~

c
~

25

.,

20

8

15

0

~

.c
c

E
~
E

10

::ii
I

5

.

'x

J:"

o
o

8

'"'"
25

~c
0

7

.~

Co

'ii 6
i5

'"'"

.s:8
c"
~

0

..,
~

c
c

'"'"

50
75
100 125 150
T c-Case T emperature-0 C
FIGURE 9

8

5

'"

~

4

~

:I

~

E
~
E 2

..

'x

::ii

'"

175

200

I

J:"
o
o

25

50

75

100

'"'"

125

150

I'(

175

200

T C-Case Temperature-0 C
FIGURE 10

PRINTED IN U.S A

5-184

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1173

TI (anno' Qssume any responsibility for ony circuits shown
or represent 'hot they afe free from polen' infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.

TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
HIGH-FREQUENCY POWER TRANSISTORS WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•

For Complementary Use With 2N4998, 2N5000, 2N5148, and 2N5150

•

6 mJ Reverse Energy Rating with IC

=5 A

and 4 V Reverse Bias

*mechanical data
2N4999,2N5001

NOTES:

ALL TERMINALS ARE INSULATED FROM THE CASE

ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE
A. Within this dimension, case diameter may vary,

B. Posit'ion of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within

•

0.125 inch of the stud.

D. All dimensions are in inches unless otherwise specified.

2N5147,2N5149

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL OIMENSIONS ARE IN ltolCHES
UNLESS OTHERWISE SPECIFIED

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
..
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:

2N4999 2N5l47
2N5001 2N5l49
--100V*_
_-80V*_
_-5.5V*_
-2A*
-2A*
-5 A*
-5 A*
-lA*
-lA*
See Figures 7* and 8
30W*
6W*
20W
4W
2W
1 W*
-SmJ_
-65°C to 200°C*
-65°C to 200°C*
~300°C*_

1. This value applies when the base-emitter diode is open-circuited.

2. This value applies for tw ..;;;; 8.3 ms, duty cycle ";;;;,1 %.
3. For operation above (or below) 50° C case temperature, refer to DiSSipation Derating Curves Figures 9 and 10.
4. Derate linearly to 200°C free~air temperature at the rate of 11.4 mwtC for 2N4999 and 2N5001, 5.7 mwtC for 2N5147 and
2N5149.

5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L = 0.48 mH, RBS1 =20 0, RBB2 = 1000,
VSS 1 = 10 V, VBB2 = 4 V, RL = 0.1 0, VCC = 10 V, leM = 5 A. Energy'" IC2 L/2.

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5·1 of this data book.

1171

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·185

TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
2N4999
PARAMETER

TEST CONDITIONS

MIN
Collector-Emitter
V(BR)CEO

Breakdown Voltage

ICEO

Collector Cutoff Current

ICES

Collector Cutoff Current

ICEV

Collector Cutoff Current

lEBO

Emitter Cutoff Current

Static Forward Current
hFE

Transfer Ratio

•

Base-E mitter Voltage

VCE(sat)

Saturation Voltage

MIN

UNIT

MAX

-80

V

-50

-50

/LA

VBE =0

-1

-1

VCE = -100 V, VBE = 0

-1

-1

/LA
rnA

/JA

IB = 0

VCE =-60V,
VCE =-60V,

VBE = 2V,

-500

-SOO

VE8 = -4 V,

IC=O

-1

-1

/LA

VEB=-5_5V, IC=O

-1

-1

rnA

VCE =-SV,

Ic=-50mA

VCE = -5V,

IC=-1 A

VCE =-5V,

IC=-2A

VCE =-5V,

IC=-3A

VCE=-5V,

IC=-1 A,

TC = IS0°C

50

20
See Notes
6 and 7
TC= -55°C

30

90

5

15

15

35

See Notes

IB = -200 rnA, IC =-2A

6 and 7

IB = -600 rnA, IC=-3A

200

-1.2

-1.2

-1.5
-1.S

-1.5
-1.5

-3

-3

-0.46

-0.46

-0.85

-0.85

-5

-5

IC- -3A

IB =-I00mA, IC=-I'A

70
30

15

See Notes
6 and 7

IB =-200mA, IC = -2A
IC- -2A
VCE--5V,
VCE = -5V,

Collector-E mitter

2NSI49

MAX

See Note 6 -80

IC = -100 rnA, IB = 0,
VCE =-40V,

IB --100mA, IC--1A
VBE

2NSOOI

2NS147

V

V

Small.signal
Common-Emitter
hfe

Forward Current

VCE=-5V,

IC = -0.1 A,

f = 1 kHz

20

SO

VCE = -5V,

IC= -0.2 A,

f = 20 MHz

2.S

3

VCB = -10V,

IE =0,

f= 1 MHz

Transfer Ratio
Small.signal

~fel

Common-E mitter
Forward Current
Transfer Ratio
Common-Base

Cobo

Open-Circuit

120

120

pF

Output Capacitance
NOTES:

6. This parameter must be measured using pulse techniques: tw = 300 }Js; duty cycle E:;;; 1 %.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

'" JE DEC registered data

thermal characteristics
PARAMETER
RaJC

Junction-to-Case Thermal Resistance

RaJA

Junction-to-Free-Air Thermal Resistance

2N4999

2NS147

2NSOOI

2NSI49

MAX

MAX

S

2S

87.5

175

UNIT

°CIW

switching characteristics at 25°C case temperature
PARAMETER

ALL TYPES

TEST CONDITIONSt

TYP

ton

Turn-O n Time

IC=-2A,

IB(1) = -200 rnA,.

IB(2) = 200 rnA,

0.2

toff

Turn-Off Time

VSEloffJ = 3.7 V,

RL=15!1,

See Figure 1

0.4

UNIT
/LS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1171

5·186

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT

INP;'~ ~~2~%_ - - - ~
_:~~ 90%

V on =-41.3V

:

I

ton-lo-ot

270 pF

OUTPUTYL

-=-+Vee - 30 V

VBB1,"43V
ADJUST FOR
Von =-41.3 V AT ' - " - - -.....
INPUT MONITOR

!.-toff--l

--+----'
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a 30-V pulse (from 0 V) into a

soon termination.

B. The V gan waveform is supplied by a generator with the following characteristics: t r '" 15 ns, tf '" 15 ns, Zout

= 50 n, tw = 20 Ils,

duty cycle";; 2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr " 15 ns, Ajo ;;a. 10 Mil. Cin" 11.5 pF.
D. Resistors must be non inductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.

•

FIGURE 1

TYPICAL CHARACTERISTICS
2N5001.2NS149
STATIC FORWARD CURRENT TRANSFER RATIO

2N4999.2NS147
STATIC FORWARD CURRENT TRANSFER RATIO

"

"

COLLECTOR CURRENT

COLLECTOR CURRENT
100
90

VdE ~ ~51~11I1

ie

80

TC = 2S o C
See Notes 6 and 7

I

00

-i
'"

200
o

~

70

l-

V

50

j

40

~

20

r\

e

~

\

180

::

TC = 25°C

f- See Notes 6 and 7

120
100

f--

j:

\

30

~

.~

'"

I-V~E ~~~IJIII

1\

i:

10
-0.01

-0.04 -0.1

-0.4

o

.....

-1

-0.01

Ic-Collector Current-A

-0.04 -0.1

BASE·EMITTER VOLTAGE

COLLECTOR·EMITTER SATURATION VOLTAGE

"

COLLECTOR CURRENT

>

t
~
~

!
'"

>

-1.6

!£

=

-0.4

l!

-0.7

&

j

-1.2

-<1.6

-O.B

>

-1.4

-<1.8

't

..

10

18
TC '"' 25°C
See Notes 6 and 7

-1.0

I

-

j

'I~.12~.ld IIII

III

*.

r- See Notes 6 and 7

-0.5

Ie

-0.4

j

""'.1

~II

IB - 10

-0.3

;3

-0.01

NOTES:

-0.04 --0.1

-4

>

lBO
~
~

5

I. ~

I

140
120

'[

100

.3

80

~

j

W

100

.!!

&

1III

'E!O I

'"

"-

f= 1 MHz
TC "" 25°C

".............

00
40

20

~

-1

"

COLLECTOR·BASE VOLTAGE

200

-0.6

-0.2

I

-0.2
-0.4

COMMON·BASE QPEN-CI RCUIT OUTPUT CAPACITANCE

"

-2

-4

-1

FIGURE 3

COLLECTOR CURRENT

-1.8

-0.4

Ie-Collector Current-A

FIGURE2

-0.01

-0.04 -0.1

-0.4

-1

Ic-Collector Current-A

Ic-Collector Current-A

FIGURE 4

FIGURES

.....

-1

-2
-4
-7 -10
-20
VCs-Collector·Sase Voltage-V'

-40

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 1lS, duty cycle ~ 1~.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body,

1171

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·187

TYPES 2N4999, 2N5001, 2N5147, 2N5149
P-N-P SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT

vs
COLLECTOR-EMITTER VOLTAGE
-10

-10
-7

-4

«
.LI:

-2

~:l

u

-1
-0.7

S

-0.4

.

"

(5

•

.........

:=

u
E
:l
E

-0.1
-0.07

:2:

-0.04

5:?

-0.02

...

-4

~

~
u

.......

...5
"
8

-2

L

.!!:?

ir

\

~

1\

-0.7

'xca

Note 9

1\ VBB2= 0

VBB2- 4 V ...........

-1 f-

E
:l
E

\.

",

-0.4

See Note 8_

:2:
I

5:?

I

-0.2

-0.01
-1

NOTES:

'8
..........11J"

'\.

:l

,

VCC-10V
RBB2 - 100 n
TC = 2SoC

-7

«I
I:

2N4999, 2NSOO1
-0.2 I- 2NS147, 2NS149

.!!:?

'xca

D-C Operation
TC';;; 2SoC

-2

-4

-10

-20

-40

-0.1
0.4

-100

0.7 1

2

7 10

4

20

VCE-Coliector·Emitter Voltage-V

L-Unclamped Inductive Load-mH

FIGURE 7

FIGURE 8

40

8. Above these points the safe operating areas have not been defined.
9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication
R L = 0.1 n, Enargv '" IC2 L/2,

Suggested Standards on Power TramIistors. t

RBBl - 10-VBB1/IC. VBBl

= 10 V.

tThls circuit appears on page 5-1 of this data book.

THERMAL CHARACTERISTICS
2N6147,2N6149

2N4999, 2N5001
DISSIPATION DERATING CURVE

DISSIPATION DERATING CURVE

40

~c:
0

'!

8

35

~

:~ 30

c

·fc
&
'."c:,
c:

8

25

20
15

E
E 10

"

~c:
0

'"'"

'xII

~
.t"

5

o

o

25

50

75

7

'ilQ.
'iii 6
Ci

~

!l 5

.

';;
C
~

0

""

100

..,"c:
c:

~

125

0

tJ

'"

150

TC-Case Temperature-OC

4

'"

~

3

E
E 2

"

'j(

II

~

175

200

FIGURE 9

::i!
I

'"

~

.t"

o
o

25

50

75

100

125

FIGURE 10

""'"

150

TC-Case Temperature-OC

175

200

PRINTED IN U.S A.

5-188

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAs, TEXAS 75222

1171

11 cannol assume any responsibility for any circuits shown
or reprelent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS WITH
COMPUTER·DESIGNED ISOTHERMAL GEOMETRY
•

For Complementary Use with 2N5003. 2N5005. 2N5151. and 2N5153

•

15 mJ Reverse Energy Rating with IC

= 10 A and 4 V

Reverse Bias

*mechanical data
2N5002, 2N5004

ALL TERMINALS ARE INSULATED FROM THE CASE

ALL JEDEC TO-59 DIMENSIONS AND NOTES AAE APPLICABLE

NOTES:

A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C, The ~ase temperature may be measured anywhere on the seating plane within
0_125 Inch of the stud.
D. All dimensions are in inches unless otherwise specIfied.

2N5152,2N5154

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

'fI; I

ALL DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED.

•

ALL JEDEC TO-39 DIMENSIONS AND NOTES AAE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas . .
. . . ..
.
..
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:

2N5002 2N5152
2N5004 2N5154
-100V*-80V*-6V*5A*
2A*
10A*
10 A
1 A*
2 A*
See Figures 7* and 8
50W*
10W*
33.3W
6.7 W
1 W*
-15mJ-65°C to 200°C*
-65°C to 200°C*
4----300°C*~

1. This valu.e applies when the base-&mitter diode is open-circuited.
2. This value applies for tw < 8.3 mSt duty cycle < 1%.
3. For operation above (or below) 50°C case temperature, refer to Dissipation Derating :Curves, Figure 9 and 10.
4. Derate linearly to 200°C free-air temperature at the rate of 5.7 mW/oC.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistorst. L = 0.3 mHo ABBl
VBBl = 10 V, VSS2=4 v, AL=O.l.n. VCC=10 v, ICM=10A. Energy'" IC 2 L/2 •

= 10.n,

ABB2 = 100.n,

• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.

1171

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·189

TYPES 2N5002, 2N5004, 2N5152, 2N5154
N·P·N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

2N5002

2N5004

2N5152

2N5154

MIN
Collector-Emitter
V(BR)CEO

Breakdown Voltage

ICED

Collector Cutoff Current

ICES

Collector Cutoff Current

ICEV

Collector Cutoff Current

lEBO

Emitter Cutoff Current

IC= loomA,

IB = 0,

VCE -40V,

IB -0

See Note 6

VBE - -2V, TC- 15o"C

VEB -5V,

IC-O

VEB-6V,

IC-O

Static Forward Current

VCE - S V,

IC - 2.SA

Transfer Ratio

VCE -SV,

IC-SA

VCE - S V,

IC-2.5A,

IB
VBE

•

VCE(sat)

Base-E mitter Voltage

= 250mA,

See
Notes
TC = -55°C

2.5A

6 and 7

V

50

50

1
1
500
1
1

1
1
500
1
1

20

p.A
p.A
mA
p.A
p.A
mA

SO

30

90

20

70

200

40

15

35

See

1.45

IB - 500mA.

IC=5A

Notes

VCE = 5V,

IC=2.5A

6and 7

1.45
2.2
1.45
0.75

0.75

1.5

1.5

IC

UNIT

MAX

80

VBE - 0
VCE -100V, VBE -0
VCE -60V,

MIN

80

VCE -60V,

VCE - S V, I IC - SOmA
hFE

MAX

2.2

Collector-E mitter

IB = 250mA,

IC= 2.5A

See Notes

Saturation Voltage

IB = 500mA,

IC=5A

6and 7

VCE = 5V,

IC=O.l A,

f = 1 kHz

20

50

VCE=5V,

IC=0.5A,

f=20MHz

3

3.S

VCB= 10V,

IB=O,

f= 1 MHz

V

1.45
V

Small-5ignal
Common-E mitter
hfe

Forward Current
Transfer Ratio
Small-5ignal
Common-E mitter

Ihfel

Forward Current
Transfer Ratio
Common-Base

Cobo

Open-Circuit

250

250

pF

Output Capacitance
6. These parameters must be measured using pulse techniques. tw "" 300 IJS, duty cycle'" 1%.
7. These parameters are measured with voltageooSenslng contacts separate from the current..carrylng contacts and located within
0.125 Inch from the device body.
·JEDEC registered data
NOTES:

thermal characteristics
PARAMETER
ReJC

Junction-ta-Case Thermal Resistance

2N5002

2N5152

2N5004

2N5154

MAX

MAX

3

15

UNIT
°C/W

switching characteristics at 25°C case temperature
All TYPES

TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC=5A,

IB(I) = 500 mA,

toff

Turn-Off Time

VBE(off) = -3.7 V, RL = 6

n,

TYP
IB(2) = -500 mA,

0.5

See Figure 1

1.3

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

5-190

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

UNIT
p.s

TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

VSB1"43V
ADJUST FOR
Von "'41.3VAT
INPUT MONITOR

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. Vgen is a -30 V pulse (from 0 VI In10 a 50

B.
C.
D.
E.

n

termination.

The Vgen waveform is supplied by a generator with the following characteristics: tr.=o;; 15 ns, tf E; 15 ns, Zout = 50 n. tw = 20 }ls, duty cycle
Waveforms are monitored on an oscilloscope with the following characteristics: tr <; 15 ns, RIO ;;... 10 MO. Cin '" 11.5 pF.
Resistors must be noninductive types.
The doc power supplies may require additional bypassing in order to minimize ringing.

<: 2%.

FIGURE 1

•

TYPICAL CHARACTERISTICS
2N5002. 2N5152
STATIC FORWARD CURRENT TRANSFER RATIO

2N5004,2N5154
STATIC FORWARD CURRENT TRANSFER RATIO

" CURRENT
COLLECTOR

COLLECTOR CURRENT

120

24 0

VeE ""5 v
See Notes 6 and 7

0

o

~.,:,.~

"I 1 1•

0

~

--

TC= 1scfc

Tel.

o

1

,\

r

~

I III

r-T~'~'·~

a

f-

VeE =5 V
22 0
See Notes 6 and 7
200

TC'" 150°C ,.,.....

180

140I-120

] ':

j 11~

I III
~.;.~
-I II t=r

I--

T~! lli!r""
2~,161
f 1 H1tt
1111111
-~~c

01-- TC=

0

0

llltt1tf

0

11111111

I III

0.01

0.04

0.1

0.4

0.01

10

0.04

Ie-Collector Current-A

0.1

COLLECTOR-EMITTER SATURATION VOLTAGE
CASE TEMPERATURE

CASE TEMPERATURE

VCE"'5 V

--r-.

2 1.......
0 1- -

~

D_ 8

r-

E

1 D6
"i'

ill

>

0

lej1AJ

• Ie I

o. 2
o

-75

NOTES:

I I

50 -25

0

25

50

75

100 125 150 175

Ie "0
f",MHz

350

Ie = 0.5A,IC= 5A

TA = 2!t'C

4
IB

2

IC"'2.5A

.::::::

40 0

7

6 ,"" 7

---1- t7: -- ::::-CJ- -:::::
o··t-' ~ -I I

COLLECTOR·BASE VOLTAGE

1

le' SA 1

I::::: r- --,

COMMON-BASE OPEN·CIRCUIT OUTPUT CAPACITANCE

w

6

10

FIGURE3

FIGURE 2
w

ISe. i°'"'

0.4

IC-Collector Current-A

BASE-EMITTER VOLTAGE

4

'-

TC =

o Te l=

o

I'\.

11111111

160

1

c

0.25 A,le = 2.5 A

300

I I L1-l- I-- I--"
18 =0.1 A,IC

1 o~

1A

• 2.

,l
_

4
'B"0.D1A,IC=0.1A

2

-75 -50

25

0

25

""''-...

.......

50

Sei N°T 6 'I"" 71
0.0 1

200

~ ::

7

50

75

100

Tc-Case Temperature-' C

T C-C8se Temperature-°c

FIGURE 4

FIGURE 5

7

126 150 175

6. These parameters must be measured using pulse techniques. tw = 300 }.ls, duty cycle
7. These parameters are measured with voltage-sensing contacts separate from the
0.12·6 inch from the device body.

10

20

40

Vea-Collector-e.se Voltap-V

FIGURE 6
~

1%.

current~arrylng

contacts ana located within

1171

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

D'ALLAS, TEXAS 75222

5-191

TYPES 2N5002, 2N5004, 2N5152, 2N5154
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
40

10
7

«I

4

....c

5
15

1
0.7

.!!:

0.4

u

1:>

'0
u

E
:J
E

'x
'"
:aE
I

•

..........

2

1:!

VCC = 10 V
RBB2 = 100
TC = 25°C
See Note 9

D-C Operation
TC"':25°C

r--.....

20

1:!

10

u

7

....c

I)

i'

«I
5
0

f- -

2N5OO2,2N5004-,

0.2

.!!:

2N5152, 2N5154

r7

E
:J
E

t\

!d
0.02

0.4
0.1

7
10
20
40
70 100
VCE-Collector-Emitter Voltage-V

1\

4
7 10
0.4 0.7 1
2
0.2
L-Unclamped Inductive Load-mH
FIGURE 8

FIGURE'
NOTES:

f\
f'."

See Note 8

0.7

0.01
4

'"

1

I
~

=0

[\

I',.

2

'x
'"
:aE

0.04

\.\VBB2

r-- VBB2 = 4 V

u

0.1
0.07

1\

4

'0

I'

1rJ.;

.......

1:>

r-....

I

.f,?

n

8. Above these points the safe operating areas have not been defined.

9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2
of the forthcoming JEDEC publication Suggested Standards on Power Transistors. t RSB1 = lO-VSB1/le, VSS1 = 10 V,

RL

~

n.

0.1

Energy'" IC2L/2.

tThis circuit appears on page 5-1 of this data book.

THERMAL CHARACTERISTICS

60

~c:

.,
0

c.
'"

r---

50

.~

i5

"
0"
(J

.;;

40

~

:J

0

..,c:

30

:J

"""" "'\

:r---""
!\-.

0

E

20

E

'x

'"I

~

'"'""

10

.t
o

o

5:J

.,

25

50

75

100

125

150

Tc-Case Temperature-OC
FIGURE 9

6

!\-.

.c:
c:

o

C..l

4

E

~

:J

::;

"" "'\

8

c:

C..l

2N5152,2N5154
DISSIPATION DERATING CURVE

2N5002, 2N5004
DISSIPATION DERATING CURVE

:J

E

'x

~

""

175

200

2

'" '"

'\

l25

50

75

100

125

Tc-Case Temperature-OC
FIGURE 10

'"

150

""

175

200

PRINTED IN USA

5-192

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TI (onnol aSSume ony responsibility for ony (ircuits shown
Dr represenf thot they Ofe free from potent infringement.

1171

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5003, 2N5005, 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
HIGH·FREQUENCY POWER TRANSISTORS WITH
COMPUTER·DESIGNED ISOTHERMAL GEOMETRY
•

For Complementary Use With 2N5002, 2N5004, 2N5152, 2N5154

•

15 mJ Reverse Energy Rating with IC = 10 A and 4 V Reverse Bias

*mechanical data
2N5003, 2N5005

i ALL TERMINALS ARE INSULATED FROM THE CASE

*

~.l._

I

ALL JEDEC TO·59 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES:

A. Within this dimension, caSB diameter may vary.
B. Position of terminals with respect to the hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 Inch of the stud.

1"

•

D. All dimensions are In Inches unless otherwise specified.

2N5151,2N5153

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL DIMENSIONS A.RE IN INCHES
UNLESS OTHERWISE SPECIFIED.

I!f
err
Ii \

ALL JEDEC T0-39 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5003
2N5005

Coliector·Base Voltage . . , . . .
Coliector·Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas .
. . . . ...
.
Continuous Device Dissipation at 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead or Terminal Temperature 1/8 Inch from Case for 60 Seconds
NOTES:

2N5151
2N5153

_-100V*_
_-80V*_
_-5.5V"_
-5 A*
-5A*
-lOA" -lOA
-2 A* -2.5 A "
See Figures 7" and 8
lOW"
50W*
33.3 W
6.7 W
1 W"
-15mJ_65°C to 200°C*
_65°C to 200°C*
_300°C*_

1. This value applies when the base-emitter diode is open-circuited.

2. This value applies for tw ~ 8.3 ms, duty cycle ~ 1 %.
3. For operation above (or below) 50°C case temperature, refer to Dissipation Derating Curves, Figures 9 and 10.
4. Derate linearly to 200°C free~air temperature at the rate of 5.7 mW/oC.
5. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors t . L = 0.3 mH, RBB1 = 10 n, RBB2 = 100n,
VBB1 = 10 V, VI;IB2 = 4 V, RL =0.1 n, VCC = 10 V, ICM = 10 A. Energy'" IC 2 L/2.
* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tThis circuit appears on page 5-1 of this data book.

1171

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·193

TYPES 2N5003. 2N5005.
. 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
'

*electrical characteristics at 25°C case temperature (unless otherwise noted)
2N5003
PARAMETER

TEST CONDITIONS

MIN
Collector-E mitter
V(BR)CEO

Breakdown Voltage

IC = -100mA, IB = 0,

Collector Cutoff Current

VCE - -40 V,

ICES

Collector Cutoff Current

SO V, VBE 0
VCE
VCE - -100 V, VBE - 0

ICEV

Collector Cutoff Current

VCE - -SO V,

lEBO

Emitter Cutoff Current

hFE

VBE:- 2 V,
IC-O

VCE--SV,

IC - -SOmA

Static Forward Current

VCE - -5 V,

IC- -2.SA

Transfer Ratio

VCE - -S V,

Base-Emitter Voltage

TC - lS0°C

,·IC - -SA
IC=-2.SA,

•

VCE(sat)

-50

TC -

30

6and 7

20

-s5"c

-1

-1
-SOO
-1

p.A

-1

-1

mA

SO

IB - -2S0mA, IC - -2.5 A

See Notes

IB - -SOOmA, IC--SA

6 and 7

200

3S
-l.4S

See Notes

Collector-Emitter

70
40

15

Saturation Voltage

mA
p.A

-1

90

Sand 7

IC= -2.SA

p.A

1 p.A

-SOO

20

IB =-500mA, IC--SA
VCE=-SV,

V

1

See Notes

UNIT

MAX

-50

IB -0

IB - -2!;;OmA, IC--2.SA
VBE

MIN
-80

VEB = -S.SV, IC=O

VCE--SV,

2N5153

MAX

See Note S -80

ICEO

VEB - -4 V,

2N5005

2N5151

-1.4S

-2.2

-2.2

-1.45

-1.4S

-0.75

-0.7S

-l.S

-l.S

V

V

Small-Signal
Common-Emitter
hfe

Forward Current

VCE = -SV,

IC = -0.1 A,

f = 1 kHz

VCE=-5V,

IC=-O.SA,

f = 20 MHz

VCB = -10 V,

IE =0,

f= 1 MHz

20

SO

3

3.S

Transfer Ratio
Small-Signal

~fel

Common-E mitter

Forward Current
Transfer Ratio
Common-Base

Cobo

Open-Circuit

2S0

250

pF

Output Capacitance
NOTES:

6. These parameters must be measured using pulse techniques.

'tw = 300 JJ$, duty

cycle

CS;;;

1%.

7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from"the device body.

*JEDEC registered data

thermal characteristics
PARAMETER
R6JC

2N5003

2N51S1

2N5005

2NS1S3

MAX

MAX

3

lS

Junction-to-Case Thermal Resistance

UNIT
°C{W

switching characteristics at 25°C case temperature
PARAMETER

ALL TYPES

TEST CONDITIONSt

ton

Turn-On Time

IC =-SA,

IB(l) = -SOO mA,

toff

Turn-Off Time

VBE(off) = 3.7 V,

RL = 6 U,

TYP
IB(2) = 500 mA,
See Figure 1

O.S
1.3

UNIT
p.s

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1171

5-194

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N5003, 2N5005, 2N5151, 2N5153
P-N-P SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT

Von~-41.3VAT

INPUT MONITOR

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. Vgen is a 30-V pulse (from 0 V) into a 50-n termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr '" 15 ns, tf ,.;;;;; 15 ns, Zout

= 50 n, tw = 20 ,",s,

duty cycle::;;;:; 2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
D. Resistors must be noninductive types.
E.

< 15 ns,

Rin ;;;.. 10 Mn, Cin

< 11.5

.,

pF.

The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

TYPICAL CHARACTERISTICS
2N5OC3,2N5151

STATIC FORWARD CUAAENTTAANSFER RATIO

2N5005and 2N5153
STATIC FORWARD CURRENT TRANSFER RATIO

COl.LECTOR CURRENT

COLLECTOR CURRENT

100

~

i

I

I

1111

Q 180
TC

80

m

l00

G

~

I'-...

TC=250C

60

~

e

II

70

50

~

U

II

40

TC~ 150°C

160

~ 140

1\

II

~

j

200

TC~ 160'"c

90

TC

120

I'lli

t:--..

~

TC= 2SoC

100

III

so

Tcg~55°C

TC" -5SoC

30

I

20

VCE=-5V
See Notes ~I~rld 7

10

-0.01

-0.04 -<1.1

VeE = -5 V
See Notes 6 and 7
-<1.4-1

-4

-10

-0.Q1

Ie-Collector Current-A

-<1.04 -<1.1

I

-4

-0.4-1

-10

Ie-Collector Current-A

FIGURE 2

FIGURE 3

BASE·EMITTER VOLTAGE

COMMON·BASE OPEN·CIRCUIT OUTPUT CAPACITANCE

COLLECTOR·EMITTER SATURATION VOLTAGE

~

CASE TEMPERATURE

COLLECTOR·BASE VOLTAGE

CASE TEMPERATURE

-1.6
-1.4

>1

~

~
~

E

500

-1.2
-1.0

-0,8

-...
"-

~

m

~

t

VeE =-5 V
See Notes 6 and 7

-0.6
-0.4

:--

- - r-

E

r-

t--

~~lA

Y l'A

-0,2

i~
~

0

25

50

75

100 125 150 175

TC-Case Temperature"'oC

FIGURE4
NOTES:

400
IB - -0.25 A, IC=

-0.7

2.SA

-0.4
IB=

0.1 A, IC-

1A

-0.2

I I I I I

-0.1

~ -0.07
Y -0,04
5W -

'0

u

-0.2

E
::l

E

'x<0
::iE
I

•

D-C Operation
TC";;2SoC
.........

«

-20

J.c:

i"'...

IF

~::l -10
'\

~

V

2NS1Sl,2NS1S3
-0.1
-0.07

3< ~.J

U

r-...

f0- r- 2NSOO3,2NSOOS.I

VCC = 10 V
RBB2 = 100 n
TC = 2SoC
See Note 9

1\

\

\. VBB2 = 0

\

r-- VBB2 =4 V
"-

~

-0.04

!:?

i\
~

r-..

'\

See Note 8
-0.Q2

-0.01
-4

-7 -10

-20

-40

-0.4
0.1

-70 -100

0.7 1

0.4

0.2

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 8

FIGURE7
NOTES:

7 10

4

2

8. AbovB these points the safe operating areas have not been defined.
9. These curves are based on the capability of the transistors to operate safely in the unclamped inductive load circuit of Section 3.2

Suggested Standards on Power Transistors. t

of the forthcoming JEDEC publication
RL - 0.1
Energy '" IC 2 L/2.

RBBl - 10'VBB1/IC, VBBl = 10 V,

n.

tThis circuit appears on page 5~1 of this data book.

THERMAL INFORMATION
2N5003, 2N5005
DISSIPATION DERATING CURVE

60

~c:
0

.~

12

r---

40

"
0
::J

..,

30

c:
c:
0

tJ

0

'!

':
c

""

0

!!l

~c:

""I""

50

coBi

C
8
.s;

20

'x

~

"\

.t
60

76

!!l

6

100

125

"" "\
"\.

.~

["\

10

25

8

c:
0

tJ

"\

o

""""

10

8

0
::J

I

o

-

'~
0

E
::J
E

~

2N5151,2N5153
DISSIPATION DERATING CURVE

4

"\

E
::J
E

""

150

T C-Case Temperature-°c

'x.,

:;

""

2

I

""

175

200

FIGURE9

.t

o

o

"\

25

50

75

100

126

150

T c-Case Temperature-°c

""

175

200

FIGURE 10
PRINTED IN U.S A

5-196

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TI connol assume any responsibility for any circuits shown
or repre,senl thor they are free from polent infringement.

1171

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,

TYPES 2N5038, 2N5039
N-P-N SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
•

Min V(BR)CEO of 90 V (2N5038)

•

Min fT of 60 MHz at 10 V, 2 A

•

20-A Rated Continuous Collector Current

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

000,
O
o S25

0.4S0

R MAX

j

.,--_ _
0_"_0_-+

1- ~OJI2M1N~1573
0 043 0lA lliADS

~m=OY38

10SOMAX

"

~!~

-o'''--=r

~

0188 R MAX-'---===-.l
80TH ENDS

0 \ 35 MAX

1

h

0205 0440

_,_.

.!.....!!l

MAX

0.61.5 I 177

~

I

4

,

0-:-1·--\·0~
-\-I'~/

0420

•

l~::;DIA
1 HOLIES

I

SlATING PLANE
1 - BASE

2-EMITTER

CASE TEMPERATURE
MEASUREMfNT POINT

DIMENSIONS ARE IN INCHES

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Emitter Voltage (VBE = -1.5 V. See Note 1)
Collector-Emitter Voltage (Base Open, See Note 1)
*Emitter-Base Voltage
.....
*Continuous Collector Current
*Peak Collector Current (See Note 2)
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
*Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range _ . . . . . . .
Terminal Temperature 1/32 Inch from Case for 10 Seconds

NOTES:

2N5038 2N5039
150 V 120 V
90 V
75 V
7V
7V
-20A_
-30A-5A--140W--80W-5W-65°C to 200°C
-65°C to 200°C
_230°C_

1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode

reverse~iased

or open-circuited, as specified.

2. This value applies for tw ~ 10 ms, duty cycle ~ 50%.
3. Derate linearly to 200 0 C case temperature at the rate of 0.8 wf C.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mWfC.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·197

TYPES2N5038, 2N5039
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

2N5038

TEST CONDITIONS

V(BRICEO Collector-Emitter Breakdown Voltage

IC= 200 rnA,

90

See Note 5

IB =0,

50

1.5V, TC - 150·C
VCE S5V, VBE
VCE - 100 V, VBE = -1.5 V, TC-15o"C

10

rnA

10

VEB - 5 V.

IC-O

5

15

VEB = 7 V.

IC=O

50

50

VCE=5V.

IC= lOA,

See Notes 5 and 6

VCE = 5 V.

IC= 12A,

See Notes 5 and 6

Base-Emitter Voltage

IB-5A.

IC=20A,

See Notes 5 and 6

3.3

3.3

V

Coliector·Emitter Saturation Voltage

IB -5A.

IC= 20A.

See Notes 5 and 6

2.5

2.5

V

IC=2A.

f= 5 MHz

lEBO

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VBE
VCE(satJ

~fel

Small-Signal Common-Emitter

VCE = 10V,

Forward Current Transfer Ratio

NOTES:

V

50

VCE-ll0V, VBE - -1.5V

Collector Cutoff Current

UNIT

75

VCE = 140 V, VBE - -1.5V
ICEV

2N6039

MIN MAX MIN MAX

20
20

rnA

100

100

12

12

5. These parameters must be measured using pulse techniques. tw = 300 IlS, duty cycle <; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

*switching characteristics at 25° C case temperature

I

PARAMETER
tr

Rise Time

ts

Storage Time

tf

Fall Time

ton

Turn·On Time

toft

Turn-Off Time

TEST CONDITIONSt

MAX

2N5038

0.5

IC= 12A.

IB(1I = 1.2 A.

VBE(offl = -6.3 V.

RL=2.5n.

IC= lOA.

IB(1I = 1 A.

VBE(offl = -6.3 V,

RL =3n.

IB(21 = -1.2 A,
See Figure 1

UNIT

1.5
0.5

2N5038

/.IS

0.5

IB(21 =-1 A,
See Figure 1

2

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters •
• JEDEC registered data

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

lN914

OUTPUT
MONITOR
Von = 25V· - r~9O%
INPUT

0V
-6.3 V

56n

::i:1fN.
- - ~~
10%
1

I

--t ton t.-

~:r

OUTPUT

270pF
30n

VBB2=_ 6.3V - +

1 pF

I.-tott-.l

VOLTAGE WAVEFORMS

+
.:.VCC=30V

~------------------------~--~+
VBB1",27V
ADJUST FOR
V on =25VAT
INPUT MONITOR

CIRCUIT CONDITIONS
IC
lOA

RL
3n

RBBl
12n

RBB2
7.32n

12A

2.5n

100

60

TEST CIRCUIT
NOTES:

A. Vgen is. -30·V pulse (from 0 VI into a 50·0 termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr"" 15 ns, tf '" 15 ns, Zout

= 50 n, tw = 20 ps,

duty cycle ... 2%.
C. Waveforms are mounitored on an oscillioscope with the following characteristics: tr <: 16 ns, Rin;> 10 MSl, Cln '" 11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1
PRINTED IN U.S.A.

5-198

TEXASINCORPORATED
INSTRUMENTS
POS~

OFFICE BOX 5012 •

DALLAS, TEXAS 75222

671

TI connat assume any responsibility for Gny circuits shown
or represent thar they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N4901 THRU 2N4903
•

87_5 W at 25°C Case Temperature

•

5-A Rated Collector Current

•

Min fT of 4 MHz at 10 V. 1 A

•

62_5 mJ Reverse Energy Rating

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

O.4S0j

i.2sO

0.525 R MAX

oO 0
~

1- ~O'312MIN~1'573
~ DIA 2 LEADS

-r--------j~O.038
1.0SO MAX

1.197

0.675 1.177

if.65s

~

2-EMlnER

•

or,;-.:t0.225 ~ • 0·\-1
-,'~,,, --.l
. -,.- • -

MAX
DIA
~
0.188 R MAX,.>--------

BOTH ENDS

MAX

I

0.205

II

0,440
0.420

-"..

1

t

:

0.135 MAX--t lsEATlNG PLANE

'

1 - BASE

0.161 DIA

0.151
2 HOLES

CASE TEMPERATURE

MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5067 2N5068 2NS069
'Collector·Base Voltage . . . . . .
'Coliector·Emitter Voltage (See Note 1)
'E m itter· Base Vo Itage
.....
'Continuous Collector Current
Peak Collector Current (See Note 2)
'Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
'Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

40V
60V
80V
40V
60V
80V
5V
5V
5V
-5A--15A-_1A_
.. See Figures 6 and 7+
-B7.5W•
4W
..
-62.5mJ_-6SoC to 200°C_
_-65°C to 200°C_
_235°C_

1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for

tw

';:;;;;;'0.3 ms, duty cycle ~ 10%.

3. Derate linearly to 200°C case temperature at the rate of 0.5 W/C or refer to Dissipation Derating Curve, Figure 8.
4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/C or refer to Dissipation Derating Curve, Figure 9.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 5. L = 20 mH, RSB2 = 100
VBB2 ~ 0 V, RS~ 0.1 fl, VCC ~ 10 V. Energy'" IC2 U2.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

on,

172

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5-199

TYPES 2NS067, 2NS068, 2NS069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)

Collector-Emitter
V(SR)CEO

IC= 200 rnA, IS = 0,

Sreakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

ICEV

lEBO
hFE
VBE
VCE(satl

I

See Note 6

VCE = 60 V,
VCE = 80 V,

IS = 0

VCE = 40 V,

VBE = -1.5 V

VCE = 60 V,

VBE = -1.5 V

VCE=80V,

VBE = -1.5 V

VCE = 40 V,

VSE = -1.5 V,

TC = 150'C

VCE = 60 V,

VSE = -1.5 V,

TC=150'C
TC = 150'C

40

60

80

V

1

rnA
1

1
1
1
2

VBE = -1.5 V,
Ie = 0

Static Forward Current

VCE = 2 V,

IC= 1 A,

See Notes 6 and 7

20

Transfer Ratio

VCE = 2 V,

IC= 5A,

See Notes 6 and 7

7

Base·Emitter Voltage

VCE=2V,

IC= 1 A,

See Notes 6 and 7

1.2

1.2

1.2

Collector-Emitter

IS = 0.1 A,

IC= 1 A,

See Notes 6 and 7

0.4

0.4

0.4

Saturation Voltage

IB - 1 A,

IC- 5A,

See Notes 6 and 7

1.5

1.5

1.5

VCE = 10 V,

IC= 0.5A,

f = 1 kHz

20

20

20

VCE = 10 V,

IC= 1 A,

f = 1 MHz

4

4

4

Forward Current Transfer Ratio

rnA

2

VEB = 5 V,

Forward Current Transfer Ratio

UNIT

1

IS =

VCE = 80 V,

Small-Signal Common-Emitter
hel

2N5069

Emitter Cutoff Current

Small·Signal Common-Emitter
hfe

2N5068

MIN MAX MIN MAX MIN MAX

a
IS = a

VCE = 40 V,
ICEO

2N5067

TEST CONDITIONS

PARAMETER

2
1

1

80

20

80

1
20

7

rnA

80

7
V
V

*JEDEC registered data

switching characteristics at 25° C case temperature
PARAMETER

TEST CONDITIONSt

TYP

ton

Turn-On Time

IC= 1 A,

IS(1) = 100 rnA,

IS(2) = -100 rnA,

toff

Turn·Off Time

VBE(off) = -4.3 V,

RL=30n,

See Figure 4

UNIT

0.5

I"S

~

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR CURRENT

IIVCE-2~

0
0

It---J
,,0
~

~
'ye
",c.",:;...r

0

I

•

S 0.8
~

~

~
"- ~

0

~

0
0.05

~

~

II
0.1

0.2
0.4 0.7 1
IC-Collector Current-A

4 5

FIGURE 1
NOTES:

0.6

~

TC _150°C

0

1.0

>

~C

0

I

See Notes 6 and 7

~

0.4

COLLECTOR·EMITTER SATURATION VOLTAGE

CAse TEMPERATURE

1.2

-r--

::::

CASE TEMPERATURE

Vee"" 2 V
See Notes 6 and 7

Ic=lA

IC~2~A

r-i'--4.

~
........ J'!9
~50 mA

1'--",

-........

--

-........

0.2

o
-75 -50 -25
0
25
50 75 100
TC-Cas8 Temperature-QC

125 150

FIGURE 2

>I

•

~

See Notes 6 and 7

0.7
0.4

I--ls""A,IC-5A

--

-1--1'

r-

IS .. 0.25 A, Ic ~ 2.5 A

1 H-r
0.2

~

]

J

Is=0.1 A,IC = 1 A

0.04

Y
! 0.02
il
>

~

0.1

0.07

ISL5~

0.01 75

III
50

25

0

25

50

75

100 125

150

T c-Case Temperature-Qc

FIGURE 3

6. These parameters must be measured using pulse techniques. tw = 300 Ms, duty cycle ~ 2%.
7. These parameters are measured with voltage~sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.
172

5-200

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N5067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
OUTPUT
V on =8.5V - -

r~90%

INPUT OV-Jl0%- -4.3 V
1 10%

56n

..j ton

RBB2=
56n

270 pF
30n

~~
I

I.-- toft....J

I
so%1
~I

OUTPUT
VBB2 =-=4.3V

I-

-

90%
.=. VCC=30V

VBBl '" 10 V
ADJUST FOR
Von = 8.5 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES;

•

A. V gen is a -30~V pulse (from 0 V) into a 50-fl termination.

B. The

Vgen

waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf ~ 15 ns, Zout"" 50

tw = 20 Ils, duty cycle

n,

< 2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 n5, Rin ~ 10 Mil, Cin ~ 11.5 pF.
O. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE4

INDUCTIVE LOAD SWITCHING

--l

! . - tw '" 5 ms (See Note AI

INPUTO~

VOLTAGE
-5V-

~ lOOms
I
I
COLLECTOR2.5A~:--I----t- I-50

n

+

loon

CURRENT

0

I

IC MONITOR

V(BRICER-I--

I
COLLECTOR
VOLTAGE
RS=O.ln

VBB1= 10V

I

I I

VCC=10V-=-

I
I
I

10 V

I

-----1--

I
I
I
I

VCE(sati VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE:

A. Input pulse width is increased until

'eM

= 2.5 A.

FIGURE 5

172

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

OALLAS, TEXAS 75222

5-201

TYPES2NS067, 2N5068, 2N5069
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

vs
UNCLAMPED INDUCTIVE LOAD
40

10

«
.!.I:
~

D-C Operation
TC';;;; 25°C

7

.....

4

~
:;J
u

u

j

;3

\

2
1

E 0.7
:;J
E
.~ 0.4
:2:

2N5067
I
2N5068

I
5:} 0.2

•

I
20

10

1-1--

5

10
7

"0

VCC = 10V
RBB2 = 100
TC =25°C
See Figure 5

20

..!!!

ti

---

E
:;J
E

,

·xco

.. i\.

5:}

:2:
I

on

6'<'$

u

Cho/

N..:

4

r-....

seeNJte8~

2

\

2N5069

0.1

...

I:

..........

:;

«I

70

40

100

0.4

2

0.7 1

4

7 10

20

40

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 7

FIGURES
NOTE 8: Above this point the safe operating area has not been defined.

THERMAL INFORMATION

CASE TEMPERATURE
DISSIPATION DERATING CURVE

~

·1
.=

o8
.~

..
g

o

100

s:I

90

0
.;;
co

I:

o

u

E

-

"

Co

.~

",

80
70

60

"

50

:2:

~

.,

..

0

,,-R eJc .;;;; 2°C/W

I:
.;;
I:

10

o
100 125

"'-"

u

E
:;J
E

"-

·xco
:2:

""

150 175 200

Tc-Case Temperature-°c

ReJA .;;;; 43.75°C/W

~

2

0

"

20

75

"

0

f'\.

50

3

:;J

f',.

30

25

"- ~

:;J

~

40

o

4

0
8
.s;

:;J

·xEco

5

I:

:;J

..g

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

FIGURE,S

~ 0

0..

o

25

50

75

'"

'"'"

100 125 150 175 200

T A-Free-Air Temperature-°c
FIGURE 9

PRINTED IN U.S.A

5-202

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

172

11 (annol assume any responsibility for ony circuits shown
or represent thaI they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY·THE BEST PRODUCT POSSIBLE.

TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•

100 W at 75°C Case Temperature

•

700 V Collector-Emitter Off-State Voltage

•

Min V(BR)CEO of 400 V

•

Max toff of 1_7 jJ.S at IC = 1 A

•

Typ VCE(sat) of 0_3 V at IC = 3.5 A

•

Typ fT of 5 MHz at 12 V, 0.2 A

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0450

o
~o
0.525 • MAX

1- I0312MIN~1573

-r--_O:..2_.o-1-lm=lrDIA
~
ili
-0225----.:::T-0~~I~
2 UADS

•

MAX

...

I050MAX

0.:;: :':.,~

~

0205 0 . . . . 0 - '
0420

0.135 MAX-II

I

0.200-

lsEATlNG 'LANE
1 - lASE

CASE TEMPERATUIE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Emitter Voltage (VBE = -1.5 V, See Note 1)
*Collector-Emitter Voltage (Base Open, See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
Safe Operating Area at (or below) 75°C Case Temperature
·Continuous Device Dissipation at (or below) 75°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
Unclamped Inductive Load Energy (See Note 4)
*Operating Collector Junction Temperature Range
·Storage Temperature Range . . . . . . . .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

700 V
500 V
6V
3.5 A
2A
See Figure 6
100W

4W
180 mJ
-65°C to 150°C
-65°C to 200°C
300°C

1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode reverse-biased or open-circuited, as specified. In operation, the limitations of Figure 6 must be observed.
2. Derate linearly to 150°C case temperature at the rate of 1.33 wf C.
3. Derate linearly to 150°C free..air temperature at the rate of 32 mWf C.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2, condition 1. L = 40 mH,
RBB2=3kn, VBB2=1.5V, RS=O.l n, VCC=50V. Energy'" IC2 L12.

'" JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

571

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAIi. TEXAS 75222

5-203

TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Collector-Emitter
V(BR)CEO

Breakdown Voltage
Collector-E mitter

V(BR)CER

Breakdown Voltage

ICEO

Collector Cutoff Current

ICEV

Collector Cutoff Current

Static Forward Current
hFE

VCE(sat)

•

NOTES:

400

ICM = 3_5 A,

RBE = lOn,

See Figure 2 (Condition 2)

500

V
V
0_25

VCE = 700 V, VBE = -1_5 V

0_5

VCE = 400 V, VBE = -1_5 V, TC= 125"C

0_5

VEB -6V,

IC- 0

VCE =5V,

IC-l A

5
30

IC-2_5A
IC-l A,

Base-E mitter Voltage

IB - 0_7 A,

IC- 3_5 A,

See Notes 5 and 6

Collector-Emitter

IB=O_l A,

Saturation Voltage

IB - 0_7 A,

IC=l A
IC- 3_5 A

See Notes 5 and 6

VCE = 12V,

IC= 0_2 A,

f= 1 MHz

VCB = 20 V,

IE =0,

f= 1 MHz

Forward Current Transfer Ratio
Common-Base Open-Circuit

Cobo

See Note 5

VCE -5 V,

Small-5ignal Common-E mitter
Ihfel

IB =0,

VCE-5V,

Transfer Ratio

VBE

IC= 100mA,

TYP MAX UNIT

VCE -500V, IB -0

Emitter Cutoff Current

lEBO

MIN

Output Capacitance

See Notes 5 and 6
TC - -55°C

mA
mA
mA

90

10
10

2_8

1.1
0_2

2
0_8

0.3

2_5

V
V

5
100

150

pF

5. These parameters must be measured using pulse techniques."tw = 300 JJs, duty cycle oE;; 2%.
6, These parameters are measured with voltage~sensing contacts separate from the current~carrylng contacts and located within
0_125 Inch from the device body_

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Thermal Resistance

ROJA

Junction-to-F ree-Air Thermal Resistance

0_75
31.25

UNIT
°CIW

*switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC= 1 A,

toff

Turn-Off Time

VBE(off) = -6 V, RL = 125n,

IB(1) = 0_1 A, IB(2) = -0_5 A,
See Figure 1

MAX
0_8
1_7

UNIT
JLS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters•
• JEDEC registered data

571

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION

Von = 34.1 V- INPUT

560
RBB2=
120

270 pF
300

-r~ 90%

OVJ10%- -6V
1 10%
..-( ton I-

~~

-

I

\.- toff ...J

10%r

~90%:
90%~~
:1

,OUTPUT

VBB2 =-:6V

-=- VCC = 125 V

VBBl "'36V
ADJUST FOR
Von = 34.1 V AT
INPUT MONITOR
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

•

A. V gen is a -3Q-V pulse (from 0 V) into a 50-0 termination.

B. The Vgen waveform is supplied by a generator with the following chal"8ctel'"istics: tr
duty cycle .s;:;; 5%.

< 15 ns, tf <; 15 ns,

C. Waveforms are monitored on an ocsilloscope with the following characteristics: tr:e;;; 10 ns, Rin ;;;at. 1
D. Resistors must be non inductive types.

Mn.

Zout = 50 n tw = 5",5,

Cin

~

11.5 pF.

E. The d-c power supplies may require additional bypassing in order to mil"!imize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING
.....-I
INPUT
VOLTAGE

I.-- tw (See Note Al

0u-=-J-r

-5 V-

I---{--

100 ms

I

I

COLLECTORICM~:1- ---"1- I-+
500

CURRENT

0

I

VCC = 50 V-=ICMONITOR

VtBRICER-I--

I
COLLECTOR
VOLTAGE
RS =0.10

VBBl = 10 V

50V

I
I

1

I

I

I

-----\---

I

I
I

I

VCEtsatl-

CONDITION

L

1

RBB2
3kO

VBB2
1.5V

40mH

ICM
3A

2

100

OV

10mH

3.5A

tw
'" 2.4 ms
"'0.7ms
VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width Is increased until the peak collector current reaches the specified value of leM.

FIGURE 2

571

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·205

TYPE 2N5157
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
vs
COLLECTOR CURRENT

'00

~

j

80

~

60

1

40

20

18'" 700 rnA,le '" 3.5 A

>

J±tlC

~

'.0

·1

0$

T'T" '::.s-

11111
TC"

~

,
t

.)~!1,150·C

1\\\
_\

55°C

0 .•

!f

0.'

'-'::

11111

1.2

{

'T

See Notes 5 and 6

,.,

See Notes 5 and 6

11111

a

i

,..

VeE" 5 v

11111

BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE

t-

t-- r--

B

:;

!

7- - -

--

16'" 500 rnA,le

I

1\

t-- r--

2.5 A

'BI.,..\mA~'C-'A V

ij

--

~

,
0.'
0.8
0.7
0 .•

SeiI Notes 5 and 6

-

18

i' II '"
D.SIA,

2.5 A

\

0..

./

le=O.7A,lc=3.5A

0.'

') ,..-: :::s V

0.3

0.'

-:: ~ ;:::::

;::::: V
f-"'

-f--

!

0.'

7

--

V

It=r A'I IC ' ',1A

~

11111
0.04 0.07 0.1

COLLECTOR-EMITTER
SATURATION VOLTA'tE
vs
CASE TEMPERATURE

0.'
0.2

0.4

0.7 1

-75 -50 -25

0

25

50

-75 -50 -25

75 100 125 150 175

0

25

50

75 100 125 150 175

Ie-Collector Current-A

•

FIGURE 3

FIGURE 4

FIGURE 5

5. These parameters must be measured using pulse techniques. tw = 300 ~s. duty cycle -< 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body,

NOTES:

MAXIMUM SAFE OPERATING AREA

THERMAL INFORMATION

DISSIPATION DERATING CURVE

10
7

120
D-C Operation
TC .; 75°C

4

r-...

2
<{

.!.c:
"l:

u"

5

tl

.!!l

0

~c:

..,0
'"0.

'i2
0
.>"u

r\

0.7

100

"~

80

I"" "'-

"

0

0.4

!30

"\

0.2

..,"c:

\

U

I

0.1
!:? 0.07

60

c:
0

u

40

"~

E

"
'"
~

E

·x

0.04

1"\

0.02

.t

0.01

0
10

20

40

70 100

200

400

7001000

'" '"
~

20

I

70

80

90

100

110

120

130

VCE-Collector-Emitter Voltage-V

Tc-Case Temperature-OC

FIGURE 6

FIGURE 7

~

140

150

PRINTED IN U.S.A.

5·206

TEXAS)NSTRUMENTS
,
INCORPORATED
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

571

TI cannol assume any responsibility for any circuits shown
or rt'presenl fhal 'hey aTe free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR

HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
•

125 W at 62.5°C Case Temperature

•

400 V Coliector·Emitter Off-State Voltage

•

Min V(BR)CEO of 325 V

•
•

= 2.5 A
Typ VCE(sat) of 0.35 V at IC = 5 A

•

TypfTof5MHzat12V,O.2A

Max toft of 1.7 ps at IC

*mechanical data
ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

o
~

I I~DIA2 UAOS

. -_ _'_'_50_j_

ffi:::l38

obs

0"

I 050 MAX

"

IOlI2MIN~

--1

0450

0.525 R MAX

MAX

0 225

~

10TH ENDS

I

_/. 1+
0 '\~I~

0205 0440

I~

0.188 R MAX

-------=r

I 573 MAX

•

~ ~~~

. -

t~:::

--..- I

0.420

0.ll5 MAX--j

0615

~
~2-EM,"fR
OJ...

'2 HOLES

0.200SEATING PLANE

1 --- BASE

CASE UMPUATURE

MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage
'Continuous Collector Current
'Continuous Base Current
Safe Operating Area at (or below) 162.5°C Case Temperature.
'Continuous Device Dissipation at (or below) 62.5°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

400 V
5V
5A
2A
See Figure 6
125W
4W
180 mJ
-65°C to 150°C
-65°C to 200°C
300°C

1. This value applies only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter diode
reverse-biased or open-circuited. In operation, the limitations of Figure 6 must, be observed.
2. Derate linearly to 150° e case temperature at the rate 1.43 W/ C.
3. Derate linearly to 150°C free-air temperature at the rate 32 mW/oC.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L
VSB2

= 1.5

V, RS = 0.1

.n,

Vee

= 50

= 40 mH,

RSB2

=3

kn,

V. Energy ~ IC2L/2.

'" JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

571

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-207

TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICED
ICEV

IC - 100mA,

Collector Cutoff Current

lEBO

Emitter Cutoff Current

Static Forward Current Transfer Ratio

VBE

Base-E mitter Voltage

VCE(sat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

NOTES:

Forward Current Transfer Ratio

MIN

TVP MAX UNIT

325

V

VCE - 400 V, IB - 0

2.5

VCE = 400 V, VBE - -1.5 V

0.5

VEB - 5 V,

IC = 0

VCE-5V,

IC-2.5A

VCE = 5 V,

IC = 3.5 A

IB-0.5A,

IC = 2.5 A

IB-l A,

IC- 5 A

IB=0.5A,

IC=2.5A

IB -1 A,

IC - 5 A

VCE = 12 V,

IC=0.2A,

5
2

See Notes 5 and 6-

15

rnA
rnA

35

10

See Notes 5 and 6
See Notes 5 and 6
f = 1 MHz

mA

2.6

1

1.5

1.2
0.25

2
0.7

0.35

2.5

V
V

5

5. These parameters must be measured using pulse techniques. tw == 300 J.Ls, duty cycle .s;:;; 2%.

6. These parameters are measured with

•

See Note 5

VCE - 400 V, VBE - -1.5 V, TC - 125°C

hFE

ihfel

IB - 0,

voltage~sensing

contacts separate from the current-carrying contacts and located within

0.125 inch from the device body .

thermal characteristics
MAX

PARAMETER
ReJC

Jucntion-to-Case Thermal Resistance

ReJA

Junction-to-Free-Air Thermal Resistance

0.7
31.25

UNIT
°C/W

*switching characteristics at 25°C case temperature
TEST CONDITIONst

PARAMETER
ton

Turn-On Time

IC = 2.5 A,

toft

Turn-Off Time

VBE(off) = -6 V, RL = 50 U,

IB( 1) = 0.25 A, IB(2) = -0.5 A,
See Figure 1

MAX

UNIT

0.8
1.7

j.lS

tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.

*JEDEC registered data'"

571

5-208

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION

OUTPUT

Von~42.5V- - -r~90"1o
INPUT

5sn

OVJ10%- -S V
I 10%

30n

:r~t~f~:

~

OUTPUT

VBB2~ _-

sv

I

-I ton :11-

RBB2 ~
12 n

270 pF

~~

-

-

90%

-=-VCC~

125V

VBB1"'44V
ADJUST FOR
Von = 42.5 V AT
INPUT MONITOR
VOL TAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf~ 15 ns, Zout = 50
duty cycle ~ 5%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr
D. Resistors must be noninductive types.

~

10 ns, Rin

~

1 Mn, Cin

~

n, tw

= 5 ,",5,

11.5 pF.

E. The d-c power supplies may require additional bypassing in order to minimize ringing.

•

FIGURE 1

INDUCTIVE LOAD SWITCHING

VCE MONITOR

-../

I.-- tw '" 2 ms
seeNoteAI

INPUT
VOLTAGE

40mH
TUT

n

VCC

=

~

-5 V-

i----+

CURRENT

0

I

I

I

VIBRICER-I--

I
RS~O.l

I

I I

50V"="
IC MONITOR

VBBl = 10V

100 ms

COLLECTOR3A~:--I---1"- I - +

50

0

COLLECTOR
VOLTAGE

n

50 V

I
I
I

I

-----1-I
I
I
I

VCElsatl -

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width is increased until leM

=3

A.

FIGURE 2

571

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·209

TYPE 2N5241
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO
vs
COLLECTOR CURRENT
I .•

100

j

i

•

11111

80

j

J

t

I.'

II

+~;\~'C

~

till?

eo

TC.=2~

40

["::

11Tl1
11111
0.(14 0,070.1

!
,:

\'(\

55°C

20

~

i

1""-\0

11111
TC=

.1

VCE=5V

S_Notes5end6

IIIII

,; =

1.2
1.0
0.6

t::,.

-

le'"600mA,

O.B

...

,l J"0NO""'MdO

1

0..
0.6

See Not1ls5 Ind8

0.'

~_"lA.1

0.6

O.B

1\

....

-lz r-

V

IS-100mA,IC·'A

.. 5A--=

~

:::':. 1..-'"

Is-a.7A,lc· 3•6A

-

la=O.6A,lc=2.5A

0.2

0.4

0.7 1

-75 --60 -25

0

26

50

0.1
-75 -60 -25 0

75 100 125 150 176

L

It

'"j0" ,A.

'r'i~

0.2

..z

l- f- ~ ~ ~
.....I-::::
;:::. ~ I- lf- t-

IC=2.5~ t'- h0.2

25

50

V

75 100 125 160 175

TC--Case Tlmperature-"C

FIGURE 4

FIGURE 3

•

VS

CASE TEMPERATURE

,i", ~:.-'::'3'~:;,1c::;r-r-

r- r--

Ic-CoIlector Current-A

NOTES:

COLLECTOR-EMITTER
SATURATION VOLTAGE

BASE·EMITTER VOLTAGE
vs
CASE TEMPERATURE

5. These parameters must be measured using pulse techniques. tw

FIGURE5

= 300 /JS, duty cycle ~ 2%.

6. These parameters are measured with voltage-senslng contacts separate from the current..carrylng contacts and located within
0.126 Inch from the device body.

MAXIMUM SAFE OPERATING AREA

THERMAL INFORMATION

DISSIPATION DERATING CURVE

160

10
7
4

~::1

()

~
.!!
0

If

~c:

140

.61
t;;

I'

2

'f1:

D-C Operation
TCO<;62.5°C

.....

c. 120

:~

I'

c.,

1
0.7

"

.~

t--

'"

100

~

C

0.4

on

::1

0

\

0.2

.~

0

u
E
::1
E

0.04

1

0.02

I

0.01
10

20

40

1"'......

c:

\

0.1

E 0.07

80

::1

70 100

200

400 700 1000

'x.,

:;;
I

I'..

60

f"

40
20

d:"
0
50

60

70

80

'"

i"'-.

~

90 100 110 120 130 140 150

VCE-Collector-Emitter Voltage-V

Tc-Case Temperature-OC

FIGURE 6

FIGURE 7

PRINTED IN U.S A

5-210

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

571

TI cannot assume any responsibility for any circuits shown
or represent tha' they are free from paten' infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
2N5301, 2N5302 DESIGNED FOR COMPLEMENTARY USE WITH 2N4398, 2N4399
200 W at 25°C Case Temperature
30·A Rated Continuous Collector Current (2N5301, 2N5302)
20·A Rated Continuous Collector Current (2N5303)
MinfT of2MHzat10V, 1 A
*mechanical data
The case outline is the same as JEDEC TO·3 except for lead diameter.
THE COllECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

o.~ -1-1 ~O'312M1N~1.S73
o0
~

r--.--m:,38

.

0

I

~

0525 R MAX

1,050 MAX

0,188 R MAX
BOTH ENDS

t

0.052 DIA?: HADS

~~~
~

-

0.225

0.135 MAX-----1

~:~;j

0.675

•

o.6"SS

_,-"",1+,

2-EMITIER

~ 0-(- -l~ _-)- " .-.l
=-r~:~:~
-

0.205 0.440

I~

MAX
I

-" I'"

0.420

SEATING PLANE

DIA

2 HOLES

I

CASE TEMPERATURE
MEASUREMENT POINT

I-SASE

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
'Collector-Base Voltage ..... .
'Collector-Emitter Voltage (See Note 1)
'Emitter-Base Voltage . . . . . . . . . .
'Continuous Collector Current ... .
'Peak Collector Current (See Note 2)
'Continuous Base Current . . . . . . . .
Safe Operating Region at (or below) 25°C Case Temperature ...
'Continuous Device Dissipation at (or below) 25°C Case Temperature
(See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4) . . . . . . . . . . . . . . . . . . . . .
'Operating Collector Junction Temperature Range
'Storage Temperature Range . . . . . . . . . . . . . . .

NOTES:

1.

2N5301 2N5302 2N5303
40 V
60 V
80 V
80 V
40 V
60 V
5V
5V
5V
30A
30A
20A
+--50A---+
+--7.5A---+
See Figures 7 and 8
~200W~

~5W---+

_65° C to 200° C
_65° C to 200° C

These values apply when the base-emitter diode is open-circuited.

2. This value applies for tp::; 0.3 ms, duty cycle::; 1 0%.
3.

Derate linearly to 200°C case temperature at the rate of 1.14 W/deg.

4.

Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/deg.

·Indicates JEDEC registered data

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·211

TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

*electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER
V(SR)CEO

Collector-Emitter
Breakdown Voltage

TEST CONDITIONS
Ic

= 200 rnA,

Vcs

Collector Cutoff Current

Icso

= 40 V,

Is

= 0,

IE

=0

See Note 5

2N5301
2N5302
2N5303
UNIT
MIN MAX MIN MAX MIN MAX
40

60

80

1

Vcs - 60V, IE - 0

1

rnA

Vcs - 80V, IE - 0
VCE - 40 V,
Collector Cutoff Current

ICED

1
5

Is - 0

= 60 V,

Is

=0

VCE - 80 V,

Is

0

VCE

5
1
1

VCE - 60 V, VSE - -1.5 V

•

Collector Cutoff Current

1

VCE - 80 V, VSE - -1.5 V
VCE

Emitter Cutoff Current

= 60V,

VCE = 2V,

IC = 10 A

Transfer Ratio

VCE - 2V,

Ic - 15 A

VCE = 2 V,

Ic - 20A

VCE - 2V,

I c = 30 A

Base·Emitter Voltage

VCE(s_t)

hfe

5
15

See Notes 5 and 6

15

60

15

60

60
5

5

5
1.7

1.7

1.7

1.8

1.8

2

Is = 2A,

Ic - 20 A

2.5

2.5

Is - 4A,

Ic - 20 A

VCE = 2V,

Ic - 10 A

2.5
See Notes 5 and 6
1.7

Ic - 30 A

3

3

0.75

0.75

Ic - 15 A

VCE - 4V,

Ic - 20A

V cE -4V,

Ic - 15 A

Saturation Voltage

Is - 2A,

Ic - 20 A

Is - 4A,

Ic - 20A

Is - 6A,

I C = 30A

2.5
1
1.5
2

2

See Notes 5 and 6

V

2
3
f

VCE = 10 V, IC = 1 A,
VCE = 10V, Ic

V

1.5
1.7

VCE = 2V,

rnA

40

Ic - 15 A

I c = 10 A

Forward Current Transfer Ratio

40

Ic - 10 A

Is - 1 A,

Small-Signal Common-Emitter
Ihfel

40

5

Is = 1 A,

Is = 1.5 A,

Forward Cu rrent Transfer Ratio

10
5

Is = 1.5A,

Collector-Emitter

Small-Signal Common-Emitter

10

Tc = 150 C

Ic - 1 A

Static Forward Current

~c

VSE

= -1.5 V,

VCE = 80 V, VSE = -1.5 V:Tc = 150°C
VES - 5 V,
Ic - 0
VCE - 2 V,

hFE

VSE

rnA

10

VCE - 40 V, VSE - -1.5 V, Tc -150u C

IESO

mA
5

VCE - 40 V, VSE - -1.5 V

I CEV

V

= 1 A,

= 1 kHz

f = 1 MHz

3

40

40

40

2

2

2

NOTES: 5. These parameters must be measured using pulse techniques. tp = 300 Ils, duty cycle $2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

*lndicatesJEDEC registered data

269

5·212

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N5301, 2N5302, 2N5303
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
thermal characteristics
PARAMETER

MAX UNIT

Junction-to-Case Thermal Resistance
Junction-to-Free.Air Thermal Resistance

aJ.e
aJ·A

0.875

deg/W

35

*switching characteristics at 25°C case temperature
PARAMETER
t,

Rise Time

ts

Storage Time

tf

Fall Time

MAX UNIT

TEST CONDITIONSt
Ie = 10A.

I S(1) = 1 A.

RL =3 n.

See Figure 1

Ie = 10 A.

I B (1) = 1 A.

RL = 3n.

See Figure 2

VBE(off) = -2 V.

1

I B(2) = -1 A.

2

Il'

r--,---

tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

•

+11 V
-2 V
~--o OUTPUT

10 Q
IN PUT O-.l\l'.i'v--i-i

TEST CIRCUIT

VOL TAGE WAVEFORMS
FIGURE 1 - RISE TIME

,~,

+11 V - - - r - i \ 9 0 %

t---o
IN PUT

OUTPUT

_9V ________

<>-'VV'_-....+I

L~PUT

,
I

,

...

"

tt . .

_t.~IIO%

~
I

I

OUTPUT

I

1

TEST CIRCUIT

90%

VOLTAGE WAVEFORMS

FIGURE 2 - STORAGE AND FALL TIMES
NOTES:

8.

The input waveforms are supplied by a generator with the following characteristics: t r S20 ns, tfS20 ns, Zout

tp

= 10 1-'5 to

= 50.a,

100 1l5, duty cycle ~ 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 20 ns, R in;;;::: 10 kO, Cin ~ 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.

III

Indicates JEDEC registered data

269

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·213

TYPES 2N5301, 2N5302, 2N5303
N·P·N SINGLE·DIFFUSED SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

2N5301, 2N5302
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

100

f"
.~

~c

See Noles 5 and 6 -

~

1;

'"

80

C
~

~

~
u
'Ec

/

1\

40

"1"\

60

~

~

is

u

40

I'

U

ti

I'\.

,J;

20

r.....

,J;

20

f'

..c

w

o

0.2

0.4

0.7 I
Ie -

4

7

Collector Current -

10

20

0.2

40

0.7 I

0.4

Ie -

A

FIGURE 3

.I

I.B I--

;

1.4
1.2

]

~
'"I

1.4

I 111111
VeE = 4 V

>

F 1.2 I -

1/
/

I!

I

J

Te = 25"C
See Noles 5 and 6

~ t-"

0.6

10

20

18

j
V

Te = 25°C

"0

I

I

I 11111

-=5

>
5

1.0 I -

j

0.8

See Noles 5 and 6

~

1
I

1.0

0.8

7
A

FIGURE 4

1. 6

~

!

~

4
Collector Current -

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
COLLECTOR CURRENT

BASE-EMITTER VOLTAGE
vs
COLLECTOR CURRENT

2.2

2.0

........

..c

o

>

"'f\.

lL

~

·W

See Noles 5 and 6 -

2

C

=25"C

Te

80

~

l\

c

•

~
J!

~

60

u
'E

.E

0

ie = 25"C

~

,g
';

100

I

.1,'
VeE ="2"V

2N5303
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
I I I I 1111
veE = 2 V
-

'"

0.4

.; 0.4

!

0.2

o

~

0.2

0.4

0.7 I
Ie -

4

7

Collector Current -

10

20

40

0.2

o

~

0.2

0.4

A

0.7 I
Ie -

~~
4

7

Collector Current -

10

20

40

A

FIGURE 6

FIGURE5

NOTES: 5. These parameters must be measured using pulse techniques. tp

= 300 J.l.s,

duty cycle ::::;2%.

6. These parameters are measured with voltage·sensing contacts separate from the current-carrying contacts.

269

5·214

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N5301, 2N5302, 2N5303
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS

2N5301,2N5302

100
J.70

Tc "25 °C

40


I

~

-1.0

~

-0.8

!!'"
i

:::

]

..
I

--

I

>

VCE=-2V

-4

I

See Notes 5 aOd 6-

See Notes 5 and 6

.......... r-..!.e --2 A
..........

r- ....
~r--r-

r....!.;. = -20 mA

.......... r--...

-0.6

!

--r-......

r- r-

-0.4

-

.~ -0.3 A, Ie = -3 A

.....!£..=-3 A

.......... ........

~Ia

-0.2 A, Ie

-2 A

I--Ia

-0.1 A, Ie

-1 A

::::::;

-2 mA,le

1
la

I,
tmJ

>m'"
-0.2

·0

-75 -SO -25
Te -

0

25

50

75

Case Temperature -

100

125

]

- 0.02

~

-0.01

150

-75

-50

°C

0
25
SO 75
Te - Case Temperature -

-25

100

125 150

°C

FIGURE 4

FIGURE 3

NOTES: 5. These parameters must be measurea using pulse techniques. tp = 300 p.s, duty cyde ::; ZOic.
6. These parameters are measured with yoltage-sensing contacts separate from the current-carrying (ontacts.

971

5·220

TEXASINeORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DAL~S.

TEXAS 75222

TYPE 2N5333
P·N·P EPITAXIAL PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMALIZED COLLECTOR - EMITIER
BREAKDOWN VOLTAGE

COMMON-BASE OPEN-<:IRCUIT INPUT
AND OUTPUT CAPACITANCE

vs

vs
600

>;
~
!

1.0

f-

c

0.8

r--

~
~

REVERSE BIAS VOLTAGE

BASE-EMITTER RESISTANCE

'" 1.2
U

IC =-30 rnA

Tc = 2SoC

Tc = 25°C

f = I MHz

See Note

SOO

5

~

u..

0-

o
~

........

1
~

u

II

c
E 300

f-

0.6

olI

u

~

=

]

&.
0

u

0.4

I

5

]

t"'- t-....

N~=O)
.......

200

V(BRICBO'" V(BRICER at RBE = I Q

au

0.2

Il
.~

a

~bO(IC=O)

400

g

0
I

10

Z

R BE -

i'--..

100

II~ 111111111111111

f;;;;:

o

10 k
Base-Emitter Resistance - Q

Ik

100

r... r--io-

100

-2

-1

k

-7 -10

-4

-20

Reverse Bias Voltage -

V

FIGURE 6

FIGURE 5

NOTE 5: These parameters must be measured using pulse techniques. Ip

=

300 J.Ls. duly cycle ~ ~k·

-40

•

MAXIMUM SAFE OPERATING REGION

-10
-7

-4

«

-----

-2

TC s 100·C

--- --

'

1

C
~

-1

u
5
U
..!!

-0.7

5

E

1\
::;

./

...

D-C Operation

-0.4

tp -

-0.2

....

V

1 ms, d - 0.5 (SO%)./

IIIIII

/'

tp = 0.3 ms, d = 0.1 (10%)./

~

.§

I....,

p-.

'-"'"

a

u

........

...

-0.1

"' "-

-0.07

1

~ -0.04

MAX VCEO -

-.;

'"
I-

-0.02
-0.01

-1

-2

-4
VeE -

-7
-10
-20
Colleetor-Emitter Voltage - V

-40

-70

-100

FIGURE 7

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·221

TYPE 2NS333
P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

20

0.7

f

c

0.5? (510%) Duty Cycle

0.4

.2

'0

15

:§
o
~

o

v
~

50

25

75

100

FO.07

0

";- 0.07
-"

0. 00

0

125

150

fo.ci7~

~

\\

0.04

~

tp

= Pulse

I-e -tp!dT

\)/ 9'

P"\)'
0.02

::: Thermal time constant::: 8 ms

111111

tp -

SYMBOL DEFINITION

VALUE

DEFINITION

PTlavl

Average Power Dissipation
Peak Power Dissipation

UNIT
W
W

(hA

Junction-Io-Free-Air Thermal Resistance

175

deg/W

(he

Junction-fa·Case Thermal Resistance

6.66

deg/W

Oe.A

Case-to-Free-Air Thermol Resistance

168

deg/W

Oe.HS

(ase-to·Heal-Sink Thermal Resistance

deg/W

OHS.A

Heol-Sink·to-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

o(

Te

Case Temperature

o(

TJlavl

Average Junction Temperature

~ 200

o(

~ 200

o(

TJ(max)

Peak Junclion Temperature

K

Peak-Power Coefficient

tp

Pulse Width

ms

Pulse Period

ms

"d

100

ms

Equation No.1 - Appli(ation: d-c power dissipation,
heat sink used.

TJlov·-TA

PTlav ) =

0J-e

+ f) C-HS
,
+ 0HS-A

for 100o( ~ Te ~ 200·(
as in Figure 8

Equation No.2 - Application: d-c power dissipation,
no heat sink used.

Equation No.3 - Application: Peak power dissipation,
heat sink used.

Equation No.4 - Application: Peak power dissipation,
no heat sink used.

PTlma,)

Example - Find PTlmax} (design limit)

TJlmax) - TA
= _--,-==_-'0..
__

d Oe.A

+

K OJ.e

Solution:

OPERA TlNG (ONDITIONS.

+

Pulse Width -

I I
20
40

See Figure 9 ,

Duty-Cycle Ratio (tp/tx)

Oe.HS

I 1111111
7 10

FIGURE 9

FIGURE 8

PT(maxj

I

O. I 0.2 0.4

Te -Case Temperature-"C

SYMBOL

width in ms

d ::: Duty-cycle ratio
T

0.01

200

175

I_e-tp/T
K

\)5\

'"

1\

II

V'

~

~1""

O. I

~

II

j \\~O!OJ I

0

\

o
o

T

0.2

;;

r\

10

•

~

i\

.~

.....

J

.I!
0.25 (25%)

C

'u
<;:

From Figure 9, Peak-Power Coefficient

OHS.A = 7 deg/W (From information supplied

k

= 0.105 and by use of equation No.3

with heat sink.)
TJI" I (design limit) = 200'(

TA
d

tp

= sO'e

= 10"/.

PTlmaxl

_ _ __
= _d~_~~~lma~')L-_T~A
(Oe.HS + (JHS.A) + K OJ.e

PTlma,)

=

200- SO

(0.1)

= 0.1 ms

0.1 (7)

+ 0.105 (6.66) = 107 W

PRINTED IN U.S A.

5-222

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

Tf 
~
6~

+-___100 W---~
~
3.5 W
~
+---65°C to 200 0 C--+
+---65°C to 200°C-----++ _ _ _260°C
~

NOTES: 1. This value applies when the bose-emitter diode is open-circuited.
2. This value applies for tp ::; 0.3 ms, duty cycle ::; 10%.
3, Derate linearly to 200 0 e case temperature at the rate of 1 Wjdeg.

4. Derate linearly to 200 0 e free-air temperature at the rale of 20 mW / deg.

*Indicates JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·231

TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIP'LE-DIFFUSED MESA SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

V(BRICEO Collector-Emitler Breakdown Voltage

Ic = 30mA, la = 0,

See Note 5

2N5387
2N5388
2N5389
MIN MAX MIN MAX MIN MAX UNIT
200

Colledor Cutoff Current

leeo

250

300

V

30

VCE = 180 V, la = 0

30

VCE = 225 V, la = 0

mA

VCE = 270 V, la = 0

30
I

VCE = 180 V, VIE = 0
VCE = 225 V, VIE = 0

I
I

VCE = 270 V, VIE = 0
VeE = 100 V, VIE = 0, Tc = 1S0oC

Collector Cutoff Current

ICEs

10

mA

VCE = 125 V, VIE = 0, Tc = ISO°C
VCE = ISO V, VIE = 0,

•

IEao

Emitter Cutoff Current

hFE

Static Forward Current Transler Ratio
Bose-Emitter Voltage

VIE

10

Tc = 1S0oC

10

VEl = 8 V,

Ic = 0

0.1

0_1

8.1

VEa = 10 V,

Ic = 0

I

I

1

VCE = 5 V,

Ic = 2 A, See Notes 5 and 6

25

25

100 25

VCE = 5 V,

Ie = 5 A, See Notes 5 and 6

15

IS

IS

VCE = 5 V,

Ie = 7A, See Notes 5 and 6

5

5

5

100

100

VCE = 5 V,

Ie = 7A, See Notes 5 and 6

2_5

2_5

2.5

la = 1 A,

Ie = 5 A, See Notes 5 and 6

2

2

2

la = 1.4 A;

Ie = 7 A, See Notes 5 and 6

2_2

2.2

2.2

VCE("'I

Collector-Emitter Saturation Voltage

hie

Small-Signal Common-Emitter
Forward Current Transfer Ratio

VCE = 10 V,

Ic=IA,I=1kHz

20

20

20

Ih,.1

Small-Signal Common-Emitter
Forward Current Transfer Ratio

VCE = 10 V,

Ic = 1 A, I = 10 MHz

1.5

1.5

1.5

NOTES: 5. Thes. parameters must be measured using pulse t&(hniques. fp

=

mA

V
V

300 p.s, duly cycle :::; 2%.

6. These parameters: are measured with voltage-sensing contacts separate from the (urrent-corrying contacts.

*thermal characteristics
PARAMETER

(hc

Junction-to-Case Thermal Resistance

(hA

Junction-to-Free-Air Thennal Resistance

MAX
1

UNit

deg/W

50

"ndlca'es JEDEC regls'ered da'a

971

5-232

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N5387, 2N5388, 2N5389
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONSt

f----'lon"'-_~T~u-rn-.O~n~T=i-m-e-----~ Ie - 2 A,
1'11) = 200 mA, IBizl - -200 rnA, '--":::':"'--1
loff
Turn·Off Time
VBElofij = -4.7 V, RL = 20 n,
See Figure 1
tVoltage and current values shown are nominal; exatt values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

r--~~---o

82

n

20

OUTPUT

•

n

INPUT

82

n

TEST CIRCUIT

+32V~-90%

-1.3 V

,
,10%

,
INPUT
:
-eoIton (4- +t toft 14I

I

~!

10%~

9O%L--; OUTPUT
VOLTAGE WAVEFORMS

FIGURE 1

NOTES: o. The input waveform is supplied by a generator with the following characteristics: tr ~ lS ns, If ~ 15 ns, lout = SO n, Ip
duty cycle S 2%.
b. Wovefonns are monitored on an oscilloscope with the following characteristics: Ir ~ 15 ns, Rin

2:

10 P.S,

10 MO, (in ~ 11.5 pF.

c. Resistors must be noninductive types.
d. The d·, power supplies may require additional bypassing in order to minimize ringing.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·233

TYPES 2N5387, 2N5388, 2N5389
N·P·N TRIPLE·DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

v.

COLLECTOR CURRENT

100

TC=

.2
"0 80

LJJmg

lLJ .

See Note. 5 and 6

""

r'\.

~c

.....e

e

~

.,.
~~

60

;:Y
~J(.

u
1!

~

40

u

'" ~~~

.(.

~S~

"0

J;

•

~~

?Y i--"

.f

..

\
\~

.(.

20

~

"-

or;

o

0.070.1

0.2

0.4 0.7 1
Ie - Collector Current

4
-

7

10

A

FIGURE 2

BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE

.-=-tIe = 7 A

Ie - 5 A

-

~r--

.~~
I'--.r-...,

I

VeE = 5 V

>

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

4

See Note. 5 and 6

I

See Notes 5 and 6

.2"

0>

- - -- --

~
c

------ -- -.............

:--......

.~

0.7 ===i8

j

0.4

~

0.2

0

-18

t£

..........

1.4 A, Ie

- ---

/"

=7 A

1 A, Ie - 5 A

r-

18 - 0.2 A, Ie - 2 A
0.1
..!! 0.07 r-18 =7 rnA, Ie 70 rnA

:--...... ......

..........

;§
I

0.04

~ 0.02

o

>u

-75 -50

-25
TC -

0
25
50
75
Case Temperature -

100

125

150

0.01
-75

°c

-50

-25
0
25
50
75
100
Te - Case Temperature _·C

FIGURE 3

150

FIGURE 4

NOTES: S. These parameters musl be measured using pulse techniques. Ip
6. Thes. parameters are measured with

125

yoltage~5ensing

=

300 p.s, duty cycle

:s;

2%.

contacts separate from the current-carrying contacts.

971

5·234

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

COMMON-BASE OPEN-CIRCUIT
OUTPUT CAPACITANCE
vs

COLLECTOR-BASE VOLTAGE
600

500
"-

'I"" 400
~

u

o

o

"- i'.

.;; 300

Ie =

a

f= 1 MHz

~

8.

Te = 25°C

"

(3

I

~ 200

...........

u

r-....

100

a

4
Ves -

20
40
7 10
Collector-Base Voltage - V

70

100

•

FIGURE 5

MAXIMUM SAFE OPERATING REGION

20

Te .: l00·C

10
7
4

«

/

<:

~
u
~

2
.!
'0

lit..

V

I

\

1 D-C Operation
0.7 tp = 1 ms, d = 0.5 (50%)

,

0.4 tp = 0.3 ms, d = O. 1 (10%)-

i

0.2

.1

\.

u

I 0.1
_v 0.07

2N5387
2N5388

0.04

2N5389

0.02
0.01 1

II

.......,

..........

4
7 10
20 40 70100 200 400
Vee - Collector-Emitter Voltage-V

1000

FIGURE 6

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !5012

•

DALLAS. TEXAS 15222

5-235

TYPES 2N5387, 2N5388, 2N5389
N-P-N TRIPLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

PEAK-POWER COEFFICIENT CURVE

DISSIPATION DERATING CURVE
~

120
0.7

I
.~ 100

.~
~
~
~

.S

§

.

u

.
'v
.

~

'\

40

o

E

.~

•

::i 20

I
Te -

-'"

~

E

100

DEFINITION

'" '"
175
°C

200

VALUE

Peak Power Dissipation
Junclion-to-Free-Air Thermal Resistance

(he

W

SO

deg/W

Junction-Io-Case Thermal Resistance

1

deg/W

()C-A

Case-to-Free-Air Thermal Resistance

49

()C-HS

(ase-to-Heal-Sink Thermal Resistance

deg/W
d.g/W

()HS-A

Heol-Sink-to-Fre8·Air Thermal Resistance

Free-Air Temperatur.

Te

(ase Temperalura

rJ{ev)

AYarage Junction Temperature

~200

°c

TJI ....)

Peak Junction Temperature

~200

°c

K

Peak-Power Coefficient

Ip

Pul•• Widlh

m.

I,

Pulse Period

m.

d

Duly-Cycle Roll. (Ip/lx)

°c

=

~

0.07

FO.07
0.

0.04

"o.07~

K

VI;)'

tp = Pulse width in ms

'"

0:'
l_e-lpI-r

=

l-e -'Pld-r

O~ /

~:/

0_02

d

.=

Duty-cycle ratio

~II=I ;term~1 'it~ ~~~sl'~ln. = ~ m'l

0.01
O. I 0.2 0.4

1
tp -

2
4
7 10 20
Pulse Width - ms

40

100

FIGURE 8

_
Prlav ) -

for 100°C ~ TC ~ 200°C

TJlev)- TA

9J -e

+ 9C-HS + 9HS-A o. in Figure 7

Equation No.2 - Application: doc power dissipation,
no heat sink us.d.

Equation No.3 - Application: Peak power dissipation,
heat sink used.

See Figure 8

Prim,,)

=

d (ge - HS

TJI "",,)- TA

+ 9HS-A) + K()J-C

for 1000C

< T < 2000C
-

e-

Equation No.4 - Application: Peak power dissipation,
no heat sink used.
Prlm"1

4 d.g/W (From informolion supplied

Solution:
From Figure 8, Peak-Power Coefficient
K
0.105 ond by uso of equollon No.3

=

with heat sink.)
TJlav) (design limit)
TA = 50°C
d
10% (0.1)
Ip = 0.1

r

1~'O%)

~i""

7

°c

Exomple - Find Prima,) (design limit)
OPERATING CONDITIONS,

+ ()HS-A =

~

II
I 1,1

d.g/W

TA

()e-HS

r

UNIT
W

Prima,)

I

T~!

Equation No.1 - Application: doc power dissipation,
heat sink used.

Average Power Dissipation

(hA

0.1

2

SYMBOL DEFINITION

PYlev

I

0_2

C>-

125
150
Case Temperature FIGURE 7

SYMBOL

J

0

u
i
~
C>-

(50%) Duty Cycle

0.25 (25%)

0

'",

60

g

0.4

'"

80

0_5~

TJlmaxj - TA

= 200 o(

m.

Prlm..1

=

PT(maoeJ

=

d (ge -Hs

+ 9HS-A) + K 9J.e

200-50
0.1 (4)
0.105 1(1)

+

= 296W

PRINTED IN U.S A.

5-236

TEXASINCORPORATED
INSTRUMENTS
pOST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

971

TI canna' assume any responsibili,y for any circui's shown
Of represent tho' they are free from po'en' infringement.

TEXAS INSTRUMENTS RESERVES litE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY litE BEST PRODUCT POSSIBLE.

TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
• Very High Gain -1000 Min at 5 A
• High-Speed Switching - 0_3 fJ-S Typ ton

*device schematic
Bose 1

Bese 2

* mechanical data

-

~LD='
I

03700~

1 SOO M1N

l

~=

~
"~~I
OIOOMIN-Y-it~~~~ 0019

D:A

Del AilS OF OUTliNE IN -+-

THIS ZONE OPTIONAL

00'i'b

•

- 4 COLLECTOR

THE COllECTOR IS IN elECTRICAL
CONTACT WITH THE CASE.

T

~=

0335 0305 0lA

ALL JEDH TO·33 DIMENSIONS
AND NOTES ARE APPLICABLE.

3 BASE 1

0200

All DIMENSIONS ARE
IN INons

DIA

SEATING

UNlgS OT"ERWISE

PLANE

CASE TEMPERATURE IS MEASURED 0.144 INCH ±O.OlO INCH DOWN FROM TOP OF CAN

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector - Base-1 Voltage
Collector - Emitter Voltage (See Note 1)
Emitter - Base-1 Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Commutating-Diode Current (See Note 3)
Continuous Base-One Current .
Continuous Base-Two Terminal Current .
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) lOO°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range.
Storage Temperature Range
Lead Temperature K.lnch from Case for 10 Seconds

120V
BOV
15V
2A
5A
-2 A
0.1 A
1A
. See Figure 7
15W
1W
-65°C to 200°C
-65°C to 200°C
. 300°C

NOTES: 1. This value applies when both base terminals are open-circuited.

2. This value applies for Ip ~ 0.3 ms, duty cycle'::;; 10%.
3. This applies to the total collector-terminal current when the collector is at negative potential with respect to the emitter.
4. Derate linearly to 200°C case temperature at the rate of 150 mW/deg.
5. Derate linearly to 200°C free-air temperature at the role of 5.71 mW/deg.
"'Indicates JEDEC registered data

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-237

TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

V[BR!CEO

Colleclor-Emiller
Breakdown Voltage

'CES

Collector Cutoff Current

''''0

Emitter Cutoll Current

hFE

Static Forward Current
Transler Ratio

V"_E

Base-One Emitter Voltage

VCE[.. ,!

Coliector·Emitter
Saturation Voltage

TEST CONDITIONS

Ic = 30 rnA, I" = I" = 0,
VCE - 120 V, V"_E
VCE = 80 V, V"_E
V." ~ 15 V, Ic VCE - 5 V, Ic =
VCE - 5 V,

Ic =

VCE - 5 V,

Ic -

VCE = 5 V,

Ic =

VCE - 5V,

Ic -

I" - 2 rnA, Ic -

•

Ihf.1

(oblO

Small-Signal CommonEmitter Forward
Current Transler Ralio
Common-Bose-One
Open-Circuit Output
Capacitance

I" - 10 rnA, Ic -

See Note 6

MIN

MAX

80

V

- VB2-E - 0
10
= V"_E = 0, Tc = 150°C
1
0,
10
I" - 0
1 A,
I" - 0,
See Notes 6 and 7 1000
2A,
I" = 0,
See Notes 6 and 7 2000 20000
5 A,
I" = 0,
See Notes 6 and 7 1000
1 A,
I" - 0,
1.8
See Notes 6 and 7
IS2 - 0,
2A,
1.1
2.2
See Notes 6 and 7
2A,
I" - 0,
1.4
See Notes 6 and 7
5 A,
I" - 0,
2.5
See Notes 6 and 7

VCE = 10 V, Ic = 1 A,

IB2 = 0,
1= 20 MHz

Vc" = 10V, IE = 0,

IS2 = 0,
1= 1 MHz

UNIT

}-'A
rnA
}-'A

V

V

2

100

pF

NOTES: 6. These parameters must be measured using pulse techniques. Ip = 300 Jls, duly cycle:::;; 2<'10.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
"'Indi(otes JEDEC registered dala

thermal characteristics

,I

(hc

I (hA

PARAMETER

Junction·to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resislance

MAX

UNIT

6.67
175

deg/W
deg/W

971

5·238

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR

switching characteristics at 25°C case temperature
PARAMETER

too
toff

TEST CONDITIONSt

Turn-On Time
Turn-Off Time

Ie - 2A,
IBlin - 4 rnA, IB1I21 = -8 rnA,
VB"'loffl = -10 V, Rl = 14 n, See Figure 1

TYP

UNIT

0.3
1.5

P.s

tvoltoge and current values shown ore nominol; exoel values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
140
+28 V

3.3 kO

7500

OUTPUT

r

I N PUT (",---""...--.--..,.,......,.+--1

•

B1 I

I
7500

'- B2
470

TE ST CI RCU IT

tBS V

---~I

-.-J.I 10%
-3 V
ln O/_

-......tton

~
I

~!

9900%%

iL
i

INPUT

t...toff~
I

10%1:.
9 0 % L - - / OUTPUT

VOLTAGE WAVEFORMS

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: tr
Ip

=

:S

15 nsf If

:S

15 ns, Zout

=

1500 0,

5 !,-S, duly cycle ~ 2"/...

b. Waveforms ore monitored on an oscilloscope with the following characteristics: tr

S; lS ns, Kin

~ 10 Mo, (in::; 11.5 pF.

c. Resistors must be non inductive types.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

CALLAS, TEXAS 75222

5-239

TYPE 2N5390
N·P·N DARLINGTON·CONNECTED PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100000

veE - 5 V, IB2 - 0

70000

.~

C

'"

J!

40 000

Ie

~

e
e-

20 000

'E

10 000

.£

7 000

Te

V

~

r""'oooo.

~ 100'C

r--

o
,~

See Notes 6 and 7

150'C

Te

r-....

~~

_

~ Joc ....
i

......

I"

~

.~

C

4000

~

Te ~ -55~
w

2000

-"

I

r-

1000

0.04 0.07 0.1

0.2

Ie -

0.7

0.4

4

I

Collector Current -

7

A

FIGURE 2

COLLECTOR-EMITTER SATURATION VOLTAGE
vs
CASE TEMPERATURE

BASE-ONE-EMlTTER VOLTAGE
vs
CASE TEMPERATURE
2.2

11~5J:-- ~~
I

2.0

>

I

1.8

~

~

]

I

1.4
1.2 I---

~

1.0

9

0.8

c

~

~

r--....
f"..1-o-..

........

~

7

.........

2

.......... ~

IBI

~

IB2 - 0

:

See Notes 6 and 7

-

lOrnA,

le~5A

-

r-...... r""- ~

IBI ~ 2 rnA, Ie ~ 2 A

~

r-...... ;-........

.........
.......

oS 0.6

,"

~

]

I..
2u
..!!

I

-

I., - 50

0.7

lolA, Ie

~ 50 mA :

"-

0.4

'0
V

't' 0.4

~

I

4

---

......... ~~
~A ............ ..........

Ie = 50 mA

10

>

See Nates 6 and 7

I~:;:"-

r:::::: :----

~

2'" 1.6

I
VeE ~5 V, IB2 =0_

~

0.2

0.2

W

0
-75

.y
-50

-25

Te -

25

50

75

Cose Temperature -

100

125

150

0.1
-75

-50

-25

°C

Te -

FIGURE 3

o

25
50
75
100
Case Temperature - °C

125

150

FIGURE 4

NOTES: 6. These parameters must be measured using pu'lse techniques. fp

=

300 J.ls, dUly cycle ~ 2%.

7. These parameters ore measured with voltage-sensing (ontacts separate from the current-carrying contacts.

971

5-240

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
NORMAllZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE

v.

BASE-TWO -

w

u

~
~

111111 II

1

IIIIII II

~

1.0
f-

c

O.B !-

>
~

IE ~ 0

,.

t-

u.

0..

'"~

Tc

~

'g."

See Note 6

\

"'

%
~

1

(IBI ~ 0)

'"C ob 20

o

0.4

'f'

...........

100

§

C ob10 (lB2 ~ 0)

E

"0
"U

Te ~ 25°C

8 150

~

u

200

u

0.6

Jj
I

\

2

25·C

o

~

.;

5
t

f" 1 MHz

~ 250

IBI ~ 0

0

"U

~

300

Ie ~ 10 mA

"0

-"
0

COLLECTOR-BASE VOLT AGE

350

::;-

'"
E

v.

EMITTER RESISTANCE

1.2

E

J

0.2

~

~J.JI

50

-

.~

"0

E
0

Z

0.1

10
RS2E -

100
1k
10 k
Base-Two- Emitter Resistance-O

a

100 k

1

4
Vc B -

10
20
40
Collector-Bose Voltage - V
FIGURE 6

FIGURE 5

MAXIMUM SAFE OPERATING REGION

10

4

---

0.4

~
~

0.2

"0

u

1

.Y

D-C Operatio
=: 1 ms,
d ~ 0.5 (50%)

1
0.7

:;
u

•

,,

«
1

70 100

Te ~ 100·C

7

c
~

I'---

~ Iy'

tp

tp

d

= 0.3

= 0.1

ms,
(10%)

0.1
0.07
0.04

Max V CEO

0.02

I

0.01

1

4
7 10
20
40 70 100
VeE - Collector-Emitter Voltage -

1000
V

FIGURE 7

NOTE 6: This parameter must be measured using pulse techniques: tp

=

300 p.s, duty eyde ::; 2%.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·241

TYPE 2N5390
N-P-N DARLINGTON-CONNECTED PLANAR SILICON POWER TRANSISTOR
THERMAL INFORMATION

DISSIPATION DERATING CURVE

PEAK-POWER COEFFICI ENT CURVE

16

3:

[\.

I 14

.~

12

~

is

.,

~ 10

~

0.7

~
~

0

.9

8

0

0.4
c
.~
u

~

0

.~

6
C
0
u

c:

"i;

~

[\.

""

I
oC
0
lOa

125

TC -

Case Temperature -

150
O(

FIGURE 8

VALUE

W

FhA

Junction-fo-Free-Air Thermal Resistance

175

deg/W

(he

Junction-fa-Case Thermal Resistance

6.67

deg/W

Be •A

Case-Ia-Free-Air Thermol Resistance

168

deg/W

Be-fiS

Cose-Ia-Heal-Sink Thermal Resistance

deg/W

BHS-A

Heat-Sink-fo-Free-Air Thermal Resistance

deg/W

TA

Free-Air Temperature

Peak Junction Temperature

Ip.

Pulse Width

I,

Pulse Period

d

Duly·eycle Rolio (Ip/I,)

°e

Peak· Power Coefficient

(design limit)
TA = 50°C
d
10% (0.11
tp = 0.1 ms
TJ(.v)

=

V

~
0.07
0. 0 '>

o.07~

J-e tp/T

K -

--;gT-

J-e - tP/dT

7C)'\!T
C)/

tp -,;; pur se width in ms

d

~'Duty-cycle

T

-= Thermal time constant = 8 ms

I

ratio

I IIIIIII

0.01 0 . 1 0.2 0.4

710
Pulse Width -

tp -

I
20

I
40

100

ms

FIGURE 9

=

(he

+

for 100°C ::0; Te ::0; 200°C

TA

TJ(.v) -

PTI, vl

Oe.fiS

+

OfiS-A os in figure 8

Equation No.2 - Application: d·c power dissipation,
no heat sink used.

Equation No.3 - Application: Peak power dissipation,
heat sink used.

°e
°e

See Figure 9

m.
m.

+ BHS- A =

V

°e

::0; 200
::0; 200

Example - Find PT(maxl (design limit)
OPERATING CONDITIONS,

BC _HS

II

UNIT
W

TJlmax,
K

....... 1""/

Equation No.1 - Application: doc power dissipation,
heat sink used.

Peak Power Dissipation

Average Junction Temperature

I. ~

IIIIII

""

PT(max}

Case Temperature

0.07

200

Average Power Dissipation

Te

c:'-"

0.02

PT/avl

TJfavl

O. I

'"

SYMBOL DEFINITION
DEFINITION

~

0.04

0

:;;

II

1\\ ~o/~) I

~

.§
x

SYMBOL

0.2

0

§ 4

•

.l .1

0.25 (25%)

U

'\

75

0.50 (50%) Duty Cycle

deg/W {From information supplied
with heat sink.}
200°C

Equation No.4 - Appli(ation: Peak power diSSipation,
no heat sink used.

Solution:
From figure 9, Peak-Power Coefficient
K = 0.105 and by use of equation No.

7

=

PT{maxl

=

P
Tim,,)

=

TJ(rna,) - TA

d

(8C . HS

+

200 -50
0.1 (7)

8HS . AJ

+

+ 0.105 (6.67) =

K 8J_c

107 W

PRINTED IN U.S A

5-242

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI (onnot assume any responsibility for any circuits shown
represenf fhat they afe free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED SWITCHING APPLICATIONS
•

20 mJ Reverse Energy Rating

•

Min V(BR)CEO of 120 V (2N5672)

•

Min fT of 50 MHz at 10 V, 2 A

m-l

c:<
r'"O

rm

mil>

•

-IN

zill

-

Z~

~.

ON

30·A Rated Continuous Collector Current

rZ

~~
::N

*mechanical data

~

~

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

,0

o

m
n
m

0.525. MAX

(
o ()
0",

1 050 MAX

MAl(

i

tlFo

~

0 225

~.:

O.llS

---=r

0205 0440

~-~==~

0.;;:

s:

-i j0312MIN~IS13 MAX
.-_-,-0'-C2S~O I" I~OIA 2 UAOS
I
P1
0'1"
_,'__' 'I' '-+' ' - L l 0450

m

m

:%l

0- -1"
1

-\.:: I

~"20

MAX~ I

0.200-

•

lsEA TlNG PLANt
I -lASE

ALL JEDEC TO·3 DIMESNIONS AND NOTES ARE APPLICABLE
DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5671

Collector·Emitter Voltage (VBE; -1.5 V, See Note 1)
Collector-Emitter Voltage (Base Open, See Note 1)
Emitter·Base Voltage
Continuous Collector Current
Continuous Base Current
Safe Oper.ating Area at Specified Temperatures
Continuous Device Dissipation at (or below) 25°C Case Temperature (see Note 3)
Continuous Device Dissipation at 100°C Case Temperature (see Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (see Note 4)
Undamped Inductive Load Energy (see Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/32 Inch from Case for 10 Seconds
NOTES:

2N5672

120 V*
150 V*
90V
120 V
7 V*
7 V*
-30A*-10A*See Figure 6
_140W*_

-aow*-5W-20mJ*~65°C to 200°C*
-65°C to 200°C*
_230°C*_

1. These values apply only when the collector-emitter voltage is applied with the transistor in the off-state with the base-emitter
diode reverse-biased or open-circuited, as specified. I n operation, the limitations of Figure 6 must be observed.
2. This value applies for tw < 0.3 mS,duty cycle < 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.8
C or refer to Dissipation Derating Curve, Figure 7.
4. Derate linearly to 2000 C free air temperature at the rate of 28.6 mWf C or refer to Dissipation Derating Curve, Figure 8.
5. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5, condition 1. L = 180 ,uH,

wt

8

RBB2

ill

= 20 n, VBB2 = 4

V, RS

= 0.1

n, Vee

= 10 V,

Energy

= le2L/2.

JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·243

TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CEO Collector-Emitter Breakdown Voltage

IC = 200mA.

V(BR)CEV Collector-Emitter Breakdown Voltage

IC- 2oomA. See Figure 5 (Condition 2)
VCE

Collector Cutoff Current

ICEV

2N5671

TEST CONDITIONS
See Note 6

IB = O.

= 110V.

2N5672

MIN MAX MIN MAX

UNIT

90

120

V

120

150

V

12

VBE = -1.5 V

10

VCE - 135 V. VBE - -1.5 V
VCE -100V. VBE = -1.5 V. TC - 150°C

15

mA

10

lEBO

Emitter Cutoff Current

VEB

hFE

Static Forward Current Transfer Ratio

VCE=2V.

VBE

Base-Emitter Voltage

IB -l.2A.

IC-15A.

See Notes 6 and 7

1.5

1.5

V

VCE(sati

Collector-Emitter Saturation Voltage

IB - 1.2 A.

IC-15A.

Se. Notes 6 and 7

0.75

0.75

V

~fel

Small-Sighal Common-Emitter

VCE = 10V.

IC= 2 A.

f = 5 MHz

Forward Current Transfer Ratio

=

7 V.

10

IC= 0
See Notes 6 and 7

IC= 15A.

20

10

100

20

10

rnA

100

10

*switching characteristics at 25°C case temperature

I

PARAMETER
tr

Rise Time

ts

Storage Tirre

tf

Fall Time

TEST CONDITIONS
IC'" 15A.

IB(1) = 1.2 A.

VBE(off) = -6 V.

RL = 2

n.

MAX

UNIT

0.5

IB(2) '" -1.2 A.
See Figure 4

1.5

ItS

0.5

*JEQEC registered data

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR CURRENT

COLLECTOR CURRENT

100

2.0

0

;r

90

~

80

e

f-

~

u

"E

1

l

Te '" 2SoC
See Notes 6 and 7

I

>

1.6
1.4

60

I

~

g

•

1.2

~

1.0

!

0.8

I

VeE'" 5 V

40

~

f-

VeE - 2 v

30

I'V

"

~

~
>

1\

20
10

COLLECTOR CURRENT

l'

Te '" 2SoC
See Notes 6 and 71

1.8

70

50

COLLECTOR·EMITTER SATURATION VOLTAGE

"

0.6

2,0

E 1.8

Te '" 25°C
See Notes 6 and 7

0:

>

V

I

Ie

is '"

5

{/

, !£ =

10

18

.§

1.6

~

1.4

Ji

1.2

'E~

1.0

~

0.8

j
~

':-"

0.4

~

£

0.2

Ie

0.6

TB '"

0.4
0.2

u

0.4

10
Ie-Collector Current-A

FIGURE 1

NOTES:

40

100

0.1

10

0.4
Ic~Collector

40

100

Cl,Jrrent-A

FIGURE 2

~'"
18

5

[11111

>
0.1

10 / ;

II LIJllr

0.1

0.4

10

40

100

Ie-Collector Current-A

FIGURE 3

6. These parameters must be measured using pulse techniques. tw = 300 #.LS, duty cycle ~ 2%.
7. These parameters are measured with voltage~sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

1271

!i·244

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N5671, 2N5672
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
2n

VCC

51

Channel A

= 30 V C>---4.-----'Vvv---....---

·11

X-

4

c:

See Note 8

~ ~',~
~ ~,I',~ ~'~~
~:s ~J ~~
, 0 ,J>~---'''',~ !,6'00
~~
,/);,J'
,is' is',~)

7

"f...

III

~

.,

'\~

---

2N5671

\l--

2N5672

~\

0.4

\~

I

1\
0.2

1

~

0.1
7

4

2

10

20

40

70 100

400

200

VCE-Collector-Emitter Voltage-V
NOTE 8: Areas defined by dashed lines apply for nonrepetitive-puise operation at TC" 25°C. The pulse may be repeated after the device
has regained thermal equilibrium.

FIGURE 6

THERMAL INFORMATION
FREE·AIA TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE
;0

.~ii.

'iii
is

5
~

g

•
~
~

160

140

~

120
100

~

80
60

'"

40

t 2:

o

25

50

1"-

R9JC 0;;;;; 1.25°CIW

75

~

R9JA ..;; 35°C/W

"

~

'" '"

~

"'i'.I'"

100 125 150 175 200

TC-Case Temperature-°c

o

25

50

75

'"

100 125 150 175 200

TA-Free-Air Temperature-°c

FIGURE 8

FIGURE7

PRINTED IN U.S.A

5·246

TEXAS INCORPORATED
INSTRUMENTS
POST ,OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TI cannot aSSume any responsibility for any circuits shown
or represenl thor they are free from palenr infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5683, 2N5684
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5685, 2N5686
•

300 Watts at 25°C Case Temperature

•

50-A Rated Continuous Collector Current

•

Min fT of 2 MHz at 10 V, 5 A

*mechanical data

.:g'"

The case outline falls within JEDEC-TO-3 except for lead diameter.

om

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

(')

m

s:CO

m

g:;~g j 1- t::~~AM~:~ADS

0.525' MAX

oO
~
0

.------.-------Im=1~38
0.875
1.050 MAX

MAX

--'-__~
===-- I h
-1

0,188 R MAX
BOTH ENDS

0.135 MAX

1573, MAX

,4-

0.225 ----.J" 0.205 0.440

. -,'-

0-',-1;
I

0.200
SEATING PLANE
1 - BASE

~ ~:~;~

:::J

2- EMInE,

'\

---.l..

,- 0 -

-,- I 1/

0.420

"iD

I

r--

t.Q.J£
0151

•

DIA

2. HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage . _ . . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
*Continuous Collector Current
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . _ .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

2N5683 2N5684
-60V
-80 V
-60 V
-80 V
-5V
-5V
_-50A_
_-15A_
-300W_5W_
-65°C to 200°C
-65°C to 200°C
_235°C_

1. These values apply when the base~emitter diode is open-circuited.
2. Derate linearly to 200°C case temperature at the rate of 1.715 wtc or refer to Dissipation Derating Curve, Figure 1.
3. Derate linearly to 200°C free-air temperature at the rate of 28.6 mwtC or refer to Dissipation Derating Curve, Figure 2,

*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-247

TYPES 2N5683, 2N5684
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)

Collector-Emitter
V{8R)CEO

•

8reakdown Voltage
Collector Cutoff Current

ICEO

ICEV

Collector Cutoff Current

ICBO

Collector Cutoff Current

IC = -200 rnA.

18 = O.

VCE = -30V.

18 = 0
IB= 0

VCE - -60V.

VBE-l_5V
VBE - 1.5 V
VBE - 1.5 V.

TC - 150°C
TC = 150°C

VCE = -80V.

VBE = 1_5 V.
IE - 0

VCB - -80V.

IE - 0
IC = 0
IC--25A

hFE

VCE = -5V.

IC= -50A

VBE

Base-Emitter Voltage

IC = -25A
IC--25A

60

15
5

15

See Notes 6 and 7

-2

-2

-2

-2

Collector-Emitter

IB - -2.5 A.

IC--25A

IB - -lOA.

IC - -50A

VCE = -5 V.

IC = -lOA.

f = 1 kHz

15

15

VCE = -10V.

IC = -5A.

f = 1 MHz

2

2

VCB = -10V.

IE = O.

f=0.1 MHz

Forward Current Transfer Ratio

Forward Current Transfer Ratio
Common-Base Open·Circuit
Output Capacitance

60

5

Saturation Voltage

Small-Signal Common-Emitter

NOTES:

IB = -2.5 A.

See Notes 6 and 7

rnA

-5 rnA

-5

VCE - -2V.

rnA

-10
-2

VEB= -5V.

Cabo

-10
2

VCE - -2 V.

jhfel

-2

VCE - -80V.

VCB- -60V.

rnA

-2

VCE - -60V.

Emitter Cutoff Current

Small-Signal Common-Emitter

V

-1

VCE = -40V.

UNIT

-80

-SO
-1

Static Forward Current
Transfer Ratio

hfe

2N5684

MIN MAX MIN MAX

See Note 6

lEBO

VCE{sat)

2N5683

TEST CONDITIONS

PARAMETER

See Notes 6 and 7

-1

-1

-5

-5

2000

2000

V
V

pF

6. These parameters must be measured using pulse techniques. tw = 300 Jls, duty cycle < 2%.
7. Ihese parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

s:I

400

'+=i

'"

:~Cl

0

'N.

350

'iii

Q)

"'"

250

Cl

'";;:J0 200
;;:J

c:

'+=i

c:
0

""-,

E
100
;;:J
E

I-

0

I
c..

o

25

.,

50

75

Cl
~

ROJC ,;;;; 0.58°CIW

""-

u

50

~,

';;

150

'x
'"
:2:

5

i:5
8 4

300

Q)
(J
.s;

6

c::

c:

0

s:I

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

0

...
;;:J

"

' " ROJA ,;;;; 35°CIW

3

c::

'"'"

c:
0

u

""

2

E

;;:J

E

"'"

'x

~

100 125 150 175 200

'"
:E

I
I-

c..

0

o

25

50

75

'" "'"""

"~

100 125 150 175 200

Tc-Case Temperature-OC

T A-Free-Air Temperature-°c

FIGURE 1

FIGURE 2
PRINTED IN U.S A

j-248

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5685, 2N5686
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5683, 2N5684
•

300 Watts at 25°C Case Temperature

•

50-A Rated Continuous Collector Current

•

Min fT of 2 MHz at 10 V, 5 A

*mechanical data
The case outline falls within JEDEC-TO-3 except for lead diameter.
o
m
n

THE COLLECTOR IS ELECTRICAL CONTACT WITH THE CASE

m

s:

III

0.450
0.525 R MAX

oD
~
0

j -1 ~O'312 MIN~

r-

-.--_ _ _0_.2_50_-+

0.043 OIA 2 LEADS

.1

-.----- ro:,,}3.
1.050 MAX

O.a7S
MAX

-

.-'--_ _D_:A__

0.188 R MAX
80TH ENDS

0.225 ~ -

!I

:II

~

0.655

2- EMITTER

.-,1- ,",- 0 -~

0-',-lt

-,- 'I ;1/

0.420

r-;:

m

~: ~;~

0.675

,>.f

0.205 0.440

O. , 35 MAX -1

1.573 MAX

t ~ :~:

I

r-

I

0.200

SEATING PLANE
1 - BASE

•

DIA

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5685

*Collector-Base Voltage . . _ . . .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage
'Continuous Collector Current
*Continuous Base Current
'Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
*Operating Collector Junction Temperature Range
*Storage Temperature Range . . . . . . . .
'Terminal Temperature 1/16 Inch from Case for 10 Seconds

NOTES:

1. These values apply when the

base~emitter

diode is

2N5686

60V
80 V
60V
80V
5V
5V
_50A_
-15A--300W-5W-65°C to 200°C
-65°C to 200°C
__ 235°C_

open~circuited.

2. Derate linearly to 200°C case temperature at the rate of 1.715 W/C or refer to Dissipation Derating Curve, Figure 1.
3. Derate linearly to 200°C free-air temperature at the rate of 28.6 mwt C or refer to Dissipation Derating Curve, Figure 2.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5-249

TYPES 2N5685, 2N5686
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO

Breakdown Voltage
Collector Cutoff Current

ICEO

Collector Cutoff Current

ICEV

IC= 200mA.

IB= O.

VCE = 30V.

IB=O

2N5686

MIN MAX MIN MAX

See Note 6

60

80

VCE - 40V.

IB - 0

VCE-60V.

VBE - -1.5V

1

VCE - 80V.

VBE - -1.5V

VCE - 60V.

VBE - -1.5V.

TC - 150°C

2

VCE-80V.

VBE - -1.5V.

TC- 15ifc

VCB- 60V.

IE - 0

VCB-80V.

IE = 0

10
2

lEBO

VEB-5V.

Static Forward Current

VCE - 2V.

IC= 0
IC 25A

Transfer Ratio

VCE - 5V.
IB 2.5A.

IC- 25A

VeE - 2V.

IC= 25A

Collector-Emitter

IB-2.5A.

IC- 25A

Saturation Voltage

IB-l0A.

IC=50A

VCE = 5V.

IC= lOA.

f= 1 kHz

15

15

VCE = 10V.

IC= SA.

f= 1 MHz

2

2

VCB= 10V.

IE = O.

f= 0.1 MHz

VCE(sat)

Small-5ignal Common-Emitter
Ihfel

Forward Current Transfer Ratio
Small-5ignal Common-Emitter

hfe

Forward Current Transfer Ratio
Common-Base Open·Circu it

Cobo

Output Capacitance

NOTES:

2

See Notes 6 and 7

IC- 50A

rnA

10

Emitter Cutoff Current

Base-Emitter Voltage

rnA

2

COlleCtor Cutoff Current

VBE

UNIT
V

1

ICBO

hFE

•

2N5685

TEST CONDITIONS

15

5
60

5

5
15

rnA
rnA

60

5

See Notes 6 and 7
See Notes 6 and 7

2

2

2

2

1

1

5

5

1200

1200

V
V

pF

6. These parameters must be measured using pulse techniques. tw.= 300 }Js, duty cycle <;; 2%.
7. These parameters afe measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.126
i nc~ from the device body.

THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

~ 400
c:

.12

~

350

i5
1l

300

~
~

g

f'--

250

200

c:

.~

(3

150

100

'"

50

!

Q..

6

l'iii

6

i5
f!
';; 4

""'~"-

R8JC";;; 0.5SoC/W

E
::I
E

'x

~c
0

'jli

';;

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

!

g

25

' " ROJA ..;;; 35°C

3

'" '"

c

""

.~

"-

o
o

"'""

..

0

<3

"~

'j(

...

'"

50 75 100 125 150 175 200
Tc-Case Temperature-OC
FIGURE 1

2

E
::I
E

:!!
I

et-

0

o

26

60

76

~

'~

100 126 160 176 200

T A-Free-Air Temperature-°c
FIGURE 2
PRINTED IN U.S.A

5-250

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CIIANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5758, 2N5759, 2N5760
N-P-N SINGLE-DiffUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH TlP544. TlP545. TIP546

•

150 W at 25°C Case Temperature

•

6-A Rated Continuous Collector Current

•

Min fT of 1 MHz at 20V. 0.5 A

*mechanical data
The case outline falls within JEDEC TO-3.

j

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~
oO

O.4S0j

O'S2S R MAX
0

-1 I~'.:~"

1~~~DlA 2 LEADS

-.---...--_0._2S_0_m='
1.050 MAX

=

0.875
MAX

-'-_--=D=lA==_

0.188 R MAX
BOTH ENDS

0.135

II
MAX -1 ~

0.22S

1.573 MAX

0.675

~~

~::;i

~ _ EMITTER

,,'- , \ . ~
---.:::r - 0-'-1' ,- 0 -

0.205 0.440

-\,.- I'

0.420

I

0.200

SEATING PLANE
I - BAse

-I"

I

' t~: ~::

r-

•

DIA

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
*Collector-Base Voltage
..... .
*Collector-Emitter Voltage (See Note 1)
*Emitter-Base Voltage . . . . .
*Continuous Collector Current . .
*Peak Collector Current (See Note 2)
*Continuous Base Current
*Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
*Operating Collector Junction Temperature Range
*Storage Temperature Range
.... _ . . .
*Terminal Temperature 1/16 Inch from Case for 10 Seconds.
NOTES:

1.
2.
3.
4.

2N5758 2N5759 2N5760
100V 120V 140V
100V 120V 140V
7V
7V
7V
-6A_10A_
_4A_
-150W_5W_
-65°C to 200°C
_65°C to 200°C
_235°C_

These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle"'; 1 0%.
Derate linearly to 2000 C case temperature at the rate of 0.857 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.

*JE DEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

172

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-251

TYPES 2N5758, 2N5759, 2N5760
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO

ICBO

ICEO

ICEV

•

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

Collector Cutoff Current

2N5758

TEST CONDITIONS
IC= 200mA,

IB = 0,

VCB= 100 V,

IE =0

VCB= 120V,

IE =0

VCB- 140 V,

IE - 0

VCE = 50 V,

IB =0

VCE-60V,

IB-O

VCE -70V,

IB - 0

2N5759

See Note 5

120

100

hFE
VBE
VCE(sat)

1
1

~fel

1

VCE - 100 V,

VBE - -1.5V

VCE -120V,

VBE --1.5V

VCE = 140 V,

VBE --1.5V

VCE - 100 V,

VBE - -1,5 V, TC - 15o"C

1
1

VBE - -1.5 V, TC - 150°C
IC=O

Static Forward Current

VCE - 2V,

IC-3A

Transfer Ratio

5

IC-6A

VCE = 2V,

IC=3A,

Collector-Emitter

IB-0.3A,

IC-3A

Saturation Voltage

IB= 1.2A,

IC=6A

VCE = 10V,

IC=2A,

f= 1 kHz

VCE = 20 V,

IC=0.5A,

f= 0.5 MHz

VCB = 10V,

IE = 0,

f=O.1 MHz

Common-Base Open-Circuit
Cobo
NOTES:

: See Notes 5 and 6

VCE - 2V,

Output Capacitance

mA

5
5
1

Base-Emitter Voltage

Forward Current Transfer Ratio

mA
1

VEB = 7 V,

Forward Current Transfer Ratio

mA
1

VCE = 140 V,

Small-Signal Common-Emitter

V

1

Emitter CutOff Current

Small-Signal Common-Emitter
hfe

140

UNIT

1

VCE = 120V, VBE - -1,5 V, TC = 150°C
lEBO

2N5760

MIN MAX MIN MAX MIN MAX

25

100

5

See Notes 5 and 6
: See Notes 5 and 6

1
20

80

5

1
15
5

1.5

1.5

1.5

1

1

1

2

2

2

15

15

15

2

2

2

300

mA

60

300

300

V
V

pF

5. These parameters must be measured using pulse techniques. tw = 300 IJ.s, duty cycle ~ 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125

inch from device body.

"'JEDEC registered data

PRINTED IN U.S.A.

5-252

172

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5867, 2N5868
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5869. 2N5870
•

87.5 Watts at 25°C Case Temperature

•

5-A Rated Continuous Collector Current

•

Min fT of 4 MHz at 10 V, 0.25 A

•

62.5-mJ Reverse Energy Rating

*mechanical data
ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~_·f_.~_j_+1- ~::~~:~:~ADS

0.525 R MAX

o
~
0

. -_ _ _

0~~")38

1.0SO MAX

MAX
~

0.22'

h
--I

0.188 R M A X · - L - - - - BOTH ENDS
0.135 MAX

~ ~:~;~

•

---=r . 0-\-lt

0.205 0440

I

1573, MAX

-;,.:-4-

-..,- I 1"

0.420

I

0.200

SEATING PLANE
1 - BASE

I

I-

CASE TEMPERATURE
MEASUREMENT POINT

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°(: case temperature (unless otherwise noted)
2N5867 2N5868
-60 V· -SO V·
-60 V· -80 V·
-5 V·
-5 v·
5A
-{
-3 A*
_-7A _
_
-lA'_

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage

t}-

Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1. These values apply when the

base~emitter

See Figure 1
-S7.5W*-5W_62.5mJ _
_ 65°C to 200°C'
-65°C to 200°C*
_250°C'_

diode is open-circuited.

2. This value applies for tw ..;; 1 ms, duty cycle :0;;; 10%.

3. Derate linearly to 2000 C case temperature at the rate of 0.5 mW/ C.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.

5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of

Suggested Standards on Power Transistors. t L = 20
= 0.1 n, VCC = 10 V, ICM = -2.5 A, Energy'" IC 2 L/2 .

the forthcoming JEDEC publication
VBB1

= 10

V, VBB2

=0

V, RL

mH, RSS1

=

20

n,

RSB2

=

100

n.

• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value In addition to the JEDEC registered value which is also shown.
:f:This circuit appears on page 5-1 of this data book.

271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-253

TYPES 2N5867, 2N5868
P-N-P SINGLE-O.IFFUSEO SILICON POWER TRANSISTORS
* electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
VIBR)CEO

IC~

Collector Cutoff Current

ICEV

Collector Cutoff Current

ICBO
lEBO

Emitter Cutoff Current

hFE

Static Forward Current
Transfer Ratio
,
Base-Emitter Voltage

VBE

•

Collector-Emitter
Breakdown Voltage
Collector Cutoff Current

ICEO

VCElsat)
hfe
Ihfel
Cobo
NOTES:

2N5867
2N5868
UNIT
MIN MAX MIN MAX

TEST CONDITIONS

Collector-Emitter
Saturation Voltage
Small-Signal Common·Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance

-100mA,

IB

~

0,

See Note 6

-SO

-60

IB - 0
IB 0
VBE L5V
VBE ~ L5 V
VBE ~ L5 V.
VBE - L5 V,
IE - 0
IE - 0
IC - 0
IC - -300 rnA

TC-150 C
TC - 150 C

IC~-1.5A

See Notes 6 and 7

VCE~-4V,

IC

~

-0.25 A .

f

~

1 kHz

20

20

VCE~-10V,

IC

~

-0.25 A.

f

~

1 MHz

4

4

IE

~

0,

f

~

1 MHz

VCB

~

-10 V,

V

-0_5

VCE - -30 V,
VCE -40 V,
VCE - 60V,
VCE - -SO V,
VeE - -60V.
VCE - -SOV,
VCB - 60 V,
VCB ~ -SO V,
VEB - -5 V,
VCE - -4 V,
VCE - -4 V,
4V,
VCE
IB - -200 mA,
VCE ~ -4 V,
IB - -200mA,
IR - -0.6 A,

0_5

mA

0.1
-0.1
-2
0.1
-0.1
-1

-1

IC - 3A
IC - -2 A
IC--3A,
IC - -2 A
IC - -3 A

mA

2

35
20
5

35
20
5

100
-1.6
-2
-1
-2

See Notes 6 and 7
See Notes 6 and 7

mA
mA

100
-L6
-2
-1

-2

200

200

V
V

pF

6. These parameters must be measured using pulse techniques. tw = 300 J.,LS, duty cycle ~ 2%.

7'. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125

inch from the device body.

*switching characteristics at 25°C case temperature
PARAMETER
Rise Time
Storage Time
Fall Time

tr
ts
tf

I
MIN MAX UNI
0.7
1
IlS

TEST CONDITIONSt
IC ~ -1.5 A,
VBE(off) ~ 5 V,

IBll) ~ -0.15 A,
RL~20\1,

IBI2) ~ 0.15 A,
See Note S

O.S

tVoltage and current values shown are nominal; exact values vary slightly with tranSistor parameters.

* JEDEC registered data.
'NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication

Power Transistors.

*VSSl ~ 25 V, VSS2 ~ 5 V, Vee = 30 V, Von ~ -23 V, RSSl ~ 73 .11, RSS2 ~ 39 n.

Suggested Standards on

+This circuit appears on page 5-1 of this data book.

MAXIMUM SAFE OPERATING AREA
-10
-7

;5:100

-2

"~

u

-1
-0.7
-0.4

j

-0.2

"0

u

b

-

-4

«I

THERMAL CHARACTERISTICS

0.1 ms

tw
tw"'0.5~
tw""l ms
D-C Operation

[),.

- ---1-Nonrepetitive
Pulse Operation

o

70

.~

60

8

o

r- "'\.

::; 50

TC';;25'C

-0.1

I -0.07
~

~
'w

2N5B67~

40

8E 30

2N5B6B

1""'-

'"""'-

AOJC';; 2'CIW

I'..

I"

E 20

-0.04
-0.02
-0.01
-10

i :~

'x
~ 10

I
-20

-40

-70

-100

VeE-Collector-Emitter Voltage Voltage-V

t" oo

""""

20 40 60 80 100120140 160 180 200
Tc-Case Temperature-°c

FIGURE2

FIGURE 1

""'-

PRINTED IN U.S.A.

5-254

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5869, 2N5870
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5867, 2N5868
•

87.5 Watts at 25°C Case Temperature

•

5-A Rated Continuous Collector Current

•

Min fT of 4 MHz at 10 V, 0.25 A

•

62.5-mJ Reverse Energy Rating

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0.450

~
oD
O'525 R MAX
0

j -l

10.312

MIN~

1.573 MAX

0_.2_50_-+QFIISj~~ DlA 2 LEADS

~

-.-_ _ _

o~:£
1.050 MAX

MAX

0.225

-'-_---'D=jA==_

---=r - 0-~-lt

0.205 0.440

I I.

0.188 R MAX
BOTH ENDS

0.135 MAX -1

t:'"";

2 _ EMITTER

-,/~, \
I

0.200

SEATING PLANE
1 - BASE

•

,- .

tw=0.5~~

-:-;

-4 ==tw-0.1 ms
- tw o.~ ms-'"
/
-2
- tw =1 ms---"" /
D-C
Operation---"'"
-1

\

-0.2

Ib

140

~

120

.~

100

"g,

80

''§

60

c

-0.7
-0.4

THERMAL CHARACTERISTICS
;: 160

8

§

2N5875

- "'-

'"'"

ROJC

< 1.167°CIW

'" "

40

E

2N5876-

'~

TC<25°C
-0.1
-10
-20
-40
-70 -100
VCE-Collector-Emitter Voltage-V

FIGURE 1

20

'" i'-.

::;;
I

t'

"'"

20 40 60 80 100120 140160 180200
T c-Case Temperature-DC

FIGURE 2

PRINTED IN U.S A.

5·262

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRolluCT POSSIBLE.

TYPES 2N5877, 2N5878
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5875, 2N5876
•

150 Watts at 25°C Case Temperature

•

10-A Rated Continuous Collector Current

•

Min fT of 4 MHz at 10 V, 0.5 A

•

62.5-mJ Reverse Energy Rating

*mechanical data

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0.450
0.525 R MAX

oO
~
0

j

---I

0.250

r-

~O'312 MIN~

1.573 MAX

0.675

I

il.65s

0.043 OIA 2 LEADS

4-

.-----Irn=o.038
1.050 MAX

o~

-::t0.225 --=r - 0-',-lt
,,'-'~"\
,-

MAX

~

0.188 R M A X · - ' - - - - - - I
BOTH ENDS
0 135 MAX -1

~:~~~

h

0.205 0.440

- " 'I 1.1

0.420

I

0.200
SEATING PLANE
1 - BASE

I

•

r-

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
...... _ .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1. These values apply when the

base~emitter

2N5877

2N5878

60 V*
60 V*
5 V*

80 V*
BOV*
5 V*

_{10At}_
B A*
-15A-2A*See Figure 1
-150W*-5W---62.5mJ_
-65°C to 200°C*
-65°C to 200°C*
_250°C*_

diode is open-circuited.

2. This value applies for tw <; 1 ms, duty cycle';;;;; 10%.

3. Derate linearly to 2000 C case temperature at the rate of 0.857 wt C.
4. Derate linearly to 2000 C free-air temperature at the rate of 28.6 mwt C.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors.t L ~ 20 mH, RBBl ~ 20 n, RBB2~ lOOn,
VBBl ~ 10 v, vBB2 ~ 0 V, RL ~ 0.1 n, VCC ~ 10 V, ICM ~ 2.5 A. Energy'" IC 2 L12.
III JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which-is also shown.

+This circuit appears on page 5-1 of this data book.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-263

TYPES 2N5877, 2N5878
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(SR)CEO

Collector Cutoff Current

ICEV

•

Collector-Emitter
Sreakdown Voltage
Collector Cutoff Current

ICEO

ICSO

Collector Cutoff Current

IESO

Emitter Cutoff Current

hFE

Stati c Forward Cu rrent
Transfer Ratio

VBE

Base·Emitter Voltage
Collector· Emitter
Saturation Voltage
Small·Signal Common·Emitter
Forward Current Transfer Ratio
Small-Signal Common·Emitter
Forward Current Transfer Ratio
Common-Sase Open·Circuit
Output Capacitance

VCE(sat)
hfe
[hfe[
Cobo
NOTES:

2N5877
2N5878
UNIT
MIN MAX MIN MAX

TEST CONDITIONS
IC = 0.2 A,

IS = 0,

VCE - 30V,
VCE -40V,
VCE - 60V,
VCE - SOV,
VCE 60V,
VCE-SOV,
VCB-60V,
VCS-SOV,
VES - 5 V,
VCE 4 V,
VCE 4V,
VCE-4V,
IB-O.SA,
VCE-4V,
IB 0.5A,
IS -1.6A,

IS -0
IS - 0
VSE - -1.5 V
VSE - -1.5 V
1.5 V,
VBE
VSE - -1.5 V,
IE - 0
IE - 0
IC - a
IC 1 A
IC 4A
IC-SA
IC - 5 A
IC-SA
Ie 5A
IC-SA

See Note 6

VCE = 4 V,

IC= 1 A,

f = 1 kHz

20

20

VCE=10V,

IC = 0.5 A,

f = 1 MHz

4

4

VCS=10V,

IE = 0,

f = 1 MHz

60

80

V

1
1

mA

0.5
0.5
TC 150 C
TC-150C

5

mA

5
0.5
0.5
1

1
35
20
5

See Notes 6 and 7

100

35
20
5

1.6
2.5
1
3

See Notes 6 and 7
See Notes 6 and 7

mA

100
1.6
2.5
1
3

300

mA

300

V
V

pF

6, These parameters must be measured using pulse techniques. tw "'" 300 p,s, duty cycle ~ 2%.

7. These parameters are measured with voltageNsensing contacts separate from the

current~carrying

contacts and located within 0.125

inch from the device body.

*switching characteristics at 25° C case temperature
PARAMETER
Rise Time
Storage Time
Fall Time

tr
t5
tf

TEST eONDITIONst
IC=4A,
IS(1) = 0.4 A,
VBE(off) = -5 V, RL=7.5n,

MIN MAX UNIT
0.7
1
11 5
0.8

IS(2) = -0.4 A,
See Note S

tValtage and current values shown are nominal; exact values vary slightly with transistor parameters.

*JEDEC registered data.
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication

Suggested Standards on

Power Transistors. t V BB l = 24 V, VBB2 = 5 V, Vee = 30 V, Von = 22 V, RBBl = 26 n, RBB2 = 15 n.
+This circuit appears on page 5-1 of this data book.

'MAXIMUM SAFE OPERATING AREA
40

;w ~0.65Im;

20 Nonrepetitive Pulse Operation

«I

1:
~
5

tJ

r'-----r ....::::::- - -:::- ?'t-::
10

"0

'T

E

'i5=

4 ~tw-O,1ms
/' V
r--tw ms-'"

0,5

1
0.7

'~

~

°c

100
80

~

"g

60

0

tJ

§

2N5878-

E

1\

"~

TC';25°C

r- I"\..
~

~

ROJC'; 1.167°CIW

"-

"

40

~

"-

20

:;

..

I-

0.1
10

120

Cl

\

2N5877

0.4

02

B

/

t-----';;;,~i;;,,- /
D·e Operation-'

I

c

.2 140
1;;
Q.

7

6

]

THERMAL CHARACTERISTICS
;: 160

20~

40

7.0
VCE-Collector-Emitter Voltage-V

100

FIGURE 1

0

~

20 40 60 80 100120 140 160 180 200
Tc-Case Temperature-°c

FIGURE 2
PRINTED IN U.S A.

5-264

127

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5879, 2N5880
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5881, 2N5882
•

160 Watts at 25°C Case Temperature

•

15-A Rated Continuous Collector Current

•

MinfTof4MHzat 10V, 1 A

•

90 mJ-Reverse Energy Rating

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

04S0j-1

0.525 R MAX

oO
~
0

r-

~0312MINJI573 MAX

...-------m:0038
0-:-:;;0250

1.0SO MAX

0.188 R MAX
BOTH ENOS

£

MAX

~

h
-1
I

0.135 MAX

~ DIA 2 LEADS
0225

0.675

~:~~~

Q.6s5

I

-,'~ 4: \ J.2-EMITTER
------=r - 0-\-lt ,-.-

0205 0440

-, I

1~
I

0.420
0.200

SEATING PLANE
1 - BASE

l~:~;~

•

DIA

2 HOLiS

ICASE tEMPERATUH

MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5879

2N5880

Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage

-60 V*
-60V*
-5 V·

-80 V*
-80V*
-5 V*

Continuous Collector Current

_{-15Att_
-12 A*f
_-20A _ _
_
-4A* _ _

Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
6.

See Figure 1
_160W* __
5W _ _
_90mJ _ _
-65°C to 200°C*
_65°C to 200°C*
_250°C*_

These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 1 ms, duty cycle < 10%.
Derate linearly to 2000 C case temperature at the rate of 0.915 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C.
This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication Suggested Standards on Power Transistors.~ L ~ 20 mH, RBBl ~ 20 n, RBB2 ~ 100 n,
VSSl -10 V, VBB2 - 0 V. RL ~ 0.1 n, VCC -10 V, ICM ~ -3 A. Energy'" IC2 L/2 •

• JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
4:This circuit appears on page 5-1 of this data book.

~71

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-265

TYPES 2N5819, 2N5880
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(8R)CEO Breakdown Voltage
Collector Cutoff Current

ICEO

ICEV

Collector Cutoff Current

ICBO

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current
Transfer Ratio

VBE

Base-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance

VCE(sat)

•

hfe
Ihfel
Cobo
NOTES:

2NS87S
2NS876
UNIT
MIN MAX MIN MAX

TEST CONDITIONS
IC= -0_2 A,

IB = 0,

VCE = -30 V,
VCE - -40 V,
VCE -60 V,
VCE - -SO V,
VCE = -60 V,
VCE - -SO V,
VCB - -60V,
VCB - -SOV,
VEB=-5V,
VCE -4V,
VCE--4V,
VCE--4V,
IB - -0.7 A,
VCE - -4 V,
IB - -0.7 A,
IB - -2.4 A,

IB = 0
IB = 0
VBE = 1.5 V
VBE-l_SV
VBE - 1_5 V,
VBE - 1_5 V,
IE - 0
IE - 0
IC- 0
IC- -2 A
IC- -6A
IC=-12A
IC- -7 A
IC- -12A
IC- -7 A
IC--12A

VCE = -4V,

IC=-2A,

f = 1 kHz

20

20

VCE = -10V,

IC= -1 A,

f = 1 MHz

4

4

VCB= -10V,

IE = 0,

f = 1 MHz

See Note 6

-60

-80

V

-1
-1

mA

-O_S
-O_S
-S

Tc-150C
TC-1S0C

mA

-S
-0.5
-O.S
-1

-1
See Notes 6 and 7

35
20
5

100

35
20
5

-1.6
-2.5
-1
-4

See Notes 6 and 7
See Notes 6 and 7

mA

100
-1.6
-2.S
-1
-4

600

mA

600

V
V

pF

6, These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle ,s;;;; 2%.
7. These parameters are measured with voltageMsensing contacts separate from the current-carrying contacts and located within 0.125
Inch from the device body.

*switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
Rise Time
Storage Time
Fall Time

tr
ts
tf

IC= -6A,
VBE(off) =

5Y,

IB(1)=-0.6A,
RL = 50,

MIN MAX UNIT
0_7
1
tJs
O.S

IB(2) = 0.6 A,
See Note S

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data.
NOTE 8: These characteristics arB measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication Suggested Standards on
Power Transistors.+ ,VBBl = 23 V, VBB2 = 5 V, Vee = 30 V, Von = -20_5 V, RBBl = 16 il, RBB2 = 10 il.
:t:This circuit appears on page 5-1 of this data book.

MAXIMUM SAFE OPERATING AREA
-40
-20

Nonrepetitive Pulse Operatioritw = 0.05 ms

........

-10

1 =:
u~

~

-2
-1

<

',)--...

tw-O.1 ms
-'t~ :.. '0.5 ms

~

I 'w=l ms~

~

~

~

"0

u

- -0.2
-0.1
-0.07

-0.04
-4

TC';25°C-

-7 -10

2N~879

u

E

-20

-40

"R6JC ';1.0g0CIW

120
100
80
60

~

~
'x
:IE 20

2~58~0

I111

200
.2 180
1;;

.~ 160
Ci
B 140

D-C Operation

.!!-0.7

'1-0.4

THERMAL CHARACTERISTICS

~

40

-70-100

VeE-Collector-Emitter Voltage-V

FIGURE 1

...I-

~

0

o

'"

20 40 60 80 100 120140 160 180 200

Te-Case Temperature-°c

FIGURE 2

PRINTED IN U.S A

5·266

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

127

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5881, 2N5882
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5879, 2N5880
•

160 Watts at 25°C Case Temperature

•

15·A Rated Continuous Collector Current

•

Min fT of 4 MHz at 10 V, 1 A

•

90·mJ Reverse Energy Rating

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~O'312MIN~"573

O.450j-l
0.525 R MAX

oO0
~

0 250

r-

~ DIA 2 LEADS

D~.£

1.050 MAX

MAX
DtA

....l.--

0.188 R M A X : - ' - - - - - - I
BOTH ENDS
0.135 MAX -+j

h

MAX

-;'~

1+

0-';-lt

~:~~~

2-+
0

0205 04~

~---===~

0 , lS MAX

0043 01A :I liA05

- 0 '25

~

o ~~~: ~~~

~OlI2MIN~~IS73

'----0}:"J38

. - -_ _

~~I+

-,- I

~

~I

0.200

lsEA TlNG PLANE
I - lASE

CASE UMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5883

2N5884

Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage

-60 V*
-60 V*
-5 V*

-80 V*
-80 V*
-5 V*

Continuous Collector Current

_f-25At}_

Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3,
4.

1-20 r(*
_-30A_
--6A*See Figure 1
-200W*-5W_90mJ _
_ 65°C to 200°C*
_65°C to 200°C*
_250°C*_

These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 1 ms, duty cycle';;;;' 10%.
Derate linearly to 2000 C case temperature at the rate of 1.14 W/ C.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC.

5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEOEC publication Suggested Standards on Power Transistors.:j: L = 20 mH, RSB1 = 20 0, RSB2 = 100.0.,
VBB1 - 10 V, VBB2 - 0 V, R L - 0.1

n,

VCC - 10 V, ICM - -3 A, Energy""

IC2L/2.

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
+This circuit appears on page 5-1 of this data book.

271

,

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-269

TYPES 2N588~ 2N5884
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
Breakdown Voltage

V(BR)CEO

Collector Cutoff Current

ICEO

Collector Cutoff Current

ICEV

•

ICBO

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current
Transfer Ratio

VBE

Base-En:litter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common· Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open·Circuit
Output Capacitance

VCE(sat)
hfe
Ihfel
Cobo
NOTES:

2N5883
2N5884
UNIT
MIN MAX MIN MAX

TEST CONOITIONS
IC=-0.2 A,

IB = 0,

VCE = -30 V,
40 V,
VCE
VCE - -60 V,
80 V,
VCE
60V,
VCE
VCE - -80 V,
VCB - 60V,
VCB - -80V,
VEB--5V,
4V,
VeE
VCE - -4 V,
VCE - -4 V,
IB - -1.5 A,
VCE - -4 V,
IB - -1.5 A,
IB--4A,

IB - 0
IB 0
VBE - 1.5 V
VBE-l.5V
VBE 1.5 V,
VBE - 1.5 V,
IE 0
IE - 0
IC- 0
Ie - 3A
IC- -lOA
IC- -20 A
IC--15A
IC--20A
IC- -15A
IC- -20 A

VCE = -4 V,

IC=-3A,

f = I kHz

20

VCE = -10 V,

IC= -1 A,

f = 1 MHz

4

VCB=-10V,

IE = 0,

f = I MHz

See Note 6

-60

-80

V

-2

-2

rnA

-1
-1
Tc 150 C
TC-150 C

-10

rnA

-10
1
-1
-1

-1
35
20
5

See Notes 6 and 7

100

35
20
5

-1.8
-2.5
-1
-4

See Notes 6 and 7
See Notes 6 and 7

rnA
rnA

100
-1.8
-2.5
-1
-4

V
V

20
4_
800

800

pF

6. These parameters must be measured using pulse techniques. tw ::: 300 JJs, duty cycle:;;;;;; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

*switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
tr

RioeTime

t.
tf

Storage Time

IC=-10A,
VBE(off) =4V,

Fall Time

MIN MAX UNIT
0.7

IB(2) = 1 A

IB(l) = -1 A,
RL =3 n,

1

See Note 8

I"S

0.8

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
*JEDEC registered data
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication Suggested Standards on
Power Transistor&"+: VBB1 = 25 V, VBB2 = 4 V, Vee = 30 V, Von = -23 V, RBB1 = 11 n, RBB2 = 5 n.
+This circuit appears on page 5-1 of this data book.

MAXIMUM SAFE OPERATING AREA
-40
-20

«

~

u

:;

]

8I

-10
-7

D!C ~!e!a~i~

-2
TC';;2S·C

!i -0.4
-0.2

-~

Dashed Lines Apply
for Nonrepetitive
Pulse Operation

, ,

"

/' I>~

-

,

-7 -10

240

.2

N.

'~

200

"",

is
'~

g
'.g

=

8

80

E
E

40

,

2N5883 ~
2N5884

-20

120

c

1\

'~

1 1 1 .1

R8JC ..; 0.875 C/W

1"'-

Cl

/'

'"

'"

:::;

~

-0.1
-4

THERMAL CHARACTERISTICS

B 160

0.05 ms
0.1 ms
0.5 ms
1 ms

-4

-1
-0.7

--, --

1

-70 -100

-40

VCE-Collector-Emitter Voltage-V

FIGURE 1

0

o

'" '""'-

20 40 60 80 100120140160 180200
T c-Case T emperature-0 C

FIGURE 2
PRINTED IN U.S A.

5·270

12~

TEXAS INCORPORATED
INSTRUMENTS
POST OFFiCE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSiRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5885. 2N5886
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N5883. 2N5884
• 200 Watts at 25°C Case Temperature
•

25-A Rated Continuous Collector Current

•

Min fT of 4 MHz at 10 V. 1 A

•

90-mJ Reverse Energy Rating

*mechanical data
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~.~~~ j 1- t::~~:~:~ADS

0.525 R MAX

oD
~
0

-.--------j~I~,.
LOS. MAX

o~

-

MAX

_-'----D~-A-I

0.188 R MAX
BOTH ENDS

0.135 MAX

--I

h

0.225

1.57', MAX

,If

2-EMITTER

,,'- , "

~

--=r - 0-';-lt ,- <;l- ...- 'I _I'"

0.205 0.440
0.420

I

0.200

SEATING PLANE
1 - BASE

I

I--

l~~:!

DIA

•

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N5885

2N5886

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage

60V*
60V*
5 V*

80 V*
80V*
5 V*

Continuous CollectQr Current

_{25 At}_
20A*
-30A--6A*-See Figure 1
-200W*---5W--_90mJ __
-65°C to 200°C*
-65°C to 200°C*
_250°C* __

Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperatu re Range . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1. These values apply when the

base~emitter

diode is open-circuited.

2. This value applies for tw";;;; 1 ms, duty cycle';;;;; 10%.

3. Derate linearly to 200°C case temperature at the rate of 1.14 W/C.
4. Derate linearly to 2000 C free-air temperature at the rate of 28.6 mW/ C.
5. This rating is based on the capability of the transistors to operate safely in the unclamped-inductive load circuit of Section 3.2 of
the forthcoming JEDEC publication
VSSl

= 10

V, VSS2

= a V,

RL

= 0.1

Suggested Standards on Power Transistors.
fl, VCC

= 10 V,

ICM

=3

+L = 20 mH, RSSl

= 20

fl, RSS2

= 100

fl,

A. Energy'" IC 2 L/2.

*J EDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
tTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
:j:This circuit appears on page 5-1 of this data book.

271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-271

TYPES 2N5885, 2N5886
N-P-N SINGLE-DIFFUSED SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
V(BR)CEO
ICEO

ICEV

ICBO

•

Collector-Emitter
Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current
Transfer Ratio

VBE

Base-Emitter Voltage

VCE(sat)
hfe
Ihfel
Cabo
NOTES:

2N5885
2N5886
UNIT
MIN MAX MIN MAX

TEST CONDITIONS

Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance

See Note 6

IC=0_2A,

IB = 0,

VCE - 30V,
VCE -40V,
VCE - 60V,
VCE - 80V,
VCE - 60V,
VCE-80V,
VCB - 60V,
VCB - BO V,
VEB - 5 V,
VCE=4V,
VCE = 4 V,
VCE-4V,
IB - 1.5 A,
VCE - 4 V,
IB - 1.5 A,
IB = 4 A,

IB - 0
IB - 0
VBE - -1_5 V
VBE - -1.5 V
VBE - -1.5 V,
VSE--1.5V,
IE = 0
IE - 0
IC - 0
IC 3A
IC= lOA
IC- 20A
IC = 15 A
IC- 20A
IC-15A
IC- 20 A

60

BO

VCE=4V,

IC = 3 A,

f = 1 kHz

20

20

VCE = 10V,

IC= 1 A,

f = 1 MHz

4

4

VCB=10V,

IE = 0,

f = 1 MHz

V

2
2

mA

1
1
TC-150C
TC-150 C

10

mA

10
1
1
1

1
See Notes 6 and 7

35
20
5

100

35
20
5

See Notes 6 and 7

1.8
2.5
1
4

500

mA

100

1.8
2.5
1
4

See Notes 6 and 7

mA

500

V
V

pF

6. These parameters must be measured using pulse techniques. tw = 300 IJ,S, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

*switching characteristics at 25°C case temperature
tr
ts
tf

PARAMETER
Rise Time
Storage Time
Fall Time

MIN MAX UNIT
0.7
1
!1s
0.8

TEST CONDITIONSt

1&(2) = -1 A,

IC= lOA,
IB(l) = 1 A,
VBE(off) = -4 V, RL = 3 n,

See Note 8

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

"'JEDEC registered data.
NOTE 8: These characteristics are measured in the circuit of clause 3.3.13.2 of the forthcoming JEDEC publication

Suggested Standards on

Power Transistors.;': VBB1 = 25 V, VBB2 = 4 V, Vee = 30 V, Von = 23 V, RBB1 = 11 n, RBB2 = 5 n.
+This circuit appears on page 5-1 of this data book.

MAXIMUM SAFE OPERATING AREA
40
20

«I

10
7

~

4

~

-+++-I.

D!C ~~e~'~i~~
0.05 ms
0.1 ms
0.5 ms
1 ms

u

j
'0

u

I
~

'"

"

" r:;>

:~

/'

\

200

"~ R~JC 10.~75t)

160

I'" ~

gc 120

i
u°

80

~

'x

40

..

O

:EI

70 100:
10
20
40
VCE-Collector·Emitter Voltage-V

FIGURE 1

'"

E

t-

4

240

~

for Nonrepetitive
Pulse Operation

0.1

.~
3
.;:

/' /'

2N5885 ~
Dashed Lines Apply C- 2N5886

0.2

THERMAL CHARACTERISTICS

~

Cl

1 ETC~25°C
0.7
0.4

, ,
,
,

a

'" "

'"

20 40 60 80 100 120 140 160 180200
TC-Case Temperature-QC

FIGURE 2

PRINTED IN U.S A

5-272

127

TEXAS INSTRUMENTS
INCORPORATED

!=tOST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 215938
N·P·N SILICON POWER TRANSISTOR

RADIATION-TOLERANT TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

Min hFE of 10 at 3 V, 1 A after 1 X 1014 Fast Neutrons/cm 2

•

20 W at 100°C Case Temperature

•

Max VCE{sat) of 0.4 Vat IC = 1 A

•

Min fT of 150 MHz at 5 V, 1 A

description
The 2N5938 transistor offers· a significant advance in radiation-resistant-device technology. Unique construction
techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through
10 14 n/cm 2 .

*mechanical data

Ir

•

ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE

g~;~~

10·32 UNF-2A

.L:::::

0.1697 0lA

01658

·0.189
0.163

0.215
0.320

I.I

01.

III

n r-O'2S0\~
0.2701

0.078 MAX-J

NOTES A ALL DIMENSIONS ARE IN INCHES
B CASE TEMPERATURE IS MEASURED AT A
POINT ON THE INTERSECTION OF THE
STUD AND THE HEX SEATING PLANE.
0046 CIA 3 PINS
0030

l

0.165 MAX

SEATING PLANE

0.480
0.355

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current . . .
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current
Safe Operating Region at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Terminal Temperature 1116 Inch from Case for 10 Seconds

SOV
50V
4V
3A
5A
1A
4A
See Figure 6
20W
. . . 2.5W
_65°C to 200°C
-65°C to 200°C
230°C

NOTES:

1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw " 10 ms, duty cycle < 10%.
3. Derate linearly to 2000 C case temperature at the rate of 0.2 wI C.
4. Derate linearly to 200°C free-air temperature at the rate of 14.3 mW/oC.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of .publication.

670

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-273

TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector~Emitter

ICEO

Collector Cutoff Current

ICES

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage

VCE(sad

Collector-Emitter Saturation Voltage

hfe
lhfel

•

TEST CONDITIONS

Breakdown Voltage

V(BR)CEO

Cobo

Small-Signal Common-Emitter

Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance

IC -lOrnA,

IB - 0,

VCE -30V,

IB-O

VCE = 55 V,

VBE = 0

VCE =30V,

VBE = 0,

VEB - 2 V,
VEB -4 V,
VCE - 3 V,
VCE - 3V,

MIN

See Note 5

MAX

UNIT

500

IJA

50

V
100

TC = 150°C

200

IC-O

10

IC-O
IC - 1 A,

See Notes 5 and 6

30

100
150

IC-3A,

See Notes 5 and 6

20

VCE = 3 V,

IC=3A,

See Notes 5 and 6

1.4

IB - 0.1 A,

IC-l A,

See Notes 5 and 6

0.4

IB - 0.3 A,

IC=3A,

See Notes 5 anc;i 6

0.75

VCE=5V,

IC = 1 A,

f = 1 ! 10 keV (reactor spectrum).
NOTES: 5. These parameters must be measured using pulse techniques. tw = 300 /-ts, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

670

5·274

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

0

'il

a:

20

~
~
u"
"E

~

u

';

'fw

COLLECTOR CURRENT

-

I-

10
7

~

0
II.

vs

COLLECTOR CURRENT
100
E .. 10 keV (Reactor Spectrum)
70
!I> Neutron Fluence (n/cm 2 )
40

~c

4
2

....

1
0.7

l00~V-CE~I=~iv~,I~II~II~I~~I~II~III~~

0



.~

III
<1>= 1.1 X 1014

-

a:

j

-tttmll

~

2 X 1014

~

""

-;;= 5 2 X

...-

.

'1014 I!'..

lill

~2IXli~~~

0.4

J:u. 0.2

STATIC FORWARD CURRENT TRANSFER RATIO

vs

90

See Notes 5 and 6 +--+-+-+J-+I+
IHjltt
III-+-t-l

80 1-----t-H+t+t1+--l--rTC = 1 ~~C -1--1-

r. . . . . .

70 1---+-+-+++I:::I.M....",--::::r----++-IHIf++
Iftl---""d-_l_-i

60
50

\.o-"'-=+~-+......_HH:::Jo;lol-l"--=--t!--t-r-:rC = l00°C--':::-- ~I-

\.--~!-+-++.J.+I+l__+_::bJ_I-H-lllm.ill~J_...d__j
~!- TC= 25°C

"E
~

4O~,~
__ ~~~Rtt~4-~-tI~Llil~-r~

.fu

30 1--1-+-11-+-H:J~.....,"F'_l_TC = _55°C _ _

~

20

~

I-

......--1-

w
J:u. 10~-+-_t_~11~-~1--+-r++++H-~-~

VCE = 3V
TC = 25°C
See Not~, ~ and 6

0.1
0.4
0.001 0.004 0.01 0.04 0.1
IC-Collector Current-A
FIGURE 1

OL-~~~UUliL

4

0.01

10

__~~LL~ll-__L-~

0.1 0.2 0.4
0.02 0.04
IC-Collector Current-A

2

4

FIGURE 2

SASE·EMITTER VOLTAGE
vs
CASE TEMPERATURE

•

COLLECTOR·EMITTER SATURATION VOLTAGE

vs
CASE TEMPERATURE

1.2
V CE =3V
See Notes 5 and 6
1.0

i

0.8

0

>

~

'E

0.6

r::- r--.........

~r-...

III

III

I

w

---....."

0.4

IC= 3A_

:---t--

IC=l~

"

I--

-...

>c

"0

0.4

I!

0.2

g

III

0.2

i
ti

I

~,IC~ 1 A

0.1

w 0.07

r---....

I
1/0.1

UI

~

See Notes 5 and 6

_IS = 0.3A,IC= 3A

..,0

'E
..........

>

:= IS - 3 rnA, IC - 30 mA

0.04

0.02

>i{j

o
-75 -50 -25

0.7

t

r-:-I-I'--.
--IC=30~

~

>I

0
25 50
75 100 125 150
TC-Case Temperature-OC

0.01
-75 -50 -25

0
25
50
75 100 125 150
TC-Case Temperature-OC
FIGURE 4

FIGURE 3

NOTES:

5. These parameters must be measured using pulse techniques.

tw,= 300 ,",S, duty cycle < 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

670

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·275

TYPE 215938
I·P·I SlliCOl POWEI TIAISISTOI
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT INPUT
AND OUTPUT CAPACITANCE

vs
REVERSE BIAS VOLTAGE

500

400

f = 1 MHz

""'-

c.1
"bO

T C ·25°C

(~ 1d)
C

LL

'jI'300

g
.~

a

•

200

100

o

--1

--

Cobo (IE = 0)

7

4

2

10

20

40

Reverse Bias Voltage-V
FIGURE 5

MAXIMUM SAFE OPERATING REGION
10
7

T C <; 100°C

4

, ,

2

1
I!!

S

1 ===D-C OPERATioN
OA

j

0.2

_u

~'-

\

\

,

,,

0.7

'i.

~

\

t w ·l0 ms, d- 0.1 = 10%
tw= 1.0 ms, d= 0.1 = 10%~ L "'>,.
~ = 0.3 ms, d = 0.1 = 10%'-/

,

,

0.1
0.07

0.04

MAXVCEO
II

0.02

I

II

0.01

1

2

4

7

10
20
40
VCE-Collector-Emitter Voltage-V

70100

FIGURE 6

971

5-276

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !SOU •

DALLAS. TEXAS 75222

TYPE 2N5938
N-P-N SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS

TURN-ON and TURN-OFF TIMES
vs
COLLECTOR CURRENT

400
IB(1)

350

. ~tOff\

R

300

Te

250

'\

E

i=

'"c 200

:;:
l:!

.~

150

i\.

'"1'-."

CIl

r--

100
50

o

= 20V
'Ie

= 25°e

See Figure B

c

.J.

L

IC

= IB(2) = 10

~
o

2

-

r-- t-- r--

3

4

•

5

IC-Collector Current-A
FIGURE 7

r--~~---OOUTPUT

INPUT

o---.....

75n

-JVlt>r~

100n

I
I

_ _,......,H

I

+
-=-20V

-

OV

I
I
I
ton

I-- -

-------------9-0%~~

I

I

toff

~

10%~~O~U-T-P-U-T--

FIGURE a-TEST CIRCUIT AND VOLTAGE WAVEFORMS FOR FIGURE 7

NOTES: a. Adjust the input voltege for the desired values of IB(1) and I B(2)'
b. The input voltage is supplied by two generators connected in parallel. Each generator has the following characteristics:
tr < 15 ns,"tf <; 15 ns, Zout = 50 0, duty cycle <; 1%.
c. Waveforms are monitored on an oscilloscope with the following characteristics: tr ..;;;; 15 ns, Rln " 10 MO, Cin < 11.5 pF.
d. Resistors must be noninductive types.
e. The d-c power supplies may require additional bypassing in order to minimize ringing.

670

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5·277

TYPE 2N5938
N·P·N SILICON POWER TRANSISTOR
THERMAL INFORMATION
CASE TEMPERATURE
PEAK-POWER COEFFICIENT CURVE

DISSIPATION DERATING CURVE
25
0_7

OA

\
~

c
... 10

8E
"

E

•

~

5

'i:

.!!!

1\
1\

,t-

o

o

25

50

75
100 125 150
T C-Case Temperature-OC

~

0.2

j

0.1

8"
.>l<

~
~

\

175

0.04

0.01

JW~110%
,·ill _ .-

PTlma.)

Average Power Dissipation
Peak Power Dissipation

R9JA

Junction-to-Free-Air Thermal Resistance

l'T(av)

~

111

fn

0.04

1-e twIT

. / i/,

K=

/'

-tw/dT

1-e

/

tw = Pulse width in ms
d = Duty cycle ratio

T = Thermal ti me constant = 6 ms
0.1

0.2 0.4

2

4

710

20

40

FIGURE 10

Equation No.1-Application: d-c power dissipation, heat sink used.
VALUE

_
TJ(av)-TA
for 100°C <; TC" 200°C
PT(av) - ReJC + ReCHS + ReHSA as in Figure 9

UNIT
W

70
5
65

W
·CIW

Equation No.2-Application: d-c power dissipation, no heat sink

used.

·CIW

R9JC

Junction-ta-Case Thermal Resistance

R9CA

Case-to-Free-Air Thermal Resistance

R9CHS

Case-to-Heat-Sink Thermal Resistance

·CIW
·CIW

PT(av) = TJ(av) - TA for 25°C .. TA" 200°C
ReJA

·CIW

Equation No.3-Application: Peak power dissipation, heat sink

R9HSA

Heat-Sink-to-Free-Air Thermal Resistance

TA

Free-Air Temperature

·C

used.

TC

Case Temperature

·C

"-

TJ(av)

Average Junction Temperature

TJ(ma.)
K

Peak·Power Coefficient

Peak Junction Temperature

17

\v-Pulse Width-ms

SYMBOL DEFINITION
DEFINITION

'"

TITTTT

FIGURE 9

SYMBOL

r/

V

J.~M~125%

0.07
0.07 0.05

0.02

200

50% Duty Cycle

0.50

.. 200

·C

.. 200

·C

• I

_
TJ(max) - TA
(max) - d(ReCHS + ReHSA) + K • ReJC

Equation No.4-Application: Peak-power dissipation, no heat sink

See Figure 10

tw

Pulse Width

ms

'.d

Pulse Period

ms

Duty·Cycle Ratio (tw/tx)

Example-Find ~(max) (design limit!

used.

~(max) =

TJ(max) -TA
d. ReCA + K • R6JC

for 25"C .. TA .. 2Oo"C

Solution:

OPERATING CONDITIONS:

From Figure 10. Peak-Power Coefficient

ReCHS + ReHSA = 4°C/W (From information
supplied with heat sink.)
TJ(av) (design limit! = 200°C

K = 0.151 and by use of equation No.3
~(max)

TJ(max) -TA
d(ReCHS + ReHSA) + K • R8JC

TA=5o"C
d=10%=0.1

PT(max)

tw = 0.6 ms

200-50
W= 130W
0.1(4) + 0.151(5)'

PRINTED IN U.S A

5-Z78

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

11 (annof assume any responsibility for any circuits shown
or represent that they are free from polenl infringement.

670

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5939. 2N5940
N-P-N SILICON POWER TRANSISTORS

RADIATION-TOl ERANT TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

Formerly TIXP39, TIXP40

•

Min hFE of 10 at 4 V, 5 A after 1 X 10 14 Fast Neutrons/cm2

•

Max VCE(sat) of 1 Vat IC

= 10 A

•

40 Watts at 100°C Case Temperature

•

Min fT of 120MHzat5V, 1 A

description
The 2N5939, 2N5940 transistors offer a significant advance in radiation-resistant-device technology. Unique
construction techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences
through 1014 n/cm 2

*mechanical data

•

THE ACTIVE ELEMENTS ARE ELECTRICALLY INSULATED FROM THE CASE
I-EMmER
10-32 UNF_2A

MAX STUD TOROUE:
151H_Las

2-BASE

ALL JEDEC TO - 111
DIMENSIONS AND
NOTES ARE
APPLICABLE

NOTES: A.
B.
C.
D.
E.

Position of terminals with respect to hexagon is not controlled.
Terminals located on true position within 0.030 inch retative to diameter of (an.
This dimension applies 10 the location of the cenler line of the terminals.
The case temperature may be measured anywhere on the seating plane within 0.125 inch of the stud.
All dimensions are in inches unless otherwise specified.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current . . .
Safe Operating Region . . . . .
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds

2N5939
2N5940
80V
70V
80V
70 V
4---- 5 V ______
4----10A~

4---- 20 A----.
4 - - 4 A ______
4--12 A----.
See Figure 7
..-40W----.
4--2W---.
-65°C to 200°C
-65°C to 200°C
4-230°C~

NOTES:

1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for 'tw ~ 0.3 ms, duty cycle'" 10%.
3. Derate linearly to 200°C case temperature at the rate of 0.4 W~C.
4. Derate linearly to 200° C free-air temperature at the rate of 11.4 mW/ C.
·JEDEC registered data. This data sheet contains all applicable registered data in effect at time of publication.

1270

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-279

TYP.ES 2N5939, 2N5940'
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Collector-Emitter
V(8R)CEO
ICED

Breakdown Voltage
Collector Cutoff Current

Ic=30mA,

IB =0,

VCE - SO V,

IB -0

VCE -40V,

IB -0

See Note S

2N5939
MIN

lEBO
hFE
VBE

•

VCE(satl

VCE=6SV,

Collector Cutoff Current

Emitter Cutoff Current

Ihfe l

SOO

VBE -0

VCE -40V, VBE -0,

TC = IS0°C

VCE =35V, VBE -0,

TC -IS0°C

IC-O

200

200

IC-O

1

1

IC-SA

VCE =4 V,

IC-SA

VCE =4 V,

Ic= lOA

Collector-Emitter

IB=O.SA,

IC=SA

Saturation Voltage

IB-l A,

IC= lOA

VCE=5V,

IC= 1 A,

f = 1 kHz

VCE =SV,

IC= 1 A,

f = 20 MHz

Forward Current Transfer Ratio

2

VEB -3 V,

Ic-l0A

Small-Signal Common-Emitter

2

VEB-SV,
VCE -4V,

See Notes 5 and 6

40

200

40

3S

See Notes Sand 6

mA
/lA
mA
/lA
mA

200

3S
1.2

See Notes Sand 6

UNIT
V

2

VCE -4 V,

Forward Current Transfer Ratio

70

SOO

Transfer Ratio

Small-Signal Common-Emitter
hfe

MAX

2

-Static Forward Current

Base-Emitter Voltage

MIN

80

VCE =7SV, VBE =0
ICES

2N594O

MAX

1.2

1.6

1.6

0.6

0.6

1

1

30

30

6

6

V
V

*post-irradiation electrical characteristics at 25°C case temperature
TEST CONDITIONS

PARAMETER
Static Forward Current
hFE

Transfer Ratio

VCE =4 V,

IC=SA,

See Notes Sand 6

RADIATION

MIN

FLUENCEt
1 X 10 14

n/cm 2

MAX

UNIT

10

t Radiation is fast neutrons (n) at E ;;;. 10 keV (reactor spectrum)~

*thermal characteristics
PARAMETER
R/JJC

Junction-to·Case Thermal Resistance

R/JJA.

Junction-to-Free·Air Thermal Resistance

NOTES:

5. These parameters must be measured using pulse techniques.

MAX
2.S
87.5

UNIT
°CIW

'tw = 300 IJS, duty cycle"';;; 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
*JEDEC registered data.

1270

5-280

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N5939, 2N5940
N-P-N SILICON POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONS:!:

ton

Turn-On Time

IC=5A,

IB(1) = 500 rnA,

toff

Turn-Off Time

VBE(off) = -5 V,

RL = 5

:I: Voltage and current values shown are

TYP

IB(2) = -500 rnA,
See Figure 1

n,

UNIT

135

ns

800

nominal; exact values vary slightly with transistor parameters,

PARAMETER MEASUREMENT INFORMATION

,---...-----0

OUTPUT

o----...-Wl...-1.-"-"1H
30n

INPUT

50n

5n

+

-=-

11

25V

TEST CIRCUIT

INPUT

OUTPUT

VOLTAGE WAVEFORMS
FIGURE 1

NOTES:

a. The input waveform is supplied by a generator with the following characteristics: tr

~

15 ns, 'tf" 15 ns, Zout

=

50 fl.,

tw =

10 JJs,

duty cycle" 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: tr <;. 15 ns, Rin ;;> 10 Mil, Cin <:; 11.5 pF.
c. Resistors must be noninductive types.
d. The d-c power supplies may require additional bypassing in order to minimize ringing.

1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-281

TYPES 2N5939, 2N5940
N-P-N SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
STATIC FORWARD ~URRENT TRANSFER RATIO

STATIC FORWARD CURRENT TRANSFER RATIO
vs

vs

NEUTRON FLUENCE
200

120

~aU~l~': 0

.g

co 100
a: 70

t-- V CE : 4 V
0

;;; 100

cr

Ii;

c:

~

E 40

f-

f"\

~

c:

20

u"

"E

~

7

0

.,co

.u

4

enI

•

w
u.

.c:

·2

"~
"

l-

V

80

u 60

~

10

u.

TC: 25°C

f-- See Notes 5 and 6

~c:

1;;

~

COLLECTOR CURRENT

"

V

E

~

~VCE:4V

0
u. 40

~ IC: 5A
f-- E ;;'10 keY (Reactor Spectrum)
f-- TC: 25°C
See Notes 5 and 6

I I 1111111

I I I 111111

o
0.Q1

0.04

-Neutron Fluence-n/cm 2

FIGURE 2

4

710

20

FIGURE 3

BASE·EMITTER VOLTAGE

COLLECTOR·EMITTER SATURATION VOLTAGE

vs

vs

COLLECTOR CURRENT

1.4

0.1 0.2 0.4
2
I C-Collector Current-A

COLLECTOR CURRENT

>

.
I

1.2

I)

>

~
o

1.0

0.7

>

0.4 f - TC: 25°C
f - See Notes 5 and 6

c:

.g

:I

~IC

'"

:I
'0

r--I B : 1O

..L

/

E

aco

>

~ 0.8

E

~ 0.6

l-

1--1-

I--

0.2

Ul

~

E

)1

0.1

"! 0.07

B
u

iG

aJ

I

.!!

wO.4

~

'0 0.04
u

V CE : 4 V
0.2 f -

o

0.Q1

]0.02
w

TC: 25°C

I Sj"

tNilii

0.04

-~

t--

I

anj 6

U

1I

>

0.1 0.2 0.4
2
IC-Collector Current-A

4

710

20

0.Q1

0.01

0.04

FIGURE 4

NOTES:

0.1 0.2 0.4
2
I C- Collector Current- A

4

7 10

20

FIGURE 5

5. These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle'" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

1270

5·282

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N5939. 2N5940
N-P-N SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE
vs

500

,

COLLECTOR BASE VOLTAGE

600

~

IE'

'"

~~

= 0.1

f

to 1 MHz -

I-

T C = 25°C

r--..

"~ r-...
"

I'-..

""--. ...........
100

o
1

2

7

4

10

20

40

V CB-Collector-Base Voltage-V
FIGURE 6

•

MAXIMUM SAFE OPERATING AREA

40
T C';;l00oC

20


.-1.

See Notes 5 ard 6

illl

"

2

~

!
:-

TC"

40

IIIIII

20

Tc-~_C

0
-0

.,

- ---- ---

4

-0. 2

111111;
-0.2 -0' -, - -

~

~ 75

7' 0 2- 0 4 0

50

25

Ie-Collector Current-A

•

M-+-:c-

-'B"'-1A. IC .. -tOA-

,

~

-0, 7

j

-0. 4

'. -

Ffr-

..

'

7

-0.0 4

O.6A,le"

~6A=

=

F=

10mA,le

'OOmA=:

F

i

iii -0.02
~

,

,50 175

-0.0 75

- 50 - 25

0
25 50 7 5 100 126 150 175
T c-Ca. Temperature-·C

FIGURE 4

FIGURE 3

I-

IN:I~5and6

2

-

-

2

i-D.
,
j,' ~~

-6A

0
25 50 75 100 125
Tc-C8saTemperature-oC

- -

i

I

IC=-7ot- ' -

t--

-0.6

vs

CASE TEMPERATURE

See1Notes 5 and 6

t--

t
•:-0.

2506

vc~--~v

-

·1-0.•

1IIIIi
60

-1. 0

COLLECTOR-EMITTER
SATURATION VOLTAGE

BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE

FIGURE 5

6. These parameters must be measured using pulse techniques. t w "" 300 /J.S, duty cycle" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body,

NOTES:

MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

MAXIMUM COLLECTOR CURRENT

COLLECTOR-EMITTER VOLTAGE
-100
-70

«

-20

"

5

-10
-7

.!!

-4

~

U

D-C Operation

-40

.Lc

TC" 50"C

·x"co
::!;

-1
-0.7

J:?

-0.4

I

-20

5

-10·

U

U

...........

\.

i\

E
"
E

·x.,

FIGURES·

\

-4

"""
VBB2=4V

.vBB2 = 0

i'-..
1\

::!;

-2

-70 -100
-20
-40
-7 -10
VCe-Coliector-Emitter Voltage-V

'll"

1

-0.2

-4

6'0

-7

1>

-0.1

'\'I'

.!!

0

TC= 100"C
-2

«
.Lc

~
u"

U

0
u
E
E

UNCLAMPED.INDUCTIVE LOAD

-40

-,.

0:1

VCC=20 V
RBB2= lOOn
Tc = 25°C
See Note 8

0.2

seelNrr

0.4 0.7 1
2
4
L-Unclampad Inductive Load-mH

7 10

FIGURE 7

NOTES: 7. Above these points the safe operating areas have not been defined.
8. This curve Is based on the capability of the transistor to operate safely In the circuit of Figure 2 ,.,Ith..RBB.l '" 10' VBB.l/lc.
PRINTED IN U.S.A.

5-288

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

11'11

Tf (onnot assume any responsibility for any tiHuits shown
or represent thar they are free from palenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 2N6128
N-P-N SILICON POWER TRANSISTOR
HIGH-FREQUENCY, HIGH-POWER TRANSISTOR WITH
COMPUTER-DESIGNED ISOTHERMAL GEOMETRY
•

40 mJ Reverse Energy Rating with IC = 20 A and 4 V Reverse Bias

•

Isolated Stud Package

•

100 W at 50°C Case Temperature

•

Min fT of 50 MHz at 5 V, 2 A

•

Designed for Complementary Use with 2N6127

*mechanical data
ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE

•
AU. DIMENSIONS ARE IN INCHH

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas. . . . . . .
Continuous De~ice Dissipation at (or below) 50°C Case Temperature (See Note 3)
Continuous Device Dissipation at HXtC Case Temperature (See Note 3)
Unclamped Inductive Load Energy (VBE(off) = 0, See Note 4). .
Unclamped Inductive Load Energy (VBE(off) = -4 V, See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Terminal Temperature 1/B Inch from Case for 60 Seconds
NOTES:

100 V
80V
6V
10A
20A
3A
See Figures 6 and 7
100W
67W

50mJ
40mJ
-65°C to 200°C
-65°C to 200°C
300°C

1. This value applies when the base-emltter.I

.....

TC" 150°C

0'--

1j,

•
~

c

li
~

TC" 26°C

0

1

IIIII

0

I--

t

TC" _55°C

~

IIIII

0
0.1

0.2

02

,

7 10
0.4
'e-Collector Current-A

'I'-- .........

0, 7

g

o.

2

-

-See Notes 5 and 6

7

'B"'O.OlA.IC"O.1A

IC~IO.ll

See Notes 5 and 6
0.2

20

--IIBiO.5i·'CI~5i

1

~

v

'B"'lA,IC""OA

•

-~ r--

0.'

o

40

75

2

I
50 -25

0
25 SO 75 100 125 150
TC-Case Temperature-OC

FIGURE 3

0.0 1
75

175

25

50

0 25 50 75 100 125 150 175
T c-Case Temperature-°c

fiGURE 5

FIGURE4

5. These parameters must be measured using pulse techniques. tw

NOTES:

l'

~

oA

le,

r----....
VeE '"5

1

1l -

----- r--- r--'--i"- !'--

0.6

>

IIIII

0

•

1.2

II
II

.~ 180

'"~ 160

vs
CASE TEMPERATURE

CASE TEMPERATURE

COLLECTOR CURRENT
200

COLLECTOR-EMITTER
SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

= 300 jJs. duty cycle ~ 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within
0.125 inch from the device body.

MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

vs

COLLECTOR-EMITTER VOLTAGE

UNCLAMPED INDUCTIVE LOAD
40

100
70

20

"

10
7

U

(;

1:)

.!!!

D-C Operation

40

«
.!.

"~

«
.!.

"~
U"
(;

TC'; 50°C

4

.!!!

TC = 100°C

..........

'0

2

~

0.7

~

5:?

0.4

5:?

E
E

'\

"

'x
I

10

\

t'--- "

VBB2 =0
t

r---

$0

"

..

'x

2

0.2
0.1
4

40
20
7
10
VCE-Collector-Emitter Voltage-V

70

100

FIGURE 6

1\

4

I

1
0.1

'»./

"-

7

u

\

E
E

.

20

1:)

'0

U

MAXIMUM COLLECTOR CURRENT

vs

VCC=20V
RBB2 = 100
TC = 25°C
See Note 8
0.2

II
VBB2 =4 V

n

0.4

"-

0.7

1

r-......

seelNr(

2

4

7

10

L-Unclamped Inductive Load-mH
FIGURE 7

NOTES: 7. Above these points the safe operating areas have not been defined.
8. This curve is based on the capability of the transistor to op~rate safely in the circuit of Figure 2 with ASB 1

::::::I

10 • VSS1/1 C.

PRINTED IN U.S.A.

5·292

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS '75222

1171

11 cannot assume any responsibility for ony circuits shown
or represent thaI they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
• 100-mJ Reverse-Energy Rating
• 30-A Rated Continuous Collector Current
• 150 Watts at 100°C Case Temperature
• Min fT of 75 MHz at 10 V, 1 A
*mechanical data
2N6270,2N6271

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
~j

0.525 R MAX

oAa
~

1- ~O'312MIN~1'573

.-------+QFO.038
0.250

1.050 MAX

~DIA 2 LEADS

o~

~

MAX
DIA

-*--

0.188 R MAX'~----- I
BOTH ENDS
0.135 MAX -l

h

~--=r
0.205
~

0.675 1. 177
0.655

~

2-EMITTER

-,'.!" '\ --.l
- 0-\-1: ,-0,-

0.420

"t
I

0.200

SEATING PLANE

ALL DIMENSIONS ARE IN INCHES

1.!!!.

MAX-l

I

~

I

t-

t

0.161 DIA

Q.i5i

2 HOLES

CASE TEMPERATURE

I-SASE

•

MEASUREMENT POINT

2N6272,2N6273
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALLJEDEC TO-53 DIMENSIONS

~

J~
~
, J~
"'"

AND NOTES ARE APPLICABLE

~.'"

• _+ __

~
-~Il:lll

CASE TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF FLAT SURFACE WITHIN 0.125" FROM
STUD

ALL DIMENSIONS ARE IN INCHES

*absolute -maximum ratings at 25°C case temperature (unless otherwise noted)
2N6270
2N6272

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas . . . . . .
Unclamped Inductive Load Energy (See Note 3 and Figure 7)
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range . . . .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1. This value applies when the base-emitter diode is open-circuited.
2. This value applies for tw <; 0.3 ms, duty cycle'" 1 0%.
3. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L
VBB2

=0

V, RS

= 0.1 n.

VCC

= 20 V,

2N6271
2N6273

100V
120V
BOV
100V
BV
BV
_30A_
_40A _
10A_
_
See Figures 6 and 7
-100mJ-_150W_
-5W-65°C to 200°C
_65°C to 200°C
_300°C_

= 1 mH, RSB2 = 100 .0,

Energy'" IC 2 L/2.

4. For operation above 1 000 C case temperature, refer to Dissipation Derating Curve, Figure 8.
5. For operation above 250 C free-air temperature, refer to Dissipation Derating Curve, Figure 9.
"'JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication ..

1071

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-293

TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

2N6270

2N6271

2N6272

2N6273

UNIT

MIN MAX MIN MAX
Collector-Emitter
V(SR)CEO
ICEO

Collector Cutoff Current

ICES

Collector Cutoff Current

Emitter Cutoff Current

IESO
hFE
VSE
VCE(sat)

•

Ic=30mA,

Sreakdown Voltage

IS = 0

VCE = 50 V,

IS = 0

100

V

1
1

VCE -100V,

VSE - 0

VCE = 120V,

VSE = 0

VCE =60V,

VSE = 0,

1
TC = 150°C

2

2

VES = 5 V,

IC = 0

0.1

0.1

VES = 8 V,

IC = 0

1

1

VCE=4V,

IC = 15A,

See Notes 6 and 7

20

VCE = 4 V,

IC=30A,

See Notes 6 and 7

10

100

20

VCE =4 V,

IC = 30A,

See Notes 6 and 7

2.2

2.2

IS = 1.5 A,

le= 15A,

See Notes 6 and 7

1

1

Saturation Voltage

IS = 6A,

IC=30A,

See Notes 6 and 7

2

2

VCE = 10V,

IC = 1 A,

f = 1 kHz

30

30

VCE = 10 V,

IC= 1 A,

f = 5 MHz

15

15

Common-Emitter

mA

100

Sase-Emitter Voltage

Forward Current Transfer Ratio

mA

10

Collector-Emitter

Small~Si9nal

mA

1

Transfer Ratio

Forward Current Transfer Ratio

Ihfe l

VCE=40V,

80

Static Forward Current

Small-Signal Common-Emitter
hfe

See Note 6

IS = 0,

V
V

*JEDEC registered data

switching characteristics at 25°C case temperature
2N6270

2N6271

2N6272

2N6273

TYP

TYP

IS(2) = -1.2 A,

0.5

0.5

See Figure 1

1.3

1.3

TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC = 15 A,

IS(1) = 1.2 A,

toff

Turn-Off Time

VSE(off) = -6.3 V,

RL = 2

n,

UNIT

!-IS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR CURRENT

CASE TEMPERATURE

250
.2

"•

0:

">-~
E

•5

u

175
150

T:rm

.

~

>

--TC; 'jiC

75

25

E

">~

I II
,

"

0

TC;-~5Ie

0.1

0.2 0.4 0.7 t

4

7 10

20

40

FIGURE 1
NOTES:

1.2

~
>

0.8

r-- 1=

-0

>

---

Ie = 30 A

-----

~

r--t:h- - - -

0.4

-75 -50 -25 0

25

"1 I I
See Notes 6 and 7

=

0.7

~

0.4

~

0.2

"'j

0.1
0.07

;3

0.04

~

0.02

E

-

f-

== F

I B - 1.5 A, Ie - 15 A

18

=0.1

A, Ie

1A

I

W
u
> 0.01

1 1

16'" 6 A, Ie '" 30 A

_

.2

~

1 1

'--_'-_

Ie-Collector Current-A

~

1

1.6

E

"'~

Te '" 25°C

50

2.0

I

1-1+

100

.~

VeE' 4 v
71
See Notes 6 and 7

See Notes 6 and 7

I Ii

125

1

~

"

CASE TEMPERATURE

>I

2.4

VeE"" 4 V

225
200

COLLECTOR-EMITTER SATURATION VOLTAGE

"

50 75 100 125 150175

Te-Case Temperature-OC

FIGURE 2

-75-50 -25

0

-

25 50 75 100 125 150 175

Te-Case Temperature-°c

FIGURE 3

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 2%.

7. These parameters are measured with voltage-sensing contacts separate 'from the current-carrying contacts and located within 0.125
inch from the device body.

1071

5·294

TEXASINCORPORATED
INSTRUMENTS
POST OFF1CE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

1N914

Von = 25.5 V - - -r~90%

56 fl

R L = 2 fl

RBB2 = 4 fl

620 pF
30 fl

VBB2 =
6.3 V

Vgen
L -______________________

1/LF

-=-

+

OV-J1n'~

INPUT
-6.3 V

~~
I
\.-toff..J

:,
-:L

:;-0%'

OUTPUT

90%

+

-=-

••

- I 10%
--i ton I-

Vec

=

31 V

~~--

;g'

VBB1 '" 27 V
ADJUST FOR

Von = 25.5 V AT
INPUT MONITOR
TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. Vgen is a -30-V pulse (from 0 V) into a 50-0. termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle ~ 2%.

~

15 ns, tf

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin
D. Resistors must be noninductive types.

~

~

15 ns, Zout = 50
10 Mil, Cin

:0;;;;;

n,

tw

= 20

Jls.

11.5 pF.

•

E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 4

INDUCTIVE LOAD SWITCHING

VCE MONITOR

-;
L= 1 mH

•

VCC=20V-=-

=

I

I

I

-7i\- - _. - -- -i 7i\--

A .:

CURRENT

o-Y:~

IC MONITOR

V(BR1CER

VOLTAGE

0.1 fl

,I

......---.- 100 ms -----,
I,

COLLECT6~·1

COLLECTOR
RS

(See Note Al

r----I I
L-J

INPUT
0-,
VOLTAGE
_~
-10V - I
I

TUT

50 fl

tw '" 0.7 ms

i

20V

;

1---

I

i-

- - - - -

I

~

--

1';~

I

--

I

I
I
1

VCE(satl VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width is increased untillcM

= 14.1

A.

FIGURE 5

1071

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

5·295

TYPES 2N6270, 2N6271, 2N6272, 2N6273
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

MAXIMUM COLLECTOR CURRENT

vs

vs

COLLECTOR-EMITTER VOLTAGE

UNCLAMPED INDUCTIVE LOAD

100

1

20

u

5

10

~

4

;3

2

~

...

.!!!

E
E

"
'x

..

I

40

c:

:::iE
I
:::iE

E

40

~tw-300tls,d=0.1 =10%

I

,

f'i..J. I

l J II [It- ~

1...c:

,

7

~

VCC=20V
10 =RBB2 = 100 n
7 =TC = 25°C
-See Figure 5

0

I

1

"0
u

\

E
E

\

0.4

2

7 10

4

20

40

\

\

.

See

:::iE

Not~ 8 - . /

2

I

0.1

~\

\

'x

:::iE

E

2N6270
2N6272

0.2

r--

4

"

2N6271
2N6273

0.7

11'1./

u

1;
.!!!

TC";; 100°C

20

I

"

D-C Operation

I

....... ~OO 1.1

70100

200

0.1

0.2

VCE-Collector-Emitter Voltage-V

0.4

0.7

1

2

4

L-Unclamped Inductive Load-mH

FIGURE 6

FIGURE 7

NOTE 8: Above this point the safe operating area has not been defined.

THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

~o

.~

'iii
C
.s:2l
CI>

C
~

o

"c:
8
E
"
E
.~

..

'x

!

160
140

-

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

,

=rc:

..

.;:::;

c.

. " ' \ROJC";; 0.67°CIW

'iii
i5

120

CI>

""" "'\

100

"

.;;

60
40

"'"0

"

~

0

[\..

o
120

140

"'" "'"

4

160

3

c:
.;:::;
c:

" "\

100

ROJA ..;; 35°CIW

C

20

80

5

CI>

[\..

80

6

0

180

200

Tc-Case Temperature-oC

u
E
"E

2

"" ~

"" "'-

.

'x

:::iE
I
IQ.

0

o

25

50

75

100 125

"-

""

150 175 200

TA-Free-Air Temperature-oC
FIGURE9

FIGURE 8

PRINTED IN U SA

5-296

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE !lOX 5012 •

DALLAS. TEXAS 75222

1071

TI cannol anume any responsibility for any circuits shown
or reprelent 'hat they are free from pafent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND MILITARY APPLICATIONS
• 100-mJ Reverse-Energy Rating
• 30-A Rated Continuous Collector Current
• 200 Watts at 100°C Case Temperature
• Min V(BR)CEO of 300 V (2N6323, 2N6325)
*mechanical data
2N6322, 2N6323
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
0450

O

0.525. MAX

o

o~

1_1 ~

~/.:"4

~---------=r

0 1,-1+

MAX

~

-'-_-===.c
0135 MAX

0205 0 ....0

I

- ...- I

0420

11

-i

1197
O. 67S

~_-,-o:.::.,,_o
o D04J D1A '1 LEADS
o~rn:o;3'
1.0SO MAX

0.188 • MAX
80TH ENDS

~

IS73MAX

0312MIN

,

1'""'i'77

0.655

~2-lMI"ER
•

=---r

l~:i~: DIA
'2 HOLES

0.200

rsEATlNG PLANE

1 -lASE

CASf TfMPERATURE
MEASUREMENT POINT

•

ALL DIMENSIONS ARE IN INCHES

2N6324, 2N6325
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-63 DIMENSIONS
.
~
.,.. AND NOTES ARE APPLICABLE

~
~rbJ:~
~02.o

I

'

CASE TEMPERATURE MEASUREMENT POINT IS UN-

00

DERSIDE OF FLAT SURFACE WITHIN 0.125" FROM

--I~~

STUD
ALL DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N6322
2N6324

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas
Unclamped Inductive Load Energy (See Note 3 and Figure 7)
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 4)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)
Operating Collector Junction Temperature Range . . : .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

2N6323
2N6325

300 V
400 V
200 V
300 V
5V
5V
_30A ___
-40A---10A--See Figures 6 and 7
-100mJ-200W-5W-65°C to 200°C
-65°C to 200°C
-230°C-

1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for tw " 0.3 ms, duty cycle" 1 0%.
3. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L = 30 mH, RBB2 = 100 il,
VBB2 ~ 0 V. RS ~ 0.1 n, VCC ~ 20 V, Energy'" IC 2 L/2.
4. For 'operation above 1 oaoc case temperature, refer to Dissipation Derating Curve, Figure 8.
5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curve, Figure 9.

'" JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication ..

172

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-297

TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

2N6322

2N6323

2N6324

2N6325

UNIT

MIN MAX MIN MAX
Collector-Emitter
V(BR)CEO

Breakdown Voltage
Collector Cutoff Current

ICED

Collector Cutoff Current

ICES

Emitter Cutoff Current

lEBO

Static Forward Current
hFE

Transfer Ratio
Base-Emitter Voltage

VBE

Collector-E mitter
VCE(sat)

•

Saturation Voltage
Small-Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter

Ihfe l

Forward Current Transfer Ratio

IC= 30mA,

IB = 0,

See Note 6

VCE - 100 V,

IB - 0

VCE - 150V,

IB - 0

VCE = 300 V,

VBE-O

VCE = 400 V,

VBE - 0

VCE - 200 V,

VBE - 0,

200

300

V

5

mA

5
2
2
TC - 150°C

10
5

VEB = 5 V,

IC - 0

VCE = 5V,

IC- 5A

I

40
See Notes 6 and 7

VCE = 5 V,

IC = 20 A

VCE = 5 V,

IC= 30A

VCE = 5 V,

IC-30A,

IB = a.5A,

IC=5A

5

150

30

12

See Notes 6 and 7

IB = 2A,

IC = 20 A

IB = 6A,

IC= 30A

VCE = 10V,

IC= 1 A,

f = 1 kHz

VCE = 10V,

IC= 1 A,

f=

6
2.5

2.5

0_5

0.5

1.5

1_5

3

3

35

5 MHz

mA

150

12

6
See Notes 6 and 7

mA

10

V
V

30

2

2

*JEDEC registered data

switching characteristics at 25°C case temperature
TEST CONDITIONSt

TYP

ton

Turn-On Time

IC= 20A,

IB(1) = 2A,

0.8

toff

Turn-Off Time

VBE(off) '" -3 V,

RL = 2

PARAMETER

IB(2) = -2A,

n,

See Figure 4

UNIT
IJs

3

tVoltage and current values shown are nominal; exact values vary slightly with transistor'parameters.

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR·EMITTER SATURATION VOLTAGE

'"

COLLECTOR CURRENT

"

COLLECTOR CURRENT

COLLECTOR CURRENT
VeE =5 V
Tc" 26 c C
See Notes 6 and 7

1.8

-

i

>I

1.6

.,

1.2

~

0.8

!:i:
!

\

20

~

>
10

j

VeE =·5 v
Tc = 25°C
See Notes 6 and 7

:3

~I

1.'

..,.

.~E

w

NOTES:

10

20

40

1.4
1.2

~ 0.'

0.2

0.2

0.1

0.4

10

Ic-Collector Current-A

FIGURE 1

FIGURE 2

40

100

~

Ie "" 10

0.8

0.'

Ie-Collector Curtent-A

I

'8

j

!

r- T6! ~~j6111

See Notes 6 and 7

0.6

o
0.1 0.2 0.4

1.8
1.6

0.6

°0.1

1#
0.'

10

~

=

5

'f III
40

100

Ie-Collector Current-A

FIGURE 3

6. These parameters must be measured using pulse techniques. tw = 300 J.ls, duty cycle < 2%.
7. These parameters are measured with voltage*sensing contacts separate from the current·carrying contacts and located within 0.125
inch from the device body.

172

5·298

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

lN914

OUTPUT
MONITOR

5611

Von =41 V
INPUT
RSS2=211
620 pF
3011

VSS2= __ 3V
- +

~~
I

'--toff..J

----=::1
10%t90%'----.;;----1

OUTPUT

+

=- VCC=40V

~------------------------~--~+
VSS1",45V
ADJUST FOR
Von =41 V AT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

--r~90%

OV::J1£W. - -3V
1 10%
--I ton j.--

A. Vgen is a -30-V pulse (from 0 V) into a 50-0 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr <; 15 ns,

'tf < 15 ns, Zout = 50 Of tw = 20 iJ,s,
duty cycle .. 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr EO;; 15 ns, Rin ~ 10 MO, Cin '" 11.5 pF.

D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.

•

FIGURE 4

INDUCTIVE LOAD SWITCHING

-t
L=30mH

J.,-tw "'4ms

(See Note AI

INPUT 0
VOLTAGE
-10V

I

100 ms

I

I

- - T~-­
i)------f"" i)-

COLLECT;:S A - l - X - - - CURRENT

5011

0-("

V(BRICER-I-COLLECTOR
VOLTAGE

I
I
I
I

VSSl = 10V

-----1-I
I
I
I

20V
VCE(satl-

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width Is increased until leM

= 2.58

A.

FIGURE 5
172

TEXASINCORPORAT'ED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-299

TYPES 2N6322 THRU 2N6325
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD
100

«I

«I

~:::J

~

....c

U

o

o

40

5
u
0

20

0

10

u

u

E

E
:::J
E

:::J

E

'xco

'xco

•

....c

t)
2

t)

2

~

~

u

!:?

I

I

VCC 20 V
RBB2 -100 n
TC = 25°C
See Figure 5

70

"
,",<00

~v'

7
4

'" /

2
,se,e

100

1
0.1

400 1000

0.4

Irm~-./
4

10

40

100

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE7

FIGURE 6
NOTE 8: Above this point the safe operating area has not baen defined.

THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

~

g
.;;
~

.~

is
fl
.;;:
Q)

o

FREE-AIR TEMPERATURE
DISSIPATION DERAtiNG CURVE

250

~

225

o
.;;

200

.~

6

c

~

""'"

175
150
125
100
75
50

120

..g

4

Q)

"" "" '"

o
100

~r--.

is
fl
.;;:

ROJC';; 0.5°C/W

25

80

5

140

::>

c
.;;
c

8

"" '"

160

180

Tc-Case Temperature-OC
FIGURE 8

"'"

o

3

2

ROJA .;; 35°C/W

""

E
::>
E

'"

200

~

~

1:

"" '" "
"-

'xco

o

o

25

50

75

100 125 150 175 200

T A-Free-Air Temperature-OC
FIGURE9

PRINTED IN U.S.A.

5-300

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

172

11 (on not assume ony responsibility for any circuits shown
or represent thol they ore free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N6329, 2N6330, 2N6331
•

200 W at 25°C Case Temperature

•

30-A Rated Collector Current

•

200-mJ Reverse Energy Rating

•

High SOA Capability, 20 V and 10 A

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

D'S25

~
O
o

R MAX

0

-,-----~-:~-~~-j--1rn=1-~~;~~AM~:~AD5
1.050 MAX

MAX
DIA
...l...--

0.188 R M A X · - ' - - - - - - I
BOTH ENDS
0.135 MAX-1

h

1.57: MAX

, I'~

o-::;-.:f

0.225
0.205

---..::r - 6-\-lt

\

-,-"
I '1

0.440
0.420

I

0.200

SEATING PLANE
1 _ BASE

I

•

2- EMlnER

~

,-.-

lO.161 DIA
0.151

'2 HOLES

r-CASE TEMPERATURE

MEASUREMENT POINT

ALL DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
.. _ . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . , . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at 100°C Case Temperature (See Note 3) I. . . .
Continuous Device Dissipation at (or below) 25°C F~ee-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

2N6326 2N6327 2N6328
60 V
80 V
100V
60V
80V
100V
5V
5V
5V
30A
40A
10 A
-See Figures 3 and 4 ..
200W
•
...---114 W -----<...
•..~--5W---··
_200mJ
..
_-65°C to 200°C __
_
-65°C to 200°C..
250°C
..

..
.

.
.

.

1. These values apply when the base-emitter diode is open-circuited.
2. This value applies for "tw ~ 1 oms, duty cycle';;;:;; 10%.

3. Derate linearly to 200°C case temperature at the rate of 1.14 W/OC or refer to Dissipation Derating Curve, Figure 5.
4. Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC or refer to Dissipation Derating Curve, Figure 6.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100
VBB2 ~ 0 V, RS ~ 0.1 n, VCC~ 20 V. Energy'" I C2L12.

n,

*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

172

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-301

TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO

ICEO

ICES

lEBO

•

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

Emitter Cutoff Current
Static Forward Current

hFE

Transfer Ratio

VBE

Base-Emitter Voltage

VCE(sat)

Collector-Emitter Voltage
Small-Signal Common-Emitter

hfe

hel
NOTES:

Forward Current Transfer Ratio
Small-Signal Common-Emitter

Forward Current Transfer Ratio

TEST CONDITIONS
Ic=30mA,

IB= 0,

VCE-30V,

IB - 0

VCE 40 V,
VCE - 50 V,

IB 0
IB - 0

2N6326

2N6327

2N6328

MIN MAX MIN MAX MIN MAX

See Note 6

60

80

100

UNIT
V

1
1

mA
1

0_5

VCE - 60 V,

VBE - 0

VCE = 80 V,

VBE-O

VCE = 100 V,

VBE=O

VCE - 30 V,

VBE - 0,

TC - 150°C

VCE - 40V,

VBE - 0,

TC-150°C
TC - 150°C

0_5
0.5

VCE - 50 V,

VBE - 0,

VEB - 5 V,

IC- 0,

VCE - 4 V,

IC-5A

VCE - 4 V,

IC-15A

VCE = 4 V,

IC- 30A

VCE - 4 V,

IC - 15 A

VCE - 4 V,

IC- 30A

5

mA

5
5
0.5
25

See Notes 6 and 7

25

12
6

See Notes 6 and 7

0.5

6

12
30

6

30

2

2

2

4

4

4

1.5

1.5

1.5

3

3

3

IB-2A,

IC - 15 A

IB-7.5A,

IC- 30A

VCE = 10 V,

IC= 1 A,

f = 1 kHz

30

30

30

VCE = 10 V,

IC= 1 A,

f = 1 MHz

3

3

3

See Notes 6 and 7

mA

25

12
30

0.5

V
V

6. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cycle :so;; 2%.
7. These parameters are measured with voltage·sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body .

• JE DEC registered data

switching characteristics at 25° C case temperature
PARAMETER

TEST CONDITIONst

= 2 A,

ton

Turn-On Time

IC= 15A,

IB(1)

toff

Turn-Off Time

VBE(off) = -4 V,

RL,= 2n,

TYP
IB(2) = -2A,
See Figure 1

UNIT

0.6
0.9

!-IS

tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.

172

5·302

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N6326, 2N6327, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

OUTPUT

56n

-r~90%

Von = 42 V - RBB2 = 3 n

270 pF
30n

+

90%

+
-=- VCC=30V

~~~+

,

~ tOi~1 ,:TI.-~o~~-l

OUTPUT

Vgen
L-______________________

~~

INPUT OV::J.1no/" - RL=2n
-4V
,10%

VBB1 ""44 V
ADJUST FOR
Von=42VAT
INPUT MONITOR
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty eye Ie ~ 2%.

~

15 ns, tf

~

15 ns, Zout = 50

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .:;;;;; 15 ns, Ain ~ 10 MO, Cin

=s;;;;

n,

tw = 20 Its,

11.5 pF.

D. Resistors must be noninductive types.

•

E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

VCE MONITOR
--.j

20mH

INPUT
VOLTAGE _

0
5

I"- tw"" 4.5 ms (See Note A)

-i

r--------, r-

v_...L.J
I

TUT

U

I

I

~100ms---'

I

,

I

I

I

I

COLLECTOR4 .5A : - . . / ' \ - - - -

+
VCC = 20 V-=- IC MONITOR

50n

CURRENT

V(BR)CER
COLLECTOR
VOLTAGE

RS =0.1 n

---iA--

O-y:~

20V

,

1---

'I

- - - - - -

I

~

,

--

11~
I

--

I
I

I

VCE(sat) VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width is increased until

'eM

= 4.5 A.

FIGURE 2
172

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·303

TYPES 2N6326, 2N6321, 2N6328
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
100
70
c(

40

'~"

20

...I
:::>

5

..
'5
~

'j(

E

7

u

N6 28

"-

20

~
.!!

1"<00~o/

4

'j(

See Note 8 V



2N6326

0.4

VCC =20 V
RSS2 = 100 n
TC = 25°C
See Figure 2

70

-- --- -~ ~ x,. -

1
0.7

100

r- TC';; 25°C

10 tw - 0.05 ms
7 tw ='().1 ms
4 tw =0.5 ms ./
tw= 1 ms"'"
.,/
2 D·C Operation ....

u

u
E
:::>
E

Nonrepetitive Pu Ise Operation

MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

I

2

!:?

,

1

40

70100

200

0.1 0.2 0.40.71

400

2

4

710 20 40

100

L-Unclamped Inductive Load-mH

VCE-Coliector·Emitter Voltage-V
FIGURE 3

FIGURE 4

NOTE 8: Above this point the safe operating area has not been defined.

THERMAL INFORMATION
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE
250

~

225

0
',p

I

'ca"

200
175
150
125

"'"

~ R8JC .;; 0.875°C/W

"I'...

100

"

75

.!:!
~
C

..

4

..

:::>
0
:::>

3

50

75

,

""

r--.

"" " R8JA .;; 35°C/W

'"

"-

25
25

5

',p

50

o
o

c.

:~
c

~

6

8'"

'" "-

"'-

'j(

ca

::E

"'"

100 125 150 175 200

Tc-Case Temperature-oC

"" "

2

E
:::>
E

FIGURE 6

I

ct'

0

o

25

50

75

"""

100 125 150 175 200

TA-Free·Air Temperature-oC
FIGURE 6

PRINTED IN U.S.A.

5·304

TEXASINCORPOR')HED
INSTRUMENTS
.
POST OFFICE BOX 5012 •

DALLAS,

T~XAS

75222

172

11 cannol assume any responsibility for any circuits shown
01 represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH 2N6326, 2N6327, 2N6328
•

200 W at 25°C Case Temperature

•

30-A Rated Collector Current

•

200-mJ Reverse Energy Rating

•

High SOA Capability, 20 V and 10 A

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

0.525 R MAX

oO
~
0

~_:~_~~_j_11- t::~~:~:~ADS

-r-_ _ _

1.0SO MAX

o~

MAX

~

ru=h

iSj38

I

0.188 R M A X · - L . - - - - BOTH ENDS
0.' 35 MAX -1

~

0.225 ---.:::r

1.573, MAX

... 1+
.-,'- ' \

0.205 0.440

- , 'j l '

0.420

I

0.200

SEATING PLANE
1 - BASE

I
I-

•

2-EMlnER

--+-

- 0-\-lt ,- ~ -

t

~:~:~

DIA

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

ALL DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at lOO°C Case Temperature (See Note 3). . . .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

2N6329 2N6330 2N6331
-60 V -80 V -100 V
-60V -80V -100V
-5 V
-5 V
-5 V
_-30A--_.
_ - 4 0 A - - -••
10A•
-See Figures 3 and 4 •
200W
•
....~~-114 W - - -••
....>-----5 W - - - -••
-200mJ
•
_-65°C to 200°C _ _
_ _ 65°C to 200°C _ _
•

250°C-

1. These value apply when the base-emitter diode is open-circuited.

2.
3.
4.
5.

This value applies for 'tw ~ 1 ms, duty cycle ~ 10%.
Derate linearly to 2000 C case temperature at the rate of 1.14 w/o C or refer to Dissipation Derating Curve, Figure 5.
Derate linearly to 2000 C free-air temperature at the rate of 28.6 mW/ C or refer to Dissipation Derating Curve, Figure 6.
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L"'" 20 mH, RSB2 "'" 100

n,

VBB2=OV, RS= 0.1 fl, VCC=20V. Energy'" IC 2 L12.

*JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

172

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-305

TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise, noted)
PARAMETER
Collector-Emitter
V(BR)CEO

ICEO

Breakdown Voltage
Collector Cutoff Current

TEST CONDITIONS
Ic=-30mA.

IB=O,

VCE =-30V,

IB=O

See Note 6

2N6329

lEBO

Collector Cutoff Current

Emitter Cutoff Current
Static Forward Current

•

hFE

VBE
VCE(satl

Transfer Ratio
Base-Emitter Voltage
Collector-Emitter Voltage
Small-5ignal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-E mitter

hfe

NOTES:

Forward Current Transfer Ratio

-80

-60

VCE - -40 V, IB=O
VCE- 50 V, ,IB- 0

V

mA

-0.5

VCE - -40 V.

VBE - 0,

TC - 150°C

VCE = -50 V,

VeE - 0,

TC - 150°C

VEe - -5 V,

IC=O,
IC-

UNIT

1

Tc -150 C

4V,

-100

1

VBE-O
SO V, VSE 0
VCE
VCE - -100 V, VeE-O
30 V, VeE -0,
VCE

VCE-

2N6331

-1

VCE - -60 V,

ICES

2N6330

MIN MAX MIN MAX MIN MAX

-0.5
-0.5
5

mA

-5
-5
-0.5

SA

25
See Notes 6 and 7

-0.5
25

-0.5

VCE--4V,

IC=-15A

VCE=-4V,

IC=-30A

VCE =-4V.

IC=-15A

VCE- 4V,
IB--2A,

IC-

30A

IC-

15A

le=-7.5A,

IC--30A

VCE = -10 V.

IC=-l A,

f = 1 kHz

30

30

30

VCE =-10V,

IC=-l A,

f= 1 MHz

3

3

3

12
6

6

-2

See Notes 6 and 7
See Notes 6 and 7

12

12
30

mA

25
30

6

-2

30
-2

-4

-4

-4

-1.5

1.5

1.5

-3

-3

-3

V
V

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle t;;;;; 2%.
7. These parameters are measured,wlth voltage-sensing contacts separate from the currant-carrying contacts and located within 0.125
inch from the device body.

"'JEDEC registered data

switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONst

ton

Turn-On Time

IC--15A,

IB(1) - -2 A,

toff

Turn-Off Time

VSE(off) = 4 V,

RL = 2fi,

TYP
IB(2) =2A,
See Figure 1

0.6
0.9

UNIT
1'$

tVoltage and current values shown are nominal, exact values vary slightly with transistor parameters.

172

5-306

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N6329, 2N6330, 2N6331
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR

5611

4VJCO%
OV----~------INPUT
V
= -42 V -I
90%
on
I
'

i

RBB2= 3 l1

1

270 pF

ton -k----.i
30 l1

O%I
~

+

VBB2
4V

=-=-

I---toff--\
LII

OUTPUT

-=- VCC=30V

10%

+

VBBl "'44V
ADJUST FOR
+
Von=-42VAT
INPUT MONITOR
TEST CIRCUIT
NOTES:

•

VOLTAGE WAVEFORMS

A. V gen is a 30-V pulse (from 0 V) into a 50-0 termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle 0;;;;;: 2%.

~

15 ns, tf

~

15 ns, Zout

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr";:;;; 15 ns, Ain ~ 10 Mil, Cin

=

0;;;;;:

50

n, tw = 20 j.ts,

11,5 pF.

D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING
./

~

-10

E

-7

u

......

::l

E

'x
'"
:2:

2N6329
2N6330

See Note 8

I

!:? -2

I

I

-4

12N13311
-0.1

-4

-7-10

-20

-40

-1
0.1 0.2 0.4 0.7 1

-100 -200 -400

2

4

710 20 40

100

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V
FIGURE 3

FIGURE 4

NOTE 8: Above this point the safe operating area has not been defined:

THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE

s:I

250

s:I

0

225

.g

a.

200

'u;

c

.~
.~

is
(I)

"

.s;
(I)

Cl

C
.;::;
c

100

u
E
::l
E

75

::l

0

'x
'"
.2

I
I-

a.

(I)

"

.~

'"0::l

""-"'-

C

0

u
E
::l
E

'"

' " ROJA';;; 35°C/W

100 125

2

"'"

'x

............

0
75

3

.;::;

25

50

I'....

4

::l
C

'"
25

!~

Cl

~ ROJC .;;; 0.875°C/W

50

o

5

is'"

""

150
125

'"a.

~

175

'"0

::l

6

c

~

150 175 200

Tc-Case Temperature-°c
FIGURE 5

'"

:2:
I
Ia.

a

o

25

50

75

~

'-....

100 125 150

"~
175 200

TA-Free-Air Temperature-oC
FIGURE 6

PRINTED IN U.S.A.

5-308

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

172

TI cannot assume any responsibility fOf any circuits 'shown
or represent that they ore free from palent infringemenf.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES T1486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
HIGH·FREQUENCY INTERMEDIATE·POWER TRANSISTORS
•
•
•
•

15 Watts at 100°C Case Temperature
Typ VeE(sal) of 0.2 V at 200 mA
Typ VBE of 0.8 V at 200 mA
Typ fT of 50 MHz at 10 V, 100 mA

mechanical data

THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE
ALL JEDEC TO·l DIMENSIONS
AND NOTES ARE APPLICABLE

•

DIMENSIONS ARE IN INCHES
UNLESS OTHERWISE SPECIFIED
CASE TEMPERATURE IS MEASURED 0.144 INCH ± 0.010 INCH DOWN FROM TOP OF CAN.

TI487

,m H

THE COLLECTOR IS IN ELECTRICAL
CONTACT WITH THE CASE

0.467
I.SO_oj
0.407 ~cl

I

.......
O.OW IASI

POSITION OF THE LEAOS IN RELATION
TO THE HEX IS NOT CONTROLLED

~IIIII ~

NO"._"UNF_ ...

TH.....
0.01S • MAX

TEM'EU. TUitE
MIAS. 'OINT

MAXIMUM RECOMMENDED MOUNTING
TORQUE, IS IN.·LB.

0.200

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI486

T1487

)
• (
80 V
Collector-Base Voltage
.~(---- 60V
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage .
· (
6V
)
· (
1A
Continuous Collector Current
. ...c:(----1.5A
Peak Collector Current (See Note 2)
See Figure 8
Safe Operating Region at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (or below) 100°C Case Temperature
~(---- 15 W ---~
(See Note 3)
.
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
1W
2W
(See Note 4)

·+ ·+ -

Operating Case Temperature Range
Storage Temperature Range.

-65°C to 200°C
-65°C to 200°C

---+
---+

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

2. This value applies for tp ~ 0.3 ms, duty cycle :S 10%.
3. Derate linearly to 200°C case temperature at the rate of 150 mW/deg.
4. Derate linearly t.o 20aoe free-air temperature at the rate of 5.1 mW/deg for the Tl486 and 11.4 mW/deg for the T1487.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 15222

5-309

TYPES TI486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETI1R
V,BRICBO Collector-Base Breakdown Voltage
V''''ICEO Collector-Emitter Breakdown Voltage
ICES

Collector Cutoff Current

lEBO
hFE
VaE
VCE,sall

Emitter Cutoff Current
Static Forward Current Transler Ratio
Base-Emlttar Voltage
COllector-Emitter Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transler Ratio
Common-Base Open-Circuit
Output Capacitance

hie

•

Cobo

TEST CONDITIONS
Ic - 100ItA, IE = 0
See Note 5
Ic - 30 mA, la = 0,
VCE - 60 V, V.. - 0
Tc - lSOoC
VCE - 60 V, VIE - 0,
VEa - 6 V, Ic - 0
VCE - 5 V, Ic - 200 rnA, See Notes 5 and 6
la - 20 mA, Ic = 200 rnA, See Notes 5- and 6
la - 20 mA, Ic = 200 rnA, See Notes 5 and 6

MIN TYP MAX UNIT
BO
V
60
V
3
itA
300
20 }LA
20
80
0.8
2
V
0.2
2 V

VCE = 10 V, Ic = 100 mA, 1= 10 MHz
Vca =10 V, IE = 0,

HOTES. 5. These parameters must be measured using pulse techniques. tp = 300 p.s, dut, cyde

~

5

1= 1 MHz

30

pF

2%.

6. These parameten are measured with vollaga-sensing (ontads separate from the current-carrying contacts.

thermal characteristics
TI486

PARAMETER
(hc
(hA

MAX

Junclion-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

6.67
175

TI487
MAX
6_67
87.5

UNIT
deg/W

971

5-310

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES T1486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature
PARAMETER
Ion Turn-On Time
loff

Ie

Turn-Off Time

=

TEST CONDITIONSt
200 rnA,
1'111 = 20 rnA, "121 = -20 rnA,

VBEloffl = -3_4 V ,

RL = 150 n, See Figure 1

TYP

UNIT

0.14
2_6

J1-S

tVolioge and (urrent values shown ore nominol; exoel value§ vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

•

,-----1r---O OUTPUT
1 kQ

150 Q

INPUT

51

Q

300 Q

+
-=-30 V

=
TEST CIRCUIT

+37_3 V

---~90%
---"4ton

INPUT

iI L

-0.1 V Jl0%
I

I- ~

~I

toff

1-

10%-r-

90%~

OUTPUT

VOLTAGE WAVEFORMS

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics; Ir ~ 15 os, If ~ 15 ns, lout = SO fl, Ip
b.' Waveforms are monitored on an oscilloscope with the fOoliowing characteristics: Ir ~ 15 ns, Rin

10 fli, duty (yde :::;; 2%.

2. 10 Ma, (in::; 11.S pF.

c. Resistors must be nonindudive types.
d. The

d~(

power supplies may require additional bypassing in order to minimize ringing.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 15222

5-311

TYPES T1486, TI487
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
SASE-EMITTER VOLTAGE

STATIC FORWARD CURRENT TRANSFER RATIO

•

vs

100

.2
0

'"

~c

~

c

.=
1:

60

~

13

~

"Ec
~

40

.zu

&
w
w

•

TJ

.... -

80

.,...........

20

"'"
0
0.01

-

Te

Te

JJJl
= 100·C

II

-\

-

=

!

r

'~

'c -

0.7

............

~ 0.5

j

0>

J

I
I
I
IS = 50 mA, 'C = 500 mA

)1
(5

>
c

.~

0.7

l?
2

0.4

..

0.2

~

.;

-IS = 20 mA, 'C = 200 mA

I
1== 's-

Jj
I

£u

0.1

I

I

....

0.2
See Notes 5 and 6

"

0.1

o
-75 -50

0.7 1

-25
0
25
50
75
100
TC - Case TemperotlJre - °C

125

150

FIGURE 3

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE

J

--

I,IJII~ lb ~~

1.2

I

Te = 25°C

!l, 1. 0 1-+++++f+tl-+~NII;::""",::+++f!+I!f-+ See Note 5

I--

)1

~

J

O,S

~

_I'""

~

a:o 0.6r-~~~~~~-+++~~~~~++~~

....

~

:::

1

1 mA, 'C = 10 mA

]

~ 0.4 r-~~~~~~-+++~-I+~~++~~

.! 0.07

]

(5

u 0.04

(5

I

u 0.2r-~~~~~~-+++~-1+~~++~~

-g

]:0.02

.~

tj

>

r-....

0.3

See Notes 5 and 6
2

I--

w

vs

.

.........

r-

a:o

>

CASE TEMPERATURE
4

~

0.4

I

COLLECTOR-EMITTER SATURATION VOLTAGE

I

----V
--

IS = 20 mA, 'C = 200 mA/

FIGURE 2

>

.........

I = 1 mA, 'C = 10 mA"-.
B

]

--~

0.4
0.2
0.04 0.070.1
Collector Current - A

0.8

~ 0.6

'\ "

-55

I-

0.02

>

-~

= 25°C

-

'r- IS = 50 mA, 'C = 500 mA
r- .......... r- t--.
r---....
'I'-.,

0.9

.......

I-

Tc

1.0

VeE = 5V
See Notes 5 and 6

r---....

vs

CASE TEMPERATURE

COLLECTOR CURRENT

0.01
-75

g
-50

-25
0
25
50
75
100
TC - Case Temperature - O(

125

~

150

V'BRICE' at RBe = 1 Q " V'BRICBO

0 .............
11 .......
1I1111111L11.. -1..j.II.....
111111Il&..-1..011IL.UJIIIII~
111....w.ua
1--'-U.JJ.Wl
10 k
100 k
1
10
100
1k

R.ae - Base-Emitter Resistance -

FIGURE 4

0

FIGURE 5

NOTES: S. These parameters must be measured using pulse fechniques. Ip = 300 p,s, duty cycle

~

2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-currying contads.

971

5·312

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

..

DALLAS. TEXAS 75222

TYPES TI486, TI487
N·P·N TRIPLE·DIFFUSED PLANAR SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COMMON-BASE OPEN-CIRCUIT
INPUT AND OUTPUT CAPACITANCE
vs

REVERSE BIAS VOLTAGE

200
180

160
140

'li

I 120

60
40
20

Vee= 10 V

1:

--

le= 100 mA

I\..

~ 30

'\

~

u

Te =25"C

r\.

i\

~

u

80

i--

35

t"-

E 100
.~

~

.g

C ibo (lC = 0)

~

u

11m T

..1!

f = 1 MHz I TC =25 "C

"-

vs

FREQUENCY

J 40

I

'"

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

"'"oI

~ 15
o

,

E

r-.

1\

§

u 10

Cobo (IE=O)

t--

g
'",
iii

i--

c
Ji

.

o
4710

20

1\
0

I

40

r\.

5

0.1

0.4

10

f- Frequency- MHz

d!..

Reverse Bias Voltage - V

FIGURE 7

FIGURE 6

40

100

•

MAXIMUM SAFE OPERATING REGION

1

..:

I

0.7

---:¥-tt-tt.}
---- -

I-t.

0.2

Te

J2
u

O. 1

I

0.07

;§

--- I",

I- D-C OPERA TI ON

0.4 -to

..!

--- -I-- -

1 ms, d

= 0.3

ms,

0.5 (50%)

d = O. I (10%) I-"

:,

"

JIO~J

~ 0.04

MAX VeEO .../

0.02
0.0 1
4
VeE -

7

10

20

40

70

Collector-Emitter Voltoge -

100

200

V

FIGURE 8

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·313

TYPES TI486, TI487
N-P-N TRIPLE-DIFFUSED PLANAR SILICON POWER TRANSISTORS
THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

PEAK-POWER COEFFICIENT CURVE

16

0.7

I\..

"
....

~
'u
~ 0.2

r\.

~

1

0.1

~

0.07

..:. 0.07

o

~

~

10.04

'"

r\.

•

0.50 50% Duly Cycle

0.4

'\

100
125
150
175
TC - ease Temperature -'C

tp ;: Pulse width in ms

0.02
0.01

200

d = Duty-cycle ratio

~

T

0.02 0.04

0.1

= The:7allime con.lant =5 m•

0.2 0.4
Ip -

4

7 10

20

Pulse Width - ms
FIGURE 10

FIGURE 9

SYMBOL DEFINITION
VALUE
SYMBOL

DEFINITION

TI486 TI487 UNIT

PTlav)

Average Power Dissipation

W
W

PTlmax)

Peak Power Dissipation

fhA
fJ J-C

Junctlon-Io-Free-Air Thermal Resistance

17S

8·7,$

deg/W

Junctlon-Io-Case Thermal Resistance

6.67

6.67

deg/W

fJC _A

Case-Io-Free-Air Thermal Resistance

168

81

d'g/W

fJC_HS

Case-to-Heol-Slnk Thermal Resistance

d.g/W

fJ H5-A

Heat-Sink-fo-Free-Air Thermal Resistance

d.g/W

TA

Free-Air Temperature

°c

Tc

(ase Temperature

°c

TJ/av)

Average Junction Temperature

~ 200

°c

TJlmax)

Peak Junction Temperatur.

~200

°c

K

Peak-Power Coefficient

Ip

Pul•• Widlh

m.

Ix

Pulse Period

m.

d

Duly-Cy". Ratio (IP/lx)

S.. Figure 10

_
PTlov) -

for 100°C ~ TC ~ 200°C

TJlavi - TA

6J _c

+ 6C-HS + 6HS-A a. in Figu.. ,

Equation No. 2 - Application: d-c power dissipation,
no heat sink used.

No. 3 - Application: Peak powar dissipation,
heat sink used.

~quation

Equation No.4 - Application: Peak power dissipation,
no heat sink used.
PTlmax)

Exampl. - Find PTlmaxl (design limit)
OPERATING CONDITIONS,
fJC _HS
fJ HS-A = 7 d.g/W (From informalion suppll.d
with h.al .ink.)
TJ(illvJ (design limit)
200°C
TA = SOoC
d = 10% (0.1)
Ip = 0.1

+

=

m.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

Equation No.1 - Application: d-c power dissipation,
heal sink usad.

DALLAS, TEXAS 75222

Solution:
From Figure 10, Peak-Power Coefficient
K
0.11 and by use of equation No. 3

=

PTlma,)

=

d

(6C-HS

TJ/max)- TA
6HS-A)

+

200-$0

+

+ 0.11 (6.67) =

~~~-~~

0.1 (7)

K 6J-c

lOS W

PRINTED IN U.S.A.
II (anno' anume any responsibility for any circuits shown
or represent Ihal Ihey are free from patenl infringement.

971

TEXAS INSTRUMENTS RESERVES TIlE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST· PRODUCT POSSIBLE.

TYPES Tl1131, T11132, Tl1133, TI1134, T11135, TI1136
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH-VOLTAGE, HIGH-FREQUENCY POWER TRANSISTORS
FOR INDUSTRIAL APPLICATIONS
•
•
•
•

80 WaHs at 55°C Case Temperature
Maximum res of 0.5 Ohm at 2 Amperes Ie
Maximum VBE of 2 Volts at 2 Amperes Ie
Minimum f1 of 7.5 Megacycles

mechanical data
The transistors are in hermetically-sealed welded packages.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
0.125" FROM STUD

•

*ALL JEDEC TO.61
DIMENSIONS AND
NOTES ARE

APPLICABLE

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI1131 TI1133 TII135
TI1132 TI1134 TI1136

Collector-Base Voltage .
Collector-Emitter Voltage (See Note I)
Emitter-Base Voltage
Collector Current, Continuous.

~

150v lOOv
75v
50v
Bv ---+
7.5a ---+

Emitter Current, Continuous .

~

7.5a ---+

Safe Continuous Operating Region at (or below) 55°C Case Temperature.
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Total Device Dissipation at (or below) 55°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range. .

See Figure I

200 v
100v
~

~

3w ---+
BOw ---+
~ 175°C---+
-65°C to +200°C
~

NOTES: 1. This value applies when base-emitter diode is open-circuited.
2. Derale linearly to l7SoC free-air temperature at the rate of 20 mw/Co.
3. Derate linearly to 175°C case temperature at the fate of 0.67 w/Co,

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-315

TYPES Tl1131, T11132, T11133, Tl1134, 111135, Tl1136
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

BVc,o

BVcEo

Collector· Base
Breakdown Voltage

Ic =10ma, h=O

Ic = 0.20, 1,=0,
(See Note 4)

Coliector·Emitter
Breakdown Voltage

TYPE

MIN

TIl 131, TIl 132

200

v

TIl 133, TIl 134

150

v

TIl 135, TIl136

100

v

II

Collector Cutoff Current

lEBO

Emitter Cutoll Current

UNIT

TIl 131, TIl 132

100

v

T11133, TIl 134

75

v

TIl13S, TIl 136

SO

VCE = 30v, VBE = 0
ICES

MAX

All

v
100

p.o

VCE = 100 v, VBE = 0, Tc = 150·C

TIl 131 , TIl 132

10

ma

VCE = 75 v, VIE = 0, Tc = 150·C

TIl 133, TIl 134

10

ma

VCE = SO v, V'E = 0, Tc = 150·C

TI113S, TI1136

10

lila

All

1.0

ma

--

VEB = 8 v,

Ic = 0
Ic = 2.00,
(See Note 4)

TIl 131 , TIl 133
Tl1135

30

120

TI1132, TI1134
TI1136

15

60

Static Forward Current
Transler Ratio

VCE = 4 v,

VBE

Base·Emitter Voltage

IB = 0.200, Ic = 2.00,

All

2.0

v

rCE( .."

Static Collector· Emitter
Saturation Resistance

I, = 0.2!l0, Ic = 2.!la,
(See Note 4)

All

!l.5

ohm

I hie I

Small·Signal Common·
Emitter Forward Current
Transler Ratio

VCE = 15 v, Ic = 0.50, 1= 7.5mc,
(See Note 5)

All

C.b

Common·Base Open·
Circuit Output Capacitance

VCB = 15 V, IE = 0

1= 1.0mc

All

550

pi

hFE

(See Note 4)

1.0

NOTES: 4. These parameters must be measured using pulse techniques. PW = 300,usec, Duty Cycle $7%.
5. If tested without a heat sink, DC collector current must not be applied longer Ihan S seconds.

thermal characteristics
MAX

UNIT

(hc

Junction·to·Case Thermal Resistance

TYPE

All

1.5

C·/w

(JJ.A

Junction·to·Free·Air Thermal Resistance

All

SO

C·/w

PARAMETER

MIN

Vee -Collector-Emitter Voltage-v

Figure 1

PRINTED IN U.S A.

5-316

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE

sox

5012 •

DALLAS. TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES Tl1151, T11152, T11153, T11154, T11155, TI1156
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
HIGH-VOLTAGE, HIGH-FREQUENCY POWER TRANSISTORS
FOR INDUSTRIAL APPLICATIONS
• 80 WaHs at 55°C Case Temperature
• Maximum res of 0.5 Ohm at 5 Amperes Ie
• Maximum VBE of 2 Volts at 5 Amperes Ie
• Minimum f1 of 7.5 Megacycles
mechanical data
The transistors are in

~ermetically-sealed

welded packages.

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

CASE TEMPERATURE
MEASUREMENT POINT
IS UNDERSIDE OF
FLAT SURFACE WITHIN
0.125" FROM STUD

•

*ALL JED£C To.e1
DIMENSIONS AND
NOTES ARE

APPLICABLE

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25 0 C case temperature (unless otherwise noted)
TIl 151 TIl 153 111155
,TIl 152 TIl 154 111156

Collector-Base Voltage .

200 v

150v

100v

Collector-Emitter Voltage (See Note I)

100v

75v

50v

Emitter-Base Voltage
Collector Current, Continuous.

++-

8v
7.5a

------+
------+

Emitter Current, Continuous

+-

7.5a

------+

•

Safe Continuous Operating Region at (or below) 55°C Case Temperature.
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Total Device Dissipation at (or below) 55°C Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range .

See Figure I

+++-

3w
SOw

------+
------+
------+

175°C
-65°C to + 200°C

NOTES: 1. This value applies when base-emitter diode is open-circuited.
2. Derate linearly to 115°C free-air .emperature allhe rate of 20 mw/Co.
3. Derate linearly 10 175°C (ose lemperulure at the rate of 0.67 w/(o.

171

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-317

TYPES T11151, Tl1152, T11153, T11154, T11155, TI1156
N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

BVclo

BVCEO

Collector-Base
Breakdown Voltage

Colledor-Emiller
Breakdown Voltage

TEST CONDITIONS

Ic = 10 rna, IE = 0

Ic = 0.20, II = 0,
(See Note 4)

TYPE

MIN

TI1151, TI1152

200

v

TI1IS3, TI1154

ISO

v

TI1155, TI1156

100

y

TI1151, TI1152

100

v

TI11S3, TI1154

75

v

TIl 155, TIll 56

50

v

--

VCE = 30 v, VIE = 0
ICES

lEBO

•

Colledor Cutoff Current

Emiller Cutoff Current

UNIT

All

100

/La

VCE = 100 v, VIE = 0, Tc = 150°C

TIl 151, TI1152

10

rna

VCE = 75 v, VIE = 0, Tc = 150°C

TIl1S3, TIl 154

10

rna

VCE = 50 v, VIE = 0, Tc = 150°C

TI1155, TIl iS6

10

rna

All

1.0

rna

VEl = 8 v,

Ic =0

Static Forward Current
Transler Ratio

VCE = 4 v,

VIE

Base-Emitter Voltage

II = 0.500, Ic = 5.0 a, (See Note 4)

rCEI ••II

Slatic Colledor-Emitter
Satumtion Resistance

18 = 0.500, Ic = 5.00,

Ihi. I
Cob

hFE

MAX

Ic = 5.00,
(See Note 4)

TI1151, TIl 153
TIl 155

20

80

TI11S2, TI1154
TIll56

10

40

All

2.0

v

(See Nole 4)

All

0.5

ohm

Small-Signal CommonEmitter Forward Current
Transler Ratio

VCE = 15 v, Ic = 0.5 a, I = 7.5 mc,
(See Note 5)

All

Common-Base OpenCircuil Output Capacitance

VCI = 15 v, IE = 0,

All

550

pI

1= 1.0mc

1.0

NOTES: 4. These parameters must be measured using pulse techniques. PW == 300ps!c, Duty Cycle ~2%.
S. If tested without a heat sink, DC collector turrent must not be applied longer thon 5 s"ands.

thermal characteristics
MAX

UNIT

(hc

Jundion-Io-Case Thermal Resistance

All

1.5

C·/w

8J _A

Junction-to-Free-Air Thermal Resistance

All

50

CO/w

PARAMETER

~

g

·E

TYPE

MIN

o5.0~---+--~4----4----~----~---L----~--~----+----4----4---~

1

g 1:

u

~

E 5 2 .5

'u
.~ E

t----t----+---,.....::--+-+1----,.--

o u

~.E

1;3

VeE -

_u

Collector-Emitter Voltage -

v

Figure I

PRINTED IN U.S A.

5-318

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP29, TIP29A, TIP298, TlP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP30, TIP30A, TIP30B, TIP30C
•

30 W at 25°C Case Temperature

•

1 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 200 rnA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THIS PORTION OF

LEAOS~
I

FREE OF FLASH

I

r- ~ ~:1

I

COLLEcBT~i=:~0
0 20
EMITTER__
0380
"",II.JL02"
iJ110 -1 r- o13sl I
019ii

MECHANICAL INTERCHANGEABILITY OF TIP29
PLASTIC PACKAGE WITH 10·66 OUTLINE

0.105

0.018

0.375

o.~
.-----

~_:

O.OO6J!

•

0045

0.035
0.029

0.190

RO.35~--L t o.165
CASE TEMPERATURE

0,030 MIN
12 PLACES)

r-----,

C'='=)~'

0110

0090

L

~.;:; DlA

0 540MIN

0,060

0.040
RAD (2 PLACES)

(TO-66 DIMENSIONS)

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP29
40V
40V
4
4
4
4

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Tempe"rature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

..
4

TlP29A TIP29B
60V
80V
60V
80V
5V
1A
3A
OAA
See Figure 5

TIP29C
100V
100V

30W

..

2W
32 mJ
4 - - - -65°C to 150°C
4 - - - -65°C to 150°C
260°C
4
4

This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of 0.24 W/ C.
Derate linearly to 1500 C free-air temperature at the rate of 16 mWI C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RS82 = 100
VBB2

=0

V, RS

= 0.1

n, Vee

= 10 V.

•
•
••
~

~

~

•

~

~
~

n,

Energy'" le2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-319

TYPES TIP29, TIP29A, TlP29., TlP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO

ICES

Collector-Emitter

Ic=30mA,

Breakdown Voltage

See Note 6

Collector Cutoff

VCE=30V,

IB -0

Current

VCE=60V,

IB

VCE-40V,
Collector Cutoff

VCE-60V,

VBE 0
VBE -0

Current

VeE -80V,

VBE-O

VCE -100V,

VBE -0

Emitter Cutoff
lEBO

Current
Static Forward

hFE

Current Transfer
Ratio

•

VBE
VCE(sad

TEST CONDITIONS
IB -0,

See Notes 6 and 7
IC-l A,
VCE =4V,
See Notes 6 and 7

Collector-Emitter

IB = 125mA,
See Notes 6 and 7

100

BO

UNIT
V

0.3
0.3

mA

0.2
0.2

mA

0.2
0.2

40
15

IC-l A,

Seturation Voltage

60

40

1

IC=O

VCE=4V,

TIP29C

0.3

IC=0.2A,

See Notes 6 and 7

TIP29B

0

VCE=4V,

Voltage

TIP29A

0_3

VEB=5V,

Base-Emitter

TIP29

MIN MAX MIN MAX MIN MAX MIN MAX

IC= 1 A,

1
40

75

15

1

15

mA

40

40
75

1

75

15

75

1.3

1.3

1.3

1.3

V

0.7

0.7

0.7

0.7

V

Small-8ignal
hfe

Common-Emitter

VCE = 10V,

Forward Current

f = 1 kHz

IC=0.2A,

20

20

20

20

3

3

3

Transfer Ratio
Small-8ignal
"

Ihfe l

Common-Emitter
Forward Current

IC=0.2A,

VCE=10V,
f= 1 MHz

3

Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300}J.S, duty cycle'" 2%.
7. These parameters are measured with voltage--sensing contacts separate from the current-carrying contacts.

thermal characteristics
MAX

UNIT

R8JCI

Junction-to-Case Thermal Resistance

PARAMETER

4.17

R8JAI

Junction-to-Free-Air Thermal Resistance

62.5

·C/W

switching characteristics at 25° C case temperatare
TEST CONDITIONS

TVP

IB(1) - 100 mA, IB(2) = -100 mA,
See Figure 1
VBE(off) = -4.3 V, RL = 30n,

0.5

PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

IC= 1 A,

~

UNIT
J.lS

tVoltage and curient values shown are nominal; exact values vary slightly with transistor parameters.

1070

5·320

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES lIP29, lIP29A, TIP29B, TIP29C
N·P·N SINGLE·DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

lN914

V on =8.5V- INPUT

-r~90%

OV:::J:.17,o/o- -4.3 V
I 10%

-

~~
I

~i
OUTPUT

~to::i-

90%'L-,r--J

vaal'" 10V
ADJUST FOR
Von~8.5VAT

INPUT MONITOR

VdLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

-30~V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform -is supplied by a generator with the following characteristics: tr .;;;;; 15 ns, tf " 15 ns, Zout

A. Vgen is a

= 50 n , tw
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .;;;;; 15 ns, Rin ~ 10 Mn, Cin " 11.5 pF.
D. Resistors must be noninductive types.

= 20 #Ls,

•

E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

~tw""4ms

I

(See Note B)

INPUT
VOLTAGE

I

'2
(See Note A)

Vee

~

100 ms

----j

I
I
1.8A--/-- - - - COLLECTOR
I
I
CURRENT
I
I

TUT
INPUT

,

I'

(See Note A)

o

10 V ..::..

-

!e MONITOR

VIBRICER -

I
I

-1- --

I
1

1

Rs"O.1 n

COLLECTOR
VOLTAGE

10V

TEST CIRCUIT
NOTES:

A. L 1 and L2 are 10 mH, 0.11

n,

VOLTAGE AND CURRENT WAVEFORMS
Chicago Standard Transformer Corporation C-2688, or equivalent.

B. Input pulse width is increased until

'eM = 1.8 A.
FIGURE 2

1070

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-321

TYPES TlP29, TIP29A, TIP291, TIP29C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTlC~
STATIC FORWARD CURRENT TRANSFER RATIO

THERMAL INFORMATION

vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT
1000
700

40

s:I

4V

VCE

TC 25°C
See Notes 6 and 7

400

..,0
c

..

c.

200

:~ 30

!~

Cl

100
70

""

.~

20 ,

~

Cl

40 I

'"0
..,c

./

~

./

20

~

c
0

10 I
7

E
~
E 10

.
:<
'x

4

•

'"

f"'-

I

2

I-

1
0.001

NOTES:

"~

()

"-

0.004

0.01

0.04

0.1

o

o

0.4

25

50

75

100

"'" ~

Ic-Collector Current-A

T c-Case T emperature-° C

FIGURE 3

FIGURE4

125

150

6. These parameters must be measured using pulse
techniques. tw

=

300 MS,' duty cycle '" 2%.

7. These parameters are measured. with voltage-

sensing contacts separate from the currentcarrying contacts.

MAXIMUM SAFE OPERATING REGION

4
2I

,

-- - -- - -

--- -D
-- --1 ~r'

0.7I tw 300l/s, d 0.1 10%
tw 1 ms, d 0.1 10010' I
0.4 I tw= 10ms,d=0.1= 10%/

!,-See
Note 8

\

,

D-C OPERATION
0.2 i
Td.,;

~5!d

0.1
0.07

TIP29

0.04

TIP29A
TIP298

0.02

IW

0.01
1

2

4

7 10

I

29C

20

40

100

200 400

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load,

PRINTED IN U.S A.

5-322

TEXAS INSTRUMENTS

1070

TI (onnof assume any responsibility for any circuits shown
or represent thol they ore free from palent infringement.

INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TlP30, TIP30A, TIP308, TlP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPI-IFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP29, TIP29A, TIP29B, TIP29C

•

30 W at 25°C Case Temperature

•

1 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 200 mA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP30
PLASTIC 'PACKAGE WITI'! TO.e:e OUTLINE

THISPORTIONOFLEA~
I

FREE OF FLASH

1-:::-11

I I

COLlE~:===~'
o.
EMITTER_

0.380

I

0.130
0110-1

-----l
01:E]

1i.105

======)~ ,

!.~~~

0.210

r

cI.19O

j-----1- ~.:: {::~:

•

~~..L

t---

0570
ITO·56 DIMENSIONSI

3lEADS

L

D.~

o.~TT

0,095

0.045
CASE TEMPERATURE

0036

002i

MEASUREMENT POINT

!.~:~DIA
0.000
0.040
RAO (2 PLACES)

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TlP30
-40 V
-40 V

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free·Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

••
•••
•
••
•

TlP30A TIP30B
-80 V
-60 V
-60 V
-80 V
-5V
-1 A
-3A
-OAA
See Figure 5
30W

2W
32 mJ
-65°C to 150°C
4 - - -65°C to 150°C
260°C
C

TIP30C
-100 V
-100 V

..•
•
••
•
•

..

-------•
-------

This value applies when the base·emitter diode is open-circuited.
This value applies for tw '" 0.3 ms, duty cycle'" 1 0%.
Derate linearly to 150° C case temperature at the rate of 0.24 W/o C.
Derate linearly to 150°C freewair temperature at the rate of 16 mW/oC.

5. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RBB2 = 100
VBB2 = 0 V. RS = 0.1 n. Vee = 10 V. Energy'" le2L/2.

n,

971

TEXASINCORPORATED
INSTRUMENTS
'POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-323

TYPES TlP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
TIP30A

TIP30
PARAMETER

V(SR)CEO

Collector-Emitter

IC= -30 rnA,

Sreakdown Voltage

See Note 6

Collector Cutoff
ICEO

TEST CONDITIONS

Current

VCE =-30 V,

IS =0
IS - 0

40 V,

VSE = 0
VSE =0

VCE =-100V,

VSE =0

VEB = -5V.

IC= 0

VCE =-4V,

IC= -0.2 A,

Ratio

I

VSE
VCE(sad

VCE=-4V,
See Notes 6 and 7

Collector-E mitter

IS - -125 rnA,

Saturation Voltage

See Notes 6 and 7

MAX

-100

UNIT
V

-0.3
-0.3

rnA

rnA
-0.2

-1

IC--l A,

Voltage

-SO

TIP30C
MIN

-0.2

40
15

See Notes 6 and 7

Base-Emitter

MAX

-0.2

See Notes 6 and 7
VCE--4V,

-60

TIP30B
MIN

-0.3

VCE = -SO V.

Current Transfer

MAX

-0.2

0

Current

Static Forward

MIN

-0.3

VCE - -60 V.

Current

hFE

VBE

MAX

-40

Collector Cutoff

Emitter Cutoff
IESO

IB - 0,

. VCE - -60 V,
VCE

ICES

MIN

IC=-l A,
IC=-l A,

-1
40

75

-1
40

15

75

15

-1

rnA

40
75

15

75

-1.3

-1.3

-1.3

-1'.3

V

-0.7

-0.7

-0.7

-0.7

V

Small-Signal
hfe

Common-Emitter

VCE =-10V,

Forward Current

f = 1 kHz

IC =-0.2A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-Signal
Ihfe I

Common-Emitter

VCE = -10 V,

Forward Cu rrent

f = 1 MHz

IC=-0.2A,

Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 f.ls, duty cycle :!!O; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Thermal Resistance

4.17

ROJA

Junction-to-Free-Air Thermal Resistance

62.5

UNIT
°C/W

switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONSt

ton

Turn-On Time

IC=-l A,

IS(l) = -100 rnA, IS(2) = 100 rnA,

toft

Turn-Oft Time

VSE(off) = 4.3 V,

RL= 30n,

See Figure 1

TYP

UNIT

~

p.s

1.0

tVoltage and current values sh9wn are nominal; exact values vary slightly with transistor parameters.

1270

5-324

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 715222

TYPES TIP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

OUTPUT
MONITOR

S6n

RSB2 = 5~

'NPU;~~~~

n

V on

270 pF

30n

"-85V--l

I

I

I

1on""--t

+

Ve82'" 43 V

=-

I--toff-.{

9O%r---r~,_:

:1

OUTPUT

--'

10%L,

veSl = 10V
ADJUST FOR
V on "'-85VAT
INPUT MONITOR

+

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a 30-V pulse (from 0 V) into a 50-Sl termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr <.; 15 ns, tf <.; 15 ns, Zout = 50 n, tw = 20 1'5,
duty cycle" 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin' 10 Mil, Cin" 11.5 pF.
D. Resistors must be noninductive types.

•

E. The doc power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING
~tw"'4ms

INPUT

I

I

VOLTAGE

L1

I

l.---t--l00 ms~

I
I

I

I

L
I
1
I
I

r
CURREN_T,8A_+¥: _____ +~+_
a

L2

COLLECTOR

(See Note Al

INPUT

I (See Note B)

5v--H
n
o--l L - - - J

(See Note A)

TUT

I

~

~~

J

I+-_ - - - - - -

Vee = 10 V'":'"

+

'CMONITOR

0-

I

I

I

I I

-t- I

-10V

Rs=O 1 U

;

COLLECTOR
VOLTAGE

I
VtBR1CER-....L--

TEST CIRCUIT

NOTES:

-

-- -

-

---

VOLTAGE AND CURRENT WAVEFORMS

A. L 1 and L2 are 10 mH, 0.11 .0, Chicago Standard Transformer Corporation C-2688, or equivalent.

B. Input pulse width Is increased until leM

= -1.8 A.
FIGURE 2

1270

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·325

TYPES TIP30, TIP30A, TIP30B, TIP30C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATIC FORWARD CURRENT TRANSFER RATIO
vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT
1000
700

."a:o.

400

s:I

VCE = 4V
TC-25°C
'See Notes 6 and 7

40

c

.g

.

c.

.~

200

i5
1l

100
70

30

~

.~

0

~

~

:0

40

0

20

."

:0
C

20

C

0

u
E
:0
E

10

7

..

'x

4

:;:;

2

d:"

10

"-

""""

"-

I

•

1
-0.001

NOTES:

o
-0.004 -0.01

-0.4

-0.04 -0.1

-1

o

50

25

75

100

"'" ~
125

IC-Collector Current-A

Tc-Case Temperature-OC

FIGURE 3

FIGURE 4

150

6. These parameters must be measured using pulse
techniques. tw = 300 iJ,s, duty cycle

~

2%.

7. These parameters are measured with voltage-

sensing contacts separate from the current·
carrying contacts.

MAXIMUM SAFE OPERATING REGION
-4
-2

-- - -- - -

--- -

-0.7

~
:0

-0.4

<;

-0.2

1>
-0.1

I

-0.07

2

10%
1.0%

tw= 10ms,d=0.1 = 10%

T6 .;;

"0

U

0.1
0.1

\

\

D-C OPERATION

U

oS!

tw = 300)Js, d
tw - 1 ms, d

'--See
Note 8

-- - - /~

-1

«
1.c

,

~51c'
TIP30

-0.04

TIP30A
TIP30B

-0.02

~IP3°1

-0.01

-1

-2

-4

-10

-20 -40

-100

-400

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved on'lv when switching from saturation to cutoff with a clamped
inductive load.

PRINTED IN U.S.A.

5·326

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012

•

DALLAS, TEXAS 75222

1270

TI connol Qssume ony re~ponsibi1ity for any circuits shown
Ot represent thaI they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP31, TIP31A, TIP31B, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP32. TIP32A. T1P32B. TlP32C
•

40 W at 25°C Case Temperature

•

3 A Rated Collector Current

•

Min fT of 3 MHz at 10 V. 500 rnA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP)l

PLASTIC PACKAGE WITH TO·66 OUTLINE

THISPOATIONOFLEAD~ r--~~~-I
I

FREE OF FLASH

I

I

I

COLLE~'6S:=~--0
0420
EMITTEA_
0.380
0>"
II
--J L ,.'"
OliO -1 r- o.l::i5l I
0.190

'"ell

0.105

0.018 3 LEADS

o.~

~.:0035

H

0.315

1~·3~

'"

0.190

jO.l65

•

~.~:~
CASE TEMPERATURE

0.029

~.~:~ DIA
All DIMENSIONS ARE IN INCHES

'-'OO
'-',.

RAD (2 PLACESI

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP31
40 V
40V

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature.
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

..
..
04

04

..

......

TlP31A TlP31B
60 V
80V
60V
80V
5V
3A
5A
1A
See Figure 5
40W

2W
32 mJ
0 4 - - -65°C to 150°C
04---- -65°C to 150°C
260°C

.

TIP31C
100 V
100 V

.-...
....-

...
...
---------------...

This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of O.32Wt C.
Derate linearly to 150 0 C free-air temperature at the rate of 16 mwt C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSS2 :::: 100 &1,
VBB2 = 0 V, RS = 0.1 !1, Vee = 10 V. Energy ~ IC2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5Q12

•

DALLAS, TEXAS 75222

5·327

TYPES TIP31, TIP31A, TIP31B, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

V(BR)CEO
ICEO

ICES

Collector-Emitter

Ic=30mA,

Breakdown Voltage

See Note 6

Collector Cutoff

VCE=30V,

IB = 0

Current

VCE = 60 V,

IB =

lEBO

VBE - 0

VCE=60V,

VBE =0

Current

VCE=BOV,

VBE = 0

VCE = 100 V,

VBE =0

VEB = 5 V,

IC = 0

VCE = 4 V,

IC= 1 A,

Static Forward
hFE

Current Transfer

Ratio

•

VBE
VCE(sat)

VCE=4V,
See Notes 6 and 7

Collector-E mitter

IB - 375 mA,

Saturation Voltage

See Notes 6 and 7

60

MIN

TIP31C

MAX

MIN

MAX

100

BO

V

0.3
0.3

UNIT

0.3

mA

0.2
0.2

mA

0.2
0.2
1

1
25

25

IC=3A,

Voltage

TIP31B

MAX

0.3

10

See Notes 6 and 7

Base-Emitter

MIN

40

See Notes 6 and 7
VCE = 4 V,

TIP31A

MAX

a

VCE -40 V,

Current

MIN

IB = 0,

Collector Cutoff

Emitter Cutoff

TIP3l

TEST CONDITIONS

PARAMETER

IC=3A,
IC-3A,

50

10

1
25

50

10

1

mA

25
50

10

50

1.8

loB

1.8

1.B

V

1.2

1.2

1.2

1.2

V

Small-Signal
hfe

Common-Emitter

VCE = 10V,

Forward Current

f = 1 kHz

IC=0.5A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-Signal
Ihfel

Common-Emitter

VCE = 10V,

Forward Current

f = 1 MHz

IC=0.5A,

Transfer Ratio
NOTES: 6. These parameters must be measured using pulse techniques. tw = 300 !J5, duty cycle < 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
MAX

PARAMETER

3.125

RaJC

Junction-ta-Case Thermal Resistance

RaJA

Junction-to-Free-Air Thermal Resistance

62.5

UNIT
°C!W

switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONSt

TYP

ton

Turn-On Time

IC= 1 A,

IB(l)=loomA,

IB(2) = -100 mA,

toff

Turn-Off Time

VBE (off) = -4.3 V,

RL=30n,

See Figure 1

0.5

~

UNIT
p.s

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

,
5-328

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1270

TYPES TIP31, TIP31A. TIP318. TIP31C
N-P-N SINGLE-DiffUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

Von = 8.5 V- -

OV:::J,~%-

INPUT

56"

-r~ 90%

-4.3 V

-

-

~~

I 10%

I

~i
OUTPUT

~to,f::r-

90%~~

..::..VCC~30V

"881 ""0V
ADJUST FOR

V on "85VAT
INPUT MONITOA

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.

B. The V gen waveform -is supplied by a generator with the following characteristics: tr < 15 ns, tf ~ 15 ns, Zout == 50 fl, tw = 20 J.Ls,
duty cycle'" 2%.
C. Waveforms are monitored on an oscilloscope-with the following characteristics: tr < 15 ns, Ain ~ 10 MO, Cin <; 11.5 pF.
D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing In order to minimize ringing.

•

FIGURE 1

INDUCTIVE LOAD SWITCHING

o

I---

tw ~ 4 ms

I

(See Note B)

INPUT
VOLTAGE

-5V--,

io,ot--i--

!Sea Note A!

I

!See Note AI
VCC~10V":="

-

COLLECTOR
CURRENT

I
I

I
I

o

I
I

I
I

Ie MONITOR

VIBRICER -

-1- -I

R,"O.1 n

COLLECTOR
VOLTAGE

10V

TEST CIRCUIT
NOTES:

ms

18A---I-- - - - -

"

INPUT

100

I

-

-

~

__ I

I
I

I
I

I

VOLTAGE AND CURRENT WAVEFORMS

A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pl.!lsewidth is increased untillcM = 1.8 A.

FIGURE 2

1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·329

TYPES TIP31, TIP31A, TlP318, TIP31C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATIC FORWARD CURRENT TRANSFER RATIO

vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT

o

';:;

a:'"

1000
700
400

:s:I

VCE 4V
TC 25°C
See Notes 6 and 7

c::

0

';:;

'"Cl

~

~c::

200

I-

100
70

:~

c::

~

"

()

l'

~

o
u.

•

~

"

u
'~

Cl

20

30

"-

"'"

40

"" '" '"

0

.......

"c::
';:;
c::

0

20

()

10

.~

7

E
E

'1w

4

::;;'"

"

40

Cl

~

~

50

u.
.c

"

'x

10

~

I-

2

-~

0.

1
0.001

o
0.0040.01

0.04 0.1

4

0.4

10

o

25

Ic-Collector Current-A

50

75

100

125

150

T c-Case Temperatu re-° C

FIGURE 3
NOTES:

~

I

FIGURE4

6. These parameters must be measured using pulse

techniques. tw = 300

,",5,

duty cycle

<

2%.

,7. These parameters are measured with voltage-

sensing contacts separate from the currentcarrying contacts.

MAXIMUM SAFE OPERATING REGION
10
7

See Note 8

--

4

...... '
"I~

2

«

.Lc::

~

"

()

tw
0.7 tw
tw
0.4
0.2

'0

0.1
0.D7

TC';; 25°C

~

I.,

10o/Jn ~~

10%
10%

D-C~PE~yIOIIII

t

()

= 300 I'S, d = 0.1
= 1 ms, d = 0.1
= 10 ms, d = 0,1

IIII

TIP31
TIP31A
TIP31B
TIP31C

O.OA
0.02

IIII

0.Q1

1

2

4

7 10

20

40

70 100 200

400

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.

5·330

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

PRINTED IN U.S A
TI (an not assume any mpon5ibilily for any circuits shown
or represenl Ihol Ihey are free from palenl infringemenl.

1270

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP32, TIP32A, TlP32B, TlP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMP.LlFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP3l, TIP31A, TIP31B, TIP31C

•

40 W at 25°C Case Temperature

•

3 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 500 rnA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP32
PLASTIC PACKAGE WITH TO'66 OUTLINE
THISPORTIONOF

LEAD~ r-~::~-1

FREE OF FLASH

I

I

I

I

COLLEC~~~=:~+
0.420
EMITTER-__
0.380
0.>30 I I
.-J L ,.2>0
0.110-1 r- o.1:i5l r
0.190
~:~~~

, ""

3 LEADS

r--t- ~.~;

"'en00

f~:~:

~~..L
o.~
O,05il"f
0095

11

0.045
CASE TEMPERATURE
MEASUREMENT POINT

0.035
O.~29

_0161 DIA
0.151
0.060

0040
RAD (2 PLACES)
ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted) <+

.1> .\
TIP32
-40 V
-40 V

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1. This value applies when the base-emitter diode is

2.
3.
4.
5.

4
4

TlP32A TlP32B
-60 V
-80 V
-60V
-80 V
-5V
-3A
-5A
-1A
See Figure 5

TIP32C
-100 V
-100 V

..

•
••
•

...1
. 1 - - - - - 40 W - - - - - I••
4

2W

•

..
41----32mJ
•
. . . - - -65°C to 150°C ---,I".
. - - -65°C to 150°C - - - , I
...
4
260°C
..

open~circuited.

This value applies for tw';;;; 0.3 ms, duty cycle';;;; 10%.
Derate linearly to 150°C case temperature at the rate of 0.32 W/oC.
Derate linearly to 150°C free~air temperature at the rate of 16 mWlC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100
VBB2~O V, RS~O.l fl, VCC~ 10V. Energy'" IC2L/2.

n,

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-331

TYPES TIP32, TIP32A, TIP32B, TlP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature
PARAMETER

V(BR)CEO
ICEO

ICES

Collector-Emitter

IC = -30 mA,

Breakdown Voltage

See Note 6

Collector Cutoff

VCE =-30V,

Current

VCE - -60 V,

IB - 0

VCE --40V,

VBE =0

VCE = -60 V,

VBE =0

VCE --BOV,

VBE - 0

Static Forward
hFE

Current Transfer

Ratio

•

VBE
VCE(sat)

IC,=-l A,

10

IC- -3 A,

IB --375mA,

-0.3

mA

mA

IC--3A,

50

-1

-1
25

25

IC- -3A,

See Notes 6 and 7

UNIT
V

-100

-0.3

-1

See Notes 6 and 7

Collector-E mitter

MAX

-0.2

VCE =-4 V"

Saturation Voltage

-80

TIP32C
MIN

-0.2

See Notes 6 and 7

See Notes 6 and 7

MAX

-0.2

IC =0

Voltage

-60

TIP32B
MIN

-0.3

VBE -0

VCE =-4 V,

MAX

-0.2

VEB=-5V,

Base-Emitter

MIN

-0.3

VCE - -100 V,

VCE - -4 V,

TIP32A

MAX

-40

IB = 0

Current

Current

MIN

IB = 0,

Collector Cutoff

Emitter Cutoff
lEBO

TIP32

TEST CONOITIONS

25

10

50

10

-1

mA

25
50

10

50

-1.8

-1.8

-1.8

-1.8

V

-1.2

-1.2

-1.2

-1.2

V

MAX

UNIT

Small-Signal
hfe

Common-Emitter

VCE =-10 V,

Forward Current

f = 1 kHz

IC=-0.5A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-Signal
Common~Emitter

hel

Forward Current

VCE = -10 V,
f = 1 MHz

IC= -0.5 A,

Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER
ReJC
ReJA

Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

3.125
62.5

°C/W

switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONSt

TYP

ton

Turn-On Time

IC=-l A,

IB(l) = -100 mA, IB(2) = 100 mA,

toff

Turn-Off Time

VBE(off) = 4.3 V,

RL =30.11,

See Figure 1

UNIT

0.3

1:'0

IJS

tVoltages and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5·332

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TIP32, TIP32A, TIP32B, TIP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

56 H

RL

RSB2'" 56.11

=

30

INPUT4~~~~

n

Von" - 8 5 V_ - :

270 pF

I

30 n

+
VS S 2

=

ton~

1"

I

I
~tOff~

IL

4 3 V.=OUTPUT
"':""VCC=30V

VSSl" lOV
ADJUST FOR
Von=-85VAT
INPUT MONITOR

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. V gen is a 30-V pulse (from 0 V) into a 50-n termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr:e:;:;; 15 ns, tf
duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr

~

~

15 ns, Zout = 50 il, tw = 20 jJs,

11

Mn, Cin';;;; 11.5 pF.

15 ns, Ain # 10

D. Resistors must be noninductive types.
E. The doc power supplies may require additio,nal bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

I4------.J- t w"'4ms
veE MONITOR

I

INPUT

I

(See Note B~

5v~_11

VOLTAGE 0

L1

I
I
I
I..---t-l00 ms----flli

(See Note AJ

TUT

L2
(See Note

INPUT

A~

I
1

o~:~:r
~:
l_v_L_
+
__ :+_

CURREN~'8A_+_:_: _ _ _ _ _
COLLECTOR

__ :_

VCC = 10 V-=-

_____

I

+

IC MONITOR

0-

I

I

L - 1 +- - - - - - - L -

-10 V

I

I I
- - rI

COLLECTOR
VOLTAGE

TEST CIRCUIT

NOTES:

A. L 1 and L2 are 10 mH, 0.11

n,

'VOLTAGE AND CURRENT WAVEFORMS

Chicago Standard Transformer Corporation C~2688, or equivalent.

B. Input pulse width is increased until leM = -1.8 A.

FIGURE 2
1270

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5·333

TYPES TIP32, TIP32A, TlP32B, TIP32C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATIC FORWARD CURRENT TRANSFER RATIO
vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT
1000
700
o

.ii; 400
a:
~

50

4V
VCE
TC 25°C
See Notes 6 and 7

~

I

.,.
c:

.0

c.

~

I~

c:

~

::>
(.)

"E!

•

""

100
70

.~

"""

30

0
~

40

::>

0

.,c:
::>

~

u..

..,"

10
7

~

4

..

~

0

20

o

40

:~

200

c:

.c:

.~

20

0

"'""'"

(.)

w
u..
.s:

E
::>

§

.
:;;;
x

10

I

I-

2

0..

1

-0.001

-0.01

-0.1

o

-10

-1

o

25

IC-Collector Current-A

50

100

TC-Case Temperature-OC

FIGURE 3
NOTES:

75

""

"~
125

""

150·

FIGURE 4

6. These parameters must be measured using pulse
techniques. tw = 300 I1S, duty cycle ~ 2%.
7. These parameters are measured with vOltagesensi ng contacts separate from the cu rrentcarrying contacts.

MAXIMUM SAFE OPERATING REGION
-10
-7
-4

See Note 8
I-

- ---

==
--."

'"

-2

«

1-c:
~

::>
(.)
~

~

!!!

0

(.)

L

~~

-1 tw = 300 liS, d = 0.1 - 10%iffl
-0.7 tw = 1 ms, d = 0.1 10%
tw = 10 ms, d = 0.1 10%
-0.4
D·C ~PE~yIOIIII
-0.2
TC<25°C

td

III

-0.1
-0.07

TlP32
TIP32A
TIP32B
TIP32C

-0.04
-0.02
-0.01
-1

III
-2

-4

-7-10 -20 -40

-100

-400

VCE-Coliector·Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.
PRINTED IN U.s A

5·334

TEXAS INSTRUMENTS

11 (annat assume any responsibility for any circuits shown
or represent that they are free from potenl infringement.

1270

INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS .INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP33, TlP33A, TIP33B, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-5PEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP34, TIP34A, TIP34B, TIP34C
•

80 W at 25°C Case Temperature

•

10 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 500 rnA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
ME(;IUINICAlINT!RctlANGEABILlTVOF HPJ]
PLASTICPACKAGEVVITHTO-30UTtINE

•
ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP33
40V
40V
4
4
4

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature l/B Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

04
4

TIP33A TIP33B
60V
BOV
60V
BOV
5V
lOA
15A
:3A
See Figure 5

4

BOW

....-

This value applies when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ort;;; 10%.
Derate linearly to 150°C case temperature at the rate of:0.64 WtC.
Derate linearly to 1500 C free-air temperature at the rate ot' 28 mW/o c.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L

= 20 mH"

••
•

~

•

~

3.5W
62.5 mJ
-65°C to 150°C
04-- -65°C to 150°C
260°C
4
4
4

TIP33C
100V
100V

..
~
~

~

•

RBB2 = 100

n,

VBB2 = 0 V, RS - 0.1 n, VCC-10 V. Energy'" i1c2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-335

TYPES TIP33, TIP33A, TIP338, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICED

Collector-Emitter

Ic=30mA,

Breakdown Voltage

See Note 6

Collector Cutoff

VCE =30V,

Current

ICES

IB - 0

Collector Cutoff

VCE =60V,

VBE =0

Current

VeE -80V,

VBE -0

VeE = 100 V,

VBE = 0

VEB = 5V,

IC=O

Current Transfer

Ratio

•

40

60

80

0.7

100

V

0.7
0.7

0.7

0.4

rnA

0.4
0.4
1
40

IC=3A,
VCE -4V,
See Notes 6 and 7

20

IC=3A,

1
40

100

1
40

100

20

20

1

100

20

100

1.6

1.6

1.6

1.6

See Notes 6 and 7

Voltage

VCE =4V,
IC= lOA,
See Notes 6 and 7

3

3

3

3

IB = 0.3 A,

IC=3A,

1

1

1

1

Collector-Emitter

See Notes 6 and 7
IC-l0A,

4

4

4

4

IB-2.6A,

rnA

40

Base-Emitter

Saturation Voltage

rnA

0.4

IC= 1 A,
VCE =4 V,
See Notes 6 and 7

VeE =4V,

VCE(satl

TIP33
TIP33A
TIP33B
TIP33C
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

IB = 0
VBE -0

Static Forward

VBE

= 0,

VCE =1l0 V,

Current

hFE

18

VCE =40V,

Emitter Cutoff
lEBO

TEST CONDITIONS

V

V

See Notes 6 and 7
Small-Signal
hfe

Common-Emitter
Forward Current

VCE = 10V,
f = 1 kHz

IC=0.5A,

VeE = 10V,
f = 1 MHz

IC = 0.5 A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-Signal

~fel

Common-Emitter

Forward Current
Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw - 300 #5,' duty 'cycle'" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Tharmal Resistance

1.56

ROJA

Junction-to-Free-Air Thermal Resistance

35.7

UNIT
°C/W

switching characteristics at 25°C case temperature
TEST CONDITIONSt

TVP

UNIT

ton

Turn-On Time

PARAMETER
IC=6A,

IB(l) = 0.6 A,

Turn-Off Time

VBE(off) = -4 V,

RL =50,

--,

p.s

toff

IB(2) = -0.6 A,
Se,e Figure 1

0.6

tVoltage and current values shown are nominal; eXact values vary slightly with transistor parameters.

I;
\;.,
1270

5-336

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

~,

\:

TYPES TIP33, TIP33A, TIP338, TlP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

56 H

Voe

0

-r~90%

-

-4 V

RBB2= Wi!

270 pF

l4V -

OV=::J.l~%-

INPUT

-

-

I 10%

I

~r

3D!!

OUTPUT

+

~~

~'o::}-

90%L-,s---l

+
...::-VCC=30V

VS81 """6V
ADJUST FOR

Von

=

14 V AT

INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30-V pulse (from 0 V) into a 50-n termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr
duty cycle ~ 2%.

~

~

15 ns, tf

15 ns, Zout == 50

n,

tw = 20

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin.;;a.10 M51, Cin 0;:;;; 11.5 pF.
D. Resistors must be noninductive types.

IJs~

•

E. The doc power supplies may require additio,nal bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

---I

L1

I

I

tw '" 5 ms

(See Note B)

VOLTAGE

(See Note A)

-5V-

I

I

I

,.....-.- lOOms

TUT

I

L2
INPUT

to--

INPUTl----r-wo

~

I

I

I

I

---i"7i\-~ '---------t" I\-

COLLEiT~~-l-A----

(See Note A)

+

CURRENri-Y

VCC= 10V"::"

I
IC MONITOR

I I
I
I I
1_- ____ ~ __ I I__

V(BR)CER--I--- 1

I
I

COLLECTOR
VOLTAGE

I
I

I

10V

0--

TEST CIRCUIT
NOTES:

A. L 1 and L2 are 10 mH, 0.11

n,

-------

VOLTAGE AND CURRENT WAVEFORMS

Chicago Standard Transformer Corporation C-2688, or equivalent.

B. Input pulse width is increased until ICM "" 2.5 A.

FIGURE 2

1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

5-337

TYPES TIP33, TIP33A, TIP33B, TIP33C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATic FORWARD'CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
100

1000
700 VCt=: -4V
TC 25°C
400 See Notes 6 and 7

.2

~c

"

Ci

70

.~

0

'E!

'"0"
..,c"

40

~

0

u.

20

1~"

u.
.::

4

E

30

'x.,

20

.t-

10

::l!
I

2

1
0.01

0.04

0.4

0.1

4

10

"-

""

50
40

"E

~

60

c

8

10
7

'?w

•

80

""

100
70

..

c.

'm

200

(J

90

0

.~

';j

a:
E
~

DISSIPATION DERATING CURVE

o

o

25

50

~

'"

75

'"""
"
125

100

150

T c-Case T emperatu re-° C

IC-Collector Current-A
FIGURE 3

FIGURE4

NOTES: 6. These parameters must be measured using pulse
techniques. tw = 300 jJ.s. duty cycle "" 2%.
7. These parameters are measured with voltagesensing contacts separate from the currentcarrying contacts.

MAXIMUM SAFE OPERATING REGION
40

~ee ~o~eI8

20

-------

10

1

7

~

4

,

- -J-

/:

TC" 25°C

c

,

C

0-'

"

~

(J

j

~

2

KEY FOR FIGURE 5
CURVE
A
8
C
D

~

'0

(J

I

E

0.7
0.4

TIR33
TIP33A
TIP338

0.2

im

0.1
1

2

4

33C

7 10

--

CONDITIONS
tw = 300"s, d = 0.1 = 10%
tw = 1 ms, d = 0.1 = 10%
tw= 10ms,d=0.1 = 10%
D-C OPERATION

'-

20

.40

701100

200

400

VCE-Collector-Emitter Voltage-V,
FIGURE 5
NOTE 8: This combination of maxir:num voltage and current may be achieved only when switching from saturation to cutoff with a clamped

Inductive load.
PRINTED IN U.S A.

5-338

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1270

TI (annal assume any resP9nsibility for any circuits shown
or represenl that they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP34, TIP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP33, TIP33A, TIP33B, TIP33C
•

80 W at 25°C Case Temperature

•

10 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 500 mA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB

... eCHANICAL INTERCHANGEABILITV OF TlP34
PlASTICPACKAGEWITIlTO_30UTLINE

•
ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

NOTES:

1.
2.
3.
4.
5,

~

TlP34A TIP34B
-60 V
-80 V
-60 V
-80 V
-5V
-lOA
-15 A
-3A
See Figure 5

04

80W

04
04

3.5W
62.5 mJ
-65°C to 150°C
-65°C to 150°C
260°C

TIP34
-40 V
-40 V

Collector-Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds

04
04
04
04

----.04

TIP34C
-100 V
-100 V

......
..........
...
......

~

This value applies when the base-emitter diode is upen-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 150°C case temperature at the rate of 0.64 wlc.
Derate linearly to 150°C free-air temperature at the rate of 28 mwt c.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, ,RSB2
VB B 2 ~ 0 V, RS ~ 0.1 n, Vee ~ 10 V. Energy'" 1/2 le2L/2.

....
....

= 100.n.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-339

TYPES TlP34, TIP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO

ICES

Coliector·Emitter

IC=-30mA,

Breakdown Voltage

See Note 6
IB =0
IB =0
VBE -0

Collector Cutoff

VCE --60V,

VBE -0

Current

VCE --80V,

VBE -0

lEBO

Current

Static Forward
Current Transfer

hFE

Ratio

•

VCE=-4V,

IC=-1 A,

40
20

IB- -0.3 A,
VCE(satl

IC=-3A,

Saturation Volt"!!e'

IB =-2.5 A,

V

-0.7
0.7

mA

mA

-1
40

100

-1
40

20

100

20

-1

mA

40
100

20

100

-1.6

-1.6

-1.6

-1.6

-3

-3

-3

-3

-1

-1

-1

-1

-4

-4

-4

-4

V

See Notes 6 and 7
See Notes 6 and 7

UNIT

0.4

IC-l0A,

Coliector·Emitter

-100

-80

-1

IC=-3A,

VCE =-4 V,

MAX

-0.4

IC=-3A,

Voltage

TIP34C
MIN

-0.4

See Notes 6 and 7
See Notes 6 and 7

MAX

-OA

See Notes 6 and 7

8ase-E mitter

-60

TIP34B
MIN

0

IC=O

VCE =-4V,

MAX

0.7

VEB=-5V,

VCE =-4V,
VBE

VBE

TIP34A
MIN

-0.7

VCE =-30V,
VCE - 60V,
VCE --40V,

100 V,

MAX

-40

Collector Cutoff

VCE -

MIN

IB =0.

Current

Emitter Cutoff

TIP34

TEST CONDITIONS

V

IC=-10A,

See Notes 6 and 7
Small-Signal
h~

Common·E mitter

VCE ;o-10V,

Forward Current

f = 1 kHz

IC =-0.5 A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small·Signal

~fel

NOTES:

Common·Emitter
Forward Current
Transfer Ratio

VCE =-10V,
f = 1 MHz

IC=-0.5A,

6. These parameters must be measured using pulse techniques. tw'" 300 ps, duty cycle'" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
MAX

PARAMETER
R8JC

Junction·to·Case Thermal Resistance

1.56

R8JA

Junction·to·Free-Air. Thermal Resistance

35.7

UNIT
°C/W

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER

TYP

ton

Turn·On Time

IC=-6A,

IB(1) = -0.6 A,

IB(2) = 0.6 A,

toff

Turn-Off Time

VBE(off) = 4 V,

RL=50.

See Figure 1

UNIT

0.4

1--0:7"

",S

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5·340

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX

!Son •

DALLA~,

TEXAS 75222

TYPES TIP34, TIP34A, TIP348, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

56n

RSB2 = 10

RL = 5

n

INPUT~~~~

n

V on =-14 V - - :

270 pF

I

30n

'on*--l

+
VSB2 = 4 V-=-

1
,

lo-'oH--I

9O%r--'~,~;
---1
10%L
1,1

OUTPUT

"':"'Vcc = 30V

+
veSl "'16V
ADJUST FOR
Von "'-114 VAT
INPUT MONITOR

TEST CIRCUIT

NOTES:

•

+

VOLTAGE WAVEFORMS

A. V gen is a 30-V pulse (from 0 V) into a 50-n termination.

B. The Vge" waveform is supplied by a gener(ltor with the following characteristics: t r :<; 15 ns, 'tf" 15 ns, Zout == 50 0, tw == 20
duty cycle";; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin ~ 10 MO, Cin <;; 11.5 pF.
O. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.

",,5,

FIGURE 1

INDUCTIVE LOAD SWITCHING

Mt-----.I- tw ",,·5 ms
I

INPUT
VOLTAGE

LI

,

n

,

I

L
I

'---+--100 ms-----.j

I

I

I

,

I

O~!~:r
~:
+~j
__ , __

L2
ISee Note AI

INPUT

(See Note Bl

I

o....J . . ~

(See Note A)

TUT

I

--n

5V--1

COLLECTOR __ :_
_____
CURRE::2J5A _ - : - _ : - : - _ _ _ _

VCC"'10V~

+

0--'

IC MONITOR

-10V

Rs"'O 1 U

I

'

1 +I

I I

I }------ ___ 1-_
I

I

COLLECTOR
VOLTAGE
I
V!BR1CEA-~ - -

TEST CIRCUIT
N-OTES:

VOLTAGE AND CURRENT WAVEFORMS

A. L 1 and L2 are 10 mH, 0.11 0, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width Is increased until ICM = -2.5 A.

IFIGURE; 2

1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 715222

5·341

TYPES TlP34, TlP34A, TIP34B, TIP34C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT
0

1000
700

.a:

400

.~

~

f?"

...

I-

"~

u"

.

"E
~

0

100

VCE - 4V
TC - 25°C
See Notes 6 and 7

~

"
0.

20d

'iii
C
8

100
70

.~

20

"
""

50

.~

L1.

0

.~

E
E

"
'i

4

L1.

::!
I

.s::

2

I

.t

1
-0.01

NOTES:

"

40

u

10
7

"I'w

~

70
60

0

r-.

80

c

.

40

0

90

0

.~

-0.04 -0.1

-0.4

-1

-4

-10

30

'"

i'-.

20

o

"'"

"\~

10

o

25

50

75

100

IC-Collector Current-A

T C-Case Temperature-OC

FIGURE 3

FIGURE 4

125

'"

150

6. These parameters must be measured using pulse

tw -

technique ••
300 /-Is. duty cvcle .. 2%.
7. These parameters are measured with voltage-

J

sensing contacts separate from the currentcarrying contacts.

MAXIMUM SAFE OPERATING REGION
-40

S~ N~t~8

-20
I

-10

1l:
~

"
~.!!

TT
--!, .LA

-----

B

TC" 25°C

-7
-4

D.,/

u

~

~

-2

;3

-1

E

-0.7

I

,

C

.

-0.4

TIP34
,T1P34A
TIP34B

-0.2

ITI P34C

-0.1

-1

CURVE
A
B
C

~

-2

-4

-10

--

0

KEY FOR FIGURE 5
CONDITIONS
tw = 300/-ls, d 0.1 =10%
tw = 1 ms, d = 0.1 = 10%
tw= 10ms,d=0.1 = 10%
D·C OPERATION

=

-

-40

-100

-400

VCE-Collector-Emitter Voltege-V

FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped

Inductive load.
PRINTED IN U.S.A.

5·342

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

II cannot assume any responsibility for any circuih: shown
or represen; thot they are free from potent infringement.

1270

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP35, TIP35A, TIP35B, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP36, TIP36A, TIP36B, TIP36C
•

125 W at 25°C Case Temperature

•

25 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 1 A

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INUACHANGEABILIlV OF TIP35
PLASTIC ~AC~AGE yOlTl'! To-a DUTL.N£

(2-:~~

.,

::i:~t~~~p
.--

""",;::~~

.-

~

iiQ4ii

01\0

1"l
~
_

251

._MINIULACESI

-

CASE TEMPERATURE

~EASUREMENTPOINT

°

111:'"

0

0

~RAD

~U06li

O2O!i

0'i)i5

3 LEADS

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP35
40 V
40V

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature.
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped .Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

4
4
4
4
4

TlP35A TIP35B
60V
80V
60V
80V
5V
25 A
40 A
5A
See Figure 5

4

125W

3.5W
90 mJ
4-------- -65°C to 150°C
4-------- _65°C to 150°C
260°C
C
4

4

TIP35C
100 V
100 V

•
...•
•

•
•

......
•
••

This value applies when the base-emitter diode is open-circuited.
This "alue applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 1500 C case temperature at the rate of '1 W/ C.
Derate linearly to 1500 C free-air temperature at the rate of 28 mW/ C.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSS2 = 100

n,

VBB2 ~ 0 V. RS ~ 0.1 n. Vee ~ 10 V. Energy'" le2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-343

TYPES TlP35, TIP35A, TIP358, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR/CEO
ICEO

ICES

Collector-E mitter

IC=30mA,

Breakdown Voltege

See Note 6

Collector Cutoff

VCE -30V,

Current

VCE -60V,

VBE =0

VCE =60V,

VeE =0

Current

VCE =80V,

VBE -0

VCE = 100 V,

VBE =0

lEBO

Current
Static Forward
Current Transfer

hFE;

Ratio

I

Base-Emitter
VBE

Voltage

VCE(satl

Saturation Voltege

MIN

TIP36C'

TIP36B

MAX

MIN

MAX

80

60
1

MIN

MAX

100

UNIT
V

1
1

1

mA

0.7
0.7

mA

0.7
0.7
1

VEB = 5 V,

IC=O

VCE-4V,

IC·l.5A,

25

See Notes 6 and 7
IC= 15A,
VCE =4V,
See Notes 6 and 7

10

25
50

1

1

10

25
50

10

1

,mA

25
50

10

50

IC-15A,
VCE =4V,
See Notes 6 and 7

2

2

2

2

VCE =4V,
IC= 25A,
See Notes 6 and 7

4

4

4

4

1.8

1.8

1.8

1.B

4

4

4

.4

V

IC= 15A,

IB = 1.5A,
Collector-E mitter

MAX

40

"B =0
IB =0

VCE =40V,

Emitter Cutoff

MIN

IB =0,

Collector Cutoff

TIP36A

TIP36

TEST CONDITIONS

: See Notes 6 and 7
IB=5A,

V

IC-25A,

See Notes 6 and 7
Small-Signal
Common-Emitter
hfe

Forward Current

VCE = 10V,
f = 1 'kHz

IC= 1 A,

VCE = 10V,
f = 1 MHz

IC= 1 A,

25

25

25

25

3

3

3

3

Transfer Ratio
Small-Signal

~fel

Common-Emitter
Forward Current
Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 IJs, duty cycle <;; 2%.
7. These parameters are measured with yoltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Thermal Resistence

ROJA

Junction-to-Free·Air Thermal Resistence

1
35.7

UNIT
°CIW

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC= 15A,

IB(1) = 1.5 A,

toft

Turn-Off Time

VBE(oft/ = -4.15 V,

RL=2.!l,

TYP
IB(2/ = -1.5A,
See Figure 1

~
0.9

UNIT

""

t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5-344

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALL.AS. TEXAS 7!5222

TYPES TIP35, TIP35A, TIP35B, TlP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

~INPUT
T

~

MONITOR
OUTPUT
MONITOR

lN914

56<1

V"

<

11V--

RSB2=4Hl

270pF

-r~90%

J ,;",- - - ~~

INPUT
OV
- 415 V

I 10",(,

I

~r

30 n

OUTPUT

9D"~~s-1

VSB2'" 4. 1SIV-=-

+

~to,f~}-

+
-=-VCC=30V

L---------------------------~--__t+
VSS1'" 13V
ADJUST FOR
Von" 11 VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

-30~V pulse (from 0 V) into a 50-U termination.
B. The Vgen waveform is supplied by a generator with the following characteristics: tr

A. Vgen is a

~

15 ns, tf

~

15 ns, Zout = 50 U , tw

= 20

Jls,

II

duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, R in ~ 10 Mil. Cin .s;;; 11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

o

~
I

tw""'6 ms
(See Note B)

r--I

I
LJ

INPUT!
VOLTAGE_--L-.J

Ll

(See Note A)

-5V

TUT
L2

INPUT

t--I

I'

r----r-

I

I

---j

I

I

I

I

I

I

I I

I
~
I

100 ms

A--

COLLECT3~-l-A-- - - - - - ;
CURRENeJ--Y"
~~

(See NoteAI

+
VCC~10V-=-

Ie MONITOR

V(BRICER--I---'

,_ _ -

COLLECTOR
VOLTAGE

Rs= 0.1 n

-

__

__

1\I I
I

I_-

I

I
I

10V

I

0--

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
NOTES:

A. Ll and L2 are 10 mH, 0.11

.n,

Chicago Standard Transformer Corporation C-2688, or equivalent.

B. Input pulse width is increased until leM = 3 A.

FIGURE 2
1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·345

TYPES TIP35, TIP35A, TIP35B, TIP35C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

DISSIPATION DERATING CURVE

vs
COLLECTOR CURRENT

0

.~

IX:

1000
VCE - 4V
700 TC 25°C
See
Notes 6 and 7
400
200

I-

100
70

'C
~

"

I
c:

.2

..

:~

120

~

C

!l

.~

.."
0

'"

20
10
7

0

LL

.!'!

:!

4

LL

2

'1w
.c

""

100

C

40

~

•

140

t;j

tJ

"E

160

0.

i

'In
c:
I!!

l:

"

80

c:

.~

......

0

tJ

~

60

~

E

"E

.

40

I

20

'x,
~

'"

~

l-

lL

0

1
0.1

0.2

2

0.4 0.71

4

7 10

20

40 70'100

o

25

50

100

'" ""
125

150

TC - Case Temperature - °c

I c-Collector Current-A

FIGURE 4

FIGURE 3
NOTES:

75

6. These parameters must be measured using pulse
techniques. tw = 300 IJ.s, duty cycle t;;;;; 2%.
7. These
parameters
are
measured
with

voltage-sensing contacts separate from

the

current-carrying contacts.

MAXIMUM SAFE OPERATING REGION
100
70

See Note 8

-- -- ----

40

«
.!.c:
~

"

tJ

j

'0

20

.I~

~, '

10
7
TC'; 25°C

4

C
D
't'

2

KEY FOR FIGURE 5
CURVE
CONDITIONS
A
tw = 300 ItS, d = 0.1 = 10%
8
tw = 1 ms, d = 0.1 = 10%
C
tw= 10ms,d=0.1 = 10%
D
D-C OPERATION

•

tJ

I

E

0.7
0.4

TIP35
TIP35A-i-

0.2

IITIP358 TIP35C-i-

0.1

1

2

4

7 10

20

40

70100

200

400

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturatl'on to cutoff with a cl~mped
inductive load.

PRINTED IN U.S A.

5-346

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1270

TI cannor assume any responsibility for any circuits shown
or represent Ihol they Ofe free from potenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP36, TIP36A, TIP36B, TIP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP35, TIP35A, TIP35B, TIP35C
•

125 W at 25°C Case Temperature

•

25 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 1 A

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTEIICHANGEAElILITY OF TI'36
PLASTICPACKAGEWITHTO-30UTLINE

,,,,,,,;;;~

•

. ,. "",J
"--0.655

(TQ-3DIMENSIONI

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TlP36
-40 V
-40 V
41

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3) . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4) . . . . . . .
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

......

...

41

TIP36A TlP36B
-60 V
-80 V
-60 V
-80 V
-5V
-25 A
-40 A
-5 A
See Figure 5

41

125W

...

3.5W
90mJ
-65°C to 150°C
-65°C to 150°C
260°C

41

~

~

41

TlP36e
-lOOV
-100 V
~

~

••
•

~

•

~
~
~
~

1. This value applies when the base-emitter diode is open-circuited.

2.
3,
4.
5.

This val~e applies for ~w '" 0.3 ms, duty cycle'" 10%.
0
Derate linearly to 150 C case temperature at the rate of 1 WI C.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RSB2 = 100 il,
VSS2

=0

V, RS

= 0.1

n, Vee ~ 10 V. Energy ~ le2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-347

TYPES TIP36, TlP36A, TIP36B, TlP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO

ICES

IC =-30 rnA,

Breakdown Voltage

See Note 6

Collector Cutoff

VCE - -30 V,

Current

VCE = -60 V,

IB -0

VCE = -40 V,

VBE -0

Collector Cutoff

VCE - -60 V,

VBE -0

Current

VCE = -80 V,

VBE -0

VCE =-100V,

VBE =0

VEB =-5V,

IC=O

VCE = -4 V,

IC--l.5A,

Current
Static,Forward

hFE

Current Transfer

Ratio

IB

•

~O,

VCE - -4 V,

VCE(sat}

Voltage

UNIT
V

-100

-1

-1

-1

25
10

-1

mA

rnA

25
50

25

10

50

-1

-1

mA

25

10

50

10

50

-2

-2

-2

-2

-4

-4

-4

-4

-1.8

-1.8

-1.8

-1.8

-4

-4

-4

-4

V

IC = -15A,

See Notes 6 and 7
IB=-5A,

MAX

-0.7

IC=-25A,

IB = -1.5 A,

-80

TIP36C
MIN

-0.7

See Notes 6 and 7
Collector-Emitter

MAX

-0.7

IC=-15A,

See Notes 6 and 7

-60

TIP36B
MIN

-1

IC=-15A,

Voltage

MAX

-0.7

See Notes 6 and 7

Base-Emitter

TIP36A
MIN

-1

See Notes 6 and 7
VCE =-4 V,

MAX

-40

IB - 0

VCE=-4V,
VBE

MIN

Collector-Emitter

Emitter Cutoff
lEBO

TIP36

TEST CONDITIONS

V

IC=-25A,

See Notes 6 and 7
Small-Signal
hfe

Common-E mitter
Forward Current

VCE =-10 V,
f = 1 kHz

IC=-l A,

VCE=-10V,
f = 1 MHz

IC=-l A,

25

25

25

25

3

3

3

3

Transfer Ratio
Small-Signal

~fel

Common-Emitter
Forward Current

Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 IJ.s, duty cycle <; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER

MAX

R8JC

Junction-to-Case Thermal Resistance

R8JA

Junction-to-Free-Air Thermal Resistance

1
35.7

UNIT
°CIW

switching characteristics at 25° C case temperature
PARAMETER

TEST CONDITIONst

ton

Turn-On Time

IC=-15A,

IB(1) =-1.5A,

toff

Turn-Off Time

VBE(off) = 4.15 V,

RL =2!1,

IB(2) = 1.5 A,
See Figure 1

TYP

UNIT

~
0.8

j,lS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5-348

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TIP36, TIP36A, TIP36B, TIP36C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

56n

Rl

RSB2'" 4.tH

=

2

INPu:'~~42O::: ----~

n

V on =-11 v-

270 pF

_lL.;J90%
,
,
I

30

n
VSB2

,

ton~

+

-:"' Vee" 30 V

~toff--i

90%r---r~!

415V'=-

10%L

---1

OUTPUT

+

•

VSB1""13V

ADJUST FOR

+

Von'" - 11 V AT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A.

Vgen is a 30-V pulse (from

a

V) into

"8

50-n termination.

B. The V gen waveform -is supplied by a generator with the following characteristics: tr .;;;; 15 ns, tf '" 15 ns, Zout == 50 il, tw "" 20 /Js,
duty cycle

~

2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr :;:;;; 15 ns, Ain ~ 10

Mn.

Cin ~ 11.5 pF.

D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING
~tw~6ms

VCE MONITOR

I
INPUT

1 (See Note Bl

5v~_11

VOLTAGE 0
L1

"I.---t---l00 ms----------tI

{See Note AI
TUT

I"

COLLECTORO~

L2

(See Note AI

INPUT

II

I 'I

CURRENT_3 A _ - : - _ : _ : _ _ _ _ _
VCC= 1OV-=-

+

, ,
IC MONITOR

0- -' -

-

1

I

-l- - - - - - - L I

-10 V

+--,+I I
- -

rI

COLLECTOR
VOLTAGE
I

I

V(BR~CER-....L - -

TEST CIRCUIT

NOTES:

VOLTAGE AND CURRENT WAVEFORMS

A. L 1 and L2 are 10 mH, 0.11 il, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until ICM::' -3 A.

FIGURE 2

1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·349

TYPES TIP36. TlP36A. TIP368. TIP36C
P-N-P .SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

DISSIPATION DERATING CURVE

vs

COLLECTOR CURRENT
1000
700

o

.~

::

VCE - 4V
TC 25"C
400 See Notes 6 and 7

I
c
0

'j

a:

~c

:~

120

"u

100

-

~

0

100

~

70

.~

."

"- ........

20

~

o

~

80

0

60

E
E
'j(
co

40

I

20

u

"

4

:;

W

LL
.s;;;

0

'S"c

10
7

LL

I""

0

40

u"
11

•

140

c.

200

e!

I-

160

2

'""

"-

I-

0..

1
-0.1

NOTES:

0
-0.4

-1

-4

-40

-10

-100

.0

25

50

75

100

'" ""
125

IC - Collector Current - A

TC - Case Temperature - DC

FIGURE 3

FIGURE4

150

6. Tf;1ese parameters must be measured using pulse

techniques. tw

~

300 /Js, duty cvcle .; 2%.

7. These parameters are measured with voltagesensing contacts separate from the current-

carrying contacts.

MAXIMUM SAFE OPERATING REGION
-100
-70

-40

1
c

~

"

u

-20
-10
-7

~

-4

!?

-2

_~ee Note 8

---- ---

A

Is

~,
~

Tc.; 25DC,

C
D

tl

0
u

I
~

KEY FOR FIGURE 5
CONDITIONS
CURVE
A
tw= 300/Js,d=0.1 = 10%
S
tw = 1 ms, d = 0.1 = 10%
C
tw = 10 ms, d = 0.1 = 10%
D-C OPERATION
D

•

-1
-0.7
-0.4

TIP36
TlP36ATIP36SI iTIP36C-

-0.2
-0.1
-1

-2

-4

-7 -10 -20 -40

-100 -200 -400

VCE-Collector.Emitter Voltage-V
FIGURE5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a cl~mped
Inductive load.

PRINTED IN U.S.A

5·350

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1270

TI (an not assume any responsibility for any circuits shown
or represent that they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE OIANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP41, TIP41A, TIP41B, TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP42, TIP42A, TIP42B, TIP42C
•

65 W at 25°C Case Temperature

•

6 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 500 mA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP41
PLASTIC PACKAGE WITH TO-66 OUTLINE

THISPORTIONOFLEAO~ r-~:~-l
FREE OF FLASH

I

I

I

I

COLLEcBT~S:=:~+
0.420
EMITTER___

0.380

I

0.130 1
0.110-1

0.018 3 LEADS

o.~

r--

.-l L
01351

"05

H

0.210

r

0.;00

0.375

o.~

•

0.190

fO.l65

o.~

o.IJ5!'iTT

0,095

0.045

0.035

CASE TEMPERATURE

0.029

MEASUREMENT POINT

~:;:; OIA
0,060

0.040

RAD

~2

PLACES}

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

NOTES:

1.
2.
3.
4.
5.

4

TIP41A TIP41B
60V
80V
60V
80V
5V
6A
10 A
3A
See Figure 5

4

65W

TIP41
40V
40V

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Undamped. Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds

.........
...
...

4

2W
62.5 mJ
4 - - - -65°C to 150°C
~ -65°C to 150°C
260°C
4

TIP41C
100V
100 V

••

~
~
~

•
~

•

~

•

~

This value applies when the base-emitter diode is open~circuited.
This value applies for tw ~ 0.3 ms, duty cycle < 10%.
Derate linearly to 150°C case temperature at the rate of 0.52 wtC.
Derate linearly to 150°C free-air temperature at the rate of 16 mwtC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, iRSB2 = 1000,
V B B2

=0

V, RS

= 0.1

fl, Vee ~ 10 V. Energy ~ le2L/2.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-351

TYPES TIP41, TIP41A, TIP418, TIP41C
I·P·I SIIGLE·DIFFUSED MESA SILICOI POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
V(BRICEO
ICEO

ICES

Collector-Emitter

IC=30mA,

Breakdown Vol tage

See Note 6

Collector Cutoff

VCE -30V,

IB =0

Current

VCE=60V,

IB =0

VCE=40V,

VBE -0

VCE=60V,

VBE -0

Current

VCE -SOV,

VBE - 0

VCE = 100 V,

VBE -0

VES=5 V,

IC=O

VCE -4 V,

IC - 0.3 A,

Current
Static Forward
Current Transfer

hFE

Ratio

•

Base-Emitter
VBE

Voltage
Collector-Emitter

VCE(satl

IB = 0,

Collector Cutoff

Emitter Cutoff
lEBO

TEST CONDITIONS

Saturation Voltage

See Notes 6 and 7
VCE =4 V,
IC=3A,
See Notes 6 and 7

TIP41A

TIP41

TIP41S

TIP41C

MIN MAX MIN MAX MIN MAX MIN MAX

40

60

80

0_7

100

UNIT
V

0_7
0_7

0.7

rnA

0,4
0,4

rnA

0.4
0,4
1
30
15

1

30
75

1

30

15

75

15

1

rnA

30
75

15

75

VCE =4V,
Ic=6A,
See Notes 6 and 7

2

2

2

2

V

IC-6A,
IS -0.6A,
See Notes 6 and 7

1.5

1,5

1,5

1.5

V

Small-8ignal
hfe

Common-Emitter
Forward Current

VCE = 10V,
f = 1 kHz

IC = 0.5 A,

VCE=10V,
f= 1 MHz

IC=0.5A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-8ignal

~fel

Common-Emitter
Forward Current
Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300,",5, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER
Junction..to..Case Thermal Resistance

MAX

R8JC
R8JA

Junction-to-Free-Air Thermal Resistance

62,5

1,92

UNIT
°C/W

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC-6A,

toff

Turn-Off Time

VSE(off) = --4 V,

IS(11- 0.6A,
RL = 5.n,

IB(21 = -0.6 A,
See Figure 1

TYP
0,6

-,--

UNIT
/.Is

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5-352

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES TlP41, TIP41A, TIP418, TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

II~PUT

MONITOR
OUTPUT
MONITOR

56 n

VOOO 14V- -

OV~,~%-

INPUT

RSB2

270pF

=

10

-4 V

n

__

I 10%

OUTPUT

~'O:::r---

90%~r--l

Vgen

-=-+

~~
I

~i

30n

L-______________________

-r~90%

VCC=30V

~~--++

VBB1""'6V
ADJUST FOR
V on = 14VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30·V pulse (from 0 V) into a 50-il termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf < 15 ns, Zout
duty cycle < 2%.
C. Waveforms 'are monitored on an oscilloscope with the following characteristics: tr < 15 ns, R in ~ 10 Mil, Cin
D. Resistors must be noninductive types,
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

= 50 il,
.:s;;;;

tw

= 20 /-Ls,

•

11.5 pF.

FIGURE 1

INDUCTIVE LOAD SWITCHING

--l
o

..- t w ""5ms
I

(See Note Bl

r----l I
L-.J

INPUTI
VOLTAGE_-L-J

L1

(See Note Al

-5V-

TUT

L2
INPUT

I

I

I

I

I

~100ms~

I

I

I

I

I

I I

I

COlLE~T~~-l-7i\- - - - - - - ; - "7\--CURREN~--y ~ ~ 1 \ 0 -

(See Note Al

+
VCC"10V":'"

IC MONITOR

V(BRICER--I--- 1 ' - - -

-

__

I
~

I I
__

I

,--

I
COLLECTOR
VOLTAGE

I

I
I

I

TEST CIRCUIT
NOTES:

VOLTAGE AND CURRENT WAVEFORMS

A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM = 2.5 A.

FIGURE 2
1270

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·353

TYPES TIP41. TIP41A. TIP41B. TIP41C
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT
1000
700
400

.2
iii
a:

t:
~::l

u
1!
CD

80

VCE 4V
TC - 25°C
See Notes 6 and 7

~c:

200
100
70

"

.~

'1w

i---

60

'ill
i5
8
.;

50

."

40

::l

0

::l

20

'Sc:

10
7
4

u
E
::l
E

2

:E
I

LL

..c

•

""-

0

40

~

0

LL

70

.2
iii
c.

30

0

'" '"

20

'x

"

10

.t

1
0.01 0.02' 0.04

0.1

2

0.2 0.4 0.7'1

4

o

7'10

o

25

50

IC-Coliector Current-A

75

~

100

T C-Case Temperature-° C

FIGURE 4

FIGURE 3
NOTES:

"" "
"\

""

125

150

6. These parameters must be measured using pulse
techniques. tw = 300 #s, duty cycle'" 2%.
7. These parameters are measured with voltagesensing contacts separate from the currentcarrying contacts.

MAXIMUM SAFE OPERATING REGION
40

I I III

Sel ~o~eIJ

20
10

«

.!.c:
e:;

u
9
~

"

.!!

"6

u
I

E

7
4
TcriCI

~

2
tw=300ISS,d=0.1 = 10%
tw = 1 ms, d - 0.1 = 10%-'
t -l0ms,d 0.1 10%
0.7 w
D-C OPERATION

,~

0.4
0.2
0.1

1

2

4

TIP4i
TlP41A
TIP41B
TlP41C
7 10
20

40

70 100 200

400

VCE-Collector-Emitter Voltage-V

FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved onlv when switching from saturation to cutoff with a clamped

inductive load.

5-354

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

PRINTED IN U.S A.
TI can no' assume any responsibility for any circuits shown
or repre~ent that they are free from polent infringement.

1270

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND 10 SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP42, TIP42A, TlP42B, TlP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
DESIGNED FOR COMPLEMENTARY USE WITH TIP41, TIP41A, TIP41B, TIP41C
•

65 W at 25°C Case Temperature

•

6 A Rated Collector Current

•

Min fT of 3 MHz at 10 V, 500 mA

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
MECHANICAL INTERCHANGEABILlTV OF TIP42
PLASTIC PACKAGE WITH T0066 OUTLINE

THISPORTIONOFLEA~ I-g~-!
FREE OF fLASH

I

I

I

I

COLLE~:=:~'
•.O.
EMITTER_
'.130 II

~

o.i1ii-l
~3LEADS

.~

if.ifI5

H

o.r,;--0,095

--J L
O.1:j5\

r

0.375

'.21'
0.190

•

0,190

'.~{rni
o.05§TT
0.046

0.035

CASE TEMPERATURE

ii:ii2i

MEASUREMENT POINT

~:~:~ DIA

.....
....

RAD 12 PLACES)

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise notedt
TIP42
-40 V
-40 V
4
4
4
4
4

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

TIP42A TIP42B
-60 V
-80 V
-60 V
-80 V
-5V
-6A
-10A
-3A
See Figure 5

4

4
2W
4
62.5 mJ
4 - - -65°C to 150°C
-65°C to 150°C
4
260°C
4

This value applies when the base-emitter diode Is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle < 10%.
Derate linearlv to 150°C case temperature at the rate of 0.52 wtC.
Derate linearly to 150°C free-air temperature at the rate of 16 mWfC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L
VBB2

=0

V, RS = 0.111, Vee

= 10 V.

65W

TIP42C
-100V
-100V

....

~

..
..
..•
~

~

..
~

= 20 mH, IRBB2 = 100 n,

Energy.'" ,le2L/2.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 76222

5-355

TYPES TIP42, TIP42A, TIP42B, TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature
PARAMETER
V(BR)CEO
ICEO

ICES

Collector-Emitter

IC - -30 mA,

Breakdown Voltage

See Note 6

Collector Cutoff
Current

VCE --30V,

IB -0

VCE =-60V,

18 = 0

VCE =-40V,

VBE = 0

VCE =-60V,

VBE = 0

Current

VCE = -80 V,

VBE =0

VCE - -100 V,

VBE - 0

VEB = -5V,

IC= 0

Current
Static Forward

Current Transfer
Ratio

hFE

•

VBE
VCE(sat)

MIN

IB = 0,

Collector Cutoff

Emitter Cutoff
lEBO

TIP42

TEST CONDITIONS

-0.7

Collector-E mitter

IB - -0.6 A,

Saturation Voltage

See Notes 6 and 7

-80

TIP42C
MIN

MAX

-100

UNIT
V

-0.7
-0.7

-0.4

mA

mA

-0.4
-0.4
-1

15

IC--6A,

-1
30

30

IC--6A,

VCE--4V,
See Notes 6 and 7

MAX

-0.4

IC--3A,

Base-Emitter

TIP42B
MIN

-0.7

See Notes 6 and 7

Voltage

MAX

MIN
-60

-40

IC=-0.3 A,
VCE =-4 V,
See Notes 6 and 7
VCE--4V,

TIP42A

MAX

75

75

mA

30

30

15

-1

-1

15

75

15

75

-2

-2

-2

-2

V

-1.5

-1.5

-1.5

-1.5

V

MAX

UNIT

Small-5ignal
hfe

Common-Emitter

VCE = -10 V,

Forward Current

f - 1 kHz

IC=-0.5A,

20

20

20

20

3

3

3

3

Transfer Ratio
Small-5ignal
Common-Emitter
Ihfel

Forward Current

VCE =-10V,
f.= 1 MHz

IC=-0.5A,

Transfer Ratio

NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 J.l.s, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics
PARAMETER
ReJC
ReJA

·1.92

Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

62.5

'C/W

switching characteristics at 25°C case temperature
PARAMETER

TYP

TEST CONDITIONSt

ton

Turn-On Time

IC=-6A,

IB(1) = -0.6 A,

toff

Turn-Off Time

VBE(off) = 4 V,

RL = 5 fl,

IB(2) = 0.6 A,
See Figure 1

0.4

f--o:l

UNIT
itS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

, 1270

5·356

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TIP42. TIP42A. TIP42B. TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

OUTPUT
MONITOR

INPUT~~~~

5en

Von=-14V-

RSB2'" lon
270pF

-I

I

I

,

'o,-Io---.i

JOn
Vgen

lo-'oH--I

90%r--r~,0%:
:,
--1
10%L

+
OUTPUT

veSl "" lBV
ADJUST FOR
V on ",-14VAT
INPUT MONITOR

+

TEST CIRCUIT

NOTES:

•

VOLTAGE WAVEFORMS

A. V gan is a 30-V pulse (from 0 V) into a 50~n termination.
B. The V gen waveform is supplied by a generator with the following characteristics; tr -E;;; 15 ns, "tf <: 15 ns, Zout

duty cycle .. 2%.
C. Waveforms are moni~ored on an oscilloscope with the following characteristics: tr

< 15 os, Ain
D. Resistors must
non inductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

be

~

= 50 n, tw = 20 ,",5,

10 MO, Cin <;. 11.5 pF.

INDUCTIVE LOAD SWITCHING
I4-----..+I

INPUT
VOLTAGE

Ll
(See Note A)
TUT

I

o--l
o

L

I

I

I.----t---l00 ms----.oj
I
,
I
I

I
I
I

I

I

COLLECTOR~

L2

(See Note Al

INPUT

t w "'"5ms
I (See Note B)

--nL---.Jn

5V--1

CURRE~T25A_+_:_: _ _ _ _ _

VCC"10V"':'"

+

o_J

Ie MONITOR

,

I

I

I I

I -I-------L- -f-I

-10V

+__ ,+_
I

COLLE;CTOR
VOLTAGE'

I

I
VtBR)CER- --L - -

TEST CIRCUIT
NOTES:

VOLTAGE AND CURRENT WAVEFORMS

A. L1 and L2 are 10 mH, 0.11 S'l, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM <= -2.6 A.

FIGURE 2

1270

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE

sox

5012 •

DALLAS, TEXAS 7!5222

5·357

TYPES TlP42, TIP42A, TIP42B, TIP42C
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
THERMAL INFORMATION

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
vs

COLLECTOR CURRENT
1000
700
400

DISSIPATION DERATING CURVE
80

VCE~ 4V'
TC - 25°C
See Notes 6 and 7

s:I

70

r:
0

.~

200

C-

l"-

100
70

50

.~

- "'

"'"

C

40

I'..

on
:>

40

'Er:

30

0
':>

r....

20

0

u
E
:>
E

10
7

20

.

4

•

OO

0'=
3

'j(

:ii:
I

2

-0.04 -0.1

-0.4

-1

-2

-4

o

-10

o

25

I C-Co lIector Cu rrent-A

50

'~

75

100

T C-Case Temperature-OC

FIGURE 3
NOTES:

~

10

.t

1
-0.01

'"

FIGURE 4

6. These parameters must be measured using pulse
techniques. tw = 300 JJs, duty cycle ~ 2%.
7. These parameters are measured with voltage~
sensing contacts separate from the current~
carrying contacts.

""

'"

125

150

MAXIMUM SAFE OPERATING REGION
-40
-20

se!

~oie'J

/',

~

-10

«

-7

~

-4

...r:

:>
U

S

"

.!!!

'0
u
I

E

TC i25iCI
-2

tw = 3OO,.s, d = 0.1 = 1~~
-1 tw = 1 ms, d = 0.1 = 10%
tw 10 ms, d 0.1 10%
-0.7
D-C OPERATION

I'

-0,4
TIP42
TIP42A
TIP428
TIP42C J

-0.2
-0.1
-1

-2

-4. -7 -10 -20 -40

-100

-400

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped

Inductive load.
PRINTED IN

5-358

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

us. A

TI canno' assume any responsibility for any circuits shown
or represent thot they are free from polent infringement.

1270

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN' ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP41 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND CONSUMER APPLICATION
•

20 mJ Reverse-Energy Rating

•

250 V to 400 V Min V (BR)CEO

•

40 W at 25°C Case Temperature

•

1-A Rated Collector Current

•

10 MHz Min fT at 10 V, 0.2 A

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THIS PORTION OF LEADS+-------!
FREE OF FLASH

I

I- ~1

I\

COLLEC~~:=:~0
0420
EMITTER_
0380

,n, ~ ~

M~~~~:~~~~:~~~C~~~GTE::!'6~~~~;IN7

01i0

::=====)~'
,...

.II.

~ ~:I

r

""
0i90

•

~ ~:~ CIA
0060
,0<0

0.570

RAD (2 PLACES.

(TO-61 DIMENSIONSI
ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Un clamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . . .
Storage Temperature Range . . . . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

TIP47
350 V
250 V
5V
•
..

TIP48
400 V
300 V
5V

I

TIP49/flP50
450 Vi 500 V
350 400 V ,.
5V\ 5~/

t

1A
2A

'.-.
•

----0.6 A
•
-See Figures 6 and 7 _
----40W
•
...1-----2
+_---20mJ
•
_-65°C to 150°C_
_-65°C to 150°C_
..
260°C
•

W----.

These values apply when the base~emitter diode is open-circuited.
This value applies for tw .s;;;; 1 ms, duty cycle ~ 10%.
For operation above 25°C case temperature, refer to Dissipation Derating Curve, Figure 8.
For operation above 2SoC free-air temperatur., refer to Dissipation Derating Curve, Figure 9.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 5. L = 100 mH, RBB2 == 100
VBB2 = 0 V. RS = 0.1 n. Vee = 20V.

Energv '"

n.

le2 1./2.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-359

TYPES TIP41 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature

Collector-Emitter

V(eR)CEO

TIP47

TEST CONOITIONS

PARAMETER

Breakdown Voltage

Ic=30mA,

See Note 6

Ie = 0,

250

Collector Cutoff Cu rrent

TIP49

TIP50

300

350

400

V

1

VCE = 200 V, Ie = 0

rnA

1

VCE = 250 V, Ie = 0

1

VCE = 300 V, Ie = 0
1

VCE = 350 V, VeE = 0
Collector Cutoff Current

ICES

1

VCE = 400 V, VeE = 0

rnA

1

VCE = 450 V, VeE = 0

1

VCE = 500 V, VeE = 0
IEeO
hFE
VeE

Emitter Cutoff Current

VEe - 5 V,

IC= 0

Static Forward Current

VCE=10V,

IC = 0.3 A

Transfer Ratio

VCE = 10V,

IC- 1 A

Base-Emitter Voltage

VCE = 10 V,

IC= 1 A

Ie = 0.2A,

IC= 1 A

Collector-Emitter

VCE(sat)

•

Saturation Voltage
Small·Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter

Ihfel

Forward Current Transfer Ratio

UNIT

1

VCE=150V, Ie = 0
ICEO

TIP48

MIN MAX MIN MAX MIN MAX MIN MAX

1

See Notes 6 and 7

30

150

10

1

1
30

150

10

1

150

30
10

rnA

150

30
10

See Notes 6 and 7

1.5

1.5

1.5

1.5

V

See Notes 6 and 7

1

1

1

1

V

VCE = 10 V,

IC= 0.2A:' f= 1 kHz

VCE = 10 V,

IC=0.2A,

25

25

25

25

5

5

5

5

f = 2 MHz

switching characteristics at 25°C case temperature
TE$T CONDITIONSt

PARAMETER
toff

Turn-On Time

IC= 1 A,

leo) = 100 rnA,

le(2) = -100 rnA,

Turn-Off Time

veE (off) = -5 V,

RL = 200 fl.,

See Figure 4

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

!

..

STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR·EMITTER
SATURATION VOLTAGE

" CURRENT
COLLECTOR

'" CURRENT
COLLECTOR

COLLECTOR CURRENT

80 See Notes 6 and 7

! ~~~-+~~~--+-+-~H+H
! : f--i-i-+++I-H-f---+--+-+++1tH
J : f--i-i-+++I-H-f---+--+-l-++ttH
~

20

1---+--+-tJf-ttttt---++t+t+tH

~ 10

0.9 - VC~' Jo VI II++--+-+--I-H-tttl
l' 0.8 -~;~!~:C6and7+t---++t+ttI:Il
I 0.7 f---+--++f±±!14--"'I"''f'-t-+H+H

0.02 0.04 0.070.1

0.2

0.4 0.7 1

IC-Collector Current-A

FIGURE 1

NOTES:

!£ •

'.

5

TC= 2SoC
See

Notes 6and 7

~ 0.6 _ I -

·1 f--i--l-i-++++++---+--+-+++ttH
0.4 I--+++++++t+-----t--++f-ttftl
! 0.3 f---+-i-+++I-H4---+-++++ftH
r: 0.2 1---+--++++\tH-----+--++++ftH

1

0.5

0.1
L-~~liilL-~~llW

0.01

"

1.0 ,----,---,-rTT'ITTr---,---,-,-n-TTTl

100 VCE -10V
90 TC _25°C

~

1--+--++++I-H4r--+-++++H-H

OL--L~LU~L--L~LUiW

0.01 0.02

0.04 0.070.1

0.2

0.4

0.71

Ic-Collector Current-A

FIGURE 2

0.01

0.02

0.04 0.070.1

0.2

0.4 0.7 1

Ic-Collector Current-A

FIGURE3

6. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle <;; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

1271

5·360

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TIP47 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR

OUTPUT
MONITOR

lN914

Von~8V

56n

--r~90%

10%- - ~~
I

INPUT 0 V::/:.
RL ~ 200 n
-5 V
I
--I ton io-

270 pF

30n

1 J.lF

VBB2 ~~ 5V

+

Io-toff...l

I
YO%'
~I

OUTPUT

90%

+

-=- VCC

~

200 V

VBBI "" 9 V
ADJUST FOR
V on =8VAT
INPUT MONITOR
VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. V gen is a -30 V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr';;;; 15 ns, Zout"'" 50 fl, tw = 20 J.,Ls, duty
cycle

~

2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr 0;;;; 15 ns, R in
D. Resistors must be non inductive types.

~

10 Mil, Cin

~

11.5 pF.

•

E. The d-c power supplies may require additional bypassing in order to minimize ringing,

FIGURE 4

INDUCTIVE LOAD SWITCHING

VCE MONITOR

~

tw"" 3 ms
(See Note A)

r----I I
VOLTAGE -5V_--'u
L-JI
I
I

INPUT
100mH

i

0 V --,

I

TUT

,..-.-,-- 1 00 ms ------j

I

I,

I

I

COLLECTO~63A-:-~--------i~-+
VCC = 20 V-=- IC MONITOR

son

RS =0.1

CURRENT

o-Y:~

V(BR)CER
COLLECTOR
VOLTAGE

n

10 V

I

1---

1\

- - - - - -

I}-

I
!
~ --

I

--

I

I
I

I

VCE(sati VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT

NOTE A: Input pulse width is increased until leM

=

0.63 A.

FIGURE 5
1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·361

TYPES TIP47 THRU TIP50
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDl,ICTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE

4

10

VCC =20 V
RBB2 = 100 n
TC = 25°C
See Figure 5

TC":25°C

«I

4

I I 11.1.1111
I.! 1111.111 SeeNote 8
rNonrepetltlve Pulse Operation
1\
2
I I 1.1 IIIII tw = 0.1
ms
1\\
1-.
:
tw - 0.5 ms

...c:
~

5

u

(;

0.4

u

0.2

E
::>
E

'x

'"
:2
I

u

•

tw

t>

..!!!
"0

2

I~

..!!!
"0

II

\

0.1

}.

TIP47

'x
'"
:2

TlP48 I

!:?

~
E

'-

0.7

I

TIP49
TIP50+

0.Q1

~

5

u

t>

.1
r-- f..-I D.CIO"peratlon

0.02

...c:
(;

1 ms

0.04

«I

"

See Note 90.4

2

4

10 20

40

100200 400 1000

4

7

10

20

70 100

40

L-Unclamped Inductive Load-mH

VCE-Coliector·Emitter Voltage-V
FIGURE 6

FIGURE 7

'8. This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a

NOTES:

clamped inductive load. ,
9. Above this point the safe operating area has not been defined.

THERMAL INFORMATION
FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE

:s:I

:s:I

60

c:

0

'';::;

'';::;

'"a.

.~

50

'" 2.0
.~
is

40

~
.:;;

is
~
.:;;

~

CD

CI

'"::>0

30

0

u
E
::>
E

20

'x

10

I-

0

'"
:2
I
0..

CD

o

25

50

CI

ROJC ..: 3.12°CIW

~

::>

c:
'';::;
c:

2.5

c:

0

"" """

75

~

1.5

~

'"

::>
0
::>

'Ec:

ROJC ..: 62.5°CIW

1.0

~

0

u

""

100

E
::>
E

~
125

150

Tc-Case Temperature-OC
FIGURE 8

'x

0.5

'"

'"
:2

I
I-

0..

0

o

25

50

75

"" ~

100

125

150

T A-Free·Air Temperature-OC
FIGURE 9

PRINTED IN U.S.A.

5·362

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

1271

11 (an not assume any respon$ibilify for ony circuits shown
or represent thot they ore free from patenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
HIGH VOLTAGE, HIGH FORWARD AND REVERSE ENERGY
DESIGNED FOR INDUSTRIAL AND CONSUMER APPLICATIONS
•

100 mJ Reverse-Energy Rating

•

250 V to 400 V Min V(BR)CEO

•

100 W at 25°C Case Temperature

•

5 A Peak Collector Current

•

2.5 MHz Min

tr at 10 V, 0.2 A

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP5'
PLASTIC PACKAGE WITH TO·3 OUTLINE

THIS PORTION OF LEA
fREE OF FLASH

•
3 LEADS

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIP51 TIP52 TIP53 TIP54
350 V 400 V 450 V 500 V
250 V 300 V 350 V 400 V
5V
5V
5V
5V
3A
~
5A
~
0.6 A
~
+--See Figures 6 and 7~

Collector-Base Voltage _ . . . . .
Collector-Emitter Voltage (See Note 1)
.....
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 3)
. . . . . . .
Continuous Device Dissipation at (or below) 25°C Free-Air
Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

...

..

..
....

100W

3.5W
100mJ
4 - -65°C to 150°C
4 - -65°C to 150°C
260°C

.

~

~
~

---+
---+
~

1. These values apply when the base-emitter diode Is open-circuited.
2. This value applies for tw '" 0.3 ms, duty cycle'" 1 0%.

3. For operation above 26° C case temperature, refer to Dissipation Derating Curve, Figure 8.
4. For operatl?" above 25°C free-air temperature, refer to Dissipation Derating C.urve, Figure 9.
5. This rating Is based on the capability of the transistor to operate safely In the circuit of Figure 5. L - 30 mH, ABB2
VBB2 = 0 V, AS = 0.1 n, Vce = 20 V. Energy'" Ic2L12./

= 100 n,

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 7!S222

5·363

TYPES TlP51 THRUTIP54
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
VIBR)CEO

TIP51

TEST CONDITIONS
Ic=30mA,

Breakdown Voltage

See Note 6

IB =0,

250

300

TIP54

350

VCE = 200 V, IB =0

Collector Cutoff Current

TlP53

400

V

1

VCE = 250 V, IB =0

rnA

1

VCE - 300 V, IB -0

1
1

VCE - 350 V, VBE -0
VCE - 400 V, VBE =0

Collector Cutoff Current

ICES

1

VCE = 450 V, VBE =0

rnA

1

VCE = 500 V, VBE =0
lEBO

hFE

1

Emitter Cutoff Current

VEB = 5V,

Static Forward Current

VCE = 10V, Ic = 0_3 A,
See Notes 6 and 7

Transfer Ratio

1

IC=O

VCE = 10V,

30

IC=3A,

•

Base-Emitter Voltage

VBE

IB = 0.6 A,

IC=3A,
See Notes 6 and 7

Saturation Voltage

1
3,0

1

150

30

10

IC=3A,

1

150

30

10

rnA

150

10

1.5

1.5

1.5

1.5

V

1.5

1.5

1.5

1.5

V

See Notes 6 and 7

Collector-Emitter
VCElsat)

150

10

See Notes 6 and 7
VCE = 10V,

UNIT

1

VCE = 150 V, IB =0
ICEO

TIP52

MIN MAX MIN MAX MIN MAX MIN MAX

Small-5ignal
Common-Emitter
hfe

Forward Current

VCE = 10V,

IC=0.2A,

f = 1 kHz

30

30

30

30

VCE = 10V,

IC=0.2A,

f = 1 MHz

2.5

2.5

2.5

2.5

Transfer Ratio
Small-Signal
Common-E mitter

~fel

Forward Current
Transfer Ratio

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER

TYP

ton

Turn-On Time

IC= 1 A,

IBll) = 100 rnA,

IB(2) = -100 rnA,

toff

Turn-Off Time

VBEloff) = -5 V,

RL = 200.n,

See Figure 4

UNIT

0.25
5

/,S

tVoltage and current values snown are nominal; exact values vary slightly with transistor parameters. '

TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE

STATIC FORWARD CURRENT TRANSFER RATIO

vs COLLECTOR CURRENT

VI COLLECTOR CURRENT

i

1000
700

II:

.;
i

!=
E

j

1!

!

of

I
NOTES:

400

Vee- 1OV

VeE 10V
TC=25°C
See Notes 6 and 7

0.9

TC- 25°C

See Notes 6 and 7

>

200

0.8

100
70

i

0.7

0.5

20

Ii
E

.

~ 0••

1I.

10
7

:

V

=

onl

0,04

0.1

0.'

0.01

+H-HHII---h1H

i"R
~::~tft~~~I,~1 ~~~z
IC.

0.2

I.'

Y'

O~~ ~~II~'~I"~
t:~

0.3

0.'

'&

o
10

TC ·25D C
See Notes 8 and 7

S

·i

0.'
0.1

1

~ol;:

COLLECTOR-EMITTER SATURATION VOLTAGE
lIS COLLECTOR CURAENT

0,04

0.1

0.4

~ onl ~~~~~~ww~~~~
On!
0.04 0.1
OA

IC-Collector Current-A

IC-Collector Currant-A

Ic-COllec:tor Current-A

FIGURE 1

FIGURE 2

FIGURE 3'

6. These parameters must be measured using pulse techniques. 'tw = 300 ,",s, duty cycle <; 2%.
7. These parameters are measured with voltage"",ensing contacts separate from the current-carrylng contacts and located within
0.125 Inch from the device body.

971

5-364

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

OUTPUT

270pF

30 Il

+

-=-

Vee ::::200 V

VBB1"' 9V
ADJUST FOR
Von=8VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. V gen is a -30 V pulse (from 0 V) into a 50~n termination.
B. The Vgen waveform is supplies by a generator with the following characteristics: tr < 15 ns, Zout "'" 50 n, tw = 20 J,ls, duty
cycle < 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 15 ns, Rin ~ 10 Mn, Cin < 11.5 pF.
D. Resistors must be non inductive types,
E. The.d-c power supplies may require additional bypassing in order to minimize ringing.

•

FIGURE 4

INDUCTIVE LOAD SWITCHING

veE MONITOR

30 mH

IN~U~=i ~LJr-

VOLTAGE

.~

-5 V '
TUT

+
VCC" 20 V.=..
Ie MONITOR

r-----rI

I

lOOms

I

I

~

I

I

I

--1-A---- ---;7i\-CURREN~ -Y ~ ~ I\I
I
I
I I
"1__ I 1_ _ _ _ _ ~ __ I __

COLlE2C~~~

INPUT

I'

V(BR)CER

I

I
R s "Ol

COLLECTOR
VOLTAGE

n

10 V

I

I
I

I

VCE(satl- -

TEST CIRCUIT
NOTE A: Input pulse width is increased until leM

VOL TAGE AND CURRENT WAVEFORMS
=

2.58 A.

FIGURE5
971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5-365

TYPES TIP51 THRU TIP54
N-P-N SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs COLLECTOR·EMITTER VOLTAGE
10
7

«
.!.c

2

3

u

5
t>

.!!!

0.1
0.07

I

0.04

:2

•

-tw

~

0.3 ms,

d 0.1
~

~ lp~

0.2

'xco

!:?

:::l

II \

1\

~

.

,
,
,
!

.!!!

8

"

E

"
II

:::l

0.7

co

0.5

I

0.4

.Ex

"

TIP51
TIP52
TIP53'--

0.02

\

U

D·C Operation

0.4

"0
u
E
:::l
E

'"t:
...

,

:2

!:?

Ijlm~-

0.01

1

4

10

40

100

20 V

RBB2 ~ 100 n
TC = 25°C
See Figure 5

3

...c

\

1
0.7

VCC~

~Ifl/J
r\
2

«I

.
.

4

e

5
4

TC";;2 5°C

'"

0.3

""-rlSee Nlote ~

0.2
20

400 1000

30

50

70

200 300

100

500

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 7

FIGURE 6
NOTE 8: Above this point, the safe operating area has not been defined ..

THERMAL INFORMATION

CASE TEMPERATURE

FREE·AIR TEMPERATURE

DISSIPATION DERATING CURVE

DISSIPATION DERATING CURVE
4.0

120

~o
'!

~c:
0

'!
"=
Ci

.
.s;
..
u

100

~

80

0

~

::J

0

..,c:c:

60

::J

0

u

40

R8JC'; 1.25°C/W

.

:;

~

20

25

2.5

~

"I'\.

::J

c:

8

~

100
75
50
Tc-Case Temperature-OC

ReJA .; 35fc/W -

"" ~

~ 2.0
.~

.t
o

.~

..

I

o

3.0

o

E
::J
E

'x

"=
Ci

~

3.5

1.5

E

E L,O

~

125

150

FIGURES

~I

.t

~

"'\

0.5

o

'"

~

o

25

50

75

100

125

150

TA-Free·Air Temperature-OC
fiGURE9

PRINTED IN U.S.A

5-366

TEXAS INCORPORATI':D
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

971

II cannot assume any responsibility for any circuits shown
or represent that they ore free from polen! infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP110, TlP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP115, TIP116, TIP117
.-

High

soA

Capability, 40 V and 1.25 A

•

50 W at 25°C Case Temperature

•

Min hFE of 500 at 4 V, 2 A

•

2-A Rated Collector Current

•

25-mJ Reverse Energy Rating

device schematic

COLLECTOR

r--------- -,
BASE

I

I

I

I

I

I
I

I

L_________

I
I

.. 10 kn

I

.. 150 n

.JI

EMITTER

mechanical data

•

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP110
PLASTIC PACKAGE WITH T0-66 OUTLINE

TH1SPORTIONOFLEA~ 1-~-1
FREE OF fLASH
I
II
1

COLLEC~~:==~+
0.420
EM1TTER_
0
01'"

I

I

ii1'iii-l r-

~~~~

!lEADS

....J
01:45l

ifiii5

L

r

r---t- g~

0210

Q.iiO

{g:~:

~~..L
o.r,;-o.~Tf
i)]iiij
0046

0035

0029

~~::DIA
0.060
0.040
ALL DIMENSIONS ARE IN INCHES

RAe 12 PLACES)

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 2SoC Case Temperature
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note S)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
6.

TIP110 TIP111 TIP112
100 V
60V
80V
60V
80V
100V
SV
SV
SV
2A
4A
_SOmA
_ See Figures 7 and 8 -SOW
2W
_2SmJ
•
_-6SoC to 1S0°C _
_ -6SoC to 1S0°C _260°C
•

..

..

..

...
..
....

These values apply when the base-emitter diode Is open-circuited.
This value applies for tw IIIii; 0.3 ms, duty cycle < 10%.
Derate linearly to 150°C case temperature at the rate of ,0.4 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C fre.aJr temperature at the rate of 16 mW/C or refer to Dissipation Derating Curve, Figure 10.
This rating Is based on the capability of the transistors to operate safely in the circuit of Figure 2. L"'" 100 mH, RBB2 = 1000,
VBB2 - 0 V. RS - 0.1 n. Vce = 20 V. Energv AI IC2L/2.

271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS •• TEXAS 75222

5·367

TYPES TIP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-E mitter
V(BR)CEO

ICEO

ICBO

TlP110

TEST CONDITIONS

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

IC = 30mA,

IB= 0,

VCE = 30 V,

IB - 0

VCE = 40 V,

IB = 0

VCE=50V,

IB = 0

VCB-60V,

IE - 0
IE = 0

VCB=SOV,

TIP111

TIPl12

MIN MAX MIN MAX MIN MAX

See Note 6

60

SO

V

100

2
2

mA
2

1
1

mA
1

VCB= 100 V, IE = 0
lEBO
hFE
VBE

IC=O

VCE=4V,

IC-1A

Tr.nsfer Ratio

VCE -4V,

IC= 2A

B.....Emitter Voltage

VCE-4V,

IC-2A,

See Notes 6 .nd 7

2.S

2.S

2.S

V

IB = SmA,

IC=2A,

See Notes 6 and 7

2.5

2.5

2.5

V

•

NOTES:

I

1000

See Notes 6 .nd 7

2

mA

VEB=5V,

Satur.tion Volt.ge

2

2

Emitter Cutoff Current
Stetic Forward Current

Coliector·Emitter
VCE(set)

UNIT

1000
,500

500

1000
500

6. These parameters must be measured using pulse techniques. tw = 300 1'5, duty cycle'" 2%.
7. These parameters are measured-with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton
toff

Turn-On Time

IC= 2A,

Turn-Off Time

VBE(off) = -5 V,

TYP

UNIT

2.6

18(2) = -8 mA,
See Figure 1

IB(1) = SmA,
RL=15n,

f.£S

4.5

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

5611

Von

= 42

INPUT

~r

270pF
VIII"

300

+

OUTPUT

-=- VCC"30V

VBB1~44V

r~90%

OV:::i10%- -5 V
I 10%

RL = 15n

RaB2 -85011

V- -

-

~~
I

~t::1-

90%L-,~

ADJUST FOR
Von -42 VAT
INPUT MONITOR

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. V gen is a -30-V pulse (from 0 V) Into a 50-n termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr <;; 16 ns, "tf <;; 16 ns, Zout = 50 .0, tw
duty cvcle .. 2 %.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < 16 ns, Ain :> 10.Mn. el n <;; 11.6 pF.
D. Resistors must be nonlnduct,lve 'tYpes.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

= 20 liS,

FIGURE 1

1271

5-368

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE

sox

5012 •

DALLAS, TEXAS 75222

TYPES TlP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
VCEMONITOR

..-tw "=" 3.5 ms (Sea Note Al

~

INPUTO~

VOLTAGE
100mH

-6V-

INPUT (O+---'VI,.......--H

I

COLLECTOOFi71 A

+

-=-

I
I
~IOOms~

I

I

1

I
-!"A------T.7i\°-1'1 I:
i ~ i}I
11
VIBR)CER-;-- ------1--

5011

I

CURRENT

Vec= 20 V

IC
MONITOR

COLLECTOR:
VOLTAGE
I

I
I

I

I
I

lOV

VCElsat) --

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
Input pulse width is increased until leM = 0.71 A.

NOTE A:

FIGURE 2

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO

BASE·EMITTER VOLTAGE

"

"

CASE TEMPERATURE

COLLECTOR CURRENT

7000

~

4000

i

2000

E

1000

ex:

l-

j

I

a
~

700

I

I

2.8

"-......TC=I00'C-

V

Vv
/

t;z

3.2

TC -

5SoC

~

'i

Te 25°C

~

f

-

2.4

t--r-.

>

~

~

400

J

200

>

~

100
0.4

VeE = 4 V
See Notes 6 and 7

VeE =4 V
See Notes 6 and 7

"-

-..:: .::::::

1.6

I'C

"13A

~~A
le= 1 A

1.2
0.8

0.4

-75 -60 -25 0

0.7

----

•

25

50 75 100 125 150 175

Te-Case Temperature-°c

Ie-Collector Current-A

FIGURE4

FIGURE 3

COLLECTOR-EMITTER
SATU RATION VOLTAGE

SMALL·SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

"

CASE TEMPERATURE

'"

FREQUENCY
18=8 rnA
IC=2A
See Notes 6 and 7

VCE = 10V
IC= 1 A
TC = 25 DC

r'\.
"0.4 L-L-L-L---.l_L-.L....L.--L-L-J
-75 -50 -25 a

25

50 75 100 125150 175

"-

" I'-...
10

TC-Case Temperature-DC
f-Frequency-MHz

FIGURE 6

FIGURE 5

1271.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·369

TYPES TlP110, TIP111, TIP112
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT

vs
COLLECTOR-EMITTER VOLTAGE
10

4

1...

2

t
U
o
o

.
o

"~

~

E
::l
E

.

'x

•

::i!:
I

~

0.7

VCC = 20 V
RBB2 = 100 n
TC = 25°C
See Figure 2

7

<:

::l

o

8

10

D-C Operation
TC E;;25°C

7

~

8
r--

0.2

"'

......

1'-...."'$
"'''

2

'"

E

~TIPll0

0:4 I - - TIPlll

4

::l

E

..

'x

r...

i'-..

TIP112 ~ I........ ~

::i!:

1\

L,

"'~

0.7

........

See Note 8 ....

0.1

0.4
10

20

40

70 100

200

400

4

2

20

7 10

40

4 100

200

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURES

FIGURE 7
NOTE 8: Above this point the safe operating area has not been defined.

THERMAL INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

~<:

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

60

3:
I

l0ij

50

40

~

C

g

30

<:

.~

8

..

!

20

o

25

50

.
CI>

c

~

10

o

'"'"

u

::l

'x

2.0

i5

.,.

E
E

....c.
CI>

CI>

!S

'iii

~OJC E;; 2.5°CIW

i5

.,.f!

2.5

<:
0

o

75

1.5

::l

0

::l

<:
.;;

~

100

<:
0

1.0

U

~

125

150

Tc-Case Tetnperature-oC
FIGURE 9

E
::l
E

.

0.5

I-

0

'x

ROJA E;; 62.5°CIW

'"

~

'"

::i!:
I
D..

o

25

50

75

'"

100

'~
125

TA-Free-Air Temperature-oC

"

150

FIGURE 10

PRINTED IN U.. S A

5·370

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1271

TI (annal assume any responsibility for any circuits shown
or represent that they are free from patenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP115, TIP116, TlP11I7
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP110, TIP111, TlP112
•

High SOA Capability, 40 V and 1.25 A

•

50 W at 25°C Case Temperature

•

Min hFE of 500 at 4 V, 2 A

•

2·A Rated Collector Current

•

25-mJ Reverse Energy Rating
COLLECTOR

device schematic

r--BASE

-----

I

-,,
I
I

I
I
I
I

L

I

I

'" 150n

'" 10Hl

---

..J
EMITTER

mechanical data

•

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIP115
PLASTIC PACKAGE WITH TO'66 OUTLINE

THISPORTIONOFLEA~ j-~:::-1
I

FREE OF fLASH

I

I

I

COLLEC~'6S:==~+
0.420
EMITTER_
0.380
I

0.130
O.110--l

~.~~~

I

r--

...J
0.1351
0.105

L

r

i - - I - 0,375

3 LEADS

0.>10
0.190

0.190

~~':t. 10 .'"
o.~

O.05~

0.095

0.045

0035
0.029

CASE TEMPERATURE
MEASUREMENT POINT

~:~:~ DIA
0.060

0040

RAD (2 PLACES)

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

TIP115
-60 V
-60 V
-5 V

TIP116 TIP117
-80 V -100V
-80 V -100 V
-5V
-5V
2A
-4A
•
_-50mA_
_See Figures 7 and 8 _
_--50W
•
2W---.
•
•
25 mJ
..
_ _ 65°C to 150°C_
_-65°C to 150°C_
•
•
2600

•

1. These values apply when the base-emitter diode is open~circuited.
2. This value applies for tw :::;;;; 0.3 ms. duty cycle::;;:;; 10%.
3, Derate linearly to 150°C case temperature at the rate of 0.4 W/OC or refer to Dissipation Derating Curve, Figure 9 •
. 4. Derate linearly to 1500 C freeRair temperature at the rate of 16 mW/o C or refer to Dissipation Derating Curve, Figure 10.
5. This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, ASS2
VBB2 = 0 V, RS = 0.1 n, Vee = 20 V. Energy'" le2L/2.

•

= 100 0,

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·371

TYPES TlP115, TlP116, TIP117
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature

Collector-Emitter
V(BR)CEO

ICEO

ICBO

TIPl15

TEST CONDITIONS

PARAMETER

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

IC= -30 mA,

IB = 0,

VCE - -30 V,

IB - 0

VCE = -40 V,

IB = 0

VCE = -50 V,

IB = 0

VCB = -60 V,

IE = 0

-so V,

IE = 0

VCB =

TIP116

TIPl17

MIN MAX MIN MAX MIN MAX

See Note 6

-60

-SO

100

V

-2
-2

mA
-2

-1
-1

mA
-1

VCB = -100V, IE = 0
lEBO
hFE
VBE

•

NOTES:

-2

-2

Emitter Cutoff Current

VEB = -5V,

IC= 0

Static Forward Current

VCE = -4 V,

IC = -1 A

Transfer Ratio

VCE = -4 V,

IC= -2 A

Base--Emitter Voltage

VCE = -4 V,

IC=-2A, See Notes 6 and 7

-2.S

-2.S

-2.S

V

IB =-S mA,

IC= -2A, See Notes 6 and 7

-2.5

-2.5

-2.5

V

Collector-E mitter
VCE(sat)

UNIT

Saturation Voltage

JI See Notes 6 and 7

6. These parameters must be measured using pulse techniques. tw = 300 Jis, duty cycle

7. These parameters are measured with voltage-sensing contacts separate from the
inch from the device body.

~

1000

1000

500

-2

mA

1000

500

500

2%.

current~carrying

contacts and located within 0.125

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC = -2 A,

toff

Turn-Off Time

VBE (off) = 5 V,

IB(l) - -8 mA,
RL=15!1,

TVP
IB(2) -S mA,
See Figure 1

UNIT

2.6
4.5

I'S

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR
OUTPUT
MONITOR

56n

INPUT~~~~

1N9141N9141N914

Von "'-42V--:

I

I

I

RBB2 =850n

ton~

270 pF
30n

OUTPUT

1.--101'--'1

f~

-:-- Vee = 30 V

+

VBB1~44V

AOJUST FOR
Von = -42 V AT

INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. V gen is a 30-V pulse (from 0 V) into a 50-il termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf :s;;;; 15 ns, Zout = 50 .0, tw = 20 /oLs,
duty cycle < 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr:S;;;; 15 ns, Rin;;;" 10 Mn, Cin
11.5 pF.
D. Resistors must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

<

FIGURE 1

1271

5-372

TEXAS INSTRUMENTS
INCORPPRATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES TIP115, TIP116, TIP117
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
t.----..I-6V-

I

I

_I

I

O~

100mH

CUR~:~

,

I

1

I

~

A-

!--

1.--t-1001111----t
I

COLLECTOR

~~

I

r

-l-'¥:- - -- - +-~~-I I
I
I+- _ _ _ _ _ _ I

VCEIMtI __ I

Ie

I

-20Y

MONITOR

n

~

I
•

-:-- Vee = 20 V

Is..NottIAl

--rI

INPUT
VOLTAGE

INPUT

",",3.5-

;

I I

I_t-_

I

COLLECTOR

RS=O.ln

VOLTAGE

I
I

I
VjBR}CER -

TEST CIRCUIT
NOTE A: Input pulse width is increased untillCM

...I- -

-

VOLTAGE AND CURRENT WAVEFORMS

= -0.71

A.

FIGURE 2

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO

BASE-EMITTER VOLTAGE

"

"

COLLECTOR CURRENT
4000

CASE TEMPERATURE

-3.2

Jill

VeE = -4 V
See Notes 6 and 7

TC "'100°C

-2.8

t-H.
Te=25oe~

==

i

Te

-55°C

-2

.~E

-1.6

I".,

t-

--- r-: - ~J2A
~~
r-

-0.8

o
-75 -50-25 0

25

FIGURE 3

FIGURE 4
SMALL·SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

..

SATURATION VOLTAGE

"

CASE TEMPERATURE

FREQUENCY

-4r-~~~---'-.-'-'-'-'

~ 40

IB--8mA
IC =-2 A
See Notes 6 and 7

a:

•

~ 20

~

~r-r-r-r-+-+-+-+-+-~

;;

~

-

.aE
-

~

10

1

.
~
!...

'Y

J

~

-0.7 r+-+-+-I~+-++--+~f-I

!

~ -0.4 ~-'--'---"---'~.I-...L..-'--'~'--'
>
-75 -50 -25 0 25 60 75 100 125 150 175

4

oI! 1

VeE -10V
IC=-1 A
TC = 25°C

i""-

"-

"

10

f-Frequency-MHz

TC-Case Temperature-"C

FIGURE 5
NOTES:

50 75 100 125150 175

Tc-Case Temperature-°c

COLLECTOR·EMITTER

~

IC=-3A-

-0.4

Ie-Collector Current-A

1
j

•

t--

-1.2

-4

-2

~~EN~~: ~arwj J

>

"\

100
-1

~

1.,

,\

200

-0.7

-2.4

~

"-

-0.4

>I

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle -< 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

1271

TEXAS INSTRUMENTS
INCORPORATED
• DALLAS, TEXAS 75222

POST OFFICE BOX 5012

5·373

TYPES TIP115, TIP116, TIP11I7
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
-10

-10

D-C Operation
TC';;;;25°C

-7

r---"""~

COLLECTOR

+

-=- Vee'" 20 V

CURRENT

I

I

I

I
I

t+-T- 100 ms ----,

I

I

lA-iA-------;/'K""-+' i ~ i}I:
I
I
0

I

VIBRICER - ; - -

'C

MONITOR

I

------,--

I

COLLECTOR

1

I

VOLTAGE
20V

I

I

I

,

I

'

I

VeE(sat) - -

TEST CI RCUIT
NOTE A: Input pulse width is increased until

VOLTAGE AND CURRENT WAVEFORMS

'eM""

1 A.

FIGURE 2

TYPICAL CHARACTERISTICS

'"

'"

COLLECTOR CURRENT
.2

,;;
~

100°C

TC

4000

>,

Te -25°C

1\

1000
700

1

~

~
>

400

.~

~

200

0.7

veE'" 3 V
See Notes 6 and 7

2.4

1.6

t-- I-- t--

'c '

r-

Ie = 3A

1.2
0.8

7

1

10

FIGURE 4

SMALL-5IGNAl COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

COLLECTOR-EMITTER SATURATION VOLTAGE

'"

'"

CASE TEMPERATURE

FREQUENCY
.2

1

t

,;;

See Notes 6 and 7

i,::
I

,\",,18'" 20 rnA, IC '" 5 A

"
~

.2

Ji

•

:::

·E

u

0.7

"!

j

~

0.4

r- _'8 = 12

mi' S j:'
3

11

I,\- -

j

r-

40

20

10

".~

7

.2'

"'~

0.2

~

'1

W

0

1

25 50 75 100 125 150 175

1

Tc-Case Temperature-°c

10
f-Frequency-MHz

FIGURE 5
NOTES:

VCE'" 10 V
IC '" 1 A
TC '" 25°C

"~

18 -2 mA, IC -1 A

~ 0.1
-75-50 -25

25 50 75 100 125 150 175

Te-Case Temperature-°c

FIGURE 3

;g

r-- --- -!f '" 1 l:- t---- r-- t--

-75 -50 -25 0

Ie-Collector Current-A

>

=51

I-- t--

0.4

VCE-3V,
See Notes 6 and 7

100
0.4

2.8

> 2.0

Te;o _55°C ~

u

t
j

III

2000

~';

CASE TEMPERATURE

3.2

10000
7000

~

•

BASE-EMITTER VOLTAGE

STATIC FORWARD CURRENTTAANSFER RATIO

FIGURE 6

6, These parameters must be measured using pulse techniques. tw = 300 }.Ls, duty cycle ~ 2%.
7. These paramet"rs are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·377

TYPES TIP120, TIP121, TIP122
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
10

20

«
.!.c

/

~

5

D-C Operation
2

0

E

See Note 8

.)0"

4

u

tl
.J!!
0
u

III III

tw 300 p.s,
0.7 d 0.1 -10%

1\11
f\

V

TCEO:: 2S OC

E

'"

•

5d

...cI

4

tl

2

...0

.J!!

$0

E
E

'x

TIP121-

::2E

I

'"

I1}J

K

0.7
See Note 9-

0.4

I

5d

I

~IP1~2
0-.1

0.2
0.1

7

4

10

20

40

70 100

200

2

400

4

7 10

20

40

70100 200

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 8

FIGURE7
NOTES:

n

u

TIP120- r--.

0.2

10
7

~
::l
u

::l

0.4

::2E

I

«

0

::l

'x

VCC =20 V
RBB2 = 100
TC = 2SoC
See Figure 2

7

8. This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a

clamped inductive load.
9. Above this point the safe operating area has not been defined.

THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE

~
c

~c

80

o

.~

IS
.s;
Q)

c

~

o

'';::;

70

.~

i5

I--60

~

"

"

50
40

::l
C

'';::;
C

o

30

'i5=

::l

'"

t-

'"

C
'';::;

c

50

75

100

u

~

E

::l

E

"

125

Tc-Case Temperature-oC

R6JA EO:: 62.SoC/W

"

1.0

0

"

10

25

"-

::l

"f'-

o

'"

1.S

::l

~

20

o

c

0

::2E

Il.

Q)

~R6JC EO:: 1.92°C/W

E

'x

2.0

IS
.s;

u

E

2.S

0

150

'x

O.S

""",-

'"

::2E

I
I-

Il.

'" "

0

o

25

so

75

100

125

~
150

T A-Free-Air Temperature-°c
FIGURE 10

FIGURE9

PRINTED IN U.S.A

5-378

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1271

II (annat assume any responsibility for any circuits shown
or represent thai they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST· PRODUCT POSSIBLE.

TYPES TIP125, TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP120, TIP121, TlP122
• Min hFE of 1000 at 3 V, 3 A
• 65 W at 25°C Case Temperature
•

• 5 A Rated Collector Current
device schematic

50 mJ Reverse Energy Rating
COLLECTOR

--,,

,r- - - - - - -

BASE

,,I

I
I

I
I

'" 10 kn

I
I

'" 150n

IL _ _ _ _

.J
EMITTER

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECH,t,NICAlINTERCHANGEABILITY OF TIPl25
PLASTIC PACKAGE WITH TO-86 OUTLINE
THIS PORTION OF

LEA~--!

FREE OF FLASH

I

I

II

r- ~.:~~-lI

I

COLLEc~'6Si==~0
~21l
EMITTER.__
0380

~",==)Fft?

~~~~

r ~:~~~

r--t-~~;:

lLEADS

~~--'--

!,

r--~~~~~

(TO-66 DIMENSIONS)

~~~~~ ~ 01~
"'"

0210
0190

L

0035
0029

t~'~:

o~

0055Jr

0095

0045

0030MIN
(2PLACES)

J~DIA
0040

ALL DIMENSIONS ARE IN INCHES

RAD {2 PLACES)

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage _ _ . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
.
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature liS Inch from Case for 10 Seconds
NOTES:

TIP125 TIP126 T1P127
-60 V -SO V -100 V
-60V -SO V -100 V
-5V
-5V
-5V
-5A
-SA
--O.lA- See Figures 7 and S •
65 W
..
•
2W
..
•
50mJ
..
_-65°C to 150°C--+
__ -65°C to 150°C-•
260°C -

.

1. These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms, duty cycle,s;;;; 10%.

2.
3.
4.
5.

Derate linearly to 150°C case temperature at the rate of 0.52 wtc or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 1500 C free-air temperature at the rate of 16 mwt C or refer to Dissipation Derating Curve, Figure 10.
ThiS" rating is based on the capability of the transist,?rsto operate safely in the circuit of Figure 2. L = 100 mH; RSB2 = 100 il,
VBB2~ a v, RS~O.l n, VCC~20 V. Energy'" IC 2 L/2.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

5·379

TYPES TIP125, TIP126, TlP127
P-.N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature

Collector-Emitter
V(BR)CEO

ICEO

ICBO

TIPI25

TEST CONDITIONS

PARAMETER

IC =-30 rnA,

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

VCE - -30 V,

IB- 0

VCE=-40V,

IB- 0

VCE = -50 V,

IB= 0

VCB =-60V,

IE = 0

VCB= -80V,

IE - 0

-60

See Note 6

IB= 0,

TIPI26

TIP127

MIN MAX MIN MAX MIN MAX
-80

100

hFE
VBE
VCE(set)

•

NOTES:

V

-0.5
-0.5

rnA
-0.5

-0.2
-0.2

mA
-0.2

VCB = -100 V, IE - 0
lEBO

UNIT

-2

-2

-2

Emitter Cutoff Current

VEB = -5 V,

Static Forward Current

VCE = -3 V,

Transfer Ratio

VCE =-3V,

IC-O
1000
IC- 0.5 AI,
Isee Notes 6 and 7
1000
IC--3A

Base-Emitter Voltage

VCE= -3 V,

IC - -3 A, See Notes 6 and 7

-2.5

-2.5

-2.5

Collector-Emitter

IB- -12mA,

-2

-2

-2

Saturation Voltage

IB- -20mA,

IC--3A I,
Isee Notes 6 and 7
IC--5A

-4

-4

-4

1000

rnA

1000

1000

1000'
V
V

tw = 300 ,",s, duty cycle <; 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
6. These parameters must be measured using pulse techniques.
inch from the device body.

switching characteristics at 25° C case temperature
TEST CONDITIONst

PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

IC= -3A,
VBE(off) = 5 V,

TVP

IB(2)=-12mA,

IB(2) = 12 rnA,

1.5

RL=10n,

See Figure 1

8.5

UNIT
!,S

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

INPUT~~--~---~

56!!

Von--30V~ _:

~90%
I

I
RL '" 10n

RBB2 =560n

ton.\.-.f

270 pF

JlVgen

lOu
OUTPUT
~- VCC=30V

TEST CIRCUIT
A. V gen is a

30~V

O%I ~II
~
10%

+

VBB1"=' 32V
ADJUST FOR
Von" -30VAT
INPUT MONITOR

NOTES:

I.--toff~

pulse (from 0 V) into a

VOLTAGE WAVEFORMS
50~n

termination.

B. The V gen waveform Is supplied by a generator with the following characteristics: tr <.; 15 ns, 'tf <.; 16 ns, Zout = 50 ,0, tw

= 20 jJ.s,

duty cycle'; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr :a;;;; 15 ns, Rin
D. Resistors must be non inductive types.
E. The

d~c

;;a. 10 Mn, ein

:a;;;; 11.5 pF.

power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

1271

5-380

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES TIP125, TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
I..----.I- lw,.,5ms
I

VeE MONITOR

I (See Note A!

--n

5V __ 1
INPUT
VOLTAGE

I

O~

II
L

~

I
I
'--+-100 ms

100 mH

I

o

INPUT {O:t-JVlIV-....- H

I
----!

I

I

I

I
I

I

I

COLLECTOR

CUARE~~A __ : _ _ :_:_
Ie
VCE(Siltl __

MONITOR

I

I

I

-20V

RS=O.1

-

-

-

I

_

f--'l--

t-----I

I

I I

I

'_1-_
I

u
COLLECTOR
VOLTAGE

I
V{BR!CER-...L--

'eM = -1

NOTE A: Input pulse width in increased until

--------

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
A.

FIGURE 2

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIt.

g

'Iii

a:

10000

VeE

7000

CASE TEMPERATURE

-3.2
--3 V

See Notes 6 and 7

Vce=-3V
See Notes 6 and 7

-2.8

'l'

-'"

f

~ 0.:

VTe=loJO~\ \ :\" ~
Te

•

BASE-EMITTER VOLTAGE

"

COLLECTOR CURRENT

>

-~

2SOC

1

Te- ,55oe

~

>

-2.4
-2.0

- F

-1.6

;;::::

~
--..

-1.2

IC- 5A

~
't
lei

-{1,8

~

-0.4

100

-0.4

-0.7-1

-2

-4

-7 -10

-75 --50-25 0

Ie-Collector Current-A

FIGURE 3

FIGURE 4

SMALL·SIGNAL COMMON·EMITTER
FORWARO-CURRENT TRANSFER RATIO

COLLECTOR·EMITTER SATURATION VOLTAGE

"

"

CASE TEMPERATURE

--4
See Notes 6 and

25 50 75 100 125 150 175

Te-Case Temperature-°c

FREQUENCY

1
I\-

-2

"\

VCE=-10V
IC=-l A
TC = 26°C

-1

-O.~

-0.2

18

2~m~, Iq"'-;:;A

~_18=-12mA.'e=-3A~r--ts-

-I' I ' ,-2 , ,
IS =

-0.1
-75 -50 -25 0

NOTES:

rnA, IC" -1 A

10

25 50 75 100 125160 175

TC-Case Temperature-oC

f-Frequenc:v-MHz

FIGURE5

FIGURE6

6. These parameters niust be measured using pulse techniques. tw = 300 ,",S, duty cycle <;; 2%.
7. These parameters are measured with voltage~senslng contacts separate from the current~carrylng contacts and located within 0.125
Inch from the device body.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-381

TYPES TIP125,TIP126, TIP127
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

VS

COLLECTOR-EMITTER VOLTAGE
-10

-20

«
.Lc:
:;

u

-2

(;

See Note 8

~

-4

D-C Operation

~

tw ~ 300 /ls,
d 0.1 10%

-1

o
u

E -0.7

c:

-7

:;

\ V

-4

u
TC

« 25°C

(;
1:)

E

TI~ly

-0.1
-4

-7-10

-20

-40

See Note 9-

.~ '-0.4
:2
I
.S:'-0.2

TIP126 .....

!:? -0.2

i'-

-1

§ .-0.7

TIP125_

I

So
-.....!!.!.J

-2

~

(5

u

::J

.~ -0.4
'"
:2

-10

~

/ 1\

111111

1:)

«I
+"

V

/'

~

•

VCC ~20 V
RBB2 ~ 100 n
TC = 25°C
See Figure 2

-7

-0.1
-100 -200 -400

2

1

4

7 10

FIGURE 7
NOTES:

20

40

70100 200

L-Unclamped Inductive Load-mH

VCE-Collector-Emitter Voltage-V

FIGURE 8

8, These combinations of maximum voltage and current may be achieved only when switching from saturation to cutoff with a
clamped inductive load,
9, Above this point the safe operating area has not been defined.

THERMAL INFORMATION
FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE
$
I
c:

80

"'e..

70

Ci

60

0
.;::;

$

I
c

.~

-

.;::;
~

C1>

~

0

40

C
.;::;
c

30

::J

0

u
E
::J
E

'x

'"
:2
I

I-

0.

~

75

0

.;::;

'"

c

'"

100

"" ~
125

150

'x
'"
:2
I

I-

0.

0.5

« 62.5°C/W

""

0

o

25

50

75

""

100

~
125

T A-Free-Air Temperature-°c

""

150

FIGURE 10

TEXAS INCORPORATED
INSTRUMENTS
•

1.0

0

u
E
::J
E

ROJA

"" ""

~

FIGURE9

POST OFFICE BOX 5012

"'-

0

Tc-Case Temperature-OC

5-382

1.5

::J
::J
C

0
50

C1>

~ROJC « 1.92°CIW

10

25

~

C1>

.;;
"

20

o

2.0

Ci

""

50

0
::J

.~

~

C1>

"

.;;

2.5

0

DAL.LAS, TEXAS 75222

PRINTED IN U.S.A.
T! (annot assume any responsibility for any circuits shown
or represent thaI they are free from potenl infringement.

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP145, TIP146, TIP147
•

125 W at 25°C Case Temperature

•

10-A Rated Collector Current

•
•

111-1

c:<
,.....,
,..m
mill
::!::!
z...,

MinhFEof1000at4V,5A
100-mJ Reverse Energy Rating

z:C:
c~
,.....,
OQ

COLLECTOR

device schematic

BASE

r--------- -,I

c>-!...I+---i

cn~

"-I

•i~
N

I

I

'" 150!1
'" 10k!1
________
_

C

I
I
I
I

I

I
I
IL

.........
m

n
m

:s::

III

m
:II

..J

EMITTER

•

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECIlANICALINTEIICtIANa~AOILITVOfTIPlq
PLASTICPACICAGEWITHTO_JOI,ITLIN~

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Coliector·Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 2SoC Case Temperature
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free·Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note S)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . • . . . . .
Lead Temperature l/B Inch from Case for 10 Seconds
'NOTES:

1.
2.
3.
4.
5.

TIP140 TIP141 TIP142
BOV
100V
60V
60V
BOV
100 V
SV
SV
5V
10 A
•
15A
O.SA
-See Figures 7 and B 12SW
•
3.SW
----'100 mJ
..
_ _ -65°C to lS0°C__ -6S0Cto lS0°C_
•
260°C
..

•

..

•

..

•

These values apply when the base-emitter diode is open-circuited.
This value applies for 'tw ~ 0.3 ms, duty cycle <;; 10%.
Derate linearly to 1500 C case temperature at the rate of 1 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC or refer to Dissipation Derating Curve, Figure 10.
This rating is based on the capability of the :translstors to operate safely in the circuit of Figure 2. L = 100 mH, ABB2
VSS2=OV. RS=O.1il. VCC=20V. Energy'" IC 2 L/2.

..

= 1000,

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-383

TYPES TIP140, TIP141, TIP142
N·P·N-OARLINGTON·CONNECTEO SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO

ICEO

ICBO
lEBO
hFE
VBE
VCE(sat)

•

NOTES:

TIP140

TEST CONDITIONS

Breakdown Voltage
Collector Cutoff Current

Ic=30mA,

IB = 0,

VCE-30V,

IB- 0

VCE-40V,

IB = 0

VCE=50V,

IB - 0

VCB-60V,

IE = 0

VCB-80V,

IE = 0

VCB = 100 V,

IE - 0

Emitter Cutoff Current

VEB- 5V,

10- 0

Static Forward Current

VCE -4V,

Collector Cutoff Cu rrent

TlP141·

TIP142

MIN MAX MIN MAX MIN MAX

See Note 6

60

80

100

UNIT
V

2
2

mA
2

1
1

mA
1

2

II See Notes 6 and 7

2

1000

1000

Transfer Ratio

VCE =4V,

Base-Emitter Voltage

VCE =4V,

IC= lOA, See Notes 6 and 7

3

Collector-Emitter

IB-l0mA,

2

Saturation Voltage

'B - 4OmA,

I See Notes 6 and 7
I

3
2

3

3

IC - 5 A
IC-l0A

500

2

mA

3
2

V

3

1000

IC-5A
IC= lOA

500

500

6. These parameters m~st be measured using pulse tBchniques. tw = 300 JJs, duty cycle" 2%.
7. These parameters are measured with voltage~senslng contacts separate from the current~carrying contacts and

~ocated

V

within 0.125

Inch from the device body .

switching characteristics at 25°C case temperature
PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

TEST CONDITIONSt

TYP

'B(1) = 40 mA, IB(2) = -40 mA,
See Figure 1
VBE(off) = -4.2 V, R L = 3 fl,

0.9

IC= lOA,

11

UNIT
/.IS

tVoltaga and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT·
MONITOR

von=

660

42V

INPUT

-X--~O%
____ ~ _____ _

OV--

-4.2 V

1

10%

~r

RBB2=1500

270pF
OUTPUT

300

+

I

~t:::r-

90%L-,~

-=- VCC-3OV
VSS1" 44V
ADJUST FOR
Von=42VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a -30-V pulse (from 0 V) Into a 50-0 termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr <;; 15 ns, tf '" 15 ns, Zout = 50 .0, tw ... 20 ,",S,
dutV cvcla .. 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr '" 15 ns, Rin ;.;;, 10 MO, Cin <; 11.5 pF.
D. Reslstor~ must be noninductlve types.
E. The d-c power supplies may require additional bypassing In order to minimize rlngh1g.

FIGURE 1

1271

5·384

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TIP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
.....

,... ... ~7 ... (Sae_AI

INPUTO~
VOLTAGE
-6Y-

100mH

I
. - - . - 100 . . - - - .

I
I

lA2A~J--I--___ + _ I __

50n

COLLECTOR
CURRENT

+

-=- VCC-20V

I
0

I

I
::
V(BRICER-;--

IC
MONITOR

VOLTAGE

I

I

I

------j-

iI

COLLECTOR

'
I

I

-

I

I

I
I

I

20V
VCE(. .I - -

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
NOTE A: Input pulse width is increased until

'eM

= 1.42 A.

FIGURE 2

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT

.

TRANSFER RATIO

'"

CASE TEMPERATURE

40000

40

veE;4 V

.2
~

'"

j

20000

3.6

See Notes 6 and 7

>I

J

10000

!

;;

7000
4000

~

X

2 000

Te

700
400
0.4

2.8
Ie - 10 A

2.4
2.0

--5S"C

"........

1.6

I

1.2

>

0.6

:ll

VeE -4 V
See Notes 6 and 7

32

1

TC·'O(tc
\..Ty-25,e

1000

~

.~

y

11

1

•

BASE·EMITTER VOLTAGE

COLLECTOR CURRENT

f.--r

r-

--r--

lel5 A

~

-= c",.

c-

I

0.4

o
0.7

1

1

10

-75-60-26 0

26 60 76 100 125 160 175

Ic-Collector CurrBnt-A

Tc-Case Temperature-DC

FIGURE 3

FIGURE 4

COLLECTOR·EMITTER SATURATION VOLTAGE

FORWARD CURRENT TRANSFER RATIO

SMALL·SIGNAL COMMON·EMITTER

..

"
CASE TEMPERATURE

1

See Notes 6 and

;;

i
i
~

!

~

NOTES:

1~'4bml"cl=IJA

~ '-

.~E

FREQUENCY

.2

f- r-

.,......
I I

veE -10V

le= 1 A
Te = 25'C

S ~

1..
.~

"I

IB"'2mA 10A

0.4
-76 -60 -25 0

J

20

10

lB· 10 mA, Ie - 6 A

........

0.7

./

4D

~

V
./

-- ./

;

'"

'I (

25 50 75 100 125 160 175

~

1

"-

~

~

i

10

TC-Case Temperature-°e

f-Frequancy-MHz

FIGURE 5

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cyc.le < 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrYlng contacts and located within 0.125
inch from the device body.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·385

TYPES TlP140, TIP141, TIP142
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
40

20

D-C Operation
TC EO; 25°C

10

7

'" '\\

U

....
0

tJ

•

7

E
:::J
E

4

~OO

~

~
25

50

75

0
<:

';J

~

100

<:
0
U

~

125

150

FIGURE 9

1.5

E
:::J
E

'x

0.5

I
I-

0

2'"

c.

o

25

ROJA EO; 35fcIW

'" '"

2

:::J

T C-Case Temperature-° C

50

75

~

100

'\

"'~

125

150

T A -Free-Air Temperature-°c
FIGURE 10

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

"' ~

2.5

'"
:::J

I

o

'"

3

0

III

50

'x
2'"

0
8

~8JCEO;l0CIW

75

<:

5·386

3.5

.~

.;:

E
:::J
E

';J

'"c.

<:

8

4

0

125

o
fl

~<:

DALLAS, TEXAS 75222

PRINTED IN U.S A
TI (onnot ossume Dny responsibility for any circuits shown
or represent rhat they are free from palent infringement.

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE:

TYPES TIP145. TIP146. TIP141
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS

•
•

DESIGNED FOR COMPLEMENTARY USE WITH T1P140, TIP141, TIP142
125 W at 25°C Case Temperature
• Min hFE of 1000 at 4 V, 5 A
10-A Rated Collector Current
• 100 mJ Reverse Energy Rating
COLLECTOR

r--- - ----- --,

device schematic

I

BASE

I

~--------~

0--'-+---1

I
I

I

I
I

I

I
IL

'" 10 k.!l

I

'" 150.!l

________

..JI

EMITTER

mechanical data

•

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICALINTEIICKANGEABILITYOF TIP'.
PLAS1l(:PACII:ACIEWITHT0-30UTLINE

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter·Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
. . . . . . . .
Safe Operating Areas at (or below) 25°C Case Temperature . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

TlP145 TIP146 TlP147
-60 V -80 V -100V
-60 V -80 V -100V
-5V
-SV
-SV
a
lOA
a
15A
a
0.5 A
See Figures 7 and 8
125 W
•
a
3.5W
..
100mJ _
_
-65°C to 150°C_
_-65°C to 150°C_
..
260°C
a

..
.
..

....

These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms,duty cycle <; 10%.
Derate linearly to 150°C case temperature at the rate of 1 W/OC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC or refer to Dissipation Derating Curve, Figure 10,
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, ASB2 = 100
VBB2 ~ 0 V, AS ~ 0.1 n, Vee ~ 20 V. Energv '" le2L/2.

n,

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

5-387

TYPES TIP145, TIP146, TIP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature

Collector-Emitter
V(BR)CEO

ICEO

ICBO

TlP145

TEST CONDITIONS

PARAMETER

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

IC = -30mA,

IB = 0,

VCE = -30 V,

IB = 0

VCE--40 V,

IB - 0

VCE - -50 V,

IB - 0

VCB - -60V,

IE - 0

VCB - -BOV,

IE - 0

TlP146

TIP147

MIN MAX MIN MAX MIN MAX

See Note 6

-60

-BO

-100

hFE
VBE
VCE(sat)

•

NOTES:

V

-2
-2

mA

-2
-1
-1

mA
-1

VCB - -100 V, IE - 0
lEBO

UNIT

-2

Emitter Cutoff Current

VEB = -5 V,

IC- 0

Static Forward Current

VCE=-4V,

IC= -5A

Transfer Ratio

VCE=-4V,

, Isee Notes 6 and 7
IC= -10 A

Base-Emitter Voltage

VCE - -4 V,

IC - -10 A,See Notes 6 and 7

Collector-Emitter

IB - -10mA,

Saturation Voltage

IB - -40mA,

I.

1000

-2

-2 mA

1000

1000

500

500

IC - -5 A ISee Notes 6 and 7
IC--l0AI

500

-3

-3

-3

-2

-2

-2

-3

-3

-3

V
V

6. These parameters must be measured using pulse techniques. tw '= 300 p.s, duty cycle';:;;; 2%.
7. These parameters are me~sured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body,

switching characteristics at 25°C case temperature
TEST CONDITlONSt

PARAMETER
ton

Turn-On Time

IC= -lOA,

IB(1) = -40 mA,

toff

Tu rn-Off Time

VBE(off) = 4.2 V, R L = 3

n,

TYP
IB(2) = 40 mA,

0_9

See Figure 1

11

UNIT
/-IS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

INPU:·~~~~oo.: -

56n
V

on

'-42V -

-

-

-

-

I

I
I

I

'on -l.---.j
270 pF

Jl

Vgen

OUTPUT

300

~

iL;;.-..l-so%

I.--'off--!

f~

VaB1 "'" 44V
ADJUST FOR
Von=-42VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT

NOTES:

A. Vgen is a 30-V pulse (from 0 V) into a 50-n termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr

::s;;;;

15 ns, tf

::s;;;;

15 ns, Zout "" 50,0, tw = 20 p,s,

duty cycle ~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr

15 ns, Rin

~

10 Mn, Cin

~

~

11.5 pF.

D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.,

FIGURE 1
1271

5-388

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TIP145, TIP146, TlP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
~ tw "" 7 ms (See Note Al

I

I

--nl.----1r IL

5V __ !

VeE MONITOR

INPUT

I

VOLTAGE 0 - - '
100mH

o

-t-i

INPUT (C>t---'VIIv-.....

COLLECTOR

I
I
I
L.---,--100 ms -------I
I
I
I

I

I

I

~

~ ~

1
I
;

~

___

CUR~~:~A __ :_~I!I __________ 1
.1. __'V_I~_L

-:-- Vee = 20 V

I

Ie

I

VeElytl __ 1

MONITOR

~ _ _ _ _ _ -!
I

-20 V

Rs'" 0.1.11

I

I!

!-~I

COLLECTOR
VOLTAGE

I
V(BR)CER -

TEST CIRCUIT

...L -

-

VOLTAGE AND CURRENT WAVEFORMS

NOTE A: Input pulse width is increased until leM "'" -1.42 A.

FIGURE 2

•

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

BASE·EMITTER VOLTAGE

COLLECTOR CURRENT

'a:g

4000

I

Te = 1(xtc

]

2000

~

1000

8

II

CASE TEMPERATURE

-4.0

25°1

Te =

700

-3.6

.~
In

~

~

-2.0

~
Iu
>"

VeE'" -4 V

~~IN1'i\6,.nd

100
-0.4

-2.8

~

400

200

~

7

and1
IC=-10A
I

'--

le= -5 A

-1.6

-1.2 '-- -

-

-0.8

-7 -10

FIGURE4
SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

'"

FREQUENCY

CASE TEMPERATURE

.2 100
a: 70

•

See Notes 6 and 7

V

V

18=-40mA. le=-10A

i'--

j
y
1iiii

-0.7

~ -0.4

--- ~

I. I

2 rnA, Ie

25

]

40

~

20

8

j

10

~

4

~

2

o

lA

I I

1

I I I I

-75 -50-25 0

IOV
VeE
Ie '" 1 A
Te - 25°e

"-

I"'-.

11 1

50 75 100 125150 175

10
f-Frequency-MHz

Te-Case Temperature-oc

FIGURE 5
NOTES:

255075100125150175

Te-Case Temperature-°e

COLLECTOR-EMITTER SATURATION VOLTAGE

---

---

I
I

FIGURE3

I

---

~

-75-50-250

Ie-Collector eurrent-A

........

I

-'t--L

o
-4

i/'

I

'--I--

-0.4

-2

-0.7-1

VeE = -4 V
See Notes 6

"0

> -2.4

"E!

!

-3.2

8,

f-

5S<>C

TC

>I

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 JJs, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0_125
inch from the device body.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

5-389

TYPES TIP145, TIP148, TlP147
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE

MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

-20

-40
D-C Operation
TC';;; 25°C



.!!

(5

~ D-C Operation

I I I

0_01

o

5

10

/

I

~

"

0.4

u

5 ms

tw

\.

5

"

--,

\

U

\

tw 5 ~s
tw = 50~s7

/

::J

Ltw=500~~ .•'\~

/ /

0_1

/

\

-

0.4

Y
u

•

....

1' ....

'\

~

....

....

~

5

.!!

5 ~s

tw

tw -50~s7

TC';; 25°C
See Note 7

40

/

0_1

'. \

/\

,
"'"
/

\

\

\

~,.

tw -: 500~s
0_04 ~Etw 5 ms
D-C Operation

,
~

0.01

15

20

25

30

35 40 45

o

50

10

20

30

40

50

60

70

VCE-Collector-Emitter Voltage-V

VCE-Collector-Emitter Voltage-V

FIGURE 3

FIGURE 4

80

NOTE 7: Areas defined by dashed lines apply for nonrepetitive-puise operation. The pulse may be repeated after the device has regained
thermal equilibrium.

THERMAL INFORMATION

CASE TEMPERATURE
DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

~c:

8

~c:

1.2

l

7

.~

1.0

6

.,

5

o

i:5
2l
·S

o

I""

Cl

'"

::J

g

.g
c:

o
u
E
::J

4

3

'"

2

·iii
i:5
2l
·s

"-

.~

"- ~

<3

~

'"
:E
I

o

o

25

50

75

0.6

~OJA';; 175°C/W

c:

E

l-

g
::J

.l(

e..

C3

ROJC';; 29.2°C/W

'"

"" '"
'\..

0.8

100

E
::J
E

.l(

~

125 150 175 200

0.4

~

"" "
I"\..

0.2

'"
:E
I

~

0

o

25

50

75

'"

100 125 150 175 200

Tc-Case Temperature-°c

T A-Free-Air Temperature-°c

FIGURE 5

FIGURE 6

PRINTED IN USA

5·394

TEXAS INSTRUMENTS
INCORPORA:rED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

1271

TI (annot assume ony responsibility for any drcuits shown
or represent that they ore free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP503 THRU TIP506
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

Ill-l

e<

•

120 V and 150 V Min V(BR)CEO

•

2-A Rated Continuous Collector Current

•

20 Watts at 100°C Case Temperature

•

Min fT of 70 MHz at 5 V, 0.25 A

'-'"
,-m
mm
-1-1

z=ii

z~
OW

.-1
C:I:

o:":u

me

.... '"..,
~:::!

mechanical data

"'0

TIP503
TIP504

;~

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

C
m
(')

m

;:
III
m
:u

.....'"
..

0360RMAX

•

ALL DIMENSIONS ARE IN INCHES
ALL JEDEC TO-66 DIMENSIONS AND NOTES ARE APPLICABLE

TIP505
TIP506

ALL TERMINALS ARE INSULATEO FROM THE CASE

ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES:

A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The caSI! temperature may be measured anywhere on the seating plane within

0.125 inch of the stud.

D. All dimensions are in inches unless otherwise specified.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage
..... .
Collector· Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free·Air Temperature (See Note 4)
Operating Collector Junction Temperature Range . . . . . . .
.............. .
Storage Temperature Range
Lead or Terminal Temperature 1/161nch from Case for 10 Seconds
NOTES:

1.
2.
3,
4.

TIP503 TlP504
TIP505 TlP506
160V
130 V
150 V
120 V
,6V
6V
_2A_
-5A-1A-20W-2W _
_ 65°C to 200°C
-65°C to 200°C
-300°C-

These values apply when the base-emitter diode is open-circuited.
This value applies for tw < 0.3 ms, duty cycle < 10%.
Derate linearly to 200°C case temperature at the rate of 0.2 wtC.
Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/oC.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-395

TYPES TIP503 THRU TIP506
N-P-N SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

TIP503

TIPS04

TIPS05

TIP506

UNIT

MIN MAX MIN MAX
V(BR)CEO Collector-Emitter Breakdown Voltage
ICEO

Collector Cutoff Current

IC= 30mA,

IB = 0,

VCE - 60 V,

IB - 0

VCE-75V,

IB- 0

See Note 5

120

50

•

VCE
VCE - 150 V, VBE = 0

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage

VCE(sat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-5ignal Common-Emitter

"'fel
NOTES:

Forward Current Transfer Ratio

p,A

400

120V,VBE-0

ICES

V

150
50

400

. VCE-60V,

VBE - 0,

TC - 150°C

VCE - 75 V,

VBE - 0,

TC - IS0°C

VEB= 3 V,

IC- 0

20

SOO
20

VEB=6V,

IC=O

200

200

500

VCE - 4 V,

IC-l A,

See Notes 5 and 6

40

VCE =4 V,

IC= 2A,

See Notes Sand 6

20

VCE = 4 V,
IB 0.1 A,

IC= 2A,

See Notes Sand 6

1.4

1.4

See Notes Sand 6

0.6

0.6

IB- 0.2A,

IC lA,
IC- 2A,

VCE=SV,

IC= 250mA, f= 1 kHz

VCE=SV,

IC= 2S0mA, f= 10MHz

See Notes 5 and 6

200

40

p,A

p,A

200

20

1.2

1.2

40

40

7

7

V
V

5. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle,so;; 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Thermal ResiStance

ROJA

Junction-to-Free-Air Thermal Resistance

S
87.S

UNIT
°CIW

PRINTED IN U.S A

5·396

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP507, TIP50B
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

150 V Min V(BR)CEO

•

2-A Rated Continuous Collector Current

•

20 Watts at 100°C Case Temperature (TIP507)

•

4 Watts at 100°C Case Temperature (TIP508)

•

Min fT of 50 MHz at 5 V, 0.2 A

mechanical data
TIP507

ALL TERMINALS ARE INSULATEO FROM THE CASE

•

ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES:

A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within

0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.

TIP508

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL. DIMENSIONS ARE 1M INCHES
UNLESS OTHERWISE SPECIFIED

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
T1P507

Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . • . .
Continuous Collector Current . . •
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature.
Continuous Device Dissipation at (~r below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range . . . . . . .
Storage Temperature Range
....•..........
Lead or Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

TIP508

_-1S0V__
_-1S0V_
_-SV _ _
_-2A_
_-3A_
See Figure 1
20W
4W
2W
1W
-6So C to 200° C
-6SoC to 200°C
_300°C--,.

This value applies when the baseRemitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle >(; 10%.
Derate linearly to 200°C case temperature at the rate of 200 mW/C for TIP507 and 40 mW/C for TIP50B.
Derate linearly to 200°C free-air temperature at the rate of' 11.4 mwtC for TIP507 and 5.7 mW/oC for TIP50S.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-397

TYPES TIP507, TIP50B
P-N-P SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted) .
PARAMETER

TEST CONDITIONS

V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICED
ICES

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VSE

Sase-Emitter Voltage
Collector-Emitter Saturation Voltage
Small-Signal Common-E mitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter

hel
NOTES:

II

IS = 0,

VCE - -75V,

IS - 0

See Note 5

MIN

Forward Current Transfer Ratio

MAX

UNIT

-200

IJ.A

-150

V
-1

VCE - -150V, VSE - 0

Collector Cutoff Current

IESO

VCE(sat)

IC= -30mA,

TC - 150°C

-2

mA

VCE = -75 V,

VSE - 0,

VES= -2.5 V,

IC= 0

-100

IJ.A

VES= -5 V,

IC= 0

-1

mA

VCE = -4 V,

IC=-l A,

See Notes 5 and 6

30

VCE = -4 V,

IC= -2A,

See Notes 5 and 6

10

120

VCE = -4 V,

IC= -2A,

See Notes 5 and 6

-1.5

IS = -0.1 A,

IC=-lA,

See Notes 5 and 6

-1

IS = -0.4 A,

IC=-2A,

See Notes 5 and 6

-1.5

VCE = -5V,

IC= -0.2 A,

f = 1 kHz

30

VCE = -5 V,

IC= -0.2 A,

f = 5 MHz

10

V
V

5. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current·carrying contacts and located within 0.125
inch from the device body.

thermal characteristics
PARAMETER
ROJC

Junction-to-Case Thermal Resistance

ROJA

Junction-to-Free-Air Thermal Resistance

TIP507

TIP508

MAX

MAX

5

25

87.5

175

UNIT
°C/W

MAXIMUM SAFE OPERATING AREA

MAXIMUM COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE

-10
-7
--+-.

1

I EMITnI

! ~I

_~_~~

_P!_!~I-

017: 617
0ii7

TEMPERATURE MEASUREMENT POINT IS UNDERSIDE OF

FLAT SURFACE WITHIN 0,125"

FROM STUD

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature
(See Note 3)
................. .
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature
(See Note 4)
......... .
Operating Collector Junction Temperature Range . . . .
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

TIP515 TIP516 TIP517 TIP518
130V 160V 130V 160V
120V 150V 120V 150V
6V
6V
6V
6V
...>-----12 A - - - - ..
...> - - - - - 25 A - - - -••
...- - - - 6 A - - - - - .

80W

BOW

BOW

BOW

4W
4 W 3.5 W 3.5 W
- - -65°C to 200°C_
- - -65°C to 200°C•
300°C
..

These values apply when the base-emitter diode is open-circuited.
This value applies for "tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 0.8 W/C.
Derate linearly to 200°C free-air temperature at the rate of 22.8 mW/oC for TIP515 and TIP516, 20 mW/oC for TIP517 and
TIP518.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 7!5222

5-403

TYPES TIP515 THRU TIP518
N-P-N SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

TIP515

TIP516

TIP517

TIP518

UNIT

MIN MAX MIN MAX
V(SR)CEO Collector-Emitter Sreakdown Voltage
ICEO

Collector Cutoff Current

Ic=30mA,

IS = 0,

VCE - 60V,

IS - 0

VCE - 75 V,

IS - 0

See Note 5

120

150
1

IESO

•

VCE = 150V, VSE -0

Collector Cutoff Current

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VSE

Sase-Emitter Voltage

VCE(sat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

hte

Forward Current Transfer Ratio
Small-Signal Common-Emitter

Ihtel
NOTES:

Forward Current Transfer Ratio

mA

5

VCE - 120 V, VSE - 0
ICES

V

1

5

VCE=60V,

VSE = 0,

TC = 150°C

VCE = 75V,

VSE = 0,

TC = 150°C

VES = 3 V,

IC- 0

VES = 6 V,

IC= 0

VCE = 4V,

IC= 6A,

5
5
0.2

0.2
2
See Notes 5 and 6

40
30

200

2
40

mA

mA

200

VCE - 4 V,

IC-12A,

See Notes 5 and 6

VCE - 4 V,

IC-12A,

See Notes 5 and 6

1.4

1.4

IS = 0.6 A,

IC-6A,

See Notes 5 and 6

0.8

0.8

IS = 1.2A,

IC= 12A,

See Notes 5 and 6

1.5

1.5

VCE = 5 V,

IC= 1 A,

t = 1 kHz

VCE=5V,

IC = 1 A,

t= 10MHz

30

40

40

7

7

V
V

5. These parameters must be measured using pulse techniques. tw = 300 /J.s, duty cycle" 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

thermal characteristics
PARAMETER
ROJC

Junction-to-Case Thermal Resistance

ROJA

Junction-to-Free-Air Thermal Resistance

TIP515

TIP517

TIP516

TIP518

MAX

MAX

1.25

1.25

43.75

50

UNIT

°C/W

PRINTED IN U.S.A

5-404

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP519, TIP520
P-N-P SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

150 V Min V(BR)CEO

•

B-A Rated Continuous Collector Current

•

50 Watts at 100°C Case Temperature

•

MinfTof40MHzat5V,l A

mechanical data
TlP519

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0.525 RMAX

T---~-:~-~-j-11- t::~~AM~:JAD5
1.573, MAX
1~38

oOa
1.050 MAX MAX m:
~

1+

2-EMITTER

o~:£ ~ 0-\-lt
,~~ ",-.--*~
0.205 0.440
-'-I "I"
t~:!::

0.188 R MAX
BOTH ENDS

I

0.135 MAX -1

to

0.225

-

0.420

I

0.200

SEATING PLANE
1 - BASE

I

OJA

2 HOLES

t-

•

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

TIP520

ALL TERMINALS ARE ELECTRICALLY INSULATED FROM THE CASE

FLAT SURFACE
FROM STUD

WITHIN 0.125"

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current _ . .
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature.
Continuous Device Oissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
... _ . . . .
Storage Temperature Range
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

TIP519 TlP520
__ -1S0V___
__ -150 V _
--SV--BA_-12 A _
--3ASee Figure 1
-SOW4W

3.SW

-65°C to 200°C
-6SoC to 200°C
_300°C_

This value applies when the base~8mitter diode is open-circuited.
This value applies for 'tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200°C case temperature at the rate of 0.5 W/oC.
Derate linearly to 200°C free-air temperature at the rate of 22.8 mW/oC for TIP519 and 20 mWtC for TIP520.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-405

TYPES TIP519, TIP520
P-N-P SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
VIBR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICEO
Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage

Collector-Emitter SaturaHon Voltage

Forward Current Transfer Ratio

Small-Signal Common-Emitter
hel

•

NOTES:

VCE = -75 V,

IB = 0

VCE = -75V,

Small-Signal Common-Emitter
hfe

IB = 0,

MIN

See Note 5

Forward Current Transfer Ratio

VBE = 0,

MAX

UNIT

-500

!LA

-150

V
-1

VCE=-150V, VBE = 0

ICES

VCElsat)

IC= -30mA,

TC = 150°C

-3

mA

VEB = -2.5 V,

IC = 0

-100

!LA

VEB = -5 V,

IC= 0

-1

mA

VCE = -4 V,

IC=-4A,

See Notes 5 and 6

30

VCE=-4V,

IC= -SA,

See Notes 5 and 6

10

VCE=-4V,

IC = -SA,

See Notes 5 and 6

-2

IB = -0.4 A,

IC=-4A,

See Notes 5 and 6

-1

IB=-1.6A,

IC=-SA,

See Notes 5 and 6

-2.2

VCE = -5 V,

IC= 1 A,

f = 1 kHz

30

VCE=-5V,

IC=-lA,

f = 5 MHz

S

150
V
V

5. These parameters. must be measured using pulse techniques. tw = 300 fJ,s, duty cycle";;; 2% .

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

thermal characteristics
PARAMETER
ROJC

Junction-to-Case Thermal Resistance

ROJA

Junction-to-Free-Air Thermal Resistance

TIP519

TIP520

MAX

MAX

2

2

43.8

50

UNIT
°C/W

MAXIMUM SAFE OPERATING AREA
MAXIMUM COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE

-10
-7
 10 keV

MAX
2.5
S7.5

UNIT
°CIW

(reactor spectrum).

6. These parameters must be measured using pulse techniques. tw "" 300 /Js, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

PRINTED IN U.S A.

5-426

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE TIP543
N-P-N SILICON POWER TRANSISTOR
RADIATION-TOLERANT TRANSISTOR
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

Min hFE of 10 at 4 V, 5 A after 2 X 10 14 Fast Neutrons/cm 2

•

40 W at 100°C Case Temperature

•

Max VCE(sat) of 0.8 V at IC = 10 A, IB = 1 A

•

Min fT of 120 MHz at 5 V, 1 A

•

4 mJ Reverse Energy Rating

description

C
m

om

The TIP543 transistor offers a significant advance in radiation-tolerant-device technology. Unique construction
techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through
2 X 1014 n/cm2.

im

--'"
;J]

....

mechanical data
ALL TERMINALS ARE INSULATEO FROM THE CASE

•
ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES:

A. Within this dimension, case diameter may vary.
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within
0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
75 V

Collector-Base Voltage . . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . .
Continuous Collector Current . .
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load En.rgy (See Note 5)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

This value applies when the baSBMemitter diode is openMcircuited.
This value applies for tw ~ 0.3 ms, duty cycle'" 1 0%.
Derate linearly to 200°C case temperature at the rate of 0.4 W/C.
Derate linearly to 200°C free~air temperature at the rate of 11.4 mWl C.
This rating is based on the capability of the transistor to operate safely in the
the forthcoming JEDEC publication
VBBl

= 10 V, VBB2 = 0

V, RL

unclamped~inductive

Suggested Standards on Power Transistors.:j:

= 0.1 n, VCC = 20 v.,

L

=

65V
5V
lOA

20A
5A
40W
2W
4mJ
_65° C to 200° C
-65°C to 200°C
300°C

load circuit of Section 3.2 of

1251'H, RBBl

= 5 n,

RBB2

= 100 n,

ICM = B A, Energy'" IC 2 L/2.

;This circuit appears on page 5-1 of this data book.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 7!i222

5-427

TYPE TIP543
N-P-N SILICON POWER TRANSISTOR

electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
V(BR)CEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICEO
ICES

Collector Cutoff Current

lEBO

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

VBE

Base-Emitter Voltage

VCE(sat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter

ihfei

•

Forward Current Transfer Ratio

IC= 30mA,

IB = 0,

VCE - 40 V,

IB - 0

VCE 75 V,
VCE=40V,

VBE

See Note 6

IC = 0

VEB - 5 V,

IC=O

65

V

2
0

VBE = 0,

VEB = 3 V,

MIN MAX UNIT

1
TC = 150°C

2
0_2
1

VCE - 4V,

IC- 5A,

See Notes 6 and 7

40

VCE - 4V,

IC - lOA, See Notes 6 and 7

40

rnA
rnA
rnA

200

VCE - 4V,

IC= lOA, See Notes 6 and 7

1.4

IB - 0_5A,

IC- 5A,

See Notes 6 and 7

0.5

IB-l A,

IC-l0A, See Notes 6 and 7

0.8

VCE = 5 V,

IC = 1 A,

f = 1 kHz

40

VCE = 5 V,

IC = 1 A,

f= 10MHz

12

V
V

post-irradiation electrical characteristics at 25°C case temperature
PARAMETER

Static Forward Current Transfer Ratio

hFE

TEST CONDITIONS
VCE = 4V,

IC= 5A,

See Notes 6 and 7

RADIATION
FLUENCEt
2 X 10 14 n/cm 2

MIN MAX UNIT
10

thermal characteristics
PARAMETER

MAX

Thermal Resistance

RoJC

Junction~to-Case

ROJA

Junction-to-Free-Air Thermal Resistance

2.5
87.5

UNIT
°C/W

tRadiation is fast neutrons (n) at E ~ 10 keV (reactor spectrum).
NOTES:

6. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle';;; 2%.

7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

PRINTED IN U.S.A.

5·428

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BESTPRODUCT POSSIBLE.

TYPES TIP544, TlP545, TIP546
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS
FOR POWER·AMPLIFIER AND HIGH·SPEED·SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH 2N5758. 2N5759. 2N5760
•

150 W at 25°C Case Temperature

•

6-A Rated Continuous Collector Current

•

Min fT of 1 MHz at 20 V. 0.5 A

mechanical data
The case outline falls within JEDEC TO·3.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~
oO

O'S25 R MAX
Q

j 1-

~
0_'25_0--iITF~~~DIA'

0.450
' -_ _
1.050 MAX

or.~

aoTH ENDS

0.135

0.440

-

MAX

I I.
MAX -I r:--;:

0.188 R M A X · - ' - - - - -

O'480 ~1'573
-"!,,

- 6-'-1+

0.205 0 .440
0.420
0.200

SEATING PLANE
1 - BASE

T.'i77

~-'Mlm.

"

•

,-.---*-

-\"'-1''''1''
I

1.197

0.675

~

LEADS

0.'25 --.::T

MAX

I
t-

t~:!::

DIA

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Coliector·Base Voltage . . . . . .
Coliector·Emitter Voltage (See Note 1)
Emitter·Base Voltage
.....
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Device Dissipation at (or below) 2SoC Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range . . . . . . . . . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

TIP544 TIP545 TIP546
-100V -120V -140V
-100V -120V -140V
-7 V

-7 V

-7 V

_-6A _
-10A_
_
_-4A_
-1S0W-SW_-6SoC to 200oC _
_
-6SoC to 200°C_
_23SoC_

These values apply when the base~emitter diode is open-circuited.
This value applies for"tw '" 0.3 ms, duty cycle'" 10%.
Derate linearly to 200°C case temperature at the rate of 0.857 wtC.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-429

TYPES TIP544, TIP545, TIP546
P-N-P SINGLE-DIFFUSED SILICON POWER TRANSISTORS

electrical oharacteristics at 25°C case temperature (unless otherwise noted)

Collector-Emitter
V(SR)CEO

Sreakdown Voltage

TlP544

TEST CONDITIONS

PARAMETER

IC = -200 mA, IS = 0,

See Note 5

-100

Collector Cutoff Current

TIP546

-140

-120

mA
-1

-5

VCE = -50 V, IS = 0
Collector Cutoff Current

-5

VeE = -60 V, IS=O

mA
-5

VCE = -70 V, IS =0
-1

VeE = -100 V, VSE = 1.5 V

-1

VCE = -120 V, VSE = 1.5 V
ICEV

•

IESO
hFE
VSE
VCE(sat)

Collector Cutoff Current

hfe

~fel

NOTES:

TC= 15o"C

VCE = -120 V, VSE = 1.5 V,

TC = 150°C

VCE = -140 V, VSE = 1.5 V,

TC = 150°C

IC= 0

Static Forward Current

VCE = -2 V,

IC= -3A

Transfer Ratio

VCE=-2V,

IC=-SA

Sase-Emitter Voltage

VCE=-2V,

IC=-3A,

Collector-Emitter

IS = -0.3 A,

IC= -3A

Saturation Voltage

IS=-1.2A,

IC= -SA

Forward Current Transfer Ratio
Small-5ignal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit

Cobo

VCE = -100 V, VSE = 1.5 V,

VES=-7V,

Small-5ignal Common-Emitter

Output Capacitance

-1

VCE = -140 V, VSE = 1.5 V

Emitter Cutoff Current

V

-1

VCS=-120V,IE=0
VCS=-140V,IE=0

ICEO

UNIT

-1

VCS = -100 V, IE - 0
ICSO

TIP545

MIN MAX MIN MAX MIN MAX

I
.
I See Notes 5 and 6

-5
-5
-1
25

100

-1
20

80

5

5

-1
15
5

-1.5

-1.5

-1.5

1See Notes 5 and 6

-1

-1

'-1

-2

-2

-2

f = 1 kHz

VeE = -20 V, IC= -0.5 A,

f=0.5MHz

VCB= -10V, IE = 0,

f= 0.1 to 1 MHz

15

15

15

2

2

2

300

mA

60

See Notes 5 and 6

VCE = -10V, IC=-2A,

mA

-5

300

300

V
V

pF

5. These parameters must be measured using pulse techniques. tw = 300 J,J.s, duty cycle <; 2%.
6, These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125

inch from the device body.

PRINTED IN U.S.A

5·430

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUa POSSIBLE.

TYPES TIXP547. TIXP548. TIXP549
N-P-N SILICON POWER TRANSISTORS
FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS
•

60 V, 80 V, and 100 V Min V(BR)CEO

•

100-A Rated Continuous Collector Current

•

200 Watts at 100°C Case Temperature

•

Min fT of 3 MHz at 5 V, 5 A

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

•

1 EMITTER

2 BASE
3 COLLECTOR

NOTES

A. Seahngflangeill'ldcan.rregularltlesliewlthmthlsdlman$.on
8. POlrtlonoftermmalsmrelatl(lntothehaxagonlsnotcontrolled
C Case temparatllre measurement pomt IS on the undars,de of flat surface wlthm

D.

~'~~~:'~~Smar~~'lnchesunleHOthelWlliespeclfled

ALL JEDEC

TO~114

DIMENSIONS AND
NOTES ARE

APPLl~

CABLE.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TIXP547TIXP548 TIXP549

Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ _ _ _ _ _
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Area at (or below) 100°C Case Temperature
Continuous Device Dissipation at (or below) 100·C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 2SoC Free-Air Temperature (See Note 4)
Operating Collector Junction Temperature Range _ _ _ .
Storage Temperature Range . . . . . . . _ . . . .
Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.

aov

l00V
120V
aov 100 V
60V
5V
SV
SV
_100 A
•
-150 A
•
..
2SA
•
_
See Figure 1 _
-200W-

-a.sw

•

_-6S0Cto 200°C_
_-6S0Cto 200°C_
-300°C-

These values apply when the base-emitter diode is open-circuited.
This value applies for tw .eo;; 0.3 ms, duty cycle'.s;;; 10%.
Derate linearly to 200°C case temperature at the rate of 2 WIDe,
Derate linearly to 200°C free~air temperature at the rate of 48.5 mW/oC.

1271

PRELIMINARY DATA SHEET:
Supplementary data may "'be
published at a later date.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-431

TYPES TIXP547, TIXP548, TIXP549
N-P-N SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER
Collector-Emitter
V(BR)CEO

ICEO

ICES

lEBO
hFE

•

VBE
VCE(sat)
hfe

~fel
NOTES:

TIXP547
TIXP548 TIXP549
UNIT
MIN MAX MIN MAX MIN MAX

TEST CONDITIONS

Breakdown Voltage
Collector Cutoff Current

Ic=200mA,

IB =0,

VCE=30V,
VCE=40V,

IB=O
IB=O

VCE =50V,

IB=O

Emitter Cutoff Current
Static Forward' Current
Transfer Retio
Bese-Emitter Voltage
Collector-Emitter
Seturation Voltage
Small-8ignal Common-Emitter
Forward Current Transfer Retio
Small-8ignal Common-Emitter
Forward Current Transfer Ratio

60

SO

V

100

10
10

mA
10

VCE -SOV, VBE=O
VCE -l00V .. VBE =0
VCE = 120V, VBE-O
VCE =40V, VBE =0,
VCE=50V, VBE =0,
VCE=60V, VBE =0,
VEB=4V,
IC=O
IC-O
VEB - 5 V,
IC- 50A
VCE-4V,

Collector Cutoff Current

See Note 5

IC= l00A
IC=100A,

5
5
5
TC = 150°C

25
25

TC = 150°C
TC = 150°C

2
5

2
5
: See Notes 5 and 6

15

100

5

16
5

100

15

IC=50A
I
c= l00A

VCE = 5 V,

IC=5A,

f = 1 kHz

15

15

15

VCE=5V,

IC=5 A,

f= 1 MHz

3

3

3

See Notes 5 and 6

4

II See Notes 5 and 6

1.5
3

25
2
5
100

mA

5

VCE-4V,
VCE =4 V,
IB=5A,
IB=25A,

5. These parameters must be measured using pulse techniques. tw = 300 ,",s, duty cycle

mA

4
1_5
3

4

V

1.5
3

V·

< 2%.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

thermal characteristics
PARAMETER
R8JC
R8JA

MAX
0.5

Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

20.6

UNIT
°CIW

MAXIMUM SAFE OPERATING AREA
1000

<
,!.

~D-C O~,

ow ...

400 :TC';;;;100°C

c

~ 100
:::I

(,J

~
.!!

40

"5

10

E
:::I
E

4

u

""'-

..

'x

:E

£,

111"041

0,4
0.1 1

'1"0"0

Ilr

p5 j9 1

4
10
40 100
400 1000
VCE-Collector-E mitter Voltage-V
FIGURE 1
PRINTED IN U.S.A

5-432

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUCT POSSIBLE.

TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
DESIGNED FOR COMPLEMENTARY USE WITH TIP645, TIP646, TIP647
•
•

175 W at 25°C Case Temperature

•

10-A Rated Collector Current

......l!~m

MinhFEof1000at4V,5A

•

."

mill

100-mJ Reverse Energy Rating

::!::!
z."

zz!

device schematic

P?
o::!

COLLECTOR

~i
......

...

r - - -_------------------...

BASE

o--=I~_--I
I

L_________
"'10kO

.

;
I
I
I
I

I
I
I

"-I

i:;;
~Z!

"'15011

m
!:

III:0

...I

•

EMITTER

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

=~
0o.525R
=::~:~jITF1-~::~:~h
MAX

o

a

1.050 MAX

0.225

DIA
....l..--

0.188 R

D.2iIs

MAX:-'---~==- I
0.135 MAX -I

80TH ENDS

---=r 0.440
0.420

-1-1+ 1-·

-\.,
1

,

0.200

SEAtiNG PLANE
I - BASE

I
I-

~
lo.161 DIA
0.151
2 HOLES

CASE TlMPERATURE
MEASUREMENT POINT

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage . . . . . .
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous'Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Unclamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range . .
Storage Temperature Range . . . . . . . . . .
Lead Temperature 1/8 Inch from Case for 10 Seconds
NOTES:

1.
2.
3.
4.
5.

TIP640 TIP641 TIP642
80V
100V
60V
60V
80V
100V
5V
5V
5V
10A
•
15A
0.5A
+-lSee Figures 7 and 8 _
175W
•
5W
•
-100mJ_
-65°C to 200°C -65°C to 200°C _
_
_260°C_

-

•

..

•

•

•

..

These values apply when the baseRemitter diode is open-clreuited.
This value applies for !w " 0.3 ms, duty cycle" 1 0%.
Derate linearly to 200°C case temperature at the rate of 1 W/oC or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/oC or refer to Dissipation Derating Curve, Figure 10.
This rating is based on the capability of the ltranststors tci operate safely in the circuit of Figure 2. L = 100 mH, RBB2 = 100 0,
VBB2=OV, RS=0.111, VCC=20V. Energy "'IC2L/2.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

~

tI

m

o

DALLAS, TEXAS 715222

5-433

TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO

ICEO

ICBO
lEBO
hFE
VBE
VCE(sat)

•

NOTES:

TIP640

TEST CONDITIONS

Breakdown Voltage
Collector Cutoff Current

Collector Cutoff Current

IC=30mA,

IB = 0,

VCE - 30 V,

IB - 0

VCE -40V,

IB - 0

VCE - 50 V,

IB - 0

VCB-60V,

IE - 0

VCB-80V,

IE = 0

VCB-l00V,

IE - 0

TIP641

TIP642

MIN MAX MIN MAX MIN MAX

See Note 6

60

UNIT

100

80

V

2
2

rnA

2
1
1

mA
1

Emitter Cutoff Cu rrent

VEB - 5 V,

IC,- 0

Static Forward Current

VCE = 4 V,

Transfer Ratio

VCE = 4 V,

IC=5A
IC= lOA

Base-Emitter Voltage
Collector-Emitter

VCE = 4 V,
IB=10mA,

IC= 5A

Saturation Voltage

IB = 40mA,

IC= lOA

2

1I See Notes 6 and 7

1000

2
1000

500

2

rnA

V

1000
500

500

IC = 10 A, See Notes 6 and 7

3

3

3

II See Notes 6 and 7

2

2

2

3

3

3

~

6. These parameters must be measured using pulse techniques. tw = 300 JAs, duty cycle

V

2%.

7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

switching characteristics at 25°C case temperature
PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

TEST CONDITIONSt

TYP

IB(l) = 40 mA, IB(2) = -40 mA,
See Figure 1
VBE(off) = -4.2 V, RL = 3 n,

0.9

IC=10A,

UNIT

11

/LS

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

Von=42V- -

r~90%

56n

OV:::/:.,--o%- -4.2 V
I '0%

INPUT

270 pF
OUTPUT

30 {I

-

~~
I

...jton:l~ ~'~J
~
90%

+

-=- VCC=3OV
VBB1"'44 V
ADJUST FOR
Von =42 VAT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. V gan is a -31).V pulse (from 0 V) into a 50-0 termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr '" 15 ns, 'tf '" 15 ns, Zout

= 50 n, tw = 20 Jl.s,

duty cycle';; 2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, Rin;;;;' 10 Mil, Cin '" 11.5 pF.
D. Resistors'must be noninductive types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1
1271

5-434

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
-..

,....tw"" 7 ms (See No. A)

INPUT'O~

VOLTAGE

~V-

I

100mH

I

-.-'00 .. --.,

I

I

I

I

I

COLLECTO~42A-i-A------TA-

SOn
+

CURRENT

-=- VCC=20V

0

-+' I:i ~
-"1-I

V(BR)CER
IC
MONITOR

I

I
I

COLLECTOR

VOLTAGE

lOV

i)OI

I

------1--

I
I

:

:

I

I

VCE(satl--

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
NOTE A:

Input pulse width is increased until 'eM"" 1.42 A.

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT
TRANSFER RATIO

40 000

"

~

': 20000

!

CASE TEMPERATURE

4.0

veE - 4 V
See Notes 6 and 7

.2

f

10 000

>

·i

4000

"E

j

X

2000

V

~w~

1000
700

~

1
..

Te" 100°C

'-T

2

io c

~
>

Te - -5SOC

3.2
2.8

Ie = 10 A

2.'

f--r

........

2.0

.......

1.6

IC 'SA

r--

1.2

~

0.8
0.'

0.7

1
Ie-Collector Current-A

7

-75-50-25 0

'0

25

50 76 100 125 150 175

COLLECTOR·EMITTER SATURATION VOLTAGE

SMALL-SIGNAL COMMON·EMITTER
FORWARD CURRENT TRANSFER RATIO

"

FREQUENCY
0

t

See

Note~

~

6 and 7

~
§

I~'.'O ml. IC"

~

~

~ "-

.~

~

j

~

VV
r-

0.7

I

,d A

~

SA

IC'" 1 A

!
~

10

Te = 25°C

I\.

l

't--

~

.'l'

I I' T I

-75 -60 -25 0

VeE - 10 V

20

1

l- f--

IB=2mA le:fA

0.'

40

~

VV

IB'" 10 mA, Ie

~

u

r-

FIGURE 4

"

iii

"".

Tc-Case Temperature-°c

CASE TEMPERATURE

>

f-

FIGURE 3

>I

;3

=

I

400

0.4

NOTES:

I
I
I

VeE =4 V
See Notes 6 and 7

3.6

>I

C 7000

~
u

•

BASE-EMITTER VOLTAGE

"

COLLECTOR CURRENT

"'" ~ f'.-

1

25 50 75 100 126 150 175

10

Te-Case Temperature-DC

f-Frequency-MHz

FIGURE 5

FIGURE 6

6. These parameters must be measured using pulse techniques. tw = 300 /Js. duty cycle :e;;; 2%.
7. These parameters are measured with voltage*sensing contacts separate from the current*carrying contacts and located within 0.125
inch from the device body.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

5-435

TYPES TIP640, TIP641, TIP642
N-P-N DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAXIMUM COLLECTOR CURRENT

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

vs
UNCLAMPED INDUCTIVE LOAD
40

20

D-C Operation
TC';;;25°C

10

«I

20

....c

7

VCC=20V
RBB2 = l00.n
TC = 25°C
See Figure 2

1:

L\

4

,
\

•

10
7

TIP641 "TI, 64

u

NOTE 8:

20

40

200

70 100

'rIlfee

1
0.4

0.2
10

"-

2

I

r

~qj
~'"

4

'x
:a;'"

TlP640

0.4

...

0
~
"0
u
E
::J
E

0

2

0.7

'"

3

u

\

400

4

~otr 7

10

400

100

40

VCE-Collector-Emitter Voltage-V

L-Unclamped Inductive Load-mH

FIGURE 7

FIGURE 8

Above this point the safe operating area has not been defined.

THERMAL INFORMATION

s:I
c

.g
0'"

.~

Ci
Q)

"

.:;

CASE TEMPERATURE
DISSIPATION DERATING CURVE

'"0

~c

200
180 I - 160

120

'""

::J
::J
C

....c
0

100

',j:;

'"0'il!

I

20

'x
:a;'"

'"

.~

4

Q

'" "'"

5'"
C
'g
::J

""

40

8
'\

1'\

3

"-

ROJA';;; 35°CIW

I"'"

2

~

'"

E
::J

.SX

"-

:a;'"
I

I-

0..

I~ I"-

Q)

"

ROJC';;; l°C/W

u
60

5

Ci

80

E
::J
E

6

o

1'\

140

Q)

Q

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

0

o

25

50

75

100

125 150

Tc-Case Temperature-OC

"'"

175 200

FIGURE 9

t"

0

o

25

50

75

100

~

'\~

125 150 175 200

T A-Free-Air Temperature-OC
FIGURE 10
PRINTED IN USA

5·436

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

11 (onnol assume any responsibility for any circuits shown
or represent thot they are free from polen! infringement.

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE OESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS

•
•

DESIGNED FOR COMPLEMENTARY USE WITH TIP640, TIP641, TI~642
175 W at 25°C Case Temperature
• Min hFE of 1000 at 4 V, 5 A
10-A Rated Collector Current
• 100 mJ Reverse Energy Rating

r------------------ -.,

COLLECTOR

device schematic
BASE

I
I

I
I

I

I
I

I
I

I
:

I

:

I

'" 10 kn

II

'" 150 n

L ________________ J

EMITTER

mechanical data

•

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

~~;~j 1- ~:::':~:~ADS_'_57_3,_M_A_X+t-·-:-O~ : :;-:-~ ~:~;~

.525RMAX
o
~
0

'---.-:7-5---Iffi=,,}38
_/.:-41..5. MAX MAX
•225 ~ -0-,-1'
~

h
-1

0.188 R M A X - - ' - - - - - BOTH ENDS

0.135 MAX

1

-\- i'

0205 0440

0.420

I

0.200

SEATING PLANE
I -BASE

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage _ _ _ _ _ _
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage _ _ _ _ _ _
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Safe Operating Areas at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Undamped Inductive Load Energy (See Note 5)
Operating Collector Junction Temperature Range _ _ _
Storage Temperature Range _ _ _ _ _ _ _ _ _ _ _
Terminal Temperature 1/8 Inch from Case to 10 Seconds
NOTES:

1.
2.
3.
4.
5.

T1P645 T1P646 TIP647
-60 V -80 V -100V
-60 V -80 V -100V
-5V
-5 V
-5V
10A
•
15 A
•
_-0_5 A
See Figures 7 and 8
175W
5W
_100mJ
-65°C to 200°C
_65°C to 200°C
_
260°C

.

.

...

•

•

...
..
...

These values apply when the base-emitter diode is open-circuited.
This value applies for tw ~ 0.3 ms, duty cycle ~ 10%.
Derate linearly to 200 0 C case temperature at the rate of 1 W/ C or refer to Dissipation Derating Curve, Figure 9.
Derate linearly to 200°C free-air temperature at the rate of 28.6 mW/C or refer to Dissipation Derating Curve, Figure 10,
This rating is based on the capability of the transistors to operate safely in the circuit of Figure 2. L = 100 mH, RSS2 "" 1 00 ,0,
VBB2 = 0 V, RS = 0.1 n, Vee = 20 V_ Energy'" le2U2_

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-437

TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
electrical characteristics at 25°C case temperature
PARAMETER
Collector-Emitter
V(BR)CEO

ICED

Breakdown Voltage
Collector Cutoff Current

IC=-30mA,

IB= 0,

VCE - -30 V,

IB- 0

VCE =-40 V,
VCE = -50V,

IB= 0

VCB= -60V,
ICBO
lEBO
hFE
VBE
VCE(sat)

•

NOTES:

TIP645

TEST CONDITIONS

Collector Cutoff Current

VCB- -SOY,

TIP646

TIP647

MIN MAX MIN MAX MIN MAX

See Note 6

-60

-SO

•

100

UNIT
V

-2
-2

mA

-2

IB- 0
-1

IE - 0
IE = 0

-1

Emitter Cutoff Current

VCB- l00V, IE - 0
VEB--5V,
IC=O

Static Forward Current

VCE--4V,

Transfer Ratio

VCE--4V,

1000
IC- -5A
o A I see Notes 6 and 7 500
IC--1

Base-Emitter Voltage

VCE=-4V,

IC = -lOA, See Notes 6 and 7

Collector-Emitter

IB - -10mA,

Saturation Voltage

IB= -40mA,

IC--5A
,Isee Notes 6 and 7
IC=-10A

mA
-1

-2

I.

-2
1000
500

-3

I,

-2

-3

-2

mA

-3
-2
-3

V

1000
500

-3
-2
-3

V

6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle"" 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device bodV.

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton

Turn-On Time

IC=-10A,

toff

Turn-Off Time

VBE(off) = 4.2 V, RL = 3 U,

TVP

IB(1) = -40 mA,

IB(2) = 40 mA,
See Figure 1

0.9
11

UNIT
IlS

tvoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION
INPUT
MONITOR

5611

270pF

Vgon

3011

OUTPUT
-:-- Vcc- 30V

+

VSB,,",44V
ADJUST FOR
Von =-42 V AT
INPUT MONITOR

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. Vgen is a 3O-V pulse (from 0 V) into a 50-0 termination.

B. The V gan waveform is supplied by a generator with the following characteristics: tr

< 15 ns, 'tf '" 15 ns, Zout = 50 0, tw = 20 ,",s,

duty cycle .. 2%.
~. Waveforms are monitored on an oscilloscope with the following characteristics: tr <; 15 ns, Rin ;.. 10 MO, Cln '" 11.5 pF.
D. Resistors must be non inductive types.
E. The d-c power supplies may require additional bypassing In order to minimize ringing.

FIGURE 1

1271

5-438

TEXAS INSTRUMENTS
INCORPO~ATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES TIP645, TlP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
INDUCTIVE LOAD SWITCHING
~tw"'7ms ($a. Note AI

1

1

'

--nL - - - Jn

VeE MONITOR

5V--1
INPUT

I

VOLTAGE 0.-1
100mH

I

1

1

I

I

1

1

L.---t-.OO ... ------t

I

o
I
I
COLLECTOR~

INPUT (C>~"'V\fV-...-H

CUR~~~A_+_:_: _ _ _ _ _

-=-- Vee'" 20 V
Ie
MONITOR

RS= 0.1

L

I

VCEI... I __ I

n

+__ 1+_

1 I

1

II

I

I

1_1-_

tI

-20 V

1

COLLECTOR
VOLTAGE
I

I
V(BRICER-...l.. -

NOTE A: Input pulse width is Increased until leM

= -1.42 A.

-

FIGURE2

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO

.~

'"

I~
8

"

CASE TEMPERATURE

-4.0

4000

VeE = -4V

-3.6

Te = 100°C

2000

~C=25~C

1000

1

700

Te- ssOe

-

t

'0

> -2.4

.~

1

-2.0

w -1.6

j

VCE=-4V

"i INl'ilsl·

nd

100
-0.4

-1.2

~
> -0.8

·15

~

-2.8

E

200

-0.4

7

-0.7-1

-4

-2

./

I

V-

~ 10

j
e

I

!

~
> -0.4

-75 -50-25 0

1

7

~

4

~

2

o

lA

I I

'1

I

I I

25

50 75 100 125160175

VeE -

10V

Ie - lA
TC =

25 c C

'" ~

11 1

10
f-Frequancy-MHz

T c-Case Temperature- C c

FIGURE 6

FIGURE 5
NOTES:

I I

40
20

8

IS= -10mA, IC'" -5 A

2mA,

-:--

25 50 15100125150175

100
70

~

~
18

~
'I 'I'
I

FREQUENCY

~

See Notes 6 and 7

-0,7

I~-r

"

"

~

IC= -lOA
I
I

I--: ::::::: r-

SMALL·SIGNAL COMMON· EMITTER
FORWARD CURRENT TRANSFER RATIO

CASE TEMPERATURE

-..... r--

,/

FIGURE4

COLLECTOR·EMITTER SATURATION VOLTAGE

./

r
I

Te-Case Temperature-°c

FIGURE 3

I

--I--

-75-50-25 0

-7 -10

Ie-Collector Current-A

I'--.

See Notes 6 and

> -3.2

400

J!

•

BASE·EMITTER VOLTAGE

'"

COLLECTOR CURRENT

6. These parameters must be measured using pulse techniques. tw = 300 }Js, duty cycle ~ 2%.
7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

5-439

TYPES TIP645, TIP646, TIP647
P-N-P DARLINGTON-CONNECTED SILICON POWER TRANSISTORS
MAXIMUM SAFE OPERATING AREAS
MAX~MUM

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

MAXIMUM COLLECTOR CURRENT
vs
UNCLAMPED INDUCTIVE LOAD

-20

-40

D-C Operation
<{

...cI

<{

...cI

-7

~

\

o
]

r--- TIP645

-1

.~ -0.7

•

co

.......

\

-2

5

-10

0

1\

~V'

(5

E
::J
E

-4

""

'xco

~TIP647

:?i

:?i
(, -0.4

-2

I

-40

r-.

!d

I'.
-20

~OO

-7

()

.!!?
t)

1==== TIP646

-0.2
-10

~

5

t)

(5
t)

-20

~

\

-4

::J
t)

VCC= 20V
RBB2 = 100 n
TC = 25°C
See Figure 2

TC';; 25°C

-10

-100

--'200

I~ee ~o~ ~

-1
0.4

-400

4

VCE-Collector-Emitter Voltage-V

10

40

100

400

L-Unclamped Inductive Load-mH

FIGURE 7

FIGURE 8

NOTE 8: Above this point the safe operating area has not been defined.

THERMAL 'INFORMATION
CASE TEMPERATURE
DISSIPATION DERATING CURVE

:s:I

200

0
'';:::

180 , - -

c

co

Co

'Bi
i5
Ql

~c

160

co

\,.

..

Cl

::J

Co

"-

0

120
100

::J
C
'';:::

80

8

60

c

E
::J

.§

40

co

:?i

20

k"

0

..
i5
'in

'i'...

140

Ql

.s;()

ROJC'';; l°C!W

..

'"

::J

i"",

75

100

0

3

0

2

::J
C
'';:::
C

'I'-

t)

I

50

"'" "
i'...

4

ROJA';; 35°C!W

~

Cl

""
25

5

Ql

x

o

6

0
'';:::

()

.~

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

"" '"

E
::J
E

"" ~

125 150 175 200

Tc-Case Temperature-oC
FIGURE 9

-xco

:?i
I

t-

Q.

O

o

25

50

75

l"-.

'""

100 125 150 175 200

T A-Free-Air Temperature-°c
FIGURE 10

PRINTED IN USA

5-440

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

1271

11 cannol Qssume any responsibility for any circuits shown
or repre~en' thaI they ore free from potenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUn POSSIBLE.

TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
til ....

c-<

FOR POWER AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH TIP3055

mechanical data

•

90 Watts at 25°C Case Temperature

•

15 A Rated Collector Current

•

62.5 mJ Reverse Energy Rating

,... ....
,...m
~::!

ztS
zlll

pUl

c
,...
In

-

"~

'"

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHAN!CALINTERCHANGUBlllTYOF
PLASTIC PACKAGE WITH TO-lOUTlINE

.f(!

...l>

TI~2955

Z

~
-<

:u

~

•
absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
_ _ . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . . . .
.....
Continuous Base Current
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2)
........_
Continuous Device Dissipation at (or below) 25°C Free-Air
...... .
Temperature (See Note 3)
Undamped Inductive Load Energy (See Note 4)
Operating Collector Junction Temperature Range
Storage Temperature Range
....... .
Lead Temperature 1/8 Inch from Case For 10 Seconds

NOTES:

1. This value applies when the base-emitter resistance RBE = 100

-100 V
· -70V
· -7V
· -15 A
_ -7 A

See Figure 5
90W
3.5W

. . . 62.5 mJ
_65°C to 150°C
-65°C to 150°C
260°C

n.

2. Derate linearly to 150°C case temperature at the rate of 0.72 wtC.
3. Derate linearly to 150°C free-air temperature at the rate of 28 mwtC.
4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, ABB2 = 100 il,
VBB2 ~ 0 V, RS ~ 0.1 n,Vee ~ 10 V. Energy ~ le2L/2.

172

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5·441

TYPE TlP2955
P-N-P SINGLE-DiffUSED MESA SILICON POWER TRANSISTOR

electrical characteristics at 25° C case temperature
TEST CONDITIONS

PARAMETER
VIBRICEO Collector-Emitter Breakdown Voltage
Collector Cutoff Current
ICER

IC= -30 rnA,

IB=O,

VCE--70V,

RBE -lOOn

ICED

Collector Cutoff Current

VCE - -30 V,

IB=O

ICEV

Collector Cutoff Current

VCE=-100V, VBE=1.5V

lEBO

Emitter Cutoff Current

VEB=-7V,

IC= 0

VCE--4V,

IC-

hFE

Static Forward Current Transfer Ratio

VCE=-4V,

VBE

Base-Emitter Voltage

VCE = -4 V,

VCElsat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter Forward Current

fhfe

•

NOTES:

Transfer Ratio Cutoff Frequency

See Note 5

MIN MAX UNIT
-60

V
-1

rnA

-0.7

rnA

-5 rnA
-5 rnA
See Notes 5 and 6

20

IC= -lOA,

See Notes 5 and 6

5

4A,

70

IC= -4A,

See Notes 5 and 6

-1.8

IB= -400 rnA, IC= -4 A,

See Notes 5 and 6

-1.1

IB = -3.3 A,

IC=-10A,

See Notes 5 and 6

-3

VCE =-4V,

Ic=-l A,

f = 1 kHz

15

VCE = -4 V,

IC=-l A,

See Note 7

10

V
V

kHz

5. These parameters must be measured using pulse techniques. tw = 300 jJs, duty cycle"';;; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inch from the device body.

7. fhfs is the frequency at which the magnitude of the smail-signal forward current transfer ratio is 0.707 of its low-frequency value.
For this device, the reference measurement is made at 1 kHz.

thermal characteristics
MAX

PARAMETER
R8JC

Junction-to-Case Thermal Resistence

1.39

R8JA

Junction-to-Free-Air Thermal Resistence

35.7

UNIT
°C!W

switching characteristics at 25°C case temperature
TEST CONDITIONSt

PARAMETER
ton
toft

Turn-On Time
Turn-Oft Time

IC=-6A,

IBll1 = -(l'.6 A, IBI21 = 0.6 A,
See Figure 1
VBEloff)=4V, RL=5n,

TYP

UNIT

0.4
0.7

/,S

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

172

5-442

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

56 n

RBB2 = 10

RL" 5

n

INPUT~~JC~

n

V on

270pF

JOn

=-14V--1

I

I

I

ton-l.---.t

+
VSB2 = 4 v-=-

90%t=--'~,O%!
:
---1
10%L

OUTPUT

VBB1'"'16V
ADJUST FOR

•

+

V on '"'-14VAT
INPUT MONITOR

TEST CIRCUIT

NOTES:

\.-toff--i

VOLTAGE WAVEFORMS

A. V gen is a 30-V pulse (from 0 V) into a 50-0 termination.

B. The Vgen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, tf eo;;; 15 ns, Zout == 50 n, tw = 20 ""s,
duty cycle'; 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: t r " 15 ns, Rin ;;a= 10 MO, Cin " 11.5 pF.
D. Resistors must be noninductlve types.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

J..--.......l-

INPUT

I

I

5V--1
-

I

rI
L

-ri

~

VOLTAGE 0--1

20mH

o

TUT

tw "" 5 ms (See NoteAJ

I
I
I
I.----t--l00ms-----t
I
I
I
I

I
1
I
I

COLLECTOR~

INPUT

CURRE~T25A_ - : - _
VCC=10V"':'"

+

IC MONITOR

VCE(satl-.....

I

I

+__

I

1+_

1'1

11
-t"'--'----- ..... - -

-10V

Rs"'O 1 n

:-:- _ _ _ _

I

I

I I

-+.- ....
I

COLLECTOR
VOLTAGE
I

V(BRICER- -L

TEST CIRCUIT
NOTE A: Input pulse width is increased until leM

--

VOLTAGE AND CURRENT WAVEFORMS

= -2.5 A.
FIGURE: 2

172

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS. TEXAS 75222

5-443

TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATIC FORWARD CURRENT TRANSFER RATIO
vs

DISSIPATION DERATING CURVE

COLLECTOR CURRENT

.2

:;;
a:

1000
700
400

"c:

1?

tc:
~

~

"

0

.

'E
~

0

•

80

"u

70

0

60

'iii
0

100
70

.~

~

'\,

~

~

40

"

50

0

40

0

~

I
w

4

'g"
c:

"

20
10
7

VJ

c.

200

LL

u

90

0

'ti

~

't;

100

~c:

4V
VCE
TC - 25°C
See Notes 5 and 6

0

E

E

LL

20

I
tQ.

2

1
-0.01

-0.04 -0.1

-0.4

-4

-1

"'- r\.

30

."
:;
'x

.<=

~

I\.

1.0

o

-10

o

25

50

75

100

125

~
150

T C-Case Temperature-° C

IC-Collector Current-A
FIGURE 3
NOTES:

'\

FIGURE 4

5. These parameters must be measured using pulse
techniques. tw = 300 IJ,s, duty cycle ~ 2%.

6, These parameters are measured with voltagesensing contacts separate from

the current-

carrying contacts and located within 0.125
inch from the device body,

MAXIMUM SAFE OPERATING REGION
-100
-70
See Note 8

-40

«
.!.c:
~

"

0

-20

--- -

-10
-7

:;

-4

~

tw=300ILS,d=0.1 = 10%;./
"/
-2 tw = 1 ms, d = 0.1 = 10%

ti

0
0

E

\

-

~\

~

tw=_10ms,d=0.1~

I

..

\

,
~

-1 D-C Operation'
-0.7
-0.4 TC <; 25°C
-0.2
-0.1
-1

-2

-4

-10

-20

-40

-100

VCE-Collector-Emitter Voltage-V
FIGURE5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.

PRINTED IN U.S.A

5-444

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS, TEXAS 75222

172

TI cannol assume any responsibilily for ony circuits shown
or represent thai they are free from patent infringemenf.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR

FOR POWER AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
PLASTIC-CASE REPLACEMENT FOR 2N3055
•

90 Watts at 25°C Case Temperature

•

15 A Rated Collector Current

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECIIANICALINTERCHANII£ABILITYOFTIP305S
PLAS'TICPACKAGEWITHTO_30UTLINE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
100V
70V
7V
15A
7A
See Figure 5

Collector-B'ase Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current . . . .
Continuous Base Current
.....
Safe Operating Region at (or below) 25°C Case Temperature
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2)
.......... .
Continuous Device Dissipation at (or below) 25°C Free-Air
...... .
Temperature (See Note 3)
Unclamped Inductive Load Energy (See Note 4)
Operating Collector Junction Temperature Range
....... .
Storage Temperature Range
Lead Temperature 1/8 Inch from Case For 10 Seconds

NOTES:

1.
2.
3.
4.

90W
3.5W

62.5 mJ
-65°C to 150°C
-65°C to 150°C
260°C

This value applies when the base-emitter resistance RBe = 100 O.
Derate linearly to 150°C case temperature at the rate of 0.72 W/oe.
Derate linearly to 150°C free-air temperature at the rate of 28 mW/oC.
This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. L = 20 mH, RBB2
VBB2 = 0 V, Rs = 0.1 a,Vee = 10 V. Energy'" le2L/2.

=

100

n,

971

TEXAS
INSTRUMENTS
.
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

5-445

TYPE TlP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
electrical characteristics at 25° C case temperature
PARAMETER

TEST CONDITIONS

MAX UNIT

Collector-Emitter Breakdown Voltage

IC=30mA,

IB =0,

ICER

Collector Cutoff Current

VCE=70V,

RBE = 100

ICEO

Collector Cutoff Current

VCE =30 V,

IB =0

ICEV

Collector Cutoff Current

VCE = 100 V,

VBE=-1.5V

5

mA

lEBO

Emitter Cutoff Current

VEB -7 V,

IC -0

5

mA

hFE

Static Forward Current Tra.nsfer Ratio

VBE

Base-Emitter Voltage

VCE(sat)

Collector-Emitter Saturation Voltage
Small-Signal Common-Emitter

hfe

Forward Current Transfer Ratio
Small-Signal Common-Emitter Forward Current

fhfe

•

MIN

V(BR)CEO

NOTES:

Transfer Ratio Cutoff Frequency

See Note 5

60

V

n

1

mA

0.7

mA

VCE=4V,

IC=4A,

See Notes 5 and 6

20

VCE-4V,

IC-l0A,

See Notes 5 and 6

5

VCE -4V,

IC-4A,

See Notes 5 and 6

1.8

IB -400mA,

IC-4A,

See Notes 5 and 6

1.1

IB - 3.3 A,

IC-l0A,

See Notes 5 and 6

3

VCE =4 V,

IC= 1 A,

f = t kHz

15

VCE =4V,

IC= 1 A,

See Note 7

10

70
V
V

kHz

5. These parameters must be measured using pulse techniques. tw "" 300 JJs, duty cycle ~ 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-.carrving contacts.
7. fhfe is the frequency at which the magnitude of the small-signal forward current transfer ratio is 0.707 of Its low-frequency value.
For this device, the reference measurement is made at 1 kHz.

thermal characteristics
PARAMETER

MAX

ROJC

Junction-to-Case Thermal Resistance

1.39

ROJA

Junction-to-Free-Air Thermal Resistance

35.7

UNIT
·C/W

switching characteristics at 25°C case temperature
PARAMETER
ton

Turn-On Time

toff

Turn-Off Time

TEST CONDIT!ONSt

TYP

IB(1) = 0.6 A, IB(2) = -0.6 A,
See Figure 1
VBE(off) = -4 V, RL = 5 n,

0.6

IC=6A,

1

UNIT

ps

t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

1270

5-446

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
PARAMETER MEASUREMENT INFORMATION

INPUT
MONITOR
OUTPUT
MONITOR

Voo-'4V--r~90%

56 n

OVJ1~-

INPUT
RBB2= 10

270 pF

RL = 5

n

-4V

n

30 n
-

+

L-__________________________

-

~I

OUTPUT
VBB2=4V

Vgen

-

I 10%

+

~~

JI

•

..:..VCC=30V
~--__.+

vee1"" 1SV
ADJUST FOR
Von'" 114 V AT
INPUT MONITOR

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

A. V gen Is a -30-V pulse (from 0 V) into a 50-0 termination.

B. The V gen waveform is supplied by a generator with the following characteristics: tr ~ 15 ns, 'tf
duty cycle

~

:e;;;;

15 ns, Zout = 50 51, tw = 20 /Js,

~

10,MS'l, Cin

2%.

C. Waveforms are monitored on an oscilloscope with the following characteristics: t r '" 15 ns, Rin
D. Resistors must be non inductive tv pes.
E. The d-c power supplies may require additional bypassing in order to minimize ringing.
FIGURE 1

-< 11.5 pF.

INDUCTIVE LOAD SWITCHING

-.j

o

I

INPUTI

t---

tw "" 5 ms

I

(See Note B)

r-I I
L-.J

VOLTAGE_~
-5V- I '

'I

~100ms~

I

I

I

I

I

I

I I

I

I I

COLLE&r~~-l-A--- ---:7\--CURRENci-Y'
~ ~ I\-

INPUT

Ie MONITOR

V(BRICER--I- __ I

1- _ _ _ _ _

l- __ I

I __

I
COLLECTOR
VOLTAGE

lOV

I

VOLTAGE AND CURRENT WAVEFORMS

TEST CIRCUIT
NOTES:

I

I
I

A. L 1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent.
B. Input pulse width is increased until leM = 2.5 A.

FIGURE 2
1270

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

5-447

TYPE TIP3055
N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR
TYPICAL CHARACTERISTICS

THERMAL INFORMATION

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

.,

.o

'"

Cl:

DISSIPATION DERATING CURVE

1000
4V
700 VCE
TC-25'C
400 See Notes 5 and 6

100

s:I

200

..,0

c:

90

'"c.

:~

80

Cl

70

Q)

"

100
70

~

.~

60

Cl

'"

~

40

::>
0
::>

50

0

40

E
::>
E

30

.~
c:

20

(,)

10
7

4

•

'x
:a:"

20

,t-

10

""

'\,

~
'\.

~

I

2
1
0.01

0.04

0.1

0.4

4

o

10

o

25

50

100

T C-Case Temperature-'C

I C-Collector Current-A

FIGURE 4

FIGURE 3
NOTES:

75

'"

125

""

150

5. These parameters must be measured using pulse
techniques. tw = 300 p,s, duty cycle";;; 2%.
6. These parameters are measured with

sensing contacts separate from the
carrying contacts.

voltage~
current~

MAXIMUM SAFE OPERATING REGION
100
70
See Note 8

40

«

20

-- - - ", -

.I,
c:

~::>

(,)

10
7

~

~

~

'0
(,)

I

2

4

~

tw= 300l's,d= 0.1 = 10%;:;:
2 tw = 1 ms, d = 0.1 = 10'..6
tw=
D-CO!'J'BATJON
0.7

r\'

10ms,d=0;~

0.4

\

\

TC';; 25'C

I

0.2
0.1

1

2

4

7

10

20

40

70 100

VCE-Collector-Emitter Voltage-V
FIGURE 5
NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped
inductive load.

PRINTED IN U.S,A

5-448

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1270

TI cannot assumE' any responsibility for ony 

I

Cl
~

o
>

-120
-100

z

~

-80

~

«w

-60

Q!

'"

ffi
1=

~

g
w

-'

o
u

-40

V ...

/ / ....-

-~

-2.()

I--

2Nl021

-

2N458A
2N457AI

r-

r-::r--po r::: t--_
t--

1J~~

2Nl022
2Nl02iJ
2N458A

2N4

I-~

lL.llllt/ /VV

t-.

r-- t--

I--.

I~ ~ ~~OO ~a

V

BVCEX

A

-

j

f-BV CER

2N457t:/
I J 11111
2N456A

o
1

10

lK

100

10K

lOOK

RaE - BASE-EMITTER RESISTANCE - ohms
0.Q1

0.1

1.0
10
VBE-REVERSE BASE-EMITTER VOLTAGE-v

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.L.AS, TEXAS 75222

6-3

TYPES 2N456A, 2N457A, 2N458A, 2Nl021 AND 2Nl022
P-N-P ALLOY -JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS

GUARANTEE D COMMON-EMITTER DC
FORWARD-CURRENT TRANSFER RATIOVS
COLLECTOR CURRENT

COLLECTOR REVERSE-CURRENT
CHARACTERISTICS
_1.2

/

~ -1.0

I / [7 11

I

/

a~ -0.8

~

IK

il ~1 ~ 7~
"
II 15VI;
vv1/Vv~l/

I;

-0.6

I

u -0.4
I

J
-0.2

•

o

i,...oI

~~

~~

-20

-<0

o

,t

-60

100

/

GUARANTEED MAX

80

$J

;-

VeE

_~ARANTEED

'0

20

-80

-100

1- t-- t--

H

100

80

60

.0

20

"

S.O

\

POWER DISSIPATION DERATING CURVE

\

30

c
200

V

VCE=-l.Sv

'.0

1/

1\

160

V

----

- 0.1

I~

g

100

~

i\

u

120

.;; 80
~
a

~G"

Q,

~
66

-0 60
80

1/

0
.....

,

~
h"

.0

............
- 0.3

Maximum Thermal Resistance:::: O.5°C/w

~

1\

1.0

0

"i120

1\

Y FE /

2.0

160

, 140 t'....

'\.

\

-0.,5

-

1.0

40
20

a
- 3.0 -5.0 -7.0

Q

180

240

1"1.

COLLECTOR CURRENT -

DISSIPATION DERATING

280

\

-7

-5

-3

-I

-120

Ie -

1.0

~

-1.5 v

MIN hFf

f---

COMMON-EMITTER" DC FORWARD CURRENT
TRANSFER RATIO, DC INPUT RESISTANCE/AND
DC FORWARD TRANSFER ADMITTANCE
VS COLLECTOR CURRENT

'.0

=:-;

60

Vel - COLLECTOR -BASE VOLTAGE - v

120

hFE

25 30

40

50

60

I~

~

70
80
T8 - Mounting-Base Temperature - °C

~

90

100

Ie - COLLECTOR CURRENT - a

PRINTED IN USA

6-4

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
High.Power Transistors
for
Military and Industrial Applications

mechanical data
The use of silver alloy to assemble the mounting base and the use of resistance welding to seal the can,
pravide a hermetically sealed enclosure. During the assembly process the absence of flux, combined
with extreme cleanliness, prevents sealed-in contamination.
The mounting base provides an excellent heat path from the collector junction to a heat sink which
must be in intimate contact to permit operation at maximum rated dissipation.
'The transistors are in a JEDEC TO-3 case.

~----++0~.6~7--5 ~:~;~

~,-~

0.655

II

0.188 RAD M..:'AC,X-----

BOTH ENDS

¥

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

tThe TI guaranteed maximum value.

DIMENSIONS ARE IN INCHES

"absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current .
Base Current
Total Device Dissipation at (or below)
25°C Case Temperature (see Note 2)
Collector Junc~on Temperature
Storage Temperature Range

2N456B

~

40 v
30v

60 v
40v

2N458B

~

2NI022A

80 v
100 v
120 v
55 v
45v
50v
30v------_

7 a .....................~.~
3a .........................~
....- - - - - - 1 5 0 w------~.
....- - - - - - 1 0 0 oC - - - - - -...
55°C to + 100°C ----~

•

"Indicates JEBEC registered data
NOTES: 1. This Yalue applies whln the base-emitter diode is open-c:ircuited.
2. Darat. linearly to + lOOoe cas. temperature at the rate of 2w/Co •

971

TEXAS INSTRUMENTS
tNCORPORATED

POST OFFICE SOX 5012 •

DALLAS. TEXAS 75222

6-5

TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

•

TEST CONDITIONS

BVclO Collector-Base Breakdown Vollage

Ic = -2ma,

BVCEO Colledor-Emiller Breakdown Vollage

Ic = - 500 ma, II = 0
(see Nole 3)

IE = 0

BVCES

Colledor-Emilter Breakdown Vollage

Ic = -200 ma, VIE = 0
(see Nole 3)

BVCEX

Colledor-Emllter Breakdown Voltage

Ic = -2ma,

VIE =

BVEBO

Emilter-Base Breakdown Voltage

IE - -2ma,
VCI - -20v,
VCI = -40 v,
VCI = -40v,
Vel - -3OY,
VCI = -60v,
VCI = -60v,
VCI - -40v,
VCI = -80 v,
VCI = -80 v,
VCI - -50v,
VCI = -100 v,
VCI = -100 v,
VCI - -60v,
VCI = -120v,
VCI = -120 v,
VEl - -30v,
VCE - -1.5v,
VCE = -1.5 v,
VCE = -1.5 v,
VCE = -1.Sv,
VCE - -1.Sv,
Vee = -1.5 v,
VCE = -1.5v,
VCE = -1,5v,
II - -700mq,
II = -SOOma,
II = -300ma,
II = -IOOma,
VCE - -2v,
(see Note 4)

Ic - 0
-0
=0
= 0, Tc =
-0
=0
= 0, Tc =
-0
=0
= 0, Tc =
-0
=0
E = 0, Tc =
IE = 0
IE = 0
IE = 0, Tc =
Ic - 0
Ic - -7a
Ic = -Sa
Ic =-30
Ic =~la
Ic - -7a
Ic = -Sa
Ic =-30
Ic =-la
Ic - -7a
Ic = -Sa
Ic = -3 a
Ic =-1 a
Ic --I a

IclO

IEIO
hFl5

VIE

Colledor Culoff Current

Emilter Cutoff Current
Static Forward Current Transfer Ratio

8ase-Emilter Voltage

VCE(sall Colledor-Emilter Satilration Voltage
fT

Transition Frequency

+ O_h

TYPE

MIN

2N456B
2N457B
2N4588
2NI021A
2NI022A
2N456B
2N457B
2N458B
2NI021A
2NI022A
2N456B
2N457B
2N458B
2Nl021A
2Nl022A
2N456B
2N457B
2N458B
2Nl021A
2Nl022A
All

-40
-60
-80
-100
-120
-30·
-40·
-45·
-50·
-55·
-50·
-60·
-65·
-70·
-75"
-40"
-60·
-SO·
-100·
-120·
-30

TYP

v

v

v
v
-0.5"
-2.0·
-7.0·
-0.5"
-2.0·
-7.0·
-0.5·
-2.0·
-7.0"
-0.5"
-2.0·
-7.0·
-0.5·
-2.0·
-7.0"
-2.0·

2N456B
2N457B
70·C
2N458B
70·C
2Nl021A
70·C
2Nl022A
70°C
All
22·
30·
35·

40·
All

All
All

UNIT

v

70·C

All

MAX

45
55
60
100
-1.2
-0.9
-0.7
-0.4
-0.3
-0.2
-0.1
-.05

ma
ma

ma
ma

ma
ma

90·

-

-1.5·

v

-0.5"

v

200·

kc

*Indlcates JEDE£ r'glstered data.

NOTES: 3. If the "transistor is tast.d without a hlat sink, perform this tlst with a 100 mste (urr.nl puis. and a duty cyd, less than
4. To obtain 'T' tbo Ib,.1 rosponso wltb 'requency Is o"'rapolatocl at tb, rat. of - 6 db/octo.. 'rom ,

=

2%.

100 k' to tb, 'roqu,n,y at wbl,b Ib,.1

=

1.

971

TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •

DALLAS. TEXAS 75222

TYPES 2N456B, 2N457B, 2N458B, 2N1021A AND 2N1022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
switching characteristics at 25°C case temperature
PARAMETER

Delay Time
Rise Time
Slarage Time
Fall Time
Total Switching Time

Id
I,
I.
If
IT

2N456B, 2N457B, 2N458B,
2N1021A, 2NI022A
MIN
TYP
MAX

TEST CONDITIONSt

Ie = -5 a, IB{II = -0.5 a, V8I;Iofij = 9
RL = 4fi
(See Figure Below)

UNIT

0.7
5
2

y

/Lsec
/Lsec
/Lsec
/Lsac
/Lsec

15

22.7

tVoltage and (urrent values shawn are nominal; Ilad values vary sUg... l, with device parom.ten.

PARAMETER MEASUREMENT INFORMATION
VOLTAGE WAVEFORMS
ton
to,

TO INPUT PROBE
S,

6n 5w

~

INPUT

TO OUTPUT
PROBE

V ,N

O%

:

10%.

I

I

I

: 90%
20~f

35v

4n
40w

0.25~f

20n
SOw

l000~f

OUTPUT

:1~'70r:-

~L.
I
'-t :--t,

'"1

35v

I

td

I

35v

--ttl I-'
: ""It, i"'

Circuit Conditiohs

Tum-0n (td, t, )

Vee=-20v

:
I

i"":
I

90%

I

OUTPUT

Test

l00~f

V..

f

~
INPUT

V..

+9v
-21v

I

I

V,N

-11 v
+9v

NOTES:
Tum -off (t.. t, )
1. Relay 5, has mercury wetted contacts and provides rise times len than 1/10 of the switching times measured.
2. Duty cycle of 5, is such thai the transistor is ON 4 mSle and OFF 12 m5eC in both tum-on and turn-off 'ests.
3. Waveforms monitored on scope with' following (haracterlstlcs: (a) Rise time 14 nsec max, (b) Input capacitance 11.5 pI max, tc) fnput resistance 10 megohms min.
4. All resistors 5% tolerance, nonlnductive type.

TYPICAL CHARACTERISTICS

-7

-6

i -5

L4
a
2

COMMON-EMITTER COLLECTOR
CHARACTERISTICS

COMMON-EMITTER COLLECTOR
CHARACTERISTICS

(Active Region)

(Saturation Region)

T~=25·d

\
1,00"'" ~.

~
\.

\

2N458B . _

,

~~~ ",,

".-/

j-3

P,=150w

r--y

.....

\~ /

"8

'2.5"'"

lu- 2
I

-1
I,

o

=-5ma
I, -0

o

" r-......

--

-20
-30
-40
-50
-60
VeE - Collector- Emitter Voltage - v

-10

•

-70

VeE - Collector- Emitter Voltage - v

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6·7

TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS

BASE-EMITTER VOLTAGE
vs
COLLECTOR CURRENT

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

-1.Or---.-----,....--r----,---~-~-_

400
300
.~
0

Te = 55· C

~

200

""

I

Te = 25· C

~

i'r-.

"r-.r-,

~
0- 100

e

Te = 70·C
>-0.8~-+_-~-_+-_4-_++_-~~~

~

I

r

:--.. ......

~

~

~

u
"'E
0

~ -0. 6f---+---+-----,H--=~~~

~
]

I'..
f"o=,

50

~ -0.4F-------:;o;o-1""::.,...~'---+----jI__-+_-_+_-__l

~

Ji

.eu

I

'l:

Vee =-1.5v

.l!

V>

20

.s::.~

Te = 25·C
10
-0.1

II

O,~

-0.2

-0.5
-1.0
-2.0
Ie - Collector Current - a

o

-5.0 -7.0

__

~

__

-I

COLLECTOR CUTOFF CURRENT
vs
COLLECTOR-BASE VOLTAGE
Te =25·C

~

___ L_ _- L__

~

__~__~

-2
-3
-4
-5
Ie - Collector Current - a

-6

-7

COLLECTOR CUTOFF CURRENT
vs
COLLECTOR-BASE VOLTAGE
Te = 70·C

-0.4

-3.0~---r----.-------'~-~----~--~

~

I -0.3 f----I---+-

-~

Ie =0

-1.5

o L - - - L -__~_~~__~~_L-__~

o

-20
-40
-100
-60
-80
Veo - Collector- Base Voltage - v

~

o

-120

__- L____ __
__
____L-__
-20
-40
-100 -120
-60
-80
Vc. - Collector- Base Voltage -v
~

~I--

~

~

971

6-8

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N456B, 2N457B, 2N458B, 2N1021A AND 2N1022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS

FREE-AIR TEMPERATURE

CASE TEMPERATURE

DISSIPATION DERATING CURVE

DISSIPATION DERATING CURVE
175
il 150

~
~

I

.~
B-

125

·iii

is 100

"

~

'2

75

g

50

lI

...

25
0

o

I

~ 1750

I

'"

B-

~ 1250
B

'"

25
50
Tc - Case Temperature -

~1000
'2

,!! 750

75
0 C

J

"'1\

~

o
o

100

25

50

75

"'"'\

TA - Free-Air Temperature - ·C

PEAK-POWER RATING CURVE
1.0

~42.8 CO/w

'"

500

I 250

'\

J-A

~

E

~

9

~ 9C_A=9J_A-9J_c=42.3Co/w

~ 1500

'\

,!!
E

2000

I
9J_C = 0.5 CO/w

100

•

f-- 75%
f-- 50%

0.5

25%(Du

-'
C cle}
L,....-

1

0.2

J

I

0.1
f--- 5%

I

1

V ~~

10%

0.05

-

I

I

11=1[:=: ~:::::::]

1%

:::vn

K

1111

1

10
t w-

I

I

100

11111

1000

Pulse Width - msec
FI9ure 1

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

6·9

TYPES 2N456B, 2N457B, 2N458B, 2Nl021A AND 2Nl022A
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION

TABLE II

TABLE I

DEFINITION OF TEIMS

HEAT SINK

t9 HS . A

Dimensions

Typa

2.2 Coy.

PT

Peak Power Dlsslpal1lft

I" x 8" X1/1"

1.1 Coy.

Junctlon-to-Case Thermal R.slstance

w
CO/w

0.1

10" 110" X 1/811

1.4 Coy.

9J.c
9 J•A
(JC_A

Jundlon-'o-Arnbient Thermal R.sistanc.

CO/w

42.1

(ase-to--Amblent Thermal Resis'ance

Co/.

42.3

4"X 4"11/8"

6.5 Coyw

6"1 6" x 1/811

4.1 Co/.

8" x 8" x 1/8"
10" xl0" Xl/I"

3.5 CO/w

:!:(JC.HS

3.7 Coy.

Dalbert Innn #113
or Modine lE1l558, Black
Anodi,od (or Equivalonts)

3.2 Coy.

typlc.1 ,alUls based on convHUon cooling; plotlS and fins

lAII transistors mounted in the (In'.r of Ih. heat sink with two .32
scr.ws al , Inch - pounds of torque.

(asi-io-Heat Sink Thermal R.slsIIlnUTypi,al w/o DC·ll Grease

Typi,al with OC·ll Grea..

2.1 Coy.

mounted in vertical position.

•

Val ..

w

PT

Dalbert llinn #113
or Modina 1Ell Ill.
Unfinlshod (or Equivalents)

t 9 HS-A are

Unit

AYerage Power Dissipation

3.ICo/.

Irlght Copper

.right Aluminum

Definition

Symbol

4" x 4" 11/811
6"x 6"11/8"

9 HS- A

Heat·Slnk Thermal I,slstance

Ul
CO/w " 0.41
H.
CO/.
TaIIl.l
CO

TA
TJ

Ambient Temperatur.

T·

Peak Junction Temperature

CO

T.

Case Temperature

CO

K

Peak·P..er Coefficient

CO

Awerage Junction Temperature

tw

PulH Width

t,

Pulse Period

d

Duty Cyd. (tw/t,)

Sll

Fig. I
mH'
mslt

The PEAK-POWER RATING CURVE shows the ratio af maximum instantn,oul iundion·t.. case temperalure rist at any pulse width and duty cyde t. the
rise which occun at 108% duty cyde. Use of this curve is best explained by .he equations and exampl.s below. See Table II far a definition .f terms.
Equation No. 1 - Application: D.C. power dissipation, heat sink used.

_
PT -

Equation No. 3 - Application: Peak power dissipation, heat sink used.

TJ-TA

(JJ-C

Tj -TA

+ (JC.HS + (JHS_A

Equation No.2 - Application: D.C. pewer dissipation, no heat sink used.

Equation No .• - Application: Peak power diSSipation, no heat sink used.

TJ-T A

'T =-e;;::-

PT

Iy use of .quatlon No. 1

=

Heal Sink
411 x 4" x 1/8" copper, 8HS. A
TJlmo'1 (design limit) = 100 CO
TA =30Co
d = 100% (1.0)
with DC·ll groa... 9 C- HS
0.4lCo/w

= 3.' (o/w

=

Example B - Find PTlme,)
OPERATING CONDITIONS,

=

100-30

PTimul

=

0.1

+ 0.41 + 3.1

=

14.7 w

SOLUTION,
From Figure 1, Peak·Power Coefficient,
I
0.2, and by use of eqUltl", No.3

=

H.at Sink
a" x 8" x 1/8" copper,
(JHS.A
1.1 CO/w
with DC·11 gre.... (JC.HS
0.41 CO /w
TjimOllI (design limit)
100 CO
TA = 31 CO
d = 1% (0.01)
Iw
40 mite

=

TI-TA
d (JC.A I (JJ-C

SOLUTION,

Example A - Find PTlmo'1
OPERATING CONDITIONI,

=

=

Tllme,) -T A

=

=

PTlmo",

100-31

o.oS (0.41 + 1.1) + 0.2 (0.1)

=

306.

PRINTED IN U.S A.

6·10

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

971

TI cannot ossume any responsibility for any circuits shown
or represent Ihol they are free from potenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N511, 2N511A, AND 2N5118
P-N-P ALLOY -JUNCTION GERMANIUM HIGH-POWER TRANSISTORS

40, 60 or 80 VOLTS
10 -AMP COLLECTOR CURRENT
150 -WATT DISSIPATION
LOW Ico LOW VBE
LOW THERMAL RESISTANCE

for
HIGH-POWER CONVERSION • HIGH-CURRENT SWITCHING
AUDIO AMPLIFIER OUTPUT STAGES

mechanical data
The use of high-temperature silver solder to assemble the mounting base and the use of projection
weld to seal the can provide a hermetically sealed
enclosure which can withstand up to 300 psi- During the assembly process the absence of flux and
soft solder, combined with extra cleanliness, prevents sealed-in contamination.

~: ~~~

The mounting base provides an excellent heat path
from the collector junction, which is electrically
attached to the mounting base, to a heat sink
which must be tightly attached to permit operation
ot maximum rated dissipation. The approximate
weight of the unit is 17.6 grams.

DIA 2 HOLES-BASE---\
EMITTER

0.060 MAX DIA
1.561 MAX-----,

0.045 MAX DIA

0.100
MAX

0.100 MAX DIA

~

.TJdd4~
...L.

---'-6-32 SCREW

(G
RECOMMENDED
COLLECTOR
CONNECTION

@)- 6-32

NUT

" " - - SPRING LOCK WASHER
FIBER INSULATING
WASHERS (OPTIONAL)

0.875

~-

0.13S MAX
0.700 MAX
0.530 MIN

INSULATING WAFER. (OPTIONAL)

•

0.400 MAX

I

COLLECTOR IS COMMON TO CASE

absolute maximum ratings for all devices at 25°C mounting-base temperature'
(unless otherwise noted) *
Collector Current
Base Current
Total Device Dissipation**
Collector Junction Temperature
Storage Temperature Range
Thermal Resistance

25a
5a
150w
. 100°C
-55 to
100°C
. 0.5°C/w

+

* Maximum

voltage ratings not specified because exceeding breakdown voltages will not permanently damage transistor
characteristics so long as other maximum ratings are not exceeded.
**Derate at 2.0 w/oC.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-11

TYPES 2N511, 2N511A, AND 2N511B
P-N-P ALLOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS

electrical characteristics at 25°C mounting-base temperature (unless otherwise noted)

ICBO

ICBO

•

Collector Reverse-Current, 71

TEST CONDITIONS

TYPE

PARAMETER

0

Collector Reverse-Current

I'Bo

Emitter Reverse-Current

BV cBo

Collector-Base Breakdown Voltage

ma

2N511A

Vcs =-60v

IE =0

-15.0

ma

2N511B

Vcs = -80 v

IE =0

-15.0

ma

2N511

Vcs =-40v
Vco = -20 v

IE =0
IE =0

-2.4
-0.6

-5.0
-2.0

ma
ma

2N511A

Vco =-60v
VCB = -30 v

IE =0
IE =0

-2.4
-0.5

-5.0
-2.0

ma
ma

2NSll B

VCB = -BOv
Vco = -40 v

IE =0
IE =0

-2.4
-0.5

-5.0
-2.0

ma
ma

All

VES = -30 v

Ic =0

-LS

-5.0

ma

VES = -IS v

Ic =0

-0.5

=-Sma

IE =0

2N51lA

Ic

2N511
2NSllA

= -SOOma IB =0

Ic

2NSllB
2NSll
Collector-Emitter Breakdown Voltage

2NSllA

Ie

= -300ma VBE = 0

2N51lB
Collector-Emitter Breakdown Voltage

2NSllA

v

-60

v

-80

v

-30

-40

v

-40

-SO

v

-45

-55

v

-SO

-60

v

-60

-70

v

-65

-BO

v

-45

v

= -300ma RBE = 100 ohms

Ie

2NSllB
BVEOO

Emitter-Base Breakdown Voltage

All

IE

hFE

DC Forward·Current Transfer Ratio

All

VeE =-2v

Ie =-100

VB!;

Bose-Emitter Voltage

All

VeE =-2v

Ic =-100

=-Sma

Is = -LSa

Ie =0

VeE, ..,)

Collector-Emitter Saturation Voltage

All

YFE

DC Common-Emitter Forward Transfer
Admittance

All

VeE =-2v

Ic =-10a

Ir

Internal Cutoff Frequency
(where I hie I = 1)

All

VCE =-2v

Ic =-10

ma

-40

2N51l
BVeER

UNIT

-15.0

2NSll B

BVCES

MAX

IE =0

All

Collector-Emitter Breakdown Voltage

ryp

Vco = -40 v

2NSll

BV cEo

MIN

2N511

-55

V

-65

v

-30

-60

20

25

-0.25

Ic =-100
5

v
60

-

-2.0

v

-D.S

v
mhos

260

kc

971

6-12

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N511, 2N511A, AND 2N511B
P·N·P ALLOY ·JUNCTION GERMANIUM HIGH·POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR REVERSE-CURRENT CHARACTERISTICS
2N511

J

c

E

~
zw

'"''"'
u

I
1/

-2.0

/

w

-1.6

I

G:i

'"' -1.2

w

::j

o

-0.8

-0.4

o

V

/

-

o

./

V" .........:

-10

t::I--

-20

/
V

V

V
..".,.

I

I

/

.,,- V

II

/

/

V

u
I

j

I

/

/

l2u'"'

J

J

II

::::l

:Q
w

2N511 B

2N511 A

-2.4

1/

J'/
/

~

-40

-30

-50

-60

-70

•

-80

Vea - COLLECTOR-BASE VOLTAGE - v

COMMON-EMlnER DC FORWARD-CURRENT TRANSFER RATIO
DC FORWARD TRANSFER ADMlnANCE AND DC INPUT RESISTANCE
VS COLLECTOR CURRENT
70

-

14

l3
..c::
Q 60
0-

«
'"'

ffi 50

~

~

40

00-

Z
~

30

'"'::::l

U

o 20

E 12
I
w
u
z 10

~

~
'"'w
~

«

z

~
:;

go'"' g'"'
o
u..

u

o
I

.1

10

8
6

u..

0

"'""""-

g o
I

" .............

z

~
100 VI

h'E

in

'

LoU

.....

/

-

-0.3

y"

hiE

I""-- ......
~

-0.5

-1.0

-------

-3.0

lL

.......

.......

'"

-0.1

I
120 w
u

........

............

E

..c::

o

VeE = -2.0 v

.........

4
2

-

140

.... ......-

f'

~

~

I'~

80

0..

~

60

"'-

40
20

-5.0

-10.0

5'"'

o

-15.0

ffi
1=

~

't'

z

~
u
u

o
I

Ie - COLLECTOR CURRENT - a

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !S012 •

DALLAS, TEXAS 75222

6·13

TYPES 2N511, 2N511A, AND 2N511B
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER BREAKDOWN VOLTAGE CHARACTERISTICS
>.-120

L~!Jl

I

w

<'

~-100

g

~

Z

V

o
c

'/

«

L

~-80

::.:

1lil-60
...

'"w
1=

~

~~
~

2N51 lA

....-

Ic = -300 rna

~NI5\i

-r--

--

t-t--,

r-- 1'-......

~

BVCEX

r

BVCER
2N511B
2~511A

I--

-I---

-,..

-40

~N'5H

j

f2

20
lrl....

8

•

o

0.01

10

1.0

0.1

V BE - REVERSE BASE-EMITIER VOLTAGE - v

10

I

I

100

lK

lOOK

10K

R8E - BASE-EMITIER RESISTANCE - ohms

THERMAL INFORMATION
POWER DISSIPATION DERATING CURVE

180
160

r--....

~
I

c:

140

a

'-5 120
Q.

~

;5

100

Q)

.;

80

Maximum Thermal Resistance = 0.5°C/w

"

~

~

Q)

c

60

~

40

"0
I

t-

o..

20

o
25

30

40

50

"

60

~
70

~

80

~

90

100

Ts - Mounting-Base Temperature - °C

PRINTED IN U.S.A

6·14

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST· PRODUCT POSSIBLE.

TYPES 2N512, 2N512A, AND 2N512B
P·N·P ALLOY·JUNCTION GERMANIUM HIGH·POWER TRANSISTORS
40, 60, or 80 VOLTS
15 -Amp Collector Current
ISO-Watt Dissipation
LOW leo LOW VIE
LOW THERMAL RESISTANCE
for
HIGH-POWER CONVERSION • HIGH-CURRENT SWITCHING
AUDIO AMPLIFIER OUTPUT STAGES

mechanical data
The use of high-temperature silver solder to assemble the mounting base and the use of projection
weld to seal the can provide a hermetically sealed
enclosure which can withstand up to 300 psi. During the assembly process the absence of flux and
soft solder, combined with extra cleanliness, prevents sealed-in contamination.

~: :~:

DIA 2 HOLESBASE
EMITTER

The mounting base provides an excellent heat path
from the collector junction, which is electrically
attached to the mounting base, to a heat sink
which must be tightly attached to permit operation
at maximum rated dissipation. The approximate
weight of the unit is 17.6 grams.

0.060 MAX DIA
1.561 MAX

0.100 MAX DIA

0.100
MAX

SO.160 MAX

L

RECOMMENDED
COLLECTOR
CONNECTION

-,
0.875

•

T~~
I.-

"""T6-32

«D

10.045 MAX DIA

SCREW
@)-- 6-32 NUT

- , , - SPRING LOCK WASHER
FIBER INSULATING
WASHERS (OPTIONAL)

0.135 MAX
~

0.400 MAX

0.530 MIN

INSULATING WAFER (OPTIONAL)
COLLECTOR 15 COMMON TO CASE

absalute maximum ratings for all devices at 25°C mounting-base temperature
(unless otherwise noted)*
Collector Current .
250
.
Base Current
Sa
Total Device Dissipation** . .
150w
Collector Junction Temperature
. 100°C
Storage Temperature Range
-55 to
100°C
Thermal Resistance
. 0.5°Clw

+

.Maximum voltage ratings not specified because exceeding breakdown voltages will nof permanently damage transistor
characteristics so long as other maximum ratings are not exceeded.

"Derate at 2.0 w/oC.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-15

TYPES 2NS12, 2NS12A, AND 2NS128
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS

electrical characteristics at 2S o C mounting -base temperature (unless otherwise noted)
PARAMETER

Icso

Icso

1"0

TEST CONDITIONS

TYPE

Collector Reverse·Current, 71 0

Collector Reverse-Current

Emitter Reverse-Current

MIN

II

BVcEo

BVcEl

Colleetcr·~ase

Breakdown Voltage

Collector-Emitter Breakdown Voltage

IE =0

-15.0

rna

2N512A

Vcs = -60v

IE =0

-15.0

rna

2N512B

Vcs = -80v

IE =0

-15.0

rna

2N512

Vcs = -40 v
Vcs = -20v

=- 0

IE
IE =0

-2.4
-0.6

-5.0
-2.0

rna
rna

2N512A

Vcs
Vcs

= -60v

IE =0
IE =0

-2.4
-0.6

-5.0
-2.0

rna
rna

2NS12B

Vcs
Vcs

= -80v

= -40 v

IE =0
IE =0

-2.4
-0.6

-S.O
-2.0

rna
rna

All

V" = -30v

Ic =0

-1.5

-S.O

rna

All

VES = -15v

lc =0

-O.S

= -30 v

-S rna

-60

v

-80

v

2NS12

-30

-40

~,

Ic

IE =0

v

-40

-SO

v

2NS12B

-4S

-S5

v

2NS12

-50

-60

v

2NS12A

2NS12A

= -SOOma Is

Ic

=0

= -300 rna V" = 0

Ic

-60

-70

v

-6S

-80

v

-45

v

2NS12A

= -300 rna

Ie

R" = 100 ohms

2NS12B
BV ESo

v

2N512B

2N512
Colleetor·Emitter Breakdown Voltage

rna

-40

2NS12B

BV cER

UNIT

Vcs = -40 v

2NS12A

Collector-Emitter Breakdown Voltage

MAX

2N512

2N512
BVcso

TYP

Emitter·Base Breakdown Voltage

All

hFE

DC Forward-Current Transfer Ratio

All

VCE =-2v

Ic = -150

V"

Base·Emitter Voltage

All

VCE = -2v

Ic = -ISo

VCE''''I

Collector· Emitter Saturation Voltage

All

Y'E

DC Common·Emitter Forward Transfer
Admittance

All

VCE = -2v

Ie = -ISo

fT

Internal Cutoff Frequency
Iwhere I hi. I = 1)

All

VCE = --2 v

Ie =-1 a

= -5 rna

'E

Is = -2.250

Ic --

0

-30

-5S

v

-6S

v

-60

v

20

Ic = -150

60

-0.5
7.5

-

-2.0

v

-1.0

v
mhos

280

ke

971

6-16

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2NS12, 2NS12A, AND 2NS12B
P·N·P ALLOY ·JUNCTION GERMANIUM HIGH· POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR REVERSE-CURRENT CHARACTERISTICS

2N512

-2.4
o

2N512A

/

/

E

I -2.0

zUJ

'" -1.6
B
<>::

UJ
(/)

<>::

/

UJ

~ -1.2

<>::
<>::

o

/

/

o

./

V

~

-10

t::

./

-20

1

/

1/

/

/

"'"

,,- ......

-30

/

J

j

/

/
~

/

/

/

V

<5

u

I
liI -0.4

/

V

~ -0.8

.2

/

J

o

I-

I

I{

/

I-

2N512B

/"

-40

-50

-60

-70

•

-80

Vel - COLLECTOR-BASE VOLTAGE - v

COMMON-EMITTER DC FORWARD-CURRENT TRANSFER RATIO.
DC FORWARD TRANSFER ADMITTANCE AND DC INPUT RESISTANCE
VS COLLECTOR CURRENT

84

-

o'"

-<=
E

0

I

<{

i= 72

UJ

U

Z

<{

1=

10

o

(5

~

6

'" 36

4

u
0
'" 24

2

o

I

120

r""'-r-.

:::>

~

2

"""

,

I

.f

............

......

-- "'- ---

YFE

.........

......

12

o
-0.1

hFE

........

-0.3

-0.5

.-""

-1.0

--

..-'
-...

-3.0

~

"

i-'

60

<>~

lI-

~

............

-10.0

5'"
~

r-.,

hiE

-5.0

80

/

i'...
............

o

0

~
100 (/)
in
UJ

..........
.........

......

I
UJ
u

Z

-..............

u

LI..

u

48

Z

'"
I-

~

'"

II-

LI..

o

o

2.0 v

VeE

to-

60

<{

8

'UJ
"

!£<{

LI..
(/)

E

-<=

Z

~
<{

'"
UJ
'"

~

140

40

~

20

o
~
o
u

o

u

-15.0

o
I

Ie - COLLECTOR CURRENT - a

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6·17

TYPES 2NS12, 2NS12A, AND 2NS12B
P-N-P AllOY-JUNCTION GERMANIUM HIGH-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER BREAKDOWN VOLTAGE CHARACTERISTICS

>-120

I

---- --- ----

w

t')

~-100

o
>

V
-80

z

~

oc
«
~
'"
w
'"

-60

~

-40

12lrl

-20

2N51 2A

...-

I,..-f-I,..-f-."

V

,,/

:..:

LUJj
Ic = -300 rna

~~511~1
~ BVcEX
,
I.- BVcER

r-

L

r-

2N512B
2N512A

r-~

~

J
.....

ou

o

•

0.01

1.0

0.1

2N512

~

10

VBE - REVERSE BASE-EMITTER VOLTAGE - v

I
10

I

100
1K
Rae - BASE-EMITTER RESISTANCE - ohms

10K

lOOK

THERMAL INFORMATION
POWER DISSIPATION DERATING CURVE

180
160
~
I

c:

140 .............

o

~ 120

Maximum Thermal Resistance = 0.5°C/w

~

.~

g 100

~

Ql

~ 80

~

Ql

o 60

C

~

40

I

l-

e..

20

o

25

30

40
TB

-

~

~

~

50
60
70
80
Mounting-Base Temperature - °C

~

90

100

PRINfEO IN

6·18

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

u.s A

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

Guaranteed I CEX at 15°C
LOVV r cs • lOVV IclO • LOVV VIE

40-, 60·, 10-, or lOO-VOLT UNITS
20 VVATTS AT 25°C CASE T~PERATURE
Choice of T0-5, Stud, or Hex Package
Guaranteed Beta at 1 amp and 50 ma Ie

for
RELAY DRIVERS • PULSE AMPLIFIERS
SERVO AMPUFIERS • AUDIO AMPLIFIERS

mechanical data
The transistors are in hermetically sealed, resistance-welded cases with glass-to-metal seals between case
and leads. These devices are available in (1) a round TO-5 package weighing approximately 2.4
grams (2N1038 series), (2) a stud heat-sink package which weighs approximately 5.4 grams (2N2552
series) and (3) a hexagonal flanged-nut heat-sink package which weighs approximately 8.6 grams
(2N2556 series). Mounting hardware available is shown on page 8.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0._ ... 0.01001A.

* OUTUNE -

_________

2N2552 SERIES

~UTU,,!!-.,!!556
....!!RI~

lIMI'EUTUa MEASUlIMINT POINT o.G6O
NOMINAL fIIOM SlAt OF HEAT SINK.

•.

2. tfMPUAtull MEASUUMINT POIN'I ILI60
NOMINAL NOM CINIH: OF MiA1 SlNIL

5

I.

3.

-

ntUAD HUIF "

•

______ _

IHf OIIINTATJQN Of 'fMI UADS .. IllAtION TO
ntI HIX RAn IS NOt CONTIOUID.

AU. OIMINSIONS All IN INCHB UNLIIS cmtRWISE

SI'IC"ID.

G.. MAX. IT o..uo DlA.

·'ndicates JEDEC Registered Data.

971

TEXAS INSTRUMENTS
INCORPORATE!;>

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-19

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
*abs,!lute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage _
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current
Base Current _ _ •
Total Device Dissipation at (or below) 25°C
Case Temperature (see Note 2)
Operating Case Temperature Range
Storage Temperature Range . . .

2NI038
2N2552
2N2556

2NI039
2N2553
2N2557

2NI040
2N2554
2N2558

2NI041
2N2555
2N2559

40 v
40 v

60v
60v

80 v
80 v

100 v
100 v

•

20 v
3 a
1 a
20 w
- 55°C to + 100°C
- 55°C to + 100°C

=

NOTES, 1. This .alu. applies when baSl-.mitt" yoUog. VIE
+ 0_2 y.
2. Derate linearly fa + TOOoC case temperature 01 the rate of 267 mw/Co •

•

electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

TVPE
2NI038
2N2552
2N2556
2NI039
2N2553
2N2517

Coliector~Bas.

BVeaa

Breakdown

Voltogo

-BV eEO

CoUottor-Emlttor
Breakdown
Voltog.

Ie

Ie

=

=

-650 flo, IE

-100 mo, I.

=

=

0

0

2NI040
2N2554
2N2558
2NI041
2N2555
2N2559
2NI038
2N2552
2N2556
2NI039
2N2553
2N2557
2N1040
2N2554
2N2558
2N1041
2N2555
2N2559

MIN

TVP

MAX

UNIT

-40

-60

•
-80

-100

-30

-40
y
-50

-60

-Indico"s lEDEC R'glsterod Data.

971

6-Z0

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

-I CBO

CoUector
Cutoff
(urrenl

TEST CONDITIONS
Yca = -20 v,

IE = 0

2Ml038
2N2SS2
2N2SS6

Yca = -30 v,

IE

=0

2Ml039
2N2SS3
2N2SS7

p.o

IE

=

0

2Nl041
2NISSS
2N2559

= -IS v,

I. = 0

2Nl031
2N2SS2
2N2SS6

-2S

VCE = -20 v,

I. = 0

2Nl039
2N2SS3
2N2SS7

-20

Y,

la = 0

2Nl040
2N2SS4
2M2SS8

-20

VCE = - 30 v,

la = 0

2Nl041
2N2SSS
2N2SS9

-20

YCE =-40v,

YIE =

VCE =-60v,

VIE

=

-25

=

+

0.2 v

2Nl031
2M2SS2
2N2SS6

+

0.2 v

2Nl039
2N2SS3
2N2SS7

Cutoff
YIE =

+

0.2 v

2Nl04O
2N2SS4
2N2SSB

YCE = -100 v, YIE =

+

0.2 V

2Nl041
2N2SSS
2N2SS9

YCE = - 20 v, YIE =
Tc = + 8S'C

+ 0.2

Currenl
YcE =-80v,

v

2Nl031
2N2SS2
2N2SS6

= + 0.2 v

2Ml039
2N2SS3
2N2SS7

r--------

Emitter Cutoff Current

-12S

Yca=-SOv,

(olledor

·I ElO

UNIT

=0

YeE

-ICE)(

MAX

IE

Colledor
Cutoff
Current

Colledor
Cutoff
Current

TYP

= -40 v,

YCE

·I CEX

MIN

2Nl040
2M2SS4
2N2SS8

Yc •

-I CEO

TYPE

YeE = -30 v, YIE
Tc = + 8S'C

YCE =-4Ov, VIE =
Tc = + ISoC

+

0.2 v

2Nl040
2M2SS4
2N2SS1

YCE = - SO v, YIE =
Tc = + 8SoC

+ 0.2 v

2Nl041
2N2SSS
2N2SS9

VEB

= -20 v,

IC

=

0

All

rna

•

-6SO

p.o

-S

rna

-650

p.a

'Indi(otes lEDH Registered Dota.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-21

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALlOY·JUNCTlON GERMANIUM MEDIUM·POWER TRANSISTORS

electrical characteristics at 25·C case temperature (unless otherwise noted)
PARAMETER
hiE

*hFE

TYPE

MIN

TYP

MAX

VCE = -O.S v, IC = -1 a
(see No.e 3)

All

Static Forward

VCE = -O.S v, IC = -1 a
(see No.e 3)

All

20

60

(urrent Transfer Ratio

UNIT

ohm

60

VCE=-O.Sv, IC = -SO rna

All

33

200

VCE = -O.S v, Ic = -1 a
IC = - SSoC (S .. No•• 3)

All

lS

60

VCE=-O.Sv, IC = -1 a
IC = + BSoC

All

20

7S

Slatic (ommon-Emitter
Forward Transfer Admittance

VCE=-O.Sv, IC = -1 a
(see No.e 3)

All

1.0

*V BE

Base-Emitler Voltage

VCE = -O.S v, IC = -1 a
(see No •• 3)

All

-1.0

v

V.

Base-Emitter Voltage

VCE==-O.Sv, IC = - SO rna

All

-0.3S

•

*VCEIsatl

Collector-Emitter
Saturation Voltage

IS = -100 rna, Ie
(, .. No•• 3)

All

-0.2S

v

*h fe

Small-Signal (ammon·Emitler
Forward (urrent Transfer Ralio

VCE = -1.5 v, Ic = -O.S a
f = 1 kc

All

18

Small-Signal (ommon-Emitter

VCE = -1.5 v, Ic = -O.S a
f = 112.S kc

All

2.0

VCS = - 6 v,
IE = 0
f = 13S kc

All

Static Forward
(urrent Transfer Ratio

hFE

VFE

BE

•

TEST CONDITIONS

Stalic (ommon Emitter
Input Impedance

'lhf.1

Forward Current Transfer Ratio

(ammon-Base Open·Circuit
Cob

Output Capacilance

=

-10

mho

72

pi

100

NOTES: 3. Measurements ore made with voltage sensing contacts located 0.25 inch from header of transistor.
Voltage sensing contacts are separate from current carrying contacts.
*Indicates JEDEC Registered Data.

switching characteristics at 25·C case temperature
PARAMETER

TEST CONDITIONSt

TYPICAL

UNIT

'd

Delay Time

IC = - l a

0.18

,usee

Ir

Rise Time

VllEloifl = 7.40

0.47

,us.c

Storage Time

RL =29!l

0.S9

p.s.c

If

Fall Time

(See circuit on Page 8)

1.21

p.sec

IT

Total Switching Time

2.4S

p.sec

"

tVoliage and current values are nominal; exact values vary slightly with device parameters.

971

6-22

TEXAS INSTRUMENTS
INCORPORATED

POST OFFiCe: BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY-JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(High-Voltage Region)

COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(Low-Voltage Region)

-3

~--~~------~------~----~

0

0

I -2

I -2

1:
~

1:
~

U

U

~

E

~

~

u

~

~

8 -1

"0

I,

u -1

I

I

.::!

.:.'

= -20 mo

.............

-

PT=20w

I, = -5 rna

o

o

VeE -

-40

-30

-20

-10

Ve • - Collector- Emitter Voltage - v

Collector- Emitter Voltage -

v

•

STATIC FORWARD CURRENT TRANSFER RATIO
vs

COMMON-EMITTER TRANSFER
CHARACTERISTICS

-1.0

I

60

"

I

/

/

.~ 50

.l!

/

o

I -0.5

-

.......

/

o

I

-0.2
ViE -

/

.....

F)

,

\

41

II
-0.1

~ximum h

'1\

/

Tc = 25°C
VeE = -0.5 v

-

COLLECTOR CURRENT

Minimum

hFE

~
VeE = -0.5v
T =25°C
C

-0.4

Base-Emitter Voltage -

20
-0.01

-0.6

I

Minim~:. hFE)1

I I

v

-0.05 -0.1
Ie -

-0.5

Collector Current -

-1.0

-3.0

a

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6-23

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

vs

CASE TEMPERATURE

CASE TEMPERATURE

100
.2

~

i

~

-1.00

I
I

I

•

...... Moximum hfE

70

'It.

----

50

l-

I

-

~

5

V

c

30

~

.E

I

20

M!nimU~fE

V>

I

•

..<=

•

V

/

-50

-25

0

Tc -

-.... -t--

Ol

.E

~

-0.50

~
j

f......

~

= -O.Sv, Ie = -1.00

VeE

i'-....

~.

-0.25

-}

I I

10
-75

1

·0.75

~

VeE =-O.Sv, Ic=-1.00

.2
.~

.
>

e

l:!

BASE-EMITTER VOLTAGE

vs

'"

o

25

50

75

100

-75

-50

-25

DC

Case Temperature -

Te -

0

25

50

Case Temperature -

75

100

DC

COLLECTOR CUTOFF CURRENT
vs

COLLECTOR-EMITTER SATURATION VOLTAGE

BASE - EMITTER RES ISTANCE
and
BASE- EMITTER VOLTAGE

vs

CASE TEMPERATURE

-0.20

.
OJ

.E

"0

>

c
.~

./

-0.15

E

/

a"
~

V

,...-

-----

-100
-50

f-

I

-5

~

V

-0.10

tt:
o

..

\(.~

~

-I

r-..,

leEx vs

V

.

t

~

'ii

-0.05

-0.1

,

E.t ....$

V:

Til

I 11111

-0.01

o
-75

-55

-25
Tc -

25

50

Case Temperature -

75

DC

'f

II

50
100
500 1 k
Rae - Base-Emitter Resistance - ohm

10

100

........

T - 25°C

'e

-0.05

>5

V"

\ct'-""~

V

I

--

~.c

."

Te =+55°C

., -0.5

1,= -0.10, Ie = -1.0 a

u

V

-10

v

E

c

~.E
"0

0

-

VCE

+0.01
V 8E

+0.05 +0.1
-

5k

10k

+0.5 +1.0

Base- Emitter Voltage -

v

971

6·24

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

COLLECTOR CUTOFF CURRENT
o

vs

-10.0
-5.0

r-

0

E

I

-1.0

t::

2:>

U

-0.5

-

Iiv

..!!

'0

u

I

~

Ji

-

-0.1
-0.05

-0.03
(2N1038) 0
(2N1039) 0
(2N1040) 0
(2N1041) 0

~

..-

S50C

1c'''::':::-

10"'''70°C
_

--

1 '" .. 55°C
0_

I
'\

,,"

A,00C

~OC

-

-8

'\o", .. ~

----

70

~

.......

~Ioo.

60

~

---- ....r--

COLLECTOR CURRENT

i~

-

+O.2v

--.I

c

~
:>
u

VIE

VI

j

COLLECTOR-EMITTER VOlTAGE

to-

50

,,~

a 40

-e

j

'\

£ 30

,

~

~

~

E 20

~

8

VoE =-1.5v
= 1 kc

j

f

V)

I

Te =rc,

1
V)

-16
-24

-24
-36
-48

-32

-12
-48
-16
-32
-64
-20
-40
-60
-80
VeE - Collector-Emitter Voltage - v

-40
- 60

I 10
!

..<:

-0.01

-0.05 -0.1
10 - Collector Current - a

-0.5

-1.0

- 80
-100

THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
20
~

I
c

.~

15

&.

~

Il

~
'2

10

,!!
E

~

'x 5

~
I

o
o

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES

1\.l.."J

1.2
Enclosed In 1 Cubic Foot
~

I 1.0
c

.~

8.

\

'~

\

•

0.8

i:5
~

u

';

\

~ 0.6

'20
>-

5E 0.4

~

25
50
75
Tc - Case Temperature - °C

'x

1\

100

~
I 0.2

a:-

0
0

25
50
75
TA - Free-Air Temperature - °c

100

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 15222

6·25

TYPES 2Nl038, 2Nl039, 2Nl040, 2Nl041 • 2N2552, 2N2553,
2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

SWITCHING TEST CIRCUIT

VOLTAGE WAVEFORMS

O.15~f

r- o

IN~10%

INPUT
OUTPUT

._.

:~---90%

L ____ l ~ 10%
~

290

OUTPUT I

I I

I I I

~tr~

+29.6 v

-29.2 v

NOTES: o. The input woveform has th. following characteristics:

-20.4v

90%

't S

+oIts~

-+lId\-.

10 nsee, If ~ 10 nsee, PW

b. Waveforms are monitored on an oscilloscope with the following characteristics:
c, Resistors must be non·indu(f've types.

~tll.

't:S 14

=

1.6 mslt,

Duty Cycle = 10%.

nsec, Rin ;;::: 10 M{} , (in::::; 11.5 pf.

MOUNTING HARDWARE INFORMATION
NO. 1()'32 UNF-2B THREAD

•

0.07%0.01
0.03%0.01

~r.

~

IF ISOLATION WASHERS ARE USED THE

NOTE,

~FH~C:~~T~g~E~~~~~ ::Elk~T ~tED

J~ER~~~~~T~~NT~: ~~: ~~~:

THE CHASSIS HOLE SHOULD BE 13/64 DIA IS NOT CONTROLLED
NO. 1()'32 UNF·2A
T~ C 3 LEADS 0.025 "'0.003 DIA

~
~

0.12±O.01.J

~.245±O.005

~ F

:..jl-

ELECTRICAL ISOLATION WASHERS
OUTSIDE DIA. 0.53 % 0.01
INSIDE DIA. 0.20'" 0.01

0.003
"'0.002

0.035~1---t11-0.445

MAX

%0.010

0.850 MAX
1.500 MIN

-J

EMITTER

0.100

-

-

%o,ol~~ o~
~..""

/

Y

,.".~OIO

~

2N2552 SERIES

1.500

ELECTRICAL ISOLATION WASHERS
DIA. 0.&9", 0.01
INSIDE DIA. 0.51 % 0.01

MIN--~-,...~OUTSIDE

0.500 % 0.015
0.093 % 0.010

NOTE,
THE ORIENTATION OF
THE LEADS IN RELATION
TO THE HEX FLATS
NOT CONTROLLED

15

0.550 MAX-I

~-

L

O.200 ",O.OlO

_1~1':53~±= ..m±~"~~

UNDERCUT
1· NOMINAL

hIJ==t=l=l=jIIM

EMITTER

111""1==t=l=HI~~~.56±0.01
~-:;::~::1
f- ~
--I 1--0.18~H!'~~10

1"

20 UNF - 2A THREAD
0.003 = 0.002

0.03 = 0.01

'1::: 0.07 % 0.01

4-1

0.750=0.010
P

0.875 MAX TYP

IF ISOLATION WASHERS ARE USED THE CHASSIS HOLE SHOULD BE 37/64 DIA
IF ISOLATION WASHERS ARE NOT USED THE CHASSIS HOLE SHOULD BE 1/2 DIA

2N25S6 SERIES

PRINTED IN U.S A

6·26

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

971

11 (annot anume any responsibility for ony dnuifs shown
or represent thai they are free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045. 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS

Guaronteed leEx at ISoC
LOVW res • LOVW Iclo • LOVW VIE

40·, 60·, 10., or 100·VOLT UNITS
20 VWATTS AT 2SoC CASE TEMPERATURE
Choice of TO·5, Stud, or Hex Package
Guaronteed Beta at 3 amps and SO ma Ie

for
RELAY DRIVERS • PULSE AMPLIFIERS
SERVO AMPLIFIERS • AUDIO AMPLIFIERS

mechanical data
The transistors are in hermetically sealed, r~sistance-welded cases with glass-to-metal seals between case
and leads. These devices are available in (1) a hexagonal flanged-nut heat-sink package which
weighs approximately 8.6 grams (2Nl042 series), (2) a stud heat-sink package which weighs approximately 5.4 grams (2N2560 series) and (3) a round TO-5 package weighing approximately 2.4
grams (2N2564 series). Mounting hardware available is shown on page 8.
'THE COUECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

* OUTLINE -

•

2Nl042 SERIES

* OUTLlNE-2N2560 SERIES

* OUTLINE NOTUo

2N2564 SERIES

1.

TEM.EIATURf: MfASUlBMNT POOO 0.160
NOMINAl. noM ClNlIII OF H!!AT SM.

4

2

THREAD HuU 1$ 0090 MAX. IY O,QO DIA.
NOMINAl..

5.

S

TEMI'I ....'U.I MlASUllMI\NT POINT 0.060
NOMII'W. 'IOM SEAT OF HlA' SINK

THE OIllliNTATIOH OF 1111 UADS IN ItILATlON TO

THE HEX

FU,n

IS NOT CONllOUlD.

AU DIMINSIONS A" IN INCHES UMUSS OTHllWtSl

SPlC•• D.

·Indicates JEDE( Registered Data.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DAL~S.

TEXAS 75222

6-27

TYPES 2Nl042, 2Nl043, 2N1044, 2N1045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2Nl042
2N2560
2N2564

2Nl043
2N2561
2N2565

2Nl044
2N2562
2N2566

40 v
40 v

60 v
60v

80 v
80 v

Collector-Base Voltage .
Collector-Emitter Voltage (see Note 1)
Emitter-Base Voltage
Collector Current
Base Current •
Total Device Dissipation at (or below) 25°C
Case Temperature (see Note 2)
Operating Case Temperature Range
Storage Temperature Range •

2Nl045
2N2563
2N2567

100 v
100 v

,.

20 v
3.5 a
1 a

'E

,.
,.

20 w
-55°C to + 100°C
- 55°C to + 100°C

,.

~

~

=

NOTES: 1. This value applies when base-emitter voltage VBE
+ 0.2 Y.
2. Derate linearly to
lOOoe case temperature at the role of 267 mw/Co.

+

•

electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Collector-Base

BY CBO

*BY CEO

Breakdown
Voltage

Collector-Emitter
Breakdown
Voltage

lc

lC

= - 6S0 p.a, IE = 0

= -100 rna, IB = 0

TYPE

MIN

2N1042
2N2S60
2N2S64

-40

2N1043
2N2S61
2N256S

-60

2N1044
2N2S62
2N2566

-80

2N104S
2N2S63
2N2S67

-100

2N1042
2N2S60
2N2564

-30

2N1043
2N2561
2N2565

-40

TYP

MAX

UNIT

v

y

2N1044
2N2562
2N2566

-50

2N1045
2N2563
2N2567

-60

·Indicates JEDEC Registered Data.

971

6-28

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045 e2N2560, 2N2561,
2N2562, 2N2563 e 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNOION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

-'CBO

CoII,dor
Cutoff
Currant

TEST CONDITIONS
Yca

= -20 v,

IE

=0

2Nl042
2N2560
2N2564

YCB

= -30 v,

'E

=0

2Nl043
2N2561
2N2565

-I CEX

= -40 v,

'E

=0

YCI

= -50 v,

'E

=0

2Nl045
2N2563
2N2567

YCE

= -15 v,

'a

=0

2N1042
2N2560
2N2564

-25

YCE

= -20 v,

'a

=0

2Nl043
2N2561
2N2565

-20

-20

-20

CutoH
Currenl
YCE

= -25 v,

'a

=0

2N1044
2N2562
2N2566

YCE

= -30 v,

'a

=0

2N1045
2N2563
2N2567

YCE

=

-40 v,

YIE

= +0.2 v

2N1042
2N256O
2N2564

YCE

= -60 v,

YIE

= + 0.2 v

2Nl043
2N2561
2N2565

YIE

= + 0.2 v

2NI044
2N2562
2N2566

Collecto.
CutoH
(urrent
YCE

= -BOv,

YCE

=

-100 v; YIE

= + 0.2 v

2N1D4S
2N2563
2N2567

YCE

=

-20 v,

= + 0.2 v

2NI042
2N256O
2N2564

CoII,"o.
Cutoff

=+

YIE
B5 0 C

= -3Dv, YIE = + 0.2 v
Tc = + B5 C
0

(umnt

YCE

=
Tc

-40 v,

=

YIE

= + 0.2 v

-I- B5 0 C

= -so v, YIE = + 0.2 v
Tc = + B5 C
VEl = -20 v, 'C = 0

YCE

0

Emitter Cutoff Current

MAX

Yca

YCE

*I EBO

TYP

-125

Tc

-'CEX

MIN

2N1044
2N2562
2N2566

(oliidor

-'CEO

TYPE

2Nl043
2M2561
2N2565

UNIT

p.a

ma

•

-650

p.a

-5

mo

2N1044
2N2562
2N2566
2Nl045
2N2563
2N2567
All

-650

p.a

·Indl,ates JEDEC Registered Data.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

6-29

TYPES 2N1042, 2N1043, 2N1044, 2N1045. 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

Static (ommon·Emiller
Input Impedance

hiE

Static Forward
Current Transfer Ratio

*hFE

TEST CONDITIONS

All

VeE = -1.0 v, Ie =
(see Nole 3)

- 3•

All

VeE = -1.0 v, Ie =
(see Nole 3)

-I •

=

MIN

TYP

20

150

-1.0 v, Ie = -3.
Te = - 55'C (... Nol. 3)

All

15

60

VCE = -1.0 v, 'e= -3 •
Tc = + 85'C (... Nole 3)

All

20

75

Static Common-Emitter
Forward Transfer Admittance

VCE = -1.0 v, Ie =
(... Nole 3)

-3.

All

2.0

*V SE

Base-Emitler
Voltage

VeE = -1.0 v, Ie =
(... N,I. 3)

- 3•

Vee

Base-Emiller
Voltage

VeE =

Static Forward
(urrent Transfer Ratio

hFE

rFE

I. =

*VCElsatl

Collector-Em iller
Saturation Voltage

-1.0 v, Ie =
-0.3 .,

- 50 m.

'e= - 3 •

All

-1.5

v

All

-0.5

v

All

-0.75

All

- 0.25

VeE = -1.5 v, Ie =
1= 1 kc

All

25
2.0

v

- 0.5 a

*h fe

Small-Signal Common-Emitter
Forward Current Transfer Ratio

'Ihfel

Small-Signal (ommon-Emitter
Forward Current Transfer Ratio

VCE =
1=125kc

All

Common-Base Open-Circuit
Output Capacitance

Ve • = -6 v,
'E = 0
1= 135 kc

All

Cob

mh,

I. = -100 ma, Ic= -1 •
(... Nole 3)

(... Nole 3)

ohm

60

50

VeE

UNIT

30

All

-0.5 v, 'e= - SO rna

MAX

All

VeE =

•

TYPE

VeE = -1.0 v, 'e= - 3 •
(see Nole 3)

-1.5 v, 'e= -0.5 •

100

100

pi

NOTES: 3. Measurements are made with voltage sensing contacts located 0.25 inches from header of transistor.
Voltage sensing (onlods are separate from current carrying (ontacts.
*'ndicates JEDEC Registered Data.

switching characteristics at 25°C case temperature
PARAMETER

rEST CONDITIONS

Id

Delay Time

I,

Rise Time

I,

Siorage Time

= -3.
VSEfoffl = B.2v
RL = 10 n

If

Fall Time

(See circuit on Page 8)

IT

Tolal Switching Time

t

Ie

TYPICAL

0.20

UNIT

JLsec

0.48

JLsec

0.29

p.sec

2.15

JLsec

3.12

JLsec

tVoltage and (urrenl values shown are nominal; exact values vary slightly with device parameters.

971

6-30

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR
CHARACTERISTICS
(Law-Voltage Region)

COMMON-EMmER COLLECTOR
CHARACTERISTICS
(High-Voltage Region)
-3

-3.0

~\

I, = -80 rna

Tc =25°C

\

I

-2.0

I

1,= -40 rna

C

C

~

I

U

-1.0

I

~

1,=-20ma

-1

r-- P, = 20w

....

/

..::!

1,=-10ma

~ ....... ~ =-lOma

.....

i'"""

18 = -5 rna

I. = -5 rna

~-J. = 0

I, = 0
-0.2
-0.4
-0.6
-0.8
VCE - Collector-Emitter Voltage - y

~~,

~

"0

"0

= -40 rna

l,.--- ~\\.I,,= -30 rnaI

E
u

I, = -20 ma

~

~ 25°C

Tc

= -60 rna

~

a

1,=-30ma

E
u

U

-2

~

~

u

I
18

V'""~II'

a

a

1,1=_OOma

o

-1.0

o

-10
-20
-30
V CE - Collector- Emitter Voltage - y

-40

•

STATIC FORWARD CURRENT TRANSFER RATIO
COMMON-EMITTER TRANSFER
CHARACTERISTICS
-3.0

Tc =25°C

/

VCE = -1.0y

I -1.0

V

yS

COLLECTOR CURRENT

/

L

c

/

~
u

/

~

1/

E -0.5

u
~

8
I

/

..::!

-0.1

o

-0.2
VIe -

/

/
Minimum hFE
VCE = -LOy ~

L--L...-.L-i-..LJ,..J...I..l..I--~TL......II....J..I.1...L.J
111c..u....-....J..f".._

-0.4

-0.6
Base-Emitter Voltage - v

20
-0.01

-0.8

-0.05 -0.1
Ie -

-0.5

Collector Current -

-1.0

-3.0

a

971

TEXAS INSTRUMENTS
INCORPORATED

~OST

OFFICE BOX 5012

•

DALLAS. TEXAS 75222

6·31

TYPES 2Nl042,2Nl043, 2Nl044, 2Nl045- 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

BASE-EMITTER VOLTAGE
vs
CASE TEMPERATURE

STATIC FORWARD CURRENT TRANSFER RATIO

vs
CASE TEMPERATURE
100

i
i...
I!

-1.00

I

•

........ Maximum h..

"II

----

SO

>

I

j
•

!;

1!

~

30

~

.eu
i

VeE = -1.0 v, Ie = -3 a

~

C
I!

u

- r"""-

-0.75

VeE =-I.Ov,l e =-3.0a

j

I 1

20

I
1

I I I

10

-SO

I

.; -0.25

h"

•
-75

I

~ini:! y~

II>

-O.SO

Jl

o

-25
Te -

25

SO

Case Temperature -

75

o

100

-SO

-75

Te -

VI

CASE TEMPERATURE

-100

-0.5

-SO

I

25

75

SO

Case Temperature -

100

·C

COLLECTOR CUTOFF CURRENT
vs
BASE- EMITTER RESISTANCE
and
BASE-EMITTER VOLTAGE

COLLECTOR-EMITTER SATURATION VOLTAGE

>

o

-25

·C

I:==::::

VeE --I 5v

j

~

-0.4

15

1

-0.3

,V

£

E

V

V

V

v

-10

I

-5

~

d

I

\c"~

-- '"

Te = +55°C

i"'-

~ r-~.t .., k
r--

¥

U

-0.05

o

-75

-SO

-25

o

SO

25

75

100

==

FI

1: -25°C

c~

Case Temperature -

"s

11r

I 1111

-0.01
10

50
RIE -

Te -

~.~

\c.to"

I

~ -0.1

-0.1

..,., ..

~

.2

~

~.~'"

_Ll

I--

..1

1d -0.5

1,= -0.30, le= -3.00

"I' -0.2

I

~

°C

100

500

Ik

5k

10k

Base-Emitter Resistance - ohm

+0.01
+0.05 +0.1
+0.5 +1.0
VIE - Base - Emitter Voltage - v

971

6-32

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES 2N1042, 2N1043, 2N1044, 2N1045 • 2N2560, 2N2561,
2N2562, 2N2563 • 2N2564, 2N2565, 2N2566, 2N2567
P·N·P ALLOY·JUNOION GERMANIUM MEDIUM·POWER TRANSISTORS
TYPICAL CHARACTERISTICS
SMALL-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO

COLLECTOR CUTOFF CURRENT
vs

vs

COLLECTOR-EMITTER VOLTAGE
-10.0

-

E

I

~

:>

U

~:>
u

-1.0
-0.5

..!!
(;

u

J

SS·C

k";:::'-

--- 'k=+7
J O·C
_

.eu
I

-- -

VIE =+0.2v

-5.0
a

-0.05

~

~-

~

I .. ",.0....

\:-'1c.-:::.-t

100

'J,S·C

----

~

V

-16
-24

- 8
-12
-16
-20

-32
-40

I'

..[.......-'

-24

-32

-40

-36

-48
-64
-80

- 60

-48

-60

.....
.....

Vc.=-1.5v

r-('tl

_i"'"

-0.03
(2Nl042)0
(2N 1043) 0
(2Nl044) 0
(2N 1045) 0

I/'

.......

1 =+SS·C

~

-0.1

COLLECTOR CURRENT
150

20
-0.01

-O.OS

Ie -

-0.1

Collector Current -

-0.5

-1.0

a

- 80
-100

Collector-Emitter Voltoge - v

Vc• -

THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE

1\.L."c.l
\
1\

~

I
&.

15

'iii

Q

II

~

10

\

]
~

l

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVES
1.2

20

~

•

o

SO

8.

'Bi 0.8

15

..
u

';;

t!l
'2

0.6

5 0.4

\.

5

25

I 1.0
c

,~

,2

I

o

Enclosed In 1 Cubic Foot
~

75

E

'x

\

~
I 0.2

t1:

100

Tc - Case Temperature _·C

0
0

25
50
75
TA - Free-Air Temperature _oC

100

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6·33

TYPES 2Nl042, 2Nl043, 2Nl044, 2Nl045. 2N2560, 2N2561,
2N2562, 2N2563. 2N2564, 2N2565, 2N2566, 2N2567
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

SWITCHING TEST CIRCUIT

0.47

~f

INPUT

OUTPUT

IN~
I

190%
I
~ ___

100

-.!.+

I I

I

1+,1,.....
I I

+29.3

-30.3

v

1I

NOTES: o. The input waveform has the following characteristics: tr ~ 10 nsec, t f ~ 10 115ec, PW

v

10%
I
I

;..!I,~

1

I 1
....., Id'~

v

o

1----- -24.1

I
+-il s ....

= L&

msec,

Duty Cyde = 10%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: Ir::::; 14 nsec, Rin ~ 10 MQ. 'in:::; 1I.S pt.
c Resistors must be Ron-inductive types.

MOUNTING HARDWARE INFORMATION

•

ELECTRICAL ISOLATION WASHERS
OUTSIDE DIA. 0.89:!:; 0.01

1.500 MIN

INSIDE DIA. O.SI::!:: 0.01

0.500±O.01S
0.093 ± 0.010
UNDERCUT
I· NOMINAL

g:-

fY

D.IDO=O.OIO~

-lDIA 3 LEADS
THE ORIENTATION OF
THE LEADS IN RELATION
TO THE HEX FLATS
IS NOT CONTROLLED

::~::::~;~~~:F04.56±0.01

0.550 MAX-l

I
f--

Vi - 20 UNF - 2A THREAD
0.003 = 0.002

-1

Jl ~ rr:=
II

0'100~~:~:1

~

Yz-20 UNF-2B

-j

0.200::!::OOIO

~ASE

O.02S±O.D03

1--0.1;7H~~~10

~

J·'Y"·

0.03 = 0.01
0.875 MAX TYP
0.07 ± 0.01
IF ISOLATION WASHERS ARE USED THE CHASSIS HOLE SHOULD BE 37/64 DIA
IF ISOLATION WASHERS ARE NOT USED THE CHASSIS HOLE SHOULD BE 1/2 DIA

2Nl042 SERIES
NO. 10-32 UNF - 2B THREAD
0.07=001
0.03=0.01

0.12±O.01-!

if. ~
f

~

L~

IF ISOLATION WASHERS ARE USED THE
NOTE,
0200 =0.010
CHASSIS HOLE SHOULD BE 1/4 DIA
THE ORIENTATION OF THE L E A D s : 2
IF ISOLATION WASHERS ARE NOT USED
IN RELATION TO THE HEX FLATS
0100 =0010
THE CHASSIS HOLE SHOULD BE 13/64DIA IS NOT CONTROLLED
':>BASE

~

I-."'[~I--ELECTRICAL ISOLATION WASHERS

NO. 10-32 UNF-2A

~

0.003
=0.002

0.D35~

F,,_·m, ..- .• "A"-,
/

~

~

0.445 =0.010

MAX

COLLECTOR

0.B50 MAX

OUTSIDE DIA. 0.53 ± 0.01

1.500 MIN

INSIDE OIA. 0.20:::t; 0.01

2N2S60 SERIES

PRINTED IN USA

6-34

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI (onnot assume any responsibility for any circuits shown
or repre!en' 11'101 they ore free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPE 2Nl046
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTOR
~'"

HIGH-FREQUENCY POWER TRANSISTOR
FOR
MILITARY AND INDUSTRIAL APPLICATIONS

!!l

...

...-<

..
m

Z ~
z
!> ~

:i:"
t...

'"

~

.
~

~

mechanical data
This transistor is in a precision -welded, hermetically sealed enclosure. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extre me cleanliness during the assembly process prevents
sealed-in contamination. The approximate weight of the unit is 18 grams.

:;;

......

*

ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

1.050 MAX

•

0.188 R MAX

BOTH ENDS

t TI GUARANTEED MAXIMUM

1 -BASE

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
100 v*
50v*
\ 1.5 v* t
12.0 vt ~
12 a*
20a*
3a*
See Figure 13*
50w
50w*

Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage

Cantinuous Collector Current
Peak Collector Current (See Note 2) .
Base Current
Safe Continuous Operating Region .
Continuous Collector Dissipation at (or :below) 75°C Case Temperature (See Note 3)
Continuous Collector Dissipation at (01' 'below) 50°C Case Temperature (See Note 4)
Peak Collector Power Dissipation at (or below) 25°C Case Temperature
(See Notes 2 and 5) .
600w*
Operating Collector Junction Temperatilre .
1000C*
.
I -55°C to + 1OOoC*
Storage Temperature Range .
/ -55°C to + 1100Ct~
230°C*
Lead Temperature, 1/8 inch ± 1/32 inch tro.m case for 10 seconds.

t

NOTES: 1. This value applies when the bose-emitter diode is open-circuited.
2. This value applies for a rectangular woveshape, pulse width::::; 270 11-1e(, duly (yde ::::; 10%. See figure 12 for other allowable pulse width and duty
cycle combinations.
3. Derate linearly 10 lOOoe case temperature 01 the rote of 2 w/C o .
4. Derate linearly to lOOoe (ose temperature at the rate of 1 w/Co, This corresponds to the JEDEC registered maximum value of thermal resistance, 8J - c , 1.0
S. Derate linearly to 1000e case temperature at the rate of 8 w/Co.

*Indicotes JEDEC registered data.

eO /w.

tIexDs Instruments guarantees these values in addition to the lEDEC registered values which are also shown.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-35

TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
electrical characteristics at 2S·C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

BV CBO

Collector-Base Breakdown Voltage

BVc,o

Coliector·Emitter Breakdown Voltage

BVEBO

Emitter-Base Breakdown Voltage

'CBO

Collector Cutoff Current

MIN

'c,x

(all ector Cutoff Current

"BO

Emitter (utoff (urrent

V'B--O.s v, 'C- O

Static Forward (urrent
Transfer Ratio

hFE

•

==- S a,

,

-2.0

mo

-0.1'

mo

40'

60t
40'

See Note 7

60t
60
Seo Fig. 4

Vc ,--1.5v, 'C--So, Tc--SS·C,
See Note 7
Vc ,--1.5" 'C--So, TC -+70 o C,
See Nole 7

200t

40
See Fig. 4

-0.4'

'8 - - 500 rna, Ie - - S a, See Nole 7

- 0.7*

Collector-Emiller
Saluration Voltage

'8 --= - SO mo, Ie - - 0.5 a, See Nole 7
'B--SOOmo, 'C--So, See Nol. 7

- 0.4'

Small-Signal Common-Emitter
Forward Current Transfer Ratio

VC,=-lSv, IC=-O.so, f=10mc

Base-Emitter Voltage

VeElsat!

Ihl.1

mo

-12

'B--SOma, 'C--O.5a, See Note 7

VBE

,

,
-0.3'
-2.0'

Vc ,=-1.5v, 'c=-O.So, See Note 7
YCE=-1.5 v, Ie

UNIT

- 50'
-1.5'
-2.0

2 mo, 'C-O
',',--10 mo, 'C-O
VCB --3" ',-0
Vc .--7S" ',-0
VcB --7Sv, ',-0, Tc -+70 o C
VC,--7Sv, VBE - + 0.2,

MAX

-100'

'c--'O mo, ',-0
'c - - 200 mo, lB - 0, See Nole 6

,
,

-0.2'
1.0'
2·ot

=

NOTES: 6. This parameter must be measured using pulse techniques. PW
300 /Lsecs; Duty Cycle:::; rio.
7. If these parameters are measured without a heat sink, doc collector currenl must not be applied longer than 250 msec.

switching characteristics at 2S·C case temperature
PARAMETER

TEST CONDITIONS:/:

TYPICAL

UNIT

0.1

p.sec

IC=-So, IBIII=-O.So, 18I21 =0.So,

0.2

p.sec

VBEI.III=2" RL=40,

2.0

p.sec

See Figure 1

0.4

p.sec

2.7

p.sec

Delay Time

Id
I,

Rise Time

I,

Storage Time

'I

fall Time

IT TOfal Switching Time

:t.Voltage and current values are nominal; exact values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION
"A"

See Note a

I ...

r; 1'"

-5.5

v

VOLTAGE WAVEFORMS

SWITCHING TEST CIRCUIT

EO'-~--"1I>---""· OUTPUT

1 1'"

r-

POINT -;;;?t 10%

~,~

:90%

~

OUTPUT I

'90%

~ _____ .!.~

I '

I II I
I~r~
-+-lld'''-

Vse=+2 v

, I

10%

I

l.JI I
~fi..
...lts ....

FIGURE 1

=

NOTES: {oj The pulse 01 point "A" has the following characleristics: 'r ::; 20 nsec, If :5' 20 nsec , PW
5 ",sec, duty cycle:::;: 5%.
(b) The waveforms are monitored on an oscilloscope with the following characteristics: tr ::::; 15 n~ec., Rin ;;::: 1 MO, (in::; 2D-pf.
·'ndicates JEDEC registered data.
tTexas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

971

6·36

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Low-Voltage Region)

COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Hlgh:Voltage Region)

-12~----------~----?-~-----r-----'

-12

-10

V

a

I -8

'f

C

~

Is~-70ma

/

"t:
U"

I

',rIS=-IOOma

Tc = 2SOC
See Note 8

10--SOma

-

-6

.eu

..!!

"0
u -4

I

10=Jma

_u

-2

-2~~~~~--~-----+----~----~

1.=
-0.4
-0.8
VCE - Collectar - Emitter Voltage - v

o

-1.0

I/"

o

.,.-

~

j

COLLECTOR CURRENT
-0.8.----,,----,-----r----,-----~--_,

--~

~

~
u" SO

I -0.6r---~-----r----t,~~~~~~~
j

......... Tc =+70°C-

"-

1

]

•

TC =2SoC
See Note 8

+2So~

Tc

.......

c

10 ~ -1300ma

~

-1~=-IOOma

~ -0.4 (-~-:~7=-~t-'"-----.------1fcloo..=_-_SO_mt-a_ _-t-_ _--1

" I~

~
51

JI
I

~

~

-SO

VI

I

t-VCE = -1.Sv
f- See Note 8

-I--"'""

-Ib ma

8ASE -EMITTER VOLTAGE

COLLECTOR CURRENT

><

,...---

FIGURE 3

VI

.2

-

~

-10
-20
-30
-40
VCE - Collector - Emitter Voltage - v

STA TIC FORWARD CURRENT TRANSFER RATIO

:i 100

~

lL.lo= 0

FIGURE 2

200

TC ~ 2SoC
See Note 8

;-0.2t---+---+---r---r---r--~

20

w

~

..c

10

o

-2

-4

-6

-8

-10

o

-12

I c- Collectar Current - a

o

-2

-4
-6
-8
-10
IC - Collector Current - a

-12

FIGURE S

FIGURE 4
HOTE 8: These characteristics wen measured Ising pulse techniques. PW

= 300#,* , Duty Cycle :5 2%.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6·37

TYPE 2N1046
P-N-P AllOY-DIFFUSED GERMANIUM POWER TRANSISTOR
TYPICAL CHARACTERISTICS
COLLECTOR-EMITTER SA TURA TlON VOLTAGE
vs
CASE TEMPERATURE

BASE - EMITTER VOLTAGE
vs
CASE TEMPERATURE

-0.8 r---,---;---,----,---,r---,--,

-0.5
See Note 8

>

.

!

i -O. 6 I--oo;;;:::+-i

-0.4

j

i

IBz-la,lc=-IOa

i'! -0.3

j

-~~

JI

! -O. 4 I----t--=""'""'k:---=~oo;;::-+__-+__-+____I

!

18 = -SOOma, Ie=- -5a

J
I..
-::'

~60~---~40~--~2~0----0~--~20~--4~0--~60--~80
Tc - Case Temperature -

I

-~

-

-0.2 I--;:-!--,-,.---I-::---I---t--+---I----I

IB •

°-60

·C

~

-40

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE
vs
BASE-EMITTER RESISTANCE

~

3.0

!

j

-20
o
20
40
Tc - Case Temperature - ·C

j

60

~

Tc =+70·C

2.5

--

B

\

I
C

~

-lxlO

Tc =+2S·C

-1

u

l
.e

-lxlO -2

1.0

..!!

-lxlO

0.5

_u

1.5

' ....

~

U

See Note 8

u

"0
u

-3

~~

I

iil

-lxlO -4

V

BVCEO .. BVCER at RaE = 10 kQ

01

I I 1111111

80

COLLECTOR-BASE VOLTAGE

-I

8
1:

/

VI

]l

1

/

COLLECTOR CUTOFF CURRENT

IC'';;'SO ma
Tc = 2S·C
See Note 8

2.0

~

-----

oma , I ( -o'r

-10

j

V

FIGURE 7

'"I

t

-

r

FIGURE 6

III

//

V

UJJll1ll L

Ik
100
10
RaE - Bose-Emiller Resistance - ohm

-lxlO -s
10 k

o

-25

-50

/

-75

-100

VCB - Collector-Base Voltage - v

FIGURE 8

FIGURE 9

NOlE I, lh... cha ..cteri.tics .1" ml..ureel u.ing pui.. t"hniques. PW

=

300,...". Duly Cycll ::::;

2%.

971

6·38

TEXAStNCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPE 2Nl046
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVES
50

1\

\

~

~l~
~

30

-0
u

~'\

o

20

U
E
~

10

~

0

E

50

1500

..

1250

.=

.

1000

E0

\

'"

.;;u
0

I
25

~Q.

i5

~~

1\

~

~

0

0

·0(' '-"'l-

~

I\.

I

c:

",1\

~

1750

E

~':\~ (''t.!~

2

.e

2000

~

~

J!

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

\
\

750

>-

·x

'\

~

~

I

'\.

250

~

25
50
75
TA-Free-Air Temperature-OC

FIGURE 10

FIGURE 11

-20
r50% Duty Cxele

V

20%

I

j

0

'"

~' ~

I-e T
---tw
c

-1

.

~

I
1-17

.11
~ Duty Cye Ie Ratio II

~lty c),l1

M1::l::r:llTm,t

~

1.0
tw - Pulse Width - msee

0.01

\

.{l.5

........

0.10

riii

r--...

-0.2

1-

.1.1

tw~ Pulse WIdth In mseell
d

\

u

S

I

0.01

-2

2

iSee Note 9

"

I
c:
~
~

~

;.

Te:5: 7S·Q

Te:5:50·C·

u

r5%

..I<

.,

•

-5

I-e d'T

t?

~

0.10

-10

-tl-

......

'"

100

MAXIMUM SAFE CONTINUOUS
OPERATING REGION

COEFFICIENT

1.00

I

'\.

500

Te - Case Temperature _·C

PEAK - POWER

'\.

E
~
E

100

75

6,.....:::42.8C·/w

~

0• 1

-0.05
~

//, r/////I ~

-0.02
-0.01
10.0

o

IlL

SeeNot.10~

-fIJ
-so
VeE - Collector-Emitter Voltage - v
-20

-40

-100

FIGURE 13

FIGURE 12

'w >

3.0 mil( or d > 0.5 (50%1, operation must be confined to the continuous operating region of Figur. 13.
10.0p.ration in Ihls region Is permissible when bast-emitter resistance RIE S 50

NOTES: 9. Wh..

·'ndicales JEDEC regis'ered data.

tlolS Instruments guaranlles litis ,alul In addition to the JEDEC registered value which Is also shown.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

6·39

TYPE 2N1046

P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTOR
THERMAL INFORMATION
TABLE I

TABLE II

HEAT SINK
Typ.

Dimensions
4" x 4" x 1/8"
6" X 6" X 1/8"
8" x 8" X 1/8"
10" X10" X 1/8 11
4" x4" x 1/8"
611 x 6" X 1/811
8"x 8" x 1/8"
10" x 10" X 1/8/1

Irighl Copper

Brlghl Aluminum

3.8 CO /w
2.2 CO /w
1.8 CO /w
1.Ho/w
6.5 CO /w
4.5 CO /w
3.SCo/w
2.8 CO /w

Prlmaxl

DEFINITION
Averag. Pow.r Dissipation

UNIT
w

Peak Pow.r Dissipation

w
CO/w

OJ-C

Junctlon·tOo(as, Thermal Resislante

OJ.A

Junctlon-to-Free-Air Thermal Resistance
(as.-fa-Free-Air Thermal Resistance
Cas.-to-Heat-Slnk Thermal Resistance
Typical wllh Dry Maunllng Ba..

OC.A

toe •Hs

0.5
42.8

CO/w

42.3
0.65

CO/w

c--wSH

Heat-Sink-fo·Free-Air Thermal Resistance

TA

Free·Air Temp.rature

TJ I'-g)
TJ Cmax
Te

Av.rage Junction Temperature

°c
°c

::5100

Peak Junction Temperature

°c

::5100

Cas. Temperature

°c

K

Peak~Power

Iw
Ip

Pulso Period

d

Duly Cyd. lotio (Iw/lpl

0' Ih. heal sink wllh Iwo 6·32

VALUE

CO/w

3.2 CO/w

mounted In vlrtical position.

CO/w

Typlc.1 with DC·ll Silico'" Grea..

3.7 CO /w

typical valuls based on conldian cooling; plates and fins

:tAli Iranslslo" mounled In Ih. cenler
scnws at , Indl' pounds of torque.

I

SYMBOL
Prl._g)

OHS.A

D.lb.rt Blinn #113
or Modin. 1EllSSI.
Unfinished (or Equlv.lents)
D.lb.rt Blinn #113
.r Modln. 1Ell sn. 81.ck
Anodized (or Equlv.lenls)

t9Hs_ A are

tOHS•A

T.bl. 1

so.

Coefficient

Fig. 12

Puis. Width

msoc
msec

For doc operation these transistors are voltage limited as well as thermally limited. Figure 10 or 11 and
Figure 13 are recommended as a guide for selecting safe voltage and current .combinations.
These transistors have a very low thermal resistance that may be fully utilized in a pulse-power application pravided the pulse width is equal to (or less than) 3 milliseconds. If the power pulse is longer than
3 milliseconds, then the operating path is limited to the safe operating region described by Figure 10 or
11 and Figure 13.
The PEAK~POWER~COEFFICIENT CURVE shows the ratio of maximum instantaneous lundion~to-case temperaturt rise for any pulse width and duty cycle to
the rise which occurs at 1000/11 duty cycle. Use of this curve Is best explained by fhe equations and example below. See Tabl. II for a defInition of terms.
Equation No. 1 - Application:

Equation No. 2 - Application:

d~c

d~c

power dlsslpalion, hea' sink used.

Equalion No. 3 - Application: Peak pow.r diSSipation, heal sink used.

power diSSipation, no heat sink used.

Equation No. 4 - Application: Peak power diSSipation, no heat sink used.

SOLUTION,

Exampl. - Find Prlmoxl (design limit)
OPERATING CONDITIONS,

From Figure 12, Peak·Power Co.fficient,
K = 0.24••nd by u.. of equation N•• 3

H.al Sink = t' x t' x 1/t' copper.
OHS.A
1.8 CO /w
wllh DC·ll gre.... OC.HS = 0.45 CO /w
TJrmaxi (dosign limit) = 100°C
TA
35°C
d = 20% (0.2)
tw
0.1 mstc

=

=

Prima.)

=

d (Oe.HS

=

Prlmoxl

=

0.2 (0045

+ OHS.Al + K OJ.e
100-35

+ 1.8) + 0.24 (O.S)

=

114 w

PRINTED IN U.S A.

6-40

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

971

TI canna. assume any responsibility for any circuits shown
or reprelent that they ale free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLnHE BEST PRODUCT POSSIBLE.

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

..

~
c ...

ED:
::! ..

Zz

zU:

.

0"
...

.....

FOR HIGH-POWER SWITCHING
AND AMPLIFIER APPLICATIONS

,:":':
.,.~

0-

CD"
-

Z

~­
:oi

mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness and the absence of flux during the
assembly process prevents sealed-in contamination.

"THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
"ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE

0450

0.525 R MAX

~o
0

-i

~~

0.135 MAX--J

_/,~."I'--++-_

"ADS

1050 MAX ~!;t ~~0::2S ---=:.-

O'~~HR'~~~

•

r0311MINiJij'573 MAX

~_'_50_j-j I 1~430'"

. -_ _

0

0205 0440
0.420

H~

-,- I

1

0.200lsEA TlNG PLANE
1 - SASE

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 2S·C case temperature (unless otherwise noted)
2N1529
2N1534
2N1539
2N1544

-40V*
-30V*
-20V*

Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1) .
Emitter-Base Voltage
Continuous Collector Current.
Continuous Emitter Current
Continuous Device Dissipation at (or below) 25°C Case
Temperature (See Note 2) .

2N1530
2N1535
2N1540
2N1545

2N1531
2N1536
2N1541
2N1546

2N1532
2N1537
2N1542
2N1547

-60V* -80 V* -100 V* -120V*
-45V* -60V'" -75V' -90V·
-30V· -40V* -50V· -60V·
-5A*
~

~

5~

+

106W

~

{ l00·C*}
110·Ct

Operating Collector Junction Temperature
Storage Temperature Range .

2N1533
2N1538
2N1543
2N1548

~

- 65·C to 1OO·C·

>
>

NOTES: 1. This value applies when base-emitter diode is short-c1r(ulted.
2. Derate linearly to 1l0oe case temperature at the rate of 1.25 Wjdeg.

*Indicotes JEDEC registered data
tThis value is guaranteed by Texas Instruments in addition to the JEDEC regislered value whi(h is also shown.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

6-41

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
2N1529 THRU 2N1533
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

I

Ic = -3A

All

1.2

18 - -300 mA, Ic = -3 A
IB - -300 mA, Ic - -3 A

All
All

Collector-Emiller Breakdown Voltage

Ic = -500 mA, 18 = 0

'V(BR)CES

Colledor-EmiHer Breakdown Voltage

Ic = -500 mA, V.. = 0

'V(BR)EBO

Emitter-Base Breakdown Voltage

I. = -25 mA,

'lcBo

Colledor Cutoff Current

"CBO

Colledor Cutoff Current

"CBO

Colledor ,utoff Current

"CBO

Colledor Cutoff Current

'ICEv

Colledor Cutoff Current

'lEBO
'hFE

Emiller Cutoff Current
Static Forward Current Transfer Ratio
Static Common-Emiller
Forward Transfer Condudance
Base-Emitter Voltage
Colledor-Emitter Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff Frequency

VCB - -2 V,
IE - 0
VCB - -25 V
VCB = -40 V
YCB = -55 V
IE = 0
VCB = -65 V
VCB = -80 Y
VCB - -40 Y
VCB = -60 V
IE = 0
VCB = -80 V
VCB = -100 V
VCB = -120 V
VCB = -15 V
VCB = -22.5 V
IE = 0,
VCB = -30 V
Tc = 90°C
YCB = -37.5 V
VCB = -45 V
VCE - -40 V
VPE = -60 V
VCE = -80 V
V.. = 1 V
VCE = -100 V
VCE = -120 V
VEB - -12 V,
Ic - 0
VCE - -2 V,
'e = -3 A

'gFE

'fhfe

fr

Transition Frequency

MIN MAX

-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60

'V(BR)CEO

'VBE
'VeEr.. ')

TYPE

2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
All
2iU529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1530
2N1531
2N1532
2N1533
2N1529
2N1S30'
2N1531
2N1532
2N1533
All
All

VeE = -2 V,

Ic = 0

UNIT

Y

V

V
-200

p.A

-2

mA

-20

mA

-20

mA

-20

mA

-D.5
40

mA

20

mho
-1.7
-1.5

V
V

VCE = -2 V,

Ic =-3A

All

2

kHz

VeE = -2 V,

Ic = -1 A,
eSee Note 4

All

200

kHz

thermal characteristics
PARAMETER

«hc

Jundion-to·Case Thermal Resistance

NOTB,4. To obtai. fr, the Ih,.1 respo.se with freque.cy is extrapolat.d at the rat. of - 6 dB/octav. from f
*Indicates JEDEC registered data

=

100 kHz to the frequ ••cy at whloh Ih,.1

= 1.
869

6-42

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
2N1534 THRU 2N1538
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Ic=-3A

All

I.S

la = -300 mA, Ic = -3 A
la = -300 mA, Ic=-3A

All
All

Collector-Emitter Breakdown Voltage

Ic = -500 mA, la = 0

·V(IIl)CES

Collector-Emitter Breakdown Voltage

Ic = -500 mA, VIE = 0

·V(IIl)EBO

Emitter-Base Breakdown Voltage

IE = -25 mA,

·ICBO

Collectar Cutaff Current

·I cao

Collector Cutoff Current

·Icao

Collector Cutoff Current

·Icao

Collector Cutoff Current

·lcEy

Collectar Culoff Current

·IEao
·h OE

Emitter Cutoff Current
Static Forward Current Transfer Ratio
Stolic Common-Emitter
Forward Transfer Conductance
Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff Frequency

Vca = -2 V,
IE = 0
Vca = -25 V
Vca = --40 V
Vca = -55 V
IE = 0
Vca = -65 V
Vca = -80 V
Vca = --40 V
Vca = -60 V
IE = 0
Vca = -80 V
Vca = -100 V
Vca = -120 V
Vca - -15 V
Vca = -22.5 V
IE = 0,
Vca = -30 V
Tc = 90°C
Vca = -37.5 V
Vca = --45 V
VCE = --40 V
VCE = -60 V
VIE = 1 V
VCE = -80 V
VCE = -100 V
Vee = -120 V
Vu = -12 V,
Ic = 0
VCE = -2 V,
Ic = -3 A

·gOE

·fltfe
fT

Transition Frequency

MIN MAX

-20
-30
--40
-50
-60
-30
--45
-60
-75
-90
-20
-30
--40
-50
-60

·V(IIl)CEO

·V aE
·VCE(sat)

TYPE

2"1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536
2N1537
2N1538
All
2N1534
2N1535
2N1536
2N1537
2N1S38
2NI534
2N1535
2N1536
2NI537
2NI538
2N1534
2N1535
2N1536
2N1537
2N1538
2N1534
2N1535
2N1536,
2N1537
2N1538
All
All

Vee = -2 V,

Ic = 0

UNIT

V

V

V
-200

pJ.

-2

mA

-20

mA

-20

mA

-20

mA

-D.5
70

mA

35

•

mho
-1.5
-1.2

V
V

VCE = -2 V,

Ic=-3A

All

2

kHz

VCE - -2 V,

Ic--1 A,
See Note 4

All

200

kHz

thermal characteristics
PARAMETER

·(hc

Junction-to-Case Thermal Resistance

NOTE,4. ro obtai. fr, Ih. Ih •• 1 ,,,po.so wllh fr.quoncy is ext,apolated at tho rate 01 - 6 dB/octav. lrom I = 100 kHz to Ih. lrequency at which Ih•• 1 = 1.
'l.a,,", .. JEDEC reglst.red dato

869

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-43

TYPES 2N1529 THRU 2N1548
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
2N1539 THRU 2N1543
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

•

TEST CONDITIONS

'VIBRICEO

Collector-Emiller Breakdown Voltage

Ie = -500 rnA, II = 0

'V'IBR}eES

Collector-Emiller Breakdown Voltage

Ie = -500 rnA, VIE = 0

'V1BR}EIO

Emitter-Base Breakdown Voltage

IE = -25 rnA,

'Ielo

Collector Cutoff Current

'leBO

Collector Cutoff Current

'Ielo

Collector Cutoff Current

'lelo

Collector Cutoff Current

'leEv

Collector Cutoff Current

'lEBO
'hFe

Emiller Cutoff Current
Stotic Forward Current Transfer Ratio
Static Common-Emiller
Forward Transfer Conductance
Base-Emitter Voltage
Collector-Emitter Saturation Voltage
Common-Em iller Forward Current
Transfer Ratio Cutoff Frequency

Ie - 0
Vel - -2 V,
Vel - -25 V
Vel = -40 V
Ie = 0
Vel = -55 V
Vel = -65 V
Vel = -80 V
Vel - -40 V
Vel = -60 V
IE = 0
Vel = -80 V
Vel == -100 V
Vel = -120 V
Vel--15V
Vel = -22.5 V
IE == 0,
Vel = -30 V
Te == 90°C
Vel == -37.5 V
Vel = -45 V
VeE - -40 V
VeE == -60 V
VeE == -80 V
VIE == 1 V
VeE == -100 V
VeE == -120 V
Vea - -12 V,
Ie - 0
VeE - -2 V,
Ie - -3 A

'gFE
'VaE
'VeE1"'}
'fhle
fT

Transition Frequency

Ie = 0

VeE == -2 V,

TYPE
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
All
2N1539
2N154O
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
2N1539
2N1540
2N1541
2N1542
2N1543
All
All

MIN MAX
-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60
-200

UNIT
V

V

V
p.A

-2

rnA

-20

rnA

-20

rnA

-20

rnA

,
50

-0.5
100

rnA

le==-3A

All

la - -300 rnA, le--3 A
la - -300 rnA, Ic--3A

All
All

VeE = -2 V,

Ie =-SA

All

1

kHz

VeE == -2 V,

Ie == -1 A,
See Note 4

All

200

kHz

3

mho
-0.7
-0.3

V
V

thermal characteristics
>(he

PARAMETER
Junction-to-Case Thermal Resistance

Nor~'4. ro obtain fr. the Ihf.1 respan" with frequency is extrapolated at the rate of - 6 dB/octave from'
'Indicates JEDEC registered dato

== 100 kHz to the 'requency at which Ib,.1 == 1.

869

6-44

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNaION GERMANIUM POWER TRANSISTORS
2N1544 THRU 2N1548
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

'VllRlceo

Coliertor-EmiHer Breakdown Voltage

Ic = -500 rnA, II = 0

'VIBRICES

Collector-Emitter Breakdown Voltage

Ic = -500 rnA, VIE = 0

'VIBRIEIO

EmiHer-Base Breakdown Voltage

IE = -20 rnA,

"Iclo

Collector Cutoff Current

"lcBO

Collector Cutoff Current

"Iclo

Collector (utoff (urrent

'Iclo

(olleclor Cutoff Current

'I av

(ollector (utoff (urrent

'IEIO
"hFE

Emitter Cutoff Current
Static Forward Current Transfer Ralio
Static Common-Emitter
Forward Transfer Conductance
Base.Emitter Voltage
Coliedor-EmiHer Saturation Voltage
Common-Emitter Forward Current
Transfer Ratio Cutoff frequency

VCI - -2 V,
IE - 0
VCI - -25 V
VCI = -40 V
VCI = -55 V
IE = 0
VCI = -65 V
VCI = -80 V
VCI - -40 V
VCI = -60 V
VCI = -80 V
IE = 0
VCI =; -100 V
VCI = -120 V
VCI - -15 V
VCI = -22_5 V
IE = 0,
VCI = -30 V
Tc = 90°C
VCI = -37.5 V
VCI = -45 V
VCE - -40 V
VCE = -60 V
VCE = -80 V
VIE = I V
VCE = -100 V
Vee = -120 V
VEl - -12 V,
Ic - 0
VCE - -2 V,
Ic - -3 A

"gFE
"VIE
'VCE1,o'l
"fhfo
fT

Transition Frequency

VCE = -2 V,

Ic = 0

TYPE

2N1544
2N1545
2N1546
2NI547
2N1548
2N1544
2NIS45
2N1546
2NI547
2NI548
2N1S44
2NI545
2N1546
2NI547
2N1548
All
2N1544
2NI545
2N1S46
2NI547
2NI548
2N1544
2N1545
2N1546
2N1547
2NI548
2HI544
2N1S45
2H1546
2N1547
2NI548
2NI544
2NI545
2N1546
2NI547
2NI548
All
All

Ic=-3A

All

11 - -300 rnA, Ic - -3 A
11 - -300 rnA, Ic--3A

All
All

MIN MAX

-20
-30
-40
-50
-60
-30
-45
-60
-75
-90
-20
-30
-40
-50
-60

75

UNIT

V

V

V
-200

p.A

-2

rnA

-20

rnA

-20

rnA

-20

rnA

-0.5
150

rnA

•

mho

4
-0.6
-0.2

V
V

VCE = -2 V,

Ic =-5A

All

I

kHz

VCE - -2Y,

Ic--I A,
iSee Note 4

All

200

kHz

thermal characteristics
PARAMETER

*(hc

Junction-Io-Case Thennal Resistance

NOTE, 4. To obtain IT, the Ih•• 1 respon.. with lrequency is extrapoiated at the rate 01- 6 dB/o'tavolrom 1= 100 kHz to the lreq•••,y at whi,h Ih •• 1 = 1.
;'Indi,ates JEDEC regist,red data

869

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

6-45

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNaION GERMANIUM POWER TRANSISTORS
2N1539 THRU 2N1548
switching characteristics at 25°C case temperature
PARAMETER

ton Tum-On Time
t, Stomge Time
tf Fall Time

TEST CONDITIONS

TYP

1c""3A,Il=1!l,
See Figure 1

5
3
5

UNIT
p.S
p.S
'pos

PARAMETER MEASUREMENT INFORMATION

0.5

~F

,.--,....---...- - - 0 OUTPUT
2N1539
THRU
21'11548

INPUT~---~-~~-~-~

1650

•

10

-3 V

TEST CIRCUIT

OV

111!\

-20 V- -

W(%

-

~---';"I-

I-

INPUT

/

¥-90%

ton

-I

/ 90%

-.I
....I

ts

I

r9O%X-

______

tf

10%

OUTPUT

VOLTAGE WAVEFORMS

NOTES, a. Th. input pul.. Is supplied by a g.norotor with Ih. "'"owlng ,hora""lstl", I, ::; 0.1 ,",s, I. ,= 50
b. Th. wa..forms aro monilored on an os,lIIoscope with Ih. "'lIowlng ,hara""lstl", I, ~ 0.1

,",S,

,",S,

duty ,yel. ::; 10%.

I •• ;::: 100 kll, (,. ~ 20 pF.

FIGURE 1

869

6-46

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1529 THRU 2N1548
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION

PEAK -POWER COEFFICI ENT CURVE
I

125

~

0.7

I

0.50 (5C!*> Duty Cycle

S

i

100

'ii

~

15

"u
~

75

!!I0
~

!

50

0.25 (25%

~

I

..!"

o

50

25
Te -

~ ~~

o.IOI(I~!)

O. I

~'"'\

25

o

~~

0.2

E
~
E

~

.L

0.4

~
~t"'"
0.02

!\.

0.01
125

~

I

I_e-tp/T'

K=

0.04

100

75

Case Ternperature -

0.07
0.07 0.05

I-e -tp7dT'
Pul se width in ms

tp =

d .:: Duty-cycle rotio

~

T

= Thermal

47102040

VALUE

UNIT

PT(lv)

Average Power Dissipation

W

PT(mul

Peak Power Dissipation

W

BJ.c

Junction-to-Case Thermal Resistance

Be.Hs

Case-to-Haat-Slnk Thermal Resistance

degfW

8 HS _A

Heat-Slnk-to-Free-Air Thermal Resistance

deg/W

Free-Air Temperature

Te

Case Temperature

TJ(lv)

Average Junction Temperature

TJlmu)

Peak Junction Temperature

K

Peak-Power Coefficient

t,

Pulse Width

d

Duly-Cycle Ratio

0.8

~ 110
~

TJI'" (design limit)

= sooe
d = 10% (0.1)
I, = IDms

2.25 delllW (From information supplied
with heat sink.)

=

110

Equation No. 1 - Application: doc power dissipation,
heat sink used.
TJI.vl-lA

Prl.vl

= --O=-J-.c-+-''=OC':'''-H'-+-'-:O-HS-''-

II

for 2SoC ~ Te ~ 11Do e
as in Figure 2

degfW

°e
°e
°e
°e

Equation No.2 - Application: Peak power dissipation,
heat sink used.

Prlll'llXl

110 0 e

Solull.n,
From Figure 3, Peak-Power (oeffldent

K

= 0.125 and by use 0' equallon No.2

Prlllldl

TA

971

1000

m.

OPERATING CONDITIONS,

=

400

See iFigure 3

Example - Find PTI_l (design limit)

Oe.H. + OHS.A

200
m,

'FIGURE 3

SYMBOL DEFINITION

TA

100

Pulse Width -

FIGURE 2

DEFINITION

time constant =200 ms

°C

tp -

SYMBOL

-

d (Oe.H' + OH'.A)

+ KOJ_e

llD-SO

Prlm••1

= ---,---:----0.1(2.25) + 0.125 (D.B)

PRINTED IN U.S,A,

II canno' anume any responsibili,y for any circuits shown
or represent that they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS. TEXAS 75222

6·47

•

6-48

TYPES 2N1907, 2N1908
P-N-P AllOY-DIFFUSED GERMANIUM POWER TRANSISTORS

HIGH· FREQUENCY POWER TRANSISTORS

for
MILITARY AND INDUSTRIAL APPLICATIONS

mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness during the assembly process prevents
sealed·in contamination. The approximate weight of the unit is 18 grams.

*ALL JEDEC 10·3 DIMENSIONS AND

* THE COLLECTOR

NOTES ARE APPLICABLE
IS IN ELECTRICAL CONTACT WITH THE CASE

i 1- I

0450 MAX

~
000

0.188 R MAX
BOTH ENDS

f

f

0'250 MIN

1.050 MAX

1--0 312

MIN~

I S13 MAX

-r-OF'!}38l!~_~~-----=r_ 0-(-lt--~-c.;>. ~

0"350

0525RMAX

0043D1A2LEAOS

~

0205 0.440

II.
G

t~!:~

- , I'.."

0420

\

DIA

2 HOLES

•

--1

SEATING PLANE
I - BASE

TI GUARANTEED MAXIMUM

2-EMITUR

-

-

~ ~;;

0655

_,-,1+ ,

~~~

0 135 MAX

0.675

I

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N1907
100v*
40v

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)

2N1908
130v*
50v

+-g:g;t}~

Emitter-Base Voltage
Collector Current
Base Current.
Safe Continuous Operating Region
Total Device Dissipation at (or below) 70°C Case Temperature (See Note 2)
Peak Collector Power Dissipation at (or below) 25°C
Case Temperature (See Note 3)
Operating Collector Junction Temperature
Storage Temperature Range.

+-20a*~

+-

3a*~

See Figures 15 and 16
+- 60w ~
800w
1000w
+-100 0 C* ~
0
{ -55°C to + 100 0 C*}
- 55°C to + 110 Ct

NOTES: 1. This value applies when the basa-amitter diode is open-circuited.
2. Derate linearly to 100°C case temperatura 01 the rate of 2 w/Co . This corresponds to the JEDEC registered maximum value of thermal resistance,
OJ.e, 0.5 COIw.
3. These values apply for rectangular wavashape. Sae Figure 14.'for allowable pulse width and duty cyele combinations. Derate linearly to lOOoe
case temperature.
"Indicatos JEDEC registered data.
tTaus Instruments guarantees this value In addition to the JEDEC registered valul which Is also shown.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DA\.LAS, TEXAS 75222

6-49

TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)

BVcBo Collector-Base
Breakdown Vollage

Ic

= -10 rna,

IE

BVcEO Collector-Emiller
Breakdown Voltage

Ic

BVEBO

= -200 rna,
= -2 rna,

IE
IE - -10 rna,

= 0,
Ic = 0

ICDo

Emiller-Base
Breakdown Voltage

Collector Cutoff Current

•

lEBO

Emitter Cutoff Current

hFE

Static Forward Current
Transfer Ratio

See Note 4

la

Ic - 0

= -3v,
Vcs = -75 v,

IE

Vca - -100 v,
Vcs = -75 v,

IE - 0
IE - 0,

= -3v,
= -100 v,

=0
IE = 0

Vcs
Vcs - -130 v,
VCD = -100 V,
Collector Cutoff Current

=0

VCD

Vcs

ICEX

2N1907
MIN
MAX

TEST CONDITIONS

PARAMETER

Tc

= -75v,
= -100 v,
VES = -0.5 v,

VIE
VIE

VEa - -1.5 v,

Ie - 0

VCE = -1.5 v,
VCE - -1.5 v,
VCE - -1.5v,
VCE - -1.5 v,
VeE - -1.5 v,
See Note 4
VeE - -1.5 v,
See Note 4

Ie = -1 a,
le--5a,
le-- 1Oa,
Ie - -15 a,
Ie - -10 a,

VCE

VCE

-130

v

-40·

-50·

v

-1.5
-2.0

-1.5
-2.0

v

-0.5·
-0.3t
-2.0
-10·
-12

= + 70°C

-0.5·
-0.3t
-2.0
-10·
-12

IE

IE - 0
IE = 0,

= + 70°C

= + 0.2 v
= + 0.2 v
Ic = 0

-2;0

-2.0
-0.2·
-O.lt
-2.0·

-0.2·
-O.lt
-2.0·

See Note 4
See Note 4
See Note 4
See Note 4
Te = _55°C,

Ie - -10 a, Te =

UNIT

-100

=0
IE = 0
Tc

2N1908
MIN
MAX

+ 70°C,

80
90
30
170
20
30
(See Fig. 4)
15
100
(See Fig. 4)

80
90
30
170
20
30
(See Fig. 4)
15
100
(See Fig. 4)

rna

rna

rna

=-100ma,
- -500 rna,
- -1 a,
- -1.5 a,

Ie
Ie
Ie
Ie

=
-

-1 a,
-5 a,
-100,
-15 a,

See Note 4
See Note 4
See Note 4
See Note 4

-0.4
-0.7
-1.0
-1.5

-0.4
-0.7
-1.0
-1.5

v

= -100 rna,

=
=

-1 a,
-5 a,
-100,
-15 a,

See Note 4
See Note 4
See Note 4
See Note 4

-0.2
-0.4
-0.7
-1.0·

-0.2
-0.4
-0.7
-1.0·

v

VIE

Base-Emitter Voltage

VCE, .. ,)

Collector-Emiller
Saturation Voltage

- -500 rna,
= -1 a,
la = -1.5 a,

Ie
Ie
Ie
Ie

JhfeJ

Small-Signal CommonEmiller Forward Current
Transfer Ratio

VCE = -15 v,

Ie = -0.5 a, f

= 10 me

1.0·

1.0·

2.0t

2.0t

NOTE',4,:: If these parameters are measured!without a heat sink, doc collector current must not be applied longer than '250 msee.
*'ndicofes JEDEC registered data.

tYexas Instruments guarantees these values In addition to the JEDEC, registered Ivalues which are also shown.

971

6-50

TEXAS)NSTRUMENTS
INCORPORATED
F>OST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONS t

TYPICAL

UNIT

0.1

{-Lse(

Ie =-100, lap) =-1.330, lal2) =1.330,

0.8

{-Lse(

Y.Elofij=2v, RL =2fi,

2.5

{-LSet

See Figure 1

1.0

{-Lse(

4.4

{-Lse(

PARAMETER
Id Delay Time
Ir Rise Time
Is Sloroge Time
If Fall Time
IT Tolol SWil(hing Time

t

Voltage and current values are nominal: exact values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION
"A"

VOLTAGE WAFEFORMS

SWITCHING TEST CIRCUIT
';:-::~----1~--""

20

OUTPUT

Hg Relay
(or equ;valent(
see Note a)

20

20

-6v
+2 v

Vec

= -20.7 v
FIGURE)

II

NOTES: o. The pulse at point "A" has the following characteristics: Ir ~ 20 nsec, If ::::; 20 nsec, PW ~ 50 f.lsec, duly cycle:::; S%.
b. The waveforms are monitored on an oscilloscope with the following characteristics: Ir ::::; 15 nsec, Rjn 2 1 MO, (in:::; 20 pf.

TYPICAL CHARACTERISTICS
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(Low-Voltage Reg;on)

COMMON-EMITTER COLLECTOR CHARACTERISTICS
(H;gh-Voltage Reg;on)

-20

-15r----,------r--~r;r_--~~--__,

/

/
a

a

C

c
~

~

V

2u

2u

(;

(;

I

V

-5

I

I

/'

I
I

18 = -30 rna

-5

I
I.

o
-0.2
-0.6
-0.8
-0.4
VeE-Collector-Emitter Voltoge-v
FIGURE 2
NOTE 5: These characteristics were measured using pulse technlqdes. PW

-1.0

-,00 rna

I

_v

...Y

Tc = 25°C
See Note 5

1.= -50 ma

-10

..!!

..!!

m~

MaxImum VCEO 2NI907_

I

~

~

V

/~ I.

I(

I

I -10

V

-15

le= -200

-10 me

18= 0

o

-10

-20

-30

-40

-50

VeE-Collector-Emitter Voltage-v

= 300 p.sec

FIGURE 3
I

Duty Cycle:::, 2%.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6-51

TYPES 2N1907, 2N1908
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
BASE-EMITTER VOLTAGE

STATIC FORWARD CURRENT TRANSFER RATIO
vs

vs

COLLECTOR CURRENT

COLLECTOR CURRENT

200

I...:::::::

l' '\

.2

~

100

.............
'I.

i

-

~

~

"-

\.

....~
i:
~

u

"\

""E
0

~

.E

I~

20

"'"
10

•

.

I ...........

.E

I

Ol

~

rZ,.-+-

"'" ""

.~
VI

""-

-0.8
>

_

,"'SSo

"-

Te = 25°C
See Note 5

"'~,.~
'!....C'

\..

50

5

-1.0
veE = -1.5v
See Note 5

-0.6

!!

~-

]

I

1J
'"I

I
K,:..>.DoC
r.

~

r'"

-0.4

-0.2

0

o

-5

-10

-15

-10

-5

0

-20

Ie-Collector Current-a

Ie-Collector Current-a

FIGURE 4

FIGURE 5

COLLECTOR-EMITTER SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

vs

vs

CASE TEMPERATURE

CASE TEMPERATURE

-1.0 ,....---,---,.--,----,---,----:C>'"-..,

.I

18 = -1.50, le= -150

2'

-0.8

~
.~

18 =-lo,l e =-IOo

Ol

.E

~

-0.6

~
~

-0.6

~

£

!!
]

]

I

&
.& -0.4

I
~

-0.8
>

See Note 5

.

-15

-0.4

I

E
Jl

d

18 = - 100 rna, Ie = - 10

18 = -500 mo, Ie = -5

-0.2

!

~

0
-60

-40

-20

0

20

40

60

a

I

-0.2

80

18= -100 mo, Ie = -10

o
-60

-40

-20

o

20

40

Te -Case Temperature _oC

Te-Case Temperature-OC

FIGURE 6

FIGURE 7

60

80

NOTE 5, The.. characteristics were m....red using pul.. lochnlq.... PW = 300 p.m., Duly (ydl ::: 2%.

971

6-52

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
TYPICAL CHARACTERISTICS
2NI907
NORMALIZED COLLECTOR-EMlTTER BREAKDOWN VOLTAGE

2NI9P18
NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

vs

..
ei

BASE-EMITTER RESISTANCE

~

vs

BASE-EMITTER RESISTANCE

3.0

I 1111111
Tc = 25°C
See Note 5

-

1\
Ic = -50 ma

1.5

......

:1!

'ew

~

L
E 1.0
u

..!!
"0

~G

0.5

lilir i rlTil~1 RBnlll~

.~

~

5
Z

Rae -

Base-Emitter Resistance -

0
1

10
RBE -

ohm

100

Base-Emitter Resistance -

FIGURE 8

FIGURE 9

2N1908
COLLECTOR CUTOFF CURRE NT

vs

vs

COLLECTOR-BASE VOLTAGE

COLLECTOR-BASE VOLTAGE

-10

.1

See Note 5
-Ic = +70°C

+25°C

Tc

--

I

/

V

E
u

~a -lxl0 -3
U

I
Sl

---

.J.

See Note ~
TC = +70°C

-1

~
i:

o

-25

---

-/

TC = +25·C

~ -lxl0-1

u

]

a -lxl0-2

/

V

TC = - 5 5 ° ; , /

~

-lxl0-5

------

I

I

TC=-55 0 C /

..Y -lxlO-4

•

ohm

2NI907
COLLECTOR CUTOFF CURRENT

-10

10 k

1k

~

...........

-lxl0-5

-50

-75

o

-100

-25

Vea-Collector-Base Voltage-v

-50

-75

-100

-130

Vea-Collector-Bose Voitoge-v

FIGURE 10

FIGURE 11

NOTE 5, Those ,haracleristics were measured using pulse technlquos. PW = 300 ,...., •• Duty eyd.

S 2%.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-53

TYPES 2N1907, 2N1908
P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
DISSIPATION DERATING CURVE
60

I

c

.ce

3

E

40

\

CI)

E0
l-

20

1250

CI)

Cl

~

E0
l-

,E
E

1\

I

o!:

'x

~
I

o!:

1\

o

•

(5

'"

.:;u

'x0

50

1500

CI)

::;:

25

"0a.

'Zi

Cl

E

I~

c

.ce

:'l
.:;

,E

1750

I

\

eJ_c =" 0.5CO/w

"0

(5

2000

~

3

Q.
.~

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

1000
750

I\.

""

'\

500

250

o

100

75

e J_A =" 42.8 CO/w
'\

o

25

50

75

Te-Case Temperature-OC

TA-Free-Air Temperature-OC

FIGURE 12

FIGURE 13

""

""

100

PEAK-POWER- COEFFICIENT CURVE
1.00

50"10 Duty Cycle

c
CI)

~ ~

'8

-

10"10

u

~

r--- d

20%

0.10

cl:

f-f-

-........-:: ."

V

K·

5%

-"

o

,/

0.01

~ty
0.01

- -d,

tw = Pulse Width in msec
:= Duty Cycle Ratio
= Thermol Time Constant = 1.0 msec

,/'
l%.A

tw

I - e

V

~

See Note 6

-,
tw

1- e

d

,

",
Cycle (Nomecuning)

1111
0.10
tw -

1.0

Pulse Width -

10.0

msec

FIGURE 14

NorE 6, When tw

> 3.0 msec or d > 0.5 (10%). operation must be conflned to

the contln.o.s operating ..gions of Figu.. 15 or 16.

971

6-54

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1907, 2N1908
P·N·P ALLOY·DIFFUSED GERMANIUM POWER TRANSISTORS
MAXIMUM SAFE OPERATING REGIONS
2N1907
MAXIMUM SAFE CONTINUOUS
OPERATING REGION
-20

-20

\

-10

2N1908
MAXIMUM SAFE CONTINUOUS
OPERATING REGION

Te S 70°C

I
C
~

\

-2

E
u

.!
"0

u

0

\

-I

';

u

Te S 70°C

-5

-5
0

\

-10

I

-2

c
~

-1

';
U

-0.5

.....

-0.2

I
_v -0.1

E
u

"'-

.!
"0
u
I

~

\

\

-0.5

.......

-0.2

_v

-0.05

~

-0.1

--

-0.05
'/./7'>..
'////
~ See Note 7 ~

-0.02
-20

-40

-60

-80

'/ r///7
' / See Note 7 'l.

-0.02

~~ ~

-0.01

o

7>...

-0.01

o

-100

.....

~~ Wh ~
-20

Vee -Collector-Emitter Voltoge-v

-60

-40

-80

-100

Vee-Collector-Emitter Voltage-v

FIGURE 15

FIGURE 16

MAXIMUM SAFE PULSE OPERATING REGION

0

-130

•

-15

I
C

~
E
u

u

.!
0
u

TA = 25°C
See Note 6

I
.Y

17''-7'-7~~-s--t-------+-------+-------+-PTlma'l = 160 w
tw ~ 3.0 msec

Moximum VeEO 2Nl907

d S 0.5

I

-10

-20

veE -

-30

Collector-Emitter Voltage -

-40

-50

v

FIGURE 17
NOTES: 6. When Iw ~ 3.0 msee or d ;;::: 0.5 (50%). operation must be confined to the continuous operating regions of Figure 15 or 16.

7. Operation in this region is permissible when base·emitter reslstance Rae ~ S n.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6-55

TYPES 2Nl907, 2N190a

P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS
THERMAL INFORMATION
TABLE II

TABLE I
HEAT SINI

Brighl Copper

Bright Aluminum

611 X 611 X 1/811
8" x 8" X 1/8/1
10" , 10" '1/8"

I.Ho/w

9 J•e
9J • A

4"z4"xl/8"
6" X 6" X 1/8"
8"x 8" X 1/8/1

6.lCo/w

g e •A

4.lCo Iw
3.lCo/w

10" x 10" x 1/8"

2.8 CO Iw

D.lb,rt llinn #113
or Modln. I ElmB,
Unfinished (or Equlvalenls)

PTlo.g )
P _
TI
I

tge •Hs

9Hs. A

UNIT

Ayerag. Power Dissipllfion

VALUE

w

Peak Power Dissipation

w

Junction-la-Case Thermal Resistance

CO/w

0.5

Junction-lo-F,...Air Thermal Resistance

CO/w

42.B

Case-to-Fre..AIr Thermal Resistance

CO/w

42.3

Cas...to-Heat-Slnk Thermal Resistance
Typl,al Wilh Dry Mounling Ba..

CO/w

Typl,al with DC·11

3.7 CO Iw

sm,'"

Grea..

Heat-Slnk-to-Free-Air Thermal Resistance

COl_

0.65

r---wsee
Tabl,1

(0

TA

Free-Air Temperature

TJ I.vg)

Average Junction Temperatur.

(0

~·IOO

TJ hnax 1

Peak Junction Temperafure

(0

:;:100

Te

(ase Temperature

(0

t9HS.A a.. Iypl,al

I

Peak·Power (oefficIent

tAli Iranslsta" mounl.d In Ilia Clnler of Ih, h.al sink with two 6·32
screws al , In,h· pounds of lorqu••

Iw

Pulso Widlh

msec

I,

Pulse Period

mset:

d

Duty (yde Ralio (Iw/l,)

D.lberl Blinn #113
or UDdin. I EmSB, Ila,k
Anadized (or Equlvalenls)

3.2 CO Iw

valu.. based on , ..",tlon cooling; plales and fins
mOUllt.d ill vertlt:a) position.

•

DEF·INITION

SYMBOL

t6HS.A
3.8 CO Iw
2.2 CO Iw
1.8 CO Iw

Dimensions
411 x 4" X 1/8"

Type

58'

Fig. 14

For doc operation, these transistors are voltage limited as well as thermally limited. Figure 12 and Figure

15 or 16 are recommended ,as a guide for selecting safe voltage and current combinations.
These transistors have a very low thermal resistance that may be fully utilized in a pulse.power application provided the pulse width is equal to (or less than) 3 milliseconds. (f the power pulse is longer than
3 milliseconds, then the operating path is limited to the safe operating region described by Figure 12
and Figure 15 or 16.
The PEAK·POWER·(OEFFICIENT (URVE shows Ih. ratio of maximum inslanlan .. us 'un,tlon·lo·, ... lemp"alu,. rlso far any pulso widlh and duly ,yd. lolh.
rlso which a,,",, al 100% duly ,yd •• U.. 01 Ihls ,u", Is besl explain.d by Ihe ,quatlons and ..ample below. See Tabl. II for a d.llnlllon of I.rms.
Equation No. 1 - Application: d·c power dissipation, heal sink used.
_
PT (.vo) -

9J •e

=

TJIIIIIIXI-TA

9J •A

SOLUTION,
From Figure 14 P,ak·Power ( ..Hldonl,

= 8" , 8" , 1/8" ,opper,
9HS.A = 1.8 CO/w
with DC·ll grease, g e •Hs = 0.45 CO Iw
TJ I...x I (design limit) = lOOo(
TA = 35°C
d = 20% (0.2)
Heal Sink

6-56

Equation No. 4 - Application: Paak power dissipation, no heal sink used.

TJ(o.g)-TA

Exampl. - Find PT I...x I (design limit)
OPERATING (ONDITIONS,

'w =

TJ I...xl- TA

+ ge.Hs + 9H5-A

Equallon No. 2 - Appll,atlon, ok power dissipation, no h.al sink u..d.
PT (.vg)

Equation No. 3 - Appli,allon, Peak power dissipation, h.al sink u..d.

TJ(.vg)-TA

K

0.1 msac

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

= 0.24, and by uso of equation No.3
TJlmaxl - TA

PT I...x I

=

d

PT I""", I

=

0.2 (0.45

(ge .Hs

+ 9HS.Al + K 9J •e
100 - 35

+ 1.8) + 0.24 (0.5)

114w

PRINTED IN U.S.A
TI (onnol onume any responlibilily for any dr(uits shown
or represenl thai they are free from polenl infringement.

971

TEXAS INSTRUMENTS ·RESERVES THE RIGHT TO MAKE CHANGES AT ANY T(ME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

.~
Guaranteed ICEX at 15°C
LOW rcs-LOW Iclo-LOW VIE

50-, 70.., or 90-VOLT UNITS
15 WAnS at 25°C CASE TEMPERATURE
Choice of TO·5 or Stud Package
Guaranteed Beta at 1 amp and 500 ma I c

t!I

~~

.. ;!!

§:
Zz

...... Z ..
olt
,. .CO ..
'"-< ti
... c

. ..
: ..
,. ....

m
C

for

RELAY DRIVERS - PULSE AMPLIFIERS
SERVO AMPLIFIERS - AUDIO AMPLIFIERS

;

_ Z

,.0
c

I"~

@
mechanical data
The tronsistors are in hermetically sealed, resistance-welded cases with glass-to-metal seals between case
and leads. The 2N2659-2N2661 and 2N2665-2N2667 are in a round TO-5 package weighing approximately 2.4 grams. The 2N2662-2N2664 and 2N2668-2N2670 are in a stud" package weighing approximately 5.4 grams.

=
i

'THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

....

mil

..
~..'•.

~=-

1.P:

[3~;;;~~

0.100'.'.

_..l...

y;

ALI. DfMIiNSIONS AlII IN INCHES

UHUSS otHhWlSf "WilD

1.......

•

"'ODY.',

* OUTLINE -

2N2659-61, 2N2665-67 SERIES

A. TIMPtIIATUil MEASUIlIMINT

POINT o.GMI NOMINAl. FIIOM
SlAT O' HlATSINK,
I. Ttil OtIIINTA'ION OF THI LliA8S
IN lunON 10 Ttl! HII( FLAtt
IS NOI CONTIOI.UO.

C.

AU DlMINJION5 AllIN INCHES
UNLISS OrHlltWlSE SPICII'IRI

* OUTLINE -

2N2662-64, 2N2668-70 SERIES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N2659
2N2662
2N2665
2N2668

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current • . . .
Base Current. . . . . .
Tatal Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Operating Case Temperature Range.
Storage Temperature Range. . . . . . . . . . . . . . • .

2N2660
2N2663
2N2666
2N2669

2N2661
2N2664
2N2667
2N2670

50v
70v
90v
50v
70v
90v
+ - - 20v---+
+ - - 3a---+
+ - - 1a--+
+--15w --+
- 55°C to 100°C
- 55°C to lOO°C

+

NOTES: 1. This value applies when base·emiller voltage VaE =
0.2 Y.
2. Derate linearly f.· 100°C case temperature at the role of 200 mw/Co.

·Indlcatls JEDEC resist.r.d data.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-57

TYPES 2N26S9, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N266S, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

BVc,o
*BV CEO
*BVCES

Ic,o
*I CEO

*ICEX

*ICEX

II

*ICEX
*IE,o

Colledor-Base Break~own Voltage
Collector-Emitter
Breakdown Voltage
Collector-Emitter
Breakdown Voltage
Collector Cutoll Current

Colledor Cutoff Current

Colledor Cutoff Current

CoUector Cutoff Current

Colledor Cutoff Current
Emitter (utoff (urrent

*hFE

Static Forward (urrent
Transler Ratio

hFE

Static Forward (urrent
Transler Ratio

*V'E

Bose-Emitter Voltage

*VCE(.. ,} Colledor-Emitter
Saturation Voltage
*hfe

*lh,.1
(ob

Small-Signal Common-Emitter
Forward (urrent Transfer Ratio
Small-Signal (ommon-Emitter
Forward Current Transler Ratio
Common-Bose Open-Circuit
Output (apacitance

I TO-5
I STUD

TEST
CONDITIONS

PARAMETER

-600~a,

(ASE
(ASE

2N2659
2N2660
2N2661
2N2662
2N2664 UNIT
2N2663
MIN MAX MIN MAX MIN MAX

IE = 0

-50

-70

-90

v

Ic = -IOOma, I, = 0,

(See Note 3) -30

-40

-50

v

Ic = -SOma,

V'E = 0,

(See Note 3) -50

-70

-90

v

Vc, = -25 v,
Vc, = -35v,
Vc , = -45 v,
VCE - - 15 v,
VcE =-20v,
VCE = - 25 V,
VCE = -50 v,
VCE = -70 V,
VCE = - 90 v,
VCE=-25v,
VCE = - 35 v,
VCE = -45 v,
VCE - - 25 v,
VCE = - 35 v,
VCE = -45 v,
VE, - - 20 v,
VCE = -0_5 v,
VCE = -0.5 v,
VCE = -0.5 v,
VCE - -0.5 v,
Tc = - 55°C,
VCE = -0.5 v,
Tc = + 85°C,
VCE - -0.5 v,
I, = -50 rna,
I. = - 50 rna,
Tc = + 85°C,

IE = 0
IE = 0
IE = 0
I. = 0
I, = 0
I, = 0
V.. =+0.2v
V.. = + 0.2 v
V'E = + 0.2 v
V'E - + 0.2 v
V'E = + 0.2 v
V'E = + 0.2 v
V'E - + 0.2 v,
VBE = + 0.2 v,
V'E = + 0.2 v,
Ic = 0
Ic =-10,
Ic = -500ma,
Ic = -250 rna,
Ic - -500 rna,

VCE = -3 v,

Ic = -100ma, 1= lkc

30

VCE = -3 v,

Ic = -100ma, 1=140kc

2.0

2.0

2.0

Vc, = -3v,

IE = 0,

100
(typical)

100
(typical)

100
(typical)

Ic =

-125
-125

~a

-125
- 20
-20

rna
-20

-600
-600

~a

-600
-125
-125

~a

-125
Tc - 85°C
Tc = 85°C
Tc = 85°C

-5
-5
-100

(See Note 4)
(See Note 4)
(See Note 4)
(See Note 4)

Ic = -500 rna,
(See Note 4)
Ic - -500 rna, (See Note 4)
Ic = -500 rna, (See Note 4)
Ic = -500 rna,
(See Note 4)

1= 135kc

15

rna
-5
-100

-100
15
30

90
125

15
30

30

90
125

20

90

20

90

20

90

30

110

30

110

30

110

90
125

-0.6
-0.2

-0.6
-0.2

-0.6
-0.2

-0_25

-0.25

-0.25

120

30

120

30

~a

v
v

120

pi

NOTES: 3. These characlerisfiu are measured by a % sine wave sweep method.
4. These measurements are made with voltage sensing contocts located 0.2S inches from header of transistor. Voltage sensing contacts are separate from current
carrying contacts.
·'ndicoles JEDEC registered data.

971

6-58

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

BVcBO
·BVCEO
·BVCES

Collector-Base Breakdown Voltage
Coliector-EmiHer
Breakdown Voltage
Collector-Emitter
Breakdown Voltage

Icao

Colledor Cutoff Current

·,CEO

Colledor Cutoff Current

·'cEl(
·,CEX

Collector Cutoff Current
Colledor Cutoff Current

·'cEl(

Collector Cutoff Current

·'Elo
·h FE

Emitter Cutoff Current

hFE
·V IE

Static Forward Current
Transfer Ratio
Static Forward Current
Transfer Ratio
Base-Emitter Voltage

·VCE1"'1 Collector-Emitter
Saturation Voltage

·hfe
·Jh,.J
Cab

Small-Signal Common-Emitter
Forward Current Transler Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Common-Base Open-Circuit
Output Capacitance

TEST
CONDITIONS

J TO-5 CASE
I STUD CASE

2N2665
2N2666
2N2667
2N2668
2N2669
2N2670 UNIT
MIN MAX MIN MAX MIN MAX

Ic - - 600 /La, IE - 0

-50

70

-90

v

Ic = -100ma, I. = 0,

(See Note 3) -30

-40

-50

v

Ic = -50ma, VIE = 0,

(See Note 3) -50

-70

-90

v

VCI = -25 v,
Vc• = -35 v,
VCI = -45 v,
VCE - -15v,
VCE = -20v,
VCE = -25v,
VCE = -50 v,
VCE = -70v,
VCE = -90v,
VCE - - 25v,
VCE = - 35 v,
VCE = -45 v,
VCE - -25 v,
VCE = - 35 v,
VCE = -45v,
VEl - -20 v,
VCE - -0.5 v,
VCE = -0.5 v,
VCE = -0.5 v,
VCE - -0.5 v,
Tc = -55°C,
VCE = -0.5 v,
Tc = + 85°C,
VCE - -0.5 v,
11 - -25ma,
la = -25ma,
Tc = + 85°C,

IE = 0
IE = 0
IE = 0
I. - 0
I. = 0
I. = 0
VIE - + 0.2 v
VIE = + 0.2 v
VIE = + 0.2 v
VIE - + 0.2 v
VIE = + 0.2 v
VIE = + 0.2 v
VIE - + 0.2 v,
VIE = + 0.2 v,
VIE = + 0.2 v,
Ic - 0
Ic - -la,
Ic = - 500 ma,
Ic = - 250 ma,
Ic - -500ma,

-125
-125

/La
-125

-20
-20

ma
-20

-600
-600

/La
-600

-125
-125
-125
Tc = 85°C
Tc = 85°C
Tc = 85°C

-5
-5
-100

ma
-5
-100 JLO

-100

(See Note 4)
(See Note 4)
(See Note 4)

25
50

(See Note 4)

30

(See Note 4)
Ic - -500ma, (See Note 4)
Ic - -500ma, (See Note 4)
Ic = -500ma,
(See Note 4)

50

VCE = -3 v,

Ic =-100ma, 1=.1 kc

50

VCE = -3 v,

Ic = -100ma, 1=150kc

2.0

2.0

2.0

100
(typical)

100
(typical)

100
(typical)

Vc• = -3v,

Ic = -500ma,

IE = 0,

1= 135kc

JLO

150
200

25
50

150

30

170

50

150
200

25
50

150

30

170

50

150
200
150
170

-0.6
-0.2

-0.6
-0.2

-0.6
-0.2

-0.25

-0.25

-0.25

200

50

200

50

•

v
v

200

pi

NOTES: 3. These characteristics are measured by a % sine wave sweep method.
4. These measurements ora made with voltage sensing contacts located 0.25 inches from header of transistor. Yoltage sensing contacts are separate from (urrent
carrying contads.
·Indicates JEDEC registered data.

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-59

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P·N·P AllOY·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
switching characteristics at 25°C case temperature
TEST CONDITIONS t

PARAMETER

TYPICAL

UNIT

0.10

p.sec

0.22

p.sec

0.30

p.sec

Id Delay Time

Ie = -SOD ma

I, _Rise Time

VIE IOFFI

I. Slorage Time

RL =60n

If Fall Time

(See Figure I)

1.25

p.sec

1.9

p.sec

= 7.4 v

IT Tolol Swilching

Time
t

Voltage and current values are nominal, except values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION
SWITCHING TEST CIRCUIT

VOLTAGE WAVEFORMS

o

.02~f

INPUT

INPUT't 10%
,--- I~_-_- -6v
190%
I 90%

OUTPUT
60

Q

OUTPUT :

it----l K
I I

-30.1

+29.6 v

•

I It I
I+' 't+

v

FIGURE 1

-+-l tdl---

NOTES,
(al Th. Inpul w...form ha. Ih, follOWing ,hara,lorlsllcs,
" S 10 1"0<. If S 10 1''''. PW = 1.6
Duly Cyd, = 111%
(b) WlIYeforms are monitored on an oscilloscope with the following characteristics:
I, '" 141''''. Rin ~ 10 MO. Cln :;; 11.5 pl.
(e) Resistors must be non-Inductl" types.

I I I
.Ltfl

10%

7j . .

+-Its t-+

m.".

TYPICAL CHARACTERISTICS
2N2659 - 2N2664
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low -Voltage Region)
-3.0 ,----,----,----.:.-,.:....--...------.

.""
I

2N2665 - 2N2670
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(low-Voltage Region)

-3. 0

"I

-2.0

~

1:
~

U

U

"

~u

.!

I

-2.0

"

~u

8

r---~---,----,.-----,.--____.

.!

8

-1.0

I

~

-1.0

..)t

-0.2
-0.4
-0.6
-0.8
VeE - Collector-Emitter Voltoge - v

-1.0

-0.4
-0.6
-0.8
VeE - Collector-Emilter Voltoge - v

-0.2

-1.0

971

6-60

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

2N2665 - 2N2670
COMMON-EMITTER COLLECTOR CHARACTERISTICS
(High-Voltage Region)

2N2659 - 2N2664
COMMON -EMITTER COLLECTOR CHARACTERISTICS
(High-Voltage Region)
-3.0 r-::;,......--,-----,-----,---,----,

-3.0

nil!

Te =25·C

,......\ I ) -SO mo

0

"

I -2.0

E
~

Maximum
Vc£o

~

U

I -2.0
C
~~
u

~.I~=-SO_
~\I'=-4°i

\.

u

~

~

"0
u

;3

~

oJ!

I -1.0

I

~

-1.0

I

1,= -5

o

2N2659 - 2N2664
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

~c

II " III
tUJuLIJ~_ I -

..

c3

u"
1!

~

.e

'"

.~
VI

20

Minimum h"r--

I
~

..c

~c

~

,.....

~

1!

2

~
Ii

VeE = -O.SY
Te =25·C
10
-0.01

-O.OS
-0.1
-0.5
Ie - Collector Current - 0

-1

2N2~

~-

-50

j
1

imum h'E

r-....
SO
Minimum h..

I"'\

I

20

II!
..c

-3

I\.

'\

u

~

•

100

I!

50

r

"Met

...

...I!

C
~

2N2667

~.L

-10
-20
-30
-40
VeE - Colleclor-Emilter Voltage - v

200

100

/;

.........

mo

2N2666
2N2669

2N2665 - 2N2670
STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

200

~

"- I-......

I, = 0\

VeE - Collector-Emitter Voltage - v

~
&

P, = 15w

1,--20..,

1,= -10..,

o

Maximum
Veoo
2N2665
2N2668

I, = -30..,

.e

2u

-70..,

Veo =-O.SY
Te = 25'C
10
-0.01

-O.OS -0.1
-0.5
Ie - CoII.ctar Currenl - 0

-1

-3

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6·61

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

2N2659 - 2N2664

2N2665 - 2N2670
STA TIC FORWARD CURRENT TRANSFER RATIO

STATIC FORWARD CURRENT TRANSFER RATIO
VI

VI

CASE TEMPERATURE

CASE TEMPERATURE

200

200

I I

-.

___ Maximum hn -

100

so

....-~

-

20

~

Minim!m

h,,-

•

~c

-25

0

25

C
~

~

u"

50

~

I
75

,...,

~

~

/i"""'

Ve

20

10
-75

100

-so

-25
Te -

·C

0

50

100

75

Case Temperature _ °C

v.

vs

CASE TEMPERATURE

CASE TEMPERATURE
-0.20

-0.20

>

>

I

I

t

-0.15

.~

-

S
J!
!

25

_

2N2665 - 2N2670
COLLECTOR-£MITTER SATURATION VOLTAGE

2N2659 - 2N2664

~

,= -0.5v

"(OJ

..c~

COLLECTOR-£MITTER SATURATION VOLTAGE

t

--

.~

'"I

....

V
Minilum h,,/

!
.f
2

50

Te - Case Temperature -

100

...I!

~r""

I
-SO

-

VeE = -O.SV
Ie = -500 rna

..c

10
-75

-

....--

~

·",lJ.L

!--!--

.g

....--

-0.10

~

--

"0 -0.15

>

-

~ r-

.~

e.i!

J!

!

...V
-0.10

--- -- --

~

j

2

J

~ -0.05

L

8

le= -500 rna
I = -SO rna

!

'I

>rJ

o

-75

-so

-25

0

25

SO

Te - Case Temperature -

Ie = -500 ma
I = -25 rna

II

.;

J
75

-0.05

o

-75

100

-so

I' I
-25
Tc -

·C

0

25

Case Temperature -

50

75

100

°C

971

6·62

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY -JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

COLLECTOR CUTOFF CURRENT

COMMON-EMITTER TRANSFER CHARACTERISTICS

YI

-3.0

-1.0

C
G
-0.5

I

.!

I

u"

_u

-0.1

~

1

o

/

-0.2

-0.3

I

J

I I
-0.4

-0.6

-0.8

VI. - Base-Emitter Voltage -

~

-0.1

-0.03 0

-1.0

- ----

1< ,,+

~

-10

I

-5

~
i

1

u

a

-50 t--Ve.

~

I--

~

I

leu

VS

VIE

\c.t~"!t~

-0. 1

Te - 25 C

-0.05

ICE"" ...

[II'

•

-lSv

-10
~.

-5

\

~':' •
a -0.5

50

100

2
.!
~

v.,
500
I

5K 10K

1K

......
leu vs RIE

-0. 1

I

+0.5 +1
VI. - Base-Emitter Voltage -

r=!s",

Vs

I

+5

100
50< lK
RIE - Base -Emitter Resistance - ohm
I

+0.01

11111

50

!

+10

Tc = 2S·C

V••

III

-0.0 1
10

ohm

+0.05 +0.1

Tc -+5S C

-1

-0.05

Base~mitter Resistance -

! !

]

-

I Ilil
RaE -

+0.01

,..

Te = +SS·C

-0.5

-0.01
10

1.0

JoC::

i'

~u

.!

0.8

BASE-EMITTER RESISTANCE
and
BASE-EMITTER .VOLTAGE
_.

-100

-15v

~.

~

YS

BASE-EMITTER RESISTANCE
and
BASE-EMITTER VOLTAGE

\c.t."

0.6

~

2N2665 - 2N2670
COLLECTOR CUTOFF CURRENT

YS

-SO ·Ve•

---

~

Normalized Collector-Emitter Voltage - Ve •

Y

2N2659 - 2N2664
COLLECTOR CUTOFF CURRENT

-100

').5· C

0.4

0.2

~

~

~ ,,+40· C
~

~

Ve• = -O.SY
Te = 2S·C

SS.C
1<"":'::- I""""

~:Ik,,+7 O·C
~

~

...,......

1

1 ,,+55· C
< -

d

I

-0.2

-

-1

i

I

II

-0.3

-3

I

L

u"

I

~

II

t:

~

collector-emitter voltage.
-Kl.2v
V BE
.1

V

0

2u

veE normalized to 1.0 at maximum-rated

/

-2.0

I

NORMALIZED COLLECTOR-EMITTER VOLTAGE

-10

I

+0.05 +0.1

I

t

+0.5

+1

5K 10K
I

,

+5 +10

VIE - Base-Emitter Voltage - v

Y

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 50~2 •

DALLAS, TEXAS 75222

6-63

TYPES 2N2659, 2N2660, 2N2661, 2N2662, 2N2663, 2N2664
2N2665, 2N2666, 2N2667, 2N2668, 2N2669, 2N2670
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS

2N2665 - 2N2670
SMAll-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO

2N2659 - 2N2664
SMALL-SIGNAL COMMON-EMITTER FORWARD
CURRENT TRANSFER RATIO

vs

vs

·2

COLLECTOR CURRENT

COLLECTOR CURRENT

.l! 100
~c

vV

....e

~

"" ""

~

c

~

u
l!

75
i--

~0

LL

£
°e

ri"--..

50

..........

't'

IiE

~

E
0

U

0c

0>

,

•

'"

T

"r- r-

o

I

C

-0.1
-003
Ie - Collector Current - a

~

"'"

r\~

Vc.=-3v
f = 1 kc
Tc = 25°C

=25°C
I I I

-0.03

t"-. ~

i'.

VeE = -3v
i-f =1 kc

Vi

~

f'.,

25

r--....

-0.1

-1
Ie -

-1

-0.3

Collector Current - a

THERMAL CHARACTERISTICS

CASE TEMPERATURE
DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE
DISSIPA TlON DERATING CURVE

1.0,...------,----...,-----,----,

20
~

~

I
c
0

i

I

c 0.80 I-----+~r_-+-----J-----l

15

:l!
0

~

u
.~

0

10

li0
....

~

E
~
E

.~

~
I

'"

o
o

25

o

i

9,_c= 5 CO/w

0=
~ 0.60

I-----+----'k------J-----l

u

~

50

~
~
....

I~

75

Tc - Case Temperoture -

0.40

I---_.-----=--+-~r-I_------l

E
~
E

100

°C

o~

~ 0.20 I----+----~~.,__-+~-___i

I
°0L-----L---J50---~75--~~100
TA - Free-Air Temperature - °C

PRINTED IN U,S.A

6-64

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI (annot o~sume any responsibility for any circuits shown
or represent thaf they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PROOUCT POSSIBLE.

TYPES 2N3146, 2N3147
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

HIGH·VOLTAGE HIGH· POWER TRANSISTORS
for
MILITARY AND INDUSTRIAL APPLICATIONS
mechanical data
These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an
excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be
in intimate contact for maximum heat transfer. Extreme cleanliness and the absence of flux during the
assembly process prevents sealed-in contamination.

* ALL JEDEC TO-3 DIMENSIONS AND NOTES ARE APPLICABLE.
*THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

0.450 MAX

0.188 R

O.350t

~D1A2LEADS

0.250 MIN

1.050 MAX

~A~

MAX

I

_'-,

-{--I --)- ..

- O.225----=r - +
0.205 0.440
-,,,

~

MAX~.L.--===

BOTH ENDS

t

1- ~O'312MIN~1'573

j
;:r.;-ffi=,38

R MAX

~
000
D'525

II.

0.420

0.135 MAX-j lsEATING PlANE

11 GUARANTEED MAXIMUM

1 -lASE

I

I

0.675

!:!;~

0655
.

2-EMmER

~
t g:~:~ DIA

•

2 HOLES
CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)
2N3146

2N3147
Collector-Base Voltage
-150 V
-180 V
-140 V
-160 V
Collector-Emitter Voltage (See Note 1).
Emitter-Base Voltage.
-60 V
-80 V
Continuous Collector Current .
~-15A ~
Peak Collector Current (See Note 2)
~ -25 A ~
Continuous Base Current
~ -3 A
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)
~ 1SOW---+
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)~1.75W~
Operating Case Temperature Range
- 65°C to 100°'
Storage Temperature Range .
- 65°C to 100°C
Lead Temperature 14 Inch from Case for 10 Seconds
+---- 230°C ~

---+

NOTES: 1.
2.
3.
4.

These values apply when the bose-emitter voltage VIE: ~ 0.2.V.
This yalue applies for "tp :=:; 100 ms, duty cycle .5 21%.
Derale linearly to lOOoe case temperature at the rate of 2 wi de,.
Derate linearly to lOOoe free-air temperature at the rate of 23.3 mWI deg.

"Indlcalos JEDEC reglslered dala

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DAL'-AS, TEXAS 75222

6-65

TYPES 2N3146, 2N3147
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

* electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER
VIBRICEO
IcBo

Collector Cutoff Current

ICEO

Collector Cutoff Current

ICES

Collector Cutoff Current

ICEY

II

Collector-Emitter
Breakdown Voltage

Collector Cutoff Current

lEBO

Emitter Cutoff Current

VEBIII)

Emitter-Base Floating Potential

hI'S

Static Forward Current
Transfer Ratio

V""
VeEI",)
hie
hi.

Base-Emitter Voltage
Collector-Emitter
Saturation Voltage
Small-Signal Common-Emitter
Forward Current Transfer Ratio
Small-Signal Common-Emitter
Forward Current Transfer Ratio

TEST CONDITIONS
Ie = -500 rnA, IB= 0
VCB = -150 V,
VCB - -180 V,
VCE - -45 V,
VCE - -50 V,
VCE = -110 V,
VeE - -130 V,
VCE = -100 V,
VCE = -120 V,
VCE = -140 V,
VeE - -160 V,
VCE - -80 V,
VeE - -100 V,
VEa - -60 V,
VEB - -80 V,
VCB = -150 V,
VCB - -180 V,
Vee = -1.5 V,
VCE = -1.5 V,
VeE - -1.5 V,
V'CE - -1.5 V,
IB = -0.5 A,
IB - -1 A,

IE = 0
IE - 0
IB - 0
IB - 0
V"" = 0
VBE = 0
VIlE - 0_2 V
VIlE = 0_2 V
VIlE = 0_2 V
VBE - 0_2V
V"" - 0_2 V, Te - 70°C
V"" - 0_2 V, Te - 70 0 (
Ic = 0
Ie - 0
IE = 0
IE - 0
Ic = -1 A
Ic = -SA
Ie - -lOA
Ic =-SA
Ie = -SA
Ic - -lOA

VCE = -1.5 V,

Ic = -3 A, f = 1 kHz

Vee = -1.5 V,

Ic=-3A, f= 100kHz

2N3146
MIN
MAX

2N3147
MIN
MAX

-65

-75

UNIT
V

-10
-10
-60
-60
-5
-5

rnA
rnA
rnA

-1
-1

-10
-10

rnA

-5
-5
-5
-5
-1
-1
40
30
25

90

40
30
25

V

90
-1.5
-0.4
-0_5

-1.5
-0_4
-0.5

rnA

20

100

20

100

2

5

2

5

V
V

thermal characteristics

(hc
() J-A

PARAMETER
Junctioq-to-Case Thennal Resistance
Junction-to-Free-Air Thermal Resistance

*Indicales JEDEC registered data

PRINTED IN U S.A

6-66

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES T1156, TI156L
P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
JlIII-l

mC:<

"lJr-"'CI
,r- m

25 WATTS at 25°C CASE TEMPERATURE
for
RELAY DRIVERS. PULSE AMPLIFIERS. AUDIO AMPLIFIERS
and
DIRECT ELECTRICAL EQUIVALENTS of 2N156

l>m Ul
C"l-l-l

rn-",z~

Clzlil
co'
"rC:::
-I

mr-UI

-lin'"

Z ::r-

mechanical data

z~
o~

The transistors are in hermetically sealed welded cases with glass-to·metal seals between case and leads. Approximate
weight: 5 grams.

03:

."'1Il
",m

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THa CASE
TIl 56

r

0.410

~L'lO

m:2l

"lJ~

-I",

m ....

~;::q'.'OOM'Nl
r.

TEMI'ERANRE

"inUl
mm

~~
",m

The transistors are furnished with either wire leads (T1156) or with welded lugs (Tl156L)

MEASU~::"'\.

'i!
0",

s:~

III

2-BASE

0 300

m
Jl

co

m

-----h
,I ,\

'"

~

-- :'
_____ • ..J

--~

..

\4-28 UNF-28 TAP 0.200 MIN. Dll'

•

'
A~L

DIMENSIONS ARE

IN INCHES

TI156L

UNLUS OTHERWISE

.200

I"----~::------>I

S"CIFIED

0.100

,-

~:DIA.

....

...
NOlI: Leod. hewing maxi_ diaMeNr 0.028" _ - - ' In gaging plane 0.054" + 0.001"
- 0.000" below .... _Hnt pia... of .... Hvlca shall 1M. within G.OO7" of th.r h'u. ' tkln. ,.latiYe to a malli;"' ..... wllllth lab

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage
..... .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Collector Current
Base Current
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 2)
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)
...... .
Operating Case Temperature Range
Storage Temperature Range
. . ... . . .
Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

· -30 V
· -30 V
· -15 V
-3A
-1 A

25W
1W
-55°C to 100°C
-55°C to 100°C
230°C

1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 100°C case temperature at the rate of 333 mW/oC.
3. Derate linearly to 100° C free-air temperature at the rate of 13.3 mW~ C.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

6·67

TYPES T1156, TI156L
P~N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

IWIRE LEAD

Tllll6

I LUG

Tllll6L
MIN

Collector-Emitter
V{BR)CEO Breakdown Voltage

ICBO

Collector Cutoff Current

ICES

Collector Cutoff Current

ICEV

Collector Cutoff Current

lEBO

Emitter Cutoff Current

'hFE

•

Ic=-250mA, IE = 0,

VBE

static Forward Current
Transfer Ratio
Ba....Emitter Voltage
Collector-Emitter

VCE(sat)

Saturation Voltage

See Note 4

UNIT

MAX

-30

V

VCB= -2 V,

IE = 0

-0.08

VCB= -30 V,

IE = 0

-0.65t

VCB=-30V,

IE = 0,

TC=50°C

-1.6t

VCB= -30 V,

IE = 0,

TC = 85"C

-8t
-1.5

VCE = -30 V,

VBE=O

VCE = -30 V,

VBE = 0,

TC= 5o"C

-5

VCE = -30 V,

VBE - 0.5 V,

TC - 85°C

-8 t

VEB- -2 V,

IC=O

VEB= -15V,

IC- 0

VEB - -15V,

IC- 0,

rnA

rnA
rnA

-0.08
-0.5
-1

TC= 5o"C

-5

VEB= -15V,

IC= 0,

TC = 85°C

VCE = -2 V,

IC=-1 A,

See Note 5

VCE = -2V,

Ic=-500mA, See Note 5

25

75

VCE=-2V,

Ic=-250mA, See Note 5

30

100

VCE=-2V,

IC= -500 rnA, See Note 5

VCE--2V,

IC--l A,

See Note 5

IB = -100 rnA, IC=-1 A,

See Note 5

rnA

15

-0.6t
-1
-0.25t

V
V

Common--Emitter

Forward Current
fhfe

Transfer Ratio

VCE = -2V,

IC = -500 rnA, f = 1 kHz(ref)

VCE=-2V,

IC = -250 rnA, f = 100 kHz,

6

kHz

220

kHz

Cutoff Frequency

fT

Transition Frequency

See Note 6

thermal characteristics
PARAryJETER
R9JC

Juncti~n-t()oCase

R9JA

Junction~tG-Free-Air

NOTES:

Thermal Resistance

Thermal Resistance

MAX

UNIT

3
75

°CIW
°CIW

4. These characteristics are measured by a halfRsine-wave sweep method.

5. These measurements are made with voltagsMsensing contects located 0.25 Inches from header of transistor. Voltage-sensing
contacts are separate from current-carrying contacts.
6. To obtain fT. the Ihfe I response with frequency is extrapolated at the rate of -6 dB per octave from f = 100 k Hz to the frequency
at which Ihfel = 1.
tThese values surpass JEDEC registered values of the 2N156.

PRINTED IN U.S.A.

6-68

971

TEXASINCORPORATED
INSTRUMENTS
POST oFFICE BOX 5012 •

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN OROER TO IMPROVE OESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TnS9, Tl160, TU61, TI162
P·N·P ALLOY ·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS

40, 60, 80 or 100 VOLT UNITS
20 WAnS AT 25°C CASE TEMPERATURE
1.4 WATTS IN FREE AIR
Guaranteed Beta at 1 amp and 50 ma Ie

Guaranteed ICEX at 85° C
LOW res. LOW leo· LOW VaE
for
RELAY DRIVERS. PULSE AMPLIFIERS
SERVO AMPLIFIERS· AUDIO AMPLIFIERS

mechanical data
The transistors are in hermetically-sealed welded cases with glass-to-metal seals between case and
leads. Approximate weight: 4.S grams.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

A1U\",RA1I,1UMEA$I,IlfMENTPa.<\'
01.uNI),OoIINALROMCENTElloPCAH
... LLIIWoIINSlQHSAIEIMI...: .... S U _

I

•

OI'lIaWISESNC1fED

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
Collector-Base Voltage . . . . . .
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage. . . . . . .
Collector Current. . . . . . . .
Base Current • . • . . . • . .
rotal Device Dissipation at (or below)
25°C Case Temperature (See Note 2)
Total Device Dissipation at (or below)
25°C Free-Air Temperature (See Note
Operoting Case Temperature Range .
Storage Temperature Range . . . .
Lead Temperature, J<. Inch from Case for
NOTES: 1. This value applies when base-emitter voltage VIE =

+ 0.2

TIl 59

11160

11161

11162

40 v
40 v

60 v
60 v

SO v
SO v

100 v
100 v

~

20 v
3 a
1 a

~

20 w

~
~

3)
.
. • . .
10 Seconds

..

1.4 w

~

~

. . - -55°C to + 100oC_
_
- 55°C to + 100°C _
~
230°C
~

v.

2. Derate linearly to lOOoe case temperature at Ih' rate of 267 mw/Co.
3. Derate linearly to lOOoe free-air temperature at the rale of 18.7 mw/Co.

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-69

TYPES T1159, Tn60, T1161, T11162
P·N·P ALLOY·JUNCTION GERMANIUM MEDIUM·POWER TRANSISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

BVcBO

Coliector·Base
Breakdown Voltage

Ic = -650 p.a,IE= 0

BVCEO

Coliector·Emilter
Breakdown Vollage

Ic = -100 rna, Is = 0

IcBO

•

Collector Cutoff Current

ICEO

Collector Cutoff Current

IcEX

Collector Cutoff Current

ICEX

Collector Culoff Currenl

lEBO

Emitter Cutoff Current
Static Common- Emiller
Input Impedance

hiE

hFE

Static Forward
Currenl Transler Ratio

Vcs - -20 Y,
Vcs - -30 Y,
VCI - -40 Y,
Vcs = -50 Y,
VCE - -15 Y,
VCE - -20 Y,
VCE - -25 Y,
VCE = -30 Y,
VCE = -40 Y,
VCE = -60 Y,
VCE - -80 Y,
VCE - -100 Y,
VCE = -20 Y,
VCE = -30 Y,
VCE = -40 Y,
VCE - -50 Y,
VEl = -20 Y,

IE - 0
IE - 0
IE - 0
IE - 0
Is - 0
Is - 0
Is - 0
Is = 0
VIE = + 0.2
VIE = + 0.2
VIE - + 0.2
VIE = + 0.2
VIE = + 0.2
VIE = + 0.2
VIE = + 0.2
VIE - + 0.2
Ic - O.

VCE = -0.5

Y,

Ic =-1

VCE - -0.5
VCE = -0.5
VCE = -0.5
(See Note 4)
VCE = -0.5
(See Note 4)

Y,

Y,

Ic=-1 0,
Ic = -50 rna
Ic =-1 0,

Tc = _55°C,

Y,

Ic =-1

0,

Tc =

0,

(See Note 4)

Y,

Y
Y
Y
Y
Y,
Y,
Y,
Y,

Static Common-Emiller
Forward Transfer Admittance

VCE = -0.5

Y,

Ic =-1

VIE

Base·Emitter Voltage

VCE = -0.5
VCE - -0.5

Y,

Ic =-1 0,
Ic - -50 rna

VCE(satJ
hie
Ihlel

CoJ.

Colledor-Emitter
Satumlion Vollage
Smail-Signal Common-Emiller
Forward Current Tmnsfer Ratio
Small-Signal Common-Emiller
Forward Current Transfer Ratio
Common-Bose Open-Circuit
Output Capacitance

I. = -100 rna, Ic =-1

+ 85°C
+ 85°C
+ 85°C
+ 85°C

MIN

TI159
TI160
TIl 61
TIl 62
TIl 59
TIl 60
TIl 61
TIl 62
TIl 59
TIl60 '
TIl 61
TIl 62 ,
TIl 59 ,
TIl60 .
TIl 61
TIl62 '
TIl 59 '
TIl 60
TIl 61
TIl62 I
TIl 59 i
TI160 :
TIl 61
TIl 62

-40
-60
-80
-100
-30

0,

(See Note 4)

+ 85°C,

-40

-125

pAl

-25
-20
-20
-20

rna

-650

p.a

-5

rna

-650

p.a

60

ohm

60
200
60

20

75
mho

1.0

(See Note 4)

-1.0
-0.35

Y

(See Nole 4)

-0.25

Y

Ic = -0.5

0,

1=1 kc

18

VCE = -1.5

Y,

Ic = -0.5

0,

I = 112.5 kc

2.0

IE = 0,

Y

20
33
15

Y,

Y,

UNIT

Y

-50
-60

VCE = -1.5

Vcs = -6

MAX

(See Nole 4)

0,

YFE

Y,

Tc =
Tc =
Tc =
Tc -

TYPE

1= 135 kc

100
(typical)

72

pi

NOTE 4: MHsvrements are made with tollage sensing (onlacts located 0.25 Inches from header of transistor.
Yoltage sensing contacts Gre SIp. rate' from currenl carrying contacts.

971

6-70

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012 •

DALLAS. -TEXAS 75222

TYPES T1159, T1160, T1161, TI 162
P·N·P ALLOY ·JUNCTION GERMANIUM MEDIUM· POWER TRANSISTORS
I

TYPICAL CHARACTERISTICS

COMMON-EMITTER TRANSFER
CHARACTERISTICS

COMMON -EMITTER COLLECTOR
CHARACTERISTICS
-3r----r~-------r------r-----_.

-1.0

7

VCE = -0.5 v

"I

"

~
~

- 2 1t-:~-::7I\

1
~

u

2u

.!

/
-0.5

/

2u

.!

u

Is= -5 rna

o~--~~~~~==~~==~
o
-20
-30
-40
VCE - Collector-fmltter Voltoge - v

050

'"
.!J.

-

--

i

/

c =+25 C/
D

II

/

Tc

= -55°C

II

o

-0.2
-0.4
-0.6
VSE - Base-fmitter Voltoge - v

100

I

7

II

STATIC FORWARD CURRENT TRANSFER RATIO
vs
CASE TEMPERATURE

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

60

/

/

/

-0.1

/

II IT

= +85°C

I

--

I

Tc

d

-0
u -1 I " - - - - - - - ' f - - = - - " . . . - - - - t - - - - - - j

/

I

/

~

u

I

/

I

11.1 1, )

Moxlmum hFE

~

.!J.

'\

I

.!

E 50
~

~ 40

•

__ Moximum h FE

70

'\.

----

1
~

u

~

Minimum hFE

\

1!

..c

VCE = -0.5v
Tc = 25°C

20
-0.01

I I

1--1.0

of
u

::
R

1\
w

30

~

VCE a -r5V, 1
20

'"

JimuaE----

w

a

V

..c

I

Minimumh~

-0.05 -0.1
-0.5 -1.0
IC - Collector Current - a

10
-75

-3.0

-50

-25
Te - Case

o

I
25

Temperature -

50

·c

75

100

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6·71

TYPES T1159, T1160, T1161, TI162
P-N-P AllOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS
TYPICAL CHARACTERISTICS
COLLECTOR CUTOFF CURRENT vs BASE-EMITTER RESISTANCE

COLLECTOR CUTOFF CURRENT

v.

and

BASE-EMITTER VOLTAGE
-50 VCE

I

c

:>

1
'0
u

~

~.\l.¢

I

~

:>

"-

-0.5

It:

J!
:>
u

f •.yv, v. C

-0.05

'0
u
Ix

-0.1

-~

111111
50 100
RBE -

•

+0.01
VBE -

500

Ik

Base-Emitter Resistance -

+0.05 +0.1

Sk

10k

ohm

+0.5 + 1.0

Base-Emitter Voltage -

5°C

1c.">'-

il 8.

.-

- ~ ---t....----

..!

2S o C

---

~'1 I,00C

-

u

~

ICERV~

-0.1

-0.5

.e

V E

ICEX VI

10

-1.0

U

Tc= +55 0 C

'it>°C

1c."'::::..-....

~-11C."' .. ~ l.--- ~

c

-I

-0.01

-

~

\c.~\l

~

~
u

:>

i
u
.e

-5.0

-5

-

~VBE - +0.2v

T1 160t

=-ISv

-10

~

COLLECTOR-EMITTER VOLTAGE

-10.0

-100

-0.05

-+-"

-0.03
TIlS9
0
TIl60
0
TIl 61
0
TIl62
0

- 8
-12
-16
-20
VCE -

v

~

'15· C

-16
-24
-32

-24
-36
-48

-40

-60

-32
-48

- 40
-60

-64
-80

-100

-80

Collector-Emltter Voltage - v

THERMAL CHARACTERISTICS

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

CASE TEMPERATURE
DISSIPATION DERATING CURVE
20 ~----~~-----r------'------'

1.4

~

I _ 1.2

I

~ IS ~-----+----~~------+-----~
1-

Ii

1.0
0.8

"2

"2

0.6

e

e

~
II

~ 10~----4------+--~~----~
~

'i

~

,!!

,!!

~

5 b-------~-----4------_+~~--~

i

I

.......

"c
OL-----~-------L------~----~

o

25
Tc -

50

75

100

Cos. Temperature _·C

"-

~

c
•u

1

f\

~

9 J-A=

53.)

CO/w

I\.

"-\

Enclosed In I Cubic Foot
Chamber

0.4
0.2

o

o

25
TA -

50
Free-Air Temperature -

"-'\

75

100

·C

PRINTED IN U.S.A.

6-72

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PROOUCT POSSIBLE.

TYPES TI3027, TI3028
P-N-P ALLOY -JUNCTION GERMANIUM POWER TRANSISTORS
HIGH·POWER TRANSISTORS
for

CONSUMER APPLICATIONS

mechanical data
These transistors are in a resistance-welded, hermetically sealed enclosure. The mounting base provides
an excellent heat path from the collector junction to a heat sink. The entire mounting base must be in intimate contact with the heat sink for maximum heat transfer. A minimum torque of 10 inch-pounds applied
to each of the mounting screws is recommended for mounting the device to the heat sink. Extreme cleanliness and the absence of flux during the assembly process prevents sealed-in contamination.

All JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
0450
0.525 R MAX

000,

()

0250

'"

t

1- ~OJ12 MIN~

1 57l MAX

0043 OIA 2 l£ADS

T-m=~J8

I
1050 MAX

0.188 II MAX
80TH ENDS

j

~~~

-

~e__

0675

~

_/__ 4- ,

_

~2_ ...=r - 0-(-1~ ~.<;) ~
-,- I "

020S 0440

I~

I

•

2~fMITTER

l ~ :::

0420

0 135 MAX -j

~ ~~~
OIA

2 HOLES
0,200--

SEATING PLANE

CASE TEMPERATURE
MEASUREMENT POINT

1 - BASE

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25'C case temperature (unless otherwise noted)
TI3027

TI3028

Collector-Base Voltage .
-45 v
-60 v
Collector-Emitter Voltage (See Note 1) .
-40 v
-50 v
Emitter-Base Voltage
. ~ -20 v --+
Continuous Collector Current .
. ~ -7 a --+
Continuous Base Current
. +-- -3 a --+
Continuous Device Dissipation at (or below) 25'C Case Temperature (See Note 2) . +-- 106 W --+
Continuous Device Dissipation at (or below) 25'C Free-Air Temperature (See Note 3) +-2 w --+
Operating Case Temperature Range.
. -65'C to + 100'C
Storage Temperature Range
. -65'C to + 100'C
Lead Temperature Ys Inch from Case for 10 Seconds
. ~ 230'C --+

NOTES: 1, These v,alues apply when the base-emitter resistance RaE:::; 68 O.
2. Derate linearly to 1l0oe case temperature at the rate of 1.25 w;oc.
3. Derate linearly to lIooe free-air temperature 01 the rate of 235 mw/°t.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

6-73

TYPES T13027, TI3028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS

eJectrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

BVcBo
BVCER

Coliedor·Base Breakdown Voltage
Coliedor·Emitter Breakdown Voltage

leBo

Colledor Cutoff Current

leao

Emitter Cutoff Current

hFE

Static Forward Current Transfer Ratio

Vae

Base·Emitter Voltage

VCE!"t)

Coliector·Emitter Saturation Voltage

Ihfel

Small·Signal Common·Emitter
Forward Current Transfer Ratio

Ic - -Sma, IE = 0
-60
-45
-SO
Ic = -600 rna, Rae = 680 , See Note 4 -40
VCB - -2 v, IE = 0
-0.15
-0.15
VCB - -30 v, IE = 0
-I
Vca = -40 v, IE = 0
-I
Vea - -20 v, Ic - 0
-I
-I
VCE = -2 v, Ic =-1 0, See Note 4
70
70
VCE = -2 v, Ic = -30, See Note 4 40 250 40 250
VCE - -2 v, Ic - -I 0, See Note 4
-0.5
-0.5
VCE - -2 v, Ic = -30, See Note 4
-1.0
-1.0
la - -100 mG, Ic = -I a, See Note 4
-0.4
-0.4
la = -300 rna, Ic = -3 a, See Note 4
-0.5
-0.5
Ie = -I a, f = 100 kc

VeE = -2 v,

NOTE 4: These parameters must be measured using pulse techniques. PW

•

TI3027
TI3028
UNIT
MIN MAX MIN MAX

==

300

JL58(,

v
V

rna
rna

V

v

2

2

Duty Cycle ~ 2'%.

thermal characteristics
PARAMETER

IJJ•c
(hHS
(hA

lundion·to·Case Thermal Resistance
lunction·to·Heat·Sink Thermal Resistance
lunction·to·Free·Air Thermal Resistance

TEST CONDITIONS

MAX

UNIT

See notes in Thermal
Characteristics section

0.8
1.4
42.5

°C/w
°C/w
O(/w

NUMERICAL SYSTEM FOR hFE CODING
Upon request the transistors will be numerically coded to identify matched pairs. The transistors are
in·house classified into 2-db (ratio 1.26 to 1) hFE brackets and any two units within a bracket constitute a
matched pair. A 10% tolerance is included in the bracket limits shown below to allow for test·set correlation.
No hFE-bracket distribution is implied by this classification system.
BRACKET
NUMBER

hFE RANGE at
VCE = -2 v, Ic = -3 a

1

40- 60
50 - 80
65 - 100
80 - 125
100 - 150
125 - 200
160 - 250

2
3
4
5
6
7

569

6-74

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES T13027, T13028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
ond
HEAT-SINK TEMPERATURE
DISSIPATION DERATING CURVES

120

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

.---....,.---r--,----,....---,

2.5

f

Ii

1001---t"r-+--+---I1---j

t
'::

2.0

~

0

~

.~

1.5

9J-A

~

42.5°C/w

0

.~

""""-

1.0

8

40 1--::--+---l~--JI!.,...--1---f

v

E

~

~

~1---t---r--f3~"rI---j

0.5

'\

I

.r:

o

125

o

25

75

50

i'\.
125

100

T( or THS -1 emperature-OC

1/4, -Free-Air Temperoture-OC

FIGURE I

FIGURE 2

is the thermal resistance from the junction of the transistor to free-air. The curve shown above was determined by
positioning the transistor in the center of a box 12 inches by 12 inches by 12 inches with the temperature measured
two inches below the transistor.
(hA

lIJ• e is the thermal resistance from the junction of the transistor to the point on the mounting base of the transistor case
specified on the outline drawing.
lIe .Hs is the thermal resistance from the mounting base of the transistor case to the mounting surface of the heat sink.
The heat sink used to determine this value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch
below the mounting surface in an area beneath the center of the transistor. The transistor was mounted directly to a
cI"an, dry, heat-sink surface, without the use of silicone grease, and a torque of ten inch-pounds was applied to each
of the mounting screws.

•

lIJ- HS is the thermal resistance from the junction of the transistor to the mounting surface of the heat sink.
lIJ•HS = lIJ•e + lIe •Hs
The dissipation levels shown above are

v~rjfied

statistically by operating-life tests.

TYPICAL CHARACTERISTICS
STATIC FORWARD CURRENT TRANSFER RATIO
COLLECTOR CURRENT

300
.~

200

.11

--

,

I

I -0.9

>1-0.8 f-l,g

Tc= 250C

i

~ 100

j

i

i Jl -0.4
cB

5

~~ -0.3

20

:::a (J -0.2

J

VeE

10

-0.2

-0.4

L
/

1-

~

],... 0.1

=<-r v

-2
-0.7 -1
Ie-Collector Current- a

-7

>u

V

/'

/ ' \-Ie- Vm";,(1,= To)
I '- -

/'

lL

/

.......-

L\

/'

a

].~ -0.5

50

.,../

Va. (Ib= -2v)

~.2 -0.6

u

'i
i

I II

t.~ -0.7

~
a
12

BASE-EMITTER VOLTAGE and
COLLECTOR-EMITTER SATURATION VOLTAGE '"
COLLECTOR CURRENT
-1.0

",-

...-'

V

Te= fOC

0

o

-1

-2
-3
-4
-5
Ie - Collector Current - a

-6

-7

FIGURE 4

FIGURE 3

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX SOU •

DALLAS, TEXAS 15222

6-75

TYPES T13027, TI3028
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL APPLICATION DATA

CLASS B AUDIO AMPLIFIER

vee'

{ -40 v (TI3027)
-45 v (T13028)

IoAaximum Collector Power

Dissipation per Transistor:
5.0 w (T13027)
6.25 w (T13028)

=

•

TYPICAL CIRCUIT PERFORMANCE CHARACTERISTICS
TA = 2S·C, f = 1000 cps (except where noted)
TI3027
Minimum RMS Power Output at S% Total Harmonic Distortion
Minimum Power Gain
Frequency Response .
D-C Collector Current with Zero Signal .
D-C Collector Current with Maximum Signal
Peak Collector Current with Maximum Signal .
Inpul Impedance, Base-Io-Base

TI3028

20w
2Sw
18 db
20 db
20 to 20,000 cps
-O.OS a
-O.OS a
-1.2Sa
-l.10a
-3.9 a
-3.S a
730
680

CIRCUIT COMPONENT INFORMATION

R,:

R,:
R,:
Speaker
Impedance:

TI3027

TI3028

0.S60, 1 w
12S0, Sw
1.1 0, V. w

0.S6fi, 1 w
1500,5w
1.20, V. w

80

80

All resistors ± 10% tolerance

C: Selected 10 meet desired low-frequency response. Working voltage equals 40 v.
T: Driver transformer primary-winding impedance, currenlcarrying capacity, and doc resistance are determined by
large-signal characteristics of driver stage. Secondary
windings are bifilar wound. The a-c impedance of each
secondary winding equals 18 ohms for TI3027 and 17
ohms for T13028.

PRI~TED IN U.S A.

6-76

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

569

TI con not assume any responsibility for any circuits shown
or represent thot they are free from polenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES T13029, T13030, TI3031
P·N·P ALLOY·JUNCTION GERMANIUM POWER TRANSISTORS

HIGH-POWER TRANSISTORS
for
CONSUMER APPLICATIONS
mechanical data

These transistors are in a resistance-welded. hermetically sealed enclosure. The mounting bose provides
on excellent heat path from the collector junction to a heat sink. The entire mounting bose must be in intimate contact with the heat sink for maximum heat transfer. A minimum torque of 10 inch-pounds applied
to each of the mounting screws is recommended for mounting the device to the heat sink. Extreme cleanliness and the absence of flux during the assembly process prevents sealed-in contamination.

ALL JEDEC TO·3 DIMENSIONS AND NOTES ARE APPLICABLE.
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
04S0

"""'02'50

052SRMAX

oOa
~

j

1- 1-

0312 MIN

I0043DIA2lEADS

~--I--rn=oJ3B
0875':::'
1050 MAX

-/-

0205 0440

II
0 135 MAX

0675

~

I

1+
\

~

~ ;;~

•

2--EMITTER

022S~-0·'-I~-I-~-

MAX

-,-_--=O=IA==

0188 R MAX
BOTH ENDS

.

--1

r-;:

-\- !

~~

0410

SEATING PLANE
1 BASE

t ~:~::

DIA

2 HOLES

CASE TEMPERATURE
MEASUREMENT POINT

DIMENSIONS ARE IN INCHES

absolute maximum ratings at 25°C case temperature (unless otherwise noted)
TI3029

TI3030

Tl3031

-BOv -100v -120v
Collector-Base Voltage .
-65 v
-60 V
-55v
Collector· Emitter Voltage (See Note 1)
-20 V
~
+-Emitter-Bose Voltage
-7a
~
+-Continuous Collector Current
-30
~
+-Continuous Base Current
~
106w
+-Continuous Device Dissipation at (or below) 25°C Case Temperature(See Note 2)
2w
~
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) +--65'C to + 100'C
Operating Case Temperature Range.
-65°C to + 100'C
Storage Temperature Range
230'C
~
+-Lead Temperature 'Is Inch Irom Case lor 10 Seconds

NOTES: 1. These values apply when the base-emitter resistance RBE :::; 68 n.
2. Derate linearly to nooc (ase temperature at the rate of 1 2S w/0c.
3. Derate linearly 10 nooc free-air temperature at .he rate of 235 mw/o(.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

6-77

TYPES T13029, T13030, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
electrical characteristics at 25·C case temperature (unless otherwise noted)
TI3029
TI3030
TI3031
TEST CONDITIONS
PARAMETER
MIN MAX MIN MAX MIN MAX
Ic = -Sma, IE = 0
BVcao Coliector·Base Breakdown Vollage
-80
100
-120
BVCER

Ic = -600 ma, RIE = 68 n, See Nole 4 -SS

Coljector·Emiller Breakdown Voltage

Vca = -2 V,

ICBO

IEao

IE = 0

-0.15

Vca = -SO v,

=0

-I

Vca = -60 v,

=0

= -70 v,

=0

Vca

Collector Cutoff Current

Emiller Culoff Current

•

VIE

Sase·Emilter Voltage

Coliector·Emiller
VCE( .. I) Saturation Vollage
Ihlel

Small·Slgnal Common·Emiller
Forward Current Transfer Ratio

,

-0.15

-0.15

-I

= 0, Tc = +70·C

Vca = -60 v,

= 0, Tc = +70·C

Vca = -70"

= 0, Tc = +70·C

-10
-10
-I

Ic = -I a, See Note 4

-I

-I

70

70

70

VCE = -2 v,

Ic = -3 a, See Note 4

40

2S0 40

2SC 40

VCE = -2 v,

Ic = -S a, See Note 4

30

30

30

VCE = -2 v,

Ic = -3 a, See Note 4

-1.0

-1.0

-1.0

VCE = -2 v,

Ic = -S a, See Note"

-1.5

-1.5

-1.5

la = -300 ma, Ic = -3 a, See Note 4

-O.S

-O.S

-0.5

la = -SOO ma, Ic = -5 0, See Note 4

-0.7

-0.7

-0.7

VCE = -2 v,

NOTE 4: Thesa parameters must be measured using pul" techniques. PW

=

Ic = -I 0,1 = 100kc
300 p.sec, Duty Cyde

thermal characteristics
PARAMETER

2

2

Junction·to·Case Thermal Resistance

8J • HS

Junction·lo·Heat·Sink Thermal Resistance

8J •A

Junction·to·Free·Air Thermal Resistance

ma

2S0

,
v

2

::5 2%.

TEST CONDITIONS

8J •c

ma

-10

VEa = -20 v, Ic =0

Static Forward Current
Transfer Ratio

,

-6S

-I

Vca = -SO v,

VCE = -2 v,
hFE

-60

UNIT

See noles in Thermal
Characteristics sedion

NUMERICAL SYSTEM FOR

hFE

MAX

UNIT

0.8

·C/w

1.4

·C/w

42.S

·C/w

CODING

Upon reque.st the transistors will be numerically coded to identify matched pairs. The transistors are in·house classified
into 2·db (ratio 1.26 to I) hFE brackets and any two units within a bracket constitute a matched pair. A 10% tolerance
is included in the bracket limits shown below to allow for test·set correlation.
No hFE·bracket distribution is implied by this classification system.
BRACKET
NUMBER
I
2

3
4
5
6
7

VCE

hFE RANGE at
= -2 v, Ic = -3 a
40- 60
50- 80
65 -100
80-125
100-150
125-200
160-250

569

6·78

TEXAS)NSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TI3029, T1303O, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
THERMAL CHARACTERISTICS
CASE TEMPERATURE
and

HEAT -SINK TEMPERATURE
DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

120

2.5

•I

f

~

~

i

:t•

100

~

·

80

~

2.0

'" "

0

9J-A

u

't

.~

1.5

0

0

~

,

60

~

..

1

1.0

~

40

U
E

20

~

E

~

~

~

~

"\

0.5

I
.t

I

a

125

s: 42.SOC/w

a

25

50

"-'\

75

\.
125

100

Te or THS-Temperoture-OC

TA -Free-Air Temperature-aC

FIGURE 1

FIGURE 2

OJ-A is the thermal resistance from the junction of the transistor to free-air. The curve shown above was determined by
positioning the transistor in the center of a box 12 inches by 12 inches by 12 inches with the temperature measured
two inches below the transistor.
OJ-e is the thermal resistance from the junction of the transistor to the point on the mounting base of the transistor
case specified on the outline drawing.
Oe-Hs is the thermal resistance from the mounting base of the transistor case to the mounting surface of the heat sink.
The heat sink used to determine tbis value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch
below the mounting surface in an area beneath the center of the transistor. The transistor wos mounted directly to a
clean, dry, heat-sink surface, without the use of silicone grease, and a torque of ten inch-pounds was applied to each
of the mounting screws.

•

OJ-HS is the thermal resistance from the junction of the transistor to the mounting surface of the heat sink.
8J-Hs = 8J-e + Oe-Hs
The dissipation levels shown above are verified statistically by operating-life tests.

TYPICAL CHARACTERISTICS
BASE- EMITTER VOLTAGE

and
COLLECTOR-EMITTER SATURATION VOLTAGE

STATIC FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT

COLLECTOR CURRENT

1.0

300

.2 200

~

~

!

100

-

I

0.9

Tc= 25"C

-r-

J

c

0.7

!

] ·i

SO

I

I

Vel;

-0.4

""-1''

-2
-0.7 -1
Ie-Collector Current- a

-4

-7

J.. -2.1
/'

0.5
0,4

~

0.3

L
~
:Y

~

IVa.

0.1

o

V

~V

/'

/

:::~
> u 0.2

20

10
-0_2

f--

0.6

w

j ~

u
.~

'7

,0.8

Ii~

~
.3
..

t
,,g

>

/

/

'/
o

-1

/'

,./"
./

V

V

V~ Ie
vCEf5CI11(le=

I
Te '" 25"C
T

10)

-2
-3
-4
-5
Ie - CoHector Current - a

- r--

-6

-7

FIGURE 4

FIGURE 3

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

6·79

TYPES TI3029, TI3030, TI3031
P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS
TYPICAL APPLICATION DATA

CLASS B AUDIO AMPLIFIER

-50 v (Tl3029)
Vee = { -60 v (Tl3030)
-74 v (Tl303I)
Nlaximum Collector Power

Dissipation per Tran sistor:

8.75 w (T13029)
12.5 w (T1303O)
17.5 w (TI3031)

•

I
TYPICAL CIRCUIT PERFORMANCE CHARACTERISTICS

TA = 25'C, f = 1000 cps (except where noted)
TI3029
35 w
26 db

Tl3030
TI3031
50w
70 w
25 db
20 db
+- 20 to 20,000 cps----+
· -0.05 a
-0.05 a
-0.05 a
.-0.95a
-1.10a
-2.22 a
· -3.0 a
-3.5 a
-7.0 a
· 88.5 fl
74.5 fl
69

Minimum RMS Power Output at 5% Total Harmonic Distortion
Minimum Power Gain
Frequency Response .
D-C Collector Current with Zero Signal
D-C Collector Current with Maximum Signal
Peak Collector Current with Maximum Signal
Input Impedance, Base-to-Base

n

CIRCUIT COMPONENT INFORMATION

R,:
R,:
RJ :
Speaker
Impedance:
All resistors

±

TI3029

TI3030

TI3031

0.27 fl, V. w
330 fl, 2 w
2.2 n, V, w

0.27 fl, V. w
250 fl, 5 w
1.2 fl, V. w

0.47 fl, 3 w
1500, lOw
0.56 n, V2 w

8n

8n

4n

10% tolerance

C: Selected to meet desired low-frequency response. Working voltage should be greater than 85% of Vcc.
T: Driver transformer primary-winding impedance, currentcarrying capacity, and d-c resistance are determined by
large-signal characteristics of driver stage. Secondary
windings are bifilar wound. The a-c impedance of eoch
secondary winding equals one-fourth of base-to-base input impedance.

PRINTED IN U.S.A.

6-80

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

569

TI (annal assume any responsibility for any circuits shown
or represenf fhat they are free from polen' infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN OROER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

Thyristor
Data Sheets

•

I

TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
:JJ

m

....""0

»
()

1 AMP DC. 50 to 400 VOLTS

~:<
,..",

,..m
mtn
-I ..

-Z
Z
..
OJ Z!B
c p",
m

'"

.... 0-1
....
m ,..:1:
':tJ
::! ~c:
Z

*mechanical data

Z

....
.. z
....

9 en",

a enIC
r$Or,g
en 0

.,

Ol
Ol

THE ANODE IS IN ELECTRICAL
CONTACT WITH THE CASE.

Ol

U1

:"

m
0
m

s:

til

..

m

'- :tJ

C

THE GATE TERMINAL IS
CONNECTED TO A P REGION.

Z
m

to

IC
~

Ol
Ol

All JEDEC TO·S DIMENSIONS
AND NOTES ARE APPLICABLE.
I CATHODE
All DIMENSIONS ARE

IN INCHES
UNLESS OTHERWISE

SPECIFIED

*absolute maximum ratings over operating case temperature range (unless otherwise noted)
2N1595 2N1596 2N1597 2N1598 2N1599 UNIT
100
50
200
300
400
V
50
100
200
300
400
V
50
100
200
V
300
400
100
200
400
V
50
300

Static Off-State Voltage, VD (See Note 1)
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Static Reverse Voltage, VR (See Note 1)
Repetitive Peak Reverse Voltage, VR RM (See Note 1)
Continuous or RMS On-5tate Current at (or below) 80°C
Case Temperature (See Note 2)

1

A

1

A

15

A
°c
°c

Average On-5tate Current (180° Conduction Angle) at (or below) 80°C
Case Temperature (See Note 3)
Surge On-5tate Current (See Note 4)
Operating Case Temperature Range

-65 to 125
-65 to 150

Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds

NOTES:

300

1. These values apply when the gate-cathode resistance RGK ,.;;;

•

°c

00,

2. This value applies for continuous doc operation with resistive load. Above 80° C derate according to Figure 1.
3. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 80°C derate

according to Figure 1.
4. These values apply for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

*JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7·1

TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS

electrical characteristics at 25"C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

MIN MAX UNIT

*ID

Static On-State Current

VD = Rated YD. IG = 0,

TC= 125"C

1

rnA

*IR

Static Reverse Current

VR = Rated YR. IG = O.

TC = 125°C

1

rnA
rnA

*IGT Gate Trigger Current
*VGT Gate Trigger Voltage

VAA=6V,

RL = 12

o.

!:P(g);;' 20l's

10

VAA-6V.

RL-120.

tp(g) ;;. 20l's

3

V

25

rnA

2

V

IH

Holding Current

RL -1 kO.

IG-O

*VT

On-State Voltage

IT=1 A.

RGK;;'1 kO

*JEDEC registered data

THERMAL INFORMATION

MAXIMUM AVERAGE ANODE POWER DISSIPATION
AVERAGE ON-STATE CURRENT DERATING CURVE

•

~

.Lc::

1.0

~::>

0.9

i

0.8

U

'"
c::
0

"'"

I

Continuous DC and 

=

I °
180

q. - 120°

-\

 -90

E

0.4

::>

'xCD

::ii
I

">
.!!!
.t-

c.

'i2

0.2

75

1.8

c::

!
~

100

Tc-Case Ternperature-oC

-

0

a
50

2.0

0

0.1
25

2.2

.....,~ 1.6 " 1.4 i5

~
~

0.3

~

2.4

CD

,\\ !\

~

E

-g

\~
'\\~
'\\~

0.6
0.5

II
Conduction
Angle

 = 30°

0.7

~

~\ 0° 1+<1> ....1180°

 = 60°

;>

\IS

AVERAGEON-STATECURRENT

1.1

TJ = 125°C
 = 30°

 = 180°

Continuous DC

1.2
1.0

h

E 0.6

~ 0.4
"> 0.2
.!!!,
~'

...

125

/

.//

/V/,

/

/

/

/ ///. :/
A ~/17

~7

/. ~

::>

",

//

 = 120°

E 0.8

'x

Z. 7

7
J
1/ 1/ v/

 = 60°
cJ> =90°

-

0' /

~

0

~

0.2

004

0.6

0.8

1.0

IT(av)-Average On-State Current-A
FIGURE2

FIGURE 1

1271

7-2

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N1595 THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS

STATIC REVERSE CURRENT

STATIC OFF-5TATE CURRENT

<{

:t

lc:

vs

vs

CASE TEMPERATURE

CASE TEMPERATURE

100

100

40

40

10 ~ VD
IG

f-- VR

/

= Rated VD
0

:t

4

~
::J

0
~
..,
cil
I
.t-

7
"7

~

::J

(.)

~

0.4

/'

0.1

0.4

~

CJ
to

Rated VR

~IG-O

4

lc:

/

(.)

~

10

<{

'"
c:
..,CJ

0.1

en

0.04

~

0.04

I

0.01

!f-

./'

0.004

0.004
0.001

,./

0.D1

-75 -50 -25

0

25

50

75

100

0.001

125

~~

~

~

0

~

~

•

HOLDING CURRENT

vs
CASE TEMPERATURE

12

<{

E

lc:

8

~

::J
(.)

'"c:
a::t

------

r--

6

RL = 1 kn
IG = 0

I--- I---

'0

I
~

1~

FIGURE 4

FIGURE 3

10

100

Tc-Case Temperature-OC

Tc-Case Temperature-OC

--

-

4

2

o
-75

-50

-25

o

25

50

75

100

125

T c-Case Temperature-° C
FIGURE 5

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7-3

TYPES 2N1595. THRU 2N1599
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT

GATE TRIGGER VOLTAGE

vs

vs

CASE TEMPERATURE

CASE TEMPERATURE

8
7

~

6

~"

5

1.8

........

1.6

I'--

.........

'I'--

.!.

"
.S!'
'"

4

~

3

VAA =6V
RL = 12Sl
tp(g)" 20 ps

""'-

-

1.4

>I

.,
'"

t!:

0.8

Cl

Cl

0.&

.t;

I-

~

.,
'"'"
~

...............

~

~

1.2

$

1.0

~

.......

'0

>

u

-

..

""

VAA=6V
RL=12Sl tp(g)" 20 ps

~

'\,.
r\.

l!l
I

I.

2

Cl

>

"

0.4
0.2

o
-75 -50

-25

0

25

50

75

100

o-75

125

-50

-25

0

25

50

75

TC-Case Temperature-OC

Tc-Case Temperature-oC

FIGURE&

FIGURE7

I

100

125

GATE VOLTAGE

vs
POSITIVE GATE CURRENl
10
7
4

IA -0

2

>I

~

1!0
>
~

~

1
0.7

=::- ",:..as. c
_'tC

0.4
0.2

I

Cl

>

-

~~

-~

"'"

~C

0.1
0.07

V"

..... ~

-

~

.....

-

~ ~ 1-'"
~

oC

===--'", ,dl

0.04 ~~C.I""
0.02

-/1
",

0,01

0.1

0.2

0.4

0.7

4
7
10
1
2
+IG-Positive Gate Current-mA

20

40

70

100

FIGURES

PRINTED IN U.S.A

7-4

TEXASINCORPORATED
INSTRUMENTS
pOST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3001, 2N3002, 2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
350 rnA • 30 to 200 VOLTS. 20 p.A GATE SENSITIVITY
ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS
NO SOLDER OR FLUXES
•

High Operating Temperatures

•

High Surge Current Capability

•

Fast Switching Speeds

•

Low Forward Voltage Drop

mechanical data
The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate
weight is 0.35 grams.
'THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
3 LEADS 0.019 DIA
0.016

0.100

g:~~~ - + - - - - - - - j
ALL DIMENSIONS ARE

=

IN INCHES UNLESS
OTHERWISE SPECIFIED

=
=

l---==:='==:=tll 0.500
t-

I

MIN-l

"ALL JEDEC TO-18 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
,

'Static Off-State VOltage, Vo (See Note 1)
'Repetitive Peak Off-State Voltage, VORM (See Note 1)
'Static Reverse Voltage, VR (See Note 2)
'Repetitive Peak Reverse Voltage, VRRM (See Note 2)
'Continuous or RMS On-State Current at (or below) 55°C Free-Air Temperature (See Note 3)
*Average On-State Current (180° Conduction Angle) at (or below)

55' C Free-Air Temperature (See Note 4)
'Surge On-State Current (See Note 5)
Peak Negative Gate Voltage
'Peak Positive Gate Current (Pulse Width';; 8 ms)

* Average Gate Power Dissipation
*Operating Free-Air Temperature Range
*Storage Temperature Range
'Lead Temperature 1/16 Inch from Case for 10 Seconds

2N3001 2N3002 2N3003 2N3004 UNIT
30
30
30
30

60
60
60
60

100
100
100
100
350

V
V
V
V
mA

250

mA

6
8

A
V

250
100

mA
mW

-65 to 150
-65 to 200

'c
'c
'c

300

200
200
200
200

•

1. These values apply when the gate-cathode resistance RG K ~ 1 kil.
2. These values apply when the gate-cathode resistance RG K -< 00.
3. This value applies for continuous d-c or single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, derate
according to Figure 1.
4. This value may be applied continuously under single·phase, 60·Hz, half·sine·wave operation with resistive load. Above 55°C,
derate according to Figure 1.
5. This value applies for one 60·Hz half sine wave when the device is operating at (or below) rated values of peak reverse VOltage and
on*state current. Surge may be repeated after the device has returned to original thermal equilibrium.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

NOTES:

1271

TEXAS iNSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

7-5

TYPES 2N3001, 2N3002, 2N3003, 2N3004

P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
*electrical characteristics at 25°C free-air temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
10

Static Off-8tate Current

IR

Static Reverse Current

IG
IGT

Gat. Current
Gate Trigger Current

VGT

Gate Trigger Voltage

IH

Holding Current

On-8tate Voltage
VT
dv/dt Critical Rate of Rise of Off-8tate Voltage

Vo = Rated VO,
Vo - Rated VO,
VR = Rated VR,
VR = Rated VR,
VG - -5 V"
VAA=5V,
VAA=5V,.
VAA 5V,
VAA-5V,
RGK-lkn,
RGK= 1 kn,
IT-350mA,
VO-l V

RGK = 1 kn
RGK-l kn,
RGK - 00
RGK = 00,
IA=O
RL -12 n,
RL -12n,
RL 12n,
RL=12n,
RL =2 kn
RL-2kn,
RGK;;'1 kn,

TA - 150°C
TA = 150°C
tp(g) ;;.
!PIg) ;;.
!P(g);;'
tp(g) ;;.

10 ps
10 ps, TA - -65°C
10 ps
10 ps, TA - 150°C
TA - -65°C

See Note 6

NOTE 6: The initial Instantaneous value is measured using pulse techniques. On-state pulse width

= 300 IJ.$,

MIN TYP MAX
0.1
100
0.1
100
-5
5 20
0.9
0.55 0.7
0.2
1.2
3
4
1.2
400

UNIT
pA
pA

iJA
pA
V

mA
V
VIps

PRR = 100 pps •

• JEDEC registered data

switching characteristics at 25° C free-air temperature
PARAMETER

2N3004
TYPICAL

TEST CONDITIONS

tgt

Gate·Controlled Turn·On Time

tq

Circuit-Commutated Turn·Off Time

VAA - 200 V,
RL - 2.2kn,
RG = 100 n,
See Figure 14
VAA =50 V,
RL = 140n,
1N645 between gate and cathode, See Figure 15

Vin=3V,

UNIT

0.3
ps
3.5

thermal characteristics

I

PARAMETER
R8JC Junction-to-Cese Thermal Resistance
R8JA Junction-to-Free-Air Thermal Resistance

TYPICAL
75
275

UNIT
°C/W

ON-STATE CURRENT DERATING CURVES
400

«

E
I

1:
~
::>

350

.,

300

U;

250

tJ

Va

~
~

1;;

c
0

.,

~

200

E
::>
E

150

:;;

100

~

50

~

'xco

va

~a t:r
~\
C'-" '\.
. .01-

'~\.

"\ ~

I

E

0

o

25

50
75
100
125.
T A-Free-Air Temperature-oC

'\

150

FIGURE 1

1271

7-6

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3001, 2N3002, 2N3003, 2N3004

P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
ANODE CHARACTERISTICS

STATIC OFF-STATE CURRENT

vs
FREE-AIR TEMPERATURE
100
Vo= RATEO Vo
RGK = 1 kn
10 I-TJ"'TA

«

I

I

vs

-

FREE-AIR TEMPERATURE
100
VR = RATED VR
RGK = 00
10 _TJ"'TA

,/'" " ,'"

/

/

VI

I

I

STATIC REVERSE CURRENT

GUAIRANTEED MAXIM ~M......

~

::J

TYPICAL,

U

~
~
0

0.1

"
N

0.01

til

I

E

-

0.001

--....

l"~

,/

0.0001
-75 -50 -25

V
/
/'
."

I

«:t
.Lc

GUA1RANTEED MAXiMUM......

:;

TYPICAL

~

.,
.,I!!

0

0.1

a;

[;1

a:

'tilN"
I

!E
0.001

25

50

75

100

l"-

-

0

2.0 -

..

~

vs
FREE-AIR TEMPERATURE

RGK =00
TJ"'TA
See Note 7

~

TA=-5So C_

O.S

Tp,=1SOo C_

1.2

'0

O.S

:>

U

c
'6

V

Ta.=2So C

*'"
~

,.;:t%
:I"
~

:I:

I

f-f-'

:0.4

0.4

0.01

•

1.6

1.2

o

1~100

TYPICAL HOLDING CURRENT

1.6

ti,i

c
0
I

100

2.0 r--v--Y--,..--,--Y--,--,--,--,
_

J!!

~

FIGURE 3

2.4

>

00

FIGURE 2

vs

.

~

T A-Free-Air Temperature- °C

ON-STATE CURRENT

!'
'0

...

~

T A-Free-Air Temperatur.-°c

TYPICAL ON-STATE VOLTAGE

>I

-'"

... V

-~-OO-~

125 150

/

V
/
/

-"
~

0.01

0.0001
0

VII

I

I

V

V

o LLLDt::B~=-J

0.1

-75 -50 -25

10

0

25

50

75

100

125 .150

TA-Fr.... AirTemper.tur.-oC

IT-On-State Current-A
FIGURE 4

FIGURES

NOTE 7: These parameters were measured using pulse techniques.

'tw =

300 jJ&, PRR = 10 pps.

1271

TEXASINCORPORATED
INSTRUMENTS
PQS]:: OFFICE BOX 5012 •

DALl.AS, TEXAS 75222

J.7

TYPES 2N3001,2N3002,2N3003,2N3004
P·N-P-N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
GATE CHARACTERISTICS
GATE TRIGGER CURRENT

GATE TRIGGER VOLTAGE

\IS

\IS

FREE-AIR TEMPERATURE
140
120

«

te

100

c

:;
u
a;

80

!!l

60

j!:

~i

I,

FREE-AIR TEMPERATURE
1.0

1

VAA~5V

RL=120- r-TJ'" TA
See Note 8 r--

-~\

.

40

t!)

E

"-

20

GUA,IIAN

~

"~f"..

-20
-75 -50 -25

•

0

25

--

50

"'"
:I

0.8

i--

75

100

0.6

I

r--

I0.4

-

r--.......

..........

"

r--.......

G/JA,IIANTEEO MINIMUM

........

............

0.2

-75 -50 -25

0

25

50

75

100

FIGURE 7

TYPICAL GATE VOLTAGE

TYPICAL GATE TRIGGER VOLTAGE

\IS

vs

POSITIVE GATE CURRENT

GATE PULSE,WIDTH

__"roo C

~~
,.lroo~
:'it>-

"

rJ\l~ c"

5

>I

.,

4

~

V

!!l
~.,

a;

TA =_55°C
1111

3

1\

_)

1=121~1~

1\

1ii

9'l-

J;;"=50V
RL=1400
TJ"'TA
See Note 8

1\

I

V

2

/'

All
"""
TA=I50°C

t!)

>

RL=TJ",TA

Sjj

o

r--....

125 150

FIGURE 6

,..,..

'"

-r--. r-- I--

T A-Fre .. Air Temperature-oC

~I""

II~I~

~

"7

0.1
10
100
+IG-Positive Gate Current-mA

to-

r-

o
1000

0.01

0.1
10
tp(g)-Gate Pulse Width-1'5

FIGURE 8

NOTES:

r---

TA-Fre .. Air Temperature-OC

0.2

0.01

...........

o

150

I
I-

t!)

>

125

I;
r--

joe Note 8

t!)

>

1.0

>
~
t!)

0.4

r---

~-\'I4t
~4t

r-...:.{

0.6

I

1.2

"0

~f"D

.........

~ ~Plct

l-

1.4

>I

I'-- G~

VAA=5V
RL = 120
TJ '" TA

J

~

"
."I-'"'"
:;;
"
t!)

~ED MINIMuA:;--

0

I

>

1

I

0.8

!"

-\'\-\
\~

l-

>
"0

q,("

~

........

100

FIGURE9

7. These parameters were measured using pulse techniques. tw "" 300 J.,Ls, PRR = 10 pps.
8. These parameters were measured using single-pulse techniques. tw = 300 /J.s, duty cycle = O.

1271

7-8

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 15222

TYPES 2N3001, 2N3002, 2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL SWITCHING CHARACTERISTICS, T A = 25°C
2N3004
GATE-CONTROLLED TURN-ON TIME

2N3004
GATE-CONTROLLED TURN-ON TIME

vs

vs

GATE INPUT PULSE AMPLITUDE

ANODE SUPPLY VOLTAGE
1.0

2.5
VAA =200 V
RL =5700
See Figure 14

2.0

f-

"E

~ 1.5
i=

i=

\

c:

0

E

~ -....
..............

0.8

f-

'T"
;.

r--- J I

1.0

l=1.sl

T~

0.6

c:

q

-'

"

L
.5"

~~Rm
G'~

J.

Vin= 3 V

E

f'r-.
0.5

V;n

"'-

0.4

-r-- r-....
VAA

0.2

RL =

1OOl)

¢')

0.1

Se~ Figur~ 14

0

10
Vin-Input Pulse Amplitude-V

o

100

100
150
50
V AA-Anode Supply Voltege-V

FIGURE 10

2N3004
CIRCUIT COMMUTATED TURN-OFF TIME

vs

vs
ON-STATE CURRENT

f-

16

,..'-

--- ---

~
i=

,.....- _I-'

II:
0

"E

~
'T"

E

12

l-

e>

c:

VAA =2OOV
200 V
RL=-IT

0.1

1

10
100
IT-On-Stete Current-mA

8

E

8I

4

oF

RG = 1000
Vin=3V
See Fi~U;. 1~

o

~E

o
1000

flGK\eff

)'01<.0

~

flG~\.ffl =1, 1<.0

•

~

/'

"

0.2

srI>

I

See Fi ure 15

i=
c:

50 V
RL=-,IT

V

V

f-

ON-STATE CURRENT

20

/
0.3

200

FIGURE 11

2N3004
GATE-CONTROLLED TURN-ON TIME

0.4

35Q;;;A

RG = 1000

"0

o

r-......

o

50

FIGURE 12

flGK\effl = ,00 0

-

,J645

Je

Note

91

100
150
200
250
IT-On-State Current-mA

300

,350

FIGURE 13

turn~oH: time of the 2N3001 seriss thyristor is significantly aff9ct~d by the source impedance of the gate firing
circuit as shown In Figure 13. Faster turn-off times arB achieved when this impedance is low. However, some circuits require the use

NOTE 9: The commutating

of a high source impedance, even though fast turn-off Is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in the circuit in Figure 15. This diode improves commutating turn-off time by eliminating the effect
of the gate-cathode recovery time.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1-9

TYPES 2N3001, 2N3002,2N3003, 2N3004
P·N·P·N PLANAR SILICON REVERSE·BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION

n....

V2 o---f"1
V1 0 • D

INPUT

-

IRM
VD

10%

I
I

DUTPUT

IT

~

Vin

tgt

-.,j

I

'\t.

VT
90%
VR

See Notes A, B, and C

NOTES:

O·

Lrr

oLI
~

-II+- tq
WAVEFORMS

VOLTAGE WAVEFORMS

•

n--

OUTPUT

TEST CIRCUIT

TEST CIRCUIT

FIGURE 14-TURN·ON TIME

FIGURE 15-COMMUTATING TURN-OFF TIME

is measured with gate and cathode terminals
connected as shown and anode terminal open.

A. Vi"

B. The input waveform of Figure 14 has the following

characteristics: tr';;;; 40 ns, tw;;" device turn-on time
at the operating point.
C. Waveforms are monitored on an oscilloscope with the

following characteristics: tr';;;; 14 ns, Ri"

~

NOTES:

E. Pulse generators for V1 and V2 are synchronized to
provide an anode current waveform with the
following characteristics:

tw= 50 to 300,",s. duty

cycle = 1%. The pulse widths of V1 and V2 are
;;. 101'5.
F. Resistor R1 is adjusted for IRM = 1 A.

10 MO,

ein';; 12 pF.

D. RG includes the total resistance of tile generator and
the external resistor.

NOTE 9: The commutating turn-off time of the 2N3QQ1 series thyristor is significantlv affected by the source impedance of the gate firing
circuit as shown in Figure 13. Faster turn-off times are achieved when this impedance is low. However, some circuits require the use
of a high source impedance, even though fast turn-off is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in thtt circuit in Figure 15. This diode improves commutating turn-off time by eliminating the effect
of the gate-cathode recovery time.

PRINTfO IN U.S.A.

7·10

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

T/ (onnot ossume any responsibility for ony cir(uit~ shown
or represent tnot they ore free from patenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
350 rnA • 30 to 200 VOLTS. 200 p.A GATE SENSITIVITY
ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS-NO SOLDER OR FLUXES
•

High Operating Temperature

•

Low Forward Voltage Drop

•

High Surge Current Capability

•

Gate Turn-Off Capability

•

Fast Switching Speeds

mechanical data
The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate
weight is 0.35 grams.
*THE ANODE.IS IN ELECTRICAL CONTACT WITH THE CASE

3 LEADS 0.0\9 DIA
0.0\6

1

ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED

""

1- MIN -II
0.500

*ALL JEDEC TOo1S DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
2N3005 2N3006 2N3007 2N300S UNIT
'Static Off-State Voltage. VD (See Note 1)

30

60

100

200

V

'Repetitive Peak Off-State Voltage. VDRM (See Note 1)

30

60

100

200

V

'Static Reve,..., Voltage, VR (See Note 2)

30

60

100

200

V

'Repetitive Peak Reverse Voltage, VRRM (See Note 2)

30

60

100

200

V

'Continuous or RMS On-State Current at (or below) 55°C Free-Air Tempersture (See Note 3)
'Average On-State Current (180° Conduction Angle) at (or below)
55°C Free-Air Temperature (See Note 4)
'Surge On-State Current (See Note 5)
Peak Negative Gate Voltage

350

mA

250

mA

6

A

8

V

'Peak Positive Gate Current (Pulse Width .. 8 ms)

250

mA

*Average Gate Power Dissipation

100

'Operating Free-Air Temperature Range

-65 to 200

mW
°c

'Storage Temperature Range

-65 to 175

°c

300

°c

'Lead Temperature 1/16 Inch from Cese for 10 Seconds

•

1. These values apply when the gate~cathode resistance RGK < 1 kil.
2. These values apply when the gate-cathode resistance RG K ~ 00,
3. This value applies for continuous d-c or single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C, derate
according to Figure 13.
4. This value may be applied continuously under singleMphase, GO-Hz, half-sineMwave operation with resistive load. Above 55°C.
derate according to Figure 13.
Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
5. This value applies for one 60M
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

NOTES:

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

·7-11

TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
*elec~rical

characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER

10

Static Off-5tate Current

IR

Static Reverse Current

IG
IGT

Gate Current I
Gate Trigger Current

VGT

Gate Trigger Voltage

IH

TEST CONDITIONS
Vo = Rated VO,
Vo = Rated VO,
VR - Rated VR,
VR = Rated VR,
VG - -5 V,
VAA-5V,
VAA-5V,
VAA=5V,
VAA 5V,
RGK 1 k~,

Holding Current

On-5tate Voltage
IGO Static Gate Turn·Off Current
VGO Static Gate Turn-Off Voltage
dv/dt Critical Rate of Riso of Off-5tate Voltage
VT

NOTES:

RGK = 1 kO
RGK - 1 k~,
RGK
RGK = ~,
IA-O
RL -12O,
tp(g)" 10 I'S
RL = 120,
tp(g) .. 10 I'S,
RL-120,
tp(g)" 10 I'S
tp(g) .. 10 I'S,
RL 120.
RL = 2 kO
RL - 2 kO,
RGK = 1 kO,
Seo Note 6
RGK;;'1 kG,
IT 350mA,
IT - 200 mA (Soe Note 7),
VAA .. 100 V (Not to exceed rated VO)
VO-1V
~

MIN TYP MAX UNIT
0.1
I'A
100
TA = 150°C
0.1
I'A
TA = 150°C
100
.-5'
90 200
0.9

TA=-65 C

0.6
TA

150 C

0.8

V

0.2
1.8

TA--65°C

5
8
1.2

40
-4

400

6. The initial instantaneous value is measured using pulse techniques. On-state pulse width = 300 ILs, PAR

I'A
I'A

mA
V
mA
V
VII'S

= 10 pps.

7. Anode current should not exceed 200 mA for gate turn-off applications.
*JEDEC registered data

switching characteristics at 25° C free-air temperature

•

2N3008
TYPICAL

TEST CONDITIONS

PARAMETER

RL = 2.2

k~,

RG -1000,

tgt

Gate-Controlled Turn-On Time

VAA = 200 V,
See Figure 14

tq

Circuit-Commutated Turn-Off Time

RL=1400,
VAA=50V,
1N645 between gate and cathode, See Figure 15

Yin - 3 V,

UNIT

0.55
I's
2.2

thermal characteristics
TYPICAL
75
275

PARAMETER
ROJC Junction-to-C_ Thermal Resistance
ROJA Junction-to-Free-Air T/lermal Resistance

UNIT
°C/W

1271

7-12

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX SOU •

DAL'-AS, TEXAS 75222

TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
ANODE CHARACTERISTICS
STATIC OFF-STATE CURRENT

vs
FREE-AIR TEMPERATURE

100
Va = RATEO Va
RGK = 1 kn
10 r-- TJ ",TA

I



0.1

a:
,~

0.01

q'"

0.001

25

50

75

100

I

GUA1RANTEED MAXiMUM.....

E=

0

I

-./

~

/

1/

/

0

~

I-

125 150

vs
4.0 ,.-----,----,----r---,---,.---,--,--,----,

I ~ rlr~gl

3.5 f--"d--+--+--+--r---j---t------'f------l

•

"
E

1.6

~

0.8

>

= _55° C_
iA
i A =25°C -riA = 15O°S- _r-

2.5

~
:l

~~

1.2

CI(

c
0
I

100

FREE-AIR TEMPERATURE

>

~
"0
>.,

75

TYPICAL HOLDING CURRENT

GK
TJ ",TA
2.0 f-- See Note 8

.,I

50

FIGURE 2

TYPICAL ON-STATE VOLTAGE
vs
ON-STATE CURRENT

~

25

T A-Free-Air Temperature-OC

FIGURE 1

f--

/ /

" Y/ /

0.0001
-75 -50 -25

125 150

T A-Free-Air Temperature-OC

2.4

/" ",'"
/' / '

1-c
~

/

V

I



'to

I\~;.

~\
<",

.... ~Jl

g 0.6
.~

.,

l!l 0.4
(!l

"' "
~~NT~O M'~.trb...

i""'- t"--....

J!I

,=

['--...

~

>

I--r-

0
1
-50
-75 -50 -25
0
25
50
75 100 125 150
TA-Free-Air Ternperature-OC

•

0.8

~

VAA=5V
RL = 120
j---tp(g) .. 10 jlS
TJ ""TA
j---See Note 9

J

b~J
~ED~XIMUM..I

~'MUU/
I"--t-.

o

>
~

(!l

I

~

(!l

>

0.4

",_",,,,oC

r--.....

0
~
50
~
100
TA-Free-Air Ternperature-oC

1~150

vs

~
:'( p."'?:""

°C

rJJ1

i-'"

V

f.-'

l/

GATE PULSE WIDTH
5.0

>

.
I

~~""

4.0

V:'=5~~
TA=-55°C
11111

"0

>

:;;

.~

3.0

,=

.

1/

1.0

~

G

Jill

0.1
10
100
+lG-Positive Gate Current-rnA

AIIIIIIII

2.0

>

RL=TJ""TA
See Note 8

1=1;~l~

)

1\

1ii

<;'

RL=I40n
TJ"'TA
See Note 9

1\

'"
!l

C)/

o

j.-TA=150°C

1'''

I--

o
1000

0.01

0.1
10
tp(g)-Gate Pulse Width-jls

FIGURE7

NOTES:

- ........f'.

TYPICAL GATE TRIGGER VOLTAGE

0.2

0.01

f'...

TYPICAL GATE VOLTAGE

1:0

~
0.6 I-

.........

-~-50-~

~
V
t-

f"""-.. t-.....

FIGURE 6

1.2

0.8

1"'-0..

FIGURES

1.4

"0

r.........

I,
t- VAA =5 V
RL = 120
0.2 I- tp(g)" 10 jlS
TJ""TA
See Note 9

vs

..
F

.........

GUARANT

POSITIVE GATE CURRENT

>I

-r--....

100

FIGURE 8

8. These parameters were measured using pulse techniques.

'tw = 300 IJs, PRA = 10 pps.
'tw = 300 p.s, duty cycle = O.

9. These parameters were measured using single-pulse techniques.

1271

7-14

TEXASINCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES 2N3005. 2N3006. 2N3007. 2N3008
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL SWITCHING CHARACTERISTICS, TA = 25°C
2N3008
GATE-CONTROLLED TURN-ON TIME

2N3008
GATE-CONTROLLED TURN-ON TIME

vs

vs

GATE INPUT PULSE AMPLITUDE

ANODE SUPPLY VOLTAGE

3.0

1.6
VAA ~ 200 V
RL = 570 n
See Figure 14

2.5

Vin=1"t--

i

1.4
1.2

!1
I

j.:
c:

1.5

f-

L

~."

i=
c:

q

111

0
0.1

Yin - 3 V

~."

0.4
RL

~

0.2

~

VAA
350 rna

~

100

RG

o

n

50

100

2N3008
CIRCUIT COMMUTATED TURN-OFF TIME
ON-STATE CURRENT

10

0.8

RL

J

/

"

c:

-'

q

0.4

-

L

~."

-

I
E

"

V

i=

~
E
f-"

6

."

."l!l

f-

VAA

= 200 V

"

0

u

I

lOOn

.5'

I-- Yin = 3V

-

2

See Figure 14

o

~
RGKleft)

= , 1<0

f--

RGKleffl

= 100 0

t----

E
E

200 V
0.2 I- RL ~ ~
RG~

4

=,10 I ~ 120°

Q)

0>

e
Q)

750 -

90°
 - 60°

>

«
E
::J
E

500

::;:'"

250

~\
~

 -30

·x
I

.t"

o
-75

..... ,.

Cood.",oo -

 ~ 180°C

-50

o

75
50
TA-Free~Air Temperature-OC

-25

25

100

~

125

150

FIGURE 13

PARAMETER MEASUREMENT INFORMATION

--

~

Vin

INPUT

•

,

10%

:...... tgt

-..j

I

OUTPUT

' \ 9()<>A,

VOLTAGE WAVEFORMS

See Notes A, B, and C

OUTPUT

TEST CIRCUIT
FIGURE 14-TURN-ON TIME

NOTES:

A.
B.
C.
D.

Vin is measured with gate and cathode terminals connected as shown and anode terminal open.
The input waveform of Figure 14 has the following characteristics: tr ~ 40 ns, tw ~ device turn-on time at the operating pOint.
Waveforms are monitored on an oscilloscope with the following characteristics: tr:so;;. 14 ns, Rin > 10 Mn, Cin ~ 12 pF.
RG includes the total resistance of the generator and the external resistor.

1271

7·16

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPES 2N3005, 2N3006, 2N3007, 2N300B
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
V~ - - - - -nL____________
6~L--

______________________

~rlL_

rL

______

I~------b.
IRM----J

Vo

r

r

V6=-====~~-----------=====~L-I
I
I

I

I

VR------

..I I. t off
WAVEFORMS

I

IT

0.1 to 51'f

+.....----:lIF----t

VAA=50V

Thyristor Under Test

1 kG

•

I
I

lN645

r.t:\ (See

'+.I Note 10)

(See Note E)

I

0.1 G
(Non inductive
monitor resistor}

(See Note

E)

I
I
I

Generator Synchronization

TEST CIRCUIT
NOTES:

E. Pulse generators for V 1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300 IJ.s, duty cycle = 1%. The pulse widths of V1 and V2 are;;' 10 fJs.
F. Resistor R1 is adjusted for I RM = 1 A.

FIGURE 15-CIRCUIT COMMUTATED TURN-OFF TIME
NOTE 10: The commutating turn-off time of the 2N3005 series thyristor is significantly affected by the source impedance of the gate firing
circuit as shown in Figure 12. Faster turn-off times are achieved when this impedance Is low. However, some circuits require the use
of a high source Impedance, even though fast turn-off Is desired. In these applications, a diode may be used to by-pass the
gate-cathode junction, as shown in the circuit in Figure 15. This diode improves commutatlng turn-off time by eliminating the
effect of the gate-cathode recovery time.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

7-17

TYPES 2Nl005, 2Nl006, 2Nl007, 2NlOOB
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL GATE TURN·OFF CHARACTERISTICS
TYPICAL GATE-TURN-OFF GAIN
vs
ON-STATE CURRENT

6

The 2N3005 series thyristors exhibit gate-turn-off
gain, in addition to the standard controlled switch
characteristics_
Figure 16 shows
the typical
gate-turn-off gain as a function of on-state current_
This characteristic offers increased flexibility in the
design of pulse-width modulators, pulse-forming
networks, static switches, choppers, bistable circuits,
and inverters_

5
c:

-iii
t!l

4

~

E

~. 3

V

/'

........

Polf = I

~

~

--

I---

IT
GO

TA = 25°C

t!l

~

V

l--

2

1

o
o

150
100
IT-On-State Current-mA

50

200

FIGURE 16

•

+VAA

I I I

IGO
TYPICAL GATE-TURN-OFF CIRCUIT

=.2L
Poff

TYPICAL WAVEFORMS

Improved turn-off time may be realized using the gate-turn-off method_ A combination of gate-turn-off and standard
commutating turn-off will further improve the turn-off time_ For applications requiring a guaranteed 13off, contact your
nearest TI Sales Office for information on special types_

PRINTED IN

7·18

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

u.s A

1271

TI cannot assume any responsibility fOf any circuits shown
or represent thai they are free from palenl infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
SILECTt THYRISTORS:t
800 rnA DC • 30 thru 200 VOL TS

mechanical data
These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly
mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without
deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting
MI L-STO-202C method 1068. The thyristors are insensitive to light.
THE GATE LEAD IS CONNECTED

1
f

0.200
+0.005
- 0.025

*

~£a

r

0.050 (NOTE A)

~!8.8J8+-

----.I: -

+0.005
160 -0.035

+~::~~O'l00 !~:~~
_OO~~5

0.500 MIN.

FO

...,

0100

0200

NOTES:

A P REGION

0.050'" 0 OOS

~

ANODE
GATE
C~~M

3 LEADS 0017 ::

8:gr,

A. Lead diameter is not controlled in this area.

CGA

B. All dimensions are in inches •

• ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings at specified case temperature

"Repetitive Peak Off-State Voltage, VDRM (See Note 1)
"Repetitive Peak Reverse Voltage, VRRM
*Nonrepetitive Peak Reverse Voltage, VRSM (Pulse Width .;; 5 ms)
Continuous On-State Current (See Note 2)

2N5060 2N5061 2N5062 2N5063 2N5064
UNIT
TIC60 TlC61
TlC62 TIC63 TIC64
-65"C to 125"C
30
60
100
150
200
V
-65"C to 125"C
30
100
60
150
200
V
-65"C to 125"C
45
80
125
180
230
V
_65" C to 50" C
800
rnA

"Average On-State Current (180" Conduction Angle, See Note 3)
'Surge On-State Current (See Note 4)

-65"C to 67"C
25"C

510

rnA

6

A

'Peak Positive Gate Current (Pulse Width';; 3001's, f .;; 120 pps)
'Peak Gate Reverse Voltage

25"C

1

-65"C to 125"C

5

A
V

25"C

10
100
-65 to 125
-65 to 150

*Average Gate Power Dissipation ISee Note 5)
'Peak Gate Power Dissipation (Pulse Width <; 3001's)

25"C

*Operating Case Temperature Range
*Storage Temperature Range
'Lead Temperature 1/161nch from Case for 10 Seconds

230

•

rnW
rnW

°c
"C
"C

1. These values apply when the gate-cathode resistance RG K = 1 kn.
2. These values apply for continuous d-c operation with resistive load. Above 50° C derate according to Figure 1.
3. This value may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Above 67°C derate
according to Figure 1.
4. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.
*JEDEC registered data. The asterisk identifies JEDEC registered data for the 2N5060 through 2N5064 only. This data sheet contains all
applicable registered data in effect at the time of publication.

NOTES:

t Trademark of Texas Instruments
tU.S.

Patent No. 3,439,238

1171

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7-19

TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at specified case temperature
2N5060THRU
TEST CONDITIONS

PARAMETER

2N5064
MIN

25°C

RL - 100 fl,

_65°C

MAX

Vo

RGK

= 1 kfl

125°C

50*

50

/J-A

VR

RGK - 1 kfl

125°C

50*

50

/J-A

= 100 fl,

-65°C

350*

VGT

tp(g) ;;. 1 ms

MIN

IRRM Repetitive Peak Reverse Current
Gate Trigger Current

VAA - 7 V,

UNIT

TlC64

MAX

IORM Repetitive Peak Off-State Current

IGT

= Rated VORM,
= Rated VRRM,
VAA = 7 V,
RGK = 1 kfl,

TIC60THRU

RGK

Gate Trigger Voltage

Holding Current

VTM

Peak On-State Voltage

= 1 kfl,
= 1 kfl,

I nitiating IT
ITM

100 fl,

125°C

tp(g) ;;. 1 ms

RGK - 1 kfl, -65°C

VAA - 7 V,

= 20 mA

= 1.2 A,

200

See Note 6

200

/J-A

1.2*

25°C

tp(g) ;;. 1 ms

Vo - Rated VORM, RL
RGK

IH

RL

0.8
0.1*

0.8

V

0.1
10*

25°C

5

25°C

1.7*

5
1.7

mA
V

*thermal characteristics
PARAMETER
ReJC Junction-to-Case Thermal Resistance
NOTE 6: This parameter must be measured using pulse techniques. tw = 300 IJs, duty cycle
current-carrying contacts, .,re located within 0.125 inch from the device body.

•

~

1%. Voltage-sensing contacts, separate from the

*JEDEC registered data

THERMAL INFORMATION
AVERAGE ANODE
FORWARD CURRENT DERATING CURVE

«

E

~ 1000

t::>

900

Contin~ous DC

U

"E 800
o~

700

Q)

600

""" "'-

LL.

'8

ep = 180°

.i
~

500

«

300 I-ep= 90°

~

E
::>
E

'xco

:2:
I

">
~
LL.

00B1800-

ep = 30°

o

25

'\

I~ 1\
~ ~\
-.............: ~

ep= 60°

100

o

'"

.:-.~

400 f-ep= 12r

200

Conduction _
Angie

50

75

100

Tc-Case Temperature-OC

"'"

125

FIGURE 1

1171

7-20

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES 2N5D6D THRU 2N5D64, TlC6D THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
switching characteristics at 25°C case temperature
PARAMETER

TEST CONDITIONS
VAA = 30 V, RL=39n,

tgt Gate-Controlled Turn-On-Time
tq

Vin=20V,

See Figure 2

VAA-30V, RL - 30n,

Circuit-Commutated Turn-Off Time

TVP UNIT

RGK(eff) = 20 kn,
IRM "'7A,

See Figure 3

3

/JS

7

/JS

PARAMETER MEASUREMENT INFORMATION

----"n....

V2 0 ----1'"I"---_ _ _ _ _ _ _

'"'L--

V1 O..n

INPUT

0IR

10%

I
:.- tgt

OUTPUT

IT

~

V·
In

--I

I

~

VT

VR

.LI

L[

r

.....j

f

j..-tq
WAVEFORMS

VOLTAGE WAVEFORMS

0.1 pF
to5pF

IT~ .....--7fF--..
OUTPUT

See Notes A, B, and C

•

t
VI

Generator Synchronization

TEST CIRCUIT

TEST CIRCUIT
FIGURE 2-GATE-CONTROLLED TURN-ON TIME

NOTES:

FIGURE 3-CIRCUIT-COMMUTATED TURN-OFF TIME

A. Vin is measured with gate and cathode terminals open.
B. The input waveform of Figure 2 has the following characteristics: tr <; 40 ns, tw ~ 20 Ils.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr .so;; 14 ns, Ain

> 10 MO, ein ,so;; 12 pF.

D. RGK(eff) includes the total resistance of the generator and the external resistor.
E. Pulse generators for V 1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300/Js, duty-cycle = 1%. The pulse widths of VI and V2 are .. 10 ps.
F. Resistor R1 is adjusted for I AM l'I::$ 7 A.

1171

TEXASINCORPORATED
INSTRUMENTS
F'OST OFFICE BOX 5012 •

DALLAS. TEXAS 7!5222

7-21

TYPES 2N5060 THRU 2N5064, TIC60 THRU TIC64
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT

GATE TRIGGER VOLTAGE

"

CASE TEMPERATURE

"

CASE TEMPERATURE

1000
VAA"7V

400

1
J"

I

>I

100

I

40

:f;

10

!

,:

1

~
I-

"

0.4
0.1
-75

-60

25

-26

50

'"

>

75

V~A=7V

0.9

lOon

RL

tp(g);;;a'rns

0.8

RV 100 n
RGK"" kG
tplg):>1 ms

'-..

0.7

r-....

0.6

r-....

0.5

'-..

0.4
0.3
0.2
0.1

100

-75 -60 -25

T C-Case Temperatura-°c

0

26

60

76

100 126

Tc-Case Temperature-OC

FIGURE4

FIGURES

HOLDING CURRENT

"

CASE TEMPERATURE

10

"eE
I

VAA-7V
RGK"" 1 kG
Initiating IT '" 20 rnA

"-

~

.........

I""----

.~

•

~

:t
I

I""----

~

r-- r---

0.7
0.4
-75 -50 -26

0

25

50

75

100 125

TC-Case Temperature-OC

FIGURE6

..

.

PEAK ON-5TATE VOLTAGE

GATE-CQNTROLLED TURN-QN TIME

PEAK ON-5TATE CURRENT

GATE CURRENT

TC = 25°C
See Note 6

1.8

> 1.6

i

1.4

0

/"

> 1.2

1/

iii

a 0.8 r - r-

iI

:I

0.6

t" 0.4
0.2
0.1

0.2

0.4

0.7 1

0.2

ITM-Peak On·State Current-A

0.3

0.4 0.6 0.6

DB

1

'o-Gate Current-mA

FIGURE7

FIGURE 8

NOTE 6: This parameter must be measured using pulse techniques. 'tw = 300 JJs, duty cycle
current-carrying contacts, are located within 0.125 inch from the device body.

~

2%. Voltage-sensing contacts, separate from the

PRINTED IN U.S.A

7·22

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE

sox

5012 •

DALLAS, TEXAS 75222

1171

TI (annal Qssume any responsibility for any df(uilS shown
or represent that they are free from polent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPlY THE BEST PRODUa POSSIBLE.

TYPES 2N6332 THRU 2N6337
PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
2 AMP DC • 30 to 400 VOLTS. 200 J.l.A GATE SENSITIVITY
•

High Operating Temperatures

•

High Surge Current Capability

•

Fast Switching Speeds

•

Low Forward Voltage Drop

mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
THE GATE TERMINAL IS CONNECTED TO A P REGION

2-GATE

a.• MIN ~

3--ANODE

TEMPERATURE
MEAS. POINT

~:~g g:~:
DIA

,

OIA

•

....L.......-..

1~"2'
~

0.100 MIN.j

0,009

3LEADS
g:~~~ DIA
ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE

SEATING

DETAILS OF OUTLINE IN
THIS ZONE OPTIONAL

PLANE

l-CATHODE

SPECIFIED

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE

*absolute maximum ratings over operating case temperature range (unless otherwise noted)
UNI

2N6332

2N6333

2N6334

2N6335

2N6336

2N6337

Repetitive Peak Off-State Voltage, VDRM (See Note 1)

30

50

100

200

300

400

V

Repetitive Peak Reverse Voltage, VR RM

30

50

100

200

300

400

V

Nonrepetitive Peak Reverse Voltage (See Note 2)

30

50

100

200

300

400

V

Continuous On-State Current at (or below)
80°C Case Temperature (See Note 3)
Average On-State Current (180° Conduction Angle)
at (or below) 80°C Case Temperature (See Note 4)
Surge On-State Current (See Note 2)

2

A

1.25

A

20

A

5

V

0.2

A

Peak Gate Power Dissipation (Pulse Width';; 300 its)

1.3

W

Average Gate Power Dissipation (See Note 5)

0.3

Peak Negative Gate Voltage
Peak Positive Gate Current (Pulse Width';; 300 its)

Operating Case Temperature Range

-40 to 150

W
°c

Storage Temperature Range

-40 to 175

°c

230

°c

Lead Temperature 1/16 I nch from Case for 10 Seconds
NOTES:

1. These values apply when the gate-cathode resistance AGK = 1

•

kn.

2. This value applies for one 60 Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
M

on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
3. These values apply for continuous d-c operation with resistive load. Above 80°C derate linearlv 150°C case temperature at the

rate of 28.6 mA/ C.
4. This value may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Above 80°C derate
linearly to 1500 C case temperature at the rate of 17.9 mAl C.
5. This value applies for a maximum averaging time of 16.6 ms.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

72

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 15222

7-23

TYPES 2N6332 THRU 2N6337
PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

IORM Repetitive Peak Off-State Current
IRRM Repetitive Peak Reverse Current
IGM
IGT

Peak Gate Current

5

RGK = 1 kn

Vo - Rated VORM,

RGK - 1 kn, TC - 150°C

VR - Rated VRRM,

IG -0
TC = 150°C

VR - Rated VRRM,

IG -0,
IA-O

VAA-6V,

RL-12n,

VAA = 6 V,

RL= 12n,

tp(g) ;;. 10"s

12n,

tp(g) ;;. 10 "s,
TC = _40°C

Gate Trigger Current

tp(g) ;;. 10 IJ.S,

Gate Trigger Voltage

6V,

VAA - 6 V,

RL

RL-12n,

tp(g) ;;, 10"s

1 kn,

tp(g) ;;. 10 IJ.S,
TC

VTM

250
-10
500

TC = -40°C

V AA - Rated VORM, RL

IH

150
10

VGM--5V,

VAA
VGT

MIN TYP MAX UNIT

VD = Rated VORM,

Peak On-State Voltage

150°C

IJ.A
IJ.A

1
0.55

0.8

V

0.2

RGK = 1 kn, Initiating ITM = 35 mA,
TC = _40°C

VAA=6V,

RGK = 1 kn, Initiating ITM = 25 mA

ITM- 3.9A,

RGK;;' 1 kn, See Note 6

5
2.5

IT= 2A,

RGK;;' 1 kn, See Note 6

1.75

15
3

400

Vo = Rated VORM, VGK - -1 V

IJ.A

200

VAA=6V,
Holding Current

Static On-State Voltage
VT
dvldt Critical Rate of Rise of Off-State Voltage

=

5

IJ.A

mA
V
V

V/lJ.s

*switching characteristics at 25°C case temperature
PARAMETER

•

tgt
tq

TEST CONDITIONS
V AA = Rated VORM, IT = 3.9 A,

Gate-Controlled Turn-On Time

MIN TYP MAX UNIT

RG=100n,

Vin = 3 V
VAA - Rated VORM, IT - 3.9 A,

Circuit-Commutated Turn-Off Time

lN645 between

gate and cathode

0.3
15

2

IJ.S
IJ.S

*thermal characteristics
PARAMETER
ROJC Junction-to-Case Thermal Resistance

NOTE 6: This parameter must be measured using pulse techniques. tw

=2

ms, duty cycle

~

2%. Voltage-sensing contacts, separate from the

current-carrying contacts, are located within 0.125 inch from the device body.

*JEDEC registered data

PRINHO IN U,S.A

7·24

17~

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TI145AO THRU TI145A4
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYISTORS

1.6 AMPS DC. 50 to 400 VOLTS
• High Surge Current Capability

•

Low Forward Voltage Drop

mechanical data

-'---u:;:.-I

0:240
0260

I

1.5

T
~O.335
0.J3S 0305 DIA

CIA

~~

::q±t

~~

==r

~

0.100 MIN
DETAILS OF OUTliNE IN
THIS ZONE OPTIONAL

MIN--j

,

0125
0.009

THE ANOOE IS IN ElECTRICAL
CONTACT WITH THE CASE.

ANODE

THE GATE TERMINAL IS
CONNECTED TO A P REGION.

T"

I

0200
3 tEADS
GATE
~ OIA
SEATING 0016
CATHODE
PLANE

ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED

ALL IEDH TO·S DIMENSIONS
AND NOTES ARE APPLICABLE.

absolute maximum ratings over operating case temperature range (unless otherwise. noted)
Tl145AO TI145A1 Tl145A2 TI145A3 TI145A4 UNIT
50
100
200
300
400
V
50
100
200
300
400
V
50
100
200
300
400
V
50
100
200
300
400
V

Static Off·State Voltage, VD (See Note 1)
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Static Reverse Voltage, VR (See Note 1)
Repetitive Peak Reverse Voltage, VRRM (See Note 1)
Continuous or RMS On-State Current at (or below) 60°C
Case Temperature (See Note 2)
Average On-State Current (180° Conduction Angle) at (or below) 60°C
Case Temperature (See Note 3)
Surge On-State Current (See Note 4)
Peak Negative Gate Voltage

1.6

A

1.2

A

30

A
V

Operating Case Temperature Range

5
2
300
-65 to 105

Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds

-65 to 150
300

Peak Positive Gate Current (Pulse Width';; 300 .us)
Average Gate Power Dissipation (See Note 5)

NOTES:

•

A
mW
°c
°c
°c

1. These values apply when the gate-cathode resistance RG K " 00.
2. This value applies for continuous d-c operation with resistive load. Above 60° C derate according to Figure 1.
3. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 60°C derate
accord i ng to F igu re 1.
4. These values apply for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage
and on-state current_ Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.

1271

TEXAS INSTRUMENTS
INCORPORATEO

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

7-25

TYPES TI145AO THRU TI145A4
P-N-P-N DIFFUSED SILICON REVERSE-BLOCKING TRIODE THYISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

ID

Static Off-State Current

IR

Static Reverse Current

MIN MAX UNIT

TEST CONDITIONS

PARAMETER

~

VD,~

Rated VD, IG

VD

Rated VD, IG - 0,
Rated VR, IG

~

0

VR ~ Rated VR, IG

~

0,

VR

~

0.25

0

1

TC-l05C

0.25
TC ~ 105°C

IGT

Gate Trigger Cu rrent

VAA-6V,

RL - 12 fl.,

tp(g) ;;'101's

VGT

Gate Trigger Voltage

VAA-6V,

RL - 12 fl.,

t p (g);;'10MS

IH

Holding Current

RL - 1 kfl.,

IG - 0

VT

On-State Voltage

IT-l A,

RGK;;'l kfl.

1
25
0.25

mA
mA
mA

3.5

V

25

mA

2

V

THERMAL INFORMATION

AVERAGE ON-STATE CURRENT DERATING CURVE

«
!

"

1.6

u

1.4

~

•

1.8

\ 0" 1.-41
\\
.\\ 1\
~ l\\

Q)

E

"I

"

1.2

 ~,1800,

0

Q)

'"~
~

«

 ~ 120°

 _90°

E
::J

E

0.6

:;;

0.4

'xOJ
I

">
OJ

E



60°

_

"\ ~\
~

0.2
0
-75

~Oo

Conduction Angle

1.0
0.8

:6-=

\

CO,ntinuous DC

:;

~~

-50

-25

o

25

50

75

100

125

Tc-Case Temperature-OC
FIGURE 1

PRINTED IN U.S.A.

7·26

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALL.AS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIC35, TI06
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
RADIATION-TOLERANT THYRISTORS

~:;!
r-"1I
r-m

400 mA DC. 15 and 30 VOLTS

men

-1-1

20
zl!!
o·
• -1

•

Max IGT of 5 mA after 1 x 10 14 Fast Neutrons/cm 2

•

Max VTM of 1.6 V at ITM of 1 A after 1 x 10 14 Fast Neutrons/cm 2

0r-n
cillll

~

description
The TIC35, TIC36 thyristors offer a significant advance in radiation-tolerant-device technology. Unique
construction techniques produce thyristors which maintain useful characteristics after fast-neutron radiation
fluences through 10 15 n/cm 2 .

mechanical data

j

en
m
~

!2III

m

:II

i

0.100

~:~~~-I------I

THE ANODE IS IN ELECTRICAL
CONTACT WITH THE CASE

~

THE GATE TERMINAL IS
CONNECTED TO A P REGION

0.230 0.195
0.209 0.178
OIA
DIA

I

..L

ALL JEOEC TO·1S DIMENSIONS
AND NOTES ARE APPLICABLE

<:>

~~~Io.sool

r-- MIN-I

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Continuous Off-8tate Voltage, VD (See Note 1)
Repetitive P!,ak Off-8tate Voltage, VDRM (See Note 1)
Continuous Reverse Voltage, VR
Repetitive Peak Reverse Voltage, VRRM
Nonrepetitive Peak Reverse Voltage, VRSM (See Note 2)
Continuous On-5tate Currant et (or below) 55°C
Case Temperature (See Note 3)
Continuous On.stete Currant at (or below) 25°C
Free-Air Temperature (See Note 4)
Average On-8tete Current (1800 Conduction Angle)
at (or below) 55°C Case Temperature (See Note 5)
Sullie On-8tate Current (See Note 6)
Peak Negative Gate Voltage
Peak Positive Gate Current (Pulse Width ';;300l's)
Peak Gate Power Dissipation (Pulse Width ';;300 I's)
Average Gate Power Dissipation
Operating Free-Air or Case Temperature Range
Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds

'TlC36

TIC35
15
5
5
5

UNIT
V
V
V
V
V

400

mA

225

mA

320

mA

3
-4
250
500
10
-55 to 125
-65 to 200
260

A
V
mA
mW
mW
°c
°c
·oC

30

15

30 'U

•

NOTES: 1. These values apply when the gate-cathode resistance RGK = 1 kG.
2. This value applies for a 6-ms rectangular pulse when the device is operating at (or below) rated values of peak reverse
voltage and on-stete current. Surge may be repeated after the device has returnad to original thermal equlllbrlum_
3. These values apply for continuous doc operation with resistive load. Above 55°C derate according to Figure 2.
4. These values apply for continuous doc operation with resistive load. Above 25°C derate according to Figure 3.
5. This value may be applied continuously under single-phase, 50-Hz, half-slne-wave operation with resistive load. Above 55°C
derate according to Figure 2.
5. This value applies for one 50-Hz half sine wave when the device Is operating at (or below) rated values of peak reverse
voltage and on-state current. Surge may be repeated after the device has returnad to orIginal thermal equilibrium.
971

TEXASINCORPORATEQ
INSTRUMENTS
POST OFFICE BOX 5012 • CALLAS. TEXAS 75222

7-27

TYPES TlC3S, TlC36
P-N-P-N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
electrical characteristics at 25° C free-air temperature (unless otherwise noted)

10

Static Off-State Current

MAX

UNIT

RGK = 1 kn, l;A = 125°C

20

JJA

100

JJA

5

JJA

MIN

TEST CONDITIONS

PARAMETER
Vo = Rated VO,

IR

Static Reverse Cu rrent

VR = 5 V,

RGK=lkn, TA = 125°C

IGR

Gate Reverse Current

VKG=4V,

IA = 0

VAA = 6V,

RL = lOOn, VGG = 6V,

IGT

Gate Trigger Current

TYP

100

RG(sourcel ;;'10 kn, tp(gl ;;. 20 JJS, T A = -55°C
VAA = 6V,
RL 100 n, VGG 6V,

JJA
20

RG(sourcel ;;. 10 kH, tp(gl;;' 20 JJS
RL = 100 n. RGK = 1 kn,

VAA = 6V,

VGT

Gate Trigger Voltage

VAA - Rated VO,

RL -lOOn,

RGK - 1 kH,
TA = 125°C

tp (gl ;;. 20 JJs.
VAA

0.9

TA = -55°C

tp(gl ;;. 20 I'S,

6V,

RL

100n,

V

0.2

RGK - 1 kn,

0.75

tp(gl;;' 20JJs
RGK = 1 kn, Initiating IT = 10 mA,

VAA = 6V,
IH

•

4

TA = -55°C

Holding Current

VAA=6V,

RGK = 1 kn, Initiating IT = 10 mA

VTM

Peak On-State Voltage

ITM = 1 A,

See Note 7

dv/dt

Critical Rate of Rise
of Off-State Voltage

Vo = Rated VO,

RGK = 1 kn

mA
2
1.6
12

V
VII's

post-irradiation electrical characteristics at 25°C free-air temperature
RADIATION
PARAMETER

IGT
VTM

Gate Trigger Cu rrent

Peak On-State Voltage

MAX

UNIT

1 x 10 14 n/cm 2

5

mA

1 x 10 14 n/cm 2

1.6

V

MAX

UNIT

TEST CONDITIONS
VAA = 6V, RL = 100n
ITM = 1 A,

See Note 7

FLUENCEt

MIN

TYP

t Radiation is fast neutrons (n) at E ~ 10 keV (reactor spectrum).

thermal characteristics
MIN

PARAMETER

TYP

8J-C

Junction-ta-Case Thermal Resistance

124

8J-A

Junction-to-Free-Air Thermal Resistance

345

NOTE: 7.

°C/W

These parameters must be measured using pulse techniques. tw = 300

}.LS,

duty cycle ~ 2%. Voltage-sensing contacts,

separate fro!,," the current-carrying contacts, are used.

971

7·28

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TlC35, TIC36
P·N·P·N PLANAR EPn AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION

The minimum heat-sink requirements may be calculated for
any anode-current, heat-sink combination by the following
procedure:
1.

Determine worst-case power dissipation from
Figure 4.

2.

Calculate maximum allowable case-to-free-air
thermal resistance by use of the equation:

HEAT -SINK AREA
vs
CASE-TO-FREE-AIR THERMAL RESISTANCE
1/16"-THICK COPPER HEAT SINK

TJ -TA
OC-A = - - -liJ-C
PA(av)

20

\

where:
TJ = Junction temperature
10

TA = Free-air temperature
7

PA(av) = Average anode power dissipation
(see Figure 4 for worst-case values)

Ii J-C

\
4

Junction-to-case thermal resistance
= 124°C/W maximum.
=

\

N
C

T

Determine area of heat sink from Figure 1.

3.

18

2

\

-d:

-"
c

EXAMPLE
Determine: Minimum size of 1/16"-thick copper heat sink
for safe operation of thyristor at an average
current of 0.3 A with a conduction angle of
180°.
Given:

2'"
"

::J:

\

0.4

"'
f--- Devices soldered directly
on heat sink

f---

Maximum T J = 125°C
TA = 35°C
OJ-C = 124°C/W

•

'\.
'\.

0.7

See Notes 8 and 9

I

0.2

"'-

..

""

~

"-

I
Solution:

From Figure 4, PA(av) = 0.525 W for 0.3 A
with 1800 conduction angle. Using the equation
of step 2 above:

0.1

I
o

40

80

120
160
20
6 C_A - Case-to-Free-Air Thermal Resistance-oC/W
FIGURE 1

Figure 1 shows that for liC-A of 47°C/W, the area is 3.4 in 2 .
The minimum dimensions of the sides should be:

E
E e.
g
-J22- -1-22- =-122- -J2 =1.3" X 1.3"
NOTES: 8. The thyristor is mounted in the center of a square heat sink vertically positioned in still free air with both sides exposed.
The heat-sink area is twice the area of one side.
9. () C-A includes the case-to-heat sink thermal resistance, 8 C-HS' in addition to the heat-sink-to-free-air thermal resistance,

°

HS"A' and is defined by the equation~ 8 C~A ==

(J C-HS

+ 8 HS _A .

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7-29

TYPES TIC35, TlC36
P·N·P·N PLANAR EPII AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION

FREE-AIR TEMPERATURE
AVERAGE ON-5TATE CURRENT DERATING CURVE

CASE TEMPERATURE
AVERAGE ON-5TATE CURRENT DERATING CURVE
450

«
E
.!.c:
~

"

250r-----,------r-----.----~----_,

400

'\.

~ 1\

350

N

0

OJ

CO>

~>

«
E

300
180°
250 r-Conduction
Angle

"E
::;;
"I

--F"

50

\

•

i

t

~ 100
E

~\

50

75

-

Conduction
Angle

o

I------f------+-----"od--'''r--l-----j

"

E

'j(

~"

100

50

~

~

25

il

1------f--300....---+----_j_

~ 150

~

o

200

:;

u

'\.\

100

o

;

180°

Conduction
Angle

'j(

">

«

~\

200
150

0°

~

u

=

«

E

E 0.2
'j(

::;;"

I 0.1

~

c..';i

o

V/

V

o

~

Y

0.1

0.2

0.3

0.4

0.5

IT1av)-Average On-5tate Current-A
FIGURE4

971

7-30

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TlC35, TIC36
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-5TATE VOLTAGE

2.0

PEAK ON-5TATE VOLTAGE

vs

vs

PEAK ON-5TATE CURRENT

PEAK ON-5TATE CURRENT
2.0

b
ili
T A =-55 Clllll 4>", I1.361IIIlb
X 10
E;;;>10 keV
(Reactor Spectrum)
See Note 7

nl/2 /

=j

t

1.5

~

~
o
:"i
~

/'

-~
......

1.0

..

>I

'"

V

I , , "

111111

1.5

T A =25°C
E ;;;>10 keV
(Reactor Spectrum)
See Note 7

f

/

V

~

A=o

!

-~

I:

,/

....

".

VV
4>=0-

-~

~0.5

.J" 0.5

>

o
0,01

0.04

0.1

0.2

2

0.4 0.7 1

o

4

0.01

0.04

0.1

FIGURE5

FIGURE 6

PEAK ON-5TATE VOLTAGE

PEAK ON-5TATE VOLTAGE

vs
NEUTRON FLUENCE
2.0

2.0
TA = 125°C
E;;;>10key

J•

111111

I I

specynn

1.5

0

>

,/

...... 10-'1-

V

/

1.0

0

I

a..
I

~ 0.5

~

1-'''''
,/

>

J1

TA =-55 C

(Reactor
See Note 7

4> = 1.36 X 1015 n/cm 2

....

0.4 0.7 1

ITM -Peak On-5tate Current-A

PEAK ON-5TATE CURRENT

>

0.2

ITM -Paak On-5tate Current-A

vs

I:

'2

81
a..
I

:;;

i"
CIjI

V""

~

1.0

0

"U n/cm/
V

4> = 1.36 X 10

---

V

I
TA = 25°C

'III

V

TA = 125°C

r...

~ ~'"

2

4

•

J
'!

...... i-'" 4>=0
ITM=IA
E ;;;>10 keV (Reactor Spectrum)
See

o
0,01

0.04

0.1

0.2

0.4 0.7 1

.2

~otn I I I111

ITM -Peak On-5tate Current-A
FIGURE 7
NOTE:

7.

I I I

1014
1015
4> -Nautron Fluence-n/cm 2

4

FIGURE 8

These parameters must be ~8asured using pulse techniques. "tw
contacts, separate from the current-carrylng contacts, are used.

=

300 ,",S, duty cycle ~ 2%. Volt8ge~sensing

971

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •

DALLAS, TEXAS 75222

7·31

TYPES TI(35, TIC36
P·N·P·N PLANAR EPITAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
STATIC OFF-STATE CURRENT

GATE FORWARD VOLTAGE

vs

vs

NEUTRON FLUENCE

GATE FORWARD CURRENT

10-4

2.0
IA =0
1.8

10-5

>

1

10-6

~

10-7

~

1.6

>

~r::

1.2

...a

1.0

5

0.8

o

.,"

u

~

;
:s

10-8

II I I I III

'''~'

J

TA =-55 C
IIiHill IIJI
E ;;;. 10 keV (Reactor Spectrum)
Sea Note 7

I I III

,

C!l

I... 0.6

1M

<1>= 1.36 X 10 '5 n/cm 2

1.4

./ ~JJ

""'"

/

~=O

to-

C!l

_0

>

10-9

o. 2
o

10-10

'0 '5

10"

0.4

0.01

•

GATE FORWARD VOLTAGE

.

IA=O"1l

vs

~::r-~::~25°C I !U!!~ 1++

111111111 I U

,UIIIJI~ IIJ.I

>
'E

1.2

...

1.0

 = 1.36 X '0 '5 n/cm 2

0

~

0

5

0.8

I... 0.6

>

0.4

V r-=O

..-

C!l

C!l

>

I III

See Note 7

40 100

GATE FORWARD CURRENT

I- TA =25°C
1.6 I- E ';;;' 10 keV (Reactor Spectrum),

1.4

10

GATE FORWARD VOLTAGE

2.0

f

4

FIGURE 10

GATE FORWARD CURRENT

>I

0.4

FIGURE 9

vs

1.8

0.1

IGF-Gete Forward Current-mA

",-Neutron Fluence-n/cm2

I

i

E ;;;. 10 keV (Reactor Spectrum)
1.6 r- See Note 7 '-t"-H'11I1HiIIlit1-I-rlt-lrtttttt--t-+-ll+tttH

11tttttt--++t+ttttI
II IHftlilliI-+-1++

1.4 1-++++tft!t---1-+++

~

1.2 1-+-I-++If++fI--+-++ = 1.36 X 10 '5 n/cm 2

)

1.0

III!!!!

I I III Ill!

<1>= t.04 X 1014 I

...

5 0.8

~\. '"

IIlk::'

~~

C!l

1:5 0.6 1-+-I-++HftI-f-++++tttt-~-t~--t;;,j!&lI11"'F-=t-o-ttttttltl

I->

0.2

~.j!mlllmttnn~

0.2~

0.4

o
0.01

0.1

0.4

,4

10

40 100

IGF-Gate Forward Current-mA

IGF-Gate Forward Current-mA

FIGU'RE 11

FIGURE 12

NOTE: 7. These parameters must be meaalred using pulse techniques. tw = 300 #,S, duty cycle <2%. Voltage-sansing contacts saparate
from the current-carrying contacts, Bre used.

971

7·32

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

TYPES TIC35, TIC36
P·N·P·N PLANAR EPn AXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT

GATE TRIGGER VOLTAGE

vs

VB

NEUTRON FLUENCE

NEUTRON FLUENCE
1.4

V

1.2

tp(g) ;;;0 20 !'.

AA =
RL = 1000

RGK

= 1 kO

E ;;;010 keV (Reector Spectrum)
I I I
TA = _55°C

10-6~~~

0.2

• • • •

10-7~~~~~~~~lla~~llll~~llllW
10 1
1014
10 15

P-'i""'1"-'t'-hmf--+--+-rl-t-JH-tI--+-+-i

~0~1~3~~~~~7.~~~~~1~0~15~~4~X~1015
-Neutron F luence-n/cm 2

-Neutron F luence-n/cm 2

FIGURE 14

FIGURE 13

HOLDING CURRENT

CRITICAL RATE OF RISE OF OFF-STATE VOLTAGE

VB

vs

NEUTRON FLUENCE

NEUTRON FLUENCE

100
RL -100 0
40

«
E
.!.

10

:J

4

~

u

...c

r-:Vo

RGK = 1 kO

1111
I
E;;;o 10 keV (Reeetor Spectrum)

~

55°C'

j

200

'0
.11

100

'0

70

II:

40

"fi
.1.

Values at <1>.- 0

0.1 12
10

~0

e

TA -125°C
0.4

11111111
1013

9
.

,

~

I

>

1015
-Neutron Fluence-n/cm2

10 14

r-: E;;;o 10 keV (Reeetor Spectrum)

IJ

y

II:

TA = 25"C

IIII 1

_'r.

TA = 25°C

s..

.AI
~

Rated Vo

RGK = 1 kO

~
.-:~

:t
I

T..., -

•

1016

"

20

I"

/
I--" ~
~ Value at:. = 0

1013

1014

-Neutron Fluence-n/cm2

FIGURE 15

FIGURE 16

971

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX

!Sou •

DALLAS, TEXAS 75222

7·33

TYPES TI(35, TlC36
P·N·P·N PLANAR EPIIAXIAL SILICON REVERSE·BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE-CONTROLLED TURN-ON TIME

vs
NEUTRON FLUENCE
70

0

c:
I
E
j::
c:

"

60

r--,

--'
f- Value at  = 0

50

q
E 40

..."

".!!
gc:

30 I-VAA = 10V

~

20 t-IG = 100mA

~

RL = 10n

9~

tp(g) ,;;;. 20 I'S

~'" 10

f- TA = 25°C
E;;;' 10 keV (Reactor Spectrum)

I I 1111111

'1

I I

1014

1015

·-Neutron Fluence-n/cm2

FIGURE 17

•

ANODE-TO-GATE CAPACITANCE

vs
NEUTRON FLUENCE

40
- Value at  = 0

/

r-- ..

......

VAG =0
IK=O
t-f=1MHz
TA = 25°C
E

i

10

tr

,(iITrror SPj'ij)

1014
1015
-Neutron Fluence-n/cm 2

FIGURE 18

PRINTED IN U.S.A

7·34

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !iQ12 •

DALLAS, TEXAS 75222

11 (annat assume any responsibility for any circuits shown
or represent thai they ore free from patent infringement.

971

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SERIES TIC39
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS

•

2ADCSCR

•

30V to 400 V

•

20 A Surge-Current

•

Max IGT of 200 /lA

mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE
THE GATE TERMINAL IS CONNECTED TO A P REGION

0.240
0.260

I I

••

""------==,==:I==-1III

:1

0.5 MIN
TEMPERATURE
MEAS. POINT

2- GATE

0.210
0.190

3-ANODE

+-*u

I-CATHODE

ALL DIMENSIONS ARE
IN INCHES
UNLESS OTHERWISE
SPECIFIED

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE

absolute maximum ratings over operating case temperature range (unless otherwise noted)
TIC39Y

TIC39F

TIC39A

TIC398

TlC39C

Repetitive Peak Off-State Voltage, VDRM (See Note 1)

30

50

100

200

Repetitive Peak Reverse Voltage, VRRM

30

50

100

200

300
300

Continuous On-Stete Current at (or below)

2

80°C Case Temperature (See Note 2)
Average On-State Current (180" Conduction Angle)

TlC39D UNIT
400

V

400

V
A

1.25

A

Surge On-State Current (See Note 4)

20

A

Peak Positive Gate Current (Pulse Width.;;; 300 I's)

0.2

A

Peak Gate Power Dissipation (Pulse Width';;; 300 I's)

1.3

W

0.3

at (or below) 80°C Case Temperature (See Note 3)

Average Gate Power Dissipation (See Note 5)
Operating Case Temperature Range

-40 to 150

W
°c

Storage Temperature Range

-40 to 175

°c

230

°c

Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

•

1. These values apply when the gate~cathode resistance RGK = 1 kn.
2. These values apply for continuous d~c operation with resistive load. Above

aooc derate linearly to 150°C case temperature at the
rata of 2B.6 mAt C_
3. This value may be applied continuously under slngle~phase 60-Hz half-sine-wave operation wIth resistive load. Above aooc derate
linearly to 150°C case temperature at the rata of 17.9 mA~C.
4. This value applies for one 60~Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-5tate current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE

sox

5012 •

DALLAS. TEXAS 75222

7-35

SERIES TIC39
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25"C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
IORM Repetitive Peak Off-5tate Current
IRRM Repetitive Peak Reverse Current

Vo = Rated VORM,

RGK = 1 kn, TC= 150°C

VR = Rated VRRM,

IG-O,

TC= 150 C

MIN TYP MAX UNIT
400

IGT

Gate Trigger Current

VAA=6V,

RL - 100 n,

tp(g) ;;. 20",s

VGT

Gate Trigger Voltage

VAA-6V,

RL - 100 n,

tp(g) ;;. 20",s

RGK= 1 kn, Initiating ITM - 50 mA,

Holding Current

VAA-6V,
TC= -40°C
VAA=6V,

RGK = 1 kn, Initiating ITM - 10 mA

ITM- 3.9 A,

RGK;;' 1 kn, See Note 6

2.5

IT-2A,

RGK;;' 1 kn, See Note 6

1.75

Vo = Rated VORM,

RGK= 1 kn, TC-l50 C

IH

VTM Peak On-5tate Voltege
Static On-State Voltage
VT
dv/dt Critical Rate of Rise of Off-5tate Voltage

",A

1 mA
60 .200
0.4

0.6

1
10

",A
V
mA

5

5

V
V
V/",s

NOTE 6: These parameters must be measured using pulse techniques. tw = 300 /Js, duty cycle <; 2%. Voltage-sensing contacts. separate from
the current~carrvjng contacts, are located within 0.125 inch from the device body.

thermal characteristics
PARAMETER
R8JC Junction-to-Case Thermal Resistance

•

PRINTED IN U.S.A.

7-36

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX !l012 •

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS

SllECTt THYRISTORS:\:
600 mA DC • 30 thru 200 VOLTS
Rugged, One-Piece Construction with Standard TO-1S 100-mil Pin-Circle Configuration
mechanical data
These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly
mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without
deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting
MIL-STO-202C method 106B. The thyristors are insensitive to light.

1r

0.015

1- CATHODE

(NOTE A)

0.18·1
"'0.005

I

___L___-I_-f:'~

o.l00T.P.

z~=D:A' z~(-EJ=2-~
0.500 MIN.

--J

2. GATE

0.017

:!::-::

DIA.

3 LEADS

co

3· ANODE

Ol
Ol

NOllS: A. Lead diameter is not controlled in this area,
B. Lead, having maximum diam.r (0.019) shall be within 0.007 of their true poIitions
measured il'! the gaging plane 0.054 b.low the _'in9 plan. of the deviC8 relatiVII to
a maximum-diameter package.
C. All dimsMianl Off! in inches.

THE GATE IS CONNECTED TO A P REGION

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TIC44 TIC45 TIC46 TIC47 UNIT
Static Off-State Voltage. V 0 (See Note 1)

30

60

100

200

V

Repetitive Peak Off-State Voltage. VDRM (See Note 1)

30

60

100

200

V

Static Reverse Voltage, VR (See Note 1)

30

60

100

200

V

Repetitive Peak Reverse Voltage, VRRM (See Note 1)

30

60

100

200

Continuous or RMS On-State Current at (or below) 55°C

V

600

mA

300

mA

430

mA

Surge On-State Current (See Note 5)

6

A

Peak Negative Gate Voltage

8

V

Peak Positive Gate Current (Pulse Width'; 3001's)

1

A

Peak Gate Power Dissipation (Pulse Width'; 3001's)

4

W

Operating Free-Air Temperature Range

-55 to 125

°c

Storage Temperature Range

-55 to 150

°c

260

°c

Case Temperature (See Note 2)
Continuous or RMS On-State Current at (or below) 25°C
Free-Air Temperature (See Note 3)
Average On-State Current (180° Conduction Angle) at (or below) 55°C
Case Temperature (See Note 4)

Lead Temperature 1/16 Inch from Case for 10 Seconds

NOTES:

•

1.
2.
3.
4.

These values apply when the gate-cathode resistance RG K '" 1 kil.
These values apply for continuous d-c operation with resistive load. Above 55°C derate according to Figure 5.
These values apply for continuous d-c operation with resistive load. Above 25°C derate according to Figure 6.
This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C derate
according to Figure 5.
5. This value applies for one GO-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
tTrademark of Texas Instruments
*U. S. Patent No. 3.439,238

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

7·37

TYPES TIC44, TIC45, TIC46, TlC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

MIN MAX UNIT

ID

Static Off-State Current

VD = Rated VD, RGK = 1 kO,

TA=125°C

50

p,A

IR

Static Reverse Current

VR - Rated VR, RGK - 1 kO,

TA-125°C

50

p,A

IGT

Gate Trigger Current (See Note 6)

VAA-6V,

RL-l000,

tp(g) ;;. 20p,s

200

p,A

VAA=6V,

RL = 1000,

tp(g);;' 20p,s

0.8

VAA=6V,

RL=1000,

tp(g) ;;. 20 p,s, TA = 125°C 0.2

VGT Gate Trigger Voltage (See Note 6)
IH

Holding Current

RL -1000,

RGK -1 kO

VT

On-State Voltage

IT-300mA,

RGK;;'l kO, See Note 7

NOTES:

5
1.4

V
rnA
V

6, When measuring these parameters, a 1-kn resistor should be used between gate and cathode to prevent triggering by random

noise.
7. This parameter is measured using pulse techniques. tw

=

1 ms, duty cycle

~

1%.

switching characteristics at 25°C free-air temperature
PARAMETER

•

TEST CONDITIONS

tgt

Gate-Controlled Turn·On Time

VAA=30V,
See Figure 1

RL = 50 n,

RG = 20 kn, Vin=20V,

tq

Circuit-Commutated Turn·Off Time

VAA-30V,
See Figure 2

RL - 50n,

IRM-l A,

TYP

UNIT

3.5

p,s

6.8

p,s

MAX

UNIT

thermal characteristics
PARAMETER
R8JC Junction·to-Case Thermal Resistance
R8JA Junction·to·Freo·Air Thermal Resistance

75
275

°C/W

1271

7-38

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION

V2 0 ---.I"11-_ _ _ _ _ _ _---'r"\....
V1 0

r"L..--

_0

~
--

INPUT

Vin

10%

LC

I

:.- tgt

__
I

OUTPUT

'\;. 90%

~

VOLTAGE WAVEFORMS

WAVEFORMS

See Notes A, B, and C

OUTPUT

•

THYRISTOR
UNDER TEST

TEST CIRCUIT

TEST CIRCUIT
FIGURE 2-COMMUTATING TURN-OFF TIME

FIGURE 1-TURN-ON TIME
NOTES:

A. Vi" is measured with gate and cathode terminals
connected as shown and anode terminal open.
B. The input waveform of Figure 1 has the following

characteristics: tr.s;;;; 40 ns, tw;;' 20

~s.

C. Waveforms are monitored on an oscilloscope with the

following

characteristics:

tr

< 14 ns,

Rin ~ 10 MO,

NOT~S:

E. Pulse generators for V, and V2 are synchronized to
provide

an

anode

current

waveform

with

the

following characteristics: tw = 50 to 300 Ils, duty
cycle = 1%. The pulse widths of V, and V2 are
;. 10 ,",s.

F. Resistor Rl is adjusted for IRM = 1 A.

Cin .;;; 12 pF.
D. RG includes the total resistance of the generator and

the external resistor.

1271

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

7-39

TYPES TIC44, TIC45, TIC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM AVERAGE ANODE POWER DISSIPATED
vs
AVERAGE ON-STATE CURRENT

The minimum heat-sink requirements may be calculated for anyon-state current, heat-sink combination
by the following procedure:

~

I

'0

1_ Determine worst-case power dissipation from
Figure 3_

~

i3.

.~

0

2_ Calculate maximum allowable case-to-free-air
thermal resistance by use of the equation_

i;

;:
0

"-

"

'0
0

ReCA =

c:

-ReJC

«

0.5

\'l,
~

g;

where: TJ = Junction temperature

«
E
E
0.3 t---HW+--+-+---+---j---t----i

T A = Free-air temperature

'x~~-:1-=-80::;0>+----~r-----+--

c.> 500 f-----+-----j----...3i"d--

~

cfI=180°

,

r-----.....:----+----+--:'-..J.....I.-~::rl
0° w-fIl-J 80°
Conduction
Angle

o 400

iii

 ~ 120°

~120°

~

o" 200 1===~:t--..;~d-~~-+--~f-----4
 90°



Cf(

~

~

300

<1>=600

~ 150F=~~~~~~~~~~~---+----~

200

 = 30°

.~ 100~::::~~~~~~~~~~~----~

E

.~

:;;:'"

~

.f'"

.f

-k 100 f-----+----j------+-----'~~

-k.

~

30°

50~-----r----~r-----+---~~..

0 0...------2'-5------'50----7....5---10
...0---'-125
TC-Case Temperature-0 C

75
100
25
50
T A-Free-Air Temperature-OC

FIGURE 5

FIGURE 6

125

•

TYPICAL CHARACTERISTICS

STATIC OFF-STATE CURRENT

STATIC REVERSE CURRENT
vs
FREE-AIR TEMPERATURE

v.
FREE-AIR TEMPERATURE

10
0.4

1
c

~::J

c.>
$
!!

~ VR
Rated VR
4 : : RGK 1 kU

VD Rated VD
RGK 1 kU

I

V

""

~
c

~
::J

0.4

L

c.>

0.04

~
:0:
"u

./

~

V

u

10.01

V

.'!!"

Vl

L

0.1
0.04

./

Vl

I

I

o
-

/

~

0.1

o

.~

I

I

!!-

0.004

/'

0.01
0.004

0.001
-75

-50

0

25
50
75
100
T A-Free-Air Temperature-OC

-25

0.001
-75

125

-50

-25

0

25

50

75

100

125

T A-Free-Air Temperature-OC

FIGURE 7

FIGURE8

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

7-41

TYPES TIC44, TIC45, TlC46, TIC47
P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE T.HYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER CURRENT

GATE TRIGGER VOLTAGE

VS

VS

FREE-AIR TEMPERATURE
1000
400

VAA 6V ::
RL 100n:
tp(g) ., 20 1"RGK = 1 kn
See Note 6 ::

....

"

« 100

1 40
t:

::-

~

"

FREE-AIR TEMPERATURE

0.8

"

U

..

>
I

"
l!l

0.6

........

0

0.5

~'"

0.4

I

>

-25
o 25 50 75
T A-Free-Air Temperature-DC

-50

100

o

-75

125

-50

-25
0
25
50
75
TA-Free-Air Temperature-OC

GATE-CONTROLLED TURN-ON TIME
vs

5

4

~
u" 3

'"

RL=loon
RGK = 1 kn

,

\

t:

'C

2

J:

o

-75

GATE CURRENT

10

6

I

125

When measuring these parameters, a 1-kO resistor should be used between gate and cathode to prevent triggering by random noise.

vs

J:

100

FIGURE 10

HOLDING CURRENT

0

i'

f-

FREE-AIR TEMPERATURE

«
E
.Lt:

'- ......

<:l 0.2

FIGIJRE9

•

"'-.

0.1

-75

6~

"

l!l 0.3
'"

"

0.1

NOTE

..........

VAA=6V
RL = lOOn
tp(g) ., 20 IJS
RGK = 1 kn
See Note 6

<:l

"
0.4

..........

C>

>
:;;C>

'"

•

0.7

-50

'"

-25

o

VAA=30V
RL = 50 n
tp(g) ., 20 IJS
TA = 25°C

'"

1"'-.
~ r-....
.... r-.

..........

............

25

r--.....

50

75

r--.... -......

100

125

T A-Free-Air Temperature-°c

FIGURE 11

o

0.2

0.7
0.4
IG-Gate Current-rnA

2

FIGURE 12

PRINTED IN U.S.A

7-42

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN ANO TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIC67, TIC68
P-N-P-N PLANAR EPITAXIAL SILICON
REVERSE-BLOCKING TRIODE THYRISTORS
RADIATION-TOLERANT THYRISTORS
20 A DC • 60 and 80 VOLTS
•

Max IGT of 40 rnA after 1 X 10 14 Fast Neutrons/cm 2

•

Max VTM of 1.5 V at ITM of 20 A after 1 X 1014 Fast Neutrons/cm 2

description
The TIC67 and TIC68 thyristors offer a significant advance in radiation-tolerant-device technology. Unique construction
techniques produce thyristors which maintain useful characteristics after fast·neutron radiation fluences through
1014 n/cm2,

."

.fct
o

mechanical data

m
n
m

:s:

m

ALL TERMINALS ARE INSULATED FROM THE CASE

m

JJ

ALL JEDEC TO-59 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES:

A. Within this dimension, case diameter may vary,
B. Position of terminals with respect to hexagon is not controlled.
C. The case temperature may be measured anywhere on the seating plane within

0.125 inch of the stud.
D. All dimensions are in inches unless otherwise specified.

absolute maximum ratings over operating case temperature range (unless otherwise noted)
Continuous Off-State Voltage, VD
Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Continuous Reverse Voltage, VR
Repetitive Reak Reverse Voltage, VRRM
Nonrepetitive Peak Reverse Voltage, VRSM (See Note 2)
Continuous On·State Current at (or below) 55°C
Case Temperature (See Note 3)
Continuous On-State Current at (or below) 25°C
Free~Air Temperature {See (\Jote 3)
Average On-8tate Current (180° Conduction Angle)
at (or below) 55°C Case Temperature (See Note 4)
Surge On·State Current (See Note 5)
Peak Positive Gate Current (Pulse Width'; 300/ls)
Peak Gate Power Dissipation (Pulse Width'; 300 /ls)
Average Gate Power Dissipation
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/16 I nch tram Case for 10 Seconds
NOTES:

TlCS7

TIC68

UNIT

60
60

80
80

V
V

60
60
60

80
80
80

V
V
V

20

A

1.25

A

12.5

A

75
3
5
1
-55 to 125
-65 to 200
260

A
A
W
W
°c
°c

•

°c

1. These values apply when the gate-cathode resistance RG K = 1 kn.
2. These values apply for a 5-ms rectangular pulse when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

3. This value applies for continuous doc operation with resistive load. Derate linearly to 12SoC case temperature at the rate of 0.286
Ate or 12SoC free-air temperature at the rate of 12.5 mA/oC.
~
4. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 5SoC derate
linearly to 12SoC case temperature at the rate of 0.179 A/C.
5. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7-43

TYPES TIC67, TlC68
P-N-P-N PLANAR EPITAXIAL SILICON
REVERSE-BLOCKING TRIODE THYRISTORS
electrical characteristics at 25° C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

IORM Repetitive Peak Off-8tate Current
IRRM Repetitive Peak Reverse Current

MIN TYP MAX UNIT

Vo = Rated VORM.

RGK= 1 kn. TC= 125°C

100 p.A

VR = Rated VRRM.

RGK-l kn. TC= 125°C

500

p.A

IGT

Gate Trigger Current

VAA=6V.

RL=l00n.

tp(g) .. 20p.s

VGT
IH

Gate Trigger Voltage

V AA = Rated VORM. RL = 100 n.

tp(g) .. 20p.s

Holding Current

VAA-6V.

RGK= 1 kn. Initiating ITM - 100 mA

20 mA

VT

Static On-State Voltage

IT- 20A.

RGK" 1 kn. See Note 6

1-5

ITM-39A.

RGK" 1 kn. See Note 6

3

Vo - Rated VORM.

IG-O

VTM Peak On-State Voltage
dvfdt Criti~al Rate of Rise of Off-8tate Voltage

20 mA
1

V
V
V
Vfp.s

100

post-irradiation electrical characteristics at 25° C case temperature
TEST CONDITIONS

PARAMETER
IGT

Gate Trigger Current

VAA=6V.

RL = 100 n.

VT

Static On-8tate Voltage

IT=20A.

See Note 6

tp(g) .. 20 ns

RADIATION FLUENCEt
1 X 1014 nfcm2
1 X 1014 nfcm"

MAX UNIT
40

mA

1.5

V

tRadiation is fast neutrons (n) at E;;;;' 10 keV (reactor spectrum).

thermal characteristics

•

PARAMETER
R8JC

Junc~ion-to-Case

MAX UNIT

Thermal Resistance

2.33

R8JA Junction-to-Free-Air Thermal Resistance
NOTE 6: These parameters must be measured using pulse techniques. tw

87.5

= 300 p.s,

°CIW

duty cycle'" 2%. Voltage-sensing contacts, separata from

the current-carrying contacts, are located within 0.125 inch from the device bOdy_

PRINTED IN U.S.A.

7-44

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SERIES TIC106
P-N-P-N SIL ICON REVERSE-BLOCKING TRIODE THYRISTORS
a""

.5ADC

c:m
r-:r:I
r-mm

• 30 Vto400V

---I
z-

• 30 A Surge-Current

0°
.en

• Max IGT of 200 p.A

r-

--I'"

z!:l

C

ill

....

mechanical data
THE ANODE 15 IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THE GATE TERMINAL IS CONNECTED TO AP REGION
MECHANICAL INTERCHANGEA81L1TV OF TIC106

PLASTIC PACKAGE WITH TO-66 OUTLINE

THISPORTIONOFLEA~ 1-~1
FREE Of FLASH
I
II

CATHODE_~."O
A~~~~:::::
--0
0.380
."0 I I
-I L 0.2to
Q.1iii---i r-- 0.1351 r o.i9O
0""100

0.018 3 LEADS

o.~

•

0.035
0.029

~:~

r---t-

0.375
0.355

0.190

{0:165

CJ~.~tf
M46

CASE T£MPERATURE
MEASUREMENT POINT

~:~:~ DIA
0.060
0.0<0
ALL DIMENSIONS ARE IN INCHES

RAD (2 PLACES)

absolute maximum ratings over operating case temperature range (unless otherwise noted)
TIC106Y

TIC106F

TIC106A

TIC106B

TIC106C

TIC1060

UNIT

Repetitive Peak Off-State Voltage, VORM (See Note 1)

30

50

100

200

300

400

V

Repetitive Peak Reverse Voltage, VRRM

30

50

100

200

300

400

V

•

Continuous On-State Current at (or below)
80°C Case Temperature (See Note 2)

5

A

3.2

A

Average On-State Current (180° Conduction Angle)
at (or below) 80°C Case Temperature (See Note 3)
Surge On-State Current (See Note 4)

30

A

Peak Positive Gate Current (Pulse Width';;; 3001's)

0.2

A

Peak Gate Power Dissipation (Pulse Width';;; 3001's)

1.3

W

Average Gate Power Dissipation (See Note 5)

0.3

W

Operating Case Temperature Range

-40 to 110

°c

Storage Temperature Range

-40 to 125

°c

230

°c

Lead Temperature 1/16 I nch from Case for 10 Seconds
NOTES:

1. These values apply when the gate--cathode resistance RG K = 1 kfl.
2. These values apply for continuous dooe operation with resistive load. Above 80°C derate according to Figure 3.
3. This value may be applied continuously under single-phase GO-Hz hatf-sinewwave operation with resistive load. Above 80°C derate
according to Figure 3.
4. This value applies for one 60-Hz half-sine-wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
5. This value applies for a maximum averaging time of 16.6 ms.

471

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE

sox

5012 •

DALLAS, TEXAS 75222

7-45

SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

IORM Repetitive Peak Off-State Cu rrent
IRRM Repetitive Peak Reverse Current
IGT

VR - Rated VRRM, IG -0,

Gate Trigg 10 IJ,s.
F. Resistor R1 is adjusted for I RM ~ 8 A.

471

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

7-47

SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM CONTINUOUS ANODE POWER DISSIPATED
vs
CONTINUOUS ANODE FORWARD CURRENT

AVERAGE ANODE
FORWARD CURRENT DERATING CURVE


c

!!.

3

Angle

2

:;;:'"

30

60

50

40

II

70

90

80

1/

10
7
1/

4

2

I

o

/

20

1,\f\

"E

·x

'>
'"
iL

/

40

'\ \

">

E

110°C

= 180°

E



a:
1

1

2

0.1
4

7 10

20

40

70 100

1

2

4

7

10

20

40

70 100

Consecutive 60-Hz Half-Sine-Wave Cycles

Consecutive 60-Hz Half-Sina-Wave Cycles

FIGURE 6

FIGURE 5

NOTE 7: This curve shows the maximum number of cycles of sl,Jrge current for whh;h gate control is guaranteed provided the device Is Initial IV

at nonoperating thermal equilibrium.
471

7-48

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE SOX 5012

•

DALLAS, TEXAS 15222

SERIES TIC106
P-N-P-N SIL ICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
GATE TRIGGER VOLTAGE

GATE TRIGGER CURRENT

vs

vs

CASE TEMPERATURE

CASE TEMPERATURE
400

r

I
I
VAA=6V
RL = 100f!
RGK = 1 k f!
tp(g) ~ 20 j.tS

VAA=6V
RL=100f!

«

200

r

1c:

~ 100

"

tp(g) ~ 20 j.ts

Iii

0

......

70

........

r-..

40

I

......... ......

l-

S'

-50

o

-25

25

~

0.4

50

100

75

...............
...............

""'" r-...... "'" r......

0.2

o

125

-50

-25

0

FIGURES

vs

GATE FORWARD CURRENT

CASE TEMPERATURE

9
8
7

«

5

~

4

"01

3

E

2

,...,

~

()

.5
0

0.7

"J:
I
::

t!l

004

(!l

>

VAA=6V
RGK = 1 kf!
Initiating IT = 10 mA

~

2

~~
~

0.2

0.1
0.10.4

•

6

LL

I

125

10

f:IA 0
7 rTC 25°C
See Not96
4

~
0

LL

100

HOLDING CURRENT

vs

"E

10"

75

FIGURE 7

"01

>

50

25

TC-Case Temperature-OC

10

19

o

Tc-Case Temperature-OC

GATE FORWARD VOLTAGE

>I

_

(!l

>

20

10

0.6

l'I-

......... r-.,.

(!l

>
8,

-

............

~'"

f'-....

~

"
10

...........:

t

...........

()

.ill

>I

0.8

1

24

10 20 40

100

400 1000

1
-50

-25

o

25

~

50

"'-

75

100

125

Tc-Case Temperature-OC

IGF-Gate Forward Current-mA

FIGURE 10

FIGURE9
NOTE 6: This parameter must be measured using pulse techniques.

tw = 300 ,",5. duty cycle < 2%. Voltage~ansing

contacts. separate from the

current-carrylng contacts, are located within 0.125 Inch from the device body ..

471

TEXASINCORPORATED
INSTRUMENTS
POST OPFleE BOX 5012 • DALLAS, TEXAS 75222

7·49

SERIES TIC106
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-5TATE VOLTAGE
YO

PEAK-ON-5TATE CURRENT
2.5
TC

~ 2~o~

See Note 6

>I

2.0

)

"'"
19

~

"

1.5

.~
c:

0

i""

1.0

~

I

:.

t

--~

-

0.5

o

0.1

0.2

0.4 0.7 1

2

4

7 10

20

40

ITM-Peak On-5tate Current-A
FIGURE 11

•

CIRCUIT-COMMUTATED TURN-OFF TIME

GATE-CONTROLLED TURN-ON TIME

VB

vs

CASE TEMPERATURE

GATE CURRENT
10

f-

"E

a

i=
c:

Q
E
::J

VAA=30V
Vin= 50V
RL = 6 IJ
RGK(eff) = 5 kIJ
tp(g) ;.. 20ILS
TC = 25°C
See Figure 1

I\,
\

6

i

g
c:

4

Q

E

::J

10

i

a

E
E

"'"

l!!
IV

J>

"E

i=
:t:

14 f- RL = 6 IJ
IRM",aA
12 I- See Figure 2

2

o

0.1

0.2

0.4

0.7 1

........

2

~

::J

1"--1'--

4

e

9J"
7 10

- - --

-

::J

~

'1'

JAA=IJOJ

f-

l-

'\

l-

16

.......

6
4
2

o

20

40

60

100

80

120

TC-Cese Temperature-OC

IG-Gate Current-rnA

FIGURE 13

FIGURE 12

NOTE 6: ThIs parameter must be measured using pulse technlques,t w "" 300 IJs, duty cycle <; 2%. Voltage..ynsing contacts, separate from the
current-carrylng contacts, are located within 0.125 inch from the device bodV..
PRINTED IN U.S.A

7-50

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

471

II (an"ot assume any responsibility for any circuits shown
or represent rhat they are free from porent infringement.

TEXAS INSTRUMENTS RES~VES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SERIES TlCn6, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS

•

8 A and 12 A DC

•

80 A and 100 A Surge Current

•

50V to 600 V

•

MAX IGT of 20 mA

mechanical data
THE ANODE IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
THE GATE TERMINAL IS CONNECTED TO AP REGION
MECHANICAL INTERCHANGEABILITY OF Tle116, T1CI21

PLASTIC PACKAGE WITH T0-860UTLINE

THLSPORTIONQFLEA~ I-~'=-l
I
J I
I
FREEQFFLASH

CA!~g~~=:~0
0420
GATE_
0380
I

0130
0110"

I

r-

~

-l L

o,:j5I

r

0.190

0105

~~~~

=",=)~,

r-t- ~~:

3LEAOS

~~--L
o.~

D:'095

0.510
(TO·66 DlMENSIONSI

{~.~:

O.05§""""Jf

0045

0035
0029

CASE TEMPERATURE
MEASUREMENT POINT

~.~:~ OIA
0060
0040
RAD {2 PLACESI

ALL DIMENSIONS ARE IN INCHES

absolute maximum ratings over operating case temperature range (unless otherwise noted)
SERIES SERIES
F Suffix

Repetitive Peak Off-State Voltage, VDRM (See Note 1)

Repetitive Peak Reverse Voltage, VRRM

TICl16

TIC126

50

50

A Suffix

100

100

B Suffix

200

200

C Suffix

300

300

D Suffix

400

400

E Suffix

500

500

M Suffix

600

F Suffix

50

600
50

A Suffix

100

100

B Suffix

200

200

CSuffix

300

300

D Suffix

400

400

E Suffix

500

500

M Suffix

600

600

UNIT

V

V

Continuous On-State Current at (or below) 7rfC Case Temperature (See Note 2)

S

12

A

Average On-State Current (lSrf .Conduction Angle) at (or below) 70° C Case Temperature (See Note 3)

5

7.5

A

Surge On-State Current (See Note 4)

100

SO

A

Peak Positive Gate Current (Pulse Width';; 300.us)

3

A

Peak Gate Power Dissipation (Pulse Width';; 300 .us)

5

W

Average Gate Power Dissipation. (See Note 5)

1

Operating Case Temperature Range

-40 to 110

W
°c

Storage Temperature Range

-40 to 125

°c

230

°c

Lead Temperature 1/16 Inch from Case for 10 Seconds

•

NOTES: 1. These values apply when the gate-cathode resistance RGK = 1 kn.
2. These values apply for continuous d--c operation with resistive load. Above 70°C derate according to Figure 3.
3. This value may be applied continuously under slngle·phase, 60-Hz, half-slne-wave operation with resistive load. Above 70°C derate
according to Figure 3.
4. This value applies for one 60-Hz half sine wave when the., device is operating at (or below) rated values of'peak reverse voltage and
on"5tate current. Surge may be repeated after the device has returned to original thermal equilibrium .
. 5. Thls,value applies for a maximum a~eraglng time o!.16.~.!f1S.

471

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

7-51

SERIES TICn6, TIC126
P-N-P-N SILICON REVERSE-BlOCKING TRIODE THYRISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
Repetitive Peak
IORM

Off-state Current
Repetitive Peak

IRRM
IGT

VGT

IH

Reverse Current

Gate Trigger Current

Gate Trigger Voltage

Holding Current

dvldt

•

Peak On--8tate Voltage
Critical Rate of Rise
of Off-8tate Voltage

MIN

TYP

MAX

UNIT

Vo = Rated VORM, RGK= 1 kn, TC= 110°C

All

2

mA

TC=110°C

All

2

mA

All

20

mA

VR = Rated VRRM, IG=O,
VAA=6V,

RL = lOOn,

tp(g);;' 20 ps

VAA-6V,

RL -loon,

RGK -1 kn,

tp(g) ;;. 20 ps,

TC= -4Q°C

VAA-6V,

RL= lOOn,

RGK = 1 kn,
RGK = 1 kn,

tp(g);;' 20

5

All

2.5

All

0.8

1.5

V

j.!S

VAA-6V,

RL=loon,

tp(g) ;;. 20 ps,

Tc=110°C

VAA=6V,

RGK = 1 kn, Initiating IT = 100 mA,

TC= -4Q°C

All

0.2

All

70

All

40

ITM =8 A,

RGK = 1 kn. Initiating IT = 100 mA
See Note 6

TICl16

1.7

ITM -12 A,

See Note 6

TIC126

1.4

Vo = Rated VO,

IG=O,

VAA-6V,
VTM

SERIES

TC=110°C

All

100

mA

V

VIps

thermal characteristics
PARAMETER
R8JC

Junction-to-Casa Thermal Resistance

R8JA

Junction-to-Free-Air Thermal Resistance

SERIES

SERIES

TICl16

TIC126

MAX

MAX

3

2.4

62.5

62.5

UNIT

°e/W

NOTE 6: This parameter must be measured uslng pulse techniques,. tw = 300 J.u, duty cycle'" 2%. Voltage-sansing contacts, separate from the
current--carrvlng contacts, are located within 0.125 inch from the davlce body.

471

7·52

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 715222

SERIES TIC116, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS

switching characteristics at 25°C case temperature

tgt
tq

TVP

TEST CONDITIONS

PARAMETER
Gate-Controlled Turn-On Time

VAA=30V, RL =6 n,
RGK(eff) = 100 n,
Vin=20V, See Figure 1

Circuit-Commutated Turn-Off Time

VAA= 30 V, RL -6n,
See Figure 2

IRM=10A,

UNIT

0.8

,,"'

11

,,"'

PARAMETER MEASUREMENT INFORMATION
V2 O~~---------------------~~
V10-"

n----

INPUT

IT

~

V·
on

0IR

10%

I

~ tgt ----01

I

OUTPUT

~

VT

VR

aLI

L[

~

f

--t 100- tq
WAVEFORMS
VOLTAGE WAVEFORMS

0.'

~F

to5~F

~ "---.,J~--4

IT

RL
See Note. A, B, and C

OUTPUT

•

v,

Generator Svnchronlzation

TEST CIRCUIT

TEST CIRCUIT
FIGURE 1 - GATE-CONTROLLED TURN-ON TIME
NOTES:

A.
B.
C.
D.
E.

FIGURE 2-CIRCUIT-COMMUTATED TURN-OFF TIME

Vin is measured with gate and cathode terminals open.
The input waveform of Figure 1 has the following characteristics: tr < 40 ns, tw ~ 20 1"5.
Waveforms are monitored on an oscilloscope with the following characteristics: tr < 14 ns, Rin ;;;, 10 MSl, Cin < 12 pF.
RGK(eff) includes the total resistance of the generator and the external resistor.
Pulse generators for V1 and V2 are synchronized to provide an anode current waveform with the following characteristics:
tw = 50 to 300 ,,"S, duty cycle = 1 %. The pulse widths of V 1 and V2 are;' 10 jJ.S.

F. Resistor R1 is adjusted for IRM J:l:j'10 A.

471

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE

sox

5012 •

DALLAS. TEXAS 75222

7-53

SERIES TICnl, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM CONTINUOUS ANODE POWER DISSIPATED

vs
CONTINUOUS ONoSTATE CURRENT

AVERAGE ON-8TATE CURRENT DERATING CURVE

~

16

/1\

I

~

~

~

~

$

.
f
>
..

"

~

2

10
7
4

>I

2

l!!

1
'0.7

..'"

(;

>
"E

~

.

~
CI

0.4

..

0.2

"

IL

CI

........

0.4

VAA=6V
'0.2 f--RL = 100n
RGK = 1 kn
f-- tp(g) ;. 20,""
1-

o
25
50
75
T c-Case T emperature-° C

100

-50

125

,

-25

i50

25

75

100

125

TC-Case Temperature-OC

FIGURE 7

FIGURES

GATE FORWARD VOLTAGE
vs
GATE FORWARD CURRENT

HOLDING CURRENT

•

vs
CASE TEMPERATURE
40

IA=O
TC=25°c

30

See Note6

20

I

.........

.!.c:

'-.

~

"
'"c:
'6

/

7

'0

4

:I:

0.1
0.07

'-.

10

0

I

l

VAA=6V
RGK = 1 kn
Initiating IT = 100 mA

E

---

I
~

CI

>

.....'"

I-

>

$

9'

r......

I

c(

~

0
IL

.............

.0.6

o
-25

...................

~

E

-50

r-....

co
co

IV

9'l-

-

0.04

2

J

0.02
0.Q1

0.1

0.4

4

10

40 100

1

400 1000

-50

-25

o

25

50

75

IGF-Gate Forward Current-mA

TC-Case Temperature-OC

FIGURE9

FIGURE 10

NOTE 6: This parameter must be measured using pulse

t.chniqu~.

100

125

tw = 300 ps, duty cycle <;; 2%. Voltage-sensing contacts, separate from the

current..earrylng contacts,. are located within 0.125 inch from the device body.

471

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 715222

7-55

SERIES TICn6, TIC126
P-N-P-N SILICON REVERSE-BLOCKING TRIODE THYRISTORS
TYPICAL CHARACTERISTICS
PEAK ON-STATE VOLTAGE

vs
PEAK ON-STATE CURRENT
2.5
TC=25'C
See Note 6
2.0

/

~

,/
y Vv

'"
!!l"

a

>

Series TICll

1.5

V

~

C(l

c
0
co

1.0

"""
0-

I

::;;
I-

>

Series TIC126

-

0.5

o
0.1

0.2

0.4 0.7 1

2

4

710

20

40 70100

ITM-Peak On-State Current-A
FIGURE 11

•

CIRCUIT-COMMUTATED TURN-OFF TIME

GATE·CONTROLLED TURN·ON TIME

vs

vs

GATE CURRENT

CASE TEMPERATURE
20

0.9

ji
"

E

0.8

j.:
c:

0.7

E

0.6

I---

Q
:J

--

I

18 _VAA=30V
RL=6n
16 _IRM=10A

r-- I--

./

12

~

~
0

~

0.5

10

0.4

8

0.3

C)

I

.9>

0.2
0.1

o
100

VAA=30V
Vin = IG X 100 n
RL =6n
RGK(eff) ;. 100 n
tp(g) ;. 20 I-'S,
TC = 25°C
200

/

V

14

V

V
./

I-

'0

/

V

.,.;'"

6
4

2
400

700

1000

o
o

25

50

75

100

125

150

Tc-Case Temperature-oC

IG-Gate Current-mA

FIGURE 13

FIGURE 12
NOTE 6: This parameter must be measured using pulse techniques. tw = 300 /Js. duty cycle
current-carrying contacts, Bre located within 0.125 inch from the device body.

OS;;;

2%. Voltage-senslng contacts, separate from the

PRINTED IN U.S A

7-56

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

471

TI (annot assume any responiibility for any drcuih shown
or represent Ihal they ore free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SERIES TlC205, TIC206
SILICON BIDIRECTIONAL TRIODE THYRISTORS
SENSITIVE·GATE TRIACS
•

2 A RMS (Series TIC205)

•

3 A RMS (Series TIC206)

•

100 V, 200 V, and 400 V VORM

description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off·state to the on-state by
either polarity of gate signal with Main Terminal 2 at either polarity.

o
n
m

m

mechanical data
SERIES
TIC205

s:

MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE CASE

III

m

:II

§

ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED

ALL JEDEC TO-39 DIMENSIONS ANDJ'!.DTES_ARE. APPLICABLE
SERIES
TIC206

MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TlC2lO6
PLASTIC PACKAGE WITH TO. OUTLINE

THISPORTIONOFlEA~ I-~-I
I

FREE OF FLASH

I

I

I

MAINTERMINAL1_~
MAIN

TERMI~\~=:

" .. I
ii"11o"-l
~~~~

t=!:
O.t,~

=:::==:~J'

..""

1TO-86 DIMENSIONS)

3LEADS

o:oii

~:

-0

L

~

-lL

O.1Zl

o:iii

r

~:.:

I

I·

CJ

"'.

G.1iO

•

{~

~.~-h

.

0045

iliii

::~:~ OIA

.....
ALL DIMENSIONS ARE IN INCHES

Q.iMO

RAD 12 PLACESI

absolute maximum ratings over operating case temperature range (unless otherwise noted)!t

Repetitive Peak Off-State Voltage, VDRM (See Note 1)
Full~Cvcle RMS On-State Current at (or below) 70°C Case Temperature, ITIRMS) (See Note 2)
Peak On-State Surge Current, Full-Sine-Wave, ITSM (See Note 3)

Peak Gate Current, IGM

SERIES

TIC205

TIC206

A Suffix

100

100

B Suffix

200

200

o Suffix

400

400

UNIT

V

2

3

A

20

20

A

;±1

±1

A

Operating Case Temperature Range

-40 to 110

°c

Storage Temperature Range

-40 to 125

°c

230

°c

Lead or Terminal Temperature 1/16 Inch from Case for 10 Seconds
NOTES:

SERIES

1. These values apply bidirectionally for any value of resistance between the gate and Main Termini'll 1.
2. This value applies for 50-Hz to 50-Hz fullMslneMwave operation with resistive load. Above 700 e derate linearly to 1100 e case
temperature at the rate of 50 mAfe for Series TIC205 and 75 mAte for Series TIC206.
3. This value applies for one 6o-Hz full sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

tAli v,?ltage values are with respect to Main Terminal 1.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 7!5222

7·57

SERIES TIC205, TIC206
SILICON BIDIRECTIONAL TRIODE THYRISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)t
TEST CONDITIONS

PARAMETER

SERIES

SERIES

TIC205

TIC206

UNIT

MIN MAX MIN MAX
Repetitive Peak
IDRM

IGTM

Off-5tate Cu rrent

Peak Gate Trigger Current.

VGTM Peak Gate Trigger Voltage

VDRM = Rated VORM, IG=O,
Vsuppl y = +12 vt
Vsupply - +12 VT,

RL = lOn,

Vsuppl y = -12 VT,

RL = lon,

Peak On-State Voltage

IH

Holding Current

o

±1

±1

tp(g)" 20 "s
tp(g) .. 20 "s

5

5

-5

-5

-5

-5

10

10

Vsupply - -12 V ,

RL = lon,

tp(g)" 20"s
tp(g) .. 20/ols

Vsupply = +12 vt,

RL = lon,

tp(g)'" 20".

2

2

Vsupply - +12 V ,

RL -lOn,

tp(g)" 20".

-2

-2

Vsupply = -12 vt,

RL = lon,

to(a)" 20"s

-2

-2
2

ITM= ±2.8A,

RL = lon, tp(g)" 20".
IG = 50mA, See Note 4

2

ITM= ±4.2A,

IG = 50mA, See Note 4

Vsupply = -12 vt,
VTM

RL = lOn,

TC=110°C

Vsupply = +12 vt,

IG=O,

Initiating ITM = 100 mA

Vsuppl y - -12 V ,

IG-O,

Initiating ITM - -100 mA

±1.9
±2.2
30

30

-30

-30

mA

mA

V

V
mA

t All voltage values are with respect to Main Tannlnal1.
NOTES:

4. This parameter must be measured using pulse techniques. 'tw <.; 1 ms, duty cycle <.; 2%. Voltage-sensing contacts, separate from
the current-carrying contacts, are located within 0.125 inch from the device body.
5. The triaes are triggered bV a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
RG= 100n,'w=20"s,tr O<; 15 ns,ttO<; 15ns,f= 1 kHz .

•

thermal characteristics
PARAMETER
RI/JC

Junction-to-Case Thermal Resistance

RI/JA

Junction-to-Free-Air Thermal Resistance

SERIES

SERIES

TIC205

TlC206

MAX

MAX

13.7

7.8

175

62.5

UNIT

°CIW

PRINTED IN U.S.A.

7-58

TEXASINCORPORATED
INSTRUMENTS
POST OFfI'lCE BOX 5012 •

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESEtlVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY'THE BEST PRODUCT POSSIBLE.

SERIES TIC215, TIC216
SILICON BIDIRECTIONAL TRIODE THYRISTORS

SENSITIVE-GATE TRIACS
3 A and 6 ARMS. 100 V, 200 V, and 400 V

description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off-state by either polarity of
gate signal with Main Terminal 2 at either polarity.

mechanical data
SERIES
TIC215

MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE CASE

ALL DIMENSIONS ARE
IN INCHES UNLESS
OTHERWISE SPECIFIED

SEATING
PLANE

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
SERIES MAIN TERMINAL 2 IS IN ELECTRICAL CONT~CT WITH THE MOUNTING TAB

TIC216

MECHANICAL INTERCHANGEABILITY OF TIC~8

Pt..ASTIC PACKAGE WITH TO_OUTLINE
THIS PORTION OF LEADS-t------t
FREE Of flASH

I

I

1-=-1
I
I

MAINTEAMINAL1_~'"
MAIN TERMINAL 2 _

II
iITiO --I r-

--' I..

01,.

~ 3 LEADS

o~

:----~

=:::==:~

0380
.

-0

.

GATE-

0.1361

if.'iOi

I

o,r,;-0 ....

r

0.375

0.210

G.1iii

0.190

•

1~1m5

::TT

0.035

ITO-88 DIMENSIONS)

iili2i

~~:~ DIA
0 ....

ALL DIMENSIONS ARE IN INCHES

D.Gii

RAD (2 PLACES)

absolute maximum ratings over operating case temperature range (unless otherwise noted),t

Repetitive Peak Off-5tate Voltage, VDRM (See Note 11
Full-Cycle RMS On-5tate Current at (or belowl 70DC Case Temperature, IT(RMSI (See Note 21

SERIES

TIC215

TIC216

A Suffix

100

100

B Suffix

200

200

D Suffix

400

400

UNIT

V

3

6

A

60
±1

A

Peak Gate Current, IGM

20
±1

Operating Case Temperature Range

-40 to 110

A
DC

Storage Temperature Range

-40 to 125

DC

230

DC

Peak On-5tate Surge Current, Full-5ine-Wave, ITSM (See Note 31

Lead or Terminal Temperature 1116 Inch from Case for 10 Seconds
NOTES:

SERIES

1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz to 6o-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110° Cease
temperature at the rate of 75 mAfe for Series TIC215 and 150 mAloe for Series TIC216.
3. This value applies far one 60-Hz full sine wave when the device is operating at (or below) rated values of peak reverse voltage and
on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

t All voltage values are with respect to Main Terminal 1.

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX S012 •

DALLAS, TEXAS 7&222

7-59

SERIES TIC215, TIC216
SILICON BIDIRECTIONAL TRIODE THYRISTORS
electrical characteristics at 25°C case temperature (unless otherwise noted)t
PARAMETER

TEST CONDITIONS

SERIES

SERIES

TIC215

TlC216

UNIT

MIN TYP MAX MIN TYP MAX
Repetitive Peak
IORM

Off-State Current

VORM

~

Rated VORM. IG

Vsupply ~ +12
IGTM

~

O.

TC~ 110°C

±2 mA

±2

vt.

RL~10n.

tp(g) ;;. 20 liS

5

5

Peak Gate

Vsuoolv-+12V.

RL~10n.

t[>Lg) ;;. 20 liS

-5

-5

Trigger Current

Vsuoolv - -12

RL-l0n.

to(Q) ;. 20 liS

-5

-5

Vsupply -

vt.
-12 vt.

RL -Ion.

tp(g) ;;. 20 liS

10

10

V Sll2P!y

+12 VT.

RL 10 n.
RL-l0n.

tp(g) ;;. 20 liS

2.2

2.2

tp(g);;' 20 liS

-2.2

-2.2

RL-l0n.

to(o) ;;. 20 liS

-2.2

-2.2

RL ~ Ion.
tp(g) ;;. 20/.ls
IG - 100 mAo See Note 4

3
±2

3

ITM- ±4.2A.
ITM ~ ±8.4A.

IG

~

IG

~O.

Peak Gate
VGTM Trigger Voltage

VTM

Peak On·State Voltage

IH

Holding Current

IL

Latching Current

Vsupply - +12 VT.
12 VT.
Vsuoolv
Vsupply ~ -12 VT.

Vsupply ~ +12

vt.

±1.7

100 mAo See Note 4
Initiating ITM

~

100 mA

Initiating ITM - -100 mA

Vsupply - -12 V •

IG -0.

Vsupply - +12 V •

See Note 5

50

vt.

See Note 5

-20

Vsupply - -12

30

30

-30

-30

50
-20

mA

V

V
mA
mA

t All voltage values are with respect to Main Terminal 1.
NOTES:

4. This parameter must be measured using pulse techniques. tw

< 1 ms,

duty cycle

~

2%. Voltage-sensing contacts, separate from

the current-carrying contacts, are located within 0.125 inch from the device body.

•

5. The triaes are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
AG = 100 on, tw = 20 p,s, tr ~ 15 ns, tf < 15 ns, f = 1 kHz.

thermal characteristics
PARAMETER
ROJC Ju nction~to~Case Thermal Resistance
Junction~to¥Free~Air Thermal Resistance

ROJA

SERIES

SERIES

TIC215

TIC216

MAX

MAX

8.6

5.1

175

62.5

UNIT

°C/W

PRINTED IN U.S.A.

7-60

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
8 ARMS • 200 V and 400 V
TRIACS
for
HIGH-TEMPERATURE, HIGH-CURRENT, and HIGH-VOLTAGE APPLICATIONS
• Typ dv/dt of 500 V/p,s at 25°C
description
These devices are bidirectional triode thyristors (triacs) which may be triggered from the off-state to the on-state by
either polarity of gate signal with Main Terminal 2 at either polarity.

mechanical data
MAIN TERMINAL 2 IS IN ELECTRICAL CONTACT WITH THE MOUNTING TAB
MECHANICAL INTERCHANGEABILITY OF TIC226
PLASTIC PACKAGE WITH TO·66QUTLINE

THISPORTIONOFLEA~ r~:::-1
I

FREE OF FLASH

I

I

I

MAINTERMINAL1_~'"

-0

MAIN TERMINAL 2 _
GATE___

'

""
I I-.J L
0.110---1 r- o.135'l I

~~:~

-

0.380

""
0190

"'"

3LEADS

~
~.~:

r---t-~ t~:~:

P'055=h
0.045

0035

CASE TEMPERATURE

0.029

MEASUREMENT POINT

o~~~ DlA
0:040

ALL DIMENSIONS ARE IN INCHES

RAD (2 PLACESI

absolute maximum ratings over operating case temperature range (unless otherwise noted) t
UNIT

I TIC226B

Repetitive Peak Off-State Voltage. VDRM (See Note 1)

I TlC226D

200
400

V

•

Full·Cycle RMS On-State Current at (or below)
8

A

Peak On·State Surge Current, Full-Sine-Wave, ITSM (See Note 3)

70

A

Peak On-State Surge Current, Half-Sine-Wave, ITSM (See Note 4)

80

A

Peak Gate Current, IGM

1

A

2.2

W

0.9

W

Operating Case Temperature Range

-40 to 110

°c

Storage Temperature Range

-40 to 125

°c

230

°c

85°C Case Temperature, IT(RMS) (See Note 2)

Peak Gate Power Dissipation, PGM, at (or below)
85°C Case Temperature (Pulse Width';; 200 I's)
Average Gate Power Dissipation, PG(av), at (or below)
85°C Case Temperature (See Note 5)

Lead Temperature 1/16 I nch from Case for 10 Seconds

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz to 60-Hz full-sine-wave operation with resistive load. Above 85°C derate according to Figure 2.
3. This value applies for one GO-Hz full sine wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
4. This value applies for one 60-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
5. This value applies for a maximum averaging time of 16.6 ms.
t All voltage values are with respect to Main Terminal 1.

971

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

7-61

TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)t

IORM

IGTM

PARAMETER
Repetitive Peak
Off-5tate Current

Peak Gate Trigger Current

VGTM Peak Gate Trigger Voltage

VTM

Peak On-5tate Voltage

IH

Holding Current

IL

Latching Current

dv/dt
dv/dt

Critical Rate of Rise
of Off-5tate Voltage
Critical Rate of Rise of
Commutation Voltage

TEST CONDITIONS
VORM = Rated VORM, IG=O
Vsupply - +12 vt,
Vsupply +12 vt,
Vsupply = -12 vt,
12Vt,
Vsupply
Vsupply +12 vt,
Vsupply - +12 vt,
Vsupply - -12 vt,
Vsupply - -12 vt,
ITM -±12A,
Vsupply - +12 vt,
Vsupply -12Vt,
Vsupply - +12 vt,
Vsupply = -12 vt,

MIN TVP MAX UNIT

TC=110DC

±2

RL lOn,
RL -lOn,
RL -lon,
RL -lon,
RL -lOn,
RL-l0n,
RL -lOn,

tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g) ;;. 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
tp(g);;' 20 J-IS
RL = lOn, tp(g);;' 20 J-IS
IG 100 mA, See Note 6
IG-O,
Initiating ITM - 500 mA
IG-O,
Initiating ITM - -500 mA
See Note 7
See Note 7

VORM = Rated VORM, IG=O,

15
-25

-30
75
0.9
2.5
-1.2 -2.5
1.2
2.5
1.2
±2.1
20
60
30 -60
30
70
-40 -70

TC= 110DC

VORM = Rated VORM, ITRM = ±12 A,TC = 85DC,
See Figure 3

50
-50
-50

500

mA

mA

V

V
mA
mA
V/J-Is

5

V/J-IS

t All voltage values are with respect to Main Terminal 1.

NOTES: 6. This parameter must be measured using pulse techniques. tw <; 1 ms, duty cycle

•

Il1O';;

2%. Voltage-sensing contacts, separate from the

current-carrying contacts, are located within 0.125 Inch from the device body.

7. The triaes are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:

AG = 100 n, tw = 20 J-Is, tr .;; 15 ns, tt .;; 15 ns, f = 1 kHz.

thermal characteristics
R9JC
R9JA

PARAMETER
Junction-to-Case Thermal Resistance
Junction-to-Free-Air Thermal Resistance

MAX

1.8
62.5

UNIT
DCIW

971

7-62

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
PARAMETER MEASUREMENT INFORMATION
The rate of rise of commutation voltage is defined as the slope of the line connecting the 10% and 63% test voltage
points.

The critical rate of rise of commutation voltage is the rate above which the device will not sustain the off·state
following conduction but will conduct current in the opposite direction in the absence of a gate·trigger signal. While
this failure to switch to the off-state is not detrimental to the thyristor, it does result in loss of control of power to the
load.

LOAD

60-Hz
SUPPLY
VOLTAGE

TEST CIRCUIT

SUPPLY
VOLTAGE

•

MAIN-TERMINAL
CURRENT
it

MAIN-TERMINAL
VOLTAGE
vd

GATE
CURRENT
VOLTAGE WAVEFORMS

FIGURE l-COMMUTATING dv/dt

NOTE A: The gate~current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed

so that the off-state-voltage duration is approximately 800 }Js.

471

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

7-63

TYPES TIC226B, TIC226D
SILICON BIDIRECTIONAL TRIODE THYRISTORS
THERMAL INFORMATION
MAXIMUM RMS ON-STATE CURRENT

MAXIMUM AVERAGE POWER DISSIPATED

vs

vs

CASE TEMPERATURE

RMS ON·STATE CURRENT

10

32

~

!!
.~

\
\
\
\

0

!
~

26

75

50

2.
20
16

V

~

E

:

o

/

See Note 8

<
~

o

TJ '" 110QC

Conduction Angle" 360°

28

!

/,v

}

\

125

o

150

V

V

V

f

\

100

12

L

V

o

10

TC-Case Temperature-QC

12

14

16

IT(RMS)-RMS On-5tate Current-A

FIGURE 2
SURGE ON·STATE CURRENT

FIGURE 3

vs
CYCLES OF CURRENT DURATION
100

NOTES:

TC" 8S"C

70

-

Figure 4.
See Note 9

9. The dashed curve shows the maximum number of

,
f-

8. For operation at current greater than 8 amps rms, see

cycles of surge current recommended for safe

-.....

See Note 10

opera~

ticn provided the device is initially operating at. or

below, the rated value of on-state current; however,

•

0

during the surge period gate control of the device may

7

be lost .

•

10, The solid curve shows the maximum number of cycles
of surge current for which gate

~ontrol

is guaranteed

provided the device is initially at nonoperating thermal
equilibrium.

2

1

4

710

20

40 70 100

400

1000

Consecutive 50-Hz Full-Sine-Wave Cycles

FIGURE 4

TYPICAL CHARACTERISTICS
PEAK GATE TRIGGER CURRENT

PEAK GATE TRIGGER VOLTAGE

vs

vs

CASE TEMPERATURE

CASE TEMPERATURE
3.0

.--r-..,--,.--,--..,--,.--,---,
IV su'PP lv j-12V
RL -10

2.5

~

2.0

t---I--+--i--I--+--i--I---I

1.6

t--t-t--t-i--!-+-t--I

f

....~
j

~

->~
25
50
75
100
TC-Case Temperature-"C

125

n

l'

1.0

t ptg);>20l's

-t--t--t--t--t--j

r-=~'F'"-+=±--t---t=-;--t--i
v.u~vt !:- ---r--r-

0.5 r-I:=::r.~t-'::--It--t-i--!--i

150

FIGURE 5

TC-Case Temperature_CC

FIGURE 6

tThe supply voltage is called positive when it causes Main Terminal 2 to be positive with respect to Main Terminal 1.
PRINTED IN U.S A

7·64

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

971

TI 

.!!!
(5

/

i!0

..

h..

~

:;

l:!
It!

.

40

...,I

()

LL

V

100

VCE =5 V
TC = 25°C
70 - See Notes 4 and 5

.::...,
:;

3

12

vs

It!

~

V

IC = 25 A,

COLLECTOR-EMITTER VOLTAGE

'In
c
c

4

IB = 2.5A,

MAXIMUM COLLECTOR CURRENT

vs

a:
....

mA

MAXIMUM SAFE OPERATING AREA

COLLECTOR CURRENT

It!

mA

IB = 2_5 A,
See Notes 4 and 5

STATIC FORWARD CURRENT TRANSFER RATIO

0

1
4

IC=25A,

TYPICAL CHARACTERISTICS

...

=0

IE

See Notes 4 and 5

Collector-Emitter Saturation Voltage

V

IC -0

VCB =400 V,
VEB - 5V,
VCE-5V,

IC- 25A,
See Notes 4 and 5

Base-Emitter Voltage

VBE

300

See Note 4

Static Forward Current Transfer Ratio

hFE

MIN MAX UNIT

IB = 0,

()

'"\

20

...,It!

en
I
w

LL

.t:

10
0.4

0.4

It!

0.1

"

'x

:2:
I

~

9

\

"

0.04
0.01

0.7 1

2

3

7 10

20

40

Ic-Collector Current-A

10

20

40

100

200

400

1000

VCE-Collector-Emitter Voltage-V

FIGURE 2

FIGURE 1

NOTES:

E
E

4. These parameters must be measured using pulse techniques. tw = 300 p.s, duty cycle :s;;; 2%.
5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.2
inch from the device body.

PRINTED IN U.S.A

9-12

1271

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SOLID-STATE
POWER fUNCTIONS
•
•
•
•

TYPE TIXH703
DUAL HIGH-CURRENT SWITCH

For High-Gain Complementary Push-Pull Stages
50-A Continuous Collector Current
VCE(sat) ..;; 2.5 V at IC = 50 A, 18 = 0.25 A
300 Watts at 25°C Case Temperature

description
The TIXH703 is a high-current complementarysymmetry power stage which features extremely high
gain. The low drive-current requirements make this
circuit very attractive for linear power applications_

mechanical data
POINT OF CASE TEMPERATURE MEASUREMENT

~~~-------:~~;------------~

gg:~

EQUIVALENT
CIRCUIT

R

4 PLACES

r---------.
r

0200
0240

g~~D

0.067

D.ii!l'l

L:=="

ll2!i __________
3695

0080

6 HOLES

6 TERMINALS

Ij

JL0100

~

B
ALL DIMENSIONS ARE IN INCHES

0.405
0395

APPROXIMATE WEIGHT IS
150g=5.30z

c

o-i-~""'---'
1- ______ _

4~MAX--------__~~

absolute maximum ratings over operating case temperature range (unless otherwise noted, see note 1)
Terminal-to-Case Voltage
_ _ _ _ _
Collector-Base Voltage
_ _ . . •
Collector-Emitter Voltage (See Note 2)
Emitter-Base Voltage . . . . . . .
Continuous Collector Current . . . .
Commutating·Diode Peak Current (tw";; 300 fJ.s, See Note 3)
Continuous Base Current
............ .
....
.
.
Safe Operating Area at (or 'below) 25°C Case Temperature . . .
Continuous Total Package Dissipation at (or below) 25°C Case Temperature (See Note 4)
Unclamped Inductive Load Energy (S!!e Note 5)
Operating Case and Storage Temperature Range . . . . . . . . . . . . . . . .
Terminal Temperature 1/8 Inch from Case for 5 Seconds . . . . . . . . . . . .
NOTES:

±500V
100V
100V
5V
50A
50A
3A
See Figure 2
300W
90mJ
_25°C to 85°C
260°C

•

1. Throughout this data sheet current and voltage polarities are shown for the n.-p~n portion. These are reversed for the p-n-p
portion.
2. This value applies when the base-emitter diode is open-circuited.
3. This applies to the total collector-terminal current when the collector is at negative potential with respect to the emitter.
4. Derate linearly to 120 W at 85° C case temperature at the rate of 3 W/ C. Power may be divided between the two switches in any
proportion subject to the limitations of the Maximum Safe Operating Area, Figure 2.
5. This rating is based on the capability of each switch to operate safely in the unclamped-inductive load circuit of Section 3.2 of the

*

forthcoming JEDEC publication Suggested Standards on Power Transistors.
L - 20 mH, RBBl - 20
VBBl - 10 V. VBB2 - 0 V, RL - 0.2 n, VCC - 10 V, ICM - 3 A. Energy'" IC 2 L/2.

n,

RBB2 - 100

n,

+This circuit appears on page 6-1 of this data book.
1271

TENTATIVE DATA SHEET

This document provides tentative Information
0'1 a product In the developmental stage. Texas
I nstruments reserves the right to change or
discontinue this product without notice.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

9-13

TYPE TIXH703
DUAL HIGH-CURRENT SWITCH
electrical characteristics at 25°C case temperature (see note 1)
PARAMETER

TEST CONDITIONS

VIBR}CEO Collector-Emitter Breakdown Voltage

IB= 0,

ICES

Collector Cutoff Current

VCE = 100 V,

VBE = 0

lEBO

Emitter Cutoff Current

VEB = 5V,

IC= 0

Static Forward Current Transfer Ratio

IC= 50 A,
VCE =4 V,
See Notes 6 and 7

hFE

NOTES:

Ic=30mA,
See Note 6

MIN MAX UNIT
100

IC= 50 A,
See Notes 6 and 7

Base·E mitter Voltage

VCElsad

Coliector·Emitter Saturation Voltage

VECF

Commutating·Diode Forward Voltage

IB = 0.25 A,

IC= 50 A,

See Notes 6 and 7
IC=-50A,

1

mA

10

mA

3

V

2,5

V

1.8

V

1000

IB = 0.25 A,

VBE

V

IB = 0,

See Notes 6 and 7

1. Throughout this data sheet current and voltage polarities are shown for the n-p-n portion. These are reversed for the p-n-p
portion.
6, These parameters must be measured using pulse techniques. tw

= 300 ,",5, duty cycle ~ 2%.

7. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.2
inch from the device body,

MAXIMUM SAFE OPERATING AREA

TYPICAL CHARACTERISTICS

MAXIMUM COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
0

10000

VCE = 4 V
TC = 25°C
See Notes 6 and 7

'.."
co
0::
~

7000

'....*
c:

•

:::I

U

tJ

5

.!!l

'Eco

u

I
UJ
u.
.s::

2000

\

E
:::I
E

~

en

4

'0

0

u
'.."
....co

~

10

5

4000

u

u.

40

~

~

~

1

D·C Operation
TC<25°C

c:

I-

c:

100

'xco

~

1 000
10

\

:2
I

u

0.4

0,1
20

40

70

100

Ic-Collector Current-A

2

4

7 10

20

40

70100

200

VCE-Collector·Emitter Voltage-V
FIGURE 2

FIGURE 1

PRINTED IN U.S.A.

9·14

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE (HANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE,

SOLID-STATE
POWER FUNCTIONS

TYPE TIXH704
TRANSIENT VOLTAGE PROTECTOR

•

Typical Dynamic Impedance ... 0.1 n

•

Clamp Voltage ... 23 V

•

Peak Reverse Current ... 40 A

111-1

c<
r--a
r-m

~::!

z~

~g

c

~

description

..

:::l

~

The T1XH704 is designed to suppress voltage transients having a high energy content_ In case of a
severe transient, the TIXH704 will short circuit
thereby tripping the system's circuit breaker or
blowing the fuse while still protecting the entire
system_

C

m
n

m

3:
m

III

..

:II

'"
:::l

mechanical data
EQUIVALENT
CIRCUIT
TERMINAL

ALL DIMENSIONS ARE IN INCHES
APPROXIMATE WEIGHT IS :J1.2g "'l.32oz

CASE

absolute maximum ratings over operating temperature range (unless otherwise noted)
Continuous Forward Current
Continuous Reverse Current
. _ . . . . . .
Peak Forward Current (One 60-Hz Half Sine Wave)
Peak Reverse Current (One 60-Hz Half Sine Wave)
Average Power Dissipation at (or below) 8SoC Case Temperature (See Note 1)
Continuous Power Dissipation at (or below) 2SoC Free-Air Temperature (See Note 2)
Operating Case Temperature Range
....... .
Storage Temperature Range
. . . . . . . .
Terminal Temperature 1/8 Inch from Case for S Seconds

NOTES:

4A
2A
lOA

40A
40W
2.4W
- 2SoC to 8SoC
- 2SoC to 8SoC
260°C

•

1. This value applies for a maximum averaging time of 150 ms.

2. Derate linearly to 85° C free-air temperature at the rate of 40 mW/o c.

1271

TENTATIVE DATA SHEET

This document provides tentative information
on a product In the developmental stage. Texas
I nstruments reserves the right to change or
discontinue thiS product without notice.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

9-15

TYPE TIXH704
TRANSIENT VOLTAGE PROTECTOR

electrical characteristics at 250 C case temperature
PARAMETER

MIN

TEST CONDITIONS
IZ= 20 rnA

I

IZ- 35A

I

Vz

Regulator Voltage

IR

Reverse Cu rrent

VR - 18 V

VF

Forward Vol tage

IF= 1 A

See Figure 1

20

TYP MAX UNIT
23

25

V

30

V

0.1

rnA

2

V

PARAMETER MEASUREMENT INFORMATION

SINGLE PULSE
21"1, lOW

1 kl"1, 6 W

1

'1M

+

--

100V

6OOO"F
150V

...

+

+
220
lOW

~

Vz

-

~~ TlXH704

.1

•

FIGURE 1

PRINTED IN U.s A.

9·16

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

1271

TI (anna' assume any responsibilily for any circuits shown
or represen, fhol they are free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SOLID-STATE
POWER FUNCTIONS

TYPES TlXHBOl, TIXHB02
AC RELAYS

•

SPST (Normally Open)

•

8 A. 200 V (TIXH801)
25 A. 200 V (TIXH802)

•

Optically-Coupled Isolation between Control and Load Circuits

•

Turn-On Only at a Line Voltage Zero-Crossing Point

description
The TIXH801 and TIXH802 a-c relays can be driven
directly by standard DTL or TTL integrated circuits.
They provide optically-coupled isolation between
control circuitry and the power system. Zero-voltage
switching minimizes RFI generated during load current
turn-on. Absence of electro-mechanical components
provides higher speed and eliminates contact wear and
arcing.

mechanical data

g.g:6
POINT OF CASE
TEMPERATURE
MEASUREMENT

0.017
0.013

L

R,4 PLACES

J]

f

TERMINAL
1

~:~~~

DIA
4 HOLES

2
3,4

FUNCTION
POSITIVE INPUT
NEGATIVE INPUT
OUTPUT

ALL DIMENSIONS ARE IN INCHES
THE LEADS ARE SPACED TO

FIT AN INTEGRATED CIRCUIT SOCKET
APPAOXIMfr,TE WEIGHT IS 52 9 '" 1.86 02

absolute maximum ratings over operating case temperature range (unless otherwise noted)
Input Diode Reverse Voltage . . . . .
Repetitive Peak Off-State Output Voltage
Input-to-Output Voltage
..... .
Terminal-to-Case Voltage . . . . . .
Input Diode Continuous Forward Current at (or below) 25°C Case Temperature (See Note 1)
Full·Cycie RMS On-State Current at (or below) 85°C Case Temperature
Peak On-State Surge Current (See Note 2)
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/8 Inch from Case for 5 Seconds
NOTES:

TlXH801 TIXH802
-3V-±200V-±600V-±600V60mA
60mA
8A
25A
±80A ±175A
-25°C to 85°C
_25°C to 85°C
-260°C-

•

1. Derate linearly to 85° C case temperature at the rate of 1 rnA/DC.
2. These values apply for one GO-Hz full sine wave when the device is operating at (or below) the rated value of on-state current.

Surge may be repeated after 100 m5.

1271

TENTATIVE DATA SHEET
ThiS document provides tentative information
on a product in the developmental stage. Texas
Instruments reserves the right to change or
discontinue this product without notice.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

9-17

TYPES TIXH801, TIXH802
AC RELAYS
electrical charaCteristics at 250 C case temperature (unless otherwise noted)
TIXH801

TEST CONDITIONS

PARAMETER

MIN

Input Voltage for
Vlloff)

TVP

TIXH802
MAX

004

Output in Off-State

VI

Output Voltage

vT

VI

= 0.4 V,

I.S

±10

Peak On-State Output

11= 10mA,

ITM = ±12 A

Voltage

11= 10mA,

ITM = ±2SA

UNIT

10
1.2

±3.S

Vo = ±200V

See Figure 1

at Turn-On

VTM

1.2

II-l0mA

Current

MAX

V

10

Output in On-State
I nput Voltage
Repetitive Peak Off-State

IORM

TVP

0.4

Input Current for
Ilion)

MIN

I

mA

I.S

V

±S

mA

±10

V

±2.S

ISee Note 3

V

±2.S

Critical Rate of Rise
dv/dt

of Off-State Voltage

TC = 8SoC

VORM = ±200 V, VI =0,

V/jJs

SOO

500

>10 9

>10!i

n

30

30

pF

(Exponential)
Rin-out Isolation, Input-to-Output Vin-out = ±1 kV,

Capacitance,
Cin-out
NOTES:

I nput-to-Output
3. This parameter is

Vin-out = 0 V,

measure~

See Note 4
f= 1 MHz,

See Note 4

using voltage-sensing contacts separate from the current-carrying contacts and located within 0.2

inch from the device body,

4. This parameter is measured between both Input terminals shorted together and both output terminals shorted togatt:ler,

PARAMETER MEASUREMENT INFORMATION

II

•

3

~
RL

TRIGGER
VI

//

20Vtol40Vrms

CIRCUIT

lIT

2

47 Hz to 63 Hz

4

TIXH801 RL = 16.6 n
TIXH802 RL = 8 n

FIGURE 1

PRINTED IN U.S.A,

9-18

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE I!IOX 6012 •

DALLAS, TEXAS 75222

1271

TI cannot assume any responsibility for any circuits shown
or I'fpresent that they are free from polen' infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY'THE BEST PRODUCT POSSIBLE.

TYPES TIXH803, TlXH804
POSITIVE-GROUND AND
NEGATIVE-GROUND DC RELAYS

SOLID-STATE
POWER FUNCTIONS
•
•
•

SPST (Normally Open) 80 V, 10 A
Optical Isolation between Control and Load Circuit
Short-Circuit Protected

description
The TIXH803 and TIXH804 are designed to be
driven directly from standard DTL and TTL
integrated circuits_ These relays provide isolation
between control circuitry and power systems. The output may be short-circuited to ground without damage
to the relay. The relay automatically senses the short
circuit, shuts off, and resets on the next input pulse
after the short is removed. The TIXH803 is designed
for use in negative-ground systems; the TIXH804 in
positive-ground systems.

o

m
n
m

s:!XI

m

:D

<;;

mechanical data

::!
g:~~g

4 PLACES

~:~:~

0.115

2~~~'~s-'rttr-Ir.======i=F=1r-~---~~

POINT OF CASE

TEMPERATURE
MEASUREMENT

R 4 PLACES

j

",.

II
0.017
o:on

L

I"

g:g~:

ALL DIMENSIONS ARE IN INCHES
DIA

5 HOLES

THE LEADS ARE SPACED TO FIT
AN INTEGRATED CIRCUIT SOCKET
WEIGHT"" 52 9 = 1.86 oz

~::~~+====+=l

0,455
0.445

TERMINAL
1

g:~: I ~ ~:~:
~2.505

2
3
4

MAX

5

FUNCTION
OUTPUT
SUPPLY VOLTAGE, Vcc
POSITIVE INPUT
NEGATIVE INPUT
GROUND

absolute maximum ratings over operating case temperature range (unless otherwise noted)
Ihput-to-Output Voltage
Terminal-ta-Case Voltage . .
Supply Voltage, VCC
Input-Diode Reverse Voltage . . . . . . . . . . . . . . . .
.. _
Input-Diode Continuous Forward Current at (or below) 25°C Case Temperature (See Note 1)
Continuous On-State Output Current at (or below) 85°C Case Temperature
Inductive Energy during Turn-Off (See Note 2)
Operating Case Temperature Range
Storage Temperature Range
Terminal Temperature 1/8 Inch from Case for 5 Seconds
NOTES:

±500 V
±500 V
80V
3V
60mA
lOA
100 mJ
_25°C to 85°C
_25°C to 85°C
260°C

•

1. Derate linearly to 85° C case temperature at the rate of 1 mA/oC.
2. This rating is based on the capability of the relays to turn off a load of 0.2 nand 20 mH operating from a supply voltage of 10 V
at a current of 3.2 A.

recommended operating conditions

MIN MAX UNIT
V
10 50
-25 85°C

Supply Voltage, VCC
Operating Case Temperature, TC

1271

TENTATIVE DATA SHEET

This document provides tentativ_e information
on it product in the developmental stage. Texas
Instruments reserves the right to change or
discontinue this product without notice.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS. TEXAS 15222

9-19

TYPES TIXHB03, TIXHB04
POSITIVE-GROUND AND
NEGATIVE-GROUND DC RELAYS
electrical characteristics at 25° C case temperature
TEST CONDITIONS

PARAMETER
VI (off)

Maximum I nput Voltage for Output Off

I1(0n)

Minimum I nput Current for Output On

MIN

TYP

MAX

UNIT

10

rnA

004
1.2

VI

Input Voltage

II = lOrnA

10(0ff)

Off-State Output Current

VI-004 V,

VCC=80V,

RL = 10

VCC-l0V,
See Note 3

II-lOrnA,

10 -lOA,

VCC-VO Relay Voltage Drop

V
V

1.5

kn

rnA

1
2.5

V

10

rnA

ICC(off)

Standby Supply Current

VI =0,

VCC=80V,

RL = =

ICC(on)

On·State Supply Current

II-lOrnA,

VCC-80V,

RL = =

20

Rin-out

Isolation, Input-to-Output

Vin-out- ±1 k\l,

See Note 4

lOll

n

Capacitance,lnput·to-Output

Yin-out = ±1 kV,
See Note 4

f - l MHz,

1

pF

Cin-out

rnA

NOTES: 3. This parameter is measured using voltage-sensing contacts separate from the current-carrying contacts and located within 0.125
inches from the device body.
4. These parameters are measured between both input terminals shorted together and the output.

switching characteristics at 25° C case temperature

-l,

I

PARAMETER

rto:onc:......_ _=T,..u_rn_.o=n:-:T=i,..m_e_ _ _ _ _ _ _ _ _ _ _
toff
Turn-Off Time

TEST CONDITIONS

VCC = 80 V,
, See Figure 1

RL = 8

n,

-,

I1(0n) = 10 rnA,

TYPICAL

T UNIT

11-___1_.5_ _ _-11

IJS

-1

'35

PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input
pulse for I'(on) == 10 rnA

I
O'

If = 400 Hz
1 00 lIS -----4~.---==:::...:..:.:..lii-tOf1...1

INPUT

ton~

~~i

~

OUTPUT

•

10%L-

TIXH803 VOLTAGE WAVEFORM

TIXH803 TEST CIRCUIT

Adjust amplitude of input
pulse for 'I(on) == 10 rnA
INPUT

I

O~
ton :---:
I

Vee
OUTPUT

~

i

100JJS

If=400HZ
.,

I-- toff -.jI

'f1o%

~
TIXH804 VOLTAGE WAVEFORM

TIXH804 TEST CIRCUIT

FIGURE 1-SWITCHING TIMES

PRINTED IN U.S.A.

9-20

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

1271

TI (onnot ossume ony responsibility for any circuits shown
or represent thot they ore free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES ~T ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SOLID-STATE
POWER FUNCTIONS

•

200 A, 100 V

•

Protected Against:

TYPE TIXH805
HYBRID SWITCH

Short-Circuit Load

~

JS'"

Overheating
•

c

m

Operating Frequency __ . DC to 4 kHz

C'l

~

III

m

:0

mechanical data

'~E;: -,,,.,"o,,===:f:RI

A
B
C
D
E
F
H
J
K
L
M
N

I./4.-----8S00±O.'oo~
_I.

L-+--.-__i+_$_ _ _ _ _ _ _@.....Jftr:"

SWITCH 2 FLOATING GROUND
LOGIC GROUND
LOGIC SUPPLY VOLTAGE
SWITCH 2 POSITIVE SUPPLY VOLTAGE
INHIBIT INPUT 1
LOGIC INPUT 2
SWITCH 1 NEGATIVE SUPPLY VOLTAGE
LOGIC INPUT 1
INHIBIT INPUT 2
SWITCH 1 POSITIVE SUPPLY VDLTAGE
SWITCH 2 NEGATIVE SUPPLY VOLTAGE
SWITCH 1 FLOATING GROUND

CASE GROUND

description
The TIXH805 hybrid switch is designed for precIsion power conversion equipment. The inputs can be driven by
standard DTL and TTL integrated circuits. The TIXH805 contains two switches which may be connected together for a
single push-pull output, or may be operated as two independent switches. It features optically coupled isolation
between input circuitry and power system. Internal circuitry turns off each switch within approximately 10
microseconds if its load is short-circuited. To ensure that the total current (operating and surge) does not exceed
250 amperes within this time, the turn-on di/dt of the load current must be limited to 5 A/MS. Approximately
25 milliseconds after turn-off caused by a short-circuit, the switch becomes operational again. Should the short-circuit
still exist, the switch will turn off again and recycle at a frequency of approximately 40 hertz until the short-circuit
condition is removed_ Protection is also provided against overheating. The signal for this condition is fed into a Schmitt
trigger, which, because of its hysteresis, ensures that the temperature recovers by a safe margin before operation
resumes.

1271

•

TENTATIVE DATA SHEET
This document provides tentative information
on a product in the developmental stage. T~xas
I nstruments reserves the right to change or
discontinue this product without notice.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

9-21

TYPE TIXHB05
HYBRID SWITCH
description (continued)
For operation in the push-pull mode, the logic and
inhibit inputs of each side of the circuit are connected together. This provides inhibit and blanking
functions. A high level at either inhibit input holds
the switch of the opposite side off without regard to
the logic input. If both inhibit inputs are high, both
switches are off thus avoiding "line shoot-through".
A rising transition at an inhibit input blanks or delays
the corresponding switch from turning on for approximately five microseconds. This gives the switch that
is on sufficient time to turn off before the other
switch can turn on. For additional information on
operation in the push-pull mode, see the typical
appl ication data section of this data sheet.

FUNCTION TABLE
logic input 1 connected to inhibit input 1
logic input 2 connected to inhibit input 2
SWITCH
SWITCH
INPUT
INPUT
1
2
1
2
off
off
L
L
off
on
H
L
off
on
L
H
off
H
H
off
H

= high level,

L - low level

For operation as two independent power switches, both inhibit inputs are connected to logic ground. A high level at a
logic input turns that switch on; a low level turns it off. Inhibit and blocking functions are not used since they are not
needed for independent operation.
The hybrid switch enables construction of high-power-density, lightweight power-conversion equipment by eliminating
large commutation capacitors necessary for SCR circuits. Due to the fast switching speed, a considerable weight
decrease in filters can be achieved. The major applications for this device are dc-to-variable-ac inverters, switching
regulators, and d-c choppers.

functional block diagram

LOGIC1
INPUT

o--;;:::=============:r-"'I

INHIBIT
INPUT 1

I

:~~~~~

OPTICALLY-COUPLEO
ISOLATOR

*7<

1f
51"

--+------4>

0-.....

OUTPUT

1

OPTICALLY -COUPLED
ISOLATOR

*7<

LOGIC
INPUT 2

~.

+

OUTPUT
2

• . Dynamic input activated by a transition from a low level to a high level.

1271

9-22

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

TYPE TIXHB05
HYBRID SWITCH
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Logic Supply Voltage (See Note 1) . . . . . . .
Positive Supply Voltage, Each Switch (See Note 2)
Negative Supply Voltage, Each Switch (See Note 2)
Logic and Inhibit Input Voltages (See Note 1)
Output Voltage (See Note 3) . . . . . .
Peak Operating Output Current (See Note 4 .
Rate of Rise of Output Current . . . . .
Average Power DiSsipation at (or below) 25°C Case Temperature (See Note 5)
Operating Case Temperature Range
Storage Temperature Range
NOTES:

. 5.6V
. 5.6V
-5.6 V
5V
100V
200 A
5 A/IlS

500W
-40°C to 85°C
-40°C to 85°C

1. These voltages are with respect to the logic ground terminal.
2. Supply voltages for each switch are with respect to the floating ground terminal of that switch.
3. Output voltages are at the positive output terminal with respect to the negative output terminal of each switch.
4. For pulses narrower than 1 ms derate according to Figure 3. For pulses wider than 1 ms the output current shOUld be limited to

120A.
5. Derate linearly to 140 W at 8SoC case temperature at the rate of 6 W/oC. This value applies for a maximum averaging time of
1 second.

recommended operating conditions
MIN MAX UNIT
5 5.6 V
5 5.6 V
-5 -5.6 V
-40
85 °c

Logic Supply Voltage, VCC . . . . . .
Positive Supply Voltage, Each Switch, VS+
Negative Supply Voltage, Each Switch, VSOperating Case Temperature Range

electrical characteristics at 25°C case temperature (unless otherwise noted, see figure 1)
PARAMETER
VII:!

High-Level Input Voltage

VIL

Low-Level Input Voltage

II

Input Current at Maximum Input Voltage

IIH

High-Level Input Current

IlL

Low-Level I nput Current

10(off)

Off-5tate Output Current

TEST CONDITIONS

MIN

MAX UNIT

2

V
0.8

Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs

1

VI =5V

2
50

VI=2.4V

80
-2

VI = 0.4 V
VI = 0.8 V,

-3.2
VO=100V,

VI-2V.

10M -200A,

f = 400 Hz,

t w =1001As

ICC

LogiC Supply Current

VCC-5.5V

ISM+

Peak Positive Supply Current, Either Switch

IS(AV)-

Average Negative Supply Current, Either Switch

VS+= 5.5 V
VS_--5.5V

IAA
rnA

10 rnA

TC = 85°C

VOM(on) Peak On-5tate Voltage

V
rnA

2.6

V

0.2

A

15

A

-3

A

•

thermal characteristics
PARAMETER

MIN TVP MAX UNIT

TEST CONDITIONS

R8CA

Case-to-Ambient Thermal Resistance

TC

Thermal Time Constant of Case

Free-Air
Forced·Air Cooling, 35 ft 3 /min,

1
50 Ib/in 2

0.2
8

°C!W
min

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

9-23

TYPE TIXH805
HYBRID SWITCH
PARAMETER MEASUREMENT INFORMATION
SWITCH 1
SUPPLY

~

IS+

LOGIC SUPPLY

l f.s-

SWITCH 1
FLOATING GND

0--..,....-,

LOGIC INPUT 1

INHIBIT INPUT 1
INHIBIT INPUT 2
LOGIC INPUT 2

LOGIC GND

o-"-.L....J

y

SWITCH 2
FLOATING GND

SWITCH 2
SUPPLY

FIGURE 1

TYPICAL APPLICATION DATA

THERMAL INFORMATION

push-pull configuration
The switches are able to turn off current with a di/dt
of 60 A/j.l.s. This results in high voltage spikes with
peaks equal to L • di/dt with very small values of line
inductance. Therefore, the line connecting the
commutating capacitors (Cel must have an
inductance less than 0.05 j.l.H, whereas the load
inductance can be fairly high.

L%

MAXIMUM OUTPUT CURRENT
vs
DUTY CYCLE
200 ............

~ _ _ ~~~ _ _ ~'INDUCTA~ElINE

INPUT
1

+

LOGIC 1

I

E INHIBIT 1

Cc

-

I

•

+

OUTPUT 1

-=- 40 V

.........
...."rvv'--~=============================f--~

SWITCH
NO.1

+
OUTPUT

INHIBIT
INPUT 1

•
INHIBIT
INPUT 2

OPTICALLY·COUPLED
ISOLATOR

*~<

LOGIC
INPUT 2

SWITCH
NO.2

OUTPUT

I

i> ...

Dynamic input activated by a transition from a low level to a high level.

I

1271

9-26

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

TYPE TIXHB06
HYBRID SWITCH
absolute maximum ratings over operating case temperature range (unless otherwise noted)
Logic Supply Voltage (See Note 1) . . . . . . .
Positive Supply Voltage, Each Switch (See Note 2)
Negative Supply Voltage, Each Switch (See Note 2)
Logic and Inhibit Input Voltages (See Note 1)
Output Voltage (See Note 3)
Peak Output Current (See Note 4)
Rate of Rise of Output Current
Average Power Dissipation at (or below) 25°C Case Temperature (See Note 5)
Operating Case Temperature Range
Storage Temperature Range
NOTES:

. 5.6 V
. 5.6 V
-5.6 V
5V
400 V
60A
5 A/IlS

500W
-40°C to 85°C
-40°C to 85°C

1. These voltages are with respect to the logic ground terminal.
2. Supply voltages for each switch .ra with respect to the floating ground terminal of that switch.
3, Output voltages are at the positive output terminal with respect to the negative output terminal of each switch.
4. For pulses narrower than 1 ms derate according to Figure 3. For pulses wider than 1 rns the output current should be limited to

35 A.
5. Derate linearly to 140 W at 85°C case temperature at the rate of 6 W/OC. This value applies for a maximum averaging time of

1 second.

recommended operating conditions
MIN MAX UNIT
5 5.6 V
5 5.6 V
-5 -5.6 V
-40
85 °c

Logic Supply VOltage, VCC . . . . . .
Positive Supply Voltage, Each Switch, VS+
Negative Supply Voltage, Each Switch, VSOperating Case Temperature Range

electrical characteristics at 25° C case temperature (unless otherwise noted, see figure 1)
TEST CONDITIONS

PARAMETER

MIN

MAX UNIT
V

2

VIH

High-Level Input Voltage

VIL

Low·Level Input Voltage

II

I nput Current at Maximum I nput Voltage

IIH

High-Level Input Current

IlL

Low-Level Input Current

10(off)

Off-5tat. Output Current

0.8
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs
Logic Inputs
Inhibit Inputs

1

VI =5V

2
50

VI =2.4V

80
-2

VI = 0.4 V
VI = 0.8 V,

-3.2
VO=400V,

VI =2V,
f = 400 Hz,

ICC

Logic Supply Current

VCC=5.5V

ISM+

Peak Positive Supply Current, Either Switch

VS+- 5.5V
VS_=-5.5V

IS(AV)- Average Negative Supply Current, Either Switch

mA
p,A
mA

10 mA

TC= 85°C

VOM(on) Peak On-5tate Voltage

V

10M =60 A,
tw=100p,s

2.6

V

0.2

A

,2

A

'1

A

•

thermal characteristics
MIN TVP MAX UNIT

TEST CONDITIONS

PARAMETER
ReCA

Case-to·Ambient Thermal Resistance

TC

Thermal Time Constant of Case

1

Free·Air
Forced-Air Cooling, 35 ft3/min,

50 Ib/in 2

0.2

8

°C!W
min

1271

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

9-27

TYPE TIXH806
HYBRID SWITCH
PARAMETER MEASUREMI;:NT INFORMATION
SWITCH 1
SUPPLY

r:('-::..

IS+!
LOGIC SlJPPLV

SWITCH 1

FLOATING GND

1,s-

0--..--.

LOGIC INPUT 1

INHIBIT INPUT 1
INHIBIT INPUT 2
LOGIC INPUT 2

LOGIC GND o-L-.L-....J

y
SWITCH 2
SUPPLY

SWITCH 2
FLOATING GND

FIGURE 1

THERMAL INFORMATION

TYPICAL APPLICATION DATA
push-pull configuration
The switches are able to turn off current with a di/dt
of 60 A//ls. This results in high voltage spikes with
peaks equal to L • di/dt with very small values of line
inductance. Therefore the line connecting the
commutating capacitors (Ccl must have an
inductance less than 0.05/lH, whereas the load
inductance can be fairly high.

MAXIMUM OUTPUT CURRENT
vs
DUTY CYCLE
60

............

50

............

............

1 ,I
tw C;; 1 ms

t---.

.........

r--... ............

40

•

t---.
............

............

30
20
The commutating capacitors should be selected
according to:

Cc = 10\

f

icomdt

NOTE: leom is the commutated current which charges the
commutation capacitor an additional 10 V over the
steady-state voltage.

10

o
o

10 20 30 40 50 60 70 80 90 100
Duty Cycle-%

Because of the voltage spikes during commutation,
the supply voltages have to be smaller than 200 volts
so that the peak voltage during switching does not
exceed 400 volts.
FIGURE 2

FIGURE 3

PRINTED IN U.S.A.

9-28

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

1271

TI (annol assume any responsibility for any circuits shown
or represent Ihal they Ofe free from palent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME
IN ORDER TO IMPROVE DESIGN AND TO SUPPl nHE BEST PRODUCT POSSIBLE.

Power Semiconductor
Technology

POWER SEMICONDUCTOR TECHNOLOGY

TABLE OF CONTENTS

SILICON POWER TRANSISTORS AND THYRISTORS
Mesa versus Planar versus Glass-Mesa Designs
Forward and Reverse Energy Considerations
Summary of Advantages and Disadvantages of Various Technologies
Chip-Mounting Techniques
Lead-Bonding Techniques
GERMANIUM POWER TRANSISTORS
Alloy Design
Diffused-Alloy Design

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

10-1

POWER SEMICONDUCTOR TECHNOLOGY

TECHNOLOGY DISCUSSION
SILICON POWER TRANSISTORS AND THYRISTORS
Mesa versus Planar versus Glass-Mesa Designs
Contemporary silicon power devices can be classified into two, broad, structurally different categories; planar and
mesa.
A typical double-diffused epitaxial planar transistor structure is shown in Figure 1. The P-N junctions are all
formed by diffusion and passivated by the oxide (Si02). A typical mesa transistor structure is shown in Figure 2.
In this illustration the emitter-base junction is of planar structure. The collector-base junction is formed by
selectively etching the silicon into a mesa-like structure. The exposed junction is usually coated with some
insulating substance to protect it from contamination, humidity, and other adverse environments.
Typically, the planar structure is well-suited for higher frequency and faster switching. This is because the base
width of the planar device can be made very narrow.
For the same reason, however, the breakdown voltage rating is usually limited to only several hundred volts. The
mesa structure, due to its process limitations, is generally used for lower frequency and moderate switching speed.
It does allow higher voltage devices to be built, however.
When operated under high-temperature conditions, the planar structure is generally the superior one. Through the
intensive and fruitful effort in the advancement of the planar process, the oxide-silicon has become the best
understood system in the semiconductor field. As a result, when the knowledge of planar technology is properly
applied, planar devices with extremely low leakage current can be produced routinely and maintained with very
high reliability.
Even though, historically, the mesa devices were among the first devices developed, the passivation of the exposed
junction has not been well understood. As a result, the leakage currents are moderately higher and less stable than
those of the planar devices. The knowledge of the planar technology has impacted the improvement of mesa
junction passivation quite strongly. The development of glass passivation has contributed significantly to the
reduction of leakage currents and improvement in stability in mesa structures. A typical glass'passivated structure
is shown in Figure 3. This glass-passivated device offers the advantages of both the mesa and planar structures.
Once the glass is in place, the unit is sealed against the rigors of assembly and can even be dipped into liquid
solder without damage. ,This advanced concept is used in many power transistors and thyristors manufactured by
Texas Instruments.

I

10-2

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

POWER SEMICONDUCTOR TECHNOLOGY

COLLECTOR FIELD PLATE

NN+

FIGURE 1-PLANAR TRANSISTOR STRUCTURE

FIGURE 2-MESA TRANSISTOR STRUCTURE

EMITTER CONTACT

N

N+

FIGURE 3-GLASS-PASSIVATED STRUCTURE

Forward and Reverse Energy Considerations
A power transistor must be designed not only to meet specific electrical specifications, but also to withstand the
circuit application power requirements. A device with low thermal resistance does not guarantee that the device
will operate in the circuit application. The application may exceed the second breakdown limitations of the
device.

II

Transistors have two basic second breakdown modes. One mode is known as forward second breakdown and the
other is reverse second breakdown. Forward second breakdown may occur when a device is operated in the
amplifying mode. Most devices can handle more power: in the low-voltage, high-current state than at the highvoltage, low-current condition. Second breakdown occurs when localized heating manifests itself in the emitter
region. The cause for the "hot spot" is a non-uniform temperature profile across the emitter surface.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

10·3

POWER SEMICONDUCTOR TECHNOLOGY
Because the VBE characteristic of a transistor has a negative temperature coefficient, the "hot spot" area "hogs"
the emitter current as the power is increased, thus leading to a thermal run-away condition_ When the hot spot
exceeds the eutectic temperature of the silicon-emitter-metal interface, the contact metal will diffuse through the
emitter, causing a catastrophic failure_
Designing the emitter geometry such that the thermal resistance over the entire emitter region is constant will
improve the forward second breakdown characteristics of the devices_ All the recently announced TI power
transistors utilize "isothermal" geometries to optimize the Safe Operating Area (SOA)_
Reverse second breakdown may occur in a transistor during the turn-off transient_ If a transistor is used for
inductive switching, the device must dissipate the energy of the inductor when switching from a conducting state
to an off state unless a protective circuit is used_ The maximum energy that a transistor can dissipate in this
transient condition is known as reverse energy capability_ The reverse energy capability of a transistor can be
increased by several orders of magnitude by using the optimum collector thickness and resistivity profile_ Texas
Instruments has developed a proprietary empirical method for calculating the starting material collector profile
required to produce devices with optimum reverse energy capability versus other desired parameters_
Summary of Advantages and Disadvantages of Various Technologies
Now that these different general structures and design ideas have been discussed, a listing of specific designs and
their advantages and disadvantages is provided below for ready reference_
Single-Diffused (Homogeneous-Base Mesa)
Advantages
•

Excellent forward and reverse energy capability

•

Low manufacturing cost

Disadvantages

II

10-4

•

Low switching speed - excessive power dissipated during switching applications_ Large-area heat
sink required

•

Very poor beta Iinearity versus collector current

•

Inherent junction instabilities of a mesa device

•

Requires at least 50% more silicon area for high-current performance

•

Not practical for use in hybrid functions since junctions need to be passivated after assembly

•

Complementary P-N-P type difficult to produce

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

POWER SEMICONDUCTOR TECHNOLOGY
TI Single-Diffused II (glass-passivated epi-base)
Advantages

•

Excellent forward and reverse energy capability

•

Low manufacturing cost

•

Planar type leakages and stabilities due to glass-passivated junctions

•

Faster switching speeds than homogeneous-base structure

•

Complementary P-N-P types readily available at low cost

•

No special processing required for utilization of chips in hybrid functions

•

More linear beta versus collector current than homogeneous-base structure

•

Less silicon required for high-current performance

Disadvantages

•

Chip costs slightly higher due to additional slice processing

Triple-Diffused Mesa
Advantages

•

Moderate switching speeds

•

Good reverse energy capability

•

Moderate saturation resistance

•

High electrical yields

Disadvantages

•

Mesa junction instabilities

•

Long-duration high-temperature diffusions required for collector

•

Chip must be passivated after being assembled to header

•

Exposed junctions are sensitive to ambient conditions during wafer electrical probe

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALL.AS. TEXAS 75222

10-5

POWER SEMICONDUCTOR TECHNOLOGY
TI Triple-Diffused Glass-Passivated Mesa
Advantages
•

Moderate switching speeds

•

Good reverse energy capability

•

Moderate saturation resistance

•

High electrical yields

•

No passivation of junction required after assembly

•

Planar type leakage and stability due to glass-passivated juncti6ns and N+ guard ring structure

•

No special processing requ ired for use of ch ips in hybrid functions.

•

Wafer electrical probe can be set to tighter limits for high final test yields

Disadvantages
•

Long-duration high-temperature diffusions required for collector

Epitaxial Planar
Advantages
•

Fast switching speeds

•

Excellent beta Iinearty versus collector current

•

Low junction leakage and excellent stability

•

P-N-P complement units, are available

•

Low saturation resistance

Disadvantages

II

10-6

•

General.ly lower energy capability

•

Higher manufacturing costs

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

POWER SEMICONDUCTOR TECHNOLOGY
TI Isothermal Epitaxial Planar Transistors
Advantages
•

Fast switching speeds

•

Excellent beta linearity versus collector current

•

Low junction leakage and excellent stability

•

Good reverse and forward energy capabil ity

•

P-N-P complements available

•

Low saturation resistance

Disadvantages
•

Higher manufacturing costs

Chip-Mounting Techniques
Once the design of the silicon chip geometry has been achieved, the next problem to be addressed is how to
assemble the unit.
The majority of mounting systems for power transistors and thyristors fall into two major categories-"hard"
and "soft" solders. The "hard"-solder systems are often made up of a molybdenum mounting platform with a
gold-base preform used to alloy the chip to the molybdenum. The coefficient of expansion of molYbdenum
approximates that of silicon such that the stresses of temperature excursions are minimized. In the "soft"-solder
system, a lead-base solder is used to mount the chip directly to a copper platform. In this system, the flexible
nature of the solder absorbs the stresses of mismatch between the silicon chip and the upper platform during
temperature cycling. Disagreements exist as to which system is best but as with many similar questions, the
answer depends upon the end use of the product. Both systems have their advantages and disadvantages. The
hard-solder systems do not perform under repeated high-current surges as well as the soft-solder systems, and the
soft systems, unless carefully chosen, tend to work-fatigue. Texas Instruments uses both systems with success.
Lead-Bonding Techniques
In bonding, as in mounting, there are two ways in which most power transistors and thyristors are assembled.
One method utilizes ultrasonic bonding of aluminum wire to the chip. The other technique is solder contact
bonding. Again, each method has its advantages and disadvantages. When low volume and close control are
available, the aluminum bond is very good, but the rugged solder contact method lends itself to volume
production and is very readily process controlled. Texas Instruments uses both types of lead bonding methods in
the construction of power transistors and thyristors,each serving the needs of the desired application.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

..,
_

10-7

POWER SEMICONDUCTOR TECHNOLOGY

GERMANIUM POWER TRANSISTORS
Texas Instruments is a high-volume manufacturer of an extemely broad line of germanium transistors. Manufacturing
capabilities in virtually all areas of germanium semiconductor technology permit the production of devices ranging from
high-power (150 watts) to high-frequency (3 GHz) low-noise amplifiers. Programs in mechanization and automation
extending back to the mid-1950's at the Dallas, Texas, TI facility have permitted production of over 1,000,000,000
germanium transistors to satisfy the market needs for large volumes of high·quality devices.
During the assembly operations for germanium power devices, the collector portion of the element is mounted to the
case (or header) to facilitate the transmittal of heat away from the element during the ultimate application of the
device. After final surface treatment, the devices are hermetically sealed in a controlled, dry atmosphere.
Alloy Design
Germanium high-power and medium-power devices are available in P-N-P types which carry maximum ratings in
the ranges of 180 volts, 25 amperes, and 150 watts. The majority of these devices are produced from alloy device
elements and are particularly useful where low saturation voltage and high emitter-base breakdown voltage are
important considerations. These devices are produced by alloying two (collector and emitter) dopant pellets,
along with a base-contact ring, into a single-resistivity chip of germanium. This alloying operation is performed in
a highly controlled·ambient atmosphere and temperature, in order to assure uniform functions in the devices.
Diffused-Alloy Design
A unique series of germanium power transistors is available in the JAN 2N 1046 and 2N 1908 devices. Their
fabrication rechnique involved both alloying and diffusion technologies which produces devices that can operate at
high frequencies (""30 MHz), high current (""20 A) levels, and that are useful as high-frequency power amplifiers.

10-8

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

Application Information

III

II

APPLICATION INFORMATION
APPLICATION REPORT SUMMARY

Introduction
Listed in this section are several application reports pertaining to the use of power semiconductors. Section A is a listing
of abstracts of application reports previously published by Texas Instruments. Reprints of the full reports may be
obtained by writing Texas Instruments Inc., P.O. Box 5012, M.S. 30B, Dallas, Texas 75222
Section B contains a discussion of Safe Operating Areas and Secondary Breakdown Ratings of Power Transistors and
Section C contains new application information covering Thermal Considerations in the use of Power Semiconductors.

A. APPLICATION REPORT SUMMARY
CA-66-SCR Switching Methods
This report describes various techniques for switching SCR's. Topics covered include: Electrical Characteristics of
SCR's, Turning on SCR's, Effect of loads on switching, Turning off SCR's, and specific SCR switching applications.
CA-82-SCR Ring Counters
This report discusses the design and application of ring counter circuits using SCR's to perform digital logic functions.
CA-105-AII Silicon 35-Watt Audio Power Amplifier
This report describes an all silicon, low·cost power amplifier featuring a transformerless, direct·coupled, comple·
mentary-symmetry, driver·output circuit. The class·AB output stage will deliver 35 watts rms (or 70 watts of peak
power) into an B-ohm load with a 55·volt supply.
With 35 watts (rms) output power, the frequency response is -3 dB at 7.4 Hz and 91 kHz. Total harmonic distortion is
less than 0.5% from 60 Hz to 17 kHz, and less than 1% from 37 Hz to 54 kHz. Sensitivity at 1000 Hz is less than 1 volt
for full power output.
CA-111-Low-Cost Solid-state Audio Amplifiers
This report presents two applications of Tl's new low-cost, medium'power, silicon epitaxial base plastic transistors.
The circuits described in this note are a 15-watt (rms) complementary-symmetry audio power amplifier which is
direct·coupled throughout, and a 3-watt (rms) class-A automotive audio power amplifier which uses a P·N·P output
device.
Emphasis has been placed on obtaining a low-cost amplifier giving the maximum amount of output power possible from
the device while using the minimum number of devices, holding the distortion to a reasonabie level, and keeping the
sensitivity compatable with typical amplifier requirements.
CA-116A-Low-Cost Plastic Power Audio Amplifiers

III

This report provides two examples of amplifier design (5 watts and 2.5 watts rms) using low·cost plastic single-diffused
power transistors. Low-cost plastic power transistors are ideal components for use in the output stage of low-cost audio
amplifiers. Excerpts from the subject data sheets are included.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

11-1

APPLICATION INFORMATION
APPLICATION REPORT SUMMARY

CA-117-Low-Cost Plastic Power Drivers
This report describes two similar approaches to the preliminary design of an SO-watt (rms) audio power amplifier using
low-cost plastic power transistors_
The first has a class-A driver stage and is suitable for a public address system_ The other uses a slightly more
complicated class-AB driver stage to obtain performance suitable for a high-quality music system.
Discussion is centered around design consideration of the driver stage.
CA-118-Economical Servo Control Amplifiers
This note describes a simple, reliable version of a servo amplifier that is particularly economical due to its use of a type
of plastic power output transistor which exhibits high gain, high-dissipation capability, and low saturation voltages.
Devices used are single-diffused epitaxial-base plastic power transistors which are available in N-P-N and P-N-P polarities
over a current range of one to 25 amperes.
CA-119-Economical Reversable D-C Motor Control
This report describes an economical solid-state circuit which regulates a single-polarity doc power source to set the speed
and direction of a reversible doc motor, regardless of its shaft load (within the rating of the motor).
CA-120-Economical Power Voltage Regulators
In this report, an approach to output stage design is presented that is applicable to a wide variety of voltage regulators.
Complete designs are presented and compared for a series-pass and a switching-mode regulator.
CA-121-Fan Motor Thermostatic Speed Control
This report presents a thermostatic control circuit for two types of a-c motors suitable for air cooler, attic fans, and
central air-conditioning blower motors.
The advantage of this circuit is its use of a triac as the power-control element. The circuit requires no power other than
line voltage but uses low-voltage connections to remote-control elements.
A semiconductor thermistor (temperature-sensitive resistor) is the sensing element, and economical plastic transistors
are used in the triac trigger circuit.
CA-123-Low-Cost 400-Watt Converter
This report discusses a converter with a saturating drive transformer and a non-saturating output transformer.

II

11-2

This converter steps up doc from 20 V to 110 V and drives loads as large as 400 watts. Because the critical parts of the
circuit are the power transistors and two transformers, the specifications of these devices are crucial to the design
procedure.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

OALLAS, TEXAS 75222

APPLICATION INFORMATION
APPLICATION REPORT SUMMARY

CA-126-Economical High-Voltage Converters
This report describes the use of plastic-encapsulated single-diffused silicon power transistors in high-voltage converter
applications. Two circuit concepts are discussed. The first one is a two-transistor converter using a single transformer
for the drive and voltage-conversion function.
The second circuit is a single transistor blocking-oscillator type, common to high-voltage energy-discharge systems.
CA-137-Programmable Trigger Circuit for Triac Phase Control
This report discusses the theory and applications of the phase-shift technique of a-c power control using triacs. In this
control system, power delivered to the load is varied by changing the phase angle during which the triac is conducting.
The designer may consider the basic circuit a universal building block which can be programmed for different
applications by using different accessory networks.
CA-13S-Triac Triggering Techniques
This report describes techniques to accomplish the triggering function and illustrates several different methods for
controlling a-c power with triacs.
A sample triac data sheet is appended, and the important ratings of several popular TI triacs are tabulated.
CA-141-Universal Driver for Audio Amplifiers
This report describes a universal audio driver that, in conjunction with properly selected output transistors, can be
made into an amplifier with an rms power capability of five watts to 50 watts.
By using low-cost plastic-encapsulated transistors and the minimum number of components, the cost has been kept to a
minimum.
CA-142-Direct-Coupled Complementary SO-Watt Stereo Amplifier
The 80-watt-per-channel stereo system described in this report is an economical design with excellent performance. All
transistors used are low-cost plastic devices with proven reliability and performance.
All the usual hi-fi inputs and equlization networks are provided.
CA-159-Voltage Feedback Methods to Improve Audio Amplifier Designs
This report examines the factors involved in utilizing voltage feedback, how these factors affect circuit performance,
and how voltage feedback can best be employed to achieve the desired performance from an audio amplifier.
Discussions concern expressions for open-loop, closed-loop, and variations of certain closed-loop parameters with
feedback, as well as boot-strapping and the effect of compensation on closed-loop performance.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

III

11-3

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
B. SAFE OPERATING AREAS FOR POWER TRANSISTORS
The Safe Operating Area encloses all points representing simultaneous values of two variables which a transistor can
safely handle under specified conditions. The majority of transistor applications can be reduced to one or more of the
following operations:
Forward-Biased Continuous Operation
Pulsed Forward-Biased Operation
Switching Between Saturation and Cutoff
Each operation is discussed in reference to:
Presentation
Test Circuit
Test Points
Test Procedu re
Temperature Derating
The maximum operating capability of each individual transistor is a complex function of IC, VCE, IB, TC and tp_ To
characterize the full capability of a device would require an unreasonable number of test points_ Therefore, it is
necessary to simplify a rating and derating theory. No reference to the type of failure mode is made.

'FORWARD·BIASED CONTINUOUS OPERATION
Presentation
Figure 1 shows a Forward-Biased Continuous Safe Operating Area_ For VCE ~ VCE1 the total power dissipation
PT is limited by IC max. At increasing VCE the power dissipation capability of most transistors is decreasing
gradually. Because the rate of decrease depends on the individual transistor, it is suggested to use PT3 for
VCE2 < VCE ~ VCE3 and PT4 for VCE3 < VCE ~ VCE4.
For the area given in Figure 1, safe operation is assured with forward bias only (IB is positive for npn transistors,
negative for pnp transistors)_ High-current germanium transistors may have ICEO leakage currents of 1 A or more
at high junction temperatures. It is not recommended to operate transistors continuously at currents smaller than
ICEO except in a temperature-stable cutoff condition_
Test Circuit
The Forward-Biased Continuous Safe Operating Area can be verified by using the temperature-stable
common-base circuit il.lustrated in Figure 2. The Transistor Under Test (TUT) dissipates PT"" IC VCE for
VCE»1 V.

a
11-4

Test Points
The number of test points is arbitrary. The Safe Operating Area in Figure 1 requires three (3) test points: IC2 at
VCE2, IC3 at VCE3 and IC4 at VCE4. Test points should be selected using the principle that only the verified
PTn is assured for VCE'S smaller than the test point voltage VCEn.

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Test Procedure
Test Point Example:

IC = IC2
VCE = VCE2
Tc = 55°C for TJ max';;; 125°C
TC = 100°C for TJ max> 125°C
Test Duration: 1 minute

Determine:

Test Sequence:
1. Start with VCC and VEE at low voltage.
2. Increase VCC to approximately VCE2.
3. Increase VEE to obtain IC2.
4. Increase VCC to two times VCE2.
5. Adjust VEE to obtain VCE2 and IC2.
6. Operate transistor at specified case temperature for one (1) minute. The transistor is not acceptable if IC varies
more than 0.1 • IC2 during the one (1) minute test.
7. Decrease VCC to VCE2.
8. Turn off VEE.
9. Turn off VCC.
Evaluation:
The device shall be capable of meeting the specification.

•
TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

11·5

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Temperature Derating for Continuous Operation
The maximum allowable case temperature for a given PT can be calculated as follows:
T C .;;; TJ max - -PT ITJ max - 55°C) for TJ max';;; 125°C
PTn
PT
TC';;; TJ max - (TJ max - 100°C) for TJ max> 125°C
PTn
TC = Case Temperature
TJ max = Maximum Operating Junction Temperature
PT = Total power dissipation at VCE';;; VCEn
PTn = Total power Dissipation at Test Point VCEn and
TC = 55°C for TJ max';;; 125°C or TC = 100°C
for TJ max> 125°C.
IC

"},

Ie max f----->.!"O

~~

I~d'r

IC2

-------J--~1-)o
I
"},

"0 U'~

I

I
:

IC3

~ 125°C

I

I
I

I ~d'r
~1tr

I
I

I

-------+---/-------f---I
I
I

I
I
I
L -______-L'__-L'----~~I--~~VCE

LOG

VCEI VCE2

VCE3

VCE4

FIGURE 1
VCE

Re

a

Vec=2· VCE

FIGURE 2

11-6

TEXAS INCORPORATEO
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
PULSED FORWARD-BIASED OPERATION
Presentation
Figure 3 shows three pulse width areas for tp1 ;;. tp2;;' tp3; however additional pulse width areas may be added.
The presentation in Figure 3 has the advantage of specifying the maximum capability of a transistor type at
IC max whereas the area in Figure 4 is based on maximum capability at highest allowable VCE. The area in
Figure 4 is limited by IC max and curves representing constant IC • VCE product. Therefore, the test point at
highest VCE assures all other operating points within a given tp area, but on the other hand, this method derates
the capability of a transistor at IC max.
Test Circuits
In test circuit Figure 5 the Pulsed Forward-Biased capability of a transistor can be verified. The transistor 01 can
be replaced by a switch such as a mercury relay. Some test circuits require an emitter resistor for the Transistor
Under Test (TUT). Such a resistor is not desirable because it complicates specification writing as well as testing
procedures.
Test Points
The number of test points equals the number of pulse width areas. The following table shows the required
specification for verification at TC = 25°C:

FIGURE

TEST POINT

3

4

IC

VCE

tp

#1

ICmax

VCE5

tp1

#2

ICmax

VCE6

tp2

#3

ICmax

VCE7

tp3

#1

IC1

VCE8

tp1

#2

IC2

VCE8

tp2

#3

IC3

VCE8

tp3

In addition the duty cycle has to be specified.

II!

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALL.AS, TEXAS 75222

11-7

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Test Procedure
Test Point Example:

TC = 25°C
IC= IC max
VCE = VCE5
tp = tpl
Duty Cycle = d 1

Determine:

V.CCl = VCE5 + IC max RS

The collector current capability of al should be approximately:

2

(

VSS2 + 1.5 V
RSS2

+

IC max
)
hFE min (TUT)

The current supplied to the base of al should be sufficient to drive al into saturation for Ical.
Transistor al may be replaced by a rela,. The rise and fall time of the collector current should be small
compared to the pulse width tp.
Test Sequence:
1. With all voltage supplies turned off adjust the pulse generator for tp = tpl and d = dl.
2. TurnonVcctoVCC1.
3. Increase VSSl until ic reaches IC max by applying single pulses.
4. Check that the following conditions are met:
tr«tp
tf«tp
TC= 25°C
5. The transistor is not acceptable if ic varies more than 0.1 • IC max during tpl. The duration of test is only that
time adequate to make the reading.
6. Adjust VSSl to zero and turn off VCC.
For subsequent transistors to be tested, only steps 2, 3, 5 and 6 have to be repeated.

•
11·8

Evaluation:
The device shall still be capable of meeting the specification.

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

IC

I C vs V CE
TC = 2SoC
SINGLE NONREPETETIVE PULSE

IC

Ie vs VCE
TC = 2Soc
SINGLE NONREPETETIVE PULSE

IC( max) I---------.,.-""T'-~~

IC(max)

tpl

tp2

tp3

VCE IC CONSTANT ---~....£..~_

VCE5

VCE6

LOG

VCE7 VCE

FIGURE3

VCEB VCE

FIGURE4

SCOPE
vin + Vec

seOPE
ic

VCC
RS .. 20' IC

SCOPE
COMMON

RSSl
TUT

Ql
RSS2

-

PULSE
GENERATOR

VSS2

II
VSSl

VCC

'='

•

FIGURE 5

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

11·9

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

SWITCHING BETWEEN SATURATION AND CUTOFF

Resistive Load
Presentation
Figure 6 shows the area within which the load line has to be located for safe operation with a resistive load.
Test Circuit
Verification of the Safe Operating Area is performed by switching the transistor on and off with a single
non-repetitive pulse in circuit Figure 7.
Test Points
Only one test point has to be verified. This is accomplished by switching from VCE max to saturation at IC max
and back again to VCE max.
Test Procedure
Test Point Example:

TC; 25°C
IC ; IC max
VCE ; VCE max

RBBl

RBB1(1)

RBB2

RBB2(1)

VBBl

VBBl (1)

VBB2

VBB2(1)

Determine:
VCE max
RL ; ----:c.:;;...;.;-'-IC max
VCC; VCE max
The collector current capability of 01 should be approximately:

ICOl ; 2 (

VBB2 + 1.5 V
RBB2

+

VBBl - 1.5 V)
RBBl

The current supplied to be base of 01 should be sufficient to drive 01 into saturation for IC01.

11-10

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Test Sequence
1. Adjust VBB1. VBB2. and Vee.

2. Apply single pulses with increasing pulse width until

Ie = Ie max using the specified duty cycle.

3. The transistor is not acceptable if the cutoff state after the pulse cannot be maintained. The duration of the
test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation:
The device shall still be capable of meeting the specification.
IC

IC vs VCE
TC = 25°C
SINGLE NONREPETETIVE PULSE

IClmax)

VCElmax)

VCE

FIGURE 6

SCOPE

SCOPE

RBB1

SCOPE
COMMON

Q1

PULSE
GENERATOR

>---------<------+----iII~-_4_--+_--_IIII---.-J
VBB1

VCC

FIGURE 7

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

11-11

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Clamped Inductive Load
Presentation
Figure 8 shows the area within which the load line has to be located for safe operation with a clamped inductive
load.
Test Circuit
The test circuit in Figure 9 is similar to the one shown in Figure 7 except for the load in the collector
R LOAD represents the total resistive part of the load.

circui~.

Test Points
By switching through the worst allowable load line during turn off, the Safe Operating Area of Figure 8 can be
verified.
Test Precedure:
TC = 25°C

Test Point Example:

IC=ICmax
VCE = VCE9
RL = RL1
L = Ll
RBBl = RBB1(l)
RBB2 = RBB2( 1)
VBBl = VBB1(1)
VBB2 = VBB2(1)
CR = lNXXXX
VCc= VCE9
The collector current capability of 01 should be approximately:
2

(,!BB2(1) + 1.5 V

+

VBB1(l) - 1.5 V)

,RBB2(1)

•
11·12

RBB1(l)

The current supplied to the base of 01 should be sufficient to drive 01 into saturation for IC01 .

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Test Sequence
1. Adjust VBB1 to make Vin

=

VBB1(l). VBB2 to VBB2(1). and VCC to VCE9·

2. Apply single pulses with increasing pulse width until ic =

Ie max with duty cycle as specified.

3. The transistor is not acceptable if the cutoff state after the pulse cannot be maintained. The duration of the
test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation:
The device shall still be capable of meeting the specification.
IC
IC vs VCE
TC = 25"C
SINGLE NONREPETETIVE PULSE

IC(max)

VCE
VCE9
FIGURES

SCOPE

SCOPE

Vin

vee

SCOPE
COMMON

r-

RSS2

I

I
I
I

PULSE
GENERATOR

I
I

I
I

">------.....- -......---1111---........- - - - -.... II
VSSl

'::'

l'wAO

CR

III

I

I
IL

I
I

I

'-- -'

seOPE
Vee + ieRs

VCC

FIGURE 9

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

11-13

APPLICATION INFOltMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Unclamped Inductive Load
Presentation
Figure 10 shows three different areas depending on VBB2 and RBB2. The'number of areas is arbitrary. The areas
are limited by IC max. curves representing constant energy. IC 2 L/2. and a reasonable amount of maximum
inductance L1 associated with circuits for which the transistor type is intended for.
Test Circuit
Verification of the Safe Operating Area is performed by switching the transistor from cutoff to saturation to
cutoff with a single non·repetitive pulse in the circuit of Figure 11.
Test Points
Testing transistors with IC4. IC5. and IC6 and L1 assures the respective safe operating areas because the
capability of absorbing inductive energy increases with increasing collector current. This method derates the
capability of a transistor at IC max but decreases the amount of testing at higher currents otherwise necessary to
verify a c,urve which attempts to follow the actual capability of the device.
The energy absorbed by the transistor is given by:

3' L' IC2 • V(BR)CEX
6 V(BR)CEX - 6 VCC + 4 RL IC
where:

EL

= Inductive Energy Stored in

L. EL = IC2 L/2

ES

=

Energy from Power Supply During "Turnoff" Transient

ER

=

Energy Absorbed by Resistive Component of the Load During "Turnoff"
Transient

ET

=

Energy Absorbed by Transistor During "Turnoff" Transient.

V(BR)CEX = Breakdown Voltage of Transistor Under Test (V(BR)CEO. V(BR)CER or
V(BR)CEX - Depending on VBB2 and RBB2).
Transistors with V(BR)CEX»VCC absorb a 'lower energy ET during the test than transistors with
V(BR)CEX "'" VCC. If the ET capability of a transistor has to be predicted without knowing V(BR)CEX. the
following ET can be absorbed at TC = 25°C for a single non-repetitive pulse:

ET =

1

2" L·

IC2

It is desirable to choose VCC" 15 V. This tends to decrease damage to transistors which are unable to pass the
specified test point.

11-14

TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Test Procedure
Test Point Example:

TC = 25°C
IC= IC4
VCC= VCC2';;; 15 V
RL = RL2';;;VCC2/2IC4
L= L2
RBBl = RBBl (2)
RBB2 = RBB2(2)
VBBl = VBB1(2)
VBB2 = VBB2(2)

Determine:
The approximate required pulse-width to reach 1C4 is given by:
L2
tp4 = - _ IC
VCC
The collector current capability of Ql should be approxim1'tely:

ICOl = 2

(

VBB2(2) + 1.5 V

+

RBB2(2)

VBB1(2) -

1.5

V)

RBB1(2)

The current supplied to the base of Ql should be sufficient to drive Ql into saturation for ICQ1.
Test Sequence
1. Adjust VBBl to make vin = VBB1(2). VBB2 to VBB2(2). and VCC to VCC2.
2. Apply single pulses with tp « t p4. Increase pulse width until ic = IC4. (Duty cycle should be such that
TJ(AVG) "" 25°C.)
3. The transistor is not acceptable if the collector-emitter voltage collapses or oscillates during the collector
current fall time tf. The transistor must be capable to maintain V(BR)CEX during tf within ±10% of
V(BR)CEX. The duration of the test is only that time adequate to make the reading.
4. Turn off all supplies.
Evaluation: .
The device shall still be capable of meeting the specification.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

III

11-15

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS

Icv. L
TC = 25°C. VCC =
V.
SINGLE NONREPETETIVE PULSE

IC
IClm_x)

t--.. . . ~r-"
V; RBB2 =

.n

Cl

9

V; RBB2 =

.n

IC 2 L/2= CONSTANT _L-------~~--4------IIIt---......---.------IIIt---++.....
CURRENT PROBE
TEKTRONIX P 6042
OR EOUIV.
FIGURE 11

11·16

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

APPLICATION INFORMATION
SAFE OPERATING AREAS FOR POWER TRANSISTORS
Temperature Derating for Pulsed Forward-Biased Operation and Switching
A safe maximum case temperature (Tc ~ 25°C) for a given IC and average total power dissipation PT(AVG) due
to repetitive pulses can be calculated as follows:
IC
TC";; TJ max - - - (TJ max - 25°C) ICn

RIIJC PT(AVG)

TC = Case temperature
TJ max = Maximum operating junction temperature.
IC = Collector current during saturation
ICn = Maximum allowed collector current at TC = 25°C
ROJC = Thermal resistance junction to case
PT(AVG) = Average total power dissipation

III
TEXAS INCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

11-17

APPLICATION INFORMATION
THERMAL CONSIDERATIONS
C. THERMAL CONSIDERATIONS
Heat Flow

To understand the flow of heat through a solid, it is helpful to use an electrical analogy.
ELECTRICAL TERM

THERMAL TERM

T -Temperature differential rOC]
P-Power [W] ,
RO-Thermal resistance [oCIW]

V-Voltage differential [V]
I-Current [A]
R-Resistance

em

Figure 1 illustrates the thermal circuit as it applies to a semiconductor device dissipating a continuous power into an
air-cooled heat sink_
.--_---".
_ _• T J-Junction Temperature
p

RBJc-Junction-to-Case Thermal Resistance
T c-Case Temperature
ROCHs-Case-to-Heat Sink Thermal Resistance
THs-Heat Sink Temperature
RBHSA-Heat Sink-to-Free-Air Thermal Resistance

'------e T A -Free-Air (Ambient} Temperature
FIGURE 1

The corresponding thermal circuit for a device dissipating continuous powerin free air is shown in Figure 2.

O
P

TJA = TJ - TA

-=-

TJ
RBJC
TC
ReCA
TA

FIGURE 2

The most frequent thermal requirement which must be met is TJ';;; TJ(max)- For a given power dissipation this means
the sum of all thermal resistances from junction-to-ambient must be:
,,;: TJ(max) - TA
R
OJA '"
P
Junction-to-Case Thermal Resistance-ROJC

II

11-18

ROJC is the temperature difference between the power dissipating junction,and a point specified on the case divided by
the power dissipation. Most TI power device data sheets specify ROJC- The case temperature measurement point is
shown under "Mechanical Data", Derating should be performed as outlined in SECTION B, Safe Operating Areas for
Power Transistors, under "Temperature Derating for Continuous Operation"_ This is necessary because ROJC increases
with increasing collector-emitter voltage, Depending on the transistor construction, there is an additional increase or
decrease of ROJC with increasing collector current. In applying the Safe Operating Area concept, ROJC variations with
operating point do not have to be considered_

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

APPLICATION INFORMATION
THERMAL CONSIDERATIONS
Case-to-Heat-Sink Thermal Resistance-ROCHSROCHS is a function of the following conditions:
Torque applied to the machine screw or stud
Use of thermal compound and type of compound
Use of insulator and material of insulator
Flatness of device and heat sink
Surface finish
Heat-sink material
The effect of mounting torque as well as insulator material is shown in Figure 3 and Figure 4 for plastic transistors.

PLASTIC
REPLACEMENT
FOR TO-3

PLASTIC
REPLACEMENT
FOR TO-66

H

GG

CASE-TO-HEAT-SINK THERMAL RESISTANCE
vs
~
MOUNTING TORQUE
u

0

~
U

o

1

~
c

1

1.4

F'"

""
o

1.0
0.8

\~

0.6

1\

c

'"

0:

Q)

J.CA .lsuL1ToR
(0.003 in)

~

~ 0.2
u
0

NO INSULATOR

I

0

2

4

""c

0.6

"

'"
:c

0.4

\

1;l
co

6

8

u

1
CJ)

10

12

:c

14

u

<:D

<:D

0:

0.8

0-..

0.2

o

MICA INSULATOR
(0.003 in)

NO INSLLATbR

DOW CORNING II COMPOUND
6-32 SCREW MOUNTING

o

2

0:

Mounting Torque-inolbs

KAPTONINSULATOR(0.0021 in)
I

t'--- t-.........
I'-I---

"';'

OOW CORNING II COMPOUND
6-32 SCREW MOUNTING

&,

'"

6

I

I

1.0

J:

I-

'2co

'---

1.2

§

~

1;)

:c 0.4

[5

t:
.;;;
(ij

'-r-.

1.4

cco

KAPTON INSULATOR(0.0021 in)

, I'---- t--

'"

0:

§

~

I I I I

t! 1.2
.;;;
(ij

CASE-TO-HEAT-SINK THERMAL RESISTANCE
vs
MOUNTING TORQUE

4

6

8

FIGURE 4

FIGURE 3

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

10

12

Mounting Torque-inolbs

14

•
11-19

APPLICATION INFORMATION
THERMAL CONSIDERATIONS
Following is a table of ReCHS using a mica insulating washer. The heat sink used to determine this value was a smooth,
flat, copper plate, with the thermocouple mounted 0.05 inch below the mounting surface in an area beneath the device.
The device was mounted using a 2-mil mica washer to a clean, dry, heat-sink surface, without the use of a thermal
compound. A torque of ten inch-pounds was applied to the stud or to each of the mounting screws.
PACKAGE
TO-3
TO-53
TO-59, TO-60, TO-lll
TO-61
TO-63

1.5
1.6
3.8
1.3
1.1

By using a thermal compound, the above thermal resistances can be decreased more than 0.6 °C/W, depending upon the
type of.compound used.

Case-to-Free-Air Thermal Resistance-ReCA
ReCA is more of a constant than ReCHS because ReCA is not dependent on so many variables. Most TI power device
data sheets specify RIIJA which is RIIJC + ReCA .

•
11·20

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

Quality and Reliability
Information

II

II

QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
FACILITIES AND EQUIPMENT
A.

LIFE TEST AND BURN-IN FACILITIES
1. Texas Instruments Incorporated is equipped with extensive facilities to provide life test and burn-in capabilities for
germanium power transistors, silicon power transistors, and thyristors.
2. Facilities are available for a wide range of tests including:
a. Storage life testing up to 300°C.
b. Voltage-temperature stress testing at both ambient and elevated temperature conditions.
c. Free·air operating for more than 20,000 silicon power and germanium transistors.
d. Case temperature operating for 8600 silicon power transistors at dissipation levels up to 200 watts.
e. Intermittent operating at various cycle times and power levels.

B.

ENVIRONMENTAL FACILITIES
1. Test capabilities of the Environmental Laboratory are shown in two different ways, First, Military Standard Test
Capability which lists capability per MIL-STD-202, MIL-STD-750, and MIL-STD-883 for each test category; and
second, Overall Test Capability which lists capability limits and, where applicable, combined environment capability
for each test category.
2. Laboratory capabilities required for performance of tests per MIL-STD-202, MIL-STD-750, and MIL-STD-883 are
listed in Table I. Those tests which are noted as exceptions are beyond the capability of the Environmental
Laboratory.
3. Laboratory capability limits, including limits of combined environments, are shown in Table II for each test
category.

•
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS. TEXAS 75222

12-1

QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
TABLE I-MILITARY STANDARD TEST CAPABILITY
TEST CATEGORY
Altitude

MIL·STD·202

MIL·STD·750

MIL·STD·883

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

Dew Point
Flammability

All Conditions

Moisture Resistance

All Conditions

Resistance to Solvents

All Conditions

(Symbolization)
Salt Atmosphere
Salt Spray

All Conditions

*Seal, Gross Leak

All Gross Leak Conditions
(Method 112A, Conditions
A, B, and Procedure I V of
Condition C. Method I04A,
Conditions A, B & C) t

Solderability

All Conditions

Soldering Heat

All Conditions
All Gross Leak Conditions
(Method 1071, Conditions
C, D, E & F)t

All Gross Leak Conditions
(Method 1014, Conditions C
&D)t

All Conditions

All Conditions

All Conditions

Temperature Cycling

All Conditions
EXCEPT: Method 107, Con·
ditions D & F

Terminal Strength

All Conditions

(Lead Integrity)
Thermal Shock (G lass Strain)
Accehiration, Sustained

All Conditions

All Conditions
EXCEPT: Method 1051, Con·
ditions D & E

AU Conditions
EXCEPT: Method 1010, Con·
ditions E & F

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions
EXCEPT: Method 2001, Con·
dition J

(Centrifuge)

NOTE:

~ Method 2001, Con·
dition G and H, may
require special.fixtur-

ing. Limitedcapabil.
ity for these condo
tions is avai lable for
special package types.
:j:Shock (Mechanical)

All Conditions

All Conditions

EXCEPT: Method 213, Con·
ditions B, C, G, J,
and K

All Conditions
NOTE:

~ Method 2002, Con·
dition F and G, may
require special fixtur·
ing. Capability for
these conditions is
available for special
package types.

Vibration, Fatigue

All Conditions

All Conditions

Vibration, Noise

All Conditions

All Conditions

"Vib,ation, Random

All Conditions

"Vibration, Variable Frequency
Seal, Fine Leak
(Radioactive Tracer Gas)

All Conditions
ONLY Method 112A, Condi·
tion C, Procedure III.B

All Conditions
ONLY Method 1071, Condi·
tion G only

All Conditions
ONLY Method 1014,Condition
B only

.X·Ray, Film

All Conditions

All Conditions

All Conditions

.X·Rav. Real Time (TV X·Rav)

All Conditions

All Conditions

All Conditions

..

*Sal! Radiographic Inspection Capability for Seal, Fine Leak .
t'tems in parenthesis are the gross leak test conditions performed by Environmental Laboratory. Exception to these particular methods not

listed.
:t:Also perform mechanical shock per MIL-STO-8108, Method 516, Procedures I, III and IV.
.
"'Also perform random vibration and vibration variable frequency per MIL-STO-810B, Method 514.1, Procedures I, II, III, IV, and VII. Omit
paragraph 4.5.1.1, Resonant Search, and paragraph 4.5.1.2, Resonant Dwell for Electronic Components.
1fCapability for testing approxim"ately 15 major microelectric package types per MIL-STD-883, Method 2001, Conditions CO and H (sustained
acceleration) and for testing approximately 30 major microelectronic packages per MI L-STD-883, Method 2002, Conditions F and G
(mechanical shock) are presently available. These high"G" level conditions are used primarily for evaluation tests on small packages such as

I

C·DIP, PIP, 4A header, TO·5, TO-18, etc .
• Radlographic inspection is performed in accordance with many other goverment and customer specifications. Before any new radiographic
specifi.cation is acce~~~!e for use as a ~est s~ndard with Components Group, It must be approved by Environmental Laboratory.

12·2

TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012,. DALLAS, TEXAS 75222

QUALITY AND RELIABILITY INFORMATION
FACILITIES AND EQUIPMENT
TABLE II-OVERALL TEST CAPABILITY
TEST
Acceleration, Sustained (Centrifuge)

CAPABILITY
50-50,000 9 (Standard)
50,000-100,000 9 (Nonstandard)

Altitude (Barometric Pressure, Reduced)

450,000 ft. Simulated Altitude with -125"C to 125"C Capability

Cryogenic Exposure

-75"C to -196"C

Dew Point

-65"C to 150"C

Flammability

900"C to 1100"C

Moisture Resistance

2"C to 96"C, 40% to 100% RH

Radiographic Inspection (X-Ray)
Film

Resolution to 0.001 Inch, 150 kV·5 mA

Real Time

360" Rotation-Resolution to 0.001 Inch
25"C to 71"C, Up to 20% Salt Solution by Weight

Salt Atmosphere/Spray
Seal

>5 X 10-6, 150"C,

Gross Leak

Fluorocarbons, Mineral Oils, Ethylene Glycol

Hydrostatic Pressure-Q.-300 psig
;> 1 X 10- 11

Radioactive Tracer Gas
Symbolization (Resistance to Solvents)

PULSE SHAPE-APPROXIMATELY

Shock (Mechanical)

HALF·SINE
1,500·30,000 9 @ 0.2 ms ± 0.1 ms
1,000·6,000 9 @ 0.3 ms ± 0.1 ms
500-10,000 9 @ 0.5 ms ± 0.15 ms
500-4,000 9 @ 1 ms ± 0.3 ms
500 & 1,000 g@ 1.5 ms ± 0.45 ms
1,800g@3ms±0.6ms
50·100 g@6 ms ± 0.9 ms
50·200 9 @ 7 ms ± 1.05 ms
15·150 9 @ 11 ms ±.1.65 ms
PULSE SHAPE-SAWTOOTH
100g@6ms
Solderability/Soldering

Up to 280"C

T emperatu re Cycling

-185"C to 300"C

Terminal Strength (Lead Integrity)

Lead Fatigue, Tension, Stud Torque, Terminal Torque

Thermal Shock

-196"C to 200"C

Ultrasonics

0-100 psi at 25 kHz or 40 kHz

Ultraviolet Exposure

To 12.5 mW/cm 2

Vibration, Fatigue

10-100 Hz, 5·70 9

Vibration, Random

20-200 Hz, Power Density 1.3 g2/Hz
5·2,000 Hz as Limited by 1 Inch DA and 60 Inches/Second Veloc·
ity. 0-70 9 (Standard), 70-100 9 (Nonstandard)

Vibration, Variable

TEXAS INSTRUMENTS
INCORPORATED

POST OFFLCE BOX 5012

•

DALLAS, TEXAS 75222

II
12-3

I
12-4

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
RELIABILITY DATA
The reliability data in this section covers a cross'section of device types included in this data book. The data is broken
down into four major sections:
Germanium Power Transistors
Silicon Power Transistors
Thyristors
Single·Diffused Plastic Power Transistors

Germanium Power Transistors
2N1041
DEVICE

TEST

HOURS

STORAGE: 100°C

339,000

2 (lCBO)

OPERATING: VCE - 20 V, P - 1.2 W, TC - 55°C

341,000

0

PARAMETER

INITIAL LIMITS

CONDITIONS

F. R. X 10 5

FAILURES

MIN

MAX

60% CONF.
0.89
0.26
POST TEST LIMITS
MIN

MAX

70llA

ICBO

VCB=50V

hFE

VCE - 0.5V, Ic- 1 A

20

60

70llA
20

60

2N1046
DEVICE

TEST

HOURS

STORAGE: 95°C

96,000

0

OPERATING: VCE = 40 V, VBE - 0.2 V, Tstg = 55°C

96,000

0

PARAMETER

INITIAL LIMITS

CONDITIONS

ICBO

VCB=40V

hFE

VCE-1 V,IC-0.5A

F. R. X 10-5

FAILURES

MIN

MAX

60%CONF.
0.93
0.93
POST TEST LIMITS
MIN

MAX

1 mA
40

200

2mA
32

Silicon Power Transistors
2N1049A 2N1050A
DEVICE

TEST

HOURS

F. R. X 10 5

FAILURES

60%CONF.

STORAGE: 200°C

689,080

1 (hFE)

0.29

OPERATING: VCE - 40 V, Pc - 23 W, TC = 100°C

730,080

4 (lCBO)

0.69

PARAMETER

INITIAL LIMITS

CONDITIONS

ICBO

VCB = 30V

hFE

VCE - 10 V, Ie - 500 mA

MIN

MAX

POST TEST LIMITS
MIN

151lA
30

90

MAX
30llA

24

108

II
TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

12-5

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N2151
DEVICE
HOURS

TEST

FAILURES

F. R. X 10- 5
60%CONF.
0.19

STORAGE: 200°C

468,000

0

OPERATING: VCE = 40 V. PT = 30 W, TC = 100°C

159,000

1 (ICES)

PARAMETER

INITIAL LIMITS

CONDITIONS

MIN

MAX

VCE=120V

ICES

1.21
POST TEST LIMITS
MIN

MAX
10llA

51lA
100V

V(BR)CEO

le= 50mA

hFE

VCE- 5V,IC= 1 A

100 V
120

40

144

36

2N2880
DEVICE

TEST

HOURS

F. R. X 10 5

FAILURES

60% CONF.

3
STORAGE: 200°C

262,000

(2 hFE)
(1 ICBO)

1.52

OPERATING: VCE - 20 V, PT = 30 W, TC = 100°C

249,000

2 (lCBO).

1.20

2N2880 (BURNED·IN FOR 168 HOURS)
DEVICE

TEST

HOURS

STORAGE: 200°C

944,000

F. R. X 10 5

FAILURES

60%CONF.
0.43

3 (lCBO)
2

OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C

PARAMETER

679,000

INITIAL LIMITS

CONDITIONS

0.44

(1 ICBO)
(1 lEBO)

MIN

MAX

POST TEST LIMITS
MIN

MAX
0.81lA

0.4 IlA

ICBO

VCB= 80V

lEBO

VES - 6V

hFE

VCE- 5V,IC-1 A

0.4 IlA
40

120

0.81lA
36

144

2N1724
DEVICE

TEST

HOURS

STORAGE: 200°C

906,508

1 (ICES)

OPERATING: VCE = 40 V, Pc = 50 W, TC = 100°C

856,248

1 (ICES)

PARAMETER

INITIAL LIMITS

CONDITIONS

ICES

VCE = 60V

MIN

MAX

60% CONF.
0.22
0.23
POST TEST LIMITS
MIN

300llA

VEB- 5V
IC- 200mA

hFE

VCE-15V,IC-2A

BOV
30

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS. TEXAS 75222

MAX
600llA

400ilA

lEBO
V(BR)CEO

II
12·6

F. R. X 10- 5

FAILURES

500llA
80V

90

27

108

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N1722
DEVICE

TEST

HOURS

F. R. X 10-5

FAILURES

60%CONF.

3
STORAGE: 200°C

285,000

(2 lEBO)

1.40

(1 ICES)
2
OPERATING: VCE ~ 10 V, Pc ~ 50 W, TC ~ 100 °c

285,000

(1 lEBO)

1.05

(1 ICES)
PARAMETER

INITIAL LIMITS

CONDITIONS

ICES

VCE

~

MIN

MAX

POST TEST LIMITS
MIN

MAX

300!,A

60 V

lEBO

VEB~

V(BR)CEO

IC~

hFE

VCE~15V,IC~2A

5V

600!,A
500!,A

400!'A

200mA

80V

80 V
30

90

108

27

2N3420 AND 2N3421
DEVICE

TEST

HOURS

STORAGE: 200°C
OPERATING:

I

I

2N3420 VCB - 40 V, PT - 1 W
2N3421 VCB - 60 V, PT - 1 W

F. R. X 10 5

FAILURES

60%CONF.

1,077,540

3 (lCEX)

0.38

1,038,540

7 (lCEX)

0.79

2N3420 AND 2N3421 (BURNED·IN FOR 168 HOURS)
DEVICE

TEST

HOURS

F. R. X 10-5

FAILURES

60% CONF.

3
STORAGE: 200°C

1,360,860

(1 O/S)t

0.30

(2 ICEX)
OPERATING:

I

2N3420 VCB 40 V, PT 1 W
VCB - 60 V, PT - 1 W

PARAMETER

ICEX

MIN

MAX

VCE - 80 V

0.5!'A

2N3421

VCE-120V

0.5!'A

2N3421
2N3420

hFE

INITIAL LIMITS

CONDITIONS

2N3421

IC~

VCE

60V

50mA
~

2 V, IC

1A

POST TEST LIMITS
MIN

MAX
I!'A
l!'A

60V
80V

80V
~

0.22

2 (lCEX)

2N3420
2N3420
V(BR)CEO

1,360,860

I 2N3421

20

60

16

72

40

120

32

144

IE
totS designates open or shorted.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DAL.LAS, TEXAS 75222

12-7

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N3998 AND 2N3999
DEVICE

TEST

HOURS

F. R. X 10- 5

FAILURES

60%CONF.

STORAGE: 200°C

162.000

0

0.54

OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C

162,000

1 (ICES)

1.20

2N3998 AND 2N3999 (BURNED·IN FOR 168 HOURS)
DEVICE

TEST

HOURS

STORAGE: 200°C

710,000

OPERATING: VCE = 20 V, PT = 30 W, TC = 100°C

497,000

hFE

MAX

MIN

12N3999

POST TEST LIMITS
MIN

MAX
10jlA

5jlA
SOV

SOV

'C- 50mA
l2N399S

0.56
0.40

1 (O/S)t

VCE=looV

'CES
V(BR)CEO

60",1, CONF.

3 (ICES)

INITIAL LIMITS

CONDITIONS

PARAMETER

F. R. X 10- 5

FAILURES

VCE = 2 V, IC = 1 A

40

120

36

144

SO

240

72

2SS

2N1714 2N1715 2N1716 AND 2N1717
DEVICE

TEST

HOURS

STORAGE: 200°C

662,000

OPERATING: VCB = 40 V, Pc = O.S W

676,000

F. R. X 10-5

FAILURES

60%CONF.

1 (hFE)
4

0.29

(3 'CES)

0.75

(1 'CEX)
INITIAL LIMITS

CONDITIONS

PARAMETER

MAX

MIN

2N1714,6
V(BR)CEO

2N1715,7
2N1714,5

hFE

2N1716,7

MAX
4jlA

2jlA

VCE=60V

'CES

POST TEST LIMITS
MIN
60V

60V

IC= 30mA

100 V

100V

VCE = 5 V, Ie = 200 rnA

20

60

16

72

40

120

32

144

2N3996 AND 2N3997
DEVICE

TEST

HOURS

60% CONF.

STORAGE: 200°C

110,000

0

O.SO

OPERATING: VCE = 20 V, PT = 30W, TC = 100°C

110,000

0

O.SO

PARAMETER

12N3996
hFE

INITIAL LIMITS

CONDITIONS

MIN

12N3997

MAX

POST TEST LIMITS
MIN

VCE = 2 V, IC = 1 A

120

36

144

SO

240

72

288

totS designates open or shorted"

TEXAS INSTRUMENTS
INCORPORATED
•

SOV

SOV
40

II
POST OFFICE BOX 5012

MAX
10jlA

5/lA

VCE=90V
IC= 50 rnA

'CES
V(BR)CEO

12·8

F. R. X 10-5

FAILURES

DALLAS, TEXAS 75222

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N389 AND 2N424
DEVICE

TEST

F. R. X 10 5

FAILURES

HOURS

6O%CONF.

STORAGE: 200°C

708,000

2 (V(BR)CER)

0.42

OPERATING: P = 4B W, TC = 100°C

353,000

S (V(BR)CER)

2.0

INITIAL LIMITS

CONDITIONS

PARAMETER
\2N389
V(BR)CER \2N424

IC= 20mA, RBE = 33 n

hFE

IC= 1 A, VCE = 15V

MIN

MAX

POST TEST LIMITS
MIN

MAX

SOV

SOV
80V

BOV

15

SO

12

75

2N497 2N498 2N656 AND 2N657
DEVICE

TEST

HOURS

F. R. X 10 5

FAILURES

60%CONF.

2
STORAGE: 200°C

904,250

(1 ICBO)

0.33

(1 V(BR)CEO)
7
OPERATING: P = O.B W, TA = 25°C

904,250

(4ICBO)

0.90

(3 hFE)
PARAMETER
ICBO

2N497, 2NS56

VCB= 50V

2N49B, 2NS57

VCB-80V

2N497,2NS56
hFE

2N49B, 2NS57
2N497,2NS56

V(BR)CEO

2N49B, 2NS57

INITIAL LIMITS

CONDITIONS

MIN

MAX

POST TEST LIMITS
MIN

MAX
10"A

I"A

VCE = 10V, IC= 200mA
Ic=30mA

12

I"A
3S

30

90

9.S

10"A
45

24

117

SOV

SOV

looV

looV

Thyristors
2N3557
DEVICE

TEST

HOURS

OYNAMIC OPERATION: VRRM = 100 V, IT(AV) = 1 A,
TA = 25°C,f= SOHz
PARAMETER

CONDITIONS

F. R. X 10- 5

FAILURES

60%CONF.
1.2

10

944,000

INITIAL LIMITS
MIN

MAX
30nA

POST TEST LIMITS
MIN

MAX
30nA

10

VO=I00V,RGK=1 kn

IR

VR-l00V,IG-0

0.1 "A

0.1 "A

IGT
IH

VAA-5V,RL-12n

200 "A
5mA

200 "A
5mA

RGK-lkn,RL-12n

II
TEXASINCORPORATED
INSTRUMENTS
POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

12·9

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
2N3002
F. R. X 10-5

DEVICE

TEST

HOURS

FAILURES

60%CONF.

STORAGE: 150°C

336,000

4

1.5

OPERATING: IT = 200 mA, VD = 30 V, T A = 25° IC

336,000

4

1.5

PARAMETER

INITIAL LIMITS

CONDITIONS

MIN

MAX

POST TEST LIMITS
MIN

MAX

10
IR

VD = 60 V, RGK = 1 kG
VR = -60 V, RGK = ~

20nA

20nA

100nA

100nA

IGR

VGK--5V,RL-~

l00nA

l00nA

IGT

VAA-5V,RL-12G

200pA

200pA

VGT

VAA-5V,RL-12G

SOOmV

SOOmV

IH

RGK 1 kG
IT-2A

5mA

5mA

1.5 V

1.5V

VT

2N1596
DEVICE

TEST

HOURS

OYNAMIC OPERATION: IT(AV) = 250 mA, VORM = 100 V,
TA = 25°C, f= 60 Hz
PARAMETER

247,000

MIN

MAX

1.2
POST TEST LIMITS
MIN

250pA

VO-l00V

10
IR

VR -100V

IGT

VF - 50 V, RGK - 1 kG, RL,- 2 kG

10mA

TEXAS INSTRUMENTS
INCORPORATED

"OST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

MAX
250pA

250pA
6mA

•
12-10

60%CONF.

2

INITIAL LIMITS

CONDITIONS

F. R. X 10 5

FAILURES

250pA
6mA

10mA

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
Single-Diffused Plastic Power Transistors
TIP29-TlP32, TIP41, TIP42
A resistor is in series with the emitter, dropping at least 10%
of the collector-base voltage to set the emitter current. For
intermittent operating tests, the same circuit is used with
the power being interrupted at specific time intervals.

BACKGROUND
Texas Instruments continuing Plastic Single-Diffused
Reliability Program, an evaluation program for plastic
power devices, has resulted in lowering device failure rates_
All devices utilized in the reliability program are standard
product "off-the-shelf' devices which have received no
special screening or electrical tests. Since starting the
reliability program we have generated over 500,000 actual
life-test hours. Over 15,000 devices have undergone testing
in the reliability program. Failures are based on leakage
greater than twice the data sheet limit, hpE outside data
sheet limits by 20%, or VCE( sat) above data sheet limits_
For the test environments listed below, MIL-STD-750 was
used as the applicable test specification.
I.

Mechanical Shock, Method 2016.

2.

Vibration, Variable-Frequency, Method 2056.

3.

Constant Acceleration, Method 2006.

4.

Thermal Shock, Method 1056, Condition B.

5.

Temperature Cycling, Method 1051.

6.

Moisture Resistance (non-operating), Method
1021.

7.

Humidity with Bias, TA
VCES = 45 V.

8.

Humidity TA = 65°C, RH = 100%.

9.

Number

Number

Test

of

Device

Description

Devices

Hours

150° C Storage
25°C Operating

of

Failure Rate Xl0- 5

Failures Paint Est. 60% Conf.

50

100.000

0

0

0.9

140

212,500

2

0.9

1.4

Table 1-2
Summary of Life Testing for PNP Devices
Number

= 85°C, RH = 85%

Number
Failure Rate Xl0-5
of
Hours Failures Point Est. 60% Conf.

Test

of

Description

Devices

150° C Storage

49

73,500

3

4.1

5.6

25° C Operating

50

62,500

3

4.8

6.5

Device

Pressure Cooker, TA = 121°C, IS psi.

10.

Solderability, Method 2026.

II.

Salt Atmosphere, Method 1041.

12.

Terminal Strength, Method 2036, Condition A.

13_

Storage Life, Method 1032, TA = 150°C.

14.

Operating Life, Method 1026, TA = 25°C, P = 2
watts.

15.

Table 1-1
Summary of Life Testing for NPN Devices

Table 1-3
Summary of Intermittent Life Testing
For NPN Devices
Number

Intermittent Operating, Method 1037,
ATC =60°C, P = 1.8 watts,S minutes on, 5
minutes off.

Number

Test

of

Device

Description

Devices

Cycles

88

880,000

t>. 60° C I nterm.

of

Failure Rate Xl0- 5

Failures Point Est. 60% Conf.

0

0

0.1

Operating

LIFE TEST EVALUATIONS

ENVIRONMENTAL TESTING

Test devices employed in this evaluation were
subjected to operational, intermittent operational, and
storage life test conditions that were selected to
demonstrate device capability in excess of normal operating
requirements. The operating life test circuits used for
testing power devices are in the parallel, common-base
configuration. Voltage is applied collector to base.

Environmental evaluations are performed on power
devices in order to establish capability for the mechanical
and thermal stresses considered to be standard in the
electronics industry. Sequential or step-stress testing is
likewise employed to demonstrate package reliability in
excess of standard product requirements. A brief
description of test procedures follows:

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

II
12-11

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA

1.

Mechanical Shock ~ Performed from 1500 g to
6000 g in three orientations for 0.2 ms to
0.5 ms duration: 5 blows/plane, 15 blows total
(non-operating).

2.

Vibration, Variable Frequency ~ Performed
from 20 g to 60 g in three orientations at
100 Hz to 2000 Hz (non-operating);
4 sweeps/plane, 4 minutes/sweep.

3.

Constant Acceleration ~ Performed from
10,000 g to 40,000 g in six orientations; I
minute/plane.

4.

Thermal Shock~Performed from O°C to 100°C
for 50 cycles. Extreme times are 5 minutes with
a maximum transfer time of 10 seconds. Liquid
to liquid.

5.

Temperature Cycle .- Performed from
~65°C to 150°C for 100 cycles. Extreme times
are 30 minutes with a maximum transfer time
of 5 minutes.

6.

Temperature Cycle ~ Performed from
~55°C to 125°C for IS cycles. Extreme times
are 10 minutes with a maximum transfer time
of 5 minutes.
Thermal Shock ~ Performed in freezer at
~30°C and boiling water. Extreme times
are 10 minutes with immediate transfer.
Power Surge ~ Performed by storing at
~45°C for 20 minutes and then applying
maximum rated power for I minute.
Total of 15 cycles.

Moisture Resistance ~ Performed in a
non-operating state with the preconditioning
omitted. Temperature cycling chamber
conditions:
25°C for 5 hours.
65°C for 5 1/2 hours.
Chamber maintained at 90 to 98% relative humidity, ~ 10°C chill excursion on
all test cyeles.

8.

Humidity with Bias ~ Performed by placing
devices in humidity chamber at 85°C with 85%
relative humidity for 200 hours. A VCES of
45 V is applied to each device.

12-12

Humidity ~ Performed by placing devices in
humidity chamber at 65°C with 100% relative
humidity for 200 hours.

10.

Pressure Cooker ~ Performed by placing devices in sealed chamber with 100% relative
humidity at 121°C. Air pressure applied at IS
psi over atmosphere. Test repeated in 8-hour
increments.

11.

Solderability- Performed by dipping leads into
typc-W flux at 25°C to within 0.05 inches of
case for a period of 5 to 10 seconds. Leads then
dipped in molten solder at 230°C ± 15°C to
within 0.05 inches of case at rate of
I ± 1/4 inches per second for a period of
5 ± 1/2 seconds.

12.

Salt Atmosphere ~ Performed by exposing
devices to 35°C fog environment. Test dura:
tion: 72 hours (initial conditioning omitted).
DC electrical test and visual examination endpoints.

13.

Terminal Strength ~ Performed by attaching a
5-ounce weight to each external lead at a
distance of 1/16 inch from case.A force is
applied once in each of the 2 mutually perpendicular directions (90° + 10° ~OO). Test duration: 3 bending cycles.

SUMMARY
The Plastic Single-Diffused Reliability Program was
designed to establish reliability data for encapsulated
devices for commercial and consumer applications. The
results of the tests show that these devices can also be used
in military applications.
To obtain this objective over 15,000 transistors have
undergone. tests. Over 500,000 life-test hours have been
accumulated. Detailed results have been listed in this report
with summaries of the test procedures and conditions. If
further information is required, please contact your nearest
TI sales office or address inquiries to Texas Instruments
Incorporated, Quality Reliability Assurance, Power Dept.,
Mail Station 2. P.O. Box 5012. Dallas, Texas 75222.

Humidity ~ Performed by placing devices
in humidity chamber at 40°C with 95%
relative humidity for 96 hours.
7.

9.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012 •

DALLAS, TEXAS 75222

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA
Table 2-1
Summary of Mechanical-Stability Testing for Both
PNP and NPN Devices
Test
No.
(1)

(2)

(3)

Table 3-1
Summary of Thermal-Stability Testing
for Both PNP and NPN Devices

Number of

Test Description

Devices

Failures

Mechanical Shock
1500 g, 0.5 ms

24

0

3000 g, 0.5 ms

24

0

6000 g, 0.3 ms

24

0

Number of

Test
No.

Test Description

(4)

Thermal Shock (O'C to +100'C)

20 9

25

0

25

0

40 9

25

0

50 9

25

0

60g

25

0

10,000 9

24

0

15,000 9

24

0

(5)

Constant Acceleration

(6)

20,000 9

24

0

30,000 9

24

0

40.000 9

24

0

Failures

10 cycles

25

0

20 cycles

25

0

30 cycles

25

0

40 cycles

25

0

50 cycles

25

0

50 cycles

75

0

100 cycles

75

0

Vibration, Var, Freq.

30 9

Devices

Temp Cycle (-65'C to +150'C)

Environmental Test Sequence
Temperature Cycle

15

0

Thermal Shock

15

0

Power Surge

15

0

Humidity

15

0

NOTE: Stressing in each category is sequential. For example,

the devices stressed on shock at 6000 9 were prestresseq on shock at 3000 g,

Table 5-1
Summary of Solderability, Salt-Atmosphere, and
Terminal-Strength Testing for Both
PNP and NPN Devices

Table 4-1
Summary of Humidity Testing for Both
PNP and NPN Devices
Test
No.
(7)

Number

Number of
Test Description

Devices

Failures

Test

Test

of

No.

Descri ption

Devices

Number of Failures
Electrical Visual" Mechanical

MOisture Resistance

(11) Solderabi I ity

50

0

0

N/A

l'

(12) Salt Atmosphere

50'

0

0

0

50

0

(13) Terminal Strength

36

0

N/A

0

50

0

10 cycles

25

0

20 cycles

25

0

30 cycles

25

(8)

Humidity with Bias

(9)

Humidity

*For salt atmosphere, a visual failure is for marking and a mechanical

(10)

failure is for corrosion.

Pressu re Cooker
8 hours

25

0

16 hours

25

0

24 hours

25

0

32 hours

25

0

II

'ICES failure, read 423 !LA, limit is 400 !LA.

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222

12-13

QUALITY AND RELIABILITY INFORMATION
PRODUCT RELIABILITY DATA

Advanced new design for greater reliability:

SOLDER·CLAD, COPPER LEADS FACILITATE
SOLDERABILITY.

PLASTIC CAPANO EPOXY FILL ARE FEATURES
OF THE NEW DESIGN WHICH RESULT IN AN
UNSTRESSED INTERNAL CONSTRUCTION WITH
ALL LEADS LOCKED SOLIDLY INTO THE PACKAGE.

PINNED AND SOLDERED COLLECTOR LEAD
ELIMINATES INTERMITTENT COLLECTOR
LEAD PROBLEMS.

~~~------+----- GLASS-PASSIVATED CHIP IMPROVES MOISTURE

RESISTANCE, PROVIDES LOWER LEAKAGE AND
BETTER STABILITY.

ALL-sDLDERED CONTACTS INCREASE LEAD
CONNECTION RELIABILITY BY IMPROVING
RESISTANCE TO THERMAL SHOCK AND
VIBRATION.
NICKEL-PLATED, COPPER HEAT SINK IMPROVES
THERMAL SINKING CAPACITY .

•
12-14

TEXAS INSTRUMENTS
INCORPORATED

POST OFFICE BOX 5012

•

DALLAS, TEXAS 75222



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:01 15:30:31-08:00
Modify Date                     : 2017:06:01 16:05:09-07:00
Metadata Date                   : 2017:06:01 16:05:09-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:04bfd06c-4f8f-0846-9c5e-479e2f2368a1
Instance ID                     : uuid:2eb49dba-c2e4-6043-8186-b115350ca290
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 801
EXIF Metadata provided by EXIF.tools

Navigation menu