1973_National_Digital_Integrated_Circuits 1973 National Digital Integrated Circuits

User Manual: 1973_National_Digital_Integrated_Circuits

Open the PDF directly: View PDF PDF.
Page Count: 640

Download1973_National_Digital_Integrated_Circuits 1973 National Digital Integrated Circuits
Open PDF In BrowserView PDF
."

r
.....,;;;1_ ... __
...•..........
..............
I~

I .....

,.~_

~...

.1.r-1 ••• ,...,..

~.I

. . ~ •••• ~,...,.

• • • .,.., • • • • I •• ~.
I . . . . ~.........

,.....

.
'
".I._r....._="

••••

..,..., •• ~..

e
.~

••••

• • • • ,.....

._..

• 1 1.1 •• 1 I 1.1 I I .1111 ...... ,.,.1 ••• 1 . . . .

_

,.,
.1:

1 •• 11.1.1.1.1

. 1'

1

II

................... .
•••••••••••••••••••••••• I •• lIa .... :
~

•••••••••••

-

.I II......
.... I... ..
• •• ~.....
•••••••••

••••
••••

••••••••••••••• I ........

•• • •••••••••••• I. _
•••••••••••• I.
•••••••••••• I.

....

_~f

~

••••••• •••••••••••••••••••• _ ••• :
• •••••••••••••••••••••••••• _ •••

~

Introduction
Here IS the new Digital Data Handbook from National It gives complete specifications for devices useful
In building nearly all types of electronic systems, from small Instruments to computer designs
For Information regarding newer devices Introduced since the printing of this handbook, or for further
information on listed parts, please contact our local representative, distributor, or regional office

DIGITAL

I

I

I

LogiC

Shift
Registers

Hybnd
Clock
Dnvers

LogiC
Elements

HYBRIOS

OTl

TRI·STATE®
RAMs

I

I

TTl

MOS

Senes

-Hybrid

54L174L

Dnvers

I

Serres
930

Analog

Operational

SwItches

Ampllfters

LINEAR

I

I
Operational

I
Interface

I
Voltage

Consumer

Comparatorsl

Amphflen

CirCUits

Regulators

Circuits

Buffers

I

I

I

Hybrods

I
Sense
Amplifiers

Penpheral
Dnvers

Lme Drivers!
Receivers

T.V

Commu mcatlOn
Circuits

AudiO

Analog
SWitches

DnYers

Operational

Amplifiers

TRANSISTORS

I

LEO's

Transducers

~

Lamps

Displays

I

Power
TranSistors

NPN & PNP Small Signal

SIlicon TranSistors

I

Field Effect TranSistors

~

Amplifiers &
SWItches

Monolithic
Duals

Ordering Information
For available packages, consult the tables which precede each section. Then refer to the package drawings
(pages I through VI) In the back of the catalog.
The ordering information for National devices covered

E~ ~L~

In

thiS catalog IS as follows:

t
~PACKAGE

......- - - - - - - - DEVICE NUMBER

L...-_ _ _ _ _ _ _ _ _ _ _

DEVICE FAMILY

DEVICE FAMILY

PACKAGE

AH - Analog Hybrid

0- Glass/Metal Dual·ln·Llne Package

AM - Analog Monolithic

F - Flat Package (025" wide)

OM - Digital Monolithic

G - TO·8 (12 lead) Metal Can

LH - Linear Hybrid

H - TO·5 (multl·lead) Metal Can

LM - Linear Monolithic

J - Glass/Glass Dual·ln·Llne Package

MM - MaS MonolithiC

N - Molded Dual·ln·Llne Package
W - Flat Package (0.275" wide)

DEVICE NUMBER
4, 5, or 6 digit number.
Suffix Indicators:
A - Improved Electrical SpeCification
C - Reduced Temperature Range

For most of the products listed In thiS catalog the temperature range can be obtained from the first one or
two numbers following the family designation. For example:
DM54XX

All numbers beginning with 5 denote -55°C to +125°C temperature operation.

DM74XX

If the "74" IS indicated, the operating temperature IS O°C to +70°C.

DM7XXX

All other numbers beginning with 7 (beSides the "74" shown above) are NSC
propnetary products and a 7 here Indicates -55°C to +125°C.

DM8XXX

All numbers beginning with 8 denote O°C to +70°C temperature operation.

iii

Table of Contents
Introduction . . . . . . . . . . . . . . . . . .
Ordering Information ......... .
Edge I ndex by Product Family
Product Function GUide ...

iii
xiIi
xv

SERIES 54/74 - SECTION 1
Reference to Package Dimensions, Waveforms, Test Circuits, and Ordering Information . . ...... .
DM5400/DM7400 (SN5400/SN7400) Quad 2-lnput NAND Gate ............ . .
. . . . .. .
DM5401/DM7401 (SN5401/SN7401) Quad 2-lnput Gate (Open Collector)
.. ........ . .... .
DM5402/DM7402 (SN5402/SN7402) Quad 2-lnput NOR Gate.
. . .. .. .... . ....... .
DM5403/DM7403 (SN5403/SN7403) Quad 2-1 nput Gate (Open Collector)
...... ..
DM5404/DM7404 (SN5404/SN7404) Hex Inverter . . . . . . . . . . . . . . . . . . . . . . . ..... . ... .
DM5405/DM7405 (SN5405/SN7405) Hex Inverter (Open Collector)
. . .... .
DM5406IDM7406 (SN5406/SN7406) Hex Inverter Buffer/Dnver . . . . . . . . . . . . . . . . . . . . . . . . . .
DM5407/DM7407 (SN5407/SN7407) Hex BufferlDnver . . . . . . . . . . . . . . . . . ... .. ... .
DM5408/DM7408 (SN5408/SN7408) Quad 2-lnput AND Gate
. . . . . . .. .
DM5409/DM7409 (SN5409/SN7409) Quad 2-lnput AND Gate (Open Collector) .. ...... . ... .
DM5410/DM7410 (SN5410/SN7410) Triple 3-lnput NAND Gate . . . . . . . . . . . . . . . .
DM5411/DM7411~(SN5411/SN7411) 3-lnput Positive AND Gate....
. ........ .
DM5413/DM7413 (SN5413/SN7413) Dual Schmltt-Tngger ...... .... . . ... .. .
DM5416/DM7416 (SN5416/SN7416) Hex Inverter BufferlDnver . . . . . . . . . . . . . . . . . . . . . . . . .
DM5417/DM7417 (SN5417/SN7417) Hex Buffer/Dr.lver .. . . . . . . . . . . . . . . . . ...... . ..
DM5420/DM7420 (SN5420/SN7420) Dual 4-lnput NAND Gate. . . . . . . .
. ....... .
DM5426/DM7426 (SN5426/SN7426) Quad 2-lnput TTL-MOS Interface Gate ........ . ..... .
DM5430/DM7430 (SN5430/SN7430) 8-lnput Gate.
. . . . . .. . . . . .
. . . . . .. .
.. . ...... .
DM5432/DM7432 (SN5432/SN7432) Quad 2-lnput OR Gate. . . . . .
DM5437/DM7437 (SN5437/SN7437) Quad 2-lnput NAND Buffer . . . . . . . . . . . . . . . . . . . . . . . . .
....... .
DM5438/DM7438 (SN5438/SN7438) Quad 2-lnput NAND Buffer (Open Collector)
DM5440/DM7440 (SN5440/SN7440) Dual 4-lnput Buffer. .... ..... ......
. ........ .
DM5441A/DM7441A (SN5441A/SN7441 A) BCD to Decimal Decoder/Nlxle™ Dnver. . .. ..
DM5442/DM7442 (SN5442/SN7442) BCD to Decimal Decoder .. . ... .. . .... ... . ...
DM5445/DM7445 (SN5445/SN7445) BCD to Decimal Decoder/Dnver . . . . . . . . . . . . . . . . .
DM5450/DM7450 (SN5450/SN7450) Expandable Dual 2-Wlde 2-lnput AND-OR-INVERT Gate.. ..
DM5451/DM7451 (SN5451/SN7451) Dual 2-Wlde 2-lnput AND-OR-INVERT Gate .. . ... . .. .
DM5453/DM7453 (SN5453/SN7453) Expandable 4-Wlde 2-lnput AND-OR-INVERT Gate.. . .... .
DM5454/DM7454 (SN5454/SN7454) 4-Wlde 2-lnput AND-OR-INVERT Gate .....
. ........ .
DM5460/DM7460 (SN5460/SN7460) Dual 4-lnput Expander. . .. ... .
.. ..... .
DM5470/DM7470 (SN5470/SN7470) Edge-Tnggered JK Flip Flop. . . . .. .......... .. . ..
DM5472/DM7472 (SN5472/SN7472) JK Master/Slave Flip Flop
. .. ... .. ...
. ..... .
DM5473/DM7473 (SN5473/SN7473) Dual JK Master/Slave Flip Flop. . . . . . . . . . . . .. . ..... .
DM5474/DM7474 (SN5474/SN7474) Dual D Flip Flop ...... . .. .
.....
. ... . ....... .
DM5475/DM7475 (SN5475/SN7475) Quad Latch
Dll!i5476IDM7476 (SN5476/SN7476) Dual JK Master/Slave Flip Flop. . .. ..... ... ... . ..
DM5483/DM7483 (SN5483/SN7483) 4-Blt Binary Full Adder and Dual Single-Bit Binary Full Adder .
DM5485IDM7485 (SN5485/SN7485) 4-Blt Magnitude Comparator .......
..... . .. . . ..
DM541\6/DM7486 (SN5486/SN7486) Quad EXCLUSIVE-OR Gate.
.. .. . ... . ......... .
DM5488/DM7488 (SN5488/SN7488) 256-Blt Read Only Memory . . . . . . . . . . . . . . . . . . . . .. ..
DM5489/DM7489 (SN5489/SN7489) 64-Blt Random Access Read/Wnte Memory.. . .......... .
DM5490/DM7490 (SN5490/SN7490) Decade Counter
. . . . . . . . .. . ..
DM5491 A/DM7491 A (SN5491 A/SN7491 A) 8-Bit Shift Register. . . . . . . . . .. . .....
DM5492/DM7492 (SN5492/SN7492) D,v,de by 12 Counter . ...... . .
DM5493/DM7493 (SN5493/SN7493) 4-Blt Binary Counter .. .... .
DM5495/DM7495 (SN5495/SN7495) 4-Blt Rlght-Shlft/Left-Shlft Register ..
DM5496/DM7496 (SN5496/SN7496) 5-Blt Parallel-In/Parallel-Out Shift Regl~ter
DM54107/DM74107 (SN54107/SN74107) Dual JK Master/Slave Flip Flop . . . . . . .

l-i
1-1
1-3
1-5
1-3
1-7
1-3
1-9
1-11
1-13
1-13
1-1
1-15
1-17
1-9
1-11
1-1
1-19
1-21
1-23
1-25
1-25
1-27
1-29
1-31
1-33
1-35
1-35
1-35
1-35
1-35
1-38
1-40
1-42
1-44
1-46
1-42
1-48
10-1
1-51
1-53
1-57
1-59
10-2
1-59
1-59
1-63
1-66
1-42
v

SERIES 54/74 - SECTION 1 (CONTINUED)
DM54121/DM74121 (SN54121/SN74121) Monostable Multlvlbrator
DM54123/DM74123 (SN54123/SN741231 TTL!Monostable Multlvlbrator..... .
DM54125/DM74125 (SN54125/SN741251 (See DM7093/DM80931 .
DM54126/DM74126 (SN54126!SN741261 (See DM7094/DM80941 .
DM54141/DM74141 (SN54141/SN74141I BCD to DeCimal Decoder/Driver
DM54145/DM74145 (SN54145/SN741451 BCD to DeCimal Decoder/Driver.
DM54150/DM74150 (SN54150/SN741501 16-Llne to l-Llne Multiplexer.
DM54151 !DM74151 (SN54151 /SN74151I 8-Channel Digital Multiplexer. ..
DM54153/DM74153 (SN54153/SN741531 Dual 4:1 Multiplexer . . . . .
DM54154/DM74154 (SN54154/SN741541 4-Llne to 16-Llne Decoder/Demultiplexer
DM54155/DM74155 (SN54155/SN741551 Dual 2.4 Demultiplexer ..
DM54156/DM74156 (SN54156/SN741561 Dual 2 4 Demultiplexer . . . .
DM54157/DM74157 (SN54157/SN741571 (See DM9322/DM83221 . . . . .
DM54160/DM74160 (SN54160/SN741601 Synchronous 4-Blt Counter ...... .
DM54161/DM74161 (SN54161/SN74161I Synchronous 4·Blt Counter
DM54162/DM74162 (SN54162/SN741621 Synchronous 4-Blt Counter ... .. .
DM54163/DM74163 (SN54163/SN741631 Synchronous 4-Blt Counter
DM54164/DM74164 (SN54164/SN741641 (See DM7570/DM85701
DM54165/DM74165 (SN54165!SN741651 (See DM7590!DM85901.
DM54166/DM74166 (SN54166/SN741661 8-Blt Shift Register
DM54173/DM74173 (SN54173/SN741731 (See DM7551/DM8551I
DM54174/DM74174 (SN54174/SN741741 Hex D Flip Flop ....
DM54175/DM74175 (SN54175/SN741751 Quad D Flip Flop .. . ..
DM54176/DM74176 (SN54176/SN741761 (See DM7280/DM82801
....... .
........ .
DM54177/DM74177 (SN54177/SN741771 (See DM7281/DM8281)
DM54180/DM74180 (SN54180/SN741801 8-Blt Odd/Even Parity Generator/Checker. .
DM54181/DM74181 (SN54181/SN74181I ArithmetiC LogiC Unit . . . . . . . . : .
DM54182/DM74182 (SN54182/SN741821 Look-Ahead Carry Generator
DM54184/DM74184 (SN54184/SN741841 BCD-to-Blnary Converter ....... .
DM54185A/DM74185A (SN54185A/SN74185AI Blnary-to-BCD Converter
DM54187/DM74187 (SN54187/SN741871 1024-Blt Read Only Memory
DM54190/DM74190 (SN54190/SN741901 Up-Down Decade Counter .
DM54191/DM74191 (SN54191/SN74191) Up-Down Binary Counter
DM54192/DM74192 (SN54192/SN741921 (See DM7560/DM85601 . . . . . . . . . . . . . .
DM54193/DM74193 (SN54193/SN741931 (See DM7563/DM85631 ..
DM54195/DM74195 (SN54195/SN741951 (See DM9300/DM83001
DM54196/DM74196 (SN54196/SN741961 Presettable Decade Counter. ..
DM54197/DM74197 (SN54197/SN741971 Presettable Binary Counter
DM54198/DM74198 (SN54198/SN741981 8-Blt Shift Register . . .
DM54199/DM74199 (SN54199/SN741991 8-Blt Shift Register. . ..
DM74200 (SN742001 TRI-STATE® 256-Blt Random Access Memory
DM7090/DM8090 Quad Inverter/Dual 2-lnput NAND Buffer ...... .
DM7091/DM8091 Quad 2-lnput NAND Buffer. . .. .
DM7092/DM8092 Dual 5-lnput NAND Gate . . . . . . . . . . . . . . . . . . . . . .
DM7093/DM8093 TRI-STATE® Quad Buffer. . . . . .. . . . . . . . . . . . . .
DM7094/DM8094 TRI-STATE® Quad Buffer ....
DM7095/DM8095 TRI-STATE® Hex Buffer.
DM7096/DM8096 TRI-STATE® Hex Inverter
DM7097/DM8097 TRI-STATE® Hex Buffer...... .
DM7098/DM8098 TRI-STATE® Hex Inverter .. .
DM7121/DM8121 TRI·STATE® 8-Channel Digital Multiplexer
DM7123/DM8123 TRI-STATE® Quad 2-lnput Multiplexer
DM7130/DM8130 10-Blt Comparator ....
DM7131/DM8131 6-Blt Unified Bus Comparator . . . .
DM7136/DM8136 6-Blt Unified Bus Comparator . . .
DM7160/DM8160 6-Blt Comparator
DM7200/DM8200 4-Blt Comparator ..
DM7210/DM8210 8-Channel Digital SWitch.
DM7211/DM8211 8-Channel Digital SWitch . . . . . . . . . . . . . . . .

vi

1-68
10-2
1-113
1-113
10-3
1-33
1-70
1-73
1-75
1-77
1·80
1-80
6-12
10-3
10-3
10-3
10·3
1-167
1-180
1-82
1-152
10-4
10-4
1-143
1-143
1-84
1-86
1-92
1-94
1-94
1-96
1-99
1-101
1-161
1-164
6-4
10·4
10-4
1-103
1-105
1-146
1·107
1-109
1-111
1-113
1-113
1-116
1-116
1-116
1-116
1-118
1-120
1-122
1-124
1-124
1-122
1-126
1-128
1-128

SERIES 54/74 -

SECTION 1 (CONTINUED)

DM7214/DM8214 TRI-STATE® Dual 4:1 Multiplexer.
DM7219/DM8219 TRI-STATE® 16-Llne to l-Llne Multiplexer
DM7220/DM8220 Parity Generator/Checker .
DM7223/DM8223 l-Llne to 8-Llne Demultiplexer..
DM7230/DM8230 TRI-STATE® Demultiplexer ...... .
DM7280/DM8280 (S8280/N8280) Presettable Decade Counter .. .
DM7281/DM8281 (S8281/N8281) Presettable Binary Counter .. .
DM7288/DM8288 (S8288/N8288) Presettable D,v,de by 12 Counter
DM7512/DM8512 Dual Gated Master/Slave JK/D Flip Flop
DM7520/DM8520 Modulo-N Divider ...
DM7551/DM8551 TRI-STATE® Quad D Flip Flop
DM7552/DM8552 TRI-STATE® Decade Counter/Latch ..
DM7553/DM8553 TRI-STATE® 8-Blt Latch
............. .
DM7554/DM8554 TRI-STATE® Binary Counter/Latch .. .
DM7555/DM8555 TRI-STATE® Programmable Decade Counter ..
DM7556/DM8556 TRI-STATE® Programmable Binary Counter.
DM7560/DM8560 (SN54192/SN74192) Up/Down Decade Counter.
DM7563/DM8563 (SN54193/SN74193) Up/Down Binary Counter ..
DM7570/DM8570 (SN54164/SN74164) 8-Blt Serial-In Parallel-Out Shift Register
DM7573/DM8573 1024-Blt Field-Programmable Read Only Memory .. . . .
DM7574/DM8574 TRI-STATE® 1024-Blt Field-Programmable Read Only Memory
DM7575/DM857S Programmable Logic Array (PLA)
DM7576/DM8576 Programmable Logic Array (PLA)
DM8582 256-Blt Random Access Memory (Open Collector)
DM7590/DM8590 (SN54165/SN74165) 8-Blt Parallel-I n Serial-Out Shift Register.
DM7595/DM8595 4096-Blt Bipolar Read Only Memory
DM7596/DM8596 TRI-STATE® 4096-Blt Bipolar Read Only Memory.
DM7597/DM8597 TRI-STATE® 1024-Blt Read Only Memory ..... .
DM7598/DM8598 TRI-STATE® 256-Blt Read Only Memory .. .
DM7599/DM8599 TRI-STATE® 64-Blt Random Access Read/Write Memory.
DM7613/DM8613 Quad Gated D Flip Flop ...
DM7695/DM8695 4096-Blt Bipolar Read Only Memory . .
. . . .... .
DM7696/DM8696 TRI-STATE® 4096-Blt Bipolar Read Only Memory .... .
DM7800/DM8800 Dual Voltage Translator . .. .. . .. ..
DM7806/DM8806 High Speed MOS to TTL Level Converter
DM7810/DM8810 Quad 2-lnput TTL-MOS Interface Gate. ...
. ....... .
DM781 ,/DM8811 Quad 2-lnput TTL-MOS Interface Gate.. ..... .... . .
DM7812/DM8812 TTL-MOS Hex Inverter
....... .
DM7819/DM8819 Quad 2-lnput TTL-MOS AND Gate. . . .. ... .. ..... . ..
DM7820/DM8820 Dual Line Receiver ........ _ . .. . ...... .
DM7820A/DM8820A Dual Line Receiver . . . . . . . . . . . .
DM7822/DM8822 Dual Line Receiver.
DM7830/DM8830 Dual Differential Line Driver . .
DM7831/DM8831 TRI-STATE® Line Driver. . . . . . .. . . . . . . . . . . ... .
DM7832/DM8832 TRI-STATE® Line Driver ... . .... . ...... .
DM7833/DM8833 Quad TRI-STATE® Transceiver. .. . . . . . . . . . . . . .
DM7834/DM8834 Quad TRI-STATE® Transceiver . . . . . . . . . . . . . .
DM7835/DM8835 Quad TRI-STATE® Transceiver . . . . . . . . . . .
DM7836/DM8836 Quad NOR Unified Bus Receiver.
DM7837/DM8837 Hex Unified Bus Receiver. . . . . . . . . . . . . .. . ..
DM7838/DM8838 Quad Unified Bus Transceiver .. .
DM7839/DM8839 Quad TRI-STATE® Transceiver .. .
DM7875A/DM8875A TRI-STATE® 4-Blt Multiplier ... "
...... .
DM7875B/DM8875B TRI-STATE® 4-Bit Multiplier. ...
. ...... .
DM7880/DM8880 High Voltage 7-Segment Decoder/Driver (for Driving Sperry and
Panaplex IITM Displays) . . . . . . . . . . . . . . . . . . . ... ..... ..
DM8884A High Voltage Cathode Decoder/Driver (for Driving Sperry and Panaplex IITM Displays) ..
DM8885 MOS to High Voltage Cathode Buffer . . . . . . . . . . .
DM9602/DM8602 Dual TTL/Monostable Multlvlbrator

I

1-13.1
1-133
1-136
1-138
1-140
1-143
1-143
1-143
10-5
1-148
1-152
1-155
1-159
1-155
10-5
10-6
1-161
1-164
1-167
1-169
1-172
1-175
1-175
1-146
1-180
1-182
1-184
1-187
1-190
1-195
10-6
1-182
1-184
1-197
1-200
1-202
1-202
1-202
1-204
1-206
1-208
1-210
1-212
1-214
1-214
10-7
10-7
10-7
1-217
1-219
1-221
10-7
1-223
1-223
1-225
1-228
1-230
10-8

vii

SERI ES 54H/74H Reference to Package
DM54HOO/DM74HOO
DM54H01/DM74HOl
DM54H04/DM74H04
DM54H05/DM74H05
DM54H08/DM74H08
DM54Hl0/DM74Hl0
DM54Hll/DM74Hll
DM54H20/DM74H20
DM54H21/DM74H21
DM54H22/DM74H22
DM54H30/DM74H30
DM54H40/DM74H40
DM54H50/DM74H50
DM54H51/DM74H51
DM54H52/DM74H52
DM54H53/DM74H53
DM54H54/DM74H54
DM54H55/DM74H55
DM54H60/DM74H60
DM54H61/DM74H61
DM54H62/DM74H62
DM54H71/DM74H71
DM54H72/DM74H72
DM54H73/DM74H73
DM54H74/DM74H74
DM54H76/DM74H76
DM54H78/DM74H78

SECTION 2

Dimensions, Waveforms, Test CirCUitS, and Ordering Information
(SN54HOO/SN74HOOI Quad 2·lnput NAND Gate . . . . . . . . . . . . . . . . . . . .
(SN54H01/SN74HOll Quad 2·lnput NAND Gate (Open Collectorl . . . . . . . . .
(SN54H04/SN74H041 Hex Inverter. . . . . . . . . . . . . . . . .. . ..........
(SN54H05/SN74H051 Hex Inverter (Open Collectorl . ..... . ..... '
(SN54H08/SN74H081 Quad 2·lnput AND Gate. .
. . . . . . .. .
(SN54Hl0/SN74Hl01 Triple 3·lnput NAND Gate
. .. .. . .... .
(SN54Hll/SN74Hll1 Triple 3·lnput AND Gate
.................
(SN54H20/SN74H201 Dual 4·lnput NAND Gate
. .. . . . . . . . . . . . . .
(SN54H21/SN74H211 Dual 4·lnput AND Gate. . . .. .......... ....
(SN54H22/SN74H221 Dual 4·lnput NAND Gate (Open Collectorl . . . . . . .
(SN54H30/SN74H301 8·lnput NAND Gate. .. . . . . . . . . . . . . . . . . . . .
(SN54H40/SN74H401 Dual 4·lnput NAND Buffer. . . . . . . .
. . . . . . . . ..
(SN54H50/SN74H501 Expandable Dual AND·OR·INVERT Gate .. . . .. ....
(SN54H51/SN74H511 Dual AND·OR·INVERT Gate . . . . . . . . . . . . . . . . . .
(SN54H52/SN74H521 Expandable AND·OR Gate .....
. . . . . . ..
(SN54H53/SN74H531 Expandable AND·OR·INVERT Gate...
.. . . . . . ..
(SN54H54/SN74H541 AND·OR·INVERT Gate . . . . . . . . . . . .
(SN54H55/SN74H551 Expandable AND·OR·INVERT Gate. . . . .
(SN54H60/SN74H601 Dual 4·lnput Expander. . .
(SN54H61/SN74H61I Triple 3·lnput Expander . . . . . . . . . . . . .. .
(SN54H62/SN74H621 3·2·2·3·lnput Expander.. ......
(SN54H71/SN74H711 JK Flip Flop with AND·OR Inputs ...
(SN54H72/SN74H721 JK Master/Slave Flip Flop. . .. . . . . . . . . . . . . . ..
(SN54H73/SN74H731 Dual JK Flip Flop with Separate Clocks. . . . . . . . . . . .
(SN54H74/SN74H741 Dual 0 Edge·Trlggered Flip Flop . . . . . . . . . . . . . . .
(SN54H76/SN74H761 Dual JK Master/Slave Flip Flop..
.... . . . .
(SN54H78/SN74H781 Dual JK Flip Flop with Preset and Clear Inputs

SERIES 54L!74L -

SECTION 3

Reference to Package Dimensions, Waveforms, Test CirCUitS, and Ordering Information
DM54LOO/DM74LOO (SN54LOO/SN74LOOI Quad 2·lnput NAND Gate. . . .
DM54L01/DM74LOl (SN54L01/SN74LOll Quad 2·lnput NAND Gate (Open Collectorl.. .
DM54L02/DM74L02 (SN54L02/SN74L021 Quad 2·lnput NOR Gate ..... . . . . . . . . . . .
DM54L03/DM74L03 (SN54L03/SN74L031 Quad 2·lnput NAND Gate (Open Collector I
DM54L04/DM74L04 (SN54L04/SN74L041 Hex Inverter. . . .. ........ .......
DM54Ll0/DM74Ll0 (SN54L10/SN74L101 Triple 3·lnput NAND Gate . . . . . . . . . . . . . . . . . . . .
DM54L20/DM74L20 (SN54L20/SN74L201 Dual 4·lnput NAND Gate. . . . . . .
DM54L30/DM74L30 (SN54L30/SN74L301 8·lnput NAND Gate. . .. ...
. . . . . . . ..
DM54L42A/DM74L42A (SN54L42A/SN74L42AI Low Power BCD to Decimal Decoder . ........
DM54L51/DM74L51 (SN54L51/SN74L511 Dual 2,Wlde AND·OR·INVERT Gate. ......
DM54L54/DM74L54 (SN54L54/SN74L541 4,Wlde 3·2·2·3·lnput AND·OR·INVERT Gate. . . . .
DM54L55/DM74L55 (SN54L55/SN74L551 2,Wlde 4·lnput AND·OR·INVERT Gate
DM54171/DM74171 (SN54171/SN741711 RS Flip Flop. . .. .
. . . . . . . . . . . . . . .. .
DM54L72/DM74L72 (SN54L72/SN74L721 JK Flip Flop. . . . . . . . . . . . . . . . . . . . . . . . ....
DM54173/DM74173 (SN54173/SN741731 Dual JK Flip Flop . . . . . . . . . . . . . . . . . .
DM54174/DM74174 (SN54174/SN741741 Dual 0 Flip Flop .. ..... .
DM54L78/DM74178 (SN54L78/SN741781 Dual JK Flip Flop
.. .. .. ..
DM54L85/DM74L85 (SN54L85/SN74L851 4·Blt Magnitude Comparator. . . . .. ...
DM54L86/DM74L86 (SN54L86/SN74L861 Quad EXCLUSIVE·OR Gate. . .
DM54L89A/DM74L89A (SN54L89A/DM74L89AI 64·Blt Random Access Memory ..
DM54L90/DM74L90 (SN54L90/SN74L901 Low Power Decade Counter. . . .
. . . .. .... .
DM54L91/DM74L91 (SN54L91/SN74L91I 8-Blt Shift Register. .. ..........
. . . . . . . . ..
DM54L93/DM74L93 (SN54L93/SN74L931 Ripple Binary Counter. . .
. ..........
DM54L95/DM74L95 (SN54L95/SN74L951 4·Blt Parallel·ln Parallel·Out Shift Register
. . . . . . ..
DM54L98/DM74L98 (SN54L98/SN74L981 4·B,t Data Selector/Storage Register
DM54L123/DM74L123 (SN54L 123/SN74L1231 Dual TTLIMonostable Multlvibrator
... . ...

viii

2·i
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2· 1
2·1
2·1
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6
2·6

3·i
3·3
3·3
3·3
3·3
3·3
3·3
3·3
3·3
3·31
3·7
3·7
3·7
3·10
3·10
3·10
3·10
3·10
3·34
3·22
10·9
3·37
3·40
3·42
3·25
3·45
10· 10

SERIES 54L!74L - SECTION 3 (CONTINUED)
DM54L154A/DM74L154A (SN54L154A/SN74L154A) Low Power 4-Llne to 16-Llne
Decoder/Demultiplexer _. _ _ _.
. "
. ..
DM54L 165A/DM74L 165A (SN54L 165A/SN74L 165A) Low Power Parallel-In Serial-Out
8-Blt Shift Register
.. "
.. . ... ..
DM54L187 A/DM74L 187 A (SN54L187 A/SN74L187 A) 1024-Blt Read Only Memory
DM54L 192/DM74L 192 (SN54L192/SN74L 192) Up-Down Decade Counter. . ..
DM54L193/DM74L193 (SN54L193/SN74L193) Up-Down Binary Counter ...
DM70L95 TRI-STATE® Hex Buffer
. .. . ...
DM70L96 TRI-STATE® Hex Buffer
DM70L97 TRI-STATE® Hex Buffer
DM70L98 TRI-STATE® Hex Buffer
DM71 L22/DM81 L22 Quad 2-lnput Multiplexer
DM71 L23/DM81 L23 Quad 2-lnput Multiplexer.
DM75L11/DM85L11 TTL Dual Gated 0 Flip Flop
DM75L 12/DM85L 12 Dual JK, 0 Flip Flop ..
DM75L51/DM85L51 Low Power TRI-STATE@ Quad 0 Flip Flop
DM75L52/DM85L52 TRI-STATE® Decade Counter/Latch
DM75L54/DM85L54 TRI-STATE® Binary Counter/Latch
DM76L 13/DM86L 13 Quad Gated 0 Flip Flop . .
DM76L70/DM86L70 8-Blt Serial-In Parallel-Out Shift Register
DM76L75/DM86L75 Low Power Presettable Decade Counter ..
DM76L76/DM86L76 Low Power Presettable Binary Counter.
DM76L93/DM86L93 Ripple Binary Counter
DM76L97/DM86L97 TRI-STATE® 1024-Blt Read Only Memory
DM76L99/DM86L99 TRI-STATE® 64-Blt Random Access Memory
DM78L12/DM88L12 TTL-MaS Hex Inverter/Interface Gate

SERI ES 74S -

3-47
3-49
10-11
3-52
3-52
10-12
10-12
10-12
10-12
3-59
3-59
3-63
3-66
3-69
3-74
3-74
10-13
3-25
3-80
3-80
3-42
10-14
10-15
3-82

SECTION 4

Reference to Package Dimensions, Waveforms, Test CirCUitS, and Ordering Information
DM74S00 (SN74S00) Schottky Quad 2-lnput NAND Gate. .... . ..
DM74S03 (SN74S03) Schottky Quad 2-lnput NAND Gate (Open Collector)
DM74S04 (SN74S04) Schottky Hex Inverter
DM74S05 (SN74S05) Schottky Hex Inverter (Open Collector) .
DM74S10 (SN74S10) Schottky Triple 3-lnput NAND Gate ...
DM74S11 (SN74S11) Schottky Triple 3-lnput AND Gate.. . ....
DM74S15 (SN74S15) Schottky Triple 3-lnput AND Gate (Open Collector) . .
DM74S20 (SN74S20) Schottky Dual 4-lnput NAND Gate ...
DM74S22 (SN74S22) Schottky Dual 4-lnput NAND Gate (Open Collector) . .
DM74S40 (SN74S40) Schottky Dual 4-lnput NAND Buffer
DM74S64 (SN74S64) Schottky AND-OR-INVERT Gate
. . . . . . .. . .
DM74S65 (SN74S65) Schottky AND-OR-INVERT Gate (Open Collector) . .
DM74S74 (SN74S74) Schottky Dual 0 Flip Flop. . . .
DM74S86 (SN74S86) Schottky Quad EXCLUSIVE-OR Gate.. .. . ...
DM74S112 (SN74S112) Schottky Dual JK Flip Flop With Preset and Clear. . .. .
DM74S113 (SN74S113) Schottky Dual JK Flip Flop With Preset. . .
DM74S114 (SN74S114) Schottky Dual JK Flip Flop With Common Clock and Clear. . . .
DM74S135 (SN74S135) Schottky Quad EXCLUSIVE-ORINOR Gate. . .
DM74S140 (SN74S140) Schottky Dual 4-lnput NAND Line Driver. . . . .. ....
DM74S151/DM74S251 (SN74S151 /SN74S251) Schottky 8-lnput Multiplexer With True
and Complement Outputs. . . . . . .
. . . . . . .. . ... . .. ... .
DM74S153/DM74S253 (SN74S153/SN74S253) Schottky Dual 4-Llne to 1-Llne Data
Selector/Multiplexer
. .. ..... ....
DM74S157/DM74S257 (SN74S157/SN74S257) Schottky Quad 2-Llne to 1-Llne Data
Selector/Multiplexer. .. . .. ..... .... . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM74S158/DM74S258 (SN54S158/SN74S258) Schottky Quad 2-Llne to 1-Llne Data
Selector/Multiplexer (Inverting) . . . . .. . ..

4-j

4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-5
4-1
4-1
4-1
4-5
4-1
4-7
4-7
4-7
4-7

jx

SERIES 930 -

SECTION 5

Reference to Package Dimensions, Waveforms, Test CirCUits, and Ordering Information
DM930 Dual 4-lnput Gate with Expander. .. . ...... ,. . . . . . . . . . . . . . . .
DM932 Dual 4-lnput Buffer with Expander. . . . . .. .
. . . . . . . . . . . ..
DM933 Dual 4-lnput Extender . . . . . . . . . . . .
DM935 Hex Inverter
DM936 Hex Inverter . . . . . . . . . . . . .. .... ..... ,., . . . . . . . . . . . . . .
DM937 Hex Inverter . . . . . . .. . ........ .
DM944 Dual 4-lnput Power Gate with Expander. . . .. . . . . . . . . . . . .
DM945 RS Flip Flop . . . . . . . . . . . . , ... ,.. . ....... .. . ....... ,.
..........
DM946 Quad 2-1 nput Gate. . . . . .. . . . .. .
. . . . . . . . . . . . ..
DM948 RS Flip Flop ..... . ..... . ..... .
. . . . . .. .,.... ..
DM949 Quad 2-lnput Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..
............
DM957 Quad 2-lnput Buffer ..... ,
,. ,. . . . . . . . . . . . .. . . . . . . . . . . . .
DM958 Quad 2-1 nput Power Gate ...... , . , . .
. . . . . . .. . . . . . . . . . . ,.
DM961 Dual 4-lnput Gate with Expander .. ,.... . ........ .
DM962 Triple 3-lnput Gate
-DM963 Triple 3-1 nput Gate
DM1800 Dual 5-lnput Gate
DM1801 Dual 5-lnput Gate
. . . . . . . . . . . . ..
DM9093 Dual JK Flip Flop . .. . ... , ........ , . . . . . . . . . . . . . . . . . . . . . . ........
DM9094 Dual JK Flip Flop
. . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
DM9097 Dual JK Flip Flop
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9099 Dual JK Flip Flop

5-i
5-3
5-5
5-5
5·3
5·3
5-3
5-5
5·7
5-3
5~

5·3
5·5
5-5
5·3
5-3
5·3
5·3
5-3
5·7
5·7
5·7
5-7

SERI ES 9000 - SECTION 6
Reference to Package Dimensions, Waveforms, Test CirCUits, and Ordering Information . . . . . . . . . . ..
DM9002C Quad 2-1 nput NAN 0 Gate .. , ........ , . , . . .. . ....... , . . . . . . . . . . . . . . . . .
DM9003C Triple 3-lnput NAND Gate . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . .
DM9004C Dual 4·lnput NAND Gate .. , . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . .
DM9005C Dual AND-OR-INVERT Gate/Expander. . .. ........ . . . . . . . . . . . . . . . . . . . . . .
DM9006C Dual 4-1 nput Expander .. , . . . . . . . . . . . . . . . . . . . . . . . .. ....... . . . . . . . . . .
DM9008C 2·2·2·3-lnput AND-OR-INVERT Gate . . . . . . . . . . . . . . . . . . , .
. . .. ...
DM9009C Dual 4-1 nput NAN 0 Gate/Buffer .. , ...... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9012C Quad 2-lnput NAND Gate (Open Collector I ... , . . . . . . . . . . . . . . . . . . . . . . . , .....
DM9016C Hex Inverter. . . . . . . . . . .. ..
. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
DM9300/DM8300 (SN54195/SN741951 4-Blt Shift Register ...... . . . . . . . . . . . . . . . . . . . . .
DM9301/DM8301 BCD to Decimal Decoder . . . . . . . . . . , . . . . . . .. . . . . . . . . . . . . . . . . . . . .
DM9309/DM8309 Dual 4-lnput Multiplexer . . . . . . . . . . . . . . . . . . . . . . .
...............
. . . . . . . .. .... ..
DM9312/DM8312 8-lnput Multiplexer . . . . . . . . . . ' . .. .......
DM9322/DM8322 Quad 2-lnput Multiplexer . . . . . . . . . . . . . . . .
, . . . . . . . . . , . . . . . ..
DM9601/DM8601 Retrlggerable Monostable Multlvlbrator . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . .

SERIES 10000 Reference
DM10101
DM10102
DM10105
DM10106
DM10107
DM10109
DM10110
DM10111
DM10112
DM10115
DM10116
DM10117

x

6·i
6-1
6·1
6-1
6·1
6-1
6·1
6-1
6·1
6·1
6-4
6-6
6-8
6·10
6-12
6·14

SECTION 7

to Package DimenSions, Waveforms, Test CirCUitS, and Ordering Information. . . . . . . . . ..
(MC101011 Quad OR/NOR Gate with Strobe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(MC101021 Quad Gate. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101051 Triple 2-3-2-0R/NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ......
(MC101061 Triple 4-3-3·lnput NOR Gate. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101071 Triple EXCLUSIVE-OR/NOR Gate. . . . . . .. . ... ,..... . . . . . . . . . . .
(MC101091 Dual 4-5-lnput OR/NOR Gate . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . .
(MC101101 Dual 3-lnput/3-0utput OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101111 Dual 3-lnput/3-0utput NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101121 Dual 3-lnput 1 ORf2 NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101151 Quad Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC101161 Triple Differential Line Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(MC10117CI Dual 2·Wlde OR-AND/OR-AND-INVERT Gate . . . . . . . . . . . . . . . . . . . . .

7-i
7-1
7·3
7-5
7-7
7-9
7-11
7-13
7-15
7-17
7·19
7·21
7-23

SERIES 10000 - SECTION 7 (CONTINUED)
DM10118
DM10119
DM10121
DM 10124

CMOS -

(MC10118)
(MC10119)
(MC10121)
(MC10124)

Dual 2-Wlde OR-AND Gate
4-Wlde 4-3-3-3-lnput OR/AND Gate.
OR-AND/OR-AND-INVERT Gate
Quad TTL to ECL Translator/Differential Line Driver

7-25
7-27
7-29
7-31

SECTION 8

Reference to Package Dimensions, Waveforms, Test CirCUitS, and Ordering Information
MM54COO/MM74COO Quad 2-lnput NAND Gate
MM54C02/MM74C02 Quad 2-lnput NOR Gate .
MM54C04/MM74C04 Hex Inverter .
MM54Cl0/MM74Cl0 Triple 3-lnput NAND Gate
MM54C20/MM74C20 Dual 4-lnput NAND Gate
MM54C42/MM74C42 BCD to Decimal Decoder .
DM54C73/MM74C73 Dual JK Flip Flop with Clear
MM54C74/MM74C74 Dual D Flip Flop
MM54C76/MM74C76 Dual JK Flip Flop with Clear and Preset
MM54C95/MM74C95 4-Blt Right-Shift Left-Shift Register
MM54Cl07/MM74Cl07 Dual JK Flip Flop with Clear.
MM54C151/MM74C151 8-Channel Digital Multiplexer
MM54C154/MM74C154 4-Llne to 16-Llne Decoder/Demultiplexer
MM54C157/MM74C157 Quad 2-lnput Multiplexer
MM54C160/MM74C160 Decade Counter with Asynchronous Clear.
MM54C161/MM74C161 Binary Counter with Asynchronous Clear ...
MM54C162/MM74C162 Decade Counter with Synchronous Clear_
MM54C163/MM74C163 Binary Counter with Synchronous Clear.
MM54C164/MM74C164 8-Blt Parallel-Out Sertal Shift Register ..
MM54C173/MM74C173
MM54C192/MM74C192
MM54C193/MM74C193
MM54C195/MM74C195

TRI-STATE® Quad D Flip Flop.
Synchronous 4·Blt Up!Down Decade Counter
Synchronous 4-Blt Up/Down Binary Counter
4·B,t Register. . .

INTERFACE CIRCUITS -

8-i
81
8-1
8-4
8-6
8-6
8-9
811
8-14
8·11
8-17
8-11
8-19
8-22
8-25
8-27
8-27
8-27
8-27
8-31
8-35
8-38
8-38
8-41

SECTION 9

Reference to Package DimenSions, Waveforms, Test CirCUitS, and Ordering Information
DH0006/DH0006C Current Driver
DH0008/DH0008C High Voltage, High Current Driver
DH0011/DHOOll C/DHOOll CN (SH2001/SH2002/SH2002P) High Voltage High Current Drivers
DH0016CN High Voltage High Current Driver
DH0017CN (SH2200P) High Voltage High Current Driver
DH0018CN High Voltage High Current Driver
DH0028C/DH0028CN Hammer Driver
DH0034/DH0034C High Speed Dual Level Translator
DH0035/DH0035C PIN Diode SWitch Driver
DH3467C Quad PNP Core Drivel
DH3725C Quad NPN Core Driver
LH2111/LH2211/LH2311 Dual Voltage Comparator
LM 106/LM206 Voltage Comparator/Buffer
LM306 Voltage Comparator/Buffer
LM 111/LM211 Voltage Comparator. _ ... _ ...
LM311 Voltage Comparator ...... _

9-i
9-1
9-4
9-7
910
910
9-10
9-13
9-15
9-18
9-20
9-22
9-24
9-26
9-28
9-30
9-35

LM 160 High Speed Differential Voltage Comparator
LM 161 High Speed Differential Voltage Comparator

10-16
1016

LM350 Dual Peripheral Driver.
LM710 Voltage Comparator
LM710C Voltage Comparator
LM711 Dual Comparator

9-40
9-42
9-44
9-46
Xl

INTERFACE CIRCUITS - SECTION 9 (CONTINUED)
LM711 C Dual Comparator
LM1488 Quad Line Driver.
LM1489/LM1489A Quad Line Receiver
LM1514/LM1414 Dual Differential Voltage Comparator
LM5520/LM7520 Dual Core Memory Sense Amplifier
LM5521/LM7521 Dual Core Memory Sense Amplifier
LM5522iLM7522 Dual Core Memory Sense Ampll f,er
LM5523/LM7523 Dual Core Memory Sense Amplifier
LM5524/LM7524 Dual Core Memory Sense Amplifier
LM5525/LM7525 Dual Core Memory Sense Amplifier
LM5528/LM7528 Dual Core Memory Sense Amplifier
LM5529/LM7529 Dual Core Memory Sense Amplifier
LM5534/LM7534 Dual Core Memory Sense Amplifier
LM5535/LM7535 Dual Core Memory Sense Amplifier
LM5538/LM7538 Dual Core Memory Sense Amplifier
LM5539/LM7539 Dual Core Memory Sense Amplifier
LM55325/LM75325 Memory DrIVer.
LM75324 Memory Driver with Decode Inputs
LM75450A Dual Peripheral Driver
LM75451 A Dual Peripheral Driver.
LM75452 Dual Peripheral Driver
LM75453 Dual Peripheral Driver
LM75454 Dual NOR Peripheral Line Driver
LM75461 Dual Peripheral Driver IHlgh Voltage)
LM75462 Dual Peripheral Driver IHlgh Voltage)
LM75463 Dual Peripheral Driver IHlgh Voltage)
LM75464 Dual Peripheral Driver IHlgh Voltage)
MH0007/MH0007C DC Coupled MOS Clock Driver
MH0009/MH0009C DC Coupled Two Phase MOS Clock Driver
MH0012/MH0012C High Speed MOS Clock Driver.
MH0013/MH0013C Two Phase MOS Clock DrIVer
MH0025/MH0025C Two Phase MOS Clock DrIVer
MH0026/MH0026C 5 MHz Two Phase MOS Clock Driver.
MH0027C Dual High Speed MOS Interface Driver
MH7803/MH8803 Oscillator/Clock Driver ... .
MH7807/MH8807 Oscillator/Clock Driver .. .
MH8804 Quad, Dual MOS Memory Driver
MH8805 Quad, Dual MOS Memory Driver
MH8808 Dual High Speed MOS Clock Driver

9-48
9-50
9-53
9-55
9-58
9-58
9-61
9·61
9-63
9·63
9-65
9-65
9-67
9-67
9-69
9-69
10-17
10-18
9-40

NEW PRODUCTS -

10-1

9-71
9-71
9-73
10-19
10-19
10-19
10-19
9-75

9-77
9-79
9-81
9-85
9-88
9-97
10-20
10-20
10-21
10-21
9-99

SECTION 10

AC TEST CIRCUITS AND WAVEFORMS

SECTION 11

PhYSical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Available Digital Applications Literature. . . .. . . . . . . . . . . . . . . .

xii

9-71

11-1

.....................

VII

Edge Index
by Product Family

D
g
g
9

Series 54/74
Series 54H/74H
Series 54L/74L
Series 74S

~
~

Series 930
Series 9000

0

Series 10,000

[;]

CMOS

m
m

Interface Circuits
New Products

(II

AC Test Circuits and Waveforms
Xli!

...

"'tJ

~s

0

c..
c:

Product Function Guide

C"l
r+

"T1

c:

:J
C"l
r+

GATES
DM5400/DM7400
DM5401/DM7401
DM5402/DM7402
DM5403/DM7403
DM5404/DM7404
DM5405/DM7405
DM5408/DM7408
DM5409/DM7409
DM5410/DM7410
DM5411/DM7411
DM5413/DM7413
DM5420/DM7420
DM5430/DM7430
DM5432/DM7432
DM5450/DM7450
DM5451/DM7451
DM5453/DM7453
DM5454/DM7454
DM5460/DM7460
DM5486/DM7486
DM7090/DM8090
DM7091/DM8091
DM7092/DM8092
DM54HOO/DM74HOO
DM54H01/DM74HOl
DM54H04/DM74H04
DM54H05/DM74H05
DM54H08/DM74H08
DM54Hl0/DM74HlO
DM54Hll/DM74Hl1
DM54H20/DM74H20
DM54H21/DM74H21
DM54H22/DM74H22
DM54H30/DM74H30
DM54H40/DM74H40
DM54H50/DM74H50
DM54H51/DM74H51
DM54H52/DM74H52
DM54H53/DM74H53
DM54H54/DM74H54
DM54H55/DM74H55
DM54H60/DM74H60
DM54H61/DM74H61
DM54H62/DM74H62
DM54LOO/DM74LOO
DM54L01/DM74LOl
DM54L02/DM74L02
DM54L03/DM74L03
DM54L04/DM74L04

DM54Ll0/DM74L10
DM54L20/DM74L20
DM54L30/DM74L30
DM54L42A/DM74L42A
DM54L51/DM74L51
DM54L54A/DM74L54A
DM54L55/DM74L55
DM54L86/DM74L86
DM74S00
DM74S03
DM74S04
DM74S05
DM74S10
DM74S11
DM74S15
DM74S20
DM74S22
DM74S64
DM74S65
DM74S86
DM74S135
DM930
DM933
DM935
DM936
DM937
DM946
DM949
DM961
DM962
DM963
DM1800
DM1801
DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM10l01
DM10102
DM10105
DM10l06
DM10l07
DM10l09
DM10ll0
DM10lll
DM10112

DM10115
DM10116
DM10117
DM10118
DM10119
DM10121

0
:J
C')

c:
c..
(1)

BUFFERS/DRIVERS
DM5406/DM7406
DM5407/DM7407
DM5416/DM7416
DM5417/DM7417
DM5437/DM7437
DM5438/DM7438
DM5440/DM7440
DM54125/DM74125
DM54126/DM74126
DM7093/DM8093
DM7094/DM8094
DM7095/DM8095
DM7096/DM8096
DM7097/DM8097
DM7098/DM8098
DM7806/DM8806
DM54H40/DM74H40
DM70L95/DM80L95
DM70L96/DM80L96
DM70 L97/DM80L97
DM70L98/DM80L98
DM74S40
DM74S140
DM932
DM944
DM957
DM958

FLIP FLOPS
LATCHES
STORAGE REGISTERS
DM5470/DM7470
DM5472/DM7472
DM5473/DM7473
DM5474/DM7474
DM5475/DM7475
DM5476/DM7476
DM54107/DM74107
DM54173/DM74173
DM54174/DM74174
DM54175/DM74175
DM7511/DM8511

xv

Q)

;:s
::I

(!)

FLIP FLOPS
LATCHES
STORAGE REGISTERS
(con't)

c:

...
0

CJ

c:

DM7512/DM8512
DM7551/DM8551
DM7553/DM8553
DM7613/DM8613

::I

LL

...

CJ
::I

DM54H71/DM74H71
DM54H72/DM74H72
DM54H73/DM74H73
DM54H74/DM74H74
DM54H76/DM74H76
DM54H78/DM74H78

;:s
0

...

D..

DM54L71/DM74L71
DM54L72/DM74L72
DM54L73/DM74L73
DM54L74/DM74L74
DM54L78/DM74L78
DM54L98/DM74L98
DM75L11/DM85L11
DM75 L 12/DM85 L 12
DM75 L51/DM85L51
DM76L 13/DM86L 13
DM74S74
DM74S112
DM74S113
DM74S114

DM54L90/DM74L90
DM54L93/DM74L93
DM54L1 92/DM74L 192
DM54L 193/DM74193
DM75L52/DM85L52
DM75L54/DM85L54
DM76L75/DM86L75
DM76L76/DM86L76
DM76L93/DM86L93

SHIFT REGISTERS
DM5491A/DM7491A
DM5495/DM7495
DM5496/DM7496
DM54164/DM74164
DM54165/DM74165
DM54166/DM74166
DM54195/DM74195
DM54198/DM74198
DM54199/DM74199
DM7570/DM8570
DM7590/DM8590

DM945
DM948
DM9093
DM9094
DM9097
DM9099

DM54L91/DM74L91
DM54L95/DM74L95
DM54L 165A/DM74L 165A
DM76L70/DM86L70
DM76L90/DM86L90

COUNTERS

MUL TIPLEXERS
DEMUL TIPLEXERS

DM5490/DM7490
DM5492/DM7492
DM5493/DM7493
DM54160/DM74160
DM54161/DM74161
DM54162/DM74162
DM54163/DM74163
DM54176/DM74176
DM54177/DM74177
DM54190/DM74190
DM54191/DM74191
DM54192/DM74192
DM54193/DM74193
DM54196/DM74196
DM54197/DM74197
DM7280/DM8280
DM7281/DM8281
DM7288/DM8288
DM7290/DM8290
DM7291/DM8291

xvi

DM7520/DM8520
DM7552/DM8552
DM7554/DM8554
DM7555/DM8555
DM7556/DM8556
DM7560/DM8560
DM7563/DM8563

DM9300/DM8300

DM54150/DM74150
DM54151/DM74151
DM54153/DM74153
DM54155/DM74155
DM54156/DM74156
DM54157/DM74157
DM7121/DM8121
DM7123/DM8123
DM7210/DM8210
DM7211/DM8211
DM7214/DM8214
DM7219/DM8219
DM7223/DM8223
DM7230/DM8230
DM7875A/DM8875A
DM7875B/DM8875B
DM71 L22/DM81 L22
DM71 L23/DM81 L23

DM74S151/DM74S251
DM74S153/DM74S253
DM74S157/DM74S257
DM74S158/DM74S258
DM9309/DM8309
DM9312/DM8312
DM9322/DM8322

DECODERS
DECODER/DRIVERS
DM5441 A/DM7441 A
DM5442/DM7442
DM5445/DM7445
DM5446A/DM7446A
DM5447A/DM7447A
DM5448/DM7448
DM54141/DM74141
DM54145/DM74145
DM54154/DM74154
DM8880
DM7884/DM8884
DM7885/DM8885
DM54L42A/DM74L42A

MEMORY PRODUCTS
DM5488/DM7488
DM5489/DM7489
DM54184/DM74184
DM54185A/DM74185A
DM54187/DM74187
DM74200
DM7573/DM8573
DM7574/DM8574
DM7575/DM8575
DM7576/DM8576
DM8582
DM7595/DM8595
DM7596/DM8596
DM7597/DM8597
DM7598/DM8598
DM7599/DM8599
DM54 L89A/DM7 4 L89A
DM54L187 A/DM74L 187 A
DM76 L97/DM86L97
DM76L99/DM86L99

COMPARATORS
DM5485/DM7485
DM7130/DM8130
DM7131/DM8131
DM7136/DM8136
DM7160/DM8160
DM7200/DM8200
DM54L85/DM74L85

..,

"tI
0

ARITHMETIC CIRCUITS
DM5483/DM7483
DM54181/DM74181
DM54182/DM74182

MUL TlPLI ERS
DM7875A/DM8875A
DM7875B/DM8875B

PARITY GENERATORS
DM54180/DM74180
DM7220/DM8220

ONE SHOT
DM541211DM74121
DM54123/DM74123
DM54L 123/DM74L 123
DM9601/DM8601
DM9602/DM8602

INTERFACE CIRCUITS
DM5426/DM7426
DM7800/DM8800
DM7810/DM8810

DM7811/DM8811
DM7812/DM8812
DM7819/DM8819
DM7833/DM8833
DM7834/DM8834
DM7835/DM8835
DM7836/DM8836
DM7837/DM8837
DM7838/DM8838
DM7839/DM8839
DM78L 12/DM88 L 12
DM10124
LM160
LM161
LM55325/LM75325
LM75324
LM75461
LM75462
LM75463
LM75464
MH7803/MH8803
MH7807/MH8807
MH8804
MH8805

c..
c:

CMOS

(')

r+

MM54COO/MM74COO
MM54C02/MM74C02
MM54C04/MM74C04
MM54C1 0/MM74C1 0
MM54C20/MM74C20
MM54C42/MM74C42
DM54C73/MM74C73
MM54C74/MM74C74
MM54C76/MM74C76
MM54C95/MM74C95
MM54C1 07 /MM74Cl 07
MM54C151/MM74C151
MM54C154/MM74C154
MM54C157/MM74C157
MM54C160/MM74C160
MM54C161/MM74C161
MM54C162/MM74C162
MM54C163/MM74C163
MM54C164/MM74C164
MM54C173/MM74C173
MM54C192/MM74C192
MM54C193/MM74C193
MM54C195/MM74C195

"T'I

c:

::;,
(')

=-.
0
::;,

G')

c:

c..
CD

xvii

C/)

...

CD

~s

Series 54/74

REFERENCE
The following table references all PhYSical DimenSion Drawings, Waveforms, and Test CirCUits for the devices
In this section. For Order Numbers, see below.* Refer to the alpha·numerlcal Index at the front of this
catalog for complete device title and function. Packages (pages I thru VI) are In the back of the catalog.

PACKAGES

DATA SHEETS
Molded DIP (N)

Devices
DM5400
DM7400
DM5401
DM7401
DM5402
DM7402
DM5403
DM7403
DM5404
DM7404
DM5405
DM7405
DM5406
DM7406
DM5407
DM7407
DM5408
DM7408
DM5409
DM7409
DM5410
DM7410
DM5411
DM7411
DM5413
DM7413
DM5416
DM7416
DM5417
DM7417
DM5420
DM7420
DM5426
DM7426
DM5430
DM7430
DM5432
DM7432
DM5437
DM7437
DM5438
DM7438
DM5440
DM7440
DM5441A
DM7441A
DM5442
DM7442
DM5445
DM7445
DM5450
DM7450
DM5451
DM7451

Cavity DIP (D)(J)

Pg.

Fig.

Pg.

Fig.

1·1
1·1
1·3
1·3
1·5
1·5
1·3
1·3
1·7
1·7
1·3
1·3
1·9
1·9
1·11
1·11
1·13
1·13
1·13
1·13
1·1
1·1
1·15
1·15
1·17
1·17
1·9
1·9
1·11
1·11
1·1
1·1
1·19
1·19
1·21
1·21
1·23
123
1·25
1·25
1·25
1·25
1·27
1·27
1·29
1·29
1·31
1·31
1·33
1-33
1·35
135
1·35
1·35

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II
II
II
II
II
II

5

II

5

II

5
3
3
3
3

II
II
II
II
II

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
11
11
11
11

"

II
II

In

Type

Pg.

Type

Fig.

Pg.

IV

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
'J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18
18
18
18
18

V
V
V
V
V

W
W
W
W
W

19

V

W

19

V

W

19
19
18

V
V
V

W
W
W

18

V

W

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

IV
IV
IV
IV
IV

IV
IV
IV
IV
IV
IV
IV
IV
IV

*Order Numbers. use Device No. suffixed with package letter,

**Also available

Flat Pack (F)(W)

Metal Can (G)(H)
Fig.

Pg.

Type

WAVEFORMS
Fig.

Pg.

1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
3
3
3
3
1
1
3
3
42
42
2
2
3
3
1
1
4
4

I

1
1
3
3
1
1
1
1
1
1

5
5
9

9
1
1
1
1

TEST
CIRCUITS
Fig.

Pg.

11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·19
11·19
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5
11·5

1
1
2
2
1
1
2
2
1
1
2
2
4
4
4
4
1
1
2
2
1
1
1
1
1
1
4
4
4
1
1
2
2
1
1
1
1
6
6
2
2
6
6

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
111
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

11·5
11·5
11·6
11·6
11·5
11·5
11·5
11·5

1
1
2
2
1
1
1
1

11·1
11-1
11·4
11·1
11·1
11·1
11·1
11·1

4

e. DM7800W.

0 package. See page III.

l-i

DATA SHEETS

PACKAGES
Molded DIP (N)

Devices
DM5453
DM7453
DM5454
DM7454
DM5460
DM7460
DM5470
DM7470
DM5472
DM7472
DM5473
DM7473
DM5474
DM7474
DM5475
DM7475
DM5476
DM7476
DM5483
DM7483
DM5486
DM7486
DM5488
DM7488
DM5489
DM7489
DM5490
DM7490
DM5492
DM7492
DM5493
DM7493
DM5495
DM7495
DM5496
DM7496
DM54107
DM74107
DM54121
DM74121
DM54145
DM74145
DM54150
DM74150
DM54151
DM74151
DM54153
DM74153
DM54154
DM74154
DM54155
DM74155
DM54156
DM74156
DM54166
DM74166
DM54180
DM74180
DM54181
DM74181
DM54182
DM74182
DM54184
DM74184

...

Q)

(J)

D~54185A

DM74185A
DM54187
DM74187
DM54190
DM74190

Hi

Pg.
1·35
1·35
1·35
1·35
1·35
1·35
1·38
1·38
1·40
1-40
1-42
1·42
1·44
1·44
1·46
1·46
1·42
1·42
1·48
1·48
1·51
1·51
1·53
1·53
1·57
1·57
1·59
1·59
1·59
1·59
1·59
1·59
1·63
1·63
1·66
1·66
1·42
1·42
1·68
1·68
1·33
1·33
1·70
1·70
1·73
1·73
1·75
1·75
1·77
1·77
1·80
1·80
1·80
1·80
1·82
1·82
1·84
1·84
1·86
1·86
1·92
1·92
1·94
1·94
1·94
1·94
1·96
1·96
1·99
1·99

CavIty DIP (D)(J)

Flat Pack (F)(W)

Metal Can (G) (H)
FIg.

FIg.

Pg.

FIg.

3
3
3
3
3
3
3
3
3
3

5
5

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

5
3
3
5
5

II
II
II
II
II

5
3
3
3
3
3
3
3
3

II
II
II
II
II
II
II
II
II

11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
11
11
12
12
12
12
11
11
11
11
11
11
11
11
12
12
12
12
11
11
12
12
13
13
12
12
12
12
13
13
12
12
12
12
12
12
11
11
13
13
12
12
12
12
12
12
12
12
12
12

3
3
3
3
5

5

5
5
5
3
3

II
II
II

5

II

7

III

5

II

5

II

7

III

5

II

5

II

5

II

3

II

7

III

5

II

II

II

5

II

5

II

5

II

5

II

Pg.

Type

FIg.

Pg.

IV

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

18

V

W

19

V

W

19

V

W

19

V

W

18

V

W

19
19

V
V

W
W

18

V

W

18

V

W

18

V

W

18

V

W

19

V

W

IV

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

Type

Pg.

Type

WAVE·
FORMS

TEST
CIRCUITS

FIg.

Pg.

Fig.

Pg.

1
1
1
1

11·5
11·5
11·5
11·5

1
1
1
1

11·1
11·1
11·1
11·1

6
6
6
6
7
7
8
8
6
6

11·5
11·5
11·5
11·5
11·6
11·6
11·6
11·6
11·5
11·5

1
1
1
1
1
1
1
1
1
1

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

15
15
13
13
16
16
18
18
18
18
18
18
14
14

11·9
11·9
11·8
11·8
11·9
11·9
11·10
11·10
11·10
11·10
11·10
11·10
11·9
11·9

1
1
2
2
7
7
1
1
1
1
1
1
1
1

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

6
6

11·5
11·5

11·1
11·1
11·1
11·1
11·1
11·1

18

V

W

19
19
17

V
V
V

W
W
F

9
9

11·6
11·6

1
1
1
1
2
2

19
19
19
19
17
17
19
19
19
19
19
19
19
18

V
V
V
V
V
V
V
V
V
V
V
V
V
V

W
W
W
W

9
9
3
3
19
19
9
9
9
9

11·6
11·6
11·5
11·5
11·10
11·10
11·6
11·6
11·6
11·6

1
1
1
1
1
1
1
1
2
2

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

9
9
20
20

11·6
11·6
11·10
11·10
11·5
11·5
11·8
11·8
11·8
11·8
11·8
118

12
12
1
1
2
2
2
2
7
7

11·4
11·4
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

F
F

W
W
W
W
W
W
W
W

3

19

V
V
V
V

W
W
W
W

19
19

V
V

W
W

19
19

19

3
13
13
13
13
13
13

DATA SHEETS

PACKAGES
Molded DIP IN)

Devices
DM54191
DM74191
DM54198
DM74198
DM54199
DM74199
DM74200
DM7090
DM8090
DM7091
DM8091
DM7092
DM8092
DM7093
DM8093
DM7094
DM8094
DM7095
DM8095
DM7096
DM8096
DM7097
DM8097
DM7098
DM8098
DM7121
DM8121
DM7123
DM8123
DM7130
DM8130
DM7131
DM8131
DM7136
DM8136
DM7160
DM8160
DM7200
DM8200
DM72lO
DM8210
DM7211
DM8211
DM7214
DM8214
DM7219
DM8219
DM7220
DM8220
DM7223
DM8223
DM7230
DM8230
DM7280
DM8280
DM7281
DM8281
DM7288
DM8288
DM7520
DM8520
DM7551
DM8551
DM7552
DM8552
DM7553
DM8553
DM7554
DM8554
DM7560

Pg.
1·101
1·101
1·103
1·103
1·105
1·105
1·146
1·107
1·107
1·109
1·109
1·111
1·111
1·113
1·113
1·113
1·113
1·116
1·116
1·116
1·116
1·116
1·116
1·116
1·116
1·118
1·118
1·120
1·120
1·122
1·122
1·124
1·124
1·124
1·124
1·122
1·122
1·126
1·126
1·128
1·128
1·128
1·128
1·131
1·131
1·133
1·133
1·136
1·136
1·138
1·138
1·140
1·140
1·143
1·143
1·143
1·143
1·143
1·143
1·148
1·148
1·152
1·152
1·155
1·155
1·159
1·159
1-155
1·155
1·161

FIg.

Pg.

5

II

7

III

7
5
5
5
3
3
3
3

III
II

II
II
II
II

3

II

3

II

5

II

5

II

5

II

5

II

5

II

5

II

7
5
5

III
II
II

5

II

5
3
3

II
II

II

3

II

5

II

5

II

7
3
3

III

5

II

5

II

II

11

II
II

3

II

3

II

3

II

5

II

5

II

5

II

5

II

5

II

CavIty DIP IDIIJ)

Flat Pack IF)IW)

Metal Can IGIIH)

FIg.

Pg.

Type

FIg

Pg.

FIg.

12
12
13
13
13
13

IV
IV

J
J
J
J
J
J
0
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

19
19
17
17
17

V
V
V
V
V
V

W
W
F
F
F
F

19
19
18
18
18
18
18

V
V
V
V
V
V
V

W
W
W
W
W
W
W

18

V

W

19
19
19
19
19
19
19
19
19
19
19
16
17
17
19

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

W
W
W
W
W
W
W
W
W
W
W
F
F
F
W

19

V

W

19
19
18

V
V
V

W
W
W

18

V

W

19

V

W

19
19
17
17
18

V
V
V
V
V

W
W
F
F
W

19

V

W

18
18
18
18
18
18
19

V
V
V
V
V
V
V

W
W
W
W

19

V

W

19
19
19
19
19
19
19

V
V
V
V
V
V
V

W
W

9
12
12
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
10
10
12
12
12
9
12
11
11
11
11
12
12
12
12
10
10
11
11
12
12
12
12
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12

IV
IV
IV
IV
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III
III
IV
IV
IV
III
IV
IV
IV
IV
IV
IV

IV
IV
IV

III
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

J
J
D
D

J
J
J
D
J
J
J
J
J
J
J
J
J
0
D
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

17

Type

W
W
W

W
W
W
W
W

Pg.

type

WAVE·
FORMS
FIg.

Pg.

1
1
1
1
1
1
10
10
10
10
21
21
21
21
21
21
21
21
12
12
12
12
11
11

11·5
11·5
11·5
11·5
11·5
11·5
11·7
11·7
11·7
11·7
11·11
11·11
11·11
11·11
11·11
11·11
11·11
11·11
11·8
11·8
11·8
11·8
11·8
11·8

11
11

11·8
11·8
22 11·12
22 11·12
23 11·12
23 11·12
23 11·12
23 11·12
12 11·8
12 11·8
12·A 11·8
12·A 11·8
9 11·6
9 11·6
5 11·5
5 11·5
12 11·8
12 11·8
18 11·10
18 11·10
18 11·10
18 11·10
18 11·10
18 11·10
24 11·12
24 11·12
25 11·12
25 11·12
26 11·13
26 11·13
27 11·14
27 11·14
26 11·13
26 11·13
28 11·15

TEST
CIRCUITS
Fig.

Pg.

1
1
6
6
1
1
3
3
3
3
3
3

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1

3
3
3
3
3
3
3
3
3
3
2
2

2
2
1
1
1
1
1
1
3
3
15
15
1
1
1
1

3
3
1
1
1
1
1
1
1
1
3
3
11
11
13
13
11
11
1

n

11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11-4
11-4
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·1
11·3
11·3
11-4
11-4
11·3
11·3
11·1

1-lii

PACKAGES

DATA SHEETS
Molded DIP INI
Devices
DM8560
DM7563
DM8563
DM7570
DM8570
DM7573
DM8573
DM7574
DM8574
DM7575
DM8575
DM7576
DM8576
DM8582
DM7590
DM8590
DM7595
DM8595
DM7596
DM8596
DM7597
DM8597
DM7598
DM8598
DM7599
DM8599
DM7695
DM8695
DM7696
DM8696
DM7800
DM8800
DM7806
DM8806
DM7810
DM8810
DM7811
DM8811
DM7812
DM8812
DM7819
DM8819
DM7820
DM8820
DM7820A
DM8820A
DM7822
DM8822
DM7830
DM8830
DM7831
DM8831
DM7832
DM8832
DM7836
DM8836
DM7837
DM8837
DM7838
DM8838
DM7875A
DM8875A
DM7875B
DM8875B
DM7880
DM8880
DM8884A
DM8885

...

Q)

(/)

)

l-iv

Cavity DIP IDIIJI

Flat Pack IFIIWI
Fig

Pg.

Fig.

Pg.

Fig.

Pg.

Type

1-161
1-164
1-164
1-167
1-167
1-169
1-169
1-172
1-172
1-175
1-175
1-175
1-175
1·146
1·180
1-180
1-182
1-182
1-184
1-184
1-187
1-187
1-190
1-190
1-195
1-195
1-182
1-182
1-184
1-184
1-197
1-197
1-200
1-200
1-202
1-202
1-202
1-202
1-202
1-202
1-204
1-204
1-206
1-206
1-208
1-208
1-210
1-210
1-212
1-212
1-214
1-214
1-214
1-214
1-217
1-217
1-219
1-219
1-221
1-221
1-223
1-223
1-223
1-223
1-225
1-225
1·228
1-230

5

II

II

3

II

IV
IV
IV
IV
IV
III
III
III
III
III
III
III
III

J

5

12
12
12
11
11
9
9
9
9
10
10

7

III

7
5

III

II

10
10
9

5

II

12
12

7

III

10

7

III

10
10

5

II

5

II

5

II

7

III

7

III

10

9
12
12
12
12
12
10
10
10
10

J
J
J
J

Pg

Type

Metal Can IGIIHI
Fig.

II
II
II
II
II
II
II
II
II

III

D

J
J

3

II

3

II

3

II

3

II

5

II

5

II

3

II

5

II

5

II

5

II

5

II

5
5
5

II

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

11
11
12
12
12
12
11
11
12
12
12
12
9
12
9
12
12
12

IV
IV
IV
IV
IV
IV

IV
IV

IV
IV
IV
IV

12

Pg.

Fig.

Pg.

11-15
11-15
11-15
11-15
11-15
11-16
11-16

1
1
1
5
5
7
7

11-1
11-1
11-1
11-1
11-1
11-1
11-1

V

W

18

V

W

19

V

W

33
30
30

11-16
11-15
11-15

2
1
1

11-1
11-1
11-1

32
32
32
32
17
17

11-16
11-16
11-16
11-16
11-9
11-9

3
3
3
3
3
3

11-1
11-1
11-1
11-1
11-1
11-1

34"
34

11-17
11-17

4
4
4
4
4
4
35
35

11-5
11-5
11-5
11-5
11-5
11-5
11-17
11-17

2
2
2
2
2
2
2
2

11-1
11-1
11-1
11-1
11-1
11-1
11·1
11-1

12
12
12
12

11-8
11-8
11-8
11-8

3
3
3
3

11-1
11-1
11-1
11-1

D
D
D
D
D

J
J
J
J
J
D
D
D
D

J
J
J
J
J
J
J
J
J
J
J"
J
J"
J

18
18

V
V

V
V

H
H

W
W

18
18
18
18
18
18
18
18
18
18

V
V
V
V
V
V
V
V
V
V

W
W
W
W
W
W
W
W
W
W

18
18
19
19
19
19

V
V
V
V
V
V

W
W
W
W
W
W

19
19
19

V
V
V

W
W
W

J"

J"
J
J"
J
J"
J"
J
J
J
J
J
J

III

D

IV

J

III

D

IV

IV
IV

J
J
J

IV

J

II
II

Fig.

19

D
D
D
D
D
D
D
D

IV
IV
III
III
III
III
III
IV
IV
IV
IV
IV
III
III
III
III

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

Type

TEST
CIRCUITS

28
28
28
29
29
31
31

21
21
3
3
3
3
3
3
3
3
3

Pg.

WAVEFORMS

cc

s:s:

Series 54/74

(J'I(J'I

-'="-'="

NO

00

DM5400/DM7400(SN5400/SN7400) quadruple 2-input NAND gate
DM5410/DM7410(SN5410/SN7410) triple 3-input NAND gate
DM5420/DM7420(SN5420/SN7420) dual4-input NAND gate

................

CC

S:S:
'-1'-1

general description

-'="-'="

NO

00

features

Employing TTL (Translstor-Translstor-Loglc) to
achieve high speed at moderate power dissipation,
these gates provide the basic functions used in the
Implementation of digital integrated circuit systems. Characteristics of the circuits include high
noise immunity, low output Impedance, good
capacitive drive capability, and minimal variation
In sWitching times with temperature. The gates
are compatible with and Interchangeable with
Senes 54/74 equivalent.

•

TYPical NOise Immunity

•

Guaranteed

•
•

Fan Out
Average Propagation Delay

•

Average Power DISsipation

NOISe

1V

Immunity

400 mV
10
13 ns
10 mW per gate

schematic and connection diagrams
, ___......___.....___ '00

u

(shown for DM5410/DM7410)

DM5400/DM7400
Dual-tn-Line Package

DM5400

DM5410/DM7410
Dual-In-Line Package

Dual-I n-Llne Package

DM5420

DM5410

Flat Package

DM5420/DM7420

Flat Package

Flat Package

0

N

o::t

I'

operating conditions

absolute maximum ratings

~
Q
........
0
N

o::t

Il)

Vee
Input Voltage
Storage Temperature Range

Fan·Out
Lead Temperature (Soldering, 10 sec)

7.0V
55V
_65°e to +150'e
10
3000 e

SUJ;>ply Voltage (Vee)
DM54XX
DM74XX

MIN

MAX

495
4.75

5.25
525

V
V

-55
0

+125
70

°e
°e

UNITS

Temperature (T A)

DM54XX
DM74XX

~
Q

...o::t

-'0

electrical characteristics

I'

~

(Note 1)

PARAMETER

MIN

CONDITIONS

TYP

MAX

UNITS

Input Diode Clamp Voltage

Vcc~5.0V, TA ~25°C, liN ~-12mA

...o::t

Logical "1"
Input Voltage

Vee ~ Min

~

Logical "0"
Input Voltage

Vee ~ Min

Logical "1"
Output Voltage

Vee ~ Min V ,N ~ 0 8V, lOUT ~ -400 /LA

Logical "0"
Output Voltage

Vee ~ Min

V ,N

Logical "1"
I nput Current

Vee

~

Max

V ,N

~2.4V

Logical "1"
I nput Current

Vee

~

Max

V ,N

~

5.5V

1

mA

Logical "0"
Input Current

Vee

~

Max

V ,N

~

O.4V

-1.6

mA

Output Short
Circuit Current
(Note 2)

Vee

~

Max V ,N

~

OV, Va

Supply CurrentLogical "0"
(Note 3)

Vee

~

Max V ,N

~

5.0V

3

5.1

mA

Supply CurrentLogical "1"
(Note 3)

Vee

~

Max V ,N

~

OV

1

1.8

mA

Propagation Delay Time to
Logical "0", tpdO

Vcc

~

5.0V,

T A ~ 25°C,

C ~ 50 pF

8

15

ns

Propagation Delay Time to
Logical" 1", tpd 1

Vee~

5.0V,

TA ~ 25°C,

C ~ 50 pF

13

25

ns

Q
........
0

-1.5

V
V

2.0

It)

Q

0
0

o::t

I'

~

Q
........

0
0

o::t

It)

~

Q

0.8

~

V

2.4

0.4

2.0V, lOUT ~ 16 rnA

40

~

OV

DM74XX
DM54XX

-20
-18

-55

Note 1: Unless otherwise specified minImax limits apply across the _55°C to +12SoC temperature range for the DM54XX and
across the O~C to 70°C range for the DM74XX All tYPlcals are given for Vee = 5 OV and T A = 2SoC
Note 2: Not more than 1 output should be shorted at a time

Nota 3: Each gate.

1·2

V

V

/LA

mA

Series 54/74
DM5401/DM7401 (SN5401/SN7401)

quad 2-input gate (open collector)

DM5403/DM7403(SN5403/SN7403) quad 2-input gate (open collector)
DM5405/DM7405(SN5405/SN7405) hex inverter (open collector)

general description
These Senes 54/74 functions are
applications where the normal TTL
output configuration IS not wanted
tions include Implementation of
function

designed for
"totem-pole"
Such applicathe Wire-OR

ASide from the output, the circuitry IS Identical
to the standard quad tWO-input gate (DM5400/
DM7400) and hex Inverter (DM5404/DM7404).

schematic and connection diagrams

4K

o

16K

INPUT
OUTPUT

INPUTS ~;....!_....J

"
....-_o GND

'----~

' - - -....-oGND

DM5405/DM7405

DM5401/DM7401, DM5403/DM7403

DM5403/DM7403
Dual-In-Line Package

DM5401/DM7401
Dual-In-Llne Package

DM5401

DM5405/DM7405
Dual-tn-Line Package

DM5405
Flat Package

Flat Package

absolute maximum ratings
7V
Vee
Input Voltage
5.5V
Operating Temperature Range DM5401, DM5403, DM5405 _55°C to +125°e
oOe to 70°C
DM7401, DM7403, DM7405
Storage Temperature Range
-65°C to +150 o e
Lead Temperature (Soldering, 10 sec.)
300°C

M

o

q,....

electrical characteristics

:E

(Note 1)

c
........
M

PARAMETER

oq-

CONDITIONS

II)

Input Diode Clamp Voltage

:E
c

Logical "1" Input Voltage

DM5401,3,5
DM7401,3,5

Vee=45V
V ee -475V

Logical "0" Input Voltage

DM5401,3,5
DM7401,3,5

Vee=45V
V ee -475V

Logical "1" Output Current

DM5401,3,5
DM7401,3,5

Vee = 5.5V
Vee - 525V V ,N =

MIN

TYP

T A = 25°C

Vee = 50V,
liN = -12 mA

MAX
-1 5

20

V

V
08

V ,N

UNITS

a 8V, VOUT = 55V
= a OV, V OUT = 5 5V

V

250

Il A

40

Il A

Logical "0" Output Voltage

DM5401,3,5
DM7401,3,5

Vee=45V
Vee 475V, V ,N = 2 OV

Logical" 1" I nput Current

DM5401,3,5
DM7401,3,5

Vee = 5.5V
Vee 5.25V, V ,N = 2 4V

40

Il A

Logical "1" Input Current

DM5401,3,5
DM7401,3,5

Vee = 5.5V
Vee - 5.25V, V ,N = 5 5V

1

mA

Logical "0" I nput Current

DM5401,3,5
DM7401,3,5

Vee = 5.5V
Vee - 5.25V, V ,N =04V

-16

mA

Supply Current-Logical "0" DM5401,3,5
(Each Gate)
DM7401,3,5

Vee=55V
Vee - 5.25V, V ,N =50V

30

51

mA

Supply Current-Logical "1" DM5401,3,5
(Each Gate)
DM7401,3,5

Vee = 5.5V
Vee - 5.25V, V ,N = OV

1.0

1.8

mA

Propagation Delay Time to a
Logical "0", tpdO

Vee = 5.0V, TA = 25°C
COUT = 15 pF, RL = 39051 (Note 2)

3

Propagation Delay Time to a
Logical "1", tpdl

Vee=5.0V, T A =25°C
COUT = 15 pF, RL = 3.9 k51 (Note 2)

18

04

V

lOUT = 16 mA

Note 1: MiniMax Units apply across the guaranteed temperature range unless otherwise speCified.

All typlcals are given for Vee = 5.0V and TA = 25 0 e,
Note 2: COUT Includes deVice output capacitance of approximately 8 5 pF and wIring capacitance

1-4

75
28

15

ns

45

ns

Series 54/74
OM5402/0M7402 (SN5402/SN7402) quad 2-input NOR gate
general description
The DM5402/DM7402 IS a quad 2-lnput NOR gate
utilizing TTL (Transistor-Transistor Logic) to
achieve high speed at nominal power dissipation. It
IS completely compatible with other Series 54/74
devices.

10

• Fan-out
• Allowable Power Supply Variation
DM5402
DM7402

features
• Input Clamping Diodes
• TYPical NOise Immunity

400mV

• Guaranteed Noise Immunity

1V

4.5V to 5 5V
4.75V to 5.25V

• Average Propagation Delay

12 ns (with 50 pF)

• Average Power Dissipation

14 mW per gate

o

schematic and connection diagrams
DM5402/DM7402 (each gate)

r - - -...- -...--~t--o v"
16K

4K

OK

I.

DM5402/DM7402
Dual-In-Line Package

DM5402
Flat Package
OND

GND
V"

TOP VIEW

TOP VIEW

1-5

absolute maximum ratings

7V
5.5V

Vee
Input Voltage
Operating Temperature Range
DM7402
DM5402
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

oOe to 70 0 e
-55°e to +125°e
-65°e to +150 oe
300 0 e

(Note 1)

PARAMETER

CONDITIONS

Input Diode Clamp Voltage

MIN TYP MAX UNITS

Vee = 5.0V TA = 25°C
liN = -12 mA

-1.0

V

Logical "I" Input Voltage

DM5402
DM7402

V_"e = 4.5V
Vee = 4.75V

Logical "0" Input Voltage

DM5402
DM7402

Vee = 4.5V
Vee = 4.75V

Logical "I" Output Voltage

DMS402
DM7402

Vee = 4.5V
Vee = 4.75V Y'N = 0.8V, lOUT = -400I.lA

Logical "0" Output Voltage

DMS402
DM7402

_
_
Vee = 4.5V
Vee - 4.75V Y'N - 2.0V, lOUT - 16 mA

Logical "I" Input Current

DMS402
DM7402

Vee = 5.5V
_
Vee = 5.25V Y,N - 2.4V

40

I.IA

Logieal "I" Input Current

DM5402
DM7402

Vee = 5,5V
_
Vee = 5.25V Y,N - 5.5V

1

mA

Logical "0" Input Current

DMS402
DM7402

Vee = 5.5V
_
Vee = 5.25V Y'N - 0.4V

Output Short Circuit Current (Note 2)

DMS402
DM7402

_
Vee = 5.5V
Vee - 5.25V V OUT - 0

Supply Current-Logical "0"
(each gate)

DMS402
DM7402

_
Vee = 5.5V
Vee = 5.25V Y'N - 6.0V

3.6

6.3

mA

Supply Current· Logical "I"
(each gate)

DM5402
DM7402

Vee = 5.5V V = OV
Vee = S.25V IN

2.0

3.6

mA

2.0

V
0.8

2.4

-20
-18

V
V

0.4

V

-1.0 -1.6

mA

-32 -55

mA

Propagation Delay to a
Logical "0", tOd~

Vee = 5.0V TA = 25°C
C = SO pF

N = 10

3

9

15

ns

Propagation Delay to a
Logical "1". tOd1

Vee = S.OV TA
C = SO pF

N = 10

S

13

22

ns

= 25°C

Note 1: Minimax "mils apply across the guaranteed temperature range of oOe to 70°C for the
DM7402 and -55°C to +125°C for the DM5402 unless otherwise specified All tYPlcals are given for
Vee = 5 OV and T A = 25°C
Note 2: Only one output at a time should be short CirCUited.

1·6

-1.5

Series 54/74
DM5404/DM7404(SN5404/SN7404} hex inverter
general description
The DM5404/DM7404 IS a hex inverter utilizing
TTL to achieve high speed at nominal power dissipation. It IS totally compatible with other Series
54/74 devices.

•
•
•

features

•

•
•

Input clamping diodes
TYPical NOise Immunity

1V

•

400mV
Guaranteed NOise Immunity
10
Fan-out
Allowable Power Supply Variation
DM5404
4.5V to 5.5V
DM7404
4.75V to 5.25V
Average Propagation
12 ns (with 50 pF)
Delay
10 mW per gate
Average Power Dissipation

schematic and connection diagrams

II

DM5404/DM7404

16K

130

DM5404

DM5404/DM7404
Dual-I n-Line Package

Flat Package
GND

14

13

12

11

10

GND
TOP VIEW

TOP VIEW

1-7

absolute maximum ratings
7V
5.5V

Vee
Input Voltage
Operating Temperature Range
DM7404
DM5404
Storage Temperature Range
Lead Temperature (soldering, 10 sec!

electrical characteristics

oOe to 70°C
-55°C to +125°C
_65°C to +150°C
300°C

(Note 1!
CONDITIONS

PARAMETER
Vee ~ 5.0V
liN ~ -12 mA

Input diode clamp voltage
Logical "1" Input Voltage
Logical "0" Input Voltage
Logical "1" Output Voltage
Logical "0" Output Voltage
Logical "1" Input Current
Logical "1" Input Current

DM5404
DM7404

Vee = 4 5V
Vee

= 4.75V

DM5404
DM7404

Vee

~

DM7404

Vee = 4.75V

DM5404
DM7404

Vee

DM5404

Vee = 5.5V

= 5.5V

Vee - 5.25V

= 5.25V
DM5404 Vee = 5.5V
DM7404

Vee - 5.25V

Output Short Circu It Current
(Note 2!

DM5404
DM7404

Vee = 5.5V
Vee - 5.25V

Supply Current· Logical "0"
(each gate!

DM5404

Vee

DM7404

Vee - 5.25V

Supply Current· Logical "1"
(each gate!

DM5404
DM7404

Vee = 5.5V

Propagation Delay to a
Logical "0" tpdO

= 5.25V
TA = 25°C
~

10

= 25°C
= 10

TA
N

V

2.0
0.8

V

Y,N

= 0.8V, lOUT = -400}1A

Y'N

~

Y'N

= 2AV

40

}1A

Y'N

= 5.5V

1

mA

Y,N

~

-1.6

mA

V OUT

2.0V, lOUT

2A
0.4

-1.0

OAV
~

a

V

= 16 mA

-20
-18

V

-30 -55

mA

Y'N

= 5.0V

3.0

5.1

mA

Y'N

=a

1.0

1.8

mA

Vee = 5.0V
C = 50 pF

5

16

22

ns

Vee = 5.0V
C = 50 pF

3

9

15

ns

Note 1. MiniMax limits apply across the guaranteed temperature range of OoC to 70°C for the
DM7404, and _55°C to +125°C for the OM5404, unless otherwise specified All tYPlcals are given for

Vee = 5 OV and T A = 25°C
Note 2. Only one output at a time should be short circuited

1·8

V

= 5.5V

Vee
N

MAX UNITS
-1.5

4.5V

= 4.75V
DM5404 Vee = 4.5V
DM7404 Vee = 4.75V
DM5404 Vee = 4.5V

Vee

Propagation Delay to a
Logical "1", tpd1

TYP

Vee

DM7404
Logical "0" Input Current

MIN

TA ~25°C

Series 54/74
OM5406/0M7406,OM5416/0M7416
(SN5406/SN7406,SN5416/SN7416)
hex inverter buffers/drivers
general description

features

These TTL hex inverter buffers/drivers are fully
compatible for use with TTL and OTL logic circuits. Each Inverter features high-voltage, opencollector outputs (OM5406/OM7406 30 volts
minimum breakdown and OM5416/OM7416 15
volts minimum breakdown). These inverters also
feature high sink current capability. (OM5406,
OM5416 30 mA and OM7406, OM7416 40 mAl.

•
•

•

•

Input clamp diodes
High voltage open-collector outputs
OM5406/OM7406
OM5416/OM7416
High sink current capability
OM5406,OM5416
OM 7406, OM7416

30V
15V
30 mA
40 mA

15 ns typical propagation delay time

01
schematic and connection diagrams
Dual-In-Line and Flat Package

14

13

12

11

10

OUTPUT
4K

JK

2'

INPUT O-~>--~

2.
L------4~-__4>----4--....- 0 GNO

NOt9

Component valU8S shown are numlnal

TOPVIEW

GNO

1-9

absolute maximum ratings
Supply Voltage

Input Voltage
Output Voltage

DM5406/DM7406
DM5416/DM7416

Storage Temperature Range
Lead Temperature, (Soldering, 10 Sec)

operating conditions

(Note 1)

Supply Voltage
DM5406,DM5416
DM7406,DM7416

7.0V
55V
30V
15V
-65°C to +150°C
300°C

MIN

MAX

UNITS

4.5
4.75

5.5
5.25

V
V

-55
0

+125
70

°c
°c

30
40

mA
mA

Temperature (T A)
DM5406,DM5416
DM7406,DM7416
Output Sink Current

DM5406,DM5416
DM7406,DM7416

CD

o

~

I'

electrical characteristics

~

(Note 2)

C
.........

CD

PARAMETER

o

~

LO

~

C

CONDITIONS

MIN

TYP

MAX

2

Logical "1" I nput Voltage

UNITS
V

08

Logical "0" Input Voltage

V

Output Breakdown Voltage

DM5406!DM7406

Vee == Max, IOFF == 250 MA,

30

V

15

V

VIN = 0.8V
DM5416!DM7416

Vee

=

Max, IOFF == 250 MA,

Y'N =08V
Logical "0" Output Voltage

Vee

=

07
04

Mm, }IOUT == Max,
2V,
lOUT = 16 mA

VIN =

Logical "1" Input Current

Logical "0" Input Current
Supply Current - Logical "'"
Logical "0"

Vee = Max, V IN
Vee:' Max, VIN
Vee = Max, V IN

==

2 4V
5 5V

40
1

/lA
mA

;=

0 4V

-16

mA
mA
mA

=

Vee = Max, VIN = OV

30

42

Vee

27

38

=

Max, VIN

=

5V

Input Clamp Voltage

Vee = 5 OV, liN = -12 mA,
T A = 25°C

Propagation Delay to a Logical "0", tpdO

Vee = 5 OV, T A = 25°C,
C L = 15 pF, RL = 110n

Propagation Delay to a Logical "1 ", tpd1

Vee = 50V, TA = 25°C,
C L = 15 pF, RL = 110n

-1 5

V

15

23

ns

10

15

ns

Note 1: Absolute Maximum Ratings" are those values beyond which the operation of ihe device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual device operatIOn
Note 2: Unless otherwise specified minImax limits apply across the _55°C to +125°C temperature range for the DM5406,
IJ

DM5416 and across the O°C to 70°C range for the DM7406,DM7416. All tYPlcals are given for VCC = 5.0V and TA = 25°C

1·10

V
V

c

s:

Series 54/74

(J1

.j:::o

o

-..J

.......
C

s:-..J
.j:::o

DM5407 /DM7407,DM5417 /DM7417
(SN5407/SN7407,SN5417/SN7417) hex buffers/drivers

o

-..J

c

s:

features

general description

(J1

.j:::o
....
-..J

These TTL hex buffers/dnvers are fully compatible
for use with TTL and DTL logic circu ItS. Each
buffer features high·voltage, open-collector outputs
(DM5407/DM7407 30V minimum breakdown and
DM5417/DM7417 15V minimum breakdownl.
These buffers also feature high sink current capability (DM5407, DM5417 30 mA and DM7407,
DM7417 40 mAl.

.......

•

Input clamp diodes

•

High voltage open·collector outputs
DM5407/DM7407
DM5417/DM7417

•

High sink current capability
DM5407,DM5417
DM7407,DM7417

•

14 ns tYPical propagation delay time

•

145 mW typical power dissipation

C

s:-..J

30V
15V

.j:::o
....
-..J

30mA
40mA

schematic and connection diagrams
Dual-In-Line and Flat Package

. - - - -.....- -.....- - - - - 0

Vee

OUTPUT
4K

3K

INPurO----OGND

Dual-In-Llne and Flat Package
4B

4.

IB

IV

4V

JB

3'

3V

2B

2V

GND

14

,.

2A

TOPVIEW

t

POSITIVE lOGIC Y=AB
tP,olSSlgnmentsforthIlIClrtlllt5ilfethesamefDlailpackages

1-25

absolute maximum ratings

VCC
Input Voltage
Output Voltage
Operating Temperature Range

Storage Temperature Range

operating conditions

(Note 1)

MIN~

70V
55V
5.5V
O()C to +70°C

Supply Voltage
DM5437,DM5438
DM7437,DM7438

-65°C to +150° C

Lead Temperature (Soldering, 10 sec I

4.5
475

Temperature (TAl
DM5437, DM5438
DM7437, DM7438

300"C

MAX
5.5
5.25

V
V
"C

+125
70

-55
0

UNITS

°c

I"M
.;t
I"-

:!:

c

.......
I"M
.;t

electrical characteristics

(Note 2)

It)

:!:

c

PARAMETER

CONDITIONS

Logical "1" Input Voltage
Logical "0" Input Voltage

08

Vee ° Min, Y'N °

a 8V,

Logical "11/ Output Current

---

DM5438
DM7438

Vee ° Min, Y'N °

a 8V, V OUT °

Logical "0" Output Voltage
Logical "1" Input Current

250 0

5 5V

V
/.lA
mA

-16

mA

a

mA

155
85

mA
mA

a

rnA

Y'N ° 5 5V

a 4V

Vee:::: Max

Vee ° Max, All Inputs at OV

Logical "0"

DM543738
---DM7437,38

Vee ° Max All Inputs at 5V

-20

a

-70

9
5
34

54

-1 5

V

15

a

ns

11

18

a

ns

Vee ° 5 OV
TA ° 25"C

13

22

a

ns

Vee o5OV
TA ° 25°C

14

22

a

ns

Vee::;; Min, T A:::: 25°C, liN == -12 mA

Logical "0" tpdO

DM5437
--DM7437

Vee o5OV
TAo 25"C

9

Propagation Delay to a

DM5438

Logical "0"

Dr~7438

--.--

Vee ° 5 OV
TA ° 25 Q C

Propagation Dela\{ to a
Logical" 1" tpd1

flM54J7
DM7437

Propagation Delay to a
Logical" 1" tpd1

---

DM5438
DM7438

tpdO

/.lA

04

DM5437,38
DM7437,38

Input Clamp Voltage

V

40 a
10

Supply Current - Logical "1"
(each devlcel

Propagation Delay to a

24

V

V ,N o 24V

Vee ° Max, Y'N °
DM5437
-DM7437

lOUT ° 4 2 mA

UNITS

Vee ° Min, V ,N ° 2 OV, lOUT ° 48 mA
Vee:::: Max,

Logical "0" Input Current

MAX

V

Vee"" Min

Logical "1" Output Voltage

(Note 31

TYP

20

DM5437
DM7437

Output Short CircUIt Current

MIN

Vcc=Mm

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The
table of "Electncal Charactenstlcs" provides conditions for actual deVice operation
Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DM5437,
DM5438 and across the O°C to 70°C range for the DM7437, DM7438 All typlcals are given for VCC ° 5.0V and TAo 25°C

Note 3: Only one output at a time should be shorted

1·26

Series 54/74
DM5440/DM7440(SN5440/SN7440} dual 4-input buffer
general description

features

Employing TTL (Translstor-Translstor-Loglc) the
DM5440(DM7440 buffer IS used when the high
fan-out IS desirable. In addition to driving a large
number of TTL inputs, this buffer can be used to
drive lines between equlpments, to operate small
relays and lamps (50 mAl, and to act as a clock
driver for synchronous logic systems. it IS completely compatible With other Series 74 devices.

•

Typical Noise Immunity

•

Guaranteed Noise Immunity

•

Fan Out

•

Diode Clamps on inputs

1V

400 mV

30

schematic and connection diagrams

u
OUTPUT X

Schematic shows one half of dual unit

DM5440/DM7440
Dual·ln-Line Package

DM5440

Flat Package

1-27

absolute maximum ratings
Vee
Input Voltage
Storage Temperature Range
Fan-Out
Lead Temperature (Soldering, 10 sec)

operating conditions

7.0V
55V
-65'e to +150'e
30
300'e

electrical characteristics

PARAMETER

Supply Voltage (Vee)
DM5440
DM7440

MIN

MAX

UNITS

475
475

5.25
5.25

V
V

-55
0

+125
70

'e
'e

Temperature (T A)

DM5440
DM7440

(Note 1)

CONDITIONS

MIN.

TYP.

MAX.

-1.0

-1.5

UNITS

Input Diode Clamp Voltage

Vee = 5.0V, TA = 25°C, liN = -12 mA

Logical "1"
I nput Voltage

Vee=Min

Logical "0"
I nput Voltage

Vee = Min

Logical "1"
Output Voltage

Vee = Min, V ,N = 0.8V, lOUT = -12 mA

Logical "0"
Output Voltage

Vee = Min, V ,N = 2.0V, lOUT = 48 mA

Logical "1"
Input Current

Vee= Max, V ,N = 2.4V

Logical "1"
I nput Current

Vee= Max, V ,N = 5.5V

1.0

mA

Logical "0"
Input Current'

V ee =Max,V ,N =O.4V

-1.6

mA

Output Short
CircUit Current
(Note 2)

Vee=Max,V'N=OV

-55

-70.0

mA

Supply Current - Logical "0"
(Note 3)

Vee = Max, V IN = 5.0V, 25°C

8.6

11.4

mA

Supply Current - Logical "1"
(Note 3)

Vee = Max, V ,N = OV, 25°C

2.0

3.6

mA

Propagation Delay Time to
Logical "0", tpd 0

Vee = 5.0V, TA = 25°C, C = 50 pF
F.O. = 30

10

15

ns

Propagation Delay Time to
Logical" 1", tpd 1

Vee = 5.0V, TA = 25°C, C = 50 pF
F.O. = 30

8

25

ns

2.0

V

0.8

2.4

40

Note 1: Unless otherwise specified minImax limits apply across the _55 0 C to +125° C temperature range for the DM5440 and
across the O°C to 70 0 e range for the DM7440 All tYPlcals are given for Vee = 5.0V and TA = 25°C.
Note 2: Not more than 1 output should be shorted at a time.
Note 3: Each gate.

1·28

V

V

0.4

-24.0

V

V

MA

~s

Series 54/74

DM5441A/ DM7441A (SN5441A/SN7441A)
BCD to decimal decoder/nixie* driver
general description
The DM5441A/DM7441A IS monolithic blnarycoded-decimal to decimal decoder. The BCD
number to be decoded IS applied to the four
Input lines; and the unique output corresponding
to the deCimal equivalent of the Input number
falls to a logical 0 level. Outputs are deSigned to
drive gas-filled-readout (N Ixle *) tubes but are also

able to operate with other low current lamps
and relays.
An over-range feature provides that if binary numbers between 10 and 15 are applied to the input
the least significant bit of these numbers (0
through 5) will be decoded on the output.

Dual~ln-Lme

u

logic table

connection diagram
and Flat Package
GN.

0

C

INPUT
B

A

0

0

0

0

0

0

0

1

1

0

0

1

0

2

0

0

1

1

0

1

0

0

4

0

1

0

1

S

0

1

1

0

6

0

1

1

1

7

1

0

0

0

8

0

0

1

lOW OUTPUT
0

3

1

9

1

0

1

0

0

1

0

1

1

1

1

1

0

0

1

1

0

1

2
3

1

1

1

0

4

1

1

1

1

5

lOVER RANGE)

typical applications
Nixle* Readout

"
Over-Range Decoding
INDICATOR TUBE

OVER RANGE
INDICATOR

- '00

I,.PUT5 \ :

INPUTS

INPUTS ON

DM545g~~~7450

~+=+~: \II'fPUTS

i: o---+~~
OUTPUT
v

EXPANDER
GATE 1 Of

0---+--<1....

1-x ~=====--J---.-:~L-t

E~::~~:R II xX <>:===t+t:~
0

IOM5453/OM7453

ONLY

X

INPUTS

1: 0---+--<1....

DM5460/DM7460 (each gate)

,------<> '00

,,,",,rj~2J
NOTES 1 l:onneetp,n90rI210p,n12ofOM5450/0M7450orDM5453iDM7453
2 Conn"otpm14o,11 top>n 11 ofDM5450IDM7450.,DM5453/DM1453

~-I--O ~

i

INPUTS

absolute maximum ratings
Vee
Input Voltage
Storage Temperature Range

Fan·Out
Lead Temperature (Soldering, 10 .ecl

operating conditions
Supply Voltage (Veel
DM54XX
DM74XX
Temperature (T A)
DM54XX
DM74XX

7V
5.5V
-65°C to +150 o e
10
300°C

electrical characteristics

MIN

MAX

UNITS

4.75
475

5.25
5.25

V
V

-55
0

+125
70

°e
°e

(Notes 1,3) (DM5450/DM7450, DM5451/DM7451, DM5453/DM7453,
DM5454/DM7454)

PARAMETER

CONDITIONS

Input Diode Clamp Voltage

Vee ~ 5.0V, TA ~ 25°C
liN ~ -12 mA

Logical" 1" I nput Voltage

Vee ~ Min

Logical "0" Input Voltage

Vee

Logical "1" Output Voltage

Vee ~ Min, V IN ~ 0.8V
lOUT ~ -400 JJ.A

Logical "0" Output Voltage

Vee ~ Min, V IN
lOUT ~ 16 mA

Logical "1" Input Current

Vee

~

Logical "1" Input Current

Vee

Logical "0" I nput Current

~

MIN

TYP

MAX
-1.5

2.0

UNITS
V

V

Min

0.8
2.4

V
V

~

2.0V

Max, V IN

~

2.4V

40

~

Max, V IN

~

5.5V

1

mA

Vee

~

Max, V IN

~

0.4V

-1.6

mA

Output Short Circuit Current
(Note 2)

Vee

~

Max, V IN

~

OV

Supply Current - Logical "0"
(Each Gate)

Vee ~ Max, V IN ~ 5.0V

Supply Current - Logical" 1"
(Each Gate)

Vee

Propagation Delay Ti me to a
Logical "0", tpdO

Vee ~ 5.0V, T A ~ 25°C
C ~ 50 pF, N ~ 10

15

ns

Propagation Delay Ti me to a
Logical "1", tpd1

Vee ~ 5.0V, TA ~ 25°C

25

ns

Propagation Delay Time to
Logical "0" Level
(through DM5450/DM7450 or
DM5453/DM7453)

Vee ~ 5.0V, TA ~ 25°C
C ~ 50 pF, N ~ 10

20

n~

Propagation Delay Time to
Logical "1" Level
(through DM5450/DM7450 or
DM5453/DM7453)

Vee ~ 5.0V, T A ~ 25°C
C ~ 50 pF, N ~ 10

34

ns

~

Max, V IN

~

0.4

-18

OV

-55

V

jJ.A

mA

3.7

6.5

mA

2.0

3.6

mA

C~50pF,N~10

Note 1: Unless otherwise specified minImax limits apply across the _55°C to +125°C temperature range for the DM54XX and
across the oOe to 70°C range for the DM74XX. All typical. are given for Vee
Note 2: Not more than 1 output should be shorted at a time.

Note 3: Measurements made with expandable Inputs open

1-Cl6

= 5.0V and T A = 25°C.

o

electrical characteristics

s:
er

== Inputs

1G and 2G connected together

c

absolute maximum ratings

s:UI

(Note 1)

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM54155,DM54156
DM74155,DM74156
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics

~
.-

7V
55V
5.5V
-55°C to +125°C
O°C to +70°C
_65°C to +150°C
300°C

UI
UI

.......

C

s:......

~
.-

UI
UI

(Note 2)
CONDITIONS

PARAMETER
Logical "1" Input Voltage

DM54155,DM54156
DM74155,DM74156

Vee ~ 4 5V
Vee - 4 75V

Logical "0" Input Voltage

DM54155,DM54156
DM74155,DM74156

Vee~45V

MIN

TYP

MAX

20
08

Vee - 4 75V

Logical "1" Output Voltage

DM54155
Vee~45V
DM74155 -Vee ~ 475iT

Logical "1" Output Current

DM54156
DM74156

Logical "0" Output Voltage

DM54155,DM54156
DM74155,DM74156

Vee

DM54155,DM54156
DM74155,DM74156

Vee ~ 5 5V
Vee - 525V

DM54155,DM54156
DM74155,DM74156

Vee~

Vee ~ 55V
Vee - 525V
~

4 5V
475V

V

~
.-

V

0)

V OUT

~

~

24

-80011A
55V

250

04

24V

40

I1A

55V
V ee - 525V

V ,N

~

5 5V

1

mA

DM54155,DM54156
DM74155.DM74156

Vee~ 55V
Vee - 525V

V ,N

~

04V

-16

mA

DM54155.DM54156
DM74155,DM74156

Vee ~ 55V
Vee - 525V

V OUT
V OUT

Supply Current

DM54155.DM54156
DM74155,DM74156

Vee ~ 525V

Input Clamp Voltage

DM54155,DM54156
DM74155,DM74156

Vee~ 55V
Vee - 525V

Output Short Circuit Current

(Note 3)

switching characteristics

~

OV

~OV

-10
-20
-18

Vee~55V

liN

= -12 rnA

~
.-

UI

V

~

16 mA

s:
......

I1A

V ,N

Logical "0" I nput Current

C

V

~

Logical "1" Input Current

UI

.......
lOUT

lOUT

Vee

C

s:
UI

UNITS

-32

-55

mA

25

40

mA

-10

-15

0)

III

V

Vee = 5V, T A = 25°C, N = 10

PARAMETER

FROM
INPUT

TO
OUTPUT

LEVELS
OF LOGIC

tpdl

A, B, 2C,
1G, or 2G

V

2

tpdO

A, B, 2C
1G,or2G

Y

2

tpd1

AorB

Y

3

tpdO

AorB

Y

tpd'

1C

tpdO

lC

TEST
CONDITIONS

DM54155/DM74155
MIN TYP MAX
14

21

19
18

3

Y
Y

DM54156/DM74156
MIN
TVP MAX

UNIT

17

26

30

19

30

ns

27

22

33

ns

17

26

18

27

ns

3

18

27

21

32

ns

3

17

26

18

27

ns

ns

CL~50pF,

RL

~

400Q

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the
deVices should be operated at these limits The table of "Electrlcal Characterrstlcs" provides conditions
for actual deVice operation

Note 2: Unless otherwise specified min/max limits apply across the _55°C to +125°C temperature
range for the DM54155,DM54156 and acros' the O°C to 70°C range for the DM74155,DM74156.
All typical, are given for VCC ~ 5.0V and TA ~ 25°C.

Note 3: Only one output at a time should be shorted.

1-81

Series 54/74
DM54166/DM74166(SN54166/SN74166) a-bit shift register
general description
The DM54166/DM74166 IS a parallel-In serial-in,
serial-out eight-bit shift register containing a gated
Clock, and overriding Clear. The parallel-In or
serial-in modes are determined by the Shift/Load input. The truth table below indicates the operation.
During paralielloading shifting IS prohibit~d. Clocking is accomplished on the rising edge of the
clock pulse through a 2-input NOR gate, permitting one Input to be used as a clock-inhibit

function. Holding either of the Inputs high inhibits clocking. To prevent false clocking the clock
inhibit' input should be taken high only when the
clock input is high.

features
• Shift Frequency

35 MHz

•

360 mW

Power DIssipation

.Iogic diagram

CLEAA SEA1AL SHIFT A
DATA LOAD

H

connection diagram
Dual-In-Line and Flat Package

truth table

I.

IS

2

1

SERIAL
INPUT

"

3

4

A

11

0

10

9

SHIFT LOAD

.,

'--_~_~

PARALlEL INPUTS

'-82

"

13

,

ClOCK CLOCK
INHIBIT

I'

GND

FUNCTION

1

Serial In Senal Out

a

Parallel In Senal Out

CLOCl\ClOCK
INH16n

c

absolute maximum ratings (Note

1)

s:

CJ1
,J:Io

operating conditions

..&

MIN
Supply Voltage

7V
55V
55V

Input Voltage

Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

_65°C to +150°C

Supply Voltage (Veel
DM54166
DM74166

MAX

45
4.75

en
en

UNITS

.......

v
v

55
525

C

s:

Temperature (T A)

300"e

~55

DM54166
DM74166

0

--.I
,J:Io

"e
"e

+125
70

..&

en
en

electrical characteristics

(Note 2)

PARAMETER

CONDITIONS

Logical "1 " Input Voltage

Vee

Logical "0" Input Voltage

Vcc=Mln

LOglCdl "1" Output Voltage

Vee
V 1H

Logical "0" Output Voltage

Vee
V 1H

=
-

'"

-800MA
VIL ·08V

Min

lOUT""" 16 mA
V 1L =08V

IOI,.JT

Vcc=Max

VIN-=24V

Input CUrtellt at Max Input Voltage

Vee

V ,N

Logical "0" Input Current

Vcc=Max

INote 31
SuplJly

CUI

rent

=-

Max

55V

Clear to Output, tpdO

TA - 25°C

Propagation Delay to a Logical "0" from

5 OV
Vee
T A · 25"C

CL =50pF, RL

V ee --50V
T A =25°C

C l - 50 pF, RL

Clock to Output, tpdl
Maximum Clock Frequency

0-

Vee - 5 OV

Data Setup Time

Vee

Mode Control Setup Time

tSETUP

12 rnA

·1 5

mA

35

'"

400Sl

30

ns

400n

26

ns

25

35

MHz

50 pF

20

ns

50V

TA = 25'C, CL = 50 pF

20

ns

Vee "'50V

TA=25"C, Cl. = 50 pF

30

ns

Vee'" 5 OV

TA = 25°C, C L = 50 pF

0

ns

=

TA = 25°C, C L

mA

V

50 pF, RL ·40051

25"C

Minimum Clock and Clear Pulse Width

Hold Time at Any Input, t HOLD

liN =

CL

Vce-=50V
TA

mA

116

Vcc-=50V

Propagation Delay to a Logical "1" frOr:1

mA

104

Vec=-Mln

tpdO

pA

1

57

Max

Illput Clamp Voltage

V

40

6

·20
·18

Plopagatlon Delay to a Logical "0" from

Clock to Output,

~1

V
V

04

VIN =04V

UNITS
V

24

Vee -- Mdx

Vee

MAX

08

Min
2V

2V

TYP

2

Logical "1" Input Current

Olltput Short ClfCLllt CUrient.

MIN

Min

=

Note 1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed
Except for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these
limits. The table of "Electncal Characteristics" provides conditions for actual device operation
Note 2: Unless otherWise specified minImax limits apply across the -55°C to +125°e temperature range for the DM54166
and across the oOe to +70o e range for the DM74166 All tYPlcals are given for Vee ~ 5.0V and TA = 25°C
Note 3: Only one output at a time should be shorted

1-83

Series 54/74
DM54180/DM74180(SN54180/SN74180)
8-bit odd/even parity generator/checker
general description

features

The DM54180/DM74180 can both generate and
check parity on eight bits of information Separate
Inputs are provided which perform a two-fold purpose. They can be used to gate the outputs to a
known state regardless of the conditions on the
data Inputs; and in addition they can be used for
convenient expansion of longer words.

•

TYPical propagation delay

30 ns

•

TYPical power dissipation

180mW

•

Ease of expansion

logic diagram

EVEN
OUTPUT

DATA
INPUTS

aDO
OUTPUT

IN~~~

0----------------....1

I~~~~ o-----------------~

connection diagram

truth table

Dual·ln-line and Flat Package
DATA
INPUTS

I"

13

11

11

10

,

9

NUMBER OF BtT "1"8
AT DATA INPUTS
Even Number

Odd Number
Even Numher
Odd Number
Even or Odd
Even or Odd

-

-

2

1

G

H

~

,

3

EVEN
INPUT

ODD
INPUT

DATA
INPUTS

TOPVIEW

5

6

EVEN
ODD
OUTPUT OUTPUT

I'

GND

INPUTS
EVEN

ODD

OUTPUTS
EVEN

ODD

0

s:
absolute maximum ratings
Supply Voltage
Input Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

(Note 1)

7V
5'5V
c
_65 C to +150"C
300°C

U'I

...

operating conditions
Supply Voltage (VCC)
DM54180
DM74180

~

MIN

MAX

UNITS

45
475

55
525

V
V

-55
0

+125
70

"c
"c

00

0

.......
0

s:

Temperature (T A)

DM54180
DM74180

~

...
~

00

0

electrical characteristics

(Note 2)

PARAMETER

!,:>

CONDITIONS

Logical "1" Input Voltage

Vrc-:oMlfl

Logical "0" Input Voltage

Vee

Logical "1" Output Voltage

\fcc

Logical "0" Output Voltage

Vee - Min

Logical "1" Input Current

Vee

=0

lOUT

~

-800 flA

24

-c;;

V
V

04

lOUT - 16 mA

V ,N
V ,N

Vee

UNITS
V

08

V

24V
5 5V

40
10

flA
mA

V ,N - 24V
V ,N -55V

80

flA
mA

~

~

_.-._---

,-.-.-.~--

Logical "0" Input Current

MAX

Max

At Each
Data I nput' {A to HI
At Even or Odd Input
-,-----~--

TYP

20

!\Ii'n

~~ !\!llil

=

MIN

Max

10

V ,N - 0 4V

At Each
-1 6
-32

Data Inputs (A to H)

At Even or Odd Input
Output Short Circuit Current DM54180
(Note 3)
DM74180

Vee

='

Max

DM54180
DM74180

Vee

=

Max

Vee

=

Min

Supply Current
(Each DeVice)
Input Diode

V OUT

c

OV

-20
-18

--

-55
-55

mA

49
56

mA

--

366
366

-11N~-12mA

mA

-

-1 5

V

40
45

60
68

ns
ns

32
25

48
38

ns
n5

32
25

48
38

n5
ns

Odd

40
45

60
68

ns
n5

Even or Odd
Even or Odd

13
8

20
10

ns
n5

Clamp Voltage

TA - 25'C

Parameter
tpd1

tpdO

From Input

To Output

Data

Even
Odd Input Grounded

tpdl
tpdO

Data

Odd

tpdl
tpdO

Data

Even

tpdl
tpdO

Data

Even Input Grounded

tpdl Even or Odd
tpdO Even or Odd

Vee - 5 OV
TA - 25 c C

C L - 50 pF
Fa - 10

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual deVice operation
Note 2: Unless otherwise specified min/max limits apply across the _55°C to +125°C temperature range for the DM54180,
and across the 0° C to 70° C range for the OM74180 All tYPlcals are given for V CC = 5.0V and T A =. 25° C
Note 3: Only one output at a time should be shorted

1-85

...
...
,...

CIO
~

Series 54/74

::?!

o

...
...

........
CIO
~

DM541811DM74181 (SN541811SN74181) arithmetic logic unit

It)

::?!

o

general description
The DM54181/DM74181 (SN54181/SN74181) IS
a high-speed arithmetic logic unit (ALUl/functlon
generator that has a complexity of 75 equivalent
gates on a monolithic chip This CirCUit performs
16 binary arithmetic operations on two 4-blt words
as shown In the function table. These operations
are selected by the four function-select lines (S0,
5" 52, 53 1 and Include addition, subtraction,
decrement, and straight transfer When perform Ing
arithmetic manipulations, the Internal carnes must
be enabled by applYing a low-level voltage to the
mode control Input (MI. A full carry look-ahead
scheme IS made available In the device for fast,
simultaneou~ carry generation with a group carry
propagate (PI and carry generate (GI for the four
bits In the package.
High speed arithmetic operations can be performed for up to N-blt words when the DM54181/
DM74181
IS used In conjunction with the
DM54182/DM74182.
For example, the tYPical addition time for the
DM54181/DM74181 IS 24 ns for four bits. When
expanding to 16-bit addition with the DM541821
DM74182, only 13 ns further delay IS added so
that the total addition time IS 37 ns, or 2.3 ns per
bit. One DM54182/DM74182 IS needed for every
16 bits (four DM54181/DM74181 Clrcuitsi.
If high speed IS not of Importance, a ripple-carry
Input (Cnl and a ripple-carry output (C n+4 1 are
available. However, the ripple-carry delay has also
been minimized so that arithmetic manipulations

for small word lengths can be performed without
external circuitry. The tYPical delay for the ripple
carry IS 12 ns for four bits. With a tYPical additIOn
time of 24 ns for four bitS, addition of two 8-blt
words is accomplished tYPically In 36 ns when
emploYing the ripple carry.
The DM54181 and DM54182 are characterIZed for
operation over the full military temperature range
of -55°C to 125°C; the DM74181 and DM74182
are chdl"acterlzed for operation from O°C to 70 D C.

features
•

Full look-ahead for high-speed operations on
long words

•

Input clamping diodes minimize transmissionline effects

•

Darlington outputs reduce turn-off time

•

Arithmetic operating modes:
AdditIon
Subtraction
Shift operand A one position
Magnitude comparISon
Plus twelve other arithmetic operations

•

Logic function modes:
Exclusive-OR
Comparator
AND, NAND, OR, NOR
plus ten other logical operatIons

•

24 ns tYPical add time for four bits

•

12 ns tYPIcal carry time for four bits

connection diagram and table
Dual-In-Line Package
OUTPUTS

INPUTS

Vi" /' ','
1~

n

'I' I" I' V ;cT"' j,'5 Ai'114 "13

In 121 120 '9 118 117

I I I I I I II II

Al

iiI

A2

ii2

A3

ii3

G

DM54181/DM74181
PIN DESIGNA1)ONS

16

C"..

P

A-8

..

DESIGNATION

PIN NOS

A3,A2,A 1.Ao

19,21,23,2

63 ,82 ;81 .8 0

18,20,221

Word B Inputs

53 ,52 ,5,,50

3,4,5,6

Function Select
Inputs

Co

7

Carry Input

M

8

Mode Control

FUNCTION
Word A Inputs

DESIGNATION

PIN NOS

FUNCTION

A~B

14

Comparator Output

ji

'5

Carry Propagate
Output

Cn +4

16

Carry Output

G

17

Carry Generate

Vee

24

Supply Voltage

GND

12

GROUND

Output

iio

I I I I I I II II
, J' .I' r I' J' I' I' J' J'" J"I"
AU

S3

52

51

SO

Cn

INPUTS
TOPVIEW

1-86

M

I'D

1'1

1'2

GND

Input

F3.F2,FT,Fo

13,11,10,9

Function Outpu,ts

c

absolute maximum ratings

s:U1

(Note 1)

....00
~

7V
55V
55V

Supply Voltage

Input Voltage
Output Voltage
Operatmg Temperature Range DM54181
DM74181

Storage Temperature Range
Lead Temperature (Soldering, 10 sec}

....

-55"C to 125"C
aOc to 70~C

"'-

-65'C to 150 'c
300"C

s:....

C

~
....
00

electrical characteristics

....

(Note 2)

PARAMETER

CONDITIONS

Logical "1" Input Voltage

DM54181
DM74181

Logical "0" Input Voltage

ee_=-~"~~~~ _~Vee=
4 75V

Logical "1" Output Voltage

DM54181
DM~

Logical "0" Output Voltage
Logical "1" Input Current

(Mode Input)
Logical "1" I nput Current
(Any

A or 8 Input)

V 1H =2V,V 1L =08V

DM54181
DM74181

Vee = 4 5V
Vee ",-OW

V 1H =2V,V 1L =-08V

DM54181
---DM74181

Vee -= 55V
Vee -'=' 525V

DM54181
---DM74181

Vee

=

Logical "0" Input Current
(Mode Input)
Logical "0" Input Current
(Any

Ii.. or B Input)

Logical "0" Input Current

lOUT =

08

V

04

V

V

24

-800 /JA

IOUT= 16mA

Vcc=525V

40

~A

120

~A

160

~A

200

~A

1

mA

V 1N =24V

DM54181
Vee = 5 5V
- , - - - - _. . .
DM74181Vee = 525V
DM54181
DM74181

UNITS
V

55V

Logical "1" Input Current

Logical "1" Input Current

MAX

2

Vee = 4 5V
Vcc=475V

6~;:~+-

(Any Input)

TYP

-,-~--

Logical" 1" I nput Current
(Any S Input)

(Carry Input)

MIN

Vcc=45V
Vee _. 4 75V

Vee = 55V
~-=525V

Vee = 55V
Vee - 525V

V IN -=55V

DM54181
Vee = 5 5V
DM7418'- ~"-Vee = 5 25V
DM54181
Vee = 55V
OM 74fsl r-v;;-~;-s 25 V

~~"-Vee'" 5 25V

(Any S Input)

DM54181
DM74181

Logical "0" Input Current
(Carry Input)

55"6~;:~+-- ~e=
Vee 525V

Output Short Circuit Current
(Note 3)

DM541S1
DM74181-

-1

~1

6

mA

,,3

~4

8

mA

-39

~6

4

mA

8

~8

mA

-55
-57

mA

VIN = 04V

~4

=

Vee=55V
Vee = 525V

V OUT

-

OV

-20
18

~

Bs & Cn, Other Inputs HIGH)

~~;:~:~- r-~='?2"-Vee 525V

88
88

127
140

mA
mA

GND All As, Bs & en,
Other Inputs HI G H

DM54181
DM74181

vee = 5 ~~
Vee = 525V

92
92

135
150

mA
mA

Input Clamp Voltage

DM54181
DM74181

Vee'" 4 5V

Supply Current

~

(GND All

=

Propagation Delay to a Logical "0" from
Cn to Cn+4 , t prlO
Propagation Delay to a L09lcal "1 ' from
Cn to Cn ,4, tpd1
Propagation Delay to a Logical "0" from
Cn to Any F, tpdO

V

14

19

ns

Ddf Mode

9

18

ns

Dlff Mode

13

18

ns

Dlff Mode

11

19

ns

Dlff Mode

15

25

ns

Vee = 50V
TA=25'C

Ddf Mode

12

25

ns

Vee -= 50V
TA = 25 c C

Dlff Mode

17

25

ns

Vee = 50V
T A = 25"C

Dlff Mode

11

25

ns

Dlff Mode

14

34

os

~

Vee"" 50V
T A = 25°C

Ddf Mode (Note 4)

Vee = 50V
T A = 25'-'c
Vee -0:·5 OV
TA = 25"'C

475V

Propagation Delay to a Logical "1 ' from

Vee = 50V

C n to Any F, tpd1

TA

Propagation Delay to a Logical "0" from
Any A or

8

to G, tpdO

Propagation Delay to a Logical "1" from
Any A or

8

to G, tpd1

Propagation Delay to a Logical "0" from
Any A or B to P, tpdO
Propagation Delay to a Logical "1" from
Any A or

8

to P, tpdl

Propagation Delay to a Logical "0" from
Any A or

8

to F, tpdO

1

-1 5

IIN=-12mA

Vee

25"C

Vee = 5 OV

T A = 25"C

Vee

5 OV

T A = 25 C

1 87
c

....
CIO
....
'lit

electrical characteristics (cont.)

"C~

PARAMETER

........
CIO
'lit

....
....

It)

~

Propagation Delay to a Logical "1" from

Vee"" 5V

Any A or B to F,

T A = 25°C

tpdl

MIN

Dlff Mode

TYP

MAX

UNITS

14

48

ns

14

34

Propagation Delay to a Logical "0" from
Any Po.. or B to Any f, tpdO

Vee = 5V
T A " 25°C

Logic Mode M
(Note 5)

Propagation Delay to a Logical" 1" from

Vee"" 5V
T A " 25°C

Logic Mode M "" 4 5V

16

48

Vee'" 5V
T A'" 25°C

Dlff Mode

26

48

Any

C

CONOITIONS

A to B to

Any f,

tpdl

Propagation Delay to a Logical "1" from

Any A to B to A::.B,

tpdO

Propagation Delay to a Logical "0" from
Any A or B to A::.B, tpdl

Vee:::: 5V

=

4 5V

os

Dlff Mode

25

50

Vee'" 5V
T A " 25c C

Sum Mode
(Note 6)

14

19

Vee'" 5V
T A " 25 c C

Sum Mode

en to Any F, tPdO

Vee = 5V
T A = 2S"C

Sum Mode

13

18

Propagation Delay to a Logical "1 ' from
en to Any F, tpdl

Vee'" 5V
T A" 25°C

Sum Mode

12

19

ns

Propagation Delay to a Logical "0" from

Vee:::: 5V
T A " 25°C

Sum Mode

16

19

ns

Sum Mode

13

19

ns

Sum Mode

17

25

ns

Sum Mode

12

19

ns

Sum Mode

15

32

ns

Sum Mode

14

42

ns

T A == 25°C

Propagation Delay to a Logical "0" from

en to Cn + 4 ,

tpdO

Propagation Delay to a Logical" 1" from

en to C n +- 4 ,

tpdl

Propagation Delay to a Logical "0" from

Any

A or B to G,

tpdO

Propagation Delay to a Logical" 1" from
Any

A or B to G,

Vee'" 5V
T A :::: 25°C

tpd1

Propagation Delay to a Logical "0" from
tpdO

Vee'" 5V
TA '" 25°C

Propagation Delay to a Logical "1" from
Any A or B to P, tpdl

TA = 25°C

Propagation Delay to a Logical "0" from
Any A to B to Any F, tpdO

Vee'" 5V
T A " 25°C

Propagation Delay to a Logical "1 'from
Any A or B to Any F, tpdl

TA = 25°C

Any A or B to P,

Vee'" 5V

Vee

=

5V

18

ns

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual deVice operation.
Note 2: Unless otherwise specified minimax limits apply across the -55"'C to +125°C temperature range for the DM54181
and across the O°C to 70 0 e range for the DM74181 All tYPlca[s are given for Vee = 5.0V and T A = 25°C.
Note 3: Only one output at a time should be shorted
Note 4: Dlff Mode S1 = S2 = 4 5V, So = S3 = M = OV
Note 5: LogiC Mode S1 = S2 = M = 4 5V, So = S3 = OV
Note 6: Sum Mode So = S3 = 4 5V, S1 = S2 = M = OV.

truth table
TABLE OF ARITHMETIC OPERATIONS
FUNCTION

OUTPUT FUNCTION

SELECT
lOW LEVELS ACTIVE

S3 82 81 80
L

L

L

L
H

HIGH LEVELS ACTIVE

F=Ammus 1
F = AS minus 1

F=A
F = A+S

L

L

L

L

L

H

F = AB minus 1

F = A+S

L

L

H

F = minus 1 12's complement)

F= minus 1 12's complement)

L

H

L

L

F

F = A plus AS

L

H

L

H

F '" AS plus [A+Bl

L

H

H

l

F" A minus B minus 1
F = A+B

L H H H

=

A plus [A+BI

F = A plus [A+BJ

L

F = [A+Bl plus AS
F = A minus B minus 1
F '" AS mmus 1
F = A plus AS

H

L

H

L

L

H

l

H

L

H

L

H

H

H

H

L

L

H

H

L

H

F

H

H

H

l

F=ASplusA

F '" [A+Sl plus A

H

H

H

H

F"'A

F '" A minus 1

F'" A plus B
F = AS plus [A+Sl

F'" A plus B

F '" A+S
F = A plus At

F'" AB minus 1

=

AB plus A

F

=

F'" A plus At
F

=

With mode control 1M) and Cnlow
tEach bit IS shifted to the next more significant pOSitIOn

1-88

[A+Bl plus AB

[A+Bl plus A

mode of operation
The DM54181/DM74181 has been designed to not
only Incorporate all of the designer's requ irements
for arithmetic operations, but also to provide 16
possible functions of two Boolean variables without the use of external circuitry_ These logic functions are selected by use of the four function-select
Inputs (So, S1, S2' S3) with the mode control
Input (M) at a high level to disable the Internal
carry_ The 16 logic functions are detailed In the
function table and Include exclUSive-OR, NAND,
AND, NOR, and OR functions.

Active-low data'

No Input carry, C n = 0
(H IGH logic level)
No output carry, Cn + 4 = 0
(HIGH logic level)

Subtraction IS accomplished by 1's complement
addition where the 1's complement of the subtrahend is generated Internally. The resultant output IS A-B-1 which requires an end-around or
forced carry to prov Ide A-B.
The DM541811DM74181 can also be utilized as a
comparator. The A = B output IS Internally decoded from the function outputs (Fa, 1"1, F 2, 1"3)
so that when two words of equal magnitude are
applied at the A and B inputs, It will assume a highlevel state to indicate equality (A = B)_ The device
should be In the subtract mode when performing
thiS comparison. The A= B output IS open-collector
so that it can be Wire-AND connected to give a
comparISon for more than four bits. The carry
output (C n +4 ) can also be used to supply relative
magnitude information. Again, the ALU should
be placed In the subtract mode by plaCing the
control lines at LHHL.

The DM54181/DM74181 IS designed with a Darlington output configuration (54H174H type) to
reduce the high-logic-level output Impedance and
thereby Improve the turn-off propagation delay
time All outputs are rated at a normalized fanout of ten at the low logic level and increased to a
fan-out of 20 at the high logic level. The Increased
high-logic-level fan-out allows the system designer
more freedom In tYing unused Inputs to driven
Inputs
The DM54181/DM74181 will accommodate actlvehigh or active-low data If the input carry and output carry are reinterpreted.

Active-high data: Cn +4 = 1 (HIGH logic level)
A~B

C n +4 = 0 (LOW logic level)
AB
C n +4 = 0 (HIGH logic level)
A:O;:B

truth table (cont,)

TABLE OF LOGIC FUNCTIONS

FUNCTION

OUTPUT FUNCTION

SELECT

53

'2

L

L

L

L

F=A

L

L

L

H

F '"

L

L

H

L

F = A+8

L

H

H

F = Logical 1

F'" LogIcal 0

H

L

L

F = A+B

F

.1 so

NEGATIVE LOGIC

POSITIVE LOGIC
F=A

As

F = A+B
F

=

=

AS

As

L

H

L

H

F=B

F '" B

L

H

H

L

F = AIIl8

F

L

H

H

H

F = A+B

F = AS

L

L

L

F

=AS
=

L

L

H

F

H

L

H

L

F=B

H

L

H

H

F

=

=

Ae8

F '" A+B

F = A@B

Aw8

F=B
F = AS

A+B

H

H

L

L

F'" Logtcal 0

F = LogIcal 1

H

H

L

H

F =AS

F = A+B

H

H

H

L

F '" AS

F = A+B

H

H

H

H

F=A

F=A

WIth mode control (M)

HIGH

For pOSitive logiC loglca) 1 =
logical 0 =
For negative logiC logical 1 =
logical 0 =

C n Irrelevant

HIGH VOltage
lOW Voltage
LOW Voltage
HIGH Voltage

1-89

...

...o::t

CX)

switching parameter measurement information

.....
:E

c

...o::t

;:::

DIFFMODE TEST TABLE
FUNCTION INPUTS' S1 = S2 = 4 5V. SO = S3 = M = OV

CX)

OTHER INPUT

It)

:E

INPUT
UNDER
TEST

PARAMETER

c

tPLH

A

tPHL
tPLH

8

tPHL
tPLH

tPHL
tPLH
tPHL

tpHL

lPlH
tPLH

tPHL
tPLH
tPHL

tpHL
tPLH
tpHL

OTHER DATA INPUTS

APPLY
GND

APPLY
45V

APPLY
GND

None

8

Remaining

Remaining

None

A

A

S, en

Remaining

Remaining

A

S, en
Remaining
A. and B, en

A

None

B

None

B

A

None

None

A

8

None

None

8

None

A

None

A

tplH

SAME BIT
APPLY
45V

None

B

B

A

Non~

Cn

None

None

Remaining

Remaining

A and S,

en

Remaining
A and S, en
Remaining

Ii. and B,

en

Remaining

A

S, en

Remaining

Remaining

A

S, en

All

A and Ei

None

OUTPUT
UNDER
TEST

F

Any

Any F

P
p

G
G

A=B

A=B
Cn +4

SUM MODE TEST TABLE
FUNCTION INPUTS SO:: $3 = 4 5V, 51 '" 52 = M = OV

OTHER INPUT
INPUT

SAME BIT

PARAMETER

UNDER
TEST

APPLY

45V

APPLY
GND

tPLH

A

jj

None

8

A

None

tPHL
tpLH
tPHL

APPLY
4.SV
Remaining

Any

F

Cn

Any

F

None

Remaining
A and B, C n

p

Remaining
Aand e,Cn

p

Remaining
A, C n

G

A
jj

A

None

None

tPLH
tpHL

A

None

8

Remaining
Remaining

None

tPLH
tpHL

8

None

A

tPLH
tpHL

Cn

None

None

LO~IC

PARAMETER

INPUT
UNDER

TEST
tPLH
tPHL
tPLH
tpHL

A
B

8
8

Remaining
A, Cn

G

All

All

Any F

A

8

or Cn+4

MODE TEST TABLE
S1 "" S2"' M = 4 5V, SO = S3 = OV

OTHER INPUT
SAME BIT

OTHER DATA INPUTS

APPLY

APPLY

APPLY

APPLY

4 SV

GND

45V

GND

None

8

None

A and B,

None

OUTPUT
UNDER
TEST

Cn

Aand B

tPLH
tPHL

jj

APPLY
GND

Remaining
A and B

tPLH
tPHL

FUNCTION INPUTS

1-90

OTHER DATA INPUTS

A

None

Remaining
Cn

Remaining
A and B, en

OUTPUT
UNDER

TEST
Any

F

Any F

c

s:

logic diagram

U"I
~

-'

00

-'
.......

c

s:.....
~

-'
III
(4)

00

0------...,

-'

S)
S20-_ _ _ _- ,

(5)

S,o-___-,

(6)

So

0-----,

iiarV
(l1)

..

'

(16)

PI/IX

(151

"

(13)

B, 01-'OI+-~;>-t-1-tTM

A,OI::-:"~1--+H-t--"1

)-.....I--~,,:O,1 "

B,

o-+-..cf>+-+-i-++-'t
(22)

A,o----++t-if-+-1
(23)

r+-+---:",1O::O, fl

."

111

191

'.

A.

'"
181

'-

Vcc ",PINZ4

GNIl-P1Nt2

m

1-91

Series 54/74
DM54182/DM74182 (SN54182/SN74182)
look-ahead carry generator
general description
The DM54182/DM74182 (SN54182/SN74182) IS
a high-speed, look-ahead carry generator capable of
a'nticlpatlng a carry across four binary adders or
group of adders. It IS cascadable to perform full
look-ahead across n-bit adders, with only 13 ns
delay for each level of look-ahead. Carry, generatecarry, and propagate-carry functions are provided
as enumerated In the Pin designation table.

propagate (P) and carry generate (G) are In negated
form; therefore, the carry (Input, outputs, generate, and propagate) functions of the look-ahead Circuit are Implemented,ln the compatible forms. Reinterpretations of carry functions at the DM54181 /
DM74181 are also applicable and compatible with
the look-ahead package, Logic equations are:

Go + POC n
G 1 + P1 GO+ P 1 POCn
G2 + P2 G 1 + P2 P1 GO + P2 P1 PoCn
Cn +z
G G3 + P3 G2 + P3 P2 G1 + P3 P2 P1GO
P = P3 P2 P1PO
C n +x

High speed arithmetic operations can be performed
for up to N-bit words when the DM54181/
DM74181 is used in conjunction with the
DM54182/DM74182.
For example, the typical addition time for the
DM54181/DM74181 IS 24 ns' for four bits. When
expanding to 16-blt addition with the DM54182/
DM74182, only 13 ns further delay is added so
that the total addition time IS 37 ns, or 2.3 ns
per bit. One DM54182/DM74182 is needed for
every 16 bits (four DM54181/DM74181 circuits).

Cn +y

Carry inputs and outputs of the DM54181/
DM74181 are In their true form and the c~rry

Inputs of the DM54182/DM74182 are dlodeclamped to minimize transmission-line effects, and
Darlington outputs are employed to Improve turnoff times and reduce propagation delay times.
Typically, the average carry time IS 13 ns, and
power dissipation IS tYPically 180 mW or 11 mW
per gate.

logic diagram

connection diagram and table
Dual~ln-Line

Package
OUTPUTS

INPUTS

co••

" O-=--+-I-~-I-H+."
" o-:--+-I-I--I-H......-L../

DM54182/DM74182

"
OUTPUTS

INPUTS
TOP VIEW

DM54182/DM74182
PIN DESIGNATIONS
~UNCTION

DESIGNATION

GO,0,.02,03

--+-+.,,

PO'p"P2.P3

"0-:... .

4,2 15,6

Active LOW

Carry Propagate Inpuls
Carry Input

C,
12,11 9

Vee·PINtS

GND-PIN8

C, ••

FUNCTION

Carry Generate Outpul
ActoveLOW

Carry Ganera1e Inputs

"O"----......-+-L../

1-92

DESIGNATION PIN NOS

3,1,14,5

CarryOutpulS

Ca"yPropagateQutput

V"

Supply

Voll~ge

0
absolute maximum ratings

3:

(Note 1)

U1
~

7V
55V
55V

Supply Voltage
Input Voltage
Output Voltage

Operating Temperature Range DM54182

...a

CO
N

.......

_55°C to 125°C
O°C to 70°C
-6Soe to 150°C
300°C

DM74182

Storage Temperature Range
Lead Temperature (Soldering. 10 sec)

0

....3:
~

...a

electrical characteristics

CO

(Note 2)

PARAMETER

N

CONDITIONS
DM54182

MIN

DM74182

Vee'" 4 5V
V cc -475V

DM54182

V cc "'45V

DM74182

Vee

OM54182

DM74182

Vcc'=4SV
Vee 4,75V

10

DM54182
DM74182

Vee

Vee'" 4SV
475V

10= 16mA

Logical "1" Input Current
(en Input)

DM54182

Vee'" 55V

DM74182

V cc -525V

Logical "1" Input Current

DM54182
DM74iii2

Logical "1" Input Voltage
Logical "0" Input Voltage

Logical "1" Ol,ltput Voltage

Logical "0" Output Voltage

frY 3

1nputl

TYP

MAX

V

20
08

475V
=

-800 /J.A

UNITS

V
V

24
04

V

V 1N "'24V

80

.A

~;:~'~~v

VIN '" 24V

120

.A

Vcc=55V
Vee = 525V

VIN '" 24V

160

.A

V cc "'55V
Vee - 525V

V 1N =24V

200

.A

Vee" 55V
V ce -525V

V IN .. 24V

360

.A

Logical "1" Input Current
(P2 Input)

DM54182

Logical "1" Input Current
(Po, l'" or G3 Input)

DM54182

Logical "1" Input Current
(Go or G 2 Input)

DM54182

Logical "1" Input Current
((31 Input)

g~~~f- 4~~':...
Vee'" 5 25V

V IN

2 4V

400

.A

Logical "1" Input Current
(Any Input)

DM54182
DM74182

Vce'" 55V

VIN '" 5 5V

1

mA

Logical "0" Input Current
(C n Input)

DM 54 Hl2

Vee=55V
Vee - 52q,V

-32

mA

Logical "0" Input Current
(1'3 Input)

DM54182
DM74182

V ec "'S5V

-48

mA

Logical "0" Input Current
{P2 Input)

DM54182

Vee=55V
Vce - 525V

Loqlcal "0" Input Current
(po. 'P 1 or G3 Input)

DM54182

Logical "0" Input Current
(Go or (;2 Inputs)

DM54182

DM74182

OM74182

DM74182

DM74182

Vee

Vee

525V

'"

525V

-64

mA

Vcc=55V
Vee - 5 2SV

-8

mA

DM74182

Vee=S5V
V ee ",525V

-144

mA

-16

mA

-100

mA

DM741S2

g

VIN '" 0 4V
OM74182

Logical "0" Input Current
(31 Input)

DM54182

V ec ",S5V

DM74182

Vee - 525V

Output Short CirCUit CUrrent
(Note 3)

g~;:~-

Vee=55V
Vee: 525V

Supply Current - All
Outputs HIGH

DM54182
OM74182

Vee'" 55V
V ce "'525V

27

Supply Current All
Outputs LOW

OM74182

Vee= S 5V
V ec -525V

45
45

65
72

mA

DM54182

-40

mA

Propagation Delay to a Logical "0" from
Carry Input to Carry Output, tprlO

Vee'" SOV
T A ", 25°C

CL '" 50 pF, RL '" 40051

14

22

n,

PropBgatlon Delay to a logical "0" from
Carry Propagate Inputs (P 3 to Carry
Generate (G) & Carry Propagate (P)

Vee=50V
TA =: 25°C

CL '" 50 pF, RL = 4QOn

11

22

n,

Propagation Delay to a Logical" 1" from
Carry Input to Carry Outputs, tpd1

Vee'" 5 OV
T A'" 25°C

CL '" 50 pF, RL '" 400n

11

17

n,

Propagation Delay to a Logical" 1" from
Carry Propagate Inputs (P s ) to Carry
Generate (G) & (P) Propagate, tprll

Vee'" 50V
TA= 2SoC

CL

10

17

n,

Outputs, tpdQ

=:

50 pF, RL '" 400!2

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electrical Characteristics" proVides conditIOns for actual deVice operation
Note 2: Unless otherwise speCified minimax limits apply across the -55°C to +125°C temperature range for the DM54182
and across the

oOe

to +70o e range for the DM74182.'AII tYPlcals are gIven for

Vee = 5 OV

and TA

= 25°C

Note 3: Only one output at a time should be shorted.

1-93

~s

Series 54/74

DM541841 DM74184 (SN 54184/SN74184)
BC 0 -to-binary converter
OM 5418 5AI DM7418 5A(SN 54185A/S N7418 5A)
binary-to-BCD converter
general description
When the enable input IS taken to the logic "1"
level all outputs go high. In addition, the unused
states of the DM54184/DM74184 and the unused
outputs of the DM54185A/DM74185A are pro·
grammed to be logical "1 "'s.

Both of these converters are mask options of the
DM5488/DM7488 256·blt Read·Only Memones.
In normal operation the least significant bit by·
passes the converter smce m all cases the bmary
and BCD LSB's are the same. Thus each device
performs a 6·blt conversion.

connection diagram

Dual-In-Line and Flat Package
BINAflVSELECT
OUTPUT

ENABLE

r:

115

v s

1

1'"

Y1

Y3

,

In

112

0

C

B

" "

YO

VB
9

'+

Y1

I I5 I6 I

I

):

"

L iu
, I I I I
i14

)33 y~4

)/ Gl~

)6

)5

OUTPUTS

TOPVIEW

truth tables

DM54185A/DM74185A
Binary-to-BCD Converter
BINARY
WORDS

DM54184/DM74184
BCD-to-Binary Conv~rter
BCD
WORDS

BI NAR V SE LEer

E

o

OUTPUTS

INPUTS
(See Note A)

D

C

B

ENABLE

A

G

V5

Y4

V3

Y2

Y1

1

L
L

L

L
L

L
L
H
H

L
H
L
H
L

L

L

L
L
L
L

L
L
L
L

L
L
L

L
L
H
H

H

L

L
H
L
H
L

L
H

L
L
L

L
L
L
L

L
H
H

H
H
H
L
L

L
H
H
L
L

H
L
H
L
H

L
L

L

L
L
L
L
L

L

4-5
G7

L

8··9

L

L
L
L
L

10-11
12-13
14-15

L
L
L
L
L

H
H
H
H
H

L
L
L
L
H

L
L
H
H
L

L
H
L

24-25
24-27
28-29

H
H
H
H
H

L
L
L
L
L

L
L
L
L
H

L
L
H
H
L

L
H
L
H
L

L
L
L
L
L

L
L
L
L
L

H
H
H
H
H

L
L
H
H
H

H
H
L
L
H

L
H
L
H
L

30-31
12 33
34-35
36-37
38-39

H
H
H
H
H

H
H
H
H
H

L
L
L
L
H

L
L
H
H
L

L
H
L
H
L

L
L
L
L
L

L
H
H
H
H

H
L
L
L
L

H
L
L
L
L

H
L
L
H
H

H
L
H
L
H

ANY

X

X

X

X

X

H

H

H

H

H

H

16 17

18··19
20-21
22-23

H

=

L

high level, L

L
L
H

=

L

low level, X

=

L
L

Irrelevant

Note A' Input conditions other than those shown produce high at
outputs Yl through Y5
Note B Outputs Y6, Y7, and Y8 are not used for BCD-to-blnary
c.onverslon

1·94

D

C

B

A

G

Y8

Y7

Y6

V5

YO

Y3

Y2

Y1

L
L
L
L

L
L
L
L

L
L
L
L

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
H
H

L
H
L
H

10-'1
12·13
14-15

L
L
L
L

L
L
L
L

H
H
H
H

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
H
H
H

H
L
L
L

L
L
L
H

L
L
H
L

16-17
18-19
20-21

L
L
L

L
L

L
L

L

L
L
H
H

L
H
L

22-23

H
H
H
H

H
H
H
H

H
H
H
H

L
L
L
L

L
L
H
H

H
H
L
L

L
H
L
L

H
L
L
L

H
L
L
H

24-25
26-27
28-29
30-31

L

H
H
H
H

H
H
H
H

L
L
H
H

L
H
L
H

L
L
L

H
H
H
H

L
L
L

H
H
H
H

L
L
L

L

H
H
H
H

L

L
L
L

H

L
L
H
L

H
H
L
L

L
H
L
L

32-33

34-35
36-37
38-39

H
H
H
H

L
L
L
L

L
L
L
L

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
Ii

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
H

L
H
H
L

H
L
H
L

40-41
42-43
44-45
46-47

H
H
H
H

L

H
H
H
H

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
H
H

L
H
L
H

48-49
50-51
52-53
54-55

H
H
H
H

H
H
H
H

L
L
L

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

L
L
L
L

L
H
H
H

H
L
L
L

L
L
L
H

L
L
H
L

56-57
58-59
60-61
62-63

H
H
H
H

H
H
H
H

H
H
H
H

L
L
H
H

L
H
L
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

L
L
H
H

H
H
L
L

L
H
L
L

H
L
L
L

H
L
L
H

ALL

X

X

X

X

X

H

H

H

H

H

H

H

H

H

4-5
6-7
8-9

2 3

OUTPUTS

ENABLE

E

0-'
2-3

(See Note B)

INPUTS

BINARY SELECT

L
L
L

L
L

L

H

L
L

absolute maximum ratingS(Note
Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range

Lead Temperature (Soldering, 10 sec)

1)

7V
5.5V
5.5V
_65°C to +150°C
300°C

electrical characteristics

operating conditions
Supply Voltage (Veel
DM54184. DM54185A
DM74184, DM74185A

MIN

MAX

UNITS

45
4.75

5.5

5.25

V
V

-55
0

+125
70

°c
°c

Temperature (T A)

DM54184, DM54185A
DM74184, DM74185A

(Note 2)

PARAMETER

CONDITIONS

MIN

Logical "1" Input Voltage

Vcc=Mm

Logical "0" I nput Voltage

Vee~Mm

Logical "1" Output Current

Vee = Max, Vo ~ 5.5V

Logical "0" Output Voltage

Vee = Min, 10 ~ 12 mA

Logical "1" Input Current

Vee

~

TYP

20

100
0.4

Max, V, =24V

~04V

Logical "0" Input Current

Vee = Max, V,

Supply Current

Vee=Max

Input Clamp Voltage

Vce = Min, I, = -12 rnA

Propagation Delay to a Logical "0" from

Vce = 5 OV
T A ~ 25'C

CL~15pF

Vce = 50V
T A = 25°C

CL

Propagation Delay to a Logical "0" from
Enable to Output, tpdO
Propagation Delay to a Logical "1" from
Address to Output, tpd1
Propagation Delay to a Logical "1" from
Enab!e to Output, tpd1

UNITS
V

0.8

Vee ~ Max, V, ~ 5 5V

Address to Output, tpdO

MAX

50

V
/lA
V

40

/lA

1

mA

-1.6

mA

80

mA

-1,5
32

50

ns

15 pF

34

50

ns

Vee ~ 5.0V
TA = 25°C

CL~15pF

28

50

ns

Vee = 5.0V
T A = 2SoC

C L =15pF

27

50

ns

~

o

V

Note 1. "Absolute MaXimum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operating Temperature Range" they afe not meant to Imply that the deVices should be operated at these limits. The table
of "Electrical Characteristics" provides conditions for actual deVice operation.

Note 2: Unless otherWise specified min/max limits apply across the _55°C to +125°C temperature range for the DM54184,

DM54185A and across the oOe
25'C

to

70°C range for the DM74184, DM74185A All typical, are given for Vee = 5,OV and T A =

1·95

Series 54/74
DM54187 /DM74187 (SN54187 /SN74187)
1024·bit read only memory
general description
The DM54187/DM74187 is a custom-programmed
read-only memory organized as 256 four-bit words.
Selection of the proper word IS accomplished
through the eight select inputs. Two overriding
memory enable mputs are provided; and when one
is taken to the logical "1" state, It will cause all
four outputs to go to the logical "1" state.

• 20 ns tYPical delay from enable to output
•

Open collector outputs for expansion

applications
•

Microprogrammmg

•

Code conversions

features

•

Look·up tables

•

•

Use for any memory where content is fixed

36 ns tYPical delay from address to output

logic diagram

171

",

10'
MEMO"' { "
ENABLE

68

Illi
114)

connection diagram
Dual-In-Line Package

1·96

absolute maximum ratings

(Note 1)

Supply Voltage
Input Voltage
Output Voltage
Operatmg Temperature Range

7V

5.5V
5.5V
-55°C to +125°C
O°C to +70°C
_65°C to +150°C
300°C

DM54187
DM74187
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 2)

CONDITIONS

MAX

TVP

MAX

UNITS

Logical "1" Input Voltage

DM54187
DM74187

Vee = 4.5V
Vee - 4.75V

Logical "0" I nput Voltage

DM54187
DM74187

Vee = 4.5V
Vee - 4.75V

Logical "1" Output Current

DM54187 Vee = 5.5V
DM74187 Vee - 5.25V

Vo = 5.5V

Logical "0" Output Voltage

DM54187
DM74187

Vee = 4.5V
Vee - 4.75V

lo=16mA

Logical "1" Input Current

DM54187
DM74187

Vee = 5.5V
Vee = 5.25V

Y,N =2.4V

40

!1A

= 5.5V

1

mA

-1.0

mA

2.0
0.8

DM54187 Vee=55V
DM74187 Vee - 5.25V

Y'N

DM54187
DM74187

Vee = 5.5V
Vee - 5.25V

Y,N = 0.4V

Supply Current
(each device)

DM54187
DM74187

Vec = 5.5V
Vee - 5.25V

All Inputs at GND.

Input Clamp Voltage

DM54187
DM74187

Vee = 4.5V
Vee - 4.75V

liN = -12 mA

Logical "0" I nput Current

V

40
0.4

75

110

V
J.lA
V

mA

-1.5

V

Propagation Delay to a Logical "0" from Vee = 5.0V
TA = 25°C
Enable to Output, tpdQ

CL = 30 pF

20

30

ns

Propagation Delay to a Logical ''0'' from Vee = 5.0V
Address to Output, tpdQ
TA = 25°C

CL

= 30 pF

37

60

ns

Propagation Delay to a Logical "1" from Vee = 5.0V
Enable to Output, tpd 1
TA = 25°C

CL = 30 pF

20

30

ns

Propagation Delay to a Logical "1" from Vee = 5 OV
Address to Output, tpd 1
TA = 25°C

CL

= 30 pF

36

60

ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device
cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply
that the devices should be operated at these limits The table of "Electrical Characteristics"
provides conditions for actual device operation.
Note 2: Unless otherwise specified mm/max limits apply across the _55°C to +125°C temperature
range for the DM54187 and across the oOe to 70°C range for the DM74187. All typicals are given
for Vec = 5 OV and T A = 25°C.

La7

ordering instructions

Programming instructions for the DM54187 or
DM74187 are solicited in the form of a sequenced
deck of 32 standard 80-column data cards providing the information requested under data card
format, accompanied by a properly sequenced
listing of these cards, and the supplementary
ordenng data_ Upon receipt of these items, a computer run will be made from the deck of cards
which will produce a complete truth table of the
requested part_ This truth table, showing output
conditions for each of the 256 words, will be
forwarded to the purchaser as verification of the
input data as interpreted by the computer-automated design (CAD) program_ This single run also
generates mask and test program data; therefore,
verification of the truth table should be completed
promptly_
Each card in the data deck prepared by the purchaser identifies the eight words specified and
describes the cond it ions at the four outputs for
each of the eight words. All addresses must have
all outputs defined and columns designated as
"blank" must not be punched: Cards should be
punched accord ing to the data card format shown.

10-13

14
15-18
19
20-23
24
25-28
29
30-33
34
35-38
39

supplementary ordering data
Submit the following information with the data
cards:
a) Customer's name and address
b) Customer's purchase order number
c) Customer's drawing number.

40-43
44
45-48
49
50-51

data card format
1- 3

4
5- 7

8- 9

52
53-55

Column
Punch a right-justified integer representing
the binary input address (000-248) for
the first set of outputs described on the
card.
Punch a "-" (Minus sign)

56
57-58
59

Punch "H", "L", or "X" for bits four,
three, two, and one (outputs Y4, Y3, Y2,
and Y1 in that order) for the first set of
outputs specified on the card. H = h ighlevel output, L = low-level output, X =
output irrelevant_
Blank
Punch "H", "L", or "X" for the second
set of outputs.
Blank
Punch "Hi., "L", or "X" for the third set
of outputs.
Blank
Punch "H", "L",or "X" for the fourth set
of outputs.
Blank
Punch "H", "L", or "X" for the fifth set
of outputs_
Blank
Punch "H", "L", or "X" for the sixth set
of outputs.
Blank
Punch "H", "L", or "X" for the seventh
set of outputs.
Blank
Punch "H", "L", or "X" for the eighth
set of outputs_
Blank
Punch a right-justified integer representing
the current calendar day of the month.
Blank
Punch an alphabetic abbreviation representing the current month.
Blank
Punch the last two digits of the current
year.
Blank

Punch a right-justified Integer representing
the binary Input address (007-255) for
the last set of outputs described on the
card.

60-61

Punch "DM"

62-66

Punch the National Semiconductor part
number 54187 or 74187.

Blank

67-70

Blank

c

Series 54/74

s:

U1

...
~

CD

o

.......

c

OM54190/0M74190(SN54190/SN74190)
up/down decade counter

s:

..."
~

general description

CD

o

The DM54190/DM74190 is a four-bit up/down
decade counter capable of being preset to any
number from 0 through 9. A smgle Clock line is
provided and depending upon the logic level on the
down/up control, proper direction of counting IS
ach ieved. The flip flops are triggered on the
positive·golng transition of the clock providing
that the Enable Input IS low. A logical 1 at the
Enable input inhibits counting. Level changes at
the Enable Input should be made only when the
Clock input is high. Information can be asyn·
chronously entered by puttmg the desired logiC
levels on the Data inputs and then taking the Load
input low. This may be done independent of the
state of the clock.

Two outputs have been made available to perform
the cascading function: ripple clock and maxlmum/
minimum count. The latter output produces a
high-level output pulse with a duration approxi·
mately equal to one complete cycle of the clock
when the counter overflows or underflows. The
ripple clock output produces a low-level output
pulse equal in Width to the low·level portion of
the clock input when an overflow or underflow
condition exists. The counters can be easily cascaded by feeding the ripple clock output to the
enable input of the succeeding counter If parallel
clocking IS used, or to the clock input If parallel
enabling IS used. The maximum/minimum count
output can be used to accomplish look-ahead for
high-speed operation.

logic and connection diagrams
Dual·1 n·Llne and Flat Package

~~

CLOCK

DATA
RIPPLE MAXI
A
CLOCK CLOCK Mill

L

RIPf'LE
CLOCK

LOAD

DATA
C

9

" " " " " '"

')...--.J.--l-.......~--..!!!!.., ~~~U~N

~

~

. . , I'

, , ,
n~

DATA
B

llA
'---'
OUTPUTS

;

ENABLE DOWN'

L.,.....!!!.

a.

00

GND

'--.---'

INPUTS

ASYNCHRONOUSINPUfS

OUTPUTS

LOWI",PUTTOlDAOSETSQA
Os-8Oc

A

CANDOo"O

operating modes
DOWN/UP

ENABLE

LOAD

MODE

X

L
H
H
H

Parallel Load

X
X

H
L
L

L
H
H

Pl" (161- Vee PI" IHI

~

GND

=::

high level, L

=::

No Change

'Count Up
Count Dow~

low level, X == Irrelevant

absolute maximum ratingS(Note

operating conditions

1)

MIN

Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range
Lead Temperature ISoldeflng, 10 seel

Supply Voltage IVeel
DM54190
DM74190
Temperature IT AI
DM54190
DM74190

7V
5.5V
5.5V
-65°e to +150o e
3000 e

electrical characteristics (Note
PARAMETER

CONDITIOIliS

Logical ':0" Input Voltage

Vee'" Min

Logical ''1'' Output Voltage

Vee'" Min
V IH '" 2V

lOUT'" -800 iJ.A
V IL ""D8V

Vec'" Min

lOUT'" 16 rnA
V IL "0 8V

Logical "1" Input Current at Any

V IH

'"

2V

5.5
5.25
+125
70

o

MIN

TVP

MAX

0.8
24
04

Vee'" Max

40

Vee'" Max

120

Logical "0" Input Current at Any
Input Except Enable

Vee'" Max

Logical "0" Input Current at Erlable

Vee'" Max

V IN "'04V

Output Short CirCUit Current
(Note 3)

Vee'" Max

V OUT

Supply Current (each device)

Vee'" Max

Input Clamp Voltage

Vee"" Min

Propagation Delay to a Logical "0" from

Vee'" SOV
T A "'2SoC

Load to Outputs,

tpdQ

Vce '" 50V

Data to Output,

TA

tpdQ

'"

'"

OV

-20
-18

25°C

66

-16

mA

-48

mA

-65

mA

105

mA

-15
24

50

26

50

Propagation Delay to a Logical "0" from
Clock to Ripple Clock, tpdQ

Vee"'50V
T A "" 25°C

16

24

Propagation Delay to a Logical "0" from
Clock to Outputs, tpdQ

Vee'" SOV
T A '" 25"C

22

36

Propagation Delay to a Logical "0" from
Clock to MaxiMin, tpdQ

Vee'" 50V
TA '" 25°C

21

52

Propagation Delay to a Logical "0" from
Down/Up to Ripple Clock, tpdQ

Vee'" 5 DV
TA '" 25"C

21

45

Propagation Delay to a Logical "0" from
Down/Up to Max/Min, tpdO

TA '" 25°C

16

33

Propagation Delay to a Logical "1" from
Load to Outputs, tpdl

Vee'" 5.0V
TA "" 25"C

22

33

Propagation Delay to a Logical "1" from
Data to Outputs, tpdl

Vee =SOV

TA '" 25"C

12

22

ProlJagatlon Delay to a Logical "1 ' from
Clock to Ripple Clock, tpd1

Vee=50V
T A ". 25°C

14

20

Propagation Delay to a Logical "1" from
Clock to Outputs, tpdl

Vee'" 5.0V

19

24

23

42

Propagation Delay to a Logical "1" from
Clock to MaxiMin, tpd1

V

mA

Vee'" Max

Propagation Delay to a Logical "0" from

V

V

Logical ''1'' Input Current at Enable

Input Except Enable

UNITS

v

Vee'" Min

Logical "1" Input CUrient at
Maximum Input Voltage

-55

UNITS

2)

Logical "1" Input Voltage

Logical "0' Output Voltage

45
4.75

MAX

Vec=50V

TA '" 25°C
Vee "'50V
TA '" 25°C

V

ns

ns

Propagation Delay to a Lgolcal "1 ' from
DowniUp to Ripple Clock, tpd1

r

22

45

Propagation Delay to a Logical "1" from
Down/Up to MaxiMin, tpd1

Vee=50V
TA=25"C

14

33

ns

Maxlm~Jm

Vee'" 5.0V
T A '" 25~C

20

25

MH,

20

Clock Frequency f MAX

Vec"'50V
A '"

25"C

Input Clock Frequency fCLOCK

o

Width of Input Pulse tW(CLOeK)

25

Width of Load Input Pulse tW(l.. OAD)

35

Data Setup Time, tSEtuP

20

Data Hold Time, tHOLD
Note 1 "AbsOlute MaXimum Ratings" afe those values beyond which the safety of the devIce cannot be !:Iuaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVIces should be operated at these limits The table
of "Electrlcal Charactenstl<:l;" prOVides conditions for actual deVIce operauon
Note 2 Unless otherwise specified min/max limitS apply across the _55°C tb +125"C temperature range for the DM54190
and across the O·C to 70"C range for the DM74190 All typlcals are gIVen for Vee" 5 OV and TA ~ 25°e
Note 3' Only one output at a time should be shorted

o

~s

~

Series 54/74

OM5419110M74191(SN541911SN74191)
up/down binary counter
general description
The DM54191/DM74191 IS an up/down bmary
counter capable of being preset to any number
from 0 through 15. A single Clock line is pro·
vided and depending upon the logic level on the
down/up control, proper direction of counting IS
achieved. The flip flops are triggered on the
positive-going transition of the clock providing
that the Enable input is low. A logical 1 at the
Enable mput tnhlblts counting. Level changes at
the Enable input should be made only when the
Clock input is high. I nformation can be asynchronously entered by putting the desired logic
levels on the Data inputs and then taktng the Load
input low. This may be done mdependent of the
state of the clock.

Two outputs have been made available to perform
the cascading function: ripple clock and maximum/
mtnimum count. The latter output produces a
high-level output pulse With a duration approximately equal to one complete cycle of the clock
when the counter overflows or underflows. The
ripple clock output produces a low-level output
pulse equal tn width to the low-level portion of
the clock tnput when an overflow or underflow
condition exists. The counters can be easily cascaded by feedtng the ripple clock output to the
enable input of the succeeding counter if parallel
clocking is used, or to the clock input If parallel
enabling IS used. The maximum/minimum count
output can be used to accomplish look-ahead for
high·speed operation.

logic and connection diagrams
Dual·1 n-Line and Flat Package
Ir.lPUTS

OUTPUTS

INPUTS

~~

DATA

RIPPlE
CLOCK

1,

A

,

CLOC~

RIPPLE MAX'
CLOCK

n

"

MIN

DATA
LOAD

C

" '"

"

,

r--t-t-.-...~--"""" ~~~:uM~N

~
,
UAfA

,

'.

,

,

'.

;

,

;

fN BLE DOWN

0,

'.

~

J:

OUTPUTS

ASYNCIlROIIJOUSINPU1S

lDWINPUTIOlDADSETSO A A

a.

sa..

C ANDU

o

0

operating modes
DOWN/UP

X
X
L
H

ENABLE

LOAD

MODE

X
H
L
L

L
H
H
H

Parallel Load
No Change
Count Up
Count Down

H '" high level, L = low level, X = Irrelevant

P," 1161

~

Vee P'n (81- GND

D

absolute maximum ratings (Note 1)

operating conditions

Supply Voltage
Input VOltage
Output Voltage
Storage Temperature Range
Lead Temperature (Soldenng, 10 sec)

Supply Voltage (Vee)
DM54191
DM74191
Temperature (T A)
DM54191
DM74191

MIN
7V
5.5V
5.5V
-65°e to +150o e
3000 e

4.5
4.75
-55
0

MAX
5.5
5.25

UNITS
V
V
°e
°e

+125
70

electrical characteristics (Note 2)
~ONDITIONS

PARAMETER

Logical "1" Input Voltage

Vee

LOglCdl "0" Input Voltage

Vee'" Min
Vee"" Min

LOgICdl "'" Output Voltage

V IH = 2V
Vee::: 2V

Logical "0" Output Voltage
Logical "1" Input Current dt
Ma>llmum Input Voltage

MIN

M,n

TYP

MAX

2

V

0.8
lOUT'" -BOO J.lA
V 1L =DaV

24

V

V 1H '" 2V

04

Vee::: Max

VIN =55V

1

rnA
"A

Input Except Enable

Vee"" Max

V1N=~4V

40

Logical "'" Input Current at Enable

Vee::: Max.

VIN=24V

120

Input Except Enable

Vee::: Max

VIN "" 0 4V

Logical "0" Input CUf,rent dt Enable

Vee::: Max

VIN :::

Output Short CI(cult Current
(Note 3)

Vee = Max

V OUl = OV

Supply Current (each device)

Vee'" Max

Input Clamp Voltage

Vee

Propagation Delay to d Logical "0" from

Vee =SOV
T A = 2Soc

C, • 50 pF, R L ' 400n

Vee "'50V
T A'" 2SoC

C L = 50 pF, R L

Vee =50V
T , ' 25°C

load to Outputs, tpdQ
Propagation Delay to a Logical
Data to OUtput, tpdQ
Propagation Delay to a Logical

"a" from

"a .. from

Clock to Ripple Clock, tpdQ
Propagation Delay to a Logical "0" from

= Mm

Clock to Outputs, tpdQ

Vcc=50V
TA • 25°C

Propagation Delay to a Logloal "0" from

Vee' 5 OV

Clock lO MaxlMm, tpdQ

TA '" 25°C

PropagatIon Delay to a Logical "0" from

Vcc=50V

Down/Up to Ripple Clock, tpdQ

TA '" 25°C

PropagatIon Delay to a Logical

"a" from

V

lOUT::: 16 mA
V 1L "'08V

Logical "1" Input Current at Any

Logical "0" Input Current at Any

UNITS

Vec=50V

a 4V

-48
-20
-18

"A
rnA
rnA

-65

rnA

105

rnA

-15

V

24

50

ns

400n

26

50

ns

CL • 50 pF. RL • 40012

16

24

ns

C L = 50 pF, RL = 400n

22

36

ns

CL '" 50 pF, RL '" 400n

21

52

ns

CL = 50 pF, RL '" 400n

21

45

ns

CL.

SO pF, RL. = 400n

16

33

ns

CL • 50 pF, RL • 400n

22

33

ns

liN'" -12 mA

:=

:=

Down/Up to MaxlMm, tpdQ

TA

Propagation Delay to a Logical "1" from

Vcc=50V

Load to Outputs, tpdl

I , ' 26°C

Propagation Delay to a Logical "1" from
Data to Outputs, tpdl

Vee.:!: SOV
T A '" 2Soc

CL. = 50 pF, AI.. '" 400n

12

22

ns

Propagation Delay to a Logical "1" from

Vee = SOV
T A = 25°C

CL

50 pF, AL =4000

14

20

ns

Clock to Ripple Clock, tprjl

'

25°C

-16

V

Vee '50V

:=

Propagation Delay to a Logical "'" from
Clock to Outputs, tpdl

TA

400n

19

24

ns

Propagation Delay to a Logical "'" from
Clock to Max/Mm. tpd1

Vee = SOV
T A :: 25°C

CL • 50 pF. RL • 400n

23

42

ns

Propagation Delay to a Logical "1" from

CL • 50 pF, RL • 400n

22

45

ns

50 pF, RL • 4QOn

14

33

ns

= 2SoC

Down/Up to A.lpple Clock, tpd1

Vee'" 6,QV
T A 2SoC

Propagation Delay to a LbQlcal"'" from

Vcc=6QV

Oown/U" to Maw/Min, tpd1

T A '" 25°C

Maxlmlouli Clock Frequency f MA )(

Vee'" 5,QV
T A ::: 2SoC

=

CL '" 50 pF, AL '"

CL •

CL. '" 50 pF, R L ;;;

400n

20

25

MHz

Input Clock Frequency fc:l.oc~

0

Width of Input Pulse tw~CL.OC"')

25

ns

Width of Load Input Pulse tW(LOAO)

35

ns

Oat8 Setup Time, lsETUP

20

ns

0

ns

Data Hold Time, tHOl.O

Not. 1 "AI:IIOlute Maltlmum Aatmgl" are those values beyond whIch the cafety of the deVice cannot be guaranteed Eltcept
j

for "Operating Tempereture Atlnge" they are not meant to Imply that the devIces should be operated at these hmlts The table
of "Electrical Cl'laracterlSlIcs" provIdes conditions for ad:ual davice operation
Not. 21 UnlHi othirw,.e speCified minimax IlmlU apply across the -56·C to +126"C temperature range for the DM54191
afld acr'oss the rfc to 7rfC range for the OM74191 All 'tYpical. are given for Vee'" 5 OV and TA" 25"C
NOte 31 Only one output at a time mould be shorted

20

MHz

c

Series 54/74

s:
U'I

...
0l=Io

CD
(X)

OM54198/0M74198(SN54198/SN74198) 8-bit shift register

.......
C

general description

...

s:......
0l=Io

CD

The DM54198/DM74198 is an eight-bit shift
register capable of being operated in four modes:
(1) Parallel-Load, (2) Shift-Right, (3) Shift-Left,
(4) Clock Inhibit (do nothing)_
With inputs So and S, at logic "1" levels the
data on the A through H inputs will be entered
on the next clock pulse_ Whether shifting left or
nght, clocking occurs on the rising edge of the
clock pulse_ During loading shifting is Inhiblted_
Cascading is accomplished by connecting the
Shift-Right and Shift-Left inputs to the outputs of

Q H of the preceeding register or Q A of the following

register respectively_ Clocking is inhibited when
both mode control inputs are low_ The mode
control inputs should be changed only when the
clock input is high_

features
• Shift Frequency

35MHz

• Power Dissipation

360mW

log ic and connection diagrams

Dual In-Line and Flat Package
SHIFT
LEFT

SERIAL INPUT
Vee

8, INPUT

I"

ZJ

2Z

H

21

Ilti

INPUT

zo

G

Do

INPUT

I' "

INPUT

OF

F

17

DE CLEAR

E

16

" "

13

truth table
INPUTS

P-

r-

I

So

2

, •

5

•

1

SHIFT INPUT ~ INPUT Os INPUT
RIGHT
ABC
SERIAL

INPUT

TOP VIEW

8

Dc

•
INPUT
D

MODE
S,

So

L
L

L

H
H
10

no

11 )'2

CLOCK GND

H
L

H

Inhibit Clock
Shift Right
Shift Left
Parallel Load

(X)

absolute maximum ratings (Note 1)

operating conditions
MIN

Supply Voltage
I nput Voltage
Output Voltage
Storage Temperature Range

Lead Temperature (Soldenng, 10 sec)

7V
55V
55V
-65°C to +150'C
300'C

electrical characteristics

Supply Voltage !VCC)
DM64198
DM74198

CONDITIONS

PARAMETER

Vee = Min

Logical "1" Output Voltage

Vee = Min
V ,H = 2V

lOUT = -800 JJ.A
V ,L =08V

V ,H

Vee = Min
= 2V

lou; = 16 mA
V'c =08V

Vee = Max

V ,N

= 2 4V

Vee = Max

Y,N

= 5 SV

Voltage
Logical "0" I nput Current
Output Short Circuit Current

(Note 3)

o

MAX

V
V

'c

'c

V
V

24

04

V

40
mA
mA

-16
Va

UNITS

V
08

Vee = Max
Vee = Max

TYP

2

Logical "0" Input Voltage

Input Current at Maximum Input

+125
70

-55

MIN

Vee = Min

LogIcal ."" Input Current

5,5
525

UNITS

(Note 2)

Logical "1" Input VOltage

Logical "0" Output Voltage

45
475

Temperature (T A)
DM64198
DM74198

MAX

-20
-18

= OV

72

-57

mA

104
116

mA

ns

Supply Current (each device)

Vee = Max

Input Clamp Voltage

Vee = Min

liN

= -12 mA

Propagation Delay to a Logical "0" from

Clear to Output, tpdO

Vee = 5 OV
TA = 2SoC

Cc

= 50 pF,

Rc

= 400n

35

Propagation Delay to a Logical "0" from
Clock to Output, tpdO

Vee = S,OV
T A = 25°C

Cc

= 50 pF,

RL = 400n

30

ns

Propagation Delay to a Logical "1" from
Clock to Output, tpdl

Vee = 50V
TA = 25°C

CL

= 50 pF,

Rc = 400n

26

ns

Maximum Clock Frequency

Vee = 50V
TA = 25'C

V

-15

25

35

MHz

20

ns

~ 50 pF

20

ns

= 5,OV

T A = 25°C, CL = 50 pF

30

ns

Vee = SOV

T A = 25'C, C c = 50 pF

a

ns

Minimum Clock and Clear Pulse Width

Vee = 5,OV

TA = 25°C, Cc = 50 pF

Data Setup Time

Vee = 5,OV

TA

Mode Control Setup Time tSETUP

Vee

Hold Time at Any Input, tHocD

= 25°C, C c

Note 1: "Absolute MaXimum Ratings" are those values beyond Which the safety of the deVice cannot be guaranteed.
Except for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these
limits. The table of "Electrlcal CharacteristIcs" provides conditions fOr actual deVice operation.
Note 2: Unless otherwise specified minImax limits apply across the -55°C to +12So C temperature range for the DM54198
and across the O'C to +70'C range for the DM7419B All tYPleals are given for VCC = 5,OV and TA = 25'C
Note 3: Only one output at a time should be shorted,

1

1(111

Series 54/74
OM54199/0M74199(SN54199/SN74'99) 8·bit shift register
general description
The DM54199/DM74199 IS an 8-bit shift regIster capable of being operated In three modes.
(1) Pa~allel-Load, (2) Shift-Right, (3) Inhibit Clock.
Parallel load is accomplished by applYing the eight
bits of data and taking the Shift/Load control
Input low when the clock input IS not inhibited.
Data appears as the output after the positive transItion of the next clock pulse. DUring loading
shifting is inhibited. Shifting is accomplished
synchronously when Shift/Load IS high and the
clock Input IS not inhibited. Serial data IS entered
at the J-K Inputs. In order to cascade deVices,
connect the Q H output of one stage to the J-K

Inputs (tied together) of the following stage. Both
Clock and Clock Inhibit are Identical in function
and may be used Interchangeably to serve as
clock or a clock inhibit· Inputs Holding althe·r high
inhibits clocking; but when one is held low, the
other will clock the register. Therefore the clock
inhibit input shoUld be changed from low to high
only while the clock Input is high.

features
• Shift Frequency

35MHz
360mW

• Power Dissipation

logic and connection diagrams

ClOCKCLOCKJ
INHIBIT

RSHIFTI

A

LOAD

Dual·ln·Line and Flat Package
SHIFTflNPUT
Vee LOAD H

I"

2J

22

OH

21

INPuT
INPUT
G
QG
F
OF

20

19

18

17

INPUT
E

16

QE

CLEAR CLOCK

"

14

13

truth table
J-K INPUTS
INPUTS
at tn

-

l-

2

I

Ii:

J

SERIAL

,

4

, ,

7

• , "

11 1'2

INPUT QA INPUT DB INPUT Dc INPUT no CLOCK GNO
ABC
0.
INHIBIT

INPUTS

TOPVIEW

OUTPUT

tn+1

J

K

QA

L
L
H
H

H

QAn
L
H

L
H
L

CiAn

H '" high level, L = low level
NOTE A tn '" bit time before clock pulse

NOTE B. tn+l

=

bit time after clock pulse

0')
0')

....
"It
.....

:E
C

.......

en
en
....

absolute maximum ratings (Note

operating conditions

1)

MIN
Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range

L.ead Temperature IS"lde"ng, 10 sec)

7V
-55V
55V
_65°C to +150°C
300°C

Supply Voltage IVCC)
DM54199
DM74199
Temperature IT A)
DM54199
DM74199

"It

45
475
-55
0

MAX
55
525
+125
70

UNITS
V
V
°c
°c

ID

:E
c

electrical characteristics (Note 2)
CONDITIONS

PARAMETER

MIN

TYP

MAX

Vee = Min

Logical "0" Input Voltage

Vee = Mil'

Logical "1" Output Voltage

Vee = Min
V ,H = 2V

V,L = O.BV

Logical "0" Output Voltag.

Vee = Min
V ,H = 2V

lOUT = 16 rnA
V'L =Q8V

Logical" 1" I nput Current

Vee = Max

V 'N = 2 4V

40

iJ.A

Vee = Max

V 'N = 5 5V

1

rnA

= Max

V 'N = OAV

Input Current at Maxlm .... m Input

Voltage
Logical "0" Input Current

Vee

Output Short CirCuit Current
INote3)

Vee = Max

Su pply Current l.aCh deVice)

Vee = Max

2

UNITS

Logical "1" Input Voltage

V
O.B

lou~ = -BOO iJ.A

V 'N

24

V
04

-16

V

rnA

-20
-18

= OV

V

72

-57

rnA

104
116

rnA

Input Clamp Voltage

Vee = Min

liN = -12 rnA

Propagation Delay to a Logical "0" from
CI ear to Output, tpdO

Vee = SOV
TA = 2S'C

CL = SO pF, RL = 400n

Propagation Delay to a Logical "0" from
Clock to Output, tpdO

Vee = S.OV
T A ~ 25'C

CL

Propagation Delay to a Logical "1 ,,' from
Clock to Output, tpdl

Vee = 50V
TA = 25°C

Maximum Clock Frequency

Vee = 5.0V
TA = 25'C

Minimum Clock and Clear Pulse Width

Vee=50V

T A = 2S'C, CL = SO pF

20

Data Setup Time

Vee=50V

T A = 25°C, CL = 50 pF

20

ns

Mo<;ie Control Setup Time tSETUP

Vee = 5.0V

i

Hold Time at Any Input, tHOLD

Vee

= S.OV

-1 S

V
35

ns

RL = 400n

30

ns

CL = 50 pF, RL = 40011

26

ns

= 50 pF,

25

35

MHz
ns

A

= 2S'C, CL = SO pF

30

ns

TA

= 2Soc, CL = 50 pF

0

ns

Note 1: "Absolute MaxlIl"Ium Ratings" are those values beyond which the safety of the deVice cannot be guaranteed.
Except for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these
liMits. The table of j'Electncal CharacteristiCs" provides conditions for actual deVice operation
Note 2: Unless otherWise specified minima" limits apply aCross the -S5'C to +12SoC temperature range for the DM54199
and across the a'c to +70'C range for the DM74199. All tYPical. are given for VCC = 5.0V and TA = 25°C
Note 3: Only one output at a time should be shorted.

o

3:
....,

Series 54/74

o
CD
o
........

o

3:

CO

o
o

DM7090/DM8090 quad inverter/dual 2-input NAND buffer

CD

general description
The DM7090/DM8090 optimizes the flexibility of
the 16-pin package by providing two 2-input
NAND gates and four Inverters In the same package. The electrical specifications are totally compatible with all Senes 54/74 devices.

schematic and connection diagrams

Dual*1 n-Line and Flat Package

...---"-"'--QVee
4K

16K

Vee

130n

INVE~;~~ 0 - -...-1"
NANOo--

OUTPUT

GNO
TOP VIEW

1_107

o0')
o

absolute maximum ratings

00

operating conditions

(Note 1)

~

c

........

o0')
o.....

70V
55V
5.5V
_65°e to +150 o e
3000 e

Supply Voltage
Input Voltage

Output Voltage
Storage Temperature Range
Lead Temperature (Soldenng, 10 sec)

~

c

electrical characteristics

Temperature IT AI
DM7090
DM8090

CONDITIONS
Vee

MIN

MAX

UNITS

4.5
4"75

55
5.25

V
V

-55
0

+125
70

°e
°e

(Note 2)

PARAMETER
Logical "1" Input Voltage

Supply Voltage IVeel
DM7090
DM8090

=

MIN

TYP

08
Vee'" Min, V IN

:::

0 8V,

lOUT:::

-400,uA

UNITS

v

Logical "0" Input Voltage

Logical "1" Output Voltage

MAX

20

Min

v

v

24

Logical "1" Output Current
Logical "0" Output Voltage
Logical "1" Input Current

Logical "0" I nput Current
Output Short Circuit Current
(Note 31

Supply Current - Logical "1"

04
Vee::: Max, V 1N

-=

Vee"" Max, V IN

:::

Max, V 1N

=

Vee

=

v

40

pA

5 5V

1

rnA

04V

-16

rnA

24V

DM7090
DM8090

a

Vee::: Max, V OUT

:::

Vee::: Max, V IN

;:::

0

Vee = Max, V IN

:::

5 OV

-20
-18

-55

rnA

11

rnA

31

rnA

(each device)

Logical "0"

Input Clamp Voltage

Vee -= 50V,

Propagation Delay to a Logical "0"
from Inputs to Outputs, tpdO

Vec

T A o25"C

Propagation Delay to a Logical "1"
from Inputs to Outputs, tpd1

TA

=

liN;::: -12 mA, T A

:::

50V

Vee;::: 5 OV
"

-1 5

v

g

15

ns

13

25

ns

-10

25"C

25"C

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits. The table
of "Electrical Characteristics" provides conditions for actual deVice operation
Note 2: Unless otherwise specified min/max limits apply across the _55°e to +125°C temperature range for the OM7090 and
across the O°C to 70°C range for the OM8090. All typlcals are given for Vee 5 OV and TA = 25°e
Note 3: Only one output at a time should be shorted
0::

1-108

c

Series 54/74

....s:
o

CD
....
........

C

s:
CO

o

DM7091/DM8091 quad 2-input NAN D buffer
general description
The electncal specifications are totally compatible
with all Senes 54/74 devices.

The DM7091/DM8091 provides four 2-input gates
each with a fan-out of 30, in the same package.

schematic and connection diagrams

,---,_--"",-0() v"
4K

INPUT

0-_---'7'"

INPUT

0--+-.

luau

600le

OUTPUT

Dual·ln-Line and Flat Package
GND

14

13

12

11

TOP VIEW

10

CD
....

~

en
o
co

absolute maximum ratings

~

operating conditions

c

........
~

en
o

Supply Voltage
Input Voltage

Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

"~
c

70V
55V
55V
_65°C to +150 o e
300 0 e

electrical characteristics

(Note

PARAMETER

Supply Voltage 1Veel
DM7091
DM8091

Temperature (T A)
DM7091
DM8091

Vee = Min

Logical "0" Input Voltage

Vee = Min

MAX

UNITS

45
475

55
525

V

-55

o

+125
70

TYP

MAX

MIN
2

UNITS
V

0.8

2A

V

Logical "1" Output Voltage

Vee = Min, Y'N = 0 8V, lOUT = -12 mA

Logical "0" Output Voltage

Vee = Min, Y'N = 2 OV. lOUT = 48 mA

Logical "1" Input Current

Vee = Max, Y'N = 2AV
Vee = Max, Y'N = 5.5V

40
1

Il A
mA

Logical "0" I nput Current

Vee = Max, Y'N = OAV

-1.6

mA

Output Short Crreult Current
(Note 3)

Vee = Max

Supply Current - Logical "1"
Logical "0"
Input Clamp Voltage
Propagation Delay to a Logical

-18

V

-70

mA

Vee = Max, Y,N = 0

15

mA

Vee = Max, Y'N = 50V

46

mA

V ee =5.0V,T A =25°C,I'N=-12mA

"a"

V
04

-10

-15

V

from Any Input to Output, tpdO

Vee = 5.0V
TA = 25°C

8

15

ns

Propagation Delay to a Logical "1"
from Any I nput to Output, tpd1

Vee = 5.0V
T A = 25°C

13

22

ns

Note 1 "Absolute M'axlmum Ratings" are tho~e values bey&nd which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual deVice 0118ratlon
Note 2 Unless otherWise specified min/max limits apply across the -55"e to +125"e temperature range for the DM7091 and
across the oOe to 70"e range for the DM8091 All typlcals are given for Vee'" 5 OV and T A'" 25°e
Note 3

1-110

V

11
CONDITIONS

Logical "1" Input Voltage

MIN

Only one output at a time should be shorted

c

3:
....,
o

Series 54/74

CD
N

.......

c

3:
CO
o

CD
N

DM7092/DM8092 dual 5-input NAND gate

general description

features

The DM7092/DM8092 IS a dual 5-input NAND
gate utilizing TTL (Transistor-Transistor Logic),
The device fills a gap In the standard 54/74 series
In that it replaces two single 8-input gates (with
tied inputs) or an assembly of smaller gates, Also
either of the two 5-input gates can be used as a
smaller gate,

•

Series 54/74 compatibility

•

No longer necessitates use of SN5430/SN7430
(eight-input-gate) for the five-Input function

•

Specifications identical to standard SN54XX/
SN74XX gate

logic and connection diagram

Dual-in-Line and Flat Package

T
14

1

13

I"

11

10

9

8

6

J~

~
2

3

S::
4

I'

rOPVIEW

1-111

N

en

o

CO

:E
Q

.......
N

en
o.....
:E
Q

absolute maximum ratings

(Note 1)

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range

7V
5.5V
5.5V

DM7092
DM8092
Storage Temperature Range

-55"C to +125°C
O°C to +70°C
_65°C to +150°C

Lead Temperature (Soldering, 10 sec)

electrical characteristics

300°C

(Note 2)

PARAMETER

CONDITIONS

MIN

TYP

UNITS

Logical "1" Input Voltage

Vee=45V
V ee -475V

Logical "0" Input Voltage

DM7092
DMB092

Vee = 4.5V
Vee 475V

LogIcal"," Output Voltage

DM7092
DMB092

Vee=45V
lOUT = -400I'A. Y'N = 0 BV
Vee = 4 75V

Logical "0" Output Voltage

DM7092
DMB092

Vee=45V
lOUT = 16 rnA. Y'N = 2 OV
V ee -475V

Logical "1" Input Current

DM7092
DMB092

Vee=55V
Y'N = 2 4V
Vee = 5 25V

40

I'A

DM7092
DM8092

Vee=55V
V,N =55V
Vee = 5 25V

1

rnA

Logical "0" I nput Current

DM7092
DMB092

Vee=55V
Y'N = 04V
Vee 525V

-16

rnA

Output Short CIrCUit Current
(Note 3)

DM7092
DMB092

Vee=55V
VOUT
Vee 525V

Supply Current - Logical "1"
(Each Device)

DM7092
DMB092

Vee=55V
Vee- 525V

Logical "0"

DM7092
DM8092

Vee = 5 5V
V ,N =50V
V ee -525V

20

V

OB

VIN

""

OV

24

V
04

-20
-18

= OV

V

-55

V

rnA

1

18

rnA

3

51

rnA

-15

V

Propagation Delay to a Logical "0",

tpdQ

Vee=50V, T A =25°e,e=50pF

8

15

ns

Propagation Delay to a Logical "1",

tpd1

Vee = 5 OV, T A = 25°e, e = 50 pF

13

25

ns

Vee = 5 OV.I'N = -12 rnA, TA = 25°e

Input Clamp Voltage

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply that the
devices should be operated at these limits. The table of "Electncal Charactenstlcs" prOVides conditions
for actual device operation.

Note 2: Unless otherwise speCified minImax limits apply across the -55°C to +125°C temperature
range for the DM7092 and across the O°C to 700 e range for the DM8092. All tYPleals are given for
Vce = 5.0V and T A = 25°C.
Note 3: Only one output at a time should be shorted.

1·112

MAX

DM7092
DMB092

c

3:
-.,J
o

Series 54/74

CD
W

........

c

3:
00
o

®

DM7093/DM8093 TRI-STATE quad buffer
DM7094/DM8094 TRI-STATE quad buffer

CD
W

general description
The DM7093/DM8093 and DM7094/DM8094 are
quad 2-input buffers which accept normal TTL or
DTL input levels and have outputs which provide
either normal low-impedance TTL output characteristics or a high Impedance state, One of the two
inputs to each buffer is used as a control line to
gate the output into the high impedance state, The
other input simply passes the non-inverted data
through the buffer, The DM7093/DM8093 and
DM7094/DM8094 differ only In the activating
logic state of the control input. The
DM7093/DM8093 provides the high impedance
state when a logical "1" IS applied to the control
Input; the DM7094/DM8094 operates Similarly
with a logical "0",

features
• Series 54/74 TTL and 930 DTL Compatible
• Same Pin Breakout as SN5400/SN7400 TTL
and 946 DTL

• Up to 128 Buffers can be Connected to a Common Bus- Line

3:
o

• High Capacitive Drive Capability

00

• I ndependent Control of each Buffer
This unique TRI-STATE concept allows outputs to
be tied together and then connected to a common
bus line, Normal TTL outputs cannot be connected due to the low-impedance logical "1" output current which one device would have to sink
from the other, If however on all but one of the
connected devices both the upper and lower output transistors are turned off, then the one remainIng device In the normal low impedance state will
have to supply to or sink from the other devices
only a small amount of leakage current, This is
exactly what occurs on the DM7093/DM8093 and
DM7094/DM8094,

Dual-In-Line and Flat Package
CONTROL

OUTPUT

*Invertedon DM1D9liElM80930nlv

truth tables
DM7093/DM8093

DM7094/DM8094

OUTPUT

DATA

CONTROL

OUTPUT

DATA

CONTROL

1

0
0
1

1

1

1

1

0

0
X

1

0

0

HI'Z

0
X

X:;:: Irrelevant

HI'Z

x=

~

c

• 12 ns Propagation Delay

logic and connection diagram
CONTROL

CD

........

-,Continued on following pages)

lice

c
3:
-.,J
o

Irrelevant

1-113

CD
~

0::1'

m

absolute maximum ratings

o

CIO

7V
55V
5.5V

Supply Voltage

~
C

Input Voltage

Output Voltage
Time that two bus-connected devices may be In
OPPosite low Impedance states simultaneously
(5% duty cycle)

........

0::1'

m

_65°C to +150°C

Storage Temperature Range
Operating Temperature Range

_55°C to +12SoC
O°C to + 70°C
300°C

DM7093, DM7094
DM8093, DM8094
Lead Temperature (Soldering, 10 sec)

Indefinite

o

"~
C
M
0)

electrical characteristics

~
C

........
M

m
o

"~C

MIN

CONDITIONS

TVP

(NOTE 3)
Input Clamp Voltage

o

CIO

(Note 1)

PARAMETERS

Logical "1" Input Voltage

Logical "0" Input Voltage

Logical" 1" Input Current

Logical "1" Input Current

DM7093/94

Vee "'4SV

DM8093/94

Vee "'47SV

DM7093/94

Vee =45V

DM8093/94

Vee "'47SV

DM7093/94

V cc =4SV

DM8093/94

Vcc"'47SV

DM7093/94

Vee "'55V

DMS093/94

Vee - 525V

DM7093/94

Vee = S SV

DM8093/94

V cc =S25V

T A ==2SoC,IIN=-12mA

MA

VIN=SSV

1

mA

V IN "'04V

-16

mA

Vce=55V

Logical "0" Input Current
(Data Input Only)

OM7093!94

Vec=55V

01\.18093/94

Vee'" 5 25V

DM7093/94

Vce=45V

10 = -2 0 mA

DM8093/94

V ee =475V

10=-52mA

DM7093/94

Vee'" 4 5

DM8093/94

Vee=475

DM7093/94

Vee = 5 5V

DM8093/94

Vce=525V

Supply Current

Supply Current

Output Disable Current

VCONTROL = 2 OV (DM7093!8093)
o BV (DM7094/8094)

-40

VIN "'04V

DM7093

Vce~55V

DMB093

Vce=525V

-1 6

VeoNTRoL = 0 8V (DM7093/B093)
2 OV (OM7094/B094)

24

V

10 = 16 rnA

04

V o = OV

-30

-45

-70

-28

-45

-70

1~

n

mA

Vee=55V

Vo = 2 4V

40

MA

Vce=525V

V o - 0 4V

-40

pA

Vce = OV

15

V

-15

V

"

Vee = OV

DM7093/8093
--DM7094/8094
DM7093/8093
--DM7094/8094

Vce=50V

12

23

TA = 2SoC

12

23

Vee=-50V

12

18

TA = 25°C

12

18

~

Vce=50V

5

10

DM7094(8094

T A =25°C

12

18

DM7093(8093

Vce=50V

14

24

T A = 25°C

18

29

--DM7094!8094
--DM7094/8094

Vcc=50V

14

21

T A = 2SoC

14

21

---DM7093/8093

Vee=50V

13

25

DM7094/8094

TA= 2SoC

13

25

Vee'" 5 OV and TA

='

25°C

NOTE 2, Only one output at a time should be shorted

NOTE 3_ MIN and MAX values refer to the absolute values

1-114

62

DM8093/94

NOTE l' Unless otherwise specified the min-max limits across the _55°e to +125()C temperature
range for the DM7093 & DM7094 and across the O"C to 700 e temperature range for the DM8093 &
DM8094 Ali typlcals are given for

mA

DM7093/94

DM7093(8093

1"

54

Vee=55V

10=-12mA

'0H

mA

Vee=525V

Ground Clamp

"H

V

DM8094

10 = 12mA

tpdO

MA
mA

DM7094

Vee Clamp

tpdl

V

40

Vcc=52SV

Output Short Current
(Note 2)

V

V 1N =24V

DMB093/94

Logical "0" Output Voltage

UNITS

V

08

Logical "0" I nput Current
(Control Input Only)

"1" Output Voltage

-15

20

DM7093/94

Logical

MAX
(NOTE 3)

"'

"'
"
n,"'

"
"
n,

"'
"
"

c

:s:....

general description (cont.)

o(D

A tYPical system connection IS shown In Figure 1
While true that In a TTL system open-collector gates
could be used to perform the logic function of
these TR I-STATE elements, neither waveform integrity nor optimum speed would be achieved. The
low output impedance of the DM7093/DM8093
and DM7094/DM8094 provides good capacitance
drive capability and rapid transition from the
logical "0" to logical "1" level thus assuring both
speed and waveform integrity.
It is possible to connect as many as 128 devices to
a common bus-line and still have adequate drive
capability to allow fan-out from the bus. The
example shown in Figure 2 indicates how this
guarantee can be made under worst-case conditions.
Another advantage of these buffers IS that in the
high impedance state their inputs do not present
the normal loading to the driving device. This is
significant when It is desirable to transmit in both

w
......

directions over a common line. Figure 3 illustrates
such a system. Assume one device in group A is
driving the bus-line; and the gates at B are receiving the signals. All outputs at C and D are gated
into the high-impedance state. Normally the fanout from the driving gate at A would be calculated
at 4-2 from Band 2 from D, plus additional slight
loading from those outputs in the high impedance
state. But since the logical "0" Input current on
D's inputs deliver only 40 flA when these devices
are gated into the high impedance state, the loading is significantly reduced. It's true that the logical "1" fan-out remains the same (40 flA times the
number of inputs and high-impedance-state outputs). However since the logical "1" fan-out capability of these tri-state devices is 130 while the
logical "0" fan-out capability is only 10, it is
obvious that the logical "0" fan-out is the limiting
item and that a significant Increase in the number
of inputs which can be tied to the bus-line can be
achieved by reducing the number of ~1.6 mA logical "0" loads.

c

:s:
CO

o(D
w

c

:s:....

o

(D

~

......

c

:s:
CO

o

(D

~

STANOARDTH
DR
DTLCIACUITS

120mA fOR DRIVING OTHER
TTL INPUTS

SElECTED AS
lOWIMHOANCE
DEVICE

GATED INTO
HI IMPEDANCE
STATE
CONTROL =

HIGH IMPEDANCE OUTPUT
GATED INTO
IlllMHOilNCE
STATE

I----j="l~~
I---F=t~~
CONTROL =
HIGH IMPEDANCE OUTPUT

FIGURE 2

FIGURE 1

FIGURE 3

1-115

1'00

0')0')

00
0000

Series 54/74

:!:!

cc

................
1'00
00
1'1'

DM7095/DM8095,DM7097/DM8097 TRI-STATE® hex buffers
DM7096/DM8096,DM7098/DM8098 TRI-STATE hex inverters

CC

general description

LOU)

Each of the devices descrl bed herein are used to
convert standard TTL or DTL outputs to TRISTATE outputs. The DM7095/DM8095 and the
DM7097/DM8097 do so with no logic inversion; the
DM7096/DM8096 and DM7098/DM8098 provide
the logical opposite of the input signal. The
DM7095/DM8095 and DM7096/DM8096 control
all SIX devices from common' Inputs; the
DM7097/DM8097 and DM7098/DM8098 control

0')0')

:!:!
0')0')

00
0000

:!:!

cc
................
LOU)
0')0')

00
1'1'

:!:!
CC

connection diagrams

four devices from one input and two from another
Input.

features
•

Maximum package utilization

•

Typical power dissipation
DM7095/DM8095, DM7097/DM8097 325 mW
DM7096/DM8096, DM7098/DM8098 295 mW
15 ns
TYPical propagation delay

•

(Oual·ln-Llne and Flat Packages)

OM7095iOM8095
Vcc

DIS,

DIS,

IN.

OUT.

IN,

OUT,

IN,

DUl,

INI

OUT,

IN,

OM7096iOM8096
IN,

OUT.

Vcc

01$,

IN"

OUT,

[JIS,

IN,

QUT,

IN~

1I0c

OIS,

IN"

OU1,

OUL,

IN,

II'<,

OUT,

our,

TOPVIEW

OM7097 iOM8097

OM7098iOM8098

Vcc

DIS,

IN.

OUl s

IN,

OUT.

IN,

DIS 4

IN,

OUT,

IN,

aUT,

IN,

OUT,

OUT.

DIS,

Ir.!.

OUT,

IN,

OU1;

IN,

OUT,

IN,

OUT,

IN,

OUT,

TOPVIEW

truth tables
OM7095iOM8095

OM7096iOM8096

DISABLE
DIS,

INPUT
015 2

INPUT

OUTPUT

0
0
0
1
1

0
0
1
0
1

0
1
X
X
X

0
1
H·,
H·,
H,

DISABLE
DlS1

INPUT

0
0
0
1
1

0
0
1
0
1

OM7097 iOM8097
DISABLE

1-116

DIS 4

INPUT
015 2

INPUT

0
0
X
1

0
0
1
X

0
1
X
X

015 2

INPUT

OUTPUT

0
1
X
X
X

1
0
H·,
H·,
H·,

OM7098iOM8098
OUTPUT

0
1
H.,
H·z .....

"Output 5-6 only
.. "Output '-4 only
X;o Irrelevant

DISABLE
015 4

INPUT

0
0
X
1

0
0
1

015 2

X

INPUT

0
1
X
X

OUTPUT

1
0
H-z"

H-z"'''

OUT,

00

absolute maximum rati ngs (Note

S:S:

operating conditions

1)

Supply Voltage
Input Voltage
Output Voltage

7V
5.5V
5.5V
_65 0 C to +150° C
Storage Temperature Range
300°C
Lead Temperature (Soldering, 10 sec)
Time that 2 bus-connected devices may be in opposite
Indefinite
low-Impedance states simultaneously . . .

MIN

MAX

UNITS

4.5
4.75

5.5
5.25

V
V

""
00
CD CD
0)CJ1

Supply Voltage IV ccl
DM7095/617IS
DMS095/617IS
Temperature IT AI
DM7095/617!S
DMS095/617IS

-55
0

..............

00

S:S:
0000
00

'c
'c

+125
70

CD CD

.

0)CJ1

electrical characteristicsl(Note 2)

00
CONDITIONS

PARAMETER
Logical "1" Input Voltage

Vee"" Mm

Logical "0" Input Voltage

Vcc=Mm

TA ~ 25'C

10
10

~
~

-2.0 rnA
-52 mA

Logical "1" Output Current
Logical "0" Output Voltage

Vee = MIn

10

~

32 mA

Third State Input Current

Vee

V IN ~ 0 5V
DIS = 2 OV

Third State Output Current

Vee::: Max

Logical "1" Input Current

Logical "0" Input Current

OM 7095/6/7/S
DMS095/617IS

Output Short CirCUit Current

INote 31

Supply Current
(each deVice}

DM709517
DMS09517
DM7096/S
DMS096/S

Vee

MAX

20
OS

= Mm

Logical "1" Output Voltage

TYP

MIN

,
~

UNITS

S:S:

V

00

-40

flA

00"

Vo = 24V
Vo = 04V

40
-40

flA
flA

Vee::: Max

V'N " 24V
V'N = 5 5V

40
1

pA
mA

Vee::: Max

V ,N = 04V
DIS = 04V

-1 6

mA

Vee::: Max

Vo = OV

=;

Max

04

CD CD

-40

-SO

-115

65

85

59

77

mA

mA

Vee = Max

-I 5

V

I 5

V

-I 5

V

14

22

ns

10

16

ns

10

16

ns

\ 11

17

ns

Vee = 5 OV
T A ~ 25°C

6

11

ns

Vce=50V
T A ~ 25°C

16

27

ns

Delay from Disable Input to Logical 1/1"
Level (from High Impedance State), tH1

Vee=50V
T A ~ 25°C

21

35

ns

Delay from Disable I nput to Logical "a"
Level (from High Impedance State), tHO

Vee

24

37

ns

Vee

Vee = OV

Output Ground Clamp Voltage

Vec

Input to Output, tpd1

=

~

Mm

OV

DM709517
DMS09517
DM7096/S
DMS096/S

Vee = 5 OV
TA = 25 c C

DM709517
DMS09517
DM7096/8
DMS096/S

Vee = 5 OV
T A = 25'c

Delay from Disable Input to High
Impedance State (from Logical //1/1
Levell, t1H
Delay from Disable Input to High
Impedance State (from Logical "0//
Level), tOH

S:S:

0000
00

Input Clamp Voltage

Propagation Delay to a
Logical "1// from Data

00

V

24

V

Output Vee Clamp Voltage

Propagation Delay to a
Logical "0" from Data
Input to Output, tpdO

""
CD CD

00"
..............

V

liN = -12 mA
10=12mA
loc-12mA

i
\

~

5 OV

TA~25°C

Note 1 "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electncal Characteristics" prOVides conditions for actual deVice operation
Note 2. Unless otherWise specified min/max limits apply across the _55°e to +125°e temperature range for the
OM7095/6/7/8 and across the oOe to 70 G e range for the DM8095/6/7/8 All tYPlcals are given for Vee'" 5 OV and T A '"

25"C
Note 3. Only one output at a time should be shorted

1·117

...
...eo

N

Series 54/74

~
Q

...
...
,....

"-

DM71211DM8121 TRI-STATE ® eight channel digital multiplexer

N

general description

~
Q

The DM7121/DM8121 multiplexes digital signals
from eight Imes to one Ime. Two outputs provide
either true or complement Information. Three
select lines determine which of the eight Input
lines are routed to the output. A strobe Input is
provided which when taken to the logical "1"
state overrides all other Inputs and places the
outputs In a defined state.
This unique state turns off both upper and lower
output transistors thus presenting a high Impedance
state and allOWing numerous outputs to be connected to a common bus-line. Only one device at a
time may be In the normal output state when
connected In th IS manner. The logical "0" state on
the strobe Ime was selected as the level which

places the device In the normal output state, because the logical "0" state IS usually the unique
state which occurs on such devices as the SN5442/
SN7442 and SN54154/SN74154 decoders

features
•
•
•
•
•
•

Performs parallel-to-serial conversion
Pin compatible with SN54151/SN74151
Strobe over-ride
15 ns tYPical propagation delay
150 mW typical power dissipation
Outputs can be connected to a common bus-line

logic diagram
GUl1'UT
DISABLE

DATA
INPUTS

{
'

DATA

SELECT

•

(IIN"Rr~

c

connection diagram
Dual~1 n-Line

truth table

and Flat Package
OUTPUTS

C

B

A

STROBE

DO

01

x
00

,
0

o ,

0

,

0

0,

OATAtNPUTS

1·118

OUTPUTS

0

03

04

Os

06

07

x

x

X

x

x

x

x
x

x
x

x
x

x

o

,

00

o ,

02

x
x

x
x

0

x
x
x

x
x
x

x
x
x

x

x

x

x
x

HI Z

H,Z

o

absolute maximum ratings

!:

.........

(Note 1)

....

II.)

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM7121
DM8121
Storage Temperature Range
Lead Temperature (Soldering, 10 secl

electrical characteristics

7V

"'-

o

5.5\/
5.5V

!:

-55°C to +125°e
oOe to 70°C
-65°C to +150o e
300°C

....
....

00

II.)

INote 21

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Logical "1" I nput Voltage

DM7121
DM8121

Vee=45V
Vee 475V

Logical "0" Input Voltage

DM7121
DM8121

Vee=45V
Vee - 4-75V

Logical" 1" Output Voltage

DM7121
Vee=45V
r,.;---DM8181 Vee = 4 75V

lOUT
lOUT

Logical "0 'Output Voltage

DM7121 ~c=4~
DM8121
V ee =475V

lOUT"" 16 rnA

Logical "1 ' Input Current

DM7121
--DM8121

VIN=24V

40

MA

VIN '" 5 5V

1

mA

-16

mA

r-.;~---

Vee=525V

DM7121
DM8121

Vcc=55V

DM7121

~ee=~

Logical "0" Input Current

DM8121

Output Short Circuit Current

DM7121
DM8121

INote 31

Vcc=55V

V ee -525V
Vec=525V

2
08
=
=

-2 mA
-5 2 mA

24

V ,N =04V
-20
-18

V ee -525V

Supply Current

DM7121
DM8121

Input Clamp Vcltage

DM7121
Vcc=45V
-,-,'--DM8121 Vee=475V

TA

Output Vee Clamp Voltage

DM7121
DM8121

10= ±12 mA, TA

=

5 5V

31

V ec -525V

Vee=55V
Vee - 5 25V

=

25°C, liN

=

V

-55
-55

mA

51

mA

-12 mA

-15

V

25°C

Vee + 1 5

V

-15

V

=

DM7121
Output Ground Clamp Voltage
DM8121

Vee = 5 5V
Vee - 5 25V

10 = -12 mA, TA = 25°C

DM7121
DM8121

Vee = 5 5V
V ee -525V

V o =24Vor04V

Third State Output Current

V
V

04

Vcc=55V

Vee

V

-40

40

MA

Propagation Delay Time to
Logical" 1" from A,B,C or 0

Vee = 5 OV, CL = 15 pF, RL = 40011

18

36

ns

Propagation Delay Time to
Logical "0" from A,B,C or 0

Vee = 5 OV, CL = 15 pF, RL = 40011

21

33

ns

Propagation Delay Time to
Logical "1" from Strobe

Vee = 5 OV, CL = 15 pF, RL = 40011

17

30

ns

Propagation Delay Time to

Vee = 50V, CL = 15 pF, RL =40011

18

27

ns

Logical "0" from Strobe
25°C

W Output
to Y Output

4
4

8
8

ns

Vee=50V
T A = 25"C

W Output
to Y Output

15
14

30
28

ns

Level

Veeo 5OV
T A = 25°C

W Output
to Y Output

15
15

30
30

ns

Delay from Strobe to Logical "0" Level

Veeo 5OV
TA=25"C

to W Output
Y Output

19
18

38

Delay from Strobe to High Impedance
State (from Logical "1" Level), tlH
Delay from Strobe to High Impedance
State (from Logical "0" Level), tOH
Delay from Strobe to Logical "1

II

(from High Impedance State), tHl

(from High Impedance State), tHO

Vee ° 5 OV
TA

""

36

ns

Note 1 "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
devices should be operated at these limits The table of "Electrical Charactemtlcs" provides conditions
for actual device operation
Note 2 Unless otherWise specified min /max limits apply across the -55 C to +125°C temperature
range for the OM7121 and across the DoC to 70°C range for the OM8121 All typlcals are given for
Vee'" 50V and TA '" 25°C
Q

Note3

Only one output at a time should be shorted

1-119

Series 54/74
DM7123/DM8123 TRI-STATE ®
quad 2-input multiplexer
general description
The DM7123/DM8123 consists of four 2-lnput
multiplexers with common input select logic and
common output disable circuitry. It allows two
groups of four bits each to be multiplexed to four
parallel outputs. When the Enable Input IS at the
logical "0" level the outputs are conventional TTL.
However, when a logical "1" is applied, the outputs
assume a high"mpedance state. Both upper and
lower output transistors are turned off and the
resulting condition allows many devices to be
connected to a common bus line without loading
down or being loaded down by other devices on
the line.

The DM7123/DM8123 is pin compatible and func·
tlonally compatible with the FSC 9322 and the
SN54157/SN74157 except for the TRI·STATE
capability.

features
•

Typically 10 ns from data to output

•

Power dissipation 200 mW typ

•

TRI-STATE outputs

•

Pin compatible with FSC 9322 and SN54157/
SI\174157

•

Diode clamped inputs

logic diagram
h,

100

11

10

z,

connection diagram

11C

13

z,

z,

truth table

Dual-In-Line and Flat Package

ENABLE

SELECT

1

X

0

1
1
0
0

0
0

0

TOP VIEW

1-120

INPUT
10

X

"
X

OUTPUT
HI-Z$tate

X

0

X

1

1

0
1

X

0
1

X

0

c

absolute maximum ratings

........3:

(Note 1)

N
W

7V
5.5V
5.5V

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range
DM7123
DM8123
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

~
3:

...

_55°C to 125°C
O°C to 70°C
_65°C to 150°C
300°C

electrical characteristics

CO

N
W

(Note 2)

PARAMETER

CONDITIONS

Log.cal "I" Input Voltage

DM7123
DM8123

Vee = 4.5V
Vee - 4.75V

Log.cal "0" Input Voltage

DM7123
DM8123

Vee = 4.5V
Vee - 4.75V

Log.cal "I" Output Voltage

DM7123
DM8123

Vee = 4.5V
Vee=475V

lOUT = -20 mA, V. N = 2V
lOUT = -52 mA, V. N = 2V

Log.cal "0" Output Voltage

DM7123
DM8123

Vee = 4.5V
Vee - 4.75V

lOUT

Third State Output Current

DM7123
DM8123

Vee=55V
Vee - 525V

Logical "'" Input Current

DM7123
DM8123

Vee = 5.5V
V ee -525V

DM7123
DM8123

MIN

TYP

MAX

V

2.0
.8

V OLH ~ 2.4V
V. N (Enable) = 2V

V
V

2.4

= 16 mA, V. N = 8V

0.40~

UNITS

.4
40

IlA

V. N = 2 4V

40

IlA

Vee = 5.5V
V ee -525V

V. N = 5.5V

1

mA

DM7123
DM8123

Vee = 5.5V
Vee = 5.25V

V. N = O.4V

-16

mA

DM7123
DM8123

Vee=55V
Vee - 5 25V

V. N = 4.5V

-50

-70

mA

Supply Current

DM7123
DM8123

Vee=55V
Vee 525V

V. N (Enable) = 4 5V
Other Inputs OV

40

51

mA

Input Clamp Voltage

DM7123
DM8123

Vee = 5.0V
TA - 25 C

I. N = -12 mA

-10

-15

V

Log.cal "0" I nput Current
Output Short Circuit Current

(Note 3)

-40

V

-1.0
-30

Vee = 5 OV
TA = 25°C

5

11

18

ns

Propagat.on Delay to a Log.cal "0" from
Select to ZA, tpdO

Vee = 5 OV
TA = 25°C

8

17

24

ns

Propagation Delay to a Log.cal "I" from
Data to Output, tpd'

Vee = 5.0V
T A = 25°C

4

8

15

ns

Propagat.on Delay to a Log.cal "I" from
Select to ZA, tpd'

Vee= 50V
T A = 25°C

5

15

23

ns

Delay from D.sable to H.gh Impedance
State (from Log.cal "I" Level), t.H

Vee= 50V
T A = 25°C

4

7

11

ns

Delay from D.sable to H.gh Impedance
State (from Log.cal "0" Level), tOH

Vee=50V
TA = 25°C

9

19

27

ns

Delay from D.sable to Log.cal "I" Level
(from H.gh Impedance State), tH'

Vee = 5.0V
TA = 25°C

9

18

25

ns

Delay from D.sable to Log.cal "0" Level
(from H.gh Impedance State), tHO

Vee = 5.0V
TA = 25°C

10

23

30

ns

Propagation Delay to a Logical "0" from

Data to Output, tpdO

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the device cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVICes should be operated at these limits The table of "Electncal Characteristics" provides conditions
for actual deVice operation

Note 2: Unless otherwise specified mm/max limits apply across the _55°C to +12SoC temperature
range for the DM7123 and across the o"e to 70"e range for the DM8123 All typlcals are gIVen for
Vee::: S OV and TA ::: 2S"e
Note 3: Only one output at a time should be shorted

1·121

Series 54/74
DM7130/DM8130 10 -bit comparator
DM7160/DM8160 6-bit comparator

o

....

M

00

~

C

.......

o

M
....
I"

~

general decription

features

The DM7130/DM8130and DM7160/DM8160comparators determine equality or non-equality between two binary words. The DM7130/DM8130
compares two ten-bit words while the DM7160/
DM8160 compares two six-bit words. A strobe
over-ride is provided on both devices which when
taken to a logical "1" will force the output to a
logical "1".

•

Series 54/74 compatible

•

20 ns typical compare delay

•

TYPical power dissipation
DM7130/DM8130
DM7160/DM8160

•

Open collector outputs for expandabillty

C

logic and connection diagrams
Dual-In-Line and Flat Package

Dual-I n-Line and Flat Package

DM713DiDM813D

DM716DiDM816D

truth table
CONDITION

STROBE
S

Z

1
0
0

1
1
0

A=B.A*B
A=B
A*B
For DM7130/DM8130:

IA) = A9 - - - - - - Ao
IB) = B9 - - Bo
z = s + [Xo . X, . X2

•

X3 • X4

•

X3 . X4

•

Xs . X6 . X7 · Xs' Xg J

For DM7160/DM8160

IA) = As IB) = B5

- Ao
- - - Bo

z = s + [Xo . X, . X2

• X5

J

where

Xo

1·122

=

240mW
205 mW

Ao Bo + Ao Bo. X,

=

A, B, + A, B,

c
absolute maximum ratings

3:

...'"
o

(Note 1)

W

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM8130, DM8160
DM 7130, DM 7160
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

.....
c

7V
5.5V
5.5V
oOe to 70°C
_55°C to +125°e
-65°C to +150o e
300°C

3:

...

CO
W

o

c

...'"3:
C'l

electrical characteristics

(Note 2)

PARAMETER

c

CONOITIONS

MIN

TYP

MAX

OM7130.DM7160
DM8130.DMB160

Vee = 4 5V
Vee - 4 75V

Logical "0" Input Voltage

DM7130.DM7160
DM8130,DM8160

Vee=45V
Vee - 4 75V

Logical "1" Output Current

DM7130.DM7160
DM8130.DM8160

Vee=55V
V ee -52SV

V OUT

=:

Logical "0" Output Voltage

DM7130.DM7160
DM8130,DM8160

Vee = 4 5V
Vee - 4.75V

tOL =

16 rnA

Logical "1" Input Current

DM7130/DM7160
DM8130,DM8160

Vee = 5 5V
V ee -52SV

V'N=24V

40

JJ.A

DM7130,DM7160
DM8130,DM8160

Vee=55V
Vee S 25V

V IN =55V

1

mA

Logical "0" I nput Current

DM7130,DM7160
DM8130.DM8160

Vee = 5 SV
V ee -525V

Y,N = 04V

-16

mA

Supply Current

DM7130.DM7160
DM8130,DM8160

Vee = 5 5V
Vee 525V

48

70

mA

DM7130,DM7160
DMB130,DM8160

Vee = 5 5V
Vee- 525V

41

60

mA

DM7130,DM7160
DM8130.DM8160

Vee = 4 5V
Vee- 47SV

Propagation Delay to a loglcat "0" from Strobe

Vee= 50V

to Output, tpdO

T A = 25°C

Propagation Delay to a Logical "1" from Strobe

to Output,

tpdl

Propagation Delay to a Logical "0" from Data

to Output,

tpdO

Propagation Delay to a Logical "1" from Data
to Output, tpdl

3:

UNITS

Logical "1" Input Voltage

Input Clamp Voltage

I

o
.....

...

CO

V

2

C'l

OB
5 5V

100

02

liN = -12 mA, TA = 2Soe

See ac test

04

o

V

JJ.A

D

V

-1 5

V

ClfCUlt

20

30

ns

Vee = 5 OV
TA = 2Soe

See ac test circuit

9

18

ns

Vee = 50V
TA = 25°C

See ac test

Clfeu It

27

40

ns

Vee = 50V
T A =25°e

See ac test

ClfCUIt

15

25

ns

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits The table of "Electrical Characteristics" provides conditions
for actual deVice operation
Note 2: Unless otherWise speCified min/max limits apply across the -55°C to +125°C temperature
range for the DM7130 and DM7160and across theO°Cto 7Qoe range for the DM8130and DM8160
All typleals are given for Vec = 5 OV and T A = 25°C.

1·123

CD
M

...

Series 54/74

CO

:E

c

.......
CD
M

.........

6-bit unified bus comparator

DM7131/DM8131. DM7136/DM8136

:E

c

...
...

general description

M

The DM7131/DM8131, DM7136/DM8136 compare two binary words of two-to-Slx-blts In
length and indicates matching bit-for-bit of the
two words. I nputs for one word are 54/7 4 seriescompatible TTL inputs, whereas those of the
second word are high impedance receivers driven
by a term inated data bus. These bus inputs include 1V typical hysteresis which provides 1.8V
noise immunity. The DM7131/DM8131 has active
pull up output and goes to the 10';" state upon
comparison. The DM7136/DM8136 has opencollector output which goes to high state upon
comparison and is expandable to n bits by collector-ORing. Both devices have an output latch
which is strobe controlled.

CO

:E

c

...

.......

.........
M

:E

c

The transfer of information to the output occurs
when the STROBE input goes from a logic "1"

to logic "0" state. Inputs may be changed while
the STROB E is at the logic "1" level without
affecting the state of output. These devices are
useful as address comparators In computer systems
utilizing unified data bus organization.

features
15 J.1A typ

•

Low bus input current

•

High bus input noise immunity

•

High fan out

1.8V typ

•

Input clamping diodes

•

Output compatible with TTL circuits

•

Output latch provision

logic and connection diagrams

T1

o--!>o--L,

Bl~
T2

o---t:>o--y

Dual-In-Line and Flat Package

82~
Tl

o---t:>o--y

B3~
14

o--!>o--L,

84~
T5

o---t:>o--y

B5~
TO

o---t:>o--y

Bfi~
R = HIGH IMPEDANCE
BUS RECEIVER

1-124

IBUS INPUT) 81

1

16 Vee

(TTL INPUT) T1

2

1566

•

1385

OUTPUT
(DM1131l

T2
OUTPUT
(DM713S)

B3 5

12 T5
11B4

STROBE

7

1014

OND 8

9 OUTPUT

TOPVIEW

c

s:-..J

operating conditions

absolute maximum ratings

.....
.....

W
;>

Supply Voltage
TTL and Strobe Input Voltage

Fan Out
Storage Temperature Range

7V
5.5V
10
_65°C to +150°C

Supply Voltage
DM7131.DM7136
DM8131,DM8136

TYP

MAX

UNITS

4.5
475

5
5

5.5
5.25

V
V

-55
0

+25
+25

PARAMETER

MIN

CONDITIONS

TYP

MAX

Vee = Min

Bus Input "1" Threshold Voltage

DM7131,DM7136
DM8131,DM8136

165
180

225
225

265
250

DM7131,DM7136
DM8131,DM8136

097
105

13
13

163
155

Vee

TA

=

°c
°c

V

Input "0" Voltage (Except Bus Inputs)

Input Clamp Diode Voltage----

.....

=

UNITS

20

Vee'" Min

V

08

-15

Max, liN = -12 mA

I'

V
V
V
V
V

+25 c C

TTL Input "1" Current

Vee'" Max, VIN = 2 4V
V IN = 5 5V

40
1

pA
mA

TTL Input "0" Current

Vee = Max, VIN = 0 4V

-16

mA

Strobe Input "1" Current

Vee'" Max, VIN = 2 4V
V 1N =55V

80
2

pA
mA

Strobe Input "0" Current

Vcc=Max, V 1N =04V

-24

mA

Maximum Bus Input Current

Vee = Max, VIN = 4V

50
50

pA
pA

15
1

Vee'" OV, VIN = 4V
Logic "0" Output Voltage

Vce=Mm,louT=16mA

Logic "1" Output Voltage

Vee=Mm, IOUT""-400}lA

04
DM7131

V
V

24

DM8131
Logic "1" Output Current

Vee = Max, V OUT '" 5V

DM7136
DM8136

Output Short CirCUit Current

Vee = Max, VOUT '" OV

OM7131
OM8131

Power Supply Current

Vee"" Max

50

TTL Input to Output, tpd1

V ce =5V,T A =25°C

20

TTL Input to Output, tpdO

Vee ='~V, T A = 25°C

20

Bus Input to Output, tpd1

Vee'" 5V, T A

25"C

30

-20
-18

250

pA

-55
-55
74

mA
mA
mA

Propagation Delays

".=

Bus I nput to Output, tpdO

V ee =5V,T A =25°C

30

Strobe Input to Output, tpdl

V ec =5V,T A =25°C

20

Strobe I nput to Output, tpdO

V ee =5V,T A =25°C

20

s:00
.....

(Operating Temperature Range - Unless Otherwise Specified)

Input "1" Voltage (Except Bus Inputs)

Bus Input "0" Threshold Voltage

+125
+70

.......
C

W

Temperature (T AJ
DM7131,DM7136
DM8131,DM8136

electrical cha racteristics

MIN

n,
n,

n,
n,
n,
n,

1·125

o

o

;

~S

Series 54/74

Q

.......

o

o

~

OM7200/0M8200 4-bit comparator

Q

general description

features

The DM7200/DM8200 is a monolithic TTL
(Transistor-Transistor Logic) circuit which is used
to compare the numerical values of two four-bit
binary numbers_ Outputs indicate (1) whether
number A is greater than number B. (2) whether
number B is greater than number A. or (3) whether
the two numbers are equal. A strobe input overrides all other Inputs and places the outputs in a
definite state. The design chosen provides maximum speed with minimum circuit complexity.
Nu merical comparisons of words longer than four
bits may be made by using additional DM7200!
DM8200's only.

•

Series 54/74 Compatible

•

TYPical Noise Immunity

•

Guaranteed Noise Immunity

:E

lV
400mV

•

TYPical Propagation Delay

20 ns

•

Typical Power Dissipation

175mW

applications
•

Digital stepping-motor control applications

•

Convergence applications

•

Summing junction for digital servo systems

logic and connection diagram (Dual-In-Llne and Flat Package)
A,lsth,mOlt Slgniliunt bll of A
'.Icc

A,

A]

Bo

B,

B,

A,

Ne

B,

GNO

logic table
Input
Number A4 A3 A,A,

A
A
A
A

1-126

>
<
~

""

Output

Number B4 B3 B,B,

Strobe

X

Y

B

0

1

0
1

B

0

0

B

0

1

1

B

1

0

0

o

i:

absolute maximum ratings
Supply Voltage

"""

N

7V

Input Voltage
Operating Temperature Range

<:)
<:)

DM7200

5.5V
_55°C to +125°C

......

DM8200

O°C to +70°C
_65°C to +150°C

s:00

300°C

N

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o

<:)
<:)

electrical characteristiCS(Note
PARAMETER

1)
CONDITIONS

Logical "1" Input Voltage

Logical "0" I nput Voltage

Logical "1" Output Voltage

Logical "0" Output Voltage

Logical "1" Input Current

Logical "0" I nput Current

Logical "1" Input Current
Output Short CirCUit
Current (Note 2)
Supply Current

DM7200

Vee=45V

DM8200

V ee =4.75V

DM7200

Vee = 4.5V

DM8200

Vee'" 4.75V

DM7200

Vee = 4.5V

DM8200

Vee'" 4.75V

DM7200

Vee "'·4.5V

DM8200

Vee = 4.75V

DM7200

Vee = 5.5V

DM8200

Vee=525V

DM7200

Vce=55V

DM8200

Vee = 5 25V

MIN

TYP

MAX

V

2.0

.8

IOUT"'-400/.LA

24

.4

lOUT'" 16 mA

80

/.LA

V IN

'"

0.4V

-3.2

mA

V IN

'"

5 5V

1

mA

Vee = 5.5V
Vee=525V

DM7200

Vee'" 5.5V

-20

-55

DM8200

V ee "'525V

-18

-55

Vee" 5.5V
V ee "'525V

Propagation Delay to a
Logical" 1" from Any Data
I nput to Output
t pd '

Vee = 5.0V
T A = 25°C

Propagation Delay to a
Logical "0" from Any Data
tpd 0
I nput to Output

T A = 25°C

Propagation Delay to a
Logical" 1" from Strobe
tpd
I nput to Output

1

T A'" 25°C

Propagation Delay to a
Logical "0" from Strobe
tpd
I nput to Output

0

T A'" 25°C

Vee = 5.0V

Vee'" 5.0V

Vee'" 5 OV

Time Prior to Removal of
Strobe that Data Inputs
Must Be Stabilized I tSET UP
Time After Activation of
Strobe that Data Inputs
Must be Held, tHOLD

V

V IN = 2.4V

DM8200

DM8200

V

V

DM7200

DM7200

UNITS

Vee'" 5.0V

mA

35

53

mA

24

40

ns

17

30

ns

15

27

ns

a

18

ns

0

10

ns

-10

0

ns

T A " 25Q C

Vee'" 5.0V
TA '" 25 Q C

Note 1; Unless otherwise specified, limits shown apply from _55°C to +1 25°C for the OM7200 and

aOc

to +70 oC for the DM8200 TYPical values apply to supply voltages of 5 OV

Note 2: Only one output should be shorted at a time

1-127

o

....
....
N
00

Series 54/74

~

o
.......

....
....
N
,....

~

o.
o....
N
00

~

o

.......

o
....
N
,....

~

o

DM7210/DM8210 8-channel digital switch
DM7211/0M8211 8-channel digital switch
general description
eight bits of parallel Information are applied to the
Inputs, and If the binary numbers 000 through 111
are sequenced on the select lines, the output will
provide a serial presentation of the Input bits.

The DM7210/DM8210 and DM7211/DM8211 are
digital bipolar .Integrated circuits emploYing TTL,
used to multiplex eight INPUT channels to a single
OUTPUT Depending upon the 3·blt binary num·
ber applied to the SELECT lines, the digital bit on
the unique I NPUT selected appears on the output

features
•

The DM7211/DM8211 prOVides a strobe Input
which when taken to a logical "1" level places
the output In the logical "1" state
The cirCUit can also be used to convert parallel
Input information to serial output information. If

TTL Circuitry

•

Input Clamping Diodes

•

1 Volt Typical Noise Immunity

•

400 m V Guaranteed Noise Immunity

•

Completely compatible with Senes 54/74 circuits

connection diagrams
Dual·ln·Line and Flat Package.
INPUT

INPUT

INPUT

1

6

5

INPUT

INPUT
1

INPUT
2

Vee

o

INPUT
STROBE* OUTPUT

INPUT
J

NC

GND

*A Loou;al1 on the strobe mput causes the output to go the Logical 1 state
A Logical 0 on the strobe mput allows information to be routed through the device.

Vee

L.

A

13

INPUT1

INPUTI

I"I

12

INPUTS

1,0
I

INPUT4

19
'--

OUTPUT

•

'--

-

SELECTION
INPUTS

OUTPUT

DATA INPUTS

I1II
I

2

3
INPUT 0

1·128

14
INPUT 1

15

INPUTZ

16

INPUT 3

r

GNO

c

3:
.....

absolute maximum ratings

N

...a

o
c
3:

7V
5.5V
10
-65°C to +150°C
_55°C to +125°C
DoC to +70°C
300°C

Supply Voltage
Input Voltage
Fanout
Storage Temperature Range
Operating Temperature Range

DM7210, DM7211
DM821O, DM8211
Lead Temperature (soldering, 10 sec)

.......
00
N
...a

o

c

electrical characteristics

3:
.....

(Note 1)

CONDITION

PARAMETER

MIN TYP MAX

UNITS

N
...a
...a

.......

C
DM7210,DM7211

Logical "1" Input Voltage

Logical "0" Input Voltage

Logical" 1" Output Voltage

Logical "0" Output Voltage

Vee" 4 5V

DM8210,DM8211

Vce"475V

DM721O,DM7211

Vee" 4 5V

DM8210, DM8211

Vce "4 75V

DM7210,DM7211

V ee "45V

DM8210,DM8211

Vee"475V

DM7210,DM7211

Vee" 4 5V

DM8210,DM8211

Vee"475V

Logical" 1" I nput Current

DM7210,DM7211

Vee "55V

IAII Inputs)

DM8210,DM8211

V ee "525V

Logical "1" Input Current
IAII Inputs!

DM7210,DM7211

Vee"55V

DM821O,DM8211

V ee "525V

Logical "0" I nput Current

DM721O,DM7211

Vee" 5 5V

IAII Inputs!

DM8210,DM8211

V ce "525V

I nput Clamp Diode
IAII Inputs!

DM7210,DM7211

Vee" 5 5V

DM821O,DM8211

Vee" 525V

DM721 0, DM7211

Vee"55V

DM821O, DM8211

Vee" 5 25V

Output Short Circuit Current

Power Supply Current
IAII Inputs GND)

DM721O,DM7211

Vee" 55V

DM8210,DM8211

V ee -525V

Propagation Delay to a Logical "0"

From Data Input to Output, tpdO
Propagation Delay to a Logical "0"
From Strobe I nput to Output
Propagation Delay to a Logical" 1"
From Data I nput to Output,

tpd 1

Propagation Delay to a Logical" 1"
From Strobe Input to Output
Data Selection Settling Time From

0-+ 1 TranSitIOn on A, B, C It s l)
Data SelectIOn Settling Time From
1---»0 Transition on A, B, C (tsO)

20

V

08

lou T " -400 IlA

24

00

N
....
....

V

V

04

lOUT" 16 mA

V ,N "24V

40

V ,N "55V

1

V

Il A

mA

V ,N "04V

-1 0 -16

mA

liN" -12 mA, TA "25°C

-1 0 -1.5

V

V OUT "0

3:

-20

-55

mA

-18
20

33

mA

Vee" 5 OV, T A " 25°C

10

21

30

ns

Vee" 5 OV, T A " 25°C

10

19

27

ns

Vee" 5 OV, T A " 25°C

10

23

32

ns

Vee" 5 OV, T A "25°C

10

21

30

ns

Vee" 5 OV, T A " 25°C

15

31

43

ns

Vee" 5 OV, T A "25°C

15

31

42

ns

Note 1 Unless otherWise speCified the min-max limits apply across the _55°C to +125°C temperature
range for the DM7210 and DM7211 and across the O°C to 70 0 temperature range for the OM8210
and DM8211 Typlcals are given for Vee = 5 OV and 25°C

e

1-129

u

....
....

N

;

logic table

C

.......

....
....
N

SELECTION INPUTS

r-.

~
C

STROBE

DATA INPUTS

3

4

5

6

7

x

x

x

x

x

x

X

X

X

X

X

X

1

X
X

X
X

X
X

X
X

X
X

0

1

X
X

x

0

x

x

x

x

x

0

1

X

X

X

X

X

1

X
X

0

X
X

X
X

X
X

0

1

X
X

x

0

x

x

x

0

1

X

X

X

1

X
X

0

X
X

0

1

X
X

x

0

x

C

B

A

IDM 7211/DM8211
ONLY)

0

1

2

o
....

0
0

0
0

0
0

0
0

0

x

1

X

co

0
0

0
0

1
1

0
0

X
X

0

c

0
0

1
1

0
0

0
0

x
x

X

o
....

0
0

1
1

1
1

0
0

X
X

X
X

1
1

0
0

0
0

0
0

x
x

x
x

x
x

X

1
1

0
0

1
1

0
0

X
X

X
X

X
X

X
X

1
1

1
1

0
0

0
0

x
x

x
x

x
x

x

x
x

X

1

X

1

1
1

1
1

1
1

0
0

X

X
X

X
X

X

0

0

X

X
X

X

X

X
X

X

1

1

X

X

X

1

X

X

X

X

X

X

X

X

1

N

~

.......
N

r-.

~
C

x

OUTPUT

0

1

1

-

1

0

x = "Don't Care" Condition

typical application

ONE OF SIXTEEN CHANNEL
DIGITAL DATA MULTIPLEXER

15 14 13 12 11 10

CLOCK

9

8

7

6 5

OM7533/0M8533
OR
DM7563/0M8563

4

DM7210/
OM8210

OUTPUT

OUTPUT

I
I

I
I

I

I

I

L ____________ J

1·130

3

OUTPUT

2

1 0

Series 54/74
®

DM7214/DM8214 TRI-STATE dual 4:1 multiplexer
general description
The DM7214/DM8214 IS a TRI-STATE dual fourItne to one-line multiplexer. The device acts as a
double-pole four·throw sWitch. One data Itne IS
selected from each of two four-Itne Inputs. Two
SELECT lines determine which of the four tnputs
IS chosen, however the same input of both four-Itne
selections Will be selected. TRI-STATE logic allows
for the added feature that the outputs of the device can be tied to outputs of similar devices and
connected to a common bus-line. Nomtnal TTL
outputs cannot be connected due to the lowImpedance logical "1" output current which one
device would have to sink from the other. If,
however, on all but one of the connected deVices
both the upper and lower output tranSistors are
turned off, then the one rematning deVice In the
normal lOW-Impedance state Will have to supply to
or Sink from the other deVices only a small amount
of leakage current. This IS exactly what occurs on
the DM7214/DM8214 The STROBE Input IS used

to place the output
state

In

this unique high-impedance

features
•

Ptn-for-pln compatible with SN54153/SN74153

•

Organized for party-line systems

•

Up to 128 deVices can be connected to a
common bus-line

•

Propagation delay 20 ns tYPical

•

Power dissipation 170 mW tYPical

•

Input diode clamps

•

Series 54174 compatible

D

The DM7214 is characterized for operation over
the full military temperature range of _55°C to
+125°C, the DM8214 is characterIZed for operation from O°C to 70°C.

logic and connection diagrams
Dual-in-Line and Flat Package
STROBE

A

DATA INPUTS

OUTPUT

Vct;2GADDRESS~2Y

OUTPUT

"

TOP VIEW

Analogous to DP4T Switch
OUTPUT

---0

"

~-"r-c>-­

--0

I

I
---0

I

~

---0

truth table
DATA INPUTS

ADDRESS INPUTS

CO

Cl

C2

STROBE

OUTPUT

C3

X

x-

DON T CARE

11')1

...
~

N

absolute maximum ratings

QO

:E

c

(Note 1)
7V

Vee
Input Voltage
Output Voltage
Time that two bus-connected devices may
be In opposite low Impedance states
simultaneously
(5% Duty Cycle)
Storage Temperature Range
Operating Temperature Range DM7214
DM8214
Lead Temperature (Soldering, 10 see)

........

...
,....
~

N

:E

c

electrical characteristics

55V
5.5V

Indefinitely
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C

(Note 2)

PARAMETER

CONDITIONS

Input blade Clamp Voltage

MIN

Logical "1" Input Voltage

DM7214
DM8214

Vec = 4.5V
Vcc ~ 4 75V

Logical "0" Input Voltage

DM7214
DM8214

Vcc = 4.5V
Vcc - 4.75V

Logical "1" Output Voltage

DM7214
DM8214

Vce=45V
Vce- 4.75V

lOUT ~ -2.0 mA
lOUT - -5 2 mA

Logical "0" Output Voltage

DM7214
DM8214

Vcc=4.5V
Vcc - 4.75V

lOUT = 16 mA

Logical "1" Input Current

DM7214
DM8214

Vee= 5.5V
V ec - 525V

24

004
40

V

IlA

1.0

mA

-1.6

mA

DM7214
DM8214

Vce = 5.5V
Vee - 5.25V

V OUT = OV

Output Disable Current

DM7214
DM8214

Vce= 5 5V
Vce - 5.25V

V OUT = a 4V to 2 4V
V OUT - Oo4V to 204V

DM7214
DM8214

Vee = 5.5V
Vee - 5.25V

All inputs at GND

-55
-57

mA

40
-40

IlA

34
34

56
65

mA

50pF

15
12

23
18

ns

Vee" 50V, T A " 25°C, CL = 50 pF

20
20

34
34

ns

Vee= 50V, TA = 25°C, CL

-20
-18

"

tpdO

Delay from Logical "1" to H,-Z
Oytput State, t1 H

Vee ~ 5.0V, T A" 25°C

5

10

ns

Delay from Logical "0" to H,-Z
Output State, tOH

Vee" 5.0V, T A = 25°C

15

23

ns

Delay from H,-Z to Logical "1"
Output State, tH1

Vee" 5.0V, T A = 25°C, C L ~ 50 pF

12

18

ns

Delay from H,-Z to Logical "0"
Output State, tHO

Vee" 5.0V, T A" 25°C, CL

14

21

ns

"

50 pF

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits. The table of "Electncal Characteristics" prOVides conditions
for actual deVice operation

Note 2: Unless otherWise specified minImax limits apply across the -55°C to +12Soe temperature
range for the DM7214 and across the oOe to 700 e range for the DM8214 All tYPlcals are gIven

for Vce = 5 OV and T A ~ 25°C
Note 3: Only one output at a tIme should be shorted
1_11?

V
V

3.2

V,N = 204V

Short-Circuit Output Current
INote 3}

PropagatIOn Delay from Address
to Output, tpd1

V

V ,N = 5.5V
V ,N =04V

tpdo

-1.5

V

0.2

Vee = 5.5V
V ec -525V

Propagation Delay from Data to
Output, tpd1

UNITS

0.8

DM7214
DM8214

Supply Current

MAX

2.0

Logical "0" I nput Current

IH,-Z Output State}

TYP

Vcc = 5 OV, liN = -12 mA
TA = 25°C

o

s:.....

Series 54/74

N

...A

CD

......

o

s:00

DM7219/DM8219 TRI-STATE®
16-line to one-line multiplexer

N
...A
CD

general description

features

The DM7219/DM8219 mUltiplexes sixteen digital
lines to one output. A four·blt code determines
the particular one-of·slxteen Inputs which IS routed
to the output. The data is inverted from Input to
output. A strobe over· ride places the output In the
high-Impedance state.

•

Typical propagation delay

10 ns

• TYPical power dissipation

225 mW

•

Series 54/74 compatible

logic and connection diagrams
OUTPUT
W

~

D~ ilW

rh

rh

II

rh

II

l~ ~ ~ i l l
II

m

II

II

m1m

Ilr

~

ll,

III
l

~

Or

,

II

c

0

C
B
B

STRDB E
1ENA8l EI
~E_O_________
E'____E_'____E'_____
E' ____E~'____E'~y~_E_"____E'____E_"____E_,,____
E,_,___E_,,____E,_,__~EI5J

~A__~v_~~

~

~

INPUTS

SELECT
(BINARY)

Dual-In-line and Flat Package
DATA
SElECT

DATA INPUTS

V"

r,

---....:::::..;.=-=---~, ~

1"

" "

21

18

19

20

17

~E'

E.

E"

En

E"

E"

Eo.

E,

E,

E,

E,

E,

E,

E.

15

16

2

3

, , ,

1

:+

W

8

,

10

' -_ _ _ _~_---_'STROBE
DATA INPUTS

13

A

Eoe

E,

1

"

t

" 112

S~t;~T

OUTPUT

t

GND

TOP VIEW

1_1'l'2

en

"""

N

co

absolute maximum ratings (Note 1)

operating conditions

...,...

Supply Voltage
Input Voltage
Storage Temperatu,e Aange
Lead Temperature (Soldenng, 10 secl

Supply Voltage (Veel
DM7219
DM8219
Temperature (TAl
DM7219
DM8219

:t
Q
.....

MIN

en
N

7V
5.5V
-65'e to +160'e
300'e

:t
0

electrical characteristics

CONDITIONS
~

Logical "I" Input Voltage

Vee

Logical "0" Input Voltage

Vee = Min

Logical "'" Output Voltage

i5'M82f9

MIN

Min

Vee = Min
V 'N (1) = 20V
V ,NIO ) ~ O.BV

lOUT" -2.0 mA
lOUT" -6 2 mA

Third State Output Current

Vee" Max, V OUT = 2.4V
V OUT ~ D.4V

Logical "I" Input Current

Vee = Max, Y'N = 2 4V
Y'N = 5 6V

Output Short Circuit Current

V
V

-55
0

+125
70

'e
'e

TYP

i5M82i9

24

" 4.5V

Supply Current

Vee" Max, V ,N

Input Diode Clamp Voltage

Vee" Mm, liN = -12 mA
T A " 25'C

Propagation Delay to a Logical "0"
from Data Select Inputs to Output,
tpdO

Vee = 5.0V
T A = 25'C

Propagation Delay to a Logical "'"
from Data Select Inputs to Output,

Vee = S.OV
T A " 25'C

04

V

±40

I'A

40
'.0

I'A
mA

-'6

mA

-100
-100

mA
mA

68

mA

-15

CL = 50 pF
RL " 40011

V
V

-30
-28

Vee" Max, V OUT ~ OV

UNITS

V

Vee = Max, V ,N " O.4V
DM7219

MAX

0.8

Vee = Min, V ,NllI " 2V, V ,NIO)" 0.8V
lOUT = +16 mA

"a" Input Current

55
5.25

20

Logical "0" Output Voltage

Logical

4.5
4.75

(Note 2)

PARAMETER

DM7219

UNITS

MAX

V

22

33

ns

2'

35

ns

'4

ns

20

ns

'0

ns

2'

30

ns

'5

23

ns

'7

27

ns

tpd1

Propagation Delay to a Logical "0"
from Data Inputs to Output, tpdO

Vee" 50V
TA = 25'C

Propagation Delay to a Logical "1"

Vee" 50V
TA ~ 25'C

from Data Inputs to Output, tpd1
Delay from Strobe to High Imped·
ance State (from Logical "," Levell,
t1H

Vee" 50V
T A " 2S'C

Delay from Strobe to High Imped·
ance State (from Logical "0" Level),
tOH

Vee" 5.0V
T A " 2S'C

Delay from Strobe to Logical ","
Level (from High Impedance State I.
tH1
Delay from Strobe to Logical "0"
Level (from High Impedance Statel.
tHO

Vee~

TA

SOV

8.5

'3
50

_." ....

= 2S'C

Vec=50V
TA = 2S'C

Note 1: "Absolute MaXimum Ratings" ar'e those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are nOt meant to Imply that the deVices should be operated at these limits The table
of "electrlcal Characteristics" provides conditiOns for actual device oper'8tlon.
Note 2. Unless other'Wlse specified min/max limits apply across the -65°C to +125°C temperature range for the DM7219 and
acrOSI! the O°C to 70°C fange for the OM8219, All typlcals are given for Vee = 5.0V and TA "" 25°C

Not. 3:

1.1~4

Only one output at a time should be shOr'ted,

o

s::
.....

truth table

...
N

CD

.....
INPUTS

0

C

•

A

X

X

X

0

0

0

0

0

0
0

E,

..

E,.

W

X

X

H!-Z

X

X

1

X

X

X

0

X

X

X

X

1

X

X

X

X

0

X

X

X

X

1

X

X

X

X

0

X

X

X

X

X

1

X

X

X

X

X

0

X

X

X

X

X

X

1

X

X

X

X

X

x

0

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

0

X

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

X

0
1

0

E"

E"

E,.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

STROBE

E,

E,

E,

E3

X

1

X

X

X

X

X

X

0

0

0

X

X

X

X

X

0

0

0

1

X

X

X

X

X

0

0

1

0

X

0

X

X

X

0

0

1

0

X

1

X

X

X

0

0

1

0

0

X

X

0

X

X

0

0

1

0

0

X

X

1

X

X

0

0

1

1

0

X

X

X

0

X

X

X

X

X

X

X

0

0

1

1

0

X

X

X

1

X

X

X

X

X

X

X

0

1

0

0

0

X

X

X

X

0

X

X

X

X

X

0

1

0

0

0

X

X

X

X

1

X

X

X

X

X

0

1

0

1

0

X

X

X

X

X

0

X

X

X

0

1

0

1

0

X

X

X

X

X

1

X

X

X

0

1

1

0

0

X

X

X

X

X

X

0

X

0

1

1

0

0

X

X

X

X

X

X

1

X

0

E,

OUTPUT

E,

E,

E,

E"

En

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0

1

1

1

0

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

X

1

0

0

0

0

X

X

X

X

X

X

X

X

0

X

X

X

X

X

X

X

1

1

0

0

0

0

X

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

0

1

0

0

1

0

X

X

X

X

X

X

X

X

X

0

X

X

X

X

X

X

1

1

0

0

1

0

X

X

X

X

X

X

X

X

X

1

X

X

X

X

X

X

0

1

1

0

0

1

0

0

X

X

X

X

X

X

X

X

X

X

0

X

X

X

X

X

1

1

0

1

0

0

X

X

X

X

X

X

X

X

X

X

1

X

X

X

X

X

0

1

0

1

1

0

X

X

X

X

X

X

X

X

X

X

X

0

X

X

X

X

1

1

0

1

1

0

X

X

X

X

X

X

X

X

X

X

X

1

X

X

X

X

0

1

1

1

0

0

0

X

X

X

X

X

X

X

X

X

X

X

X

0

X

X

X

1

1

1

0

0

0

X

X

X

X

X

X

X

X

X

X

X

X

1

X

X

X

0

1

1

0

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

0

X

X

1

1

1

0

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

1

X

X

0

1

1

1

0

0

X

X

X

X

X

X

X

X

X

0

X

1

1

1

1

0

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1

X

0

1

1

1

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0

1

1

1

1

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

1

0

X

X

X

X

X

o

s::
CO

...
N

CD

o

N
N

Series 54/74

CO

:E

c

........

o

N
N

DM7220/DM8220 parity generator and checker

"
:E

general description

c

The DM7220/DM8220 is a monolithic integrated
circuit which can be used to both generate a parity
bit and check for parity, Nine inputs and a single
output are provided, When it is desired to generate
a parity bit, eight of the nine inputs are connected
to the eight data transmission Iines, Depending
upon whether odd parity or even parity is desired
a logical 1 or a logical 0 is applied to the ninth

input, For a parity check, the output of the parity
generator (sending end) is connected to the ninth
input of the parity checker (receiver end), The
,resulting output of the parity checker will remain
in one particular logic state unless a bit is "lost"
during transmission,
The device is fully compatible with other
Series 54/74 circuits,

schematic and connection diagrams
Dual-In-Llne and Flat Package

OUTPUT

X=AG>e@C@O@E@F@GC±>H@P

typical application

If the controllme IS a logical "0" the panty generator

Will generate odd parity, The panty checker Will acknowledge the presence of an odd number of "l'''s
(odd panty) With a logIcal "0" on Its output
If the controllme IS a logical "1" the panty generator

will generate even panty The panty checker Will acknowledge the presence of an even number of "1 '''5
(even panty) With a logical "1" on Its output

1_1~~

o
3:

.....

absolute maximum ratings

N
N

Supply Voltage
Input Voltage
Fan Out
Storage Temperature Range
Operating Temperature Range DM7220
DM8220
Lead Temperature (Soldering, 10 sec.)

electrical characteristics
PARAMETER

o
......

7V
5.5V
10
_65°C to +150°C
_55°C to +125°C
O°C to +70°C
300°C

o

3:

CO
N
N

o

(Note 1)
CONDITIONS

Logical" 1" I nput Voltage

DM7220
DM8220

Vee = 4.5V
Vee = 4.75V

Logical "0" I nput Voltage

DM7220
DM8220

Vee = 4.5V
Vee - 4.75V

Logical "1" Output Voltage

DM7220
DM8220

Vee = 4.5V
Vee - 4.75V

IOUT;'-4OO IlA

Logical "0" Output Voltage

DM7220
DM8220

Vee = 4.5V
Vee - 4.75V

lOUT = 16 mA

Logical "1" Input Current

DM7220
DM8220

Vee = 5.5V
'vee = 5.25V

VIN = 2.4V

Input Diode Clamp Voltage

DM7220
DM8220

Vee = 5.5V
Vee = 5.25V

Logical "1" Input Current

DM7220
DM8220

Vee = 5.5V
Vee = 5.25V

V IN = 5.5V

Logical "0" Input Current

DM7220
DM8220

Vee = 5.5V
Vee - 5.25V

VIN = O.4V

Output Short Circuit Current

DM7220
DM8220

Vee = 5.5V
Vee = 5.25V

V OUT = OV

Power Supply Current

DM7220
DM8220

Vee = 5.5V
Vee - 5.25V

MIN

TYP

MAX

V

2.0

0.8

V

V

2.4

0.4

-1.1

liN = -12 mA
TA = 25°C

UNITS

V

40

IlA

. -1.5

V

1.0

mA

-1.6

mA

55

mA

26

35

mA

-1.0
20
18

Propagation Delay to Logical "1 ", tpd1
Inputs A, B, C, D, E, F, G, H

Vee = 5.0V
Co = 50 pF

TA = 25°C
F.O. = 10

15

36

58

ns

Propagation Delay to Logical "0", tpdO
Inputs A, B, C, D, E, F, G, H

Vee= 5.0V
Co = 50 pF

TA = 25°C
F.O. = 10

11

32

52

ns

Propagation Delay to Logical "1 ", tpd1
Input P

Vee = 5.0V
Co = 50 pF

TA = 25°C
F.O. = 10

8

21

35

ns

Propagation Delay to Logical "0", tpdO
Input P

Vee = 5.0V
Co = 50 pF

TA = 25°C
F.O. = 10

7

14

25

ns

Note 1: Unless otherwise speCified the min-max limits apply across the -55°C to +125°C temperature

range for the DM7220 and across the OOC to 70°C temperature range for the DM8220. Ali typ,cals are
g,ven for Vee = 5.0V and T A = 25°C.

1·137

M
N

;

~S

Series 54/74

c

.......
M
N
N

":E

DM7223/DM8223 1-line to 8-line demultiplexer

C

general description
The DM7223/DMB223 1-line to B-line demultiplexer utilizes Series 54/74 compatible circuitry to
demultiplex a data train to one of eight outputs.
These eight outputs are capable of driving 10
standard TTL loads each. Three address lines

determine which output receives the data train.
When the data Input is a logical "0" only the
addressed output will be a logical "0". When the
data input is a logical "1", all outputs, and therefore the addressed output, will be logical "1 's".

connection diagram

logic table

Dual-in-Line Package
ADDRESS

DATA

0
0
0
0
0
0
0
0
1

ADDRESS
INPUTS

C

B

A

0

1

2

3

4

5

6

7

0
0
0
0
1
1
1
1
X

0
0
1
1
0
0
1
1
X

0
1
0
1
0
1
0
1
X

0
1
1
1
1
1
1
1
1

1

1
1
0
1
1

1
1
1

1
1
1
1
0
1
1
1
1

1
1
1
1
1
0
1
1
1

1
1
1
1
1
1
0
1
1

1
1
1
1
1
1
1
0
1

x = Don't Care

OUTPUTS
*0(1 not make &onnectlon to PlMS 100111
TOPVIEW

typical application
Digital Data Demultiplexer (1 Line to 64 Lines)
AD[lRESSINPUTS
2°

1-13B

2'

22

OUTPUTS

0
1
1
1
1
1
1
1

1
1
1
1

0
1
1
1
1
1

o
absolute maximum ratings
Supply Voltage
Input Voltage
Fan Out
Operating Temperature Range
DM7223
DM8223
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

3i:

(Note 1)

'-I
N
N
W

7V
5.5V
10

.......

_55°C to +125°e
oOe to 70°C
_65°C to +150 oe
300°C

00
N
N
W

o

3i:

(Note 2)
CONDITIONS

MIN

TYP

MAX

UNITS

Logocal "1" Input Voltage

DM7223
DM8223

Vee=45V
Vee - 4.75V

Logocal "0" Input Voltage

DM7223
DM8223

Vee = 4.5V
Vee - 4.75V

Logical "1" Output Voltage

DM7223
DM8223

Vee = 4.5V
Vee - 4 75V

lOUT = -400 I1A

Logocal "0" Output Voltage

DM7223
DM8223

Vee=45V
Vee - 4.75V

lOUT = 16 mA

Logocal "1" Input Current

DM7223
DM8223

Vee = 5.5V
Vee - 5.25V

VON = 2.4V

40

I1A

DM7223
DM8223

Vee = 5.5V
Vee = 5.25V

VON = 5 5V

1

mA

Logical "0" I nput Current

DM7223
DM8223

Vee=55V
Vee = 5.25V

VON =04V

-16

mA

Output Short Corcuot Current
(Note 3)

DM7223
DM8223

Vee = 5 5V
Vee - 5.25V

V OUT = OV

Supply.Current

DM7223
DM8223

Vee = 5.5V
Vee 525V

Input Clamp Voltage

DM7223
DM8223

Vee= 5 5V
Vee - 5.25V

20

V
0.8

2.4

V
04

-10
-20
-18

ION = -12 mA

V

V

-32

-55

mA

28

41

mA

-10

-15

V

Propagation Delay to a Logical "0"

Vee = 5.0V
T A = 25°C

COUT = 50 pF, F.O. = 10

12

24

35

n,

Propagatoon Delay to a Logical "1"

Vee = 5.0V
T A = 25°C

COUT = 50 pF, F.O = 10

12

26

35

n,

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot

be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
devices should be operated at these limits The table of "Electncal Characteristics" provides conditions
for actual device operation.

Note 2: Unless otherWise specified mm/max limits apply across the _55°C to +125°C temperature
range for the DM7223 and across the DOC to 700

e

ranqe for the DM8223 All tYPlcals are given for

VCC = 50V and TA = 25°C.
Note 3: Only one output at a time should be shorted

,.,39

o

M
N
CO

Series 54/74

~

o

.......

®

o

DM7230/DM8230 TRI-STATE demultiplexer

M
N

"""
~

o

general description

features

The DM7230(DM8230 demultiplexer is another

•
•
•
•

Senes 54/74 compatible
20 ns propagation delay
Data complement capability
Very
low output Impedance-high drive
capability
• Separate Input disable controls
• High-Impedance output state which allows many
outputs to be connected to a common bus-I me.

device m National's TRI-STATE logic family.
Digital signals applied to two mput Imes can be
routed to two-of-four output lines depending upon
the logic on the Address Inputs. Outputs can be
directly connected to other similar outputs for use
in bus-organized systems.

logic and connection diagrams

Dual-In-Line and Flat Package

.

c~~:~~ o·.......::..----c>----j-I

UISA6L~ O
..----l1H>c>---~

logic table
DATA

CDMP

A

A

B

o

0

DATA

'x

COMP
B

1

~

X

~

o

0

x

X

lOX

X

0

1

1

1

0

1

X
X

lOX
lOX

X
X

0
0

1
1

1
I

1
I

I
1

1
1
1
0

ADDRESS A
21
2°

0

ADDRESSB
21
2°

x x

DIS
DIS
OUT
ABO
0

,

OUT
1

OUT
2

OUT
3

0

,-.7.JL-+,-+,",,-+--i;i-+--+;-.. -:-:r::t:t-:-:--::.+".: ~~::'[:.~o-t:~c:I!--5.; ..::t=:l'-i,~-+c:::r'';:.:1-'-Ts·-:-I
' :::

X
lOX
XII
X

X
)(

0
0

1
1

1

1
1

0
1

XII
XII

X
X

X
X

0
0

1
,

1
1

1
1

I
1

1
1

XII

X

X

0

1

1

1

1

0

o

1,140

O~X~~'~~

:t··t:o =--t,t:-~'x =--i, i-::+~o~·t~-:rt:r+t,~:Ct+·=i--::-:-t:::-+:,:~',t

'. ~ ~·:~:'Y···~i,::.t.:~,x~t::.~x,

x

x

0

0

1

0

0

I

1

1

X
X
X
X

X
X
X
X

0
0
0
0

0
0
0
1

1
I
1
1

0
0
0
0

1
1
0
1

1
1
1
0

1
1
1
1

1
1
1
1

X
X

1
1

1
1

0
0

X
X

0
0

1
1

1
1

1
1

1
I

X

X

0

1

I

0

I

0

1

1

X
X
X

X
X
X

1
1
I

0
0
0

1
I
1

0
0
0

1
1
I

1
I
1

0
1
1

1
1
1

X
X
X
X
X

X
X
X
X
X

1
1
1
1
1

0
1
1
1
1

1
1
I
1
1

0
0
0
0
0

I
1
1
I
1

1
1
1
1
1

0
1
1
1
1

0
1
1
0

X

X

X

Xl'

HI Z

HI Z

HI Z

HI Z

DATA
B

DATA
A

tOMPLE-COM'tEMENTB MENTA

c

absolute maximum ratings

3:

.....

Supply Voltage

Storage Temperature Range
Operating Temperature Range
DM7230
DMB230
Lead Temperature (Soldenng, 10 sec)

7V
55V
55V

Input Voltage
Output Voltage
Time that two bus-connected
devices may be In OPPosite

N

W

o

-5S0C to +12SoC
oOe to +70°C

.........

c

300°C

low Impedance states simultaneously
(5% duty cycle)

3:
CO

electrical characteristics

N

(Note 11

W

MIN

CONDITIONS

PARAMETER
OM 7230

Logical' 1" Input Voltage

Vcc=45V
Vee 4 f!:l\
Vee

Logical '0" Input Voltage

OM.L30

=

Vee

08

Logical "0" Output Voltage

"'~~ii-~;;;;"~~;;---+---i7~~"'~~o"",:;";;;,;~,,.v

lOUT

~~: - ~ ~~v

V IN -

=

24

16 rnA

DM7230
DM8230

1" Input Current

~~~ - ~5~v

02

04

V

-20
-10

-32
-16

mA
mA

80
40

"A
"A

VIN - 24V

All other Inputs
Logical "1" Input Current

DM7230
DM8230

~~~~~;~V

Outj..>ut Disable Current

DM7230
DM8230

Vee 55V Vo=24V
Vee - 5 25V Va = 04V

DM7230
DM8230

V,e 5 5V
- OOV
Vee . 525V Vo

DM7230
DM8230

Vee - 5 5V
Vee 525V Y'N

(Note 21
Supply Current

VIN

-30
-28

=

=

Output Diode Clamp Voltage

Vee 5 OV, TA
lOUT -12 mA
IOUT-+12mA
C

-

48

50V

Input DIOde Clamp Voltage

mA

40
-40

"A
"A

-70

mA

75

mA

-1 5

V

-1 5

V
V

25 C
Vee +1 5

50V, TA - 25 C

Vee

'"1"

10

55V

Vee 50V,T A = 25C
liN - -12mA

Propagal!on Delay to logical

V

35

Disable Inputs

Output Short Curren!

V

a 4V

Disable Inputs
All other Inputs
Logic,!'

UNITS

V

4 hV

;:;~,:;~;;~~~;;;.~_ _--t__-c~,,~~~o,-:;-5:;'7~+:-~, :~~~: =~ ;;A

Logical "0" Inpu! Current

MAX

20

45V

Logical '1" Output Voltage

DM7230
DM8Z30

TYP

C l =50pF

from Data or Complement Input, todl

13
20

Nonmvertmg
Inverting

from Data or Complement Input, tpdQ
Propagation Delay to logical "1'" from
Address Input, Ipdl (Note 3)
Propagation Delay to logical "0" from

NOlllnvertlngor Inverting

18

26

ns

Vee - 50V. TA - 25'C
C l = 50pF

20

36

c,

20

30

c,

13

25

IlS

16

25

lIS

Vee

50V. TA
50pF

=

25"C

Vee - 50V. TA

=

25'C

~

=

CL~50pF

Disable Input. tpd1 (Note 4)
Propagation Delay to Logical '"0" from

Vee

=

5OY, TA ~ 25"C

CL~50pF

Disable Input, tpdQ (Note 4)

"

Delay from Ol5able Input to High
Impedance State (Note 5). t'H

to"
Delay from Disable Input to Low

Vee = 50V, TA

Impedance State (Note 5). t HI

'"

CL~50pF

CL

Address Input, tpdQ (Note 3)
Propagation Delay to Logical "1"' from

'"

25 C

Vee - 50V, TA

PropagatIOn Delay to logical "'0"'

24
36

=

25 c C

CL~50pF

teo

C,

7

14

15

27

c,

15
18

23
27

c,
c,

Note 1: MinImax values apply across the -55°C to +125°e temperature range for the DM7230 and across the oOe to 700 e
range for the DM8230 unless otherWise speCified TYPlcals are given for TA co 25°C and Vee = 5 OV
Note 2: Only one output at a time should be short circuited,
Note 3: The only cond,tions under which a tpdO from the Address Inputs can be observed IS when an output goes from being
nonselected to being selected and the information being routed to that output IS a logical "0 " If the information had been a
logical "1," no change would have occurred and no measurement could have been made Similarly, the only tIme a tpd1 from
the Address mputs can be observed, IS when an output goes from being selected to being nonselected and the information that
had been routed to that output was a logical "0" If the information had been a logical "1," no change would have occurred
and no measurement could have been made
Note 4: Information

In

Note 3 concerning tpdO and tpdl from the address Inputs are applicable here also

Note 5: All delays involVIng tranSitIons to or from the High Impedance state are measured With respect to the Disable Inputs
For example, With A mformatlon at a logical "0" and Disable B at a logical "1" the selected output WIJI go from a logical "0"
to the High Impedance state some time, tOH, after D,sable A has gone from a logical "0" to a logical "1 "

1-141

o

r;

o

(W)

mode of operation

N
00

:E
......

COMPLEMENT AND DATA INPUTS

Q

When Complement A IS a logical "1 ", Data A will
appear Inverted at the output. When Complement A IS a logical "0", Data A will appear nonInverted at the ou tpu t.

o

(W)

N

.....
:E
Q

This function is accomplished on the chip through
the use of a two-input exclusive-OR gate with
Complement A and Data A as the two Inputs.
Therefore, the A information that IS routed to the
outputs is actually (Complement A <±! Data A).
That this is the case may be verified by examining
the logic diagram.
The two inputs of this exclusive-OR gate have
identical characterIStics, allowing the functions of
these two inputs to be reversed. Also the propagation delay from either Input to the output will be
the same. This IS also true for the Complement B
and Data B Inputs.
ADDRESS INPUTS
The Address A Inputs select to which of the four
outputs A information will be routed. The same IS
true for the Address B inputs and B Information.
If A and B information are both routed to the
same output simultaneously, that output will be a
logical "0" if either the A or B Information IS a
logical "0". All outputs which are not selected for

either A or B information will be In the logical "1"
state.
DISABLE INPUTS
The Disable Inputs are similar to higher order
Address inputs in that when Disable A is a logical
",.', A Information is not routed to any output.
All four outputs are nonselected for A information. The same is true for Disable Band B information The Disable inputs have the additional feature that when both Disable A and Disable B are a
logical "1" all outputs go to the High Impedance
state. When multiple outputs are connected to a
bus line, only one deVice at a time can be In the
normal low Impedance state. All others should be
gated Into the high Impedance state (Figure 1).
The selected device therefore has the normal TTL
low Impedance output providing good capacitive
drive capabl hty and waveform Integrity especially
during the transition from the logical "0" to logical "1" state. The other outputs-in the high Impedance state-take only a small amount of leakage current from the low Impedance outputs.
Since the logical "1" output current of the selected deVice is 13 times that of a conventional
Senes 54/74 deVice (5.2 mA vs 400 MA), the output is easily able to supply that leakage current to
as many as 127 other DM7230/DM8230's and still
have available drive for the bus-line. (Figure 2)

BUS LINES

12D"A FOR DRIVING OTHER lPTTL INPUTS

~
o
SELECTED AS
DRIVING ---.

DEVICE

SELECTED AS

DRIVING
DEVICE

M

8

2
3

o

GATED INTO
THIRD STATE

GATED INTO
THIRD STATE ---+-

lOp.A It 45 OUTPUTS = 9 rnA
LEAKAGE CURRENT

GATED INTO
THIRD STATE

20,uA LEAKAGE CURRENT

Figure 1

1-142

Figure 2

00

Series 54/74

3:3:

""
COCO

NN

"'0

..................

00

3:3:

DM7280/DM8280(S8280/N8280) presettable decade counter
DM7281/DM8281 (S8281/N8281) presettable binary counter
DM7288/DM8288 (S8288/N8288) presettable -:-12 counter

COco

NN

COco

''''0

o

general description
The counters In this series are four-bit monolithic
subsystems containing a dlvide-by-two counter
with one clock Input and a second counter with a
second clock Input. The two clock Inputs and the
other logic functions provided will Implement a
wide variety of counter and storage register func·
tlons.

•

Two clock Inputs for additional flexibility

•

Strobed parallel-entry capability

•

Reset Inputs common to all stages

•

TYPical toggle rates to 45 MHz

•

TYPical power dissipation of 130 mW

3:

"Nco
CO

.........

o

3:
co

features

•

Direct-coupled stages

N

•

•

Available In cavity or molded 01 P

CO
CO

Senes 54/74 compatible

connection diagrams

(Dual-In-Lmeand Flat Packages)

DM7280/DM8280

DM7281/DM8281

DM7288/DM8288

1-143

·CO

°co

CON
NCO

absolute maximum ratings
Supply Voltage
I nput Voltage
Operating Temperature Range
DM7280, DM7281, DM7288
DM8280, DM8281, DM8288
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

CO~

~C
C .......

....... CO

°co
CON
N"

"~
~C

C

....

electrical characteristics

N

CO

MIN

~
C
.......

"1" Output Voltage l31 141

TYP

N

"C~

MAX

(Notes 1, 2)

UNITS

V
V
V

26
28
26

"0" Output Voltage l31 15)

....

CO

_55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

LIMITS

CHARACTERISTICS

CO

7V
5.5V

TEMP

Vee

O°C
+25°C

475V
50V
475V

+75°C
DoC

DATA
STROBE

DATA
INPUTS

RESET

o 8V

20V
20V
20V

20V
20V
20V

Output A
Output A
Output A

-200 }1A
-200 I1A
-200 I1A

o 8V

o 8V
o 8V

Output A

64 rnA
64mA
64mA

o8V
o 8V
o8V
o 8V

CLOCK
1

CLOCK

2

OUTPUTS

04
04
04

V
V
V

-16
-12
-30
-28
-32
-16
-32
-16

mA
mA
mA
mA
mA
mA
mA
mA

+25°C

25
25
75
50
75
75

pA
pA
pA
pA
pA
pA

+75°C
+75°C
+75°C
+75°C
+75°C
+75°C

50V
50V
50V
50V
50V
50V

25
25

n,
n,

+25 C
+25 Q C

50V
50V

64 rnA

25
25

n,
n,

+25°C
+25"C

50V
5 OV

64 mA

35

n,

+25°C

50V

64 mA

+25°C
+75"'C

475V
50V
4 75V

o 8V

o8V
o 8V

Output A
Output A

o8V

"0" Input Current

Data Strobe
Data Inputs
Reset (DM8280, DM8281)
Reset (DM8288)
Clock 1 'OMB28D, DMB281)
Clock 1 (DM8288)
Clock 2 (DM8280)
Clock 2 (DMB281, DM8288)

-01
-01
-01
-01
-01
-01
-01
-01

+25 C
+25°C
+25°C
+25°C
+25°C
+25°C
+25°C
Q

525V
525V

o 4V

o 4V

o 4V
o 4V

525V
525V
525V
525V
525V
525V

04V

o 4V

o 4V
o 4V

"1" Input Current
Data Strobe
Data Input
Reset (DMB28a, DMB281)
Reset (DM8288)
Clock 1
Clock 2

45V
45V
45V
45V
45V
45V

Clock Mode TON Delay
Bit A
Bit B, C, D

c

Clock Mode T OFF Delay
Bit A
Bit B, C, D
Data/Strobe TON Delay
Bit A, B, C, D
Data/Strobe T OFF Delay

45

Bit A, B, C, 0
Toggle Rate

20

45
35

Clock Mode SWitching Test(61
Output Fall Time
Power Consumption

130

n,

+25°C

50V

64 mA

MH,
MH,

+25°C
+25°C

50V
50V

64 mA
64 mA

00

"

+25°C

50V

50

nA

+25°C

475V

194

mW

+25°C

525V

V
V
V

+25°C
+25°C
+25°C

50V
50V
50V

lOrnA

mA

+25°C

50V

OV

pF

+25°C

50V

Pulse

Pulse

OV

OV

100 pF

OV

Input Voltage Rating

55
55
55

Data Strobe
Data Inputs
Reset

10mA
lOrnA

Output Short Circuit

-10

Current

-60

Input Capacitance

30

Strobe Memory Holding
Time with "1" to "0"
Clock or Output
Transition
With no "1" to "0"
Clock or Output
TranSition

17

35

ns

+25°C

50V

o 8V

20V

20V

Output A

17

35

"

+25°C

50V

20V

20V

20V

Output A

o 8V

20V

20V

Output A

20V

Output A

Strobe Pulse Width

25

ns

+25°C

50V

Reset Pulse Width

30

n,

+25°C

50V

Note 1:
that are
Note 2:
Note 3:
Note 4:
Note 5:
Note6:

1·144

OV

20V

o 8V

All voltage and capacitance measurements are referenced to the ground terminal. Terminals
not specifically referenced are left electrically open.
Positive current flow IS defined as the current Into the referenced terminal.
Measurements of each output and the associated data Input apply Independently.
Output source current IS supplied through a resistor to ground.
Output Sink current IS supplied through a resistor to Vec.
The unit Will tolerate any fall time on the clock due to the DC deSign.

00

S:S:

general description (cont.)

'oJ 'oJ
NN

0000

The DM7280/DM8280 counter operates as a divldeby-two and divide-by-flve counter with no external
connections. When the A output IS connected to
the Clock 2 input, It counts In the familiar BCD
mode. The bl-quinary mode is obtained by connecting the D output to the Clock 1 input while
applying the clock to the Clock 2 Input. This
produces a square-wave output at fila on the A
output that IS particularly useful tn frequency
synthesizers.
The DM7281/DM8281 is a 2,2,4,8 counter when
operated with two clock inputs and no external
connections. It IS a 2,4,8,16 counter when the A
output IS connected to the Clock 2 input. Thus,
It may be used as a divide-by-two, -eight, or
-sixteen counter.

The DM7288/DM8288 consists of divlde-by-two
and divlde-by-slx counters. For dlvide-by-twelve
operation, output A IS connected to the Clock 2
input.

,~

Counttng IS performed on the negative-going edge
of the clock pulse In all three types. The dlvldeby-two stages may be toggled at up to 45 MHz,
typical, approximately tWice the maximum frequency of the Clock 2 input.

00

S:s:

0000

N

N

0000
.... 0

All three have parallel Inputs which may be used
to set the corresponding outputs to desired states.
The parallel Input logic levels are transferred to the
outputs when the strobe line IS placed at the logical "0" level. A "0" on the reset line will place
all four outputs tn the "0" state.

o

s:
'oJ

N
00
00
........

o

The register-storage function can be obtained by
using the strobed parallel-entry capability. Data to
be stored is entered by the method indicated above
and retatned on the outputs holding both clock
inputs at logical "1" (V cel The register may be
reloaded with a new parallel entry and strobe
operation or cleared by the reset line.

s:
00
N
00
00

1-14'i

N

co
Ln

Series 54/74

co

~
C

o

~

o::t

DM74200(SN74200) TRI-STATE®
256-bit random access memory

C

DM8582 256-bit random
access memory (open collector)

I'
~

general description
The DM74200 and the DM8582 are 256 x 1 read!
write random access. TTL memories which can be
used in applications ranging from scratch· pad to
main memories. Eight address inputs select the
proper bit·location and a Wnte·Enable input deter·
mines whether the read mode or write mode is
chosen. Three ch ip-enable inputs determ ine whether
the output is in the conventional logical "1" or
logical "0" state or whether it is gated into the
off· state (DM8582) or the high·impedance state

DM74200. The off·state and high·impedance states
are usefu I when connection is made to a common
bus·line.

features
•
•
•
•

40 ns typical address access time, DM74200
50 ns typical address access time, DM8582
20 ns typical chip select access time
<2 mW!bit typical power dissipation

connection diagram
Dual·ln*Line Package
DATA
IN

"

14

WE

13

11

12

10

-

CE,

CE,

CE,

DATA
OUT

J:

TOP VIEW

truth table

CE

WE

OPERATION
Write

Read
H
H

1·146

OUTPUT
IDM8582)
Logical" 1"
(Open Collector)

OUTPUT
IDM74200)
High Z

D {Complement

o (Complement

of Stored Datal

of Stored Data)

Do Nothing

Logical "1"

High Z

Do Nothing

Logical" 1"

High Z

c

absolute maximum ratings

:s:
......

(Note 1)

.J:o,
Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM74200, DM8582
Storage Temperature Range
Lead Temperature (Soldering, 10 secl

N

o
o

7V
5.5V
5.5V
O°Cto+70°C
_65°C to +150°C
300°C

c

:s:

00
U1

00
N

electrical

ch~racteristics

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Logical "1" Input Voltage

DM74200
DM8582

Vee = 4.75V

Logical "0" Input Voltage

DM74200
DM8582

Vee = 4 75V

Logical "1" Output Voltage

DM74200

Vee = 4 75V

, IsouAeE = 10 mA

Logical "1" Output Current

DM8582

Vee = 5.25V

,V ouT =55V

50

IJ.A

Logical "0" Output Voltage

DM74200
DM8582

Vee = 475V

, ISINK = 24 mA

04

V

Third State Output Current

DM74200

Vee= 5.25V

,V ouT =04Vor24V

Logical "1" Input Current

DM74200
DM8582

Vee = 5.25V

Y,N = 2.4V
'V'N = 5 5V

25
10

IJ.A
mA

Logical "0" I nput Current

DM74200
DM8582

Vee = 525V

,V ,N =04V

-10

mA

DM74200

Vee = 5.25V

,VOUT=OV

Supply Current

DM74200
DM8582

Vee=50V

Input Clamp Voltage

DM74200
DM8582

Vee = 4 75V , liN = -12 mA

Output Vee Clamp Voltage

DM74200

Output Ground Clamp Voltage

Address Access Time,

Output Short

C,fCUlt

Current

(Note 3)

tAA

20

V

08

2.4

V

V

-40

+40

-40

99
96

IJ.A

-80

mA

130
125

mA
mA

-15

V

lOUT = 12 mA

Vee + 1.5

V

DM74200

lOUT = 12 mA

-15

V

DM8582
DM74200

Vee = 5.0V

50
40

ns
ns

20

ns

Chip Select Recovery Time, t RCS

TA = 25°C

20

ns

Write Enable Pulsewldth, twp

RL

= 300n

25

ns

Sense Recovery Time, tSR

C L = 30 pF

40

ns

Chip Select Access Time, t ACS

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply that the
devices should be operated at these limits The table of "Electrlcal Characteristics" provides conditions
for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the OG

e

e

to 70 G

range for the

DM74200 and DM8582 All typlcals are given for VCC = 5 OV and TA = 25°C

1·147

o

N

It)

Series 54/74

CO

~
Q
........

o

N

It)

r-

~
Q

DM7520/DM8520 modulo-n divider
general description
without external components to divide by any
number from 2 to 15. Cascading of these dividers will provide division by any number
from 2 to very large numbers_

The DM7520/DM8520 combines TTL technology
and MSI (Medium Scale I ntegration) design to provide a circuit equal in complexity to more than 50
gates.

2. SHIFT REGISTER

Although extremely versatile In a number of digital applications, its primary usage will be realized
in two areas.

Since the basic organization of the logic is that
of a serial shift register, the device may be used
where four-bit parallel-in-serial out shifting is
required.

1. MODULO-N DIVIDER
A single DM7520/DM8520 can be programmed

logic diagram

PRESET

-C><>------.--+------~------_+-.._-------__,

SERIAL
INPUT ---,,---,..../

SERIAL

OUTPUT

INPUT-i~-t-----~-I__t--~::::~:;j-_t------4-t__r------J
P,

OUTPUT

0000
DETECT

table for division by n

connection diagram
Dual~ln·Line

SERIAL

INPUT

and Flat Package

161- PRESET

P,

SETTING
P3
P2

P4

7BY

EXTERNAL

lSI- EX OR
INPUT
SERIAL
PARALLEL
INPUT

14

I- ~~~:UT

13~OUTPUT

'00

"

12

I-

GND

0000
DETECT

SERIAL
OUWUT

1-148

1
1
1
0
0
0
1
0
0
1
1
0
1
0

1
1
0
0
0
1
0
0
1
1
0
1
0
1

1
0
0
0
1
0
0
1
1
0
1
0
1
1

0
0
0
1
0
0
1
1
0
1
0
1
1
1

2
3
4
5
6
7

8
9
10
11
12
13
14
15

c

3:
-.J

U'I

absolute maximum ratings

N

o

7V

Supply Voltage
Input Voltage
Operating Temperature Range

3:

DMS520

O°C to +70°C

U'I

-65°C to +150°C

o

electrical characteristics

Logical "0" Output Voltage

CONDITIONS
DM7520

Vee

~

4.5V

DMS520

Vee

~

4.75V

DM7520

Vee

~

4.5V

DMS520

V ee

~

4.75V

DM7520

Vee~45V

DMS520

Vee

~

DM7520

Vee

~

4.5V

DMS520

Vee

~

4.75V

4.75V

DM7520

Vee

~

5.5V

Logical "0" Input Current
(All Inputs except pin 9)

DMS520

Vee

~

5.25V

Logical "0" I nput Current

DM7520

Vcc

~

5.5V

DM8520

Vcc

~

5.25V

DM7520

Vee

~

5.5V

DM8520

Vee

~

5.25V

(Pin 9)

Logical "1" Input Current

N

(Note 1)

PARAMETER

Logical "1" Output Voltage

00

300°C

Lead Temperature (Soldering, 10 sec.)

Logical "0" Input Voltage

c

DM7520

5.5V
_55°C to +125°C

Storage Temperature Range

Logical "1" Input Voltage

.......

MIN

TYP

MAX

V

2.0

O.S

lOUT

~

-400 j.l.A

lOUT

~

16 mA

UNITS

V

V

2.4

0.4

V

V ,N

~

O.4V

-1.6

mA

V,N

~

O.4V

-3.2

j.l.A

V'N~2.4V

40

j.l.A

V ,N

~

2.4V

SO

j.l.A

V ,N

~

5.5V

1

mA

55

mA

DM7520

Vee

~

5.5V

DM8520

Vee

~

5.25V

DM7520

Vee

~

5.5V

DM8520

Vee

~

5.25V

DM7520

Vee

~

5.5V

DM8520

Vee

~

5.25V

Power Supply Current

Vee

~

5.0V

TA~25°C

50

mA

Counting Frequency

Vee

~

5.0V

T A ~ 25°C

20

MHz

Logical" 1" I nput Current
(pin 9)

Logical "1" Input Current
(All inputs except pin 9)
Output Short CirCUit Current
(Note 3)

-20
V OUT

~

OV (Note 2)

-18

Note 1: Unless otherw1se specIfied, limits shown apply across the -550C to +125 0 C temperature
range for the DM7520 and the ODC to +70 o C temperature range for the DM8520 Typical values
apply to supply voltages of 5.0V
Note 2:

Only one output should be shorted at a time.

Note 3:

Serial and exclusIve OR outputs.

1·149

o

N

It)

CO

:ii!
Q

"-

o
N

It)

"""
:ii!
Q

theory of operation
The basic operation of the DM7520/DM8520 is
derived from the fact that wh en several outputs of
a shift register are EXCLUSIVE OR'ed and the
result fed back to the register's input, a unique
progression of stable states results on the outputs
of the flip-flops. Depending upon which outputs
are EXCLUSIVE OR'ed the number of different
states can be varied_ Even if optimum gating is
provided the most states which can be obtained is
2n-1, where n IS equal to the number of flip-flops
In the register. The all-zero state is precluded; and,
therefore, the maximum number of states is
always one less than the theoretical maximum
number. Since the DM7520/DM8520 contains
four flip-flops, its maximum number of states is
15. Because the 1111 state occurs only once durIng a 15-state sequence, this state is detected; and
its output becomes the output of the divider.

EXTERNAL EX-OR input, a 1 will be forced Into
the register at the next clock pulse, thus clearing
the unallowed state.
A PRESET input is provided which when taken to
a logical "1" level overrides all other inputs and
sets the register to the 1111 state.

To divide by numbers greater than 15, it is necessary to cascade DM7520/DM8520's. Both the
OUTPUT and the 0000 DETECT output are capable of being connected directly to other like outputs thus providing the "WI RED-OR" configuration. These outputs should be connected to the
similar outputs on other dividers for proper operation. All SERIAL/PARALLEL inputs should be
connected to the common OUTPUT.

To obtain frequency division by numbers other
than the maximum, it is necessary to cause the
register to "jump" immediately from ItS initial
1111 to the state which It would normally reach in
16-m (m = desired frequency division) pulses. For
example, to divide by eleven it would be necessary
to jump to the fifth state and then simply allow
the register to normally progress forward to ItS
original state. The output of the divider is also
used as a control pulse. Since the 1111 state is
detected and since the "jump-state" information is
of interest only at the time that this state is
reached, the OUTPUT is used to gate the parallel
inputs, through the SERIAL/PARALLEL input,
so that it recognIZes this "jump-state" information
only at this time. Subsequently as the states
change, the parallel input Information is locked
from the divider.

Other connections are shown. (Figure 1 indicates
connections for 2 dividers or a maximum frequency division ~f 255. For division by higher
numbers, a more complete discussion of the interconnection techniques will be given in the final
data sheet.)

To divide by numbers between 16 and 255, the
table in Figure 2 will apply.
Thus to summarIZe, the following connections
should be made for operation of a single DM7520/
DM8520.
Ex·Or Output to Serial Input
0000 Detect to External Ex·Or Input
Output to Serial/Parallel Input
Preset to Ground
Ex-Or Control to Ground

Should the divider ever be accidently set in the
forbidden 0000 state, an output is provided to detect this state. If this output is in turn fed into the

LOGICAL 1

-~

I. .

~p

EX OR'

OUTPU;

'"

EX OR

CONTRO l

5(

I;

0000
DETECT

\6

~

SERIAL
OUTPUT

INPUT

OM752010M8520

I OUTPUT

.-:- I

PR,ESET

INPUT

FREQUENCY

Exo~l_

-....,,,

I

SERIAl/PARAllEl

r

EX OR
CONTROL .J1

['Y

EXTERNAL

EX-OR

.,
I)

OM1520/0M85Z0

OUTPUT

INPUT

r---.~

'~'I PRESET

1

FIGURE 1. Connection for 2 Divider or Maximum Frequency Division of 255

1-150

-"I"

0000
DETECT

SERIAL
INPUT

5
j'

-=

OUTPUT /.c;

r:J

INP~

r

'""

~
lEXTERNAL
S-- EX OR

~

SERIAL/PARALLEL

c

., .,, .,,

DIVIDER 1

SETTING

I
p.J P,

, , , ,,,
, , , ,
,

0

0

0
0
0
0
0
0
0
0
0

0

0
0

0
0
0
0

0
0
0

0

0
0

0
0
0
0
0
0
0

, ,
, ,
,, ,,
,

1
1
0

1
0
1

0
0

0

0
0
0
0
1
0
0
1
1
0

0
0
0
0
0
1
0
0
1
1

0
0
0
0
0

0
1
0
0
0
0
0

,

,,
,
,

0

0
1
1
0
0
0
0

,,

,

0

,
,

0

1

0
0
0
0

, ,
,, ,
, ,

0

0

1
0
0
1
0
0
0

1
1
0
0

,

0
0

, ,
,
0
,
,, ,,
,
,
, ,
1

0

1

1

0
0

0
0
0

0

0

0
0

0
0
0
0

0
0
1
0
0

,, ,
, ,
, ,
,

0

0
0

1
0

0

,
,, ,
,

0

0

0
1
1
0

0
1
1

0
0
0
0
0
0
1
0
0

0
0
1
0
0

0
0
0
0
0
1
1
1
0
1

.,, .,, .-,
,

,,
,,,
,

1
0

0
0

0

0
0
0
0
0
C
0
1
1
1

1
0
0
0
0
0
0
0
1
1

0

1
0
1
1
0
0
0
0
0
0

,
,,,
,

0

0
1
0
0

0
0
1
.0
0
0
.()

70
0
0
1
1
1
0
1
1
0
0
0
0
0
0
1
0

1

0

I
1
0
0
0
0
0
0

0

,,,
,
,

,

0
1
0
0
0
0
0
0
0

,
,
,

1
0
1
0
0
0
0
0

,
,
, , , , ,
, , ,, ,
,
,,
,, ,
, ,
, , ,
,, , , , ,
, , ,, , ,
, ,, ,,
, ,
,
,
, ,
,
, ,
,
,
,, ,,, , , ,
, ,
, , , ,, ,,,
,, , ,, , ,
, , , ,, ,, ,,
, , , , , ,
,
,
,
, ,, ,, , ,
, , , ,
,, ,, , , ,, ,,,
, , ,, , , ,
0
0

0

0
0
0
0
0

0
1
0
1

0
0
0
0

0
1
0
0
0
0
0

0

0
1
1

0
0
1
0

0
0
1

0
0
0

0

0
0
0
0
0

1
1
0
1
0

0
1
0
0
0
0

1
0
1
0
0
0

0

0
0

0

0
1
0
0

0
0
0
1

0

0

0
0
1
0
1
1
1
1
0
0

0
0
0
1
0
1
1

0
0
0
0

1
0

1
1

1
0
0
0
1

0
1
0
0
0

0
0
1
0
0
0

0
1
1
1
1
0
0
0
0
0

0
0
0

0

0

1
0
0
0

0
0

0

0

0

0
0

0
0

0

1
0
0

0

0
0

1
0

0

0
0
0

0

1
1

0

0
0

1
0
0
0
0

0
0

0

1

0
1

0
1

0
0
0

0
0
0
0

0
0

0
0

0
0
1
0
0

0
0

0

0

'"

0
0

0
0
1
0
0

0
0

0
0
0
0

0

0

0

0

0

0

0
0

0

0
0

0

0

0
1
1
1

0

0
0

0

0

0

0
0
0
0

0

.,, ., .,,

DIVIDER 1

DIVIDER 2

,,
,,

1
0
0
0
0
0
0
1
0
0

BY

255
254
253
252
25'
250
249
248
247
246

0
0

1
0

,
,,
,
,
1

1
1
0
1

,
,,
,
,

0
0
1

1
1
0

,
,,
,
,

235
234
233
232
231
230
229
228
227
226

1
0
1

1

0

a

1

'95

'94

193
'92
191

'90
'89
'88
'87
'86
'85
'84
'83
'82
'8'
'80
179
178
177
176
175
17.
173

'72
171
170
'69
'68
'67
'66

0
0
0

0

0

0

0

0

,

0

0

0

0
0

0
0
0

205
204
203
202
20'
200
199
'98
197
196

.,, .,, .-

1
0

0

0
0

, ,

0

0

0
0
1
1
1
1

0
1
1
0
1
1
1
0
1
0
0
0
1

0

0
0
1
1
1

0
1
0
0
1
1

0

I
I

,
,,

BY

0

I
I

0
1
1
1
0
1

0
1
1
1
0

0
0
0

1
0
0

0

1
0

,
,
, ,,,

0
0
1

0
0

1
1

0
1
1
0
1
1

0
1
1
0
1

0
1
0

0
1

, ,
,

'65
'64
'63
'62
'6'
160
159
'58
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143

~+----~~--~--~-t+ -ill-

,,
,
,
,,

0

0
0
0

0
1
0

,
,
,,
,
,
,
,
,
0
0

0
1

0

1

1
0
1

0
0
1

,

0
0
0
0
1

,
,
,

0
0
1

,,
,
,,
,
,
,
,,
,,
,,
,,,
,
,
0
0
0

0
0

0
0
0

1
0

1

0

0
0

0
0
0
0

,,
,
,
, ,

0
0

0
0

0

0

0

0

0
0
0

0
0
0

,

1
1
0
0

,, ,

0
0
1
0

0
0

,,
, ,

0

I

0
1
1
0

0

1
0
0
1
0

,,
,
,,
,
,

1
0

1

1
0
1

0
0
1
1
0
0
0
0

,,
,
,
,
0
0

0
0

0
0
0

0

0

1

0
1
0
0

,

0
1
1

,
,
,
,,

0

1

1
1

0
1

0

,

0

1
0
0
0
0

,

1
0

,

0

,

0

,

0

0
0

0
0
0

0

0
1

0
0

1
0
1

1
1
0
1

0
1

, , ,,
, ,, ,,
,

0
0

, ,
, , , ,
, ,
,, ,, ,, ,
,, ,,, ,,, ,,,
,, , , ,,
0

0
1
1
0
0

0

0
0

0
1
0

0

1
0
0
1
0
1
1
0

0

0

0
1
1
1
0
0
1
0
1
1

0
0
1
1
1
0
0

0
0
1
1
1
0
0

, ,
,
, ,
, ,, , ,
,
,, , , ,
, ,
, ,
,, , ,,
,, , ,, ,
,, , , ,,
, , ,
, ,, ,
, ,
, ,,
,, ,
, ,
, , , ,,
, , , ,
, , ,
,
,
, ,
,, ,, , ,
,, ,,, ,,, ,,
, , ,
1
0

0

0

0

0

0

0
0
1
0

0
0
1
0

0
1
0
0

0
1
0
0
0

0

1

0

1

0

1
0
1
1
1
1
0

0

0
1
1

0
0
0
0

0
0

0
0

1
0
0
0
0

0
0
1
0
0
0
0

0

107
'06

0

0
0

0

0

0

0
0
0

0
0

0

0

0
0
0

1
1
0
0

0

0
0

0
0
0
1
0

0

0
1
0
0
0
0

0
1
0
0
0
0

1

0

0

0

1

'35
134
133
'32
'3'
'30
'29
'28
'27
'26
125
124
'23
122
'2'
120
119
118
'17
116

1
1

0

0
0
1

140
139
138
137
'36

115
114
113
112
11'
110
109

0

0

0

SETTING

.,, .,, .,, .- I ., .,, .,, ••,
, , , ,
, ,
DIVIDER 1

DIVIDER 2

, , ,, ,, , , ,,
,,, ,, , , , ,, ,
,
,

0

2'5
2'4
2'3
212
211
210
209
208
207
206

I

·_1 .,

0

245
244
243
242
241
240
239
236
237
236

225
224
223
222
22'
220
2'9
2'8
217
2'6

SETTING

'08

'05
'04
103
'02
10'
100
99
98
97
96
95
94
93
92
9'
90
89

DIVIDER 2

0

0
0

, ,, ,, ,, ,, ,
, , , , ,
, , ,,
, ,
,
, , ,
, ..d-, , ,
, ,
,
,

0
0
0
0
0

0
0
0'
0
0

0

0
0
0
0
0

0

0
0
0
0
1
0
0
0
0

,,

1
1
0
0
0

0

0
0
0
0
1
1
1
1
0
0
0

0
0
0

0
0
1

0
1
0
0
1
1
0
0

1
0
0
0

0

1
1
0
0

0
0
0
0
0
0
0

0

0
1
0
0

0
0

1
0

0

0

0

0
1

0

0

0

0
0
0

0
0
0

1

0
0
0
0
1

1
0
0
0

1

0

0

0
0
0
0
1
0

1

0

0

0
0
0

1

0

0

0
O

0
0
0
0
1

1
0

1

1
0
0

0
0
0

,, ,
,, , ,
, , ,,
,, , ,,
, ,, ,
, , ,
, , ,
, ,, ,,
,
, ,
, , ,
, ,
,,, ,,, ,,,
0
0

0
0
0

,, ,
, , ,

0

0
0
0
1
0
0
0
1
0
0

1

0
0

0
0
0

0
0
0

1

0
0

1

0

0
0
0
0
1
0
0

,, ,
, ,
,
,
,
,
,
, ,

0
0

1
0
0
0
0

0

0
0
0
0

-BY

0
1
0
0
0
0

,

0
0
0
0
1
1

0
0

1

0

0
0
0
0
0

0
0
0
0
1
0
0
0
0

,

0
0
1

,,,
,

0
0
0
0
0
1
0

,

0
0
0
0

,

0
0
0
0

,
,,, ,,,
,, ,
,
, ,, ,
, , ,
, ,
,
, ,
,
,
, , , ,
, ,
,, ,, , , ,
, ,
,, ,, , , ,,
,, , , ,, ,
,, ,, ,, , ,
, , ,, , ,
, , , , ,,
, , , ,
,, , , , ,
, , ,
, ,
,,, ,, , ,
, , , ,
0

0
0
0
1
0
0
0
0
0
0

0
0

1
0
0
0
0
0
0

,,

0

0
0
1

0
0
0
0
0

0

0
0
1
0

0
0

0
0
0

0
0

0
0

0
0
0

0
0
0

0

0
0

0
0

0

0
0
0
1
0
0

0

0
0

0
0

0
0
0

0

0
0

0

0

0
0

0

0
0

0

0
0

0

0

0

0

0

0
0

1

0
1
0

0

0

0

0

0
0
0

1

0

0
0

0

0
1
1
0
0
0

0
1
0
1
0

0

0

0
0
0

U'I
N

s:00

72
71

70
69

U'I
N

68
67

o

66
6~

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
4'
40
39
38
37
36
35
34
33
32
3'
30
29
28
27
26
25
24
23
22
2'
20
'9
'8
17
'6

,.
'5

13
'2
11
10

9

0

8
7
6

0
0
0

o
......
c

75
74
73

0

0

s:.....

5
4
3
2

88
87
86
85

84
83
82
81
80
79
78
77
76

FIGURE 2. DM7520/DM8520 Shift Register DiVider Input Coding Table (2 Package Combinations)

1-151

.it)
it)

Series 54/74

CO

:E
c

.......
.it)
it)

,...

®

DM7551/DM8551 TRI-STATE quad D flip flop

:E

c

general description
The DM7551/DM8551 IsaTRI-STATE logic device
which prOVides four D-type flip flops In one package which operate synchronously from a common
dock.

features
•

Series 54/74 compatible

•

23 ns typical propagation delay

•

250 mW typical power dissipation

•

Outputs directly connectable for bus-line operation

•

A" do-nothing" state accomplished without gating the clock

•

Simple disable encoding

A unique three-state output allows the device to
be used In bus-organIZed systems. The outputs can
be directly wired to outputs of other DM7551/
DM8551 's without encountering the problems normally met with "collector- ORlng" TTL CirCUitS.
This IS accomplished by gating the normally low
Impedance logical "1" or logical "0" output into
a high Impedance state.
(Continued)

logic and connection diagrams

Dual-In-Line and Flat Package
DATA INPUT
DISABleS

1

DATA
INPUT

INPUT

INPUT

INPUT

INPUT

ABC

0

OUTPUT OUTPUT OUTPUT

OUTPUT

INPUT

DISABlE DISABLE

OUTPUT {

DISABLES

OUTPUT

OUTPUT

DISABLE OISABLE

CUTPure

a

A

C

0

truth table (Both Output Disables Low)
to

DATA INPUT DISABLE

DATA
INPUT

OUTPUT

Logical "1" on 1 or both Inputs

X

Qn

Logical "0" on both Inputs

1

1

Logical "0" on both Inputs

0

0

x=

1-152

Don't Care

tn+l

c

s:

absolute maximum ratings

(Note 1)

Supply Voltage
Input Voltage

7V
55V
55V
_65°C to +150D C
_55°C to +125D C
O°C to +70D C
300°C

Output Voltage
Storage Temperature Range
Operating Temperature Range

DM7551
DM8551

Lead Temperature (Soldering, 10 sec)

-..I

(J'I
(J'I

...

........
C

s:
CO

(J'I
(J'I

...

Time that two bus·connected devices may
be In Opposite low Impedance states
simultaneously

Indefinitely

electrical characteristics

(Note 2)

PARAMETERS

CONDITIONS

MIN

Input Voltage

DM7551
DM8551

Vee=45V
Vee 475V

Logical "0" Input Voltage

DM7551
DM8551

Vcc=45V
Vee 475V

Logical "1" Output Voltage

DM7551
DM8551

Vcc=45V
Vee - 4 75V

-2 0 ~
lOUT - -52 mA

Logical "0" Output Voltage

DM7551
DM8551

Vee=45V
V ee -475V

lOUT

Logical "0" Input Current

DM7551
DM8551

V cc "'55V
Vee 525V

VIN =040V

Logical "1 ' Input Current

DM7551
DM8551

Vee = 525V
Vee - 525V

VIN=24V
VIN = 5 5V

Output Current
In High Impedance State

DM7551
DM8551

Vee=55V
Vee - 525V

Vo = 24V
Vo-04V

Supply Current

DM7551
DM8551

Vee=55V
V cc =525V

Output Short Current
INote 3)

DM7551
DM8551

Vee= 55V
Vee~525V

Logical

"1"

TVP

MAX

V

20
080
lOUT =

=

24

-1 0

"

0 OV

040

V

-16

rnA

40
1

rnA

I'A

40
-40
50

V OUT

V

V

33
02

16 mA

UNITS

-30

72

rnA

-70

rnA

MaXimum Clock Frequency

Vee = 5 OV
C L = 50 pF

TA "25°C

25

30

Propagation Delay from Clock

Vee = 5 OV
CL = 50 pF

TA

25D C

11

20

28

ns

to Logical "0", tpdO
Propagation Delay from Clock
to Logical "1", tpdl

Vee" 50V
C L = 50 pF

TA=25D C

11

16

25

ns

I nput Data Setup Time, ts

OA T A

Vee = 5 OV

T A'" 25D c

3

10

ns

Input Data Hold Time, tH

DATA

Vee=50V

TA = 25°C

4

10

ns

TA

25°C

7

14

ns

Input Disable Setup Time, ts

DIS

Vee

=

5 OV

Input Disable Hold Time, tH

DIS

Vee

=

Delay from "Output Disable" to High

=

=

MHz

5 OV

T A =25 c C

-7

Vee = 50V

TA = 25D C

5

30

Vee = 5 OV

TA

=

2SoC

11

30

Vee = 5 OV

TA

-=

2SDC

16

30

Vee = 5 OV

T A = 25°C

21

30

ns

Vee = 5 OV

TA = 25°C

18

27

ns

ns

Impedance State (from Logical "1"
Level), t1 H
Delay from "Output Disable" to High

ns

Impedance State (from Logical "0"
Level), tOH
Delay from "Output Disable" to
Logical "1" Level (from High
I mpedance State), tH 1
Delay from "Output Disable" to
Logical "0" Level {from High
Impedance Statel, tHO
Propagation Delay from Clear
to Output, tpd R

Note 1; Absolute maximum ratings are those values beyond vvhlch the safety of the deVice cannot
be guaranteed Except for "Operating Temperature Range", they are not meant to Imply operating
conditions
Note 2: Unless otherwise specified the min-max limits across the -55.)C to +125°C temperature
range for the DM7551 and across the O°C to 70 0 temperature range for the DM8551 All tYPlcals are
given for Vee;:: 5 OV and T A = 25°e

e

Note 3: Only

1 output at a time should be shorted

1-153

...

I.C)
I.C)

co
~
Q

...

......
I.C)
I.C)

......

BUS LINES

12D rnA FOR DRIVING OTHER TTl INPUTS

~
SELECTED AS
DRIVING DEVICE - - - -

SElECHDAS

DRIVING
DEVICE

~

Q
40 ~A x 127 OUTPUTS ~ 5GB rnA

GATED INTO
TtllRDSTATE

GATED INTO

LEAKAGE CURRENT

GATED INTO

THIRO STATE - - - - -

THIRD STATE

40IJA LEAKAGE CURRENT

FIGURE 1

FIGURE 3

FIGURE 2

general description (cont.)
The high Impedance state occurs on all outputs of
ali deVices except the four outputs of the one de·
vice selected (Figure 11. The result IS that the
selected deVice has a normal TTL low Impedance
output· providing good capacitive drive capability
and waveform Integrity especially during the tran·
sltlOn from a logical "0" to a logical "1". The
other outputs are all in the "thlrd·state" and take
only a small amount of leakage current from the
driving outputs. Since the logical "1" output cur·
rent of the selected deVice IS 13 times that of a
normal Series 54/74 output (5.2 mA vs 400 flAI,
the output IS easily able to supply that leakage
current to as many as 127 connected deVices and
stili retain enough drive for a full Series 54/74
fan·out of 3 at the end of the bus line (Figure 21.
A two'lnput NOR gate faCilitates selection of the
driVing device through the use of only two octal
decoders for as many as 64 DM7551/DM8551's
(Figure 31.
A problem Inherent In conventional D·type flip
flops is that It IS Impossible to code the data Input
in such a way as to cause the flip flop to remain In
ItS present state when clocked. Because fleXibility

1·154

IS not as great as With a J·K flip flop (and ItS J~O,
K~O statel, to keep a D·type flip flop In ItS present
state It IS usually necessary to gate the clock,
which Increases the danger of false·clocklng. The
DM7551/DM8551 contains a gated input disable
which does not disrupt clocking, but rather re·
circulates information from the Q output to the 0
Input In thiS manner the flip flop does not change
state and the possibility of false·clocklng IS
eliminated
The follOWing logiC levels control the deVice.
•

Clocking occurs on the positive· gOing transition.

•

Clearing IS enabled by taking the Input to a
Logical "1" level

•

Outputs are placed In the "thlrd·state" If either
of the two Output Disable Inputs IS taken to a
Logical" 1" level.

•

The flip flops Will remain In their prevIous state
when clocked so long as either of the two Data
Input Disable Inputs IS taken to a Logical "1"
level.

The DM7551/DM8551 IS completely compatible
With other Series 54/74 deVices.

o

s:

Series 54/74

illS

.....

U'I
U'I
N
........

OM7552/0M8552 TRI-STATE® decade counter/latch
OM7554/0M8554 TRI-STATE

o

s:

binary counter/latch

CO
U'I
U'I
N

general description
The DM7552/DM8552 and DM7554/DM8554 are
TTL TRI-STATE Synchronous Decode and Binary
counter/latch circuits respectively_ The circuits
consist of a counter made up of four edge-triggered
JK flip-flops.

features
•
•

330 mW tYPical power dissipation
TRI-STATE outputs directly connectable for
bus-line operation

•

TR I-STATE outputs information may be latched

30 ns typical propagation delay
Count mode and Terminal Count output are
operable when the outputs are in the high
impedance state or latch mode

•

Blanking capability with the DM7552/DM8552

•

Positive true logic

The circuits logically combine the function of
counters for frequency division, latches to hold
the counter's information, and output buffer gates
wh ich allow active TT L outputs as well as the high
impedance (3rd) state for output multiplexing of
data.

Series 54/74 compatible

•

•
•

connection diagram
Dual,ln-line and Flat Package
TRANSFER
Vee

ENABLE

L"

"

3

2

1

'--<---'
OUTPUT
DISABLES

rRESET CLEAR

CP

flIC

CEP

" " '"

T3

.

;

6

'---=--C

)

HRM
COUNT

eET

9

J

GND

OUTPUTS

TOP

VI~W

typical application
Multi-Stage Synchronous Counter with Visual Display
OISPLAY
UNIT

DISPLAY
UNIT

DISPLAY
UNIT

COUNT
ENABLE

I:'~'~:~ANT
STAGES

cpo-~t-~~~~--~.,--~~~~--.,----~----~.,------------­
STROBEo--....---;;1S;;-TS;:;T-;;AG~E---....---;2;;;ND:-;ST;:;'-;::GE;------4I'---,3;;RD;-;S:;;TA;;:6;-E---4-----;";:;'",ST;';'''GE;---

Counter stages can be cascaded as shown above to prOVide multiple stage BCD or binary synchronous countmg by uSing the
DM7552/DM8552 or the DM7554/DM8554 respectively. With a Terminal Count (TCI fan out of

SIX

the above scheme allows

seven stages to operate at the maximum frequency equivalent to a two stage counter.
The characters displayed can be held with a low level on the strobe line while the counters can continue counting. The

display can be updated by applYing a positive pulse to the strobe line.

1-155

absolute maximum ratings

Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

N

It)
It)

operating conditions

(Note 1)

70V
55V
5.5V
-65°C to +150°C
300°C

Supply Voltage IVCCI
DM7552/54
DM8552/54
Temperature (T A)
DM7552/54
DM8552/54

MIN

MAX

UNITS

4 5
4 75

55
525

V
V

-55

+125
70

0

electrical characteristics

co
:E

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

c

Logical "1" Input Voltage

N

Logical "0" Input Voltage

It)
It)

LogIcal "1" Output Voltage TC Output

lOUT = -04 mA

24

33

V

Logical "1" Output Voltage (Other Outputs I

lOUT = -2 mA IDM7552/54)
lOUT = -5 2 mA(DMB552/54)

24

3.3

V

.........

......

:E

c

20

V
OB

Logical "0" Output Voltage

lOUT = 16 mA

Third State Output Current

V OUT = OAV to 2AV

Logical "1" Input Current

Y,N = 2AV

02

04

V

V

±40

IJA

"CET"

Y'N = 5 5V

80
2

IJA
mA

"Other Inputs"

Y'N = 2AV
V ,N =55V

40
1

IJA
mA

Logical "0" I nput Current "CET"
"Other Inputs"
Output Short CirCUit Current (Note 3)
TC Output
Other Outputs

V ,N =04V

-20

-32

mA

V ,N =04V

-1.0

-1.6

mA

VOUT=OV
V OUT = OV

Supply Current (each device) Icc (max)

-20
-30

-55
-70
66

106

mA
mA
mA

Input Clamp Voltage

I'N=-12mA

Output Vee Clamp Voltage

Vee = OV lOUT = 12 mA

Output Ground Clamp Voltage

Vee = OV louT=-12mA

Propagation Delay to a Logical "0" from
Clock to Any Output, tpdO

Vee = 5.0V
T A = 25°C

23

45

ns

Propagation Delay to a LO]lcal "1" from

Vee = 5 OV
T A = 25°C

34

70

ns

Vee = 5.0V
T A = 25°C

26

50

ns

Clock to Any Output, tpd1
Propagation Delay from TE to
Output, tpd (TEl

-1.5

V

15

V

-15

V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherwise specified minimax limits' apply across the -55°C to +125°C temperature range for the DM75521
DM7554 and across the O°C to 70°C range for the DM8552/DM8554. All tYPlcals are gIven for VCC ~ 5.0V and TA = 25°C
Note 3: Only one output at a time should be shorted

1-156

c

s:

electrical characteristics (cont.)

'-J

c.n
c.n

MIN

CONDITIONS

TYP

MAX

UNITS

27

8

ns

17

40

ns

Vcc = 50
T A = 25°C

21

45

ns

Delay from Output Disable to Logical
"0" Level (from High Impedance Statel. tHO

Vcc = 5.0
T A = 25°C

25

50

ns

Maximum Clock Frequency

Vcc = 5.0
T A = 25°C

PARAMETER
Delay from Output Disable to High
Impedance State (from Logical "1" Levell, t'H

Vcc = 5.0
T A = 25°C

Delay from Output Disable to High
Impedance State (from Logical "0" Levell. tOH

Vcc = 5.0
TA = 25°C

Delay from Output Disable to Logical
"1" Level (from High Impedance Statel, tHl

15

23

,

N

C

s:CO

c.n
c.n
N

c

s:'-J

c.n
c.n

MHz

,

.I=Jo

C

s:

mode of operation

CO

When the Transfer Enable (TE) IS at a logical "1"
level the data transfer paths between the counter
outputs and the output buffer gates are rna Intalned.
When the Transfer Enable (TEl is at a logical "0"
level, the data transfer paths are inhibited, and the
state of the output buffer gates are locked In by
the latches. The counter and Terminal Count (TC)
output remain operable dUring th IS time.

c.n
c.n

CET IS high. The Terminal Count logic equations
are:
OM7552!OM8552 TC
OM7554!DM8554 TC

= CET
= CET

. A . B .C . 0

The follOWing logic levels control

II

the device:

•

The counter changes state on the positive-going
transition of the clock_

Asynchronous Clear (Cl) resets the counter to
0000.

•

Clearing or Presetting IS enabled by taking the
respective input to a logical "1" level.

Asynchronous Preset (PRE) resets the counter
to 1111.

•

To enable the count mode both CET and CEP
Inputs must be at a logical "1" level.

•

To latch the outputs the Transfer Enable (TEl
Input must be taken to the logical "0" level.

•

To place the TRI-STATE outputs into the
"Third-State" either of the Output Disable (00)
Inputs must be taken to the logical "1" level.

The 1111 state may be used in the DM7552!
DM8552 for blanking out leading zeroes In visual
displays. The next clock pulse will advance the
DM7552!DM8552 to 0001 which denotes the first
count of the blanked zero. The next clock pulse
will advance the OM7554!OM8554 to 0000.

.I=Jo

. A . B. C . D

The clock Input must be high dUring the high to
low transition of CEP and/or CET for correct
logic operation. The CEP and CET Inputs may be
used In a high speed look ahead technique (see
application) .

The Terminal Count (TC) output IS active high
when the counters are at terminal count and the

logic tables
FUNCTION TABLE

002

1

X

X
0
0
0
0

1

0
0
0
0

CEP

CET

X
X
X
X
X

X
X
X
X
X

1

1

CLEAR

• Function of the count sequence

DM7554/DM8554

BINARY COUNT SEQUENCE

OUTPUTS

OUTPUTS

INPUTS
001

DM7552/DM8552

DECADE COUNT SEOUENCE

PRESET

TE

1

X
X
X

0
X
0

1

1

X
0

0

X
X

X
X
1

1

A

B

C

0

"High Impedance State"

H'~r;'('T~tc
1

1

1

LATCH
COUNT

1

TC

OUTPUTS

COUNT

A

B

C

a

TC

0

0

1

1

0
0

0
0
0
0

1
1

1
1
1
1

0
0
0
0
0
0
0
0

0
0

0
0

1
1

0
0
0
0
0
0
0
0
0

2

0

3

1

4

0

5
6
7
8
9

1

0
1

0
1

1
1

0
0

1

-'If Preset
Applied

Next
Count

1

1

1

1

1

0

0

0

0
0

COUNT

0

B

C

0

TC

0

0
0
1
1

0
0
0
0

0
0

1
1

0
0

1

1

1

1

1

0

1

1

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1

1

1

1

1

1

1

2

0

3
4

0

1

5

1

6
7

0

8

0

9
10
11
12
13
14
15

• "The 1111 state may be used ,n ~QnJu"cl'on wIth
certain decoderldnvers t e DM5446, OM5447

A

1
1

0
1

0

1
1

0
0
1
1

1

0
0
0
0
0
0
0
0

0
0
0
0

1
1
1
1

1

and OM5448 tor blankIng leadmg zeroes

1-157

logic diagrams
DM7552/DM8552

.

,

OUTPUT
DISABlU

~

J

,

co

~
C

........
N

OUTPUT

~

S

,

OUTPUT

"

~

~ ~

N
It)
It)

TERMINAL

,

OUTPUT

nUTPUT

~

S

,

TRANSfER
ENABLE

COUNT
nUTPUT

,
, ,
LATCH

S

It)
It)

.....

~

~
C

+

-0'

r---""

~'

+"

-+-

" r-'[=LJ'

-

,

"

;::0,

irl---' '

"

,

'----; ~,

~

,

+
=;=U'
"

;::u'

" I--

"

~Sf!-

~¥I-

L..-..!!!'S~

~ESf!-

I

"

,-- .

COUNT ENABLE

TRICKLE
COU"TENABL

PARAllEL

,
:(I'DM7554/DM8554

.

,

OUTPUT

OUTPUT

OUTPUT

DISABLES

IjESET

1·158

,

OUTPUT

TERMINAL
OUTPUT

COUNT

"

OUTPUT

c

!:

Series 54/74

"""

U'I
U'I

W

.......

c

!:
OCI

c.n
c.n

DM7553/DM8553 TRI-STATE® eight bit latch

w

general description
The DM7553/DM8553 provides eight latcheswhose
Inputs and outputs are accessed on the same leads.
The fact that the outputs utilize TRI·STATE Circuitry allows this to be done. While in the high·
impedance state, the outputs and inputs are dlsabl·
ed and no information can be entered. When the
outputs are active the gating associated with each
latch prevents Information from being entered. The
outputs are disabled while information IS entered.

In this manner eight bits of storage can be accom·
plished with parallel inputs and outputs in a 16·pin
package.

features
• Series 54/74 compatible
• Typical power dissipation
• TYPical propagation delay

330mW
25 ns

logic and connection diagrams

Vcc::=18

GNU .. S

,---------;-,

DATAINPUT/OUTPUTl

I
I
I

I

DATAINPUT/OUTPUT20-:"+.......,.."""\

II

Oual·ln·LIn" and Flat Pickage

vr
"

READ

WRITE

WRiTE

"

13

"

DATA IN'UTS/OUTPUTS
11

12

,

10

1

fiiiO

,
mm

1

,

,

•

CLEAR

,

•

DATA INPUTSIOUTPUT$

.N.I'

TOPVI~W

truth table
CLEAR

ENABLE

READ

WRITe

1

0

0

x

x

x

1
X

1/0 STATE
Output

X

1

1
X

0

0

x

0

Write

0

0

0

1

Re~d

=

a

HI'z

CLEAR

1·159

absolute maximum ratings
Supply Voltage
I nput Voltage
Output Voltage

operating conditions

(Note 1)

7V
5.5V or 0.5V above Vee

Storage Temperature Range

Lead Temperature ISolderlng, 10 sec)

-65'Cto+150'e
300'e

,

Supply Voltage (Vee)
DM7553
DM8553
Temperature IT A)
DM7553
DM8553

MIN

MAX

UNITS

4.5
475

55
5.25

V
V

-55
0

+125
70

'c
'C

electrical ch aracteristics (Note 2)
PARAMETER

CONDITIONS
Vee

= Min

Logical "0" I nput Voltage

Vee

= Min

Logical "I" Output Voltage,
Output Enabled

Vee

= Min,

lOUT

= -5 2 mA (8553)

Logical "0" Output Voltage,
Output Enabled

Vee

= Min,

lOUT

= 16 mA

Logical "1" Input Current, Input Enabled

Vee

= Max,

Logical "I" Input Voltage

TYP

MAX

2.0

-2.0 mA 17553)

UNITS
V

0.8

V
V

2.4
0.4

V

1.0

mA

V ,N

= 5.5V

V ,N

= 2.4V

40

I'A

V ,N

= O.4V

-1.6

mA

Logical "0" Input Current, Input Enabled

Vee

= Max,

TRI·STATE 110 Current with Inputs &
Outputs Disabled

V,IO

= 2.4V

Vee

= Max, 7553

Output Short CirCUit Current
(Note 3)

MIN

or 04V

-28
-30

8553

Supply Current

66

Input/Output Vee Clamp Voltage

Vee

= OV,

= +12 mA

Input/Output Ground Clamp Voltage,
Outputs Disabled

Vee

= 5V,

Delay from Output to High Impedance
State (from Logical "I" Level), t'H

Vee

= 5.0V, T A = 25'C

Delay from Output to High Impedance
State (from Logical "0" Level), tOH

Vee

Delay from Output to Logical "1" Level
(from High Impedance State), tH1
Delay from Output to Logical "0" Level
(from High Impedance State), tHO

±40

I'A

-70

mA

93

mA

15

V

-1.5

V

7

12

ns

= 5 OV, T A = 25'C

20

30

ns

Vee

= 5.0V, T A = 25'C

22

33

ns

Vee

= 5.0V, T A = 25'e

25

38

ns

21

32

ns

lOUT

lOUT

= -12

mA

TRI-STATE OUTPUT CHARACTERISTICS

Delay from Clear Input to Output =
Logical "0", tpdA

10

15

ns

Data

=1

14

20

ns

Data

=a

26

36

ns

Data

=1

-26

-15

ns

Data

=a

-14

-8

ns

28

40

ns

Min Clear Pulse Width Required, t,pw
Data Setup Time,

ts

Data Hold Time, th

Min Wnte Pulse Width Required, !wpw

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits. The table
of "Electrical Characteristics" provides conditions for actual device operation

Note 2: Unless otherwise specified mm/max limits apply across the _55°C to +12SoC temperature range for the DM7553
and across the O'C to 70'e range for the DM8553. All tYPlcals are given for Vee = 5.0V and T A = 25°C
Note 3: Only one output at a time should be shorted.

1-160

o

Series 54/74

3:

"""
en
U'I

o

........

o
3:

(1)

U'I

DM7560/DM8560(SN54192/SN74192) up/down decade counter

en

o

general description
The DM7560/DM8560 IS a TTL, Series 54174 compatible, up-down decade counter which IS capable
of being preset to any number from 0 through 9,
A load Input controls the asynchronous entry of
these numbers, and sets all outputs to appropriate
state,
Counting IS performed through two clock Imes-

one controlling the count in the up direction, and
the other in the down direction, Two outputs, Borrow and Carry, are connected to the clock inputs
of subsequent counters to provide for counting to
numbers greater than 9, The counter is synchronous by itself, and "semi-synchronous" Itwo gate
delays between stages) when cascaded,

logic diagram

II

1-161

o

CD

,

It)

absolute maximum ratings

CIO

:!
Q

........

Vee
I nput Voltage
Operating Temperature Range

o

CD

It)

......

70V
55V
_55°C to +125°C
O°C to +70°C
_65°C to +150°C
10
300°C

DM7560
DM8560

Storage Temperature Range
Fanout
Lead Temperature (Soldering, 10 sec)

:!
Q

electrical characteristics

(Note 1)

PARAMETER
Logical "1" Input Voltage

CONDITIONS
DM7560
DM8560

Vee
Vee
-

C

C

4 5V
475V

Logical" 1" Output Voltage

DM7560
DM8560

Vee
Vee

DM7560
DM8560

Vee
Vee

Logical" 1" I nput Current
(All Inputs)

DM7560
DM8560

Vee c55V
Vee 525V

V ,N =24V

Logical" 1" I nput Current
(All Inputs)

DM7560
DM8560

Vee
Vee

V ,N

Logical "0" I nput Current

DM7560
DM8560

Vee 55V
V ee c 525V

V ,N c 04V

Output Short Circuit Current
(Note 2)

DM7560
DM8560

Vee c55V
Vee 525V

V OUT ., 0

Supply Current

DM7560
DM8560

Vee c55V
V ee -525V

0

C

C

C

MAX

08

45V
475V

lOUT

C

-400 J.1A

45V
4,75V

lOUT

C

16 mA

UNITS
V

V ee c 45V
Vee - 475V

DM7560
DM8560

V

V

24

04

V

40

J.1A

1

mA

-1,6

mA

C

C

C

5,5V
5,25V

C

C

5 5V

C

Propagdtlon Delay to d
Logical "1", tpdl

Vee = 50V
T A c 25°C

From Clock to Output

Propagation Delay to a
Logical "0", tpdO

Vee = 5 OV
T A 25°C

From Clock to Output

MaXimum Clock Frequency

Vee 5,OV
T A o 25°C

C

-20
-18

From Clock to Carry/Borrow

From Clock to Carry/Borrow

Note 2: Only 1 output may be shorted at a tIme

-55

mA

50

89

mA

27
22

38
30

ns
ns

37
18

47
30

ns
ns

C

20

Note 1: SpecIfIcations apply across _55°C to +125°C temperature range for the DM7560 and OoC to
700 e for the DM8560 unless otherWise specified. TYPlcals are given for Vee"" 5V and T A = 25°C only.

1·162

TYP

20

Logical "0" Input Voltage

Logical "0" Output Voltage

MIN

30

MHz

o
3:

.....

logic waveforms

U1

en

o

IExampleshownfor (1) ctearlng, (2l asynchronously settlOQtD eight count,

__________________________

.......

~~----------------------------

3:

(J) counting "up"to two, and (4) counting "down" to eight I

-1l~

CLEAR

o

I

LOAD

I

CO

I

U1

I

en

A'"~L....!.I__+-____

o

BIN~L-!.._-!.._ _ __

CIN~L-+_-!____

OIN--.-J
LJLJLJL.J

CLOCK UP

I
I

I

CLOCK DOWN

I
I

r

I
I
I

I
I

I

I

r

LJLJLJL.J
I

I

I

I

I

I

I

I

AOUT
I

BOUT

I

r----i

----,

L--...!._ _ _ _~~_~~,

~~~~-~--_

COUT

~L_-!_ _ _ _+-..!-+_....!..__:'-__..!-_...!......l..-+_---"f-___

Dour

--,

li----..!......!.......,i

u

i

I

~i-~--~--~-~-7'~i

L---J

LJr' --------~:------

CARRY

I

BORROW
NOTES

----------------------~LJ
LOAD AND CLEAR INPUTS SHOULD NEVER BE ENABlED TOGETHER
A, D, C AND 0 INPUTS ARE FREE TO CHANGE AFTER LOAD INPUT IS DISABLED
WHEN COUNTING "UP", THE "DOWN" CLOCK MUST BE IN THE LOGICAL 1 STATE, AND CONVERSELY

cascading counters

f------lCLDCK UP

f------l~~~CNK

connection diagram
Dual-In-Llne and Flat Package
Vee

BIN

AIN CLEAR BORROW CARRY LOAD

BOUT

AOUT

CLOCK CLOCK
DOWN
UP

COUT

CIN

Dour

DIN

GROUND

TOP VIEW

l-lR:1

Series 54/74
DM7563/DM8563(SN54193/SN74193) up/down binary counter
general description
The DM7563/DM8563 is a TTL, Series 54174 compatible, up-down binary counter which is capable
of being preset to any number from a through 15.
A load input controls the asynchronous entry of
these numbers, and sets all outputs to appropriate
state.
Counting is performed through two clock lines-

logic diagram

1-1R4

one controlling the count in the up direction, and
the other in the down direction. Two outputs, Borrow and Carry, are connected to the clock inputs
of subsequent counters to provide for counting to
numbers greater than 15. The counter is synchronous by itself, and "semi-synchronous" (two
gate delays between stages) when cascaded_

c

s:
.....

absolute maximum ratings

C1I

Vee
Input Voltage
Operating Temperature Range

en
w
........

70V
55V
-55°C to +125°C
O°C to +70°C
-65°C to +150°C

DM7563
DM8563

Storage Temperature Range
Fanout
Lead Temperature (Soldering, 10 sec)

C

s:00

10

C1I

en

300°C

electrical characteristics

w

(Note 1)

PARAMETER

MIN

CONDITIONS

TYP

MAX

UNITS

DM7563
DM8563

Vee"45V
Vee 475V

Logical "0" I nput Voltage

DM7563
DM8563

Vee = 4 5V
Vee = 4 75V

Logical" 1" Output Voltage

DM7563
DM8563

V ee =45V
V ee -475V

lOUT = -4001JA

Logical "0" Output Voltage

DM7563
DM8563

Vee=45V
Vee 475V

lOUT = 16 mA

Logical" 1" I nput Current
(All Inputs)

DM7563
DM8563

Vee = 55V
Vce=525V

V ,N =24V

40

IJA

Logical" 1" I nput Current
(All Inputs)

DM7563
DM8563

Vee= 55V
Vee = 525V

V ,N =55V

1

mA

Logical "0" I nput Current

DM7563
DM8563

Vee=55V
Vee - 525V

V ,N =04V

-1.6

mA

Output Short CirCUit Current
(Note 2)

DM7563
DM8563

Vee=55V
Vee - 525V

V OUT = 0

Supply Current

DM7563
DM8563

Vee=55V
Vee - 525V

Logical "1" Input Voltage

2.0

V

0

Propagation Delay to a
Logical" 1", tpd 1

Vee = 50V
TA = 25°C

Propagation Delay to a
Logical "0", tpdQ

Vee=50V
T A = 25°C

MaXimum Clock Frequency

Vee = 50V
TA = 25°C

08

24

-20
-18

From Clock to Output

From Clock to Output
From Clock to Carry/Borrow

Note 2. Only 1 output may be shorted at a time

Vee"" 5V

and T A = 25°C only

V

-55

mA

50

89

mA

27
22

38
30

ns
ns

37
18

47

ns

30

ns

30

Note 1: SpecificatIOns apply across _55°C to +125°C temperature range for the OM7563 and QOC to
70c e for the DM8563 unless otherWise spec~fted Typlcals are given for

V

04

From Clock to Carry/Borrow

V

MHz

logic waveforms

[Example shown fOI (1) clearing.

I

masynchronouslV setting to fourteen count,

(3} counting "up" to two, and (4) countmg "down" 10 fourteen I

...Jl

CLEAR

------------------------------------------------

~r------------------------------------------------

LOAD

I

A,.

11..+:__+ ____

BIN .--J
C1N.--J
~

CLOCK UP

I

I

j

I
I

CLOCK DOWN

t

I

I
I

I
I

I

I

LIUULJ
I

I

I

I

Aour
I

BOUT

I

I

-U

Dour

CARRY
BORROW
NOTES.

I

I

I

I

~

I

I

r-----l

~,--~--~

I

Cour

I

I

I

~,--~,~,~

I~----~~~I'

L-.J

.

I

I

I
I
I

j

:

-U

I

I

r--~----I

--------------~~LJ~'-----------------~~-----------

----------

-----------------------------------;LJ~I

1. LOAD AND CLEAR INPUTS SHOULD NEVER BE ENABLED TOGETHER
2 A, e, C, and 0 INPUTS ARE FREE TO CHANGE AFTER LOAD INPUT IS
DISABLED
WHEN COUNTING "UP", THE ''~OWN'' CLOCK MUST BE IN THE LOGICAL 1 STATE, AND CONVERSELY

cascading counters

L..--_________

1------1 CLOCK UP
1-____--Ig~~CNK
~

~

connection diagram
Dual-In-Llne and Flat Package
Vee

BIN

1·166

Alf.j CLEAR BORROW CARRY LOAD

BOUT

AOUT

CLOCK CLOCK
DOWN
UP
TOP VIEW

COUT

tiN

Dour

OIN

GROUND

________

o

s:.....

Series 54/74

U'I
.....
o
.......

o

s:

00

DM7570/DM8570 (SN54164/SN74164)
8 - bit serial-in parallel-out shift register

U'I

~

general description
The DM7570/DM8570 utilizes Senes 54/74 compatible TTL circuitry to provide an eIght-bit
senal-In parallel-out shift register designed to operate at frequencies of
MHz_ Other features include gated senallnputs for strobe capability and a
clear Input WhiCh, when taken to a logical 0, asynchronously sets all flIp flops to the logical 0 state

Because the flIp flops are R-S Instead of J-K, Input
informatIon may be changed ImmedIately pnor to
the tnggenng edge of the clock waveform. LogIcal 1 levels on SA and SB enter logIcal 1 's Into the
shift regIster Clocking occurs on the posItIve-going
edge of the clock pulse.

26

logic and connection diagrams

01

112

113

04

0'

05

07

01

0'

Dual-In-Line and Flat Package

SA

sa

02

0'

o.

GND

TOP VIEW

1-167

o

......

absolute maximum ratings

It)

00

~

c

Supply Voltage
Input Voltage
Fanout
Storage Temperature Range
Operating Temperature Range

......

o......

It)

7V
5,5V
5
_65° C to +150° C
-55°C to +125°C
DoC to +70°C
300°C

DM7570
DM8570
Lead Temperature (Soldering, 10 sec,)

......
~

c

electrical characteristics

(Note 1)

PARAMETER
LogIcal "1" Input Voltage

Logical "0" Input Voltage

Logical

"1" Output Voltage

Logical "0" Output Voltage

Logical "1" Input Current (Except Clear Input)

Logical

"1"

Input Current {Clear Input)

Logical "1" Input Current

Logical "0" Input Current (Except Clear Input)

Logical "0" Input Current (Clear Input)

Output Short Circuit Current (Note 2)

Power Supply Current

CONDITIONS
DM7570

Vee'" 4 5V

DM8570

Vcc=475V

DM7570

Vee = 4 SV

DM8570

Vee - 4 75V

DM7570

V cc ",,45V

DM8570

Vee - 4 75V

DM7570

Vcc=45V

DM8570

V cc -475V

DM7570

Vcc=55V

DM8570

V cc -S25V

DM7570

Vcc=55V

DM8570

Vee - 525V

DM7570

Vee'" 5 5V

DM8570

V cc -525V

DM7570

Vcc=55V

DM8570

V ee -525V

DM7570

Vcc=55V

DM8570

Vee

DM7570

Vcc=55V

DM8570

Vee - 525V

DM7570

Vee=55V

DM8570

Vee ""S25V

525V

MIN

TYP

MAX

20

V

08

lOUT = -200 J.l.A

UNITS

24

V

V

04

lOUT = 8 mA

V

VIN=24V

40

~A

VIN =24V

80

~A

VIN =55V

1

mA

V 1N =04V

-16

mA

V 1N =04V

-32

mA

-275

mA

VOUT = OV

-10

-9
36

= 5 OV, 2SoC, 50% Duty Cycle

54

mA

14

20

Vee = 5 OV, TA = 25°C, C = 50 pF

10

28

40

ns

= 50 pF

10

28

40

ns

34

50

ns

MaXimum Clock Frequency

Vee

Propagatton Delay to a Logical "0" from Clock
to Output, tpdO
Propagatton Delay to a Logical "1" from Clock
to Output, tpd1

Vee == 5 OV, TA = 25°C, C

Propagation Delay to a Logical "0" from Clear
to Output

Vee = 5 OV, T A= 25°C, C = 50 pF

mHz

Minimum Clock Pulse Width

Vee'" 5 OV, TA == 25°C, C "" 50 pF

25

45

ns

Minimum Clear Pulse Width

Vee = 5 OV, T A = 25°C, C = 50 pF

30

45

ns

Minimum Time that SA Sa Data Must be Set-up
Prior to Clock Pulse, t,.,t .... P

Vee == 5 OV, TA == 25°C, C == 50 pF,
Clock Pulse Width = 50 ns

15

30

ns

Vee:: 5 OV, T A == 25° C, C = 50 pF,
Clock Pulse Width = 50 liS

-15

0

ns

Mimmum Time that SA
After Clock Pulse, t hold
Note 1

Unless otherwise specified, limits shown apply from _55°C to +125°C for the DM7570 and
the DM8570 Typical values apply to supply voltages of 5 OV and 25°C
Only one output should be Shorted at a time

aOe to +70°C for
Note 2

1-168

Sa Data Must be Held

c

Series 54/74
DM7573/DM8573 1024-bit field-programmable read only memory
general description

features
• Can be programmed In 1 sec (50% logical 1'so
50% logical O's)
• Pin compatible wfth SN54187/SN74187
• Can be programmed after being connected In a
system
• Outputs can be fully tested before programming
400mW
• Typical power dissipation
60 ns
• Propagation delay

logic and connection diagrams

BINARY
SELECT

m
(6)

Ao

(5)

JMEI""~"'~==r.:::r--t+-----T1-----,-f----,

MEMORY
ENABLE LMEZ<>l141

Pin

11BI~vcc

c

3:
UI

An additional feature of the DM7573/DM8573 IS
that its outputs can be tested in the logical "0"
state without permanently programming the memory. In order to place all outputs in the logical "0"

Az

"UI
"W
......
CO

state, a 9V level is applied to the most significant
address input, Pin 15. This feature will allow a
much more complete tGst to be made before a part
is shipped, thus minimizing customer returns.

The DM7573/DM8573 is a field-programmable
read-only memory organized as 256 four-bit
words_ Selection of the proper word is accomplished through the eight select Inputs. Two overriding memory enable inputs are provided; when
either or both of the enable inputs are taken to a
high state, all the outputs will be turned off. A
logical "1" has been built into each bit location. A
logical "0" can be programmed into any bit by
selecting the proper word, disabling the chip, and
applying a programming pulse to the proper
output.

A,

3:

PIn (8) ~ GND

Dual~ln-Line

Package

GND
TOP VIEW

1-169

"

W

absolute maximum ratingS(Note

1)

operating conditions
MIN

Supply Voltage

7.0V
Input Voltage
5.5V 112V on Pins 13, 141
Output Voltage
5.5V 125V for programmlngl
Storage Temperature ~ange
-65°C to +150o e
Lead Temperature (Soldenng, 10 sec)
300°C

Supply Voltage IVeel
DM7573
DM8573
Temperature IT AI
DM7573

PARAMETER

45
4.75
-55

DM8573

electrical characteristics(Note

MAX
5.5

Volts

5.25

Volts

+125
70

0

UNITS

°e
°e

2)

CONDITIONS

MIN

TYP

MAX

UNITS

Logical "1" Input Voltage

Vee = Min

Logical "0" Input Voltage

Vee = Min

Logical "1" Output Current

Vee = Max, Vo = 4.0V

Logical "0" Output Voltage

Vee = Min, 10 = 16 mA

Logical" 1" I nput Current

Vee = Max, V ,N = 2AV
Vee = Max, V ,N = 5.5V

40
1

/lA
mA

Logical "0" I nput Current

Vee = Max, V ,N = OAV

-1

mA

Supply Current

Vee = Max

110

mA

Input Clamp Voltage

Vee = Min, liN = -12 rnA

Propagation Delay to a Loglca!
"0" from Address to Output,

Vee = 5 OV
T A = 25°C

60

ns

Vee = 5.0V

28

ns

60

ns

28

ns

V

2.0
0.8
50
0.4

82

-1.5

V
/lA
V

V

tpdO

Propagation Delay to a Logical
"0" from Enable to Output,

TA = 25°C

tpdO

Propagation Delay to a Logical
"1" from Address to Output,

Vee = 5.0V

T A = 2.5°C

tpd1

Propagation Delay to a Logical
"1" from Enable to Output,

Vee = 5.0V

TA = 25°C

tpd1

Note 1: "Absolute MaXimum Ratmgs" are those values beyond which the safety of the device cannot be guaranteed. Except

for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table
of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified minImax limits apply across the _55° to +125°C temperature range for the DM7573 and
across the O°C to 70°C range for the DM8573. All typicals are given for Vee ~ 5.0V and T A = 25°C.

1·170

I

programming procedure
should be limited to 25V; the current should
be limited to 70 mAo Apply the pulse as
shown in the diagram. A reduction in cur·
rent of approximately 15 mA indicates the
bit is programmed.

The DM7573/DM8573 IS manufactured such that
the outputs are high for all addresses. To program
a logic zero (low output level), the following pro·
cedure should be followed:

1. Apply aVec voltage of 5.0V and select the
word to be programmed uSing address inputs
A7 - Ao.

4. To verify that the bit has been programmed,
apply a logic zero to both of the enable
Inputs and check for a low level on the pro·
grammed output.

2. Apply a high level (logic 1) to either or both
of the ENABLE Inputs (PinS 13 and 14).

5. Advance to the next output and/or word,
programming only one bit at a time.

3. Apply a programming pulse to the output
where a low level is desired. The voltage

Vcc=50V

_ tow::: 1 ms

,'----..Ji-------T

ADDRESS

{"
:

INPUTS.

"

---DUTY CYCLE <;50%---------l
l,.,SSI,';;;fiJ,lS

OPENOR{ME,
LOGIC 1

ME2

Programmmg Connections

Programming Pulse

board programming
The DM7573/DM8573 possesses added flexibility
in that It can be programmed after it has already
been connected In a system. Whether soldered to a
printed circuit board or socketed, if the procedure
described below is followed the units may be pro·
grammed even though their outputs are connected.

logical "1 ". Because the decoder outputs are
active-low, the ENABLE input of the device to be
programmed is operated at 6V. The other
ENABLE inputs reach 9V, normally a prohibited
level, but in this case the circuit was designed to
use the 9V to prevent the outputs from being
programmed.

As shown In the diagram the decoder used to
select the appropriate package must be operated at
voltage levels which are 6 volts higher than normal.
The outputs of the decoder therefore range between about 6V for a logical "0" and 9V for a

Although all common outputs receive the programming pulse, only the memory whose ENABLE input IS at the 6V level IS programmed.
Vee

r ____

15!L.. _ _ _ ...,

Vee PIN

OM751J1
OM8513

I ENABLE
I
I
'9V

I

~~A._I

DM7573!
OMB,)]

I Erl/ABLE
I
I

I
I
I
I

. . 1",----

DM7573!

OMB573

[ENABLE

I

I

L.----1----...J

1-171

Series 54/74
DM7574/DM8574 TRI-STATE®1024-bit
field-programmable read only memory
general description
ory. In order to place all outputs in the logical "0"
state, a 9V level is applied to the most significant
address input, Pin 15. This feature will allow a
much more complete test to be made before a part
is shipped, thus minimizing customer returns.

The DM7574/DM8574 is a fleld·programmable
read·only memory organized as 256 four·bit
words. Selection of the proper word IS accomplished through the eight select Inputs. Two overriding memory enable Inputs are provided; when
either or both of the enable inputs are taken to a
high state, all the outputs go to the high Impedance
state. A logical "1" has been bUilt Into each bit
location. A logical "0" can be programmed Into any
bit by selecting the proper word, disabling the
ChiP, and applYing a programming pulse to the
proper output.

features
•
•

Pin compatible with SN54187/SN74187
Can be programmed after being connected In a
system
• Outputs can be fully tested before programming
400mW
• Typical power diSSipation
60 ns
• Propagation delay

An additional feature of the DM7574/DM8574 IS
that its outputs can be tested in the logical "0"
state without permanently programming the memo

logic and connection diagrams

BINARY
SELECT

A,

(6)

AD

(5)

rMElo,'~'31==::::::r::)---r+----tt----r1----l

MEMORY
ENABlEtME2 <>114)

I'I~

(16) ~VCl:: Pm(B)"SND

OUTPUTS

Dual-In-Line Package

GND
TOPV'EW

1-172

absolute

maximum

ratings(Note 1)

operating

conditions
MIN

70V
55V (12Von PinS 13, 14)
55V (25V for programming)
Storage Temperature Range
_65°C to +150"e
Lead Temperature (Soldenng, 10 sec)
300°C
Supply Voltage
Input Voltage
Output Voltage

Su~ply

MAX

UNITS

Voltage (Vee)

DM7574

45

55

Volts

DM8574

475

525

Volts

Temperature (T A)

DM7574

-55

+125

"e

DM8574

0

70

°e

MAX

UNITS

electrical characteristiCS(Note 2)

PARAMETER

CONDITIONS

MIN

TYP

Logical "1" Input Voltage

Vee = Min

Logical "0" Input Voltage

Vee = Min

Logical "1" Output Voltage

V

Logical "0" Output Voltage

Vee = Mm, 10 = 16 mA

Logical "1" Input Current

Vee = Max, V ,N = 24V
Vee = Max, V ,N = 5 5V

40
1

MA
rnA

Logical "0" I nput Current

Vee = Max, Y'N = 04V

-1

mA

Supply Current

Vee=Max

110

mA

Input Clamp Voltage

Vee

Propagation Delay to a Logical

Vee = 50V
TA = 25°C

60

ns

Vee = 5 OV
TA = 25°C

28

ns

Vee = 5.0V
T A =25°C

60

ns

Vee = 5 OV
T A = 25°C

28

ns

"0" from Address to Output,

= Max I = -2.0 mA (DM7574)
ee
,0
-52 mA (DM8574)

~

V

20
0.8
2.4

V
V

04

82

-1.5

Mm, liN = -12 mA

V

V

tpdO

Propagation Delay to a Logical
"0" from Enable to Output,
tpdO

Propagation Delay to a Logical
"1" from Address to Output,
tpd1

Propagation Delay to a Logical
"1" from Enable to Output,
tpd1

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits. The table
of "Electrlcal Characteristics" provides conditIOns for actual device operation
Note 2: Unless otherwise specified min/max limits apply across the _55 0 to +125°C temperature range for the DM7574and
across the O°C to 70 0 e range for the DM8574. All tYPlcals are given for Vee = 5 OV and T A = 25"'e

1-173

programming procedure
The DM7574/DM8574 IS manufactured such that
the outputs are high for all addresses. To program
a logic zero (low output level), the following procedure should be followed:

should be limited to 25V; the current should
be limited to 70 mAo Apply the pulse as
shown In the diagram. A reduction in cur·
rent of approximately 15 mA indicates the
bit IS programmed.

1. Apply aVec voltage of 5.0V and select the
word to be programmed using address Inputs
A7 - Ao·
2. Apply a high level (logic 1) to either or both
of the ENABLE Inputs (PinS 13 and 14).

4. To verify that the bit has been programmed,
apply a logic zero to both of the enable
inputs and check for a low level on the pro·
grammed output.

3. Apply a programming pulse to the output
where a low level IS desired. The voltage

5. Advance to the next output and/or word,
programming only one bit at a time.
Vee

~

5 DV

A,
ADDRESS {
INPUTS

:
•
DM7514/
DMB574

A,

OR {ME,

OPEN
LOGIC 1 ME2

f - - - - DUTY CYCLE <.50%,-----1
l,us:::;;t,=:;;:5,us

GND

Programming Pulse

Programming Connections

board programming
The DM7574/DM8574 possesses added flexibility
in that it can be programmed after it has already
been connected in a system. Whether soldered to a
printed circuit board or socketed, if the procedure
described below is followed the units may be programmed even though their outputs are connected.

logical "1 ". Because the decoder outputs are
active-low, the ENABLE Input of the device to be
programmed is operated at 6V. The other
ENABLE inputs reach 9V, normally a prohibited
level, but in this case the circuit was designed to
use the 9V to prevent the outputs from being
programmed.

As shown in the diagram the decoder used to
select the appropriate package must be operated at
voltage levels which are 6 volts higher than normal.
The outputs of the decoder therefore range between about 6V for a logical "0" and 9V for a

Although all common outputs receive the programming pulse, only the memory whose EN·
ABLE input is at the 6V level is programmed.

'00

, ____ .l:5L
II
I

Vcc P1N
SELECTED
OUTPUT-6V

'"

~"
DM1514f
DM1514

-"DM1514/
OM8614

IENABL

-"
'm'

I
I
I
I
I
I

I _..F\....

t---t-----Jt,il---~R--_....J

HIA8LE \~ME20(14)

=::~
OPTION 2

connection diagram
Dual-In-line Package

Oth'fDptlon,onm.mDry.nabl'iat~

ME,~

ME2 o-d.-.,.I-

OPTION 3

truth table
TABLE of Programmable Memory Enable OptIOns
OPTION

MEl

ME2

OUTPUTS

1

0

0
X
1

Normal
HIGH Impedance
HIGH Impedance

1
X
0

Normal

0

Normal
HIGH Impedance
HIGH Impedance

1
X
2

1

0
X

3

1
X
0

1
X

HIGH Impedance
HIGH Impedance

X'" don t care

TOPVIEW

1-187

I'

en

It)

absolute maximum ratings

00

(Note 1)

:E
C

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM7597
DM8597
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

.......
I'

en
It)

I'

:E
C

7V
5.5V
5.5V
_55°C to +125°C
O°C to +70°C
_65°C to +150°C
300°C

electrical characteristics (Note

2)

PARAMETER

CONOITIONS
~

.

TYP

MAX

UNITS

Logical "1" Input Voltage

Vee
Vee

Logical "0" Input Voltage

DM7597
DM8597

Vee ~ 4 5V
V ee -475V

Logical "1" Output Voltage

DM7597
DM8597

Vee
Vee

Logical "0" Output Voltage

DM7597
DM8597

Vee~45V

Third State Output Current

DM7597
DM8597

Vee ~ 5 5V
V ee -525V

Logical" 1" Input Current

DM7597
DM8597

Vee
Vee

~

5 5V
525V

VIN

DM7597
DM8597

Vee
Vee

~

5 5V
525V

Y'N ~ 55V

10

rnA

DM7597
DM8597

Vee~55V

V'N~04V

-10

rnA

~

4 5V
475V

MIN

DM7597
DM8597

4 5V
475V
475V

Vee

20

V
08

10

-2 rnA

=

10~-52rnA

10

V

16 rnA

~

Va

24

~

04

2 4V

Vo~04V

~

V

2.4V

V

40
-40

IlA
IlA

40

IlA

Logical "0" Input Current

Output Short Circuit Current

(Note 31

DM7597
DM8597
DM7597
DM8597

Supply Current

Input Clamp Voltage

DM7597
DM8597

525V

Vee

Vee~55V

VLe ·525V
Vee~55V

525V

Vee

Vee~45V

V ee -475V

Propagation Delay to a Logical "0" from

Vee~50V

Address to Output,

TA = 25°C

tpdO

Propagation Delay to a Logical "1" from

Vee

Address to Output,

TA

tpdl

=

~

5 OV

25°C

Delay from Enable to High Impedance

Vee~50V

State (from Logical "1" Levell,

TA ~ 25°e

tlH

Delay from Enable to High Impedance

Vec~50V

State (from Logical "0" Levell, tOH

TA ~ 25"e

Delay from Enable to Logical "1" Level
(from High Impedance State), tH1

Vee ~ 5.0V
TA =' 25°C

Delay from Enable to Logical "0" Level

Vee~50V

(from High Impedance State), tHO

TA ~ 25'e

Vo

~

OOV

All Inputs at GND

-20

75

110

rnA
V

39

60

ns

31

60

ns

30

ns

10

ns

30

ns

30

ns

Note 2: Unless otherWise speCified min/max limits apply across the _55°C to +125°C temperature
range for the DM7597 and across the O°C to 70°C range for the DM8597. All tYPlcals are given for
Vee ~ 5.0V and T A ~ 25'e

1-188

rnA

-1 5

liN"" -12 mA

Note 1: " Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits The table of "Electrical Characteristics" prOVides conditions
for actual deVice operation

Note 3: Only one output at a time should be shorted.

-70

ordering instructions

Programming Instructions for the DM7597 or
DM8597 are solicited In the form of a sequenced
deck of 32 standard 80-column data cards providing the Information requested under data card
format, accompanied by a properly sequenced
listing of these cards, and the supplementary
ordering data. Upon receipt of these items, a computer run will be made from the deck of cards
which will produce a complete truth table of the
requested part. This truth table, showing output
conditions for each of the 256 words, will be
forwarded to the purchaser as verification of the
input data as interpreted by the computer-auto·
mated design (CAD) program. This single run also
generates mask and test program data, therefore,
verification of the truth table should be completed
promptly.
Each card in the data deck prepared by the pur·
chaser Identifies the eight words specified and
describes the conditions at the four outputs for
each of the eight words. All addresses must have
all outputs defined and columns designated as
"blank" must not be punched. Cards should be
punched according to the data card format shown.

10·13

14
15-18
19
20·23
24
25-28
29
30-33
34
35-38
39
40·43

supplementary ordering data
44
Submit the following information with the data
cards:

45-48
49

a) Customer's name and address
b) Customer's purchase order number

50-51

c) Customer's drawing number.
52
53-55

data card format
56
Column
1· 3

4
5- 7

8· 9

57-58

Punch "H", "L", or "X" for bits four,
three, two, and one (outputs Y4, Y3, Y2,
and Y1 in that order) for the first set of
outputs specified on the card. H ~ hlghlevel output, L ~ low·level output, X ~
output irrelevant.
Blank
Punch "H", "L", or "X" for the second
set of outputs.
Blank
Punch "H", "L", or "X" for the third set
of outputs.
Blank
Punch "H", "L",or"X" for the fourth set
of outputs.
Blank
Punch "H", "L", or "X" for the fifth set
of outputs.

Blank
Punch "H", "L", or "X" for the seventh
set of outputs.
Blank
Punch "H", "L", or "X" for the eighth
set of outputs.
Blank
Punch a right-Justified Integer representing
the current calendar day of the month.
Blank
Punch an alphabetic abbreviation repre·
senting the current month.
Blank
Punch the last two digits of the current
year.

Punch a right-justified integer representing
the binary input address (000-248) for
the first set of outputs described on the
card.

60-61

Punch "DM"

Punch a "-" (MinUS sign)

62·65

Punch 7597 or 8597

Punch a right-justified integer representing
the binary Input address (007·255) for
the last set of outputs described on the
card.

66· 70

Blank

71

Punch 1, 2, or 3 for memory enable
option deSired (assumed 1 if not punched)

59

u

Blank
Punch "H", "L", or "X" for the sixth set
of outputs.

Blank

Blank

1.1RQ

co

en
La

co

:E

~s

Series 54/74

c
.......
co
en
La

"'"
:E
c

®

DM7598/DM8598 TRI-STATE

256-bit read only memory

general description
The DM7598/DM8598 is a customer programmed
256-blt read-only memory organized as 32 8-blt
words. A five-bit input code selects the appropriate
word which then appears on the eight outputs. An
enable input overrides the select Inputs and blanks
all outputs.
Although the DM7598/DM8598 can have its outputs tied together for word-expansion, the outputs
are not open-collector, but rather the famillartotempole output with the capability of being placed
in a "third-state". This unique three state concept
allows outputs to be tied together and then connected to a common bus line. Normal TTL outputs
cannot be connected due to the low-Impedance
logical "1" output current which one device would
have to sink from the other. If however, on all but
one of the connected devices both the upper and
lower output transistors are turned off, then the
one remaining device in the normal low Impedance
state will have to supply to or sink from the other
devices only a small amount of leakage current.
ThiS IS exactly what occurs on the DM75981
DM8598.
A typical system connection demonstrating expansion to greater numbers of words IS shown in Figure 1. While It IS true that In a TTL system opencollector gates could be used to perform the logic

function of these three-state elements, neither
waveform Integrity nor optimum speed would be
achieved. The low output impedance of the
DM7598/DM8598 provides good capacitance drive
capability and rapid transition from the logical
"0" to logical" 1" level thus assuring both speed
and waveform Integrity.
It IS possible to connect as many as 128 DM8598s
to a common bus line and stili have adequate drive
capability to allow fan out from the bus. The
example shown in Figure 2 Indicates how thiS
guarantee can be made under worst-case conditions_
Figure 3 indicates how multiple packages can be
used to Increase word length.

features
•
•
•
•
•

Pin compatible with SN5488/SN7488
Organized as 32 8-bit words
Full Internal decoding
30 ns typical access time
350 mW typical power dissipation

•
•

I nput clamp diodes
DeSigned for bus-organized systems

• Strobe override

logic and connection diagrams
....
110lV

....

~
81NARY
SELECT

I"v
Dual-In-Llne Package

I-f;::

, ~2V

" 1

V

{13)V

I"
V

1141

4>
{lSI

"
V

PROGRAMMING

'"

SHOWlll

1-Hl0

o
absolute maximum ratings
Supply Voltage
Input Voltage
Output Voltage

3:
...,

(Note 1)

OperatIng Temperature Range DM7598

7V
55V
55V
-55'C to +125'C

DM8598
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-65'C to +150'C
300'C

CO
.........

o
3:

O°C to +70°C

electrical characteristics

CO

UI
CD

(Note 2)

PARAMETER

CO
MIN

CONDITIONS

LogIcal "1" Input Voltage

DM7598
DM8598

Vee=45V
Vee = 4 75V

LogIcal "0" Input Voltage

DM7598
DM8598

Vee = 4 5V
Vee - 4 75V

LogIcal "1" Output Voltage

UI
CD

DM759~_ ~_=45V

TYP

MAX

V

20

08
~=-2~
10 = -5 2 rnA

UNITS

V
V

24

DM8598

Vee = 4 75V

Logical "0" Output Voltage

DM7598
DM8598

Vee = 4 5V

ThIrd State Output Current

DM7598
DM8598

Vee=55V
V ee - 525V

Vo = 24V
Vo = 04V

±40
±40

IJ.A
IJ.A

Address Inputs

DM7598
DM8598

Vee = 55V
V ee - 525V

V ,N = 24V

40

IJ.A

Enable Input

~1\'I75_~ -+.<:S_~~

VIN

24V

80

IJ.A

Any Input

DM7598 ~",e=55V
DMS!598 Vee = 525V

V ,N = 5 5V

1

rnA

Address Inputs

DM7598
DM8598

V ,N =04V

-1 6

rnA

Enable Input

DM7598 _yee=55V
DM8598
Vee = 525V

VIN

= 0 4V

-32

rnA

DM7598
Vee = 55V
---DM8598 Vee~5V

Vo = OV

Supply Current

DM7598 ~",e = 55V
DM8598 Vee=525V

Inputs Gfounded

Input Clamp Voltage

DM7598
DM8598

Vee = 4 5V
Vee - 4 75V

liN = -12 rnA

Output Vee Clamp Voltage

DM7598
DM8598

Vee= 5 5V
Vee - 525V

10

Output Ground Clamp Voltage

DM7598
DM8598

Vee = 5 5V
Vee - 525V

V cc -475V

04

lo=+12mA

V

LogIcal "1" Input Current

DM8598

Vee = 5 25V

=

II

Logical "0" Input Current

Output Short CirCUit Current

(Note 3)

Vee= 55V
V ee -525V

-20

70

-70

rnA

99

rnA

-15

V

rnA

Vee
+1 5

V

10 = -12 rnA

-15

V

= +12

Propagation Delay to a Logical "0" from
Address to Output, tpdO

Vee= 50V
TA = 25'C

29

50

ns

Propagation Delay to a Logical "1" from
Address to Output, tpdl

Vec=50V
TA = 25'C

33

50

n,

Delay from Enable to High Impedance
State (from Logical "1" Level),t1H

Vee=50V
TA = 25'C

C L = 5 pF

13

20

n'

Delay from Enable to High Impedance
State (from Logical "0" Level). tOH

V ee =50V
TA = 25'C

CL = 5 pF

24

36

ns

Delay from Enable to Logical "1" Level
(from High Impedance State), tHl

Vee=50V
TA = 25'C

CL = 50 pF

16

25

ns

Delay from Enable to Logical "0" Level
(from High Impedance State), tHO

TA

Vee=50V
= 25°C

C L = 50 pF

26

40

ns

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the device cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits The table of "Electrical Characteristics" prOVides conditions
for actual deVice operation

Note 2: Unless otherWise specified minImax limits apply across the _55°C to +125°C temperature
range for the DM7598 and across the O°C to 70°C range for the DM8598 All tYPlcals are given for
VCC = 50V and TA = 25°C

Note 3: Only one output at a time should be shorted.

1-191

co

en

It)

typical applications

co

::!

o

.........

co

OUTPUTS
OFO THEA
MEM ORIES

LINE

en

'"'1

It)

"

::!

1I I

Y,

o

r

ME

Y2

YJ

v.,

V.

Yo

Y,

v,

Va

r--<

OM1598/DM8598

,

B

C

0

J'"

III
V2

V3

Yo

y~

V.

Y,

VB

DM7598/0M8598

ME
,

E

B

C

0

E

11

}m

INARY

SELE CT INPUTS
OFO THER
MEM DRIES

TO ENABLE INPUTS Of OTHER MEMORIES

0

! t. t ! ,

, , ,

6

5

B

9

16

12

11

DM541541DM74154

,
J

ABC

0

E

B

C

I

I

0

G,

III1
H
I
J

F

BINARY SELECT REGISTER

FIGURE 1. ExpanSIon to Larger Word Capacity

GATED INTO
LQWIMPEDANCE

lOGICAl'1
STATE

GATED INTO
HIGH IMPEDANCE
STATE

GATED INTO
HIGH IMPEDANcE
STAH
OTHER OM75981DMaS98
OUTPUTS

FIGURE 2.

IlM759BiDM8598

ABC

0

E

BINA.RYSHfCT
REGISHR

FIGURE 3.

1-192

G,

!!!
13

1415

c

s::

.....

DM7598AA TRUTH TABLE

C1I
CD

CO

A special pattern has been generated for the DM7598/DM8598 The AA pattern provides a sine table The 5-blt
Input code linearly diVides 90° Into 32 equal segments Each 8-blt output IS therefore the sine of the angle
applied

.......
C

s::CO
C1I
CD

EXAMPLE Input 11010 means 26/32 of 90°, or about 73° The corresponding output 11110100 Indicates
(1/2 + 114 + 1/8 + 1/16 + 1/641 or about 95, which IS close to the sine of 73° Rounding-off has not been
employed, since without rounding-off It
The truth table

IS

IS

INPUTS
WORD

CO

possible to extend the accuracy with additional ROMs

shown

OUTPUTS

BINARY SELECT

ENABLE

E

D

C

B

A

ME

YB

Y7

Y6

Y5

Y4

Y3

Y2

Yl

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

2

0

0

0

1

0

0

0

0

0

1

1

0

0

1

3

0

0

0

1

1

0

0

0

1

0

0

1

a

1

4

0

0

1

0

0

0

0

0

1

1

0

0

0

1

5

0

0

1

0

1

0

0

0

1

1

1

1

1

0

6

0

0

1

1

0

d

0

1

0

0

1

0

1

0

7

0

0

1

1

1

0

0

1

0

1

0

1

1

0

8

0

1

0

0

0

0

0

1

1

0

0

0

0

1

9

0

1

0

0

1

0

0

1

1

0

1

1

0

1

10

0

1

0

1

0

0

0

1

1

1

1

0

0

0

11

0

1

0

1

1

0

1

0

0

0

0

0

1

1

12

0

1

1

0

0

0

1

0

0

0

1

1

1

0

13

0

1

1

0

1

0

1

0

0

1

1

0

0

0

14

0

1

1

1

0

0

1

0

1

0

0

0

1

0

15

0

1

1

1

1

0

1

0

1

0

1

0

1

1

16

1

0

0

0

0

0

1

0

1

1

0

1

0

1

17

1

0

0

0

1

0

1

0

1

1

1

1

0

1

18

1

0

0

1

0

0

1

1

0

0

0

1

0

1

19

1

0

0

1

1

0

1

1

0

0

1

1

0

1

20

1

0

1

0

0

0

1

1

0

1

0

1

0

0

21

1

0

1

0

1

0

1

1

0

1

1

0

1

1

22

1

0

1

1

0

0

1

1

1

0

0

0

0

1

23

1

0

1

1:

1

0

1

1

1

0

0

1

1

1

24

1

1

0

0

0

0

1

1

1

0

1

1

0

0

25

1

1

0

0

1

0

1

1

1

1

0

0

0

1

26

1

1

0

1

0

0

1

1

1

1

0

1

0

0
0

27

1

1

0

1

1

0

1

1

1

1

1

0

0

28

1

1

1

0

0

0

1

1

1

1

1

0

1

1

29

1

1

1

0

1

0

1

1

1

1

1

1

0

1

30

1

1

1

1

0

0

1

1

1

1

1

1

1:

0

31

1

1

1

1

1

0

1

1

1

1

1

1

1

1

All

X

X

X

X

X

1

H,-Z

H,-Z

H,-Z

HI'Z

HI-Z

HI-Z

HI-Z

HI-Z

x = Don't Care

1-193

TRUTH TABLE IORDER BLANK

The output levels are not shown on the truth table since the customer specifies the output condition he deSIres
at each of the eight outputs for each of the 32 words (256 bits) The customer does this by filling out the
Truth Table on this data sheet, and sending It In with his purchase order.

INPUTS
WORD

0

OUTPUTS
E·,b,BLE

BINARY SELECT
E

D

C

B

A

ME

0

0

0

0

0

0

1

0

0

a

a

1

a

2

1

a

0

0

1

1

0

1

0

a

0

5

0

1

0

1

0

6

a

a
a
a
a
a

0

4

a
a
a

1

1

0

0

a

3

7

0

0

1

1

1

8

a

1

0

0

0

0

9

0

1

a

0

1

0

10

0

1

0

1

0

1

a

1

0
1

0

11
12

0

1

1

0

0

13

0

1

1

0

14

0

1

1

1

0
1
0

15

0

1

1

1

1

0

16

1

0

0

1

0

1

0

18

1

0

0

19

1

0
0

0
0
1

0

17

0
0
0

1

1

20

1

0

1

0

0

0
0
0

21

1

1

22

1

0
0

23

1

a

1

24

1

1

0

0
1
1
0

25

1

1

0

1

0
1

1
0
1
0

0

1

0

1

0

0

0

1

1

1

a

0

0

0

0

1

0

1

0

0

1

1
1

30

1

1

1

Y4

Y3

Y2

Yl

HI·Z

HI·Z

HI·Z

HI·Z

HI-Z

HI-Z

H,-Z

HI-Z

0
0
0

1

1

Y5

0

1

29

Y6

0

26
28

Y7

0

27

0
1
1

YB

31

1

1

1

1

1

0

All

X

X

X

X

X

1

x = Don't Care
Notice ThiS 'heet must be co""pleted and signed by an authorIZed representative of the customer's company before an
order can be entered

To be used by National only

AuthorIZed Representative

Date

_ _ _ _ _ _ _ _ Part Number
________ 5

a

Number

Company

_ _ _ _ _ _ _ _ Date Received
DeSIred Part

1-194

o

DM7598

o

DM8598

II1S

Series 54/74

DM7599/DM8599 TRI-STATE®
64-bit random access read/write memory
general description
The DM7599/DM8599 is a fully decoded 64-bit
RAM organized as 16 4-bit words. The memory
IS addressed by applying a binary number to the
four Address inputs. After addressing, information
may be either written Into or read from the
memory. To write, both the Memory Enable and
the Write Enable inputs must be in the logical "0"
state. Information applied to the four Write Inputs
will then be written into the addressed location.
To read information from the memory the Memory Enable input must be in the logical "0" state
and the Write Enable Input in the logical" 1" state.
I nformatlon will be read as the complement of
what was written Into the memory. When the
Memory Enable input IS in the logical" 1" state,
the outputs will go to the high-impedance state.
This allows up to 128 memories to be connected
to a common bus-line without the use of pull-up

resistors. All memories except one are gated Into
the high-Impedance while the one selected memory exhibits the normally totem-pole low impedance output characteristics of TTL.

features
•

Series 54/74 compatible

•

Same pin-out as SN5489/SN7489

•

Organized as 16 4-bit words

•

Expandable to 2048 4-bit words without additional resistors (DM8599 only)

•

Typical access from chip enable

•

Typical access time

•

Typical power diSSipation

20 ns
28 ns
400mW

block diagram

DATA

INPUTS

connection diagram

truth table

Dual-In-Line Package

MEMORY

WRITE

ENABLE

ENABLE

0
0

0
1

Write

HI-Z State

Read

Complement of Data
Stored In Memory

1

X

Hold

HI"Z State

OPERATION

OUTPUTS

1_1QJ::.

absolute maximum ratings

(Note 1)

Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Operating Temperature Range

7V
55V
55V

Time that two bus-connected devices may be In
opposite low Impedance states simultaneously

electrical characteristics

CONDITIONS

MIN

Logical "1" Input Voltage

DM7599
DM8599

Vee "4SV
Vee" 4 75V

Logical "0" Input Voltage

DM7599
DM8599

Vee'" 4 5V
Vee 475V

Logical "1" Output Voltage

DM7599
DM8599

V ec ==45V
Vee 475V

10 '" -2mA
10 "'-5 2 mA

Logical "0" Output Voltage

DM7599
DM8599

Vee =45V
V ee - 4 7SV

10

Third State Output Current

DM7599
DM8599

Vee=55V
Vee 525V

Logical "1" Input Current

DM7599
DM8599

Vee=55V
V ee -525V

DM7599
DM8599

Vee "55V
Vee S 25V

DM7599
DM8599

Vee = 5 SV
V ee -525V

DM7599
DM8599

Vec=55V
Vee 525V

Supply Current

DM7599
DM8599

Vec"'55V
Vee" 525V

All Inputs at GND

Input Clamp Voltage

DM7599
DM8599

Vee = 4 5V
Vee 475V

liN = -12 mA

Output Short Circuit Current
(Note 3)

Propagation Delay to a Logical "0" from

Address to Output,

tpdQ

Propagation Delay to a Logical "1" from

Address to Output, t p d1
Delay from Memory Enable to High
Impedance State (from Logical "1"
Level), t1H

TVP

MAX

08

=

V

04

12 mA

Vo = 0 4V

±40

Vo = 2 4V

±40

rnA

Y'N =

a 4V

-16

-30
80

rnA

120

rnA

-15
28

45

27

45

12

20

Vee= SOV

2SoC

Vee",SOV
TA == 2SoC

21

30

Delay from Memory Enable to
Logical "1" Level (from High
Impedance State), tH1

Vce=50V
TA = 2SoC

14

20

Delay from Memory Enable to
Logical "0" Level (from High
Impedance State), tHO

Vce=SOV
T A '" 25°C

19

30

40

23

Setup Time, Data

0

-15

Hold Time, Data

0

-14

Setup Time Address

0

-17

Hold Time, Address

5

-7

Sense Recovery Time

42

Note" "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
devices should be operated at these limits The table of "Electrical CharacterIStics" prOVides conditions
for actual device operation
Note 2 Unless otherwJSe speCified min/max limits apply across the -55°C to +125°e temperature
range for the OM7599 and across the oOe to 700e range for the DM8599 All typlcals are given
for Vee
50V and TA
25°e
Note 3 Only one output at a time should be shorted

=

rnA

-70

Delay from Memory Enable to High
Impedance State (from Logical "0"
Level), toH

=

V

40

Vee=SOV
T A = 2SoC

=

v

v

24
24

Vee"" 50V
T A = 25°C

TA

UNITS

v

20

Write Enable Pulsewldth, twp

1·196

300'C

(Note 2)

PARAMETER

Logical "0" Input Current

_55°C to +125°C
cOe to +70°C

DM7599
DM8599
Lead Temperature (Soldering, 10 sec)

Indefinite

V

ns

ns

ns

60

c

~s

s:....

Series 54/74

00

o
o

.......

c

s:
00

DM7800/DM8800 dual voltage translator

00

general description

features

The DM7800/DM8800 are dual voltage translators
designed for interfacing between conventional TTL
or DTL voltage levels and those levels associated
with high impedance junction or MOS FET-type
devices The design allows the user a wide latitude
In his selection of power supply voltages, thus providing custom control of the output sWing. The
translator is especially useful in analog switching;
and since low power dissipation occurs in the "off"
state, minimum system power is required.

•

o
o

31 volt (max) output swing

•

1 mW power dissipation in normal state

•

Standard 5V power supply

•

Temperature range:
DM7800
DM8800

•

_55°C to +125°C
O°C to +70°C

Compatible with all MOS devices

schematic and connection diagrams

A1

R2

20K

45K

D

Metal Can Package

....._ _~H_OUnUT){

OUTPUT X

L...-_ _ _

~_v,

typical applications

Bipolar to MOS Interfacing

4·Channel Analog Switch

1 1
r'" - - - ' --,1
t5V

+10V

r------I

I

MM451

ANALOGINPUT2

I
I
I

DTl

I

"

Tn

I
I

INPUT
LEVelS

I

SWITCH

4'_-"-W-....
3---

A/tIALOGINPUT4

r

II

.J

,J"

I

I

,n

r ---~Ll-

ANAlOGINPuTt·1

I

OR

MOSSHIFT
~
AfGI$TER

TTL

I

DM1&OO

INPUT~~

1--- T

tEVEtS~~

L

J

':'"

-IOV

I
I

I
ANAtOGOUTPUT

L _____

I

-l

*Amll"I"!luIIWlth,nthe,angf
01 +8 ,0115 ,o--$.oU,

1-197

o
o

00

CO

absolute maximum ratings

:IE

Q
.......

Vee Supply Voltage
7.0V
V 2 Supply Voltage
-30V
V 3 Supply Voltage
+30V
V 3 ,V 2 Voltage Differential
40V
I nput Voltage
5.5V
-65°C to +150°C
Storage Temperature Range
Operating Temperature Range
_55°C to +125°C
DM7800
O°C to 70°C
DM8800
Lead Temperature (Soldering, 10 sec)
300°C

o
o

CO

....
:IE
Q

electrical characteristics

(Note 1)

PARAMETER

CONDITIONS

=4.5V
=4.75V

MIN

TVP
(Note 4)

MAX

UNITS

Logical" 1" I nput Voltage

DM7800
DM8800

Vee
Vee

Logical "0" I nput Voltage

DM7800
DM8800

Vee =4.5V
Vee - 4.75V

Logical "1" Input Current

DM7800
DM8800

Vee = 5.5V
Vee = 5.25V

V ,N = 2.4V

5

IlA

Logical" 1" I nput Current

DM7800
DM8800

Vee= 5.5V
Vee - 5.25V

V ,N

= 5.5V

1

mA

Logical "0" I nput Current

DM7800
DM8800

Vee = 5.5V
Vee - 5.25V

V ,N = O.4V

-0.4

mA

Output Leakage Current (Note 2)

DM7800
DM8800

Vee = 5.5V
Vee - 5.25V

V ,N

10

IlA

20.0

kn

V 2 + 2.0

V

Output Collector Resistor

2.0

V

0.8

=0.8V (Note 5)

TA = 25°C

Logical "0" Output Voltage

DM7800 Vee = 4.5V
DM8800 Vee = 4.75V

V ,N = 2.0V (Note 5)

Power Suppl y Cu.rent
Logical "0" (Note 3)
(Each Gate)

DM7800 Vee = 5.5V
DM8800 Vee = 5.25V

V ,N

Power Supply Current
Logical "1" (Note 3)
(Each Gate)

DM7800
DMBBOO

V ,N = OV

Vee = 5.5V
Vee = 5.25V

--0.2

11.5

= 4.5V

16.0

V

0.85

1.6

mA

0.22

0.41

mA

Transition Time to Logical "0" Output

TA = 25°C

C = 15 pF (Note 6)

25

70

125

ns

Transition Time to Logical" 1" Output

TA = 25°C

C = 15 pF (Note 7)

25

62

125

ns

Noto 1: Minimax limits apply across the guaranteed temperature range of -55°C to +125°e for the DM7800 and oOe to +70o e
for the DM8800 unless otherwISe speCified.
Note 2: Current measured IS drawn from V3 supply
Note 3: Current measured is drawn from Vee supply.
Noto 4: All tYPical values are measured at TA = 25°C with Vee = 5.0V, V2 = -22V, V3 = +8V.
Noto 5: SpeCification applies for all allowable values of V2 and V3.

,

Note 6: Measured from 1.5V on mput to 50% level on output.

Note 7: Measured from 1.5V on Input to logic "0" voltage, plus 1V.

1-198

c

s:
~

CO

o
o

theory of operation

.......

C

The two input diodes perform the AND function
on TTL or DTL input voltage levels. When at least
one input voltage IS a logical "0", current from Vee
(nominally 5.0V) passes through R 1 and out the
Input(s) which is at the low voltage. Other than
small leakage currents, this current drawn from Vee
through the 20 kQ resistor is the on Iy source of
power dissipation in the logical "1" output state.
When both Inputs are at logical" 1" levels, current
passes through R1 and diverts to transistor 0 1 , turnIng it on and thus pulling current through R 2 . Current is then supplied to the PNP transistor, O 2 The
voltage losses caused by current through 0 1 , D3 ,
and O 2 necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the
Inputs must be raised to a voltage level which is one
diode potential lower than node P. Since these levels
are exactly the same as those experienced with conventional TTL and DTL, the Interfacing with these
types of CirCUits is achieved.
Transistor O 2 provides" constant current switching" to the output due to the common base connection of O 2 , When at least one input is at the
logical "0" level, no current is delivered to O 2 : so
that its collector supplies essentially zero current
to the output stage. But when both Inputs are raISed
to a logical "1" level current is supplied to O 2 ,

Since .thIS current IS relatively constant, the collector of O 2 acts as a constant current source for the
output stage. Logic inverSion IS performed since
logical" 1" Input voltages cause current to be supplied to O 2 and to 0 3 And when 0 3 turns on the
output voltage drops to the logical "0" level

CO

o

o

The reason for the PNP current source, O 2 , is so
that the output stage can be driven from a high
Impedance. ThIS allows voltage V 2 to be adjusted
In accordance with the application. Negative voltages to -25V can be applied to V 2 Since the output will neither source nor sink large amounts of
current, the output voltage range is almost exclusively dependent upon the values selected for V 2
and V3 .
Maximum leakage current through the output transistor 0 3 is specified at 10 JlA under worst-case
voltage between V 2 and V 3. This will result In a
logical "1" output voltage which is 0.2V below V 3 .
likewISe the clamping action of diodes D 4 , D s, and
D6 , prevents the logical "0" output voltage from
falling lower than 2V above V 2, thus establIShing
the output voltage swing at typically 2 volts lessthan the voltage separation between V 2 and V 3.

selecting power supply voltage

The graph shows the boundary conditions which
must be used for proper operation of the unit. The
range of operation for power supply V 2 is shown
on the X axis. It must be between -25V and -8V.
The allowable range for power supply V 3 is governed by supply V 2. With a value chosen for V 2, V 3
may be selected as any value along a vertical line
passing through the V 2 value and terminated by
the boundaries of the operating region. A voltage
difference between power supplies of at least 5V
should be maintained for adequate signal swing.

s:CO

~

V';:

OPERATING

5

5

15
10

RE~":N

~:o

V'17-: -5
-

-15

- -20
-

~25

1-199

II

CD

o

CO
CO

Series 54/74

:E

Q
.......
CD

o

CO

"'"
:E

DM7806/DM8806 high speed MOS to TTL level converter

Q

general description

features

The DM7806/DM8806 IS a high speed MOS to
TTL level converter. This circuit acts as an Inter·
face level converter between MOS & TTL logic
devices. It consists of two 1'lnput converters with
common strobe input to Inhibit "0" entry when
strobe is high. It allows parallel entry when strobe
is low and the internal latch IS preset by the com·
mon preset input. TRI·STATE@ output logic IS
Implemented In this circuit to facilitate high speed
time sharing of decoder·drivers, fast random·access
(or sequential) memory arrays, etc.

•

Very low output Impedance - high drive cap·
ability

•

High Impedance output state wh Ich allows
many outputs to be connected to a common
bus line

•

Average power dissipation 110 mW per con·
verter

logic and connection diagrams
Dual·1 n·line and Flat Packago
IN,
(CURRENT INPUT)
OUTPUT A
14 Vee

13 OUTPUTB

I.,
(CURRENT INPUT)

12

OISABL~D

OUTPUT B
11

NC

10 GNO

TOP VIEW
PRESET

truth table
IN AOR B

ST

P

0

1
1

1
1
1
1
X

1

0
1
X

1·200

0
0
X

0
0
0
0
0
1

QA OR Q B

1
1

0
1

H,·Z

9

INPUT B

8

GND

c
absolute maximum ratings

~

operating conditions

(Note 1)

"o

CD

Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

Supply Voltage (Vee)
OM780S
OM880S

7V
55V
5.5V
-S5°e to 1500 e
300 0 e

Temperature (T A)
OM780S
OM8806

MIN

MAX

UNITS

45
475

55
525

V
V

C

-55
0

+125
70

°e
°c

CD
CD

0)

.......

~

o

0)

electrical characteristics

(Note 2)

PARAMETER

CONDITIONS

Logical "1" Input Current Pin 6, 9

Vee"" Min

Logical "0" Input Current Pin 6, 9

Vee

= Min

Logical "1" Input Voltage

Vee

= Min

Logical "0" Input Voltage

Vee

= Min

MIN

TYP

MAX

500

UNITS
J-IA

200

J-IA
V

20
8

V

04

V

V

Logical "1" Output Voltage

Vee = Min, lOUT

=

Logical "0" Output Voltage

Vee::: Mm, lOUT

= 16 mA

Third State Output Current

Vee = Max, Vo = 2 4V
Vcc=Max,Vo=04V

40
-40

J-IA
IlA

Logical" 1" I nput Current

Vee = Max, VIN
Vee = Max, VIN

= 2 4V
= 55V

40
1

IlA
rnA

logical "0" Input Current

-16

rnA

40

rnA

-15 mA

Vee

= Max, VIN = 0 4V

Supply Current

Vee

= Max, V IN(OISABLE) = 2V. Other

Input ClafTlP Voltage

Vee

= Min,

Output ShOft Circuit Current

Vee == Max, Vo

'iN

24

Inputs

= OV

= -12 rnA
= OV

(Note 3)

-15
DM7806
DM8806

-20
-18

-70
-70

V
rnA
rnA

(See Figure 1)

17

25

ns

Vee = 5 OV
TA = 25°C

(See Figure 1)

22

32

ns

Delay from Disable Input to High Impedance
State (from Logical ',1" Levell, t1H

Vee=50V
TA = 25°C

(See Figure 2)

7

11

ns

Delay from Disable Input to High Impedance
State (from Logical "0" Level), tOH

Vee=50V (See Figure 3)

17

25

ns

TA

Delay from Disable Input to Logical "1"
level (from High Impedance State), tH1

(See Figure 2)

9

14

'JS

TA

Delay from Disable I nput to logical "0"
level (from High Impedance State), tHO

Vec=50V
TA = 25°C

(See Figure 3)

135

16

ns

Vee=50V

Propagation Delay to a Logical "0" from
STROBE to Output, tds

TA "" 25°C

Propagation Delay to a Logical" 1" from
Preset to Output, tdp

= 25°C

Vee=50V

= 25°C

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVice should be operated at these limits The table
of "Electrtcal Characteristics" proVides conditions for actual deVice operation

Note 2: Unless otherwise specified mm/max limits apply across the _55°C to +125°C temperature range for the DM7806
and across the 0° e to 70° e range for the OM880S All tYPlcals are given for Vee = 5 OV. T A = 25° e.
Note 3' Only one output at a time should be shorted

1-701

NN

""" ....
coco
coco
:E:E
Cc
.......
;:::N

co ....

COCO

I""-

:E:JE
~c

o
....

.

CO;:::
COCO
:E CO

c:E

c

......
....

....

CO
I""-

:E

Series 54/74
DM7810/DM8810 quad 2-input TTL·MOS interface gate
DM7811/DM8811 quad 2-input TTL-MOS interface gate
DM7812/DM8812 TTL-MOS hex inverter
general description
These Series 54/74 compatible gates are high out:
put voltage versions of the DM5401/DM7401
(SN5401/SN7401), DM5403/DM7403
(SN 5403/SN 7403), and D M 5405/DM7405
(SN5405/SN7405). Their open-collector outputs
may be "pulled-up" to +14 volts In the logical "1"
state thus providing guaranteed Interface between
TTL and MOS logic levels.

c

In addition the devices may be used in applications
where I t IS desl rable to drive low current relays or
lamps that require up to 14 volts.

schematic and connection diagrams
r-........-.............Ov~
4K

" " " " " " " " , - " " " " " " - - 0 v"

18K

OUTPUT

INPUT
INPUTS

OUTPUT

0-;4-......

"

.........-_--0 ...

' - - -....-0 •••
DM7810/DM8810, DM7811/DM8811

DM7812/DM8812

Dual-I n-Llne Package

Dual-ln-.Line and Flat Package

•••

TOP VIEW

TOP VIEW

DM7811/DM8811

DM7810/DM8810

v,
14

Dual-tn-Line and Flat Package
13

12

11

10

TOPVIEW

DM7812/DM8812

1-702

•••

.N•

cc

absolute maximum ratings

operating conditions

7V
55V
14V
-65'e to +150'e
300'e

Vee
Input Voltage

Output Voltage
Storage Temperature Range
Lead TEmperature (Soldenng, 10 sec)

S:S:
-..J-..J

Supply Voltage (Vee)
DM78XX
DM88XX

MIN

MAX

UNITS

475
475

525
525

V
V

-55
0

+125
70

'e
'e

Temperature (T A)

DM78XX
DM88XX

........
.... 0

(Xl (Xl

.................

Cc

S:s:
........
.... 0
(Xl (Xl
(Xl (Xl

c

electrical characteristics

s:-..J

....
N

(Xl

(Note 1)

........
PARAMETER

CONOITIONS

MIN

TYP

MAX
-15

UNITS

(Xl
(Xl

V

Input Diode Clamp Voltage

Vee = 50V, T A = 25°C
liN = -12 mA

Logical "1" Input Voltage

Vee

=

Logical "0" Input Voltage

Vee

= Min

Logical "1" Output Current

Vee = Min
V OUT = lOV

Logical "1" Output Breakdown
Voltage

Vee = Min, V ,N = OV
lOUT = 1 mA

Logical "0" Output Voltage

Vee = Min, V IN = 2.0V
IOUT=16mA

Logical "1" Input Current

Vee = Max, V IN = 2.4V

40

Logical "1" Input Current

Vee = Max, V IN = 5 5V

1

mA

Logical "0" Input Current

Vee = Max, V ,N = O.4V

-16

mA

Supply Current - Logical "0"
(Each Gate)
Supply Current - Logical "1 "
(Each Gate)
Propagation Delay Time to a
Logical "0", tpdQ

Vee = Max, V ,N = 5 OV

3.0

5.1

mA

Vee = Max, V ,N = OV

1.0

1.8

mA

Vee = 50V, TA = 25°C
COUT = 15 pF, RL = lk

4

12

18

ns

Propagation Delay Time to a
Logical "1", tpdt

Vee = 5.0V, T A = 25°C
C OUT = 15 pF, RL = lk

18

29

45

ns

N
20

Min

V
08

V ,N =08V
V IN = O.OV

250
40

V
flA
flA

14

V

04

V

flA

Note 1: Unless otherWise specified minImax limits apply across the _55 D C to +125 D C temperature range for the DM78XX and
across the oDe to 70 0e range for the OM88XX All tYPlcals are given for Vee;::; 5 OV and T A = 25 DC

typical applications
+10V

3K

+12V

75K

I.

GROUND

L....jC>--....--jINPUT
DM8810, DM8811, DM8812

C

s:
....

l

CLOCK

1

I.

L....jC>--....--ItINPUT

-!.
":"

+10V--,

OMS810, OM881t DM8S12
ruse MOS shift register
(Example MM506)

+Vl

-V2

I

NSC MaS ROM
(ExampIEMM521)

Note Normnlvoltagesapplred

to MOSshlftreglstershave
been shifted by+l0Volts

L--6V

forthlsapphcatlOll

1·203

...

en

00
00

Series 54/74

~

c
.......

...

en

00

"'~"
c

DM7819/DM8819 quad 2-input TTL-MOS AN 0 gate
general description
The DM7819 IS the high output voltage version of
the SN5409. Its open-collector outputs may be
"pulled-up" to +14 volts in the logical "1" state

thus providing guaranteed interface between TTL
and MOS logic levels.

schematic and connection diagrams

16K

4K

lK

DuaHn-Line and Flat Package

TOP VIEW

1-204

c

absolute maximum ratings

(Note 1)

operating conditions
MIN

Supply Voltage
Input Voltage

Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

70V
55V
55V
_65°C to +125°e
300°C

electrical characteristics

Supply Voltage (Veel
DM7819
DM8819
DM7819
DM8819

CONDITIONS

Vcc=Mm

Logical "1" Output Current

Vee 0 Min, V ,N 0 2 OV, V auT 0 lOV
Vee 0 Min, V ,N 04 5V, V auT 0 14V

Logical "0" Output Voltage

Vee = Min, VIN =

= Max,

a 8V,

Vee

Logical "0" I nput Current

Vee = Max,

Supply Current - Logical 1/1"

Vee = Max, V ,N " 5V
Vcc=Max, V ,N = OV

DM7819
DM8819

V
V

-55
0

+125
70

°e
°e

MIN

TYP

MAX

lOUT = 16 mA

V ,N

~

04V
110
200

V

400
10

}1A
mA

....

CD

04

V

400
10

}1A
mA

-1.6

mA

21 0
330

mA
mA

-1.5

V.

tpdO

Vee 0 5 OV
T A ~ 25°C

160

240

ns

Vee 0 5 OV
TAO 25°C

160

320

ns

C

00

UNITS

08

CD
........

s:
00

V

Vee 0 5 OV, TA 0 25°C, 'iN 0 -12 mA

DM7819
DM8819
PropagatlOn Delay to a Logical "1"

55
525

V ,N o24V
V ,N 0 5 5V

Logical" 1" I nput Current

Propagation Delay to a Logical "0"

UNITS

45
475

20

Logical "0" Input Voltage

Input Clamp Voltage

MAX

Temperature (T A)

Vcc=MIn

Logical "0"

....

00

(Note 2)

PARAMETER
Logical "1" I nput Voltage

s:.....

tpd1

Note 1 "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electncal Charactenstlcs" provides conditions for actual device operatlo~
0
Note 2 Unless otherWise specified min/max limits apply across the -55 C to +125 C temperature range for the DM7819
and across the oOe to 70 0e range for tile DM8819 All tYPlcals are given for Vee
5 OV and T A == 25°C
=0

1-205

o

N
00
00

Series 54/74

~

C

......

o

N
00

....

DM7820/DM8820 dual line receiver

C

general description

~

The DM7820, specified from -55°C to 125°C, and
the DM8820, specified from oOe to 70°C, are
digital Iine receivers with two completely independent units fabricated on a single silicon chip_
Intended for use with digital systems connected
by twisted pair lines, they have a differential input
designed to reject large common mode signals while
responding to small differential signals_ The output
is directly compatible with RTL, DTL or TTL
integrated circuits_

• Each channel can be strobed independently
• High input resistance
• Fanout of two with either DTL or TTL
integrated ci rcu its
The response time can be controlled with an external capacitor to eliminate noise spikes, and the
output state is determined for open inputs_ Termination resistors for the twisted pair line are
also included in the circuit. Both the DM7820 and
the DM8820 are specified, worst case, over their
full operating temperature range, for ±10-percent
supply voltage variations and over the entire input
voltage range,

features
• Operation from a single +5V logic supply
• Input voltage range of ±15V

schematic and connection diagrams
RESl'ONSETIME
CONTROl

,.

AIO

'"

~
AU

"

OJ

-~

INPUT

no'"

A9

AI

no

A16
JK

~ ,..,"

A9

"
NON INVERTING

AU

"

"

A6

"

,-

~"

Dual~ln~Line

AI,

.
Q9>-

and Flat Package

'OK

.... Ql0

~(.,

~-4"':::""INPUT

TERr,.,INATION

A15

,20

AI,

'"

STROBE

..,.....

ST~OB£

OUTPUT

_'::""f---.J

lEflMINATlON

""

AJ

m

AI
INVE'HlNG
INPUT

"

A6

"

A16
15.

A2

'"

typical application
c,t
0002j.lF

Line Driver and Receivert

TWISTED PAIR LINE

OUTPUT

tVee Is4 5V to5.5V

for both the DM1820
Ind DM1B30
tElIact value depends
on hne length

·0 ptlonll to control
response time

1-206

STROBE

c

3:
.....

absolute maximum ratings

00

N

Supply Voltage

±20V

Differential Input Voltage

±20V

Strobe Voltage

C

3:

8.0V

Output Sink Current

00
00

25 mA

Power Dissipation (Note 1)

N

600mW

Operating Temperature Range
DM7820
DM8820
Storage Temperature Range
Lead Temperature (Soldenng, 60 sec)

0

-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

electrical characteristics
PARAMETER

0
.......

8.0V

Input Voltage

(Notes 2 & 3)
CONDITIONS

MIN

Input Threshold Voltage

V IN = 0
- 15V :S VIN:S 15V

High Output Level

lOUT :S 0.2 mA

Low Output Level

I sink :S 3.5 mA

-0.5
-1.0

TYP
0
0

MAX

UNITS

0.5
1.0

V
V

2.5

5.5

V

0

0.4

V

Inverting Input Resistance

3.6

5.0

kn

Non·inverting Input Resistance

1.8

2.5

kn

Line Termination Resistance

TA = 25°C

Response Ti me

Cdelay = 0
Cdelay = 100 pF

Strobe Current

120

170

1.0

1.4
-5.0

mA
I1A

3.2
5.8
8.3

6.0
10.2
15.0

mA
mA
mA

5.0
-1.0
-7.0

7.0

-1.6
-9.8

mA
mA
mA

4.2
-0.5

-4.2

3.0
0
-3.0

mA
mA
mA

V strobe =O.4V

V 1N = 15V
V'N = 0
V 1N =-15V

Non·inverting Input Current

V 1N = 15V
V 1N = 0
V 1N =-15V

Inverting Input Current

Note 1

V 1N = 15V
V 1N = 0
V 1N =-15V

For operating at oeJevated temperatures, the device must be derated

~ased

n
ns
ns

40
150

Vstrobe = 5.5V
Power Supply Current

250

U

on a

thermal resistance of 100 C/W and a maximum Junction temperature of 160 C for the
DM7820 or 105°C for the DMB820

.s

Note 2. These specifICations apply for 4 5V S; Vee S; 5 5V, -15V:S; V CM
15V and
_55°C S; T A S;; 125°C for the DM7820 or O°C.s TA S; 70 ce for th~ OM8820 unless
otherWise specified tYPICal values given are for Vee = 50V, TA = 25 C and V CM = 0

unless stated differently
Note 3. The speclflcatlofls and curves given are for one Side only Therefore, the total
package dissipation and supply currents will be double the values given when both
receivers are operated under Identical conditions

1-207

«
o
N

Series 541741

co
co
:E

c

........

«o

DM7820A/DM8820A dual line receiver

N

co
.....

general description

:E

The DM7820A and the DM8820A are Improved
performance digital line receivers with two completely Independent units fabricated on a single
silicon chip_ Intended for use with digital systems
connected by tWisted pair lines, they have a differential Input designed to reject large common mode
signals while responding to small differential signals The output IS directly compatible with RTL,
DTL or TTL integrated CirCUltS_

c

Operation from a single +5V logic supply

•

I n put voltage range of ± 15V

•

Strobe low forces output to "1" state

•

High input resistance

Fanout of ten with either DTL or TTL integrated CirCUitS

•

Outputs can be wire OR'ed, 3 (maxi

•

Series 54/74 compatible

The response time can be controlled with an external capacitor to reject input noise spikes. The
output state IS a logic "1" for both Inputs open.
Termination reSistors for the tWisted pair line are
also Included In the circuit. Both the DM7820A
and the DM8820A are specified, worst case, over
their full operating temperature range (_55°e
to 125°e and oOe to 700 e respectivelyl, over the
entire Input voltage range, for ±10% supply voltage vanatlons.

features
•

•

schematic and connection diagrams
Rt:S~ONSE

TIME
cONTROL

, - - -....- ....---t-.....- - -....--1r---'c.
~

'"
;0'

'"

~:

""

"."

.
,,>--'
V

"

..... r -

Dual-I n-Lme and Flat Packages

0.10

eo

"'

no

"

"

-1r.,rPUT

'"

STROBE

""

TERMINATlON_

,.,"
INVERTING

,-,

INPUT

""

""

""

'"
''"

,.,"

typical applications

Single Ended (EIA-RS232C) Receiver with Hysteresis

Differential Line Dnver and Receiver

IOUTPUT- 1 fOR

OPENINPUl)

*Optlonal to control response tIme

1-208

c
3:
.....

absolute maximum ratings

00

Supply Voltage

N

8.0V

0

Commo~·Mode Voltage

±20V

Differential I nput Voltage

±20V

»
......

8.0V

C

Strobe Voltage
Output Sink Current

3:

50mA

Power Dissipation (Note 1)

600mW

00
00

Operating Temperature Range
DM7820A

-55°C to 125°C

DM8820A

O°C to 70°C

»

300°C

Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Notes 2,3

VCM

& 4)

GONDITIONS
OUTPUT

+0 5

V

+10

<; a 4V
V auT <; a 4V

-0.08

-05

V
V

-0.08

-1.0

+16mA

<; V eM <; +15V

Non-Inverting Input Resistance

-15V

<; V eM <; +15V

36
18
TA

Line Termination Resistance

"

25°C

120

+15V

5
25
170

250

V

kn
kn
n

+30

+42

mA

a

-0 5

mA

-3 a

-42

mA

+15V

+5 a

+7 a

mA

OV

··10
-7 a

-16

mA

-98

mA

+6 a
+10 2

mA
mA

OV
-15V
Non-Invertmg Input Current

UNITS

+0 06

V auT
V auT

<; V eM <; +15V

MAX

+0 06

V aUT

-400 IlA
+16 mA

-15V

TYP

2" 2 5V
2" 2 5V

-4001lA

-15V

MIN

OTHER

<; V eM <; +3V
-15V <; V eM <; +15V
-3V <; V eM <; +3V
-3V

I nvertmg I nput Resistance

Inverting Input Current

0

_65°C to 150°C

Storage Temperature Range

Differential Threshold Voltage

N

-15V
Logic "0"
Logic "0"

V DlFF ==-lV
V D1FF =-05V

+39
+65

Logic "0"

V 01FF = -lV

>92

+140

Logical "1" Output Voltage

-4001lA

V o1FF =+lV

25

40

55

V

Logical "0" Output Voltage

+16mA

VOIFF=-lV

a

022

0.4

V

Loglcal"l" Strobe Input Voltage

+16mA

VauT

<; 0 4V. V DIFF

"

-3V

Logical "0" Strobe Input Voltage

-4001lA

V OUT

2: 2 5V, V 01FF =

-3V

09

V

Power Supply Current

+15V
OV
-15V

Logical "1" Strobe Input Current

VSTROBE =

5 5V, V 01FF

Logical "0" Strobe Input Current

VSTROBE;=

OV, V01FF

Output Short CirCUIt Current
Propagation Delays (see waveforms)
Differential Input to "0" Output

OV

Vee

='

5 5V,

:;

5.0

IlA

-10

001

-14

mA

-28 -45

-67

mA

+3V

OV

V

21

= -3V

VSTROBE =

Differential Input to "1" Output

Vee" 5V. T A
Vee" 5V, T A

"

25' e
25°C

30
24

Strobe Input to "0" Output

Vee" 5V,T A

"

25°C

Strobe Input to "1" Output

Vec" 5V, T A" 25°C

"

mA

45

ns

40

ns

16

25

ns

18

30

ns

Note 1: For operatmg at elevated temperatures, the deVice must be derated based on a thermal

re~lsJance of 1000 0C/W and a maximum junction temperature of 160°C for the DM7820A, or
150 C/W and 115 C maximum Junction temperature for the DM8820A

Note 2: These specificatiOns apply for 4 5V :::: Vcc :::: 55V, -15V :::: VCM :::: 15V and -55°C::::
T A :::: 125°C for the DM7820A or DoC:::: T A :::: 70°C for the DM8820A unless otherwISe speCified.
Typical values given are for Vce = 5 OV, T A = 25°C and VCM = OV unless stated differently

Note 3: The speCifications and curves given are for one side only Therefore, the total package
diSSipation and supply currents WIll be double the values given when both receivers are operated
under Identical conditions.
Note 4: Min and max limits apply to absolute values.

1·209

N
N
00
00

Series 54/74

:E

c

......
N
N
00

DM7822/DM8822 dual line receiver

.....
:E

general description

c

The DM7822/DM8822 is a dual Inverting line
receiver which meets the requirements of EIA
specification RS232 Revision B The device contains both receivers on a single monolithic silicon
chip The receivers share common power supply
and grou nd connections, otherwise their operation
is fully Independent.

Inputs which allow the receiver to be placed in the
high state independent of the Information being
received at the input.
The output of the DM7822/DM8822 IS completely
compatible with five volt DTL and TTL logic
families.

In addition to meeting the requirements of RS232,
the DM7822/DM8822 also has Independent strobe

connection diagram

Dual-In-Line Package

vee

INPUT

INPUT

*

*

**

**

STRbBE

*

OUTPUT

STROBE

*

OUTPUT

GNO

TOP VIEW
*MakenoconneC'bontothesepms.

* * For operation requlrmg ''Mark Hold" With the mput open connect
410n resistOrs from each of these pms to ground

typical connection

TWISTED PAIR LINE

RI"

4For Ma,k Hold Rl " 410n, otherWise connect pm 3 to ground

1·210

o

...,s:

absolute maximum ratings
Supply Voltage
I nput Voltage
Strobe Voltage
Output Sink Current
Power DISSipation INote 1)
Operating Temperature Range

80V
±30V
8 OV
25 mA
600 mW
-55°C to +125°C
O°C to 70°C
-65°C to +150°C
300°C

DM7822
DM8822

Storage Temperature Range
Lead Temperature ISolderlng, 10 sec)

electrical characteristics

Negative I nput Threshold
Voltage

4.8 IS)

Positive I nput Threshold
Voltage INote 3)

o

s:

CO
CO
N
N

MIN

CONDITIONS
V OUT

::> 2 5V

V OUT S;

Input ResIStance

.......

INote 2)

PARAGRAPH IN
RS-232

PARAMETER

CO
N
N

4.5 and 4.S 14)

30
3.57

20

V

50

70

kll

5

833
-357

mA
mA
mA

05

V

a
-8.33

-5

V ,N = OV

.03

Logical "1" Output Voltage

louT S; -0.2 mA

Logical "0" Output Voltage

lOUT = 3 5 mA

Strobe Current

VSTROBE = OV
VSTROBE = 5.5V

Power Supply Current
(Both Receivers)

-25V S; V IN S; 25V

Response Time, t, or t2

T A = 25°C
Vcc=50V
Input Ramp Rate S; 10 ns

UNITS
V

a 4V

V ,N = 25V
V ,N = OV
V ,N = -25V

Open CirCUit Input Voltage

MAX

-20

45and4S15)

I nput Current

TYP

25

V
04
10
-501lA

14
-10 mA

mA

a

mA

24

65

V

125

ns

Note 1. For operating at elevated temperatures, the devIce must be derated In accordance with
the "MaXimum Power DISSipation" curve

Note 2. MiniMax limits apply across the guaranteed temperature range of -55°C to +125°C for
the DM7822 and O°C to lOoe for the DM8822 unless otherWise specified LikeWise the limits
apply across the guaranteed Vee range of 45V to 55V for the DM7822 and 475V to 525V
for

TA

the
=

DM8822

unless

otherWise

specified

TYPlca!

values

are given for

Vee

=

5 OV and

25°C

Note 3. Since the EIA RS-232 specificatIOn requ1res the threshold to be between -3V and
the Immunity limits shown here guarantee 1 volt additional nOise Immunity

+3V,

1-211

o

('t')

00
00

Series 54/74

:!

c

........

o

DM7830/DM8830 dual differential line driver

('t')

00

I'

general description

:!
c

The DM7830/DM8830 is a dual differential line
driver that also performs the dual four-input NAND
or dual four-input AND function.

normally associated with single-wire transmissions.

features

TTL (Transistor-Transistor-Logicl multiple emitter
inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs
are balanced and are designed to drive long lengths
of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of
50£1 to 500£1. The differential feature of the
output eliminates troublesome ground-loop errors

•

Single 5 volt power supply

•

Diode protected outputs for termination of
positive and negative voltage transients

•

Diode protected inputs to prevent line ringing

•

High Speed

•

Short Circuit Protection

sch~matic*and connection diagrams

...----..........- ..........-,,,
Dual-in-line and Flat Package

NAND

OUTPUT

...---.............- ..........-""

'"

OUTPUT

"'2 per package

typical application
C1 t

Digital Data Transmission

o01 ~F

LIRe Dnver and RecelYer f

OUTPUT

thad value depends
on transmiSSion rate

1-212

tVee IS 4 5V to 5.5V
for both the DM1820
and DM7830

·Optlorul to control
response time
STROBE

C

absolute maximum ratings

3:

......
vee

7.0V

Input Voltage
Operating Temperature

5.5V
_55°C to +125°C

DM7830

0
.......

C

O°C to 70°C
_65°C to +150°C

DM8830
I

00
W

Storage Temperature

3:

00
00
W

300°C

Lead Temperature (soldering, 60 sec)
Output Short Circuit Duration (125°C)

1 second

0

electrical characteristics

(Note 1)

PARAMETER

CONDITIONS

Logical "1" Input Voltage

MIN

TYP

MAX

2.0

UNITS
V

Logical "0" I nput Voltage

0.8

V

V ,N

~

0.8V lOUT ~ -0.8 mA

2.4

Logical "1"Output Voltage

V ,N

~

0.8V lOUT ~ 40 mA

1.8

Logical "0" Output Voltage

V ,N

~

2.0V lOUT ~ +32 mA

0.2

0.4

V

Logical "0" Output Voltage

V ,N

~

2.0V lOUT ~ +40 mA

0.22

0.5

V

Logical "1" Input Current

V ,N

~

+2.4V

Logical "1" Input Current

V ,N

~

5.5V

2

mA

Logical "0" I nput Current

V ,N

~

O.4V

4.8

mA

Output Short Circuit Current

Vee ~ 5.0V

100

Note 2
120

mA

11

18

mA
ns

Logical "1" Output Voltage

V ,N
Supply Current

~

tpd1
tpdO

Propagation Delay NAN D Gate tpd 1
tpdO
Differential Delay t1

}

Note 2
40

fJA

5.0V

TA~25°C

Vee
CL

~

8

12

5.0V

11

18

ns

15 pF

8

12

ns

5

8

ns

12

16

ns

12

16

ns

~

See Figure 1

} Load, 100D. and 5000 pF

Differential Delay t2

V

3.3

120

(Each Dnver)

Propagation Delay AN D Gate

V

See Figure 2

Note 1: Specifications apply for OM7830 -55°C S. T A'S. +125 0c, Vee = +5V ±10%, DM8830 oOc
.$ 70o e, Vee =: +5V ±5% unless otherWise stated TYPical values given are for T A = 25°C,
Vee=50V.
~ TA

Note 2: Applies for T A

=

+125 0 C only

1·213

N
M
00
00

Series 54/74

:E

o
.......
N
M

DM78311DM8831,DM7832/DM8832 TRI-STATE

Ie

:E

general description

...

Through simple logic control, the DM7831/
DM8831, DM7832/DM8832 can be used as either
a quad single-ended line driver or a dual differential
line drIVer. They are specifically designed for
party line (bus-organized) systems_ The DM7832/
DM8832 does not have the Vee clamp diodes
found on the DM7831/DM8831 .

o

M
00
00

:E

...o

.......

mode of operation
To operate as a quad Single-ended line driver apply
logical "O"s to the Output Disable pins (to keep
the outputs In the normal low impedance mode)
and apply logical "O"'s to both Differential/
Single-ended Mode Control inputs. All four
channels will then operate Independently and no
signal inverSion will occur between inputs and

The DM7831 & DM7832 are specified for operation over the -55°C to +125°C military temperature range_ The DM8831 & DM8832 are specified
for operation over the O°C to + 70 c C temperature
range.

:E
o

line drivers

• High impedance output state which allows
many outputs to be connected to a common
bus line

M

Ie

®

outpu~s.

To operate as a dual differential line driver apply
logical "O"s to the Output Disable pins and apply
at least one logical "1" to the Differential/Singleended Mode Control inputs. The inputs to the A
channels should be connected together and the
Inputs to the 8 channels should be connected toIn this mode the signals applied to the resulting
inputs will pass non-inverted on the A2 and 8 2 outputs and Inverted on the A, and 8 , outputs.

features
• Series 54174 compatible
• 17 ns propagation delay
• Very
low output impedance-high drive
capability
• 40 mA Sink and source currents
• Gating control to allow either single-ended or
differential operation

When operating in a bus-organized system with
outputs tied di rectly to outputs of other
(Continued)

connection and logic diagram
Dual-In-Line and Flat Package
A

OUTPUT

ENABLE

B OUTPUT
ENABLE

OUTPUT

INPUT

OUTPut

INPUT

DIFfERENTIAL!
SINGtEENDEO

A~

A2

A,

A,

MODE CONTROt

OUTPUT

INPUT

8,

8,

OUTPUT INPUT DIFFERENTIAL! GND

8,

8,

SINGLEEHDEO

TOPVIEW

truth -table

(Shown for A Channels Only)

"A·· OUTPUT DISABLE

DIFFERENTIAL!
SINGLE·ENDED
MODE CONTROL

X

X
X - Don t Care

1-214

Logical

.. ,

Logical

··0··

OUTPUT A,

m

Logical "(' or

X

X

INPUT A,

Logical "0"

INPUT A2

Logical

..

Input Al

Logical

··0··

OpPosite of

Logical

Input A,

Logical ··0··

High

X

X

,
.. ,

Same as

Impedance
state

X

OUTPUT A2

m

Same as

m

Same as

Input A2

Input A2

High
Impedance

state

c
I

3C

.........w~

absolute maximum ratings
Supply Voltage

7V
55V
55V
-65'C to +150'C
-5SoC to +125°C
O'C to +70'C
300'C

Input Voltage

Output Voltage
Storage Temperature Range

DM7831, DM7832
DM8831, DM8832
Lead Temperature (Soldering, 10 sec)
Time that 2 bus-connected devices may be In

Operating Temperature Range

OPPosite low Impedance states simultaneously

c

3C
CO
CO

...
W

c

~

3C

~

electrical characteristics

W
N

(Note 1)

......
PARAMETER
Logical "1" Input Voltage

Logical

"a"

I nput Voltage

Logical "1" Output Voltage

Logical "0" Output Voltage

CONDITIONS

DM7831,DM7832 Vee" 4 5V
DM8831,DM8832 Vee 475V

MIN

TYP

08

Vee "45V

10" -40 mA
10'" -2 rnA

Vee" 475V

10 -40 mA
10" -5 2 mA

18
24
18
24

029
029

10 "32mA
Input Current

DM7831,DM7832 Vee" 5 5V Y'N " 5 5V
DM8831,DM8832 Vee -525V Y'N - 24V

Logical "0" Input Current

DM7831,DM7832 Vee" 5 5V
Y,N "0 4V
DM8831,DM8832 Vee -525V

Output Disable Current

DM7831,DM7832 Vee "55V
V o --24Vor04V
DM8831,DM8832 Vee "525V

Logical

"1"

DM7831,DM7832 Vee "55V
Output Short CirCUIt Current
OM8831,DM8832 Vee 525V
Supply Current

DM7831,DM7832 Vee"55V
DM8831,DM8832 Vee 525V

-40
-100

65

Vee" 50V, TA " 25'C
liN" -12 mA

Input Diode Clamp Voltage

Output Diode Clamp Voltage

-1 0

-40
INote 2)

3C

DM7831,DM7832 In T "-12 mA,V ee " 5 OV, T " 25'C
OM8831,DM8832 lOUT - +12 mA,Vc,e - 5 av, TA - 2SoC

CO
CO

W

V

N

V
V
V
V

23
27
25
29

10 "40mA
10" 32 mA
10 -40mA

DM7831,DM7832
DM8831,DM8832

c

UNITS
V

20

DM7831,DM7832 Vee "45V
DM8831,DM8832 Vee - 4 75V
DM7831,DM7832
DM8831,DM8832

MAX

050
40
050
40

V
V
V
V

1
40

mA
pA

-16

mA

40

pA

120
INote 2)

mA

90

mA

-15

V

-15
Vcc +l 5

V
V

Propagation Delay to a Logical "0"
from Inputs A l . A 2 , 8,. 8 2 Dlfferentlal Smgle-el1ded Mode Control to

T A " 25'C

13

25

ns

Vee "50V, TA"25'C

13

25

ns

Vee =50V.

TA = 25°C

6

12

ns

Vee "50V,

TA " 25'C

14

22

ns

Vee "~,OV,

TA " 25'C

14

22

ns

Vee" 50V,

T A " 25'C

18

27

ns

Vee "50V,

Outputs, tpdO
Propdgatlon Delay to a Logical "1"
from Inputs A,. A 2 , 8,. 8 2 Dlfferentlal Single-ended Mode Control to
Outputs, t pd ,
Delay from Disable Inputs to High
Impedance State (from Logical "1"
Level), t, H
Delay from Disable Inputs to High
I mpedance State (from Logical "0"
Levell. tOH
Propagation Delay from Disable Inputs
to Logical "1" Level (from High
Impedance State I. tH 1
Propagation Delay from Disable Inputs
to Logical "0" Level (from High
I mpedance State). tH a
Nota 1: Unless otherwise specified minImax limits apply across the _55°C to +12SoC temperature

range for the DM7831, DM7832 and across the O'C to 70'C temperature range for the DM8831,
DM8832. All tYPlcals are given for V CC " 5 OV and T A : 25' C
Note 2. Applies for TA = 12SoC only Only one output should be shorted at a time

1-215

N
M
CIO
CIO

~
C
.........

N
M
CIO

,....

~
C

mode of operation (cont.)
DM7831 /DM8831 's, DM7832/DM8832's (F Igure
1), all devices except one must be placed In the
"high Impedance" state. This IS accomplished by
ensuring that a logical "1" IS applied to at least
one of the Output Disable pinS of each deVice
which IS to be In the "high Impedance" state A
NOR gate was purposely chosen for thiS function
since It IS possible with only two DM5442/
DM7442, BCD·to·declmal decoders, to decode as
many as 100 DM7831/DM8831's, DM7832/
DM8832's (F Igure 2).
The unique deVice whose Disable Inputs receive
two logical "0" levels assumes the normal low

Impedance output state, providing good capacitive
drive capability and waveform integrity especially
dUring the transition from the logical "0" to
logical "1" state. The other outputs-in the high
Impedance state-take only a small amount of
leakage current from the low Impedance outputs
Since the logical "1" output current from the
selected deVice IS 100 times that of a conventional
Series 54174 deVice (40 rnA vs 400 !1A), the
output IS easily able to supply that leakage current
for several hundred other DM7831 /DM8831 's,
DM7832/DM8832's and stili have available drive
for the bus line (Figure 3).

BUS LINES

SElECTED AS
DRIVING
DEVICE

~

DD

T~~:~~i~~~ ----

MM

::

n

I-Hrl-'

D D

GATED INTO
THIRD STATE -----..

MM
8 8
8 8

nHt-t-+..
Figure 1

Figure 2

FOR DRIVING OTHER TTL INPUTS

DD

SElECTED AS
DRIVING DEVICE

OUTPUTS

MM
8 8
8 8

40 mA

J J
1 2

GATED INTO

HI IMPEDANCE
STATE

~~I---.
8
8
J
1

8
8
J
2

40 iJA
LEAKAGE

CURRENT
PER CONN

GATED INTO
HI IMPEDANCE
STATE

~~I---.
8 8
8 8

J J
1 2

Figure 3

1·216

c

s::.....

Series 54/74

00

w
en

........
C

s::

00
CO

DM7836/DM8836 quad NOR unified bus receiver
general description

w
en

features

The DM7836/DM8836 are quad 2-input receivers
designed for use in bus organized data transmission
systems interconnected by terminated 120n impedance lines_ The external termination is intended to be 180n resistor from the bus to the +5V
logic supply together with a 390n resistor from
the bus to ground_ The design employs a built-in
input hysteresis providing substantial nOise Immunity_ Low input current allows up to 27 driver/
receiver pairs to utilize a common bus. This receiver has been specifically configured to replace
the SP380 gate pln-for-pin to provide the distinct
advantages of the DM7837 receiver design in existing systems.

•

Plug-in replacement for SP380 gate

•

Low input current < With normal Vce or
Vee; OV (15!LA typ)

•

Built-in input hysteresIs (lV typ)

•

High nOise immunity (2V typ)

•

Temperature-insensitive Input thresholds track
bus logic levels

•

DTL!TTL compatible output

•

Matched, optimized noise immunity for "1"
and "0" levels

•

High speed (18 ns typ)

typical application
+5V

'5V

1.0n

tBO!!

120n UnifIed Data Bus

--, r- --,

39052

J9D!!

1
1
1

1I
I I

11
I 11/,'
1
_.J ~7.!!.' -...I

connection diagram
Dual-I n-Line Package
OUTl

OUT4

IN4A

IN 48

IN 3A

IN 18

Vee

OUT 2

OUT 1

IN 1A

IN 18

IN2A

IN 28

14

GND

TOP VIEW

1-217

absolute maximum ratings

(Note 1)
7.0V
5.5V
600mW

Supply Voltage
Input Voltage
Power Dissipation
Operating temperature range:
DM7836
DM8836
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

electrical characteristics
The following apply for V L

:S Vee :S V H, T L :S T A :S T H, unless otherwISe specified (Note 2)

PARAMETER

INPUT

MIN

TYP

MAX

UNIT

OUTPUT

COMMENTS

V TH
V TH

16 mA
16 mA

Output < 0 4V
Output < 0 4V

1.65
180

225
2.25

2.65
250

V
V

V TH
V TH

-40011A
-40011 A

Output> 2 4V
Output> 2 4V

097
1.05

130
130

1.63
1.55

V
V

High Level Input Threshold

OM7836
DM8836
Low Level Input Threshold

DM7836
DM8836
Maximum I nput Current

4V

Vee::; V H

15

50

I1A

Maximum Input Current

4V

Vee

= OV

1

50

I1A

Logic "1" Output Voltage

o 5V

24

-40011 A

025

Logic "0" Output Voltage

4V

16 mA

Output Short Circuit Current

o 5V

OV

Power Supply Current

4V

Per Package

Input Clamp Diode Voltage

-12 mA

TA

The following apply for Vee"" 5V, T A

=

V

Vee

=

-18

VH

0.4

V

- 55

mA
mA

25

40

= 25"C

-1

-1 5

V

Note 3
Note 4

20
18

30
30

ns
ns

2SoC unless otherwise specified

Propagation Delays
I npu! to Logic "1" Output
J nput to Logic "0" Output

I

I

I

Note 1: Voltage values are with respect to network ground terminal. Positive current

IS

defined as current Into the reference pin.

Note 2: For DM7836· V L = 4.5V, VH = 5.5V, T L = _55°C, T H = +125°C.
For DM8836. V L = 4.75V, VH = 5.25V, TL = O°C, TH = +70°C.
Note 3: Fan-out of 10 load, C LOAD = 15 pF total, measured from V1N = 1.3V to VO UT

= 1.5V, V1N

= OV to 3V pulse.

Note 4: Fan-out of 10 load, C LOAD = 15 pF total, measured from V 1N = 2.3V to V OUT = 1.5V, V ,N = OV to 3V pulse.

1·218

~s

Series 54/74

DM7837/DM8837 hex unified bus receiver
general description

features

The DM7837/DM8837 are high speed receivers designed for use In bus organized data transmission
systems Interconnected by terminated 120Q Impedance lines. The external termination IS Intended to be 180Q resistor from the bus to the +5V
logic supply together with a 390Q resistor from
the bus to ground. The receiver design employs a
built-In input hysteresIs providing substantial noise
Immunity. Low Input current allows up to 27 driver/receiver parrs to utilize a common bus. Disable
Inputs provide time discrimination. Disable Inputs
and receiver outputs are DTLlTTL compatible.

•

Low receiver Input current for normal Vee or
Vee~OV(15I1Atyp)

• S'x separate receivers per package
•

Built-In receiver Input hysteresIs (lV typ)

•

High receiver nOise Immunity (2V typ)

•

Temperature Insensitive receiver Input thresholds track bus logic levels

•

DTLlTTL compatible disable and output

•

Molded or cavity dual-In-Ilne or flat package

•

High speed

01

typical application
.5V

'5V

18011

laOn

--, r- --,

39011

I I

I
I
I
I

I I

I I
I

_...1

39011

'::"

_...I

connection diagram
Dual-In-Llne and Flat Package
Vee

IN lOUT 1

IN 2

OUT 2

IN 3

OUT J

DISABLE A

TOPVIEW

1-219

.....

~

00
00

absolute maximum ratings

(Note 1)

:E

o

Supply Voltage
Input Voltage
Power Dissipation
Operating Temperature Range
DM7837
DM8837
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

"
.....

~

00

.....
:E

o

7V
5.5V
600mW
_55°C to +125°C
O°C to +70°C
_65°C to +150°C
300°C

electrical characteristics
The followinll apply for V L

:s Vee :s V
RECEIVER
INPUT

PARAMETER

H,

TL

:s T :s T
A

DISABLE
INPUT

H,

unless otherwise specified (Note 2)
TYP

MAX

High Level Receiver Threshold

DM7837

V TH

o 8V

OUTPUT
l6mA

Output<04V

COMMENTS

MIN
165

225

265

UNIT
V

High Level Receiver Threshold

DM8837

V TH

08V

16mA

Output<04V

180

225

250

V

Low Level Receiver Threshold

DM7837

V TH

08V

-400 mA

Output> 2 4V

097

130

163

V

Low Level Receiver Threshold DM8837

V TH

08V

-400 mA

Output> 24V

105

130

155

V

MaXimum Receiver Input Current

4V

Vee:::: V H

150

500

~A

MaXimum Receiver Input Current

4V

Vee = OV

10

500

~A

Disable

05V

Y'N

l6mA

Output < 0 4V

logiC "0" Input Voltage Disable

05V

Y'N

-400~A

Output> 2 4V

LogiC "1" Output Voltage

o 5V

08V

-400~A

LogiC "0" Output Voltage

4V

08V

l6mA

LogiC "1" Input Voltage

20

V
08

V

04

V

24

V
025

LogiC "l"'nput Current Disable

24V

800

~A

LogiC "1" Input Current: Disable

55V

2,0

mA

4V

04V

Output Short Circuit Current

LogiC "O"'nput Current

05V

OV

Power SupplV Current

4V

OV

Per Package

Input Clamp Diode

-12mA

-12mA

T A = 25°C

Disable

OV

Vee:::: V H

-32

mA

-550

mA

450

60,0

mA

-10

-15

V

-180

The follOWing apply for Vee:::: 5V. TA = 2SoC unless otherWise specified
Propagation Delays
Receiver Input to LogiC "1" Output

OV

Note 3

20

30

n.

Receiver Input to LogiC "0" Output

OV

Note 4

18

30

n.

Disable Input to LogiC "1" Output

OV

Note 5

9

16

n.

Disable Input to LogiC "0" Output

OV

Note 5

4

10

ns

Note 1: Voltage values are With respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: For DM7837: V L = 4.5V, VH = 5.5V, T L = _55°C, T H = +125°C
For DM8837: VL = 4.75V, VH = 5.25V, TL = O°C, TH = +70°C
Note 3: Fan-out of 10 load, CLOAO = 15 pF total. Measured from VIN = 1.3V to V OUT
Note 4: Fan-out of 10 load, CLOAO = 15 pF total. Measured from VIN = 2.3V to VOUT
Note 5: Fan-out of 10 load, CLOAO = 15 pF total. Measured from VIN = 1.5V to VOUT

1-220

= 1.5V, VIN = OV to 3V pulse.
= 1.5V, VIN = OV to 3V pulse.
= 1.5V, VIN = OV to 3V pulse.

c

3:

Series 54/74

~

00

W

00

"-

c

OM7838/0M8838, quad unified bus transceiver
general description

3:
00

features

00
Co\)

The DM7838/DM8838 are quad high speed drlvers/
receivers designed for use in bus organized data
transmission systems Interconnected by termi,
nated 120n impedance Imes, The external termination is intended to be a 180n reSIStor from the
bus to the +5V logic supply together with a 390n
resistor from the bus to ground, The bus can be
terminated at one or both ends, Low bus pin current allows up to 27 driver/receiver pairs to utilize
a common bus, The bus loading is unchanged
when V cc ~ OV, The receivers Incorporate hystereSIS to greatly enhance bus nOise immunity, One
two-input NOR gate IS Included to disable all
drivers In a package simultaneously

00

• 4 totally separate driver/receiver pairs per
package
•
•
•

1 V typical receiver Input' hysteresIs
Receiver hysteresIs Independent of receiver
output load
Guaranteed minimum bus noise immunity of
1,3V, 2V typ,

• Temperature,insensltlve' receiver thresholds
track bus logic levels
•

20MA tYPical bus terminal current with normal
Vee or with V cc'~ OV
• Open collector driver output allows wire-OR
connection
• High speed
• Series 74 TTL compatible driver and disable
inputs and receiver outputs

II

typical application

.,v

.5V

180U

lao!!

1201'1 Unofied Data Bus

rijl'r:i:.:;,

390!J

'::'

-, r-

I
I I
I
I I
I
II
I I
1116
I!M!!.'!... __ J L_

I I
I I
I I
I

Q

-,
I
I
I
I
_...I

_...J

390lJ

':'

connection diagram
Dual In-Line and Flat Package
Vee

BUS 1

IN 1

OU11

BUS 2

IN 2

BUS3

IN3

OU13

BUS4

IN4

OUT4

OUT 2 DISABlE A

DISABLEB

GND

TDPVIEW

1-221

00
('I).

absolute ma.ximum ratings

00
00

Supply Voltage
Input and Output Voltage

::E

o

Operatmg Temperature Range
DM7838
DM8838
Storage Temperature Range

7V
55V
600rnW

Power DISSipation

"

_55°C to +12SoC
O°C to +70°(;
-6SoC to +150°C

Lead Temperature (Soldering, 10 sec)

00

300"C

('I)

electrical characteristics

00

"::E

DM7838/DM8838

o

The followmg apply for V L ~ V cc ~ V H' T L ~ T A ~ T H unless otherWise specified (Note 2).

DRIVER
INPUT

Logic "1" Input
Disable

Y'N

2V

4V

Logic "0" Input
Disable

Y'N

2V

50 rnA

Bus

< 0 7V

Logic ''1'' Input
Voltage, Driver

0.8V

V ,N

50mA

Bus

< a 7V

Logic "0" Input
Voltage
Driver

08V

Y'N

4V

.

o 8V

V TH

l6mA

Receiver output
<04V

165

High Level Receiver
DM8838

o BV

V TH

l6mA

Receiver output
<04V

Low Level Receiver
Threshold·. DM7838

08\/

V TH

-400 MA

Low Level Receiver
Threshold DM8838

o 8V

V TH

-400MA

Voltage

Voltage

Hlgn Level Receiver
Threshold DM7B38

BUS
PIN

RECEIVER
OUTPUT

DISABLE
INPUT

PARAMETER

5 5V

MIN

Bus < 100 MA

20

TYP

MAX

UNIT

V
08

V
V

20
OB

V

225

265

V

180

225

250

V

Receiver output
>24V

097

1 30

1 63

V

Receiver output
>24V

1 05

130

1 55

V

Bus < 100MA

Threshold

Logic "1" Input
Current' Disable

COMMENTS

55V

1

rnA

and Driver

,.,f

Logic "1" Input

2 4V

24V

40

MA

04V

04V

-16

rnA

Maximum Bus
Current

o 8V

o 8V

4V

Vee::: V H

20

100

MA

Maximum Bus

08V

o 8V

4V

Vee::: OV

2

100

MA

Low Level Bus
Voltage

o 8V

2V

Logic "1" Output
Voltage
Receiver

08V

o 8V

o 5V

Logic "0" Output
Voltage' Receiver

o BV

o 8V

4V

16 rnA

Output Short CirCUit
€urrent. Receiver

0.8V

0.8V

o 5V

OV

Current.

Disable

and Driver
Logic "0" Input

Current

Disable

and Drlvgr

Current

Supply Current

OV

Input Diode Clamp
Voltage

-12 rnA

SOmA

04
-400MA

2V
~12

mA

-12 mA

07

24

V
025

Vee::: V H

V

-18

0.4

V

-55

rnA
rnA

Per Package

50

70

TA = 25°C

-1

-1 5

V

n,

The following apply for Vee::: 5V, T A ::: 25°C unless otherwise speCified

Propagation Delays
Disable to Bus "1"

Note 3

19

30

Disable to Bus "0"

Note 3

15

23

ns

Driver Input to Bus "1"

Note 3

17

25

n,

Driver I nput to Bus "0"

Note 3

9

15

ns

Bus to Logic "1"
Receiver Output

Note 4

20

30

n,

Bus to Logic "0"
Receiver Output

Note 5

18

30

n,

Note 1 Voltage values are with respect to network ground term mal Positive <:urrent IS defmed as current mto the referenced
pm
Note 2:

For pM7838
For DMB838

n

VL =0 4 5V, VH =0 5 5V, TL '" _55°C, TH '" 125°C
VL "'4 75V, V .... "'- 525, TL '" OOC, TH '" 70°C

Note 3' 91
from bus pm to Vee and 200Q from bus pin to ground, C LOAD '" 15 pF total Measured from VIN '" 1 5V to
VSUS '" 1 5V, VIN '" OV to 3V pulse
Note 4
Note 5

1·222

Fan-out of 10 load, C LOAD '" 15 pF total Measured from VIN = 1 3V to VOUT '" 1 5V, YIN = OV to 3V pulse
Fan-out of 10 load, CL.OAD '" 15 pF total Measured from YIN'" 2 3V to V OUT '" 1 5V, VIN '" OV to 3V pulse

Series 54/74

cc
:s::s:
...,...,

...,...,

COCO
U'IU'1

all>
..............

CC

:s::s:

DM7875A/DM8875A and DM7875B/DM8875B

COCO
COCO

TRI-STATE® 4-bit multipliers

...,...,
U'IU'1

all>

general description
The DM7875A/DM8875A & DM7875B/DM8875B
are two Integrated circuits which together will
multiply two four-bit bmary numbers. Smce the
largest number that can be obtained by mu Itlplymg
two four-bit numbers IS 225 (15 x 15), the eight
output pms (four from each package) are sufficient
to produce this number. Both multiplier and multiplicand are connected to the eight mput pms of
each package

Since only one multiplier-pair at a time is allowed
to be m the conventional low -Impedance state,
the advantages of TTL outputs can be combmed
with a bus structured system.
The DM7875A/DM8875A provides the most significant four bits and the DM7875BIDM8875B the
least significant four bits.

features
A gated two-input strobe control IS provided. When
either of the two inputs IS taken to the logical" 1"
state, the outputs will all be placed in the high
Impedance state. In this state both the upper and
lower output transistors are turned off, provldmg
a high output impedance. This allows multiple
devices to be connected to a common bus Ime, and

•

36 ns tYPical propagation delay

•

375 mW tYPical power~dlsslpatlon
(each package)

•

Series 54174 compatible

•

Outputs directly connectable to a common
bus Ime

1-223

aI
U')

.....

absolute maximum ratings

00
00

:E

(Note

11

7V
Supply Voltage
5.5V
I nput Va Itage
5.5V
Output Voltage
Operating Temperature Range DM7875A, DM7875B _55°C to +125°C
DM8875A, DM8875B
O°C to +70°C
-65°C to +150°C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
300°C

c
........
aI
U')

.....

00
.....
:E

c

electrical characteristics

«

(Note 2)

U')

.....

PARAMETER

00
00

CONDITIONS

Logical "1" I nput Voltage

DM7875A, DM7875B
DM8875A, DM8B75B

Vee" 4 5V
Vee - 4 75V

c

Logical "0" I nput Voltage

DM 7875A/DM 7875B
DM8875A, DM8875B

Vee" 4 5V
Vee 475V-

«

Logical "1" Output Voltage

DM7875A, DM7875B Vee" 4 5V, 10" -2 0 mA
DM8875A, DM8875B Vee - 4 75V, 10 - -5 2 mA

Logical "0" Output Voltage

DM7875A, DM7875B Vee"45V
DM8875A, DM8875B V ee - 475V

Third State Output Current

DM 7875A, DM 7875B Vee" 55V
DM8875A, DM8875B Vee 525V

Logical "1" Input Current

DM7875A, DM7875B V ee "55V
DM8875A, DM8875B V ee -525V

:E
........
U')

.....
00
.....
:E
c

DM7875A, DM7875B
DM8875A, DM8875B

04

10" 16mA

V 1N =24V

Vo" 0 OV

Supply Current (each device)

DM7875A, DM7875B
DM8875A, DM8875B

Vee" 5 5V
Vee - 525V

All Inputs at GND

Input Clamp Voltage

DM7875A, DM7875B
DM8875A, DM8875B

Vee ~ 4 5
Vee - 4.25

IIN=-12mA

Output Vee Clamp Voltage

DM7875A, DM7875B
DM8875A, DM8875B

Vee" 55V
Vee - 525V

lo=12mA

DM8875A, DM8875B
Propagation Delay to a Logical "0" from X, Y Inputs

Vee

= 5 5V

IlA
IlA

40

-1 2

VIN = 04V

-20
75

-70

mA

110

mA

-15
V cc +15

10 = -12 mA

Vee - 525V

mA

V
V

-1 5

V

Vee ~ 5 OV
T A = 25°C

39

60

ns

to Outputs, tpdl

Vee" 5 OV
TA = 25°C

31

60

ns

Delay from Strobe to High Impedance State (from

Vee

Logical "1" Level),

T A" 25°C

to Outputs,

tpdO

Propagation Delay to a Logical "1" from X, Y Inputs

t1 H

Delay from Strobe to High Impedance ~.tate (from
Logical "0" Leven,

tOH

Delay from Strobe to Logical "1" Level (from High
Impedance State), tHl
Delay from Strobe to Logical "0" Level (from High
Impedance State), tHO

= 5 OV

30

ns

Vee" 5 OV
T A = 25°C

10

ns

V ee "50V
TA " 25°C

30

ns

Vee ~ 5 OV
T A " 25"C

30

ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed

Except for "Operating Temperature Range" they are not meant to Imply that the

devices should be operated at these limits The table of "Electrical Characteristics" provIdes conditions

for actual device operation

Note 2: Unless otherwise specified min/max limits apply across the _55°C to +125° C temperature
range for the DM7875A, DM7875B and aeross the oOe to 70 c e range for the DM8875A, DM8875B
All tYPleals are 91ven for Vee" 5 OV and TA ~ 25°C
Note 3: Only one output at a time should be shorted

1·224

V

mA

Vee o55V
Vee 525V

Output Ground Clamp Voltage DM7B75A,DM7875B

40
-40

Vo " 2 4V
Va" 0 4V

525V

Vee~55V

V
V

Vee~55V

Vee

UNITS
V

24

DM7875A, DM7875B
DM8875A, DM8875B

{Note 31

MAX

08

Vee - 525V

Output Short Circuit Current

TYP

20

DM7875A, DM7875B
DM8875A, DM8875B

Logical "0" Input Current

MIN

c

s:
.....

Series 54/74

00
00

o
c

........

s:

DM7880/DM8880 high voltage 7-segment decoder/driver
(for driving Sperry and Panaplex IITM displays)

00
00
00

o

general description
The DM7880/DM8880 is custom designed to decode four lines of BCD and drive a gas-filled
seven-segment display tu be.

dance with the programming curve. The CirCUit
design provides a one-to-one correlation between
program input current and b-segment output
current.

Each output constitutes a sWltchable, adjustable
current sink which provides constant current
to the tube segment, even with high tube anode
supply tolerance or fluctuation. These current
Sinks have a voltage compliance from 3V to
at least 80V; tYPically the output current vanes
1% for output voltage changes of 3 to 50V. Each

The Blanking I nput provides unconditional blankIng of any output display, while the Ripple BlankIng pins allow Simple leadlng- or trailing-zero
blanking.

features

current Sink IS ratioed to the b-output current
as reqUired for even illumination of all segments.
Output currents may be varied over the 0.2 to 1.5
mA range for dnvlng va'rious tube types or
mUltiplex operation. The output current IS adjusted by connecting an external program resistor
(Rp) from Vee to the Program input In accor-

•

Current sink outputs

•

Adjustable output current - 0.2 to 1.5 mA

•

High output breakdown voltage - 110V typ

•

SUitable for multiplex operation

•

Blanking and Ripple Blanking proVIsions

•

Low fan-in and low power

logic and connection diagrams

,-----------------'
I

I
I

+

Dual-In-line Package
a OUTPUT

I

---------OUTPUTS

",1~t---!- b OUTPUT

A INPUT

r-+--ir c OUTPUT
B INPUT

" , 1 : - t - - - ; - d OUTPUT

C INPUT

'C--+--ir e OUTPUT

o INPUT
RIPPLE
BLANKING

INPUT

+----1

",i:--i---+- !OUTPUT

r---/--+ 9 OUTPUT
BLANKING
INPUTI
RIPPLE
BLANKING
OUTPUT

~BIJRBO ~
INPUTS

+--+--1

CURRENT

GND

INPUTS

fOP VIEW

PROGRAMMING
INPUT

1-225

o

ClO
ClO
ClO

absolute maximum ratings

operating conditions

~
C

Vee
Input Voltage IExcept 811
Input Voltage 1811
Segment Output Voltage

7V
6V
Vee
80V
Power DISSipation (Note 1)
600mW
Transient Segment Output Current (Note 2)
50 mA
-65"e to 150°C
Storage Temperature Range
300"e
Lead Temperature (Soldering, 10 sec)

Supply Voltage IVeel
DM7880
DM8880

.......

o

ClO
ClO

"~
C

electrical characteristics

Temperature (T A)
DM7880
DM8880

MIN

MAX

UNITS

4.5
475

5.5
5.25

V

-55
0

+125
+70

V

(Note 3)

PARAMETER

CONDITIONS

MIN

TVP

MAX

UNITS

Logic "1" Input Voltage

Vee == Mm

Logic "0" I nput Voltage

Vee == Min

Logic "1" Output Voltage (RBO)

Vee = Min,
lOUT = -200 f.lA

Logic "0" Output Voltage IRBO)

Vee = Mm, lOUT = 8 mA

0.13

Logic "1" Input Current (Except BII

Vee = Max, V ,N = 2 4V
Vee=Max, V ,N =55V

2
4

15
400

Logic "0" Input Current (Except BII

Vee = Max, V ,N = 04V

-300

-600

Logic "0" Input Current (BI)

Vee= Max, V ,N =04V

-12

-20

mA

Power Supply Current

Vee = Max, R p = 2 2k
All Inputs = OV

27

43

mA

Input Diode Clamp Voltage

Vee = Max, T A = 25°C
liN = -12 mA

-09

-15

Segrnent Outputs
Outputs a, f, g ON Current Ratio

20

V
0.8

24

37

V
V

0.4

V
p.A
f.lA
f.lA

V

All Outputs = 50V
Output b Curro = Ref

0.84

0.93

1.02

Output c ON Current Ratio

All Outputs = 50V,
Output b Curr = Ref.

1.12

1.25

1.38

Output d ON Current RatiO

All Outputs = 50V
Output b Curr = Ref.

0.90

100

1.10

Output e ON Current Ratro

All Outputs = 50V
Output b Curr = Ref.

0.99

1 10

1.21

Output b ON Current

Vee = 5V, V OUT b = 50V
T A = 25"C, Rp = 18 1k
Vee = 5V, V OUT b = 50V
T A = 25°C, Rp = 703k

018

020

0.22

mA

045

050

0.55

mA

Vee = 5V, V OUT b = 50V
T A = 25°C, Rp = 340k

0.90

100

1 10

mA

Vee = 5V, V OUT b = 50V
T A = 25°C, Rp = 2 20k

135

1.50

165

mA

Output Saturation Voltage

Vee = Min, Rp = 1k±5%
lOUT b = 2 mA (Note 41

Output Leakage Current

V OUT = 75V, BI = OV

Output Breakdown Voltage

lOUT = 250 f.lA, BI = OV

0.8

25

.003
80

3

110

V
f.lA
V

Propagation Delays
BCD I nput to Segment Output
BI to Segment Output
RBI to Segment Output
RBI to RBO
Note 1

MaXimum Junction temperature for DM7880

Vee
Vee
Vee
Vee
IS

=
=
=
=

5V,
5V,
5V,
5V,

TA =
TA =
TA =
TA =

0.4
0.4
0.7
04

25°C
25°C
25°C
25°C

150°C whereas that for DM8B80

temperatures the deVice must be derated based on a thermal resistance of 85°C/W

8 JA

IS

10
10
10
10

130°C For operating at elevated

for DM788Q and 150°C/W

8 JA

for

DMB880

Note 2

In all applications tranSient segment output current must be limited to SO mA This may be accomplished In DC
applications by connecting a 2 2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting
the anode driver In multiplex applications
Note 3 Min/max limits apply across the guaranteed operating temperature range of -SSoC to 12SoC for DM7880 and aGc
to 70 Ge for DM8880, unless otherWise specified Typlcal~ are for Vce - 5V, T A ~ 25°e Positive current IS defined as current
Into the referenced pin
Note 4

1-226

For saturatIOn mode the segment output currents are externally limited and ratloed

f.ls
f.ls
f.ls
f.ls

c

s:

typical performance characteristics

100

.,E

30

i

,

>-

0

106

'">"
'"
u
"'"
"

1 O'

"-

J

096

'"

~

01
10

1/

092

I .l.

1 rnA

t.:I

f-

TYPICAL OPERATING POINTS

~

Rp =0 TEMP COEFf

50A
-50

C

s:00

0

02mA~loUT::;:15mA

50

Ii

100

OUTPUT OFF
30

1 1 1

60

90

120

OUTPUT VOLTAGE (VI

TAnl

Rp(kn)

.......

\ I I I

~

Vee" 5V
VOUT = 50V

090

100

30

~

/

098

:0 09.

,

>-

\ /

1 00

I I I
I I I
IOUT~:7

Vee = 5V
TA '" 25°C

/

\

102

N

03

-..",

ON CURRENT RATIOS

0
0

">-

"

~

0

I'

10

/

ON CURRENTS

i=

TA =25°C

Output Characteristic

108

0

Vee =5V
VOUT = 50V

>-

"

On Currents vs Temperature

Output Current Programming

00
00
0

typical application
IlIO-200VDCI

o"'r

~:9

<;>

Q

R=22K
!NOTt21

9

)"""'
~~S~~~YTUBE

.

SP-730DA

<;> Q Q.

,

'oc

5\1'10%

",

,I "I 01 ·1
OM5475
QUAD LATCH

cl

AI 81

D+-g~~~JT

DM>490
DECADE

COUNT
INPUT

truth table
DECIMAL
OR
FUNCTION

RBI

D

C

B

A

0

0

0

0

0

0

0

X

0

0

0

0

0

X

0

0

0

0

0

3

x

0

0

0

0

0

4

X

0

0

0

0

X

0

0

X

0

x

0

0

6

8

X

BI/RBO

0
0
0

0

9

X

0

10

X

0
0

0

0

0

14

X

15

X

BI

X

X

X

X

X

0

RBI

0

0

0

0

0

0

0
0

0

I

5
5-,

0

1-1

0

0

0

0

0

0

0

0

0

0

0

=1
_I
LI

0

0

0

0

X

,?

0

0

0

13

0

0

0

0

1
1

0

0

0

0

X

0

0

0

0

X

0

II
LI

0

0

0

0

11

0

0

0

12

0

0

0

0

DISPLAY

d

b

0

,

c:J

0

0

0
_I

0

0

0

II

0

Ll

0

0

0

0

0

0

0

0

0

0

0
0

{;-/b
"/ Ie

SEGMENT
IDENTIFICATION

I-I
I-

1-

L
~

0

LI

0

0

E

0

0

1

C

1-227

00
00
0

UT

c

3:

00
00
00

absolute maximum ratings
Vee
Input Voltage (Note 1)
Segment Output Voltage
Power DISSipation (Note 2)
TranSient Segment Output Current (Note 3)
Operating Temperature Range
Storage Temperature Range

electrical characteristics

7V

(DoC

PARAMETER

<;: T A <;:

e-

70 0

Logic "1" Input Voltage

Vee = 4 75V

Logic "0" Input Voltage

Vee = 4 75V

Logic "1" Input Current

Vee = 5 25V, V ,N = 24V

POSItive Input Clamp Voltage

Vee=4 75, liN = 1 mA

LogIc "0" I nput Current

Vec= 5 25V, V ,N = 04V
Vee= 5 25V,

»

Unless otherwise noted), Vee

CONDITIONS

Power Supply Current

~

Vee
80V
600mW
50 mA
DoC to +70°C
-65°C to +150°C

MIN

MAX

~ 5V ± 5%
UNITS
V

20

10

pA

-250

pA

40

mA

50

Rp= 2 Sk,

V

15

V

All Inputs = 5V
Negative Input Clamp Voltage

All Outputs ~ 50V
Output b Current = Ref

Output b ON Current

Vee = 5V, V OUT b = 50V,
T A = 25°C, Rp = 18 1k
Rp= 7 03k
Rp =340k
Rp = 2 SDk

Output Leakage Current

V OUT

Output Breakdown Voltage

lOUT = 250 fJA

Propagation Delay.
Any I nput to Segment Output

Note 1

-1 5

Vee = 5V, liN = -12 mA, TA = 25°C

Segment Outputs
All Outputs ON Current RatiO

Vee

=

=

V

09

11

018
045
090
108

022
055
1 10
132

rnA
rnA
mA
mA

5

fJA

75V

V

80

5V, T A "' 25° C

10

fJs

This limit can be higher for a current limiting voltage source

Note 2 The maximum Junction temperature IS 140°C For operation at elevated temperatures, the deVice must be derated
based on a thermal resistance of 140°c/we JA
Note 3' In all applications tranSient segment output current must be limited to 50 mA This may be accomplished In DC applications by connecting a 22k resistor from the anode-supply filter capacitor to the display anode, or by current limiting
the anode driver In multiplex applications

truth table
FUNCTION

,

0

,
,
,
,
,
,
,
""
"n
;

"

"

"OPT
"Cornm.

Deo

,
,

,
,
,
,
,
,
,
,
,
,
,
,

,
,
0
0

typical application

COMMA

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

0

o
o
o
o
o
o
o
o

0
0

0
0

U
1

0
1

0
0

0
0

0
1

0
I

0
I

1
1

0
0
1

1
I
0

0
1
0

0
0
I

0
0
0

1
0
0

0
0
1

0
1
1

1
I
0

0
0
0

1

0

1

0

1

I)

I)

1

I)

I)

1
1

1
1

0
1

0
0

1
0

I)

{)

I

0
1

0

0

0
1

f~

,
,
,
,
,
,
,
,
,

0

, ,
,
, ,, , , ,
,
,
,
,
, , , , , ,
, , ,
, , , ,
, ,
, , , , , , ,
, , , , , , , , ,,
, , , '1' , , , ,

0

0

0

's

0

r:J

0
0

0

C}

1

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

l

0

J

,

2
3
'-I

5

1:::.1

0

°,
,

,

p Comm.

"Decimal pomt and comma can be dISplayed w.lh or Wllhout any numeral

typical performance characteristics

(see DM7880 data sheet)

1·229

Ln
00
00
00

Series 54/74

:!!

c

DM8885 MOS to high voltage cathode buffer
general discription
The DM8885 Interfaces MOS calculator or counterlatch-decoder-drlver circuits directly to sevensegment high-voltage gas-filled displays The SIX
Inputs A, B, D, E, F, G are decoded to drive the
seven segments of the tube.

multiplex operation. The output current IS adjusted
by connecting a program resistor (Rp) from Vee to
the program Input.

Each output constitutes a switchable, adjustable
current source which prOVides constant current to
the tube segment, even with high tube anode supply
tolerance or fluctuation These current sources have
a voltage compliance from 3V to at least 80V. Each
current source IS ratloed to the b-output current
as required for even illumination of all segments.
Output cu rrents may be varied over the 0.2 to
1.5 mA range for driVing various tube types or

• Current source outputs
• Adjustable output currents 0.2 to 1.5 mA

connection diagram

features

• High output breakdown voltage 80V min
• SUitable for multiplex operation
• Low fan-In and low power
• Blanking via program input
• Also drives overrange, polarity, decimal pOint
cathodes

truth tables

Dual-In-Line Package

PROG

A

B

D

E

F

G

DISPLAY

1
0
1
1
0
1
1
1

1

1
0
1

1
0
1
0
0

1
0
0
0
1

'-'

0

1 (OFF)

,?

1

a(ON)

a

1

0
0
1
1
1
1
1

1
1

0
1
1
0

GND

1
1
1

1

1
0

0
1
1
0
1
1
1
0
0
0

a

1
1
1

0
1
1
1

1

1

0
1

0
1
1
1
1
1
1
1
0
0

a

1
a

a

1

1

1
1
1

0

0
0

0
0

0

a

a

/

:::J
_I

5
J;
-I
I

1

EI

'3

1

b
q

1
1

ILl

Fi
I I

a

U

1

E/

a

TOP VIEW

typical applications
'5V

'5V

---i
v" 0-"'-;--0

____ .J

-12V

Open-Drain MOS Output

1-230

OUTPUT*

-<-POSItive LogiC

'-I

a

1
1

INPUT'

I I

Push-Pull MOS Output

c

s:

absolute maximum ratings

00
00
00

electrical characteristics

(Note 3)

PARAMETER

,

C11

7V
6V
80V
600mW
50mA
O°C to +70°C
-65°C to +150°C
300°C

Vee
Input Voltage
Segment Output Voltage
Power Dissipation (Note 1)
Transient Segment Output Current (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

CONDITIONS

MIN

TYP

MAX

UNITS

Logic "1" Input Voltage

V cc =47SV

Logic "0" Input Voltage

Vcc=475V

Logic "1" Input Current

Vee

==

5 25V, VIN '" 2 4V

2

15

~A

Vee

==

5 25V, VIN -; 5 5V

4

400

~A

Logic "0" Input CUrrent

Vee

==

5 25V, VIN

-300

-600

~A

Power Supply Current

Vee"" 5 25V, All Inputs '"

22

31

mA

Input Diode Clamp Voltage

Vcc=5V,tIN""-12mA,TA=2SoC

-09

-15

V

20
08

==

0 4V

av,

Rp "" 2 2k

V

III

V

Segment Outputs

084

093

102

1 12

125

138

Outputs a, f, 9 On Current Ratio

All Outputs = SOY, Output b Curr == Ref

Output c On Current Ratio

All Outputs" SOY, Output b CUfr == Ref

Output d On Current RatiO

All Outputs" SOY, Output b Curr

==

Ref

090

100

110

Output e On Current

All Outputs

==

Ref

099

110

121

RatiO

Output b On Current

==

50V, Output b Curr

mA

Vee'" 5V, VOUT b '" 50V, T A'" 25°C, Rp '" 18 1k

018

020

022

Vee'" 5V, VOUT b= 50V, TA "" 25"C, Rp =703k

045

050

055

mA

Vee=5V, VouTb= 50V, TA '" 25°C, Rp= 340k

090

100

110

mA

Vee'" 5V, VOUT b'" 50V, T A'" 25"C, Rp

135

mA

==

220k

Output Saturation Voltage

Vee'" 4 75V, IOUTb '" 2 mA, Rp '" lk ± 5% (Note 4)

Output Leakage Current

VouT"'75V,VIN=08V,

Output Breakdown Voltage

IOUT::= 250 }.lA, V IN

~p:o:lk

VOUT= 75V, VpROG '" 0 4V
=

0 8V

80

150

165

08

25

0003

3

~A

0003

3

"A

110

V

V

Propagation Delays
I nput to Segment Output

Vee'" 5V, TA '" 25°C

04

10

~;

Note 1: MaXimum Junction temperature IS 130°C. For operating at elevated temperatures, the deVice must be derated based
on a thermal resistance of 150° C/W e JA.
Note 2: In all applications transient segment output current must be limited to 50 mAo ThiS may be accomplished m DC applications by connecting a 2 2k resistor from the anode-supply filter capacitor to the display anode, or by current Ilmltmg the
anode driver In multiplex applications,
Note 3: Min/max limits apply across the guaranteed operating temperature range of O°C to +70°C, unless otherWise speCified
Typlcals are for Vee = 5V, TA = 25°e POSitIVe current IS defmed as current Into the referenced pm
Note 4: For saturation mode the segment output currents are externally limited and ratloed

typical performance cha racteristics

(see DM7880 data sheet)

1·231

Series 54H/74H

illS
REFERENCE

The following table references all Physical DimenSion Drawings, Waveforms, and Test Circuits for the devices
in this section. For Order Numbers, see below.' Refer to the alpha-numerical index at the front of this
catalog for complete device title and function. Packages (pages I thru VI) are in the back of the catalog.
DATA SHEETS

PACKAGES
Molded DIP (N)

Devices

Pg.

DM54HOO
DM74HOO
DM54H01
DM74H01
DM54H04
DM74H04
DM54H05
DM74H05
DM54H08
DM74H08
DM54H10
DM74H10
DM54H11
DM74H11
DM54H20
DM74H20
DM54H21
DM74H21
DM54H22
DM74H22
DM54H30
DM74H30
DM54H40
DM74H40
DM54H50
DM74H50
DM54H51
DM74H51
DM54H52
DM74H52
DM54H53
DM74H53
DM54H54
DM74H54
DM54H55
DIVI74H55
DM54H60
DIVI74H60
DM54H61
DM74H61
DM54H62
DM74H62
DM54H71
DM74H71
DM54H72
DM74H72
DM54H73
DM74H73
DM54H74
DM74H74
DM54H76
DM74H76
DM54H78
DM74H78

2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2·1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6

Fig.

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
3
3

Cavity DIP (D)(J)

Pg.

Fig.

Pg.

Type

II

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

J
J
J
J
J

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II
II

II
II
II
II

II
II
II
II
II
II
II
II
II
II
II
II
II
II

11
11
11
11
12
12
11
11

Flat Pack (F)(W)

Metal Can (G)(H)

Fig.

Fig.

Pg.

Type

J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

J
J
J
J
J

J
J

J
J
J
J
J
J

Pg.

Type

WAVE·
FORMS
Fig.

Pg.
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2·9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9,
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9

TEST
CIRCUITS
Fig.

Pg.
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2·7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7

'Order Numbers: use DeVice No. suffixed with package letter, i.e. DM54HOOJ.

2-i

en

.

CD

Series 54H/74H

CD
VI

Series DM54H/DM74H
general description
The Series 54H/74H extends the breadth of the
Series 54/74 Family by adding a product IIr,e
which IS approximately tWice as fast as the basic
series. The products are completely miscible

connection diagrams

DM54HOO/DM74HOO
quad 2-lnput NAND gate

DM54H05/DM74H05
hex Inverter

within a system, and it IS generally considered
good engineering to optimize a design by utilizing
the Series 54H/74H only where needed for higher
speed.

Dual-in-Line Package Only (Con't on Page 2-6)

DM54H01/DM74HOl

DM54H04/DM74H04
hex Inverter

quad 2-lnput NAND gate
(open collector!

DM54H08/DM74H08
quad 2-lnput AND gate

DM54Hl0/DM74Hl0
triple 3-lnput NAND gate

(open collector!

7
GND

DM54Hll/DM74Hll
triple 3-mput AND gate

DM54H20/DM74H20
dual 4-lnput NAND gate

DM54H21/DM74H21
dual 4-lnput AND gate

DM54H22/DM74H22

DM54H30/DM74H30

DM54H40/DM74H40

dual 4-lnput NAND gate

8-Input NAN 0 gate

dual 4-mput NAN 0 buffer

(open collectod

21

operating conditions

absolute maximum ratings
Supply Voltage
Input Voltage

7V
5.5V

Supply Voltage
DM54HXX
DM74HXX

Operating Temperature Range

Series 54H
Series 74H
Storage Temperature Range
Lead Temperature (Soldering, 10 seel

-55°e to +125°e
O"e to +70o e
-55°e to +150o e
3000 e

MIN

MAX

UNITS

4.5
4.75

5.5
5.25

V
V

-55
0

125
70

°e
°e

Temperature

DM54HXX
DM74HXX

..
!II

.~

G)

CI)

electrical cha racteristics
PARAMETER

MIN

CONDITIONS

Input Diode Clamp Voltage

Vee = 5 OV. TA = 25"C, liN = -12 mA

Logical "1" Input Voltage

Vee = Mm

Logical

"a"

Input Voltage

TVP

MAX
-15

UNITS
V
V

20
08

Vee = Min

V

Logical "1" Output Voltage

All Devices, Except DM54H40/DM74H40
and Open Collector C Ireu Its
DM54H401DM74H40

Vee

= MIn,I" = -5001'A, V ,N = 2 OVor 08V

24

V

Vee

= Min,

24

V

Vee

=

Vee

0

10 = -1 5 mA, V IN

= 2 OV or 0 8V

Logical "0" Output Voltage

All Devices, Except DM54H40/DM74H40
DM54H40/DM74H40
Logical "1" Output Current
All Open Collector C,rcults

Except DM54H60,DM54H62
DM74H60,DM74H62
DM54H611DM74H61

04
04

Min, 10 20 mA, \lIN = 2 OV or 0 8V
Min, 10 - 60 mA, V ,N - 2 OVor 08V

Vee - Min. V OUT
@ -55"C
@O"C

= 5 5V. V ,N - 2 OV or 0 8V

V
V

250
320
570
50

I'A
I'A
I'A
I'A

-40

-100

mA

-40

-125

mA

VouT=22V

Output Short Circuit Current (Note 1)

All CirCUits Except DM54H40/DM74H40

Vee = Max, V OUT

= OV

and Open Collector Circuits

DM54H40/DM 74H40
Supply Current

Vee

MdX

DM54HOO/DM74HOO
Logical "0"
Logical' 1"

DM54H01/DM74HOl
Logical "0"
Logical "1"

26
10

40
168

mA
mA

26
68

40
10

mA
mA

40
16

58
26

mA
mA

40
16

58
26

mA
mA

42
28

64
40

mA
mA

195
75

30
'26

mA
mA

13
5.0

20
84

mA
mA

20
12

32
20

mA
rnA

13
34

20
50

rnA
rnA

DM54H04/DM74H04
Logical "0"
Logical" 1"

DM54H05/DM74H05
Logical "0"

Logical "'"

DM54H08/DM74H08
Logical "0"
Logical "1"

DM54H101DM74Hl0
Logical "0"

Logical "'"
DM54H201DM74H20
Logical "0"
Logical "1"

DM54H21/DM74H21
Logical "0"
Logical "I"
DM54H22/DM74H22
Logical "0"
Logical "1"

Note 1: Not more than one output shorted at a time. duration of short-CircUit test not to exceed 1 second, and all tYPical
values are at Vee = 5V, TA = 25"e

C/)
CD

...

electrical characteristics (con't)

CD

en
MIN

CONDITIONS

PARAMETER

TYP

MAX

UNITS

65
25

,0
42

rnA
rnA

25
104

40
,6

rnA
rnA

,52
82

24
,28

rnA
rnA

'52
20

24
3,

rnA
rnA

94
7,

,4

rnA
rnA

DM54H30/DM74H30
Logical "0"
Logical "1"

DM 54H40/DM 74H40
Logical "0"
Logical "1"

DM54H50/DM74H50
DM54H511DM74H5'
Logical "0"
Logical "1"

DM54H52/DM74H52
Logical "0"
Logical "1"

DM54H53/DM74H53
DM54H54/DM74H54
Logical "0"
Logical "1"

DM54H55/DM74H55
Logical "0"
Logical "1"

,

"

75
45

,2
64

rnA
rnA

,9
30

35
45

rnA
rlA

"50

,6
70

rnA
rnA

38
60

70
90

rnA
rnA

OM 54H601 DM 74H60
On Level Current
Off Level Current

DM54H6'/DM74H6'

On Level Current
Off Level Current

DM54H62IDM74H62
On Level Current
Off Level Current

DM54H7'/DM74H7'

,9

30

rnA

DM54H72/DM74H72

,6

25

rnA

DM54H73/DM74H73

32

50

rnA

DM54H74/DM74H74

30

50

rnA

DM54H76/DM74H76

32

50

rnA

DM54H78/DM74H78

32

50

rnA

MAX

UNITS

62
59

10
10

ns
ns

75
10

12
15

ns
ns

65
60

10
10

ns
ns

75
10

,2
15

ns
ns

88
76

,2
12

ns
ns

switching characteristics
PARAMETER

TA

= 25°C, Vee = 5V, N = 10, C = 25 pF,
CONDITIONS

MIN

RL

= 28O"
TYP

DM54HOO/DM74HOO
tpdO

tpd'

DM54H01/DM74H01
tpdo
tpd1

DM54H04/DM74H04
tpdO

tpd1

DM54H05/DM74H05
tpdO

tpd'

DM54H08lDM74H08
tpdO
tpd1

2-3

switching characteristics (con't)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

63
59

10

10

ns
ns

8.8
76

12
12

ns
ns

70
60

10
10

ns
ns

88
76

12
12

ns
ns

75
10

12
15

ns
ns

89
68

12
10

ns
ns

65
85

12
12

ns
ns

62
68

11
11

ns
ns

62
68

11
11

ns
ns

92
106

15
15

ns
ns

62
70

11
11

ns
ns

62
70

11
11

ns
ns

65
70

11
11

ns
ns

DM54H10IDM74H10
tpdO

tpdl

DM54H11/DM74H11

VI

tpdO

Q)

...

tpdl

DM54H20/DM74H20

Q)

C/)

tpdO

tpdl

DM54H21/DM74H21
tpdO
tpdl

DM54H22/DM74H22
tpdO
tpdl

DM54H30/DM74H30
tpdO
tpdl

DM54H40/DM74H40
tpdO
tpdl

DM54H50/DM74H50
tpdO

tpdl

DM54H51/DM74H51
tpdO
tpdl

DM54H52/DM74H52
tpdO
tpdl

DM 54H53/DM 74H53
tpdO

tpdl

DM54H54/DM74H54
tpdO
tpdl

DM54H55/DM74H55
tpdO

tpdl

DM54H60/DM74H60
(Thru Expandable Gates)
tpdO

tpdl

74
114

ns
ns

98
148

ns
ns

74
11.4

ns
ns

DM54H61/DM74H61
(Thru Expandable Gates)
tpdO
tpdl

DM54H62/DM74H62
(Thru Expandable Gates)
tpdO

tpdl

DM54H71/DM74H71
tpdO(CLOCK)
tpdl (CLOCK)

tpdO(PR ESET)

tpd 1 (P RESET)

2-4

22
14
12
60

27
21
24
13

ns
ns
ns
ns

en

...

CD

switching characteristics (con't)

CD
(/)

PARAMETER

MIN

CONDITIONS

25

MaxImum Clock Frequency

TYP

MAX

UNITS
ns

30

DM54H721DM74H72
DM54H731DM74H73
DM54H761DM74H76
DM54H78/DM74H78
22
14
12
60

tpdO(CLOCKI

tpdHCLOCK)
tpdO(CLEAA,PRESETI
tpd1 (CLEAA,PRESET)

25

MaxImum Clock Frequency

27
21
24
13

ns
ns
ns
ns
ns

30

DM54H74/DM74H74
13

tpdO(CLOCKl

85

t pd 1(CLOCK)
tpdO(CLEAR,PAESETl

tpdl (CLEAR,PAESET)

35

MaxImum Clock Frequency

43

20
15
30
20

ns
ns
ns
ns
ns

loading table
DEVICES

DM54HOO/DM74HQO
OM54HQ1/DM74HOl

DM54H04/DM74H04
DM54HOS/OM74H05
DM54H08/DM74H08
DM54Hl0/DM74H 10
DM54Hl1!DM74Hl1
DM54H2OJDM74H20
DM54H21/DM74H21
DM54H22/0M74H22
DM54H30/0M74H30
DM54H40/0M74H40
DM54H50/DM74H50
DM54H51/DM74H51
DM54H52/DM74H52
DM54H53/DM74H53

WEIGHTED
LOADS

1
1
1
1
1
1
1
1
1
1
1

2

DM54H611DM74H61

1
1
1
1
1
1
1
1

DM54H62/DM74H62
DM54H71/DM74H71

1

DM54H54/DM74H54
DM54H55/DM74H55
DM54H60/DM74H60

1

All Inputs Except

Preset and Clock
Preset
Clock
DM54H72/DM74H72
Ali Inputs Except
Preset and C lear
Preset, Clear

1

3
2

1

2

DM54H73iDM74H73
J, K, and Clock
Clear

1
2

DM54H74/DM74H74
D

1

Preset and Clock

2

Clear

3

DM54H761DM74H76
J, K, and Clock
Preset and Clear

1
2

DM54H78/DM74H78
J and K
Preset and Clock
Clear

1 Load

1
2
4

= 50 I1A @24V Logical "1" Input Current
= 2 rnA @O 4V Logical "0" Input Current

(All Inputs are guaranteed 1 rnA @ 5 5V for Logical
"1" breakdown test)

2-5

connection diagrams (con't)

en
Q)

...

Q)

DM54H50/DM74H50

DM54H51/DM74H51

(/)

expandable dual 2-wlde
2-lnput AND-OR-INVERT gate

dual 2-wlde 2-H1PUt
AND-OR-INVERT gate

DM54H52/DM74H52
expandable 2-2-2-3-,nput
AND-OR gate

GNO

DM54H53/DM74H53
expandable 2-2-2-3-lnput
AND-OR-INVERT gate

DM54H60/DM74H60
dual 4-lnput expander

DM54H54/DM74H54
4-wlde 2-lnput
AND-OR-INVERT gate

DM54H61/DM74H61
triple 3-lnput expander

DM54H55/DM74H55
expandable 2-wlde 4-lnput
AND-OR-INVERT gate

DM54H62/DM74H62
3-2-2-3-mput expander

DM54H71/DM74H71

DM54H72/DM74H72

DM54H73/DM74H73

J-K flip flop With AND-OR Inputs

J-K master-slave flip flop

dual J-K flip flop with

separate clocks

DM54H74/DM74H74

DM54H76/DM74H76

DM54H78/DM74H78

dual 0 edge-tnggered flip flop

dual J-K master-slave flip flop

dual J-K flip flop With preset

and clear Inputs

2-6

en
CD
.,

ac test circuits

CD
til
Ifcco5V

o INPUT
SH NOTE B

<,
~25pF

-¥EENOTEC

NOTE A Clock Input pulse has the folhlwlng charactenstlcs
tW1ClOCK) = 20 ns, PRR = 1 MHz
NOTE B 0 Input (pulse A) has the following characterIStics
ISETUP = 10 os, !w = 60 ns, PAA IS 50% of clock PRR 0 mput
(pulse 8~ has the following chara~tenst'cs tHOLD
60 ns, PRR IS 50% of clock PRR
NOTE C CL Includes probe and 119 ~3pacltance

~

0 01, !w "

Switching Characteristics, Clock and Synchronous Inputs
(High Level Datal

c,

SHNOTEC

J25~F

DINPUT
SEENOHB

NOTE A Clock Illput pulse has the following Eharacteflstlcs
20 os, PRR = 1 MHz
NOTE B 0 Input (pulse AJ has the following characteristics
'SETUP ~ 15 "S,!w = 60 os, PRR '" 1 MHz and PRR IS 50% of

!w =

nSf oj---l-~==:jr------t==-_j-oTEST

OUTPUT

theclotkPRR Dmput(pul~eB)lIasthefoIlOWlllgcllaractenstlcs
IHOLO '" 0 ns, tw
60 ns, and PRR IS 50% 01 dock PRR
NOTE C Cl Intludes plObe and I'g capacitance

OUTPUT

;0

Switching Characteristics, Clock and Synchronous Inputs
(Low-Level Datal

,----;;:-I
280"

I

SEENOHC

C,

~15Pf

I
I

I
I
I
I

I

I
c,

2~PF1'

SEE NOTE C

I

I

IL-

~

I

I
I

~J\~~~J

.,r.,PAESH

--....., INPUT

NOTE A Clear or Preset Inputs 31e dommate fegardless of clock
orJKlnputs
NOTE B Clear or Preset Input pulse charactemtlcs V,NII' = lV,
VINI01 = OV, t1 ~ 10 ~ 1 ns tpIClEAA) ~ tp(PAESETI = 16 ns,

PRR'" 1 MHz
NOTE C CL mclud~Jlycapacltance

''''

OUTPUT

Flip Flop Preset/Clear Propagation Delay Times

IJ cc

SEE NOTEC

J25 PF
C,

PRESET
INPUT

=

51J

25 PFJ
C,

SEE NOTE C

CLEAR
INPUT

NOTE A Clnr and Preset Inpllt dominate clod or 0 inputs
NOTE B Clear or Preset mpulse cllaractemtlcs tW(CLEAAI =
tWIPRESETI = 25 ns, PRR = I MHz
NOTE C CL inCludes probe and Jig capaCitance

Asynchronous Inputs Switching Characteristics

Vcc- 5V

ac test circuits (con't)

-,
~
GATE
PULSE

BEING

GEtiERATOA

TESTED

I
I

SEE NOTE A

1'"
CI)

...

CI)

en
L- _ _ _

NOTE A V'NW" 3V, V'NUlI- ov, to" I, "7 RS, duty
NOTE B Cl.lncludesJlgcapacltance
NOTE C C. mcludesllgcapacltance

~v~le

- 50%. PRR " 1 MHz, ZOUT

~

I

NOTE A The pulse generat~r has the follllWlng
characteristics V,nlll = lV, VmIO) " DV. I, = to = 7
AS,PRR=1 MHl.dutycvcle~ 50%,andZout 'I to • 7 ns, IptCLOCkl = ZO ns, and PRR = 1 MHz
NOTE B All J and K Inpu15 Ire at 2 4V
NOTE C Wh&l1 testing fCLOCk Ihe clock IOput characttl'l5tlCSlte V1NIDI ~ 3V, VINCOI = OV, 1, = to = 3 nt,
"'(cLOCkl = 10 lIS, PRR = 40 MHz All J and K inputs aleal2 4V
NOTE 0 CL IlICIudes probe and Jlgcapacltancl

t,

Flip Flop Propagation Delay Times

II cc '511

truth tables
tn

tn+1

J

K

0
0
1
1

0
1
0
1

a
a
0
1
ON

all J-K flip flops

NOTE A VtNI1I = 3V, V1NIDI = OV, 10 = tl = 1 AS, duty cycle = 50%, PRR = 1 MHz
NOTES CLHlcluliesprobelndllgcaplCltlInc:e
NOTEC Ci H1cludesllgcaplcttan;e

DM54H50, DM54H53, DM54H55

2-8

~I

Vee = 511

r--;;;----l

IL-

_

L!!.!!..r~_--=

DM54H52/DM74H52 Loadong For Gates

DM54H52/DM74H52

I
I

tn

tn+1

0
0

ala

1

0

0

,I

1

DM74H74 only

en

...

~

switching time waveforms

3V
CLOCK
INPUT

OV
<7 ns

3V

o INPUT
(PULSE A)
(SEE NOTE BI
10%

OV

,,7m
~

o INPUT

3v

90%

(PULSE 8)

(SEE NOTE BJ

- OV
Ve"
Q OUTPUT

15V

Vee
Ve "
0: OUTPUT

15V

NOTE A Clock Input pulse has the follolll/lIlg charactemllCS 1,,[CLOCKi 20 ns, PRR
NOTE B 0 Input (pulse
~ 10 os, tw =
clock PRR 0 Input (pulse
= 0 <1$
=
dock PRR
NOTE C Cl Includes probe and Jig capacitance

1 MHz

'w

Switching Characteristics, Clock and Synchronous Inputs
(High Level Datal

~-~-----3V

CLOCK
INPUT
~~~--------------------OV

~~~-------------3V

INPUT
(PULSE A)
(SEE NOTE 8)

-; 7 ns

Jc~--------------~~-i-------3V

o INPUT
(PULSE)
(SEE NOTE HI

1'--""'------- OV

n OUTPUT
' - - - - - - - - - - - - - - - - - - - - - - - - - V"

nOUTPUT

r-----------------------

yO"

- - - - - - - - - - - - - V"
NOTE A Clock IIlput pulse has the follOWing chalactemtlCS lw = 20 nil, PRR = 1 MHz
NOTE 8 0 Input (pulse A) has the follOWIng characterlstlcs 'SETUP ~ 15 ns, lw ~ 60 ns, PRR = 1 MHz
and PRR IS 50% of the clod PRR 0 Input (pulse B! has the follOWing characteristics tHOLO ~ II ns,
t..,. ~ 611 ns, and PRR IS 50% of clock PRR
NOTE C CL Indudes probe and Jig capacitance

SWltchmg Characteristics, Clock and Synchronous Inputs
(Low Level Data)

switching time waveforms (con't)

CLEAR
INPUT

en

PRESET

G)

INPUT

...

G)

(fJ
Q OUTPUT

0: OUTPUT

NOTE A Clear OJ Preset inPuts are dllmlllate re~ar~tess of cloc~ or JK Inputs
NOTE B Clear 01 Preset IO!lUI pulse charactemtlcs VINlt ) ~ 3V, VINIOI = 0\1,

I, ~

to

~

7 ns, IplCLEARI "

~ 16 ns, PRR = 1 MHz
NOTE C CL meludes 119 CaDaWaI1C~

lplPAEsEn

Flip Flop Preset/Clear Propagation Delay Times

3V
CLEAR
INPUT
OV
3V
PRESET

INPUT

v"
Q OUTPUT

1 5V

v"

QOUTPUT

-=;v=

'~(

I 5\1

Vo ,

15V
Vo<

NOTE A Clear and Pr~t mput dominate cloek or 0 inputs
NOTE B tlnf or Preset !"pulse characteristICS t..(CLEA.II)
NOTE C Cl mcludesprobendllgcapacllance

"t..\PREst:T) =

25 os, PRR " 1 MHz

Asynchronous Inputs SWitching Characteristics

Ir-:=-----:::::::-~--+----

VINIII

INPUT

OUTPUT
VO UnDI

NOTE A V1NIU" 3V, VINIOI" 0\1, to" I, = 1 os, duty cycle = 50%, PRR = 1 MHz, ZOUT'" 5011
NOTE B Cl Includes 1111 caplcltanee
NOTE C C. Includes 1111 capacItance

DM54H52/DM74H52

2-10

CJ)

...

CD

switching time waveforms (can't)

CD
!II

C

s:

V IN11 )

INPUT

0'1
~

V"'1lOl

:J:

VOUTI11

"C

INVERTING

s:.....

OUTPUTS
VOUTIOi

~

V OUT1 ,)

:J:

NON INVERTING

OUTPUTS
VOUTIOI

NOTE A V 1N (1! ~ JV, VINIO) OV, I, = to 7 m, PRR
NOTE B CL Includes probe and 119 capacitance, RL =
NOTE C CL 25 pF on all devices

NOTE 0 C.

=

=

1 MHz, duty cyd~ = 50%, lOUT"" 50%
on all giltes except OM54H4D where RL

Z80~1

=

9311

I 3 pF typical for expanders

DM54H52/DM74H52 Propagation Delays

ir-::::,----..",,::-.J-+-----

VINlll

CLOCK
INPUT PULSE
!'-'''''----V1r,lIOI

,-_____+ _____

VINlll

'------+-----VIN10I

------------i---x--QOR

V OUTlll

oOUTPUT
VOUTIOJ

VOUTI11

Q OUTPUT

------------I-'---~

VOlJTIOJ

NOTE A Wilen testing tp~o and tpdl (all types). the dock Input pulse charactetlsttcs are VINlll '" JV,
VINIOI '" nv, 11 = to ~ 7 liS, '",CLOCK) = 20 liS, alld PRR = 1 MHz
NOTE B All J and K 1I1putsare at 2 4V
NOTE C When testing fCLOCK the clock Input charactenstlcs are VINIOi" lV, VIN10I "OV, t, ~ to 3 ns,
tplCLQCKi " 10 ns, PRR" liD MHz All J and K mputs are at 2 IIV
NOTE 0 CL Includes probe and Ilg capacitance

Flip Flop Propagation Delay Times

V-::=----:::"""'J~+-----

VINlll

INPUT
1"-=----VINIOI

OUTPUT
---+--'+----VQUTIOI

NOTE A VINlll" 3V, VINIOi "OV, to 11 = 7 ns, duty cycle
NOTE B CL Includes probe and Ilgcapacltance
NOTE C ex mdudes 119 capacitance

50%, PRR

1 MHz

DM54H50, DM54H53, DM54H55

2-11

CJ)
CD

Series 54L/74L

~s
REFERENCE

The following table references all Physical Dimension Drawings for the devices In this section For Order
Numbers, see below. * Refer to the alpha-numerical Index at the front of this catalog for complete device
title and function Packages (pages I thru VI) are In the back of the catalog

DATA SHEETS

PACKAGES
Molded DIP IN}

Devices

DM54LOO
DM74LOO
DM54LOl
DM74LOl
DM54L02
DM74L02
DM54L03
DM74L03
DM54L04
DM74L04
DM54L10
DM74Ll0
DM54L20
DM74L20
DM54L30
DM74L30
DM54L42A
DM7.4L42A
DM54L51
DM74L51
DM54L54
DM74L54
DM54L55
DM74L55
DM54L71
DM74L71
DM54L72
DM74L72
DM54L73
DM74L73
DM54L74
DM74L74
DM54L78
DM74L78
DM54L85
DM74L85
DM54L86
DM74L86
DM54L90
DM74L90
DM54L91
DM74L91
DM54L93
DM74L93
DM54L95
DM74L95
DM54L98
DM74L98
DM54L154A
DM74L 154A
DM54L 165A
DM74L165A
DM54L192
DM74L192

Pg
Fig
3-3
33
33
3·3

33
33
33
33
33
3·3
33
33
33
33

33
33
331
331
3-7
37
37
37
3-7
3-7
3·10
3·10
310
3·10
3-10
3·10
3-10
310
310
3-10
3·34
3-34
3-22
3·22
3·37
3·37
3-40
3·40
3-42
3-42
3-25
3·25
3·45
3-45
3-47
3-47
3-49
3-49
3·52
3-52

3
3

3

3
3
3
3
:3
3
3
3
3
3
3

Fig.

Pg

Type

Fig.

Pg.

Type

II
II

11
11

IV
IV

J
J

15
15
15
15
15
15

IV
IV
IV
IV
IV
IV

F

15
15
15
15
15
15
15
15
lei
lG
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
15
15
15
15
15
15
15
15
15
15
16
16
17
17
16
16
16
16

IV
IV
IV
IV
1\'

II
II
II
II
II
II
II
II

II
II

3
3
3
3
3

3

II

3
3
3
3
5
5
3
3
3
3
3
3
3
3
3
3
5
5
7
7
5
5
5
5

II
II
II
II
II
II
II
II
II
II
II
II

5
3
3
3
3
3

3

Flat Pack IF}(W}

Pg.

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

!)

Cavity DIP ID}IJ}

II
II
II
II
II
II
III
III
II
II
II

II

11
11
11
11
11
11
11
11
11
11
11
11
Q

9
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
9
9
11
11
11
11
11
11
11
11
11
11
12
12
10
10
12
12
12
12

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
1\
1\
III
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III
III
IV
IV
IV
IV

J
J
J
J
J
J
J
J
J
J
J
.J
J
J
.J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
D
D
J
J
J
J

*Order Numbers. use DeVice No suffixed with package letter,

1.8

IV
IV
IV
V
V
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
V
V
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
V
V
V
V
V
V
V
V

Metal Can IG}(H}
Fig

Pg

Type

WAVE·
FORMS
Fig

Pg

TEST
CIRCUITS
Fig

Pg

F

F
F
F
F

F
F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F
F
F

F
F
F
F
F
F
F

F
F
F

F
F
F
F
F
F
F
F
F

F
F
F

F
F

F
F
F

DM54LOOF

3-i

...

Q)

t/)

PACKAGES

DATA SHEETS
Molded DIP (N)

Devices
OM54L193
OM74L193
OM71 L22
OM81 L22
OM71 L23
OM81 L23
OM75L 11
OM85L11
DM75L 12
DM85L12
DM75L51
DM85L51
DM75L52
DM85L52
DM75L54
DM85L54
DM76L70
DM86L70
DM76L75
DM86L75
DM76L76
DM86L76
DM76L93
DM86L93
DM78L12
DM88L12

Pg
3-52
3-52
3-59
3-59
3-59
3-59
3-63
3-63
3-66
3-66
3-69
3-69
3-74
3-74
3-74
3-74
3-25
3-25
3-80
3-80
3-80
3-80
3-42
3-42
3-82
3-82

Cavity DIP (O)(J)

FIg

Pg

FIg

Pg

Type

FIg

Pg

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3
3
5
5
5
5
3
3
3
3

II
I

12
12
12
12
12
12
9

IV
IV
IV
IV
IV
IV
III
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

J
J
J
J
J
J
0
D
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
15
15
16
16
16
16
15
15
15
15

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

F
F
F

V
IV
IV
V
V
V
V
IV
IV
IV
IV

F
F
F
F
F

9

II
II

II
II
II
II
II
II
II

12
12
12
12
12
12
12
12
11
11
12
12
12
12
11
11
11
11

.

3-ii

Flat Pack (F)(W)

J

Type
F
F

F
F
F
F

F
F
F
F
F
F
F
F

F

F
F
F

Metal Can (G)(H)
FIg

Pg

Type

WAVE·
FORMS
F,g.

Pg.

TEST
CIRCUITS
FIg

Pg.

,...
o

$1

Series 54L/74L

"'CJ

o

.

$1

CD

LOW POWER TRANSISTOR-TRANSISTOR LOGIC
general description
The Series 54L!74L family IS designed for applicatIOns requiring very low power dissipation.
Typically a system can be built with a factor-of·
ten power saving over the conventional TTL
Integrated circuits, such as Series 54/74. Gates
typically draw 0.2 mA from a 5 volt supply thus
dissipating 1 mW. Flip flops pull about 1.0 mA
and therefore dissipate about 5 mW. Speed however is not proportionately sacrificed. Flip flops
can typically be clocked at 11 MHz. Gate delays
are tYPically 25 ns.
The Series IS manufactured with TTL circuitry and
employs low impedance Darlington outputs which
maintain output voltage waveform integrity when
capacltlvely loaded. The Darlington outputs also
allow greater guaranteed logical "1" fan out (20)
in case It IS desirable to connect unused Inputs to
used Inputs.
National's Low Power Series is also guaranteed to
drive two standard TTL Unit loads from ODC to
70D C.

features
• Low power diSSipation-typically 1 mW/gate,
5 mW/fllp flop.
• Relatively high speed
TYPical gate propagation delay time of 25 ns.
Typical flip flop toggle frequency at 11 MHz.
TYPical MSI shift register toggle frequency at
12to 14 MHz.
• High

TA

=

dc nOise margin-typically
25 D C.

1 volt at

• Low Impedance Darlington outputs provide low
ac noise susceptibility.

• Fan Out
10 Series 54L loads In logical "0" state
20 Series 54L loads In logical" 1" state
2 Series 74 loads (74L only)
1 Series 54 load and 2 Series 54 L loads
1 Series 54H load.

• TTL and DTL compatible.
DeVice types speCified in the data sheet include:

NAND, NOR GATES
DM54LOO/DM74LOO (SN54LOO/SN74LOO)
Quad 2·lnput NAND Gate
DM54L01/DM74L01 (SN54L01/SN74L01)
Quad 2·lnput NAND Gate, Open Collector
DM54L02/DM74L02 (SN54L02/SN74L02) Quad
2-lnput NOR Gate
DM54L03/DM74L03 (SN54L03/SN74L03) Quad
2·lnput NAND Gate, Open Collector
DM54L04/DM74L04 (SN54L04/SN74L04)
Hex Inverter
DM54L 10/DM74L 10 (SN54L 10/SN74L 10)
Triple '3-lnput NAND Gate
DM54L20/DM74L20 (SN54L20/SN74L20)
Dual 4-lnput NAND Gate
DM54L30/DM74L30 (SN54L30/SN74L30)
Eight-Input NAND Gate

AND-OR-INVERT GATES
DM54L51/DM74L51 (SN54L51/SN74L51)
Dual 2,wlde AND·qR·INVERT Gate
DM54L54/DM74L54 (SN54L54/SN74L54)
Four-Wide 3-2-2-3-lnput AND·OR-INVERT
Gate
DM54L55/DM74L55 (SN54L55/SN74L55)
Two-wide 4-lnput AND-OR-INVERT Gate

table of contents
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-1

Absolute MaXimum Ratings . . . . . . . . . .

3-2

....

.....................

Guaranteed Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-2

NAND, NOR Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-3

AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3·7

Flip Flops . . . . . . . . . . . . . . . . . . . . . . . . . . ..

....................

3-10

.....................

3-22

Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-25

EXCLUSIVE-OR Gates. . . . . . . . . . . . . . . . . ..

3·1

...I
~
....

gen'eral description (cont.)

.......
...I
~

FLIP FLOPS

1/1

DM54L71/DM74L71 (SN54L71/SN74L711
R-S Flip Flop

an
Q)

...

Q)

DM54L78/DM74L78 (SN54L78/SN74L78)
Dual J-K Flip Flop
Operation IS the same as the DM54L 73/DM74L 73
except that common CLEAR and CLOCK Inputs
feed both flip flops ThiS frees two pins which are
used for separate PRESET Inputs.

These R-S flip-flops use master-slave construction
so the slave IS stable when the clock IS held either
high or low Clock disable at data Inputs results In
hold times of a ns, and also clock-controlled data
entry

en

..........i
...

EXCLUSIVE-OR GATES
DM54L86/DM74L86 (SN54L86/SN74L86)
Quad EXCLUSIVE-OR Gate

Q)

~

DM54L72/DM74L72 (SN54L72/SN74L72)
J-K Flip Flop

o

D..

The DM54L86IDM74L86 (SN54L86/SN74L86)
quad EXCLUSIVE-OR circuit performs as a halfadder: the output IS a logical "1" only when the
Inputs are at different logical states.

These J-K flip-flops use master-slave construction
so the slave IS stable when the clock IS held either
high or low Clock disable at data Inputs results In
hold times of a ns, and also clock-controlled data
entry

~

o

...I

SHIFT REGISTERS
DM54L95/DM74L95 (SN54L95/SN74L95)
Four-bit Parallel-In Parallel-out Shift Register
Parallel or serial operation IS selected by the
MODE Input, which also enables one of the two
clock Inputs Parallel information must be
clocked-In allOWing shift-left operation by connecting each output to the left-adjacent parallel
input.

DM54L73/DM74L73 (SN54L73/SN74L73)
Dual J-K Flip Flop
Operation IS the same as the DM54L72/DM74L72
except that only single J and K Inputs are
available.

DM76L70/DM86L70 Eight-Bit Serial-In ParallelOut Shift Register

DM54L74/DM74L74 (SN54L74/SN74L74)
Dual D Flip Flop

The DM76L70/DM86L70 utilizes Series 54L!74L
compatible TTL circuitry to provide an eight-bit
serial-in parallel-out shift register. Other features
Include gated serial Inputs for strobe capability
and a clear Input WhiCh, when taken to a logical
"0", asynchronously sets all flip flops to the
logical "0" state.

These monolithic, low-power, dual, edge-triggered
flip flops utilIZe TTL circuitry to perform D-type
flip flop logic Each flip flop has Individual clear
and preset Inputs, and complementary Q and Q
outputs
Information at D-input IS transferred to the Q
output on the positive-going edge of the clock
pulse. Clock triggering occurs at a voltage level of
the clock pulse and IS not directly related to the
transition time of the positive-gOing pulse. When
the clock Input IS at either the high or low level,
the D-Input signal has no effect on the state of the
output.

Because the flip flops are R-S Instead of J-K, Input
information may be changed Immediately prior to
the triggering edge of the clock waveform Logical
"1" levels on SA and SB enter logical "1'5" Into
the shift register Clocking occurs on the posltivegOing edge of the 'clock pulse.

absolute maximum ratings
Power Supply Voltage
Input Voltage
Fan Out Logic "1"
Logic "0"
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

8 OV
55V
20
10
-65°C to 150°C
300°C

guaranteed operating conditions

3-2

Power Supply Voltage
DM54LXX, DM7XLXX
DM74LXX, DM8XLXX

4 5V to 5 5V
4.75V to 5.25V

Operating Temperature
DM54LXX, DM7XLXX
DM74LXX, DM8XLXX

-55°C to 125°C
O°C to 70°C

NAND, NOR GATES
DM54LOO/DM74LOO, DM54LOl /DM74L01, DM54L02/
DM74L02, DM54L03/DM74L03, DM54L04/DM74L04,
DM54L 10/DM74L 10, DM54L20/DM74L20,DM54L30/
DM74L30

schematic diagrams

-I
-I

r-

en
(1)

500
'OK

..,

40K

(1)

en

'OK

DM54L01/DM74L01
DM54L03/DM74L03

DM54LOO/DM74LOO, DM54L 10/DM74L 10
DM54L20/DM74L20,DM54L30/DM74L30

soon

'OK

40K

o

500

40K

12K

DM54L04/DM74L04

DM54L02/DM74L02

dual-in-line package connection diagrams

DM54LOO/DM74LOO
DM54L03/DM74L03

DM54L02/DM74L02

DM54L04/DM74L04

3-3

SUMMARY
dual-in-line package connection diagrams (cont.)

114

....

113

"

11110

19 10

lI-

~
,
DM54L 10/DM74L 10

2

DM54L20/DM74L20

,

.

,

~

.

DM54L30/DM74L30

NAND. NOR GATES
flat package connection diagrams

13

12

'N'

11

DM54LOO/DM74LOO
DM54L01/DM74L01

"r-+'~J_+'~2_~~-f"~-f-;

DM54L 10/DM74L 10

I4

r T'"-T'"--=-f-f-,

DM54L02/DM74L02

DM54L04/DM74L04

Ne

GND

3-4

GND

GND

"

DM54L20/DM74L20

Ne

GND

DM\j4L30/DM74L30

I'

r-

o
~

NAND, NOR GATES

."

dc electrical characteristics

o
~

...

Cl)
SYMBOL

PARAMETER

V1N1l)

Logical "1" Input Voltage

VINIO)

Logical "0" Input Voltage

CONOITIONS

TEST

FIGURE

Vee = MIN

1

Vee '" MIN

2

TYP
(NOTE 11

MIN
2

MAX

13

UNITS

-I
-I

V

07

13

V

r-

V

en

LogIcal "1" Output

Voltage (Except
DM54L01/DM74L01,
DM54L03/DM74L03)

Vee

:= MIN, lOUT = -200 pA.
V," = 0 7V, Other Inputs'" 2V

2

Output Current

VIN =03V,V cc =MIN,
V OUT = 5 5V

6A

50

"A

OM54L01/DM54L03

VIN =06V,V cc =MIN,
V OUT = 5 5V

6A

200

"A

DM74LQ1/DM74L03

V IN = 0 7V, Vee = MIN,
V OUT =55V

6A

200

"A

VOUT(Q)

Logical "0" Output Voltage

Vee := MIN, lOUT = 2 mA,
VIN (Allinputsl = 2V

1

V OUTW )

LogIcal "0" Output Voltage
(Series 74L Only)

Vee = MIN, lOUT = 3 2 mAo
VIN (All tnp:Jts) = 2V

1

Logical "1" Input Current

Vee = MAX, V IN = 24V,
Other Inputs = OV

4

Vee

4

VOUTlll

DM54L01/0M74L03
'aUTO}

IIN(l)

iIN(Q)

Logical "0" Input Current

los

Logical" 1" Output
Short CirCUit Current
(Except

Vee'" MAX, V IN
V OUT = OV

Logical" 1 " State

Icc{O)

=

~

5 5V

a 3V,

OV,

Vee = MAX,
V 1N (All Inputs) = OV,
lOUT = 0

Power Supply Current
(Per Gate) (Except
DM54L02/0M74L02)
(Note 2)
Logical "0" State
Power Supply Current
(Per Gate) (Except
DM54L02IDM74L021
(Note 3)

Note 1: All tYPical, at T A ~ 25°C
Note 2. For the DM54L02/DM74L02, 'CCllI
Note 3: For the DM54L02/DM74L02, ' CCIO )

MAX, VIN

Vee = MAX, V IN -=
Other Inputs = 4 5V

DM54L01IDM74L01,
DM54L03IDM74L03)

ICCIII

:=

Vcc '" MAX,
V IN (All Inputs) = 5V,

24

28

015

03

V

04

V

...

Cl)

10

"A

100

"A

-120

-180

"A

-8

-15

mA

6

120

200

"A

6

330

510

"A

<1

3

5

-3

lOUT'" 0

~
~

400l'A Max
600l'A Max

ac electrica I characteristics
SYMBOL

PARAMETER

CONDITIONS

TEST
FIGURE

TYP

MAX

UNITS

30

60

os

60

100

"

7

25

60

"

MIN

tpdQ

Propagation Delay to a
Logical' 0' (ExcePt
DM54LOl IDM74LOl
DM54L03/DM74L03)

tp01

Propagation Delay to a
Logical "J" (Except
DMS4L01/DM74LOl
DM54L03IDM74L03)

Vee = SV, C L
TA - 25'C

tpdQ

Propagation Delay to a
Logical "0"
DM54L01/DM74LOl
DM54L03iDM74L03

Vee -'5V,R L =4k,
C, - 15pF,TA~25°C

171

25

60

"

tpd 1

Propagation Delay to a
Logical "1"
OM54L01/OM74LOl
DM54L03/0M74L03

Vee -5V,R L =4k,
C, 15pF, T A " 2S"C

171

40

90

os

Vee = 5V, C L -" 50 pF,
T A = 2Soc

7

OMS4L30/DM74L30

~

50 pF,

3-5

-I

o::t

t::

NAND, NOR GATES

-I

o::t
It)

DM54l03/DM14l03 open collector application data

CII
Q)

...

Q)

CJ)

The DM54L03/DM74L03 IS an open-collector LP
TTL gate, that when supplied with a proper load
resistor R L, can be paralleled with other similar
LP TTL gates to perform the wire-AND function,
and simultaneously, will drive from one to six
loads When only one gate IS wire-AND connected,
thiS gate can be used to drive eight LP TTL gates.
To meet these conditions, an appropriate load resistor value must be determined for the desired circuit
configuration. A maximum resistor value must be
determined so that sufficient load currents Ito LP
TTL Gate Loadsl and Off Currents ITo wire-AN D
connectlonsl will be available dUring a logical "1"
level at output. Also, a minimum resistor value
must be determined which will ensure that currents
from the loads will not cause the output voltage to
rISe above the logical "0" level.

...

Q)

~

o

Il..

~

o

-I

(11
Where;
V R L ~ Voltage Drop Ivoltsl
I R L ~ Current (ampsl
The following equations will be useful In determining the value of RL IMaxl and RL (Mini:

121

RL IMlnl ~ I

N
M

To meet both conditions (logical "0" and logical
"1''1, the value of RL IS determined by:

~
~

Vee - Vout(OI
101 _ M I (01

out

(31

In

number of gates wire-AND connected
number of LP TTL loads

DM54l03/DM14l03 open collector application data
curves For Instance, for N ~ 2 and M
mum loads connected IS SIX

The maximum loads connected (MI under any
wire-OR configuration INI,s shown respectively by
the intersection of the RL (Mini and RL (Maxi
Vee' 50V

hN((lI· '80llA

VOUTlll -24V

IINIII

VOUTIO)=OJV

IOUTIII ~ 200 f.lA

~

"
12

10

=

~

5 the maxI-

ISINK :2mA

10"A
lP TTL lOADS

.1 l 1
1 1 l"- I'---

LI'TTllOAOS

RL lMAX)N = 1
RL(MAX~-Z .......

t::...

RL (MAX)N= 3,

V

I P1""" Ir'-

RL (MAX) N· 4

1 1 1
3

Rl (MIN)

4

5

6

7

B

M = NUMBER OF LP TTL LOADS
lou,i')

Logical "0"

C1fC~lt

CondItIOn

dc test circuits

OPEN

v,. 0----1

3-6

v..

Note All ,"puts are tested simultaneously

Note Each Input IS tested separately

Figure 1

Figure 2

0----1

Note

Each '"put IS tested separately

Figure 3

r-

NAND, NOR GATES

dc test circuits (cont.)

UV

V,"

o

~
'

0----1
OPEN

OPEN

V,"

~

."

Vee

o

~

~

...

CD
You.

-t
-t

r-

Note

Each mput
separately

IS

tested

Note

Each gate IS tested
separately

Notes

1

Logical "0" and logical "'"
conditions are tested

2

All gates are tested simultaneously

figure 5

Figure 4

en

Figure 6a

...

CD

Figure 6

ac test circuits and waveforms
OK

IN9,I
OK

r

IN916

"'' 1' '

lNg,S
':"

DM54l00/DM74l00, DM54l04/DM74l04
DM54l10IDM74l10, DM54l20/DM74l20
DM54l30/DM74l30

DM54l01/DM74l01
DM54l03/DM74l03

INSIS

r

1NU16

o

""'r""
1N91&

':"

DM54l02/DM74l02

'V

Note

\'----

TA

VT

125°C
70°C
25°C
o°c
_55°C

09V
llV
13V
10V
16V

Cllncludes probe and Jig capacitance

Figure 7

AND-OR-INVERT GATES
schematic diagram

DM54L51/DM74L51, DM54L54/
DM74L54, DM54L55/DM74L55
r - -...--4>-------~'-OV,'

.00
ZDK

40K

DM54l51/DM74l51, DM54l54/DM74l54, DM54l55/DM74l55
(DM54l55/DM74l55 Shown)

3-7

...J

AND-OR-INVERT GATES

'o:t
.....

.......
...J

'o:t

dual-in-line package connection diagrams

It)
II)

CI)

...J

lI-

..

CI)

~

o

Il.
DM54L51/DM74L51

~

DM54L54/DM74L54

DM54L55/DM74L55

o

...J

flat package connection diagrams
GNO

Nt

DM54L51/DM74L51

DM54L55/DM74L55

DM54L54/DM74L54

dc electrical characteristics
SYMBOL

PARAMETER

V ,N ",

LoglC~1

1

Input Voltage
Inpu! Voltage

V'NCOI

LogIcal '0

V OUTLlI

Logical

VOUT'CI

LogIcal' 0 Output Voltage

VOUTLOI

Logical 0 Output Voltage
($eroes 74L Only I

I'N<1I

LogIcal

1

Input Current

I'N'OI

Log,cal' 0

Input Current

LogIcal

1o,

ICCIlI

ICCIOI

1 Output Voltage

1 OU1PUl

CONDITIONS (Note l'

'"

TEST

TV'

FIGURE

(Note2}

'"

Vee - MIN lOUT --200J.lA V ,N '07V

24

lEach Inpu! Tested Separately)
~

'"

'"
'"

UNITS

- MIN

20V,

28

015

03

MIN,I OUT

W

• MAX, V 'N - 2 4V, Other InpUl, - OV

,A
,A

- MAX V ,N = 55V,Other Inpu!s

Vee' MAX V 'N

=

0 3V. Other Inputs

~

Vee - MAX, V ,N IAlllnpu\sl" av.

Short CirCuit Current

VOUT = OV

Log.cal I 'State
Power Supply Current
IPerGatel

Vee' MAX,
V,,,, (Allinputsl

Logical "0 State
Power Supply Current
IPerGatel

Vcc - MAX,
V,,,, (Allinputsl
lOUT = 0

12

DM54L51!OM74L51
o

OV, DM54L54IDM74L54
OM54L5510M74L55

lOUT' 0

-180

,A

240
480
240

400
800

,A
,A
,A

390
600
390

650
990
650

,A
,A
,A

45V

OM54L51IDM74LSI
5V. OM54LS4!OM74L54
OM54L55!DM74LS5

"
"
"

-3

-8

Note 1: Each Input "AND" section tested separately
Note 2: All typlcals at T A" 25°C

ac electrica I characteristics
SYMBOL

PARAMETER

TEST CONDITIONS

TEST
FIGURE

MAX

Pro!,agatlon Delav 10 a
logical 1
Propagation Oelay 10 a
logical '0

3-8

30

60

UNITS

r-

o

ANO-OR-INVERT GATES

~

."

o

dc test circuits

~

...

CD

45V

-I
-I

r-

v,"

en

...

CD

Note

Note

Each AND section IS tested separately

Each set of Inputs IS tested separately

Note Each mput

Figure 9

Figure 8

IS

tested separately

Figure 10

~

v'" 0---=---1--.

OPEN

Note

Each Input

IS

tested separately

Note

Figure 11

Each gate

IS

Note

tested separately

All gates are tested sImultaneously

Figure 12

Figure 13

ac test circuits and waveforms (cont.)
+24V

'5V
4K

r
Note

lN91~

1N910rJO·'
lN916

T.

VT

12SOC
70°C
25'C
O'C
-55'C

09V
IIV
13V
14V
16V

CL Includes probe and 119 capacitance

Figure 14

3-9

FLIP FLOPS

DM54L71 /DM74L71, DM54L72/DM74L72, DM54L73/
DM74L73, DM54L74/DM74L74, DM54l78/DM74L78

schematic diagrams
r---------~--.-_.~----~~----~--------~~--__o'"

...

II)

~

Q

D.

~

Q
...J

SI(K1)"

Note

Dotted connections refer to

OM54l72/0M74L72 only

DM54L71/DM74L71, DM54L72/DM74L72

-.--o v"

, - - - -....--6~;TpUT
L _ _ _ _ _ _ -.J

aOUTPUT
Notes

v,

1-=

C1
30"

ISu NOle:')

TA

VT

12S"C
70°C
2S"C
O"C
-SS"C

o9V
11V
13V
14V
16V

v,

1 Clear or preset mputs dominate regardless of the state of clock or logic mputs
2 Clear or preset mput pulse characteristics tp(clead = Ip(preset)
and PRR = 500 kHz

.c 100 ns,

3

See applicable CirCUit type for actual synchronous and asynchronous mput configuration

4
5

CL mcludes probe and 119 capacitance
Load IS applied to both outputs

Figure 37

3-21

FLIP FLOPS
ac test circuits and waveforms (cont.)
Vcc '5V

o-...... - - - -....--------~~---_,
CLOCK

Rl ·4Ki2

IS •• Note 2)

VI

PULSE

Q)

...

Q)

en
TEST

TA

VT

'25°C,
70°C
25°C
O°C
_55°C

09V
"V
, 3V
, 4V
, 6V

TEST
OUTPUT

...

r--

15n'----1

Q)

~

o

CLOCK INPUT

c..
~

J

15 ••

o INPUTIPUlSE
(See Hote21

:

10%

--1

I

A)

10% I

90%

I

VT

~ _~"%,,------_OV

-+-90%

90%

10%

I

~-

~

INPUT (PULSE C]

_~

r-------

s~------

Q OUTPUT

I

OV

15",--..,

o INPUT (~UlSE

0)

(See Not. 2)

~15n.

y
---+-------- - - - - - - - - - t,.dl-

I

I
I

Yj"

i

I.

(I

(S •• Hot. 2)

'

~_

1:,=11%:----"

90%

I

-,'='----ov

2~

!

VO "

Vo ,
o
V "

fiOUTPUT

'------Vo,
Notes

1 Clock Input pulse has the following characterlstu:,s tp(clockl ;;:: 200 ns and PRR " 500 kHl When testing 'clock, use 50% duty cycle
D Input (pulse A and C) have the following characteristics tsetup'" 30 ns, tp '" 100 ns and PRR IS 50% of the clock PRR

2

o Input (pulse Bf

has the follOWing characteristics thold" 15 ns, tp '" 80 ns dnd PAR IS 50% of the clock PRR

o Input (pulse Df has the follOWing characteristics thold" 10 ns, tp '" 80 ns and PRR IS 50% of the clock PAR

3

CL Include~ probe and Jig capacitance

Figure 38

EXCLUSIVE-OR GATES

(DM54L86/DM74L86)

schematic diagram

Note

DM54L86iDM74L86 '

3-22

-]V

--j_ J.~l~ns_ _ _ _ -]V

. ~ -~"""''''_____-'' ':::.%L: __-oV

(Sa. Nato 21

15ns

+---- - - - - -

liT

:,~.~

o INPUT (PULSE 8)

r-

1___________ JV

90%jli

; . - - - 1.lelo,,1

.j ' .. ,up

Q OUTPUT

~I~n.

I I

---1 f--I
I

o

...J

I

SchematiC diagram shows only one of
the four exclUSive OR,gates

I"""

o
DM54L86/DM74L86

:e

EXCLUSIVE-OR GATES

"tJ

o

dual-in-line package
connection diagram

:e

flat package connection
diagram

...

CD

-I
-I
I"""

en
CD

...

4V

. ..-+_+-----L_+--+--,
4A

GND

3B

"

CD

en
U1
~

I"""

.......

......
~

I"""

18

DM54L86/DM74L86

"

2A

DM54L86/DM74L86

OIl

dc electrical characteristics
SYMBOL

PARAMETER

TEST
FIGURE

CONDITIONS (Note 1)

TYP
MIN
(Note 2)

MAX

UNITS

V'N(1)

I nput Voltage ReqUired
to Ensure Log,cal "1" at
Any Input Terminal

39

Vee = MIN

V'NIO)

Input Voltage ReqUired
to Ensure Logical "0" at
Any Input Terminal

39

Vee = MIN

VOUT(1)

Logical "1" Output Voltage

39

Vee = MIN, V ,N(1 ) = 2V,
V INIO) = 0 7V, I LOAD = -200 /1A

VOUTIO)

Logical "0" Output Voltage

40

Vee = MIN, V'N(1) = 2V,
V ,NIO) = 0 7V, lOUT = 2mA

015

03

V

VOUTIOI

Logical "0" Output Voltage
(Senes 74L Only)

Vee = MIN, ISINK = 3 2 mA
V ,N (All Inputs) = 2V

02

04

V

I'N(1)

Logical "1" Level Input
Current (Each Input)

41

Vee = MAX, V,N = 2.4V
Vee = MAX, V,N = 55V

<2

I'NIOI

Logical "0" Level Input
Current (Each Input)

42

Vee = MAX, V ,N = 0 3V

-022

los

Short CirCUit Output
Current

43

Vee = MAX, V,N(1 ) = 4 5V,
V ,NIO ) = 0

leelo)

Supply Current (Per Gate)

44

Vee = MAX

167

mA

43

Vee = MAX, V,N(1 ) = 4 5V,
V ,NIO) = 0

110

mA

leel1l

Supply Current (Per Gate)

2

13

13

24

-3

V

07

28

-9

V

V

20
200
-036
-15

/1 A
/1A
mA
mA

Note 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable Circuit type

3·23

EXCLUSIVE-OR GATES
switching characteristics
PARAMETER

TEST
FIGURE

tpdO

Propagation Delay Time to
Logical "0" Level IOther
Input Low)

45

CL =50pF,R L =4kl1

tpd 1

Propagation Delay Time to
Logical "1" Level IOther
Input Low)

45

CL

= 50 pF, R L

tpdO

Propagation Delay Time to
Logical "0" Level IOther
Input High)

45

CL

= 50 pF,

tpdl

Propagation Delay Time to
Logical" 1" Level IOther
Input High)

45

SYMBOL

~

Q)

~

o

a..
~

o

TYP
(Note 1)

MAX

UNITS

21

60

ns

= 4 kn

37

60

ns

=4

kl1

35

60

ns

CL = 50 pF, R L = 4 kn

25

60

ns

CONDITIONS

RL

MIN

Note 1: SWitching parameter limits, sWitching parameter tYPlcals, and electrical parameter typlcals are given for

~

at TA

=

Vee

co:

5V

2S'C only.

dc test circuits

~

V"'''~OPEN

Note

Each

Input IS

tested separately

Note

Figure 39

Note

Each mput

IS

Note

Logical "0" and logical "'" Input
conditions are tested

Notes

1 Each gate IS tested separately
2 When testing 'CellI. the output

Figure 42

Note
IS

CL Includes probe and J'9 capacitance

I+I

--1 1--15",
L - L - - - - 3v
I

~
I

INPUT

OUTPUT

"liN POSITION AI

10%

90%

gn%

VT

VT

~T1J.1S--1

~

tpdO

f--

l~

I
I
I

I

I
I

-1'oo"'UI-

I/V,
{SlIN

POS~T~~:UB~----J

-~

I

I

10%

vTVO"'"
- - Va ",101

i

~VO"""

I

-i

V,

t"dO!-

Figure 45

3-24

OV

1---

tpd1

I
I
I

Logical "0" and logical "1 'Input

Figure 44

ac test circuits and waveforms

15"'--j
I
I

tested separately

conditions are tested

open

Figure 43

Note

IS

Figure 41

Figure 40

tested separately

Each Input

V""fIOI

TA

V.

125"C
70·C
25·C
O·C
-55·C

09V
llV
13V
14V
16V

r-

o

DM54L95/DM74L95, DM76L70/DM86L70

SHIFT REGISTERS

~

( DM54L95/DM74L95l

connection diagram
dual-in-line package

flat package connection
diagram
,
GOO

INPUT

ClOCK2

,
ClOCK]

IN'UT

SERIAL

8

INPUT

INPUT

C

INPUT

Vee

o

SERIAL
INPUT

INPUT

DM54L95/DM74L95

8
INPUT

C
INPUT

logic diagram

TRUTH TABLE

Mode Ser"

Vee

0
INPUT

DM54L95/DM74L95

lnpAn

lopen

lopCn lopOn An+l

DM54L95/DM74L95

8 0 +1 Cn +l

On+1

An

Bn

Cn

An

Bn

Cn

-I
-I

r-

..,

SHIFT REGISTERS
electrical ch a racte r isti cs
SYMBOL

...

Q)

(/)

...

PARAMETER

MIN
2

Logical "1" Input Voltage

Vee = MIN

46,48

Logical "0" Input Voltage

Vcc = MIN

47,49

VOUTll)

Logical "1" Output Voltage

Vee = MIN

VOUT{O}

Logical "0" Output Voltage

VOUT(O)

Logical "0" Output Voltage

IIN(Q)

Il..

TEST
FIGURE

V1N(0)

Logical "0" Input Current

~

CONDITIONS

V 1N1n

Q)

o

(DM54L95/DM74L951

(Except Model
Logical "0" Input Current

IIN(o)

~

(Mode Only)
Logical "1" Input Current

o

IINIl)

...J

(Except Mode)
Logical "1" Input Current

IINtl)

(Mode Only)

UNITS

a

V
0.7

Vee = MIN

IOUT= +2 mA

47,49

0.13

0.3

V

Vec = MIN

lOUT = 3 2 mA

47,49

02

0.4

V

Vee = MAX

V ,N =03V

50

-0 1

-0.18

mA

Vce = MAX

V ,N =03V

50

-0 2

-0 36

mA

Vee = MAX
Vce = MAX

Short-Circuit Output Current

Vee = MAX

Supply Current

Vee = MAX

switching characteristics

V ,N =24V
Y'N = 55V

V ,N =2.4V
Y'N = 55V

V OUT = OV

24

3.1

46,48

lee

PARAMETER

MAX

I OUT = -200 J1A

los

SYMBOL

TYP

51

10
100

J1A
pA

51

20
200

pA
pA

-15

mA

52

-3

53

-9
48

80

mA

TYP

MAX

UNITS

(DM54L95/DM74L95) (Note 1)

CONDITIONS

TEST
FIGURE

f MAX

Maximum Shift Frequency

Vee = 50V
C L = 50 pF

54

tpW(CLOCK)

Clock Pulse Width

Vee = 50V
C L =50pF

54

tpd In

Propagation Delay to a
Logical "1" A, B, C, or D

Vee = 5 OV
C L = 50 pF

t pdW)

Propagation Delay to a
Logical "0" A, B, C, or D

MIN

14

MHz

90

44

ns

54

15

42

90

ns

Vee = 5 OV
C L = 50 pF

54

15

48

90

ns

t,

Mode Control Logleal "0" Setup
Time With Respect to CPl

Vee = 5 OV
C L = 50 pF

55

120

55

ns

t2

Mode Control Logical "1" Setup
Time With Respect to CP2

Vee = 5 OV
C L = 50 pF

56

100

45

ns

t3

Mode Control Logical "0" Setup
Time With Respect to CP2

Vee = 5 OV
(Note 2)
C L = 50 pF

56

0

-43

ns

t4

Mode Control Logleal "1" Setup
Time With Respeet to CPl

Vee = 5 OV
(Note 21
C L = 50 pF

55

0

-50

ns

t5

Logical "1" Setup Time at
Senal, A, B, C, or D Inputs

Vee = 5 OV
C L =50pF

54

50

20

ns

t6

Logleal "0" Setup Time at
Serial, A, B, C, or D Inputs

Vee = 5 OV
C L = 50 pF

54

50

13

ns

t7

Logical "1" Hold Time at
Senal, A, B, C, or D Inputs

Vee = 5 OV
(Note 2)
CL = 50 pF

54

0

-14

ns

t8

Logical "0" Hold Time at
Senal, A, B, C, or D Inputs

Vee = 50V
(Note 2)
C L = 50 pF

54

0

-20

ns

60

Note 1: SWitching parameter limits, sWitching parameter tYPlcals, and electncal parameter typlcals are given for Vee = 5V at
TA = 25=C only
Note 2: Negative hold time values Indicate that data can be released prior to the time the clock reaches Its 1.3V level

3·26

r-

o

SHIFT REGISTERS

~

de test ei reuits (DM54L95/DM74L95)

"U

o

CONTROL
OPEN

~

.

V'nlllo----;MMOilioiE'-"l

MODE

V,ol1l

A

CD

CONTROL A

OPEN

SERIAL

SERIAL
INPUT

INPUT

-t
-t

!"'"

0

OPEN

CLOCK I

en

.

CLOCK 2

CLOCK

CD

.".

(i'

CLOCK

CLOC~::

OV

~

r-

TESTVou,lo)

Note

tested separately

IS

U'I

~>9D",~·[

TE5TVO "I(11

Note Each output

(II

Each output

IS

........

tested separately

-.oJ
~

Figure 47

Figure 46

r-

V"
'Iood

VmIOlo-.---;Moii,-"I-___.-_

MODE

V,nIOI

CONTROL

A

SERIAL
INPUT

V,nllj

OP"{

OPEN {

}OP" V

o ,,'"

1

CLOCK 1
CLOCK 2

CLOCK
OPEN

.".

1
CLOCK 2

.".

CLoCK~--3V
Vr
Vr

I

I

Figure 49

TEST TABLE

V"

~
V'"

INPUT
SEE

TEST
TABLE

CLOCK 1

CLOCI<2

.".

Note

OIl

TE5TV o.,111

Figure 48

MODE
CONTROL A
SERIAL

r

DV

1----:?90ns--l

45V

I

OPEN

0----; CLOCK

l~'

.".

Each Input IS tested separately

TEST

APPLY 4 5V

MODE CONTROL

CLOCK 2

APPLYGND
NONE

SERIAL INPUT

NONE

MODE CONTROL

A INPUT

MODE CONTROL

NONE

B INPUT

MODE CONTROL

NONE

C INPUT

MODE CONTROL

NONE

D INPUT

MODE CONTROL

NONE

CLOCK 1

NONE

MODE CONTROL

CLOCK 2

MODE CONTROL

NONE

Figure 50

TEST TABLE

V"

TEST

APPLY 4 5V

MODE
45V

CONTROL A

SERIAL

v,"

~

INPUT

SEE
TEST
TABLE

CLOCK 1
CLOCK 2

.".

";'

Note

l""

Each Input

IS

tested separately

APPLY GND
CLOCK 2

MODE CONTROL

NONE

SERIAL INPUT

MODE CONTROL

NONE

A INPUT

NONE

MODE CONTROL

B INPUT

NONE

MODE CONTROL

C INPUT

NONE

MODE CONTROL

D INPUT

NONE

MODE CONTROL

CLOCK 1

MODE CONTROL

NONE

CLOCK 2

NONE

MODE CONTROL

Figure 51

3-27

SHIFT REGISTERS
dc test circuits (cont.)
v,.

(DM54L95/DM74L95)

o-....--;~M;O~EO!E"
",:1
tONTR,DL A
OPEN

V,nlH

o----;.!'!C8i.P.:T~E~R~0l.A.1

SERIAL
INPUT

OPEN

SERIAL
INPUT

]-

OPEN

CLOCK

...

0----;

CLOCKo-,,--;!!:!!~....J

CLOCK~-_"3V

Q)

~

Vr

o

CLOCK

VT

1

1

OV

I----- ~gO ns-------+l

D.

Note Each output

~

IS

tested separately

TEST los

Figure 53

FIgure 52

o
...I

ac test circuits and waveforms (DM54L95/DM74L95)
INPUTS

r----------,
I

I
L

lN910

RL

4K'N916

1NII6

_ _ _L~c~r~

r- -

-

L... _ _

1111116

___

I
I
I
I
I

J

- -1
..!:n:.::~I~ ___ ...J

-L;;;;C~I'M-

-

r - - - -lDADciii'C'iirj"j"'" - - - - ,

L- _ _ ....:Sa==L!!C:::!'~ __ ..J
r---U;OCiRcuiT4-- ---,
L- _ _ ~:.:!L~"~ _ _ _ ...J
Notes

1 The pulse generators have the following characteristics ., '" 10 ns to 12 ns, to '" 10 ns to 12 n5, and Zout "" son
For pulse generator A tp ,150 ns and PRR '" 500 kHz For pulse generator B tp 10 ns and PAR:: t MHz
When testing f max • vary PRR
2

Voltage yalues are with respect to network ground terminal

3 CL Includes probe and Jig capacitance

TA
125°C
70°C
25°C

qOc

_55°C

,,

A,B,C,ORD

DUTPUTS

! !:'---,"-"'!,

t--

~lpdO~ ~d1

Figure 54

'-----VIOI'"
CLOCK 1

~llV

~

'JV~---------V'N'"

~

'--------VI~ ..

: ,..,f""""\,,":
1'.---''''''
~ '--

CLOCII.2~
I

MOD~ CO/llT1!.~~

I

I

I

J±----T\

V'~'OI

~ I
!
~VI~'"
IIV ~ ';V
! '-----J____
_
---:',1I~L
I
1-',-1 1---_-1
I __

-----VINIDJ

Vour""
NOTE AIN.UTtilV ... ·OV

Figure 55

3-28

VT
O.9V
llV
13V
14V
16V

(DM76L70/DM86L70)

dual-in-line package
connection diagram

r

SHIFT REGISTERS

o
~

flat package connection
diagram

"o~

.

CD

en

.

CD

DM76L 70lDM86L 70

DM76L 70lDM86 L70

logic diagrams
0'

01

o.

05

DM76L 70lDM86 L70

electrical characteristics(DM76L70/DM86L70)
SYMBOL

PARAMETER

(Note 1)

CONDITIONS

MIN

V 'NI1I

Logical "1" Input Voltage

Vce ~ MIN

V,NIO)

Logical "0" Input Voltage

Vee

VOUTI1I

Logical "1" Output Voltage

Vee ~ MIN, louT ~ -200 J1A

V OUTIO )

Logical "0" Output Voltage

Vee

V OUTIO)

Logical "0" Output Voltage
(Series 74L Only)

Vee ~ MIN, lOUT ~ 3.2 rnA

I'NI1I

Logical "1" Input Current
(Except Clear Input)

Vee

~

MAX, V ,N

~

24V

I'NI1I

Logical "1" Input Current (Clear Input)

Vee

~

MAX, V ,N

~

I'NI1I

Logical "1" Input Current
(Except Clear Input)

Vee

~

MAX, V ,N

I'NI1I

Logical" 1" I nput Current (Clear Input)

Vee

~

I'Nll)

Logical "0" Input Current
(Except Clear Input)

Vee

I'NIO)

Logical "0" Input Current (Clear Input)

los

Output Short CirCUit Current (Note 2)

Icc

Power Supply Current

~

~

2.0

MAX

~

2.4

UNITS

1.3

V

1.3

MAX

MIN, lOUT

TYP

V

0.7

V

2.8

2 rnA
<1

V

0.4

V

10

J1A

2.4V

20

J1A

~

5.5V

100

J1A

MAX, V ,N

~

5.5V

200

J1A

~

MAX, V ,N

~

0.3V

-120

-180

J1A

Vee

~

MAX, V ,N

~

0.3V

-240

-360

J1A

Vee

~

MAX, V OUT

-9

-15

rnA

Vee

~

MAX

6

9

rnA

~

OV

<2

0.3

-3

Note 1: SWitching parameter limits, sWltchmg parameter tYPlcals, and electncal parameter tYPlcals are given for

Vee

'= 5V

at T A :; 25°C only

Note 2: Only one output should be shorted at a time.

3·29

~

S

SHIFT REGISTERS
switching characteristics

-it

SYMBOL

It)
II)

.!!!

"-

CD

~

o

a.
~

o
...I

PARAMETER

CONDITIONS

MIN

TYP

6

12

UNITS

Minimum Clock Frequency

V cc = 5 OV, 50% Duty Cycle

tpdO

Propagation Delay to a Logical "0"
From Clock to Output

Vcc = 50V, C L = 50pF

70

120

ns

tpd 1

Propagation Delay to a Logical "1"
From Clock to Output

Vce = 5.0V, C L = 50 pF

40

90

ns

tpdO

Propagation Delay to a Logical "0"
F rom Clear to Ou tput

Vec = 5.0V, C L = 50 pF

90

160

ns

MHz

tpwleLOCK) Minimum Clock Pulse Width

V cc = 5 OV, C L = 50 pF

40

25

ns

tpwICLEAR) Minimum Clear Pulse Width

Vcc = 5.0V, C L = 50 pF

40

25

ns

tSET-UP

M,nimum Time That SA • 58 Data Must
Vcc =50V,C L =50pF
be Set·up Prior to Clock Pulse, ts.t up

t HOLD

M,nimum Time That SA • 58 Data Must
Vcc =50V,C L =50pF
be Held After Clock Pulse, t hold

tCR

Clear Recovery Time'

35
-10

Vce = 5.0V, T A = 25°C,
C L = 50 pF

80

*Tlme required after removal of clear signal for clocking to occur.

switching waveforms
CLEAR
(NOTE 3)

(DM76L70/DM86L70)

LEAR3lOV

VT

~
_PULSE ....

VT

WIDTH

- 2 4V, YOUTlOl <; D4V,
t, Ind l! < Iii /IIi, Ind PRR ~ 1 MHz Input B, C, end 0 Ifans'tlons DeCU! S1multantOMsly with or
IInOtta Input A tranlll'Ont
Note2 CLIllClud8$probelnd J'g~8pIIC,t8nce
NOle3 AlIdiadeurelN3D84 orlqu,nlant

3-32

Nata 4 Th'lwl'Ieiolm represent lIIeO output when A 10 goasiJom ''0'' to "I"
('II wllhB=C=D=''U''
Noll! 5 Thll W ..... OIlll "'P'-'''' tho 0 GUlpul when A gOIl from

('II

"1"to"II"w,tbB"C~O·''U''

V OUTlO,

dc test circuits

TEST
PER
TRUTH
TABLE

TEST
PER
TRUTH
TABtE

Holt Eithoutput,stestedsejlliitely

Note E.choutpotlsteS!HS8IIat,lIlv

TEST
PER
TRUTH
TABlE

O----lt

SEE

v"

OPEN

NOTE

Note

Elchmputistested~rltllly

Nott E,choulput"tested ... p.,atelv

SEE
NOTE

Not~l

When testlng I'NIOI ndllnputlstestedSl!p •••tely

Note2

Wbentestlnglcc'lImputs.r.,roun~edlndoutpuulleopen

DPEN

3-33

Series 54L/74L

DM54L85/DM74L85 (SN54L85/SN74L85)
4-bit magnitude comparator
general description
The DM54L85/DM74L85 low power TTL 4-blt
magnitude comparator IS compatible with most
TTL and DTL families. This comparator compares
two 4-bit words and determines their relative
magnitude with the result being indicated by a
high level at the A>B, AB,
AB and
Ao--+-cj CP
INPUT A

-,

-

!IV

I

Cl

~50'F ~JO'F

I

-::-

L _________ J

r- - L __

~o ~u-;;

- -

-1

~M~L~C~UI.:..!.. _ _

J

c

absolute maximum ratings

3:

(Note 1)

U1
MIN

Supply Voltage

80V

Input Voltage

55V

Output Voltage

55V

Supply Voltage (Veel
DM54L91
DM74L91

Lead Temperature (Soldering, 10 sec)

DM54L91
DM74L91

300 0 e

electrical characteristics

45
475

r-

....

CD
.......

V
V

55
525

-55
0

c

3:

°e
°e

+125
70

.....
0l:Io

r-

(Note 2)

PARAMETER

....

CD

MIN

CONDITIONS

TYP

Logical "1" Input Voltage

13

Logical "0" Input Voltage

13

Logical "1" Output Voltage

Vee = Mm, lOUT'" -200 IlA

Logical "0" Output Voltage

Vee = Mm, lOUT = 2 rnA
(OM54L91)
Vee - Mm, lOUT - 32 rnA (DM74L91)

Logical "1 . Input Current

Vee = Max, Other Inputs = OV, V IN

24

co

2 4V

Logical "0" Input Current

Vee = Max, Other Inputs

Output Short CirCUit Current
(Note 3)

Vee = Nlax, VOUT -= OV

Supply Current

Vee

=

4 SV, V IN '" 0 3V

-3

V
V

07

28

V
V
V

03
04

<1

10

<10

100

"A

-110

-180

"A

-8

-15

mA

35

Max, VIN = 5V

UNITS

MAX

015
02

V IN = 5 SV

=

0l:Io

UNITS

Temperature (T A)

_65°e to 1500 e

Storage Temperature Range

MAX

"A

mA

66

Icc (Max)

f MAX (maximum Input clock frequency)

MH,

Vee=~>OV

TA = 2SoC

Vce=50V
= 25°C

65

130

Propagation Delay to a Logical "1" from

Vee'" 5 OV

40

80

Clock to Output,

T A =25c C

Propagation Delay to a Logical "0" from

Clock to Output,

tpdO

tpdl

TA

Minimum Width of Logical "0" level

Vee=SOV

Clock Pulse,

TA = 2SoC

tpO(clock)

Minimum Width of Logical "1" Level

Vee=50V

Clock Pulse, t p 1{clockl

TA = 25°C

Input Setup Time, t setup

Vee = 5 OV

120

60

120

60

120

T A = 25°C
Input Hold Time, t hold

Vee=50V
TA = 25°C

Note 1: "Absolute Maximum Ratmgs" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operatmg Temperature Range" they are not meant to Imply that the devices should be operated at these limits. The table
of "Electncal Characteristics" prOVides conditIOns for actual deVice operation
Note 2: Unless otherWise specified minImax limits apply across the _55°e to +125°e temperature range for the DM54L91,
and across the O°C to 70 0 e range for the DM74L91. All tYPlcals are given for Vee == 5.0V and TA:::; 25°C.
Note 3: Only one output at a time should be shorted

switching time waveforms

'''''""'

,J",,~O%

ClOCI(PUlSE
INPUT

3V
''''1@lJ%lJv

10% !IV

--"""'=1---CtOCKPULSE
INPUT
INPUTA

L _______ ~ __ ____1"L _________
Sl ____________ s--L

OUTPUTO _ _ _ _ _ _

-----it,

-~:voom'
\JV

OUTPUTOORQ

'"""'"". :r
:::~II -

''''~.'-:l

ClOCKfUlSE
INPUT

~:~::::

to

!","pIOI
INPUT
AORB

13V

V" '11

V,3V

'-..J+-_ _ _ _ _ V,.. IOI
~_,
--jl-,-"'_O"_,"'_ _ _ v.. ",
lJV

1\13V

--VOUTIOJ

t.....plH

'-----V'NIOI

TYPICAL INPUT/OUTPUT WAVEfORMS

Note 1 The generator has the follOWing chara£terlstrcs VINIOI < 0 3V, VINlll > 2 4V, 11
IpdlCLOCKI =500 n~, tpdOlCLOCKI =500 liS, PAA" I MHz, and ZOUT" 5011
Note2 CL mcludesprobeandJ'gcapac,tallCe
No~e 3 Each output I~ te~ted separately

=

to

=

15 ns,

Note4 Voltage values are w,th respect 10 network ground termmal
Note5 All diodes are lN3064 orequrvalent
Note6 f MAX use 50% duty cycle

3-41

Series 54L/74L
DM54L93/DM74L93(SN54L93/SN74L93) and
DM76L93/DM86L93 ripple binary counters
general description
The DM54L93/DM74L93 and DM76L93/DM86L93
ripple binary counters enable a systems designer to
have some flexibility in his design. The DM76L93/
DM86L93 has the same pin out as the standard
SN5493/SN7493, but the same power specifications
as the SN54L93/SN74L93 low-power counter.
Both counters can be used to dlvide-by-2, 8, or 16.
Two reset inputs are provided to allow for initializIng the counters. Resetting occurs asynchronously when both reset Inputs are high. Darlington
outputs provide for a fanout capability of two

standard TTL unit loads over the commercial
temperature range and 10 54L174L loads In the
low state. In addition these devices can fan out to
20 54L/74L loads In the high state.

features
•

Series 54L/74L compatible

•

15 MHz tYPical clock frequency

•

18 mW tYPical power dissipation

logic and connection diagrams
OUTPUTS

,....-........,

OUTPUTS
~

c

TOP VIEW

Dual-tn-line Package

Dual-In-Llne Package
DM54L93/DM74L93

INPUT
A

OUTPUTS

...,......"

OUTPUTS

~INPUTB

Flat Package
DM54 L93/DM74 L93

3-42

DM76L93/DM86L93

INPUT
A

Flat Package
DM76L93/DM86L93

absolute maximum ratings (Note 1)
+8.0V
Supply Voltage
+5.5V
Input Voltage
+5.5V
Output Voltage
Operating Temperature Range DM54L93,DM76L93 -55°C to +125°e
oOe to +70 o e
DM74L93,DM86L93
_65°C to +150 o e
Storage Temperature Range
300 D e
Lead Temperature (Soldering, 10 sec)
electrica I characteristics(Note 2)
PARAMETER
Logical "1" I nput Voltage

Logical "0" Input Voltage

CONDITIONS

DM54L93. DM76L93
DM74L93, DM86L93

Vee - 4 5V
Vee - 4 75V

DM54L93. DM76L93
DM74L93, DM86L93

Vcc=45V
Vee - 4 75V

MAX

lOUT ==

Logical "0" Output Voltage

IOUT= 2mA
lOUT = 3 2 mA

Logical "1" Input Current

DM54L93. DM76L93
DM74L93. DM86L93

Vee'" 55V

V IN

Vee - 525V

24V Reset Inputs
VIN = 55V Reset Inputs

DM54L93. DM76L93
DM74L93. DM86L93

Vee
Vee

V IN ", 24V AIN & BIN
VIN == 5 5V AIN & BIN

DM54L93. DM76L93
DM74L93. DM86L93

Vcc=55V
Vee 525V

VIN == 03V, R01 &

DM54L93. DM76L93
DM74L93. DM86L93

Vee'" 55V
Vee - 525V

VIN

Output Short Circuit Current
(Note 3)

DM54L93. DM76L93
DM74L93. DM86L93

Vee = 5 5V
Vee - 525V

VOUT

Icc max

DM54L93. DM76L93
DM74L93. DM86L93

Vee'" 55V
Vee 525V

06
07

24

-200,uA

28

=

=

03
04
10
100

pA
pA

20

pA
pA

200

R02

-018

rnA

03V, AIN & BIN

-036

rnA

=

OV

-3

-9

-15

550

ns

V cc "'50V
T A = 25°C

CL = 50pF, RL = 4 kQ

210

400

ns

MaXimum Clock Frequency

Vcc=50V
TA = 25°C

CL = 50 pF. RL

Minimum Clock Pulse Width

Vce= 50V
TA = 25"C

CL = 50pF, RL = 4 kQ

=

4 krl

6

s:co
0')

r-

CD
to)

rnA

400

tpdl

C

rnA

230

",

-.....

V
V

4 kS1

D ouT ,

CD

V

015
020

CL = 50 pF, R L

Propagation Delay to a Logical "1" from AIN to

r-

V
V

Vcc=50V
TA=25"C

tpdO

s:

......

to)

Vcc=45V
Vee 475V

D ouT ,

c

UNITS
V

12
13

DM54L93. DM76L93
DM74L93. DM86L93

Propagation Delay to a Logical "0" from AIN to

13

& BIN
Reset Inputs

Vee'" 4 5V
Vee 475V

Logical "0" Input Current

20
AIN

DM54L93. DM76L93
DM74L93. DM86L93

5 5V
525V

TYP

0')

Logical "'" Ou tput Voltage

=

MIN

MHz

15

100

60

ns

Note1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual deVice operation
Note 2: Unless otherwise specified minimax limits apply across the -55°C to +125°C temperature range for the DM54L93,
DM76L93 and across the o"e to 70"e range for the DM74L93,DM86L93. All tYPlcals are given for Vee = 50V and
TA = 25"e
Note 3: Only one output at a time should be shorted

ac test circuit

switching time waveforms

·"·~1€:::
r

'00,""

13V

PULSE
GENERII.TOR

OUTPUTD-----.."",------i

ISEENOHll

13V

VOUT«)l

Not,\ Thepul .. yln&rltOthaoth.follllW"'!lehar,etertsttC, VQ 'N-3V,Io=t,<15n"
t,,=OS~$.PRR=IMHz,ZouT~50Q

r.lol.2 Alidtodes ... 1Nl95110.eq",Yllont
,"ote3C L trn:lud"pfOb •• ooJlyc.pac",nc.

Note4Iod~~
,"0105 VoItagevolu"",wllilr-

0,

I---< 0--0'OUTPUTOB

T

i\,

~

~

OAT A
INPUT C

~

1

~ 8J
T

n.ot----+---1-<11'
U.

COUNT

.

+++++++++++-----~-L...I ~

IN~;:~o-----i=:t=~=F*~F**:t==I-)..---....---4--,

C:Jn
r-'

l

>-+-__+<1'

D, _

r-oDUTPU'D,

li,

H++::::::~--~L-J ~

IN~~;~o-----i=:t=~=F*~F**:t==I-')..---....--~-...,
CLEAR

~

l

>-+---+<11'
LOAD

DD ~r-o OUTPUT 00

li.

~~~-~~------~------~-l----I)o ~

3-55

dc test circuits

V,"~TEST

V'"~~WH

PER

TRUTH
TABLE

TABLE

V"

V"

N

-'

....
...J

CJ)

Each output IS tested sepBllItely

-,.;;;LO;;;AO;;...,..----'

Each output IS tested S1!p.rately

'It

I'

:::E
Q

......
N

....
...J

CJ)

'It
Ln

45V

v"

:::E
Q

v"

UP

DOWN

BORROW
CARRY

0.

SEE
NOTES

Q,

Dc
CLEAR

}~,

UP

-

DOWN

V,

SEE
NOTES

l"'

De
0,

Do

CLEAR

LOAD

0,

LOAD

-=
Note 1 EachmputlStestedseparate/y
NoteZ Apply V, to Input uncler test and ground IIthermpulsexcept
when tesbng data mputl, apply 45V to clear and load mputs

Note 1 Eachlnputlstestedseparately
Note 2 Apply V,lo mput under test and ground other mputs

v"

t'

45V

UP

DOWN

BORROW
CARRY
QA

0,
0,
0,

Each output

IS

tested saparately m the high level state

'os

-=

1~'

-=
ICC

*" Arrows indicate actual direction of current flow Current IOta a terminal IS a positive value.

3-56

switching time waveforms

1 Clearoulputstozero

2 L03d {preset to BCD seven
3 Count Ul' to eight, nine, carry, zero, one and two
4 I:Durrt down to one, zero,borrow, nme, elgllt, and seven

ClEAR-.Jl:-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

:, u
,

1

L===============:

: _______________ _
,'..J::
~----------------~I

C..J"

1

1

i

I

I~

,----------------'

o

~----------------

3:

~----------------

--i--'-+-'-----------------

COU~!---+---'---'-'--LflJUl.SUr-;----------­

C1I

oou,,-_;"-'--'"-'---'-',- - - - - - - - ' - - . . . ,

r.....

~

DOWN

CD
W
........

1

o

3:
......
~

r.....

CARRY

CD
W
ILLUSTRATED

DM54L 192/DM74L 192

lUustmtedbelowIsthefoliuwmQsequence

1 Clearuulputstozero
2 load (preset) \u 8CO thirteen
3 Count up to fOlJrteen, fifteen, carry, zem, one, and two

4 Count down to Dlle, zero,borrOW,flfteen, lourteen, and thirteen
CLEAR - . J l L - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

,

u
~===============:

LOAD

!a-.J. -:---'--iL == === ==========:
'..J

~---------------­

--'--:--'-"

am

c

----------------

,1"""'-'-..:....;:-----------------

~

~----------------

COU~!--;..-'--.;-::---'LflJUl.SUr-;----------1

1

cg~~~---'---'-'---'-,- - - - - - - - ' - . . . ,

,

0,OUTPUTS

,

'~-~---...,

a,:lU
"
I,
CARRY

SEQUENCE
ILLlJSTRATED

'----7"--:-----"

,

U
--,""""",--7-,-',---'-,--------',--+---+-,-----,U
II

I,

1

,

1 0 1

1 13 1

~~

,
'

,

I

14

l~OUNT~P

r-----

1

_21

~

1_

1

~

:OUNT~~WN

,

14

~I

~

DM54L 193/DM74L 193

3-57

switching characteristics
OUTPUTS

I no fie Q. fiA "CARRY SORROW'

r--loADCiiiciiiT2--'

_(~M~t!-.0~ E!!I~T.!l._J

r- - -loADciRcwT3 - - ,
_(~M!..A!.!0!.DE.!..R£!!!T.Jl_.J

Note 1 The pulse ~enerators have the follOWing charactenstlcs lOUT'" 50n, fur the data pulse generator,
PRR ~ 500 kHz, duty cycle ~ 50%, for the load pulse generator, PRR = 1 MHz, duty cycle = 50%
Note 2 CllOcludes probe and Jig ca~acltallCe
All dludesa.e lN3064,

orellu'nl~nt

Test Circuit 1
OUTPUTS

~

r---------l

3oh:

A
<=4K

I

=

I

O'~W~~~
0.1--

o.
o.

=

I

I
I

I
I
I

L __ ::!:"!.CI~~ 1___ J

--loADciRcUi'i'r--'
L.._(~Ml.A~O!!!~S!:!!.T.!l._.J

- - ToAiiciiicmTj""--'
L_(~M.LA~IJ.!!I.s!!£!;!,!T..ll_J

--wAociRcUiTr---'"

L

_1~M!.!t!-.0!E. S!.!!S!!!.T.lL_J

Note 1 The pulse generator has the follOWing characteristics PAR = 1 MHz, lOUT'" 50n, duty cycle =

50%
Nota2 CL mGiudes plObe and Jig capacitance
Note3 All diodes are lN3064
Note4 Count up and £ountdown pulses mown are fOI the SN54193!SN74193 blnarv countm Count
cycle fOI SN54192 d~cade counter IS 1 through 10
Note 5 Waveforms for outputs QA" Qs, and Clc are omitted to Simplify the drawmg

Test Circuit 2
';15ns-J

i__

-----:

1_

, ''"------------~~'
OATA~I
'To%
90,%,$.L,Tt,-,,,---------

10%

INPUT

, lJV

jV;'irj.."

,

:'-'-P~

r--t,.,", ___:

-~

'" ¥:."'",--------1

,

10%

1--,,15n,

--j

OUTPU~

t------t--" 15",

/

Voltage Waveforms 1

15n<---JI--..Jk-15",

"

~NOp~~

IS •• Nnt,41
OUTPUT

IS..

~~t'51

,

~:_",J~~

\--.I 9~~%8

COUNT""\

.

" ~,
.. r.:
\.Jr~'LJ
llV~l~;---

.r.::::"\"

~llV

~t'Hll___
I

I

CVOH

\llV:

:

BORROW _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--i
__'_

4=.l!..V_ vo,

-H "'"I--

PHl

1

VO H

13V~VOL

OUTPUT

Voltage Waveforms 2

3-58

3V

~p:k-~OV

:

c

~

Series 54L/74L ....,.........

~s

DM71L22/DM81L22. DM71L23/DM81L23 quad 2-input multiplexers

N
N
........

general description

C
~

Each buffered output can fanout to two standard
TTL Unit loads over the commercial temperature
range, and 10 54L!74L unit loads In the low state
over the Mil temperature range In addition these
devices can fanout to 20 54L!74L unit loads with
the output In the high state ("1"1.

The OM71 L2210M81 L22 and OM71 L23/0M81 L23
are quad 2-lnput multiplexers which select one of
two word Inputs, and outputs the data when
enabled_ The enable Input can be used to synchronize data transfer and forces the output to the "0"
state (OM71 L22/0M81 L221 or high Impedance
state (OM71L23/0M81L231 when enable ~ "1"_
The advantage of the OM71 L23/0M81 L23 IS that It
makes "wlre-oCing" of the outputs pOSSible.

....
,...

00
N
N

C
~

......
....
,...
N
W
........

connection diagram

C
~

Dual-I n-Llne and Flat Packages
ENB

Vee

I.

15

Dc

"

lc

COUT

13

OD

11

11

10

10

~
1

00
....
,...

00UT

0

N
W

~
,

3

4

5

6

7

I'

truth tables and logic diagrams

ENABLE

E
7

••
•
¢

SElECT
INPUT
S
X
1
1

,•

INPUTS

OUTPUT

tPx lx
X X
X
X
1

Z,

•
1

¢
¢
1

•

x

,

X

1

DM71 L22/DM81 L22

ENABLE
E
1

Q

•
••

SELECT
INPUT

S
X

INPUTS
1x

Z,

X
X
X

X

HI Z

1

X

•
•• • x
1

1

OUTPUT

¢;x

7

•
•
7

1

DM71 L23/DM81L23

3-59

(W)

....
N

absolute maximum ratings

po

co
~

Supply Voltage
I nput Voltage
Output Voltage
Operating Temperature Range
OM71 Ln, OM71 L23
OMSI L22, OMSI L23
Storage Temperature Range
Lead Temperature (Soldenng, 10 sec)

Q
........
(W)

N

....

po
,....

~
Q
N
N

po

-55'C to +125'C
O'C to +70'C
-65'C to +150'C
+300'C

~
Q
........
N
N

....

Vee

=

Min

Logical "0" Input Voltage

Vee

=

Min

Logical "1" Output Voltage

10H

~
Q

OM71 L22, OM71 L23
OMSI L22, OMSI L23

Logical "0" Output Voltage

Mil lOUT

=

MIN
20

MAX

UNITS

45
475

55
525

V
V

-55
0

+125
70

'c
'c

TVP

24

lOUT =

3 2 rnA

UNITS
V

07

V
V

28
015
020

2 rnA, Vee = Min

MAX

13
13

= -200iJA, Vee = Min

Comm

,....

MIN

Temperature (T A)

CONDITIONS

Logical "1" Input Voltage

po

Supply Voltage (VCC)
OM71 Ln, OM71 L23
OMSI Ln, OMSI L23

(Note 2)

PARAMETER

co

operating conditions

+80V
+55V
+55V

electrical characteristics

....

(Note 1)

030
040

V
V

Third State Output Current

OM71L23/DM81L23 Only, Vee = Max

+20

pA

Logical" 1" I nput Current

V 1N = 2 4V, Vee = Max

10

iJA

V ,N = 5 5V, Vee = Max

100

Logical "0" Input Current

V ,N = 0 3V, Vee = Max

Output Short Circuit Current

V OUT =

av. Vee = Max

-40

-018
-3

-9

pA
rnA

-15

rnA

(Note 31
MAX

OM71 L22/0M81 L22

See DC Test Ckts, Vee = Max

4

rnA

Icc MAX

OM71 L23/0M81 L23

See DC Test Ckts, Vee = Max

53

rnA

Icc

Input Clamp Voltage

Output Vee Clamp Voltage
Output Ground Clamp Voltage

Vee = 50V, TA = 25'C, RL = 4 kn, CL = 50 pF

20

40

80

ns

Vee = 5 OV, TA = 25'C, RL = 4 kn, CL = 50 pF

25

50

100

ns

Vee = 5 OV, TA = 25'C, RL = 4 kn. CL = 50 pF

20

40

80

ns

Vce= 50V, TA = 25'C, RL = 4 kn, CL = 50 pF

35

70

140

ns

Delay from Enable to Output from
Logical "1" to High Impedance State

Vee = 50V, TA = 25'C, RL = 4 kn, CL = 50 pF
OM71 L23/0M81 L23 Only

15

30

60

ns

Delay from Enable to Output from

Vee = 5 OV, TA = 25'C, RL = 4 kn. CL = 50 pF
OM71 L23/0M81 L23 Only

35

75

150

ns

"a .. to High Impedance State

Delay from Enable to Output from
High Impedance State to Logical "1"

Vee = 50V. TA = 25'C, RL = 4 kn, CL = 50 pF
OM71 L23/0M81 L23 Only

15

30

60

ns

Delay from Enable to Output from
High Impedance State to Logical "0"

Vee = 5 OV, TA = 25'C, RL = 4 kn, CL = 50 pF
OM71 L23/0M81 L23 Only

20

35

70

ns

Propagation Delay to a logical "1" from

OM71 L22/0M81 L22 Only

30

60

120

ns

OM71 L22/0M81 L22 Only

30

60

120

ns

Propagation Delay to a Logical "0" from
4J or 1 to ZOUT. tpdQ

Propagation Delay to a Logical "0" from
Select to ZOUT, tpdQ

Propagation Delay to a Logical "1" from

q, or 1 to ZOUT.

tpdl

Propagation Delay to a Logical "1" from

Select to ZOUT.

Logical

tpdl

Enable to ZOUT, tpd1

Propagation Delay to a Logical "0" from
Enable to ZOUT. tpdQ

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed. Except
for "Operatmg Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrlcal Characteristics" provides conditions for actual device operation
Note 2: Unless otherwise specified minImax limits apply across the -5SoC to + 12SoC temperature range for the DM71L22,

OM71 L23 and across the O'C to 70'C range for the OM81 Ln, OMSI L23 All tYPleals are given for V CC = 50V and
TA = 25'C
Note 3: Only one output at a time should be shorted

3-60

c

s:.....

DM71L22, DM71L23 dc test circuits

....
r-

N
N

........

C

s:00

....

'o"~

TEST
PER

o--r--.....,~

TEST

PER

TRUTH

TRUTH

rN
N

IOL

TABLE

TABlE

vo,

1J

I

-

hchoutputtestedsepilrilt~ly

C

s:.....

hch output tested separately

....rN
W

........

C

45V

V"

s:00

V"

....

V"

r-

1'"

-'"

0

Z.

1

Z,
SEE NOTE

Z,

}...

A

Z.

8

Z,

0
1

0
1

Zo

0

Zo

1

-=

NOTE Fm IIH on 0/1, take enable mput to 4 5V and 110 to 0 yolts
For IlL (Ill Dll,ground enableilnd takeseleet Input to [lV/45V
Testl jH & IlL on select & enable Inputssepilrately wltb no speellil condilionson other inputs

-=

N

W

C

Z,

0

Zo

1·"

-=

Each oulput tested separately

'CC

'os

DM71L22 ac test setup

r--

-----.,

I
to

I
I

Z,

50 PF-r

L
...+-----i14

Z,

I
_________
-=- .JI
~JDPF

r
- - - - - - - - - - ,.J
L ___
~AM~S~ _ _ _

r---------.,
L ___

~M~S~ _ _ _

..J

rL _
- _
- _
- _
-;M-;;;:S;:- - - ..,
_ _ _ _ _ .J

3-61

('I)

......

N

DM71L23 ac test setup

00

:E
c

o

......

r-

You,

-------.,

I

('I)

......

I

:E

I

N

I

r-.

I

C

N
N

C,

......

MEASURE
TO

!iOpF

50pF

00

Closed

:E
c

5,'
5"
50pF

Open

50pF

Open

......
N
N

......

DM71L22 ac switching characteristics

r-.

1[""

- I""

:E
C

9~l~

,7""

v, .. (OIHPlITS)
~

""
\

llV/

1\

J

13V

~

-

\U

V

J

h

I\. t-J

\

lI.lV

Vh

1"- r-V-

f\. t-J

V, .. (lII11PUTS)

-

- ...

'.' I-

IpdOE' Prop delay trom logIC 1" to logo: "0" due to

- '-

I-

enlble,"~ul

r-

t"';1E

r

,-

I-

' .... ,S

r-

1.,.,,;P,"P del.y hom logl< '010109" 'I duel.enabl.,n,,"!
tpd(J!;·P'.p delay from loJogI( 'I 1010g'o O' duetostl .. ".,",
I.. ,s·"op del.y hom l"9lC '0 101o,,", " du,tost' ..

"n,"'

DM71L23 ac switching characteristics
~

V, .. (0 INPUTS)

~

'.'

I--~

I--

,~

V

V;lV

IL

'"
13V

lJV

lOUT

J

V

\v

-\

I

..."

-

nr-'·

V,""

\-

\

hr'\"

.J

11,.. (1 INPUTS)

l".oos-P,OP delayhomlo9,e 1 lulo!ll' 0 du.t.select,n,"!
Pr.p dellv(homlog,c'O I to H'/I1a!'due to en.ble,np.n

t"o.<,"

!p, .. ,"'OIl dOI.vllromlugoc 1 ) •• H"""edu.to,n,ble,npul

\P,m"'.'
t,,~oo-

3-62

del.ylrumll""""o,I"!" 1 du.to en,bllmp"t
Prop delay hom II"
'0' log", 0 duo to "n,bl. ,nput

,til.

- ..... 1---

....,

i--

-

to, .. ,

I--

o

5V Chdnge

o 5V Change

o

s:.....

Series 54L/74L

U1

......r-

.........

o

s:
co
U1

......

DM75L111DM85L11 TTL dual gated 0 flip flop

general description

features

The DM75L 11/DM85L 11 IS a low power TTL
dual gated D flip flop utilIZing two gate Inputs
Both gate mputs must be low to enable data transfer to the Q and Q outputs If either gate mput IS
high the data on the Q and Q outputs IS constant

•

r-

Positive edge triggered, buffered clock

•

18 mW tYPical power dissipation

•

70 ns tYPical propagation delay

•

Pm compatible with STD TTL DM7511/
DM8511

logic and connection diagrams

Dual-in-Line and Flat Package
Vee

CLOCK

L

CLA

G2

,.

15

Q

Gl

1]

12

11

CLEAR

g

10

f-

G1
CP

G1

elK

1

CLOCK

1

G2

3

4

5

6

a-

Gl

7

CLEAR

I'

GND

TOP VIEW

truth table
D

G,

G2

CLR

Q n+ 1

0

0
0

0
0

0

1

1

0

X
X

X
1
X

0
0
0
0

G"
G"
0

G"
Gn

1
X
X
X

,

1

°n+1

l'

* Asynchronous Transition

X = Irrelevant (Don't Care)

3-63

......
-I

It)

absolute maximum ratings

co

~
C
........

(Note 1)

operating conditions
MAX

MIN

......

Supply Voltage
Input Voltage

-I

Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

It)

,....
~

+80 VDe
+55 VDe
+55 VDe
-65'C to +150°C
300'C

Supply Voltage (Veel
DM75L11
DM85L 11

PARAMETER
Logical "1" Input Voltage

Vee=MIn

Logical "0" Input Voltage

Vee = Min

Logical "1" Output Voltage

Vee = Min, lOUT = -200VA

Logical "0" Output Voltage

DM75L 11
DM85L 11

Vee = Min, lOUT = 2 0 mA
Vee = Min, lOUT = 3 2 mA

Logical "1" Input Current
All Inputs

DM75L 11
DM85L11

Vee = Min, Y'N = 2 4V
Vee = Min, Y'N = Vee

Logical "0" Input Current
All Inputs

Vee = Max, V ,N = 0 3V

Output Short CircUIt Current
(Note 3)

Vee = Max, V OUT = OV

Supply Current (Per Package I

Vee = Max

Propagation Delay to a Logical "0"
from t pH L Clock to Output, tpdO

Vee = 5 OV, T A = 25°C
Figure 1 Waveforms A

Propagation Delay to a Logical" 1"

Vee =50V, TA = 25°C

from t pLH Clock to Output, tpd1

Figure 1 Waveforms A

Propagation Delay to a Logical "0"

Vee =50V, TA = 25°C

from t pHL Clear to Output,

Figure 2 Waveforms B

PropagatIOn Delay to a Logical "1"

from

tpLH

Clear to Output,

tpd1

Minimum Clear Pulse Width,

Figure 1 Waveforms A
tW(CLEAR)

Minimum Clock Pulse Width, tW(eLOeKI
Minimum Set-Up Time for Data
Input,

tS(DATA)

MInimum Hold Time
for Data Input

tH(oATA)

Minimum Set-Up Time
G, or G2 Input

tS(GI

for

Minimum Hold Time tH(GI for

G, or G2 Input

DM75L 11
DM85L 11

MIN

TYP

20

13

V
V

-55
0

"125
70

"e
'e

MAX

24

030
040

V
V

10
100

VA
VA

-100

-180

VA

-9

-15

mA

35

6

V
V

28
015
020

-3

UNITS
V

07

13

Vee = 5 OV, T A = 25°C
Figure 2 Waveforms B
Vee = 5 OV, TA = 25°C

Maximum Clock Frequency

55
525

(Note 2)

CONDITIONS

tpdo

45
475

Temperature (T A)

c

electrical characteristics

UNITS

49

mA

75

125

ns

55

95

ns

75

125

ns

55

95

ns
MHz

9

Vee = 5 OV, T A = 25° C
Figure 2 Waveforms B

30

100

ns

Vee = 5 OV, T A = 25°C
Figure 1 Waveforms A

30

100

ns

Vee = 5 OV, T A = 25°C
Figure 3 Waveforms e

40

80

ns

Vee = 5 OV, T A = 25" C
Figure 3 Waveforms C

30

60

ns

Vee = 5 OV, T A = 25° C
Figure 4 Waveforms 0

40

80

ns

Vee = 5_0V, TA = 25°C
Figure 4 Waveforms 0

30

60

ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditIOns for actual device operation.
Note 2: Unless otherWise specified minimax limits apply across the -55°C to +125°C temperature range for the OM75L 11 and
across the oOe to 700 e range for the DM85L 11 All tYPlcals are given for Vee = 5.0V and T A = 25°e
Note 3: Only one output at a time should be shorted
Note 4: SWitching parameters guaranteed to change less than 50% over the full operating temperature range

3-64

0

3:
.....

switching time waveforms

C1I

r-

All times measllred from 1 3V level

~
~

PULSE GEN A
t,=t l =15ns

'v
'v

PULSE GEN 8
1,=tl =15ns

'v
'v

o.UTI'UT

VO"

.......
0

'V

PULSE GEN
~ tt - 15 os

'V

t,

VO"
V"

0. OUTPUT

Q

3:

00
C1I

r-

~
~

v"
Ii OUTPUT

VO"
V"

VO"

v"

Ii OUTPUT

la)

PUlSEGENA1-,

,,15",

Ib)

-;t-::t, - - - - -

~~~.
t,- I,

ov
n

1SIIs

OV
__

o DUTPUl

3V

P~,:S;,~~~:'
PULSE GENB

1,101

----=x ______ ~::

t, =

If = 15 liS

QOUTPUT

r

1

----1 ,(

I

l---t,IGI------f--t~(GI___!

:~

:~

------y~~_-_--_-_-_-~::
Id)

(e)

ac test circuits

o

G1

G2

FIGURE 2. Use Waveforms B

FIGURE 1. Use Waveforms A

G1

FIGURE 4. Use Waveforms 0

FIGURE 3. Use Waveforms C

-G

=

OUTPUT -

--1I4-......I-l~,

....

ALL DIODES
lNJ064 OR EOUIVfl.LENT

FIGURE 5.

3·65

Series 54 L/74 L
DM75L12/DM85L12 dual JK. 0 flip flop
general description

o

The DM75L 12/DM85L 12 IS a dual JK, D flip flop
with a common clock and common clear A
mode control Input on each flip flop determines
the type of flip flop operation (Mode = "1"
enables the JK mode, and mode = "0" enables the
D mode.) The clear Input IS an asynchronous
Input which overrrdes all other Inputs

and 0 outputs are both provided on each
flip flop. TYPical propagation delays from clock
to outputs are approximately equal to three low
power TTL gate delays.

logic and connection diagrams

CLEAR

r---------- -----,
I
I
I

MODE 2

0,

/"

I
I

15

n,

K,

14

13

12

4

5

CLEAR

Q,

11

"

9

CP

I

I
I

2

1

I

0',

3
MODE 1

K,

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..I

TOPVIEW
~ONlY
~~CLOCK

LOGIC FOR ONE OF THE TWO FLIP FLOPS IS SHOWN

AND CLEAR ARE COMMON HI 80TH FLIP FLOPS

truth table
J

K

M

CLEAR

On+1

0

0
0

1

On
1
an
D

O·

1

1
1

x

x

0

0
0
0
0
0

X

X

X

1

1

0

1
1
1

* Asynchronous Transition

3·66

0

6
-

Q,

J
Q,

I'

"'0

c

absolute maximum ratings

Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

(Note 1)

+80 VDe
+5.5 VDe
+5.5 VDe
_65°e to +150o e
3000 e

3:
.....

operating conditions
Supply Voltage (Veel
DM75L 12
DM85L 12

UI

MIN

MAX

UNITS

45
4.75

55
525

V
V

-55
0

+125
70

°c

r....
N

.......

c
3:

Temperature (T A)
DM?5L12
DM85L 12

°e

00

UI

r....
N

electrical characteristics
Vee ~ 5.0V, T A ~ 25°C,

RL

(Note 2)

~ 4krt, C L ~ 50 pF
CONDITIONS

PARAMETER
Vee = Max

Logical "0" Input Voltage

Vee

Logical' 1" Output Voltage

lOUT

Logical "0" Output Voltage

Md lOUT = 2 mA,
Vcc=Mln
Com lOUT = 3 2 mA,

ClfCUlt

-200IlA, Vee

=

VIN = 24V

0, J, K, M, Inputs, CP, CLEAR

VIN

Vee = Max

5 5V

24

Min

Current

M,

Supply Current - Icc Max

-3

VOUT =DV, Vee = Max
M2

=

Vee

=

=

CP

=

"0", All Other Inputs = "1"

MA
MA

-180

MA

-15

mA
mA

I,

60

120

ns

HI

35

70

ns

57

114

tpd1

Propagation Delay to a Logical
"0" from Clear to Output, tpdO

I"

6

MaXImum Clock Frequency

t HOLD Minimum

V
V

10
100

45

"

tpdO

Propagation Delay to a Logical

tS ETUP Minimum

03
04

Max

Propagation Delay to a Logical

''1'' from Clock to Output,

'-9

V
V

28
015
020

UNITS
V

07

Vee = Max

(Note 3)

"0" from Clock to Output,

MAX

13

V 1N =03V, All Inputs

Logical "0" Input Current

Output Short

=

TYP

13

Max

=

=

MIN
2

Logical "1" Input Voltage

Logical "1 ' Input Current

WAVEFORM
REF tt.

JK

t3, t4

Mode

t 7 ,110

Data

t 12, t13

JK
Mode
Data

t 5 , t6
t 8 , t9

t 14 , t 1 5

ns

MH,

10

77
81
45

140
150
90

ns
ns
ns

77
81
45

140
150
90

ns
ns
ns

Note 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVIce cannot be guaranteed. Except
for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limIts. The
table of "Electrical Characteristics" provides conditions for actual deVice operation.
Note 2: Unless otherWise specified min/max limits apply across the _55°C to -r125°C temperature range for the DM75L 12
and across the oOe to 70°C range for the DM85L 12. All tYPlcals are given for Vee = 5.0V and TA = 25°e.
Note 3: Only one output at a time should be shorted

3-67

ae test circuit

+5V

+5V

4.

ALL DIODES lN916
Cl " INCLUDES PROBE AND JIG CAPACITANCE

switching time waveforms

3-68

c

3:
.....

Series 54L/74L

C11

r-

C11
....

......

c

3:

CO
C11

r-

DM75L51/DM85L51 low power TRI-STATE® quad-D flip flop
general description

features

The DM75L511DM85L51 IS a TRI-STATE ® logic
device which provides four D-type flip flops In one
package which operate synchronously from a common ciock

•

Series 54L174L compatible

•

50 ns tYPical propagation delay

•

30 mW tYPical power diSSipation

•

Outputs directly connectable for bus-line operation

•

A "do-nothing" state accomplished without
gating the clock

•

Simple disable encoding

A unique three-state output allows the device to
be used In bus-organized systems_ The outputs can
be directly wired to outputs of other DM75L51/
DM85L51s without encountering the problems
normally met with "collector-OR Ing" LP TTL Circuits. ThiS IS accomplished by gating the normally
low Impedance logical "1" or logical "0" output
into a high Impedance state

....C11

The DM75L51/DM85L51 IS completely compatible
with other Series 54L174L devices

logic and connection diagrams
Dualwln·Line and Flat Package
INPUT

INPUT

DlSA8LE

~~

VeL

ClEAR

J

A

"

" " "

"

'" "

d
, ,

,

. .,r
;

~

OUTPUT

truth table
(Both Output Disables Low)

'.
DATA INPUT DISABLES
Logical

1 0111 or both Inputs

Logical

Oonb01h,,'ptJI<

0

0

Log,cdl"O'onbotll",puts

3-69

absolute maximum ratings
Supply Voltage
Input Voltage

Output Voltage
Operating Temperature Range DM75L51
DM85L51

(Note 1)

80V
55V
55V
-55'e to 125'e
oOe to 70'e

electrical characteristics

CONDITIONS

Logical "1" Input Voltage

DM75L51
Vee 04 5V
t-;-;-~--DM85L51- Vee 04 75V

Logical "0" Input Voltage

DM75L51
V ee o 45V
DM85L51- ~o475V

Logical "1" Output Voltage

DM75L51
Vee 04 5V
t-,---DM85L51- Vee 04 75V

Logical "0" Output Voltage

DM75L51
V ee o 45V
DM85L51- ~eo 4 75V

Third State Output Current

DM75L51
DM85L51

Logical "1" Input Current

DM75L51
Vee' 55V
DM85L51- ~'525V

Logical "0" I nput Current

DM75L51
DM85L51

(Note 3)
Supply Current" (each deVice)

Icc

(max)

Vee o 55V
Vee 525V

Vee' 55V
Vee' 525V

~i-

DM75L51
Vee' 55V
DM85L51- r--.----Vee' 525V

MIN
2
2

TYP

lOUT 0 -1 mA
lOUT

= -1 rnA

24
24

V ouT o 24V
V OUT ~ 0.3V
V ,N ' 24V

Y'N ' 55V
V IN 'O.3V
V OUT

:;:

OV

-3
-3

UNITS
V
V

07
07

27
27
015
02

2 rnA
lOUT 0 3 2 mA
lOUT:;:

MAX

13
13
13
13

DM75L51
Vee 05 5V
",----DM85L5'- Vee' 5.25V

Propagation Delay to a Logical "0" from

-65'e to 150°C
300'e

(Note 2)

PARAMETER

Output Short C'feu It Current

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

V
V
V
V

03
04

V
V

20
-40

IlA
IlA

<1
<10

10
100

IlA
IlA

-120
-120

·-180
-180

IlA
IlA

-8
-8

-15
-15

mA
mA

9

mA

55

Clock to Output, tpdO

TA

Vee' 50V
'25'e

77

120

ns

Propagation Delay to a Logical" 1" from

Vee' 5 OV
T A' 25'e

39

70

ns

Vee' 50V
T A' 25'e

72

110

ns

Vee' 50V
T A ' 25'e

18

50

ns

Vee' 50V
T A ' 25'C

32

75

ns

V ec '50V
25°C

28

55

ns

Vee' 50V
25'e

35

60

ns

Clock to Output, tpdl

Propagation Delay from Clear to
Output,

tpdR

Delay from Output DISable to High
Impedance State (from Logical "1"
Level),t 1H

Delay from Output Disable to High

Impedance State (from Logical "0"

Levell. tOH
Delay from Output Disable to

Logical "1" Level (from High
Impedance State), tH1
Delay from Output Disable to

Logical "0" Level (from High
Impedance State), tHO
MaXimum Clock Frequency
Input Data Setup Time, tSDATA

TA '

TA '

Vee' 50V
25'e
Vee' 50V
T A ' 25'e

T A'

6

15
+57

MHz
+10

ns

Input Data Hold Time, tHDATA

Vee' 50V
T A' 25°C

Input Disable Setup Time, tSOIS

Vee' 50V
T A' 25'e

33

45

ns

Vee = 50V
25'e

19

40

ns

Input Disable Hold Time, tH DIS

T A'

10

+2

ns

Note 1: "Absolute MaXimum Ratmgs" are those values beyond which the safety of the deVice cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits The table
of "Electrical Characteristics" provides conditIOns for actual deVIce operation.
Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DM75L51 and
across the aOc to 700e range for the DM85L51 All typlcals are given for Vee = 5,OV and T A = 25°e.
Note 3: Only one output at a time should be shorted

3-70

c

s:.....

UI

r-

UI

...a
-....

C

s:00
UI

ImAFORDRIVINGOTHERLPT1LINPUTS

r-

BUS LINES

UI

~
SELECTED AS
DRIVING_
DEVICE

...a

SELECTED AS
DRIVING
DEVICE

ZO"A.450UTPUTS- 9mA
LEAKAGE CURRENT

GATED INTO
THIROSTATE

GATED INTO
THIRD STATE - - .

GATED INTO
THIRD STATE

21"ALEAKAGECURRENT

FIGURE 1

FIGURE 2

FIGURE 3

mode of operation
The high Impedance state occurs on all outputs of
all devices except the four outputs of the one device selected (Figure '). The result is that the
selected device has a normal LPTTL low Impedance output prOViding good capacitive drive capability and waveform integrity especially dUring the
transition from a logical "0" to a logical "1". The
other outputs are all In the "third-state" and take
only a small amount of leakage current from the
dnvlng outputs. Since the logical "'" output current of the selected device IS 5 times that of a
normal Senes 54L/74L output ('.0 mA vs 200JlA),
the output is easily able to supply that leakage
current to as many as 45 connected devices and
stili retain enough drive for a full Series 54L/74L
fanout of 10 at the end of the bus line (Figure 2).
A tWO-input NOR gate facilitates selection of the
driVing device through the use of only two lout of
5 decoders for as many as 64 DM75L51/DM85L51s
(Figure 3)
A problem inherent in conventional D-type flip
flops IS that It is impossible to code the data input
In such a way as to cause the flip flop to remain in

o

Its present state when clocked. Because flexibility
IS not as great as with a J-K flip flop (and Its J=O,
K=O state), to keep a D-type flip flop in ItS present
state it IS usually necessary to gate the clock,
which Increases the danger of false-clocking. The
DM75L5,/DM85L5' contains a gated input disable
which does not disrupt clocking, but rather recirculates information from the Q output to the 0
Input. In th IS manner the flip flop does not change
state and the possibility of false-clocking IS eliminated.

The follOWing logic levels control the device:
• Clocking occurs on the positive-going transition.
• Clearing IS enabled by taking the Input to a
logical "'" level.
• Outputs are placed in the "third-state" If either
of the two Output Disable Inputs IS taken to a
logical "'" level.
• The flip flops will remain In their prevIous state
when clocked so long as either of the two Data
Input Disable inputs IS taken to a logical "'"
level.

3-7'

...

It)

..J

switching time waveforms

It)

co

:IE

, - - -______-;, ______________ 3v

Q

...

CLOCK

......

INPUT

CLOCK

13V

(SEE NOTE 2)

It)

INPUT

1.....- - - - - - - - - - -

..J
It)

....

ov

r-+-______, __________________ 3V

:IE

r---------------

INPUT

(PULSE I)
(SEE NOTE l)

Q

13V

3V

13V

I.....- - - - - - - O V

------Jt---------------- OV

""'

I--- '.., V.H

V

v.,
V.H

a OUTPUT

V..,

~J'

QOUTPUT

13V

QOllTPUT

v.,
V.H

0.0U1PUl

13V

13V

v.,

v.,

1---'.. _______

''''

,-----I--------- 3V

CLOCK
INPUT

13V

(SEE NOTEZ)

....._____ .V

,---r----------,-----t----------

3V

DATA

13V

INPUT

1~--_1---------------·V

r-1---,------------3V
13V

INPUT ________________....J
DISABLE

1.....- - - - - - - - ISDIS

ov

t!-lOIS

r-----------------------V~

-J/__

OUTPUT ____________________________________

J

,_3V_______________________

.,
V

r-------,------------------3V

CLEAR~

(SEE NOTE 4)

_'_3V_______________

oV

DUTPUl

''''f.--

V. H

~

'----------_______________ V.,

3-72

Notal

AlimputpulllllshlY1lt,"t,= 15HI

Note 2 Clo~k Input fplcllldoJ > 200 os Ind PRR = 500 kHz When testmg Ie....... U58 50% duty ~vcle
Note3 Pulplandpulse2 tp=10Dns.PRRIS50%ofthe~IOI:kPRR
NOlll4 IpI_I=>I00ns,PRR=500kHz

tpl....'1

NoteS tplDATAI

~

4 t,.ldo<*1 and PRR

~

125 kHz

NoteS tpIDISI=tplclockllndPRR=250kHz

o

3l:

......

switching time waveforms (con't)

UI

tOH

r-

...

UI

.......

o

3l:

CO
UI

I--'~'"nk::::l'-

VOLTAGE
OUTPUT

...r-

~'·h

lOGI~~~U~l _ _ _ _ _ _ _...
-;:--j---~--

UI

I

ACTUAl--------L----T-LOGICAL 0
VOLTAGE

"f

'" - - - - '"'~

\
OUTPUT

ac test circuits

~ OM15L51f~
TABLE!

DM85l51

~

HI

' - - - L-----r---'

.,!,
INPUT CONDITIONS

ACTEST

OUTPUT

OUTPUT

DISABLE 1

DISABLE 2

tpdO

GND

GND

See Note ,

to'd'

GND

GND

See Note I

CLOCK

DATA INPUT

DATA INPUT

DISABLE

DISABLE

rNPUTD

INPUTC

INPUTS

GND

GND

See Note 2

See Note 2

See Note 2

GND

GND

See Note 2

See Note 2

See Note 2

Voo

Voo

Voo

Voo
Voo

,~"

""
""
'"'
'"'

See Note 3

See Note 3

See Note 2

GND

See Note 3

See Note 3

GND

GND

See Note3

See Note 3

GND

tSDATA

CLEAR
GND
GND

See Note 2

GND

Voo

Voo

Voo

GND

GND

GND

GND

GND

Voo

Voo

Voo

Voo

GND

GND

Voo

See Note 2

GND

GND

GND

GND

GND

GND

See Note 1

GND

GND

See Note 2

See Note 2

GND

See Note 2

tso,s

GND

GND

See Note 1

See Note 3

See Note 3

See Note 2

t H01S

GND

GND

See Note 1

See Note 3

See Note 3

See Note 2

fclocl<

GND

GNO

See Note 7

tHDATA

INPUT A

Voo

GND

See Note 2

See Note 2

See Note 2

GND

SOffl Note 2

See Note 2

See Note 2

GND

See Note 2

See Note 2

See Note 2

GND

ac load circuit
'"

!
/

SWITCH 5,

SWITCH 52

C,

!pdO

Closed

Closed

50pF

Ipdl

Closed
Closed

50pF

TEST

SWITCH'

tpdR

""

OIlTPUTCL~

""

(SEENOTE4)J

'""

'"'

OIODES
ISEE NOTE 5)

'"'
tSCATA

,SWITC",

Note 1
Note 2
Note 3
Note4
Note5
Note6
Note7

Pulsegen PRR"500kHz,'tpJdo>o:k,:?:200ns.t,=t,= 15ns
See Ie SWitching time WB'Ieforms
Tie these inputs together. see It switching time waveforms
IncludesJlgandprobecapactllnce
Alldlodllare 1N3064orequlValent
Jlgcapacttance
Use 50% duty cycle

Closed

5pF

Open

Closed

50pF

Open

SOpF

Closed

Closed

50pF

Closed

50pF

tHOIS

!clock

5pF

Closed

IHOATA
'SOlS

50pF

1See Note 6)

50pF

Closet!
Closed

}

Closed

50pF
50pF

3-73

~

Ln

...J

Series 54L/74L

Ln

co

:!:

c

........
~

DM75L52/DM85L52 TRI-STATE® decade counter/latch
DM75L54/DM85L54 TRI-STATE
binary counter/latch

Ln

...J

Ln

.....
:!:

general description

c

features

The DM75L521DM85L52 and DM75L541DM85L54
are LPTTL TRI-STATE synchronous decade and
binary counter/latch circuits respectively. The cirCUit consists of a counter made up of four edgetriggered J-K flip-flops.

N

Ln

...J

Ln

co

•

:!:

c

........
Ln

...J

Ln
.....
:!:

c

38 mW typical power dissipation

•

Tf'll-STATE outputs directly connectable for
bl-ls-line operation

•

TRI-STATE outputs information may be latched

•

50 ns typical propagation delay

II Count mode and terminal count output are
~perable when the outputs are in the high
Impedance state or latch mode.

The circuits logically combine the function of
counters for frequency division, latches to hold
the counter's information, and output buffer gates
which allow active LPTTL outputs as well as the
high impedance (3rd) state for output multiplexing
of data.

N

Series 54L/74L compatible

•

•

B I a n kin 9 capability with the D M 7 5 L 52/
DM85L52

•

Positive true logic

logic and connection diagram
Packa~

DuaHn-Lme and Flat
V,c

Tf

L"

CP

"

PRESET CLEAR

"

Nt

CEP

,

" " "

~

1
,

t:ET

, , ,

;

"

,

I'

--"'--OUTPUTOUTPUTOUTPUTOUTPUT TERM

GND

D~~::~:S

C0 8

A

COUNT

typical application
Multi-Stage Synchronous Counter with Visual Display
DISPLAY

DISPLAY

DISPLAY

DISPLAY

UNIT

UNIT

UNIT

UNIT

Vee

COUNT
ENABLE

1"-,,

SIGNIFICANT
STAGES

CP
STROBE

3-74

c
absolute maximum ratings
Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Lead Temperature (Soldenng, 10 sec)

(Note 1)

80V
55V
55V
-65"C to 150°C
300°C

3:

operating conditions
Supply Voltage (V CCI
DM75L52115L54
DM85L52/85L54
Temperature (TAl
DM75L52,DM75L54
DM85L52,DM85L54

'-I

CJI

MIN

MAX

UNITS

4.5
4.75

55
5.25

V
V

-55

+125
70

o

r-

CJI
N

"c

3:

CO
CJI

r-

electrical characteristics

CJI
N

(Note 2)

C
PARAMETER

CONDITIONS

MIN

TYP

24

13

Logical "0" Input Voltage

13

Logical" 1" Output Voltage

lOUT

24

27

Logical "1" Output Voltage - Terminal Count

lOUT" -2001lA

24

28

Logical "1" Input Voltage

Logical "0" Output Voltage

Third State Output Current
Logical "1" Input Current

"CET"

"Other Inputs"

= -1

mA

DM75L52/DM75L54, lOUT" 2 mA

015

DM85L52/DM85L54, lOUT = 3 2 rnA

02

MAX

3:

UNITS

'-I

CJI

r-

07

CJI
~

"c
:s:CO

03
04

VOUT " 24V

20

CJI

VouT "03V

-40

CJI

V ,N "24V

<2

20

V ,N "55V

<20

200

Y'N = 24V

<1

10

Y'N = 55V

<10

100

r-

~

Logical "0" Input Current

"CET"

V ,N =03V

-240

-360

"Other Inputs"

Y'N

= 0 3V

-120

-180

IlA

-8

-15

rnA

Output Short Circuit Current (Note 3)

Supply Current - (Each Devlcel

V OUT = OV

-3

76

Icc (Maxi

150

ns

Vee=50V, TA = 25°C

115

220

ns

Vee = 50V, TA = 25°C

90

160

ns

Vee = 5 OV, T A = 25°C

8

15

ns

57

105

ns

75

150

ns

90

150

ns

tpdO

Propagation Delay to a Logical "'" from

Clock to any Output,

tpd1

Propagation Delay from

TE to Output,

DI

mA

75

Propagation Delay to a Logical "0" from

Ctack to any Output,

130

IlA

tpd (TE)

Delay from Output Disable to High Impedance
State (from Logical "1" Level), tlH
Delay'from Output Disable to High Impedance
State (from Logical "0" Level). tOH
Delay from Output Disable to Logical "1"
Level (from High Impedance State), tHl
Delay from Output DI"able to Logical "0"
Level (from High Impedance State), tHO

Vee = 50V, TA = 25°C

Max Imum Clock Frequency

Vee= 50V, TA = 25°C

6

11

MHz

Nota 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherWise specified minImax limits apply across the -5SoC to +125°C temperature range for the DM75L52,

DM75L54 and across the O°C to 70°C range for the DM85L52,DM85L54 All tYPleals are given for VCC = 50V
TA = 25°C

and

Note 3: Only one output at a time should be shorted

3·75

'lit

It)

...I

mode of operation

It)

CIO

:E
Q

.......
'lit

It)

...I
It)

"'"
:E
Q

N

When the Transfer Enable (TE) IS at a logical "1"
level the data transfer paths between the counter
outputs and the output buffer gates are maintained .
When the Transfer Enable IS at a logical "0" level,
the data transfer paths are inhibited, and the state
of the output buffer gates are locked in by the
latches. The counter and Terminal Count (TC)
output remain operable dUring this time.

• Clearing or presetting is enabled by taking the
respective Input to a logical "1" level.

Asynchronous Clear (CL) resets the counter to
0000.

• To place the TRI-STATE outputs into the
"third-state" either of the Output Disable (OD)
Inputs must be taken to the logical "1" level.

• To enable the count mode both CET and CEP
inputs must be at a logical "1" level.
• To latch the outputs the Transfer Enable (TE)
input must be taken to the logical "0" level.

It)

...I

Asynchronous Preset (PRE) sets the counter to
1111. The 1111 state may be used In the
DM75L52/DM85L52 for blanking out leading
zeroes In visual displays. The next clock pulse
will advance the DM75L52/DM85L52 to 0001
which denotes the first count of the blanked
zero. The next clock pulse will advance the
DM75L54/DM85L54 to 0000.

It)

CIO

:E
Q

.......
N

It)

...I
It)

:E
"'"

The clock Input must be high dUring the high to
low transitIOn of CEP and/or CET for correct
logiC operation. The CEP and CET Inputs may be
used in a high speed look ahead technique (see
application) .
Cou nter stages can be cascaded as shown above
to prOVide multiple stage BCD or Binary synchronous counting by using the DM75L52/DM85L52 or
the DM75L54/DM85L54 respectively. With a Terminal Count (TC) fan out of ten the above scheme
allows eleven stages to operate at the maximum
frequency equ ivalent to a two stage counter.

The Terminal Count (TC) output IS active high
when the counters are at terminal count and the
CET is high. The Terminal Count logiC equations
are:

Q

DM75L52/DM85L52

TC = CET'A'B'C'D

DM75L54/DM85L54

TC = CET'A'8,C'D
The characters displayed can be held with a low
level on the strobe line while the counters can
continue counting. The display can be updated by
applying a positive pulse to the strobe line.

The following logiC levels control the device:
• The counters changes state on the positlvegOing transition of the clock.

logic tables
FUNCTION TABLE
OUTPUTS

INPUTS
001

002

eEP

eET

CLEAR

PRESET

TE

1

x

x

x

1
0
0
0
0

X
X

x

X
0
0
0
0

X
X

X

X
X

X
X
1

x
x
x

x
x

1

1

1
0

,

x

x

0

0

A

B

e

Te

0

"High Impedance State"

,

'H~ro'r~'i s~" ..

0
1

LATCH
COUNT

1

1

1

0

1

'Functlon of the count sequence

DM75L52/DM85L52
DECADE COUNT SEQUENCE
OUTPUTS
e
0

OUTPUTS

COUNT

A

B

0
1

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
0
1

1
1

1
0

1
0

1
0

0
0

2
3
4
5

6
7
B
9

Te

**tfPreset
Applied
Next
Count

**The 1111 state may be used In conjunction with
certam decoder/drivers Ie, DM5446. DM5447
and DM5448 for blanking leadmg zeroes

3-76

DM75L54/DM85L54
BINARY COUNT SEQUENCE

COUNT

0
1

2
3
4

5
6
7
B
9
10
11
12
13
14
15

A

B

e

0

Te

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

c

s:
"r-CJ1

logic diagrams
DM75L52/DM85L52

,

OUTPUT

,

OUTPUT

"

r¢

J

OUTPUT
DISABLE

,

OUTPUT

r¢
"

o

r¢

~ ~
,

"

"

TRANSFER

ENABLE

CJ1
N

.......

C

s:
CO

~

,

TERMlIIIAl
COijtlT
OUTPUT

OUTPUT

CJ1

,
LATCH

,

"

r-

CJ1
N

,

C

s:

"rCJ1

CJ1
~

r-i>

.......
C

r---!--:-D'
----<"

a

:::u'

,

-+,-

r---!---

r--

--r--.; ,

a

"

- ~,

,

~'

"

'--

I

-+,-

>-- ~'

a

s:

-

CO
CJ1

r-

"

,

~,

~sp-

L......B4\u-

a

~'

~~

CJ1
~

a

~~

GOUNTENABLE

TRICKlf 0 -

rrDM75L54/DM85L54

,

OUTPUT

I

I

OUTPUT

OUTPUT

DISABlES

"

,

OUTPUT

CUTPIJT

o

I

COUNT
ENABLE~

COUNT
ENABLE

v

,o--{;;:

3-77

'lit
It)

...J

ac test circuit

It)

co
~

C
.......

~
I
AC
•

~

'lit

SEE
TABLE 1

It)

...J

OM15L52,
DM15L54

LOAD

~

'---

It)

r-.
~
C
FIGURE 1

N
It)

...J
It)

co

INPUT CONDITIONS

~

OD1

TEST

C
.......
N

It)

...J
It)

r-.
~

C

002

CET

CEP

CLEAR

PRESET

TRANSFER
ENABLE

CP

tpdO

GND

GND

Vee

Vee

GND

GND

See Note 1

tpd1

GND

GND

Vee

Vee

GND

GND

See Note 1

Vee

tpd(TEI

GND

GND

Vee

Vee

GND

GND

See Note 1

See Note 2

Vee

t'H

See Note 4

See Note 4

GND

GND

GND

Vee

GND

Vee

tOH

See Note 4

See Note 4

GND

GND

Vee

GND

GND

Vee

t H,

See Note 4

See Note 4

GND

GND

GND

Vee

GND

Vee

tHO

See Note 4

See Note 4

GND

GND

Vee

GND

GND

Vee

fCLOCK

GND

GND

Vee

Vee

GND

GND

See Note 9

Vee

TABLE 1

ac load circuit

TEST

SWITCH 81 SWITCH S2

CL

4001)

INPUTS

-

DM75L52,
OM15l54

r
T

...

....

c,

~:SEE
NDTES
)

"

tpdO

~,

r

DIODES
(SEE NOTE 6)

--

Closed

50 pF

tpd1

Closed

Closed

50 pF

tpd(TEI

Closed

Closed

50 pF

t'H

Closed

Closed

50 pF (See Note 8l

tOH

Closed

Closed

50 pF (See Note 8)

tH,

Open

Closed

50 pF

tHO

Closed

Open

50 pF

fclock

Closed

Closed

50 pF

FIGURE 2

Note 1 Pul5l! 9tll PRR.:;; 1 MHz, t,.< 15nl, lj< 5 ns, tpldod~Tcl,tJ>dlITCI.
Note8 Jlgcapacltance
Notll9 '_uSII50%dutycyde

3·78

Closed

0

s:

switching time waveforms

~

U1

Q

.{""""\
CP

~

~

\

r-

JV

U1

13V

N

OV

........

JV

s:
co

0

r---tplclockl

I \

PRESET

1

13V

\

U1

r-

OV

n--

CLEAR

J

L

U1

N

JV

0

13V

s:

OV

~

U1

JV

\

CE

r-

U1
-i=Io

13V

\

ov

........

0

s:
co

JV
13V

TE

U1

r-

OUTPUTS

OR
TC

-

OUTPUT

'pd1

tOR,

~
L~
r---- t----

U1
-i=Io

v"
13V

v"

tpdO

tOR

lV
lJV -IE

TE

ov

--~t---

,lV---t--t-

OUTPUTS

J

-

DI

-j~--IJV

OV

13V

V"---t--I'--V oc

;+Elr--

t1H

tOH

INPUTt

OV

13V
OV

"~

ACTUAL
LOGICAL'T'

OUT:U~~

VOLTAGE

ACTUAL
LOGICAL "0"

VOLTAGE

-j

JV
13V

"h
----r

OUTPUT,

5V

tHO

tH1

·"E"

INPUT

13V
OV.

OUTPUT

J

OUTPUT

J

JV
13V

13V
13V

3-79

c.o

r-.

...I

Series 54L/74L

c.o
co
~
C
.......

r-.

DM76l75/DM86l75 low power presettable decade counter
DM76L76/DM86L76 low power presettable binary counter

c.o

general description

~
C

The DM76L75IDM86L75and DM76L76/DM86L76
are synchronous up decade and binary counters
respectively. They have synchronous parallel load
capability, overriding asynchronous master reset,
terminal count and carry look·ahead logic for high
speed multl·decade operation.

c.o

...I

r-.

Operation can best be understood by realizing that
in order for counting to occur both C EP and C ET
must be at logical "1" levels. In addition the Tc
output is a logical "1" only when a counter is at
its maximum count (9 for the DM76L 75/DM86L1 ;
and 15 for the DM76L76/DM86L76) and when
the CET Input IS at a logical "1" level. Therefore
If counters are connected as shown, a more slgnlfl'
cant counter stage cannot be clocked until all
previous counters are at their maximum count.
The reason for the feedforward connection from
the least significant counter to all C EP Inputs IS
that no counter needs to wait for a ripple from the
previous counter when the least significant counter
changes from a maximum count to zero.

The counters are synchronous, with the counter
outputs changing state after the logical "0" to
logical "1" transition of the clock. When the
parallel enable input IS low, the parallel inputs
determine the next state of the counter synchronously With the clock.
Mode selection is accomplished as shown In the
table below. However the transition of CEP or
CET from logical "1" to logical "0" or of PE from
logical "0" to logical "1" may only be done With
CP In the logical" 1" state.

features

A logical "0" level on M R will reset all outputs
to logical "0".
The purpose of the CEP and CET Inputs and the T c
output is to prOVide for a fast propagation delay
when cascading several decades (shown below).

•

32 IT!W tYPical power

•

13 MHz tYPical count frequency

•

Series 54L/74L compatible

•

Pin compatible With 93L 10, 93L 16

logic and connection diagrams
i"

'I'

l c:?l-

I

:l

, ,

I
I

~'"

~\

i'

F,£t~
t::?r"O

IL __

-'-~

"

~

Dotted Ime IJortoons

------

p',

~'"'

Dr:',:

~',.'

- - ----

----- --

-

I
~

I
.p~h&able

"

0,

"co"

to DM75L 75/IlM86L 75 only

Dual-In-Line and Flat Package

3·80

r=-l-

~lr;-

I

,
Nut~

I
L

0,

J'..

0,

c

absolute maximum ratings

s:.....

(Note 1)

Supply Voltage
I nput Voltage
Output Voltage
Operating Temperature Range
DM76L75,DM76L76
DM86L75, DM86L76
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

Vee =: 4 5V
V cc -475V

Logical "0" Input Voltage

DM76L75/76
DM86L75/76

V cc =45V
Vee 475V

Logical "1" Output Voltage

DM76L75/76
DM86L75/76

Vee =: 4 5V
Vee - 4 75V

.......

.....

MIN

C

s:.....

V

V

07

0)

r-

.....

V

31

2.4

lOUT'" -200.uA

0)

Vcc=55V
Vee 525V

VIN '" 24V

CET

DM76L75/76
DM86L75/76

Vee == 5 5V
V cc -525V

V 1N =24V

DM76L75/76
DM86L75176

Vcc=55V
Vee 525V

VIN = 03V
V 1N =04V

DM76L75/76
DM86L75/76

Vcc=55V
Vcc- 525V

VIN ==

DM76L75/76
DM86L75/76

Vee'" 5 5V
Vee 525V

DM76L75/76
DM86L75/76

Vee'" 5 5V
V cc -525V

Supply Current

UNITS

MAX

13

13

DM76L75/76
DM86L75/76

(Note 3)

TVP

20

Logical "1" Input Current
All Inputs Except GET

Output Short Circuit Current

0)

r-

Vee'" 4 5V
Vee 475V

CET

C

s:00
C1I

DM76175176
DM86L75/76

All Inputs Except CET

.....

-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

CONDITIONS
DM76L75/76
DM86L75/76

Logical "0" Input Current

r-

C1I

(Note 2)

logical ''1'' Input Voltage

Logical "0" Output Voltage

0)

8V
5.5V
5.5V

02
02

lOUT == 2 0 mA
lOUT

VIN

==

VIN '"

32mA

-3

C

s:
00

10
100

MA
MA

20
200

MA
MA

0)

-100

-180

MA

0)

-200

-360

MA

-9

-15

mA

9

mA

5 5V

a 3V

V
V

03
04

5 5V

V 1N =04V

.......

65

r-

.....

Propagation Delays

UI

Clock to Any Q Output
65
45

110
75

ns
ns

tpd1

85
70

140
115

ns
ns

tpdO
tpdl

35
35

60
60

ns
ns

"dO
tpd1

Clock to Tc Output
tpdO

GET to T c Output

t,ICE)
t, ICE)

Setup Time CE
Release Time CE

40
50

65
80

ns
ns

t,
t,

Setup Time P Inputs
Release Time P Inputs

15
15

30
30

ns
ns

ts(PE}
t,Il'E')

Setup Time Parallel Entry
Release Time Parallel Entry

40
40

65
65

ns
ns

Count Frequency

6

13

MHz

Clock Pulse Width

60

25

ns

Reset Pulse Width

80

30

ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the
devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions
for actual deVice operation.

Note 2: Unless otherwise specified minImax limits apply across the _55°C to +125°C temperature
range for the DM76L75 and DM76L76 and across the O°C to 70°C range for the DM86L75 and
DM86L 76. All tYPlcals are given for Vee = 5 OV and T A = 25°C.

mode selection
PE

CE

MODE

1
1

1

Count
No Change
Preset

o

o
X

cascading counters

~
CCC~'C'PC"'

'0

~

e"
~

'0

e"

~

"

e"

~

COIJNT·_...._ _ _ _...._ _ _ _...._ _ _ _...._ _

3·81

...

N

...I

Series 54L/74L

CIO
CIO

:E
Q

DM88L12 TTL-MOS hex inverter/interface gate
general description
The DM88L 12 IS a low power TTL to MOS hex
Inverter element. The outputs may be "pulled up"
to +14V In the logical "I" state, thus providing
guaranteed Interface between TTL and MOS logiC
levels. The gate may also be operated With Vee

levels up to +14V Without resistive pull·ups at the
outputs and still providing a guaranteed logical "1"
level of \Icc - 2.2V With an output current of
-200 !lA.

schematic and cOhnection diagrams

Dual~ln-Line

40'

10K

and Flat Package

500

GND
TQPVIEW

"'
Note Shown Isschemal'c for each mve.le.

typical applications
TTL Interface to MOS ROM

TTL Interface to MOS ROM

Without Resistive Pull-Up

With Resistive Pull-Up

•
NATIONAL MOS ROM
{EXAMPLIMM521l

ac test circuits

switching time waveforms

p--30V

Vc,"140V

INPUTJ

J"'"''
3-82

fORVCC "14V

FORVcc ·50V

Figure 1

Figure 2

,..

i\---

::

ounUT~:1
,
.
,

1--- 50%---,

::

todO

-!

::

!~-:

:__

'0"'

~:;fO~;~ns

c
absolute maximum ratings

3:

operating conditions

(Note 1)

00
00

MAX

MIN
Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Lead Temperature (Soldering, 10 secl

15V
55V
15V
--£5' C to +150' C
300'C

electrical characteristics

Supply Voltage
DM78L12
DM88L12

CONDITIONS

MIN

125
70

'c
'c

=

MAX

1.3
13
13
13

Vee= 140V
Vee

-55
0

TYP

20
20

Vee= 140V
Vee = Mm

Logical "0" I nput Voltage

5.5
5.25

Min

UNITS
V
V

07
07

Vee = 140V V ,N =07V
Vee = Min
Y'N = 0 7V

lOUT = -200)lA
lOUT = +200 JJ.A

Logical "0" Output Voltage

Vee = 140V Y'N = 2.0V
Vee = Mm
Y'N = 20V

IOUT= 12 mA
lOUT = 3 2 rnA

Logical"'" I nput Current

Vee= 140V Y'N = 24V
V 1N = 24V
Vee = Max

<1
<1

20
10

)lA
)lA

Vee = 140V Y'N = 5 5V
Vee = Max
Y'N = 5 5V

<1
<1

100
100

)lA
)lA

Vee = 140V Y'N = 04V
V ,N =04V
Vee = Max

-320
-100

-500
-180

)lA
)lA

-25
-8

-50
-15

rnA
rnA

Output Short Circuit Current INote 3)
Supply Current - LogIcal" 1"
(Each Inverter)

Logical "0"

.

Propagation Delay to a Logical "0"

Vee= 140V
Vee

=

Max

VOUT=

V OUT

OV

= OV

118
145

120
150

V
V

Logical"'" Output Voltage

Logical "0" Input Current

05
02

-10
-3

V
V
10
04

V
V

Vee= 140V Y'N = OV
Vee = Max
Y'N = OV

032
011

050
016

rnA
rnA

Vee= 140V Y'N = 525V
Vee = Max
Y'N = 5.25V

10
03

15
05

rnA
rnA

V ee =50V
TA= 2SoC

See Figure 2

27

45

ns

Propagation Delay to a Logical "0"
from Input to Output, tpdO

Vee= 140V
See Figure 1
TA=25'C

11

20

ns

Propagation Delay to a Logical "1"
from Input to Output, tpdl (Note 41

Vee= 50V
TA = 25'C

See Figure 2

79

100

ns

Propagation Delay to a Logical "1"
from Input to Output, !Pdt

Vee" 140V
See Figure 1
TA = 2SOC

34

55

ns

from Input to Output,

tpdO

N

(Note 2)

PARAMETER
Loglca' "1" Input Voltage

4.5
475

V
V

Temperature
DM78L12
DM88L12

r....

UNITS

Nota 1: "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits. The table of "Electrical Characteristics" prOVides conditions
for actual deVice operation
Note 2: Unless otherWise specified minImax hmlts apply across the -5SoC to +12SoC temperature
range for the DM78L12 and across the O°C to +70°C range for the DM88L12. All tYPlcals are
given for V CC = 5.0V and T A ~ 25' C, or for V CC ~ 14.0V and T A = 25' C.

Note 3: Only one output at a time should be shorted.
Note 4: t pd1 for VCC = S.OV IS dependent upon the resistance and capacitance used.

3-83

en

...

CD

Series 74S
REFERENCE
The following table references all PhYSical DimenSion Drawings for the devices In thIS section. For Order
Numbers, see below * Refer to the alpha·numerlcal Index at the front of thIS catalog for complete device
title and function. Packages (pages I thru VI) are In the back of the catalog.
DATA SHEETS

Devices
DM74S00
DM74S03
DM74S04
DM74S05
DM74S10
DM74S11
DM74S15
DM74S20
DM74S22
DM74S40
DM74S64
DM74S65
DM74S74
DM74S86
DM74S112
DM74S113
DM74S114
DM74S135
DM74S140
DM74S151
DM74S251
DM74S153
DM74S253
DM74S157
DM74S257
DM74S158
DM74S258
*Order Numbers

PACKAGES

Pg.
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4·1
4-1
4-1
4-1
4·5
4·1
4-1
4-1
4·5
4·1
4·7
4·7
4·7
4-7
4-7
4·7
4-7
4-7

Molded DIP (N)
Fig.

Pg.

3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
3
3
5
3
5
5
5
5
5
5
5
5

II
II

Cavity DIP (D)(J)
Fig.

Pg.

Type

Flat 'ack (F)(W)
Fig.

Pg.

Type

Metal Can (G)(H)
Fig.

Pg.

Type

WAVEFORMS
Fig.

Pg.

TEST
CIRCUITS
Fig.

Pg.

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

use Device No suffixed with package letter, I.e. DM74S00N

4-i

CJ)

...

CD

Series 74S

CD

en

series DM74S schottky-clamped transistor-transistor logic
general description
The gates, inverters, buffers and flip flops in the
DM74S series are ultra-high speed versions of the
similarly numbered devices in National's standard
senes 54/74 family. They can be used In combina·
tion with series 54/74 circuits whenever the absolute
minimum propagation delays are required.

•

Higher source and sink currents than standard
TTL

•

Fanout of 10 series DM74S loads or 12 standard
series 54/74 loads

•

Compatible with all senes 54/74 families

features

•

Pin identical to lower speed deVices

• Typical gate delay of 3 ns

•

19 mW typical power dissipation

connection diagrams (Dual-In-Line Package, Top Views)
DM74S00

DM74S03

DM74S05

DM74S04

tpd=lnstyp

tpd"5nstyp

tpd=3nstyp

tpd"5nstyp

Po" 19mWtvp/Gate

Po "17 mWtyp/Gate

Po" 19 mW tvp/Gate

Po" 17 mWtyp!Gate

DM74S11

DM74S15

DM74S20

DM74S10

tpd=3nstyp

tl>

MAX

TY>

75

t pLH

Propagation Delay Time,
Low tu High Level Output

tpHl.-

Propagation Delay Time,
High to Low Level Output

Data

tpLH

Propagation Delay Time,
Low to H'gh Level Output

Select

t pHL

Propagation Delay T,me,
High to Low Level Output

Select

95

15

tpLI<

Propagation Delay Time
Low to High Level Output

Strobe

85

125

tpHL

Propagatloll Dela', Time,
High to low Level Output

Strobe

75

12

',"

Output Ellable Time to
H'l}h Level

Output Control

Data

45

=

15 pF

=

280H

UNITS

75

65

95

MAX

45

15

85

65

15

11

'"

Output Enable Time to
Low Level

Output Control

.~,

Output Disable Time
From High Level

Output Control

Output DISable Time
From Low Level

Output Control

'"

MIN

~

50 pF,

=

280n

11

13

195

14

21

55
CL = 5 pF,
RL ~ 280n,
(Note 1)

85

14

DM7 4S 158/DM7 4S258
SYMBOL

FROM
(INPUT)

PARAMETER

TO
(OUTPUT)

tpLH

Propagation Delay Time
Low to High Level Output

Data

A,ly

tpHL

Propagation Delay Time,
High to Low Level Output

Data

AllY

t pLH

Propagation Delay T,me
Low 10 High Level Output

Select

Any

tpHl.-

Propagation Delay Time,
High to Low Level Output

Select

Any

TEST
CONDITIONS

=

15 pF

=

280£1

DM74S158

MIN

TY>

DM74S258

MAX

MIN

TY>

12

12

MAX

UNITS

12

75

12

Note 1 See load Circuits and waveforms on page 4 of thiS data sheet

4·9

ac switching characteristics (con't)
DM74S158/DM74S258
PARAMETER

SYMBOL

II)

DM74S158

FROM

TO

TEST

(INPUT)

(OUTPUTI

CONDITIONS

MIN

Q)

...

tpLH

Propagation Delav TIn'le,

Strobe

Aoy

Strobe

Aoy

Aoy

Low-to High-level Output

Q)

en

CL

:.

15 pF,

TVP

DM74S258

MIN

MAX

65

12

7

12

MAX

TVP

UNITS

"'

RL "'280n,

tpHI..

Propagation Delay Time,

t,"

Output Enable Time to
High Level

Output Control

t"

Output Enable Time to

Output Control

Aoy

t",

Output Disable Time

Output Control

Aoy

Output Control

Aoy

(Note 1)

"'

High to Low Level Output

13

CL = 50 pF,

oo

21

oo

RL = 280n
(Note 1)

"

Low Level

oo

85

55
CL = 5pF

From High Level

Output Disable Time
From Low Level

t"

195

AI.." 280U,

9

(Note 1)

"'

"

Note 1 See load Circuits and waveforms on page 4 of this data sheet

ac load circuits

voltage waveforms
Propagation Delay Times

B,-state Totem-pole Outputs

TRI-5TATE Outputs

IN'UT~

3V

r,sv

,.) i".

Tm
POINT
TEST
POINT

'"

··'-'n

IR'
"

Cl

""'' 1

OUTOFPHASE
OUTPUT

FROM OUTPUT
UNDUTEST

UNDEflTEST

'5~''"

'"

IN PHASE
OUTPUT

"

r-'~.:.."j

~IPLH

'"

'0'

~
IGV

VOH

ISV

---'oc

(Ngte2)
(Noll 2)

lkl!

-=-

"1

" ... " -=-

Enable and Disable Times, TRI-5TATE Outputs

'--

OUTPUT
CONTROL

f'

(~~~i~,~~~ ~
WAVEfORM I
(Iottl!

WAVEfORM 2
(lIote3)

~"

~'"~m'''
:':~q-->li
Zl

SIClOSEO~1511

SIANO
nCLOIEO

.45\1

r..2

SlClOSEO

'0'

511

110"

SIANO
S2ClOSfO

asv

~~15\1

15\1
• all

logic diagrams
DM74S151
STROBE

OUTPUT
CONTROL

"" '"
" '"
"' '"
"'
"

~~a
~

os

"
"

4-10

vF

114)

r

(5)

OliTPUTW
(INVERTING)

~. ,

,

v

~

r!

"' '"
"'
"
"

DATA
SELECT
(BINARYI

(S)

16)

(151

"

~

~,

(4)

"' '"
DATA
INPUTS

I-"

112)

B (lOIr-....
C
(91 r-....

~~UlPUTV
mONINVERTING)

~

1131

)11)

DATA
SELECT
(BINARVI

Ff--h-

115)

In

""
" '"

~

111

DATA
INPUTS

DM74S251

In

['

B
C

1\4)

~

nJl
(UI

(111

110L.f-.,.
(91----""

v

r;::-:- ,
~. ,

r----->,

DIJTPIJTV
(NDNINVERTlIIG)
OUTPlITW
(tNVERTINGI

logic diagrams (con't)

CD
1/1
DM74S253

DM74S153

"",1::"0"'-'01---FfFL--J
'" o.!!'-------+H-F=L..__

SELECT

{

'" o.!!'-------;:==+~I=L....I

'I

'21

:
SELECT

{

:

OUTPUTlY

OUTPUT
CONTROL

DM74S257

DM74S157
OUTPUT

CONTROL

DM74S158

DM74S258

4-11

truth tables
DM74S151/DM74S251
OUTPUTS

INfUTS

II)

G)

...

SELECT

G)

t/)

DATA

STROBE

DM74S251

DM74S151

C

B

A

OUTPUT
CONTROL

DO

01

02

03

0'

05

06

07

Y

W

Y

W

x

x

X

H

X

X

X

X

X

X

X

X

L

H

Z

Z

H

L

L

L

L

L

X

X

X

X

X

X

X

L

H

L

L

L

L

L

H

X

X

X

X

X

X

X

H

L

H

L
H

L

L

H

L

X

L

X

X

X

X

X

X

L

H

L

L

L

H

L

X

H

X

X

X

X

X

X

H

L

H

L

L

H

L

L
L

X

X

L
H

X

X

X

X

X

L

H

L

H

L

H

X

X

X

X

X

X

X

H

L

H

L

L
L

H

H

X
X

X
X

X
X

X
X

L
H

H
L

H

X

X
X

L

X

L
H

X

H

L
L

X

H

H

L

H

L

L

L

X

X

X

X

L

X

X

X

L

H

L

H

H

L

L

L

X

X

X

X

H

X

X

X

H

L

H

L

H

L

H

L

X

X

X

X

X

L

X

X

L

H

L

X

X

X

X

X

H

X

H

H
L

H

L

X

e

H

H

L

L
H

X
X

L

H

L

H

H

L

H

L

X

L
H

L

H

H

H

L

L
H

L

H

H

L

L

X

X

X

X

X

X

H

H

L

L

X

X

X

X

X

X

H
H

H
H

H

L

X

X

H

L

X

X

X
X

X
X

X
X

X
X

X

DM74S153/DM74S253
STROBE

SelECT
INPUTS

OUTPUTS

DATA
INPUTS

OUTPUT
CONTROL

DM74S153

DM14S253

B

A

G

CO

C1

C2

C3

y

y

x

X

H

X

X

X

X

L

Z

L

L

L

X

X

X

L

L

L

L

L

H

X

X

X

H

H

L

H

L

X

X

X

L

H

L

X

L
H

X

X

L
H

L
H

H
H

L

L
L

X
X

L
H

X
X

L
H

L
H

H

L
H

X
X

L

X

X

X

L

H

H

L

X

X

X

H

L
H

H

L

L

DM74S157/DM74S257,DM74S158/DM74S258
STROBE

SELECT
INPUT

A

B

DM74S157

DM74S158

DM74S257

DM74S258

X

H

X

L

H

Z

Z

L

L

X
L

X

L

H

L

H

L

L

H

X

H

L

H

L

H

L

X

L

L

H

L

H

H

L

X

H

H

L

H

L

H' hIgh level l,

4-12

OUTPUT Y

DATA

OUTPUT
CONTROL

~

low level X

~

Irrelevant, Z" h'gl1lmpedance (off)

L

en

...

CD

Series 930

CD

UI

CD
W

REFERENCE

o

The following table references all Physical Dimension Drawings, Waveforms, and Test Circuits for the devices
in this section. For Order Numbers, see below. * Refer to the alpha-numerical Index at the front of this
catalog for complete device title and function. Packages (pages I thru VI) are in the back of the catalog.
DATA SHEETS
Devices

Pg.

PACKAGES
Molded DIP (N)
Fig.

DM930
DM932
DM933
DM935
DM936
DM937
DM944
DM945
DM94 6
DM948
DM949
DM957
DM958
DM961
DM962
DM963
DM1800
DM1801
DM9093
DM9094
DM9097
DM9099

5·3
5·5
5-5
5-3
5-3
5-3
5-5
5-7
5-3
5-7
5-3
5-5
5-5
5-3
5-3
5-3
5-3
5-3
5-7
5-7
5-7
5-7

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Pg.

Cavity DIP (D)(J)

Flat Pack (F)(W)

Metal Can (G)(H)

Fig.

Fig.

Fig.

Pg.

Type

Pg.

Type

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Pg.

Type

WAVE·
FORMS
Fig.

Pg.
5-4
5·6
5-6
5-4
5-4
5-4
5-6
5-9
5-4
5-9
5-4
5-6
56
5-4
5-4
5-4
5-4
5-4
5-9
5-9
5-9
5-9

TEST
CIRCUITS
Fig.

Pg.
5·4
5·6
5-6
5-4
5-4
5-4
5-6
5-9
5-4
5-9
5-4
5-6
5-6
5-4
5-4
5-4
5-4
5-4
5-9
5-9
5-9
5-9

*Order Numbers: use Device No. suffixed with package letter, i.e. DM930N.

5-i

C
-I
r-

Series 930

en

.

CD
CD

CII

CD

DTL series 930 integrated circuits

W

o

general description
The National Semiconductor family of DTl
(Dlode-Translstor-logic) is a complete line of compatible monolithic Integrated circuits designed to
operate at medium speed with medium power dissipation and high fan-out. The DTl family is available in 14-pin, silicone, dual-In-Ilne packages for
operation over the O°C to 75°C temperature range.
The DTl line is composed of a variety of NAN D
gates that allow complete design flexibility. The
gates are available with either 6K pull-Up resistors
for low power dissipation, or 2K pull-Up resistors
for Increased speed. The gate outputs can be wired
together to achieve the wired-OR function.
The NAND gates are complemented with the

DM932 and DM957 buffers which provide higher
fan-out, the DM944 and DM958 power gates
which have an open collector, and the DM933
extender which allows Increased fan-in for both
buffers and the DM930 and DM961 gates.
The binaries In this family are of the direct coupled master-slave type with direct clear and direct
set lines. The dual flip flops include ones with
either common or separate clocks.
The DM930 series is directly compatible with the
TTL devices manufactured by National and can be
used in conjunction with them In those portions
of a system where speed IS not the main consideration.

table of contents
Absolute Maximum Ratings •...•.••..•..••.•..••••.•.•••..•••.••.•.•.•..•••....•.••.•..••..••.•.. 5-2
Connection/Logic Diagrams .••..••••.......•.•••..••..•....•••.••...•.•..•••.••••••.•.••••••.••.. 5-2
NAND Gates .•...••••.•..•...•..•.••.•..•. , . • . •• .•. ..•. ... .. .•• .••••••.•••••. •. .•.• • ••.••. ••••• 5·3
DM930, DM961 - dual four input gates with expanders
DM935, DM936, DM937 - hex Inverters
DM946, DM949 - quad two Input gates
DM962, DM963 - triple three Input gates
DM1800, DM1801- dual five Input gates
Buffers/E xtender • • . • . . . • . • • • . . • . • . . • . . . . . . • • . . . . • . • • . . • • . . . . • . . • . • • . • • . • . • • • . • • • • . • • • . • . . • . . • • .. 5-5
DM932 - dual four input buffer with expander
DM933 - dual four Input extender
DM944 - dual four input power gate with expander
DM957 - quad two Input buffer
DM958 - quad two Input power gate
Binaries ..•••••••..........•..•.............••...•••.....•..•..•••••••••.••..•.••.•......••.•.•. 5-7
DM945, DM948 - RS flip flops
•
DM9093, DM9094, DM9097, DM9099 - dual JK flip flops

5·1

o(V)
en

absolute maximum ratings
Power Supply Voltage
Continuous
Pu Ised < 1 sec.
Input Forward Current
Input Reverse Current
Output Current
Gates and B maries
Buffers
Storage Temperature
Operating Temperature

8.0V
l2.0V
10mA
1.0 mA

30mA
100mA
-65°C to 150°C
DoC to 75°C

connection/logic diagrams

:::::[::;~~3L_J:l--+13--+--..1
1I---j.-_ _ _.J
DM930/DM961
DM932/DM944
DM1800/DM1801

13_--j._ _"

;>00----+-- 10
13-+-----1 ':><>--1-- 12
11-+--1

DM935/DM936/DM937

=t=:::c):>---+-IO

DM946/DM949

10--,--1..-:=
11--'--'--'=

}-__-+_11

13-+----'

"'--~-

DM962/DM963

DM933

DM957/DM958

10-+---_...,

10-+----"

10-+++----.

11-+---1
13_+_-Q

l1-++-H

12-+--1

12-+--H
13-+~""'-~

DM945/DM948

5-2

11

»--+--12

,,--+___-1

1I--+__

1312::::j~:D--t-

DM9093/DM9094

DM9097/DM9099

NAND gates
The DM930, DM936, DM946 and DM962 are a
variety of NAND gates with a 6K pull-up resistor.
The DM961, DM937, DM949 and DM963 are the
2K pull-up versions of the respective gates. The
DM935 IS a hex inverter similar to the DM936
with the exception that it has no Input diodes.

The DM1800 and DM1801 dual 5-input NAND
gates are new DTL gates completely compatible
with DM930 series gates.

schematic diagrams*

14 {Ved

14 (Vcd

1 191

6181

o-........-.f

214.6. B. 10. 121

113.5.9.11.1310-. . . . . . . .--1

21101
31111

NOTE
4 1121
51131

llGNOI

llGNOI

DM930/DM961

DM935/DM936/DM937

14 (Ved

14 (Vccl

316.B.111

H..--f

114.9.1210-.....

1216.BI

113.910-........--1
214.1010-.....~'

215.10.131
50K

1315.111

llGNOI

llGNOI

DM946/DM949

DM962/DM963

14 (Vee!

1191
21101
31111
4 (12)

51131

llGNOI

DM1800/DM1801

-lfOnl y one

Circuit

element

IS

shown. Pm connections are given

In

parentheses for other Circuit elements

5-3

o

M

en

electrical characteristics

en

.!
...

Pin 14 (Vee)

=

5 0 volts, Pin 7

=

GND, unspecified pins open unless otherwise stated

CD

CONDITIONS

tn

SYMBOL

PART

PARAMETER

...I

INPUT
UNDER TEST

~

Q

V

oc

Output Low Voltage

V

o"

Output High Voltage

LIMITS

o'c

OUTPUTS

INPUTS
OTHER

All gates

V,"

V,"

All gates'

V"

Ve

MIN

Ie

All except

Ve

GND

I,

Input Forward Current

All except
935

V,

Ve

935"

V,

-

-

-

-

-

-140

-

-140

75°C

MAX

MIN

5

26

-

25

-

5

-

935

I"

Input Current

ICEX

Output Leakage Current

6k gates

2k gates
Output Short Clfeu It
Current

2k gates

GND
GND

"D

Power Supply Current
per gate

6k gates

Ve

I MAX

Max. Supply Current
per gate 1Vee " 8V)

All

t pd _

Turn-On Delay

I,c

t pd +

Turn On Delay

6k gates

--

GND
GND

GND
GND

2k gates
GND

-

-

6k gates
2k gates

R=400H,C=50pF

R" 400n, C '" 50 pF

-

6k gates
2k gates

R " 3 9kn, C '" 30 pF
R '" 3 9kSl, C '" 30 pF

-

-

1D

-

-133

mA

--

-125

-061

-

-185

-

4
59

-

-

4

-

10
10

30
30

--

25
15

80
60

-

-130
-390

(6k)

(6k)

(2k)

(2k)

TEMP.

V'H
VOLTS

V,L
VOLTS

VR
VOLTS

VF
VOLTS

VCEX
VOLTS

IOL
rnA

IOH
rnA

IOL
rnA

IOH
rnA

OoC
+25°C
+7SoC

2.0
1.9
1.8

1.2
1.1
0.95

4.0
4.0
4.0

045
0.45
050

5.0

12.0
12.0
11.4

-0.12
-0.12
-0.12

110
11.0
10.4

-0.5
-0.5
-0.5

-

~

~r

PULSE IN
PW >100n~

mA
mA

-

mA

-

"'

n. ~~~

0-

KY~
v,,~~

-

~

5-4

-:1-

V'~~

15V

r.::..

;~c~
':'

..

~Ii

VOUT
VOUT

7

r--

"A
"A
mA
mA

--

switching time test circuit and waveforms

R/

"A

-140
100
100

test conditions

Vee" 5V

V

mA

*Use an F0600 diode or eqUivalent on Input under test

-

V

-133

130

-

-

-

-

-

050

-140

-

-

UNITS

MAX

-

045

-

26

'0"

Input Reverse Current

MIN

045

'oc

except 935

2SoC

MAX

13V

'I

~,

15V

GNO

"'
"'
"'

C
-I
r-

buffers and extender

CJ)
(II

:::!.

of two four input diode nodes and can be used to
extend the fan-in of the DM930, DM961, DM932,
and DM944.

The DM932, DM944, DM957, and DM958 are
power gates which are capable of sll1king high
currents.

(II

C/I

CO
W

o

The DM933 is an extender element which consists

schematic diagrams*

{Veel \4

(Vcd14
1K

1 8~K

1 a5K

1 (9)

1(5,8,12)

15'

2{1D)

150
2(6,9,13)
6(8)

3(11)

3(4,10,11)

4(12)

2K

5(13)

63'

53'

IGNO) 7

(GND)7

DM957

DM932

§':

'~
:--r~-J

n

7 (GND)

DM933

(Vee) 14

Vee

81'

8"

1 (9)

1(5,a,12)

llIO)

2(6.9J3)
6(8)

3(11)

3(4,10,11)
2K

4(12)
5(0)

63'

53"

(GND) 7

DM958

DM944

*Only one

Circuit

element

IS

shown Pm connections are given

(GND)7

In

parentheses for other

CIrcuit

elements.

5-5

oCW)
en

..

electrical characteristics

III

.~

Pin 14 (Vee) = 5.0 volts, Pin 7

= GND,

unspecified pms open unless otherwise stated .

Q)

en

.......

CONDITIONS
PARAMETER

SYMBOL

PART

LIMITS

e

INPUT UNDER TEST

OTHER

MIN.

VOL

Output Low Voltage

932,944
957,958

V ,H

V ,H

10L

V OH

Output High Voltage

932,957

V ,L

VR

10H

IR

Input Reverse Current

932,944
957,958

VR

GND

'R

Input Reverse Current

933

VR

GND

IF

Input Forward Current

932,944
957,958

VF

VR
GND

V FD

Input Forward Voltage

933

IFD

Ise

Output Short Glr. Cur

932,957

GND

~

ICEX

Output Leakage Current

932,957

GND

~

944,958

GND

IpD

932

Power Drain Current

~

957

~

944

~

958
I MAX

Max. Supply Current
per gate (Vee =: 8V)

t pd _

Turn-On Delay

t pd+

Turn-Off Delay

26
~

GND

~

~

~

075

GND

-16

GND

VeE x

~

V CEX

~

~

~

~

~

~

~

~

~

~

~

932,944
957,958

~

~

~

~

GND

~

= 150n, C = 500 pF

932
957

R

944
958

R = 150n, C = 100 pF

932
957

R = 510n, C = 500 pF

944
958

R = 51On, C = 20 pF

25°C

O°C

OUTPUTS

INPUTS

MAX.

0.45

MIN.

~

5

~

-140
090

~

068

~

~

~

5

~

082

060
-14

300

pA
mA

075

~

mA

~

600

~

~

mA

~

225

~

~

mA

~

4.5

~

~

4

~

~

mA

~

mA

~

~

~

~

~

15

40

~

~

ns

~

~

~

10

35

~

~

ns

~

25

80

~

~

ns

~

15

50

~

~

ns

~

~

~

~

V,l
VOLTS

VR
VOLTS

VF
VOLTS

rnA

OoC
+25°C
+75°C

20
1.9
1.8

1.2
1.1
0.95

4.0
4.0
4.0

045
0.45
0.50

-2mA
-2mA

~

~

'FD

-2mA

VCEX
VOLTS

-

5.0

957
932

958
944

957
932

'Ol
rnA

IOl
rnA

IOH
rnA

36
36
34

40
40
36

-2.0
-2.5
-30

switching time test circuit and waveforms
Vee = 5V

~Y-ALL
OTHERS OPEN)

.

...~ :'"

~

~, D1

PULSE IN
PW>100ns

n

0-

~~
;:C2 ?
.,!. .,!.

1'::\

:;,t;,~
'=!:-

NOTE When testmg 958 (If 944 short dIOde 01, remove diodes
02,03,04 and 05 and add capacitor C2 ~ 20 pf as shown

5-6

~

""i
VOUT

pA

~

~

V,H
VOLTS

ri:\

pA

~

TEMP.

l'

V

mA

~

test conditions

v..

V

pA

10

.

ZOK

V

-133

200

~

~

~

~

~

100

MAX.

10

~

100

~

~

25

~

UNITS

050

~

5

~

~

25

MIN.

-1 40

~

-16

~

MAX.

0.45

~

2.6

~

5

75°C

.'.~
15.
DS
VOUT

y'

~..
tpd_

15.
GND

C
-I

r-

binaries

en

.

CD

The DM945 and DM948 are R-S flip flops which
can be externally cross coupled to perform In the
JK mode. They are of the master slave type with
output buffers to provide isolation from the out·
put load These flip flops feature both asynchro·
nous set and clear lines. The DM945 has a 6K
pull·up resistor and the DM948 has a 2K pull·
up resistor.

;'

of the DM945 and DM948 variety respectively.
Both flip flops have separate clocks and no asyn·
chronous clear lines.

en

CD

W

o
The DM9097 and DM9099 are dual JK flip flops
of the DM948 and DM945 variety respectively.
Both flip flops have common clocks and both
asynchronous set and clear lines.

The DM9093 and DM9094 are dual JK flip flops

schematic diagrams
Vee (141

Cp GNO'

Cp GND
121 (7)

121 (1)

DM945

DM948

truth tables
SYNCHRONOUS TRUTH TABLE

S,

S2

C,

Pin 3

PonO

Pin 12

X
X

0
X

0

X

0
0

0
X
1
1

X

X

1
1
1

X

0
1
1
1

0
X

1

a-

Low State (more negative)

1 -

High State (more positive)
Indetermmate State

U -

C2
Pin 11

0
0
X
0

J-K TRUTH TABLE

ASYNCHRONOUS TRUTH TABLE

t,,+ ,

t.

X

0
1
1
X
0

,

X -

a
P,"6
an
On
On
Qn

0
0
1

SD
Pin 10

CD

Q

0

Pin 5

P.. 6

Pm9

1
0
1
0

1
1
0
0

NC

NC

1
0
1

0
1
1

t,,+1

t.
S,
Pin 3

C,
Pm 12

0
1
0
1

0
0
1
1

Q

Pin 6
ON

1
0

ON

(Connect 5, to Q, C2 to QJ Asynchronous ,"puts,
direct set (Sol and direct clear (Col. override the

1

synchronous inPUts, they are Independent of all

U

other mputs

State of the
Input does not
affect the state

of the CirCUit

5·7

oCW)

en

schematic diagrams

.

III

CD
CD

en
.oJ

l-

e

D.....
.. U.dotttdllMtnpliceoftnlnslrtor
.. Restrtorw..uels2Kohms

DM9093/DM9094 (DM9093 shown)

c,r---------jt::::=========.-___

~

13
D.....
.. U. doned bnl Including nastar Ind tnllllltor In pIKa If direct Cp Input
•• RlHIItor ..lue IS IK ohms

DM9097/DM9099 (DM9097 shown)

truth table
J-K TRUTH TABLE
tn

tn

+1

S,

c,

a

Pin 3

PIn 12

Pin 6

0
1
0
1

0
0
1
1

aN
1
0

aN

Direct set (So J and direct clear (Co), override the
synchronous Inputs, they are mdependent of all
other Inputs

5-8

....r-c

switching time test circuits and waveforms

C/)

...

CD
Vcc '5V

CD

en

CD

W

o

DM945iDM948

/3,11]

(2,12)

---,

14

--r-Q Vcc -5V

~
I
":"
.1

~I

:1

;)Jl-"-"__...JI __ -- ~~'-'"--

1

I

I

I
I

1

FIXED
LOAD

---"

VARIABLE

I

LOAD

GNO

15.
GNO

Cl and C2 mcludeplObeand)lgcapacllY
All dllldesale F06000r equ.valentat +25 C

DM9093iDM9094

lone~half

circuit shown)

PW>50Dm

511%OC
V, ..

25VMIN

,-

~D

,,"
---t~'---_--.J

-If'v

FIXED
LOAD

-'-----GNO

GNO

VOUT
VARIABLE
LOAD

NOTE To;t,.lUpfo,on.h.lld.aIJK,how"

DM9097 iDM9099

5~9

.0
('I)

en

DM945/DM948

(I)

CD

'i:

electrical characteristics

en

Pin 14 (Vee)

CD

~

~

5 0 volts, Pin 7

GND

...I

I-

CONDITIONS
SYMBOL

PARAMETER

LIMITS
UNITS

PART

Q

C,

5,

5,

Q

Co

So

C,

o'c

C,

MIN
V oc

Output Low Voltage

Both

CPo

GNO

1oc

Vo ,

Output High Voltage
(Data Inputs)

945

CP,

V,"

V"

1o,

948

CP,

V"

V"

Vo ,

Output High Voltage
(Set Reset Inputs)

Both

CP,

GND

GND

V"

Input Reverse Current

"0

MAX

MIN

045

COMMENTS

7SoC

MAX

MAX

MIN

X"Momentary

050

045

God

26

V"

26

26

25

26

26

26

Both

GNO

Input Reverse Current
(Set Reset Inputsl

Both

CP,

GND

GND

V,

I"

Input Reverse Current
(Clock Input)

Both

V,

GNO

GNO

GNO

V"

'0 ,

2S

V"

1o,

I,

26

X=Momentary
God

50

50

100

"A

50

50

100

"A

30

40

-095

-095

_090

'"'

mA

-28

-28

-267

mA

-28

-28

-266

mA

-28

-28

-267

mA

-138
-40

"A
mA
mA

V,

(Data Inputs)

ICD

Input Forward Current
(Data Inputs)

Both

I,

Input Forward Current
{Set Reset Inputsl

Both

I,e

2SOC

Input Forward Current
(Clock Input)

V,

V,

Vee

30

V,
GNO

V,

945

V,

V"

948

V,

V"

ICE ){

Output Leakage Current

Both

I,e

ShortCffcult Current

945
948

CP,
CP,

"0

Power Dram Current

945
948

Vee
Vee

GND
GND

VCEX

GND

GNO
GNO

GNO
GND

GND

-141

-059
-177

_42

100
-059 -141
_177 _42

-055
_160

17

mA
mA

18
23

mA
mA

14
GND
GND

GND
GND

GND
GNO

GND
GNO

GNO
GND

GNO
GNO

I MAX

Max Supply Current
(Vee = BV)

945
948

tpd_

Turn-On Delay

945
948

R=330n, C=50pF
R = ,non, C = 50 pF

15
15

55
55

I",.

Turn-Off Delay

945
948

R = 2 Okn, C = 30 pF
R '" 2 Okn, C=30pF

25
25

IDa
75

V AC

volts

test conditions

TEMP.

00 C
+25° C
+750 C

V,H
VOLTS

V,L
VOLTS

VF
VOLTS

VA
VOLTS

2.0
1.9
1.8

1.2
1.1
0.95

0.45
0.45
0.50

4.0
4.0
4.0

I
I
I

>25V

I
I
I

I

,y

I

I

PRESET
REMOVED

TEST

CP,

5-10

945(6K)

948(2K)

945(6K)

948(2K)

945(6K)

948(2K)

VCPTH

V CPTH

VOLTS

VOLTS

IOL
rnA

IOL
rnA

IOH
rnA

IOH
rnA

1 15
0.95
0.65

1.30
1.15
0.85

16.8
16.8
16.0

15.4
15.4
14.6

-0.12
-0.12
-0.12

-0.5
-0.5
-0.5

I

>25V

I
I
I
I
I
I

I

I
I

VCPTH

I
I

,y

I

I

I

PRESET
REMOVEO

TEST

cp.

I

= 40

VCEX
VOLTS

5.0

C
-I

r-

DM9093/DM9094/DM9097/DM9099

tJ)

...
;.
CD

electrical characteristics
Pm 14 (Veel

en

= 5 0 volts. Pm 7 = GND

CD

LIMITS
SYMBOL

PARAMETER

PART

o'c

CONDITIONS

MIN

va'

Output low Voltage

All

IOL on output under test

VOH

Output HI!/! Voltage

All

101-1 on output under test

I,e

Output Short CircUit
Current

- 7SOC

+25°C

MIN

MAX

MIN

MAX

045

UNITS

050

045

26

V

25

26

2k

GND output under test

-177

-42

-177

-42

-160

-40

mA

6'

GND output under test •

-059

-141

-059

-141

-055

-138

mA

1'0

Input Forward Current
(Data Input)

All

V F on Input under test
VA onothermputs

-095

-095

-090

mA

I'e

I nput Forward Current

9097
9099

VF on Input under test

-56

-56

-534

mA

I,e

Input Forward Current
(Clock Input)

9093
9094

VF on mput under test
VA on others

-28

-28

-267

mA

Input Forward Current

All

VF on mpu1undel'"test
VA another Inputs

_2.

_28

-267

mA

All

VA on Input under test
GND on other Inputs

50

'0

100

pA

VR on Input under test
GND on other Inputs

10

10

20

pA

20

20

30

pA

9094

VR on Input under test
GND on other Inputs

9087.
9099

V R on IOput under test
GND on other Inputs

40

40

60

I,

(Clock and Direct Clear
InputsJ

(Direct Set Inputs)

I,

Input Reverse Current
(Altexceptclock Inputs
and Direct clear Input
on 9097, 9099)

I,

Input Reverse Current
Direct (Clear Input)

9097&

I,

Input Reverse Current
(Clock Inpunl

9093&

1'0

Power Drain Current

9099

9093
9094
9099
9097

I MAX

Max Supply Current
(Vee'" BV)

9093
9099
9094

V R on other mputs

34

36

mA

45

mA

34

28

GND all mputs

pA
mA
mA
mA
mA

28

Inputs Open
InpuuOpen
Inputs Open
Inputs Open

9097
tpd_

Turn-On Delay

All

R-330Q,C-50pF

15

55

t ...

Turn-Off Delay

6k

R-2k,C .. 30pF
R=2k,C=30pF

25
25

100
75

2k

test conditions

TEMP.

(6kl
IOL

mA

mA

mA

mA

00 C
+25°C
+75°C

16.8
16.8
16.0

15.4
15.4
14.6

-0.12
-0.12
-0.12

-0.5
-0.5
-0.5

(2kl
IOL

(6kl
IOH

(2k1

IOH

VR
VOLTS

VIH
VOLTS

VIL
VOLTS

0.45
0.45
0.50

40
4.0
4.0

2.0
1.9
1.8

0.95

1

I
I

>Z5V

I
I

.v

VF
VOLTS

1

I
1

I

PRESET
REMOVED

TEST

er.

I

>25V

IV

9094-7
2K
VCPTH

115
0.95
065

130
115
085

1.2

1.1

1

1

1

I

I
Vc,nl

9093·9
6K
VCPTH

1
1

1
1

1

I

I

I

1

I

rEST

'RESET
REMOVED

W

0

MAX

CP,

5·11

en
CD
:.

Series 9000

illS

CD
Ul

U)

o
o
o

REFERENCE
The following table references all Physical Dimension Drawings, Waveforms, and Test Circuits for the devices
in this section. For Order Numbers, see below.' Refer to the alpha·numerical index at the front of this
catalog for complete device title and function. Packages (pages I thru VI) are in the back of the catalog.

DATA SHEETS

PACKAGES
Molded DIP (N)

Devices

Pg.

DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM8300
DM9300
DM8301
DM9301
DM8309
DM9309
DM8312
DM9312
DM8322
DM9322
DM8601
DM9601

6·1
6·1
6·1
6·1
6~ 1
6~ 1
6~ 1
6~ 1
6~ 1
64
64
6~6
6~6
6~8

68
6~ 10
6~ 10
6~12
6~

12

6~ 14
6~14

Cavity DIP (D)(J)

Fig.

Pg.

Fig.

Pg.

Type

3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
3
3

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
11
11

IV

j

IV

j

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

j

II
II
II

Flat Pack (F)(W)
Fig.

Pg.

19
19
19
19
19
19
19
19
19
19
18
18

V
V
V
V
V
V
V
V
V
V
V
V

Type

Metal Can (G)(H)
Fig.

Pg.

Type

WAVE·
FORMS

TEST
CIRCUITS

Fig.

Pg.

Fig.

Pg.

36
36
5
5
39
39
40
40
37
37
38
38

11 ~ 17
11 ~ 17
11·5
11 ~5
11 ~ 18
11 ~ 18
11 ~ 18
11 ~ 18
11 ~ 17
11 ~ 17
11 ~ 17
11 ~ 17

9
9
1
1
1
1
1
1
14
14
8
8

11 ~2
11 ~2
11 ~ 1
11-1
11 ~ 1
11 ~ 1
11 ~ 1
11 ~ 1
114
114
11 ~2

j
j
j
j
j
j
j
j

J
J
J
J
J
J
J
J
J
J

W
W
W
W
W
W
W
W
W
W
W
W

11~2

'Order Numbers: use Device Number suffixed with package letter, I.e., DM9002CN.

6-i

Series 9000

~
(/I

CD

o
o
DM9002C
DM9003C
DM9004C
DM9005C

o

quad 2-input NAND gate
triple 3-input NAND gate
dual 4-input NAND gate
dual AND-OR-INVERT gate/expander

DM9006C dual 4-input expander
DM9008C 2-2-2-3-input AND-OR- INVERT gate
DM9009C dual 4-input NAND gate/buffer
DM9012C quad 2-input NAND gate(open collector)
DM9016C hex inverter
general description
the DM9000 Series devices. The "c" designation
is used in place of the earlier "-59X" suffix.

The above' gate fu nctions are commercial temperature range (O°C to +75°C) plug-in equivalents for

connection d iag rams
DM9002C

(Dual-In-Llne and Flat Packages)

DM9003C

DM9004C

DM9006C

DM9008C

~

~
GND

DM9005C

GND

DM9009C

DM9012C

DM9016C

6-1

o
o
o
en

absolute maximum ratings

III
Q)

...

Supply Voltage
Input Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

Q)

(f)

7V
5.5V
O°C to + 75°C
-65°C to +150°C
300°C

electrical characteristics
DM90002C, DM9003C, DM9004C, DM9012C, DM9016C
PARAMETER

(Note 1)

CONDITIONS

MIN

Logical "1" Input Voltage

Vee~475V

Logical "0" Input Voltage

Vee~475V

Logical "1" Output Voltage

Vee

~

4 75V, lOUT

=

-12 rnA, V ,N

Vee
Vee

~

4 75V, lOUT
5 25V, lOUT

~

~

+141 rnA. V ,N ~ 1 6V
+16 rnA, V ,N ~ 525V

Vee

~

4 75V, V OUT

Logical "1" Input Current

Vee

~

5 25V. V ,N

~

4.5V

Logical "0" Input Current

Vee
Vee

~

5 25V. V ,N
4 75V, V ,N

~

45V
45V

Supply Current - Logical "0" Output
(each gate;

Vee~50V

MAX

16

V
85

~

85V

UNITS

24

V
V

Except DM9012C
Logical "0" Output Voltage

Logical "1" Output Current

~

~

5 5V, V ,N

~

45
45
250

.85V

V
V
/lA

(DM9012CI

~

~

Supply Current - Logical "1" Output
(each gate)

Propagation Delay Time to a Logical "1 "
Except DM9012C
DM9012C
Propagation Delay Time to a Logical "0"
Except DM9012C
DM9012C

60

/lA

-I 6
-1 41

rnA
rnA

61

rnA

17

rnA

30

13

~4kn

30

45

ns

Vee ~ 5 OV, CL ~ 15 pF. T A ~ 25'C

30

15

ns

30

15

ns

MIN

MAX

Vee~50V,CL ~

~

Vee

5 OV, C L

~

15pF. RL

15 pF. RL

~

4oon.

ns

T A = 25°C

DM9005C, DM9006C, DM9008C (Note 1)
PARAMETER

CONDITIONS

16

UNITS

Logical "1" Input Voltage

Vee~475V

Loglcal"Q" Input Voltage

Vee~475V

Logical "1" Output Voltage

Vee = 4 75V, lOUT"" -1 2 mA,
V ,N ~ 85V

Logical "0" Output Voltage

Vee = 4 75V, lOUT'" 14 1 mA,
V ,N 1 6V

45

V

Vee'" 4 75V, lOUT == 16 rnA,

45

V

V
85

24

V
V

0

V'N~525V

Logical "1" Input Current

Except DM9005C Non·

Vee

~

4 75V. V ,N

~

4 5V

90

/lA

Vee

~

4 75V. V ,N

" 45V

60

/lA

-212
-24
-141
-16

rnA
rnA
rnA
rnA

77
13.6
17.7

rnA
rnA
rnA

Extendable Gate
DM9005C Non-Extendable Gate
Logical "0" Input Current

Ex~ept DM9005C Non·
Extendable Gate
DM9005C Non-Extendable Gate

Vee ~ 4 75V, V ,N ~
Vee ~ 5 25V. V ,N ~
V ee ==475V,V IN '"
Vee ~ 5 25V, V ,N =

45V
45V
45V
45V

Supply Current - Logical "0" Output

DM9005C Non-Extendable Gate
DM9005C Extendable Gate
DM900BC

Vee~50V

Vee
Vee

~
~

5 OV
5 OV

Note 1: All deVices are guaranteed across the Que to +75°e temperature range except where specified differently_

6·2

CJ)
CD

...

electrical characteristics (con't)

CD

en
CD

0
0
0

DM9005C, DM9006C, DM9008C (con't)
CONDITIONS

PARAMETER
Supply Current - Logical "1" Output
DM9005C Non-Extendable Gate

MIN

Vee" 5 OV
Vee" 5 OV
Vee"50V

DM9005C Extendable Gate
DM9008C

MAX

UNITS

34
51
102

mA
mA
mA

6Supply Current
Additional Supply

Current when one DM9006C
Extender IS connected to a

OM g005e Gate
Additional

the Logical "0" State
In the Logical "1" State

205

mA

254

mA

In

Vee" 5 OV

Propagation Delay Time to a Logical "1"

V ee "SOV,C L "15pF,
T A " 2S"C

OM g005e Non-Extendable Gate Only
DM9005C Extendable Gate, and

30
30

DM9008C
DM9006C INote 2)

-20

Propagation Delay Time to a Logical "0"

Vee" 5 OV, C L
T A" 25"C

"

12
15

ns
ns

40

ns

15 pF,

DM9Q05C Non-Extendable Gate Only
DM9005C Extendable Gate, and DM9008C

30
30

I

DM9008C
DM 9006C (Note 2)

14
12

ns
ns

-20

40

MIN

MAX

ns

DM9009C (Note 1)
CONDITIONS

PARAMETER
Logical "1" Input Voltage

Vee" 4 75V

Logical "0" Input Voltage

Vee" 4 75V

Logical "1" Output Voltage

Vee

=

V ,N

"

Loglcai "0" Output Voltage

16

V
8S

4 75V, lOUT

-=-

-36 mA,

=

42 3 mA,

24

V
V

85V

Vee == 4 75V, lOUT

V'N=16V
Vee == 5 25V, lOUT == 48 mA,
V IN =525V
~

UNITS

Loglca! "1" Input Current

Vee

Loglca! "0" Input Current

Vee" S 25V, V ,N

45

V

45

V

120

5 2SV, Y'N " 4 SV

Vee == 4 75V, VIN '" 45V

Supply Current - Loglca! "0" Output

Vee=50V, VIN =45V

146

mA

Supply Current - Logical "1" Output

Vee:::; 5 OV, VIN

34

mA

Propagation Delay to a Loglcal"1"

Vee" 5 OV, C L

"

15 pF, TA ~ 25°C

30

17

ns

Propagation Delay to a Logical "0"

Vee" 5 OV, C L

"

15 pF, TA " 25°C

20

13

ns

45V

GND

g

IlA

-32
-282

"

mA
mA

Note 1: All deVices are guaranteed across the O°C to +75°C temperature range except where specified differently
Note 2: The DM9006C IS tested by measuring ItS propagation delay through the DM9005C The delay readings shall not exceed
the DM9005C reading by the speCified amount

6-3

o

o(W)

Series 9000

00

:E
c

.......

DM9300/DM8300(SN54195/SN74195) 4-bit shift register

o(W)
en

general description

o

The DM9300/DM8300 IS a 4-blt multi-function
shift register designed to wOrk at tYPical speeds of

:E
c

25 MHz_
It features a common asynchronous Reset Input
which resets the register Independent of any other
Input In addition, the J and K Inputs to the first
flip flop enable greater flexibility In the operation
of the register (See truth table)

shifted nght When the fiE Input IS In the logical
"0" state, the Information on the parallel Inputs
will be entered Into the flip flops on the subsequent clock pulse A logical "1" level on the PE
control will allow shifting to the nght
The outputs change state on the positive-going
transition of the clock Input

The PE (Parallel Enable) control allows information to be entered from the parallel Inputs or be

This register IS completely compatible with Senes
54/74 and CCSL devices Input diode clamps are
provided for additional system reliability

connection diagram

truth table

Dual-I n-Line and Flat Package
J

K

0
0

0

1
1

0

Clo

at tn+1

a
00 at tn

1

(no change)

00 at tn

1

dOE ~

(toggle)
1

logIcal "I", MR = logIcal "1")

typical application
Eight Bit Left/Right Shift RegISter
This register shifts left or fight on each shift clock, depending upon the condition of the LS/RS select
Input If this Input IS high, fight shift occurs and If low, left shift occurs
lS/RSSELECT

AS DATA IN

L~:
LSDATAOUT

CLOCK

PE

III

P,

P,

P,

P,

MR

'"

n,

II

II,

I

J

n,

oM930OIDM8300

n,

P,

MR

n,

-JCP
K

III

PE

P,

P,

LS DATA IN

P,

n,

DM931JIIIDM8JOO

n,

II

n,

n,

I

MASTER RESET

equivalent circuits

,------.--,,,

QU1PUT CllRRENT VERSUS OUTPUT VOlTAGE

10" 0, 0, O, AND !hl

6-4

RSDATADUT

o

s:CD

absolute maximum ratings

vcc

electrical characteristics

W

o
o
........

-.5V to 7V
-.5V to 5.5V
5.5V
-55°C to +125°C
oDe to 75°C
-65°C to +150°C
300 DC

Voltage Range
Input Voltage Range
Output Voltage (Logical "1" state)
Operating Temperature Range DM9300
DM8300
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

= _55°C 10 +125°C,

(T A

o

s:

CO
W

o
o

Vee'" 5 OV ±10%)

LIMITS
SYMBOL

_SSOC

CHARACTERISTICS

V OH

Output High Voltage

VOL

Output Low Voltage

V ,H

Input High Voltage

V ,L

Input Low Voltage

MIN

24

MAX

Vee=45V.

10H

= -0 36 rnA

Volts

Vee = 55V.
Vee=45V.

10L

= 9 6 rnA
= 7 44 rnA

Volts

Guaranteed Input high
threshold for allmputs

08

Volts

Guaranteed Input low
threshold for all Inputs

-110 -16
-097 -124

-1 6
-1 24

rnA
rnA

Vee=55V V =04V
Vee = 4 5V
F

15

60

pA

Vee =55V. V R =45V

24

27
02

04

17

04
14

08

09

-16
-124

Input Leakage Current
K. MR. po. p, . P, & P3

UNITS CONDITIONS & COMMENTS

MIN MAX
Volts

24

20

J,

IR

TY?

0.4

Input Load Current
K, MR, po. P1, P2 & P3

IF

+12S oC

+2So C

MIN MAX

60

10L

J.

electrical characteristics

(T A

::=

O°C to +75°C. Vee = 5 OV ±5%)

LIMITS
SYMBOL

DoC

CHARACTERISTICS

+25°C

MIN MAX

V OH

Output High Voltage

VOL

Output Low Voltage

VH

Input High Voltage

MIN

TY?

24

24

02

045

18

UNITS CONDITIONS & COMMENTS

MIN MAX
24

30

045
19

+75°C
MAX

045

10H

= -0 36 rnA

10L

= 9.6 rnA
= 8 5 rnA

Vee
Vee

Volts

16

= 4.75V,

= 5 25V.
Vee = 4.75V.

Volts

Volts

10L

Guaranteed Input high
threshold for all mputs

VL

Input Low Voltage

085

085

085

Volts

Guaranteed I nput low
threshold for allmputs

Input Load Current

IF

J.
IR

K. MR.

po. P P, & P3
"

-16
-141

Input leakage Current

J,

K, MR,

-16
-141

-16
-141

rnA
rnA

15

60

60

pA

CHARACTERISTIC

(TA
MIN

= 25"CI
TY?

MAX

tpd+

Turn Off Delay

12

22

tpd_

Turn On Delay

19
38

26

f"

Shift Right
Frequency

30

CP pw

Clock Pulse Width

17

I,

Set-up Time

30

Ie
I,{PEI

Release Time

-

'e(PEI

-

tpd_~~1
trec(MR)
MRpw

= 525V
= 475V. V F =045V
Vee = 525V. V R = 4 5V
Vee
Vee

Po, P 1 , P 2 & P3

switching characteristics
SYMBOL

-1.0
-09

Set up Time for PE
Release Time for PE
Reset Time for MR
-

45

Vee = 5 OV. CL = 15 pF
(See Figs 1 & 2al

MHz

Vee = 50V. CL = 15pF
(See FIgs 1 & 2el

ns

Vee = 50V
CL = 15 pF

ns

(See Figs 2a & 2bl

ns
0

20
17

CONDITIONS & COMMENTS

ns
ns

ns

11
13
10

UNITS

10

ns

28

ns

Recovery Time for MR

13

ns

Min Reset Pulse Width

15

ns

SET UP TIME ts IS defined as the minimum time required for the logiC level to be present at the logiC
Input prior to the clock transition from low to high In order for the flip flop(s) to respond
RELEASE TIME tr IS defined as the maximum time allowed for the logiC level to be present at the
logiC Input prior to the clock tranSition from low to high In order for the flip flopls) not to respond
RECOVERY TIME FOR MR treclMR} IS defined as the minimum time required between the end of
the reset pulse and the clock tranSitIOn from low to high In order for the flip flop(s) to respond to the
clock

6-5

...o
CO)

Series 9000

00

~

o

...

.........

oCO)
0)

~

DM9301/DM8301 BCD-to-decimal decoder
general description

features

The DM9301/DM8301 utilizes Series 54/74 compatible circuitry to decode a four-bit BCD number
to one-of-ten decimal outputs. These ten decimal
outputs are capable of driving 10 standard TTL
loads each.

•

125 mW tYPical power dissipation

•

20 ns tYPical propagation delay

•

Clamp diodes on Inputs

The decoding logic IS designed such that when
binary numbers between 10 and 15 are applied to
the Inputs, no outputs are enabled.

logic and connection diagrams
Dual-In-Llne and Flat Package

logic table
OUTPUTS

INPUTS
D

C

B

A

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

1

1

0

1

1

1

1

1

1

1

1

0

0
0

1

0

1

1

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

1

1

1

1

0

1

1

0

1

1

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

1

0

1

1

6-6

0

0

0

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0
1

1

0

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

c

absolute maximum ratings

~
CD

(Note 1)

W

Supply Voltage
Input Voltage
Fan Out
Storage Temperature Range
Operating Temperature Range DM9301

7V
55V

CONDITION

Logical "1" Input Voltage

DM9301
DM8301

Vee = 4 5V
V ee -475V

Logical "0" I nput Voltage

DM9301
DM8301

Vee = 45V
Vee - 4 75V

Logical "1" Output Voltage

DM9301
DM8301

Vee = 4 5V
V ee - 475V

lOUT = -600 /lA

Logical "0" Output Voltage

DM9301
DM8301

Vee = 4 5V
V ee - 4 75V

lOUT = 16 mA

Input Current

DM9301
DM8301

Vee = 5 5V
Vee - 525V

V ,N = 4 5

Logical "1" Input Current

DM9301
DM8301

Vee = 5 5V
Vee - 525V

V ,N = 55V

Logical "0" I nput Current

DM9301
Vee = 55V
----;-;-"-'--DM83-6T Vee = 5 25V

V ,N = 04V

I nput Clamp D lode (All I nputsl

DM9301
DM8301

Vee = 5 5V
Vee - 525V

I'N=-12mA

DM9301
DM8301

Vee = 5 5V
V ee -525V

V OUT = OV

DM9301
DM8301

Vee=55V
Vee - 525V

:'1"

Output Short Circuit Current

(Note 31
Power Supply Current

~
CO

W

o....

(Note 2)

PARAMETER

Logical

C

10
_65°C to +150°C
_55°C to +125°C
O°C to +70°C
300°C

DM8301
Lead Temperature (soldering, 10 sec)

electrical characteristics

o
....
......

MIN

TYP

MAX

20

V

08
24

V
V

04

-20
-18

UNITS

V

40

/lA

1

mA

-10

-16

mA

-10

-15

V

-32

-55

mA

25

41

mA

Propagation Delay Time to a Logical "0"

Vee= 50V, T A = 25°C,
COUT = 50pF, F 0 = 10

8

19

30

ns

Propagation Delay Time to a Logical "1"

Vee = 50V, T A = 25°C,
COUT = 50pF, F 0 = 10

8

20

30

ns

D

Note l' "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot
be guaranteed. Except for "Operatlng Temperature Range" they are not meant to Imply that the
devices should be operated at these limits The table of "Electrical Characteristics" provides conditions
for actual device operation

Note 2' MinImax limits apply across the guaranteed operating temperature range -5SoC to +12SoC for
DM9301 and

aOc

to 70°C for the DM8301 unless otherwise specified All typlcals are given for

Vce = 50V and TA = 25°e
Note 3: Only one output may be shorted at a time

6-7

en

o
('t)
co

Series 9000

~

c

.......

en
o
('t)
en

DM9309/DM8309 dual 4-input multiplexer

c

general description

features

The DM9309/DM8309 IS a dual four-Input digital
multiplexer. It consists of two multiplexing CirCUitS with common input select data logic. Each
CirCUit contains four Inputs and fully buffered
complementary outputs.

•

~

Series 54174 T2L and DTL compatible

•

Input clamping diode

•

Fully buffered complementary outputs

•

Fan-out of 10

logic and connection diagrams
Dual-I n-Llne and Flat Package
I~

I"

12

4

115

15

"

13

11

11

.--

z,

rr
":"

13

s,

1

f-

1

Vee

S,

truth table
SELECT INPUTS

L

=

OUTPUTS

So

S,

lOA

I'A

"A

13A

ZA

ZA

L

L

L

X

X

L

H

L

L

H

X

X

H

L

L

X

X
X
X

H

X

X
X
X

L

H

X

L

X

X

H

H

L

ZB

ZB

L

H

H

L

L

H

H

L

X
X

L

H

X

L

H

X

H

H

H

H

X
X

So

S,

lOB

"B

"B

13B

L

L

L

L

L

H

X
X

X
X

H

L

X
X
X
X

L

X

H

X
X
X
X
X
X

H

L

X
X

L

L

H

H

H

L

H

L

L

H

L

H

H

H

X

H

H

X

Low Voltage Level

H -= High Voltage Level
X = Irrelevant

6-8

INPUTS

H

X

X
X
X
X

L

9

10

X
X

H

L

L

H

X

H

L

L

H

H

L

L

H

H

L

L

H

3

4

5

6

,

I'

C

absolute maximum ratings

s:
CD

operating conditions

(Note 11

w

0
Supply Voltage
Input Voltage

\

Output Voltage
Storage Temperature Range
Lead Temperature (Solqerl ng, 10 sec)

7V
55V
55V
_65 c C to +150"C
300 c C

Supply Voltage (Vccl
DM9309
DM8309

MIN

MAX

UNITS

45
475

55
525

V
V

-55

+125
70

°c

CD
.........

C

s:00

Temperature (T A)

DM9309
DM8309

0

C

c

W

0
CD

electrical ch a racteristics

(Note 2)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS
V

Logical "1" Input Voltage

Vee =- Min

Logical "0" Input Voltage

Vee

Logical "1" Output Voltage

_
V 1N (11 = 2V
_
Vee - Min, V'N(01 ~ 8V IOH - -800pA

Logical "0" Output Voltage

Vee

==

Min,

Logical" 1" Input Current

Vee

=

Max, VIN

=

2 4V

40

!1A

Vee

~

Max, V ,N

~

5 5V

1

mA

Logical "0" I nput Current

Vee

=

Max, VIN

==

4V

-16

mA

Output Short
(Note 31

Vee"" Max

ClfCUlt

Current

-'C.

2

Min

08

V 'N (lI

~

V1N(O) --;

V

2V
8V IOL == 16 mA

Supply Current

Vcc=-Max

Input Clamp Voltage

Vee =- Min, I'N~-12mA

Propagation Delay to a Logical "0"

24

V

04

-30
-27
27

V

-85

mA

44

mA

-1 5

V

Vee ~ 5 OV, T A ~ 25"C

24

35

ns

V ee ~ 5 OV, T A ~ 25"C

10

15

ns

Propagation Delay to a Logical "1"
from Data to Z, tpdl

V cc ~ 5 OV, T A ~ 25"C

20

28

ns

Propagation Delay to a Logical "1"
from Data to Z, tpdl

Vee~ 50V, TA ~ 25°C

15

22

ns

5 OV, T A ~ 25 c C

30
25

45
37

ns
ns

V cc ~ 5 OV, TAo 25 c C

17
21

25
31

ns
ns

from Data to Z,

tpdO

Propagation Delay to a Logical "0"

from Data to

Z,

tpdO

~

Data Select to Z
tpdl
tpdO

Vee

c

-

Data Select to Z
tpdl
tpdO

Note 1. ·'Absolute Maximum Ratings" are those values beyonu which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits The table
of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherWise specified min/max limits apply across the _55 C to +125°C temperature range for the DM9309
and across the oOe to 700 e range for the DM8309 All tYPlcals are given for Vee := 5 OV and T A == 25 D e
Note 3: Only one output at a time should be shorted
G

6-9

N

po

CW)

Series 9000

00

::E
Q

........

N

DM9312/DM8312 8-input multiplexer

po

CW)

en

::E
Q

general description

features

The DM9312/DM8312 IS an eight-input digital
multiplexer which provides in one package the
ability to select one bit of data from up to eight
sources. When the enable input is taken to a
logical "0", It Will enable the multiplexer to fu nction_

•

Senes 54/74 T2L and DTL compatible

•
•

Input clamping diodes
Selects one-of-elght data sources

•
•

Fan-out of 10
Fully buffered complementary outputs

logic and connection diagrams

Dual·ln-Lme and Flat Package

s,

I..

14

"

"

r-

r-

,

,

1

I,

I,

.

, ,
I,

TOP VIEW

truth table
E

S, 5,

So

10

I,

I,

I,

I.

Is I.

17

Z

Z

H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

X
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

X
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

X
L

X
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
L
H
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
L
H
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
L
H
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
L
H
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
L
H
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H

H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L

L
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H

~

H
H
L
L
H
H
L
L
H
H
L
L
H
H

H = High Voltage Level
L '" Low Voltage Level

6-10

x = Irrelevant

X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
X
X

,

10

11

12

I,

,
I,

I'

GND

C

absolute maximum ratings (Note 1)
Supply Voltage
Input Voltage
Output Voltage

Storage Temperature Range
Lead Temperature (Soldenng, 10 sec)

s:

operating conditions
Supply Voltage (VCCI
DM9312
DM8312

7V
55V
55V
-65"C to +150"C
300"C

MIN

MAX

UNITS

45
475

5.5
525

V
V

.......

-55
0

+125
70

,·C

s:

Temperature (T A)

DM9312
DM8312

CD
W
~

N

C

"c

00
W
~

N

electrica I characteristics

(Note 2)

PARAMETER

MIN

CONDITIONS

TYP

MAX

Vee =- Min

Logical "0" I nput Voltage

Vcc=Mtn

Logical "1" Output Voltage

V 'N (ll = 2V
Vee = Min, V'N(OI = 8V IOH

08

cc

-800 /1A

UNITS
V

2

Logical "1" Input Voltage

V
V

24

VouT=55V

250

I1A

Logical "1" Output Current

Vee'" Max,

Logical "0" Output Voltage

Vee::::;; Mm, V 1N (1) ~ 2V
V1N(o) = 8V, IOL = 16 rnA

Logical "1" Input Current

Vee = Max, V ,N = 24V

40

/1 A

Vee = Max, V ,N = 5 5V

1

rnA

-16

rnA

Vee

Logical I/O" Input Current

Output Short Circuit Current

VIN = OV

= Max, V IN

:::

4V
-30

Vee;:; Max

(Note 31

-27

Supply Current

Vee

=

Input Clamp Voltage

Vee

= Mm, liN:::: -12 mA

Propagation Delay to a Logical "0"

from Data to Z,

"a"

Propagation Delay to a Logical "1"

from Data to Z, tpdl
Propagation Delay to a Logical "1"

Z,

33

Max

V

-85

mA

44

rnA

-15

V

Vee = 50V, TA = 25"C

23

34

ns

25"C

9

14

ns

Vee= 5 OV, TA = 25 c C

19

28

ns

Vee = 5 OV, T A = 25"C

15

23

ns

Vee = 5 OV, T A = 25 Q C

29
25

43
37

ns
ns

Vee = 5 OV, TA = 25°C

20
18

30
27

ns
ns

Vce= 50V, TA = 25°C

28
25

42
37

ns
ns

Vee = 5 OV, T A = 25°C

17
18

25
27

ns
ns

tpdO

Propagation Delay to a LogICal
from Data to Z, t prlO

from Data to

04

tpdl

Vee = 50V, TA

C

Data Select to Z
tpdl
tpdO
Data Select to

a

Z

tpdl
tpdO
Enable to Z
tpdl
tpdO
Enable to Z
tpdl
tpdO

Note 1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed Except
for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limIts The table
of "Electrical Characteristics" provides conditions for actual device operation
Note 2. Unless otherWise specified minimax limits apply across the _55°C to +125°C temperature range for the DM9312
and across the O°C to 70 e range for the DM8312 All typlcals are given for Vee'" 5 OV and T A'" 25°C
0

Note 3. Only one output at a time should be shorted

6-11

N
N
M

Series 9000

00

:E
Q

.......
N
N
M

DM9322/DM8322 quad 2-input multiplexer

en
:E
Q

general description

features

The DM9322/DM8322 consists of four 2-input
multiplexers with common input select logic and
common output disable circuitry. It allows two
groups of four bits each to be multiplexed to four
parallel outputs. When the Enable Input is at the
logical "0" level the outputs reflect information
on the selected Inputs. However, when a logical
"1" is applied, the outputs assume the logical "0"
level.

•

Typically IOns from data to output

•

Power dissipation 150 mW typ

•

Pin compatible with FSC9322 and SN54157/
SN74157

•

Diode clamped inputs

•

Available In either cavity or molded dual-inline package

The DM9322/DM8322 is pin compatible and functIOnally compatible with the FSC9322 and the
SN54157/SN74157. Features of the deVice are:

logic and connection diagram
Dual-In-Llne and Flat Package
Vee

Ze

10D

lOB

110

ZD

z.

GNU

TUPVIEW

truth table

6-12

ENABLE

SELECT

E

S

10

I,

ZX

1

X

0
0
0
0

1

X
X
X
0

X
0

0
0

1

1

x

0

1

X

1

1

0
0

INPUT

OUTPUT

o
absolute maximum ratings
Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range DM9322
DM8322
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

s:

(Note 1)

(D

W
N
N

7V
5.5V
5.5V
_55°C to 125°C
oOe to 70°C
_55°C to 150°C
300°C

......

o

s:

CO
W
N
N

electrical characteristics

(Note 2)
CONDITIONS

PARAMETER

MIN

TYP

MAX

UNITS

Input Voltage

DM9322
DM8322

Vee = 4 5V
Vee = 4 75V

Logical "0" Input Voltage

DM9322
DM8322

Vee=45V
V ee -475V

Logical "1" Output Voltage

DM9322
DM8322

Vee = 4.5V
Vee - 4 75V

IOUT=-12mAV'N=2V

Logical "0" Output Voltage

DM9322
DM8322

Vee = 4 5V
V ee -475V

IOUT= 124mA V 'N=08V
lOUT = 14 1 mA

04
045

V

DM9322
DM8322

Vee=55V
V ee -525V

lOUT""

16 mA
lOUT = 16 mA

04
045

V

DM9322
DM8322

Vee=55V
Vee- 525V

V'N = 45V

60

/lA

DM9322
DM8322

Vee=55V
Vee - 5 25V

V'N = 5 5V

1

mA

DM9322
DM8322

Vee=55V
Vee- 525V

V'N = 04V

Logical

"1"

Logical" 1" I nput Current

Logical "0" Input Current

Output Short Circuit Current

INote 3}

DM9322
DM8322

Vee=45V
Vee - 4 75V

DM9322
DM8322

Vee = 5.5V
Vee - 5.25V

20

V
08

24

V

V'N = 08V

-1

-35

V

-16

mA

-1 24
-141

mA
mA

-46

-80

mA

mA

Supply Current ~ (each deVice)

DM9322
DM8322

Vee = 5V

All Inputs = 45V

30

43

Input Clamp Voltage

DM9322
DM8322

Vee = 5V
TA = 25°C

I'N=-12mA

-10

-15

V

Vee = 5 OV
T A = 25°C

6

11

16

ns

Vee = 5 OV
T A =25"C

8

17

27

ns

Vee = 5 OV
TA = 25°C

4

8

15

ns

\Icc"" 5 OV
TA = 25°C

5

15

25

ns

Enable to Output,tpdo

Vee = 5V
TA = 25°C

7

16

23

ns

Enable to Output,

Vee = 5V
T;>. = 25"C

6

14.

20

ns

Propagation Delay to a Logical

"0" from Data to Output,

tpdO

Propagation Delay to a Logical

"0" from Select to ZA,

tpdO

Propagation Delay to a Logical

"1" from Data to Output,

tpdl

Propagation Delay to a Logical

"1" from Select to ZA,

tpdl

tpd1

a

Note 1· "Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot
be guaranteed Except for "Operating Temperature Range" they are not meant to Imply that the
deVices should be operated at these limits The table of "Electrical Characteristics" prOVides conditions
for actual deVice operattOn
Note 2: Unless otherWise speCified minimax limits apply across the _55°C to +125°C temperature
range for the DM9322 and across the oDe to 70°C range for the DM8322 All tYPlcals are given for
V CC = 50V and T A = 25° C
Note 3: Only one output at a time should be shorted

6-13

....o

CD

Series 9000

CIO

:E

c
.......

....

o

DM9601/DM8601 retriggerable monostable multivibrator

CD

0)

:E

c

general description

features

The DM9601/DM8601 IS both pln-for-pln and
spec-for-spec Interchangeable with the 9601 oneshot. Pulse widths range from 50 ns upward
depending upon the values of the external R&C
used. The retriggerable feature allows for output
pulse widths to be extended beyond the normal
range attainable with just a resistor and capacitor.

• Input Clamping Diodes
• Complementary DC Level Sensitive Inputs
• FleXibility of Operation-Optional Retrlgger·
lng/Lockout Capability
• DTUTTL Compatible Logic Levels
• High Speed OperatIOn-Input Repetition
Rate> 1,0 MHz
• Output Pulse Width Range 50 ns to 00
• Leading or Trailing Edge Triggering
• Complementary Outputs

schematic and connection diagrams
(141

L

Dual-In-Llne and Flat Package
I

ex

R

I

t'';'~---II---,
v"

A,

"

"
TOPVIEW

6-14

Nt

c

s:

DM9601
absolute maximum ratings

(D
0)

Supply Voltage to Ground
Input Voltage
Voltage Applied to Outputs
Storage Temperature
Operating Temperature
Lead Temperature (Soldering, 10 sec)

o- '

-0.5V to +8.0V
-0.5V to +5.5V
-0.5V to +Vcc
-65°e to +150 o e
-55°e to +125°e
300De

........

C

s:
CO
0)

o-'

electrical characteristics
TABLE I

limits
Svmbol

_55 c C

Parameter

Mon
VOH

Output High Voltage

Max.

+25°C

Mon

Typ.

24

24

+125°C

Max

33

Mon

Umts

Conditions
(Note l'

Max

24

V

Vee = 4 5V
IOH '" -0 72 rnA
(Note 2)

Vue

04

Output Low Voltage

02

04

04

V

Vee =45V

i oL =10mA
(Note 2)

V'H

Input High Voltage

V"

Input Low Voltage

20

17

14

085

090

085

V

Vee

=

4 5V

V

Vee

=

5 5V

(Note 3)

Ie

-16

Input Load Current

-1 1

-1 6

-1 6

mA

Vee

5 5V

=

V F =04V

IR

Input Leakage Current

15

60

60

"A

Vee'" 5 5V

V R = 4 5V
Isc

-10

Short Circuit Current

-40

Vee =50V
V OUT

leo

QUiescent Power

t pd <

Negative Trigger Input

Supply Dram

25

25

to True Output

25

25

40

Negative Trigger Input
to Complement Output

25

40

OV (Note 2)

mA

Vee =55V

ns

Vee =50V

Rx
t pd _

'"

ns

=

ex -'"

5 0 KIl
0

CL =15pF
tpwlmonJ

Minimum True Output

lHpw

Pulse Width VariatIOn

Pulse Width

45
308

342

65

ns

376

"s

Vee =50V

Rx
Cstr"y

Rx

Maximum Allowable
WIring Capacitance
(Pin 13)
External Timing Resistor

50
50

25

50
50

25

50

50

pF

25

kr!

=

10 KIl. C x

=

1.000 pF

Pm 13 to GND

Note 1: Unless otherwise specified, RX 10 Kn between Pin 13 and Vee on all tests
Note 2: Ground Pin 11 for VOL test on Pin 6, VOH test on Pin 8 and ISC test on Pin 8.
=;

Open Pin 11 for VOL test on Pin 8, VOH test on Pm 6 and ISC test on Pm 6

Note 3: Pulse test to determine VIH and VIL (Min PW

=;

40 ns)

6-15

....
o

OM8601
absolute maximum ratings

CD
CO

::?!

Supply Voltage to Ground
Input Voltage
Voltage Applied to Outputs
Storage Temperature
Operating Temperature
Lead Temperature (Soldering, 10 sec)

c

"'....

o

CD

en
::?!

-0.5V to +8.0V
-0.5V to +5.5V
-0.5V to +V cc
-65°C to +150°C
oDe to +75°C
300°C

c

electrical characteristics
TABLE II
Limits

Symbol

aCc

Parameter
Mm.

VOH

Output High Voltage

+2S"C
Max.

24

Mm.
24

Typ.

+75°C

Max.

34

Units

Conditions

(Note l'

Max.

Mm.

24

V

Vee =475V

IOH

:=

-096 mA

(Note 2)

VOL

045

Output low Voltage

02

045

045

V

Vee'" 4 75V
IOL '" 128 rnA
(Note 2)

V'H

Input High Voltage

V"

Input Low Voltage

Ie

Input Load Current

19

18

16

085

085

085

V

Vee =475V

V

Vee =525V
(Note 3)

-16

-10

-1 6

-16

mA

Vee

=

525V

V,=045V
IR

15

Input Leakage Current

60

60

~A

Vee =525V

V R = 4 5V
Ise

Short CirCUit Current

1'0

QUiescent Power

-10

-40

mA

Vcc=50V
V OUT = OV (Note 2)

25

Supply Drain

tpd t

25

Negative Trigger Input
to True Output

25

25

40

mA

ns

Vee'" 5 25V
GNDPlnsl &2

Vee "'SOV
A x =50KIl

tpd ~

Negative Trigger Input
to Complement Output

25

40

ns

ex

=0

c L = 15 pF
lpwlmm)

Minimum True Output

j t pw

Pulse Width Variation

estray

Maximum Allowable
WIring Capacitance

Rx

External Tlmmg Resistor

45

Pulse Width

308

342

65

ns

3.76

~s

Vee =50V
Ax = 10 KIl. C x = 1.000 pF

(P,n 13)

50
50

50

50
50

50

50

50

pF

50

kll

Note 1: Unless otherWise specified, RX = 10 Kr2 between Pin 13 and Vee on all tests
Note 2: Ground Pin 11 for VOL test on Pin 6, VOH test on Pm 8 and Ise test on Pin 8
Open Pin 11 for VOL test on Pm 8, VOH test on Pin 6 and Ise test on Pin 6

Note 3: Pulse test to determine VIH and VI L (Min PW = 40 ns)

6-16

Pin 13 to GND

c

s:
CD
en

o....

operating rules

.......

C

tance and noise pickup. If remote trimming IS
required, Rx may be split up such that at least
Rx 1M IN) must be as close as possible to the
circuit and the remote portion of the trimming
resistor R
RXIMAX)-Rx

1. An external resistor R x and an external capacitor C x are required for operation. The value of
Rx can vary between the limits shown on
tables I and II. The value of C X IS optional and
may be adjusted to achieve the required output
pulse width.
2. Output pulse width tpw may be calculated as
follows:
tpw

~ 0.32 RxCx [1 + ~':1 (for Cx 2' 10

Rx in KSl, C x

In

3

s:CO

en

o
....

<

4. Set-up time(t11 for Input trigger pulse >40 ns.
(See Figure 11
Release time(t 2 1 for Input trigger pulse >40 ns.
(See Figure 21
5 Retrlgger pulse width (see Figure 31 IS calculated
as follows'

pFI

pF and tpw In ns

For ex < 10 3 pF, see curve.
3. Rx and C x must be kept as close as possible to
the CirCUit in order to minimize stray capacl-

'.C):-'"
Figure 2

Figure 1

INPUT

0. OUTPUT

~

:

L

Figure 3

6-17

C/)

CD

Series 10,000

CD

1/1

~

o
o
o
o

REFERENCE
The following table references all Physical Dimension Drawings, Waveforms, and Test Circuits for the devices
in this section. For Order Numbers, see below! Refer to the alpha·numerlcal Index at the front of thiS
catalog for complete device title and function. Packages (pages I thru VI) are In the back of the catalog.
PACKAGES

DATA SHEETS

Devices

Pg

DM10l0l
DM10102
DM10105
DM10106
DM10l07
DM10l09
DM10l10
DM10lll
DM10112
DM10115
DM10116
DM10117
DM10118
DM10119
DM10121
DM10124

7·1
7·3
7·5

Molded DIP (N)
Fig.

n
7·9
7·11
7·13
7·15
7·17
7·19
721
7·23
7·25
7·27
7·29
731

Pg.

Cavity DIP (D)(J)
Fig.

Pg

Type

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

Flat Pack (F)(W)

Metal Can (G)(H)

Fig.

Fig.

Pg

Type

Pg.

Type

WAVE·
FORMS

TEST
CIRCUITS

Fig

Pg.

Fig.

Pg.

41
41
41
41
41
41

1118
11·18
11·18
1118
11·18
11·18

10
10
10
10
10
10

11·2
11·2
11·2
11·2
112
11·2

*Order Numbers use DeVice No suffixed with package letter, I.e. OM10101J.

7-i

o

...o~

Series 10,000

...o
...

DM10101(MC10101) quad OR/NOR gate with strobe
general description
The DM 101 01 quad gate IS a low power, high
speed, standard ECl logic device. High Z input
pulldowns allow high DC and AC fanout and
eliminate the need to tie unused Inputs to an
external supply. The open emitter outputs allow
maximum flexibility In the selection of termination techniques and minimize the power requirements when driving transmission lines. Wire"OR"ing of outputs IS available with the open
emitter outputs.

applications
The DM10101 is useful In control, bUSSing and
communications In high speed central processors,
high speed peripherals, digital communications
systems, minicomputers and instrumentation. This
deVice is commonly used for control and bUSSing
data by using the wire OR capability of the baSIC
ECl gate and/or the common enable input. The

complementary outputs on all gates makes this
part useful as a quad line driver for twisted pair
lines thus redUCing package count.

features
3.5 ns

•

Slow rise and fall times

•

High speed

2.0 ns

•

low power

25 mW/gate

•

High fanout

•

50£1 line driving capability

50 mA/output

•

High Z input pulldowns

•

Open emitter follower outputs

•

Wire OR capability

•

Complementary output for added versatility

•

Standard end power pins for conventional layout

•

Separate Vee pins maintain high speed and
minimize crosstalk and noise generation

schematic and logic diagrams

Dual~1 n~Line

Package

TOP VIEW

8

V"

7-1

....

o....
o....
:E

absolute maximum ratings

Q

-8V

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o to VEE
50mA
_30° C to +85° C
-55°C to +125°C
300°C

electrical characteristics

@TEST

VOL

VtHA

VILA

MIN

MIN

MAX

-089

-1 89

-1 205

_1 50

-52

+25°C

-081

-185

-1 105

V

-070

-1825

-1035

-'475
-144

-52

+85"C

-52

v

_30°C

CHARACTERISTIC

SYMBOL

TEST
Power Supply Drain Current

Input Current

logic "1" Output Voltage

logic "0" Output Voltage

Logic "1" Threshold Voltage

Logic "0" Threshold Voltage

DM10101

PIN
UNDER

_30°C

MIN

I,

8

-

-

l.nH

13

-

-

l'flH

12

-

I,nl

12,13

V OH

Yo,

VOHA

VOLA

MIN

-

TYP

LISTED BELOW
+8SoC

UNITS

MAX

MIN

MAX

20

26

-

-

-

265

VILA

MIN

MIN

MAX

-

-

8

1,16

-

8

1,16

-

8

1, 16

-

8

1,16

-

8

1,16

-

8

1,16

mAde

-

.uAde

13

_.

-

550

-

-

pAdc

12

-

-

-

-

}.JAde

-

-096

-

-081

-070

Vde

12

-

-081

-089

-070

Vde

13

-081

-089

-070

Vdc

-081

-089

-070

Vde

-165

-1825 -1615

Vde

-

-165

-1825 -1615

Vde

-

-165

-1825 -1615

Vdo

12

-165

9

-106

-089

-096

15

-106

-089

-096

15

-106

-089

-096

9

-189

-1675

-185

9

-189

-1675

-185

15

-189

-1675

-185

15

-1 89

-1675

9

-1 08

9

-108

15

-108

-

-098

15

-108

-

-098

9

-

-1655

9
15

-

15

-

-1655

-

-

-185

-089

-

-

12

13

-

8

1, 16

-

-

8

1, 16

-

-

8

1,16

-

-

8

1, 16

-

Vde

13

-

-091

Vdo

-

-

12

-098

-

-091

Vde

-

-

13

Vde

-

-

-

Vde

-

-

-091

-

-

-091

-

-

-163

-

-1595

Vdo

-

-1655

-

-

-163

-

-1595

Vde

-

-1655

-

-163

-

-1595

Vde

_.

-

12

-1 595

Vde

-

-

13

-163

RlseTlme
(20 to 80%)
Fall Time
(20 to 80%

15

t 12 _ 15 +

15

-

10

20

29

-

10

20

29

10

20

29

-

10

20

29

11

20

33

-

11

20

33

-

11

20

33

-

-

11

20

33

-

-

112+9+

9

-

t 1Z _ 9

9

-

-

t 15 +

15
-

-

0,.

9

115 -

15

0,-

9

-

-

-

-

-

-

e,

-

e,

-

e;

-

e;

-

"e,

-

8

1, 16

8

1,16
1,16

12

8

13

8

1, 16

-

12

8

1,16

-

13

Pulse
Ie
112+15-

1, 16

-

-1825 -1615

-

8

GND

13

-

-

VEE

12

SWitching Times
1500hm load)
Propagation Delay

-

12,13

-098

-

(Vee)

V 1HA

MAX

05

-089

V

VOL

-

-106

UNITS

VOH

-

9

VEE

TEST VOL TAGE APPLIED TO PINS

TEST LIMITS
+2SoC

MAX

TEST VOL rAGE VALUES
VOH

MAX

TEMP

Pulse
0",

8

1, 16

8

1,16

8

1, 16

-32V

+20V

12

15

8

1,16

-

12

15

8

1,16

12

9

8

1,16

12

9

8

1,16

-

12

15

8

1,16
1, 16

-

12

9

8

e,

-

-

12

15

8

1,16

e;

-

-

8

1,16

12

9

Note: Each DM10,OOO series Circuit has been designed to meet the DC specifications shown In the test table, after thermal
eqUilibrium has been established. The Circuit IS In a test socket or mounted on a printed circuit board and transverse air
flow greater than 500 linear fpm IS maintained Outputs are terminated through a 50-ohm resistor to -2 a volts. Test procedures are shown for only one gate. The other gates are tested In the same manner

7-2

c

....
s:

Series 10,000

o

o
N

DM10102(MC10102) quad gate

general description
The DM10l02 quad gate IS a low power, "high
speed, standard ECl logic device. High Z Input
pulldowns allow high DC and AC fanout and
eliminate the need to tie unused Inputs to an
external supply. The open emitter outputs allow
maximum flexibility in the selection of termination techniques and minimize the power requirements when driving transmission lines. Wtre Ortng
of outputs is available with the open emitter
outputs.

applications
The DM10l02 is very useful In control, bussing,
and communications in high speed central processors, high speed pertpherals, digital communications systems, minicomputers and Instrumentation
This device IS commonly used for control and
bussing data by uSing the wire OR capability of

the basIc ECl gate. The additional non-Inverting
output on one gate adds to the fleXibility of thiS
part.

features
35 ns

•

Slow rise and fall times

•

High speed

2.0 ns

•

low power

25 mW/gate

•

High fanout

50 mA/output

•

50Q line drtvlng capability

•

High Z Input pu IIdowns

•

Open emitter follower outputs

•

Wire OR capability

•

Complementary output for added versatility

•

Standard end power pinS for conventional layout

•

Separate Vee pins maintain high speed and
minimIZe crosstalk and nOise generation

schematic and logic diagrams
VCC2
16

Vee1

Dual-In-Line Package

16

15

+---+--013
TOPVIEW

11

12

7-3

N

o.~

absolute maximum ratings

:E
C

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-8V

oto VEE
50mA
_30° C to +85° C
-55°C to +125°C
300°C

electrica I characteristics

@

TEST h;:::-,v.T:-,E'lSrT~Vf':0=:LT,-,AfGo.;EfV:,:A:=L,U=:ES'---1

TEMP

~~HX

~II~

~~~

~~~

Vee

UNITS

_30°C

,-089

-189

-1205

-150

-52

V

+25°C
+85"C

-081
-070

-185
-1825

-1105
-1035

-1475
-144

-52
-52

V
V

TEST VOLTAGE APPLIED TO PINS
LISTED BELOW

DM10102 TEST LIMITS

PIN
CHARACTERI~TlC

UNITS

(Vee!
r-:-V'-'H-'--:V"-Il--:--:V-'H-'-A-'-:V"-Il-A-'---; GND
MAX

Power Supply Drain Current

20

Input Current

12
12

Logic ''1'' Output Voltage

15
15
Logic "0" Output Voltage

Logic "1" Threshold Voltage

Logic "0" Threshold Voltage

26

mAde

265

.uAde

05

RlseTlme
(20 to 80%)

Fall Time
(20 to 80%

MIN

MAX

Vee

1,16
12

1,16
12

,uAde

1,16

-106

-089

-096

-0 81

-0 89

-070

Vde

12

-1 06

~089

-096

-081

-089

-070

Vde

13

-106

-089

-096

-081

-089

-070

Vdc

12

1,16

-070

Vdc

13

1,16
1,16

1,16
1,16

-106

-089

-096

-08t

-089

-189

-1675

-185

-165

-1825 -1615

Vde

12
13

-189

-1675

-185

-165

-1825 -1615

Vde

15

-189

-1675

-185

-165

-1825 -1615

Vde

12

15

-189

-1675

-185

-165

13

1,16
1,16

-1825 -1615

Vde

-098

-091

Vdc

12

-108

-098

-091

Vdc

13

15

-'08

-098

-091

Vdc

12

1,16

15

-108

-098

-091

Vdc

13

1,16

V OHA

-108

1,16
1,16
1,16

-1655

-163

-1595

Vde

12

1,16

-1655

-163

-'595

Vde

13

1,16

15

-1655

-, 63

-1595

Vde

12

15

-1655

-163

-, 595

Vde

13

VOLA

SWltchmg Times
(50·ohm load)
Propagation Delay

MIN

1,16
1,16

Pulse

Pulse

In

0",

-32V

t 12 +15_

15

10

20

29

12

15

1,16

t12-15+

15

10

20

29

12

15

1,16

t12+9+

10

20

29

12

1'2_9_

10

20

29

12

11

20

33

12

11

20

33

12

11

20

33

12

11

20

33

12

t,5+

15

t"
15

1,16
1,16
15

1,16
1,16

15

Note: Each DM10,000 series CirCUit has been designed to meet the DC specifications shown In the test table, after thermal
eqUIlibrium has been established The circuit IS In a ~est socket or mounted on a printed cirCUit board and transverse air
flow greater than 500 linear fpm IS maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested In the same manner.

7·4

+20V

1,16
1,16

c

...os:
...
o

Series 10,000

U'1

DM10105(MC10105) triple 2-3-2 OR/NOR gate

features

general description

The DM10105 triple gate IS a low power, high
speed, ECl logic device with the standard ECl
high Z Inputs and open emitter outputs. This
offers the system deSigner maximum flexibility
in layout and design. The open emitter output
allows a maximum number of gates to be wire
ORed. This device is useful in high speed digital
commUnications systems, central processors, penpheral controllers, minicomputers, instrumentation, and testing systems. The DM 101 05 IS a
general purpose gate which generates both true
and complement of a control signal and can be
used to drive twisted pair lines.

•

Slow rise and fall times

•

High speed

•

low power

•

High fanout

3.5 ns
tpd

= 2.0 ns

50 mA/output

•

Open emitter follower outputs for Wire OR

•

Complementary outputs simultaneous functions

•

Standard end power pins conventional layout

•

Separate Vee pins maintain high speed and
minimize crosstalk and noise generation

schematic and logic diagrams
16

"

13

Dual-In-Line Package

TOPVIEW

v"
10

11

7-5

In

...
...

o

o
:!:

absolute maximum ratings
-8V

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

c

o to VEE
50mA
-30 C to +85°C
-55°C to +125°C
300°C

electrical characteristics

TEST VOLTAGE VALUES
(Volts)

@TEST

TEMP

V,H
MAX

VIL
MIN

V,HA
MIN

V,LA
MAX

VEE

_30°C

-0890

-1890

-1205

-1500

-52

+25°C

-0,810

-1850

-1 105

-1475

-52

-1035

-1440

-52

+85"C

-0700

DM10105 TEST LIMITS

PIN
CHARACTERISTIC

Power Supply Dram Current

Input Current

SYMBOL

UNDER
TEST

PINS LISTED VELOW

+2SOC

_30°C

MAX

Logic '0" Output Voltage

MIN

I,

TVP

15

Voc

Logic "1 'Threshold Voltage

V OHA

Logic "0' Threshold Voltage

VOI.- A

(2010 80%1
Fall Time
(2010 80%1

MAX

21

V,H
MAX

VIL
MIN

V,HA
MIN

V,LA
MAX

VEE

GNo

mAde

1,16

pAdc

1,16

pAdc

1,16

-0890

-0960

-0810

-0890

-0700

Vdo

1,16

-1060

-0890

-0960

-0810

-0890

-0700

Vdo

1,16

-1890

-1675

-1850

-1650

-1825

-1615

Vdo

1,16

-1890

-1675

-1850

-1650

-1825

-1615

Vdo

1,16

Vdo

1,16

Vdo

1,16

-1080

- 910

-0980
-0980

- 910

-1655

-1630

-1595

Vdo

-1655

-1630

-1595

Vdo

1,16
1,16
Pulse
10

Pulse

0",

-32V

+20V

14~3

20

1,16

14_3+

20

1,16

14+2+

20

1,16

t"

20

1,16

t"

20

1,16

t"

20

1,16

t,

20

1,16

t,

20

1,16

Note: Each DM10,OOO senes circuit has been deSigned to meet the DC specifications shown In the test table, after thermal
eqUilibrium has been established. The Circuit IS 10 a test socket or mounted on a printed CirCUit board and transverse air
flow greater than 500 Imear fpm IS maintained. Outputs are term mated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates ~re tested In the same manner.

7-6

(Vee)

-1060

SWitching Times
150 ohm load I

Rise Time

MIN

05

-1080

Propagation DeidY

MAX

265

l,nH

V OH

+8S"C
UNITS

MIN

l,nL

logic ',"Output Voltage

-1825

TeST VOLTAGE APPLIED TO

c

~
....

Series 10,000

o....
o
en

DM10106(MC10106) triple 4-3-3-input NOR gate
general description
The DM10l06 triple gate IS a low power, high
speed, ECl logic device with the standard ECl
high Z inputs and open emitter outputs. This offers
the system designer maximum flexibility In layout
and design. The open em itter output allows a
maximum number of gates to be wire ORed. This
deVice is useful In high speed digital communications systems, central processors, peripheral controllers, minicomputers, instrumentation, and testing systems. Busing data with wire OR IS a useful function of the DM10l06 and It is also useful
as a general purpose gate.

features
•

Slow rise and fall times

•

High speed

•

low power

•

High fanout

3.5 ns
tpd

z

2.0 ns

50 mA/output

•

Open emitter follower outputs for wire OR

•

Standard end power pins conventional layout

•

Separate Vcc pins maintain high speed and
minimize crosstalk and noise generation

schematic and logic diagrams

Dual·1 n-line Package

"

TOPVIEW

7-7

absolute maximum ratings
Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-8V

o to VEE
50mA
-30 C to +85°C
_55°C to +125°C
300°C

electrical characteristics

TEST VOLTAGE VALUES

@TEST
TEMP

DM10106

PIN
CHARACTERISTIC

SYMBOL

-30°C

UNDER

TEST

MIN

l,nH

4

-

-

-

I'''L

4

-

-

05

VO "
Vo ,

3

-1060

-0890

-0960

3

-1890

-1675

-1850

Loglc"t 'Threshold Voltage

V OHA

3

-1080

-

-0980

Logic "0 'Threshold Voltage

VOLA

3

-

-1655

-

Logic "1 'Output Voltage
LogIc "0' Output Voltage

RIse Time (20 to 80%)

TYP

MAX

VEE

-1890

-1205

-1500

-52

+25"C

-0810

-1850

-1 105

-1475

-52

+85"C

-0700

-1825

-1035

-1440

-52

TEST VOLTAGE APPLIED TO
PINS LISTED BelOW

+85"C

MAX

15

21

-

265

Fall Time (20 to 80%)

14+3_

3

-

-

-

14 _3<

3

-

-

-

20
20

3

-

-

-

20
20

t,.
t,

3

VILA

MIN

-0890

MIN

MAX

V,"

V"

VIHA

VILA

MAX

MIN

MIN

MAX

mAde

-

-

,uAde

-

,uAde

-

-

-0810

-0890

-0700

Vde

-1650

-1825

-1615

Vde

-

-0910

-

Vde

-1630

--

-1595

Vde

4

4

-

-

-

-

-

4

-

4

-

-

SWltchmgTlmes
(50 ohm load)
Propagation Delay

VIHA

-30"e

TEST LIMITS

+26"C

MAX

8

Input Current

V"

MIN

UNITS

MIN

I,

Power Supply Dram Current

(Volts)

v,"

MAX

-

-

-

-

""
""
""
""

-

-

-

(Vee)

GND

8

1,16

-

8

1,16

-

4

4

VEE

-

Pulse

Pulse

'"

0"

8

1,16

8

1,16

8

1,16

8

1,16

8

1,16

-32V

+20V

3

8

1,16

4

3

8

1,16

4

3

8

1,16

4

3

8

1,16

4

Note: Each DM10,OOO senes circuit has been designed to meet the DC specificatIOns shown In the test table, after thermal
eqUlllbnum has been established. The Circuit IS In a test socket or mounted on a printed CirCUit board and transverse air
flow greater than 500 linear fpm IS maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested In the same manner.

7-8

c

...

3:
o
o

...

Series 10,000

"-J

DM10107(MC10107) triple EXCLUSIVE-OR/NOR gate
general description

features

The DM10l07 triple gate IS a low power, high
speed, ECl logic device with the standard ECl
high Z Inputs and open emitter outputs. This
offers the system designer maximum flexibility In
layout and design. The open em itter output allows
a maximum number of gates to be wired ORed ThiS
device is useful in high speed digital communications systems, central processors, peripheral controllers, minicomputers, instrumentation, and testIng systems. The DM10l07 provides the Exclusive
OR and the complement function simultaneously.
This device can selectively invert control Signals,
and can be used to bUild special purpose adders or
counters.

•

Slow rise and fall times

•

High speed

•

low power

•

High fanout

•

Open emitter follower outputs for wire OR

•

Standard end power pins conventional layout

•

Separate Vee pins maintain high speed and
minimize crosstalk and noise generation

3.5 ns
tpd

=

2.0 ns

50 mA/output

schematic and logic diagrams

Dual-In-Line Package

TOP VIEW

7-9

o"'...."

S2

absolute maximum ratings

:E
C

-8V

Supply Voltage
I nput Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o to VEE
50mA
-30 C to +85°C
_55°C to + 125°C
300°C

electrical characteristics
TEST VOLTAGE VALUES
@TEST

(Volts)

TEMP

CHARACTER ISTle

SYMBOL

I,

Input Current

UNDER
TEST

Logic "0" Threshold Voltage

-1500

-52

+2SOC

-0810

-1850

-1105

-1475

-52

+8SoC

-0700

-1825

-1035

-1440

-52

355

pAdc

5,7,15

265

pAdc

SWitching Times (50n Load)

Rise Time

-1205

I-M-IN--.:;30r-°C=-M-AX--1r-M-IN...;+.;25:..0C=-M-A-X+-M-'N"';+-'i85r°=-~-A-x-l UNITS

VIH MAX

VIL MIN

V1HA MIN

VEE

1,16
1,16

~Adc

1,16

-0890

-0960

-0810

-0890

-0700

Vdc

4,5

-1 060

-0890

-0960

-0810

-0890

-0700

Vdc

1,16

-1060

-0890

-0960

-0810

-0890

-0700

Vdc

1,16

-1060

-0890

-0960

-0810

-0890

-0700

Vdc

1,16

-1890

-1675

-1850

-1650

-1825

-1615

Vdc

1,16

-1890

-1675

-1850

-1650

-1825

"·1615

Vdc

-1890

-1675

-1850

-1650

-1825

-1615

Vdc

-1890

-1675

-1850

-1650

-1825

-1615

Vdc

4,5

1,16

1,16
4,5

1,16
4,5

1,16
1,16

-1080

-0980

-0910

Vdo

-1080

-09S0

-0910

Vdo

-1080

--09S0

-0910

Vdo

1,16

-1080

-0980

-0910

Vdo

1,16

TYP

-1655

-1630

-1595

Vdc

-1655

-1630

-1595

Vdc

-1655

-1630

-1595

Vdc

-1655

-1630

-1595

Vdc

MAX

UNITS

MAX

TYP

MAX

TYP

4,5
4,5

1,16

1,16
1,16
1,16

4,5

1,16

4,5
Pulse In

Pulse Out

-32V

+20V

Inputs

20

5,7,15

Input

Corresponding

4,9 or 14

20

5,7,15

4,9,or

OR/NOR

1,16

to either

20

5,7,15

14

Outputs

1,16

Output

20

5,7,15

Inputs

28

4,9,14

Input

Corresponding

5,7 or 15

2B

4,9,14

5,7, or

OR/NOR

1,16

to either

28

4,9,14

15

Outputs

1,16

Ouput

2B

4,9,14

25

4,9,14

Any Input

Corresponding

t'

Fall Time
(20 to 80%)

1,16

1,16
1,16

1,16

(20 to 80%)

1,16

OR/NOR

25

4,9,14

Any Input

Outputs

IIlndlvtdually test each Input applYing V IH or V 1L to mput under test

II*Any Output

Note: Each DM10,OOO series CirCUit has been designed to meet the DC speCifications shown In the test table, after thermal
eqUilibrium has been established. The CirCUit IS In a test socket or mounted on a printed CirCUit board and transverse air
flow greater than 500 linear fpm IS maintained, Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate The other gates are tested In the same manner

7-10

GND
1,16

All Inputs

-1060

VOLA

c-

-1890

4,9,14

VOHA

Propagation Delay

VEE

-0890

mAdc

Logic "0" Output Voltage

Threshold Voltage

VILA MAX

_30°C

28

Logic "1" Output Voltage

"1"

VIHA MIN

TEST VOLTAGE APPLIED TO PINS LISTED BELOW

05

Logic

VIL MIN

DM10107 TEST LIMITS

PIN

Power Supply Drain Current

VIH MAX

1,16

c

s:
....
o
....
o

Series 10,000

CD

DM10l09 (MC10l09) dual 4-5-input OR/NOR gate
general description

features

Open emitter outputs, high Z inputs, high speed,
and low power are the outstanding characteristics
of the DM10109 dual gate. The high Z Inputs and
open emitter outputs allow a maximum fanout
with minimum power requirements. Slow rise and
fall times, characteristic of ECl 10,000 series
gates, allow conventional interconnect techniques.
The open emitter outputs allow a maximum num·
ber of outputs to be wire ORed and stili drive a
heavy fanout. I n addition, unused outputs may be
left open and do not waste power. This device is
designed for use In high speed central processor,
peripheral controllers, minicomputers, digital com·
municatlons systems, and instrumentation and test·
ing systems.

•

Slow rise and fall times

•

High speed

•

low power

•

High fanout

•

Multiple open emitter follower outputs

•

MUltiple wire OR capability

•

Complementary outputs

•

Standard end power pins

•

Separate Vee pins maintain high speed and
minimize crosstalk and nOise generation

The DM 101 09 IS a general purpose gate that can
be used In control. The complementary outputs
are also useful In driving twisted pair lines when
it is necessary to send control signals or data a long
distance.

3.5 ns
tpd

= 2.0 ns

50 mA/output

schematic and connection diagrams

Dual-I n·L me Package

8

V"

7·11

0')

...

o

~

absolute maximum ratings

::E
C

-8V

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o to VEE

50mA
_30° C to +85°C
_55°C to +125°C
300°C

electrical characteristics

TEST VOL TAGE VALUES

@TEST

DM10109

PIN
CHARACTERISTIC

Power Supply Dram Current
Input Current

SYMBOL

UNDER
TEST

_30 o e
MIN

MAX

I,

High Output Voltage

Low Output Voltage

High Threshold Voltage

i,,,H

YO"
Yo,

V OHA

VOLA

+85°C

MAX

(20 to 80%)
Fall Time

(20to 80%)

MIN

MAX

-1890

-1205

-1500

-52

+2SoC

-0810

-1850

-1105

-1475

-52

+BSOC

-0700

-1825

-1035

-1440

-52

VIHA

MIN

VILA

VEE

UNITS

MAX

V,"

V"

V 1HA

VILA

MAX

MIN

MIN

MAX

VEE

1,16

265

pAdc

1,16

/JAde

1,16

1,16

-1060

-0890

-0960

-0810

-0890

-0700

Vd,

-1060

-0890

-0960

-0810

-0890

-0700

Vd,

1,16

-1890

-1675

-1850

-1650

-1825

-1615

Vd,

1,16

-1890

-1675

-1850

-1650

-1825

-1615

-1080

-0980
-0980

Vd,

1,16

-0910

Vd,

1,16

-0910

Vd,

1,16
1,16

-1655

-1630

-1595

Vd,

-1655

-1630

-1595

Vd,

1,16

'0

Pulse
Oct

-32V

+20V

, 0

20

29

1,16

, 0

20

29

1,16

t4+3

, 0

20

29

1,16

14.3,

, 0

20

29

1,16

20

33

1,16

20

33

1,16

20

33

1,16

20

33

1,16

t4+2+

t,.
t,.
t,_
t,_

"
"
"
"

Note: Each DM10,OOO series Circuit has'been designed to meet the DC specifications shown In the test table, after thermal
eqUlllbnum has been established. The circuit IS In a test socket or mounted on a printed CircUit board and transverse air
flow greater than 500 linear fpm IS maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate IS tested In the same manner.

7-12

GNO

mAde

Pulse

t"
Rise Time

MIN

-0890

14

SWltchmg Times
(50 ohm load)
Propagation Delay

MAX
_30 o e

V"

TEST VOLTAGE APPLIED TO
PINS LISTED BelOW

05

-1080
Low Threshold Voltage

TYP

'0

l,nL

v,"

TEST LIMITS

+25°C

MIN

(Volts)

TEMP

Series 10,000
DM10110(MC10110) dual 3-input/3-output OR gate
general description

features

The DM 1011 0 is designed to drIVe up to three
transmission lines simultaneously. The multiple
outputs of this device also allow the w!re·"OR"ing
of several levels of gating for minimization of gate
and package count.

•

Slow rise and fall times

•

High speed

•

Low power

•
•

50 mA/output
High fanout
Multiple open emitter follower outputs

The ability to control three parallel lines from a
single pOint makes the DM10110 particularly use·
ful in clock distribution applications where min·
Imum clock skew IS desired.

•

Multiple wire OR capability

•

Standard end power pinS

•

Separate Vee pins maintain high speed and
minimize crosstalk and nOise generation

3.5 ns
tpd ~

2.0 ns

schematic and connection diagrams

VCC'l

16
Vee1

..........- - 0 1
Dual-In-Line Package

11

DIll

TOPVIEW

0-+------,

100-+----,

~+-+--O"

.....-'--"13

12

v"

7-13

......

o

...

o
:E

absolute maximum ratings

Q

-8V

Supply Voltage
I nput Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o to VEE

50mA
-30°C to +85°C
-55°C to +125°C
300°C

TEST VOLTAGE VALUES,

electrical characteristics

o TEST

(Volts)

TEMP

PIN
CHARACTERISTIC

SYMBOL

UNDER
TEST

-lOoe

MAX

TY.

LogIc "1" Output Voltage

LogiC "0" Output Voltage

logIC "1" Threshold Voltage

logIC "0" Threshold Voltage

MAX

MIN

VOH

Yo,

VOHA

VILA

MIN

MAX

VEE

-JOoc

-0890

-1890

-1205

-1500

-52

+2SoC

-0810

-1850

-1105

-1475

-52

+85°C

-0700

-1825

-1035

-1440

-52

5,6,7

43.

5,6,7

PINS LISTED BELOW

UNITS

V'H
MAX

MAX

38

"

VIHA

TEST VOLTAGE APPLIED TO

+8S"C

+25°C

MIN

Power Supply Dram Current

I. H
I.,

V'L
MIN

DM10110 TEST LIMITS

MIN
Input Current

V'H
MAX

05

RIse TIme

(20 to 80%)

Fall TIme
(20 to 80%)

V'HA
MIN

VILA

MAX

V••

tVccl
GND

mAde

1.15,16

j.lAdc

1,15,16

.uAdc

1,15,16

1,15,16

-1060

-0890

-0960

-0810

-0890

-0700

Vd,

-1060

-0890

-01160

-0810

-0890

-0700

Vd,

1, IS, 16

1.15.16

-1060

-0890

-0960

-0810

-0890

-0700

Vd,

-1890

-1675

-1850

-1650

-1825

-1615

Vd,

1,15.16

-1890

-1675

-1850

-1650

-1825

-1615

Vd,

1,15,18

-1890

-1675

-1850

-1650

-1825

-1615

Vd,

1,15,16

-lOBO

-0980

-0910

Vd,

1,15,16

-1080

-0980

-0910

Vd,

1,15,16

-1080

-0980

-0910

Vd,

1,15,16

VOLA

-1655

-1630

-1595

Vd,

1,15,16

-1655

-'630

-1595

Vd,

1,15,16

-1655

-1630

-1595

Vd,

1,15,16

SWItchIng TImes
(50 ohm load)
PropagatIon Delay

V'L
MIN

Pulse

'n

Pulse

Out

-32V

+20V

t5_2'

14

24

35

1,15,16

t"

14

24

35

1,15,16

tS'3_

t4

24

3S

1,15,16

t53_

14

2.

35

1,15,16

t5"_

14

24

35

1,15,16

t6_'_

14

24

35

1,15,16

t,.

11

22

35

1,16,16

t,.

11

22

3.

1,15.16

"'.

11

22

3.

1,15,16

t,_

11

22

3.

l,lS,16

t,_

11

22

35

l,1S,16

t._

11

22

35

1, IS, 16

-lndlvrdu,lIy IItSI nch InPUI applYing V'H or VIL 10 pm ul'lder tltSt

Note: Each DM10,OOO senes CIrCUIt has been deSIgned to meet the DC specifIcations shown In the test table, after thermal
eqUIlibrium has been established. The CirCUIt IS In a test socket or mounted on ,8 printed Circuit board and transverse air
flow greater than 500 linear fpm IS maintained Outputs are terminated through a 50 ohm resistor to -20 volts Test procedures are shown for only one gate. The other gate IS tested In the same manner.
M

7-14

c

s:
....

Series 10,000

........o
....

DM10111 (MC10111) dual 3-input/3-output NOR gate
general description

features

The DM10111 IS designed to drive up to three
transmission lines simultaneously. The multiple
outputs of thiS device also allow the wlre-"OR "ing
of several levels of gating for minimization of
gate and package count.
The ability to control three parallel lines from a
Single pOint makes the DM10111 particularly useful in clock distribution applications where minimum clock skew is desired.

3.5 ns

•

Slow rISe and fall times

•

High speed

•

Low power

•
•

50 mA/output
High fanout
Multiple open emitter follower outputs

tpd

= 2.0

ns

•

Multiple wire OR capability

•

Standard end power pins

•

Separate Vee pins maintain high speed and
minimize crosstalk and nOise generation

schematic and logic diagrams

VCC2
16

Dual-tn-Line Package

r-......- Q I 5

TOP VIEW

·....-++-<>14
13

12

7-15

absolute maximum ratings

-8V

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o to VEE

50mA
-30°C to +85°C
_55°C to +125°C
300°C

electrical characteristics

reST VOLTAGE VALUES

@TEST
TEMP

DM10111

PIN
CHARACTERISTIC

SYMBOL

UNDER
TEST

-3a"e
MAX

rvp

-

-

38

-

-

435

05

-

I,

8

-

Input Current

l,nH

5,6,7

-

l'nL

5,6,7

-

logiC "'" Output Voltage

YO"

2

-1060

-0890

-0960

3

-1060

-0890

-0960

4

-1060

-0890

-0960

Power Supply Drain Current

logiC "0" Output Voltage

Vo c

LogiC "1" Threshold Voltage

LogiC "0" Threshold Voltage

VOHA

VOLA

MIN

MAX

V"

-30' C

-0890

-1890

-1 205

-1500

-52

- 2SoC

-0810

-1850

-1 105

-1475

-52

+85"C

-0700

-1825

-1 035

-1440

-52

-

MAX

MIN

MAX

-

-

.uAdc

-0810

-0890

-0700

Vdo

-0810

-0890

-0700

-0810

-0890

-

mAde

V"

VIHA

VILA

MIN

MIN

MAX

v"

-

-

-

-

8

I, 15, 16

-

-

8

1,15, 16

-

-

8

1,15,16

5

-

-

8

1,15, 16

Vdo

6

-

8

1,15, 16

-0700

Vdo

-

7

-

-

8

1,15,16

-

8

1, 15, 16

8

1.15,16

8

1, 15, 16

-1890

-1675

-1850

-1650

-1 825

-1615

Vdo

5

-

-1890

-1675

-1850

-1650

-1 825

-1615

Vdo

6

4

-1890

-1675

-1850

-1 650

-1825

-1615

Vdo

-

-0980

-

-0910

Vdo

-

-0 980

-

-0910

Vdo

-0980

-1080
-1080

4

-1080

-

2

-

-1655

-

-0910
-1630

-

-

t5+2_

-

-

7

8

1,15, 16

-

5

-

8

1, 15, 16

-1595

Vdo

-

-

6

-

8

1, 15, 16

-1595

Vdo

-

7

-

8

1,15, 16

-

-

14

24

35

14

2'

35

-

14

24

35

-

14

2'

35

Rise Time

-

14

2'

35

-

14

24

35

(20 to 80%)

Fait Time
(20 to 80%)

t52+

2

-

15<3·

3

-

t53+

3

-

15+4
164+

,

1"

2

4

-

-

22

35

3

--

11

t"

11

22

35

-

t"
t,

4

-

-

II

22

35

-

2

-

-

11

22

35

-

t,

3

-

t 1

22

35

-

-

t,

4

-

11

22

35

-

-

'Ind,v,dually lest each ,nput appiY"'9 V,nH

Note: Each

-

Or

Vonllo pon

under

1,15, 16
1, 15, 16

-

-1 655

-

8
8

Vdo

4

2

5

Vdc

SWitching Times
(50 ohm load)
Propagation Delay

6

-

-

-1630

-

-

-1595

-1 655

-1630

7

-

3

-

GNo

-

/.lAde

2

2

(Vee)

V,H

MAX

3

3

VILA

TEST VOLTAGE APPLIED TO
PINS LISTED BELOW

UNITS

+8S"C

MIN

V rHA

V,l

MIN

TEST LIMITS
+25"C

MIN

(Volts)
V,H

MAX

"

"
"
"
"
"

"

"
"
"
"c;

Pulse
Ie

Pulse

-

5

2

-

5
5

-

5

-

-

-

-

-

-

-

-

-

-

-32V

+2 OV

8

1,15, 16

2

8

1,15,16

3

8

1, 15, 16

3

8

1, 15, 16

5

4

8

1.15, 16

5

4

8

1,15,16

5

2

8

1,15, 16

5

3

8

1 15, 16

5

4

8

1, 15, 16

5

2

8

1, 15, 16

5

3

8

1, 15, 16

5

4

8

1,15, 16

0"

tl<$1

DM10,OOO series CIrcuit has been deSigned to meet the DC specifications shown In the test table, after thermal

eqUilibrium has been established. The circuit IS In a test socket or mounted on a printed CirCUit board and transverse air
flow greater than

500

linear fpm IS maintained

Outputs are terminated through a 50-ohm resIstor to

cedures are shown for only one gate The other gate IS tested In the same manner

7-16

-2.0

volts, Test pro-

o

s:
....
o....
....
N

Series 10,000
DM10112(MC10112) dual 3-input 1 OR/2 NOR gate

general description

features

The DM10112 IS a dual 3 Input 1 OR/2 NOR
gate. The DM 10112 IS useful for driving multiple transmission lines. The open emitter outputs allow the use of wire OR In data bus applications.

•

Slow rISe and fall times

•

High speed

•

Low power

•
•

50 mA/output
High fanout
Multiple open emitter follower outputs

The ability to drive multiple transmission lines
from a single gate make the DM 10112 particularly useful in clock distribution applications where
minimum clock skew IS desired. The DM10112 IS
also useful for memory chip select decoding.

3.5 ns
tpd ~

2.0 ns

•

Multiple wire OR capability

•
•

Standard end power pinS
Separate Vee pins maintain high speed and
minimize crosstalk and nOise generation

schematic and connection diagrams

Dual-In-Llne Package

l16

1,

13

14

---<

I"

11

"

6

7

.~

9

r---1

I'

Vee!

2

~
3

I'

,

I'

TOP VIEW

7-17

N
....o..:E

absolute maximum ratings

c

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 secl

-8V

o to VEE
50mA
-30°C to +85°C
_55°C to +125°C
300°C

electrical characteristics

TEST VOLTAGE VALUES

(Volts)

@TEST

TEMP

DM10112

PIN

CHARACTERISTIC

SYMBOL

_30 o e

UNDER

rEST

MIN

-

-

-

-

-

-

I,

8

Input Current

l,nH

5,6,7

l,nL

5,6,7

-

05

LogiC "1" Output Voltage

VOH

2

-1060

-0890

-0960

3

-1060

-0890

-0960

4

-1060

-0890

-0960

2

-1890

-1675

3

-1890

4

Power Supplv Dram Current

LogiC "0" Output Voltage

logiC "1" Threshold Voltage

logiC "0" Threshold Voltage

Va'

VOHA

VOLA

MIN

MAX

_30°C

-0890

-1890

-1 205

-1500

-52

+2SOC

-0810

-1850

-1105

-1475

-52

+8SoC

-0700

-1825

-1035

-1440

-52

PINS LISTED BELOW
+8SoC

UNITS

TYP

MAX

MIN

MAX

-

38

-

-

mAde

V"

VIHA

VILA

MIN

MIN

MAX

-

-

-

-

-

-

-

-

J.?l

13

12
11

10

8

V"
Dual-In-Llne Package

2 ~ (4 + 5) • (6 + 7 + 9)
3 = (4+ 5). (6+ 7 + 9)

TOPVIEW

7·23

absolute maximum ratings
Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering. 10 sec)

-8V

o to VEE

50mA
-30°C to +85°C
-55°C to +125°C
300°C

electrical characteristics
rEST VOLTAGE VALUES

(Volts)

@rEsr
TEMP

V,H

V,L

MAX

MIN

MIN

MAX

VEE

-0890

-1890

-1205

-1500

-52

+2SoC

-OS10

-1850

-1105

-1475

-52

+8Soc

-0700

-1825

-1035

-1440

-52

_30°C

DM10117
SYMBOL

Power Supply Drain Current
Input Current

Logic "1" Output Voltage

Logtc "0" Output Voltage

Logic "'" Threshold Voltage

Logic "0" Threshold Voltage

TVP

-

-

20

26

-

9

-

2

-1060

-0780

-0960

3

-1060

-0780

-0960

2

-2000

-1675

3

-2000

2

4

Voe

VOHA

VOLA

+8SoC

MIN

l,nH

V OH

+2SoC

MAX

8

•

TEST VOLTAGE APPLIED TO

TEST LIMITS

MIN

I,

l,nL

-J,fc

UNDER

TEST

MIN

MAX

265

-

-

MAX

UNITS

V,H

V,L

V 1HA

VILA

MA~

MIN

MIN

MAX

VEE

-

-

-

-

8

1.16

-

-

-

8

1,16

-

-

mAde

.uAdc

4

-

-

-

355

-

-

-

05

-

•-

-

-

,/.lAde

05

,uAdc

-

-0700

-0890

-0590

Vdc

4, •

-0700

-0890

-0590

Vdc

-1650

-1920

-1615

Vdc

-

4,9

-1990

-

-

-

-1675

-1990

-

-1650

-1920

-1615

Vdc

4,.

-1080

-

-0980

-

--0910

-

Vdc

-lOBO

-

--0980

-

-0910

-

-

3

-

Vdc

2

-

-1655

-

-

-

-1595

Vdc

-1595

Vdc

-

4

3

-

-1655

-1630
-1630

,uAdc

-

4

•4, •

SWitching Times
(60n Load)
Propagation Delay

t4+2+
t 4_2_

.."

t4_3+
Rise Time
(20 to 80%)
Fall Time
(20to 80%)

I,.
t"

I,

1,-

3

-

3

-

2

-

-

3

-

-

-

2

2
2

3

V,LA

PINS LISTED BELOW

PIN
CHARACTERISTIC

VIHA

-

-

23

-

-

23

-

22

-

-

23
23
22
22
22

-

-

-

-

"'
"'
"'
"'
"'

"'
"'
"'

•
•
•

••
•
•
•

-

GND

8

1,16

8

1,16

8

1,16

8

1,16

8

1,16

8

1,16

-

8

1.16

8

1,16

-

4, •

8

1,16

-

4, •

•

1.16

8

1,16

-32V

+20V

-

4,9

4, •

-

Pulse

Pulse

I,

Out

4

2

8

1,16

4

2

8

1,16

4

3

8

1,16

-

4

3

8

1,16

4

2

8

4

3

8

1,16

4

2

8

1,16

-

4

3

8

1,16

-

Note: Each DM10,OOO series CirCUit has been designed to meet the DC specifications shown 10 the test table, after thermal
eqUilibrium has been established. The Circuit IS 10 a test socket or mounted on a printed Circuit board and transverse air
flow greater than 500 linear fpm IS maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate IS tested In the same manner

7-24

{Veel

1,16

Series 10,000
DM10118(MC10118) dual 2-wide OR-AND gate

general description
The DM 10118 IS a basIc logic building block providing the OR-AND function, useful in data control and digital multiplexing applications.

•

50Q line driving capability

•

High Z input pulldowns - for lower power
dissipation

features

•

Open emitter follower outputs

•

Internal collector dot for maximum logic utility
and speed

•
•

Slow rise and fall times
4.0 ns
High speed
tpd ~ 2.5 ns for two levels of logic

•

Wire OR capability - for bus oriented systems

•

Low power

100 mW/package

•

•

High fanout

50 mA/output

Standard end power pinS - standard
requirements

layout

schematic and connection diagrams
Vee1

VCC2

16

115

()-<

~ .......

KK

)-

~
--M"

r - r--

~

12

13

r

~ ~~

14

'--

o-~

K

r-r:

C

rK

10

~

>-

~~

11

Dual-In-Line Package

TOP VIEW

7-25

...
...
::E
00

o

absolute maximum ratings

Q

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-8V

o to VEE
50mA
-30°C to +85°C
_55° C to + 125°C
300°C

TEST VOLTAGE VALUES

electrical characteristics

jVolts)

@TEST

TEMP

V,"

MAX

MIN

MIN

MAX

VEE

-30"C

-0890

-1890

-1205

-1500

-52

+2S"C

-0810

-1850

-1150

-1475

-52

+85°C

-0700

-1825

-1035

-1440

-52

DM10118 TEST LIMITS

PIN
CHARACTERISTIC

Power Supply Drain Current
Input Current

SYMBOL

-30'C

UNDER

+25"C

MIN

MAX

MIN

TVP

MAX

I,

8

-

-

20

26

l,nH

6

-

-

-

265

7

7

-

-

05

9
l,nL

6

265
05
05

9

-

Logic "1" Output Voltage

VOH

2

-1060

-0890

-0960

Logic "0" Output Voltage

Vo ,

2

-2000

-1675

-1990

logic "'" Threshold Voltage

V OHA

2

-1080

-

-0980

logic "0" Threshold Voltage

VOLA

2

-

-1655

-

-

355

V'L

VIHA

VILA

MIN

MIN

MAX

VEE

-

-

-

8

1,16

pAdc

6

-

-

8

1,16

/JAde

7

-

-

8

1,16

-

8

1,16

-

3,9

8

1,16

Pulse

Pulse

In

0",

-32V

'2OY
1,16

-

-

p.Adc

9

-

-

J.lAdc

6

pAdc

-

-

pAdc

-OB10

-0890

-0700

Vd,

3,9

-

-1650

-1920

-1615

Vd,

-

3,9

-

-0910

Vd,

-1630

-

-

-

-1595

Vd,

7
9

SWItchmgTlmes
(50-ohm load)
Propagation Delay

t6+2_

2

I"

2

Rise Time (20 to 80%)

1,

2

FaJi Time (20 to 80%)

t

2

-

--

-

1•

23

3.

14

23

3.

15

25

40

15

25

40

-

3,9

GNO

8

1,16

8

1,16

8

1,16

8

1.16

8

1,16

8

1,16

-

n,

3

-

6

2

8

-

n,

3

6

2

8

-

n,

3

6

2

8

1,16

-

n,

3

-

6

2

8

1, 16

Note: Each DM10,OOO sertes Circuit has been deSigned to meet the DC specifications shown In the test table, after thermal
equIlibrium has been established. The CircUit IS In a test socket or mounted on a printed Circuit board and transverse air
flow greater than 500 linear fpm IS maintained Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate IS tested In the same manner

7-26

(Vccl

V,"

MAX
mAde'

MAX

-

VILA

UNITS

MIN

-

-

VIHA

TEST VOLTAGE APPLIED TO
PINS LISTED BELOW

+85°C

TEST

V'L

1,16

c

...os::

...

, Series 10,000

CD

DM10119(MC10119) 4-wide 4-3-3-3-input ORlAND gate
general description
The DM10119 IS a 4-Wlde 4-3-3-3 Input OR/
AND gate with one Input from two gates common
to pin 10. Input pulldown resistors eliminate the
need to tie unused inputs to an external supply.

features
•

Slow rise and fall times

•

High speed

tpd ~ 2.5 ns for two levels of logic

•

Low power

100 mW/package

4.0 ns

•

50 mA/output

High fanout

• 50n line driving capability
•

High Z Input pUlidowns - for lower power
dissipation

•

Open em itter follower outputs

•

Internal collector dot for maximum logic utility
and speed

•

Wire OR capability - for bus oriented systems

•

Standard end power pinS - standard layout
requirements

schematic and logic diagrams

Dual·ln~Line

Package

TOPVIEW

7-27

......

en
o

...::?!

absolute maximum ratings

Q

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-8V

o to VEE
50 mA
-30°C to +85°C
_55°C to +125°C
300°C

electrical characteristics

TEST VOL TAGE VALUES
@TEST

TEMP

DM10119
CHARACTER ISTle

Power Supply

Dr~1n

Current

Input Current

SYMBOL

PIN
UNDER
TEST

-

-

20

-

-

-

05

9

-

05

-

10

-

-

05

-

-

9
10
l,nL

LogiC "1" Output Voltage
LogiC "0" Output Voltage

Logic' '" Threshold Voltage

LogiC '0" Threshold Voltage

7

Vo <

2

-1060

-0890

-0960

Vee

2

-2000

-1675

-1990

VOHA

2

~1

VOLA

2

080

-

+8SoC

Q

TYP

7

VII.. A

MIN

MIN

MAX

VEE

-30"C

-OS90

-1 890

-1 205

-1 500

-5,2

+ 2SOC

-0810

-1850

-1 105

-1 475

-52

+85°C

-0700

-1 825

-1035

-1440

-52

TEST VOL TAGS APPLIED TO

+25 C
MIN

l,nH

V1HP,

MAX

PINS LISTED BELOW

_30°C
MAX

8

V"

TEST LIMITS

MIN
I,

(Volts)

v,"

-1655

~O

980

-

-

-

MAX

UNITS

V,"

V"

VIHA

MAX

MIN

MIN

-

-

-

MIN

MAX

26

-

-

mAde

265

-

-

/JAde

7

265

-

9

-

10

-

-

!JAde

9

-

/-lAde

10

-

/JAde

-

JJ,Adc

-

-

-

pAdc

-

-0810

-0890

-0700

Vd,

3,10,15

-

-1 650

-1 920

-1615

Vd,

-0910

-

Vd,

-1,630

-

-1595

Vd,

-

3,10,15

-

355

-

-

7

t4+2+

2

-

t"

2

-

Rise Time (20 to 80%)

t,

2

-

Fall Time (20 to 80%)

t

2

-

-

-

14

23

34

14

23

34

15

25

40

15

25

40

-

-

-

VEE
8

1,16

8

1, 16

8

1, 16

8

1, 16

-

8

1,16

-

8

I, 16

8

1, 16

8

1,16

8

1, 16

3,10,15

8

1, 16

-

-

-

3,10,15

8

1, 16

Pulse

Pulse

'0

0"

-32V

+20V

0'

10, 13

-

4

2

8

1,16

0,"

10, 13

4

2

8

1,16

4

2

8

1,16

"

10,13

-

1

2

8

1,16

10,13

Note: Each DM10,OOO senes CIrCUIt has been deSigned to meet the DC specifications shown In the test table, after thermal
equilibrium has been established. The Circuit IS In a test socket or mounted on a printed CirCUit board and transverse air
flow greater than 500 linear fpm IS maintained Outputs are terminated through a 50-ohm reSIstor to -2.0 volts Test procedures are shown for only one gate. The other Inputs are tested In the same manner.

7·28

(Vee)
GND

-

-

SWitching Times
(50 ohm load)
Propagation Delay

VILA
MAX

o

~
.-

Series 10,000

o.-

N
.-

DM10121(MC10121) OR·AND/OR·AND·INVERT gate
general description
The OM10121 is a basic logic building block
providing the simultaneous OR-ANO/OR-ANOINVERT function, useful in data control and digital mUltiplexing applications.

•

50n line driving capability

•

High Z input pulldowns - for lower power
dissipation
Open emitter follower outputs
I nternal collector dot and em Itter dot - for
maximum logic utility and speed

•
•

features
•
•

Slow rise and fall times
4.0 ns
High speed tpd ~ 2.5 ns for two levels of logic

•

Wire OR capability - for buss oriented systems

•

Complementary outputs -

•
•

Low power
High fanout

'" Standard end power pins requ irements

100 mW/pkg
50 mA/output

added versatility
standard iayout

schematic and connection diagrams
I

K

r-.t

-I-'

.
~

"

J

........ -.J

~;r

~

f

2: }-9

rl-'
0f"""1
rl-'
"

10

r< K~>

16

~

"
r-

~ K~ ~ )=ri

~~

I- l

f

r-o

"
"

>
8

TOPVIEW

7-29

absolute maximum ratings

Supply Voltage
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-8V

o to VEE
50 mA
-30°C to +85°C
_55°C to +125°C
300°C

electrical characteristics

TEST VOLTAGE VALUES
(Volts)

@TEST
TEMP

DM10121

PIN
CHARACTERISTIC

Power Supply Dram Current

Inpw Current

SYMBOL

UNDER
TEST

_30°C

MIN

MAX

MIN

I,

MAX

20

26

10

10
LogiC "l"Qutput Voltage

LogiC "0" Output Voltage

LogiC "1" Threshold Voltage

LogiC "0" Threshold Voltage

V OH

V oe

VOHA

VOLA

MIN

MAX

_30°C

-0890

-1890

-1205

-1500

-52

+2SoC

-0810

-1850

-1105

-1475

-52

+8S"C

-0700

-1825

-1035

-1440

-52

AlseTlme
(20 to 80%)
Fall Time
(20 to 80%)

VEE

PINS LISTED BElOW

MIN

UNITS

MAX

V,H

V"

VIHA

VILA

MAX

MIN

MIN

MAX

VEE

-

mAde

GND

1,16

/.lAde

1,16

265

pAdc

1,16

355

!lAde

05

/JAde

05

.uAdc

05

pAdc

1,16

10

1,16
1,16

10

1,16

-1060

-0780

-0960

-0700

-0890

-0590

Vde

-1060

-0780

-0960

-0700

-0890

-0590

Vde

4, la, 13

1,16

-2000

-1675

-1990

-1650

-1920

-1615

Vde

4, la, 13

1,16

-2000

-1675

-1990

-1650

-1920

-1615

Vde

1. 16

1,16

-1080

-0 980

-0910

Vde

-1080

-0980

-0910

Vde

4,10,13

1,16

4, la, 13

1,16

-1655

-1630

-1595

Vde

-1655

-1630

-1595

Vdo

1. 16

1,16
Pulse

Pulse

I,

0"

-32V

+20V

t':l+3

23

10,13

1,16

14_3+

23

10, 13

1,16

t4 +2+

23

10,13

1,16

t 4 _ 2_

23

10, 13

1,16

I"

25

10,13

1,16

t"

25

10,13

1,16

t,

25

10,13

1,16

I, ~

25

10,13

1,16

Note: Each DM10,OOO senes CIrcuit has been deSigned to meet the DC specificatIons shown to the test table, after thermal
equilibrium has been established. The Circuit IS In a test socket or mounted on a printed CirCUit board and transverse air
flow greater than 500 linear fpm IS maintained Outputs are terminated through a 50-ohm reSistor to -2.0 volts Test procedures are shown for only one gate. The other inputs are tested In the same manner.

7·30

(Vee)

265

SWltchmg Times
(50·ol1m load)
Propagation Delay

VILA

TEST VOLTAGE APPLIED TO

+85°C

TVP

I"'H

l,nL

V"

MIN

TEST LIMITS

+25°C

V 1HA

V,H

MAX

Series 10,000
DM10124(MC10124) quad TTL to ECl
translator/differential line driver
general description
The DM10124 IS a quad TTL to ECL translator
which may also be used as a quad TTL to ECL
differential line driver. The input levels are com·
patlble with the series 7400, senes 74HOO and
Schottky series 74500.

• Complementary outputs with ECL 10,000 levels
• High output capacity, drives 8 50n lines
• TTL compatible inputs, input strobe
• Four translators per package

The output logic levels are ECL 10,000 compatible
over the recommended operati ng temperature
range. Complementary emitter follower outputs
provide for Inverting, non·inverting or differential
line driving applications. A common TTL strobe
Input is provided which when held at a TTL logic
"0" forces all true (non·lnvertlng) outputs to an
ECL logic logical "0" LOW and all compliments
(inverting) outputs to an ECL logical "1" HIGH.

applications
The DM10124 may be used as either an inverting
or non·inverting TTL to ECL translator. One dif·
ferential line driving application includes very high
speed data transmission in a TTL system by con·
verting the data to ECL levels and driving through
terminated twisted line pairs. The DM10125 is the
logical complement to the DM10124 and can be
used to translate the differential ECL levels back to
standard TTL ones. The advantages of ECL trans·
mission line characteristics (i.e. controlled edge
speeds, terminations, very high speed data rates)
may then be utilized in a TTL system.

features
• High speed
• Power dissi pation

tpd "" 3.5 ns typical
250 mW/pkg typical

connection diagram

Dual-In-Line Package

116

15

114

113

l

III'
L-

112

10'

Is

r-I

H

H

r---,

....., ,......, ,......,

H

h

'--

'---

----,
1

I
3

14

5'

6'

17'

1

8

TDPVIEW

• '" TTL lEVelS
Vee'" PIN 9 '" +5,DV

VEE =PINH=-S2V
GND . PIN 16 = OV

7·31

or:I'e

...o
...:E
N

absolute maximum ratings
Supply Voltage:
VEE
Vee
Input Voltage
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering 10 sec)

c

-8V
+7V
+55V
50 mA
-30°C to +85°C
-65°C to +150°C
300°C

electrical ch aracteristics
CHARACTERISTIC

SYMBOL

PIN
UNDER
TEST

I"
Icc

LogiC "1" Input Current

I'H
I'H

2: 7,10, 11

I,L

5,7,10,11
6

LogiC "1" Input Voltage

I'L
V 1HA

LogiC "0" Input Voltage

VILA

Input Clamp Voltage

LogiC "1" Output Voltage

MIN

MAX

TYP

6

MIN

MAX

1,2,14,15

-106

-089

UNITS

38
25

rnA
rnA

Inputs & Outputs
OPEN

4
16

"A

"A

VIN =V 1H =+27V

-16
60

rnA
rnA
V

08

V
V

Measured at IT '" -12 rnA

V

5051 to -2 OV
All Inputs = V 1H

-089

-070

LogiC "1" Output Voltage

V OH

3,4,12, 13

-106

-089

-096

-081

-089

-070

V

LogiC "0" Output Voltage

VOL

1,2,14, 15

-189

-1675

-185

-165

-1825

-1615

V

LogiC "0" Output Voltage

VOL

3,4,12,13

-189

-1675

-185

-165

-1825

-1615

V

LogiC "1" Threshold Voltage

V OHA

1,2,14,15

-108

VIN '" V 1L '" +0 4V

Threshold InputsUse for Test

-15
-081

-096

CONDITIONS

MAX

+20

5,6,10,11
V OH

+8SoC

+2S o C
MIN

8
9

Power Supply Dram Current

LogiC "0" Input Current

DM10124 TEST LIMITS
_30°C

-091

-098

V

'"

2.7

son to -2 OV
Pm 6= V 1L '" Q4V
501l to -2.0V
Pin 6 '" V 1L '" +0 4V
501l to -2 OV
All Inputs'" VIN = +2 7

son to -2 OV
Inputs at V1HA = +2 0

VOHA

3,4,12,13

V

50n to -2.0V
Input at V,L.A = +0 8

LogiC "0" Threshold Voltage

VOL.A

1, 2, 14, 15

-1655

-163

1595

V

50n to -2 OV
Inputs at VIL.A '" +08

LogiC "0" Threshold Voltage

VOLA

3,4,12.13

-1 655

-163

-1595

V

501l to -2 OV
Inputs at V 1HA = +2 0

SWltchmg Times 50n Load

tpd++

5,6,7,10,11

10

35

50

ns

Propagation Delay (3V p.p

t pd --

5,6,7,10,11

10

35

50

ns

t pd +-

5,6,7,10,11

10

35

50

ns

t pd -+

5,6,7,10,11

10

35

50

ns

LogiC "1" Threshold Voltage

Input at tr = tf = 2 ns,
20% - 80%)

-108

-091

-098

RlseT,me 20% - 80%

t,

Outputs

11

20

33

ns

Fall Time 20% - 80%

t,

Outputs

11

20

33

ns

Note 1:

Each Input tn Sequence,
Undrrven Inputs to
Vce (NOMf "" +5V

"Absolute MaXimum Ratings" are those values beyond which the safety of the deVice cannot be guaranteed. Except

for "Operating Temperature Range" they are not meant to Imply that the deVices should be operated at these limits
table of "Electrical Characteristics" provides conditions for actual device operation.

7·32

The

o

illS

CMOS

REFERENCE
The following table references all Physical DimenSion DraWings, Waveforms, and Test Circuits for the deVices
In this section. For Order Numbers, see below.' Refer to the alpha·numerlcal Index at the front of this
catalog for complete device title and function. Packages (pages I thru VI) are In the back of the catalog.
DATA SHEETS

Devices
MM54COO
MM74COO
MM54C02
MM74C02
MM54C04
MM74C04
MM54Cl0
MM74Cl0
MM54C20
MM74C20
MM54C42
MM74C42
MM54C73
MM74C73
MM54C74
MM74C74
MM54C76
MM74C76
MM54C95
MM74C95
MM54Cl07
MM74Cl07
MM54C151
MM74C151
MM54C154
MM74C154
MM54C157
MM74C157
MM54Cl60
MM74C160
MM54C161
MM74C161
MM54C162
MM74C162
MM54C163
MM74C163
MM54C164
MM74C164
MM54C173
MM74C173
MM54C192
MM74C192
MM54C193
MM74C193
MM54C195
MM74C195

Pg.
8·1
8·1
8·1
8·1
8·4
8·4
8·6
8·6
8·6
8·6
8·9
8·9
8·11
8·11
8·14
8·14
8·11
8·11
8·17
8·17
8·11
8·11
8·19
8·19
8·22
8·22
8·25
8·25
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·31
8·31
8·35
8·35
8·38
8·38
8·38
8·38
8·41
8·41

PACKAGES
Molded DIP IN)
Fig.

Pg.

3

II

3

II

3

II

3

II

3

II

5

II

3

II

3

II

5

II

3

II

3

II

5

II

7

III

5

II

5

II

5

II

5

II

5

II

3

II

5

II

5

II

5

II

5

II

Cavity DIP IDIIJ)
Fig.

Pg.

Type

8

1II

D

8

1II

D

8

III

D

8

1II

D

8

III

D

9

III

D

8

III

D

8

1II

D

9

1lI

D

8

1II

D

8

1II

D

9

III

D

10

1II

D

9

III

D

9

III

D

9

1II

D

9

III

D

9

1Il

D

8

1Il

D

9

III

D

9

III

D

9

III

D

9

III

D

Flat Pack IFIIW)

Metal Can IGIIH)

Fig.

Fig.

Pg.

Type

*Order Numbers' use DeVice No. suffixed With package letter, I.e. MM54COOD .

.-:

Pg.

Type

WAVE·
FORMS
Fig.

Pg.

TEST
CIRCUITS
Fig.

Pg.

8·3
8·3
8·3
8·3
8·4
8·4
8·8
8·8
8·8
8·8

8·3
8·3
8·3
8·3
8·4
8·4
8·8
8·8
8·8
8·8

8·13
8·13
8·16
8·16
8·13
8·13

8·13
8·13
8·16
8·16
8·13
8·13

8·13
8·13
B·21
8·21
8·24
8·24

8·13
8·13
8·21
8·21

B·30
B·30
8·30
8·30
8·30
8·30
8·30
8·30
8·33
8·33
8·36
8·36

8·42
8·42

8·33
8·33

3!:

oen

CMOS
MM54COO/MM74COO quad two-input NAN 0 gate
MM54C02/MM74C02 quad two-input NOR gate

general description
EmploYing complementary MOS (CMOSI tran·
slstors to achieve low power and high noise mar·
gin, these gates provide the basic functions used
in the implementation of digital Integrated cir·
cuit systems. The Nand P channel enhancement
mode transistors provide a symmetrical circuit
with output swings essentially equal to the supply
voltage. This results In high noise immunity over
a wide supply voltage range. No DC power
other than that caused by leakage current IS
consumed during static conditions. All Inputs
are protected aga inst static discharge damage.

features
•

Wide supply voltage range

•

Guaranteed noise margin

•

High nOise immunity

•

Low power

•

Low power T2L
compatible

0.3 Vcctyp

10 nW typ
drive 2 L T2L loads

applications
•

Automotive

•

Instrumentation

•

Alarm systems

•

R emote metering

•

Data terminals

•

Medical electronics

3V to 15V

•

I ndustrial controls

1V

•

Computers

schematic and connection diagrams
MM54COO/MM74COO

X=

Ai

GNO
TOPVIEW

MM54C02!MM74C02

,-""-----,,,,--0 Vee

Vee

GNO
TOP VIEW

8·1

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature MM54COO,MM54C02
MM7 4COO,MM7 4C02
Storage Temperature
Package DIssipation
Lead Temperature (Soldering, 10 sec)
Operating Vcc Range

-0.3V to +Vcc + 0.3V
-55°C to +125°C
ODC to +70°C
_65°C to +150 DC
500 mW
300°C
+3V to +15V

electrical characteristics
MinIMax limits apply across the guaranteed temperature range unless otherWise specified.
PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS to CMOS
Logical "1" Input Voltage

VIN

(1)

Vee'" 5.DV
Vee'" 100V

Logical "0" Input Voltage

VIN

{OJ

Vee; =: 5 OV
Vee'" 10GV

3,5
80

V
V

15
20

V
V

Logical "1" Output Voltage V OUT (1)

Vce=50V, V IN =15,1 0 "'-10,uA
Vec=100V,VIN=70,10=-10,uA

LogICal "0" Output Voltage V OUT (0)

Vee -= 50V, VIN '" 3 5,1 0 '" 10,uA
Vee=lDOV,VIN"'BO,10=10fJA

05
10

Logical "1' Input Current liN (ll

Vee'" 15V, VIN '" l5V

1

pA

45
90

V
V
V

V

Logical "0" Input ClIrrent liN (OJ

Vee'" 15V, VIN '" OV

Output Short
(Note 2)

Curtent los (1)

V ee ""55V, VIN"'O,Vo=D
Vee = 11 OV, V IN '" 0, Vo '"

a

1
75

6
30

rnA
rnA

Output Short CirCUit Current los (OJ
(Note 2)

Vee=55V, VIN=Vo"'Vee
Vee'" 11 OV, VIN = Vo '" Vee

15
10

10
40

rnA
rnA

C,I·CUlt

-1

pA

Supply Current Icc

Vee= l5V

Propagation Delay Time to a

Vee 50V, C L =50pF,T A "'25°C
Vee'" 100V,C L =50pF, TA = 25 n C

50
25

90
60

ns
ns

Vee'" 5 OV, C L
Vee'" 10 OV, CL

50
30

90
60

ns
ns

logical "0"

tpdO

Propagation Delay Time to a
Logical "1" tprll

1

'"
'"

50 pF, T A '" 25"C
50 pF, T A'" 25"C

LOW POWER TTL to CMOS
Logical "1 ' Input Voltage Y'N (1)

54C Vee'" 4 5V
74C Vee = 475V

Loglql "0" Input Voltage Y'N {OJ

54C Vee'" 4 5V
74C Vee'" 4 75V

Loglcal"1 'Output Voltage V OUT (1)

54C Vee'" 4 5V, 10 = -10!J.A
74C Vee'" 4 75V, 10'" -lOfJA

Logical "0 'Output Voltage V OUT (0)

54C Vee'" 4 5V, 10 '" 10,uA
74CV ec =475V, 10= 10,uA

Propagation Delay Time to a

Vee'" 5 OV, CL

Logical "0"

'"

V

Vee - 1 5

08

15 pF,T A

'"

44

V
V

08

V

125

25°C

tpdlO)

Propagation Delay Time to a
Logical "1" t pd (l)

125

CMOS to Low Power TTL (tenth power)
Logical "1" Input Voltage VIN (1)

54C Vee = 4 5V
74C Vee'" 4 75V

Logical "0" Input Voltage VIN (0)

54C Vee = 4 5V
74C Vee'" 4 75V

LOglCill "1" Output Voltage V OUT (1)

54CVec"'45V,VIN"'08,lo=-100,uA
74CVee "'475V, VIN =08,l o ""-100pA

40
40
10
10
24

V

V

24

Logical "0" Output Voltage V OUT (0)

54CVec=45V,VIN=40,10=360,uA
74CVee=475V,VIN=40,lo=360f.j.A

Propagation Time to a
Logical "0" tpdiO)

Vec" 5 OV, CL
T A = 25°e

50 pF, RL '" 20k,

60

ns

Propagation Time to a
LogiCal "1" t pdl 1)

Vee'" 5 OV, C L '" 50 pF, R L '" 20k,
T A '" 25°C

45

ns

=

Note 1: These deVices should not be connected under power on conditions
Note 2: Only one output at a time may be shorted.

8·2

V

04
04

V
V

switching time waveforms and ac test circuits
CMOS to CMOS

V1N

V"~
50%

50%

F

DV

~"(

50%

50%

V OUT

OV

TTL to CMOS

'": dr
'"_%_\

VOUT OV _ _ _ _

)~
t

VOUT

T

50%

15PF

*15 PF

CMOS to low power T2L

v,,::

50%/

_., "--;::-:jr

~
--l

ir=-'~'

15V
'f15V
OV _ _ _ _
_ '-_ _ _....J'

applications
Guaranteed nOIse margin as a
function of Vee
15V
135

74C Compatib,lity

125

'"w

;
u

~

405
3.05
VIN

(0)

25
15

145
045
4.50V

10V

15V

Vee

8·3

CMOS
M M 54C04/ MM74C04 hex inverter
general description
The MM54C04/MM74C04 hex Inverter is constructed from complementary MOS (CMOS) enhancement tranSIStors to achieve lower power
and high nOise margin.

•

Wide supply voltage range

•

Guaranteed nOise margm

•

High nOise Immunity

•

Low power

drIVe 2 LPTTL
loads

applications
•

features
•

Tenth power TTL compatible

3V to 15V
1V

0.45 Vee typ
10 nW typ

Automotive

•

Instrumentation

•

Alarm systems

•

Remote meterl ng

•

Data termmals

•

Medical electronics

•

Industrial controls

•

Computers

connection diagram
Dual-In-Line Package

74C Compat,b,lity

switching time waveforms
CMO~toCMOS

TTL to CMOS

'. ~-:?r

v"
v"

OV

'...,

v"
V OUT

50% \

V OUT

OV·

)15~V
'. .,
t

50%

t,=t,=20ns

Guaranteed Noise Margin as a
Function of
15V

Vee

r:-:=======,,-,

13'

"'
40'
30'

LVi"§(~O'~~~~~~~ 2'

145 ~

04,

45DV

8-4

15

IOV

15V

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C04
MM74C04
Storage Temperature
Package Dissipation
Lead Temperature (Soldering, 10 sec)
Operating Vcc Range

-0.3V to Vee +0.3V
_55°C to 125°C
O°C to 70°C
_65°C to 150°C
500 nW
300°C
+3V to +15V

electrical characteristics
PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage V IN (1)
Logical "0" Input Voltage

VIN(O)

logical "1" Output Voltage V OUT (1)
Logical "0" Output Voltage

VOUT(O)

8

Vee = 5V

Vee = 10V
Vee = 5V
Vee = 10V

10 = -1OMA
10 = -lOj.lA

Vee = 5V

Vee = 10V

10 = +10MA
10 = +10MA

IIN(1)

Vee = 15V

Y'N = 15V

Logical "0" Input Current IIN(O)

Vee = 15V

VIN

Supply Current Icc

Vee = 15V

Logical "1" Input Current

V
V

35

Vee = 5V
Vee = 10V

=

15
2.0

V
V

05
10

V
V
V
V

4.5
9.0
1

MA

5

IlA

MA

-1

OV

01

pF

5

Input Capacitance

Any Input

Propagation Oelay Time to a
Logical "1," tpd1

Vee = 5V
Vee = 10V

CL = 50 pF. T A = 25"C
CL = 50pF. TA =25"C

40
25

90
60

os
ns

Propagation Delay Time to a
Logical "0," tpdO

Vee = 5V
Vee = 10V

C L = 50 pF, T A '" 25°C
CL = 50 pF. T A = 25" C

40
25

90
60

ns
ns

Logical "1" Input Voltage V IN (1)

54C
74C

Vee = 4 5V
Vee = 4 75V

Logical "0" Input Voltage V1N{O)

54C
74C

Vee = 4 5V
Vee=475V

Logical "1" Output Voltage V OUT (1)

54C
74C

Vee = 4 5V, 10 = -lOIlA
Vee = 4 75V, 10 = -lOIlA

Logical "0" Output Voltage

54C
74C

Vee
Vee

Vee = 5V

CL = 15 pF. T A

25'C

125

ns

Vee = 5V

CL = 15 pF, T A = 25" C

125

ns

Logical "1" Input Voltage V 1N {1l

54C
74C

Vee =45V
Vee = 4 75V

Logical "0" Input Voltage

54C
74C

Vee = 4 5V
Vee = 4 75V

LOW POWER TO CMOS

VOUT{Q}

PropagatlOn Delay Time to a
Logical "1," tpdl

Propagation Delay Time to a
Logical "0,"

V

Vee - 1 5
0.8

V

4.4

V

04

= 4 5V, 10 = +101lA
= 4 75V, 10 = +101lA

tpdO

CMOS TO LOW POWER

VIN(O)

Logical "1" Output Voltage

VOUT(l)

54C
74C

Vee = 4 5V, 10 = -1001lA
Vee = 4 75V. 10 = -1001lA

Logical "0" Output Voltage

VOUT(O)

54C
74C

Vee = 4 5V, 10 = 360llA
Vee = 4 75V. 10 = 360MA

V

40
10

V
V

24
04

V

Note 1: This deVice should not be connected to Circuits With the power on because high tranSient voltage may cause
permanent damage.

8-5

CMOS
MM54C10/MM74C10 triple three-input NAND gate
MM54C20/MM74C20 dual four-input NAND gate
general description
Employing complementary MOS (CMOS) transistors to achieve low power and high nOise margin, these gates provide the basIc functions used
in the implementation of digital Integra ted cirCUit systems. The Nand P channel enhancement
mode transistors provide a symmetrical CirCUit
with output sWings essentially equal to the supply
voltage. ThiS results In high nOise Immunity over
a Wide supply voltage range No DC power
other than that caused by leakage current IS
consumed dUring static conditions All inputs
are protected against static discharge damage.

Wide supply voltage range

•

Guaranteed nOise margin

High noise immunity
Low power

•

Low power T2L
compatible

0.45 Vee typ
10 nW typ
drive 2 LPT2 L loads

applications
•

•

features
•

•
•

Automotive

•

Instrumentation

•

Alarm systems

•

Remote metering

•

Data term Inals

•

Med Ical electronics

3V to 15V

•

I ndustrlal controls

1V

•

Computers

schematic and connection diagrams
MM54Cl0/MM74Cl0
Dual-In-Lme Package

y-~+-::t-o x· ABC

MM54C20/MM74C20

Dual-In-Line Package

8-6

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature MM54Cl0, MM54C20
MM74Cl0, MM74C20
Storage Temperature
Package D 1551 patlan
Lead Temperature (Soldering, 10 sec)
Operating Vee Range

-0.3V to +Vcc + 0.3V
-55°C to +125°C
O°C to +70°C
_65°C to +150°C
500mW
300°C
+3V to +15V

electrical characteristics
MiniMax limits apply across the guaranteed temperature range unless otherwise specified.
PARAMETER

MIN

CONDITIONS

TYP

MAX

UNITS

CMOS to CMOS
Logical "1" Input Voltage

VIN

(1)

Vcc=50V
Vee = 10 OV

Logical "0" Input Voltage

VIN

(O)

Vcc=50V
Vee = 10 OV

35
80

V
V

15
20

Logical "1" Output Voltage V OUT (1)

Vcc=50V, VIN = 1 5,1 0 -; -10pA
Vee= lOOV, V 1N =2, lo=-lOJ.1A

Logical "0" Output Voltage V OUT (0)

Vcc=50V,

45
90

V
V

05
10

V 1N =35,l o = lOpA

Vcc=1ODV,VIN=80,lo=10.uA

1

Logical "1" Input Current liN (1)

Vee'" 15V, VIN

Logical "0" Input Current liN (0)

Vee'" 15V, VIN = OV

Supply Current Icc

Vee = 15V

001

Input Capacitance

Any Input

7

Propagation Delay Time to a
Logical "0" tpdO

54Cl0/74C1O

=

54C20/74C20
Propagation Delay Time to a
Logical "1" tpd1

54Cl0/74Cl0

54C20/74C20

V
V

15V

-1

Vcc=50V, C L =50pF,T A =25cC

V
V

"A
"A

2

"A
pF

50 pF, T A'" 2SDC

50
25

90
60

ns
n,

Vee" 5 OV, C L " SO pF, T A = 25 D C
Vee'" 10 OV, C L = 50 pF, T A " 25 D C

70
30

110
75

ns
ns

Vee" 5 OV, C L

60
35

100
60

ns

70
40

115
80

ns

Vee -; 10

av, C L

'"

SO pF, T A'" 2SoC

'"

Vee'" 10 OV,C L = 50 pF, TA '" 25°C
V ee "50V,C L ""50pF, T A =25°C
Vee = 10 OV, C L

"

50 pF, T A = 25°C

ns

ns

lOW POWER TTL to CMOS
Logical "1" Input Voltage V IN (1)

54C Vee" 4 5V
74C Vee" 4 75V

Logical "0" Input Voltage VIN (0)

S4C Vee = 4 SV
74C Vee" 4 75V

Logical "1" Output Voltage V OUT (1)

54C Vee" 4 5V, 10'" -10pA
74C Vee = 4 75V, 10 '" -10,uA

Logical "0" Output Voltage V OUT (0)

54C Vee'" 4 5V, 10 "'" lOpA
74C Vee = 4 75V, 10 '" 10,uA

Propagation Delay Time to a
Logical "0" tpd(Q)

Vee'" 5 OV, C L = 1S pF, T A" 2SoC

125

"'

Propagation Delay Time to a
Logical "1" tpdW

Vee = S OV, C L == 15 pF, T A" 25°C

125

ns

V

Vee - 15

08
44

V
V

08

V

CMOS to Low Power TTL (tenth power)

40
40

V
V

Logical" 1" I nput Voltage V IN (1)

54C Vee == 4 5V
74C Vee = 4 75V

Logical "0" Input Voltage V IN (0)

54C Vee" 4 5V
74C Vee == 4 75V

Logical "1" Output Voltage V OUT (1)

54Cl0 Vee = 4 5V, V IN = 1 0, 10 = -100pA
74Cl0 Vee == 4 75V, VIN == 1 0, 10 = -100pA

24
24

V
V

54C20 Vee'" 4 5V, VIN = 0 8,1 0 '" -100pA
74C20 Vee'" 4 7SV, V IN == 08,1 0 = -100,uA

24
24

V
V

10
10

04
04

V
V

V
V

logical "0" Output Voltage V OUT (0)

54C Vee = 4 5V, V IN == 4 0,1 0 == 360,uA
74C Vee == 4 75V, V IN = 4 0, 10 = 360,uA

PropagatlOn TIme to a
Logical "0" tpd(O)

Vee"" 50V,C L " 50pF, RL" 20k,
T A = 2SoC

60

ns

PropagatIon TIme to a
Logical "1" tpd(t)

Vee = 5 OV, C L = SO pF, R L = 20k,
T A = 2S"C

45

n,

Note 1: These deVices should not be connected under power on conditions.

8-7

switching time waveforms and ac test circuits
CMOS to CMOS

":~-.j"
Voo ,

~%

j50

t

50% \
ov-~--

'eO'

50%

~-'----~

Test Circuit

TTL to CMOS

": dr

V

50%\

oo ,

ov

}~ .
F
'

Test Circuit

CMOS to low power T2L

v,"

5V-

-5::~ 50%

'•. :: -----;:-::'j JOV -

15V\

j};:1;:-::-'''''
}j15V
Test Circuit

applications
Guaranteed noise margin as a

function of

Vee

15V
135

74C CompatIbIlity

125
~

;
u

~

405
305
25
15

145
045
450V

10V
Vee

8-8

15V

CMOS
MM54C42/MM74C42 BCD to decimal decoder
general description
The MM54C42/MM74C42 one of ten decoder IS
a monolithic complementary MOS (CMOS) integrated circUit constructed with Nand P-channel
enhancement tranSIStors. This decoder produces a
logical "0" at the output corresponding to a four
bit binary Input from zero to nine, and a logical
"1" at the other outputs. For binary Inputs from
ten to fifteen all outputs are logical "1."

Supply voltage range

•

Tenth power TTL
compatible

•

applications
•

Automotive

•

Data terminals
Instrumentation
Medical electronics

3V to 15V

•

Alarm systems

drive 2 LPTTL loads

•

Industrial electronics

0.45 Vee (typ.)

10 MHz (typ.)
with 10V Vee

•

High noise immunity

50 nW (typ.)

Low power
Medium speed operation

•

features
•

•
•

•

Remote metering

•

Computers

schematic diagram

'"

'"' * '" " "

mM''''T''"'"''

connection diagram
Dual~ln"Lme

I"

"

"

"

truth table

Package

"

"

'"

,

INPUTS

DeB A
o 0 0 0
o 0 0 1

o

t

1
,

,

,

,

. . 'I'

o
0
0
0
0
1
1
1
1
1
1
1
1

0
0
1
1
1
1

o
o
0
0
1
1
1
1

1 0
1 1
0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
o 0
0 1
1 0
1 1

o

OUTPUTS

o
o

1
1
10
11
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1
1 1 1 11 1 1 1
o 1 1 1 1 1 1 1
1 01 1 1 1 1 1
1 1 o 1 1 1 1 1
1 1 1 0 1 1 I I
1 1 1 10 I 1 I
1 1 I 1 101 I
1 1 1 1 I 1 01
1 1 I 1 I 1 10
1 I 1 1 I I I 1
1 I 1 1 1 1 1 I
1 1 1 1 1 1 1 I
1 1 I 1 1 1 I I
1 1 I 1 I I I I
1 1 I 1 I I I I

8-9

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature MM54C42
MM74C42
Storage Temperature
Package Dissipation
Operating Vee Range
Lead Temperture (Soldering, 10 sec)

-0.3V to Vee +0.3V
_55°C to +125°C
O°C to + 70°C
_65°C to +150°C
500 mW
3V to 15V
300°C

electrical cha racteristics MiniMax limits apply acrOss temperature range unless otherWISe specified
PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage

VI N (1)

Logical "0" Input Voltage

V,NIOI

Logical "1" Output Voltage

VOUT(11

Vee = 5.av
Vee= 100V

Logical "1" I nput Current

V
V

8
15
2

Vee = 50V
Vee= 10.0V
Vee=50V,IO=-10~A

Vee = 100V.10 = "10~A

Logical "0" Output Voltage VOUTIOI

35

4.5
9.0

V
V

Vee = 5 OV, 10 = +10~A
Vee= 100V, lo=+10~A

0.5

IIN!l)

Vee= 150V, V'N= 15V

I'NIOI

Vee = 15.0V, V ,N = OV

IcC

Vee = 15.0V

005

Input Capacitance

Any Input

5

Prop~gatlOn Delay Time to a

Vee = 5.0V, C L = 50 pF, TA = 25°C
Vee = 10 OV, CL = 50 Pp. T A = 25°C

Logical

"a"

Input Current

Supply Current

Logical "0" or Logical "1"

V
V

1

V
V

1

IJA

-1

IJA

200
90

30

IJA
pF

300
140

ns

ns

CMOS TO TENTH POWER
INTERFACE
Logical "1" Input Voltage

V IN(1)

54C. Vee = 4.5V
74C, Vee = 4.75V

Logical "0" Input Voltage

VINIO)

54C, Vee = 4 5V
74C, Vee = 4.75V

Logical "1" Output Voltage

VOUT(t)

54C, Vee= 4 oV.lo = -100~A
74C, Vee = 4.75V.lo = -100IJA

Logical "0" Output Voltage

VOUTIOI

54C, Vee = 4 5V. 10 = 360 j.1A
74C. Vee" 4 75V, 10 = 360IJA

Propagation Delay Time to a
Logical "0" or Logical "1"

Vee = 5.0V, C L = 50 pF, TA = 25°C

V

Vee- 1.5
0.8

V
V

24
0.4
250

400

V
ns

Note 1: This deVice should not be connected to circuits with the power on because high tranSient voltages may cause
permanent damage.

8·10

CMOS
MM54C73/MM74C73 dual J-K flip flop with clear
MM54C76/MM74C76 dual J-K flip flop
with clear and preset
MM54C107lMM74C107 dual J-K flip flop with clear
general description
These dual JK flip flops are monolithic Complementary MOS (CMOS! Integrated CirCUits constructed with Nand P channel enhancement
transistors. Each flip flop has independent J, K,
clock and clear Inputs and Q and Q outputs The
MM54C76/MM74C76 flip flops also Include preset
Inputs and are supplied In 16 Pin packages. These
flip flops are edge sensitive to the clock Input and
change state on the negative gOing transition of
the clock pulses. Clear or preset IS Independent of
the clock and IS accomplished by a low level on
the respective Input.

features
•

Supply voltage range

•

Tenth power TTL
compatible

3V to 15V
drive 2 LPTTL loads

0.45 Vee (typ!

•

High nOise immunity

•
•

Low power
Medium speed operation

50 nW (typ!
10 MHz (typ!
with 10V supply

applications
•

Automotive

•

Data terminals

•

Instrumentation

•

Medical electronics

•

Alarm systems

•

Industrial electronics

•

Remote metering

•

Computers

logic and connection diagrams

mm
Transmission Gate

R

Cl

T

MM54C73/MM74C73 and MM54Cl07/MM74Cl07

'co
INPUTfROTECTION+TOINTERNAl
fOR ALI INPUTS
CIRCUITRV

Cl

Cl

ClOCK~
MM54C76/MM74C76

" -'-'t-----,

CLOCKS 5

Q.

, '.
,-",,,

AI01l"

0

.~d .. ,

.. n 11 10 logl< 0

Not.

AlolI'C 0 on Qto,log,c

1

MM54C76/MM74C76

8-11

fI')

,....

(.)
~

;

,....
~

absolute maximum ratings

(.)
~

,....

Voltage at any pin (Note 11
Operating Temperature MM54CXX
MM74CXX
Storage Temperature
Package DISSipation
Lead Temperature (Soldering, 10 secl
Operating Vee Range

:E :E
.......

:!

,....
,.... .......

(W)

...

(.)

0

~

(.)

It)

-o.3V to Vee +0.3V
-55°C to 125°C
O°C to 70°C
-65°C to 150°C
500 mW
300°C
+3V to 15V

~

:E It)
:E :E
:E

electrical characteristics'

CD
,....

PARAMETERS

(.)

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS

~
,....

:E
:E
.......
CD
,....
(.)
~
It)

:E
:E

Logical "1" Input Voltage V 1N (1)

Vee = 5 OV
Vee = 10.0V

Logical "0" Input Voltage V1N{O)

Vee = 5.0V
Vee = 10.0V

Logical "1" Output Voltage V OUi (l)

Vee = 5.0V
Vee = 10 OV

Logical "0" Output Voltage VOUTIOI

Vee = 5 OV
Vee = 100V

Logical "1" Input Current

IINIl)

Vee=150V

Logical "0" Input Current

IIN(O)

Vee=150V

35
8

V
V
1.5
2.0

45
90

V
V
0.5
1.0

V
V

1.0

J.lA

-10

J.lA

Supply Current Icc

Vee = 150V

0.050

Input Capacitance

Any Input

5

Propagation Delay Time to a Logical "0"

V
V

10

J.lA
pF

Vee = 50V,C L = 50pF, TA = 25"C
Vee = 100V,C L =50pF, TA =25'C

180
80

300
130

ns
ns

PropagatIOn Delay Time to a Logical "0"
From Preset or Clear

Vee = 5 OV, C L = 50 pF, TA = 25'C
Vee = 100V,C L = 50 pF, TA = 25'C

200
80

300
130

ns
ns

Propagation Delay Time to a Logical "1"
From Preset or Clear

Vee = 5.0V, C L = 50 pF, T A = 25'C
Vee = 10V, C L = 50 pF; T A = 25'C

200
80

300
130

ns
ns

TI me Prior to Clock Pulse That Data Must

Vee = 50V,C L = 50pF, TA =25'C
Vee = 10V, C L = 50 p~, TA = 25'C

90
40

130
60

ns
ns

0

or Logical" 1"
QorO

tpdO

be Present,

tpd1

From Clock to

tS ETUP

Time After Clock Pulse That J and K
Must be Held

Vee = 5 OV, C L = 50 pF, TA = 25'C
Vee = 100V,C L =50pF, TA =25'C

-40
-20

a

ns
ns

Minimum Clock Pulse Width

Vee = 5 OV, C L = 50 pF, TA = 25'C
Vee = 10.0V, C L = 50 pF, TA = 25'C

90
40

130
60

ns
ns

MInimum Preset and Clear Pulse Width

Vee = 5.0V, C L = 50 pF, T A = 25'C
Vee = 100V,C L = 50pF, TA = 25'C

90
40

130
60

ns
ns

Maximum Toggle Frequency

Vee = 5.0V, C L = 50 pF, TA = 25'C
Vee = 10 OV, C L = 50 pF, TA = 25'C

Clock Pulse RISe and Fall Time

Vee = 5.0V, C L = 50 pF, TA = 2S'C
Vee = 10 OV, C L = 50 pF, TA = 25°C

tWL:::: tWH

2.5
5

.

5
10

MHz
MHz
15
5

J.ls
J.ls

LOW POWER TTL TO CMOS INTERFACE
Logical "1" Input Voltage V ,NI1 )
Logical "0" Input Votlage V 'N1O )

54C, Vee
74C, Vee

= 4 5V
= 4.75V

74C, Vee

54C, Vee = 4.5V, 10 = -100J.lA
74C, Vee = 4.75V, 10 = -100J.lA

Loglcal"Q" Output Voltage

54C, Vee
74C, Vee

Propagation Delay Time to a Logical "0"
tpdO or LogIcal "1" From Clock

V

Vee

08

= 4.75V

Logical "1" Output Voltage V OUTI1 )
VOUT(O)

V ee ·15

54C, Vee = 4 5V

2.4

V

= 4.5V, 10 = 360J.lA
= 4 75V, 10 = 360j1A

= 5 OV, CL = 50 pF, T A = 25'C

V

04
250

V
ns

Note 1; These devices should not be connected to circuits with the power on because high transient voltage may cause
permanent damage.

8-12

ac test circuit

truth table
tn

Vee Vee

tn

0;;:

tn+1

tn+1

J

K

a

a
a

a

On

1

a

1
1

0

1

1

On

bit time before clock pulse
=

bit time after clock pulse

3:
3:

typical applications

en

74C CompatIbility

~

Ripple Binary Counters

(")

Vee

C~~~~i~--------------..~--------------~----------------,

-"

o
.....
.......
3:
3:
.....
~

....

(")

Guaranteed Noise Margin as a
Function of

o.....

CLOCK----------------------------------------~

Vee

15V
135
125

Shift Registers
DATA
INPUT

405

a

305
25
15

145
045

K CLK

K CLK

jj

K CLK

jj

jj

CLOCK

450V

10V

15V

Vee

switching time waveforms
CMOS TO CMOS

TTL TO CMOS

t,
Vee

4.0V

90%
50%

CLOCK
OV

OV

Vee

40V

J or K

[;JI
tSETUP

tHOLD

J or K

OV

OV

Vee

Vee
50%

OorO
OV

OV

Vee

Vee
50%

OorD
OV

r--tpdO-

15V

OV
t," tl'''

20 ns

8-13

CMOS
MM54C74/MM74C74 dual 0 flip flop
general description
The MM54C74/MM74C74 dual D flip flop IS a
monolithic complementary MOS (CMOS) Inte·
grated CirCUit constructed with Nand P·channel
enhancement transistors. Each flip flop has Inde·
pendent data, preset, clear and clock Inputs and
Q and Q outputs. The logic level present at the
data input is transferred to the output during the
positive going transition of the clock pulse. Preset
or clear is Independent of the clock and accom·
pi ished by a low level at the preset or clear input.

features
•
•

Supply voltage range
Tenth power TTL compatible

3V to 15V
drive 2LPT 2 L
loads

•
•
•

High noise immunity
Low power
Medium speed operation

0.45 Vee (typ)
50 nW (typ)
10 MHz (typ)
with 10V supply

applications
•
•
•
•
•
•
•
•

Automotive
Data terminals
Instrumentation
Medical electronics
Alarm system
Industrial electronics
Remote metering
Computers

logic and connection diagrams

/>RfSET _ _ _ _ _ _~~---.J

ff

Ct

CLOCK~
T

~~AllPCHANNElSlJBSTRAUS

II--

CONN£CTEDTOVcc

-.J~

ALLNCHANNELSUBSTflATES

II--

'"

' 'UT,"OTEcr,,,+
'OR ' " '''"''

CONNECTED TO GND

Dual-I n-Line Package

NOTE Alo9'C "O"onclea,setsQtolog,c '0"
A logIc "0"

8·14

00

presel sets 0 to log'c 'I"

-::-

TO "TERNAl

"'W,,

absolute maximum ratings
Voltage at any Pin (Note 1)
Operating temperature MM54C74
MM74C74
Storage temperature

-0.3V to Vee + 0.3V
_55°C to 125°C
O°C to 70°C
_65°C to 150°C
500mW
300°C
+3V to +15V

Package diSSipation

Lead temperature (Soldering, 10 secl
Operating Vee range

electrical characteristics
Mm/Max limits afJply across temperature range unless otherwise specified.

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage V 'N ll)

Vee=50V
Vee= 10.0V

"a" Input Voltage V'NIO)

Vee = 5.0V
Vee = 10.0V

Logical

Logical "1" Output Voltage VOUTll)

Vee = 5.0V
Vee = 10.0V

"a" Output Voltage VOUTIO)

Vee = 5.0V
Vee= 100V

Logical

Logical "1" Input Current I'Nll)

Vee = 15.0V

"a" Input Current I'NIO)

Vee= 150V

Logical

Supply Current Icc

Vee = 15.0V

V
V

35
80
15
20
45
9.0

V
V
V
V

0.5
10

V
V

10

/1A

-1.0

/1A
001

/1A
pF

I nput Capacitance

Any Input

Propagation Delay Time to a Logical
"a" tpdO or L<:glcal "1" tpdl from
clock to Q or Q

Vee = 5 OV, CL = 50 pF, T A = 25° C
Vee = 10.0V, CL = 50 pF, TA = 25°C

180
70

50

ns
ns

Propagation Delay Time to a Logical
"a" from Preset or Clear

Vee = 5.0V, C L = 50 pF, TA = 25°C
Vee = 10.0V, CL = 50 pF, T A = 25°C

200
90

ns
ns

Propagation Delay Time to a Logical
"1" from Preset or Clear

Vee = 5.0V, C L = 50 pF, TA = 25°C
Vee = 10.0V, CL = 50 pF, TA = 25°C

200
90

ns
ns

Time Pnor to Clock Pulse That Data
Must be Present t SETUP

Vee= 50V, CL = 50pF, TA = 25°C
Vee= 100V, CL = 50 pF, TA = 25°C

30
15

ns

Time After Clock Pulse That Data
Must be Held

Vee = 5. OV, CL = 50 pF, T A = 25° C
Vee = 10 OV, CL = 50 pF, TA = 25°C

a
a

ns
ns

Minimum Clock Pulse Width
(tWL = tWHI

Vee = 50V, CL = 50 pF, TA = 25°C
Vee = 10 OV, CL = 50 pF, TA = 25°C

70
30

ns
ns

Minimum Preset and Clear Pulse
Width

Vee = 5.0V, C L = 50 pF, T A = 25°C
Vce = 10.0V, CL = 50 pF, T A = 25°C

90
40

ns
ns

MaXimum Clock RISe and Fall
Time

Vee = 5.0V, C L = 50 pF
Vee= 100V,C L = 50 pF

5.0
20

/1S
/1S

0.8

V

LOW POWER TTL/CMOS INTERFACE
Logical "1" Input Voltage V 'N ll)

54C, Vee = 4.5V
74C, V ce = 4.75V

"a" Input Voltage V ,NIO)

54C, Vee = 4 75V
:74C, Vee = 4.75V

Logical

Logical '.,.' Output Voltage VOUTll)
Logical

"a" Output Voltage VOUTIO)

Propagation Delay Time to a Logical
"a" tpdO or Logical "1" from elock

54C, Vce = 4.5V,ID = -100/1A
74C, Vee = 4.75V,I D = -100/1A

V ec -l.5

V

2.4
04

54C, Vee = 4.50V, I D = 360 /1A
74C, Vee = 4.75V, ID = 360 /1A
Vee = 5.0V, C L = 50 pF, TA = 25°C

250

V
V

Note 1: These deVices should not be connected under power on conditions

8-15

~
.....

CJ.

switching time waveforms

~
.....
:E
:E
......

CMOS to CMOS

Vee

~
.....

TTL to CMOS

4.0V----H,.....------

90%
50%

CLOCK

ov---....:lrl

OV

CJ
~

it)

:E
:E

Vee

0.4V -Hr::::::;--+-=~

OV

ov-HF"-+"";''''''''["

DATA

DATA

vee----------~----------.,_---

Vee
50%

OorO

ov--___~-----J

OV

Vee -------~~------.....

Vee
511%

QDrO

oV----------------

OV
1,=1,,,, 20 ns

ac test circuit

.

"~~ ,,
INPUT

CLOCK

typical applications
Ripple Counter (Divide by 2n)

CLOCK

Q

CLOCK

Q

CLOCK

Shift Register

Q

DATA

Q

DATA

Q

DATA

Guaranteed Noise Margin as a'

74C Compatibility

Function of VCC

15V

1"7========-0

13.5
12.5

Vee
w

~
~

;

405
<0 305
~
u

25
1.5

145
045
450V

10V
. Vee

8-16

15V

Q

CMOS
MM54C95/MM74C954-bit right-shift left-shift register
general description

features

This 4-bit shift register is a monolithic complementary MOS (CMOS) integrated circuit composed of
four D nip flops. This register will perform rightshift or, left-shift operations dependent upon the
logical input level to the mode control. A number
of these registers may be connected in series to
form an N-bit right shift or left shift register.

•
•

Medium speed operation
Vee
High noise Immunity

~

10 MHz typ
lOV, CL ~ 50 pF
045 Vee typ
100 nW typ
Drive 2 LTTL
loads
3V to 15V

• Low power
• Tenth power TTL
compatible
• Wide supply voltage range
• Synchronous parallel load
• Parallel Inputs and outputs from each flip flop
• Negative edge triggered clocking

When a logical "0" level is applied to the mode
control input, the output of each flip flop is
coupled to the D input of the succeeding flip flop.
Right-shift operation IS performed by clocking at
the clock 1 Input, and serial data entered at
the serial input, clock 2 and parallel inputs A
through D are inhibited. With a logical "1" level
applied to the mode control, outputs to succeeding
stages are decoupled and parallel loading is possible,
or with external interconnection, shift-left opera·
tion can be accomplished by connecting the
output of each flip flop to the parallel input of
the previous fl ip flop and serial data is entered at
input D.

applications
•
•

Data terminals
Instrumentation

•
•
•
•
•

Automotive
Medical electrOnics
Alarm systems
Remote metering
Industrial electronics

•

Computers

block and connection diagrams

CLOCKl
ASIIIFT

_ r--

MC

MODECONTROl~MC

MOOECONTAOt'OFORRIGHTSHIFT
MODECONTROl-' FORLEfTSHIFTOAPARALLEL LOAD

ol!--GND

Dual-I n·Line Package
INPUT

,

OUTPUT

,

OUTPUT

,

SERIAL

INPUT

INPUT

INPUT

\I

C

OUTPUT
C

Vee

OUTPUT
0

CLOCf(2
t-SHlfT

INPUT

MODE

CLOCK 1

0

CONTROL

RSHIFT

8·17

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C95
MM74C95

Storage Temperature

-0 3V to Vee +03V
-55°C to +125°C
aOc to +70°C
--65°C to +150°C

500mw

Package DISSipation
Operating Vee Range
Ll:'ad Temperature (Soldering, 10 sec)

+3V to +15V
300·C

electrical characteristics
Max/min limits apply across temperature range unless otherwise specified.
PARAMETER

CONDITIONS

I

MIN

I

TVP

MAX

UNITS

CMOS TO CMOS

35
8

Logical "1" Input Voltage VIN (11

Vec= SOV
Vec" 100V

Logical "0" Input Voltage VIN(OI

Vee = SOV
Vee'" lOOV

Logical "1" Output Voltage VOUTI!I

Vee'" SOV
Vee = lOOV

Logical "0" Output Voltage VOUTIOI

Vee'" SOV
Vee = 100V

Loglc.al "1 'Input Current IINUI

Vee'" lS0V

Logical "0" Input Current IIN(O)

Vee

Supply Current Icc

Vce = lS0V

Input Capacitance

Any Input

PropagatIon Delay Time to a Logical "0" tpdO
or Logical "1" tpdl from Clock to Q or Q

Vee = SOV,C L =SOpF, TA. =2SoC
Vee = 100V,CL = 50 pf, TA. = 2SoC

200
80

Time Prior to Clock Pulse Thdt Data Must be
Preset tSETUP

Vee'" 50V,C L =50pF,TA."'2Sc C
Vee = 100V,C L = 50 pF, TA. = 2SoC

15
10

Time After Clock Pulse That Data Must be
Held

Vce = 50V,C L =-50pF, TA =2SoC
Vee = 100V,CL =50pF, TA = 2SoC

Minimum Clock Pulse Width (tWL = tWH)

V ee - 50V,CL =-SOpF,TA "'25°C
Vee" 100V,CL = SOpF, TA = 2SoC

100
50

Mlntmum ModI' Control Pulse Width

Vee - 50V, CL = 50pf, TA '" 2SQC
Vee = 100V,CL = 5OpF, TA " 25°C

100
40

Maximum Clock Rise and Fall Time

Vee" 5 OV, CL "SOpF, TA = 2SoC
Vce = 100V,CL = 50pF, TA. ~25°C

Maximum Input Clock Frequency

Vee" SOV,C L 5OpF,T A =25°C
Vee = lOOV, CL = 50pf, TA = 2SoC

=

l&OV

V

15
2
45

-1
050

10

10

LOW POWER TTLICMOS INTERFACE
Logical "1" Input Voltage V INII)

54C, vee = 4 5V
74C, Vee = 4 7SV

Logical "0" Input Vorlage VINIOI

S4C, Vee = 4 5V
74C, Vee = 4 75V

Logical "1" Output Voltage VOUTO )

54C, Vee = 4 5V, 10 '" -lOOp,A
74C, Vee = 4 75V, 10 = -lOQp,A

Logical "0" Output Voltage V ouno)

54C, Vee "'45V, 10 = 360,uA
74C, Vee. = 4 7SV, 10 = 360,uA

Propagation Delay Time to a Logical "0" tpdO
or Logical "1" tpd1 from Clock to or Q

Vee = SOY, CL = 50 pF, TA = 25°C

a

Note 1: These deVices should not be connected under "Power On" conditions

8·18

V ee -1 S

24

175

50

400
160

CMOS
MM54C151/MM74C151 8 channel digital multiplexer
general description
The MM54C151/MM74C151 multiplexer is a
monolithic complementary MOS (CMOS) Integrated circuit constructed with Nand P-channel
enhancement transistors.
This data selector/multiplexer contains on·chlp
binary decoding. Two outputs provide true (out·
put Y) and complement (output W) data. A logical
"1" on the stroke input forces W to a logical "0"
and Y to a logical "1 ".
All Inputs are protected against electrostatic
effects.

features
• Supply voltage range

3V to 15V

• Tenth power TTL
compatible
•

High nOise Immunity

•

Low power

drive 2 LPTTL loads
0.45 Vee typ
50 nW typ

applications
•
•
•
•
•
•
•

Automotive
Data terminals
Instrumentation
Medical electronics
Alarm systems
Industrial electronics
Remote metering

•

Computers

logic and connection diagrams
o,o----f-:::l=±::::::t-,_
o,o---i=J::j=::j:::::::j-,

Input Protection For All Inputs

0.

DATA
INPUTS

0,

0.

0.

Dual-I n-line Package

8-19

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C151
MM74C151
Storage Temperature
Package DISSipation
Operating Vee Range
Lead Temperature (Soldering, 10 sec)

-0.3V to Vee +0.3V
_55°C to +125°C
O°C to +70°C
-65°C to +150°C
500 mW
3V to 15V
300°C

electrical characteristics
MiniMax limits apply across temperature range across otherwise specified
PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage

V,Nlll

Vee = 50V
Vee = 10.0V

Logical "0" Input Voltage

V,NIOI

Vee = 5.0V
Vee= 100V

Logical "1" Output Voltage VOUTlll

Vee = 5.0V, '0 = -10pA
Vee = 10 OV. 10 = - 10pA

Logical "0" Output Voltage VOUTIOI

Vee = 5.0V, '0 = +10pA
Vee = 10.0V, 10 = +10pA

Logical 1/1" Input Current

I'NI1I

Vee = 15 OV, V ,N = 15V

Logical "0" Input Current

I'NIOI

Vee = 15 OV, V,N = OV

Supply Current

lee

Vee= 15.0V

V
V

3.5
8
15
2
45
9

V
V
V
V

05
1

V
V

1

pA

30

pA

pA

-1
005

pF

Input Capacitance

Any Input

Propagation Delay Time to a
Logical "0" or Logical "1" from

Vee= 50V,CL= 50pF, TA = 25°C
Vee= 100V, CL = 50pF, TA = 25°C

170
80

270
130

ns
ns

Propagation Delay Time to a
Logical "0" or Logical "1" from
Data to W

Vee = 5.0V, CL = 50 pF, T A = 25°C
Vee = 10.0V, CL = 50 pF, TA = 25°C

200
90

300
140

ns
ns

Propagation Delay Time to a
Logical "0" or Logical "1" from

Vee = 5.0V, CL = 50 pF, TA = 25°C
Vee= 100V, CL = 50pF, TA = 25°e

240
110

360
170

ns
ns

5

Data to Y

Strobe or Data Select to Y
CMOS TO TENTH POWER
INTERFACE
Logical "1" Input Voltage

V,NI1I

54C, Vee = 4' 5V
74e, Vee ~ 4.75V

Logical "0" Input Voltage

V,NIOI

54C, Vee = 4 5V
74C, Vee = 4.75V

Logical "1" Output Voltage VOUTl1I

54C, Vee = 4.~V, 10 = -100pA
74C, Vee = 4.75V, 10=-100IlA

Logical "0" Output Voltage VOUTIOI

54C, Vee ~ 4 5V, 10 = 360 pA
74C, Vcc ~ 4.75V, '0 = 360pA

Propagation Delay Time to a
Logical "0" tpdO or a Logical "1"
tpdl from Data Input, to Y

Vee = 5.0V, CL = 50 pF, T A = 25°c

Note 1: This deVice should not be connected under power on conditions.

8-20

V

Vee - 1.5
0.8
24

V
V

04
200

320

V
ns

s::
s::UI

switching time waveforms

~

............
(')

OUTPUT (WI

VOC~
!lO%

UI

TTL to CMOS (t p dl & tpdOI

CMOS to CMOS (tpdl & tpdOI

OUTPUT (WI

50%

vocT:t15V

s::
s::
"(')

1 5V

~

...

DV

DV

f.p.t1

t"do

tpd'

tpdO

...

V'"

v"
OUTPUT(Yj

UI

OUTPUT(Y)

DV--~~~~----~-----+-J

4Ov---h,.=.......--------:,:::..:""<
DATA INPUT
DATASELEtT
STROM

DATA INPUT

15V

DATA SELECT
STROBE

'v

DV

tr.1t=2Dns

ac test circuit
V"

OUTPUT(W}

·~l

~CL=50PF

OUTPUT

(V)

GND

'1'CL=50 PF
"::"

truth table
OUTPUTS

INPUTS

DO

0,

02

03

04

05

06

07

Y

x

,

x

0

0

0

x
x

x
x

x
x

x
x

x
x

x
x

0

0

x
x

0

1

0

0

0

0

1

X

X

X

X

X

X

X

1

0

0

0

1

0

X

0

X

X

X

X

X

X

0

1

0

0

1

0

X

1

X

X

X

X

X

X

1

0

0

1

0

0

0

x

x

x

x

x

0

1

0

0

x
x

x

0

X

1

X

X

X

X

X

,

0

I

1

0

X

X

X

0

X

X

X

X

0

1

0

1

1

0

X

X

X

1

X

X

X

X

1

0

1

0

0

0

x

x

0

x

x

x

0

1

0

0

0

x

x
x

x

1

x

X

1

X

X

X

1

0

1

0

1

0

X

X

X

X

X

0

X

X

0

1

1

0

1

0

X

X

X

X

X

1

X

X

1

0

1

1

0

0

x

x

0

x

0

1

0

0

x

x

x
x

x

1

x
x

x

1

x

X

1

X

1

0

1

1

1

0

X

X

X

X

X

X

X

0

0

1

1

1

1

0

X

X

X

X

X

X

X

1

1

0

C

B

A

x

x

0

STROBE

W

,

1

0

8·21

CMOS
MM54C154/MM74C154 4-line to 16-line
decoder/demultiplexer
general description
The MM54C154/MM74C154 one of sixteen decoder IS a monolithic complementary MOS (CMOS)
Integrated circuit constructed with Nand P-channel
enhancement transistors. The device IS provided
with two strobe Inputs, both of wh Ich must be
In the logical "0" state for normal operation. If
either strobe Input IS In the logical "1" state, all
16 outputs will go to the logical "1" state.

• Tenth power TTL
compatible

drive 2 LPTTL
loads·
1V guaranteed

•

High noise margin

•

High nOise Immunity

•

Low power

045 Vcctyp
100JlW typ

applications
To use the product as a demultiplexer, one of the
strobe inputs serves as a data input terminal,
while the other strobe input must be maintained
in the logical "0" state. The information will then
be transmitted to the selected output as determined by the 4-line input address.

features
•

Supply voltage range

3V to 15V

•

Automotive

•

Data terminals

•

Instrumentation

•

Medical electronics

•

Alarm systems

•

Industrial electronics

•

Remote metering

• Computers

logic and connection diagrams

V"

INPUT PROTECTI ••
"RALLINPUTS

~AA~

!"--~

T. INTERNAL
CIRCUITRY

Dual-I n-Lone Package
OU1l'UTS
INPUTS

I.
11

12

13

14
OUTPUTS

"

8-22

TOP VIEW

absolute maximum ratings
-0.3V to Vcc +0.3V

Voltage at Any Pin (Note 1)
Operating Temperature Range
MM54C154
MM74C154
Storage Temperature Range
Package Dissipation
Operating Range, Vcc
Lead Temperature (Soldering, 10 sec)

-55°C to +125°C
O°C to +70°C
-65°C to +150°C
500mW
+3V to +15V
300°C

electrical characteristics
(Minimax limits apply across temperature range unless otherwise specified.)
PARAMETER

CONDITIONS

MIN

TVP

MAX

UNITS

CMOS TO CMOS

Logical "1" I.,put Voltage (V1Nu)1

Vee == 5V
Vee == lOV

Logical "0" Input Voltage

Vee = 5V
Vee = lOV

(VIN(O))

35
8
15
2

Logical "1" Output Voltage (V oUT (1}1

Vee" 5V, 10 " -10/lA
Vee" 10V. 10 "-10JIA

LogIcal "0" Output Voltage

Vee = 5V, 10 = +10,uA
Vee == lOV,I o == +101J. A

Logical "1" Input Current

(VOUT(O))

V
V

45
9

V
V
V
V

05
1
1

V
V

Vee = l5V, VIN

==

l5V

Logical "0" Input Current II'N{Q)1

Vcc=15V,

-='

OV

Supply Current (Icc)

Vee

Input CapacItance

Any Input

Propagation Delay to a logical "0" From
Any Input to Any Output (tPdO)

Vee - 5V, CL = 50 pF, TA = 2S"C

275

400

ns

(lIN(1))

Propclgatlon Delay to a Logical "0" From

=

VIN

-1

JIA
JIA

l5V

JIA
pF

5

Vee - 5V, CL

=-

50 pF. TA == 2S"C

275

400

ns

Propagation Delay to a L(JQlcaJ "1" From
Any Input to Any Output (t pd1 )

Vee

5V, CL

'"

50 pF, TA

Propagation Delay to a Logical "'" From
Gl or G2 to Any Output (tpd1)

Vee'" 5V, CL

'"

50 pF,

Gl or G2 to Any Output (tpdol

==

=;

25°C

265

400

ns

TA '"

25°C

265

400

ns

LOW POWER TTL/CMOS INTERFACE

Logical "1" Input Voltage (V IN (1))

54C
74C

Vee'" 4 5
Vee =475

Logical "0" Inpllt Voltage (V INIO ))

54C
74C

Vee:: 4 5
Vee ==475

Logical "1" Output Voltage (V OUTO ))

54C
74C

Vee" 4 5V, 10" -1ooJIA
Vee" 4 75V. 10 "-100/lA

Logical "0" Output Voltage (VO UT1QJ )

54C
74C

Vee 04 5V. 10 " 360JIA
Vee" 4 75V. 10 " 360JIA

V

Vee - 1 5
08

V
V

24
04

[;J

V

Note 1: This device should not be connected to cirCUits with the power on because high transient voltages may cause

permanent damage.

8·23

switching time waveforms

A.B.CORO~VCC
I
--j
ANY OUTPUT

I",

t=

t

-- I
----I

r-

I,,,,,

~

50%
_ _ _ _ _- '

G10AG2~O%
_

50%

OV
tpdO

Vee

Vee _ _ _ _ _,

50%

50%

ANY OUTPUT

~OV

1--- --

Vee

OV
tpdl

Vee
50%
OV

OV

t, "1 1 = 20 ns

Guaranteed Noise Margin as a
Function of Vee
15V
13.5
125
~

;

4.05

"

305

~

V 1N (0)

25
15

145
0.45
10V

450V

15V

Vee

truth table

INPUTS

Gl G2

x

8-24

OUTPUTS

0

C

B

A

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

L

L

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

L

H

L

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

L

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

H

L

L

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

L

L

L

H

L

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

L

L

H

H

L

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

L

L

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

L

L

H

L

L

L

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

L

L

H

L

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

L

L

H

L

H

L

H

H

H

H

H

H

H

H

H.

H

L

H

H

H

H

H

L

L

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

L

L

H

H

L

L

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

L

L

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

L

L

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

H

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

==

"Don't Care" Condition

H

CMOS
MM54C157/MM74C157 quad 2-input multiplexer
general description
These multiplexers are monolithic complementary
MOS (CMOS) integrated circuits constructed with
Nand P channel enhancement transistors. They
consist of four 2-input multiplexers with a common select and enable inputs. When the enable
input is at logical "0" the four outputs assume
the values as selected from the inputs. When the
enable input is at logical "1" the outputs assume
logical "0." Select decoding is done mternally
resulting in a single select input only.

•
•

Supply voltage range
High nOise Immunity

drive 2 LPTTL
loads

applications
•
•
•
•
•
•
•
•

features
•
•

50 nW (typ)

Low power
Tenth power TTL compatible

3V to 15V
0.45 Vee typ

Automotive
Data termmals
Instrumentation
Medical electronics
Alarm systems
Industnal electronics
Remote metenng
Computers

schematic and connection diagrams
Dual-In-Line Package

SELECT

It

truth table
'«
Guaranteed Noise Margin as a
Function of

INPUTPROT£CTlON+rOINTERNAi
FOA ALL INPUTS
CIRCUITRY

15V

ENABLE

SELECT

A

B

OUTPUT Y

1

X

X

X

0

0

0

0

x

0

0

0

1

X

1

0

1

X

0

0

0

1

X

1

1

Vee

r::-=======:;--, 13.
12'

40'

30.

~~~15

145~

15

04'
450V

10V

10V

74Li Compatibility

I

8-25

absolute maximum ratings
Voltage at Any Pin (Note 1)
MM54C157
Operating Temperature

-0.3V to Vee to 0.3V
_55°C to 125°C

MM74C157

O°C to 70°C
_65°C to 150°C

Storage Temperature
Package Dissipation
Lead Temperature (Soldering. 10 sec)

500 nW
300°C
+3V to 15V

Operating Vee Range

electrical characteristics

MinIMax limits apply across temperature range unless otherwise specified

PARAMETER

CONDITIONS

MIN

TVP

MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage V 1N (1)

Vee = 5 OV
Vec = 100V

Logical "0" Input Voltage

Vee = 5 OV
Vee = 100V

VIN(O)

Logical "1" Output Voltage V OU T(1)

Vee=50V
Vee = 100V

Logical "0" Output Voltage VOUTIO)

Vee =50V
Vee = 100V

Logical "1" Input Current

IIN(l)

Vce = 150V

Logical "0" Input Current IINIO)

Vee = 150V

35
8

V
V
1.5
2.0

V
V

45
90
0.5
10
1.0

Supply Current Icc

Vee = lS0V

0.050

Input Capacitance

Any Input

5

Propagation Delay from Data to Output
(tpdo or tpdl )

Vee = 50V CL = 50 pF.
Vee = 100V CL ='50 pF,

=25' C

TA

= 25'C

Propagation Delay from Select to
Output (tPdO or tpdl )

Vee=SOV CL = SO pF, T A
Vee = 10 OV CL = SO pF, T A

Propagation Delay from Enable to

Vee = SOV CL = SO pF. T A
Vee = 10 OV CL = SO pF, T A

= 2S'C
= 2S'C
= 2S' C
=2S'C

Output (tpdo)

V
V
p.A
p.A

-10

TA

V
V

10

p.A
pF

150
70

250
110

ns
ns

180
80

300
130

ns
ns

180
80

300
130

ns
ns

CMOS TO TENTH POWER INTERFACE
Logical "'" Input Voltage V IN(1)

54C
74C

Vee =4 SV
Vee = 4 7SV

Logical "0" Input Voltage V'NIO)

54C
74C

Vee=4SV
Vee =47SV

Logical "1" Output Voltage V OUT(1 )

54C
74C

Vee = 4 SV, 10 = -100p.A
Vee =4 7SV, 10 = -100p.A

Logical "0" Output Voltage VOUTIO)

S4C
74C

Vee = 4.SV. 10 = 360 p.A
Vee = 4 7SV, 10 = 360 p.A

Propagation Delay from Select to
Output (tPdO or t pd1 )

Vee

= S OV

CL ~ SO pF,

TA

V

Vee - 1 S
08

= 2S'C

V

2.4
04
2S0

Note 1: ThiS device should not be connected to circuits with the power on because high tranSient voltage may cause
permanent damage.

8·26

V

V
ns

CMOS
MM54C160/MM74C160 decade counter
with asynchronous clear
MM54C161/MM74C161 binary counter
with asynchronous clear
MM54C162/MM74C162 decade counter
with synchronous clear
MM54C163/MM74C163 binary counter
with synchronous clear
general description
These (synchronous presettable upl counters are
monolithic complementary MOS (CMOSI integrated circuits constructed with Nand P channel
enhancement mode transistors. They feature an
Internal carry lookahead for fast counting schemes
and for cascading packages Without additional
gating.

Counting IS enabled when both count enable inputs are high. Input T is fed forward to also enable
the carry out. The carry output IS a positive pulse
with a duration approximately equal to the positive portion of QA and can be used to enable successive cascaded stages. Logic transitions at the en·
able P or T Inputs can occur when the clock is high
or low.

features

A low level at the load input disables counting and
causes the outputs to agree with the data input
after the next positive clock edge. The clear function for the C162 and C163 is synchronous and a
low level at the clear input sets all four outputs
low after the next positive clock edge. The clear
function for the C160 and C16l is asynchronous
and a low level at the clear input sets all four
outputs low regardless of the state of the clock.

•

High nOise margin

•

HIgh nOise Immunity

•

1V guaranteed
045 Vee typ
drIVes 2 LPTTL loads

Tenth power TTL
compatible
• Wide supply voltage range
3V to l5V
• Internal look·ahead for fast counting scemes
• Carry output for N-blt cascading
• Load control line
• Synchronously programmable

connection diagram
(For Logic Diagrams See Page 31

Dual-I n-Line Package

".
Ir--....-+~+--+--

connection diagram

truth table

Dual-In-Line Pack...-

Senal Inputs A and 8
INPUTS

OUTPUT

tn

to"

A

B

1

1
1

0

QA

1

1

0

0
0

0

0

0

8-31

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C164
MM74C164
Storage Temperature
Package DIssipation
Operating Vee Range
Lead Temperature (Soldering, 10 sec)

--o.3V to Vee +O.3V
-55°C to +125°C
O°C to +70°C
--65°C to +150°C
500mW
3V to 15V
300°C

,

electrical characteristics
Min/max limits apply across temperature range' unless otherwise specified.
PARAMETER

CONDITIONS

MIN

Tvpl MAX

UNITS

CMOS TO CMOS
Logical "1" Input Voltage V IN(l}

Vee = 50V
Vee = 10.0V

Logical "0" Input Voltage V INto )

Vee = SOV
Vee = 10.0V

Logical "1" Output Voltage V OUT (l)

Vee = SOV
Vee=100V

10 = -1OjlA
10 =-1OjlA

Logl,cal "0" Output Voltage

Vee = SOV
Vee = 10.0V

10=-10jlA
10 =-10jlA

Loglcal"1" Input CUrrent "Nil)

Vee = lS0V

Y'N = lSV

Logical "0" Input Current 'INtO)

,Vee = lS0V

VOUTtO)

35
8

V
V
15
2

Y'N = OV

4S
90

V
V
V
V

1

S

V
V

1

jlA

-1

jlA
OS

jlA

Supply Current Icc

Vee = lS0V

Input Capacitance

Any Input

Propagation Delay Time to a Logical "0" or
Logical "1" From Clock to Q

Vee "" SOV, CL = SO pF, TA = 2SoC
Vee = 100V, CL = SO pF, TA = 2SoC

230
90

310
120

ps
ns

Propagation Delay Time to a Logical "1" From
Clear to Q

Vee = S OV, CL = SO pF, T A = 2SoC
Vee = 10.0V, CL = SO pF, T A = 2SoC

280
110

380
lS0

ns
ns

Time Prior to Clock Pulse That Data Must be

Vee = 50V, CL = SO pF, TA = 2SoC
Vee = 10 OV, CL = SO'pF, TA '= 2SoC

110
30

Time After Clock Pulse That Data Must be
Held

Vee = S.OV, CL = 50 pF, T A = 2SoC
Vee =100V,C L =SOpF, TA'= 2SoC

0
0

ns
ns

MInimum Clock Pulse Width (tWI.. = tWH)

Vee = 50V, CL = SO pF, T" = 2SoC
Vee = 100V, CL = SO pF, TA = 2SoC

120
50

n,
ns

Minimum Clear P.ulse Width

Vee = SOY, CL = SO pF, TA = 2SoC
Vee = 10 OV, CL = SO pF, T A = 2SoC

lS0
55

n,

MaXimum Clock. Rise and Fall Time

Vee = 50V,C L =50pF,T A =2SoC
Vee = 10 OV, CL = SO pF, TA = 2SoC

1
130

ms
jlS

Present

tSETUP

SO

pF

S

,

ns
ns

ns

CMOS TO TENTH POWER INTERFACE
54C
74C

Vee =45V
Vee = 4 75V

54C
74C

Vee=4SV
V ee =47SV

Logical "1" Output Voltage VOlJT (1)

54C
74C

Vee = 4 5V, 10 = -100jlA
Vee = 4 7SV, 10 = -100 jlA

Logical "0" Output Voltage VOUT(O)

54C
74C

Vee = 4 SV. 10 = 360jlA
Vee = 4 7SV, 10 = 360jlA

Loglca'''l'' Input Voltage V 1N (1)
Logical "0" Input Vol~age V INIO )
';

V
8

V

!

Propagation Delay Time to a Logical "0" or

Logical "1" From Clock To Q
Note 1: These devices should not be connected under power on conditions.

8·32

V ee -15

24

V
4
320

V
ns

ac test circuit

INPUTS {

CLOCK

switching time waveforms

u

ClEAR-U

SERIAL [
INPUTS

A

.--1'-----.....
ClOCK

0.

0,

0,
OUTPUTS

________________________
____________________________
==.'.____________________--'

o,==~,~

~

o>==~,

0,

~

0" - - ,

~I----------------------------~

CLEAR

I

CLEAR

CMOS

'0 CMOS

TTL to CMOS

v,,----+-r.::;:;-----CLOCK

OV--_.11

OV----"'=I

DATA

DATA

ov ----+------

V,,----+-i----..
r----50"~

v" _ _ _ _._-----..

r-tpdO.--~

1.,.,0 - - -\ .

OIJ~------------- ----~
t, '

'f

<

20

OV

n~

8-33

typical applications

Guaranteed NOise Margin as a Function of

Vee
135

74C Compatibility

125

25
15

450V

10V
Vee

8-34

15V

illS

CMOS

MM54C173/MM74C173 TRI-STATE® quad 0 flip flop
general description
The MM54C173/MM74C173 TRI-STATE quad D
flip flop IS a monolithic complementary MOS
ICMOS) Integrated CirCUit constructed with N
and P-channel enhancement transistors The four
D type flip flops operate synchronously from a
common clock. The TRI-STATE output allows the
deVice to be used In bus organized systems. The
outputs are placed In the TRI·STATE mode when
either of the two output disable Pins are In the
logiC "1" level. The Input disable allows the flip
flop to rema In In their present states Without
dISrupting the clock. If either of the two Input
dISables are taken to a logiC "1" level, the Q
outputs are fed back to the Inputs and In thiS
manner the flip flops do not change state
Clearing IS enabled by taking the Input to a logiC
"1" level. Clocking occurs on the pOSItive going
transition.

features
•

Supply voltage range

3V to 15V

•

Drive 2 LPTTL
loads

Tenth power TTL
compatible

045 Vee typ

•

High nOise Immunity

•

Low power

•

Medium speed operation

•

High Impedance TRI·STATE

•

Input dISabled Without gating the clock

applications
•

Automotive

•

Data terminals

•

Instrumentation

•

Medical electronics

•

Alarm systems

•

Industrial electronics

•

Remote metering

•

Computers

logic and connection diagrams

DATA INPUT (

DISABlE

Dual·1 n·Line Package
INPUT
INPUT
INPUT
ABC

Vee

OUIPU1

OUTPUT

OISMLE DISABlE

OUTPUT OUWUT

A

~,

INPUT
0

OUTPUT

OUTPUT

C

0

DATA
INPUT

CP

OUTPUll

DISABLE

8·35

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C173
MM74C173
Storage Temperature
Package Dissipation
Operating Vee Range
Lead Temperature (Soldering, 10 sec)

-{).3 to Vee +O.3V
-55°C to +125°C
O°C to +70°C
-65°C to +150°C
500mW
+3V to +15V
300°C

electrical characteristics
Minimax limits apply across temperature range unless otherwise specified.
PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO CMOS

Logical "1" Input Voltage V,N111

Vee = 5.0V
Vee = 10.0V

Logical "0" Input Voltage V ,NIO )

Vee = 5.0V
Vee = 10.0V

Logical "1" Output Voltage V OUT (1)

Vee = 5.0V
Vee = 1O.0V

"a" Output Voltage VaUTIO)

Vee = 5.0V
Vee = 10.0V

Logical

High Impedance State

V
V
V
V

9
.5
1
1

V
V
p.A
p.A

_
Va = 15V
Vee - 15V, Vo = OV

001
.001

p.A
I1A

Supply Current lee

Vee = 15V

Input Capacitance

Any Input

Propagation Delay Time to a Logical "0" (tpdo)

Vee = 5.0V, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

220
80

400
200

ri.
ns

DATA

Vee = 5.0V, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

40
15

80
30

ns
ns

Input Data Hold Time, tH DATA

Vee = 5.0V, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

a
a

Input Disable Setup Time, t5 DISS

Vee = 5.0V, CL = 50 pF, T A = 25'C
Vee = 10.0V, CL = 50 pF, T A = 25'C

100
35

Input Disable Hold Time, tH DISS

V ee '= 5.0V, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

a
a

or Logical "1" (t pd1

1 From Clock to Output

Input Data Setup Time, t5

001

10

5

p.A
pF

ns
ns
200
70

ns
ns
ns
ns

170
70

340
140

Vee = 5 OV, CL = SO pF, TA = 2S'C
Vee = 1O.0V, CL = 50 pF, TA = 2S'C

170
70

340
140

n,
ns

Vee = 5.0V, C L = SO pF, T A = 2S'C
Vee = 10.0V, CL = 50 pF, T A = 25'C

170
70

340
140

ns
ns

Propagation Delay From Clear to Output tpdR

Vee = S.OV, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, T A = 25'C

240
90

490
180

ns

MaXimum Clock Frequency

Vee = S.OV, CL = SO pF, TA = 2S'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

5
10

Minimum Clear Pulse Width

Vee = 5 OV, CL = SO pF, TA ~ 25'C
Vee = 10.aV, CL = 50 pE, TA = 2S'C

150
70

MaXimum Clock Rise and Fall Time

Vee = 5 OV, CL = 50 pF
Vee = 10.0V, CL = 50 pF

Delay From Output Disable to High Impedance

State (From Logical "1" or Logical

"a" Levell,

t iH • tOH

Delay From Output Disable to Logical "1"

Level, tHI (From High Impedance Statel
Delay From Output Disable to Logical "0"

Level, tHO (From High Impedance Statel

Vee = 5.0V, CL = 50 pF, TA = 25'C
Vee = 10.0V, CL = 50 pF, TA = 25'C

Note 1: These deVices should not be connected under "Power On" conditions.

8-36

4.5

-1

logical "0" Input Current IIN(O)
In

1.5
2

Vee = 15.0V

logical "1" Input Current 'IN(l)

Output Current

V
V

3.5

8

10
5

35
7

ns
ns

MHz
ns
p.s
p.s

electrical characteristics (con't)
"

CONDITIONS

PARAMETER

MIN

TYP

',:

MAX

UNITS

'LOW POWER TTL/CMOS INTERFACE

= 4 5V

Logical "I" Input Voltage V ,N (1)

54C, V'Ce
74C, >{Jce

Logical "0" Input Voltage V'NIO)

54C. Vee = 4 5V
74C, Vee = 4 7SV

Logical "I" Output Voltage V OUTllI

54C, Vee
74C, Vee

= 4 5V, 10 =-1QO!,A
= 4 75V, 10 =-100!,A

Logical "0" Output V?ltage VOUTIO)

54C, Vee
74C,.v ce

=

Propagation Delay Time to a Logical "0",
or Logical "I"

t"Ol

=

' V'

Vcc";1.5

475V

.8

V
"

4 5V, 10

=

V

·24

360!,A

4

= 4 75V, 10 = 360!,A

tpdO

500

From Clock

Ii
ns

truth table
Truth Table (Both Output Disables Low)

In

tn+1

DATA INPUT DISABLE

DATA
INPUT

OUTPUT

X

an

LogiC "1" on One or Both Inputs
LogiC "0" on Both Inputs
LogiC "0" on Both Inputs

1

1

'b

0

"
-:r

switching time waveforms

90.

CLEAR

DUTPUT
DISABLE

50%

10%

I
I

' -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

/1--1 Lt'-_____. .r

50%.¥\.5D%
:

,

1''---'---

--

I

5 0 % - 1 \ , 50%

~

150ISS

tSOISS·__

HO'SS

DATA

--

INPUT

I

i

50%

I

Is DATA

_

50% .r---\,90%
CLOCK

--t-----J.I.

",''''''

50%

tH'01SS

A,., l
J ~5D%

--t

I
~_~'"D'"
-l
r--'"DAOA

r--

c

50%

50r. I

511%

.

tf~~-tpd'~

...
50_%_ _ _ _ _ _ _ _

Is DATA

I

~

DATA

OUTPUT

I

r--

--J15~

----jtpdOk--

\~.

8·37

-CMOS
MM54C192/MM74C192 synchronQus
4-bit up/down decade counter
MM54C193/MM74C193 synchronous
4-bit up/dQw~ binary counter
general des.cription
counters also have carry and bbrrow outputs so
that they can be cascaded uSing no external
circuitry.

These up/down counters are monolithic complementary MOS (CMOS) Integrated CircUits. The
MM54C192 and MM74C192 are BCD counters.
While the MM54C193 and MM74C193 are binary
counters.

features

Countmg up and countmg down IS performed by
two count Inputs, one being held high while the
other IS clocked. The outputs change on the POSItive gOing transition of th IS clock.
These counters feature preset Inputs that are set
when load IS a logical "0" and a clear which forces
all outputs to "0" when It IS at logical "1." The

•

High nOise margin

1 V guaranteed

•

Tenth power
TTL compatible

drive 2 LPTTL
loads
3V to 15V

•

Wide supply range

•

Carry and borrow outputs for N-bit cascading

•

Asynchronous clear

•

High nOise Immunity

0.45 Vcc typ

connection diagram
Dual-In-Line Package
INPUTS

OUTPUTS

INPUTS

~~

OAATA

I"

CLEAR

"

"

2

J

BORROW CARRY

LOAD

12

II

\3

DATA
C
10

9

-

I

DATA
B
INPUT

DB
QA
__________
OUTPUTS
\

5

4

COUNT

DOWN

7

6

COUNT

Qc

UP

I

00

'---'
OUTPUTS

T'

GNO

INPUTS

TOPVIEW

cascading packages
Guaranteed Noise Margin as

LOAO---.---------.--------

A Function of

15V

Vee

...,...-======-;

1J5

125

U,
CLOCK
TO NEXT
STAGE

DOWN

406

30'

CLOCK
145

D.45
OUTPUTS

OUTPUTS

CLEAR--....- - - - - - - -...._ _ _ _ _ _ __

8-38

~~~~~~~~~
'------'----

4.50V

IOV

15V

25
15

absolute maximum ratings
Voltage at Any Pin (Note 1 )
Operating Temperature Range
MM54C192, MM54C193
MM74C192, MM74C193
Storage Temperature Range
Package DIssipation
Operating Vee Range
Lead Temperature (Soldenng, 10 sec)

-O,3V to Vee + O,3V
-55°C to +125°C
-70°C to +70°C
-65°C to +150°C
500mW
+3V to +15V
300°C

electrical characteristics

(Mm/max limits apply across temperature range unless otherwise speCified)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CMOS TO MOS
Logical "1" Input Voltage (V 1N (1»)

Logical "0" Input Voltage (V1N(0)1

Logical "1" Output Voltage (Vo UT (11)

Logical "0" Output Voltage (V OUTW)}

Vee = 5V
Vee

=

35
8

lOV

Vee = 5V
Vee = lOV

15
2

10 = -10pA
Vee = 10V, 10 = -10pA
Vee"" 5V,

=

5V,

Vee

=

lOV, 10

Vee = 15V, V'N = 15V

Logical "0" Input Current (lINW1)

Vee = 15V,

Supply Current (Icc)

Vee=15V

Input Capacitance

Any Input

Propagation Delay Time to Q From

Vee

tpdl )

45
9

VIN '"

OV

V
V
V
V

10 = +10j.lA
= +10.uA

Vee

Logical "1" Input Current (1IN(1»)

Count Up or Down (t pdO or

V
V

05
1

V
V

10

pA

-10

pA
50

pA
pF

5

C L = 50 pF, TA ~ 25°C
Vee = 10V, C L = 50 pF, TA =25"C

250
100

400
160

ns
ns

=

5V,

Propagation Delay Time to Borrow
From Count Down (t pdO 01 tPCl1 )

Vcc=5V,

CL = 50 pF, T A =25°C
Vee = 10V, C L =50pF, TA =25°C

120
50

200
80

ns
ns

Propagation Delay Time to Carry

Vee=5V, CL = 50 pF, TA = 25°C
Vee = lOY, CL = 50 pF, T A ::= 25°C

120
50

200
80

ns
ns

C L =50pF, TA = 25°C
CL = 50 pF, T A " 25 c C

100
30

160
50

ns
ns

CL =50pF, TA = 25"C
=: 50 pF
TA o 25°C

300
120

480
190

ns
ns

Vee

= 5V, CL = 50 pF, T A " 25 c C
Vee = 10V, CL = 50 pF, T A = 25°C

100
40

160
65

ns
ns

Vee

= 5V, CL = 50 pF, TA = 25°C
Vee = 10V, C L =50pF, TA = 25'C

300
120

480
190

ns
ns

Minimum Count Pulse Width

Vee" 5V, CL = 50 pF, TA = 25'C
Vee = lOY, CL = 50 pF, TA = 25'C

120
35

200
80

ns
ns

MaXimum Count Frequency

Vee °5V, CL = 50 pF, TA = 25°C
Vee = lOY, CL = 50 pF, TA =25°C

Count Rise and Fall Time

Vee = 5V, CL = 50 pF, TA = 25°C
Vee = lOY, CL = 50 pF, TA = 25°C

From Count Up (tpdo or t pd1 )
Time Prior to Load That Data

Vee

Must be Present (tSETUP)

Vee

= 5V.
= 10V.

Vee

= 5V,

Minimum Clear Pulse Width

Minimum Load Pulse Width
Propagation Delay Time to Q From
Load (tpdo or tpd1 )

Vee = 10V,

eL

25
6

MHz
MHz

4
10
15
5

ps
ps

CMOS TO TENTH POWER INTERFACE
Logical" 1" Input Voltage (V'N''')

54C Vee = 4 5V
74C Vee = 4 75V

Logical "0" Input Voltage (V'N(O»)

54C Vee=45V
74C Vee=475V

logical "1" Output Voltage (V OUT {1})

54C Vee=45V, 10 = -lOOpA
74C Vee = 4 75V, 10 = -lOOpA

logical "0" Output Voltage (VOUTIOI)

54C V ce =45V, 10 = 360!,A
74C Vee = 4 75V, 10 = 360pA

V
V

V ec -15

VeC 15
08
08

V
V
V
V

24
24
04
04

V
V

Note 1: This deVice should not be connected to circuits With the power on because high transient voltage may cause
permanent damage.

8-39

schematic diagrams

MM54C192 Synchronous 4-Bit Up/Down Decade Counter

VccU

r

n
GNO

MM54C193 Synchronous 4·Blt Up/Down Binary Counter

8·40

CMOS
MM54C195/MM74C195 4-bit register
general

~escription

The MM54C195/MM74C195 CMOS 4-bit r!glsters
feature parallel Inputs, parallel outputs, JK serial
inputs, shift/load control input, and a direct
overriding Clear. The following two modes of
operation are possible:
Parallel Load
Shift i.n direction Q A towards Q D
Parallel loading is accomplished by applying the
four bits of data and taking the shift/load control
input low. The data is loaded into the associated
flip-flops and appears at the outputs after the
positive transition of the clock input. During
parallel loading, serial data flow is inhibited.
Serial shifting is accomplished synchronously when
the shift/load control Input is high. Serial data
for this mode IS entered at the JK inputs. These
Inputs allow the first stage to perform as a JK.
D or T-type flip flop as shown In the truth table.

features
• Medium speed operation
10 MHz (typ) With
10V supply and 50 pF load
• High nOise immunity
0.45 Vee (typ)

• Low power
• Tenth power TTL compatible

100 nW (typ)
drive 2 LPTTL
loads

• Supply voltage range
3V to 15V
• Synchronous parallel load
• Parallel inputs and outputs from each flip-flop
•
•
•
•
•

Direct overriding clear
J and K inputs to first stage
Complementary outputs from last stage
Positive edge triggered clocking
Diode clamped Inputs to protect against static
charge

applications
• Automotive
• Data terminals
• Instru mentation
• Medical electronics
• Alarm systems
• Remote metering
• Industrial electronics
• Computers

schematic and connection diagrams

SHIFTltDAD~
PlN8TOOND
PIN 16TO Vee

... ,
Dual-In-Lrne Package

8-41

absolute maximum ratings
Voltage at Any Pin (Note 1)
Operating Temperature
MM54C195
MM74C195
Storage Temperature
Package Dissipation
Lead Temperature (Soldering, 10 sec)
Operating Vee Range

-O.3V to Vee +O.3V
-55°C to +125°C
O°C to +70°C
_65°C to 150°C
500mW
300°C
+3V to +15V

e lectrica I cha racteristics

MaxiMin limits apply across temperature range unless otherwISe specified.

PARAMETER

MIN

CONDITIONS

TYP

MAX

UNITS

CMOS TO CMOS

logical "0 'OutfJut Voltage

V
V
15
2a

Vee "'SOV

Logical "0" Input Voltage V 1NI01

Logical "1" Output Voltage V OUl

30
80

Vee -'" 5 OV
Vee" lODV

Logical "1" Input Voltage V IN11 )

Vee

=

lODV

45
90

Vee = 5 OV
Vee c-: 10 OV

(1)

V
V
05
10

Vee =50V

VOUTWI

Vee = lOQV

Logical "1" Input Currpnt

IINI1)

Vee. =·150V

Logical "0" InlJut Current

IINIO)

Vee '" 15 OV

10
10

V
V
~A

MA

Supply Current Icc

Vee = 15 OV

0050

Input Capacitance

Any Input

50

Propagation Delay Time to a Logical
"0" tpdO or Lo~cal "1" tpdl from

V
V

20

MA
pF

Vcc=50V
Vee =-100V

C L " 50 pF, T A ." 25°C
25°C
C L -= 50 pF, T A

200
75

300
130

n,
n,

Propagation Delay Time to a Logical
"0" Flom Clear

Vee = 50V
Vec=lOOV

C L - 50 pF, TAo 25°C
CL 50 pF, T A " 25°C

100
50

300
130

n,
ns

Time Prior to Clock Pulse That Data
Must be Present tSETUP

Vee=-50V
Vee = 100V

C L =- 50 pF, T A "" 25°C
C L =- 50 pF, T A "25°C

60
15

100
50

ns
n,

Time Prior to Clock Pulse That
Shift/Load Must be Present tSETUP

Vee =50V
Vee -e 10 OV

CL ~- 50 pF, TA - 25°C
C L =- 50 pF, TA o 25()C

110
60

150
90

ns
ns

Time After Clock Pulse That Data
Must be Held

Vee
Vee

=

5 OV
10 OV

CL
CL

50pF, TA " 25"C
50 pF, T A =- 25"C

"-10
-5

a
a

Vee
Vee

-=

5 OV
100V

CL
CL

-

50 pF, T A
50 pF, T A

=

25°C
25°C

100
50

200
100

ns
n,

50 pF, T A
50 pF, TA

=

25()C
25°C

90
40

130
60

ns
ns

Clock to 0 or

Q

Minimum Clock Pulse Width

(tWL

tWH)

=

"0

-,
'"

=

"0

Minimum Clear Pulse Width

Vee = 5 OV
Vee =- 50V

CL
CL

-=

MaXimum Clock Rise and Fall Time

Vee = 5 OV
Vee = 100V

CL
CL

=

MaXimum Input Clock Frequency

Vee
Vee

C L =50pF, T A '" 25°C
C L =50pF, T A - 25°C

00,

=

5 OV
100V

=-

=-

50 pF
50 pF

50
20
25
5

ns

'"

~s
~,

MHz
MHz

5
100

LOW POWER TTL/CMOS INTERFACE
Logical "1" Input Voltage VI'\Hll

54C
74C

Vee=45V
Vee=-475V

Logical "0" Input Voltage V,NIOI

54C
74C

Vee=-45V
Vee = 4 75V

Logical "1" Output Voltage VOUTll)

54C
74C

Vee =45V, 10 =--lOOj.1A
Vee = 4 75V, 10 = -lODIlA

Logical "0" Output Voltage VOUTIO)

54C
74C

Vec
Vee

Propagation Delay Time to a Logical
"0" tpdO or LO~lcal "1" tpdl From
Clock to Q or Q

Vee =50V

CL

"

==

08

50pF, TA "25°C

V
V

24

4 5V, ID" 360MA
4 75V, 10 == 360 j.1A

Note 1: These deVices should not be connected under power on conditions.

8·42

V

Vee-1 5

04

250

V

ns

s:
s:U'1

switching time waveforms

~

(")
~

TTL to CMOS

CMOS to CMOS

CD
U'1

........

s:
s:

4V

~

OV

~

(")

40V
Vee

~

CD
U'1

DATA
OV

OV

Vee

40V

DATA
OV
OV

Vee

Oora.

ov
Vee

norO

ov
t, '" t f

'"

20 ns

tr eo tf"

20 ns

truth table
INPUTS AT tn

OUTPUTS AT tn+1

J

K

QA

QB

QC

QD

QD

L

H

QAn

QAn

QBn

Q Cn

Q cn

L

L

L

QAn

QBn

Q Cn

Q Cn

H

H

H

QAn

QBn

Q Cn

Q Cn

QAn

QAn

QBn

Q Cn

H

-

L

-

-

-

Q Cn

Note: H = HIGH LEVEL, L = LOW LEVEL
tn = bit time before clock pulse

tn+1

=

btt time after clock pulse

QAn = State of QA at tn

Guaranteed nOise Margin as
a Function of

Vee

15V

13'
12'

40'

'"

LV~'~'~IOI~~~~~~~~

145 [;;

2'

15

045 L -_ _--"----_ _- '
450V

lOV

15V

8-43

illS

:I
r+
CD

...
....

Interface Circuits

I»
(')

CD

REFERENCE

n

The following table references all Physical DimenSion Drawings for the devices in this section. For Order
Numbers. s~e below.' Refer to the alpha·numerical Index at the front of this catalog for complete deVice
title and function. Packages (pages I thru VI) are In the back of the catalog.

(')

DATA SHEETS

Devices

Pg.

DHOO06
DHOO06C
DHOO08
DHOO08C
DHOOll
DHOOllC
DHOOllCN
DHOO16CN
DHOO17CN
DHOO18CN
DH0028C
DHOO28CN
DH0034
DHOO34C
DHOO35
DH0035C
DH3467C
DH3725C
LH2111
LH2211
LH2311
LM106
LM206
LM306
LMll1
LM211
LM311
LM350
LM710
LM710C
LM711
LM711C
LM1414
LM1514
LM1488
LM1489.A
LM5520
LM7520
LM5521
LM7521
LM5522
LM7522
LM5523
LM7523
LM5524
LM7524
LM5525
LM7525
LM5528
LM7528
LM5529
LM7529
LM5534
LM7534

9·1
9·1
9·4
9·4
9·7
9·1
9·7
9·10
9·10
9·10
9·13
9·13
9·15
9·15
9·18
9·18
9·20
9·22
9·24
9-24
9-24
9-26
9·26
9·28
9-30
9·30
9-35
9-40
9-42
9·44
9-46
9-48
9-55
9-55
9·50
9-53
9-58
9-58
9-58
9-58
9-61
9-61
9·61
9-61
9-63
9-63
9·63
9-63
9·65
9-65
9·65
9-65
9·67
9·67

PACKAGES
Molded DIP (N)
Fig.

Pg.

2

II

2

II

2
2
2
2
2
2
2

II
II
II
II
II
II
II

Cavity DIP (D)(J)

Flat Pack (F )(W)

Fig.

Fig.

11
11

3
3

Pg.

IV
IV

Type

Pg.

Type

J
J

Metal Can (G)(H)
Fig.

Pg.

Type

21
21
21
21
21
21
21

V
V
V
V
V
V
V

H
H
H
H
H
H
H

21
21
21
21
24
24

V
V
V
V
VI
VI

H
H
H
H

G
G

20
20
20
20
20
20

V
V
V
V
V
V

H
H
H
H
H
H

20
23
22
23

V
VI
V
VI

H
H
H
H

WAVE·
FORMS
Fig.

Pg.

...

C
r+
III

TEST
CIRCUITS
Fig.

Pg.

II
II
9
9
9

3
3
1
3

II
II
II
II

3
3

II
II

5

II

5

II

5

II

5

II

5

II

5

II

5

II

5

II

5

II

8
8
8

11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

III
III
III

III
III
III

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

D
D
D

D
D
D

16
16
16
15

V
V
V
IV

F
F
F
F

14
14
14

IV
IV
IV

F
F
F

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

'Order Numbers: use DeVice No. suffixed with package letter. i.e. DHOOO6H.

9-i

...

1/1

.u

::::s
fJ

Q)

fJ

.

....ca

...

Q)

I:
DATA SHEETS

PACKAGES
Molded DIP (N)

Devices
LM5535
LM7535
LM5538
LM7538
LM5539
LM7539
LM75450A
LM75451A
LM75452
LM75453
LM75454
MHOO07
MHOO07C
MHOO09
MHOO09C
MHOO12
MHOO12C
MHOO13
MHOO13C
MH0025
MH0025C
MH0026
MH0026C
MH0027C
MH8808

9-ii

Pg9·67
9-67
9-69
9-69
9-69
9-69
9-40
9-71
9-71
9-71
9-73
9-75
9-75
9-77
9-77
9-79
9-79
9-81
9-81
9-85
9-85
9-88
9-88
9-97
9-99

F,g_

Pg-

5

II

5

II

5
3
1
1
1
1

II
II
II
II
II
II

1

\I

1
1
5

II
\I
\I

Cavity DIP (D)(J)

Flat Pack (F) (W)

Metal Can (G)(H)

FIg

F,g_

F,g_

Pg.

Type

22
22
24
24
24
24
24
24
20
20
24
20

V
V
V
V
VI
VI
VI
VI
VI
V
VI
V

H
H

12
12
12
12
12
12

Pg
IV
IV
IV
IV
IV
IV

Type

Pg-

Type

J
J
J
J
J
J

G
G
G
G
G
G
H
H

G
H

WAVEFORMS
FIg.

Pg.

TEST
CIRCUITS
FIg.

Pg.

c
::z:::
o
o
o
en
......
c
::z:::
o
o
o
en

Interface Circuits
DH0006/DH0006C*current driver
general description

n

there IS less likelihood of false turn·on due to an
inadvertent short In the drive line.

The DH0006/DH0006C IS an Integrated high
voltage, high current driver designed to accept
standard DTL or TTL logic levels and drive
a load of up to 400 mA at 28 volts. AND Inputs
are provided along with an Expander connection,
should additional gating be required The addition
of an external capacitor provides control of
the rISe and fall times of the output in order to

features
• Operation from a Single +10V to +45V Power
Supply.

decrease cold lamp surges or to mmlml7e electro-

magnetic Interference If long lines are driven

• Low Standby Power Dissipation of only 35 mW
for 28V Power Supply

Since one side of the load is normally grounded,

• 1.5A, 50 ms, Pulse Current Capability.

'Prevlously called NH0006/NH0006C

schematic and connection diagrams

Metal Can Package
OUTPUT
RESPONSE
TIME

CONTROL

........- -....~---........- ........-+-ov"
NC

"-"'-0

TOP VIEW
OUTPUT

Dual·1 n-Line Package
INPUT
10

INPUT
EXPANDER

+-_-,

OUTPUT

INPUT _ _

INPUT

C } RESPONSE
TIME

INPUT

B

INPUT

CONTROL

' A . - -. . .---4....------oGROIJNO

GROUND
INPUT

_--'+---' L-_ _r __

INPUT

typical applications
lamp Dnver with Expanded Inputs

Relay Dnver

V"
+28V
OUTPUT

OTl/TTl {
lOGIC
INPUTS

311
LAMPS

- - - L -_ _A

OTLITTl
EXPANDER INPUT

RELAY
COIL

LOGIC
INPUTS

, - ~USH TO

lTEST

9-1

(.)
U)

o
o
o

absolute maximum ratings
Peak Power Supply Voltage (for 0.1 sec)
Continuous Supply Voltage
Input Voltage
Input Extender Current
Peak Output Current (50 ms On/1 sec Off)
Operating Temperature
DH0006
DH0006C. DH0006CN
Storage Temperature

:J:

C
.......
U)

o
o
o

:J:
C

electrical characteristics
PARAMETER

60V
45V
5.5V
5.0mA
1.5A
-55°C to +125°C
O°C to +70°C
-65°C to +150°C

(Note 1)

CONDITIONS

MIN

Logical "1" Input Voltage

Vee = 45V to 10V

Logical "0" Input Voltage

Vee = 45V to 10V

Logical "1" Output Voltage

Vee = 28V. V ,N = 2.0V. lOUT = 400 mA

Logical "0" Output Voltage

TYP
(Note 2)

MAX

2.0

V
0.8

26.5

Logical "1" Output Voltage

Vee = 10V. V ,N = 2.0V. lOUT = 150 mA

Logical "0" Input Current

Vee = 45V. V ,N = .4V

Logical ''1'' Input Current

Vee = 45V. V ,N = 2.4V

27.0

8.8

0.5

Vee = 45V. V ,N = 5.5V
"Off" Power Supply Current

Vee = 45V. V ,N = 0.8V

.01

-1.0

mA

5.0

}1A

100
1.6

V
V

92
-0.8

V
V

.001

Vee =45V. V rN =0.8V"R L = 1K

UNITS

}1A

2.0

mA

8

mA

"On" Power Supply Current

Vee = 45V. V ,N = 2 OV. lOUT = 0 mA

Rise Time

Vee = 28V. RL = 82Q

0.10

}1S

Fall Time

Vee = 28V. RL = 82Q

0.8

}1S

Ton

Vee = 28V. RL = 82Q

0.26

}1S

Toff

Vee = 28V. RL = 82Q

2.2

}1S

Note 1: Unless otherWise specified, limits shown apply from -55°C to 125°C for DH0006 and OoC to
70°C for DH0006C.

Note 2: TYPical values are for 25°C ambient
Note 3. Power ratings for the TO-5 based on a maximum Junction temperature of +175°C and a ¢JA
of 210°ClW
Note 4: Power rating for the DH0006CN Molded DIP based on a maximum Junction temperature of

+150 o C and a thermal resistance of 175°C/W when mounted

In

a standard DIP socket

Note 5: Power rating for the DH0006CN Molded DIP based on a maximum Junction temperature of
+150 o C and a thermal resistance of 150°C/W when mounted on a 1/16 Inch thick, epoxy-glass board
with ten 0 03 Inch Wide 2 ounce copper conductors

switching time waveforms

--,.t:::......::J"-

90%--t+----'H-~

(I

PULSE
INPUT

!iO%,---tt----ti---

to%

9-2

C
::I:

0
0
0

typical performance
Maximum Continuous Output
Current For TO-S

Maximum Continuous Output

vs Temperature

Current For Molded DIP
50

~

40

w

w

'"~
>

~

40

~>

'"~
~

30

Q

Q
~

30

Q

20

~
;:

~

~

~

~

20

::I:

22

~
~

en

.......
C

Input Threshold Voltage

~
~

0
0
0

20
18

en
n

16
14
1.2
GUARANTEED LOGICAL
"0" INPUT VOLTAGE MAX

10
08
06

200

400

600

800

MAXIMUM CONTINUOUS OUTPUT CURRENT (rnA)

200

Logical "0" I nput Current

j

25

"....
.!

~

+25°C

i<
_55°C,~
~ ~ I...;:: +12S"'C
.....:==::::: ~

800

~

600

5 400

...

~ 200

~ =---

_55°~~

15

P

~

~

1.0

~

05

~ P"

~

15 100 125

In r;;
I--

'l

I :'Y"

+25°~~

,/

k:;: ~

50

"ON" Supply Current Dram

/.

B'OOD

F

0

AM81ENT TEMPERATURE (OC)

"OFF" Supply Current Drain

~ 1200

~

-50 -25

800

20

1400

....

600

MAXIMUM CONTINUOUS OUTPUT CURRENT (rnA)

1600

....

400

V

~

?' ....c .....
+125"C-

+125°C

L:~ ' /

+2S C
Q

leV"

~

~

~~

o
10

30

20

50

40

10

Turn On And Rise Time

-

....

200

;::

3.0

~

'"

I

20

,;-

;::

RISE TIME

100

Vee =2aV
RL "6aU
CL " 10 pF
VIN =l.GV PULSE

tf::;;lDns

Vee =28V
RL ""6an
CL = 10pF
VIN = 3 OV PULSE
tr '::;;10ns-

!

~

10

I

o

o

-75 -50 -25

0

25

50

15 100 125

-15 -50 -25

TEMPERATURE (OC)

....

~
a:

B
....
~
~

5

1.2
.8

.,w

.6

;;:

.4

"

.2

>

l}'W

1.0

Q

:5

I

T~' j25°~/ ,

o

~

If.

-

20 ' - -

5

10

1ms"ON"
100 ms "OFF"

30

~

Te=25"C

....

~

'\ U
Tr-ri

Q

30

12
llr-I~I'r\,~'~-b~~~~-;

10~1~1+-~~~~~~~~~

091-:~"":""'Y

08

1-""F7'r:....F-t-

01~~~~~~~~~~
200

15 100 125

40

SUPPLY VOLTAGE, Vee, (V)

50

400

800

600

1000

OUTPUT CURRENT. 1106• (mA)

Turn On Control

".,J "'

~

20

~

-

1•• 11"'

~

"PULSE CONDITION

20

16r-~~,--r-r~~~r-~

40

20
10

-

Vee = 2aV

Rl "'68n
TA =25°C

~

\

C, -

o.F
o

50

50

13

I
l. l ~=
I
25

40

15
14

--b~~
~~~

~

i.l.~
~

1_

~

0

30

Output Saturation Voltage
~

Turn Off Control
4.0

1.4

I

20

SUPPLY VOLTAGE (V)

TEMPERATURE ('C)

Available Output Current
2.0
1.8
16

10

50

Turn Off and Fall Time
4.0

300 I-- TutoL1JE

5

40

SUPPLY VOLTAGE (V)

400

~

30

20

SUPPLY VOLTAGE (V)

..........

"

Cl

~

= rOPF

F" 300

100
TIME

(~,)

5

e
~

\C, . . . .
50

C, ·300.F
30

Q

Y

C,'O
20
10

.£. :,......

CF '" 680pF

~I

Vee'" 28V

R, ·6an
T.· 25"C

Kj80.F
pF

150

200

250

Cl

20

40

60

"

10pF

8.0

10

TIME (",)

9-3

(.)

co
o
o
o

Interface Circuits

J:

C
.........

CO

DH0008/DH 0008C*
high voltage, high current driver

J:
C

general description

o
o
o

The DHOOOS/DHOOOSC IS an Integrated high voltage, high current driver, deSigned to accept standard DTL or TTL Input levels and provide a pulsed
load of up to 3A from a continuous supply voltage
up to 45V. AND Inputs are provided with an EXPANDER connection, should additional gating be
required.

circuit also requires only one power supply for
circu It fu nctlonal operation.
The DHOOOS is available In a lO-pln TO-5 package;
the DHOOOSC IS also available In a lO-pln TO-5, In
addition to a 10-lead molded dual-In-Ilne package.

features
Since one side of the load is normally grounded,
there IS less likelihood of false turn-on due to an
Inadvertent short In the drive line.

• Operation from a Single + 1OV to +45V Power
Supply.
•

The high pulse current capability makes the
DHOOOS/DHOOOSC ideal for driVing nonlinear
resistive loads such as Incandescent lamps. The
*Prevlously called NHOOOS/NHOOOSC

Low Standby Power DISSipation of only 35 mW
for 2SV Power Supply.

• 3.0A, 50 ms, Pulse Current Capability.

schematic and connection diagrams
Metal Can Package
RISE AND

FAll

RESPONSE CONTROL

TIME

.----.....--+--4~-....- ....>-2, Y'N = 5.0V

0.2

Fall Time

Vee = 2SV, RL = 39>2, Y'N = 5.0V

3.0

fls

TON

Vee=2BV,RL=39>2,V'N=50V

004

flS

TOFF

Vee = 2SV, RL = 39>2, Y'N = 5.0V

7.0

flS

Note 1· Unless otherWise specified limits shown apply from _55°C to 125°C for
70°C for DH0008C.

o H0008 and OoC

20

mA
fls

to

Note 2: TYPical values are 25°C ambient

Note 3: Power rattngs for the TO-5 based on a maximum Junction temperature of +175°C and a1> JA
of 210oC/w
Note 4: Power ratings for the DH0008CN Molded DIP based on a maximum Junction temperature of
150°C and a thermal resistance of 150°C/w when mounted In a standard 01 P socket

Note 5: Power ratings for the DH0008CN Molded DIP based on a maximum Junction temperature of

150°C and a thermal resistance of 115°C/w when mounted on a 1/16 Inch thick, epoxy-glass board
with ten 003 Inch Wide 2 ounce copper conductors_

switching time waveforms

-.. ,t::...:J" I+-

90%--++----'H-A PULSE \
(I INPUT I,
50%--hf----\t---

9·5

(,)
ex)

o
o
o

typical performance

::r:
o
......

Maximum Continuous Output

Maximum Continuous Output
Current for Molded DIP

Current for TO-5 Package

Available Output Current

50

ex)

o
o
o

5:
....

~

::r:
o

I"

40

w

;'"

....

lO

Q

>

l!:
§:

>

~
400

200

20

20

11/

1.2

:5
;;:

OB

>

'"

0.4

I If

Tc--55 °C

;

~

1.6

c

14

~

1.2f-+--t-t---t--f-+""t...::'1

a:
%

~!:

"
!:

P
~

;:l

I-+--t-+--+-I-+"-t--i

0.6 1--'--'-_'--'---'---'_-'---'
-50 -25 0 25 50 15 100 125

1 .B .9 10

....
il:

~

1.0

O.B

j

....~

Q

I-

OUTPUT CURRENT (AI

~

1200
1000

+25°C

BOO

..

600
400
200

~

-55'~~
15

P

....

~
c:c:

S

~~

1.0

~ po

~

~

05

~
!/

10

V...

+125°C

~

10.0

~
>=

B.O

V1N = 3.0V PULSE

I

",

20 ~~
10

I I I I

f---tlr--lt--P-..t-

"

11K

100
TIME 1",1

9·6

150

200

250

o

2

.....J-t-T
, '\ fALL TIME I

-25

+25

4

6

RL =39H
CL =10pF
TA

600
]

=

25 C

+125

500

~

400

;:::::

300

R, • 3911

I

I

i-'

TURN ON TIME V

I

200

RISE TIME"

Q

B 10 12 14 16 lB

TIME 1",1

+15

CL =10pF
V1N '" 3.0V PULSE
t, <; 10 ns

100

I

RF =51 H2

I I

liME

Vee = 28V

700

r- f -

I-

f-.~~
~~ .",,~ _Vee =28V

f-1 ~.v,"';;-

-

iff

TEMPERATURE rCI

I
r-

30 f---j---+--+

50

-75

50

Ti RN

./

/'

'/

Turn ON and Rise Time

T, = aprOXlmatjly 10 nS

30

10

40

TUrn OFF Control

r-

50

j'"

tf~10ns

6.0

SUPPL Y VOLTAGE IVI

Turn ON Control

40

CL =10pF

o
SUPPL Y VOLTAGE (VI

30

20

Vee = 28V
RL = 3951

14.0
12.0

+25°C

30

+125°C

~ ::0-'"

Turn OFF and Fall Tunes

4.0

20

...o=~ ~ reo:

r<

t:: ~

160

2.0

10

~

SUPPL Y VOLTAGE IVI

~'"

P

-55'CI~

o

OFF Supply Current Drain
2.0

~

50

1400

AMBIENTTEMPERATURE I'CI

ON Supply Current Drain

40

Logical "0" Input Current

2.0 I-+"-+-+--+-I-+-+~
1B

lO

1600

w

'"

20

SUPPL Y VOL TAGE. Vee. (VI

I"put Threshold Voltage
vs Temperature

t----tr+.."....---+

PULSE CONOI.T~
1 MS"ON"
100 MS "Ofr"

I I
I I
10

~

20

If

Te' 25°CI

16

.,w

2.2

.5 .6

I I

2B T ~1~oC
ell
2.4

MAXIMUM CONTINUOUS OUTPUT CURRENT (mAl

Output Saturation Voltage

3 .4

IJ

l.2

BOO

600

MAXIMUM CONTINUOUS OUTPUT CURRENT ImAI

1 .2

40
l.6

-50 -25

0

+25 +50 +75 +100 +125

TEMPERATURE rCI

C

::t

o
o

Interface Circuits

......

.....
C

::t

o

......o

n
.....
c

DHOOll*(SH2001)
DHOOllC*(SH2002)
DH 00llCN*(SH2002P)

::t

o
o

...
n

high voltage high current drivers

z

general description
Applications Include driving lamps, relays, cores,
and other devices requiring several hundred milliamp currents at voltages up to 40V. Logic flexibility is provided through a 4-input NAND gate, a
NOR input and an input which bypasses the gating
and connects the base of the output transistor.

The DHOOll high voltage, high current driver
family consists of hybrid integrated circuits which
provide a wide range of variations in temperature
range, package, and output current drive capability. A summary of the variations is listed below.
*Prevlously called NHOOll, NHOOll C, NHOOll CN

logic diagram
Vee

10

ordering information
NSC DESIGNATION

SH DESIGNATION

PACKAGE

TEMPERATURE AANGE
~55°C to

+ 12SoC

OUTPUT CURRENT
CAPABILITY

DHQ011H

SH2001

TO 100

DHOO11CH

SH2002

TO 100

aOc to +70°C

150 rnA

OHOO11CN

SH2002 P

Epoxy "8" D1P

aOc to +70°C

150mA

250 rnA

9-7

z

(J

..-

absolute maximum ratings

o
o
:c

8V
VCC
Collector Voltage (Output)
40V
I nput Reverse Current
1.0mA
Power Dissipation
800mW
_55°C to +125°C
Operating Temperature Range DH0011
DoC to +70°C
DH0011C/DH0011CN
_65°C to 150°C
Storage Temperature

o

.......
(,)

..-

o
o
:c

o

.......

..-

electrical characteristics

o

o
:c

o

PIN 1

PIN 2

PIN 3

PIN 4

PIN 5

1

V IH

V IH

V IH

V IH

GND

2

V IL

GND

3

V IL

GND

TEST NO.

4

V IL

5

V IL

PIN 6

PIN 7

PIN 8

GND

IOL1

GND

IOL1

PIN 9

PIN 10

SENSE

V CCL

Va

VOL

V CCL
V CCL

Va

VOL

IOL2

V6

V OL2

GND

IOL2

V CCL

V6

V OL2

GND

IOL2

V CCL

V6

V OL2

V CCL

V6

V OL2

V CCL

V6

V OL2

6

V IL

GND

IOL2

7

GND

GND

IOL2

V IL

V IH

MIN

8

VR

GND

GND

GND

GND

V CCH

I,

IR

9

GND

VR

GND

GND

GND

V CCH

12

IR

10

GND

GND

VR

GND

GND

V CCH

13

IR

11

GND

GND

GND

VR

GND

V CCH

14

IR

V CCH

19

IR

13

VF

VR

VR

VR

GND

V CCH

I,

-IF

14

VR
VR

VF
VR

VR
VF

VR
VR

GND

V CCH

12

-IF

15

GND

V CCH

13

-IF

16

VR

VR

VR

VF

GND

V CCH

14

-IF

GND

GND

V CCH

19

V CCL

V6

V CCL

18

lox

V PD

1'0

IpDH

1'0

12

GND

17
18
19

GND

20
21

GND

VR

VF

GND

GND

GND

GND

GND

GND

Vox

-IF
V OH

GND

V MAX

22*

GND

V PD

tON

23*

GND

V PD

tOFF

I MAX

*See Test Circuits and Waveforms on Page 4

forcing functions
PARAMETER

(Note 1) DH0011
-55°C

+25°C

+125°C

UNITS

V CCL

4.5

4.5

4.5

V

V CCH

5.5

5.5

5.5

V

V PD

5.0

V

V MAX

8.0

V

V IL

1.4

1.1

0.8

V

V IH

2.1

1.9

1.7

V

VR

4.0

4.0

4.0

V

VF

0.0

0.0

0.0

V

lOLl

250

250

250

IOL2

8.0

8.0

7.5

Vox

40.0

40.0

40.0

Note 1: Temperature Range _55°C to +125°C

9·8

MAX

mA
mA
V

C
:::t

forcing functions

O°C

PARAMETER

+25°C

+70°C

UNITS

V CCL

5.00

5.0

5.0

V

V CCH

5.00

5.0

5.0

V

V PD
V MAX

5.0

V

8.0

V

V ,L

1.20

1.1

V ,H

2.00

1.9

1.8

V

VR

4.00

4.0

4.0

V

VF

.95

0.45

0.45

0.5

8.0

8.0

7.5

mA

40.00

40.0

40.0

V

(")

"C
:::t

o
o

+125°C
MAX

UNITS

( ")

Z

(Note 1) DHOOll

PARAMETER

MIN

_55°C
MAX

+25°C
MIN

MAX

MIN

V OL1

0.45

0.4

0.45

V

V OL2

0.45

0.4

0.45

V

5.0

JlA
mA

V OH

V

1.80

2.00

2.20

2.0

IR
-IF

1.60

1.6

1.5
200

5.0
30.6

JlA
mA

29.6

mA

lox
IpDH
I MAX
tON

160

ns

tOFF

220

ns

(Note 2) DHOOllC, DHOOllCN
O°C

+25°C
MAX

MIN

V OL1
V OL2

MIN

+70°C
MAX

MIN

0.45

0.5

V

0.45

0.45

0.5

V

10.0

JlA
mA

1.95

1.85

V

5.0

IR
-IF

UNITS

MAX

0.45
2.05

V OH

o
o

V

IOL2

PARAMETER

C
:::t

mA

Vox

test limits

"-

V

150

150

150

IOL1

test limits

o
o

(Note 2) DHOOllC, DHOOllCN

1.4

1.40

1.35

5.0

lox
IpDH
I MAX

200

30.6

JlA
mA

34.0

mA

Note 1: Temperature Range -55°C to +125O C
Note 2: Temperature Range OoC to +70 O C

switching time test circuit
c
PIN 10

PULSE
GEN
fRED

=

~

50V

.,

Vee = 5V

C~".F·.'.'NG

~

100 kHz

DUTY CYCLE

=

50%

PIN 5, PIN 1 GNO

±

Typical Switchmg Times
OUTPUT

-=-

CAP

200

!

~

switching time waveforms

'50

~

w"

100

w·

50

INPUT

~

"

"

."

"

1..-,"..

"

\"~""~ "

T'

-so°c

25°C

125°C

TEMPERATURE (OC)

9·9

z

(.)

...

00

Interface Ci rcuits

o
o

::I:
C
Z

...o,...

(.)

DH0016CN*
D H 0017CN*(SH2200P)
DH0018CN*

o

::I:
C
Z

(.)

...

high voltage high current drivers

CD

o
o

::I:
C

general description
withstanding voltages up to 100V. Logic flexi·
bility is provided through a 4·input NAND gate, a
NOR input and an input which bypasses the gating
and connects to the base of the output transistor.

This high-voltage, high-current driver family consists of hybrid integrated circuits which provide a
wide range of output currents and output voltages.
Applications include driving lamps, relays, cores,
and other devices requiring up to 500 mA and
'Previously called NH0016CN, NH0017CN, NH0018CN

logic diagram
Vee
10

ordering information
NSC DESIGNATION SH DESIGNATION

PACKAGE

OUTPUT CHARACTERISTICS
Maximum Standoff

Voltage

9·10

Current

DHOO16CN

N/A

Epoxy "8" DIP

70V

250mA

DHOO17CN

SH2200P

Epoxy "8" DIP

50V

500mA

DHOO18CN

N/A

Epoxy "8" DIP

100V

500mA

o

:::l:

o
o

absolute maximum ratings

~

8V
8V
70V
DHOO16CN
50V
DHOO17CN
100V
DHOO18CN
1.0A
DHOO16CN
Output Surge Current
2.0A
DH0017CN & DHOO18CN
Power Dissipation
455mW
O°C to +70°C
Operating Temperature Range
_65°C to +150°C
Storage Temperature

0)

Vee
I nput Voltage
Collector Voltage

n
2

o

:::l:

o
o
.....
n
~

2

o

electrical characteristics

:::l:

TEST
PIN 1
NO.
2

V IH

3

V IL

4

PIN 2

PIN 3

PIN 4

V IH

V IH

V IH

V IL

5

V IL

6
7

V IL
\IlL

8

V IL

9

V IL

PIN 5 PIN 6

PIN 7

PIN 8

GND

GND

lOLl

GND

GND

lOLl

GND

GND

GND
GND

PIN 9

PIN 10

SENSE

MAX

o
o

CD

LIMITS
MIN

Vee

Vs

VaLl

V IL

Vee

Vs

VaLl

lOLl

V IL

Vee

Vs

VaLl

GND

lOLl

V IL

Vee

Vs

VaLl

GND

lOLl

V IL

Vee

Vs

VaLl

GND

IOL2

Vee

V6

V OL2

GND

IOL2

Vee

V6

GND

IOL2

Vee

V6

V OL2
V OL2

10

V IL

Gt-JD

IOL2

11

GND

GND

IOL2

V IH

Vee

V6

V OL2

Vee

V6

V OL2
IR

12

VR

GND

GND

GND

GND

Vee

11

13

GND

VR

GND

GND

GND

Vee

12

IR

14

GND

GND

VR

GND

GND

Vee

13

IR

15

GND

GND

GND

VR

GND

16

GND

VR

Vee

14

IR

Vee

19

IR

17

VF

VR

VR

VR

GND

Vee

11

-IF

18

VR

VF

VR

VR

GND

Vee

12

-IF

19

VR

VR

VF

VR

GND

Vee

13

-IF

20

VR

VR

VR

VF

GND

Vee

14

-IF

GND

GND

Vee

19

Vee

V6

Vee
V PO

Is
110
110

21

22
23

GND
GND

GND

24
25

VF
GND
IOL3

GND

Vox

GND
GND

GND

GND

V MAX

~

o
2

-IF
V OH1
lox
Ipo
I MAx

forcing functions
SYMBOL
Vee
Vpo
V MAX
V IL
V IH
VR
VF
Vox (DHOO16CN)
Vox (DHOO17CN)
Vox (DHOO18CN)
lOLl (DH0017CN, DHOO18CN)
lOLl (DHOO16CN)
IOL2
IOL3

O°C

+25u C

5.0

5.0
50
80
0.85
1.8
4.5
0.45
70
50
100
500
250
16
8.0

0.85
1.9
45
0.45

500
250
16

+70°C
50

0.85
1.6
4.5
045
70
50
100
500
250
16

UNITS
V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
9·11

z
co

(J

...

test limits

o
o

O°C

SYMBOL

:I:

C
Z

VOLT

..."

V OHI

V OL2

(J

IR

o

o

-IF

:I:
C

lox

Z

I MAX

+70°C
0.6
0.45
1.65
60
1.6
200

+25°C
0.6
0.45
185
60
1.6
5.0
12.2
10

0.6
0.45
1.95
1.6

Ipo

UNITS
V
V
V

/JA
mA
/JA
mA
mA

(J
CO

...

o
o

:I:

C

Typical Switching Times

Typical Output Voltages vs Temperature

Ie = 250 mA

Typical Switching Times

DHOO16CN

Ie = 500 rnA

DH0017CN, DHOOl8CN

~ 04

."

~
w

~
>

OJ

z
02
;::

DHool1CN, DHoolBCN Ie: SOD mA

....

= -

:li
'"....
~

I- -

!

600

!l!;::

SOD

z
i

400

.

DHoo16CN Ie : 250 mA-

f-

.--

i.--"

.... .,

]:

~

01

3D

w

."
~

20

;;;

~ 300

5

~

-

tO~F

~

a

200
100

10

~~

tON

i.--" i'"

....-

"

ION

0
0

25

50

15

0

TEMPERATURE ( CI

25

50

15

0

TEMPERATURE ( CI

50V

Rt
PIN10"Ycc "5V
PULSE

GEN.

±.

OUTPUT

",f·WlRI'G
CAP

FREQ "100 kHz
DUTYCYCLE:SIt%

.,..

PIN 5, PIN 1 GND

RI "200n(DHODI6CN)
RI = loon (DHOOl1CN,
DHDDI8CN)

switching time waveforms

INPUT

IV

,-,
';

I

\

,"v

\

zv

1-- ..,,-

'v

\

25

50

TEMPERATURE rCI

switching time test circuit

9-12

-

tOFF

zv

/-'0"-

.V

our

1&

o

::z:
o
o

Interface Circuits

N
00

n

"'-

o

::z:
o
o

DH0028C/DH0028CN*hammer driver

N
00

general description

features

The DH0028C/D H0028CN IS a hIgh current
hammer driver desIgned for utilizatIon In a wide
variety of printer applIcations. The devIce is
capable of drlvmg 6 amp pulsed loads at duty
cycles up to 10% (1 ms ON/10 ms OFF). The
Input IS DTUTTL compatIble and requires only a
single voltage supply In the range of 10V to 45V.

• Low standby power 45 mW at Vee
35 mW at Vee = 28V.
• AND Input
flexibIlIty.

n
wIth

expander

affords

z

= 36V,
logic

• Fast turn·on, typically 200 ns.

'Prevlously called NH0028C/NH0028CN

connection diagrams
Molded DualMln-Line Package

Metal Can Package

OUTPUT

r---i- 10

Vee

1

INPUT

2

INPUT

3

EXPANDER

4

1

GROUND

5-~;;;;;;~

6

INPUT

NC

INPUT

,

OUTPUT

NC

INTERNAL

CONNECTION

TOPVIEW

typical application

COLUMN ONE
INPUT

COLUMN TWO
INPUT

..._7 +JIV

r------t----~I----

.~41IlF

r-+----t------H.----+-----7~~i::LCLE

r--NHOOZlCN-j

I

I

L_-T-_.J
INHIBIT

>-------4I1---------i-...--------+--:~
zn

zn

JW

JW

HAMMER =1

IOV

HAMMER =2

lOY

*Use one decouphng capacitor per SlK hammer dovel'S for Improved AC nOlS8 Immumty
**Zener IS used to control the dynamiCs ofthe hammer

9·13

z

(.)

co

absolute maximum ratings

(\oj

o
o

Continuous Supply Voltage
Instantaneous Peak Supply Voltage
(Pin 1 to Ground for 0.1 sec)
Input Voltage
Expander Input Current
Peak Otuput Current (1 ms ON/10 ms OFF)
Continuous Output Current DH0028C at 25°C
DH0028CN at 25°C
Operating Temperature
Storage Temperature
Lead Soldering Temperature (10 sec)

J:
C

........
(.)

CO
(\oj

o
o

J:

C

electrical characteristics (Note
PARAMETER

45V
60V
5.5V
5.0mA
6.5A
750 mA
1000 mA
O°C to 70°C
-65°C to +175°C
300°C

1)
MIN

CONOITIONS

' TVP

MAX

UNITS

(Note 1)

Logical "1" Input Voltage

Vee'" lQVto45V

LogICal "0" Input Voltage

Vee" lOV to 45V

v

20

Logical "0" Input Current

Vee'" 45V, V IN

04V

08

Logical ., 1 . Input Current

Vee'" 45V, VIN '" 2 4V
Vee = 45V, V IN ::: 55V

05

Logical ",,, Output Voltage

"

08

v

10

mA

50
1000

Vee" 45V, V IN " 2 av,

a

435

v

335

34 a

v

43

lOUT'" 1 6A
Vee'" 36V, V IN ::: 2 av,
lOUT'" 5A
(Note 2)

020

100

v

Logical "0" Output Voltage

Vee'" 45V, RL

OFF Power Supply Current

Vcc = 45V, VIN - DaV

16

Rise Time {1O% to 90%)

Vee" 45V, RL

02

"'

Vee" 45V, RL = 39~l
V IN ::: 5 OV peak, PRF '" 1 kHz

30

"'

Vee::: 45V, R L

04

"'

:::

=

1k, V IN ::: 0 BV

39U

VIN = 5 OV peak, PRF '"
Fall Time {90% to 10%)

VIN '"

kHz

39U

5 OV peak, PRF ::: 1 kHz

70

Vee::: 45V, R L ::: 39H
VIN "- 5 OV peak, PRF ::: 1 kHz

TOFF

Note 1

:::

t

These specifications apply for ambient temperatures from OoC to 70 0 e unless otherWise

specified All tYPical values are for 25°C ambient

Note 2' Measurement made at 1 ms ON and 10 ms OFF
Note 3' Power ratings for the DH0028C are based on a maximum Junction temperature of 175 Q C and

a thermal reSIStance of 21 OoC/W
Note 4. Power ratings for the DH0028CN are based on a maximum Junction temperature of 175°C
and a thermal resistance of 1500 C/W

typical

perform~nce

characteristics
Waveforms for TYPlcClI

Drum Printer Hammer

40n=:E:ES=w=D
301-+

Vec = 3SV
o

20r-

TON=lms

>

lOr-

~~F:2~}~ms++::-t~H

°

o
-10

:

:

J

I-I-'HAJME .-+-I''"'1"""'''r:!-l

I-l-fET~~~~"-I---t-l
IA ,
Vl , ,
002040S08
TIME (ms)

9·14

20

mA

C

:::t
o
o

Interface Circuits

w

~

.......
C

:::t
o
o

DH0034/DH0034C high speed dual level translator

w
~

(")

general description

features

The DH0034/DH0034C is a high speed level translator suitable for Interfacing to MaS or junction
F ET analog switches. It may also be used as a
universal logic level shifter capable of accepting
TTL/DTL input levels and shifting to CML, MaS,
or SL T levels.

• Fast switching, tpdO: typically 15 ns; tpdl:
typically 35 ns
• Large output voltage range: 25V
• Input is TTL/DTL compatible
• Low output leakage: typically 0.1 iLA
• High output currents: up to ±100 mA

schematic and connection diagrams
Metal Can Package

Dual-in-Line Package

GND

I

14

Vee

A,

2

\3

B,

3

12

.,

Ne 4

11

Ne

V-

ID

OUTPUll

,TQPVIEW

If,C,rcliltShown

Ne

GND

5

,
,

•
,

A,

V-

OUTPUTl

Ne

V-

GNO

TOP VIEW

typical applications
5 MHz Analog Switch

TTL to IBM (SLT) Logic Levels
SOY

ANALOG
OUT

,. . _____ L____ ,

SOY

I

I
I

INPUT 1

I

I

I

I ___________ oJI
L

":"

-15

".
+11V

INPUT 2

""

9-15

(,)

'd'

(\')

absolute maximum ratings

o
o

J:

vcc Supply Voltage

Q

......
'd'

(\')

o
o

7.0V

Negative Supply Voltage

-30V

Positive Supply Voltage
Differential Supply Voltage

+25V
25V

Maximum Output Current

100mA

Input Voltage

J:

Operating Temperature Range:

Q

DHOO34

+5.5V
-55°C to +125°C
O°C to +85°C

DHOO34C
Storage Temperature Range

_65°C to +150°C
300°C

Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(See Notes 1 & 2)

CONDITIONS

MIN

DHOO34
TVP

MAX

Logical "I"
Input Voltage

Vee = 4.5V
Vee = 475V

Logical "0"
Input Voltage

Vee = 5.5V
Vee = 4.75V

Logical "I"
Input Current

Vee = 5.5V, Y'N = 2.4V
Vee = 5.25V, Y'N = 2.4V

Logical "I"
Input Current

Vec = 5.5V, Y'N = 5.5V
Vee = 5.25V, Y,N = 5.5V

10

Logical "0"
Input Current

Vee = 5 5V, Y,N = O.4V
Vee = 5.25V, Y'N = a 4V

1.6

Power Su ppl y

(Note 3)
Vee = 5.5V, Y'N = 4 5V
Vee = 5.25V, Y,N = 4.5V

30

37

LogiC "I"

(Note 3)
Vee = 5.5V, Y,N = OV
Vee = 5 25V, Y,N = OV

Logical "0"
Output Voltage

Vec = 4.5V, lOUT = 100 rnA
Vee = 4.5V. lOUT = 50 rnA

V- + .50 V- + .75
V- +.3 V- + .50

Output Leakage

Vee = 5.5V, Y'N = 0.8V
V+ - V- = 25V

Current

Logic "0"
Power Su ppl y
Current

Current

Transition Time to

Logical "0"
Transition Time to

Logical "I"

MIN

DHOO34C
TVP

2.0

UNITS

V
2.0
V

0.8
0.8
40

I1A
40
rnA
10
rnA
1.6

01

38

rnA
30

38

37

48

V- + .50
V- + .3

V- + .80
V- + .65

48

5

rnA

0.1

V
V

5

I1A

Vee = 5.0V, V3= OV,TA = 25°C
V- = -25V, RL = 510rl

15

25

15

35

ns

Vee = 5 OV, T A = 25° C
V- = -25V, RL = 510rl

35

60

35

65

ns

Note 1: These specifications apply over the temperature range _55°C to +125°C for the DHOO34

and O°C to +85°C for the DH0034C with a 510 ohrn resistor connected between output and ground,
and V- connected to -25V, unless otherwise specified.
Note 2: All typical values are for T A = 25°C.
Note 3: Current measured

9-16

MAX

IS

total drawn fro~ Vee supply.

c
::x:
o
o

w
~

.......

theory of operation
When both inputs of the DH0034 are raised to
logic "1 ", the input AND gate is turned "on"
allowing 01's emitter to become forward biased.
01 provides a level shift and constant output cur·
rent. The collector current is essentially the same
Vee - VB.
as the emitter which is given by
R1
Approximately 7.0 mA flows out of 01's col·
lector.

c

::x:
o
o

About 2 mA of 0 I's collector current is drawn off
by pull down resistor, R2. The balance, 5 mA, is
available as base drive to 02 and to charge its
associated Miller capacitance. The output is pulled
to within a VSAT of V-. When either (or both)
input to the DH0034 is lowered to logic "0," the
AND gate output drops ,to 0.2V turning 01 off.
Deprived of base drive 02 rapidly turns off causing
the output to rise to the V3 supply Voltage. Since
02's emitter operates between O.6V and 0.2V, the
speed of the DH0034 is greatly enhanced.

w

~

(")

applications information
1. Parallel ing the Outputs
The outputs of the DH0034 may be paralleled to
increase output drive capability or to accomplish
the "wire OR". In order to prevent current hogging by one output transistor or the other, resistors of 2 ohms/l00 mA value should be Inserted
between the emitters of the output transistors and
the minus supply.
2. Recommended Output Voltage Swing
The graph shows boundary conditions which
govern proper operation of the DH0034. The
range of operation for the negative supply is
shown on the X aXIs and must be between -3V
and -25V. The allowable range for the positive
supply is governed by the valu~ chosen for V-. V+
may be selected by drawing a vertical line through
the selected value for V- and terminated by the

boundaries of the operating region. For example, a
value of V- equal to -6V would dictate values of
15

~

10
15

"'

-10

;::

~

-15

w

~>
,..
~

....

v- < ~3V
v+ - v- ::;25V

I
I.....!'

V
/'

~ OPERATING REGION l- I--

-10
-15

/'
./

V

V
-14

-18

-11

-6

NEGATIVE SUPPl V VOL TAGE I-VI

V+ between -5V and +19V. In general, it is desirable to maintain at least 5V difference between
the supplies.

9-17

(J
It)

Interface Circuits

(W)

o
o

J:

Q

........
It)

('t)

o
o

DH0035/DH0035C PIN diode switch driver

J:

Q

general description
The DH0035/DH0035C is a high speed digital
driver designed to drive PIN diodes in RF modulators and sWitches. The device is used In conjunction
with an Input buffer such as the DM7830/DM8830
or DM5440/DM7440.

features
•

Large output voltage sWing - 30V

•
•

Peak output current in excess of 1 Amp
Inputs TTLlDTL compatible

•

Short propogation delay - 10 ns

•

High repetition rate - 5 MHz

The DH0035/DH0035C IS capable of driving a
variety of PIN diode types including parallel,
serial, anode grounded and cathode grounded. For
additional Information, see AN-49 PIN Diode
Drivers.
The DH0035 IS guaranteed over the temperature
range -55°C to +125°C whereas the DH0035C is
guaranteed from O°C to 85°C.

schematic and connection diagrams
Metal Can Package

INPUT B

'""

/' \

""
TOP VIEW

typical applications
Grounded Cathode Design

sov

1

r--- '!----,
I

I

I

IQ

I
I

I
I

I

I r ---.

I,

II O;:~E

x>--;I---....-----T-11

I

I
I I SWlTCH
I
IL_--1

20 F

I
I

I
'--'-1;.;;.".....----.,

1/2DM8BJO

1"'1"'
41
J
~

~--1---~

[lfl0035

-1--~"

-

! o',~

Note Cathode groondd PIN dIode Rp " 621, lImIts diode forward curren! to 100 mA. TypIcal sw'tchlllg 10f
HP33604A RF tU"1 on 25 IlS, turn of! 5 lis ~2 " 250 pF, Rp ~ Oll, Cl " 0 IF

9-18

OUTPUT

o
%
o

absolute maximum ratings

o

CAl
V- Supply Voltage Differential (Pin 5 to Pin 1 or 2)
40V
V I Supply Voltage Differential (Pin 1 or 2 to Pin 8 or 9)
30V
Input Current (Pin 3 or 7)
±75 mA
Peak Output Current
±1 0 Amps
Power DISSipatIOn (Note 3)
1 5W

Storage Temperature Range

-65°C to +150°C

Operating Temperature Range DH0035

_55°C to +125°C

aOc to +85°C

DH0035C
Lead Temperature (Soldering, 10 sec)

300°C

U1

.......

o

%

o
o

CAl

electrical cha racteristics

U1

(Notes 1,2)

PARAMETER

n

CONDITIONS

Input logic "1" Threshold

V OUT

~

-8V, RL

~

100S)

Input Logic "0" Threshold

V OUT

~

+8V, RL

~

100rl

Positive Output SWing

lOUT

~

100 rnA

Negative Output SWing

lOUT

~

100 rnA

Positive Short Circuit Current

V ,N ~ OV, RL ~ Orl
(Pulse Test, Duty Cycle

LIMITS
TYP

MIN

MAX

v

15

70

04

V

-70

V

V

+80
-80

S

UNITS

400

800

rnA

800

-1000

rnA

3%1

Negative Short Circuit Current

V ,N ~ 1 5V, liN ~ 50 rnA, RL ~ Orl
(Pulse Test, Duty Cycle S 3%1

Turn-On Delay

V ,N

~

1 5V, V OUT

~

-3V

10

15

Turn-Off Delay

V ,N

~

1 5V, V OUT

~

+3V

15

30

ns

On Supply Current

V ,N

~

1 5V

45

60

rnA

ns

Note 1: Unless otherWise specified, these specifications apply for V+:::; 10.0V, V- = -10.0V, pin 5
grounded, over the temperature range -55°C to +125°C for the DH0035, and O°C to 85°C for the
DH0035C_
Note 2: All tYPical values are for T A = 25°C
Note 3: Derate linearly at 10 mW;oC for ambient temperatures above 25°C

typical applications (cont,)
Grounded Anode Design
If'"

~

10V

~----~'~
i

--L

1-

111
I

71

200pF

r-----~----~~I~

lOGIC

0-------;.---4-,

INPUT

v--:--t_'/

I
I

:><:>--7''----__-._--''+,-1
I
20pF

II

I

'"

DIODE

I SWITCH

I

t..t-_T~D~fJc.. __.".-l
-:'

,2
RM

.

ch

120pF

56ll

":"

V-=-100V
Note Anode Grounded PIN dIOde. RM - 56U limits diode IOIWard cunent to 100 rnA TVJllcal swltchmg lor

HP33622A, RF IUrROn 5 liS, turn 0114

!IS

Cl

=

470 pF, C2

=

01 "f, RM - On..

.

Alternate Current Limiting
V'

TO

~>--!_""'WH~-Pl'

OIOOE

9-19

Interface Circuits
DH3467C quad PNP core driver
general description

typical characteristics

The DH3467C consists of four 2N3467 type PNP
transistors mounted in a 14-pln molded dual-in-Ilne
package. The device IS primarily Intended for core
memory application requiring operating currents
In the ampere range, high stand-off voltage, and
fast turn-on and turn-off times.

Turn·ON Time
Turn·OFF Time
Collector Current
Collector-Base Breakdown Voltage

connection diagram

18 ns
45 ns
1A
120V typo

Collector Saturation Voltage
atle=lA
Collector Saturation Voltage
at Ie = 0.5A

o 55V
0.31V

Dual-In-Line Package

NC

TOP VIEW

-30V
-30V
590
59.11
SCOPE

-'~l-f-

200n

SCOPE

200n

2<1,<50011$
12<5n5

1N916

-'DBVU

ta<1j.!S
DUTY CYCLE = 2%

-=

PW"200ns
RISE TIME <;; 2 ns
DUTY CYCLE = 2%

+3V

FIGURE 2. Turn-Off Equivalent Test Circuit

FIGURE 1. Turn-on Equivalent Test Circuit

Vcc=-30V

DUTY CYCLE" 2%

69n

1 Ov
_10vUl
--: f-

1Bon

c·,
~
C
TlME--

10 1J5

co,,"

FIGURE 3. QT Test Circuit

9-20

C-:,'-__...J

v - o - ' - - - -.....
INV INPUT
JTL

OUTPUT

STROBE
10 GND (EMITTER)

NON INV INPUT
BAL/STROBE
BALANCE

o-'---...J
Offset BalanCing

v'

Strobmg

1'"""--.-"
INPUTS·

c,
·lnCfe".Slyplcalc~mmQn

mode
slewlrom 7 OV/j1!i to 18V!/.5

Increastng Input Stage Current*

USing Clamp Diodes to Improve Responses

DriVing Ground-Referred Load

fROM DIA NETWORK

R5

"
ANALOG
INPUT

TO TTL lOGIC
Cl'
Tn
STROBE

'Valuesshown ire for a

Du30V 109'c swmR.nd
al5Vlhreshoid

'TYPICil,npulcUffent,s

tMaybeaddedtocontrQ!
Sfleedandreducesusceptlb,lrty
to nOIse splkei

50 pA w,th'nputsS!fobed off

Comparator and Solenoid Driver

9-24

Strobing off Both Input*
and Output Stages

TTL Interface WIth High level logiC

r-

::I:

.........
......
N

absolut,e maximum ratings

r-

Total Supply Voltage (v+ - V-I
Output to Negative Supply Voltage (V OUT - V-I
Ground to Negative Supply Voltage (GND - V-I
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range LH2111
LH2211
LH2311
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics -

::I:

36V
50V
30V
±30V
±15V
500mW
10 sec
-55°C to 125°C
-25°C to 85°C
O°C to 70°C
-65°C to 150°C
300°C

N
N

......
......
r-

::I:
N
W

......

each side (Note 3)

LIMITS

PARAMETER

UNITS

CONDITIONS
LH2111

LH2211

LH2311

Input Offset Voltage (Note 4)

T A ~ 25"C, Rs ~ 50k

I nput Offset Current (Note 4)

T A ~ 25"C

10

10

50

nA Max

Input Bias Current

T A ~ 25"C

100

100

250

nA Max

Voltage Gain

T A'" 25°C

200

200

200

V/mV Typ

Response Time (Note 5)

TA ~ 25"C

200

200

200

ns Typ

Saturation Voltage

Y'N ~ -5 mY, lOUT = 50 mA
TA = 25"C

Strobe On Current

TA ~ 25°C

Output Leakage Current

Y'N Z 5 mY, V OUT ~ 35V
T A = 25"C

Input Offset Voltage (Note 4)

Rs ~ 50k

30

15
30
10

30

15
30
10

75

mV Max

15

V Max

3.0

mATyp

50

nA Max

10

mV Max

20

20

70

nA Max

Input Bias Current

150

150

300

nA Max

Input Voltage Range

±14

±14

±14

V Typ

Input Offset Current (Note 4)

V+Z45V, V-~O

Satu ration Voltage

4.0

40

0.4

0.4

0.4

V Max

V'N~-5mV, ISINK~8mA

PosItive Supply Current

TA ~ 25"C

60

60

75

mAMax

Negative Supply Current

TA ~ 25°C

50

5.0

5.0

mAMax

Note 1: This rating applies for ±15V supplies The positive Input voltage limit
input voltage limit

IS

IS 30V above the negative supply. The negative
equal to the negative supply voltage or 30V below the pOSitive supply, whichever IS less.

Note 2: The maximum junction temperature IS 150°C. For operating at elevated temperatures, devices in the flat package, the
derating IS based QO a thermal resistance of 185°C/W when mounted on a 1/16-lOch-thlck epoxy glass board with O.03-inchWIde, 2 ounce copper conductor. The thermal resistance of the dual-In-Ime package IS 100°C/W, junctIon to ambient.

Note 3: These specifications apply for V S ~ ± 15V and _55 0 C ~ T A ~ 125" C for the LH 2111, _25" C ~ T A ~ 85" C for the
LH221l, and oOe
TA
700e for the LH2311, unless otherWise stated. The offset voltage, offset current and bias current
specifications apply for any supply voltage from a Single 5V supply up to ± 15V supplies. For the LH23l1, V IN = ± 1 0 mV.

s.

s.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output wlthm a volt of
either supply with a 1 rnA load. Thus, these parameters define an error band and take IOto account the worst case effects of
voltage gain and input Impedance.
Note 5: The response time specifIed

IS

for a 100 mV Input step with 5 mV overdrive

9-25

CD

o
N
:E
....I

Interface Circuits

ISIS

........

LM106/LM206 voltage comparator/buffer
general description

CD

o
....

:E
....I

The LM 106 and LM206 are high-speed voltage
comparators designed to accurately detect lowlevel analog signals and drive a digital load. They
are equivalent to an LM710, combined with a two
input NAN D gate and an output buffer. The
circuits can drive RTL, DTL or TTL integrated
circuits directly. Furthermore, their output.s can
switch voltages up to 24V at currents as high as
100 mAo Other features include:
• Improved accuracy: 2 mV maximum worst case
offset.
• Fan-out of 10 with DTL or TTL

• 40 ns maximum response time
The devices have short-circuit protection which
limits the inrush current when it is used to drive
incandescent lamps, in addition to preventing
damage from accidental shorts to the positive
supply. The speed is equivalent to that of an
LM 71 O. However, they are even faster where buffers and additional logiC circuitry can be eliminated
by the increased flexibility of the LM 106 and
LM206. They can also be operated from any negative supply voltage between -3V and -12V with
little effect on performance.
The LM106 IS specified for operation over the
-55°C to +125°C military temperature range. The
LM206 is specified for operation over the _25°C
to +85°C temperature range.

• Added logic or strobe capabi IIty
• Useful as a relay or lamp driver
• Plug-In replacement for the LM710.

schematic and connection diagrams **
,

Metal Can
TOP VIEW
V·

STRQIIE

vR6
'50

Not.' Ptn4connlCttdtoceM

"'"
Flat Package
NC

NC

GROUND

NO

INPUT

NC

t--+_-,-10UTPUT

"

50'

INPUT

v'

NC

NC

v-

OUTPUT

STROBE

STROBE
Note Pm 6 connected to bottom of

y-'

* *Pm cllnneclmntshown are lor TO 5 packlfl!

p~ck~ge

TOPVIEW

typical applications * *
Level Detector and Lamp Driver

Fast Response Peak Detector

v~" 12V

y'

Relay Driver

"'

"
"
-'---1r--1'I--'"
FIJ6661i

OUTPUT

Adjustable Threshold Line Receiver
OUTPUT

fO <10

9-26

absolute maximum ratings
PosItIve Supply Voltage
NegatIve Supply Voltage
Output Voltage
Output to Negative Supply Voltage
Differential Input Voltage
Input Voltage

15V
-15V
24V
30V
±5V
±7V

electrical characteristics

Input Offset Current

Storage Temperature Range
Lead Temperature (soldering, 10 sec)

MAX

0.5

20

mV

Note 3

07

3.0

IJ.A

CONOITIONS

MIN

UNITS

TVP

Note 3

Input Bias Current
Response Time

LM106
LM206

600mW
10 sec
_55°C to 125°C
_25°C to 85°C
_65°C to 150°C
300°C

(Note 2)

PARAMETER
Input Off5et Voltage

Power DISSipation (Note 1)

Output Short Circuit Duration
Operating Temperature Range

Note 4, RL = 3901] to +5V,

10

20

IJ.A

28

40

ns

CL =15pF

Saturation

Volta~e

Output Leakage Current

V IN ~ -5 mY, lOUT

= 100 rnA

V'N~ 5 mV, 8V:5 VOUT :5 24V

10

15

V

002

10

IJ.A

30

mV

electrical characteristics
The follOWIng specii,cat,ons apply for TL
I nput Offset Voltage

~ T A ~ T H (Note 5)
Note 3

Average Temperature CoeffiCient
of Input Offset Voltage
Input Offset Current

30
Note 3, T L ~ T A ~ 25°C

18
025

25'C~TA~TH

Average Temperature CoeffiCient
of Input Offset Current

25°C ~ TA ~T H

50
15

Input Voltage Range

IJ.A
IJ.A

T L ~ TA ~ 25°C

45

IJ.A

25°C<;' TA~TH

20

IlA

-7V

'C. V- 'C. -12V

i50

V

i50

V

V ,N :5 -5 mV, lOUT = 50 mA

10

V

= 16 mA

04

V

Satu ration Voltage

V'N 'S -5 mV, lOUT

POSitive Output Level

V'N

2: 5 mV, lOUT = -400 IJ.A

V'N

2: 5 mV, 8V:5

Output Leakage Current

IJ.vtc

nAtC
nAtC

Differential Input Voltage Range
Saturation Voltage

70
30

25
75

T L ~TA~ 25°C

Input BIas Current

10

25

VOUT'S 24V

55

V

10

IJ.A

T L ~ TA ~ 25°C
25°C< TA ~ T H

Strobe Current

VSlrObe =

100

a 4V

Strobe ON Voltage

-1 7

09

-32

14

IJ.A
mA
V

Strobe OF F Voltage

ISlnk ~ 16 rnA

14

POSitive Supply Current

V'N = -5mV

55

10

mA

-15

-36

mA

Negative Supply Current

22

V

m

Note 1. The maximum Junction temperature of the LM106 's 1S0"C, while that of the LM206

IS 110"C For operating at elevated temperatures, devices ,n the TO-5 package must be derated
based on a thermal resistance of 1S0"C/W, Junction to ambient, or 45"C/W, Junction to case
For the flat package, the derating IS based on a thermal resistance of 185" C/W when mounted
on a 1/16-lnch-thlck epoxy glass board with ten, 003-Inch-wlde, 2-ounce copper conductors
Note 2. These specifications apply for -3V > V- > -12V, V+ = 12V and T A = 2S"C unless other
wise specified All currents Into device PinS are considered positive
Note 3: The offset voltages and offset currents given are the maximum values required to dnve the
output down to OSV or up to 50V Thus, these parameters actually define an error band and take
Into account the worst-case effects of voltage gain, specified supply voltage vanatlons, and common
mode voltage variations
Note 4 The response time specified (see deflnltlonsl IS for a 100 mV Input step With 5 mV overdrive
Not. 5: All currents Into device pms are conSidered positive

9-27

Interface Circuits
LM306 voltage comparator/buffer
general description
The LM306 IS a high-speed voltage comparator
designed to accurately detect low-level analog signals and drive a digital load. It IS equivalent to an
LM710e, combined with a two input NAND gate
and an output buffer. The circuit can drive RTL,
DTL or TTL integrated circuits directly. Furthermorp, the output can sWitch voltages up to 24V at
currents as high as 100 mAo Other features
include.
• Improved accuracy. 5 mV (max) offset, 25,000
gain
• Fan-out of 10 with DTL or TTL
• Added logic or strobe capability

• Useful as a relay or lamp driver
• Plug-In replacement for the LM710e.
The device has short-circuit protection which
limits the inrush current when it IS used to drive
incandescent lamps, In addition to preventing
damage from accidental sports. The speed IS
equivalent to that of an' LlV1710e. However, It IS
even faster where buffers and additional logic
circuitry can be eliminated by the Increased flexibility of the LM306. It can also be operated from
any negative supply voltage between -3V and
-12V with little effect on performance. The LM306
IS identical to the LM106,except that It is specified
over a oOe to 70°C temperature range.

schematic and connec'tion diagrams
STROBE

r---~-------1r---t---t---1r---t----'~

"'"
TOPVIEW

....----+---t---i----1r---{."

v'

"

'50
D3

.3V

....---t---~7 OUTPUT

vNon Ptn4tonnectedtoRil

"
10'

!:l---...,........w..,-......~-------<.....--.....--....--....;. GROUND

typical applications

V*" =12V

Fast Response Peak Detector
RI

Leval Detector and Lamp Driver

" ....
DI

"

"

Adjustable Threshold Line Receiver
Relay Driver
OUTPUT
FOSIO

INPUTS

·Optlollllfo .... on"'tlmec.IItl'.1

9-28

r-

3:
w
o
c:n

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Output Voltage
Output to Negative Supply Voltage
Differential Input Voltage
Input Voltage
Power DIssipation (Note 11
Output Short CirCUit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 seci

15V
-15V
24V
30V
±5V
±7V
600mW
10 sec
DoC to 70°C
-65°C to +150°C
300°C

electrical characteristics

(Note 21

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

I nput Offset Voltage

Note 3

1.6

5.0

mV

I nput Offset Current

Note 3

1.S

50

jlA

I nput Bias Current

16

Voltage Gain

25

40

Response Time

Note 4

Saturation Voltage

V ,N

Output Leakage Current

V ,N '2: 7 mV, SV

V/mV
ns

40

<::: -7 mV, I"nk = 100 mA
<::: V OUT <::: 24V

jlA

O.S

2.0

V

0.02

2.0

/lA

6.5

mV

electrical characteristics
The following specifications apply for DoC
I nput Offset Voltage

<::: T A <::: 70°C

Note 3

Average Temperature Coefficient
of Input Offset Voltage

5

I nput Offset Current

Note3,T A =0°C

Average Temperature Coefficient
of I nput Offset Current

25°C:::; T A:::; 70°C
DoC:::; T A::; 25°C

2.4

Input B las Current
I nput Voltage Range

-7V'2: V-"2.- 12V

7.5

nAtC

24

100

nAtC

25

40

/lA
V
V

V ,N :::; -SmV, I"nk = 50 mA

Saturation Voltage

V'N~ -SmV, l"nkS 16 mA

V ,N "2. SmV, lOUT = 400 /lA

Output Leakage Current

V ,N "2. SmV, SV S V OUT

Strobe Current

V strobe = O.4V

1.0

2.5

<::: 24V

Strobe ON Voltage

i.7

I"nk'::; 16 mA

1.4

Positive Supply Current

V ,N =-S mV

5.5

Negative Supply Current

V

5.5

V

3.3

1.4

Strobe OFF Voltage

1.5

V

0.4

100

0.9

/lA

50

±5.0

Positive Output Level

/lvtc

15

±5.0

Differential I nput Voltage Range
Saturation Voltage

20

/lA
mA
V

2.5
10
3.6

V

0

mA
mA

Note 1: For operating at elevated temperatures, the device must be derated based
on a 85°C maXimum Junction temperature and a thermal resistance of 45°C!W
Junction to case or 1500 C/W Junction to ambient
Note 2. These specifications apply for -3V
V-12V, V+ = 12V and
T A"" 25°C unless otherwise specified.
Note 3: The offset voltages and offset currents given are the maximum values

2':

2':

required to drive the output down to O.5V or up to 5 av. Thus, these parameters
actualJy define an error band and take Into account the worst-case effects of
voltage gain and Input Impedance
Note 4: The response time specified (see definitions) IS for a 100 mV Input step
with 5 mV overdrive.

9-29

...
N

~

Interface Circuits

......
...I

......
~

...I

LMll1/LM211 voltage comparator
general description
The LM111 and LM211 are voltage comparators
that have input currents nearly a thousand times
lower than devices like the LM 106 or LM710.
They are also designed to operate over a wider
range of supply voltages: from standard ± 15V op
amp supplies down to the single 5V supply used
for IC logic. Their output is compatible with RTL,
DTL and TTL as well as MOS circuits. Further,
they can drive lamp,s or relays, switching voltages
up to 50V at currents as high as 50 mAo

features
• Operates from single 5V supply
• Input current: 150 nA max. over temperature
• Offset current: 20 nA max. over temperature

• Differential input voltage range: ±30V
• Power consumption: 135 mW at ±15V
Both the inputs and the outputs of the LM 111 or
the LM211 can be isolated from system ground,
and the output can drive loads referred to ground,
the positive supply or the negative supply. Offset
balancing and strobe capability are provided and
outputs can be wire OR' ed. Although slower than
the LM106 and LM710 (200 ns response time vs
40 ns) the devices are also much less prone to
spurious oscillations. The LM 111 has the same pin
configuration as the LM106 and LM710.
The LM211 is identical to tne LM 111, except that
its performance is specified over a _25°C to 85°C
temperature range instead of -55°C to 125°C.

schematic diagram and auxiliary circuits

. .

IALANCEISTR08E

""

BALANCE

RJ

A4

300

300

'"
Offset Balancing

m

STROSE

,

OUTPUT

Strobing

.

v'

.

'"
,
GROUND

·,"" .... '·vP'ellcommDnmod.

" ... 1,0., 7 OVI", 10 18'0'1",

Increasing Input Stage Current*

connection diagrams *
Metal Can

Flat Package

"

Dual-I n-Line Package

"
BALANCEI
STROBE
11

V·

Non Pm5connectldtobol10mofp .. k.ge

Non

"'n4CGMoctldtoco..

TO' VIEW

BALANCEI

STROlE

+Pm connections shown on schematiC diagram
and tYPical applicatIOns are for TO·5 package.

9-30

NOTE Pm 6 connecled10 bonom01 po.t...

r-

....3:....
....

absolute maximum ratings

........
Total Supply Voltage (V 84 )
Output to Negative Supply Voltage (V 74 )
Ground to Negative Supply Voltage (V 14)
Differential Input Voltage
Input Voltage (Note 1)
Power DIssipation (Note 2)
Output Short CirCUit Duration
Operating Temperature Range LM 111
LM211
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics
PARAMETER
Input Offset Voltage (Note 4)

r-

36V
50V
30V
±30V
±15V
500mW
10 sec
_55°C to 125°C
_25° C to 85° C
_65°C to 150°C
300°C

3:

........N

(Note 3)

CONDITIONS
TA = 25°C, Rs ::;50k

MIN

TYP

MAX

07

3.0

40

10

UNITS
mV
nA

Input Offset Current (Note 4)

T A = 25°c

Input Bias Current

T A = 25°C

60

Voltage Gain

T A = 25°C

200

V/mV

200

ns

Response Time (Note 5)

TA =25°C

Saturation Voltage

V ,N ::; -5 mV, lOUT = 50 mA
T A =25°C

0.75

Strobe On Current

T A =25°C

3.0

Output Leakage Current

V ,N :::>5mV,
TA = 25°C

Input Offset Voltage (Note 4)

Rs ::; 50k

0.2

V
mA

10
4.0

Input Offset Current (Note 4)

nA
mV

20

nA

150

nA

V

±14

Input Voltage Range

Output Leakage Current

1.5

nA

V OUT = 35V

Input Bias Current

Saturation Voltage

100

V+ :::> 4.5V, V- = 0
V ,N ::; -6 mV, I SINK ::; 8 mA

023

0.4

V

V ,N :::>5mV, V OUT = 35V

01

0.5

flA

Positive Supply Current

TA = 25°C

5.1

6.0

mA

Negative Supply Current

TA

25°C

4.1

5.0

mA

=

Note 1. This rating applies for ±15V supplies The positive Input voltage limit IS 30V above the
negative supply The negative Input voltage limit IS equal to the negative supply voltage or 30V below
the positive supply, whichever IS less
Note 2. The maximum JunctIOn temperature of the LM111 IS 150°C, while that of the LM211 IS

11 aOc For operating at elevated temperatures, deVices In the TO-5 package must be derated based on
a thermal resistance of 150o C/W, Junction to ambient, or 45°C/W, Junction to case For the flat
package, the derating IS based on a thermal resistance of l85°C/W when mounted on a 1/16-lnch-thlck
epoxy glass board with ten, 0 03-lnch-wlde, 2-ounce copper conductors The thermal resistance of the
dual-In-Ilne package IS lDDoC/W, JunctIon to ambient
Note 3. These speCifications apply for Vs = ±15V and -55°C STA::; 125°C, unless otherwise stated
WIth the LM2ll, however, all temperature speCIfIcations are limited to _25°C ~TA ~85°C The offset voltage, offset current and bIas current speCifications apply for any supply voltage from a single 5V
supply up to ±15V supplies
Note 4: The offset voltages and offset currents given are the maximum values required to drive the
output wlthm a volt of either supply With almA load. Thus, these parameters define an error band
and take Into account the worst case effects of voltage gam and Input Impedance
Note 5: The response time speCified (see definItions) IS for a 100 mV Input step With 5 mV overdrive

9-31

....
....

<"II

:E

typical applications

....

......
....

....
....
:E
....

"

lOOOpf 1

"."'
"

no
5ml~~~~v_-1>---+----'\IIfV--""""1r.,

"

"

2NS019

2N3972

"

IN/51

"'

330~

"'

lNI~l

"'

IN4!i1

'--__

"'

"

10K'

111457

....-+------....-

~--------

saUARE
WAV£
OUlPl/T

"."'
'AdlU,I!.,.vmmo,.,.. Is.qu".
w ... tlmt ""on v,~ . S mV

'"..

IM,nlmum'....-+4-+----I--OUTPUT
He

IfilPUT

PreCISion Squarer

Crystal Oscillator

9·33

......
N

typical applications (con't)

:E
....I

......:E

.......

....I

..

,"

T"

"
'"

15 "f'

01'

'"
I',.

Negative Peak Dectector

'O.".01l.go",."0010,.,,.,
'O.tomllnlnnr",n, •• lt.!IO 5V."no"n

Crowbar Over-Voltage Protector

Driving Ground-Referred Load

POSitive Peak Detector

USing Clamp Diodes to Improve Response

'"~ucl' .. k,ekb.ck of
""v·nd~,ol .."ICI,om ..."

"Ab$O.1H

vol" .. ".n... M' on V" hne

Relay Driver with Strobe

,-....--....--...... ,'

"

"....
"

lOOk

..."
"

21113135

"

o1 ~f

""

"

"
""

"
""

,,,.
"

"

02Z"F

'""
Switching Power Amplifier

9-34

:K

'""

"'"

SWitching Power Amplifier

. ".""

,.'"

,...

s:w

....
....

Interface Circuits
LM311 voltage comparator
general description
The LM311 is a voltage comparator that has input
currents more than a hundred times lower than devices like the LM306 or LM710e. It is also designed to operate over a wider range of supply
voltages: from standard ±15V op amp supplies
down to the single 5V supply used for Ie logic. Its
output IS compatible with RTL, DTL and TTL as
well as MOS circuits. Further, it can drive lamps or
relays, switching voltages up to 40V at currents as
high as 50 mAo

• Maximum offset current: 50 nA
• Differential input voltage range: ±30V
• Power consumption: 135 mW at±15V
Both the input and the output of the LM311 can
be isolated from system ground, and the output
can drive loads referred to ground, the positive
supply or the negative supply. Offset balancing
and strobe capability are provided and outputs can
be wire OR' ed. Although slower than the LM306
and LM710e (200 ns response time vs 40 ns) the
device is also much less prone to SpUriOUS oscilla·
tions. The LM311 has the same pin configuration
as the LM306 and LM710e .

features
• Operates from single 5V supply
• Maximum Input current: 250 nA

schematic diagram and auxiliary circuits
,
,

IALAIriCEISfROBE

""

BALANCE

R3

fl4

'"

300

fit
11K

"
R2
IlK

"

600

Offset Balancing

He

STROBE

,

OUTPUT

Strobing

.

,-

connection diagrams *
Metal Can

.

'"
,
GROUND

Dual-In-Line Package

"Inc"'''''¥P.ulcommunmudo
slewlr~m 1 OV/""t. laV/",

Increasing Input Stage Current*

Dual-I n-Line Package

Flat Package

"

"':::::8:::""'
INPUT]

V-4

6

BALANCEI
STROBE

5 BALANCE

BALANCEI
STROBE

*Pin connections shown on schematic diagram
and typical applications are for TO·5 package.

9·35

........

M

~

absolute maximum ratings
Total Supply Voltage (V B4 1
Output to Negative Supply Voltage (V 74 1
Ground to Negative Supply Voltage (V 141
Differential Input Voltage
Input Voltage (Note 11
Power Dissipation (Note 21
Output Short CirCUit Duration
Operatmg Temperature Range
Storage Temperatu re Range
Lead Temperature (soldering, 10 seci

electrical characteristics
PARAMETER

36V
40V
30V
±30V
±15V
500mW
10 sec
O°C to 70°C
-65°C to 150°C
300°C

(Note 31

MIN

CONDITIONS

TYP

Input Offset Voltage (Note 41

T A = 25°C, Rs ::; 50K

2.0

Input Offset Current (Note 41

T A = 25°C

6.0

MAX
7.5
50
250

UNITS
mV
nA

Input Bias Current

T A = 25°C

100

Voltage Gam

T A = 25°C

200

V/mV

200

ns

Response Time (Note 51

T A = 25°C

Saturation Voltage

V ,N ::; -10 mV,
T A =25°C

Strobe On Current

TA = 25°C

Output Leakage Current

V ,N -::> 10 mV,
TA =25°C

Input Offset Voltage (Note 41

Rs ::; 50K

nA

lOUT = 50 mA
0.75

1.5

3.0

V
mA

V OUT = 35V
0.2

Input Offset Current (Note 41
Input Bias Current

50

nA

10

mV

70

nA

300

nA

±14

Input Voltage Range

V

Saturation Voltage

V+ -::> 4.5V, V- = a
V ,N ::; -10 mV, ISINK

023

0.4

V

Positive Supply Current

T A = 25"C

5.1

75

mA

Negative Supply Current

T A = 25C

4.1

50

mA

::;

8 mA

Note l' This rating applies for ±15V supplies The positive Input voltage limit IS 30V above the
negative supply The negative Input voltage limit IS equal to the negative supply voltage or 30V below
the positive supply, whichever IS less
Note 2. The maximum Junction temperature of the LM311 IS 85°C For operating at elevated
temperatures, devices In the TO-5 package must be derated based on a thermal resistance of 150 o C/W,
Junction to ambient, or 45°C/W, Junction to case For the flat package, the derating IS based on a
thermal resistance of 185°C/W when mounted on a 1/16-lnch-thlck epoxy glass board with ten,
0.03-mch-wlde, 2-ounce copper conductors The thermal resistance of the dual-In-Ilne package IS
1 OOoC/W, Junction to ambient
Note 3: These specifications apply for Vs = ±15V and OoC :-......- ______

'"
"'

WAV,

OUTPUT

"

lNJ9n

2tl5019

eo

"

llOK

""

"
'"
"

"'

0'
lN151

eo
,e,

lN45J

lN4~1

'"'"

·AIIIU'11D1·vmm'1I1e,l'qu."

..... 11m... ~."
11'hmmum

v,~ ~

5 mV

''""

"?"'('"" 20 pF

M."mum h'qu,ncy 50 kit'

"""

10 Hz to 10 kHz Voltage Controlled Oscillator

Rl

\/'05\1

20K

R5
11(

SQUARE
WAVE
OUTPUT"

Low Voltage Adjustable Reference Supply

Zero

Cro~mg

Detector driving MOS logic

100 kHz Free Running Multlvibrator

r - - - -.....--~IP_v·.:v

....---.....-,.

,--

"'
'"

""

""

"' ....._ ....._~~TPUT

lN4001

~,""""""I4-

"'

2N3140

Zero Crossing Detector Driving MOS SWitch

Detector for Magnetic Transducer

Comparator and Solenoid Driver

9-37

....
....
('I)

:E

typical applications (con't)

....

v'

W

fREQUENcY RANGE
INPUT ~ ..., ,. 50 kH.
lIU1PUT ,0.H"o'OO,H,

Frequency Doubler

, - - + - - 9 - V ' &11

"'"

""'

"'
""
,"

'A2 .. " Ih.

"mo.""," I•• ~

:;,',::~~'::; ~~',~~;~~,'Odt
d." .. ~nl''''.v.. bv ,n ",d"

'","yb •• ddedI. <.ntr.1

olm.llno'"d •

... Hd.ndnd.' ... ..,.pllb'h1v

'"n"'........ 01

TTL Interface with High Level Logic

PreCISion Photodlode Comparator

,J~+--:;---H

'"

ourpUT

'"

STROBl:
Ki

;OK

Cl

001

f

lyp.ul"'put'"".n'"
50 pA

"",i> '"puB \Hob.rl oH

Strobmg off Both Input·

Digital TransmIssion Isolator

and Output Stages

\/'

"
'"

511

.
'"""

"

"

lOOK

""

II'

5\1

..

"

He

INPUT

TAd,onl ... tol.mpl ... ,

PreCISion Squarer

9-38

Crystal Oscillator

.-

3:
w

......

typical applications (con't)

"

IN4~1

"
'"
",'

'",

Negative Peak Dectector

"

MCR2918

1

·Ov... Dltatelf._lconlroi
TDtIlI.m'"'n.. '''' ... ..,ltIgt 5Vls"'own

Crowbar Over-Voltage Protector

Positive Peak Detector

"

·lnpool'ol·"W .. ' ...... dwlMn
uSI .... nl .. oulpP!

v'

Driving Ground-Referred Load

USing Clamp Diodes to Improve Response
o\~K"b, ,n~": T A :<>: 70°C, V cc = 5V ±5%, for LM350 and LM75450A unless otherwise specified.

TTL GATES
PARAMETER

LOGIC
INPUT

COMMENTS

LOGIC
OUTPUT

SUPPLY
VOLTAGE

MIN
2

a 4V

V,"

l6mA

475V

Logic Output;;::': 2 4V

V,"

-400 rnA

475V

Logical "1" Output Voltage

08V

-400 rnA

475V

Logical "0" Output Voltage

2V

l6mA

475V

Logical

"1" Input Voltage

Logic Output ~

Logical "0" Input Voltage

A Input

LogICal "," I nput Current

TVP

MAX

UNIT
V

08
24

V
V

04

V

24V

525V

40

S Input

24V

525V

80

~A

A Input

55V

525V

1

mA

~A

S Input

55V

525V

2

mA

A Input

04V

525V

-16

mA

S Input

04V

525V

-32

Output Short Circuit Current

Note 4

OV

Supply Current
Output Low
LM350

Per Package

5V

525V

8

14

mA

Per Package

5V

525V

6

11

mA

Per Package

OV

525V

4

7

mA

Per Package

OV

525V

2

4

mA

T A '" 25°C, Vsus '" OV

-12mA

-15

V

MAX

UNIT

logical "0" Input Current

LM75450A
Output High
LM350
LM75450A
Input Diode Clamp Voltage

OV

525V

-18

-55

5V

mA
mA

TRANSISTORS
COMMENTS

PARAMETER

BASE

EMITTER

OV

BVcso
RSE ~

BVCEA

soon

OV

BV EBO

COLLECTOR

MIN

100~A

35

TVP

100~A

30

V

5

V

V

OV

lOOJ.!A

V. E

lOmA
30mA

OV
OV

lOOmA
300mA

085
105

1
12

V
V

VCE(sat)

lOmA
30mA

OV
OV

100mA
300mA

025
05

04
07

V
V

I,
I.
I.
I,

OV
OV
OV
OV

lOOmA
300mA
lOOmA
300mA

h,.

VeE = 3V, TA ==
VeE = 3V, TA =
VeE: == 3V. TA ==
VeE = 3V, TA =

O°C,
O°C,
25°C,
25°C,

Note 5
Note 5
Note 5
Note 5

20
25
25
30

The following apply for Vcc = 5V, T A = 25°C

TTL GATES (Note 6)

I

PARAMETER

I

tpdl
tpdO

I

TVP

I

MAX

TRANSISTORS

I

I I I
lOns
5 ns

22 ns
15 ns

GATES AND TRANSISTORS (Note 7)

PARAMETER

TVP

MAX

PARAMETER

TVP

td

6 ns

15 ns

tpdl

14 ns

t.

12 ns

20 ns

,,",0

18 ns

t,

6 ns

15 ns

t,

5ns

t,

8 ns

15 ns

t,

10 ns

Note 1: All voltage values are With respect to ground termmal. POSitive current IS defined to be
current mto referenced pm.
Note 2: With base-emitter reSistance ~ soon.
Note 3: The maXimum Junction temperature IS 150u C. For operatmg at elevated temperatures the
package mUlt be derated based on a thermal resistance of 150°C/W 0JA.
Note 4: Only one output should be shorted at a tIme.
Note 5: These parameters are to be measured With less than 2% duty cycle.
Note 6: Delays measured With fanout of 10,15 pF total load capacitance, measured from 1.5V Input
to 1.5V output.
Note 7: Delays m.asured With 50n load to 10V, 15 pF total load capacitance, measured from 1.5V
input to 50% of output.

9·41

...

o

,.....

:E
....I

Interface Circuits
LM710 voltage comparator
general description
The LM710 is a high-speed voltage comparator
intended for use as an accurate, low-level digital
level sensor or as a replacement for operational
amplifiers in comparator applications where speed
is of prime importance. The circuit has a differential input and a single-ended output, with saturated
output levels compatible with practically all types
of integrated logic.

saturating comparator appl ications. In fact, the low
stray and wiring capacitances that can be realized
with monolithic construction make the device dlf·
ficult to duplicate with discrete components operating at equivalent power levels.
The LM710 is useful as a pulse height discriminator, a voltage comparator in high-speed AID converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types. In addition, the low
cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.

The device is built on a single silicon chip which
insures low offset and thermal drift. The use of
a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in

schematic* and connection diagrams
Metal Can Package

INPUTS

T

R4

R5

28K

J9K

-+------11::

"''"0

"sa

typical applications*

Line Receiver With

Schmidt Trigger

Increased Output
Sink Current

"'
'"

OUTPUT

Level Detector With

Pulse Width Modulator

Lamp Driver

A3

>~'M,......-C~~2222

*Pm connections shown are for metal can.

9·42

absolute maximum ratings
l4.0V
-7.0V
10mA
±5.0V
±7.0V

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power DISSipation

300mW
200mW
-55°C to +125°C
-65°C to +150°C
300°C

TO-99 (Note 1)
Flat Package (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics

(Note 3)

PARAMETER

Input Offset Voltage

CONDITIONS

'"

TA

::=

25°C. VOUT

Input Bias Current

TA

::=

25°C

Voltage Gam

TA = 25°C

Output Resistance

TA= 2SoC
==

MAX

UNITS

20

mV

OV

Input Offset Current

TA

TYP
06

T A = 25°C, Rs S200n
V CM

Output Sink Current

MIN

::

075

1 4V

13
1250

30
20

1700
n

200
20

25°C

pA
pA

mA

2.5

V OUT == 0
Response Time

ns

40

TA '" 25°C

(Note 4)

RsS200n. V CM

-55°CS;T A 'S 12SOC

CoeffiCient of Input

30

= OV

Input Offset Voltage
Average Temperature

mV

pvtc

10

RsS50n

30

TA =125°C

025

30

pA

TA

_55°C

18

70

pA

25'CSTAS125'C

50

Offset Voltage

Input Offset Current

Average Temperature

==

25

nAtC

-55° CST A S25°C

15

75

nAtC.

Input Bias Current

TA

::=

27

45

pA

Input Voltage Range

V-

= -7

Rs

-s: 200n

CoeffiCient of Input

Offset Current

Common Mode Rejection Ratio

-5SoC
OV

80

100

dB

V

±50V

Differential Input
Voltage Range

Voltage Gam
PosItIve Output Level

V

±50

1000

V IN ?5mV.
Os lOUT S -5 mA

NegatIve Output Level

V IN s-5mV

Output Sink Current

TA "" 125°C. VIN :::;-5 mV

40

V

0

V

25

32

-10

-05

05

, 7

mA

' 0

23

mA

VOUT "" 0
T A = -55°C, V IN S -5 mV
V OUT
Positive Supply Current

=

a

V IN ~-5 mV

Negative Supply Current
Power Consumption

V IN ~-5 mV

52

90

mA

4.6

70

mA

90

150

mW

lOUT = 0
Note 1: Rating applies for case temperatures to +125"C, derate linearly at 56 mWtC for ambient
temperatures above +10S"C
Note 2: Derate linearly at 4 4 mW(C for ambient temperatures above +100°C
Note 3: These specifications apply for V+ = 12 OV. V- '" -6.0V, -55°C::;' T A ::; +125°C unless
otherWise specifIed The Input offset voltage and Input offset current (see definitions) are specified
for a logIc threshold voltage of 1 8V at -55"C, 1 4V at +25"C, and 1 OV at +125"C
Not. 4: The response time specifIed (see definitions) IS for a 100 mV Input step with 5 mV overdrtve

9-43

(.)

...

o

.....

Interface Circuits

::?1

..J

LM710C voltage comparator
general description
The LM710e is a high-speed voltage comparator
Intended for use as an accurate, low -level digital
level sensor or as a replacement for operational
amplifiers In comparator applications where speed
is of prime Importance. The circuit has a differential input and a slngle·ended output, with saturated
output levels compatible with practically all types
of integrated logic.

with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710e is useful as a pulse height discriminator, a voltage comparator in high-speed A/D converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types. I n addition, the low
cost of the unit suggests it for applications replacing
relatively simple discrete component circuitry.

The device is bUilt on a single silicon chip which
insures low offset and thermal drift. The use of a
minimum number of stages along with minority·
carner lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in
saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized

The LM710e is the commercial/Industrial version
of the LM710. It IS Identical to the LM710 except that operation IS specified over a oOe to 70°C
temperature range.

schematic and connection diagrams

Metal Can Package

Dual-In-Line Package
I~PUTS

+
Nt

I

GROUND

2

13

NC

1+) INPUT

3

12

NC

HINPUT

4

11

'V ee ISUPPl Yl

Nt

,

10

NC

-Vee ISUPPlY)

6

9

OUTPUT

Nt

,

8

Nt

14

NC

LM710C

typical applications
Schmidt Trigger

Line Receiver With
I ncreased Output
Sink Current

Pulse Width Modulator

Level Detector With
Lamp Driver

JUUL
9-44

r-

3:
....,

...0

absolute maximum ratings

(")

Positive Supply Voltage
Negative Supply Voltage
Differential Input Voltage
Input Voltage
Power Dissipation (Note 11
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering. 10 secl

14.0V
-7.0V
±5.0V
±7.0V
300mW
10 sec
OOC to 70°C
_65°C to +150°C
300°C

electrical characteristics

(Note 21

PARAMETER
Input Offset Voltage

CONDITIONS

MIN

T A'" 25°C, Rs <200n
V OUT

Input Offset Current

T A =25"C,V OUT

TA

Voltage Gam

T A =25°C

Output Resistance

T/I.:; 25 Q C

Output Sink Current

T A'" 25"C, AV 1N 25 mV

'"

14V

=-

50

mV

50

MA

18
16

25°C

V OUT

MAX

16

UNITS

4V

'" ,

Input Bias Current

'"

TYP.

1000

25

200
17

MA

1500
n

25

mA

0

Response Time

40

ns

(Note 3)

Input Offset Voltage

RsS200n

Average Temperature

0° C,S TA:::;70°C

CoeffiCient of Input

65

5.0

RsS50n

20

mV

MVtC

Offset Voltage

Input Offset Current
Average Temperature
CoeffiCient of Input

75

MA

25°C<;TA<;70°C

15

50

nAtC

O°C::;TAS25°C

24

100

nAtC

Offset Current
Common Mode Rejection Ratio

Rs ::: 200n

Input Bias Current

TA :;

Input Voltage Range

V-'-70V

Voltage Gain

40

MA

±50

V

±50

V

800
V IN

?

5 mV,

0::; lOUT
Negative Output Level

V IN S:-10mV
V IN ::;-10 mV, V OUT "" 0
V IN

25

32

40

V

-10

-05

0

V

52

9

mA

46

70

rnA

5-5 rnA

Output Sink Current
Positive Supply Current

98
25

Differential Input
Voltage Range

Positive Output Level

70

aOc

:S -10 mV

Negative Supply Current
Power Consumption

05

mA

150

m

mW

Note 1 Ratings apply for ambient temperatures to 70°C
Note 2 These specifications apply for V+ '" 12,OV, V- = 6,QV, O°C:s TA 'S 70°C and for
a logic threshold voltage of 1 5V at O"C, 1 4V at 25"C and 1 2V at 7JJ"C unless otherwise
speCified
Note 3 The response time specified (see definitions) IS for a 100 mV mput step With
5 mV overdnve.

9·45

...........
:i!!
...I

Interface Circuits
LM711 dual comparator
general description
The LM711 contains two voltage comparators
with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features
low offset and thermal drift, a large Input voltage
range, low power consumption, fast recovery from
large overloads and compatibility with most integrated logic circuits.
With the addition of an external resistor network,
the LM711 can be used as a sense amplifier for
core memories The input thresholding, combined
with the high gain of the comparator, eliminates
many of the inaccuracies encountered with con-

ventlonal sense amplifier designs. Further, it has
the speed and accuracy needed for reliably detectIng the outputs of cores as small as 20 mils.

The LM711 is also useful in other applications
where a dual comparator with OR'ed outputs IS
requ ired, such as a double-ended I im it detector. By
using common circuitry for both halves, the device
can provide high speed with lower power dissipation than two single comparators. The LM 711 is
available In either a~ 10-lead low profile TO-5
header or a 1/4" by 1/4" metal flat package.

schematic and connection diagrams
Metal Can Package

STROBE

r-~t---------.---+---~---4---.--------~~--~---v·

INPUTS

typical applications
Sense Amplifier With Supply Strobing
for Reduced Power Consumption*

Double-Ended Limit Detector
With Lamp Driver

"

620

01

lN755

'"

LM111

;~~~~I:E_""",_"

""

UPPER

LIMIT

It.
RI
J2K

VOLTAGE

R2
12K

AS
100

LOWER

LIMIT
VOLTAGE

FADM
SENSE
LINES

OUTPUT

Rfi

100

'St1ndbvd'qlpal'nn'$
about40mW

9-46

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
Internal Power Dissipation (N ote 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec!

+140V
-7.0V
25 mA
±5.0V
±70V
o to +6.0V
300mW
_55°C to 125°C
_65°C to 150°C
300°C

electrical characteristics

(Note 2)
(These specifications apply for TA = 25°C, V+ = 12V, V- = -6V)
PARAMETER
Input Offset Voltage

CONDITIONS

MIN.

Rs:S 200,12, V CM = 0

TYP.
10
10

Rs:S 2COn
Input Offset Current

05

Input Bias Current

25

Voltage Gain

750

Response Time (Note 2)

40
12
V- = -7.0V

10.0

Il A

75

Il A
ns
ns
V

±50

Output Resistance

V
,12

200

Positive Output Level

V ,N

Loaded Positive 0 utput Level

V'N

2: 10 mV
2: 10 mV,

4_5
10 =-5 mA

25

3.5
-0.5

Negative Output Level

V,N ::;-10 mV

-1.0

Strobed Output Level

VSTROBE :S 0.3V

-10

Output Sink Current

V,N ::; -10 mV, VOUT

Strobe Current

VSTROBE = 0
V ,N ::;-10 mV

Positive Supply Current

mV
mV

±50

Differential Input
Voltage Range

2: 0

UNIT

3.5
5.0

1500

Strobe Release Time
Input Voltage Range

MAX.

05

Power Consumption

V
V

0

V

0

V

08
12

Negative Supply Current

5.0

mA
2.5

mA

86

mA

39

mA

130

200

mW

The followmg specifications appry for _55° C :S T A :S 125° C:
Input Offset Voltage (Note 3)

Rs :S200n, V CM = 0
Rs::; 200,12

4.5
6.0

Input Offset Current (Note 3)

20

Input Bias Current

150

Average Temperature
Coefficient of Input
Offset Voltage
Voltage Gain

5.0

mV
mV
Il A
Il A

IlV/oC

500

Note 1: Rating applies for case temperatures to +12So C; derate linearly at 5.6
temperatures above 105°C.

mwtC

for ambient

Note 2: The Input offset voltage and Input offset current (see definitions) are speCified for a logiC

threshold voltage of 1 8V at -5SoC, l.4V at +2SoC, and 1.0V at +12SoC.
Note 3: The response time speCIfied IS for a 100 mV Input step with 5 mV overdrive (see definitions).

9-47

Interface Circuits
LM711C dual comparator
general description
ventional sense amplifier designs. Further, it has
the speed and accuracy needed for reliably detect·
ing the outputs of cores as small as 20 mils.

The LM711C contains two voltage comparators
with separate differential inputs, a common out·
put and provision for strobing each side indepen·
dently. Similar to the LM710C, the device features
low offset and thermal drift, a large input voltage
range, low power consumption, fast recovery from
large overloads and compatibility with most integrated logic circuits.

The LM711C IS also useful in other applications
where a dual comparator with OR'ed outputs is
required, such as a double·ended limit detector. By
uSing common circuitry for both halves, the device
can provide high speed with lower power dissipa'
tion than two single comparators. The LM711 C is
the commercial/industrial version of the LM711.
It is identical to the LM711, except that operation
is specified over a O°C to 70°C temperature range.

With the addition of an external resistor network,
the LM711 C can be used as a sense amplifier for
core memories. The input thresholding, combined
with the high ·gain of the comparator, eliminates
many of the inaccuracies encountered with con·

Metal Can Package

schematic and connection diagrams
STROlE

v,

STROlE

r-~~--------~---+--~~--~--~----------e---~--v'

Dual-In-Line Package

INPUTS

.>-----1-

L..--------4....--------4....- _____ v·

typical applications

.---9---9--.,,,

lOY

..

BUS

R1
12K

um.

STROBE

LIMIT
VOLTAGE

.n.

"

12K

INPUT

"'

'00

"..

SENSE
LiNts

9·48

LOWER
LIMIT

VOLTAGE
OUTPUT
"::'

R6
'00

13

STROIE"A"

1

12

GROUND

-Vcl;(SQ"LY) •

11

+VccISUPPLY)

(+II.'UT"'~

t

11

OUTPUT

I-)IWPUT"B"

I

•

STRO.E .....

Double-Ended Limit Detector
With Lamp Driver

D1
lN755

~='i'~e_~,....-

2

I+)IIII'UY"""

SILICONE MOLDED

Sense Amplifier With Supply Strobing
for Reduced Power Consumption'

LM111

"

HINI'UT"""

....

!:
:::i

...

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
I nternal Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

(")

+14.0V
·7.0V
25 mA
±5.0V
±7.0V
o to +6.0V
300mW
O°C to 70°C
·65°C to 150°C
300°C

electrical characteristics
(These specifications apply for T A

;

(Note 1)
25°C, V+ = 12V, V-

PARAMETER

=-6V)

CONDITIONS

MIN.

Rs S200~2, VCM = 0
Rs S 200n

Input Offset Voltage
Input Offset Current

TYP.
1.0
1.0
0.5

Input Blas Current
Voltage Gam

700

Response Time (Note 2)

25
1500

MAX.
5.0
7.5
15

IJA

100

IJA

40
12

Strobe Release Time
I nput Voltage Range

V-=-7.0V

ns
ns

±50

Differential Input
Voltage Range

V
V

±50

Output Resistance

200

2: 10 mV

Positive Output Level

VIN

Loaded Positive Output Level

2.5

4.5
3.5

Negative Output Level

VIN ? 10 mV, 10 =-5 mA
VIN $-10 mV

-1.0

-0.5

Strobed Output Level
Output Smk Current

VSTROBE SO 3V
VIN $-10 mV, VOUT2:0

-10
0.5

0.8

Strobe Current

VSTROBE =0
VIN $-10mV

Positive Supply Current
Negative Supply Current

n
5.0
0
0

1.2

2.5

V
mA
mA
mA

3.9
130

V
V
V

mA

8.6

Power Consumption

UNIT
mV
mV

230

mW

6.0
10
25
150

mV
mV

The following specifications apply for OoC ::; TA ::; 70°C:
Input Offset Voltage (Note 3)

Rs S 200n, V CM
Rs S200n

=0

Input Offset Current (Note 3)
Input Bias Current
Average Temperature
Coefficient of input
Offset Voltage

5.0

Voltage Gain

500

Note 1: RatIngs apply for ambient temperatures to 70°C

<

<

Note 2: Thesa specIfications apply for V+ "" 12 OV, V- ... 6 OV, OoC
TA
70°C and for a logic
threshold voltage of 1 5V at aOc, 1.4V at 2SoC and 1 2V at 7CoC unl"$ otherWise speCified
Note 3: The response time specified

IS

for a 100 mV input step With 5 mV overdrive (see

de~lnl'tIQns).

IJA
IJA

IJvtc

Interface Circuits
LM1488 quad line driver

general description

features

The LM 1488 is a quad line driver which converts
standard DTL/TTL input logic levels through one
stage of inversion to output levels which meet EIA
Standard No. RS-232C and CCITT Recommendation V. 24.

•
•
•
•
•

±10 mA typ
Current limited output
Power-off source impedance
300£1 min
Simple slew rate control with external capacitor
Flexible operating supply range
Inputs are DTL/TTL compatible

schematic and connection diagrams

r-------_1~--------_1~--~-----ov·
Rl

R2

D1

INPUT

Dual-In-Line Package
DO

v'

INPUT

R8

r----1I---+-'V'IIV--O

OUTPUT

D7

DB

GND

TOPVIEW

R7
~--~------~I-----~~-~----_ov-

1/4 CIRCUIT

9-50

absolute maximum ratings

(Note 1)

Supply Voltage
V+

VInput Voltage (V ,N )
Output Voltage
Power Derating (Note 2)
(Package Limitation, J Package)
Derating above T A = +25°C (1/0 JA)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-15V::; V ,N

1000 mW
6.7 mWtC
O°C to +75°C
_65°C to +175°C
300°C

electrica I characteristics
PARAMETER
LogiC "0"
Input Current
LogiC "1"
Input Current

High Leyel

Ou tput Voltage

RL = 30kD.
Y'N = 0 SV

Y'N = 19V

High Level Output

V OUT = OV

Short-Circuit Current

Y'N = O.SV

Low Level Output

V OUT = OV
V ,N = 19V
V+ = V- = OV
V OUT

""

±2V

V ,N =19V
Positive Supply
Current

Y'N = O.SV

V ,N =1.9V
Negative Supply
Current

(Output Openl

Power Dissipation
Propagation Delay

MAX

-10

-1.3

rnA

10.0

J.lA

.005

Y'N = O.SV

r+=90V
V- = -9.0V
V+ = 13.2V
V- = -13 2V
{ V+ = 9.0V
V- = -9.0V
V+ = 13.2V
V- = -13 2V

I
I
I
Iv:

UNITS

TYP

Y'N = +5 OV

Output Voltage

(Output Openl

MIN

Y'N = OV

RL =30kD.

Output ReSistance

(Note 3)

CONDITIONS

Low Level

Short-CIrcuIt Current

+15V
-15V
::; 7.0V
±15V

6.0

70

V

9.0

105

V

-6.0

-6.S

V

-9.0

-105

V

-60

-100

-120

mA

60

100

12.0

mA
D.

300

V' = 9.0V, V- = -9 OV
V' = 12V, V- = -12V
V+ = 15V, V- = -15V

150
190
25.0

200
25.0
34.0

mA
mA
mA

V+ = 9.0V, V- = -9.0V
V+ = 12V, V- = -12V
V+ = 15V, V- = -15V

45
5.5
8.0

6.0
7.0
12.0

rnA
mA
mA

V+ = 9 OV, V- = -9 OV
V+ = 12V, V- = -12V
V+ = 15V, V- = -15V

-13.0
-lS 0
-25.0

-170
-230
-340

mA
mA
mA

-1.0
-10
-2.5

mA
mA
mA

= 9 OV, V~ = -9 OV
V = 12V, V = -12V
V+ = 15V, V- = -15V

V+ = 9.0V, V- = -9.0V
V+ = 12V, V- = -12V

-.001
-.001
-.01
252
441

333
576

mW
mW

RL = 3.0 kD.

CL = 15 pF, TA = 25°C

230

300

ns

R L =3.0kn

C L = 15 pF, T A = 25°C

70

175

ns

Rise Time (t r)

RL = 3.0 kD.

CL = 15 pF, TA = 25°C

75

100

ns

Fall Time (t,1

RL = 3.0 kD.

CL = 15pF, TA = 25°C

40

75

ns

to "1" (tpd,1
Propagation Delay

to "0" (tpdol

Note 1: Voltage values shown are with respect to network ground terminal. Positive current

IS

D

defined as curren~ Into the

referenced pin.

Note 2: The maXlmum junction temperature of the LM1488 IS 150°C. For operating at eievated temperatures the cavity
Dual~ln-line Package (J) must be derated based on a thermal resistance of 85°C/W, junction to amb,ent.

Note 3: These specifications apply for V+ = +9.0V ± 1%, Vtypicals are for V+ = 9.0V, V- = -9.0V, and T A = 25°C.

:=

-9.0V ± 1%, TA:= O°C to +7SoC unless otherwise noted. All

9-51

co
co

...:E
~

applications

...I

By connecting a capacitor to each driver output
the slew rate can be controlled utilizing the output
current Iimitlng characteristics of the LM 1488.
For a set slew rate the appropriate capaclto; value
may be calculated using the follOWing relationship
C = Isc (l1T/LW)
where C is the required capacitor, Isc is the short
circuit current value, and l1V/l1T !S the slew rate.

RS232C specifies that the output slew rate must
not exceed 30V per microsecond. USing the worst
case output short circuit current of 12 mA in the
abov~ equation, calculations result in a required
capacitor of 400 pF connected to each output.

typical applications

RS232C Data Transmission

T~LlDTL

--...,.-,

1/4 LM14118

T2l/011

__ .r-,
-_..

--..
t>----L._~

t::l---

--""1...-'"

r 2L!DTl

---:(-l:
==----'V';IIr-...----TlL/on

1/4lM14B91

1/4 LM1488

lM1489A

r 2 L/OlL
--~-,

p---t--..,...--t---l2<>--= =:t. _ }>- - 1/4 LM14B91
rll/OTL

--2
<0
>2

4V
4V
4V
4V

Logic
Logic
Logic
Logic

Output
Output
Output
Output

<0 4V
>2 4V
<04V
>2 4V

±525V

LM7520/LM7521 : The following apply for OOe:::;TA :::;70 o e
11(8)

Differential Input
Threshold Voltage

361331

(V TH ) (Note 4)

Differential & Reference
Input Bias Current

15
15
40
40

441471

mV
mV
mV
mV

30

75

"A

191221

:tV TH

15mV
15mV
40mV
40mV

'5V
'5V
+5V
'5V

'5V
'5V
+5V
'5V

OV

OV

+525V

+525V

+525V

±525V

+525V

±525V

±VTH

±VTH
±VTH

+16 mAlO)
-400/JA(Q)
+16 mAlO)

-400 "Alai

±5V
±5V
±5V
±5V

LM5520/LM5521: The following apply for -55°C:::; T A:::; 125°c
LM7520/LM7521: The following apply for oOe:::; T A :::; 70°C
Differential Input Offset
Current
Logic" 1" I nput Voltage
(Strobes)
(Gate a)
(Gate a)

05

Logic "0" Input Current

-1
5
02
5
02

24
24
24

025
025
025
-3

Q Output Short

t525V

V
V
V

40 mV
40 mV
40 mV

20 mV
20 mV
20mV

'2V
OV
OV

.,.475V
+2V
OV

08
08
08

V
V
V

40 mV
40 mV
40mV

20 mV
20 mV
20 mV

+0 BV
OV
OV

+475V
+0 BV
OV

-1.6

mA

40mV

20 mV

to 4V

t04V

to 4V

±525V

Each Input

40
1
40
1

"A
mA

20 mV
20mV
20 mV
20 mV

+24V
+525V
... 525V
+525V

t525V
t525V
t24V
+525V

+24V
+525V

±525V
±525V
±525V
±525V

Each Input
Each Input

"A
mA

OV
OV
40mV
40mV

V
V
V

40mV
40mV
40mV

20mV
20mV
20mV

+20V
OV
+-475V

t525V
+0 BV
OV

V
V
V

40mV
OV
OV

20mV
20 mV
20 mV

+08V
OV
OV

+475V
.2V
OV

-5

mA

OV

20 mV

OV

OV

39
39
39

LogiC "0" Output Voltage
(Strobe)
(Gate QJ
(Gate 0)

Circuit Current

+525V

2
2

Logic" 1" Input Current
(Strobe & Gate OJ
(Gate a)

Q Output Short

OV

2

Logic "0" Input Voltage
(Strobes)
(Gate a)
(Gate 0,)

Logic "1" Output Voltage
(Strobe)
(Gate 0)
(Gate aJ

OV

"A

-4

040
040
040

'2V

-400 "AIOI
+16 mAlO)
+16 mAlO)

±5V
±5V
±5V

Logic Output >2 4V
Logic Output <0 4V
Logic Output <0 4V

+0 8V

+16 mAlO)
-400 !'Alai
-400,uA(O)

±5V
±5V
±5V

Logic Output <0 4V
Logic Output >2 4V
Logic Output >2 4V

-400,UA(OJ
+08V

'2V

-400 "AIOI
-400 "Alai

±475V
±475V
±475V

+16 mAlO)
+16 mAlO)
+16 mAlO)

±475V
±475V
±475V

OVIOI

±525V

OVlal

±525V

-28

-35

mA

OV

20 mV

OV

OV

ov

V+ Supply Current

21

35

mA

OV

20 mV

OV

OV

OV

±525V

V- Supply Curreqt

-13

-18

mA

OV

20 mV

OV

OV

OV

±525V

-21

Circuit Current

e

Note 1 For OoC ::; T A S; 700 operation, electrical characterIStiCS for LM5520 and LM5521 are
guaranteed the same as LM7520 and LM7521, (espectlvely
Note 2' Limits
Note 3

In

parentheses '")ertaln to LM5521, other limits pertain to LM5520

a or 0 In parentheses Indicate Q or Q logiC output, respectively

Note 4: Limits

In

parentheses pertain to LM7S21, other limits pertain to LM7520

Note 5

POSitive current IS defined as current Into the referenced pin

Note 6

Pm 1 to have ~100 pF capacitor connected to ground

9-58

r-

s:

U1
U1

N

o

........

r-

LM5520/LM7520 and
electrical characteristics

s:.....

LM 5521/LM7521

U1

N

LM5520/LM5521 and LM7520/LM7521: The following apply for T A = 25°C, V+ = 5V, V- = -5V

o

TEST CONDITIONS

PARAMETER

AC Gommon Mode
Input Firing Voltage

MIN

TYP

MAX

±25

UNIT

V

DIFF
INPUT

REF
INPUT

STROBE
AND
GATE
INPUTS

PULSE

20 mV

+5V

C/)

a
lOGIC
OUTPUT

AC TEST
CIRCUIT

Logical" 1" Q Output
Differential Input to

logical "0"

Q

Output

Differential Input to

LogICal "'"

6 Output

Differential Input to

Logical "0"

6. Output

Strobe Input to

Logical "1" Q Output

ns

20 mV

1

28

ns

20 mV

1

36

ns

20mV

1

20

40

28

55

ns

20 mV

1

10

30

ns

20mV

1

Strobe I nput to
Logical "0" Q Output

20

ns

20 mV

1

Strobe Input to
Logical "1" Q Output

33

ns

20 mV

1

Strobe Input to
Logical "0"

6 Output

Gate Q Input to
Logical "1" Q Output

Gate Q Input to
Logical "0" Q Output

Gate Q Input to
Logical "1" 0 Output

Gate 0 Input to
Logical "0"

Q Output

16

55

ns

20 mV

1

12

20

ns

20 mV

2

6

0;

20 mV

2

17

ns

20mV

2

ns

20 mV

2

ns

20 mV

2

ns

20mV

2

19

Gate Q Input to
Logical "1" Q Output

12

Gate 6. Input to
Logical "0"
Output

6

6

Dlff Input Overload
Recovery Time
Common Mode Input
Overload Recovery

30

20

10

ns

5

ns

200

ns

Time
Min Cyde Time

CD

en
SCOPE

Propagation Delays
Differential Input to

...

CD

9-59

I/)

CD

';:

LM5520/LM7520 and LM55211LM7521

CD
(J)

o

N
In

schematic diagram

"::?!
.......

.......

v'o-----------~-----.--------__,

o
N

In
In

",,,,,,,.{'

::?!
.......

INPUT

GAT~ o----l---+~==+~==~=~=t_------_,
DlFFEAENTlAl{
INPut A

STROBE A

0---1----++----++-'

OUTPUT

<>----11--------+-'
GAT~ <>----ir--------+---+--i+--'

a

STROBE B

L----6-~~---~-4-----4

connection diagram
Duat-tn-Line Package
v+

C(~T

STROBE

GATE

A

Q

~
DIFFERENTIAL

INPUT A

9-60

OUTPUT OUTPUT STROBE

11

il

-

+

~
REFERENCE
INPUT

B

GATE

fi

'---....,.-..-'

DIFFERENTIAL
INPute

GND

IF

__6-06ND

r-

s:

LM5522/LM7522 and LM5523/LM7523
electrical characteristics

U1
U1

LM5522/LM5523: The followtng apply for -55°C ~ T A ~ 125°C (Note 11

N

o

........

TEST CONDITIONS (EACH AMPLIFIER)
PARAMETER

MIN
10(8)

Differentia! Input

Threshold Voltage
(V iH I (Note 2)

35(33)

TvP
15
15
40

40

Differential & Aeiefence

30

Input Bias Current

GATE
INPUT

LOGIC
OU1PUT

SUPPLY
VOLT

.. sv
+5V
+5V
+5V

'5V
.5V
'5V
'5V

-400/JA
+16 rnA
-400/JA
+16 rnA

±5V
±5V
±5V
±5V

+525V

+525V

MAX

20(22)
45(47)

100

mV
mV
mV
mV

±VTH
±VTH
±VTH
±VTH

j.J.A

OV

15 mV
15 mV
40 mV
40 mV

OV

r-

s:
...,

COMMENTS

Logic
Logic
Logic
logic

Output
Output
Output
Output

U1

>2 4V
<0 4V
>2 4V
2
<0
>2
<0

!II

4V
4V
4V
4V

LM5522/LM5523: The following apply for -55°C::::: TA ~ 125°C
LM7522/LM7523: The follOWing apply for O°C ~ T A
Dlff Input Offset Current

05

pA

Logic "1" Input Voltage
(Strobes)
(Gate)
Logic "0" Input Voltage
(Strobes)
(Gate)

08
08
-1

OV

:::::

70°C

OV

40 mV
40mV

20 mV
20rnV

+2V
OV

+475V
+2V

+16 mA
-400 pA

±5V
±5V

Logic Output <0 4V
Logic Output >2 4V

40mV
40mV

20mV
20mV

+08V
OV

+475V
tOBY

-40011A
+16rnA

±5V
±5V

Logic Output >2 4V
Logic Output <0 4V
Each Input

-16

rnA

40mV

20mV

+04V

+04V

:l:525V

(Strobes)

40

(Gate)

40

pA
mA
pA
rnA

OV
OV
40 mV
40 mV

20
20
20
20

+24V
+525V
+525V
+525V

+525V
+525V
+24V
+525V

±525V
±525V
±525V
±S 25V

V

40mV

20mV

+08V

+2V

V

40 mV
40 mV

20 mV
20 mV

+2V
OV

+4.75V
+0 8V

mA

40 mV

Logic "0" Input Current
Logic "1" Input Current

Logic "1" Output Voltage

24

Logl,c "0" Output Voltage
(Strobes)
(Gate l
Output Short Circuit
Current

025
025

-2 1

Output Leakage Current

39

-28
001

040
040
-35

mV
mV
mV
mV

20 mV

OV

+525V

250

pA

OV

20 mV

OV

.2V

-400 pA

±475V

+16 rnA
+16 rnA

:t4 75V
±475V

Tie PinS 10 and 12
Tie PinS 10 and 12

OV

±525V

TiePins 10 and 12

+S25V

±'475V

V+ Supply Current

23

36

mA

OV

20 mV

OV

OV

:1:525V

V- Supply Current

-13

-18

rnA

OV

20 mV

OV

OV

:l:525V

LM5522/LM5523 and LM7522/LM7523. The following apply for T A
AC Common Mode Input

±25

Firing Voltage
Propagation Delays
Dlfferentlal!nput to
logical "1" Output

PULSE

21

Strobe Input to
Logical "1" Output

22

Strobe Input to
Logical "0" Output

12

+5V

.5V

SCOPE

20mV

26

DI.fferentlallnput to
logical "0" Output

20 mV

= 25°C, V+ = 5V, V- = -5V

45

AC Test Clfcult

20m"

20mV

40

Gate Input to
Logical "1" Output

20mV

AC Test Circuit

20 mV

Gate Input to
Logical "0" Output

15

Differential Input Over
load Recovery Time

10

25

20mV

ACTest CIrcuit

c~mmon

Mode Input
Overload Recovery
Time
Min Cycle Time

200

Note 1: For O°C ~ T A ::; 70°C operation, electrical characteristiCs for LM5522 and LM5523 are
guaranteed the same as LM7S22 and LM7523, respectively
Note 2

LImits In parentheses pertain to LM5523, other limits pertain to LM5522

Note 3. Limits
Note 4

In

parentheses pertaIn to LM7523, other limIts pertain to LM7522

POSitive current

IS

defined as current Into the referenced pm

Note 5· Pm 1 to have ~ 100 pF capacitor connected to ground

9-61

III
G)

';:

LM5522/LM7522 and LM5523/LM7523

G)

fA

o

N

an
:E
r-

schematic diagram

....t

Y'~---------1~---'--------~

"

o

N

an
an
:E
....t

1"T£o---+---I+...:==t~==~::~+---,

H,

OUTPUT

STROIE.o---+-_ _ _ _ _ _

-+~

Y-

'-_-_-o6N02

connection diagram
Dual-In-Line Package
v+

STROlE
A

GATE

'-----..--J

DIFFERENTIAL
INPUT A

9-62

'NO 2 OUTPUT

~
REFERENCE
INPUT

STROlE

RL

'-----..--J

DIFFERElTlAL
INPUT.

GND 1

r-

s:

U1
U1

N

o

.......
r-

s:......

LM5524/LM7524 and LM5525/LM7525
electrical characteristics
LM5524/LM5525:

The following apply for

-55°C ~ T A ~ 125°C

(Note

U1
1)

N

o
en

TEST CONDITIONS lEACH AMPLIFIERI
MIN

PARAMETER

10lBI

Differential Input

Threshold Voltage
~VTH j

TVP

351331

(Note 2)

Differential & Reference

30

Input Bias Current

LM7524/LM7525:

11181
361331

Differential & Reference

Input Bias Current

REF
INPUT

mV

±VTH

+5V

+16 rnA

201221

mV

±VTH

15mV
15mV

+5V

mV
mV

±VTH

40mV
40mV

+5V
+5V

-400IJA
+16mA

451471

"A

OV

100

441471

mV

±VTH

30

75

"A

OV

05

Logic "0" Input Voltage

-1

Logic ''1'' Input
Current

5
002

Logic "1" Output Voltage

24

Output Short Circuit
Current

-21

-2 B

-400 }J.A

SUPPLV
VOLT.
±5V
±5V
±5V
±5V

±VTH
±VTH
±VTH

15mV
15mV
40mV
40mV
OV

+16mA

+5V
+5V
+5V

-400 }J.A
+16 rnA

+5V

-400 "A

±5V
±5V
±5V
±5V

OV

OV

Logic Output >2 4V
Logic Output <0 4V

OB

V

40mV

20 mV

+0 BV

-16

mA

40 mV

20mV

+04V

±525V

40
1

"A
mA

OV

OV

20 mV
20mV

+24V
+525V

±525V
±525V

V

40 mV

20mV

+20V

V

40 mV

20 mV

+0 BV

-35

mA

40mV

20 mV

+525V

-400 J.1A
+16 mA

-400J.1A

UI

±475V

+16mA

±475V

OV

±S 25V

29

40

mA

OV

20 mV

OV

1525V

-1B

mA

OV

20 mV

OV

±525V

The follOWIng apply for T A =

V

±25

<0 4V
>2 4V
<0 4V
>2 4V

±5V

+2V

-13

AC Common-Mode Input
FlrlOg Voltage

Output
Output
Output
Output

±5V

20mV

LM7524/LM7525:

Logic
Logic
Logic
Logic

...CD

CD

±525V

+525V

40 mV

V- Supply Current

and

<0 4V
>2 4V
<0 4V
>2 4V

±525V

+525V

V+ Supply Current

LM5524/LM5525

Output
Output
Output
Output

±S 25V

+525V

V

040

COMMENTS
Logic
Logic
Logic
Logic

-55°C ~ T A ~ 125°C
aOe ~ T A ~ 7aoe
"A

39
025

Logic "0" Output Voltage

INPUT

~ 7aoe

191221

2

Logic "0" Input Current

TA

OV

mV
mV
mV

The following apply for

Logic "1 ' Input Voltage

aOe ~

±VTH

15
15
40
40

The following apply for

Dlff Input Offset Current

LOGIC
OUTPUT

DIFF.
INPUT

The following apply for

Differential Input
Threshold Voltage
(V TH ) (Note 3)

LM5524/LM5525:
LM7524/LM7525:

15
15
40
40

STROBE

UNIT

MAX

PULSE

20 mV

+5V

25°C, V+

=

5V, V-

=

-5V

SCOPE

PropagatIOn Delays
Differential Input to
logical" 1" Output

20

Differential Input to
Logical "0" Output

2B

Strobe Input to
Logical "1" Output

10

Strobe I nput to
Logical "0" Output
Differential Input Over
load Recovery Time
Common-Mode Input
Overload Recovery
Time
MIO Cycle Time

ns

20 mV

AC Test Circuit

ns

20 mV

AC Test Circuit

ns

20 mV

AC Test Circuit

20

ns

20 mV

AC Test Circuit

10

ns

5

ns

200

ns

40

30

e

Note 1 For O°C ~ T A ~ 700
operation, electncal characteristics for LM5524 and LM5525 are
guaranteed the same as LM7524 and LM7525 respectIVely
Note 2 Limits In parentheses pertalO to LM5525, other limits pertalO to LM5524
Note 3. Limits 10 parentheses pertain to LM7525, other limits pertain to LM7524
Note 4

Positive current IS defmed as current IOta the referenced pm

Note 5: Pin 1 to have

2:: 100 pF capacitor connected to ground

.
9-63

LM5524/LM7524 and LM5525/LM7525

schematic diagram

v·o------------.----~--------__,

OUTPUT A

OUTPUT B

STROBE B ()---+---------+_~

ONO 2

connection diagram

Dual-I n-Lme Package
v+

CEXT

STROBE
A

OUTPUT
A

~

DIFFERENTIAL
INPUT A

9-64

GNO 2

OUTPUT
8

+

~

REFERENCE
INPUT

STROBE
8

NO
CONN

~

DIFfERENTIAL
INPUTB

GNO 1

v-

r-

3:

lM5528/lM7528 and lM5529/lM7529

C1I
C1I
N

electrical characteristics
LM5528/LM552g·

-55°C ~

The following apply for

~ 125°C

TA

(Note

11

o

TEST CONDITIONS lEACH AMPLIFIER)
PARAMETER

MIN
10(8)

Olfferentlal Input
Threshold Voltage
{V TH } (Note 2)

35(33)

Differential & Reference

30

Input Bias Current

LM7528/LM7529:

TYP
15
15
40
40

MAX

UNIT

20(22)
45(47)
100

The following apply for

DIFF.
INPUT

INPUT

±VTH

15mV

±VTH

15 mV
40 mV

mV
mV
mV
mV

±VTH
±VTH

"A

OV

REF

40 mY

OV

oOe ~ T A

STROBE
INPUT
+5V
+5V
+5V
+5V

LOGIC
OUTPUT
+16 mA

-400 tlA
+16 mA
-400 j.1A

+525V

SUPPLY
VOLT
±5V
±5V
±5V
±5V

........

r-

COMMENTS
Logic
Logic
Logic
Logic

Output
Output
Output
Output

<0
>2
<0
>2

3:
.....

4V
4V
4V
4V

C1I
N

o
en

±S 25V

CD

~ 70°C

~

CD
11(8)

Differential Input

Threshold Voltage
(V TH ) (Note 3)

36(33)

Differential & Reference

Input Bias Current

LM5528/LM5529 :
LM7528/LM7529.

15
15
40
40

44(47)

mV
mV
mV
mV

30

75

"A

OV

-55°C ~

The follOWing apply for

oOe ~ T A

LogiC "1" Input Voltage

05

-1

LogiC "0" Input Current
LogiC "1" Input
Current

5
002

LogiC "1" Output Voltage

24

LogiC "0" Output Voltage
Output Short Circuit

V+ Supply Current
Supply Current

and

AC Common Mode Input
Firing Voltage

15 mV

40 mY
40mV

OV

+5V
+5V
+5V
+5V

+16mA
-400 J.lA
+16mA

-400 pA

±5V
±5V
±5V
±5V

OV

OV

~400

08

V

40mV

20 mV

+0 BV

-16

mA

40mV

20 ,'!IV

+04V

!525V

40
1

"A
mA

OV
OV

20 mV
20 mV

+24V
+525V

±525V
±525V

V

40 mV

20 mV

+20V

V

40mV

20 mV

+0 BV

+16 mA

+525V

OV

J1A

±5V

LogiC Output >2 4\1

+16 mA

±5V

LogiC Output <0 4V

~400

J1A

±475V
±475V

-28

-35

mA

40 mV

20 mV

29

40

mA

OV

20 mV

OV

±525V

-13

-18

mA

OV

20 mV

OV

±525V

The following apply for T A

V

en

4V
4V
4V
4V

±525V

+525V

+2V

:r25

<0
>2
<0
>2

~ 125°C
~ 70°C

20 mV

LM7528/LM7529:

Output
Output
Output
Output

TA

40 mV

040

Logic
Logic
Logic
Logic

±S 25V

+525V

V

39
025

-21

Current

"A

2

LogiC "0" Input Voltage

LM5528/LM5529

±VTH
±VTH
±VTH
±VTH

The follOWing apply for

Dlff Input Offset Current

V~

19(22)

15mV

PULSE

20 mV

+5V

±525V

= 25°C, V+ = 5V, V- = -5V
SCOPE

Propagation Delays
Differential Input to
Logical "1" Output

20

Differential Input to
Logical "0" Output

28

Strobe Input to
Logical "1" Output

10

Strobe Input to
Logical "0" Output
Differential Input Overload Recoverv Time
Common·Mode Input
Overload Recovery
Time
Min Cycle Time

40

"'

20mV

AC Test CirCUit

"'

20 mV

AC Test CirCUit

"'

20 mV

AC Test Circuit

20

"'

20mV

AC Test CIrCUit

10

"'

5

"'

200

"'

30

Note 1 For OoC ::; T A ::; 70°C operation, electrical characterIStics for LM5528 and LM5529 are
guaranteed the same as LM7528 and LM7529 respectively
Note 2

Limits

In

parentheses pertain to LM5529, other limits pertain to LM5528

Note 3. Limits In parentheses pertain to LM7529, other limits pertain to LM7528
Note 4: POSitive current IS defined as current rnto the referenced pin
Note 5_ Prn 1 to have ~ 100 pF capacitor connected to ground
Note 6: Each test pornt to have::; 15 pF capaCitive load to ground

9·65

I/)

~

';:

~

LM5528/LM7528 and LM5529/LM7529

tn

o

N

It)

......

schematic diagram

:!:

".....I

v·~

__________. -____. -________,

o

N

It)
It)

:!:
.....I

TEsr:OINT

.....- ....-,

o---l---~-l--===t:~--

OUTPUT A

OUTPUT 8

STROBE 8

fEST POINT B

0---+---------+_-'
0---+---------.
' - - - - _ - H > - -....----....

--OUTPUT

r------~.--OUTPUT

9·75

u
....o
o
o

absolute maximum ratings
SV
-40V
+2SV
30V
5.5V
SOOmW
1500mA
-65"C to +150"C
-55"C to +125"C
O"C to +S5"C
300"C

vee Supply Voltage
V- Supply Voltage
V+ Supply Voltage
(V+ - V-I Voltage Differential
Input Voltage
Power Dissipation (T A; 25°C)
Peak Output Current
Storage Temperature Range
Operating Temperature Range MH0007
MH0007C
Lead Temperature (Soldering, 10 sec)

::J:

::E
e
o
o
::J:
::E

;:::

electrical characteristics

(Note 1)

PARAMETER

TYP
(Note 2)

MIN

CONDITIONS

UNITS

Logical "1" Input Voltage

Vee; 4.5V

Logical "0" Input Voltage

Vee; 4.5V

Logical "1" Input Current

Vee; 5.5V, V ,N ; 5.5V

Logical "0" Input Current

Vee; 5.5V, V ,N ; O.4V

Logical "1" Output Voltage

Vee; 5.5V, lOUT; 30 mA, V ,N ; O.SV
Vee; 5.5V, lOUT; 1 mA, V ,N ; O.SV

Logical "0" Output Voltage

Vee; 4.5V, lOUT; 30 mA, V ,N ; 2.2V

Transition Time to
Logical "0" Output

CL

;

200 pF (Note 3)

50

ns

Transition Time to
Logical "1" Output

CL

;

200 pF (Note 3)

75

ns

V

2.2
O.S
100
1.0

Allowable Values for V- and V+
y'
VOLTS

y~OLTS

-40

/

Y

"
2D

lD

:i1i

0.6

0

;

04

c;

f
-lD

1

10

CA~E

I"
AMtENT

I

02

REGION

-zo
-30

-40

""-

r-..... .....

1

0
0

25

50

75

-

"

100

TEMPERATURE I"C)

mA

V
V- + 2.0

12

~
~ 08
;::

V
(.1A

V

MaXimum Power Dissipation

..

1.5

V t -4.0
V+ - 2 0

Note 1: Min/max limits apply across the guaranteed range of -55"C to +125"C for the MHOO07, and
from O"C to +85"C for the MH0007C, for all allowable values of V- and V+
Note 2: All tYPical values measured at T A = 25'C with V CC =5 0 volts, V- = -25 volts, V+ = 0 volts.
Note 3: Transition time measured from time VIN = 50% value until VOUT Iolas reached 80% of
fmal value

9-76

MAX

125

150

V

3:
%
o
o
o

Interface Circuits

CD
......

!:
:::r:
o
o
o
CD
n

MH0009/MH0009C de coupled two phase MOS clock driver

general description

~.atures

The MH0009/MH0009C is high speed, DC coupled,
dual MOS clock driver designed to operate In
conjunction with high speed line drivers such as
the DM8830, DM7440, or DM7093. The tranSition
from TTUDTL to MOS logic level IS accomplished
by PNP input tranSistors which also assure accl.lrate
control of the output pulse width.

•

DC logically controlled operation

•

Output SWings - to 30V

•

Ol.ltput Currents - In excess of ±500 nA

•

High rep rate -

•

Low standby power

In

excess of 2 MHz

schematic and connection diagrams

2 41, INPUT A

12·Load TO·8 Pockage

., INPUTS

4---,..-+--f

~ 5------~~~

."N.UTI Q

__•

----+-.--t:
V";o+5.0V

412 BIAS ,

\,

,rfI-lINPUTA

v~

v+ .. 1ZV

.j

typical appliclJltion
.,

-----,

v."..-_·,

I

I
I

V·,.+iOV

_-..

.......

FIGURE 1

9·77

(.)

en

o

absolute maximum ratings

::t,

v- Supply Voltage.

oo

Differential (Pm 5 to Pm 3) or
(Pm 5 to Pin 7)
V+Supply Voltage: Differential (Pm 11 to Pm 5)
Input Current: (Pm 2, 4, 6 or 8)
Peak Output Current
Power DIssipation (Note 2 and Figure 2)
Storage Temperature
Operating Temperature: MH0009
MH0009C
Lead Temperature (Soldering, 10 Sec.)

:E
G7
o
o
o

i

electrical characteristics
PARAMETER

-40V
30V
±75 mA
±500 mA
1.5W
_65°C to +150°C
_55°C to +125°C
O°C to 85°C
300°C

(Note 1)
MIN

CONDITIONS

TYP

MAX

UNITS

C'N = .0022,uF

CL = 001,uF

10

35

ns

C'N = 0022,uF

C L = 001,uF

40

50

ns

C'N = 0022,uF

CL = 001,uF

400

440

ns

C'N = 0022,uF

CL = 001,uF

80

120

ns

C'N = 600 pF

C L = 200 pF

10

ns

C'N = 600 pF

C L = 200 pF

15

ns

Pulse Width (50% to 50%)

C'N = 600 pF

CL = 200 pF

tloll

C'N = 600 pF

CL = 200 pF

toN

Pulse Width (50% to 50%)

340

40

70

40

Note 1: Characteristics apply for CirCUit of Figure 1 With V- = -20 volts, V+ = 0 volts, VCC = 50
volts Minimum and maximum limits apply from -5SoC to +12SoC for the MH0009 and from aOc to
-+a5'C for the MH0009C. TYPical values are for T A = 25'C
Note 2: Transient power IS given by P = fel (V+ - V-I 2 watts, where f = repetition rate, CL = load
capadtance, and (V+ - V-I = output sWing
Note 3: For tYPical performance data see the MHOOI3/MHOOI3C data sheet

150~4.-4--+-~~--+--4

! 1.25 1--1"-":"k--+--I-+-4---l
~ 10~+-4"~~~~--+-~

10151-+-4--+"~k-+-4---l
~ 0.5

ffi

o25

"

f-~--l--+--+--I-+--l

o~~-L-J

__L-~-L~

o 25 50 15 100 125 150
TEMPERATURE I CI

FIGURE 2. Maximum Power Dissipation

9·78

120

ns
ns

s::I:
o
o

Interface Circuits

...a

N

.......

s::I:
o
o...a

MH0012/MH0012C high speed MOS clock driver

N

n

general description

features

The MH0012/MH0012C is a high performance
clock driver that IS designed to be driven by the
OM 7830/0M8830 or other line drivers or buffers
with high output current capability. It will provide a fixed width pulse suitable for driving MOS
shift registers and other clocked MOS devices.

• High output voltage sWlngs~ 12 to 30 volts
• High output current drive capabllity~ 1000 mA
peak
• High repetition
100 pF

rate~10

MHz at 18 volts into

• Low standby power~less than 30 mW

schematic and connection diagrams

12-lead TO-8 Package

".
R9

COMP

&
11 !OUTPUT
R1

.....14-+-t-o"

25.

INPUT 2 3 -'V'h-....- '
R2
1K
COMP

4

typical application

TOPVIEW

(ac test CIrcuit)

timing diagram

9-79

(,)

...o
N

absolute maximum ratings

o

v- Supply Voltage

J:

Differential {Pin 1 or 2 to
Pm 5)
Differential (Pin 8 or 9

V r Supply Voltage

:E
........

to Pin 1 or 21

...

30V
:+75 rnA
f.l0DDmA

Input Current (PIn 3 or 7)
Peak Output Current

N

o
o

dc electrical characteristics

J:

PARAMETER

:E

Maximum Output Load-See Figure 2
Power DISSipation-See Figure 1
Stordge Temperature
Operating Temperature MHOO12
MHOO12C
Lead Temperdlure (Soldering, 10 sec)

-40V

15W

-65"C to +150"C
-55"C to +12S"C
O"C to +85"C
300"C

(Note 1)

CONDITIONS

MIN

Logic "1" Input Voltage
(PinS 7 and 3)

V+-V-""20V,V OUT vt -

1,5V

04

TYP

MAX

UNITS

10

20

V

06

V

, 10

V

V- + 20

V

VIN = 20V
Logic "0" Output Voltage

V' - V- = 20V, lOUT'" - lmA,
V 1N =04V

IDe (V- Supply)

V' - V- ::: 20V, V IN = 2 OV

vt

_

15

V' - 07

V

mA

34

60

TYP

MAX

10

15

5

10

ns

35

50

ns

35

45

ns

ac electrical characteristics
CONDITIONS (Note 3)

PARAMETER

MIN

Turn·On Delay (tON)

V' -V-" 20V, Vee'" 5 OV
CL '" 200 pF, f ~ 10 MHz
TA = 25"C

Rise Time (t,)
Turn·Off Delay (tOF F )
Fall Time {ttl

UNITS

ns

Note 1: Characteristics apply for CirCUit of Figure 1 Min and max limits apply from -5SoC to +125°C
for the MHOO12 and from O°C to +85°C for the MH()()12C TYPical values are for T A = 25°C
Note 2: Due to the very fast rISe and fall times, and the high currents Involved, extremely short connections and good by passmg techniques are reqUired
Note 3: All conditions apply for each parameter

Maximum Output Load
vs Voltage Swing vs Rise Times

Power Dissipation

RIse and Fall Times vs
Load Capacitance
40

1.5

~

"

'"

~
5

~ 35

I

~ 30

L (V+ _ V-)

I"

1.0

C =~
30

~

'"~

"'\"

\

\

\~.

~,~

>

20

N

>,

-

;£

10

~r$'

"~ 25

~o

~~ ~ ~. I'o~.r
"'$ :~
~.r

r-,... 'I'-....

...........

;;!

r-.. ....

~

~

~

'~"

;::
~

"'

20

-V+ -

v-= 20V

_TA"25"C

15

.... -t-

10
5

II-

0
0

25

50

75

100

125

0

150 175

400

800

1200

1600

MAXIMUM OUTPUT LOAD IpFI

AMBIENT TEMPERATURE lOCI

Figure 1.

200

400

600

800

1000

LOAD CAPACITANCE. CL IpFI

Figure 2.

applications information
Power DISSipation Considerations

Where

The power diSSipated by the MH0012 may be
diVided Into three areas of operation = ON, OFF
and SWitching The OFF power IS approximately
30 mW and is diSSipated by R2 when Pm 3 IS In
the logiC "1" state The OFF power IS neglibleand
Will be Ignored In the subsequent diSCUSSion The
ON power IS diSSipated pnmanly by 0 3 and Rg
and IS given by'

PON

9-80

== ["rIl IN

IV+ - V-I'
+ - - - 1 DC

R.

(1)

DC = Duty Cycle

'=

ON TIme
ON Time & OFF Time

The transient power Incurred dunng sWitching IS
given by
PAC'" (V+ - v-)2 CLf

VIN-VBE3
liN IS given by - - R - , - - and equatIon (1)
becomes
PON'"

[IV,,-VBE3IIV-1
IV'-V-I']
Rl
+ ~- DC (2)

The total power IS gIven by
PT == PAC + PON
PT

For V IN == 2 5V, V SE3 =0 7V, V+ =OV, V- = -20V,
and DC = 20%, PON == 200 mW

131

For V+ = OV, V- = -20V, C L ::: 200 pF, and
f '= 50 MHz, PAC == 400 mW

s

PM AX

For the above example, PT '" 600 mW

141

~
:I:

o

Interface Circuits

o
....
w

......
~
:I:

MH0013/MH0013C two phase MOS clock driver
general description

features

...oow

The MH0013/MH0013C IS a general purpose clock
driver that IS deSIgned to be driven by DTL or
TTL line drivers or buffers with high output current capability It will provide fixed width clock
pulses for both high threshold and low threshold
MOS deVices. Two external Input coupling capacitors set the pulse width maximum, below which
the output pulse width will closely follow the
Input pulse width or logiC control of output pulse
width may be obtained by uSIng larger value Input

• High Output Voltage SWings-up to 30V

C')

• High Output Current Drive Capability-up to
500 mA
• High Repetition

Rate~up

to 50 MHz

• Pin Compatible with the MH0009/MH0009C
• "Zero" QUiescent Power

capacitors and no Input resistors.

schematic and connection diagrams
12·Lead TO·8 Package

01

.---f.-I!)--12 OUTPUT A
INPUT A,

INPUT A2 4

----+-.....- f
D1

V'

5-----i--~-_+

11 V'

OJ

-!

INPUT8 1 6 - - - - - + -....

INPUTB 2

' - - - f . - _ 1 I 1 OUTPUT B

TOPVIEW

D4

typical applications

+Vcc

C,"

~~PL~~
OUTPUT

1

I

I

I

Ur-----

PUL"--U
INPUT
PULSE

U

OUTPUT:
PULSE

u-:

9-81

(.)

M
....

absolute maximum ratings

o
o

(V+ - V-) Voltage Differential
30V
±75mA
Input Current (Pin 2,4, 6 or 8)
Peak Output Current
±600mA
Power Dissipation (Figure 7)
1.5W
_65°C to +150°C
Storage Temperature
_55°C to +125°C
Operating Temperature MH0013
MH0013C
O°C to +85°C
30aoC
Lead Temperature (Soldering, 1a sec 1/16" from Case)

::J:

::iE
"M

....

o
o

::J:

::iE

electrical characteristics
PARAMETER

(Note 1 and Figure 8)
MIN

CONDITIONS

Logical "0" Output Voltage

logical "1" Output Voltage

IOUT"'SOmA

Power Supply Leakage Current

IV"· V"I" 30V

NegatIVe Input Voltage Clamp

IIN"--10mA

lOUT'" liN

UNITS

MAX

TYP

vI- _ 1 0

IOUT"'-50mA IIN=10mA
louT"'-lOmA IIN=10mA
IIN""lOmA

V

07

v+ - a 5

V- + 1 5

V- + 2 a

v
v
v

100

!JA

v+ -

10

=OmA

v- - 1 2

tdON

v- - 0 8

V

20

35

"

35

50

30

60

"n,

40

50

80

n,

40

70

120

340

420

490

CIN "'00022.uF
t{j OFF (Note 2)
RIN

t1all (Note 2)

",Q,Q

CL "'OOOlj.lF

tlall (Note3)

Pulse Width (50% to 50%) (Note 3)

CIN '" 500 pF
RIN '"

Pulse Width (50% to 50%) (Note 3)

CL

"
"
"
"
"

15

On

20

'" 200 pF

110

Positive Output Voltage Swmg

v+ - 0 7V

V

Negative Output Voltage Swmg

V- + 0 7V

V

Note 1: MinIMax limits apply over guaranteed operating temperature range of _55°C to +125°C for
MH0013 and O°C to +85"C for MH0013C. With V' = -20V and V+ = OV unless otherwISe specified.
TYPical values are for 25°C
Note 2: Parameter values apply for clock pulse width determined by Input pulse width
Note 3: Parameter values apply for Input pulse width greater than output clock pulse width

TABLE I. Typical Drive Capability of One Half MHa013 at laoC Ambient
1V3-V21
VOLTS

FREaUENCY
MH,

PULSE WIDTH

n.

TYPICAL RIN

TYPICAL CIN

_F

28
20
16

"

40

100

0

750

50
200
350

7
10

1600

100
400
700

19

28
20
16

20

200

10

28
20
16
28
20
16

OUTPUT DRIVE
CAPABI LITY IN pF I

RISE TIME
LIMIT nsl

5
14

10

200

0

2300

400
1000
1700

19
34
45

05

500

10

4000

2800
5500
9300

130
183
248

Note 1: Output load IS the maximum load that can be dnven at 70°C Without exceeding the package
rating under the given conditions.
Note 2: The rise time given is the minimum that can be used without exceeding the peak tranSient
output current for the full rated output load.

circuit operation
Input current forced into the base of 01 through
the coupling capacitor C 'N causes 01 to be driven
into saturation, sWinging the output to

drive through R2, turning 02 on. This supplies
current to the load and the output swings positive
to V+ - V SE '

V- + V CE (SAT) + VDIDDE'

It may be noted that 01 always sWitches off
before 02 begins to supply current; hence, high
Internal transient currents from V+ to V- cannot
occur.

When the input current has decayed, or has been
switched, such that 01 turns off, 02 receives base

9·82

3:
::s:::

o
o
""'"
w
.......
3C

typical performance characteristics
FIGURE 1. Output Load vs Voltage
Swing

FIGURE 2. Transient Power vs Rep.
Rate vs CL

FIGURE 3. Transient Power vs Rep.
Rate vs CL
700

700
t r =10ns

30

~

>-,

20

~

~

\\ ,\
.\ \\'\.
\\ ~

g

'"3!

~

""

" ""

10

~

in

~ ~ r--..

20 ns 30 ns 40 ns 50 ns 60 ns

1000

g

~

600

g

600

500

'"3!

500

~

400

""~

300

~

'""""

200
100

2000

10 20

3000

30 40

FIGURE 4. Average Internal Power vs
Output SWing vs Duty Cycle

30

~

I;;,

20

~
10

V

i

30%

100

5,0 60 7:0

10

V . /~

V ~~

l~ I%; V

"

\50%

:;'"
i

.s 3000
w
u

500

""~" 2000
~

400

R1N "'10n

5

25 45

65

85 105 125

AMBIENT TEMPERATURE 1°C)

V

--//

RIN '" 47n

V V
~

II.. '/': ~ V
~

-55 -35 -15

400

AVERAGE POWER 'mW)

:::on ~

R'N' 20n,--j

""~ 1000
300

300

RIN

Z

~
~

=>

~

200

70

DM8830 DRIVER

Vee::: 5V

~

100

50 6,0

FIGURE 5. Typical Clock Pulse Variations FIGURE 6. RIN VSCIN vs Pulse Width
vs Ambient Temperature

w

M
~
'ITP

20 30 4,0

REPETITION RATE IMHz)

g

40%

n

300
200

600
20%

10%

o

o
....
w

400

REPETITION RATE (MHz)

MAXIMUM OUTPUT LOAD (pF)

::s:::

V

./

...

f-ji.g1n

~ :;:;.--

200

100

400

300

PU LSE WIDTH (ns)

FIGURE 7. Package Power Derating

1.5

~

1.0

'"

""

I"

I
,5

25

50

75

I'\.

100

125

150 175

AMBIENT TEMPERATURE rC)

ac test circuit

timing diagram

A

Inpu!puI5l!w,dl~

> clock pulse
WIdth

~"
V

,"

OV

VOUT

F"-=;-t------ V2 ~-16V
v,~

ft

0 tG 5V pulse, f- SOD kHz, DC - 5[1%, t,.~d It

< 10 n.

Figure 8

9·83

(.)

M
....
o

pulse width

o
::J:
:E
.......

Maximum output pulse width IS a function of the
mput driver characterIStiCS and the coupling
capacitance and resistance. Aft~r bemg turned on,
the Input current must fall from Its mitial value
I, N peak to below the input threshold current
I, N min "" VB E fR 1 for the clock driver to turn
off. For example, referring to the test circuit of
Figure 8, the output pulse width, 50% to 50%, IS
given by

....

M

o

o

::J:

:E

+ ROC 'N In liN peak", 400 ns.
liN mm

For operation with the mput pulse shorter than
the above maximum pulse width, the output pulse
width will be directly determined by the input
pulse width.
PWOUT ~ PW'N + td OFF + td ON +

1

"2

(t'all

+ t"",)

Typical maximum pulse width for various C, Nand
R'N values are given In Figure 6.

fan-out calculation
The drive capability of the MH0013 is a function
of system requirements, I.e., speed, ambient tem·
perature, voltage sWing, drive circuitry, and stray
wiring capacity.
The following equations cover the necessary calcu·
lations to enable the fan·out to be calculated for
any system condition. Some tYPical fan·outs for
conditions are given m Table 1.
TranSient Current

The maximum peak output current of the MH0013
IS given as 600 mAo Average transient current reo
qUlred from the driver can be calculated from'
I ~ C L (V+ - V-)

TR

(1)

ThiS can give a maximum limit to the Iqad.
Figure 1 shows maximum voltage sWing and
capacitive load for various rISe times.
1. TranSient Output Power
fhe average transient power IP AC) diSSipated IS
equal to the energy needed to charge and discharge
the output capacitive load ICc) multiplied by the
frequency of operation IF).
PAC ~ C L X IV+ - V-)2 X F
(2)
Figures 2 and 3 show transient power for two d,f·
ferent values of (V+ - V-) versus output load and
frequency.
2. Internal Power
"0" State
Negligible 1<3 mW)

"I" State
(3)

9·84

Figure 4 gives varIOus values of internal power
versus ouptut voltage and duty cycle .

3 Input Power
The average Input power IS a function of the Input
current and duty cycle Due to Input voltage
clamping, thiS power contribution IS small and can
therefore be neglected. At maximum duty cycle of
50%, at 25" C, the average Input power IS less than
10 mW per phase for R,NC 'N controlled pulse
Widths For pulse Widths much shorter than
R,NC ,N , and maximum duty cycle of 50%, Input
power could be as high as 30 mW, since liN peak IS
maliltained for the full duration of the pulse
Width
4 Package Power DISSipatIOn
Totdl Average Power

c

TranSient Output Power +
Internal Power
Input
Power

TYPIcal Example Calculation for One Half
MHOOl3C
How many MM506 shift regIsters can be driven by
an MH0013C driver at 1 MHz uSing a clock pulse
Width of 400 ns, rISe tIme 30-50 ns and 16 volts
amplitude over the temperature range 0-70°C?
Power Dissipation
From the graph of power dISSIpation versus tem·
perature, F,gure 7, It can be seen that an
MH0013C at 70°C can dISSIpate lW WIthout a heat
Sink, therefore, each half can dISSipate 500 mW.
TranSIent Peak Current Limitation
From F,gure 1 (equation 1), It can be seen that
at 16V and 30 ns, the maximum load that can be
driven IS limited to 1140 pF.
Average I nternal Power
Figure 4 (equation 3) gives an average power of
102 mW at 16V 40% duty cycle.
Input power will be a maximum of 8 mW
Transient Output Power
For one half of the MH0013C
500 mW = 102 mW + 8 mW
+ transient output power
390 mW = transient output power
USing Figure 2 (equation 2) at 16V, 1 MHz and
390 mW, each half of the MH0013C can drIVe a
1520 pF load. ThiS IS, however, In excess of the
load derived from the transient current limitation
(Figure 1, equation 1), and so a maximum load
of 1140 pF would prevail.
From the data sheet for the MM506, the average
clock pulse load IS 80 pF. Therefore the number
1140
of deVices driven IS 80 or 14 registers.
For nonsymmetrlcal clock Widths, drive capability
IS Improved

s::I:
o
o

Interface Ci rcuits
MH0025/MH0025C two phase MOS clock driver

N
U1
........

general description

features

:I:

The MH0025/MH0025C IS monolithic, low cost,
two phase MOS clock driver that IS designed to be
driven by TTLlDTL line drivers or buffers such as
the DM932, DM8830, or DM7440 Two input
coupling capacitors are used to perform the level
shift from TTLlDTL to MOS logic levels. Optimum
performance In turn-off delay and fall time are
obtained when the output pulse IS logically controlled by the Input However, output pulse widths
may be set by selection of the Input capacitors
eliminating the need for tight Input pulse control

•

s:

o

o

8-lead TO-5 or 8-lead dual-In-Ilne package

N
U1

• High Output Voltage SWings-up to 30V
• High Output Current Drive Capability-up to
15A
•

(")

Rep Rate 1 0 MHz Into> 1000 pF

• Driven by DM932, DM8830, DM7440(SN74401
• "Zero" Qu lescent Power

connection diagrams
Dual-I n-Line Package

Metal Can Package

v'

NC

8 N C.

1

7 OUTPUT A

INPUT A 2

V-

v-

6

3

INPUT B 4

Note Pm 4 eonnected to case
TOP VIEW

v'

5 OUTPUT B
TOP VIEW

typical application

ac test circuit

timing diagram

Inputw~veform

PRR '05MHz

V OlJT 1

Vp p ~ 5 OV

A Input pulse width
clock pulse

~

5V

V

I~'

width

OV

tr~tf<10ns

Pulsew,dth
A 1 Ups

V' = OV

B 200ns

BlnputPlilsewldth~90%
sets cloc~ pulse
width

Clock pliise
uutput

10%

----~5V

' -_ _ _ _ _ _ OV

t~ ON
10%

1-1-',..'"_'>_ _ _ _

V3 " oV

10%

V OUT 2

Vour

""01,sa selected high speed NPN switchmgtransistor

~-'---"""'-1-+----------- V2=-16V

9-85

(.)
It)

N

absolute maximum ratings

o
o
::r:
:E
.......

(v+ - V-)'Voltage Differential
I nput Current
Peak Output Current
Power Dissipation
Storage Temperature
Operating Temperature MH0025
MH0025C
Lead Temperature (Soldering, 10 sec)

It)

N

o
o
::r:
:E

30V
100 mA

L5A
See Curves
-65°C to +150°C
-55°C to +125°C
O°C to +85°C
300°C

electrical characteristics
PARAMETER

(Note 1) See test circuit.

CONDITIONS

TYP

MIN

T dON
CIN ~ .001 !iF

T rtse
T doFF (Note 2)

>-

T lall (Note 2)

RIN ~
~

CL

on

.001 !iF

T lall (Note 3)

P.W. (50% to 50%) (Note 3)

VIN ~ OV, lOUT ~ -1 mA

UNITS

15

30

ns

25

50

ns

30

60

ns

60

90

120

ns

100

150

250

ns

500

ns

V+ - 0.7V

v

'"

Positive Output Voltage SWing

MAX

V+ - 1.0

v

Negative Output Voltage SWing liN ~ 10 mA, lOUT ~ 1 mA
Note 1. MiniMax limits apply aCfOSS the guaranteed operating temperature range of _55°C to +12SoC
for MH0025 and O°C to 85°C for MH0025C. TYPical values are for +25°C
Note 2. Parameter values apply for clock pulse Width determined by Input pulse Width.
Note 3. Parameter values apply for Input pulse Width greater than output clock pulse Width

typical performance
Package Power Derating

Transient Power vs Rep. Rate

DC Power (POC) vs Duty Cycle
160

_.- MH0025H &MH0025CH STILL AIR
14 _
12

0,6
0.4

"l3
::

ill
i5
'"
1O

f--+---+-+---i'r'~!--+-+---i

02~~-+-+++'~-r~
25

50

60

~

40

0

20

u

75 100 125 150

10

TEMPERATURE I'CI

15

=(V+

~
~...

2800

2400
2000

~ 1600
~ 1200
C>

800

c(

::

400
0

\
\1\
\.

I\.

~/

V

,

MHoom: v

.,

"

.......
.' i'o. ....... '"

lOV TA

l~

IP'
10

20

40

50

r-

--

OUTPUT PULSE wrOTH VS C'N FOR lONG
INPUT PUts£S

f--

rr-

100

Hq....
-++-H-+--iIH-+-t-I
200

600

1~00
tiN

~

S

v+ _V-

60

IV' - V-I' (OCI
Poe'" - - 1 ' - -

- v-)2f CL

r-...

::~:;~Nvv_ ~ v: ~~l~VT:~ ~oro~ c~

(f) Ok) (V+ _ V-)2

30

I'- .....

(P MAX ) (1 k) - (V+ - V-)2 (DC)

9·86

./

211VT.25C

FREQUENCY (MH,I
-::;

/ / /v. -)'1k-

C

0,2 04 0.6 0,8 1 0 1 2 1 4 1 6 1.8 2,0

Cl

X

DUTY CYCLE (%1

1100
MHOOl5CNV

19

/

/

Output P.W. Controlled by CIN

,11'1,

3200

<.lv\116V

I/j~

0

20

Maximum Load Capacitance

~

/

PULSE REPETITION RATE (MHz)
PAC

DC

r/

80

OL-L-~~-wLL-L~~

0

/

;:: 100

fI"k\
f---t--t---1"'-:''I<-+--1-+---i

-25

/

oS 120

1.0 ~----i'.C-+-+-+--+--+--I

08

X

V' - v-· 20V/
140

MH0025CN SOLDERED INTO PC
BOARD WITH 8 Co CON~UCTORS
2 OZ. 03 IN WIDE

1400 1800
(pFl

2200

70 85

s:

:I:

o
o

applications information

N
Circuit Operation
Input current forced Into the base of 0 1 through the
cou pll ng capacitor C 'N causes 0 , to be driven Into
saturation, sWinging the output to V- + VcE(satl +
VOlode'

When the Input current has decayed, or has been
sWitched, such that 0 , turns off, O2 receives base
drive through R2 , turning O2 on. This supplies
current to the load and the output sWings positive
to V+ - V SE '
It may be noted that 0 , must sWitch off before
O2 begins to supply current, hence high Internal
transients currents form V- to V+ cannot occur.

~;

J '

U'I

culatlons to enable the fan·out to be calculated
for any system condition

.......

Transient Current

:I:

s:

o
o

The maximum peak output current of the MH0025
IS given as 1.5A. Average transient current required
from the driver can be calculated from
C L (V+ - V-I

I~---­

N

U'I
(")

(11

t,

Typical rise times into 1000 pF load is 25 ns
For V+ - V- ~ 20V, I ~ O.SA.
Transient Output Power
The average transient power (P,cl dissipated, IS
equal to the energy needed to charge and discharge
the output capacitive load (CLI multiplied by the
frequency of operation (fl.

...-------.-or

1

t)'
....

"'T' c,~

+-~

I
II\IPUT

J", ~

-<> OUTPUT

,:;+---...--I
L-__

~

__

~

PAC ~ C L X (V+ - V-1 2

X

f

(21

For V+ - V-~ 20V, f ~ 1.0 MHz, C L ~ 1000 pF,
PAC ~ 400 mW.
I nternal Power

______

~,

FIGURE 1. MH0025 Schematic (One·Half Circuit)

Fan-Out Calculation
The drive capability of the MH0025 IS a function
of system requirements, I.e. speed, ambient tem·
perature, voltage SWing, drive CIrCU Itry, and stray
wirl ng capacity.
The following equations cover the necessary cal·

"0" State

Negligible «3 mWI

"1" State
(V+ _ V-12

~

~-R-2---

~

SO mW for V+ - V- ~ 20V, DC ~ 20%

x Duty Cycle

(3)

Package Power Dissipation
Total average power
Internal power

~

transient output power +

example calculation
How many MM506 shift registers can be droven by
an MH0025CN driver at 1 MHz uSing a clock pulse
width of 200 ns, rise time 30-50 ns and 16V am·
plltude over the temperature range 0-70°C?
Power D ISSI patlon:
At 70°C the MH0025CN can diSSipate 630 mW
when soldered Into printed CirCUit board
TranSient Peak Current Limitation:
From equation (11, It can be seen that at 16V and
30 ns, the maximum load that can be driven IS
limited to 2S00 pF.
Average Internal Power:
Equation (31. gives an average power of 50 mW at
16V and a 20% duty cycle.

For one half of the MH0025C, 630 mW 72 can be
diSSipated.
315 mW

~

50 mW + tranSient output power

265 mW

~

transient output power

USing equation (2) at 16V, 1 MHz and 250 mW,
each half of the MH0025CN can drive a 975 pF
load. ThiS IS, less than the load Imposed by the
transient current limitation of equation (1) and
so a maximum load of 975 pF would prevail
From the data sheet for the MM506, the average
clock pulse load is SO pF. Therefore the number
975
of deVices driven IS 80 or 12 registers.

9-S7

u

CD
N

Interface Ci rcuits

o
o

::t

~
.......

CD
N

MH0026/MH0026C 5 MHz two phase MOS clock driver

o
o

general description

::t
~

The MH0026/MH0026C is a low cost monolithic
high speed two phase MOS clock driver and interface circuit. Unique circuit deSign along with
advanced processing provide both very high speed
operation and the ability to drive large capacitive
loads. The deVice accepts standard TTLlDTL outputs and converts them to MOS logiC levels. I t may
be driven from standard 54/74 series gates and
flip-flops or from drivers such as the DM8830 or
DM7440. The MH0026 IS Intended for applications
In which the output pulse width IS logically controlled' I.e., the output pulse width is equal to the
Input pulse width.

•
•

The MH0026 IS Intended to fulfill a wide variety of
MOS interface requirements. As a MOS clock driver
for long silicon gate shift registers, a single deVice
can drive over 10k bits at 5 MHz. S'x devices provide Input address and precharge drive for a 8k by
16 bit MM 1103 RAM memory system. Information
on the correct usage of the MH0026 In these as well
as other systems IS Included In the applicatIOn section starting on page 5. A thorough understanding
of its usage will Insure optimum performance of the
deVice.

features
•
•
•
•
•

Low power consumption In MOS "0" stat82 mW
Drives to O.4V of GND for RAM address drive

Fast rISe and fall tlmes-20 ns with 1000 pF load
High output sWlng-20V
High output current drive-±1.5 amps
TTLlDTL compatible Inputs
High rep rate-5 to 10 MHz depending on load

The deVice IS available In 8-lead TO·5, one watt
copper lead frame 8-pln mlnl·DIP, and one and a
half watt TO-S packages.

schematic diagram

connection diagrams

11/2 of CirCUit Shown)
S-Lead TO-5

V'

EXTERNAL
C"

DO

<>1 ~NPUT

MHOO26H/MHOO26CH
8-Lead Dual-I n-Llne Package

OUTPUT

"B'·

INPUTA

z

J OUTPUrA

v- 3

6

INPUT B 4

v'

5 OUTPUT

TOPVIJ:W

MHOO26CN

D5

12· Lead TO-S
v-

"

MH0026G/MH0026CG

9-88

~

3:
o
o
::J:

absolute maximum ratings
v+ -V- Differential Voltage
I nput Current
Input Voltage (V ,N - V-I
Peak Output Current
Power DIssipation
Operating Temperature Range

22V
100mA
5.5V
1.5A
See curves
-55°C to +125°C
O°C to 85°C
-65°C to +150°C
300°C

MH0026
MH0026C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

N

0')

.......

3:
o
o
::J:
N

0')

(')

dc electrical characteristics

(Notes 1 & 2)
LIMITS

CONDITIONS

PARAMETER
LogiC "1" Input Voltage

Y OUT = V- + 1.0Y

LogiC "1" Input Current

Y'N - V- = 2.5Y, V OUT = V- + 1.0V

10

= y+ - 1.0Y

Y'N - Y- = OY, Y OUT = y+ - 1.0V

Logic "0" Output Yoltage

y+ = +5.0Y, V- = -12.0V
y+ -1.0

Y'N - Y- = OAV

Logic" 1" Output Yoltage

V+ = +5.0Y, YY'N = -9.5Y

Logic "1" Output Yoltage

Y'N - Y- = 2.5V

"ON" Supply Current

y+ - Y- = 20Y, Y'N - Y-

"OF F" Supply Current

y+ - Y-

Y- + 0.5

Y'N - Y-

= 2.5V
= O.OV

V

Turn-Off Delay (tOFF)

5.0

= 17Y, CL = 250 pF
= 17Y, CL = 500 pF

-11.0

Y

Y- + 1.0

Y

30

40

mA

10

100

JlA

12

ns

15

ns

(Notes 1 & 2, AC test circuit, T A
5.0

= 25°C)
7.5

12

ns

12

CL = 1000 pF
Falltlme (tf) - Note 3

Y
JlA
Y

V+ - 0.7
-11.5

Turn·On Delay (tON)

V+ - Y-

4.3

mA

= -12.0Y

ac electrical characteristics

y+ - Y-

0.4
-10

-0.005
4.0

Y'N =-11.6
Logic "0" Output Yoltage

Rise time (t,) - Note 3

15

0.6

Y OUT

LogiC "0" Input Current

UNITS
V

1.5

2.5

LogiC "0" Input Yoltage

= 20Y,

MAX

TYP

MIN

= 17V, CL = 250 pF
V- = 17V, CL = 500 pF

15

18

ns

20

35

ns

V+ - Y-

10

V+ -

12

16

ns

17

25

ns

CL

= 1000 pF

Note 1: These specifications apply for V+ - v-

=

10V to 20V, CL

=

ns

1000 pF, over the temperature range -55°C to +125° C

for the MH0026 and O°C to +85°C for the MH0026C, unless otherWise specified.
Note 2: All typical values for the TA = 25 C
Q

Note 3: Rise and fall time are given for MOS logiC levels,
fall. See waveforms on the following pages.

1

e , rise time

IS

transistion from logiC "0" to logiC "1" which is voltage

ac test circuit

switching time
waveforms

v+ ~ ov

;tl>-h:y

...:ih"~ T·:.)'It-

1.~:J
INPUT

Q----+-J1
II

I

MHIlD26

I

L~p~
V-~-21l0V

...

INPUT~

/

OUTPUT-

aUTeur

t"
-

9-89

(.)
CD

N

typical performance characteristics

o
o

::t

:E
.......

12

N

10

TO·5 & DIP Power Ratings

o

::t

:E

400
MH0026G AND MH0026CG IN

MH0026CN SOLDERED TO PC

CD

o

--

!

z
0
>=

DB

f
~
0

06

a:

04

~

2

~OARD WlTH 'CU CONDUCTORS
_202, OliN WIDE

~

!

INSTILLAIRWlTHClIP

z

~ONHEATSINK

.........

0

::>=

i'-.. ....

17 ....

MH002&H& MHOOZ6CH
IN STILL AIR

02

_

MHOO28H'ANDMH'OO28CH

25

50

15

ill

15

~

1.0

is
a:

~

100

-

20

Cl =2000 P

BOO
100

a:

BOO

2
....

500

~

~ 400
300
a:
....
200

I

100

"

25

II.

I'!;...

...

"....

V

8.0

CL

100

40

125

10

~

65

>

I--"

15

1:l

40

50

/

V.

,

..,,-

l>'

/. V V
(V~ _ V-)2
~" PDc=~(DC)

10

150

20

30

40

50

60

10

BO

DUTY CYCLE (%1

Input Current vs Input Voltage
14

=0

~

V+ -V- = 20V

f-"

"....
oS
~

12

TA =25'C
v+" 20V

v-= ov

10

1/

~

V

5

V

~

V

V+ -V- = 17V

_.-J

f-"

6.0

30

Bo

I

oS
~
~

Cl 200p,t...

20

r> ~

120

DUTY CYCLE = 20%
f:::1MHz

I I

10

r--.....

15

/'

200

16

85

1000 pF

....rr

50

1/
v· - V·= 20V_ ./
v· - v: = 1JV '-, V
v>-v =12~)(

AMB1ENTTEMPERATURE (OCI

VI
·1 1

V-

........

240

TA =25°C
Cl .:" 0

~
2 160

STlY AIR

150

Cl - 500pF

I I
J

!O
oS

Supply Current vs Temperature

I I

/

I

il!

"

CL

2BO

1/

MH0026G AND
MHOj26CG liN

05

AV+.V-=17V

I

...... ,
...........

Transient Power (P ACI vs
Frequency
900

320

TYPE 215-1 9 OR EQUIV I

a:

2

125

360

I- ~~I!~ :I~~~~T:E~~='~~OY

-

25

AMBIENT TEMPERATURE ("CI

!O
oS

DC Power (PDCI vs
Duty Cycle

TO·8 Pack_ Power Rating
30

-15 -50 -25

0

25

50

05

15 100 125

10

20

15

25

INPUT VOLTAGE (VI

FREQUENCY (MHd

TEMPERATURE ('C)

Rise Time YS Load Capacitance

Fall Time vs Load Capacitance

Optimum Input Capacitance vs
26

Output Pulse Width

25

800
V+ -V·=2DV

v+ - V-",'15V to 20V

]

20

]:

~
....

v+

-V-"ZOV

..-:;;;

20

~~;;.
V+ -V-" 17V

15

w

....%e>

!
....~

15

./

~

!

g;

....

11

I-~+ -~. =2~V
CIN

I- RD= 5011

l

tON
10

"

,/

l/ ~

tOFF

./

/"

-15 -50 -25

0

25

20

!w

~

II
o

200

50

400

600

BOO

~

~

200

~

100

1000

200

15
10

I I

:!
~....
~
~

:;:

CL -0

-15 -50 -25

BOO 1000 1200

l-

V
20

I
I

15 100 125

600

Fall Time vs Temperature
25

V+-V-=2DV

C~F
l ~:;;-

r-- I-

400

INPUT CAPACITANCE, C'N (pFI

CL " 1000 pF

I
I
I

............

TEMPERATURE I"C)

9·90

V
~
w

I

0

TA =25°C

300

Rise Time vs Temperature
25

I

=Cl '" 1000 pF

.,

Cl = 1000 pF

LOAO CAPACITANCE (pF)

Turn-On & Turn-Off Time
vs Temperature

!

400

TA = 25"C

LOAO CAPACITANCE (pFI

14

500

~

~....
Ro::: 50n

Ro " SOn
TA = 25°C

600

i
~

V

10

~

,. "

100

Vi= 20V

V'
~

-

C'IO~"'""

15

I---"

Cl~~
10

J

V

I--'

CL = 0

I

o
0

25

50

15

TEMPERATURE rCI

100 125

I

-15 -50 -25

0

25

50

15 100 125

TEMPERATURE I"CI

s::::I:

typical applications (cont.)

o
o

N

0)

AC Coupled MOS Clock Driver

........

.,v

s::::I:

o
o
G,'

MH0026CN

N

1

0)

TWO PHASE
CLOCK TO

(")

SHIFT REGISTERS

1000pF

~
54/74SER1E$

GATES AND FLOPS

-12V
"See apphcalmnssectlOn on page 5fol detailed mformatumon mput!o IItPII'tdeslllncllterlOr

DC Coupled RAM Memory Address or Precharge
Driver (Positive Supply Only)
t17V

100pF

100pF

MHOO26CN

1

TO ADDRESS
LINES ON

MM1103TVPE

MEMORY SYSTEM

1/2DM740D

Precharge Driver for MOS RAM Memories

..

CONTROl.

r+-+---+----~~

MEMORI
SHEeT

9-91

(..)

cc
N
o
o

typical applications

::c

DC Coujlled MOS Clock Driver

,:::E

+50V

CC
N

o
o

::c

"

:::E

,10UlPOT

lNPU1_'"1"........"

<>-+--

-12 V

Logicelly Controll
...._ _...!£.I

INPUT '"

TOADamONAL
} SHIFT flEGI~TERS

If,

...-----....----0-",
f'----1

~
•

b

CLtlCK1NPUT-2fo

MESHOTDUTPuT-ADJPULSeWIOTH
PHASE ONE outPut
PHASEi'WD OUTPUT

9-92

s:
J:

o

application information

o

1.0 I ntraduction
The MH0026 IS capable of delivering 30 watts
peak power (1.5 amps at 20V needed to rapidly
charge large capacitative loads) while Its package IS
limited to the watt range. This section descnbes
the operation of the circuit and how to obtain
optimum system performance. If additional design
information is required, please contact your local
National field application engineer.

N

a simplified diagram, 0] (Figure 3) provides 0.7V
dead zone so that 0, IS turned ON for a nsing
input pulse and O 2 OFF pnor to 0] turning ON a
few nanoseconds later. O2 prevents zenenng of the
emltter·base junction of O 2 and provides an initial
discharge path for the load via 0, Dunng a falling
input, the stored charge In 0, is used beneficially
to keep 0, ON thus preventing 0, from conduct·
ing until 0] IS OFF. 0] stored charge is quickly
discharged by means of common·base transistor

en

........

s:
J:

o
o
N

en
(")

04.
2.0 Theory of Operation
Conventional MOS clock dnvers like the MH0013
and similar devices have relied on the CirCUit
configuration In Figure 1. The AC coupling of an
input pulse allows the device to work over a wide
range of supplies while the output pulse width
may be controlled by the time constant - R] XC] .

The complete CirCUit of the MH0026 (see sche·
matlc on page 1) basically makes Darllngtons out
of each of the transistors in Figure 3.

, - - -....-ov·

.....- ...-ov·
EXTERNAL

C1
IN

+-14"'-0

EXTERNAL
C1
IN

OUT

OUT

<>-1 f-<'

FIGURE 1. Conventional MOS Clock Drive

O2 provides 0.7V of dead·zone thus preventing OJ
and O 2 from conducting at the same time. In
order to drive large capacitive loads, 0] and O 2
are large geometry devices but Cob· now limits
useful output rise time. A high voltage TTL output
stage (Figure 2) could be used; however, during
switching until the stored charge is removed from
0], both output devices conduct at the same time.
This is familiar in TTL with supply line glitches in
the order of 60 to 100 mAo A clock driver built
this way would Introduce 1.5 amp spikes into the
supply lines.

ExTERNAL

C1

IN

<>-1 f-<'

OUT

<>-1 f-o
D1

FIGURE 3.

Simplified MH0026

When the output of the TTL Input element (not
shown) goes to the logic "1" state, current IS
supplied through C 'N to the base of 0] and O 2
turning them ON, and 0 3 and 0 4 OF F when the
input voltages reaches 0.7V. Initial discharge of
the load as well as E·B protection for 0 3 and 0 4
are provided by 0] and O2 . When the input
voltage reaches about 1.5V, 0 6 and 0 7 begin to
conduct and the load IS rapidly discharged by 0 7 .
As the Input goes low, the input side of C, N goes
negative with respect to V- causing 0 8 and 0 9 to
conduct momentarily to assure rapid turn·off of
O2 and 0 7 respectively. When 0] and O 2 turn
OFF, Darlington connected 0 3 and 0 4 rapidly
charge the load toward V+ volts R6 assures that
the output will reach to within one VB E of the
V+ supply
The real secret of the device's performance IS
proper selection of transistor geometries and resis·
tor values so that 0 4 and 0 7 do not conduct at
the same time while minimizing delay from Input
to output.
3.0 Power Dissipation Considerations

FIGURE 2.

Alternate MOS Clock Drive

.Unlque cirCUit design and advanced semiconductor
processing overcome these clasic problems allow·
ing the high volume manufacture of a device, the
MH0026, that delivers 1.5A peak output currents
with 20ns rISe and fall times into 1000pF loads. In

There are four considerations In determining
power dissipatIOns.
1 Average DC power
2. Average AC power
3. Package and heat Sin k selection
4. Remember-2 dnvers per package

9·93

u
CD
N

application information (cont.)

o
o

The total average power dissipated by the MH0026
is the sum of the DC power and AC transient
power. The total must be less than given package
power ratings.

J:

:!!

.......
CD
N

Thus for RAM address line applications, package
type and heat sink technique will limit drive
capability rather than AC power.

3.2 AC Transient Power (per driver)

o
o

AC Transient power IS given by:

J:

Since the device dissipates only 2mW with output
voltage high (MOS logic "0"), the dominating
factor in average DC power is duty cycle or the
percent of time in output voltage low state (MOS
logic "1"). Percent of total power contributed by
Poc is usually neglible in shift register applications
where duty cycle is less than 25%. Poc dominates
in RAM address line driver applications where
duty cycle can exceed 50%.

:!!

POC ~ (V+ - V-I X (is(LDW)) X
(
ON time
)
OFF time-ON time
or Poc = (Output Low Power) X (Duty Cycle)

Example 1: (V+

@

= +5V,

(V+ - V-I

V-

=

-12V)

a) Duty cycle = 25%, therefore
Poc = 17V X 40mA X 17/20 X 25%
Poc = 145mW worst·case, each side
Poc = 109mW typically
b) Duty cycle = 5%
Poc = 21mW
c) See graph on page 3
The above illustrates that for shift register applica·
tions, the minimum clock width allowable for the
given type of shift register should be used in order
to drive the largest number of registers per clock
driver.
Example 2: (V+

= +17V, V- = GND):

a) Duty cycle = 50%
Poc = 290mW worst·case
Poc = 21BmW typically
b) Duty cycle = 100%
Poc = 5BOmW

9-94

strays and wiring)
Example 3: (V+

= +5V,

V-

= -12V)

C L (nF) X 10- 9

DC Power is given by:

IS(LOW) = Is

C L = Load capacitance (including all

PAC = 17 X 17 X f(MHz) X 10 6 X

3.1 DC Power (per driver)

where:

where: f = frequency of operation

PAC = 290mW per MHz per 1000pF
Thus at 5MHz, a 1000pF load will cause any driver
to dissipate one and one half watts. For long shift
registers, a driver with the highest package power
rating will drive the largest number of bits for the
lowest cost per bit.

3.3 Package Selection
Power ratings are based on a maximum junction
rating of 175°C. The following guidelines are
suggested for package selection. Graphs on page 3
illustrate derating for various operating tempera·
tures.
3.31 TO-5 ("H") Package: Rated at 600mW still
air (derate at 4.0mWtC above 25°C) and 900mW
with clip on heat sink (derate at 6.0mWtC above
25°C). This popular hermetic package is recom·
mended for small systems. Low cost (about 10<,1)
clip-on-heat Sink increases driving capability by
50%.
3.32 B·Pin ("N") Molded Mlni·DIP: Rated at
600mW still air (derate at 4.0mWtC above 25°C)
and 1.0 watt soldered to PC board (derate at
6.6mW/oC). Constructed with a special copper
lead frame, this package is recommended for
medium size commercial systems particularly
where automatic insertion is used. (Please note for
prototype work, that this package is only rated at
600mW when mounted in a socket and not one
watt until it is soldered down.)
3.33 TO-B ("G") Package: Rated at 1.5 watts
stili air (derate at 10mWtC above 25°C) and 2.3
watts with cil p on heat Sink (Wakefield type
215-1.9 or equivalent-derate at 15mWtC).
Selected for its power handling capability and
moderate cost, this hermetic package will drive •
very large systems at the lowest cost per bit.

s:

:I:

o

application information (cont.)

o

3.4 Summary-Package Power Considerations

In

pFI

10-3

= --;;-

pF I

=

Table I illustrates MH0026 drive capability under
various system conditions.

0)

by:

o
o

t +t
(PW)OUT= (PW),N+¥= PW ,N +25ns

S X 10- 3 X

Two external Input coupling capacitors are reqUired to perform the level translation between
TTLlDTL and MOS logiC levels. Selection of the
capacitor Size is determined by the desired output
pulse width. Minimum delay and optimum performance IS attained when the voltage at the input
of the MH0026 discharges to just above the
deVices threshold (about 1.5V). If the input is
allowed to discharge below the threshold, to F F
and tl will be degraded. The graph on page 3
shows optimum values for C'N vs desired output
pulse Width. The value for G'N may be roughly
predicted by:

Pm "X ImWI X SOO - V S 2 X Dc X 103
V S ' X SOO X f(MHzI

Where: n = number of drivers per pkg. (lfor
the MH0026)
Pmax{mw)(T A , pkg) = Package power
rating In mililwatts for given package,
heat sink, and max, ambient temperature (See graphs)
Req

:I:

The MH0026 is intended for applications in which
the input pulse width sets the output pulse width;
i.e., the output pulse width is logically controlled
by the input pulse. The output pulse width is given

X

(V"" - V I' X R,q X f(MHzI

In

s:

Time in output low + Time in output high state

4.0 Pulse Width Control

Pm"xlmW) (T A,pkgl X R,q - (V+ - V-I' X lOci X 103

C L (max

0)

.......

Time in output low state

The maximum capacitative load that the MH0026
can drive is thus determined by package type, heat
sink technique, ambient temperature, AC power
(which is proportional to frequency and capacitive
load) and DC power (which is principally determined by duty cycle). Combining equations previously given, the follOWing formula is valid for
any clock driver with negligible input power and
negligible power In output high state:

C L (max

N

Dc = Duty Cycle =

= equivalent Internal resistance

= (V+ - V-)/I S { Low) = 500 ohms (worst
case over temperature for the MH0026 or
660 ohms typically)

Req

For an output pulse width of 500ns, the optimum
value for C, N is:

Vs = (V+ - V-I = total supply voltage across
device

C, N = (2 X 10- 3 )(500 X 10-9

)

==

1000pF

TABLE 1. Worst Case Maximum Drive Capability for MH0026*
TO-8WITH
HEAT SINK

PACKAGE TYPE

TO-8
FREE AIR

MINI· DIP
SOLDERED DOWN

TO·S AND MINI·DIP
FREE AIR

Max.
Max

Operating

Ambient

~

60°C

8SoC

60°C

8S'C

60'C

8S'C

60a C

85°C

-+
Frequency j
Duty Cycle

100kHz

5%

30 k

24 k

19 k

15 k

13 k

10k

7.Sk

SOOkHz

10%

6.Sk

5.1k

4.1k

3.2k

27k

2k

1.5k

1MHz

20%

2.9k

22k

1.8k

1.4k

1 1k

5.8k
1.1k

840

600

430

2MHz

25%

850

650

S50

400

280

190

SMHz

25%

620

470

380

290

240

170

120

80

10MHz

25%

280

220

170

130

110

79

-

-

*Note

l.4k

1.1k

Values In pF and assume both Sides In use as non-overlaplng 2 phase driver, each Side operating
at same frequency and duty cycle With (V+ - V~)

17V For loads greater than 1200 pF,

rise and fall times Will be limited by output current, see Section 5

a

9-95

N

n

u
CD
N

application information (CO nt.)

::I:

5.0 Rise & Fall Time Considerations(Note 3)

o
o

:E
.........

The MH0026's peak output current is limited to
1.5A. The peak current limitation restricts the
maximum load capacitance which the device is
capable of driving and is given by:

CD
N

o
o

::I:

I = CL

:E

The rise time,
predicted by:

t"

dv

at ,;;;

1.5A

7.0 Clock Line Cross Talk

for various loads may be

t, = (6V)(250 X 10- '2 + C L )
Where: 6V = The change In voltage across C L

=

V+ - VC L = The load capacitance
For V+ - V- = 20V, C L = 1000pF, t, is:
t,

=

(20V) (250 X 10- '
= 25ns

2

+ 10- 12 )

For small values of CL , equation above predicts
optimistic values for t,. The graph on page 3
shows tYPical nse times for various load capaci'
tances.
The output fall time (see Graph) may be predicted
by:
tf
2.2R(C s +~)

=

hFE

practice, determination of a value for L IS rather
difficult. However,R, is readily determined emper·
Ically, and values tYPically range between 10 and
51 ohms. R, does reduce rise and fall times as
given by:

+1

At the system level,voltage spikes from CPl may be
transmitted to CP2 (and vlce·vers,,) during the
transition of CPl to MOS logiC "1 ". The spike IS
due to mutual capacitance between clock lines and
IS, In general, aggravated by long clock lines when
numerous registers are being driven. TranSistors
0 3 and 0 4 on the CP2 Side of the MH0026 are
essentially "OFF" when CP2 is In the MOS logic
"0" state since only micro-amperes are drawn
from the device. When the spike is coupled to CP2,
the output has to drop at least 2 VB E before 0 3
and 0 4 come on and pull the output back to V+.
A simple method for eliminating or minimizing
this effect is to add bleed resistors between the
MH0026 outputs and ground causing a current of
a few milliamps to flow In 0 4 , When a spike is
coupled to the clock line 0 4 is already "ON" with
a finite hie' The spike is qUickly clamped by 0 4 ,
Values for R depend on layout and the number of
registers being driven and vary typically between
2k and 10k ohms.

6.0 Clock Overshoot
8.0 Power Supply Decoupling
The output waveform of the M H0026 can over·
shoot. The overshoot is due to finite inductance of
the clock lines. It occurs on the negative gOing
edge when 0 7 saturates, and on the positive edge
when 0 3 turns OFF as the output goes through
V+ - V be . The problem can be eliminated by
placing a small series resistor In the ouput of the
MH0026. The critical valve for R,= 2yLlCQ where
L is the self·inductance of the clock line. In

9·96

Power supply decoupling is a Widespread and
accepted practice. Decoupling of V+ to V- supply
lines With at least 0.111F non inductive capacitors
as close as pOSSible to each MH0026 is strongly
recommended. This decoupling is necessary
because otherwise 1.5 ampere currents flow during
logiC transition in order to rapidly charge clock
lines.

s:

:::t

o
o

Interface Circuits

N

.....

n

MH0027C dual high speed MOS interface driver
general description
The MH0027C is a dual high current active pull-up
designed to operate with a high current sink such
as the DH0034 or lM7541 A and thus provides fully
TTL compatlbte DC coupled Inputs The partitioning of current sinks and sources Into separate
packages provides higher overall power drive capability while minimizing system cost. The device is
intended for use as a drover for MOS RAM memories
such as the MMll03. The MH0027C IS capable of
sourcing over 1 ampere peak current with a rosetime of 25 ns Into 600 pF loads_

•

Peak output current In excess of 1 ampere

•

Fully compatible with DH0034 dual level shifter
and lM75450 series peropheral drivers.

•

Wide operating supply range -

•

Output voltage clamp

•

low power dissipation logiC "1" state

features

The MH0027C operates over an ambient temperature range of O°C to +85°C and is supploed in a
miniature 8-pln molded dual-in-Ilne package_

•

Fast rose times -

25 ns Into 600 pF load

5V to 25V

1 mW tYPical In

schematic and connection diagrams

v·
v"

,

.,
1k

.,

.. "

INPUT A

1k

'....:!.
J os

o.

,

~

7

J

OJ

'::.
07

•

~1l2

4
OUTPUT A

~

J

INPUT B

~QI

I

6

J

08

J

OUTPUT B

0'

v3

Dual-In-Line Package

tl .U.

INPUT A .....

vel...ll Li)
v- 2

1

7

ri>-l

INPUTB...J.U

..-

OUTPUT A

f!-v·

L~OUTPUT8

TOP VIEW

9-97

(J

.....

('II

o
o

absolute maximum ratings

J:

Continuous Supply Voltage
Peak Supply Voltage (10 ms)
Input Voltage
Output Voltage
Peak Output Current (each side)
Power DiSSipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

:E

electrical characteristics
PARAMETER

25V
30V
25V
Vee
1.2A
1.0W
O°Cto 85°C
-65°C to +150°C
300°C
(T A

= +25°C, v+ = 24V, Vel = 21V, unless otherwise specified)
LIMITS

CONDITIONS
MIN

= OV

Low Level Input Current (I,l)

V ,N

High Level Output Voltage (V OH )

Turn·On Time (t dON )

= 4 mA
IOl = 100 mA
Cl = 600 pF

Turn·Off Time (tdOFF)

Cl

Rise Time (t,)

Cl

Fall Time (t,)

Cl

IOH

Low Level Output Voltage (V o l)

UNITS

TYP

MAX

18

25

32

2075

210

21.25

V

07

1.0

V

= 600 pF
= 600 pF
= 600 pF

mA

5

15

ns

5

15

ns

20

45

ns

15

35

ns

Note 1- Rating applies for deVice soldered to a printed circuit board with 8 copper conductors
03 Inches wide For ambient temperatures above 25' C, derate linearly at 6 7 mW/"C

MOS Interface Circu its

For specifications on other National MaS clock
drivers and interface Circuits, see the following
data sheets:

Dual Voltage Translator - DM7800/DM8800
Dual High Speed Translator - DH0034/DH0034C
Quad 2·lnput NAND TTL/MaS InterfaceDM8810,DM8811
Quad 2·lnput AND TTL/MaS Interface - DM8810
Hex Inverter TTL/MaS Interface - DM8812
Dual Peripherlal Drivers - LM350,LM351/
LM75450A,LM75451A
Analog Comparator to MaS - LM 111 series
Dual Analog Comparator to MaS - LH2111 series

MaS Clock Drivers
Single Phase, TTL Input DC Coupled - MH0007
Two Phase DC Coupled - MH0009
Single Phase, High Speed DC Coupled - MH0012
Two Phase AC Coupled - MH0013
Two Phase Low Cost - MH0025
Two Phase High Speed AC Coupled - MH0026

typical applications
TT l to Negative Level Interface
(DC Coupled MOS Clock)

TTL to MMll03 High Speed Memory Interface

lM15451A

'Iiu~

TT~

:A-: 2

INPUTS 'Be--!-

nUAl
PERIPHERIAL
DRIVER
..3_ _~---'I'

r

f!-o ~, 'TOMM11DJ4~bVI6b'lm.mo,v.,,,y
I t""••

r-o"

,ndh"

,.Z5n.typ mto600pF

ml'O--;~, l:;""J',
R...

I.~d

INPUTS !Be--!

mjA~
INPUTS

DHOO]4CD

•

9·98

...l!......k
1

f"_ _~---'l4

(So-!!L-_....rh...,.

T'
NolO M,n,m".nrayb.ord •• p.ClllIn".,on'" •• nn«bOn,botw .. nLM15451A.ndMH0021eN
OpIlDn.I .. I ..... lpullup' .."'o.. IRx·lk)maVb.oddllllto'mp.... " .. t'm.by.b.uI.
,"'100012

;

Note Ax 11k) npll ... lt.~ ••:r........ t.m.

MH0021C

r-0 I
01

OUlp"IOW,ng--llVto4V, delay bm,-20n.

r--o¢,J R,...

ndf.rtt,m.-2!in,fo'Cl=600 PF

s::::t

Interface Circuits

00
00

o

00

MH8808 dual high speed MOS clock driver

general description

features

The MH8808 IS a high speed dual MOS clock
driver Intended to drive the two phases of a
memory array of 500 pF per phase at rates up to
4 MHz. The design includes output current limit·
Ing for controlled rISe and fall times, and thermal
shutdown which protects the chip against exces·
sive power dissipation or accidental output shorts
Two DTLITTL compatible status outputs monitor
clock outputs and provide a corresponding TTL
logic level for status Indication. Both direct and
Internally damped outputs are available for each
phase to suit the particular application. It IS ideally
suited for driVing MM5262 2k RAMs.

•

High Speed 18 ns typ delay and 20 ns typ rise
and fall tl mes with 500 pF load

•

Current limited outputs ±450 mA typ

•

Direct and damped outputs available

•

Thermal shutdown protection

•

TTL compatible status outputs

•

1W dissipation capability at 25°C T A

•

16 pin cavity dual·in·llne package

•

Output high level clamped to +5V

connection diagram

Dual-I n-Line Package

DAMPED
Vss

16

'~O

OUT

15

DAMPED
OUT

OUT

14

12

11

OUT

Nt

10

NOT CONNECT TO THIS PIN

TOP VIEW

9-99

00

o

00
00

absolute maximum ratings

J:

:?!

~

+N

Vss - Voo

26V

Total Power DISSipation (Note 1)

lW
O°C to +70°C

Operating Temperature Range

electrical characteristics
The following apply for Vss

=

+7V, Vss

=

+5V, V OD

PARAMETER

':=

-15V, TA = 25°C unless otherWise stated

CONDITIONS

I nput Current

VIN = -9V INote 2)

Output Low Voltage

lOUT = +1 mA, VIN -= -lOY
INote 2)

Output High Voltage

lOUT = -1 mA, VIN = -14V

Status "1" Voltage

lOUT

Status "0" Voltage

lOUT

Output Leakage Current

V BB = +8 5V, Vss = 5V
Voo = -17 5V, V OUT = +8 5V

= -250MA, VIN = -14V

MIN

10
-14

45

=

53

mA

V
V

05

100

open
4

Damping Resistor

UNITS

V

3

= 20 rnA, VIN = -10V
INote 2)

VIN

MAX

V

MA

12

IBB

VIN = -11 5V
Vss = +6 5V, V OD = -17 5V
V BB = +8 5V INote 2)

32

mA

Iss

VIN=-115V
Vss = +6 5V, Voo = -17 5V
V BB = +85V INote 2)

23

mA

V IN =-115V
Vss = +6 5V, V OD = -17 5V
V BB = +8 5V INote 2)

-55

mA

100

Output Rise Time

C L =500pF

26

ns

Output Fall Time

C L = 500 pF

26

ns

Delay to Negative-Going Output

C L =500pF

7

22

ns

Delay to Positive-Going Output

C L = 500 pF

10

25

ns

Note 1

Maximum Junction temperature

IS

110°C For operation above 25"C derate at 85"C/W ()JA for stili air

Note 2 Test only one Input high (more positive) at a time

9-100

c

~s

s:
<11

New Products

-'="

CO
<11

.......
C

s:.....

DM5485/DM7485 (SN5485/SN7485)
4-bit magnitude comparator

-'="

CO
<11

general description

features

The DM5485/DM7485 performs magnitude companson of straight binary and BCD (8421) codes.
Three fully decoded decisions on two 4-blt words
(A & B) are made and brought to three outputs.

•

Greater than, less than and equal to in one
package

•

Easily expandable through high speed cascading
inputs

This device IS fully expandable by use of cascading
Inputs. When expanded the total comparison time
is a function of word length and IS two gate delays
("" 12 ns) for each four bit section added to the
basIc device delay.

275mW

• TYPical power

truth table

COMPARING
INPUTS

CASCADING
INPUTS

OUTPUTS

A3, B3

A2, B2

A1, B1

AO, BO

A>B

AB

A 83
A3< 83
A3 = 83
A3 = 83
A3 = 83
A3 = B3
A3= B3
A3= B3
A3 = B3
A3 = B3
A3= 83

x
x

X
X

x

x

X
X
X

X

X
X

X
X
X

H
L
H
L
H
L
H
L
H
L
L

L
H
L
H
L
H
L
H
L
H
L

L
L
L
L
L
L

A2
A2
A2
A2
A2
A2
A2
A2
A2

>
<
=
=
=
=
=
=
=

82
B2
82
82
B2
B2
B2
B2
B2

NOTE' H '" high level, L "" low level, X

X
X
A1
A1
A1
A1
A1
A1
A1

>B1
 80
AO< 80
AO= BO
AO = BO
AO= 80

X
X

H
L
L

X
X

X

X
X

X
X

X
X

X
L
H
L

X
L
L
H

L
L
L
L
H

= Irrelevant

connection diagram

I
1

I I I I

12 iJ 14 15 1& b G~~

10·1

DM5491A/DM7491A(SN54911SN7491) 8-bit shift register
general description

features

The DM5491A/DM7491A IS a serial-In, serial-out,
8-blt shift register utilizing TTL technology. It IS
composed of eight RS master/slave flip flops, Input
gating, and a clock driver. The register is capable of
storing and transferring data at clock rates up to
18 MHz while maintaining a typical noise-immunity
level of 1.0V. Power dissipation is typically 175
mW; a full fan out of 10 IS available from the outputs.

•
•
•
•
•

High speed
18 MHz typo
Gated data Input
Both true and complement outputs of last bit
Input loading of 1 on each Input
Typical power
175 mW

connection diagram

Data and input control are gated through inputs
A and B to the first bit of the shift register. Drive
for the common clock line is provided by an
internal clock buffer. Each of the Inputs (A, B,
and CP) appear as only one TTL input load.
The clock pulse inverter/driver causes these circuits
to shift Information to the output on the positive
edge of an Input clock pulse, thus enabling the
shift-register to be fully compatible with other
edge-triggered synchronous functions.

DM54123/DM74123(SN54123/SN74123)
TTL/monostable multivibrator
general description

features

The DM54123/DM74123 is a dual retriggerable,
resettable monostable multivibrator providing an
output pulse whose duration and accuracy is a
function of external timing components. Its inputs
and outputs are standard TTL and compatible with
all 5400 and 7400 products.

•
•
•
•
•

There are two inputs per function, one active LOW
and one active HIGH. This permits triggering on
either the leading (positive going) or trailing (negative going) edge. Triggering is Independent of Input
transition time or pulse width. An input cycle
time shorter than the output R*C cycle time will
retrigger the DM54123 and result in a continuous
output.
Retriggerlng may be inhibited by tying the Q output to the active LOW trigger input or the Q
output to the active HIGH Input. .
The true output may be forced LOW during any
phase of input or output timing by connecting a
logic LOW level to the reset input.

10-2

Retriggerable
0% to 100% duty cycle
TTL compatible inputs and outputs
Triggers on leading or trailing edge
Complementary outputs
Compensated for temperature and power supply
variations
21 ns (typ.)
• High speed trigger to Q

connection diagram

OM54141/0M74141 (SN54141/SN74141)
BCD to decimal decoder/driver
general description

features

The DM54141/DM74141 is a second-generation
BCD-to-declmal decoder designed specifically to
drive cold cathode indicator tubes. This decoder
demonstrates an Improved capability to minimize
switching transients in order to maintain a stable
display.

•

Full decoding is provided for all possible input
states. For binary inputs 10 through 15, all the outputs are off. Therefore the DM54141/DM74141,
combined with a minimum of external circuitry,
can use these Invalid codes in blanking leadlngand/or trailing-edge zeros In a display as shown in
the typical application data. The ten high-performance NPN output transistors have a maximum
reverse current of 50!,A at 55V.

•
•
•
•

Drives cold cathode numeric Indicator tubes
directly
Low leakage current at 55V (50pA max.)
Low power dissipation of 55 mW (typ.)
Fully decoded inputs ensure all outputs off for
Inval id codes
Input clamp diodes for minimizing transmission
line effects

connection diagram

Low-forward-impedance diodes are also provided
for each input to clamp negative-voltage transitions
In order to minimize transmission-line effects.
Power dissipation IS tYPically 55 mW, which is
about one-half the power requirement of earlier
designs.

...

OM 54160/0M74160 (SN54160/SN74160).
OM54161 /OM74161 (SN54161 /SN74161).
OM 5416 2/ 0 M7416 2 (SN 5416 2/SN74162).
OM54163 /OM74163 (SN54163/SN74163).
synchronous 4-bit counter
general description
These synchronous, presettable counters feature
an internal carry-look-ahead for applications in
totally synchronous high speed counting schemes.
The DM54160/DM74160and DM54162/DM74162
are BCD decade counters and the DM54161/
DM74161 and DM54163/DM74163 are 4-bit binary
counters. All counting flip flops are triggered
simultaneously from a common clock buffer,
counting on the rISing (positive going) edge of
the clock Input waveform.
All counters are synchronously presettablii to
either state. With a Low logic level on the Load
input, the next rising edge of the clock will transfer
Into the counting register data present on the
Inputs A, B, C, and D.
The Clear functions for the DM54160/DM74160
and DM54161/DM74161 are asynchronous and a
Low logic level on the Clear Inputs will set all
outputs Low regardless of the state of the clock or
any other input (i.e., clear overrides all other
functions).

The Internal carry-look-ahead provides for cascading up to 10 counters in totally synchronous
applications without additional gating.

featurus
•
•
•
•
•
•
•

Internal look-ahead for fast counting
Terminal count output for ripple cascading
Synchronous counting
Synchronous loading
Typical count frequencies over 32 MHz
DM54160/DM74160 equal to FSC 9310
DM54161/DM74161 equal to FSC 9316

connection diagram

The Clear function for the DM54162/DM74162
and DM54163/DM74163 are totally synchronous. A
Low logic level on the Clear input will set the
outputs Low after the next clock pulse. This
synchronous clear allows simplified count sequences
as the maximum count can be decoded with one
extra NAND gate. This gate then synchronously
sets the counter to 0000 (all Low).
10-3

DM54174/DM74174(SN54174/SN74174) hex 0 flip flop
DM54175/DM74175(SN54175/SN74175) quad 0 flip flop
general description
features
Both devices contain positive edge-triggered Dtype flip flops_ Q outputs only appear on the
DM54174/DM74174 whereas both Q and Q outputs are available on the DM541751DM74175.
Overriding Clear inputs are used to set the Q outputs to the logic "0" state.

connection diagrams

•

Buffered clock and direct clear Inputs

•

Individual data Input to each flip flop

truth table
INPUTS

OUTPUTS

0'

CLEAR

CLOCK

0

°

L

X

X

L

H

t
t

H

H

L

H

L

L

H

H

L

X

00

00

H

*Avatlable on the DM54175/DM74175

x = Don't care

DM54174/DM74174

DM54175/DM74175

t = Transition from low to high

DM54196/DM74196(SN54196/SN74196 )
presettable decade counter
DM54197 IDM74197(SN 54197/SN74197)
presettable binary counter
general description
These high-speed counters consist of four M/S flip
flops which are internally connected to provide
either a divide-by-two and a divlde-by-five counter
(DM54196/DM74196); or a divide-by-two and a
divide-by-eight counter (DM54197 /DM74197). The
outputs may be preset to any state by placing a
low on the count/load input and entering the
desired data at the data inputs, independent of the
state of the clocks.

• Input clamping diodes simplify system design
• Output Q A will drive clock-2 input plus ten
series 54/74 loads

connection diagram

features
•
•
•
•

Performs BCB, bi-quinary, or binary counting
Fully programmable
Fully independent clear Input
Guaranteed to count at Input frequencies from
o t'o 50 MHz
DM54197/DM74197
(See Note 1)

truth tables

COUNT

(5-2) (See Note 2)

(BCD) (See Note 1)
COUNT

°B

aA

°A

00

Dc

L

L

H

L

H

L

L

L

H

H

L

L

0

L

L

L

L

L

L

H

1

L

L

L

H

2

L

L

H

L

2

L

L

H

L

3

L
L

L

H

H

3

L

L

H

H

H

L

4

L

H

L

L

L

H

L
L

H

5

H

L

L

L

L
L

H

H

L

L

L

H

H

H

6
7

H

H

H

L

H

L

H

L

L

L

8

H

L

H

H

H

L

L

H

9

H

H

L

L

Note 1. Output QA connected to CLOCK-2 Input
Note 2- Output QO connected to CLOCK-1 Input

L

L

L

L

8
9

L

1
3

L

7

L

4

L

5
6

L

2

0
1

4

10-4

COUNT

°B °A

Dc

0

°B

OUTPUT

OUTPUT

aD Dc

OUTPUT

00

BI-QUINARY

DM54196/DM74196 DECADE

L

H

L

L

5

L

H

L

H

6

L

H

H

L
H

7

L

H

H

8

H

L

L

L

9

H

L

L

H

10

H

L

H

L

11

H

L

H

H

12

H

H

L

L

13

H

H

L

H

14

H

H

H

L

15

H

H

H

H

c

3:
.....

...

DM7512/DM8512 dual gated master/slave JK/D flip flop
general description

features

The DM7512(DM8512 IS a dual flip flop which
can operate in either a J, K mode or in aD-type
mode. Both flip flops operate from a common
clock and a common asynchronous clear but have
separate mode inputs so that one can operate as a
J, K flip flop while the other is operating as a Dtype flip flop. (See truth table.)

•
•
•
•

......
CO

...

U'I
N

c

3:
.....

truth table

M-k~j------'
~

c
3:

Positlve-edge-triggered
High speed, 40 MHz typical operation
DM75L 12(DM85L 12 pm compatible
Target power dissipation
270 mW max.

logic and connection diagrams

L.. _ _ _ _ _ _ _ _

U'I

N

U'I
U'I
U'I

J

K

M

CLR

QN+1

0

0

1

0

1

0

1

0

ON
1

0

1

1

0

0

CO

1

1

1

0

ON

X

X

0

0

D

X

X

X

1

0*

U'I
U'I
U'I

......

c

3:

_ _ _ _ _ .J

* Asynchronous transltlOn

X = Don't care

DM7555/DM8555 TRI-STATE@programmable decade counter
connection diagram

general description
The DM7555(DM8555 is a TRI-STATE four-bit
decade counter which has both conventional and
TRI-STATE outputs. When the TRI-STATE outputs are in the high-impedance mode, they can be
used to load mformation into the subsequent stage.
This is particularly useful in applications involving
program counters. Fully synchronous operation
results when these devices are cascaded.

features
•
•
•

375mW
27 ns
50 MHz

Typical power dissipation
Target propagation delay
Target clock frequency

logic diagram
00 12

-LJ

~:-:

.
.

::n,.. .

r=f=D1r" "

--D-r

11oe

4- ~

r-

et""

1IOC

I

-~~.
~:'
.
.
~'
~: .
~

,

--D-r

~""'

,

,

,

---.;;-

~

,

~ '--';-

'--';-

--=I-

)0-'

~

."
Vcc' 16

.

.

".

;

,

" ."

COllNl

10-5

DM7556/DM8556 TRI-STATE@programmable binary counter
general description

connection diagram

The DM7556/DM8556 is a TRI-STATE four-bit
binary counter which has both conventional and
TRI-STATE outputs. When the TRI-STATE outputs are In the high-impedance mode they can be
used to load information into the subsequent stage.
This IS particularly useful in applications involving
program counters. Fully synchronous operation
results when these devices are cascaded.

CD
It)
It)

--4+----....,t-----r-t---i

MEMORY
ENABLE LME2O(4)

PIh(l6)"V cc Pln(8)"OND

OUTPUTS

:::~
OPTION 2

=:~~
OPTIONJ

L
'I

connection diagram

truth table
OPTION

ME,

ME2

1

0

0

Normal

1

X

Logical 1

X

1

Logical 1

1

1

Normal

2

3

x

10-14

=

Don't care

OUTPUTS

0

X

Logical 1

X

0

Logical 1

1

0

Normal

X

1

Logical 1

0

X

Logical 1

DM76L99/DM86L99 TRI-STATE®64-bit random access memory
general description
The DM76L99/DM86L99 is a fully decoded 64-bit
RAM orgamzed as 16 4-bit words. The memory
IS addressed by applying a binary number to the
four Address inputs. After addressing, information
may be either written into or read from the
memory. To write, both the Memory Enable and
the Write Enable inputs must be in the logical "0"
state. Information applied to the four Write inputs
will then be written into the addressed location.
To read information from the memory the Memory Enable input must be in the logical "0" state
and the Write Enable input in the logical "1" state.
Information will be read as the complement of
what was written into the memory. When the
Memory Enable Input is In the logical "1" state,
the outputs will go to the high-impedance state.

This allows up to 75 memories to be connected
to a common bus-line without the use of pull-up
resistors. All memories except one are gated into
the high-impedance while the one selected memory exhibits the normally totem-pole low impedance output characteristics of TTL.

features
•
•
•
•

Series 54L74L compatible
Same pin-out as SN5489/SN7489, 3101, 5501
Organized as 16 4-bit words
Expandable to 1200 4-bit words without additional resistors
50 ns
• Typical access from chip enable
80 ns
• Typical access time
55mW
• Typical power dissipation

logic diagram

~~:
A,
ADDRESS
INPUTS

~A'
II,

~~A'
II,

~~:
DI
D'
D'
DATA

INPUTS

DC
lOt
ME

connection diagram

truth table

MEMORY
ENABLE

WRITE
ENABLE

OPERATION

a
a

a

Wrlte

Logical "1" State

1

Read

Complement of Data

1

X

Hold

OUTPUTS

Stored

In

Memory

LogIcal "1" State

10-15

...
...

CD

:e

LM160 high speed differential voltage comparator

o

general description

...I

...:e

CD

The LM 160 high speed comparator is designed to
be used In D to A and disc file pre amp applIcations where spiied is critical. It is designed with a
high impedance differential input stage and provides complementary saturated logic output levels,
with minimum skew between outputs. The device
operates off of ±4.5V to ±6.0V supplies and has
outputs wh Ich are compatible with standard DT L/
TTL levels. This product is pin and function compatible with the pA760. TO·5, dual· in-line and

...I

flat package versions of this product will be
available.

features
15 ns

•

Response time

•

Bias current max.

10pA

•

Offset voltage

2 mV

•

Voltage gain

3000

connection diagrams
Metal Can Package

Dual-In-Line Package

v'

vTOP VIEW

LM161 high speed differential voltage comparator
general description
The LM161 high speed comparator IS designed for
D to A and disc file pre amp applications where
speed is cntical. It features a high impedance
differential Input stage and provides complementary saturated logic output levels with minimum
skew between outputs. Each output is Individually
strobed and is compatible with standard DTL/TTL
levels. The preamplifier section IS capable of operating from ±4.5V to ±15V supplies, and is independent of supply symmetry. ThiS comparator IS
pin and function compatible with the NE529.

TO-5, dual'In-line and flat package versions of the
product will be available.

features
•

Op amp supply compatible

•

Common mode range

•

Individual output strobing

•

Maximum bias current

•

Response time

15 ns

•

Offset voltage

2 mV

•

Voltage gain

3000

connection diagrams
Metal Can Package

v·

OUT B
TOP VIEW

10-16

Dual-In-Line Package

±7V
10pA

r~

LM55325/LM75325 memory driver

U1
U1

general description

N
U1

W

.......
The LM55325 and LM75325 are monolithic memory drivers which feature high current outputs as
well as internal decoding of logic inputs. These cirCUits are designed for use with magnetic memories.

outside the package thereby allOWing the circuit to
operate at higher source currents for a given junction temperature. If this method of source current
setting is not desired, then nodes Rand R'NT can
be shorted externally. This activates an internal
resistor connected from VCC2 to node R. This
method provides adequate base drive for source
current up to 375 mA with V CC2 = 15V or
600 mA with VCC2 = 24V.

The circuit contains two 600 mA sink-switch pairs
and two 600 mA source-switch pairs. Inputs A and
B determine source selection while the source
strobe (S 11 allows the selected source turn on. In
the same manner, Inputs e and D determine sink
selection while the sink strobe (S21 allows the
selected sink turn on.

The LM55325 operates over the full military
temperature range of -55°C to 125°C, while the
LM75325 operates from oOe to 70°C.

Sink-output collectors feature an internal pull-up
resistor In parallel with a clamping diode connected to VCC2 ' ThiS protects the outputs from
voltage surges associated with sWltchl ng Inductive
loads.

features
• 600 mA output capabil ity
• 24 volt output capability
• Dual Sink and dual source outputs
• Fast switching times
• Source base drive externally adjustable
• Input clamping diodes
• DTL/TTL compatible

The source stage features node R which allows
extreme fleXibility in source current selection by
controlling the amount of base drive to each
source transistor. This method of setting the base
drive brings the power associated with the resistor

connection diagram

truth table

ADDRESS'INPUTS
SOURCE
A
B

STROBE INPUTS

SINK
C

D

H

X

X

H

L

X

X

L

X
X

X
X
X

H

H

H

L

SOURCE SINK
S1
S2

OUTPUTS

SOURCE
W
X
ON OFF

SINK

v

Z

L

H

OFF OFF

X

L

H

OFF ON

H

H

L

OFF OFF

ON

OFF

L

H

L

OFF OFF

OFF

ON

X

X

H

H

OFF OFF

OFF OFF

H

H

X

X

OFF OFF

OFF OFF

OFF OFF

H "" high level, L == low level, X::: Irrelevant

Note Not more than one output

IS

to be on at anyone time

10-17

r-

~

.....

U1

W
N
U1

LM75324 memory driver with decode inputs
general description

features
• 400 mA output capability

The LM75324 is a monolithic memory driver
which features two 400 mA (source/sink) switch
pairs along with decoding capability from four
address lines. Inputs Band e function as mode
selection lines (source or sink) while lines A and D
are used for switch'pair selection (output pair
Y/Z or W/X).

•
•
•
•

High voltage outputs
Dual sink/source outputs
Internal decoding and timing circuitry
Fast switching times
• oOe to 700e operation
• DTl/TTL compatible

connection diagrams

truth table
INPUTS
ADDRESS TIMING

AB C

i

OUTPUTS

SINK SOURCES SINK

Y

Z

D

E F G

W

0 0 1 1

1 1 1

ON

OFF OFF

0 1 0 1

1 1 1

OFF

ON OFF

OFF

1 1 0 0

1 1 1

OFF OFF ON

OFF

1 0 1 0 1 1 1
X X X X 0 X X

X

OFF

OFF OFF

ON

OFF OFF OFF

OFF

OFF

X X X X X 0 X

OFF

OFF OFF

OFF

X X X X X X 0

OFF

OFF OFF

OFF

Note 1: X - Logical 1 or logical 0
Note 2: ['-Jot more than one output IS to be allowed to be
ON at one time When all timIng Inputs are at a
logical 1, two of the address Inputs must be at a
logical 0

10·18

LM75461, LM75462, LM75463, LM75464
dual peripheral drivers (high voltage)
general description
These circuits are high voltage versions of the
LM75451A, LM75452, LM75453, and LM75454
series. Pin configurations for the corresponding
parts in the two series are identical. Each circuit
contains two independent high voltage transistors
each capable of sinking 300 mA at the same time.

features
•
•

High breakdown
Outputs withstand high voltage with Vee
for power strobing applications

•

Both outputs can sink 300 mA simultaneously

•

Two separate drivers per package

III

oOe

to 70 0e operation

•

Identical pin configurations as the lower voltage
LM75450 series equivalents

•

8-pin mtni-dual-in-line package

•

Inputs have clamp diodes and are DTUTTL
compatible

= OV

connection diagrams
Vc<;

82

A2

X2

vee

82

A2

X2

Al

81

Xl

GNO

Al

81

Xl

GNO

TOP VIEW

TOP VIEW

LM75462

LM75461

vee

82

A2

81

Xl

X2

Vc<;

2A

28

2Y

lA

TOP VIEW

TOP VIEW

LM75463

LM75464

10-19

"oCO

MH7803/MH8803,
MH7807/MH8807 oscillator/clock drivers

00

::t

:E

.......

"o00
"::t

general description
The MH7803(MH8803 and MH7807(MH8807 are
complete self-contained two-phase oscillators and
clock driver subsystems for MOS micro-computer,
calculator and shift register systems.

:E
M

o

00
00

features

::t

• No external timing components
• Two non-overlapping outputs
• Both frequency and pulse width are voltage
control/ed

:E

.......
M

o

•

Frequency adjustable from 100 kHz to 500 kHz
(MH7803(MH8803) and from 400 kHz to
2 MHz (MH7807(MH8807)

•

Pulse width adjustable from 300 ns to 2!1s

•

Low power for battery operation

•

TTL outputs for verification and synchronization

•

Both direct and damped MOS outputs

00

"::t

logic diagram

:E

--0 v'
--CV-

FREQUENCY CONTROL

PULSE WIDTH CONTROL

--0

INHIBIT

--CTEST

0----------'

" " " , - - 0 Vee
IOn

TTL OUTPUTS

DAMPED MOS OUTPUTS
10n

....¢1

..._-OGNO

¢2

DIRECT MOS OUTPUTS

connection diagrams

14 v~

INHIBIT INPUT

INHIBIT

PW CONTROL

v'

"
"

TEST

v-

10-20

FREQ CONTROL

TOP VIEW

fQPVll'.W

MH7803/MH8803

MH7807/MH8B07

MH8804. MH8805 quad. dual MOS memory drivers
features

general description
The quad MH8804 and the dual MH8805 are
bipolar to MOS drivers specifically designed to
drive input address lines for MOS memory arrays
using MM1103 type RAMs. The MH8804 is pin
compatible with the 13207 and the MH8805 with
the SN 75361.

~
::I:

±500 mA

•

Current mode output drive

•

Rise and fall times

20 ns

•
•

Delay times
High output voltage

15 ns

•

Low output vo Itage

•

Input levels

00
00

o

Vss - 1.0V
0.3V
TTL!DTL

c.n

connection diagrams
16

v"

"

0,

v"
0,

14

0,

0,
13

E,

12

E,

E,
0,

E,

11

0,

0,
10

0,

GNO

0,
0,

v"
TOP VIEW

TOP VIEW

MH8804

MH8805

10-21

»

(')

AC Test Circuits

-I
CD

...

en

(')

...

5V

5V

T

~T

4DOll

OUTPUT

n
c

'5V

50pF

'

;:+'

en

COUT

+24V

Test Circuit 1

Test Circuit 2

5,

52

CL

tpdl

Closed

Closed

50 pF

tpdO

Closed

Closed

50 pF

tOH

Closed

Closed

5 pF'

t, H

Closed

Closed

5pF'

tHO

Closed

Open

50 pF

tH 1

Open

Closed

50 pF

.. Approximate value of Jig capacitance only

Test Circuit 3

Vcc=5V

50V
800.11
RL = 11011

>--....- - - 0

INPUT

CL

DM7510f
DM8570

I-<>--....-~-....-I~-~I--I~...,

OUTPUT

15pF

Test Circuit 4

Test Circuit 5

50V

5V
30Q.l!

5V

OUTPUT

130

INPUTo--==L_?-"t"i'...................i-• ..,
SDDIl

OJ

DIODES· F0100

Test Circuit 6

Test Circuit 7
11-1

II)

:!::

..
o
::I

.. 5V

(,)

50Ko±1%

...
II)

G)

t-

iO--...--tO)

VOUT

iO--...--tO)

Your

O

«

Test Circuit 8

Vcc=+5V

v"

'K

50

PULSE GENERATOR OUTPUT
1 SWitcHING TIME ltptl+ & tpdJ TESTS
RISE TIME < 15 ns
FALL TIME < 15 ns
AMPLITUDE"" 4\1
fREQ, '" 2 MHz ±5% AT 50% DUTY CYCLE

"1

2. SHIFT RIGHT FREQUENCY TEST
RISE TIME < 15 N5
FALL TIME < 15 NS
AMPLITUDE"" 4\1
FREQ,"

CL INCLUDES

PROBE ANO JIG
CAPACITANCE

16 MHz WITH PULSE WIDTH

ADJUSTMENT SO THAT VI~ HAS
DUTY CYCLE OF APPROX. 50%

VOUT "OUT

"OUT

VOUT

"OUT

Test Circuit 9

VIN

Veel = VCC2

VOUT

TO CHANNEL "A"

+20 Vde

OR

VOUT
NOR

TO
CHANNEL
"8"

INPUT
PULSE

GENERAtOR
INPUTPULSE

t+"I-"'2D±O.2ns
(20 to BD%}

VEE =-J.2Vdc
ALL INPUT AND OUTPUT CABLES TO THE SCOPE ARE EQUAL LENGTHS OF 5IJ.OHM COAXIAL CABLE
WIRE LENGTH SHOULD BE < 1/4 INCH FROM TP 1N TO INPUT PIN AND TPOUT TO OUTPUT PIN.

Test Circuit 10

"·2

»

(")

-t

~
SEE

OM75521

TABLE 1

OM7554

CD

~

III

~

(")

r+

AC
LOAD

L......-

....

(")

C
r+

III

Figure 1 (Test Circuit)

INPUT CONDITIONS
TEST

tpd(TEl

CLEAR

PRESET

CP

TRANSFER
ENABLE

Vee

GND

GND

See Note 1

Vee

Vee

GND

GND

See Note 1

Vee

GND

Vee

GND

GND

See Note 1

See Note 2

ODI

OD2

GND

GND

GND

GND

GND

CE

t'H

See Note 3

See Note 3

GND

GND

Vee

GND

tOH

See Note 3

See Note 3

GND

Vee

GND

GND

tH1

See Note 3

See Note 3

GND

GND

Vee

GND

tHO

See Note 3

See Note 3

GND

Vee

GND

GND

GND

GND

Vee

GND

GND

See Note 8

Table 1

400n

INPUTS

-

NOTE 1 PULSE GEN PAR

~

MHz, t,:S 15

OS,

tl

~

5 ns, tp (CLOCK)

2:;200ns

-

~

DM155Z/
DM7554

NOTE 2 See At SWITCHING TIME WAVEFORMS

"
"

1s'~EDES
NOTE 5)

NOTE J TIE THESE INPUTS TOGETHER, SEE SWITCHING TIME
WAVEFORMS
NOTE 4 INCLUDES JIG CAPACITANCE
NOTE 5 ALL DIODES ARE F01Da OR EOUIVALENT

NOTE 6 OPEN SWITCH 8;; FOR tpdO(TCl. tpd1 (Tel. tpdo(CETl, AND
tpd1(CET)

NOTE 7 JIG CAPACITANCE
NOTE 8 f CLOCK USE 50% DUTY CYCLE

Figure 2 (Load Circuit)

SWITCH S,

SWITCH S2

tpdO

Closed

Closed

50 pF

TEST

CL

tpdl

Closed

Closed

50 pF

tpd(TE)

Closed

Closed

50 pF

t'H

Closed

Closed

tOH

Closed

Closed

tH1

Open

Closed

tHO

Closed

Open

50 pF

fclock

Closed

Closed

50 pF

5 pF ISee Note 7)
5 pF ISee Note 7)
50 pF

ID

Table 2

Test Circuit 11

11-3

II)

.t::
::l

...

(,)

u

r -

v"

....

II)

s,
s,
s,
s,
B,

U

«

A,
B,
A,
B,
A,

- - - - ....,
OATA

I

I

Q)

l-

-vc7""

I

I

Rl =4DOn

I

c,"

",f

I~
L __

CONTROL

I
,
I
_ _ ..J

~D~CU.!!.!

VI

1K

F,
DM54t81/DM74181

r- F,

B"
i\,

-V~ -

I
I

-

-

-

I
I
I

R," 4000

A"' 1-"----...

M

Co

T
'::'

L

__

-,

C
'"""

LOAD DIAGRAM

:

!;2!D~C~

__

---1
t s, t h ,

NOTE 1. USE LOAD CIRCUIT 2 FOR A '" B OUTPUT ONLY LOAD CIRCUIT 1 SHOULD BE
USED TO TEST THE REST OF THE OUTPUTS
NOTE 2 FOR INPUT PULSE, F" 1 MHz, ZOUT "" SOu 50% DUTY CYCtE, VIN PP = 3V
~ $10 ns
NOTE 3 CL lNCLUDES PROBE AND JIG CAPACITANCE
NOTE 4 ALL DIODES ARE INJD64

t,. =

Test Circuit 12

tpdR

S,

S2

Cl

Closed

Closed

50 pF
50 pF

t wpw , t rpw

Closed

Closed

tOH

Closed

Closed

"H

Closed

Closed

tHO

Closed

Open

50 pF

IH1

Open

Closed

50 pF

5 pF'
5 pF'

.. ApprOXimate value of Jig capacitance only

Test Circuit 13

Vee =5V

Test Circuit 14

OUTPUT

VI

OM7219!
DM8219

1 KO

ALL DIODES ARE FDIOO

Test Circuit 15

11-4

~
<
CD

!II

Switching Time Waveforms

....

o..,
3

1/1

l r'lO",

INPUT~

F-Sns (NOTE I)

CP WIDTH

(NOTE I)
VOUT

~-,5V\
PRESET 01 CLEAR

VOUT

(2 lOGIC lEVelS)

r

F

,PULSEWIDTH:? 25n1

,I

(3 lOGIC LEVELSI

Ir

NOTE 1 J AND K INFORMATION Will REGISTER PROPERLY EVEN THOUGH THE INFORMATION IS REMOVED 5 NS
BEFORE THE CLOCK PULSE VOLTAGE FALLS HOWEVER WHEN THIS OCCURS IT MUST BE ASSURED THAT THE
LOGICAL "1" CLOCK PULSE LEVEL AND THE DESIRED J AND K INFORMATION OCCUR SIMUL TANEOUSL V FOR AT
LEAST20NS

Waveform 5

Waveform 6
11-5

1lI

II)

...E

o

~

Q)

"""lO""V

>
ca

~

o

~
50%
DUTY CYCLE

OV

CLOCK

[
~
"-'

15V

_ _ _.:.,'

O%

ln~

I
IwAVEFORM USED

ItpdO

T~ MEASURE

U

(U) AND tpdl (U)

10%

: LJ'!
~
l..-,."

'.'" --:

__ ,

j'G

---L!:'''-T1L-

9D%

"

I,

14- ---..l

,I

I WAVEFORM USED TO MEASURE
~d 0 (U)

1

:\15V---:J

15V

CLOCK

o ___ .n

----'l--D ' - -

tpdl""""'"

AND tpd 1 (il)

~tpdO

I'

(.1
UORU--------~---------J
QORfi--------~------------~

15V

CLOCK

NOTE

NO MAXIMUM RISE AND fALL TIMES ARE IMPOSED UPON

THE CLOCK VOLTAGE HOWEVER VERY SLOW TRANSITIONS WHICH
ALLOW AN INPUT TO REMAIN IN THRESHOLD REGION CAN CAUSE

NOISE PROBLEMS

(bl

Waveform 7

Waveform 8

INPUT OV

OUTPUT

OUTPUT

'",.

'''''
FREQUENCY = 1 MHz
DUTY CYCLE" 50%
t, = ~ = 10n5

Waveform 9

11·6

~
<
CD
I»

tpd1 & 'pdO
1

-., "

'OH

....

3V

1

...

0

1

I
I

3

1

I

15V

1/1

1
1

DATA

.::;,15V

CONTROL

1

ov (DM7D93!OMBD93)

INPUT

1

'V

OUTPUT

1

LOGICAL "0" LEVEL
3V

--..j

CONrADt

tOH : . . -

I

i
I

(OM7094!DM8094)

15V

'v
{al

(bl

'H1

'HO

3V
3V

OUTPUT

~

CONTROL

5V-VDl

,-:::":::M7:.::"~3:.::/D:::M8:::09:;;",-_

CONTROL

\.....:::"::;.M7:::":::3/:::'::::"8::::"::::":...-,v

'v

LOGICAL "1 • LEVEl

I
1

LOGICAL ''0'' LEVEL

'v

',.r:~--------- 3v

I

I
I

OUTPUT

1

r+:~'-CD-NT~R-'L-----3V

CONTROL

(DM7094fDM8094)

I

(OM7U94/DMB994)

I
15V

I

I

1

'v-------'

'V----.....I

I
I
I

I

I

I
I

1
I

~tHt~

{dl

(el

LOGICAL "l"LEVEL

OU~]05V

:",--,,5V

,.,1_ _ _ _ _ _ _ _ _

3V

CONTROL

INPUT CHARACTERISTICS
FREQUENCY t MHz
PULSE WIDTH 100 liS
t,.=t,<10ns
AMPLiTUDE = JV

I

OV (0 709J/DM8093)

1

ro-

3V-"'CO"'N"'TR"'0l"'-""\
(DM7094/DM8D94)

ill

'---------'v
(el

Waveform 10
11-7

1/1

E
...

....o

--I

Q)

>
cu
~

I,

_______ 

j--

~I "

1~----~3V~-----1

~

90%
115V
_ _ _.-:.::'0::;'. I _

INPUT

1

------j

r

1____~3V~___

90%~
15V
I
I 10%
1

r-""

------j

OUTPUT-----J!..

r----""

, \ ' -_ ____

INPUT CHARACTERISTICS
AMPLITUDE = JV
FREQUENCV" 1 MHz

t,=t!=10ns

Waveform 11

tpdl & tpdO

"p:~

(,'V
OV---.!t

~1t;,dO~

STROBE-X-i'~'_'V_ _ _ _ _ __

\'V
: \..-,----

OUTPUTS

~tpdl~

I
1
I

1 5V

~tpdl""""'"

:
I
1

tHO

----4-~

'I'
~

OUTPUT

--

1 SV

r-I -----""
15V

5 OV

STROBE~15V

~ ~. :.i05;':V

OUTPUTS

'""

-JtpdOf----.-

OUTPUT~

15V

f= 1 MHz
t,"'tfS;10ns{10%to!JO%)
DUTY CYCLE = 50%

Waveform 12

MEMORY~

15V

15V

ENABLE

ADORESS

---+-------------,.

INPUTS _

_

_

r--

----------+ _____

_ _ - . J K.:,-'_'_V_ _ _ _ _ _ _ _ _ _ _ _

l,5V

15V

OUTPUTS

15V
INPUT PULSES
',"'IOns

'Ij=lDns
f'" 1 MH~

Waveform 13
11-8

_ _ _ __

ACTUAL ....
..-::L
VOLTAGE---!-J',

~ 15V

~
<
CD

III

30V
15V
ODV
3DV
16V
ODV
30V
16V
DOV

.3....
0

en

t, = It = 10 os (10%10 90%1 ON CLOCK AND INPUT DATA WAVEFORMS

NOTE 1 INPUT DATA IS APPLIED TD SERIAL INPUT WHEN MODE CONTROL

EQUALS A LOGICAL ZERO INPUT DATA IS APPLIED TO INPUT A, B, C, OR 0,
WHEN MODE CONTROL EQUALS A LOGICAL ONE

Waveform 14

~=-----~~t------'V

OV
t,=t, "'10 rn

PW"',OOns
FREQUENCV = 1 MHz.
Vcc= +5 OV

VO"'(A)~r-I..,

I

YoUT(BI
15Y

15V

Waveform 15
R.ad Cycl.

Writ. Cycle

ME~

~ ~~

~l~ r-

*OUTPUT

ADDRESS

----------.J
ADDRESS
A

ADDRESS

ADDRESS

•

C

t~--­

*DUTPUT SHOWN fOR STORED DATA IN
ADDRESS A = 1, IN ADDRESS B = 0
tl

•

t---

(bl

(01

Waveform 16

Writ. Cycle

~:~~~~...'_5_V_____________
OUTPUTS

I~

----4---,.

Ir-

ME

--------.50V

ENABLE~I!iY

OUTPUTS

I~ ~'0;.f5V;" "
J

_ _ ___

",15V

15V

WE--+--"

05V

AC~g:~~~; -----t-""""---.L
t""ld

OUTPUT_- ------ --

MEMORY

---

.ov _ _+.J

-----~+'~---+--"'T:

-

I ,,;01-----.16V

15V
I"

r-

~--.

III

I"

(01

(bl

(cl

Waveform 17
11-9

I/)

.

E
....o

G1 OR G2

CIl

TO OUTPUT

>
CO

VOUT

3:

(a)

f

V'N _ _ _""""
15V

A, B, C, OR 0

TO OUTPUT

~

15V

--I '\...-,'·I-----'-I",.r-15V

VOUT

f

\,._'_5V_ _ __

(b)

Waveform 18

+ __..J

1.5V

OUTPUT-_ _ _ _ _ _ _

'~oj
OUTPUT------------~

t,=tf"'10ns
f= 1 MHz

Waveform 19

FREQUENCY'" 1 MHz
t,= tf:s:.

10ns

::;; 10 ns

I~--------~,~+_--------------JV

~~-----------ov
,,----~----\--------VOH
15V

OUTPUT WAVEFORM 1

Cnt", Cn+ y• Cr>+z, - - - - - - "

GorP

(a)
OUTPUT WAVEFORM 2

OH
V ------"\
15V\

',dO

F=t:
''''

I\----~---

15V

Yo,

NOTE 1. C,· 50 pF INCLUDING PROBE AND JIG CAPACITANCE FOR OM541B2, OM74182.
NOTE 2 ALL DIODES ARE INJ064

(b)

Waveform 20
11·10

~

Dl

<

".,~"'"

r------- 3V



CO

~

STR~"",~

(STROBE INPUT - LOGICAL 0)

. _ .} '

DATA INPUTS"

..."

~

15V
,
tpdO

EITHER OUTPUT

tpdl ~ EITHER QUTPUT

OUTPUT

"""'''~

15V

~

--4:

~15V

. / 15V

PROVIO~ LOGICAL "1" ON OUTPUT UNDER TEST}

EITHER OUTPUT

DATA INPUTS" - - - OUTPUT - - - - - - - - - - - - -

£
- Lt.l
~ J-

(OATA INPUTS- TO

STROBE INPUT

STROBE INPUT

(DATA INPUTS- TO PROVIDE LOGICAL "l"ON OUTPUT UNDER TEST)

I5V

"THE DATA INPUT WAVEFORMS SHOWN MAY NOT NEefSSARll Y REPRESENT THE ACTUAL DIRECTION OF THE TRANSI·
TlON FOR A PARTICULAR DATA INPUT PIN THE TRANSITIONS
SHOWN INDICATE ALSO WHAT AN OUTPUT WOULD 00 IF IT

EITHER OUTPUT

tpdl

I5V

WEREN'T fOR THE STROBE INPUT IN ALL CASES THE WORST
CASE INPUT·TO OUTPUT PATH IS SPECIFIED REGARDLESS OF
THE TRANSITIONS SHOWN

(b)

(a)

Waveform 22

2 SETTliNG TIMES FROM CHANGE OF A, 8, or C TO CORRECT DATA OUTPUT

1 PROPAGATION DELAYS FROM DATA INPUTS TO OUTPUT

SElECT INPUT
(NOTE 1)

OATA INPUTS CONNECTED IN ANY lOGIC CONFIGURATION
NOTE 1 WHEN THE SElECT INPUTS ARE TAKEN TO OPPOSITE lOGICAL lEVElS SIMULTANEOUSLY, THE
ONe (ONES) MAKING THE lOGICAL "1" TO LOGICAL "0" TRANSITION PROVIDE THE WORST-CASE PATH
NOTE 2 TRANSITION TIMES SPECIFIED ARE INDEPENDENT OF THE DIRECTION OF THE OUTPUT WAVEFORM

SET INPUTS A, B, C SUCH THAT TESTED INPUT IS ROUTED TO THE OUTPUT

(a)

(b)

Waveform 23

CLEAR

1.5V

INPUT
DISABLE

INPUT

,
--.Jr;\.~.,
. \.,

-jt"'I~1

DATA

OUTPUT
CLOCK

OUTPUT

Waveform 24

11-12

~t--

___ 3\..1.51._'IV_ _ _ _ _ __

Waveform 25

~
1\1
<
CD
-oft
...o

,v

--i==~-----i~~-------=========:== ,w

CP

J~

,v

-+_____r-__ _

15V
' - - - -_ _ OV

- --L--+--==J"---L

CLEAR:.._-+_____t-______

!II

INPUT~~v

OV

PRESET _ _

3

,V

~15V

3V

15V

OUTPUT

ov
(b)

C,=====c==-------4~(=================___

-L-+--===
TE=r--+---OuTPuTS----l~r_----~~r_----Jr----,L=_
OR

TC _ _""_I

3V

15V

tHO

ov

j --

,v

v""

15V

~
...

15V

OU1PU1------- \

15V
------

Vo<

OUTPUT

,v

INPUT----.

(a)

15V

(e)

__--___________ 'V

t

ov_'NPUT,,"~
LOGICAL
"'"
ACTUAL
VOLTAGE

15V

------------;;OU~T;PU~T~~=l5F:V=~

_, ,V

(d)

(e)

-------------'V

tOH
OV

"3 -------r
I~ :~.

OUTPUTP.
LOGI~~~~~ _ _ _ _ _ _ _ _

m

VOLTAGE

(f)

Waveform 26

11-13

1/1

E
...

Q

'+-

(\)

Clear Pulse Width and Delay

>
cu

Data Setup and Hold
MINIMUM WRITE

~

PULSE WIDTH

WRITE - - - - - .

15V

15V

ClEAR _ _ _....I1
OUTPUT - -_ _

15V

15V

DATA. _ _ _ _ _ _ _J

+-_.....,

(OR)

""\1

'ATA _ _ _ _ _ _ _

15V

15V

3V-----.,.

r------

tOH

3V

OUTPUT

~

5V-Vo 1

_---""15V

I
OUTPUT
LOGICAL "0" LEVEL

I

-~

10H

~
LOGICAL "0" lEVEL

(d)

(e)

3V----.,.
LOGICAL "1" lEVEL

OU~]05V

i"'---

,15V
,..,.1_ _ _ _ _ _ lV

,--....:':;;":;;>'::':.',;;IN;:.'U:.;T_ _ OV
LOGICAL ''1'' LEVEl

I

I
I
I

I
I
I
OV

DISABLE INPUT

I

I

I
I
tlH

I

r---

I

OV _ _-"O;;.UT;;.'U;.;T_-?
tHl

(e)

INPUT CHARACTERISTICS
FRED 1 MHz
PULSE WIDTH 100 flS
1,=tl

<

lOlls

AMPLITUDE = JV

Waveform 27

11·14

(f)

:.--

y"'-

~
II)
<
CD

....

o
3

10%

CLOCK

~

III

CARRY. BORROW

15V

OUTPUT---+-,
OUTPUT

----1--"\
1__ lpdO

Waveform 28

30V

NOTE 1. CLOCK MAY BE AT EITHER A LOGICAL "I • DR A LOGICAL "O"WHILE CLEARmG
NOTE 2. NEGATIVE HOLD TIME VALUES INDICATE SA • Sa INfORMATION MAY BE RELEA'SED
PRIOR TO THE TIME THE CLOCK PULSE REACHES ITS I 5V LEVEL
NOTE 3 CLEAR AND CLOCK WAVEFORMS 1,." tl" 10 ns 110%-90%,90%-10% TRANSITION},
f" 1 MHt

Waveform 29

D.~.

(\:I

ADDRESS
INPUTS

3:

------- ---

r-

-- -

I5V

----'

r---'.,,-

~

I5V

I5V

OUTPUTS

1\ 15V

I5V

r--'""~

-'",'-

INPUT PULSE CONDITIONS

t,

It < 10ns

~

f" 1 MHz

Waveform 31

MEMORY~'5V
ENABLE
',-,_ _ _ _ _ _ _ _ _ _ _ _ __

ADDRESS
INPUTS____1

~5V_ '0<'

OUTPUT

15V

-

-

-

-

-:j""
_

rr

INPUT PULSES
t,"10111
t!=IOlls
f = 1 MH~

1_
5V _ _ _ _

~

""'r-~
tal
MEMORY

ENABLE~15V

OUTPUTS

'"'

1=-'50V

OUTPUTS

-

""

~~V

....!_ _ _ _ _ ""5V

t5V

,ov---i-oJ
'"'

I5V
f--

.......

05V

AC~~t;~~~---f- -~

I ''1------'''' 1 5V

'" r{el

(bl

Waveform 32

Read Mode

Write Mode

CHIP~\

CHIP
SElECT

SElECT

DATA
OUT

ADDRESS

OA~~
WRITE
ENABLE

/
......._ _ _ _ _ _ _ _- '

~'-

______

...JXI..______

____

I5V

DATA
DUT _ _ _ _ _ _......t

tal

PULSE AMPLITUDE'" 3 ov
RISE TIME AND FALL TIME::;

IlS

Waveform 33
11-16

~)C

~
<

III

CD

~

...o
3

en

INPUT
OUll'UT-_ _

--1_....

~

1_ IOV
_ _ _ _I-_,_..,J_~
1=' MHz

t,=t,=IOns
PW='OOm

Waveform 34

Waveform 35

"""STOlA
PlNZ,15=GNO PIN3=Vcc

VON
OATA __
SEAIALOR
PARALLEL

CP
YOUTZ

(a)

OUTPUT

tpd,ETO l ...
All OTHER INPUTS HIGH

I5V

(a)

Vw---------------

v~,--------------------,
I5V

15V

(b)
tpd,IOA TO lA

~r------~"

S~:~~-=\-----------------'6V

r::

-J '--r"-~- voo,-------'-'VJ~'-------------V"

:::j I..,

(e)

Jr----\. . ______Jr

OUTPUT _ _ _

Waveform 37
(b)

-ri
VIN 15

IPIN120~Orl)~
VOUT FREQUENCY -"Z X YIN FREQUENCV

(e)

40M

r-

~
. . -1 t
v,.
~'5Y

---1~".--1~VOU'
~YOU'

Waveform 36

. .--1 ~

m

NOTE CAPACITANCE INCLUDES JIG AND PROBE

Waveform 38

11·17

1/1

E
...

....o

PIN 13

Q)

>
ca

DATA
INPUT

SELECT
DATA INPUT

3:
PIN 2

V 1NW1

VOUTI1I
FREQUENCV ~ 1 MHz
DUTY CYCLE ~ 50%

I

Z OUTPUT

If'" t, ~ 10 ns

----1[ I L
tp(IO

AMPLITUDE

------11""°1-

-

-I'''",~

ZOUTPUT

PIN 4
PIN2

VoO""

~
;-

-15V

PIN I

'"" !-;r---"",
15V

Z OUTPUT
VOUTIDI

SELECT DATA INPUT TO OUTPUT VOL lAGE
WAVEFORMS E IS LOGICAL 0,1 0 IS LOGICAL l ' & V,
PINS 3, 5, 11

~

Voo ""

15V

=

=

VOUTIOI

DATA INPUT TO OUTPUT VOLTAGE WAVEFORMS
PINS 5,6, 7, 9, 10, 11 = Vee

OV

GND

PINS4, 6, 7, 9,10,12

E&SoARELOGICAl"O"&V,45V
=

VGc

PINS 3, 13

=

GND

(al

(bl

Waveform 39

SELECT
DATA INPUT

ENA8LE
INPUT

Z OUTPUT

Z OUTPUT
VOUTWI

Z OUTPUT

Z OUTPUT

VOUTIIJI

ENABLE TO OUTPUT VOLTAGE WAVEFORMS
So IS LOGICAL "0" 10 IS LOGICAL "'" & V, '" 4 5V

SELECT DATA INPUT TO·OUTPUT VOLTAGE
WAVEFORMS E IS LOGICAL "11",11J IS LOGICAL T' & V1 ~ OV

(al

(bl

DATA
INPUT

FREQUENCY ~ 1 MHz
DUTY CYCLE ~ 50%

ZOUTPUT

t."tj=10ns
AMPLITUDE = 3V

Z OUTPUT

DATA INPUT·TO OUTPUT VOL rAGE WAVEFORMS
E & So ARE LOGICAL "0" & V, = 4 5V

(el

Waveform 40

11-18

=

3V

~
I»
<
CD
~

o...

3
1/1

v"

VOUT

OR

Waveform 41

Waveform 42

m
11·19

"tI

:r

Physical Dimensions


.c

~;---~t---'=L

MAX

j

.01
01'

IOU

TYP

Package 1
8 Leed Molded Mini DIP (N)

Package 2
10 Lead Molded DIP (N)

fd9!=!liY!!!.~~91

'Fr
" ".
320

092 DIA NOM

'50

loor.r"F.f'i'i'I"f~i"'F.'!~..1'

".

MAX

'"
~~-------+r,=L

~;-~;-------rt-,~

...

-015

L326+ G2I

-015

J

.075
±lIli

Package 3
14 Lead Molded.DIP (N)

Package 4
14 Laad Molded DIP (N·OI)
(Staggered Laads)

otZDIANOM
PIN NO 1 INDENT

r;:l:if ~.:

'"
Rr
'J
L
;

DO'

zsj

'25 ••

-IHi

015

.•n ~

:t,015

tL

130

~~----------rr-'=L

~

==+1
01'

:1:003

;:

MI.

.n

toGU

'DO
TYP
Packago 5
16 Leed Molded DIP (N)

II

Package 6
16 Lead Molded DIP (N·OI)
(Staggered Leads)

"'CI
'::

<(I)
(')

II)

062 RAO

o
3

CD
::l

~~~~1270MAX

(I)

o

~.16'

L

'"

015

Ii

t015~

~ ~ ~ ~~
100
TYP

::l

"05

1

II
=I1

018
t003

(I)

MIN

Package 7
24 Pin Molded DIP (N)

[-'----

t7061~ -'-~--~-----j

1-

T

280 "\

165

~L-T'M-rn-r~nIT-r.~r.T-r,~
I--"'~.I
IF
R

-

I. '

r- '" ----1il
11:
MAX

-'oo,.~
'+ ~

MAX

"'~~
00.+

"' •.

r---. -0151 _1

I
r---

1_,25 +025

350 MAX
310 MIN

!

---1

~ ~r.T-r,r;~~-r.~~T!

rffiMKM=""
l

MAX

~

-,~020

10'

TYP

I
-----l

Package 8

Package 9

14 Pin Cavity DIP (D)

16 Pin Cavity DIP (D)

rr-""=;j

I

~

II
-----1 f--

'"

t002TYP

,,,

··R lTIiiimmWt
1---'50_~
MAX

~ 10D~

020--H-

~~~

Package 10
24 Pin Cavity DIP (D)

III

III

C

o
III

C
Q)

E

D25RAD

OZSRAD

Q

'00

'00

91

~ ~~

~ ~~ '" '"

II--:t '"
I
025---1

018 MIN
:tOOZ

Package 12
16 Lead Cavity DIP (J)

Package 11
14 Lead Cavity DIP (J)

D25RAO

,= '""'~

r

II

!¥!~
'os IT
",

L-:t~:----J
Package 13
24 Lead CavIty DIP (J)

'"
",
PIN NO 1
IDENT

:::--1

015 MAX
GLASS

CLIMB

'" --jf-II

019
TV'

Package 14
10 Lead Flat Package (F)

IV

Package 15
14 Lead Flat Package (F)

~
018

±1ID2

'" '"

MIN

0..
:tOOS

c_.
3

PIN NO 1
IDENT

CD
::l

PIN NO 1
IDENT

III

o

::l
III

II

LD20
040

015
019 ~-II-­
TV'

I

020

015

---; f-- 040

Package 17
24 Lead Flat Package (FI

Package 16
16 Lead Flat Package (F I

l

fo60

f315

~: 1~111-1

{

OSO
:tOos

PIN NO 1
IDENT

PIN NO 1
IOENT

L",...

IL

019---l
TV'

".
II
019--11--

015

II·

on--H--

TYP

TV'

Package 19
16 Lead Flat Package (WI

Package 18
14 Lead Flat Package (WI

200
TV'

Package 20
8 Lead Metal Can Package (HI

Package 21
10 Lead Metal Can Package (HI

Packaga 22
10 Lead Metal Can Package (HI
(Hybrids Onlyl

v

III

c:

.2
.lIl

c:

r-~i55DDlAREF1

E

t-

Q)

c

500

L~~ ~ ~ ~

('(I

~~LEAOS017DIA

C)

III

>
..r:.
Il;.

I

060 DIA TYP

Package 24
12 Lead TO-S Metal Can Package (G)

Package 23
12 Lead TO-S Metal Can Package (G)
(Hybrids Only)

INCHES TO MILLIMETERS CONVERSION TABLE
INCHES

MM

INCHES

001

.0254

.010

254

.100

2.54

002

0508

020

.508

.200

5.08

.003

.0762

.030

.762

300

7.62

004

1016

.040

1.016

400

10.16

MM

MM

005

.1270

.050

1.270

500

1270

.006

.1524

060

1.524

600

15.24

007

1778

.070

1.778

700

17.78

.008

2032

.080

2.032

.800

20.32

.009

2286

090

2.286

900

22.86

All package dimensions are In Inches.

VI

INCHES

l>
<

II)

Available Digital
Applications Literatu re

II)

C"

CD

o

...

CO

II)

l>

'0
'0

The following is a listing of Digital applications literature.
This literature, plus Information on National's other product
lines, IS available through our sales offices, representatives,
distributors, or our headquarters In Santa Clara.

(')
II)

...
o

::l

(I)

r-

...
...
.,CD

application notes

II)

AN-12
AN-17

...
C

Applications of the DM7200/DM8200 Digital Comparator

CD

Programmable D,v,der Applications

AN-22

Integrated Circuits for Digital Data Transmissions

AN-35

High-Speed TTL Adders

AN-36

TTL MSI Applications

AN-37

TTL MSI Multiplexers and Demultiplexers

AN-43

TRI-STATE® Logic

AN-45

CharacterIStiCS and Applications of TRI-STATE® IC's

AN-47

TRI-STATE® Logic

AN-49

Pin Diode Drivers

In

In

Modular Systems
High-Speed Memories of Microprogrammed Computers

AN-60

A Method of Implementing Stacks with EXisting Minicomputer Memory

AN-61

The Application of ROMs

AN-68

USing TRI-STATE® Logic for "Rubber-Band" Memories

AN-73

TRI-STATE® Logic Applied
Added Performance

AN-84

Driving 7-Segment Gas Discharge Display Tubes With National Semiconductor CirCUits

In

a Computer System Can Reduce System Cost and Provide

VII

Notes

Notes

Notes

Notes

Notes

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051
(408) 732-5000
TWX: 910-339-9240
National Semiconductor GmbH
8080 Fuerstenfeldbruck
Industriestrasse 10
West Germany
Telephone: 01841 1484
Telex: 527-649

National Semiconductor (UK) Ltd_
Larkfield Industrial Estates
Greenock, Scotland
Telephone: 33251
Telex: 778 632

National Semiconductor (Pte_) Ltd_
No. 1100 Lower Delta Rd.
Singapore 3
Te!ephone: 630011
Telex: 402

REGIONAL AND DISTRICT SALES OFFICES
Al"BAMA
SOUTH-EAST DISTRICT OFFICE
3322 Memorial Pkway, S. W.
Huntsville, Alabama 35802
(205) 881-0622
TWX: 810-~26-2207

FLORIDA
REGIONAL SALES OFFICE
2721 South Bayshore Drive, Suite 121
Miami, Florida 33133
(305) 446-8309
TWX: 810-848-9725

NEW JERSEY/NEW YORK CITY
MID-ATLANTIC REGIONAL OFFICE
301 Sylvan Avenue
Englewood Cliffs, New Jersey 07632
(201) 871-4410
TWX: 710-991-9734

ARIZONA
ROCKY MOUNTAIN REGIONAL OFFICE
3313 North 68tt. Street, No. 114
Scottsdale, Arizo"a 85251
(602) 945-8473

ILLINOIS
NORTH-CENTRAL REGIONAL OFFICE
800 E. Northwest Highway, Suite 1060
Palatine, Illinois 60067
(312) 693-2660
TWX: 910-693-4805

NEW YORK (UPSTATE)
DISTRICT SALES OFFICE
104 Pickard Drive
Syracuse, New York 13211
(315) 455-5858

CALIFORNIA
NORTH-WEST F EGIONAl, OFF, .E
2680 Bayshore Frontage Hc..ad, SuIte 112
Mountain View, California 9EMICONDUCTOR (UK) LTD.
The Precinc1
Broxbourne, HefHordshire
England
Telephone: 69571
Telex: 267-204

JAPAN
NATIONAL SEMICONDUCTOR JAPAN
New Ueno Building
1-24, Yotsuya, Shinjuku-ku
Tokyo
Japan
Telephone: 03-359-7321
Telex: J 24952 ELEMART

"'?

INTERNATIONAL SALES OFFICES
AUSTRALIA
NATIONAL SEMICONDUCTOR
ELECTRONICS PT Y, LTD.
Cnr. Stud Road & Mountain Highway
Bayswater, Victoria 3153
Australia
Telephone: 729-0733
Telex: 32096
CANADA
NATIONAL SEMICONDUCTOR LTD.
1111 Finch Avenue West
Downsview, Ontario, Canada
(416) 635-9880
TWX: 610-492-2510
DENMARK
NATIONAL SEMICONDUCTOR
SCANDINAVIA
Vordingborggade 22
2100 Copenhagen
Denmark
Telephone: (01) 92-0BRO-5610
Telex: DK 6827 MAGNA

FRANCE
NATIONAL SEMICONDUCJOR
FRANCE, S.A.RL
40 Boulevard Felix Faure
92. Cha1illon Sous Bagneux
France
Telephone: 253 60 50
Telex: 25956 F
HONG KONG
NATIONAL SEMICONDUCTOR
HONG KONG LTD.
9 Lai Yip Street
Kwun Tung, Kowloon
Hong Kong
Telephone: 3-458888
Telex: HX3866

SWEDEN
NATIONAL SEMICONDUCTOR SWEDEN
Sikvagen 17
13500 Tyreso
Stockholm
Sweden
Telephone: (08) 712-04-80
WEST GERMANY
NATIONAL SEMICONDUCTOR GMBH
8000 Muncher. 81
Cosi mastrasse 4
Telephone : (0811) 915-027



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2016:08:11 17:13:40-08:00
Modify Date                     : 2016:08:11 19:03:48-07:00
Metadata Date                   : 2016:08:11 19:03:48-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:2ea85ab3-a5a6-7f41-aac4-91f6fc060d00
Instance ID                     : uuid:f36431bf-e8bc-8c48-9246-02d7f85a27b4
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 640
EXIF Metadata provided by EXIF.tools

Navigation menu