1973_Bipolar_Memory 1973 Bipolar Memory
User Manual: 1973_Bipolar_Memory
Open the PDF directly: View PDF .
Page Count: 73
Download | |
Open PDF In Browser | View PDF |
BIPOLAR MEMORIES TABLE OF CONTENTS 8204/8205 2048 (256X8 ROM) 4096 (512X8 ROM) Bit Bipolar ROM 2 8220 8-Bit Content Addressable Memory (4X2 CAM) 4 8223 256-Bit Bipolar Field-Programmable ROM (32X8 PROM) 9 8225 64-Bit Bipolar Scratch Pad Memory (16X4 RAM) 12 8228 4096-Bit Bipolar ROM (1024X4 ROM) 15 82S06/82S07 256-Bit Bipolar RAM (256X1 RAM) (82S06 Tri-8tate) (82S07 Open Collector) 17 82S12/82S112 High Speed Multiport Memory (8X4 Multiport RAM) 19 82S 16/82S 17 256-Bit Bipolar RAM (256X1 RAM) (82S16 Tri-8tate) (82S17 Open Collector) 21 82S21 64-Bit Bipolar High Speed Write-Read RAM (32X2 RAM) 23 82S23/82S 123 256-Bit Bipolar Programmable ROM (32X8 PROM) (82S23 Open Collector) (82S123 Tri-8tate) 26 82S26/82S29 1024-Bit Bipolar Programmable ROM (256X4 PROM) 29 10139 ECl High Performance 256-PROM 33 10140/10148/10151 ECl64X1 RAMS -30 to +85°C Cerdip 37 10145 ECl 16X4 RAM 40 Customer Ordering Information 44 COPYRIGHT 1973 SIGNETICS CORPORATION Signetics Corporation reserves the right to make changes in the products contained in this book in order to improve design or performance and to supply the best possible product. Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. ABSOLUTE MAXIMUM RATINGS* CHARACTERISTICS SYMBOL RATING UNIT -60 to +150 DC TTL MEMORIES Storage Temperature TSTG Output and Supply Voltages VOUT, VCC -0.5 to +6.0 V Input Voltages VIN -0.5 to +6.0 V Output Currents lOUT 100 mA liN -30 to +30 mA VEE -8 Vdc VIN o to VEE Vdc 50 100 mAdc mAdc Input Currents Eel MEMORIES Power Supply Voltage (VCC = 0) Input Voltage (VCC = 0) Output Source Current Continuous Surge 10 Storage Temperature Range T stg -54 to+175 DC Operating Junction Temperature TJ 125 DC Operating Temperature Range TA -30 to +85 DC Power Supply Regulation Required ±10% *These ratings do not imply that the device will function or meet the specified parameters at the levels indicated. They do, however, indicate those levels at which permanent damage and/or parameter degradation could occur. Exposure to these levels over extended periods of time could affect reliability and should, therefore, be avoided. 1 2048 BIT BIPOLAR ROM (256x8 ROM) 4096 BIT BIPOLAR ROM (512x8 ROM) Si!)DlltiCS 8204 8205 DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION Refer to back of Bipolar Memory section for ASCII (ADDRESS) to EBCDIC (DATA) and EBCDIC (ADDRESS) to ASCII (DATA) and ORDERING BLANKS. The 8205 and 8204 are high performance bipolar ROM's incorporating the storage output or memory data register into the chip. Data is addressed by applying address information to the address lines. After val id data appears at the output of the memory array, (typically 35ns after the address is applied) and if the circuit is enabled, the strobe pulse will enter data into the 8 bit output latch register. A D-type latch (L) is used to enable the tri-state output drivers. If the circuit enable signals are valid, the strobe will set the latch. This turns on the output stage. The latch will remain set and keep the output enabled until the chip is disabled and the next strobe pulse occurs. If the strobe line is held high, the ROM will function in a conventional mode. The output will be controlled solely by the chip enable and the output latches will be bypassed. FEATURES • BUFFERED ADDRESS LINES • ON THE CHIP DECODING • ON THE CHIP STORAGE LATCHES • TRI-STATE OUTPUT • PROTECTED INPUTS APPLICATIONS MICROPROGRAMMING HARDWIRE ALGORITHMS CHARACTER GENERATION CONTROL STORE BLOCK DIAGRAM 8204 (256x8) AND 8205 (512x8) MEMORY ORGANIZATION Address Pins AOo-----I ADDRESS LINES 8204 8205 512,,8 OR 256,,8 ROM DECODE An o---~ 1181 STROBE CE1 C>-----.--------t 8 BIT OUTPUT LATCH 1201 r"-I"'---""" (21 ) (21 ) A1 (22) (22) A2 (23) A3 (1 ) (23) (1 ) A4 (2) (2) A5 (4) (3) A6 (5) (4) A7 A8 (6) (5) - (6) 8 TRI-STATE DRIVERS Q CE2ETCE~ *T0--1 I CE2 I _ST_RO_B_E_-+_ _ _ _J I ----------~I-------_i :_~ _________)K : I 1 0, ....08 :1 i V I ----------~~~~------~ I NOTE: T Cycle Time = TA + TAOS + TSW + TCOS Vcc If the strobe is high, the device functions in a manner identical to conventional bipolar ROM's. The timing diagram shows valid data will appear T A nanoseconds after the address has changed and T CE nanoseconds after the output circuit is enabled. TO is the time required to disable the output and switch it to an 'off' or high impedance state after it has been enabled. In Read Mode II, data from any selected address will be held on the output when strobe is lowered. Only when strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs. 3 G!!InlltiCG 8·BIT CONTENT ADDRESSABLE MEMORY (4x2 CAM) 8220 DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION both directions, i.e., in the word length and in the number of words. The 8220 CAM Element is a high speed monolithic array, incorporating the necessary addressing logic and eight identical memory cells organized as four words, each being two bits long. I n reference to data-in/data-stored, the 8220 can be conditioned to perform the following functions: associate, write-in only, and read-out only. The CAM circuit structure is the familiar TTL type (DCL Family) and fully compatible with TTL and DTL input/ output structures. FEATURES When addressed into the "ASSOCIATE" mode, this element offers the novel capability of data association, where each cell (M nj ) will respond with a "Match" or "Mismatch" answer (Y n ) to each bit presented to the data inputs (lj), depending on presence or absence of an alike bit stored within the cell. • WRITE ENABLE CONTROL LINES • ASSOCIATE CONTROL LINES • ADDRESS SELECT CONTROL LINES • ASSOCIATES IN 20nsec TYP. • 16 PIN PACKAGE (1/3 SIZE OF 24 PIN PACKAGE) • OPEN COLLECTOR OUTPUTS • DIODE PROTECTED INPUTS Write-in can be simultaneously done to all bits, or one bit at a time. Read-out of stored information is performed on one word at a time. Cell-selection for read and write is performed by proper addressing of Y n and An lines. APPLICATIONS DATA-TO-MEMORY COMPARISON PATTERN RECOGNITION HIGH SPEED INFORMATION RETRIEVAL CACHE MEMORY AUTO CORRELATION VI RTUAL MEMORY LEARNING MEMORY The element's output structures (Y nand Dj) are of the "bare collector" variety and can be mutually connected, thus allowing direct expansion when multiple packages are employed. Expansion of the CAM may be implemented in LOGIC DIAGRAM Vee GND ( ) .-----------, = (16) = (8) = Denotes Pin Numbers V3 (15) °00-----' 4 ~--------~ I Mnj (3) = WORD n, bit j (1) '------00, SIGNETICS 8-BIT CAM. 8220 ELECTRICAL CHARACTERISTICS oOe ~ TA ~ 75°C; 4.75V ~ Vce ~ 5.25V LIMITS CHARACTERISTICS MIN. TYP. MAX. UNITS 0.4 V Wj Aj Ij Yi 2.0V 0.8V 2.0V 30mA 2.0V 60mA Yk OJ NOTES "0" Output Voltage Yn 8,9 0.6 V 2.0V 0.8V 0.4 V 2.0V 2.0V 0.8V 20m A 0.6 V 2.0V 2.0V 0.8V 40mA Yn 125 p,A OJ 100 p,A Ij and Aj 40 p,A Wj 80 p,A -1.2 -2.4 mA mAo 1181 590 mA/mW OJ 8,9 "1;' Output Leakage Current 10 2.0V OV 10 OV "1" Input Current 4.5V 4.5V O.4V O.4V 4.5V "0" Input Current Ii, Yn and Aj -0.1 Wj Power Consumption 851 425 O.4V VCC = 5.0 Volts SWITCHING CHARACTERISTICS 0 ~ T A ~ 75°e, 4.75V ~ Vee ~ 5.25V LIMITS CHARACTERISTICS NOTES MIN. TYP. MAX. UNITS Delay Time Associate (Aj to Yn) 20 35 ns See Notes 8 & 11 Associate (lj to Yn) 45 65 ns See Notes 8 & 11 Read-Out (Yn to OJ) 30 45 ns See Notes 8 & 11 Write-In to Read-Out (Wj to OJ) 45 65 ns See Notes 8 & 11 Write Pulse Width 35 Ij Set-Up Time (ISO) Ij Hold Time (HOI ns See Notes 8 & 11 10 ns See Notes 8 & 11 10 ns See Notes 8 & 11 20 NOTES 1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. 2. All measurements are taken with ground pin tied to zero volts. 3. Positive current is defined as into the terminal referenced. 4. Positive NAND logic definition: "UP" Level = "1", "DOWN" Level = "0". 5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased. 6. Measurements apply to each gate element independently. 7. Manufacturer reserves the right to make design and process changes and improvements. 8. Prior to this test write in a "0" in all or desired Memory cells as follows: Wj = Ij = OV, Aj = V CC. 9. Output sink current is supplied through a resistor to V CC. 10. Connect an external 1 K ohm + 1% resistor from VCC to the output terminal for this test. 11. See AC test Figures on the following pages. 5 SIGNETICS 8-BIT CAM. 8220 MODE OF OPERATION FUNCTION HOLD Wo W1 AO A1 10 11 1 1 1 1 x x REMARKS (Ref. Definitions & Glossary) FUNCTION NO OPERATION HOLD Question Answer 1 1 1 0 x x \NO W1 AO A1 1 1 1 1 x x Output State 1 0 B V E S - Vi =1.V k=O 11=Mi1 NO -Vi=Vk=O 1 1 '0 1 x x 1 1 x x NO OPERATION Forced 'Vi V k 1 0 WRITE 11 into Mi1 1 1 1 x x 1 0 WRITE 10 into M iO 1 1 x x 1 0 WRITE 11 and 10 into Mi1 and M iO 1 1 1 1 x x 1 0 DO= 0 WRITE·IN 0 0 ASSOCIATE REMARKS (Ref. Definitions & Glossary) 10 11 B V E S - Vi=1. Vk=O 10=MiO NO -Vi=Vk=O 1 - IF M' 0 =1 I 0- IF MiO=O 1 1 0 0 x x 11=Mi1 - YES - V i =1, V k=O READ-OUT and ? 'O=M iO f-NO -Vi=Vk=O 1 1 1 1 x x . 1 1 1 1 x x 1 0 D = 1 0 0 1-IFM· 1=1 I 0- IF Mi1=0 DO=D1 = 1 AC TEST FIGURES AND WAVEFORMS ASSOCIATE DELAY AND INPUT DELAY INPUT 5.0V 5.0V Vee GND 5. ~ 1 30 'F INPUT DELAY ASSOCIATE DELAY INPUT A ,.5V\ INPUT I '.5V I .I - -_ _---1 I~----I OUTPUT Y I I ~-+I~'r-~-~'r----- :,.5V\V I I I I - - 1 ton 6 OUTPUT y: Y;.5V ~ -----: ton :-- -: ~'-- toft ___ :- NOTES: 1. When checking AO let A1 = "1" and when checking A1 let AO = "1". NOTES: 1. When checking 11, A, = "0" and AO = "1" and when checking 10, AQ = "0" and = "1" 2. Wo = W 1 . = "1". 2.WO=W1="1". A1 SiGNEiiCS S-Bii CAM ii 822Q AC TEST FIGURES AND WAVEFORMS (Cont'd) WRITE DELAY INPUT Vee Vee IHO~ ISU ~ I 1- 2200 DO D1 }-5K -= 1.5V INPUT I---.J. INPUTW OUTPUT r I OF 1- Isu PW:-- : - : PW I 1 1 1 \ 1.5V: I I___ ,--IHO Pv I 1 1 : I OUTPUT D - - - 0 + - - - . . 1 NOTES: 1. Ao = A 1 = "1". 2. Let all non-selected Y's = "0". 3. W's pulse width is 40ns @50% points. READ DELAY INPUT 5.0 V 5.0V INPUTY '.SV~,,-___--,{SV Vee DO --I D1 5K 5151 I }-- GND -:" r OUTPUT D OF NOTES: 1. A tested bit must store a "0". 2. ~O = ~1 = "1". 3. AO = A 1 = "1". 4. All non-tested Y's = "0". data (logical "1" = Match, logical "0" = Mismatch). GENERAL NOTES FOR AC TESTING: 1. Use 5k Probes for all AC tests TEK 169 or equivalent. 2. The Pulse Generator signal should consist of the following Frequency: 10 MHz ±5 MHz Amplitude: OV to 3V Rise & Fall Times: 5 ns ±2ns 3. = bit number (i = 0, 1). j = word number (j 0, 1, 2, 3). In the read and write modes these terminals act as input controls and word-select lines Y lines (Y 1) associated with words desired to accept writing of data or read-out are to be kept in the logical "1" state and the remaining Y lines (Y k) to be forced to a logical "0" state. (Note that A = 1 forces all Y n = 1). Data Output These are "bare collector" output lines indicating the state of one or more selected cells. Cell-Selection is accomplished as defined under "Y n" above. INPUT/OUTPUT DEFINITIONS Yn - Data Inputs Data entering these terminals are either compared with stored information at the cell(s) in the "associate" mode or stored in the cell(s) in the "write-in" mode. Associate Controls A logical "0" at this pin enables Data-Cell association to result into a defined logical level at the Y n lines (e.g. Y n = "1" = Match, Y n = "0" Mismatch). A logical "1" at this pin forces all Y n to a "1". Write Enable A logical" "0" at this control pin opens the gates of the selected word, allowing data-in to be stored. A logical "1" locks the gates such that data-in can no longer disturb the cell(s). "Associate" Output and Address Selection Control During "Associate" mode these "bare collector" lines provide output results of match or mismatch between input and stored GLOSSARY OF TERMS - SUBSCRIPTS A. B. Word number = 0, 1,2 and 3 Bit number = 0 or 1 Input/Output number(s) associated with cell(s) upon which a "Write-in", "Read-out" or other function is being performed. k Input/Output number(s) other than "i" above. M Designation of Memory Cell (word) = eight identical cells in each package. Examples 1. Ij for bit "1" equals 11 • n = M 10 = word "1" bit "0". 3. Y i = 0, Y k = 1: for i = words 1 and 3; then k and 2: Y 1 3 = 0 and YO 2 = 1 . 2. Mnj " = words 0 7 SIGNETICS 8-BIT CAM. 8220 APPLICATION: LEARNING MEMORY This system is a CAM array with peripheral IC circuitry designed to operate as a learning memory. It is organized in two sections of equal capacity, the total memory size (both sections) being 8 ten bit words. Either section can be selected through the section SELECT line, and the memory is easily expandable in the number of words and in word length. By activating the COMPARE line, a new word is loaded into the buffer and is presented to the memory. Through the novel feature of data association, which is unique with CAM elements, the buffer's content is compared with the words stored in memory. If the input word, with which the memory was presented, is already contained in storage, no need for "learning" i.e. data acquisition, exists. This fact is indicated by a match from one of the Y n lines (Yi = 1) and thus no write command is initiated. Before a WRITE operation is initiated, a location select has to be made such that the word to be written into the memory will go to the proper place. For this reason, a tag CAM is employed to keep track of memory locations, both empty and full. When a word is written into memory, a "1" is simultaneously written into the tag CAM. Thus, it is possible to keep track of the filled memory locations. By monitoring the Y n lines of the tag CAM, a convenient way of decoding an available address exists. Here exclusive OR circuitry is used which ensures that memory locations are filled successively when the need for "learning" exists. The quad latch is enabled before the write command is available to the CAM array. Thus the Y lines of unavailable memory locations are forced low (Yk = 0). Vee 8 256-B11 BIPOLAR FIELD-PROGRAMMABLE ROM (32x8 PROM) I DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION APPLICATIONS The 8223 is a TTL 256-Bit Read Only Memory organized as 32 words with 8 bits per word. The words are selected by five binary address lines; full word decoding is incorporated on the chip. A chip enable input is provided for additional decoding flexibility, which causes all eight outputs to go to the high state when the chip enable input is high. PROTOTYPI NG VOLUME PRODUCTION MICROPROGRAMMI NG HARDWIRED ALGORITHMS CONTROL STORE LOGIC DIAGRAM This device is fully TTL or DTL compatible. The outputs are uncommitted collectors, which permits wired AND operation with the outputs of other TTL or DTL devices. These outputs are capable of sinking twelve standard DCL loads. Propagation delay time is 50ns maximum. Power dissipation is 310 milliwatts with 400 milliwatts maximum. The 8223 may be programmed to any desired pattern by the user. (See fusing procedure.) This feature is ideal for prototype hardware and systems requiring propriety codes. A Truth Table/Order Blank is included on page 4-43 for ordering custom patterns. = (16) = (8) ( =; ) Denotes Pin Numbers 32 x 8 ARRAY FEATURES • • • • • • • VCC GND BUFFERED ADDRESS LINES ON THE CHIP DECODING CHIP ENABLE CONTROL LINE OPEN COLLECTOR OUTPUTS DIODE PROTECTED INPUTS NO SEPARATE FUSING PINS BOARD LEVEL PROGRAMMABLE Chip is Enabled when CE = "0" ELECTRICAL CHARACTERISTICS S8223-55°C ~ TA ~ +125°C N8223 O°C ~ TA ~ 75°C; 4.75V ~ VCC ~ 5.25V LIMITS CHARACTERISTICS MIN. "1" Output Leakage Current "0" Output Voltage (NB223-) TYP. "0" "1" CHIP An An ENABLE OUTPUTS NOTES MAX. UNITS (NB223-) 100 J.LA (SB223-) 250 J.LA (SB223-) 0.4 V O.BV 2.0V O.BV 9.6mA 6,10 (NB223-) 0.5 V O.BV 2.0V O.BV 16mA 6,10 40 J.LA 2.0V 5.5V 13 2.7V "1" I nput Current An, Address Chip Enable Input "a" BO J.LA -1.6 mA 4.5V 4.5V Input Current An, Chip Enable Power Consumption -0.1 62/310 77/400 mW/mA O.4V O.4V 4.5V 4.5V 14 9 SIGNETICS 256-BIT FIELD PROGRAMMABLE ROM. 8223 SWITCHING CHARACTERISTICS S8223 -55°C ~TA ~ 125°C, N8223 O~TA ~ 75°C, 4.75~ VCC~ 5.25V LIMITS CHARACTERISTICS TEST CONDITIONS MIN. TYP. MAX. UNITS 35 50 ns TA 65 ns Full Temp 60 ns Full Temp 50 ns TA S8223 60 ns Full Temp N8223 55 ns Full Temp Access Time (tON, tOFF) Address S8223 N8223 Chip Select 35 = = 25°C Only 25°C Only NOTES 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. 2. All measurements are taken with ground pin tied to zero volts. 3. Positive current is defined as into the terminal referenced. 4. Positive logic definition: "UP" L.evel = "1", "DOWN" Level = "0". 5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased. 6. Output sink current is supplied through a resistor to V CC. 7. One DC fan-out is defined as O.SmA. S. One AC fan-out is defined as 50pF. 9. Manufacturer reserves the right to make design and process changes and improvements 10. By DC tests per the truth table, all inputs have guaranteed thresholds of O.SV for logical "0" and 2.0V for logical "1". 11. Th is test guarantees operation free of input latch-up over the specified operating power supply voltage range. 12. For detailed test conditions, see AC testing. 13. Connect an external 1 k resistor from VCC to the output terminal for this test. 14. VCC = 5.2SV. AC TEST FIGURE AND WAVEFORMS INPUT PULSE: AMPLITUDE =3.0V SCHEMATIC DIAGRAM vee (16) Vee tr = tf = 5ns PW = 200ns (50% DUTY CYCLE) INPUT OR CHIP ENABLE _I 'oFF : I I I I :--- _: "ON 1 I t---I OUTPUT OUTPUT 80 111 8,121 82131 B3 (4) 1 I -I INPUT TON 1 t---_ Vee 84151 ~~ TOFF ~ 86 171' 87191 TEST LOAD Vee VCC = (16) GND = (S) Ground Pin 15 When Testing Address-Output Delays 10 (S) denotes pin number ( ) SIGNETICS 256-BIT FIELD-PROGRAMMABLE ROM. 8223 8223 PROGRAMMING PROCEDURE The 8223 Standard part is shipped with all outputs at logical "0". To write a logical "1" proceed as follows: Simple Programming Procedure using "bench" Equipment (See below) 1. Start with pin 8 grounded and Vee removed from pin 16. 2. Remove any load from the outputs. 3. Ground the ehip Enable. 4. Address the desired location by applying ground (i.e., O.4V maximum) for a " 0", and +5.0V (i.e., +2.8V minimum) for a "1" at the address input lines. 5. Apply +12.5V ±0.5V to the output to be programmed through a 390 ohm ±10% resistor. (Program one output at a time.) 6. After a short delay apply +12.5V to Vee (pin 16) and remove as quickly as possible (rise time of 50J.Lsec or less). The Vee overshoot should be limited .to 1.0V maximum. If necessary, a clamping circuit should be used. NOTE: Normal practice in test fixture layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A capacitor of 10 mi~rofarads minimum, connected from the +12.5V to ground, should be located close to the unit being programmed. 7. Verify that the bit has programmed by applying 5 volts to Vee and 5 volts through a lk resistor to the output. 8. Proceed to the next output and repeat, or change address and repeat. 9. Continue until the entire bit pattern is programmed into your custom 8223. 10. If during verification a bit had been found not to have programmed, return to that bit and repeat the programming procedure once. Fast Programming Procedure 1. Remove Vee (open or ground pin 16). 2. Remove any load from the output. 3. Ground eE (pin 15) 4. Address the word to be programmed by applying 5 volts for a "1" and ground for a "0" to the address lines. 5. Apply +12.5V ±0.5V to the output to be programmed through a 390 ohm ±10% resistor. (Program one output at a time.) 6. After a minimum delay of 100psec, apply +12.5V to Vee (pin 16) for 1.0mS. The Vee rise time must be 50psec or less. Limit the Vee overshoot to 1.0 volts max. 7. Reduce Vee to ground «0.5V) and remove the load from the output. 8. Repeat steps 5 and 6 for other outputs of the same word, or repeat 4 through 6 for a different word until the entire bit pattern is programmed. After programming the 8223, the unit should be checked to insure the code is correct. BOARD LEVEL PROGRAMMING PROCEDURE FOR THE 8223 The chip select controls which 8223 is being programmed when several PROMS are collector OR'd. To program in this manner, the only change required is to reduce the 390 200 ohm . N where N IS the number of outputs ohm resistor to tied together (2 ~ N ~ 12). MANUAL PROGRAMMER DIAGRAM PROGRAM VERIFY 5.0V 390 ohm PROGRAM VERIFY NOTES 1. The 10J.LF capacitor across pin 16 to ground is required to eliminate noise from Vee. 2. During programming switch Sa must be in the verify position long enough for the 10J.LF capacitor to discharge to 5.0 volts. 11 Si!ln~liCS 64·B11 BIPOLAR SCRATCH PAD MEMORY (16x4 RAM) 8225 DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION BLOCK DIAGRAM The 8225 is a TTL 64-bit Read-Write Random Access Memory organized as 16-words of 4 bits each. The 8225 is ideally suited for application in scratch pads and high-speed buffer memories. Words are selected through a 4-input binary decoder when the chip enable input (CE) is at logic "0". Data is written into the memory when Read Enable (RE) is at logic "0" and read from the memory when R E is at logic "1". The outputs of the 8225 are logical "1" during write operation, therefore, inputs and outputs can be commoned in busses to reduce the number of I/O leads. Output collectors are uncommitted. FEATURES • • • • • CHIP ENABLE LINE FOR EXPANSION OPEN COLLECTOR OUTPUTS FOR EXPANSION ON THE CHIP DECODING ALL OUTPUTS "1" DURING WRITING DIODE PROTECTED INPUTS VCC GND = (16) = (8\ ( = Denotes Pin Numbers ) "ONE" LEVEL ON DATA INPUT APPEARS AS "ZERO" LEVEL OUT. Chip is enabled when CE = "0" PIN CONFIGURATION APPLICATIONS SCRATCH PAD MEMORY BUFFER MEMORY PUSH DOWN STACKS (First in-first out) CONTROL STORE TRUTH TABLE RE - CE (Chip Enable) 0 0 1 X x 0 1 MODE OUTPUTS Write Read Chip Disable 1'1 " Information 1'1 " = Either State ELECTRICAL CHARACTERISTICS o°c ~ TA 75°C; 4.75V ~ VCC ~ 5.25V LIMITS INPUTS CHIP ENABLE CHARACTERISTICS MIN. TYP. "0" Output Voltage .4 "1" Output Leakage Current "0" I nput Current MAX. -.1 DATA INPUTS WRITE UNITS V .8V Pulse 100 J.LA .8V Pulse -1.6 mA .4V .4V 80 J.LA 4.5V 40 J.LA 4.5V 1101 550 V mAl mW -18mA OV OUTPUTS NOTES ADDRESS .8V .4V 16mA 6,8,0, 5.25V 8,9 .4V 11 4.5V 11 "1" Input Curnmt Chip Enable Write, Address, Data Input Clamp Voltage Power Consumption 12 -1.5 80 400 4.5V -18mA 5V 4.5V -18mA OV -18mA OV 11 10,5 SIGNETICS 64-BIT SCRATCH PAD MEMORY. 8225 SWITCHING CHARACTERISTICS 0 ~ TA ~ 75°C, 4.75 ~ VCC ~ 5.25V LIMITS TEST CONDITIONS CHARACTE R ISTICS MAX. UNITS MIN. TYP. Minimum Write Pulse Width (WpW) 30 18 ns Input Setup Time (lSU) 20 18 ns Input Hold Time (lHO) 10 0 Address Setup Time (ASU) 10 Address Hold Time (AHO) 10 ns Access Time (T A) Access Time (T A) 35 Data Pulse Width (DpW) ns ns 60 ns See Note 12 50 ns T A = 25°C, See Note 12 ns 20 Write Recovery Time (TWR) 25 40 ns Write Access Time (TWA) 25 50 ns Chip Enable Recovery Time (TCR) 20 35 ns Chip Enable Access Time (T CAl 20 35 ns NOTES 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. 2. All measurements are taken with ground pin tied to zero volts. 3. Positive current is defined as into the terminal referenced. 4. Positive logic definition: "UP" Level = "1", "DOWN" Level = "0". 5. VCC = 5.0V. 6. Output sink current is supplied through a resistor to V CC. 7. One DC fan-out is defined as 0.8mA. 8. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8V for logical "0" and 2.0V for logical"1". 9. For any given binary code on the Address inputs the Write input must be momentarily brought to a logical "0" level. 1 O. A II sense outputs in "0" state. 11. Test each input one at a time. 12. Address Pulse Width (ApW> is 40ns for this test. 13. Rise and fall times of inputs for AC tests are ~5ns. Pulse amplitudes are 2.5 volts and measurements are made at 1.5 volts. FUNCTIONAL DIAGRAM ,..-..-------------, Vcc r--------CE RE I ONE LEVEL IN ON DATA INPUT APPEARS AS "ZERO" LEVEL OUT. 13 SIGNETICS 64-BIT SCRATCH PAD MEMORY. 8225 AC TEST FIGURES AND WAVEFORMS NOTE: * See Note 13. 14 NEGATIVE TRANSITION DOES NOT GO BE LOW 2.6 VOLTS AND GENERALLY IS NOT MEASURABLE. 4096 BIT BIPOLAR ROM I (1024x4 ROM) I:lnnntll!l: ";·I··~"·"" R??R " .... u DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION The 8228 is a 4096 Bit Bipolar Read Only Memory organized as 1024 words by 4 bits per word. Available in a 16 pin dual in-line package, the 8228 can provide very high bit packing density by replacing four standard 256X4 ROMS. See page 4-35 for CD162 Pattern and USASCII Row Character Generator. FEATURES The 8228 is fully TTL compatible and includes on-the-chip decoding. Typical access time is 50ns with a power consumption of only .125mW per bi~. • • • • • BUFFERED ADDRESS LINES ON THE CHIP DECODING TOTEM POLE OUTPUTS DIODE PROTECTED INPUTS 16 PIN PACKAGE (1/3 SIZE OF 24 PIN PACKAGE) The standard 8228 ROM pattern is the USASCII Row Character Generator code; however, custom patterns are also available. The standard pattern is specified as the N82281 - CD162, while custom circuits are identified as N82281 - CXXX. A truth table/order blank is included on page 4-46 for orderi ng custom patterns. MICROPROGRAMMING HARDWIRED ALGORITHMS CHARACTER RECOGNITION CHARACTER GENERATION CONTROL STORE APPLICATIONS BLOCK DIAGRAM INPUT SCHEMATIC Vcc PIN CONFIGURATION OUTPUT SCHEMATIC Vee WORD SELECT OE~~ER 64X64BIT STORAGE MATRIX 1-----1 61TSELECT 1-16 64-4 BIT DECODER MULTIPLEXER Vee = (16) GND = (8) ( ) = Denotes Pin Numbers ELECTRICAL CHARACTERISTICS O°c ~ TA ~ 75°C; 4.75V ~ Vec ~ 5.25V · - -~--- LIMITS TEST CONDITIONS CHARACTERISTICS MIN. "0" Output Voltage "1" Output Voltage "0" I nput Current "1" Input Current Input Threshold Voltage "0" Level "1" Level TYP. MAX. 0.5 2.7 -10 1 -400 25 .85 2.0 NOTES .. UNITS V V p,A p,A lout = 11.2 rnA lout = -1.0 rnA Yin = 0.45V Yin = 5.5V V V 15 SIGNETICS 4096-BIT ROM. 8228 ELECTRICAL CHARACTERISTICS (Cont'd) LIMITS CHARACTE RISTICS TEST CON 01 TI ONS MIN. Input Clamp Voltage Power Consumption Output Short Circuit Current TYP. MAX. 140 '170 -70 UNITS V mA mA -1.2 -20 NOTES = -lamA = "0" VOUT = 0 Volts lin 01 to 03 SWITCHING CHARACTERISTICS 0 ~ TA ~ 750 e, 4.75 ~ Vee ~ 5.25V LIMITS CHARACTE RISTICS MIN. I TYP. I Access Time-Address to Output 50 I I MAX. I I 70 TEST CONDITIONS UNITS ns NOTES 5 NOTES 1. Positive current is defined as into the terminal referenced. 2~ No more than one output should be grounded at the same time. 3. Manufacturer reserves the right to make design and process changes and improvements. 4. Applied voltages must not exceed 6.0V. I nput currents must not exceed ±30mA. Output currents must not exceed ±100mA. Storage o temperature must be between -60°C to +150 C. 5. Rise and fall time for this test must be less than 5ns. Input amplitudes are 2.8V and all measurements are made at 1.5V. AC TEST FIGURE AND WAVEFORM TEST LOAD vee ( 5K READ CYCLE AOA~i;RES:9 F~--~I---------- - - - - - ----./ 1 ..... _ _ _ _-+1- - - - - - - 0,'°2'°3'°4 OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 16 I ~/~-------- J/"'" siqnl!tics ..... ( ol)~nc l UL"UU DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION BLOCK DIAGRAM The 82S06 and 82S07 are ideal devices for use in Control Stores, small buffers, scratch pads, "cache" type buffer stores, memory maps, etc. The typical read time (the time between applying an address and obtaining valid output data) is 45ns. The typical write time (the time between applying one.address and storing data) is 30ns. The circuit has 3 chip enable inputs which greatly simplifies the circuit configuration when used in larg~ memories. The 82S06 and 82S07 also feature very low input loadings, 25 microamperes for a "1" state and -100 microamperes for "0". 256 BIT BIPOLAR RANDOM ACCESS MEMORY OUTPUT SCHEMATIC INPUT SCHEMATIC VCC 82S06 ONL Y Al "VCC 1 AO' CE , 1 CE , 2 CE , 3 D06 A 13 , 4 DIN 12 R/W 11 A7 .. A GNDa 6 • A5 The memories are TTL compatible and operate from single 5 volt supply. 16 X 16 BIT STORAGE MATRIX APPLICATIONS BUFFER MEMORY WRITABLE CONTROL STORE MEMORY MAPPING PUSH DOWN STACK ADDRESS LINES FEATURES • 256 X 1 ORGANIZATION • 30 NANOSECOND ACCESS TIME TYPICAL • LOW 1.5 mw/BIT POWER DISSIPATION TYPICAL • LOW 100 tJA INPUT LOADING V'CC GND • TRI-STATE (82S06) OR OPEN COLLECTOR (82S07) OUTPUT ( • ON CHIP DECODING 161 Denotes Pin Numbers ) "ONE" LEVEL IN ON DATA INPUT APPEARS AS "ZERO" LEVEL OUT. ELECTRICAL CHARACTERISTICS (TA = 0 to 7SoC, 'VCC = 5.0V ±5) Note 1,2,3 LIMITS CHARACTE RISTICS TEST CONDITIONS MIN. TYP. MAX. "0" I nput Current -10 -100 /-LA Vin "1" I nput Current <1.0 25 /-LA Vin "0" Output Voltage 0.35 0.45 V Output Leakage Current (82S07) <1.0 40 /-LA Output "off" Current (82S06) <1.0 ±100 /-LA "1" Output Voltage (82S06) "0" Input Threshold 2.6 "1" Input Threshold 2.0 Power Consumption Input Clamp Voltage 80/400 -1.2 I nput Capacitance V 115/604 mA/mW -0.8 lout = 16mA CE1, CE2, CE3 = "1", V out CE1, CE2, CE3 = "1", 0.45 CEl = CE2 = CE3 = "0" = 5.5V ~ V out lout ~ 5.5V = -3.2mA V lin = -18mA pF 8.0 -20 = 0.45V = 5.5V V 2.0 5.0 Output Capacitance Output Short Circuit Current (82S06) V 0.85 NOTES UNITS pF -70 mA V out = OV 17 SIGNETICS 256-BIT ROM. 82806/07 SWITCHING CHARACTERISTICS 0 ~ TA ~ 75 0 e, 4.75 ~ Vee ~ 5.25V LIMITS CHARACTERISTICS MI~. Access Time-Address to Output TYP. 45 Access Time-Address to Output Address Set-Up Time (read) 25 t1 10 MAX. UNITS 65 ns SO ns SO ns NOTES TEST CONDITIONS T A =25 0 4,5 COnly 4,5 Propagation Delay Chip Enable to Output Enable t2 25 40 ns t3 25 40 . ns 4,5 Propagation Delay Chip Enable to Output Disable Address to Write Enable 4,5 Set-Up Time t4 25 5 ns t5 10 0 ns Chip Enable to Write Enable 4,5 Set-Up Time 4,5 Data Input to Write Enable Set-Up Time t6 10 0 ns Write Enable Pulse Width t7 30 15 ns 4,5 Address Hold Time ts 10 0 ns 4,5 Chip Enable Hold Time tg 10 0 ns 4,5 Data Input Hold Time t10 10 0 ns 4,5 Write Enable Propagation Delay t11 ns 4,5 30 40 NOTES 1. Positive current is defined as into the terminal referenced 2. Manufacturer reserves the right to make design and process changes and improvements. 3. Applied voltages must not exceed 6.0V. Input currents must not exceed ±30mA. Output currents must not exceed ±100mA. Storage o o temperature must be between _60 e to +150 e. 4. Refer to Timing Diagram for definition of terms and test load. 5. Rise and fall times for this test must be less than 5ns. Input amplitudes are 2.8V and all measurements are made at 1.5 volts. TIMING DIAGRAM READ MODE PROPAGATION DELAY FROM CHIP ENABLE ~r---I------------------------ Ao A7 ADDRESS TEST LOAD VCC () ~~L._I_l__~~~ ____________________________ • - I - ______ ~ , ~I \ eEl. CE2. eE3 CHIP ENABLE I~ '"__ _ _ _ _ _ _J .~ 270H _________ I 1 ; I , -____ ~--~ - 1 t2 ~ 13 Jr'~ 1':'- DO .-- -----1---- J I OUTPUT I 1'-----· ::x ---.; ----(:.::-':':i --; -- -y;= WRITE MODE AO A7 ADDRESS tEl. CE2. eE3 CHIP ENABLE DIN DATA INPUT R/W READ/WRITE ENABLE __ J . ----:\. ~ ____ 15 I I I I II I ' ~ t9 ,--1----- -t-, ,.----- t7 ===LJ:= 1 ------- --~ \.,----""!:~------_____t'_,_~-~ __ ~ ______ _ OUTPUT (ADDRESS AND CHIP ENABLE STABLE) 18 --..1 ~t6 i~~lt10Y.~-----_ I DO • '---- set up time for an address input to chip enable for valid data at outputs. propagation delay from chip enable to valid data at output propagation delay from chip disable to output turn off set up time from address to write enable set up time from chip enable to write enable set up time from data input to write enable write enable pu lse width hold time for address from write enable hold time for chip enable from write enable hold time for data input from write enable propagation delay from write enable to valid data at o~tput GinnntiCG -i-'--- ---- .HIGH SPEED MULTIPORT MEM"OR~I (8x4 MULTIPORT RAM) DIGITAL 8000 SERI~S TTL/MEMORY DESCRIPTION APPLICATIONS The 82S12/112 is a Schottky TTL 32 bit multiport memory organized in 8 words of 4 bits each. The device is ideally suited for high speed accumulators and buffer memories: SCRATCH PAD MEMORY BUFFER MEMORY ACCUMULATOR REGISTER GENERAL REGISTER Stored data is addressed through 2 independent sets of 3-input decoders, and read out when the corresponding, output enable line is low. Two separate word locations can, therefore, be read at the same time by enabling both the A and B output drivers. In addition, data can be read and written at the same time by utilizing the "A" address to specify the location of the word to be written, and the "B" address to specify the word to be read. 82S12 82S112 PIN CONFIGURATION The 82S12/112 can be used in larger memory arrays since it includes all the control logic required to disable the chip and the outputs are open-collector devices suitable for "Wire-O Ring." FEATURES • LOW CURRENT INPUT BUFFERS (-25J,LA TYPICAL) • SEp·ARATE INPUT DECODERS FOR EACH WORD • SEPARATE OUTPUT ENABLE LINES FOR. EACH WORD • OPEN COLLECTOR (82S12) OR TRI-STATE (82S112) OUTPUTS • 2 WRITE ENABLE LINES • FAST ACCESS (20 ns TYPICAL) • USEFUL 8 X 4 ORGANIZATION • TTL COMPATIBLE • NON INVERTING DATA LINES BLOCK DIAGRAM TRUTH TABLE A Fi/w R/W ENABLE AAO 'A"OECODER ADDRESS LINES ;READfWRlTEl 141 (5) AA1 {: AA2 (6) 0 0 0 0 1 1 1 1 1 1 X X X X 1 1 1 1 0 0 B OUTPUTS OUTPUT OUTPUT 1 1 0 0 1 1 0 0 1 1 MODE ENABLE Outputs Disabled Read Read Read Read Read Read Read Write Write 1 0 1 0 1 0 1 0 1 0 A B "1" "1", Data Data "1" "1" Data Data "1" "1" "1" Data "1" Data "1" Data "1" Data "1" Data "8" - 1 0 0 1 Write 1 0 0 0 Write Address "1" Data Being Written Data Data "B" Being Written Address 19 SIGNETICS HIGH SPEED MULTIPORT MEMORY. 82812/112 OBJECTIVE ELECTRICAL SPECIFICATIONS aOe ~ T A LIMITS CHARACTERISTICS MIN. Input "0" Current Input "1" Current Input "0" Threshold Voltage Input" 1" Threshold Voltage Input Clamp Voltage Output "0" Current Output "0" Current Output "1" Voltage(825112) Output Off Current (82S12) Output Off Current (82S112) Power Consumption Write Pulse Width Tl Address Set Up Time Address Hold Time Data Input Hold Time Write Access Time Data Input Set Up Time Output Enable Time Output Disable Time Address Access Time ~ 75°e; -4.75 V ~ Vee ~ 5.25 V. T1 T2 T3 T4 T5 T6 T7 T8 T9 TYP. MAX. -250 25 0.85 2.0 -1.2 16 9.6 2.6 -40 30 45 110/550 15 10 0 0 30 5 10 10 20 40 +40 160/840 20 .20 30 TEST CONDITIONS UNITS /-LA /-LA V V V mA Vin Vin lin = -18 mA V out = 0.5 V V out = 0.45 V lout = -3.2 mA V out .,;;; 5.5 V 0.45.,;;; V out ";;; 5.5 V Outputs Enabled T A = 25°C Only Volts /-LA /-LA mA/mW ns ns ns ns ns ns ns ns ns TIMING DIAGRAM T1 WRITE PULSE WIDTH - Width of write pulse (when R/W="1" and R/W="O") T2 ADDRESS SETUP TIME - Required delay between beginning of valid Address and beginning of Write pulse. T3 ADDRESS HOLD TIME Address. T4 DATA INPUT HOLD TIME - Required delay between start of Write pulse and end of Valid Data input. VCC Required delay between end of Write pulse and end of valid T5 WRITE ACCESS TIME - Delay between beginning of Write pulse and Data Out at new value. T6 DATA INPUT SET·UP TIME - Required delay between beginning ov Valid Data Input and start of Write pulse. T7 OUTPUT ENABLE TIME - Delay between beginning of Output Enable high and when Data Output becomes valid. 270.11 300.11 OUTPUT DISABLE TIME - Delay between when Output Enable becomes low and Data Output is in off state. Tg ADDRESS ACCESS TIME - Delay between beginning of Valid Address (with Output Enable high, R/W high and R/W low) and when Data Output becomes valid. NOTES *"8" Address functions identically in read mode. No write mode through 8 address decoder. * * R/W input is either the reverse of R/W or held high. Outputs can be disabled during write cycle to penetrate a known output state during write. 20 = 0.45 V = 5.5 V A. C. LOAD !iinn~tiC!i ~ 256 BIT BIPOLAR RAM [256x1 RAMll82S [82S16 TRI·ST ATE J [82S 17 OPEN COLLECTOR j 1 16 2 S 17 8 DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION BLOCK DIAGRAM The 82S 16 and 82S 17 are ideal devices for use in Control Stores, small buffers, scratch pads, "cache" type buffer stores, memory maps, etc. The typical read time (the time between applying an address and obtaining valid output data) is 30ns. The typical write time (the time between applying one address and storing data) is 30ns. The circuit has 3 chip enable inputs which greatly simplifies the circuit configuration when used in large memories. The 82S16 and 82S17 also feature very low input loadings, 25 microamperes for a "1" state and -100 microamperes for "0". 256 BIT BIPOLAR RANDOM ACCESS MEMORY OUTPUT SCHEMATIC INPUT SCHEMATIC VCC A1 82S\.60NLY " VCC AO' CE 1 3 " A2 " A3 CE 2 ' " ?IN CE 3 ' " R/W 0 06 A 4 , " A7 " A6 GND' A5 -= The memories are TTL compatible and operate from single 5 volt supply. 16 X 16 BIT STORAGE MATRIX APPLICATIONS ADDRESS LINES BUFFER MEMORY WRITABLE CONTROL STORE MEMORY MAPPING PUSH DOWN STACK FEATURES • 256 X 1 ORGANIZATION • 30 NANOSECOND ACCESS TIME TYPICAL • LOW 1.5 mw/BIT POWER DISSIPATION TYPICAL • LOW 100 tJA INPUT LOADING • TRI-STATE (82S16) OR OPEN COLLECTOR (82S17) OUTPUT • ON CHIP DECODING VCC GND ( \61 ) Denotes Pin Numbers "ONE" LEVEL IN ON DATA INPUT APPEARS AS "ZERO" LEVEL OUT. Chip is enabled when CE1 = CE2 = CE3 = "0" ELECTRICAL CHARACTERISTICS (O°C ~ TA ~ 75°C; 4.75V ~ VCC ~ 5.25V) Note 1,2,3 -- LIMITS CHARACTE RISTICS TEST CONDITIONS MIN. TYP. MAX. "0" I nput Current -10 -100 p.A Yin "1" I nput Current <1.0 25 p.A Yin "0" Output Voltage = 0.45V = 5.5V .35 0.45 V Output Leakage Current (82S17) <1.0 40 p.A eEl, CE2, CE3 = "1", V out Output "off" Current (82S16) <1.0 40 p.A eEl, CE2, CE3 = "1", 0.45 ,;;;; V out ,;;;; 5.5V "~,, Output Voltage (82S16) V "0" Input Threshold 2.6 "1" Input Threshold 2.0 Power Consumption I nput Clamp Voltage -1.2 -.8 eEl = CE2 = CE3 = "0" lout = -3.2mA mA/mW V lin = -18mA pF 8 -20 = 5.5V V 115/604 5 Output Capacitance Output Short Circuit (82S16) lout = 16mA V 80/400 I nput Capacitance NOTES UNITS pF -70 mA - V out = OV 21 SIGNETICS 256- BIT ROM. 82516/17 o ~ 75°e, 4.75 ~ Vee ~ 5.25V SWITCHING CHARACTERISTICS LIMITS CHARACTERISTICS MIN. TYP. MAX. UNITS 30 50 60 ns 10 65 ns t2 20 40 ns t3 20 40 ns Access Time-Address to Output Access Time-Address to Output Address Set-Up Time (read) 25 t1 TEST CONDITIONS TA = 25°C Only NOTES 4,5 4,5 Propagation Delay Chip Enable to Output Enable 4,5 Propagation Delay Chip Enable to Output Disable Address to Write Enable 4,5 Set-Up Time t4 20 5 ns t5 10 0 ns t6 0 ns t7 10 30 15 ns Address Hold Time t8 0 0 ns Chip Enable Hold Time t9 0 0 ns 4,5 'Data Input Hold Time tlO 0 0 ns 4,5 Write Enable Propagation Delay t11 Chip Enable to Write Enable 4,5 Set-Up Time 4,5 Data Input to Write Enable Set-Up Time Write Enable Pulse Width 30 -20 Output Short Circuit Current (82S16) 40 ns -70 rnA 4,5 4,5 4,5 V out = OV 4,5 NOTES: 1. Positive cu rrent is defined as into the terminal referenced. 2. Manufacturer reserves the right to make design and process changes and improvements. 3. Applied voltages must not exceed 6.0V, I nput currents must not exceed 30mA, Output currents must not exceed 100mA, Storage temperatu re must be between -60 C to + 150 C. 4. Refer to Timing Diagram for definition of terms and test load. 5. Rise and fall times for this test must be 5ns. Input amplitudes are 2.8V and all measurements are made at 1.5 voLts. TIMING DIAGRAM TEST LOAD READ MODE PROPAGATION DELAY FROM CHIP ENABLE Vee AO A7 ~r---I-----------------------ADDRESS ~~~._t_l__:~~ ___________________________ '\ CE,. CE2. eE3 CHIP ENABLE ~ 1.':"- ~I .-- -----1---- I --l WRITE MODE AO A7 ADDRESS CE1. CE2. CE3 CHIP ENABLE -:'\.r --;'\ • _J t2 R/W READ/WRITE ENABLE J l4 ~. -I I! 1 ;.:-- ,,--- tg . ____ ~t6 i-,t'oX~_____ _ __1_ _ _ _ - t7~ ------t'_l_~-_'I -- --~ ,--+:+-------______ _ ____ 1 \. _ _ -1 30pF 270H ~~ .~ 300~1 I-=-~ -'~ F _+_, ,.________ ~--i1 1 ts (ADDRESS AND CHIP ENABLE STABLE) 22 p~ 1'-----· 1 I DO OUTPUT t3 --------1-t-----1------ta , DIN DATA INPUT :~ j _ _ _ _ _JI ;I,-----~--~ DO OUTPUT C) set up time for an address input to chip enable for valid data at outputs • propagation delay from chip enable to valid data at output propagation delay from chip disable to output turn off set up time from address to write enable set up time from chip enable to write enable set up time from data input to write enable write enable pulse width hold time for address from write enable hold time for chip enable from write enable hold time for data input from write enable propagation delay from write enable to valid data at output e:nnnt;l!-= 64-BIT BIPOLAR HIGH SPEED I R?~?l WRITE -WHILE-READ RAM (32x2 RAM J v .. " ... .. :., •• -.= ....... DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION APPLICATIONS The 82S21 is a TTL 64 bit Write-While-Read Random Access Memory organized in 32 words of 2 bits each. The 82S21 is ideally suited for high speed buffers and as the memory element in high speed accumulators. SCRATCH PAD MEMORY BUFFER MEMORY ACCUMULATOR REGISTER CONTROL STORE LOGIC DIAGRAM Words are selected through a 5 input decoder when the Read-Write enable input, CE is at logic "1". Wo and W1 ~e the write inputs for bit 0 and bit'~f the ~rd selected. C is the write control input. When Wx and C are both at logic "0" data on the 10 and 11 data lines are written into the addressed word. The read function is enabled when either Wx or Cis at logic "1". An internal latch is on the chip to provide the Write-WhileRead capability. When the latch control line, I, is logic "1" and data is bei ng read from the 82S21, the latch is effectively bypassed. The data at the output will be that of the addressed word. When L goes from a logic "1" to logic "0" the outputs are latched and will remain latched regard!!ss of the state of any other address or control line. When L goes from "0" to "1" the outputs unlatch and the outputs will be that of the present address word. (5) CE FEATURES • BUFFERED ADDRESS LINES • ON CHIP LATCHES • ON CHIP DECODING • BIT MASKING CONTROL LINES • ENABLE CONTROL LINE • OPEN COLLECTOR OUTPUTS WITH 40mA CAPABI L1TY' (6) L--------.-,f--r----,....-+-.----, Vee GND ( ) (16) (8) = Denotes Pin Numbers = • PROTECTED INPUTS • VERY HIGH SPEEDS (25ns TYP) TRUTH TABLE CE -C -Wo -W, -L X X X X 0 Output Hold Data from last addressed word when CE = "1" 0 X X X 1 Read & Write Disabled Disabled logic "1" 1 1 X X X Read Data stored in addressed word 1 0 1 1 X Read Data stored in addressed word 1 0 0 0 0 Write Data Data from last word address when L went from "1 " to "0" 1 1 0 0 0 1 Write Data Data being written into memory 0 0 1 X Write Data into Bit 0 Only If L = 0: Data from last word address when L went from "1 " to "0" 1 0 1 0 X Write Data into Bit 1 Only If L = 1: Data being written into the selected bit location and stored in other addressed location Outputs Mode 23 SIGNETICS 64-BIT HIGH SPEED WRITE-WHILE-READ ROM. 82S21 ELECTRICAL CHARACTERISTICS oOe ~ TA ~ 75°e; 4.75V ~ vee ~ 5.25 LIMITS CHARACTE RISTICS MIN. TYP. MAX. UNITS "0" Output Voltage .45 V "1" Output Leakage Current 40 /.LA "0" I nput Current (All Inputs) -1.6 mA "1" Input Current (All Inputs) 25 /.LA Input "0" Threshold Voltage 0.S5 Input "1" Threshold Voltage NOTES = 40mA V out = 5.5V Vin = 0.45V Vin = 5.5V V out V 2.0 V Power Consumption 130/683 Input Clamp Voltage TEST CONDITIONS mAlmW -1.2 lin = -lSmA SWITCHING CHARACTERISTICS 0 ~ TA ~ 75 0 e, 4.75 ~ Vee ~ 5.25V LIMITS CHARACTERISTICS MIN. Read Access Time Address to Output tl Address Set-Up Time t2 15 Data Set-Up Time t3 20 Address Hold Time t4 0 'TVP. MAX. UNITS 25 50 ns S ns 15 ns 15 ns ns Control or Write Pulse Width t5 Write Access Time ts 20 25 ns t7 25 50 ns Address to Latch Set-Up Time Latch Address to Address Hold Time ts Delatch Access Time tg Data Hold Time Earliest 20 10 tlO ACWAVEFORM ns 7 15 5 TEST CONDITIONS 0 25 ns ns TEST LOAD ' ------£ ' --X: Read Access Time Ai 1.5V --- , /__- _ t _ _ _ ./ 1 OJ _______ I 1.5V _ _ _ __ Goon Address Setup and Hold Time ,,-.----------""' , I \ - - _I, ""--________ 1.5V 1.5V -.J ~t2-./1-.I-----~----. tr='tf ";;5ns, 't.v INPUTVOLTAGE=2.8Volts FIGURE 2 24 C) 150n FIGURE 1 c~w Vee H i;v t4 NOTES SIGNETICS 64-BIT HIGH SPEED WRITE-WHILE-READ ROM. 82S21 AC WAVEFORMS -,I Ij I'---- _ _ _ _ _ _ JI .I---~ tl0 1.5VI--t3 c"w t'5V \ Fig. 3 Data Setup and Hold Time -------£1 1.5V 1 l-f t l__ 1.5V OJ - I I t9~1 7 l Ij ___ Je I ------- 1-'·5v--- --~5V --L 1.!Jv I--ta--I '5~\- A; _ _ _ _ _ _ _ __ l-- Fig. 5 ·1 t 6 I OJ _______ Fig. 4 lc ______ _ ---"'"'\1 I CorW _ ~ 1.5V 1 Latch Times --- _ _ _ __ Write Access Time TYPICAL APPLICATION DATA INPUT TO "S" REGISTER BASIC 8 BIT FULLY BUFFERED ACCUMULATOR Sy use of the control lines So and S1 data is loaded into the "A" register through inputs Ox or from the outputs of the 74181's (EX) to the 82S33's and stored in the 82S21's organized as a 32 x 8 RAM register. Data is loaded directly into the "S" register. With this arrangement, the function A+S A (A plus S into A) can be performed in 70ns, typically, starting from data stored in the 82S21's. 25 sinnoliCS l!I 256-BIT BIPOLAR PROGRAMMABLE ROM 132 x 8 PROM] [82S23 OPEN COLLECTOR)[82S123 TRI-STATE) DIGITAL 8000 SERIES TTL/MEMORY OBJECTIVE SPECIFICATION 82S23 82S123 DESCRIPTION FEATURES The 82523 (open Collector Outputs) and the 825123 (Tristate Outputs) are Bipolar 256 Bit Read Only Memories organized as 32 words by 8 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the simple fusing procedure given in this data sheet. A chip enable line is provided and the outputs are bare collector or Tristate to allow for memory expansion capability. • PNP INPUTS • BUFFERED ADDRESS LINES • ON THE CHIP DECODING • A CHIP ENABLE LINE • OPEN COLLECTOR OR TRISTATE OUTPUTS • DIODE PROTECTED INPUTS • NO SEPARATE "FUSING" PINS • BOARD PROGRAMMABLE The 82523 and 825123 are fully TTL compatible and include on-the-chip decoding. Typical access time is 35 n5. APPLIC~TIONS PROTOTYPING VOLUME PRODUCTION The standard 82523 and 825123 are supplied with all outputs at a logical "0." If a programmed unit is required the Truth Table/Order Blank on page 4-43 of the TTL M51/ Memory Handbook may be used. CONTROL STORE LOGIC DIAGRAM INPUT/OUTPUT SCHEMATIC DIAGRAMS MICROPROGRAMMING HARDWIRED ALGORITHMS INPUT SCHEMATIC Vee 32x8ARRAY ~ ~ ~ ~ ~ OUTPUT SCHEMATICS ~ ~ ~ GND = = (N) = Denotes Pin Numbers Vee (16) (8) eE 82S23 26 82S123 SIGNETICS 256-BIT PROGRAMMABLE ROM. 82S23/123 SWITCHING CHARACTERISTICS 0 ~ TA ~ 75°C, 4.75 ~ VCC = 5.25V LIMITS CHARACTERISTICS TEST CONDITIONS MIN. TYP. MAX. NOTES UNITS "0" Output Voltage 0.5 "0" Output Voltage 0.45 "1" Output Leakage 40 J.LA lout = 9.6mA CE = "1" V out = 5.5V 100 J.LA CE = "O"Vout = 5.5V 12 +40 J.LA V out = 0.5V IV out = 5.5V 12 mA V out = 2.4V, CE = "0" 82S23 82S123 -40 V V lout = 20mA 12 CE = "1' "1" Output Current 82S123 -2.0 "0" Input Current -250 J.LA Vin = 0.45V "1" I nput Current 50 J.LA Vin = 5.5V After Fusing Input Threshold Voltage "0" Level V .85 "1" Level V 2.0 Propagation Delay Address to Output 35 Enable to Output 15 Input Calmp Voltage 50 ns 60 ns 30 35 ns ns V -1.2 TA = 25°C only TA = 25°C only lin = -18mA Power Consumption 82S23 80/400 115/605 mA/mW 82S123 80/400 115/605 mA/mW Output Short Circuit Current 20 90 mA Vout=OV NOTES 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. 2. All measurements are taken with ground pin tied to zero volts. 3. Positive current is definec as into the terminal referenced. 4. Positive logic definition: "UP" Level = "1", "DOWN" Level = "0". 5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased. 6. Output sink current is supplied through a resistor to V CC. 7. One DC fan-out is defined as 0.8mA. 8. One AC fan-out is defined as 50pF. 9. Manufacturer reserves the right to make design and process changes and improvements. 10. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8V for logical "0" and 2.0V for logical "1". 11. F or detailed conditions, see AC testing. '12. Connect an external 1k resistor from VCC to the output terminal for this test. OBJECTIVE FUSING PROCEDURE The 82S23/82S123 standard part is shipped with all outputs at Logical "0". To write a Logical "1" proceed as follows: 1. GND Pin 8 and apply 5V to VCC, Pin 16. 2. Remove any load from the outputs. Ground the Chip Enable. 3. 4. Address the desired location by applying ground for a "0" and 5.0 ±0.25V for a "1" at the address input lines. 5. Raise VCC to 10.0V ±0.5V. 6. Apply 65 ±3' mA to the output to be programmed to logic "1". (The voltage will be between 12 to 18V until fused, and must be clamped at 20.0V max.) 7. Release fusing current. 8. Reduce Vee to 5.0V. 9. Proceed to the next output and repeat, or change address and repeat procedure. 10. Continue until the entire bit pattern is programmed into your custom 82S23/82S123. NOTE: After 1.0 SEC of programming, a 25% duty cycle on power must be imposed to avoid over heating. 27 SIGNETICS 256-BIT BIPOLAR PROGRAMMABLE ROM. 82S23/123 AC TEST FIGURE AND WAVEFORMS ___ :tfr-INPUT 5V INPUT PULSE: ---- 5V AMPLITUDE tr = tf = 5ns = 3.0V PW = 200ns (50% DUTY CYCLE) INPUT OR tON_ _-...1..._' 270n 30pF OUTPUT OUTPUT OUTPUT PULSE ,, ' -_ _J I ':' 28 ':' - : TON GROUND PIN 15 WHEN TESTING ADDRESS·OUTPUT DELAYS :..- I ~ , TOFF : - - l!:nnnt:1I1! 1.n?4 AMMARI -_. RIT -.. RIPnl -.. -_.AR... .PRnr,R .. --........... .---Fin" 0 l. r"" l. 0 ~ iII!I,II": LI . . iII ROM [256x4 PROM) 82S29 DIGITAL 8000 SERIES TTL/MEMORY DESCRIPTION APPLICATIONS The 82S26 (open Collector Outputs) and the 82S29 (tri State Outputs) are Bipolar 1024 Bit Read Only Memories organized as 256 words by 4 bits per word. They are FieldProgrammable, which means that custom patterns are immediately available by following the simple fusing procedure given in this data sheet. Two chip enable lines are provided and the outputs are bussable to allow for memory expansion capability. PROTOTYPING VOLUME PRODUCTION MI CROPROG RAMMING HARDWIRE ALGORITHMS The 82S26 and 82S29 are fully TTL compatible and include on-the-chip decoding. Typical access time is 35ns. The standard 82S26 and 82S29 are supplied with all outputs at a logical "0". If a programmed unit is required the Truth Table/Order Blank on page 4-44/45 can be used. CONTROL STORE FEATURES • • • • BUFFERED ADDRESS LINES ON THE CHIP DECODING TWO CHIP ENABLE LINES OPEN COLLECTOR OR TRI STATE OUTPUTS • DIODE PROTECTED INPUTS • • • NO SEPARATE "FUSING" PINS UNPROGRAMMED OUTPUTS ARE "0" LEVEL BOARD LEVEL PROGRAMMABLE LOGIC DIAGRAM Vee r -_ _- ----------------------1---t---1-------o(16) __ .., 82S29 ONLY I I I I BO ..,::=----.........0 (12) -= (6)~ t: (7~y t=: (4~ t: (3t~ ~ (2~y t=: (1~y (15)Y h ~ PROGRAM -MING -= ~ GND(8) ( ) DENOTES PIN NUMBER 29 81GNETIC8 1024-BIT PROGRAMMABLE ROM. 82826/29 PROGRAMMING 82S26 AND 82S29 PROGRAMMING PROCEDURE 1. Connect pin 8 (Grnd) to ground. 2. Disable the device by bringing CE1 and/or CE2 to a logical "1" (greater than 2.6 volts). If only one CE pin is used for the control of programming the other CE pin '.ihould be at logical "0" (0.4 volts or less). 3. Raise VCC (pin 16) to 12.5 ±0.5 volts. (A 10J,lF in parallel with a 200pF high frequency capacitor should be connected between pins 16 and 8, as near the device as possible, to minimize noise on the VCC line.) 4. Address the word to be programmed, using standard TTL logic levels. Apply 85 ±5mA into the output to be programmed to a logical "1". The output must be limited to 22 volts ±5% and only one output at a time should be programmed. 5. Wait until the current generator has reached the 22 volt clamp. (The current generator will be supplying about 50mA min.) Then drop both CE1 and CE2 to a logical "0" for 2.0msec. (fall time ~50Jlsec). 6. Return CE 1 and/or CE2 to a logical "1" for 10 microseconds. 7. Repeat steps 5, 6, and 7 until the entire word has been programmed. Change address and repeat steps 5, 6, and 7 until the entire device is programmed. At this point VCC can be dropped to 5.0 volts and the chip enabled so that the outputs can be tested to verify that all bits programmed; if one or more bits have not programmed, return to the proper address and repeat steps 3 to 6 once for each unprogrammed bit. NOTE: Do not apply the high VCC (12.5 volts) for greater than 1.0 seconds continuously. At that point use a 20% duty cycle. are programmed, one at a time, by means of four doublepole, double-throw (DPDT) switches. This arrangement has the advantage that the switches are normally in the verify mode, indicating the state of the output (logic "0" when not programmed). By switching to the programming position, the outputs may be altered to a logic "1" which will tU,rn on the light emmiting diode (LED) indicator. Upon return to the verify position the LED indicator will stay lit for a programmed bit position. Once the switch is in the programming position, it may remain there as long as the operator wishes. The total programming cycle is set up to last only for 5ms and is controlled by one-shots as shown in the timing diagram, Fig. 2. The programmer timing follows the recommendation of the Signetics revised programming procedure and is easily adaptible to automatic programming and duplicating equipment. CIRCUIT DESCRIPTION Activating one of the four programming switches triggers one-shot No. 1 for 5 milliseconds. This activates gate No. 1 of the peripheral driver (75451) and, by releasing zener diode No.1, VCC is raised to 12.5V for 5 milliseconds while the 82S26 or 82S29 chip is disabled. (It should be mentioned that use of the 74121 eliminates contact bounce problems since it is non-retriggerable.) After a time delay of 1 millisecond generated by one-shot No.2, one-shot No.3 is turned on. This turns off the output transistor of gate No.2 of the 75451, enabling the programming current source. The constant current generator consists of LM309 No.3 that is clamped to 22Vby zener diode No.2. The programming current is determined by the 59 ohm resistor and maintained at a constant 85mA. An additional time delay of 1 millisecond, established by one-shot No.4, guarantees that even slow current sources have rei;lched the required current before the chip is enabled for 2ms to open the NiCr link. One-shot No.5 establishes the chip enable (CE) signal and thus the programming time. OPERATION OF THE 82826/82829 PROGRAMMER Figure 2 shows that VCC for the memory is held at 12.5V for an additional 1 millisecond before the output of oneshot No.1 allows the supply to return to 5V. INTRODUCTION The two time delays of 1 millisecond generated by oneshots No.2 and No.4 can be shortened to the microsecond range for automatic programming equipment if fast switching and a fast current source, as the one discussed above, are chosen. Should it be desired to make the programmer self-contained, a power supply suggestion is also shown in Figure 2. Figure 1 shows the complete programmer schematic. The memory to be programmed is inserted, and by means of seven single-pole, double-throw (SPDT) switches, the binary address is selected. Notice that these switches may easily be replaced by thumbwheel switches. The memory outputs 30 SIGNETICS 1024-BIT PROGRAMMABLE ROM. 82S26/29 PROGRAMMER 82826-82829 Vee 60----r---'>III-....-I----Ovee ~TRONIX J LlTRONIX FIGURE 1 POWER SUPPLY AND WAVEFORMS FUNCTION 12VTO 14V ->-_--0 +30V-35V 74121 { "'" { '"'' 12VTO 14V )6--10---<> +15V-18V 2000!,F 20V ONE SHOT 1 1_5ms_1 FROM VCC CONTROL n +5V-12.5V ONE S H O T 2 - - - 1ms ONE SHOT 3 ONE SHOT 4 ONE SHOT5 DELAY -~ ----'n...- FUSE CURRENT GENERATOR 1ms -11- DELAY FROM CE FIGURE 2 31 SIGNETICS 1024-BIT PROGRAMMABLE ROM -82S26/29 ELECTRICAL CHARACTERISTICS oOe ~ TA ~ 75°e ; 4.75V ~ Vee ~ 5.25 LIMITS CHARACTE R ISTICS TEST CONDITIONS TYP. MAX. UNITS 0.5 V "1" Output Leakage (82S26) 40 J..LA CE1 or CE2 = "1 ", V out = 5.5V (82S29) 100 J..LA CE1 = CE2 = "0", V out = 5.5V (82S29) +40 J..LA CE1 or CE2 = "1", V out =.45 to 2.4V mA CE1 = CE2 = "0", V out = 2.4V MIN. "0" Output Voltage -40 "1" Output Current (82S29) -2.0 lout = 16mA "0" Input Current -250 J..LA Vin = 0.45V "1" Input Current 50 J..LA Vin = 5.5V Input Threshold Voltage "0" Level .85 V "1" Level 2.0 V Power Consumption (82S26) 105/525 130/685 mA/mW (82S29) 115/575 145/760 mA/mW Input Clamp Voltage Output Short Circuit Current 1.2 V -20 mA -70 SWITCHING CHARACTERISTICS 0 ~ T A lin = -18mA V out = 0 Volts ~ 75°e, 4.75 ~ Vee ~ 5.25V LIMITS CHA RACTE R ISTICS TEST CONDITIONS TYP. MIN. MAX. UNITS Propagation Delay Address to Output Chip Enable to Output 60 ns 70 ns 25 ns 30 ns T A = 25°C only T A = 25°C only NOTES 1. Positive current is defined as into the terminal referenced. 2. Manufacturer reserves the right to make design an(i" process changes and improvements. AC TEST FIGURE AND WAVEFORM INPUT PULSE: AMPLITUDE = 3.0V Vec = tr tf = 5ns PW = 200ns (50% DUTY CYCLE) vee INPUT Vce Ao p.OV INPUT OR CHIP SELECT Al °1 AJ PULSE 270n OJ AS °4 At; A7 CEl -~ r"'" OUTPUT OUTPUT GND -=Ground Pins 13 and 14 when testing address-Output delays 32 toff I I I I °2 A.t CE2 I ~ A2 GENERATOR f-- I ~ ton PW -------I I --.., ton ..~innntil!l: ;., ......... ... ECl HIGH PERFORMANCEI1 n1 ')" 256.PROM I U I \J \J DIGITAL 54/74 TTL SERIES PRELIMINARY INFORMATION DESCRIPTION FEATURES The 10139 is an ECl 256-Bit Read Only Memory organized as 32 words with 8 bits per word. The words are selected by five binary address lines; full word decoding is incorporated on the chip. A chip enable input is provided for additional decoding flexibility, which causes all eight outputs to go to low state when the chip enable input is high. This-device is fully compatible with all of Signetics series 10,000 products. Address to output access time is 15 ns typical. Power dissipation is 580 milliwatts typical with separate internal bond wires and metal systems for V CC 1 and V CC2. The 10139 may be programmed to any desired pattern by the user. The 10139 is suitable for use in high performance ECl systems. A Truth Table/Order Blank is attached. • • • • • • • TEMPERATURE RANGE -30 to +85°C Operating Ambient RECOMMENDED OPERATING VOLTAGE VCC = GND, VEE = -5.2V ±5% 15 ns TYPICAL ACCESS TIME 16 PIN PACKAGE EASY PROGRAMMING FULLY DECODED FULLY COMPATIBLE WITH ECL 10,000 SERIES HIGH IMPEDANCE INPUTS 50K OHM PUlLDOWN OPEN EMITTER OUTPUTS APPLICATIONS PROGRAMMABLE LOGIC CONTROL STORES MICROPROGRAMMING VOLUME PRODUCTION HARDWIRED ALGORITHMS PACKAGE TYPE F: 16 Pin CERDIP BLOCK DIAGRAM VCC~(1~6~)____________________________________~~--._----------------~ (15) CEo--~ SIGNETICS ECl HIGH PERFORMANCE 256-PROM. 10139 PRELIMINARY ELECTRICAL CHARACTERISTICS (TA = +25°C, vcc = OV, RL = 50[2, VEE = -5.2V) CHARACTER ISTIC SYMBOL MIN TYP MAX UNIT 110 145 mAdc 265 MAdc MAdc Power Supply Drain Current lEO I nput Current VIH = -0.B10V, VIL = -1.B50V lin H lin L 30 Logic "1" (VIH = -0.B10V, VIL = -1.B50V) VOH -0.960 -0.B10 Vdc Logic "0" (VIH = -0.B10V, VILA = 1.B50V) VOL -1.990 -1.650 Vdc Logic "1" (VIHA = -1.105V, VILA= -1.475V) VOHA -0.9BO Logic "0" (VIHA = -1.105V, VILA = 1.475V) VOLA Output Voltage Threshold Voltage PRELIMINARY ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC CHARACTERISTIC SYMBOL Chip Enable Prop Delay -1.630 Vdc = OV, VEE = -5.2V, RL = 50[2) MIN TYP 10 MAX UNIT 15 ns Output Rise Time (20 to BO%) 4.2 ns Output Fall Time (20 to 80%) 4.2 ns Access Time Address to Output 34 Vdc TAD 15 20 ns SIGNETICS ECl HIGH PERFORMANCE 256-PROM. 10139 RECOMMENDED PROGRAMMING PROCEDURE STEP6 If verification is positive, proceed to the next bit to be programmed. AUTOMATIC (see Fig. 2) The 10139 is shipped with all bits at logical "0" (low). To write logical"1's", proceed as follows: STEP 1 Connect VEE (Pin 8) to ground and VCC (Pin 16) to +5.2 volts. Apply the proper address data and raise VCC (Pin 16) to 12 volts. MANUAL (see Fig. 1) STEP 1 Connect VEE (Pin 8) to ground and VCC (Pin 16) to +5.2 volts. Address the word to be programmed by applying 4.0 to 4.6 volts for a logic "1" and 0.0 to 1.0 volts fOr a logic "0" to the appropriate address inputs. STEP 2 After a minimum delay of 100 IlS and a maximum delay of 1.0 ms, apply a 2.5 mA current pulse to the first bit to be programmed (0.5::::;;; PW::::;;; 1 ms). STEP 2 STEP3 Raise VCC (Pin 16) to 12 volts. Repeat Step 2 for each bit of the selected word specified as a logic "1". (Program only one bit at a time; The delay between output programming pulses should be equal to or less than 1.0 ms.) STEP3 After VCC has stabilized at 12 volts (including any ringing which may be present on the V CC line) apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic "1". STEP4 After all the desired bits of the selected word have been programmed, change address data and repeat Steps 2 and 3. STEP4 NOTE: If all the maximum times listed above are maintained, the Return V CC to 5.2 volts. entire memory will program in less than 1 second. Therefore, it CAUTION: To prevent excessive chip temperature rise, VCC should would be permissible for V CC to remain at 12 volts during the not be allowed to remain at 12 volts for more than 1 second. ~ntire STEP 5 STEP 5 Verify that the selected bit has program.med by connecting a 460[2 resistor to ground and measuring the voltage at the output pin. If a logic "1" is not detected at the output, the procedure should be repeated once. After stepping through a" address words, return VCC to +5.2 and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. programming time. PROGRAMMING SPECIFICATIONS LIMITS CHARACTERISTIC SYMBOL Power Supply Voltage To Program To Verify VCCP VCCV Programming Supply Current ICCp Address Voltage logical"1" logical "0" VIH VIL TYP. MAX. 11.5 5.0 12.0 5.2 12.5 5.4 Volts Volts 250 mA 4.6 1.0 Volts Volts 1.0 Sec. 3.0 mA 1.0 ms 4.0 0.0 Max. Time at VCC = Vccp Output Programming Current lOp 2.0 Output Program Pulse Width tp 0.5 OutpU! Pulse Rise Time Programming Pulse Delay (1) following VCC change between output pulses UNITS MIN. 2.5 10 td td 1 0.1 0.01 1.0 1.0 CONDITIONS VCC = 12.0 Volts Ils ms ms NOTE: (1) Maximum is specified t6 minimize the amount of time VCC is at 12 volts. 35 SIGI\IETICS ECl HIGH PERFORMANCE 256-PROM • 10139 MANUAL PROGRAMMING CIRCUIT +20V +12V +5.2V PROGRAM 11 3K VERIFY (M~~T~Y~--i ~--~16---I ADDRESS ~T-TEST : POINT -= I I 4600 ! OUTPUTS -= I I I CE OPEN 8 7.5K (ALL OUTPUTS) AUTOMATIC PROGRAMMING CIRCUIT ADDRESS .-J f I 1 I I I ~.-J I 1 I 1 1123 I 1 td _ _ 1 1 L I I I 8:'23 L(~ 1 I 8 1 I 12 y~ 8 L(~ I I I 1......1 - - - - - - - - - - - . ; ; 1 1 I I --I l_ t d1 1__ I I nl . - I --I I--tp 36 22 nnn n,nnn n:nn --..J LJ LJ LLJ LJ LJ LLJ LJ 1 OUTPUT u U I SECONDI-~--------~~~ f !;innntie!: -;-,--- ---- Eel 64x1 RAMSI1n14n -30 to +85°C CERDIP ADVANCED INFORMATION DIGITAL 10,000 Eel SERIES DESCRIPTION 1014 8 • 'WI' •• Wi' 10151 LOGIC DIAGRAM The 10140, 10148 and 10151 are 64 Bit ECl Random Access Memories (RAM's) organized as 64 words with 1 bit per word. The words are selected by six binary address lines; full word decoding is incorporated on the chip. Two chip enable input lines are provided for additional decoding flexibility. The chip is disabled when either chip enables are high, which causes the output of the 10140 and 10148 to go low. ADDRESS INPUTS I The 10151 has an internal latch on the chip to provide the Write-While-Read capability. When the latch control line, l is a "1" and data is being read from the 10151 the latch is effectively bypassed. The data at the output will be that of the addressed word. When I goes from a logic "1" to logic "0" the outputs are latched and will remain latched regardless of the state of any other address or control line. When l goes from "0" to "1" the outputs unlatch and will take the state of the addressed word. The 10151 and 10148 logic levels are fully compatible with the 10,000 series and are specified for driving a 50n load. The 10140 is compatible with series 10,000 ECl except the output is specified for driving a 90n load. COLUMN SELECT GATES CE1 (4) CE2 (5) DATA OUT (15) 16x 4 ARRAY DATA IS HELD IN THE OUTPUT LATCH (10151 ONLY) WHENI IS AT POSITIVE LOGIC "0". CHIP ENABLE BUFFER OUTPUT BUFFER AND LATCH *(10151 ONLY) THE CHIP IS ENABLED WHEN CE AND CE2 AREAT POSITIVE LOGIC "0". SENSE AMPLIFIER (A) = DENOTES PIN NUMBER (1) =VCC1 (16) =VCC2 (8) = VEE (14) LATCH CONTROL L FEATURES • 10 ns TYPICAL ACCESS TIME • 16 PIN PACKAGE • ON THE CHIP LATCH (AVAILABLE ON 10151) • ON THE CHIP DECODING • TWO CHIP ENABLE CONTROL LINES • HIGH IMPEDANCE INPUTS 50k OHM PULL-DOWN • OPEN EMITTER OUTPUTS TRUTH TABLE (10151) - - - CE RW L MODE 0 0 0 0 1 0 0 1 1 0 0 Write Data 1 Write Data 0 Read 1 Read 0 Chip Disabled 1 1 0 1 1 Chip Disabled 0 Chip Disabled 1 1 1 Chip Disabled APPLICATIONS SCRATCH PAD MEMORY BUFFER MEMORY ACCUMULATOR REGISTER CONTROL STORE OUTPUTS Data stored in addressed word Data stored in addressed word Data from last address when CE = "0" logical "1" Data from last address when CE = "0" logical "1" 37 SIGNETICS ECl 64x1 RAMS. 10140, 10148, 10151 ABSOLUTE MAXIMUM RATINGS SYMBOL RATING Power Supply Voltage (VCC = 0) VEE -8 Vdc CHARACTE RISTIC UNIT Input Voltage (VCC = 0) Yin o to VIL min Vdc Output Source Current 10 40 Storage Temperature Range Tstg mAdc °c Operating Junction Temperature TJ 110 Operating Temperature Range TA -30 to +85 - ±10% ±5% Power Supply Regulation Required VCCl -55 to +125 °c °c - = VCC2 = Gnd SWITCHING CHARACTERISTICS T A = 25°C, RL = 50n for 10148 and 10151, RL = 90n for 10140 CHARACTER ISTIC SYMBOL MIN TYP MAX UNIT Chip Enable Turn-On tCE-D+ - 8 12 Turn-Off tCE+D- - 8 12 ns Access Ti me for Add ress to Output tA+D+ - 10 15 tA+D~ - 10 15 tA-D+ - 10 15 tA-D- - 10 15 Write Pulse Width tw(R/W) 10 ns ns Chip Enable Pulse Width tw(CE) 13 ns Set-Up Time for Data to Write tset(D±R/W+) 10 ns Set-Up Time for Data to Chip Enable tset(D±CE+) 10 ns Set-Up Time for Write to Chip Enable tset(W-CE+) 10 ns Set-Up Time for Chip Enable to Write tset(CE-R/W+) 13 ns Set-Up Time for Data to Latch (10151 only) tset(D±I-) ns Set-Up Time for Latch Release to Data (10151 only) tset(l+D±) ns Set-Up Time for Latch to Address (10151 only) tset(I-A±) ns ELECTRICAL CHARACTERISTICS TA = 25°C, RL = 50n for 10148 and 10151, RL = 90n for 10140 CHARACTERISTIC Power Supply Drain Current (VEE = -5.2 V) I nput Current (VIH = -0.810 V, VEE = -5.2 V) (VI L = -1.850 V, VEE = -5.2 V) Output Voltage Logic "1" (VIH = -0.810 V, VI L = -1.850 V, VEE = -5.2 V) Logic "0" (VIH = -0.810 V, VIL = -1.850 V, VEE = -5.2 V) Threshold Voltage Logic "1" (VIHA = -1.105 V, VILA = -1.475 V, VEE = -5.2 V) Logic "0" (VIHA = -1.105 V, VILA = -1.475 V, VEE = -5.2 V) 38 SYMBOL MIN TYP MAX UNIT mAdc lEO - 80 - - 265 0.5 - -0.960 - -0.810 -1.990 - -1.650 -0.980 - - - - ,uAdc linH linL - Vdc VOH Vdc VOL Vdc VQHA Vdc VOLA -1.630 SIGNETICS ECl 64x1 RAMS. 10140, 10148, 10151 'TII\IIII\I~ 1"\1 A~D • . . . . . . . ,. '-I ""1""\.'-1' AI\IIC" 11""\.1"'~ WRITE TIMING DIAGRAMS-WRITE STROBE MODE ~ 1 I \ -r --------:- -'i 1 tset(D±R/W) 10min - • I I '------ ;:'3ns~ -DIN--:11 __ +.i , 1 1 1 C<: i-I 13 mm '\ : tw(R/W)----.I_;;:.Ons~ "I_ 1_;:'5ns W r .1\.- __ I . - - - tset(CE-R/W+) _ _ _ _ ;:.3 ns---.l 10mm \ -I I 1 !--twr __1 _ _ _~l'-- DOUT . READ TIMING DIAGRAM t-----=-----'t ----Jl ...1..1------\*:- ci\:£< D_o_uT_ _ _ _ _ _'_ .. ~\.,~ ~------------------It~ ---------- :u:-------:-y ----------+-I-...J· I\..- - - - - - - ~:::~~ I tA-D+ I tA-D15 MAX CHIP ENABLE STROBE MODE ~, -CE >OM" 1--- 10151 LATCH TIMING DIAGRAM 'ou, X----------¥ ~t 1 ___ J 1' --I I--- LSET(D±L-) -I . 1'-_- - j--LSET(L+D±) L- _____ J,~______ ---I I- tSET(L-A±) --------..;...-Ir----------- ~ 39 !ii!ln~tiC!i 10145 Eel 16X4 RAM 10145 F, I -30°C to +85°C DIGITAL 10,000 Eel SERIES BLOCK DIAGRAM DESCRIPTION The 10145 is an ECl 64-bit read-write random access memory organized as 16 words of 4 bits each. Words are selected through fully decoded and buffered inputs when the chip enable (CE) is low. Data is written into the selected word by bringing the READ/WRITE input low. Cutputs are low during write. On-chip input pulldown resistors allow any unused inputs to be left open. Open emitter outputs allow corresponding bits of different devices to be tied together to form a "Wire OR" logic connection. Ao A1 A2 A3 The 10145 utilizes separate internal metal systems and wire bondsforVCC1 and VCC2. The exceptionally high speed of the 10145 makes it particularly suited for register file and and scratch pad appl ications. CE Vii (10) (9) (7) (6) ADDRESS BUFFERS AND DECODER MEMORY MATRIX 16X4 ...,;.(3...:....)_ _~_ _ ---1 DATA BUFFERS (13) FEATURES • 8.5n5 ADDRESS ACCESS TIME (TYP) • INPUT PUlLDOWN RESISTORS • OPEN EMITTER OUTPUTS AND CHIP ENABLE INPUT FOR MEMORY EXPANSION • 50 Ohm OUTPUT SPECIFICATION • SINGLE -5.2V POWER SUPPLY • FULLY DECODED INPUTS • FULLY COMPATIBLE WITH SIGNETICS 10,000 SERIES FAMILY OF INTEGRATED CIRCUITS (8) = VEE (16) =Vcc ( ) = DENOTES PIN NUMBER 100 0 1 O2 03 00 01 02 0 . 31 11 I I DATA INPUTS DATA OUTPUTS APPLICATIONS SCRATCH PAD MEMORIES BUFFER MEMORIES REGISTER FILES CONTROL STORES PACKAGE TYPES F: I: 16 Pin Cerdip 16 Pin Laminated Ceramic ELECTRICAL CHARACTERISTICS VEE = -5.2V, VCC = OV, Rl = 50n TO -2.0V CHARACTERISTIC Supply Current SYMBOL CONDITIONS 4, 5, 11, 12) 40 UNITS 116 145 rnA 25°C 200 JiA IINH VIN MAX. 25°C 220 JiA IINH VIN = VIH MAX. 25°C 455 JiA IINL VIN I nput Current (All Inputs) MAX. VIN= VIH MAX. = VIH Input Current (Pin 13) TYP. IINH Input Current (Pin~ MIN. 25°C IE Input Current (Pins 3,6, 7, 9, 10) TEMP. = VIL MIN. 25°C 0.5 JiA SIGNETICS ECl 16x4 RAM. 10145 ELECTRiCAL CHARACTERiSTiCS (Cont;d) CHARACTERISTIC Output Voltage Output Voltage Output Voltage (Threshold) SYMBOL VOH VIN = VIH MAX., VIL MIN. VOL VIN = VIH MAX., VIL MIN. VOHA Output Voltage (Threshold) CONDITIONS VOLA VIN = VIHA, VILA VIN = VIHA, VILA MAX. UNITS -1.06 -.89 Vdc 25°C -.96 -.81 85°C -.89 -.70 TEMP. MIN. -30°C TYP. -30°C -1.89 -1.675 25°C -1.85 -1.65 85°C -1.825 -1.615 -30°C -1.08 25°C -.98 85°C -.91 Vdc Vdc -30°C -1.655 25°C -1.63 85°C -1.595 Vdc SWITCHING CHARACTERISTICS VEE = -3.2V, VCC = 2V, RL = 50[2 TO GND CHARACTERISTIC Access Time - Chip Enable to Output Address to Output MIN. SYMBOL TYP. MAX. UNITS tCE-Q+,tCE+Q- 5.0 ns tA + Q+, tA- Q+ 8.5 ns tA+ Q-, tA- Q Write Strobe Mode tSET(D± R/W+) 7.5 ns Chip Enable Set-up tSET(CE- R/W+) 11.0 ns Address Data Set-up tSET(A± R/W-) 3.5 ns Data Hold tHOLD(D+ R/W+) 3.0 ns Chip Enable Hold tHOLD(CE,+ R;W+) 3.0 ns tHOLD(A+ R/W+) 3.5 ns tRNv+ Q+, tR/W+ Q- 7.5 ns tW(R/W) 7.5 ns Data Set-up tSET(D± CE +) 7.5 ns Read/Write Set-up tSET( R/W- CE +) Address Hold Recovery Time Write Pulse Width Chip Enable Strobe Mode Address Set-up Data Hold 11.0 ns tSET(A±CE -) 3.0 ns tHOLD(D+CE+) 3.0 ns Read/Write Hold tHOLD(R/W + CE +) 3.0 ns Address Hold tHOLD(A+ CE+) 3.0 ns tW(CE) 7.5 ns Chip Enable Pulse Width Rise Time (20%-80%) t+ 2.5 ns Fall Time (20%-80%) C 2.5 ns TEST VOLTAGE VALUES Vdc ± 1% @Test Tern perature VIH max VILmin VIHAmin VILA max VEE -30°C -0.890 -1.890 -1.205 -1.500 -5.2 +25°C -0.810 -1.850 -1.105 -1.475 -5.2 +85°C -0.700 -1.825 -1.035 -1.440 -5.2 41 SIGNETICS ECl 16x4 RAM. 10145 TIMING DIAGRAMS WRITE CYCLE READ/WRITE STROBE MODE ADDRESS I~----- tset(D± R / W + ) - - - - -...~I~ -1tJold(A+ R/W+) DATA IN ~---tset(CE - R/W+) - - - -...~I ......J - - - -....~~I- \'old(D+ R/W+) 1..... CHIP ENABLE \'old (CE+R/W+)~ READIWRITE '------ WRITE CYCLE CHIP ENABLE STROBE MODE ADDRESS 1-4------tset(D± CE+)-----~~~I·...........---i~~I-1tJold(A+ CE+) DATA IN READ/WRITE CHIP ENABLE 1 4 - - - - - - - - t s e t ( R / W - CE+)-------~ 42 SIGNETICS ECl 16x4 RAM. 10145 TiMiNG DiAGRAMS (Com:dj READ CYCLE CHIP ENABLE ADDRESS I )\ ~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ J °OUT ~{ --------~--~/\---------------------------t A +O+ 4 - - tA+O_----. tA-O+ tA-O- WRITE/READ CYCLE AD DRESS \( J\ . .. .. \ - R/W .. CH IP ENABLE DA TAOUT \ . )V1\ DA TAIN t (A± R/W-) tset (A± R/W+) tw(R/W) \ .. / tset (CE - R/W+) / .. tR/W + 0+ tR/W + Q- ~ / .V 43 CUSTOMER ORDERING INFORMATION N8205 N8204 N8204 ASCII-TO-EBCDIC, EBCDIC-TO-ASCII ASCII-TO-EBCDIC CODE CONVERTER EBCDIC-TO-ASCII CODE CONVERTER - CB 175 - CB504 - CB505 ASCII (ADDRESS) TO EBCDIC (DATA) o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 00000000 00110111 00010110 00001100 00010000 00111100 00011000 00011100 01000000 01011011 01001101 01101011 11110000 11110100 11111000 01001100 01111100 11000100 11001000 11010011 11010111 11100011 11100111 11100000 01111001 10000100 10001000 10010011 10010111 10100011 10100111 01101010 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 2 00000010 3 00000011 128 00100000 129 00000001 7 00101111 132 00100100 133 6 00101110 00101101 10 00100101 11 00001011 136 00101000 137 00000101 14 00001110 15 00001111 140 00101100 141 00001101 18 00010010 19 00010011 144 00110000 145 00010001 22 00110010 23 00100110 148 00110100 149 00111101 27 00100111 152 00111000 153 00011001 26 00111111 30 00011110 31 00011111 156 00000100 157 00011101 34 01111111 35 01111011 160 01000001 161 01001111 01101100 38 01010000 39 01111101 164 01000101 165 42 01011100 43 01001110 168 01001001 169 01011101 46 01001011 01100000 47 01100001 172 01010100 173 11110001 50 11110010 51 11110011 176 01011000 177 54 11110110 11110101 55 11110111 180 01100100 181 11111001 58 01111010 59 01011110 184 01101000 185 01111110 62 01101110 63 01101111 188 01110010 189 11000001 66 11000010 67 11000011 192 01110110 193 11000101 70 11000110 71 11000111 196 10001010 197 74 11010001 11001001 75 11010010 200 10001110 201 11010100 78 11010101 79 11010110 204 10011011 205 11011000 82 11011001 83 11100010 208 10011111 209 11100100 86 11100101 87 11100110 212 10101100 213 11101000 90 11101001 91 01001010 216 10110000 217 01011010 94 01011111 95 01101101 220 10110100 221 10000001 98 10000010 99 10000011 224 10111000 225 10000101 102 10000110 103 10000111 228 10111100 229 10001001 106 10010001 107 10010010 232 11001010 233 10010100 110 10010101 111 10010110 236 11001110 237 10011000 .114 10011001 115 10100010 240 11011100 241 10100100 118 10100101 119 10100110- 244 11101010 245 10101'000 122 10101001 123 11000000 248 11101110 249 11010000 126 10100001 127 00000111 252 11111100 253 EBCDIC (ADDRESS) TO ASCII (DATA) 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 336 340 344 348 352 356 360 364 368 372 376 380 44 00000000 10011100 10010111 00001100 00010000 10011101 00011000 00011100 10000000 10000100 10001000 10001100 10010000 10010100 10011000 00010100 00100000 10100011 10100111 00111100 00100110 10101100 10110000 00101010 00101101 10110100 10111000 00100101 10111010 10111110 11000010 01000000 257 261 265 269 273 277 281 285 289 293 297 301 305 309 313 317 321 325 329 333 337 341 345 349 353 357 361 365 369 373 377 381 CB175 FIRST HALF CB504 8205 8204 00000001 00001001 10001101 00001101 00010001 10000101 00011001 00011101 10000001 00001010 10001001 00000101 10010001 10010101 10011001 00010101 10100000 10100100 10101000 00101000 10101001 10101101 10110001 00101001 00101111 10110101 10111001 01011111 10111011 10111111 01100000 00100111 258 262 266 270 274 278 282 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 00000010 10000110 10001110 00001110 00010010 00001000 10010010 '00011110 10000010 00010111 10001010 00000110 00010110 10010110 10011010 10011110 10100001 10100101 01011011 00101011 10101010 10101110 01011101 00111011 10110010 10110110 01111100 00111110 10111100 11000000 00111010 00111101 00000011 01111111 00001011 00001111 00010011 10000111 10001111 00011111 10000011 00011011 10001011 00000111 10010011 00000100 10011011 00011010 10100010 10100110 00101110 00100001 10101011 10101111 00100100 01011110 10110011 10110111 00101100 00111111 10111101 11000001 00100011 00100010 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 00100010 00000110 00101010 00001010 00011010 00110110 00111010 00111110 01000011 01000111 01010010 01010110 01100010 01100110 01110000 01110100 01111000 10001100 10010000 10011101 10101010 10101110 10110010 10110110 10111010 10111110 11001100 11011010 11011110 11101100 11111010 11111110 131 135 139 143 147 151 155 159 163 167 171 175 179 183 187 191 195 199 203 207 211 215 219 223 227 231 235 239 243 247 251 255 00100011 00010111 00101011 00011011 00110011 00001000 00111011 11100001 01000100 01001000 01010011 01010111 01100011 01100111 01110001 01110101 10000000 10001101 10011010 10011110 10101011 10101111 10110011 10110111 10111011 10111111 11001101 11011011 11011111 11101101 11111011 11111111 CB175 SECOND HALF CB505 8205 8204 259 263 267 271 275 2-79 283 287 291 295 299 303 307 311 315 319 323 327 331 335 339 343 347 351 355 359 363 367 371 375 379 383 00100001 00010101 00101001 00001001 00110001 00110101 00111001 00010100 01000010 01000110 01010001 01010101 01011001 01100101 01101001 01110011 01110111 10001011 10001111 10011100 10100000 10101101 10110001 10110101 10111001 10111101 11001011 11001111 11011101 11101011 11101111 11111101 384 388 392 396 400 404 408 412 416 420 424 428 432 436 440 444 448 452 456 460 464 468 472 476 480 484 488 492 496 500 504 508 11000011 01100100 01101000 11000110 11001010 01101101 01110001 11001101 11010001 01110101 01111001 11010100 11011000 11011100 11100000 11100100 01111011 01000100 01001000 11101010 01111101 01001101 01010001 11110000 01011100 01010101 01011001 11110110 00110000 00110100 00111000 11111100 385 389 393 397 401 405 409 413 417 421 425 429 433 437 441 445 449 453 457 461 465 469 473 477 481 485 489 493 497 501 505 509 01100001 01100101 01101001 11000111 11001010 01-1011·10 01110010 11001110 01111110 01110110 01111010 11010101 11011001 11011101 11100001 11100101 01000001 01000101 01001001 11101011 01001010 01001110 01010010 11110001 10011111 01010110 01011010 11110111 00110001 00110101 00111001 11111101 386 390 394 398 402 406 410 414 418 422 426 430 434 438 442 446 450 454 458 462 466 470 474 478 482 486 490 494 498 502 506 510 01100010 01100110 11000100 11001000 01101011 01101111 11001011 11001111 01110011 01110111 11010010 11010110 11011010 11011110 11100010 11100110 01000010 01000110 11101000 11101100 01001011 01001111 11101110 11110010 01010011 01010111 11110100 11111000 00110010 00110110 11111010 11111110 387 391 395 399 403 407 411 415 419 423 427 431 435 439 443 447 451 455 459 463 467 471 475 479 483 487 491 495 499 503 507 511 01100011 01100111 11000101 11001001 01101100 01110000 11001100 11010000 01110100 01111000 11010011 11010111 11011011 11011111 11100011 11100111 01000011 01000111 11101001 11101101 01001100 01010000 11101111 11110011 01010100 01011000 11110101 11111001 00110011 00110111 11111011 11111111 N82281 - CB 162 PATTERN USASC II ROW CHARACTER GENERATOR AO Al A2r.---------~--------+_~--------~--------_+_+----o----~-r--------+-+---------~r-------~-+---------i A3 A4 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 A5~----~----O----_r~----1----+_~---O----_r1_----1----+_+_----0----~-----1----~+_---O~--~_r----1----; As A-, . .. .. • • ...... ...... I •I...... :•• ........: A8r-~----._--_+_+----._--_r1_--_.----+_+_--_.----~r_--._--~_+----._--_+_r--~----+_+_--_.--__1 o Ag 000 000 001 010 011 100 101 110 111 00 1 000 001 010 011 100 101 110 111 o 1 0 000 001 010 011 100 101 110 111 01 1 000 001 010 011 100 101 110 111 1 00 000 001 010 011 100 101 110 111 1 0 1 000 001 010 011 100 101 110 111 1 1 0 000 001 010 011 100 101 110 111 111 000 001 010 011 100 101 110 111 o 1 ••••• o 1 ••••••••• ••••••• ••• ••• o 1 1 : I I I I .-; , • • • 1• • • I.••••• I I I •••••• ~. 1 1••• • • ••• ••• I.•••• : II •• I ••. I I I I •••••• I ~. I • 1• • I I ~ .. r ....... • ••• •• ~ •• •• •• •• •• •• •• : : i •• i.~. • •• •.J ••••••1 r~ I II •• .. •••• :.~ • • •.~. •• • I·'~· '--i••• •..1•...• II .-Ie• 1 o 1 o 1 ~ .~.: ~. I •• •• • ••••• ! I i I • •: J III·• i I ~ I o •••••• ••• ••••••• ......... .. .. • • : ••••••• . ..... :• .. ... : : ••••• ..... ....•... ... •• •• ...... ••••••• : ......• I ••• : o • • I • ••••••I • • L!J ....... • .. •...• • • .. ._. I ••••• I· ~ :.:.•• ·i· •••••• ••••••• •••• I •• •• •• ••••• •• •• • •• I...... I••••••• • ••••••••• •• • .......•• .-• ..... ···eL' ....... ..•••• ....... •• .:.. • ••••••• •• •• ... .. I·····: ••••• . .... • • ..... ... ....... • •• ••• ... ••• •.......• •••••• ••••••• •••• • .... • ~. I • I ·I ...... . I • . I ~. I"~I ~~ .1 ~ I 45 PUNCHED CARD PROGRAM INPUT FOR 8204 & 8205 The customer may specify the content of the ROM either by filling out the accompanying form or by using punched cards. He should note that: 1. "Zero" levels on data out lines are defined as low. 2. Address bit AO is the least significant address bit. (See 8204 and 8205 data sheet) Punched Card Data Input - Data to program the 8205 and the 8204 can be supplied in punched card-format. The format for the data is shown in Figure 1. Each data word is preceded by an address word which identifies its position in memory. Figure 2 shows the deck format for the 8204 256 x 8 bit ROM. For the 8204 the first card in the deck contains the part number and it is immediately followed by up to 40 alphanumeric characters of customer supplied information used to identify the part. The 64 customer data cards follow immediately. Figure 3 shows the deck format for the 8205 512 x 8 ROM. For the 8205 the first card in the deck contains the part number and it is immediately followed by up to 40 alphanumeric characters of customer supplied information used to identify the part. 128 data cards follow immediately. The left-most digit in the data word corresponds to output 08 and the right-most digit to output 0 1, I I I I I I I I I I 2 2 2 2 2 2 2 2 2 2 3 33 33 3 3 3 3 3 4 44 44 44 44 45 55 5 5 5 5 5 5 5 6 6 6 6 6 6 6 66 6 7 7 7 7 7 7 7 77 7 8 I 2 34 56 78 90 I 2 34 5 6 78 90 I 2 3 4 5 6 78 90 I 2 34 5 6 78 90 I 2 3 4 56 7 8 90 I 2 3 4 5 6 7 8 90 I 2 3 4 5 6 7 8 90 I 2 3 4 5 6 78 90 2 3 4 e - II: 0 I~ 0 1:;( f-O ~T ~i) I-H IS ~ ~ ~ 0 r-O AT ~j) I - I - c( II:: 0 f-O AT IA~ f-f- c( t-O AT AU)I-r- 003 007 I 10 10 101 I I I 10 o I I 5 FIGURE 1. CARD DATA FORMAT 6 7 8 9 r....1 ... CU S~ ~~ E~ 10 ~~ IV II ppp 12 pp~ IP I I 01 I I I I QI IP I I P~I pp5 P~ ~rr 10 ~~ op pp pp I I 10 00 Op 13 , 1002 I I 00 I I I I OP6 PO I I I I pO 64 CA R05 14 15 252 00 I I 00 00 253 00 00 10 Op 254 01 10 I I I I 255 101 10 000 16 FIGURE 2. DECK FORMAT FOR 8204 ROM (256x8) 17 18 19 20 21 ~2 05 POP 10 I I 01 I I 25 5P~ 26 508 10 I I Op 01 10 10 10 10 22 23 CU 5T ~M ER PA RT 10 I I 10 I I I I K:>02 I I 10 01 I I 003 10 I I 10 I I 505 Op pO Op pp 509 I I 01 10 I I 506 510 I I 101 101 10 001 I I I 507 5 I I 128 101 10 000 101 I I I 10 POI 24 27 28 29 30 FIGURE 3. DECK FORMAT FOR 8205 ROM (512x8) 111111111111111111 I I I I I I I I I I I I I111111 CA ROS PUNCHED CARD PROGRAM INPUT FOR 8228 Punched card data to program can be transmitted directly to Signetics. Data information to program the ROM requires 128 80-column IBM pu nched cards per 4096 bit device and 64 punched cards per 256 bit device. own part identification. These first three cards are then followed by 128 data cards. Immediately following are two cards to terminate the computer run. These should be punched by the customer. Data Cards Input Deck Format For each 4096 bit ROM, the customer should prepare an input card deck as shown in Figure 1. The first two cards should be punched as shown and placed at the start of the deck. The third card should contain "8228" in the first four columns. In the next 40 positions, the customer should fill in his Figure 2 shows the layout used in the data cards. Each data card specifies eight addresses and the four bits of data associated with these addresses. Address (i) tells the computer what position to assign Data (i) to etc. Immediately under this, a typical layout for the first two and the last data cards is shown. INPUT CARD I I I I I I I I I I 2 2 2 2 2 2 2 2 2 2 3 3 3 3 33 3 3 33 44 44 44 44 44 5 5 5 5 5 5 5 5 5 5 6 6 6 6 66 6 6 6 6 7 7 77 7 7 7 7 77 8 I 2 34 56 78 90 I 2 34 5 6 78 90 I 2 3 4 5 6 78 90 I 2 34 5 6 78 9 0 I 2 3 4 5 6 7 8 90 I 2 3 4 5 6 7 8 90 I 2 3 4 5 6 7 8 90 I 2 3 4 5 6 78 90 /1 2 3 JOB I I XEQ 82 28 51 GRIM 'j T 4 128 5 6 7 1* 8 II CU 5T OIM ER PA RT 10 OA TA CA R05 T J *J OB ENO 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ~ ..... 30 FIGURE 1. DECK LAYOUT FOR 8228 DATA INPUT DATA CARDS 1 I I 1 I I 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 33 33 3 3 33 44 44 44 44 44 5 5 5 5 5 5 5 5 5 5 6 6 6 6 66 6 6 6 6 7 7 77 7 7 7 7 77 8 1 2 34 56 78 90 1 2 34 5 6 78 90 1 2 34 5 6 78 90 1 2 34 5 6 78 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 78 90 1 ., ., 3 ~ 4 c( .. 2 0 I~ ...J III C 0 :! .. 0 0 ...J III .... .Q .Q ~ ! ...J III 0 U I~ ...J III ~ 0 I~ .... 'U U I~ ...J III 0 I~ I~ ...J III I~ ! ...J III .. c 0 Q) Q) 'U ! ...J III II: 0 I~ I z .. c ...J III 0 '3 ...J III II:: 0 0 c( ~ ...J III ..- ~ 0 ~ C( co II:: 0 ~ co I~ ...J III c ~ I.e ,I; I~ Ii II:: 0 I~ ~ ...J III I~ c( 0 I~ 'ii5 5 EX AIM PLE 6 7 00 00 10 10 QO 01 10 00 00 02 01 I I 00 03 00 08 I I 01 00 09 10 10 00 10 I I 01 10 10 00 04 I I 00 I 1 01 00 07 10 01 I II I 10 00 00 13 00 00 00 14 01 I I 00 15 01 10 10 23 I II I 00 05 I II I 00 06 8 9 K>o I I 10 ! I II 12 I, 13 14 00 12 1+ 10 16 I I 01 10 17 I II I 10 18 00 00 10 19 10 01 10 20 01 10 15 16 17 18 19 20 FIGURE 2. DATA DECK LAYOUT 21 22 23 24 25 26 27 28 29 30 I 10 21 10 10 10 22 01 01 (8204,8205) 2048/4096 BIT READ ONLY MEMORY TRUTH TABLE/ORDERING BLANK CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: Note: For 256 x 8 Use This Page Only Word Os 07 °6 °5 °4 °3 °2 0, Word °8 °7 °6 °5 °4 °3 °2 a 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Word °8 °7 °6 °5 °4 °3 °2 0, OUTPUT Word °8 °7 °6 °5 °4 °3 °2 0, 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 192 19J 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 OUTPUT OUTPUT OUTPUT P, - U1 o 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 I (8204,8205) 2048/4096 BIT READ ONLY MEMORY TRUTH TABLE/ORDERING BLANK CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: Note: For 256 x 8 Use Previous Page Only OUTPUT Word Con 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 OUTPUT OUTPUT OUTPUT °8 P7 °6 °5 °4 °3 °2 0, Word °8 °7 °6 °5 10 4 °3 °2 0, Word °8 °7 °6 °5 °4 °3 °2 0, Word °8 °7 °6 °5 °4 °3 °2 0, 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 0'1 N 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 ~38 ~39 ~40 ~41 f442 f443 f444 f445 ~46 f447 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 (8223,8224) (82823, 82S123) (lU13~) CB (XXX) 256 BIT READ ONLY MEMORIES TRUTH TABLE/ORDER BLANK CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: OUTPUTS INPUTS WORD A4 A3 A2 A1 Ao ENABLE 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 1 0 0 3 0 0 0 1 1 0 4 0 0 1 0 0 0 5 0 0 1 0 1 0 6 0 0 1 1 0 0 7 0 0 1 1 1 0 8 0 1 0 0 0 0 9 0 1 0 0 1 0 10 0 1 0 1 0 0 11 0 1 0 1 1 0 12 0 1 1 0 0 0 13 0 1 1 0 1 0 14 0 1 1 1 0 0 15 0 1 1 1 1 0 16 1 0 0 0 0 0 17 1 0 0 0 1 0 18 1 0 0 1 0 0 19 1 0 0 1 1 0 20 1 0 1 0 0 0 21 1 0 1 0 1 0 22 1 0 1 1 0 0 23 1 0 1 1 1 0 24 1 1 0 0 0 0 25 1 1 0 0 1 0 26 1 1 0 1 0 0 27 - 1 1 0 1 1 0 28 1 1 1 0 0 0 29 1 1 1 0 1 0 30 1 1 1 1 0 0 31 1 1 1 1 1 0 ALL X X X X X 1 B7 B6 85 84 83 82 81 BO 1 1 1 1 1 1 1 1 53 'O"~"OI 'O"~~~J CB (XXXX) 1024 BIT READ ONLY MEMORY TRUTH TABLE/ORDER BLANK CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: OUTPUT Word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 04 °3 °2 OUTPUT °1 Word 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 °4 °3 °2 OUTPUT °1 Word 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 °4 °3 °2 OUTPUT °1 Word 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 2.07 208 209 210 211 212 213 214 215 216 217 °4 °3 °2 0, c.n c.n 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 1n7 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 (8228) 4096 BIT READ ONLY MEMORY TRUTH TABLE/ORDER BLANK m -----------------------------------------------------------------------------------------------------------en CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: OUTPUT Word 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 °4 °3 °2 OUTPUT °1 Word 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 °4 °3 °2 OUTPUT °1 Word 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 °4 °3 °2 OUTPUT °1 Word 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 °4 °3 °2 °1 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 105 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 (8228) 4096 BIT READ ONLY MEMORIES TRUTH TABLE/ORDER BLANK 0'1 co CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: Word 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 '301 302 303 304 305 306 307 308 04 OUTPUT 0 3 O2 0, Word 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 04 OUTPUT 0 3 O2 0, Word 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 04 OUTPUT 0 3 O2 OUTPUT 0, Word 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 04 03 °2 0, 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 (8228) 4096 BIT READ ONLY MEMORIES TRUTH TABLE/ORDER BLANK o~-----------------------------------------------------------------------------------------------------------CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: Word 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 °4 OUTPUT 0 3 °2 0, Word 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 °4 OUTPUT °3 O 2 OUTPUT 0, Word 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 °4 °3 °2 0, Word 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 °4 OUTPUT 0 3 O2 0, 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 659 660 661 662 663 664 665 666 667 668 669' 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 (8228) 4096 BIT READ ONLY M·EMORIES TRUTH TABLE/ORDER BLANK ~ N --------------------------------------------------------------------------------------------------------CUSTOMER: THIS PORTION TO BE COMPLETED BY SIGNETICS P.O. NO.: PART NO.: YOUR PART NO.: S.D. NO.: DATE: DATE RECEIVED: OUTPUT Word 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 °4 °3 °2 OUTPUT 0, Word 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 °4 °3 °2 OUTPUT 0, Word 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 °4 °3 °2 OUTPUT 0, Word °4 °3 °2 °1 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 0963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 SALES OFFICES New England Regional Sales Office Lexington, Massachusetts 02173 Miller Building, Suite 11 594 Ma rrett Road Phone (617) 861-0840 TWX: (710) 326-6711 Wappingers Falls, New York Imperial Plaza Phone: (914) 297-4074 Newmarket, Ont., Canada 303 Towercrest Dr. Phone: (416) 895-4256 REPRESENTATIVES ARIZONA Scottsdale 85254: Adrig Sales, Box 1607 Phone: (602) 947-4336 TWX: (910) 950-1293 CANADA Toronto 17, Ontario: Corning Glass Works of Canada, Ltd., 135 Vanderhoff Ave. Phone: (416) 421-1500 TWX: (610) 491-2155 Montreal 265, Quebec: Corning Glass Works of Canada, 7065 Chester Ave. Atlantic States Regional Sales Offices Fort Lee, New Jersey 07024 2460 LeMoine Avenue Phone (201) 947-9870 TWX: (710) 991-9794 Woodbury, Long Island, New York 11797 20 Crossway Park, Noorth Phone (516) 364-9100 TWX: (510) 221-2158 Clearwater, Florida 33515 3267 San Mateo Blvd. Phone (813) 726-3747 Medford, New Jersey 08055 Cedar Brook Building Taunton Blvd. Phone (609) 665-5071 TWX: (510) 683-6291 Rockville, Maryland 20852 11400 Rockville Pike, Suite 304 Phone (301) 881-5710 TWX: (710) 828-0532 COLORADO Central Regional Sales Offices Rolling Meadows, Illinois 60008 5105 Tollview Drive, Suite #209 Phone (312) 259-8300 TWX: (910) 687-0765 Birmingham, Michigan 48011 725 S. Adams Road Phone (313) 642-3789 TWX: (810) 232-1673 Dallas, Texas 75230 12830 Hillcrest, Suite 111 Phone (214) 661-1296 TWX: (910) 860-5451 Indianapolis, Indiana 46205 4002 Meadows Drive, Suite J Phone (317) 545-3232 TWX: (810) 341-3248 Minneapolis, Minnesota 55431 8200 Humboldt Ave., S. Phone (612) 884-7451 TWX: (910) 576-2845 INDIANA Northwest Regional Sales Office Sunnyvale, California 94086 465 Mathilda, Suite 301 Phone (408) 736-7565 NEW MEXICO Southwest Regional Sales Offices Irvine, California 92664 2061 Business Center Drive, Suite 214 Phone (714) 833-8980 TWX: (910) 595-1506 Del Mar, California 92014 P. O. Box 788 Phone (714) 453-7570 Phoenix, Arizona 85022 12601 N. Cave Creek Rd., Suite 105 TWX: (910) 950-1299 Phone (602) 971-2517 Encino, California 91316 15910 Ventura Blvd., Suite 813 Phone: (213) 990-2610 TWX: (910) 495-1772 64 Denver 80237: Parker Webster Company, 8213 E. Kenyon Dr. Phone: (303) 770-1972 TWX: (910) 935-0881 CONNECTICUT Hamden 06518: Kanan Associates, P. O. Box 5204 Phone: (203) 288-9276 TWX: (710) 465-1540 FLORIDA Altamonte Springs 32701: WMM Associates, Inc., 505 Tivoli Ct. Phone: (305) 831-4645 Clearwater 33516: WMM Associates, Inc., Hulmac Building, Suite 115, 3118 Gulf to Bay Boulevard Phone: (813) 726-8871, (813) 726-8872 Pompano Beach 33060: WMM Associates, Inc., 1628 E. Atlantic Blvd. Phone: (305) 943-3091 Indianapolis 46250: R. H. Newsom Associates, 6320 Woburn Dr. Phone: (317) 849·4442 KANSAS Overland Park 66201: B. C. Electronics, 7520 West 63rd Phone: (913) 831-2922 TWX: (910) 743-6862 MASSACHUSETTS Newton Highlands 02161: Kanan ASSOCiates, 88 Needham Street Phone: (617) 969-7140 TWX: (710) 335-1686 MICHIGAN Detroit 48224: Rathsburg Associates, 16621 East Warren Avenue Phone: (313) 882-1717 MISSOURI St. Louis 63132: B. C. Electronics, 1573 North Warson Road Phone: (314) 426-3231 TWX: (910) 765-0940 Albuquerque 87110: Staley Company Inc., 2925 Charleston N.E. Phone: (505) 294-2660 UPSTATE NEW YORK Dewitt 13214: TriTech Electronics, Inc., P. O. Box C Phone: (315) 446-2881 NORTH CAROLINA Winston-Salem 27101: Murphy-Cota, 1106 Burke Street Phone: (919) 723-1002 TWX: (510) 931-3101 OHIO Dayton 45405: Compar Corp., 1112 GreenTree Drive Phone: (513) 435-1301 Fairview Park 44126: Norm Case Associates, P.O. Box 4791 Phone: (216) 333-4120 TWX: (810) 421-8396 TEXAS COLORADO Dallas 75229: McCoy Associates, 4339 Southcrest Road Phone: (214) 352-9517 Richardson 75080: Semiconductor Sales Associates, 312 North Central Expressway, Suite 213 Phone: (214) 231-6181 Houston 77023: Semiconductor Sales Associates, 975 Corbindale, Suite 109 Phone: (713) 969-7700 Denver 80216: Hamilton/Avnet ElectroniCS; 5921 N. Broadway Phone: (303) 534-1212 TELEX: 45872 Denver 80222: Cramer Electronics, 5465 E. Evans Place at Hudson Phone: (303) 758-2100 WASHINGTON Bellevue 98009: Western Technical Sales, P. O. Box 902 Phone: (206) 454-3906 (503) 224-5107 TWX: (910) 443-2309 CONNECTICUT Hamden 06514: Arrow Electronics, 295 Treadwell Street Phone: (203) 248-3801 Georgetown 06829: Hamilton/Avnet Electronics, 643 Danbury Road Phone: (203) 762-0361 North Haven 06473: Cramer Electronics, 35 Dodge Avenue Phone (203) 239-5641 FLORIDA DISTRIBUTORS ARIZONA Phoenix 85034: Hamilton/Avnet Electronics, 2615 S_ 21st St. Phone: (602) 275-7851 TELEX: 667-450 Phoenix 85034: Kierulff Electronics, 2633 East Buckeye Road Phone: (602) 273-7331 TWX: (910) 951-1550 CALIFORNIA Culver City 90230: Hamilton Electro Sales, 10912 W. Washington Phone: (213) 870-7171 TELEX: 677-100, 674-381, 674-354 EI Monte 91731: G. S. Marshall, 9674 Telstar Avenue Phone: (213) 686-1500 TWX: (910) 587-1565 Hollywood 33021: Hamilton/Avnet Electronics, 4020 No. 29th Ave. Phone: (305) 925-5401 TELEX: 51-4328 Hollywood 33020: Schweber Electronics, 2830 North 28th Terrace Phone: (305) 927-0511 Orlando 32805: Hammond Electronics, 911 West Central Blvd. Phone: (305) 241-6601 TWX: (810) 850-4121 GEORGIA Atlanta 30340: Schweber Electronics, 4126 Pleasantdale Road, Suite 14 Phone: (404) 449-9170 Norcross 30071: Hamilton/Avnet Electronics 6700 Interstate 85 Access Road, Suite 2B Phone: (404) 448-0800 TELEX: 542-127 ILLINOIS Elk Grove 60007: Schweber Electronics, 1380 Jarvis Avenue Phone: (312) 593-2740 Elmhurst 60126: Semiconductor SpeCialists, Inc., 195 Spangler Avenue, Elmhurst Industrial Park Phone: (312) 279-1000 TWX: 254-0169 Schiller Park 60176: Hamilton/Avnet Electronics, 3901 No. 25th Avenue Phone: (312) 678-6310 TELEX: 728-330 Los Angeles 90022: KT/Wesco Electronics, 5650 Jillson Street Phone: (213) 685-95'25 TWX: (910) 580-1980 Mountain View 94041: Hamilton/Avnet Electronics, 340 East Middlefield Road Phone: (415) 961-7000 TELEX: 348-201 Palo Alto 94303: Wesco Electronics, 3973 East Bayshore Road Phone: (415) 968-3475 TWX: (910) 379-6488 San Diego 92123: Hamilton/Avnet Electronics, 8917 Complex Dr. Phone: (714) 279-2421 San Diego 92123: Kierulff Electronics, 8797 Balboa Avenue Phone: (714) 278-2112 TWX: (910) 335-1182 Sunnyvale 94063: Cramer Electronics, 720 Palomar Phone: (408) 739-3011 Lenexa 66215: Hamilton/Avnet ElectroniCS, 37 Lenexa Industrial Center Phone: (913) 888-8900 CANADA MARYLAND Downsview 463, Ontario: Cesco Electronics, Ltd., 24 Martin Ross Avenlle Phone: (416) 661-0220 TELEX: 02-29697 Downsview, Ontario: Cramer Electronics, 920 Alness Ave., Unit 9 Phone: (416) 661-9222 Montreal, Quebec: Cesco Electronics, Ltd., 4050 Jean Talon West Phone: (514) 735-5511 TWX: (610) 421-3445 Montreal, Quebec: Hamilton/Avnet, 935 Montee De Liesse Phone: (514) 735-6393 TWX: (610) 421-3731 Ottawa, Ontario: Hamilton/Avnet Electronics, 880 Lady Ellen Place Phone: (613) 725-3071 Ottawa, Ontario: Cesco Electronics, Ltd., 1300 Carling Avenue Phone: (613) 729-5118 Quebec: Cesco Electronics, Ltd., 128 St_ Vallier Street Phone: (418) 524-3518 Hanover 21076: Hamilton/Avnet ElectroniCS, 7255 Standard DrIve, Phone: (301) 796-5000 TELEX: 879-68 Rockville 20850: Pioneer Washington Electronics, Inc., 1037 Taft Street Phone: (301) 424-3300 Rockville 20852: Schweber Electronics, 5640 Fisher Lane Phone: (301) 881-2970 INDIANA Indianapolis 46241: Semiconductor Specialists, P.O. Box 41630, Weir Cook Airport Phone: (317) 243-8271 TWX: (810) 341-3126 KANSAS MASSACHUSETTS Burlington 01803: Hamilton/Avnet Electronics 185 Cambridge Street Phone: (617) 273-2120 TELEX: 9496·61 Needham Heights 02194: Kierulff/Schley, 14 Charles Street Phone: (617) 449-3600 TWX: (710) 326-1179 Newton 02150: Cramer Electronics, 85 Wells Avenue Phone: (617) 969-7700 Waltham 02154: Schweber Electronics, 213 Third Ave., Phone: (617) 890-8484 65 MICHIGAN Cleveland 44122: Arrow Electronics, 23945 Mercantile Rd. Phone: (216) 464-2000 Livonia 48150: Hamilton/Avnet Electronics, 12870 Farmington Road Phone: (313) 522-4700 Detroit 48240: Semiconductor Specialists, Inc., 25127 W. Six Mile Road Phone: (313) 255-0300 1WX: (910) 254-0169 Cleveland 44105: Pioneer Standard Electronics, 4800 East 131st Street Phone: (216) 587-3600 TWX: (810) 421-8238 Kettering 45429: Arrow Electronics, 3100 Plainfield Road Phone: (513) 253-9176 1WX: (810) 459·1611 MINNESOTA TEXAS Minneapolis 55423: Semiconductor Specialists, Inc., 8030 Cedar Avenue South Phone: (612) 854-8844 Edina 55435: Hamilton/Avnet Electronics, 7683 Washington Ave., S. Phone: (612) 941-3801 MISSOURI Hazelwood 63042: Hamiiton/Avnet Electronics,392 Brookes Lane Phone: (314) 731-1144 TELEX: 442348 NEW YORK Buffalo 14202: Summit Distributors, Inc., 916 Main Street Phone: (716) 884-3450 1WX: (710) 522-1692 Farmingdale, L. I., 11735: Arrow Electronics, 900 Broad Hollow Rd. Phone: (516) 694-6800 TWX: (510) 224-2694 Rochester 14620: Schweber Electronics, 999 Buffalo Road Phone: (716) 328-4180 Syracuse 13211: Hamilton/Avnet Electronics, 6500 Joy Road Phone: (315) 437-2642 Westbury 11590: Schweber Electronics, Jericho Turnpike Phone: (516) 334-7474 TWX: (510) 222-3660 Dallas 75240: Hamilton/Avnet ElectroniCS, 4445 Sigma Road Phone: (214) 661-8661 TELEX: 732359 Dallas 75220: Cramer Electronics, 2970 Blystone Ave. Phone: (214) 350-1355 Houston 77036: Component Specialties, 7315 Ashcroft, Suite 113 Phone: (713) 771-7237 Houston 77019: Hamilton/Avnet Electronics, 1216 West Clay Street Phone: (713) 526·4661 TELEX: 762589 UTAH Salt Lake City 84115: Alta Electronics, 2280 S. Main St., Phone: (801) 486-7227 TELEX: (910) 925·5282 Salt Lake City 84119: Hamilton/Avnet Electronics 647 West Billinis Road Phone: (801) 262-8451 WASHINGTON Bellevue 98005: Hamilton/Avnet Electronics, 13407 Northrup Way Phone: (206) 746-8750 TELEX: 32249 Westbury 11590: Hamilton/ Avnet Electronics, 70 State Street Phone: (516) 333-5800 TWX: (510) 227-6073 NEW MEXICO Albuquerque 87108: Cramer Electronics, 137 Vermont, N.E. Phone: (505) 265-5767 NORTH CAROLINA Greensboro 27406: Hammond Electronics, 2923 Pacific Avenue Phone: (919) '275-6391 NORTHERN NEW JERSEY Cedar Grove 07009: Hamilton/Avnet Electronics, 218 Little Falls Road Phone: (201) '239-0800 TELoEX: 138313 Saddlebrook 07662: Arrow Electronics, 285 Midland Avenue Phone: (201) 797-5800 Moorestown 08057: Arrow/Angus Electronics, Pleasant Valley Road Phone: (609) 235-1900 TWX: (710) 897-0829 INTERNATIONAL SALES EUROPEAN HEADQUARTERS Signetics International Corp., Yeoman House, 63 Croydon Road, Penge, London, S.E. 20, England Phone: (01) 659-2111 TELEX: 946619 FRANCE Signetics S.A.R.L., 34 Rue de Silly, F92100 Boulogne Phone: 604-23-07 TELEX: 26801 WEST GERMANY Signetics GmbH, Dantestr. 29, D 8 MOnchen 19 Phone: (0811) 151029/151020 Signetics GmbH, Ernsthaldenstrasse 17, D 7 Stuttgart 80, West Germany Phone: (0711) 73-50-61 TELEX: 7255798 Signetics GmbH, Eulenkrugstr. 81E, D 2 Hamburg 67 Phone: (0411) 60-35-242 TELEX: 2174490 SOUTHERN NEW JERSEY AND PENNSYLVANIA Mt. Laurel. N. J. 08057: Hamilton/Avnet Electronics, 113 Gaither Dr., East Gate Industrial Park Phone: (609) 234-2133 TELEX: 834737 Cherry Hill, N. J. 08034: Milgray-Delaware Valley, 1165 Marlkress Road Phone: N.J. (609) 424-1300 Phila. (215) 228-2000 TWX: (710) 896-0405 Somerset, N.J. 08873: Schweber Electronics, 43 Belmont Drive Phone: (201) 469-6008 OHIO Beechwood 44122: Schweber Electronics, 23880 Commerce Park Road Phone: (216) 464-2970 66 STOCKING DISTRIBUTORS AUSTRALIA Pye Industries, Ltd., Tecnico Electronics Division, Premier St., Marrickville, Sydney, N.S.W. 2204 Phone: 55-0411 TELEX: AA-21490 Pye Industries, Ltd., Tecnico Electronics Division, 2 High St., Northcote, Melbourne, Vic. 3070 Phone: 489-93'22 TELEX AA-31240 BELGIUM Klaasing Benelux S.A., Avenue de L'Universite 93, 1050 Bruxelles Phone: (02) 49-85-32 TELEX: 25003 WEST GERMANY EBV Elektronik GmbH. Augustenstrasse 79, D 8 Munchen 2 Phone: (0811) 52-43-40/48 TELEX: 524535 EBV Elektronik GmbH. Myliusstrasse 54 D 6 Frankfurt/Main 1 Phone: (0611) 72-04-16/18 TELEX: 413590 EBV Elektronik GmbH. Scheurenstrasse 1, D 4 Duesseldorf Phone: (0211) 8-48-46/47 TELEX: 8587267 Mirotronic, 2 Hamburg 54, Ahornllee 5 Phone: (0411) 560-40-54 TELEX: 02 15427 EBV Elektronik GmbH, Abraham-Wolf Strasse 48, D 7 Stuttgart-Sonnenberg Phone: (0711) 765072/3 TELEX: 07255811 "Mutron" Muller & Co. KG, Postfach 164, Bornstrasse 22, D 28 Bremen 1 Phone: (0421) 31-04-85 TELEX: 245-325 Omni-Ray GmbH, 67 Ludwigshafen, Moltkestrasse, 8 Postfach 211023 Phone: (0621) 51-30-55/56 TELEX: 0464557 Oistron GmbH, D 1 Berlin 31, Wilhelmsaue 39-41 Phone: (0311) 82-13-064 TELEX: 18-27-58 A. B. Kuno Kallman, Sibyllegarten 28, 11443, Stockholm, Sweden Phone:08/671711-671595 TELEX: 17165 DENMARK E. Friis-Mikkelsen A/S, Krogshojvej 51, DK-2880 Bagsvaerd Phone: (01) 986333 TELEX: 2350 THE NETHERLANDS Mulder-Hardenberg, Westerhoutpark I-A, P. O. Box 3059, Haarlem Phone: (023) 3191 84 TELEX: 41431 JAPAN Asahi Glass Co., Ltd., 1-2 Marunouchi, 2 Chome Chiyoda-ku, Tokyo Phone: 211-0411 TELEX: 24616 AFRICA Allied Electronic (PTY) Ltd., P. o. Box 6090, Dunswart, Transvaal, South Africa Phone: 52431 TELEX: 43-7823 REPRESENTATIVES SWEDEN, NORWAY, FINLAND AUSTRIA A. B. Kuno Kallman, Jarnorget 7, S-41304 Gothenburg, Sweden Phone: 17-01-20 TELEX: 21072 Ing. Ernst Steiner, Beckgasse 30, A-1130 Wien Phone: (222) 82-10-605 A. B. Kuno Kallman, Sibyllegarten 28, 11443, Stockholm, Sweden Phone: 08/671711-671595 TELEX: 17165 SWITZERLAND AUSTRALIA Omni Ray AG, Dufourstrasse 56,8008 Zurich Phone: 01/478200 TELEX: 53239 FRANCE S. A. Gallec Electronique, 22 Rue Raymond Losserand, 75-Paris 14e Phone: 734-25-65/273-18-51 R.T.F., 73 Avenue Charles de Gaulle, 92-Neuilly Phone: 722-70-40 TELEX: 65933 Elic 38, Ie Bureau Barisien S_A.R.L, 8-10 Avenue du Grand Sablon, 38 La Tronche Phone: (76) 87-67-71 TELEX: 32-739 ITALY Metroelettronica S.A.S., Via Ie Cirene 18, 1-20135 Milano Phone: 546-26-41 TELEX: 33-168 Metronic ISRAEL Rapac Electronics Ltd., 15 Karl Herbst St., Tel-Baruch, Tel-Aviv Phone: 77 71 15,6,7 Pye Industries, Ltd., Tecnico Electronics Division, Premier St., Marrickville, Sydney, N.S.W. 2204 Phone: 55-0411 TELEX: AA-21490 Pye Industries, Ltd., Tecnico Electronics Division, 2 High St., Northcote, Melbourne, Vic. 3070 Phone: 489-9322 TELEX AA-31240 ISRAEL RAPAC Electronics ltd., 15 Carl Herbst Street, Tel Baruch, Tel Aviv Phone: 777115.6.7 TELEX: TV 528 JAPAN Asahi Glass·Co. ltd., 1-2, Marunouchi, 2 Chome, Chiyoda-ku, Tokyo Phone: 211-0411 TELEX: 24616 SWITZERLAND Omni Ray AG, Dufourstrasse 56, 8008 Zurich Phone: 01/478200 TELEX: 53239 INDIA TELEX: TV 528 ITALY Metroelettronica S.A.S., Viale Cirene 18, 1-20135 Milano Phone: 546-26-41 TELEX: 33-168 Metronic Semiconductors Limited, Nagar Rd., Mile 4/5, Ramawadi, Poona 14, Maharashtra Phone: 25186 CABLE: Transducer UNITED KINGDOM Quarndon Electronics Ltd., Slack Lane, Derby, Derbyshire Phone: Derby 32651 TELEX: 37163 S.O.S. (Components) Ltd., Hilsea Industrial Estate Portsmouth, Hampshire Phone: 6 53 11 TELEX: 86114 Semicomps Ltd., 5 Northfield Industrial Estate, Beresford Ave., Wembley, Middlesex Phone: (01) 903-3161 TELEX: 935243 A. M. Lock & Co. Ltd., Neville Street, Middleton Road, Oldham, Lancashire Phone: (061) 624-6832 TELEX: 669971 SCOTLAND Semicomps Northern Ltd., 42 The Square, Kelso, Roxburghshire Phone: Kelso 2366 TELEX: 72692 SWEDEN, NORWAY, FINLAND A. B. Kuno Kallman, Jarnorget 7, S-413 04 Gothenburg, Sweden Phone: 17-01-20 TELEX: 21072 67 Please add the name below to the next product information mailing on: D D D D DIGITAL LINEAR MOS D D D D What is the end product of your plant? Which title most closeley represents your professional position? (check only one) D A. B. C. D. E. D D D D D F. SIGNETICS INTEGRATED CIRCUIT HANDBOOK SIGNETICS INTEGRATED CIRCUITS APPLICATIONS NOTES SIGNETICS SCHOTTKY SYSTEMS DESIGN General or Corporate Management Engineering Management Design Engineer Research and Development Engineer Purchasing Other (please specify) 0 D D D D A. B. C. D. E. G. 0 H. D Z. D Computer (main frame + mini) Terminals Peripherals Test and Measurement Instruments Communications Equipment I ndustrial Control Systems and Equipment Aircraft, Missile, Space or Undersea Equipment Other (please specify) Please Print Name (first initial only) Title (abbreviate) Company Division Street Mail Stop City State Zip III r·- = ....-r:In FIRST CLASS Permit No" 166 PAID Sunnyvale California III ~m m~ !.~ ... m 8l> men ~., Wl> tp:n ~~ ~c Om en BUSINESS REPLY MAIL No postage stamp necessary if mailed in the United States -l> < ~m ~z ~c film g. wen wc tpz rnz ~-< w< _rl> fTl l>O (')~l> Postage will be paid by SIGNETICS CORPORATION 811 East Arques Avenue Sunnyvale, Ca. og-r ~§;=n ~"~ 0 ::r 0 :n :~z ¢ o_ ;j~l> .- 2 ~ CO) • :;" CO) ;S;(() Co ~ ~ !=:eD CJ)om ~~m Attention: Marketing Communications Dept.
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Producer : Adobe Acrobat 9.31 Paper Capture Plug-in Modify Date : 2010:03:26 12:40:20-08:00 Create Date : 2010:03:26 12:40:20-08:00 Metadata Date : 2010:03:26 12:40:20-08:00 Format : application/pdf Document ID : uuid:f0ea314d-f455-4550-94b4-41d06767ab78 Instance ID : uuid:e6c4bb68-e2b1-4014-bb56-c3267dffbc14 Page Layout : SinglePage Page Mode : UseOutlines Page Count : 73EXIF Metadata provided by EXIF.tools