1974_ITT_Semiconductor_Product_Catalog 1974 ITT Semiconductor Product Catalog

User Manual: 1974_ITT_Semiconductor_Product_Catalog

Open the PDF directly: View PDF PDF.
Page Count: 972

Download1974_ITT_Semiconductor_Product_Catalog 1974 ITT Semiconductor Product Catalog
Open PDF In BrowserView PDF
CONTENTS

Section
.,

Hi REL and JAN Semiconductors
Index
TTL Integrated Circuits
, DTL Integrated Circuits
High Noise Immunity Logic (Hi-Nil) IC
Inte~face Integrated Circuits

Linelir Industrial Integrated Circuits
Consumer Integrated Circuits
Silicon Transistors
Germanium Diodes
Silicon Diodes
Rectifiers

Zener Diodes
Tuner Diodes

Thyristor Diodes
Capacitors
Package Dimensions
Information fumis.hed by lIT is believed to be acclIra.te and reliable. Ho:-vever, no responsiblity is assumed
by lIT for its use; nor for any infringements of patents or other right' of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent right of lIT.
Circled(E)with device number indicates copyright material reproduced
by permission of Fairchild Camera and Instrument Corporation.
30M474

Printed in U.S.A.

_ITT "
______

H_IG_H_R_E_L_IA_B_IL_IT_Y_P_R_O_C_ES_S_I_N_G

SEMICONDUCTORS
5004 of Military Standard 883 - Test Methods
and Procedures for Integrated Circuits. The
various screening class levels are outlined in
the following section:

HIGH RELIABILITY
PROCESSING
ITT Semiconductors maintains a broad capability for high reliability microcircuit screening.

A

Since its release, ITT has been a leader in
qualifications to MIL-M-38510, the military
specification creating "JAN IC's".

84 -

Mil STO
Class 8
avionics
product
testing.

82 -

Same as 84 without 100% post burnin temperature testing.

ITT's approach to these requirements differs
from several "acronym" programs. We ofte'r a
full and complete "NO EXCEPTION"approach
to each of the normally used military
specifications.
Certain applications require various class
levels of environmental screening and electrical
test. The ITT approach to High Reliability
provides a solid easily understood processing
sequence. Each class level is geared exactly to
the screening procedures outlined in Method

-

Mil STO 883 Method 5004 Class A Processing - Generally used in ultra
hiah reliability applications.
883 Notice ·4, Method 5004
Processing - Used in many
systems requiring burned-in
and 100% OC temperature

C -

Mil STO 883 Method 5004 Class C Processing. Used in many ground-based
systems. Includes complete environmental screening.
Note: These screening procedures are available
in all ceramic and metal packages.

METHODS ARE MIL STD 883
SCREEN
[Spec Paragraph1

CLASS "A"
[Methods)

CLASS"B"
[Methods)

CLASS "B4"
[Methods)

.CLASS"C"
[Methods)

3.1.1 Precap Visual
(100% inspection per specified
method)

2010 A
1008

2010 B
1008

2010 B
1008

2010 B
1008

3.1.2 Stabilization Bake - 24 hrs.
@ 150 C

1008

1008

1008

1008

3.1.3 Thermal Shock - 0 C to 100 C .,.
15 cycles, 5 min, at extreme, 10
sec. transfer time. Liquid to liquid

1011

None

None

None

1010 (may be
replaced with
thermal shock)

1010 (may be
replaced with
thermal shock)

1010(may be
replaced with
thermal shock)

2002, "F" 1 Shock
or 5 pulses atB
(.5 msec. @1500 g)

None

None

None

3.1.6 Centrifuge

2001, E 30,000 9
in Yi, then Yi
plane

2001, E
30,000 9 in Y1

2001,E
30,000 9 in Y1

2001, E 30,000 9
in Y1 plane

3.1.7 Hermeticity
Fine Leak
Gross Leak

Method 1014
Radioflo
Bubble Test

Radioflo
Bubble Test

Radioflo
Bubble Test

Radioflo
Bubble Test

Per Electrical
Spec.

Per Electrical
Spec.

Per Electrical
Spec.

None

3.1.4 Temp-Cycle'- minus 65 C to
1010 (may be
150 C 10 cycles, 10 min. at
replaced with
extreme. 5 min. max. transfer time thermal shock)
3.1.5 Mechanical Shock

3.1.8 Critical Elect. Para.
(Go-No-Go or Oatalog)

1-1

HIGH RELIABILITY PROCESSING
METHODS ARE MIL STD 883
SCREEN
[Spec Paragraph)

CLASS "A"
[Methods)

CLASS"B"
[Methods)

CfLASS"B4"
[Methods)

CLASS"C"
[Methods)

1015125 C
for 240 hours

1015125 C
for 168 hours

1015125 C
for 168 hours

None

3.1.10 Critical Elect. Para.
(Go-No-Go or Datalog)

Per Elect. Spec.

None

None

None

3.1.11 HTRB

72 hrs@ 150 C

None

None

None

Per Spec.
Per Spec.
Per Spec.
Per Spec.

Per Spec'.
None
Per Spec.
Per Spec.

Per Spec.
Per Spec.
Per Spec.
Per Spec.

Per Spec.
None
None
Per Spec.

Method 2012

None

None

None

3.1.14 Qualification and Quality
Conformance Procedures

5005

5005

5005

5005

3.1.15 External Visual

2009

2009

2009

2009

3.1.9

Burn-In

3.1.12 Final Elect. Test
(a) D.C. @ 25 C
(b) D.C. @ Hi/Low Temp.
(c) A.C. Para. @ 25 C
(d) Functional Tests
3.1.13 Radiographic Insp.

Optional Additions.
Class A

- Scanning Electron
Microscope Wafer
Inspection

All Classes

- Read and Record Data (DC at
Temperature) With Delta
Calculations as Required

All Classes

- Switching Measurements at
Temperature Extremes with
Data

All Classes

Through QPL 38510-11 dated 16 July, 1973,
ITT qualificatic;m status is as follows:

1) Full.Qualified Part I
5400
5405
5401
5410
5402
5420
5430
5403
5404
5440
------'TOTAL
Packages

A -1/4 x 114 Flatpack
C-14pinDip

- Lot Conformance Testing
(Life Tests) and Generic
Reliability Data.

Lead Finishes
, --A Package - A - Solder Dipped
B - Tin Plated '
'
C - Gold
C Package - B - Tin Plated
C - Gold

Classes A & B - Elevated Temperature,
Burn-in.

2) Interim Qualification Part II

MIL 38510- JAN MICROCIRCUITS
ITT also offers a broad line of fully qualified
MIL-38510 microcircuits. At this writing, 20
devices are fully qualified and qualification
plans are in process for an additional 21 types.
The rigorous life qualification test are
conducted in full compliance to Method 5005 of
MIL 883 and are available on all ceramic and
. metal can integrated circuits.

5472
545Q
5451
5473
5453
5474
5454
5486
5470
54H30
20'-----

54H10* .
5482
5407
54H72
5417
54H73
54HOO*
5483
54H30'
54H04*
5406
5442
5416
54121
54H20'
--------TOTAL 15--------These qualifications are rigorously controlled by the Defense Electronics Supply Center, Dayton, Ohio .
• Flat Pack Only I

1-2

HIGH RELIABILITY PROCESSING
.=

tJIiO!ilJ#l~b

ORDERING INFORMATION

A cross reference guide for ordering of JAN
microcircuits is shown below:

Jan No. Part No. • Jan No. Part No.

00101
00102
00103
00104
00105
00106
00107
00108
00109
00201
00202
00203
00204
00205
00206
00207
00301
00302
,00303
00401
00402
00403
00404
00501
00502
00503
00504
00601
00602
00701
00801
00802
00803
00804
00901
00902
00903
00904
01001
01002
01003
01004
01005
00106
01007
01008
01009
01101
01201
01202
01203
01301

5430
5420
5410
5400
5404
5412
5401
5405
5403
5472
5473
54107
5476
5474
5470
5479
5440
5437
5438
5402
5423
5425
5427
5450
5451
5453
5454
5482
5483
5486
5406
5416
5407
5417
5495
5496
54164
54165
5442
5443
5444
5445
54145
5446
5447
5448
5449
54181
54121
54122
43123
5492

01302'
01303
01304
01305
01306
01401
01402
01403
01404
01405
02001
02002
02003
02004
02005
02006
02101
02102
02103
02104
02105
02201
02202
02203
02301
02302
02303
02304
02305
02306
02307
02401
02601
02701
02801
02802
02901
02902
02903
02904
02905
05301
05302
10101
10102
10103
10104
10201
10301
10302
10303
10202

5493
54160
54163
54162
54161
54150
9312
54153
9309
9322
54L30
54L20
54L10
54LOO
54L04
54L03
54L71
54L72
54L73
54L78
54L74
54H72
54H73
54H74
54H30
54H20
54H10
54HOO
54H04
54H01
54H22
54H40
54L86
54L02
54L95
54L164
54L42
54L43
54L44
54L46
54L47
'4007A
4019A
741
747
LM101A
LM108A
723
710
711
LM106
MCM5304

Part No. Jan No.

Part No. Jan No.

54L47 02905
710 10301
711 10302
5448 01008
5449. 01009
723 10201
741 10101
5450 00501
5451 00502
747 10102
4007A 05301
5453 00503
5454 ' 00504
4019A 05302
5470
00206
5400 00104
54L71 02101
54HOO 02304
5472· 00201
54LOO 02004
54H72 02201
5401 00107
54L72 02102
54H01 02306
5473 00202
5402 00401
54H73 02202
54L02 02701
54L73 02103
5403 00109
5474 00205
54L03 02006
54H74 02203
5404 00105
54L74 02105
54H04 02305
5476 00204
. 54L04 02005
54L78 02104
5405 ,00108
5479 00207
5406 00801
5482 00601
5407 00803
5483 00602
5410 00103
5486 00701
54H10 02303
54L86
54L10 02003
02601
5492 01301
5412 00106
5416 00802
5493 01302
5417 00804
5495 00901
54L95 02801
5420 00102
54H20 02302
5496 00902
9309· 01404
54L20 02002
9312 01402
54H22 02307,
5423' 00402
9322 01405
54107 00203
5425 00403
54121 01201
5427 00404
54122 01202
5430 00101
54H30 02301
54123 01203
54145 01005
54L30 02001
5437 00302
54150 01401
5438 00303
54153 01403
5440 00301
54160 01303
54H40 02401
54161 01306
5442 01001
54162 01305
54L42 02901
54163 01304
5443 01002
54164 00903
54L43 02902
54Ll64 02802
5444 01003
54165 00904
54L44 02903
54181 01101
5445 01004 LM101A 10103
5446 01006
LM106 10303
54L46 02904 LM108A 10104
5447 01007 MCM5304 20102

HIGH RELIABILITY PROCESSING
SUFFIX DEFINITioNS
ALL MIL-M38510 DEVICES MUST HAVE A THREE
LETTER SUFFIX AFTER THEIR NUMBER
EXAMPLE: 38510/0010lBCB IS 5430 GATE,
... '-;..... ,. \
,,,',""
.",-','

/""

",'"

'"
/

, '"

CLASS
B
I

\

\

'"

\

/

II

14 PIN
I DIP

/

I

•

I

r 1st LmER
\ DEVICE CLASS

\

\\
\

I ,

\A-883A
8-8838
C-883C

\

/'"

",,,,,",,

/

\

",'"

TIN PLATED'KOVAR
LEADS
,
\

\
".

2nd LETTER _ PACKAGE OUTLINES' \

"

3rd LEmR

WD FINISH

A- W' x W' Flatpack 14 Pin

, B- W' x Va" Flatpack
'C -14 Pin DIP
D- %" x 31a" Flatpack 14 Pin

E-16 Pin DIP
F- %"

X

3/8 " Flatpack 16 Pin

G- 8 Pin T0-99
H- %" x %" Flatpack 10 Lead
1-10 Pin TO·99

J - 24 Pin Flatback
1-24 Pin DIP

The JAN number is a complete processing
and electrical description of the part odered.
All full Jan parts are completely assembled,
fabricated and tested in the United States.

Exception" to the standard military screening
'documents, the need for exact selection of par~
ticular processing Is relieved. In addition, test
plans for exact conformance to customer drawings are generated if required and as a standard
practice, submitted to the customer for final
approval.

SOURCE CONTROL DRAWINGS

DELIVERY

lIT maintains a completely staffed specification review group for analysis of customer
controlled specifications.

The West Palm Beach factory of lIT Semiconductors is dedicated to manfacture of Highreliability circuits. A complement in excess of
100,000 burn-in sockets is maintained. In addition, if a c(:>ntractual or specification limitation
does not exist our offshore facilities are completely equipped for all Class C assembly and
screening techniques. All class B final work
is done in the U.S.

In many cases, the customer may find one of
'the standard lIT H~-Rel processing sequences
exactly equivalent to his needs and his only
requirement is to specify the. final electrical
specification.
Since
lIT . performs with "NO
I
.

1-4

PRODUCT INDEX
HIRELand
JAN SEMICONDUCTORS

. Type No.

Page

Type No.

Page

ITT-7445 ............. -;67/70
ITT74160 ........ : .. 196/201
ITT7446A ............ . 71/80
ITT74161 ......... .. 196/201
ITT7447A
............
.
71/80
ITT74162 .; ...... : .. 1~6/201
Type No.
Page
ITT7448 .............. 71/80
ITT74163 ......... .. 196/201
High-Reliability
ITT7450 ....... , ..... . 81/83
ITT74164 ........ ... 202/204
Processing - ............ . 1/4
ITT7451 ............. . 81/83
ITT74165 ........... 205/207
ITT7453 ............. . 84/86
ITT74174 .......... . 208/210·
ITT7454 ............ .. 84/86
ITT74175 .. ~ ....... . 208/210
INDEX
ITT7460 : ........... .. 87/89
ITT74180 ........ ... 211/213
----SECTION 2 - - - ITT7470 ... : .......... . 90/92
ITT74181 ........... 214/220
ITT7472 ............. . 93/95
ITT74182 ........... 222/224
TTL INTEGRATED CIRCUITS
ITT7473 ............. . 96/98
ITT74190 ......... :.225/231
ITT74191 ........... 225/231
---SECTION 3 - - - ITT7474 ..... ; ... ; .. . 99/101
ITT7575 ............. . 102/5
ITT74192 .......... . 232/237
Typ~ No.
Page
ITT7476 ........... . 106/108· )TT74193 ........... 232/237
TTL Numerical Index ..... 1,2
ITT7480 ....... ..... 109/112
ITT74194 ........... 238/241
TTL Functional Index ..... 3,4
ITT7482 .......... .. 113/115
ITT74195 ........ ... 242/245
General Information
ITT7483 ........... . 116/119
54/74 Series TTL
IT17486 ............ 120,121
ITT54/74HOO ....... ;246,247
Family ...... 5114 and 14A/D
1TT.7490 ........... . 122/125
ITT74H01 ......... , .248,249
ITT54/7400 ............ 15,16
ITT7491 A ...... : ... . 126/128
ITT74H04 ..........• 250,251
ITT7401 ............... 17,18
ITT7492 ........... . 129/131
ITT74H05 ........... 252,253
ITT7402 ...•... , ....... 19,20
ITT7493 ........ : ... 132/134
ITT74H10 ........... 254,255
ITT7403 ............... 21 ,22
ITT7494 ......... ... 135/137
ITT74H11 ........... 256,257
ITT7404 ..... , ......... 23,24
ITT7495A ........... 139,140ITT74H20 .......... ;258,259
ITT7405 ............... 25,26
I.IT7496 ........... . 1411143 -ITT74H21 .: ......... 260,261
ITT74104 .. : ............. 144
ITT7406 ............ .. 27/29
ITT74H30 ........... 262,263
ITT7407 .............. 30,31
ITT74105 ............... 144
ITT74H40 ......•.... 264,265
ITT7408 ............. . 32/34
ITT74107 ........... .. 96/98
ITT74H50 .......... . 266/268
ITT7409 ............. . 32/34
ITT741 09 ................ 144
ITT74H51 ...... ; .... 266/268
ITT7410 ... ~ ........... 35,36
ITT74118 ............ 145,1~6
ITT74H53.;; ...... .·.269/271
ITT7411 ............... 37,38
ITT74121 ........•. . 147/152
ITT74H54 ......... : .269/27.1
ITT7412 ............... 39,40 - ITT74122 ......... .. 153/157
ITT74H60 ........... 272,273
ITT7413 ............... 41,42
ITT74123 _.......... . 153/157
ITT74H72 .. ~ ....... . 274/276
ITT74124 .......... . 158/164_ ITT74H73 -........ _. . 277/279
ITT7416 ............ .. 27/29
ITT7417 ............... 30,31
ITT74130 ......... .. 165/166
ITT74H74 ........... 280/282
ITT74131............. 165,166
ITT7420 ............... 43,44
ITT74H76 .......... . 283/285
ITT7421 ............... 45,46
ITT74135 .......... . 167/169
ITT7525 ............... 47,48
ITT74137 .......... . 167/169
ITT7426 ....... ;.; ..... 49,50 -ITT74138 ............ 170,171
ITT7428 •............ . 51/53
ITT74139 ............. 170,171
DTL INTEGRATED CIRCUITS
ITT7430 ............... 54,~5
iTT74141 ........•. . 172/174
---SECTION 4 - - ITT7432 .... ; ..... : .... 56,57
ITT74145 ........... .. 67/70
ITT7433 ............. . 51/53
ITT74150 ........... 175/180
ITT930,961 .............. 1/3
ITT7437 ............. . 58/60
ITT74151 : .... ; ...... 175,180
ITT932,944 .............. 4/7 .
ITT7438 ............. . 58/60
ITT74153 ........... 181/184
................ .4/8
ITT933
ITT7440-............. ; .61,62
ITT74154 ........... 185/187
ITT935/938 ............ 9/13
IT17442 ............. . 63/66
ITT74155 ....... -.... 188/192
ITT941 ;951 . : .......... 14/16
ITT7443 .......... : ... 63/66
ITT74156 .....••.•.. 188/192
ITT945,948 ....•....... 17/19
ITT7444 ............. . 63/66 - ITT74157 .......... . 193/195

---SECTION 1 - - -

PRODUCT INDEX
DTL INTEGRATED CIRCUITS
(continued)
Type No.

Page

ITT946,949 ........... . 20/22
ITT962,963 ........... . 23/25
ITT1800 ............... 26,27
ITT1806,1807 ......... . 28/30
ITT1808,1809 ......... . 31/33
ITT1810,1811 ......... . 34/36
ITT9093/94,9097,9099 . . 37/41

DTL Gate Propagation
Testing .................. 42

SENSE AMPLIFIERS
- - - SECTION 6 - - Type No.

Page

ITT7520 ........ .. 1/8,25/47
ITT7521 .............. .. 6/8
ITT7522,7523 ...•.....• . 9/11
ITT7524,7525 ......... . 12/14
ITT7528,7529 ......... . 15/17
ITT5534,5535' ... :"..... . 18/21
ITT75234,75235 .... : .. . 22/24
ITT3671 ............. . 48/62
ITT9614 ............. . 63/68
ITT9615 ............. . 69/74

INDUSTRIAL LINEAR
---SECTION
HIGH NOISE IMMUNITY
LOGIC [HINIL] IC
---SECTION 5 - - ITT301,301 H ............. 1,2
ITT302,302H ............. 3,4
ITT303,303H ............. 5,6
ITT311 ,311 H ............ .7/9
ITT312,312H ......... . 10/12
ITT321 ,321 H ..•........ 13,14
ITT322,322H ........... 15,16""
ITT323,323H ........... 17,18
ITT324,324H ........... 19,20
ITT325,325H .......•... 21,22
ITT326,326H ........... 23,24
ITT331 ,331 H ............. 25
ITT332,332H ........... 26,27
IlT333,333H ........... 28,29
ITT334,334H ........... 30,31
ITT335,335H ........... 32,33
ITT342,342H .. , ........ 34,35
ITT343,343H ........•. 36/38
ITT361 ,361 H ......... . 39/41
ITT362,362H ......... . 42/44
ITT370,370H ........... 45,46
ITT371 ,371 H .......... 47/49
ITT372,372H ......... . 50/53
ITT380,381
380H,381 H ........... . 54/56

7---

ITT709,709A .......... .. 1/8
ITT710 ............... . 9/16
ITT711 .............. . 17/22
ITT712 .............. . 23/31
ITT720 .............. . 32/37
ITT723 ............... 38/46
ITT726 ............... 47/50
ITT741 ............. .. 51/57

CONSUMER LINEAR
(continued)
Type No.
Page
ITT3065 ............. . 39/42
TDA1330 ............. 43/45
TDA1352 ............. 46/49
ITT3701 ............. . 50/53
SAJ110 ............... 54/60
SAH190 ............. . 61/68
TBA470 ................. 69
TBA800 .............. 70/73
TCA250 .............. 74/76
TCA270 ............... 77 ,78
TCA350 : .............. 79,80
TCA430-N ; .............. 81
ZTK6.8 to
ZTK33 (TAA550) ...... . 82/86
ZTK33DPD ......•..... 87,88
UAA110 ............ .. 89/92
SAJ220 .............. . 93/94
TAA780 ............... 95,96
TBA840 .............. 97/99
TCA840 ............ .. 97/99
TAA775G .......... . 100/103
SAK115 ............. 104,105
SAY115 ............. 106,107
ITT7103 ..... ~.: ....... 18,19

SILICON TRANSISTORS
CONSUMER LINEAR

---SECTION 9 - - -

---SECTION 8 - - -

Small Signals Chips
And Wafers ............. 1,2

ITT491 ................ . 1/4
ITT492 ............... .. 1/4
ITT500 ................... 5
ITT501 .................. 6,7
ITT502 .................. 8,9
ITT503 ...... , ......... 10,11
ITT505 ................ 12,13
ITT508 ................ 14,15
ITT509 ................ 16,17
ITT7103 .........•.........
ITT7105 ............... 20,21
TBA940 .............. 22/25
TBA950 .............. 26/29
TBA120S ............ . 30/34
ITT3064 ............. . 35/38

MPSA05 .................. 3
MPSA10 •................. 4
MPSA20 .....•....•....... 5
MPSK20 ....•.....•....... 5
MPSK21 .......•.......... 5
MPSK22 ...........•...... 5
MPSA55 ........•......... 6
MPSA70 ..............•... 7
MPS706,MPS706A ......... 8
MPS834 ...................9
MPS2369 ................ 10
MPS2711 ................ 11
MPS2712 ................ 11
MPS2713 ................ 12
MPS2714 ................ 12

PRODUCT INDEX
SILICON TRANSISTORS
(continued)
Type No.
Page
M PS2923 12925 .......... 13
M PS2926/2931 ........... 14
MPS3392/3395 ........... 15
MPS3638,3638A ....... 16,17
MPS3693 ................ 18
MPS3702 ................ 19
MPS3703 ................ 19
MPS3704 ................ 20
MPS3705 ................ 20
MPS3706 ................ 20
M PS3707/3711 ........... 21
MPS5172 ................ 22
MPS6530/6532 ........... 23
MPS6533/6535 ........... 24
MPS6565 ................ 25
MPS6566 ................ 25
MPS6591 ................ 26
2N696 ..................• 27
2N706 ................ 28,29
2N706A ............... 28,29
2N706B ............... 28,29
2N708 ................... 30
2N744 ................... 31
2N834 ................... 32
2N2195 .................. 33
2N2195A ................ 33
2N2195B ................ 33
2N929 ................ 34,35
2N930 ................ 34,35
2N2217 ............... 36,37
2N2218 ............... 36,37
2N2219 ............... 36,37
2N2219A .............. 38,39
2N2221 ............... 40,41
2N222 ................ 40,41
2N2221 A .............. 42,43
2N222A ............... 44,45
2N2368 .............. .46/50
2N2369 .............. . 46/50
2N2369A ............ . 51/56
2N2480 ............... 57,58
2N2480A ............. 57/58
2N2483 ..... ; ........ . 59/64
2N2484 .............. . 59/64
2N2904A .............. 65,66
2N2905A .............. 65,66
2N2906A .............. 65,66
2N2907 A .............. 65,66

Type No.

Page

2N3011 ............... 67,68
2N3053 .................. 69
2N3502 ............... 70/72
2N3503 .............. . 70/72
2N3504 .............. . 70/72
2N3505 .............. . 70/72
2N3724 .............. . 73/78
2N3725 .............. . 73/78
2N4013 ............... 73/78
2N4014 ............ ... 73/78
2N3903 .............. . 79/81
2N3904 .............. . 79/81
2N3905 .............. . 82/84
2N3906 ............... 82/84
2N3962 .............. . 85/87
2N3963 .............. . 85/87
2N3964 .............. . 85/87
2N3965 .............. . 85/87
2N4123 .................. 88
2N4124 .................. 88
2N4125 .................. 89
2N4126 .................. 89
2N4248 ............. : .90/92
2N4249 .............. . 90/92
2N4250 .............. . 90/92
2N4400 ............... 93,94
2N4401 ............... 93,94
2N4402 ............... 95,96
2N4403 ............... 95,96
2N4418 ............... 97,98
2N4419 ............... 97,98
2N4420 .............. 99,100
2N4421 .............. 99,100
2N4422 .............. 99,100
2N5086 ................. 101
2N5087 ................. 101
2N5221 ................. 102
2N5209 ................. 103
2N5210 ................. 103
2N5219 ................. 104
2N5220 ................. 105
2N5087 ................. 106
2N5223 ................. 107
2N5224 ................. 108
2N5225 ................. 109
2N5226 ................. 110
2N5227 ................. 111
2N5228 ................. 112
2N5368/5371 ............ 113
2N5372/5375 ............ 114

Type No.

Page

2N5376 ................. 115
2N5377 ................. 115
2N5378 ............. 116,117
2N5379 ............. 116,117
2N5447 ................. 118
2N5448 ................. 118
2N5449 ................. 119
2N5450 ................. 119
2N5451 ................. 119

GOLD BOND
GERMANIUM DIODES
---SECTION 1 0 - - -

Gold Bond Germanium
Diodes ................ . 1/8

SILICON DIODES
- - - SECTION 11.,----

Switching Diodes .......... 1
Si !icon Planar Diodes ... . 2/6
1 N148 .................... 7
JAN1 N148 ................ 8
1 N149 .................... 9
ITT600 .................. 10
1TT601 .................. 11
ITT2001 ............... 12,13
ITT2002 ............... 12,13
ITT2003 ............... 12,13
ITT3001 ............... 14,15
ITT3002 ............... 14,15
ITT3003 ............... 14,15
1 N5194 .................. 16
1N5195 .................. 16
1 N5196 .................. 16
1 N5605 .................. 17
1N5606 .................. 17
1 N5607 .................. 17
1 N5608 .................. 17
1N5609 .................. 17

PRODUCT INDEX
THYRISTOR DIODES

RECTIFIERS
---SECTION 1 2 - - -

-

.......-SECTION 1 5 - - -

Type No.
Page
Selenium Contact Protector
Rectifiers .............. . 1/6·
Selenium Transient Voltage
Suppressors .......... . 7/12
1 N645/649 ............... 13
1 N4000 Series ........ . 14/17
EM500 Series .. ; ..... . 14/17
1 N4001/4007 ............. 18
1 N4383-5 ............ . 19/21
1 N4585-6 ......•..... . 19/21
RG1122-3 ............ . 19/21
EM500G Series .... : ...... 22
1 N3611 Series .... : ....... 22
1 N4245 Series ............ 22
1 N5400/5408 ...... , ... 23,24
Entertainment Type
Selenium Rectifiers ... . 25/30

Type No.
Page
1 N3831 13846 ............ 1,2
Type E 4E20-4E200 ....... 3,4
Type E 4E20M-4E200M ... 5,6
Four-Layer Diode,
Application Notes ..... . 7114

CAPACITORS
---SECTION 16 _ __
Type TAG .............. 115
Type TAP ............. . 6110
Type TAM ............ . 11114

PACKAGE DIMENSIONS
-SECTION 1 7 - - Package Dimensions ..... 1 17
ZENER DIODES
---SECTION 13 ...· - 1 N746/759 .............. 1,2
1 N957/973 .............. 3,4
1 N4729/4752 ........... . 5/7
1 N5226 15257 .......... . 8/10

TUNER DIODES
---SECTION 1 4 - - ITT109 .................. 1,2
ITT141 .................. 3,6
ITT142 .................. 3,6
ITT21 0 .................. 7,8
ITT243 ................... 9
ITT244 ·................... 9
V-Series Variable Between
5pF and 60pF ......... 10,11
U-Series Variable Between
2pF and 18pF......... : 12,13

INTEGRATED CIRCUITS DICE AND WAFERS

All ITT integrated circuits are available both in wafer and in chip
form. Since the completed individual encapsulated product is·
capable of being more extensively and thoroughly tested than the
wafer, these specifications are limited to the capability of the chip
and the attendant testing equipment.

USE
DTL and Linear circuits are normally supplied with plain
backing. Gold backing can be furnished upon special
request. All other circuits are supplied with gold backing.
Recommended die attach temperature Is 420·C for either
type of backing. A 98% gold, 2% silicon preform is
recommended for die attach with all plain-backed chips.
One mil aluminum wire, ultrasonically bonded to the pads,
is recommended for connecting the chip to the circuit.

PACKAGING FOR SHIPMENT

I. C. WAFER PACKAGE

Wafers will be shipped in the plastic package shown.
Chips will be packaged in carriers as indicated.

IDENTIFICATION

All integrated circuit dice will be identified by the
appropriate three or four-digit code, together with the
individual suffix number indicating the temperature range.
For example, a 930 limited-temperature range chip would
be a "930-5." A 930 full-temperature range chip would be a
"930-1."

CHIP PACKAGE

MIL AND HI-REL SEMICONDUCTORS

MIL38510. Many diodes and transistors are available
as JAN, JAN/TX, or MI L types.

Virtually all ITT Semiconductors are available with
hi-rei processing. IC's, for example, can be processed
for any portions of, or all of, MIL-STO-883 and

Whenever you need hi-rei semiconductors, check
ITT. Your local representative can give up-to-date
information on availability, price, etc.

3-0

I
I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
, I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

... JI[~~ __________________TT__L_N_U~M_E_R_IC_A_L__IN_D_E_X
SEMICONDUCTORS
Type

Description

,Type

Quad 2 ilp NAND
Quad 2 ilp NAND (open collector
5.5V rating)
ITT 7402
Quad 2 il P NOR
Quad 2 ilp NAND (open collector
ITT 7403
5.5V rating)
. ITT 7404
Hex inverter
ITT 7405
Hex inverter (open collector 5.5V
rating)
ITT 7406
Hex inverter bufferldriver (open
collector 30 V rating)
ITT 7407
Hex blifferl driver (open-collector
30 V rating)
ITT 7408
Quad 2 ilp AND
ITT 7409 ' Quad 2 ilp AND (open-collector)
ITT 7410
Triple 3 ilp NAND
ITT 7411
Triple 3 ilp AND
ITT 7412
Triple 3 ilp NAND (open-collector
5V rating)
ITT 7413
Dual 4 ilp Schmitt Trigger
ITT 7416
Hex inverter bufferl driver (opencollector 15V rating)
ITT 7417
Hex bufferl driver (open-collector
15V rating)
ITT 7420
Dual 4 il P NAND
ITT 7421
Dual 4 il P AND
ITT 7425
Dual 4 ilp NOR.(with strobe)
ITT 7426
Quad 2 il P high voltage interface
NAND(open collector)
ITT 7428
Quad 2 ilp NOR buffer
ITT 7430
8 ilp NAND
ITT 7432
Quad 2 i/p OR
ITT 7433
Quad 2 ilp NOR buffer (open collector 5.5V rating)
ITT 7437
Quad 2 ilp NAND buffer
ITT 7438
Quad 2 ilp NAND buffer (open
collector 5.5V rating)
ITT 7440
Dual 4 il P NAND buffer
ITT 7442
B. C. D. to decimal decoder
ITT 7443
Excess 3 to decimal decoder
ITT 7444
Excess 3 gray to decimal decoder
ITT 7445
B.C.D. to decimal decoder (open
collector 30V rating)
ITT 7446A
BCD to seven segment Decoderl
driver ("open collector 30V rating)
ITT 7447A
BCD to seven segment Decoderl
driver (open collector 15V rating)
ITT 7448
BCD to seven segment decoderl
Driver (2k pull up)
ITT 7450
Expandable dual 2 wide, 2 ilp
A.O.1.
ITT 7451
Dual 2 wide, 2 ilp A.O.1.
Expandable 4 wide, 2 ilp A.O.I.
ITT 7453
ITT 7400
ITT 7401

3-1

ITT 7454
ITT 7460
ITT 7470
ITT 7472
ITT 7473
ITT 7474
ITT 7475
ITT 7476
ITT 7480
ITT 7482
ITT 7483
ITT 7486
'ITT 7490
ITT 7491 A
ITT 7492
ITT 7493
ITT 7494
ITT 7495A
ITT 7496
ITT 74104
ITT 74105
ITT 74107
ITT 74109
ITT 74118
ITT 74121
ITT 74122
ITT 74123.
ITT 74124
ITT 74130
ITT 74131
ITT 74135
ITT 74137
ITT 74138
ITT 74139
ITT 74141
ITT 74145
ITT 74150
ITT 74151
ITT 74153
ITT 74154

Description

4 wide, 2 i/p.A.O.1.
Quad 2 il P expander
Edge-triggered J-K flip-flop
J-K master-slave flip-flop
Dual ·J-K master-slave flip-flop
Dual D-type edge-triggered flipflop
Quad bistable latch
Dual J-K master-slave flip-flop
with preset and clear
Gated full adder
2-bit full adder
4-bit full adder
Quad 2 il P exclusive-OR
Decade counter
8-bit shift register
Divide by 12 counter
4-bit binary counter
.
5-bit shift register
4-bit shift register (reversible)
4-bit shift register
Gated J-K master-slave flip-flop
Gated J-K master-slave flip-flop
Dual J-K master-slave flip-flop
Dual J-K positive-edge-triggered
flip-flop with preset and clear
Hex set-reset latch
Monostable· multivibrator
Retriggerablo monostable multi vibrator with; clear
Dual retriggerable monostable
multivibrator with clear
Universal pulse generator
Quad 2 ilp AND buffer (open collector 30V rating)
Quad 2 lip AND buffer (open collector 15V rating)
Quad 2 i/p positive NAND schmitt
trigger
Hex inverter Schmitt Trigger
Quad 2 il P OR buffer (open collector 30V rating)
Quad 2 ilp OR buffer (open collector 15V rating)
B.C.D. to decimal decoderldriver
B.C.D. to decimal decoder (opencollector 15V rating)
16-bit data selectorl multiplexer
8-bit data selectorl multiplexer
Dual 4-llne-to-1-llne datasehictorl
multiplexer
4-1 ine-to-16-line decoder Idem u It iplexer

TIL NUMERICAL INDEX
Type
ITT 74155
ITT 74156
ITT 74157
ITT 74160
ITT 74161
ITT 74162
ITT 74163
ITT 74164
ITT 74165
ITT 74174
ITT 74175
ITT 74180
ITT 74181
ITT 74182
ITT 74190
ITT 74191
ITT 74192
ITT 74193
ITT 74194
ITT 74195
ITT 74HOO
ITT 74H01
ITT 74H04
ITT 74H05
ITT 74H10
ITT 74H11
ITT 74H20
ITT 74H21
ITT 74H30
ITT 74H40
ITT 74H50
ITT 74H51
ITT 74H53
ITT 74H54
ITT 74H60
ITT 74H72
ITT 74H73

Description
Dual 2 to 4 line decoder/demultiplexer
Dual 2 to 4 iine decoder/demultlplexer (ole 5-5V rating)
Quad 2-line-to-1-line data selectorI multiplexer
Synchronous 4-bit counter
Synchronous binary up counter
Fully syncnronous counter
Fully synchronous counter
8-bit parallel-out serial shift
register
Parallel-load 8-bit shift register
Hex D-type flip-flop
Quad D-type flip-flop
8-bitparity generatorl checker
Arithmetic logic unit I function
generator
Look-ahead carry generator
Synchronous upl down counter
with downlup mode control
Synchronous upldown counter
with downlup mode control
. Synchronous BCD-upl down
counter
Synchronous binary 4-blt upl
down counter
4-bit bidirectional universal shift
register
4-bit parallel-access shift register
Quad 2 ilp NAND
Quad 2 ilp NAND (open-collector
output)
Hex inverter
Hex inverter with open-collector
output
Triple 3 ilp NAND
Triple 3 ilp AND
Dual 4 il P NAND
Dual 4 il P AND
8-input NAND
Dual 4 i/p NAND
Dual 2-wide 2 ilp and-or-invert
gate (one gate expandable)
Dual 2-wide 2 il P and-or-invert
gate
Expandable 4-wide and-or-invert
g~e
4-wide and-or-invert gate
Dual 4 ilp expander
and-gated J-K master-slave flipflops with preset and clear
Dual J-K flip-flops with clear

-

Type

Description

ITT 74H74

Dual d-type positive-edgetriggered flip-flop with preset and
clear
Dual J-K flip-flops with preset and
clear

ITT 74H76
ITT
ITT
ITT
ITT
ITT
ITT

9000
9001
9002
9003
9004
9005

ITT 9006
ITT 9007
ITT 9008
ITT
ITT
ITT
ITT
ITT
ITT
ITT
ITT
.ITT

9009
9016
9020
9022
9300
9301
9304
9308
9309
9311
ITT 9312
ITT 9316
ITT 9322
ITT 9328
ITT 9601
ITT 9602

in

3-2

J-K Flip-flop
J-K Flip-flop
Quad 2 il P NAND gate
Triple 3 ilpNAND gate
.
Dual.4 il p NAND gate
AND-OR-invert gate, dual 2-wide,
2 il p, expandable'
Dual 4 il p extender
Single 8 ilp NAND gate
And-or-invert gate, expandable
4 wide, 2 ilp
Dual 4 i I p Buffer
Hex inverter
Dual J-K Flip flop
Dual J-K Flip flop
4-Blt Shift Register
One-of-Ten Decoder
Dual Full Adder
Dual 4-Bit Latch
Dual 5-lnput Multiplexer
One-of-16 Decoder
8-lnput Multiplexer
HexiClecimal Counter
Quad. 2-lnput Multiplexer
Dual 8-Bit Shift Register
Retriggerable One Shot
Dual Retriggerable One Shot

TTL FUNCTIONAL INDEX
Positive-NAND Gates And Inverters With
Totem-Pole Outputs
Function
Type
Hex Inverters ........................ 74H04
7404
9016
Quad 2 i/p NAND ..... : ............. .74HOO
7400
9002
Triple3 i/p NAND .................... 74H10
7410
9003
Dual 4 i/p NAND ..................... 74H20
7420
9004
8i/pNAND ......................... 74H30
7430
9007
Positive-NAND Gates And Inverters With
Open-Collector 9utputs
Hex Inverters ........................ 74H05
.
7405
9017
Quad2i/pNAND .................... 74H01
7401
7403
9012
Triple3 i/p NAND ..................... 7412
Positive-NOR Gates With Totem-Pole Outputs

Buffer And Interface Gates With
Open-Collector Outputs
Function
Type
Hex Buffersl Drivers ................... 7407
7417
Hex Inverter Buffersl Drivers ............ 7406
7416
Quad 2 il P NAND ...................... 7426
7438
Quad 2 i/p NOR ....................... 8433
Quad 2 i/p AND ...................... 74130
74131
Quad 2 i/p OR ....................... 74138
74139
Positive-OR Gates With Totem-Pole Outputs
Quad 2 il P OR ........................ 7432
AND-OR Invert Gates With Totem-Pole
Outputs
4-Wide 2-2-3-2-input .................. 74H54
4-Wide 2 il P ................ : ......... 7454
Dual 2-Wide 2 i I p .................... 74H51
7451
Expandable Gates
4-Wide AND-OR invert ................ 74H53
7453
9008
Dual2-Wide AND-OR invert ............ 74H50
7450
9005

Quad 2 il P NOR ....................... 7402
Dual 4 il p NOR with strobe ............. 7425
Positive-AND Gates With Totem-Pole Outputs
Quad2i/pAND ....................... 7408
Triple3i/pAND ..................... 74H11
Dual4i/pAND ...................... 74H21
Positive-AND Gates With Open-Collector
Outputs
Quad2.i/pAND ....................... 7409
Schmitt-Trigger Positive-NAND Gates And
Inverters With Totem-Pole Outputs
Hex Schmitt Trigger Inverters .......... 74137
Quad 2 il P NAND Schmitt Triggers ...... 74135
Dual 4 i/p NAND Schmitt Triggers ....... 7413
Buffers! Clock Drivers With
Totem-Pole Outputs
Quad 2 il P NOR ....................... 7428
Quad 2 il P NAND ...................... 7437
Dual 4 i/p NAND ................... , .74H40
7440
9009

Expanders
Dual4i/p ............................ 7460
74H60
9006
Flip-Flops
Dual J-K edge-triggered ............... 74109
9024
Single J-K edge-triggered ............... 7470
Dual pulse-triggered .................. 74H73
7473
74107
74H76
7476
9020
9022
Single pulse-triggered ................ 74H72
7472
Gated J-K Master Slave ................ 74104
74105
9000
9001
D-Ty~e Flip-Flops
Dual .......................... 7474,74H74

3- 3

TTL FUNCTIONAL INDEX
Monostable Multivibrators With
Schmitt-Trigger Inputs
Function
Type
Single .............................. 74121
Retriggerable Monostable Multivibrators
Single .............................. 74122
9601
Dual ................................ 74123
9602
S-R Latches
Hex S-R ............................. 74118
Adders
Sir4gle 1-bit gated full .................. 7480
Single 2-bit full ........................ 7482
4-bit arithmetic logic units/
function generators ................... 74181
Look-ahead carry generators .......... : 74182
Dual1-bit fu II ......................... 9304
Parity Generators! Checkers
8-bit odd/everi ....................... 74180
Other Arithmetic Operators
Quad 2 i/ P exclusive-or gates with
totem-pole outputs .................... 7486
Shift Registers
4-bit parallel-in parallel-out
(bidirectional) ........................ 74194
5-bit parallel-in, parallel-out. ............ 7496
4-bit parallel-in, parallel-out. ........... 74195
9300
7495A
Serial-in, parallel-out, 8-bit ............ 74164
8-bit parallel-in, serial-out ............. 74165
4-bit parallel-in, serial-out .............. 7494
8-bit serial-in~ serial-out ............... 7491 A
Dual 8 Bit serial in - serial out ........... 9328

Pulse Generators
Function
Type
Universal pulse generator .............. 74124
Latches
DG (clocked) latches ................... 7475
Dual 4-Bit ............................ 9308
Decoders! Demultiplexers
4-line-to-16-line ...................... 74154
9311
Dual 2-line-to-4-line ................... 74155
74156
4-lineto10-line ....................... 7442
7443
7444
9301
Open-Collector Display
Decoders! Drivers
BCD-to-decimal ....................... 7445
74145
74141
BCD-to-seven-segment .... '........... 7446A
7447A
7448
Data Selectors! Multiplexers
Dual 4-bit ............................ 9309
74153
8-bit ........................... ~ ..... 9312
74151
Quad 2-bit ............................ 9322
74157
16-bit ............................... 74150
Asynchronous Counters
Decade .............................. 7490
Divide by 12 .......................... 7492
4-bit Binary ........................... 7493

Other Registers
Hex D-type registers .......... ; .... -... 74174
Quad D-type registers ................. 74175
Synchronous Counters-Positive-Edge
Triggered
Decade ............................. 74162
74160
Decade up/down ..................... 74192
74190
4-bit binary .......................... 74163
74161
74193
74191
9316

3-4

GENERAL INFORMATION ITT54/74 SERIES TTL FAMilY
This series offers a wide range of digital integrated
circuit devices from simple NAN D gates to large
complex functions. They form a TTL family
(Transistor-Transistor Logic) guaranteed to operate
over the following ambient temperature ranges.
Military range. 54 series
Industrial range. 74 series

For ease of reading. the data only refers to the
ITT7400 series family but it is equally applicable
to the ITT5400 series. Where there are exceptions
these are clearly indicated on the individual data
sheets concerned.

-15°Cto 125°C
O°C to 75°C
LOGIC DEFINITION

All devices operate over a frequency range between
D.C. and typically 20 M Hz. and are fully compatible
with all 5417 4 series TTL and 930 series DTL.
Clamping diodes are provided at the inputs to
enhance the inherent high noise immunity when
driving transmission lines. Most outputs are of
totem pole configuration to give good drive capability. i.e. high fan-out, especially into large
capacitive loads. Other outputs include an opencircuit collector connection.

Positive logic is used throughout the data sheets.
This is defined as follows.
Logical '0'
<0.8V
Logical '1'
>2.0V

Low voltage; typically 0.2 V but
High voltage; typically 3.3 V but

Current flowing into a device terminal is defined as
positive.

D.C. CHARACTERISTICS COMMON TO ALL
DEVICES (except where otherwise stated)

FEATURES
High speed-typical propagation delay (gate) of
9 ns.
Guaranteed noise margin-greater than 400
mY.
Low power dissipation-l0 mW per gate at
50% duty cycle.
Worst case fan-out of 10.
Low output impedance.
Logic levels guaranteed over range of supply
voltage and operating temperature.
Wide range of functions-many SSI and MSI
functions.
Compatible with other DTL. TTL logic series.

INTRODUCTION TO TTL
The TTL circuit configurations are designed so that
the uniform logic and noise margin levels apply to
all the standard devices in the families. Thus many
parameters and their limits are common. In addition
the operating conditions are identified for each family. Once these standard operating conditions are
understood it becomes possible for the designer to
use the family by simply referring to the logic and
connection diagrams on each data sheet. All i:om~
mon information is included in the remainder of this
section.

D.C. tests are carried out under the specified conditions. All inputs and outputs are tested for all possible logic states. Worst state load currents and
voltages are applied and the test limits are applicable over the full temperature range.
Min.
Max.
Unit
Supply voltage. VCC:
74 series
4.75
5.25
V
54 series
4.5
5.5
V
Operating temperature:
74 series
75
0
°c
-55
54 series
125 °c
D.C. noise margin typically greater than 1 V.

ABSOLUTE MAXIMUM RATINGS
(above which the useful life of the device may be
impaired)
Continuous supply voltage VCC (Note 1) ............. 7 V
Input voltage .......................................................... 5.5 V
Voltage between inputs ....................................... 5.5 V
Continuous input current ............................... -1 0 mA
Standard output voltage ....................... -0.5 to 5.5 V
Storage temperature! ..................... -65°C to 150°C
Note 1
This rating is reduced to 5.5 V if unused inputs are
connected directly to V CC.

3-5

GIENERAl INFORMATION ITT54/74 SERIES TTL FAMILY
STAN DARD CHARACTER ISTICS (limits'apply over the full range of operating temperature and fo'r standard totem Dole outout exceot where otherwise stated).
PARAMETER
LIMIT (Note 8)
CONDITIONS
Min.
V IH

Typ.

Max. Unit

2.0

Min.

VOL  204 V (Note 1)

0.8

V

Min.

VOL <0.4 V or VOH > 2.4 V (Note 2)

0.22 004

V

Min.

IOL = 16 mAo VIH = 2 VorVIL = 0.8V
(Note 3)

3.3

V IL
VOL (standard output)
VOL (buffer output) VOH

2.4

VCC

V

V

Min.

VI L = 0.8 V or VOH = 2.0 V (Note 4)

250

uA

Min.

V,L = 0.8 V. V,H = 2 V. VOUT = max.
alp voltage rating

1.6

mA

Max.

VF = 0.4 V (Note 5)

IR

40

uA

Max.

VR = 204 V. input loading-l unit
load (Note 6)

IR

1.0

mA

Max.

VR = 5.5 V irrespective of input loading"

I CEX open collector only
-IF

1.0

-ISC
54 series

20

55

mA

Max.

V OUT = 0 V (Note 7)

74 series

18

55

mA

Max.

V, H = 2.0 V or VI L =0.8 V; apply according
to logic function

Where characteristics for devices differ from the above table these are shown in the data sheets.
Note 1
Condition at outputs dependent on the truth table
of the device. For example. for gates and buffers.
VOL <004 V applies. and for flip-flops. shift registers. counters. decoders. etc. either VOL <004 V
or V OH >204 V applies at each output. Output conditions do not apply for 7486. 7460. 7445. 74145.
and 7441A. This parameter does not apply for
7413 and 74121 because of the Schmitt trigger
inputs.
Note 2
Conditions at outputs dependent on the the truth
,table of 'the device. for example. for gates and inverters V OH >204 V. Output conditions do not apply for devices with open collector output. This
parameter does not apply for 7413. 74121.
Note 3
Conditions VI H and VI L depend on device truth table. Limits for 7441 A. 7445 and 74145 are shown
on the appropriate data sheets.
Note 4
This parameter for totem pole output devices only.
VI L and VI H apply according to the truth table.

IOH = -400 uA for devices with Fan-out=; 0;
IOH=-800 uA for devices with Fan-out=20;
IOH = -1.2 mA for devices with Fan-oLit=30. etc.
Note 5
Limits apply for an input loading of 1 unit load; for
other input loadings mUltiply limits by number of
unit loads. For flip-flops. see appropriate data for
test conditions.

N~e6

i

For other inputs at 0 V for 7472. 7473. 7476.
74107. For 7470 all other inputs at 0 V except J
and K which are at 4.5 V. For 7474 consult data
sheet. Limits to be mUltiplied by the input loading
of the device.
Note 7
Maximum limit = 57 mA for devices with internal
feedback connections. (e.g. flip-flops and some
complex devices). For 7400 series simple NAN D
gates not more than two outputs may be shorted
at any time. For all other devices and for all 5400
series not more than one output" to be shorted at
any time. Open collector devices; no parameter for
ISC'

3-6

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
Note 8
Typical limits are at ambient temperature.
TA =25°C and VCC= 5 V.

ORDERING CODE FOR TTL CIRCUITS
Operating Temperature Range
5400 series -55to +125°C
7400 series 0 to +70°C

A.C. TESTS
Testing of propagation delays is carried out using
the typical switching load circuits shown below.
These load circuits are designed to simulate full fanout loading. An oscilloscope with high impedance
probes and having a bandwidth of at least 100 MHz
is suitable for these measurements.

Package (add)
B for Flat Pack
J for Ceramic Dual In-Line
N for Plastic Dual In-Line
Example:
ITT7400J
is O°C to +70°C Range in
Ceramic Dual In-Line Package

I

TYPICAL SWITCHING TEST LOAD CIRCUITS

For totem pole outputs:
Vee

DEVICE DIp

~O-~~~~-4--~~__~~~---'

OUTPUT

Notes
1. Diodes are type 1N4148.
2. The values of CL and RL are quoted in the data
sheets. Value of CL includes probe and jig
capitance.
'3. The characteristics of the pulse generator used
at the input of the device are stated in the data
sheets. Typical characteristics are: VOUT = 3.5
V; Rise time. tr. = Fall time. !to = less than 15
ns; Zo = 50 0: Pulse Repetition Frequency.
P.R.F. = 11 MHz: Pulse width for gate. tp = 500
ns.

For open collector outputs:

Waveforms

,

OUTPUT

I
I

,

I
I

k-

t .....

-a--i- -- t
I

I

---50%
-t' \ '- - - - - ~
OUTPUT
100/.
I,.
~I
• I \I
tpd_
.... I.~.d+
-"tft--1tr~
::....t 14-., ..-

I

1-5 V

3-7

-90%

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
1. HIGH lOGIC STATE '1' (ON STATE)
The NAN D gate has two stable operating states. These are illustrated in Figs. 1A and 1 B.

+5Y
\II
RG
'II«

IG

""' Ie

>

MULTIPLE·
EMITTER
TRANSISTOR

130

r.::
'-!.;

tHY

Q

LOAD

'G+le+'IIR

fL
~

J

n-t==
I

VTl

10 GATES

Fig.1A. Typical 'ON' conditions
with all inputs Logic '1' .

~

......

--

J

1K

IA

I

'_(T1

+0·2 V ~ ~-.

vn

R8

II'.

j~ ~~

rr+-r-oJ. L_
I

'L

"'-0·7 V

II'.

D
~

~

+5V
IV VTJ
'!:

I,.

+HV t C

+sv

;>

D1~r

)
\

+HV

HK

?'

+2·1 V

\

INPUTS

RL

+0·9 V

(MET)

+J.3V ~t+J.3v ~ 8

Re

""

"'ll

= 16 mAmax

r---~----------~--------------~~------+SV
Ie

Re
UK

Ie

MET' +0·9 V

VT1

, I'

lOAD OF

\

+0·) V
IG+3 I",
+0·2V
+HV
+HV

II

A
B

I",

C

I",

0

'1",

R6

1K

+HV

-

Fig. 1B. Typical 'OFF' conditions
with one input Logic '0'.

3-8

BV

10 GATES

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
The d.c. operation of this circuit is more readily
understood if the multiemittertransistor (M ET) connecting the inputs is considered equivalent to a
diode AND gate in series with an offset diode connected to the base of transistor VT1. This is shown
in Fig. 2, the emitter-base junctions of the MET
forming the input diodes and the collector base
junction forming the offset diode.

Fig. 2. Simplified analogy of TTL gate.
+5V
Rc
Rg

Rl

r.::I
~

VT3

VT1
r.;

A

~

~

VT2

RO

C

o

The opposite state shown in Fig. 1 B is achieved
if the voltage of any number of inputs is reduced
below a threshold level of about +1.5 volts. Fig.
1 B shows the conditions when input A is at +0.2
volts (a typical output voltage of a previous gate).
No base current flows into, VT1 since the collector
of the MET is attoo' Iowa potential. with respect
to its base.
Therefore, no current will flow through VT1 and
VT2 other than leakage current (which can be
neglected in this analysis). The transistor VT3 will
conduct to provide sufficient output current to
maintain following gates connected to the output
terminal at 3.3 V positive in logic 1. The fan-out
is high (10) under worst case conditions because
of the low output impedance of VT3.
3: CHANGEOVER BeTWEEN STATES

Q

{

a

2. LOW OR OFF STATE

=

When all the inputs are positive a logic '1' current
flows from the positive supply through Rg into the
base of VT1 which heavily conducts and turns VT2
'ON' into the saturated state. Since both
and
VT2 are saturated, there is insufficient voltage
across the base emitter terminals of VT3 to render
it conducting. The output voltage is'about +0.2 V,
(i.e. saturation voltage of VT2). The collector current of VT2 will consist of the total 'sinking' current
from the gates connected to the output terminal.
When the base current drive to VT2 is high, VT2
can remain saturated even with a large collector
current. with adverse circuit tolerances and temperature variations. This permits a fan-out of up to
10. With a multiemitter transistor, more current
flows from a positive held input than with a COh,ventional D.T: L. gate (the leakage current of the, re~

vn

The, transistor action of the MET considerably imprbves the' switchi,ng speed when compared with
a bTL gate: In switching from the ON to the OFF
state the MET saturates and rapidly removes the
charge stored in VT1 turning it off. Then VT2 begins
to turn off and VT3 turns on as the collector potential of VT1 rises. VT3 assists VT2 to turn off and
pulls the output terminal rapidly positive, charging
any load capacitance. The diode D1 helps to prevent VT2 and
from conducting simultaneously
and RL limits the current through VT3 to a safe
value during the switch over if the output terminal
is accidentally shorted.

vn

Fig. '3. Propagation delay waveforms.
,--_ _ _...... v tH
~'_. +HV

1
-::.71--- ----'1'-- -- -- -

1t."~UT _ _

V~lTAGE

I

I

... ",",
I

OUTPuT
VOLTAGE

I

I

1

r- IO , , ' ,

~I
I
VOH
--1- ----1-- . . .;,. __ _
-l
1
I
I
+1-5 V

1--1

,

V1L

I

vo,''I

,L

I

I'

' -1,1, ,
'l·tPd··:r

"

I
I

I

I
I.
I
1
1_'PeI. . .

verse biassed input diode) since the MET is biassed' ' " Switching from the, OFF to the ON state is more
in the inverted mode and the functions' of emitter
rapid than ON to OFF since none of the transistors
VT2 arid MET are saturated in the OFF conand collector are reversed. However, the MET is dedition. The switch to the ON condition is particularly
signed to have a very low inverse gain and IR is
kept to a minimum. IR will equal the emitter base
fast owing to additional drive by transistor VT1 in
leakage current plus the product of inverse current
turning on VT2. Fig. 3 shows the typical switching
gain and IG.
times from this gate.

vn,

,3-,: 9

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
NOISE IMMUNITY
The noise immunity of the TTL gate is typically
greater than 1 volt and is guaranteed 0.4 V minimum under worst case conditions for temperature
and loading tolerances. The noise immunity is derived from the difference between extreme limits of
input voltage and the voltage required to ensure the
change of a logic state. This is illustrated by the
transfer characteristic shown in Fig. 4.

+3-6 V t - - - - ,

Lowest loglt '1'
level of available
output (and Input)
voltage

Fig. 4. Typical transfer characteristic
showing noise margins .

'"
m

."

n

:ii

m
""
m 0

§

~

Z
Highest logic '0'
output
(and available input)_ VoL
volt.ge
VOL

For input voltaces ~t
above this level the NM
devlto will remain
Vil
in the 'ON' state

t

For input voltages

below this level the

V1H device will remain

in the 'OFF' state

BASIC RULES FOR THE USE OF TTL
DEVICES

1. Spare inputs should be connected to used inputs if the fan-out permits. Otherwise connected
to the Vee power line via a resistor of value 1
K ohm or greater. This is particularly important
for the 'preset' and 'clear' asynchronous inputs.
2. Gates from the same package may be paralleled
where necessary for better driving capability.
3. Interconnection lengths of 12 inches or less
(capacitance of about 50 pF) are unlikely to give
ringing problems; lengths up to 24 inches are
possible with good ground arrangements. Greater length will probably require line driving precautions (see separate Application Note)

Note: NM-Noise margin

4. Wired-OR' can be performed at the output terminals of open-collector networks however a
speed penalty is incurred by the introduction of
a resistive pull-up.
5. In calculating system speeds, due allowance
should be made for the maximum set-up and
minimum clock pulse width times on flip-flops,
as well as the propagation delays of the elements used.
6. If relays are driven from TIL circuitry, care must
be taken to ensure that the load connection
wires to the relay contacts do not introduce
noise into the logic system. This can be done
by allowing these wires only to enter the logic
system enclosure at a point close to the relay
contacts, or in extreme cases by also shielding
the relay.

3-10

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
7. Similarly extemal inputs should be brought on
to the printed circuit con~ections at right angles
to the other wiring, the printed circuit itself being laid out to ensure least coupling between
inputsand other ·connections.
8. If system speed is high, allowance should be
made when calculating power supply requirements for the' increased network supply currents
due to current spiking and line driving .. An allowance at 10 MHz of 15% for spiking and up
to 0.5 mA per each gate node for the line driving
wi" be adequate for this.
9. Decouple' every'1 0 gates or their equivalent in
MSI functions with 0.01 uF to 0.1 uF capacitors
of R. F. rating.
In conclusion, a careful perusal of the data sheet
together with the points mentioned above, will help
in achieving a trouble free logic design at the first
attempt.

When driving ITT930 series DTL from 74/5400 series TTL the full fan-out of the TTL is available
. DRIVING TTl L.OGIC FROM DTl DEVICES
Driving ITT7400 series TTL from ITT930 series DTL
necessitates a reduction of the full fan-out from 8
to 3 for standa(d'igates and from 25 to 20 for
buffers. Increas~d' f~n-out can be achieved with
standard DTL gates by using an additional pull-up
resistor.
SYMBOLS AND THEIR DEFINITIONS

ICCL

High state output current.
Supply current.
Input current at V T +
Input current at VTDynamic power dissipation.
Load resistor in switching test circuit.
Ambient temperature.
Input hold time ..
Logical '1' hold time.
Logical '0' hold time.
, Clock pulse width.
Preset,or clear pulse width.
Output pulse width.
Propagation delay to logical '1' on output.
Propagation delay to logical '0' on output.
State of output (or input) before the
active edge of the clock pulse.
State of output (or input) after the active edge of the clock pulse.
Minimum width trigger pulse.
t-min
Logical '1' input set up time.
t sp
Logical '0' input set up time.
t sp Supply voltage.
VCC
Hysteresis voltage.
VH
Input high voltage to ensure VOL (or
VIH
V OH )"
,
Input low voltage to ensure V OH (or
V IL
VOL)"
Output low voltage.
VOL
Output high voltage.
VOH
Output brl,lakdown voltage of open
VOH(M).
collector device.
Voltage at an input.
VIN
Voltage at an output.
VOUT
Positive edge threshold voltage.
VT
Negative edge threshold voltage.
VTWIRED-OR The commoning of open collector outputs with a pull-up resistor to perform
the AN D, function.

ICC
IIN+
IINPdyn
RL
TA
th
th+
thtcp
tp
tpo
tpd+

+

DRIVING DTllOGIC FROM TTL DEVICES

Fan-out

'i OH

+

Load capacitor iri switching test circuit
(includes probe and jig capacitance):
Number of unit loads an output car)
drive.
Maximum clOck frequency.
Supply current for highest dissipation
logic state.
Supply current for lowest dissipation
logic:; state.
Input forward current.
Input reverse. current.
Output short circuit current.
Output leakage current.
Low state output current.

"Output'level dependent on device logic as found
from truth table.

3-11

APPLICATION DATA FOR OPEN COLLECTOR DEVICES
Combined Fan-Out and Wire-OR Capabilities

where: V R L is the voltage drop in
volts. and IRL is the current in amperes.

The open-collector TTL gate. when supplied with
a proper load resistor (R). may be paralleled with
other similar TTL gates to perform the wire-OR
function. and simultaneously. w.ill drive from one to
nine TTL loads. When no other open-collector gates
are paralleled. this gate may be used to drive ten
TTL loads. For any of these conditions an appropriate load resistor value must be determined for
the desired circuit configuration. A maximu m
resistor value must be determined which will
ensure that sufficient load current (to TTL loads)
and lout current (through paralleled outputs) will
be available during a logical 1 level at the output.
A minimum resistor value must be determined
which will ensure that current through this resistor
and sink current from the TTL loads will not cause
the output voltage to rise above the logical 0 level
even if one of the paralleled outputs is sinking all
the current.

Logical 1 (off level) Circuit Calculations (see
figure A)
The allowable voltage drop across the load resistor
(V RL ) is the difference between Vee applied and
the Vout( 1) level required at the load:
V RL

= Vee -Vout (1) required

The total current through the load resistor (I R L) is
the sum of the load currents (lin( 1)) and off-level
reverse currents (lout( 1 )) through each of the wireD R connected outputs:
IRL

= n olout(l) + N° lin(1) to TTL loads

Therefore. calculations for the maximum value of
RL would be:
R

in both conditions (logical 0 and logical 1) the value
of RL is determined by:

- Vee -V out (1) required
L(max) - n olout(l) + N olin(l)

where: n = number of gates wire-OR
connec!ed. and
number of TTL loads.
N

=

TTL LOADS

Calculation:

RL(max)

~

Vee - V out (1) required
Tl o lout(1) + N o lin(1)

5-2.4
= ~ = 2321 n
0.001 + 0.00012
0.00112

N =3

N° lin(1) = 3 o40I'A

'7

Tl

0

=4

lout(1) = 4

0

250 /JA

Calculation
R
- Vee -V out (l) required
+ N 0 Iload
L(max) - no I
out( 1)
FIGURE A -

R

_
5 - 2.4
L(max) - 0.001 + 0.00012

LOGICAL 1 CIRCUIT CONDITIONS

3-12

2.6
=2321Q
0.00112

APPLICATION DATA FOR OPEN COLLECTOR DEVICES
Logical 0 (on levell Circuit Calculations (see
figure BI
The current through the resistor must be limited to
the maximum sink-current capability of one output
transistor. Note that if several output transistors are
wire-OR connected. the current through RL may be
shared by those paralleled transistors. However. unless it can be absolutely guaranteed that more than
one transistor will be on during logical 0 periods.
the current must be limited to 16mA. the maximum
current which will ensure a logical 0 maximum of
0.4 volts.

Also. fan-out must be considered. Part of the 16mA
will be supplied from the inputs which are being
driven. This reduces the amount of current which
can be allowed through RL.
Therefore. the equation used to determine the minimum value of RL would be:

Vee - Vout(O) required
ISINK capability - ISINK from TTL loads

TTL LOADS

C.I,ul.lion,

RL(minl

=

_ __~Yc~c~__Y;~~t~lo~l_req~u_ire_d____
I'i,* 'op.bilily -

I'i,* from TTL lo.ds
I

S-

R

-

Llminl -

0.4

0.016 _ 0.0048

4.6

=-=
0.0112

4100

~
N=3

N • lin(O)

=3

• 1.6 rnA
t Current into OFF outputs i. negligible at logical O.

MAXIMUM I sink CAPABILITY
OF ONE ON OUTPUT = 16 mA

Calculation:
Vee - V~ut(O) required
RL(min) = ISINK capability - ISINK from TTL loads

5 - 0.4
RL(min)

0.016 - 0.0048

4.6

=

41000

0.0112

FIGURE B - LOGICAL 0 CIRCUIT CONDITIONS

3-13

.1

APPLICATION DATA FOR OPEN COLLECTOR DEVICES
Driving TTL Loads and Combining Outputs
Table 1 provides minimum and maximum resistor
values. calculated from equations shown above, for
driving one to ten TTL loads and wire-OR connect- ..
ing two to seven parallel outputs, Each value shown
'for wire-OR output one is determined by the fan~
out plus the leakage of a single output transistor.
Extension beyond seven wire~O R connections is

permitted with fan-outs of seven or. less if a valid
minimum and maximum RL is possible, When
fanning-out to ten, TTL loads the calculation for the
minimum value of RL indicates. that an .infinite .resistance should be used (V RL - 0 = 2.0V

Low voltage; typically Oi2 V but

i

High voltage; typically 3~3 V but
!

I

Current flowing into a device terminal is defined as
positive.
I

mY.

,

Low power dissipation-23 mW per gate at
500"{' duty cycle.
Worst case fan-out of 1 O.
Low output impedance.
Logic levels guaranteed over range of supply
voltage and operating temperature
Compatible with other DTL, TTL logic series.

D.C. CHARACTERISTICS COMMON TO ALL
DEVICES (except where otherwise stated)
D.C. tests are carried out under the specified conditions. All inputs and outputs are tested for all possible logic states. Worst state load currents and
voltages are applied and the test limits are applicable over the full temperature range.
I

INDEX FOR STANDARD 7400H SERIES

Min.

For the military range, replace 74H in the type
number by 54H.
Prefix the type number by ITT and end with J which
indicates the ceramic dual-in-line package.
For example: ITT5400 is a Quad 2-input NAND gate
device in 54 series logic with a ceramic dual-in-line
package.

Max.

Unit

~,upp,ly voltage, V CC:

'74H series
4.75
5.25
V
I
54H series
4.5
5.5
V
Operating temperature:
74H series
751°C
54H series
-'55
125°C
D.C. noise margin typically greater than 1
I

\

o

V.
I
I
I

3-14a

GENERAL INFORMATION ITT54/74 SERIES TTL FAMILY
ABSOLUTE MAXIMUM RATINGS
(above which the useful life of the device may be
impaired)

Continuous input current ............................... -1 0 mA
Standard output voltage ....................... -0.5 to 5.5 V
Storage temperature! ..................... -65°C to 150°C

Continuous supply voltage VCC (Note 1) ............. 7 V
Input voltage .......................................................... 5.5 V
Voltage betweel:' inputs ....................................... 5.5 V

Note 1
This rating is reduced to 5.5 V if unused inputs are
connected directly to VCC.

STANDARD CHARACTERISTICS (limits apply over the full range of operating temperature and for standard totem pole output except where otherwise stated).
LIMIT (Note 8)
PARAMETER
CONDITIONS
Min. Typ.
VIH

Max. Unit

2.0

2.4

VOH

Min.

VOL <0.4 VorVOH> 2.4 V (Note 1)

0.8

V

Min.

VOL <0.4VorVOH> 2.4 V (Note 2)

0.22 0.4

V

Min.

IOl = 20 mAo VIH = 2 VorVll = 0.8 V
(Note 3)

3.3

V

Min.

VIL = 0.8VorVOH = 2.0 V (Note 4)

Vll
VOL (standard output)

VCC

V

ICEX open collector only

250

uA

Min.

Vll = 0.8 V. VIH = 2 V. VOUT = max.
o/p voltage rating

-IF

2.0

mA

Max.

VF = 0.4 V (Note 5)

IR

50

uA

Max.

VR = 2.4 V. input loading-1 unit
loacl (Note 6)

IR

1.0

mA

Max.

VR = 5.5 V irrespective of input loading

100

mA

Max.

VO UT = 0 V (Note 7)

-ISC
54 series

40

Where characteristics for devices differ from the above table these are shown in the data sheets.

Note 1
Condition at outputs dependent on the truth table
of the device. For example. for gates and buffers.
VO l :S0.4V applies. and for flip-flops. either VOL
:S0.4V orVOH ~2.4V applies at each output. Output conditions do not apply for 74H60.

Note 4
This parameter for totem pole output devices only;
V ll and VIH apply according to the truth table. IOH
= -500 uA for devices with Fan-o.ut =10; IOH
= -1.0mA for 54H/74H74; IOH = -1.5mAfor
54H174H40.
. .

Note 2
Conditions at outputs dependent on the truth table
of the device. for example; for gates and inverters
VO H >2.4V. Output conditions do not apply for
devices with open collector output. This parameter
does not apply for 7413. 74121.

Note 5
limits apply for an input loading of 1· unit load; for
other input loadings multiply limits by number of
unit loads. For flip-flops. see appropriate data for
test conditions.

Note 3
Conditions VIH and Vil depend on device truth
table.

Note 6
All other inputs at OV for 74H72. 74H73.74H76.
For 74H74 consult data sheet. limits to be multiplied by the input loading of the device.

3-14b

GENERAL INFORMATION ITT54H/74H SERIES TTL FAMILY
Note 7
For all devices not more than one output to be
shorted at any time. Open collector devices; no
parameter for -I SC.

Diodes are type 1 N4148 or equiv.
The values of CL and RL are quoted in the data
sheets. Value of CL includes probe and jig
capitance.

Note 8
Typic,!I limits are at ambient temperature. TA
25°C and VCC = 5V.

The characteristics of the pulse generator used at
the input of the device are stated in the data sheets.
Typical characteristics are: VO UT = 3V; Rise time.
tr. = Fall time. tf. = less than 7 ns; Zo = 50; Pulse
Repetition Frequency. P.R.F. = 1 MHz; Pulse width
for gate. tp = 500 ns.

A.C. TESTS
Testing of propagation delays is carried out using
the typical switching load circuits shown below.
These load circuits are designed to simulate full fanout loading. An oscilloscope with high impedance
probes and having a bandwidth of at least 100 MHz
is suitable for these measurements.

Waveforms

BV / . - - - - - - - \ I N P U T

I

.

I

TYPICAL SWITCHING TEST LOAD CIRCUITS

I I

.

I
I
I

k- ' • .-.j
I

"5V~\-----~PUT
I
I I

For totem pole outputs:

'~

\.-

-.j

~+

I

-,90,),.
;..-~--___ _
50%

+ -- t
I I

10%

II

-tt"r-1'0f4-

DEVICEO'P

'~O-~-'~"~~~~~IM~IM----~

CIRCUIT DIAGRAM ITT74HOO GATE

r-----~~---------1~VCC

OUTPUT
I

,

1\
I,
For open collector outputs:

OEYICE'~/P,

RL Yee

~

,

I
-.

470!l.

4kfi
GND

CL

OUTPUT

COMPONENT VAWES ARE NOMINAL
The d.c. operation of this circuit is more readfly
understood if the multiemitter transistor (M ET) connecting the inputs is considered equivalent to a
diode AND gate in series with an offset diode connected to the base of transistor VTl. This is shown
in Fig. 2. the emitter-base junctions of the MET
forming the input diodes and the collector base
junction forming' the offs~t diode.

GENERAL INFORMATION ITT54H/74H SERIES TTL FAMILY
of the METis at too Iowa potential, with respect
to its base.

Fig. 2. Simplified analogy of TTL gate.
+5V

J

~Rc

R,

Therefore, no current will flow through VT1 and
VT2 other than leakage current (which can be
neglected in this analysis). The transistor VT3 will
conduct to provide sufficient output current to
maintain following gates connected to the output
terminal at 3.3 V positive in logic 1. The fan-out
is high (10) under worst case conditions because
of the low output impedance of VT3.

{RL
~

\.!:!

vn

VT1

r.:

\.!:!

•

Q

ra.
\.!:!

VTZ

R.

3, CHANGEOVER BETWEEN STATES

c

The transistor action of the MET considerably improves the switching speed when compared with
a DTL gate. In switching from the ON to the OFF
state the MET saturates and rapidly removes the
charge stored in VT1 turning it off. Then VT2 begins
to turn off and VT3 turns on as the collector potential of VT1 rises. VT3 assists VT2 to turn off and
pulls the output terminal rapidly positive, charging
any load capacitance. The diode D1 helps to prevent VT2 and VT1 from conducting simultaneously
and RL limits the current through VT3 to a safe
value during the switch over if the output terminal
is accidentally shorted.

T

D

When all the inputs are positive a logic '1' current
flows from the positive supply through Rg into the
base of VT1 which heavily conducts and turns VT2
'ON' into the saturated state. Since both VT1 and
VT2 are' saturated, there is insufficient voltage
across the base emitter terminals of VT3 to render
it conducting. The output voltage is about +0.2 V,
(i.e. saturation voltage of VT2). The collector current of VT2 will consist of the total 'sinking' current
from the gates connected to the output terminal.
When the base current drive to VT2 is high, VT2
can remain saturated even with a large collector
current. with adverse circuit tolerances and temperature variations. This permits a fan-out of up to
10. With a multiemitter transistor, more current
flows from a positive held input than with a conventional D.T. L. gate (the leakage current of the reverse biassed input diode) since the MET is biassed
in the inverted mode and the functions of emitter
and collector are reversed. However, the MET is designed to have a very low inverse gain and IR is
kept to a minimum. IR will equal the emitter base
leakage current plus the product of inverse current
gain and I G.
2, LOW OR OFF STATE
The opposite state shown in Fig. 1 B is achieved
if the voltage of any number of inputs is reduced
below a threshold level of about + 1.5 volts. Fig.
1 B shows the conditions when input A is at +0.2
volts (a typical output voltage of a previous gate).
No base current flows into VT 1 since the collector

Fig. 3. Propagation delay waveforms.
r------V'H

vo~~:~~ =i-------\-----t~~
I

"Bns;
I
I
OUTPUT
VOLTAGE

-I

,-TI
1

1
I

I

I
I
1
,-10 ns...,

~II,r--VOH
_~_
----1--'- __ _

VO l -

, i

v"

--l

I

1
I:

',d-.

f--

I

I

I

I

I

I

I
I

I
I

+HV

I
I
'pd+

I
I

Switching from the OFF to the ON state is more
rapid than ON to OFF since none of the transistors
VT1, VT2 and MET are saturated ,in the OFF con, dition. The switch to the ON condition is particularly
fast owing to additional drive by transistor VT1 in
turning on VT2. Fig. 3 shows the typical switching
times from this gate.

3-14d

__

ITT

ITT 5400 , ITT7400
QUADRUPLE 2-INPUT
__________________________
.a=-__

POSITIVE NAND GATES=
==================-==-="==""

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE
GATES

DUAL-IN- LINE PACI(AGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@4r

IB0

@)4B

Iz0

@4A

vccG

@GND

2r0

@3B

2A0

®3A

2B0

0

POSITIVE

NA~j[))

LOGIC:

3r

Z;As

POSITIVE LOGIC:

r;AS

schemati<: (each gate)

HO

1.6 kO

130 0

OUTPUT .2

L - - - 6 - - - _ 4 . -_ _L--o GND

NOTE: Component values shown are nominal.

Recommended Operating Conditions

Min

Nom Max

5400 Circuits ........................................................................ .
7400 Circuits ........................................................................ .

4.5
4.75

5
5

Normalized Fan-Out From Each Output. N ............................................................. .
Operating Free-Air Temperature Range, TA: 5400 Circuits ............................... .
7400 Circuits .............................. .

-55
0

25
25

Supply Voltage V CC:

3-15

5.5
5.25
10
125
70

Unit
V
V

°c
°C

ITT5400, ITT7400
QUADRUPLE 2-INPUT POSITIVE NAND GATES
E LE CTR I CAL C H ARACTE R ISTI CS over recommended operating free-a ir temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Vin(l )

Logica I 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at either input
terminal to ensure logical 1
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vout (1)

Logica I 1 outp ut voltage

Vout(O)

Logical 0 output voltage

lin(O)
lin(l )

lOS

2

2.4

V

3.3

V

Logical 0 level input current
(each input)

-1.6

mA

Logical 1 level input current
(each input)

40

uA

lee(O)

Logical 0 level supply current

lee(1)

Logical 1 level supply current

0.22

V
0.4

Short-circuit output current 3

= Min Ii = -12 mA
Vee = MIN, Vin = 0.8 V,
Iload = -400 uA
Vee = MIN, Vin = 2V,
I sink = 16 mA
Vee = MAX, Vin = 0.4 V
Vcc

1

mA

Vee
Vee

-20

-55

mA

Vee

-18

-55
12
4

22
8

SWITCHING CHARACTERISTICS. Vec = 5V, TA = 25°C, N
Parameter

Test Conditions 2

Min

Typ

= MAX, Vin = 2.4 V
= MAX, Vin = 5.5 V
= MAX

ITT5400
ITT7400

mA

Vee

mA

Vee

= MAX, Vin = 5 V
= MAX, V in = 0

= 10

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

7

15

ns

CL = 15pF,R L

= 400n

tpd 1

Propagation delay time to
logical 1 level

11

22

ns

CL = 15 pF, R L

= 400.Q

, All typical values are at Vee = 5 V, TA = 25°e.
For conditions shown as M IN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time.
2

3-16

__

ITT
.

ITT5401. ITT7401
QUADRUPLE 2-INPUT POSITIVE NAND GATES

_______________{_W_IT_H__
O_P_EN_-_C_O_L_LE_C_T_O_R_O_U_T_P_U_T)

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
DUAL-IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

lAG)

@4i!

IB0

@)4B

1i!G)

@)4A

VCCG

@GND

2i!0

@3B

2A0

®3A

2B(£)

G)3i!

POSITIVE

LOGIC:

i!=AB

POSITIVE

LOGIC:

i! = AB

schematic (each gate)

INPUTS

NOTE: Component values shown are nominal.

recommended operating conditions

Min

Supply Voltage V CC: 5401 Circuits .........................................................................
7401 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ..............................................................
Operating Free-Air Temperature Range. TA: 5401 Circuits ............................... .
7401 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-17

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT5401, ITT7401
QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
Vin (1)

Logical 1 input voltage required
at both input terminals to ensure
logical 0 (on) level at output

Min

Typ'

Max

. Test Conditions 2

Unit
V

2

Logical 0 input voltage required
at input terminal to ensure
logica I 1 (off) level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

10ut(1)

Output reverse current

250

uA

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

lin(O)

Logical 0 level input current
(each input)

-1.6

mA

= Min Ii = -12 mA
Vee = MIN. V in = O.BV.
V out(1) = 5.5V
Vee = MIN. V in = 2V.
Isink = 16 mA
Vee = MAX. V in = 0.4V

lin(l)

Logical 1 level input current
(each input)

40

uA

Vee

1

mA

Vee

. Vin(O)

lee(O)

Logical 0 level supply current

12

22

mA

lee(1)

Logica I 1 level supply current

4

8

mA

SWITCHING CHARACTERISTICS. Vee
Parameter
tpdO

tpdl

Propagation delay time to logical

Vee

= MAX. Vin = 2.4V
= MAX. Vin = 5.5V
Vee = MAX. Vin = 5V
Vee = MAX. V in = 0

== 5V. TA = 25°e
Min

Typ

Max

Test Conditions

Unit

8

15

ns

eL

= 15 pF. RL = 400 n

35

45

ns

eL

= 15 pF. RL = 4 kn

o level
Propagation delay time to logical
1 level

, All typical values are at Vee = 5V. TA =; 25°C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

2

3-18

ITT
----ITT5402. ITT7402

QUADRUPLE 2-INPUT POSITIVE NOR GATES

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NOR GATES
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN-LiNE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@4i!

IB0

@)4B

4B

1i!0

@4A

4A

VCC0

4l

@GND

I

POSITIVE LOGIC:

i!' A+i'i

2i!CV

@3B

2A0

®3A

2B0

®3i!

POSITIVE LOGIC:

i!.m

schematic (each gate)

A
8o;--~---+----~

OUTPUT
y

'--_---<11_-------<11_--0 GNO
NOTE: Component values are nominal.

Recommended Operating Conditions

Min

Supply Voltage V CC: 5402 Circuits .........................................................................
7402 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ..............................................................
Operating Free-Air Temperature Range. TA: 5402 Circuits ............................... .
7402 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-19

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT5402, .ITT7402
QUADRUPLE 2-INPUT POSITIVE NOR GATES
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
lunless otherwise noted)
Parameter

Min

Typ'

Max

Vinl 1 )

Logical 1 input voltage
required at either input
terminal to ensure logical
o level at output

VinlO)

Logical 0 input voltage
required at both input
terminals to ensure logical 1
level at output

0.8

V

V1

Input elamp Voltage

-1.5

V

Vout l 1 )

Logical 1 output voltage

VoutlO)

Logical 0 output voltage

linlO)
linl1 )

lOS

2

Unit

2.4

Test Conditions 2

V

3.3
0.22

V

= Min Ii = -12 mA
Vee = MIN. V in = 0.8 V.
Iload = -400 uA
Vee = MIN. Vin = 2V.
Isink = 16 mA
Vee = MAX. Vin = 0.4 V
Vcc

0.4

V

Logical 0 level input current
leach input)

-1.6

mA

Logical 1 level input current
leach input)

40

uA

1

mA

Vee = MAX. Vin = 2.4 V
Vee - MAX. V in - 5.5 V

-20

-55

mA

Vee = MAX

-18

-55
Vee

Short-circuit output current 3

leelO)

Logical 0 level supply current

14

27

mA

lee(1)

Logical 1 level supply current

8

16

mA

SWITCHING CHARACTERISTICS. Vee
Parameter

I ITT5402

I ITT7402

= MAX. V in = 5 V
Vee = MAX. Vin = 0

= 5V. TA = 25°e. N = 10
Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL

= 15pF.R L =4000

tpd1

Propagation delay time to
logical 1 level

12

22

ns

eL

= 15 pF. RL = 400n

=

=

All typical values are at VCC
5 V. TA
25°C.
• For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time.

1

3-20

ITT5403, ITT7403
QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)

ITT
----SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NAND
GATES (WITH OPEN-COLLECTOR OUTPUT)

DUAL-IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

schematic (each gate)
r----_+--.()

Vee

1.HO

OUTPUT

INPUTS

~---+-~~

~

GNO

NOTE: Component values shown are nominal.

POSITIVE

LOGIC

Z=As

Recommended Operating Conditions

Min

Supply Voltage V CC: 5403 Circuits .........................................................................
7403 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ..............................................................
Operating Free-Air Temperature Range. TA : 5403 Circuits ............................... .
7403 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-21

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT5403, ITT7403
QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless othelWise noted)
Parameter

Typ1

Min

Max

2

Unit

Test Conditions 2

V in (ll

Logical 1 input voltage
required at input terminal to
ensure logical 0 (on) level at
output

V

Vin(O)

Logical 0 input voltage
required at input terminal to
ensure logical 1 (off) level at
output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vee = Min Ii = -12 mA

lout(1)

Output reverse current

250

llA

Vee = MIN. Vin = 0.8 V.
Vout (1) =.5.5 V

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

Vee = MIN. Vin = 2 V.
Isink = 16 mA

lin(O)

Logical 0 level input current
(each input)

-1.6

mA

Vee = MAX. Vin = 0.4 V

lin(1)

Logical 1 level input current
(each input)

40

).IA

Vee = MAX. Vin = 2.4 V

1

mA

Vee = MAX. Vin = 5.5 V

lee(O)

Logical 0 level supply current

12

22

mA

Vee = MAX. Vin = 5 V

lee(1)

Logical 1 level supply current

4

8

mA

Vee = MAX. Vin = 0

, All typical values are at Vee = 5 V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

Z

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°C. N = 10
Parameter

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL = 15pF.R L =400S"l

tpd1

Propagation delay time to
logical 1 level

35

45

ns

eL = 15pF.R L =4kS"l

3-22

=

ITT'.

= = = = = = = = = = = = = = I T T =HEX
'=5=40=4,
ITT7404
INVERTERS

===

SEMICONDUCTORS

HEXINVERTE~S
FLAT PACKAGE
PIN' CONFIGURATION
(TOP VIEW)

DUAL-IN-LiNE PACI(AGE
PIN CONFIGURATION
(TOP VIEW)

IA(D

@Ii!

2i!0

@6A

2AG)

@6i!
@GND

Vcc8
3A0

@5i!

3i!0

0

5A

0

4 i!

4AG)
POSITIVE

LOGIC:

i! = A

POSITIVE

i!

LOGIC:

=A

schematic (each inverter)

INPUT
A

L-------4---~-GND

NOTE: Component values shown are nominal.

Recommended Operating Conditions
Supply Voltage V CC:

Min

5404 Circuits .. ................... .........................
7404 Circuits .......
.......................... .................

Normalized Fan-Out From Each Output, N
Operating Free-Air Temperature Range. TA:

Nom Max

4.5
4.75

5
5

-55
0

25
25

...................

5404 Circuits ......... ......................
7404 Circuits .... ...................

3-23

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT5404,ITT7404
HEX INVERTERS
ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

V in (1)

Logical 1 input voltage
required at input terminal to
ensure logical 0 level at
output

V

Vin(O)

Logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

V out (l )

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

'in(O)
'in(l)

2

2.4

Test Conditions 2

Unit

3.3
0.22

V
0.4

V

Logical 0 level input current

-1.6

mA

Logical 1 level input current

40

uA

1

mA

-20

-55

mA

-18

-55

= Min Ii = -12 mA
Vee = MIN. V in = 0.8 V.
Iload = -400 uA
Vee = MIN. V in = 2V.
Isink = 16 mA
Vee = MAX. Vin = 0.4 V
Vcc

----

'as
lee(O)
lee(1)

Short-circuit output current 3

Logical 0 level supply current
Logical 1 level supply current

SWITCHING CHARACTERISTICS. Vec
Parameter

1

2

3

= MAX. V in = 2.4 V
Vee = MAX. V in = 5.5 V
Vee = MAX I ITT5404
Vee

r ITT7404

18

33

mA

6

12

mA

= MAX. V in = 5 V
Vec = MAX. Vin = 0
Vee

= 5V. TA = 25°C. N = 10
Min

Typ

Max

Test Conditions

Unit

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL

= 15 pF. RL = 4000

tpdl

Propagation delay time to
logical 1 level

12

22

ns

CL

= 15 pF. RL = 4000

All typical values are at Vee = 5 V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3 - 24

ITT
----ITT5405, ITT7405

HEX INVERTERS (WITH OPEN-COLLECTOR OUTPUT)

SEMICONDUCTORS

HEX INVERTERS (WITH OPEN-COLLECTOR
OUTPUT)
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN-LiNE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@Ir

220

@SA

2A0

@S2

vccG)

@GND
@5r

3A0

0
0

32®
4A0
POSITIVE

LOGIC:

2

=A

POSITIVE

LOGIC

5A
4r

i! = A

schematic (each inverter)

4 kO

1.6 kQ

OUTPUT Y

INPUT
A
~------~--~~GND

NOTE: Component values are nominal.

Recommended Operating Conditions

Min

Supply Voltage V CC: 5405 Circuits ........................................................................ .
7405 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ............................................................. .
Operating Free-Air Temperature Range, TA: 5405 Circuits ............................... .
7405 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-25

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

I TT540 5, ITT7405
HEX INVERTERS (WITH OPEN-COLLECTOR OUTPUT)
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V in (l)

Logical 1 input voltage
required at input terminal to
ensure logical 0 (on) level at
output

Vin(O)

Logical 0 input voltage
required at input terminal to
ensure logical 1 (off) level at
output

Min

Typ'

Max

2

Unit

Test Conditions 2

V

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vee = Min Ii = -12 mA

10ut(1 )

Output reverse current

250

uA

Vee = MIN, Vin = 0.8 V,
V out (l) = 5.5 V

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

Vee = MIN, Vin = 2 V,
Isink = 16 mA

lin(O)

Logical 0 level input current

-1.6

mA

Vee = MAX, Vin = 0.4 V

lin(l )

Logical 1 level input current

40

uA

Vee = MAX, Vin = 2.4 V

1

mA

Vee = MAX, Vin = 5.5 V

,-

lee(O)

Logical 0 level supply current

18

33

mA

Vee = MAX, Vin = 5 V,
TA =25°e

lee(1)

Logical 1 level supply current

6

12

mA

Vee = MAX, Vin = 0
TA = 25°C

SWITCHING CHARACTERISTICS, Vee = 5V, TA = 25°C
Parameter

1
2

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL=15pF,R L =400SJ

tpd1

Propagation delay time to
logical 1 level

40

55

ns

eL = 15pF,R L =4kSJ

These typical values are at Vee = 5 V, TA = 25°e.
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.

3-26

ITT5406, ITT5416, ITT7406, ITT7416
HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS

""""

ITT- - - - SEMICONDUCTORS

HEX INVERTER BUFFERS/DRIVERS WITH
OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS
FOR INTERFACING WITH HIGH-LEVEL CIRCUITS
OR FOR DRIVII\IG HIGH-CURRENT LOADS
DUAL-IN- LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IAQ)

@VCC

I;!@

@)SA

2A0

@SZ

2;!0

@5A

3A0

@5Z

3Z0

®4A

GND(2)

G)4Z

POSITIVE

LOGIC:

"

Converts TTL voltage levels to MOS
levels

lit

High sink-current capability

•

Input clamping diodes simplify system
design

"

Typical propagation delay time: 15 ns

"

Open-collector driver for indicator lamps
and relays

CII

Inputs fully compatible with most TTL
and DTL circuits

"

Typical power dissipation; 105 mW

POSITIVE

LOGIC

;!=A

schematic (each inverter)

.---..---_----0 vee

INPUT
A

2 kH
L----~-_+--~--+-~GND

Note: Component values shown are nominal.

3- 27

ITT5406, ITT5416, ITT7406, ITT7416
HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS
description
These monolithic TTL hex inverter buffers/drivers
feature. high-voltage open-collector outputs for
interfacing with high-level circuits (such as MOS or
Hi NIL). or for driving high-current loads (such as
lamps or relays). and are also characterized for use
as inverter buffers for driving TTL inputs. For increased fan-out. several inverters in a single
package may be paralleled. The ITT5406 and
ITT7406 have minimum breakdown voltages of 30
volts and the ITT541 6 and ITT7 416 have minimu m
breakdown voltages of 15 volts. The maximum sink
current is 30 milliamperes for the ITT5406 and
ITT5416. and 40 milliamperes for the ITT7406 and
ITT7416.

for operation over the full military temperature
range of -55°C to 125°C; the ITT7406 and
ITT7416 are characterized for operation from 0° C
to 70°C.

These circuits are completely compatible with most
TTL or DTL families. Inputs are diode-clamped to
minimize transmission-line effects which simplifies
design. Typical power dissipation is 150 milliwatts
and average propagation delay time is 15 nanoseconds. The ITT5406 and ITT5416 are characterized,

absolute maximum ratings over operating
free-air temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ........................... 7 V
Input voltage (see Note 1) ................................... 5.5 V
Output Voltage (see Notes 1 and 2):
ITT5406. ITT7406 Circuits ................................ 30 V
ITT541 6. ITT7 416 Circuits ................................ 1 5 V
Operating free-air temperature range:
ITT5406. ITT5416 Circuits ......... -55°C to 125°C
ITT7406. ITT7416 Circuits .................. O°C to 70°C
Storage temperature range ........... -'65°C to 150°C
Notes: 1. Voltage values are with respect to network
ground terminal.
2. This is the maximum voltage which should be
applied to any output when it is in the off
state.

recommended operating conditions

Supply voltage Vee
Output voltage. Vo H

I

J

ITT5406. ITT5416
Min
Nom
Max

ITT7406.ITT7416
Min
Nom Max

4.5

4.75

5

ITT5406.ITT7406
ITT541 6. ITT7416

Low-level output current. IOL
Operating free-air temperature range. TA

-55

3- 28

25

5.5

Unit

5.25

V

30
15

30
15

V

30

40

mA

70

°e

125

0

5

25

ITT5406, ITT5416, ITT7406, ITT7416
HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

Min

Typ'

Max

2

Unit

Test Conditions 2

V

V IL

Low-level input voltage

0.8

V

VI

Input Clamp Voltage

-1.5

V

IOH

High-level output current

250

uA

VOL

Low-level output voltage

0.7

V

0.4

= MIN Ii = -12 rnA
Vee = MIN. VI = 0.8 V.
V OH = MAX
Vee = MIN. VI = 2 V.
IOL = MAX
Vee

Vee=MIN'VI=2V.
IOL = 16mA

= 2.4 V

High-level input current (each
input)

40

uA

Vee = MAX. VI

1

rnA

Vee = MAX. VI = 5.5 V

IlL

Low-level input current (each
input)

-1.6

mA

Vee = MAX. VI

leCH

Supply current. high-level output

30

42

mA

VCC = MAX. VI

ICCL

Supply current. low-level output

27

38

mA

Vce =

IIH

= 0.4 V

=0
MAX. VI = 5V

, All typicalvalues are atV cc = 5 V. TA = 25°C.
2 For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e
Parameter

Min

Typ

Max

Unit

Test Conditions

= 15 pF. RL = 110.0.

tpLH

Propagation delay time.
low-to-high-Ieveloutput

10

15

ns

CL

tpHL

Propagation delay time.
. high-to-Iow-Ievel output

15

23

ns

CL = 15 pF. RL

3-29

= 110.0.

_

I

ITT5407, ITT541. 7, ITT7407, ITT7417
HEX BUFFERS/DRIVERS
W_IT_H_O_P_E.N_-_C_O_l_lE_C_T_O_R_H_I_G_H_-V_O_L_TA_G_E_O_U_T_PU_T_S

mm
..L..L. ___

SEMICONDUCTORS

HEX BUFFERS/DRIVERS. WITH
OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS

•

Converts TTL voltage levels to MOS
levels

•

High sink-current capability

•

Input clamping diodes simplify system
design

•

Typical propagation delay time: 14 ns

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

VCC

Ii!

6A

2A

6i!

5A

e Open-collector driver for indicator lamps
and relays
•

Inputs fully compatible with most TTL
and OTL circuits

•

Typical power dissipation: 145 mW

5i!

POSITIVE

i! = A

LOGIC:

absolute maximum ratings over operating
free-airtempeniture range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Output Voltage (see Notes 1 and 2):
ITT5407. ITT7407 Circuits ................................. 30V
ITT5417.ITT7417 Circuits ................................. 15V
Operating free-air temperature range:
ITT5407.ITT5417 Circuits .:....... -55°C to 125°C
ITT7407.ITT7417 Circuits .................. ooC to. 70°C
Storage temperatu.re range ........... -65°C to 150°C

Notes:

schematic (each buffer/driver)
.-----~---.----------ovcc
4kU

3kU

OUTPUT
i!

2kn

INPUT
A

1. Voltage values are with respect to network
ground terminal.
2. This is the maximum voltage which should
be applied to any output when it is in the
off state.

2 kU

L -__

~

____

~

__

~

______

~-oGNO

Note: Component values shown are n!lminal.

3-30

ITT5407, ITT5417, ITT7407, 11T7417
HEX BUFFERS/DRIVERS
WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS
description
These monolithic TTL hex buffers/drivers feature
high-voltage open-collector outputs for interf acing
with high-level circuits (such as MOS or Hi NIL).
or for driving high-current loads (such as lamps or
relays). and are also characterized for use as buffers
for driving TTL inputs. For increased fan-out.
several buffers in a single package may be paralleled. The ITT5407 and ITT7407 have minimum
breakdown voltages of 30 volts and the ITT5417
and ITT7417 have minimum breakdown· voltages
of 15 volts. The maximum sink current is 30

milliamperes for the ITT5407 and ITT5417. and 40
milliamperes for the ITT7407 and ITT7 417.
These circuits are completely compatible with most
TTL or DTL families. Inputs are diode-clamped to
minimize transmission-line effects which simplifies
design. Typical power dissipation is 145 milliwatts
and average propagation delay time is 14 nanoseconds. The ITT5407 and ITT541.7 are characte rized
for operation over the full military temperature
range of -55°C to 125°C; the ITT7407 and ITT7417 are characterized for operation from O°C to
70°C.

recommended operating conditions

Min Nom Max

Supply voltage Vee

.4.5

Output voltage. V OH

5

IITT5407. ITT7407
IITT5417.ITT7417

5.5

Min Nom Max
4.75

5

30
15

Low-level output current. IOL

30
-55

Operating free-air temperature range. TA

_.

25

125

0

25

Unit

5.25

V

30
15

V

40

rnA

70

°e

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

V IH

High-level input voltage

Mill

Typ'

Max

2

Unit

Test Conditions 2

V

V IL

Low-level input voltage

0.8

V

VI

Input Clamp Voltage

-1.5

V

Vce

10H

High-level output current

250

uA

Vee ~ MIN. VI
MAX
V OH

VOL

Low-level output voltage

0.7

V

0.4

High-level input current (each
input)

40
1

mA

IlL

Low-level input current (each input)

-1.6

mA

leCH

Supply current. high-level output

29

41

mA

leeL

Supply current. low-level output

21

30

mA

IIH

uA

= MIN Ii = -12 rnA
= 2V.
=
Vee = MIN. VI = O.BV
10L = MAX
Vee = MIN. VI = O.BV
IPL = 16 rnA
Vee = MAX. VI = 2.4V
Vee = MAX. VI = 5.5V
Vee = MAX. VI = 0.4V
Vee = MAX. VI = 5V
Vee = MAX. VI = (]II

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e
Parameter

Min

Typ

Max

Test COl\ditions

Unit

tpLH

Propagation delay time.
low-to-high-Ieveloutput

6

10

ns

eL

= 15pF.R L = 1100

tpHL

Propagation delay time.
high-to-Iow-Ieveloutput

20

30

ns

eL

= 15pF.R L = 1100

, All typi!'al values are atV ec = 5V. TA = 25°C.
.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

2

3-31

-

ITT5408, ITT5409, ITT7408, ITT7409

-

ITT- - - - QUADRU PLE 2-IN PUT POSITIVE AND GATES

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE AND GATES
schematics (each gate)

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

ITT5408/ITT7408

VCC

48
4A
A

42:

28

38

ITT5409/ITT7409
POSITIVE

2kU

LOGIC:

Z = A8

The ITT5408 and ITT5409 are characterized for operation over the full military temperature range of
-55°C to 125°C; the ITT7408 and ITT7409 are
characterized for operation from O°C to 70°C.

1.6kU

z

1 kU

Component values shown are nominal.
description
These Series 54174 TTL gates provide the system
designer with direct implementation of the positiile
AND or negative OR functions.
The ITT5408/1TT7408, with totem-pole outputs,
drives 10 normalized Series 54174 loads at the low
output level and 20 loads at the high output level.
The ITT5409/1TI7409, with open-collector output,
provides additional logic flexibility, as the outputs
may be wire-AN D connected to extend the AN D
function. The ITI5409/1TT7409 will sink sufficient
current to drive 10 normalized Series 54174 loads
at the low output level.

Choice ofTotem-Pole Outputs (lTI5408/ITT7408)
or Open~Co!lector Outputs (lTI5409/ITT7409)
absolute maximu m ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
I nput voltage (see Note 1) .................................... 5.5V
Interemittervoltage (see Note 2) ........................ 5.5V
Output voltage (see Notes 1 and 3)
(lTT5409/ITI7409) ............................................. 5.5V
Operating free-air temperature range;
ITI5408/1TT5409 ........................ - 55°C to 125°C
ITT7408/1TT7409 ................................. ooC to 70°C
Storage temperature range ........... -65°C to 150°C
Notes:

3 - 32

1. Voltage values, except interemitter voltage,
are with respect to network ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor.
3. This is the maximum voltage which should
be applied to any output when it is in the
off state.

ITT5408, ITT5409, ITT7408, ITT7409
QUADRUPLE 2-INPUT POSITIVE AND GATES
recommended operating conditions

Supply voltage Vee

Min

Nom

Max

lII!in

Nom

Max

Unit

4.5

5

5.5

4.75

5

5.25

V

Normalized fan-out from each output, N

10
-55

Operating free-air temperature range. TA

25

125

10
0

25

70

°e

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT540S.ITT740S

V IH

Typl

Min

Parameter
High-level input voltage

Max

2

Unit

Test Conditions 2

V

V IL

Low-level input voltage

O.S

V

V1

Input elamp Voltage

-1.5

V

Vee = MIN. Ii = -12 mA

VOH

High-level output voltage

V

Vee = MIN. V IH = 2V.
10H = -BOO uA

VOL

Low-level output voltage

0.4

V

Vee = MIN. VII:' = O.BV.
IOL = 16 mA

IIH

High-level input current (each
input)

40

uA

Vee = MAX. VI = 2.4V

1

mA

Vee = MAX. VI = 5.5V

IlL

Low-level input current (each
input)

-1.6

mA

Vee = MAX. VI = O.4V

lOS

Short-circuit output current

-20

-55

mA

Vee = MAX ITT540B

-lB

-55

2.4

3

ITT740B

leeH

Supply current. high-level output

11

21

mA

Vee = MAX. VI = 5V

leeL

Supply current. low-level output

20

33

mA

Vee = MAX. VI = OV

SWITCHING CHARACTERISTICS.

Vee =5v. TA = 25°e. N = 10
ITT540S. ITT740S

Parameter

Min

Typ

Max

Unit

Test Conditions

tpLH

Propagation delay time.
low-to-high-Ieveloutput

17.5

27

III

eL = 15pF.R L = 40011.

tpHL

Propagation delay time.
high-to-Iow-Ievel,?utput

12

19

III

eL = 15 pF. RL = 40011.

3-33

ITT5408,ITT5409, ITT7408, ITT7409
QUADRU PLE 2-IN PUT POSITIVE AND GATES

ElECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT5409, ITT7409
Parameter
V IH

High-level input voltage

Min

Typ'

Max

2

Unit

Test Conditions 2

V

V il

low-level input voltage

0.8

V

V1

Input clamp voltage

-1.5

V

Vee =MIN,l i = -12 mA

IOH

High-level output current

250

uA

Vee = MIN. V IH = 2V.
VOH = 5.5V

VOL

low-level output voltage

0.4

V

Vee = MIN, V il = 0.8V.
IOL = 16mA

IIH

High-level input current (each
input)

40

uA

Vee = MAX, VI = 2.4V

1

mA

Vee = MAX. VI = 5.5V

III

low-level input current (each
input)

-1.6

mA

Vee = MAX, VI = 0.4V

ICCH

Supply current. high-level output

11

21

mA

Vee = MAX, VI = 5V

ICCl

Supply current. low-level output

20

33

mA

Vee = MAX, VI = OV

SWITCH!NG CHARACTERISTICS, Vee

= 5V, TA = 25°e, N = 10
ITT5409, ITT7409

Parameter

Min

Typ

Max

Unit

Test Conditions

tplH

Propagation delay time,
low-to-high-Ieveloutput

21

32

ns

eL = 15 pF, RL = 400n

tpHl

Propagation delay time.
high-to-Iow-Ieveloutput

16

24

ns

el = 15 pF, RL = 400n

, All typical values at V CC = 5V, TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
, Not more than one output should be shorted at a time.

2

3 - 34

_I

mm

ITT5410, ITT7410

.L.L ______T_R_IP_L_E_3_-_1N_P_U_T_P_O_S_IT_I_V_E_N_A_N_D_G_A_T_E,""",S

SEMICONDUCTORS

TRIPLE 3-INPUT POSITIVE NAND GATES
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL- IN- LINE PACKAGE
PIN CONFIGURATION
(lOP VIEW)

IA(D

@IC

0
Ir0

@3r
@3C

18

vccG

@GND

2i!0
2AG
0

@)38

®3A
0
2C

28

POSITIVE

LOGIC:

Z =ABC

POSITIVE

LOGIC

schematic (each gate)

OUTPUT ;!

~~------~~--~~GND

NOTE: Component values shown are nominal.

Recommended Operating Conditions

Min

Supply Voltage V CC: 5410 Circuits .........................................................................
741 0 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ..............................................................
Operating Free-Air Temperature Range. TA : 5410 Circuits ............................... .
7410 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-35

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT541 0, ITT741 0
TRIPLE 3-INPUT POSITIVE NAND GATES
E LE CTR ICA L CHARACTE R ISTI CS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

Vin (l)

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at,output

Vin(O)

Logical'O input voltage
required atany input
terminal to ensure logical 1
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vcc = Min Ii = -12 mA

V out (l )

Logical 1 output voltage

V

Vee = MIN. Vin= 0.8 V.
Iload = -400 uA

Vout(O)

Logical 0 output voitage

0.4

V

Vee = MIN. Vin = 2V.
Isink = 16 mA

lin(O)

Logical 0 level input current
(each input)

-1.6

mA

Vee = MAX. Vin = 0.4 V

lin(1)

Logical 1 level input current
(each input)

40

uA

1

mA

Vee = MAX. V in = 2.4 V
Vee = MAX. Vin = 5.5 V

-20

-55

rnA

Vee = 5.5V

-18

-55

lOS

Short-circuit output current 3

2

2.4

V

3.3
0.22

ITT541 0
ITT741 0

lee(O)

Logical 0 level supply current

9

16.5

mA

Vee = MAX. Vin = 5 V

lee(1)

Logical 1 level supply current

3

6

mA

Vee = MAX. Vin = 0

SWITCHING CHARACTERISTics. Vee = 5V. TA = 25°C. N == 10
Parameter

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

7

15

ns

eL = 15pF.R L =400Q

tpdl

Propagation delay time to
logical 1 level

11

22

ns

eL =.15pF.R L =400Q

1
2

3

All typical values are at V cc = 5 V. TA = 25° C.
.
..
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3-36

ITT
-----

ITT5411,ITT7411

TRIPLE 3-INPUT POSITIVE AND GATES

SEMICONDUCTORS

TRIPLE 3-INPUT POSITIVE AND GATES
description
These Series 54174 TTL gates provide the system
designer with direct implementation of the positive
AND or negative OR functions.

DUAL- IN - LINE PACKAGE
PIN CONFIGURATI.oN
(TOP VIEW)

The ITT5411 IITT7411. with totem-pole outputs.
drives 10 normalized Series 54174 loads at the low
output level and 20 loads at the high output level.

absolute m aximu m ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) ........................ 5.5V
Operating free-air temperature range:
ITT5411/1TT5411 ........................ -55°Cto 125°C
ITT7411 IITT7411 ................................. O°Cto 70°C
Storage temperature range ........... - 65°C to 150°C
Notes:

1. Voltage values. except interemitter voltage.
are with respect to network ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor.

schematic

POSITIVE

LOGIC:

l = ABC

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@IC

IB0

@)3r

IrG)

@3C
@GND

VCcG

210

@3B

2A0

®3A

2B0

.®2C

i!

POSITIVE'

3 - 37

LOGIC

l=ABC

ITT5411.ITT7411
TRIPLE 3-INPUT POSITIVE AND GATES
recommended operating conditions
Min
4.5

Supply voltage VCC

ITT5411
Nom
Max
5

Normalized fan· out from each output. N

5.5

Min
4.75

ITT7411
Nom
5

10
-55

Operating free-air temperature range. TA

25

125

Max

Unit!

5.25

V

10
0

25

70

°c

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

VIH

High-level input voltage

V il

low-level input voltage

0.8

V

V,

Input Clamp Voltage

-1.5

V

VCC = MIN. Ii = -12 mA

VOH

High-level output voltage
..

V

VCC = MIN. VIH = 2V.
10H = -800uA

VOL

low-Ievei output voltage

V

VCC = MIN. VII: = 0.8V.
10l = 16mA

40

uA

VCC = MAX. VI = 2.4V

1

mA

VCC = MAX. VI = 5·.5V

-1.6

mA

VCC = MAX. V, = 0.4V

-20

-55

mA

VCC = MAX ITT5411

-18

-55

V

2.4

0.4
0

IIH

2

I

High-level input current (each
input)

I
III

low-level input current (each
input)
I

lOS

Short-circuit output1current 3

0

ITT7411

leCH

Supply current. hig h-Ievel output

11

21

mA

VCC = MAX. VI = 5V

leCl

Supply current. low-level output

20

33

mA

VCC = MAX. VI = OV

SWITCHING CHARACTERISTICS, Vee = 5V. TA = 25°e. N = 10
Parameter

Min

Typ

Max

Unit

Test Conditions

tplH

Propagation delay time.
low-to-high'level output

17.5

27

ns

Cl = 15 pF. Rl = 4oon.

tpHl

Propagation delay'time.
high-to-low-lev61 output

12

19

ns

Cl = 15 pF. Rl = 400n

3-38

ITT
a::::I:D

ITT5412,ITT1412
TRIPLE 3-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
=====~~~

SEMICONDUCTORS

TRIPLE 3-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)

DUAL-IN-LiNE PACI~AGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

schematic (each gate)

1.6 kO

.....

OUTFUT i!
INPUTS {

A

C

L6-<1>-----+---o GND
NOTE: Component values shown are nominal.

POSITIVE LOGIC:

recommended operating conditions

Min

~=A8C

Nom Max

5412 Circuits .........................................................................
7412 Circuits .........................................................................

4.5
4.75

5
5

Normalized Fan-Out From Each Output, N ............................................................. .
Operating Free-Air Temperature Range, T A: 5412 Circuits ............................... .
7412 Circuits ............................... .

-55
0

25
25

Supply Voltage VCC:

3-39

5.5
5.25
10
125
70

Unit

V
V

°C
°c

ITT5412, ITT7412
TRIPLE 3-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

2

Unit

Test Conditions 2

Vin (1)

Logical 1 input voltage required
at both input terminals to ensure
logical 0 (on) level at output

V

Vin(O)

Logical 0 input voltage required
at either input terminal to ensure
logical 1 (off) level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

lout( 1)

Output reverse current

250

J.1A

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

linlO)

Logical 0 level input current
(each input)

-1.6

mA

= Min Ii = -12 mA
Vce = MIN. Vin(O) = 0.8V.
V out (1) = 5.5V
Vee = MIN. Vin = 2V.
Isink = 16 rnA
VCC = MAX. Vin = O.4V

linl1 )

Logical 1 level input current
(each input)

40

J.1A

Vce

1

mA

Vce

leelO)

Logical 0 level supply current

g

16.5

mA

leC(1 )

Logical 1 level supply current

3

6

mA

VCC

= MAX. Vin = 2.4V
= MAX. V in = 5.5V
Vce = MAX. Vin = 5V
Vce = MAX. V in = 0

, All typical values are at Vec = 5V. TA = 25° C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

2

SWITCHING CHARACTER ISTICS, Vee
Parameter
tpdO

Propagation delay time to logical

= 5V. TA = 25°e
Min

Typ

Max

Unit

Test Conditions

8

15

ns

CL

= 15pF. RL = 400 n

35

45

ns

CL

= 15 pF. RL = 4 kn

o level
tpd1

Propagation delay time to logical
1 level

3-40

ITT5413,ITT7413

- ITT - - - - DUAL NAND SCHMITT TRIGGERS

SEMICONDUCTORS

DUAL NAND SCHMITT TRIGGERS
• Operation from Very Slow Edges
DUAL-IN-L1NE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

• Temperature-Compensated Threshold
• Temperature- Compensated Hysteresis.
Typically O.SV
• High Noise Immunity
IA

VCC

2D

The ITT5413 and ITT7413 dual Schmitt triggers
consist of two identical Schmitt-trigger circuits in
monolithic integrated circuit form. Logically. each
circuit functions as a four-input NAN D gate. but because of the Schmitt action. the gate has different
input threshold levels for positive- and negativegoing signals. The hysteresis. or backlash. which is
the difference between the two threshold levels. is
typically 800 mV.
An important design feature is the built-in temperature compensation which ensures very high
stability of the threshold levels and the hysteresis
over a very wide temperature range. Typically. the
hysteresis changes by 3% over the temperature
range of - 55°C to 125°C and the upper threshold
changes by 1 % over the same range. The
ITT5413/ITT7413 can be triggered from the slowest of input ramps and still give clean. jitter-free
output signals. It can also be triggered from straight
d-c levels.

2C
NC

2B

POSITIVE LOGIC: 'to ABeD
NC- NO INTERNAL CONNECTION
tplN ASSIGNMENTS FOR THESE CIRCUITS ARE
THE SAME FOR ALL PACKAGES.

absolute maximum ratings over operating
free-air temperature range (unless otherwise noted).

These circuits are fully compatible with most other
TTL. DTL. or M SI circuits. The ITT5413 is cha racterized for operation over the full military temperature range of -55°C to 125°C; the ITT7413
is characterized for operation from O°C to 70°C.

Supply voltage V CC (see Note) .............. , ................7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) ........................ 5.5V
Operating free-air temperature range:
ITT5413 Circuits ........................... -55°C to 125°C
ITT7413 Circuits ........................... -65°C to 150°C
Notes: 1. Voltage values. except interemitter voltage.
are with respect to network ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor.

ITT5413
ITT7413
MIN NOM MAX MIN NOM MAX

recommended operating conditions
Supply voltage V CC
Fan-out from each output. N

4.5

I

5

-55

Operating free-air temperature range. TA
Maximum input rise and fall times

5.5

0

125

No restriction

3-41

4.75

5

20
10

High logic level
Low logic level

5.25

UNIT
V

20
10
0

25

70

No restriction

°C

ITT5413,ITT7413

DUAL NAND SCHMITT TRIGGERS
ELECTRICAL CHARACTERISTICS over recommended operat.ing free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit·

Test Conditions 2

VT +

Positive-going threshold voltage

1.5

1.7

2

V

Vee = 5V

VT -

Negative-going threshold
voltage

0.6

0.9

1.1

V

Vee = 5V

VT +
-V T -

Hysteresis

0.4

0:8

V

Vee - 5V

VI

I nput clamp voltage

V

Vee = MIN.I I = -12mA

VOH

High-level output voltage

V

Vee = MIN. VI = 0.6V
IOH =. -800 uA

VOL

Low-level output voltage

0.22

V

Vee = MIN. VI = 2V.
IOL = 16 mA

IT+

Input current at positive-going
threshold

-0.65

mA

Vee = 5V. VI = VT +

IT -

Input current at negative-going
threshold

-0.85

mA

Vee = 5V. VI = V T -

II

Input current at maximum input
voltage

1

mA

Vee = MAX. VI = 5.5V

IIH

High-level input current

40

IlL

Low-level input current

lOS

Short-circuit output current

leeH

Supply current. high-level output

leeL

Supply current. low- level output

-1.5
2.4

3.3

-1
3

0.4

).lA

Vee = MAX. VI = 2.4V

-1.6

mA

Vee = MAX. VI = 0.4V

-55

mA

Vee = MAX

14

23

mA

Vee = MAX. VI = 0

20

32

mA

Vee = MAX. VI = 4.5V

-18

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N =.10
Parameter

Min

Typ

Max

Unit

Test Conditions

tpLH

Propagation delay time.
low-to-high-Ieveloutput

18

27

ns

eL = 15pF.R L =400Q

tpHL

Propagation delay time.
high-to-Iow-Ieveloutput

15

22

ns

eL = 15pF.R L =400Q

, All typical values are at Vee = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time.
2

3-42

ITT
----ITT5420, ITT7420
DUAL 4-INPUT POSITIVE NAND GATES

SEMICONDUCTORS

i
DUAL 4-INPUT POSITIVE NAND GATES
OUAL-IN-LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@IO

Il0

@IC

VCC

NCG)

'--~-+-®

vccG

IB

2C

@GNO

Nc0

@2l

2A0

L..----1_® 20

0

2B0

POSITIVE

20

LOGIC:

r=

2C

ABci5'

schematic (each gate)

POSITIVE LOGIC: -t = ABCO

~---------~~------1--4Vcc
4kU

1.6kll

1300

OUTPUT
Z

GND

Component values shown are nominal.
NC-No internal connection.

Recommended Operating Ccmdition.s

Min

Supply Voltage VCC: 5420 Circuits ...................................'..................................... .
7420 Circuits ...................................:..................................... .
Normalized Fan-Out From Each Output. N ........................:..................................... .
Operating Free-Air Temperature Range. TA: 5420 Circ~its ............................... .
7420 Circuits ............................... .

4.5
4.75

5
5

-55
0

25
25

3-43

I

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITT5420, ITT7420
DUAL 4-INPUT POSITIVE NAND GATES
ELECTR ICAL CHARACTER ISTICS over recommended operating free-air temperature range
(unless othelWise noted)
Parameter

Min

Typ'

Max

Vin(l)

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

08

V

V1

Inputelamp Voltage

-1,5

V

Vout (l)

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

'in(O)
'in(l)

lOS

2

Unit

Test Conditions 2

V

0.4

V

Logical 0 level input current
(each input)

-1.6

mA

= Min 'i = -12 mA
Vee = MIN. Vin = 0.8 V.
"oad = -400 uA
Vee = MIN. Vin = 2 V.
'sink = 16 mA
Vee = 1'v1AX. Vin = 0.4 V

Logical 1 level input current
(each input)

40

JlA

Vee

1

mA

-20

-55

mA

-18

-55

2.4

3.3

V

0.22

Short-circuit output current 3

Logical 0 level supply current

6

11

mA

'ee(1)

Logical 1 level supply current

2

4

mA

Parameter

= 5V. TA = 25
Min

Typ

Q

e. N

= MAX. Vin = 2.4 V
Vee = MAX. V in = 5.5 V
Vee = MAX 'ITT5420
ITT7420

'ee(O)

SWITCHING CHARACTERISTICS. Vee

Vcc

= MAX. Vin = 5 V
Vee = MAX. Vin = 0
Vee

= 10

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL

= 15 pF. RL = 400Q

tpd1

Propagation delay time to
logical 1 level

12

22

ns

eL

= 15 pF. RL = 400Q

1

2

3

=

=

All typical values are at Vee
5 V. TA
25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3-44

ITT
----ITT5421,ITT7421
DUAL 4-INPUT POSITIVE AND GATES

SEMICONDUCTORS

DUAL·4-INPUT POSITIVE AND GATES
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN-LiNE PACKAGE
PIN CON FIGURATION
(TOP

VIEW)

BID

VCC
IB

20

NC

2C

@) IC
'--...J--t-@ IB

rilc
10

2B

I~

2A

itccG
Nc0

@2i!

2A®

'----1-0 20

@GNO

2B0
POSITIVE

LOGIC:

. i!" ABCD

POSITIVE

0
LOGIC:

2C

i! =ABCD

Circuit schematic
vee

This Series 54174 TTL gate provides the system designer with direct implementation of the positive
AND or negative OR functions .
.The ITI5421 IITI7 421 with totem-pole outputs,
drives 10 normalized Series 54174 loads at the low
output level and 20 loads at the high output level.
The ITI 5421 is characterized for operation over the
full military temperature r;~nge of -55°C to 125°C;
the ITT7421 is characterized for operation from
OOCto 70°C.

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) .................. ,..... 5.5V
Operating free-air temperature range:
ITI5421 .......................................... -55°C to .125°C
ITI7421 ................................................... OoC to 70°C
Storage temperature range ........... - 65°C to 150°C

COMPONENT VALUES SHOWN ARE NOMINAL

Notes:

3-45

1. Voltage values. except interemitter voltage.
are with respect to network ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor.

ITI5421, ITT7421
DUAL 4-INPUT POSITIVE AND GATES
recommended operating conditions
Min

Nom

Max

Min

Nom

Max

Unit

4.5

5

5.5

4.75

5

5.25

V

-55

25

125

Supply voltage vee
Normalized fan-out from each output. N

10

Operating wee-air temperature range. TA

ELECTRICAl,. CHARACTERISTICS over recommended
(unless otherwise noted)

op~rating

10
0

25

70

De

free-air temperature range

ITT542l. ITT7421
Parameter
VIH

Min

High-level input voltage

Typ'

Max

2

Test Conditions 2

Unit
V

V IL

Low-level input voltage

0.8

V

Vl

Input elamp Voltage

-1.5

V

V OH

High-level output voltage

VOL

Low-level output voltage

0.4

V

= Min Ii = -12.mA
Vee = MIN. V IH = 2V.
IOH = -800 uA.
Vee = MIN. V IL = O.SV.

IIH

High-level input current (each
input)

40

uA

Vee

1

mA

Low-level input current (each
input)

-1.6

mA

= MAX. VI = 2.4V
Vee = MAX. VI = 5.5V
Vee = MAX. VI = 0.4V

-20

-55

rnA

Vee

-18

-55

2.4

V

Vee

IOL':' l6mA

IlL

lOS

,

Short-circuit outpUt current"

= MAX

1TT5421
n:T742l

leeH

Supply current. high-level output

11

21

mA

leeL

Supply current. low-level output

20

33

mA

= MAX. VI = 5V
Vee = MAX. VI = 0

25°e; N

= 10

Unit

Test Conditions

SWITCHING CHARACTERISTICS.

Vee = 5V. TA

=

Vee

ITT542l. 1TT7421
Parameter

Min

Typ

Max

= 15 pF. RL = 400 g

tpLH

Propagation delay time.
low-to-high-Ievel output

17.5

27

ns

eL

tpHL

Propagation delay time.
hig h-to-Iow-Ievel output

12

19

ns

eL = 15pF.R L

= 400g

.
, All typical values at Vee = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
" Not more than one output should be shorted at a time.
2

3-46

=-

ITm

In-5425, ITT1ij·25

-IL~=====-===D=U==A=L=4=-I=N=P=U=T=N=O=R=G==A=TE=S=W==IT=H==S=~R==.O~!

SEMICONDUCTORS

DUAL 4-INPUT NOR GATES

W~TH

schematic (each gate)

STROBE

DUAL -IN-LINE PACKAGE
AND FLAT PACI(AGE
PIN CONFIGURATION
(TOP VIEW)l

vcco----..-.---.......---,

---"r

A ___

IA

VCC

IB

2D

STROBE
IG
INPUTS

2C

OUTPUT

c ___-+"r

i!!

D ____-+''f

IC

STROBE

ID

28

It

2A

2G

GND

G _ _ _-+-_jq.,

POSITIVE LOGIC: t = G(A+B+C+D)
800H

-+_--'

G N O o - - -_ _ _ _

1

Pin assignments for these circuits are the same for

all packages.

Notes: A, Component values shown are nominal.
V -VCCbus

absolute maximum ratings over operating freeair temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) ....................... 5.5V
Operating free-air temperature range:
ITT5425 .......................................... -55°Cto 125°C
ITT7425 ................................................... aoc to 7aoC
Storage temperature range ........... - 65°C to 15aoC

logic and functional block diagram (each gate)

Notes:

Ao----i

1.. Voltage val.ues. except interemitter voltage.
are with respect to network ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor.

TRUTH TABLE
Bo--+--i
Output

Inputs
OUTPUT

if
Co--+--i

Do--+---1
Go---4---1

H

A

B

C

0

G

V

H
X
X
X
L
X

X
H
X
X
L
X

X
X
H
X

X
X
X
H

H
H
H

L

L

X

X

X

L

L
L
L
L
H
H

H

= hi!Jh level, L = low level. X = irrelevant.

3-47

ITT5425, ITT7425
DUAL 4-INPUT NOR GATES WITH STROBE
recommended operating conditions

Supply voltage VCC
Normalized fan-out from each output. N

ITT5423,ITT5425
Min
Nom
Max

ITT7423, ITT7 425
Min
Nom Max

4.5

4.75

5

5.5

5

High logic level

20

20

Low logic level

10

10

-55

Operating free-air temperature range, T A

25

125

0

Unit

5.25

25

70

V

°c

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

V ,H

High-level input voltage

V ,l

low-level input voltage

0.8

V

V,

I nput clamp voltage

-1.5

V

Vec = MIN. " = -12mA

VOH

High-level output voltage

V

VCC = MIN. V ,l = 0.8V.
'OH = -800uA

Val

low-level output voltage

V

VCC =MIN. V ,H = 2V.

2

2.4

V

3.3

0.22

0.4

'Ol = 16mA
Input current at maximum input
voltage

"

"H

',L

1

mA

v.CC = MAX. V, = 5.5V

uA

VCC = MAX. V, = 2.4V

mA

VCC = MAX. V, = 0.4V

-55

mA

VCC = MAX

High-level input
current

data inputs

40

strobe inputs

160

low-level input

data inputs

-1.6

strobe inputs

-6.4

current

-20

'OS

Short-circuit output currents

'CCH

Supply current. high-level output

8

16

mA

VCC = MAX.
All inputs at OV

'CCl

Supply current. low-level output

10

19

mA

VCC = MAX.
All inputs at 5V

3

.' All typical values are at V CC = 5V. TA = 25°C.
2 For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time.

3-48

ITT5426, ITT7426
QUADRUPLE 2-INPUT HIGH-VOLTAGE
INTERFACE NAND GATES

ITT
----SEMICONDUCTORS

QUADRUPLE 2-INPUT HIGH-VOLTAGE
INTERFACE NAND GATES
These open-collector NAND gates feature high output voltage ratings for interfacing with lowthreshold-voltage M OS logic circuits or other 12volt systems. Although the output is rated to withstand 15 volts, the V CC terminal is connected to the
standard 5-volt source. The output transistor will
sink 16 milliamperes while maintaining a low-level
output voltage of 0.4 volt maximum thus providing
a high-fan-out driver with the nominal power dissipation of standard Series 54174 gates.

DUAL-IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

vec

IA

49
4A
4l

The ITT5426 is characterized for operation over the
full military temperature range of -55°C to
125°C; the ITT7426 is characterized for operation
from O°C to 70°C.

39

schematic (each gate)
POSITIVE

4kn

1.6 kn

INPUTS

LOGIC

l=AB

absolute maximum ratings over operating
free-air temperature range (unless otherwise noted)
..,----0 OUTPUT"

an
~~-----+--4---~GND

Note: Component values shown are nominal.

Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .......... ,......................... 5.5V
Output voltage (see Notes 1 and 2): ................... 15V
Operating free-air temperature range:
ITT5426 Circuits ........................... -55°C to 125°C
ITT7426 Circuits .................................... O°C to 70° C
Storage temperature range ........... -65°C to 150°C
Notes:

1. Voltage values are with respect to network
ground terminal.
2. This is the maximum voltage which should
be applied to any output when it is in the
off state.

recommended operating conditions

Supply voltage

ITT5426
Min Nom Max

ITT7426
Min Nom Max

4.5

4.75

5

5.5

5

5.25

Unit
V

Output voltage, V OH

15

15

V

Low-level output current. 10L

16

16

mA

70

°C

-55

Operating free-air temperature range, T A

3-49

25

125

a

25

ITT5426, ITT7426
QUADRUPLE 2-INPUT HIGH-VOLTAGE
INTERFACE NAND GATES
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Min

Parameter
V IH

High-level input voltage

Typ'

Max

2

Unit

Test Conditions 2

V

..

V IL

Low-level input voltage

0.8

V

-1.5

V

VCC

V

VCC = MIN. V IL
IOH = 1 mA

= MIN Ii = -12mA
= O.BY.

VI

I nput Clamp Voltage

VOH

High-level output voltage

10H

High-level output current

50

uA

VCC = MIN. V IL
V OH
12V

= O.BY.

VOL

Low-level output voltage

0.4

V

VCC = MIN. V IH
IOL = 16mA

= 2V.

IIH

High-level input current (each
input)

40

uA

VCC

1

mA

VCC

IlL

Low-level input current (each
input)

-1.6

mA

= MAX. VI = 2.4V
= MAX. VI = 5.5V
VCC = MAX. VI = 0.4V

ICCH

Supply current. high-level output

4

8

mA

VCC

ICCL

Supply current. low-level output

12

22

mA

15

=

= MAX. VI = 0
VCC = MAX. VI = 5V

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e
Parameter

Min

Typ

Max

Unit

Test Conditions

tpLH

Propagation delay time.
low-to-high-Ieveloutput

16

24

ns

CL

= 15 pF. RL = 1kfl

tpHL

Propagation delay time.
high-to-Iow:leveloutput

11

17

ns

CL

= 15pF.R L = 1kn

, All typical values are at V CC = 5V. TA = 25°C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

2

3-50

ITT
-----

ITT5428, ITT7428, ITT5433, ITT7433

QUADRUPLE 2-INPUT POSITIVE NOR BUFFERS

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NOR
BUFFERS
Choice of Totem Pole Outputs (tTT5428/ITT7428)
or Open Col\ector Outputs (tTT5433/ITT7433)
OUAL-IN-L1NE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage Vee (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Output voltage of
ITT5433. ITT7433 (Note 2) ............................... 5.5V
Operating free-air temperature range:
ITT5428. ITT5433 ........................ -55°C to 125°C
ITT7428. ITT7433 ................................. O°C to 70°C
Storage temperature range ........... -65°C to 150°C

Vce
4~

48
4A
3~

Notes:

POSITIVE LOGIC:

r

1. Voltage values, except interemitter voltage,
are with respect to network ground term ina!.
2. This is the maximum voltage which should
be applied to any output when it is in the
off state.

= A+8

schematics (each gate)

ITT5433/ITT7433

ITT5428/ITT7428

vee

A o--+--.r

A o---I---.r

B

B

3-51

ITT5428, ITT7428, ITT5433, ITT7433
QUADRtJPLE 2-INPUT POSITIVE NOR BUFFERS
recommended operating conditions

Min

ITT5428
Nom
Max

4.5

Supply voltage V CC

5

Normalized fan-out from each output. N

5.5

Min
4.75

ITT7428
Nom Max
5

30
-55

Operating free-air temperature range. TA

25

125

Unit

5.25

V

30
0

25

70

°c

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT5428.ITT7428
Parameter
V IH

High-level input voltage

V IL

Min

Typ'

Max

2

Unit

Test Conditions 2

V

Low-level input voltage

O.S

V

V1

Input Clamp Voltage

-1.5 .

V

Vcc = Min. Ii = -12mA

VOH

High-level output voltage

V

VCC= MIN. VCC = 0.8V

2.4

IOH = -2.4mA
VOL

Low-level output voltage

0.4

V

VCC = MIN. VIH = 2.0V
IOL = 4SmA

High-level input current (each
input)

40

uA

VCC = MAX. VI = 2.4V

1

mA

Vce= MAX,VI = 55V

IlL

LOW-level input current (each
input)

-1.6

mA

VCC = MAX. V I

lOS

Short-circuit output current 3

-lS0

mA

VCC = MAX

ICCH

Supply current. high-level output

21

mA

VCC = MAX. VI = OV

ICCL

Supply current. low-level output

57

mA

VCC = MAX. VI = 5V

IIH

SWITCHING CHARACTERISTICS. Vee

-70

= 0.4V

= 5V. TA = 25°e. N = 10
ITT5408. ITT740S

Parameter

Min

Typ

Max

Unit

Test Conditions

ltpLH

Propagation delay time.
low-to-high-Ievel output

9

ns

CL = 50pFRL = 133,Jl-

tpHL

Propagation delay time.
high-to-Iow-Ievel output

12

ns

CL = 50pFRL = 133-"-

3-52

ITT&428, ITT7428,ITT&433, 11T7433
QUADRUPLE 2-INPUT POSITIVE NOR BUFFERS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT5409, ITT7409
Parameter

Min

Typl

Max

Unit

Test Conditions 2

V 1H

High-level input voltage

V 1L

Low-level input voltage

0.8

V

IOH

High-level output current

250

uA

VOL

Low-level output voltage

0.4

V

IIH

High-level input current (each,
input)

40

uA

= MIN. V1L = 0.8V
= 5.5V
VCC = MIN. VIH = 2.0V
IOL = 48mA
VCC = MAX, VI = 2.4V

1

rnA

VCC = MAX. VI = 5.5V

IlL

Low-level input current (each
input)

-1.5

mA

VCC = MAX. VI = 0.4V '

ICCH

Supply current. high-level output

21

mA

VCC = MAX. VI = OV

ICCL

Supply current. low-level output

57

mA

VCC= MAX. VI = 5V

"

SWITCHING CHARACTERISTICS, Vee

2

V

VCC
VOH

= 5V. TA = 25°e. N = 10
ITT5409,ITT7409

Parameter

I

2

3

Min

Typ

Max

Unit

Test Conditions

tpLH

Propagation delay time.
low-to-high-Ievel output

15

ns _

CL = 50pFRL = 133..1\..

tpHL

Propagation delay time.
high-to-Iow-Ievel output

18

ns

CL = 50pFRL = 133-,A.

All typical values are atVCC = 5\1. TA = 25°C.
,
,,
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
' ,
'
Not more than one output should be shorted at a time.

ITT
----ITT5430, ITT7430
8-INPUT POSITIVE NAND GATES

SEMICONDUCTORS

a-INPUT POSITIVE NAND GATES
OUAL- .IN-LiNE PACKAGE
PI N CONFIGURATION

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

(TOP VIEW)

NCeD

A

VCC

B

NC

A0
B0

H
G

E

VCC

Z

@NC

@z

G

@GNO

c0

NC

00

z

POSITIVE LOGIC:

@NC

= ABCOEFGH

' - - -.... @H

'----11-0

POSITIVE LOGIC:

G

Z = ABCOEFGH

schematic
4 kQ

1.6 kQ

I kQ
GNO
AS

0

GH

'----.r------'
INPUTS

NOTES: 1. (omponenl values shown are nominal
2. HC - No internal (onRedio"

Recommended Operating Conditions

Min

Supply Voltage V CC:

4.5
4.75

5
5

- 55
0

25
25

5430 Circuits ............... .
7430 Circuits .................. .
Normalized Fan-Out From Each Output. N ..
............................................... .
Operating Free-Air Temperature Range. TA: 5430 Circuits................................
7430 Circuits....................

3-54

Nom Max
5.5
5.25
10
125
70

Unit
V
V

°c
°c

ITIS430, ITI7430
8-INPUT POSITIVE NAND GATES

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

Vin(1)

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vcc = Min Ii = -12 mA

Vout (1 )

Logical 1 output voltage

V

Vee = MIN. Yin = 0.8 V.
Iload = -400 uA

Vout(O)

Logical 0 output voltage

0.4

V

Vee = MIN. Yin = 2V.
I sink = 16 mA

lin(O)

Logical 0 level input current
(each input)

-1.6

mA

Vee = MAX. Yin = 0.4 V

lin(1 )

Logical 1 level input current
(each input)

40

uA

1

mA

Vee = MAX. Yin = 2.4 V
Vee = MAX. Yin = 5.5 V

-20

-55

mA

Vee = MAX

-18

-55

lOS

2

2.4

V

3.3
0.22

Short-circuit output current 3

ITT5430
ITT7430

lee(O)

Logical 0 level supply current

3

6

mA

Vee = MAX. Yin = 5 V

lee(1)

Logical 1 level supply current

1

2

mA

Vee = MAX. Yin = 0

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°C. N = 10
Parameter

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL= 15pF.R L =400Q

tpd1

Propagation delay time to
logical 1 level

13

22

ns

eL = 15 pF. RL = 400 Q

1

2

3

=

=

All typical values are at Vee
5 V. TA
25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3-55

ITT
----ITT5432, ITT7432
QUADRUPLE 2-INPUT POSITIVE-OR GATES

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE-OR GATES
schematic (each gate)

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)T

Vee

VCC

4B
OUTPUT

INPUTS

~

4A

I~

~--------~--~----4---~GND

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage, V CC (see Note 1) .......................... 7 V
Input voltage .......................................................... 5.5 V
Operating free-air temperature range:
ITT5432 Circuits ........................... -55°C to 125°C
ITT7432 Circuits .................................... O°C to 70°C
Storage temperature range ........... -65°C to 150°C
Note:

POSITIVE LOGIC:

~:

A+B

tplN ASSIGNMENTS FOR THESE CIRCUITS ARE

1. Voltage values are with respect to network
ground terminal.

THE SAME FOR ALL PACKAGES.

recommended operating conditions
ITT5432
Supply voltage, Vee
Normalized fan-outfrom each output N

ITT7432

Min

Nom

Max

Min

Nom

Max

Unit

4.5

5

5.5

4.75

5

5.25

V

High logic level

20

20

Low logic level

10

10

-55

Operatin g free-air temperature, T A

3-56

25

125

0

25

70

DC

ITT5432, ITT7432
QUADRUPLE 2-INPUT POSITIVE-OR GATES
ELECTRICAL CHARACTERISTICS over reoommended operating free-air temperature range
(unless otherwise noted)
Parameter·

Min

Typ'

Max

V IH

High-level input voltage

V il

low-level input voltage

0.8

V

-1.5

V

VI

Input clamp voltage

V OH

High-level output voltage

Val

low-level output voltage

II

2

2.4

V

3.3

0.22

V

0.4

V

Input current at maximu m input
voltage

1

rnA

IIH

High-level input current

40

uA

III

low-level input current

-1.6

rnA

lOS

Short-circuit output current 3

-20

-55

rnA

-18

-55

= MAX. II = -12mA
VCC = MIN. V IH = 2V.
10H = -800uA
VCC = MIN, V il = 0.8V,
10l = 16mA
VCC = MAX, VI = 5.5V

VCC

= MAX, VI = 2AV
VCC = MAX, VI = OAV
VCC = MAX ITT5432
Vce

ITT7432

ICCH

Supply current. high-level output

15

22

mA

ICCl

Supply current. low-level output

23

38

rnA

=

Test Conditions 2

Unit

= MAX, See Note 2
VCC = MAX, See Note 3
VCC

=

, All typical values are at V CC
5V, TA
25°C.
Forconditionsshown as MIN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time.
2

Notes:

2. ICCH is measured with one input of each gate at 4.5V, the remaining inputs grounded, and outputs open.
3. ICCl is measured with both inputs of all gates grounded, and outputs open.

SWITCHING CHARACTERISTICS. Vee = 5V, TA = 25°e, N = 10
Parameter

Min

Typ

Max

Test Conditions

Unit

tpHl

Propagation delay time,
high-to-Iow-Ieveloutput

14

22

ns

Cl

= 15 pF, Rl =

tplH

Propagation delay time,
low-to-high-Ieveloutput

10

15

ns

Cl

= 15 pF, Rl = 40o-n-

3-57

40o-n-

•

I

ITT
-----ITT5437, ITT5438, ITT7437, ITT7438

QUADRUPLE 2-INPUT POSITIVE NAND BUFFERS
Package: Dual In-Line and Flat Pack

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NAND
BUFFERS
DUAL-IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)

IA

Supply voltage V CC (see Note 1) ........................... 7 V
Input voltage (see Note 1) ................................... 5.5 V
Inte~emitter voltage (see Note 2) ....................... 5.5 V
Output voltage (see Notes 1 and 3):
ITT5438, ITT7438 Circuits ........................... 5.5 V
Operating free-air temperature range:
ITT5437, ITT5438 Circuits ..... -55°C to 125°C
ITT7437, ITT7438 Circuits .............. ooC to 70°C
Storage temperature range ........... -65°C to 150°C
Notes:

VCC

46
4A

4r
26

36

1. Voltage values, except interemitter voltage,
are witl:! respect to network ground terminal.
2. This is the voltage between two emitters of
a mUltiple-emitter transistor.
3. This is the maximum voltage which should
be applied to any output when it is in the

POSITIVE LOGIC:

r= A 6

!PIN ASSIGNMENTS FOR THESE CIRCUITS ARE
THE SAME. FOR ALL PACKAGES.

off state.

schematics (each buffer)

""----",,,---"""'_--0 vee
4 kU

600!!

" " - - - - " , , , - - - - - - 0 vee

100U

60Dsz

INPUTS

INPUTS { :

{:o--+-..

.,------0 OU~UT

OUTPUT

0---+-"

r

~~----4-~~---OGND
40011

ITT5438. ITT7438 (OPEN-COLLECTOR

~~----+--~-~--oGND

OUTPUT)

ITT5437. ITT7437 (TOTEM-POLE OUTPUT)

3-58

ITT5437, ITT5438, ITT7437, ITT7438
QUADRUPLE 2-INPUT POSITIVE NAND BUFFERS
recommended operating conditions
ITT5437, ITT5438
Typ
Min
Max

ITT7437, ITT7438
Typ
Min
Max

4.5

4.75

Supply voltage Vee

5

Normalized fan-out from each output. N

5.5

5

30
-55

Operating free-air temperature range. TA

25

125

Unit

5.25

V

30
0

25

70

°e

-

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT5437,ITT7437
Parameter

Min

Typ'

Max

V IH

High-level input voltage

V il

low-level input voltage

0.8

V

VI

Input clamp voltage

-1.5

V

V OH

High-level output voltage

VOL

low-level output voltage

II

2

Test Conditions 2

Unit
V

0.4

V

Input current at maximum input
voltage

1

mA

= MIN. II = -12mA
Vee = MIN. V il = 0.8V.
10H = -1.2mA
Vee = MIN. V IH = 2V.
10l = 48mA
Vee = MAX. VI = 5.5V

IIH

High-level input current

40

uA

Vee

III

low-level input current

-1.6

mA

= MAX. VI = 2.4V
Vee = MAX. VI = O.4V

lOS

Short-circuit output current 3

-70

mA

Vee
Vee

V.

2.4

0.22

-20

leeH

Supply current. high-level output

9

15.5

mA

leel

Supply current.low-Ievel output

34

54

mA

3-59

Vee

= MAX. VI = 0
= MAX. All ilputs at OV
Vee = MAX. All inputs at 5V

ITT5437, ITT5438, ITT7437, ITT7438
QUADRUPLE2-INPUT POSITIVE NAND BUFFERS
ELECTRICAL CHARACTER ISTICS over recommended operating free-air temperature range
IlInless otherwise noted)

ITT5438.ITT7438
Parameter
V IH

Min

High-level input voltage

Typ'·

Max

2

V

V IL

Low-level input voltage

0.8

V

VI

I nput clamp voltage

-1.5

V

IOH

High-level output current

250

uA

VOL

Low-level output voltage

0.4

V

IIH
IlL

,

0.22

= MIN. II = -12mA
Vec = MIN. V IL = 0.8V.
V OH = 5.5V
Vee

Vce - MIN. V IH - 2V.
IOL 48mA

Input current at maximum input
voltage

1

mA

=
Vce = MAX. VI = 5.5V

High-level input current

40

uA

VCC

Low-level input current

-1.6

mA

Vec

,

I

Test Conditions 2

Unit

-,-,

CCH

Supply current, high-level output

5

8.5

mA

ICCL

Supply current. lOW-level output

34

54

mA

= MAX. VI = 2.4V
= MAX. VI = 0.4V
Vec = MAX. All inputs at OV
VCC = MAX. All inputs at 5V

, All typical values are at V CC = 5V. TA = 25°C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at a time. and duration of the short-circuit test should not exceed one
second.
2

SWITCHING CHARACTERISTICS,V ee
Parameter

= 5V.TA = 25°e. N = 30

ITT5437.ITT7437
Typ
Min
Max

ITT5439. ITT7438
Typ
Max
Min

Test Conditions

Unit

tplH

Propagation delay
time.
low-to-high-Ievel
output

13

22

14

22

ns

Cl

= 45pF. Rl = 133-"-

tpHl

Propagation delay
time.
high-to-Iow-Ievel
output

8

15

11

18

ns

Cl

= 45pF. Rl = 133.()..

3-60

__

ITm

ITT5440, ITT7440

. ______________D~UA--L-4--I-N-PU-T--P-O-S-IT-IV-E-N-A-N-D--B-U-FFE_R...
S

SEMICONDUCTORS

DUAL 4-INPUT POSITIVE NAND BUFFERS
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW).

DUAL-IN-LiNE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

@ID

Vce
20

@IC

2C

'-->-_-@ IB
@GND

@2i!
'-----1-

® 20

0
POSITIVE LOGIC:

2C

i!=ABCD
POSITIVE

LOGIC

i! = ABCD

schematic (each gate)

Component velues shown ere nomlnel.
NC-No Internal Connection

Recommended Operating Conditions

Min

Supply Voltage VCC: 5440 Circuits ........................................................................ .
7440 Circuits .........................................................................
Normalized Fan-Out From Each Output. N ............................................................. .
Operating Free-Air Temperature Range. TA: 5440 Circuits ............................... .
7440 Circuits ............................... .

3-61

Nom Max

4.5
4.75

5
5

-55
0

25
25

5.5 .
5.25
30
125
70

Unit
V
V

°c
°c

ITT5440, ITT7440
DUAL 4-INPUT POSITIVE NAND BUFFERS
ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit
V

2

Vin (l )

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vout (l)

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

lin(O)
lin( 1)

lOS

2.4

V

3.3
0.4

V

Logical 0 level input current
(each input)

-1.6

rnA

Logical 1 level input current
(each input)

40

uA

1
-20
-18

Short-circuit output current 3

0.28

rnA

= MAX, V in = 2.4 V
= MAX, Vin = 5.5 V

-70

rnA

Vee

= MAX

-70

rnA

Logical 0 level supply current

17

27

rnA

lee(1)

Logical 1 level supply current

4

8

rnA

Parameter

= Min Ii = -12 rnA
Vee = MIN, Vin = 0.8 V,
Iload = -1.2 uA
Vee = MIN, V in = 2V,
Isink = 48 rnA
Vee = MAX, Vin = 0.4 V

Vcc

Vee
Vee

lee(O)

SWITCHING CHARACTERISTICS. Vee

Test Conditions 2

I

r

ITT5440
.ITT7440

= MAX. Vin = 5 V
Vee = MAX. Vin = 0
Vee

= 5V, TA = 25°C. N = 30
Min

Typ

Max

Test Conditions

Unit

tpdO

Propagation delay time to
logical 0 level

8

15

ns

eL

= 15pF,R L = 133 Q

tpdl

Propagation delay time to
logical 1 level

13

22

ns

eL

= 15pF.R L = 133Q

1
2

3

All typical values are at Vee = 5 V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3-62

ITT5442, ITT5443, ITT5444,
ITT7442, ITT7443, ITT7444
4-UNE-TO-10-UNE DECODERS (1-0F-10)

ITT
----SEMICONDUCTORS

4-LINE-TO-10-LINE DECODERS (1-0F-10)
• BCD-to- Decimal
• Excess-3-to-Decimal
•

Excess-3-Gray-to-Decimal
Also for applications as

• 4-Line-to-16-Line Decoders
•

3-Line to B-Line Decoders

DUAL- IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP'VIEW)t

These monolithic decimal decoders consist of eight
inverters and ten four-input NAND gates. The i!1verters are connected in pairs to make BCD input
data available for decoding by the NAN D gates. Full
decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.
In5442/1TT7442 BCD-to-decimal. ITT5443/1TT7443 excess-3-to-decimal. and ITT5444/1TT7444 excess-3-gray-to-decimal decoders
feature fa miliar transistor-transistor-Iogic (TTL) circuits with inputs and outputs which are compatible
for use with other TTL and DTL circuits. D-c noise
margins are typically one volt and power dissipation
is typically 140 milliwatts. Full fan-out of 10 is
available at all outputs.

The

absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply Voltage. V CC (See Note 1) .......................... 7V
Input Voltage. Vin (See' Note 1) ........................... 5.5V
Operating Free-Air Temperature Range:
ITT5442. ITT5443.
ITT5444 Circuits ........................... - 55°C to 125°C
ITT7442.1TT7443.
ITT7444 Circuits .................................... OoC to 70°C
Storage Temperature Range ......... - 65°C to 150°C

POSITIVE

LOGIC

SEE

FUNCTION

TABLE

tplN ASSIGNMENTS FOR THESE CIRCUITS
ARE

THE

SAME FOR

ALL PACKAGES

recommended operating conditions

Min

Nom

Max

Unit

Supply Voltage VCC (See Note 1): ITT5442. ITT5443. ITT5444 Circuits.....................
ITT7442.ITT7443. ITT7444 Circuits.....................
Normalized Fan-Out from each Output (N) .........................................................................

4.5
4.75

5
5

5.5
5.25

v

Note: 1. Voltage values are with respect to network ground terminal.

3-63

10

V

ITT5442, ITT5443, ITT5444,
ITT7442, ITT7443, ITT7444
4-LlNE-TO-1 O-LiNE DECODERS (1-0F-1 0)
TRUTH TABLES
ITT5442/ITT7442
BCD
INPUT

ITT5443/ITT7443
EXCESS 3
INPUT

ITT5444/ITT7444
EXCESS 3 GRAY
INPUT

ALL TYPES.
DECIMAL
OUTPUT

..

D

C

B

A

D

C

B

A

D

C

B

A

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

1

1

0

0

1

0

0

1

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

0

0

1

1

0

1 0

1

1

1

1

1

1

1

1

1

0

0

1

0

0

1

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

0

0

1

1

0

1

1

0

0

1

0

1

1

1

1

0

1

1

1

1

1

1

0

1

0

0

0

1

1

1

0

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

1

1

1

1

0

1

1

0

1

0

0

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

0

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

1

1

0

0

1

.0

1

0

1

1

1

1

1~ 1

1

1

1

0

1

0

1

0

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1 ·1

1

1

1

1

1

1

1

1

1

0

,1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

TYPICAL OF
ALL OUTPUTS

EQUIVALENT OF
EACH INPUT

VCC----1I---

INPUT

3-64

ITT5442, ITT5443, ITT5444,
ITT7442, ITT7443, ITT7444
4-UNE-TO-10-LlNE DECODERS (1-0F-10)
ELECTRICAL CHARACTERISTICS Over Recommended Operating Temperature Range
(unless otherwise noted)

MIN

PARAMETER
Vin(1 )

Vin(O)

Input voltage required to
ensure logical 1 at any
input terminal

TYP:j:

MAX UNIT

2

V

Input voltage required to
ensure logical 0 at any
input terminal

0.8

V

-

Vout(O) Logical 0 output voltage
lin(1 )

Logical 0 level input current
(each input)

los

Short-circuit output current§

Icc

Supply current

V1

Vin(1)= 2V,
Vcc=MIN,
Vin(O)= 0.8V, Iload = - 400uA

V

Vcc= MIN,
Vin(O)= 0.8V,

40

uA

Vcc = MAX,

Yin = 2.4V

1

mA

Vcc= MAX,

Vin = 5.5V

1.6

mA

Vcc= MAX

Vin = 0.4V

mA

Vcc = MAX

5442, 5443, 5444
7442, 7443, 7444

mA

Vcc= MAX,

5442, 5443, 54'!.!
7442, 7443, 7444

Vcc= Min

!i=-12mA

0.4

Logical 1 level input current
(each input)

lin(O)

V

2.4 .

Vout(1) Logical 1 output voltage

TEST CON DITIONSt

-

20

-

55

-

18

-

55

28
28

Input Clamp Voltage

41
56
-

1.5

V

SWITCHING CHARACTERISTICS, (Vcc= 5V, TA= 25°C, N = 10)
PARAMETER

MIN

tpdO

Propagation delay time to
logical 0 level through
two logic levels

10

tpdO

Propagation delay time to
logical 0 level through
three logic levels

tpd1

tpd1

Propagation delay time to
logical 1 level through
two logic levels

10

Propagation delay time to
logical 1 level through
three logic levels

TYP

MAX

UNIT

TEST CONDITIONS

22

30

ns

CL=15pF, RL=400n

23

35

ns

CL= 15pF, RL= 400 n

17

25

ns

CL=15pF, RL=400n

26

35

ns

CL=15pF, RL=400n

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended
operating conditions for the applicable device type.
:j: All typical values are at Vcc=5V, TA=25°C.

§ Not more than one output should be shorted at a time.

3-65

t:

:::l

!l
III

Z
m
I

cr

-I

...
Co

OUTMO

OUTPVJO

OUTMI

Ol1JMI

INI'UT A

OUTM'

OUTM2

OUTM'

Ol1JM3

OUTM3

OUTP\.n4

OUTM4

I

r-

o·
:::l
0n

OVTP\JT 0

.J::>.

iii·
ce

i»
3
til

o
o
I

I

r-

INMI

~.~

~

~~

o

o

m

--b-I

w

I

CUlM'
INMC

OlllM5

OUTPUT'

INPUTC
IHMC

Ol
Ol

OUTM6

OUTM.

OUTM7

OUTM7

OUTM'

OUTMi

OUT"'"

OUT"'"

OUTPUT 9

OVJl'UT9

OUT"'"

0UT""7

INPUT D
IHMO

5442/7442 BCD-TO-DECIMAL

5443/7443 EXCESS-3·TO·DECIMAL

5444/7444 EXCESS-3-G RA Y-TO·DECIMAL

tt

:::tJ ~~

en

OUTM.

""(11

Z
m

o

OUTM'

INPUT!

:t::t
.tt.
:t::t
...,en

o-n
I

- ITT- - - - ITT5445, ITT54145, ITT7445, ITT74145
BCD-TO-DECIMAL DECODER/DRIVERS

SEMICONDUCTORS

BCD-TO-DECIMAl
DECODER/DRIVERS

DUAL-IN-liNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)t

TTL MSI LAMP. LOGIC. OR MOS DRIVERS

• Full Decoding of Input Logic
·80 mA Sink-Current Capability

These monolithic BCD-to-decimal decoder/drivers
consist of eight inverters and ten four-input NAND
gates. The inverters are connected in pairs to make
BCD input data available for decoding by the NAND
gates. Full decoding of valid BCD input logic
ensures that all outputs remain off for all invalid
binary input conditions. These decoders feature TTL
inputs and high-performance. n-p-n output transistors designed for use as indicator/relay drivers or
as open-collector logic-circuit drivers.
Each of the high-breakdown output transistors
(lTT5445. ITT7445 = 30 volts and ITT54145.
ITT74145 = 15 volts) will sink up to 80 milliamperes of current. Each input is one normalized Series 54n4 load. Inputs and outputs are entirely
compatible for use with TTL or DTL logic circuits.
and the outputs are compatible for interfacing with
most MOS integrated circuits. Power dissipation is
typically 215 milliwatts.

absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply Voltage VCC (See Note 1) .......................... 7 V
Input Voltage. V in {See Note 1 ) .......................... 5.5 V
Maximum Current into each Output
(See Note 2) ......................................................... 1 rnA
Operating Free-Air Temperature Range:
lTT5445.ITT54145 Circuits ....... -55°C to 125°C
lTT7445.ITT74145 Circuits ................ O°C to 70°C
Storage Temperature Range ......... -65°C to 150°C

POSITIVE LOGIC: SEE FUNCTION TABLE

tplN ASSIGNMENTS FOR THESE CIRCUITS ARE
THE SAME FOR ALL PACKAGES.

TRUTH TABLE
INPUTS

1 2 3 4

5 6 7 8

9

0 0 0 0

0

1 1 1 1

1 1 1 1

1

0 0 0

1 0

1

1 1

0 0

1 0

1 1 0

1 1

1 1 1 0

1 1 1 1. 1
1 1 1 1

1

1

1 1 1 1

1

1 1 1 1

1

0

1 0 0

1 1 1 1 0

0

1 0

1 1 1 1 1 0

0

1 1 0

1 1 1 1 1

1 0

0

1 1 1

1 1 1 1 1

1 1 0

1

1

1 0 0 0

1 1 1 1 1

1 1 1 0

1

1 0 0

1

1 1 1 1 1

1 1 1 1 0

1 0

1 0

1 1 1 1 1

1 1 1 1

1

1 0

1 1 1 1 1 1 1

1 1 1 1

1

1

1 1 0 0

1 1 1
1 1

1
1

1 1 1 1 1

1 1 1 1

1

1 1 1 1 1 1

1 1 1 1

1

1 1 1 1 1

1 1 1 1

1

1 1 1 1 1 1 1 1 1

1 1 1 1

1

1 0

1 1 1 0

3-67

1 1 1

0 0

1
lIIot8s: 1. These voltage values are with respect to
network ground terminal.
2. This rating applies when the output is off.

OUTPUTS

0 C B A 0

ITT5445, ITT54145, ITT7445, ITT74145
BCD-TO-OECIMAL DECODER/DRIVERS
recommended operating conditions

MIN

Supply Voltage Vcc (See Note 1): ITT5445, ITT54145 Circuits .................. .
ITT7445, ITT74145 Circuits .................. .
Voltage on any Output (See Note 2): ITT5445, ITT7445 Circuits ... ,............ .
!TT!'i4145, ITT7 4145 Circuits .......... ..

4.5
4.75

NOM MAX
5
5

5.5
5.25
30
15

UNIT
V
V
V
V

ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V in (1) .

Input voltage required to
ensure logical 1 at any input
terminal

Vin(O)

Input voltage required to
ensure logical 0 at any input
terminal

Von

On-state output voltage

Min

Typl

Max

2

Unit

Test Conditions 2

V

0.5

0.8

V

0.9

V

VCC - MIN,
Isink = 80 mA

0.4

V

VCC - MIN,
Isink = 20 mA

VCC

Off-state output voltage
(lTT5445 or ITT7445)

30

V

VCC - MAX,
loff = 250uA

Voff

Off-state output voltage
(lTT54145 or ITT74145)

15

V

VCC = MAX,
loff = 250 uA

lin(1)

Logical 1 level input current
(each input)

40

uA

VCC = MAX, V in = 2.4 V

1

mA

VCC -,. MAX, V in -5.5 V

lin(O)

Logical 0 level input current
(each input)

-1.6

mA

VCC = MAX, V in = 0.4 V

ICC

Supply current

43

62

mA

VCC = MAX

43

70

mA

,

ITT5445,
ITT54145
ITT7445,
ITT74145

SWITCHING CHARACTERISTICS. VCC =5V, TA = 25°C
Parameter

Min

Typl

Max

Unit

Test Conditions 2

tpd1

Propagation delay time to
logical 1 level

50

ns

CL = 15pF,R L

= 100n

tpdO

Propagation delay time to
logical 0 level

50

ns

CL = 15pF,R L

= 100n

1
2

=

All typical values are at V cc
5V. TA :0 25° C.
For conditions 'shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

3-68

ITT5445, ITT54145, ITT7445, ITT74145
BCD-TO-DECIMAL DECODER/DRIVERS
functional block diagram
DECODER/DRIVER GATES
~

,

INPUT A

INPUT INVERTERS
1\

o-[)o

A

B

,

c

OUTPUT 0

,...... 0

A

A

ii

c

OUTPUT 1

t- O

{>A

A
B

L

OUTPUT 2

t- O

INPUT B

A

0-[>0

B

B

L

OUTPUT 3

t- O
A

~>.

ii

c

OUTPUT 4

t- O
A

INPUT C

ii

0-[>0

C

L

~

OUTPUT 5

t- O

[>oc

A

B
C

OUTPUT 6

t- O
A

INPUT D

B

0-[>0

0

C

l)oD

B
C

OUTPUT 7

B
A

'-

OUTPUT 8

D
A

B
C
'--- D

3-69

OUTPUT 9

ITT5445, ITT54145, ITT7445, ITT74145
BCD-TO-DECIMAL DECODER/DRIVERS
schematic
vcc.-------e---------e-------------~.-------~~--ovcc

4kQ

3 kQ

3 kQ

4kQ

INTERNAL
A, 8, C, OR 0

INPUT "'--- ...

INTERNAL
A, ii, C, OR i5
1.5 kQ

GND.---~~----~----------------~---oGND

. EACH PAIR OF INPUT INVERTERS
Vcc4----.--------------------~

HQ

320Q

INTERNAL
CONNECTION
TO INPUT
INVERTERS
(SEE LOGIC
DIAGRAMI

OUTPUT
1 kQ

2kQ

2 kQ

GND 4-----.......-----------~~----....I
EACH DECODER/DRIVER GATE

Note: 1. Component values shown are nominal.

3-70

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447 A, ITT7448

ITT
-,
----BCD-TO-SEVEN-SEGMENT DECODER/DRIVERS

SEMICONDUCTORS

Package: Dual In-Line and Flat Pack

BCD-TO-SEVEN-SEGMENT
DECODER/DRIVERS
•
•
•
•
•

•
•
•
•

ITT5446A. ITT5447A. ITT7446A. ITT7447A
featuring
Direct Drive For Indicators
Open Collector Outputs
Lamp Test Provision '
Leading/Trailing Zero Suppression
Ceramic Or Plastic Dual In Line Packages
ITT5448.ITT7448
featuring
Passive Pull Up Outputs
Lamp Test Provision
Leading/Trailing Zero Suppression
Ceramic Or Plastic Dual In Line Packages

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEWJ t

INPUTS

{

B I
C

LAMP
TEST
RB
OUTPUT
RB
INPUT

OUTPUTS

JO 6

INPUTS~

ALL CIRCUIT TYPES FEATURE:
• TTL-DTL Compatibility
• Full Decoding of all 16 Input Combinations
• Lamp Intensity Modulation Capability

POSITIVE LOGIC: SEE TRUTH TABLES
tPIN ASSIGNMENTS FOR THESE CIRCUITS ARE THE SAME
FOR ALL PACKAGES.

These monolithic. TTL. B CD-to-seven-segment
decoder/drivers consist of NAN D gates. input
buffers. and seven AND-DR-INVERT gates. Two
configurations offer active-low. high-sink-current
outputs (ITT5446A and ITT5447A) for driving indicators directly; active-high. passive-pull-up outputs. (ITT5448) for current-sourcing applications to
drive logic circuits or discrete. active components.
Seven NAND gates and one driver are connected
in pairs to make BCD data and its complement
available to the seven decoding AND-OR-INVERT
gates. and the remaini':lg 'NAND gate and three input buffers provide' lamp test. blanking in-,
put/ripple-blanking output, and ripple-blanking input for the ITT5446A. ITT544 7A and ITT5448.
The circuits accept 4-bit binary-coded-decimal
(BCD) and. depending on the state of the auxiliary
inputs. decodes this data to drive a seven-segment
display indicator (ITT5446A and ITT5447A) or other components (ITT5448). The relative positivelogic output levels. as well as conditions required
at the auxiliary inputs. are shown in the truth tables.
Output configurations of the ITT5446A and ITT5447 A are, designed to withstand the relatively
high voltages required for seven segment indicators. The ITT5446A outputs will withstand 30
volts. and the ITT5447A will withstand 15 volts.
with a maximum reverse current of 250 micro-

amperes. Indicator segments requiring up to 40
milliamperes of current may be driven directly from
the ITT5446A or ITT5447 A high-performance output transistors. Segment identification with resultant displays are shown in Figure A. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.
The ITT5446A. ITT5447A. and ITT5448 circuits incorporate automatic leading and/or trailing edge
zero-blanking control (RBI and RBO), Lamp test
(LT) of these types may be performed at any time
when the BI/RBO node is a logical 1. All types contain an overriding blanking input (BI) which can be
used to control the lamp intensity or to inhibit the
outputs. All inputs except the BI/RBO nodes are
one normalized Series 54/74 load. Inputs and outputs are entirely compatible for use with TTL or
DTL logic outputs, Power dissipation is typically
320 milliwatts (ITT5446A, ITI5447 A. and ITT5448).
The ITT5446A. ITT5447A. and ITT5448 are char,acterized for operation over the full military temperature range of -55°C to 125°C. The ITT7446A. ITT7447A. and ITT7448. (electrically identical to the corresponding Series 54 types) are for
operation over the temperature range of O°C to
70°C.

3-71

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447A, ITT7448
BCD-TO-SEVEN-SEGMENT DECOD ER/DR IVERS
TRUTH TABLE ITT5446A, ITT5447A, ITT7446A, 1TT7447A
/.-----Inputs - - - - - - - - - "
Decimal
or
Function

/r---------Outputs - - - - - - "

LT

RBI

0

'c

B

A

BI/RBO

a

b

c

• d

e

f

g

Note

0

1

1

0

0

0

0

1

0

0

0

0

0

0

1

1

1

1

X

0

0

0

1

1

1

0

0

1

1

1

1

1

2

1

X

0

0

1

0

1

0

0

1

0

0

1

0

3

1

X

0

'0

t

1

1

0

0

0

0

1

1

0

4

1

X

0

1

0

0

1

1

0

0

1

1

0

0

5

1

X

--

0

1

0

1

1

0

1

0

0

1

0

0

6

1

X

0

1

1

0

1

1

1

0

0

0

0

0

7

1

X

0

1

1

1

1

0

0

0

1

1

1

1

8

1

X

1

0

0

0

1

0

0

0

0

0

0

0

9

1

X

]

0

0

1

1

0

0

0

1

1

0

0

10

1

.X

1

0

1

0

1

1

1

1

0

0

1

0

11

1

X

1

0

1

1

1

1

1

0

0

1

1

0

12

1

X

1

1

0

0

1

1

0

1

1

1

0

0

13

1

X

1

1

0

1

1

0

1

1

0

1

0

0

14

1

X

. 1

1

1

0

1

1

1

1

0

0

0

0

15

1

X

1

1

1

1

1

1

1

1

1

1

1

1

BI

X

X

X

X

X

X

0

1

1

1

1

1

1

1

2

RBI

1

0

0

0

0

0

0

1

1

1

1

1

1

1

3

LT

0

X

X

X

X

X

1

0

0

0

0

0

0

0

4

Notes:
1. BI/RBO is wire-AND logic serving as blanking input (BI} and/or ripple-blanking output (RBO). The blanking input
(BI) must be open or held at a logical 1 when output functions 0 through 15 are desired, and the ripple-blanking'
input (RBI) must be open or at a logical 1 if blanking of a decimal 0 'is not desired. X = input may be high
or low.
2. When a logical 0 is applied directly to the blanl0UTPUT

L-----~--J-t---~--~--~-----------lAMP TEST

Component values shown are nominal

3--76

__________________~--------~~GND

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447 A, ITT7448
BCD-TO-SEVEN-SEGMENT DECODER/DRIVERS

functional block diagram ITT5448. ITT7448

OUTPUT

INPUT
A

OUTPUT
b

INPUT
B

INPUT
C

OUTPUT

INPUT

o

OUTPUT
d

QUTPUT

BLANKING
INPUT OR
RIPPLE-BLANKING.
OUTPUT.

OUTPUT
f

LAMP-TEST 0-+.,-----'
INPUT

OIJTPUT
9

RIPPLE-BLANKING 0 - + - - - , - - - - '
INPUT
.

3-77

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447 A ITT7448
BCD-TO-SEVEN-SEGMENT DECODER/DRIVERS
functional block diagrams

ITT5446A. ITT5447A. ITT7446A. ITT7447A

OUTPUT

OUTPUT
b

INPUT
C

OUTPUT

INPUT
D

OUTPUT
d

OUTPUT

BLANKING
INPUT OR
RIPPLE-BLANKING
OUTPUT

OUTPUT
f

lAMP-TEST
INPUT

o-+--....l

RIPPLE-BLANKING 0-+------"
IMPUT

3-78

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447 A, ITT7448
BCD-TO-SEVEN-SEGMENT DECODER/DRIVERS
Electrical Characteristics Over Recommended Operating Free-air Temperature Range
(unless otherwise noted)
Parameter
V IH

High-level input
voltage

VIL

Low-level input
voltage
Input clamp voltage,
any input except
BI/RBO

VI

Min

Max

Typ*

Unit

Test Conditionst

V

2

0..8

V

1.5

V

1DmA

Vee - MIN, 1,-

250.

!J.A

0..4

V

Any input
except
BI/RBO

1

rnA

= MIN, VIII - 2V,
= o..8V,
= -2o.o.llA
Vee = MIN, VIII - 2V,
VII. = D.8V, 1 = 8mA
Vee = MAX, VIII - 2V,
VIL = o..8V,
VO(off) =MAX
Vee - MAX, Vm - 2V,
VII. = o..8V,
lo(on) = 4o.mA
Vee = MAX, VI = 5.5V

High-level input
current

Any input
except
BI/RBO

40.

!J.A

Vee

= MAX, V, = 2.4V

Low-level input
current

Any input
except
BI/RBO
BI/RBO

-1.6

Vee

= MAX, VI = q.4V
= MAX

VOIl

High-level output
voltage

BI/RBO

VOl.

Low-level output
voltage

BI/RBO

10(0ff)

Off-state output
current

a thru g

VO(on)

On-state output
voltage

a thru g

It

Input current at
maximum input
voltage

1m

In.

los

Short-circuit output
current

Icc

Supply current

2.4

3.7

V

0..3

0..4

V

Vee
VIL
lOll

01•

0..3

rnA
-4
-4

rnA

Vee

85
10.3

rnA

Vee
MAX,I5446A,5447A
See Note 2,V446A,7447A

BI/RBO
64
61

tFor conditions shown as MIN or MAX, use the
appropriate value specified under recommended operating conditions for the applicable
type.

=

=

=

tAli typical values are at Vee
5V, TA
25°C.
NOTE 2: Icc is measured with all outputs open
and all inputs at 4.5V.

Switching Characteristics, Vee = 5V, TA = 25°C
Parameter
to ff

Turn-off time from A input

ton

Turn-on time from A input

torr

Turn-off time from RBI input

tOil

Turn-on time from RBI input

Test Conditions

Min

Typ

Max

10.0.
C•.

= pF,

RL

= 12Dfl.

10.0.
10.0.
10.0.

3-79

Unit
ns
ns

ITT5446A, ITT5447 A, ITT5448
ITT7446A, ITT7447 A, ITT7448
BCD-TO-SEVEN-SEGM ENT DECOD ER/DRIVERS
Electrical Characteristics Over Recommended Operating Free-air Temperature Range
(unless otherwise noted)
Parameter

Min

Max

Typ*

VIH

High-level input
voltage

VII~

Low-level input
voltage

V,

Input clamp voltage,
any input except
BI/RBO

VOH

High-level output
voltage

a thru Q
BIIRBO

2.4
2.4

10

Output cu rrent

a thru g

-1.3

VOL

Low-level output
voltage

Unit

Test Conditions'f
2

V

0.8
-1.5

4.2
3.7
-2

.27

= -1OmA

V

Vee

= MIN,

V

Vee

= MIN, V = 2V,
= 0.8V, 1011 = MAX

VII~

mA

V

0.4

.V

I,

IlI

Vee - MIN, Vo - 0.85V,
Input conditions as for
Von
Vee
Vn .

= MIN, V = 2V,
= 0.8V, 1 = MAX
IH

01•

"

Input current at
maximum input
voltage

Any input
except
BI/RBO

1

mA

Vee - MAX, V, - 5.5V

III!

High-level input
current

Any input
except
BI/RBO

40

p.A

Vee - MAX, VI - 2AV

III~

Low-level input
current

Any input
except
BI/RBO
Short-circuit output BI/RBO
current

-1.6
4

mA

Vee

-4

mA

Vee - MAX

los
Icc

=

Supply current

=

=

= 5V, TA = 25°C

Parameter

Min

Typ

Max

Propagation delay time,
high-to-Iow-Ievel output
from A input

100

t PLII

Propagation delay time,
low-to-high-Ievel output
from A input

100

tpln~

Propagation delay time,
high-to-Iow-Ievel output
from RBI input

100

tPLH

Propagation delay time,
low-to-high-Ievel output
from RBI input

100

t PIIl•

I

5448
Vee
MAX,
53 76
mA
See Note 2
53 90
I 7448
~AII typical values are at Vee
5V, TA
25°C.
NOTE 2: Icc is measured with all outputs open
and all inputs at 4.5V.

tFor conditions shown as MIN or MAX, use the
appropriate value specified under recommended operating conditions for the applicable
type.
Switching Characteristics, Vee

= MAX, V, = OAV

Unit

Test Conditions

ns

CI.

= 15 pF,
5448: RI.
7448: R..

3-80

ns

= 1kn
= 677 n

ITT5450, ITT5451, ITT7450, ITT7451
EXPANDABLE DUAL 2-WIDE 2-INPUT
AND-DR-INVERT GATES

ITT
----SEMICONDUCTORS

EXPANDABLE DUAL 2-WIDE 2-INPUT
AND-OR-INVERT GATES
DUAL- IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

SEE
NOTE4

reD

@IO

x(~

@IC

lAG)

®IZ
@GNO

VCcG

@2Z

2A0

®20

2B0

02C

POSITIVE LOGIC:

POSITIVE LOGIC:
iii! =(AB1+{C01+lXl

X = OUTPUT OF

IB0

Z =(ABI+(CO)+(X)
X = OUTPUT OF ITT5460/ITT7460

ITT5460/ITT7460

schematic (each gate)
r-----,.---.---.-~ vee
4kA
1.6kA 4kA
130.n.

Notes:

OUTPUT
C

I kll
GATE I

OF
5450 7450 ONLY

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding.
3. If expander is not used leave X and X pins
open.
4. Make no external connection to X I!nd X pins
of the ITI5451 and ITI7451.
5. A total of four expander 'gates can be connected to the expander inputs.

L---t-+-_--..J

CLOCK~+-+-~-..J

TO OTHER

FLIP·FLOP

NOTE: Component values shown are nomlrw!.

3-101

','"

mm
I
_".1-.1- ___________

ITT5475, ITT7475

4_-_B_IT_B_I_S_TA_B_LE_L_A_T_C_H_E_S

, SEMICONDUCTORS

4-BIT BISTABLE LATCHES
"

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units,
Information present at a data (0) input is transferred to the Q output when the clock is high. and
the Q output will follow. the data input as long as
the clock remains·high. When the clock goes low.
the information (that was present at the data input
at the time the transition occurred) is retained at
the Q output until the clock is permitted to go high.

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

10

10

20

20

The iTI5475/ITI7475 features complementary Q
and Q outputs from a.4-bit latch. and is a"vailable
in the 16-pin packages.

CLOCK

These circuits are completely compatible with all
popular TIL. or OTL families. Typical power dissipation is 40 milliwatts per latch. The Series 54
circuits are characterized for operation over the full
military temperature range of - 55°C to 125°C and
Series 74 circuits are characterized for operation
from ooe to 70°C.

.30

3-4

GNO

VCC

POSITIVE

LOGIC: SEE TRUTH TABLE

logic
TRUTH TABLE
(Each Latch)
tn

0

+

tn 1
Q

1

1

0

0

Notes: 1. tn = bit time before clock negative-going
transition.
2. tn 1 = bit time after clock negative-going
transition.
'

absolute maximum ratings (over operating
temperature range unless otherwise noted)
Supply Voltage. Vee (See Note 3) ......................... 7 V
Input Voltage, Vin (See Notes 3 and 4) ............. 5.5 V
Operating Free-Air Temperature Range:
ITT5475 ......... ;; ............................... -55°C to 125°C
ITT7475 ..................................................·.00eto 70°C
Storage Temperature Range ......... -65°C to 150°C
Notes: 3" These voltage values are with respect to
. network ground terminal.
4. Input signals must be zero or positive with
respect to network ground terminal .

+

.

recommended operating conditions

MIN

Supply Voltage Vee (See Note 3.): ITT5475 .............................................:........ .
, ITT7475 ..................................................... ..
Normalized Fan-Out From Outputs .. ~ ................................................................. ..

4.5
4.75

Note: 3. These voltages are with respect to network ground terminal.

3-102

NOM MAX UNIT
5
5

5.5
5.25
10

V
V

ITT5475, ITT7475
4-BIT BISTABLE LATCHES
ELE CTR ICAL CH ARACTE R ISTI CS over recommended operating free-air temperature range
(unless otherwise noted)
. Parameter

Min

Vin (1)

Input voltage required to ensure
logical 1 level at any input
terminal

Vin(D)

Input voltage required to ensure
logical 0. level at any input
terminal

Vout (l )

Logical 1 output voltage

Vout(D)

Logical 0. output voltage

lin(D)

Typ'

Max

2

Test Conditions 2

Unit
V

0..8

V

V

Vee = MIN.
Iload = -40.0. uA

0..4

V

Vee = MIN.
Isink = 16 rnA

Logical 0. level input current at
D

-3.2

rnA

Vee = MAX. Vin = D.4V

lin(D)

Logical 0. level input current at
clock

-6.4

rnA

Vee = MAX. Yin = D.4V

lin(l )

Logical 1 level input current at
D

80.

uA

Vee = MAX. Yin = 2.4V

1

rnA

Vee = MAX. Yin = 5.5V

Logical 1 level input current at
clock

160.

uA

Vee = MAX. Yin = 2.4V

1

rnA

Vec=MAX. Yin = 5.5V

lin(1)

IDS

lee

Short-circuit output current

Supply current

2.4

3

-20.

-57

mA

Vee = MAX.

ITT5475

-18

-57

rnA

Vout =0.

ITT7475

32

46

rnA

Vee

32

53

rnA

== MAX.

ITT5475
ITT7475

All typical values are at Vee = 5V. TA = 25° e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
. for the applicable device type.
3 Not more than one output should be shorted at a time.
1

2

3-103

ITT5475, ITT7475
• 4-BIT BISTABLE LATCHES

SWITCHING CHARACTERISTICS. Vee
Parameter

= 5V. TA = 25°e. N = 10
Min

Typ

Max

Unit

Test Conditions

tsetup1

Minimum logical 1 level
input setup time at D input

7

20

ns

CL = 15pF.R L =4000

tsetupO

Minimum logical 0 level
input setup time at D input

14

20

ns

CL = 15 pF. RL = 4000

thold1

Maximum logical 1 level
input hold time required at D
input

0

15'

ns

CL = 15pF. RL = 4000

tholdO

Maximum logical 0 level
input hold time required at D
input

0

6'

ns

CL = 15 pF. RL = 4000

tpd1(D-O)

Propagation delay time to
logical 1 level from D input
to 0 output

16

30

ns

CL = 15 pF. RL = 4000

tpdO(D-O)

Propagation delay time to
. logical 0 level from D input
to 0 output

14

25

ns

CL = 15 pF. RL = 4000

tpd1(D-O)

Propagation delay time to
logical 1 level from D input
to·O output

24

40

ns

CL = 15 pF. RL = 4000

~dO(D-Ol .

Propagation delay time to
logical 0 level from D input
to 0 output

7

15

ns

CL

=;

15 pF. RL = 4000

;~

tpd l(C-O)

Propagation delay time to
logical 1 level from clock
input to 0 output

16

30

ns

CL = 15 pF. RL = 4000

tpdO(C-O)

Propagation delay time to
logical 0 level from clock
input to 0 output

7

15

ns

CL = 15pF. RL = 4000

tpd1(C-O)

Propagation delay time to
logical 1 level from clock
input to 0 output

16

30

ns

CL = 15pF. RL = 4000

tpdO(C-O)

Propagation delay time to
logical 0 level from clock
input to 0 output

7

15

ns

CL = 15pF. RL = 4000

I

, These typical times indicate that period occurring prior to the fall of clock pulse (to) below 1.5V when data at the
D input will still be recognized and stored.

3-104

ITT5475, ITT7475
4-BIT BISTABLE LATCHES

functional block diagram (each latch)

»-;.-0 Q

Q

(ITT547 5/ITT74 75)

CLOCK

DATA

schematic (each latch)

Q

GND

To Other Latch
DATA

CLOCK

Note: Component values shown are nominal.

3-105

ITT5476, ITT7476
DUALJ-K MASTER-SLAVE FLIP-FLOPS
WITH PRESET AND CLEAR

ITT
----SEMICONDUCTORS

I

DUAL J-K MASTER-SLAVE FLIP-FLOPS
WITH PRESET AND CLEAR
DUAL-iN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEw)t

The ITT7476 J-K flip-flop is based on the masterslave principle. Inputs to the master section are
controlled by the clock pulse. The clock pulse also
regulates the state of the coupling transistors which
connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master

2. Enter information from J and K inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.
logic
TRUTH TABLE
(Each Flip-Flop)
t n +1

tn

J

K

a

0

0

an

0

1

0

1

0

1

1

1

5n

POSITIVE

LOGIC:

LOW INPUT TO PRESET SETS Q TO LOGICAL I
LOW INPUT· TO CLEAR SETS Q TO LOGICAL 0
CLEAR. AND PRESET ARE INDEPENDENT OF CLOCK
tplN ASSIGNMENTS FOR THESE CIRCUITS ARE THE SAME
FOR ALL PACKAGES.

H.IGH~
2

.

3

. . . . . ..

N(ltes:

1. tn = Bit time before clock pulse.
2. t n + 1 .'" Bit time after clock pulse.

1

4

LOW

CLOCK WAVEFORM

recommended operating conditions

Min

Supply Voltage Vec:

4.5
4.75
-55
0

tTI5476 Circuits ..........................................................................
ITI7476 Circuits .......... ,...............................................................
Operating Free-Air Temperature Range, TA : ITT5476 Circuits ,................................
ITI7476 Circuits .................................
Normalized Fan-Out From Each Output, N ..................................................................... .
Width of Clock Pulse, tp(clock) ..........................................................................................
Width of Preset Pulse, tp(preset) .......................................................................................

20
25

~~~~h;:t~:;~;~,I::~:~~cl.~.a.~~ ........................................................:: . ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~tp~c~OCk)
Input Hold Time, thold ........................................................................................................

3-106

0

Nom Max
5
5
25
25

5.5
5.25
125
70
10

Unit
V
V
DC
DC
ns
ns
ns
ns

ITT5476, ITT7476
DUALJ-K MASTER-SLAVE FLIP-FLOPS
WITH PRESETAND CLEAR
ELECTRICAL CHARACTERISTICS. TA
Parameter

=

ooe to 70 e (unless otherwise noted)
0

Min

Typ'

Test Conditions

Unit

Max

2

V

2

V in(1 )

Input voltage required to ensure
logical 1 at any input term inal

Vin(O)

I nput voltage required to ensure
logical 0 at any input terminal

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vee = MIN. Ii = -12mA

Voutll)

Logical 1 output voltage

V

Vee = MIN. Iload = -400uA

VoutlO)

Logical 0 output voltage

0.4

V

Vee = MIN. Isink = 16mA

linlO)

Logical 0 level input current at
J or K

-1.6

mA

Vee = MAX. V in = O.4V

linlO)

Logical 0 level input current at
clear. preset. or clock

-3.2

mA

Vee = MAX. V in = 0.4V

linll )

Logical 1 level input current at
JorK

40

uA

Vee

1

mA

Vee = MAX. V in = 5.5V

Logical 1 level input current at
clear. preset. or clock

80

uA

Vee = MAX. V in = 2.4V

1

mA

-57

mA

Vr:r: - MAX. V in - 5.5V
ITT5476
Vee = MAX.

lin(1)

lOS

Short-circuit output current

3.5

2.4

0.22

3

-20
18

ICC

20

Supply current leach flip-flop)

SWITCHING CHARACTERISTICS. Vee = 5V. TA
Parameter
f max
tpdl

Maximum clock frequency

= 25°e. N =

Min

Typ

15

20

Propagation delay time to Ipgical

I

I ITT7476

V·In = 0.

57
40

mA

2.4V

MAX. V in

Vee - MAX

10

Max

Unit

Test Conditions

MHz

eL = 15 pF. RL = 400.0.

16

25

ns

eL = 15 pF. RL = 400.0.

25

40

ns

eL - 15 pF. RL - 400.0.

o level from clear or preset.to
output

tpdO

Propagation delay time to logical
1 level from clear or preset to
output

tpdl

Propagation delay time to logical
1 level from clock to output

10

16

25

ns

eL - 15 pF. RL - 40011.

tpdO

Propagation delay time to logical
o level from clock to output

10

25

40

ns

eL = 15 pF. RL = 400.0.

, All typ i ca I values are at Vee
5V. TA - 25 0 e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating c·onditions

2

for the applicable device type.
3

Not more than one output should be shorted at a time.

3-107

ITT5476, ITT7476
DUAL J-K MASTER-SLAVE FLIP-FLOPS
WITH PRESET AND CLEAR

130

n

TO OTHER
FLIP·FLOP

.,...--+.......-oQ

Qo-.......--4....

1 kn

CLEARo-t::±========~~t===!Jl====E~==========±::±~~PRESET

J

K

2kn

2kn

TO OTHER
FLlp·FLOP

~--~----+-------+-~----~--~----~--~_~~ GND

CLOCK
Note: Component values shown are nominal.

schematic (each flip· flop)

3-108

ITT
-

TYPES ITT5480, ITT7480
GATED FULL ADDERS

SEMICONDUCTORS -~---

GATED FULL ADDERS
DUAL-IN-LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(Top VIEW)

AceD

B2

BI®

BI

B20

@A*
@A2
@AI

Ae

veeG)

@GND

A*

B*0

Vee

AI

enG)

POSITIVE LOGIC: SEE FUNCTION TABLE

POSITIVE LOGIC: SEE FUNCTION TABLE

These single-bit. high-speed. binary full adders with
gated complementary inputs. complementary sum
(rand!) outputs and inverted carry output are designed for medium- and high-speed. multiple-bit.
parallel-add/serial-carry applications. These circuits
(see schematic) utilize diode-transistor logic (DTL)
for the gated inputs. and high-speed. high-fan-out
transistor-transistor logic (TTL) for the sum and
carry outputs and are entirely compatible with both
DTL and TTL logic families. The implementation of
a
single-inversion.
high-speed.
Darlingtonconnected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading
circuits.
absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage. Vee (see Note 4) ........................... 7V
Input voltage (see Note 5) .................................... 5.5V
Operating free-air temperature range:
ITT5480 .......................................... -55°C to 125°C
ITT7480 ...................................................... 0o to 70°C
Storage temperature range ........... -65°C to 150°C
Notes:

@1

BC®

A2

logic
FUNCTION TABLE
(See Notes 1 2 and 3)
Inputs
Outputs

.r

B

A

Cn +l

'f

L

L

H
H
H
L

L

L
H
H
L
L
H
H

L
H
L
H

H

L

L

H
H
L

Cn

L

L
H
H
H
H

L

L

H

H
L

H

L

H

L

L

L

H

H

L

L

L
H

H

H = high level. L = low level
Notes:

4. Voltage values are with respect to network
ground terminal.
5. Input signals must be zero or. positive with
respect to network ground terminal.

3-109

+

+

1. A = AC
A' A 1 • A2.
8 = Be + S' + 81 • B2.
2. When A' is used as an input. A 1 or A2 must
be low. When 8' is used as an input. 81
or 82 must be low.
3. When A1 and A2 or 81 and 82 are used
as inputs. A' or 8'. respectively. must be
open or used to perform dot-AN D logic.

TYPES lTI5480, ITT7480
GATED FULL ADDERS .

RECOMMENDED OPERATING CONDITIONS
ITT5480
MIN
Supply voltage. V CC

NOM

4.5

NOM

5.5

4.75

5

5

MAX
5.25
-400

Cn+l

-200

-200

A* or B*

-120

-120

16

16

~ Qr

Low-level output current.IOL

MIN

-400

~

High·level output current. IOH

or

1TT7480
MAX

~

l:

Cn+l
A* or B*

Operating free-air t~mperature. T A

-55

8

8

4.8

4.8

125

0

70

UNIT
V

IlA

mA
°c

ELECTRICAL CHARACTERISTICS. over recommended operating free-air temperature range
(unless otherwise noted)
PARAMETER
VIH

High-level input voltage

VIL

Low-level input voltage

VOH

High-level
output voltage·

VOL

Low-level
output voltage

E orE

Min

ITT5480
Typ 1
Max

Min

ITT7480
Typ 1
Max

0.8
2.4

3.5

0.8
2.4

Test Conditions 2

V

2

2

Unit

3.5

V
V

VCC= MAX. IOH = -400uA

Cn +l

VIH = 2V

IOH = -200uA

A" orB"

V1L =O.8V

IOH - -.120uA

E or E

0.22

0.22

0.4

0.4

V

Vce = MAX.

IOL= 16mA

Cn +l

VIH = 2V.

IOL - 8rnA

A" orB"

VIL =0.8V

IOL = 4.8rnA .

II

Input current at maximum input
voltage

1

1

'rnA

Vee = MAX. VI = 5.5V

IIH

High-level

15

15

uA

Vee = MAX. VI = 2.4V

rnA

Vee = MAX. VI = 0.4V

rnA

Vce = MAX

rnA

Vee = MAX. See Note 6

input current

A 1·A2 ·B 1·B 2 ·
AC·orBe
-1..1

A" orB"

IlL

" Low-level
input current

t

• Digital Computer Systems
• Data-Handling Systems
• Control Systems
This full adder performs the addition of two 4-bit
binary numbers. The sum (~\ outputs are provided
for each bit and the resultant carry (C 4 ) is obtained
from the fourth bit. Designed for mediumto-high-speed. mUltiple-bit, parallel-add/serial-carry
applications, the circuit utilizes high-speed, highfan-out transistor-transistor logic (TTL) but is compatible with both DTL and TTL families. The implementation of a single-inversion, high-speed,
Darlington-connected serial-carry circuit within
each bit minimizes the necessity for extensive
"look-ahead" and carry-cascading circuits. The
power dissipation level has been maintained considerably below that attainable with equivalent
standard integrated circuits connected to perform
four-bit full-adder functions.
absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply Voltage V CC (See Note 1) ........................... 7V
Input Voltage, Vin (See Notes 1 and 2) .............. 5.5V
Operating Free-Air Temperature Range:
ITT5483 Circuits .......................... -55°C to 125°C
ITT7483 Circuits ................................... 0° C to 70° C
Storage Temperature Range ......... -65°C to 150°C

, Pin assignments for these circuits are the same
for all packages.'
logic

TRUTH TABLE
INPUT

%%
IA AIXIX"- %f- IXIX, IXX
,
,
,
co=o

1. These voltage values are with respect to
network ground terminal.
2. Input signals must be zero or positive with

"3

A_

o

0

0
0

,

3-116

0

0

0

0

0

0

0

,

0

0

0

0

,

0

0

0
0

0

, ,
, , ,
,
,
, ,

0

0

0

0

0

0

0

3. Input conditions at A l' A 2 . B l' B2 , and Co
are used to determine outputs ~1 and I:2'
and the value of the internal carry C2 . The
values at C2 . A 3 , B3 . A 4 , and B4 . are then
used to determine outputs I: 3 . I: 4 . and C4 .

0

0

0

0

,
,
,
, ,
,., ,
0

0

0

0

0

~-

!:4

0

0

-2

c_

::3

, ,
,
,
,

0

0

Note:

WHEN
C2 =1

Cz=O

-2

A3

0

respect to network ground terminal.

C o =1

WHEN

.

0

Notes:

OUTPUT

,
,
,
,
,
,
,
,

0

0

,
, ,
, ,

,
, ,

0

0

0

,

0
0

0

, ,

0

0

0

,

0

0

0

, ,

, ,.

0

0

,

0

0

,
,
, ,
, ,

0

,

0

0

0

0

0

0

0

,
,
,
,
, ,
,
,
,
,
, ,
, ,
, ,
, , ,

0

0

c_

0

0

0
0

0
0

0

0

0

0

ITT5483, ITT7483
4-BIT BINARY FULL ADDERS
recommended operating conditions
Supply Voltage V CC: (See Note 1) ITT5483 Circuits ................................................
ITT7483 Circuits ................................................
Normalized Fan-Out From Outputs:

Min

Nom Max

4.5
4.75

5.5
5.25

5

5

C4 ····················································........................................... ;........................................ .

5

2: 1 .2: 2 ,2: 3 or 2:4 ................................... ,.............................................................................

10

Unit

v
V

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Typ

Min

1

Max

V

V in (1)

Input voltage required to ensure
logical 1 at any input termi~al

Vin(O)

Input voltage required to ensure
logical 0 at any input terminal

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vout (l )

Logical 1 output voltage

Vout(OI

Test Conditions 2

Unit

2

V

2.4

VCC = MIN, Ii = -12mA
Vee ~ MIN,
VIH

c

VIL=04V

IOH = -200 ~A

vee = MIN,

IOL '16mA

0.4

V

Logical 0 level input current at
A 1.A3 , B 1, B3 ,orCO

-6.4

mA

VCC = MAX, V in = 0.4V

Logical 1 level input current at
A 2 • A 4 • B2 • or 8 4

-1.61

mA

Vee = MAX, V in = 0.4V

Logical 1 level input current at
A 1, A 3 , B 1 , B3 , or Co

160

uA

Vec =.MAX, V in = 2.4V

1

rnA

Vec = MAX, V in =5.5V

Logical 1 level input current at
A 2, A 4 , 8 2 , or 8 4

40

uA

Vec = MAX, V in = 2.4V

Logical 0 output voltage

VIH = 2 V,
VIL"·0.4V

lin(O)

linlO)

lin(l )

lin(1 )

lOS

lOS

ICC

1

2

3

IOH = -400 "A

2V,

IOL=8mA

1

mA

Vce = MAX, V in = 5.5V

Short-circuit output current at
E1, E2 , E3 , or E4 ,3

-20

-55

mA

Vec - MAX

-18

-55

mA

ITT5483
1--ITT7483

Short-circuit output current at
C4 3

-20

-70

mA

MAX

-18

~70

mA

ITT5483
ITT7483

78

110

mA

Vec = MAX

78

128

mA

ITT5483
ITT7483

Supply Current

VCC

All typical values are at V CC = 5V, TA = 25°e.
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

3-117

I TT5483 , ITT7483
4-BIT BINA RY FULL ADDERS
SWITCHING CHARACTERISTICS. Vee
Parameter
tpd1

1

From
(Input)
Co

To
(Output)

= 5 V. TA = 25°e (unless otherwise noted N = 10)
Min

Typ

Max

Unit

34

ns

CL = 15 pF. RL = 400

40

ns

CL - 15 pF. RL = 400

38

ns

CL = 15 pF. RL = 400

42

ns

CL = 15 pF. RL = 400

50

ns

CL = 15 pF. RL = 400

60

ns

CL = 15 pF. RL = 400

55

ns

CL = 15 pF. RL = 400

55

ns

CL = 15 pF. RL = 400

35

48

ns

CL = 15 pF. RL = 780

22

32

ns

C L = 15 pF. RL = 780

rl
rl

40

ns

CL = 15pF. RL = 400

rl

35

ns

CL = 15 pF. RL =400

rl

40

ns

CL = 15 pF. RL = 400

35

ns

C L = 15 pF. RL = 400

rl
rl

1

tpdO
tpd1

Co

2

tpdO
tpd1

Co

3

tpdO
tpd1

Co

4

tpdO
tpd1

Co

C4

tpdO
tpd1

A2 or 8 2

2

tpdO
tpd1

A4 or 8 4

4

tpdO
1

Test Conditions

tpd1 is propagation delay time to logical 1 level. tpdO is propagation delay time to logical 0 level.

3-118

rl
rl
rl
rl
rl
rl
rl
rl

ITT5483. ITT7483
4-BIT BINA RY FULL ADDERS

schematic

Note: Component values shown are nominal.
Resistor values are in ohms.

3-119

ITT
----ITT5486, ITT7486
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SEMICONDUCTORS

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE

QUADRUPLE 2-INPUT
EXCLUSIVE-OR GATES

PIN CONFIGURATION

(TOP VIEW)

• Input-Clamping Diodes Simplify System
Design
• Fully Compatible with TTL. DTL. and Other
MSI Circuits
• Typical Propagation Delay Times: 12 ns

description
Each of these monolithic. quadruple 2-input
exclusive-OR gates utilize TTL circuitry to perform
the function Y = AS + AB. When the input states
are complementary. the output goes to a logical 1.

POSITIVE LOGIC:

These circuits are fully compatible for use with other TTL or DTL circuits. Input clamping diodes are
provided to minimize transmission line effects and
thereby simplify system design. Input buffers are
used to lower the fan-in requirement to only one
normalized series 54174 load. A full fan-out to 10
normalized series 54174 loads is available from
each of the outputs in the logical state. A fan-out
of 20 is provided in the logical 1 state to facilitate
connection of unused inputs to used inputs.
Propagation delay is 12 nanoseconds and power
dissipation is 37.5 milliwatts typically for each
exclusive-O R function.

l . A 4& B

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ........................... 7V
Input voltage ........................................................... 5.5V
Operating free-air temperature range:
ITT5486 .......................................... - 55°C to 125° C
ITT7486 ................................................... ooC to 70°C
Storage temperature range ........... -65°C to 150°C

a

Note: 1. These voltage values are with respect to network
ground terminal.

The ITT5486 is characterized for operation over the
full military temperature range of -55°C to 125°C
and the ITT7486 is characterized for operation from
O°C to 70°C.

recommended operating conditions
ITT5486
Supply voltage,

Vee

Min

Nom

4.5

5

ITT7486
Max

Min

Nom

Max

Unit

5.5

4.75

5

5.25

V

High-level output current. IOH

-800

-800

uA

Low-level output current. IOL

16

16

rnA

Operating free-air temperature. TA -55

125

70

°c

3-120

a

ITT5486, ITT7486
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

ELECTRICAL CHARACTERISTICS. over recommended operating free-air temperature range
(unless otherwise noted)

Parameter

Min

ITT5486
Typ'
Max

ITT7486
Typ'
Max

Min

Unit

Test Conditions 2

V IH

High-level input
voltage

V IL

Low-level input
voltage

0.8

0.8

V

-1.5

-1.5

V

Vee = MIN, II = -8 mA

V

Vee = MIN, V IH = 2V,
V IL = 0.8V, 10H = -800 uA

0.4

V

Vee = MIN, V IH = 2V,
V IL = 0.8V, 10L = 16 mA

2

2

V

VI

I nput clamp voltage

V OH

High-level output
voltage

VOL

Low-level output
voltage

II

Input current at
maximum input
voltage

1

1

mA

Vee = MAX. VI = 5.5V

IIH

High-level input
current

40

40

uA

Vee = MAX, VI = 2.4V

IlL

Low-level input
current

-1.6

-1.6

mA

Vee = MAX. VI = O.4V

lOS

Short-circuit output
current 3

-55

mA

Vee = MAX

ICC

Supply current

50

mA

Vee = MAX, See Note 2

2.4

2.4

3.4

0.2

-20

0.4

0.2

-55

30

3.4

-18

43

30

, All typical values are at Vee = 5V. TA = 25°C.
Fo rconditions shown as MI N or MAX, use the appropriate value specified under recommended operating conditions
forthe applicable type.
3 Not more than one output should be shorted at a time.
2

Note:

2. ICC is measured with the inputs grounded and the outputs open.

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e
Parameter'

From
(Input)

tpLH
tpHL

Min

Typ

Max

Unit

Aor B

15

23

ns

Other input low
e L = 15 pF. RL = 400Jl

AorB

11

17

ns

Other mput low
e L = 15pF.

Test Conditions

RL = 400n
tpLH

Aor 8

18

30

ns

Other input high

tpHL

Aor B

13

22

ns

e L = 15 pF, RL = 400Sl.
Other input high
e L = 15 pF. RL = 400Sl.

-

, tPLH = propagation delay time, low-to-hig h-Ievel output.

tpHL - propagation delay time. hlgh-to-Iow-Ievel output

3-121

ITT5490, ITT7490

__ JI[~~ __________________________D_EC_A_D_E__C_O_U_N_T_ER_S
SEMICONDUCTORS

DECADE COUNTERS
DUAL-IN -LINE PACKAGE

MSI TTL HIGH-SPEED DECADE COUNTERS
for applications in

AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

• Digital Computer Systems
• Data-Handling Systems
• Control Systems
description and typical count configurations
These high-speed, monolithic decade counters consist of four dual-rank, master-slave flip-flops internally interconnected to provide a divide-by-two
counter and a divide-by-five counter. Gated direct
reset lines are provided to inhibit count inputs and
return all outputs to zero or to a binary coded
decimal (BCD) count of 9. As the output from flipflop A is not internally connected to the succeeding
stages, the count may be separated in three independent count modes:
1. When used as a binary coded decimal decade
counter, the BO input must be externally connected to the A output. The A input receives
the incoming count. and a count sequence is
obtained in accordance with the BCD count
sequence truth table shown above. In additi.On
to a conventional zero reset. inputs are provided to reset a BCD count for nine's complement
decimal applications.
2. If a symmetrical divide-by-ten count is desired
for frequency synthesizers' or other applications requiring division of a binary count by
a power of ten, the 0 output must beex~
ternally connected to the A input. The input
count is then applied at the BO input and a
divide-by-ten square wave is obtained at output A.
3. For operation as a divide-by-two counter and
a divide-by-five counter, no external intereon"
nections are required. Flip-flop A is used as a
binary element for the divide-by-two function.
The BO input is used to obtain binary divideby-five operation at the B, C, and 0 outputs.

o

A
INPUT

INPUT

Rom

NC

RO(21

NC

VCC

ILG~;::t.;:tL;..:JGND

R9Ul
R9(21

POSITIVE LOGIC:

SEE TRUTH TABLE

In this mode, the two counters operate independently: however, all four flip-flops are reset
simultaneously.
These circuits are completely compatible with Series 54174 TTL and OTL logic families. Average
power dissipation is 160 mW.
absolute maximum ratings (over operating
temperature range unless otherwise. noted)
Supply Voltage V CC (See Note 3) ........................... 7V
InputVoltage V in (See Notes 3 and 4) ............... 5.5V
Operating Free-Air Temperature Range:
ITT5490 Circuits ........................... -55°Cto 125°C
ITT7490 Circuits .................................... ooC to 70°C
Storage Temperature Range ......... -65°C to 150°C
Notes: 3. These voltage values are with respect to
network ground term inaf.
4. Input signals must be zero or positive with
respect to network ground terminal.

ITT5490, ITT7490
DECADE COUNTERS

logic

TRUTH TABLES
RESET COUNT
(See Note 2)

BCD COUNT SEQUENCE
(See Note 1)

~OUNT

OUTPUT
0 C B A

RESET INPUTS

OUTPUT

RO(1)

RO(2)

R9(1)

R9(2)

0

C

B

A

0

0

0

0

0

1

1

0

X

0

0

0

0

1

0

0

0

1

1

1

X

0

0

0

0

0

2

0

0

1

0

X

X

1

1

1

0

0

1

3

0

0

1

i

X

0

X

0

COUNT

4

0

1

0

0

0

X

'0

X

COUNT

5

0

1

0

1

0

X

X

0

COUNT

6

0

1

1

0

-X

-0

0

X

COUNT

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

NC-No Internal Connection
Notes:

1. Output A connected to input'BOfor BCD count.
2. X indicates that either a logic 1 or a
logic 0 may be present,

MIN

recommended operating conditions
. Supply\loltagevcc (See Note 3) ITT5490 Circuits -.......................::: ............... .
ITT7490 Circuits .........................................
Normalized Fan-Out From Each Output (See Note 5) ...................................... .
Width of Input Count Pulse. tp(in) ........................................................................
Width of Reset Pulse. tp(reset) .......................:.......................................................

4.5
4.75

NOM MAX
5
5

50
50

~

V
V
ns
ns

____________ ____

Note: 5. Fan-outfrom output A to inputBD and to 10 additional Series 54174 loads is permitted.

3-123

UNIT

5.5
5.25
10
~

ITT5490, ITT7490
DECADE COUNTERS

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

Vin (1)

Input voltage required to ensure
logical 1 at any input terminal

Vin(O)

Input voltage required to ensure
logical 0 atany input terminal

0.8

V

VI

Input Clamp Voltage

-1.5

V

Vout (1)

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

0.4

V

lin(l )

Logical 1 level input current at

40

J.1A

RO( 1)' RO(2)i R9 ( 1)' or R9 (2)

1

Logical 1 level input current at
input A

80

uA

1

rnA

Logical 1 level input current at
input BO

160

J.1A

1

rnA

Logical 0 level input current at

-1.6

rnA

= Min Ii = -12 rnA
= MIN.
= -400 uA
Vee = MIN.
I sink = 16 rnA
Vee == MAX. Vin = 2.4V
Vee = MAX. V in = 5.5V
Vee = MAX. Vin = 2.4V
Vee = MAX. V in = 5.5V
Vee ~ MAX. V in = 2.4V
Vee = MAX. V in = 5.5V
Vee = MAX. V in = O.4V

lin(l )

lin(l )

lin(O)

2

V

2.4

V

rnA

Vee

Vee
Iload

RO( 1)' RO(2)' R9 ( 1)' or R9 (2)
lin(O)

Logical 0 level input current at
input A

-3.2

rnA

Vee

= MAX. Vin = 0.4V

lin(O)

Logical 0 level input current at
input BO

-6.4

rnA

Vee

= MAX. Vin = O.4V

lOS

Short-circuit output current

-20

-57

rnA

Vce

= MAX,

-18

-57

rnA

Ice

Supply current

3

32

46

rnA

32

53

rnA

IlT5490
IlT7490

Vee

= MAX

IlT5490
IlT7490

, All typical values are atV ee = 5V. TA = 25°e
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the particular circuit type.
3 Not more than one output should be shorted at a time.

2

3-124

ITT5490, ITT7490
DECADE COUNTERS

SWITCHING CHARACTERISTICS. VCC
Parameter
f max

Maximum frequency of input
count pulses

tpd1

Propagation delay time to logical
I level from input count pulse to

= 5V. TA = 25°C. N = 10
Min

Typl

10

18

Max

Unit

Test Conditions 2

MHz

CL = 15 pF .. RL = 400 Q

I
60

100

ns

CL = 15 pF. RL = 400 Q

60

100

ns

CL = 15pF.R L =400Q

output C
Propagation delay time to logical
input count pulse to
output C

tpdO

o level from

"k

~

Ill'

.

2.

•
I

schematic

IESET 9 {
IN'UTS (2)'

I

3.......

Component values shown are nominal.
Resistor values are in ohms.

3-125

ITT
------ITT5491A, ITT7491A
8-BIT SHIFT REGISTERS

SEMICONDUCTORS

Package: Dual In-Line and Flat Pack

8-BIT SHIFT REGISTERS
MSI TTL SHIFT REGISTERS
for applications in
• Digital Computer Systems
• Data-Handling Systems

DUAL-IN C LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

• Control Systems

These monolithic serial-in. serial-out. a-bit shift registers utilize transistor-transistor logic (TTL) circuits
a nd are composed of eight R-S master-slave flipflops. input gating. and a clock driver. Single-rail
data and input control are gated through inputs A
and B and an internal inverter to form the complementary inputs to the first bit of the shift register.
Drive for the internal common clock line is provided
by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock
pulse.
Series 54 devices are characterized for operation
over the full military temperature range of - 55°C
to 125°C; Series 74 devices are characterized for
operation from 0° C to 70° C.

absolute maximum ratings over operating
free-air temperature range (unless otherwise noted)
Supply voltage. V CC (see Note 1) ........................... 7V
Input voltage (see Note 2) .................................... 5.5V
Operating free-air temperature range:
ITT5491A ....................................... -55°Cto 125°C
ITT7491A ................................................ ooC to 70°C
Storage temperature range ........... -65°C to 150°C

Notes:

1. These voltage values are with respect to
network ground terminal.
2. Input signals must be zero or positive with
respect to network ground terminal.

3-126

FLAT PACKAGE
PIN CONFIGURATION
TOP VIEW

NC
NC
NC

Vee
NC

POSITIVE LOGIC: SEE FUNCTION TABLE
NC - NO INTERNAL CONNECTION

ITT5491A, ITT7491A
8-BIT SHIFT REGISTERS

Schematics of inputs and outputs
FUNCTION TABLE

TYPICAL OF BOTH OUTPUTS

EQUIVALENT OF ALL INPUTS

Inputs

Outputs

AT tn

AT t n + 8

A

B

Q

H

H

H

L

L

X

H

X

L

L
L

=

Vee

Vee--_---

QH
INPUT
OUTPUT

H

=

=

H
high.l
low. X
irrelevant
tn = Reference bit time. clock low
t n +8 = Bit time after 8 low-to-high
clock transitions·.

recommended operating conditions

Min

ITT5491A
Nom
Milx

Min

ITT7491A
Nom Max

Unit

5,25

V

High level output current. IOH

-400

-400

uA

Low level output cu rrent. 10 L

16

16

mA

Supply voltage.

Vee

4.5

5

5.5

4.75

5

Width of clock input pulse. tw

25

25

ns

Setup time. tsetup (see Figure 1)

25

25

ns

0

0

ns

Hold time. t hold (see Figure 1)

-55

Operating free-air temperature. TA

3-127
I

125

0

70

°e

ITT5491 A, ITT7491 A
8-BIT SHIFT REGISTERS
ELECTAICAL CHARACTERISTICS. over recommended operating free-air temperature range
(unless otherwise noted)

Parameter
V IH

High-level input
voltage

V IL

Low-level input
voltage

V1

Input Clamp Voltage

V OH

High-level output
voltage

Min

ITT5491A
Nom
Max

2

204

ITT7491A
'Nom
Max

Min
2

Unit
V

0.8

0.8

V

-1.5

-1.5

V

204

3.5

Test Conditions 2

Vee = MIN. Ii = -12mA

V

Vee = MIN. V IH =2V.
V IL = 0.8V. 10H = -400uA

0.4

V

Vee = MIN. V IH = 2V.
V IL = 0.8V.I OL = 16mA

3.5

\

VOL

Low-level output
voltage

II

Input current at
maximum input
voltage

1

1

mA

Vee

= MAX. VI = 5.5V

IIH

High-level input
current

40

40

uA

Vee

= MAX. VI = 2.4V

IlL

Low-level input
current

-1.6

-1.6

mA

Vee = MAX. VI = OAV

lOS

Short-circuit output
current 3

-57

mA

Vee

= MAX

ICC

Supply current

58

mA

Vee

= MAX. See,Note 4

0.2

35

SWITCHING CHARACTERISTICS. Vee

t max

Maximum clock frequency

0.2

-57

-20

Parameter

004

-18

50

35

= 5V. TA = 25°e. N = 10
Min

Typ

Max

Unit

10

18

MHz

eL

eL = 15pF.R L =400n

eL

tpLH

Propagation delay time.
low-to-high-Ievel output

24

40

ns

tpHL

Propagation delay time.
high-to-Iow-Ievel output

27

40

ns

Test Conditions

= 15 pF. RL = 400 n

= 15 pF. RL = 400n

, Aillypical values are atV ee = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions.
3 Not more than one output should be shorted at a time.
• ICC is measured after the eighth clock pulse with the output open and A and B inputs grounded.,

2

, 3-128

ITT
-----

ITT5492, ITT7492
DIVIDE-8Y-TWELVE COUNTERS

SEMICONDUCTORS

DIVIDE-BY-TWELVE COUNTERS
MSI TTL HIGH-SPEED COUNTERS
for applications in
eDigital Computer Systems
e Data- Handling Systems
-Control Systems
DUAL - IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

logic
TRUTH TABLE
(See Notes 1.2. and 3)
COUNT

OUTPUT

0

C B

A

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1 0

0

5

0,

1 0

1

6

1

0

0

0

7

1 0

0

1

8

1 0

1

0

9

1

0

1

1

10

1 1

0

0

11

1

1 0

1

POSITIVE LOGIC: SEE TRUTH TABLE

Notes:

NC-No Internal Connection

1.

When used as a divide-by-twelve counter,
output A must be externally connected to
input BC. The input count pulses are applied to input A. Simultaneous divisions
of 2. 6, and 12 are performed at the A.
C, and 0 outputs as shown in the truth
table above.

2.

When used as a divide-by-six counter, the
input count pulses are applied to input
BC. Simultaneously, frequency divisions
of 3 and 6 are available at the C and 0
outputs. Independent use of flip-flop A is
available if the reset' function coincides
with reset of the divide-'by-six counter.

1. Output A connected to input B.
2. To reset all outputs to logical 0 both. RO( 1)
and RO(2) inputs must be at logical 1.
3. Either (or both) reset inputs RO( 1) and RO(2)
must be at a logical 0 to count.

These high-speed, monolithic ¢bit binary counters
consist of four master slave flip-flops which are internally interconnected to provide a divide-by-two
counter and a divide-by-six counter. A gated direct
reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flop
outputs to a logical O. As the output from flip-flop
A is not internally connected to the succeeding flipflops, the counter may be operated in two independent modes:

These circuits are completely compatible with Series 54174 TTL and DTL logic families. Average
power dissipation is 155 mW.

3-129

ITT5492, ITT7492
DIVIDE-BY-TWELVE COUNTERS
absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply Voltage VCC (See Note 4) ............... " .......... 7V
Input Voltage Vin (See Notes 4 and 5) ., ............. 5.5V
Operating Free-Air Temperatu re Range:
ITT5492 Circuits ........................... ~55°C to 125"C
ITT7492 Circuits .................................... ooC to 10°C
Storage Temperature Range ......... -65°C to 150°C
Notes:

4. These voltage values a re with respect to
network ground terminal.
5. Input signals must be zero or positive with
respect to network ground terminal.

recommended operating conditions

Min

Supply Voltage V CC (See Note 4): JTT5492 Circuits ... ;................................. ..
ITT7492 Circuits ...................................... .
Normalized Fan- Out from Each Output (See Note 6) ..................................... ..
Width of Input Count Pulse, tp(in) .......................................................................
Width of Reset Pulse. tp(reset) ........ ;....................................................................

4.5
4.75

Note:

Nom Max
5
5

5.5
5.25
10

Unit
V
V
ns
ns

50
50

6. Fan-out from output A to input BC and to 10 additional Series 54174 loads is permitted.

ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Test Conditions 2

Unit

V in (l )

Input voltage required to ensure
logical 1 at any input terminal

2

V

Vin(O)

Input voltage required to ensure·
logical 0 at any input terminal

O.S

V

Vl

Input Clamp Voltage

~1.5

V

Vce

= Min Ii = -12 mA

V out (l )

Logical 1 output voltage

V

VCC

== MIN,

V

= . . . 400 uA
YCj::= ~,IN, Isink '= . 16 ITlA

2.4

lioad

Vout(O)

Logical 0 output voltage

lin(l )

Logical 1 level input current at
RO( 1) or RO(2) inputs

lin(1)

lin(1)

.•. • O. ~
.co,.

4b

'"

....

1

..

8b

Logical 1 level input current at
input A
Logical 1 level input current at
input BC

..•..
'

1M

..

;;,.

uA

Yec:M~X, Yin ==2.4V

mA

•.Vet"" ~AX'Vil) =5.5V

..
.

uA

. VCO.",MA>t Vin ,=2.4v

rnA

Y<::G ",MAX. ViI) = 5.5'1

u,A

.Vec,:,,¥~: Vin = 2.4V

rnA

.V

ee ,,= MAX. Vin == 5.5V

lin(O)

Logical 0 level input current at
RO(1 iorRO(2) inputs

.... '.6

rnA·

Vee == MAX. Vir'! == O.4V

lin(O)

Logical 0 level inpu!current at
input A

~3.2

ITlA

Vce'= MAX, Vin == 0.4V

3-130

ITT5492, ITT7492
DIVIDE-BY-TWELVE COUNTERS
ELECTR ICAl CHARACTE RISTICS over recommended operating free-air temperature range
(unless otherwise noted) (continued)
Parameter

Min

lin(O)

Logical 0 level input current at
input BC

lOS

Short-circuit output current

ICC

3

Typ'

Max

Unit

Test Conditions 2

-604

mA

VCC = MAX, V in = OAV

-20

-57

mA

VCC = M~,

-18

-57

mA

V out = 0

ITT7492

Supply current

ITT5492

31

44

mA

VCC = MAX

ITT5492

31

51

mA

V in = 4.5V

ITT7492

SWITCHING CHARACTERISTICS. Vee = 5V, TA = 25°e, N = 10
Parameter

Min

Typ

10

18

f max

Maximum frequency of input
count pulses

tpdl

Propagation delay time to logical
1 level from input count pulse to
output 0

60

Propagation delay time to logical

60

tpdO

o level from input count pulse to

Max

Unit

Test Conditions

MHz

CL = 15pF, RL = 400n

100

ns

CL = 15pF,R L =40011.

100

ns

CL = 15pF, RL

= 400n

output 0
1

2

3

All typical values are atV cc = 5V, TA = 25°C.
For conditions shown as M IN or MAX, use the appropriate value specified under recommended operating conditions
forthe particular circuit type.
Not more than one output should be shorted at a time.

Schematic

13.
1k

4k

3-131

_.ITT ______________

ITT_5_4_9_3,_I_TT_74_9_3
4-BIT BINARY
COUNTERS

SEMICONDUCTORS

4-BIT BINARY COUNTERS
MSI TTL HIGH-SPEED RIPPLE-THROUGH COUNTERS
for applications in
• Digital Computer Systems

DUAL-IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

• Data-Handling Systems
• Control Systems
These high-speed. monolithic 4-bit binary counters
consist of four master-slave flip-flops which are internally interconnected to provide a divide-by-two
counter and a divide-by-eight counter. A gated direct reset line is provided which inhibits the count
inputs and simultaneously returns the four flip-flop
outputs to a logical O. As the output from flip-flop
A is not internally connected to the succeeding flipflops the counter may be operated in two independent modes:
1. When used as a 4-bit ripple-through
counter. output A must be externally connected to input B. The input count pulses
are applied to input A. Simultanedus
divisions of 2. 4. 8. and 16 are performed
at the A. B. C. and D outputs as shown in
the truth table above.
2. When used as a 3-bit ripple-through
counter. the input count pulses are applied
to input B. Simultaneous frequency
divisions of 2. 4. and 8 are available at the
B. C. and D outputs. Independent use of
flip-flop A is available if the reset function
coincides with reset of the 3 -bit ripplethrough counter.
These circuits are completely compatible with Series 54/74 lIT and DTL logic families. Average
power dissipation is 40 mW per flip-flop (160 mW
total).

INPUT

B

RoUl
RO(2)

vcc
NC

POSITIVE LOGIC: SEE TRUTH TABLE

NC-No Internal Connection
absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply Voltage VCC (See Note.4) ........................... 7V
Input Voltage. V in (See Notes 4 and 5) .............. 5.5V
Operating Free-Air Temperature Range:
ITT5493 Circuits ............................ -55°C to 125°C
ITT7493 Circuits ..................................... O°C to 70°C
Storage Temperature Range ......... -65°C to 150°C
Notes: 4. These voltage values are with respect to
network ground terminal.
5. Input signals must be zero or positive with
respectto network ground terminal.

recommended operating conditions

Min

Supply Voltage VCC (See Note 4): ITT5493 Circuits ......................... :... :.................... .
ITT7493 Circuits ...................................................
Normalized Fan-Out From Each Output (See Note 6) ....................................................
Width of Input Count Pulse. tp(in) ......................................................................................
Width of Reset Pulse. tp(reset) ..........................................................................................
Note 6.

4.5
4.75

Nom Max
5
5

50
50

Fan-out from output A to input B and to 10 additional Series 5417 4 loads is permitted.

3-132

5.5
5.25
10

Unit
V
V
ns
ns

ITT5493, ITT7493
4-BIT BINARY COUNTERS
TRUTH TABLE
(See Notes 1. 2. and 3)
OUTPUT
COUNT

0

C

B

A

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1

0

0

5

0

1

0

1

6

0

1

1

0

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

I

Notes:

12

1

1

0

0

13

1

1

0

1

14

1

1

1

0

15

1

1

1

1

1

•
I

I

Qutput A connected to input B

2. To reset all outputs to logical 0 both RO(l)
and RO(2) inputs must be at logical 1.
3. Either (or both) reset inputs ROO) and RO(2)

must be a logical 0 to count.

GND

AOUTPUT

B INPUT

B OUTPUT

COUTPUT

DOUlPUT

130
1•

••
Vee

A INPUT

til

RESET 11 {
INPUTS
(2)

Component values shown are nominal.

3-133

ITT5493, ITT7493
4-BIT BINARY COUNTERS
ELECTR ICAl CHARACTER ISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ1,

Max

Unit

Test Conditions 2

V in (1)

Inputvoltage required to ensure
logical 1 at any input term inal

Vin(O)

Input voltage required to ensure
logical 0 at any input terminal

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vee = MIN. Ii = -12mA

Vout (1)

Logical 1 output voltage

V

Vee = MIN. Iload =-400uA

Vout(OI

Logical 0 output voltage

0.4

V

Vee = MIN.l sink = 16mA

lin(1)

Logical .1 level input current at
ROn) or RO(2) inputs

40

uA

Vee = MAX. V in = 204V

1

mA

Vee = MAX. V in = 5.5V

Logical 1 level input current at
A or B inputs

80

uA

Vee = MAX. V in = 204V

1

mA

Vee = MAX. V in = 5.5V

'in(O)

LogicalO level input current at
RO(1 ) or. Rom inputs

-1.6

mA

Vee = MAX. V in = 0.4V

lin(OI

Logical 0 level input current at
A or B inputs

-3.2

mA

Vee = MAX. V in = Oo4V

lOS

Short-circuit output cUHent 3

-20

-57

mA

-18

-57

mA

Vee = MAX.
V out = 0

ITT5493
ITT7493

32

46

mA

32

53

mA

Vee = MAX.
V in = 4.5V

ITT5493
ITT7493

lili( 1 )

SWITCHING CHARACTERISTICS. Vee
Parameter
f max

Maximum frequency of input
count pulses

tpd1
,

....

V

204

Supply current

ICC

tpdO

2

= 5V. TA = 25°e. N = 10
Min

T.yp

10

18

Max

Unit

Test Conditions

MHz

eL = 15pF.R L =400n

Propagation delay time to logical
:·1 level froin input count pulse to
output 0

75

135

ns.

eL = 15pF.R L =400.0

Propagation delay time to logical
o levelfrcim input count pulse to
output 0

75

135

ns

eL = 15 pF. RL = 400n

'.

1 All tYpicalvaluesare at Vee = 5V. TA == 25°C.
ForconditioriS shoyvn as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable circuit type.
3 Not mOre than one output should be shorted at a time.
2

3-134

ITT
-

ITT5494, ITT7494
4-BIT SHIFT REGISTERS

SEMICONDUCTORS -~---

4-BIT SHIFT REGISTERS
TTL MSI PARALLEL-IN SERIAL-OUT REGISTERS
for application as
eDual-Source. Parallel-To-Serial Converter
-Serial-In Serial-Out Register
This monolithic shift register. utilizing transistortransistor logic (TTL) circuits in the familiar Series
74 configuration. is composed of four R-S masterslave flip-flops. four AND-OR-INVERT gates. and
four inverter-drivers. Internal interconnections of
these functions provide a versatile register which
performs right-shift operations as a serial-in. serialout register or as a dual-source. parallel-to-serial
converter. A number of these registers may be connected in series to form an n-bit register.

DUAL-IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
CTOP VIEW)

r

iA

IB
PRESETS

l

lC

All flip-flops are simultaneously set· to the logical
a state by applying a logical 1 voltage to the clear
input. This condition may be applied independent
of the state of the clock input. but not independent
of state of the preset input. Preset input is independent of the clock and clear states.

10

vcc

This register is completely compatible for use with·
TTL and DTL logic circuits and when used with oth·
er TTL circuits. noise margins are typically one volt.·
Typical average power dissipation is 175 milliwatts.
and propagation delay times from clock to output
are typically 25 nanoseconds.

GNO
PR

20
SEA.
IN

The flip-flops are simultaneously set to the logical
1 state from either of two preset input sources. Preset inputs 1 A through 1D are activated during the
time that a positive pulse is applied to preset 1 if
preset 2 is at a logical a level. When the logic levels
at preset 1 and preset 2 are reversed. preset inputs
2A through 2D are active.
Transfer of information to the outputs occurs when
the clock input goes from a logical a to a logical
1. Since the flip-flops are R-S master-slave circuits.
the proper information must appear at the R-S inputs of each flip-flop prior to the rising edge of the
clock input waveform. The serial input provides this
information for the first flip-flop. The outputs of the
subsequent flip-flops provide information for the. remaining R-S inputs. The clear input. preset 1. and
preset 2 must be at a logical a when clocRing occurs.

:3

POSITiVE LOGIC: HIGH INPUT TO CLEAR SETS QA,
QB, Qc AND Qo TO LOGICAL O.

IplN ASSIGNMENTS FOR THESE CIRCUITS ARE THE
SAME FOR ALL PACKAGES.

absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply VoltageVcc (See Note 1) ... ,....................... 7V
Input Voltage V in (See Notes 1 and 2) ............... 5.5V
Operating Free-Air Temperature Range:
ITT5494 Circuits ............................ - 55°C to 125°C
ITT7494 Circuits ..................................... aoc to 7aoC
Storage Temperature Range ......... - 65°C to 15aoC
Notes:

3-135

1. The voltage values are with respect to
network ground terminal.
2. Input signals must be zero or positive with
respect to network ground terminal.

ITT5494, ITT7494
4-81T SHIFTREGISTERS
schematic

Note: Component values shown are nominal.

recommended operating conditions

Min

Typ

Max

Unit

Supply Voltage VCC (See Note 1): ITT5494 Circuits
ITT7494 Circuits ...................................................... .

4.5
4.75

5
5

5.5
5.25

V
V

Normalized Fan-Out From Output ......................................................................................

10

Width of Clock Pulse, tp(clock) ..............................................................................................
Width of Clear Pulse, tp(clear) .................................. ............................................................

35
30

Width of Preset Pulse, tp(preset) ...........................................................................................
Serial Input Setup Time: tsetup(l) ............... .........................................................................
tsetup(O) ................................................................................
Serial Input Hold Time, t hold ......................................................................................

30
35
25
0

ns
ns
ns
ns
ns

Note: 1. These voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

2

Unit

V in (1)

Input voltage required to ensure
logical 1 at any input terminal

Vin(O)

Input voltage required to ensure
logical 0 at any input terminal

0.8

V

y,

Input Clamp Voltage

-1.5

V

Test Conditions 2

V

3-136

VCC

= MIN, Ii = -12mA

ITI5494, ITT7494
4-BIT SHIFT REGISTERS
ELECTRICAL CHARACTERISTICS(over recommended operating free-air temperature range
unless otherwise noted)(continued)
'Parameter

Min

Typ'

V out(1)

Logical 1 output voltage

2.4

3.5

Vout(O)

Logical 0 output voltage

lin(l)

Logical 1 level input current at
any input except preset 1 and
preset 2
Logical 1 level input current at
preset 1 and preset 2

lin(l)

0.22

Max

Unit

Test Conditions

V

Vee = MIN. Iload = -400uA

V

Vee = MIN, Isink = 16mA

40

uA

Vee = MAX, Vin = 204V

1

mA

Vee = MAX, Vin = 5.5V

160

uA

Vee = MAX, Vin = 2.4V

1

mA

Vee = MAX, Vin = 5.5V

004

lin(O)

Logical 0 level input current at
any input except preset 1 and
preset 2

-1.6

mA

Vee = MAX, Vin = O.4V

lin(O)

Logical 0 level input current at
preset 1 and preset 2

-6.4

mA

Vee = MAX, Vin = Oo4V

lOS

Short-circuit input current 3

-20

-57

mA

Vee = MAX,

ITI5494

-18

-57

mA

Vout = 0

ITI7494

35

50

mA

Vee = MAX

ITI5494

35

58

mA

lee

Supply current

SWITCHING CHARACTERISTICS. Vee
Parameter

= 5V, TA = 25°e, N = 10
Min

Typ

f max '

Maximum clock frequency

tpdl

Propagation delay time to logical
1 level from clock to output

25

Propagation delay time to logical

25

tpdO

tpdl

tpdO

ITI7494

Max

Unit

Test Conditions

MHz

eL = 15pF, RL =400n

40

ns

eL = 15 pF, RL = 400fi

40

ns

eL = 15 pF, RL = 400fi

Propagation delay time to logical
1 level from preset to output

35

ns

eL= 15pF,R L =400n

Propagation delay time to logical

40

ns

eL = 15pF, RL = 400U

o level from clock to output

10

o level from clear to output

, All typical values are at Vee = 5 V, TA = 25°C.
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
for the particular circuit type.
3 Not more than one output should be shorted at a time.
2

3-137

tIJ
I

ITT- - - - _.

ITT5495A, ITT7495A

.

4-BIT RIGHT-SHIFT LEFT-SHIFTREGISTERS

SEMICONDUCTORS

4-BIT RIGHT-SHIFT LEFT-SHIFT
REGISTERS
This monolithic shift register. utilizing transistortransistor-logic (TTL) circuits in the familiar Series
54174 configuration. is composed of four R-S
master-slave flip-flops. four AND-OR-INVERT
gates. one AN D-O R gate. and six inverters-drivers.
Internal interconnections of these functions provide
a versatile register which will perform right-shift or
left-shift operations dependent upon the logical input level to the mode control. A number of these
registers may be connected in series to form an
n-bit right-shift or left-shift reg ister. This register
can also be used as a parallel-in. parallel-out storage register with gate (mode) control.

DUAL-IN - LINE pACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

SERIAL
INPUT

When a logical 0 level is applied to the mode control input. the number-1 AND gates are enabled
and the number-2 AND gates are inhibited. In this
mode the output of each flip-flop is coupled to the
R-S inputs of the succeeding flip-flop and right-shift
operation is performed by clocking at the clock 1
input. In this mode. serial data is entered at the
serial input. Clock 2 and parallel inputs A through
Dare inhibited by the number-2 AND gates.
When a logical 1 level is applied to the mode control input. the number-1 AND gates are inhibited
(decoupling the outputs from the succeeding R-S
inputs to prevent right-shift) and the number-2
AN D gates are enabled to allow entry of data
through parallel inputs A through D and clock 2.
This mode permits parallel loading of the register.
or with external interconnection. shift-left operation. In this mode. shift-left can be accomplished
by connecting the output of each flip-flop to the
parallel input of the previous flip-flop (QD to input
C. and etc.). and serial data is entered at input D.
Clocking for the. shift register is accomplished
through the AND-OR gate E which permits separate clock sources. to be used for the shift-right and
shift-left modes. If both modes can be clocked from
the same source. the clock input may be applied
commonly to clock 1 and clock 2. Information must
be present at the R-S inputs of the master-slave
flip-flops prior to clocking. Transfer of information
to the output pins occurs when the clock input goes
from a logical 1 to a logical o.

VCC

MODE
CONTROL

CLOCK I
R-SHIFT

GNO

CLOCK 2
L-SHIFT

POSITIVE LOGIC:
MODE CONTROL =0 FOR RIGHT SHIFT
MODE CONTROL = I FOR LEFT SHIFT -OR PARAlleL LOAD

This shift register is completely compatible with Series 54/74 TTL and DTL logic families. Average
power dissipation is typically 195 milliwatts. The
ITT5495A and ITT7495A are unilaterally interchangeable with and replace ITT5495 and ITT7495. respectively. but offer diode-clamped inputs.
improved speed. and reduced power dissipation.

absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply Voltage V CC (See Note 1) ........................... 7V
Input Voltage Vin {See Notes 1 and 2) ............... 5.5V
Operating Free Air Temperature Range:
ITT5495A Circuits ........................ - 55°C to 125°C
ITT7495A Circuits ................................. ooC to 70°C
Storage Temperature Range ......... -65°C to 150°C

3-138

ITT5495A, ITT7495A
4-81T RIGHT-SHIFT !-EFT~SHIFT REGISTERS
schematic

OUTPUTQB

OUTPUTQA

OUTPUTQC

OUTPUTQO

I

I
I
I

I

•
I

Notes:

1. Register values are in ohms.
2. Component values shown are nominal.

recommended operating conditions

Min

Nom

Max

Unit

Supply VoltageV cc (See Note 1): ITT5495A Circuits .......................;.......................,.... .
ITT7495A Circuits ................................................... ..
Normalized Fan-Out From Each Output: High logic level ............................................... ..
Low logic level ..................................................
Width of Clock Pulse tp(clock) (See Figure 9): ITT5495A Circuits .................. :............ ..
ITT7495A Circuits .................................
Setup Time Required at Serial: A. B. C. or 0 inputs t setup

4.5
4.75

5
5

5.5
5.25
20
10

V
V

20
15

10
10

ns
ns

10

ns

0

ns

15

ns

15

ns

.5

ns

5.

ns

Hold Time Required at Serial. A. B. C. or 0 inputsthold
Logical 0 Level Setup Time Required at Mode Control
(With Respect to Clock 1 input) .............................................................
Logical 1 Level Setup Time Required at Mod\! Control
(With Respect to Clock 2 input) ......................................................:.... ..
Logical 0 Level Setup Time Required at Mode Control
(With Respect to Clock 2 input) .......................................................,.... .
Logical 1 Level Setup Time Required at Mode Control
(With Respect to Clock 1 input) .........................................;:................ ..
Notes:

1. Voltage values are with respect to network ground terminal.·
2. Input voltages must be zero or positive with, respect to network ground terminal.

3-139

ITT5495A. ITT7495A
4-811 RIGHT-SHIFT !-EFT-SHIFT REGISTERS

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Test Conditions 2

Vin (l)

Input voltage required to ensure
logical 1 at any input terminal

Vin(O)

I nput voltage required to ensure
logical 0 at any input terminal

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vee = Min Ii = -12mA

V out(l)

Logical' 1 output voltage

V

Vee = MIN. Iload =-800uA

Vout(O)

Logical 0 output voltage

0.4

V

Vee = MIN. Isink = 16mA

lin(O)

Logical 0 level input current at
any input except mode control

-1.6

mA

Vee = MAX. Vin = 0.4V

lin(O)

Logical 0 level input current at
mode control

' -3.2

mA

Vee = MAX. Vin = 0.4V

lin(l )

Logical 1 level input current at:
any input except mode control

40

ua

Vee = MAX,Vin = 2.4V

1

mA

Vee = MAX. Vin = 5.5V

Logical 1 level input ,current at
mode control

80

uA

Vee = MAX. Vin = 2.4V

1

mA

Vee = MAX. Vin = 5.5V

lin(1)

2

Unit
V

2.4

~ ~;.

lOS

Short-circ4(t output current 3

-18

-57

mA

Vee = MAX

ICC

Supply current

39

63

mA

Vee = MAX

SWITCHING CHARACTERISTICS. Vee
Parameter

= 5V.TA = 25°e. N = 10
Min

Typ

25

36

f max

Maximum shift frequency

tpdl

Propagation delay time to logical
1 level from clock 1 or clock 2
to outputs

18

Propagation delay time to logical

21

tpdO

Max

Unit

Test Conditions

MHz

eL = 15 pF. RL = 4000

27

ns

eL=15pF.R L =400n

32

ns

eL = 15 pF. RL = 4000

o level frol1l'Clock 1 or clock 2
to outputs,,:,

, All typical va lues are at Vee = 5V. TA = 25° e.
,
,:
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
,
for the particular circuit t y p e . '
3 Not more than one output should be shorted at a time.
2

3-140

-

·ITT
SEMICONDUCTORS

ITT5496, ITT7496
5-BIT SHIFT REGISTERS

-----

5-BIT SHIFT REGISTERS
TTL MSI MULTIFUNCTION SHIFT REGISTERS
·DUAL-IN-LiNE PACKAGE
PIN CONFIGURATION
(TOP VIEW)-

for application as
• N-Bit Serial-To-Parallel Converter
• N-Bit Parallel-To-Serial Converter
• N-Bit ,~torage. Register

CLOCK

A

PRESETS B

Lc

All flip-flops are simultaneously set to the logical
o state by applying a logical 0 voltage to the clear
input. This condition may be applied independent
of the state of the clock input.
The flip-flops may be independently set to the
logical 1 state by applying a logical 1 to both the
preset input of the specific flip-flop and the common preset input. The Rreset-enable input is provided to allow flexibility of either setting each flip-flop
independently or setting two or more flip-flops simultaneously. Preset is also independent of the
state of the clock input or clear input.
Transfer of information to the output pins occurs
when the clock input goes from a logical 0 to a
logical 1. Since the flip-flops are R-S master-slave
circuits. the proper information must appear at the
R-S inputs of each flip-flop prior to the rising edge
of the clock input voltage waveform. The serial input provides this information to the first flip-flop.
while the outputs of the subsequent flip-flops provide'information for the remaining R-S inputs. The
clear input must be at a logical 1 and the preset
input must be at a logical 0 when clocking occurs.

CLEAR

r

This shift register consists of five R-S master-slave
flip-flops c.onnected to perform parallel-to-serial or
serial-to-parallel conversion of binary dilta. Since
both inputs and outputs to all flip-flops are accessible. parallel-in/parallel-out or serial-inlserial-out operation may be performed.

vcc

GNO

('0

01

PRESETS
ENABLE

lE

OUTPUTS

EJ

PRESET

POSITIVE LOGIC:

lii"
LOW INPUT AT CLEAR SETS

ALL OUTPUTS TO LOGICAL O.

absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply Voltage VCC (See Note 1) ........................... 7V
Input Voltage Vin (See Notes 1 and 2) ............... 5.5V
Operating Free-Air Temperature Range:
ITT5496 Circuits ........................... -55°C to 125°C
ITT7496 Circuits .................................... ooC to 70°C
. Storage Temperature Range .. ,...... -65°C to 150°C

This shift register is completely compatible with Series 54/74 TTL and DTL logic families. Typically.
average power dissipation is 240 milliwatts. and
prOpagation i:lel~y time is 25 nanoseconds.

3-141

Notes: 1. These. voltage values are with respect to
network ground terminal.
2. Input signals must be zero!or positive with respect to network ground terminal.

ITT5496, ITT7496
5-BIT SHIFT REGISTERS
schematic
OUTPUT A

OU:rPUTC

OUTPUTB

OUTPUTE

OUTPUTD

.:.:,
GND

I

I

SERIA~

INPUT

PRESET' PRESET A
ENABLE

CLOCK

n

PRESET E

PRESET 0

PRESET B

(;omponant valulIS are nominal.

.recommended· operating conditions

MIN

S\lpply Voltage VCC (See Note 1): ITT5496 Circuits .................................. .
ITT7496 Circuits .................................. .
Normalized Fan Out from Output ..................................................................... ..
Width of Clock Pulse. tp(clock) ...................................................,...................... .
Width of Clear Pulse. t(clear) ...............................................................................
Width of Preset Pulse. tp(preset) ........................................................................
Serial Input Setup Time. tsetup ..........................................................................
Serial Input Hold Time. thold ..............................................................................

4.5
4.75

TYP MAX UNIT
5
5

5.5
5.25
10

35
30
30
30
0

V
V
ns
ns
ns
ns
ns

NOTE1: This voltage.value is with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
Vin (1 )

Logical 1 input voltage

Min

Typ'

Max

2

Test Conditions 2

V

Vin(O)

Logical 0 input voltage

0.8

V1

Input Clamp Voltage

-:--1.5

Vout (1 )

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

2.4

Unit

3.5

V

VCC = Min Ii = -12 mA

V

VCC = MIN

V

VCC = MIN.

Iload = -400 uA
0.22

0.4

Isink = 16 mA

3~142

ITf5496,ITf7496
5-81T SHIFT REGISTERS
•

j

. '.:'

ELECTRICA!. ~HARACTERISTICS over rllcommended operating free-air temperature range
(unless QthEln.vis~ nQtlld) (~C)ntifl~e~)
....."
,;
Pa~mlt~~r
"

:"-'.:..;

'l in (1)

. '.- ":'

:.."

","

.;

;<",

Max

Typ'

l\IIin

... :: .....
Logical 1 leilel input current
at !!'1V inpu~ ~1Ic.;~p~ ,
"'~'

;

Test Conditions z

Unit

','

preset-l1na~le

~9giC~lrl~;;~ii"p.iit 9Yr?~~1 '

40

uA

Vee

i

mA

Vee

200

uA

Vee

i

mA

= MAX. Vin = 2.4V
= MAX. Vin = 5.5V

lin(O)

Logical 0 Ii!velinput"current
at any input exci;lpt
preset-enable

-1.6

mA

= MAX. Vin = 2.4V
Vee = MAX. Vin = 5.5V
Vee = MAX. Vin = 0.4V

linlO)

Logical 0 level input current
at preset-enable

-8

mA

Vee

lOS

Short-circuit output current 3

-20

-57

mA

-18

-57

mA

= MAX.
=0
Vee = MAX

lin(l)

at pre~t-enable

lee

"

Supply current

48

68

mA

48

79

mA'

= MAX. Vin =

0.4V

Vee

ITT5496

V out

ITT7496
ITT5496
ITT7496

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N = 10
Parameter

1

2
3

Min

Typ

Max

Unit

Test Conditions

= 15pF. RL = 4000
, eL = 15pF. RL = 400.n

f max

Maximum clock frequency

tpdl

Propagation delay time to
logical 1 level from clock to
output

25

40

ns

tpdO

Propagation delay time to
logical 0 level from clock to
output

25

40

ns

eL

= 15pF. RL = 4000

tpdl

Propagation delay time to
logical 1 level from preset or
preset-enable to output

25

35

ns

eL

= 15pF. RL = 4000;

tpdO

Propagation delay time to
logical 0 level froin clear to
output

55

ns

eL

= 15pF. RL = 4000

MHz

10

eL

,H;

For conditions ~hown as MIN or MAX. use the appropriate value specified'under recommended ope,r,ating conditions
for the particular circuit type.
.
All typical values are at Vee = 5V. TA = 25°e,
Not more than one output should be shorted  1.2
-50

-25

25

50

75

100

125

~

t:-...

;::

~

.0

~

Vee· ~ v
~

20

Rr

10

Ie

·80 pF
-Internal

'10
~X

r---T74121--.

o
-75

-60

+-

!--CL • '00
80

t-CL

·50.

.F
F

100
-25
0
25
50
~
TA-Fr,eoA.l, TemPirMurl- C

30

I-

RT • Internal

o

-50 -25
0
26
60
76
TA-F,..Alr TemperltUre-°C

VI

10ms

1m.

/"

~

1Jtf'

./

V'
~
.0.\ ~~

c.,;.
100~s

.../V

~

./

../V-

.oll\ ~~

I-;C~

I

.../

V

~

-"
.Jf"

".. V

(j$l9~

~

.\

.;,-

,."
lp I

V'
~

r;P9~

C~

lOOn

•

V
.../

V-

./

.\

~

.;'
~.

\0 9/

V
Vee - 5 V
TA =25°e

54121
10 ns
4

1

10
20
AT-Timing Resistor Value-kn

Unless otherwise noted data is applicable for ITI54121 and ITT74121.
3~151

40

74121~

Vee· 6 V

OUTPUT PUL.SE WIOTH

,."

~ I--

~.80pF

10

TIMING RESISTOR VALUE

"# \

--

r-

>--

20

-16

126

~

40

V

l"-

S 50 i-CL ·'6.F

c

ol!

80
70

~

l -t - V

CL -15pF

1;

-75

!

i...0

CL.~

;::

~

]

60

9 50
~

'0

~

FREE-AIR TEMPERATURE

70

>

~
>

Y1

FREE·AIR TEMPERATURE

70

100

100

125

ITT54121,ITT74121
MONOSTABLE MULTIVIBRATORS
TYPICAL CHARACTERISTICS 1

OUTPUT PULSE WIOTH
VI

EXTERNAL CAPACITANCE

L

V

lG.~

lGpF

l000pF

G.Gl~F

G.l

~F

Cr-Timing Capacitance

1

Unless otherwise noted data is applicable for ITI54121 and ITT74121

3-152

lG~F

ITT54122, ITT54123, ITT74122, ITT74123
RETRIGGERABLE MONOSTABLE
MULTIVIBRATORS WITH CLEAR

ITT
----SEMICONDUCTORS

RETRIGGERABLE MONOSTABLE
MULTIVIBRATORS WITH CLEAR
• Retriggerable for Very Long Output Pulses.
Up to 100% Duty Cycle

PIN CONFIGURATION OF
DIP AND FLAT PACKAGE

• Overriding Clear Terminates Output Pulse

ITT541221IT T74122

• Diode-Clamped Inputs
• D-C Triggered from High- or Low-Level
Gated Logic Inputs

VCC

:: 1

• Compatible for Use with TTL or DTL
• Typical Average Propagation Delay to
Output Q ... 21 ns

ITT54123/1TT74123

Outputs

A1

A2

B1

B2

a

a

L

x

X

x

X

L

X

H
X
X

H

X

X

X

L

X

L
L
L
L

H
H
H
H
H

X
X

X

IB

,

transition from high to low level,. ~
pulse, U = one low-level pulse, X.

20

.n

=

=

Cext

10

'"

'"

VCC

I Rex"
It••,

L
L
X
H
H
U
.fL
H
L
X
t
H
L
Jl
1..r
H
X
H
t
H
L
H
X
L
H
H
U
Jl
H
L
t
H
X
lJ'
H
X
L
.Jl
t
H
.j.
J'L
U
H
H
H
H
.j.
U
11.
H
H
H
H
H
H
H
l.f
SL
t
L
X
H
H
V
X
L
H
J'L
1..r
H
Notes: A. H = high level (steady state), L = low level
(steady state). I = transition from low to high level, t =
X

NC

GND

IA

Clear

Cext

CLEAR

TRUTH TABLE-ITT54122, ITT74122

X

NC

B2

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage VCC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage, ITT54122, ITT74122
Circuits only (see Note 2) .................................... 5.5V
Operating free-air temperature range:
ITT54122, ITT54123 Circuits .... - 55°C to 125°C
ITT74122, ITT74123 Circuits ............. O°C to 70°C
Storage temperature range ........... -65°C to 150°C

Inputs

RIIII

C.x'

DATA
{
INPUTS BI

2Cex'

2 CLEAR

2 Reltt

Cut
GND

POSITIVE LOGIC: LOW INPUT TO CLEAR RESETS
TO LOW LEVEL AND INHIBITS DATA INPUTS

Q

NOTES:

one high-level
Irrelevant (any

input. including· transitions).

3-153

NC = No internal connection .
To use the internal timing resistor of ITT54122/1TT74122 (10 k!l nominal), connect
Rint to VCC'
An external timing capacitor may be connected between Cext and RexlCext (positive).

ITT54122, ITT54123, ITT74122, ITT74123
RETRIGGERABLE MONOSTABLE
MULTIVIBRATORS WITH CLEAR

TRUTH TABLE -ITT54123/1TT74123
Inputs

These monolithic TTL retriggerable monostable
multivibrators feature doc triggering from gated
low-level-active (A) and high-level-active (B) inputs,
and also provide overriding direct clear inputs.
Complementary outputs are provided. A full fan-out
to 10 normalized Series 54174 loads is available
from each of the outputs at the low logic level, and
in the high-level state, a fan-out of 20 is available.
The retrigger capability simplifies the generation of
output pulses of extremely long duration. By triggering the input before the output pulse is
terminated, the output pulse may be extended. The
overriding clear capability permits any output pulse
to be terminated at a predetermined time independently of the timing components Rand C.

Outputs

Clear

A

B

Q

Q

L
X
X
H
H

X
H
X
L

X
X
L

L
L
L

H
H
H

~

SL
_ft

lJ
lJ

t

L

H
H

J1.

V

,

=

=

Notes:·H
high level (steady state). L
low level
(steady state).' = transition from low to high
level, ~ = transition from high to low level.
I
one high-level pulse, U
one lOW-level
pulse, X = irrelevant (any input, including
transitions).

=

=

Figure A below illustrates triggering the one-shot with the high:level-active (B) inputs.
RETRIGGER PULSE
(See Notel

BINPUT

Jl~P'-----'-_--;--1
1"'·----

tw

+ tPLH

_

-I

I

.L _________ __ J. . .____

OUTPUT o J

,:...- - - - - - tw - - - - - - - . ; , OUTPUT WITHOUT RETRIGGER

OUTPUT PULSE CONTROL USING RETRIGGER PULSE

BINPUT

CLEAR

~

_______________________________________

LJ

~

OUTPUT WITHOUT CLEAR

OUTPUTo~~----------~I-_ _-__--__--__-__-__-,_:____________________________
OUTPUT PULSE CONTROL USING CLEAR INPUT
FIGURE A-TYPICAL INPUT/OUTPUT PULSES
NOTE:

Retrigger pulse must not start before 0,22 C ext (in picofarads) nanoseconds after previous trigger pulse.

3 - 154

ITT54122, ITT54123, ITT74122, ITT74123
RETRIGGERABLE MONOSTABLE
MULTIVIBRATORSWITH CLEAR
RT is in kQ (either internal or external timing
resistor)
Cext is in pF
tw is in ns

These monostables are designed to provide the system designer with complete flexibility in controlling
the pulse width, either to lengthen the pulse by
retriggering; or to shorten by clearing. ITT.54122/1IT74122 has an internal timing resistor
which allows the circuit to be operated with only
an external capacitor, if so desired. Applications requiring more precise pulse widths and not requiring
the clear feature can best be satisfied with ITT-

For pulse widths when Cext < 1000 pF, see Figure

8.
These circuits are fully compatible with most TTL
or DTL families. Inputs are diode-clamped to minimize reflection~ due to transmission-line effects,
which simplifies design. Typical power dissipation
per one shot is 115 milliwatts; typical average propagation delay time to the Q output is 21 nanoseconds. ThelTT54122 and IIT54123 are characterized for operation over the full military temperature
range of 55°C to 125°C; the IIT74122 and IIT74123 are characterized for operation from ooe to
JO°C.

54121/1IT74121.
The output pulse is primarily a function of the external capacitor and resistor. For Cext > 1000 pF,
the output pulse width (tw) is defined as:

•tw =

~ 4- Rr

0.7)

0.32 RTCext 1

where

recommended operating conditions
54122,54123
MIN
NOM
MAX
4.5
5
5.5
20
10
40t
40t
40t
5
25

SupplV voltage, VCC
Normalized fan-out from each output, N

I

I

High logic level
Low logic level

Input data setup time, tsetup (see Note 31
Input data hold time, thold (see Note 41
Width of clear pulse, tw(clearl
Extarnal timing resistance
External capacitance
Wiring capacitance at Rext/Cext terminal
Operating free-air temperature, T A
tThese conditions are recommended for use ~t V CC
NOTES:

74122,74123
NOM
MAX .
5
5.25
20
10
40t
40t
40t
5
50

MIN
4.75

No restriction

-55
::I

5 V. T A

::I

V

ns
ns
ns
kl1

No restriction

50
125

25

UNIT

0

25

50

pF

70

°c

25° C.
.

1. Voltage values, except intereminer volta'ge, are with respect" to network ground terminal.
2. This Is the voltage between: two emitters of s·multlple·emitter transistor. For the 54122/74122 circuit, this rating applies to
each A input with respect to the other and to each B input with respect to the other.
3. Setup time for a 'dynamic Input is the interval immediately preceding the transition which constitutes the dynamic input, during
which interval a steady-state logic level must be maintained at the input to ensure recognition of the transition.
4. Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input, duri'ng
which Interval a steady-state logic Jevel must be maintained at the input to ensure continued recognition of the transition.

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

V IL

Low-level input voltage

VI

I nput clamp voltage

V OH

High-level output voltage

Min

Typ'

Max

2

Unit

Test Conditions 2

V

2.4

3-155

O.S

V

. -1.5

V

Vee = MIN,II = -12mA

V

Vee = MIN, IOH = -SOOuA,
See Note 5

ITT54122, ITT54123, ITT74122, ITT74123
RETRIGGERABLE MONOSTABLE
MULTIVIBRATORS WITH CLEAR
ELeCTRICAL CHARACTERISTICS (continued)
VOL

Low-level output voltage

II

Input current at maximum input
voltage

IIH

High -level input
current

IlL

Low-level input
current

0.22

1

'3

1

mA

VCe

= MAX. VI = 5.5V

uA

VCC

= MAX. VI = 2.4V

mA

VCC

= MAX. VI = 0.4V

-40

mA

VCC

28

mA

VCC

= MAX, See Note 5
ITT54122,
= MAX.

40
80

data inputs

-1.6

clear input

-3.2

ICC

Supply current (quiescent or
triggered)

-10
23

ITT74122
46

'2

Vcc
MIN. 10L
See Note 5

data inputs

Short-circuit output current 3

= 16mA.

V

clear input

lOS

=

0.4

See Notes 6 and 7 ITT54123,
ITT74123

66

All typical values are atV cc = 5V, TA = 25°C.
For conditions shown as M IN or MAX, use the value specified under recommended operating conditions for the applicable
device type.
Not more than one output should be shorted at a time.

Notes:

5. Ground Cext.:0 rTjeasure VOH at Q, VOL at IT, or lOS at Q, Cext is open to measure V OH at 5, VOL at
Q, or lOS at Q.
6. Quiescent ICC is measured (after clearing) with 2.4V applied to all clear and A inputs. B inputs grounded.
all outputs open.C ext
0.02uE. and Rext
25kn. Rint of ITT54122. ITT7 4122 is open.
7. ICC is measured in the triggered state with 2.4V applied to all clear and B inputs. A inputs grounded, all
outputs open. Cext
0.02uF. and REXT
2Sk!1. Rint of ITT54122.ITT74122 is open.

=

=

=

=

SWITCHING CHARACTERISTICS. Vce = 5V; TA = 25°e. N = 10
Parameter

Min

Typ

Max

Test Conditions

Unit

=
=

= Sk!} ..
= 4000

=
=

= Skn.
= 400 n.

tpLH

Propagation delay time.
low-to-high-Ievel Q output. from
either A input

22

33

ns

Cext
O. Rext
CL
1SpF. RL

tpLH

Propagation delay time.
low-to-high-Ievel Q output. from
either B input

19

28

ns

Cext
O. Rext
CL
15pF. RL

tpHL

Propagation delay time.
high-to-Iow-Ievel Q output. from
either A input

30

40

tpHL

Propagation delay time,
high-to-Iow-Ievel Q output. from
either B input

27

tpHL

Propagatton delay time.
high-to-Iow-Ievel Q output. from
clear input

18

3-156

ns

Cext - O. Rext - 5kQ
CL
1SpF. RL
400 Q

36

ns

Cext
O. Rext
CL
1SpF. RL

27

ns

Cext
O. Rext
CL
1SpF. RL

=

=

=
=

= SkQ
= 400 Q

=
=

= SkQ
= 400 Q

ITT54122, ITT54123, ITT74122, ITT74123
RETRIGGERABLE MONOSTABLE
MULTIVIBRATORS WITH CLEAR

SWITCHING CHARACTERISTICS, VCC
Parameter

= 5V. TA = 25°C. N = 10
Min

Typ

(continued)

Max

Unit

Test Conditions

=
=

=

=
=

= 5k{1
= 400 n

tpLH

Propagation delay time.
low-to-high-Ievel Q output. from
clear input

30

40

rs

Cext O. Rext == 5k{!
CL
15pF. RL
400

tw(min)

Minimum width of Q output
pulse

45

65

ns

Cext
O. Rext
CL
15pF. RL

tw

Width of Q output pulse

3.42

3.78

ns

Cext = 1OOOpF. Rext = 10k
CL
15pF. RL
400

3.00

=

=

n

TYPICAL APPLICATION DATA.' .

OUTPUT PULSE WIDTH

vs

EXTERNAL TIMING CAPACITANCE
10000
7000

n

VCC

VCC - 5 V

FIGURE C

TA=25°C

4000

,/

2000
~

I

-5

1000
700

~
51

400

'0

:;
11-

:;

e
~

0

I

J

200
100
70

~

-

~

.<:J
\
~~> ,>o't-Q.
~~. ').o't-Q.

-

~~",,~o~

0

/1/

/'

Tcext

~
w(

,:>'t-~

40

To Rext/Cext

terminal

terminal

TIMING COMPONENT CONNECTIONS WHEN Cext <; 1000 pF

20
10

To Cext

2

4

10

20

40

100 200 400

Vec

1000

Cext-External Timing Capacitance-pF

FIGURE D

FIGURE B
t

Rext ~ 0.6 Rext max.
(See recommended operating

These values of resistance exceed the maximums recommended for use over the full temperature range of
the ITT54122 and ITT54123.

conditions for R ext max.)

Any silicon switching diode
such as 1N3064, etc.

To Cext

To Rext/Cext

terminal

terminal

TIMING COMPONENT CONNECTIONS WHEN
Cext > 1000 pF AND CLEAR IS USED

To prevent reverse voltage across Cext ' it is recommended that the method shown in Figure 0 be
employed when using electrolytic capacitors and in
applications utilizing the clear function. In all applications using the diode. the pulse width is:

tw
where

3 -157

= 0.28 RextCext

n

Rext is in k
Cext is in pF
tw is in ns

~ +-1

0.7)

Rext

~

ITT74124

ITT _________

U_N_'V_E
..R
...S_A_L_PU_LS_E_G_EN_ER_A_T_O_R

SEMICONDUCTORS
DUAL- IN-LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

UNIVERSAL PULSE

GENERATOR

~

• Delayed Pulse Generator.
<>

INTR} TIMING
EXT C CIRCUIT
EXT R
2

INT R

Controllable high stability oscillator.

NEGATIVE
TRIGGER

EXT C

POSITIVE
TRIGGER

Q20UTPUT

Q,OUTPUT

02 OUTPUT

.. Applications include clock generator, Timing
pulse generation, Synchronized oscillator,
and pulses frequency divider.
o Outputs available from the two incorporated

Cascade Monostables.
<>

VCC

TIMING { : : :
CIR9UIT
EXT R

INHIBIT OSC.
INPUT

GND

No jitter self start.
PIN CONFIGURATION (top view)

., Complete output waveforms.
" Positive Schmitt Trigger input.
" Delays and pulse widths from 35 ns to 40
second.

-

FEEDBACK CONNECTION

~O--"""'-=j
POSITIVE
TRIGGER

LOGIC DIAGRAM
6

1

\

~3
EXTERNAL e, R
EXTERNAL e

9

10

II

12

13

\ . .... EXTERNAL etR

EXTERNAlC

TRUTH TABLE

Inputs

Mode

Outputs
During Time Period:

T2

INH
OSC

POS NEG
TRIG TRIG

OSCILLATOR
MODE

1
1

0
X

X
1

DELAYED
PULSE
MODE

0

t

0

J"1..

0

1

t

J"1..

..n...
..n...

l.J

0

0

1

STABLE
STATE MODE

ALL OTHER
LEVELS

Tl
01

02

02

JI.. JI.. -UJI.. ..n... ""Lr
"1J""

Notes:

t =

Transition from 0 to 1.
Tra nsition from 1 to O.
X = Indicates that O. 1 or any transition may be present.

+=

...n..=

1 level pulse of width = timing period T 1 or T2·
1-f= 0 level pulse of width = timing period T2.
Timing period T 1 set by timing,circuit 1.
Timing period T 2 set by timing circuit 2.

3-158

ITT74124
UNIVERSAL PULSE GENERATOR
ElECTRICAL CHARACTERISTICS AND
RECOMMENDED OPERATING CONDITIONS
Propagation delay, trigger input to 0, ............. .43 ns
Inhibit Oscillator input to 0, ............................ 26 ns
0, to 02 ...................... :....................................... 15 ns
Power dissipation (50% duty cycle) ............. 1 50 mW
Input loading factor ................................... 1 Unit load
Maximum fan out.. .................................. 10 unit loads
External timing resistor, RT ....................... 1.4 kDmin
(54124 25K max.) 50 kDmax.
External timing capacitor, GT ....................... 0 pF min.
50 uF max.
Recommended maximum
output frequency ........................................... 10M Hz
Recommended input pulse width:
Inhibit Oscillator input ............................ ,.... 15 ns min.
Trigger input ................................................. 50 ns min.
Trigger input setup time ....................................... 10 ns
Maximum mark space ratio:
RT = Max. Value ............................................. 100: 1
RT = Min. Value ................................................... 5: 1
Output pulse width ................................... 0.695 GTRT
Timing Stability:
Typical Timing period change
with supply voltage .............................. 0.2% per Volt
Typical Timing period change
over 0° to 75°G Temperature range ............ 0.15%
The ITT 74124 Universal Pulse Generator has
been designed specifically for clock and delayed
pulse generation applications. This versatile device
incorporates two cascaded monostable circuits to
provide the delayed pulse facility and a gated feedback path allows its operation as a controllable high
stability oscillator. The external timing components
which control the delay and pulse width periods in
the delayed pulse generator mode are used to determine the oscillator mark - space ratios (duty cycle). The true output. 0, from the first monostable
and true and complements outputs, 02 and 02
from the second monostable are provided. These
outputs are of standard totem pole configuration
and provide a maximu m fan-out of 10 T.T.l. loads.
Delayed Pulse Generator Mode
When operating in the delayed pulse mode the
feedback loop is inhibited by maintaining the inhibit
oscillator input at '0'. The device can then be triggered from the positive edge trigger input with the
negative edge input held at '0', or from the negative
edge trigger input with the positive edge trigger in-

put held at '1'. The positive trigger input incorporates a Schmitt trigger circuit for slow edges or level detection. Once triggered further transistions on
the inputs have no effect on the 01 output pulse
until after the first monostable timing period is
completed. The second. monostable is triggered
from the first monostable output pulse by. its trailing
edge and is not effected by any further transistions
from the first monostable until its timing period is
over. The output of the second monostable is therefore a single pulse having .a width determined by
the time-constant of the second monostable and
which is delayed from the initiating input trigger
edge by the time constant of the first monostable.

Oscillator (Astable Multivibrator) Mode
The feedback path is operative when the inhibit oscillator input is taken to logical ',', and for operation
in the oscillator mode the positive trigger input
and/or the negative trigger input must be maintained at '1'. The feedback path enables the trailing
edge from the second monostable to retrigger the
first monostable to maintain the oscillations. As
soo.n as the inhibit oscillator input is taken to logical
'0', the device reverts to its delayed pulse mode and
the oscillations stop when the second monostable
timing period is over. In this way only whole cycles
are produced. It is a feature of the design that a
locked-up state, preventing the circuit from oscillating, cannot occur. The first monostable is immediately triggered on application of '1' to the inhibit oscillator input with the correct trigger input
levels, and will not lock-up when the supplies are
switched on with the correct input signals applied.
By virtue of the inhibit oscilliltorinput it is possible
to gate the oscillator on and off to produce bursts
of pulses. It is also possible to synchronize the oscillator by applying appropriate waveforms at the
inputs. This facility allows for its use as a pulse frequency divider.
The time period for the first monostable, which determines the pulse width from the 01 output and
the delay before the pulse from the 02 and 02 outputs begins, is set by the timing circuit on pins 1,
2, and 3. The time period for the second
monostable determines the pulse width obtained
from the 02 and 02 outputs is set by the timing
components connected to pins 11, 12, and 13. The
timing components may be connected as follows:

3 -159

ITT74124
UNIVERSAL PULSE GENERATOR
a. External timing capacitor. CT, may be connected between pin 1 (11) positive and pin 2 (12).
With no external capacitance an output pulse
width of typically 25 ns is obtained with RT
= 1.5K,Q,+10Kil
b. To use the internal timing resistor (normally
7.2K.Q) connect pin 3 (13) to VCC (pin 14).
The pulse width or time delay is approximately
given byt
5 X 103 CT'
c. To obtain variable resistor between pin 3 (13)
and V CC (pin 14). Add the value ofthe internal
resistor. 7.2K,Q to the external resistance
used, to obtain the RT value.

d. For accurate timing connect an external resistor
between pin 2 (12) and VCC (pin 14). Leave
pin 3 (13) open circuit.
Relationship for timing period, t = 0.695
CTR T where CT and RT are the timing components values used.
Note: Timing periods of the order of one second
are obtained when using the maximum recommended RT and CT component values.

=

1/ Delayed Pulse Mode

a) Timing Period T1

»

Timing Period T2 (inhibit

22

bl Timing Period T1
I!p

~LJ

Qj

~I

«

=negative trigger" '0'1.

LIl

l2

n

a

IL-

U

n

U-

Timing Period T2.

It--u

n

n

2Z

U
~

__

~rl~

________________

~l

02
02

a

2/ Oscillating Mode

a) Timing Period T1

INHIBI~

=Timing Period T2 (positive trigger = '0').

l~'"l:-l--'--'

~--~~:r-~

_--..J1LJLJLj"-Ul

l~:l:-l__~I-UU---U-U---

--LnJ~~
bl Timing Period Tt«

Timing Period T2.

--1------

----'L ..- - I L_ _.__----'

_____---.r-

~

LJ

Waveforms illustrating the function of the circuit in the delayed pulse and oscillating modes.
3-160

ITT74124
UNIVERSAL PULSE GENERATOR
ELECTRICAL CHARACTERISTICS. over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Typ

Min

,

Max

Unit

VT +

Positive edge threshold
Voltage at trigger input (positive)

VT

Negative edge threshold
Voltage at trigger input (positive)

0.8

V IH

High-level input
voltage

2

V il

low-level input
voltage

0.8

V

VI

I nput clamp voltage

-1.5

V

V OH

High-level output
voltage

1.75

2

1.4

Test Conditions

=

V

1000 pf
5V eT
10KD.
RT

V

5V eT
1000 pf
RT
10 KD.

=
=

=

V

2.4

3.4

V

= MIN, II = -12mA
Vee = MIN,
Vee

10H

= -400uA

= MIN,
= 16 rnA

0.4

V

Vee
10l

Input current at
maximum input
voltage

1

mA

Vee

= MAX, VI = 5:5V

IIH

High-level input
current

40

uA

Vee

= MAX, VI = 2.4V

III

low-level input
current

-1.6

rnA

Vee

= MAX, VI = O.4V

lOS

Short-circuit output
current 3

-55

mA

Vee

= MAX

ICC

Supply current. Input high

30

60

mA

Max) eT

= 1000 pf

ICC

Supply current, Inputs low

30

60

mA

Max) RT

= 10 KD.

VOL

low-level output
voltage

II

M KS mark space ratio (duty
cycle)

0.2

-18

90.1

100.1

RT = max, value minimum
space width = 100 ns with 5')(
degradation in pulse w.idth set
at equal mark space ratio.

, All typical values are at Vee = 5V, T A = 25°C.
Forconditions shown as MI N or MAX, use the appropriate value specified under recommended operating conditions
for the applicable type.
3 Not more than one output should be shorted at a time.
2

3- 161

ITT 74124
UNIVERSAL PULSE GENERATOR
SWITCHING CHARACTERISTICS. Vee
Parameter
Tpd +

From
From
From
From
From
From

Tpd -

From Q2 to Q2
From Q 1 to Q2

tpo

Output pulse width
CT = Opf, RT = 1.5n~10Kn
CT = 100 pf, RT = 10Kn
CT = 1 uf, RT ~ 10Kn

1

Tmin ,

= 5V, TA = 25°e
Min

Inhibit Oscillator to Q1
Neg Trigger to Q 1
Pos Trigger to Q 1
Q 1 to Q2
Q 2 to Q2
Q2 to Q 1

Minimum width pulse into:
Trigger Inputs
I nhibit Oscillator
T set-up

600
6

Typ

Max

Unit

26
45
40
15
15
18

50
85
75
30
30
35

ns
ns
ns
ns
ns
ns

Use Test
Use Test
Use Test
Use Test
Use Test
Use Test

8
20

15
45

ns
ns

Use Test Circuit Or 100 pf
Use Test Circuit CT 100 pf

25
700
7

35
800
8

ns
ns
ms

Use Test Circuit
Use Test Circuit
Use Test Circuit

30
10

50
15
10

ns
ns
ns

Use Test Circuit
Use Test Circuit
Use Test Circuit

Test Conditions
Circuit
Circuit
Circuit
Circuit
Circuit
Circuit

CT
CT
CT
CT
CT
CT

100
100
100
100
100
100

pf
pf
pf
pf
pf
pf

T min = The hold time which is the interval immediately following the trigger transition, during which
interval the.input must be maintained at the steady state level shown in the Truth Table to ensure correct
operation. Applied to the inhibit oscillator input. tmin' is the minimum input pulse '!"idth required to ensure
the generation of one period of oscillator, with the other inputs at the logic levels given in the truth
table.

Test Circuit
cc
'_~_
V _____ ,

I
:
02 OUTPUT :

''tL'4OQC

•

:

IN4!"IB :

~11..,,:;pF

-;;-

f"'------'--+L--'_ :.. ~O!~C~C~T~ ___
Qi

:; pos

OUTPUT

-1
r----------- -,

0,1'-'_ _ _9,---,:- - 01 OUTPUT

TABLE

8 'IIIHI9.

csc.

I

J

~
I

~oA;-c7Ra:,;:r;- -

___

-

~S~E~'2.... _ _ -l

LOAD CIRCUIT 3

L ___

!..:A~E~!..!I____

1

J

T pd Voltage Waveform
Note:

3-162

1. T pd + Q 2 output to Q 1 output progagation
delay when in the oscillatory mode, apply input logic levels as shown in the Truth Table.

ITT74124
UNIVERSAL PULSE GENERATOR

I ""., I

. "

A-~Z".7r.::iJr>.~

,1I,,"

O.7VP...___

I
II_

S.!lV

II..._ _ _ _ _ _ _ _ _ _ _--".;..

t MI.

I·

I

•I I...., . ,I

-~~

Voltage Waveforms for
set-up and pulse width tests .

ActI"IY\t,or V, ...._

.kr,.-~V---'.~-"~ - - -- - - -- --- --- - - -- ~V-

...:Q:.:.,.::
..c.;Q::JC'-_ _ _

I...

.1

~.!5V

I•
l'

~"_""'rl/,

~1.5V

,.!I~'--------V-OI-r-------VOI...;.;;.

_~..:2~_ _ _ _-.. 100--1,. - - I

~.5V

'See note.3

Note:

2. The Pu Ise generator characteristics are:
Amplitude = 3.5V ....................... PRF = 1 MH
tr = 10 ns ......................................... Zo = 50
t f = 4 ns ................................. ~ = 10 to 50 ns

n

Note:

3. Use the waveforms given for triggering from
the positive trigger input. Apply the inverse
of both waveforms for triggering from the
negative trigger transition (active input =
negative trigger input). Ground the inhibt oscillator input for testing the delayed pulse
mode of 0 peration.
A positive pulse should be applied to the inhibit oscillator input to test for t min in the
oscillato ry mode of operation.

"ott

1.5Vf-___ 'toL
APPLICATION NOTES
The universal pulse generator has been specifically
designed for clock and delayed pulse generation.
However. full use can be made if .its two modes
of operation to perform functions previously requiring many logic devices in a wide variety of logic
circuits. for example in timing pulse generation
where several monostables and gates are employed. The following application notes show a
selection of these applications to illustrate some
useful features of the device.

INTENSITY MODULATOR
Modulation of the intensity of seven segment indicators driven from decoder/drivers can be easily
achieved using the universal pulse generator. Using
variable timing components the duty cycle of the
modulating waveform from the pulse generator can
be altered to adjust the indicator brightness. The
indicators can be run at full intensity by taking the
inhibit oscillator input of the pulse generator to
zero. Appropriate input waveforms can be applied
to the pulse generator to gate the indicators from
full or reduced intensity.

tTT74~

"-

~ = R£CUCEDIHTENSITY

hM.Tl\Ilt3"AT~

AS

S.!lV

__________________ 2..v_

~l

OR LOGICAl. '0' =FULL INTENSITY

DtCOC£PlDRlYERS

IptTENSfTYMOOULA~R: Typical Arrangement For The Intensity Modulation of Seven - Segment Il)dicators

3-.163

· ITT74124
UNIVERSAL PULSE GENERATOR
LONG TIMING PERIODS
GENERAL PURPOSE APPLICATIONS
It is possible to use large timing capacitors up to
1.000)1 to produce timing periods up to about 40
seconds. However. the recommended maximum
timing capacitor of 50Jlf has been set to permit precise operation and good stability from the universal
pulse generator (timing periods to 1 second).
Several problems occur when using very large capacitors. The relative high leakage current of electrolytics makes accurate timing difficult and the
normal operation of the pulse generator cannot be
guaranteed with very long timing periods. However.
for some general purpose application;; large timing
cc!pacitors may be used up to 1.000pf. A settling
down period after switch-on of the supply is recommended. The maximum mark-space ratio will
also depend upon the timing peri'od length.
ACCURATE LONG TIMING PERIOD
An arrangement which takes advantage of the high
stability of the pulse generator when using lower
capacitance values is shown below.

used to preset the counter to a state depending on
the preset data input. The long delay can therefore
be varied using the preset data inputs. The carry
output also resets the input latch so inhibiting
further output pulses from the pulse generator.
Very long delays can be obtained by cascading the
counters using the same basic carry output arrangement from the last counter. In calculating
delays the ripple delay from cascaded counters'
must be taken into account.
By incorporating an additional latch in the circuit
the same basic arrangement can be used to produce short delay and long pulse outputs.
FREQUENCY SYNCHRONISM
By applying appropriate waveforms to the pulse
generator inputs as determined from the device operation modes the output frequency can be synchronized to an input frequency (usually a multiple
of the output frequency desired). The range of synchronism is dependent on the ratio of the input and
output frequencies. the ratio of the two timing periods the input mark-space ratio and any restric-

TIll'''' ClIlCUITS

PllESEJ" DATA

~

''IIlln"

SIGNAL

AP1'l..It!D

ACCORDINGTD
DELAY REQUI

1J

Typ,cal' Arrangement for Long Timing Periods Short Pulse Obtained After Long Delay.
The universal pulse generator is used in its oscillator mode with the output pulses counted by the
programmable counter. A start signal initiates the
train of pulses which causes the counter to advance
to its highest state. The next input clock pulse appears at the carry output with the same pulse width
and this is the desired output pulse of duratiori
equal to the second timing period of the universal
pulse generator. The delay time period depends
primarily on the period of the output from the pulse
generator anp trie initial preset state of the
programmable counter.
In the arrangement shown the counter output is

tions such as minimum input pulse widths.
Equal mark-space output waveforms can be obtained using an additional flip-flop toggled from the
pulse generator output.
EXAMPLE Pulse Frequency Divider.
Basically the universal pulse generator should be
arranged to give the desired output frequency and
short positive pulses applied to the inhibit oscillator
input at a frequency slightly slower than some mul- '
tiple of the natural frequency of the device. Output
waveforms of a frequency division of the input
pulse frequency can be obtained i.e. + 10. +
1 .5. + 2/3 etc.

3-164

__ I

mm

_L_L

ITT54130. ITT74130. ITT54131. ITT74131
QUAD 2-INPUT AND BUFFERS

________________W
__IT_H_O_P_E_N_C_O_L_L_EC_T_O_R_O
__
UT_P_U_T

SEMICONDUCTORS

QUAD 2-INPUT AND BUFFERS
WITH OPEN COLLECTOR OUTPUT
•
•
•

DUAL-IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

High Current and High Voltage Drivers
Inputs Are Compatible With All Other 74
Series Devices
.
Large Wire-AND Capability

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) .................................... 5.5V
Output voltage (see Notes 1 and 2):
ITI54130. ITI7 4130 ........................................... 30V
ITT54131.ITI74131 ........................................... 15V
'Operating' free-air temperature range:
ITI54130.ITI54131 ................... -55°C to 125°C
ITI74130.ITI74131 ............................ ooC to 70°C
Storage temperature range ........... - 65°C to 150°C
Notes:

1. Voltage values are with respect to network
ground terminal.
2. This is the maximum voltage which should
be applied to any output when it is in the
off state.

POSITIVE

LOGIC:

i!= A . B

Circuit Schematic,
r---~------'--oVcc

A

0--.--'

B

IK

One gate only shown
recommended operating conditions
ITT54130.ITT54131 ITT74130.ITT74131
Min Nom
Max
Min Nom Max
4.5

Supply voltage Vee
Output voltage. V OH

5

5.5

4.75

5

Unit

5.25

V

ITT54130. ITT74130

30

30

V

ITT54131.ITT74131

15

15

V

100

100

rnA

70

ae

Low-level output current. IOL
-55

Operating free-air temperature range. TA

3-165

25

125

0

25

ITT54130, ITT74130, ITT54131, ITT74131
QUAD 2-INPUT AND BUFFERS
WITHUPEN COLLECTOR OUTPUT

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

V IH

High-Iellel input voltage

V IL

Low-level input·voltage

0.8

V

V1

Input Clamp Voltage

-1.5

V

VCC = MIN. Ii = -12mA

High-level output current.

250

uA

Vec = MIN. VI = 2V.
V OH = MAX

Low-level output voltage

0.4

V

VCC = MIN. VI = 0.8V.

IOH

VOL

9

2

V

IOL = 100mA
H ig'h-Ievel input current (each
input)

40

uA

Vec = MAX. VI = 2.4V

1

mA

VCC = MAX. VI = 5.5V

IlL

Low-level input current (each
input)

'-'-1.6

mA

VCC = MAX. V I = O.4V

ICCH

Supply current. high-level output

12

24

mA

VCC = MAX. VI = 5V

ICCL

Supply current. low-level output

47

75

mA

VCC = MAX. VI = 0

IIH

SWITCHING CHARACTERISTICS, Vee
Parameter

= 5V. TA = 25°e. N = 10
Min

Typ

Max

Unit

Test Conditions

tpLH

Propagation delay time.
low-to-high-Ieveloutput

18

ns

CL= 15 pF. RL = 500

tpHL

Propagation delay time.
high-to-Iow-Ievel output

35

ns

CL = 15 pF. RL = 50n

, All typical .-alues are at V CC = 5V. T A = 25°C.
For conditions shown as MIN or JYlAX. use the appropriate value specified under recommended operating conditions
forthe applicable device type
.

2

3.,--166

O&:D

ITT

_

ITT54135, ITT54137,ITT74135,
QUAD 2-INPUT
NAND SCHMITT
HEX INVERTER SCHMITT

_

_

ITT74137
POSITIVE,
TRIGGER,
TRIGGER

__

SEMICONDUCTORS

QUAD 2-INPUT
POSITIVE NAN D
SCHMITT TRIGGER,

ITT54/74135
DUAL-IN- LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)!

1

HEX INVERTER

SCHMITT TRIGGER
High Input Impedance - Input Directly
Compatible With 74L
G Applications Include Pulse Shaping, Clock
Generation, and Interfacing to T.T.l. From
74L, T.T.L .. D.T.l., M.O.S., H.l.l. and High
Voltage Transducers
-'---t--.......---<> V C C

A o..--i'IIr--.
INPUT

t:

BO+-..-Ie-......

OUTPUT

'--+--~---~---'l----------O

Circuit Diagram

ITT54174137

A 01--llt-...

INPUT

3-169

G NO

ITT74137
POSITIVE,
TRIGGER,
TRIGGER

ITT
-SEMICONDUCTORS

ITT54138, ITT74138, ITT54139, ITT74139
QUAD 2-INPUT OR BUFFER
WITH OPEN COLLECTOR OUTPUT
-~~~-

QUAD 2-INPUT OR BUFFER
WITH OPEN COLLECTOR OUTPUT
•
•
•

DUAL-IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

High Current and High Voltage Drivers
Inputs Are Compatible With All Other 74
Series Devices
Large Wire-AND Capability

VCC
18

3A
38

4A

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage Vee (see Note 1) ........................... 7 V
Input voltage (see Note 1) ................................... 5.5 V
Output voltage (see Notes 1 and 2):
ITT54138. ITT74138 .......................................... 30 V
ITT54139, ITT74139 .......................................... 15 V
Operating free-air temperature range:
ITT54138, ITT54139 ................... -55°C to 125°C
ITT74138, ITT74139 ............................ O°C to 70 0 e
Storage temperature range ........... -65°C to 1500 e
Notes: 1. Voltage values, are with respect to network
ground terminal.
2. This is the maximum voltage which should
be applied to any output when it is in the
off state.

POSITIVE

A 0--.,--'
B

One gate only shown

Supply voltage Vee

54138. 54139
Min Nom Max

741 38. 741 39
Min Nom Max

4.5

4.75

5

5.5

5

Unit

5.25

V

ITT54138, ITT74138

30

30

V

ITT54139, ITT74139

15

15

V

100

mA

70

°c

Low-level output current, IOL
Operating free-air temperature range, TA

i! = A+8

Circuit Schematic

recommended operating conditions

Output voltage, VOH

LOGIC:

100
-55

3-170

25

125

0

25

ITT54138, ITT74138, ITT54139, ITT74139
QUAD 2-INPUT OR BUFFER
WITH OPEN COLLECTOR OUTPUT

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

Min

Typ'

Max

2

Unit

Test Conditions 2

V

V IL

Low-level input voltage

O.S

V

VI

Input Clamp Voltage

-1.5

V

VCC= MIN,II"" -12m~

IOH

High-level output current

250

uA

VCC = MIN, VI = 2V,
V OH =MAX

VOL

Low-level output voltage

0.4

V

VCC = MIN, VI = O.SV
IOL = MAX

IIH

High-level input current (each
input)

40

'uA

VCC = MAX, VI = 2.4V

1

mA

VCC~ MAX, VI = 5.5V

IlL

Low-level input current (each
input)

-1.6

mA

VCC = MAX, VI = a.4V

ICCH

Supply current. high-level output

30

42

mA

VCC'7 MAX, VI = 0

ICCL

Supply current, low-level output

27

38

mA

VCC = MAK VI = 5V

SWITCHING CHARACTERISTICS. Vee = 5V, TA = 25°e
Parameter

Min

TVP

Max

Unit

Test Conditions

tpLH

Propagation delay time,
low-to-high-Ieveloutput

16

ns

CL = 15pF, RL = 50n

tpHL

Propagation delay time,
high-to-Iow-Ievel output

35

ns

CL = 15pF, RL = 50n
':',

, All typical values are at V CC = 5 V, TA = 25°C.
2 For conditions shown as M IN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.
"

3 -171

ITT
----ITT74141
BCD-TO-DECI MAL D ECOD ER/D RIVER

SEMICONDUCTORS

BCD-TO-DECIMAL DECODER/DRIVER
• Drives gas-filled cold-cathode indicator tubes
directly
• Fully decoded inputs ensure all outputs are
off for invalid codes
.Input clamping diodes minimize transmission-

DUAL-IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)t

line effects
• Power dissipation typically 55 mW
logic
TRUTH TABLE
Input
0

C

B

A

Output
On'

L

L

L

L

0

L

L

L

H

1

L

L

H

L

2

L

L

H

H

3

L

H

L

L

.4

L

H

L

H

5

L

H

H

L

6

L

H

H

H

7

H

L

L

L

8

H

L

L

H

9

H

L

H

L

NONE

H

L

H

H

NONE

H

H

L

L

NONE

H

H

L

H

NONE

H

H

H

L

NONE

H

H

H

H

NONE

INPUTS~
VCC

=

=

H high level. L low level
, All other outputs are off

INPUTS{:

2

OUTPUT

POSITIVE LOGIC: SEE TRUTH TABLE

IplN ASSIGNMENTS FOR THESE CIRCUITS ARE THE
SAME FOR ALL PACKAGES.

The ITT74141 is a second-generation BCOto-decimal decoder designed specifically to drive
cold-cathode indicator tubes. This decoder demonstrates an improved capability to minimize switching transients in order to maintain a stable display.
Full decoding is provided for all possible input
states. For binary inputs 10 through 15. all the.outputs are off. Therefore the ITT74141. combined
with a minimum of external circuitry. can use these
invalid codes in blanking leading- and/or trailingedge zeros in a display. The ten high-performance.
n-p-n output transistors have a maximum reverse
current of 50 microamperes at 55 volts.

3-172

ITr74141
BCD-TO-DECIMAL DECODER/DRIVER
Low-forward-impedance diodes are also provided
for each input to clamp negative-voltage transitions
in order to minimize transmission-line effects. Power dissipation is typically 55 milliwatts. The ITT74141 is characterized for operation over the temperature range of OOC to 70°C.

absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
SUpply voltage V CC ................................................... 7V
Input voltage (see Note 1) .................................... 5.5V
Current into any output (off-state) ..................... 2 mA
Operating free-air temperature r~nge .. O°C to 70°C
Storage temperature range ........... - 65°C to 150°C

Min

recommended operating conditions
Supply voltage Vee (see Note 1) .......................................................................................
Output voltage (see Notes 1 and 2) ...................................................................................
Operating free-air temperature range ...............................................................................
Notes:

Nom Max

4.75

5

0

25

5.25
65
70

Unit

v
V

.. °e

1. Voltage values are with respect to network ground terminal.
2. This is the maximum voltage which should be applied to any output when it is in the off state.

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
.
Parameter

Min

Typ'

Max

VIH

High-level input voltage

V IL

Low-level input voltage

0.8

V

VO(on)

On-state output voltage

2.5

V

VO(off)

Off-state output voltage for input
c9unts 0 thru 9

10(0ft)

Off-state reverse current

10(0ft)

IIH

2

Test Conditions 2

Unit
V

V

= MIN. 10 = 7mA
Vee = MAX. 10 = 0.5mA

50

uA

Vee

Off-state reverse current for
input counts'l 0 thru 1 5

5

uA

High-level input current at A

40

uA

1

mA

60

Vee

= MAX. Va = 55V
Vee = MAX. Va = 30V

High-level input current at B. e.
orO

80

uA

1

mA

IlL

Low-level input current into A

-1.6

mA

IlL

Low-level input current into B. e.
or 0

-3.2

mA

= MAX. VI = 2.4V
Vee = MAX. VI = 5.5V
Vee = MAX. VI = 2.4V
Vee = MAX. VI = 5.5V
Vee = MAX. VI = 0.4V
Vee = MAX. VI = 0.4V

lee

Supply current

25

mA

Vee

IIH

16

Vee

= MAX

, This typical value is at Vee = 5V. TA = 2 soe.
.
2 For conditions shown as MIN or MAX. use the appropriate value specified underrecommended operating conditions.

3-173

ITT74141
BCD-TO-DECIMAL DECODER/DRIVER

functional block. diagram
A

(3)

{>-

1"\

n==rrL>

( 16)

.-

~

( 15)

V
1\
B

(8)

r,t-

(6)

1

2

~

d

~ f-

f

(9)

Y
( 13)

r,l'
~

~

f

c

o

f" (14)

V

(7)

--'

n

( 11 )

3

4

5

6

"

~

(10)

V

-~

(1)

7

8

"t'

D

(4)

rr.

1 J'"

Y
3-174

(2)

9

=

ITT

ITT54150, ITT54151, ITI74150, ITT74151
DATA SELECTORS/MULTIPLEXERS
-~--===~""""""""

SEMICONDUCTORS

[DATA

SElECTORS/MUlT~PlEXERS

features
ITT54151/ITT74151

o selects one-of-sixteen (or one-of-eight) data
sources
o serves as a five-variable~function generator
(ITT54150.ITT74150)
o performs parallel-to-serial conversion
o permits multiplexing from N lines to 1 line
o input-clamping diodes simplify system design
o typical propagation delay times:
through 4 select levels - 28 ns
through 3 select levels - 20 ns
data input to output -10 n s
o high fan-out. low impedance. totem-pole
outputs
o fully compatible with TTL. DTL and other
MSI circuits
Each
of
these
monolithic.
data
selectors/multiplexers contain inverter/drivers to supply
fully complementary. on-chip. binary decoding data
selection to the AND-OR-INVERT gate. The ITT54151 /ITT7 4151 features complementary outputs
whereas the ITT54150/ITT74150 has inverted outputs only. The circuits are provided with a strobeinput which. when taken to a logical O. enables the
function of these multiplexers.

DUAL-IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)'

VCC
DATAJ:

INPUTS1~

5} INPUT
DATA

6

oow~,{

7

)

DATA

STROBE

:

GND

SELECT

r =s-+---.---+----'

I

A

OUTPUT

o

I
I
I ~~~~C~~ ~:T~~

I
I

I

jj

' - - . -.....- 0 GND

L ______ _ _ _ _ _ _ _ _ J
OUTPUT

1

OUTPUT
15

TO OUTPUT

GATES 0·15

Note:

Component values shown are nominal.

3-187

ITT
----------ITT54155, ITT54156, ITT74155, ITT74156
DUAL 2-LlNE-TO-4-LlNE DECODERS/DEMULTIPLEXERS

SEMICONDUCTORS

DUAL 2-LINE-TO-4-lINE
DECODERS/DEMULTIPLEXERS
~------------------------~
• Applications:
Dual 2-to-4-Line Decoder
Dual 1-to-4-Line Demultiplexer
3-to-8-Line Decoder
1 -to-8-Line Demultiplexer
• Individual Strobes Simplify Cascading for
Decoding or Demultiplexing Larger Words
• Input Clamping Diodes Simplify System Design
• Choice ~f Outputs:
Totem Pole (ITT54155. ITT74155)
Open-Collector (ITT54156. ITT74156)
• Typical Average Propagation Delay
Times:
16 ns through 2 levels of logic
21 ns through 3 levels of logic
• Typical Power Dissipation ... 125 mW
These monolithic transistor-transistor-Iogic (TTL)
circuits feature dual 1-line-to-4-line demultiplexers
with individual strobes and common binary-address
inputs in a single 16-pin package. When both sections are enabled by the strobes. the common
binary-address inputs sequentially select and route
associated input data to the appropriate output of
each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1 C is inverted at its outputs and data applied at 2C is not inverted through
its outputs. The inverter following the 1C data input
permits use as, 3-to-8-line decoder or 1-to-8-line
demultiplexer without external gating. See typical
applications data and ,the truth tables for more details.
The ITT54155/1TT74155 circuits. with totem-pole
outputs. are rated to fan-out to 10 normalized Series 54174 loads in the low-level output state. and
to 20 loads in the high-level output state. The ITT54156/1TT74156 circuits. with open-collector outputs. are rated to sink 16 milliamperes at a lowlevel output voltage of less than 0.4 volt. Inputclamping diodes are provided on all of these circuits
to minimize transmission-line effects and simplify
system design. Typical power dissipation is 125
milliwatts. Typical average propagation delay times

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)t

,

DATA

Ie

Vcc

STRDBE
IG

DATA
2C

SELECT
INPUT

STROBE

r

SELECT
INPUT
A

2G

B

ll3
1l!2

l

OUTPUTS

2i!

l

3

li!1

2'1.2

IlO

2'1.~UJTPUTS

GND

2'1.0

POSITIVE LOGIC: SEE TRUTH TABLE

t Pin assignments for these circuits are the same for all

are 16 nanoseconds through 2 levels of logic and
21 nanoseconds through 3 levels of logic for the
ITT541 55/1TT741 55.
The ITT541 55 and ITT54156 are cha racterized for
operation over the full military temperature range
of - 55°C to 125°C; the ITT74155 and ITT74156
are characterized for operation from DoC to 70°C.
a6solute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage V CC (see Note 1) ............................ 7V
Input voltage (see Note 1) ............ .'....................... ·5.5V
Operating free-air temperature range:
ITT54155.ITT54156 ................... -55°C to 125°C
ITT74155.ITT74156 ............................ O°C to 70°C
Storage temperature range ........... -65°C:to 150°C
Note

3-188

1. Voltage values are with respect to network
ground terminal.

ITT54155, ITT54156,
DUAL2-LlNE-TO-4-LlNE DECODERS/DEMULTIPLEXERS
truth tables (H • high level. L • low level. X • irrelevant)
2·LlNE·TO·4·LlNE DECODER OR 1·LINE·TO·4·LlNE DEMULTIPLEXER

I

Outputs

Inputs

Outputs

Inputs
Strobe

Data

Strobe

Data

B

A

1G

1C

110

1Z,1

H2

1Z3

B

A

2G

2C

2Z0

2Z,1

2Z,2

2Z3

X
L
L

X
L

H

X

H

H

H

L

H

X
L

H
H

H
H
H

L

H

L

H
H

H
H
H

H
H

H

L

H

H

H

H

L

H

H

X
L
L
L
L

L

H
H

H
H

X
L
L

H

H
H
H

H
H
H
H

H

H

X

X

L
L
L
L
X

L

H

H

X

X

H
H

H

Select

H

Select

L

L

H
H
H

H
H

L
L
L
L
X

H

L

H
H

H

H

L

3·LINE·TO·8·LlNE DECODER TO 1·LlNE·TO·8·LlNE DEMULTIPLEXER
Outputs

Inputs
Strobe
or Data

(0)

(1 )

(2)

(3)

(4)

(5)

(6)

(7)

c'

B

A

G2

2Z0

2Z1

2Z2

2Z3

HO

1 Z1

112

1Z3

X
L
L
L

X
L
L
H
H
L
L
H
H

X
L
H
L
H
L
H
L
H

H
L
L
L
L
L
L
L
L

H
L
H
H
H
H
H
H
H

H
H
L
H
H
H
H
H
H

H
H
H
L
H
H
H
H
H

H
H
H
H
L
H
H
H
H

H
H
H
H
H
L
H
H
H

H
H
H
H
H
H
L
H
H

H
H
H
H
H
H
H
L
H

H
H
H
H
H
H
H
H
L

Select

L
H
H
H
H

, C = inputs 1C and 2C connected together
G = inputs 1G and 2G connected together

2

recommended operating conditions

Min
4.5

Supply voltage VCC
Normalized fan·out from each output. N

I

I

ITT54155
Nom
Max
5

High logic level

5

Min
4.5

25

125

ITT54156
Nom
Max
5

5,5

-55

Operating free-air temperature range. TA

3-189

25

125

Unit
V

10
0

Min
4.75

25

0

70

ITT74156
Nom Max
5

16

Low·level outPUt current. 10 L

5.25
20

10
-55

Supply voltage VCC

4.75

ITT74155
Nom Max

20

Low logic level

Operating free·air temperature range. TA

5,5

Min

25

°c

Unit

5.25

V

16

mA

70

°c

ITT54155, ITT54156, ITT74155, ITT74156
DUAL 2-UNE-TO-4-UNE DECODERS/DEMULTIPLEXERS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT54155.ITT74155
Parameter
VIH

High-level input voltage

V IL

Low-level input voltage

V OH

High-level output voltage

VOL

Low-level output voltage

IIH

Min

Typ'

Max

Unit

Test Conditions'

V

2
0.8

V
V

Vee = MIN. V IH = 2V.
10H = -800uA

0.4

V

Vee = MIN. VIL = 0.8V.
10L = 16mA

High-level input current (each
input)

40

uA

Vee = MAX. VI = 2.4V

1

mA

Vee = MAX. VI = 5.5V

IlL

Low-level input current (each
input)

-1.6

mA

Vee = MAX. VI = 0.4V

lOS

Short-circuit output current 3

-20

-55

mA

Vee = MAX ITT54155

-18

-57

lee

2.4

.,

Supply current

25
25

35
40

ITT74155
mA

Vee= MAX ITT54155
ITT74155

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
ITT54156. ITT74156
Parameter
V IH

High-level input voltage

Min

Typ'

Max

Unit

Test Conditions'

V

2

VIL

Low-level input voltage

0.8

V

10H

High-Ieveloutputcurrent

250

uA

Vee = MIN. VI = 2V.
V OH = 5.5V

VOL

Low-level output voltage

0.4

V

Vee = MIN. VIL = 0.8V.
IOL=16mA

40

uA

Vee = MAX. VI = 2.4V

1

mA

Vee = MAX. VI = 5.5V

-1.6

mA

Vee = MAX. VI = 0.4V

25

35

mA

Vee = MAX ITT54156

25

40

IIH

High-level input current (each
.input)

IlL

Low-level input current (each
input)

lee

Supply current

ITI74156

, All typical values are at Vee = 5V. TA == 25°e.
• For conditions shown as MIN or MAX. use 'the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted ata time.

3-190

ITT54155, ITT54156, ITT74155, ITT74156
DUAL 2~LlNE-TO-4-LlNE DECODERS/DEMULTIPLEXERS
SWITCHING CHARACTERISTICS. Vce

= 5V. TA = 25°C. N = 10
ITT54155.ITT74155

From
(Input)

To
(Output)

Levels
of Logic

tpLH

A.B.2C.
lG.or2G

Z

tpHL

A.B.2C.
lG.or2.G

tpLH

Parameter

Typ

Max

2

13

Z

2

AorB

Z

tpHL

AorB

tpLH

tpHL

1

Min

ITT54155.ITT74155
Min

Test
Conditions

Typ

Max

Unit

20

15

.23

ns

CL = 15pF•
RL = 4000

18

27

20

30

ns

CL = 15pF.
RL = 4000

3

21

32

23

34

ns

CL = 15pF.
RL = 4000

Z

3

21

32

23

34

ns

CL = 15 pF.
RL = 4000

lC

Z.

3

16

24

18

27

ns

CL = 15pF.
RL = 4000

lC

Z

3

20

30

22

33

ns

CL = 15pF.
RL = 4000

, tpLH = propagation delay time. low-to-high-Ievel output
tpHL = propagation delay time. high-to-Iow-Ievel output

schematic
4
kn

FROM {

FROM {
INPUT
GATES

INPUT
GATES

!..

--

1.6
kn

OUTPUT

OUTPUT GATE FOR 54156.74156
(ONE OF EIGHT SHOWN)

OUTPUT GATE FOR 54155. 74155
(ONE OF EIGHT SHOWN)

3-191

-r

ITT54155, ITT54156, ITT74155, ITT74156
DUAL 2-LlNE-TO-4-LlNE DECODERS/DEMULTIPLEXERS
schematic
STROBE
lG

VCC~--~-----'----r-~~~~~--,
4

4

2

kn

kn

kn

DATA
1C

TO OUTPUT GATES

1Z0.1Z1.1Z2.1Z3
1

kn
TO OUTPUT GATES
~--~~--1-~~--~-----'

4

2
kn

kn

4

2

kn

kn

1Z0.1Z1. 2Z0. 2Z1

TO OUTPUT GATES

SELECT ~~

1 Z2. 1 Z3. 2Z2. 2Z3

B

TO OUTPUT GATES

4
kn

.----4~--~~~--~-----.

4

2

kn

kn

kn
TO OUTPUT GATES

SELECT ~---r

1Z1. 1Z3. 2Z1. 2Z3

A

4

4

kn
DATA
2C

1 ZOo 1Z2. 2Z0. 2Z2

2

kn

~~

TO OUTPUT GATES

2Z0. 2Z1. 2Z2. 2Z3
STROBE
2G
0---+--__- - - - - - '

1

kn

GND o--~--~--------------~~-J
Component values shown are nominal.

W

V CC bus

3-192

ITT54157, ITT74157

ITT
-----

Quadruple 2-Line-To-1-Line
Data Selectors I Multiplexers

SEMICONDUCTORS

Quadruple 2-Line-To-1Line Data Selectors/
Multiplexers

PIN CONFIGURATION
(TOP VIEW)

•
•
•
•
•
•
•

Buffered Inputs and Outputs
Three Speed/Power Ranges Available
Typical Average Propagation Time 9 ns
Typical Power Dissip~tion 150 mW
Expand Any Data In!lut Point
Multiplex Dual-Data Buses
Generate Four Functions of Two Variables
(One Variable is Common)
• Source Programmable Counters
This monolithic, data selector/multiplexer
contains inverters and drivers to supply full
on-chip data selection to the four output
gates. A separate strobe input is provided. A
4-bit word is selected from one of two sources
and is routed to the four outputs.

FUNCTION TABLE
INPUT

POSITIVE LOGIC:
LOW LOGIC LEVEL AT S SELECTS A INPUTS
HIGH LOGIC LEVEL AT S SEL ECTS

B INPUTS.

OUTPUT

STROBE

SELECT

A

B

i:

H
L
L
L
L

X

X

L
L

L
H

X
X
X

H
H

X
X

L
H

L
L
H
L
H

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) .................................................... 7v
Input voltage .................................................................... 5.5V
Operating free-air temperature range: 54157
- 55° C to 125° C
74157~ .. ,., .. ,., ... , .. ,., .. , ............ O°C to 70°C
Storage temperature range: ............................................ - 65° C to 150° C
NOTE 1: Voltage values are with respect to network ground terminal.

3-193

ITT54157, ITT74157
Quadruple 2-Line-To-1-Line
Data Selectors I Multiplexers
Recommended operating conditions
74157

54157
MIN

NOM

MAX

MIN

NOM

MAX

UNIT

4.5

5

5.5

4.75

5

5.25

V

Supply voltage, VCC

-

High-level output current, 10H
Low-level output current, 10L

BOO

.:..-. BOO

uA

16

mA

70

°c

16

Operating free-air temperature TA

-

125

55

0

Electrical characteristics over recommended operating free-air temperature range
(unless otherwise noted)
MIN

PARAMETER
VIH

High-level input voltage

VIL

Low-level input yoltage

2

Input clamp voltage
High-level output voltage

VOL

Low-level output voltage

II

Input current at maximum
input voltage

IIH

High-level input current

ilL

Low-level input current

lOS

Short-circuit output
current §

.
t

Supply current

2.4

1.5

3.4

0.4

0.2

TEST CONDITIONSt

-

V

VCC= MIN,

Ij=-12mA

V

VCC= MIN,

VIH = 2V,

V

VIL=O.BV,

10H = -:- BOOuA

VCC= MIN,

VIH = 2V,

VIL=O.BV,

10L= 16mA

VCC= MAX,

VI = 5.5V

40

uA

VCC= MAX,

VI= 2.4V

1.6

mA

VCC= MAX,

VI = O.4V

55

mA

VCC= MAX

48

mA

VCC= MAX;

-

20'

V

mA

1

-

UNIT
V

O.B
-

VI
VOH

ICC

MAX

TYPt

30

See Note 2

ITT74157 MIN IS - 18.
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for
the appl icable device type.
=1= All typical values are at VCC=5V, TA=25'C.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with 4.5V applied to all inputs and all outputs open.

Switching characteristics, VCC = 5V, TA= 25°C
PARAMETER

FROM (INPUT)

tPLH

Data

TEST CONDITIONS

tPHL
tPLH

Strobe

tPHL

CL=15pF,
RL= 400 ,

tPLH
tPHL

Select

tPLH = propagation delay time, low-to-high-Ievel output
tPHL = propagation delay time, high-to-Iow-Ievel output

3-194

MIN

TYP MAX

UNIT

9

14

9

14

ns

13

20

ns

ns

14

21

ns

15

23

ns

1B

27

ns

ITT54157, ITT74157
Quadruple 2-Line-To-1-Line
Data Selectorsl Multiplexers

Block Diagram
lA
lB
2A
2B
3A
3B
4A

(2)

(3)
(5)

(6)

(11 )

(10)
(14)

4B
(1 )
SELECT S

STROBE G (15)

EQUIVALENT OF EACH INPUT

TYPICAL OF ALL OUTPUTS
-

.....- - V C C
100

n

Vcc--~~-4kU

INPUT

~--OUTPUT

3-195

I

ITT54160 THRU ITT54163
ITT74160 THRU ITT74163

mm ________________S.Y_N_CH_R_O_N_O.U_S__4_-B_IT__CO__U_NT_E_R_S

-___L_L

SEMICONDUCTORS

SYNCHRONOUS 4-BIT COUNTERS
ITT54160. ITT54161. ITT74160. ITT74161 •..• SYNCHRONOUS COUNTERS WITH DIRECT
CLEAR
ITT54162. ITT54163. ITT74162. ITT74163 ... FULLY SYNCHRONOUS COUNTERS

•

Internal Look-Ahead for Fast
Schemes
• Carry Output for n-Bit Cascading
• Synchronous Counting
• Synchronously Programmable
• Load Control Line
• Diode-Clamped Inputs
• Typical Maximum Input Clock
cy ... 32 MHz

Counting
DUAL-IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW) t

Frequen-

r:

These synchronous, presettable counters feature an
internal carry look-ahead for application in highspeed counting schemes. The ITT54160, ITT54162, ITT74160, and ITT74162 are decade
counterS and the ITT54161, ITT54163, ITT74161.
and ITT74163 are 4-bit binary counters. Synchro-nous operation is provided by having all flip-flops
clocked simultaneously so that the outputs change
coincident with each other when so instructed by
the count-enable inputs and internal gating. This
mode of operation eliminates the output counting
spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock
input triggers the four J-K master-slave flip-flops
on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the
outputs may be preset to either state. As presetting
is synchronous, placing a low level on the load input
disables the counter and causes the outputs to
agree with the data inputs after the next clock
pulse. The clear function for the ITT54160, ITT54161, ITT74160, and ITT74161 is asynchronous
and a low level at the clear input sets all four of
the flip-flop outputs low regardless of the state of
the clock. The clear function for the ITT54162, ITT54163, ITT74162, and ITT74163 is synchronous
and a low level at the clear input sets all four of
the flip-flop outputs low after the next clock pulse.

DATA

INPut

ENABLE

P

POSITIVE LOGIC: SEE DESCRIPTION

t plN ASSIGNMENTS FOR THESE CIRCUITS ARE THE SAME
FOR ALL PACKAGES.

This synchronous clear allows the count length to
be modified easily as decoding the maximum count
desired can be accomplished with one external
NAND gate. The gate output is connected to the
clear input to synchronously set the counter to
0000 (LLLL).
The carry look ahead circuitry provides for
cascading counters for n-bit synchronous applications w.ithout additional gating. Instrumental in
accomplishing this function are two count-enableinputs and l!- carry output. Both count-enable inputs
(P and T) must be high to count, and input T is

3-196

ITT54160 THRUITT54163, ITT74160 THRU ITT74163
SYNCHRONOUS 4-BIT COUNTERS
fed forward to enable the carry output. The carry
output thus enabled will produce a positive output
pulse with a duration approximately equal to the
positive portion of the Q A output. This positive
overflow carry pulse can be used to enable successive cascaded stages. High-to-Iow-Ievel transitions at the enable P or T inputs should occur only
when the clock input is high.
All inputs are diode-clamped to minimize
transmission-line effects. thereby simplifying system design. A full fan-out to ten normalized Series

54174 loads is available from each of the outputs
in the low-level state. A fan-out to 20 normalized
Series 54174 loads is provided in the high-level
state to facilitate connection of unused inputs to
used inputs. Input clock frequency is typically 32
megahertz and power dissipation is typically 325
milliwatts.
Series 54 circuits are characterized for operation
over the full military temperature range of-55°C
to 125° C; Series 74 circuits are characterized for
operation from O°C to 70°C.

ITT54160, ITT54162, ITT74160, ITT74162 SYNCHRONOUS DECADE COUNTERS
typical clear, preset, count. and inhibit sequences
Illustrated below is the following sequence:
1. Clear outputs to zero.
2. Preset to BCD seven.

U

CLEAR
(54160, '14160)

3. Count to eight. nine. zero. one. two, and three.
4. Inhibt.

(ASYNCHRONOUS)

1

- - - ,L.....!.J
1,1r--------------------------------(SYNCI,RQNQUS)
1

CLEAR
(54162,74162)

u

LOAD

L=
L=
[=

DATA
INPUTS

1-------~----~I

__

CLOCK
154160,74160)
CLOCK
(54162.741621

ENABLE P

E:B
A;;::B

Active- Low Data
(Figure II)

L
H
L
H

L
L
H
H

AB
A;;::B

A~B

These circuits have been designed to not only in·
corporate all of the designer's requirements for
arithmetic operations. but also to provide 16 .possible functions of two Boolean variables without
the use of external circuitry. These logic functions
are selected by use of the four function-select inputs (SO. S1. S2. S3) with the mode control input
(M) at a high level to disable the internal carry. The
16 logic functions are detailed in the function table
and include exclusive-OR. NAND. AND. NOR. and
OR functions.

3- 215

ITT54181.ITT74181
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS
The ITT54181/1TT74181 is designed with a Darlington output configuration (54H/74H type) to reduce the high-logic-level output impedance and
thereby improve the turn-off propagation delay
time. All outputs are rated at a normalized fan-out
of ten at the low logic level and increased to a fanout of 20 at the high logic level. The increased highlogic-level fan-out allows the system designer more
freedom in tying unused inputs to driven inputs.
The ITT54181 is characterized for operation over
the full military temperature range of -55°C to
125° C; the ITT74181 is characterized for operation
from O°C to 70°C.
121

1231 (22)

(1)

(21H20)

ALU Signal Designations

The ITT54181 and ITT74181 can be used with
either the signal designations as shown in Figures
lor II.
The logic functions and arithmetic operations obtained with signal designations as in Figure'l are
given in Table I; those obtained with the signal designations of Figure II are given in Table II.

(1911181

121

12311221

(H

(1IH1a)

(211(20)

FIGURE II
(FOR TABLE II)

FIGURE I
(FOR TABLE I)
en

(7)

171

Co
54f14181

114l

181

'"
(91

nOl

nll

(131

1111115)

!l61

I

191

I

Illi

no)

(1711151

lit)

I

(131

171

I
nOI

54fl4182

171

110)

Ill)

1121

1121

191

1111

191

TABLE I
Active-High Data
M = L. Arithmetic Operations

M=H
Selection
S1 S2 S1 So
L L
L L
L L
L L
L H
LH
LH
L H
H L
H L
H L
H L
H H
H H
H H
H H

L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H

C = 0
_n
Cn
1
H

Logic
Functions

L F=A
H F=A+B
L F = AB
H F=O
L F = AB
HF=B
LF=A@B
H F = AS
L F=A+B
H F=AEt>B
L F=B
H F = AB
L F=1
_
H F=A+B
L F=A+B
H F=A

= =

F= A

F= A+ B

F= A+ B
F = MINUS 1 (2's COMPL)
F= A PLUSAB
F = (A + B) PLUS AS
F = A MINUS B MINUS 1
F = AB MINUS 1
F = A PLUSAS
F = A PLUS S
F = (A +
PLUS AS
F=ASMINUS1
F=APLUSA'
F = (A + B) PLUS A
F = (A + "B"i PLUS A
F = A MINUS 1

Bi

• Each bit is shifted to the next more significant position.

3 - 216

F = A PLUS 1
F = (A - S) PLUS 1
F = (A + S) PLUS 1
F = ZERO
F = A PLUS ABPLUS 1
F = (A + S) PLUS AS PLUS 1
F=AMINUSB
F= AS
F = A PLUS AS PLUS 1
F = A PLUS S PLUS 1
F = (A + B) PLUS AB PLUS 1
F = AS
F = A PLUS A PLUS 1
F = (A + B) PLUS A PLUS 1
F = (A + B) PLUS A PLUS 1

F= A

ITT54181,ITT74181
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS
TABLE II
Active-Low Data
M = L; Arithmetic Operations

M=H
Selection
S3 S2 Sl
So
L L
L L
L L
L L
L H
L H
LH
L H
H L

L
L
H
H
L
L
H
H
L

H L

L

H L
H L
H H
H H

H
H
L
L

H H
H
H HH·

c;,

= 1
Cn =l=H

Logic
Functior-

L F=~
HF = AB
L F =A + B
H F=l
L F=A+B
H F=B
LF=A@B
H F=A+B
L F = AB
H F=A@ B
L F=B
H F=A+B
L F = 0_
H F = AB
L '~= AB
H
A

F= A
F= AB
F= AB
F = ZERO
F = A PLUS (A + B) PLUS 1
F = AB PLUS (A + B) PLUS 1
F= MINUS B
F = (A + 'B) PLUS 1
F = A PLUS (A + B) PLUS 1
F = A.fLUS B PLUS 1
F = AB PLUS (A + B) PLUS 1
F = (A + B) PLUS 1
F = A PLUS A PLUS 1
F= ABPLUSAPLUS 1
F = ABPLUS A PLUS 1
F= APLUS 1

F=AMINUS1
F = AB MINUS 1
F = ABMINUS 1
F = MINUS 1 (2's COMPL)
F = A PLUS (A + s'l
F = AB PLUS (A +
F = A MINUS B MINUS 1
F=A+'B
F = A PLUS (A + B)
F = Al'LUS B
F = AB PLUS (A + B)
F= A+ B
F = A PLUSA*
F = AB PLUSA
F = ABPLUSA

Bi

IT-

F= A

,

"'.,

* Each bit is,shlfted to the next more significant position.

absolute maximum ratings over operating
temperature range (unless otherwise noted)
Supply voltage. VCC (see Note 1) ........................... 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) ........................ 5.5V
Operating free-air temperature range:
ITT54181 ....................................... -55°Cto 125°C
ITT74181 ................................................ 0°Cto 70°C
Storage temperature range ........... -65°C to 150°C

Notes: 1. Voltage values are with respect to network
ground terminal.
.
2. This is the voltage between two emitters of
a multiple emitter transistor. For this circuit.
this rating applies to each A input conjunction
with inputs S2 or 53. and to each B input
in conjunction with inputs SO or S3.

recommended operating conditions
ITT54181
ITT74181
Min Nom Max Min Nom Max
Supply voltage V CC
Normalized fan-out from each
output. N
Operating temperature, TA

4.5

I

I

High logic level
Low logic level

5

5.5

4.75

20
10
-55

3-217

125

5

5.25

Unit
V

20
10
0

70

°c

ITT54181, ITT.74181
ARJTHMETIC LOGIC UNITS/FUNCTION GENERATORS
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)

VIH

Typ

Min

Parameter
High-level input voltage

1

Test Conditions

2

V

2

Low-level input voltage

VOH

High-level output voltage any
output except A
B

IOH

High-level output current.
A
B output only

250

uA

VOL

Low-level output voltage

0.4

V

IIH

High-level input current (mode
input)

40

uA

= MIN. V IH = 2V.
= 0.8V.
10H = -800uA
Vee = MIN. V IH = 2V.
V IL = 0.8V. V OH = 5.5V
Vee = MIN. V IH = 2V.
V IL = 0.8V. IOL = 16 mA
Vee = MAX. VI = 2.4V

IIH

High-level input current (any A
or B input)

120

uA

Vee

= MAX. VI = 2.4V

IIH

High-level input current (any S
input)

160

uA

Vee

= MAX. VI = 2.4V

IIH

High-level input current (carry
input)

200

. uA

Vee

= MAX. VI = 2.4V

IIH

High-level input current (any
input)

1

mA

Vee = MAX. VI

IlL

Low-level input current (mode
input)

-1.6

mA

Vee

= MAX. VI = O.4V

IlL

Low-level input current (any A or
B input)

-4.8 . .

mA

Vee

= MAX. VI = O.4V

IlL

Low-level input current (any S
input)

-6.4

mA

Vee

= MAX. VI = O.4V

IlL

Low-level input current (carry
input)

-8

mA

Vee

= MAX. VI = O.4V

lOS

Short-circuit output current

-20

-55

mA

Vee

= MAX

-18

-57

ITT54181
ITT74181

mA

Vee

= MAX

ITT54181
ITT74181

mA

Vee

= MAX

ITT54181
ITT74181

lee

0.8

=

=

Supply current

Supply current

3

V
V

2.4

88

127

88

140

94

135

94

150

Vce
V IL

= 5.5V

typical values are at Vee = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the. applicable device type.
Not more than one output should be shorted at a time.

1 All

3

Unit

V IL

lee

2

Max

3 - 218

ITT54181,ITT74181
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

SWITCHING CHARACTERISTICS. VCC = 5V. TA = 25°C. N = 10 (C L = 15 pF. RL = 400fi)

tpLH

To
(Output)

From
(Input)

Parameter'
Cn
Cn

Typ

Max

Unit

Cn+4

12
13

18
19

ns

Any F

13

19

ns

12

18

M = OV
(5UM or DIFF model)

ns

M = OV. 50 = 53 = 4.SV
51 = 52 = OV
(5UMmodel)

ns

M = OV. 50 = 53 = OV.
51 = 52 = 4.5V
(DIFFmodel)

ns

M = OV. 50 = 53= 4.SV.
51 = 52 = OV
(5UMmodel)

ns

M = OV. 50 = 53 = OV.
51 = 52 = 4.5V
(DIFF model)

ns

M = OV. 50 = 53 = 4.SV.
51 = 52 = CN
(5UMmodel)

ns

M = OV. 50 = 53 = OV.
51 = 52 = 4.5V
(DIFF model)

ns

M = 4.5V (logic model)

ns

M = OV. 50 = 53 = OV.
51 = 52 = 4.5V
(DIFF model)

Min

tpHL
tpLH
tpHL
tpLH

AnyAor 8

G

tpHL
tpLH

AnyAor 8

G

tpHL
tpLH

AnyAor B

P

tpHL
tpLH

AnyAor B

P

tpHL
tpLH

AnyAor B

Any F

tpHL
tpLH

AnyAor B

Any F,

tpHL
tpLH

AnyAor B

Any F

tpHL
tpLH

Any A or B

A=B

tpHL

1

13

19

13

19

17

25

17

25

13

19

17

25

17

25

17

25

28

42

21

32

32

48

23

34

32

48

23

34

35

50

32

48

tpLH = propagation delay time. low,to-high-Ievel output
tpH L = propagation delay time. high-to-Iow-Ievel output

3-219

Test Conditions

--

ITT54181, ITT74181
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

functional block diagram

S3
S2
SI

I

so

B3

0-.

~

A3

B2

0-<

k>

W>-

~

Gor y

~

~

I

Cn+4
P or

=

x

F3

))

,JU

~

,

I

J

A2
F2

,JU
Bl

()-<

.-4)

~

T

~

A- B

I
Al

1)

BO

C)--<

>-{:;

~
I

~D

:::J))

en

AO

M

3-220

?U

F

Fo

_

I

ITT54182, ITT74182

mm
-L.L _ _ _ __

LOOK-AHEAD CARRY GENERATOR

SEMICONDUCTORS

MSI LOOK-AHEAD CARRY GENERATOR
The ITT54182. ITI74182 is a high-speed. lookahead carry generator capable of anticipating a
carry across four binary adders or group of adders.
It is cascadable to perform full look-ahead across
n-bit adders. with only 13 nanosecond delay for
each level of look-ahead. Carry. generate-carry. and
propagate-carry functions are provided as enumerated in the pin designation table above.

DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)t

The ITT54182 or ITT74182. when used in conjunction with the ITT54181 or ITT74181 arithmetic
logic unit (ALU) provides full high-speed carry lookahead capability for up to n-bit words. Each ITT54182/1TT74182 generates the look-ahead (anticipated carry) across a group o'f four ALUs and. in
addition. other carry look-ahead circuits may be
employed to anticipate carry across sections of four
look-ahead packages up to n-bits.
Carry
inputs
and
outputs
of
the
ITT54181/1TT74181 are, in their true form. and the
carry propagate (P) and carry generate (G) are in
negated form; therefore. the carry (input. outputs.
generate. and propagate) functions of the lookahead circuit are implemented in the compatible
forms. Reinterpretations of carry functions at the
ITT54181/1TT74181 are also applicable and compatible with the look-ahead package. Logic equations are:

LOGIC: SEE DESCRIPTION

tplN ASSIGNMENTS FOR THESE CIRCUITS

ARE THE SAME FOR

ALL PACKAGES.

absolute maximum ratings over operating freeair temperature range (unless otherwise noted)

Cn + x = GO + POC n
Cn + y =G 1 +P1GO+P1POCn
Cn + z = G2 + P2 G 1 + P2 P 1 GO + P2 P1 POCn
G = G 3 + P3 G2 + P3 P2 G 1+ P3 P2 P1GO
P = P3 P2 P1 Po
Inputs of the ITT54182/1TT74182 are diodeclamped to minimize transmission-line effects. and
Darlington outputs are employed to improve turnoff times and reduce propagation delay times. Typically. the average carry time is 13 nanoseconds.
and power dissipation is typically 180 milliwatts or
11 milliwatts per gate. The ITT54182 is characterized for operation over the full military temperature
range of -55°C to 125°C; the ITT74182 is characterized for operation from 0° C to 70° C.

Supply voltage V CC (see Note 1) ................ ;........... 7V
Input voltage (see Note 1) .................................... 5.5V
Interemitter voltage (see Note 2) ........................ 5.5V
Operating free-air temperature range:
ITT54182 ....................................... - 55°C to 125°C
ITT74182 ................................................ O°Cto 70°C
Storage temperature range ........... -65°C to 150°C

Notes: 1. Voltage values are with respect to network
ground terminal.
2. This is the voltage between two emitters of
a multiple-emitter transistor. For this circuit.
this rating applies to each G input in conjunction with any other G input or in conjunction
with any P input.

3- 221

ITT54182, ITT74182
LOOK-AHEAD CARRY GENERATOR
PIN DESIGNATIONS
DESIGNATION

PIN NOS.

FUNCTION

GO. Gl. G2. G3

3. 1. 14.5

ACTIVE-LOW
CARRY GENERATE INPUTS

PO. Pl.P2.P3

4.2.15.6

ACTIVE-LOW
CARRY PROPAGATE INPUTS

Cn

13

CARRY INPUT

Cn + x. Cn + y.
Cn +z

12. 11. 9

CARRY OUTPUTS

G

10

ACTIVE-LOW
CARRY GENERATE OUTPUT

P

7

ACTIVE-LOW
CARRY PROPAGATE OUTPUT

VCC

16

SUPPLYVOLTAGE

GND

S

GROUND

recommended operating conditions
ITT54182
ITT74182
MIN NOM MAX MIN NOM MAX UNIT
Supply voltage

Vee

Normalized fan-out from each
output, N

4.5

5

I High logic level
I Low logic level

5.5

4.75

5

20
10
-55

Operating free-air temperature range. T A

25

125

5.25

V

20
10
0

25

70

°c

EI..ECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

Min

Typ

1

Max

2

Unit

Test Conditions 2.

V

V IL

Low-level input voltage

VR

Input Clamp Voltage

VOH

High-level output voltage

VOL

Low-level output voltage

0.4

V

IIH

High-level input current (C n
input)

SO

IIH

High-level input current (P3
input)

IIH

High-level input current (P2
input)

O.S

V

V

uA

= MIN.I i = -12mA
VCC = MIN. V IH = 2V.
V IL = O.SV.IOH = -SOOuA
VCC = MIN. V IH = 2V.
V IL = O.SV. IOL = 16 mA
VCC = MAX. VI = 2.4V

120

uA

Vee

= MAX. VI = 2.4V

160

uA

Vee

= MAX. VI = 2.4V

-1.5
2.4

V

3 - 222

VCC

ITT54182, ITT74182
LOOK-AH EAD CARRY GEN ERATOR
E lE CTR ICAl CH A RACTE R ISTI CS over recommended operating free-air temperature range
(unless otherwise noted) (continued)
Min

Parameter

Max

TVp'

Unit

Test Conditions 2

IIH

High-level input current (PO. Pl.
or G3 input)

200

uA

Vee = MAX. VI = 2.4V

IIH

High-level input current (GO or
G2 input)

360

uA

Vee = MAX. VI = 2.4V

IIH

High-level input current (G 1
input)

400

uA.......

Vee = MAX. VI =.2.4V

IIH

High-level input current (anv
input)

1

rnA

Vee = MAX. VI = 5.5V

IlL

Low-level input current (en
input)

-3.2

rnA

Vee = MAX. VI = 0.4V

IlL

Low-level input current (P3
input)

-4.8

rnA

Vee = MAX. VI = 0.4V

IlL

Low-level input current (P2
input)

-6.4

rnA

Vee = MAX. VI = 0.4V

IlL

Low-level input current (PO. Pl.
or G3 input)

-8

rnA,

Vee = MAX. VI = 0.4V

IlL

Low-level input current (GO or
G2 input)

-14.4

rnA

Vee = MAX. VI = 0.4V

IlL

Low-level input current (G 1
input)

-16

rnA

Vee = MAX. VI = 0.4V

lOS

Short-circuit output current

leeH

Supply current. all outputs high

3

-40

-100
27

rnA

Vee = MAX

rnA

Vee = MAX

ITT54182
ITT74182

rnA

Vce = MAX

ITT54182
ITT74182

27
ICCL

Supply current. all outputs low

SWITCHING CHARACTERISTICS. Vee
Parameter

45

65

45

72

= 5V. TA = 25°e. N = 10
Min

TVp'

Max

Unit

Test Conditions 2

tpLH

Propagation delay time.
low-to-high-Ieveloutput

11

17

ns

eL = 15pF.R L =400Q

tpHL

Propagation delay time.
high-to-Iow-Ieveloutput

15

22

ns

CL = 15 pF. RL = 400Q

,

, All typical values are at Vce = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not niore than one output should be shorted at a time and duration ofthe short-circuit test should not exceed 1 second.
2

3-223

IIT54182, IIT74182
LOOK-AHEAD CARRY GENERATOR

functional block diagram

~--oG

P30----+-r-r~~~+_~

G30----+~~--4-~+_~

P20----+-r~--~~+_~

G2o----+-r----4-~+-~

P10----+......-----!--I---+-I
G1o----r------+-.--;~

POo---......------~----~
GOO-----------~----~

3 - 224

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH
DOWN/UP MODE CONTROL

ITT
----SEMICONDUCTORS

SYNCHRONOUS UP/DOWN COUNTERS
WITH DOWN/UP MODE CONTROL

• Counts 8-4-2-1 BCD or Binary
Down/Up Count Control Line
• Single
• Count Enable Control Input
• Ripple Clock Output for Cascading
Asynchronously Presettable with Load
• Control
•

•

•
•
•

DUAL -IN - LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)T

INPUT{

DATA
B

I

OUTPUTS {

Parallel Outputs

QA

Cascadable for n-Bit Applications

a4

fNABL
INPUTS
DOWNf
UP

Typical Average Propagation Delay (Clock
to Q Output) ... 20 ns
Typical Power Dissipatian ... 325 mW

·13 CLOCK
RIPPLE}.
OUTPUTS
12

~~~f

OUTPUTS{

Typical Maximum Clock Frequency...25 Mhz

."
ASYNCHRONOUS INPUTS: LOW INPUT TO LOAD SETS
QA 'A,QB 'B,QC'C, AND QD'D

The ITT54190. ITT54191. ITT74190. and ITT74191 are synchronous. reversible up/down
counters having a complexity of 58 equivalent
gates. The ITT54191 and ITT74191 are 4-bit
binary counters and the ITT54190 and ITT74190
are BCD counters. Synchronous operation is
provided by having all flip-flops clocked simultaneously so that the outputs change coincident with
each other when so instructed by the steering logic.
This mode of operation will eliminate the, putput
counting spikes which are normally associated with
asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are
triggered on a low-to-high-Ievel transition of the
clock input if the enable input is low.. A high at the
enable input inhibits counting. Level changes at the
enable input should be made only when the clock
input is high. The direction of the count is determined by the state of the down/up input. When
low. the counter counts up and when high. it counts
down.

fPIN ASSIGNMENTS FOR THESE CIRCUITS ARE THE
SAME FOR ALL PACKAGES.

These counters are fully programmable; that is. the
outputs may be preset to any state by placing a
low on the load input and entering the desired data
at the data inputs. The output will change to agree
with the data inputs independently of the state of
the clock input. This feature allows the counters to
be used as modulo-N dividers by simply modifying
the count length with the preset inputs.
Input buffers have been
requirement to only one
load at all inputs except
when the output of the
what limited.

3-225

used to lower the fan-in
normalized Series 54174
enable. This is important
driving circuitry is some-

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP
MODE CONTROL
Two outputs have been made available to perform
the cascading function: ripple clock and maximum/minimum count. The .Iatter output produces
a high-level output pulse with a duration approximately equal to one complete cycle of the clock
when the counter overflows or underflows. The ripple clock output produces a low-level output pulse
equal in width to the low-level portion of the clock
input when an overflow or underflow condition exists. T.he counters can be easily cascaded by feeding
the ripple clock output to the enable input of the
succeeding counter if parallel clocking is used, or

to the clock input if parallel enabling is used. The
maximum/minimum count output can be used to
accomplish look-ahead for high-speed operation.
Power dissipation is typically 325 milliwatts for
either the decade or binary version. Maximum input
clock frequency is typically 25 megahertz and is
guaranteed to be at least 20 megahertz.
The ITT54190 and ITT54191 are characterized for
operation over the full military temperature range
of - 55°C to 125°C; the ITT74190 and ITT74191
are characterized for operation from O°C t070°C.
absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)

ITT54190, ITT74190 DECADE COUNTERS

Supply voltage, VCC (see Note 1) ........................... 7V
Input voltage (see Note 1) .................................... 5.5V
Operating free-air temperature range:
ITT54190, ITT54191 .................. - 55°C to 125°C
ITT74190, ITT74191 ........................... ooC to 70°C
Storage temperature range ........... - 65°C to 150°C
Note
1: Voltage values are with respect to
network ground terminal.

typical load, count, and inhibit sequences
Illustrated below is the following sequence:
1. Load (preset) to BCD seven.
2. Count up.tO eight, nine (maximum). zero, one,
and two.
3. Inhibit.
4. Count down to one, zero (minimum). nine,
eight, and seven.

r-

_---;..--"'-11
CLOCK

DOWNJUP ~L""'--+!...-_ _ _ _ _ _ _.-J

ENABLEIL+---'-!...-_ _ _ _ _---l

aB----ri
---~

ac -

---["'11

---~

-- --,
aD ____

. I~;------------~----~~----------~I
-!...-------!...---!-----.-J
L
II

I
L..J.J

MAX MIN

f - '- - - - - ,

L-____

===J ::, ,
I,

RIPPLE CLOCK

I

:~I------~

----I
___ ..J
:

U

I I

I I
7

I I

8

I II-----

~

9

U
0

COUNT UP

1

2

-I--

INHIBIT

LOAD

3-226

I

2

--I I---

-·"s .
COUNT DOWN - - - -

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP
MODE CONTROL
recommended operating conditions
(,

ITT54190, ITT54191 ITT74190, ITT74191
Min

Nom

4.5

Supply voltage, Vee
Normalized fan-out from each output, N

Max

Min

5.5

4.75

5

Nom

Max

Unit

5

5.25

V

20

20

High logic level

10

Low. logic level

0

Input clock frequency, fclock

10

20

20

0

MHr

Width of clock input pulse. tw(clock)

25

25

ns

Width of load input pulse, tw(load)

35

35

ns

Data setup time, t5etup (See Figures 1 and 2)

20

20

ns

0

0

ns

Data hold time. t hold

-55

Operating free-air temperature. TA

25

125

0

25

70

ITT54191. ITT74191 BINARY COUNTERS
typical load. count. and. inhibit sequences
Illustrated below is the following sequ.ence:

1: Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum). zero,
one, and two.

,, ,,

LOA0-U

A

-.ll-~-L:
I

,

3. Inhibit.
4. Count down to one, zero (minimum). fifteen,
fou rteen, and thirteen.

=

'1,r
__
, ,
II

DATA
INPUTS

I

1

,

I

__

cJ17L-_

0-n-:'L-_
,
CLOCK

--'I .

DOWN/UP IL._---'--'-_ _ _ _ _ _ _ _

-,IL-+---;"7'
" _ _ _ _ _ _ _-!
"

ENABLE

os: =W.1:1--_-,

L

L-_ _...J

__--I
-I

00 -

"
"
""

,'
",I

MAx/M'N=-=~LI--.!:..;.:_-IIlL___-..!.___-"----..!._-lIlL_____
,,
--I

,'

--113 ::

IPPLE CLOCK -

U

1 I

14

15

U

I:

2

2: 2

I II---COUNTUP----ti-·

IN·HIBIT--I

~
LOAD

3 -227

I

1

15

14

13

l--COUNTDOWN---

°c

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP1DOWN COUNTERS WITH
DOWN/UP MODE CONTROL
E LECTR I CAL C H ARACTE RISTI CS. over recommended operating free-air temperatu re range
(unless othelWise noted)

Parameter

1
2

3

ITT54190.ITT54191
Typ 1
Max
Min

ITT74190. ITT74191
Typl
Min
Max

Unit

2

2

V

Vee =MIN

Test Conditions 2

V IH

High-level input
voltage

V IL

Low-level input
voltage

0.8

0.8

V

Vee = MIN

VI

Input clamp voltage

-1.5

-1.5

V

Vee = MIN. II

V OH

High-level output
voltage

VOL

Low-level output
voltage

0.4

0.4

V

II

High-level input
current at maximum
input voltage

1

1

mA

= -12mA
Vee = MIN. V IH = 2V.
V IL = 0.8V. 10H = -800uA
Vee = MIN. V IH = 2V.
V IL '= 0.8V. 10L = 16mA
Vee = MAX. VI = 5.5V

IIH

High-level input
current at any input
except enable

40

40

uA

Vee

= MAX. VI = 2.4V

IIH

High-level input
current at enable
input

120

120

uA

Vee

= MAX. VI = 2.4V

IlL

Low;level input
current at any input
e>«:ept enable

-1.6

-1.6

mA

Vee

= MAX. VI = 0.4V

IlL

Low-level input
current at enable
input

-4.8

-4.8

mA

Vee

= MAX. V I = 0.4V

lOS

Short-circuit output
current 3

-65

mA

Vee

= MAX

ICC

Su pply current

105

mA

Vee

= MAX. See Note 2

2.4

2.4

-65

-20

65

=

105

V

-18

65

=

All typicalvalues are atV ee
5V. TA
25°e.
.
For conditions shown as MAX or MIN. use appropriate value specified under recommended operating conditions for
the applicable device type.
Not more than one output should be shorted at a time.

Note

2: ICC is measured with all inputs grounded and all outputs open.

3- 228

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP
MODE CONTROL

SWITCHING CHARACTERISTICS, Vee

Parameter'

From
(Input)

To
(Output)

t max
tpLH

Load

tpHL
tpLH

Min

Typ

20

25

Ok 0B' DC,

22

33

33

50

Data A. B. C.
D

0A' 0B' DC,

14

22

°D

35

50

Clock

Ripple Clock

13

20

16

24

tpHL
tpLH

Clock

tpHL
tpLH

Clock

Ok 0B' 0C-

16

24

°D

24

36

Max/Min

28

42

37

52

30

45

30

45

21

33

22

33

tpHL
tpLH

Down/Up

Ripple Clock

tpHL
tpLH

Max

°D

tpHL
tpLH

= 5V. TA = 25°e. N = 10

Down/Up

Max/Min

tpHL

, t max = maximum clock frequency
tpLH = propagation delay time. low-to-high-Ievel output
tpHL = propagation delay time. high-to-Iow-Ievel output

3- 229

Unit

Test Conditions

MHz

CL = 15pF.R L =400rl

ns

CL = 15 pF. RL = 400rl

ns

CL = 15 pF. RL = 400rl

ns

CL = 15 pF. RL = 400rl

ns

CL = 15pF. RL = 400rl

ns

CL = 15 pF. RL = 400rl

ns

CL = 15 pF. RL = 400rl

ns

CL = 15pF.R L =400rl

ITT54190, ITI54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH
DOWN/UP MODE CONTROL
ITT54191, ITT74191 BINARY COUNTERS
functional block diagram
CLOCK

-

DOWNI

UP

DATA
INPUT A

ENABLE

I

r--f

MAX

I MIN

OUTPUT

I

;V+

n

p

RIPPLE
CLOCK

I~
f

-

A
I"-

..........

-

PRESET
QA

J

OUTPUT QA

I--C CLOCK

f- f-

-

QA I -

t-- K

CLEAR

'(

--/
DATA
INPUT B

I~

-

n
r- r--

~~

~
'--

-~
[)ATA

INPUT C

I

n

J

PRESET
QB

OUTPUT QB

CLOCK

r-- K CLEA~B -

y

-"

~~

" Dc

PRESET

r- - J

OUTPUT

Dc

I--C CLOCK
~

-

K CLEAi?c

~

?
DATA
INPUT 0

I

j

----;

-

-J

PRESET
QD

OUTPUT QD

--C CLOCK
-K

aD
CLEAR

I'
1

LOAD

3-230

r-

ITT54190, ITT54191, ITT74190, ITT74191
SYNCHRONOUS UP/DOWN COUNTERS WITH
DOWN/UP MODE CONTROL
ITT54190. ITT74190 DECADE COUNTERS

functional block diagram

-

CLOCK

/

DOWN
UP

DATA
INPUT A

ENABLE
G

DATA
INPUT B

I
I

~.

~ 1-1-

-

,...-

'"

1

flU

I- -

..........

l...-

f--

I>
-

OUTPUTQA

-

KCLEA~A ly

II.

-

,...- f--

---

~

1

l...-

I--

n
"

-DATA
INPUT 0

PRESET
J
0A

1

....1---1

OUTPUT

~ CLOCK

-V

I

MAX I MIN

)..

1

DATA
INPUT C

RIPPLE
CLOCK

J

PRESET
0B

CLOCK

KCLEA'pB

r- - J
~

n-

PRESET

Dc

KCLEA~Iy

I--

J

1

r-

PRESET
00

L.( CLOCK

3-231

OUTPUT Dc

CLOCK

-

l...-

' - 1---1

",LOAD

l-

'(

j\.

-

OUTPUTOB

'----- K

n

CLEA~O

'1'

OUTPUT 00

I

mm

..I....L

ITT54/74192,ITT54/74193
SYNCHRONOUS 4-81T UP-DOWN COUNTER

-o/SEMICONOUCTORS - - - - - - - - - - - - - - - - - - - -

SYNCHRONOUS 4-B'T UP-DOWN
CO U NTE R (dual clock with' clea'r)
DUAL -IN-LINE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

• Cascading Circuitry Provided Internally
• Guaranteed fanout of 10 TTL loads over
the full temperature range and supply
voltage ranges.
• High capacitive drive capability.
• Individual Preset to Each Flip' Flop.
• Typical power dissipation of 325 mW

},~"

• The input/output characteristi'cis provide
easy interfacing with DTL930, TTL9000,
TIL7400 and MSI families .
•• Input clamp diodes limit high speed line
termination effects
",.'

}

OUTPUTS

}

INPUTS

• Fully Independent Clear Input
II

• Typical Maximum Input Count
Frequency.•...32 MHz

'-----I

.)

LOGIC LOW INPUT TO LOAO SETS

OA=A , 0 8=8,

The M SI ITT5417 4192 is a synchronous \J,p(down
decade counter with separate up/down clockS'. parallel load (asynchronous) facility. two terminal
count outputs for multi-decade operation. and a"~
asynchronous overriding master reset
The MSI ITT54174193 is a synchronous up/down
4-bit binary counter with separate up/down clocks.
parallel load (asynchronous) facility. terminal count
outputs for multi-decadeTPperations. and an asynchronous overriding master reset.
Counting is synchronous. with the outputs changing state after the low to high transition of either
the count-up clock (CPU) or count-down clock
(CPO). The direction of counting is determined by
which clock input is pulsed while the other clock
input is high. (incorrect counting will occur if both
the count-up clock and count-down clock inputs
are pulsed simultaneously.) The counter will respond to a clock pulse on either input by changing
to the next appropriate state of a binary sequence.

atc . a 0=0

The counter hasra parallel load (asynchronous) facility which pernjlits the counter to be reset. Whenever the data e'~able (Pl;) input is low. the information present on the parallel data inputs (P A- PB •
PC. PO) will be loaded into the counter and appear
on the outputs independent of the conditions of the
clock inputs. When the data enable input goes low.
this information is stored in the counter and when
the counter is clocked it changes to the next appropriate state in the counts sequence. The data
inputs are inhibited when the data enable is high
and have no t;lffect on the counter.
The terminal count-up (T!=:U) and terminal countdown (TC O) outputs (Carry and Borrow respectively) allow multistage binary counter operations
without additional logic. The counters are cascaded
by feeding the terminal count-up output to the
count-up clock input and the terminal'count-down
output to the count-down input of the following
counter.

3-232

,

ITr54/74192, ITT54/74193
,

/

.,\

1

SYNCHRONOUS 4-81T UP-DOWN COUNTER
absolute maximum ratings (above which the
useful life may be impaired)
.
Storage Temperature ................ -65° e to + 150 °e
Temperature (Ambient)
Under Bias ................................. -55°eto +125°e
Vee Pin Potential to Ground Pin -0.5V to +7 Volts
Voltage Applied to. Outputs
for high output state ................ -Q;5V to Vee value
Input Voltage (D.C.) .................... -O.5V to + 5.5 Volts

. ,i:_

recommended operating conditions
ITT54192. rTT54193
.,

Supply voltage Vee

ITT74192.ITT74193

Min

Nom

Max

Min

'Nom

Max

Unit

4.5

5

5.5

4.75

5

5.25

V

Normalized fan-out from each output. N

10
25

10

0

Width of any input pulse. tw

20

20

ns

Data setup time. tsetup (see Figure 7 and Note 2)

20

20

ns

Data hold time. t hold (see Note 3)

,,'

Operating free-air temperature range. TA
Notes:

0

0

25

MHz

Input count frequency. f count

ns

0

-55

25

125

0

25

70

°C

2. Setup time is the interval immediately preceding the positive-going edge of the load pulse during whic~
interval the data to be recognized must be maintained atthe input to ensure its recognition.
~.
3. Hold time is the interval immediately following the positive-going edge of the load pulse during which
interval the data to be recognized must be maintained.at the input to ensure its recognition.
"

'.[
schematics of inputs dnd outputs
- - . . - - - - vce
130fl

vee----~~----

4,Kfl

INPUT
. - - - - OUTPUT

3-233

ITT54/74192, ITT54/74193
SYNCHRONOUS 4-BIT UP-DOWN COUNTER
w

ELECTRICAL CHARACTERISTICS. over recommended operating free-air temperature range
(unless otherwise noted)

Symbol
VIH

Characteristics
High-level input
voltage

ITT54192. ITT54193 ITT74192.ITT74193
Min
Typ'
Max
Min
Typ'
Max
Unit
2

Low-level input
voltage

V OH

High-level output
voltage

VOL

Low-level output
voltage

0.4

IIH

High-level input
current

IlL

Low-level input
current

-1.6

lOS

Short-circuit output
current 3

65cc

V

2

V IL

0.8

0.8

2.4

Supply current

V

V

VCC = MIN. V IH =2V
V IL = 0.8V.I OH = 400 uA

0.4

V

VCC = MIN. VOH = 2V.
V IL = 0.8V.I OL =' 16 mA

40

40

uA

1

1

mA

VCC =MAX. VI = .2.4V
5.5V
MAX. VI
VCC

-1.6

mA

VCC = MAX. VI = 0.4V .'

-65

mA

VCC = MAX

102

mA

VCC = MAX

2.4

-20

-65

65

Conaitlons 2

-18

89

, All typical values are at VCC = 5V.TA = 25°C
2 For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
.
for the applicable device type.
3 Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N = 10
From
Input

Parameter'

To
Output

f max

Min

Typ

25

32

tsetup

Max

Units

Conditions

MHz'

CL = 15pF.R L =400n

14

20

ns

CL = 15 pF. RL = 400

n

tpLH
tpHL

Count-up

Carry

17
16

26
24

ns

CL = 15. pF. RL = 400

n

tpLH
tpHL

Count'down

Borrow

16
16

24
24

ns

CL = 15 pF.H L = 400

n

tpLH
tpHL

Either Count

Q

25
31

38
47

ns

CL = 15 pF.R L = 400

n

tpLH
tpLH

Load

Q

27
29

40
40

ns

CL = 15 pF. RL = 400.n

tpHL

Clear

Q

22

35

ns

CL = 15 pF. RL = 400

'fmax = maximum clock frequency
tpLH = propagation delaytime.low-to-high-Ievel output
tpH L = propagation delay time. high-to-Iow-Ievel output

3- 234

n

ITT54/74192, ITT54/74193
SYNCHRONOUS 4-BITUP-DOWN COUNTER
ITT54114192 DECADE COUNTERS
TYPICAL CLEAR. LOAD. AND COUNT SEQUENCES
1. Clear outputs to zero.
3. Count up to eight. nine, carry, zero, one, and two.
2. Load (preset) to BCD seven.
4. Count down to one, zero, borrow, nine, eight. and seven.

~~--------------------------

,.{
COUNT
U,

u
1

:- - - - - -- -- - --.J,.;.--,..-.0.,,~---------------.J
~~-7'-i'
.
.J
I

c================
c================
===== === ====== ==

1 ,
_-:---'---i-'..Ji-

--~~~,-'Lfl1lLILJlJ~---------------

~~~T

1 •

r-- •

SEOUENCE
ILLUSTRATED

, ,

0

COUNT UP

~

Ir-'

U
0

'

,

•

'I

COUNT D O W r . I - (

ITT54174193 BINARY COUNTERS
TYPICAL CLEAR. LOAD. AND COUNT SEQUENCES
1. Clear outputs to zero.
3. Count up to fourteen, fifteen carry, zero, one, and two.
2. Load (preset) to BCD thirteen.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

--fl'-,--r-----'--------------------:-.-----------------------------_-_-_-_-_"I

I

U
I I

~~================

:: :c================

~c================
I

I

I

I

~~================
LJL.fl...f1..JL
I

COUNT
U,

~'b~NNT

I

I

I

I.'

I

I

I

I

I

I

I

I

1

I

~

=,..:..,.i-'.,...;-:---;'..J
oc=~

OUTPUTS { : :

0,

=:l.U--i--:----i.-___-;.---,..__----'r-----i--...:'--;.'--;-:-;,--;-----,Ur-----;.-.;---------;-,,
,
, I
U
I

SEOU£NCE

IllUSTRATED

Notes:

r-- '"

1 "

0
CDUNlUP

A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must

1'
~ r--

"I

0
"
"
COUNT DOWN----'

be high. When counting down, count-up input must be high.

3 - 235

ITT54/74192,ITT54/74193
SYNCHRONOUS 4-BIT UP-DOWN COUNTER
ITT54/74192 DECADE COUNTERS
FUNCTIONAL BLOCK DIAGRAM

~

0

/'

BORROW
OUTPUT
CARRY
OUTPUT

~
DATA
INPUT A

~

r-l--/
DOWN
COUNT

0--

D

"~

UP
COUNT

DATA
INPUT B

°A

CiA r-

b

--r\.

~
~

0D'Q

R

ipR~ET

r-LJ

0...-.-.-

OUTPUTQA

T

Os

OUTPUT Os

T

Os -

D .-3f

DATA
INPUT C

tlf

I-

DATA
INPUT D

V"

~0

~Dc

OUTPUTQC

T

Oe -

W-

-1\.

r-LJ
CLEAR

t-i

~tiET
Do

.......--..
T

001LOAD

-3-236

Lr\ L3V

OUTPUTQO

ITT54/74192, ITT54/74193
SYNCHRONOUS 4-81T UP-DOWN COUNTER
ITT54/74193 BINARY COUNTERS
FUNCTIONAL BLOCK DIAGRAM

'-

BORROW
OUTPUT

"

OUTPUT

J

CARRY

j

DATA
INPUT A

r-L.I"

Je.

DOWN
COUNT

QA

OUTPUT QA

T
UP
COUNT

OA

D

DATA

..r-'\

INPUT B

DATA
INPUT C

,
,

DATA
INPUT D

CLEAR

~Os

f1-'

.~

oJ">

OUTPUT 0B

T

Oa

U ~

--r-"\

~Oc

rl-/

.~

fifyR

OUTPUTQC

T

Dc

U

:9~r

D
---

I--t

~~
00

T

00

s:J'Y

LOAD

3-237

OUTPUT Q D

ITT

ITT54194, ITT74194

.... SEMICONDUCTORS -

----

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT
REGISTERS
•

Parallel Inputs and Outputs

•

Four Operating Modes:
Synchronous Parallel Load
Left Shift
Right Shift
Do Nothing

•

Positive Edge-Triggered Clocking

C

Direct Overriding Clear

DUAL-IN-LiNE P!lCKAGE
PIN CONFIGURATION
(TOP VIEW)t

SHIFT

s~~~[ 2
INPUT

These bidirectional shift registers are designed to
incorporate virtually all of the featur.es a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel in-.
puts, parallel outputs, right-shift and left-shift serial
inputs, operating-mode-control inputs, and a direct
overriding clear-line. The register has four distinct
modes of operation, namely:

PARALLEL{:
INPUTS
C

o
SHIFT

LEFT
SERIAL
INPUT

GNO

MODE CONTROL
POSITIVE LOGIC: SEE DESCRIPTION

Parallel (Broadside) Load

S1

SO

H

H

L

H

t

Shift Right (In the direction
QA toward QO)
Shift Left (In the direction
Q O toward QA)

H

L

Inhibit Clock (00 nothing)

L

L

In the parallel load mode, data is loaded into the
associated flip-flop and appears at the outputs after
the positive transition of the clock input. Ouring
loading, serial data flow is inhibited. Shift right is
accomplished synchronously with the rising edge
of the clock pulse when SO is high and S1 is low.
Serial data for this mode is entered at the shift-right
data input. When SO is low and S 1 is high, data
shifts left synchronously and new data is entered
at the shift-left serial input. Clocking of the flip-flops
is inhibited when both'mode-control inputs are low.
The mode controls should be changed only while
the clock input is high.

Pin assignments for these circuits are the same for all
packages.

These four-bit shift registers are compatible with
most other TTL and OTL logic families. All inputs
are buffered to lower.the drive requirements to one
normalized Series 54174 load, and input clamping
diodes minimize switching transie.nts to simplify
system design. Maximum input clock frequency is
typically 36 megahertz and power dissipation is
tYpically 195 mW.
The ITT54194 is characterized for operation over
the full military temperature range of -55°C to
125-°C; the ITT74194 is characterized for operation
from aoc to 70°C.

3 -,238

ITT54194,ITT74194

.4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
;

absolute maximum ratings over operating
free-air temperature range (unless otherwise noted)

Operating free-air temperature range
ITT54194 ........................................ -55°C to 125°C
ITT74194 ................................................. 0° C to 70°C
Storage temperature range ........... -65°C to 150° C

Supply voltage. vee (See Note 1) .......................... 7V
Input voltage (see Note 1) .................................... 5.5V

Note:

1. Voltage values are with respect to network
ground terminal.

recommended operating conditions

-

ITT54194
Nom
Max

Min
Supply voltage. Vee
Normalized fan-out from each output. N

4.5

5.5

4.75

ITT74194
Nom Max
5

20

20

low logic level

10

10

0

25

Unit

5.25

High logic level

Input clock freq uency. fclock

V

25

0

MHz

20'

20

ns

Mode control

30

30

ns

Serial and
parallel data

20

20

ns

Clear
in active- state

25

25

ns

Width of clock or clear pulse. tw

S etup time. tsetup (See Figure 1 )

5

Min

Hold time at any input. t hold

0

Operating free-air temperature. TA

0

-55

125

ns
70

0

°e

ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

Min

Typ'

Max

Test Conditions

Unit

2

V

2

V il

low-level input voltage

V1

Input clamp voltage

V OH

High-level output voltage

Val

low-level output voltage

0.4

V

Ii

Input current at maximum input
voltage

1

mA

= MIN. Ii = -12mA
= 2V.
= -BOO u.A
Vee = MIN. VIH = 2V.
V IL = O.BV. IOl = 16mA
Vee = MAX. VI = 5.5V

IIH

High-level input current-

40

uA

Vee

O.B
-1.5
2.4

3-239

V
V

Vee

V

Vee = MIN. VIH
V IL = O.BV. IOH

= MAX. VI = 2.4V

ITT54194, ITT74194
4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
ElECTR ICAl CHARACTE RISTI CS over recommended operating free-air temperature range
(unless otherwise noted) (continued)
Parameter
IlL

Low-level input current

lOS

Short-circuit output current"

ICC
Note:

1

2

3

Typ

Min

1

Max

Test Conditions 2

Unit

-1.6

rnA

-20

-57

mA

= MAX. VI = 0.4V
ITT54194
VCC = MAX

-18

-57
mA

VCC

Supply current

39

63

VCC

= MAX. See Note 2

2. With all outputs open. inputs A through D grounded. and 4.5V applied to SO. 51. clear. and the serial inputs.
ICC is tested with a momentary ground. then 4.5V. applied to clock.

All typical values are at VCC = 5V. TA = 25°C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N = 10
Parameter
f max

Maximum input clock frequency

tpHL

Propagation delay time
high-to-Iow-Ievel output from
clear

tpLH

Propagation delay time
low-to-high-Ievel output from
clock

tpHL

Propagation delay time
high-to-Iow-Ievel output from
clock

Min

Typ

25

36

Max

Unit

Test Conditions

MHz

CL

= 15 pF. RL = 400
= 15 pF. RL = 400

~

30

ns

7

14

22

ns

CL

= 15 pF. RL = 400

~

7

17

28

ns

CL

= 15 pF. RL = 400

~

typical clear. load. right-shift. left-shift. inhibit. and clear sequences
CLOCJ(J1..fl...fLSlSU~~
MODE
CONTROL

INPUTS

{so ::J
51

1

CLEAR

SERIAL{R
I~:~:S l

PARALLEl.{:
DATA
INPUTS

OUTPUTS

c

;

::1 : ;
I!

:

t-J!
i

1

I!

-t7
--+rn
I

1

1

I

I :

I

:

I

I

:

I

!

:

:

1:
JI
:
:~

: 11

!

00

--::
--.,

l

'j

i
I

I : ,

I

~

I

!

~

{: =:tti=8,
DC

~

19

CL

:

::~ !

i

-- i i

~SHIFTRIGHT---..j

~SHIFTLEFT-+-INHIBIT----l

3-240

ITT54194, ITT74194
4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
functional block diagram
PARALLEL OUTPUTS
r-__________________
__________________
~A~

lOA

CLEAR

CLOCK

o---"---j

Sl
MODE {
CONTROL

SO

3-241

OB

ac

~

ao\

ITT
----ITT54195, ITT74195
4-81T PARALLEL-ACCESS SHI FT REG ISTERS

SEMICONDUCTORS

4-BIT PARALLEL-ACCESS SHIFT REGISTERS
DUAL-IN-LiNE PACKAGE
AND FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)t

• Synchronous Parallel Load
• Positive Edge-Triggered Clocking

Vee

CLEAR

• Parallel Inputs and Outputs from
Each Flip-Flop

SERIAL{J
INPUTS R

• Direct Overriding Clear

• J and K Inputs to First Stage
• Complementary Outputs from Last Stage

OUTPUTS
PARALLEL{:
INPUTS

e

o
SHIFT/
LOAD

These 4-bit registers feature parallel inputs. parallel
outputs. J-K serial inputs. shift/load control input.
and a direct overriding clear. The registers have two
modes of operation:

POSITIVE LOGIC: SEE DESCRIPTION

, Pin assignments for these circuits are the
same for all packages.
TRUTH TABLE

Parallel (Broadside) Load
Inputs a.!. tn
J
K

Shift (In direction QA toward QD)
Parallel loading is accomplished by applying the
four bits of data and taking the shift/load control
input low. The data is loaded into the associated
flip-flop and appears at the outputs after the
positive transition of the clock input. During
loading. serial data flow is inhibited.
Shifting is accomplished synchronously when the
shift/load control input is high. Serial data for this
mode is entered at the J-K inputs. These inputs permit the first stage to perform as a J-K. 0-. or T-type
flip-flop as shown in the truth table.
These shift registers are fully compatible with most
other TTL and DTL families. All inputs are buffered
to lower the drive requirements to one normalized
Series 54174 load. including the clock input. Maximum input clock frequency is typically 39
megahertz and power dissipation is typically 195
milliwatts. The ITT54195 is characterized for operation over the full -military temperature range of
-55°C to 125°C; the ITI74195 is characterized
for operation from O°C to 70° C.

QA

L

H

QAn

L

L

L

H

H

H

H

L

QAn

Outputs at t n +1
QB
QC
QD

QD

QCn
QCn
QCn
QCn

QCn
QCn
QCn
QCn

QAn
QAn
QAn
QAn

QBn
QBn
QBn
QBn

H = high level. L = low level
Notes: A. tn = bit time before clock pulse
B. t n+ 1 = bit time after clock pulse
C. QAn = state of QA at tn
absolute maximum ratings over operating free-air
temperature range (unless otherwise noted)
Supply voltage. V CC (see Note 1) ........................... 7V
Input voltage (see Note 1) .................................... 5.5V
Operating free-air temperature range:
ITI54195 Circuits ......................... - 55°C to 125°C
ITT74195 Circuits .................................. O°C to 70°C
Storage temperature range ........... -65°Cto 150°C
Note:

3-242

1. Voltage values are with respect to network
ground terminal.

ITT54195, ITT74195
4-BIT PARALLEL-ACCESS SHI FT REGISTERS
recommended operating conditions

Min

4.5

Supply voltage. VCC
Normalized fan-out from each output. N

ITT54195
Max
Nom

5

5.5

Min

4.75

ITT74195
Nom Max

5

5.25

High logic level

20

20

Low logic level

10

10
0

V

Input clock frequency. fclock

0

Width of clock input pulse. tw(clock)

16

16

ns

Width of clear input pulse. tw(clear)

12

12

ns

Shift/load

25

25

Serial and
parallel data

15

15

Clear
inactive-state

25

25

Setup time. tsetup (see Figure 1)

30

Unit

0

Serial and parallel data hold time.

MH2

ns

10

10

Shift/load release time. trelease

30

0

ns

ns

thold

-55

Operating free-air temperature. TA

3-243

125

0

70

°c

ITT54195, ITT74195
4-81T PARALLEL-ACCESS SHI FT REG ISTERS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

High-level input voltage

V IL

Low-level input voltage

VI

Inpllt clamp voltage

V OH

H igh'level output voltage

Min

Typ'

Max

Unit

Test Conditions

2

V

2

0.8

V

-1.5

V

Vee = MIN. II = -12mA

V

Vee = MIN. V IH = 2V.

V

Vee = MIN. V IH = 2V.

2.4

V IL = 0.8V. 10H = -800uA
VOL

OA

Low-level output voltage

V IL =0.8V.I OL = 16mA
II

Input current at maximum input
voltage

1

mA

Vee = MAX. VI = 5.5V

IIH

High-level input current

40

uA

Vee = MAX. VI = 2.4V

IlL

Low-level input current

lOS

Short-circuit output current

lee
Note:

3

-1.6

mA

Vee = MAX. VI ~ OAV

-20

-57

mA

Vee = MAX

-18

-57

Supply current

39

63

IITT54195
llTT74195

mA

Vee = MAX. See Note 2

2. With all outputs open. shift/load grounded, and 4.5V applied to the J, K, and data inputs, lee is measured
by applying a momentary ground, followed by 4.5V, to clear, and then applying a momentary ground, followed
by 4.5V, to clock.

, All typical values are at Vee = 5V, TA = 25°e.
For conditions shown as M IN or MAX, use the appropriate value specified under recommended operating conditions
for the applicable device type.
3 Not more than one output should be shorted at & time.
2

SWITCHING CHARACTERISTICS. Vee = 5V, TA = 25°e, N
Parameter
f max

Maximum input clock frequency

tpHL

Propagation delay time,
high-to-Iow-Ievel output from
clear

tpLH

Propagation delay time,
low-to-high-Ievel output from
clock

tpHL

Propagation delay time,
high-to-Iow-Ievel output from
clock

Min
30

.

Typ

= 10
Max

39

Unit

Test Conditions

MHz

eL = 15pF, RL = 400.n.

19

30

ns

eL = 15pF, RL = 40011

6

14

22

ns

eL = 15pF, RL = 40011

7

17

26

ns

eL = 15pF, RL = 400.n.

3-244

ITT54195, ITT74195
4-81T PARALLEL-ACCESS SHIFT REGISTERS

functional block diagram
PARALLEL OUTPUTS

/\
laA

ac

as

aA

ac

as

CLOCK

R

SHIFT/\J

Kj

CLEAR

CLEAR

\A

CJ~~OL --v-SERIAL

.....--!---lR

R

R

OA
CLEAR

B

OJ

C

00

CLEAR

CLEAR

~------------------------~v~------------------------~
PARALLEL INPUTS

INPUT

typical clear. shift. and load sequences
CLOCK

SERIAL {

J

,,

--+---''l'''-----------r'--+--------:=+:==~!i'""I__+'~=========:::;_:'
--;:~=========
Ll.--i
,
,

INPUTS
R T/LOAD:
SHIF

PARALLEL

B

,

L

,

--+-----+---------~~'--+---------L ,

INPUTS

QA
OUTPUTS

--+----+:---------~~'--+---------I

DATA

as

---~~
----;

______

~~,',._ _~-----~,r---,

:::"+;___-+:_--,r---l

:: :::J
---,

I

:

1-----------

I

~'----~

I

I'

SERIALSHIFT _ _ _ _ _..,

CLEAR

LOAD

3--245

,
t---SERIALSHIFT_

CLOCK

ITT
-----

ITT54HOO, ITT74HOO

QUADRUPLE 2-INPUT POSITIVE NAND GATES

SEMICONDUCTORS

QUADRUPLE 2-INPUT
POSITIVE NAND GATES
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA(0

@U

IB@

@4B

Ilev

@)4A
@GND

VCCG

@3B

2l!0

0
0

2A®
2B0
POSITIVE

LOGIC

ii!

3A

3 ii!

POSITIVE LOGIC: i! =)!;B

= AB
schematic (each gatel

.----_'""""""----_--0 Vee
2.8 kO

760 0

580

OUTPUT
ii!

A I

GND

~

INPUTS

NOTE: Component values shown are nominal.

Recommended Operating Conditions

Min

Supply Voltage Vec: 54HOO Circuits ......................................................................
74HOO Circuits ......................................................................
Normalized Fan-Out From Each Output, N ........................................ ;..................... .
Operating Free-Air Temperature Range, TA : 54HOO Circuits ............................ .
74HOO Circuits ............................ .

4.5
4.75.

5
5

-55
0

25
25

3-246

Nom Max
5.5
5.25
10
125
70

Unit
V
V
DC
DC

ITT54H 00, ITT74HOO
QUADRUPLE 2-INPUT POSITIVE NAND GATES
ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Unit

Test Conditions 2

Vin (1 )

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

O.S

V

V1

Input Clamp Voltage

-1.5

V

VIN Ii = -S mA

V out (1 )

Logical 1 output voltage

V

Vee = MIN. V in = O.S V.
Iload = -500 uA

Vout(O)

Logical 0 output voltage

0.4

V

Vee = MIN. V in = 2 V.
Isink = 20mA

lin(O)

Logical 0 level input current
(each input)

-2

mA

Vee = MAX. V in = 0.4 V

lin(1 )

Logical 1 level input current
(each input)

50

uA

Vee = MAX. V in = 2.4 V

1

mA

Vee - MAX. V in - 5.5 V

-100

mA

Vee = MAX

"

2

V

2.4

lOS

Short-circuit output current 3

lee(O)

Logical 0 level supply current

-40
26

40

mA

Vee = MAX. V in = 4.5 V

lee(1)

Logical 1 level supply current

10

16.S

mA

Vee = MAX. Vin = 0

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°C. N = 10
Parameter

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to
logical 0 level

6.2

10

ns

eL=25pF.R L =2S0Q

tpd1

Propagation delay time to
logical 1 level

5.9

10

ns

eL = 25 pF. RL = 2S0 Q

1
2

3

All typical values are at VCC = 5 V. TA = 25°C.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3-247

I

CIRCUIT TYPES ITT54H01, ITT74H01

ITT
....
-----

QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)

SEMICONDUCTORS

QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
DUAL - IN - LINE PACKAGE
PIN ~DNFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

lAG

@4i!

IBG)

@4B

Ilev

@4A
@GND

VCCG

210

@3B

0
0

2A0
2B0

POSITIVE

LOGIC

3A

3l
POSITIVE

l = AB

LOGIC:

i!=AB

\"

schematic (each gate)

NOTE: Component values shown are nominal.

recommended operating conditions

Min

Nom

Max

Supply Voltage V CC:

4.5
4.75

5
5

-55

25
25

5.5
5.25
10
125
70

54H01 Circuits ........................................................................................ ..
7 4HO 1 Circuits ......................................................................................... .
Normalized Fan-Out From Each Output, N .................................................................................. ..
Operating Free-Air Temperature Range: 54H01Circuits ........................................................ .
74H01 Circuits ........................................................ .

3-248

0

Unit

1<

V
V

°c
°c

CIRCUIT TYPES ITT54H01, ITT74H01
QUADRUPLE 2-INPUT POSITIVE NAND GATES
(WITH OPEN-COLLECTOR OUTPUT)
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Test Conditions 2

Unit
V

V in (l)

Logical 1 input voltage required
at both input terminals to ensure
logical 0 (on) level at output

2

·Vin(O)

Logical 0 input voltage requ·ired
at either input terminal to ensure
logical 1 (off) level at output

O.S

V

V1

Input Clamp Voltage

-1.5

V

10ut(1 )

Output reverse current

250

uA

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

lin(O)

Logical 0 level input current
(each input)

-2

mA

= Min. Ii = -S mA
Vee = MIN. Vin = O.SV.
Vout (l) = 5.5V
Vee = MIN. Vin = 2V.
Isink = 20 mA
Vee = MAX. Vin = 0.4V

lin(l )

Logical 1 level input current
(each input)

50

uA

Vee

1

mA

Vee

lee(O)

Logical 0 level supply current

26

40

mA

lee(1)

Logical 1 level supply current

6.S

10

mA

= MAX. Vin = 2.4V
Vee = MAX. V in = 5.5V
Vee = MAX. V in = 4.5V
Vee = MAX. Vin = 0

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N = 10
Parameter
tpdO

tpd1

Propagation delay time to logical

Min

Typ

Max

Unit

Test Conditions

7.5

12

ns

eL

= 25 pF. RL = 2S011

10

15

ns

eL

= 25 pF. RL = 2S011

o level
Propagation delay time to logical
1 level

, All typical values are at Vee = 5V. TA = 25°C.
2 For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

3-249

ITT
----CIRCUIT TYPES ITT54H04, ITT74H04
HEX INVERTERS

SEMICONDUCTORS

HEX INVERTERS
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN -LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

lAG)

@Ii!

SA

2i!G)

@)SA

Si!

2A0

@)Si!

VCC

@GND

VCCG

POSITIVE

LOGIC:

3A0

@Sii!

3i!®

' - -____ ®SA

4AG)

G)4i!

i! = A

POSITIVE

LOGIC:i!

=A

schematic (each inverter)

,...---+-----.....--<> Vee
2.8 kn 760 n

58n

INPUT

A
Component values shown are normal.
Recommended Operating Conditions

Min

Supply Voltage V CC: 54H04 Circuits ......................................................................
74H04 Circuits ................................ ;.................................... .
Normalized Fan-Out From Each Output, N ..............................................................
Operating Free-Air Temperature Range, TA: 54H04 Circuits ............................ .
74H04 Circuits ............................ .

4.5
4.75

5
5

-55
0

25
25

3-250

Nom Max

5.5
5.25
10
125
70

Unit
V
V

°c
°c

CIRCUIT TYPES ITT54H04, ITT74H04
HEX INVERTERS

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

Test Conditions 2

Unit

V in (1)

Logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

Vin(O)

Logical 0 input voltage
required at input terminal to
ensure logical 1 level at
output

0.8

V

V1 .

Input Clamp Voltage

-1.5

V

Vout(1)

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

0.4

V

lin(O)

Logical 0 level input current

-2

rnA

lin(1 )

Logical 1 level input current

50

uA

= Min Ii = -8 rnA
Vee = MIN. Vin = 0.8 V.
Iload = -500 uA
Vee = MIN. Vin = 2 V.
Isink = 20 rnA
Vee = MAX. Vin = 0.4 V
Vr.r. = MAX. Vin = 2.4 V

1

rnA

Vee - MAX. Vin - 5.5 V

-100

rnA

Vee

lOS

Short-circuit output current 3

2

V

2.4

V

-40

lee(O)

Logical 0 level supply current

10

58

rnA

lee(1)

Logical 1 level supply current

16

26

rnA

SWITCHING CHARACTERISTICS. Vee
Parameter

Vcc

= MAX
Vee = MAX. Vin = 4.5 V
Vee = MAX. Vin = 0

= 5V. TA = 25°C. N = 10
Min

Typ

Max

Test Conditions

Unit

tpdO

Propagation delay time to
logical 0 level

6.5

10

ns

eL

= 25 pF. RL = 280 Q

tpd1

Propagation delay time to
logical 1 level

6

10

ns

eL

= 25 pF. RL = 280 Q

1

2

3

All typical values are at Vee = 5 V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one outPl.t should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3-251

_

I

ITT54H05,ITT74H05

mm _
HEX INVERTERS
(WITH
OPEN-COLLECTOR
OUTPUT)
.L.L
_
_
_
_

SEMICONDUCTORS

HEX INVERTERS (WITH OPEN-COLLECTOR
OUTPUT)
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

DUAL-IN -LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA(0

@Ii!

2i!G)

@SA

2A@

@Si!

VCC

vcc@

@GND

3A0

@Si!

3i!@

0

4AG)

G)4i!

POSITIVE

SA

LOGIC:

i!

SA

=A

POSITIVE

LOGIC:

schematic (each inverter)

. - - -_ _- - - - 0

2.8 kn

INPUT
A

NOTE:

Vee

760n

L.....4~-_+__oGND

Component values shown are normal.

recommended operating conditions

Min

Supply Voltage VCC: 54H05 Circuits ......................................................................
74H05 Circuits ......................................................................
Normalized Fan-Out From Each Output. N ..............................................................
Operating Free-Air Temperature Range. TA: 54H05 Circuits ............................ .
74H05 Circuits ............................ .

4.5
4.75
-55
0

3-252

Nom Max

5
5
25
25

5.5
5.25
125
70
10

Unit
V
V

°c
°c

ITT54H05, ITT74H05
HEX INVERTERS (WITH OPEN-COLLECTOR OUTPUT)
ELECTR ICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typl

Max

Test Conditions 2

Unit

Vin (1 )

Logical 1 input voltage
required at input terminal to
ensure logical 0 (on) level at
output

Vin(O)

Logical 0 input voltage
required at input terminal to
ensure logical 1 (off) level at
output

0.8

V

V1

I nput Clamp Voltage

-1.5

V

lout(1 )

Output reverse current

250

uA

Vout(O)

Logical 0 output voltage (on
level)

0.4

V

Vee = MIN. Yin
I sink
20 mA

lin(O)

Logical 0 level input current

-2

mA

Vee

lin(1 )

Logical 1 level input current

50

uA

Vee

1

mA

Vec

2

V

= Min Ii = -'8 rnA
Vee = MIN. Yin = 0.8 V.
Vee

Vout (1)

lec(O)

Logical 0 level supply current

40

58

mA

lee(1)

Logical 1 level supply current

16

26

mA

SWITCHING CHARACTERISTICS. Vee = 5V. TA
Parameter

1
2

Min

=

= 5.5 V

= 2 V.

= MAX. Yin = 0.4 V

= MAX. V in = 2.4 V
= MAX. Vin = 5.5 V
Vee = MAX. Vin = 4.5 V
Vee = MAX. Yin = 0

= 25°C
Typ

Max

Test Conditions

Unit

tpdO

Propagation delay time to
logical 0 level

7.5

12

ns

CL

= 25 pF. R L = 280 Q

tpd1

Propagation delay time to
logical 1 level

10

15

ns'

CL

= 25 pF. RL = 280 Q

All typical values are at Vee = 5 V. TA = 25°e.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.

3-253

ITT
----CIRCUIT TYPES ITT54H10, ITT74H10

TRIPLE 3-INPUT POSITIVE NAND GATES

SEMICONDUCTORS

TRIPLE 3-INPUT POSITIVE NAND GATES
DUAL-I N - LI NE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0

@IC

IBG)

@)3t

ItG)

@3C

vccG

0

IC
It

@GND

210
2A

VCC

3B

@3B

--'--_TTT·~ ..

2B0
POSITIVE

-L-0

3A

®2C
LOGIC

POSITIVE

LOGIC:

t =ABC

schematic (each gate)

,----_---_._-0 vee
2,8 kG

470 Q

~

4 kCl
GND

INPUTS

NOTE: Component values shown are nominal.

Recommended Operating Conditions

Min

Supply Voltage VCC: 54H 10 Circuits ......................................................................
74H 1 0 Circuits ......................................................................
Normalized Fan-Out From Each Output, N ..............................................................
Operating Free-Air Temperature Range, TA: 54H10 Circuits ............................ .
7 4H 10 Circuits ............................ .

4.5
4.75

5
5

-55
0

25
25

3-254

Nom Max

5.5
5.25
10
125
70

Unit
V
V
°c
°C

CIRCUIT TYPES ITT54H10, ITT74H10
TRIPLE 3-INPUT POSITIVE NAND GATES
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

2

Unit

Test Conditions 2

V in (l )

logical 1 input voltage
required at all input
terminals to ensure logical 0
level at output

V

Vin(O)

logical 0 input voltage
required at any input
terminal to ensure logical 1
level at output

O.S

V

V1

Input elamp Voltage

-1.5

V

Min Ii = -S mA

Vout( 1)

logical 1 output voltage

V

Vout(O)

Logical 0 output voltage

0.4.

V

lin(O)

Logical 0 level input current
(each input)

-2

mA

= MIN. Vin = O.S V.
= -500 uA
Vee = MIN. Vin = 2V.
Isink = 20 mA
Vee = MAX. Vin = 0.4 V

lin(1)

Logical 1 level input current
(each input)

50

uA

Vee

1

mA

Vee

-100

mA

2.4

Vee
Iload

lOS

Short-circuit output current 3

lee(O)

Logical 0 level supply current

19.5

30

mA

lee(l)

Logical 1 level supply current

7.5

12.4

mA

= MAX. Vin = 2.4 V
= MAX. Vin = 5.5 V
Vee = MAX
Vee = MAX. Vin = 4.5 V
Vee = MAX. Vin = 0

Unit

Test Conditions

-40

SWITCHING CHARACTERISTICS. Vee = 5V. TA = 25°e. N = 10
Parameter

Min

Typ

Max

= 25 pF. RL =

tpdO

Propagation delay time to
logical 0 level

6.3

10

ns

eL

tpdl

Propa'gation delay time to
logical 1 level

5.9

10

ns

eL=25pF.R L =2S0Q

1

2

3

2S0 Q

All typical values are atV cc = 5 V. TA = 25°C.
For conditions shown as M IN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3- 255

ITT54H11,ITT74H11

- ITT- - - - TRIPLE 3-INPUT POSITIVE AND GATES

SEMICONDUCTORS

TRIPLE 3-INPUT POSITIVE AND GATES
DUAL- IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA0)

@IC

IB0

@3r

IC

IrG)

@)3C

Ii!:

@GND

3C

VCC

vccG

3B

@3B

POSITIVE

LOGIC

3A

0

3A

0

2C

POSITIVE

i!:=ABC

LOGIC:

r

= ABC

schematic (each gate)

2.8kO

I kG

7600

580

INPUTS

NOTE: Component values shown are nominal.

Recommended Operating Conditions

Min

Nom Max

54H 11 Circuits ..................................................................... .
74H11 Circuits ..................................................................... .

4.5
4.75

5
5

Normalized Fan-Out From Each Output, N ............................................................. .
Operating Free-Air Temperature Range. TA: 54H 11 Circuits ............................ .
74H 11 Circuits ............................ .

-55
0

25

Supply Voltage V CC:

3-256

25

5.5
5.25
10
125
70

Unit
V
V

°C
°0

ITT54H 11, ITT74H 1'1
TRIPLE 3-INPUT POSITIVE AND GATES
ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ 1

Max

2

Test Conditions 2

Unit

Vin (1)

logical 1 input voltage
required at all input
terminals to ensure logical 1
level at output

V

Vin(O)

logical 0 input voltage
required at any input
terminal to ensure logical 0
level at output

0.8

V

V1

Input Clamp Voltage

-1.5

V

Vout (1 )

logical 1 output voltage

Vout(O)

Logical 0 output voltage

0.4

V

lin(O)

Logical 0 level input current
(each input)

-2

mA

= Min Ii = -8 mA
Vee = MIN. Yin = 2 V.
Iload = -500 uA
Vee = MIN. Yin = 0.8 V.
Isink = 20 mA
Vee = MAX. Yin = 0.4 V

lin(1 )

Logical 1 level input current
(each input)

50

uA

Vee

1

mA

-100

mA

2.4

V

Vcc

lOS

Short-circuit output current 3

lee(O)

Logical 0 level supply current

30

48

mA

lee(1)

Logical 1 level supply current

18

30

mA

= MAX. Yin = 2.4 V
Vee = MAX. Yin = 5.5 V
Vee = MAX. Yin = 4.5 V
Vee = MAX. Yin = 0
Vee = MAX. Yin = 4.5 V

Unit

Test Conditions

SWITCHING CHARACTERISTICS, Vee
Parameter

-40

= 5V. TA = 25°C. N = 10
Min

Typ

Max

= 25 pF. RL =

tpdO

Propagation delay time to
logical 0 level

8.8

12

ns

eL

tpd1

Propagation delay time to
logical 1 level

7.6

12

ns

eL = 25 pF. RL

1
2

3

=

=

280 Q

= 280 Q

All typical values are at Vee
5 V. TA
25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3-257

_

I

CIRCUIT TYPES ITT54H20, ITT74H20

mm
.L.L _ _ _ _ _....---DUAL4-INPUTPOSITIVE NAND GATES

SEMICONDUCTORS

DUAL 4-INPUT POSITIVE NAND GATES
DUAL-IN - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FL AT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IA(0

@ID

I;!G)

@)IC

NCG)

®IS
@GND

VCCG
NC0

@2;!

2A®

®2D

2B(2)

0

POSITIVE

LOGIC:

~=

2C

POSITIVE

ABCD

LOGIC:

i! = ABCD

schematic (each gate)

r------ov,c

INPUTS

...

LL---o~=:::::======j-

Notes:

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding.
3. If expander is not used leave X and X pins
open.
4. Expander inputs X and X are functional on
the ITT54H53 and ITT74H53 circuits only.

3-269

-oGNO

Make no external connection to X and X pins
ofthe ITT54H54 and ITT74H74.
5. A total of four ITT54H60/lTT74H60 expander gates may be connected to the ex- •
pander inputs.

ITT54H53, ITT54H54, ITT74H53, ITT74H54
EXPAN DABLE 2-2-2-3-INPUT AN D-OR-INVERT GATES

recommended operating conditions
Min
Supply Voltage Vee:

Nom Max

Unit

ITT54H53. ITT54H54 .............................................................,.. .
ITT74H53.ITT74H54 .................................................................
Normalized Fan-Out From Each Output. N ......................................................................

4.5
4.75

5
5

5.5
5.25
10

V
V

Operating Free-Air Temperature Range. TA

-55
0

25
25

125
70

°e
°e

ITT54H53.ITT54H54 ....................... .
ITT74H53.ITT74H54 ....................... .

ElECTR ICAl CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
Vin (1 )

Min

Logical 1 input voltage required
at all input terminals otone AN D
section to
output

~nsure

Typ'

Max

Test Conditions

Unit

2

V

2

logical 0 at

Vin(O)

Logical 0 input voltage required
at one input terminal of each
AN D section to ensure logical 1
at output

O.S

V

V1

Insure elamp Voltage

-1.5

V

Vout (1 )

Logical 1 output voltage

Vout(O)

Logical 0 output voltage

0.4

V

lin(O)

Logical 0 level input current
(each input)

-2

mA

= MIN. Ii = -SmA
Vee = MIN. Vin = O.SV.
Iload = -500uA
Vee = MIN. Vin = 2V.
Isink = 20mA
Vee = MAX. V in = 0.4V

lin(1)

Logical 1 level input current
(each input)

50

uA

Vee

1

mA

Vee

-100

mA

2.4

V

lOS

Short-circuit output current

lee(O)

Logical 0 level supply current

9.4

14

mA

lee(1 )

Logical f level supply current

7.1

11

mA

3

-40

Vee

= MAX. V in = 2.4V
= MAX. V in = 5.5V
Vee = MAX
Vee = MAX. V in = 4.5V
Vee = MAX. V in = 0

, Duration of short-circuit test should not exceed 1 second
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type. Expander pins are open.
3 All typical values are at Vee = 5V. TA = 25° e.

2

3-270

ITT54H53, ITT54H54, ITT74H53, ITT74H54
EXPANDABLE 2-2-2-3-INPUT AND-OR-INVERT GATES
ELECTRICAL CHARACTERISTICS (ITT54H53 circuits only) using expander inputs.
Vee
4.5V. TA
-55°e

=

=

Parameter

Min

Max

Typ'

Test Conditions 2

Unit

linX

Expander-node input current

-5.B5

mA

Vx= 1.4V

VBE(Q)

Base-emitter voltage of output
transistor Q

1.1

V

Isink = 20mA. 11 = 700uA.
R1 = 0

Vout (1 )

Logical 1 output voltage

V

Iload = -500uA.1 1 =
320uA.
12 = -320uA

Vout(O)

Logical 0 output voltage

V

Isink = 20mA.1 1 = 470uA.
R1 = 6Bn

2.4

0.4

ELECTRICAL CHARACTERISTICS (ITT74H53 circuits only) using expander inputs.
Vee = 4.75V. TA = ooe
Parameter

Min

Typ

Max

Unit

Test Conditions

linX

Expander-node input current

-6.3

mA

Vx = 1.4V

VBE(Q)

Base-emitter voltage of output
transistor Q

1

V

Isink =·20mA.1 1 = 1.1mA.
R1 = 0

Vout (1)

Logical 1 output voltage

V

Iload = -500uA. 11 =
570uA.
12 = -570uA

Vout(O)

Logical 0 output voltage

V

Isink = 20mA • .I 1 = 600uA.
Rt = 63..n.

2.4

0.4

SWITCHING CHARACTERISTICS. Vee
Parameter

= 5V. TA = 25°e. N = 10. expander pins are open
Min

Typ

Max

Unit

Test Conditions

tpdO

Propagatio'l delay time to logical
o level

6.2

11

ns

CL = 25 pF. RL = 2BOn

tpd1

Propagation delay time to logical
1 level

7

11

ns

CL = 25 pF. RL = 2BOn

SWITCHI NG CHARACTER ISTICS. (ITT54H 53/1TT7 4H53 circuits only)
Vee
5V.T A
25°e.N
10.eX
15pF

=

=

=

=

Parameter

Min

Typ

Max

Unit

Test Conditions

tpdO

Propagation delay time to logical
o level

7.4

ns

CL = 25 pF. RL = 2Bon

tpd ,.

Propagation delay time to logical
1 level

11.4

ns

CL = 25 pF. RL = 2BOn

ITT54H60
DUAL4-INPUT EXPANDER
(FOR USEWITH ITT54H50.ITT54H53. CIRCUITS)

_.ITT- - - - SEMICONDUCTORS

DUAL 4-INPUTEXPANDER

DUAL-IN-L1NE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

IXCV

@2X

1110

@2X

lAG)

@2D
@GND

VCCG

POSITIVE LOGIC:

IB0

@2C

IC0

®2B

IDG)

0

2A

POSITIVE LOGIC:

X=ABCD

X=ABCD
WHEN CONNECTED TO X AND
IT17450 OR 7453

WHEN CONNECTED TO X AND X PINS OF
ITT54H50,ITT54H53, or ITT54H55 CIRCUIT.

CPINS OF

schematic (each expander)

2.8 kn
OUTPUT X

(See Note 2)
OUTPUT X
(See Note

n

,AByC 0,

L - - - - - c GND

INPUTS
Notes:

recommended operating conditions
Supply Voltage V CC ............................. 4.5Vto 5.5V
Maximum numberof expanders that may be
fanned-in to one ITT54H50. ITT54H 53 circuit ... 4

3-272

1. Connect to X input of ITT54H 50. ITT54H53
circuit.
2. Connect to X input of ITT54H50.ITT54H53
circuit.
3. Component values shown are nominal.

ITT54H60
DUAL 4-INPUT EXPANDER
(FOR USE WITH ITT54H50. ITT54H53. CIRCUITS)
ELECTRICAL CHARACTERISTICS (unless otherwise noted TA
Parameter
Vin (l)

Logical 1 input voltage required
at all input terminals to ensure
output is in the on state

Vin(O)

Logical 0 input voltage required
at any input terminal to ensure
output is in the off state

Min

Typ

loff

Off-state output current

Ion

On-state output current

lin(O)

Logical 0 level input current
(each input)
Logical 1 level input current
(each input)

lin(l )

Unit

0.8

V

0.4

V

2V.
4.5V. V in
Vee
V 1 = lV.lon = 5.85mA.
T A =-55°e

0.4

V

Vee = 5.5V. V in = 2V.
V 1 = 0.6V.l on = 7.85mA.
TA = 125°C

320

uA

Vce - 4.5V. V in - 0.8V
V 1 = 4.5V.R = 575n
TA = -55°C

uA

Vee - 4.5V. V in - 2V.
V, = lV. TA = -55°C

mA

Vee - 5.5V. V in - 0.4V

50

uA

Vee - 5.5V. V in - 2.4V

1

mA

Vee = 5.5V. V' n = 5.5V
Vee - 5.5V. V in = 4.5V.
V 1 = 0.85V
Vee - 5.5V, V in -:- O.

-470
-2

lee(on)

On-state supply current

1.9

3.5

mA

lee(ott)

Off-state supply current

3

4.5

mA

1

Test Conditions

V

2

On-state output voltage

Von

= -55°e to 125°e)

Max

All typical values are at Vee = 5V. T A = 25° e.

V 1 = 0.85V

OUTPUT CAPACITANCE. Vee and GND terminals open, TA = 25°e
Parameter
ex

I

Effective capacitance of output
transistor 01

Min

Typ
1.3

3-273

Max

Unit
pF

Test Conditions
f = 1 MHz

__

ITT

ITT54H72, ITT74H72

.__________________J_-K__
M_A_s_T_E=R~-S_L_.A_V_E_F_L_IP_-_F~LO~P-mS

SEMICONDUCTORS

J-K MASTER-SLAVE FLIP-FLOPS
These J- K flip-flops are based on the master-slave
principle. The AND gate inputs for entry into the
master section are controlled by the clock pulse.
The clock pulse also regulates the circuitry which
connects the master and slave sections. The sequence of operation is as follows:

DUAL- IN- LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

1. Isolate salve from master
2. Enter information from AND gate inputs to
master
3. Disable AN D gate inputs
4. Transfer information from master to slave.
Logical state of J and K inputs must not be allowed
to change when the clock pulse is in a high state.

HIGH
FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

I

I
I
,

LOW

MINIMUM

: . - -tsetup

I
I

----+1

KI(0

@K3

CLOCKeD

@K2

CLOCK WAVEFORM

PRESET

0 ....+H-t--'

@Q

logic

vcc8

@GNC

TRUTH TABLE
CLEAR(D"'-Hh

t n +1

tn

Notes:

J

K

Q

0

0

Qn

NeG)
JIG)

0

1

0

POSITIVE LOGIC:

1

0

1

1

1

Qn

1.
2.
3.
4.

@Q

'----..... G)J3

0

J2

LOW INPUT TO PRESET SETS Q TO LOGICAL I
LOW INPUT TO CLEAR SETS Q TO LOGICALO
PRESET OR CLEAR ARE INDEPENDENT
OF CLOCK

J = J 1 • J2 • J3
K = K 1 • K2 • K3
tn = Bit time before clock pulse.
tn + 1 = Bit time after clock pulse.

3-274

ITT54H72, ITT74H72
J-K MASTER-SLAVE FLIP-FLOPS
recommended operating conditions

Min

Short Voltage V CC:

ITT54H72 ..............•.........................................................................
ITT74H72 ........................................................................................
Operating Free-Air Temperature Range. TA: ITT54H72.............................................
ITT74H72.............................................
Normalized Fan-Out From Each Output. N ......................................................................

Nom Max

4.5
4.75
- 55
0

5
5
25
25

Width of Clock Pulse. tp(clock) (See Figure 77) ..............................................................
12
Width of Preset Pulse. tp(preset) (See Figure 78) ...........................................................
16
Width of Clear Pulse. tp(clear) (See Figure 78) ...............................................................
16
Input Setup Time. tsetup (See Above) .............................................................................. ;::tp(clock)
0
Input Hold Time. t hold .........................................................................................................

5.5
5.25
125
70
10

Unit
V
V
°C
°C
ns
ns
ns

schematic
r---------~~----~----------~.-----~--~------~------ovcc

58 Cl

760 Cl

2.8 kCl

2.8 kCl

760 Cl

58 Cl

Qo--.........

PRESET

KI

0---+-....-------'

Jl

o-----4~

J2
J3

GND

Component val.,., \how" 011 neminG!.

CLOCK

3-275

ITT54H72, ITT74H72
J-K MASTER-SLAVE FLIP-FLOPS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

Typ'

Max

2

Unit

Test Conditions 2

V in (1)

Input voltage required to ensure
logical 1 at any input terminal

V

Vin(O)

Input voltage required to ensure
logical 0 at any input terminal

Vout (l )

Logical 1 output voltage

V

Vee = MIN. Iload = -500uA

Vout(O)

Logical 0 output voltage

0.4

V

Vee = MIN. I sink = 20mA.

V1

Input elamp Voltage

-1.5

V

Vee = MIN. 11 = -SmA

lin(O)

Logical 0 level input current at
J 1. J2. J3. K 1. K2. K3. or clock

-2

mA

Vee = MAX. V in = 0.4V

lin(O)

Logical 0 level input current at
preset or clear

-4

mA

Vee = MAX. V in = O.4V

lin(l)

Logical 1 level input current at
J 1. J2. J3. K 1. K2. or K3

50

uA

Vee = MAX. V in = 2.4V

1

mA

Vee = MAX. V in = 5.5V

Logical 1 level input current at
clock

50

uA

Vee = MAX V in = 2.4V

1

mA

Vee = MAX. V in = 5.5V

Logical 1 level input current at
preset or clear

100

uA

Vce = MAX. V in = 2.4V

1

rnA

Vee = MAX. V in = 5.5V

-100

mA

Vee = MAX. V in = 0

25

mA

Vee = MAX

O.S

2.4

lin(l)

lin(l)

lOS

Short-circuit current 3

lee

Supply current

SWITCHING CHARACTERISTICS, Vee
Parameter

-40
16

= 5V. TA = 25°e. N = 10
Min

Typ

25

30

Max

Unit

Test Conditions

MHz

eL = 25 pF. RL = 2S0n

13

ns

eL = 25 pF. RL = 2S0n

12

24

ns

eL = 25 pF. RL = 2S0n

fclock

Maximum clock frequency

tpdl

Propagation delay time to logical
1 level from clear or preset to
output

6

Propagation delay time to logical

tpdO

V

o level from clear or preset to
output

tpdl

tpdO

Propagation delay time to logical
1 level 1i'om clock to output

6

14

21

ns

CL = 25 pF. RL = 2S0n

Propagation delay time to logical

10

22

27

ns

CL = 25 pF. RL = 2S0n

o level from clock to output

, All typical values are at Vee = 5V. TA = 25°e.
For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions

2

3

for the applicable device type
Not more than one output should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3-276

_

ITT

CIRCUIT TYPES ITT54H73, ITT74H73

. . _ _ _ _ _ _ _D_U_A_L_J_-_K_M_A_S_T_E_R_-S_L_A_V_E_F_L_IP_-_FL_O_P_S

SEMICONDUCTORS

DUAL J-K MASTERSLAVE FLIP-FLOPS

DUAL -I N - LINE PACKAGE
PIN CONFIGURATION
(TOP VIEW)
I

. CLOCK

These J-K flip-flops are based on the master-slave
principle. The AN D gate inputs for entry into the
master section are controlled by the clock pulse.
The clock pulse also regulates the circuitry which
connects the master and slave sections.
The sequence of operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to
master
3. Disable AND gate inputs
4. Transfer information from master to slave.
Logical state of J and K inputs must not be allowed
to change when the clock pulse is in a high state.

I

10

CLEAR

10

IK

GND
CL8cK

20

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

Logic

@IJ

CL6cK0

TRUTH TABLE
tn +1

J
0
0
1
1
NOTES 1.
2.

K

®IQ
®IO

CLJAR0

tn

U

On
0
1
0
1
0
1
On
tn = Bit time before clock pulse.
tn + 1
Bit time after clock pulse.

@GND

VCCG

@2K

CL&:K0

=

CLlAR@

2J0
HIGH
POSITIVE LOGIC:
LOW INPUT TO CLEAR SETS 0 TO LOGICAL 0
CLEAR IS INDEPENDENT OF CLOCK

I

I

LOW

I

I

MINIMUM

I

:4--- t setup -----..1
CLOCK WAVEFORM

recommended operating conditions

MIN

Supply Voltage V CC ITT54H 73 Circuits .~: ...........................................(...........
4.5
ITT74H73 Circuits .. ~...................................................... 4.75
Operating Free-Air Temperature Range, TA : ITT54H 73............................. -55
ITT74H73.............................
0
Normalized Fan-Out from Each Output, N .......................................................
'Width of Clock Pulse, tp(clock)...........................................................................
12
Width of Clear Pulse, tp(clear) ...............................................................,...........
1.~
Input Setup Time, tsetup .................................................................................... tp(clock)
Input Hold Time, thold ..........................................................................................

3-277

0

TYP MAX UNIT
5
5
25
25

5.5
5.25
125
70
10

V
V
°C
°C
ns
ns

CIRCUIT TYPESITT54H73, ITT74H73
DUAL J-K MASTER'-SLAVE FLIP-FLOPS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
Vin(1)

Input voltage required to
ensure logical 1 at any input
terminal

,Vin(O)

Input voltage required to
ensure logical 0 at any input
'terminal

V1

Input elamp Voltage

Vout (1)

Logical 1 output voltage

Min

Typ'

Max

2

Unit

Test Conditions 2

V

O.S

V

-1.5

V

2.4

V

= Min Ii = -S mA
Vee = MIN.lload =
Vee

-500uA

Vout(O)

Logical 0 output voltage

0.4

V

Vee
mA

= MIN.l sink = 20

lin(O)

Logical 0 level input current
atJ. K. or clock

-2

mA

Vee

= MAX. Vin = 0.4 V

lin(O)

Logical 0 level input current
at clear

-4

mA

Vee

= MAX. Vin = 0.4 V

lin(1 )

Logical 1 level input current
atJ or K

50

].lA

1

mA

Logical 1 level input current
at clock

50

].lA

1

mA

Logical 1 level input current
at clear

100

].lA

1

mA

= MAX. Vin = 2.4 V
Vee = MAX. Vin = 5.5 V
Vee = MAX. Vin = 2.4 V
Vee = MAX. Vin = 5.5 V
Vee = MAX. Vin = 2.4 V
Vee = MAX. Vin = 5.5 V
Vee = MAX. V in = 0
Vee = MAX

lin(1 )

lin(1)

lOS

Short-circuit output current 3

Ice

Supply current

1
2

3

-40
32

-100'

mA

50

mA

Vee

All typical values are at Vee = 5 V. TA = 25°C.
For conditions shown as MIN'or MAX. use the appropriate value specified under recommended operating conditions
for the applicable device type.
'
Not more than one output'should be shorted at a time. and duration of short-circuit should not exceed 1 second.

3-278

CIRCUIT TYPES ITT54H73, ITT74H73
DUAL J-K MASTER-SLAVE FLIP-FLOPS

SWITCHING CHARACTERISTICS. VCC = 5V. TA = 25°C. N = 10
Parameter

Min

'Typ

25

30

Max

Unit

Test Conditions

n
25pF. RL = 280 n

MHz

CL = 25pF. RL = 280

13

ns

CL =

12

24

ns

CL = 25pF. RL = 280

n

6

14

21

ns

CL = 25pF. RL = 280

n

10

22

27

ns

CL = 25pF. RL = 280

n

fclock

Maximum clock frequency

tpd1

Propagation delay time to
logical 1 level from clear to
output

6

tpdO

Propagation delay time to
logical 0 level from clear to
output

tpd1

Propagation delay time to
logical 1 level from clock to
output

tpdO

Propagation delay time to
logical 0 level from clock to
output

schematic (each flip·flop)

1---.,....-......- - - -........:....--<,-.....- -.....--1~ Vee
58

Q

760 Q

2,8 kQ

2,8 kQ

760 Q

58

Q

TO OTHER

FLlP·FLOP

Qo--~-+

H---OO

TO OTHER

CLOCK

Component values shown are nominal

3-279

FLlP·FLOP

ITT
----CIRCUIT TYPES ITT54H74, ITT74H74
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

SEMICONDUCTORS

DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS
•

Maximum Clock Frequency: 35 Megahertz

•

Positive-Edge Triggering

•

High-Fan Out, Low-Impedance, Totem-Pole
Outputs

•

Input Clamping Diodes Simplify System
Design

I CLEAR

2 CLEAR
2D

ICLOCK

• Typical Power Dissipation: 75 Milliwatts per
Flip-Flop
These monolithic, high-speed, dual. edge-triggered
flip-flops utilize TTL circuitry to perform Ootype flipflop logic. Each flip-flop has individual clear and
preset inputs. and also complementary Q and IT
outputs.
Information at input 0 is transferred to the Q output
on the positive-going edge of the clock pulse. Clock
triggering occurs at a voltage level of the clock
pulse and is not di rectly related to the transition
time of the positive-going pulse. When the clock
jnput is at either the high or low level. the O-input
signal has no effect.
logic
TRUTH TABLE
(Each Flip-Flop)
t n +1

I PRESET

2CLOCK

IQ

2 PRESET

GND

FLAT PACKAGE
PIN CONFIGURATION
(TOP VIEW)

I CLOCK

CD

lOG)

a

L

L

H

H

H

L

@

I PRESET

®IQ

I CLEAR

0

®

Vcc

0

2 CLEAR

0

@ GND
@ 2Q

2D0

INPUT OUTPUT OUTPUT
D
Q

2 CLOCK

CD

0

IQ

2Q

0 2 PRESET

ASYNCHRONOUS INPUTS:

H = high level. L = low level
Notes:

VCC

ID

• Fully Compatible with most TTL and DTL
Circuits

tn

DUAL-IN-LiNE PACKAGE
PIN CONFIGURATION
(TOP VIEW)

LOW INPUT TO PRESET" SETS Q TO HIGH LEVEL
LOW INPUT TO CLEAR SETS Q TO LOW LEVEL
PRESET AND CLEAR ARE INDEPENDENT OF CLOCK

A. tn = bit time before clock pulse.
B. t n+ 1 = bit time after clock pulse.

3-280

CIRCUIT TYPES ITT54H74, ITT74H74
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

These circuits are fully compatible for use with
most TTL or DTL circuits. Input clamping diodes
are provided to minimize transmission line effects
and thereby simplify systems design. A full fan-out
to 10 normalized Series 54H17 4H loads is available
from each of the outputs in the low-level condition.
In the high-level state. a fan-out of 20 is available
to facilitate tying unused inputs to used inputs.

Maximum clock frequency is 35 megahertz. with
a typical power dissipation of 75 milliwatts per flipflop.
The ITT54H74 is characterized for operation over
the full military temperature range of -55°C to
125°C; the ITT74H74 is characterized for operation from OOCto 70°C.

ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter
V IH

2

V

Low-level input voltage

O.S

V

-1.5

V

V OH

High-level output voltage

VOL

Low-level output voltage

2.4

3.5
0.22

V

004

V

50

uA

1

mA

100

uA

1

mA

High-level input current into
clear

150

uA

1

mA

IlL

Low-level input current into
preset or D

-2

IlL

Low-level input current into
clear or clock

lOS

Short-circuit output current

lee

Supply current

High-level input current into D

High-level input current into
preset or clock

3

Test Conditions 2

Unit

Input elamp Voltage

IIH

3

Max

1

VL

IIH

2

High-level input voltage

Typ

V IL

IIH

1

Min

-40

= MIN. Ii = -S mA
Vee = MIN.I OH = -1 mA
Vee = MIN.I OL = 20 mA
Vee = MAX. VI = 2AV
Vee = MAX. VI = 5.5V
Vee = MAX. VI = 2.4V
Vee

Vee

mA

= MAX. VI
Vee = MAX. VI
Vee = MAX. VI
Vee = MAX. VI

= 5.5V
= 2.4V
= 5.5V
= O.4V

-4

mA

Vee

= MAX. VI = O.4V
= MAX
= MAX

-100

mA

Vee

30

42

mA

Vee

30

50

ITT54H7 4
ITT74H7 4

All typical values are at Vee = 5V. TA = 25°e.
.
For conditions shown as MIN or MAX.use the appropriate value specified under recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time. and duration of short-circuit test should not exceed 1 second.

3-281

CIRCUIT TYPES ITT54H74, ITT74H74
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

SWITCHING CHARACTERISTICS, VCC
Parameter

= 5V. TA = 25°C. N =
Min

Typ

35

43

1

10

Max

Unit

Test Conditions

2

f max

Maximum clock frequency

MHz

CL

tpLH

Propagation delay time.
low-to-high-Ievel output. from
clear or preset inputs

20

ns

CL

= 25 pF. RL = 280n
= 25 pF. RL = 280n

tpHL

Propagation delay time.
high-to-Iow-Ievel output. from
clear or preset inputs

30

ns

CL

= 25 pF. RL = 280fl

tpLH

Propagation delay time.
low-to-high-Ievel output. from
clock input

4

8.5

15

ns

CL

= 25 pF. RL = 280n

tpHL

Propagation delay time.
high-to-Iow-Ievel output. from
clock input

7

13

20

ns

CL

= 25 pF. RL = 280fl

schematic (each flip-flop)
r---._--------------~----~--------._~--Q

PRESETo-.----.-----+---4--------~

TO OTHER
FLIP-FLOP

~_---o

CLEAR

vee

Q OUTPUT

o-~H-------'

CLOCK o-_~~--.J

.-~--o Q OUTPUT

TO OTHER
FLIP-FLOP

Do-....-I-----'

'-~~~----~----~~--------~~~GND

Note:

Component values shown are nominal.

3-282

ITT
-----

ITT54H76, ITT74H76
DUALJ-K MASTER-SLAVE FLIP-FLOPS

SEMICONDUCTORS

DUAL J-K MASTER-SLAVE FLIP-FLOPS
These dual J-K flip-flops are based on the masterslave principle. Inputs to the master section are
controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master
and slave sections. The sequence of operation is
as follows:

DUAL -I N-LiNE PACKAGE AND FLAT PACKAGE
PIN CONFIGURATION (TOP VIEW)t

IK
I
PRESET

10

I
CLEAR

1. Isolate slave from master
2. Enter information from J and K inputs to
master
3. Disable J and K inputs
4. Transfer information from master to slave.

GND
VCC

2K

2

20

. CLOCK

2

PRESET

Logical state of J and K inputs must not be allowed
to change when the clock pulse is in a high state.

2
CLEAR

POSITIVE LOGIC:

CLOCK WAVEFORM

LOW INPUT TO PRESET SETS 0 TO LOGICAL I
LOW INPUT TO CLEAR SETS 0 TO LOGICAL 0
CLEAR ANO PRESET ARE INDENPENDENT OF ClOCK
tplN ASSIGNMENTS FOR THESE CIRCUITS ARE THE
SAME FOR ALL PACKAGES.

lOW

tn

logic

J

K

'n+l
a

0

0

an

TRUTH TABLE

0

1

0

1

0

1

1

1

an

Notes:

1. tn

2

= Bit time before clock

In+l "" Bit time after clock pulse

recommended operating conditions

Min
Supply voltage

Vee

ITT54H76
Nom
Max

4.5

5

Normalized fan-out from each output N

Min

5.5

ITT74H76
Nom Max

4.75

5

10

5.25

Unit

V

10

Width of clock pulse. tp(clock)

12

12

ns

Width of preset pulse. tp(preset)

16

16

ns

~tp(clock)

. Width of clear pulse. t p (c1ear)

~tp(clock)

Input setup time. tsetup

0

Input hold time, t hold

-55

Operating free-air temperature range. T A

3-283

1
25

125

0
0

25

70

°e

ITT54H76, ITT74H76
DUALJ-K MASTER-SLAVE FLIP-FLOPS
ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range
(unless otherwise noted)
Parameter

Min

TVp'

Max

Test Conditions 2

Unit

-_.
Vin (l)

I nput voltage required to ensure
logical 1 afanvinputterminal

Vin(O)

Input voltage required to ensure
logical 0 at any input terminal

Vout (l )

Logica I 1 output voltage

Vout(O)

Logical 0 output voltage
Logical 0 level input current at

lin(O)

2

V

0.8

V

V

Vee= MIN.l load =-500uA

0.4

V

Vee

-2

mA

Vee = MAX. Vin = 0.4V

-4

mA

Vee = MAX. Vin = O.4V

50

uA

Vee = MAX. V in = 2.4V

1

mA

Vee = MAX. V in = 5.5V

100

uA

Vee = MAX. Vin = 2.4V

1

mA

Vee = MAX. V in = 5.5V

-100

mA

Vee = MAX. Vin = 0

50

mA

Vee = MAX. V in = 4.5V

2.4

='

MIN.l sink = 20mA

J. K. or clock
lin(O)

lin(l )

Logical 0 level input current at
clear or preset
Logical 1 level input current at

..

J. K. or clock
lin(l )

Logical 1 level input current at
clear or preset

lOS

Short:circuit output current 3

ICC

Supply current

-40
32

., All typical values are at Vee = 5V. TA = 25° e.
2

3

For conditions shown as MIN or MAX. use the appropriate value specified ~nder recommended operating conditions
for the applicable device type.
Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS.

Vce = 5V. TA = 25°e. N = 10

Parameter.

Min

TVp

25

30

tclock

Maximum clock frequency

tpdl

Propagation delavtime to logical
1 level from clear or preset to
output

6

tpdO

Propagation delav time to logical
o level from clear or preset to
output

tpdl

Propagation delav time to logical
1 level from clock to output
Propagation delav time to logical

tpdO

o level from clock to output

Max

Unit

Test Conditions

MHz

eL = 25 pF. RL = 280 n

13

ns

eL = 25 pF. RL = 280 n

12

24

ns

eL = 25 pF. RL = 280 n

6

14

21

ns

eL = 25pF. RL = 280n

10

22

27

ns

eL = 25 pF. RL = 280 n

3-284

ITT54H76, ITT74H76
DUALJ-K MASTER-SLAVE FLIP-FLOPS

schematic (each flip-flop)

.---------~----~----------_e----_1~~------.__e--_o~c

7600

580

Q

PRE SET

2.8 kO

<.8 kO

0--""'''

TO OTHER
FLIP - FLOP

.....---OOQ

0----+--.....-----------'

L---+-+-------iH-_o CLEAR
2.8

2.8

kO

kO

K

580

o-_ _.J

CLOCK

~
TO OTHER

FLIP - FLOP
Component yalues show ..

lUI

nominal.

3-285

Series ITT9000-1, ITT9000-5

_][~~ _____________________
H_IG_H__
S_PE_E_D__TT__L
Package: 14 and 16 lead DIP and Flat Pack

SEMICONDUCTORS

HIGH SPEED SATURATED
TRANSISTOR-TRANSISTOR
LOGIC CIRCUITS
• Single power supply requirements: 5 volts
optimum, 4.5 to 5.5 volts range
o High speed: typical gate propagation delay

time of 7 ns
• High DC noise margin: typically one volt
• 'Added input diodes and low output impedance provides minimum AC noise susceptibility
o Fan Out: 10TTL loads

• Power dissipation: 11mw per NAND gate at
a 50% duty cycle
• Compatible with ITT DTL family and other
DTL and TTL circuits
o NAND gate pin configurations are compati-

ble with DTL
The ITT9000 Series of TTL circuits is designed
to be used in any digital system where good
noise immunity, high spped, medium power
and high fan-out performance is required. The
line is characterized by a broad number of
functions available in a variety of packages.
The basic elements of the family are active low
level output AND gates commonly known as
NAND gates.
Typical high level noise immunity of every
device in the family is 1.9 V and typical low
lev-el noise immunity is 0.9 V. Worst case
immunity is 400 mV over the entire temperature
range. Power dissipation is typically 11 mW per
gate function at a 50% duty cycle, and the
average propagation delay is 7 nanoseconds
per gate function. A single 5 V 10 per cent
power supply is used with the circuits.
The gates were designed to provide low output
impedance in both high and low states which
results in good capacitive drive capability and
good immunity to crosstalk. The output
impedance in the low state is about 10 ohms
and in the high state, about 20 ohms. To further
enhance noise immunity, all' inputs of all
devices incorporate diode clamps which
considerably reduces the ringing which can
result from long lines and impedance mismatches. The binary elements are of a JK, DC

master slace design and will toggle at 40 MHz,
except for the 9000 element. The 9000 has
capacitors purposely incorporated in the
design to increase its set-up time and provide it
with considerable immunity to long clock
skew. Due to the longer set-up time the 9000
toggle frequency is 20 MHz. A common JK
input is incorporated on all binary elements to
provide data entry inhibit! enable. The input to
the clock on each element is buffered to reduce
the clock input loading.
The Vee and ground terminals of all devices
are located on diagonal corners of the package
which allows two degrees of freedom in routing
of power and ground leads on the PC boards.
Special care has been taken in establishing
pin-outs for the flip-flop so as to minimize
cross-overs when laying out common dynamic
functions with these elements. Simple loading
rules are incorporated so that the fan-in and
fan-out capability of each device will be quickly
establ ished.
The ITT9000 series TTL is compatible with DTL
and MSI devices as well as the more complex
functions which will be available in the future.
ABSOLUTE MAXIMUM RATINGS (above which
the useful life. may be impaired)
-65"C to 150°C
Storage Temperature
Temperature (Ambient) Under Bias
(ITT9000-1)
-55°C to + 125°C
Temperature (Ambient) Under Bias
ITT9000-5)
O°C to + 75°C
Vee Pin Potential to Ground
(See Note 1)
-0.5V to + B.OV
Input Voltage (D.C.)
(See Note 2)
-0.5V to + 5.5V
Input Current (See Note 2) -30mA to + 5.0 mA
Output Voltage, Output
Normally High
0 V to + Vee value
Current Into Output Terminal,
Output Low(except9009)
50mA
Current Into Output Terminal,
Output Low 9009
100mA

NOTE 1
The maximum vee value of 8.0 volts is not the primary factor
in determining the maximum vee which may be applied to a
number of interconnected devices. The voltage at a high
output is approximately 2 VBE's below the vee voltage, so
the primary limit on the vee is that the voltage at any input
may not go above 5.5 V unless the current is limited, so this
effectively limits the system vee to approximately 7.0 volts.

3-286

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
NOTE 2

Because of the input clamp diodes, excess current can be
drawn out of the inputs if the D.C. input voltage Is more
negative than -0.5 V. The diode is designed to clamp off
large negative A.C. swings associated with fast fall times
and long lines. This maximum rating is intended only to limit
the steady state input voltage and current.

LOADING RULES
In this data sheet the following notation has
been chosen to indicate the input loading and
output drive for all logic elements.
INPUTS

OUTPUTS

X/V

A/B

2.

Tie the input to Vcc through a resistor.
This resistor should be chosen to keep the
input current within absolute maximum ratings for any possible extrenr ' of the Vcc
supply. More than one input may be terminated through one resistor.

3. Tie inputs to a separate supply between 4.5
and 2.4 V, if one should be available.
4. 'Tie he inputs to the output of an unused
gate. The unused gate must provide a
constant high level output.

LOG Ie ELEMENT

Where A= high logic level input load factor
B = low logic level input load factor
X= high logic level output drive factor
Y = low logic level output drive factor
When checking for loading violations it is only
necessary to insure that the sum of the high
logic level input load factors at any node does
not exceed the high logic level output drive
factor at that node. The same is true for the low
level load and drive factors. These rules apply
only within the TTL ITT9000 series.

NAND GATES-9002, 9003, 9004 AND 9007
HEX INVERTER-9016
The 9002, 9003, 9004 and 9007 are active low
level output AND gates commonly known as
NAND gates. The 9016 is a hex inverter with
input and output characteristics identical to the
9002, 9003, 9004 and 9007. The variety of gate
combinations provides the system designer the
utmost in logic flexibility and reduces package
count.

Figure 1 -

LOGIC SYMBOL AND PIN
CONFIGURATIONS
9002

9016

Multiplying the factor with the appropriate
current per unit load gives the input loading or
output drive in terms of current. For the TTL
circuits of this data sheet, current per unit is
-1.6 mA maximum at the low logic level and is
60uA maximum at the high logic level.

9
10

"

In the case where unused inputs of an AND
gate are shorted to a driven input, the high
logic level input load factor for the inputs will
be the number of inputs shorted together times
the high logic input load factor for one input.
The low logic level input load factor for the
inputs will be the same as that for a single
input.

10
12

13

"
9004

9003
1
2
13
3
4
5

UNUSED INPUTS
Proper termination of unused inputs will result
in maximum operating speed. Substantial
degradation of turn-on delay may occur if
unused inputs are left open.

12

9
10

11

10
12
13

9007

The following are acceptable ways to terminate
unused inputs:
1. Tie the input to a used input on the same
gate. The TTL 9000 series has made special
provision for this method by offering extra
high level drive factor on all inputs.

12
13

4

10

11

VCC=PIN 14, GND=PIN 7

3-287

12
13

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
Figure 3 -

Figure 2-BASiC GATE CIRCUiT

",
INPUT ....

Nominal Resistor Values
R.=Rs=4.0kO
Rz'= 1.5 kG
Rl= 1500
R.=800
R6= 1.25kO

",
1/1~

1/1--1/1--1/1---

"""""""1r----J rt.

: : 01

---1-----':

L......Nv-+--<>

**

___ 1-___ .. __ J
'
I

I

--t.-

'.~.'

LOADING FACTORS

OUTPUT

20/1010r-5
20/11 lor-1

~---I:::Q5

",

-Number of inputs depends on the gate.

ELECTRICAL CHARACTERISTICS 9002, 9003, 9004, 9007 AND 9016 (TA = -55°C 10 125°C, Vee = 5.0 V ± 10%)

VOH

Output High Voltage

-55°C
MIN. MAX. MIN.
2.4
2.4

VOL

Output Low Voltage

0.4

V.H

Input High Voltage

VIL

Input Low Voltage

I,

Input Load Current

SYMBOL CHARACTERISTIC

"

I,D

tpd+

I,d.-

LIMITS
25°C

TYP.
2.7
0.21

-

125°C UNITS
MAX. MIN. MAX.
2.4
Volts
0.4

1.7

2.0

1.4

0.8

Volts

0.9

0.8

-1.6
-1.24

-1.6
-1.24

-1.6
-1.24

-1.1
-0.87
10

60

60

5.5

3.5

5.5

5.5

1.6

1.07

1.6

1.6

,Input LeaKage current
Ve!E Current, Irate On
each gate
Vee Current, Gate Off
(each gate)
Switching Speed
Switching Speed

0.4' Volts

'10
12

3.0
3.0

Volts
rnA
/LA

CONDITIONS
Vee= 4.5 V 10H= -1.32 rnA
Inputs at VIL i~ee below)
Vee-5.5 V IOl-17.6 rnA
V'H=5.5 V
Vee=4.5 V h=13.6 rnA
Inputs at V,H (see belowi·
Guaranteed input high
threshold lor all inputs
Guaranteed inpul low
threshold lor all inouts
Vee=5.5 V I V,=0.4 V
Vee =4.5 V 5.5 V on other
inputs
Vee-5.5 V V.-4.5 V
GND on other Inputs
Inputs high

rnA

Vee=5.0 V

ns
ns

Vee=5.0 V, See Ipd lest circuit
C,=15 pF

ELECTRICAL CHARACTERISTICS 9002, 9003, 9004, 9007 AND 9016 (TA = OoC to 75°C, Vee = 5.0 V
SYMBOL CHARACTERISTIC

LIMITS
25°C

DoC

Output High Voltage

MIN. MAX. MIN.
2.4
2.4

VOL

Output Low Voltage

0.45

V,H

Input High Voltage

VOH

1.9

0.45

1.6

-1.0
-0.91

1.6
-1.41

1.6
,..1.41

10

60

,60

6.1

3.6

6.1

6.1

1.7

1.07

1.7

1.7

Input Low Voltage

0.85
1.6
-1.41

I.

Input Leakage Current

1,0

Vee Current, Gate On
(each gate)
Vee Current, Gate Off
(each gate)
SWllchlng speed
Switching Speed

3.0
3.0

13
15

3-288

.._.

Volts

Volts
0.85

Input Load Current

tpd+

0.45

0.85

I,

1",_

2.9
0.21

75°C
UNITS
MAX. MIN; MAX.
Volts
2.4

1.8

V,l

----

TYP.

Volts
rnA
/LA

rnA
ns
ns

Inputs at gnd

± 5%)
CONDITIONS

Vee = 4.75V 10H= -1.2 rnA
Inputs at VIL (see below)
Vee-5.25 V IOl-.16.0 rnA
V'H=5.25 V
Vee = 4.75 V h=14.1 rnA
Inputs at V,H (see below)
Guaranteed Input high
threshold for all Inputs
Guaranteed Input l o w ' - threshold lor all inputs
Vee 5.25 V V,-0.45 V
Vee =4.75 VI 5.25 V on other
inputs
Vee-5.25 V V.-4.5 V
GND on other inpuls
Inputs high
Inputs at gnd

Vee=5.0 V

Vee -= 5.0 V, See Ipd test circuit
C,=15 pF

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
TYPICAL INPUT AND OUTPUT CHARACTERISTICS 9002, 9003, 9004, 9007 and 9016
OUTPUT VOLTAGE VERSUS
INPUT VOLTAGE
4.0

f:: ~
r- -

20

~

~"'"

..,
i

f- 1- 125'C

15'C

e

rr

-2.0

~25'C

..

...z,
e

O'C
-55'C

"'
~

.7 55 'C

.O'C

B

~n:g

~

125'C

~

,
J
o

1.0
2.0
V1N-INPUT VOLTAGE -VOLTS

3.0

·4.0

...

-6.0

o

~

0

O'C
-5~

~

-40

~

-55'C
25'C
O'C

-60
-1.0

B.O

W

125'C_

...=>

2.0
4.0
6.0
V,N -INPUT VOLTAGE - VOLTS

~25'C
1 5 ' C - r--

/

,

-10
-2.0

~
125'C

-20

~-60

-8.0

L

I
VCc'5.0 V
INPUTS AT GNO.

IJII
./J;~

VCe' 5.0V

Vcc'5.0V

F.q. -11
~

o

. OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE (OUTPUt HIGH)

INPUT CURRENT VERSUS
INPUT VOLTAGE
2.'0

I

1.0
3.0
5.0
VOUT-OUTPUT VOLTAGE -VOLTS

1.0

OUTPUT CURRENT VERSUS
OUTp·iJf VOLTAGE (OUTPUT 'LOW)
100

.,

VCC '5.0V
INPUTS HIGH

e

80

;

60

G

...=>
...=>
,
...=>
~

,

/

F

40

20

/

75'C

V

I.

0

.2

,~

I
I

00

25'C

--

POWER DISSIPATION, LOGIC LEVELS AND NOISE IMMUNITY

- -

WORST CASE LOGIC LEVELS
VERSUS AMBIENT TEMPERATURE

O'C

3.0

-55'C

........

~ii~H"ATI''i'cc'i5':ii'F =TrH;V~ I--

2.5

-

2.0

1.5
0.5
1.0
1.5
VOUT -OUTPUT VOLTAGE -VOLTS

_

f--VOH AT VCc'4.5V _

J
2.0

1.0

POWER DISSIPATION VERSUS
SUPPLY VOLTAGE

IOH'l.2mA

~

-

I

--

V1L

,...... ---:

VOL I

0.5

o C-~t'J
-55

r--

- I--

-

"e,
a

25

~ 20

~
"

~

f--t---+-t--+---+-=J;;--i"""'-!

151-=:::,.p4''--t--t--+-t--t--i
10

t:~IT.;!~~~~==-r-TI

-

j.5V'IVCC'15.5V

25
TA -AMBIENT TEMPERATURE -'C

125
vce-SUPPLY VOLTAGE·VOLTS

WORST CASE LOW LEVEL
NOISE IMMUNITY VERSUS
AMBIENT TEMPERATURE

WORST CASE HIGH LEVEL
NOISE IMMUNITY VERSUS
AMBIENT TEMPERATURE
2.4
2.0

1.6

1.2

I
I
I

I

i

~

-- -

1~F.O.~2.2

.11j.~\jL

....-

--l--~
I v; 5.0 'lj..- 1--.
1.2
f-"
.-+--r •.15' - f-r
0.8

,
1-',
~

0.4

-+- .-

~

~

I-

,-

-55

~

1.0

~ 0.8

"~

-

t;:! 0.6

~. 0.4

3

I

fL,

----I

f.O.' 5

f--

--

F.O.,1l

oz

I

o

4.5V ~ Vee!: 5.5V

I

'"

-

--

t:---

r-

O. 2

o
25
TA -AMBIENT TEMPERATURE -'C

3-289

125

-55

. 25
TEMPERATURE ('Cl

125

Series ITT9000·1, ITT9000·5
HIGH SPEED TIL
Vee

Ipd TEST CIRCUIT

SWITCHING WAVEFORM

2.0 kll
PULSE
INPUT

·Includes all probe and jig capacilance

36

SWITCHING
CHARACTERISTICS

WORST CASE TURN ON DElAY
VERSUS
AMBIENT TEMPERATURE °
~

~

VCC·5.0V..:..

l~

30

24

~

f"" 1.0 MHz

,

Amp"" 4.0 V
Widlh -"" 200 ns
If
1,:::;;10 ns

18

=

,

5
0
"" ~

I'--.
...........
"'4-1"47

~

12

JI.

520

r--

~,~t;

i!l

...
'i

10

I I

"See tpd test circuit

-55

-'

f--

~

5.0

I

25
TA-AMBIENT TEMPERATURE-'C

NAND BUFFER - 9009
The 9009 is a power gate capable of sinking and
sourcing large currents for high fanout
applications. Logically it is the same as the
9004.

125

Figure 4

o

,

~;"i

~ 15

z·
§

C('ls

~

V

MIN. AT C '15.F

o

Figure 6

-

I I I

6.0

r- VCC' 5.0V

~ 25

N4.f'_1
l~'

i!l
z
o

30

WORST CASE TURN OFF DElAY
VERSUS
AMBIENT TEMPERATURE o

-55

--

V

~~~ ~+- r-I
MiN. AT 15pF

=t-t-

25 I
TA -AMBIENT TEMPERATURE-'C

LOADING FACTORS

2/2 - - - . . - - -......
}-:

~~~

2/2

_

60/30 for - 5 .
66/33 for - 1

CIRCUIT DIAGRAM (One Gate)
vcc

Figure 5
LOGIC DIAGRAM
AND PIN CONFIGURATION

Nominal Resislor Values
R, = 2.0 kll R4 = 50 Il
R, = 560 Il Rs=4.0 kll
liJ = 150 Il R. = 500 Il

R,

R2

R3
R4

1--+-...,
2--+-L:1
4--+-r-::::l

INPUT
°4
R5

OUTPUT

9--+-...,
10--+--.

°5

6

5--+--'

12--+-r:l
13--+--'

8

RS

Vee = PIN 14

3-290

GND = PIN 7

125

Series ITT9000-1, ITT9OO0-5
HIGH SPEED TTL
ELECTRICAL CHARACTERISTICS 9009

-

.-

LIMITS
SYMBOL

CHARACTERISTIC

VOH

Output High Voltage

VOL

Output Low Voltage

V,H

Input High Voltage

V,L

Input Low Voltage

IF

Input Load Current

I,

-55°C
MIN.
MAX.

2A

MIN~

2A
0.4

2.0

25°C
TYP.

t,,,,
to"~

2A

2.7
0.21

Volts
Valls

0.9

0.8

Volts

3.2

3.2
-2.48

1.7

1.4

Valls

3.2
-2.48

2.15
-1.74
20

120

120

12.9

8.6

12.9

12.9

3.2

3.2

Vee Current, Gate On
(each gate)
Vee Current, Gate Off
(each gate)
Switching Speed
Switching Speed

3.2

-2A8

2.15

UNITS

OA

0.4

0.8

Input Leakage Current.

-Ipo

125°C
MAX. MIN.
MAX.

4.0
13.0

15
10

rnA

fJ.A

CONDITIONS
Vee =4.5 V 10H = - 3.96 rnA
Inpuls at V" (see below)
Vee = 5.5 VIoL - 52.8 rnA
V'H=5.5 V
Vee -4.5V IOL-40.8rnA
Inpuls at V,H (see below)
Guaranteed input high
threshold for all inputs
Guaranteed input low
threshold for all inputs
Vee- 5.5 V I VF-O.4 V
5.5 V on other
Vee=4.5 V
inputs
Vee -5.5 V
V,-4.5V
GND on other inputs
Inputs high

rnA

Vee=5.0 V

ns
ns

Vee - 5.0 V, See tpd test circuit
CL =15 pF

Inputs grounded

---_... -

DOC

SYMBOL CHARACTERISTIC
MIN.

MAX. MIN.

2.4

2.4

LIMITS

VOl-i

Output High Voltage

VOl

Oulput Low Voltage

V,H

Input High Voltage

V,L

Input Low Voltage

IF

Input Load Current

I,

Input Leakage Curren!'

I,D

Vee Current. Gate On
14.6
(each gate)
____
-----;;;----;Vee Current, Gate 6i1
3.4
2.15
(each gate)
Switching Speed
3.0
Switching Speed
2.0

2.4

2.9
0.45

Volts
0.45

0.85

0.85 '
-2.0
-1.82

-3.2
-2.82

20

120

;

Volts

Volts

1.6

1.8

-3.2
-2.82

0.85

Volts

-3.2
2.82

rnA

120

/J-A

~:_6_~-_~4.6 _ rnA
3.4 ,
3A i

tpd I

~=

SWITCHING CHARACTERISTICS

17
13

I ns
ns

tpd TEST CIRCUIT

2.0 kn

VOUT
f"" 1.0 MHz

Amp"" 4.0V
Width:::::: 200 ns
t f = tr~lO ns
INCLUDES ALL PROBE ANO JIG CAPACITANCE

3 - 291

Vee=4.75 V 10H= -3.6 rnA
Inputs at V,L (see below)
Vee=5.25 V lot =48.0 rnA
V'H=5.25 V
Vee=4.75 V IOL=42.3 rnA
Inputs at V,H (see below)
Guaranteed input high
threshold for all inputs
Guaranteed input low
threshold for all inputs
Vee-5.25 VI VF-0.45 V
Vee = 4.7.5 V 15.25 V on
other Inputs
Vee-S.25 V V,-4.5 V
GND on other inputs
Inputs high
Inputs at gnd

Vee=S.O V

Vee - 5.0 V, See tpd test
circuit CL=15 pF

SWITCHING WAVEFORM

vee

-=- *

CONDITIONS

MAX. MIN.

0.21

0.45

1.9

75°C
UNITS
MAX.

25°C
TYP.

Series ITT9000-1, ITT9000-5
HIGH SPEED TIL
TYPICAL INPUT AND OUTPUT CHARACTERISTICS 9009
INPUT CURRENT VERSUS
INPUT VOLTAGE

OUTPUT VOLTAGE VERSUS
INPUT VOLTAGE
4.0

2.0

;;;; ;:::..

ti=

Vcc' S'ov
F.O.·33

..

~

~

B:

2S'C~

.I

~ -2.0

20

I

I

L
~~'C
-SS'C

3.0

~

i'l

-4.0

-40

-6.0

~
?

-8.0

o
- -BO

o
2.0
4.0
6.0
V,N-,NPUT VOLTAGE-VOLTS

12S'C

~

-100
-1.0

8.0

"

f
'f'

I(ffIt

I. '(I'

.,/

25'C_ 75'C
125'C- -

,-

-60

5

-10
-2.0

-5g:g:::

~ -20

;!;

1.0
2.0
V,N -INPUT VOLTAGE -VOLTS

I

E

0-

~T

I

VCC'5.0V
INPUTS AT GNO.

.,

M

~

z

---

1.0

t--

'"~

-sS'C
O'C
... 25'C
7S'C
12S'C

,

r-

e

11

I

I-YCc'S,OV
12S'c,
o
7S'C

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE

O'C
25'C
-55'C

0

1.0 2.0 3.0 4.0 5.0 6.0
VOUT -OUTPUT VOLTAGE -VOLTS

7.0

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)
200

POWER DISSIPATION, LOGIC LEVELS AND NOISE IMMUNITY
WORST CASE LOGIC LEVELS
VERSUS
AMBIENT TEMPERATURE

POWER DISSIPATION VERSUS
SUPPLY VOLTAGE
100

I
I
I
j '\A~~'

-5S·C:S: TA! 12S·C

80

"~
E 60 I-- I-z

0

~

is

'"~

40

I 1 .J.

G~

I--~

~

~o

G~~

I

---

I--

I

3.0

I-- 2.5

GAT y OF

o

4.5

---

r-- ~ 2.0

~

~

'o3
>

1.5

1.6
1.2
0.8
0.4

o

---

-55

I-

--

C-

Jcc,~I~~
~~

~cc'~'~ I----

1--1: ,•.1~~
~cc :\

~cc"'~~

IOH'-3.96mA

§,

--- --

~ I--

-

-55

F.Of3 4.5v " c r
1

j

40

,

I

T-

r-

-55'C

17

1/
II'
o

0.5
1.0
1.5
VOUT -OUTPUT VOLTAGE - VOLTS

2.0

5.5r- -

25
TA-AMBIENT TEMPERATURE-'C

125

9009-1
WORST CASE TURN OFF DELAY
VERSUS
AMBIENT TEMPERATURE~

1.2
4.5V~

'"~

1.0

~

0,8

'"'"
~

0.6

~>-

VCC S5.5V

~
:::::P"~

r--

r-- _~.o.,~~
_r-

r--

cr--

fO.'
..p-

~

o

VCC ' 5.0V_t-+-t--l-t--+-l

T I

g 0.2
125

80

A
fI

1

25 c _

VOL

~ 0.4

~

~

I

o

-:-

r- -

~

f--~

25
TA - AMBIENT TEMPERATURE -'c

=>

-

~f-

~ 120

0-

b

160

ffi

WORST CASE LOW LEVEL
NOISE IMMUNITY VERSUS
AMBIENT TEMPERATURE

I----

~cc;.;:::-

,

VIL

WORST CASE HIGH LEVEL
NOISE IMMUNITY VERSUS
AMBIENT TEMPERATURE
2.0

1

tOH'I-3.9imA

~ I--

1.0

o

5.0
5.5
VCC-COLLECTOR SUPPLY VOLTAGE - VOLTS

l ' HIGH LEVEL FAN OUT' 66

VOH AT VCC'4.5V

0.5

I-TYi""

2.4

vr r

I--

AT~ orLMlx.

20

VOH(

5

125)?f- 75'C

VCC'5.0V
INPUTS .HIGH

-55

--

25
TA-AMBIENT TEMPERATURE-'C

125

~5~5~-L-I~~2L5~-L-~-L~125
TA -AMBIENT TEMPERATURE -'C
'SEE TEST CIRCUIT

3-292

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
9009-1

9009-5

WORST CASE TURN ON DELAY
VERSUS AMBIENT TEMPERATURE

i-+:h,1
:/..~iC\.'~ P

36
VCC ·5.0V
501--.--+--+-+-1-+-+--+--1

~
0

30

z
z

I

,.

"-"

.........

"'

1

........

g

24

!;
z
"'
...

18

"!

20

.........

30

I

,

o

I

"'A~. Ai C\" \5~ f-

-

125

I

o

I-

-

75

1.5/1.5
1.511.5

10

t><:

8
11
12

:~:~~6
-.-i-

III

I VCC ·5.0V rI

MAX. AT CL'I50pF

lB

.......

MAX. AT CL'15pF

'

12

I

6.0

o

MI~.

o

I

I

AT CL'15pF

25

50

75

9006

9008

~

5

NON·EXTENDABLE GATE

1.511.5
1.511.5

22/11 10.·1
20/10 lot· 5

Vee
Gnd

13

1.511.5

22/11 for· 1

20/10 .... 5
• EMIT.
• COll.

EXTENDABLE GATE

111

LL

LOGIC DIAGRAMS AND LOADING FACTORS
The numbers by each input and output give the
input loading and output drive capability. For
complete expanation see Page 2 and 3.

9005
13

I

I
I

TA-AMBIENT TEMPERATURE-'C

9005,9008, EXTENDER -

The TTL 9005 and 9008 are ANO-OR-INVERT
gates which may be OR extended with the use
of the 9006. For noise immunity and operating
level curves, refer to the gate section.

1.5/1.5

r-

I I

25
50
TA-AMBIENT TEMPERATURE-'C

24

I

I
I

~

~
z
~

~

EXTENDABLE AND-OR-INVERT GATES -

1.5/1.5

:3
'i'

MIN. ATCL'15pF

r-

c

12

6.0

F:J:=t=t~~M~I~t·~ATt~C~L'~I~~PF~t--~
25
TrAMBIENT TEMPERATURE-'C

f::::

II
I I

I .I

-

,£

~

15_PF-+--1
10 1-+--+-:-----f'=-t_M_AXt-.A_T"1"'C:,.L'-t

~~

l-

36

If

:.- ~

30

,

40

WORST CASE TURN ON DELAY
VERSUS AMBIENT TEMPERATURE"

WORST CASE TURN OFF DELAY
VERSUS AMBIENT TEMPERATURE'

1.511.5

22/11 10'· I
)0--"--- 20/10 ... ·5

1.511.5
1.511.5

",---,-,11_ EMIT.
",-_1",2_. COlL.

*

1.5/1.5
1.5/1.5
1.5/1.5

= Pin 14
= Pin 7

Vee
Gnd

'Four Extenders (9006) may be
tied to these terminals

= Pin 14
= Pin 7

'Four Extenders (9006) may be
tied to these terminals

9006
13

~1.

~
12
COlL.

1.511.5
1.5/1.5
2
1.511.5
3
1.511.5 - - " " " - - -

11

EMIT.

4

1.511.5~

1.5/1.5
1.511.5
1.511.5

6
8

9

COll

10

EMIT.

.

Vee = Pin 14
Gnd = Pin 7

3- 293

Series ITT9000-1, 1119000-5
HIGH SPEED TTL
CIRCUIT DIAGRAMS

9005

.13 o---+-~...J

9006
'--"""'~+--O8

90--,-~"(

Vee
R = 2.6 k!l Typical

~--------~

10 0---+---.--'

EXTENDABLE GATE

Two in a package

Vee = Pin 14
Gnd = Pin 7

40---.---'

5 O:--+---.-...J

NON· EXTENDABLE GATE

Vee = Pin 14
Gnd = Pin 7

Typical Resistor Values
RI =
R2 =
R. =
Rs =

R3 = 2.6 kO
800 0
R" = 150 0
RI2 =.800

R.= R. = R,o = R" = 4.0 kO
R7=665!l
R, = 1.5 k!l
R,. =:' 1.25 k!l

9008

Typical Resistor Values

2
3

RI = R2 = R. = Rs = 2.6 k!l
R3 = 800 0
R6 = 150 0
R7=80!l
R.=4.0 k!l
R, = 6650

9
10

4~~--'

50-+--.--'

Vee = Pin 14
Gnd = Pin 7

6o-t-l--.p...J

3-294·

Series ITT9000-1, ITT9000-5

HIGH SPEED TIL
ELECTRICAL CHARACTERISTICS 9005, 9006 AND 9008 (TA = - 55°C to 125°C, Vee = 5.0 V

±- 10% I

--

LIMITS
SYMBOL CHARACTERISTIC
VOH

Output High Voltage

-VOL

Output Low Voltage

VIH

t

mpUt Mlgn vOltage
Input Low Voltage

VIC

-55°C
25°C
125°C
"'IN. MAX:'-. l'!'!!N. TYP. M~!,- M.!N. MAX.
2.4

2.4

2.7

UNITS CONDITIONS & COMMENTS

10H= -1.32 rnA
Vee =4.5 V
VIL=value Indicated below
on this table
---- 0.2 0.4
0.4
0.4 Volts Vee-S.S ,';-IoL=17.S mA--V'H=S.SV
Vee-4.5 V IOL-13.SmA
V'H= (see below)
Ir.~---- :--1.4

tpd _

3.0
3.0

12
14

ns

Vee-S.O V, CL-1S pF
9005 Nonexlendable gale only,

tpd+

3.0
3.0

15
12

ns

Vee=5.0 V, CL=15 pF, CN =5.0 pF
9005 Exlendable gale and 900B,

-.2.0
-2.0

4.0
4.0

ns

9006 only
The 9006 is lesled by measuring lis
propagalion time Ihrough Ihe 9005.

CONDITIONS & COMMENTS

See Fig. 7
I,d_

See Fig. 8
dip",
dl,d.

The I,d readings shall nol exceed
Ihe 9005 readings by Ihe specified
amount. See Fig. 9.

Symbols are deiined in Ihe lesl circuit.

9005, 9006, 9008
TYPICAL INPUT-OUTPUT CHARACTERISTICS
(EXTENDABLE GATES")

2.0

Vee-S.O v

F.o.-n

~~
\~

,

r- r-

;-2.0

r-- r--

B-4.0

-

':~~'
75-C af..!o·c

0

T

Vee s 5.0 V

I-

;I

5S·C
O'C
25-C
75-C
125·C

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT HIGH)

INPUT CURRENT VERSUS
INPUT VOLTAGE

OUTPUT VOLTAGE VERSUS
INPUT VOLTAGE

~

O'c

-5S-C

-5S-C
0

~

7-6.0

o

25.c~_1f

-8.0

-Ft

0'-

0

1.0
2.0
VIN-INPUT VOLTAGE-VOLTS

'0

-10

-2.0

,-/I

,/

f{fff: "'c -

-

'~l;.g - -

o ~~:~::))

z

0

I

vcc cs.ov

INPUTS AT GND.I

0

o

2.0

4.0

6.0

VIN -INPUT VOLTAGE -VOLTS

3- 297

ao

-8
-1.0

~,.c

1.0
'.0
Your - OUTPUT VOLTAGE-VOLTS

7D

•

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
9005-1. 9006-1 AND 9008-1
OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)

.00

k

Vcc' S'ov
IN~UTS

'WORST CASE TURN OFF DELAY
OF NON EXTENDABLE GATE
.. VERSUS AMBIENT TEMPERATURE .

OPEN

160

WORST CASE TURN ON DELAY
OF NONEXTENDABLE GATE
..VERSUS AMBIENT TEMPERATURE

Yee' S,OY
SEE FlU

-40

TS'C

:

2~

~ 32

Vcc' 5.0V
SEE FIG. 7

\

I

I

120

;

~

80

L

~

I

°0

0.4

0.8

1.6

1.2

I
I
I

I---'

~.~1~

~
,,~~. ~1 c,:\~ P'"

-55'C

.0

f - ....

111

O'C

~

1II•• ~1

o

2.0

-S5

Your - ounUT VOLTAGE - VOLTS

Ct·'s"

TA- AMBIENT TEMPERA1\IfE

2.

~I

16

I-

- ~ ~Tc;,.~o" I-

~ i ' _.

J.. r' -

.:::

.1. AT c;",,,,

~AlAx.

"N. AT cL,rSpF

o

-55

125

25

!

-Ie

--

25
lA-AMBIENT TEIlPEATURE-'C

WORST CASE TURN ON DELAY
OF EXTENDABLE GATE VERSUS
.s
AMBIENT TEMPERATURE
~ ~.

. 1 .... L...l
--r

Vee' 5.OV

_\.
'.
r·
SEE FIG.•
'0 h~--+-t--t-i-H
I
..
~ 32
,I
I
r

'l\r ; .. -1--+_.+_+_

I

I!It-t~·+; ~ .. L

r-

"., AT CL I

• 24

I

J5~"

I. I.

SC

h-+-+-++-+

~M~-+-t~~+-~~

·tt '_ ..
r--i"".2.
. "'J
X-ATCL'I5,,!-'

1-

40

~ 321--+-+--+-+--:1.
~.,.
j

~~~-+~-+-+-t-4

1

F=:tl:~~~~"CTCl~I~5"±=~~--~

~5's

25

125

rA- AMBIENT

TA- AMarNT TEMPERATIJIE - "e

J·K FLlP·FLOPS -

9000, 9001, DUAL J·K FLIP·FLOPS -

The TTL 9000 series has four flip-flops to
satisfy the storage requirements of a logic
system. All are master-slave JK designs and
have the same high speed and high noise
immunity as the rest of the 9000 series. As with
the gates, all inputs have diode clamps to
further engance the noise immunity.

TEMPERATURE -'e

9020, 9022

D;;lta is accepted by the master while the clock
is in the low state. Refer to the truth table for
definition of "ONE" and "ZERO" data. Transfer
from the master to the slave occurs on the low
to high transition of the clock. When the clock
is high, the J and K inputs are inhibited.

The JK type flip-flop was chosen for all flip-flop
elements in this family because of its inherent
logic power. The input function required to
produce a given sequency of states for a JK
flip-flop will, in general, contain more "don't
care" conditions than the corresponding
function for an RDdlip-dlop. These additional
"don'.t care" conditons will, in most cases,
reduce the amount of gating elements required
to implement the input function.

A jOint (JK) input is provided for all flip-flops in
this family. This common input removes the
'necessity of gating the clock signal with an
external gate in many applicaitons. This not
only reduces package count, but also reduces
the possibility of clock skew problems, since
with internal gating provided, all flip-flops may
be driven from a common clock line. Several
TTL drivers may be used in parallel to drive this
common clock line, if the load exceeds the
F.O. capability of the 9009 buffer.

The master-slave design offers the advantage
of a DC threshold on the clock input initiating
the transition of the outputs, so that careful
control cif clock pulse rise and fall times is not
required.

The asynchronous Inputs provide ability to
control. the state of the flip-flop independent of
static conditions of the clock and synchronous
inputs. Both asynchronous set and clear are
provided on all flip-flops except the 9020,

3-298

Series 1119000-1, 1119000-5
HIGH SPEED TTL
which because of a logic trade-off has only
clear inputs. The set or clear pin being low
absolutely guarantees that one input will be
high, but if opposing data is present at the
synchronous inputs and the flip-flop if clocked,
the low output may momentarily spike high
synchronous with a positive transition of the
clock. If the low output of the flip-flop is

connected to other flip-flop inputs clocked
from the same line, the spike will be masked by
the clock. If the clock is suspended during the
time when the asynchronous inputs are
activated, no spike will occur..When the spikes
can cause problems, a simple solution is to
common the joint JK inputs with the
synchronous set or reset signal.
I

LOGIC DIAGRAMS AND LOADING FACTORS
9000

'1,

,"

'1,

41,
6

'2

'1,
212

'1,
'1,
'1,

'1,

'1,

20/10

I

9020

'4

20'10

20'10

20/ 10

20/10

2'2
8 20/10

"I,

'0

"

"

9022
9001

4/4

'1,

'1,
'1,
'1,
2/2

'1,

'1,
'1,

6

'2

lJ,

20/10

, '0

20/ 10

212
3

20/10

'1'

'0

"

Vee = 14

GND~7

Vee'16

GND' 8

FUNCTIONAL LOGIC DIAGRAMS
9020/9022

9000/9001
So 9022 ONLY

Y

JK~--~======~'~------------~~~~~~
SLAVE

SYNCHRONOUS OPERATION

TRUTH TABLES

BEFORE CLOCK
OUTPUTS

INPUTS

ASYNCHRONOUS OPERATION

OUTPUTS
AFTER
CLOCK

ONE

ZERO

J

K

ONE

ZERO

L
L
H
H

H
H
L
L

L'
H'

X
X

X
X

L'
H'

L
H
H
L

H
L
L
H

3--: 299

INPUTS

OUTPUTS

So

CD

L
L
H

L
H
L

H

H

ONE

,

l'

ZERO

H
H
H
L
L
H
Synchronous
Inputs Control

•
i

Series ITT9000-1, ITT9000-5

HIGH SPEED TIL
SYNCHRONOUS OPERATION

The H* symbol in the J and K input column is
defined as meaning that the input has been
high at some time while the clock was low.

The truth table defines the next state of the
flip-flop after a low-to-hlgh transition of the
clock pulse. The next state is a function of the
present state and the J and K inputs as shown
in the table.

The X symbol indicates that the condition of
that input has no effect on the next state of the
flip-flop.

The J and K inputs in the table refer to the basic
flip-flop J and K inputs as indicated on the
logic diagrams. These internal inputs are for
every flip-flop the result of a logic operation on
the external J and K inputs. This operation is
represented symbolically by AND gates in the
logic diagram for each flip-flop. Logic diagrams
are in accordance with MIL Standard 806B.

The Hand L symbols refer to steady state high
and low voltage levels, respectively.
UNUSED INPUTS

The 9001, 9020 and 9022 all have active level
low synchronous inputs. When not in use they
must be grounded. All other unused inputs
including asynchronous should be tied high for
maximum operating speed. Use one of the
methods recommended on Page 3.

The L* symbol in the J and K input column is
defined as meaning that that input does not go
high at any time while the clock is low.

.

ELECTRICAL CHARACTERISTICS 9000, 9001, 9020 AND 9022

(TA=-55 Ct0125 C,Vcc=5.0V

10%)
LIMITS

SYMBOL CHARACTERISTIC

-55°C
MIN.

VOH
VOL

Output High Voltage
Output Low Voltage

2.4

V ,H

Input High Voltage

2.0

V"

Input Low Voltage

I,

Input Leakage
All J, K inputs
T inputs 9000, 9001
JK inputs 9000, 9001
T inputs 9020, 9022
JK inputs 9020, 9022
SD, CD (all flip-flops)
Input CUrrent
All J, K inputs
T inputs 9000, 9001
JK inputs 9000, 9001
T.inputs 9020,9022
JK inputs 9020, 9022
SD, CD (all flip-flops)
Input Current
All J, K inputs
T inputs 9000, 9001
. JK inputs 9000, 9001
T inputs 9020, 9022
JK inputs 9020, 9022
SD, CD (all flip-flops)
Vee Current
9000
9001
9020,9022
each flip-flop

I,

I,

IpD

125°C

25°C

MAX. MIN.
2.4
0.4

TYP.
2.7
0.21

MAX. MIN.

UNITS

2.4
0.4

1.7

0.4
1.4

0.8

0.9

Volts
Volts
Volts

Vee=4.5 V,l oH = -1.2 rnA
Vee-4.5 V. h -12.4 rnA
Vee = 5.5 V, 10L = 16.0 rnA
Guaranteed input high
thres~old for all inputs
Guaranteed input low
threshold for all inputs

0.8

Volts.
p.A

V,=4.5V
Vee=5.5 V
Gnd. on other inputs.

rnA

Vee = 5.5 V

rnA

Vee=4.5 V

rnA

SD at gnd
SD at gnd
COl, CO2 at gnd

5.0

60

60

10

120

120

20
14

240
160

240
160

-1.60

-1.1

-1.60

-1.60

-3.~0

-2.2

-3.20

-3.20

-6.40
-4.32

-4.4
-2.97

-6.40
-4.32

-6.40
-4.32

-1.24

-0.87

-1.24

-1.24

-2.48

-1.74

-2.48

-2.48

-4.96
-3.35

-3.48
-2.35

-4.96
-3.75

-4.96
-3.35

24
28
27

13
14
14

24
28
27

24
28
27

3-300

CONDITIONS
& COMMENTS

MAX.

V,=0.4 V
5.5 V Gnd on
other inputs

Vee=5.0 V

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
ELECTRICAL CHARACTERISTICS 9000, 9001, 9020 AND 9022
(TA = DOC to 75"C, Vcc = 5.DV 5%)
LIMITS

O·C

SYMBOL CHARACTERISTIC

VOH
VOL

Output High Voltage
Output Low Voltage

2.4

V,H

Input High Voltage

1.9

VII

Input Low Voltage

2S·C

TYP.

MAX. MIN.

MIN.

3.0
0.21

2.4
0.45

75°C
MAX. MIN.

2.4
0.45

0.45

1.8

1.6

& COMMENTS

Vee = 4.75 V, 10H= -1.2 rnA
Vee = 4.75 V, ioc-T4TrnA
Vee = 5.25 V, ioc=16 rnA
Guaranteed input high
threshold for all inputs
Guaranteed input low
threshold for all inputs
VCC-S.25 V, V.-4.5 V
Gnd. on other inputs.

Volts
Volts
Volts

0.85

0.85

60

60

10

120

120

20
14

240
160

240
160

-1.60

-1.0

-1.60

-1.60

0.85

CONDITIONS

UNITS
MAX.

Volts
p.A

I.

Input Leakage
All J, K inputs
T inputs 9000, 9001
JK inputs 9000, 9001
T inputs 9020, 9022
JK inputs 9020, 9022
So, Co (all flip-flops)
I,
Input Current
All J, K inputs
T inputs 9000, 9001
JK inputs 9000, 9001
T inputs 9020, 9022
JK inputs 9020, 9022
So, Co (all flip-flops)
-1,-- Input Current
All J, K inputs
T inputs 9000, 9001
J
J K inputs 9000, 9001
T inputs 9020, 9022
JK inputs 9020, 9022
So, Co (all flip-flops)
Ipo
Vee Current
9000
9001
9020,9022
each flip-flop

5.0

-3.20

-2.0

-3.20

-3.20

-6.40
-4.32

-4.0
-2.7

-6.40
-4.32

-6.40
-4.32

-1.41

-0.94

,1.41

-1.41

-2.B2

-1.8B

-2.82

-2.B2

-5.64
-3.7B

-3.76
-2.54

-5.64
-3.7B

-5.64
-3.7B

28
33
30

2B
33
30

rnA

Vee -5.25 V

rnA

Vec-4.75 V

rnA
2B
33
30

V,-0.45 V
5.25 V on
other
inputs

Vee-S.O V
So at gnd
So at gnd
COl, CO2 at gnd

TYPICAL INPUT-OUTPUT CHARACTERISTICS 9000,9001,9020 AND 9022
OUTPUT VOLTAGE VERSUS
INPUT VOLTAGE
ASYNCHRONOUS INPUTS

CLOCK OUTPUT VOLTAGE
VERSUS INPUT VOLTAGE
4.0

4.0

g

2.0
Vcc' 5.0 V

VCC'5.oV

'"
S

INPUT CURRENT VERSUS
INPUT VOLTAGE 9004

.n

S

g

3.0

I

I

W

W

~

-55'C
)---O'C
25'C f-- ,.- f-75'C
125'C f- ' - f--

~

~ 2.0

~

o

~ 1.0

""E,

3.0

~ -2.0

~

i-"55'C
O'C

S

g

2.0

~

o

o

1.0

2.0

VIN -INPUT VOLTAGE -VOLTS

3.0

~ ---O'C
"WC
25'C

....=>

~75'C

125'C

ill.... 1.0

IT

lIT

71/(1

a~ -4.0

~25'C

....

0.

7-6.0

-~

~

~

Vcc' 5.0V
125'C
75:;"

0-

-6.0

1.0

2.0

VIN -INPUT VOLTAGE -VOLTS

3- 301

3.0

-1 0

-2.0

2.0
4.0
6.0
VIN -INPUT VOLTAGE - VOLTS

6.0

Series 11T9000-1, 1119000-5
HIGH SPEED TIL
INPUT CURRENT VERSUS
INPUT .vOLTAGE
JK INPUT 9000, 9001

INPUT CURRENT VERSUS
INPUT VOLTAGE 9009

.,

2.0

«

VCe'S.OV
oI-- 12S'C
7S'C

E

~ -2.0

~

~

r

2.0

!!I/l. I-O'C

""EI

L:'?S'C
2S'C

t-

~

~
I

'"

-B.O

-2.0

t-«

f
E
-2.0

~

7 -6.0

-10

L..!!! ~-ss'c

-6.0

B.C

-2.0

-'"

VCC'S.OV

t-i- 2S'C
t - I;;:~

~

E

~

-2.0

G '-4.0

.1

1, so

~55'C
O'C

~ 60

~
~

>=>

.5'

20

1

-10
-2.0

1

4.0
2.0
6.0
VIN -INPUT VOLTAGE - VOLTS

75°C

25'C
O'C

40

,

/

II

'L

o

-.l

o
2.0
4.0
6.0
V,N -INPUT VOLTAGE-VOLTS

I?l -

/

ffi

t-- -55°C
~I -6.0
t - V2~:~
z
t - ~~~:g

-2.0

v- S5 'C
II
1 1

V

>-

V
"I

-B.O I--

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)
VCC' S.OV
INPUTS OPEN

>-

-B.O

B.O

100

11
lJI

1

I

12S'C

2S 'C
I- v
kO'C

-I 0

o
2.0
4.0
6.0
V,N -INPUT VOLTAGE - VOLTS

INPUT CURRENT VERSUS INPUT
VOLTAGE ASYNCHRONOUS
INPUTS - ALL FLIP-FLOPS
2.0

I

~5S'C
~ I" i'.2~:g

"I -6.0 I-- v!S'C

-B.O

10

o
2.0
4.0
6.0
VIN -INPUT VOLTAGE - VOLTS

~

r- ~~~:~

1

,J

IE

a -4.0

-sS'C
V.0'C
1/2S'C

I

VCC' 5.0V
7S'C
12S'C,

Itc

-2.0

a'" -4.0 t-r~

B -4.0

'"

r-

2. 0

12~'C'

VCe'S.OV
I
12S·C

U

1

INPUT CURRENT VERSUS
INPUT VOLTAGE
JK INPUT 9020, 9022

/
!/

B.O

-sS'C

A

0.5
1.0
1.5
VOUT - OUTPUT VOLTAGE - VOLTS

2.0

SWITCHING CHARACTERISTICS (T,=25°C, Vcc=5.0V, CL=C,=15 pF of all flip-flops unless otherwise noted)
CHARACTERISTICS
Clock-to-Output
So or Co-to-Otuput
Clock-to-Output
t,d
So or Co-to-Output
t1C t.up
J, K or JK
L9000 Only
Data Entry
J or K Data Entry
treleal

I I

28

~

V

MIN.lpd+ (T HIGHI

'4.0

/
0\0/

12

./

M~Pd_ (T LOW!

36

I I I
I

10

16

/'

I I I

44

~

-;;

./

~I
'Pd+CT LOW!

52

~o/
~,

I :

/

/"

I I I
I I I

12

9001·9020·9022
SET·UP/RELEASE TIME AND
NEGATIVE CLOCK PULSE WIDTH
VERSUS AMBIENT TEMPERATURE
VCCI ·5.y

~d_

20

25
'TA-AMBIENT TEIIPERATURE"C

22

~I
.
C THIGH

36
28

./

MIN,lpd-

4.0
-55

44

/

I-

20

V

IIA;!pd-

-

28

6,0

20

52

52

INCREASE IN ASYNCHRONOUS
OR CLOCK INPUT
DUE TO OUTPUT CAPACITANCE

I II
25
TA-AMBIENT TEMPERATURE"C

125

C1

>3.0 V
1.5 V

=i

Figure 12
VJK

<0.4 V

WAVEFORMS

"'-------II

>3.0 V ---'--t-~----""'"
1.5 V
<0.4 V _ _- J

>3.0 V
1.5 V

·'<0.4 V

----t--'

3-303

9020/9022
Flg.ll

Vee = 5.0 V
R= 2.0 kll
= CL = 15 pF

C,

including

probe and jig

capacitance
VCPH---+-4

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL

SWITCHING TEST NOTES
will remain at a static logic level (no switching will occur).

tpd + and tpd1. VJ K should be kept at the high logic level
when performing tpd tests.

trelease

2. Drive the clock pulse input with a suitable
pulse source. tpd +and tpd - delays are as
defined in the waveforms.

1. trelease is defined as the maximum time
allowed for a HIGH to be present at a synchronous logic input at any time during the
low state of the clock and not be recognized.

~

2. The test for trelease is performed by adjusting the timing relationship between Vc P
and VJ K to the trelease maximum value. The
outputs of devices that pass will remain at
static logic levels. In order to check both J
and K sides of the flip-flop it is necessary to
perform the test with the flip-flop in each of
its two possible states, i.e., set and clear.
This can be accomplished by making use of
the appropriate direct inputs to establish the
state before a test. The outputs of devices
that do not pass the trelease test will exhibit
pulses instead of static levels.

1. tset-up is defined as the minimum time required for a HIGH to be present at a synchronous logic input atany time during the low
state of the clock in order for the flip-flop to
respond to the data.
2. The test for tset-u p is performed by adjusting the timing relationship between the Vcp
and VJK inputs to the tset-up minimum
value. A device that passes the test will have
theoutput waveform shown. The output of a
device that does not pass the tset-u p test

9000 SCHEMATIC DIAGRAM

9001 SCHEMATIC DIAGRAM

For resistor values,see page 16

For resistor values,see page 16
Vee

Rg

Vee = Pin 14
Gnd = Pin 7

Vee = Pin 14

Gnd = Pin"

-=-

3-304

RU

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
RECOMMENDED INPUT PULSE SOURCES

DTL9932 gates with adjustable capacitors
connected from extender inputs to ground
make suitable delay elements.

9020 SCHEMATIC DIAGRAM

16

vee

'''-+thp-015

11

4

Vee = Pin 16
Gnd=Pin 8

RI, R4,

Rs. Rs,

RIO,

RI., R I1, RII , R22, Rn, R24, Rl6 , RZ9=4.0 ko

R" R" R., R,=2.0 kn

Rqr R16, RUI R31 = 6.0 kO

NOMINAL COMPONENT VALUES [ALL FLIP-FLOPS]

RII, R,,=1.5kn
RIl , R,,=150n
RIl , R,,=80n
RIS,

R2z, RZ5 , Rz7 , RlO = 1.25 kn

R,,=1.0kll
C" C,=10 pF

Series ITT9000-1, ITT9000-5
HIGH SPEED TTL
9022 SCHEMATIC DIAGRAM

VCC

Vcc=Pln 14
Gnd=Pin 7

APPLICATIONS

DIVIDE BY TEN COUNTER

SYNCHRONOUS BCD COUNTER

r+====+===::;===l=t----

IN....------.----h===:::::;-]

1/5
1/10

VCC
01

02

04

08

Two TTL 9020 Dual Flip-Flops require no additional gating
to produce a fully synchronous 8421 code BCD Counter.

Two TTL 9020 Dual Flip-FlOps require no additional
gating elements to produce divide by ten circuit with a
square 'wave divide by ten output and a divide by five.
output.

BINARY COUNTER WITH ASYNCHRONOUS PARALLEL LOAD AND CLEAR
PARALLEL INPUT ONES TRANSFER ENABLE ----...,-!-----.,.-\------'t4-----,

COUNT ENABLE

COUNT INPUT

--.---+-----1---+-.---+---.

-+'O'----+-f-J

MASTER CLEAR - - - -......---,f::--.2;~--'-+.Q2----.......~"'Q4--'~---.J
-

PARALLEL OUTPUT -

3-306

Binary counter using synchronous 2
bit stages with trickle down between
stages illustrates method of utilizing
dual JK flip-flops having common
clocks in counter applications.

ITT 9024
DUAL JK (OR D) FLIP-FLOP

-

ITT --------=""""""'"
SEMICONDUCTORS

Packages: 16 lead DIP and Flat Packages

LOGIC SYMBOL

DUAL JK [OR 0]
FLIP-FLOP
l---:I

11 - - - - " ,

• Dual Rank Type Circuit
14

• Separate Clocks
• Separate Asynchronous Set and Clear Inputs

12
13

• Low Power Dissipation

15

J So
Cp

Q

10

Q

9

K CD

• Compatible with ITT DTL and Other TTL
Families
• Input Diode Clamping

ABSOLUTE MAXIMUM RATINGS

• 25 M Hz Operation

Characteristics

The ITT9024 consists of two high-speed,
completely independent transition clocked JK
flip-flops. The clocking operation is independent of rise and fall times of the clock
waveform. The JK design allows operation as a
D flip-flop by simply connecting the J and K
pins together.

Units

Storage Temperature
................... -65 to + 150
C
Temperature (Ambient Under
C
Bias ............... -55to +125
Vee Pin Potential to Ground
Pin (See Note 1) ....... -0.5 to + 8 Volts
Voltage applied to output
when output is high .. O V to + Vee value
Input Voltage (DC)
(See Note 2) ........ -0.5 to + 5.5 Volts
Input Current (DC)
(See Note 2) ........... -30 to + 5 mA
Current into output when
output is low ................ + 30 mA
Notes 1 and 2 following page

LOGIC DIAGRAM

SDo-------.----______~
10--.--0 Q

cpo--------~---~

Jo---o'ij
.----.'---.1

CDo-~~--------------~

3-307

ITT 9024
DUAL JK (OR D) FLIP-FLOP
"ELECTRICAL CHARACTERISTICS (TA = _55°C to 125°C, Vee = 5 V

10%) (Note 3)

LIMITS
SYMBOL

CHARACTERISTIC

_55°C
MIN.
MAX.

VOH
VOL

Output High Voltage
Output Low Voltage

2.4

VIH

Input High Voltage

2.0

VIL

Input Low Voltage

IR
21R
4 IR
IF
-e IF
3 IF
IF
21F
3 IF
Ipo

J, K Leakage Current
Clock Input, So
CD
J, K Input Current
Clock Input, So
Co(Note 4)
J, K Input Current
Clock Input, So
CD (Note 4)
Current Drain

Ise

Output Current

MIN.
2.4

0.4
04

UNITS

25°C
TYP.

MAX.

2.7
0.2
0.25

0.4
0.4

Volts
Volts
Volts
Volts

0.8

Volts

1.4

0.8

0.9

5.0
10
20
-1.1
-2.2
-3.3
-0.91
-1.82
-2.73
9.0

-1.6
-3.2
-4.8
-1.24
-2.48
-3.72

0.4
0.4

2.4

1.7

CONDITIONS AND
COMMENTS

125·C
MIN. MAX.

60
120
240
-1.6
-3.2
-4.8
-1.24
-2.48
-3.72

60
120
240
-1.6
-3.2
-4.8
-1.24
-2.48
-3.72
14

/lA

Vee =5.25 V, VF = 0.4 V
4.5 V 011 other inputs

mA

Vee=5.5V

mA

Per Flip Flop in Worst
Logic State

mA

Logic 1 Output Short Circuli

5%) (Note 3)

LIMITS
SYMBOL

CHARACTERISTIC

VOH
VOL

Output High Voltage
Output Low Voltage

O°C
MIN. MAX.
2.4
0.45

VIH

Input High Voltage

1.9

VIL

Input Low Voltage

IR
21A
4 IR

J, K Leakage Current
Clock Input, So
CD

IF
2 IF
3 IF

J, K Input Current
Clock Input, So
CD (note 4)

IF
2 IF
3 IF
Ipo

J, K Input Current
Clock Input, So
CO(Note 4)
Current Drain

Ise

Output Current·

MIN.
2.4

1.8

25°C
TYPE
3.0
0.21

MAX.
0.45

0.85

0.85

Vee =5.5 V, VR =4.5 V
Gnd. on other Inputs

mA

-65

"ELECTRICAL CHARACTERISTICS (TA = O·C to 75°C, Vee = 5 V

Vee = 4.5 V, 10H = -1.2 mA
Vee - 4.5 V, 10 L -12.4 mA
Vee = 5.5 V, 10L = 16 mA
Guaranteed Input high
threshold for all inputs.
(To Sink 10L)
Guaranteed input low
threshold for all Inputs.
(For Vo H Output)

75°C
MIN. MAX.
2.4
0.45

UNITS

1.6

Volls

0.85

Volts
Volts

CONDITIONS AND
COMMENTS
Vee = 4.75 V, 10H = -1.2 mA
Vee = 4.75 V, IOH = 14.1 mA
Vee=5.25 V, 10H =16 mA
Guaranteed Input high
threshold for all inputs.
(To Sink 10 L)

Volts

Guaranteed input low
threshold tor all inputs.
(For Va H Output)

.uA

Vee = 5.25 V, VA = 4.5 V
Gnd. on other Inputs

5.0
10
20

60
120
240

-1.6
-3.2
-4.8

-1.0
-2.0
-3.0

-.16
-3.2
-4.8

-1.6
-3.2
-4.8

mA

Vee =5.25 V

-1.41
-2.82
-4.23

-0.94
-1.88
-2.82
9.0

-1.41
-2.82
-4.23

-1.41
-2.82
-4.23

mA

Vee = 4.75 V.

mA

Per Flip Flop in Worst
Logic State
LogiC ,1, Output Short Circuit

14

-65

(1) The maximum VCC value of 8.0 volls is not the primary
factor in det'3rmining the maximum VCC which may be
applied to a number of interconnected devices. The voltage at a high output is approximately 1 VBE below the
VCC voltage, so the primary limit on the VCC is that the
voltage at any input may not go above 5.5 V unless the
current is limited, so this effectively limits the system
VCC to approximately 7,0 volts.
(2) Because of the input clamp diodes, excess current can
be drawn out of the inputs if the D,C. input voltage is

mA

VF =0.4 V
4.5 V on other
inputs

negative than -0.5 V. The diode is designed to cramp off
large negative A.C. swings associated with fast fall times
and long lines. This maximum rating is intended only to
limit the steady state input voltage and current.
(3) POSitive current is into device and negative current is out
of device.
(4) Denotes maximum current under normal operation.
These currents may increase up to 4 IF if J, K=Logie 1
and SD = Logic O.

3-308

ITT 9024
DUAL JK (OR D) FLIP-FLOP
TRUTH TABLES
SYNCHRONOUS ENTRY
J-K MODE OPERATION
INPUTS AT to
J

K

L
L
H
H

H
L
H
L

ASYNCHRONOUS ENTRY INDEPENDENT
OF CLOCK & SYNCHRONOUS INPUTS

SYNCHRONOUS ENTRY
D MODE OPERATION

OUTPUTS AT to+1

INPUTS AT t,

Q

Q

No Change
H
L

L
H

INPUTS

OUTPUTS AT to+1
Q

Q

SD

CD

L
H

L
H

H
L

5(11)

1(15)

L
L
H
H

L
H
L
H

L = Low Logic Level, H = High logic Level

Toggles

OUTPUTS

D

Q

Q

6(10)

7(9)

H
H
H
L
L
H
No Change

LOADING RULES
INPUT

LOADING

J and K

1 U.L.

Cp and SD
CD' (Note 4)

2 U.L.
3 U.L.

OUTPUTS

FAN OUT
High State Low State

20
20

Q
Q

1 U.L. = 1 TTL Unit Load as defined by the entries

'R

10
10

and IF tables.

TYPICAL INPUT AND OUTPUT CHARACTERISTICS
EQUIVALENT INPUT CIRCUIT

OUTPUT LOW
EQUIVALENT CIRCUIT

OUTPUT HtGH
EQUIVALENT CIRCUIT

r-..-----t--Q

Vee

65(1

:--JT
'~r

OUT

1--"'-'-0 OUT

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT HIGH)

INPUT CURRENT VERSUS
INPUT VOLTAGE
1.0
0

"Ii
;".0

115'C,\

I

----j 71'~

f'1 \'
1--'

JINPUT
f--.smCITEO-

::·4.0

~

,,-I '

INPUT NOT SmCTEO

·55~C

O°C:'-

r-t--

25~C

4I-

'!::M6.0

-_.

·s.a

'-.

!

-- r---t ---t- ,-e--e--

-10
·2.0

I

0

1.0

4.0

6.0

VIN • I NPUT VOlTAGE· VOLTS

8:0

i~

z

-lD

~

I §'-40

f--

5

Jl
·w

10

i -l
L
8C

I

o_ _ _ _----'
VOUT - OUTPUT VOLTAGE - VOLTS

3-309

~'c- -I::-

joc

V

30

~ 10

IJl

i

fr

/
//

E

E

~

I:
<

<

- c- I---

I

-

10

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)
vee· s.ov
~75"C
1--115"C::::
-

t

·55~C

~

-

r-

I,
I

011
0

0.>

1.0

I.>

VOUI - OUTPUT VOLTAGE - VOLTS

1.0

ITT 9024

DUAL JK (OR D) FLIP-FLOP
SWITCHING CHARACTERISTICS (TA = 25°C, Vee = 5.0 V, CL = 15 pF)
$YMBOL

LIMITS
25°C

CHARACTERISTIC

TYP.

MIN.
tpd+
fpd_

J,K,D
J,K,D

25
20
2.0
15
10
25
25

trela.",

t,et.vp

t",.
t",_

SDtOQ
SDtOQ
Toggle Frequency

UNITS

COMMENTS

ns
ns
ns
ns
ns
ns
MHz

Each Flip-Flop

MAX.

SWITCHING TEST CIRCUIT

INPUT PULSE o--...~

50n

J

So

~--_;Cp

Qt----.-u

Qlo-~-+-D

r K CD

Cl Includes probe and jig capacitance

WAVEFORMS

Cp.::::i

\--f--~5V

--I tpd+ ~

OUTPUT
Q OR Ii

---I

---I

___..I.

tpd-I--

'\

•

3-310

1.5V

=

ITT

ITT9300
==mc::::::I:E"""""'' ' ' ' ' ' ' ' ' ' ' _ _ _ _ _''''''''''''....
M'' ' 'S' ' ' ""'4....
-B_i=t_S""'h.....if....
t _R....e..
Q..
is_te_r
Package: Dual In-Line and Flat Pack

SEMICONDUCTORS

LOGIC SYMBOL

MS~

4 Srr SHIFT
m

REGISTER
The ITT9300 Four Bit Shift Register is a high
speed mUlti-functional sequential logic block
which is useful in a wide variety of register and
counter applications. As a register it may be
used in serial-serial, shift left, shift right,
serial-parallel, parallel-serial, and parallelparallel data transfers. The circuit uses TTL
for high speed and high fanout capability, and
is compatible with DTL, and TTL digital integrated circuits.

15 MHz Shift frequency

o

Synchronous parallel entry

o

J,

Cot

Asynchronous common reset

o

Typical power dissipation of 300 mW

o

The input I output characteristics provide
easy interfacing with DTL930, TTL9000,
TTL7400 and MSI families

o

first stage

All ceramic HERMETIC 16 pin Dual InInput diode clamping

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)
Characteristics
Storage Temperature
............. -65 DCto +150
Temperature (Ambient)
Under Bias ... -55 D C to + 125
Vee Pin Potential to
Ground Pin ..... -0.5V to + 7
Voltage Applied to Outputs
for high output state
............ -O.5V to + Ve e
Input Voltage (D.C.)
.............. -0.5V to + 5.5

FUNCTIONAL DESCRIPTION

1. A JK input is provided to the first flip flop in
the register. This type of input is the same
as the more common J K input except that
the low voltage level activates the K input.
This provides the greater power of the J K
type input for more general applications and
at the same time the simple D type input
that is most appropriate for a shift register
can be easily obtained by simply tying the
two inputs together.

Line package

o

=

Figure 1

The logic symbol of Figure 1 provides an
indication of the functional characteristics of
the ITT9300 four bit shift register. Several
special logical features of the ITT9300 design
which provide a high degree of general
usefulness are described below:

o

if inputs to

Vee = PIN 16
GND
PIN 8

2. There is no restriction on the activity of the
J or K inputs for logical operation - except
for the set up and release time requirements.

Units
DC
DC
Volts
value
Volts

3. Parallel inputs for all four stages are provided. These will determine the next condition of the shift register synchronous with
the clock input, whenever the Parallel Enable input is low. With the Parallel Enable
input low the element appears as four common clocked D flip flops. When the Parallel
Enable is high, or not connected, the shift
register performs a one bit shift for each
clock input. In both cases the next state of
the .flip flop occurs after the low to high
transition of the clock input.

3-311

ITT9300

MSI 4-Bit Shift Register
TABLE I - TRUTH TABLE
FOR SERIAL ENTRY

4. An internal clock buffer provides both
reduced clock input loading, and the ability
to gate the clock with only a single NAND
gate.

+

(PE = HIGH. MR = HIGH, (n
1) indicales
slale after next clock)

ii

5. The active high output is provided for all
four stages and an active low output is provided for the last stage.

6. A master asynchronous clear input allows
the setting to zero of all stages, independent
of the condition of any other inputs.
IPE= HIGH, MR= HIGH, (n + 1) indicates
state after next clock)

Qo al In+ I

H

Qo al I,(no change)

H

L

Qo al 10 (Ioggles)

H

H

H

TABLE II - LOADING RULES
[1 U.L. = 1 TTL Gate Input Load)
INPUTS

LOADING

J, K: MR, Po, P" P2 & P,

1 U.L.

I5E

2.3 U.L.

Cp

4 U.L.

OUTPUTS

ELECTRICAL CHARACTERISTICS [ITT9300-1XJ
(TA = -55°C to
SYMBOL

CHARACTERISTICS

VOH

Output High Voltage
Output Low Voltage

V,"

Input High Voltage

V"

Input Low Voltage

LIMITS
+25°C

-55°C
MIN.
MAX.

MIN.

2.2

2.4
0.4

2.0

Input Load Current"

J, K, MR, Po, p" p, & p,
I.

0',

6U.L.

+ 125°C, Vee = 5.0 V ±1 0%-)

Vo,

I,

FANOUT

Qo' Q" Q2' Q, &

TYP.

MAX.

2.7
0.2

+125°C
MAX.
MIN.

UNITS

CONDITIONS & COMMENTS

2.4

Volls

rnA
rnA

Vee=4.5 V, 10H= -0.36 rnA
Vee - 5.5 V. 10, = 9.6 rnA
Vee=4.5 V, 10,=7.44 iliA
Guaranteed input high
threshold for all inputs
Guaranteed Input low
threshold for all inputs
Vee=5.5 V
Vee =4.5 V, V,=O,4 V

~A

Vee - 5.5 V, V. -4.5 V·

0.4

1.7

0.4

Volts

1.4

0.8

0.9

0.8

-1.6
-1.24

-1.10 -1.6
-0.97 -1.24

-1.6
-1.24

60

60

Inl1ut Leakage Current'
FMf, Po, p" P, & p,

15

Volts

J, R,

Volts

ELECTRICAL CHARACTERISTICS [ITT 9300-5X)
(TA = DoC to
SYMBOL

+ 75°C, Vee = 5.0 V±5%)

CHARACTERISTICS
MIN.

VOH

Output High Voltage

Vm

Output Low Voltage

V'H

Input High Voltage

V"

InP4t Low Voltage

"
I,

'For CP and

DOC
MAX.

2.4

Input Load Current'

TYP.

MAX.

2,4

3.0
0.2

0.45

0.45
1.9

J, K, MR, Po, p" P, & p,

LIMITS
+25°C
MIN.

2.4
0.45
1.6

1.8

0.85

0.85

-1.6
-1.41

-1.0 -1.6
-0.9 -1,41
60
15

-1.6
-1,41

use load factors in Table"

3- 312

UNITS
Volts
Volts
Volts

0.85

Inp-ut Leakage Current'
J, K, ~, Po, p" P, & p,

PE Input currents,

+75°C
MAX.
MIN.

60

Volts
rnA
rnA
~A

CONDITIONS

Vee=4.75 V, 10H= -0.36 rnA
Vee-5.25V, Im-9.6 rnA
Vee - 4.75 V, 10, - 8.5 rnA
Guaranteed input high
threshold for all inputs
Guaranteed input low
threshold for all inputs
Vee=5.25 V
Vee=4.75 V, VF=0.45 V
Vee - 5.25 V, V. 4.5V

ITT9300
MSI 4-Bit Shift Register
TYPICAL INPUT AND OUTPUT CHARACTERISTICS
INPUTS

YCC
EQUI'/ALENT CIRCUIT

INPUT CURRENT VS INPUT VOLTAGE

PE

CP
0

Vec' 5.0\1

TA' ZloC

.

Vec' 5.0V
TA'

zsoc

-l.0

-0.4

,/

v-

v

• ,Z.O

~

....-V

v

8-3.0

J

.......-

i

-2.0
-1.0

~

1.0

2.0

-5.0

-6.0
-1.0

l.O

v

~~-•. o

-5.0

I

J

/

v-l.a

'~-4.0

-1.6

I
I

~
. ·2. 0

!

~

Vec' 5.0\1
1,,' 2'S"C

·1. 0

VIN -INPUT VOLTAGE:- VOLTS

1.0

2.0

I
".0-1.0 J

l.O

1.0

2.0

VIN - INPUT VOLTAG{' VOllS

VIN - INPUT VOLTAGE -VOlTS

OUTPUTS

OUTPUT CURRENT VERSUS OUTPUT VOLTAGE
LOW STATE

HIGH STATE

V

Vec' 5.0\1

Vec' 5.0Y

1,,'

('Soc

'A' ;5"C

-5.0

/
/

II
/

/
10

o

V

II
o

0,2

0..

0.6

0.1

1.0

l.i?

1.0

YOUT - OUTPUT VOLTAGE - VOLTS

2.0

).0

YOUT - OUTPUT VOLTAG(' VOLIS

3-313

•• 0

5.0

l.O

ITT9300
MSI A-Bit Sh ift Reg ister
SWITCHING CHARACTERISTICS (TA= 25°C)
SYMBOL
tpdt

tpd _

f"
CP,w
t,
t.
t.(PE)
t.(PE)
t,,_(MR)
t.,,(MR)
MR,w

CHARACTERISTIC
Turn Off Delay
Turn On Delay
Shift Right
Frequency
Clock Pulse Width
Set-up Time
Release Time
Set-up Time for PE
Release Time for PI:
Reset Time for MR
Recovery Time for MR
Min Reset Pulse Width

MIN.

MAX.
35
45

TYP.
20
25
25

15
35
35

MHz

15
17
16
26
25
35
20
15

45

CONDITIONS & COMMENTS
Vee =5.0 V, .CL-15 pF
(See Fig. 4' & 6a)
Vee-5.0V, CL-15 pF
(See Fig, 4 & 6c)

UNITS
ns
ns-

ns
ns
ns
ns
ns
ns
ns
ns

0
10

Vee=5,0 V
CL=15pF
(See Figs, 6a & 6b)

SET-UP TIME: ts is defined as the minimum time required forthe logic level to be present at the logic input prior to the clock
transition from low to high In order for the fllp-flop(s) to respond.
RELEASE TIME: tr is defined as the maximum time allowed for the logic evel to be present at the logic Input prior to the clock
transition from low to high In order for the flip-flop(s) not to respond.
RECOVERY TIME FOR MR: trec (MR) is defined as the minimum time required between the end of the reset pulse and the
clock transition from low to high in order for the fllp-flop(s) to respond to the clock.

Figure 2

Figure 3

PROPAGATION DELAY CLOCK TO Q. OR 0'.
OUTPUT VS TEMPERATURE

PROPAGATION DELAY CLOCK TO Q. OR Q.
OUTPUT VS TEMPERATURE
"~~~~-.-r-r-r'-'-'

SH FI9'. Slnd61

~(~S~~

IL

"

S1

~ ~ f-H-f-+-+-+..J,p:J' '--'-t-

.",,~p -r----r-

1

L
~

"

-~s

--

l'(P'C~

-)S -15

'5 ~ e 6S
TEMP£RATl/R[ °c

~
r- -

~ "
'"

~

r-

__ ,---t---t--t-HH

f-H-f-+-+-+-+--+----¥---+4

\--

--. -

-Vt-

~~\"'t-'- r-r-- --' - -j-t-

"f--N-I~-tq++++---I

11 L-:_,L,--c:'_":---"_,,:--"-,-L,,-,,"------,,L,--c:'~:-:-:'I"':-:-:'I",-J

BS 105 125

T[MP{RATURE

·c

Vcc=+5V

YI•

"

Pul.. GenmkH' Outpul
I. Switchin, Tim. (1J>d+ & tpd-) Tlltt
Ris. Tim. < 15 ns
flU Time < 15ns
Amplitud. =:: 4 V
Frtq. - 2 MHz

±

5%

.t 50%

2. Shift Ri,hl Fr.qllincy Test
Rise Tim. < 15 ns

F.IITime

< 15ns

Amplitude

=:: 4V

C. i"~I,","
proM 1M II.
~Iplcill_

duty cycl.
VOUT

VOUT

VOUT

VOUT·

VOUT

Frtq,-lSMHzwilhpul .. "idlh
Idjuslmlntso thltVIN hIS
dllty cycJI of IpproJ. 50%.

Figure 4 -

SWITCHING TIME & SHIFT RIGHT FREQUENCY TEST CIRCUIT

3-314

ITT9300
MSI 4-Bit Shift Register
Figure 6b

Figure 6a

'--___---_-_-_-~F==1511
OuT"u~--d----t~------15V
'~rrliiii) .. - r - - - - - - - Mii

--1---------\::1---------1511
'pd . ..I...
'pd, _ ...
MlfP.

_

-

OOT~_T_ _~~~_ _ _ _ _~;_

_1,edMlil_

Figure 6c

VOUT

Figure 6 -

Frequency:::

liz

X VIN

Frequency

SWITCHING TIME & SHIFT RIGHT FREQUENCY WAVEFORMS

APPLICATIONS - The ITT9300 has been designed to be useful in a wide variety of
applications. The multifunctional capability of
the ITT9300 is illustrated by the applications
shown below.

Figure 7 - EIGHT BIT LEFT/RIGHT
SHIFT REGISTER
This register shifts Left or Right on each shift
clock, depending upon the condition of the
LSI RS SELECT input. If this input is high,
Right Shift occurs and if low, Left Shift occurs.

Figure 8 - SEVEN BIT PARALLEL to
SERIAL CONVERTER

~ 1PARALlUD"TAINPUTS~

'"
REQU(ST

This parallel to serial converter uses a marker
bit, to count the data bits shifted out, so that a
parallel load enable is generated to load the
next parallel word for conversion at the correct
time.

3-315

ITT9300

MSI 4-Bit Shift Register
SELECTOR SWITCH SHOWN IN N=IS POSITION

INPUT

MASTER _________
RESET

Figure 9 -

Po PI P2
9300 SR
Qo QI Q2

-------4

10-+---- OUTPUT
fin + N

N input pulses, where the number N is
determined by the setting of the slide selector
switch as shown or by logic inputs to the
parallel data lines from an external source.
M5D

This counter produces an output pulse for every

2

3

4

5

6

-::f"]

LSD
SELECTOR
SWITCH

8

9

Po Pl P2
9300 SR

P3

Qo

Q3 Q3

7

tl

t

~

L:

1

2

), I
J PE

I-<
hi>~"

K MR

ift>oINPUT

'I'

I

Q3 Q3

~

DIVIDE BY N COUNTER FOR
N = 2 to 15

~

P3

3

4

5

SELECTOR
SWITCH
7

8

Po Pl P2
9300 SR
Qo Ql Q2

P3

6

9

~

),
Ql

Q2

J PE

p-

IP-~:';"

Q3 Q3

to

9007

'\
OUT PUT
fin'TN

COUNT SEQUENCE

~

9
8
7
6

5
4

0

o0 1
o0 0
o0 0

1
1
0
1 000
1 1 0 0
o1 1 0
10 1 1
I I 0 I
I I I 0
o1 1 I

Figure 10 - TWO DECADE
PROGRAMMABLE DIVIDER
This circuit divides by any number "N" from 1
to 100. The selected N is one greater than is
shown on the slide switches. As an example
the switched are showing 56, therefore the
circuit will divide by 57 with this setting.

3-316

ITT9301

__ :J[~~ ____________________M_S_I_O_n_e_-_O_f-_T_e_n_D_e_C_O~de~r
SEMICONDUCTORS

Package: 16-Lead DIP

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)

Mst ONE-OF-TEN
DECODER

Characteristics

The ITT9301 is a mUltipurpose decoder
designed to accept four inputs and provide 10
mutually exclusive output. The circuit uses TTL
for high speed and high fan out capability, and
is compatible with DTL, and TIL digital
integrated circuits.
o

Multi-function capability

•

Mutually exclusive outputs

Units

Storage Temperature
............. -65 DCto+150
Temperature (Ambient)
Un'derBias ... -55 DCto +125
Vee Pin Potential to
Ground Pin .: ... -O.5V to + 7
Voltage Applied to Outputs for
high voltage state
., .......... -O.5V to + Vee
Input Voltage (D.C.)
.............. -O.5V to + 5.5

o Guaranteed fanout of 10 TTL loads over
the full temperature range and supply
voltage ranges

DC
DC
Volts
villue
Volts

L'OGIC SYMBOL

15

14

2

o High capacitive drive capability
•

Demultiplexing capability

o Typical power dissipation of 145 mW
e The input/output characteristics provide
easy interfacing with DTL930, TIL9000,
TIL7400 and MSI families
o All ceramic HERMETIC 16-pin
Line package
e Input clamp diodes limit
line termination effects
TABLE I Ao Al A2 A3

L L
H "L
L H
H H
L L
H L
L H
H H
L L
H L
L H
H H
L L
H L
L H
H H

L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

Dual -In-

Figure 1

TRUTH TABLE
1

234 5 6 789

L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H

GND =PIN 8

high speed

o

H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H

13121110934567
Vcc' PIN 111

H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H

FUNCTIONAL DeSCRIPTION
The ITT9301 Decoder accepts four active high
BCD inputs and provides ten mutually
exclusive active low outputs. The active
low outputs facilitate memory addressing
when inverting drivers are used between de":
coder and memory elements.
The logic design of the ITT9301 ensures that all
outputs are high when binary codes greater
than nine are applied to the inputs.
The most significant A3 input produces a
useful inhibit function when the ITT9301 is
used as a 1 out of B decoder. This is illustrated
in the 1 out of 32 decoder shown in Figure 9.
The Truth Table and Loading Rules for the
ITT9301 are shown in Table I and Table II.

3-317

ITT9301

MSI One-Of-Ten Decoder
ELECTRICAL CHARACTERISTICS [ITT9301-1X] (TA = -55°C to +125°C, Vee = 5.0V ± 10%)
SYMBOL

CHARACTERISTICS

LIMITS
+25·C

-SS·C
MAX.
MIN.

MIN.

TYP.

MAX.

Output High Voltage
Output Low Voltage

2.4

2.4

2.7
0.2

0.4

V,H

Input High Voltage

2.0

V"

Input Low Voltage

VOH
Vot

0.4

I,

Input Load Current

I,

Input Leakage Current
Turn Oil Delay Input to Output
Turn On Delay Input to Output

1,.+
Ipd_

1.7

+ 12S·C
MIN.
MAX.

UNITS

CONDITIONS

2.4

Volta
Volts

Vee = 4.5 V, IOH= -O.S rnA
Vcc=4.5V, ioo. a 12.4 rnA
Voc =5.5V, ioo. a 1S.0 rnA
Guaranteed Input high
threshold for all Inputs
Guaranteed Input low
threshold for all I~uts
Vcc-5.5VJ
Voc-4.5 V.l V,=0.4 V

0.4
1.4

Volts

O.S

.09

O.S

-1.S
-1.24

1.10 -1.6
-0.97 -1.24

-1.S
-1.24

15
23
20

60
35
30

60

Volts
rnA
rnA
,.A
ns
ns

Vcc=5.5 V, V.=4.& V
Vcc=5.0V
CL=15 pF
See Fig. 8

ELECTRICAL CHARACTERISTICS (TA = O°C to 75°C, Vee = 5 V ± 5%)
SYMBOL

O·C
MIN.
MAX.

CHARACTERISTICS

VOH
Vot

Output High Voltage
Output Low Voltage

2.4

VIH

Input High Voltage

1.9

VOL

Input Low Voltage

I,

MIN.

TYP.

2.4

3.0

0.45

0.2

-1.6
-1.41

Input Load Current

I,

Input Leakage Current
Turn Off Delay Input to Output
Turn On Delay

MAX.

+ 75·C
MAX.
MIN.
2.4

0.45

1.8

0.45
1.6

0.85

t...+
tpd_

LIMITS
+25·C

-1.0

0.85

'0.85

-1.6

-1.6
-1.41

-0.9 -1.41
15
60
23
35
20
30

60

UNITS

CONDITIONS

Volts

Vcc-4,75 V, IOH- -0.6 rnA

Volts

Vcc-4.75V, 1oL-14.1 rnA
Vcc=5.25 V 1oL=16.0 rnA

Volts

Guaranteed Input high
threshold for all I~uts

Volts

Guaranteed Input low
threshold for all Inputs

rnA

Vcc -5.25VJ
Vcc = 4.75 v.l V,=0.45 V

rnA
p.A

Vcc=5.25 V, V,=4.5V

ns
ns

Vcc -5.0V
CL 15pF
See Fig. 8

TABLE II - LOADING RULES
[1 U. L. = TTL Gate Inputload]
INPUTS

LOADING

OUTPUTS

FANOUT

Ao, A1 , A2 & A3

1 U.L.

0,1,2,3,4,5,6,7,8, & 9

10 U.L.

TYPICAL INPUT AND OUTPUT CHARACTERISTICS

.. ',,·zrc

OUTPUT CURRENT YERSUS

L.
i
-'.

Figure 3

OUTPUT LOW

I

.....

1

/

-

....

r------...---

i

l!

j

~

_

1.0

~'B. ••0 I-I-I-I-HHHI-+Seefig. 7

I-I-I-I-HHHI-+~~ ;:;v
fA - AMBIENT TEMf£RATURE ,·c

flo - AMBIENT llMPERAruRE ,·c

Fig. 7

Fig. 8

TYPICAL ADD TURN ON
DELAY TIME

TYPICAL ADD TURN OFF
DELAY TIME

~

Ml:lz }

V

~~~LL~~D~: ~~on~

2.0 kll
INCLUDES PROBE AND JIG
t.IPACITANCE

VCC

I-I-I-I-HI-HHHH-l

" "H-+-+++1-+-+-H--.J
V

!

2.0

~RSUS TEM~MTURE

G

!l

~

i:

~~~~ee~e~m

Gr-r-r-r-r-,r-r-,r-,r-,r-,-.,
OJ

I-f-HH-+-+-+-+~~

=:!

:~SLES~I=~D}r's:!50 ns

:a4.O I-f-HH-+-+-+--1-SeeFi9.l

~~~~ee~e~m

~aus TEM~MTURE

2

V

§I'0l-t--+++++++++-! fREQUENCY

,.....

.-

.....-

H~~-~~~~~~-r+1--.J

; UHHHHHHHHH-l-l

.Jt•.o HHHHHHHI-+· See fig. 1
HHHHHHHI-+~~~;::V
-55 -3S -15 5.0 25

'e~l6S

15 10 125

'A - AMBlENTnMp£RATURf _oc

F1gi9

Seefig.]
Vee '5.011

)·••0

Cl ' 15 11
-5S

-n

-IS S.D &

45

65

15 105 125

TA - AMBIENT TEMPERATURE _·c

Fig. 10

3-324 .

7.0

"OUT" OUJPUJ VOUAe[" vallS

Fig. 11 -

SWITCHING TIME TEST CIRCUIT
AND WAVEFORMS

..•

ITT9304

MSI Dual Full' Adder
APPLICATIONS - The ITT9304 dual adder has
been designed to be useful in a wide variety of
applications such as addition, parity generation and checking, code conversion, majority
gating and other applications for which this

combination of logic gates may be useful. The
multifunction capabilities of the ITT9304 dual
adder can be seen from reference to the
applications shown.

~ ~

Ie
sse

9304BFA 2A

-OR-

Figure 12 - FUNCTIONAL BLOCK
REPRESENTATION
The principal of duality allows 2 ways of
representing each adder. The circuit is the

same in both cases but the logic diagrams
differ. The dual diagrams facilitate logic design
and allow a greater understanding of the
capabilities of the device.

PROPAGATION DELAY AND
PACKAGE COUNT AGAINST
WORD LENGTH FOR
RIPPLE CARRY ADDITION
400

V
V V

JOO
c

~

ii

~

200

./

15

~

~
.f-------------,
FRDM
STAGE
x- 1

c.
'------------------------t------ Cb

TO STAGE
x+1

'-----cc
Figure 15 -

ADDITION OF SIX VARIABLES

The above design shows how the ITT9304 can
be used in carry save arithmetic. Six input
variable are reduced to two where they can be
added in a parallel adder. Delay between inputs
and outputs is typically 50 ns, allowing
extremely high speed computation. Additional
variables may be added or the concept can be
extended to multiplication, division, and
various other arithmetic operations.

Sx
Cx
TO PARALLEL ADDER

GNO.

G2

GNO.-.,.-h--h

Figure 16 -

BYTE PARITY GENERATION
OR CHECKING
The ITT9304 can be used for parity checking or
generating. The above design uses 2 ITT9304's
to generate parity for an 8 bit byte or check
parity over 9 bits. The delay from input to odd
parity is typically 35 ns. Additional adder
blocks can be used to generate or check parity
over larger word lengths. The concept can also
be used for hamming and cyclic code
generation and checking.

82

Figure 17 - 4 BIT PARALLEL GRAY TO
BINARY CONVERSION
A 4 bit parallel binary to gray conversion is
shown. The adders can also be used for other
cyclic code manipulations.

3-326

ITT9308

ITT- - - - MSI Dual Four-Bit Latch

""",,"'

SEMICONDUCTORS

u~SI

DUAL FOU R-BIT

LOGIC DIAGRAM

lATCH

23 4 6 8 10

~

Active Level Low Enable Gate Inputs
Overriding Master Reset
25 ns Through Delay
The Input/Output Characteristics Provide
Direct Interfacing With ITT DTL and TTL

E DO

0, 02 03

9308 4 BIT LATCH I

MR 110 0, 02 03

Input Clamp Diodes Limit High Speed Termination Effects.

9

157911
The MSllTT9308 is a Dual 4-Bit Latch designed
for general purpose storage applications in
high speed digital systems. The ITT9308 uses
TTL technology. All inputs .incorporate diode
clamps to ground to reduce negative line
transients. All outputs have active pull-up circuitry to provide high capacitive drive and low
impedance outputs in both logic states to provide good A.C. noise immunity.

14 15 16 18 20 22

DO 0,

02 03

9308 4 BIT LATCH 2
MR 110 0,

02 Q3

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)
Conditions
Storage Temperature
................ -65 to + 150
Temperature (Ambient) Under
Bias ............ -55 to + 155
Vee Pin Potential to Ground
Pin .............. -0.5 to + 7
Input Voltage (D.C.)
)see Note 1) ..... -0.5 to + 5.5
Input Current (D.C.)
(SeeNote1) ... '" .-30to +5
Voltage Applied to Outputs
(Output High) .. -0.5 to + Vee
Output Current (D.C.)
(Output Low) ............ + 30

13 17 19 21 23

Units

Vee
Gnd

C

= Pin 24
= Pin 12

C
Volts
Volts
mA
value
mA

NOTE 1: Either Input Voltage limit or Input Current limit is
sufficient to protect the inputs.

Description of Latch Operation - Data can be
entered into the latch when both of the enable
inputs are low. As long as this logic condition
exists, the output of the latch will follow the
input. If either of the enable inputs goes high,
the data present in the latch at that time is held
in the latch and is no longer affected by the
data input.
The master reset overrides all other input
conditions and forces the outputs of all the
latches low when a low signal is applied to the
master reset input.

3-327

1119308
MSI Dual Four-Bit Latch
ELECTRICAL CHARACTERISTICS (TA = -55°C to

+ 125°C,

Vee = 5.0 V± 10%, See Note 1)

SYMBOL

CHARACTERISTICS

-55·C
MIN. MAX.

LIMITS
+25·C
MIN. TYP. MAX.

+125·C
MIN. MAX.

UNITS

CONDITIONS

VOH

Output High Voltage

2.4

2.4

2.4

Volts

VOL

Output Low Voltage

V,H

Input High Voltage

V"

Input Low Voltage

Vee=4.5 V. 10H= -0.6 rnA
Inputs at threshold voltages
(V" or V,") (See Note 2)
Vee 5.5 V, IOL 14.4 rnA
Vee =4.5 V. 10L = 11.2 rnA
Inputs at threshold voltages
(V" or V, H) (See Note 2)
Guaranteed input high
threshold for all inputs
Guaranteed input,low
threshold for all inputs

I,

Input Load CUrrent
Eo, E, and MR Inputs
Input Load Current 0 Inputs

1.5 I,
I,
1.51.
I"

2.S

0.21

0.4

2.0

0.4

O.S'

0.9

O.S

-1.6

-1.1

-1.6

-1.6

-2.7

-1.9

-2.7

-2.7

10

60

60

15

90

90

65

90

90

klput Leakage Current
Eo, E, and MR Inputs
Input Leakage Current
Inputs

o

Power Supply Current

90

=OPC to

+ 75°C,

Vee

SYMBOL

CHARACTERISTICS

O·C
MIN. MAX.

LIMITS
+25·C
MIN. TYP. MAX.

VOH

Output High Voltage

2.4

2.4

VOL

Output Low Voltage

V,H

Input High Voltage

V"

Input Low Voltage

I,

Input Load Current
Eo, E, and MR Inputs
Input Load Current '
Inputs

I.
1.51.
I"

0.21

0.45

1.9

3.1

rnA

VI=O.OV
(See Note 3)
p.A

Vee - 5.5 V, V. -4.5 V

rnA

Vee -5.0 V

Input Leakage Current
, Eo, E, and MR Inputs
Input Leakage Current
Inputs
Power Supply Current

2.4

Volts

rnA

Vee=4.75 V, 10"= -0.6 rnA
Inputs at threshold voltages
(V" or V,H) (See Note 2)
Vee-5.25 V,louT-14.4 rnA
Vee =4.75 V, louT=12:7 rnA
Inputs at threshold voltages
(V" or V, H) (See Note 2)
Guaranteed input high
threshold for allinputs
Guaranteed input low
threshold for all inputs
V,=0.45 V
Vee =5.25 V

p.A

V,=O.OV
(See Note 3)
Vee=5.25 V, V.=4.5 V

rnA

Vee-5.0 V

0.45

0.85

Volts

Volts
0.S5

-1.0

-1.6

-1.6

-'2.7

-l.S

-2.6

-2.7

10

60

60

15

90

90

65

117

117

117

See Note 1)
CONDITIONS

-1.6

o

all outputs low
Inputs disabled

UNITS

Volts

!.

o

I V,=O.4 V

Vee =5.5 V

+75·C
MIN. MAX.

1.6

0.S5

Volts

=5.0 V ± 5%,

0.45

1.S

Volts

Volts

1.4

1.7

ELECTRICAL CHARACTERISTICS (TA

1.51,

0.4

all outputs low
inputs disabled

NOTES:
1. Units are pulse tested.
2. Output Voltages are guaranteed for either the input enabled or input diabled case.
3. This current is measured at VIN =0.0 V.\o insure that no current is being absorbed by the device Internally. The maximum
value given guarantees that the maximum instantaneous current that can flow out of the input at VIN =0.4 V is 2.4 rnA.

3-328

ITT9308

MSI Dual Four-Bit Latch
A.C. CHARACTERISTICS
9308 SWITCHING WAVEFORMS
TIME

STORING A ONE
E1=GND

~--13-1

____

1.5V-/

__ I

14

12

"I,

Min. time that data
must be present before
enable to not increase h

t,

Delay from enable to
output turning off
Min. enable pulse
width to store a ONE
Min. time thai data
must remain constant
after removal of enable
Min. lime that data
must be present before
enable to not increase tb
Delay from enable
10 oulput turning on

I,

1.5V

I.

I-;::

t,

-JJfL5V

__Q
__________

I.
I,

STORING A ZERO
E1=GND

LIMIT (See Note 4)
MIN. TYP. MAX. UNITS

DEFINITION

I,

Min. enable pulse
width to slore a ZERO
Min. lime that data
must remain constant
after removal of enable

X

minus
4

-

ns

-

22

X

ns

X

15

-

ns

X

5

-

ns

X

0

-

ns

-

15

X

ns

X

15

X

2

ns

-

ns

NOTE 4: Limits indicated by X will be shown on final data sheets.

1.5V

PIN

LOADING

INPUTS

DO, Of, 02. 0 3
MR, EO,El

1.5
1.0

OUTPUTS

°0. 0 \. 02' 03

9.0

Q

LOADING RULES
All delays are measured wilh VCC=5.0V applied 10 Pin 24 and Pin 12 grounded. Theacllve inpul is driven by a 9002 TTuL gale
with the output loaded with 15 pF. All outputs are loaded with 15 pF.

APPLICATIONS
A_....r-,
B--""-./

C

STROBE
DATA

_~_

O--"L_/

AND-OR ENABLE SHOWING ACTIVE LEVEL
LOW ENABLE GATE UTILITY

9308 4 BIT LATCH 1

3-329

ITT9308
MSI Dual Four-Bit Latch
CLOCK

~7
~r,9016

SLAVE REGISTER

~nTI

Iii

,

Ao

AI

A2 A3

EOoOI

9301 1/10 OECOOER

~8

01·23456789

lilili

yy

Dz

D3

S INGLE MASTER/MULTIPLE SLAVE FLIP-FLOP

4 BITLJm:H1

MR °0 °1

02 03

y

I I I I /I
I I. I I I

I

~

EOo

01

02 ~

93OS·4 BIT LATCH 2

1 I
I 1

I

I

II i

1
I

I

MROO 01

REllISTER

7

02 03

v

M
E

DO 01

02 03

9308 4 SIT LATCH 1

REllISTER

1
MR

00

QI

0 2 03

. 'r' 1 1 1 1

ET9:l<0 UP DECADE COUNTER TC
CLOCK

ITT9308 AS A HOLDING REGISTER
IN COUNTING & DISPLAY APPLICATION

3-330

00

01

02

03

_ InI1r11===~===-=--==c::L~
MSI__
Dual
Four-Input
Multiplexer
__
-===
_________
'T_T_9_30_9
SEMICONDUCTORS

MS~

Package: Dual In-Line and Flat Pack

DUAL FOUR .. INPUT MUlT~PlIEXlER

Multifunction Capability
25 ns Through Delay
III On-Chip Select Logic Decoding
III Fully Buffered Complementary Outputs
• The Input/Output Characteristics Provide
Easy Interfacing with DTL930, TTL9000, TTL
7400 and MSI Families
o Input Clamp Diodes Limit High Speed Termination Effects
GI

III

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)

The ITT9309 is a monolithic, high speed, dual
four-input digital multiplexer circuit, constructed with a planar epitaxial process. It
consists of two multiplexing circuits with
common input select logic, each circuit
contains four inputs and fully buffered
complementary outputs. In addition to operating as a multiplexer, the ITT9309 can generate
any two functions of three variables. Active
pullups in the outputs ensure high drive and
high speed performance. Because of its high
speed performance and on-chip select decoding, the ITT9309 may be cascaded to multiple
levels so that any number of lines can be
multiplexed onto a single output buss. The
circuit uses TTL for high speed, high fanout
operation and is compatible with all DTL, and
TTL digital integrated circuits.

Characteristics

Units

Storage Temperature
.............. -65°Cto+150 °c
Temperature (Ambient)
UnderBias .... -55°Cto+125 °c
VCC Pin Potential to
Ground Pin ...... -0.5 V to + 7 Volts
Voltage applied to Output when
output is high .... OV to + Vccvalue
Input Voltage (DC)
(See Note 1) .... -0.5 V to+ 5.5 Volts
Input Current (DC)
(See Note 1) .... -30 mA to + 5 mA
Current into Output when
output is low ............ + 30 mA
NOTE 1: Either Input Voltage limit or Input Current limit is
sufficient to protect the inputs.

LOGIC DIAGRAM

LOGIC SYMBOL
12

\I

10

9

4

5

6

I

13

14

9309
Dual four input multiplexer
Logic diagram

15
Vee ~ PIN 16
GND ~ PIN 8

Figure 2

Figure 1

3-331

ITT9309
MSI Dual Four-Input Multiplexer
TYPICAL INPUT AND OUTPUT

CHARACTERISTICS

OUTPUT
EQUIVALENT
CIRCUIT

INPUT
EQUIVALENT
CIRCUIT

(Output High)

OUTPUT
EQUIVALENT
CIRCUIT
(Output Low)

z,O

Vee'5,0~I

f- I~

, -z.o

r

-

125'e

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT HIGH)

INPUT CURRENT VERSUS
INPUT VOLTAGE
20

125'e r-l II
15C
rl"oO"e

~ F.~h!

100

f

Vee· 5.0V

~

<

o'~

e

~

/

~t-25'e
rp...
15'e'- r--

V

~

125'e
15(

~~.6.0

~

-8.0

-5SoC

-10

-2.0

2.0

4.0

VIN - INPUT VOLTAGE - VOLTS

Figure 3

6.0

8,0

·80
-1.0

..,

r

~

~

~

o'e
r'-25 e

'I

l.O

5,0

Figure 4

FUNCTIONAL DESCRIPTION
The ITT9309 dual four input multiplexer is a
member of the ITT family of compatible
Medium Scale Integrated (MSI) digital building
blocks. It provides this family with the ability to
select two bits of either data or control from up
to four sources, in one package.

The ITT9309 dual four input multiplexer is the
logical implementation of a two-pole fourposition switch, with the position of the switch
being set by the logic levels supplied to the two
select inputs, Both assertion and negation

1.0

-we

~

20

1.0

e

I

5 CI
o

VOUT - ouTPUT VOLTAG£ - VOLTS

cr--

/

125'e

~-4.0

~II~~ r-~

Vee ·5.0V

..II1II

_5'5'0
I

o

1
II

0

0.5

1.0

0.5

2.0

VOUT' - OUTPUT VOLTAGE - VOLTS

Figure 5

outputs are provided for both multiplexers. The
logic equations for the outputs are shown
below:
A common use of the ITT9309 would be the
moving of ,data from a group of registers to a
common output buss. The particular register
from which the data came would be determined
by the state of the select inputs, A less obvious
use is as a function generator. The ITT9309 can
generate any two functions of three variables.
This is useful for implementing random gating
functions.

3-332

ITT9309

MSI Dual Four-Input Multiplexer

TRUTH TABLE

LOADING RULES
.(1 U.L. = 1 TTL gate input load)
OUTPUTS

INPUTS

SELECT INPUTS
S,

S,

I,.

I,.

I,.

I,.

Z.

Z.

l
l
H
H
l
l
H
H

l
l
l
l
H
H
H
H

l
H
X
X
X
X
X
X

X
X
l
H
X
X
X
X

X
X
X
X
l
H
X
X

X
X
X
X
X
X
l
H

l
H
l
H
l
H
l
H

H
l
H
l
H
l
H
l

S,

S,

I'b

I'b

I'b

~3b
X
X
X
X
X
X
l
H

Zb

lb

l
H
l
H
l
H

H
l
H
l
H
l

L
H

H

l
l
H
H
l
l
H
H

l
l
l
l
H
H

l
H
X
X
X
X

X
X
l
H
X
X

X
X
X
X
l
H

H

X
X

X
X

X
X

H

LOADING

INPUTS

1 U.L.

12a, 11a•
lOb' lib' 12b• Ilb•

lOa' Ila'

SO' S,
FANOUT AT LOGIC LEVEL
HIGH
LOW

OUTPUTS

20 U.L.

l,. lb
Za' Zb

18 U.L.

10 U.L.
9 U.L.

l

L=low voltage level
H=high voltage level
X=elther high or low logic level

ELECTRICAL CHARACTERISTICS· [ITT9309-1X] (TA = _55°C to + 125°C, Vc c

SYMBOL

CHARACTERISTICS

VOH

Output High Voltage

Voc

Output Low Voltage

V'H

Input High Voltage

V"

Input Low Voltage

'"

\, (all inputs) Input Load Current

LIMITS
UNITS
-55°C
+25 O C
+125 OC
MAX. MIN. TYP. MAX. MIN.
MAX.
MIN.
2.4

2.4

0.4

2.0

2.7

0.21

0.4

1.7

1.4

0.8

0.9

0.8

-1.6
-1.24

-1.1 -1.6
-.85 -1.24

-1.6
-1.24

I. (all inputs Input Leakage Current

15
40

Volts

Guaranteed input high threshold
for all inputs

Volts

Guaranteed input low threshold
for all inputs
V,=O.4 V
Vee =5.5 V
Input selected
Vee =4.5 V
V.=4.5 V
Vec=5.5 V
Input not selected

mA
mA

60

~A

40

mA

30
24

40
32

t,d_(S, to Z.) SWitching Speed

24

32

Vee Current

'Pulse tested

3-333

CONDITIONS

Volts

60

t,d_(S, to Z.) SWitching Speed

IPDH

0.4

10%)

Vee=4.5 V 10H= -1.2 mA (Pins 1 & 15)
Vee=4.5 V 10H= -1.08 mA (Pins 2 & 14)
Inputs at threshold voltages (V" or V'H)
as per truth table
Vee=5.5 V 10,=16.0 mA (Pins 1 & 15)
10,=14.4 mA (Pins 2 & 14)
Vee=4.5 V 10,=12.4 mA (Pins 1 & 15)
10,=11.2 mA (Pins 2 & 14)
Inputs at threshold voltages (V" or V'H)
as per truth table

Volts

2.4

=5.0 V

ns
ns

Vee = 5.0 V

All inputs high

Vee = 5.0 V, C, = 15 pF. See Figure 8

ITT9309

MSI Dual Four-Input Multiplexer
ELECTRICAL CHARACTERISTICS· [ITT9309-5Xl (TA

SYMBOL

DOC

CHARACTERISTICS
MIN.

VOH

Vm

Output High Voltage

!

MAX. MIN.

2.4

2.4

=aOc to

+ 75°C, Vee

=5.0 V

LIMITS
UNITS
+25°C
+75°C
TYP. MAX. MIN.
MAX.
3.0

2.4

Volts

5%)

CONDITIONS
Vcc~4.75

V lo"~ -1.2 rnA (Pins 1 & 15)
4.75 V lo"~ -1.08 rnA (Pins 2 & 14)
Inputs al threshold voltages (V" or V,")
as per truth table

Vcc~

Output Low Voltage

0.45

0.21

0.45

0.45

Volts

Vcc~

5.25 V 1m ~ 16.0 rnA (Pins 1 & 15)
10' ~ 14.4 rnA (Pins 2 & 14)
Im~14.1 rnA (Pins 1 & 15)
1m ~ 12.7 rnA (Pins 2 & 14)
Inputs at threshold voltages (V" or V,")
as per truth table

Vcc~4.75V

V,"

Input High Voltage

V: l

Input Low Voltage

1.9

I. (all inputs) Input Load Current

1.8

1.6

Volts

Guaranteed input high threshold
for all inputs

Volts

Guaranteed input low threshold
for all inputs

-1.6
-1.41

rnA
rnA

Vcc~5.25 V
Vcc~4.75V

0.85

0.85

0.85

-1.6
-1.41

-1.0 -1.6
- .91 -1.41

'" (all inputs) Input Leakage CUrrent

V,~0.45V

Input selected

15

60

60

pA

Vcc-5.25 V
V,-4.5 V
Input not selected

30
24

43

43

rnA

Vcc~5.0V

t,o,(S,to Z.) SWitching Speed

36

ns

t,o (S,to Z.) Switching Speed

24

36

ns

IPDH

43

Vee CUrrent

Vcc~5.0

V,

All inputs high
C,~

15 pF, See Figure 8

• Pu Ise tested

A.C. CHARACTERISTICS
SWITCHING WAVEFORMS
All inputs are outputs of TTL MIC9000 series gates loaded with
15 pF. All outputs are loaded with the same capacitance
(referred to as CLl and only with capacitan'ce.

tpd ; S. to Z.

tpd; S. to

CONDITIONS
Pins 3, 12 = GND.
Pin 11
v 5

= Vee

Pin 11

tpd; 1'0 to

Z.

CONDITIONS
Pins 3, 13 = GND.

= Vee

15Vr---\..15V

IIID~

IPIIII)1

Z.

CONDITIONS
Pins 3, 12 = GND.

~

-.-ilpd·'----

--llpd--

VOUT·l
IPINI51

__

Figure 6

Figure 7

3-334

Figure 8

IT19309
MSI Dual Four-Input Multiplexer
SWITCHING CHARACTERISTICS
TURN OFF DELAV TIME VERSUS
AMBIENT TEMPERATURE

..

(s, to z.)
Vee •

cl

~.O

II

'I~~

V

.... -..!r'

V

o

2>

I>

AMBI[HIIEMP£RATU~E

fA'

,

--

12>

,'V

12>

o.1>

Figure 12

0

TURN ON DELAY TIME VERSUS
AMBIENT TEMPERATURE
(s, to l.)
""ec' 5,01l
Cl'ISpf

"

/

-

./

--

'"
MM

125

'c

Figure 11

Vee '5,OV

0

21

12>

TEMPERATUR£ •

/

•

.........

AMBI[t~~

Cl'Ur'

.....

TA -AM!I[HTT[MP(RATUIIE'"C

2>
fA •

2

........

='jJ.5.0

.1>

(s, to l.)

•

"cc·,·ov

--

M,"

0

TURN OFF DELAY TIME VERSUS
AMBIENT TEMPERATURE

cl'uP:

1;::"10
s

'"

0-

Figure 10

TURN ON DELAY TIME VERSUS
AMBIENT TEMPERATURE
(I"tot)

"'
r-....

/'

V

0

fA' AM8IEPH T[MFtRATURE ~"c

Figure 9

lO

V

,

.->"

2>

,·c

tol.)

Vee • ~.O II
CL'ISIi

~ t--

---

/'

~ -..!!!

"

""CC·)·OIl
'L'UpE

V

"'"

(I~

(s, to z.)

/'

'-

TURN OFF DELAY TIME VERSUS
AMBIENT TEMPERATURE

TURN ON DELAY TIME VERSUS
TEMPERATURE

,/

--

21

fA' AMBIENTTEMPERATURt:

APPLICATIONS

III

CUT

Figure 15

3-335

--

-f-.
M,"

0
0
.1>

OJ'

~

./
,/

........
I-

2>
fA' AMBIEHllEMP{RATUII£ ·'C

Figure 14

Figure 13

ItT I

,.....

V

121

o'c

.....
I"

12>

ITT9309

MSI Dual Four-Input Multiplexer
Figure 15 - MULTIPLEXING TWO BITS
FROM SIXTEEN SOURCES
This diagram shows the interconnection of five
ITT9309 dual four bit multiplexers to provide
switching of two bits of data from one of
sixteen words onto a tow bit data buss. The
selection of which word will be transferred to
the buss is made by the address supplied to the
So, S1, S2, and S3 inputs. As an example: if
twelve bit words are to be transferred to a
twelve bit buss, the above diagram would be

repeated six times. Notice that the negative
outputs are used at both levels resulting in the
assertion output (negation of the negation) at a
higher speed due to the fact that the through
delay is less on the negation output.
If the word selecting address is held in four TTL
flip flops (two dual packages) enough load
capability is available to select between
sixteen, sixteen bit words.

OPERATION CODE LIST

~

---;1>--+-+--+--+----+-1--____ ..,..,.. "',. .

S,

S,

INSTRUCTION

o

0
0
1
1

SHIFT LEFT
AOD
SHIFT RIGHT
COMPLEMENT

1
UIII

o
1

H~···l··.

Figure 16- GENERAL PURPOSE
ACCUMULATOR
A fast, general purpose accumulator for
computer applications is capable of: 1) shift
left; 2) add; 3) shift right and 4) complement
operations. Only three packages are required to
construct two stages of the general purpose
accumulator shown above.
The D input capability of the ITT9022 is utilized
here to allow each flip flop of the accumulator
to accept the data as presented by the ITT9309
multiplexer.

L~"O"

Under the operation code instructions the
multiplexer provides an input to the ITT9022·
from: 1) adjacent stage to the right for a shift
left operation; 2) adjacent stage to the left for a
shift right operation; 3) output of adders for
add operation and 4) Q outputs of ITT9022 for
the com.plement operation. The operation code
at the right of Figure 18 shows the instruction
codes to perform the various operations. The
accumulator should be capable of 20-25MHz
operation.

3-336

ITT9309
MSI Dual Four-Input Multiplexer

OUTPUT

R(SYIICHRONIl(R

Figure 17 - 16·BIT PATTERN GENERATOR
This application illustrates the use of ITT9309
and ITT9020 in the design of one channel of a
16 bit pattern generator. Each channel requires
1/2 ITT9020, 1/2 ITT9002 and 2-1/2 ITT9309.
Each channel consists of a switch serializerl
pattern generator and resynchronizer sections
with a modulo 16"binary counter common to all
channels.

CDUNT
VALUE t----------~

The two least significant bits and two most
significant bits of the counter control the first
and second stages of multiplexing .respectively. In this manner four bits are multiplexed
on each of the four lines from the first stage to
the second stage. Every four clock times a new
input line containing four multiplexed bits is
selected by the second stage of the serializer
thus serializing the 16 input bits from the
switches.
The resynchronizer flip flop is used to eliminate
decoding spikes.

3-337

TIME

'Tn~

"*

ITT9309

MSI Dual Four-Input Multiplexer

MUlTIVIBRATOAS

'1
'6

's

'.

'3

"

r

.ro.

=
'1'5
.fl~
~·I·

:;'i""
.d

------,

I

I

I
I
I

I

L __

Figure 18 - NON-LINEAR COUNTER
The rate of the non-linear counter depends on
the multivibrator clock frequency selected
under control of the three most significant bits
of the counter. This makes the count rate a
function of both the count value of counter and
frequency of clock multivibrator selected.

-'D~

" 'I
9601
.(lRlliGl.ABU ON( SHOTS

I
I

__ -.J

Clock multiplexing is accomplished by an
ITT9309 dual 4-input multiplexer and one
ITT9002 quad gate. Eight line segments
representing clock rates of the multivibrators
may be adjusted in slope to approximate a
non-linear function.

3-338

-- ITT
SEMICONDUCTORS

ITT9311

Msi One-at-Sixteen Decoder
---~~
Package:' Dual In-Line and Flat Pack

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)

MSI ONE-OF-SIXTEEN
DECODER

Units

Characteristics

Storage Temperature
................ -65 to + 150°C
Temperature (Ambient)
Under Bias ...... -55 to + 125°C
Vc c Pin Potential to
Ground Pin ....... -0.5 to + 7 Volts
Voltage Applied to Outputs for
high output state
............. -0.5Vto+Vcc value
Input Voltage (D.C.) -0.5 to + 5.5 Volts

• Multi-function capability
• Mutually exclusive outputs
• Guaranteed fanout of 10 TTL loads over the
full temperature range and supply voltage
range
• High capacitive drive capability
• Demultiplexing capability
• Typical power dissipation of 175 mW
• The input/ output characteristics provide easy
interfacing with DTL, 930 and TTL54/7400 and
9300 families
• All ceramic "Hermetic" 24-pin dual in-line
package

LOGIC SYMBOL

• Input clamp diodes limit high speed line
termination effects

93111 16 DECDDER

• Two input enable gate

o

The ITT9311 is a mUlti-purpose decoder
designed to accept four inputs and provide 16
mutually exclusive outputs. The circuit uses
TTL for high speed and high fan-out capability,
and is compatible with all members of the 930
DTL, 5417400 and 9300 families.

1 2 3 4 5

6 1 B 9 10 11 12 13 14 15

1 2 3 4 5 6 1 B 9 10 11 13 14 15 16 11

Vee
Gnd

= Pin 2~
= Pin 12

TRUTH TABLE

H = High Voltage Level
L= Low Voltage Level
X = Level Does Not Affect
Output

Eo

EI

H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Ao Al A2 A3
X
X
X
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H

X
X
X
L
L
H
H
L
L
H
H"
L
L
H
H
L
L
H
H

X
X
X
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

X
X
X
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

3-339

7

8

9 10 11 12 13 14 15

H
H
H
H
H
H
H
H
H
L H
H L
H H
H H
H H
H H
H H
H H
H H
H H

H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H

0

1

2

3

4

5

6

H
H
H
L
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H

H
H
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
L
H
L
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H

H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H'
L
H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L

ITT9311
Msi One-Of-Sixteen Decoder
I

FUNCTIONAL DESCRIPTION - The 9311 decoder accepts four active high BCD inputs and
provides 16 mutually exclusive active low
outputs, as shown by Figure 1. The active low
outputs facilitate memory addressing when

inverting drivers are used between decoder and
memory elements such as the 9033.
The most significant A3 input produces a
useful inhibit function when the 9311 is used as
a 1 out of 8 decoder.

TYPICAL INPUT' AND OUTPUT CHARACTERISTICS

•

!

prr--+VCC'UV

o

'~-o.s

i

•~'l.S -+ V

OI!

l/

i "r---I- ~

--r-

,

S

---t------t--t-t----j-

:~

i

I i

_',,,

,

I

'1.0

0

1.0

2.0

VI~·I~PUTVOLlAG(·VOlIS

l.O

-r-~'

lL __. __L
r--- - i--r••

t- -I--

+--t-.--+.

r---r---r--- -, ~t-- t- --I- ,---+---ir-----t>''--I-t--t-t---t--i
k-"
-w -;p
'1.0

4.~

o
",0

1/

"'cC' UV

pT.,'"-"r-+-J--IL-t---t-t-t---t--i

-IOH-+-tf-t-/+-H-t-+-1
." H--t-;ft-H-t---t-H-J

V

·ro H-J---t-t-t-t--t-t-t-J

." lL

OJ

'OOS

I.

"~1.0

0

1.0

U

',0

1.0

U

YOUI • OUTPUT VOlTAG[ • VOlTS

Vee

EQUIVALENT
CIRCUIT

~QUIVALENT
1

outputs)

E

CIRCUIT
OUTPUT LOW

TTL INPUT LOAD AND
DRIVE FACTORS
INPUTS

LOADING

All Inputs

1 U.L.

OUTPUTS

DRIVE FACTOR

All Outputs

10 U. L.

=TTL Gate Input Load)

(1 U.L.

1.0

vou, 'OUTPUTVOLlACf' VOlTS

--.J

Vee
Inpuls

10

--"-r-

(

o

t- ---t-- ---

'l,l

-I--

,30

'

t-

~

VCC' USV

1,,'15'C

-t-/:>t--t-t-+-J

t--j;7 -r-

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE OUTPUT HIGH

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE OUTPUT LOW

INPYT CURRENT VeRSUS INPUT VOLTAGE

OUTPUT HIGH

INPUT LOAD AND DRIVE FACTORS

3-340

GRADE

INPUTS

LOADING

59

All Inputs

12/11

51

All Inputs

12/10

GRADE

OUTPUTS

DRIVE FACTOR

59

All Outputs

120/94

51

All Outputs

120178

ITT9311

Msi One-Of-Sixteen Decoder
ELECTRICAL CHARACTERISTICS (TA = DoC to
SYMBOL

VOH
Yo,

Output High Voltage

VOH

Input High Voltage

V"

Input Low Voltage

IF

Input Load Current

I.

Input Leakage Current
Vee Current
Turn Off Delay A Input to Output
Turn On Delay A Input 10 Output

tpd +
tpd_

Ipd+

tpd _

MAX.

2.4

Output Low Voltage

Vee = 5.0 V ±5%) See Note 1
LIMITS
.+2S oC

OOC

CHARACTERISTICS
MIN.

I"

+ 75°C,
MIN.

TYP.

MAX.

2.4

3.0
0.2

0.45

0.45
1,9

+7S oC
UNITS
MIN.
MAX.
2.4

1.B

0.45
1.S

0.B5

0.B5

0.B5

-1.0
-1.6
0.9 -1.41
15
SO
35
SO
23
40
20
35
17
31
17
2S

-1.S
1.41

10
7.0
10
7.0

Turn Off Delay E Input to Output
Turn On Delay E Input to Outpul

Volts

Vee = 4.75 V,loH= -0.6 rnA

Volts

Vee=4.75 V, 10'= 14.1 rnA
Vee=5.25V,lo,,!,16.0rnA
Guaranteed ",put high
threshold for all Inputs

Volts

-1.S
-1.41

60

CONDITIONS

Volts

Guaranteed Input low
threshold for all inputs

rnA
rnA
p.A
mA

Vee=5.25 V I VF=0.45 V
Vee-4.75 V I
,
Vee-5.25 V, V.-4.5 V
Vee-5.0 V

ns
ns
ns
ns

"'.

Vee=5.0 V
C,=15 pF
See test circuit

NOTE 1: Units are pulse tested.

ELECTRICAL CHARACTERISTICS (TA

,

SYMBOL

CHARACTERISTICS

= - 55°C to + 125°0, Vee =5.0 V ±1 0%)

-55°C
MIN.
MAX..

LIMITS
+2SoC
MIN.

TYP.

2.4

2.7

See Note 1

+12SoC
UNITS
MIN.
MAX.

MAX.

2.4

Output High Voltage
Output Low Voltage

2.4

V",
V,

Input High Voltage

2.0

V,

Input Low Voltege

0.8

0.9

0.8

I,

Input Load Current

-1.6
-1.24

-1.10 :"'1.S
-0.97 -1.24
SO
15
55
35
23
35
30
20
26
17
16
21

-1.S·
-1.24
60

V.....

I,
I.,
l~_

l"\;!_
t~_

l"\;_

0.4

Input Leakage Current
V" Current
Tum Off Delay A Input to Output
Tum On Delay A Inpul to Output
Turn Off Delay E Input to Output
Turn On Delay E Input to Output

0.4

0.2

0.4
1.4

1.7

Volts
Volts
Volts
Volts
mA
rnA
p.A
rnA
ns
ns
ns
ns

NOTE 1: Units are pulse tested.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

PULSE GEN CHARACTERISTICS
Freq. = 1 MHz
Pulse Width = 100 ns
1.=I,':15ns
Amplitude = 4 V

'- 4 --- ,.,,• !lout

"I neludes all probe and Jig capaci¥ince

'.'

3-341

~-l

r"'" --::J 1'--"'("f
--\IR--

CONDITIONS

Vec=4.5 V,loH= -0.6 rnA
Vee-4.5 V, 10..= 12.4 rnA
Vec=5.5V,lo,=1B.OrnA
Guaranteed Inpul high
threshold for all Inputs
Guaranteed Inpul low
threshold for allinpuis
Vee-5.5 V I
VF=0.4V
Vee 4.5 V I
Vee 5.5 V, V. 4.5V
Vee -5.0 V
Vce=5.0 V
C,=15 pF
See lest circuit

ITT9311
Msi One-Of-Sixteen Decoder
ENABLE

OUTPUT SELECTION

GND

BCD CODE

MICI9f1 1/16 DECODER

DECODE ANY BcnCODE
Decode any BCD code using a 9311 element.
Any 4 bit BCD code may be decoded by
selecting outputs, examples are shown in the
table.

CLOCK

DECIMAL
DIGIT

8421

5421

EXCESS
3

GRAY

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
8
9
10
11
12

3
4
5
6
7
8
9
10
11
12

0
1
3
2
6
7
5
4
12
13

PROPAGATION DELAY ENABLE INPUT
TO OUTPUT VERSUS TEMPERATURE

ADDRESS

..

"~~~~:~1~_4.--~+-~-+~~
~~~~-4--~+-~-+~~

161-+--+--t--1---I--+--+---i1--i
5IX MIN ,59X MIN

E:t::t:j~·"·~···E···~
. ·i··~····3·"E···~····f::r:l
25
75
125

8.0
?S

TA - AMBIENT TEMPERA7URE -'C

PROPAGATION DELAY DATA INPUT
TO OUTPUT VERSUS TEMPERATURE
70

CLOCK DEMUL TIPLEXING
The 9311 can be used as a clock demultiplexer.
The binary address designates to which
register or counter the clock is sent. Up to 5
register counter stages can be driven by one
decoder ouput allowing word lengths of 20 bits
to be controlled. Any sequential ·circuit in the
9300 MSI family· can be used in this
configuration.

3-342

'IlII'I--

2O~+--+--4-11--+-~-+~~

10 t;;;;J,;;;;..J.......L--I~"""'SI'""X~MI~N.!!:?!::.i.'....:'!
.. :::
....=1
...
-55

25

75

TA - AMBIENITEMPERAIURE -'C

SWITCHING PERFORMANCE

125

ITT9312

Msi Eight-Input Multiplexer
SEMICONDUCTORS

Package: Dual In-Line and Flat Pack

EIGHT",~NPUT
MUl T~Pl[EXIER

MSI

LOGIC SYMBOL
11 ~~~~~~~~---,
12
10 11 12 13 14 15 ~ I)
51
9312 0 I1IPUT MULTlPUX£R
13·
L5~2____~~~~____-d

o Multifunction Capability
o 25 ns Through Delay
lJ On-Chip Select Logic Decoding
o Fully Buffered Complementary Outputs
oThe Input/Output Characteristics Provide
Easy Interfacing with DTL930, TTL9000,
TTL7400 and MSI Families
o Input Clamp Diodes Limit High Speed Termination Effects

14

Vee
GND

15

==PIN
16
PIN8

Figure 1

LOADING RULES
The ITT9312 is a monolithic, high speed, eight
input digital multiplexer circuit. It provides in
one package the ability to select one bit of data
from up to eight sources. The ITT9312 can be
used as a universal function generator to
generate any logic function of four variables.
Both assertion and negation output are
provided. TTL circuitry with active pullups on
the outputs provides high speed, high fanout
operation and is compatible with all DTL and
TTL digital integrated circuits.

ABSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)
Characteristics

Units

Storage Temperature
.............. -65 0 Cto+150 °c
Temperature (Ambient)
Under Bias .... -55°C to + 125°C
Vc C Pin Potential to
Ground Pin ...... -0.5 V to + 7 Volts
Voltage Applied to Output when
output is high .... 0Vto +Vcc value
Input Voltage (DC)
(See Note1) ... -0.5Vto+5.5 Volts
Input Current (DC)
(See Note1) .... -30mAto +5 mA
Current into Output when
output is low ............ + 30 mA

OUTPUTS

FAN-OUT

High State

I

Low State

18
20

I

9
10

Z

Z

=

1 U.l. 1 nL Unit load
1 U.l. Is doflnod by tho entrlu
IR and IF In the tablo on page 3.

Figure 2

TRUTH TABLE
E

82 81

H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

X X X X X
L L L L X
L L L H X
L L H X L
L L H X H
L H L X X
L H L X X
L H H X X
L H H X X
H L L X X
H L L X X
H L H X X
H L H X X
H H L X X
H H L X X
H H H X X
H H H X X

NOTE 1: Either Input Voltage limit or Input Current limit is
sufficient to protect the inputs.

3-343

80

10

11

12

X
X'
X
X
X
L X
H X
X L
X H
X X
X X
X X
X X
X X
X X
X X
X X
X
X
X
X
X

15

16

17

Z

Z

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
L X X
H X X
X L X
X H X
X X L
X X H
X X X
X X X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L

L
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H

13

14

L
H

H = High voltage level
L= Lw voltage level
X = Level does not affect output
Figure 3

ITT9312

MSI Eight-Input Multiplexer
The ITT9312 provides the ability, in one
package, to select from eight sources of data or
control information. By proper manipulation of
the inputs, the ITT9312 can provide any logic
fuhction of four variables and its negation.
Thus any number of random logic. elements
used to generate unusual truth tables can be
replaced by one ITT9312.

FUNCTIONAL DESCRIPTION - The ITT9312 is
a logical implementation of a single pole - 8
position switch with the switch position
controlled by the state of three select inputs,
80, 81, 82. Both assertion and negation
outputs are provided. The enable input (E) is
active low. When it is not activated the
negation output is high and the assertion
output is low regardless of all other outputs.

OUTPUT LOW
EQUIVALENT CIRCUIT

OUTPUT HIGH
EQUIVALENT CIRCUIT

EQUIVALENT INPUT CIRCUIT

Vee

."

100

'--~~OOUT

..•

INPUT CURRENT VERSUS
INPUT ¥GLTAIE
INM NOT SEllCT£D

•

.-•

IEijliIIIiIi

rl.l~

..

,,-

"'·c, \
",'

l'O'c

""C1ID

I

~:\25'c

~;~

•
2.0

".0

6.0

...

•• 0

I

-1.0

,

I[fffj

;:::~- I-

S.D·

Figure 4

Figure 5

Vo+<

Output High Voltage

VOL

Output Low Voltage

2.4

2.4

0.4

TYP.

••I

7.'

J·c- f-- -

~

"-

3-344

I.'

...

to +125°C, Vee =5.0 V ±10%)

2.4

0.4

I.'

'.1

Vour - OUTPUT VOLTAGE - VOLTS

Figure 6

+12SoC
UNITS
MAX. MIN.
MAX.

2.7

0.21

I

,,'C I-~

~ I

I.'

LIMITS
+2S oC

~,,·c_ ~.~

-55"C

I

T.

VOUT - OUTPUT VOLTAGE - VOlTS

-SSoC
MAX. MIN.
MIN.

'V-

/
//

:".-

Y,N -INPUl VOLTAGE - VOLts

CHARACTERISTICS

f..-"'·C:::

~

;.".c
'c

I.'

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT LOW)

"

.".~

ELECTRICAL CHARACTERISTICS· (MIC9312-1X) (T..,= -55°C

SYMBOL

.. -

/

I
IF-

of.

-2.D

1•.• v I I
Inputsllgnd.
~·c
'II'C

Vee

,,'C

•
·W

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE
(OUTPUT KlGH)

.04

CONDITIONS

Volts

Vcc-4.S V 10H= -1.2 mA (Pin lS)
Vee=4.SV 10+<= -1.08 mA (Pin 14)
Inputs at threshold voltages (VOL or V,H)
as per truth table

Volts

Vee-S.S V 1oc=16.0 mA (Pin lS)
IOL=14.4 mA (Pin 14)
Vcc=4.S V IOL=12.4 mA (Pin lS)
101.=11.2 mA (Pin 14)
Inputs at threshold voltages (VOL or V,H)
as per truth table

1119312
MSI Eight-Input Multiplexer
ELECTRICAL CHARACTERISTICS· (MIC9312.1X) (TA = - 55°C to
CHARACTERISTICS

SYMBOL

-55°C
MIN.
MAX. MIN.

LIMITS
+25 O C

TYP.

+ 125°C,

Vee = 5.0 V ±10%) (continued)
CONDITIONS

UNITS
+125°C
MAX. MIN.
MAX.
Volts
1.4

15

60

60

"A

27

40

40

rnA

Guaranteed Input hlgn t reshold
for alt Inputs
Guaranteed input low threshold
for all inputs
V, 0.4 V
Vcc=5.5 V
Input Selected
Vcc=4.5 V
V.-4.5V
Vee-5.5 V
Input not selected
Vee 5.0V

Switching Speed

23

34

Switching Speed

25

36

ns
ns

Vee - 5.0 V, See Page 4
C, 15 pF

V'H

Input High Voltage

V"

Input Low Voltage

1.7

2.0

I, (all inputs) Input Load Current

0.9

0.8

-1.6
-1.24

1.6
1.1
-0.85 -1.24

,1.6
-1.24

rnA
rnA

I. (all inputs) Input Leakage Current
IPDH

Vee Current

t,d> (S, to Z)
t,,_ (S, to Z)

Volts

0.8

40

• Pu Ise tested

ELECTRICAL CHARACTERISTICS' (MIC9312·SX) (T A =O°C to
CHARACTERISTICS

SYMBOL
VOH

Output High Voltage

Voc

Output Low Voltage

V'H

Input High Voltage

V"

Input Low Voltage

OOC
MIN.
MAX. MIN.
2.4

2.4

I, (all inputs) Input Load Current

Vee Current

1""

Switching Speed
Switching Speed

(S, to Z)
t,,_ (S, to Z)

+7S o C
UNITS
MAX.
MAX. MIN.

3.0

2.4

0.45

1.8
0.85

1.6
-1.41

1.0
1.6
-0.91 -1.41
60
15

43

27
23
25

43
34
36

CONDITIONS
Vee=4.75 V 10H= -1.2 rnA (Pin 15)
Vee=4.75V IOH=-1.08rnA(Pin14)
Inputs at threshold voltages (V" or V'H)
as per truth table
Vec=5.25 V Im= 16.0 rnA (Pin 15)
loc=14.4 rnA (Pin 14)
Vcc=4.75V loc=14.1 rnA (Pin 15)
1m=12.7 rnA (Pin 14)
Inputs at threshold voltages (V" or V,")
as per truth table
Guaranteed input high threshold
for all inputs
Guaranteed input low threshold
for all inputs
..
V,=0,45 V
Vcc-5.25 V
Input Selected
Vce =4.75 V

Volts

0.45

Volts

0.85

Volts

1.6

0.85

I. (all inputs) Input Leakage Current

IPDH

TYP.

0.21

0.45

1.9

LIMITS
+2S o C

+ 75°C, Vee = 5.0 V ±5%)

Volts

1.6
~1,41

rnA
rnA

60

"A

Vee-5.25 V
V.-4.5V
Input not selected

43

rnA
ns

Vee-5.0 V
Vee - 5.0 V, See Page 4
C,-15 pF

ns

'Pulse tested

A.C. CHARACTERISTICS
All measurements are made with Vee = 5.0 V
applied to pin 16 and with pin 8 grounded. The

active input is driven by an ITT9002 TTL gate
with the output loaded with 15 pF. Both
outputs of the ITT9312 are loaded with 15 pF.
TURN ON DELAY VERSUS
AMBIENT TEMPERATURE;

TURN OFF DELAY VERSUS
AMBIENT TEMPERATURE;

1.5V IIIPUT IPlIIII]

f ---=\;

=:j f= --l
tpd.

OUTPUT (PII151

1.5V--+

0tfMt Conditions: Plitl 1. 8, 10. 12. 13 = Gnd
Pin 2 Vee throulh 1.0 kG

=

Pin 16 = Vee

So to Z

So to Z

t,d: S, to Z

r-

-1.5Y

t,d_

~

~~~

;ss:vrt-

!~ ~~~~~~~~~.~
.~~~~~-~4-~~~~

,.-

~ ~~~t--~~4r4r4-,,~,~~~

•

t--

M~~~~~~-4-4-4

-'BUlK
'<:~~~*=1

,

~~pv

."

.-

-

'.
tA'~I{f(lTtMP[RA1URl

Figure 7

3-345

;·c

lA "AM81lNT ttMPlRATUI!f.·"C

Figure 8

ITT9312
MSI Eight-Input Multiplexer
\,d:

I. to

Z

1.5V--!\-1.5V
::::::J 'pd--I ''''1=
1.5V -=-t~==:.i-P;
Other Conditions: Pins I, 8. 10, 12, 13 =Gnd
Pin 2 =Vee throu,h 1.0 kO
Pin 16 =Vee

1."-+---=\-1.5V

=1 'pd- r-- -1 .... 1:::

INPUT [PIN II

~

1.5V--\
Oth,r Condllions: PIn, 8. 10. 11. 12. 13
Pin 16 Vee

=

=Gnd

So to l

So to Z

I. toT

I. toT

TURN ON DELAY VERSUS
AMBIENT TEMPERATURE;

TURN OFF DELAY VERSUS
AMBIENT TEMPERATURE;

TURN ON DElAY VERSUS
AMBIENT TEMPERATURE;

TURN OFF DELAY VERSUS
AMBIENT TEMPERATURE;

r-

INPUT IPlIII1I

~~~-r-r~~~ro

~~S ;::vrl-+-+-+-+-t--I

"CC"5.0V
CL '15pF

,
0

,"~-+-+~~+-+-~

~ .~-+-+~~+-+-~

1/

~

./

i--'" >---

__

~·~~-T-r-+-+-T-r~

"-

',,,,-

jo ~ t:::r:ttM~~

I-'

0

jl. 10

~1"-++=t::!=1=+::j::t~

0
fA -AMBI[NTTEMPEIUTUR! ··C

'A,AMBI[WT(MJ'ERATURE ··C

'A,MGIENTTlMPERATURE"C

'A,AMBIENTTEMPERAlURE"C

Figure 9

Figure 10

Figure 11

Figure 12

TURN OFF DELAY VERSUS
AMBIENT TEMtERATURE;
E to Z

TURN 01'1 DELAY VERSUS
AMBIENT TEMPERATURE;

::::::....Jf----\=! 'pd'
-l ',,- r-

'=

llFUTIPtNIOI _ _

-_-_-::..J-f

OUTPUTI'" "I _ _ _

=

\=-

==

Pin 16

Vee

,

~ ~~-+-+~~+-+-~

~~~~-+~-r~+-t--I

~~~-+-+-r~+-t--I

~

~~~-+-+~~+-+/~~

~~~~~~~~~~-+~~
,/

.0

~f~ ~~ovrl-+~~+-+-1

,
~

OHIor CondlUons: Plnl8, 11. 12. 13 Gnd
Pin 1 Vee through 2.0

Etol

j.1O~~
'.,

~'~~-+~-r~+-t--I

:0 ~~~~~~~~~~
ji ~~;;;t+~:j::+=H

N

10

0.,'-,...l-.L..c......,L....J--'--'--'-.....J
',\'AMSIENTTEMFtRA1URE-

'c

Figure 13

r,,·"MIII[NTUMI'[R"TUR[.·C

Figure 14

APPLICATIONS
A Multi-Port Memory Module
The four bit by eight word multi-port memory
module shown in the diagram below uses only
thirteen MSI packages; four ITT9308 24 pin
dual four bit latches, eight ITT9312 eight input
multiplexers, and one ITT9301 one-out-of-ten
decoder.
The module as shown is capable of simultaneously reading from two independently
specified locations and writing into a third
independently selected location. The necessary
enables are provided so that a number of these

modules may be connected together to produce
a larger memory. As an example a sixteen bit by
sixty-four word memory would require thirtytwo of the modules shown below.
By connecting this type of memory to a
function generator unit, a processor could be
constructed that would execute three address
instructions at a very high speed on the data
contained in this type of memory. In order to
utilize the speed of the memory the instructions would also have to be contained in fast
semiconductor memory.

3-346

ITT9312
MSI Eight-Input Multiplexer
won.

."IT[

DATA

AODMSS

NOOUI..E

ENAOI..

III ,--J-

WRITE
5 TROD[

ADDRESS

MODULE

In

'i!

;! ..

WORD
STORAGE

~
aib-..,-::-:~
.. ~.t--

_r;-;;;
- :~ ..
- ~~
- ~I-

.r&<6'~

.

~.. ~-

-

. & ..~
I.

: i do-

_r::-.'

~.

.r~ ..

-

r-

or

I.

r=-r -

• B q},77""~

.. ~ .. t--

~

~r;u;;
~

'---

I.

.. . ~
~
"S8

."

~

I~ ~ ...

0

0 0 outputs of tho latch, etc.

~S

• ' B DI:>-

...-:-"

BIT 2

being the 0 0 outputs of the
latches, MI and MI Inputs
being the 01 outputs of the
latch, M1 and M z inputs being

-- :~ ..
- ~~
-- _
- ;~

,6S.rt-.

~
• B.b--

_... 5 -IO-H-t+--

'All Multip lexer connections
ar. sImI! ar to Mo and M3
with Inpu Is to Mo and Mo

~

,."........",

~!

."

"

.
~~t=
• D ;):>--

:~ ..

~-

-

"~F
i.-

T_

~

• D • P-

,.,..........,,'

~ I - I>-t+t+-- ." ,
.!";

tb=

I.

......

~!

'"

~-

.!";

b;n.

1 •

:~ ..

__
A
WORD

.;.L

0-7

~~.r

L-

NOCULE ENAlI..E

~

~;

l31li''''''

S' , . ,

ADDRESS.

ENA~f:

~

.. " 'J 's

11-2 1 t

A

r::w,

E

I

~

:~~!

~!
;~

or •

."

-

Tt!:!-

• DDI:>-

Fi gure 15

APPLICATIONS
3 Bit Comparator
Three bits of data to be compared are supplied
to the address and select inputs of the ITT9301
and ITT9312 respectively. If Ao, A1 , A2, and Bo,
81, 82 compare, the mutually exlucisve active

low output of the ITT9301 1/10 decoder and the
selected input of the ITT9312 multiplexer will
be coincidental and COMPARE OUT will be
high. The COMPARE ENABLE must be low to
permit compare operation.

3 BIT COMPARATOR

INTERCONNECTION DIAGRAM
FOR 9 BITS

CO"'''4RE
TO

~EXT

COMPAIIE

E~

1Or.~~~~.-;-;-~

~

r- ;~~ ~s;v -+--+--+--+-+-+--1
"I-t--T-+-+-+-++-t--j

• ..
~

;"P¥t . !!~~L~f­
7

I

TURN OFF DElAY TIME VERSUS
AMBIENT TEMPERATURE (f to lJ

TURN ON DElAY TIME VERSUS
.,ArM-::B_IENTo=T...,EM--,PE_RA..,.J_U"T"RE_(,S_to,Z.;'>
;::

a

I- ~cc'
s.ov-+-+-+-+-+-+-I
CI"5~ I

50

CL'UrI

~

..u:. ~'i:"'/

~ r-st;l;-

.~

~ZD~TYP.
~

•

k.
......

l,...;

"'"'

"P.

TA'AMlllNT llMPlAATUR['·C

'A: AMlIOO ltMPlRATUII[ ,. C

, I=i•..k.,k
"1".....·:- - f a
...
n
, "
'"

TURN ON DElAY TIME VERSUS
AMBI.ENT TEMPERATURE ([to ZJ

TURN OFF DElAY TIME VERSUS
AMBIENT TEMPERATURE (I" to l,>

TURN ON DElAY TIME VERSUS
AMBIENT TEMPERATURE (I,. to lJ

:;.. 10 51

a

f-:CC'S,'!'I

1ADf ""N. ......~(;.iiADi.Mi;.:.. .

•

'oICC· 5•0 'ol
'UFI

I

.1-- I-- f-

...

+-+--+--+-+-+-1

Cl'UrI

~",,:j.Lf-P'

."'~'+""';:-"""'7r--

, f- f- f,

VCc·J.DV

i"
i "f-+-+-+-+-+-++-+-~

cl

1YP

~~ b

59G1tAOlMIN-

" 51GRADlMlN

'= j:::;:::

'A • AMlI£NTTlMPf.ATUIE·"C

3-355

.....
'"

S
IH~~-+~~4-+-+-I
~ f-I-+-... ~~~.~,p.-t:;p
11
I ft.
SIGlADEiW:

i

:i'" f-~I-" ".....
,...
'-",=1,-

".........

I-

f-I-fn

",.

ITT9322

Quad Two-Input Multiplexer

"'T.""12

APPLICATIONS
Dual 10 Input Multiplexer

II '. '"

II

MULTfUllI1

....TINII. I OUTPUT

SHIFT LEFT, SHIFT RIGHT,
PARALLEL LOAD REGISTER

OPERATION CODE LIST
A
B
Operation
L
L
Perallel Load
H
L
Shift Left
L
H
Shift Right
H'
H
Shift Right

....'1mI1i 2 OU'M

DATUUI SII,n u"

This register will shift left, shift right, and load
4 bits of parallel data according to the
operation code applied to A andB.

l1li111 ••

lu.'.....fam

....·---'---+l+r---......- - -__H-tt--~

APPLICATIONS
Register Selection
The 9322 can be used to select parallel data
from two multiple bit sources. Illustrated above
is a counting and display system where the
9322 selects the content of one of the counters
for display.
==----+l+I-T---------t+t+r----~ ""U•••IIUIII
. . . - - - _ , I 0 I l ......111&111

3-356

_

ITT9328
MSI Dual 8-Bit Shift Register

I'~:\T~'
"
c:::::!I="'"""=======_____=-=""""=========
,

,,}

,",

SEMICONDUCTORS

MS~

DUAL

Package: Dual In-Line and Flat Pack

8c>B~T SH~FT

REGISTER

(',) 20 MHz Shift Frequency
II.)

•
•
..
.,
o

Two Input Multiplexer Provided at Data Input
of Each Register
Gated Clock Input Circuitry
Both True and Complementary Outputs Provided from Last Bit of Each Register
Asynchronous Master Reset Common to
Both Registers
Typical Power Dissipation of 300 mW
Compatible with TTL and DTL families

LOGIC DIAGRAM
13.11 12
14

15

a Input Diode Clamping

The ITT 9328 is a high speed serial storage
element providing sixteen bits of storage in the
form of two eight bit registers that will shift at
greater than 20 MHz rates. The multi-functional
capability of this device is provided by several
features: 1) Additional gating is provided at the
input to both shift registers so that the input is
easily multiplexed between two sources. 2) The
clock of each register may be provided
separately or together. 3) Both the true and
complementary outputs are provided from each
eight bit register, and both registers may be
master cleared from a common input.

ABSOLUTE MAXIMUM RATINGS
(abOve which useful life may be impaired)
Characteristics
Storage Temperature
................ -65 C to + 150°C
Temperature (Ambient) Under
Bias ............ -55 Cto +125 °C
Vee Pin Potential to Ground
Pin ............... -0.5Vto +7 V
Voltage Applied to Outputs for
high output state.-0.5V to + Vee value
Input Voltage (D.C.) -0.5V to + 5.5 V

Vee = Pin 16

Gnd = Pin 8

FUNCTIONAL DESCRIPTION - The two 8 bit
shift registers have a common clock input
(pin 9) and separate clock inputs (pins 10 & 7).
The clocking of each register is controlled by
the OR function of the separate and the
common clock input. Each register is composed of eight clocked RD master-slave
flip-flops and a number of gates. The clock OR
gate drives the eight clock inputs of the
flip-flop in parallel. When the'two clock inputs
(the separate and the common) to the OR gate
are Idw, the slave latches are steady, but data
can enter the master latches via the Rand S
input. During the fir,st low to high transition of
,either, or both simultaneously, of the two
clock inputs, the data inputs (R and'S) are
inhibited so that a later change in input data
will not affect the master; then the now trapped
information in the master is transferred to the
slave. When the transfer is complete, both the

3-357

ITT9328

MSI Dual 8-Bit Shift Register
master and the slave are steady as long. as
either or both clock inputs remain high. During
the high to low transition of the last remaining
high clock input, the transfer path from master
to slave is inhibited first, leaving the slave
steady in its present state; second the data
inputs (R and S) are enabled so that new data
can enter the master. Either of the clock inputs
can be used as clock inhibit inputs by applying
a logic high signal. Each a. bit shift register has
a two input multiplexer in front of the serial
data input. The two data inputs Do and 01 are
controlled by the data select input Os following
the Boolean expression:
Serial data in: SD

=Os Do + Os 01

An asynchronous m'aster reset is provided
which, when activated by a low logic level, will
clear all sixteen stages independently of any
other input signal.
'
LOADING RULES
(1 U.L. TTL input gate load)

=

INPUT
MR,DODI
SeparateCP (pins 9 & 10)
Os
Common CP (pin 9)

FAN IN
1 Unit Load
1.5 Unit Loads
2 Unit Loads
.3 Unit Loads

OUTPUT

FAN OUT
6 Unit Loads

07,07

ELECTRICAL CHARACTERISTICS ITA = -55 0 C to + 1250 C, Vcc= 5.0V:!: 10%1
I

LIMITS
_&6 oC
+25oC
+ 1Z6oC
MIN. MAx:. MIN. TYP. MAX. MIN. MAX. UNITS
. 2.4
Volts
2.4
2.7
2.4

SYMBOL

CHARACTERISTICS

VOH

Output High Voltage

VOL

Output Low Voltage

VH

I nput High Voltage

VL

Input Low Voltage

0.8

IF

Input Load Current (MR,Do'D II

-1.5

1.51F

I nput Load Current

0.4

0.2

0.4

1.7

2.0

0.4
1.4

TEST CONDITIONS
VCC=4.5V,IOH=-0.36mA

Volts

VCC=5.5V ,IOL=9.5mA

Volts

VCC=4.5V,IOL =7.44mA
Guaranteed input high

Volts

Guaranteed input low

threshold for all inputs
0.9

0.8

threshold for all inputs
-2.4

-1.0 -1.5
-1.5 -2.4

-1.5 mA
-2.4 mA

(separate CP pins 7 & 10

Vcc=5.5V

21F

I nput Load Current (Dsl

-3.2

-2.0 -3.2

-3.2 mA

31F

Input Load Current (common CP pin 91

-4.8

-3.0 -4.8

-4.8 mA

VF=0.4V

Ip

Input Leakage Current (MR.Do·Dll

SO

10

60

SO

J.!.A

1.51p

Input Leakage Current

90

15

90

90

P.A

21'p'

Input Leakage Current (Dsl

120

20

120

120

P.A

VR=4.5V

31p

I nput Leakage Current (common CP pin 91

1801

30

180

180

Ipo

Power Dissipation

365

300

365

365

P.A
mW

Vcc=5.0V

(separate CP pins 7 & 101

Vcc=5.5V

SWITCHING WAVEFORMS

1.5 V

_ 1_- tpd-lii)1

ii)-_-_-_-_~\

.

.

-

I-::

1.5 V

tpd'lii)1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. - - - - - - - - - - - / -

NOTE: 07 is connected to D1. Other clock is grounded.

Figure 1

3-358

-~

1.5V

1119328
MSI Dual 8-Bit Shift Register
ELECTRICAL CHARACTERISTICS ITA = oOc to + 75°C. Vee = 5.0V± 5%1
LIMITS
DoC

SYMBOL

CHARACTERISTICS

+7SoC
+ 25°C
MIN. MAX. MIN. TYP. MAX. MIN. MAX. UNITS

VOH

Output High Voltage

2.4

VOL

Output Low Voltage

2.4
0.45

3.0
0.2

Volts

2.4
0.45

0.45

Volts

TEST· CONDITIONS
VCc=4.75V.loH=-0.36mA
VCC=5.25V. IOL =9.6mA
Vcc=4.15V. IOL =8.5mA

V'H

Input High Voltage

V'L

Input Low Voltage

0.85

0.85

0.85

Volts

IF

Input Load Current IMR.Do·DI I

-1.6

-1.0 -1.6

-1.6

mA

1.51F

Input Load Current

-2.4

-1.5 -2.4

-2.4

mA

1.9

1.6

1.8

Volts

Guaranteed input high
threshold for all inputs

Guaranteed input low
threshold for all inputs

Iseparate CP pins 7 & 10)

Vcc=5.25V

21F

Input Load Current IDsl

-3.2

-2.0 -3.2

-3.2

mA

31F

Input Load Current

-4.8

-3.0 -4.8

-4.8

mA

IR

Input Leakage Current IMR.Oo·O,1

60

10

60

60

fJA

1.51R

Input Leakage Current

90

15

90

90

fJA

VF=O.4V

Icommon CP Din 91

Vcc=5.25V

Iseparate CP pins 7 & 101
21R

Input Leakage Current (Os)

120

20

120

120' fJA

31R

Input Leakage Clirrent

180

30

180

180 . jlA

Ipo

Power Dissip8ti!l"

365

300

365

365

VR=4.5V

Icommon CP pin 91
mW

Vcc=5.0V

SWITCHING.CHARACTERISTICS ITA= 250CI
SYMBOL

CHARACTERISTICS

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS
Vcc=5.0V. CL =15 pF

Fig.l

tpd-107& 07

Turn·Off Oelay Iclock to output)

13

ns

t pd-107&Q7)

Turn-On Delav {clock to output I
Turn-On Delay (Master reset to output)

22

ns

35

ns

Vcc=5.0V. CL =15pF

Fig. 2 & 3

Min. Clock Pulse Width

14

ns

Vcc=5.0V. CI=15 pF

Fig. 1

tpd IMRI
CP pw
MRpwICPH)
MRpwlCPLI

Min. Master Reset pulse width with clock high

15

ns

V cc 5.0V. CL =15 pF

Fig. 2

Min. Master Reset pulse width with clock low

28

ns

V cc =5.0V. CV 15pF

Fig.3

CP

_I 1- Milp.ICP"1

IlIR-----=--=--,U-- ---- ------ ----------=v-- --l I--=-::.F\-- - - --- --- - -- - --- - ------ ---- ~
..

1.5 V

tpd-IMRI

01

NOTE: OS, 01, ~O, are high. Other clock input is grounded.

Figure 2

3-359

1.5 V

ITT9328
MSI Dual 8-Bit Shift Register
CP

___I

~

MRpwlCPlI

.. -V-.--------=----------------=----------------,V----I r°7 --=F'""\-- ------- -------------~--- -

1.5 V

tpd-I"I

1.5 V

NOTE: OS,01, DO are high. Other Clock input is grounded.

Figure 3
APPLICATION:
DATA INPUTS
r~-----------A~--~-------C\

CLOCK
RESET

-------+---,----l-------+-----,-----t- - --

__

c:)

WRITE LI"E

----+---+------I--O-----+---- 40 ns
h, b = Release lime> 40 ns

Inpul to Pin 1 (2)
Pins 2, (1), 3 & 4 = 1

2. If a fixed value of Rx is used, the following
values are recommended: Rx = 30 kO for 0
to + 750C oporation; Rx = 10 kO for -55 to
+ 125°C operation.

COUT

_llpd'-~

r

Input 10 Pin 3 (4)
Pin 4 (3) = 1. Pins 1 or 2 = 0

(For Cx greater

Where Rx is in kO, Cx is in pF, T is in ns
For ex < 103 pF, see Figure 14
4. If electrolytic type capacitors are to be used,
the following two arrangements are recommended:

R < 0.6 Rx (Max)
~
0,: any silicon
R
type diode, such
as F0700
This circuit also amplifies Cx allowing
ex
01
for longer output pulse width.
R < Rx (0.7) (hr.Q,)
PIN 11 PIN 13
Rx (min) < Rx < Rx (max)
R
RX

H

8. The retrigger pulse width is calculated as
shown below:

:1

Q,: Any NPN silicon device with
sufficient hFE at low currents,
such as 2N2511

+

0:

tw = Ipw

C

-I x

comes within .32 RXCX ( ; ) ns after the initial trigger pulse.
x

1
LOGIC DIAGRAM

5. To obtain variable pulse width, by remote
trimming, the following circuit is recommended:
PIN 13
PIN 11

TO DEVICE

Vee = PIN 14
GND = PIN 7

_

R< Rx IMAXI -RX

eX

Rx
11

'§j)
2--()
3
.
4

>Rx IMINI

~---"'·---b
.l.. tL AS CLOSE AS POSSIBLE

T
o--J

+ ~~ ) + tpd+

Ipd+ = 0.32 RxCx (1

NOTE: Retriggerlng will not occur if the retrigger pulse

Where R is in kO, Cx is in pF, T is in ns

RX

+

The retrigger pulse width is equal to the pulse width Ipw pius
a delay time. For puise widths greater Ihan 500 ns, tw can be
approximated as tpw.

QI

Both circuits prevent reverse voltage across
Cx. The pulse width T for the circuits is
defined as follows:
T=0.36 RCx [1

L

1

.

Vee

13

8
9601

O/S

C>--6

0---------

Vec

3-362

ITT9601
Retriggerable Monostable Multivibrator TTL
ELECTRICAL CHARACTERISTICS (TA = -55°0 to 125°C, Ve e
SYMBOL

CHARACTERISTIC

-55°C
MIN. MAX.

VOH

Outpul High Voltage

VOL

Output Low Voltage

2.4

V,H
V,l
I,

Input High Voltage
Input Low Voltage
Input Load Current

I,
Ise

Inout Leakaae Current
Short Circuit Current

I,
t pd +

Quiescent Power SUooly Drain
Negative Trigger Input
to True Output

t",-

LIMITS
+2SoC
MIN.

TYP.

2.4

3.3

0.4
2.0

UNITS
+12S oC
MIN. MAX.

MAX.

2.4

0.2

0.4

1.1

0.90
1.!l

1.4

Volts
0.85 Volts
1.6 mA
60

p.A
mA

25
40

25

25

mA
ns

Negative Trigger Input
to Complement Output

25

40

ns

t",,",",

Minimum True Output
Pulse Width

45

65

ns

.ltp•

Pulse Width Variation

3.42

3.76

eSTRAY

R,

3.06

Maximum Allowable
Wiring Cap. (Pin 13)
Timing Resistor

TABLE II -

25

50
5.0

25

f--

VOH

Output High Voltage

Vee

Output Low Voltage

MAX.

2.4

2.4
0.45

0.2

! 1.6

Inout Leakaae Current
Short Circuit Current

Ir·d

Quiescent Power Supply Drain

t pd '

Negative Trigger Input
to True Output

25

40

t"

Negative Trigger Input
to Complement Output

25

40

Minimum True Output
Pulse Width

45

65

3.42

3.76

_.- ._.. .ltp •
CS1RIIY

R,

.85
-1.6

1.0
15
"-10

25

3.08

r--pujse Width Variation

5.0

50

0.85
1.6

!

0.85
1.6

60
-40

60

25

25

5.0

50

VC--J

1...

PIN I

.

b

R

TO OEVICE

'

R

Rx MAX - X

VCC 0 - - - - - - - - -

7. Under any operating condition, Cx and Rx
(min) must be kept as close to the circuit as
possible to minimize stray capacitance and
reduce noise pickup.
8. Input Trigger Pulse Rules. See Triggering
Truth Tables, page 5.
=

tl, t3

Min. Positive Input
Pulse Width >40 ns

t2, t4 = Min. Negative Input
Pulse Width >40 ns

1-

12 --1
1-11--1
INPUT 2.5V~---L2.5V ~
1.5V
OV
'
OV
-I
Ipd+
I-- Ipd+

QOUTPUT

1- ':-I
~V ~

Input to Pin 4 (121
Pin 5 (11) = High. Pin 3 (13)

=

High

- 13__
--l4-INPUT 2.5V ~. cu 2.5V ~
. -.J _ .. ~
OV '---..J

r-

21141

.---- tpd+

Cx

\--0 PIN

Q,

R RX (0.7) (hFE Q1) or <:2.5 MH whichever
RX (min)
Ry RX (max)
is the lesser
Q1: NPN silicon transistor with hFE requirements of
above equations, such as 2N5961 or 2N5962
t :::::::0.3 RCX

'IN914

Vee ~ PIN

t---'~
'---""W-+-l~r:"

0_,

Input to Pin 5 (111
Pin 4 (12) = Low
Pin 3 (13) = High

PIN 2(141

Cx
+ !-:-"PIN1(15)

R ';0.6 Ax IMAXI

C. Use to obtain extended pulse widths:
t :::::::0.3 RCX

Q~

11151

3-368

~V

_ _ _oJ

ITT9602

Dual Retriggerable Resettable Monostable Multivibrator
9. The retriggerable pulse width is calculated
as shown below:
tw

= tpw

+ tpd+

= 0.31

I. PUT
OUTPIIT

timing cycle can be terminated or any new
cycle inhibited until the low reset input is
removed. Trigger inputs will not produce
spikes in the output when the reset is held
low.

1

RxCx (1 + Rx ) + tpd+'

:

L

I~tw~'

~

LI_ _ _ _ _ _ _- I

RESET

The retrigger pulse width is equal to the
pulse width tpw plus a delay time. For pulse
widths greater than 500 ns, tw can be
approximated as tpw. Retriggering will not
occur if the retrigger pulse comes within
~ 0.3 Cx ns after the initial trigger pulse.
(i.e. during the discharge cycle).

---lI

I

Symbol

VOH

+125°C
Min. Max

2.4

2.4

2.4

VOL
VIH
VIL
IlL

Units

Limits
+25°C
Min •.TVp. Max.

2.0

IIH
Ise
IpO
tpd+

0.4

1.7
0.90
-1.1 -1.6

-1.24

-0.97-1.24

0.85
-1.6
-1.24
60

ConditiollS
(Note n

Volts

Vee = 4.5 V, IOH =-0.96 rnA (Note 2)

Volts

Vee = 4.5 V, IOL = 9.62 rnA (Note 2)
Vee = 5.5 V, IOL = 12.8 rnA

Volts
Volts
rnA

Guaranteed input high
Guaranteed input low
Vee = 5.5 V, VIN = 0.4 V

rnA

Vee = 4.5 V, VIN =0.4 V
Vee = 5.5 V, VIN = 4.5 V
Vee = 5.5 V, VOUT =1.0 V (Note 2)
Vee = 5.0 V
Vee =5.0 V, RX =5.0kil
ex = 0, eL = 15 pF

Il A
rnA
rnA

39
25

35

ns

29

43

ns

Vee = 5.0 V RX = 5.0 kil
ex = 0, eL = 15 pF

72
78

90
100

ns
ns

Vee = 5.0 V RX =5.0kil
ex = o. eL = 15 pF

3.08 3.42

3.76
50
25

Ils

Vee = 5.0 V, RX =10 kil. ex = 1000 pF
Pins 2and 14 to Ground

45

tpw(rnin)

50
25

QOUTPUT

60
-25
45

10

tpw

0.4
1.5

0.85
-1.6

tpd-

eSTRAY·
5.0
RX

3.3
0.2

r-LJ

=-55°C to 125°C, Vee =5 V ±10%)

-55°C
Min. Max.
0.4

I
r I11....;.Q_
OUTPUT
L-.J
_ _ _ _ _ __

11. Vee and Ground wiring should conform to
good high frequency standards so that
switching transients on Vee and Ground
leads do not cause interaction between
one-shots.

10. Reset Operatio'n - An overriding active
low level reset is provided on each oneshot. By applying a low to the reset, any
ELECTRICAL CHARACTERISTICS (TA

PULSE
WIDTH

-I-

5.0

45

5.0,

50

pF

25

kil

3-369

ITT9602

Dual Retriggerable Resettable Monostable Multivibrator
ELECTRICAL CHARACTERISTICS
Symbol

_OoC
Min. Max.

Limits
+25°C
Min. Typ. Max.

+75 OC
Min. Max

2.4

2.4

2.4

VOH

0.2

0.45

VOL
VIH

3.4

1.9

\ilL

0.85

IlL

-1.6

,

0.45

1.8
0.85
-1.0 -1.6
-1.41
10

IIH

Volts

VCC = 4.75 V, IOH =-0.96 rnA (Note 21

Volts

VCC = 4.75 V, IOL = 11.3 rnA (Note 21
VCC = 5.25 V, IOL = 12.8 rnA

Volts

Guaranteed input high

0.85

Volts

Guaranteed input low

-1.6

rnA

0.45

1.65

-1.41

-1.41 rnA

60

60

-35

ISC
52

IpO
tpd+

39

50

25

40

Conditions
(Note 11

Units

52

VCC = 5.25 V, VIN = 0.45 V
I VCC
= 4.75 V, VIN = 0.45 V

IlA

VCC = 5.25 V, VIN = 4.5 V

rnA

VCC = 5.25 V, VOUT = 1.0 V (Note 21

rnA

V CC = 5.0 V, Ground, Pins 1 and 2

ns

VCC = _5.0 V, RX = 5.0 kil
CX=O,CL=15pF

tpd-

29

48

ns

VCC= 5.0 V RX = 5.0 kil
Cx = 0, CL = 15 pF

tpw(rnin)

72

100

ns

Vee =5.0 V RX = 5.0 kil

110

ns

Cx = 0, CL = 15 pF

Us

VCC'= 5.0 V, RX =10 kil, Cx = 1000 pF

50

pF

Pins 2 and 14 to Ground

50

kil

78
tpw

3.08 3.42 3.76
50

CSTRAY
5.0

RX

50

50

5.0

50

5.0

1. Unless otherwise noted, 10k.Q:resistor placed between Pin 2 (14) and vee, for all tests. (RX)
2. Ground Pin 1 (15) for VOL on Pin 7 (9), or VOH on Pin 6 (10), or for Ise on Pin 6 (10); also, apply momentary ground to Pin
4 (12). Open Pin 1 (15) for VOL on Pin 6 (10), or for VOH on Pin 7 (9), or for Ise on Pin 7 (9).

TYPICAL ELECTRICAL CHARACTERISTICS

INPUT LOAD CURRENT
VERSUS INPUT VOLTAGE

INPUT LEAKAGE CURRENT
VERSUS INPUT VOLTAGE

0.5

OUTPUT CURRENT VERSUS
OUTPUT VOLTAGE (LOW STATE)

80

Vcc • 5.0 v

Jl25).t. rA

I

-0.5

T, •

·1.5

80

T, • 25 C

~55 C
~

..,:::; i==:====

~~

,yV

T,' ·55 C

. ,to
40

1

10
fA' 125 C

TA ' 125 C

'J.5

.1.5

I
'0.5

0

0.5

INPUT VOLTAGE· VOlTS.

1.5

1.5

7'".,,( .

'0

fA' 25 C

'1.5

1.1
1-~~fpU~·Ol~W"

VCC ·5.0V

o

0

r..

~

re- V

4.0
I NPLn VOLTAG( • VOLTS

3-370

0.0

TIA .

·~s c_ f---'

R

-

'f( '~I

V k-'""
,......
0

2.0

o

6.0

4.0

'25

-75

0

75

25

0
·75

125

MINIMUM TIME DELAY,
RESET TO OUTPUT VERSUS
AMBIENT TEMPERATURE

NORMALIZED OUTPUT PULSE
WIDTH VERSUS SUPPLY VOLTAGE

VCC • 5.0V -~--+--+----i-+---i
Cl '15 pf
RX' 10.0
Cx • lolpf
/

vec ·\.OV
Rx -IOtO

10

13 - 6

'" "'

9' ........

-.-~

-

ex'

~ 1.05

~

./
131+.196 0 .113

.19·8","3

0

·25

0

25

75

125

-- --

-........

5.5 V

Vee' S' OV

70

-7\

-2\

I

VCC·4.~V

25

--

-7\

TA ' AM81[NT1(MP(RATUR[· C

125

V

i

~IO

t--

V

I

V
-

./V

125

2
10

20

50

t.O

lO

RX - EXTERNAL TIMING RESISTOR -

n

MmlMUM OUTPUT PULSE
WIDTH VERSUS
AMBIENT TEMPERATURE
1«1

TA ' 25'e
Rx '!OkO
Cx 'IOJpf

Vee'

125

"c

/

'"

c

1.10

I~

15

Vcc • 5.0V
t-cx '103:>1

r-

NORMALIZED OUTPUT
PULSE WIDTH VERSUS
SUPPLY VOLTAGE

Rx • IOkO

50

103 pf

25
0
25
75
TA AMBIENT TEMPERATURE - ·c

7\

POWER DISSIPATION VERSUS
AMBIENT TEMPERATURE'
PINI • PIN2 ' 0

25

/

TA - AMBIENT TEMPERATURE"C

IlO

0

-

!9.1.

10

.0;0

'25

-

PULSE WIDTH VERSUS
TIMING RESISTOR'

t-+--+-t-+--+-+---+--+

0

..-

18

-+---+--+-+--+----i ;:

lO

;'

PL'ts.::

loA - AA'.BIENT TEMPERATURE -

l. I

40

-25

lA - AMBIENT TEMPERATURE - ~c

OUTPUT VOLTAGE - VOLTS

~

r- ~~~ f-""" V
POSITIvE

1

II

-25
-2.0

Vee' 5,0'.1
e l '1\ pf
Rx "IOlO
ex '103:>1

g30

~

TRIGGER UEilSUS
AMBIENT TEI'.1PERATURE
(NEGATIVE EDGE TRIGGER INPUT)

Vce' 5.0V
Cl "15 pf
Rx • IOtO
Cx 'Iolpf

VCIC '
v
OUTPUT "HI Gif'

5.0

•

p.mm.mr.1 PULSE wlDm YO

MINIMUM PULSE WIDTH TO
TRIGGER VERSUS
AMBIENT TEMPERATURE
(POSITIVE EDGE TRIGGER INPUT)

Vee· S' Ov
IJ0 - Rx'SkC'

./

I.U;

,/'

V-

4.S

Cl '15:>1

--

I

/

COMPl[t.iENTARY OUTPUT /

80

0

O.lO
•• 0

Cx • 0

1111

V
I--""

-;-

II0

./

1.111

120

S.D

~

s.s

VCe" SUPPLY VOLTAGE -VOLTS

3-371

• 6.0

10

-7\

-2!I

0

2S

U j.....-TRUjOUTT75

TA - AMBIENT TEMPERATURE'

-

I~

e

ITT9602·

Dual Retriggerable Resettable Monostable Multivibrator
OUTPUT PULSE WIDTH VERSUS TIMING
RESISTANCE AND CAPACITANCE FOR
CX<103 pF

NEGATIVE TRIGGER DELAY
TIME VERSUS
AMBIENT TEMPERATURE

/v

40

k-- I-TRUE OUTPU

lpel

o rVcc
RX

r
0
'75

V

--

I~ COMPLEMEN
OUTPUT

For Cx

-

~

M

c

• SkQ

103

...

I
:I:

I-

1

0

0

+.....!...j
Rx

~
q..+~",<::>... ,

• 5.OV

·25

RxCx (1

-'

Cx • 0
CL '15p[

'I

~ 103 pF, tpw = 0.31

25

15

.

~

125

TA -AMBIENT TEIoFERATURE -'C

'en
-'

a..

::l

a..

::l
0

~

..... ~ ~

~

~
./

----

I-

10 2
80
60

"..".,

~

/

V ~I;
~

<::>...v~/ ~

~ 't ....
q..+ ...

v

~II

~

,<::> - '

....

-

::l

I-

.JIll' ~

~ q..+

V

1....

~~7
",... ~

-.

~+

~

~

40
20
10

1

2

4

6 810

Cx - TIMING CAPACITANCE - pF

LOADING RULES
TTuL INPUT LOAD AND DRIVE FACTORS

TRIGGERING TRUTH TABLES

LOAD
5(11 )

INPUTS
3,4,5,11,12,13

HIGH

LOW

1 U.L

1 U.L.

PIN NO'S.
4(12)
3(13)

Operation

H->L

L

H

Trigger

H

L-.H

H

Trigger

X

X

L

Reset

DRIVE FACTOR
OUTPUTS
6,7,9,10

HIGH

LOW

16U.L

8U.L.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
H-L = HIGH to LOW Voltage Level transition
L-H = LOW to HIGH Voltage Level transition

1 U.L. = 1 TTL Gate Input Load

3-372

ITT9602

Dual Retriggerable Resettable Monostable Multivibrator
SWITCHING CIRCUITS AND WAVEFORMS
iNPUT PULSE

1--.-40II::j

u.
IW~I

f"'100kHz
Amp",3.0V
Width", 40 ns
tr = tf ::; 10 ns

~::_l1r--:~-----,.-l~

'\ F

Vee" Pin 16
GNO" Pin 8

APPLICATIONS
vee

Vee
eXt

eXt

RX'

exi
t5

.

tN~

RX2
Vee

ouTPUT

OUT

9602

9602
0/51

!!GOO

9602
Ol51

eX2

..
.0

-

Rx.
vee

")(2

O-S2

0-S2

5

'3

IN~

OUTPUT~

1-"-1

--'rL

12l=!-'1~

OuT _ _ _ _

'2..,-1

The first one-shot determines the time t1 before
the initiation of the output pulse. The second
one-shot determines t2 the output pulse width.

PULSE GENERATOR
The output frequency produced with the above
configuration is determined by CX1 and RX1 I
while the pulse width is determined by CX2 and
RX2. 0/5 1 forms an astable multivibrator with
an output pulse width of approximately 25 ns,
while 01 S _2 extends the pulse width to the
required value.

3-373

ITT
.....
----DTLDUAL FOUR-INPUT GATE
FAST DTL DUAL FOUR-INPUT GATE

ITT930
ITT961

Package:. Dual In~Line and Flat Pack

SEMICONDUCTORS

DTl DUAL
FOUR-INPUT ·GATE

fAST DTl DUAL
fOUR-I·NPUT GATE
The ITT930 and ITT961 elements are
four-input NAND/NOR gates.

dual

In addition to performing the positive NAND and
negative NOR logic functions. the gates can be
cross-coupled to form a flip-flop or the outputs can
be tied together to perform the "wired OR"
function. Both gate inputs may be extended using
ITT933 elements to allow increased fan-in.
The ITT930 im;orporates a 6K output pull-up
resistor which allows for a fan-out of up to 8 DTL
loads.
The ITT961 incorporates a 2 K output pull-up
resistor which typically results in a 30% faster rise
time with capacitive loads at a fan-out of up to 7
DTL loads.

CIRCUIT SCHEMATIC

A o-II vee

7

'F=':;'-I>I-o c 112
C2 11

4-17

NOTES:

Pins 1. B. 13 not used
945. R, = 6K
948. R, = 2K

ITT945, ITT948
CLOCKED FLIP-FLOPS
SYNCHRONOUS ENTRY

3

4

11

0
0

cp
cp

0

cp
cp
0

cp
1
1
1

tn + 1

5

10

6

0

6

1
1
0
0

1
0
1
0

NC
1
0
1

NC
0
1
1

12

POSITIVE LOGIC SYMBOLS

ASYNCHRONOUS ENTRY
Inputs
Outputs

Output

Inputs
tn

cp

NC
cp
0
NC
cp
NC
0
0
cp
0
0
NC
cp
1
1
0
1
0
1
0
cp
1
1
0
0
1
1

= immaterial. either 1 or 0 has no effect on outputs: ELECTRICAL CHARACTERISTICS ITT945-1.ITT948-1(TA = -55°Cto +125°C. VCC = 5.0V±10%) -66°C Min. Max Symbol Characteristic VO H Output High Voltage 945 948 VOL 2.6 2.5 Output low Voltage 945 948 Min. Limits +26°C Typ. Max. 2.5 2.5 +126°C Min. Max. Units Conditions and Comments Volts 2.5 2.5 0.4 0.4 0.4 0.4 0.4 0.4 Volts = 4.5V.IOH = -180 pA = 4.5V.IOH = -540 jJA VCC = 4.5V. 10l = 12.0 mA VCC = 5.5V. 10L = 15.0 mA VCC = 4.5V.IOl = 13.0 mA VCC VCC (at -55°C) = VIH Input High Voltage VIL Input Low Voltage IA 2.1 1.9 1.4 = 13.6 rnA VCC 5.5V.IOl Volts Guaranteed input high threshold for aII inputs 1.7 1.1 0.8 Volts Input Leakage. all J.K S,C,SO.CO. inputs 2.0 5.0 jJA VCC 5.5V. VA 4.0V Gnd on other inputs I ACP Input Leakage. CP inputs 10 20 jJA VCC 4.0V. VA 4.0V Gnd on other inputs IF Input Current. all J.K.S.C inputs Input Current. 945 CP inputs 948 -.98 -.98 -.92 rnA VCC 5.5V. VF 0.4V 4.0V on other inputs -2.93 -2.35 -2.93 -2.35 -2.57 -2.03 -0.76 -0.62 -0.76 -0.72 rnA VCC 4.5V. VF 0.4V 4.0V on other inputs -2.26 -1.83 2.93 -2.26 -2.26 -1.83 2.93 -2.26 IF Input Current. all J.K.S.C inputs Input Current. 945 CP inputs 948 I FSI Input Current. CO. So inputs IpO VCC Current 945 948 t pd + Turn Off Delay tpd- Turn On Delay 945 948 945 948 35 30 30 30 -2.02 -1.59 -2.57 rnA -2.20 Guaranteed input low threshold for all inputs = = = = = = = = = VCC 5.5V.!vF = 0.4V VCC = 4.5V:14.0V on other inputs = 5.0V. all inputs <;len 14.0 16.2 rnA VCC 75 65 75 75 ns VCC - 5.0V AL = 2.0K. CL 30pf AL = 330 n. CL = 50p! 4-18 = ns ITT945, ITT948 CLOCKED FLIP-FLOPS ELECTRICAL CHARACTERISTICS ITT945-5.ITT948-5 (TA Symbol Characteristic -55°C Min. Max. V OH Output High Voltage 945 948 2.6 4.3 VOL Output Low Voltage 945 948 = aoe to +75°e. Vee = 5.av ±5%) Limits +25°C Min. Typ. Max. +125°C Min. Max. 'Units Conditions anti Comments 2.6 4.3 2.5 4.2 0.45 0.45 Volts 0.45 0.45 Volts 0.5 0.5 V IH Input High Voltage VIL Input Low Voltage 1.4 1.1 IR Input L:eakage. all J·K S. C. SO. Co inputs 5.0 I RCP Input Leakage. CP inputs IF VCC = 5.0V.IOH = -120)JA VCC = 5.0V.lOH = -120)JA VCC VCC VCC VCC = = = 5.0V.IOL 5.0V.IOL = 5.0V.IOL = 5.0V.IOL = 16.8 rnA 16.0 rnA 15.4 mA 14.6 rnA Volts Guaranteed input high threshold for all inputs 0.8 Volts Guaranteed input low threshold lor aII inputs 5.0 10.( M VCC = 5.0V. VR = 4.0V Gnd on other inputs 10.0 10.0 20.( JlA VCC = 4.0V. VR = 4.0V GNO on other inputs Input Current. all J.K.S.C inputs Input Current. CP Inputs 945 948 -0.95 -0.95 -2.8 -2.24. -2.8 -2.24 -2.66 IFSI Input Current. CO. So input -2.8 -2.8 -2.66 mA IpO VCC Current Icex Output Leakage Current ISC Output Short Circuit Current 945 0.59 948 1.77 IMAX 2.1 1.9 1.7 -0.90 mA I -21~ 15.0 17.5 945 948 100.0 1.41 4.2 0.59 1.77 1.41 4.2 VCC = 5.0V. VF = 0.4V 4.0V on other inputs 0.55 1.6 mA VCC = 5.0V.lnputs Open )JA VCC = Veex = 5.0V 1.38 rnA 4.0 VCC = 5.0V VOUT = GNO VCC = 8.0 . All inputs GNO Maximum VCC Current 945 948 17.0 17.5 rnA tpd+ Turn Off Delay 945 948 35 30 75 65 ns VCC'= 5.0V RL = 2.0K. CL = 30pf tpd- Turn On Delay 945 948 30 30 75 ns RL = 330 n. CL = 50p! 75 tpd TEST CIRCUIT +3V r--I ' - - - - - +0.4V I ~.::TL @VIN........,!f--~ PULSE WIDTH >IOOns I I I L __ c a K -t- __ I;:,r I ---+I.SV VOUT ---'---~~===- I ...J Your 4-19 --JdS: GND GND mm QUAD TWO-INPUT GATE ITT946 SEMICONDUCTORS Package: Dual I.n-Llne and Flat Pack .....I -L-L _____..,.;.._FA_S_T_Q_U_A....D_TW_O_-IIIIIIIN_P_U_T G_A_T_E......ITT .....9_4_9 IIIIII QUAD TWO-INPUT GATE FAST QUAD TWO-INPUT GATE Pinout: Dual In·Line and Flat Pack The ITT946 and ITT949 elements are quad two-input NAND/NOR lIates. In addition to performing the positive NAND and negative NO R logic functions.· the gates can be cross-coupled to form a flip-flop or ~he outputs can be tied together to perform the "wired OR" function. CIRCUIT SCHEMATIC (ONE GATE ONLY) These quad two-input gates can also be wired to perform the "exclusive OR" function. while two elements can be wired together to form a full adder. The ITT946 incorporates a 6K output pull-up resistor which allows for a fan-out of up to 8 DTL loads. The ITT949 incorporates a 2 K output pull-up resistor which allows for typically 30% faster rise time with capacitive loads at a fan-out of up to 7 DTLloads. TYPICAL RESISTOR VALUES ABSOLUTE MAXIMUM RATINGS 1 Characteristics Units Supply Voltage (VCe). -55°C to +125°C. Continuous ....................................... -.5 to +8 Volts Supply Voltage (VCe). Pulsed.<1 sec ..... + 12 Volts Output Current. Into Outputs ........................... 30 mA Input Forward Current ................................... -1 0 mA Input Reverse Current .......................................... 1 mA Operating Temperature ................... -55 to + 125°C Storage Temperature ...................... -65 to + 150°C Operating Junction Temperature 2 ............... + 175°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering. 60 sec.) ....................... 300 o F Vcc· R1 =2.0 K R2=1.75K R3=5.0 i< R4=6.0 K (946) R4=2.0K (949) NOTES: 1. Above· which useful life may be impaired. 2. Allow 300·C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50·C/Watt OJ - C for TO-5; 180· C/Watt OJ - C for 114" X 1/4" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachmel'1t and thermal paths .thru leads, as well as number of soldered leads. 4 -20 ITT946 QUAD TWO-INPUT GATE ITT949 FAST QUAD TWO-INPUT GATE = -55°eto +125 oe. Vee = 5.0V ±10%) ELECTRICAL CHARACTERISTICS ITT946-1 (T A -66°C Min. Max. Symbol Characteristic VO H Output High Voltage 2.5 Limits +26°C Typ. Max. Min. 2.6 +126°C Min. Max. Units Conditions and Comments 3.5 2.5 Volts Vec = 4.5V. 10H = -O.lS rnA Inputs at VI L (See Selow) VOL Output Low Voltage 0.4 0.25 0.4 0.4 Volts Vce = 4.5V.I OL = 12 rnA Vee = 5.5V.IOL = 1.5 rnA Inputs at VIH (See Selow) V IH Input High Voltage VIL Input Low Voltage IF Input Load Current 2.1 1.9 1.4 1. I -1.5 -1.2 -1.16 IR 1.7 O.S Volts Guaranteed Input High Threshold For All Inputs Volts Guaranteed Input Low Threshold For All Inputs -1.5 -1.4 rnA -0.93 -1.16 -1.0S rnA Input Leakage Current 2.0 5.0 p.A. Vee = 5.5V. VR= 4.0V I Ground on other inputs IpD Vec Current "'Gate On"' (per gate) Vee Current "'Gate Olr" lpd+ Turn Off Delay tpd- Turn On Delay S.5~:1 Vee = VF = 0.4V Vee = 4.5V. 4.0V on other inputs 2.41 1.15 3.25 1.47 rnA rnA 45 20 BO 30 ns ns 25 10 Inputs Open Vce = 5.0V Inputs Grounded Vce = 5V. RL = 3.9K. CL - 30pf Vee = 5V. RL = 400 CL= 50p ELECTRICAL CHARACTERISTICS ITT946-5 (T A = ooe to +75°e. Vee = 5.0V ±5%) Symbol Characteristics Min. VOH Output High Voltage 2.6 VOL Output Low Voltage Max. LIMITS +26°C MinTyp. Max. 2.6 0.45 +76°C Min. Max.Units Conditions and Comments 2.5 IVa Its Vce = 5.0V.IOH = -12 rnA 0.45 Volts Vce = 5.0V.IOL = 12 rnA Vee = 5.0V. 10L = 11.4 rnA IVa Its Guaranteed Input High Threshold For All Inputs 0.50 VIH Input High Voltage VIL Input Low Voltage 1.2 1.1 0.95 1V0its 'Guaranteed Input Low Threshold For All Inputs IF Input Load Current 1.4 1.4 rnA 1.33 rnA VF = 0.4sv.lvec = 5.0V V F = 0.5V. 4.0V On Other Inputs IR Input Leakage Current 5.0 5.0 10.0 Vee = 5.0V. VR = 4.0V Gnd On Other Inputs Ise Output Shan Circuit 2.0 0.61 1.9 1.30 0.61 1.B 1.30 0.535 Il A 1.25 rnA Current ICEX VOUT = Gnd Output Leakage Current Power Drain Current IpD (Per Gate) I MAX Max Vec Current (Per Gate) tpd+ tpd- Turn Off Delay Turn On Delay 'Vee = 5.0V 25 10 100 JlA Vec = VCEX = 5.0V 4.0 rnA Vee = S.OV Inputs Open 4.0 rnA VCC = B.OV Inputs Gnd SO 30 ns ns Vec = SV. RL = 3.9K. CL = 30pl Vee = 5V. RL = 400 CL= SOp 4-21 QUAD TWO-INPUT GATE ITT946 FAST QUAD TWO-INPUT GATE ITT949 ELECTRICAL CHARACTERISTICS ITT949-1 (TA = -55°eto +125°e. Vee = 5.0V ±10%) -S5 0 C Min. Max. Symbol Characteristic vOH Output High Voltagel 2.5 Min. Limits +25 0 C Typ. Max. 2.6 3.5 +125°C Min. Max. Units Conditions and Comments 2.5 Volts VCC = 4.5V. 10H = -0.54 mA Inputs at VIL'(See Below) VOL 0.4 Output Low Voltage 0.27 0.4 0.4 Volts VCC = 4.5V. 10L = 10.8 rnA VCC = 5.5V.IOL = 13.5 rnA Inputs at V,H (See Below) V,H Input High Voltage V,L Input Low Voltage IF Input Load Current 1.9 2.1 1.1 1.4 -1.2 -1.5 -1.16 IR 1.7 -1.5 qlf' tpd+ tpd- Turn Off Delay Turn On Delay Output High Voltage VOL Output Low Voltage A 5.0 Inputs Open VCC = 5.0V Inputs Grounded 35 20 50 30 ns ns VCC = 5v~'RL;'; 3.9K. CL = 30pf VCC = 5V. AL = 400 CL = 50pf = OOeto +75°e. Vee = 5.0V ±5%) ~olts VCC = 5.0V.IOH = -12 rnA ~olts VCC = 5.0V.IOL = 10.5 rnA VCC = 5.0V.IOL = 10.2 mA ~olts Guaranteed Input High Threshold For Allloput:;. 0.95 ~olts Guaranteed Input Low . Ttlrelllloid .For All Inputs 4.2 0.5 0.5 0.55 V,H Input High Voltage VIL Input Low Voltage 1.2 1.1 'F Input Load Current 1.4 1.4 IR Input Leakage Current ISC Output Short Circuit 1.8 1.9 .. rnA 1.33 5.0 5.0 1.85 10.0 JIA Max VCC Current IMAX (Per Gate) Turn Off O~lav Tum On Dalay VCC= 5.0V. VR = 4.OV Gnd On Other Inputs rnA VCC = 5.0V 100 pA VCC = VCEX.= 5.0V 5.9 rnA VCC = 5.0V Inputs Open 2.86 rnA VCC = B.OV Inputs Gnd VOUT = Gnd Output Leakage Current Power Drain Current IpD (Per Gate) Ipd+ Ipd- VF = 0.45Vlvcc = 5.0V VF = 0.5\1 4.0V on other inputs 3.68 Current 'CEX VCC.= 5.5V. VR= 4.0V Ground on other inputs rnA rnA 4.3 2;0 VCC = 5.5V. V F = 0.4V VCC = 4.5V. 4.0Von other inputs 5.45 1.47 10 10 4.3 Guaranteed Input Low Threshold For All Inputs 4.05 1.15 ELECTRICAL CHARACTERISTICS ITT949-5 (TA VOH 0.8 Volts -1.08 rnA 2.0 VCC Current "Gate On" 'pD (per gate) VCC Current "Gate Guaranteed Input High Threshold For All Inputs -1.4 rnA -0.93 -1.16 Input Leakage currer Volts 25 10 50 30 4-22 I I ns ns Vce - sv. Ri. = 3.9K. CL - 30Pf VCC = 5V. Rt= 400 CL= 50pf - ITT --------- TRIPLETHREE-INPUTGATE ITT962 FAST TRIPLE TH REE-INPUT GATE ITT963 Package: Dual In-Line and Flat Pack SEMICONDUCTORS TRIPLE THREE-INPUT GATE FAST TRIPLE THREE-INPUT GATE Pinout: Dual In-Line and Flat Pack The ITT962 and ITT963 elements are triple three-input NAND/NOR gates. In addition to performing the positive NAND and negative NOR logic functions. the gates can be cross-coupled to form a flip-flop or the outputs can be tied together to perform the "wired OR" function. CIRCUIT SCHEMATIC (ONE GATE ONLY) r------,-----..-o vee These triple three!input gates can also be wired together to perform the "exclusive 0 R" function. The ITT962 incorporates a 6K output, pull-up resistor which allows for a fan-out of up to 8 DTL loads. E The ITT963 incorporates a 2K output pull-up resistor which typically results in a 30% faster rise time with capacitive loads at a fan-out of up to 7 DTL loads. A B c '----<1>--0 GND ABSOLUTE MAXIMUM RATINGS Characteristics TYPICAL RESISTOR VALUES 1 Units Supply Voltage (VCe!. -55°C to + 125°C. Continuous .................................... -.5 to +8.0 Volts Supply Voltage (VCe!. Pulsed.<1.0 sec .. + 12 Volts Output Current. Into Outputs ............................ 30 mA Input Forward Current ................................... -1 0 mA Input Reverse Current ................ :......................... 1 mA Operating Temperature ................... -55 to + 125°C Storage Temperature ...................... -65 to + 150°C Operating Junction Temperature 2 ............... + 175°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering. 60 sec.) ....................... 300° F R1 =2.0K R2 =1.75 K R3 =5.0 K (962) R4=6.0 K (963) R4 =2.0 K NOTES: 1. Ab<:lve which useful life maybe impaired. 2. Allow 300°C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50° C/Watt OJ- c for TO-5; 180°C/Watt OJ- C for 1/4" x1/4" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. 4-23 ITT962 ITT963 TRIPLE THREE-INPUT GATE FAST TRIPLE THREE-INPUT GATE ELECTRICAL CHARACTERISTICS ITT962-~ (TA =.-55°eto +125°e. Vee = 5.0V ±10%) -55°C Min. Max. Symbol Characteristic VOH Output High Voltage V OL Output Low Volt"ge V IH Input High Voltage VIL Input Low Voltage 1.4 F Input Load Current -1.5 -1.16 IR 2.5 Min. 2.6 0.4 2.1 pd+ 3.5 0.25 +125°C Min. Max. Units Conditions and Comments 2.5 Volts Vce= 4.5V.IOH = -O.lBmA Inputs at VI L (See Below) Volls VCC = 4.5V.IO L = 12 rnA VCC = 5.5V. 10L = 15 rnA Inputs at VI H (See Below! Volts Guaranteed Input High Threshold For All Inputs O.B Volts Guaranteed Input Low Threshold For All Inputs -1.4 -LOB rnA rnA 5.0 pA Vec = 5.5V. VR= 4.0V Ground on other inputs 0.4 0.4 ~ 1.9 .7 1.1 -1.2 -1.5 -0.93 -1.16 2.0 Input Leakage Current IpD VCC Current "Gate On" (per gate) VCC Current "Gate Off' pd- limits +25°C Typ. Max. Turn Off Delay Turn On Delay 25 10 Vec = 5.5V:1 VF = 0.4V Vce = 4.5V. 4.0V on other inputs 2.41 1.15 3.25 1.47 rnA rnA Inputs Open VCC = 5.0V Inputs Grounded 45 20 BO 30 ns ns VCC = 5V. RL = 3.9K. CL = 30pf VCC = SV. RL = 400 .CL = SOp ELECTRICAL CHARACTERISTICS ITT962-6 (TA = O°C to +75°C. VCC = 5.0V ±5%) Characteristics OOC Min. Max. Min. V OH Output High Voltage 2.6 2.6 VOL Output Low Voltage Symbol LIMITS +25 0 C TVp. Max. +76 0 C Min. Max_ Units Conditions & Comments 2.5 0.45 0.45 Volts VCC = 5.0V.IOH = -0.12 rnA Volts VCC = 5.0V.IOL = 12 rnA VCC = 5.0V.IOl = 11.4 rnA Volts Guaranteed Input High Threshold For All Inputs Volts Guaranteed Input Low Threshold For All Inputs 0.50 V IH Input High Voltage V IL Input Low Voltage 2.0 1.B 1.9 1.2 0.95 1.1 .. IF IA ISC 1.4 Input Load Current Input Leakage Current Output Short CircDit 1.4 5.0 0.61 1.30 5.0 0.61 1.30 0.535 1.33 rnA rnA VF = 0.45V -j:!CC = 5.0V V F = 0.5V. 4.0V On Oth~r Inputs 10.0 pA VCCC= 5.0V. VA = 4.0V Gnd On Other Inputs 1.25 rnA VCC= 5.0V VOUT = Gnd Current ICEX Output Leakage Current Power Drain Current IpC (Per Gate} Max VCC Current IMAX (Per Gate) tpd+ tpd- Turn Off Delay Turn On Delay 25 10 45 20 100 pA VCC = VCEX = 5.0V 4.0 rnA VCC = 5.0Vlnputs Open 4.0 rnA Vce = B.OV Inputs Gnd BO 30 ns ns VCC = 5V. AL = 3.9K. CL = 30pf VCC ~ 5V. RL = 400 .CL = 50p 4-24 TRIPLE TH REE-INPUT GATE ITT962 FAST TRIPLE TH REE-INPUT GATE ITT963 ELECTRICAL .CHARACTERISTICS ITT963·1 (TA = -55°C to + 125°C. VCC = 5.0V ± 10%) Symbol Characteristic VOH Output High Voltage VOL Output Low Voltage VIH Input High Voltage VIL Input Low Voltage IF Input Load Current IR Input Leakage Current -56°C Min. Max. 2.5 Min. 2.6 0.4 2.1 tpd+ 0.4 1.9 0.4 1.1 -1.5 -1.16 -1.2 -1.5 -0.93 -1.16 2.0 Turn Off Delay Turn On Delay 10 10 Units Conditions and Comments Volts 1.7 1.4 1 +126°C Min. Max. 2.5 3.5 0.27 VCC Current "Gate On" IpD Iper gate) VCC Current "Gate Off' tpd- Limits +26°C Typ. Max. Volts VCC = 4.5V.IOH = -0.54 mA Inputs at VI L (See Below) VCC=4.5V.I OL = 10.BmA . VCC = 5.5V.IOL = 13.5 mA Inputs at VIH (See Below) Volts Guaranteed Input High Threshold For All Inputs 0.8 Volts Guaranteed Input Low Threshold For All Inputs -1.4 -1.08 rnA rnA VCC = VF = OAV VCC = 4.5V. 4.0V on other inputs 5.0 pA VCC = 5.5V. VR= 4.0V Ground on other inputs 5.5~:1 4.05 1.15 5.45 1.47 rnA rnA Inputs Open VCC= 5.0V Inputs Grounded 35 20 50 30 ns ns Vee = 5V. Rl = 3.9K. el = 3 Vee = 5V. Rl = 400 .el = 50, ELECTRICAL CHARACTERISTICS ITT963·5 (TA = OOCto +75°C. VCC = 5.OV ±5%) Symbol Characteristics OoC Min. Max. VOH Output High Voltage 4.3 VOL Output Low Voltage Min. 4.3 LIMITS +26 0 C Typ. Max. +750 C Min. Max. 0.5 Units Conditions and Comments Volts VCC = 5.0V.IOH = -0.12 rnA Volts VCC = 5.0V.IOl = 10.5 rnA VCC = 5.0V.IOL = 10.2 rnA Volts Guaranteed Input High Threshold For All Inputs 0.95 Volts Guaranteed Input Low Threshold For All Inputs 1.33 rnA rnA VF = OA5V.lvcc = 5.0V VF = 0.5V ·14.0V on other inputs 10.0 jJA VCC= 5.0V. V R = 4.0V Gnd On Other Inputs rnA VCC = 5.0V VOUT = Gnd 100 jJA VCC = VCEX = 5.0V 5.9 rnA VCC = 5.0V Inputs Open 2.86 rnA VCC = B.OV Inputs Gnd 50 30 ns ns Vec = 5V. RL = 39K. eL = 30pl Vec = 5V. RL = 400 .eL = 50p 4.2 0.5 iO.55 VIH Input High Voltage V IL Input Low Voltage 1.2 1.1 IF Input Load Current 1.4 1.4 IR ISC Input Leakage Current Output Short Circuit 2.0 1.9 1.8 5.0 5.0 1.85 3.68 Current ICEX Output leakage Current IpO Power Drain Current (Per Gate) I MAX Max VCC Current (Per Gate) tpd+ tpd- Turn Off Delay Turn On Delay 10 10 35 20 4-25 . ITT1800 _ITT _________~DIlliT~L-D-U~A~L~F~I""'!""!"VE_IN_P~U~T~G~A~T-.-E SEMICONDUCTORS Package: Dual In-Line and Flat Pack DTL DUAL FIVE INPUT GATE The ITT1800 is a dual five input NAND/NOR gate. The device is similar to the ITT930 in all respects, except for the replacement of the expander node with a standard input diode. Pinout: Dual In-Line and Flat Pack ABSOLUTE MAXIMUM RATINGS' Characteristics Units Supply Voltage (VCC). -55°C to + 125°C. Continuous ............................... -5 to +8 Volts Supply Voltage (VCe). Pulsed.< 1 ..................... + i 2 Volts Output Current. Into Outputs ..................................... 30 mA CIRCUIT SCHEMATIC Input Forward Current ............................................. -10 mA A 0-+::1-'''"-1:. Input Reverse Current .................................................... 1 mA ..;r""I>!---<> A--riCl-' H I Operating Temperature ............................ -55 to +125 °c B C Storage Temperature ............................... -65 to + 150°C o ,K Operating Junction Temperature 2 ........................ + 175°C E L J Input Voltage Applied to Input.. .......... -1.5 to +5.5 Volts Lead Temperature (soldering •. 60 sec....................... 300 ° F TYPICAL RESISTOR VALUES NOTES: 1. Above which useful life may be impaired. 2. Allow 300·e/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50·e/Watt OJ-C for TO-5; lBO·e/Watt OJ-C for 1/4" x 1/4" flat pack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. 4-26 R,=2.0K R2= 1.75 K R3 =5.0 K R4=6.0 K ITT1800 DTL DUAL FIVE INPUT Gate ELECTRICAL CHARACTERISTICS ITT1800-1 (TA = -55°eto +125°e, Vee =5.0V ±10%) Symbol V OH Min. Characteristic . Output High Voltage I i Max. 2.5 Limits +25°C Min. Typ. Max. Min. Max. Units Volts 2.5 2.6 Conditions and Comments VCC = 4.5V. 10H = -0.18 mA Inputs at VI L (See Belowl VOL 0.4 Output Low Voltage 0.4 0.4 Volts VCC = 4.5V. 10L = 12 mA VCC = 5.5V.IOL = 15 mA Inputs at V IH (See Belowl V IH Input High Voltage V IL Input Low Voltage IF Input Load Current IR 2.1 1.9 1.4 1.7 O.B 1.1 Volts Guaranteed Input High Threshold For All Inputs Volts Guaranteed Input Low Threshold For All Inputs -1.5 -1.5 -1.4 mA -1.16 -1.16 -1.0B mA Input Leakage Current 2.0 5.0 , p.A VCC = 5.5V. VR= 4.0V Ground on other inputs rnA Inputs Open VCC = 5.0V Inputs Grounded 1 VCC Current "Gate On" IpD (per gate) VCC Current "Gate Off" 3.25 1.47 VCC = 5.5V:1 VF = O.4V VCC = 4.5V. 4.0V on other inputs mA tpd+ Turn Off Delay 25 80 ns tpd- Turn On Delay 10 30 ns VCC = 5V. RL = 3.9K. CL = 30pf VCC = 5V. RL = 400 .eL = SOpf ELECTRICAL CHARACTERISTICS ITT1800-5 (TA = OOeto +75°e, Vee = 5.0V ±5%) Symbol Characteristics V OH Output High Voltage VOL Output Low Voltage Min. Max. Min. Typ. Max. Max. Units 2.5 2.6 2.6 Min. 0.45 0.45 Volts VCC= 5.0V.IOH = -12rnA Volts VCC = 5.0V.IOL = 12 rnA Vce = 5.0V.IOL = 11.4 rnA Volts Guaranteed Input High Threshold For All Inputs 0.50 V IH Input High Voltage V IL Input Low Voltage 1.8 1.9 2.0 0.95 1.1 1.2 Conditions and Comments Volts Guaranteed Input Low Threshold For All Inputs IF Input Load Current IR Input Leakage Current ISC:; Output Short Circuit 5.0 0.61 1.30 1.33 mA mA VF = 0.45VjVCC = 5.0V V F = 0.5V. 4.0V On Other Inputs 10.0 fJ.. A VCC = 5.0V. V R = 4.0V Gnd On Other Inputs 1.25 mA VCC = 5.0V 1.4 1.4 5.0 0.61 1.30 0.535 Current VO UT = Gnd 100 fJ.A VCC = VCEX = 5.0V Power Drain Current IpC (Per Gatel 4.0 rnA Vce = 5.0V Inputs Open Max VCC Current IMAX (Per Gatel 4.0 rnA VCC = B.OV Inputs Gnd 80 30 ns ns ICEX tpd+ tpd- Output Leakage Current Turn Off Delay Turn On Delay 25 10 4-27 VCC = 5V. RL = 3.9K. CL = 30pf VCC = 5V. R L = 400'fl.CL = 50p ITT ----. DTL QUAD TWO-INPUT AND GATE FAST DTL QUAD TWO-INPUT AND GATE ITI1806 ITI1807 Package: Dual In-Line and Flat Pack SEMICONDUCTORS Dll QUAD TWOINPUT AND GATE FAST OTL QUAD TWO-INPUT AND GATE The ITT1806 and 1807 perform the logical AND function. Thus the device can be used to expand the inputs of other DTL NAND, OR, or NOR gates, or flip flops, greatly simplifying logic design. As with all ITT DTL gates, the outputs can be tied together to perform the wire-AND function. Pinout: Dual In-Line and Flat Pack the ITT1806 incorporates a 6K output pull-up resistor which .allows for a fan-out of up to 8 DTL loads. The ITT1807 incorporates a 2K output pull-up resistor which typically results in a 30% faster rise time witli capacitive loads at a fan-out of up to 7DTL loads. SCHEMATIC DIAGRAM -.EACH GATE Vee 1.75K ABSOLUTE MAXIMUM RATINGS' Characteristics Units c 2K Supply Voltage (VCe), -55°C to +125°C, Continuous ................................... -.5 to +8.0 Volts Supply Voltage (VCC), Pulsed,< 1 sec .... + 12 Volts Output Current. Into Outputs ........................... 30 mA Input Forward Current ................................... -1 0 mA Input Reverse Current .......................................... 1 mA Operating Temperature ................... -55 to + 125°C Storage Temperature ...................... -65 to + 150°C Operating Junction Temperature 2 ............... + 175°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering, 60 sec.) ....................... 300° F A B 5K GND NOTES: 1. Above which useful life may be impaired. 2. Allow 300·C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50·C/Watt OJ-C for TO-5; 180·C/Watt OJ-C for 1/4" x 114" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. 4-28 RI =6K R =2K FOR FOR IB06 1807 DTL QUAD TWO-INPUT AND GATE FAST DTL QUAD TWO-INPUT AND GATE =-55 ELECTRICAL CHARACTERISTICS ITT1807-1 (TA Sym~1 Characteristic V OH Output High Voltage VOL Output Low Voltage V IH Input High Voltage VIL Input Low Voltage IF Input Load Current -55°C Min. Max. 2.5 Limits +:!5°C Min. Typ. Max. 2.6 3.5 C to + 125 C, Vee =5.0V ITT1806 ITT1807 + 10%) +125°C Min. Max. Units Conditions and Comments 2.5 VoltS! Vce = 4.5V. 10H = -0.54 rnA Inputs at ViH (~ee Below) 0.4 0.27 2.1 1.4 1.1 -1.5 -1.2 -1.4 rnA -1.08 rnA 2.0 ELECTRICAL CHARACTERISTICS ITT1807-5 Characteristics VO H Output High Voltage VOL Output Low Voltage 5.0 Inputs Open Vee = 5.0V Inputs Grounded 65 65 ns ns Vee = 5V. RL Vec = 5V. Rl ITA = aOCto +75°C. VCC 4.2 VIL Input Low Voltage 1.2 1.1 IF Input Load Current 1.4 1.4 1.9 ISC Output Short Circuit Vee = 5.0V.IOL = 10.5 mA VCC = 5.0V.IOL = 10.2 mA One Input at VIL Volts Guaranteed Input High Threshold For All Inputs 0.95 Volts Guaranteed Input Low Threshold For Alllnptits rnA 10.0 .uA VF = 0.45V. Vec = 5.0V V F = 0.5V VCC= 5.0V. VR = 4.0V Gnd On Other Inputs 1.853.66 rnA VCC = 5.0V VO UT = Gnd Current Output Leakage Current Conditions & Comments Volts 1.8 5.0 = 5.0V ±5%) Vee = 5.0V.IOH = -0.12 mA Inputs at VIH 1.33 5.0 = 3 9K Cl = 3Op! = 400 n.CL = 50p! liolts 0.5 Input High Voltage Input leakage Current I Vee = 5.5V: V F = O.4V Vee = 4.5V. 4.0V on other inputs rnA mA V IH IR Guaranteed Input Low Threshold For All Inputs 5.15 7.25 0.55 2.0 Guaranteed Input High Threshold For All Inputs Vee = 5.5V. VR= 4.0V Ground on other inputs 4.3 0.5 Vee = 4.5V. 10L = 10.8 rnA Vee= 5.5V.IOL = 13.5mA One Input at VIL (See Below) JlA +75°C +25°C Min. Max. Min. Typ. Max. Min. Max. Units 4.3 Volts -1.5 Turn Off Delay Tum On 'Delay Symbol 0.8 -0.93 -1.16 Vee Current "Gatea',," IpD Per gate Vee Current "Gate On" ~ct+ Volts IVaIts 1.7 Input Leakage Current tpd- 0.4 1.9 -1.16 IR 04 100 p.A VCC :, VCEX = 5.0V Power Drain Current IpD Per gate 7.75 rnA Vce = 5.0V Inputs GND I MAX Max Vce Current Per gate 9.75 rnA Vce = 8.0V Inputs Open 65 65 ns ns Vee = 5V. RL = 3.SK. el = 30pl VCC = 5V. Rl = 400 n.Cl = 50p! ICEX Ipd+ Ipd- Turn 011 Delay Turn On Delay 10 10 4-29 ITT1806 ITT1807 DTL QUAD TWO-INPUT AND GATE FAST DTL QUAD TWO-INPUT GATE -55°C Min. Max. Min. Symbol Characteristic VOH Output High Voltage VOL Output low Voltage V IH Input High Voltage VIL Input Low Voltage 1.4 IF Input load Current -1.5 -1.11 IR Input Leakage CUHent Typ. +125°C Max. Min. Max. Units Conditions and Comments ~olts VCC = 4.5V. 10H = -0.18 rnA .2.5 2.6 2.5 Inputs at VIH (See Below) 0.4 2.1 0.4 1.7 1.9 1.1 -1.5 -0.93 -1.11 tpd+ VOL Output low Voltage Guaranteed Input Low Threshold For All Inputs -1.4 rnA -1.08 rnA 5.0 BO 25 10 65 ooe Output High Voltage O.B f./olts 4.B8 ELECTRICAL CHARACTERISTICS ITT1806-5 (TA VO H Guaranteed Input High Threshold For All Inputs 5.15 Turn Off Delay Turn On Delay 2.6 +25°C 2.6 0.45 VCC = 4.5V. 10l = 12 rnA VCC = 5.5V.IOl = 15 rnA Orie Inputs at Vil (See Below) f./olts 2 ..0 , IpO Ve e Current "Gate Off" Per gate Vee Current "Gate On" tpd- 0.4 flails 5.5~:1 VCC = VF = 0.4V VCC = 4.5V. 4 ..oV on other inputs p..A Vce = 5.5V. VR= 4.0V Ground on other inputs rnA rnA Inputs Open VCC = 5..oV Inputs Grounded ns ns VCC = 5.0V. Rl := 3.9K. Cl = 30pf VCC = 5.0V. RL = 400n. Cl = 5 Opf = aOeto +75°e. Vee = 5.0V ±5%) +750C 2.5 0.45 Volts flcc = 5 OV.IOH = -012 rnA Inputs at VIH Volts flce = 0.50 50V.IOl = 12 rnA ~cc = 50V.IOl = 114 rnA One input at VIL V1H Input High Voltage Vll Input low Voltage 1.2 IF Input Load Curre.,t IR Input leakage Current ISC' Output Short Circuit 2.0 0.61· VailS Guaranteed Input High p-hreshold For All Inputs 1.1 0.95 Volts Guaranteed Input Low !Threshold For All Inputs 1.4 1.4 rnA 1.33 rnA VF = O.45V'lvcc = 5.0V V F = 0.5V. 4.0V On Other Inputs 5.0 5.0 10.0 VCC= 5.0V. V R = 40V Gnd On Other Inputs 1.9 1.30 0.61 1.B 1.30 0.535 Il A 1.25 rnA Current I CEX VOUT = Gnd Output Leakage Current Power Drain Current IpD Per gate Max Vce Current IMAX Per gate 'Pd+ tpd_ Turn Olf Delay Turn On Delay VCC = 50V 25 10 100 Il A VCC = VCEX = 5.0V 5.75 rnA Vee =5.0V Inputs Gnd 8,5 rnA Vee =B.OV Inputs Open 80 ns ns VCC = 5V. RL = 39K CL = 30pf VCC=5V.Rl=400Q.CL= SOpf 65 4-30 _I·oaI..oaI.. m.. m _____ _ FAST D_T_L_Q_U_A_D_TW_O_-I_N_PU_T_O_R_G_A_T_E_ITI_1_BO_B DTL QUAD TWO-INPUT OR GATE ITI1B09 Package: Dual In-Line and Flat Pack SEMICONDUCTORS DTl QUAD TWO~NPUT OR GATE FAST DTl QUAD TWO-INPUT OR GATE The ITT 1808 and 1809 elements are quad two input positive ORI negative AND gates. In addition to performing the OR function with full fanout available, outputs can be connected together to perform the wire-AND function, thereby reducing system complexity. Pinout: Dual In-Line and Flat Pack The ITT1808 incorporate a 6K output pull-up resistor which allows for a fan-bur of up to 8 DTL loads. The ITT1809 incorporates a 2K output pull-up resistor which typically results in a 30% faster rise time with capacitive loads at a fan-out of up to 7 DTL loads. CIRCUIT SCHEMATIC Vee 2.25K 1.75K ABSOLUTE MAXIMUM RATINGS 1 Units Cliaracteristics 2K Supply Voltage (VCe), -55°C to +125°C, Continuous ................................... -.5 to +8.0 Volts Supply Voltage (V ccL Pulsed,.< 1 sec .... + 12 Volts Output Current. Into Outputs ........................... 30 rnA Input Forward Current ................................... -1 0 rnA Input Reverse Current ....................... ,.................. 1 rnA Operating Temperature ................... -55 to + 125°C Storage Temperature ...................... -65 to + 150°C Operating Junction Temperature 2 ............... + 175°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering, 60 sec.) ....................... 300° F A B NOTES: 1.75K 1. Above which useful life may be impaired. 2. Allow 300°C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50°C/Watt OJ-C for TO-5; 180°C/Watt OJ-C for 1/4" x 1/4" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. R, = 6K FOR '808 R,= 2K FOR '809 Vee 4-31 ITT 1808 ITT 1809 DTL QUAD TWO-INPUT OR GATE FAST DTL QUAD TWO-INPUT OR GATE ELECTRICAL\CHARACTERISTICS ITT1S0S~1 (TA =-55 C to + 125 C, Vee =5.0V+ 10%) Limits -650C +260 C +125°C Min. Max. Min. Typ. Max. Min. Max. Units Conditions and Comments Symbol Characteristic vOH 'Output High Voltage 2.5 ~olts VCC =;: 4.5V.IOH = -0.18 rnA 2.5 2.6 Onellnput at VIH (~ee Below) VOL Output Low Voltage VIH Input High Voltage VIL In,put Low Voltage 1.4 IF Input Load Current -1.5 -1.1 IR Input Leakage Current 2.0 IpD vcc Current "Gate .Off 1.9 2.1 Vce = 4.5V.IOL = 12 rnA VCC = 5.5V.IOL = 15 rnA Inputs at VII. (See 8elowl ~olts Guaranteed Input High Threshold 1.7 For All Inputs 1.1 0.8 -1.5 -0.93 -1-11 Per gate VQc Current U~ate On" tpd+ tpd_ 0.4 ~olts 0.4 0.4 Volts -1.4 mA -1.08 mA Vce = 5.5V:1 VF = 0.4V VCC = 4.5V. 4.0V on other inputs /l.A Vee = 5.5V. VR= 4.OV Ground on other inputs 7.61 6.25 mA mA Inputs Open Vee = 5.OV Inputs Grounded 90 ns ns Vee = 5V. RL := 3.9K. CL = 30pf. Vee = 5V. RL = 4000. CL = 50p Turn Off Delay rum On Delay 5.0 Guaranteed Input Low Threshold For All Inputs 65 ELECTRICAL CHARACTERISTICS ITT1S0S-5 (TA = OOCto +15°C. VCC = 5.0V ±5%) DOC fiS"C ' +7SoC Symbol Characteristics V OH Output High Voltage vOL Output low Voltage VIH Inpul High Voltage VIL Input low Voltage 1.2 IF Input load Current IR Input leakage Current Ise Output Short Circuit Current I CEX Max. Output leakage Current 2.6 Min. Typ. Max. Min. Max.' Units Conditions & Comments 2.5 2.6 Volts 0.45 0.45 Volts 2.0 - I MAX Max Vec Current Per gate Turn Off Delav Turn On Delay 061· Yee = 5.0V.IOH = -0,12 mA One Input at VIH Vee = 5.0V. 10l = 12 mA 5.0V.IOL = 11.4 mA Inputs at VIL Vec = 0.50 Power Drain Current IpO Per gate tpd+ tpd- Min. Volts Guaranteed Input High hreshold For All Inputs 1.1 0.95 Volts Guaranteed Input L~w hreshold For All Inputs 1.4 1.4 rnA 1.33 mA VF = 0.45Vlvcc 5.0V VF. = 0.5V. 4.0V On, Other Input 5.0 . 5.0 10.0 jlA VCC= S.OV. V R = 4.0V Gnd On Other Inputs 1.25 mA Vec SOV VO UT = Gnd 1.9 1.30 0.61 1.8 1.30 0535 = = = VCEX = 100 jlA VCC 7.25 mA Vec 14.25 mA VCC = 8.0V"lnputs Gnd 90 65 4-32 ns ns 50V =S.OV Inputs Open = VCC SV. Rl = 3,9K. Cl' = 30pf vec = SV. RL = 400{} .cL = 501' DTL QUAD TWO-INPUT OR GATE FAST DTL QUAD TWO-INPUT OR GATE ITT1808 ITI1809 ELECTRICAL CHARACTERISTICS ITT1809·1 (TA = -55 C to + 125 C, Vcc = 5.0V + 10%) Symbol VOH Characteristic Min. Max. Output High Voltage 2.5 Min. Typ. 2.6 Max. 3.5 Min. Max. Units 1 2 .5 Volts Vee = 4.5V. 10H = -0.54 mA One IInput at ViH (See Below) Volts Vee = 4.5V. 10L = 10.8 mA Vee = 5.5V. 10L = 13.5 mA Inputs at VIL (See Below) Volts Guaranteed Input High Threshold For All Inputs Volts Guaranteed Input l.ow Threshold For All Inputs I VOL 04 Output Low Voltage 0.27 04 0.4 j VIH Input High Voltage VIL Input Low Voltage IF Input Load Current 1,9 2.1 1,4 0,8 1.1 -1.5 -1.2 -1.5 -1.4 mA -1.08 mA -0.93 -1.16 -:-1.16 IR 1.7 Input Leakage Current 2.0 Ve e Current "Gate Off" IpD Per gate Vee Current "Gate On" tpd+ tpd- p.A Vee = 5.5V. VR= 4.0V Ground on other inputs 7.61 mA Inputs Open Vee = 5.0V Inputs Grounded Turn Off Delay Turn On Delay 75 65 Symbol Characteristics vOH Output High Voltage VOL Output Low Voltage (T A 43 4.3 0.5 V IL Input low Voltage 1.2 1.1 IF Input Load Current 1.4 1.4 VCC = 5.0v. 10H = -0.12 rnA VCC= 5.0V.IOL = 10,5mA VCC = 5.0V. 10L = 102 rnA 2,0 1.9 Volts :Guaranteed Input High Threshold For All Inputs 0.95 Volts Guaranteed Input Low Threshold For All Inputs 1.8 rnA 5.0 5.0 10,0 p,A 1.853.68 mA lOa pA Current I CEX Output Leakage Current IpD Per gate Power Drain Current IMAX Max VCC Current ;Per gate tpd+ tpd- Turn Off Delay Turn On Delay = 3.9K. CL = 30pf = 400 CL = 50pf Volts 1.33 Output Short Corcuit Vce c SV. RL Vce = 5V. RL Volts 4.2 0.5 Input High Voltage ISC ns OOC +25°C +75°C Min. Max. Min. Typ. Max. Min. Max. Units Conditions 8< Comments V IH Input Leakage Current ns = ooe to +75°e, Vee = 5.0V ±5%) 055 IR 5.5V~IVF Vee = = 0.4V Vee = 4.5V: 4.0Von other inputs 5.0 8.38 mA ELECTRICAL CHARACTERISTICS ITT1809·5 Conditions and Comments - 9.38 rnA 14.25 rnA 75 65 ns ns 4-33 VF = 045vlvcc = 50V VF = 0 5V. 4.0Von other inputs VCC= S.OV. V R = 4.0V Gnd On Other Inputs' VCC = S OV V OUT = Gnd = VCEX = 5 OV VCC = 5.0V Inputs Open VCC --' VCC = 8 OV Inputs Gnd VCC = 5V. RL = 39K. CL = 30p! VCc= 5V. RL = 400 n.Cl = Sap! ITT ----DTL QUAD TWO-INPUT NOR GATE FAST DTL QUAD TWO-INPUT NOR GATE SEMICONDUCTORS ITT1810 ITT1811 Package: Dual In-Line and Flat Pack DTL QUAD TWOINPUT NOR GATE FAST DTl QUAD TWO-INPUT NOR GATE The ITT181 0 and ITT1811 elements are quad four-input positive NOR gates. In addition to performing the positive NOR and negative NAN D logic functions, the gates can be crosscoupled to form a flip-flop or the outputs can be tied together to perform the "wired OR" function. Pinout: Dual In-Line .and Flat Pack The ITT1810 incorporates a 6K output pull-up resistor which allows for a fan-out of up to 8 DTL loads. The ITT1811 incorporates a 2K output pull-up resistor which typically results in a 30% faster rise time with capacitive loads at a fan-out of up to 7 DTL loads. CIRCUIT SCHEMATIC -EACH GATE r - - - - - - - - - ; s I - - O Vce 1.75K ABSOLUTE MAXIMUM RATINGS Characteristics 1 Units Supply Voltage (V CC ). -55°C to + 125°C. Continuous ................................... -.5 to +8.0 Volts Supply Voltage (V CC ). Pulsed.<1 sec .... +12 Volts Output Current. Into Outputs ........................... 30 rnA Input Forward Current ................................... -1 0 mA Input Reverse Current .......................................... 1 mA Operating Temperature ................... -55 to + 125°C Storage Temperature ...................... -65 to + 150°C Operating Junction Temperature 2 ............... + 175°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering. 60 sec.) ....................... 300° F 2K A B 5K 2K GNO NOTES: 1. Above which useful life may be impaired. 2. Allow 300°C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50°C/Watt OJ-C for TO-5; 180°C/Watt OJ-C for 1/4" x 1/4" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. 1.75K Vee R1 =6K for 1810 R1 =2K for1811 4-34 ITT1810 ITT1811 DTL QUAD TWO-INPUT NOR GATE FAST DTL QUAD TWO-INPUT NOR GATE ELECTRICAL CHARACTERISTICS ITT1810-1 Symbol Characteristic VO H Output High Voltage VOL Output Low Voltage V IH Input High Voltage V IL Input Low Voltage IF Input Load Current Limits -550C +25°C Min. Max. Min.. Typ. 2.5 (T A = - 55" C to +125°C Max. Min. Max. Units 2.6 12.5 0.4 2.1 04 1.9 -1.5 -1.5 -1.H -0.93 -1.1E Input Leakage Current 2.0 IpD VCC Current "Gate On" 'Per gate VCC Current "Gate OIl' tpd+ Tlirn Olf Delay Turn On Delay 25 10 Characteristics VO H Output High Voltage VOL Output low Voltage Min. OOC Max. 2.6 0.8 5.0 Conditions and Comments !vcc = 4.5V.IOH = -0.18 rnA Inputs atV IL ISee Below) VCC = 4.5V.IO L = 12 rnA VCC = 5.5V.IOL = 15 rnA Inputs atV IH (See Below) Volts Guaranteed Input High Threshold For All Inputs :Volts Guaranteed Input Low Threshold For All Inputs I VCC = 5.5V: VF = 0.4V VCC = 4.5V. 4.0V on other inputs 5.0 2.94 rnA rnA Inputs Open VCC = 5.0V Inputs Grounded 90 ns ns VCC = 5V. RL = 3.9K. CL = 30pl VCC = 5V. Rl = 400 .Cl = 50p! (T A = DoC to +75°C. Vee = 5.0V ±5%) Max. Units Conditions & Comments Volts VCC = 5.0V. 10H = -0.12 rnA Volts VCC = 5.0V. 10l VCC 5.0V.IOl Volts Guaranteed Input High hreshold For All Inputs 0.95 Volts Guaranteed Input Low Threshold For All Inputs 2.5 0.45 0.50 V IH Input High Voltage V il Input low Voltage 1.2 1.1 IF Input load Current 1.4 1.4 IR ISC Input leakage Current Output Short Circuit 5.0 5.0 061· 1.8 1.9 - 1.30 0.61 ± 10%) VCC = 55V. VR= 4.0V Ground <)n other inputs 2.6 2.0 C. VCC = 5.0V Ji..A +25°C +75°C Min. Typ. Max. Min. 0.45 Q Volts -1.4 rnA -1.08 rnA 30 ELECTRICAL CHARACTERISTICS ITT1810-5 Symbol 0.4 1.1 IR tpd- faits 1.7 1.4 + 125 1.30 0.535 = = 12 mA = 11.4 mA = 1.33 mA rnA VF 0.45V.\VCC - 5.0V V F = 0.5V. 4.0V On Other Inputs 10.0 jlA VCC= 5.0V. V R = 4.0V Gnd On Other Inputs 1.25 rnA VCC = 5.0V V OUT = Gnd Current ICEX Output leakage Current 100 itA VCC = VCEX = 5.0V IpD Power Drain Current 5.5 rnA VCC = 5.0V Inputs Open 5.62 rnA VCC = 8.0V Inputs Gnd 90 30 ns ns Per gate I MAX Max VCC Current Per gate tpd+ tpd- Turn Off Delay Turn On Delay 25 10 4-35 VCC VCC = 5V. RL = = 5V. Rl = 3.9K. Cl = 30pl 400 n.Cl = 50p DTL QUAD TWO-I N PUT NOR GATE FAST DTL QUAD TWO-INPUT NOR GATE (TA = -55°C to ELECTRICAL CHARACTERISTICS ITT1811-1 + 125°C. VCC = ITT1810 ITT1811 5.0V ±10%) LIMITS Symbol Characteristic V OH Output High Voltage Min. Max. Min. Tvp. 2.6 2.5 Max. Min. Max. Units Conditions and Comments 2.5 3.5 Volts VCC = 4.5V.IOH = -0.54 rnA Inputs at VI L (See Below) VOL Output Low Voltage V IH Input High Voltage Vll Input low Voltage IF Input load Current 0.4 0.27 04 1.9 2.1 1.1 -1.5 -1.2 -1.5 -0.93 -1.16 VCC Current "Gate On" IpO Per gate VCC Current "Gate Off' 'Pd- Turn Off Delay Tum 0'; Delay Symbol Characteristics Output High Voltage VOL Output Low Voltage Volts Guaranteed Input High Threshold For All Inputs O.B Volts Guaranteed Input Low Threshold For All Inputs -1.4 rnA .5.0 VCC = 5.5V. VR= 4.0V Ground on other inputs 6.9 2.94 rnA rnA Inputs Open VCC = 5.0V Inputs Grounded '75 ns ns vee = 5V. RL = 3.9K. eL = 30pf vee = 5V. RL = 400 .CL = SOpf (TA = O°Cto +75°C. Vce= 5.0V ±5%) Min. Max. Min. TVp. Max. Min. Max. Units Conditions & Comments 4.3 4.3 0.5 Vec = 5.0V.IOH Volts Vec 5.0V. 10L Vee ~ 5.0V.IOL Volts Guaranteed Input High Threshold For All Inputs 0.95 Volts Guaranteed Input Low , Threshold For All Inputs 0.55 Input High Voltage V IL Input Low Voltage 1.2 1.1 IF Input Load Current . 104 1.4 2.0 1.9 1.8 rnA 1.33 Input Leakage Current Ise Output Short Circuit 5.0 5.0 = -0.12 rnA = 10.5 rnA = 10.2 rnA Volts 4.2 0.5 V IH IR IV VCC = 5.5V: F ;= OAV VCC = 4.5V. 4.0Von other inputs /lA 30 ELECTRICAL CHARACTERISTICS ITT1811-5 vOH VCC = 4.5V.I OL = 10.8 rnA VCC = 5.5V.IOL = 13.5 rnA Inputs at VI H (See Below) -1.08 rnA 2.0 Input leakage Current tpd+ Volts 1.7 1.4 -1.16 IR 0.4 10.0 .I.!.A = = OA5V\ VCC = 5 OV = 05V Vce= 50V. V R = 4.0V VF VF Gnd On Other Inputs' 100 fJ.A = = Vce = VCEX . 7..65 rnA VCC = 5.0V Inputs Open 5.62 rnA 75 30 ns ns 1.853.68 rnA Current I CEX Output Leakage Current IpD Per gate Power Drain Current I MAX Max VCC Current Per gate tpd+ tpd- Turn Off Delay Turn On Delay 10 10 4-36 VCC 50V VOUT Gnd = S.OV i Vce = 8 OV Inputs Gnd Vec = 5V. RL = 3.9K. CL = 30pf vec = 5V. f1L = 400 .CL = SOpf ITT - ITT9093, ITT9094, ITT9097, ITT9099 DUAL DTL MASTER-SLAVE J-K FLIP-FLOPS SEMICONDUCTORS -----------~ Package: Dual In-L.ine and Flat Pack DUAL DTL MASTER-SLAVE J-K FLIP-FLOPS ITTSOS3/9094 (DUAL ITT945/948 SEPARATE So: SEPARATE Cp ) The ITISOS3 and ITTSOS4 are single chip dual flip-flops with circuitry similar to the ITIS45 and ITIS48 respectively. They feature internal J-K connections. separate clock pins. and separate SO pins. They are useful in ripple-carry counters and many other J-K flip-flop applications. The ITISOS7 and ITTSOSS are single chip dual flip-flops with circuitry similar to the ITIS48 and ITIS45 respectively. They feature internal J-K connections. a ·common clock pin. a common CD pin. and separate SO pins. They are useful in shift registers. shift counters. and synchronous counters. The ITTSOS3 and ITISOSS are usable with clock frequencies up to 5 MHz and feature a DC level sensitive clock input for stable operation regardless of clock waveshape. GND The ITTSOS4 and ITISOS7 are usable with clock frequencies up to 8 MHz. 7 ITT9097/9099 (DUAL ITT948/945 COMMON Cp : COMMON Co) These circuits are fully compatible with the ITIS30 series OTL family and the ITISOOO series TTL family. The ITISOSS series of flip-flops feature J-K feedback connections directly from the output stage of the device. This configuration increases the inherent noise immunity of the circuit. but prevents the circuit from being used in a wired - 0 R mode. Wired - OR capability is obtained with the ITISOSSX series of devices. which are functionally equivalent to the ITTSOSS series. but have J-K feedback connections from the buffer stage of the slave flip-flop. ABSOLUTE MAXIMUM RATINGS 1 Characteristics Pinout: Dual In-Line and Flat Pack Units Supply Voltage (VCC). -55°C to +125°C. Continuous ..................................... -0.5 to +8 Volts Supply Voltage (V CCI. Pulsed. < 1 sec ..... + 12 Volts Output Current. Into Outputs ........................... 30 mA Input Forward Current ................................... -10 mA Input Reverse Current .......................................... 1 mA Operating Temperature ................... -55to +125°C Storage Temperature ...................... -65 to + 125°C Input Voltage Applied to Input. -1.5 to +5.5 Volts Lead Temp. (soldering. 60 sec.) ................•..... 300°C NOTES: 1. Above which useful life may be impaired. 2. Allow 300·C/Watt OJ-A for 1/4" x 1/4" flatpack and dual in-line. Allow 50·C/Watt OJ-C for TO-5; 180·C/Watt OJ...,.c for 1/4" x 1/4" flatpack and dual in-line. Heat removal in 1/4" x 1/4" flatpack is highly dependent upon contact surfaces or air flow and on lead attachment and thermal paths thru leads, as well as number of soldered leads. 4-37 ITT9093, ITT9094, ITT9097, ITT9099 DUALDTL MASTER-SLAVE J-K FLIP-FLOPS NOTES: 1. Positive logic: 0= L. 1 = H is shown. 2. With synchronous entry. output changes occur as clock level changes from High to Low. For operation 4. in accordance with the table. J and K inputs should normally be changed while the clock is low. and the 9093-9094 may be used as a dual flip-flop having CD terminals available. and the 9097-9099 may be used as a dual flip-flop having separate CD terAll rules for minals and a common So terminal. maintained while the clock is high. 3. Asynchronous entry overrides synchronous entry. re- ITT945 apply to ITI9093 and 9099. All rules for ITT948 apply to ITI9094 and 9097. gardless of clock level. If So and CD are both low. then both go high simultaneously. final condition cannot be predicted. For proper operation. the So 5. ASYNCHRONOUS ENTRY TRUTH TABLES Refer to the ITT945/948 for typical operating characteristics. or CD terminals must be held in the low state for at least 50 nanoseconds. Inputs From circuit symmetry. the So and CD pin designations may be interchanged by interchanging the J and K. and also the Q and Q pin designations. Thus. SYNCHRONOUS ENTRY Outputs Inputs Output So CD a a J K On+1 0 0 0 1 an 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 an No Change 1 +5.0 V O.lMF I TPD TEST CIRCUIT r----r .-__...---, R IN9162K 4-38 ITT9093, ITT9094, ITT9097, ITT9099 DUAL DTL MASTER-SLAVE J-K FLIP-FLOPS CIRCUIT SCHEMATICS FOR COMPONENT VALUES. REFER TO ITT945/948 ITT9093/9094 (1/2 OF ITT9097/9099 ITT9093'X/9094X 9093 SHOWN) ITT9097X/9099X (1/2 OF 9097 SHOWN) (1/2 OF'9094X SHOWN) (1/2 OF 9099X SHOWN) Vee Vee Vec t-------+=-=----~To !-colio) Other '--r------;,.- Flip-Flop Vcc Vcc t--------t-='-'.:..------.;;.-To Other Colio) 4-39 '-----r-~ Flip-Flop ITT9093, ITT9094, ITT9097, ITT9099 DUAL DTL MASTER. SLAVE J-K FLIP-FLOPS ELECTRICAL CHARACTERISTICS ITT9093·1. 9094-1. 9097·1. 9099·lITA = -55'C.o +125'C. VCC = 5.0II±10%) Umits -S5'C Symbol Characteristic VOL Output High Voltage VOL 9093.9099 . 9094.9097 Min. Mllx 2.5 2.5 Output Low Voltage +25'C Min. Typ. +125'C Max. 2.5 2.5 Min. Max. 2.5 2.5 Units Conditions and'Comments Volts VCC = 4.5V.IOH = -180pA VCC = 4.SV.IOH = -540 pA 0.4 0.4 0.4 0.4 0.4 0.4 VCC = VCC = VCC= VCC = Volts Guaranteed Input High Threshold 9093.9099 9094.9097 VIH Input High Voltage VIL Input low Voltage IR 2.1 1.9 1.7 4.5V. 10L = 5.5V.IOL = 4.5V.IOL = 5.5V;lOL = Volts 12.0 mA 15.0mA 13.0mA 13.6 rnA For Alllnpu.s 1.4 1.1 0.8 Volts Input Leakage. All J.K S.C.SO.CO; Inpu •• lexcep' Co of 9097. 9099) 2.0 5.0 pA Input Leakage of Co 4.0 10 Guaranteed Input low Threshold For Alllnpu's VCC = 5.5V. VR = 4.011 GNO On O.her InpulS 9097.9099 IRCP Inpu' Leakage. CP Inputs 9093.9094. 9097.9099 IF Input Current. All J.K.S.C Inputs Input Current. So or Co 10 20 20 40 -.98 -.98 -.92 -2.2 -2.2 -1.93 -2.93 -2.35 -4.68 -5.86 -2.93 -2.35 -4.68 -5.86 -2.57 -2.03 -4.04 -5.14 -0.76 -0.76 -0.72 -1.7 -1.7 -1.5 VCC = 4.0V. VR = 4.011 mA VCC= 5.5V VF = 0.4V 4.0V On Other InpulS mA VCC=4.5V 9093.9094 Input Current. CP InPl:Its 9093 9094 9097 9099 IF Input Current. All J.K..S.C Inputs Input Current. So OrCO Inputs 9093.9094 VF~0.4V 4.0V On O.her InpulS Input Current. CP Inputs 9093 9094 9097 9099 'FSI Input Current. CO. So Inputs 9097.9099 IpO -2.26 -1.83 -3.66 -4.52 -2.26 -1.83 -3.66 -4.52 -2.02 -1.59 -3.18 -4.04 -2.26 -2.93 -2.57 -2.20 -2.93 -2.26 VccCurrent mA VCC = 5.5V. VF = 0.4V VCC= 4.5V 4.0V On O.her Inpu's mA VCC = 5.0V. AlllnpulS Open Momentary Ground On 9093 9094· 9097 9099 'pd+ tpd- Tum Off Delay· Clock 9094.9U97 9093.9099 16.6 19.8 19.8 16.6 So 28.0 32.4 32.4 28.0 35 35 65 75 ns VCC~ 30 30 75 75 ns RL = 330 5.0V RL = 2K. CL = 30pf Turn On Delay 9093.9094. 9097.9099 4-40 . CL = 50pf ITT9093, ITT9094, ITT9097, ITT9099 DUAL DTL MASTER-SLAVE J-K FLIP-FLOPS ELECTRICAL CHARACTERISTICS ITT9093·5. 9094·5. 9097·5.9099·5 ITA = Doe to 75°C. Vee = 5.0V ±5%1 limits Symbol Characteristic VOH Output High Voltage Min. 2.6 4.3 9093.9099 9094.9097 VOL Max, Output low Voltage 9093.9099 9099.9097 Min. +25°C Typ. Max. 2.6 4.3 0.45 0.45 +75°C Min. Max. 3.1 4.3 0.45 0.45 Units Conditions and Comments Vee = 5.0V 10H = -110)JA Volts 0.45 0.45 Vee = 5.0V 10L = 15.8rnA 10L = 15.1 rnA 10L = 14.4 rnA 10L = 13.7 rnA Volts V IH Input High Voltage V IL Input low Voltage 1.4 1.1 0.8 Volts IR Input Leakage. All J·K S, C. Inputs 5.0 5.0 10.0 )JA Vec = 5.0V. VR 10.0 10.0 20.0 20.0 VCC = 4.0V. VR = 4.0V 2.1 1.7 1.9 Volts Guaranteed Input High Threshold For All Inputs Guaranteed Input low Threshold For All Inputs So. (except Co '.)f 9097.90991 Input Leakage Of Co 9097.9099 I RCP IF Input leakage. CP Inputs 9093. 9094 9097.9099 20.0 40.0 30.0 60.0 )JA 40.0 Input Current. All 0.95 0.95 0.90 rnA 2.10 2.10 2.00 2.BO 2.24 4.4B 5.60 2.80 2.24 4.48 5.60 2.66 2.13 4.26 5.32 rnA 5.60 2.BO 5.60 2.80 5.32 2.66 rnA 1.41 rnA GND On Other Inputs VCC = 5.0V. VF = 0.45V 4.0V On Other Inputs J.K.S.C Inputs Input Current = 4.0V So Or Co 19093. 90941 I FCP Input Current. CP Inputs 9093 9094 9097 9099 I FSI Input Current 9097. 9099 Inputs CD 9097.9099 Inputs So ISC leex Output Leakage IpO Vee Current 0.59 1.77 1.41 4.2 0.59 0.59 Vec = 5.0V. VOUT = GNO -1.0V On Opposite J Or K 30 35 VCC = Veex A = 5.0V Vee = 5.0V.lnputs Open rnA Clock Pulse On Maximum Vee Current So VCC = B.O .Allinputs GNO 9093 9094 9097 42 4B 909~ 3B rnA 35 , Turn Off Delay 9094.9097 9093.9099 'pd- 1.41 105 9093.9099 9094.9097 tpd+ Vce = 5.0V. VF = 0.45V 4.0V On Other Inputs Output Short Circuit Current 9093.9099 9094.9097 IMAX VCC = 5.0V. VF = 0.45V 4.0V On Other Inputs 35 35 65 75 30 30 75 75 ns Vce = 50V RL = 2.0K. CL = 30pf Turn On Delay 9093.9094 9097.9099 I 4-41 RL = 330 CL = 50p! _ITT ___ D_T_L_G_A_T_E_P_R_O_P_A_G_A_TI_O_N_D_E_L_A_Y_T_E_S_T_IN_G SEMICONDUCTORS DT L TEST CIRCUIT TEST CIRCUIT WAVEFORMS PULSE IN O~ pw=IOOns NOTES: a) All Diodes 1 N914 or equivalent b) C1 and CI include Probe and Jig Capacitances c) 1 N914 Diodes are added to Pins 5 and 9 when testing d) 6Ku Pull-up resistors are added to Pins 6 and 8 when testing ITT938 e) Pins 4 and 10 are open or grounded as required by device logic 4-42 _I ITT301, ITT301 H DUAL EXPANDABLE mm -IL-IL _____________F_IV_E_-I_N_P_uT~N=A=N=D=B=U=F=F=E~R SEMICONDUCTORS DUAL EXPANDABLE FIVE-INPUT NAND BUFFER Pin Configuration The ITT301 is an active pull-up element featuring high current capability in both the high and low state. It is an .excellent choice for driving long transmission lines, as a system clock driver, or for driving any load with high capacitance. INPUTS ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range ................ --65°C to 1r150°C Operating Temperature Range 301 H-1, 301-1 ........ --55°C to 1r125°C 301 H-5 .............. --':'30°C to 1r 75°C 301-5 .................. --30°C to 1r85°C Lead Temperature, 1/16 inch from case, 60 seconds maximum ........ 300°C Supply Voltage Continuous .................... 1r16.5V Pulsed 0.1 Second .................. 18V Input Voltage (exclusive of expanders) 301 -1, 301 -5 ........ --0.5V to 16.5V 301 H-1, 301 H-5 ........ --0.5V to 18V Input Voltage-Expanders ........ OV to 6.0V Voltage applied to output ...... -0.5V to Vee Sink Current, Continuous Buffers .... 80mA Output short circuit duration to ground ..................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at: 1r125° ...................... 500mw at 1r85° ........................ 900mw 5-1 GND L -_ _ _-j 8 9 X2 0= ABCDE SCHEMATIC (EACH GATE) 82K 620 '-----"-----oG'D ITT301, ITT301 H DUAL EXPANDABLE FIVE""INPUT NAND BUFFER ELECTRICAL CHARACTERISTICS ITT301-1, ITT301-5 over recommended operating free air temperature range Parameter Vm Min Input High Threshold Voltage V,L Input Low Threshold Voltage VOH Output High Voltage VOL Output Low Voltage 1m Max Units 6.5 V 5.0 V 10.0 V Test Conditions Vee=11.0V, V'L=5.0V lolt =300ua 1.5 1.8 V V V,,=11.0V, V1H=6.5V IOL=42mA IOL=63mA Input High Level Current 10 ua V,,=13.0V, VR =13.0V 2.1 rnA Vee=13.0V, VF=1.5V 48 rnA Vee=13.0V rnA Vee = 12V, V'L=5.0V Vou=7.0V hL Input Low Level Current Icc Power Supply Current lou Output Source Current 15.0 tpd+ Propagation Delay, Positive Going Output 400 NS CL=300pf, RL =330n tpd- Propagation Delay, Negative Going Output 240 NS CL=300pf, RL=330n ELECTRICAL CHARACTERISTICS ITT301H-1, ITT301H-5 over recommended operating free air temperature range Min Parameter Vm Input High Threshold Voltage V,L Input Low Threshold Voltage Von Output High Voltage VOL Output Low Voltage Max 6.5 Units V 5.0 V 13.0 V 1.8 2.0 Test Conditions Vee-14.0V, V'L-5.0V lou =-250ua V V Vee=14.0V, V,u=6.5V 10i.=52rnA IOL=65 1m Input High Level Current 10 ua Vee=16.0V, VR =16.0V hL Input Low Level Current -2.6 rnA Vee=16.0V, VF=1.8V . Icc Power Supply Current 68 40 rnA rnA Vee =16.0V 10H Output Source Current 301H-5 301H-1 15.0 rnA Vee =15.0V, VIL=5.0V VOH=9.5V tpd+ Propagation Delay, Positive Going Output 400 NS CL=300pf, RL=330n tpd- Propagation Delay, Negative Going Output 240 NS CL=300pf, RL =330n 5-2 ITT302, ITT302H ITT ----QUAD 2-INPUT (2 EXPANDABLE) NAND BUFFER SEMICONDUCTORS QUAD 2-INPUT (2 EXPANDABLE) NAND BUFFER Pin Configuration The ITT302 open collector quad buffer finds application as a lamp or relay driver in addition to its use as a high-sink-current logic element. the open collector allows easy interfacing with other logic systems and can be wired-OR for increased design flexibility. 16 Vee ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -6So to +1S0°C Operating Temperature Range 302H-1, 302-1 ........ -SSoC to +12SoC 302H-S ................ -30°C to + 7SoC 302-S ................. -30°C to +8SoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ...................... +16.SV Pulsed 0.1 second ................. 18V Input Voltage (exclusive of expanders) 302-1, 302-S .............. - O.S to 16.SV 302H-1, 302H-S ............. -O.SV to 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied to output ...... -O.S to 16.SV Sink Current, Continuous Buffers ...... 80mA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So ...................... SOOmw at +8So ....................... , 900mw ~I GND 8 0= Ali Schematic (Each Gate) 302 .----+-------Qvcc 82K 1 2K xo--_ _ _ _- ' V 0 A L - -......-OGND 5-3 ITT302, ITT302H QUAD 2-INPUT (2 EXPANDABLE) NAND BUFFER ELECTRICAL CHARACTERISTICS ITT302-1, 302-5 Over Recommended Operating Free Air Temperature Range Parameter Min Vm Input High Threshold Voltage VIL Input Low Threshold Voltage VOL Output Low Voltage Max 6.5 Units Test Conditions V V 5.0 1.5 0.4 V V V,,=11.0V, VIH=6.5V IOL=62mA IOL=16mA Input High Level Current 10 ua V,,=13.0V, Vn =13.0V Ill. Input Low Level Current -2.1 rnA V,,=13.0V, VF=1.5V Icc Power Supply Current 40 rnA V,,=13.0V IcEx Output Leakage Current 25 p.A Vcc=13.0V, VIL=5.0V VCEx=13.0V LVcE Collector Latching Voltage V Vcc =13.0V, VIL=5.0V ICE=4.0mA 1m 13.0 tpd+ Propagation Delay, Positive Going Output 600 NS CL=50pf, RL=2kn tpd- Propagation Delay, Negative Going Output 200 NS CL =50pf, RL=2kn ELECTRICAL CHARACTERISTICS ITT302H-1, 302H-5 Over Recommended Operating Free Air Temperature Range Parameter Min VIH Input High Threshold Voltage Vll • Input Low Threshold Voltage VOl. Output Low Voltage Max 6.5 Units Test Conditions V V 5.0 1.8 0.4 V V Vc ,=14.0V, VllI=6.5V IOL=64mA 10I.=16mA 1m Input High Level Current 10 ua Vec=16.0V, Vn =16.0V lIT. Input Low Level Current -2.6 rnA V,,=16.0V, VF=1.8V Icc Power Supply Current 40 60 rnA rnA Vcc =16.0V 25 p.A Vcc=16.0V. VIL=5.0V VCEx=16.0V V Vcc=16.0V, VIL=5.0V ICE=4.0mA 302H:1 302H-5 IcEx Output Leakage Current LVcE Collector Latching Voltage 16.5 tpd+ Propagation Delay, Positive Going Output 600 . NS CL =50pf, RL=2kn tpd- Propagation Delay, Negative Going Output 200 NS CL =50pf, RL=2kn 5-4 ITT303. ITT303H . T___________ -L ... 1 m Q_U_A_D_2_-_IN_P_U_T (2 EXPANDABLE) NAND BUFFERS SEMICONOUCTORS QUAD 2-INPUT NAND BUFFERS (2 EXPANDABLE) Pin Configuration 16 Vee The ITT303 is a high sink current buffer with passive pull-up resistors on the chip. It is useful in the collector-OR configuration, as a system buffer, or as a lamp driver. For use as a high-fan out gate, a supplemental external pull-up resistor should be used. ABSOLUTE MAXIMUM RATINGS GND Characteristics Units Storage Temperature Range .. -65° to +150°C Operating Temperature Range 303H-1, 303-1 ......... -55°C to +125°C 303H-5 ................ -30°C to + 75°C 303-5 .................. -30°C to +85°C Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ............... " .... , +16.5V Pulsed 0.1 Second ................. 18V Input Voltage (exclusive of expanders) 303-1, 303-5 .............. - 0.5V to 16.5V 303H-1, 303H-5 ............. -0.5V to 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied to output ...... -0.5V to Vee Sink Current, Continuous Buffers ...... 80mA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +125° ...................... 500mw at +85° ........................ 900mw 5-5 8 0= AS Schematic (Each Gate) 303 r---_---~~_oVee xo--- 8.2K SO--*--+--i4-+L 1.2K 9.1K .--..---vO A '-----OGND ITT303, ITT303H QUAD 2-INPUT (2 EXPANDABLE) NAND BUFFERS ELECTRICAL CHARACTERISTICS 303-1, 303-5 Over Recommended Operating Free Air Temperature Range Parameter V lH Input High Threshold Voltage V,L Input Low Threshold Voltage VOH Output High Voltage VOL Output Low Voltage 1m Input High Level Current hL Input Low Level Current Icc Power Supply Current Min Max Units 6.S V Test Conditions S.O V 10.0 V Vee=11.0V, V'L-S,OV 10H =-SOua V Vee=11.0V, V1H=6.SV IOL=60.SmA 1.S 10 ua Vee =13.0V, VR =13.0V -2.1 mA Vee -13.0V, VF-1.SV 49 mA Vee = 13.0V tpd+ Propagation Delay, Positive Going Output . 600 NS CL=SOpf, RL=2kf! tpd- Propagation Delay, Negative Going Output 200 NS CL=SOpf, RL=2kf! ELECTRICAL CHARACTERISTICS 303H-1, 303H-5 Over Recommended Operating Free Air Temperature Range Parameter VIH Min Input High Threshold Voltage Max Units 6.S V S.O Test Conditions V V,L Input Low Threshold Voltage VOH Output High Voltage 13.0 V Vee -14.0V, V,L-S.OV 10lI =-SOua VOL Output Low Voltage 1.8 V Vee=14.0V, V'H=6.SV IOL=60mA IIH Input High Level Current 10 ua Vee = 16.0V. VD=16.0V Input Low Level Current -2.6 mA Vee=16.0V, VF=1.8V hL Power Supply Current 303H-1 303H-5 tpd+ Propagation Delay, Positive Going Output 40 70 Icc tpd- Propagation Delay, Negative Going Output 5-6 mA mA Vee = 16.0V 600 NS CL=SOpf, RL=2kf! 200 NS CL=SOpf, RL=2kf! _ I ITT311, ITT311 H mm SLAVE FLIP-FLOP -1--1- _ _MASTER _ _ _ SEMICONDUCTORS MASTER SLAVE FLIP-FLOP Pin Configuration The ITT311 is a universal HiNiL flip-flop. It has sepa rate clocks which allow two-phase (dual inhibit) operation, direct set and reset inputs, six data inputs, and is level sensitive. It can be operated as a J-K flip-flop by external wiring and features active outputs. ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -6So to +1S0°C Operating Temperature Range 311H-1, 311-1 ......... -SSOCto +12SoC 311H-S .................. 30°Cto +7SoC 311-S .................. -30°C to +8SoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ..................... , + 16.SV Pulsed 0.1 Second ................. '18V Input Voltage (exclusive of expanders) 311-1, 311-S .............. -O.SVto 16.SV 311H-1, 311H-S ............. -O.SVto 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied' to output ...... -O.SV to Vee Sink Current, Continuous Buffers ...... 80mA All Other Devices ................. 2SmA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So ...................... SOOmw at +8So ........................ 900mw GND 8 J-K Operation *R Operation I A B B L L Q L L Q L H L L H L H L H H L H Q H H X . Q H H Undetermined Typical Output Schematic Typical Input Vcc 0----1>-----, IN 0--W_.........1--4~ R 9.IK 6K VCCo----J R= S.2K on A, B,S,R, T2 -= R=4.IK on TI 5-7 I A 510n Q ITT311, ITT311 H MASTER SLAVE FLIP-FLOP Single-Phase Timing Circuit Diagram Set-Reset Mode DATA ENTERED IN MASTER MASTER INHIBITED ~HARS:::OLD1~ L ________ O.4V ~~~~;HOLDT ,-------1 - SLAVE INHIBITED DATA ENTERED IN SLAVE Two-Phase Timing J-K Mode / 'T' SET INTO MASTER II TI~ / MASTER INHla'TED ~ I T2----:71 SLAVE INHIBITED/ L-J ~ "I" TRANSFERRED TO SLAVE ELECTRICAL CHARACTERISTICS 311-1, 311-5 Over Recommended Operating Free Air Temperature Range Parameter VIH Input High Threshold Voltage VIL Input Low Threshold Voltage VOH Output High Voltage VOL Output Low Voltage IIH Input High Level Current Max Units 6.5 7.0 V V Icc Power Supply Current IOH Output Source Current Test Conditions A, B, T Inputs S, R Inputs 5.0 V 10.0 V V,,--11,OV, V'L-5.0V lOll = -50ua 1.5 V V,,=11.0V, VlIl=6.5V lOT. = 12,6mA 10 20 ua ua V,,=13.0V, V R =13.0V A, B, R, S, T, Inputs T, Input -2.1 -4.2 mA mA V,,=13.0V, VF=1.5V A, B, R, S, T, Inputs T, Input 18 mA V,,=13.0V mA V,,=12V, V'L=5.0V VoH =7.0V, VIH=6.5V Input Low Level Current hL , Min -5.0 tpd+ Propagation Delay, Positive Going Output tpd- Propagation Delay, Negative . Going Output . 5-8 820 400 NS NS CL =50pf, RL=2kQ T-' Q+ R- Q+ 610 250 NS NS CL=50pf, RL=2kQ T- QR- Q- ITT311, ITT311 H MASTER SLAVE FLIP-FLOP ELECTRICAL CHARACTERISTICS 311H-1, 311H-5 Over Recommended Operating Free Air Temperature Range Parameter Vm Input High Threshold Voltage V1L Input Low Threshold Voltage VOll Output High Voltage VOL Output Low Voltage 1m Input High Level Current hL Units 6.S 7.0 V V A, B, T Inputs S, R, Inputs S.O 4.8 V V A, B, R, S, T, Inputs T, Inputs 13.0 V V,,=14.0V, V1L=S.OV lou = -SOua 1.8 V V,,=14.0V, V'll=6.5V IOL=1S.6mA 10 20 ua ua V,,=16.0V, VR =16.0V A, B, R, S, T, Inputs T, Input -2.6 -S.2 mA mA V,,=16.0V, VF=1.8V A, B, S, R, T, Inputs T, Input 2S mA V,,=16.0V mA V,,::::1S.0V, VIL=S.OV VoH =9.SV, VIH=6.SV Input Low Level Current Icc Power Supply Current lOll Output Source Current tpd+ Propagation Delay, Positive Going Output tpd- Max Min Propagation Delay, Negative GOing Output -S.O Test Conditions 820 400 NS NS C,,=SOpf, RL=2kn T- Q+ R- Q+ 610 2S0 NS NS CL=SOpf, RL=2kn T- QR- Q- 5-9 _ ITT ITT312,ITT312H ._________________D_U_A_L__J-_K_F_L_Ip_-~F_LO_P SEMICONDUCTORS DUAL J-K FLIP-FLOP PIN CONFIGURATION Two completely separated J-K flip-flops are incorporated on one 312 chip. Each flip-flop has its own separate clock, set, and reset inputs. The device clock is negative edge sensitive, requiring a clock fall time of 3 volts per microsecond or faster. Active-high outputs are provided. ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -6So to + 1S0°C Operating Temperature Range 321H-1, 321-1 ........ -SSoC to +12SoC H-S .................... -30° to +7SoC -S .................... , -30°Cte +8SoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ...................... +1,6.SV Pulsed <0.1 Second ................ 18V Input Voltage (exclusive of expanders) 321-1, 321-S ............. -O.SV to 16.SV 321H-1, 321-HS ............ -O.SV to 18V Input Voltage - Expanders ....... ; OV to 6.0V Voltage applied to output., .... ~O.SVto Vee Sink Current, Continuous Buffers ...... 80mA All Other Devices ................. 2SmA Output short circuit duration to ground ,.................. Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So ...................... SOOmw at +8So ., ... ,.,., .............. 900mw GND 9 B Truth Table S-R Mode S R H H H L L H L L Q X L H H J-K Mode K L L L H L H H H J X= Indeterminate state ELECTRICAL CHARACTERISTICS 312-1, 312-5 Over Recommended Operating Free Air Temperature Range Parameter VIH Min Input High Threshold Voltage V,L Input Low Threshold Voltage VOH Output High Voltage VOL Output Low Voltage !:2 Max Units 6.S V Test Conditions S.O V 10.0 V V,,=11.0V, VlI.=S.OV IOf! = -SOua V Vcc=11.0V, VtH=6.SV IOL=10.S mA 1.S 5_10 Q 1 Q L H Q ITT312, ITT312H DUAL J-K FLIP-FLOP ELECTRICAL CHARACTERISTICS 312-1, 312-5 Over Recommended Operating Free Air Temperature Range Parameter 1m Ill. Min Max Units 10 20 ua ua -2.1 -4.2 mA mA 30 mA Vcc=13.0V mA Vcc=12V, V,L=S.OV VoH =7.0V, VJH=6.SV Input High Level Current Vcc =13.0V, VF=1.SV Input Low Level Current Icc Power Supply Current 10H Output Source Current Test Conditions Vcc=13.0V, V R =13.0V J, K, T Inputs S, R Inputs -S.O tpd+ Propagation Delay, Positive Going Output tpd- Propagation Delay, Negative Going Output J, K, T Inputs S, R Inputs 300 600 NS NS CL=SOpf, RL=2kn T- Q+ R- Q+ 230 320 NS NS CL=SOpf, RL=2kn T- QR- Q- ELECTRICAL CHARACTERISTICS 312H-1, 312H·5 Over Recommended Operating Free Air Temperature Range Parameter VJH Min Input High Threshold Voltage V,L Input Low Threshold Voltage VOH Output High Voltage Max Units 6.S V S.O V 13.0 V Test Conditions Vcc=14.0V, V' L=S.OV 1011 =-SOua VOL Output Low Voltage 1,11 Input High Level Current hL 1.8 V 10 20 ua ua Vcc=16.0V, VR =16.0V Power Supply Current 1011 Output Source Current tpd+ Propagation Delay, Positive Going Output tpd- Propagation Delay, Negative Going Output J, K, T Inputs S, R Inputs -2.6 -S.2 mA mA Vcc=16.0V, VF=1.8V J, K, T Inputs S, R Inputs 40 mA Vcc=16.0V mA Vcc =1S.0V, V,L=S.OV VolI =9.SV, VJH=6.SV Input Low Level Current Icc Vcc=14.0V, V1H=6.SV IOL=13.0mA -S.O 300 600 NS NS C,.=SOpf, RL=2kn T- Q+ R- Q+ 230 320 NS NS CL=SOpf, RL=2kn T- QR- Q- 5-11 ITT312, ITT312H DUAL J-K FLIP-FLOP SCHEMATIC (EACH FLiP-FI,.OPI r---~----------------------------~--os Ro---~--~-------------r------------~ vcco---t----Hr------,--...,-...,----+-------,..------+-----~-- B. Inputs are provided so that 343's can be cascaded, enabling the system designer to compare n - bit numbers. A strobe is also provided to disable the unit. r l INPUTS l r INPUTS j OUTPUC ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -6So to +1S0°C Operating Temperature Range 343H-1, 343-1 ......... -SSoC to +12SoC 343H-S ................ -30°C to + 7SoC 343-S .................. -30°C to +8SoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ...................... +16.SV Pulsed 0.1 Second ................. 18V Input Voltage (exclusive of expanders) 343-1, 343-S .............. - O.SV to 16.SV 343H-1, .343H-S ............. - O.SV to 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied to output ...... -O.SV to Vee Sink Current, Continuous Buffers ; ..... SOmA All Other Devices ................. 2SmA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So ...................... SOOmw at +8So ........................ 900mw 5-36 GND Logic Diagram ITT343, ITT343H FOUR-BIT COMPARATOR Truth Table Typical Input Outputs Inputs EIN G,N Strobe EouT A>B A=B AB A=B AB A=B AB A=B A L_LO_W ......_T_O_H_IG_H_IN_T_ER_F_A_C_E -L-L ____ . SEMICONDUCTORS DUAL LOW TO HIGH INTERFACE Pin Configuration The ITT362 converts low level signals from TTL or RTL to high level signals for H,NIL processing. Both inverting and non-inverting inputs are available for interfacing with RTL or TTL. Only one input should be used at a time, with the other three being tied to Vcc or ground to remove them from the circuit. 16 Vee 15 TTU1NVI TTUNII RlLliNVI RlLlNIJ ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -6So to +1S0°C Operating Temperature Range 362H-1, 362-1 ..... ; .. -SSoC to +12SoC 362H-S ................ -30°C to + 7SoC 362-S .................. -30°C to +SSoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ..................... ' +16.SV Pulsed 0.1 Second ................. 1SV Input Voltage TTL Inputs ................ -O.SV to S.OV RTL Inputs ................ -O.SV to S.OV Voltage applied to output ...... -O.SV to Vee Sink Current, Continuous Buffers ...... SOmA . All Other Devices ................. 2SmA Output short circuit duration to ground .......... ;........ Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So ...................... SOOmw at +SSo ........................ 900mw Ni, TTL GNO 11 'i;L 10 ~~. 8 Schematic 'ccc>-~---r-------t--..., 5-42 ITT362, ITT362H DUAL LOW TO HIGH INTERFACE ELECTRICAL CHARACTERISTICS 362-1, 362-5 Over Recommended Operating Free Air Temperature Range Parameter Min Max Units Test Conditions VIIi Input High Threshold Voltage VII. Input Low Threshold Voltage 0.7 0.8 V V VOH Output High Voltage TTL Inputs 8.5 V Vcc=11.0V IUH =-50ua One Input at Threshold VOL Output Low Voltage TTL Inputs 1.5 V Vcc=11.0V IOL=10.5 mA One Input at Threshold 1m Input High Level Current 10 ua Vcc=13.0V, VR=4.0V -1.6 mA Vcc=13.0V, VF=OAV .10 mA Vee=13.0V tpd+ Propagation Delay, Positive Going Output 400 NS CL=50pf, RL=2kn tpd- Propagation Delay, Negative Going Output 335 NS CL=50pf, RL=2kn Icc Power Supply Current ~ 362-5 ELECTRICAL CHARACTERISTICS 362H-1, 362H-S Over Recommended Operating Free Air Temperature Range Parameter Min Max Units Test Conditions Vm Input High Threshold Voltage TTL Inputs V1L Input Low Threshold Voltage TTL Inputs 0.7 0.8 V V VOH Output High Voltage 11.5 V Voc=14.0V 10H =-50ua One Input at Threshold VOL Output Low Voltage 1.8 V Vee=11.0V IOL=10.5 rnA One Input at Threshold 1m Input High Level Current TTL Inputs 10 ua Vee = 16.0V, VR=4.0V hL Input Low Level Current TTL Inputs -1.6 rnA Vee=16.0V, VF=OAV Icc Power Supply Current 13.0 rnA Vee = 16.0V tpd+ Propagation Delay, Positive Going Output 400 NS CL=50pf, RL=2kn tpd- Propagation Delay, Negative Going Output 335 NS CL=50pf, RL=2kn V 5-43 ~ 362H- 5 ITT362, ITT362H DUAL LOW TO HIGH INTERFACE RTL INPUT SPECIFICATIONS FOR 362, 362H Max Units Vm Parameter Input High Threshold Voltage 1.01 0.95 0.85 0.70 0.675 V V V V V V1L Input Low Threshold Voltage 0.71 0.6 0.5 0.38 0.32 1m Input High Level Current Min 0.495 0.460 0.440 0.470 0.470 Test Conditions 362-1,362H-1@-55° 362-5, 362H-5@-30° 362-1, 362H-1, 362-5, 362H-5@+25°C 362-5,362H-5@+70/+75° 362-1, 362H-1@125° 362-1, 362H-1@-55° 362-5, 362H-5@-30° 362-1, 362H-1, 362-5, 362H-5@+25°C 362-5, 362H-5@+70/85° 362-1, 362H-1@125° rnA rnA rnA rnA rnA 362-1,362H-1@-55° 362-5, 362H-5@-30° 362-1, 362H-1, 362-5, 362H-5@+25°C 362-5, 362H-5@+70/85° 362-1, 362H-1@125° Inputs at Vm, Vcc-13V for 362-1, 362-5, Vcc-16V for 362H-1, 362H-5 !xL Input Low Level Current 10 5-44 uA Inputs at V1L Vcc=13V for 362-1,362-5 Vcc=16V for 362H-1, 362H-J ITT ..... ----ITT370, ITT370H QUAD D FLIP-FLOP SEMICONDUCTORS QUAD D FLIP-FLOP Pin Configuration Four D-type flip-flops utilizing a common clock line make up the 370. Each flip-flop has complimentary passive pull up outputs with a single D input. This circuit is ideal as a quad latch for temporary storage of 4-bit binary numbers. Data is transferred from D inputs to outputs when the clock line is low. With the clock line high, output data is held and D inputs are ignored. ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -65° to +150°C Operating Temperature Range 370H-1, 370-1 ......... -55°C to +125°C 370H-5 ................ -30°C to +75°C 370-5 ................. -30°C to +85°C Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ..................... , +16.5V Pulsed 0.1 Second ................. 18V Input Voltage (exclusive of expanders) 370-1, 370-5 ............. - 0.5V to 16.5V 370H-1, 370H-5 ............ -0.5V to 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied to output ...... -0.5V to Vee Sink Current, Continuous Buffers ..... , 80mA All Other Devices ................. 25mA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +125° ...................... 500mw at +85° ........................ 900mw TRUTH TABLE C D Qn+ 1 1 1 0 1 0 Qn Qn 1 0 0 1 0 Schematic 5-45 ITT370, ITT370H QUAD D FLIP-FLOP ELECTRICAL CHARACTERISTICS 370-1, 370-5 Over Recommended Operating Free Air Temperature Range Parameter Min VlH Input High Threshold Voltage V1L Input Low Threshold Voltage VOH Output High Voltage VOL Output Low Voltage IlH Input High Level Current hL Test Conditions Max Units 6.5 V 5.0 V 10.0 V Vec-11.0V, V'L-5.0V lOR = -40ua, VlH=6.5V 1.5 V Vec=11.0V, Vm=6.5V IOL=8.4mA 10 20 ua ua Vee = 13.0V, VR =13.0V C Input D Inputs -2.1 -4.2 rnA rnA Vec =13.0V, VF=1.5V C Input D Inputs Input Low Level Current 38 rnA Vee =13.0V tpd+ Propagation Delay, Positive Going Output 500 NS CL=50pf, RL-2kO tpd- Propagation Delay, Negative Going Output 500 NS CL-50pf, RL-2ko Icc Power Supply Current ELECTRICAL CHARACTERISTICS 370H-1, 370H-5 Over Recommended Operating Free Air Temperature Range Parameter VlH Min Input High Threshold Voltage V1L Input Low Threshold Voltage VOR Output High Voltage VOL Output Low Voltage IlH Input High Level Current Max Units 6.5 V Test Conditions 5.0 V 13.0 V Vec=14.0V, V'L=5.0V IOH·=.40ua, VlH=6.5V 1.8 V Vec=14.0V, Vm=6.5V IOL=10.4mA 10 20 ua ua Vee=16.0V, VR =16.0V C Input D Inputs -2.6 -5.2 rnA rnA Vee=16.0V, VF=1.8V C Input D Inputs 40 48 rnA rnA Vee-16.0V tpd+ Propagation Delay, Positive Going Output C- Q+ 500 NS CL=SOpf, RL=2ko tpd- Propagation Delay, Negative Going Output C- Q+ 500 NS CL=SOpf, RL=2kO hL I·cc Input Low Level Current Power Supply Current 370H-1 370H-S 5-46 ITT ----ITT371, ITT371 H DECADE COUNTER SEMICONDUCTORS DECADE COUNTER Pin Configuration The ITT371 HLL MS1 counter generates BCD on its outputs. It has direct set inputs for each of its four internal f1ip·flops and a common reset. Two clock inputs are provided, facilitat· ing the input ENABLE function. A ninth count output is provided as a carry output for cascad· ing 371's so a decimal number of any size may be generated. The passive outputs are ideal inputs to the 380 Series BCD decoders. The 371 is level sensitive, counting as the clock goes low. Holding either clock low will inhibit the count sequence. Direct set or reset is accomplished by switching the desired input high. All unused direct set and reset inputs must be grounded. ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. -65· to +150·C Operating Temperature Range 371H·1,371-1 ......... -55·C to +125·C 371H-5 ................ -30·C to +75·C 371-5 .............•... -30·C to +85·C Lead Temperature, 1/16 inch from case, 60 seconds Maximum .......• 300·C Supply Voltage Continuous ............ " . " .•... +16.5V Pulsed 0.1 Second ................. 18V Input Voltage (exclusive of expanders) 371-1, 371-5 .............. -D.5V to 16.5V 371H-1, 371H-5 ............ -0.5V to 18V Input Voltage - E~panders ........ OV to 6.0V Voltage applied to output ...... -0.5V to Vee Sink Current, Continuous Buffers ...... 80mA All Other Devices ...............•. 25mA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +125· ...................... 500mw at +85· ....................•.. 900mw Logic Diagram ----r' CP1o-........ r---OS1 Jl---'~-o .-----iI--OS2 R r---i,--OS4 ...-r-.,:--'f"""' r-"""'::""f---004 i~co o 5-47 ITT371, ITT371 H DECADE COUNTER TRUTH TABLE CP1 0r 0, O. CP, 0, O. 0,0. TYPICAL INPUT TYPICAL OUTPUT 0 0 0 0 0 0 Vee Vee 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 ROUT RIN 0 0 1 0 0 0 1 1 0 0 0 0 _ _ _- - v OUTPUT 0 0 1 1 0 0 0 1 1 0 1 O. 1 0 0 0 0 Q 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 Input Output ROUT 1 0 0 1 0 0 1 1 0 0 1 0 5 Kn Typ. CP1 CP 2 01 02 9.1 Kn Typ. 1 0 1 0 0 1 5 Kn Typ. Reset 03 O. 9.1 Kn Typ. 0 1 0 1 1 1 20 Kn Typ. CO All Sets 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 ELECTRICAL CHARACTERISTICS 371·1, 371·5 Over Recommended Operating Free Air Temperature Range + Parameter Vm Input High Threshold Voltage V1L Input Low Threshold Voltage VOH Output High Voltage Min Max Units 6.S V S.O Test Conditions V V•• =11.0V, V1L=S.OV Vm=6.SV 10.0 V C Output IOH=-20p.A 10.0 V Q Outputs IHo=-SOuA VOL Output Low Voltage V.c =11.0V, Vm=6.SV V1L=S.OV 1.S V C Output IOL=4.2mA 1.S V Q Outputs IOL=1Q.SmA 1m hL Input High Level Current V•• =13.0V, VR =13.0V 20 ua 10 CP Inputs ua R Input S ua S Inputs -4.2 -2.1 -1.0S mA mA mA Input Low Level Current S-48 V. c =13.0V CP Inputs R Input S Inputs ITT371, ITT371 H DECADE COUNTER ELECTRICAL CHARACTERISTICS 371-1, 371-5 Over Recommended Operating Free Air Temperature Range Parameter Min Max Units Test Conditions Icc Power Supply Current 41 tpd+ Propagation Delay, Positive Going Output mA CL=50pf, RL=2kfl tpd- Propagation Delay, Negative Going Output 800 NS C- Q+ 600 NS S+ Q+ CL=50pf, RL=2kfl 300 NS C- Q- 200 NS R+ Q- ELECTRICAL CHARACTERISTICS 371H-1, 371H-5 Over Recommended Operating Free Air T emperature Range Parameter Min Units Test Conditions Max VIH Input High Threshold Voltage V1L Input Low Threshold Voltage VOH Output High Voltage VOL IrH IrL Icc 6.5 5.0 V V 13.0 V 13.0 V Output Low Voltage V" = 14.0V, V1L = 5.0V Vm=6.5V C Output IOH=-20p.A Q Outputs IOH=-50ua Vcc=14.0V, VIL=5.0V Vm=6.5V C Output IOL=5.2mA 1.8 V 1.8 V 20 ua CP Inputs 10 ua R Input 5 ua S Inputs -5.2 mA CP Inputs -2.6 mA R Input -1.3 mA S Inputs 40 mA Vcc =16.0V 53 mA 800 NS C- Q+ 600 NS Input High Level Current Q Outputs IOL=13.0mA Vcc=16.0V, VR -16.0V Input Low Level Current Power Supply Current tpd+ Propagation Delay, Positive Going Output l I 371 H-1 371 H-5 CL=50pf, RL=2kfl tpd- Propagation Delay, Negative Going Output 5-49 300 NS S+ Q+ CL=50pf, R1.=2kfl C- Q- 200 NS R+ Q- _I ITT372, ITT372H mm .L.L ___D_IV_ID_E_B_Y_1_6_(_H_EX_A_D_E_C_IM_A_U..._C_O_U_N_T_E_R SEMICONDUCTORS DIVIDE BY 16 (HEXADECIMAL) COUNTER Pin Configuration The ITT372 is identic\,!1 to the ITT371 except its outputs are coded in the standard 4-bit binary (1-2-4-8) code. R 16 1 Vcc r - - - - - - - - I 15 CP2 Operation of the 372 is identical to that of the 371. Internal construction produces divide-bysixteen operation. 14 01 S1 02 52 04 54 58 08 co 08 ABSOLUTE MAXIMUM RATINGS Characteristics Units Storage Temperature Range .. ~6So to +1S0°C Operating Temperature Range 372H-1,372-1 .......... -SSoC to +12SoC 372H-S ................ -30°C to +7SoC 372-S ................ -30°C to +8SoC Lead Temperature, 1/16 inch from case, 60 seconds Maximum ........ 300°C Supply Voltage Continuous ...................... + 16.SV Pulsed 0.1 Second ................. 18V Input Voltage (exclusive of expanders) 372-1, 372-S ............ - O.SV to 16.SV 372H-1, 372H-S ............ - O.SV to 18V Input Voltage - Expanders ........ OV to 6.0V Voltage applied to output ...... -O.SV to Vee Sink Current, Continuous Buffers ...... BOmA All Other Devices ................. 2SmA Output short circuit duration to ground ................... Continuous (Not more than 1 output shorted simultaneously) Maximum package power dissipation (free air) at +12So...................... SOOmw at +8So ....................... 900mw GND 7 H---iH---4-~ L-~===j-l 8 Logic Diagram CP10--_-----i 9 co . - - - - { ) 51 ,1---'''---001 .-----1f--052 t---+-'--"" J------r-~~-{)02 CP20--#---=I .--f--054 .--I---{) 58 A -Hl---r--.. B C --f+-'--'/ A--I--I-...-...... 5-50 J1-,,+--o08 ITT372, ITT372H DIVIDE BY 16 (HEXADECIMAL) COUNTER Truth Table Typical Input Vee INPUT CP1 CP2 RESET ALL SETS RIN 5 Kn TYP. 5 KU TYP. 20 Kn TYP. Typical Output vee ~""'-----!------' INPUTS ~A' ~OUTPUT2W 2A2 ' supply this reference voltage; however, methods given here will be limited to the discussion of fundamental design considerations. These sense amplifiers are recommended for use in systems requiring threshold voltage levels of ±15 to ±40mV. A simple method of generating the reference voltage is the use of a resistor voltage divider from either the positive (Vcc+) or negative (Vcc-) voltage supplies. See Figure G. This type of voltage divider may be used to supply an individual reference amplifier or to supply a numbr of paralleled reference amplifiers. The bias current required at the reference amplifier input is low (normally 30,..A) therefore, voltage dividers of this type may normally be operated with very low current requirements. In noisy environments, the use of a filter capacitor across the inputs is recommended. By locating the capacitor as close to the device terminals. as possible, noise and stray signals will be presented common-mode to the reference amplifier and thus be rejected. STReBe 52 RI Figure F ITT7528/ITT7529 Logic Diagram Vee+ 0 Ill>: R2 Logic: W = AS for ITT7528 and ITT7529 ITT75234, ITT75235, ITT75238, ITT75239 Circuits ~ __ REFERENCE - AMPLIFIER Figure G These dual sense amplifier circuits are the same as ITT7524, ITT7525, ITT7528, and ITT7529, respectively, except that an additional stage has been added to th'e output gate to provide an inverted output. Compared to using a separate gate for inversion, not only is. package count reduced, but less propagation delay is added. Reference Voltage Considerations These sense amplifiers feature a variablethreshold voltage level with simultaneous adjustment of both sense channels or both sense amplifiers by a single reference voltage. The operating threshold voltage level of the input amplifiers is established by and is approximately equal to the applied reference input voltage, Vref' Several methods may be used to Input Line Layout Considerations Input sensitivity and device speed require adequate precautions in the routing of signal input and reference lines to prevent noise pickup. Bypassing of supply and reference inputs at the device with low-inductance disc ceramic capacitors, and use of a good ground plane to separate strobe and output lines from sense and reference input lines, is recommended. 6-4 ITT7520 SENSE AMPLIFIERS Sense-input Termination Resistor Considerations Logic Input Current Requirements Termination resistors are intentionally omitted from the sense-input terminals so the desigller may select resistor values which will be compatible with the particular application. Matched termination resistors, (RT, Figure H), normally in the range of 25 n to 200 n each, are required not only to terminate the sense line in a desired impedance but also to provide a doc path for the sense-input bias currents. Careful matching of the resistor pairs should be observed or effective common-mode rejection will be reduced. Logic input current requirements are specified at worst-case power-supply conditions over the operating free-air temperature range ofO°C to 70°C. The logic input currents are identical. to and compatible with TTL digital integrated circuits. Each logic input of •. the multipleemitter input transistors reqolres no more than a 1.6-mA flow out of the inputata low logic level. Each input .emitterrequires current into the input when it is at a highlogic level. This current is 40 vA maximum. current into the input terminals are specified . as positive values. Ar~ows on tlie doc test circuits indicate the actual direction 01.' current flow. Absolute Maximum Ratings (over free-air temperature range unless otherwise noted) Supply voltages (see Note 1): . . '. Vcc+ ........ ; ••...••.•.•.........•.• 7V Vcc - ..................•....•.... ; .• -7V Differential input voltage, VrD or Vr~£ ...... ±5V Voltage from any input to ground (see Note 2) ........................ 5.5V Operating free-air temperature '.' range, TA ...........•..•.•. C·C to 70·C Storage temperature range, T.te.-,55·C to 150·C Figure H Recommended Operating Conditions Output Drive Capability The output circuits of these sense amplifiers feature the ability to sink or supply load current. This capability permits direct use with both TTL- and DTL-type loads. The open-collector output of the ITT1522/1TT7523 circuit may be connected to similar outputs to perform the wire-AND function. Load currents (out of the output terminal) are specified as negative values. Arrows on the doc test circuit indicate the actual direction of current flow. Min ~om' Max Unit Vcc+ (see Note 1).... 4.75 5 5.25 V Vcc - (see Note 1) .... -4.75 -5 -5~25, V Vref ••••••.••••••••• 15 , 40mV' NOTES: 1. These voltage values are ,with' respect to network ground terminal. 2. Strobe and gate input voltages must be, zero or positive with respect to'network.ground terminal. 6-5 ITT7520, ITT7521 _I mm.. ____D_U_A_L -_C_H_A_N_N_E_L_S_E_N_S_E_A_M_P_Ll_F_IE_RS .L.L WITH COMPLIMENTARY OUTPUTS SEMICONOUCTORS DUAL-CHANNEL SENSE AMPLIFIERS WITH COMPLEMENTARY OUTPUTS TRUTH TABLE Inputs A B G. X X L H X X H L X X L L X X X X L X X Gz X S S8 X X X X X X H L L X L H H H L L L L X X X H H H H H X X X X X X X L X L DUAL-IN - LINE PACKAGE PIN CONFIGURATION (Top VIEW) Outputs y Z §.Z §.Z Gz AI H H H H H A2 fBi INPUTS Definition of Logic Levels H Input A or S* Vm ;;::' Any G or S VI;;::' VIH min V, GATE 6 la2 GATE X L VT max VID STROBF 2 INPUTS { ~ VT min Irrelevant ~ VI!. max Irrelevant POSiTIVE LOGIC: y. Gy+A'S A +B'Sa f · Gi!+Y z· GZ+Gy(A+~AH!i+~BI regardless of which terminal of each pair is positive with respect to the other. * A and S are differential voltages (V ID ) between A 1 and A2 or S1 and 82, respectively. For these circuits, VII) is considered positive Schematic INPUTS{AI A2 OUTPUT Z STROBE S A ~-+--+t---j-+-, INPUTS {Bl B2 ~ ~--~-!.. Gz STROBESB~-+_ _ _--j-+-, Vcc_ OUTPUT y 6-6 ITT7520, ITT7521 DUAL-CHANNEL SENSE AMPLIFIERS WITH COMPLIMENTARY OUTPUTS = 5 V, Vcc - ELECTRICAL CHARACTERISTICS (unless otherwise noted Vcc+ TA = DoC to 70°C) Parameter VT Test. Fig. Differential Input threshold voltage 1 Min Typ** Max Unit 15 (20}19 mV V,.,., 15 mV 35)36 40 (45j44 mV V"., 40 mV 33 VlCr Common-mode Input firing voltage lIn Differential-Input bias current Differential-Input offset current 47 30 VIH High-level Input voltage (strobe and gate inputs) 3 VIr. Low-level input voltage (strobe and gate inputs) 3 VOH High-Level output voltage 2.4 0.25 4 -1 Low-level input current (strobe and gate inputs) 4 los(y) Short-circuit output current into Y 5 los(z) Short-circuit output current into Z 5 Icc+ Supply current from Vcc+ 0.4 V Vcc+ - 4.75 V, Vee - =. -4.75 V, 10L = 16 mA 40 p.A Vcc+ = 5.25 V, Vce - = -5.25 V VIH = 2.4 V 1 mA Vec+ - 5.25 V, Vcc - = -5.25 V VIH = 5.25V -1.6 mA Vcc+ - 5.25V, Vcc - = -5.25 V 0.4 V V1L -3 -5 mA Vec+ = 5.25 V, Vce - = -5.25 V -2.1 -3.5 = 28 35 -14 .-' -18 0 Supply current from Vcc - Icc - mA Vec+ = 5.25 V, Vce -5.25 V = mA Vec+ Vec TA ¥ 5 V, Vcc - - -5 V, TA - Numbers in parenthesis apply to 5520 or 5521 as indicated. 6-7 = = = mA Vec+ 5.25 V, vce - -5.25 V TA 25 C 6 •• All typical values are at Vcc+ - I 5521 ITT7521 / 5521 V Vce+ - 4.75 V, Vcc - == -4.75 V, 10H = -400 ItA 4 High-level input current (strobe and gate inputs) . hL ITT7521 V 0.8 3 IIH ITT7520 (5520) V 2 Low-level output voltage =40 mV p.A Vee+ = 5.25 V, Vee - = -5.25 V, Vm = 0 3 Vor. ITT7520 (5520) ¥ p.A Vee+ = 5.25 V, Vee - = -5.25 V, ( 5520/21) Vm = 0 75 (100) 3 2 =15mV V V,." = 40 mV Common-mode Input pulse: t,= 15 ns, t, ~ 15 ns tw = 50 ns ±2.5 2 ho Test Conditions 1/10111 8 22 -5V, 25"C = 5.25 V, = -5.25 V = 25 C ITT7520, ITT7521 DUAL-CHANNEL SENSE AMPLIFIERS WITH COMPLIMENTARY OUTPUTS SWITCHING CHARACTERISTICS, Vcc+ = 5 V, Vcc - = -5V, Propagation Delay Times Symbol From Input tPLH(OY) A1-A2 or To Output B1-B2 Y tPHL(OY) A1-A2 or tPLH(OZ) B1-B2 Z tPHL(oz) tPLH(SY) Strobe A or B Y tPHL(SY) tPLH(SZ) Strobe A or B Z tPHL(SZ) tPLH(GY, y) Gate Gy Y tPHL(GY, Y) tPLH(GY, z) Gate Gy Z tPHL(GY, z) tPLH(GZ, z) Gate Gz Z tPHL(GZ, z) Test Fig. 25 32 32 32 Max Unit 40 ns 30 ns 35 55 15 39 33 ns ns 15 25 ns ns 30 15 10 = Min 5 V, Vcc Typ CL = 15 pF, RL = 288 {) CL = 15 pF, RL = 288 {} CL = 15 pF, RL = 288 {) CL = 15 pF,RL = 288 {) CL = 15 pF, RL = 288 {) CL = 15 pF, RL = 288 {) CL = 15 pF, RL = 288 {) ns 15 34 ns 55 20 Test Conditions ns 35 10 33 = 25°C ns 30 32 ns 20 20 TYPICAL RECOVERY AND CYCLE TIMES, Vcc+ Parameter Min Typ 100 pF, TA ns ns 20 ns = -5 V, C ext ;;:;;: 100 pF, fA = 25°C Max Unit Test Conditions torD Differential-input overload recovery time (see Note 5) 20 ns. Differential Input Pulse: VlD 2 V, Ir It = 20 ns torC Common-made-input overload recovery (see Note 6) 20 ns Common-Made-Input Pulse: VIC ± 2 V; tr .It 20 ns tcyc(mln) Minimum cycle· time 200 NOTES: 5. Differential-input overload recovery lime is the time necessary for the device to recover· from the specified common-made-input overload signal prior to the strobe-enable signal. = = = = = ns 6. Common-made-input overload recovery time is the time necessary for the device to recover from the specified common-made-input overload signal prior to the strobe-enable signal. 6-.8 - ITT7522, ITT7523 DUAL-CHANNEL SENSE AMPLIFIERS ITT- - - - SEMICONDUCTORS DUAL-CHANNEL SENSE AMPLIFIERS DUAL -IN-LINE PACKAGE PIN CONFIGURATION (TOP VIEW) TRUTH TABLE A L L X X X H X B L X L X X X H Inputs G H H H H L X X 5,[ 5Ji X X X L X L X X H L L X H X Output Y H H H H L L L Cext vcc+ rAI STROBE SA LA2 GATE -V,ef GND INPUTS G 2 OUTPUT +v,ef Definition of Logic Levels r lB2 RL BI INPUTS X L Vm ;;?: VT max Vm :::;; VT min Irrelevant Any G or S V,;;?: VIH min V,:::;; V,L max Irrelevant Input A or 8* Z STROBE SB H GND Vcc- I POSITiVE LOGIC: * A and 8 are differential voltages (V m ) )between A 1 and A2 or 81 and 82, respectively. For these circuits, VIIJ is considered positive Schematic regardless of which terminal of each pair is positive with respect to the other. Vcc+ , v,,, { - { A1 INPUTS RL A2 OUTPUT Y STROBE A { GNO 2 61 INPUTS B2 STROBE B Vcc_ 6-9 ITT7522, ITT7523 DUAL-CHANNEL SENSE AMPLIFIERS ELECTRICAL CHARACTERISTICS (unless otherwise noted Vcc+ = 5 V, Vcc - = -5 V, TA = QOC to 70°C) Test Min Typ**Max Unit Test Conditions Parameter Fig. ~0)11 15 (20)19 mV Vref=15 m'll ITT7522 (5522i* VT Differential input threshold voltage (see Note 3, page 17) 8 7 (35)36 ITT7,523/5523 15 22 mV 40(45)44 I mV Vref =40mV ITT7522 (55 22 ) 40 33 VICF Common-mode input firing voltage (see Note 4, page.17) ±2.5 lIB Differential-input bias current 30 47 ITT7523 / 5523 mV = VIR V Vrel = 40 mY, VI (S) Common-mode input pulse: tr ~ 15 ns, tf ~ 15 ns, tw 50 ns = 2 lro Differential-input offset current 75 ~OO) /LA Vcc+ = 5.25 V, Vce -5.25 V, (5522/23) VID 0 p.A 3 2 = = Vce+ = 5.25 V, Vee - = -5.25 V, V =0 ID VIR High-level input voltage (strobe and gate inputs) 8 V1L Low-level input voltage (strobe and gate inputs) 8 VOH High-level output voltage V 2 0.8 2.4 = = V VeN 4.75 V, Vee -4.75 V, 10H = - 400 /LA 4 8 VOL 0.25 Low-level output voltage 0.4 B IIR High-level input current (strobe and gate inputs) 9 IlL 10H Low-level input current (strobe and gate inputs) High-level output current Short-current output current 11 -2.1 . • Numbers in parenthesis apply to 5522 or 5523 as indicated. 6-10 = = = Vec+ = 5.25 V, Vcc - = -5.25 V, VIR = 2.4 V Vee+ = 5.25 V, Vee - = -5.25 V, VIR = 5.25 V Vec+ = 5.25 V, Vcc - = -5.25 V, VIL = 0.4 V Vce+ = 4.75 V, Vee- = -4.75 V, Vo = 5.25 V Vee+ = 5.25 V, Vcc- = -5.25 V V Vcc+ 4.75 V, Vcc -4.75 V, 10L 16 mA 40 /LA 1 mA -1 -1.6 mA 250 /LA 9 10 los V -3.5' mA ITT7522, ITT7523 DUAL-CHANNEL SENSE AMPLIFIERS ELECTRICAL CHARACTERISTICS (continued) 5 V, Vcc -5 V, TA O°C to 70°C) (unless otherwise noted Vcc+ Test Fig. Parameter Min Typ** Max Unit Test Conditions = = Icc+ Supply current from Vcc+ Icc- Supply current from Vcc - =- 27 36 mA -15 -18 mA 6 6 •• All typical values are at Vcc+ = 5 V, Vcc - = -5 V, TA = -5 V, C SWITCHING CHARACTERISTICS,Vcc+ = 5 V, VccPropagation Delay Times Symbol From Imput tPLH(n) A1-A2 or 81-82' Y Strobe A or 8 Y ; To Output tpHL(n) tPLH(S) tPHL(S) tPLH(G) Gate Test Fig. ext ;;;: 100 pF, TA = 25°C Min Typ Max Unit Test Conditions ns Q = 15 pF, RL - 2880 20 35 30 45 35 20 40 15 TYPICAL RECOVERY AND CYCLE TIMES, Vcc+ = 5 V, Vcc- 25 CL = 15 pF, RL =2880 CL = 15 pF, RL = 2880 ns ns 10 36 ns ns 20 y. tPHL(G) = 25°C = = = Vcc+ = 5.25 V, Vcc- = -5.25 V, TA = 25°C Vcc+ 5.25 V, Vcc -5.25 V. TA 25°C ns = -5 V, C ext ;;;: 100 pF, TA = 25°C - -- Parameter torn Typ Min Differential-input overload recovery time (see Note 5) torc Common-mode-input overload recovery (see Note 6) teye(min) Minimum cycle time NOTES: 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal. Max Unit 20 ns 20 ns 200 ns Test Conditions Differential Input Pulse: VlD = 2 V, tr tE = 20 ns = Common-Mode Input Pulse: VIC = ±2V, tr = tf = 20 ns 6. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal. 6-11 _I mm ITT7524, ITT7525 DUAL SENSE AMPLIFIERS ~~ SEMICONDUCTORS ------------....;...;......;.;.;,;.;..;.;.;...;.;.;.;.;. DUAL -IN-LINE 'PACKAGE PIN CONFIGURATION ' (TOP VIEW) DUAL SENSE AMPLIFIERS TRUTH TABLE INPUTS A S H H L X OUTPUT W H X L L L Definition of Logic Levels Input A* S H VT VID ;;;:: VT max VI;;;:: VIR min VI :::;; Vrr. :::;; '---~ II X L VID min max Irrelevant NC Irrelevant GND I * A is a differential voltage (VIo) between A1 and A2. For these circuits, VIo is considered positive regardless of which terminal is positive with respect to the other. ' POSITIVE LOGIC: W =AS NC - NO INTERNAL CONNECTION Schematic V~+~--------~----~------~ J----+---------+--o Cex! , {1A1 INPUTS 1A2 o---t-----H-------t--W OUTPUT 1W STROBE 2S ~--t--------=+=p VCC_ OUTPUT 2W STROBE 1S '2A1 INPUTS ~fOBE { 2A2 '----+-~_o 6-12 GNO 2 ITT7524, ITT7525 DUAL SENSE AM PLiFIERS ELECTRICAL CHARACTERISTICS (unless otherwise noted Vee O"C to 70'C) T, t = 5 V, -5 V, V('('- Test Fig. Parameter V" Differential-input threshold voltage (see Note 3, page 17) Min 12 * 15(20)19 15 8 (35)35 33 VIC'jo' Common-mode input firing voltage (see Note 4, page 17) Max Unit Test Conditions Typ* (101)11 22 = 15 mV mV V,·,.r ITT7524( 5524 )* ITT7525/ 5525 mV 40 (45)44 mV VI'!.f = 40",V ITT7524{ 5524 ) 40 mV ITT7525/ 5525 47 ±2.5 V V",.r = 40 mY, =V VI(S) IH Common-Mode Input Pulse: t,. ~ 15ns, t, ~ 15 ns, tw 50 ns = lIB 110 Differenti ai-input bias current 2 .Differential-input offset current 2 30 -3 High-level input voltage (strobe inputs) 13 VIL Lov-Ievel input voltage (strobe inputs) 13 VOH High-level output voltage VIII 75 (100) ",A 2 V 0.8 2.4 4 Low-level output voltage V 0.25 0.4 V 40 p.A 1 mA 13 IIH = = = Vcc+ = 4.75 V, Vcc - = -4.75 V. 10L = 16 mA Vcc+ = 5.25 V, Vcc - = -5.25 V. VIII = 2.4 V Vcc+ = 5.25 V, Vcc- = -5.25 V. V = 5.25 V Vcc+ = 5.25 V, Vcc - = -5.25 V. VIL = 0.4 V V Vcc+ 4.75 V. Vcc-4.75 V, 10H -400 p.A 13. VOL = = = Vcc+ = 5.25 V. Vcc - = -5.25 V. Vm = 0 p.A Vcc+ 5.25V. -5.25 V. (5524/25) Vcc Vm 0 High-level input current (strobe inputs) ·14 IH IrL Low-level input current (strobe inputs) los Short-circuit output current Icc+ Supply current from Vcc+ -1 -1.6 mA -3.5 mA Vcc+ - 5.25 V. Vcc -5.25 V 40 5.25 V, mA Vcc+ Vcc -5.25 V, TA 25'C mA Vcc+ 5.25 V, Vcc -5.25 V, TA = 25'C 14 15 -2.1 25 6 Icc - Supply current from Vcc - -15 - 6 ~* All typical values are at Vcc+ = 5 V, Vcc - = - 5 V. TA = 25'C. "Numbers in parenthesis apply to 5524 or 5525 as indicated 6-13 18 = = = = = = ITT7524, ITT7525 DUAL SENSE AMPLIFIERS SWITCHING CHARACTERISTICS, Vcc+ Propagation Delay Times Symbol From Input tl'LH(n) A1-A2 To Output W hHL(n) tpLH(S) Strobe = 5 V, Vcc - Test Fig. Min = -5 V, 15 30 5 V, Vcc Typ CL = 15 pF, - 288 n RL - 288 n RL ns CL - 15 pF, ns 20 Min ns ns 20 37 Parameter 40 25 37 TYPICAL RECOVERY AND CYCLE TIMES, Vcc+ = 25°C Typ Max Unit Test Conditons W tpHL(s) Coxt ;?! 100 pF, TA = -5V, Cext ;?! 100 pF, TA = 25°C Max Unit Test Conditions Differential-input overload recovery time (see Note 5) 20 ns Differential Input Pulse: VII) 2 V, te tf 20 ns t orc Common-mode-input overload recovery time (see Note 6) 20 ns Common-Mode Input Pulse: VIC ±2V, te tf 20 ns tcyc(min) Minimum cycle time 200 ns tOI'D NOTES: 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal. = = = = = = 6. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal. 6-14 ITT7528, ITT7529 _I rI1m _____D_U_A_L_S_E_N_S_E _A_M_P_L_IF_I_ER_S_W_I_T_H .1-.1PREAM PLiFIER TEST POINTS SEMICONDUCTORS DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS· TRUTH TABLE INPUTS A S H H L X L X DUAL-IN-LiNE PACKAGE PIN CONFIGURATION (TOP VIEW) OUTPUT W H L L Definition of logic Levels Input A* S L H X VID ~ VT max VID ~ VT min Irrelevant VI ~ VlH min VI ~ V1L max Irrelevant +V,ef * A is a differential voltage (ViD) between A1 and A2. For these circuits, VlD is. considered positive regardless of which terminal is positive with respect to the other. II POSITIVE LOGIC: W=AS Schematic vcc+o-----~--~--__, TEST POINT IP INPUTS , { . o--'--f==--H---==:=:F1T 'A' lA2 STROBE IS <>---t---t-+--++--' OUTPUT 1W TEST POINT- 2P o---+--H----f, INPUTS { 2AI 2A2 STROBE 2S ~::t===~:S::/:b::!fi 6-15 OUTPUT 2W ~~ROBE ITT7528, ITT7529 DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST POINTS ELECTRICAL CHARACTERISTICS (unless otherwise noted Vcc+ =5V, Vcc - = -5V, TA=O°C to 70°c) Parameter VT Test Fig. Differential-input threshold voltage (see Note 3, page 17) Min 10)11 20 8 ,(35)36 33 VrcF Common--mode input firing voltage (see Note 4, page 17) 1m DifferentiaHnput bias current 2 ho Differential-input offset' current 2 VIR High-level input voltage (strobe inputs) 21 V1L Low-level input voltage (strobe inputs) 21 VOH High-level output voltage 21 VOL Low-level output voltage IIH High-level input current (strobe inputs) hL Low-level input current (strobe inputs) los Short-circuit output current Ice+ Supply current from Vee+ lee- Supply current from Vee - Typ** Max Unit Test Conditions 15 (20)19 40 (45)44 75 (100) 0.8 -1 V 0.4 V Vcc+ =4.75V, Vcc - = -4.75V, IOL=16mA 40 p.A Vce+ =5.2SV, Vee - = -S.2SV, VIH =2.4V 1 mA Vee+ =5.25V, Vee - = -5.25V, VIR=5.2SV -1.6 mA Vec+ =5.2SV, Vee - = -5.25V, VrL =O.4V 0.25 " -3.5 mA Vee+ =5.25V, Vee - = -5.25V, 25 40 mA Vce+ -5.25V, Vee - - -5.25V, TA=25°C -15 -18 rnA Vce+ =5.25V, Vee - = -5.25V, I TA=2SoC -2.1 ** All typical values are at Vee+ = 'S V, Vee - = p.A Vcc+ = 5.25V, (S528/29) Vcc - = -5.25V, VID=O V Vcc+=4.7SV, Vcc-=-4.75V, 10H= -400p.A 4 2.4 6 ITT7529/5529 V 2 6 Vrer =40mV p.A Vcc+ =5.25V, Vcc - =,-5.25V, VID=O 3 22 23 mV ITT7528( 5528 ) V Vref =40mV, VI(S) = VIR Common-Mode Input Pulse: tr::::;;15ns, t r ::::;;15ns, t w =50ns 30 22 ITT7529/ 5529 47 40 ±2.5 21 ITT7528 ( 5528 )* Vrer=15mV 22 15 -5 V, TA • Numbers in parenthesis apply to .5528 or 5529 as indicated. 6 -16 = 25°C ITT7528, ITT7529 DUAL SENSE AMPLIFIERS WITH PREAMPLIFIER TEST PONTS SWITCHING CHARACTERISTICS, Vcc+ = 5 V, Vcc- = ~5 V, TA = 25 C e Propagation Delay Times Symbol From Input tPLH(D) A1-A2 To Output W tPHL(D) tPLH(S) Strobe W tPHL(S) Test Fig. Min 25 39 40 20 15 39 20 ns 30' RL - 2880 ns CL = 15 pF, RL = 2880 ns Min ,Typ Max Unit Test Conditions torD Differential-input overload recovery time (see Note 5) 20 ns torc Common-mode-input overload recovery time (see Note 6) 20 ns t.y.(mln) CL - 15 pF, ns = -5 V, Vcc - = -5 V, TA = 25°C TYPICAL RECOVERY AND CYCLE TIMES, Vcc Parameter Typ Max Unit Test Conditions Differential Input Pulse: VID 2 V, tr 20 ns = Common-Mode Input Pulse: ±2V, tr tr 20 ns V~c Minimum cycle time 200 = = = = ns NOTES: 3. The differential-input threshold voltage (VT ) is defined as the d-c differential-input voltage (VID) required to force the output of the sense amplifier to the logic gate threshold voltage level. 4. Common-mode input firing voltage is the minimum common-mode voltage that will exceed the dynamic range of the 'input at the specified conditions and cause the logic output to switch. The specifed common-mode input signal is applied with a strobe-enable present. 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overlo~d signal prior to the strobe-enable signal. 6. Common"mode~inputoverloadrecovery time is the time necessary for the device to recover from the speCified common-mode-input overload signal prior to the strobe-enable signal. 6-17.. . . IT·T _.___ IT_T_55_3_4_/I_TT_7_5,;",,;.3_4_a_nd_IT_T_5_53_5....'_IT_T_75_3_5 SEMICONDUCTORS schematic diagram' DUAL-IN-LINE PACKAGE PIN CONFIGURATION (TOP VIEW) v+ 'CEXT ~IFFERENTlAL{ STROBE A OUTPUT A INPUT A REFERENCE{INPUT + 120U1rUT STROBE B DIFFERENTIAL { INPUT B OUTPUT A NO CONN. v- OUTPUT B STROBE,S GNDI connection .diagram <>--t---:-:---==F-l V' GND2 Voltage Waveforms ~~ I . l '. ---I t-_,.0.----+1I . -.;.V DIFFERENTIAL AC test circuit INPUT 'DillY 2DIIIV ''''tV rOmV IV ': lDOM DIFfERENTIAL INPUT ':, .~.. ----'v uv , ~ ......L...----. STROlE 'NPUT I.SY 5T,ROlfIN'UT ,......-....-oV··.V OUTPUT. '~- no!! 'p~~""'::'=HI""'" '>-_....jLJ't:I.;;"';.;;",...--()~~~~~T , Ih'INClUDING L_ 'Ji"~: ~ ""'T ":" I --r n -=" I ,,, ,, J 1"G'.D.AD" . ~"'~ I • --I 1--"'" .... ~ .. 1.5V i->= I----I . lDOM 1--, • ,-I ~~ ~1.5.V . 1.5Y I I ---I .V .... r.:::1--, 0 ~'.SV 1. Pulse generators have the following characteristics Zout=5000 tr=tr=:15(.5) ns, PRR=1 MHz 2. Propagation delays A=Diffelreritial input to logical "0" output . B=Differential input to logical "1" output C=Strobe input to logical "0" output D=Strobe input to logical "1" output y-. -sv 6-18 ITT5534/1TT7534 and ITT5535/1TT7535 ELECTRICAL CHARACTERISTICS ITT5534/ITT5535: The following apply for -55°C~TA~125°C. V+=5V±5%. V-=-5V±5% -5V±5% (Note 1) Test Conditions (Each Amplifier) Parameter Differential Input Threshold Voltage (VTH) (Note 2) Min 10(8) Typ Differential & Reference Input Bias Current Unit DiU. Input Ref. Strobe Input Input Logic Output Supply Volt Comments +5.25V ±5V±5% Logic Output <2S0p.A mV ±VTH 15mV +5V +20mA ±5V±5% Logic Output . = = = Vcc+ = 4.75 V, Vcc - = -4.75 V, 10L = 16 rnA Vcc+ = 5.25 V, Vcc - = -5.25 V, V = 2.4 V Vcc+ = 5.25 V, Vcc - = -5.25 V, VIH = 5.25 V Vcc - = -5.25 V, Vcc+ = 5.25 V, V1L = 0.4 V V Vcc+ 4.75 V, Vcc -4.75 V, lOR -400/lA 25 VOL /lA Vcc+ = 5.25 V, Vcc- = -5.25 V,(55234/35 Vm = 0 All typical values are at Vcc+ = 5 V, Vcc - = - 5 V, TA ;::: 25°C. * Numbers in parenthesis apply to 55234 or 55235 as indicated. 6-23 = = = ITT75234, ITT75235 DUAL SENSE AMPLIFIERS SWITCHING CHARACTERISTICS, Vcc+ = 5V, Vcc Test Symbol tPLH(n) From Input To Output A1-A2 W Typ Max Unit Min Fig. 40 tpHL(n) tPLH(s) 25 STROBE W 25 ns 40 ns 25 40 tPHL(s) TYPICAL RECOVERY AND CYCLE TIMES, Vcc+ Parameter = 5V, 15 30 ns Vcc - = 5V, TA Typ Min ns Test Conditions CL = CL -- 15pF, RL = 288 fl 15pF, RL = 288 fl = 25°C Max Unit Test Conditions tORD Differential-input overload recovery time (see Note 5) 20 ns Differentiai Input Pulse: 2 V, VID tr tf 20 ns tORC Common-made-input overload recovery time (see Note 6) 20 ns Common-Mode Input Pulse VIC ±2 V, tcyc(min) Minimum cycle time 200 = = = = ns tr - tf - 20 ns NOTES: 5. Differential-input overload recovery time is the time necessary for the device to recover from the specified common-made-input overload signal prior to the strobe-enable signal. 6. Common-made-input overload recovery time is the time necessary for the device to recover from the specified common-made-input overload signal prior to the strobe-enable signal. 6-24 - ITT7520 SENSE AMPLIFIERS ITT- - - - SEMICONDUCTORS SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION d·c test circuits· VIO ~ SEE ______r-~OH TEST TABLE ANO /ff., { v .... ~ ~" } NOTE ________-< ~llOH 11 ':'" -= ~ I ~ TEST TABLE CIRCUIT TYPE ITT7520 ITT7521 INPUTS Yr.r OUTPUTY Yrn Yo A1·A2 or 81·82 15 mV ::;;;11 mV ::;;;0.4 V A1·A2 or 81·82 15 mV ~19 A1·A2 or 81·82 40 mV ::;;;36 mV ::;;;0.4 V A1·A2 or 81·82 40 mV ~44 mV ~2.4V IOH OUTPUTZ IOL 16 mA -400 }LA A1·A2 or 81·82 15 mV A1·A2 or 81·82 15 mV ~22 A1·A2 or 81-82 40 mV ::;;;33 mV ::;;;0.4 V A1-A2 or 81-82 40 mV ~47 16 mA ~2.4V 16 mA 16 mA -400 }LA ~2.4V 16 mA 400 }LA ::;;;0.4 V 16 mA -400 }LA ~2.4V ~2.4 V 16 mA -400 }LA ::;;;0.4 V NOTE A: Each pair of differential inputs is tested separately with the other pair grounded. FIGURE 1-YT • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-25 IOL -400 }LA ::;;;0.4 V mV ~2.4V -400 }LA mV IOH ~2.4V ::;;;0.4 V mV ~2.4V -400 }LA ::;;; 8 mV ::;;;0.4 V Yo 16 mA 1117520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits* (continued) TEST POINTS vcc~ STROBES (SEE TABLE 6,.;x; :r cc + ~-~1~~T~---- ______'1-, SEE NOTES ~ AandB 4 ALL CIRCUIT TYPES . L __________ ______ .J ~-- NOTES: A. Each preamplifier is tested separately. Inputs not under test are grounded. B. 1.0 = hw and/or hw, 1.0 = 1.(1) - !tw, are the currents into the two inputs of the pair under test. Pin Connections (Other Than Those Shown Above) 100 pF to GND Circuit Types ITT7520, ITT7521 0- .. ITT7522, ITT7523 ITT7524, ITT7525 . ITT7528, ITT7529 ITT75234, ITT75235 Apply Vcc+ Cext GyoGZ,SA'SB CD CD C CD C CD @@)®@ Cext ext ext Apply GND @@ G, 8A' SB @@@ @@ @@ @ GND 2 ® ®@ 1W,2W @@ 1W,2W @)@@)@ 18, 28 GND.2 ®® ® 6-26 AL, Y 1P, 2P, 18, 28 * Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. Other V, Z GND 2 18,28 Leave Open 1W,2W @@ ITT7520 SENSE AM PLiFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits· (continued) FIGURE 3-Vm, V1L, VOH, Vlo . . . mv~~::. VOL P-I.....--I-(1ii)3 OPEN AI TABLE Ll.!!!..r.'UJ... , ~ V..,-20rnVo----I--{! TEST TABLE Test 1m at STROBE SA 1m at STROBE SB Input A1 GND GND Input B1 Strobe SA GND Vm GND V1L Gate Gy Gate Gz V1L V1L V1L Vm V1L V1L Strobe SB 1m at GATE Gy VID VID Vm Vm VIH V1L 1m at GATE Gz GND GND VIL V1L VIH VIH Ill, at STROBE SA VID GND V1L V1L V1L V1L VIL lIT, at STROBE SB GND VID VIL V1L V1L I", at GATE Gy GND GND V1L V1L V1L V1L I", at GATE Gz GND GND V1L V1L V1L V1L FIGURE 4-lm , • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-27 IxL ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits" (continuecJ) ,I v..,.20mv....--""',"" ~,,"'CL/" l'OSIZI ' • L2-----~~~'!!:~~-----J ~IOOPF llos,vl ~ FIGURE 5-108 NOTE A: When testing 108(Y), Pin 10 is open; when testing 108(Z), Pin 10 is grounded. t: TEST POINTS c• YC01, ~ ~ 'cc-i,-~ --:--t---'1) \.,J ':[ +ICC+ - - ---- 1 I 2 I , I ' I I I I , !, I V..,.20~V L _____ ~~::~~'~~~------J Pin Connections (Other Than Those Shown Above) Circuit Types 100 pF to GND Apply GND Leave Open ITT7520, ITT7521 Cext Gy , Gz' SA' SB Y, Z @@)@)@ ITT7522, ITT7523 Cext G, SA' SB' GND 2 0) @®@@ ®® R Y @@ ITT7524, ITT7525 Cext 1S, 2S,·GND 2 @B@ @@ ITT7528, ITT7529 0 1W,2W Cext 1S,2S 1P, 2P, 1W, 2W 0) @@ @)@)@)@ 1~~G.v2 15 11 13 1W'_Gi' L G4) 12 CD ITT75234, ITT75235 ... . Figure 6-lcc+, Icc.:. .. Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-28 L, ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits· (continued) v.,o------0~ TEST TABLE Output Circuit Type Inputs Vo IOH ITT7522 A1-A2 or 81-82 15 mV ::::;11mV ~2.4V -400 p.A A1-A2 or 81-82 15 mV ~19 ::::;0.4 A1-A2 or 81-82 40 mV ::::;36 mV ~2.4V A1-A2 or 81-82 40 mV ~44 mV ::::;0.4 V A1-A2 or 81-82 15 mV ::::; 8 mV ~2.4V A1-A2 or 81-82 15 mV ~2emV ::::;0.4 V A1-A2 or 81-82 40 mV ::::;33 mV ~2.4V A1-A2 or 81-82 40 mV ~47 ::::;0.4 V ITT7523 Vr., Vm mV mV NOTE A: Each pair of differential inputs is tested separately with the other pair grounded. FIGURE 7-VT Vm - 2OmVo---+-{!)>t-P-..... FIGURE B-VIH' V1L, V oH, VOL * Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-29 V IOL 16 mA -400 p.A 16 mA -400 p.A 16 mA -490 p.A 16 mA IT17520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits* (continued) "H VIH~SEE ~=~==~l--l TEST Vll~ TABLE 'll TEST TABLE A, Input B, Strobe SA Strobe So Gate G IIH at STROBE SA GND GND VIH '!IL VIH hn at STROBE So Input Test GND GND VIL VIH VIH 1111 at GATE VlD V lD V1JI V1JI V1JI hL at STROBE SA VlD GND VIL V'L V1JI hL at STROBE S8 GND V,o VIL GND GND VIL V'L V1L V1JI hL at GATE FIGURE 9-hn, IlL Vo I I I I , :' I vr•• ' 20mv---r--...:"", , 4 L~ __. ___ ..!~2~&,:!!:~::: ____ J *TOOPF ~ ~ FIGURE 10-loH • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-30 y VIL ITT7520 SENSE AM PLiFIERS PARAMETER MEASUREMENT INFORMATION doc Test Circuits· V,.,·20mV FIGURE 11-los TEST TABLE Output Circuit Type ITT7524 ITT7525 Inputs Vre, V ID Vo A1-A2 15 mV ::::;;11mV ::::;;0.4 V A1-A2 15 mV ;::19 mV ;::2.4 V A1-A2 40 mV ::::;;36 mV ::::;;0.4 V A1-A2 40 mV ;::44 mV ;::2.4 V A1-A2 15 mV ::::;; 8 mV ::::;;0.4 V A1-A2 15 mV ;::22 mV ;::2.4 V A1-A2 40 mV ::::;;33 mV ::::;;0.4 V A1-A2 40 mV ;::47 mV ;::2.4 V NOTE A: Each pair of differential inputs is tested separately with its corresponding output. FIGURE 12-VT * Arrows indicate actual direction of current flow. Current into a-terminal is a positive-value. 6-31 10H IOL 16 mV -400 }J-A 16 mV -400 !LA 16 mV -400 !LA 16 mV -400 !LA ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits* lW T~~~H } '_ _~'-~OH ~l { TABLE Vrlf" 20 mV -" Il10H 0-----+-< 1L1 FIGURE 13-VIH' V1L, VOH, VOL t-------, VIHd'IH SEE TEST Vll ...... T A B L E i - - - - - - . ',l Vlo-COmV ~ SEE >-~-l_r-----~14 OPEN lA23 TEST 2A1 TABLE 2A Vr.f· 20 m V o - - - - _ I _ { TEST TABLE Test Input 1A1 Input 2A1 STROBE1S GND GND V1L VIL VIH hL at STROBE 1S VID GND GND GND VIH IIH at STROBE 2S V1L V1L hL at STROBE 2S GND VID VIL V1L IIH at STROBE 1S FIGURE 14-IIH, IlL • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-32 STROBE 2S ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits' (continued) FIGURE 15-105 * Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. v" ~ 'A' SEE TEST TABLE 3 'lA1 ANO I I I I I 6 NOTE A I SEE 2W I 2A'l I I I.J :: v"'~~ :'.~-, • ~ ," } {=rtTI ~" 2 lA2 L q; _J ~ __ .:'.:': ':2"-'~,=,':' l 1 lOOPF ]n TEST TABLE Output Circuit Type Inputs Vrer ITT7528 A1-A2 15 mV :(11 mV A1-A2 15 mV ~19mV ~2.4V A1-A2 40 mV :(36 mV :(0.4 V A1-A2 40 mV ~44mV ~2.4V ITT7529 VID Vo A1-A2 15 mV :(8 mV :(0.4 V A1-A2 15 mV ~22mV ~2.4V A1-A2 40 mV :(33 mV :(0.4 V A1-A2 40 mV ~47mV ~2.4V NOTE A: Each pair of inputs is tested separately with its corresponding output. FIGURE 16-V~. 6-33 10H :(0.4 V 10L 16 mA -400 jJ.A 16 mA -400 jJ.A 16 mA -400 jJ.A 16 mA -400 jJ.A ITT7520 SENSE AM PLiFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits· (continued) v 10 --40 m V~SEE TRUTH TABLE -40mV l - GND I I Vref • 20mV~----t-{ 'L I f -- I I _75':8/.!.5~c.!!'c~r!~ _-l 1 ~'OOPF FIGURE 17-VIH' V1L, VOH, VOL • Arrows indicate actual direction of current flow. Current into a ·terminal is a positive-value. v,.,. 20 mV o-----'-+--< TEST TABLE Test Input 1A1 Input 2A1 Strobe 1S GND GND VIL VIL VIII hL at STROBE 1S VID GND GND GND VIH IIII at STROBE 2S V1L V1L IlL at STROBE 2S GND VID VIL VIL IIII at STROBE 1S FIGURE 18-IIH, /rL 6.,...,.34 Strobe 2S ---.- ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION doc test circuits· (continued) V,e!.20 m Vo-----IH")-+f:'o.. FIGURE 19-108 • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. TEST TABLE Circuit Type Inputs Vr•c Vm ITT75234 A1-A2 15 mV ~11 ~19 ITT75235 Ou~ut Vo 10H mV ~2.4V -400 p.A A1-A2 15 mV mV ~O.4V A1-A2 40mV ~36mV ~2.4V A1-A2 40mV ~44mV ~O.4V A1-A2 15 mV ~ ~2.4V A1-A2 15 mV ~22mV ~O.4V A1-A2 40 mV ~33 mV ~2.4V A1-A2 40 mV ~47mV ~O.4V 8mV NOTE A: Each pair of differential inputs is tested separately with its correspondng output. Figure 20-VT • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-35 10L 16 mA -400 p.A 16 mA -400 p.A 16 mA -400 p.A 16 mA ITT7520 SENSE AMPLIFIER$ PARAMETER MEASUREMENT INFORMATION doc test circuits* (continued) 1 IW SEE T~~t} IA2 TRUTH VIO ~ 40 mV TABLE 2A H" COmV l ~GND V re," 20mV { -----..,...-l'+OH 10L ~ TABLE A I 0-----+-< I Hlr I I I I I · "-----',,",-""'f"'fc-J ':' "'::" ':' -=- Figure 21-VIH, V1L, VoH, VOL V'H~"H TEST t - - - - - - - - , 1-----..., SEE VIL ..... TABLE 'll 'W ~~-l~~----~t4~EN >_-l~~----__:<12 I Vr .,·20mVC>-----t-{ OPEN 2W I I ·"-------~ll-J I I I oJ. ':" -=- TEST TABLE Test is Input 1A1 Input 2A1 Strobe 1S Strobe 2S VIH V1L V1L VIR V1L V1L V1L V1L IIR at STROBE 2S GND GND hL at STROBE 1S VID GND GND GND hL at STROBE 2S GND VID IIR at STROBE Figure 22-IIH, IrL • Arrows indicate actual direction of current flow. Current into a terminal is a positive-value. 6-36 ITT7520 SENSE AMPLIFIERS r ee • PARAMETER MEASUREMENT INFORMATION d·c test circuits· (continued) -----~,'.w ,, " '2W 1 ,, I V r.,. ---- 1 20 mVo---+--{! ""'",.-".,.~ Figure 23 -los " , ~j J ~os PARAMETER MEASUREMENT INFORMATION Switching Characteristics vcc_~ ro 8 A,r- ~ Gz ---------- --- 28811 28811 ) -_ _ _-+-o0U~UT CL ' '5 pF-::I:" (Set Note 8) 60n 50n "=' SOn &On GATEGy INPUT TEST CIRCUIT VOLTAGE WAVEFORMS ------- ~ GATEG y INPUT NOTES: A. The pulse generator has the following characteristics: Zout = 500, tr = t, = 15 ± 5ns, tw 100 ns, and PRR 1 MHz. = = I I '\:.JL' . l.r- ----.J1.t--~ ~ tpHl.IGY, VI I --l I I OUTPUT y I I I I 1.5V .: ~ B. CL includes probe and jig capacitance. OUTPUT ~ tPLHIGY,YI I '. - - - - - 3.• V 1.6 v 1.SV I . ov ~=""---"";"VOH 1.5V : - - - - - - - - - - vOL 'PLHIGY,ZI Z_ _ _ _ _ _ _ _..J ....f IPHLIGY,ZI ..... v . ". \ : - - ----V OH VOL Figure 24-ITT7520/ITT7521 Propagation Delay Times From Gate Gy 6-37 ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION Switching Characteristics (continued) VCC_j r-T -- --- 288~! 288!! 'r---.....-o OUTPUT Cl • 15 pF-:I:' (See NoteD) ';'" Vref = 20 mVo-l-+-+-+--< SOIl SOU SOl! SOu TEST CIRCUIT GATE G Z INPUT /" _ _ _ _- - I tpHL(GZ. Z) OUTPUT Z - - - I --I - - - 3.5 V OV t- ~~~_V ________ r- tpLH(GZ. Z) J~r~-v--_--_-----_--_--_--_-_-~~~ VOLTAGE WAVEFORMS NOTES: A. The pulse generator has the following characteristics: Zout = 500, tr = tf = 15 ± 5ns, tw - = 100 ns, and PRR = 1 MHz. B. CL includes probe and jig capacitance. Figure 25-ITT7520/ITT7521 Propagation Delay Times From Gate Gz z 11T7520 SENSE AM PLiFIERS PARAMETER MEASUREMENT INFORMATION Switching Characteristics (continued) DIFFERENTIAL INPUT 288u V ..f '" 2OmVO-_ _f--{ TEST CIRCUIT ~omv DIFFERENTIAL INPUT PULSE Ie- STRO~E 15 . V INPUT PULSE I. L .HLIOI OUTPUT I:! k:.., I I _ I 20mV ~1 --I'------;,rf'--J I '..2 --L...--.I t.- -I I.. II 4.-.- - tw2 1-1 1.5 V £Of_ _ _ _oJ '~HLISI ~.5V -.I If "\1.5 V 0V t ~1 -I I I- tPLHISI ., '~'\:~:J1.5V - VOLTAGE WAVEFORMS NOTES: A. The pulse generators have the following characteristics: Zout = 500, tr = tr = 15 ± 5ns, twl = 100ns, tW2 = 300 ns, PRR = 1 MHz. 8. The strobe input pulse is applied to Strobe SA when testing inputs A1-A2 and to Strobe SB when testing inputs 81-82. C. CL includes probe jig capacitance. Figure 26 -ITT7522/ITT7523 Propagation Delay Times From Differential· a.nd Strobe Inputs 6-39 ov ~-:----·':'-3.5V IfI.--.I . 1.5 V tpLHIOI ~ - .' V OH ---vOL ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION Switching Characteristics (continued) vcc-r A1 r-~--------- 28811 OUTPUT V vref = 20 mV o--+--1--t-+--{, 50!l 501: Sal: 50~~ TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. The pulse generator has the following charson, tr tf 15 ± 5 ns, acteristics: Zo t p• 100 ns, t p' 300 ns, t p' = 0.8 p..s, PRR = l' MHz. = = = = = B. CL includes probe and jig capacitance. Figure 27-ITT7522/1TT7523 Propagation Delay Times From Gate Input 6 - 40 ITT7520 SENSE AM PLIFIERS PARAMETER MEASUREMENT INFORMATION SWitching Characteristics (continued) DIFFERENTIAL INPUT V'e! ~ 20 rnV o---t-(0--+-f.' TEST CIRCUIT i ..J{~, 1'. . DIFFERENTIAL INPUT _PU_LS_E_ _ r-Ji 20_m_v_ _-I1 20 mV ~'w,~ ~ I I I I· STROBE~NPUT 1 5V 1 I 15. V PULSE . I.---f I 'w2 ,_ -t----l --I r- ----....... 'w2 .. r:::-":l.SV - 1-/- - - - ' '-- -.J I ' •• , V- - .:..... - - -..J r--~.- !.- -.j 'PLHISI----' mv - - :Ov - ------I Ii ,'v i\.1~ 'PHLIDI Asv 'PLHIDI-<1"-OUTPUT ~:V - 20 mV . - - - NOTES: A. The pulse generators have the following characteristics: Zout 50 0, tr tr 15 ± 5 ns, twl 100ns, tw, 300 ns, PRR 1 MHz. = = = = 8. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when input 2A 1-2A2 are being tested. C. C. L includes probe and jig capacitance. Figure 28-ITT7524/ITT7525 Propagation Delay Times 6- 41 v - - V DH '------ VOLTAGE WAVEFORMS = = 0 'PHLISI T1.5V \5V '-.---17--/-----' - - 3.5 V VOL ITT7520 SENSE AMPLIFIERS PARAMETER MEASUREMENT INFORMATION SWitching Characteristics (continued) DIFFERENTIAL INPUT l lW I Cl OUTPUT 13 15 pF 'T" hse.:- NOle CI -= I ?----4'"t-,-\-___----1..;{'1Z'f-_ _ -'>----~:::{::~------~'W~'.~~OO~T I CL · , . , · " , ICS-NotlCI-:b- I ;>--T---rIP-------+.::-@12)-----~-o OtJ:!UT 1M I V ...f· 20 mY ()---~f--( I I ~--1-fJ I" 11 .". -= TEST CIRCUIT DIFFERENTIAL ~~ -J" INPUT_PU_LS __ E ___ 20 mV 1\,-20_m_v_ _-il i r--J'i I-'w,--..I I--- I I STAOBE~NPUT I. I PULSE . ,.5V. I I--iI I. 'w2 --I I-'PLHIO) I " l ~ OUTPUT 1.5V ~-.--------3.5V lC· 1-1----' I.-. 'w' .....j ' - - - - - - .-.J r-----l r5V 1.5 V +---I 'PHLIO)--,!.- 20mV tpHLIS)~ 1.5 V i\',5V I OV tpLHIS) \:.j,r-----VOH I 1.5 V 1.5V - - - - - - - - VOL. VOLTAGE WAVEFORMS NOTES A. The pulse generators have the following characteristics: Zout son, tr tf 15 ± 5ns, tWi 100ns, t w , = 300 ns, and PRR = 1 MHz. = = = B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when input 2A1-2A2 are being tested. C. CL includes probe and jig capacitance. Figure30-ITT75234/ITT75235 Propagation Delay Times 6-43 ITT7520 SENSE AMPLIFIERS TYPICAL CHARACTERISTICS THRESHOLD VOLTAGE THRESHOLD VOLTAGE vs vs RFERENCE VOLTAGE SUPPLY VOLTAGE 50 > E . VCCt-SV VCC_ • -5 V •• / TA -O'Clo7frC ~JS V !! (; 30 ...>(; ~ ~ I .... 2. V V re , > ~ V 20 " / V 10 20mV ~ g' 22 '0 21 V 2' ~ TA -2SC 23 r--- > :220 V o ~ 19 ~ 18 f- ~11 > > - ---- 16 00 5 10 15 10 25 30 35 40 045 4,75 50 Figure 32 Figure 31 NORMALIZED THRESHOLD VOLTAGE vs PULSE REPETITION RATE FREE-AIR TEMPERATURE '0 ~ vCC+-sv Vcc_· -5V V,..-20mV 1.11 T A • 2S-e 1.4 ~ J m V IISI • V 1H O.B 0.5 ~ -2 0 .• 0.2 > Vcc_~-5V ~ v ~ I f- tf..1'V tCF Vcc." 5 v I 1.2 Z 1 I I, J "c ~ i ig "'" ~ > COMMON-MODE FIRING VOLTAGE vs ~ t,' o ~ ,Ir" 15ns,',.; 15ns, '",," SOns E o I U. I 0-' 0 o 0,01 0,' , 10 :> 100 rt'- 20mV ("IIIIIII'III"',I<1'-/II{III//'Il/"" -1 0-3 1 0.001 )0 50 . ~ , '"' 3' !D 30 ~ 25 ~ 0 60 "cc-" -5V V ID .. 0 ! 1.0 ~ 0.9 VCCt ·5\1 Vcc.--!lV ::J 0.8 V'O·O !' 07 '-' I ......... to.... o 0.6 t--... ~ 0.5 : 0 .• ~ OJ o --- b-.,. ~ 02 001 I o 70 vs • 0 50 FREE-AIR TEMPERATURE I !D 40 FREE-AIR TEMPERATURE 1: o :lO vs "cc."SV •• I DIFFERENTIAL-INPUT OFFSET CURRENT DIFFERENTIAL-INPUT BIAS CURRENT T- 'Z.n I f I Figure 34 Figure 33 c I -V leF TA-Freeo Air Temperalure-oC PRR-Puls. Rt'petition Rote-MHz 0 5.5 '5.25 Vee 1" and VCC--Supply Voltages·- V Vret- ReferenC'e Voltage-mv' 10 70 JO 40 so 60 " 70 TA- Free Air Temperoture-OC Figure 35 . 10 10 ·30 40 Figure 36 6-44 50 TA - Free Air Temperature M -q.c ITT7520 SENSE AMPLIFIERS TYPICAL CHARACTERISTICS I-IIGH-LEVEL INPUT CURRENT LOW-LEVEL INPUT CURRENT vs vs INPUT VOLTAGE INPI.lT VOLTAGE -2 '0 '"tv ~ E VCC_· -5V TA ·2S"C 8 ,.. . .., 3 '" 2 -' TA .2S·C _1.5 ..," c3 ' 1ii Vcc_--sv ~t 'l; 6 a. c vcc.-sv '" vcc.-sv 1 _. f'.. V 3 ~ i: o -' •:::! [)' • = I DO • , ......... -=;; 1/ r--.... "\ -05 o o 3 ..• D.' V,-lnputVDltDge-V V,- Input Voltoge-V Figure 38 Figure 37 OUTPUT VOLTAGE OUTPUT VOLTAGE vs vs DIFFERENTIAL-INPUT VOLTAGE DIFFERENTIAL-INPUT VOLTAGE SN7522,SN7523; Z OUTPUT OF 7521 1520, > .. I !!'" ~ 7524. - Vr·f·'~mv > &, 3 .3I ' ~ !!3~~~~ V,e,-3SmV Vcc-- -sv o IOH --400 .. A ~ -; "} VCC.-SV ~ IOL -0 TA -2S-C VCC_-- SV LOH • -400 ~A 1 I 10 15 ~ W ~ ~ D~~~~==~~~~~ o ~ 5 10 ~ ; o ..> r-..... 4 l"""- I"--. 3 I vcc.-sv Vcc-· -sv .: 0.4 T A • 25~C 1i .,.... 2 I • o '" 0.2 Vcc_· -5V ;. .3 0.1 TA ·2S"C ~ o > '1 1 I I I o -200 -400 -800 -BOO . 0.3 ~ Vee .. ·5V > o D o a :;: 40 0.6 ~ r-.... !'oo. ;; ~ 35 LOW-LEVEL OUTPUT CURRENT ....... ~ 30 vs HIGH-LEVEL OUTPUT CURRENT "" . 25 LOW-LEVEL OUTPUT VOLTAGE vs !! 20 Figure 40 HIGH-LEVEL OUTPUT VOLTAGE co IS VID-Diff.,.nliollnpul VDltoge- mV Figure 39 .• +-f-+---:f-+--' +----~_t_~~-t-- 'OL· 0 TA .2S·C V, D Dilferentlallnput Vollagl-m V >·6 r--- 1 V,.,.25mV ~t-- '0 > 5 r- V,.,·,SmV I I vcc.-sv o 7528, 7529: ---:7520, 7521; _ I V",-3SmV o .1 I--vr.f·2smv " ~ 7525, v OUTPUT Of -1000 IOH -High-Level Oulput eurr.nl-~A DO ~ ..- 2.,. k-' tnt . '.'.1Ir IOL- Low Lavel Output eurrent-mA Figure 41 Figure 42 6-45 ITT7520 SENSE AMPLIFIERS TYPICAL APPLICATIONS Small Memory Systems This application demonstrates an improved method of sensing data from relatively small memory systems. Two individual core planes, usually consisting of 4096 cores each, can be interfaced by each of the dual-channel ITT7524 or ITT7525 sense amplifiers, see Figure K. Standard TTL or DTL integrated circuits, driven directly from the compatible sense-amplifier outputs, may be selected to serve as the memory data register (MDR). STROBE .It. SENSE LINE 1 PLANE 1 4096 CORES (Typical) MEMORY DATA REGISTER r:- - - - - - 752417525 r-----, I I t---'.-----T""I _---4 __ y---r-----i I BIT 1 I I I I 1---- -J I I SENSE LINE 2 PLANE 2 4096 CORES I I I BIT 2 (Typical) I I L __ _ I ~----~ - SENSE LINE 3 7524/ 7525- - , I I I PLANE 3 4096 CORES I ~---II---""1 (Typical) I I I ~~-J I I BIT 3 I I : L-----i I I SENSE LINE 4 I PLANE 4 I 4096 CORES (Typical) )--'--'1----1 '---~J I L ____1_ _ _ _ .,...._.J I I I I BIT 4 I I I L ____ J \~------------------------------~vr------------------------------~' To additional planes and 7524's or 7525'$ as necessary for complete memory word Figure K-Sensing Small Memory Systems 6-46 ITT7520 SENSE AMPLIFIERS Large Memory Systems This application demonstrates an improved method of sensing data from large memory systems. The signal-to-noise ratio can be increased by sectioning the large core planes as illustrated in Figure L. Two segments, usually consisting of 409.6 cores each, can be interfaced by each of the dual-input channels of ITT7420/ITT7421 or ITT74221lTT7423 sense amplifiers. The cascaded output gates of ITT- circuits may be connected to serve as the memory data register (MDR). A number of ITT7522/ITT7523 sense amplifiers may be wire-AND connected to expand the input function of the MDR to interface all the segments of the plane. Complementary outputs, clear, and preset functions are provided for the MDR. Rules for combined fan-out and wireAND capabilities must be observed. 7520/lTT7521 SEGMENTED CORE PLANE (reprot:lntl onG bit in momory word) STROBE J""L SENSE LINE 1A r: - - - - - - - - ~2;;;r 7521-:;;;- SEGMENT A 4096 CORES (Typical) --l Output Connoctsd as Memory Dati Register (MDR) SENSE LINE 1B Y}MDR SEGMENT B 4096 CORES (Typical) IO--r-....- O z OUTPUTS I L __ _ MDR CLEAR (GATE Gz) SENSE LINE 1C r;; - SEGMENT C - - - - - 7522 ;;;-1523.;;;j - - "I as sense· input expander 4096 CORES for 7520 or 7521 (Typical) RT RT I I ~NSE LI:E 10 I I I I I I I SEGMENT 0 4096 CORES I (Typical) I I - _______ -.J -U- MDR PRESET (GATE) ~--------------------------~vr-----------------------------' To additional 7522's or 1523', to provide necessary numbor of sensa inputs Figure L-Sensing Large Memory Systems 6-47 WIRE·AND CONNECTION m IT _ JL ______ ITT3671 HI_G_H_-S_P_E_E_D_D_U_A_L__ SE_N_S_E_A_M __ P_Ll_FI_E_R SEMICONDUCTORS HIGH-SPEED DUAL SENSE AMPLIFIER High-speed dual sense amplifier with built-in data register and data buffer for application in coincident-current core memories. Functional Diagram The ITT3671 is a dual sense amolifier with a built-in data register and data buffer. It is designed for use in high speed core memory systems. It detects bi-polar differential-input signals from the memory and provides the complete interface between the memory and logic section. DL 3 The ITT3671 sense amplifier is completely dc coupled, and utilizes a "matched-amplifier" technique. The reference amplifier circuit is inherently stable and requires no external or internal frequency compensation. Features Customer Benefits • ±2 mv threshold sensitivity • System performance • Threshold voltage independent of temperature and supply voltage variations • No external frequency compensation required • Reference amplifier inherently stable • Package count, space, cost reduction, increased reliability • Built-in data register with provisions for external data inputs • Drive 450 pf load in 15 ns • Built-in data buffer • Reduced system power • Low power consumption • Reference amplifier less sensitive to noise • Internal reference voltage attenuator • Ease of design PIN OUT DIAGRAM • Two independent channels • TTL compatible logic inputs and outputs TVP·OIO SENSE INPUT A I I SENSE INPUT B I 2 :oi9L r DECOUPLING NODE SENSE BUFFER OUTPUT I I SENSE vccGROUND 19 DATA IN I 18 DATA IN 2 REGISTER INPUT 2 9 REGISTER OUTPUT 2 10 OATA LOAD II BUFFER INPUT VREF TVP 045 .055 STROBE I CHANNEL SELECT.J CHANNEL SELECT 2 DET- OUT I REG. IN. I REGISTER OUTPUT I 15 BUFFER OUTPUT 2 DETECTOR OUTPUT 2 RESET' 6-48 • ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER Definition of logic levels TRUTH TABLE Dill. Logic Inputs Output Inpul S CSI DI DL G R X X X X X X X X X X X X X X X X X L L L L L L L L L L L L L L L L L L L L L L L L H L L L L H H L L H H L L ML ML X X X H H H H X H X H H H L H L H L H L H L H L H L H L H L H L H L H L H L H L H X X L L L L L L L L H H H H H H H H H H H H L L L L H H H H H H H L L L L L L L L H H H H L L L L H H H H L L L L H H L L H H L L H H L L H H L L H H H H L L H H L L H H H H H H H H L L L L H H H H H X H L L L X H H H H L H H X X L L H H L H L H L H L H L H Reg, In L L H X X H ML ML X X ML ML X X ML ML X X ML ML X X ML ML X X ML ML X X ML ML X X X X H H H H 0 ML ML L L L L L L H H L L L L L L H H L L L L L L H H L L L L H H H H L L X H H H L H H H H H H Input H L X A Vm VT max Vm VT min Irrelevant S VI VIH min VI VIL max Irrelevant 'Connect to detector output unless otherwise noted. H L H H H H H H H L H H H H H H H L H H H H H L H L H H ML=Momentary low followed by a high Absolute Maximum Ratings Supply Voltages (See Note 1) Vcc+ ................................. 7V Vcc - ................................ 7V Differential Input Voltage, Vm or V REF • • • • ±5V Voltage any Input to Ground .......... 5.5V Storage Temperature Range - 55°C to 150°C Operating Temperature Range 3671-1, 3673-1 Tc ........ -55°C to 125°C 3671-5, 3673-5 TA ............ O°C to 70°C Recommended Operating Conditions Min Nom Max Unit Vcc+ (See Note 1) .... 4.75 5 5.25 -4.75 -5 -5.25 Vcc - (See Note 1) VREF (See Note 1) .. ±1.5 ±2.1 ±4.5 Block Diagram - ITT3671 CH SEL I DETOUTI REG IN I BUFFER OUT I REG OUT I IN AI BUFFER INPUT IN BI RESET VREF STROBE IN A2 DATA LOAD IN 82 REG OUT 2 BUFFER OUT 2 CH SEL2 OET DATA OUT2 IN 2 REG IH2 6-49 v V V ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER ELECTRICAL CHARACTERISTICS Over Specified Free-Air Temperature' Range Vcc+ =SV, Vcc - = -SV, VnEF = -2.1V (Unless Otherwise Noted) Symb. Parameter VT Differential - Input Threshold Voltage Min Typ Max S 9 3 11 Test Fig. Unit Test Conditions TA =2SoC Vcc+ =SV, Vee - = -SV 3671-S 4 10 1 13 4.S 9.S Vee+ =SV ±S% 2 12 Vee - = 5V ±S% 3673-1 4 10 Vee+ 1 3673-S mV Temp. Oper. 1 lIB -2.1V VREF = 3671-1 3673-1 Differential - input bias current Vee - = 13 20 =SV 2 -SV p.A Vee+. =SV, Vee - VID = -SV, = OV Ito Differential - input offfset cu rrent VIH High-level input voltage (strobe and logic inputs) V1L Low-level input voltage (strobe and logic inputs) VOH High-level output voltage (register output) 2.4 4 V Vec+ = 4.7SV, Vee - = -4.7SV, IOH = -120 p..A VOH High-level output voltage (detector' output) 2.4 S V Vee+ - 4.7SV, Vee -4.7SV, IOH High-level output voltage (buffer output) 2S0 4 p..A Vee+ = 4.7SV, Vec - = -4.7SV, VOH = S.2SV VOL Low-level output voltage (register output) .4 4 V Vee+ = 4.7SV, Vee - = -4.7SV, IOL 4.8ma VOL Low-level output voltage (detector output) .4 S V Vee+ :::: 4.7SV, Vee -4.7SV VOL Low-level output voltage (buffer output) .S 4 V O.S 2 2 .8 p..A Vee+ = SV, Vee - = -SV, VID = OV 4,~ V 4,S V = = = Vee+ = 4.7SV, Vee -4.7SV, IOL '6-50 = = 2SmA Range 3671-1 3671-S 3673-S ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER ELECTRICAL CHARACTERISTICS Over Specified Free-Air Temperature Range Vcc+ =5V, Vcc- = -5V, VREF Symb. = -2.1V (Unless Otherwise Noted) Min Typ Parameter 6 Unit Test Conditions Strobe, reset, buffer input -3.2 input current Register 2 channel select -3.0 -1.6 rnA Vcc - = -5.25V, rnA data load data in -a.4 2.0 rnA V,L = 0.4V rnA High-level input current (strobe and logic inputs) IR High-level input current 1 6 Data in channel select 40 -750 Register Strobe, reset buffer input Data load 80 160 Short-circuit output current -20 register output los Test Fig. Low-level -IF IRn Max rnA Vee .. = 5.2SV rnA Vcc+ = S.25V Vcc - = -5.25V, V,M = 5.25V p.A Vcc+ = 5.25V /LA p.A Vcc - = -S.2SV, p.A VIR = 2.4V -a0 3 rnA Vcc+ = 5V, Vcc - = -5.25V, Vo =.OV -20 IREF Reference input current .5 2 rnA Vcc+ Vcc VREF TA = Icc- Supply current from Vcc - 18 2 rnA Vcc+ = 5.25V, Vcc - = -5.25V, TA = 25°C Icc+ Supply current from Vcc+ 55 2 rnA Vcc+ = 5.25V Vcc - = -5.25V, TA = 25°C NOTE 1: These voltage values are with respect to network ground terminal. 6-51 = 5.25V, = ~5.25V, = -2.17, 25°C ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER SWITCHING CHARACTERISTICS, VCN = 5V, Vcc- = -5V, Vr .! Symbol Delay Times From Input To Output A" A, or Test Fig. Typ Min = -2.1V, Max Unit Test Conditions ns RQ=820n Rx=520n CQ=50pf Cx=450pf 15 ns RQ=820n CQ=50pf 17 ns RQ=820n Rx=520n CQ=50pf Cx =450pf 15 ns RQ=820n CQ=50pf 12 ns RQ=820n Rx =520n CQ=50pf Cx=450pf 9 100 ns RQ=820n Rx =520n CQ=50pf Cx=450pf X 9 15 ns RQ=820n Rx =520n CQ=50pf Cx =450pf X 7 42 ns RQ=820n Rx=520n CQ=50pf Cx=450pf 0 tPLH (A, 0) B" B, tPLH (S, 0) Strobe 0 8 tPLH (01, 0) Data in 0 9 tPLH (OL, 0) Data load 0 8 tPHL (R, 0) Reset 0 9 tPLH (R, X) Reset X ttPHL (G, X) Buffer In ttPHL (A, X) A" A, or 28 7 B" B, Transition Times TA = 25°C Symbol Output Test Fig. tTLH(O) hm(O) 0 0 9 hLH(X) X 150 Rx = 520n tTHL(X) X 12 Cx = 450pf One response to differential overload tORO Zero response to differential overload Max Unit Test Conditions RQ = 820n CQ = 50pf Parameter tOR' Typ Min TYP. VCMF Common mode firing voltage 1.5 6-52 Unit Test Conditions V f = 0.1 to 20 MHz ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER SWITCH ING CHARACTERISTICS, Vcc+ =SV, Vcc - =SV, VREF = -2.1V IpLH(A.Q) IpLH (01.0) IpLH (S.O) 40 40 30 - ..... 1--- . 40 " -;;30 20 10 10 - 20 30 E ;: 20 -60 40 20 60 ..... 20 - :..- I-I-. 10 -60 100 I--- -20 20 60 100 -60 -20 20 60 100 TC (OC) TC(OC) IpHL(R.Q) IpHL (OL.O) PULSE THRESHOLD DATA 40 ~30~~~~-r~4-+-~ ~30 I ;: 20 10 - - ;:: 10 tt:a~~ttjj -60 -20 20 60 100 TC (OC) 70 60 50 UJ :l! ;:: 40 '" ./ 30 -60 -20 20 6-53 60 -20 20 60 TC (OC) IpHL (A.X) ~ -60 100 100 ITT3671 [1IGH-SPEED DUAL SENSE AMPLIFIER GND * SEE TEST TABLE Vcc+ ......-+----1-..:.:. * * 965 n }.-.- ~----+---4~-+~-~~----:-~---~~---- ~TEST * GND Fig. 1-VT Apply at InpulA Test ••• Match impedance of B. and B, to A. and A,. •• Apply a momentary low then a high. • Apply Vcc+ to side under test. GND to . other. Vt Vt Vt Vt min. min . max .. max. +Vt '-Vt +Vt -Vt -5.25V Icc'-f VCC _ min . min. max. max. 5.25V GND CSI GND WI/RI !ICC+ vcc+ QI XI G t---..J-=--GND .....-+---+..:..;R_ GND GND Fig. 2 - PB , 110 = Icc+. Icc -. IREF 6-54 Measure Output Q O.4V O.4V 2.4V 2.4V max. max. min. min. ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER -5.25V GND GND 5.25V QI 105_ GND G 5V--~~-------+------~ - 2,1V ---':=-+---1 R GND--~~-------' GND GND 5V 105=jl Note: GND Only one output may be shorted at a time. - -=- GND Fig.3-IOS TEST PER TRUTH TABLE I Vee-I CSI TEST PER TRUTH TABLE 011 p.--' AI BI WIIRI I '<- DL VREF lVCC+ ~ -{> XI G R A2 fD 0- J CS2 W2 ~GND R2 DI2 I TEST PER TRUTH TABLE 6-55 I~ QI 3 B2 VOX ~ X2 Q2 VOL VOH l11J ITT3671 HIGH-SPEED, DUAL SENSE AMPLIFIER -TEST 4.75V -4.75V CSI 4.75V 011 WI/RI QI XI TEST PER TRUTH TABLE 4.75V G OL 4.75V vREF -2.1V R S A2 B2 R2 012 4.75V TEST Diff. .Test VOH VOH VOH VOL VOH VOH VOH VOL at Wi at Wi at Wi at Wi at W2 at W2 at W2 at W2 Input S CSI CS2 GND 40mV 40mV 40mV GND 40mV 40mV 40mV VIH VIL VIH VIH VIH VIL VIH VIH VIH VIH VIL VIH VIL VIL VIL VIL VIL VIL VIL VIL VIH VIH VIL VIH Fig. S-VOH, VOL, V IH, VIL 6-56 GNO 4.75V ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER -5.25V Vee- 40MV GND 5.25V eSI WIIRI AI BI DL -2.IV vREF S 40MV GND Test A2 B2 Strobe Channel S CSl Select CS2 Data 01 1 Input 01 2 Data Load OL Reset R Buffer Register Input tnput 6 R2 IR at S VIH VIL VIL X X X X X W2 IR at CSl VIL VIH X X X X X X W2 IR at CS2 VIL X VIH X X X X X W2 IR at 011 X X X VIH X VIL X X W2 IR at 012 X X X X VIH VIL X X W2 IR at OL X X X VIL VIL VIH X X W2 IR at R X X X VIH VIH VIH VIH X W2 IR at G VIL X X X X VIL VIL VIH W2 - IF at S VIL VIH VIH X X X X X W2 - IF at CS1 VIH VIL VIL X X X X X W2 -IF at CS2 VIH VIL VIL X X X X X W2 - IF at 011 X X X VIL VIL VIH X X W2 - IF at 012 X X X VIL VIL VIH X X W2 - IF at OL X X X VIH VIH VIL X X W2 -IF at R VIH VIH VIH X X VIL VIL X W2 - IF at G X X X VIL VIL VIH X VIL W2 - IF at R2 X X X X VIL VIH X X VIH - IF at R2 X X X X X VIL VIL X VIL Figure 6. - IF, IR 6-57 ITT3671 HIG H-SPEED DUAL SENSE AM PLiFIER 5V -5V Vcc- RO CSI 011 WI/RI To oI or 02 -.--+4--+ QI 50 Q OL _ ...-_ _-t-G CQ 5V -2.1 V _V,!!RE:::F+-_-I S J 5V A2 CS2 TO * XlorX2 RX CXI • Connect same as Channel 1 when testing Channel 2. CS2 is at GND when Channel 1 is tested. 3.5V 1.5V -- ------- ------ ------ OV RESET (PULSE I) i t--200NS--l 90 1112MV % -275NS- Figure 7 I -1 ~~S 20NS 1 90%71 ~ i' \ -- 40MV 90 % ----- ------ OV 3.5V OV VOH iJI.5V 1--I I / 4 t=O 6-58 STROBE (PULSE 3) tPLH(AQ) ----- ------ VOL I I I I DIFFERENTIAL INPUT (PULSE 2) 1_- ----- ------ VO H \-1.5V !.. tPHL(AX) i REGISTER OUTPUT a VOL BUFFER OUTPUT X TR=TF= 15NS ALL PULSES ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER -5V VCC- CSI 5V * WIIRI 5V 5V 011 AI 40MV} BI DIFF. OL -2.1V VREF S A2 40MV} DIFF. B2 * 5V 'GND channel select of unused side. jl.sv I 12005 I" I I I JI I I tpLH(SQ) .: -- ------ ' - - - - - - STROBE (PULSE I) \I.SV o .1 I I I ,.hHL(DL.R) 1 I I 1-, I g 3.SV VOH :I I \I.st I REGISTER OUTPUT 1 VOL Figure 8 I I 1 ~~~ l.I I I I i I I n~ I I.S ----- ------ .S 3.SV OV ~ os TR=TA=ISos ALL PULSES 6-59 DATA LOAD (PULSE 2) 1113671 HIGH-SPEED DUAL SENSE AMPLIFIER 5V -5V VCC - GNO 5V CSI 011 WI/RI RQ GNO 5V--~~--------+------- __ - 2.1 V-'.!!"'+--I GNO--~---------' GNO 3.5V ~-- ------ ----- ----- RESET (PULSE I) OV --. I---r;- tpHLlR,a) ri I _~,. fTLH(Q) IE 90% I' 1.5V , 10% VOH % RESISTER OUTPUT 10% I' ~' hHL(Q) VOL I I tpLH (01,0) , --=. Q 3.5V U5V U---- ~I --* 10% , ~ , I ~ DATA INPUT PULSE 2 - - - - - -1----- ~tf--- 9~:lo% VOH BUFFER OUTPUT X VOL I I I _ : , tpHL(G,X) I' :L T OV 1,· 5V Figure 9 6-60 3.5V ----- BUFFER INPUT PULSE 3 OV ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER - The data register outputs, shown .in figure 13, feature the ability to sink or supply load current and are rated at 3 series 74 loads. APPLICATION INFORMATION Reference Voltage Considerations The open-collector outputs of the data buffer, shown in figure 12,may be connected to similar outputs to perform the wire-AND function. These outputs are speCially designed to drive high capacitive loads. The threshold level of both channels is determined by applying an external voltage to the VREF terminal (Pin 21). The ratio of the external threshold reference voltage to the internal threshold reference voltage is 300 to 1. An internal reference of 7 mV may be established by applying ±2.1V to the VREF input. The internal threshold reference voltage may be varied for individual system applications by adjusting the external reference voltage (see figure 10). v 4 ./ 3 V V Input Line Layout Considerations ./ Input sensitivity and device speed require adequate precautions in the routing of signal input and reference lines to prevent noise pickup. Bypassing of supply and reference inputs at the device with low-inductance disc ceramic capacitors, and the use of good ground planes to separate logic inputs and outputs from sense and reference input lines are recommended. V " V I o 5 6 7 8 9 10 II 12 13 14 15 16 Fig. 10-lnternal Reference Voltage in nV Sense-Input Termination Consideration Termination resistors are intentionally omitted from the sense-input terminals so the designer may select resistor values which will be compatible with the particular application. Matched termination resistors, (R T , Figure 11), normally in the range of 25 ohms to 200 ohms each, are required not only to terminate the sense line in a desired impedance, but also to provide a dc path for the input bias current. Careful matching of the resistor pairs should be observed or the effective common-mode rejection will be reduced. Figure 12 Figure 11 Equivalent Output Circuit Detector Output Buffer Output Output Drive Capability The detector outputs, shown in figure 12, are intended to drive the internal data register. Detector output 1 is internally connected to input of data register 1 and available at pin 1,]. Detector output 2 is not connected internally to the input of data register 1 but is available at pint 14. The input of data register 2 is available at pin 9. For dual operation pin 9 is connected to pin 14; for dual channel operation pin 14 is connected to pin 17, this ANDs the two sense channels and provide an extra data register for other system applications. Fig. 13-Register Output 6-61 ITT3671 HIGH-SPEED DUAL SENSE AMPLIFIER Logic Input Current Requirements +vcc Logic input current requirements are specified at worse case power supply conditions over the operating temperature range. The logic currents are compatible with Series 74 TTL integrated Circuits. Input circuits are shown in figures 14 thru 17; current requirements are specified in the dc characteristics table. 3.2k 5k ~--l--+I--t>---o 012 OL = 3.2 k 5k Fig. 16-Equivalent Circuit Data Input & Data Load Fig. 14-Equivalent Input Circuit Strobe and Channel Select r-----------~+vcc Decoupling Node An 0.01 uf capacitor may be placed between pin 23 and ground to enhance the stability of the input amplifiers. = G Fig. 17-Equivalent Buffer Input Circuit CYCLE 2 CYCLE I READ I WRITE READ 0 WRITE RESET Fig. 15 Equivalent Buffer Input Buffer I' 10 CT SIGNAL I STROBE I CHANNEL r~ SELECT I Fig. 18-Typical System Timing Diagram /" I DATA REGISTER OUTPUT o .6 .2 .8 TIME 6-62 1.0 IN 1.2 nS 1.4 1.6 1.8 2.0 I - rIlrll ..L.L ITT9614 DUAL DIFFERENTIAL LINE DRIVER SEMICONDUCTORS -------------Pa-c-k-ag-e-:-O-u-a-I-In---u-ne-an-d-F-Ia-t-P-ac-k DUAL DIFFERENTIAL LINE DRIVER Logic Diagram • Single 5 Volt Supply • TTL Compatible Inputs ~15 9~ • Output Short Circuit Protection • Input Clamp Diodes • Output Clamp Diodes for Termination of Line Transients 14 10 ~~13 11 ---i>--12 vee = Pin 16 Gnd = Pin 8 o Complimentary Outputs for 'NAND', 'AND' Operation Fig. 1', • Uncommitted Collector Outputs for Wired-OR Application • Military Temperature Range ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired) The ITT9614 is a TTL compatible Dual Differential Line Driver. It is designed to drive. transmission lines either differentially or singleended, back-matched or terminated. The outputs are similar to TTL, with the active pull-up and the pull-down split and brought out to adjacent pins. This allows multiplex operation (Wired-OR) at the driving site in either the single-ended mode via the uncommitted collector, or in the differential mode by use of the active pull-ups on one side and the uncommitted collectors on the other (See Fig. 3). The active pull-up is short circuit protected and offers a low output impedance to allow backmatching. The two pairs of outputs are complementary providing "NAND" and "AND" functions of the inputs, adding greater flexibility. The input and output levels are TTL compatible with clamp diodes provided at both, input and output, to handle line transients. Storage Temperature ..... -65°C to +150°C Temperature (Ambient) Under Bias ................... -55° to +125°C Vee1 Pin Potential to Ground Pin ................... -0.5Vto +7.0 V Input Voltage Referred to Ground (Attenuator Inputs) ................ ±20 V Voltage Applied to Outputs for High Output State without Active Pull-up ........... 0.5 V to + 13.2 V Voltage Applied to Strobe .. --0.5 V to +5.5 V Lead Temperature (Soldering, 60 seconds) ...................... 300°C Internal Power Dissipation (Note 1) Ceramic DIP .................... 730 mW Flatpak •........................ 570 mW NOTE 1. Rating applies to ambient temperatures up to 70 u C. Above 70°C derate linearly at 8.3 mWrC for the Ceramic DIP and 7.1 mW/oC for the Flatpak Package. 6-63 1119614 DUAL DIFFERENTIAL LINE DRIVER ELECTRICAL CHARACTERISTICS 9614-5 (0" C to +75° C, Vee =5.0V ±5"1o) Limits Symbol Characteristic VOL Output Low Voltage VOR Output High Voltage Output Ise "Short Circuit" Current 'eEx Output Leakage Current IF Input Forward Current la Input Reverse Current VIL Guaranteed Input Low Voltage VIR Guaranteed Input High Voltage DoC .Min. Max. Min. 200 450 2.4 2.4 +25°C Typ. Max• -40 450 3.2 450 mV IOL =40mA Vee =4.75V mA VOUT =O.OV Vee =5.25V 100 200 -1.10-1.60 -1.60 60 100 35 Conditions & Units Comments V lOR =-10mA Vee =4.75V 2.4 -90 -120 10 -1.60 +75°C Min. Max. !LA VeEx =5.25V Vee =5.25V mA VF =0.45V Vee =5.25V p.A Va =4.5V Vee =5.25V '. 0.85 1.9 1.3 1.8 0.85 0.85 1.6 1.5 -0.8 -1.5 V Vee :;::5.25V V Vee =4.75V V IOLe =-40mA Vee =5.25V . VOLe Clamped Low Output Voltage Icc Supply Current 33 48.7 mA Inputs =OV Vee =5.25V Imax Supply Current 46 70 mA Inputs =0 V VMAX =7.0V tPLR Turn-Off Time 14 30 ns CL. =30pF Vee =5.0V tPHL Turn-On Time 18 30 ns See Fig. 4 VM =1.5V VIC Input Clamp Voltage -1.0 -1.5 6-64 V Vee =4.75V Ire =-12mA , ITT9614 DUAL DIFFERENTIAL LINE DRIVER ELECTRICAL CHARACTERISTICS 9614-1 .. (-55° C to +125° C, Vee =5.0V ±10%) Limits Symbol Characteristic -55°C Min. Max. Min. +25°C Typ. Max. +125°C Min. Max. 400 400 Conditions & Units Comments VOL Output Low Voltage VOH Output High Voltage Ise Output "Short Circuit" Current leEx Output Leakage Current IF Input Forward Current IR Input Reverse Current VIL Guaranteed Input Low Voltage VIR Guaranteed Input High Voltage VOLe Clamped Output Low Voltage lee Supply Current 34 48.7 rnA Inputs =:0 V Vee =5.SV Im• x Supply Current 46 65.7 rnA Inputs =0 V VMAX =7.0V tPLH Turn-Off Time 14 20 ns CL =30pF Vee =S.OV tPHL Turn-On Time 18 20 ns See Fig. 4 VM =1.5V VIe Input Clamp Voltage 400 200 mV 10L =40mA Vee =4.SV ). 2.4 2.4 -40 0.8 2.0 1.7 rnA VOUT =O.OV Vee =S.SV -90 -120 10 -1.60 V 10H =-10mA Vee =4.SV 2.4 3.2 p.A VeEx =12.0V Vee =S.5V 100 200 '-1.10 -1.60 -1.60 rnA VF =O.4V Vee =5.SV 35 60 100 p.A VR =4.5V Vee =5.SV 1.3 0.9 0.8 V Vee =5.5V 1.5 1.4 -0.8 -1.5 -1.0 -1.5 6-65 V Vee =4.5V V 10Le =-40mA Vee =S.5V V Vee =4.5V he =-12mA 11T9614 DUAL DIFFERENTIAL LINE DRIVER Switching Circuit and Waveforms tLj~l_UT r V,N 1 510 5 .... fL J'~:_ INPUT PULSE Frequency = 500 kHz Amplitude = 3.0 ±0.1 V Pulse Width = 110 ± 10 ns. t, = t f :5 5.0 ns ---+""\.1 VOUT (A) VOUT Ie) Fig. 2 TYPICAL ELECTRICAL CHARACTERISTICS OUTPUT LOW CURRENT VERSUS OUTPUT LOW VOLTAGE 100 V/ TA a2S·C .~ 80 VCc·S." .~ , a... ~ ~ 40 ~¢ ",' =r ~ Ycc=s.OV ~ 60 VCc· 4 •5V I-so I <5 ~ 20 I -80 o 1/ a 0.1 0.2 0.3 0.4 0.5 VOL -OUTPUT VOLJAGE-vOLTS 0.6 0.7 -- ~V ., 3.0 ~ o =:- 2.5 i - ro- ~ ~ 2,0 > I ~ 1.5 ~ 1.0 / / / V If § f '"" '" I VoH- NO LOAD Vee -s.ov o :,' " ~ LOGIC LEVELS VERSUS AMBIENT TEMPERATURE 3.5 I II r.·25·C ~ ...z ? OUtPUT HIGH CURRENT VERSUS OUTPUT HIGH VOLTAGE § V > 0.5 Val Cll tOl .40f.A,,' I I I 1.0 2.0 3.0 VOH -OuTPUT VOLTAGE- VOLTS 6-66 4.0 -60 -20 a 20 60 100 T.6. - AMBIENT T~MP£aATURE ··c 140 ITT9614 DUAL DIFFERENTIAL LINE DRIVER TYPICAL ELECTRICAL CHARACTERISTICS (continued) SUPPLY CURRENT VERSUS SUPPLY VOLTAGE 60 NO LOAD TA "25°C /; 50 ., 1/ ~'? . l.e' a 2.0 1/ " ~ 4.0 6.0 8.0 20 -60 10 a -20 20 60 ----- 4.0 TA"2S-C - ,- TA"SSoC _ - ~ ~ 10 ~ -60 g 20 Vee· S.OV VCC a4 .5V _ ~ 2.0 t ? 60 vcc'51- ~ r a a 100 140 TA - AMBIENT TEMPERATURE·-C o 1.0 a 0,5 1.0 V IN 1.5 2.0 2.5 3.0 -INPUT VOLTAGE- VOLTS 3.5 a 0.5 10 1.5 2.0 2.5 3.0 V IN -INPUT VOLTAGE - VOLTS Applications Differential Mode Expansion .5 V loon 5 6--=-1 7 lOon 15 9 10 " 10 5 ~ ...., ~---20 5.0 4.0 ~ 3.0 V ;;; 2.0 TRANSFER CHARACTERISTICS \ VERSUS SUPPLY VOLTAGE 5.0 tpHL I 1,0 f - FREQuENCY - MHz lA a 2S0C g ~ i- 0.5 0.2. TA 2 12.S-C 5 20 0.1 "CC 2 5.0V tJ) a v a 140 100 TRANSFER CHARACTERISTICS VERSUS TEMPERATURE 5.0 30 ~ 40 TA -AMBIENT TEMPERATURE·-C -SUPPLY VOLTAGE- VOLTS Vcc: 5 .OV I, g; iil u u U -CL 230pF ~ ! / ~ ,!i 25 PROPAGATION DELAY TIME VERSUS TEMPERATURE 40 ~ / 60 JJ Vee I 80 E 20 10 a 30 ~ Vce eS .CV CL 230 pF !Z ! "'~ .# I#' u u ~~CT"p5U~; OPE~ !Z O.';:;~ ~ 100 3' E &~~~ (:JQ;- SUPPLY CURRENT VERSUS OPERATING FREQUENCY SUPPLY CURRENT VERSUS TEMPERATURE 40 14 Expand by tieing "NAND" outputs together and by tieing active pull· Up" "AND" outputs togetheL The drivers can be inhibited by taking one input to ground. 12 13 Fig. 3 6-67 3.5 ITT9614 DUAL DIFFERENTIAL LINE DRIVER Typical Reflection Diagram 200 160 VCC =5.0V TA = 25°C ./ I /.. / 120 « T 80 f- ~ 40 ~ ~ LOW STATE OUTPUT DEVICE CHARACTERISTICS /' II a: a: B 0 / -40 ~~ j :::J o ...... -120 V V ( HIGH STATE OUTPUT DEVICE_ -- CHARACTERISTICS o 1--- 80 ~ V :::J .L 1 -160 200 -5 ...... / / -4 -3 -2 -1 1 0 VO UT - 2 3 4 5 6 7 8 9 10 OUTPUT VOLTAGE - VOLTS Fig. 4 CIRCUIT SCHEMATIC Vee =Pin 16 GND=Pin B ~ I' 15 9 10 II l4-~--~->--------~-----4---4--.w..~--4---H. 8.36 K 1(15) . 150n. 9 12 15 7 1 3 l~o~.l1 5 _ 2.5K ;H--it~--il---+-----+---t--''--t::::. m 2 6 14 4 Vcc=Pin 16 GND::Pm B SGND 2615 ONLY 6-72 ITT9615 DUAL DIFFERENTIAL LINE RECEIVER SWITCHING TIME TEST CIRCUIT _--~·r-+3.0V WAVEFORMS VCC · · --f =l =:';, r .-:....'C o.ov -----3.0V +3.0V ., o.ov -lc---~ ("USE VIN OR VIN. GROUND OTHER INPUT.) -----,1 Fig. 4 Photograph of a 9615 switching differential data in the presence of high common mode noise. Fig. 5 VERTICAlo2.0V/DiV. HORIZONTAlo50ns/DIV. STANDARD USAGE DRIVER SYSTEM RECEIVER SYSTEM LINE TTL LOGIC uA9615 Fig. 6 FREQUENCY RESPONS~ FREQUENCY RESPONSE VERSUS CAPACITANCE CONTROL 100'111 '" RESPONSE CONTROL PIN " -= loo.§Efrnl§~E3!I§. ,all Fig. 7 6-73 ,01 0,1 CR - CAPACITANCE -IlF 1.0 10 -3"' 1.5V ITT9615 DUAL DIFFERENTIAL LINE RECEIVER TYPICAL ELECTRICAL CHARACTERISTICS OUTPUT LOW VOLTAGE VERSUS OUTPUT LOW CURRENT .. s. T,,"25"C OUTPUT HIGH VOLTAGE VERSUS OUTPUT HIGH CURRENT • r- v~cJ .1.", :rYeP:;;' !- ,I'-. k::;: rr- r- vcc"'~~rl Vcc.s.,,- -1 ~r--r- / , s., VIN J .' • ~ i" • '7 ; ~2.D VIN~n!!. Jc.Jv rA"-we -,.... 0 0.1 D.2 D.l ,.. "cc···sv 1 !;;: VOIFF-Z. OY 1 I \ 0,0\1 '."_Y..I.."Ib..•b:.•b~o;".,b.b.~.b,,bd,,_ "eM - COMMON MOot VOlTACf: -VOLtS POWER SUPPLY CURRENT VERSUS _ POWER SUPPLY VOLTAGE !'OWER SUPPLY CURRENT VERSUS AM81ENT TEMPERATUIIE I I .T,,'25'C • 2.0 ],0 M 5.0 ~ ,., I.' 6.0 Vee-POWER SUPPLYVOt.TACE-VOL1S 7.0 l.O ..• , ..., ...,-as INPUT CURRENT VERSUS INPUT VOLTAGE 1/ Vcc· S' W UNTtSTEDINPUT'OV TA~ Z5~C / / 1/ / -20 15 I) -s D , D 15 20 Z5 VIN -INPUTVOLTAGE-VOl15 SWITCHING TIME VERSUS AMBIENT TEMPERATURE Vcc -S.w II V1N "'VtD+3V ".. RL -l.na \"7 y vec''''v ~,"'V_ 1.0 ~ ...c::; '. " "' ,/ \.V: ·'i,ulS·tcc ~V I , ./ 00 120 TA'~ C / ,.INPUts "Vee 'INPUts"OV ~ 60 _1 JCC'5~OV , • , V'N.-STROBE INPUTVOI,.TACE-VOLlS 70 ~ VIN -STROBEINPUTVOl,TAGE-\lOt.1S VCC ·5.,J Vee 4., 0.4 "ee· S•ov >§ 1.0 I.' 20 Vcc'uv -0.20.1 ~ I.' 2• • • ... Vcc V g s I~~~F:I~~.~V 0 STROBE INPUT-OUTPUT TRANSFER CHARACTERISTIC VERSUS Vee \!!u \ ~ INPUT·OUTPUT- TRANSFER -CIiARACT~RISYlC _ _ VEIISUS TEMPERATURE -0.4 -0,) s.' ~ VOL TA·AMBI£NTTEMPERATURE.·C , I • I .., TA 25'C T,,'-5"C 1.0 IOH -OUTPUT HICH CURRENT-mA OUTPUT VOLTAGE VERSUS COMMON MODE VOLTAGE , ::t: ~ 1.5 ::.,§ ~ STROBE INPUT·OUTPUT TRANSFER CHARACTERISTIC VERSUS AMBIENT TEMPERATURE ~·U ..:ih ~ 0 vcc·,·ov ~ 5 YIN -INPUTVOLTAG( -VOL"" TA "l25'e !I !v 1~~~;5:~.7: ~ 2.0 YIN - INPUTVOLTAG[-VOLTS S•• rp. . VOH • • I o T .I'25 C , 1"• 1,.I,,·C f , f-- Vee' s.lsv , _v!'c'st , 1cC ·4r -.V , I ..,..., I ".1 '.1 ~ 2.5 0.' i--~ ..• ec ". ov 2kE.., TA '25"t I Vee ·S.OV .. '. INPUT·OUTPUT TRANSFER CHARACTERISTIC VERSUS Vee ,'::b , , H-t- I-- I-- l.' I............ /"'CC· 4•5\1 " IOL" OUTPUT LOW CURRfNT • mA OUTPUT VOLTAGE VERSUS AMBIENT TEMPERATURE I.' TA"ZS"e 'IN'UT.v~1 -ltUTj'OV r- • -110-«1 -20 0 20 CI 60 80 '",AMBIENT1I:MPERATURE 6-74 lA' 1..... - 100 120 ICI _·c ....... ....... ".. 1- •-to -CJ Rl '191m V CL'~ 20 0 20 II oil 10 I) OJ 120 ICI fA -AMBIENT TlMPERATLIRf:_·C _I mm. ______________ IT_T_7_5_3_24 MEMORY DRIVER WITH DECODE INPUTS ~~ SEMICONDUCTORS DUAL-IN-L1NE PACKAGE (TOP VIEW) G~ramic MEMORY DRIVER WITH DECODE INPUTS OUTPUT 13 y II PERFORMANCE • • • • • (SOURCE) SOURCE COLLECTORS OUTPUT X (SOURCE) OUTPUT w fast switching times 400-mA output capability internal decoding and timing circuitry dual sink/source outputs output short-circuit protection (SINK) AOORESS INPUT D GND 1 and GND 2 are to be used in parallel NC-No internal connection DUAL-IN-LINE PACKAGE (TOP VIEW) Plastic' EASE OF DESIGN • • • • • • r TTL or DTL compatibility eliminates transformer coupling reduces drive-line lengths increases reliability minimizes external components choice of flat or dual-in-Iine packages CfTPUT A A~~~~~ I Lc r E 4 TIMING INPUTS F LG Description The ITT75324 is a monolithic memory driver with decode inputs designed for use with magnetic memories;',The device contains two 400milliampere (source/sink) switch pairs, with decoding capability from four address lines. Two address inputs (8 and C) are used for mode selection, i.e., source of sink. The other two address inputs (A and D) are used for switch-pair selection, i.e., output switch-pair Y/Z or W/X respectively. OUTPUT 12 (SOURCE) II SOURCE COLLECTORS OUTPUT 10 X (SOURCE) OUTPUT 9 W (SINK) ADDRESS INPUT D FLAT PACKAGE (TOP VIEW) r 0@ A ADDRESS B INPUTS @OUTPUT 14 Z (SINK) @VCC Lc0 ®OUTPUT 12 y (SOURCE) rEG) @SOURCE II COLLECTORS The sink circuit is composed of an inverting switch with a transistor-transistor-Iogic (TTL) input. The source circuit is an emitter-follower driven from. a TTL input stage. INPrG0 The ITI75324 is characterized for operation from O·C to 70·C. ADDRESS(£) INPUT 6-75 (SINK) B 2 T1MINGF0 ®x 10 o 9 0 OUTPUT (SOURCE I OUTPUT. W (SINK) GND ITT75324 MEMORY DRIVER WITH DECODE INPUTS Standard positive logic applies with the following definitions used for specifying digital-level signals: TRUTH TABLE Inputs A 0 0 1 1 x x x B 0 1 1 0 x x x C 1 0 0 1 x x x Outputs Timing Address D 1 1 0 0 x x x E 1 1 1 1 0 x x Sink Sources Sink F G W 1 1 1 1 1 1 1 1 x x 0 x x 0 On Off Off Off Off Off Off LOW VOLTAGE = LOGICAL 0 HIGH VOLTAGE = LOGICAL 1 X Y Z Off Off Off On Off Off Off On Off Off Off On Off Off Off Off Off Off Off Off Off Absolute Maximum Ratings Over Operating Case Temperature Range (unless otherwise noted) NOTES: 1. X = Logical 1 or logical O. 2. Not more than one output is to be allowed to be ON at one time: When all timing inputs are at a logical 1, two of the address inputs must be at logical O. Supply voltage Vee (See Note 1) ........ 17V Input voltage (See Note 2) .............. 5.5V Operating case temperature range O'C to 70·C Continuous total power dissipation at (or below) 70'C case temperature ..................... 800mV Storage temperature range .. -65'C to 150'C NOTES: 1. Voltage values are with respect to network ground terminal. 2. Input signals must be zero or positive with respect to network ground terminal. ELECTRICAL CHARACTERISTICS (unless otherwise noted, Vee VlnW Vln(O) hn(1) hnw hnCo) hn(o) Vc•• t ) Vc ••t) I.ff lee lee Icc Parameter Input voltage required to ensure logical 1 at any input Input voltage required to ensure logical 0 at any input Logical 1 level address input current Logical 1 level timing input current Logical 0 level address input current Logical 0 level timing input current Sink saturation voltage Source saturation voltage . Output reverse current (off state) Supply current, all sources and sinks off Supply current, either sink selected Supply current, either source selected Min 3.5 Typ* = Max 14V, Tc = O'C to 70'C) Unit Test Conditions V 0.8 V 200 p..A Vln - 5V 100 p..A Vln - 5V -6 mA Vln - OV -12 mA Vln - OV 0.75 0.75 0.85 0.85 V V 125 200 p.A 1.lnk = 420 mA, RL - 53n I••urce = -420 mA, R,. =47.5n Vln - OV 12.5 15 mA Vln 30 40 mA 25 35 mA "These typical values are at Tc = 25'C. 6-76 - OV ITT75324 MEMORY DRIVER WITH DECODE INPUTS Switching Characteristics, Vee tpd(t) tpd(O) tpd(t) tlld(O) t. = 14 V, Te = 25°C Parameter Propagation delay time to logical 1 level, source output Propagation delay time to logical 0 level, source output Propagation delay time to logical 1 level, sink output Propagation delay time to logical 0 level, sink output Sink storage time Min Typ Max Unit Test Conditions 90 50 ns ns RI.; .... 53n, RL , = 500n, CL = 20 pF 110 ns 40 ns 70 ns = RI. CL = 53n, = 20pF Thermal Information The ITT75324 is designed to be used at a case temperature not to exceed 70°C. Under this condition, infrared microradiometer and X-ray studies indicate that a safe junction temperature is maintained under specified worst-case conditions. ITT75324 circuits should be mounted so that minimum thermal resistance is achieved. A thermal compound should be used between bottom of the flat package and a heat sink. This, in conjunction with unrestricted forced air flow across the heat sink and package, has been found to adequately satisfy thermal requirements. No thermal compound is required with the dual-in-line package. Air flow should be across the short dimension of either package. r---~~----------~--~----------~----~VCC Schematic: ../'----~O--o OUTOUT W (SI~K) ~ TlMING{ INPUTS G' OUHUTX · ......----+-I_ISOl ~CE) ADDRESS.{ INPUTS ..-._____._*'"-----++--o SOUqCE ~ro;S;LECT COLLECTORS (SOURCf/SINK) ~ C o--I---~-l-4 SWITCH.pAIR SELECT L--. .......---+-_ OUT?UT V (SOURCE) 00-+--1-1 ..,-----+- OUT"UT Z (SIIIoK) ~--------------~--_--~~--~----~GND ITT75324 MEMORY DRIVER WITH DECODE INPUTS PARAMETER MEASUREMENT INFORMATION D-C Test Circuits* >-------<>0 .,4V TEST TABLE FOR lin(u) Test Apply. 3.SV B, B, A, A, A, A, A, C. C. 0, 0, B, B, B, E. E. E, E, C, C, C, Ground tn(u) ° ° F, and G F, and G F, and G F, and G 0, F, and G 0, E, and G 0, E, and F A A and A and Band C B and C E F G ° B C E F G NOTES: 1. Check Vin(I) and Vin(o) per Truth Table. 2. Measure hn(u) per Test Table. 3. When measuring lin(1), all other inputs are at ground. Each input is tested separately. oSV ,..---- ----------- ----.,A,-,.. : TIMING INPUTS IE Vee y-- ='C,,-c_ _.... o.,ev _ _ _ _---<>c+14V ·F'-2KO ±S.O ±10 V 70 90 db = Output Voltage Swing Input Voltage Range Common Mode Rejection Ratio Supply Voltage Rejection Ratio Input Offset Current Input Bias Current Input Resistance 40 Vs Rs:::;;10KO 25 150 p.VIV 20 100 200 500 nA nA 0.5 1.5 p.A TA Kn TA 100 7-3 = ±15V Rs:::;;10KO TA = +125°C = -55°C = -55°C ITT709, ITT709-A HIGH PERFORMANCE OPERATIONAL AMPLIFIER ELECTRICAL CHARACTERISTICS ITT709-5 (Vs = ±15V, TA = 25°C unless otherwise specified) Parameter Min. Max. Typ. Units Input Offset Voltage 2.0 7.5 Input Offset Current 100 500 nA 0.3 1.5 p.A Input Bias Current mV Conditions Rs :::;;1 OK, ±9V:::;;Vs:::;;±15V 50 250 KO 150 0 15,000 45,000 Output Voltage Swing ±12 ±10 ±14 ±13 Input Voltage Range ±a.o ±10 V 90 db Rs:::;;10K Rs:::;;10K Input Resistance Output Resistance Large-Signal Voltage Gain Common Mode Rejection Ratio' 65 RL;;:::2K, Vont ±10V = V V Supply Voltage Rejection Ratio 25 200 p,VIV Power Consumption ao 200 mW Transient Response Risetime 0.3 1.0 p,s 10 30 % Input Offset Voltage 10 mV Input Offset Current 750 nA 2.0 p,A Overshoot RL;;:::10K RL;;:::2K = = = = = = V!n 20mV, RL 2KO, C, 5000pF, R, 1.5KO C, 200pF, R, 500 CL:::;;100pF The following specifications apply for 0°C:::;;TA:::;;+70°C Input Bias Current Large-Signal Voltage Gain Input Resistance 12,000 Rs:::;;10K, ±9V:::;;Vs±15V RL;;:::2K, Vont ±10V = 35 kO PROTECTION CIRCUITS OUTPUT SHORT·CIRCUIT PROTECTION " ~ -' '" D, 200~ '09 ) + INPUT BREAKDOWN PROTECTION LATCH·UP PROTECTION SUPPLY OVERVOL TAGE PROTECTION " >-~-EOU7 Pin numbers only apply to metal can package. ITT709 I ITT709-A HIGH PERFORMANCE OPERATIONAL AMPLIFIER DEFINITION OF TERMS: LARGE-SIGNAL VOLTAGE GAIN-The ratio of the maximum output voltage swing with load to the change in input voltage required to drive the output from zero to this voltage. INPUT OFFSET VOLTAGE-That voltage which must be applied between the input terminals to obtain zero output voltage. The input offset voltage may also be defined for the case where two equal resistances are inserted In series with the input leads. OUTPUT VOLTAGE SWING-The peak output swing, referred to zero, that can be obtained without clipping. OUTPUT RESISTANCE-The resistance seen looking into the output terminal with the output at null. This parameter is defined only under s'mall signal conditions at 'frequencies above a few hundred cycles to eliminate the influence of drift and thermal feedback. POWER CONSUMPTION-The DC power required to operate the amplifier with the output at zero and with no load current. SUPPLY VOLTAGE REJECTION RATIO-The ratio of the change in input offset voltage to the change in supply voltage producing it. INPUT OFFSET CURRENT-The difference in the currents into the two input teriminals with the output at zero volts. INPUT RESISTANCE-The resistance looking into either input terminal with the other grounded. INPUT BIAS CURRENT-The average of the two input currents. INPUT VOLTAGE RANGE-A range of voltage which, if exceeded on either input terminal, could cause the amplifier to cease functioning properly. TRANSIENT RESPONSE-Te closed-loop step function response of the amplifier under smallsignal conditions. INPUT COMMON MODE REJECTION RATIOThe ratio of the input voltage range to the maximum change in input offset voltage over this range. PEAK OUTPUT CURRENT - The maximum current that may flow in the output load without causing damage to the unit. GUARANTEED ELECTRICAL CHARACTERISTICS ITT 709-A OUTPUT SWING VOL.TAG£ GAIN 70k RL2: 2 kQ I I _~ ~~.s TA < tl251lC ~ 60k v- ~40k ~30k ./ 10k k-- ..... i20k r ~i~\C~" ~ t9 13, 12 11 10 -55°C e> j20 ..... ~ 15 ... ..... ~IO '" o. ..... . 14 I- en j - t- t- !5 ~,0 l!i . 9 UJ ~ I 90 - z I~o f- - Q 10 ,~~i;;.- 10 9 M~~~~~~ t"- 13 14 10 II 12 SUPPLY VOLTAGE - ! VOLTS ., ~~ z'" I-'" 8~ 6 i4 I 11 12 13 SUPPLY VOlTAGE-iV -55·C' TA' +12SoC ~8 ! "C-rl I i- l..i- if- ~,O ,/ J i'\C~" I-"" i- f-"" 10 ~ I-'" 1 ,/ ~30 I -b~'''' ~.J/I" , ./ IX . I I r-- i--'" INPUT C _ MOOE'yOLTAGE RANGE POWER CONSUMPTION TA - 25"'C MINIMU RL"'OK ~ 1~ SUPPLY VOLTAGE - ! V 11 'TA~+125·C ~2~ , L '\l~ ~~i-'~ ~~Ok .. ...en MI 1M II ~ ..... i-i-- i2 14 09 15 7-5 12 13 14 10 II SUPPLY VOLTAGE-!VOLTS ITT709 , ITT709-A HIGH PERFORMANCE OPERATIONAL AMPLIFIER GUARANTEED ELECTRICAL CHARACTERISTICS ITT709-1, VOLTAGE GAIN RL !ZK -5S·C ioTA 1+12S-C ~ 60K MIC709-t V ~50K .;! ~ 25 MAXIMUM ~20 f- B 15 co: "'~ 10 030K 9 . ~20K ~ MINIMUM 10K c' g 12 ·13 14 10 SUPPLY VOLTAGE - t VOLTS " MINIMU,M RL- 2K 0 g,o .'~8 . ~~ 1",6 0'" uj! -- I- MIIM M I- g4 5· .."'" 0 ..... _r- J,INIMUM RL-IOK >-r- ~ > - >- -- -- I- V S40K ~ z Y !' '''' -~ a: "'0 .. I .~ MAXIMUM 100 ~ 5010 ..... -- TY ICAL g 10 12 13 14 SUPPLY VOLTAGE - tVOLTS " GUARANTEED ELECTRICAL CHARACTERISTICS ITT709-S J VOLTAGE GAIN RL' 2K O"TA _+70MIC709-5 z :c '"~IOK ~ g ..... ..... ~ I-"" IL ~5K _...... ..... ~"MUM it ~20 I- ~ ~ IL II >- ..... >- 15 C ...c" 10 - r- ~,'N'MUM RL-IOK "' 0 9 25 I- 12 13 14 SUPPLY VOLTAGE- tVOLTS - ~ i-- MiNIMU.M RL~2K ,. 10 ~ 0 on Z on INPUT COUIION MODE VOLTAGE RANGE OUTPUT VOLTAGE SWING ., ~8 . ai iw 6 0" uC MI IMUM >- :.--r- :.-- f- ~4 g 5 0 ., '~'O "' 12 10' II 12 13 14 SUPPLY VOLTAGE- tVOLTS 9 09 13 14 II 12 10 SUPPLY VOLTAGE -! VOLTS FREQUENCY COMPENSATION CURVES ITT709-A. ITT709 -1 .ITT709-5 FREQUENCY RESPONSE FOR VARIOUS CLOSED-LOOP GAINS 1111 11111 11111 I ID ~. z cOO '"~ ~ 40 !l ~ III VS·:!.ISV TA~25·C RL~IOKn CI'"IOOpF, RI'"1.5Kn.C2=3pF III 'J11 III !III III III CI= 5000pF,RI=15Kn,C2'" ZOOpF 0 9 u_ 20 FREQUENCY-Hz III CI'"500pF,R.'"I.SO,CZ'"20pF 20 0 I:! TA'"25·C CI'"IOpF, Rl c O,C2 -3pF III OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY FOR VARIOUS COMPENSATION NETWORKS VS·~15V III 1111 III III 1111 I 1111 I 1111 I 1111 100 IK 10K lOOK FREQUENCYaHz 7-6 1M 10M ITT709, ITT709-A HIGH PERFORMANCE OPERATIONAL AMPLIFIER TYPICAL PERFORMANCE CURVES In709·A 130 Z.·.. ..... TA- -55-C 5 ~ ~0 nil' -1.0 -60 INPUT BIAS CURRENT AS A FUNtnON OF AMBIENT TEMPERATURE -20 1! 400 1.00 i lOO ~ 95 a i-"""I"'" ~ 20 100 60 'II II. ~ -f19V 140 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE - ~ 6.8 ::J ~O.6 > 1= 0.4 i02 0 " 12 13 14 0 -60 I !Ii 1.0 a ~70 ::> § '~" 110 - '60 i§ V V I 140 .0.1 i ..., -2.0 2.0 TEMPERATURE-"C 60 100 140 POWER CONSUMPTION AS A FUNcnON OF AM81ENT TEMPERATURE 3.0 tl ~ 20 -20 9 -5 . NO iTA· +125·C >I OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE VOLTAGE GAIN AS A FUllCTION OF AMIIENT TEMl'EMl'URE VOLTAGE TRANSFER CHARACTERISTIC VS·:t15V 1.0 RL',.oK I!- 'TA' 1.5 0.1 20 TIME-"" 7-7 I Ie 100 CLOSED-LOOP GAIN W\ ITT709, ITT709-A HIGH PERFORMANCE OPERATIONAL AMPLIFIER TYPICAL PERFORMANCE CURVES VOLTAGE TRANSFER CHARACTERISTIC f Vs =± 15V 10 RL-IOK If'"" TA " 25°C TA" +125°C TA=-55°C I"5 .. ..., ~ 0 , > '" .~ 0 I- -' > .. -51-- -TA'O";;: :> 'rt ~TA'+70· ;;TA, +25· VS·:t 15V :> -10 I 0 ...z :> 0 . .. c: 0.8 z ~ !! /' iii 0.4 ;0 E , 20 I- 18 ....,. '". 0 I- ._'-- -20 +60 .+20 ... ~ 0, ''"" Q4 9 j:9V~'i .$~l~V -.... 1 1 - ~ - I~t= ,'I-~ ''I-~'''~I 1 ,;.r 1SL"t-d:- r- c~WRATE OSF:D.(po~ Pe.." I;- ""'Dr'(_ 0.5 2 I '20 60 TEMPERATURE-'\: -20 5 100 T -Z5"C FREQUENCY COMPENSATION CIRCUIT .1 - o.~ 9 , SL.EWI cees'O- ~SE Rtt.~E ~ ,0. 10 ~ 08 \.po' e"" . ", i- i- 0'II\cr<~-i- i- -I 1 1 I. 1 1 1 1 1 1 1 11 '3 '2 SUPPLY VOLTAGE-tV ", c, , 7-8 13 14 90'1'. / I J :> ...006 > fi 04 g02 10". . ·USE RZ ·~on WHEN THE AMPI.IFIER IS OPJ:RATEO WITH CAPACITIVE I.QADING. VS'!I~~ _ If- RISE TIME r•• 25'C I 0 0.5 10 TIME -J.ls I. TR'~s,l- J 3 :::::: po;.; i-;;;; ~E~T"~ 12 Tf~ 12 I - I- 140 FREQuENCY CHARACTERlsnCS AS A FUNCTION OF SUPPLY VOLTAGE I.~ II TRANSIENT RESPONSE I -60 0.2 10 SUPPLY VOLTAGE -;t VOLTS 0 / - 12~ +100 LOAD RESISTANCE -K OHMS ~ ....:s o. '" 0..7 ~~ AMBIENT TEMPERATURE _·C IS 3 -' ~ 1.1 .. .. en 175 ~ t:t 10 01 I- ~200 ':>" 20 -60 ... 16 +100 TA·25·C FREQUENCY CHARACTERISTlCS AS A FUNCTION OF AMBIENT TEMPERATURE. '4 - "+60 ·z -f- 2.0 1/ +20 INPUT BIAS CURRENT VS SUPPLY VOLTAGE . 40 ~ 1.2 12 -20 iii VS'tl5V I- 0 -60 ~ 225 . _1 I.--- r-. AM81ENT TEMPERATURE--C 60 -20 tlDO +20 +60 AMBIENT TEMPERATURE-'C ~ 22 "l- +100 0 /" r--.. 40 0 :> '"0z ~ 28 TA· +25·C , 26 ~ 24 ~ ~ +60 'DO 0- 0 eo :> ;0 ~ ,.0 +20 .. VS.:!: I~V OUTPUT VOLTAGE SWING :> -20 - I- POWER CONSUMPTION VS AMBIENT TEMPERATURE ASA FUNCTION OF LOAD RESISTANCE :> r- '"0 IL IL AMBtENT TEMPERATuRE-oC 0 -60 .. ...... 0- V ..... .... ~O.2 ~ ......... 0 -60 .. ,/ . ! :> "- 0.4 § eo / 0.6 VS·:t I!5V 160 ~ 120 ~ 0.6 ~ INPUT IMPEDANCE VS AMBIENT TEMPERATURE Vs '±15V ~ I- z I- 1 -15 -1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.60.8 INPUT VOLTAGE-mV .., . I ~ 0.2 I- INPUT OFFSET CURRENT VS AMBIENT TEMPERATURE ~ 1°,8 11) l -I - ITT709-S INPUT BIAS CURRENT VS AMBIENT TEMPERATURE 0 0 I- ITT709-1, 15 20 ITT710 HIGH SPEED DIFFERENTIAL COMPARATOR - ITT- - - - SEMICONDUCTORS HIGH SPEED DIFFERENTIAL COMPARATOR CONNECTION DIAGRAMS (TOP VIEW) • Low Offset Voltage • Low Offset Current 8 LEAD METAL CAN • High Voltage Gain V· • Fast Response Time The ITT710 is a differential voltage comparator which offers high accuracy and fast response times. The entire circuit is contained on one silicon chip and is manufactured using the ITT Planar Epitaxial process. The output of the ITT10 is compatible with all integrated logic forms. The ITT710 can also be used as a variable threshold Schmidt trigger, a pulse height discriminator, a memory sense amplil'ier, a high noise immunity line receiver, or in high speed A-D conversion and multivibrator functions. NON INVERTlNG INPUT V- NOTE: PIN 4 CONNECTEO TO cASE. 14 LEAD DIP NC NC GND NC NON INVERTING INPUT ABSOLUTE MAXIMUM RATINGS Characteristics 2 INvERTING INPUT Units NC Positive Supply Voltage ............ +14.0 V Negative Supply Voltage ............ -7.0 V Peak Output Current ................. 10mA Differential Input Voltage .... . . . . . . .. ±5.0 V Input Voltage .. . . . . . . . . . . . . . . . . . . .. ±7.0 V Internal Power Dissipation .......... 300mW (ITT710-1 Note 1, ITT710-5 Note 2) Operating Temperature Range ITT71 0-1 .............. -55° to +125°C ITT710-5 .................... 0° to 70°C Storage Temperature Range -65° to + 150°C Lead Temperature (Soldering, 60 sec.) .. 300°C V· OUTPUT NC' NC FLATPAK GND NON NC c:::=:r----1 INVE ;~~~~ c::.=:r----Il/ INVE~~~~~ NC v+ '--"<;=== OUTPUT NOTES: (1) Rating applies for case temperatures to +125°C; derate linearly at 5.6mW;oC for ambient temperatures above +105°C. (4) The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.SV at -55°C, 1.4V at +25°C and 1.0V at +125°C. (2) Ratings apply for ambient temperatures to + 70°C. (5) The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.5V at O°C, 1.4V at +25°C and 1.2V at +70°C. (3) The response time specified (see definitions) is for a 100-mV input step with 5-mV overdrive. 7-9 ITT710 HIGH SPEED DIFFERENTIAL COMPARATOR ELECTRICAL CHARACTERISTICS for ITT710-1 (TA=+25°C, V=12.0V, V=-6.0V unless otherwise specified) PARAMETER (see definitions) Min. Typ. Input Offset Voltage Input Offset Current 1250 Output Resistance Output Sink Current mV Rs::::;;2000 0.6 2.0 3.0 uA 13 20 uA 1700 200 2.0 0 2.5 Response Time (Note 3) The following Units CONDITIONS (Note 4) 0.75 Input Bias Current Voltage Gain Max. mA IlVln;;::5mV, Vout=O ns 40 specifications apply for -55°C ::::;;TA ::::;; +125°C Input Offset Voltage 3.0 Average Temperature Coefficient of Input Offset Voltage Input Offset Current Average Temperature Coefficient of Input Offset Current 3.5 10 2.7 10 0.25 1.8 3.0 7.0 5.0 15 25 75 27 45 Input Bias Current Input Voltage Range Common Mode Rejection Ratio ±5.0 80 Differential Input Voltage Range ±5.0 Voltage Gain 1000 mV Rs::::;;2000 uvrc Rs = 500, TA=25°C to TA= +125°C uvrc Rs = 500, TA=25°C to TA= -55°C uA TA= +125°C uA TA = -55°C nArC TA=25°C to TA= +125°C nArC TA = 25°C to TA = -55°C uA TA - -55°C V V= -7.0V 100 dB Rs::::;;2000 V ~ Positive Output Level 2.5 Negative Output Level Output Sink Current 3.2 4.0 -1.0 -0.5 0 0.5 1.7 1.0 2.3 Vin;;::5mV, V O::::;;lout::::;;5.0mA V IlV IN ;;::5mV mA TA = +125°C, IlVin~5mV, Vout=O mA TA = -55°C, IlVln;;::5mV, Vout=O Positive Supply Current 5.2 9.0 Negative Supply Current 4.6 7.0 mA Power Consumption 90 150 mW 7-10 mA Vout::::;;O ITT710 HIGH SPEED DIFFERENTIAL COMPARATOR ELECTRICAL CHARACTERISTICS FOR ITT710-5 (TA=25°C, V=12.0V, V=-6.0V unless otherwise specified) Parameter (see definitions) Min. Units Conditions (Note 5) Typ. Max. Input Offset Voltage 1.6 5.0 mV Rs::::;200fl Input Offset Current 1.8 5.0 uA Input Bias Current 16 25 uA Voltage Gain 1000 Output Resistance 1500 200 Output Sink Current 1.6 Response Time (Note 3) fl 2.5 rnA t.v;n?::-5mV, Vout=O ns 40 The following specifications apply for 0° C::::;TA::::; + 70°C: Input Offset Voltage mV Rs::::;200fl 6.5 Average Temperature Coefficient of Input Offset Voltage 5.0 Input Offset Current 20 uV;oC 7.5 uA nAloC TA=25°C teo TA=+70°C nAloC TA=25°C to TA=O°C Average Temperature Coefficient of Input Offset Current 15 24 50 100 Input Bias Current 25 40 uA TA=O°C ±5.0 Input Voltage Range Common Mode Rejection Ratio 70 Differential Input Voltage Range ±5.0 Voltage Gain Rs=50fl TA=O°C to TA= + 70°C V V 98 =-7.0V dB Rs::::;200fl V 800 Positive Output Level 2.5 Negative Output Level Output Sink Current 3.2 4.0 -1.0 -0.5 0 0.5 V llV;n?::-5mV,O::::;lout::::;5.0mA V llV;n?::-5mV rnA llV IN ?::-5mV, Vout=O Positive Supply Current 5.2 9.0 rnA Vout::::;O Negative Supply Current 4.6 7.0 rnA 90 150 mW Power Consumption R4 RS 28kll 3.9kU Schematic Diagram " 500.0.- NON INVE~J~0~ o-----+------t:" 0, 0, 6.2V OUTPUT Q'r--~----------~ 'B 10011 7-11 '7 6811 ITT71 0 HIGH SPEED DIFFERENTIAL COMPARATOR NE~ATIVE OUTPUT LEVEL" The DC output voltage in the negative direction with the input voltage equal to or greater than a minimum specified amount. DEFINITION OF TERMS: LOGIC THRESHOLD VOLTAGE The approximate voltage at the output of the comparator at which the loading logic circuitry changes its digital state. OUTPUT SINK CURRENT The maximum negative current that can be delivered by the comparator. INPUT OFFSET VOLTAGE" - The voltage between the input terminals when the output is at the logic threshold voltage. The input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads. PEAK OUTPUT CURRENT The maximum current that may flow into the output load without causing damage to the comparator. OUTPUT RESISTANCE" - The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage. INPUT OFFSET CURRENT" - The difference in the currents into the two input terminals with the output at the logic threshold voltage. INPUT BIAS CURRENT" two input currents. STROBED OUTPUT LEVEL" - The DC output voltage, independent of input voltage on the strobe terminal equal to or less than a minimum . . specified amount. The average of the INPUT VOLTAGE RANGE" - The range of 'Voltage on the input terminals for which the comparator will operate within specifications. STROBE CURRENT - The maximum current drawn by the strobe terminal when it is at the zero logic level. . DIFFERENTIAL INPUT VOLTAGE RANGE" The range of voltage between the input terminals for which operation within specifications is assured. POWER CONSUMPTION - The DC power into the amplifier· with no output load. The DC power will vary with signal level, but is specified as a maximum for the entire range of input-signal conditions. , VOLTAGE GAIN" - The ratio of the change in output voltage to the change in voltage between the input terminals producing it with the DC output level in the vicinity of the logic threshold voltage. RESPONSE TIME" - The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial,· saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive. STROBE RELEASE TIME" The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from the zero to the one logic level. Appropriate input conditions are assumed. POSITIVE OUTPUT LEVEL· - The DC output voltage in the positive direction with the input voltage equal to or greater than a minimum specified amount. "These definitions apply for either side with the other disabled with the strobe. 7-12 ~TT710 HIGH SPEED DIFFERENTIAL COMPARATOR TYPICAL CHARACTERISTICS ITT 710-1 VOLTAGE TRANSFER CHARACTERISTIC ... I.' ~ ~ ~ i1 ~ ... if. . .!I/ It .... -l.O ~ I.' -1.0 tr.PUT VOUA(';[ - mV t-- I- ,.. ~ !! ~ v·, ... 12\1 ~ '" il ~ ........ 10 •.., I r--. 1"·20 ,. ., I" 100 J'[MPERATURE ··C rutNER CONSUMPTION AS A FUNCTION OF AMBIENT TE,,~PERATURE IJJl . % !j § ~ i " '"", &l - llV v'· ~.ov '"·c 100 I 1.0 Ii '\. i'\. •.., .,. 5... ~ " I y'. '1..y l"- f...... 100 r....... t-.... "' 100 " I .. ........ ,. \II .., II I., ,. -20 OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE I.'.., u = 0- 1.' ; 1i " ,. I.' "' ·c 100 I., ... -1.0 v' . 12V -6.0 II i I 11 LOGIC ffiR[S I -I-- ~ I I I I ,, • ! t.(C"lIVE'OllTf'Ull!'ii l I- TEMf'ERATURf • 7-13 - -- .:.. 2.0 ........ J"..!oukk v·· I > ~ '20 I'" OUTPUT VOLTAGE LEVelS AS A FUNCTION OF AMBIENT TEMPERATURE V·'llV' v' • -6.0 II - 100 '" 'c TtMPERATUR[ - T(MPERA1URf - ·C ... I., I Y'· I2Y -i.Olls "eMS·S,OV ~ I.' 20 TEMPERATURE - 101 ~ \ "',- "- 14 COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE l.' r---. II " 102 l.' v', .. "... .,. 11 POSITIVE SUPPlY VOUAa - II V·· 12\1 -6.0V ~ -- P 0 ~ ~ I{.~ V 10 140 ' v'· \ '" 20 100 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE V'· --6,()V ~ "' .~l-f::: ' V V 1",,1/ ,., ,. .,. ' 17/V -'v nMf'ERATURf - ·C INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ,. .., /' ~1500 1\ IlO! ./ !l 1\ I. . '.. .J-- l,~v ~~ '\ ~ :r H- .;/ '\ ::: 160:1 -_. ".- -1--.._- - . Tt . ~·c '-T~'''!C- JlJl -6.0 II 2lOO g"", (I -1.0 v' • unless otherwise VOLTAGE GAIN AS A FUNCTION . OF SUPPLY VOLTAGES V·· \2'1' :--.... 1100 I i .. i.O IIW i-~~r.~ :-~;'c- ..- = 12.0V. V = -6.0V VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE ~:: ~.~y +-+-+-+,-,,+,1._=..±.~..I±.=i. TA • -»~c iTA = 2SOC. V specifiedl I ·20 -I I i ---r " '"·c T'EkiftRATUR£ • 100 I'" ITT71 0 HIGH SPEED DIFFERENTIAL COMPARATOR (TA~25 c, V ~12.0V. V ~ -6.QV unless otherwise specified) VOLTAGE GAIN AS A FUNCTION VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE OF SUPPLY VOLTAGES TYPICAL CHARACTERISTICS MIC 710-5 VOLTAGE TRANSFER CHARACTERISTIC .. f-~~: ~!.~vl-I-It-It-t-t-H 4.0 ... 1100 V·· 11'0' y' • ~.O\l , LOI-I-- lOIJI --- z,IOO ~ ~ giG ........... ~ --..... 1~f'UT iY V I:Y1~ .100 ....... 0 \0 20 1O «Xl \0 M 70 ~ ~ " ------ INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ',0 1--+--+-+--+-,::: ~~v - , ... ~~: ~!.~v 0 ~ ~ ili ~ :! !- - t',. 2.0 °O'--~'~O~~'--~~'--~~~~~~'~M~70 "',0 0 10 ., 20 POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE '00 Ii ',I ~:: ~.~v·1 - '" I8 " ; ~ 0 20 10 ., ~ TEMPERATUR£ - '.0 ~ M 1.0 70 '0 20mV IOmV t1 ! 0 r- ., 1O " Vi i I I ; I g ~ 2.0mll I I 10 '.0 0 , I I 8 ~ 10m'! 1.0 20mV 0 \ vl· 0mv I' I I ~ ~ I I '00 ~ '10 H-t--H-++-+-1-+v-i"-'+I1v+H .. 0 M-t--H-+-t-+-1-+\ ~'C ~~~I0~~"~~M~~,,~,~ro~'~20 liME' tIS _._---_._-----' 7-14 TO I y+. ltv y•• ".0 V I I r- I I t«CATIYlQutMl£VI I .,I I ,. \0 t §:!l '" TEMftRATUItE • ·c " M TO Vt •• 11V 1.0 y ••• ,y 'A ·'n·c - '.0 I~ or'.0 -~ I- _ r- ~rt+-~-++-~-+'v:~~.,~.o~v-+4 60 COMMON MODE PULSE RESPONSE -1.0 .00 " IOCIC \'''''' ,",VOl . " -6.0V TA ' 25°C I '1.0 0 10 A1.Omv 1'L °c POSITIVI OUTPUT llvn i M ., 1O TEMPlRATUllt • '.0 V+- .12'.1 v-· " " " Tl"'£'ns ~ 2,0 20 ,\0 a '.0 • RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES ~ I I I I 0 20 J(MP[RArUR( • ~C A.~.O(TIV 'rN ! '" 10 0 '.0 > •• 0 VV r+ fr '00 0 ~c i 1,0 0 -- 1.\ t-- '.0 1.\ ',0 ·1.0 '.0 - - OUTPUT VOLTAGE LEVELS AS A FUNCTION OF AMBIENT TEMPERATURE ~ RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 1.0 " 70 ~:: ~.~v- ~ "Ii! ., " M OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ~ ~ " 1O T(MPERATurt£· 'e T{MF'{IlArUI!( -'e .- I. I"--. ...... v," \2V ' v· . 'l,OV ·UY~VCM~·S.OY . ;" . E "~ ~ " COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE '00 ~ - Il, 1\ POSITIV( 'jUPPtY Vot.T,,(,( • V nMPERATUJ{{ _·C VOLTAGe' mV ~- ~ ~ ~V 1100 V • ~ '" '600 ....... .100 -1.0 '--'--'--'--'--'--"-"-"--'--t -H -).0 -\.0 1.0 l,a S.D ------- f, """C 1«Xl i=:- ~~ FlO ' .., ·CM •. 01-- I-J ' I.' - I I 0 0 .,I I -- . TlME'nl .10 .60 ITT710 HIGH SPEED DIFFERENTIAL COMPARATOR TYPICAL CHARACTERISTICS ITT 710-5 VOLTAGE TRANSFER CHARACTERISTIC ~. v·· 12 V y'. -uv l.' > ~ ,.. ~ ~ \.. lj I I 1,.",,",4 . I -t-- , • .../.i ... --- .... .., ..J, .. I I~ ' / ; -to I .. ' i 1,1.,.i. 'Ii 'Ii TA " JO'C ",' l.' .. 1.0 I.' vOUACl .. mY I~PUT .. I . S ........... r-- ., 1O TEMFUAruR£ .. ·c " .. ~ 2.0 lD ,. . 1O .. T£MPfItATUII[ .. ·c " .. 10 ....... I ., fEMP(AATUe: .. ·c " OJ y' • "t-- l.' l.' ~::~~v - - -- • 10 u :. -- I--- 10 ., 1O !tMPER""URl • 'c 7-15 " 10 I l.' .:. u l:O '~" i!l I.' 10 °c " "' 10 -1.0 0 I I v· . 12\1 V· .. ~.OV I I I lOGIC ~Hi£J(D VOU4C,(- f--- > OJ ., 1O JlMf'lRATUIt( .. r- POSIJIV£ OUTPuT UVCl I I • 10 ·'.OY OUTPUT VOLTAGE LEVELS AS A FUNCTION OF AMBIENT TEMPERATURE - I.' I.' • 91 10 )'12V' ·),OvSvCM~·S.OV 110 .. . j I. r--... " " iii "i! II II II POSITIVE SUPPLY \'OUAGE .. V 101 : ~ ' -- COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE fj I g .." i! r-... i ,.. ;" .. 10 - ..- V ;'" I""... y ~ :-- V V ~~ 0 1.1 10 " OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 1 ., 10 " 'c :::'~.~v I.' • TO ~~: ~.~v-- . "• ., 1O ItMflRATUIl( .. ~ -~- 10 "" i 20 s POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE l! 10 l.' ~ 10 r--... INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ~ •• " I .. • ~:: ~:v- !! ~ ...... , ... 1O 10 3 ........... V V ., y>/ .; . II1II z llOO " ~ r-. l. . INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ~ ~ .. .. ,.. , ' '"., y" ....QV e I I i unless otherwise VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES v· .. uv !l I Ii, I -J.O I VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE I". I"" 3z"'" -s.ov (TA= -i-2S'C. V=12.0V. V= specified) I I I I ,.CAnvE OuTPuT uvH 10 10 I .,I I 1O lO tlMKRATURE • ·C OJ 10 ITT710 HIGH SPEED DIFFERENTIAL COMPARATOR TYPICAL CHARACTERISTICS ITT 710-1 , ITT710-S RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES ••J.' ... I.' • -1.0 I lGr.1'r' IOmy 50 • ! rill ,.4-'Q~Y 11 y ~-i I 1 i ! ! 1 , v·· I i ~12V i TA ' I , ! I I I I • " ., '" '" TIM{ • n~ 100 V· • . ... ~~ l- .... ... I.. I ~0DF: 2,'1-=.t' I.' °i • S;j I" I I.' • I--' iI- ... J.' ~v fA' 25"C RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES I -' - .1 I , ! I • I ~ IOmv • ".V 1\ -1.0 .. 110 III 11M(' 7-16 ns 160 V~·O?IV ~- I I 20 I I I . I v.'. ,"vi j • I '-l I , 100 "• I 1I I ~ I.'.vl i' I- 2':>"c! ! v.. ',"v 1.0 ~~'" I v-' ./!:ovt- ! , ;g ! , ! I i? !=:~g V, '/II! ~·j,omY 100 COMMON MODE PULSE RESPONSE (TA=25'C.V =12.0V.V =-s.ov unless otherwise specified) I V" ·b.OY I III \TC 60 lINt-n, 1"1 120 - ITT711 DUAL COMPARATOR ITT- - - - SEMICONDUCTORS CONNECTION DIAGRAMS (TOP VIEW) DUAL COMPARATOR 10 LEAD METAL CAN • High Accuracy" • Fast Response Time • Large Input Voltage Range • Low Power Consumption STROBE I STROBE 2 INVERTING INPUT 1 INVERTING INPUT 2 ,Now, Pin S connect8d to case. The ITT711 is a dual differential voltage comparator. It was primarily designed for corememory sense amplifiers which require high accuracy, fast response times, large input voltage range, and low power consumption. The output voltage is compatible with most integrated logic forms. When used as a sense amplifier, the threshold voltage can be. adjusted over a wide range, almost independent of the integrated circuit characteristics. Each comparator channel is provided with independent strobing, Pulse stretching on the output is easily accomplished. Double-ended detection for automatic GO/NO-GO test equipment and pulse height detection (window discriminator) are additional applications of the dual comparator. The entire circuit is contained on a silicon chip and is manufactured using ITT Planar Epitaxial process. 14 LEAD DIP N.C. INVERTING !-"-""'-..Ll..j..J INPUT 1 NON·INVERTING INPUT 1 ....__---v..----, NON'INV~NRpT~~~ Lf-"--!l~O--L'4-J INV~NRpT~~~ STROBE 1 GROUND OUTPUT .p--6~/,,"---4"" STROBE 2 1...' N.C. 10 LEAD FLATPAK INVERTING INPUT 1 '--_.r---f "r---"'-C=::J NON.INVERTING ____ .J; INPUT 1 v-·r----i NON.INVERTING ( .. ____ n_ STROBE 1 GROUND ~ 4 INPUT2 _~--<~ INVERTING INPUT 2 OUTPUT STROBE 2 NOTES: ABSOLUTE MAXIMUM RATINGS Characteristics Units Positive Supply Voltage ., ..... ,.,.. + 14.0V Negative Supply Voltage , .. ,.,."",. -7.0V Peak Output Current ., .... ,., .. '.... 50mA Differential Input Voltage ............ ±5.0 V Input Voltage .................... ±7.0 V Strobe Voltage ................ 0 to +6.0 V Internal Power Dissipation .......... 300 mW (ITT711-1 Note 1, ITT711-5 Note 2) Operating Temperature Range ITT711-1 .......... , ..... -55° to +125°C ITT711-5 .................. 0° to +50°C Storage Temperature Range -65° to + 150°C Lead Temperature (Soldering, 60 sec.) .. 300°C 1. Rating applies for case temperatures to +125°C; derate linearly at 5.6mW/"C for ambient temperatures above +95°C. 2. Rating applies for ambient temperatures to +70°C. 3. The response time specified (see definitions) is for a 100-mV input step with 5-mV overdrive. 4. The input offset voltage (see definitions) is specified for a logic threshold voltage of 1.8V at -55°C, 1AV at +25°C and 1.0V at +125°C ... 5. The input offset voltage is specified for a logic threshold voltage of 1.5V at DoC, 1AV at +25°C and 1.2V at +70°C. 7-17 ITT711 DUAL COMPARATOR ELECTRICAL CHARACTERISTICS FOR ITT711·1 (TA=25°C, V+=12.0V, V-=-6.0V unless otherwise specified) PARAMETER (see definitions) Min. Typ. Input Offset Voltage Max. Units 1.0 3.5 mV 1.0 5.0 mV Input Offset Current 0.5 10.0 uA Input Bias Current 25 75 uA Voltage Gain 750 40 ns Strobe Release Time 12 ns ±5.0 Differential Input Voltage Range ±5.0 V 200 Positive Output Level 4.5 2.5 Negative Output Level -1.0 Strobed Output Level -1.0 Output Sink Current 0.5 Vout = +1.4V V- -- --7.0V V Output Resistance Loaded Positive Output Level Vout = +1.4V, Rs :::;;2000, VCM = 0 Vout = + 1.4V, Rs :::;;2000, 1500 Response Time (Note 3) Input Voltage Range Conditions 5.0 3.5 -0.5 0 0 0.8 Strobe Current 1.2 Positive Supply Current 8.6 Negative Supply Current 3.9 Power Consumption 130 2.5 ° V Vin;;;::10mV, V Vin ;;;::10mV, 10 = 5mA V Vin ;;;:1OmV, V Vstrobe:::;;0.3V mA Vin ;;;:10mV, Vout;;;:O mA Vstrobe - mA Vout:::;;O 100mV mA 200 mW The following specifications apply for -55"C:::;;T :::;;125°C: .. Input Offset Voltage (Note 4) Input Offset Current (Note 4) Input Bias Current mV 6.0 mV 20 uA 150 Temperature Coefficient of 5.0 Input Offset Voltage Voltage Gain 4.5 500 7-18 uA uV;oC Rs :::;;2000, VCM = 0 Rs:::;;2000, ITT711 DUAL COMPARATOR Schematic Diagram STROBE 2 STROBE 1 ~--~----------~r---+---~---+--~r-----------~----~--oV+ R15 4.3kO 910 {} R7 5.05kO R9 RIO 1200 1200 RS 2400 V' ELECTRICAL CHARACTERISTICS FOR ITT711-5 (TA =25°C, V+=12.0V, V-= -6.0V unless otherwise specified) Typ. Max. Input Offset Voltage 1.0 5.0 1.0 7.5 Input Offset Current 0.5 15 25 100 Parameter Min. Input Bias Current Voltage Gain 700 Response Time (Note 3) Strobe Release Time Units Conditions mV Vout = + 1.4V,R,:::;;200n, VCM=O mV Vout = + 1.4V,R,:::;;200n, uA Vout=+1.4V uA 1500 40 ns 12 ns Input Voltage Range ±5.0 V ~- -- Differential Input Voltage Range ±5.0 V Output Resistance -7.0V n 200 Positive Output Level Loaded Positive Output Level 4.5 3.5 5.0 2.5 V Vin~10mV V Vin~10mV, IQ-5mA Negative Output Level -1.0 -0.5 0 V Vin~10mV Strobed Output Level -1.0 0 V V,'robe:::;;0.3V Output Sink Current 0.5 0.8 7-19 mA Vin~10mV, Vou,~O ITT711 DUAL COMPARATOR ELECTRICAL CHARACTERISTICS FOR ITT711-5 (TA=25°C, V+=12.0V, V-= -6.0V unless otherwise specified) (continued) Parameter Strobe Current Min. Typ. 1.2 Max. 2.5 Units Conditions mA V.trobe-100mV Positive Supply Current 8.6 mA Vout:::;;;O Negative Supply Current 3.9 mA Power Consumption 130 230 mW The following specifications apply for O°C:::;;;T :::;;;+70°C: Input Offset Voltage (Note 5) 6.0 10 mV Rs:::;;;200fl, VCM=O mV Rs:::;;;200fl Input Offset Current (Note 5) 25 uA Input Bias Current 150 Temperature Coefficient of Input Offset Voltage Voltage Gain 5.0 500 DEFINITION OF TERMS: LOGIC THRESHOLD VOLTAGE The approximate voltage at the output of the comparator at which the loading logic circuitry changes its digital state. INPUT OFFSET VOLTAGE" - The voltage between the input terminals when the output is at the logic threshold voltage. 1he input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads. INPUT OFFSET CURRENT" - The difference in the currents into the two input terminals with the output at the logic threshold voltage. INPUT BIAS CURRENT" two input currents. uA uV/"C The average of the INPUT VOLTAGE RANGE" - The range of 'Voltage on the input terminals for which the comparator will operate within specifications. DIFFERENTIAL INPUT VOLTAGE RANGE" The range of. voltage between the input terminals for which operation within specifications is assured. VOLTAGE GAIN" - The ratio of the change in output voltage to the change in voltage between the input terminals producing it with the DC output level in the vicinity of the logic threshold voltage. RESPONSE TIME" - The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparatorfrom some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive. STROBE RELEASE TIME" The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from. the zero to the one logic level. Appropriate input conditions. are assumed. POSITIVE OUTPUT LEVEL" - The DC output voltage in the positive direction with the input voltage equal to or greater than a minimum specified amount. NEGATIVE OUTPUT LEVEL" - The DC output voltage in the negative direction with the input voltage equal to or greater than a minimum specified amount. 7-20 !TT711 DUAL COMPARATOR OUTPUT SINK CURRENT The maximum negative current that can be delivered by the comparator. PEAK OUTPUT CURRENT The maximum current that may flow into the output load without causing damage to the comparator. OUTPUT RESISTANCE' - The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage. STROBED OUTPUT LEVEL' - The DC output voltage, independent of input voltage on the strobe terminal equal to or less than a minimum specified amount. STROBE CURRENT - The maximum current drawn by the strobe terminal when it is at the zero logic level. POWER CONSUMPTION - The DC power into the amplifier with no output load. The DC power will vary with signal level, but is specified as a maximum for the entire range of input-signal conditions. 'These definitions apply for either side with the other disabled with the strobe. VOL TAGE TRANSFER CHARACTERISTIC > TYPICAL PERFORMANCE CURVES ITT711-1 ii,'---.,-i-,.O+------f/JiH, gu ,Ill f----------c--cift 1/,,.'---j-- __ l--.-- g ill 5 § 1.0 I' I' '1(5'C *2S'C :'/V 1 -1.0 -s.o - - ,-- :-'--Sj'C -),0 -La -1.0 INPt.T~OlUCE 3.0 s.o - I'lV VOLTAGE TRANSFER CHARACTERISTIC TYPICAL PERFORMANCE CURVES ITT711-5 r--T-+--jff+.-+--,-1-+-I c.b ,.o--,-:-.,;'-c.0-"--:;'-;--'--,':;1.0-'---+',.0:-"---1 I \Pul VCLTAct . 7-21 m~ 111711 DUAL COMPARATOR TYPICAL PERFORMANCE CURVES VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES "'" TA .~oc 1400 2; '.0 '~~~tl~~=t~,t"~'~I"~ 'LO~ H-++H+-H-+-+ Y"'6.0V TA' 25'C loo,H-++H+-H-++H-H ",H-++H·+-H-++H-H 20 III TlI.'f - ~I 100 TEMPERATL.«E·C POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE "f-I\-\I--+-+-+-+-f-+ ::: :!~~v 100 ~ ~I'«i--t--t--t-r-r ~~: :~:v 3OOJ~t-~t-""~t-t-t-H g "\ ~ ~~~\-+-+-+-~~-+-+~ t--t--I- 1 I 7 ·• I I I I I ! I I I I liS g VC~, . 1100 'I2Y V-' -6,DV ~ '12V V" -r-r-r- lO I- iii VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE TA '25" ~ v-' -6.0V I I I I I of- ~ 1.0 v" II 1.0 TlIII·nl T,,'25'C ~~ ).0 VOlTACE • V I I I I I '.0 1.0 · g COMMON MODE PULSE RESPONSE ~ STROBE RELEASE TIME FOR VARIOUS INPUT OVERDRIVES 2.0 f-ltVJI--Hf\"Pkt--!c-r ~ liO~+$m~ -to,I-+-+-+-+-+-+-+-+-+--1 120 TIME - nl 7-22 I~ v.I•• "~ y-. -6.0V I ~ II'" 1..... 1- 1'-r:::" 3 I" ~ I"·00 ." ." '00 J[Ml'DIATUH • '100 'c _ I ITT712 HIGH-GAIN DC AMPLIFIER .L.L _ _WIDEBAND __ _ mm SEMICONDUCTORS HIGH-GAIN Absolute Maximum Ratings Characteristics WIDEBAND DC AMPLIFIER • Low Offset Voltage o High Voltage Gain • Low Offset Voltage Drift The ITT712 is a general purpose amplifier for use as an operational amplifier in high speed analog computers, a precision instrumentation amplifier or in other applications requiring a feedback amplifier capable of operating within the frequency ranges of DC to as high as 30M Hz. The ITT712 amplifier achieves low DC offset and low thermal drift, wideband operation and low power consumption as a result of ITT Planar epitaxial manufacturing process. Units Voltage between V+ and Vterminals ...................... ±21 Volts Internal Power Dissipation (TO-S) .... 300mW (ITT712-1 note 1, ITT712-S note 2) Differential Input Voltage ......... ±S.O Volts Input Voltage .......... + 1.S to -6.0 Volts Peak Output Voltage ................. SOmA Storage Temperature Range .. -6S to +1S0°C Operating Temperature Range ITT 712-1 ................ -SS to +12SoC ITT712-S .................... 0 to +70°C Lead Temperature (Soldering, 60 sec.) ................ 300°C NOTES: 1. Rating applies for case temperatures to +12SoC; derate linearly at S.6rhWrC for ambient temperatures above +9SoC. 2. Rating applies for ambient temperatures to +70°C. ELECTRICAL CHARACTERISTICS for ITT712-1 Parameter (See definitions) Min. I Typ I Max. Min. I Typ I Max v+ =12.0V. v- =6.0V· V+ =6.0V. v- =-3.0V Units Conditions Input Offset Voltage O.S 2.0 0.7 3.0 mV Rs:::;;2kfl Input Offset Cu rrent 180 SOO 120 SOO nA 2.0 S.O 1.2 3.S uA Input Bias Current Input Resistance Input Voltage Range Common Mode Rejection Ratio Large Signal Voltage Gain 16 40 -4.0 22 67 +O.S -1.S 80 100 2S00 3600 kfl +O.S V dB Rs:::;;2kfl, 1:::;;1 kHz 80 100 600 900 1S00 RL ;?100kfl, Vout-±S.OV RL ;?100kfl, Vout = ±2.SV 6000 Output Resistance 200 SOO 300 700 Supply Current S.O 6.7 2.1 3.3 mA Vout=O Power Consumption 90 120 10 30 mW Vout-O 7-23 fl ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER ELECTRICAL CHARACTERISTICS for ITT712-1 (continued) Parameter Min. (See definitions) V+=12.0V, V-=6.0V TyP. Max. Min. Typ, Max Units Conditions V+=6.0V, V-=-3.0V C1=0.01 uF, R1=20fl Transient Response RL~100kfl, (Unity-Gain) Rise Time 25 120 ns Overshoot 10 50 % CL~100pF C,=50pF, Transient Response (x100 gain) Vin =10mW RL~1 OOkfl Vin=1 mV Risetime 10 30 ns Overshoot 20 40 % The following specifications apply for -55°C~TA~+125°C: 4.0 3.0 Input Offset Voltage mV Rs~2kfl 2.5 10 3.5 15 uvrc R.-50fl TA=25°C to TA= +125°C 2.0 10 3.0 15 uvrc TA=25°C to TA= -55°C Input Offset Cu rrent 80 400 500 1500 50 280 500 1500 Average Temperature Coefficient of Input Offset Current 1.0 5.0 0.7 4.0 nArC TA=25°C to TA- +125°C 3.0 16 2.0 13 nArC TA=25°C to TA= -55°C Input Bias Current 4.3 10 2.6 7.5 Average Temperature Coefficient of Input Rs -50fl Offset Voltage Input Resistance 6.0 Common Mode Rejection Ratio 70 8.0 95 nA TA-+125°C nA TA=-55°C vA TA=55°C kfl 70 dB 95 R.~2kfl, f~1 kHz V+=12V, V-=-6Vto Supply Voltage Rejection Ratio 75 200 75 200 uV/V V+=6V, V-=-3V Rs~2kfl RL~1 OOKfl, RL~100kfl, Large Signal Voltage Gain 2000 Output Voltage Swing ±5.0 ±5.3 ±3.5 ±4.0 Supply Current 4.4 5.0 6.7 7.5 1.7 2.1 3.3 3.9 rnA TA=+125°C, Vout=O rnA TA=-'-55°C, Vout=O Power Consumption 80 90 120 135 15 19 30 35 mW TA=+125°C, Vout=O mW TA=-55°C, Vout=O 7000 500 1750 ±2.5 ±2.7 ±1.5 ±2.0 7-24 V V Vout= ±5.0V Vout =±2.5V RL~100kfl RL~10kfl ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER ELECTRICAL CHARACTERISTICS for ITT712·5 Parameter (see definitions) The following specifications apply for TA==25°C Input Offset Voltage 1.5 Input Offset Current Input Bias Current Input Resistance Input Voltage Range Common Mode Rejection Ratio Large Signal Voltage Gain 10 6.0 mV Rs~2KO 0.3 2.0 fl.A 1.5 5.0 fl.A KG 5.0 1.7 0.5 2.0 2.5 7.5 32 16 rt- 0.5 -4.0 70 92 2000 3400 55 1-1.5 70 +0.5 V dB Rs~2KO, f~1 KHz 92 RL;;:'100 KO Vout ==±5.0 V 6000 800 1500 600 300 800 500 RL;;:'100 KG Vout== ±2.5 V G Output Resistance 200 Supply Current 5.0 6.7 2:1 3.3 mA Vout==O 90 120 19 30 mW Vout==O Power Consumption --- ~ ----~-- C,-0.01 fl.F, R,==200 RL~100 KO V'n==10 mV Transient Response (unity gain) Risetime 25 120 ns Overshoot 10 50 % CL~100 pF C3 ==50 pF RL;;:'100 KO Vin==1 mV Transient Response (X100 gain) Risetime 10 30 ns Overshoot 20 40 % The following specifications apply for 0°CTA+70°C Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage 6.5 5.0 Input Offset Current Average Temperature Coefficient of Input Offset Cu rrent 7.5 20 25 fl.vrc 2.5 }LA 3.0 5.5 8.0 18 2.5 4.0 6.0 10 20 7-25 mV Rs~2 KG 7.5 Rs==50G TA==+70°C to TA==O°C nArC TA-25°C to TA-+70°C nAloC TA==25°.C to TA==O°C ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER ELECTRICAL CHARACTERISTICS for ITT712-5 (continued) Parameter (see definitions) Conditions The following specifications apply for TA=25°C Input Offset Voltage 1.5 5.0 1.7 6.0 mV Rs~2K!1 Input Offset Current 0.5 2.0 0.3 2.0 /LA Input Bias Current 2.5 7.5 1.5 5.0 /LA K!1 Input Resistance Input Voltage Range Common Mode Rejection Ratio Large Signal Voltage Gain 10 32 -4.0 16 55 ~0.5 +0.5 -1.5 70 92 2000 3400 70 V dB Rs~2K!1, f~1 KHz 92 RL;;:::100 K!l Vout =±5.0 V 6000 500 800 1500 RL;;:::100 K!1 Vout=±2.5 V !l Output Resistance 200 600 300 800 Supply Current 5.0 6.7 2.1 3.3 rnA Vout=O Power Consumption 90 120 19 30 mW Vout=O Cr=0.01 /LF, R,=20!1 RL~100 K!l V1n =10 mV Transient Response (unity gain) Risetime 25 120 ns Overshoot 10 50 % CL~100 pF C,=50 pF RL;;:::100 Kn V1n =1 mV Transient Response (X100 gain) Risetime 10 30 ns Overshoot 20 40 % The following specifications apply for O°C TA+ 70°C Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage 5.0 Input Offset Current Average Temperature Coefficient of Input Offset Cu rrent 7.5 6.5 20 7.5 25 /LV/oC Rs=50!1 TA=+70°C to TA=O°C 2.5 3.0 5.5 8.0 18 /LA nAloC TA=25°C to TA=+70°C nAloC TA=25°C to TA=O°C 2.5 4.0 6.0 10 20 mV Rs~2 K!1 7-26 ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER ELECTRICAL CHARACTERISTICS for ITT712-5 (continued) Parameter (see definitions) v- =6.0V Typ. Max. v- =-3.0V Typ. Max V+:, 12.0V, V+ =6.0V, Min. Min. 4.0 Input Bias Current 2.7 12 8 Units Conditions p..A TA-O°C Input Resistance 6.0 18 9.0 27 Kn Common Mode Rejection Ratio 65 86 65 86 dB Rs:::;;2Kn,f:::;;1 KHz 90 Supply Voltage Rejection Ratio Large Signal Voltage Gain 1500 90 300 300 V+-12V,V --6y' to p..V/v V+=6V,V-=-3V Rs:::;;2 Kn RL?:100 Kn Vout =±5.0V RL?:100Kn Vout=±2.5V 7000 1750 400 ±2.5 ±2.7 ±1.5 ±2.0 V RL?:100 Kn V RL?:10 Kn Output Voltage Swing ±5.0 ±5.3 ±3.5 ±4.0 Supply Gurrent 5.0 7.0 2.1 3.9 rnA Vout-O Power Consumption 90 125 19 35 mW TYPICAL PERFORMANCE CURVES ITT712-1, 712-5 VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES .... "I. 2;OC <000 j3000 I •.,., ~ 1.. H-t-+-t-+--t-H--t-+-t-l .. -< .,... .. OUTPUT VOLTAGE SWING AS A FUNCTION OF FREO,UENCY WITH LEAD·UG COMPENSATION ,. ~ ~ ~ -3 - . .. • . 100' -tV e .. I I .. ~ I !20 \ !I • '\ ,. .. , FRt:GWICY - H, 100. -, -20 '00' OP(JHOOP~r ~ 100 l!; ~ 50 " ..-, • I III I r T,,'.WC e, C1"looopf'. RpZOOA ILLl ,. fREClt.l(MCY -Hz 7-27 .. -. 1111 I 11111 OP£N:LDOP NI -I y., +12V v-. -6Y Ta' +8"C C, oO.l,.f R,oO II 1111 x:~ I~L.,"~; • ! III I II! Xl CLOSED-LOOP .. JllIJ 11lL '00 " , ·20 50. ~12 11..'g""•• 1.OOI' !20 !I , .. ~ , l LIl J C .0.01"'. R • 20.11. . V···,ZV IIII I I r-...: .,.-. ., SUPPLY VOLTAGES-Y FREQUENCY RESPONSE WITH CONSERVATIVE COMPENSATION NETWORK Y-'·6V C1"IOO"', R,.ZUl J..- :;; -6 FREO,UENCY RESPONSE FOR VARIOUS CLOSEIJ.LOOP GAINS (UG COMPENSATION) fA' +ZS-C ...... ~ &\:150 SUPPLY VOLTAGES-V Y· .... ,2Y y~. -4 ,,'.~oc a o.~,...,...1....J'-'-~ ••,-i--'-'-.:::1O-'--'-'-.-:i12 '12 5UPf!t.Y VOLTAG(S-V : 1 10 ~ a ~zoo a uH-t-t-I*-r-H--t-+-t-l '000 12 ". 2··H++-+++-H++-+--1 a ,/ =; , .• H-t-+-t-+--t-H-""'1',,-'-F"'-j"-l ~ m2.ol-++-+-++-l-H+-+-+:...I i-""' ~2000 INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGES INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGES '00' FR£QU[N(;Y - HI .. ,. , ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER TYPICAL PERFORMANCE CURVES ITT712-1, 712-5 (continued) FREQUENCY RESPONSE FOR VARIOUS CLOSED· LOOP GAINS (LEAD·LAG COMPENSATION) 'I.' +12'1 10 ~.LOOP, Cz'O f-V-"OV r-. I II 00 11 TA' +25'C C3' SOpf RI 'lo~n ........ I .40 '" C2rlOOOpF, RZ'ZOO.a ~20 III III ·20 100' IOU ~ ,.. . .~~ II 11 0 100 ~ ,. 110 .,. ~ ""~ ~ .. I-+HI--h~"-:.~.+-+-H.H-+I-tH i ~~ i 10~.....j.....j....>-l---l--I-.j...j..J-~ • Mft"\ N.u N4J 10' 100' 'REQUENCY - HI ~'~~tt=l f-++I+-.J--H~:::~~Y TA'25'C ,. 1~1-~-WL-~'0~~20~~"~1~00' CLOSEO-LOOl" VOLTAGE GAIN '1""2'1 / 5 _~-.-6V _TA'2~~ "$: 2 ~ 1 ~ 90% / 0.6 ',Or;:.. 0.2 1/ RISET,,,[ 0 , , 1 I it~ 0.4 / 0.1 oV~R$k ~ ii! 0.8 / .'/ ~~'~~'0~.LUL~~,~~-U~'Od~ 1.2 1.0 •~O.5 ,ol-+t++-H+H--jl,-!+H---!\,+-++H TRANSIENT RESPOIISE 1.4 10 ~ 100 H-o!:I!-+*lH-4d4+--H-Hl-l ~ "I-++++--?:+++H~\. ~20 ~~ \... SLEW RATE AS A FUNCTION OF CLOSED·LOOP VOLTAGE GAIN ILAG COMPENSATION) TIZS'C ~ 1-++lfl'Ok Y· •• 12V_ y-. -IV l800 ~ '~~-4-4-+t~/-+-+-I--I ~ of--4-4-+-l-+-+-+-I--I !"f-~-4-+fl+n-+-+-I--I--I RL"OOkA .,-, -, 1.0 f-HHH-+~ II-+':'!"';':''::.".;,.'-1 V ~ 0 f-H-4-+II+-+-+-+-I--I 1/ §., -2.0 ~f-';;IRLo;..':';'0'::0'~.L...f.I!i1-+'--+- I -, -3.0 -10 1100 kf-i-4-4-+-+-+- ~::::~_ 1000 f-p....l"-..~-4-+-+-+-+-+-I ~~-4-+~~-I-~4-+-+-I I" 10 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE , '000 2200 ·00 i .,. T 00 '0 TEMPERATUR[-"C 100 140 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE I v·, , 1'\ f- .12V V-'-6V 1'<- , ~1-~I--V."12V -1--1-1-1--1 ,oof-~I--~~~··~·~V-I-+-.J-+-I I" r- r-; TEMPERATURE·'C 3000 r ,1\ 1 f- ~OO~~'20~~'O~~'O~~l~OO~,~-I = i INPUT VOLTAGE -rtiV IHPUTVOlTAG[-,.V VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE ~:: ::~ -2 -6 " ~ 3400 &oj LH-+-+-+-cH-+++-I R • 10ke 1t'10kA -4 ! 0 ·60 t--- v· •• 6V v-· -3V' "0 r-t'0 00 TEMPERATURE-'C 7-28 100 140 O'L-L-L-~~~~~~-I -60 -20 20 60 TEMPERATURE-'C 100 ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER TYPICAL PERFORMANCE CURVES ITT712-1 (continued) SUPPLY VOLTAGE REJECTlOtJ RATIO AS A FUNCTION OF AMBIENT TEMPERATURE ~ lOa COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE IU~ RlslkQ r-r-r-r-r-r-r-r-~f-1 f/ I ~ ,w , I I I \ 400 0 ~ , ~ -f";; 300 200 " v.".. +6'1 ..,.-. -~v r- ~ 100 t- ." " '60 \40 100 W ' I I I ~~ Mld7112j' it . ~ 2 B 100 160 v -6V i/ --.j, ~ /1 - ;54-;,.a'. - ~ ~ A v·, .IZV V-I -6V TA I .Z~·C 0 100 '00 " "e TEMPERATURE - I .0 20 TEMPERATURE -'C - ~ i I I r N-+ g4 V-, -611 ·'e lZ ~ is +,1 0 " ~ 10 1'1+'·,2'1 : I I OUTPUT VOLTAGE SWING AS A FUNCTiON OF LOAD RESISTANCE t I "- I ' I ·20 'W OUTPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE ! : I I TEt.APERATURE-'C 200 TEMPERATURE S'" I ~~6'::-O~-:'2'::-O~-;2';;-O~-;,,';;--L;;,oo'::--':,\4::JO TENPERATURE ·'c ~'OO 2 I T i I I I r---+-----+-.r-r- V· • • 610' r- i, i I , I I 3 ~ r r-r-r-r-r-r-r-r-r-H INPUT RESISTANCI? AS A FUNCTION OF AMBIENT TEMPERATURE I I ~ 4 a ~ I 1--+-' V.... ,ZV,· V~, - 6V - % ~ II L J I I i ~ 5 f/ ;: 10 • '''52.kll. 2 9Of-+-+-+-+-+-+-+-+-H S 11 80 r-t-t-t-t-h;;-f-=-t----t--1 ~ POWER SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE lOOk LOAD RESISTANCE - 11 TYPICAL PERFORMANCE CURVES ITT712-5 (continued) VOLTAGE TRANSFER CHARACTERISTIC u v•• 11 V TA • VOLTAGE TRANSFER CHARACTERISTIC VOLTAGE GAIN AS A FUNCTiON OF AMBIENT TEMPERATURE ,..,. ltv O"'t <. f-"t-'-"i'-·"++-I'N'~III-:"'-.!-I ~::~,~V- ~ lA'we ~ "'f-+-I-HHi4i-i> b·, ~ g II ~ ~ 'I-H-4-+-++-i'-4-~ g g ""r-r-r-Hhfi,+++++--! § ~ .... 1-'1-'•...;10.,;;0+1>1-+++++-1 _Rl'tCD:O ....-ut=t:;~t'!J~::j;=1~:j~ -1.0 -),G 1.0 ),(1 S.Q 1.0 r-r-r-HH!-I1_TA . 25'C rIL ~ 2 '1.' r-r-r-Hf.li'+++++-I "' I R 'IOOIII'l .l.' --r;- , -10 -l.O 2.0 'HPUr VOlTAGI:: - mV -6.0 l. .......... ....... 1.5 '" "' • 10 l .• " , I'-.. .......... 100 ro ~ () nMf'f.RATUR{"C ~ 6.0 10 ~ " r-.... .., ... . - "- 'o"06.0V V·'·l.OV .......... ./1 1- 10 ro ~ () TtMPlRATURE· ·C 7-29 ... 0 10 ro ~ " ~ 10 ~ () TtMPlRATUR£' I I '1+. ~v - rv-'''Uv - t-....L l.' r-... r-.... "'" ~ -2.0 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ::: ~):O~- .., ,." 'r-r-r-H~r-!-4-4-1-1 INPUT VOlTA(j( - mV VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE ""'=---- ~ 10 'c INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEM~ERATURE ."" .. . .' v", !12V I"- .......... "'t- .• L~'oV i""-- 10 '1··4.0 .... V·· ·).0'1 ro r-- t- t- r- r- -r-- I--. )o«l5(l~ T(MPlRAlUR£ - 'c ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER TYPICAL PERFORMANCE CURVES ITT712-5 (continued) SUPPLY VOLTAGE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE POWER SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE COMMON MODE REJECTION RATIO AS A. FUNCTION OF AMBIENT TEMPERATURE •.• 1 w~~~ ! I .~~-+--+--t---l m~+--+--~+--+~~ 1.0 O!--:!IO~:!:-"--;~!:--:!~~:!:-~-!~~" ·'~~IO~m~~~~~~~*~~~~ro l(MPERAltJRt: ··c n'~~IO--m~~M~~~~~±-~~~ro ItMf'UATUIIE '"C INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE ltMFtRATUU tI ltD .;; i! " . 10 - , 10 I- V'·IfV V"j-6.0V m lO INPUT VOLTAGE RANGE AS AFUNCTION OF SUPPLY VOLTAGES . ~ ~ o 1-. .. -, ~ i'~ " .... .'" .. '10 '12 S&PPLl'VOLTMU-V , M ~ ItMPERATUR( otc ~ .pi!' V .."", ~ ~ '" ~ .. ..-, •-, ~ " SUPPLY CURRENT AS AFUNCTION OF SUPPLY VOLTAGES H++H-++HT..... C I i ~ " -!5st'C SlT.:I+12S·C ':'10 Ii Vt'IlY Y"lOV I 10 OUTPUT VOLTAGE SWING AS AFUNCTION OF SUPPLY VOLTAGES ~ ~ ~l"" l- ,, Ii;; • . -, -, ~ lOll-- I-- II ! ~-. ~ i!'"' Ii ro· ~ "C > -sa-c.T, •• IZSlf: i"" r- t-- - U~IT' I a --- TlMPERA1\IM: > 0 I \It.!.ov - fY"'"OV I «II a - v·.Lv ~.'[ ··c OUTPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE "" ~D ~ ,.'~:t;~~~ ie Ur-- :::I2~V+--+-t-t __+-~~--+--r~ ~ r-. r-.. I "1--+-+-+--+-+-1--'='1 .~ I I V ~ .,,-, SUI'P.',Y VOLTAGES-V ~~,~~~.7.J-LJ~.±IO-L~~~ • ."-, -3 -4 -5 SUPPlY VOLTAGES-V -Ii 2kC 5kC Vout . LAG I COMPENSATION .". CI R, LEAD-LAG COMPENSATION XIOO AMPLIFIER (LEAD COMPENSATION) Frequency Compensation Circuits . UNITY-GAIN AMPLIFIER Transient Response Test Circuits 7-30 (LAG COMPENSATION) ITT712 HIGH-GAIN WIDEBAND DC AMPLIFIER V' " .. 0 "..n INVERTING INPUT 2 6 ~~~PENSATION " ..0 GROUHD_+--J..-j---i ::t----.-I-t::Q, vNOTE: PIN 4 CONNECTED TO CASE utO '" RIO 2400 FLAT PACK (Top View) L-_--J.._ _ '2400 1_1 _ _ _ _ ~ ,- NO CONNECTION NO GROUND INVERTING '>----pocr-UT INPUT NON.INI/ERTING Schematic Diagram COW~ECTION INPUT VOLTAGE RANGE-A range of voltage which, if exceeded on either input terminal, could cause the amplifier to cease functioning properly. 7 l..AG COMPENSATlO' j 4 INPUT 6 v- LEAD CO',04i-f:NSATION DUAL IN-LINE NO CONNECTION NO CONNECTION NO CONNECTION V+ SUPPLY NO CONNECTION >---I:::J OUTPUT NON-INVERTING INPUT v- LAG COMPENSATION 5 9 SUPPLY NO CONNEcnON LEAD COMPENSATION NO CONNECTION Connection Diagrams DEFINITION OF TERMS: INPUT OFFSET VOLTAGE-That voltage which must be applied between the input terminals to obtain zero output voltage. The input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads. INPUT OFFSET CURRENT-The difference in the currents into the two input teriminals with the output at zero volts. INPUT RESISTANCE-The resistance looking into either input terminal with the other grounded. INPUT BIAS CURRENT-The average of the two input currents. INPUT COMMON MODE REJECTION RATIOThe ratio of the input voltage range to the maximum change in input offset voltage over this range. LARGE-SIGNAL VOLTAGE GAIN-The ratio of the maximum output voltage swing with load to the change in input voltage required to drive the output from zero to this voltage. OUTPUT VOLTAGE SWING-The peak output - swing, referred to zero, that can be obtained without clipping. OUTPUT RESISTANCE-The resistance seen looking into the output terminal with the output at nUll. This parameter is defined only under small signal conditions at frequencies above a few hundred cycles to eliminate the influence of drift and thermal feedback. POWER CONSUMPTION-The DC power required to operate the amplifier with the output at zero and with no load current. SUPPLY VOLTAGE REJECTION RATIO-The ratio of the change in input offset voltage to the change in supply voltage producing it. TRANSIENT RESPONSE-Te closed-loop step function response of the amplifier under smallsignal conditions. PEAK OUTPUT CURRENT The maximum current that may flow in the output load without causing damage to the unit. 7-31 ITT720 DUAL HIGH SPEED DIFFERENTIAL COMPARATOR ITT ----SEMICONDUCTORS DUAL HIGH SPEED DIFFERENTIAL COMPARATOR CONNECTION DIAGRAfJI • Better Temperature Tracking • Low Offset Voltage • Low Offset Current • High Voltage Gain • Fast Response Time The ITT720 differential voltage dual comparator, offering high accuracy and fast response consists of two separate ITT710 high speed differential comparators. The entire circuit is contained on one silicon chip and is manufactured using the ITT Planar Epitaxial process. The output of the ITT720 is compatible with all integrated logic forms. The ITT720 can also be used as a variable threshold Schmidt trigger, a pulse height discriminator, a memory sense amplifier, a high noise immunity line receiver, or in high speed A-D conversion and multivibrator functions. D2 5.2Y OUTPUT ABSOLUTE MAXIMUM RATINGS Characteristics Units Positive Supply Voltage .............. + 14.0V Negative Supply Voltage ........... -7.0V Peak Output Current ............... 10 mA Differential Input Voltage ............ ±5.0V Input Voltage ...................... ±7.0V Internal Power Dissipation ........... 300 mV (ITT720-1 Note 1, ITT720-5 Note 2) .. 200 mW Operating Temperature Range ITT720-1 ......... -55°. to + 125°C ITT720-5 ............... 0° to + 70°C Storage Temperature Range .. -65° to +150°C Lead Temperature (Soldering, 60 sec.) .. 300°C NOTES: (1) Rating applies for case temperatures to +125°C; derate linearly at 5.6mWrC for ambient temperatures above +105°C. CROUND R5 1.71r.0 1f.z CIRCUITSCHEMATIC DIAGRAM ' - - - - - 4 - -..... y. (2) Ratings apply for ambient temperatures to +70°C. (3) The response time specified (see definitions) is for a 100-mV input step with 5-mV overdrive. (4) The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8V at -55°C, 1.4V at +25°C and 1.0V at +125°C. (5) The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.5V at O°C, 1.4V at +25°C and 1.2V at +70°C. 7-32 ITT720 DUAL HIGH SPEED DIFFERENTIAL COM PARA TOR ELECTRICAL CHARACTERISTICS FOR ITT720·1 otherwise specified) PARAMETER (see definitions) Min. Max. 0.6 2.0 mV Rs:(200n 0.75 3.0 uA 13 20 uA Input Bias Current Voltage Gain 1250 1700 0 200 Output Resistance 2.0 Output Sink Current rnA AVl n ;;::5mV, Vout=O 2.5 ns 40 Response Time (Note 3) The following Units CONDITIONS (Note 4) Typ. Input Offset Voltage Input Offset Current (T=+25°C, V=12.0V, V=-6.0V unless specifications apply for -55°C :(TA :( +125°C Input Offset Voltage 3.0 Average Temperature Coefficient of Input Offset Voltage Input Offset Current Average Temperature Coefficient of Input Offset Current Input Bias Current Input Voltage Range Common Mode Rejection Ratio 3.5 10 2.7 10 0.25 1.8 3.0 7.0 5.0 15 25 75 27 45 80 ±5.0 Voltage Gain 1000 Negative Output Level Output Sink Current nAloC TA=25°C to TA= +125°C nArC TA = 25°C to TA = -55°C uA TA = -55°C dB Rs:(2000 100 V Positive Output Level 2.5 uA TA= +125°C uA TA = -55°C V V= -7.0V ±5.0 Differential Input Voltage Range mV Rs:(2000 uvrc Rs = 50n, TA=25°C to TA= +125°C uvrc Rs = 500, TA=25°C to TA= -55°C 3.2 4.0 -1.0 -0.5 0 0.5 1.7 1.0 2.3 Vin ;;::5mV, V O:(lout:(5.0mA V ~VlN;;::5mV rnA TA = +125°C, AVin ;;::5mV, Vout=O rnA TA = -55°C, AVin ;;::5mV, Vout=O Positive Supply Current 5.2 9.0 rnA Vout:(O Negative Supply Current 4.6 7.0 rnA 90 150 "mW Power Consumption 7-33 ITT720 DUA~ HIGH SPEED DIFFERENTIAL COMPARATOR ELECTRICAL CHARACTERISTICS .FOR .ITT720-5 otherwise specified) Parameter (see definitions) (TA=25°C. V=12.0V. V=-6.0V unless Max. Min. Typ. Units Input Offset Voltage 1.6 5.0 mV Input Offset Current 1.8 5.0 uA 16 25 uA Input Bias Current Voltage -Gain 1000 Output Resistance Output Sink Current 1.6 200 n 2.5 mA 40 ns Input Offset Voltage 5.0 Input Offset Current Average Temperature Coefficient of Input Offset Current Input Bias Current 70 Differential Input Voltage Range ±5.0 mV 20 uV/"C 7.5 15 24 50 100 uA nA/oC nA/"C 25 40 uA V 98 Vout=O dB Rs~200n Rs=50n. TA=O°C to TA=+70°C TA=25°C to TA=+70°C TA=25°C to TA=O°C TA=O°C V =-7.0V Rs~200n V 800 Positive Output Level 2.5 3.2 Negative Output Level -1.0 -0.5 Output Sink Current 6.5 ±5.0 Common Mode Rejection Ratio Voltage Gain ~Vln~5mV. 0°C~TA~+70°C: Average Temperature Coefficient of Input Voltage Range Rs~200n 1500 Response Time (Note 3) The following specifications apply for Conditions (Note 5) 4.0 0 0.5 V ~ Vin~5mV. O~lout~5.mA V ~Vln~5mV mA ~Vin~5mV. mA Vout~O Positive Supply Current 5.2 Negative Supply Current 4.6 7.0 mA Power Consumption 90 150 mW 9.0 Vout=O DEFINITION OF TERMS: LOGIC THRESHOLD VOLTAGE The approximate voltage at the output of the comparator at which the loading logic circuitry changes its digital state. INPUT OFFSET VOLTAGE" - The voltage between the input terminals when the output is . at the logic threshold voltage. The input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads. INPUT OFFSET CURRENT" - The difference in the currents into the two input terminals with the output at the logic threshold voltage. INPUT BIAS CURRENT" two input currents. The average of the INPUT VOLTAGE RANGE" - The range of 'Voltage on the input terminals for which the comparator will operate within specifications. 7-34 ITT720 DUAL HIGH SPEED DIFFERENTIAL COMPARATOR voltage equal to or greater than a minimum specified amount. DIFFERENTIAL INPUT VOLTAGE RANGE' The range of voltage between the input terminals for which operation within specifications is assured. NEGATIVE OUTPUT LEVEL' - The DC output voltage in the negative direction with the input voltage equal to or greater than a minimum specified amount. VOLTAGE GAIN' - The ratio of the change in output voltage to the change in voltage between the input terminals producing it with the DC output level in the vicinity of the logic threshold voltage. OUTPUT SINK CURRENT The maximum negative current that can be delivered by the comparator. RESPONSE TIME' - The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive. PEAK OUTPUT CURRENT The maximum current that may flow into the output load without causing damage to the comparator. OUTPUT RESISTANCE' - The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage. STROBED OUTPUT LEVEL * - The DC output voltage, independent of input voltage on the strobe terminal equal to or less than a minimum specified amount. STROBE RELEASE TIME' The time required for the output to rise to the logic threshold v,ojtage after the strobe terminal has been driven from the zero to the one logic level. Appropriate input conditions are assumed. STROBE CURRENT - The maximum current drawn by the strobe terminal when it is at the zero logic level. POSITIVE OUTPUT LEVEL' - The DC output voltage in the positive direction with the input POWER CONSUMPTION - The DC power into the amplifier with no output load. The DC power will vary with signal level, but is specified as a maximum for the entire range of input-signal conditions. 'These definitions apply for either side with the other disabled with the strobe. TYPICAL CHARACTERISTICS ITT720-1 wise specified) VOLTAGE TRANSFER CHARACTERISTIC r-- (T = +25°, V=12.DV. V= -6.DV unless other- VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE .. , La if' '.0 I---l---l--I----I-m-+-+-H ... . ! .. ~ , I ~ •.• • If fl -. - .--f--:f--., . ,,'C ;-1-1i I ·l.O~!-, .•...J.....,_l,L-.,--'--,L_l.O:-'--:".~'-,--;,~.,-'-;-:i,., INM VOlTAa • mY .!: ItDO ...r--T~ ~"lc- 0 JIll y...... ov " ~ !l gOO) ~ -,. ,. OJ TtMPUATURE - ·c 7-35 '00 ... V ./' L /' ~ l11li .., . ~ I~.y ';'- ~IDI '\ ~ ... ....., GAIN AS A FUNCTION OF SUPPLY VOLTAGES yt· 12y r--. '100 ~ VO~TAGE V i-""" .i.,' ~ ...,--- ? ".~ :::::: ;:;;:00 V 10 \I Il POSITlKSUPPlYVO!..TAGf - V " . ITT720 DUAL HIGH SPEED DIFFERENTIAL COMPARATOR TYPICAL CHARACTERISTICS ITT720·1 (T wise specified) (continued) INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " • ~ ~ '.0 ~ ~ ;; 211 ~ i" 10 ,... ." t-_ ., " '00 '00 v'· 11Y v' • ".0 v ' ~ Ii . 1! ii' ... a ·10 rb- ; " I'. 10 TEMR4rum: ··c " i' 100 ,. OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ,., :"- I .. "... .,. " rtMPEAATUIU . '" 100 _·c OUTPUT VOLTAGE LEVELS AS A FUNCTION OF AMBIENT TEMPERATURE u 1-+-+-+-+-+-+-+ ~: : ~.~ v ,.ol-+-+-+-+-+-+-+-+-H tc= I:;;: 1.O ~"Jk v'· I- v'· I 12V ".0 v > "1/ g r--.. ~ " i I'. b- TtM"{l:IAruRE· 'c POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATUR~ ~ ":J l! 100 1,\ ~ ,. J. y'. UY -5~OVSI v~;~::~ III ~ f'., ... v·· 11V \ i 1.0 ! COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE v' • ...ov 1\ -6.(1 V 1O ~ INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE v·· 12V v'· +25°, V=12.0V. V= -6.0V unless other- ~ I'-.. .., ~ ." ., " TtMPERATUII£· '00 ·c RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES ,. till A-,.Om, '1 , V1 10m' 'I! iJI/V IA'- 2.0mV I 10m, l.a 0 '.0 '.0 '.0 I I.a I.a 1 r-r- I 1 100 ! " 1 0 a I, J I " h ig l' 110 10 , lIMf'£RA'UltE· !Dcle li 1.'1-+---+-+-+-+-+-+-+-+-1 OJ -1.0 '·'1- t- f I.a •. 01-+-+-+-+-+-+-+"''''1'-+--1 IIJ ","'r ., TINE- 7-36 !O n~ 100 2.0t-- t:.(~ l:~ t110 1i~ g 1.0 , J. 0 . II TlNI- In "0 ,., ITT720 DUAL HIGH SPEED DIFFERENTIAL COMPARATOR TYPICAL CHARACTERISTICS ITT720-S (TA=25°C, V =12.0V -6.0V unless other- wise specified) VOLTAGE TRANSFER CHARACTERISTIC ~ fA' ~'c -.I, /1 ~ ~I.O fA' i .... .. -J.O I.' I.' -1.0 IJtM VOUACl - fIN ... INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " ~ '0 ,. 10 ., ··e ~ is §" " rtMPERAtUll[ " . • ·c " " " 10 OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE I.' ~ .. ~ n ·0 10 20 .. " TEMflERATUItE • 'c 1.0 '-0 'rfJ 1,4··...., /. '''''' r1 2'Or.w 1.0 .. 0 0 -1.0 /11/ ~ ~ rr! ~ "g I f li I v.· .12V I I I 0 20 «> 0 ,. 10 .. " .L 'c " " " TI.yf·ni ' I' i I I , ., i 'IllI I 1.0 v·· I I I J lOGIC ITHm:J.D VOUAa .. 0 12'1 v' • -6.0'1 '--- I I I I '00'/ "0 1\ 20'" 0 ~ 1.0 h 1.0 ~> I ....... v·, .12v f~ v-· -6.0Y 0 20 . 8~ \~·c " fI""'ni 7-37 10 '00 .,I ..I 'c ltMPERATURE • " " 10 ~ '20 v--- .IlV y •• "tV fA ··25-C I "0 -~ I- _ r- 0 " L g of- .1.0 I w 0 COMMON MODE PULSE RESPONSE A..";· ""KL " '20 I '.0 -1.0 10 I '00 , 0 li fA' 2!>'C '00 " "~ v-· '6:0~t- I . " " ·c t4CATlVE OUTPUt l£vEl '.0 1.0 2.0lIl'1 , g RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES .. . " RMft:RATUM • POSH! V[ OUT Pur lb'll 0 ttMPERATURt • RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES .. " 0 '.0 I.' . " " - , 1.0 I-- 1.0 " -- OUTPUT VOLTAGE LEVELS AS A FUNCTION OF AMBIENT TEMPERATURE - 1 iu ~ "r-- " ~~:'!.Vov- 1.0 "~ v' • -,.ov 'U\lSVCM,!t~.OV I. t-..... 0 " /,,,1 I ~ v • ".0'1 II 12 11 U POSITlV( SUPPlY VOllAe(' II :: 'III 5 1.0 f- t--'" ". _ I"'-. v:'12V ._ . . ~ V ....... ~ .. f'" COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE 2.0 " "" ---- i;;f: / .... I'.. " ....... V um ." " V"12V ~ r- 'c v'· .... 0'1 .iii . Ii ~ 1.0 ~ POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE \I C) INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE !! ttMPERATUR£ i! " 20 ItMflltAtUIIE- ; - IO 10 0 ~ ~ !!! " ~ ,. ........ :--, ........ um .:-12. _ v • ".0 v .. 51 ill "" 8"'" "' ... .... I ~ I'..... ~ • ..1.. .-1.0 r---... a nrc /I il y'. ".011 zlOD - I• .'ll·e V'· UV .... ,\ ..e.~ •.. ~ ,." 'lUI "'12.1 J L . ... I.' ·.· ...q,l. r/ .. La r-- VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE riO '.~, 'eM I- r-r- ,.Of- -.{ "0 I I 0 .. I I I I I 0 III TlMf.-ni '20 '" ITT ----ITT723 PRECISION VOLTAGE REGULATOR SEMICONDUCTORS PRECISION VOLTAGE REGULATOR Connection Diagrams Top Views PRECISION VOLTAGE REGULATOR ITT723 • Positive or Negative Supply Operation • Series, Shunt, Switching or Floating Operation CURRENT LIMIT • .01 0;. Line and Load Regulation • Output Voltage Adjustable From 2 to 37 Volts INVERTING INPUT • Output Current to 150 mA Without External Pass Transistor 3 NON·INVERTING INPUT The ITT723 is a monolithic voltage· regulator constructed on a single silicon chip using the epitaxial process. The device consists of a temperature compensated reference amplifier, error amplifier, power series pass tansistor and current limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150 mA are required. Provisions are made for adjustable current limiting· and remote shutdown. In addition to the above, the device features low standby current drain, low temperature qrift and high ripple rejection. The ITT723 is intended for use with positive or negative supplies as a series, shunt, switcfJing or. floating regulator. Applications include laboratory power supplies, isolation regulators for low level data amplifiers, logic card regulators, small instrument power supplies, airborne systems and other power supplies for digital· and linear circuits. v Note: On metal can, pin 5 is connected to case. 14 LEAD DIP (TOP VIEW) NC FREQUENCY COMPENSATION NC CURRENT LIMIT v' Vc CURRENT SENSE INVERTING INPUT VOUT NON·INVERTING INPUT Vz VREF NC V ABSOLUTE MAXIMUM RATINGS Characteristics ITT723-1 Pulse Voltage from V+ to V- (50 msec) ..... Voltage from V+ to V- 50 Continuous Voltage from V+ to V- 40 0 •••••••••••••••• 0 ITT723-5 V 40 0 •••••••• V V 150 Maximum Output Current ................... Units mA Input-Output Voltage Differential ............. 40 40 V Current from Vz ........•.....•....••• ; .••• 25 .25 mA Current from VREF • • • • • • • • • • • • • • • • • • • • • • • • • • 15 15 mA Internal Power Dissipation-Metal Can (Note 1) 800 800 mW Internal Power DissiQation-DIP (Note 1) ..... 900 '-900 mW 7-38 ITT 723 PRECISION VOLTAGE REGULATOR Characteristics (continued) ITT723-5 ITT723-1 o to Operating Temperature Range ............... -55 to +125 Units +70 °C Storage Temperature Range ................ -65 to +150 -65 to +150 °C Lead Temperatu re (Soldering, 60 sec.) ....... 300 300 °C Note: On metal can, pin 5 is connected to case. ELECTRICAL CHARACTERISTICS FOR ITT723-1 (Note 2) Parameter (see definitions) Min. Typ. Max. Units Conditions Line Regulation .01 .02 0.1 0.2 0.3 %VOUT %VOUT %VOUT VIN=12V to VIN =15V VIN =12V to VIN =40V -55°C:=::;TA:=::;+125°C, VIN =12V to VIN =15V Load Regulation .03 0.15 0.6 %VOUT %VOUT IL=1 mA to k=50 mA -55°C:=::;TA:=::; + 125°C, IL=1mA to k=50 mA Ripple Rejection 74 86 .002 Average Temperature Coefficient of Output Voltage Short Circuit Current Limit Reference Voltage Output Noise Voltage dB dB .015 65 6.95 7.15 20 mA 7.35 2.5 Long Term Stability 2.3 V p.Vrms p.Vrms 0.1 Standby Current Drain %;oC -55°C:=::;TA:=::;+ 125°C, Rs c =10n, VOUT=O BW-100Hz to 10 kHz, CREF=O BW=100Hz to 10 kHz, CREF=5.uF %/1000hrs 3.5 mA Input Voltage Range 9.5 40 V Output Voltage Range 2.0 37 V Input-Output Voltage Differential 3.0 38 V Definition of Terms f=50 Hz t010 kHz, CREF= o f=50 Hz to 10 kHz, CREF = o CREF=5.uF IL=O, VIN =30V LINE REGULATION - The percentage change in output voltage for a specified change in input voltage. AVERAGE TEMPERATURE COEFFICIENT OF OUTPUT VOLTAGE - The percentage change in output voltage for a specified change in ambient temperature. LOAD REGULATION - The percentage change in output voltage for a specified change in load current. SHORT CIRCUIT CURRENT LIMIT - The output current of the regulator with the output shorted to the negative supply. RIPPLE REJECTION - The ratio of the peak to peak input ripple voltage to the peak to peak output ripple voltage. REFERENCE VOLTAGE - The output of the reference amplifier measured with respect to the negative supply. 7-39 ITT723 PRECISION VOLTAGE REGULATOR Equivalent Circuit EQUIVALENT CIRCUIT OUTPUT NOISE VOLTAGE - The rms output noise voltage with constant load and no input ripple. fREOUENCY COMPENSATION Vc STANDBY CURRENT DRAIN The supply current drawn by the regulator with no output load and no reference voltage load. INPUT VOLTAGE RANGE The range of supply voltage over which the regulator will operate. Vz V- OUTPUT VOLTAGE RANGE - The range of output voltage over which the regulator will operate. CURRENT LIMITER 2. Unless otherwise specified, TA=25°C, VIN = V+=Vc=12V, V-=O, Vout =5V, h =1mA, Rsc=O, INPUT-OUTPUT VOLTAGE DIFFERENTIAL The range of voltage difference between the supply voltage and the regulated output voltage over which the regulator will operatae. Cl=100pF, CREF=O and divider impedance as seen by error Amplifier~1OKO connected as shown in Fig. 1. SENSE VOLTAGE The voltage between current sense and current limit terminals necessary to cause current limiting. 3. LJ is 40 turns of #20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009" air gap. TRANSIENT RESPONSE The closed-loop step function response of the regulator under small-signal conditions. 4. Figures in parentheses may be used if R/R, divider is placed on opposite of error amp. 5. Replace R1 R, in figures with divider shown in figure 13. NOTES: 1. Derate metal can package at 6.8 mWrC and dual-in-Iine package at 9 mWrC for operation at ambient temperatures above 25°C. 6. V+ must be connected to a +3V or greater supply. ELECTRICAL CHARACTERISTICS FOR ITT723-5 (Note 2) PARAMETER (see definitions) . Line Regulation Min. Typ. Max. Units .01 0.1 0.1 0.5 0.3 %VOUT %VOUT %VOUT 0.2 0.6 %VOUT %VOUT Conditions VIN =12V to VIN =15V VIN =12V to VIN =40V 0°C~TA~70°C, VIN =12V to VIN =15V Load Regulation .03 IL =1 mA to IL =50 mA 0°C~TA~70°C, k=1 mA to IL =50 mA Ripple Rejection Average Temperature Coefficient of Output Voltage Short Circuit Current Limit 74 86 .003 65 7-40 dB dB .015 %/oC mA f=50 Hz to 10 kHz, CREF = f=50 Hz to 10 kHz, CREF=5}LF 0°C~TA~70°C Rsc =100, VOUT=O o ITT723 PRECISION VOLTAGE REGULATOR ELECTRICAL CHARACTERISTICS FOR ITT723-S (Note 2) PARAMETER (see definitions) Min. Typ. Max. Units Reference Voltage Output Noise Voltage 6.80 7.15 20 7.50 V p.Vrms 2.5 Long Term Stability p.Vrms Standby Current Drain 2.3 BW-100Hz to 10 kHz, CREF=O BW=100 Hz to 10 kHz, CREF=5/LF %/1000hrs 0.1 4.0 mA 9.5 40 V Output Voltage Range 2.0 37 V Input-Output Differential 3.0 38 V Input Voltage Range Conditions k=O, VlN =30V TYPICAL PERFORMANCE CURVES ITT723-1,ITT723-S LINE REGUlATION AS A FUNCTION OF INPUT·OUTPUT VOLTAGE DIFFERENTIAL LINE TRANSIENT RESPONSE +0.3 •.• HfT/+"":;.:PL"""Vi"'OlT.::;"',-+-+-++--f'" 4.' f-fH-t-++-++++-i2~O ~ ~ 1.' f-H-+-+-+-I'--+-+-+-I (I H-fF"'I:....-if!!!.u~"";-~i- HH-+-+-+-+-I-tJ.y- .)v H-t++++-I-+-H ~ ~ ~~~TI~;~V++++-I-+-H'u!: ~.l f-H-+-+-+-+--I-+-+-I -0,1 VOUT'''V RSC·Q ',,'ZS"C TA'~'C . •••oltsc'O • ".1 Il'ImA f V1N '+l1V -1.0 Vou,'+SV HH-t-+++-+ Itsc·(I 'A'+:/'5'C +0.2 ~ -1 •• ! '- LOAD REGUlATION AS A FUNCTION OF INPUT·OUTPUT VOLTAGE DIFFERENTIAL ""ttl " -o.3.~Wll~·I_,•..,.~-,II_·"""'~::-:-'-~,,""""-+',,-L.-,i .. ".D '16 OUTPUT IMPEDANCE AS A FUNCTION OF FREQUENCY LOAD TRANSIENT RESPONSE HT+-f!l:="DP.CU:::;·~r'N1!.f-+-HH'LO I.D Hh!--+-+-l,H\.-+-+-I--! }-;,VI~N'''''l,!;V-++-l,'H v-+-++-I-" ~~~~!V -,.. "' • .. 'A' Z5~C +++-I-+-+-H . -30 » r--"1'~V'~U1;"~5V~~mEiE!I~' VIN "!2V RIC" _ ._ :t:~2!AC HtItfI~-tt/;1tIIt - ','HHi-t+-l'-t-+++-I .r-- ~ OUT~ VOLTAct: -10 -1.0 STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE I.' ] "'~nmn ,, ,, ... ..• .. ,, 'A,tte t- _'A . . '1 I.' FRtQUENCY-HI 7-41 ~~t- 'r' oJ,C ,, ,, ~ I.' •• .. Vout'YW 'l'G - LO " lO INpUtvonAc.t-y 1-- ., "! 111723 PRECISION VOLTAGE REGULATOR TYPICAL PERFORMANCE CURVES ITT723-1 MAXIMUM LOAD CURRENT AS A FUNCTION OF'INPUT.CJ\ITPUT VOLTAGE 'DIFFERENTIAl. ,., 1 INohQtsjnkl 120 O~ ~ -~., ~ ., 0 " 20 10 ., " !If -0.2 "OUl''''', VIN ' '12Y 20 ~-o.2 ,\ - . ,. " '.0 - ,.~ a 0.6 lO YOUT'YIrEF ~O •• 'A''"·C V 0 10 " " 0 80 0 100 " 0 OUTPUT CURRENT- lilA '" ,-:/S'C ~ i v '.0 0,' ~ 1./ ~ ~ '00 J.O ; 2.0 ~ II 25 '.0 1i ~~ . ., 20 Il'O i OUTPUTCUIiRENT-mA 15 AS A STANDBY CURRENT DRAIN FUNCTION OF INPUT VOLTAGE .., ~ ~- - f -f- !- 10 OUTPUTCUIfR(NT -rnA ;0,1 \ '\ H-t-++-H -0.75 0 CURRENT LIMITING CHARACTERISTICS ~ 0 '00 10 1.0 ~ VOUT"511.II,N'oIlV. Rsc'lon . ., RSC'O OUTPUlCURRENT-mA "OUT' 5V, "IN' il2v RSC'IOn - .... i'--b,. '/~o ...... 0 O ..... ~ ~ I....... -0.1 ..., LOAD REGULATION CHARACTERlmCS WITH CURRENT LIMITING !-o.1 l - I- I'-, ~·C tVIN""M'-" ".. ·,i,..,JC ~ ".8 -~J , 0 ~:- ~ K" ,>, 'O'''H-+++-HH-+++-+-1 I I ...... ...... ~§-o.rJj ! \ ~ I '<0.05. 'JMAIC'15O"C II TH 'I5O'CIW 'STANDly'Mld 100 LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING LOAD REGULATION CHARACTERISTICS WITHOUT CU'RRENT LIMITING I I ~ " . .50 IHP\JTIIOLT"C£'""V TYPICAL PERFORMANCE CURVES IT1723-5 LOAD REGULATION' CHARACTERISTICS WITHOUt CURRENT LIM ITING MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL I I I . r 'rr, r--.:-- } ~·,;:r- 'UW(,'15O"C ... .,. IIITAlCAN PACKACl INOI(ATSINKI i f--t--t--f--t--t--t--t--t--H _~ 1i \ i ,\ '\ II ., -~ ',,'25·C ,..- "'",c-...ctI 10 0 OllfPUTCURRENT-mA 0.' l/~ I- - 'I.'~ 7'" (/~ NTI~SC • JOt) IJ I I I ... ~ I -rl""E D,' 0.3 ... ~ I I D.' D,' ,., bJ..... I -§f~<,1 I D ,50 r-- - I'.. ,'100 JUfoI(;HOttTEMPlRATUR[··C ." ., 1-- " " ., .'" 50 \ ',,'75'C 0 ~I .;.Nr--., " " - 1V1H'IIOUT/-Y 0,1 t-t-t-t-I--'H-t-HII--i"":'-""""c-1 '0.1 t-t-t-t-t-H-t-HHHH 50 H-+++-+-H-+-+ ~~:. '.::~ H-+++4-H-+-+'!' "0 >~ Ot...,jcl++4-TA·25·C-~t­ ~ ~•• rtc "b-. ~.'" -0.1 f-+-H-+-+T rtfc F::: • 1,,'10'C o"l-t--t--l-'-'i-hf-I-f.JH,.l-:.i.o·cH " .LOAD REGUj.ATION CHARACTERISTICS WITH CURRENT LIMITING _L . L H-1H-1--1~~-t-t-t ~ ~ .;. f- 0.2 V,,,' +1ZV+++t+Hl-++--j IIOUT ' -511 -.50 \ i\ II oil I I 1.0 o Its( 'Ion D lNO tfAT51NKI \ ., f-' I CURRENT LIMITING CHARACTERISTICS 0•• ., :WN:,,~60m!. IT 120 IIIIN'VOUl'-V CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE TJMAX 'I75'C RTH'III"CIW - :\ 0'1 0.' ,., ,. RTH '15O"CIWPSTANDIY -lIOfIIW' \ ~ Ii• ~ ; -0.1 ,., MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT·OUTPUT VOLTAGE DIFFERENTIAL D +++1f-HHt--+--+--I " " OUTPUTCURR[NT-mA 7-42 '" '00 :0.2 0Ll--L...L.":"--L...L..L-,,!:-JLl.....L::l,, OUTPUTCURRlNT-mA ITT723 PRECISION VOLTAGE REGULATOR TABLE 1- RESISTOR VALUES (kO) FOR STANDARD OUTPUT VOLTAGES Positive Output Voltage Applicable Figures (Note 4) R, R, R, p, R, +3.0 1,5,6,9, 12 (4) 1,5,6,9, 12 (4) 1,5,6,9, 12 (4) 1,5,6,9, 12 (4) 2,4, (5, 6, 12,9) 2,4, (5,6, 9,12) 2,4, (5, 6, 9,12) 2,4, (5,6, 9,12) 7 7 4.12 3.01 1.8 0.5 1.2 +100 +250 +3.6 +5.0 +6.0 +9.0 +12 +15 +28 +45 +75 Fixed Output Output Adjustabte ±10% (Note 5) ±S% Apptlcable Negative Output Voltage Figures 5% Output Adjustable ±10% Fixed Output ::!:S% R, R, R, p, R, 7 3.57 102 2.2 10 91 7 3.57 255 2.2 10 240 -6 (note 6) 3, (10) 3.57 2.43 1.2 0.5 .75 2.7 -9 3,10 3.48 5.36 1.2 0.5 2.0 2.7 -12 3,10 3.57 8.45 1.2 0.5 3.3 3.57 3.65 1.5 0.5 1.5 2.15 4.99 .75 0.5 2.2 1.15 6.04 0.5 0.5 1.87 7.15 .75 1.0 4.87 7.15 2.0 1.0 3.0 -15 3,10 3.65 11.5 1.2 0.5 4.3 7.87 7.15 3.3 1.0 3.0 -28 3,10 3.57 24.3 1.2 0.5 10 21.0 7.15 5.6 1.0 2.0 -45 8 3.57 41.2 2.2 10 33 3.57 3.57 97.6 249 2.2 2.2 10 10 91 240 3.57 3.57 48.7 78.7 10 10 2.2 2.2 39 68 -100 -250 8 8 TABLE 11- FORMULAE FOR tNTERMEDIATE OUTPUT VOLTAGES Outputs from +2 to +7 volts [Figures I, 5, 6,9, 12, (4)J ILiMIT R, VOUl = [VRE< X R, + R, J VOUl = [VREF X R, + R, J R, VREF = [-2- X R2 R, - RI VREF R +R Voul =[-2- X - ' - - ' R, = VSENSE J " R, = R. R" Foldback Current Limiting Outputs from -6 to -250 volts [Figures 3, 8, 10J Outputs from +7 to +37 volts [Figures 2, 4, (5, 6, 9, 12)J VOUl Current limiting Outputs from +4 to +250 volts [Figure 7J J; IKNEE RJ=R. = [ VOUl R, RIC R4 ISHORT CKT = + [VSENSE VSENSE (R, + R.) RIC R4 X R) RIC ] R4 Figure 2 Figure 1 BASIC HIGH VOLTAGE REGULATOR (V"' 7 to 37 Volts) BASIC LOW VOLTAGE REGULATOR (V"' 2 to 7 Volts) = = v' + R4 J Vc csl-----+ PERFORMANCE Regulated Output Voltage TYPICAL PERFORMANCE 5V Regulated Output Voltage 15 V Line Regulation (.1.VIN = 3 V) 1.5 mV load Regulation (..l!L=50 mAl 4.5 mV Line Regulation (.1.VIN = 3 V) 0.5 mV Load Regulation <.lh=50 rnA) 1.5 mV Nott: RJ = ~~:ll Note: R) = fat minimum temper.ture drift. R~~ for minimum temperature drift. Rl may be eliminated for minimum component count. 7-43 ITT723 PRECISION VOLTAGE REGULATOR Figure 3 Figure NEGATIVE VOLTAGE REGULATOR 3~' NEGATIVE VOLTAGE REGULATOR Vm VOUT T, 2N500' Vz 1i3 114 CL cs 31111 NJ . .13 31111 R, V- L - _....._~_ _ _ _ _ _~_~~;~TED TYP'CAL PERFORMANCE Regulated Output VQlt.ge TYP'CAL PERFORMANCE -15 V Line Regulation ColVIN = LOld Regulation (.lIt 100 rnA) 2 mY =~ 3 V) Regulated Output VoltaBe -15 Y Line Regulation (.lVIN· = 3 V) 1 mV Load Relul.tlon (.lll = 100 mAl 2 mY 1 mY Note 3 Figure 4 Figure S POSITIVE VOLTAGE REGULATOR (External NPN· Pass Transistor) POSITIVE VOLTAGE REGULATOR (External PNP Past Transistor) T, 2N500' TYPICAL PERFORMANCE TYP'CAL PERFORMANCE Regulated Output VoUage Regulated Output Voltl'le +5 Y line Regulation (.lVlrJ"-= 3 V) 0.5 mY +15 V Line Regulation (.1VIN = 3 V) 1.5 mV LOld Regulation (.lll = 1 A) 15 mY LOld Regulation (.lIL = 1 A) 5 mY Figure 6 Figure SA' POSITIVE VOLTAGE REGULATOR (External·PNP Pass TranSistor) FOLDBACK CURRENT LIMITING v,. V· y. Yc Vc RSC 3011 VOUT VREF 123 R, 123 REGULATED OUTPUT .R3 2.711.U CL RSC TYPICAL PERFORMANCE TYPICAL PERFORMANCE Regulated Output Vollage +5 V line Regulation (.lVltJ = 3 V) 0.5 mV Load Regulation (.lIL = 1 A) 5 mV • Figure numbers followed by "A" Indicate low temperature range Regulated Output Volt.ge +5 V line Regul.tion elVIN = 3 V) 0.5 mY load Regulillion (.lIt -= 10 mAl 1 mY CUrrent Limit Knee 20 inA ITT723 PRECISION VOLTAGE REGULATOR Figure 7 Figure 7A' POSITIVE FLOATING REGULATOR POSITIVE FLOATING REGULATOR 0, 36V Dr 36V INI3~ INI~ RS 111 L-4---_ _ _+--____-j_-.._~~~~~TEo ~-----+-----~--t-----<- ~~~~~ TED TYPICAL PERFORMANCE TYPICAL PERFORMANCE Regulated Output Voltage +50 V Regulated Output Voltage +50 V Line Regulation (olV!N = 20 V) 15 mV Load Regulation (.lIL = 50 rnA) 20 mV Line Regulation (.lVIN = 20 V) 15 mV Load Regulation (.lIL = 50 rnA) 20 mY Figure 8 NEGATIVE FLOATING REGULATOR 'IN '---+-+-__..j....,_--l_ _ _ _ _ _+_~'__ T,PICAl PERFORMANCE Regulated Output Voltage -100 V TYPICAL PERFORMANCE Regulated Output Voltage -100 V (~VIN = 20 V) Load Regulation(.lIL=100 rnA) Line Regulation ~~~~MTEo 30 mV Line Regulation (.lVItJ "'" 20 V) load Regul.ation (j,!:.=100 rnA! 20 mV Figure 9 Figure 10 POSITIVE SWITCHING REGULATOR NEGAT.IVE SWITCHING REGULATOR ~'O m\ 20 mV VIN II ~'2mH 01 1"2011 123 1-..j....,VV\~+_ _+_~~~~~TEo CS RJ lM1 RI CoMP Note 3 TYPICAL PERFORMANCE Regulated Output Voltage +5 V line Regulation (. WIN = 30 V) 10 mV Note 3 Load Regulation (.lll = 2 A) 80 mY * Figure numbers followed by "A" indicate low temperature range 7-45 R, lM~1 ~'I~~mH r , N.I REGULATED OUTPUT C2 10M TVPICAl PERFORMANCE Regulated Output VoUlge -15 V line Regulation (j,VIN = 20 Y) 8 mV Load Regulation (j,h = 2 A) 6 mY ITT723 PRECISION VOLTAGE REGULATOR Figure lOA' Figure 11 NEGATIVE SWITCHING REGULATOR REMOTE SHUTDOWN REGULATOR WITH CURRENT LIMITING v,. v,. Ve V' 0, ,.207, m R, Rse REGUlATID YDUT VRn OUTPUT Cl es ,,, N.1. Ie2 TYPICAL PERFORMANCE Relul.ted Oulput Voll.,. -15 V Line Rliul.lion (.1YIN = 20 Y) 8 mY LOld Helul.lion (lll = 2 A) 6 mY Note 3 Note 7 ...-~~~ lDO,f ceSL LOGIC INPUT 21W TYPICAL PERFORMANCE Rllul.ted Output Voltl,1 +5 V Note: CUrrent limit transistor may be if current used for shutdown Line Reeulation (,lVIN = 3 V) 0.5 mY limiline is not required. LOld Regulation (.llt=50 rnA) 1.5 mY Figure 12 Figure 12 SHUNT REGULATOR SHUNT REGULATOR VIN V'N .~ lDOO REGULATED OUTPUT RWlLRnD OUTPUT V' VI£F VOUI R, Vll--'W~I::. 13 'DOO 723 Cl v- COMP ~ es es N.l.t-------' •.1.1-____---" R2 C 5nF .~' TYPICAL PERFORMANCE Relul.t.d Output VOU'II +5 V line Relul.tion (.l.VrN = 10 V) 0.5 mY Load Helul.tion (.lIt = 100 rnA) 1.5 mY v- co., ~ C ~' Sir TYPICAL PERFORMANCE Heaul.tld Output Volt.,. +5 V lin. Rllul.tion (dV'N _ 10 V) 0.5 mY LOid H.,ul.lion (6Il-100 mA) 1.5 mY Note 3 V· SCHEMATIC DIAGRAM Figure 13 Ve OUTPUT VOLTAGE ADJUST 0, 62V R, " --.0 +------0 COMPENSATION R2 A-'---- ~~::~NT Fla,ure numbers fnllowed by "A" Indicate low. temperature range Va£( 7-46 NON·IHVERTING INPUT V- INVERTING INPUT ITT726 TEMPERATURE-CONTROLLED DIFFERENTIAL PAIR ITT -----SEMICONDUCTORS Connection Diagram TEMPERAlURE· E2 CONTROLLED DIFFER-e-NT-IAl PAIR o Excellent Transistor Matching o Close Thermal Coupling o Fast Thermal Response ABSOLUTE MAXIMUM RATINGS e Tight Temperature Control Units Characteristics ITT726 is a monolithic transistor pair in a high thermal-resistance package, held at a constant temperature by active temperature regulator circuitry. The transistor pair displays the excellent matching, close thermal coupling and fast thermal response inherent in monolithic construction. The high gain and low standby dissipation of the regulator circuit permits tight temperature control over a wide range of ambient temperatures. It is intended for' use as an input stage in very-low drift dc amplifiers, replacing complex chopper-stabilized amplifiers; it is also useful as the nonlinear element in logarithmic amplifiers and multipliers where the highly predictible exponential relation between emitter-base voltage and collector curlent matching, close thermal coupling and fast a single silicon chip using the ITT Planar process. Operating Temperature Range ................ -55°C to +125 0C Storage Temperature Range .................. -650 to +150 0 C Lead Temperature (Soldering 60 seconds) .............. 300°C Supply Voltage ...................... ±18 V Maximum Ratings For Each Transistor Characteristics Units Maximum collector-to-substrate voltage .. 40 V BVcBo .....................•........ 40 V LVcEo [Note 1] ...................... 30 V BVEBo ................................ 5 V Collector Current .................... , 5 rnA NOTE: 1. Measured at 1 rnA collector. current. ELECTRICAL CHARACTERISTICS FOR ITT726-1 (-55°C:;;;;TA:;;;;+125°C, Vs=±15V, Radj=62kO unless otherwise specified) Parameter Input Offset Voltage Min. Conditions Typ. Max. Units 1.0 2.5 mV 10Jl.A:;;;;1 c:;;;;100p.A VcE =5V, Rs:;;;;500 nA Ic=10!'A, VcE =5V Input Offset Current 10 50 Input Offset Current 50 200 Average Input Bias Current SO 1S0 Average Input Bias Current 250 500 nA Ic=100p.A, VCE=SV Offset Voltage Change 0.3 6.0 mV Ic-10!,A, SV:;;;;VcE:;;;;2SV, Rs:;;;;100kO 7-47 Ic=100p.A, VcE =5V nA nA .' Ic-10!'A, VcE -5V ITT726 TEM PERA TU RE-CONTROLLED DIFFERENTIAL PAIR ELECTRICAL CHARACTERISTICS FOR ITT726-1 (-55°C~TA~+125°C, Vs==15V, R,dj=62kll unless otherwise specified) (continued) Min. Parameter Offset Voltage Change Typ. Max. Units Conditions 0.3 6.0 mV Ic=100.uA, 5V~VCE~25V, Rs~10kfl 1.0 0.2 Input Offset Voltage Drift .uvrc 10.uA~1c~100MA, Rs~50fl, VcE =5V +25°C~TA~+ 125°C 1.0 0.2 Input Offset Voltage Drift .u vrc 10.uA~lc~100MA, Rs~50fl, VcE =5V, -55°C~TA~+25°C Input Offset Current Drift 10 pAloC Ic= 1OMA, VcE =5V Input Offset Current Drift 30 pArc Supply Voltage Rejection Ratio 25 .uV/v 10.uA~1c~100MA, Rs~50n Low-Frequency Noise 4.0 .uVpp Ic-10.uA, VcE =5"O, Rs~50 n, BW=.001Hz to 0.1Hz Broadband Noise 10 .uVpp Ic=10.uA, VcE =5V, Rs~50 fl, BW=0.1Hz to 10kHz Long-Term Drift 5.0 .uV/week 10.uA~1c~100MA, VcE =5 V, Ic=100.uA, VcE =5V Rs~50n, 1.5 High-Frequency Current Gain Output Capacitance 3.5 TA=25°C f-20MHz, Ic=100.uA, VcE =5V Emitter Transition Capacitance 3.0 1.0 Collector Saturation Voltage 0.5 1.0 pF IE-O, Vcn --5V pF IE=100.uA V IB=100.uA,lc=1mA r-----~------~v. 8 TEMP AOJ 6 21 kn I ko 01 6.2V R3 4.8kn 10 U L-____________~------~-----------------+__oV5 Schematic Diagram-1-5 7-48 ITT726 TEMPERATURE-CONTROLLED DIFFERENTIAL PAIR SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 'CURRENT GAIN AS A FUNCTION OF COLLECTOR CURRENT '" I. . I--I-++If-+-+-H+~C~ ~1~~rN 800 ~~J~!~:~.I~'C - Vs • TYPICAL .. I-t-ttl--+++++c:.oI-d+H-l CHARACTERISTICS I FOR ITT726-1 ~ r- li ,.,/ IZ i ~ , "- "- i"'- • •... ~~~~~~I~~~~lmA~~I~omA ." COlUCTOR CuRJlf.NT ELECTRICAL CHARACTERISTICS FOR ITT726-5 unless otherwise specified) Parameter !l~V R~J -6ZkQ 16 1"-. " OJ nMfUATUR[··C III 1« (0°C:(TA:(+85°C, Vs =±15V, Ra dJ=75kfl Typ. Max. Units Input Offset Voltage 1.0 3.0 mV 10,uA:(1c:(1 OOp.A VcE =5V, Rs:(50fl Input Offset Current 10 100 nA Ic=10p.A, VcE =5V Input Offset Current 50 400 nA Ic-100p.A, VcE -5V Ic-10p.A, VcE -5V Min. Conditions Average Input Bias Current 50 300 nA Average Input Bias Current 250 1000 nA Ic-100p.A, VCE-5V Offset Voltage Change 0.3 6.0 mV Ic=10,uA,5V:(VcE:(25V, Rs :(100kfl Offset Voltage Change 0.3 6.0 mV Ic=100p.A, 5V:(VCE :(25V, Rs :(10kfl Input Offset Voltage Drift 0.2 2.0 p'vrc Ic=100p.A, VcE =5V Rs:(50fl, Input Offset Current Drift 10 pArC Ic=10p.A, VcE =5V Input Offset Current Drift 30 pArC Ic=100p.A, VcE =5V Supply Voltage Rejection Ratio 25 p.VIV Ic=100p.A, Rs:(50fl Low-Frequency Noise 4.0 ,uVpp Ic-10p.A, VcE -5V Rs :(50fl, Broadband Noise 10 p.Vpp Ic=10p.A, VcE =5V Rs :(50fl, BW=0.1Hz to 10kHz Long-Term Drift 5.0 p.V/week BW=0.001Hz to 0.1Hz High-Frequency Current Gain Output Capacitance 1.5 f-20MHz, Ic=100p.A, VcE =5V 3.5 pF 3.0 Emitter Transition Capacitance 1.0 Collector Saturation Voltage 0.5 7-49 Ic=100p.A, VcE =5V Rs :(50fl, TA=25°C pF 1.0 V IE=O, VcB =5V IE-100p.A IB=100p.A, Ic=1mA ITT726 TEMPERATURE-CONTROLLED DIFFERENTIAL PAIR +15V 01 IN 7 5 7 A +15V Rad; ·62ku SOn 2 6 SOil Eou! Rg CI 5nF '----_---.--ISV SOkll *FOR -1,75 kO FOR-5 Typical X1000 Circuit SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE CURRENT GAIN AS A FUNCTION OF COLLECIOR CURRENT 10 v~ .! IS V Rad , °mQ -< E 8.0" z ~ ~ => 6.0 "- u i',. > ~ ~ => zoo/ I~ f"... 4.0 l"-. 1.0 a a 0'---'-.L..L.L--l.-....J...J.....I...L-,L-L-l..JL.L.,.-I lOCI>' l.OmA IOmA 10 40 ""- 6(1 TEMP!RAruRE ° °c COllICTOR CURRENT Typical Characteristics For ITT726·5 7-50 I--- " III loa ITT741 HIGH PERFORMANCE OPERATIONAL AMPLIFIER ITT ----SEMICONDUCTORS HIGH PERFORMANCE OPERATIONAL AMPLIFIER CONNECTION DIAGRAMS (TOP VIEW) • No Frequency Compensation Required • Short-Circuit Protection 8 LEAD METAL CAN • Offset Voltage Null Capability • Large Common-Mode and Differential Voltage Ranges • Low Power Consumption • No Latch Up IIOfI:""' _ _ 'ef"r.HI The ITT741 is a high performance monolot~ic operational amplifier constructed on a single silicon chip, using the ITT Planar epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the ITT741 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The ITT741 is short-circuit protected, has th~ same pin configuration as the popular ITT709' operational amplifier, but requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed loop applications. 14 LEAD DIP Nt Nt Nt Nt OfFSET Nt NULL INVERTING INPUT V· NON-INVERTING INPUT ouTPUT OFfSET NULL Nt Nt FLATPACK Schematic Diagram N r. NC NC OffSt T NULL I"lV UJPUT V. INVERTING INPUT NON INVE.RTlNG INPUT OUTPUT OffSET NUll MINIDIP QFfS[l NUll INVERT INPUT NOr-. INvl~T INPUT v· ·'Ve e OF FSE r NULL 7-51 i3 2. 3 6 4 , NC OUTPUT OFfSET NULL ITT741 HIGH PERFORMANCE OPERA TIONAL AMPLIFIER ABSOLUTE MAXIMUM RATINGS ITT74J-1 Characteristics ITT741-5 I ±18 Supply Voltage ........................... ±22 Internal Power Dissipation. . . . . . . . . . . . . . . . . . 500 (Note 1) 500 ±30 ±30 Differential Input Voltage ................... Input Voltage (Note 2) .................•... ±15 ±15 -65 to +150 Storage Temperature Range. . . . . . . . . . . . . . . . -65 to +150 Operating Temperature Range ............. ; -55 to +125 o to +70 Lead Temperature (Soldering, 60 sec) ....... 300 300 Output Short-Circuit Duration .............. Indefinite (Note 3) Indefinite (Note ) NOTES: 1. Rating applies for case temperatures to 125 0 C; derate linearly at 6.5 mW.'°C for am· bient temperatures above + 75°C. 3. Short circuit may be to ground or either supply. Rating applies to + 125 0 C case temperature and . 75 0 C ambient temperature. 2. For supply voltages less than .- 15V, the absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be to ground .or either supply. Units V mW V V °C °C °C ELECTRICAL CHARACTERISTICS FOR ITT741-1 (Vs=±15V, TA=25°C unless otherwise specified) Parameter Min. Typ. Max. Input Offset Voltage 1.0 Input Offset Current Input Bias Current Input Resistance Large-Signal Voltage Gain 5.0 mV 30 200 nA 200 500 nA 0.3 1.0 Conditions Units Rs 10kn Mn 50,000 200,000 Output Voltage Swing ±12 ±10 ±14 ±13 Input Voltage Range ±12 ±13 V 70 90 dB Rs~10kn Rs~10kn Common Mode Rejection Ratio RL;;::2kn, Vout=±10V RL>-:10kn RL;;:: 2kfl V V Supply Voltage Rejection Ratio 30 150 JLVN Power Consumption· 50 85 mW V1n =20mV, RL=2kn, Transient Response (unity gain) CL~100pF Risetime 0.3 1.0 Overshoot 5.0 10 Slew Rate (unity gain) (Pulsed) JLs % VIJLs 0.5 The following specifications apply for -55°C~TA~+125°C: Input Offset Voltage 6.0 Input Offset Current 500 nA 1.5 JLA Input Bias Current Large-Signal Voltage Gain Output Voltage Swing mV RL;;::2kn, Vout -±10V 25,000 ±10 7-52 Rs~10kO V RL;;::2kO ITT741 HIGH PERFORMANCE OPERATIONAL AMPLIFIER ELECTRICAL CHARACTERISTICS FOR ITT741-5 (Vs=±15V, TA =25°C unless otherwise specified) Min. Parameter Typ. Max. 6.0 mV 30 200 nA 200 500 2.0 Input Offset Voltage Input Offset Current Input Bias Current Input Resistance Units 0.3 1.0 Conditions Rs::;;;10kn nA Mn RL ;;::2kn, Vout =±10V 20,000 100,000 Output Voltage Swing ±12 ±10 ±14 ±13 Input Voltage Range ±12 ±13 V 70 90 dB Rs::;;;1Okn Rs::;;;10kn Large-Signal Voltage Gain Common Mode Rejection Ratio V V Supply Voltage Rejection Ratio 30 150 p,V/V Power Consumption 50 85 mV RL ;;::10kn RL ;;::2kn Vin =20mV, RL =2kn, CL ::;;;100pF Transient Response (unity gain) Overshoot 0.3 Risetime 5.0 % 0.5 V/f1.s Slew Rate (unity gain) The followin~ specifications apply for O°C::;;;h~ f1.s +70°C: Input Offset Voltage 7.5 mV Input Offset Current 300 nA 800 nA Input Bias Current Large-Signal Voltage Gain RL ;;::2kn Rs::;;;1Okn 15,000 ±10 Output Voltage Swing Transient Response Test Circuit RL ;;::2kn, V out =±10V V RL ;;::2kn Voltage Offset Null Circuit v out 6 V in RL t v- -=7-53 111741 HIGH PERFORMANCE OPERATIONAL AMPLIFIER TYPICAL PERFORMANCE CURVES , IJ . , lSV II 400 .I \0.0 i,i i L. -{-- j .. --~ i - '. -t- v • ~ 151,1 I I i f-,. Y, O.~ o.l 1 -00 -10 10 00 TtMP[~AIUR£ 100 140 Vs ' ! 15V 110 , 100 80 /0 , ! ! j : \. i 1 i 10 ",741 , i : -10 : \. I , "I~ 10 ! I i ",741 i I 0.1 -00 I 1 I I ! 10 70 ~ 2~~~~~~+-+-+-+-~ B i I 00 140 100 -10 10 , , /0 ~ --.... I 50 I 40 100 140 FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE I I'-..... r--. f--t- .J-I ! 00 TtMPERATUR[ - C I I : I - T lO -J741 1 IIID 140 -00 -10 10 TtMP[RA7UR[ - C 100 00 140 TtMPERAIURE - C TtMPERAIURE - C OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE 40 I RL ';!21ul ! i , 24 : 16 ./' o ~ i I I 10 SUPPlY VClTAGE ~! V 7-54 i 1/ A .I' 10 o ~ /1 I i ! I I Y ; I ,! /1 "A,741 I~ i I i ! ~ 1.....- 1 I I i , i i /! r -5S'C!T"s+125'C 14 i : , ./ 12 .I'V V i 10 16 './ ./ )2 28 INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE ; 1 -5)"'C\1"... +125·C ). SUPPLY VOLTAGE-tV .2 , ·t -10 Vs ",.± 151,1 i i /0 i . POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE II 1 11 Vi H TtMPERAIURE - C ; I i - C I 1 40 ~/O i , /1 r-.-t-- INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 140 i i I I 1 i ....... ., . <1 Y , LO i ~ '1 -+ .. ~.O l.O ._+, ,... OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 500 ITT741·1 ! ID ! ~A741 IS SUPP!.YVQ.TACI:·tV 10 ITT741 HIGH PERFORMANCE OPERATIONAL AMPLIFIER TYPICAL PERFORMANCE CURVES INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 200 . INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE 10 VS' tlSV ITT741·5 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE Vs ·:!: 15\1 Ys"'±15V 7.0 160 5.0 c 4.0 ""- '"t--, /' --r--. r-. &lA741 b /' 2.0 /' V G ~A7~1 10211304) TEMPERATURE ··C &lA741 o 506070 010211304) TEMPERATURE _·C FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE 1.10 30 AV Vs" il5V 28 z o I 8 i'---- -52 t---. r----.. r-- r-- Q ~:-,.. i'---- I'-.... --:::: -:;;::;.'/' '-..... ........... 0.95 211 &lA741 &lA741 41 Ia; OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE l6 .,..- I i I 24 20 8 /1 I I V ~ INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE I. o"C~TAH70"C , ! I. i:!l z ;:; i:!l :!' g ~ i 12 1/ A 10 8 /V • i • /!k" /" 1JA741 o 02468101214161820 SUPPLY VOLTAGE ttVI /i > ~I ~ '/ 12 15 V V I I' / 80 10 '\:2kll 28 ,/ j ~ I OOC STA'So1'7o"C l2 I V ~, 1021130<0506070 40 TA • 25 C 85 '" llMP£.RAT!.JRt - nC OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE /' SUW RATE 0.90 ![Mf'(RAlURE ··C V V &lA741 I! 0102113041506(70010211304)506070 100 ~ ~~ '",- I'--- r-- i ,,*~ I.a; 24 50607tI TEMPERATURE· ·C OUTPUT SHORT·CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE Ys " t15V "' ......... -....... I--- 10 U 0102113043506070 60 " VV l.O ............. I"'- L 5 SUPPly Va.TAGE: .. !. V 7-55 /! i i I I I ! ! ! : I I I I I 10 ~A741 15 SUPPlY VQ.rAGI: - t V 211 ITT741 HIGH PERFORMANCE OPERATIONAL AMPLIFIER TYPICAL PERFORMANCE CURVES IT1741·1, ITT741·5 POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE TA "151: / I) / / o /' V / / OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY Vs -115V VS"i15V t---.. ",,741 TA "25 C \ "- ",,741 15 fRtQUENCY - Hz SUP!'\.Y Va.TAGE - tV \ IA· + 25'C '"'""- I' ,,/ 5 OPEtt LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY "- '" -135 ~ ",,141 i fREQUENCY" Hz INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE INPUT RESISTANCE AND INPUT CAPACITANCE AS A FUNCTION OF FREQUENCY 10M TA"15·C I ! i VS"' 15V 16 TA "15·C I i -H- V I i/ ; I It I~ / 1M 41 --- 36 I II ,I i" i! I I I I i ! I I' I; \ \1 Vs -!.lSV TA" 2n RL;~~ !I :i j' Jl' ! [I Ii; i 'ii I; I i ! i I ill i i I fk ",,141 il 11.5 LO 1.0 LOAD RESISTANCE - 'Ii 11.1 OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY I t 11.1 !1~41 10k fRtQUENCV - Hz OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE / III j 10k 100 15 10 SUP!'\.YVa.TAGE-tV 8 11.1 10 " , IN '-'i,+I 5 10 , Ii-.. i, i ",,141 o r--.~ ,I , RIN I -- Ii ,5.0 o 100 10 II It 10k FREQUENCY - Hz 7-56 i ;, I,i ",,741 i't--l.' , 1M ITT741 HIGH PERFORMANCE OPERATIONAL AM PLiFIER TYPICAL PERFORMANCE CURVES ITT741-1, INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY ITT741-5 (continued) INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY ~ ~~10-/4 I-+i-irl-+r+"------' ITT492N • Hex High Gain Darlington Circuits Pin Configuration (top view) The ITT491 and ITT492 were designed to be used together with MOS IC's and with common cathode LED's in serially addressed multi-digit displays. This time multiplexed system using a segment address and digit scan method of LED drive minimizes the number of drivers required. c ITT491 Quad Segment Driver IN 0---"""..-..1. E TO OTHERS DRIVERS SCHEMATIC (Each Driver) ITT491 TRUTH TABLE ITT492 TRUTH TABLE ITT492 Hex Digit Driver Input Output E Output C Input Output L H L H H L L H H L SCHEMATIC (Each Driver) 8-1 OUT TO OTHER '----+~ DRIVERS ITT491, ITT492 MOS TO LED SEGMENT AND DIGIT DRIVERS ABSOLUTE MAXIMUM RATINGS (over free air temperature range unless otherwise noted). PARAMETER ITT491 ITT492 UNITS 10 10 V VSs Vss /Collector Voltage (2) 10 10 Collector to Emitter Voltage 10 Collector to Input Voltage 10 Supply Voltage Vss (1) Input Voltage V V 10 V Emitter Voltage 5 V Emitter to Input Voltage 5 V VD D to Input Voltage (3) 5 5 V Continuous Collector Current 50 250 mA Continuous VD DCurrent 600 mA BOO BOO mW Oto70 o to 70 C -65 to 150 -65 to 150 C 260 260 C Continuous Total Power Dissipation Operating Free-Air Temperature Range Storage Temperature Range Lead Temperature 1/16 Inch from Case for 10 Seconds NOTES: (1) Vss terminal voltage is with respect to any other (3) With the exception of the inputs, the Vdd term 1nal must always be the most negative device voltage for proper operation. device terminal. (2) Voltage. values are with respect to Vss terminal unless otherwise noted. ELECTRICAL CHARACTERISTICS (unless otherwise noted VS§.=10V;TA = 0 C to 70 C). ITT491 PARAMETER TYP. MAX. UNIT 0.9 1.2 V' VIN = B.5V through 1 K IOL =50mA, VE = 5V, TA =25 C 0.9 1.5 V \lIN = B.5\{ through 1 K IOL = 50mA, VE =5V 100 jJA Ve H = 1OV, VE = 0 . liN = 40uA 100 jJA Ve H = 1OV, VE = 0 VIN = 0.7V 3.3 mA VIN = 10Vj IOL = 2QmA VIN = 0, VE = 5V IE R Reversed biased emitter current 100 IJA Ie =0 Iss supply current 1.0 mA Ve EL Low-Level collector-to-emitter voltage MIN. Ie H High-Level collector current II Input current at maximum input voltage 2.0 8-2 TEST CONDITIONS ITT491, ITT492 MOS TO LED SEGMENT AND DIGIT DRIVERS ITT492 PARAMETER MIN. TYP. MAX. UNIT TEST CONDITIONS 0.9 1.2 V VIN = 6.5V through 1 K IOL = 250mA, TA = 25 C 0.9 1.5 V VIN = 6.5V through 1 K IOL = 250mA 200 JJA VOH =10V, liN =40uA 200 IJA VOH =10V, VIN =0.5V 3.3 mA VIN = 10V, 10 L = 20mA 1.0 mA Vo L Low-Level output voltage IOH High-Level output current II Input current at maximum input voltage 2.0 Iss supply current NOTE: All typical values are at TA =25 C. SWITCHING CHARACTERISTICS: Vss = 7.5V, TA = 25 C DEVICE TYP. MIN. ITT491 ITT492 MAX. UNIT CONDITIONS TEST 20 ns TPHL RL :::200, VIN H = 4.5V 100 ns TPLH CL=15pF, VE =0 40 ns TPHL RL=39, VINH =7.5V 600 ns TPLH CL=15pF 7.5V ~:~;---~~50% C -O-~ : Waveforms TPHL~ I I+- ~ VIN :+-0.9 MA VOL=1.25V 200 /JA 0.9 mA Slope typically 4 kn VIH = 3.0V uA Slope typically 11 kn VIL =O.4V IOH = 200 UA 8-5 VIL <0.4 V VOH = 15V - ITT- - - - ITT501 QUAD SEGMENT DRIVER Package 14 pin Dual-in-Line SEMICONDUCTORS QUAD SEGMENT DRIVER • MOS to LED segment driver • 50 rnA source or sink capability • Suitable for desk top and pocket calculator • Operation down to 5V • High gain Darlington Outputs PIN CONFIGURATION (Top View) The ITT 501 is a monolithic, integrated circuit which provides the interface between MOS integrated circuits and Light Emitting Diode (LED) displays. The ITT 501 is designed to be used in serially addressed multi-digit displays. This time-multiplexed system, using a segment address and digit scan method of LED drive, minimizes the number of drivers required. This circuit is designed to be used with current source resistors in .series with the LED segments. This aids in matching segment intensity and reduces the total power dissipation. A resistor value of 200 ohms provides a good current source for each segment when the ITT 501 together with the ITT 500 (Digit Driver) is used at 15 volts with 2 volt/25mA LED displays. The Vee terminal must be connected to the most positive supply. SCHEMATIC YIN 4.0K 6.81< Yoo 6.8K YOUT (Each Drive, 4 per package) ABSOLUTE MAXIMUM RATINGS (Measurement with respect to GND) Characteristics Unit 18 V Supply Voltage Vee Input Voltage (VIN#Ve e )Vin 18 V 18 V Isolation Voltage Vss. Continuous Total Power800mW Dissipation Storage Temperature Range -55 9 C to + 125°C Operating Temperature OOCto + 50°C Range 8-6 ITT501 QUAD SEGMENT DRIVER D.C. SPECIFICATIONS - ITT 501 At 25 C unless otherwise specified. All voltages are with respect to Gnd. All currents into the device are +. PARAMETER V cc IOL 15v IOH 15v IIH 15v MIN MAX NOTES TEST CONDITIONS ma liN = 0.35 ma Vo = 2.7v VR = 4.6v 100 !la VIL .7v Vo = 2.7v VR = 18v 2.0 ma -50 0.35 UNITS Typical4kn Slope VIH = 8.5v Vo=2.7v IlL 15v 25 lJa 8-7 Typical 17 .6Kn· VIL = 0.7v Slope Vo=2.7v VR = Open ITT --------11T502 HEX DIGIT DRIVER PACKAGE 16 Pin Dual-in-Line SEMICONDUCTORS HEX DIGIT DRIVER • MOS to LED digit driver • 200 rnA sink capability at 0.4 volts • Suitable for pocket calculators • "Chip enable" for extended battery life • High gain Darlington Outputs ITT 502 is a monolithic integrated circuit which provides the interface between MOS integrated circuits and Light Emitting Diode (LED) Digit Displays. The ITT 502 is designed to be used in serially addressed multi-digit displays. This time-multiplexed system, using a segment address and digit scan method of LED drive, minimizes the number of drivers required. This circuit, together with the ITT 503 (segment driver), was designed to operate with two different power supplies. Pin Configuration (Top View) SCHEMATIC The first being a battery (Vee) where the vOltage may range from 3.5 to 9 volts and supplies the majority of the load currents (display currents). The second (Vss) supply, being a D.C. to D.C. converter or regulator which maintains the voltage between 7 and 9 volts. In order to maximize the voltage from the battery across the load, the ITT 502 output was designed to provide 200 mA with only O.4V Vo L. The "Chip Enable" circuit allows turning the load (display) "off" independently of the input signals. Characteristics Vss (Vss VIN orVeE) . Vee Continuous total power dissipation Storage temperature range Operating temperature (Each driver, 6 per package) Units 9 V 9 V 800mW -55 C to 125 C o C to 50 C 8-8 ITT502 HEX DIGIT DRIVER ELECTRICAL CHARACTERISTICS (Unless otherwise noted TA =25 C, measurements with respect to GND) PARAMETER V S5 V cc MIN IOl 6.5 3.2 200 iOH 8,8 8.8 IOH 8.8 8.8 IIH 8.8 8.8 MAX UNITS NOTES TEST CONDITIONS rnA VIH = 6.5 VeE =Ov VOL = O.4v 400 IJA VIN ~0.9 VCE=OV VOH =8.8V 400 IJA VIH = 8.8v VCE) 6.5v VOH = 8.8v rnA 2.0 Slope typically 4Kfl VIH = 8.8v VCE=OV VOUT = Open III 8.8 Open lJA 15 Slope typically 11 Kfl Vil = 0.5v veE =Ov VOUT = Open ICEl 8.8 150 8.8 IJA Slope typically 12Kfl vC'E =0.95v VIN = Ov VOUT = Open ICEH 8.8 8.8 0.40 1.50 rnA Slope typically 8Kfl VC"E =6.5 VIN =Ov VOUT = Open 8-9 - ITT- - - - ITT503 QUAD SEGMENT DRIVER PACKAGE 16 Pin Dual-in-line SEMICONDUCTORS QUAD SEGMENT DRIVER • MOS to LED. segment driver • Constant current source, programmable. • Suitable for pocket calculators • "Chip enable" for extended battery life • High gain Darlington Outputs The ITT 503 is a monolithic integrated circuit which provides the interface between MOS integrated circuits and Light Emitting Diode (LE.P) displays. The ITT 503 is designed to be used in serially addressed multi-digit displays. This time-multiplexed system, using a segment address and digit scan method of LED drive, minimizes the number of drivers required. This circuit, together~with the ITT 502 was designed to operated with:two different power supplies. The first being a battery, (Vee) where the voltage may vary from 3.5 to 9 volts and supplies the majority of the load currents (display currents). The second, (Vss) supply, being a D.C. to D.C. converter or regulator which maintains the voltage between 7 and 9 volts. By connecting a resistor in series with the VOUT terminal and the LED anode (i.e. resistor across VOUT and VREF) an adequate current source is generated. The voltage across the resistor is equivalent to a diode forward voltage drop (+ 0.6V), thus in order to control 20 mA, a resistor value of 300 is required. The "chip enable" circuit allows turning the load (display) "off" independently of the input signals. Pin Configuration (Top View) SCHEMATIC Vas 5K VOUT ABSOLUTE MAXIMUM RATINGS (Measurements with respect to GND) Characteristics Unit Vss (Vss VIN orVeE) 9V Vee 9V Continuous total power dissipation 800 mW Storage temperature range -55°C to + 1250C Operating temperature range O°C to + 50°C Vee (Each Driver, 4 per package) ITT503 QUAD SEGMENT DRIVER ELECTRICAL CHARACTERISTICS (Unless otherwise noted TA = 25 C, measurement with respect to GND) PARAMETER V 55 V cc MIN -20 IOl 6.5 3.2 IOH 8.8 8.8 liN H 7.0 IINl MAX UNITS TEST CONDITIONS mA VIN = 6.5v VeE·= 1.0v VOUT = 2.2v -0.3 mA VIN = 8.8V VeE = 6.5v VOUT = O.Ov Open 1.5 mA VIN = 5.0v VeE = O.Ov VOUT=O.OV VREF=Open 7.0 Open 100 uA VIN =1.5v VeE = O.Ov VREF=O.OV leEl 8.8 Open uA VCE=0.5v VIN = O.Ov ICEH 8.8 Open mA VCE =6.5 v VIN = O.Ov VOUT = Open 20 1.5 NOTE: IINH - Slope typically 10KO 8-11 _'Imm -L-L _________'T_Ts_os GAS DISCHARGE SEGMENT DISPLAY DRIVER SEMICONDUCTORS GAS DISCHARGE SEGMENT DISPLAY DRIVER Pin Configuration (Top View) • Segment Drivers • 18 Pin Ceramic Package • Programmable Current • .2 to 2.0 mA (Note 2) -gO Volt Operation The ITI505 is a monolithic integrated circuit designed to provide the interface to gas discharge type display drivers. The ITT505 incorporates eight segment drivers with equal segment currents. All eight segment currents are programmed by a single resistor at Pin ,1. The segment current may be varied from .2 to 2.0 mAo Your The device also incorporates diode clamps on all eight inputs to permit rapid recharging of input capacitor in applications where input signal is capacitively coupled. .T.q.7. _~9.~.~ ... CIRCUITS Absolute Maximum Ratings Vout ................. 90 VDC (See Note 1) Yin ........................ -1.0 to 35 VDC lout ............................... 3.0mA Power dissipation .................. 800mW Operating Temperature ........... 0 to 70·C Storage Temperature ......... -55· to 125·C Circuit Schematic NOTE: Current limiting resistor should, be Incorporated for testing, NOTE: Inputs to unloaded stages should be grounded, 8-12 " , ITTSOS GAS DISCHARGE SEGMENT DISPLAY DRIVER Test Circuit +50V Typical Application +90V to anode drivers t :RL"27K : 75K IMIl ____ ~UI + __________ _ t RSios IMO r----f------)To 7 other drivers AB- -;. 90Y cD- ITT E- 505 F- ~ GH- ITT 505 - Electrical Characteristics (T A = 25°C, all voltages with respect to Pin 10) Parameter lout Min Typ. .2 Max Units 2.0 mA = .2 to 2.0mA V V Yin Yin = BV, lout == .2mA = BV, lout = 2.0mA V lin lin = .5mA = -1.0mA 10 % lout 10 uA 3.5 VBias 2.5 5.0 2.B 6.0 3.25 7.0 B.O 11.0 15.0 1 lout Matching Output Leakage = Yin 3.5 3V~ VBias ~5V lout Yin Yin Conditions 8-13 = .2mA to 2.0mA = = = Vout 90V Yin gnd RL 1 MO _ I ITT508 OCTAL DIGIT DRIVER mm _ _ _ __ .1...1.. SEMICONDUCTORS OCTAL DIGIT DRIVER • • • • Drivers per package MOS to LED interface 40ma sink capability at .45 volts Vol Input current 500uA max. for 40mA sink OUT 0 The ITT50B is a monolithic integrated circuit which is designed to provide the interface between MOS integrated circuits and Light Emitting Diodes. OUTF OUTG OUTH The ITT50B is ideally suited for use in serially addressed multidigit displays. This time multiplexed system using a segment address and digit scan method of LED drive, minimizes the drivers required. Pin Configuration The ITT50B when used with the ITT509 requires only two IC packages to drive eight digits, seven segments and one decimal. +V The ITT50B contains eight independent drivers, each capable of sinking 40mA with a Vol of .45 volts. The maximum input current of 400uA is all that is required to sink 40mA. IK 38K IN o----'l./VV""'I"'t 15K 4K Maximum Ratings )TA at 25°C) V+ ............................................. 10Volts Vin .................................................... Vt 10ut ...............................................BOmA Schematic Diagram 8-14 OUT ITT508 OCTAL DIGIT DRIVER ELECTRICAL CHARACTERISTICS (Unless otherwise noted TA = 25°C, all measurements with respect to GND) (V + = 10 volts, V- = GND unless otherwise noted) Parameter Condition Units Limits Min. Max. Output Leakage lin::: 25uA - 300 uA Input Current lout 40mA Vin V+" lout::; 300uA = = - 500 uA 25 uA - .45 - 10.0 mA - 5.0 mA 5.0 usee 5.0 usee Input Current = 40mA = V+· = 10volts = 5 volts Output Voltage lout Vin Is V+ Is V+ ton to 90% lout toft to 10% lout Volts • I '5V}J.A Video input signal ...... 3(1 to 6)V Input current duing line flyback pulse ................. 0.2 to 2mA Switch over current ......... >2 mA Time difference of output signal Pin 2 and line flyback pulse at pin 10 .................. <20}J.S Current consumption (see Fig. 6) ................. 40mA Ambient temperature range ................ 0 to +60°C Design and Operation of the TBA940 The sync separator separates the synchronizing pulses from the composite video signal. The noise suppression circuit which does not need any external components comprises an inte-· grating and differentiating network which cleans the synchronizing signal from distortion and noise. The frame sync pulse is obtained by multiple integration and limiting of the synchronizing signal, and is available at terminal 7. The RC network normally required between the sync separator and frame oscillator is no longer needed. The line oscillator frequency is set by a 10nF capacitor (Polystyrene, pin 13) which is charged and discharged periodically by two internal current sources. The external resistor at pin 14 defines the charging current and consequently, in conjunction with the oscillator capacitor the line frequency. 8-23 CHARACTERISTICS At Tamb -25°C, fo=15625Hz*) in the test circuit Fig. 1 V, t, RoutT t, Rou " V2res .10 Amplitude of frame pulse ... . .. >8V Frame pulse duration ...... >150}J.s Output resistance (high-state) at terminal 7 .... ; .. 10(7.5 to 13)kn Output pulse duration ...... 4 to 8p.s Output resistance (high-state) at terminal 2. See fig. 3 ........ =5.6a Output voltage at 1,=20mA .. <0.55V Oscillator frequency at C"I1=10nf and R"I1=10.5K .... 15625±1562Hz Frequency pull-in range 400 to 800Hz Frequency hold-in range 400 to 800Hz Slope of phase comparator control loop ........ ,........... 2kHz/}J.s Gain of phase control ........... 20 Adjustable phase shift between leading edge of video signal and line flyback pulse ...... see Fig. 3 Phase shift at td=6}J.S and Pin 11 open ...... 1.6(0.5 to 2.7)}J.S * By modifying the resistor of the oscillator at pin 14 the TBA940 can also be used for other line frequencies. The phase comparator compares the sawtooth voltage of the oscillator (see Fig. 3) with the line sync pulses. Simultaneously an AFC voltage is generated influencing the oscillator frequency. A frequency range limiter restricts the' frequency hold-in range to ±800Hz. The oscillator sawtooth voltage, which is in a fixed ratio to the line sync pulses, is compared with the flyback pulse in the phase control circuit, in this way compensating all drift of delay times in driver and line output stages. The correct phase position and hence the horizontal position of the picture can be adjusted by a 10ka potentiometer connected to pin 11. Within the adjustable range the output pulse duration (pin 2) is constant. Any larger displacements of the picture, e.g. due to non-symetrical picture tube, should not be corrected by the phase potentiometer. In any case the flyback pulse must overlap the sync pulse on both edges. (See Fig. 3). TBA940 HORIZONTAL DEFLECTION PROCESSOR FOR THYRISTOR (SCR) OUTPUT STAGES The switching stage has an auxiliary function. When the two signals supplied by the. sync separator and the phase control circuit respectively are in synchronism a saturated transistor is paralleled to the integrated 2kO resistor at terminal 9 and ground. Thus the time constant of the filter network at terminal 4 increases and consequently reduces the pull-in range of the phase comparator circuit for the synchronized state to approximately 50Hz. This arrangement ensures distortion-free operation. stage. If the supply voltage goes off (e.g. by switching off the A.C. voltage) a built-in protection circuft takes care to provide defined line frequency pulses down to V,,=4V and shuts off when Va gets below 4V preventing pulses of undefined duration and frequency. Vice ver.sa if the supply voltage rises, defined pulses in duration and frequency will appear at the output terminal when Va reaches 4.5V. In the range between Va=4.5V and full supply voltage the shape and frequency of the output pulse are nearly constant. For video recording operation this automatic switchover can be blocked by a positive current fed into terminal 8, e.g. via a resistor connected to pin 3. It can also be useful to connect a resistor of about 6800 or 1ko between pin 9 and ground. The capacitor at terminal 4 may be lowered, e.g. toO.1p.F. These alterations do not significantly influence the normal operation of the IC and thus do not need to be switched out, when changing from VTR to TV or vice versa. Fig. 3 - Phase relations of the TBA940. The line flyback pulse overlaps the video signal sync pulse on both edges. i---'d--Flyback The short circuit proof output stage delivers at terminal 2 output pulses of duration and polarity suitable for driving the output driver pull. ./ I ~ (Video) BAS Signa I v£ 10 Output put.. V, I .. " - r- 20ms . , Rv 3 ---------, I I BC327 I I I BAS Input signal ~(Video) ~ 1 B1120 .0.11' o Phase' 8-24 , \ \ \ '\ -, -, -, :~mepuises f:' ... ~ Fig 4: Operating circuit TBA940 " -A 10 7 I I TBA940 HORIZONTAL DEFLECTION PROCESSOR FOR THYRISTOR (SCR) OUTPUT STAGES Vertical Output ~~50~s~ame R5 +24 V Fig6 Ik * I I 6.ak BC327 TBA 940 ...J47n J 0-/ 6 VIDEO I r~1q9~I~ L 1;10 Jl O.lu 100 - Flyback Pulses O.47u o Frequency Phase Fig 5: Another possibility for the line frequency adjustment * Input circuit should be optimised for particular design of TV receiver. n TBA 9'0 500 Fig. 6 - / Graph for determining series resistance Rs. R '00 v Rv=3~On! • 1300 270n) 200 -I 22rinf-/ l----15~6'i 180n 100 f--- L -moW 120n J. / 82n 68n 10 20 -VB 8-25 7 330n~V 30V _I TBA950 mm HORIZONTAL DEFLECTION JLJL ________P_R_O_C_E_S_80_R__F-O-R-T-V--RE-C-E-IV-E-R-S SEMICONDUCTORS HORIZONTAL DEFLECTION PROCESSOR FOR TV RECEIVERS Fig. 2"An in Plastic Dual In-Line TO-116 package Monolithic integrated circuits for pulse separation and line synchronization in television receivers with transistor and tube output stages., Each circuit comprises the sync-separator with noise suppression, the frame pulse integrator, the phase comparator, a switching stage for automatic change-over for noise immunity, the line oscillator with frequency range limiter, a phase control circuit, the output stage and a supply voltage stabilizer. The circuit delivers a prepared frame sync pulse for triggering tlile frame oscillator. The phase comparator may be switched over for video recording operation. Due to large scale integration very few external components are needed. Fig. 1 shows the block diagram. The TBA950 is available in two groups with different output pulse widths. Fig. 1 - Block diagram and Test Circuit I I 9V 4.7 M 0.33 P I "' f-+-o--+4 ..---------o r+9:: - - -IIM ~L r------:---- ~ -l62 Upon request there is also available a qu'ad in-line version TBA 950 "S". H n . n Flam. PUll,' 0.J I Dimensions in mm . 50~ 3 +2'~ 390 TBA 950-. - - - - - - - - . , I :SLJ ,----+-:71 Sync separator with noll' luppr.llion 2 Output '>.8k Oscillator 10 with frequency range limiter 4,7 k BAS Input Ilgnal (Video) 13 Line fl,back pul••, 10. V 14 Phase 8-26 TBA950 HORIZONTAL DEFLECTION PROCESSOR FOR TV RECEIVERS MAXIMUM RATINGS I, I, v, I, v, 18 V ll 1,0 Tamb Supply current (see Fig. 6) .... 50mA Input Current ................ 2mA' Input voltage ..........'...... '-6V Output current .............. 22mA Output voltage ............... 20V Switch-over current for video recording operation ..... 5mA Phase adjustment voltage .... 0 to V3 Flyback peak pulse current .... 5mA Ambient temperature ......... 60°C RECOMMENDED OPERATING CONDITIONS for operating circuit Fig. 4 and 5 v. pp 1,0 Tamb CHARACTERISTICS at Tomb == 25°C, to== 15,625H.* in the test circuit of Fig. 3 Amplitude of frame pulse ..... >8V Frame pulse duration ..... >150,u.s Output resistance at Pin 7 (High state) .. 10(7.5 to 13)Kn Duration of output pulse t, TBA950-1 .............. 22 to 26,u.s t, TBA950-2 .............. 25 to 28,u.s Rout 2 Output resistance at Pin 2 (High state) see Fig. 3 .... =5.6Kn, V2 res Output voltage at L = 20mA. <0.55V fo Oscillator frequency at C"/1 == 10nF and R,,/, 10.5Kn .... 15,625±1562Hz Frequency pull-in range .. 400 to 800Hz ± Mp ± MH Frequency hold-in range ............. 400 to 800Hz dfo/dtd Slope of phase comparator control loop ........... 2KHz/,u.S dtd/dtp Gain of phase control .......... 20 tp Adjustable phase shift betwen leading edge of video signal and line flyback pulse ................. See Fig. 3 6,u.s, tp Phase shift at td Pin 11 open ........ 1.6(0.5 to 2.7),u.S * By modifying the resistor of the oscillator at pin 14 the TBA950 can also be used for other line frequencies. = Input current during sync pulse ...................... >5p.A Video input signal ....... 3(1 to 6)V Input current during line' flyback pulse ........... 0.2 to 2mA Switch over current ......... >2mA Time between leading edge of the outpuf signal and the middle of the flyback-pulse at pin 10 .................. <20,u.s Current consumption (see Fig. 6) ................ 40mA Ambient temperature range ................ 0 to +60°C = Flyback pulse I'--td - - V,o I I I / I' .... VE Fig. 3-Phase relations of the TBA950. The clipped line flyback pulse must overlap' the video signal. Sync. I?ulse. Output pulae V2 10 8-27 \ \ \ . ~ / (Video) BAS Signa I , A -t _t t} . JL ",. _t TBA950 HORIZONTAL DEFLECTION PROCESSOR FOR TV RECEIVERS r- 1 :V~ram. Fig. 4-Block diagram and test circuit for the characteristics. Component tolerances ±1 % 20ms pull.. Rv 7 +Va 3 -------. I I I I 68k 2 I IL BAS Input ligna I (Video) I TBA 950 sf J.- 1 0.1/J Line Flyback pulses o /-20ms--/ 9 V : : r t : : J L Frame pulse. 7 -, 3 -----~ I I I2 TBA 950 II 10 1- Input Ilgnal 8 BAS (Video) ![ 1 0.111 Line flybock pulsas Fig. 5 Another possibility for line frequency adjustment *Input circuit should be optimized for particular design of TV receiver. 8-28 o TBA950 HORIZONTAL DEFLECTION PROCESSOR FOR TV RECEIVERS Design and Operation of the TBA950 The sync separator separates the synchronizing pulses from the composite video signal. The noise suppression circuit which does not need any external components comprises an integ rating and differentiating network which cleans the synchronizing signal from distortion and noise. The frame sync pulse is obtained by multiple integration and limiting of the synchronizing signal, and is available at terminal 7. The RC network normally required between the sync separator and frame oscillator· is no longer needed. The line oscillator frequency is set by a 10nF capacitor (Polystyrene, Pin 13) which is charged and discharged periodically by two internal current sources. The external resistor at Pin 14 defines the charging current and consequently in conjuction with the oscillator capacitor, the line frequency. The phase comparator compares the sawtooth voltage of the oscillator (see Fig. 3) with the line sync pulses. Simultaneously an AFC voltage is generated influencing the oscillator frequency. A frequency range limiter restricts the frequency hold-in range to ±aOOHz. The oscillator sawtooth voltage, which is in a fixed ratio to the line sync pulses, is compared with the flyback pulse in the phase control circuit, in this way compensating all drift of delay times in driver and line output stages. The correct phase position and hence the horizontal position of the picture can be adjusted by a 10kll potentiometer connected to pin 11. Within the adjustable range the output pulse duration (Pin 2) is constant. Any larger displacements of the picture, e.g. due to non-symetrical picture tube, should not be corrected by the phase potentiometer. In any case the fly back pulse must overlap the syn9 pulse on both edges (see Fig. 4). nized state to approximately 50Hz. This arragement ensures distortion-free operation. For video recording operation this automatic switchover can be blocked by a positive current fed into terminal a, e.g. via a resistor connected to Pin 3. It can also be useful to connect a resistor of about 6an .or 1 KII between Pin 9 and ground. The capacitor at terminal 4 may be lowered, e.g. to O.1,uF. These alterations do not significantly influence the normal operation of the IC and thus do not need to be switched out when changing from VTR to TV or vice versa. The short circuit proof output stage delivers at terminal 2 output pulses of duration and polarity suitable for driving the output driver stage. If the supply voltage goes off (e.g. by switching off the A.C. voltage) a built-in protection circuit takes care to provide defined line frequency pulses down to V, = 4V and shuts off when V, gets below 4V preventing pulses of undefined duration and frequency. Vice versa if the supply voltage rises, defined pulses in duration and frequency will appear at the output terminal when V, reaches 4.5V. In the range between V, = 4.5V and full supply voltage, the shape and frequency of the output pulses are nearly constant. II TBA 950 500 / R 400 Rv'3~0Ilt L -; ·33OIIf-/ TIOII/- ~ 2');11/--/ 200 18011 ri 15~h V 12011 10Of-- The switching stage has an auxiliary function. When the two signals supplied by the sync separator and the phase control circuit respectively are in synchronism a saturated transistor is paralleled to the integrated 2kn resistor at terminal 9 and ground. Thus the time constant of the filter network at terminal 4 increases and consequently reduces the pull-in range of the phase comparator circuit for the. synchro- ~miLi 8211 6811 10 . 30V Fig. 6-Graph for determining series resistance Ps. 8-29 TBA120S INTEGRATED FM/IF AMPLIFIER AND DEMODULATOR ITT ----SEMICONDUCTORS INTEGRATED FM/IFAMPLIFIER AND DEMODULATOR . FJg.2"A" in Plastic Dual In-Line TO-116 package The monolithic integrated FM /IF amplifier TBA 120 S is designed specifically for use in the sound I F part of television receivers and the FM /IF part of radio receivers. It comprises a broadband symmetrical amplifier and a coincidence circuit for the demodulation. For the volume control, a potentiometer may be connected between pin 5 and ground. Since the potentiometer carries DC only the leads to and from the potentiometer will not be affected by hum; remote operation thus presents no diffiCUlty. The gain is 68 dB and AM rejection ratio 55 dB. The TBA 120 S has excellent limiting properties, and needs only very few externar components. The frequency characteristic of the demodulator curve shows excellent stability.The permitted supply voltage range is 6 ... 18 v. . Pin. 3 is the collector and pin 4 the base of an additional transistor suitable for use as an AF preamplifier or as a switching transistor for treble cut by means of an RC combination. An internal 12 V Zener diode connected to terminal 12 may be used for stabilizing the supply voltage for the TBA 120 S or ·for other stages. Max. Zener current 15 mAo I I _ - Z62 .-J Dimensions in mm Upon request there is also available a quae! in-line version TBA 120 S "B" .0lOmf r---~, r----~--~~--~ ~I-----.., Fig. 1: Application as 5.5 MHz sound IF amplifier In connection with the integrated output resistor R8/11 2.6 kQ the 22 nF capacitor between pins 8 and 11 determines the time constant of the de-emphasis. = o 8-30 o TBA120S INTEGRATED FM/IF AMPLIFIER AND DEMODULATOR All voltages are referred to pin 1. Maximum Ratings Supply voltage Vll 18 V Voltage at pin 5 Vs 4 V Current into pin 3 13 14 5 mA 2 mA R13/l4 1 kQ Operating current of the Z-diode permanent 112 15 mA 1 min max. h2 20 mA Ptot Ptot 400 mW 500 Ambient operating temp. range Tomb -15 ... +70 mW DC Storage temperature range 1s -40 ... +125 DC Supply voltage range Vll 6 ... 18 V Current consumption pin 5 open III 14 (10" . 18) mA pin 5 grounded III 16 (12".20) mA Frequency range fin 0 ... 12 MHz IF voltage gain Gv 68 dB 250 mV Current into pin 4 Resistor parallel to pins 13 and 14 Power dissipation permanent 1 min max. Characteristics forVll=12V, tin=5.5MHz, Tamb=25 DC IF output voltage in case of limitation V6pp, V10pp AF output voltage for t1tin = ± 50 kHz, Vin = 10 mV, fAF = 1 kHz, Q = 45, k = 4 % Va 1.1 V for t1fin = ± 25 kHz, Vin = 10 mV, fAF = 1 kHz, Q = 20, k = 1 % Va 0.55 V Input voltage for start of limitation for t1fin = ± 50 kHz, fAF = 1 kHz, Q = 45 Vin 30 « 60) f.J-V Input impedance Zin 40 kQ 114.5 pF (>15 kQ II 6 pF) Ra/ll 2.6 Output resistance 8-31 < kQ TBA120S INTEGRATED FM/IF AMPLIFIER AND DEMODULATOR Volume control range VB (P = 5 kQ) 70 Va (P = 0) DC level of output signal at Vin = 0 VB= 7.3 V AM rejection ratio for .Min = ± 50 kHz, Vin = 500 /-tV, fAF = 1 kHz, m = 30 % a' 55 (> 45) dB Resistance of potentiometer for -1 dB output voltage decrease P 3.7 « 4.7) kQ Voltage at pin 5 for -1 dB output voltage decrease Vs 2.4 « 2.6) V Resistance of potentiometer for -70 dB output voltage decrease P 1.4 (> 1) kQ Voltage at pin 5 for -70 dB output voltage decrease Vs 1.3 V dB Characteristics of Integrated Components at pins 4, 3, and 12 Operating voltage of Z-diode at 1Z12 = 5 mA VZ/2 12 V (11.2 ... 13.2) Dynamic differential resistance rz; 30 Q Collector emitter breakdown voltage at 13 = 500 flA V31l10 > 13 V DC current gain at 13 = 1 mA hFE >30 Thermal resistance die to ambient air RthA < 120 °C/W The integrated circuit TBA 120 S is delivered in 4 groups. Depending on the group a decrease of 30 dB requires a resistor from pin 5 to ground as indicated in the table below. The No. of the group is printed on the IC. Group p I I II 1.9 ... 2.2 I I "I 2.1 ... 2.5 I I IV 2.4 ... 2.9 8-32 I I V 2.8 ... 3.3 TBA120S INTEGRATED FM/IF AMPLIFIER AND DEMODULATOR 120 dB 100 +15V TBA'20S ! 90 +~ AF .' . I .!f.tSQkHz 1: m.)O'" '.v" so 30 / 20 l - t-:'" O~ , V . - V I O· . r--- V V " 10 kHz V",,2V ./ V dl.t25kHz For good far-off selectivity the ceramic filter should be combined with an LC filter. Frequency Filter Resistor R 10.7 MHz S.SMHz 4.5 MHz SFC 10.7 MA SFC 5.5MA SFC 4.5MA 300 ... 390 Q 560 ... 680 Q 1000 ... 1200 Q, Fig.4: Internal circuitry 14 I 2 610137 8-33 I J1--1! I -v. • 0 Fig. 3: AM rejection ratio versus input voltage Fig. 2': Operating circuit using a ceramic filter (Murata) I m.SO"l. '",(""kHz VI/·12V •'m' TBA120S INTEGRATED FM/IF AMPLIFIER AND DEMODULATOR Fig. 5: Fig. 6: Output level versus voltage at pin 5 Output levl:ll versus resistance from pin 5 to ground dB o ft: 12Y -10 Vi .10mV f; :s.sMHz ILff ,:!sOkHz -20 -30 -GO -50 -60 ~ L I o r V,/:12Y -10 Vi :10mY f; : 5.5MHz Lff :!sOkHz -20 / II , -' I -60 I -70 I -80 -90 -90 o 4 3 _RS -100 Skrl 2 V o IS 0.5 2 2.SY , -Vs Fig. 7: AF output voltage versus supply voltage 2 I -50 -80 -100 I II -GO II I / -30 / I -70 I TBA 120 5 dB TBA 120 S Flg."S: Distortion factor versus output level .,. TBA 120 S TBA 120 5 S VI/=12V RG =6011 Lff, =! 50kHz Pin 5 open V6rms ! k 4 1\ 2 1\ "- k=3.7%(C=~n'J k=l7·Io(C=IS nF / 1 / I / / 1/ /V ~ / \ X'=18%(C:lnFl22km ~:~.8·/f=lrFl2fkQ \ rt l 'l.(C:680 pF/L8krl ~ %:1'1.(C:680pF/l8kQ) 10 _VII 0_100 20V 8-34 -so -GO -GO -20 OdB ITT ----- ITT3064 TV AUTOMATIC FINE-TUNING CIRCUIT SEMICONDUCTORS TV AUTOMATIC FINE-TUNING CIRCUIT • HIGH SENSITIVITY • 25kHz MAX. FREQUENCY DEVIATION ABSOLUTE MAXIMUM RATINGS (Note 1) • INTERNAL VOLTAGE REGULATOR Supply Voltage .................... Note 2 Internal Power Dissipation (Note 3). .. 700 mW Detector Differential Voltage (V,-a) ..... ±10V Detector Input Voltage Range (V" V,) ...................... +5V, -6V I.F. Amp Output (V,) .............. +20V, OV Bias Voltage (V,) ................. +2V, OV Storage Temperature Range -65°C to +150°C Operating Temperature Range -40°C to +85°C Lead Temperature (soldering, 60 seconds) .............•........ 300°C • INTERNAL AGC GENERAL DESCRIPTION-The ITT3064 is a TV automatic fine-tuning linear integrated circuit constructed on a single chip. It combines all of the automatic fine-tuning circuitry, except transformers, in one integrated circuit. Systems with low level I.F. amplifiers can now achieve tuning accuracies of ±25 kHz due to the ITT3064's high sensitivity. Internal voltage regulation improves overall performance and reduces system cost. BLOCK DIAGRAM 10kn·3W ,----......,.,.......-_ "'140V CORRECTION VOL TAGE TO VHF AND UHF TUNERS 5 I I I :,~~~__II__+_---~t__----l I IF AMP ~ 6 lkl! I I I _ _________ J L _______ 8(14) NOTES: The number without parenthesis is the pin number for the metal package. The number in parenthesis is the pin number for the plastic package. Metal Package, Pin 9- no connection Plastic Package, Pins 6, 7, 10, ii, 13 connection no 1. All voltages reference,d to V noted. except as 2. V terminal may be connected to any positive voltage source through a suitable dropping resistor, provided the dissipation rating is not exceeded. 3. Derate linearly at 5.6 mW;oC for ambient temperatures above +25°C. 8-35 ITT3064 TV AUTOMATIC FINE-TUNING CIRCUIT ELECTRICAL CHARACTERISTICS (Vcc=-t-30 V, Rs=1.5 kO, TA =25°C unless otherwise specified) PARAMETER Power Consumption Min. 130 Supply Current - 1 Regulated Supply Voltage - V Quiescent Operating Voltage -12 Quiescent Operating Voltages - V., Vo Output Offset Voltage - (V. -V5) Input Admittance - Yl1 Reverse Transfer Admittance - Y.2 Forward Transfer Admittance - Y2• Output Admittance - Y22 Correction Control Voltage V. (Test Circuit 1) 4.0 10.9 1.0 5.0 -1.0 Max. 150 150 150 9.5 12.8 4.0 Units mW mW mW mA 8.0 6.9 1.0 0 0.41+j1.0 0+j3.4 24.5-j29 0.04+jO.9 V V Typ. 140 135 145 6.5 11.8 2.0 85 25 80 35 80 35 CONDITIONS TA = +25°C TA = -25°C TA = +85°C V = +10.5 V V mA mmho J.l mho mmho mmho %V+ %V+ %V+ %V+ %V+ %V+ Correction Control Voltage Vo (Test Circuit 1) f f f f = = = = 45.75 45.75 45.75 45.75 MHz MHz MHz MHz V IN = 18 mV RMS fo = 45.750 MHz ~f as listed (MHz) -0.030 +0.030 -0.900 +0.900 -1.500 +1.500 V IN = 18 mV RMS 25 85 35 80 35 80 8'-36 %V+ %V+ %V+ %V+ %V+ %V+ fo = 45.750 MHz At as listed (MHz) -0.030 +0.030 -0.900 +0.900 -1.500· +1.500 ITT3064 TV AUTOMATIC FINE-TUNING CIRCUIT TYPICAL PERFORMANCE CURVES Narrow- Band Dynamic Control Voltage Characteristics I 15 12.l ........... ...... CO~~ECTION CONTROl 10 "\ ~ / l.O / ~ 2.5 o -- / 15 'A' Z5C VI \ • lSnv Vy / u Wide-Band Dynamic Control Voltage Characteristics CO~I~ECTl1 COJ~OL 12.l :::- REF. A r- ~Tr-r 10 t:l < i5' 01 VIO ~ ~ I 7.5 ~ S.O ~ 2.5 Ii INPUT FREQUENCY DEVIATION - o -2.0 O.OlD I / " " 25' REF. ofBVIO -O.OlD -0.020 -0.010 45.150 0.010 0.020 'A' 2l'C VIN 'limV REF·illO'Yo REF. ill." \ "'-- I----' "-- V -1.5 -1.0 -0.5 45.150 0.5 I\.. 0; VIO .l V0 / 1\ l2 1.5 1.0 2.0 INPUT FREQUENCY DEVIATION - MHz ~,Hz See Test Circuit 1 Test Circuit 1 Correction Voltages RJ R6 3kU OOOllJF 10 Rl 15kU REF. AU-~"""'Mr----o,O:<>--'W''''''''-'''''''Mr---'30V REF C REF. 0 ~~I! R3 J COIL FORM BASE TERMINAL DIAGRAM r----r-----, 9k!1 REF. B +---t---t--:*""+-~*7 T 30 1--J. °r~ 60 0 / 2 CONTROL VOLTAGE OUTPUT NOTE: 1--- Parts placement is critical. Use P.C. board layout on last page for best results. connections shown for metal can only L, is aligned for symmetrical bandwidth on either side of 45.750 MHz. L, tertiary winding wound on L, coil form La is aligned· for zero differential output between terminal·s 4 and 5 at fa 45.750 MHz = 8-37 TYP. 0 ITT3064 TV AUTOMA TIC FINE-TUNING CIRCUIT COIL DATA FOR DISCRIMINATOR WINDINGS L, - Discriminator Primary: 3 1/6 turns; #20, Enamel-covered wire-close-wound, at bottom of coil form. Inductance of L, 0.165 fLH; Qo 120 at fo 45.75 MHz. Start winding at Terminal #6, finish at Terminal #1. See Notes below. = Start winding at Terminal #2; finish at Terminal # 5, connect center tap to Terminal # 7. See Notes below. = = NOTES: 1. Coil Forms; Cylindrical; 0.30" Dia. max. L, - Tertiary Windings: 2 1/6 turns; #20 Enamel-covered wire-close wound over bottom end of L,. Start winding at Terminal #3; finish at Terminal #4. See notes below. 2. Tuning Core: 0.250" Dia. x 0.37" Length. :Material: Carbinal J or equivalent. 3. Coil Form Base: See drawing below. L - Discriminator Secondary: 3 1/2 turns; center-tapped, space wound at bottom of coil form. Inductance of L" 0.180fLH; Qo 150 at fo 45.75 MHz. = = 4. End of coil nearest terminal board to be designated the winding start end. = ITT3064 Equivalent Circuit IoF. AMP OUTPUT , DETECTOA INPUT BIAS 2 • CORRECTION VOLTAGE OUTPUT CORRECT10N 4 5 VOLTAGE OUTPUT "s 1000 "6 2 kn IF AMP ..,---y-____ INPUT ", Skll ". 9OO!l V·~.-r--~--~--+---~--~+---~-+--~-------4---------+--+-----~ A9 1.5 kn 8-38 J DETECTOR INPUT ITT ----ITT3065 TV IFM SOUND SYSTEM SEMICONDUCTORS TVIFM SOUND SYSTEM CONNECTION DIAGRAM (TOP VIEW) &\ DC Volume Control Eliminates Need For Shielded Cables • Excellent AM Rejection 4.5 MHz • Differential Peak Detector Requires Only One Single-Tuned Coil IF INPUT TONE CONTROL GND AUDIO OUTPUT GND NC QUAD DETECTOR Vt DC VOLUME CONTROL DEEMPHASIS • Internal Zener Diode Regulated Supply • Low Harmonic Distortion QUAD DETECTOR DETECTOR OUTPUT Connection Diagram (Top View) ABSOLUTE MAXIMUM RATINGS Unit Characteristic AUDIO INPUT IF INPUT BIAS SOdB Typical at Supply Voltage ..................... Note 1 Internal Power Dissipation (Note 2) .... 670mW Power Supply Current ............... 50 mA Operating Temperature Range ................... -40°C to +85°C Storage Temperature Range ........... " ..... -65°C to +150 oe Lead Temperature Range (Soldering, 60 seconds) .............. 30Qoe The ITT3065 Monolithic TV/FM Sound System consists of a Multistage Limiting IF Amplifier, DC Gain (Volume) control, FM Detector,. and an Audio Driver constructed in a single silicon chip using the planar epitaxial process; Excellent sensitivity, high AM rejection and an internally regulated power supply coupled with low external component requirement makes the ITT3065 suitable for a wide varity of applications including TV Sound Channels, Line Operated and Automobile FM Radios and Mobile Communications Equipment. BLOCK DIAGRAM DE-EMPHASIS 7 IF INPUT~2+-_...f"" AUDIO OUTPUT IF INPUT BIASe>!-f--v 9 ----10 ---4r--14 GROUND QUAD DETECiOR QUAD DETECTOR 8-39 GROUND Aurno INPUT 13 TONE CONTROL ITT~65 TV IFM SOUND SYSTEM TYPICAL PERFORMANCE CURVES .. FREQUENCY RESPONSE OF IF AMPLIFIER SECTION 70 AUDIO GAIN REDUCTION VERSUS DC VOLUME , CONTROL RESISTANCE FREQUENCY RESPONSE OF AUDIO AMPLIFIER SECTION 1111 IS r- J....- 1\ ~ \ V ~ TA·25·C ·IIII.V '''llOmj IlrSTC:RCt: J 0.1 \ 5'-:~:~~ 10 0.1 / 1\ -V,~ o I O.S 1.0 1.0 S.O 10 0 0.01 1111 0.1 fREQUENCY - MHz NOTES TA'I5'C I.· JOmA 7 I fI1!QU!OCY ·MH, 10 o so T V I 10 1111 I1!SrSTAOC['1IOM DC CONTIIOlTO GNU • Kn V+ terminal may be connected to any positive voltage through a suitable dropping resistor. provided the dissipation rating is not exceeded. 2 . . Rating applies to ambient temperature ·up to 70'>C. ·Above 70"C ambient derate linearly 8.3 mW/"C for the Ceramic 01 p. ELECTRICAL CHARACTERISTICS (TA = 25°C, I = 30 rnA uoless otherwise specified) PARAMETER Conditions STATIC CHARACTERISTICS Zener Regulating Voltage (V.) Supply Current (I.) Internal Power Dissipation Voltage at IF Input Vias (VI) Voltage at DC Volume Control (Vo) Voltage at De Emphasis (V,) Voltage at Quad Detector (V.) Voltage at Audio Output (V12) DYNAMIC CHARACTERISTICS IF AMpLIFIER Input Limiting Voltage at -3dS point AM Rejection IF Transconductance ,. Magnitude Phase Angle Feedback Capacitance Input Impedance Components 10.5 10 343 4.0 11.5 16 370 12.5 24 400 rnA mW 2.0 Volts 4.8 Volts 6.1 3.7 5.1 Volts Volts Volts 5.8 , 1 1 Volts = VSUPplY 9.0 V I - 33mA (fo :- 4.5 MHz, FM±25 KHz at400 Hz, VIN 100p.V) = 40 200 50 500 46 ~0.02 8-40 400 p.V dB AM - 30% at 4.5 MHz f - 4.5 MHz mmho degrees pF f - 1.0 MHz, Pin 2 to Pin 9 f 4.5 MHz, Pin 1 to Pin 2 = SGI ITT3065 TV IFM SOUND SYSTEM 30 mA unless otherwise specified) ELECTRICAL CHARACTERISTICS (Ti\ Test Circuit PARAMETER Min. Typ. Parallel Input Resistance Parallel Input Capacitance Output Impedance Components 17 4.0 Parallel Output Resistance Parallel Output Capacitance DETECTOR 3.25 75 Recovered AF Voltage Total Harmonic Distortion Output Resistance De emphasis Output Detector Output ATTENUATOR Max. Attenuation Max. Play-through Voltage' AUDIO AMPLIFIER Voltage Gain Total Harmonic Distortion Undistorted Output Voltage Input Resistance Output Resistance Max. Units Conditions kU pF f - 4.5 MHz, Pin 9 to Ground kn pF (fo - 4.5 MHz, FM ±25kHz at 400 Hz, VIN = 0.5 1 1 0.75 0.9 2.0 % kn n 7.5 300 1 1 60 2 2 2 17.5 80 0.075 1.0 20 1.5 2.0 2.5 70 270 = 100 mV) Vrms = co dB mV Rx Rx -- dB 0.1 Vrms, f 400 Hz Vi 400Hz Vo 2 Vrms, f 400Hz THO 5% f f -- 400Hz f 400Hz % Vrms kn n co = = = = = = = 'Play-through voltage is the unwanted signal, measured at the detector output, when the volume control is set for minimum output. Input limiting voltage, AM rejection, recovered audio, total harmonic distortion, maximum attenuation, maximum "play-through" test circuit. AUDIO VOLTAGE GAIN (UNDISTORTED OUTPUT) Vee 30d, RS O.05r- I'F:} A S, DISTORTION ANALYZER ( HEWLETrPACKARD· TYPE 3:10 OR EQUIVALENTI :; ~) UNlvERTER (BOONTON TYPE 207H OR EQUIVALENT! A"'-f'" GEI'f (BOONTON TYPE. 202H OR 0.47 II'F aUlvALENTI DISTORTION ANALYZER (HEWLETTPACKARD TYPE 330 OR EQUIVALENT! PINS., 1.12,13.14 NO CONNECTION *L I = 16~H PINS 7. 8,11.13 NO CONNECTION NOMINAL. Q(UNLOADED) = 50 TEST CIRCUIT 2 TEST CIRCUIT 1 8-41 ITT3065 TV IFM SOUNDSYSTEM IF AMPLIFIER SECTION AUDIO AMPLIFIER SECTION EIN = 100llVrms EIN = 100 mV TEST CIRCUIT 3 TEST CIRCUIT 4 TYPICAL APPLICATION TV SOUND SYSTEM 8-42 ITT ----- TDA1330 LOW-LEVEL VIDEO DETECTOR SEMICONDUCTORS LOW-LEVEL VIDEO DETECTOR The TDA1330 is a monolithic integrated circuit designed for use in both colour and monochrome television receivers. It is designed to replace the third IF stage, the detector, the video buffer and the AFC buffer. An important feature is the extremely linear video characteristics and wide band width. '~ J:.~5~ ~ ..-7,62--... 8 Absolute Maximum Ratings Vs Is VI Ptot Tamb Ts Supply voltage ...........•.... 24V Supply current ...........•.. 26mA Input voltage (rms) ...........• 1.0V Total power dissipation (see note) with Tamb = 25°C ............ 625 mW Operating temperature range ................ 0 to 75°C Storage temperature range ............ -65 to 150°C 7 6 5 1Cn ~. .1 2 3 4 FIG. 1 TDA1330 in the mini Dual-in-Iine plastic package similar to TO-116 •. NOTE Derate above Ta mb=25°C at 5.0mW/"C ELECTRICAL CHARACTERISTICS With Vs =20V, Q=30, f c =45MHz, Tamb=25°C in the test circuit shown in FIG. 3 (unless otherwise stated) Vs Is Vo Vo VI Vo Supply voltage range .... 20 (12-24)V Supply current ...... 15 (20 max)mA Quiescent Ol~tput voltage 7.7 (6.8-8.3)V Maximum signal output voltage .. OV Input signal voltage for 3.0V pk-pk, Video output (90 % modulation) rms 36 (25-65)mV Maximum output voltage swing pk-pk ..................•.. 7.7V Carrier rejection at output ............ 60 (40 min)db RI CI Ro Rs Cs 8-43 Carrier output voltage (at 3.0V pk-pk output) rms fout=fc ••••••••••••••••••• 1.0mV fout=2fc ••••••••••••••••• 3.0mV 3db Band width of IF carrier .• 80MHz 3dB Band width of video output . . . . . . . . . . .. 12.3MHz Input resistance .... 3.5 (2.4-4.0)KO Input capacitance ...•......• 3.0pF Output resistance ............ 180{) Internal resistance .;........ 4.4KO Internal capacitance ......... 1.0pF Carrier buffer output at carrier frequency (pk-pk) .. ~ ...... 350mV Carrier buffer level .....••.... 6.5V TDA1330 LOW~LEVEL VIDEO DETECTOR . TUNED CIRCUIT I CARRIE ·....----+-0 ~~~~~; >----l--t---, ::PUT C7 4 8. 2.5k u. +-4_-~_-----~-~~~--_6----~~~~4_--~~~~_oGND FIG. 2 Internal Circuitry V 8.0 t"-.... AUXILIARY OUTPUT 20V[~J TDA· 1330 10V ---- '"e 6.0 4.0 0- :::> D- '" o- "" r-.... -........ r----.... ....... -- r-----. r--.. :::> 3 2 0 4 CARRIER OUTPUT ~ PRIMARY OUTPUT 2.0 o 3.3k 6.8k 1 f'45MHz (unmodulat.~) _ Vs' 20Vdc ~ ~ g I ~ ...... ~ r---. :---.... 15Vdc I:::::: t::--- I~ I""- ~ I::'---. i"""" ~ ....... I o 40 20 60 b 100 mV 80 Vi INPUT VOLTAGE (rms) FIGURE 3- TEST CIRCUIT FIGURE V 8.0 ./ '"... e. 6.0 ~ V g 4.0 V 0- :::> D- o- :::> 0 g ~ 2.0 ./ ~ V ./ / V 4 - OUTPUT VOLTAGE V VI '0 V Vs' 20V 900/0 MOD fM'lkHz fe' 45 MHz Q'30 l/ --"" ~VI=40mV ~ "'" V ~ L L lL /' o 8.0 10 12 14 16 18 20 22 24 10 5- 30 40 50 60 70 80 V INPUT CARRIER LEVEL (rma) Vs SUPPLY VOLTAGE FIGURE 20 OUTPUT VOLTAGE . FIGURE 8-44 6- DETECTOR LINEARITY 90 100 mV TDA1330 LOW-LEVEL VIDEO DETECTOR V dB +6.0 ~4.0 z +4.0 - +2.0 o -2.0 '">~ ~ 0.1- ,/ ........ -4.0 -6.0 -8.0 i '- \. r\ 4.0 6.0 f- ~ ~2.0 Vi ' 40mV I--- Q'30 0 Il. ::!E ~ 90% MOD -- <11.0 5~ 8.0 10 12 14 ~I- ~ 5 16 MHz OUTPUT AMPLITUDE 1M ' I kHz I- :I: \ 2.0 r- Vs '20Vdc '" is § -- r--I- ~ ~ \ -10 o g3.0 U> _ IC' 45 MHz Vi' 40mV 70% MOD VS' 20 Vdc Q';IO I oJ ~ :;9 %DISTORTION -' 0 25 30 35 I M MODULATING FREQUENCY 40 IC 45 50 55 60 65 MHz 'CARRIER FREQUENCY FIGURE 8 - CARRIE R FREQUENCY PERFORMANCE FIGURE 7- VIDEO FREQUENCY RES PONCE Vs r---~~------~----~ 12V AGC TO TUNER ----C3 Vs IBV IBV[~l ~O.IPF 3.9k 220 10V 3.3k 6 22 12pF FLYBACK WINDING AUXILIARY ~-+-----I---O VIDEO OUTPUT 5 7 68pF TDA 1352 "J - - __ 3.9k 4 PRIMARY VIDEO AND SOUND OUTPUT TDA 1330 B -B.OV PULSE FIG. 9 Typical Application of TDA1330 General Information Linear detection is simplified with the TDA1330 as it can be carried out at lower power signal levels than previously possible. It offers considerable advantages to the designer some of which are listed below: 1. As FIG. 4 shows, the linearity of output voltage is excellent. It can also be seen that as the slopes are parallel the -video amplitude will not change with supply voltage variations. 2. The output level is a linear function of supply voltage and corrections for this can be achieved by regulation of the supply or referring to the video amplifier supply. 3. A video output with positive-going sync is provided but it should be used with care due to its higher output impedance. When it is not used the output should be connected to the supply. 4. A carrier buffer output is provided giving 350mV, sufficient to drive a ratio detector with one additional stage. 8-45 I mm _____ _-IL-IL TDA1352 T_V_V_ID_E_O_IF_A_M_P_L_IF_IE_R_W_IT_H_G_A_T_E_D_A_G __ C SEMICONDUCTORS TV VIDEO IFAMPLIFIER WITH GATED AGe 1 .075 The TDA:1"3"52 is a monolithic integrated circuit designed for use in either colour or monochrome TV receivers. It consists of an IF amplifier with gated wide-range AGC and is designed to replace the 1st and 2nd IF stages. A single supply of 12V is required for the device and a feature is the power gain of 52dB (typical) at 45MHz. Exhibiting extremely low reverse-transfer admittance, the device has nearly constant input and output admittance over the entire AGC range. A control signal for delayed AGC of the tuner is available from an output. Normally the TDA1352 is delivered in a dualin-line plastic package TO-116 (FIG. 1). Upon special request it is also available in the quadin-line plastic package (FIG. 2). .043 0.60 ~_J__ J -l0.,57h MAX 0.75 FIG. 1 TDA1352A in dual-in-line plastic TO-116 package. ABSOLUTE MAXIMUM RATINGS Vs Vos Vi V age Vgv Pto , Tamb Ts Supply Voltage ............... 18V Output supply voltage ......... 18V Input voltage (pk-pk) .:........ 10V AGC input voltage ............ 6V Gating voltage .......... +10, -20V Total power dissipation ...... 625mW (see note 1) Operating temperature ..... 0 to 75°C Storage temperature ... - 55 to 150°C r .- 0 ._. :l ::r ~ 1 1 If 0.75 J: .J:. ~D ELECTRICAL CHARACTERISTICS 1 o TO. 0.0 1_ t .075 Vs=12V Tamb =25°C unless otherwise stated Typ. AGC Range ......................... 75dB Power Gain f=35 or 45MHz ............ 52 (46 min)dB f=58MHz ........ : ................ 50dB Voltage range for RF-AGC (pk-pk) Maximum .......................... 7.0V Minimum .......................... 0.2V FIG. 2 TDA1352B in quad-in-line plastic package. 8-46 TDA1352 TV VIDEO AMPLIFIER WITH GATEDAGC T2 is further amplified and the RF-AGC voltage varies (positive-going) due to the change in DC levels. Input impedance is independent of AGC action as the input amplifiers operate at constant emitter currents. Single-ended or differential inputs may be applied. The IF input may be transformer driver, but no DC path to ground is allowed on either terminal. ELECTRICAL CHARACTERISTICS (continued) Maximum differential output voltage swing (pk-pk) OdS AGC ....................... 16.8V -30dS AGC ..................... 8.4V IF gain change over RF-AGC range .... , 10dS Output current ..................... 5.7mA Supply current ...................... 27mA Power dissipation ................... 325mW Increased voltage on the bases of T4 and T5 causing AGC action as the transistors conduct more heavily thereby shunting the original current from the interstage amplifiers (T6 and T7). Output admittance is nearly constant as the output amplifiers are constant current fed (maintaining a constant quiescent bias). General Information For correct operation of the AGC section of the TDA1352, a gating pulse, a reference level, and a composite video signal must be supplied. A voltage is maintained across the external capacitor C2 (see FIG. 3) by the gating section, which is dependent on the video level and DC reference setting. This voltage results from the charge passed by D1 and the charges drained by T1 during the gating pulse; the magnitude of the charge passed is dependent on the relative amplitude of the video signal to reference level. The voltage passes through the IF-AGC amplifier and is applied to the RF-AGC amplifier where it is compared to the fixed RF-AGC delay voltage by the differential amplifier formed by T2 and T3. The output of The supply must have a low' AC impedance to prevent low-frequency instability in the RF-AGC loop. A balance between AGC stability and recovery speed has to be achieved in choosing values for C1, C2 and C3 (typical values 0.1 fLF, 0.25,u.F and 10fLF respectively). For receiver alignment a fixed IF-AGC operating point can be set by connecting a 22Ko resistor across pins 9 and 11 (minimum gain), and pin 14 biased by means of a 10KO variable resistor to ground. DESIGN PARAMETERS Typical values at Vs = 12V, Tamb = 25°C f=35MHz Single-ended input admittance .............. 0.55 2.25 Input admittance change with AGC ......... 50 (0 to 60dS) ............................ 0 Differential output admittance ............... 20 430 Output admittance change with AGC ........ 3.0 (0 to 60dS) ............................ 80 Reverse transfer admittance ................ < <1.0 Forward transfer admittance magnitude ............................. . 260 Angle (OdS AGC) ...................... . -73 Angle (-30dS AGC) .................. .. -52 Single-ended input capacitance ............ . 9.5 Differential output capacitance ............. . 2.0 _Notes 1. Derate above Tamb = 25 ° C at 5mW;o C 8-47 f=45MHz f=58MHz Units 0.70 2.80 60 1.1 3.75 m mhos fL mhos o 40 570 4.0 100 «1.0 «1.0 fL mhos 240 -100 210 -135 m mhos degrees -72 10 2.0 75 780 fL mhos fL mhos -96 10.5 2.5 pf pf TDA1352 TV VIDEO IF AMPLIFIER WITH GATED AGe 'Ase S'RlRAGE CAfIIIC.J (IF .te PU'ERI r1--,---'~~~--r--~~---~"~c~i~---~~--'----r~r-'-r----------------'--T7~1r---r'---~~ OUTPUT SUPPLY'f'Ol.TAG'E '1" o r----:---if--O L_ T.Sk I . "'FOUTPU'T t_~ : I , RE~~C:{'O DCINPtITS ~, .,0---_\--+----' FIG. 3 Internal Circuit L I--V L v "l\. '\ t'--,.t f' "'-.. -........ Scol8' I MH Z!cm FIG. 5 Response Curve (45 & 58 MK2) 'G.;:.C...,.,,,,,~_..-J 80V Video Pola.-ity Pin6 VoltoQe ::'1L N·aoll.... TUNER AGe OUTPUT FIG. 4 Test Circuit Pin 10 Vo1t01jl1 Goln9 S,nc. Adj. .. Adj.I.O 'QVdc NOlll4.5 Y FIG. 6 toO ••OVdc: No.2.0y 0 ____ Politi" ,", Sync. Pin 5 RI In} . OJl 0-·______ ~.91t AGC Operation' .-----r--------t----~V. ozv :~NCER· ....----f----\-----, -co TO J •.. AF AGe VS O'V[:I\:] I8v ~o.lP.F .. 0 lOY • .oK AGe INPUT - --- AUXIUAIIY .....-+--f-.. OUTPUT VIDEO PR'MUY VIDEO ANO '.7 SOUND OUTPUT • carrier s.... FL't'BAClC WINDING ··8.0Y PULSE 8-48 OUTPUT FIG. 7 Typical Application ·TDA1352 TV VIDEO AMPLIFIER WITH GA TED AGe FIGURE 8 -SINGLE ENDED INPUT ADMITTANCE 5.0 FIGURE 9 - DIFFERENTIAL OUTPtlT ADMITTANCE 1.0 II / 4.0 (SINGl.E~NDED OUTPUT V ADIlITTANCE EXHIBITS TWICE THESE VALUES) 0.8 / .I bll 3.0 2.0 1.0 ,/ ~ L. 911 ....... V o 20 10 30 40 70 50 !-- o 100 MHz FREQUENCY - .,., V 0.2 ~ ~ / 0.4 / I-"'" ~2~ 0.6 / 10 - 922 20 30 40 V I-- 70 50 100 MHz FREQUENCY FIG. 11 22 "0 5 t-..t:HI-1tt-t-tt-t-tt----1_+-i--I 5.0 '" ~ iL r--t1HHH-1Hf--l--H---r-+--f-~ 3.0 ~ 2.0 IFGAIN REDUCTION 1.0 I I ~ I 55 6.0 6.5 7.0 7.5 10 v / ./ ./ V I} L f=35I1Hz .. 4511Hz "/ o 30 20 10 40 dB AGC GAIN REOUCTION FIG. 13 II ~ 400 > o " ~da GAIN IIAX~ " -20 -60 1\ 200 -80 o 50 10 FREQUENCY 20 60 7.0 '" ~ 6.0 ~ 5.0 -100 ~ -120 1\ " " -160 I 5.0 -180 '" 1.0 -200 100 MHz !;; Q I\, 4.0 IS -140 100 8.0 -40 REDUCTION 1'\" 2D / L ....... .......... L L 12 FIG.~2 1.0 -' 14 6.0 8.0 8.5 AGC INPUT VOLTAGE f=5811~ 16 8.0 o 5.0 20 18 r--r~~~~t-t-t+--r--r--1_~4.o t--HI-II-I-Hr-~'V--t--t-t-TUNER AGe DELAY 1/ III r-"~~J"-'1-'-'-'''8D I-~..-'r-+-r""r.,.l--~+-I--i 7.0 > > > > TUNER ~. ~ ~ AGC - t - 6.0 .......... VOl :::I .......... V.. = 12V 2.0 0 o 10 20 30 40 GAIN REDUCTION 8-49 14V 50 60 70 dB 60 ITT3701 _ITT ______ 2_W_A_T_T_T_V_S_O.... U_N....,D=S""""Y""""S"""'T..... EM .... SEMICONDUCTORS 2 WATT TV SOUND SYSTEM • Monolithic 2 watt sound channel Fig. 1- 14-Lead Plastic Dual-In-Line • Minimum external components .310 • 24 volt operation .290 .Short circuit protection • Low thermal resistance power package LEADS TO BE TIN PLATED ; .200 020 MI", The ITT3701 is a monolithic integrated circuit which uses a minimum of external components to provide the complete sound function of a TV receiver. Current designs require either two integrated circuits or one integrated circuit and a discrete power transistor to perform the functions incorporated in the ITT3701. The functional block diagram and the required external components are shown in Fig.:3. . 15:TYp.Ll, MAX . I....... Jl~~.=' I' 'I .375 NOM. 11 14 The integrated circuit includes: a high gain limiter - IF amplifier, a quadrature type FM detector, a DC operated volume contrpl, and an internally compensated 2 watt audio amplifier. 8 The ITT3701 is supplied in a modified 14 lead dual in line package with an integral heat sink bracket. (See figure 2.) The device will operate satisfactorily at an ambient temperature of 60° C with worst case program material when the device leads and heat sink bracket are soldered into a suitably designed printed circuit board. For more severe operating conditions, tapped holes are provided to permit easy addition of extra radiators. Fig. 2- 14-Lead Plastic Package With Heat Sink Bracket "i-- :' V9 _.J l . - -,' \ .4It.01 ·~_~u Maximum Ratings: I" I, - -~ - I The ITT3701 will also be supplied without the healtl sink bracket for those applications requiring a different heat sink configuration. Figure 1 shows the 3701 without the bracket and illustrates the tinned mounting surface available for heat sink attachment. (Note 3). Supply Voltage Supply Current Output Current :,:: 1 .'~ 28 volts 50 ma 750ma 8-50 1113701 2 WATT TV SOUND SYSTEM ELECTRICAL CHARACTERISTICS: POWER DISSIPATION: Test Conditions: Circuit Fig. 6 Supply Voltage = 24 volts Input at Pin 13= 100mv rms, = 4.5 MHz, Modulation ± 25 KHz at frequency of 400Hz. With heat sink bracketa) Case temperature (Tc) 85°C (note 1) ................... 4 watts b) Ambient temperature (Ta) 25 ° C (note 2) ................... 2 watts derate at 16.7mw'oC for Ta= 25°C I.F. Section Quiescent current (Ill) (Vll 11.0v) .............. 15ma typical Zener voltage (l l l }=25ma) ............ 12 volts typical Limitting sensitivity (-3dS) {Fig. 4} ......... 100 P.v maximum Recovered audio (v.) ........ 700mv±3dS Total harmonic distortion (±25kHz deviation) ....... 1.5 % maximum A.M. rejection (A.M. modulation 30% 500 pV:::;;V,3:::;;100mv) . .40dS minimum Volume control attenuation (V3=0) ................. 60dS minimum Volume control characteristic: Log (V3) (FIG. 5) vout = Without heat sink bracketa) Case temperature (Tc) 85° C (note 1) .. , ................ 4 watts b) Ambient temperature (Ta) 25°C ........................ 1.25 watts derate at 10mw'oC for Ta= 25°C Storage Temperature Range ................. -40 to + 150° C Operating Temperature Range .................. -40to +85°C Note 1: .Measured at the center of the heat sink bracket directly above the device or at the center of the mounting surface. cr Note 2: Operating with no extra external radiator and with heat sink bracket in free air (not soldered Into PC board). Audio Section: Test conditions,: Circuit Fig. 7 Audio input frequency = 400Hz Quiescent current (Ig) (Vg = + 24v, v = OJ: .......... 15ma typical Power output (Total harmonic distortion = 5%) ... " .... 2 watt minimum Total harmonic distortion (Pout = 1 watt) ........... 0.5% maximum Voltage gain (Note 41 .....•... 30dS ± 1.5dS Hum rejection ............. 30ds minimum input resistance ............ 40K minimum Note 3: Extreme care must be used when affixing heat sink to the' mounting surface of the 3701. The preferred method is by the use of a thermally conductive epoxy cement. An alternative method is by use of a low temperature solder preform. When using this method do not permit the temperature of the device mounting surface to exceed 150· C. Note 4: To give nominal.overdrive capability of 12 dB at 100% modulation. '.P~t)i FRO" SOUND DETECTOR _ Fig. 3 Typical Applications L=ISp.H Qo=Z8 8-51 • ITT3701 2 WAn TV SOUND SYSTEM Fig. 4 RELATIVE OUTPUT AND 5tNIN RATIO IIII o -10 -20 II I RELATIVE OUTPUT )1 ( dB -.30 ! ' -40 ' OVERALL NOISE (VOLUME CONTROL FOR VOUT= I~) -50 -60 , / ........ ........... IIIII DETECTOR NOISE 100 10 10K 1000 SIGNAL INPUT (jJv) Fig. 5 o -10 VOLUME CONTROL VOLUME CONTROL 25 Kn LINEAR -Te= 25·C ---- Te '" 70·C L/ ~ ~ // V'" -20 ", / -30 / dB -40 ,/ -50 -60 ./' -70 ..........' o ...... / '7 // V 20 40 60 % ROTATION (C.W.J 8:-52 80 100 ITT3701 2 WATT TV SOUND SYSTEM FIG. 6 I. F. Test Circuit .IIL! HP3406A I -=FIG. 7 Audio Test Circuit .1 +IO°1z5VW ILl -=-=- 8-53 _ I ITT SAJ110 STAGE FREQUENCY DIVIDER -L-L _SEVEN _ _ _ _ mm SEMICONDUCTORS ~~0.75-----+l·1 SEVEN STAGE FREQUENCY DIVIDER ~-:-~H~~l! Monolithic integrated circuit in bipolar technique, designed primarily for use in electronic organs. The device incorporates seven flipflops with externally accessible inputs and outputs. 1234567 Each flip-flop changes state on application of a positive-going input pulse. The individual flipflops can be interconnected to form a divider chain. Two flip-flop pairs are already internally series-connected as shown in Fig. 2. - ~ An emitter-follower is interposed between each flip-flop and the associated output terminal to ensure that the output voltage is largely independent of load. Because no internal emitter resistors are provided, the emitter-follower delivers undirectional output currents. When used in electronic organs the frequency divider SAJ110 may be driven by sine-wave as well as square-wave signals. The shape of the square-wave output signal can be modified by connection of RC filters. If, by means of an appropriate circuit, all inputs and outputs are brought to a potential below 1.5 volts for a short time, all outputs remain in the low state. Fig. 2: Block Diagram L.-- 14 All voltages are referred to terminal 1. Normally, the SAJ110 is delivered in the dualin-line plastic package TO-116 (Fig. 1a, add suffix "A" to type No.). Upon special request it is also available in the quad-in-line package (Fig. 1b, add suffix "B" to type No.). 12 0.60----+-1 fO SAJ110-B Fig. 1 ABSOLUTE MAXIMUM RATINGS Characteristic Unit V, Supply voltage .............. 11 V Input voltage see Fig. 4 10 Output current per stage .... 5 rnA * Vext External voltage at output terminals .................... ±5V Tamb Ambient temperature range .............. -10 to +60°C Ts Storage temperature range ............ -30 to +125°C CHARACTERISTICS PER DIVIDER STAGE 9 V, RL 2.2 kn, Tomb 25°C atV, Characteristic Unit Supply current (low state at output) ................ <3 rnA Vi Input voltage high state (see Fig. 4) .............. 6 to 9 V Vi Input voltage low state ....... <1 V Vo Output voltage low state .... <0.1 V Vo Output voltage high state ... >7.0 V tr Rise time of output voltage .. <0.2 us tf Fall time of output voltage .. <0.2 us ri Input resistance (see Fig. !5) 6 to 9 kn = The figures in brackets correspond to the pin numbers. SAJ110-A 8-54 = = ITT SAJ110 SEVEN STAGE FREQUENCY DIVIDER CHARACTERISTICS PER DIVIDER STAGE at V,=g V, RL=2.2 kn, Tamb =25°C ro ro Output resistance low state .. Output resistance high state " v 5AJ1I0 v SAJ " Taj:25-C Rl ,2,2kC'l ToM'IlI:0 25 10 10 ,/' V~ 200 n Fig. 4 - Max. admissible arid' min. required value of input pulses (high state) versus supply voltage. Fig. 3 - Output voltage versus supply voltage. " > 1 Mn Recommended Operating Conditions V, Supply voltage ................ 9 V Max input frequency ........ 50 kHz f imax Load resistance ........ 2 to 20 kn /" ./" /" mall.adm~ I;Y V >'" Fig. 5 - Input characteristic no "'"2.0 '.' ~ SAJ 110 1,1,6 4 I'·' 10 11V 9 10 o \IV I :f' , . I t 0.' 0.' --1\ , ............. I '.0 / 0.2 9 .,,"V.trIlO'(W-H"C 1~ ,) ""'- .. . .... c...",,25ec 0.' --v, Fig. 6 - Output characteristic II o • -v, . I 10 I o lOY I I I o \ \ \ \ \ \ 1_.-. •-~ • •• ITT SAJ110 IN FREQUENCY DIVIDER CIRCUITS Introduction Integrated digital frequency dividers have for long been widely used in professional digital equipment but have so far found little application in the entertainment sector of the electronic industry. This, no doubt, is due to the fact that the devices presently available do not quite meet the specific requirements of the consumer market, and that they were, until recently, rather expensive. Advances in integration techniques have now made it possible to produce inexpensive linear, as well as digital integrated circuits which should be of special interest to the electronic consumer industry. These devices offer many advantages when compared with circuits employing dicrete components and are in many instances already cheaper. It is certain that the availability of these new integrated circuits will lead to rapid new developments in all branches of the electronic industry. The new monolithic integrated frequency divider circuit SAJ110, developed by ITT Semiconductors, incorporates seven divider stages which can be used either individually or interconnected to form a divider chain. Because the SAJ110 requires no additional components and can be used in place of conventional discrete-component flipflop dividers, its use as a frequency divider in electronic organs is particularly advantageous. The Integrated Circuit SAJ110 Integration of a conventional flipflop circuit would offer virtually no advantage over a discrete component circuit - only a circuit which does not incorporate capacitors or other charge-storing elements is suitable for integration. Because the master slave flipflop (a frequency divider often used in digital equipment) 'is far too complex for consumer applications, 8-55 ITT SAJ110 FREQUENCY DIVIDER CIRCUITS development of a new circuit was necessary. This circuit had to function in a similar manner to a conventional flipflop but had to be designed so that no additional charge-storing elements were required. The result is a device which combines seven single divider stages on a single chip. r---- - - - - - S A J 110-- - - - - - --, :rEhB rEhEh rB 8 ~ =--1 =--i (2) 8 : -1-=-1-= 1- F~ 1-F~1-1-=-=-H f (14) (13) (3) (12) 0, 02 '3 03 {4} (10):,(51 04 '5 05 '6 (II) (9) 16) 06 '7 07:8)(1)(7) "* v· Fig. 7 - SAJ110 Block diagram - The figures in brackets are the same as the pin numbers of package. Performance Requirement Summary for the Integrated Frequency Divider SAJ110 The integrated frequency divider had to meet the following customer requirements: Supply voltage .................... 7 - 11 V Input (trigger waveforms) ........ Sinusoid or square wave Output voltage ......... Not less than 6V high enough to permit reliable triggering of another divider stage under all operating conditions. Permissible load range ........ 2k to 100kn Ambient operating temperature range .............. 0° to 60°C Number of stages to be accommodated in one package ......................... 7 Packaging 14-pin DIP or OIL plastic package In order to make maximum use of the 14 connections available on a TO-116 package the pins are connected as shown in Fig. 1, being arranged so that access to two divider pairs and three single divider stages is possible. The circuits can thus be used either singly or interconnected in various combinations. Output stag. 1"0 D 0 I, Functional Description of an SAJ110 Divider Stage Each stage used in the SAJ110 comprises basically a trigger network, two transistors connected as a flipflop, and an output stage (Fig. B). The input is first applied to a trigger network which always steers the input pulse to that transistor which is cut off at the time. Fig. 8 shows the input and output waveforms produced by one such stage. Each positive edge of the input waveform causes the flipflop to change state so that frequency division by two results. The flipflop output is fed to a transistor connected as an emitter follower output stage, this being provided to .isolate the flipflop from an external load and to supply output pulses of constant amplitude. The output pin is connected to the emitter of this transistor. Flip-flop Trigger I I I I I 1 I I -'I' t:I I: :i---I- .1 _t Fig. 8 - Block diagram of one divider stage with input and output waveforms For reason of economy and reliability, it was also considered desirable that the number of integrated elements and the total resistance of all the resistors used in the IC should be kept to a minimum. 8-56 ITT SAJ110 FREQUENCY DIVIDER CIRCUITS However, if the SAJ110 is used, simple RC networks can be connected across the outputs to generate sawtooth waveforms which contain even harmonics. An additional advantage of the SAJ110 is its small size, making it particularly suitable for use in portable instruments. The curves shown in Figs. 3 to 6 illustrate the performance of the divider in more detail. The input parameters of a frequency divider stage at various supply voltages can be deduced from Figs. 3 and 4. The input pulse amplitude should be not less than 6V, but should, on the other hand, not exceed the supply voltage. The curves in Fig. 3· give the maximum permissible input pulse amplitude range as a function of supply voltage. The input corresponding to "low" level should be less than 1\'/. Fig. 4 may be used to determine the static input resistance, which varies between 6 and 9kO. In the curve shown in Fig. 5 the output voltage is plotted as a function of supply voltage. As can be seen, the output voltage is 1 to 1.5V lower than the supply voltage and varies somewhat with the ioad. Assuming the same loading conditions the output voltages of all individual stages are within ±5"1o - this applies to stages on the same IC as well as to stages on different IC's. Fig. 6 shows the loading characteristic of a divider stage which gives a "high" output. Note that as the output current of the stage is increased (by reducing the load resistor, for example), point "8" on the curve moves towards "c" (lout 35 mA and V"ut 1.7V) at which point the stage flips into the "low" state and remains there. This bistable output effect is discussed further on in connection with the resetting of dividers used in counting circuits. = = Applications for the SAJ110 Use in Electronic Organs The heart of modern eiectronic organs is usually a set of LC master oscillators tuned to the frequencies of the highest octave. The frequencies of the lower octaves are then derived from these master oscillators by frequency division. In most conventional organs this frequency division is accomplished by the use of bistable multivibrators (flip-flops). These have the disadvantage of producing a square wave output, which contains practically no even harmonics and offers only limited scope for modifying the character of the notes produced. Fig. 9 shows the usual frequency generating circuits employed in electronic organs. Twelve master oscillators produce the frequencies of the highest octave while all the frequencies for the lower octaves are generated by frequency division. The arrangement shown in Fig. 9 requires up to twelve SAJ110 circuits for one organ. If the organ has less than seven octaves. then there are several spare divider stages which may ·be utilized in the divider chains associated with other frequencies so that in this case less than 12 integrated circuits are required: Depression of one of the organ keys, T, causes several outputs to be switched to a common line, S, via high value resistors, R, and this signal, which is a· combination of several frequencies, is then further processed. The spectrum of this signal is considerably richer in harmonics than that of an ordinary square wave. It is an advantage to give a signal to the following filters the mean value of which does little change when the organ keys are pressed. In order to obtain this, the ground of resistor R/10 (Fig. 9) should be connected to a positive potential. Another possibility is to ensure that the divider outputs supply proper AC signals. Fig.10 shows such ari alternative circuit. Use of a suitable bias causes the full alternating divider output component to be developed across the load RL • The circuit shown in Fig. 11 fully exploits the high output voltage and low output resistance of the frequency divider SAJ110. In this circuit RC networks are connected, via protection diodes, to the outputs of individual divider stages so that waveforms which are not very different from that of an ideal sawtooth are presented across· the load RL • The protective resistor As connected in series with each capacitor CL is included to limit the capacitor surge toa value which the output stage can safely handle. 8-57 I I ITT SAJ110 FREQUENCY DIVIDER CIRCUITS . : 0 In Fig. 12 the frequency spectrum of the waveform VRL is compared with that of two sawtooth waveforms, and it can be seen that the spectrum attained with the circuit arrangement of Fig. 10 approaches that of an ideal sawtooth. Note that the sub-harmonic component is extremely small - much smaller than is necessary for this application. ., , . , , ,, ,, ,,, , -'0 1- , : 20 I ,, I I dB -30 I I -4 0 I I I -5 0 I , I I I , I I I I I I I I I I -6 0 i, ,I , I: ,, , Ii , I: I , ,, ,J , I ,: , , , , ,I I, II IiI , : I: I , ~ I I ,I , I I , I I , I , I I , , , I I I I I 8 ooo~ , b __ , I I ,, , I , I I , ,, , I , , , I I I , I I I I I I I I , J I I I , , , , , I I I ,, I: '0 /L..../L I I , l2 I , I I 14 I I J J I I I I I ,, J I:I ,, , , , , ,I, I I I I I I I J I. I I I 16 -,-to I 18 c ___ ~ Fig. 12 -Frequency spectrum associated with various waveforms Use of the SAJ110 in Counting Circuits Fig. 9-Block diagram of the tone generating circuits in electronic organs r -- SAJ I~I 110---~-- Output IL ____ . ____ VOU! _ Vf~' f.;, The output of a divider stage can change state only while its input is positive going. __ I The frequency divider SAJ110, unlike a master slave flipflop, does not possess a buffer stage between input and output, nor a special reset input. 0 ...0,5 V Fig. 10-Conversion of divider undirectional output into alternating output a) Use of the SAJ110 in a counting circuit raises the problem of how to reset the flipflops. With the SAJ11 0 it is possible to reset a single stage as well as several stages connected in a counting chain. However, when designing a suitable reset circuit the following features of the device must be taken into account: Rs It is, however, possible to use th,e inputs and outputs for reset purpose. Because the reset capability of an SAJ110 stage depends on its input state, it is necessary to use both the input and the output terminals for reset purpose. C, Output Characteristic Fig. 11-Modification of the divider frequency spectrum using RC networks Referring to the output characteristic of a single stage (Fig. 6) it can be seen that a "high" output can only be flipped to "'low" if the output is pulled down to 1.5V or less by some external means, and this can only be accomplished while the input voltage Vln is "low", The output characteristic in Fig. 6 is divided into the sections A-B and B-C, section 8-58 ITT SAJ110 FREQUENCY DIVIDER CIRCUITS A-B being the normal operating range. As mentioned previously, in order to initiate a reset it is necessary to force the output through the range B-C to point "C", and this should be effected in the shortest time possible (tr 0.1 msec) to avoid overheating the device (the output transistor dissipates considerable power during this period). < If the divider input potential is higher than OV, then the trigger point C is shifted to the left on the curve, which means that the output potential would then have to be pulled down to a level below 1.5V. If the input and output of a divider stage or if several inputs and outputs of a divider chain are to be pulled down to a low potential together, then this potential should be less than 1.5V to ensure that the circuits reset reliably under any condition (refer to Fig. 13). Reset Circuit. Fig. 13 outlines a reset circuit suitable for a seven stage counting chain. All the output points as well as the input point I are connected, via isolating diodes, to the collector of a switching transistor type 2N2218, or alternatively to a RESET switch. It is important that the transistor collector voltage drops to a saturation ,level of less than 0.6V for the duration of the reset pulse, and that the transistor is capable of passing up to 400 mA of collector current under the most unfavorable conditions (Le. when all outputs are in "high" condition prior to the application of a reset pulse). The pulse source must therefore be capable of supplying at lease approximately 15mA to the base of the 2N2218 so that the requirement VI1 =V01 = ... Vo.>1.5V is fulfilled. The reset pulse duration is, however, not very critical provided it is not less than approximately 1/Lsec. As mentioned previously, the output state of all the stages depends on the input state of the first stage immediately ,after the occur~ rence of the reset pulse. There are two possible conditions: outputs which were in the "high" state immediately before application of the reset pulse change to "low" and maintain this state after the reset pulse has been removed. The next input pulse to h then causes all the outputs to be triggered to "high", this corresponding to a "PRESET" condition of the counter. Only the second input pulse is counted. These conditions are summarized in the truth table in Fig. 14 and it can be seen that the counter counts (n-1). Fig. 15, on the other hand, illustrates a condition in which all the outputs are in the "PRESET" state immediately after the occurren'ce of the reset pulse so that the next pulse is correctly counted as No.1. The explanation for this is as follows: Although in this case the reset pulse initially pulls all the outputs, as well as the input h, to "low", the input h is immediately returned to "high" at the end of the pulse (t = t,), because the positive edge at the end of the pulse is equivalent to the application of a logic "H" to the input. This positive edge triggers first output 0, and then, in turn, all the other outputs to "high" - this corresponding to the "PRESET" state of the counter. Conclusion The SAJ110 is an inexpensive seven-stage frequency divider which, in comparison with equivalent discrete-component circuits, offers many advantages,. the most important ones being: small size and low wiring and assembly cost. The device, because of its electrical characteristics, is particularly suitable for use in electronic organs where its performance is superior to that of discrete component flipflops. Being insensitive to the waveform of the input signal, the SAJ110 will accept a square wave as well as other types of waveforms (e.g. sinusoids; moreover, the low output impedance ensures that the output remains virtually constant irrespective of load, the lowest permissible load being approximately 2kfl. At maximum loading the output amplitude is only 1.5V less than supply voltage. The generation of output waveforms which are very similar to, and possess virtually the same frequency spectrum as, that of an ideal sawtooth, is possible simply by connection of RC networks across the outputs. VI1 = "low" (Fig. 14) VI1 = "high" (Fig. 15) In Fig. 14 I, was "low" at the instant when the reset was applied; under this condition all the 8-59 • ITT SAJ110 FREQUENCY DIVIDER CIRCUITS r-- ---- -."- --- -.--- -- -SAJIIO -- - f- - - - - - - - - . ------ ---.- ---- ---- r,:~o', _. - - - - - - - - - - - - ----, " l mo • .=O.4tA Fig. 13-Reset circuit for a seven stage counter '"L--L..Jn L..Jn L..Jn = .., r::1 r.1 r.-r r.;'1 r;'1 H L..Jn L..Jn ...... ______ .Jlw2w3w4W5w6w7L_L TRUTH TABLE " o~~------~-~ ~~-"----~-~ °r----L-i_____ J _~ I ~ ci H h-----J 1- °5L- i 06 L- ~____ ° ~ ____ ~ J - LH J H -L -1 H -L :: _____ P. 7L- -L I, °1 02 03 04~ ° L 1 H 2 L 3 H 4 L '5 H 6 L 7 H L H H L L H H L L H H H H L L L L H H H H H H H L H H H H H H H Os 07 L L H H H H H H H H H H H H H H _ _ _ _Re_.. _I_P_U''''_:-:1t:::'p>'~. Fig. 14-Reset action at VI1 , . "'ow" H '1:lJL.J1..JUU1.JU-___ ~-L 'I 0,-,--1 1 1 1 nt-----.., . r--1 °2---, . r---1!r------.., ~ ~ ~ ~n ~ ~] :r--- H H ,;..., r--1 ~ ~ ~~ ~ ~ ~~ ~ H LI, -L o4-----.,----,tr--------'----_~ I! II r---- L- or.- H -L " TRUTH TABLE 11 °1 ~ °3°4 °50s°7 ° 1 2 3 4 5 6 7 Os-------lJ---·--------_~ °I_ -:f I' L- Rese' pu, •• H -L tp"PS Fig. 15-Reset action at VI1 8-60 "high" H L H L H L .H L H H L L H H L L H H H H H H H H L H L H L'H L H H H H H H H H H H H H H H H H H H H H H H H H H -I SAH190 MaS TONE GENERATOR mm ~~----­ SEMICONDUCTORS MOS TONE GENERATOR The SAH190 is a monolithic, MOC integrated, special LSI circuit. Only three SAH190 circuits are required to generate the twelve notes of the highest octave in electronic organs. A twophase clock generator, which is in practice the master oscillator of the organ, is required for driving the SAH190. This generator delivers a frequency considerably higher than that of the highest octave. The SAH190 generates four tones, the frequency spacing of which corresponds to an interval of three semitones by dividing the clock frequency. By externally switching the connection Option 1 these four notes can be lowered as desired by a semitone or by a whole tone so that the twelve master oscillators required hitherto can be replaced by three SAH190 units. By switching the connection Option 11, the output frequencies of the SAH190 can be modified by one octave. One can therefore choose whether the tones generated are to lie in the third octave or the fourth octave above middle C, for instance. The outputs A to D of the SAH190 are specifically designed for directly driving the integrated frequency divider SAJ110, see Fig. 3. In addition, a further load with a resistance of greater then 10kn can be conne·cted. The.output signal has a square wave form with a pulse duty factor of 0.5. The greatest deviation of the twelve tones from the equal temperament scale is ±0.03 0/00. MAXIMUM RATINGS V, Clock voltages ....... -30 to +0.3V V3 Drain voltage ........ -30 to +0.3V 14 , I, Output currents ............ - SmA 10, I, ........................... -SmA Ts Storage temperature range ............ -20 to +80°C 6 7 max.9,4~ max.D,S ~ Fig. 1-SAH190 in a TO-96 metal case =TO-S with 10 terminals. Weight approx. 1 g. Dimensions in mm Terminals 1. Ground, 0, Substrate, case 2. Option II 3. 4. 5. 6. 7. 8. 9. 10. I Output A Output B Output C Output D Clock pulse t2 Clock pulse t1 Option I I RECOMMENDED OPERATING CONDITIONS V3 V" V, ft Drain voltage ... -17 (-15 to -19) V Clock voltages .. -20 (-18 to -22) V Clock .frequency ....... 1 to 1.5MHz CHARACTERISTICS In Output resistance ........... ==:o:-r 6-2.54:15,24 ~_ l MAXIMUM RATINGS: Ic IB VCEO P'o' Tamb Collector current 25mA (terminal 14 or 1) Emitter current (each emitter) ............... -5mA Base current (terminal 7 or 8) .. 25mA Collector emitter voltage....... 22V Total power dissipation at Tamb = 60°C ........... 250mW Ambient temperature range ............... -10 to +60°C 1,9 min. 2.8 1 Fig. 1b-TBA470 "B" in quad in-line (Quil) ,plastic package 14 CHARACTERISTICS AT Tamb transistor) B VCE,a' ICEO = 25°C (each DC current gain at VCE 2V, Ic 1mA ...... >40 Collector saturation voltage at Ic ::::: 1mA, IB 9.,1mA .... 100 KHZ rin Input resistance ............ 50 Kfl rout Output resistance ........... 200 fl ±Vout p-pOutput Voltage Swing at RL =1Kfl ............ 5.5(>4.5)V I" Current consumption (no load) ................... 5 mA Gv MAXIMUM RATINGS RECOMMENDED OPERATING CONDITIONS V.. -V, Vw , Supply Voltage ................ 9V (Symmetrical) .................. 9V (Asymmetrical) ................ 18V 8-74 V" -V, Supply Voltage Vln Common Mode input Voltage ................... V, to V,. Differential input Voltage..... ± 5V Output Current ............. 10 mA 10 mA Ambient Temperature Range ................ 0 to +60°C Vn IA -IA Tamb 11V 11V TCA250 DUAL FILTER AMPLIFIER APPLICATIONS INFORMATION Circuit example 1: Second order tunable RC lowpass with symmetrical voltage supply. A single-ended voltage supply is also possible; as is shown in the following example. Using one half of the integrated filter amplifier TCA250 RC lowpass and hlghpass filters of the 2nd or 3rd orders, as well as selective RC filters can be devised. The lowpass 2nd order shown in Fig. 2 uses very few passive components, is stable and has an adjustable frequency limit f o• Adjustments of the cut-off frequency is possible over a relatively large range by varying R2 by the factor, a. When using this circuit as a sine-wave filter in electronic musical instruments, tuning is not necessary if the passive components have tolerances of + 2%. Fig. 2 Tunable Low Pass Filter 2nd order with frequency compensation for Av= 1 Table 1: Component values for a Tschebyscheff-filter with amplification constant within + 1.5 dB in the transmission band (fig. 2) fa in the band 16Hz - 250Hz 250Hz - 16Hz C1 nF 6.8 C2 nF 100 1 15 R1 K 1000Hz 7.318, R2 k ·1 OOOHz 8.466 1000Hz 55.04 1000Hz 51.02 ~ It; -ro- 10 With the circuit values of table 1 the characteristic a= 1, in fig. 3 is obtained. Fig. 3 - Frequency Response of Low Pass Filter of Fig. 2, a: Variation of R2 .~ d B· I---- o --.... 3dB ~ 1'\ -10 f\ 1\ -2 0 a,1o,31 ....... '\ ~ '" ~ \ ~'I '\ w=omega 1"- -" "- 0,2 0,3 0,4 0,5 0,7 2 W wo(av= 1) 8-75 r'- r-., 1"'- [\ '",,- ~ -4 0 a,O,065 a,1I,3I4 ""K. K.,1"'- -30 0,1 r--. 4 ~ 10 TCA250 DUAL FILTER AMPLIFIER Circuit example 2: Fourth order RC lowpass with single-ended voltage supply C. ~ By arranging two 2nd order lowpass filters in series a 4th order filter is obtained. Other circuit values are necessary, however, (see fig. 4 and table 2). The frequency characteristic given by the values of table 2 is shown infig. 5. When using single-ended supply voltages the noninverting inputs of the amplifier are connected to a voltage divider and decoupled. R I Fig. 4 - Low Pass 4th Order with Frequency Compensation for AV 1 = +5 dB o ..... .,., 1\ -10 \ \ \ -20 -30 \ 0.3 0.4 (\5 (\7 I W \ 2 4 5 10 -wo Fig. 5 - Frequency Response of Low Pass Filter of Fig: 4 Table 2: Component values for the Tschebyscheff-filter shown in fig. 4, having amplification constant within +1.5 dB in the transmission band Voin the band 16Hz - 250Hz 250Hz - 16kHz C1 nF 22 2.2 C2 nF 220 22 C3 nF 2.2 C4 nF 680 0.22 68 R1 k 1000Hz5.6 -y;; 1000Hz 56 -y;- 8-76 R2 k 1000Hz 4.94 R3/k 1000Hz 4.01 /0 to 1000Hz 49.4 1000Hz 40.1 to to lC.A.210 = I~r~jr ==_===_"I=~=Y=N=C=H=R=O=N=O=U=S=D=E=M=O=D=U=LA=T=C?~ ='" SEMICONDUCTORS SYNCHl~O~OlUJS DEMO[))lUJlATOR The TCA270 is a monolithic integrated circuit designed for use in colour and monochrome television receivers. It consists of a synchronous demodulator, video amplifier with buffer output stages, noise inverters, AGC detector with output stages for npn tuner and IF amplifiers, and AFC demodulator with buffer output stage. Opposite polarity video signals are available from emitter followers. Normally the TCA270 is delivered in dual-inline plastic packages (similar to TO-116) (see Fig. 1). Upon special request it is also available in the quad-in-line plastic package (see Fig. 2). Electrical Characteristics Vs Is Vo Vo Vi Ri ' -_ _ _ _ _ _ u~~~_.~ __ ·~. __ . _==I Fig. 1-TCA270A in dual-in-line plastic TO-116 pac\cage. Typ. Supply voltage range ........... 12.0(10.1-13.8)V Supply current range .. 47(33-59)mA Quiescent output voltage both outputs) .............. +6V Output voltage at start of AGC (pin 9) ................... +3V Unbalanced RMS input voltage for AGC .......... 70 (50-100)mV Input resistance (both inputs) .. 3Kn 3dB band width of video output ................... 5MHz Differential gain (see note 1) .......... 1Omax % Differential phase (see note 1) .......... 1Omax deg. Intermodulation products (blue colour bar) 1.6MHz ................. -60dB 2.8MHz ................. -67dB Carrier frequency rejection at outputs ........... -40min dB Twice carrier frequency rejection at outputs .... -40min dB Fig. 2-TCA270B in quad-in-line plastic package. Absolute Maximum Ratings Vs P tot TalUb Ts 8-77 Supply voltage .............. l8V Total power dissipation ........ 1W Operating temperature range ............... -25 to 55° Storage temperature range .... , ....... -25 to 125°C TCA270 SYNCHRONOUS DEMODULATOR R; ....................... 1.BKn AFC Output control voltage swing (pk-pk) ........................ 10minV Change of frequency for complete output voltage swing ........ 400maxKHz. Change of frequency to maintain peak output voltage .......... ±1 min MHz. Noise Inverters (see note 2) Negative going noise pulses in pin 9 inversion threshold ... ; ........... ±2.55V Positive going noise pulses in pin 9 inversion threshold ................ ±6.6V NOTES 1. CC1 R system of modulation, peak white= 10 % carrier Cu rrent ratio of unsatu rated outputs 14/15 for I,=1mA .................. 6min 2. Noise pulses are inverted to a point near black level AGC V..,(pin 4) V.. (pin 5) VUlt 10 Saturation voltage of tuner control at .10ma ........ +O.3V Saturation voltage of IF control at 10mA .. O.7min, 1.2max V Breakdown voltage at 1mA (pin 4 & 5) ........ 14min V Control current (pin 4 & 5) .......... 10min mA Signal expansion for complete AGC ................ O.5max dB AGC gating (optional) by negative line fly back pulse V; .............. 2min, Vsmax V 0 Fig. 4-Typical Application vcc 7. 5 TUNER RFSTAGE 5.0 12V ............ 2.5 I.F. CONTROL STAGE 1.2K.n k 2e 0 Z5 V '\-c l'---- U 50 75 - PO 1.5 Fig. 5-Transfer Characteristic 80jlF I 330.n. 1 33011 VI5 12.5 0- 10 '\..r 7. 5 OPTIONAL r - - - o O LINE GATING NC 5.0 2345678 TCA270 2. 5 / / J 15 14 13 12 ....... II -,.;-.-1-l- ___________6V ..........16r--r-.....-'"tc-=-_ 40 '------.,s' -~ - ,0-:6 -, ----r- TUNING VOLTAGE 45 ~ - ~ _IT . T __ TCA350 A_N_A_L_O_G_S_H_IF_T_R_E_G_IS_T_E_R_{... D_E_LA_Y_L_IN..... E) SEMICONDUCTORS ANALOG SHIFT REGISTER (DELAY LINE) Features • 185 stage "Bucket-Brigade" • Delay line for audio frequencies • Symmetrical clock inputs up to 500 KHz • Variable delay to=~ 2fc1ock The TCA350 is a monolithic integrated circuit using MOS technology for the delay of analog signals up to 250 KHz. It uses the "bucketbrigade" principle and consists of 185 seriesconnected MOS transistors together with 185 integrated capacitors. max.O,S· Maximum Ratings Voo VE Vu , V" IA Ts Fig. 1-TCA350 in metal package JEDEC TO-77 (=TO-5 with 6 leads) Drain voltage ...... -30 to +0.3V Input voltage ........ -30 to +0.3V Clock voltages ...... -30 to +0.3V Output current ............. -5mA Storage temperature range .......... -40 to +100°C -24Y Recommended Operating Conditions Voo Vr: V" fclock t,ft tz/T VE R,XR, R,+R, VE pk-pk TA I 6 Drain voltage .............. -24V Clock voltages .... -19(-18 to 20)V Clock frequency ...... 5 to 500KHz Duty cycle of clock .......... 0.25 (T= 1ffclock) • • • • • • . • • • • • • • • • 0.25 Input bias voltage . -8(-7.5 to -8.5)V Biasing resistance at input ....... <20KO Input signal amplitude ........ <6V Ambient temperature range ............ -20 to +60°C I L 4-+--J.-+--_~-+--!-Ot' 1·laYI I L -_ _i - -_ _ _.....-I- Vs ;12 v "h The monolithic integrated circuit TCA430-N contains four RC oscillators in one package and is designed for use in electronic organs. Three TCA430-N integrated circuits provide the twelve master oscillators of the highest octave. The symmetrical square wave output signals of the oscillators are suitable for driving the integrated frequency divider SAJ 110, with which the lower octaves are obtained. Since the TCA430 is thermally neutral, the frequency stability of the oscillators is solely dependent on the temperature coefficients of the frequency determining RC elements. A vibrato effect can be generated for all the oscillators via the vibrato input Pin 4. The TCA430-N replaces the TCA430, differing in pin configuration only. Pins 5 and 8 have been exchanged. R" CJ~· H~ R" AU Ri A3 CA430-N d1 hR2' ~: pm· m t- ~~ r--o Vibrato Ru 112 A2 I 16 r-.. Ru II-- c:,~ ql~ AI 0 Fig. i-Operating circuit of the TCA 430-N r- r MAXIMUM RATINGS (All voltages referred to Pin 1) VB A4 I -11" R' JL II el-- 9 <0 Supply voltage ................ 15V 1" I" IG, I, Output current ............ 7.5mA V'pp Tamb Ts Vibrato voltage, peak-to-peak, (pin 4 must be driven via a capacitor) ................. 6V Ambient temperature range .......... -10 to +60°C Storage temperature range ............ -30 to 125°C Figure 2 RECOMMENDED OPERATING CONDITIONS Supply voltage .......... 12(>9)V RL, to RIA Load resistors .......... 3.3(>2)kfl R, to R, Frequency-determining resistors (Metal film resistors with a temp. coefficient ::(50 X 10 "jOC) ....... 5 to 50 kfl C, to C, Frequency-determining capacitors (MKC polycarbonate foil capacitors) ...... ::(1 F fo Oscillator frequency .. 20 to 30,000Hz v 8-81 Output voltage at high state Pulse duty factor of the square wave output voltage .................... 0.5V Oscillator frequency 865 Hz R/kfl . C / ",F Input resistance of the vibrato circuit ................. 4kn Slope of the vibrato circuit For a vibrato of ± one semitone, a peak-to-peak voltage of 1.7V is required at pin 4. CHARACTERISTICS at VB =12V, RL1 to RL,=3.3 kfl, Tamb =25°C Current consumption ........ 22mA Output voltage at low state .. .. ~J\ 4 '\.. -10 ~ = 2Sif'c/W f' 1\ \ 6 o RlhU f'< ~ 5"10-~;"... .1 Vz 12 10 ZTK 6,8 40 1 1\ 14 mV ZTK 33 ZTKS.8 to ZTK33 (TAA550) MONOLITHIC TEMPERATURE COMPENSATED ZENER DIODES mY mY ZTK 18 90 90 J 5x10- sl't ~ ~ ~~ ~ ~--;~ -30 "'" -60 -90 -120 -150 o 20 40 '" 60 ~ "' ~ -60 80 t::::' "'" " -'/z=15mA -lOXlO-S'OC~ -150 -180 100°C o 20 .\0 100 " " "- ~ .......-:: 100 "'" -150 '-10xl0- s/0c -200 -250 -300 L~ F----:~I.:_ -100 20 40 60 '" -200 I---+---l---+---+~~ -250 I---+-'---+----+----!-,-~ -300 I----+----+----+---+---! L-_-"---_--L._......L_---L_ _ o 80 20 .\0 60 80 100 DC ---"Tamb ----<.... Tamb Change of Zener voltage versus ambient temperature 1---+---1-~rt----+---1 -150 1---+---1---+----"1.--+---1 -350 o I---+-'---+---I-----!-,~:.......j .1 Vi 50 .\Iz =15nlA'" -100 -350 - k=5mA' 100 DC mV ZTK 33 150 ,...--.----,----,---,----, sx~ ~ 80 Change of Zener voltage versus ambient temperature ZTK 27 mV 150 60 - -.... Tamb - -.... Tamb Change of Zener voltage versus ambient temperature ._-- -/z=5mA- '" -120 " /. '\ -90 '\ -10xl0-Sf'C ~ ,;y /l 5XlO-s ..... ~ '" ~ "- -30 -180 ZTK 22 120 120 Change of Zener voltage versus ambient temperature 8-86 ZTK33DPD MONOLITHIC TEMPERATURE COMPENSATED ZENER DIODE ITT ----SEMICONDUCTORS MONOLITHIC TEMPERATURE COMPENSATED ZENER DIODE Monolithic linear integrated circuit producing an extremely constant temperature-compensated voltage, particularly suitable for stabilizing the tuning voltage in Television and Radio tuners employing capacitance diodes. This device is available in a low-cost diode package. CHARACTERISTICS (At Tamb =25°C, Iz=5mA) Reference voltage ...... 30 to 36V Vz Inherent Dynamic rZI Resistance ............ 13«25)0 o::.Vz Temp. Coefficient of Reference Voltage at Iz=5mA+0.5mA with Range Tamb 20°C to 60°C ... -2(-10.to +5)X10 5;oC tth Thermal Time Constant (turn-on) .............. 20 sec." Rthj -a Thermal Resistance Junction to air ..... <0.3°C/mW' CATHODE BAND NOTES: I. ALL DIMENSIONS ARE IN INCHES AND ARE REFERENCE UNLESS TOLERANCED. 2. LEAD DIAMETER NOT CONTROLLED WITHIN .050· OF THE BODY. Package-Jedec 00-35 Double Type 'This value applies when the connection leads Bmm from the package and are maintained at ambient temperature. "At the end of the thermal time constant (turn-on) 90 % of the reference voltage tNzmax spread fades away. ~Vzm.x=Vz( 0::.) - Vz(O) with Vz(O)=Vz at instant of switch-on. and Vz( 0::.) =Vz when thermal stability (balance) is reached. 8-87 Plug Diode MAXIMUM RATINGS Iz Operating Current at Tamb =45°C .............. 10mA' Tj Junction Temperature ....... 150°C T. Storage Temperature Range .......... -20 to +150°C ZTK33DPD MONOLITHIC TEMPERATURE . COMPENSATED ZENER DIODE -:::: ZTI<330PO ! ~~~ ~ 51~ f---'" ,---8 ZTI<330PO Q 1000 = .....-: ;::: :;..: /Z s 7,5mA - ~ 1~ ~~ lfi~ ~2mm IV/; ~a-25mm TA-25°C \ 5 I" "- Ihrr/ r--. r-... 10 - Ib o ~ Ii 10 _time 10- ZTI<330PO \ 6 8 10mA ZTI<330PO Iz-5mA 100 -- tJ.Vz 50 t f\ 5 , mV 150 \ t 2 Inherent Dynamic resistance versus operating current. 1\ Iz o -Iz Curves showing relationships of /iV. after switch-on for different lead lengths between the package and solder point maintained at ambient temperature. rnA o 20se" 0 I-" I-50 .\ -100 \ ............. -ISO \ -200 \ -250 \ -300 \ 100 _TA -350 200"C Permissible operating current versus ambient temperature (see note*) o 20 40 60 80 100 DC -TA Change of reference voltage versus ambient temperature 8-88 UAA110 _ITT _____ C_A_M_E_R_A_,_N_T_EG_R_A_T_E_D_C_,R_C_U_,T SEMICONDUCTORS CAMERA INTEGRATED CIRCUIT A monolithic integrated cricuit for the control and monitoring of all functions of an electronic (single-shot) camera. Fig. 2 shows the circuit diagram of such a camera using the UAA110. In order to avoid over-exposure while taking brightly-lit scenes and camera movement in dim light, a mea,surement phase precedes the automatic setting of the exposure time. In this phase, the light intensity is measured as the shutter release is depressed half way. The indicator-lamps Lu (over-exposure indicator) and Ls (tripod-indicator) show respectively whether the aperture must be reduced or whether a tripod (or a larger aperture) should be used. For this purpose two voltage comparators are used which are driven during the measurement-phase from the photo-resistor RF • In addition, the state of the battery can be checked by blocking, (with the finger, for example) the light to the photoresistor. If the lamp Ls does not light, the batter is exhausted. If the shutter-release is fully depressed, the photoresistor is connected to the integrated capacitor at input of the threshold amplifier. At the same time, the shutter is opened and held open with a latch during the exposure. The exposure time is determined by the charging of the capacitor CF through the photoresistor whose resistance is dependent of the illumination. When the voltage on the capacitor reaches the threshold voltage of the amplifier (determined by the voltage divider Ry , Rx) the electromagnet M is activated and the shutter latch is released, permitting the shutter to be closed by means of a spring. I I --7,62----1 Fig. 1-Package QS5it--+----,t-i:..... O.4t--+--+---t RECOMMENDED OPERATING CONDITIONS (see the circuit of fig. 3) V" Riso ! TA + CM ~4---6-+--------4-~O Supply voltage .......... 3,5 to 6V Potential divider ratio .... 0,55 to 0,8 Photoresistor ........ 100 to 2x10Tn Insulation resistance ...... >250MO Ambient temperature range ........... -18 to +50°C Fig. 8-89 2~Block diagram of camera UAA110 CAMERA INTEGRATED CIRCUIT All voltages are referred to Pins 4 + 7. MEASUREMENT CONDITIONS FOR THE CHARACTERISTICS (see measurement circuit, fig. 4) Definitions Operating voltage limit (lowest voltage) VeA: maximum supply voltage at which the voltage V,>2,5 V for a specified value of X RA VI' Potential divider ratio ..... X RA + Rp =-v; Equivalent resistance . Potential divider ratio ...... V Rx Rx + Ry - Delay time ........ t v =R F XCFX1n 1,043 Insulation resistance V" V. 1 V _ Rc x Rs Ri,ol - Rc + Rs Rs = insulation resistance of the printed circuit board and Rc = insulation resistance of the capacitor CF V"V"V, V"V"V, p"p, P3 V ll RM CHARACTERISTICS MEASURED UNDER THE ABOVE MENTIONED CONDITIONS I, MAXIMUM RATINGS Ts Supply voltage 6,5V Output pulse currents at an operating frequency 1Hz Lamp current, pulse duration <50ms .......... 120mA Electromagnetic coil current, pulse duration <5ms ...... 350mA Lamp current, continuous .... 40mA Reverse current while switching an inductive load ........ -20mA Storage temperature 70°C range ........... -30 to + Supply voltage (± 1 %) ........ 5V Ambient temperature .... 23 to 25°C Output voltages in "L" state .. <1,4V Output voltages in "H" state .. >4,5V Threshold potentiometer ........ 1 kO Reference potentiometer ...... 10kO Reference voltage (± 0.1 %) .. 3,375V Equivalent resistance of the lamps .... '" .............. 1330 Equivalent resistance to the electro-magnet ............ 13,30 Current consumption at V" =2,5V, V, = 0 .......... <6mA at Vo = 1V, V, = 5V ........ <6mA Output leakage current at V" 6V, V4 = 0 ........ <0,1mA Input curent at Vo = 2V ...... <8nA Input switching current = at Vo = V" ........ . . . . . . .. <25nA Input current at V" = 4,35V, V. = 0 ........ <2fLA Saturation voltage V 1sat at V" = 5V, V, = 0 ......... <1,2V V2sat at V" = 0, V4 = 0 .......... <1,2V V ssat at Vo = 5V, V4 = 5V ........ <1,3V Vl2S "Tripod"-threshold volt. range at V, = 5V ............ 1,9 to 2,11V Over-exposure threshold volt. range at V4 = 0 .... 4.14 to 4.35V V" Exposure-time threshold volt. range at V4 = 5V .. 2,97 to 3,335V Relative exposure-time error ±Ilt./tv at V4 =V,=3,5 to 6V ........ <15% +Ilt./tv at RF 10MO, TA=24°C ...... <30% -Ilt./tv at RF 10MO, TA=-18 to +50°C ........ <25% +Iltv/tv at RF =20MO, TA=24°C ... <100% -Iltv/tv ........................... <30 % V'A Offset voltage limit of battery at X=0,3, Vo 3, 5V, TA=24°C .... 3.1 to 3.5V IlV'A/IlTA Temperature coefficient of offset voltage ............... -10 mVioC 112 = Fig. 3-Measurement circuit for UAA110 8-90 UAA110 CAMERA INTEGRATED CIRCUIT ~L2 P, ~V,2 /. V2 q" v,'-- ..-.--.-1 '-/ 14 - V, /o ~P, \5 1 ~R" v .sv 110 5 J I 4.5 V V9 =5 V Ru =133n TA =24°C ~ 1 4.14 I- I-UAAll0 t-----" F7 l- 1 v/l ';',::: ~3 l001i 6V 1'" B V, 0 2 Fig. 4 - tt3SV Measurement circuit for UAA110 '" l~ f- VI sal <1.2 V V 5 110 V9=5 V V = 0.675 RM =13,3 II TA =24 °C I 4.5V\ o I o 2 2.97 V-1 3 ----1> 4 SV VI2 Fig. 6 - Transfer characteristic of the overexposure indicator 110 V 5 v I. 9 =SV RL2 =133n .L4.SV I ~2.1IV TA =24 °C 2 t{3.335 V L~UV -f-V8sat <1,3 V ~ 2 o o 2 3 4 1.9 V1 5V k- 1.4"7' V2sal<12V Fig. 5 Transfer characteristic of the exposure-time forming circuit o o 2 3 4 SV ----1> Vl2 Fig. 7 - Transfer characteristic of the tripod indicator 8-91 UAA110 CAMERA INTEGRATED CIRCUIT v 110 110 2 5 x =0.3 RL2 =133 Q TA =24°C t • v 'f II V V11V~ 2 o V V V V o 4 3 - - - I..... 1\ \ 1\ \ \\ 2.5 V f'-3.5 V ....... ~ 2 \ Mot~ - ~OM'" ~ ~ ~O~M ~ ~ \ 1 5V o l" 200 - b:' - i"- 400 Vg 600 - - - I..... Fig. 8 - Transfer characteristic of the operating (triggering, firing voltage) UAA 110 sr---, ..., I I Rs: Re: I 1 I 7 ___ .J = Reo Rs' Re Rc' Rs 800 1000MQ RG Fig. 9 - Influence of the shunt resistance on the exposure time 't--"-~, I Es ist RG RF =100MQ + Rs . Re + Rc' Re Fig. 10 - Equivalent circuit for the shunt resistance RG 8-92 - SAJ220 FAMILY QUARTZ WATCH & CLOCK INTEGRATED CIRCUITS ITT- - - - SEMICONDUCTORS t~'~lq QUARTZ WATCH & CLOCK INTEGRATED 3 x \27 CIRCUITS =3,81 ~ This family of monolithic integrated circuits has been specially designed for use as frequency dividers in Quartz Crystal controlled wrist watches and clocks. The devices consist of an oscillator, frequency divider chain, pulse shaper and output stage. An external resistor is used for current consumption programming. The output stages have been designed to suit the majority· of available movements. 'These devices are available in several different circuit variations. Please contact factory for special requirements. .fi- qs Fig. 1 - Dimensions inmm 15° .0.15 I MAXIMUM RATINGS VB TA Ts 0" IS· ,0--7.62_ Supply Voltage ................ 3V Operating Temperature Range ............. -10 to +60°C Storage Temperature Range .. : ......... -30 to +125°C 8 765 231, TYPE 220C 2200 220H 220M 220P 220S Note 1 Note 1 Note 1 Note 2 Note 2 Characteristics Note 1 16 16 15 16 Current Consumption (IB) 8/LA 8/LA 8/LA 8/LA Output Frequency (fo) 0.5Hz O.5Hz 1Hz O.5Hz Output Pulse Form Output Pulse time (To) Output Saturation Voltage V Push-Pull 16mS Push-Pull 8mS Unipolar BmS 1 Bi-directional 12mS 16 15 20/LA 20/LA O.5Hz 1Hz 2 Phase Unipolar Unipolar 32mS 32mS (RL=2.2Kn) (RL=2.2Kn) (RL=1.2Kn) (RL=2.2Kn) (RL=1Kn) O.25V O.25V O.W 0.25V O.25V 8-93 1 :.1. 1 I Fig. 2 Dimensions inmm Stages . ,. ..... [J (RL=200n) 1.2V SAJ220 FAMILY QUARTZ WATCH & CLOCK INTEGRATED CIRCUITS RECOMMENDED OPERATING CONDITIONS Supply Voltage Va 1-2V 1-2V Note 3 1-2V 1-2V 1-2V 1-2V Progr;l.mming Resistor Rp 2.5Mn 2Mn 2.4Mn 2.2Mn 470Kn 470Kn Quartz Series Resonance Frequency fQ 32768Hz 32768Hz 32768Hz 32768Hz 32768Hz 32768Hz Quartz Series Resistance Rs <30Kn <30Kn <30Kn <30Kn <30Kn <30Kn Trimmer Capacitance CT 10-50pf 10-50pf 10-50pf 10-50pf 8-56pf 10-50pf Output Load Resistance RL >2Kn >2Kn >1.2Kn >2Kn >1Kn >200n Package Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 2 Fig. 2 Application Watch Fig. 3 Watch Fig. 3 Watch Fig. 4 Watch Fig. 5 Clock Fig. 6 Clock Fig. 7 2. Vn=1.5V, Rp=470Kn, T.=25'C, fQ =32,768KHz ,3. Reset with switching Pin 1 to negative. Fig. 4. NOTES: ,1. VII =1.35V, Rp:=2.4Mn, TA=25'C,fQ =32,766KHz O.lJlF Rp 4 SAJ220C SAJ220D Rp Fig. 5 Fig. 3 +Vs 0.1", + I.Sk SAJ220S Rp Rp o Fig. 4 470k Fig .. 6 O.IJlF ~;===~~r--------r~+v. $AJ220H I RESET Rp 2.2M Fig. 7 8-94 G v. -- I TAA780 1.1V STABILIZING CIRCUIT mm ~~----- SEMICONDUCTORS 91 ,8 9 1 .1 V STABILIZING C~RCUIT .... I. It> ~. 0,5 0,2 thick Monolithic integrated circuit, e.g. for the voltage-stabilized drive of clocks and for the stabilization of the operating point in transistor circuits. The circuit comprises the operating transistor T1 (see fig. 2) and a control circuit for the stabilization of the output voltag e VaN to 1.1 V. --.j 5 14- 1.~+1i .' ·4 ",~. r --'3 Fig. 1a - TAA780 "A" Plastic package with vertical leads. Dimensions' in mm. Normally the TAA780 is delivered with vertical leads (Fig. 1a, add suffix "A" to the type No.). Upon special request, it is also available with horizontal leads (Fig. 1 b, add suffix "6" to thE' type No.). All characteristics and maximum ratings indicated below refer to the test circuit (Fig. 2) shown on page 30. The figure 0 in the index of some characteristics means that in this case all other terminals are open. The following definitions apply: Lf V214' Lf V314 SV3/'= Lf V314' V214 and aV314:= V314' V314 Lf Tamb Fig. 1b - TAA780 "8" Plastic package with horizontal leads. Dimensions in mm. MAXIMUM RATINGS V3 /1!O V'/l/O I, 11 Tamb T, Collector base voltage .......... 3V Collector emitter voltage at R,/,,=5k (ext. connected) ........ 2V Emitter base voltage ............ 2V Substrate base voltage ......... 2V Collector current ............ 15mA Stabilizing current ............ 1 mA Ambient temperature range ............. -20 to +40°C Storage temperature range ............. -20 to +125°C I I I I I L_ 'd I I I I T1 : Operating transistor T2: Regulation transistor Blocking diode R1, R2: Voltage divider . ___ J 4 Fig. 2 - Circuit diagram and test circuit for characteristics and maximum ratings 8-95 TAA780 1.tV STABILIZING CIRCUIT mV 100 CHARACTERISTICS at Tamb =25°C DC current gain of transistor T, at V'I,,=1.5V, 1,=0.3mA, 1,=0 .................. 250(>120) Collector saturation voltage at V'",at transistor T1 at 1,=3.5mA, 1,=35fLA, 14=0 .......... 0.1«0.12) Vl/osat Sase saturation voltage of transistor T1 at 1,=3.5mA, 1,=35fLA, 14=0 ................ 0.7V R1 +R2 Total resistance of voltage divider ................ 15(>10)kn V 3/, Stabil ized voltage at V'I,=1.5V, 1,=250 fL A, 1,,=3.5mA ............... 1.1±0.06 Voltage stabilization coefficient SV3/4 at V'/4=1.3 to 1.7V, 1,= 250fLA, b=3.5mA .............. 1.1 ±0.06V Temperature coefficient of the stabilized voltage at V'/4 = 1.5V, 1,= 250 fLA, b=3.5mA ...... -2.8 X 10- 3 1i"C Small signal current gain of hr. transistor T1 at V'I,,=1.5V, 1,=0.3mA, 1,=0 ............... 250 TAA 780 Sf} 3 mV 10 80 / J V L o V -'- -20 -40 V I -60 '2/4 = 1,5 V 13 =3,5mA ~ -80 = 25°C '--- I -100 10 20 50 100 200 .. 1/ 500 1000 llA Variation of output voltage V 3/4 versus current I, referred to 1,= 250fLA, V3/4 =1.1V TAA 780 mV TAA 780 140 120 I 1\ 0 4V3/4 I 12t4 = 1,5 V \ 1/ =250 llA 13=3,5mA _ I\. ! \ ->C f\ \ 40 -20 ~ 20 -30 ~ o -40 1/ = 250 ~A 13=3,5 mA - -20 ~=25°C -40 _ J 1 1 -50 1,1 1,2 1,3 1,4 1,5 1,6 1,7 -60 -20 1,8 V .. '2..z Variation of output voltage V"I" versus input voltage V'I" referred to V'i4 = 1.5V, V"I' = 1.1 V \ ~ -10 o 10· 20 --""'''.1A 30 40°C Variation of output voltage V 3/, versus ambient temperature referred to Tam b=25°C, V"/4=1.1V 8-96 TBA840, TCA840 TT I ----WRIST-WATCH BALANCE WHEEL DRIVERS SEMICONDUCTORS ~ - ~ ~ N 0.5 The TBA840 and TCA840 are monolithic integrated circuits for driving wrist watches with single coil balance systems. Besides the driving-coils, the TBA840 and- TCA840 require only one external capacitor and allow for extremely space-saving circuitry inside an electronic wrist watch. Self-starting is guaranteed for oscillation systems with sufficient induced voltage. The mechanical oscillation amplitude is stabilized against external influences. The amplitude variation within the specified temperature range is of a few rotation degrees only. The circuitry may be operated from conventional mercury oxide or silver oxide batteries. The internal current consumption is small. The TCA840A (geen) is recommended for use with miniature watches with lightweight balance systems whereas the TCA840B (red) is for use with tuning-fork or heavier systems. The TBA840 has a somewhat larger package and may also be used in above applications. MAXIMUM RATINGS VB I, & Ia TA TCA840 TBA840 WRIST-WATCH BALANCE WHEEL DRIVERS : ~ 1.4 N 0.3 Plastic micro package Dimensions in mm Packages: Fig. 1 MEASURING CONDITIONS FOR CHARACTERISTICS The characteristics are measured in the test circuit of Fig. 4. The actual signal conditions within a watch were simulated using a function generator with signals as shown in Fig. 5. VB RL VGS C Supply voltage ............... 1.5V Load resistance ............. 2.5KO Signal voltage (fig. 5) ........ O.9V Frequency of drive pulse ...... 6Hz Capacitor ....•....•..•.....• 1J-tF CHARACTERISTICS at TA uring conditions. Itot RECOMMENDED OPERATING CONDITIONS VB Nominal Supply Voltage .. 1.35 or 1.5V fn Frequency of driving pulses .............. 2.5 to 12Hz C Capacitor .............. 0.5 to 4J-tF Duty cycle (fig. 3) ...... 0.03 to 0.1 Coil resistance ........ 1.5 to 3.5KO N 2 3 fn Supply voltage ................ 3V Currents I, TBA840, I,TCA840 .. 1rnA Ambient temperature range ........... -10 to +60°C i f' 0.4 - = 25°C. See meas- Current consumption total .... 8.5f.lA Ratio of driving current for the oscillator to total current consumption .................. 0.9 Drive pulse duration ....... 7.8 mS Drive pulse duty cycle ........ 0.05 Saturation voltage V" TCA840, V" TBA840 .................. 0.3V Output series resistance ...... 1Kn (See fig. 2) Ipk = VB-V s Peak Value of operating current I" TCA840, 1" TBA840 .......... . RL+R, Vs,=Vs, Switching thresholds .......... 0.5V 8-97 TBA840, TCA840 WRIST-WATCH BALANCE WHEEL DRIVERS Circuit Design Information c The optimum position for an output pulse is when the switch-on threshold VSI and the switchcoff threshold Vs, are equal. This is dependent upon the capacitor, C, chosen, the mechanical clockwork, induced coH voltage Vin s, driving frequency, fd, duty cycle tilT and the coU resistance RL • r RI With two-magnet systems, the output drive pulse must appear only once per total oscUlation because the polarity of the induced volttage changes with each change in oscillation direction. Care must be taken when designing the external components with this system. TIJ------;--------r---~ L _________________ The switching threshold is changed together with the induced coil voltage. For optimum pulse conditions, i.e. VSI V S2, the switching threshold is only dependent on the maximum induced voltage. o ~ c = 3 , r- --TBA 840------ -----, I I I I The self-starting properties of the system are dependent on the operation of the oscillator and coil. The start-up time is limited by the movement of the balance wheel, magnets, value of the induced voltage and the coil resistance. I I R, T3 R, RS I I I R2 I I I I I I .f?] T1}------+-------+--~ I IL ____________ o ~ ____ JI Circuit Diagram Fig. 2--lnternal circuit diagrams TBA840, TCA840 . o~--~----------~~------~-­ _I Fig. 4--Test Circuits Fig. 3--0perating waveforms for Veoil and leoll with a 3-magnet balance system. (Vc & Ie) 8-98 TBA840, TCA840 WRIST-WATCH BALANCE WHEEL DRIVERS -t -t Fig. S-Signal induced Waveforms Hz V 20 1 r I // 1\ / V o OS ~ I / / / 0.5 / /C=0.2SIlF/ o r / / I 10 V I / /, / / I Y1.~ / I o 2V / o 2V --~ .. Fig. 6-Calculation of capacitor Value, C. See measurement conditions. 8-99 Vins Fig. 7-Switching thresholds versus induced voltage. _ I TAA775G POWER OSCILLATOR mm ..L..L _ _ _ __ SEMICONDUCTORS POWER OSCILLATOR Monolithic integrated circuit in bipolar technique. Particularly suited as electronic pulse generator for direction blinker and emergency blinker in cars with 12 V DC supply. Also suited for other applications, e. g. for interval wind-screen wipers. Dual In-Line Plastic Package The TAA775G is an oscillator, the frequency of which is determined by an external RC network and which supplies rectangular output pulses. The output terminal 10 is connected to the collector of the output transistor operating in common emitter configuration. An integrateddiode between the collector of the output transistor and the supply voltage terminal 1 allows for operation with inductive loads. ;~ IS! _ _ ~ 1---7.62 --..j As can be seen from the terminal diagram Fig. 1, the TAA775G has two oscillator input terminals 5 and 6, for the connection of the frequency-determining RC network. By applying a suitable control voltage to the control input (terminal 7) the following operating modes are possible (see Fig. 5): a) Operation at nominal frequency fo b) Operation at increased frequency f'o c) Oscillator not oscillating When a control voltage for operating mode a) or b) is applied, oscillation starts in the onstate. Since the control voltage is effective only during the off-state, blocking of the oscillator in the on-state is possible only at the end of the normal on-state. Static Characteristics @ V,=12V:V.=V.=OV, Tam b=25°C (see Fig. 3) I, Average current consumption ... SmA -I.R Leakage current of the oscillator input at V.=OV .......... <1 p.A Maximum Ratings (All voltages are referred to terminals 3 and S.) Required oscillator input current for turning on the oscillator output ......... >10p.A Terminals 3 and S grounded V, Supply Voltage ............... 15V V, Control voltage .....•..•...... I k.n~L_--A---J - .r..3ande Fig. 10: TAA775G as pulse generator with adjustable on-time For the circuit in Fig. 10 these equations are valid: ton tOff = 0.6XCX(R1 + R,) = CXR1 msec msec Fig. 8: TAA775G as pulse generator with adjustable frequency and constant on/off ratio. Charging and discharging of the time-determining capacitor through the same resistor. 5 .____ ~ ..--...-----.....-o--l ----I I 1 1 1 R in kfl C in MF +12V +12V TAA775G TAA775G 7 • : 10 1 1 1 Raand Re >'1 kOeacho--tL. ~ I ---l.----I. Fig. 11: TAA775G as pulse generator with adjustable off-time :1..3and8 Fig. 9: TAA775G as pulse generator with adjustable frequency and constant on/off ratio. Charging and discharging of the time-determining capacitor is effected through separate resistors. For the circuit in Fig. 11 these equations are valid: ton torr For the circuit in Fig. 9 these equations are valid: ton torr = 0.7XCXR. msec = CXRa msec R in kn C in MF 8-103 = 0.7XCXRl msec = 0.75XCX(R1 + R,) msec R in kfl C in MF SAK115 _ITT ___ T_A_c_H_o_M_E_T_E_R_'N_T_E_G_R_A_TE_D_c_'R_c_u_, T SEMICONDUCTORS TACHOMETER INTEGRATED CIRCUIT Dual In-Line Plastic Package The SAK115 is a monolithic integrated circuit designed for use as a pulse shaper in tachometer/rev-counter applications. By choosing suitable external components, the SAK115 can be used with 2 to 8 cylinder engines. It is designed for a nominal 12V supply. The basis of the SAK115 is a monostable multivibrator which converts the input signal (derived, for example, from the contact breaker) into square pulses of constant voltage and duration. Using an 8 mA moving-coil instrument, it is possible to design a simple freq'uency meter. The circuit features good noise immunity as it can only be triggered by input pulses exceeding 8 volts. An internal diode parallel to input te~minals 1 and 3 prevents triggering from negative pulses. The circuit is so designed that with the use of a suitable instrument, the readings will be practically independent of temperature. The push'pull output allows use of instruments with meter coils of high inductance even at high frequencies. Fig. 2 shows the circuit of a tachometer/rev-counter with a full scale deflection at 6000 rpm (2 input pulses with each crankshaft revolution). ' I 0.25 ~~o I.- I /4--7.62 .---l 11...15'1 7.5V Maximum Ratings VB, V'/3 Supply voltage ............... 9V I. Currents .................. -20mA I, average value .............. 2mA I, at pulse duration<0.5ms .. , 20mA I. at pulse duration<0.5ms ... 75mA I,. at pulse duration<0.5ms .. -75mA Tamb _ ~ 1~ Ambient temperature range ........... -40 to +85°C Fig. 2: Circuit diagram or a rev-counter for a four-cylinder 'our-stroke engine. Full-scale deflection at 6,000 RPM. Nominal voltage of car battery 12 V. tofT Recommended Operating Data Pulse duty factor of output voltage ............ <0.85 V1/3 Supply voltage ........... 7.5 to 8V Timing resistor ........... 3 to 20ko fi Frequency of input pulses .. <10kHz Input pulse width ........ >1.0f.tsec 8-104 SAK115 TACHOMETER INTEGRATED CIRCUIT - ,....------_-"IV'.,-..._---<) VB 1 Vis Itot vi o -Fi-1==i--"':; -it;1I I 1-- t I I t-- T--l I I o -F=t--t===--_.:.:o ~------~----------------~----<)O Fig. 3: Measuring circuit. The duration of the input pulses must always be shorter than the duration of the output pulses. Measuring Conditions for Characteristics -I- Supply voltage(±1 %) ........ ' BV Timing resistor (±0.1%) ...... 10k[l Timing capacitor (±0.1 %) ... 0.47[LF Load resistance (±0.5%) ....... 440 R A.vo - V (See measuring circuit Fig. 3) L Load inductance (±5%) ...... BOmH R, Series resistance at input (±1 %) .............. 10k[l ccVo Change of output voltage for a supply voltage change of supply volt. of ±V7/3=0.3V .. <2% Temperature coefficient of output voltage. <2 X 10-:1 t/"C Vm·•s Residual output voltage ..... <30mV At input frequencies in the range of fi = 25 to 250Hz: Dependence of output voltage on the frequency Voltage amplitude of input pulses (±2 %) ...... 10V ti Duration of input pulses (±5%) ........ 0.5ms f. Frequency of input pulses (±0.1 %) ...... 250Hz Definitions: Vo = Actual value of output voltage (average value) Characteristics at Tamb =25°C Volin = nominal value of output voltage (See preceeding measuring conditions.) Itot Supply current at Vi=O .. 12 to 22mA Input voltage drop ...... 6.5 to BV Duration of output pulses ............. 2.7 to 3.1ms Vos Voltage amplitude of output pulses ......... 5 to 5.BV Vo Output voltage average value ......... 3.3 to 4.5V Vomax = final value of output voltage at fi=fi mox=250 Hz (full scale deflection) The period of the input pulse must be smaller than the period of the output pulse. 8-105 -I SAY115 SPEEDOMETER INTEGRATED CIRCUIT mm ~~----- SEMICONDUCTORS SPEEDOMETER INTEGRATED CIRCUIT The SAY115 is a monolithic integrated circuit designed for use in electronic speedometers and odometers in automobiles and other vehicles. As shown in Fig. 1, it consists of a Schmitt Trigger, a monostable multivibrator, a current source for supplying a moving-coil instrument, an analog output, a binary 5 or 6 stage frequency divider with a power output stage for direct drive of a two-coil stepping motor. This is used for mileage or distance indication. The analog output allows a warning signal to be set off when the speed falls below or exceeds pre-set limits. SAY115X-5 stage (7 32) :.. - ----- max. 19.55 ________ ...: . .' 'mtljf ~.E . .,-- 'I -l~ . -i- : __ I2?S: ~627.01J,1.31' ~: -~: ~·5.'o8+'· :',62 '·''';'''5',08'' .~ , f Dimensions in mm ~ ~=rirr--";--R-';;'- L SAY115Y-6 stage (7 64) Dual In-line Plastic Package Maximum Ratings Vom VOila V, 1" I. I, Tamb Ts Supply voltage, continuous ...... 16V Supply voltage, pulsed <5 ms ... 20V Input voltage ........ -0.5 to +20V Output current at the motor terminals ................... 300mA Output current for moving coil instrument ............ -30mA Ambient temperature range .............. -40 to +85°C Storage temperature range ............. -40 to +125°C RECOMMENDED OPERATION DATA VO/13 fi R'ill R7/g tp Supply voltage ........... 11 to 16V Input frequency ........... <10kHz Timing resistor for monostable ............ 15 to 100kl1 Potentiometer for cu rrent source .................... >10011 Duty Cycle of monostable ...... <0.9 Tperiod Cs Rs Filtering network ............. 330 >25uF 33n. Fig. 1Diagram of a Speedometer Circuit with full deflection at F,=300 Hz .... Stepping Motor Speed Worning 8-106 SAY115 SPEEDOMETER INTEGRATED CIRCUIT CHARACTERISTICS TA VII. VIH 1, 1, = 25° C Supply voltage ........... 11 to 16V Quiescent Current (without stepping motor) ..... 16mA Input trigger thresholds "low" ..................... 2.5V "high" .................... 3.5V Input Current at V, VIH • • • • • • • • • • • • • • • • • • • =0 NOTE-The monostable will trigger on the trailing edge of the input signal if V'Lis exceeded. V'/13 V'113 10 t p6 V,O V,O Reference voltage ............ 6.5V Current source voltage range ..................... 0 to 5V Instrument current, peak value ................... 2.3V R,/s Output pulse period (Pin 6) .......... 0.67 X R'/ll X Cll", Analog output voltage D.C. f = 0 ..................... 6.5V f = f max , t p -T = 0.9 ......... 2.1V period R"ut 10 fi/fo V"at, V,sat Output resistance of analog output ............... 10K{J Divider ratio of binary divider Note (1) ................ 32 or 64 Saturation voltage of motor outputs at l,=b=200mA ....... 1.2V NOTE (1)-Ordering Instructions: Order SAY115X for -:- 32 (5 stage). Order SAY115,Y for -:- 64 (6 stage). Application Information The speedometer SAY115 is usually driven from the gearbox (transmission) of an automobile vi, for example, a reed-relay contact, a proximity switch or an inductive sensor. The monostable is triggered by the trailing edge (negative going) of the input signal and is therefore not susceptible to contact bounce of a reed relay. This assumes that the input signal meets trigger threshold limits shown in the data. The pulse width of the monostable is set by RC components R'/ll and Cll /12 and can be adapted to a wide input frequency range. The current source output at Pin 6 is proportional to the input frequency and can be adjusted by a resistor or potentiometer, R,/s. The resistors R'/8 or R'/ll can be chosen for calibration of the speedometer system. Due to the current source, temperature variation of the resistance of the moving-coil instruments do not affect the reading. The current source is essentially thermally neutral. Thus, temperature effects are limited to the external components R'/ll, Rus and Cll /12. Therefore, virtually all temperature drift effects on the reading are eliminated when the supply voltage is turned on. One side .of the instrument is connected to ground thus simplifying mechanical construction. If required, a filter capacitor can be connected to the analog output in order to generate a d.c. voltage as a linear function of speed. Thus by using a simple comparator, K, a warning signal can be set off when the speed exceeds or falls below a pre-set value. For convenience, a stabilized reference voltage is available at pin 2 of 6.5 volts. A potentiometer may be used and the temperature dependence of the comparator switching point is therefore, a function of the comparator, potentiometer, and the RC components (R'/Il and Cll",). The binary divider divides the input frequency by 2' or 2" and drives an output stage consisting of two NPN Darlingtons. Both outputs change alternately to "high" and "low" during half periods of the output signal. Both outputs have a freewheeling diode with a common cathode output at Pin 4. In order to protect the circuit from high voltage spikes generated in an automobile electrical system an external filter network Rs, Cs should be used as shown. The stepping motor current does not flow through the filter resistor, Rs, thus allowing sure starting of the stepping motor even under low battery voltages. The cooling pins of the package are the ground connection pins of the SAY115 and should be soldered to the PC board to allow good thermal conduction. 8-107 _ I mm -L..L _ _ _ __ SMALL' SIGNAL CHIPS AND WAFERS SEMICONDUCTORS INTRODUCTION CROSS REFERENCE CHART ITT has a wide selection of planar transistor chips and wafers available for those who require devices in this form. Since the large number of JEDEC specifications are derived from a few chip types, many differing applications can be satisfied with a relatively small quantity of basic chip families. The list of JEDEC specifications, together with the respective chip specification, will provide a means of ordering the proper chip required in an application. This chart is not exhaustive, and is provided as a guide. Specific requirements may necessitate a different chip specification from available JEDEC "2N" numbers. In such cases, the accompanying list of chip parameters will provide the necessary information. SPECIFICATIONS The accompanying DC parameters identifying each family are tested on each chip in the wafer. These are the probe speCifications. As shipped from our factory, THE PROBE PARAMETERS ARE GUARANTEED TO AN AQL = 2.5%. The design parameters such as V CE(SAT)" ton, toff, COb, etc. are not probed. These characteristics can best be tested after the chip is suitably mounted; and, therefore, have little significance in chip form. The chips will have a high yield to the specified limits. The actual yield will vary with the mechanical techniques used to assemble the device, and the type of package used. ORDERING All chips and wafers should be ordered according to the alpha-numeric coding system referred to in the speCification chart. The four-digit geometry family, together with the voltage letter and DC gain number (from the accompanying geometry parameter chart) will completely determine the specification which ITT will provide. A third letter specifies in which form, chip or wafer, the product is to be shipped. E.G.: Q Family Q 1 .§- In all cases, the lowest useable voltage and the lowest useable hFE should be chosen in specifying chip parameters. This will provide the highest possible yield and the most economical design. §!.l\Q ~ C = Chi Voltage Gain W = Wafer IDENTIFICATION USE The entire wafer is manufactured with approximately 3000 A ° of gold for die attach to a suitable substrate or base. Recommended die attach temperature for all families is 450°C, maximum. 9,000 to 12,000 angstroms of aluminum are deposited on the chip for metalization purposes. ITT recommends aluminum wire for connection to the aluminum base and emitter bonding pads. Ultrasonic techniques may be used for the, wire-bond operation. All small-signal transistor dice will be identified by the appropriate four-digit family number together with the particular classification code for voltage and current gain. By way of example: PACKAGING FOR SHIPMENT The 2N2222 is a "0018" chip. The voltage class is "M," the current gain is "A." Therefore, when ordering a 2N2222 in chip or wafer form, the correct part would be a "0018MA" chip. This method applies to dice and to a wafer which has been tested 100%. Chips will be shipped in appropriate containers, with the devices packaged to protect them from damage in shipment. Wafers will be shipped in a similar manner. Unless otherwise specified, wafers will not be scribed prior to shipment. If a wafer is needed which does not require all the chips to be tested, then the alpha-numeric suffix will apply. For a 2N2222 device, in wafer form, sample probe-tested only, the proper part number will be a "0018S1." 9-1 SMALL SIGNAL CHIPS AND WAFERS TRANSISTOR WAFER INSPECTION CRITERIA 3. Aluminum color - the aluminum may not be dark brown or black. MECHANICAL INSPECTION Measure overall thickness of one (1) wafer if run contains five (5) or less wafers. Measure two (2) wafers if run size is greater than six (6) wafers. Reject the run if any of the measured wafers are not per limits specified in Table I. 4. Aluminum reduction - aluminum fingers must be continuous along 75% of the oxide cutout length nearest the bond pad on metal over oxide devices. Aluminum fingers may not be reduced more than 50% of the oxide cutout width on metal over oxide devices, nor more than 25% in width at an oxide step-down point. Bond pads must not be reduced more than 25% of their intended area. EQR rings may not be discontinuous at more than one place. Q.C. will 100% measure overall thickness of each wafer in a rejected run. VISUAL INSPECTION Inspect ten (10) randomly selected devices on each wafer with no more than three (3) die in any one quadrent using 100X magnification. 5. Oxide holes-silicon may not be exposed within .0002 in. of any junction. 6. Mask misalignment - the outline of one oxide mask definition may not cross over the outline of another mask definition. Aluminum mask outlines must cover more than 50% of the intended oxide cutouts. TABLE I UNAIDED EYE INSPECTION 1. Backside gold - the backside gold must cover 90% of the wafer surface. The gold must exhibit a gold, orange, or yellow cast. The gold must show no evidence of peeling or blistering. Microscope Inspection (ll1DX) - TijANSISTDR DIE INSPECTION CRITERIA Inspect per Table II using 100X to combined 2.5% AQL. TABLE II Combined 1:0% AQL 1. Aluminum bridging-the base metal, emitter metal, and EQR ring metal may not be connected or bridged by unetched or smeared aluminum. 1. Broken die - broken corners, edges, or shell chips may not extend closer thai1 .001" to a junction or bond pad. 2. Cracks-cracks which are not terminated at each end at the periphery of the die may not extend toward a junction or bond pad. 2. Aluminum adherance-the aluminum may show no evidence of peeling, blistering, or flaking. 9-2 ITT ----MPS-A05 NPN SI LICON AUDIO TRANSISTORS SEMICONDUCTORS Package: To-92 NPN SILICON AUDIO TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ........ 60 Collector-Base Voltage ............. 60 Vdc Vdc Emitter-Base Voltage .............. 4.0 Vdc Collector Current - Co'ntinuous 500 MAde T A = 25 0 C ..................... 500 mW Derate above 25 0 C ............ 4.54 Total Device Dissipation @ Total Device Dissipation @ TC = 25 0 C ..................... 800 Derate above 25 0 C ... ..... .... 7.27 mW Operating and Storage Junction Temperature Range ............ -55 to +135 Thermal Resistance, Junction to Case .............................. . 0.137 °C/mW 0.220 °C/mW Thermal Resistance, Junction to Ambient ......................... . • ELECTRICAL CHARACTERISTICS ITA = 25 0 C unless otherwise noted) Symbol Min Typ Max Unit BV CEO 60 - - Vdc BV EBO 4.0 - - ICBO - - 100 - - hFE VCE(sat) VBE(sat) VBE(on) fT Cob Cib 50 125 50 150 - 90 - 0.08 Conditions IC = 1.0 mAde, IB = 0 Vdc IE nAdc V CB = 100uAdc, IC = 0 = 60 Vdc, IE 0 IC - 10 mAde, V CE- 1.0 Vdc IC = 100 mAde, VCE = 1.0 Vdc = 350 mAde, V CE = 1.0 Vdc IC = 100 mAde, IB - IC 0.25 Vdc 0.75 IC - 100 mAde, IB 10 mAde 10 mAde - 0.7 1.2 Vdc 50 200 - MHz - 6.0 - pF = 100 mAde, V CE = 1.0 Vdc IC = 100 mAde, V CE - 1.0 Vdc, f = 100 MHz V CB = 10 Vdc, IE = 0, f = 100 kHz 15 - pF V BE - 0.5 Vdc, IC - 0, f - 100 kHz 9-3 IC MPS-Al0 ITT -----. GENERAL PURPOSE NPN SILICON AMPLIFIER TRANSISTORS . SEMICONDUCTORS Package: To-92 NPN SILICON GENERAL PURPOSE AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ............................ 40 Vdc Emitter-Base Voltage ................................... 4.0 Vdc Collector Current - Continuous ............... 100 mAde Total Device Dissipation @ T A = 250 C ........ 300 mW Derate above 25 0 C .......................... 2.73 mW/oC Operating and Storage Junction Temperature Range ..................... -55 to +135 0c Thermal Resistance, Junction to Ambient ................................... 0.367 0C/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise. noted) Symbol Min Max Unit BV CEO 40 - Vdc BV EBO 4.0 - Vdc IE - 100 uAdc, IC = 0 ICBO - 100 nAdc V CB =30Vdc,I E -0 400 - IC - 5.0 mAde, V CE - 10 Vdc - MHz IC - 5.0 mAde, V CE = 10 Vdc, f - 20 MHz 4.0 pF V CB = 10 Vdc, IE - 0, f - 100 kHz hFE 40 fT 50 Cob - - Conditions IC = 1.0 mAde, IB = 0 Figure 1-Simplified AC Equivalent Circuit (Common Emitter! BASE COLLECTOR 'b (hfe+l)re 9-4 __ I mm MPS-A20, MPS-K20, MPS-K21, MPS-K22 _L_L ___________N_P_N__SI_L_IC_O_N__A_M_P_L_IF_I_E_R_T_R_A_N_S_IS_T_O_R...S SEMICONDUCTORS Package: TO-92 NPN SILICON AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage _............................ 40 Vdc Emitter-Base Voltage ................................... 4.0 Vdc Collector Current - Continuous ................. 1 00 mAdc Total Device Dissipation @ T A = 25 0 e ........ 300 mW Derate above 25 0 C ......................... 2.73 mW/oe Operating and Storage Junction Temperature Range ..................... -55 to +135 0e Thermal Resistance, Junction to Ambient ................................... 0.367 oe/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 e unless otherwise noted) Symbol Min Max Unit BV CEO 40 - Vdc Ie = 1.0 mAde, I B = 0 BV EBO 4.0 Vdc leBO - 100 nAdc 40 400 - IE 100uAdc,I C 0 V CB - 30 Vdc, IE 0 IC 5.0 mAde, V CE 10 Vdc - 0.25 hFE Conditions VCE(sat) fT Vdc IC - 10 mAde, IB - 1.0 mAde 125 - MHz Cob - 4.0 pF Ie 5.0 mAde, V CE 10 Vdc, f 100 MHz V CB " 10 Vdc, IE - 0, f - 100 kHz Figure 1-Simplified AC Equivalent Circuit (Common Emitter) BASE 'b (hIe + Ilre 9-5 ITT - MPS-A55 PNP SILICON AMPLIFIER TRANSISTOR SEMICONDUCTORS ------~ Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ....... 60 Collector-Base Voltage ............ 60 Vdc Vdc Emitter-Base Voltage ............... 4.0 Vdc Collector Current - Continuous 500 mAdc Total Device Dissipation @T A = 25 0 C ...................... 500 mW Derate above 25 0 C ............. 4.54 mW/oC Total Device Dissipation @TC =25 0 C ...................... 800 mW ........... 7.27 mW/oC Derate above 25 0 C Operating and Storage Junction °c Temperature Range ............... -55 to +135 Thermal Resistance, Junction to Case .................................. 0.137 °C/mW 0.220 °C/mW Thermal Resistance, Junction to Ambient ........................... ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min BV CEO 60 BV EBO ' 4.u Typ -, ICBO hFE VCE(sat)- Max Unit - Vde IC = 1.0 mAde, I B = 0 Vde l.OU nAde IE = 100uAde,I C = 0 VCS = 60 Vde,I E 0 50 150 50 125 - - 80 - - 0.09 VBE(sat) 0.71i VSE(on) tT 0.13 cU 10u - 6.5 Conditions IC = 10 mAde, V CE - 1.0 Vde IC = 100 mAde, V CE '= 1.0 Vde IC = 350 mAde, V CE ='1.0 Vde 0.25 1.2 Vde IC = 100 mAde, IS - 10 mAde Vde IC - 100 mAde, IS = 10 mAde Vde IC = 100 mAde, V CE - 1.0 Vde MHz IC -100 mAde, VCE - 1.0 Vde, pF V CB = 10 Vde, IE = O,f 100 kHz pF VSE = 0.5 Vde, IC 0, f 100 kHz f=100MHz Cob C ib - 20 9-6 ' MPS-A70 GENERAL PURPOSE PNP SI LICON AMPLIFIER TRANSISTORS ITT ----......---SEMICONDUCTORS Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristics Unit Collector-Emitter Voltage ............................ 40 Vdc Emitter-Base Voltage .................................... 4.0 Vdc Collector Current - Continuous ................. 100 mAde Total Device Dissipation Derate above 250 C @ T A = 250 C......... 300 mW ......................... 2.73 mW/oC Operating and Storage Junction Temperature Range .................... -55 to +135 0c Thermal Resistance, Junction to Ambient ............... ~ ................... 0.367 oC/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO 40 - Vdc BV EBO 4.0 - Vdc ICBO - 100 nAdc 40 400 - - 0.25 hFE Vdc VCE(sat) fT 125 - MHz Cob - 4.0 pF Conditions = 1.0 mAde, I B =0 IE = 100 uAdc, IC =0 V CB - 30 Vdc, IE =0 Ie =5.0 mAde, V CE = 10 Vdc IC = 10 mAde, 18 = 1.0 mAde Ie =5.0 mAde, VeE = 10 Vdc, f - 100 MHz V CB - 10 Vdc, IE =0, f = 100 kHz IC Figure 1-Simplified AC Equivalent Circuit (Common Emitter) COLLECTOR (hfe + l}re 9-7 ITT - MPS706, MPS706A HtGH-SPEED NPN SI LICON LOW-LEVEL SWITCHING TRANSISTORS . SEMICONDUCTORS .---~~ Package: To-92 NPN SILICON HIGH-SPEED LOW-LEVEL SWITCHING TRANSISTORS A P ...IU VOlt. ~70 V a '11_ MPS706 I MPS706A Figure 1 - Switch!ng Time Test Circuit 20 Vdc Vdc 25 Emitter-Base Voltage 3.0 ~o O"'m_ Z.OI! O---'l.IVV-'lN'v--tI - Unit Collector-E mitter Voltage (R BE = 10 Ohms) Collector-Base Voltage - -2.0'11 ABSOLUTE MAXIMUM RATINGS Characteristic - I"t.rnol ResI.tonCt I 5.0 Vde Total Device Dissipation = 25 0 C 310 mW Derate above 25 u C 2.81 mW/oC @T A PulMVOIt, Intung! Rtsl"onct 50 Ohm, 350 Operating and Storage Junction Temperature Range I oC -55 to +135 Figure 2 - Storage Time Test Circuit I ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * BV CER 15 Vdc 20 - Vdeq IC - 10 mAde, RBE - 10 Ohms I CBO - 0.5 uAde lEBO - 10 uAde V CB -15Vde,I E -0 V EB - 3.0 Vde, IC - 0 hFE" 20 - - Conditions IC = 10 mAde, IB = 0 IC - 10 mAde, V CE = 1.0 Vde MPS706 20 60 - 0.6 Vde IC - 0.9 Vde IC - 10 mAde, IB - 1.0 mAde 0.7 0.9 200 - MHz IC Cob - 6.0 pF V CB - 10 Vde, IE rb t on** - 50 Ohms IE - 10 mAde, V CE - 15 Vde~ f - 300 MHz - 40 ns Turn-On Time See Figure 1 75 ns Turn-Off Time See Figure 1 - 60 ns Charge Storage Time Constant "* See Figure 2 - 25 V CE (sat)" V BE (sat) " MPS706A = 10 mAde, IB = 1.0 mAde MPS706 fT toff" * T S ** MPS706A = 10 mAde, V CE = 15 Vde, f = 100 MHz =0, f - 100 kHz MPS706 MPS706A 'Pulse Test: Pulse Width === 12 ns, Duty CYCle£ 2.0%. "Measured with Tektronix Type R Plug-In (50-Ohm Internal Impedance) and circuits shown. 9-8 ITT - MPS834 HIGH-SPEED NPN SILICON SWITCHING TRANSISTOR SEMICONDUCTORS '---~~ Package: To-92 NPN SILICON HIGH-SPEED SWITCHING TRANSISTORS 50 ABSOLUTE MAXIMUM RATINGS Characteristic 5.0 II; Figure 1 - Turn-On and Turn·Off Unit Time Measurement Circuit Collector·Emitter Voltage ............................. 30 Vdc Coliector·Base Voltage ................................. 40 Vdc +'0 Vdc Emitter·Base Voltage ................................... 5.0 Vdc Collector Current .................................... 200 mAdc Total Device Dissipation @ T A = 25°C ........ 310 mW Derate above 25°C ......................... 2.81 mW/oC Totql Device Dissipation @ T C = 25°C ........ 500 mW Derate above 250C ......................... 4.55 mW/oC Operating and Storage Junctjon Temperature Range .................... ·55 to + 1350C Figure 2 - Charge Storage Time Constant Measurement Circuit ELECTRICAL CHARACTERISTICS (T A = 25 0 e unless otherwise noted) Symbol Min Max Unit BV CBO 40 - Vdc BV EBO 5.0 Vdc IE ICES - 10 uAde V CE - ;j0 Vde, V BE - 0.5 uAde V CB - 20 Vde, IE IC IU mACc, VCE 0.25 Vde IC IU mACc, IB IC bO mAdc, IB b.U mAde IC - 10 mAde, IB - 1.0 mAdc ICBO h FE * 25 V CE(sat)* V BElsat)* Conditions IC = 10uAdc, IE = 0 - 0.4 - 0.9 Vdc luuAac,I C U 0 0 1.0 Vdc 1.U mAde - MHz IC - 10 mAde, V CE - 20 Vdc, f - 100 MHz Cob - 4.0 pF. V CB - 10 Vde, IE - 0, f - 100 kHz ton - 16 ns Turn·On Time IC - 10 mAdc, IBl - ;j.O mAde, toff - 30 ns Turn·Off Time Ie - 10 mAde, IBl t - 25 ns Storage Time IC fT 350 I B2 = 1.0 mAdc See Figure 1 3.0 mAdc, I B2 = 1.0 mAde See Figure 1 s See Figure 2 ·Pulse Test: Pulse Width ~ 12 ns, Duty Cycle.~ 2.0%. 9-9 10 mAde, IBl IB2 = 10 mAde I _ mm MPS2369 .L.L __H_IG_H_-_S_PE_E_D_N_PN_S_IL_IC_O_N_S_W_IT_C_H_I_N_G_T_R_A_N_S_IS_T_O_R SEMICONDUCTORS Package: To-92 +'006~l" NPN HIGH-SPEED SWITCHING TRANSISTORS _1.5V 3.0V ,, 270 ~ Ji -1 _1_ 'ies· >4.0pf I <1.0". --' pULSE WIDTH (l1)=300n, DUTY CYCLE =2.0% Figure 1 - ton Circuit -1"\- ABSOLUTE MAXIMUM RATINGS Characteristics Unit Collector-Emitter Voltage ........................... 15 Vde Collector-Emitter Voltage ........................... 40 Vde Collector-Base Voltage ................................ 40 Vde tlO':Tb I 3.0V -4.15-V-- ,, 270 _1_ ,T, • ,CS >4.001 I 3-3' _<1.0ns --' = PULSE WIDTH ell) 300n, DUTY CYCLE = 2.0% Emitter-Base Voltage ................................... 4.5 Vde Figure 2 - toff Circuit Collector Current-Peak ........................... 500 mAde Total Device Dissipation @T A = 25 0C .......................................... 310 mW Derate above 250 C ._ ........................ 2.81 mW/oC Operating and Storage Junction "':hcj'-I~-- >'OV~9"",80v-l -4Qv 3.QpF , __J Temperature Range .................... -55 to +135 0c PULSE WIDTH (t,) =300"s DUTY CYCLE =20 % -Tatallhunt capacitance at test jill Qnd connectors Thermal Resistance, Junction to Ambient ................................... 0.355 0C/mW Figure 3 -: Storage Test Circuit ELECTRICAL CHARACTERISTICS (T A = 25 0C unless otherwise noted) Symbol Min Max Unit BV CEO * BV CES 15 Vde IC = 10 mAde,l B = 0 40 Vde IC -10uAde,V BE =0 BV CBO 40 Vde BV EBO 4.5 - IC = 10uAde,I E = 0 I E =10uAde,I C =0 ICBO hFE* VCElsat) VBE(sat)* Cob hfe - 0.4 - 30 40 120 20 - 20 - 0.70 0.25 0.85 Conditions Vde uAde V CB = 20 Vde, IE -.0 V CB - 20 Vde, IE = 0, T A = 1250C - IC = 10 mAde, V CE = 1.0 Vde IC - 10 mAde, V CE - 1.0 Vde, T A - 55 0 C IC - 100 mAde, V CE - 2.0 Vde Vde Ie = 10 mAde, IB = 1.0 mAde Vde IC = 10 mAde, lR - 1.0 mAde pF V CB = 5.0Vde,I E = 0, f= 140kHz - 4.0 5.0 - - IC = 10 mAde, VCE = 10 Vde, f = 100 MHz 12 ns V CC = 3.0 Vde, V BE (off) = 1.5 Vde, 18 ns V CC = 3.0 Vde, IC = 10 mAde, IB1 = 3.0 mAde, 13 ns ton IC = 10 mAde, IB1 = ~.O mAde Figure 1 toff - 182 = 1.5 mAde Figure 2 t s IB1 = IB2 = IC = 10 mAde Figure 3 ·Pulse Test: Pulse Width = 300 us, Duty Cycle = 2.0%. 9-10 MPS2711, MPS2712 ITT ----LOW-POWER NPN 51 LICON SMALL-SIGNAL TRANSISTOR Package: To-92 SEMICONDUCTORS NPN SILICON LOW-POWER SMALL-SIGNAL TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ............................. 18 Vdc Collector-Base Voltage ................................. 18 Vdc Emitter-Base Voltage ................................... 5.0 Vdc Collector Current ..................................... 100 mAdc Total Device Dissipation @T A = 25 0 C ........ ~10 mW Total Device Dissipation @T C = 600C ........ 210 mW Operating Junction Temperature ................. 135 0C Storage Temperature Range ............. -55 to +135 0C Thermal Resistance, Junction to Ambient ....................................... 0:357 0C/W ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Svmbol Min Max Unit ICBO - 0.5 uAdc - 1.5 lEBO - 0.5 uAdc V EB hFE 30 90 - VCE 75 225 - 4.0 pF V CB 30 120 - V CE - 10 Vdc, IC = 2 mAdc, f - 1 kHz 80 200 Conditions V CB =18Vdc,I E =0 V CB = 18 Vdc, IE - 0, T A -100 o C = 5 Vdc, IC =; 0 = 4.5 Vdc, IC = 2 mAdc MPS2711 Cob hfe MPS2712 = 10 V, IE = 0 f = 1 MHz MPS2711 MPS2712 9-11 MPS2713, MPS2714 GENERAL PURPOSE LOW-LEVEL NPN SILICON SWITCHING TRANSISTOR Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Base Voltage ..... _..... __ . __ .. _.... _..... __ .. 18 Vdc Collector-Emitter Voltage __________ . _________________ . 18 Vdc Emitter-Base Voltage ______________ . ___________________ . 5_0 Vdc Collector Current ______________ . _________ . __________ . 200 mAdc Total Device Dissipation @ T A = 600 C _______ . 210 mW Total Device Dissipation @T A= 250 C ________ 310 mW Derate above 250 C _________ . _____________ . 2.81 mW/oC Thermal Resistance, Junction to Ambient _________________ . _______ ._. ______ . 0.357 0C/mW Junction Operating Temperature _________ ._. _____ 135 DC Storage Temperature Range ____ . _______ . -55 to +135 DC ELECTRICAL CHARACTERISTICS (TA = 25 0C unless otherwise noted) Symbol Min Typ Max Unit ICBO - - 0.5 uAdc lEBO - - 0_5 hFE 30 60 90 IC 75 150 225 MPS2714 VCE/sat) - 0.16 0.3 Vdc VBE/sat) hfe 0.6 ;:su 0.75 1.3 Vdc - 15 Conditions V CB V CB uAdc = 18 Vdc, IE = 0 18 Vdc, IE - 0, T A - 1000 C =0 = 2 mAdc, V CE - 4.5 Vdc V EB - 5 Vdc, IC MPS2713 80 fT - - Cob 2.5 300 - = 3 mAdc ~;:s mAdc IC 2 mAdc, V CE - 4.5 Vdc,f MPS2713 .1:lU 250 IC - 50 mAdc,l B IC '50 mAdc, IB 1 kHz MPS2714 = 10 mAdc, V CE MHz IC pF V CB ohms IC 0.5 mAdc, V CE . 1 Vdc, f 1 kHz Delay Time IC - 10 mA, IB1 3mA, 10 Vdc, IE - 10 Vdc, f - 100 MHz 0, f - 100 kHz hie 3000 td 7_0 ns \ 6.0 ns Rise Time· V CC 10V ts tf I'" ns Storage Time IC 10 mA, IB1 l:1.U ns Fall Time 9-12 I B2 - 1 mA, V CC 3mA, = 10 V MPS2923 THRU MPS2925 GENERAL PURPOSE NPN SI LICON AMPLIFIER TRANSISTORS Package: T 0-92 ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Base Voltage ................................. 25 Vdc Collector-Emitter Voltage ........................... 25 Vdc Emitter-Base Voltage .................................. 5.0 Vdc Collector dc Current ................................. 100 mAdc Total Device Dissipation ............................. 200 mW @ 250 C Ambient Temperature Derating Factor above 250 C ........... 2.67 mW/oC Total Device Dissipation ............................. 120 mW @ 55 0 C Ambient Temperature Derating Factor above 25 0 C ........... 2.67 mW/oC Junction Temperature-Operating ................. 100 0C Storage Temperature Range ............. -30 to +125 0C ELECTRICAL CHARACTERISTICS (Tc = 250 C unless otherwise noted) Symbol ICBO lEBO hfe Cob Min Max Unit - 0.5 uA Conditions 15 uA V CB =25V,I E =0 V CB - 25 V,I E - 0, T A - 1000C 0.5 uA V EB - 5 V - V CE -10V,I C -2mA 90 180 MPS2923 150 300 MPS2924 235 470 - 12 MPS2925 pF V CB - 10 V, IE = 0, f - MHz 9-13 • MPS2926, MPS3721 Package: To-92 GENERAL PURPOSE NPN SI LICON TRANSISTOR ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage .............................. 18 Vdc Collector-Base Voltage .................................. 18 Vdc Emitter-Base Voltage ................................... 5.0 Vdc Collector Current ..................................... 100 mAdc Total Device Dissipation @ 25 0 C Ambient Temperature .............. 310 mW Total Device Dissipation @ 600 C Ambient Temperature .............. 210 mW Thermal Resistance, JU[lction to Ambient ................................... 0.357 0C/mW Junction Temperature, Operating ................. 135 0c Storage Temperature Range ............. -55 to +135 0c ELECTRICAL CHARACTERISTICS (T A = 25 0 Cunless otherwise noted) Symbol Min Typ Max Unit ICBO - - 0.5 uA 15 lEBO fT Cob hfe - 300 - 35 60 V CB - 18 Vdc, IE 0, TA 1000 C 0.5 uA V EB - MHz 3.5 pF IC - 4 mA, ".CE- 5 V MPS 2926 V CB - 10 V, IE - 0, f - 1 MHz VCE 10 V, IC 2mA,f 1 kHz MPS2926 470 - Conditions V CB =18Vdc,I E =0 '660 5 Vdc, IC - 0 MPS3721 9-14 ITT ----MPS3392 thru MPS3395 NPN SILICON SMALL-SIGNAL AUDIO TRANSISTOR SEMICONDUCTORS Package: To-92 NPN SILICON SMALL-SIGNAL AUDIO TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ._.._._._._.._.._._. .. _. .. _.. 25 Vdc Collector-Base Voltage .................... _. ............ 25 Vdc Emitter-Base Voltage ................................. _. 5.0 Vdc Collector Current ................................... _. 100 mAdc @ T A = 25 0 C ........ 310 mW Total Device Dissipation Total Device Dissipation @ T C = 60 0C ........ 210 mW Operating Junction Temperature .................. 135 0C Storage Temperature Range .............. -55 to +135 0C Thermal Resistance, Junction to Ambient ............................... _. .. 0.357 0C/mW • ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Min BV CEO I CBO 25 - Vdc IC = 1 mAdc, I B = 0 - 0.1 uAdc V CB - 18 Vdc, IE - 0 0.1 uAdc V EB 150 300 - V CE - 4.5 Vdc, IC - 2 mAdc 90 180 MPS3393 MPS3394 lEBO hFE Max I Symbol Unit Conditions 5 Vdc, IC 0 MPS3392 Cob hfe 55 110 150 500 - 3.5 pF V CB =10V,I E =0,f=1MHz 150 500 - V CE - 4.5 V, IC - 2 mA, f - 1 kHz 90 400 55 300 MPS3394 150 800 MPS3395 MPS3395 MPS3392 MPS3393 9-15 MPS3638,MPS3638A PNP SILICON TRANSISTOR Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristics Unit Figure 1 Collector-Emitter Voltage ............................. 25 Vde Collector-Emitter Voltage .............................. 25 Vde "cc=.-rov Collector-Base Voltage................................... 25 Vde Emitter-Base Voltage .................................. 4.0 Vde 30.!l IS Collector Current ..................................... 500 mAde "'out Total Device Dissipation @T A = 250 C ........ 310 mW To Sgmplmg Scope Rise Time < I ns lin ~IOOK Derate above 25 0 C ......................... 2.S1 mW/oC Operating and Storage Junction Temperature Range .................... -55 to +135 0c Thermal Resistance, Junction to Ambient ................................... 0.357 oC/mW ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * BV CES 25 - Vde I C = 10 mAde, I B = 0 25 - Vde BV CBO 25 - Vde IC -100 uAde, V BE - 0 IC - 100uAde, IE - 0 BV EBO 4.0 ICES - 0.035 IB - 0.035 h FE * SO - 20 - 100 - - Vde IE - 100uAde, IC = 0 uAde VCE - 15 Vde, V BE = 0 VCE 15 Vde, V BE 0, T A - 65 0 C uAde VCE - 15 Vde, V BE - 0 I C -1 mAde,V CE =10Vde 2.0 V CE(sat)* VBE (sat) * fT Conditions - MPS363SA 10 mAde, V CE - 10 V de MPS3638 IC MPS363SA 30 - IC = 50 mAde, V CE = 1 Vde 100 - MPS363SA ·20 - IC = 300 mAde, V CE = 2 Vde MPS3638 20 - MPS3638A - 0.25 - 1.0 - 1.1 O.SO 2.0 100 - Vde MPS3638 IC - 50 mAde, IB - 2.5 mAde IC - 300 mAde, I B - 30 mAde Vdeq IC - 50 mAde, I B - 2.5 mAde IC - 300 mAde, IB - 30 mAde MHz V CE - 3 Vde, IC - 50 mAde, f MHz MPS3638 Cob 150 - - 20 - 10 MPS363SA pF V CB - 10 Vde, IE - 0, f - 140 kHz MPS3638 MPS363SA 9-16 MPS3638, MPS3638A ELECTRICAL CHARACTERISTICS T A = 25°C unless otherwise specified SYMBOL Cib MIN - MAX 65 UNIT CONDITIONS pF VCE = 0.5 Vde, Ie = 0, f = 140 kHz MPS3638 hfe - 25 25 180 MPS3638A - Ie = 10 mAde, VeE = 10 Vde, F = 1.0 kHz MPS3638 hoe hie 100 - - 1.2 1500 - 2000 - 26 MPS3638A = 1.0 kHz mmhos Ie - 10 mAde, VeE - 10 Vde, f Ohms Ie -10 mAde, VeE -10 Vde, f - 1.0 kHz MPS3638 h re MPS3638A X10-4 Ie -10 mAde, VCE -10Vde, f - 1.0 kHz MPS3638 td \ \ tf ton toff - 15 20 MPS3638A ns Delay Time Vee - 10 Vde, Ie - 300 mAde, 70 ns Rise Time 140 ns Storage Time Vee IB1 - 30 mAde, VBE(off) - 3.1 Vde 10 Vde, Ie 300 mAde, - 70 ns Fall Time 75 ns Turn-On Time Ie - 300 mAde, IB1 - 30 mAde - 170 ns Turn-Off Time Ie IB2 *Pulse Test: Pulse Width - 300 us; Duty Cycle - 1%. 9-17 IB1 - 30 mAde, IB2 = 30 mAde 300 mAde, I B 1 30 mAde 30 mAde, _ I MPS3693 GENERAL PURPOSE NPN, mm .L.L _______ SI_L_IC_O_N_R_FA_M_PL_I_F_IE_R_T_R_A_N_S_IS_T_O_R_S Package: To-92 SEMICONDUCTORS NPN SILICON GENERAL PURPOSE RF AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristic Unit Collector-Emitter Voltage ........................... 45 Vdc Collector-Base Voltage ................................ 45 Vdc Emitter-Base Voltage .................................... 4.0 Vdc Total Device Dissipation @ T A = 250 C ........• 310 mW Derate above 25 0 C ......................... 2.81 mW/oC Operating and Storage Junction Temperature Range ................... -55 to +135 0c Thermal Resistance, Junction to Ambient ........•.•........................ 0.357 oC/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Typ Max Unit BV CEOJsus) * BV CBO 45 - - Vdc I C =10mAdc,I B =0 Conditions 45 - - Vdc BV EBO 4.0 Vdc IC = 100UAdc,I E = 0 IE = 10uAdc,I C -0 ICBO - - 50 nAdc V CB = 35 Vdc, IE = 0 5.0 uAdc V CB - 35 Vdc, IE - 0, T A = 65°C hFE 40 - 160 - IC - 10 mAde, fT 200 - - MHz v CE = 10 Vctc IC = 10 mAde, VCE = 15 Vdc, f=100MHz Cob r' C b c - - 3.5 pF - 55 ps V CB - 10 Vdc, IE = 0, f = 100 kHz IE - 10 mAde, V CB - 15 Vdc, f = 31.8 MHz NF - 4.0 - dB IC = 3.0 mAde, V CE = 10 Vdc, RS = 300 ohms, f = 1.0 MHz ·Pulse Test: Pulse Width ~ 300 us; Duty Cycle ~ 1.0%. 9-18 MPS3702, MPS3703 LOW-POWER PNP SILICON TRANSISTORS Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristics MPS3702 MPS3703 Unit Collector-Emitter Voltage ...... 25 30 Vdc Collector-Base Voltage ........... 40 50 Vdc 5.0 200 Emitter-Base Voltage ............. Collector Current - Continuous Vdc mAdc Total Device Dissipation @, 25°C Case Temperature ............ 8 W Operating and Storage Junction Temperature Range ........... -55 to +135 0C ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * 25 - Vdc Conditions 30 Vdc IC = 100uAdc, IE = 0 IC = 10 mAde, IB = 0 MPS3702 BV CBO 40 50 - BV EBO 5.0 - Vdc ICBO 100 nAdc IE = 100uAdc,I C = 0 V CB -20Vdc,I E =0 lEBO 100 nAdc V BE = 3 Vdc, IC - u - IC - 50 mAde, V CE = 5 Vdc Vdc IC - 50 mAde, IB = 5 mAdc MPS3702 MPS3702 MPS3703 MI'S31U:.! 60 300 30 150 VCElsat)* - 0.25 VBElon)* fT 0.6 1.0 Vdc IC 100 - MHz IC = 50 mAdc, VCE - 5 Vdc, f - 20 MHz Cob - 12 pF V CB = 10Vdc,f-1 MHz h FE * MPS3703 'Pulse Test: Pulse Width = 300 us: Duty Cycle = 2%. 9-19 = 50 mAde, VCE = 5 Vdc I • mm I _ . -L-L ______ MPS3704, MPS3705, MPS3706 L_O_W_-P_O_W_E_R_N_PN ..... S_IL_IC_O_N_T_R_A_N_S_IS_T_O_R_S SEMICONDUCTORS Package: To-92 NPN SILICON LOW-POWER TRANSISTORS Cha racter istics Collector-Emitter Voltage ... 30 20 Vdc Collector-Base Voltage ...... . 50 40 Vdc Emitter-Base Voltage ......... . 5.0 Vdc Collector Current - Continuous 600 mAde Total Device Dissipation @T A = 25 0 C ................. 310 mW Derate above 25 0 C ......... 2.81 mW/oC Operating and Storage Junction Temperature Range ........ °c -55 to +135 Thermal Resistanct, Junction to Ambient ..................... 0.357 oC/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * 30 - Vdc 30 - BV CBO 20 - 50 - 50 - Conditions I C = 10 mAde, IE = 0 MPS3706 Vdc IC = 100uAdc, IE =0 MPS3706 40 - 5.0 - Vdc IE = 100 uAdc, IC = 0 ICBO - 100 nAdc lEBO - 100 nAdc V CB -20Vdc,I E =0 V BE = 3 Vdc, IC = 0 hFE * 100 300 - IC = 50 mAde, V CE = 2 Vdc 50 150 30 600 - 0.6 - 0.8 - 1.0 0.5 1.0 VBE(on)* fT 100 Cob - 12 MPS3704 MPS3705 BV EBO VCE(sat)* MPS3704 MPS370b MPS3704 MPS3705 MPS3706 Vdc IC = 100 mAde, IB = 5mAdc MPS3704 MPS3705 MPS3706 Vdc IC - 100 mAde, V CE - 2 Vdc MHz IC 50 mAoc, VCE 2 Vdc, f 20MHz V CB - 10 Vdc, IE - 0, f - 1 MHz pF *Pulse Test: Pulse Width = 300 us; Duty Cycle = 2%. 9-20 MPS3707 thru MPS3711 GENERAL PURPOSE NPN SILICON AMPLIFIER TRANSISTOR ITT- - - - - - Package: To-92 SEMICONDUCTORS NPN SILICON GENERAL PURPOSE AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Unit Characteristics Collector-Emitter Voltage ............................ 30 Vdc Collector-Base Voltage ................................. , 30 Vdc Emitter-Base Voltage ................................... 6.0 Vdc Collector Current ....................................... 30 mAde = 25 0 C ....... = 60 0 C : ...... 310 mW Operating Junction Temperature ................ 135 0 C Total Device Dissipation @ TA Total Device Dissipation @ TC 210 mW Storage Temperature Range ............. -55 to +135 °C Thermal Resistance, Junction to Ambient ...................................... 0.357 °C/W ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO 30 - Vde IC 100 nAdc ICBO Conditions = 1 mAde, IB =0 lEBO - 100 nAde V CB -20Vde,I E -0 V EB - 6 Vdc, IC - 0 hFE 100 400 - IC- 100uAde, VCE - 5 Vde MPS3707 45 660 IC - 1 mAde, V CE - 5 Vde MPS3708 45 165 90 330 MPS3710 180 660 MPS3711 MPS3709 VCE(sat) V BE - 1.0 Vde IC 0.5 1.0 Vdc IC - 1 mAde, VCE - 5 Vde hFE 100 550 - = 10 mAde, IB = 0.5 mAde Ie -100uAdc, VCE - 5 Vde, f -1 kHz MPS3707 45 800 IC = 1 mAde, V CE = 5 Vde, f = 1 kHz MPS3708 NF 45 250 MPS3709 90 450 MPS3710 180 800 ~ 5.0 MPS3711 dB = 5 V, = 5 kD, = 100uA, VCE IC RG Noise Bandwidth MPS3707 = 15.7 kHz Note 1 Note 1 Average Noise Figure is measured in an amplifier with low frequency response down 3 dB at 10 Hz. 9-21 MPS5172 GENERAL PURPOSE NPN SILICON AMPLIFIER TRANSISTOR ITT ----SEMICONDUCTORS Package: To-92 NPN SILICON GENERAL PURPOSE AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Unit Characteristics COllector-Emitter Voltage ............................ 25 Vdc Collector-Sase Voltage ................................ 25 Vdc Emitter-Sase Voltage ................................... 5.0 Vdc Collector Current - Continuous ................ 100 mAde Total Device Dissipation @ T A = 25 0 C ........ 210 mW Derate above 25 0 C .......................... 1.91 mW/oC Operating and Storage Junction Temperature Range ................... -55 to +135 0c Thermal Resistance, Junction to Ambient.. ................................... 0.524 oC/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Typ Max Unit BV CEO 25 - - Vde I C -l0mAdc,I S =0 ICES - - 100 nAde - - 100 nAde VCE - 25 Vde, V SE - 0 V CS =25Vdc,I E =0 - - 10 uAdc VCS - 25 Vde, IE - 0, TA - 1000 C IESO - - 100 nAde V SE = 5.0 Vde, IC = 0 hFE 100 - 500 - IC - 10 mAde, V CE - 10 Vde VCE(sat) - - 0.25 Vdc IC Vdc IC = 10 mAde, IS = 1.0,mAde IC - 10 mAde, V CE - 10 Vdc ICBO = 1'0 mAde, IS.- 1.0 mAde V~ElsatL - VSE(on) 0.5 - 1.2 Vdc fT Ceb hfe - 120 - MHz IC - 2.0 mAde, V CE - 5.0 Vde 1.6 - 10 pF VCS - 0, IE -0, f - 1.0 MHz 100 - 750 - IC = 10 mAde, VCE = 10Vde, f = 1.0 kHz 0.75 - Conditions 9-22 MPS6530 thru MPS6532 NPN SILICON AMPLIFIER TRANSISTORS Package: To-92 ABSOLUTE MAXIMUM RATINGS (T A = 25 0 C unless otherwise noted) Characteristic Collector Current ................. Unit 600 600 mAdc Total Device Dissipation Collector-Base Voltage MPS6530, MPS5631 ........ 60 Vdc MPS6532 .......................... 50 MPS6530, MPS6531 ......... 40 MPS6532 ......................... 30 Emitter-Base Voltage ...... 5.0 @T A =60 0 C ................... 210 210 @T A = 25 0 C ................... 310 310 mW Thermal Resistance, Junction to Ambient ...................... 0.357 0.357 °C/mW Junction Temperature ........... 135 4.0 135 °c ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Typ Max Unit Conditions BV CBO 60 - - Vde IC = 10uAde, IE = 0 50 - - 40 - - MPS6530, MPS6531 BV'CEO MPS6532 Vdc ! IC I 10 mAdc, I B- 0 MPS6530, MPS6531 30 - - BV EBO 5.0 - - ICBO - - 0.05 - 0.1 - 2.0 MPS6532 Vde IB -10uAde, IC - 0 uAdc V CB -40Vde,I E -0 MPS6530, MPS6531 - , MPS6532 V CB = 30 Vde, IE = 0, TA = 60 0 C hFE - - 5.0 30 75 - 60 120 - 40 85 120 - MPS6530, MPS6531 V CB - 30 Vde, IE - 0, TA = 60 0 C MPS6532 IC = 10 mAde, V CE V CE =1Vde MPS6530 MPS6531 IC = 100 mAde, MPS6530 VCE = 1 Vde 90 150 270 30 - - 25 60 - MPS6531 MPS6532 IC = 500 mAde, MPS6530 VCE = 10 Vde VCE(sat) 50 80 - - 0.2 0.5 0.13 VBE(sat) - 0.13 0.82 MPS6531 Vde IC - 100 mAdc, MPS6530, IB = 10 mAdc MPS6532 0.3 MPS6531 Vde 1.0 IC = 100 mAde, IB = 10 mAde Cob fT MPS6530, MPS6531 - 0.85 1.2 - 3.5 5.0 pF V CB = 10Vde, IE = 0, f = 100 kHz 390 - MHz IC - 50 mAde, V CE - 10 Vde MPS6532 9-23 I I • MPS6533 thru MPS6535 PNP SILICON AMPLIFIER TRANSISTORS Package: To·92 ABSOLUTE MAXIMUM RATINGS (T A ; 250 C unless otherwise noted) Emitter·Base Voltage ........... Unit Characteristic Collector Current ................. Coliector·Base Voltage MPS6533, MPS6534 ........ 40 MPS6535 •........................ 39 4.0 Vdc 600 mAdc 210 mW Total Device Dissipation Vdc @T A ; 60 0 C ................... 210 @T A = 25 0 C ................... Coliector·Emitter Voltage MPS6533, MPS6534 .: ... : .. 1 MPS6535· .......... ·.......... ·· .. 1 5.0 600 310 310 Thermal Resistance, Ju nction 1 40 to Ambient ....................... 0.357 0.357 °C/mW 135 135 °c 1 30 Junction Temperatu re ........... ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted) Symbol Min Typ Max Unit BV CBO 40 - - Vdc 30 - - 40 - - 30 - - 4.0 - - Conditions ' C =10UAdc,I E =0 MPS6533, MPS6534 BV CEO MPS6535 Vdc ' C -10mAdc,I B -0 MPS6533, MPS6534 BVEBO ICBO MPS6535 = 10 uAdc,I C = 0 Vdc 'B uAdc V CB -30Vdc,I E -0 MPS6533, - 0.05 - 0.1 V CB - 2.0 V CB = 30 Vdc, 'E - 0, MPS6533, MPS6534 - = 20 Vdc, IE - V CB - 20 Vdc, 'E - 0, MPS6535 5.0 TA hFE VCE(sat). - - 60 110 - VCE 40 85 120 = 100 mAdc, VCE = 1 Vdc '90 140 270 30 - - 25 55 - 50 70 - - 0.2 0.5 'C - 10 mAdc, - 0.13 0.84 MPS6534 MPS6.533 MPS6534 MPS6535 = 500 mAdc, VCE = 10 Vdc MPS6533 'C MPS6534 Vdc 'C - 100 mAdc; MPS6533, = 10 mAdc MPS6535 'C - 100 mAdc, MPS6533, = 10 mAdc MPS6534 MPS6534 0.3 Vdc 1.0 'B Cob fT MPS6533 = 1 Vdc 'C 'B VBE(sat) = 60 0 C 70 30 MPS6535 MPS6534 T A - 60 0 C - =0 MPS6535 - 0.87 1.2 - 4.8 6.0 pF V CB - 260 - MHz 'C - 50 mAdc, V CE'- 10 Vdc 9-24 = 10 Vdc, 'E = 0, f = 100 kHz MPS6565, MPS6566 GENERAL PURPOSE NPN SILICON AMPLIFIER TRANSISTORS Package: To-92 ABSOLUTE MAXIMUM RATINGS Unit Characteristics Collector-Emitter Voltage ....... uu •••••• u •••••••• 45 Vdc Collector-Base Voltage ................................. 60 Vdc Emitter-Base Voltage ................................... 4.0 Vdc Collector Current - Con~inuous ................ 200 mAdc Total Device Dissipation @T A = 250 C ........ 310 mW Derate above 25 0 C .......................... 2.81 mW/oC Operating and Storage Junction Temperature Range .................... -55 to +135 °c Thermal Resistance, Junction to Ambient ............ u ••••••••••••••••••••• 0.357 °C/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Conditions Symbol Min Typ Max Unit BV CEO 45 - - Vdc IC = 1 mAde, I B = 0 BV CBO BV EBO 60 - - Vdc IC = 100uAdc,I E = 0 4.0 - - Vdc IE - 100 uAdc, IC - 0 ICBO - - 100 nAdc V CB =30Vdc,I E -0 hFE 40 - 160 - IC -10 mAde, VCE - 10 Vdc MPS6565 VCE(sat) 100 - 400 - 0.1 0.4 Vdc - 3.5 pF v CB - MPS6566 IC -10 mAdc, IB - 1 mAdc -100 kHz 10 VdC, IE -.0, f Cob Cib - 3.7 - pF V BE - 0.5 Vdc, IC - 0, f - 100 kHz hfe 2.0 - - - IC - 10 mAde, V CE - 10 Vdc, f - 100 MHz - 60 - umhos IC = 10 mAdc, VCE - 10 Vdc, f -1 kHz 500 - I C -l0mAdc, VCE -10Vdc,f-l kHz - 2.5 - 4.0 - ohms X 10-4 dB IC - 100 uAdc, V CE - 5 Vdc, hoe h· e hre NF IC - 10 mAde, V CE - 10 Vdc, f - 1 kHz RS = 1000 ohms, f = 10 Hz to 15.7 kHz 9-25 MPS6591® Package: To-92 NPNSI LICON AMPLI FIER TRANSISTOR High Voltage _________ BV CEO = 80 V (Min) MPS6590 Low Noise _______ .. _........ NF = 3.0 dB (Typ) Wideband ABSOLUTE MAXIMUM RATINGS (Note 1) Characteristics Unit Storage Temperature ........................ -55 to +150 °C Operating Junction Temperature ...... ·55 to +150 °C Total Dissipation (Notes 2 and 3) at 25 0 C Case Temperature ........................ 1.0 W at 25 0 C Ambient Temperature ................ 625 W at 70 0 C Ambient Temperature ............... .400 W Collector to Base Voltage ................................ 60 V Collector to Emitter Voltage (Note 4) ............. 50 V Emitter to Base Voltage ................................. 4.0 V DC Collector Current .................................. 250 mA ELECTRICAL CHARACTERISTICS (25 0 C Free Air Temperature unless otherwise noted) Symbol Min BV CEO 50 Typ Volts IC = 1.0 mA, IB = 0 BV CBO 60 Volts IC - 100uA, IE = 0 BV EBO 4.0 Volts IE - 100uA, IC - 0 nA V CB -50V,I E -0 100 nA V CB 0.6 Volt 30V,I E -0 I C =10mA,V CE -10V I C =10mA,I B -1.0mA 12 pF V CB = 10 V, IE - 0, f - 100 kHz 50 pF V BE = 0.5 V, IC - 0, f - 100 kHz Max ICBO ICBO hFE 40 VCE(satl Ccb Ceb h. Ie h re h fe hoe NF Test Conditions Unit 1.4 kO Ie - 10 mA, VeE - 5.0 V, f - 1.0 kHz 0.8 X 10-4 Ie -10 mA, VeE - 5.0 V, f= 1.0 kHz 75 umhos Ie -10mA, VeE - 5.0V, f-1.0 kHz 3.0 dB 2.0 Ie - 10 mA, VeE - 10W, f = 30 MHz Ie = 100uA, VeE - 5.0V, f = 10 Hz to 15.7 kHz, Rs =4kO NOTES: (1) These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. 9-26 (3) These ratings give a maximum junction temperature of 150 0 C and junction to case thermal resistance of 125 0 C/Watt (derating factor of 8.0 mW/oC); junction to ambient thermal reSistance of 200 0 C/Watt (derating factor of 5.0 mW/0C). (4) Rating refers to a high current point where cOllector to emitter voltage is lowest. (5) Pulse conditions: length = 300 us; duty cycle = 1%. ITT ----2N696 SILICON GENERAL PURPOSE TRANSISTORS SEMICONDUCTORS GENERAL PURPOSE NPN SILICON PLANAR EPITAXIAL TRANSISTOR For Improved Performance See ITT 2N2217, ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage.................... 60 Collector-to-Emitter Voltage ................ 35 Emitter-to-Base Voltage....................... 5 Operating Junction Temperature......... 175 Storage Temperature ........................... -65 to +200 PD@ Tc = 25·C.................................... 2.0 PD@ TA = 25.C.................................... 0.6 Volts Volts Volts oC oC Watts Watt ELECTRICAL .CHARACTERISTICS (25.C free air unless otherwise noted) Svmbol BVCBO LVCER BVEBO hFE Max. Min. 60 40 5 Unit Vdc Vdc . Vdc I C= 150mA, V CE= 10V pulsed 60 20 VCE (sat) VBE (sat) 1.5 1.3 Vdc Vdc ICBO ICBO 1.0 100 A A 35 pF Cob hIe NOTES: Pulse width 2 300 sec, duty cycle 2%. Conditions Ic= 100 A I c= 30mA, R BE= 10 pulsed IE= 100 A I c= 150mA, I B= 15mA pulsed Ic= 150mA,I B= 15mA pulsed V CB= 30V VCB = 30V, TA = +150·C VCB= 10V I c= 50mA, V CE= 10V, f = 20MHz I I _I .LT _______ rIl 2N706,2N706A,2N706B S_I_Ll_C_O_N_S_W_IT_C_H_I_N_G_T_R_A_N_S_I_S_TO_R SEMICONDUCTORS HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR For Improved Performance See ITT 2N2368. ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage.......................... 25 Collector-to-Emitter Voltage ...................... 15 Emitter-to-Base Voltage............................. 3 Operating Junction Temperature............... 200 Storage Temperature ................................ -65 to +200 Po@ Tc = 25 u C......................................... 1.0 Po@ TA = 25 oC......................................... 0.3 Volts Volts Volts oC oC Watt Watt ELECTRICAL CHARACTERISTICS (25C. free air unless otherwise noted) Symbol Max. Min. BVcBO VCER BVEBO 25 20 3 hFE 20 Conditions Unit Vdc Vdc Vdc I c= 1.011A I c= 30mA, R BE= 10Qpulsed I E= 1011A Ic= 10mA, VCE= 1.0V VCE (sat) VBE (sat) 0.6 0.9 Vdc Vdc I c= 10mA, I B= 1.0mA I C.= 10mA, I B= 1.0mA ICBo ICBO 50 30 nA llA VCB= 15V VCB = 15V, TA = +150·C Cob 6.0 pF VCB= 10V 11 ns ns I C=. 4.5mA Ic= IB1= I B2= 10mA, VCC= 10V, R L= 1K hfe 2 tpd ts 5 Ic= 10mA, VCE= 15V,f = 100MHz 60 " NOTE; Pulse width 300 sec. duty cycle 2%.) 9-28 2N706.2N706A.2N706B SILICON SWITCHING TRANSISTOR ELECTRICAL CHARACTERISTICS (25 o C free air unless otherwise noted) Symbol Min. BVCBO LVCER BVEBO 25 20 5 hFE 20 VCE (sat) VBE (sat) 0.7 ICBO ICBO Cob hie Max. Unit Vdc Vdc Vdc Conditions I c= 10~A I c= 10mA, R BE= 10rlpulsed I E= 10]lA I c= 10mA, V CE= 1V 0.6 0.9 Vdc Vdc I c= 10mA, I B= 1mA Ic= 10mA,IB= 1mA 0.5 30 ]lA ~A V CB= 15V VCB = 15V, TA = 150 0 C 5 pF VCB= 5V 2 I c= 10mA, V CE= 10V, f = 100MHz ts 25 ns I c.= I B1 = I B2= 10mA, V cc= 10V, R L= 1 K ton 40 ns I B1 = 3mA, I B2= 1 mA, V CC= 3V, R L= 270 toll 75 ns I B1 = 3m A, I B2.= 1mA, V cc= 3V, R L= 270 I I ELECTRICAL CHARACTERiSTICS (25 o C free air unless otherwise noted) Symbol Min. Max. Conditions Unit BVCBO LVCER LVCEO BVEBO 25 20 15 5 hFE 20 60 VCE (sat) VBE (sat) 0.7 0.4 0.9 Vdc Vdc I c= 10mA, I B= 1mA I c= 10mA, I B= 1mA ICBO ICBO ICER 0.5 30 10 ]lA ]lA ]lA VCB= 15V VCB = 15V, TA = 150 0 C VCE = 20V, RBE = 100K Cob 5 pF VCB- 5V hie Vdc 'Vdc Vdc Vdc I c= 10 A I c= 10mA, R BE= 10 pulsed I c= 10mA pulsed I E= 10~A Ic= 10mA, VCE-IV I c= 10mA, V CE= 10V, f = 100MHz 2.0 rbl 50 ohms I c= 10mA, V eE= 15V, f = 300M Hz Ts 25 ns Ic= IB1= IB2= 10mA, Vce= 10V, R L= 1 ton 40 ns I B1 = 3m A, I B2= 1mA, Vce= 3V, R L= 270 75 ns I B1 = 3m A, I B2= 1mA, V ce= 3V, R L= 270 toll NOTE: Pulse width 300 sec. duty cycle 2%. 9-29 • ITT ----2N708 SILICON SWITCHING TRANSISTOR SEMICONDUCTORS HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR For Improved Performance See ITT 2N2369A. ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage ...................................... . Collector-to-Emitter Voltage .................................. . Emitter-to-Base Voltage ......................................... . Operating Junction Temperature .......................... .. Storage Tem perature ............................................. . PD@Tc = 25~C ...................................................... . PD@ TA = 25 o C ....................................................... . 40 15 5 200 -65 to +200 1.2 .36 Volts Volts Volts oC vC Watts Watt ELECTRICAL CHARACTERISTICS (25 o C free air unless otherwise noted) Symbol Min. BVcBO LVCER LVCEO BVEBO 40 20 15 5 hFE hFE hFE 30 15 15 VeE (sat) VCE (sat) VBE (sat) VBE (sat) .72 ICBO ICBO lEBO ICEX Cob "hfe Max. Unit Vdc Vdc Vdc Vdc 120 Conditions Ic= WA I e= 3mA pulsed, R BE= 10&1 I C= 30mA pulsed I E= 10)lA Ic= 10mA, VCE= 1V Ic= 0.5mA, VCE= 1V, T A= -55 o C I c= 10mA, V CE= 1V .40 .40 .80 .90 Vdc Vdc Vdc Vdc I c= I c= Ic= I c= 25 15 0.1 10 nA )lA )lA )lA V CB= VCB = V EB= V CE= 6 pF VCB= 10V 3 10mA, I B= 1.0mA 7mA, I B= .7mA, T A= +125 0 C 10mA, I B= 1.0mA 10mA, I B= 1.0mA, T A= -55 o C 20V 20V, TA = +150 o C 4V 20V,V EB= .25V, T A= 125 0 C I c= 10mA, V CE= 10V, f = 100MHz rb 50 ohms I c= 10mA, V CE= 10V, f = 300MHz Ts ton toff 25 40 75 ns ns ns Ic= IB1= IB2= 10mA I C= 10mA, I B1 = 3mA, V EB= 2V I c= 10mA, I B1 = 3mA, I B2= 1mA NOTE: Pulse width :='300f,lsec. duty cycle :='2%. 9-30 ITT ----2N744 SILICON SWITCHING TRANSISTOR SEMICONDUCTORS HIGH SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR For Improved Performance See ITT 2N2369 ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage ....................................... 20 Collector-to-Emitter Voltage ................................... 12 Emitter-to-Base Voltage .......................................... 5 Operating Junction Temperature ........................... 200 Storage Temperature ................................ -65 to +200 'Volts Volts Volts oC oC Watt Watt ~~ ~ i~: ~~~g::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6:~ I '1 ELECTRICAL CHARACTERISTICS (25 o C Iree air unless otherwise noted) Symbol Min. BVcBO LVCEO BVEBO 20 12 5 hFE hFE hFE hFE 20 40 20 20 VCE (sat) VCE (sat) 0.35 1 VBE (sat) VBE (sat) VBE (sat) 0.65 VBE (sat) Max. Unit Vdc Vdc Vdc 1.6 Ic=1IlA I c = 1OmA pulsed Ic= 1OIlA. Ic= Ic = Ic= I c= 120 0.85 1.5 1.1 Conditions 1.0mA. VCE= 0.25V 1OmA. VCE = 0.35V 100niA. VCE= 1.0Vpulsed 10mA. V CE= 0.35V. T A= -55 o C Vdc Vdc Ic= 10mA.1 B= 1mA. T A= 170 0 C I c= 100mA.1 B= 10mA. T A= 170 0 C pulsed Vdc Vdc Vdc Ic= 10mA.IB= 1mA I C= 100mA. I B= 1OmA pulsed I C= 10mA, I B= 1 mA, T A= -55 o C Vdc I c= 100mA, I B= 10mA, T A= -55 o C pulsed ICBO ICEO 1 30 IlA Il A V CB= 20V V CE= 10V, V BE= 0.35V, T A= 100 0 C ICES ICES 1 100 ].1 A ].1A VCE= 20V VCE= 20V, T A= 170 0 C 5 pF VCB= 5V 18 12 16 45 24 ns ns ns ns ns Ic= IB1= IB2= 10mA I C= 100mA, I B1 = 40mA, I B2= 20mA Ic=10mA, I B1= 3mA, I B2= 1.5mA I C= 100mA, I B1= 40 mA, I B2= 20mA I C= 10mA, I B1= 3m A, I B2= 1.5mA Cob hie 2.8 T5 ton ton toll toll I c= 10mA, V CE= 10V, 1= 100MHz NOTE: Pulse.width:5300}lsec, duty cycle ~2%. 9-31 I I • I I ITT ----2N834 SILICON SWITCHING TRANSISTOR SEMICONDUCTORS HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR For Improved Performance See ITT 2N2369. 2N834 ABSOLUTE MAXIMUM RATINGS UNITS CHARACTERISTICS Collector-to-Base Voltage..................................... 40 Collector-to-Emitter Voltage ................................. 25 Emitter-to-Base Voltage........................................ 5 Operating Junction Temperature .......................... 175 Storage Temperature .............................. -65 to +200 Po@ Tc = 25 o C ..................................................... 1.0 Po@ TA = 25 c C ..................................................... 0.3 Volts Volts Volts oC cC Watt Watt 2N834 ELECTRICAL CHARACTERISTICS (25.C free air unless otherwise noted) Symbol Min. BVCBO BVCES BVEBO 40 30 5 hFE 25 Max. Unit Vdc Vdc Vdc Ic= 100 A Ic= 10 A I E= 100 A I c= 10mA, I B= 1.0mA I c= 50mA, I B= 5.0mA pulsed le= 10mA,IB= 1.0mA Ic= 10mA, VCE= 1.0V VeE (sat) VeE (sat) VBE (sat) 0.25 0.4 0.9 Vdc Vdc Vdc leBo leBo 0.5 30 A A 4 pF 25 35 75 ns ns ns Cob hte 3.5 s ton tott NOTE: Pulse width 300 sec, duty cycle Conditions 2%. 9-32 VeB= 20V VeB= 20V, T A= 150 0 C VeB= 10V Ie = 10mA. VeE = 15V. f = 100MHz I c- 10mA, I B1- I B2- 10mA I c= 10mA, I B1 = 3mA, I B2= 1mA I c= 10mA, I B1 = 3mA, I B2= 1mA 2N2195, 2N2195A, 2N2195B® HIGH-SPEED NPN SILICON HIGH-CURRENT SWITCHING TRANSISTORS ITT ---------...... SEMICONDUCTORS Package TO-5 ABSOLUTE MAXIMUM RATINGS (Note 1) Characteristics Unit Collector-Base Voltage ........................................ 45 Volts Collector-Emitter Voltage (Note 4) .................... 25 Volts Emitter-Base Voltage .......................................... 5.0 Volts Collector Current ................................................... 1.0 Amp Total Dissipation @: TC = 25°C (Notes 2 and 3) ........................ 2.8 Watts TC = 100° C (Notes 2 and 3) ...................... 1.6 Watts TA = 25°C (Notes 2 and 3) .......................... 0.6 Watt Storage Temperature ....................... -65°C to +300°C Operating Junction Temperature ...... -65 to +200 °C Lead Temperature (Soldering. No Time Limit) ............... 300°C Maximum ELECTRICAL CHARACTERISTICS (T A Symbol Min Max NOTES: (1) These ratings are limiting values above which the' serviceability of any individual semiconductor device may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. (3) These ratings give a maximum junction temperature of 20DoC and junction-ta-case thermal resistance of 62.5°C/watt Iderating factor of 16 mW/oCI: junction-toambient thermal resistance of 292°C/watt (derating factor of 3.42 mW/oCI. (4) Rating refers to a high-current point where collector-toemitter voltage is lowest. 151 Pulse Conditions: length :$ 300 psec. duty cycle :$ 2%. = 25°C unless otherwise noted) Unit Conditions hFE 20 IC = 150 mAo VCE = 10 Volts hFE 10 IC = 150 mAo VCE = 1.0 Volt VCE(sat) 0.35 Volt IC = 150 mA.IB = 15 mA (2N2195) VCE(sat) 0.25 Volt IC = 150mA.IB = 15mA(2N2195A VCE(sat) 0.18 Volt IC = 150 mA.IB = 15 mA(2N2195B) VBE(sat) 1.3 Volts IC = 150 mAo I B = 15 mA IC = 50 mAo VCE = 10 Volts hfe 2.5 Cob 20 pF IE = O. VCB = 10 Volts ICBO 100 nA IE = O. VCB = 30 Volts 50 J.l.A IE = O. VCB = 30 Volts 100 nA IC = O. VEB = 3.0 Volts = 100J.l.A.IE = 0 ICB O(150°C) lEBO BVCBO 45 Volts IC VCEO(sust) 25 Volts IC = 25 mA (pulsed). IS (Notes 4 and 5) BVEBO 5.0 Volts IE 9-33 = 100 J.l.A. Ie = 0 0 mm _.I 2N929, 2N930 -L-L ___S_IL_I_C_O_N_G_EN_ER_A_L_P_U_R_P_O_S_E_T_R_A_N_S_I_ST_O_R SEMICONDUCTORS LOW LEVEL LOW NOISE NPN SILICON PLANAR TRANSISTORS • High Gain; 100 mln.@ Ic = 10 A The ITT .2N929 and 2N930 are NPN silicon. planar transistors designed for application in low noise. low level amplifiers in the audio through high frequency range. • Low Noise; 3dB max.@ Ic = 10 A • High VCEO; 45 Vdc min. ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS Units Collector-to-Base Voltage....................................... 45 Collector-to-Emitter Voltage (open base)............... 45 Emitter-to-Base Voltage.......................................... 5.0 Collector Current (continuous)................................ 30 Junction Temperature (operating) ............. -65 to +175 (storage) ................ -65 to +200 Total Power Dissipation @ Tc = 25~C .................... 0.6 (derate 4.0 mW/oC above 25 o C) Total Power Dissipation @ T A = 25 0 C .................... 0.3 (derate 2.0 mW/eC above 25 0 CL Volts Volts Volts mA oC "C Watts ELECTRICAL CHARACTERISTICS @ Symbol LVcEO BVEBo Min. 25~C unless otherwise noted Max. Unit Vdc Vdc 45 5.0 Conditions Ic= 10mA IE=10nA Ic= 10 A, VCE= 5.0V 2N929 2N930 hFE 40 100 Watts 120 300 I c= 500 A, V CE= 5.0V 2N929 2N930 60 150 Ic= 10mA, VCE= 5.0V 2N929 2N930 350 600 Ic= 10 A, VCE= 5.0V, T A= -55-C 2N929 2N930 10 20 9-34 2N929, 2N930 SILICON GENERAL PURPOSE TRANSISTOR ELECTRICAL CHARACTERISTICS @ 25 0 C unless otherwise noted (continued) Symbol VCE (sat) VBE (sat) Max. Unit 0.6 1.0 1.0 Vdc Vdc Ic= mA, I B= 0.5mA Ic = 10mA, IB = 0.5mA 1 1 Conditions Min. ICBo ICEO lEBO ICES ICES 10 2 10 10 10 nA nA nA nA A V CB= 45V VCE= 5V V EB= 5V VCE=45V VCE= 45V, T A= 170 oC Cob 8 pF VCB= 5V Ic= 1.OmA, VCE= 5V, f = 1KHz 2N929 2N930 hie hib hob hrb 60 150 350 600 1.0 1.0 25 32 1.0 600 Ic.= 500 A, V CE= 5V, f = 30mHz ohms mho X10_6 Ic= 1.OmA, VCB= 5V, f = 1mHz Ic= 1.OmA, VCB= 5V, f = 1mHz A, VCB= 5V Ic= dB dB Ic= 10 A, VCE= 5V, RG= 10K BW. = 200Hz, f = 1 KHz 2N929 2N930 NF 4 3 Notes: 1. Pulse width 300 sec; duty cycle 2%. 2. Lowest emitter to collector voltage. 9-35 • I m _ _ _ _ __ _ 1 T.L 2N2217, 2N2218, 2N2219 SILICON GENERAL PURPOSE TRANSISTORS SEMICONDUCTORS GENERAL PURPOSE NPN SILICON PLANAR EPITAXIAL TRANSISTORS • Low VCE (sat), It 0.4V@ Ic High Frequency, fT = 150mA = 250 MHz @ I c = 20mA • Wide Useful Current Range, 0.1 to 500mA The ITT 2N2217-19 are NPN silicon planar epitaxial general purpose transistors for applications at current ranges from 0.1 to 500mA. Low saturation voltage and fast switching times make the 2N2217-19 ideal for core driving. The flat grain over a wide current range gives good linearity in amplifier circuits. High break~own voltage allows large signal swing in switching and amplifier circuits. ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage....................................... 60 Collector-to-Emitter Voltage (open base)............... 30 Emitter-to-Base Volta·ge.......................................... 5.0 Collector Current (continuous)................................ 800 Junction Temperature (operating) ................ -65 to +175 (storage) ................... -65 to +300 Total Power Dissipation @ Tc = 250C .................... 3.0 (derate 20mW/~C above 25~C) Total power Dissipation @ T A = 25oC..................... 0.8 (derate 5.33 mW/~C above 25 o C) Volts Volts Volts mA oC ~C Watts Watts ELECTRICAL CHARACTERISTICS @ 25 c C unless otherwise noted Max. Min. Symbol Conditions Ic= 150mA, VCE= 10V 2N2217 2N2218 2N2219 hFE (1) 20 40 100 Unit 60 120 300 10 20 50 Ic= 150mA, VCE= IV 2N2217 2N2218 2N2219 20 30 Ic= 500mA, VCE= 10V 2N2218 2N2219 hFE 9-36 2N2217, 2N2218, 2N2219 SILICON GENERAL PURPOSE TRANSISTORS ELECTRICAL CHARACTERISTICS @ 25 0 C unless otherwise noted (continued) Min. Symbol Conditions Unit Max. 17 35 75 Ic= 10mA, VCE= 10V 2N2217 2N2218 2N2219 12 25 50 I c= 1mA, V CE= 10V 2N2217 2N2218 2N2219 20 35 Ic= 0.1mA, VCE= 10V 2N2218 2N2219 VCE (sat) (1) 0.4 1.6 Vdc Vdc Ic= 150mA, I B= 15mA I c= 500mA, I B= 50mA VBE (sat) (1) 1.3 2.6 Vdc Vdc I C= 150mA, I B= 15mA I c= 500mA, I B= 50mA ICBO 10 10 nA A VCB=50V,IE=0 VCB = 50V, IE = 0, T = 150-C lEBO 10 nA V EB= 3V, I c= 0 MHz I C= 20m A, V CE= 20V 8 pi VCB= 10V, I E= 0 Ohms I C= 20mA, V CE= 20V, I = 300MHz IT 250 Cob 60 Re(hie) (2) BVCBO VCEO (sust) BVEBO Vdc Ic=10 A,IE=O 30 Vdc Ic=10mA,IB=0 5 Vdc IE= 10 A, Ic= 0 60 (1) NOTES: 1.' Pulse Measurement: width 300 sec. duty cycle 2%. 2. Real part of Common-Emitter high frequency input impedance. 9-37 I • ITT SEMICONDUCTORS 2N2219A SILICON SWITCHING TRANSISTOR ---~- HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR UNITS ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS Collector-to-Base Voltage ....................................... 75 Collector-to-Emitter Voltage ................................. ~ .. Emitter-to-Base Voltage.......................................... 6 Operating Junction Temperature ............................175 Storage Temperature ............................... -65 to +200 Po@ Tc = 25~C ............................................., ....: ... ,3.0 Po @ T A = 25"C .......................................................0.8 Volts Volts Volts "C wC Watts Watts ·40 ELECTRICAL CHARACTERISTICS (25 o C free air unless otherwise noted) Symbol BVCBO LVEBO BVEBO hFE hFE hFE hFE hFE hFE hFE VCE(sat) VCE(sat) VBE(sat) VBE (sat) ICBo ICBO Min. Max. 75 40 6 35 50 75 100 40 50 35 0.6 Unit Conditions Vdc Vdc Vde Ic= 10\.lA I C= 10mA pulsed IE= 10\.lA I c= .1 C= Ic= I C= I C= Ic= I c= 100lJA, V CE = 10V 1 rnA, V CE= 10V 10mA, VeE= 10V 150mA, V CE= 10V pulsed 500mA, V CE= 1OV pulsed 150mA, VCE= 1Vpulsed 10mA, V CE= 10V, T A= -55"C Vde Vde Vde Vdc I C= Ic= I c= 1C= 150mA, I B= SOOmA,1 B= 1S0mA,I B= 500mA, I B= nA A VCB= 60V VCB = 60V, TA = 1S00 0 300 0.3 1.0 1.2 2.0 10 10 9-38 15mA pulsed 50mA pulsed 15mA pulsed SOmA pulsed 2N2219A SILICON SWITCHING TRANSISTOR ELECTRICAL CHARACTERISTICS continued Parameter Min. Conditions Max. Unit ICEX IEBX lEBO 10 20 10 nA nA nA V CE= 60V. V EB= 3V VEB= 3V. VCB= 60V VEB= 3V Cob Cib B 25 pF pF VCB= 10V VEB=0.5V hIe hIe hIe 50 75 3 300 375 hie hie 2 0.25 B 1.25 hre hre hoe hoe B 4 5 25 Re(hie) rb'Cc Kohms Kohms c= 1mA, VCE= 10V, f = 1KHz c= 10mA, V CE= 10V, f= 1KHz x10 x10 c= 1mA, V CE= 10V, f = 1KHz c= 10mA, V CE= 10V, f = 1KHz ~4 ~4 C= 1mA, VCE= 10V, f = 1KHz C= 10mA, V CE= 10V, 11 KHz 35 200 mho mho 60 150 omhs ps c= 20m A, V CE= 20V, f = 300M Hz c= 20mA, V CE= 20V, f = 31.BMHz db c= 100 A, VCE= 10V, RG= 1K N.F. 4 Ts c= 1mA, V CE= 10V, f = 1KHz C= 10mA. VCE= 10V, f= 1KHz C= 20m A, V CE= 20, f = 100MHz 2.5 = ,f = 1KHz ns I c= 150mA, I B1= 15mA, V cc= 30V, VEB= 0.5V td 10 ns I C= 150mA, I B1 = 15mA, V CC= 30V, VEB= 0.5V tr 25 ns Ic= 150mA, I B1= 15mA, V cc= 30V, VEB= 0.5V ts tl 225 60 ns ns I c= 150mA, I B1= I B2= 15mA, V CC= 30V I c= 150mA, I B1 = I B2= 15mA, V cc= 3DV Note: Pulse width 30 sec, duty cycle 2%, 9-39 ITT ----- 2N2221,2N2222 SILICON GENERAL PURPOSE TRANSISTORS SEMICONDUCTORS GENERAL PURPOSE HIGH-VOLTAGE NPN SILICON PLANAR EPITAXIAL TRANSISTORS The ITT2N2221-22 are NPN silicon planar epitaxial general purpose transistors for applications at current ranges from 0.1 to 500 mAo Low saturation voltage and fast switching times make the 2N2221-22 ideal for core driving. The flat gain over a wide current range gives good linearity in amplifier circuits. High breakdown voltage allows large signal swing in switching and amplifier circuits. -Low VCE(sat). 0.4 V@ Ic = 150mA _ High Frequency. IT = 250 MHz @ I C = 20mA - Wide Useful Current Range. 0.1 to 500mA ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS Units Collector-to-Base Voltage....................................... 60 Collector-to-Emitter Voltage (open base)............... 30 Emitter-to-Base Voltage.......................................... 5.0 Collector Current (continuous)................................ BOO Junction Temperature (operating) .............. -65 to + 175 (storage) ................. -65 to +300 Total Power Dissipation @ Tc = 25 0 C .................... 1.B (derate 12mW/oC above 25 o C) Total Power Dissipation @ t A = 25 0 C .................... 0.5 (derate 3.33 mW/oC above 25 o C) Volts Volts Volts mA oC oC Watts Watts ELECTRICAL CHARACTERISTICS @ 25 0 C unless otherwise notea Symbol Min. Max. UnlL hFE' Condition. I c= 150mA, V GE= 10V 40 100 120 300 2N2221 2N2222 I c= 150mA, V CE= IV 20 50 2N2221 2N2222 Ic= 500mA, VeE= 10V 2N2221 2N2222 20 30 9-40 2N2221, 2N2222 SILICON GENERAL PURPOSE TRANSISTORS ELECTRICAL CHARACTERISTICS @ 25 0 C unless otherwise noted Symbol nFE Min, Max, Unit Conditions Ic= 10mA, VCE= 10V 17 35 75 VeE (sat) , 0.4 1.6 Vdc Vdc 2N2221 2N2222 Ic- 1mA, VCE= 10V 2N2220 2N2221 2N2222 Ic- 0.1mA, VCE= 10V 2N2221 2N2222 I C= 150mA, I B= lbmA I C= 500mA, I B= 50mA VBE (sat) , 1.3 2.6 Vdc Vdc Ic= 150mA,I B= 15mA I c= 500mA, I B= 50mA 10 10 nA A VCB=. 50V, IE= 0 VCB= 50V,IE= 0, T = 150oC 10 nA VEB=3V,lc=0 MHz I C= 20mA, V CE= 20V pI VCB= 10V,I E= 0 12 25 50 20 35 ICBO lEBO IT 250 8 Cob Ohms I c= 20mA; V CE= 20V, f = 300 MH; 60 Vdc Ic=10 A,IE=O 30 5 Vdc vac I c= 10mA, Is= 0 I E- 10 A. I C- 0 60 Re (h,'e) , BVCBO VCEO (sust) , BVESO NOTES: 1, Pulse Measurement: width 300 sec, duty cycle 2%. 2. Real part of Common~Emitter high frequency input impedanC?e. 9-41 ITT ----- 2N2221A ® SILICON SWITCHING TRANSISTOR SEMICONDUCTORS HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to- Base Voltage ........ Collector-to-Emitter Voltage ....... Emitter-to- Base Voltage .......... Operating Junction Temperature ... Storage Temperature ............. Po@ Tc = 25°C ............... Po @ TA = 25°C ............... . . . . . . . 75 40 6 175 -65 to +200 1.8 0.5 ELECTRICAL CHARACTERISTICS SYMBOL BVc,o LVcEO BVE,o hFE hFE hFE hFE hFE hFE hFE VCE(sat) VCE( sat) V'E(sat) V'E(sat) Ic,o Ic,o MIN. 75 40 6 20 25 35 40 25 20 15 0.6 MAX. °c °c Watts Watt (25°C free air unless otherwise noted) UNIT Vdc Vdc Vdc 120 0.3 1.0 1.2 2.0 10 10 Volts Volts Volts Vdc Vdc Vdc Vdc nA ",A 9-42 CONDITIONS Ic= 1O",A Ic = 1 OmA pulsed IE=10",A Ic=100",A, VcE =10V Ic=1 mA, VcE =10V Ic= 1OmA, VCE = 1OV Ic= 150mA, VCE = 1OV pulsed Ic=500mA, VCE=1 OV pulsed Ic=150mA, VCE=1V pulsed Ic= 1OmA, VCE = 1OV, TA = -55°C Ic=150mA, 1,=15mApulsed Ic=500mA, 1,=50mA pulsed Ic=150mA, 1,=15mA pulsed Ic=500mA, 1,=50mA pulsed Vc,=60V Vc,=60V, TA=150°C 2N2221A® ELECTRICAL CHARACTERISTICS PARAMETER MAX. UNIT 10 20 10 8 25 150 300 nA nA nA pF pF T, 3.5 1.0 5 2.5 15 100 60 150 2.5 K ohms Kohms x10- 4 x10- 4 JLmho JLmho ohms ps ns td 10 ns t, 25 ns Icex leu leso Cob C;b hI. hI. hI. h;. h;. h,. h,e hoe hoe R.(Me) rb'C C t, tl MIN. continued 30 50 2.5 1 0.2 3 10 225 60 ns ns NOTES: Pulse width :S 300 "sec, duty cycle::; 2%. 9-43 CONDITIONS Vce=60V, Ves=3V Ves=3V, Vcs=60V Ves=3V Vcs=10V Ves=0.5V 1c=1mA, Vce =10V,f=1KHz Ic=10mA, Vce =10V, f=1 KHz Ic=20mA, Vce=20V, f=1 OOMHz 1c=1mA, Vce =10V, f=1 KHz 1c=10mA, Vce =10V, f=1 KHz Ic= 1 mA, Vce= 1 OV, f= 1 KHz 1c=10mA, Vce=10V, f=1 KHz Ic = 1 mA, Vce= 1 OV, f= 1 KHz Ic=10mA, Vce =10V, f=1 KHz Ic=20mA, Vce=20V, f=300MHz 1c=20mA, Vce=20V, f=31.8MHz Ic=150mA, IS1=15mA, Vcc=30V, Ves=0.5V Ic=150mA, IS1=15mA, Vcc=30V, Ves=0.5V 1c=150mA, 1s,=15mA, Vcc=30V, Ves=0.5V Ic=150mA, Is1=l s2 =15mA, Vcc=30V 1c=150mA, IS1=ls2=15mA, Vcc=30V _I . mm 2N2222A S_I... LI_C_O_N_S_W_IT_C_H_IN_G_T_R_A_N_S_IS... i_O_R .L.;.L ______ SEMICONDUCTORS HIGH-SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTOR ABSOLUTE MAXIMUM RATINGS UNITS CHARACTERISTICS Collector-to-Base Voltage······ .. ·.................... ·75· Collector-to-Emitter Voltage ···.··· .... ·.............. 40 Emitter-to-Base Voltage ...............................• 6 Operating Junction Temperature ................. 175 Storage Temperature ... c ••••••••••••••••• -65 to +300 Po@ Tc = 2S·C ············· .. ·.··· ......................... 1.8 Po@ TA = 2S"C· ... ··· ...................................... O.5 Volts Volts Volts o.C oC Watts Watt ELECTRICAL CHARACTERISTICS (25 oC free air'unless otherwise noted) Symbol Min. BVcBO LVCEO BVEBO 7S 40 6 hFE hFE hFE hFE hFE hFE hFE VCE(sat) VCE(sat) VBE (sat) VBE (sat) ICBO ICBO 35 50 75 100 40 50 35 0.6 Max. Unit Vdc Vdc Vdc Conditions Ic= 10 A I c= 10mA pulsed IE = 10 A = Ic= I c= I C= I C= Ic= I c= 100 A, VCE = 10V 1mA, VCE= 10V 10mA, V CE= 10V 1S0mA, V CE= 10V pulsed SOOmA, V CE= 10V pulsed 1S0mA, VCE= 1Vpulsed 10mA, V CE= 10V, T A= -55-C 150mA, I B= SOOmA, I B= 150mA, I B= 500mA,I B= 1(; 120 0.3 1.0 1.2 2.0 Vdc Vdc Vdc Vdc I c= I c= I c= I C= 10 10 nA A VCB= 60V VCB = 60V, TA = 150-C 9-44 15mA pulsed SOmA pulsed 15mA pulsed 50mA pulsed 2N2222A SILICON SWITCHING TRANSISTOR ELECTRICAL CHARACTERISTICS continued Max. Min. Parameter Conditions Unit ICEX IEBX lEBO 10 20 10 nA nA nA VCE= 60V, VEB= 3V V EB= 3V, V CB= 60V VEB= 3V Cob Cib S 25 pF pF V CB= 10V V EB= 0.5V hfe hfe hfe 50 75 2.5 hie hie 2.0 0.25 Ic= 1mA, VCE= 10V,f = 1KHz Ic= 10mA, VCE= 10V, f = 1KHz I c= 20mA, V CE= 20V, f = 100MHz 300 375 Kohms Kohms Ic= 1mA, VCE= 10V,f = 1KHz Ic= 10mA, VCE= 10V, f = 1KHz 4 X10-4 X10-4 I C= 1mA, V CE= 1OV, f = 1 KHz I C= 10mA, V CE= 10V, f = 1KHz 35 200 mho mho I C= 1mA, V CE= 10V, f = 1KHz Ic= 10mA, VCE= 10V, f = 1KHz Re(hie) 60 ohms rb'Cc 150 ps 2.5 ns Ic = 150mA,IB1 = 15mA, Vcc = 30V, VEB= 0.5V td 10 ns Ic = 150mA,IB1 = 15mA, Vcc = 30V, VEB = 0.5V tr 25 ns Ic = 150mA,IB1 = 15mA, VCC= 30V, VEB= 0.5V ts 225 60 ns ns I c= 150mA, I B1= I B2= 15mA, V cc= 30V I c= 150mA,I B1= I B2= 15mA, V cc= 30V 8 1.25 8 hre hre hoe hoe 5 25 s tf NOTES: Pulse width 300 sec. duty cycle I c= 20mA, V CE= 20V, f = 300MHz ! 2%. 9-45 Ic=20mA, VCE= 20V, f = 31.SMHz I I ITT ----2N2368,2N2369 SILICON SWITCHING TRANSISTORS SEMICONDUCTORS HIGH SPEED NPN SILICON PLANAR EPITAXIAL SATURATED SWITCHING TRANSISTORS • • • • • High fT: 650 mHz, typo High Gain: 40 min. @ Ic 10mA . Low Cob: 4pf max. @ Vcs 5V Low Ton 9 nlee typo Low toff '" 13 nlee typo = ABSOLUTE MAXIMUM RATINGS = = CHARACTERISTICS UNITS Collector-to-Base Voltage............................... 40 Collector-to-Emitter Voltage (shorted base).. 40 Collector-to-Emltter Voltage (open base)....... 15 Emitter-to-Base Voltage .................................. 4.5 Collector Current (10 sec. pulse) .................... 500 Junction Temperature (op. and stg.) ... -65 to +200 Total Power Disslpation@ Tc ~ 25C ....•........ 1.2 (derate 6.6 mW/oC above 25 o C) @ Te ~ 100-C .......... 0.66 Total Power Dissipation @ T A ~ 25cC ............ 0.36 (derate 2.06 mW/oC above 25 u C) The ITT 2N2368 and 2N2369 are NPN silicon planar epitaxial saturated switching transistors for applications at current ranges from 0.1 to 100 rnA. High gain and narrow base region provide excellent radiation resistance. They can operate at clock rates above 10MHz for commercial computer applications. Volts Volts Volts Volts rnA 'C Watts Watts Watts ELECTRICAL CHARACTERISTICS @ 250C unless otherwise noted. Symbol Min. Typ. Unit Max. hFE 1 20 40 I c= 10mA, V CE= 1V 2N2368 2N2369 60 120 I c= 10mA, V CE= 1V, T = -55-C 2N2368 2N2369 I G= 100mA, V CE= 2V 2N2368 2N2369 10 20 10 20 VCE (sat) 0.2 0.25 Vdc 0.75 0.85 Vdc ICBO 0.1 10 0.4 30 A A fr 650 Cot> 2.5 VBE (sat) s' (charge storage time) 0.7 Conditions 4.0 10 13 9-46 I c= 10mA, I B= 1mA I c= 10mA, I B= 1mA VCB= 20V, I E= 0 V CB= 20V, I E= 0, T = 150-C MHz VCE= 10V,lc= 10mA pf VCB= 5V, I E= 0 nsec nsec Ic= I B1 10mA,10mA, I B2 -10mA-10mA 2N2368 2N2369 2N2368, 2N2369 SILICON SWITCHING TRANSISTORS ELECTRICAL CHARACTERISTICS @ 250C unless otherwise noted. (continued) Min. Symbol ton 2 Conditions Typ. Max. Unit 9.0 12 nsec Ic 10mA, I B1 3mA toft 2 15 18 10 13 BVCBO 40 nsec nsec Ic 10mA, I B1 3mA, I B2 -1.5mA 2N2368 2N2369 Vdc Ic= 10 A,IE= 0 BVCES 40 Vdc I C= 10 A, I B= 0 VCEO (sust) 15 Vdc Ic=10mA, I B= 0 BVEBO 4.5 Vdc I E= 10 A, Ic= 0 NOTES: 1. Pulse measurement: width 300 sec, dutY.cycle 2%. 2. Pulse switching circuits for exact IC, IB1, and IB2. TYPICAL CHARACTERISTICS' ~ 4 ;0 losmo E 3 r- - I .041"1\0 "13" "0 ~ ~03mo 2 _V - ./ / V j _/ V / 0 J 0 i 3 I / 13 8 ~ 06",Q ~05mQ ~04",Q i-'"" .,63mo V 2 /' / 4 3 ;: zoo ~ G ~ 8 •• ,ot<'° ,/ " ~ 100 r- ----- REGION COLLECTOR ;/ f-t /: ~ r; ..---r-z.Jo J? --- 'm, 'r' V u / •2 COLLECTOR VOLTAGE (V CE ) VOLTS . .j,~~ ~ / 1/ // I V / / V / ./ B T"~O'C Is-a I SATURATION T.J•• C_ / j II, 'e"O 4 V COLLECTOR VOLTAGE WeE) VOLTS V - V 2.5~Q 'm' 16 .Olmo 00 t * 5"" VOLTS /V - ~02mQ • j 8 VOLTAGE COLLECTOR CHARACTERISTICS ~,..... 2 t~ V 100 t; \ '2 oqtl\O \O""~" V-F-'~ V v--' r- I-" f; r/. :::-::: ~ i5 g: -- CHARACTERISTICS I- ~..-- ~~ :- 00 . ~ I " COLLECTOR VOLTAGE (VeE) HIGH )!!!" ::. 200 IS-O 4 ~ ~ 4 ~ -u :.,./ I. o•m, ""/. ..--1---7~ T"cio.c _ J II .02mo • 0 " , /' -- SATURATION REGION COLLECTOR HIGH VOLTAGE COLLECTOR CHARACTERISTICS ~'l ~ ~ 5m' IS"'O \, 0 9-47 0 I CHARACTERISTICS -- T=25°C I 4 2 3 COLLECTOR VOLTAG~ W e.E ) VOLTS 2N2368, 2N2369 SILICON SWITCHING TRANSISTORS TYPICAL CHARACTERISTICS, continued HIGH VOLTAGE COLLECTOR ,..- \8mo :.-- ~ - u I- ~ 3 ~ c....--- lomo B2 e'" cema I 04mo ~ ~ _1'4mo 4"'- v /. / / / ~a / \ 00 12 " " "~ 60 -lJ.~ ~ ./ g; a 20 ... --0 ;0 "rr III /' ~Ol \ IIII IIII 0.5 1.0 5.0 10 r-- 2.bmo IJ.O I T'j55 0 C 2 3 . ~ VOLTAGE" tYeEI VOLTS LSC>nA 1/IOOmA 2:'' :'//,1/ E TIt--- --.05 0.1 75'" - f-- ~Q ~200 -55°C .......... .......... :.-- ~ I-- . I~ z 40 ~ CHARACTERISTICS SATURATION REGION BASE CHARACTERISTICS IDO·C ./ . l!: I- ~ III - VCE: 5 V 0 -- - COLLECTOR COLLECTOR PULSE DC CURRENT GAIN VS COLLECTOR CURRENT ~ 80 t- V le: O COLLECTOR VOLTAGE I VCEI VOLTS ~ l /' - / V ,/" /' 100 L U ~ -u = 200 ./ • 4 v ~ / I I I 02mo 00 SATURATION REGION T"-~5.C '/ _I-"" 06mo 8 CHttRACTERISTICS _f-" \6~ 50 100 COLLECTOR CURRENT (Ie' ma - ie " ~ Ie 100 8 'II III III ril, 'I I II -,omAII ! , Nil 0.4 0.8 1.2 T.~5"C 1.8 BASE VOLTAGE lYBEI VOLTS f COLLECTOR SATURATION VOLTAGE VERSUS COLLECTOR CURRENT Ie =10 SATURATION REGION BASE CHARACTERISTICS 's-H-+-+-+-++--+-+-t-rt--f-++--H COLLECTOR CURRENT (Ie) mA BASE VOLTAGE (YSE ) VOLTS 2N2368, 2N2369 SILICON SWITCHING TRANSISTORS TYPICAL CHARACTERISTICS. continued BASE SATURATION VOLTAGE VERSUS COLLECTOR CURRENT ~ I 1.2 ~ _55°C w 25°C V ;u 200t--I--I---t--+--t--I"-I-ItH-t---t--I--l ! 10~1- 0.6 1; 03=t ~ -- 'Ill w ~ 0.5 5 I OJ 10 COLLECTOR CURRENT (lei + 'c. lOrnA 50 0.4 100 FALL TIME VERSUS TuRN ON AND TURN OF'F BASE CURRENTS .01- C'i ~ " Ot0 6.0 "sec I ao 40 2.0 ~ ~ ~ ~ l- IC·30mA Vee,· 3,OV 1~ ~~ t-20t- ~ a -15 '" -10 II / I - 0 ~ -5 V >- 00 I _IN V V ..~~~ o· r- . ,ro9 V 10 15 20 >- Ic·IOOm~_ l' 25 TURN O~ BASE CURRENT tl Si) rnA ~8.0 J-Jt-'-- -6.0 1 - - ~ -4,0 it Vee· 3.OV 5 ! -- - 1/ "E ~ -2.0 ~ 0 0 ?~ -"'I>-- 1/ II V _ .ItL V V ~9~ q Lt- ~ 60 llf -10 8.0 V -8.0 a ,,",9 -6.0 .-1' " -4.0 ~ -- -2.0 0 10 mA VCC· 3.OV ~ TURN ON BASE CURRENT (I BI ) mA 9-49 "E ~ IC·30mA VCC· 3 .OV 80 {lSI} STORAGE TIME VERSUS TURN ON AND TURN OFF BASE CURRENTS 0 ,j/ 40 60 IC·IOmA ~ /Vv 2.0 40 z V / 20 w ro (:' 0(:''''';7 / I- rkt- r= TURN ON BASE CURRENT >- 0.9 ~ ICOmA 80mAI 160rnA le= 10 18 ~ ~g SATURATiON REGION BASE CHARACTERISTICS I ~ 0 20 "",,---4.0 ~P~ F~ 6,0 nsec 60 TURN ON BASE CURRENT I e::: - r- - 80 ' 81 mA 2N2368, 2N2369 SILICON SWITCHING TRANSISTORS TYPICAL CHARACTERISTICS. continued DELAY TIME VER~US BASEEMITTER OFF VOLTAGE AND TuRN ON BASE cuRRENT RISE TIME VERSUS TURN ON BASE CURRENT AND COLLECTOR CURRENT ~ 4 E Vee- :iii 10 ~ z ~ ~ 0 u w ~ 1.0 z 0 z ~ 30V ~ / -L I I -~-5.0 /1 ~ 1,.0Y > - I, - ~~ V/ ~~ ~ ~..et. ~ 'l-~ ~ ~ -1.0 ~ I 11.0 -2.0 / :l, 10 100 0 / ifIf 10 '"~ 5.0 >= 50 10 ""- "- 1\ 1,/ I, .~ ~ ~ 2.0 '" r-: d VCC· 3 .OV 1.0 1.0 20 20 5.0 10 50 20 ul:~ '"'I; LOWER LIMITING VOLTAGE VERSlIS SOURCE RESISTANCE CAPACITANCES VERSUS REvERSE alAS vOLTAGE L.VCES I~' /'j 1 16m. 12 ~VCC=3.0V' )- 10 /' e I, / - 3.0::::: .." 2.0 ~ / r- I.L '"g ~et-~J f" I, '" 90 ~ 1\ ~ 0 ~ COb '£"'0 ;! 'd 6 '" le"':'~IA Pulse \ In 4.0- " / .,// 4 __ / 60 \ ;! r-- ' - ffi \ i;! 70 it I ~ '"•• GO ~ 1.0 '" -- LVCEO- - ~50 0 50 100 0 150 0 0.5 AMBIENT TEMPERATURE (T A ) ·C ~ 0 .; 5 I\ \ "'c \ '3. '/11 ~V r//J 2 g :\ '!\ 10 \ 05" '" 0.2 .015 .01 1 "I ~/ ~ 7 450m II ~ ",0 ,0 r- :~ ~ C .-!1' r-25°C 5 10 20 50 COLLECTOR CURRENT (Ie' E I/ '"" ~ 100 "'~ ~ ~ / i? 8 0 -10 50 75 100 AMBIENT TEMPERATURE (TA) 9-50 125 'C -5 0 II / II 1/ 0 ~ I J1 -20 a -I' V O.lV I -2' :&'1 ~ / 1.0 0 2 STORAGE TIME vERSUS TURN ON AND TURN OFF BASE CURRENTS . 10 l- "" r; "j SOURCE RESISTANCE (RS}OHMS VOLTS VCB .. 20V f- 10K IK 10 ffi IE 600mc ~ '" ~ $0 50 COLLECTOR cuTOFF CURRENT VERSUS AMBIENT TEMPERATuRE PRODUCT (f I ~oJ ~5 10 In 1.0 REVERSE BIAS VOLTAGE CONTOURS OF CONSTANT GAIN BANDWIDTH 100 COLLECTOR CURRENT (lc) mA TURN ON BASE CURRENT U SI ) mA EMITTER TRANSITiON ANO 2 20 i/,c",omA II 20 SWITCHING TIMES VERSUS AMBIENT TEMPERATURE < < ,.'" In - / 0 50 .,0 II cuRRENT (lei rnA COLLECTOR ! '" -3.0 ~ 0 0 7g~~:~~~,~ II IL ,b ~ 0 I/ r-l ~ ,0· - -4,0 H,t! SWITCHING TIMES VERSUS COLLECTOR CURRENT 0 5 / I V _1.0\' V ",QI- f- .r/ V I V o~ " b[Lf- 7 ~.~ - {o' V v- I I Ic"'IOOm~_ VCC"'3.0V 10 15 20 25 TURN ON BASE CURRENT (lBI) mA ITT ----2N2369A SILICON SWITCHING TRANSISTOR SEMICONDUCTORS HIGH SPEED NPN SILICON SATURATED SWITCHING TRANSISTOR The ITT 2N2369A is a NPN silicon planar epitaxial saturated switching transistor for applications at current ranges from 0.1 to 100 mAo High gain and narrow base region provide excellent radiation resistance. The 2N2369A can operate at clock rates above 10 MHz for commercial computer applications. • High IT: 675 MHz, typo • High Gain: 40 mln.@ Ic = 10 mA • Low Cob: 4 pI max. @ Vca = 5V • Low ton: 9 nsec typ.; • Low toll: 13 nsec typo ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage................................. 40 Collector-to-Emitter Voltage (shorted base) .... 40 Collector-to-Emitter Voltage (open base)......... 15 Emitter-to-Base Voltage .................................... 4.5 Collector Current (continuous) .......................... 200 Collector Current (10 sec pulse) ...................... 500 Junction Temperature (op. and stg.) .... -65 to +200 Total Power Dissipation @ Tc = 25 u C .............. 1.2 (derate 6.8 mW/oC above 25~C) Volts Volts Volts Volts mA mA oC Watts @Tc= 100 0 C ............. 0.68 Watts Total Power Dissipation @ T A = 25cC .............. 0.36 (derate 2.06 mW/oC above 25 o C) Watts ELECTRICAL CHARACTERISTICS @ T A = 25 0 C unless otherwise noted Symbol hFE1 VCE (sat) Min. Typ. Max. 40 40 20 66 63 50 120 120 30 20 71 Unit Conditions I c= 10mA, V CE= 1V I c= 10mA, V CE= 0.35V I c= 10mA, V CE= 0.35V, T = -55 o C I c= 30mA, V CE= OAV I c= 100mA. V CE= 1V 0.14 0.19 0.2 0.3 Vdc Vdc 0.17 0.28 0.25 0.5 Vdc Vdc 9-51 I c= 10mA, I B= 1mA I c= 10mA, I B= 1mA, T = 1250C Ic= 30mA, I B= 3mA I C= 100mA, I B= 10mA 2N2369A SILICON SWITCHING TRANSISTOR ELECTRICAL CHARACTERISTICS @ T A = 25 0 C unless otherwise noted (continued) Symbol Min. Typ. Max. 0.7 0.59 0.8 0.85 1.02 Vdc Vdc 0.9 1.1 1.15 1.6 Vdc Vdc VBE (sat) Conditione Unit Ic= 10mA,IB= 1mA I c= 10mA, I c= 1mA, T = -65 to +125.C Ic=- 30mA, I B= 3mA Ic= 100mA,I B= 10mA ICES 0.05 0.4 A VCE= 20V, V BE= 0 leBO 10 30 A VCB= 20V,I E= 0, T = 150°C fT 500 MHz 675 Cob 2.3 4.0 V CE';' 10V,I c= 10mA pf VCB= 5V,I E= ° Ic= IBI 10mA, I B~= -10mA Ts (charge storage time) 6.0 13 nsec ton 9.0 12 nsec Ic 10mA I Bl 3mA toff 13 18 nsec Ic 10mA I Bl 3mA I B2 -1.5mA BVCBO 40 Vdc Ic=10 A,IE-O BVCES 40 Vdc Ic= 10 A, VBE= 0 VCEO (sust) 1.2 15 Vdc Ic=10mA,IB=0 BVEBO 4.5 Vdc I E= 10 A, I c= 0 NOTES: 1. Pulse measurement: width 300 sec. duty cycle 2%. 2.Rating refers to a high-current point where collector-to-emitter voltage is lowest. CHARGE STORAGE TIME MEASUREMENT CIRCUIT '" I . ooon --',-+~JI '~I "ff " •••• 'IV v", .~Iiv 00011 " ••• ,11" 0"111,, ... ,.,., IlIIp ....... ·IOA ,,,.. ,","51/1,,, '~ o. .,y- ~~~:.::•.! .•. ".t ... I r.:;: ~ h SeIoI,I_. 0..111_" ,.,,"IIIU.'O:\ ItI"TIIII,' I"'.~ '0 -'0 IU'I-~ 0 ''',h,1 oIf •• n .~--- 0 -'i CIRCUIT uon ton "- loon to" MEASUREMENT " ooan 0, 10. V",IU.. 9-52 ... o,oon ~~' .0. . TIIIo.~I_ 0Irt,~rc"c2'" .on '----.i~_ S-C'_'._"~A ... tSOO"I.C '" 0005 'M~ v••• • ,,, ..... a-....., Vi.. • + IIV r ''" 0' 0 f'·' 01 "'till! .on o DOn o,oos o. 'f;'" - Ii 2N2369A SILICON SWITCHING TRANSISTOR TYPICAL COLLECTOR CHARACTERISTICS1 COLLECTOR CURRENT VERSUS COLLECTOR VOLTAGE #~ I/O-"~'" Y .. E 4.0 3 "" " -- 0 1.0 8 V ~~ 1/ /' V .J-.-- / 1/ I I / § 60 \ \ ~ -' 8 ~~ 00 0.1 .. ~ ~ E 4.0 ----Vv f--- - 050 rn ,t.. _u - ~ ~If\p. I- ~3.0 ,-- "G cr 2.0 030rnA .02.5rnA 0 I- I-- ~ - ~ IO~ ---- V _f-" ;3 . /'" u .OISmA ,OlOmA ,COSmA 00 4.0 / ./ 8.0 TAo « COLLECTOR VOLTAGE 'AmA k5'e 2.2r:.A 2.0mA E 80 i .~ 60 0 u 00 :;:::::. I-- ~/ ~~::: 0.1 0.2 COLLECTOR VOLTAGE (VeEI VOLTS .~ >--- jc: ~ ~ ~ e 4.0 C:::: ~ C ~ .06(1'1A !:! ~3.0 ""u2.0 c. .osrnA y '"0 V- u 0 u --- ------ 04mA l- ~ - ----------- oTm • o.~mAIS"O 0.3 0.4 (VCE) VOLTS 1.0 .03mA V / / /I I1II ./i/ / TA"·55°C - 00 //1 V, II 20'f---+---l ./ .OlmA 4.0 E80~--~~----~-4~~~~-- _u V I f-- ./ I - I----" / / 02mA F-- « ./ / /I '8- 0 8.0 COLLECTOR VOLTAGE 12 I. 0.4 COLLECTOR VOLTAGE IVeEI VOLTS NOTE: Single family characteristics on Transistor Curve Tracer 9-53 I.OmA C.SmA COLLECTOR CURRENT VERSUS COLLECTOR VOLTAGE « t.4rn~ 1.2mA O.SmA :;:::::::-' ~ 0//' .............- -- 0 '8- 0 W W /' "U40 '"t; ~ 20 ~....- ~ "z. [::::::- --1.6~ &. ;/'/""" 2 / / I. 12 (VeE I VOLTS COLLECTOR CURRENT .../ / il I "'==::-020",' U 0.4 0.3 V E R SUS C 0 LL ECTOR VOLTAGE ./V [11111111 . / // lA-ZSoC ../ /. '/III ../ '/ /I ~ 10"0 0.2 COLLECTOR VOLTAGE COLLECTOR CURRENT VERSUS COLLECTOR VOLTAGE 1060 ",.,,--- o:z.",p. I - - ~~~v I---f- (VeEI VOLTS COLLECTOR VOLTAGE -- /'~ ~ ~7 ..--;% ~ ~ V 20 I. 12 // v::-~ l---::Vh l;:%:-~6~ f..- l.0: ~ d '" C Ie-a 8.0 / " "u 40 V 1"'" I---- t5 ~~ '/~~ u .01 4.0 ~ )~ TA=125°C a: ..--I--~oo''''· °0 "E 80 ./ V V ~"," V Ir- ~ V /'" OZI l---"'" V 1/ / / / V /' ¥ V u 2.0 B j ......... ep-,,°i" r ~3.0 /' COLLECTOR CUiiRENT VERSUS COLLECTOR VOLTAGE TA:125°C (VCE) VOLTS I 2N2369A SILICON SWITCHING TRANSISTOR TYPICAL COLLECTOR CHARACTERISTICS, continued PULSED DC CURRENT GAIN VERSUS COLLECTOR CURRENT vc~ w JIJ l510' V ':'120 ~IOO .... ;z '"'"::> VERSUS f-- V ......- f--" ::: 40 " 20V Q ~ f-- f--" 0 0.01 mrw: III 0.1 -- f-c 2.0 :~ Qg II 1,0 ~= ~Jc ::l . ~ "f'..- v V II " 60 COLLECTOR CURRENT w \~ V ;Z w BO f- COLLECTOR SATURATION VOLTAGE Ie ~ 10 18 ~~O,5 :~ i'... "'"I'--1.0 10 ~ ~ 100 0.2 2SoC /h ::::::t:- r-., -55i C t? r25°C V 0.1 0.1 1.0 10 100 COLLECTOR CURRENT (Ie) rnA COLLECTOR CURRENT (le) rnA TYPICAL BASE CHARACTERISTICS1 COLLECTOR COLLECTOR CURRENT VERSUS BASE .. TA ,/ / 'L "'~5'C I " I E 80 Is",S.OmA 2 10m.A ___ ~ 60 I '"~ ::> " 40 ISmA_ I '" ~ "'"~ 20 " 20m.A ___ Q 00 TA ' II II III 1/ /I 1/ --- ~I/I 1/1 H" ~ril 1/ II III / 'fI IT HI I IJ 0.8III I 1.2 I I 0.4 BASE VOLTAGE (VeEI ...-50m.A -~5'C .. BO E 20lmA ~ 60 10'mA ...-40m.A I '"'" ::> u 40 'B" co: _30m.A 00 0.4 VOLTS f-TA'~5'C IB·bm.A I ffi 60 '~iA co: co: ::> " 40 2JmA co: Q .... "~ 00 BASE "' .. > ./ !:i Q -5~ f2.5C1 C z I .. 1M III °0.1 lf.--I- 1.0 10 COLLECTOR CURRENT (Ie) rnA VOLTAGE (VeE) VOLTS 9-54 V. ,......V" V /'" I I ~ U) 1.6 ~ I I !5 0.4 l - I 1.2 125 D C 12 ~ +A 'III 0.8 L III >0.8 II /I 0.4 L ~ 1.'6 40;m.A / 1.6 le·IOle C> r--H 20 O.B L2 BASE VOlTAGE (VBE ) VOLTS :; 1.2 N Q " ~ 5ar A ['-.. I 30~A_ f-- BASE SATURATION VOLTAGE VERSUS COLLECTOR CURRENT I I 2 40~A~ f-- / II I /I / I III I 8 E BO 5O~A_ I - I ~.omA I--: ~j 20 I.. I -- I ;:u COLLECTOR CURRENT VERSUS BASE VOLTAGE .. CURRENT VERSUS BASE VOLTAGE VOLTAGE 100 2N2369A SILICON SWITCHING TRANSISTOR TYPICAL ELECTRICAL CHARACTERISTICS COLLECTOR CURRENT Ie .IOmA, '813,0' mAIIB2~-1.5mA,./ 7;~~~~B~~I~ VCC·3.0V 50 0 ""'- 20 U> '":l 10 ;: "- 1\ ''/ /' 5.0 " 2.0 "~ 1.0 1.0 g " ...~ ~ 0 0: ,. 50 100 ':' 150 r-tf -3.0 -2.0 -1.0 ill ""' AMBIENT TEMPERATURE (TAJ·C 20 5.0 10 20 50 100 COLLECTOR CURRENT He) rnA I Hili o.. o.. 0 c' <250 ~ -4.0 ~ 2.0 '*' 0- I/) /' ~ §l --~-5.0 > V 6.0...-' 40,> "'~ "i V V eo V .,./ l>-V / 12 10 c DELAY TIME VERSUS BASEEMITTER OFF VOLTAGE AND TURN ON BASE CURRENT SWITCHING TIMES VERSUS AMBIENT TEMPERATURE SWITCHING TIMES VERSUS / ., 0 / / L :;1/ II 1/ 00 ! II II if ,,?9(:o ,/lc.,omA VCC· 3 .OV 20 50 10 20 TURN ON BASE CURRENT (lBI) mA EMITTER TRANSITION AND ouTPUT RISE TIME VERSUS TURN ON BASE CURRENT AND COLLECTOR CURRENT " VCC"'3.0 E -iii - I, 0- ~ c..- !5 '"~" 1.0 Z 0 z '"::> ~ / .,~ ~ / 30::: ~ ~ ~ I- 0 1.0 O~ V Vee ·3.CV / _SI a .",9 ·6.0 ~ -2.0 I\P~ A f-' - F::: ~ 6.0 n$ec Y 00 20 4.0 -6.0 lE " -4.0 I:: 0 ~ ...~ I 6.0 TURN ON BASE CURRENT I-I-- eo lei mA a I II "E -B.O r--- r--~j :"' •.1' ~ ~ -- > 1.0 r-- ..of- o· r-- '::'~'-- -"" "\.,l'~..rI'. ~ -4.0 "'o..o.. '-- Jt,I Q fb V 0.2 -:-:::::: V ror c~.J.? ~r- 'I' / / ./ r-r- I-Ij =~ r--r- .,.':o~ " -20 r--r-- i B ~o.. -I~ -10 o.. 0 0: ~/ ... ~ IC·3~mA TA -25-C 2.0 5.0 10 20 50 100 COLLECTOR CURRENT (Iel rnA ~ -25 V // // ~ 40Cme I I II 1+rt-/! V II STORAGE TIME VERSUS TURN ON AND TURN OFF BASE CURRENTS 0 z -2.0 r--r \ ~ VOLTS V \~oo~e 0.5 0.1 1.0 10 1/ II I ~ole 0: g STORAGE TIME VERSUS TURN ON AND TURN OFF BASE CURRENTS -", ~B.O ... ~O REVERSE BIAS VOLTAGE Ie. lOrnA -10 2.0 ~ 0 ~ STORAGE TIME VERSUS TuAN ON AND TURN OFF BASE CURRENTS "E '" i;l 0 I ~" COb '£"0 1.0 10 100 COLLECTOR CURRENT (Iel rnA 10 --w 5.0 2.0 "" I '1.0 " _1" ~e-t-.J " ~ - ~ §l ~ \ U> ,0· ~ ~~t.c 0- CONTOURS OF CONSTANT GAIN BANOWITH PRODUCT (fl) . "- 4.0-~ // l,··1" - BIAS vOLTAGE / I,.! V to CAPACLTANCES vERSuS REvERSE ::> -5 ~~ -.1'/ V II 1/ / / "~Wr-V ,,, r~r-V le· loomA VCC· 3 .OY 0 0 2.0 40 60 eo 10 TURN ON BASE CURRENT UBI) mA 9-55 V o· V II V VCC· 3,OV 00 ~ 10 I~ 20 25 TURN ON BASE CURRENT UBI) rnA I • 2N2369A SILICON SWITCHING TRANSISTOR TYPICAL CHARACTERISTICS, continued FALL TIME VERSUS TURN ON AND TURN OfF BASE CURRENTS FALL TIME VERSUS TURN ON AND lURN OFF BASE CURRENTS le· IOmA 1 ., cc· 3.OV V -5.0 E /' N ",.. V -" -4.0 - fS".o··oj/ !Z '"'" B -"0 /'" V '"~ /' ~ -2.0 0 Ii, ..~ /' / I- --r -- ii; -to / ' ">- 0 7'" ~ ./ 0 1 """ ->-=~ -20 i u -10 ~ -10 ~ z '"i:! 60 4.0 TURN ON BASE CURRENT aD IISII lY H,Otb,,l' 1-1-iJ'''0 #.. f- / 1/ V V- -5 TA ·25·C 5 15 20 u ~ /' V 1/ 10 ~ "u '" ~ 8 i:! V ~,/ 1 VCC· 3 .OV 0 a 20 40 a IS 24 32 COLLECTOR TO BASE VOLTAGE (Vca) VOL15 so ao -lcl"b~~_ "'CES 10 / '" ~'" 90 ~ 0 ~ /' ao 1\ Pulse 1\ g /' 10 TURN ON BASE CURRENT (I BI ) mA ~ ~ 1\ 70 I -5ffi 60 0.1/ 0 0 1 'c ·30mA u a ~b* ~ / I '/ / e:."r:.. LOWER LIMITING VOLTAGE VERSUS SOURCE RESISTANCE /' 1.0 / ~ -4.0 25 Vce -20V § / .". '"~ -2.0 / f-'7~*~.o'/-I':/ aa: -6.0 0 Ic·IOOmA IICC· 3-OV 10 i ii; is lOa " g vV V >- u ~"'. V pI-:::: \'2.f\\ot--' f- ~;L~l' =~ f-a.Of- COLLECTOR CUTOFF CURRENT :~ >- ~ V 1/ .1_" -10 E • ,,'0••<1;/ V f ., VERSUS AMBIENT TEMPERATURE 11. ,F V TURN ON BASE CURRENT (leI) mA COLLECTOR cuTOFF CURRENT VERSUS REVERSE BIAS VOLTAGE ':! .'Ii V mA -0 V o·:;:r a a 1 2.0 1/ JI -25 FALL TIME VERSUS TURN ON AND TURN OFF BASE CURRENTS " LVCEO- - 00 50 75 100 AMBIENT TEMPERATURE (TAl 9-56 125 "C IK -- 10K SOURCE RE~'STANCE (RS)OHMS I- 2N2480,2N2480A -- ITT- - - - NPN SILICON DUAL TRANSISTORS Package: SEMICONDUCTORS TO- 92 ABSOLUTE MAXIMUM RATINGS (each side) Characteristics Unit Collector-Emitter Voltage ................. ,.................. 40 Volts Collector-Base Voltage (2N2480) ..................... 75 Volts Collector-Base Voltage (2N2480A) .................. 80 Volts Emitter-Base Voltage .......................................... 5.0 Volts Collector Current .................................................... 500 mA Operating Junction Temperature .......................... 200°C Storage Temperature Range ................ -65 to +200°C Total Dissipation @T A = 25°C (one side) ...... 0.5 Watt Derate above 25°C ................................. 2.86 mW/oC Total Dissipation @ TC = 25°C ....................... 1.6 Watts Derate above 25°C .................................... 9.1 mW/oC Total Dissipation @ TA = 25°C (both sides) ... 0.6 Watt Derate above 25°C ................................. 3.43 mW/oC Total Dissipation@T C = 25 0 C ....................... 3.0Watts Derate above 25°C ..... : ........................... 17.2 mW/oC ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min 8VCEO" 40 Volts Ic=20mA.IB=0" BV CBO 75 80 Volts Volts (2N2480) IC = 100,uA. IE = 0 (2N2480A) 5.0 Volts IE Max 15 0.050 ICBO Unit Conditions = 100,uA. IC = 0 = = 0.020 ,uA ,uA ,uA 30 Volts. IE O. TA = 150°C VCB (2N2480) VCB = 60 Volts. IE 0 (2N2480A) 50 20 nA nA (2N2480) VBE (2N2480A) = 5.0 Volts. IC = (2N2480) IC = 100 ,uA. VCE (2N2480A) 20 35 = 0 = 5.0 Volts 30 350 (2N2480) IC = 1.0 mAo VeE = 5.0 Volts 50 200 (2N2480A) 9-57 2N2480, 2N2480A ElECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Svmbol Min Max Unit Conditions VCE(sat) 1.2 1.3 Volts Volts (2N2480) IC = 50mA.IB = 5.0 rnA (2N2480A) VBE(sat) 0.9 1.0 Volt Volt (2N2480) IC = 50mA.IB = 5.0mA (2N2480A) MHz IC = 50 rnA. VCE = 10 Volts. f = .20 MHz fT 50 Cob 20 18 pF pF (2N2480) VCB = 10 Volts. IE = 0 . (2N2480A) f= 1.0MHz Cib 85 pF (2N2480A) VBE 0.5 Volt.IC f == 1.0 MHz = = O. = 1.0 rnA. VCE = f = 1.0 kHz hie 1000 5000 ohms (2N2480A) IC h ib 20 35 ohms (2N2480A) IC = 1.0 rnA. VCB = 5.0 Volts. f 1.0 kHz 5.0 Volts. = hfe 50 300 hoe 4.0 16 umhos 8.0 dB NF (2N2480A) IC • Pulse Test: Pulse Width :S 300 J.Ls. Duty Cycle :S 2%. = 1.0 rnA. VCE = 5.0 Volts. f = 1.0 kHz (2N2480A) IC = 1.0 rnA. VCE = 5.0 Volts. f = 1.0 kHz IC = 0.3 rnA. VCE = 10 Volts. RS = 510 ohms. f = 1.0 kHz. BW = 1.0 Hz 2N2483. 2N2484 - ITT- - - - SILICON GENERAL PURPOSE TRANSISTORS SEMICONDUCTORS LOW LEVEL LOW NOISE NPN SILICON PLANAR TRANSISTORS • High Gain; 100 Min. @ I c = 10].lA (2N2484) The ITT 2N2483 and 2N2484 are NPN silicon planar transistors designed for application in lownoise. low-level, high-gain amplifiers in the audio through high frequency range. • Low noise; 3dB Max.@ Ic = 10].lA • High VCEO ;60 Vdc Min. ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Collector-to-Base Voltage............................. 60 Collector-to-Emitter Voltage (open base)..... 60 Emitter-to-Base Voltage................................ 6 Collector Current.... .............. ............. ............ 50 Junction Temperature (op. and stg·)··-65 to +200 Total Power Dissipation @ Tc = 25 cC .......... 1.2 (derate 6.9 mW/cC above 25 c C) @ Tc = 100 cC ........ 0.68 Total Power Dissipation @ T A = 25 0 C .......... 0.36 (derate 2.1 mW/oC above 25 o C) Volts Volts Volts mA cC Watts Watts Watts ELECTRICIAL CHARACTERISTICS @ 25 0 C unless otherwise noted. Symbol BVcBo LVCEO "2 BVEBO Min. 2N2483 Typ. Max. 60 60 6.0 60 60 6.0 hFE 40 75 100 175 80 140 200 230 280 120 30 100 175 200 250 500 10 VCE (sat) VBE(on) Min. 2N2484 Typ. Max. Conditions Unit Vdc Vdc \ldc I c= 10].lA Ic= 10mA Ic= 10].lA I C= I C= I c= I c= Ic= I c= I c= 1].lA, V CE= 5V 1OllA, V CE= 5V 10011A, V CE= 5V 500].lA, V CE= 5V 1mA, VCE= 5V 10mA, V CE= 5V 1011A, V CE= 5V, T A= -55 o C 200 290 375 430 450 430 800 0.2 0.57 0.35 0.7 Vdc Vdc I C= 1mA, I B= 0.1 mA I c= 100].lA, V CE= 5V 500 20 0.2 0.57 0.35 0.7 ICEO lEBO 0.1 0.2 0.1 0.1 10 10 2.0 10 0.1 0.2 0.1 0.1 10 10 2.0 10 nA A nA nA VCB= 45V VCB= 45V, T A= 150 0 C VCE= 5V V EB= 5V Cob 3.5 6.0 3.5 6.0 pF VCB= 5V, f = 1mHt ICBO 0.5 0.5 9-59 • I 2N2483, 2N2484 SILICON GENERAL PURPOSE TRANSISTORS ELECTRICIAL CHARACTERISTICS @ 25uC unless otherwise noted. (continued) Symbol 2N2483 Typ. Max. Min. Cib 3.5 hIe 2.4 2.0 80 1.5 hie hre hib 25 6.0 4.0 2.3 280 450 7.5 300 27 13 800 32 1.9 NF 2N2484 Typ. Max. Min. 3.5 3.0 2.0 150 3.5 4.0 2.6 400 Conditions Unit pF 6.0 V EB= 0.5V, f = 1 mHz I e= 5()J.lA, V eE= 5V,f = 5mHz I e= 500]1A, VeE= 5V, f = 30mHz le= 1mA, VeE= 5V,5 = 1KHz 15 425 27 900 24 800 32 Kohms le= 1mA, VeE= 5V, f = 1KHz X10-6 I e = 1mA, V eE= 5V, f = 1 KHz ohms I e=1mA, V eE= 5V, f = 1 KHz 4.0 1.8 3.0 dB I e= 1()J.lA, V eE= 5V, R G= 10K£1 B.W. = 15.7KHz3dB@10Hz&10KHz 1.9 4.0 1.8 3.0· dB 0.7 3.0 0.6 2.0 dB 4.0 15 4.0 I e= 1()J.lA, VeE= 5V, R G= 10K£1 f = 1 KHz, B.W. = 200Hz (Note 3) I e= 1()J.lA, V eE= 5V, R G= 10K£1 f = 10KHz, B.W. = 2KHz (Note 3) I e= 10]1A, V eE= 5V, R G= 10K£1 f = 100Hz, B.W. = 20Hz (Note 3) 25 10 dB Notes: 1. Pulsed width 300 sec; duty cycle 2%. 2. Lowest emitter to collector voltage. 3. Narrow band noise. TYPICAL CHARACTERISTICS . 0- ~ a: a: 13 a: tL~"~1 V ~ a / ~ 2 -' -" I f--tB =.005 '"a:a: " a: / :J 0 I- V rn :.l :3. IL 0 ~ 9 l). I 00 20 40 ~d~.l . I /' 4"'· ./ oV- VCE -COLLECTOR VOLTAGE-VOLTS MINIMUM DC CURRENT GAIN AT ~55·C / V 40 V 30 20 V 10 9l.001 z "'" 0- 50 I O\orn~ 20 "a: I I 0.01 0.1 Ie· COLLECTOR CURRENT-mA VCE 55V 700 f= r KHz .z 600 :J 500 i:!a: "-' .15 400 in 300 . -' -' 200 ~ 100 ~ '" 0 I- • 'r 2 -=- -" 00 60 • O.or 9-60 1i V ls··o05 tn j).- - r- \ . \ "'"z U 3 1.: Till IIII . I V 20 40 60 VCE -COL.LECTOR VOLTAGE-VOLTS .4 2~ 0.1 1.0 IC~COLLECTOR CURRENT-mA °0.001 f-- ;: -15~~~ - (iiO"" OUTPUT CAPACITANCE VERSUS REVERSE BIA S VOLTAGE IIII IIII ,/ 1/ /" '""5-' ~r 40 6 :J I K 9'~~ /' a: a: SMALL SIGNAL CURRENT GAIN VERSUS COLLECTOR CURRENT 70 60 ~ J / VCE - COLLECTOR VOLTAGE-\()LTS vERSUS COLLECTOR CURRENT VCE =5V V / .020mA a I- I a 60 ...- V .02~"'A ~ I- ~ o~o ~ 6 2 . / V o~" V a z / f.-t§,O"'. I/-", I- ./ V l 0 B -' E 0 6·/,o~or / ~~ 4 . X ~';~A ~ 2N2483 COLLECTOR CHARACTERISTICS ...... ;3 ~0- 2 ~ I - - '-I'E"O :J I I CD ,,0 00 12 16 .a Vca-REVERSE BIAS VOLTAGE-''(lLTS 4 2N2483, 2N2484 SILICON GENERAL PURPOSE TRANSISTORS TYPICAL CHARACTERISTICS 2N2483 COLLECTOR CHARACTERISTICS (continued) AVERAGE NOISE FIGURE VERSUS SOURCE RESISTANCE CONTOURS OF CONSTANT TRANSITION FREQUENCY veE =5V SPOT NOISE VERSUS FREQUENCY ..-~tt . tS ! I ill VeE- 5V 8 1\ m 1 w w g '"". 6 w • ~ u: '" w 15 "'z 15 f o '01...0-, ""-'"'-:,"","-'-ll-..I.-.L...I.~ 0 ~ 0::'" '" " _u 10-4 0 !2 _u I 2 z ~ 0::'" IC:1mA. R,·SOOfi. 'C=lmA, R.·5Kn z "- Ie -COLLECTOR CURRENT-rnA FIGURE r- POWER 8ANDWIOTHOF 15.7 KHZ 1 1 ill 10- 3 Rs·SOURCE RESISTANCE-OHMS 10- 2 II I 10- 1 I 10 f -FREQUENCY - me 2N2483 CONSTANT NOISE FIGURE CO.,.TOURS veE = 5V l''" t .IOOHZ l\ • !\\ \' 5.1\\ 0 '":r'" 0 5 u z ~ ir w oo w u oo £" ~ 6 8 10 \. IK- ~\ \ I. 500 NF (dB) I I . V r- \ 10 Ie . COLLECTOI:; l\ ) 'K~\ z ~ in ]:! I ~ BANDWIDTH 22KHZ \. lV 200 oo" 100 100 CURRENT- vA oo III " f,l II ,; "- I 10 VCE =5V f:IMHZ ./ 100 "''" ,. \1\ \ 6 ) 1\ 0 w u 1\ \\ \ z 2K ~ IKr- w u 500 oo => at L\~ 2 1\ 1\: ;-- NF(dB) I 200 100 001 I '- \ 01 '10 Ie - COLLECTOR CURRENT - ma 9-61 3 ~2 3 6 IKr- 8 I 500 •~ \ "- 200 100 I '-rr---- t-:- NF (dB) 10 ~ 100 IC -COLLECTOR CURRENT-II'" 8ANDWIDTH=200KHZ \ :r f,l 2K \ ~ Ie-COLLECTOR CURRENT-lolA ~ z w u NF(dB) '" 5Kl\: ~ 8['\. "0 ":r'? w u 3 IK- ~, V> 2 2K 500 oo V BANDWIOT H - 200HZ w u w u r-r-- r- I 200 100 I L\ ~ 2K veE =SV f = 1KHZ BANDWIQTH=2QHZ / 2N2483, 2N2484 SILICON GENERAL PURPOSE TRANSISTORS TYPICAL CHARACTERISTICS. 2N2483 NORMALIZED COMMON EMITTER TRANSFER CHARACTERISTICS PULSED DC CURRENT GAIN VERSUS COLLECTOR CURRENT EMITTER TRANSITION CAPACITANCE VERSUS REVERSE BIAS VOLTAGE VERSUS ... COLLECTOR CURRENT h;2 FVeE:5 V ~ r - - I : I KHz c u 4[\ 10 z 3 ~ 2 in z "'~ 1/ 10 hoe ~ f'-t- I u 0 0 4 2 6 001 0.1 8 02 VES-REVERSE 81AS VOLTAGE-VOLTS vERSUS VERSUS COLLECTOR VOLTAGE . h~e " r--- r--- Icl'i6m1 TA'25"C 1 i4 ~ i2 k"V ..... ~ " h,,~ ,""",~I-'r- 'l~ 0.9 hie and hfe t'::t 111 1 OBI I I o 5 10 15 20 VCE -COLLECTOR VOLTAGE-VOLTS hi~~ JUNCTION VCE ~ 05 I 2 5 10 Ie - COLLECTOR 5V Ie = I.Oma t- TEMPERATURE h re and h~ i3 hf. ~~~ 01 le· O >- ~ /h re hie and h re '2 >- ~ ~/ h" i2 V 1.1 / 1.0 A o.g vff 0.8 0.7 f-:-h oe IL~ :/:: hf. 061-'"" hie 05 -100 -50 0 50 100 Tj - JUNCTION TEMPERATUAE-"C 2N2484 COLLECTOR CHARACTERISTICS , "" >- i:j ~ "' 0 ~ 8 _u (j 10m~y ~.o9mA V 8~1/ .'" ~ o 6 ./ lr~"'>_ 2 V .L L ~ O~l 0·"'~ L. 4 . 102'1' / 1 L / / /' V-r-t'B~OlmA 00 ""E ~ I- ffi "''"u=> "' ~ I- a: => u "' ~ 8 ~ ~ 8 lL "," ~1L' /.../"' ~ 8~.~ / 6 4 rz:: ~C ./' L ~~ V I-O 10 20 30 40 50 60 VCE -COLLECTOR VOLTAGE-YOLTS L 2 002 00 .L ....... _u u V 10 1 20 - 1" 30' 40 50 60 VeE - COLLECTOR VOL rAGE-VOLTS 9-62 2N2483, 2N2484 SILICON GENERAL PURPOSE TRANSISTORS TYPICAL CHARACTERISTICS 2N2484 COLLECTOR CHARACTERISTICS (continued) SMALL SIGNAL CURRENT GAIN VERSUS COLLECTOR CURRENT MINIMUM DC CURRENT GAIN AT -5S"C VERSUS COLLECTOR CURRENT z VCE =5V z ;; '" I- ~ 'a ~ 500 f=lk.c 0 u W z 40 ~ 400 30 . 20 in 200 ~ 100 .J 2S"C 300 z '" .::J ,/ 10 '6.001 0.01 0.1 1.0 001 0.1 . 4 ['j z 3 u 1f . \..\~\ U ~OOI 0.01 0.1 I IC" O 1 00 2 4 a 6 REVERSE BIAS VOLTAGE - VOLTS TRANSITION FREQUENCY CONTOURS OF CONSTANT '"~ I- IOI+-+Ht-HH-rt+\N'<'t:"'d'''1 w '"~ r--- I- ~ '- 2 u 'E=O I "I 11r·~ql+lH-+ 11-+1++I-++tIH 100:::: r---- '!' 1.0 I! 1 's,~~'f'f 1f!-+-HlH----I ~~t..s..-rrll I 200 2 OUTPUT CAPACITANCE VERSUS REVERSE BIAS VOLTAGE ~~400 " 30ol-ttlIb:HFHH-t-:lj1H-tttt--1 a:- ... '" D ~ Ocr I- :ii \ .#:.- 3 Ie - COLLECTOR CURRENT-mA PULSEO OC CURRENT GAIN VERSUS COLLECTOR CURRENT :i . lI- III 0.001 Ie-COLLECTOR CURRENT-mA >= in z ~ "55'C~ I-trrt- 0- ~ 4~ 0 V u . ';> '"z I- :> ~ '"i3 u VCE ,.5V ;; 50 EMITTER TRANSITION CAPACITANCE VERSUS REVERSE BIAS VOLTAGE 12S"C 00 I Ie - COLLECTOR CURRENT-mA a '. REVERSE 12 I-0.1 I IC-~OLLECTOR CURRENT-mA 16 81AS VOLTAGE - VOLTS 2N2484 CONTOURS OF CONSTANT NARROW BAND NOISE FIGURE VCE -5V '" :> "'; 5. l\\I\ w u z 2. ::: '"uw I. ~ '5 5l ",' 4 .\ a NF (d BI ) \ / , \ 10 ~4 I 10 IC -COLLECTOR ,.'" '"'i' ['j z 12 200 100 3 \.1'6 500 VCP 5V f 100HZ BANDWIDTH- 20HZ r-i--" 100 CURRENT-~A ~ ::: '"w "'":> 5l f'lKHZ 51(\ VCE -5V BANDWIDTH-200HZ .": .'\ 2. I. '" '. '\ 6 SOO 200 a!' 10°1 I '\ 3 I- NFlda) I II 5.\: ['j z 2. \. ~ I. l'., 500 ~ . :;; '"tl '5 5l a BANDWIDTH-2KHZ ~. ,.'" "'i' 2 f-IOKZ I 10 100 1~-COLlECTOR CURRENT- ... A 9-63 ,/ 3 4 6 '- 200 '" 2_ ~e. NFldB) 100 I 10 100 IC-COLLECTOR CURRENT- ... A 2N2483, 2N2484 SILICON GENERAL PURPOSE TRANSISTORS TYPICAL CHARACTERISTICS 2N2484 CONTOURS OF CONSTANT NARROW BAND NOISE FIGURE (continued) f· I MHZ veE z5V BANDWIDTH' 200 KHZ J~ 1\ "'" ~z J: III \( : ,I ,*~ 2Kt-, ~ ! l\~\ \\!M.2 I I l'\ ,\' IK ~ "'u'" ~" I rr 100 001 III! , I) i; NF (dB) ,"-: 200 l; I ,,L-/' :\ 500 Y- i ?' 10 01 Ie-COLLECTOR CURRENT-rnA 2N2484 NORMALIZED COMMON EMITTER TRANSFER CHARACTERISTICS AVERAGE SPOT NOISE f-- VCE 5 m "''" ""0: "' '"g "' '" g '~~ 2 I 10 VERSUS =V~E.'5~ hoe COLLECTOR TA =25°C h" hie ANO hre --- I~ ;;-t; 12 1.1 hf~ 10 _,hi'~ 0,1 0_00 .1 0.2 0.5 I 2 5 10 Ie-COLLECTOR CURRENT-mA /$ ...,=- ~C'\~ IK 2K 5K 10K 20K 50K d. 0.80 ):::: ~ hh" ~.P \ :::; I- ~ - h~ /,Vy / /~ " I-- V /p JUNCTION ~. f- f- 1.2 &~f f- f- lO 07I--hl'~ 15 20 VCE -COLLECTOR VOLTAGE-VOLTS 9-64 I I -/ D. 061---10 I l'1ie~ h" 0,8 f-- hoe / ' , / h,. 5 TEMPERATURE 14 VcC 50V Ie =1 OmA 13 13 \ '=:::- Tf 'lJ vERSUS VOLTAGE 1~"~m1 \h oe =,,'KHZ 10 !? ,v Rs-SOURCE' RESISTANCE -OHMS f -FREQUENCY-me VERSUS COLLECTOR CURRENT 5V ,c,' I 0 10-1 E k- ~OWER BANDWIDT~ OF 157KHZ ~~ ~ 10-2 FIGURE 4l\,\ Z 10-3 NOISE VERSUS SOURCE RESISTANCE FIGURE 05 -100 i I i n,e hii ·50 0 50 100 Tj - JUNCTION TEMPERATURE-oC ITT ----2N2904A, 2N2905A, 2N2906A., 2N2907A SILICON GENERAL PURPOSE TRANSISTORS SEMICONDUCTORS The ITT 2N2904A-7 A are PNP silicon planar epitaxial general purpose transistors for applications at current ranges from 0.1 to 500mA. Low saturation voltage and fast switching times make the 2N2904A, 5A ideal for core driving. The flat gain over a wide current range gives good linearity in amplifier circuits. High breakdown voltage allows large signal swing in switching and amplifier. circuits. Designed to complement the ITT 2N2217 thru 2N2222 NPN types. GENERAL PURPOSE PNP SILICON PLANAR EPITAXIAL-TRANSISTORS • High Voltage: ·60V min. • Low VeE (sat): 0.4V@ 150mA • hFE; guaranteed from 100 A to 500mA ABSOLUTE MAXIMUM RATINGS 2N2904A2N2904A 2N2905A 2N2907AUNITS CHARACTERISTICS Collector-to-Base Voltage ...................... . Collector-to-Emitter Voltage (open base) .. BVcoo LVCEO"l BV EOO h,,' VeE(sat) , -60 -60 Volts Volts Emitter-to-Base Voltage ......................... . Collector Current (continuous) ............... . Junction Temperature (storage) ............ . Total Power Dissipation @ Tc = 250C ... . Derating factor above 25oC ............. . -5 -5 600 600 -65 to 200 3.0 1.8 17.3 10.3 Volts mA oC Watts mW/oC Total Power Dissipation @ T A = 25 0C ... . Derating factor above 25 oC ............. . 0.6 3.43 Watts mW/oC ELECTRICAL CHARACTERISTICS SYMBOL -60 -60 2N2904A 2N2906A MIN. MAX. -60 -60 -5 40 40 40 40 40 75 100 100 100 50 120 -0.4 -1.6 @ 25°C unless otherwise noted. 2N2905A 2N2907A MIN. MAX. -60 -60 -5 0.4 2.28 Vdc Vdc Vdc 9-65 Ie= -101'A Ie= -10mA IE= -101'A Ie= Ie= Ie= le= Ie: 300 -0.4 -1.6 CONDITIONS UNIT Vdc Vdc -1001'A -1mA -10mA -150mA -500mA Ie= -150mA le= -500mA VCE= VCE= VCE= VCE= VtE= -10V -10V -10V -10V -10V 10= -15mA 1,= -50mA 2N2904A, 2N2905A, 2N2906A, 2N2907 A SILICON GENERAL PURPOSE TRANSISTORS ELECTRICAL CHARACTERISTICS SYMBOL 2N2904A 2N2906A MIN. MAX. V,e(sat) I @ 25°C unless otherwise noted. 2N2905A 2N2907A MIN. MAX. le= -150mA le= -500mA 1,= -15mA 1,= -50mA 10 10 50 50 nA !LA nA nA Vc,= Ve,= VeE = VeE = -50V -50V -30V -30V TA=150'C V'E=0.5V V'E=0.5V 8 30 pF pF Ve,= -10V 'VE,= -2V f=100KHz f=100KHz le= -50mA f=100MHz Ic- -150mA Vee= -10V VeE = -20V -1.3 -2.6 I, 10 10 50 50 Cob C'b 8 30 leEx h" 2 2 10 td CONDITIONS Vdc Vdc -1.3 -2.6 Ic,o UNIT (continued) 10 ns 1,,- -15mA -:u: ~ 200 V 0 IK '" 40 I, I. 40 ns 80 ns I - ~ SCOPE 50 - le= -150mA I" =1" =15mA Vee= -10V "5 IK 37 °=U=F~ sctE -30V I 30 If Notes: 1. Pulsed width :0; 300 ~sec; duty cycle <: 2%. 2. Lowest emitter to collector voltage, 9-66 ns ~ 50 _ Fa ~oo_ 6' 2N3011® ITT- - - - HIGH-SPEED NPN SILICON SATURATED SWITCHING TRANSISTOR Package: TO-1 8 SEMICONDUCTORS The ITT 2N3011 is an NPN silicon planar eptiaxial transistor designed specifically for high-speed saturated switching applications in the 50-100 mc range at current levels from 100 microamperes to 100 milliamperes. It is suitable for most small-signal. RF. and digital type circuits. ABSOLUTE MAXIMUM RATINGS (Note 1) NOTES: Characteristics Unit Collector-Base Voltage ........................................ 30 Volts Collector-Emitter Voltage .................................... 30 Volts Collector-Emitter Voltage (Note 4) .................... 12 Volts Emitter-Base Voltage .......................................... 5.0 Volts Total Device Dissipation @: TC = 25°C (Notes 2 and 3) ........................ 1.2 Watts TC = 1oooe (Notes 2 and 3) ..................... 0.68 Watt TA = 25°C (Notes 2 and 3) ....................... 0.36 Watt Storage Temperature ...................... -65°C to +200 °C Operating Junction Temperature ....... 200°C Maximum Lead Temperature (Soldering. 60 sec Time Limit) ......... 300 0 e Maximum (1) These ratings are lim~ing values above which the servo iceability of any individual semiconductor device may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle (3) These ratings give a maximum junction temperature of 200°C and iunction-to-case thermal resistance of 146°C/watt (derating factor of 6.85 mW/oC); iunctionto-ambient thermal resistance of 486°C/watt (derating factor of 2.06 mW/oC). operations. (4) Rating refers to a high-current point where collectorvoltage is lowest. to-em~ter (5) Pulse Conditions: length = 300psec; duty cycle = 1%. (6) See switching circuits for exact values of IC' 181' and 182 , ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Conditions hFE 30 70 120 hFE 25 75 IC = 30 mAo VCE = 0.4 Volt (Note 5) hFE 12 50 IC = 100 rnA. VCE = 1.0 Volt (Note 5) IC = 10 rnA. VCE = 0.35 Volt (Note 5) VeE(sat) 0.17 0.2 Volt IC = 10 mA.IB = 1.0 mA VeE(sat) 0.18 0.25 Volt IC = 30 rnA. IB = 3.0 mA VeE(sat) 0.15 0.3 Volt Ic=10mA.18= 1.0mA VCE(sat) 0.3 0.5 Volt Ie = 100 rnA.IB = 10 mA 0.8 0.87 Volt IC = 10 mA.IB = 1.0 mA VBE(sat) 0.9 1.15 Volts IC = 30 mA.IB = 3.0mA VBE(sat) 1.1 1.6 Volts IC = 100 mA.IB = 10 mA VBE(sat) hfe Cob 0.72 4.0 6.5 2.3 IC = 20 rnA. VCE = 10 Volts 4.0 pf 9-67 IE = O. VCB = 5.0 Volts 2N3011 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Svmbol Min ICES ' CES (85°C) Conditions Typ Max Unit 0.05 0.4 p.A VCE = 20 Volts. VSE = 0 1.0 10 p.A VeE = 20 Volts. VBE = 0 SVCBO 30 Volts 'C=10p.A·IE=0 SVeES 30 Volts IC = 10p.A. VEB = 0 VCEO(sust) 12 Volts Ie = 10 rnA (pulsed).IB = 0 BV EBO 5.0 Volts 'E = 100p.A. Ie = 0 TS 13 nsec Ie = 'B 1 ~ 10 rnA. 'B2 ~ -10 rnA (Note 6) ton 15 nsec Ie ~ 30 rnA. 'B 1 ~ 3.0 rnA (Note 6) toft 20 nsec IC ~ 30 mA.IB1 ~ 3.0 rnA. 'B2 ;::: -3.0 rnA (Note 6) SCHEMATIC CHARGE STORAGE TIME - CONSTANT TEST CIRCUIT 0=-U ~L Yin -10-- 'A" 890A I 0.0023 ViIIAIi. Tim, "'" InHC To Sampling Oscilioleolll Input Imp,dane... 504 Rise Ti... :! I"lte 9: 10V - VIII RII. Tlml I,SI thon I nsec PW==:300 nsec c 2% t..-!." MEASUREMENT CIRCUIT VBB 10011 :-FI-.. . . Vln Puis. Source Rise nme < I nsec Puis' Width> 200nsec lin' SOil 0.1 o 0.0023 I 11 v· -9 Out, C,el. .6v -. v--t'---::;:::::=:::;= 91A -\?. .'0 - Pulse G.n,ralor Soure. 'mp.daM.· 504 IKJl Voul "- SODA 56A 01 SODA 2KD -Wlo---C 100 11 To 51mpll ng Scope Rise nme < Insec Input l .. lOOK .". ToIf , Vee' 2V VBB • 7V Ton' Vee - 2V VBB Grounded Vln • -13V Vin -7V 9-68 2N3053 ITT ----NPN SILICON SWITCHING AND AMPLIFIER TRANSISTOR Package: TO-5 SEMICONDUCTORS NPN SILICON SWITCHING AND AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristics Unit Collector-Emitter Voltage .................................... 40 Volts Collector-Base Voltage ........................................ 60 Volts Emitter-Base Voltage ............................................. 5 Volts Collector Current - Continuous .......................... 700 mA TotalOevice Dissipation @ TC = 25°C ............. 5 Watts Derate above 25°C ................................. 28.6 mW/oC Operating Junction Temperature Range ............ 200 °c Storage Temperature Range ............... -65 to +200 °c ELECTRICAL CHARACTERISTICS (T A Max = 25°C unless otherwise noted) Symbol Min Unit Conditions BVCEO 40 Volts IC = 100,uA.IE = 0 BV CER 50 Volts IC = 100 mAo RBE = 10 ohms BV CBO 60 Volts IC = 100,uA.IE = 0 BV EBO 5 Volts IE = 100,uA. IC = 0 I CEX 0.25 ,uA VCE 7" 60 Volts. VEB(off) IBL 0.25 ,uA VCE hFE 25 hFE 50 250 = 1.5 Volts = 60Volts.VEB(off) = 1.5 Volts IC = 150 mAo VCE = 2.5 Volts IC = 150 mAo VCE = 10 Volts' VCE(sat) 1.4 Volts IC = 150mA.IB = 15mA VBE(sat) 1.7 Volts IC = 150mA.IB = 15mA VBE(on) 1.7 Volts IC = 150 mAo VCE = 2.5 Volts MHz IC = 50 mAo VCE = 10 Volts. f = 20 MHz fT 100 Cob 15 pF VCB = 10 Volts. IE = O. f = 140 kHz Cib 80 pF VBE = 0.5 Volt. IC = O. f = 100 kHz . Pulse Test: Pulse Width = 300,u S. Duty Cycle = 2% 9-69 2N3502,2N3503,2N3504,2N3505® Packages: PNP SILICON HIGH CURRENT SWITCHING TRANSISTORS 2N3502/03. TO-5 2N3504/05. TO-18 These ITT PN P silicon planar epitaxial transistors are designed for digital and analog applications at current levels up to 500 milliamperes. Their high beta. high fT at high current. high LVCEO' and low noise figure make them ideal for use as line drivers. memory applications and low-noise amplifiers. ABSOLUTE MAXIMUM RATINGS (Note 1) Characteristics Unit Storage Temperature ....................... -65°C to +200°C Operating Junction Temperature ....... 200°C Maximum Total Device Dissipation @: TC = 25°C (Notes 2 and 3) (2N3502. 2N3503) ...................................... 3.0 Watts (2N3504. 2N3505) ...................................... 1.3 Watts . :rA = 25° C (Notes 2 and 3) (2N3502. 2N3503) ........................................ 0.7 Watt (2N3504. 2N3505) ........................................ 0.4 Watt Collector-Base Voltage (2N3503. 2N3505) ..............................:: ..... -60 Volts (2N3502. 2N3504) ..................................... -45 Volts Collector-Emitter Voltage (Note 4) (2N3503. 2N3505) ..................................... -60 Volts (2N3502. 2N35,04) ..................................... -45 Volts Emitter~Base Voltage (2N3503. 2N3505) .................................... -5.0 Volts (2N3502. 2N3504) .................................... --5.0 Volts Collector Current (Note 2) (2N3502. 2N3503. 2N3504. 2N3505) ...... 600 mA ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min Typ 120 Max Conditions Unit IC = 10~A. VCE = -10 Volts IC = l00~A. VCE = -10 Volts 200 IC = 1.0mA,VCE = -10 Volts 140 270 IC = 10 mAo VCE (Note S) 100 lS0 hFE 2N3S03.2N3S0S. 2N3S02.2N3S04 80 hFE 2N3S03.2N3S0S. 2N3S02.2N3S04 120 hFE 2N3S03.2N3S0S. 2N3502.2N3S04 13S hFE 2N3S03.2N3S0S. 2N3S02.2N3S04 hFE 2N3S03.2N3S0S. 2N3S02.2N3S04 300 9-70 = = -10 Volts IC lS0 mAo VCE (NoteS) = -10 Volts 2N3502,2N3503,2N3504,2N3505 ELECTRICAL CHARACTERISTICS (T A Symbol = 25°C unless otherwise noted) Min Typ Max Conditions Unit IC = 500 mAo VCE (Note 5) = -lOVolts hFE 2N3503.2N3505. 2N3502.2N3504 50 70 hFE 2N3503.2N3505. 2N3502.2N3504 115 160 300 VBE(sat) 2N3503.2N3505. 2N3502.2N3504 -0.9 -1.0 Volt IC = 50 mAo IB see Note 1) VBE(satl 2N3503.2N3505. 2N3502.2N3504 -1.0 -1.3 Volts IC = 150 mAo IB see Note 1) VCE(sat) 2N3503.2N3505. 2N3502.2N3504 -0.08 -0.25 Volt IC = 50 mAo IB see Note 1) VCE(sat) 2N3503.2N3505. 2N3502.2N3504 -0.18 -0.4 Volt IC = 150 mA, IB see Note 1) = 15 mA (Pulsed. hfe 2N3503.2N3505. 2N3502.2N3504 2.0 IC = 50 mAo VCE (f = 100 me) = -20 Volts VCEO{sust) 2N3503. 2N3505. 2N3502.2N3504 -60 -45 ton 2N3503.2N3505. 2N3502.2N3504 20 toff 2N3503.2N3505. 2N3502.2N3504 40 h FE (-55°C) 2N3503.2N3505. 2N3502.2N3504 ICES 2N3503.2N3505 0.07 10 nA VCE = -50 Volts. VBE = 0 ICES 2N3502.2N3504 0.05 10 nA VCE = -30 Volts. VBE = 0 BVCBO 2N3503.2N3505 2N3502.2N3504 -60 -45 Volts Volts IC = 10~A.IE = 0 BVEBO 2N3503.2N3505. 2N3502.2N3504 -5.0 Volts IE = 10 ~A. IC = 0 Cob 2N3503.2N3505. 2N3502.2N3504 4.5 8.0 pf IE = O. VCB = -10 Volts CTE 2N3503.2N3505. 2N3502.2N3504 15 25 pf IC = O. VEB = -0.5 Volt 50 IC = 50 mAo VCE 2.50 = 2.5 mA (Pulsed. = 15 mA (Pulsed. = 2.5 mA (Pulsed. Volts Volts IC = 10 mA(pulsed).IB (Notes 4 and 5) 40 nsee IC ~ 300 mA.IBl ~ 30 mA (Note 6) 100 nsec IC ~ 300 mA.IBl ~ 30 mAo IB2 ~ -30 mA (Note 6) 100 9-71 = -1.0 Volt IC =0 = 50mA,VCE = -l.OVolt 2N3502,2N3503,2N3504,2N3505 ElECTRICAL CHARACTERISTICS (T A Symbol NF = 25°C unless otherwise noted) Min Conditions Typ Max Unit 1.0 4.0 dB IC = 30p.A. VCE (Note 7) 2N3503.2N3505. 2N3502.2N3504 = -5.0Volts I CBO (+150) 2N3503.2N3505 10 P.A VCB = -50 Volts. IE = 0 ICBO(+150) 2N3502.2N3504 10 p.A VCB = -30 Volts. IE = 0 VCE(sat) 2N3503.2N3505. 2N3502.2N3504 -1.6 Volts IC = 500 rnA. IB see Note 5) VBE(sat) 2N3503.2N3505. 2N3502.2N3504 -2.0 Volts IC = 500 rnA. IB = 50 rnA (Pulsed. see Note 5) -0.5 SMALL SIGNAL CHARACTERISTICS (f = 50 rnA (Pulsed. = lkc) Conditions Typ Max Unit hie 1050 2300 Ohms IC = 10mA.VCE = -10 Volts hoe 110 800 umhos IC = 10 rnA. VCE = -10 Volts h re 240 1500 xl0- 6 IC = 10 rnA. VCE = -10 Volts 200 420 Symbol hfe Min 135 Ic = 10 rnA. VCE = -10 Volts NOTES: (1) These ratings are limiting values above which the serviceability of any individual semiconductor may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. (3) These ratings give a maximum junction temperature of 20QoC and junction-to-case thermal resistance of 58.3°C/watt (derating factor of 17.2 mW/oC) for the 2N3502 and 2N3503. and 146°C/watt (derating factor of 6.85 mW/oC) for the 2N3504 and 2N3505: junction-to-ambient thermal resistance of 250°C/watt (derating factor of 4.0 mW/oC) for the 2N3502 and 2N3503. and 438°C/watt (derating factor of 2.28 mW/oC) for the 2N3504 and 2N3505. (4) Rating refers to a high-current point where collector-ta-emitter voltage is lowest. (5) Pulse Conditions: length = 300 J.lsec: duty cycle = 1%. (6) See switching circuit for exact values of I C. I B 1. and I B2' (7) f= 1.0Kc: RS = lOKI? SCHEMATIC FIGURE 1 - TON AND TOFF TEST CIRCUIT ·30V 4.0V 0.47 Vour f---o TO SAMPLING 330 68 OSCILLOSCOPE tr - ./ ~r o~ w a 0: 12 ~Io."'~ V ~ l- geo ~ o~ '1'40 J / OozrnA U :;;; 1/ \ I I 0 '8=0 10 0 010203040 20 40 30 VeE -COLLECTOR'EMITTER VOLTAGE-VOLTS VCE - COLLECTOR-EMITTER VOLTAGE-VOLTS VCE -COLLECTOR-EMITTER VOLTAGE' VOLTS ..... i-'" I 0 o_~,.O / Collector Current vs. Collector Voltage. High Base Current l ".,>;0- :::::: ::::: ~ ~ .."~ 800 ~~550;AA '~~ :;...: ....25m~ ...- 3~~,i ~V '1/ :,....- f-"" >- ~ ~ v.. / - 600 i3 lr..;I' V 0: ~ 400 ~ - - 15mA loLA I 5mA f/ J'/' 0 '7 -'" 2~ 200 01' 0 oa 04 I I. 12 IB"'O VCE -COLLECTOR-EMITTER VOL lAGE-VOLTS ~OLLECTOR SATURATION TA=25°C /. V f- ~},.-~ 40rnA ~ % V "~BOO f- ~~t-:j;Z ,..... i.- O",J> ~"'~ ffi II.: :/' l.- ~ ~ 600 ~,oo [;l j 0 V 200 9 , r ~ ........ ,4V ..... ~ V 1'1' 011' 0 0.' ~ ~ - I ~b1c, ~ ~ .- ":...E 800 f- _).35'!'A7·7;t/" ~ 30mAm? ~ V ~ a 600 ~mL = 0: I I I I 0 " 1,'/ ~ 400 j ';> JJ, V 200 9 0"0 " VOLTAGE "" 18"'0 OB 0.4 I." 1.2 COLLECTOR CURRENT ,-. Z 1->0.4 2S·C ~ E;;;: 0 10 i3 g VI BO ;,.- ./ ,/" 0 ~ .'" II ~ 100 2J.b.\ If \ JJc~ I--tftt..... ~ 40 ~~ ~~~·C 10 V ll!0: oooC,!) IOO·C [11 '"z" 120 I- g~ ~ - VCE" 5.0V @5 go .• >-' U'" ~!;l ~~ ij>; '" §o.• IQmp., PULSED DC CURRENT GAIN VS _1~Jlbl'B !:i ~ -:IA \smA. VeE-COLLECTOR-EMITTER VOLTAGE-VOLTS VCE-COLLECTOR-EMITTER VOlJAGE-\IOL.TS VS COLLECTOR CURRENT . ...- ..- 11/ /' 0 IB-O O.B ~ 0: 2.0!TI~ II J- i.- 01--10 10 100 11 Ie-COLLECTOR CURRENT-mA Ie -COLLECTOR CURRENT-mA 9-75 2N3724, 2N3725, 2N4013, 2N4014 SILICON SWITCHING TRANSISTORS COLLECTOR CHARACTERISTICS 2N3725 2N4014 Collector Current vs. Collector Voltage. low Base Current « E .:. 16 ~ a: G 12 a: ~ ~ 8.0 84 2 .0 ~ o· I ~. V ~ / // E ;..z \4(f\P- a w a: ~ V r-- VI ~ mA "..... LL =-o,oe ~ V 40 a: ~ 1.0 w ?'1-~0"'V .."" 14.."" _f-P'" loa ~"" 0 \ o.04rn!;: 20 I-p i--' 0-10'" if "--'--' O.02mA 0 12 60 r..:: 4.0 1-1---1"'0 °'1'1 I I fiB~O \ 2 '8=0 0 BO 0 20 40 SO BO VeE -COLLECTOR-EMITTER VOLTAGE-VOLTS VeE -COLLECTOR-EMITTER VOLTAGE- VOLTS VCE - COLlECTOR-:MtTTER VOLTAGE-VOL T~ ~~I IS ~ ~ o 200 --- TA=25°C :;..- ;...- -,~-.OJ "" I E I 800 0: 15mA. 10mA '/ 400 ~ ~ 0 1> " 200 tmj- II iB~L II" ) 0 1.6 J' _L 04 ° OB 16 12 VCE~COLLECTOR -EMITTER VOLTAGE -VOLTS PULSED DC CURRENT GAIN YS COLLECTOR CURRENT ~ VCE=5.0Y z '< II '"z 120 I- IJ frl~ ~1! ~ ~02 Q 5 ~~ 8~ G ICOOC 1.0 " ~~ ¥ 40 w 1!10 v n -sl.l .++ ~ II ,/ /' "- -~5·C I I BO 2~·b ,/ i:! 0: 'IJ 'f.~O.4 0 .....zom. " 0 ~ -v.. .- -'.Ii.~V .F/ /' 600 VCE - COLLECTOR -EMIT TER VOLTAGE-vOL T5 leU !! ~ ~O.6 " - i:! COLLECTOR SATURATION VOLTAGE VS COLLECTOR CURRENT '"~ - z>- 40m.> ;...~~ /.,"./ ..... ~ O~ LO 100 Ie -COllECTOR CURRENT -mA '" 10 100 II Ie-COLLECTOR CURRENT-mA 9-76 \ \ '- 2N3724, 2N3725, 2N4013, 2N4014 SILICON SWITCHING TRANSISTORS COLLECTOR CHARACTERISTICS 2N3724 2N3725 2N4013 2N4014 Collector Current vs. Base-Emitter Voltage TA=25°C ., E ~ a'" IOOmA ~/'40mA GO~A IL 800 1'~Om~ - - GOO ,-- f- .", 0 I 1 200 '/ o. BASE SATURATION VOLTAGE vs AMBIENT ... 0 >- "'!:i ~ z ~~ ~ iii .... I~ 0.4 V ,/ ~ !~ ~ -- _55°C "' ~~O.8 ~ -~ 100 10 Ie-COLLECTOR CURRENT-mA CONTOURS OF CONSTANT BANDWIDTH PRODUCT (fr) ~ c:: :::il ~~ 35J!!t / . 0 ~ 0.1 1.0 TTtt!l1 50 100 ,///, 1.2 0.8 0.' COLLECTOR CUTOFF CURRENT VS REVERSE ... BIAS VOLTAGE T~'25!C - >- 04 ! "./' 0.3 V ~ ~ V 02 ".- '" 8::J 0.1 a a 25 50 TA-AMBIENT 75 100 TEMPERATURE .oC ? ~ 0.1 a a 6 ~ ",5 ~ ~4 "'. / If >~ 2 I 'oil 1 / / L 20 30 V '0 I ~ ~oJ J L ./ 0 V / ~~oL .,II V ..~"g 500 60 t-ol/i ~ ~3 'e-COLLECTOR CURRENT-rnA 40 CURRENT AND REVERSE BASEEMITTER VOL rAGE VOLTAGE '"~ V 20 VCB -COLLECTOR-BASE VOLTAGE, VOLTS DELAY TIME VS TURN ON BASE INPUT AND OUTPUT CAPACITANCE VS REVERSE BIAS 1.6 lIeE-BASE- EMITTER VOLTAGE-VOLTS ~ ~ r--b:!: W~~'/ 'f '/I '/ Ill, a a 1.6 1.0 r--- ts~50MHZ ..J ..J 12 V 400MHZ/ LO ~ ./ Vce=40V 10 It: ~ ~/,'I ..J TEMPERATURE 4~uMHz "'t:>- lUll II/ II " zoo .9 ~ 8 La ~ ~18O~A- r- ~ f- f- lel• 2O'.... 600 ~ 400 1l ~ > a >- r.J.-'40mA GomAI 800 COLLECTOR CUTOFF CURRENT VS -I~.I,J!B z 0.8 III I IOOmA E IIeE -BASE-EMITTER VOLTAGE- VOLTS COLLECTOR CURRENT !aU) 1.2 IVI 'I 00 .. ~ / '/1/ II III/ ,/JIJ a IG VSE -BASE-EMITTER VOLTAGE-VOLTS 1/ IL .1> 200 I/lm ,2 08 00 le=20mA ::J /1'/ a a a~ 600 8 /, 8 I'~O~A-l. -) ISOmA IOOmA r 800 r-- t- -HGO~A >- ::'"fd 400 le: 2OmA >~ 400 I ~ / ,p~ 0: 0: ,/ ~ z 0: . ~1 130 V I IC"SOOmA VCC'3OV E f-/' 0 ...." ., I II ... 20 STORAGE TIME VS TURN ON AND TURN OFF BASE CURRENTS !::: r 10 5 ,.., -- ~""" ..." ~""" I,~ ;::::0 I, I. le·SOOmA "- 2 _IC"O 'BI"'O IB2 2 I Vee =30V I -30 0 ~O 100 TA·-AMBIENT. TEMPERATURE·-C VCC"30V I . Ic-COL~~TOR CURR~NT-mA 9-78 IS 1s IS 2 s50mA 2N3903, 2N3904 Package: TO-92 NPN SILICON GENERAL PURPOSE SWITCHING AND AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS Characteristics Unit Collector-Emitter Voltage .....................................40 Volts Collector-Base Voltage ........................................ 60 Volts Emitter-Base Voltage .......................................... 6.0 Volts Collector-Current ..................................................:200 rnA Total Device Dissipation@ TA = 25°C ........... 310 mW Total Device Dissipation@TA = 60°C ........... 210 mW Derate above 25°C ................. ;............... 2.81 mW/oC Operating and Storage Junction Temperature Range ........................... - 55 to + 13& °c Thermal Resistance. Junction to Ambient.. ......................... :.... 0.357· °C/mW ELECTRICAL CHARACTERISTICS (TA = 25° C unless otherwise noted) Symbol Min BVCBO 60 Volts IC = 10~A.IE = 0 BVCEO· 40 Volts IC = 1.0 rnA. IB = o· BVEBO 6.0 Volts IE = 10~A.IC = 0 ICEX Max 50 Unit nA Conditions VCE = 30 Volts. VEB(off) = 3.0 Volts h FE • 20 IC = 0.1 rnA. VCE = 1.0 Volt (2N3903) h FE • 40 IC = 0.1 rnA. VCE = 1.0 Volt· hFE* 35 IC = 1.0 rnA. vCE = 1.0 Volt (2N3903) hFE • 70 IC = 1.0 rnA. VCE ,;. hFE • 50 150 IC = 10 rnA. VCE = 1.0 Volt t2N3903) hFE" 100 300 IC = 10 rnA. VCE = 1.0 Volt (2N3904) hFE" 30 IC = 50 rnA. VeE = 1.0 Volt (2N3903) hFE • 60 IC = 50 rnA. VeE = 1.0 Volt (2N3904) h FE • 15 IC = 100 rnA. VeE = 1.0 Volt (2N3903) hFE • 30. IC = 100 rnA. VeE = 1.0 Volt (2N3904) 9-79 (2N3904) 1.0 Volt (2N3904) 2N3903,2N3904 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min Max Conditions Unit VCE(sat)* 0.2 Volt IC= 10mA.IB = 1.0mA* VCE(sat)* 0.3 Volt IC = 50 rnA. IB = 5.0 rnA 0.85 Volt IC = 10 mA.IB = 1.0 mAo 0.95 Volt IC = 50 mA.IB = 5.0 rnA VBE(sat) * 0.65 VBE(sat) • fT 250 MHz IC = 10 rnA. VCE = 20 Volts f = 100 MHz (2N3903) fT 300 MHz IC = 10 rnA. VCE = 20 Volts f = 100 MHz (2N3904) Cob 4.0 pF VCB = 5.0 Volts. IE = O. f = 100 kHz Cib 8.0 pF VBE = 0.5 Volt.IC = O. f = 100 kHz hie 0.5 8.0 k ohms IC = 1.0 mAo VCE = 10 Volts. f = 1.0 kHz (2N3903) hie 1.0 10 kohms IC= 1.0mA.VCE= 10 Volts. f = 1.0 kHz (2N3904) h re 0.1 5.0 X 10- 4 IC = 1.0 rnA. VCE = 10 Volts. f = 1.0 kHz (2N3903) h re 0.5 8.0 X 10- 4 IC = 1.0mA,VCE = 10 Volts. f = 1.0 kHz (2N3904) hfe 50 200 IC = 1.0 mAo VCE = 10 Volts. f = 1.0 kHz (2N3903) hfe 100 400 IC = 1.0 mAo VCE = 10 Volts. f = 1.0 kHz (2N3904) hoe 1.0 40 ,umhos td 35 ns VCC = 3.0 Volts. VB E(off) = 0.5 Volt. tr 35 ns IC = 10 mA.IB1 = 1.0 mA ts 175 ns VCC = 3.0 Volts. IC = 10 mAo IB 1 = IC = 1.0 mAo VCE = 10 Volts. f = 1.0 kHz IB2 = 1.0 mA (2N3903) 9-80 2N3903.2N3904 ELECTRICAL CHARACTERISTICS (T A = 25° e unless otherwise noted) Symbol Min ts Max Unit 200 ns Conditions Vee IS2 50 tf ns Vee IS2 • Pulse Test: Pulse Width = 3.0 Volts. Ie = 10 mA.IS1 = = 1.0 mA = 3.0 Volts. Ie = 10 mA.IS1 = = 1.0 mA = 300~s. Duty Cycle = 2%. SCHEMATIC FIGURE 1 - DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT +3.0V FIGURE 2 - STORAGE AND FALL TIME EQUIVALENT TEST TIME +3.0V 10.< t1 <500 us DUTY CYCLE =2% L.j t1 ~+10.9V <~~gp ,"" 'Total shunt capacitance of test jig and connectors 9-81 2N3905, 2N3906 PNP SILICON GENERAL PURPOSE SWITCHING AND AMPLIFIER TRANSISTORS Package' TO- 92 ABSOLUTE MAXIMUM RATINGS Characteristics Unit Collector-Emitter Voltage .................................... 40 Volts Collector-Base Voltage ........................................ 40 Volts Emitter-Base Voltage .......................................... 5.0 Volts Collector Current ................................................. 200 mA Total Device Dissipation @ TA = 25°C ........... 310 mW Total Device Dissipation@TA = 60°C ........... 210 mW Derate above 25°C ................................. 2.81 mW/oC Operating and Storage Junction Temperature Range ........................... -55 to 135°C Thermal Resistance. Junction to Ambient ..................................................... 0.357 °C/mW + ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Max Unit Conditions Symbol Min BVCBO 40 Volts IC = 10,uA.IE = 0 BVCEO* 40 Volts IC = 1.0 mAo IB = 0 BV EBO 5.0 Volts IE = 10,uA.IC = 0 I CEX 50 nA VCE = 30 Volts. VBE(off) = 3.0 Volts IBL 50 nA V CE = 30 Volts. VB E(off) = 3.0 Volts hFE* 30 60 (2N3905) IC = 0.1 mAo VCE = 1.0Volt (2N3906) hFE* 40 (2N3905) IC = 1.0 mAo VCE = 1.0Volt (2N3906) 80 (2N3905) IC = 10 mAo VCE = 1.0Volt (2N3906) 150 300 hFE* 50 100 hFE* 30 60 (2N3905) IC = 50 mAo VCE = 1.0 Volt (2N3906) 15 (2N3905) IC = 100mA.VCE = 1.0Volt (2N3906) hFE* 30 VCE(sat) * 0.25 Volt IC= 10mA.IB = 1.0mA 0.4 Volt IC = 50 mA.IB = 5.0 mA 9-82 2N3905,2N3906 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min Max VB E(sat)' 0.65 0.85 0.95 fT 200 250 Unit Conditions Volt Volt IC = 50 rnA. IB = 5.0 rnA MHz MHz (2N3905) IC = lOrnA. VCE = 20 Volts. (2N3906) f=100MHz IC=10mAIB=1.0mA Cob 4.5 pF VCB = 5.0 Volts. IE = O. f = 100 kHz Cib 10 pF VBE = 0.5 VOIt.IC = O. f = 100 kHz hie 0.5 2.0 8.0 12 k ohms k ohms (2N3905) IC = 1.0 rnA. VCE = 10 Volts. (2N3906) f = 1.0 kHz h re 0.1 1.0 5.0 10 X 10- 4 X 10-4 (2N3905) IC = 1.0 rnA. VCE = 10 Volts. (2N3906) f = 1.0 kHz hfe 50 100 200 400 hoe 1.0 3.0 40 60 tlmhos tlmhos (2N3905) IC = 1.0 rnA. VCE = 10 Volts. (2N3906) f = 1.0 kHz 5.0 dB 4.0 dB (2N3905) IC = 100 tlA. V CE = 5.0 Volts. (2N3906) RS = 1.0 k ohm. f = 10Hz to 15.7 kHz td 35 ns VCC tr 35 ns IC ts 200 225 ns ns (2N3905) VCC = 3.0 VOlts.IC = 10 rnA. (2N3906) IBl = IB2 = 1.0mA tf 60 75 ns ns (2N3905) VCC = 3.0 Volts. IC = lOrnA. (2N3906) IBl = IB2 = 1.0mA NF • Pulse Test: Pulse Width (2N3905) Ie = 1.0 rnA. VCE = 10 Volts. (2N3906) f = 1.0 kHz = 300 f..ls. Duty Cycle = 2.0%. 9-83 = 3.0 Volts. VBE(off) = 0.5 Volt. = 10mA.IBl = 1.0mA I ." 2N3905, 2N3906 SCHEMATIC FIGURE 1 - DELAY AND RISE TIME EQUIVALENT TEST CIRCUIT -3.0V 1r-''WII....-+-i 10.9V ~ tl~ 10 < tl <500 us DUTY CYCLE = 2% °Total shunt capacitance of test jig and connectors 9-84 2N3962,2N3963,2N3964,2N396S® PNP SILICON LOW-LEVEL. LOW-NOISE TYPE TRANSISTORS Package: TO-18 • LOW NOISE FIGURE .............................. NF = 2.0 dB (MAX) AT 1.0 kHz NF ='4.0 dB (MAX) AT 100 Hz • HIGH CURRENT GAIN ........................_....... hFE = 180 (MIN) AT 1.0~A hFE =; 250 - 500 AT 10~A hFE = 250 - 600 AT 1.0 mA • HIGH BREAKDWON VOLTAGE ......... LV CEO = 45. 60 AND 80 VOLTS • EXCELLENT BETA LINEARITY ......................... FROM 1.0tLAT050mA ABSOLUTE MAXIMUM RATINGS (Note 1) Characteristics Unit Collector-Base Voltage (2N3962. 2N3965) ..................................... -60 Volts (2N3963) ...................... : ................................ -80 Volts (2N3964) ....................................................... -45 Volts Collector-Emitter Voltage (Note 4) (2N3962. 2N3965) ..................................... -60 Volts (2N3963) ....................................................... -80 Volts (2N3964) ....................................................... -45 Volts Emitter-Base Voltage (2N3962, 2N3963, 2N3964, 2N3965) -6.0 Volts Total Device Dissipation @: TC = 25°C ................... , ................................. 1.2 Watts TA = 25°C .................................................... 0.36 Watt Storage Temperature ...................... - 65°C to +200 °c Operating Junction Temperature .......................... 200°C Lead Temperature (Soldering, 60 sec Time Limit) ........................... 300 °c ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) , Symbol Min Typ hFE 2N3962,2N3963 2N3964,2N3965 60 180 175 300 hFE 2N3962,2N3963 2N3964,2N3965 100 250 210 320 hFE 2N3962,2N3963 2N3964,2N3965 100 250 240 330 hFE 2N3962,2N3963 2N3964,2N3965 100 250 260 330 Max 300 500 450 600 9-85 Unit Conditions Ie = 1.0 IlA VeE = -5.0 Volts Ie = IOIlA VeE = -5.0 Volts Ie = l00~A, VeE = -5.0 VollS Ie = 1.0 mA, VeE = -5.0 Volts 2N3962,2N3963,2N396~2N3965 ELECTRICAL CHARACTERISTICS (TA = 25 0 ( : unless otherwise noted) Symbol Min Typ Max Unit Conditions hFE 2N3962.2N3963 2N3964.2N3965 100 200 280 300 IC = 10 mAo VCE = -5.0 Volts (Note 5) hFE 2N3962.2N3963 2N3964.2N3965 90 180 260 315 IC = 50 mAo VCE = -5.0 Volts INote 5) hFEI-55°C) 2N3962.2N3963 2N3964.2N3965 40 100 90 160 IC = IOIlA. VCE = -5.0 Volts hFEI-55°C) 2N3962.2N3963 2N3964.2N3965 45 90 150 190 IC = 50 mAo VCE = -5.0 Volis INote 5) 375 400 hFEI+ 1000 C) 2N3962.2N3963 2N3964.2N3965 600 800 IC = 1.0 mAo VCE = -5.0 Volts 8VC80 2N3962 2N3964 -60 -45 Volts Volts IC = IOIlA.IE = 0 8VC80 2N3963 2N3965 -80 Volts Volts IC=101lA.IE=0 2N3962 2N3964 -60 Volts Volts IC = 101lA.IB = 0 -45 BVCES 2N3963 2N3965 -80 -60 Volts Volts IC = IOIlA.IB = 0 VCEOlsust) 2N3962 2N3964 -60 -45 Volts .Volts ·IC = 5.0 mA Ipulsed).18 = 0 INotes 4 and 5) VCEOIsust) 2N3963 2N3965 -80 -80 Volts Volts IC = 5.0 mA Ipulsed/.IB = 0 INotes 4 and 5) BVEBO 2N3962.2N3963 2N3964.2N3965 -6.0 Volts IC = O. IE = 10llA NF 2N3962.2N3963 2N3964.2N3965 1.0 0.7 3.0 2.0 dB dB IC = 20IlA. VCE = -5.0Volis Rs = 10 kohms. 8W '= 15.7 kHz NF 2N3962.2N3963 2N3964.2N3965 0.8 0.5 3.0 2.0 d8 dB IC ~ 20IlA. VCE = -5.0Volts. RS = 10 kohms. 8W = 1.5 kHz NF 2N3962.2N3963 2N396~. 2N3965 0.8 0.5 3.0 2.0 d8 dB IC = 201lA. VCE = -5.0 Volts. RS = 10 kohms. BW = 150 Hz NF 2N3962.2N3963 2N3964.2N3965 3.0 1.8 10 4.0 dB dB IC = 20IlA;VCE = -5.0 Volts. RS = 10 k ohms. BW = 15 Hz NF 2N3964.2N3965 3.5 8.0 d8 IC = 201lA. VCE = -5.0Volts. RS = 10 kohms. BW = 2.0 Hz ICES 2N3962 2N3965 0.5 10 nA VCE = -50 Volts. VE8 = 0 BVCES -60 9-86 2N3962,2N3963,2N3964,2N3965 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min 2N3963 ICES Typ Max Unit 0.5 10 nA = -70 Volts. VEB = 0 VCE = -40 Volts. VEB = 0 VCE = -50 Volts. VEB = 0 = -70 Volts. VEB = 0 Conditions VCE 2N3964 0.5 10 nA I CES(+150°C) 2N3962 2N3965 2.0 0.5 10 10 IlA ICES(+1500C) 2N3963 2.0 10 IlA VCE ICES (+1500C) 2N3964 2.0 10 IlA VCE 10 nA = -40 Volts. VEB = 0 Ic = O. VEB = -4.0 Volts ICES IlA lEBO 2N3962.2N3963 2N3964.2N3965 VCE(sat) 2N3962.2N3963 2N3964.2N3965 -0.1 -0.25 Volt IC = 10 mA.IB = 0.5 rnA VCE(sat) 2N3962.2N3963 2N3964.2N3965 -0.16 -0.4 Volt Ie = 50 rnA. IB = 5.0 rnA (Note 5) VBE(sat) 2N3962.2N3963 2N3964.2N3965 -0.72 -0.9 Volt IC = 10mA.IB = 0.5 rnA VBE(sat) 2N3962.2N3963 2N3964.2N3965 -O.Bl -0.95 Volt IC = 50 rnA: IB = 5.0 rnA (Note 5) '"::., :,,~, • I hie 2N3962.2N3963 2N3964.2N3965 2.5 6.0. B.O 10 17 20 kohms kohms ·IC = 1.0 rnA. VCE = -5.0 Volts hoe 2N3962.2N3963 2N3964.2N3965 5.0 5.0 19 25 40 50 Ilmho /lmho IC = 1.0 rnA. VCE = -5.0Volts h re 2N3962.2N3963 2N3964.2N3965 10 Xl0- 4 IC = 1.0 rnA. VCE = -5.0 Volts hIe 2N3962.2N3963 2N3964.2N3965 100 250 550 700 IC = 1.0 rnA. VCE = -5.0Volts hIe 2N3962.2N3963 2N3964.2N3965 2.0 2.5 8.0 8.0 IC = 0.5 rnA. VCE = -5.0 Volts Cobo 2N3962.2N3963 2N3964.2N3965 6.0 pF IE = O. VCB = -5.0Volts Cibo 2N3962.2N3963 2N3964.2N3965 15 pF IC = O. VEB = -0.5 Volt 300 360 NOTES: (1) These ratings are limiting values above which the serviceability 01 any individual semiconductor device may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. (3) These ratings give a maximum junction temperature 01 200°C and junction-to-case thermal resistance 01 146°C/watt (derating factor of S.85 mW/oC); junction-to-ambient thermal resistance of 48SoC/watt (derating factor of 2.0S mW/oC). (4) This rating refers to a high-current point where collector-to-emitter voltage is lowest. (5) Pulse Conditions: length = 300IlS; duty cycle = 1%. 9-87 I 2N4123,2N4124 GENERAL PURPOSE NPN SILICON SWITCHING AND AMPLIFIER TRANSISTORS Total Device Dissipation ABSOLUTE MAXIMUM RATINGS Characteristic 2N4123 Collector-Emitter Voltage ....... 30 Collector-Base Voltage ........... 40 2N4124 Unit 25 Vdc @T A = 25 0 C ..................... Derate above 25 0 C ............. 30 Vdc Operating and Storage Junction Emitter-Base Voltage .............. 5.0 Vdc Collector Current.................... .. 200 mAdc Total Device Dissipation mW mW/oC Temperature Range ............ -55 to +135 to Ambient ........................ . mW 210 310 2.81 °C Thermal Resistance, Junction --------------~----------------- @T A = 60°C ..............: ...... . Package: To-92 0.357 ------------------------------ 0C/mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * 30 Vdc 25 - 40 - Vdc 30 - BV EBO 5.0 - Vdc IE = 10uAdc, IC =0 ICBO - 50 nAdc V CB - 20 Vdc; IE - 0 . lEBO - 50 hFE* 150 nAdc - V BE = 3 Vdc, IC - 0 50 120 360 25 - 60 - VCE(sat) * - 0.3 VBE(sat)* [hfel 2.5 BV CBO 0.95 - Conditions I C =1mAdc,I E =0 2N4123 2N4124 2N4123 IC = 10uAdc, IE =0 2N4124 2N4123 IC = 2 mAdc, VCE = 1 Vdc 2N4124 2N4123 IC = 50 mAdc, V CE = 1 Vdc 2N4124 Vdc IC = 50 mAdc, IB = 5 mAdc Vdc IC 50 mAdc, IB - 5mAdc IC - 10 mAdc, V CE - 20 Vdc, - 2N4123 f=100MHz fT 3.0 - 250 - 2N4124 MHz IC = 10 mAdc, V CE = 20 Vdc, 2N4123 f=100MHz Cob Cib h fe 300 - - 4.0 2N4124 pF V CB =5Vdc, IE =O,f= 100kHz - 8.0 pF V BE 50 200 - IC - 2 mAdc, V CE 120 480 - 6.0 f NF = 1 kHz 2N4124 dB IC = 100uAdc, VCE = 5 Vdc, RS - = 0.5 Vdc, IC - 0, f - 100 kHz 2N4123 = 1 Vdc, Noise Bandwidth 5.0 2N4123 = 1 k ohm, = 10 Hz to 15.7 kHz 2N4124 td t r ts tf Typ.24 ns Typ.13 ns Typ.125 ns Typ.11 ns = 3 Vdc, V E B(off) = 0.5 Vdc, Rise Time IC = 10 mAdc, IB1 = 1 mAdc Storag.eTinie VCC - 3Vdc, IC = 10mAdc, Fall Time IB1 = IB2 = 1 mAdc Delay Time V CC *Pulse Test: Pulse Width = 300 us, Duty Cycle = 2%. 9-88 2N4125,2N4126. GENERAL PURPOSE NPN SILICON SWITCHING AND AMPLIFIER TRANSISTOR Package: To-92 ABSOLUTE MAXIMUM RATINGS Characteristic Total Device Dissipation 2N4125 Collector-Emitter Voltage ....... 30 Collector-Base Voltage ............. 30 2N4126 Unit 25 25 4.0 Emitter-Base Voltage ............... Vdc @T A = 25 0 C .................... .. Derate above 250 C ............ . Vdc Operating and Storage Junction @T A = 60 0 C ...................... . 210 mW mW/oC Temperature Range ............ -55 to +135 Vdc Collector Current .................... 200 mAde =T:-o-ta71=D-ev--=i-ce---=D-:-iss--=i-pa-t-:-io-n----------- 310 2.81 Thermal Resistance, Junction to Ambient ........................ . 0.357 °C 0C/mW mW ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * 30 - Vdc IC = 1 mAde, IE = 0 2N4125 25 - BV CBO 30 - Vdc IC = 10uAdc,IE =0 2N4125 25 - BV EBO 4.0 - Vdc IE = 10 uAdc, IC = 0 ICBO - 50 nAdc V CB = 20 Vdc, IE - 0 lEBO - 50 nAdc V BE - 3Vdc,I C - 0 hFE* 50 150 - IC - 2 mAde, VCE - 1 Vdc 2N4125 120 360 25 - IC = 50 mAde, V CE '" 1 Vdc 2N4125 60 0.4 - 0.95 VCE(sat)* - V BE (sat) * hfe 2.0 - 2.5 - fT 200 - Conditions 2N4126 , 2N4126 i 2N4126 2N4126 Vdc IC = 50 mAdc,l B = 5 mAde Vdc IC - 50 mAdc,l B - 5 mAde - IC= 10 mAde, V CE - 20 Vde, f=100MHz MHz IC = 10 mAde, V CE = 20 Vde, 2N4125 2N4126 2N4125 f=100MHz Cob Cib hfe NF 250 - - 4.5 pF V CB = 5 Vde, IE = 0, f = 100 kHz - 10 pF - V BE = 0.5 Vdc,I C - 0, f - 100 kHz 2N4125 IC - 2 mAde, V CE - 1 Vde, f = 1 kHz dB IC = 100 uAde, V CE = 5 Vde, RS = 1 ohm, 50 200 120 480 - 5.0 - 4.0 2N4126 2N4126 2N4125 Noise Bandwidth = 10Hz to 15.7 kHz 2N4126 Typ 25 ns tr Typ 18 ts tf Typ 140 Typ 15 td *Pulse Test: Pulse Wid~h Delay Time V CC = 3 Vde, V BE (off) - 0.5 Vde, ns Rise Time IC - 10 mAde, IBl - 1 mAde ns Storage Time V CC = 3 Vde, IC - 10 mAde, ns Fall Time = 300 usee, Duty Cycle = 2%. 9-89 IBl - IB2 - 1 mAde I ® 2N4248,2N4249,2N4250 PNP SILICON LOW LEVEL LOW NOISE AMPLIFIER TRANSISTORS • • • • Package:TO-92 Low Noise Figure .................................................. 2.0 dB (max) at 1.0 kHz High Current Gain ....................................................... 250-700 at 100.uA High Breakdown .......................................... .40 and 60 Volts (min) LV CEO Excellent Beta Linearity ............................................. From l.uA to 50 mA ABSOLUTE MAXIMUM RATINGS (Note 1) Characteristics Unit Storage Temperatures ......................... - 55°C to 125°C Operating Junction Temperatures ........................ 125° C Lead Temperature (Soldering. 10 seconds time limit) .......................................... 260°C Total Device Dissipation (Notes 2 and 3) @T C = 25°C .................................................. 0.5 Watt @ TA = 25°C .................................................. 0.2 Watt Collector-Base Voltage (2N4248. 2N4250) ..................................... -40 Volts (2N4249) ....................................................... -60 Volts Collector-Emitter Voltage (2N4248. 2N4250) ..................................... -40 Volts (2N4249) ....................................................... -60 Volts Emitter-Base Voltage (2N4248. 2N4250) .................................... -5.0 Volts (2N4249) ...................................................... -5.0 Volts ELECTRICAL CHARACTERISTICS (T A Symbol NF NF NF = 25°C unless otherwise noted) Typ Max Unit 2N4248 2N4249 0.7 0.7 3.0 dB dB 2N4250 0.5 2.0 dB 2N4248 1.0 2N4249 1.0 3.0 dB 2N4250 0.7 2.0 dB 2N4248 0.8 2N4249 2N4250 0.8 0.7 2N4248 2N4249 90 190 2N4250 300 Min dB dB 3.0 2.0 2N4248 2N4249 50 100 100 240 300 2N4250 250 350 700 9-90 dB dB Conditions IC = 20/J.A. VCE (Note 6) = -5.0 Volts IC = 20/J.A. VCE (Note 7) = -5.0 Volts IC = 250/J.A. VCE (Note 8) = -5.0 Volts IC = 1O/J.A. VCE = -5.0 Volts IC = 1oo/J.A. VCE = -5.0 Volts 2N4248,2N4249,2N4250 ELECTRICAL CHARACTERISTICS (TA Symbol = 25°C unless otherwise noted) Min Typ 2N4248 2N4249 50 100 110 250 2N4250 250 350 2N4248 2N4249 50 100 120 280 2N4250 250 350 BVCBO 2N4248.2N4250 2N4249 -40 -60 Volts Volts IC = 10jlA.IE = 0 BVCES 2N4248.2N4250 2N4249 -40 -60 Volts Volts IC = 10jlA VCEO(sust) 2N4248.2N4250 2N4249 -40 -60 Volts Volts IC = 5.0 mA (pulsed). IB (Notes 4 and 5) BV EBO 2N4248.2N4249. 2N4250 -5.0 Volts IC = O. IE = 10jlA ICBO 2N4248.2N4249. 2N4250 10 nA IE = O. VCB = -40 Volts ICBO (65°C) 2N4248.2N4249. 2N4250 3.0 jlA IE = O. VCB = 40 Volts lEBO 2N4248.2N4249. 2N4250 20 nA IC = O. VBE = 3.0 Volts VCE(satl 2N4248.2N4249. 2N4250 -0.25 Volt IC 10 mAo IB (Note 5) = 0.5 mA VBE(sat) 2N4248.2N4249. 2N4250 -0.9 Volt IC = 10mA.IB (Note 5) = 0.5mA hFE hFE Max Conditions IC = 1.0 mAo VCE = -5.0 Volts IC = 10 mAo VCE (Note 5) 2N4248 2N4249 50 100 250 550 2N4250 250 350 800 hfe 2N4248.2N4249 2N4250 2.0 2.5 Cobo 2N4248.2N4249. 2N4250 6.0 Cibo 2N4248.2N4249. 2N4250 16 hfe Unit 9-91 = = -5.0 Volts =0 IC = 1.0 mAo VCE = -5.0 Volts IC = 0.5 mAo VCE = -5.0 Volts pF IE = O. VCB = -5.0 Volts pF IC = O. VBE = 0.5 Volt 2N4248,2N4249,2N4250 .SMALL SIGNAL CHARACTERISTICS (f = 1 kHz) Symbol Min Typ Max Unit Conditions hie 2N4249 2N4250 2.5 6.0 8.0 10 17 20 kohms kohms Ie = 1.0 mAo VeE = 5.0 Volts hoe 2N4249 2N4250 5.0 5.0 19 25 40 50 /Lmho /Lmho Ie = 1.0 mAo VeE = -5.0 Volts h re 2N4249.2N4250 10 xl0- 4 Ie = 1.0 mAo VeE = -5.0 Volts hfe 2N4249 2N4250 100 250 250 350 550 800 Ie = 1.0 mAo VeE = -5.0 Volts NOTES: (1) These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired. (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low-duty cycle operations. (3) These ratings give a maximum junction temperature of 125°C and junction-ta-case thermal resistance of 20QoC/watt (derating factor of 5.0 mW/oC); junction-to·ambientthermal resistance of 500°C/watt (derating factor of 2.0 mW/oC). (4) This rating refers to a high-current point where collector to emitter voltage is lowest. (5) Pulse Conditions: length = 300 /Ls; duty cycle = 1 %. (6) RS = 10 kQ. Power Bandwidth of 150 Hz. (7) RS = 10 kQ . Power Bandwidth of 15.7 kHz with 3.0 dB points at 10Hz and 10kHz. (8) RS = 1.0 kQ. Power Bandwidth of 150 Hz. 9-92 2N4400, 2N4401 GENERAL PURPOSE NPN SI LICON SWITCHING AND AMPLIFYING TRANSISTORS Package: To-92 SWITCHING TIME EQUIVALENT TEST CI RCUITS ABSOLUTE MAXIMUM RATINGS (T A = 25 0 C unless otherwise noted) 30V ~ _ Characteristic Unit Collector-Emitter Voltage ........................... 40 Vde Collector-Base Voltage ................................ 60 Vde Emitter-Base Voltage .................................. 6.0 Vde -+16 v o I I 4-1,0 ~ to 100llS DUTY CYCLE 2% I -2V _I I14- . ' _.1_ ::]"ll 'F, -~"""~r--t _14V \+- < -+ I • _..1_ ~1~' I C s' 'r'AC,TANCE JIG, ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted) Symbol Min Max Unit BV CEO * BV CBO 40 - Vde Ie Conditions 60 - Vde IC - 0.1 mAde, IE - 0 BV EBO 6.0 - Vde ICEX 0.1 uAde = 0.1 mAde, IC = 0 VCE = 35 Vde, VEllioffl = 0.4 Vde IBL - 0.1 uAde VCE - 35 Vde, VEBloff) - 0.4 Vde hFE 20 - - IC - 0.1 mAde, V CE - 1Vde VCE(sat) 40 50 - 50 150 100 300 20 - 40 - - 0.4 0.75 fT 200 IC = 10 mAde, V CE = 1 Vde IC = 150 mAde, V CE = 1 Vde* 2N4400 2N4400 2N4401 IC = 500 mAde, V CE = 2 Vde* Vde IC = 150 mAde, IB = 15 mAde Vde IC 500 mAde, I B - 50 mAde IC - 150 mAde, IB = 15 mAde 2N4400 2N4401 0.95 ~- - MHz IC 500 mAde, ~ - 50 mAde = 20 mAde, V CE - 2N4400 - 2N4400 2N4401 1.2 250 1 Vde 2N4401 2N4401 0.75 VBE(sat) 1 mAde, VCE IC - 2N4401 , *Pulse Test: Pulse Width _ 300 us, Duty Cycle _ 2%. 9-93 • I IE 20 40 = 1 mAde, ~ = 0 10 Vde, f - 100 MHz 2N4400,2N4401 ELECTRICAL CHARACTERISTICS (T A = 25°C) SYMBOL MIN. MAX. UNITS 6.5 CONDITIONS Ceb Ceb - 30 pF pF hie 0.5 7~5 kohms IC = 1 mAde, VCE = 10 Vde, f = kHz - V CB = 5 Vde, IE = 0, f - 100 kHz, emitter guarded Vse = 0.5 Vde, IC = 0, f = 1O-0-kRz, Collector guarded 2N4400 2N4401 1.0 15 h re 0.1 8.0 x 104 IC = 1 mAde, V CE = 10 Vde, f = 1 kHz hfe 20 250 - IC = 1 mAde, V CE - 10 Vde, f = 1 kHz 2N4400 40 500 IC = 1 mAde, V CE = 10 Vde, f = 1 kHz V CC - 30 Vde, V ES(off) = 2Vde, IC - 150 mAde, IS1 = 15 mAde r ts tf 30 - 15 ns - 20 ns 1.0 hoe td t "... 2N4401 umhoe ~: - 225 ns 30 ns V CC = 30 Vde, IC - 150 mAde, I IS1 = IS2 -15 mAde 9-94 2N4402, 2N4403· GENERAL PURPOSE PNP SI LICON SWITCHING AND AMPLIFYING TRANSISTOR Turn-On Time ABSOlUTE.MAXIMUM RATINGS Collector-Emitter Voltage ........................... 40 Vdc Collector-Base Voltage ............................... 40 Vdc zoo .n _<2n, Unit Characteristic -30V , 0-4-+---- lUI. .. .1_ "":c,' ... 0 "1_'OOPr, "':.,,,, 4."n lMfl ELECTRICAL CHARACTERISTICS at 25 0 C free-air temperature Symbol 2N5447 Min Max 2N5448 Min Max Unit V (BR)CBO V(BR)CEO -40 -25 -50 -30 V V IC = -100 uA, ~ = 0 IC- 10mA,IB~u,Seel\lote4 V(BR)EBO 'CBO -5 V nA 'E--l00uA,IC=0 VCB -20V,I E -0 VEB 3 V, 'C 0 VCE --5V,I C --50mA,SeeNote4 VCE 5V,I C - 50mA,SeeNote4 'EBO hFE V BE -5 100 II 60 -06 -100 300 -1 100 30 -0.6 -100 150 -1 nA V Test Conditions 7V~C~E~-------+-_--·--~-__===-_-_0_.2_5__~__;5------0-.-2-5-4--V____~71¥B------5~m~A~,~'~CL----~5~0~m-A~,S~e-e~N~ot~e~4~ I [hfel 5 VCE - -5 V, 'C = -50 mA, f - 20 MHz rC'C~b--------+--------~+----------~1~2'-~P~F~-+-'VTC~B~='1~0'VT,7'~E~~~O-,'f~=~l'M~HLz------ NOTES: I ~N~5 These parameters must be measured using pulse teDhniques. t = 300 us, duty cycle ~ 2%. 5. CCb is measured using thfee-terminal measurement technique§lwith the emitter guarded. 4. 9-118 2N5449,2N5450,2N5451 Package: To-92 NPNSILICON AMPLIFIER TRANSISTORS ABSOLUTE MAXIMUM RATINGS at 25 0 C free-air temperature (unless otherwise noted) 2N5449 2N5450 Characteristic Collector-Base Voltage 2N5451 Unit 50 40 V 30 20 V 5 5 NOTES: 1. These values apply when the baseemitter diode is open-circuited. 2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg. 3·. Derate linearly to IS00C lead temperature at the rate of 4 rnW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case. Collector-Emitter Voltage (See Note 1) Emitter-Base Voltage Continuous Collector Current V 800 mA 360 mW 500 mW Continuous Device Dissipation at (or below) 250 C Free-Air Temperature (See Note 2) SILICON 15-WATT QUASI-COMPLEMENTARY POWER AMPLIFIER Continuous Device Dissipation at (or below) 25 0 C Lead Temperature (See Note 3) -65 to 150 Storage Temperature Range Junction Temperature-Operating °C °C 260 ?I1A 1N128 1N128A 1N46 1N49 1N50 1N54A 78 79 80 81 82 83 84 85 86 87 1N60 1N949 88 89 1N139 1N276JAN 90 91 (matched pair 1N541) (matched pair) 5 5 10 50 10 50 10 50@55°C 50@55°C 50@55°C Va 30 30 5 -40 -40 -35 50kO (solder-in 1N119) -35 50kO -40 2kO 10 50 50@75°C 10-4 300 300 500 500 300 1N449 1N108 1N452 1N455 G788 1N636 1N266 1N417 1N34A 92 93 94 95 96 97 98 99 100 1N66 101 1N66A 1N119 1N480 1N120 1N418 1N34 102 103 104 105 106 107 1N278 108 GOLD BOND GERMANIUM DIODES ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. IF PIV mA 60 60 20 40 1 1 60 60 60 60 40 50 100 100 1 0.7 1 1 60 100 1 60 60 100 100 1 1 60 200 1 60 65 200 100 1 1 65 200 1 70* *2.5 i -I 70*j*2.5 1 70" *2.5 1 70 4 1 70 5 1 70 70 5 5 1 1 70" * * 5 1 I 70* * •• 5 Reverse Recovery Time IR V 1 70 70 75 75 30 200 3 5 2 1 1 1 75 5 1 75 5 1 75 75 75 75 5 5 10 10 1 1 1 1 ,.A 1500 100 100 500 6 10 15 150 20 250 25 25 125 15 150 20 10 100 10 100 25 125 50 500 100 500 50 833 10 800 10 20 50 25 125 50 250 250 50 410 30 500 50 850 50 800 100 800 100 800 @V 50 50 10@75°C 50 5 10 10 50 10 50 40 10 50@55°C 10 50 45 10 50 10 50 10@55°C 50@55°C 10@55°C 50@55°C 10@55°C 50@55°C 10 50 10 50 10 10 70@50°C 10@55°C 50@55°C 10@55°C 50@55°C 40 50 50 10 50 10 50 10 50 50 50 50 50 IFmA 30 30 VR -:-40 -35 10-5 Rec. to nsec 4000* 50kO 500 Part No. Line No. 1N287 1N276 109 110 1N96A G820 1N909 1N774 111 112 113 114 1N775 115 1N498 1N777 116 117 1N774A 118 1N3465 1N773 119 120 1N773A 121 1N113 122 1N114 123 1N115 124 1N86 125 1N294 126 1N294A 1N192 127 128 1N111 129 1N112 130 1N298 1N772A 1N45 1N69A 131 132 133 134 1N69 135 1N126 136 1N116 1N90 1N117 1N95 137 138 139 140 GOLD BOND GERMANIUM DIODES _. ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. IF In PIV mA V 75 75 75 75 15 20 20 25 1 1 1 1 75 25 1 75 75 75 40 100 100 1 1 1 75 75 80 100 200 3.5 1 1 1 80 3.5 1 80 80 80 3.6 4 4 1 1 1 80 80 80 80 80 80 40 100 100 100 125 200 1 1 1 1 1 1 80 200 1 80 200 .1 80 80 80 80 200 200 200 200 1 1 1 1 80 85 85 85 85 85 85 85 ; 85 , 85 90 400 2.5 2.5 4 4 5 20 20 40 40 2.5 1 1 1 1 1 1 1 1 1 1 1 I 90 2.5 1 + fJ-A 50 100 800 20 60 50 850 100 30 30 500 200 50 10 100 10 100 300 5 10 250 50 25 40 50 180 10 150 10 150 10 150 25 25 100 100 75 25 100 200 150 833 150 50 50 300 350 11 60 11 60 @V 10 50 50 10 30 10 50 50 50 10 50 50 50 5 50 Reverse Recovery Time Rec. to nsec IFmA Vn 5 -40 300 5 50 75 5 10 50@75°C 50 50 60 50 90 20 20@70°C 20 I 20@70°C 20 I 20@70°C 50 50 50 50 10@75°C 50 50 50 50 50 50 50 50 50 50 10 10@60°C I 10 10@60°C Part No. Line No. 1N314 1N118 1N96 1N447 141 142 143 144 1N126A 145 1N118A 1N499 1N281 146 147 148 1N292 1N454 1N297 149 150 151 1N297A 152 1N57 1N67 . 1N198 153 154 155 1N100A 1N771 1N500 1N772 1N419 1N3666M USN 156 157 158 159 160 161 5 30 -40 -10 300 300 30 -10 300 1N3666M1 USN 162 30 -10 300 1N3666M2 USN 163, 30 5 -10 -40 300 300 1N771A 1N3666 1N270 1N270JAN 164 165 166 167 1N771B 1N88 1N65 1N52A 1N48 1N52 1N141 1N289 1N140 1N288 1N476 168 169 170 171 172 173 ,: 174 175 176 177 I: 178 1N477 179 10-6 500fJ-A i 1 GOLD BOND GERMANIUM DIODES : ; : ,ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. IF PIV V 3.2 5 5 1 1 1 90 90 90 5 7 25 1 1 0.5 90 90 100 100 100 50 50 3 3.5 4 3,5 0,62 1 1 1 100 4 1 100 4 1 100 4 1 ' 100 4- 1 100 4 1 100 100 100 100 100 4 4 5 5 5 1 1 1 1 0.5 100 100 100 100 7.5 10 10 14 1 1 1 1 100 20 20 100 100 100 100 ' 150 110 5 115 3 1 1 1 1 1 1 " , 90 : 90 : 90 Reverse Recovery Time Ix mA I ~ 115 115 3 5 1 1 115 115 5 50 1 1 120 120 5 25 1 1 @V p.A -100" 7 25 125 250 120 5 20 120 4 625 8 5 50 6 500 6 500 10 50 10 75 50 250 50 600 7 800 10 250 25 50 100 10 75 5 100 40 ' 150 700 11 35 410 4 400 70 45 100 100 30 .... IFmA - .. -- 60 10 10 50@55°C 50@55°C 60 5 65 60 5 100 5 5 50 3 100 3 100 10 50 10 10@75°C 50 50@75°C 50 100 10 100 10 50@75°C 10 50 50 10 10@75°C 50 50 8'0 100 125 10 75@60°C 50 3 50 10 45 100 100 30 " Rec. to nsec VR ---- Line No. "-, -35 50ko 500 5 (sC?lder-Jn 1NJ.2m " -40 0.5mA '300 5 -40 300 30 Part No. O,5mA 1N265 1N479 1N191 180 181 182 , , - 1N490 1N632 1,N3769 183 184 185 1N631 G819 1N68 1N89 1N67A 186 187 188 189 190 1N38A 191 1N388 192 1N355 193 1N198A 194 1N1988 195 1N63A 1N58A 1N478 1N58 1N277JAN 196 197 198 199 200 1N38 1N99 1N97 1N933 201 202 203 204 1N100 1N98 1N501 1N567 1N62 1N617 205 206 207 208 209 210 ',' 2 5 -6 50k -40 0.5mA··· 300 '400 -- 1-. 1N44 1N47 ----- 211 212 ! , i ! I ; ,i , ; I i ; 1N618 1N634 213 214 1N290 1N448 215' I 216 ' --~ , i I I 10-t GOLD BOND GERMANIUM DIODES ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. PIV mA Reverse Recovery Time la IF V @V p.A 120 120 40 50 1 1 120 120 120 120 125 125 100 100 100 125 2.5 3 1 1 1 1 1 1 125 3 1 125 3 1 125 125 125 125 4 5 15 25 1 1 1 1 125 130 130 40 3 5 1 1 1 150 150 165 170 190 .250 3 4 50 50 5 40 1 1 1 1 1 1 100 30 100 50 75 100 180 50 25 300 25 300 25 300 50 100 3 25 300 100 625 300 700 800 500 175 150 500 100 100 30 100 100 10@75°C 100 90 50 10 50 10 50 10 50 50 100 25 10 50 100 100 100 125 150 150 150 150 150 50 NOTES: ·Modified IBM Test Circuit • *IR ···JAN Test Circuit ····@+55°C IFmA 5 VR -40 Rec. to nsec 0.5mA··· 300 Part No. Line No. 1N291 1N450 217 218 1N502 1N;;!77 1N453 1N633 1N75 1N70 219 220 221 222 223 224 1N70A .. 225 1N127 226 1N63 1N142 1N102 1N127A 227 228 229 230 1N143 1N68A 1N61 231 232 233 1N55 1N55A 1N635 1N451 1N558 1N98A 234 235 236 237 238 239 _ITT _ _ _ __ SEMICONDUCTORS SWITCHING DIODES TYPICAL CHARACTERISTICS MAXIMUM VF @ 250C V@IF V@IF V mA V mA MAXIMUM OPO 00·7 BV @ TYPE EQUIV. 5 uA I V V@ IF mA V lN4148 lN914 75(11 1.0 10 4121 025.05 20 ..,. lN4149 lN916 75111 1.0 1U 4(2) 025 .05 20 , lN4150 lN3600 lN4151 lN3604 75 lN4152 lN3605 40 lN4153 lN3606 75 lN4154 lN4009 35 V @ IF V mA V @ IF V mA .54/.62 1.0 .66/.74 10 .76/.86 50 .82/.92 100 .87/1.0 200 1.0 50 .49/.55 0.1 .53/.59 .25 .59/.67 1.0 .62/.70 2.0 .70/.81 10 .74/.88 20 .49/.55 0.1 .53/.59 .25 .59/.67 1.0 .62/.70 2.0 .70/.81 10 .74/.88 20 30 1.0 lN4305 lN4063 75 .505/.575 .25 .55/.65 1.0 .61/.71 2.0 .70/.85 10 lN4444 lN4446 REVERSE CAP. @ V @ IF T•• ~~~ O.OV ns "2~o~ 5:0 VR PF V mA .44/.55 0.1 .56/.68 1.0 .69/.82 10 .85/1.0 100 20 1.0 7511l lN914~ 1.0 lN4448 lN914B 75111 .62/.72 lN4449 lN9168 75111 .63/.73 lN4450 20 5 1.0 100 5 1.0 30 40111 .421.54 0.1 .52/.64 1.0 .64/.76 10 .80/.92 100 1.0 200 1.0 300 T•• Stored (5) Charge ns PC 2 2.5 .05 .05 50 2 4 212) .05 .05 30 2 2121 2121 .05 .05 50 0.1 0.1 25 2 4 2121 0.1 0.1 50 2 .05 .05 50 2 4121 .02 .05 20 4(21 025 .05 20 4!21 .025 .05 20 4 4121 025.!i5 20 2 4121 .05 .05 30 4 2(2) Oper. Volt. Cont. Diu. @ 250C (12) MW 500 500 150 1005(41 500 150 50 4 150 30 500 4 150 50 500 4 25 25 500 4 150 7 200 50 500 4 150 75 500 2 150 75 500 2.5VI6l 150 75 500 2.5VI6I 150 75 500 200 30 500 200 30 500 200 30 500 400 lN4451 40 .40/.50 0.1 .511.61 1.0 .62/.72 10 75/.875 100 .05 .05 30 6 lN4452 40 30 lN4453 30 .42/.54 0.1 .51/.62 1.0 .60/.71 10 .71/.83 100 1.0 600 .90/1.2 lA 50", .05 .05 30 .43/.55 .01 .51/.63 0.1 .60/.71 1.0 .69/.80 10 80/921B} lao .05 .05 20 10 0/50019 30 ~OO 500 20 1.0 10 75 500 IN5194 IN483B 1.0 100 .02 00 70 80 250 2(2) 2 3.0VI101 4 . IN4454 lN3064 75 SOIIl! 0.1 0.1 50 Rect. Fwd. I @ 250 mA 75 75 131 0.1 0.1 50 70 lN4447 lN916A 75111 TF. ABSOLUTE MAXIMUM RATINGS Ave. Ma<. Power IN5195 IN485B 200m' 1.0 100 02500 180 200 250 IN5196 IN486B 2~(1'1 1.0(131 100 02500 225 250 250 IN5605 lN457 701111 1.0 20 .02 00 60 70 250 IN5606 IN458 15111111 1.0 7.0 02500 125 ISO 200 lN5607 IN459 2001111 3.0 02500 175 200 200 IN5608 IN658 120111) 1.0 1.0 lao 3001161 05 02 50 120 250 IN5609 IN660 1201\11 1.0 6.0 3001171 5.0 .~~ 100 2.71141 120 250 NOTES 1. BV=100V @ IR 100p.A 2. IF= 10mA Recover to 1mA VR=6V RL =100 Ohms 3. TRR=4ns @ IF= IR=10 to 200mA irr=0.1 IF TRR=6ns @ IF= IR=200 to 400mA irr=0.1 IF TRR =6ns @ IF=10mA, IR=1mA irr=0.1mA 4. IF=200mA tr<::;;O.4ns, tp=100ns VFR=1.0V, DU<::;;1 % 5. IF=10mA IR=10mA Recover to 1mA 6. 50mA peak square wave, 0.1 P.s pulse width, 5 to 100 KC rep. rate, generator tr<::;;30ns 7. IF 500mA VR=adjust for IR=500mA Recover to 50mA 8. Pulse width=30p.s, duty cycle=3 %, VF measured at 25±3p.s 9. Q @ IF=1mA MIL-STD-750 method 4061 10. IF=100mA peak square wave 0.1 P.s pulse width RL =50 Ohms tr<::;;30 ns, 5 to 100KC 11. @ 100p.A 11-1 12. Rated Max, Junction Temp.=200"C 13. Pulse width=a.5msec, duty cycle<::;;2 %. 14. VR=10V, f=1MHz 15. T =100°C 16. IF=5mA, VR=40V R1 =2K, C1 =10pf Recover to aOkn 17. IF=30mA, VR=35V Recover to 400 kn _ I mm SILICON PLANAR -L-L _ _ _ _DIODE _ SEMICONDUCTORS SILICON PLANAR DIODE This section contains silicon diodes featuring: • Fast Switching • High Conductance • Low Leakage • Voltages up to 250 Volts How To Use This Buying Guide Standard general purpose diodes are listed in numerical order below. Each diode has a line number referenced to the specification tables on pages 2, 3 and 4. Use this buying guide two ways: select the diode by type number, or 10cate the type number from the specification data. ITT is the world's leading producer of diodes. Call your ITT sales engineer or distributor for quotation on all your diode needs. Part No. Line No. Pari No. Line No. 1N194 1N194A 1N195 1N196 1N251 1N379 1N380 1N381 1N382 1N383 1N384 1N38'5 1N386 1N387 1N388 1N389 1N390 1N391 1N392 1N393 1N456 1N456A 1N457 45 44 46 43 20 1 2 3 6 11 14 23 40 66 77 90 103 137 152 168 31 36 80 1N457A 1N460 1N460A 1N461 1N461A 1N462 1N462A 1N464 IN482 1N482A 1N482B 1N483 1N483A 1N619 1N625 1N626 1N627 1N643 1N643A 1N658 1N658A 1N659 1N662 84 138 139 28 35 93 96 169 38 39 58 94 97 18 , 19 67 141 172 173 161 162 68 126 11-2 Part No. Line No. 1N662A 1N663 1N663A 1N690 1N691 1N692 1N696 1N697 1N778 1N789 1N790 1N791 1N792 1N793 1N794 1N795 1N796 1N797 1N798 1N799 1N806 1N808 1N810 1N811 1N812 1N813 1N814 1N815 1N818 1N837 1N837A 1N838 1N840 1N841 1N844 1N891 1N892 1N903 1N903A 1N904 1N904A 1N905 1N905A 1N906 1N906A 1N907 145 129 146 60 130 164 54 163 155 25 24 32 34 79 78 82 85 157 156 159 153 154 69 7 17 4 47 5 128 149 150 170 70 171 151 83 160 52 55 26 29 9 12 10 13 27 Part No. 1N907A 1N908 1N908A 1N914 1N914JAN 1N914A 1N914B 1N916 1N916A 1N916B 1N920 1N921 1N922 1N925 1N926 1N927 1N928 1N929 1N930 1N931 1N934 1N993 1N3062 1N3063 1N3064 1N3065 1N3066 1N3067 1N3068 1N3069 1N3123 1N3124 1N3206 1N3298 1N3600 1N3600USN 1N3604 1N3605 1N3606 1N3607 1N3654 1N3669 1N3731 IN3872 1N4009* 1N4148* Line No. 30 53 56 107 142 114 124 109 115 118 61 132 1'65 48 49 91 158 15 111 167 81 8 112 102 105 99 106 21 22 92 50 51 127 136 72 73 119 42 101 121 144 98 147 140 16 108 SILICON PLANAR DIODE Part No. Line No. Part No. Line No. 1N4149* 1N4150* 1N4151* 1N4152* 1N4153* 1N4154* 1N4305* 1N4380 1N4444* 110 71 120 41 100 37 117 76 95 1N4446* 1N4447* 1N4448* 1N4449* 1N4450* 1N4451 * 1N4453* 1N4454* 8298 113 116 122 123 57 59 33 104 86 Part No. Line No. Part No. Line No. 65 131 75 143 125 133 87 62 134 8505 8506 8507 8508 8509 WG140* WG141 * WG142* 88 63 135 89 64 166 148 74 8398 8400 8401 8402 8403 8500 8501 8502 8504 * Double plug diode package ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. VitM IF Reverse Recovery Time t r r High Temp IR I" Cap. C Test mA 9 11 13.5 15 15 17 20 20 20 20 20 20 20 25 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 35 36 36 37 40 35 30 24 5 100 17 1 10 10 10 12 20 20 9 20 30 2 3 4 5 5 5 7 10 10 10 10 15 20 20 40 50 0.01 0.1 1 10 100 100 100 100 30 100 100 5.5 0.1 0.25 1 2 10 20 @ VF 1 1 1 1 1.5 1 1 1.2 1 1 1 1 1 1 1 1 1 1 1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 .43/.55 .51/.63 .60/.71 .69/.80 .80/.92 1 1 1 1 1.1 1 1 .49/.55 .53/.59 .59/.67 .62/.70 .70/.81 .74/.88 }J.A @ VR "C }J.A VR 5 5 5 10 10 5 10 8.2 10 12 5 5 15 10 100 100 100 125 125 100 125 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 .08 1 0.1 0.1 0.1 0.1 5 1 0.1 0.1 0.5 0.1 0.1 0.025 5 0.05 8.2 10 12 5 5 15 10 6 20 20 18 20 20 22 20 25 10 10 20 10 20 20 27 20 20 30 30 25 30 30 25 20 20 10 10 10 10 10 10 20 20 18 20 20 22 100 100 100 100 100 100 100 10 16 30 10 100 100 10 30 30 10 10 30 10 10 5 30 50 25 10 10 20 10 20 20 27 20 20 30 30 25 30 30 25 20 20 150 125 100 100 100 150 150 100 100 100 100 100 150 100 100 150 100 150 5 0.5 0.025 0.1 0.25 0.025 0.1 0.05 20 25 25 25 30 30 33 30 30 30 5 100 30 15 10 50 20 25 25 25 30 30 33 30 100 150 150 150 150 150 150 150 iF-mA V" Rec.to nsec Condition 5 5 -10 -10 0.5mA 0.5mA 250 250 JAN 256 JAN 256 5 10 10 10 -10 -6 -5 -5 0.5mA 3mA 250 4 4 4 JAN 256 RL=75n RL=100n RL=100n 10 10 -5 -5 1mA 1mA 4 4 RL=100n RL=100fl 10 5 -6 -10 0.5mA 2 250 RL=100n JAN 256 30 5 10 30 -35 -10 -6 30mA· 400kn 0.5mA 1mA 1mA 1000 150 2 50 5 5 10 10 -20 -20 -5 -5 200kn 200kn 250 500 4 4 RL=100n RL=100n 10 10 -5 -5 1mA 1mA 4 4 RL=100n RL=100n 5 -20 200Kn 500 5 10 10 -20 -6 -6 . 11-3 100kn pi @ VR 35 30 28 6 6 64 25 2 6 0 1 2.5 20 1 2.5 15 6 6 6 6 6 6 4 2 0 0 1 4 6 12 0 0 0 6 1 2.5 10 1 2.5 6 6 0 6 6 30 0 IBM Y Mod RL=100n R,.=100n 500 5 0 10 2 6 0 1mA 1mA 2 R,.=100n 2 RL=100n Part No. Line No. 1N379 1N380 1N381 1N813 1N815 1N382 1N811 1N993 1N905 1N906 1N383 1N905A 1N906A 1N384 1N929 1N4009 1N812 1N619 1N625 1N251 1N3067 1N3068 1N385 1N790 1N789 1N904 1N907 1N461 1N904A 1N907A 1N456 1N791 1N4453· 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1N792 1N461A 1N456A 1N4154" 1N482 1N482A 1N386 1N4152" 34 35 36 37 38 39 40 41 SILICON PLANAR DIODE ELECTRICAL CHARACTERISTICS, Continued IF VRM Reverse Recovery Time t r r High Temp In I. Cap. C Tesl mA 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 43 50 50 50 50 50 50 50 50 50 50 52 60 60 60 60 60 60 60 60 60 60 60 60 62 65 65 70 70 70 70 70 70 0.1 1 1 1.5 2 2 5 5 10 10 10 10 10 20 20 0.1 1 10 100 200 100 0.1 1 10 100 300 400 400 500 500 500 500 4.5 4 6 10 150 1 10 50 100 200 200 200 250 400 570 3.5 10 10 20 30 50 50 100 100 500 500 500 500 2.7 10 50 5 100 0.1 1 10 100 100 100 400 @ VF 0.55 2 1 2 2 1 1 1 1.5 1.5 1 1 1 1 1 .42/.54 .52/.64 .64/.76 .80/.92 1 1 .40/.50 .51/.61 .62/.72 .75/.88 1 1 1 1 1 1 0.9 1 1.5 1 1 1 .54/.62 .66/.74 .76/.86 .86/.92 .87/1.0 1 1 1 1 1.4 1 1 1 1 1 1 1 1 _.-- 1 1 1 1 1 1 1 1 1 1.1 .44/.55 .56/.68 .69/.82 .85/1.0 1 1 1.1 p.A @ V. /LA Vn 'c IFmA 10 30 30 30 30 5 5 5 10 10 10 10 10 10 10 10 0.05 10 10 10 10 0.1 1 0.1 0.1 0.1 0.1 0.1 0.015 0.1 0.1 0.05 30 40 40 40 40 20 10 10 40 40 40 40 20 40 40 30 50 300 300 300 300 10 20 10 10 10 10 10 20 10 10 50 30 50 40 40 40 20 10 10 40 40 40 40 20 40 40 30 150 150 150 150 150 150 100 100 100 100 100 100 150 100 100 150 0.025 0.05 30 30 5 50 30 30 150 150 0.25 0.25 0.05 0.05 0.05 0.2 0.1 1 5 1 0.1 0.1 30 30 25 25 25 25 39 35 50 40 40 50 50 50 30 30 150 150 10 30 25 39 35 50 100 100 100 15 100 40 50 100 150 0.1 0.1 0.1 0.1 50 0.1 5 1 0.025 0.025 5 0.1 0.025 5 0.2 0.1 0.1 0.1 1 0.1 0.1 0.5 0.25 0.05 50 50 30 30 50 47 50 50 60 60 50 50 60 50 30 30 30 30 56 10 50 60 60 50 100 100 50 10 100 30 30 50 50 10 50 60 60 50 100 100 100 150 150 150 0.5 0.025 0.25 60 60 70 30 15 60 60 150 150 10 30 30 5 6 3 25 5 30 50 50 47 50 50 60 60 50 50 60 50 150 150 100 100 100 150 150 100 100 150 100 V. -6 -35 -35 -35 -35 -10 -10 -10 -5 -5 -5 -5 -5 -5 -6 Rec.to "sec Condition 1mA 2 R.. =100a 100 200 200 300 250 JAN 256 150 JAN 256 150 JAN 256 4 RL=100n 4 RL=100a 4 R•. =100n 4 R•. =100n 5 4 RL=100n 4 RL=100a 4 R,,=100n 0.5mA 20kn 20kn 1mA 1mA 10mA 1mA 1mA 1mA 500 500 500 500 500 500 -30 -30 -30 -30 -30 -30 10kl! 10kn 10ko 10ka 10kn 10ka 30 30 10 30 20 to 200 200 to 400 10 10 10 10 400 570 -35 -35 400kO 400kf! -35 20 to 200" 200 to 400" 1"" 400kn 800 300 15 30 50 200 RL=1ka RL=1kn RL=100n RL=1000 RL=100n RL=1kO 1000 IBM Y Mod 300 JAN 256 50 300 JAN 256 4 irr=O.1 IF 6 Part pI @ Vn 2 0 0.8 2 1 2.5 4 1 2.5 4 -6 -30 -15 0.1mA 1.1mA 1mA 10kf! 1mA 5 5 -40 -20 200kn 200kn 250 500 30 5 -35 -40 400kO 200kO 80kn 1000 500 300 6 6 6 6 0 6 6 0 1N3605 1N196 1N194A 1N194 1N195 1N814 1N925 1N926 1N3123 1N3124 1N903 .1N908 1N696 1N903A 1N908A 1N4450" 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 6 0 1N482B 1N4451" 58 59 9 7 7 7 7 8 7.5 9 9 9 9 6 1N690 1N920 8502 8506 8509 8398 1N387 1N626 10 1N659 ·1N810 1N840 0 1N4150" 60 61 62 63 64 65 66 67 68 69 70 71 0 1N3600 0 1N3600U8N 0 WG142" 9 8401 15 1N4380 6 1N388 1N794 1N793 0 1N457 1N934 1N795 1N891 1N457A 1N796 9 8298 9 8501 9 8505 9 8508 6 1N389 1N927 0 1N3069 0 1N462 1N483 0 1N4444" 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1N462A 1N483A 1N3669 96 97 98 2.7 2.5 irr=0.1 mA JAN 256 100kO 10ko 10ko 10kn 10kn 500 200 15 30 50 RL=1kn RL=100n RL=100n RL=100n RL=1000 RL=100n RL=100n RL=100n 2.5 2.5 4 7 3 6 8 -40 -50 -30 -30 -30 7 7 7 7 5.6 5 30 -10 30mA" 20kn 1mA 150 50 Jan 256 RL=100n 10 -6 1mA 2 RL=100n 2 300 -10 1 rnA 200 RL=100n 10 11-4 Line No. irr=O.1 IF 6 6 4 6 15 1.8 5 500 500 500 500 No. 6 8 10 SILICON PLANAR DIODE ELECTRICAL CHARACTERISTICS, Continued V., IF mA 75 75 0.1 0.1 0.25 1 1 10 20 0.1 0.25 2 10 10 10 10 10 10 10 75 75 75 75 75 75 75 75 75 75 75 2U 75 20 20 75 75 20 20 75 20 75 75 0.25 1 2 10 75 30 75 50 50 75 75 50 75 5 100 75 5 30 75 100 75 200 80 10 80 10 80 30 SO 100 SO 400 SO 400 SO 500 SO 500 SO 500 SO 500 SO 500 90 1.5 90 5 90 .15 90 150 4 100 100 10 25 100 100 50 100 100 100 100 100 100 100 100 100 150 100 150 100 200 110 1.2 110 4 110 100 112 120 120 120 120 10 10 10 10 50 @ High Temp I. I. VF 0.53 .49/.55 .53/.59 .59/.67 .62/.70 .70/.71 .74/.88 0.55 0.58 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .50/.58 .55/.65 .61/.71 .70/.81 1 1 1 1 .62/.72 1.0 .63/.73 1.0 1 1 1 1 1.5 1 1 1 1 1 1 1 0.9 1 1 1 1 1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p.A @ V. p.A V. 'c Cap. C Reverse Recovery Time I r r IFmA V. Rec.lo nsec Test Condition PanpI @ V, 0.1 0.05 50 30 100 50 50 30 150 150 10 10 -6 -6 lmA lmA 2 2 RL-l00n R,.=10O!J 1.5 2 0 0 0.05 0.1 1 50 50 68 50 100 50 50 50 68 150 150 100 10 10 -6 -1 lmA lmA 2 4 R,.=100n R,.=100n 0.1 0.1 0.025 0.Q25 0.025 0.025 U.l 0.1 0.025 0.025 0.Q25 0.Q25 50 50 20 20 20 20 50 50 20 20 20 20 100 100 50 50 50 50 50 50 20 20 20 20 150 150 150 150 150 150 10 10 10 10 -6 -1 -6 -6 lmA lmA lmA lmA 2 4 2 4 RL=100n RL=100n RL=100n RL=100n 10 -6 lmA 4 RL=100n 2 2 5.2 2 2 1 4 4 2 2 0 0 6 0 0 0 0 0 0 0 100 50 50 50 50 50 20 20 20 20 150 150 150 150 10 10 10 10 10 10 -6 -6 -8 -6 -6 -6 lmA lmA lmA lmA lmA lmA 2 4 4 4 4 2 RL=100n RL=100n RL=100n R,.=100n RL=100n RL=100n 0_025 0.05 0.05 0.05 0.025 20 50 50 50 20 50 50 50 50 50 20 50 50 50 20 150 150 150 150 150 10 10 10 10 10 -6 -6 -6 -6 -6 lmA lmA lmA lmA lmA 0.025 20 50 20 150 10 -6 lmA 0.Q25 0.1 1 0.025 0.25 5 0.25 0.1 0.25 0.1 0.1 0.1 0_2 1 0.01 0.01 0.1 1 5 10 0_025 1 0.1 0.050 0.050 0_1 0.1 0.1 1 0.5 1 20 50 10 20 60 75 60 50 60 50 50 50 60 S2 10 10 75 75 75 SO 75 10 75 50 50 75 SO SO 100 100 100 50 100 100 50 20 50 50 20 50 50 20 60 75 60 150 150 100 150 100 100 150 lmA O.lmA lOOk!] lmA 50 60 150 10 200 5 10 20 5 500 400 500 500 500 500 500 0.5 5 1 0.1 5 100 100 100 10 100 45 50 0.2 0.2 60 82 10 10 150 100 100 100 30 50 0.5 25 100 15 50 75 20 20 75 50 75 50 100 150 71 150 100 100 150 15 15 15 50 50 50 75 SO SO 100 100 100 100 100 100 100 125 125 30 30 30 10 30 100 100 100 10 100 125 100 100 100 100 -6 200mA" -40 -6 -40 -40 -50 -30 -50 --30 -30 -30 -30 200kn 10kn 10kn 10kn 10kn 10kn 10kn 50mA 200 30 10 30 5 5 5 10 10 30 30 30 -20 -35 5mA 400kn -35 -6.5 -40 -40 -6 -6 -35 -35 -35 400kn lmA 100kn 200kn lmA lmA 400kn 400kn 400kn 5 30 -40 -35 5 5 5 5 5 -40 -40 -40 -10 -40 11-5 Line No. 1N3065 lN4153' 99 100 1 4 4 2 2 2 lN3606 lN3063 lN390 lN4454' lN3064 lN3066 lN914 lN4148' lN916 lN4149' lN930 0 lN3062 0 lN446' 0 lN914A 0 lN916A 0 lN447' 0 lN4305' 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 4 RL=100n 2 RL=1000 2 RL=1000 2 RL=1000 4 RL=100n 2 2 2 2 4 0 0 0 0 0 lN916B lN3604 lN4151' lN3607 lN4448' 118 119 120 121 122 4 RL=100n 2 0 lN4449' 4 6 500 4 500 500 SOO 15 300 15 30 50 50 RL=100n RL=1000 4 2.5 3 4 RL=100n JAN 256 RL=lkO RL=10O!J RL=lkO RL=1000 RL=100n RL=1000 R,.=50n 50 1000 5 100 4 300 300 3 3 500 300 500 RL=100n IBMYMod RL=100n R,.=2kn 300 300 JAN 256 JAN 256 RL=500n JAN 256 JAN 256 JAN 256 RL =100n R,.=100n JAN 256 JAN 256 JAN 256 7 7 7 7 4.S 3 4 5 2.S 2 2 4.5 400kn 200kO 200kf! 20kn 200kO No. 300 250 500 150 500 0 lN914B 0 5403 10 lN662 0 lN3206 lNS1S lN663 lN691 9 5400 lN921 9 5500 9 5504 9 5507 lN329S 6 lN391 10 lN460 10 lN460A 0 lN3872 lN627 1.5 lN914JAN 5402 lN3654 lN662A lN663A 0 lN3731 0 WG141' 1 NS37 lN837A lNS44 6 lN392 lNS06 lNSOS lN77S lN79S lN797 lN92S lN799 123 124 125 126 127 12S 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 14S 149 150 151 152 153 154 155 156 157 15S 159 SILICON PLANAR DIODE ELECTRICAL CHARACTERISTICS, Continued I. VRl'ot mA 120 120 120 120 120 120 125 125 135 150 150 150 175 175 50 100 100 250 400 500 150 20 0.9 3 150 150 10 40 @ V. p.A @ 1 0.1 1 0.05 1 0.025 1 1 1 0.25 1 0.25 1 1 0.1 1 1 1 0.5 1 0.1 1 0.1 1 0.025 1 1.0 Reverse Recovery Time t r r High Temp I. I. v. p.A v. 'C 100 50 50 50 90 90 25 25 10 100 50 50 100 150 150 50 100 90 90 150 150 100 120 125 125 120 10 100 50 30. 15 15 15 15 120 120 125 120 100 100 100 150 100 100 100 100 Cap. C Teal Condition v. Ree.lo 5 5 100 500 500 10 -40 -'40 -10 -50 -50 -6 80kn 80kO 80kO 10m 10kll 10kll 1mA 300 JAN 256 300 300 JAN 256 5 800 RL=1kll 300 RL=1kO 4 RL=100n 30 30 5 -35 -35 -40 400kll 400kll 200kO ,500 JAN 256 300 JAN 256 300 l.mA nsec pi @ V. 25 4.2 3 NOTES: • Double plug diode package HIRmA I 11-6 Part No. 1N892 1N658 1N658A 0 1N697 1N692 1N922 WG140' 1N931 6 1N393 1N464 1N838 1N841 1N643 -10 1N643A Line No. 160 161 162 163 164 165 166 167 168 169 170 171 172 173 I mm 1N4148 _-IL-IL ______________S_IL_IC_O_N__P_LA_N_A_R__D_IO_D_E SEMICONDUCTORS SILICON EPITAXIAL PLANAR DIODE • 00-35 Construction o Hermetically Sealed • Passivated Surfaces •. Inherently Reliable ABSOLUTE MAXIMUM RATINGS Characteristics @ 25° C: Units Storage Temperature 65 to 2 0 0 ° C Range ........... Lead Temperature 1/16 + If 1/32" from case for 10 sec .................... 300 °c Continuous Reverse Operating Voltage .................... 75 Volts Power Dissipation ............ 500 mW MW 1° C Derating Factor .............. 2.85 ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. Characteristic Min. Typ. Max. Conditions U.nit Peak Inverse Voltage 75 V 5p.8. Peak Inverse Voltage 100 V 100p.a. 10mA Forward Voltage 1.0 V Reverse Current 25 na 20V 150 50 p'a 20V * 4 4 flsec Reverse Current Capacitance Reverse Recovery Time *If=10mA Vr=6V pf R,=100 ohms 11-7 OV 1mA recover to 1. mA ITT ----- JAN 1N4148 SILICON SWITCHING DIODE SEMICONDUCTORS SILICON EPITAXIAL PLANAR SWITCHING DIODE • 00·35 Construction • Hermetically Sealed • Passivated Surfaces • Inherently Reliable ABSOLUTE MAXIMUM RATINGS Characteristics @ 25°C Units Peak Inverse Voltage .............. 100Volts Power Dissipation ................. 250 mV Storage Temperature ...... -65 to +200°C Avg. Rectified Fwd. Current .......... 75 mA Surge Current, 1 second ............ 500mA ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. Max. Unit Vdc Conditions IR=100fJ.A IR 25 5.0 50 100 VR-20V VR=75V VR=20V, T=150°C VR=75V, T=150°C VF 1.0 nA fJ.A fJ.A fJ.A Vdc Symbol PIV Min. 100 Typ. IF =10mA VR-OV VR=1.5V C 4.0 2.8 pF pF Trr 5.0 nsec IF -IR-10mA, C-3pF, RL = 100n, Rec. to 1.0mA Tcr 5.0 Vdc 50mA/20 nsec, Rep. Rate Less than 100 KC 11-8 1N4149 SILICON SWITCHING DIODE SILICON EPITAX~AL PLANAR SWITCHING D~ODE ABSOLUTE MAXIMUM RATINGS Characteristics @ 2SoC Units Peak Inverse Voltage ............. 100Volts Power Dissipation ................. 2SOmW Storage Temperature ...... -6S to +200°C Avg. Rec!. Fwd. Current ............. 7SmA Surge Current, 1 sec. . ............. SOOmA ELECTRICAL CHARACTERISTICS Symbol PIV IR Min. @ 2SoC unless otherwise noted. Typ. Max. 100 S.O .02S SO Unit Conditions Vdc IR=100jJ.A jJ.A p.A p.A VF 1.0 Vdc Tn 4.0 nsec C 2.0 pF T'r 2.S Vdc 11-9 VR=7SV VR=20V VR=20V, T=1S0°C IF =10mA IF =10mA, VR=6V VR=QV SOmA Peak Square Wave, 0.1jJ.sec Pulse Width, SKC Rep. Rate, Max. Vol!. Drop: ITT600 - ITT- - - - SILICON SWITCHING DIODE SEMICONDUCTORS SILICON EPITAXIAL PLANAR SWITCHING DIODE ABSOLUTE MAXIMUM RATINGS Units Characteristics @ 25°C Peak Inverse Voltage .............. 75Volts Avg. Rect. Current ................. 200mA Recurrent Peak Fwd. Current ........ 900mA Surge Current, 1 sec ................ 1Amp Power Dissipation ................. 500mW Operating Temperature .... -65 to + 150°C Storage Temperature ....... -65 to +175°C ELECTRICAL CHARACTERISTICS Symbol VF @ 25°G unless otherwise noted. Min. .87 .82 .76 .66 .54 IR PIV Typ. Max. Unit Conditions 1.0 .92 .86 .74 .62 Vdc Vdc Vdc Vdc Vdc IF=200mA IF=100mA IF=50mA IF =10mA IF=1mA 100 100 nA j1.A Vdc 75 C 2.5 pF Trr 4.0 nsec 6.0 nsec 11-10 VR=50V VR =50V, T=150°C' IR=5j1.A VR=OV 1,,=IR=10 to 200mA Rec. to 0.1 of IF IF=I R=200 to 400mA Rec. to 0.1 of IF - ITT601 SILICON SWITCHING DIODE ITT- - - - SEMICONDUCTORS SILICON EPITAXIAL PLANAR SWITCHING DIODE ABSOLUTE MAXIMUM RATINGS Units Characteristics @ 25°C Peak Inverse Voltage .............. 75Volts Avg. Rect. Current ................. 200mA Recurrent Peak Fwd. Current ........ 900mA Surge Current, 1 sec. . ............. ; 1Amp Power Dissipation ................. 500mW Operating Temperature., .. -65 to +150°C Storage Temperature ....... -65 to +175°C ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted. Symbol Min. VF .80 .75 .62 IR PIV Typ. Max. Unit Conditions 1.2 1.0 .90 .85 .70 Vdc Vdc Vdc Vdc Vdc IF =500mA IF =400mA IF =200mA IF =100mA IF =10mA 100 100 nA p.A Vdc 50 C 3.0 pF Trr 6.0 nsec 11-11 VR=30V VR=30V, T=150°C IR=5fLA VR=OV IF =IR-10mA, RL=100n Rec. to 1.0mA ITT ----ITT2001, ITT2002, ITT2003 SILICON SWITCHING DIODE SEMICONDUCTORS SILICON EPITAXIAL PLANAR SWITCHING DIODE For General Purpose High-Voltage Applications MAXIMUM' RATINGS @ 25°C (NOTE 1) ITT2002 ITT2003 200Volts 150ma 250ma 4()Qma 250Volts 150ma 250ma 400ma 1.0A 300mw 3.3mw;oC -65°C to +175°C 1.0A 300mw 3.3mw;oC -65°C to +175°C -65°C to +200°C -65°C to +200°C ITT2001 Peak Inverse Voltage ............. 100Volts Average Rectified Current ............ 150ma Forward Current Steady State D.C. .., 250ma Recurrent Peak Forward Current ..... 400ma Peak Forward Surge Current Pulse Width of 1.0 Second ............... 1.0A Power Dissipation ................. 300niw Power Derating ................. 3.3mw;oC Operating Temperature .. , -65°C to +175°C Storage Temperature, Ambient .............. -65°C to +200°C ELECTRICAL CHARACTERISTICS, ITT2001 (25°C unless otherwise noted) Parameter Min Max Units Test Conditions VF Forward Voltage 1.0 Volts IR1 Reverse Current 0.1 ua VR=50V 100 ua VR=50V IR. Reverse Current (150°C) BV Breakdown Voltage Os Store Charge (Note 2) Co Capacitance 100 Volts IF=100ma IR=100ua 500 pc IF=10ma 5.0 pf VR=OV, f=1MHz NOTES: 1. The maximum ratings are limiting values above which life or satisfactory performance may be impaired. 2. This test is equivalent to Trr @ IF = IR = 30 rna, RL - 100 ohms, recovered to 3 rna to be .Iess t,han 50 nsec. 11-12 ITT2001, ITT2002, ITT2003 SILICON SWITCHING DIODE ELECTRICAL CHARACTERISTICS, ITT2002 (25°C unless otherwise noted) Parameter Min Max Units Test Conditions VF Forward Voltage 1.0 Volts IR. Reverse Current 0.1 ua VR=150V ua VR=150V IF=100ma IR, Reverse Current (150°C) BV Breakdown Voltage as Storage Charge (Note 2) 500 pc IF=10ma Co Capacitance 5.0 pf VR=OV, f=1MHz 100 Volts 200 IR=100ua ELECTRICAL CHARACTERISTICS, ITT2003 (25°C unless otherwise noted) Parameter Min Max Units Test Conditions VF Forward Voltage 1.0 Volts IR. Reverse Current 0.1 ua VR=150V ua VR=150V IF=100ma IR, Reverse Current (150°C) BV Breakdown Voltage as Store Charge (Note 2) 500 pc IF=10ma Co Capacitance 5.0 pf VR=OV, f=1MHz 100 Volts 250 11-13 IR=100ua _ I ITT3001, ITT3002, ITT3003 HIGH VOLTAGE HIGH TEMPERATURE DOUBLE PLUG DIODE mm _ _ _ __ -L-L SEMICONDUCTORS HIGH VOLTAGE HIGH TEMPERATURE DOUBLE PLUG DIODE MAXIMUM RATINGS (25°C) Note 1 3001 3002 3003 Peak Inverse Voltage ............... 70Volts 150Volts 200Volts Average Rectified Current ........... 100ma 100ma 100ma Forward Current Steady State D.C. .... 200ma 200ma 200ma Recurrent Peak Forward Current...... 300ma 300ma 300ma Peak Forward Surge Current Pulse Width of 1.0 Second ............... 1.0A 1.0A 1.0A Power Dissipation .................. 250mw 250mw 250mw Power Derating ................. 2.0mw/"C 2.0mw/"C 2.0mw/"C -65°C to +175°C -65°C to +175°C --65°C to +175°C Storage Temperature, Ambient .............. -65°C to +200°C -65°C to +200°C -65°C to +200°C Operating Temperature '" ELECTRICAL CHARACTERISTICS ITT3001 (25° C unless otherwise noted) Max . Units Forward Voltage 1.0 Volts 0.025 ua 5 ua Parameter VF IR, Reverse Current IR. Reverse Current (150°C) BV Breakdown Voltage Co Capacitance Min Volts 70 8 NOTES: 1. The maximum ratings are limited values above which life or satisfactory performance may be impaired. 2. All Diodes must have black body coat. 11-14 pf Test Conditions IF=100ma VR=60V VR=60V IR=100ua VR=OV, f=1MHz ITT3001, ITT3002, ITT3003 HIGH VOLTAGE HIGH TEMPERATURE DOUBLE PLUG DIODE ~LECTRICAL CHARACTERISTICS ITT3002 (25°C unless otherwise noted) . Parameter' .. Min Max Units Test Conditions VF Forward Voltage 1.0 Volts IR, Reverse Current 1.0 na VR=125V ua VR=125V IR, Reverse Current (150°C) BV Breakdown Voltage Co Capacitance 3.0 150 Volts 6.0 pf IF=200ma IR=100ua VR=OV, f=1MHz .. ELECTRICAL CHARACTERISTICS ITT3003 (25°C unless otherwise noted) , Parameter Min Max Units Test Conditions VF Forward Voltage 1.0 Volts IF=100ma IR, Reverse Current .025 ua VR=175V IR, Reverse Current (150°C) 5 ua VR=175V BV Breakdown Voltage Volts IR=100ua 200 11-15 _ 1N5194, 1 N5195, 1 N5196 GENERAL PURPOSE HIGH-TEMPERATURE DIODE m _ _ _ __ 1 T.L SEMICONDUCTORS GENERAL PURPOSE SILICON DIODE This device is a Silicon Double Plug Diode for general-purpose, high-temperature application in computer, industrial and military applications. ABSOLUTE MAXIMUM RATINGS Cross-Reference to Electrical Equivalents Storage temperature range, T stg • • • • • • • • • • • • • • • • • • • • • • 55°C to +200°C Lead or terminal temperature at a distance not less than 1/16" from the seated surface (or case) for 2 seconds ......................... +275°C 1N5194 00-7 Types OPO Types 1N483B 1N485B 1N486B 1N5194 1N5195 1N5196 1N5195 1N5196 200V 250V Reverse voltage, 25°C free air ......... 80V Maximum steady state power dissipation at 25°C, free air ................... 250mw 250mw 250mw Derating factor ................. 1.43mw/"C 1.43mw/"C 1.43mw/"C ELECTRICAL CHARACTERISTICS 1N5194 Min Forward Voltage, Vf @ 1f=100ma ... 1N5195 Max Min Max 200V Max 1.0V· • 1.0V 1.0V Breakdown Voltage, Bvr Ir=100ua .. 80V 1N5196 Min 250V .... 25na 25na' 25na' ....................... 5ua 5ua' 5ua' Reverse Current, Ir @ Vr=70V Reverse Current, Ir @ Vr=70V @ 150°C •• Pulsed-width 8.5 msec max duty cycle 2 % or less 11-16 'Vr=180V 'Vr=225V ITT . SEMICONDUCTORS 1 N5605, 1 N5606, 1 N5607, 1 N5608, 1 N5609 GENERAL PURPOSE SILICON DIODES -~--- S~l~CON GENERAL PURPOSE DIODES Cross-Reference to Electrical Equivalents This device is a Silicon Double Plug Diode for general purpose use in computer, industrial and military applications. ABSOLUTE MAXIMUM RATINGS Storage temperature range, Tstg .................... -65°C to +200°C Lead or terminal temperature at a distance not less than 1/16" from the seated surface (or case) for 15 seconds .......... +275°C 00-7 Types OPO Types 1N457 1N458 1N459 1N658 1N660 1N5605 1N5606 1N5607 1N5608 1N5609 1N5606 1N5607 1N560B/9 70V 150V 200V 120V Maximum steady state power dissipation at 25°C, free air ......... 250mw 200mw 200mw 1N5605 Reverse voltage, 25°C free air Derating factor ......... .................... 250mw 2mw;oC ELECTRICAL CHARACTERISTICS Forward Voltage, Vf @ If=20ma 1N5605 Min Max IN5606* Min Max IN5607* Min Max 1.0V 1.0V 1.0V ... Breakdown Voltage, Bvr Ir=100ua .. 70V 150V Reverse Current, Ir @ Vr=60V .... 25na Reverse Current, Ir @ Vr=60V @ 150°C ....................... 5ua 200V 25na 5ua *If=7 ma, Vr=125V .ELECTRICAL CHARACTERISTICS-1 N560B Min Max 1.0V Forward Voltage, Vf@lf=100ma.. Breakdown Voltage, Bvr Ir-100ua ....................120V Reverse Current, Ir@50V ....... 50na Reverse Current, Ir @ 50V @ 150°C .......... ,........ 25ua *Reverse Recovery Time, Trr If=5 ma, Vr=40V R1 =2K, C1 =10pf Recover to 80K ohms ....... . 30 nsec 25na 5ua *If=3 mao Vr=175V ELECTRICAL CHARACTERISTICS-1N5609 Min Max 1.0V Forward Voltage, Vf@lf-6ma.... Breakdown Voltage, Bvr Ir=100ua ................... 120V Reverse Current, Ir @ 100V ..... 5ua Reverse Current, Ir @ 100V @ 100°C .................. 50ua Capacitance, C Vr=10V, f=1 mc ............ 2.7pf Reverse Recovery time, Trr If=30ma, Vr=35V, Recover to 400K ohms ...... . 300nsec 11-17 ITT - - - - ...... SELENIUM CONTACT PROTECTORS SEMICONDUCTORS SELENIUM CONTACT PROTECTOR RECTIFIERS II) AC or DC Applications • Low Cost II Easy to Install DIMENSIONS N02010~21 TINNED COPPER WIRE • Small Size o Rugged Construction These ITT selenium cells have been specifically processed for contact protector applications. Their long life, low leakage current and reliable operation provide a low-cost solution to arcing problems in switched inductive devi:;es. These circui~ protectors prevent arcing by effectively suppressing the voltage surges which normally occur during switching. This eliminates the undesirable by-products of arcing, such as contact pitting and erosion, undesirable electrical noise, false triggering of adjacent control circuits or possible insulation breakdown. ITT selenium cells may be used in a back-to-back arrangement on devic~s breaking either AC or DC circuits. In AC applicattons, each arm normally contains the same number of cells; for DC use, a different number of cells is generally specified for each arm. PACKAGE STYLE 2 PACKAGE STYLE 3 TYPICAL APPLICATIONS • • • Magnetic Chucks Relays Electric Clutches e Stepping Switches 0 Telephone Switching Thermostats €I) Electric Brakes Equipment e Electromagnets 0 Automobile·Clocks & Horns 0 Solenoid Valves 0 Solenoids Ii) Small Motors 0 Computers 0 Telemetering Equipment Ii) 1·,,'·"'00 Mti;~ .. ~ ~OH ORDERING INFORMATION 102 S 2 EX 1 LNO. of cells in position "A" "S" indicates DC suppressor "A" indicates AC suppressor "P" indicates paper tube "H" indicates hermetic seal ~l<. II I LNo.of cells in position "8" L FInish No. of cells in position "A" "S" indicates DC suppressor "A" indicates AC suppressor A oBLOCKING SECTION B 0 SUPPRESSOR SECTION FIG. A FIG. B -,., PACKAGE STYLE 4 Explanation of part number codes BA4 P S 1 -~~;;~ - r ~~~ :~=~ ~::::',~~ :~~ '~~t~'~~'J:s, .,,' FIG. C Special finishes Package style 1 is supplied in a paper tube or in a hermetically sealed can which meets MIL specifications far environmental exposure. Package styles 2. 3 and 4 are supplied With a com· mercial protective ·finish. Ta order special finishes replace the "X" in the part number with letters as follows: "Y" for humidity and salt'spray protection "W" for heavy duty industrial protection "YF" for humidity, salt spray and fungus protection 12-1 SELENIUM CONTACT PROTECTORS CHARACTERISTICS DC APPLICATIONS -10 BREAKS/ SECOND MAX DC Voltage Range 0-30 0-22 31-60 23-44 61-90 45-66 91-120 67-BB 121-150 B9-110 151-IBO 111-132 IBI-210 133-154 211-240 155-176 241-270 177-198 271·300 199-220 301-330 221-242 331-360 243-264 Coil Curren For 300V Max. DC Coil Current Max. Rise mA mA In Part No. Package Style Dimensions B A ITT Part No. Package Style Dimensions A B 500 1000 1750 4700 9000 14000 BAIPSO 15AIPSO 101S1EXO 102SIEXO 103SIEXO 104S1 EXO I 1 2 2 2 2 25/64 1/2 11/16 I 1-1/4 1-17/32 5/B 5/B 3/B 3/B 11/32 ll/32 BAIHSO' 15AIHSO' 10lSIAXO 102SIAXO 103SIAXO 104SIAXO 1 1 4 4 4 4 1/2 9/16 11/16 I 1-1/4 1-17/32 29/32 29/32 9r16 9/16 5/B 11/16 500 1000 1750 4700 9000 14000 BA2PSO 15A2PSO 10lS2EXO 102S2EXO 103S2EXO 104S2EXO 1 1 2 2 2 2 25/64 1/2 11/16 I 1-1/4 1-17/32 5/B 5/B 1/2 1/2 1/2 1/2 BA2HSO' 15A2HSO' 10lS2AXO 102S2AXO 103S2AXO 104S2AXO 1 1 4 4 4 4 1/2 9/16 11/16 I 1-1/4 1-17/32 29/32 29/32 11/16 11/16 11/16 13/16 500 1000 1750 4700 9000 14000 BA3PSO 15A3PSO 10lS3EXO 102S3EXO 103S3EXO 104S3EXO 1 I 2 2 2 2 25/64 1/2 11/16 I 1-1/4 1-17132 5/B 5/B 9/16 5/B SIB 5/B BA3HSO' 15A3HSO' 10lS3AXO 102S3AXO 103S3AXO 104S3AXO 1 1 4 4 4 4 1/2 9/16 11/16 I 1-1/4 1-17/32 29/32 29132 11116 27/32 13/16 31/32 500 1000 1750 4700 9000 14000 BA4PSO 15A4PSO 101S4EXO 102S4EXO 103S4EXO 104S4EXO I 1 2 2 2 2 25/64 112 11/16 I 1-1/4 1-17/32 3/4 314 SIB 11116 314 23132 BA4HSO' 10lS4AXO 102S4AXO 103S4AXO 104S4AXO 1 1 4 4 4 4 1/2 9/16 11/16 I 1-114 1-17/32 1-1/32 1-1/32 13116 7/B 15/16 1 BA5PSO 15A5PSO 10lS5EXO 102S5EXO 103S5EXO 104S5EXO I I 2 2 2 2 25164 112 11116 I 1-114 1-17/32 3/4 SIB 314 71B 1 1 BA5HSO' 15A5HSO' 10lS5AXO 102S5AXO 103S5AXO 104S5AXO 1 1 4 4 4 4 1/2 9/16 11/16 I 1-114 1-17132 1-1/32 1-1/32 1 1-1/16 13132 1-3/16 'BA6PSO 15A6PSO 101S6EXO 102S6EXO 103S6EXO 104S6EXO 1 I 2 2 2 2 25164 1/2 11/16 1 1-114 1-17/32 3/4 15/16 1 1 1 1-1/B BA6HSO' 15A6HSO' 10lS6AXO 102S6AXO 103S6AXO 103S6AXO 1 1 4 4 4 4 1/2 9/16 11/16 1 1-1/4 1-17/32 1-1/32 1-1/32 1-1/16 l-I/B 1-1/4 1-5/16 BA7PSO 15A7PSO 10lS7EXO 102S7EXO 103S7EXO 104S7EXO 1 1 2 2 2 2 25164 1/2 11/16 1 1-1/4 1-17/32 15/16 13/16 I 1 1-1/2 l-l/B BA7HSO'" 15A7HSO' 101S7AXO 102S7AXO 103S7AXO 104S7AXO I 1 4 4 4 4 1/2 9/16 11/16 1 1-1/4 1-17132 1-7/32 1-7132 l-l/B 1-1/4 1-3/B 1-7/16 BABPSO 15ABPSO 10lSBEXO 102SBEXO 103SBEXO 104SBEXO I 1 2 2 2 2 25/64 1/2 11/16 I 1-1/4 1-17/32 13/16 13116 1-I/B 1-5/32 1-1/4 1-1/4 BABHSO' 15ABHSO' 10lS8AXO 102SBAXO 103SBAXO 104SBAXO 1 I 4 4 4 4 1/2 9/16 11/16 1 1-1/4 1-17/32 1-7/32 1-7/32 1-3/16 1-5/16 1-7116 1-1/2 BA9PSO 15A9PSO 101S9EXO 102S9EXO 103S9EXO 104S9EXO I 1 2 2 2 2 25164 112 11/16 I 1·1/4 1-17132. 15/16 15/16 I-liB 1-114 1-3/B 1-3/B BA9HSO' 15A9HSO' 10lS9AXO 102S9AXO 103S9AXO 103S9AXO I 1 4 4 4 4 1/2 9/16 11/16 I 1-1/4 1-17/32 1-7/32 1-7132 1-114 1-15/32 1-9/16 1-3/B BAIOPSO 15AIOPSO 10lSIOEXO 102SIOEXO 103SIOEXO 104S10EXO I 1 2 2 2 2 25/64 112 11/16 I 1-114 1-17/32 15/16 15116 1-1/4 1-31B 1-1/2 1-1/2 BAIOHSO' lSA1OHSQ* 10lSIOAXO 102SIOAXO 103S10AXO 104S10AXO 1 I ·4 4 4 4 1/2 9116 11/16 I 1-114 1-17/32 1-7/32 1-7132 1-5116 1-1/2 I-SIB 1-11/16 1 1 25/64 1/2 l-I/B l-I/B BAllHSO' IOISllAXO 102S11AXO 103S11AXO 104S11AXO 1 1 3 3 3 3 112 9/16 11116 1 1-114 1-17/32 1-13/32 1-13/32 I-SIB 1-13/16 2 2-1/16 BAI2HSO'" 16AI2HSO' 10lS12AXO 102S12AXO 103S12AXO 104S12AXO 1 1 3 3 4 3 112 9116 11/16 1 1-1/4 1-17/32 1-13/32 1-13/32 1-9/16 1-13/16 2 2-1/16 500 1000 1750 4700 9000 14000 500 1000 1750 4700 9000 14000 500 1000 1750 4700 9000 14000 500 1000 1750 4700 9000 14000 '"z ;:: ~ ~ i x 0 0 '"~ x < :E '" e ~ ~ "!:;'" 0 > ~ ::'" < E 151·180 250 600 111·132 850 2250 4300 6600 ITT Dimensions A 8 Part No. Pack· age Dimensions Style A B DC Volt· age Range Coil Max. Current DC Coil For 300V CUrrent Max. Rise rnA rnA ITT Pari No. '" Pack· age Dimensions Style A B ITT Pack- Part age Style Dimensions No. A 8 z 8A7PSI 250 xi= 15A7PSI 600 g~~~ 133·154 850 to?UlCl)t- IOlS7EXI 2250 CJr:a::cz 102S7EXI ~~ 103S7EXI 4300 o~'-wa:: 104S7EXI 6600 I I 2 2 2 2 25!64 IS 16 15'16 1.2 11.16 1·1'8 I 31. 32 1-14 1·1 '4 1·17 321·1:4 8A7HSI* 15A7HSI* 10lS7AXI 102S7AXI 103S7AXI 104S7AXI I I 4 4 4 4 1·732 I 2 9 '16 1·732 11.16 1·3':16 1·5'16 I 1·1 4 1·7 '16 1·17 321·9 16 250 600 850 2250 4300 6600 8A8PSI 15A8PSI IDlS8EXI 102S8EXI 103S8EXI 104S8EXI I I 2 2 2 2 25164 15'16 15116 1,2 11/16 1·1:8 I 1-1'4 1·1'4 1·3/8 1·17.'321·1'4 8A8HSI* 15A8HSI* IDlS8AXI 102S8AXI ID3S8AXI 104S8AXI I I 4 4 4 4 1'2 9 '16 11'16 I 250 600 850 2250 4300 6.00 120 300 500 1350 2600 4000 8A9PSI 15A9PSI 10lS9EXI 102S9EXI 103S9EXI 104S9EXI I I 2 2 2 2 2564 IS/I. 15·16 12 1l'16 1·14 1·3 '8 I 1·1 4 1·1 '2 1-17.321·1 2 8A9HSI* 15A9HSI* 10lS9AXI 102S9AXI 103S9AXI 104S9AXI I I 4 4 4 4 '1 '2 1·7·'32 9 '16 1·7 '32 11,16 1·1516 I 1·1 '2 1·1 '4 1·58 1·17/321·3'-4 250 600 850 2250 4300 6600 100 250 450 1125 4150 3300 8AIDPSI 15AIDPSI I 2564 t tl2 1·1 8 1-18 8AIOHSI* 15AIOHSI* 10lSIOAXI 102SIOAXI 103SIOAXI 104SIOAXI I I 3 3 3 3 1'2 1·13'32 9.16 1·13:32 11 '16 1·518 1·13.'16 I 1·'·14 1·7 '8 1·17 '322·1 '16 250 '600 221·242 850 2250 4300 6600 50 125 210 560 1100 1650 8AllPSI 15AlIPSI I 2564 I 1;2 1·1'8 1·1 8 8AlIHSI' 15AlIHSI* 10lSlIAXI 102S11AXI 103SIlAXI 104SlIAXI I I 3 3 3 3 1·13 '32 I 2 1-13 32 9 16 11'16 1·58 1·7 '8 I 1·1 '4 2 1·17.'32 2·1 '16 250 600 243·264 850 2250 4300 6600 10 25 45 110 215 330 8AI2PSI 15AI2PSI I 25/64 I 1'2 1·1'8 1·1/16 8AI2HSA* 15AI2HSI' 10lSI2AXI 102S12AXI 103S12AXI 104S12AXI I I 3 3 3 3 1-13 '32 1.'2 9116 1·13 32 IU6 ,1-5/8 1·7 '8 '1 1-1'4 2·1 16 1·17322·3 '16 25,.4 5'B 5,B I 2 11 'I. IS '32 I 15:32 1·1 '4 17:32 1·17.3217,32 BAIHSI' 15AtHSI* 10lSIAXt 102SIAXI 103SIAXI 104SIAXI 29 '32 I 112 I 911. 29,32 4 11 I. 5 B -4 I 2532 4 1·1:4 34 4 1·17 3213 I. 181·210 25 '.4 5 'B 1:2 5B 11;1. 9 'I. I 9 'I. 2. 1·1/4 17 '32 2 1·17:3219.32 BA2HSI* .15A2HSI* 10lS2AXI 102S2AXI 103S2AXI 104S2AXI I I 4 4 4 4 29 32 1.2 9 I. 29 32 11'1. 1·3·1. 2932 I 1-1 '4 3 '4 1·17/327·B 250 600 155·176 850 2250 4300 6600 I I 2 2 2 2 25/.4 3 4 1:2 3.4 11/1. 17'32 9/16 I 1·1 4 23 '32 1·17;3223:32 8A3HSI' 15A3HSI* 10lS3AXI 102S3AXI 103S3AXI 104S3AXI I I 4 4 4 4 1'2 9.'1. 11/16 I 1-14 1·17 32 1·1'32 1·1 32 I 1·1.32 25.32 I 241·270 8MPSI 15A4PSI 10lS4EXI 102S4EXI 103S4EXI 104S4EXI I I 2 2 2 2 25/64 34 3/4 1/2 11/16 21/32 I I 1·1/4 I 1·17/323/4 8MHSl* I 15A4HSI* I 10lS4AXl 4 102S4AXI 4 103S4AXI 4 104S4AXI ' 4 1:2 1·1 32 9:16 1·1 32 11,16 I I I 1·1·4 1·lil6 1·17 321-1 8 271·300 8A5PSI 15A5PSI 10lS5EXI 102S5EXI 103S5EXI 104S5EXI I I 2 2 2 2 25;64 3/4 1:2 3/4 11/16 13/16 I 7/8 1·1/4 1·1/8 1·17/321·1/8 8A5HSI* 15A5HSI* 10lS5AXI .102S5AXI 103S5AXI 104S5AXI I I 4 4 4 4 1'2 1·1 '32 1·1 32 9'16 11;16 1·1.016 1·1.:8 I 1·1 '4 1·1 4 1·17/321·3 8 301·330 8A6PSI 15A6PSI 10lS6EXI 102S6EXI 103S6EXI 104S6EXI I I 2 2 2 2 25'64 1:2 15;16 IU6 11/16 I I I 1·1/4 1·1i8 1·17/321-1/8 8A6HSl* 15A6HSI* 10lS6AXI 102S6AXI 103S6AXI 104S6AXI I I 4 4 4 4 1/2 1·7,32 1·7.32 9'16 11.16 1·1 '8 1·1.-4 I 1·1;4 1·3 8 1-171321·7.16 331·360 ITT Part No. Pack- ~~~B 211·240 1)7·198 199·220 1·7 '32 1·7 32 1·1 '4 1·7 '16 1·1/4 1-9:16 1·17132 1·5 '8 AC APPLICATIONS Coil Coil Max. Current DC Volt· DC Coil For 300V age Current Max. Rise Range rnA rnA 0·26 200 400 600 1600 3000 4700 DC ITT Part No. .:='" 8AIPAI x ... 15AIPAI 8LJ.J~~ 10lAIEXI M~CI)~ 102AIEXI o..... I-UJQ:; ~~ 103AIEXI 104AIEXI Cl:cc:cZ:: ~~~B Package Dimensions Style A 8 age Style Volt· Dimensions A B age Max. Curr!nt DCCoil For 300V Current Max. Rise ITT Part Range rnA rnA No. Pack· age Dimensions Style A 8 ITT Part No. Pack· age Dimensions Style A B 1·7.32 1·7 32 1·3'16 29!J2 1·1.14 1·1/4 1·17/32 Hi2 I I 2 2 2 2 25164 5/8 1/2 5/8 11/16 15/32 I 15/32 1·1/4 1/2 1·17/3217/32 8AIHAI' 15AIHAI' 10lAIAXI 102AIAXI 103AIAXI 104AIAXI I I 4 4 4 4 29/32 1/2 9/16 29;32 11/16 11.16 25,32 I 1·1/4 3/4 1·17/3213116 79·104 200 400 600 1600 3000 4700 IS 35 60 160 300 470 8A4PA4 15A4PA4 10lA4EX4 102A4EX4 103A4EX4 104A4EX4 I I 2 2 2 2 25'64 15'16 15116 1'2 11'16 29'-32 31'32 I 1-1/4 1·5.32 1·17/321·532 8A4HA4* 15A4HA4* 10lA4AX4 102A4AX4 103A4AX4 104A4AX4 I I 3 4 4 4 12 9 16 11/16' I 105·130 200 400 600 1600 3000 4700 10 20 3D 80 150 250 8A5PA5 15A5PA5 10lASEX5 102A5EX5 103A5EX5 104A5EX5 I I 2 2 2 2 25 '64 15;16 15 '16 1/2 11;16 I·L8 I 1·1l . 32 1-1/4 1·1'4 1·17,1321·13 32 8A5HA5' 15A5HA5* 10lA5AX5 102A5AX5 103A5AX5 104A5AX5 I I 4 3 4 3 1.2 1·7132 9,16 1·7.132 11/16 1·1'8 1·518 I 1·1;4 I-7l16 1·17;321·718 27·52 200 400 600 1600 3000 4700 200 400 600 1600 3000 4700 8A2PA2 15A2PA2 10lA2EX2 102A2EX2 103A2EX2 104A2EX2 I I 2 2 2 2 25/64 5/8 1/2 3/4 11/16 112 I 1l/16 H;4 llil6 1·17,3223/32 8A2HA2* 15A2HA2* IDIA2AX2 102A2AX2 103A2AX2 104A2AX2 I I 4 4 4 4 1/2 1·1/32 9/16 1·1 '32 11/16 23,32 I 1-1/32 1·1/4 7/8 1·17;321 53·78 200 400 600 1600 3000 4700 60 140 250 650 1200 2000 8A3PA3 15A3PA3 10lA3EX3 102A3EX3 103A3EX3 104A3EX3 I I 2 2 2 2 25/64 3/4 3/4 1/2 1l/16 13/16 I 7/8 1·1/4 1·3/16 1·17/321 8A3HA3* 15A3HA3* 10lA3AX3 102A3AX3 103A3AX3 104A3AX3 I I 4 3 4 4 1-1/32 1/2 9/16 1·1/32 1l/16 27/32 I 1·7/16 H/4 1-1/4 1·17/321·5/16 NOTE: Hermetically sealed tubular construction to meet MIL specifications for environmental exposure. 12-3 SELENIUM CONTACT PROTECTORS CAUSE OF CONTACT ARCING Consider the circuit shown in Figure 1. Close the circuit contacts SI and the current flow as indicated by the ammeter MI builds up to 400 mAo The flow of current has set up a magnetic field through the core. Electrical energy has been stored in the magnetic field by the current, analogous to the mechanical energy stored in a spring by compression. Now open the contacts SI thus breaking the steady flow of current. Just as the compressed spring will start to release its stored mechanical energy, the magnetic field starts to collapse, releasing its stored energy. While the magnetic field is collapsing it induces a voltage in the coil that acts to maintain the current through the coil in the same direction as the original current which built up the field. The mag- IRON} CORE nitude of this induced voltage is eq ua I to the prod uct of the co iI current, and the coil and circuit resistance; and it can attain very high values since the circuit resistance approaches infinity with the switch contacts open. WIRE COIL CONTACTS Theoretically, when the flow of current is suddenly stopped by the opening of Slo the voltage that appears across the coil could go up to infinity. Approximately 300 volts is required to produce arcing across contacts in free air. Since air is not a perfect insulator, the instant that SI is opened and the high induced voltage appears across the contacts, an arc occurs. In typical applications, air breakdown across the contacts will limit the voltage rise to the regIon of 300 to 1,000 volts in an average 24-volt coil circuit. See Figure 2. R=60 OHMS FIG.1 FIG.2 HOW ITT SELENIUM CONTACT PROTECTORS WORK Half-wave configuration for DC applications Consider the circuit of Figure 3, showing contact protector cell A connected across the coil terminals. While contacts SI are held closed a current of 400 milliamperes flows through the coil, but no part of the coil current flows through the contact protector. When SI is opened coil current flows in the low-resistance direction of the contact protector, thus dissipating the energy stored in the coil through the resistance of the coil and contact protector. As the resistance of the contact pro-. tector is very low, usually a fraction of the coil resistance, the voltage across the contacts rises only. slightly, to a few volts above battery voltage. II: 400MA 1I FIG. J Half-wave configuration, continued In the circuit shown in Figure 4, cell B has been added in such a direction as to oppose the discharge current I". A semicond.uctor cell has the unique characteristic of exhibiting decreasing resist- ance with increasing voltage in the blocking direction. At the instant switch SI is opened, the induced voltage rises to approximately 150 volts, due to the blocking action of cell B. This induced voltage is indicated in Figure 4 and appears as a reverse voltage across cell B, i.e., the highresistance direction. - - - - . II =400MA -}IOO' r4V. 20DV '---'-~.+ ~I FIG.4 12-4 SELENIUM CONTACT PROTECTORS Figure 5 shows the change in reo verse resistance with application of reverse voltage to a typical sem iconductor contact - protector cell. At the working voltage of 24 volts, the reverse resistance is approximately 1 megohm, When S, is opened, the voltage across the coil b.uilds up to approximately -200 volts, At this voltage the reverse resistance of cell B will be less than 500 ohms, Much of the stored energy is dissipated in this low-resistance region of the cell c ha racteri stic. As the energy is dissipated and the current decreases, the induced voltage also decreases, The remainder of the stored energy is d i ssi pated ina h igher-resista nce region than initially. For example, as the Induced voltage decays to -25 volts, the cell resistance rises to approximately one megohm. Thus the effect of the nonlinear resistance of cell B is to provide, at the instant of switching, a path of relatively low resistance to prevent the induced voltage from rising to a value which will cause arcing. As the stored energy is dissipated the low resistance in- Back-to-back configuration for AC applications The back-to-back configuration is readily adapted to use in AC circuits by providing the same number of cells in each arm of the device. The number of cells in series per arm will depend on the applied AC voltage. The requirement for the same number of cells in each arm arises from the fact that both arms alternately are required to block the input voltage. This arrangement differs from the DC back-to-back configuration in which one arm has sufficient cells to block the battery voltage and the other has only one or two cells to provide the surge suppression. creases, due to the nature of the cell characteristics, and provides a damping effect on the discharge current. The result is to reduce the coil release time as compared to the action of the half-wave-type contact protector, Figure 6. Oscillograph trace voltage across a set of contacts breaking the circuit of a 48-volt telephone relay, without contact protection. Sparking tlegins at 300 volts (see oscillations), continues as contacts are separated and rises to a voltage peak at 500 volts. Voltage decay is exponential. ~ 10· J 10' I I 10· 10' 10' -150 L V L L / - ,0 -100 vOLTAGE FIG.5 Figure 7. Oscillograph trace of voltage across same set of contacts, protected by ITT half-wave semiconductor contact protector. Figure 8. Oscillograph trace of voltage across same set of contacts, protected by ITT back-toback semiconductor contact protector. FFRr=++=1 [E~ o 10 20 a 10 20 TIME MILLISECONDS FIG.6 FIG.7 FIG.8 Factors relating to the opening After the circuit opens, and asof inductive circuits suming no arcing occurs, the time It can be shown mathematically for the cu rrent to fa II to a percentthat the time required for the coil age of its initial value is given by current to drop to zero, after the the following equation: switch contacts have opened, is inversely proportional to the sum of the coil resistance and protec- t=~log~ RL+r EI tor resistance. Also, the magnitude of the voltage induced in the When R = Coil resistance r = Forward resistance of coil at the instant of switching is rectifier directly proportional to the sum L = Indudance of coil of these resistances. t = Time for current to When the circuit energizing an indecrease to i ductance is opened the polarity i = Current at time t of the voltage across the coil is I = Steady-state current reversed and is indicated by the through the coil equation E = - L9i E = Supply voltage dt 12-5 I SELENIUM CONTACT PROTECTORS The voltage induced across the coil is expressed by the equation di Rl +r V = -L-= (Rl+r) IE--L-t dt protected con'tacts, it is very appreciably shorter than the decay time of a circuit using the halfwave configuration, The current values listed in the column "Coil Current for 300-V Max, Rise" are representative values, based on the observation of typical relays and solenoids, The maximum value of voltage V APPLICATION NOTES The specific value of current that occurs when t = V max, = will limit the voltage at the conI(R + r) = E+ Ir Voltage Range tacts to 300 volts is a function of In an inductive circuit with un- The words "voltage range" are 'the coil design, the size of the coil, protected switch contacts, the coil used because the maximum volt- the number of turns of Wire, etc" current decays through a path that age rating increases in discrete and it is possi~le for a contact proincludes the widening air gap be- steps, according to the number of tector to furnish adequat,e spa,rk tween the moving contacts, The blocking cells in series, Each pro- suppression when used with cOils high resistance of this gap results tector has a maximum permissible carrying currents greater, than in a very short current decay time, voltage rating which is the low- those listed; but the. maximum However, the voltage induced in voltage end of the range for the current rating, should not ,be ~xthe coil at the instant of switch- next higher voltage group, ceeded, For this rea~on, It IS WIS~ i ng must rea c h a va I ue h i g h , to observe the action and efflenough to force the current across Max, COil, Current - m~ , ,ciency of the protector before the air gap, This leads to the elec- The ma~lmum permissible cOil freezing a design, Samples and trical breakdown of the air gap curr~nt ,IS based on ,th~ thermal engineering assistance are availwith attendant arcing, contact dissipation characterIStics of the able upon written request to the damage and electrical noise, contac~ protec~or when operated Engineering Department. at maximum cOil voltage and repe' In the half-wave configuration the tition rate, In selecting a suitable Contact Protector from the list in this data resistance of the protector is low Coil Current for 300-V Max. sheet, it should be noted: when it is acting as a suppressor, Rise _ mA since the coil current flows in the At the instant of switching, the Ratings are based upon operation low-resistance forward direction th h th t t . in typical inductive circuits at roug e pro ec or IS of the device, The forward resist- current the same as the coil current, and temperatures of 50 e C or lower. ance of the half-wave suppressor the induced voltage at the coil Current ratings given in the colwill usually be only a small frac- terminals will rise to the value umn headed "Coil Steady State tion of the coil resistance and, for required to drive this current Current for 300 volt max. rise" practical purposes, may be re- through the protector, This volt- represent the rating of the progarded as a short circuit around 'II dd t th I It tector to limit the voltage rise 0 e supp y vo age t he coil, The low value of protector age WI a and appear across the contacts. across the contacts to approxiresistance prevents the induced Sparking at the contacts will be mately 300 volts. This rating may voltage from rising more than a minimized if the sum of these two be exceeded if a rise in excess of volt or two over the battery volt- voltages does not exceed 300 volts, 300 volts is permissible, but the age, and increases the current de- and this requirement is met if the maximum peak current rating cay time compared to the decay . d d It' t th should not be exceeded, The voltt 'lme of a coil with unprotected In uce vo age IS no grea er an the difference between 300 and age rating should not be exceeded contacts. the supply voltage. This condition under any circumstances, In the back-to-back configuration is achieved by reducing, for a the reverse resistance of the pro- given cell size, the permissible Fast Contact Action tector is inversely proportional to coil current as the supply voltage the induced voltage. This resist- increases. Thus, it will be ob- Rate of operation of contacts in ance will be the smallest at the served that the coil current for the range 10 to 40 breaks per secinstant of switching and will in- 300-volt rise will be less than the ond. The back - to - back arrangecrease in value as the current de- maximum coil current for many of ment of the ITT Contact Protector creases. This n'onlinear resistance the higher-voltage units, Con- provides adequate arc suppression characteristic causes the induced versely, the coil current for 300- with a negl igible effect upon the , voltage to rise to a value higher volt rise is so great that it exceeds release time of the relay, The prothan it would reach in a circuit the maximum coil current for the tectors are fated for applications using the half-wave configuration, low-voltage units. These protec- where the rate of operation of the but it prevents the induced volt- tors carry the note in the rating contacts is in the range of 10 to 40 age from attaining the contact- table "MA for 300-Volt Rise Ex- breaks per second. ITT should be damaging values existing in a cir- ceeds Max. Current Rating"; this consulted for recommendations if cuit with unprotected contacts, means that operation at the listed the rate of operation exceeds 40 Although the current decay time is maximum coil current will give a breaks per second. increased somewhat compared to voltage rise of less than 300 volts the decay time of a coil with un- - at the contacts. a 12-6 ....... ITT SEMICONDUCTORS SELENIUM TRANSIENT VOLTAGE SUPPRESSORS ............... --~~ DIMENSIONS TRANSIENT VOLTAGE SUPPRESSOR RECTIFIERS PAPER TUBE TYPE • AC Input or DC Applications • Improve Equipment Reliability • Reduce Equipment Cost ~~.UG( ~-@ ITT transient voltage suppressors eliminate one of the major causes of failure of semiconductor rectifiers by instantaneously short-circuiting transient voltages in excess of the ratings of the rectifiers. They permit the circuit designer to use rectifiers with lower PIV ratings, thereby reducing equipment cost. These specially processed selenium cells have very sharp "zener" breakdown characteristics when operated in the reverse direction. Since the reverse characteristic is used instead of the forward characteristic, aging has very little effect on the resistance and suppressing voltage level of the protector. The small effects of aging and temperature variations have been taken into consideration in the voltampere curves and tabulated characteristics. In inductive circuits using mechanical switches, these suppressors can be used to eliminate pitting of the switch contacts by absorbing the high peak voltages generated when the switch is opened. ITT contact protector selenium rectifiers can also be used in this application. Transient voltage suppressors can be mounted by eyelets or studs in stack types and by clips or pigtail leads in tubular types. Stack types are supplied with a standard industrial finish or with a moisture resistant finish for protection against salt spray and humidity. 2'~~""",, '*""~ PHENOLIC TUBE TYPE EYELET TYPE STUD TYPE RATINGS CHARACTERISTICS 8A SERIES 25A SERIES 102 SERIES UNITS Steady State RMS Volts/Cell Peak Volts/Cell DC Volts/Cell Stack RMS Volts Stack DC Volts Steady State Leakage Current (max.) Single Pulse Current (4 milliseconds) (max.) Recurrent Pulse Current (1 millisecond @ 60 cps) (max.) Ambient Temperature Cell Operating Temperature (max.) Construction 30 42.4 20 30-600 20-400 0.8 30 42.4 20 36-600 20-400 1.2 25 35 20 25-500 20-320 12 Volts Volts Volts Volts Volts mA 0.75 2 8 Amps 0.25 0.75 3 Amps -20 to +100 -20 to +100 -20 to +100 °C °C 130 130 130 Tubular Tubular Stud Or Eyelet 12-7 .... '/)2 SELENIUM TRANSIENT VOLTAGE SUPPRESSORS ELECTRICAL AND MECHANICAL CHARACTERISTICS AC INPUT TYPES PAPER TUBE TYPES MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS MAX. ZENER VOLTS' DIA. (A) LENGTH (B) ITT PART NO. 42 S5 127 170 212 254 297 339 382 424' 467 509 551 594 636 679 721 764 806 848 104 20S 312 416 519 623 727 S31 934 1039 1143 1247 1350 1454 155S 1663 1766 1S70 1974 2078 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/S 3/8 3/S 3/8 3/S 3/8 3/8 318 318 27/32 27/32 27/32 27/32 27/32 3/32 3/32 3/32 3/32 3/32 21/64 21/64 21/64 21/64 21/64 37/64 37/64 37/64 37/64 37/64 SA1PGl SA2PG2 SA3PG3 8A4PG4 8A5PG5 SA6PG6 SA7PG7 SASPGS SA9PG9 8Al0PG10 SAllPGli 8A12PG12 8A13PG13 SA14PG14 8A15PG15 8A16PG16 8A17PG17 8A18PG18 8A19PG19 8A20PG20 30 60 90 120 150 ISO 210 240 270 300 330 360 390 420 450 480 510 540 570 600 MAX. RMS INPUT VOLTS DIMENSIONS I I I I I I I I I I I I I I I MAX. PEAK INPUT VOLTS MAX. ZENER VOL1$' DIA. (A) 42 85 127 170 212 254 297 339 382 424 467 509 551 594 636 679 721 764 806 S4S 87 177 266 354 443 532 620 709 79S 886 975 1063 "52 1241 1329 1417 1507 1595 1684 1772 37/64 37/64 37/64 37/64 37/64 37/64 37/54 37/64 37/64 37/64 37/64 37/64 37/64 37/64 37/64 37/64 37/64 37164 37164 37164 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 DIMENSIONS LENGTH (B) I I I I I I I I I I I I I I I I I I I I ITT PART'NO. 25Al PGl 25A2PG2 25A3PG3 25A4PG4 25A5PG5 25A6PG6 25A7PG7 25A8PGS 25A9PG9 25Al0PG10 25A" PGll 25A12PG12 25A13PG13 25A14PG14 25Al 5PGl 5 25A16PG16 25A17PG17 25A1SPG1S 25A19PG19 25A20PG20 1/64 1/64 1/64 1/64 1/64 1/4 1/4 114 1/4 1/4 1/2 1/2 1/2 1/2 1/2 314 314 3{4' 314 314 PHENOLIC TUBE TYPES MAX. RMS INPUT VOLTS 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 SID 540 570 600 MAX. PEAK INPUT VOLTS 42 85 127 170 212 254 297 339 3S2 424 467 509 551 594 636, 679 721 764 S06 84S DIMENSIONS MAX. ZENER VOLTS' 104 208 312 416 519 623 727 831 934 1039 1143 1247 1350 1454 155S 1662 1766 1870 1974 207S OIA. (A) 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 15/32 LENGTH (8) 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 311!2 31/32 117/64 117/64 I 17/64 117/64 117/64 11/2 11/2 11/2 11/2 11/2 FERRULE LENGTH (C) 3/8 3/8 3/8 318 318 3/8 3/8 3/8 3/S 3/S 3/S 3/S 3/S 3/S 318 3/8 3/8 318 3/S 3/S FERRULE WIRE LEAO MAX. RMS INPUT VOLTS 8AIQBGI 8A2QBG2 8A3Q8G3 8A4QBG4 8A5Q8G5 8A6Q8G6 8A70BG7 BA8QBG8 SA9QBG9 SAIOQBGIO SAllQBGll SAI2QBGI2 8AI3QBGI3 8AI4QBGI4 8AI5QBGI5 8AI6QBGI6 SAI7QBG17 SAISQBGIS 8AI9QBGI9 SA20QBG20 8AIABGI 8A2ABGZ 8A3ABG3 8A4ABG4 8A5ABG5 8A6ABG6 8A7A8G7 8A8ABG8 8A9ABG9 SA10ABG10 SAllABGll 8AI2ABGI2 SAI3ABGI3 8AI4ABGI4 SAI5ABGI5 SAI6ABGI6 SA17ABG17 SAISABGIS SAI9ABGI9 SA20ABG20 30 60 90 120 150 ISO 210 240 270 300 330 360 390 420 450 4BO 510 540 670 600 ITT PART NO. EYELET TYPES MAX. PEAK INPUT VOLTS 42 S5 127 170 212 254 297 339 3S2 424 467 509 551 594 636 679 721 764 806 84S DIMENSIONS MAX. ZENER VOLTS' 104 20S 312 416 519 623 727 S31 934 1039 1143 1247 1350 1454 155S 1662 1766 1870 1974 2078 OIA. (A) LENGTH (B) 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31132 I I I I I I I I I 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 31/32 1/32 1/32 1/32 1/32 1/32 1/32 1/32 1/32 1/32 11/32 I 29/64 FERRULE LENGTH FERRULE WIRE LEAD 13132 13132 25AIQBGI 25A2QBG2 25A3QBG3 25A4QBG4 25A5QBG5 25A6QBG6 25A7QBG7 25ASQBGS 25A9QBG9 25AIOQBGIO 25AllQBGll 25A12QBGI2 25AI3QBGI3 25AI4QBGI4 25A15QBG15 25AI6QBGI6 25A17QBG17 25AISQBG18 25AI9QBGI9 25A20QBG20 25AIABGI 25A2ABG2 25A3ABG3 25A4ABG4 25A5ABG5 25MABG6 25A7ABG7 25A8ABGS 25A9ABG9 25AIOABGIO 25AllABGll 25AI2ABGI2 25AI3ABGI3 25AI4ABGI4 25AI5ABGI5 25AI6ABGI6 25AI7ABGI7 25A18ABGIS 25AI9ABGI9 25A20ABG20 13/32 13132 13/32 13132 13/32 13/32 13132 129164 I 29164 13/32 13/32 13/32 13/32 129/64 13132 I 29/64 111/16 1 11/16 111116 111/16 1 11/16 ITT PART NO. (C) 13/32 13132 13132 13132 13/32 13/32 STUD TYPES DIMENSIONS MAX. RMS INPUT VOLTS MAX. PEAK INPUT' VOLTS MAX. ZENER VOLTS' 25 50 75 100 125 150 175 200 35 70 lOS 140 175 210 245 2S0 80 159 239 319 398 478 558 637 DIMENSIONS LENGTH (B)' ITT PART NO. 47/64 13/16 57/64 31/32 3/64 1/8 13164 19/64 102Gl EXI 102G2EX2 102G3EX3 102G4EX4 102G5EX5 102G6EX6 102G7EX7 102G8EX8 I I I I MAX. RMS INPUT VOLTS 25 GO 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 600 NOTES: 1. At 4 millisecond pulse current=O.75 Amperes 2. At 4 millisecond pulse current=2 Amperes 3. At 4 millisecond pulse current=8 Amperes 12-8 MAX. PEAK MAX. INPUT ZENER VOLTS VOLTS' 35 70 105 140 175 210 245 2S0 315 350 385 420 455 490 525 560 595 630 665 700 840 80 159 239 319 398 47S 558 637 717 797 S76 956 1035 11 15 1195 1274 1354 ,1434 1513 1593 1913 STUD LENGTH (A) STACK LENGTH (B) ITT PART NO. I 7/16 I 1/2 I 5/8 I 11 116 1 3/4 I 7/S I 15116 2 2 1116 2 3116 2 114 2 5/16 2 31S 2 112 2 9116 2 518 2 314 2 13116 2 71S 215116 3 5116 15116 I I 1/8 I 3116 I 1/4 I 318 I 7 II 6 I 1/2 I 9116 I " 116 I 314 I 13116 I 7/8 2 2 1/16 2 1 IS 2 1/4 2 5116 2 31S 2 7116 213116 102Gl BXl 102G2BX2 102G38X3 102G4BX4 102G5BX5 102G6BX6 102G7BX7 102G8BXS 102G9BX9 102Gl0BX10 I 02G" BX" 102G12BX12 102G13BX13 102G14BX14 102G15BX15 102G16BX16 102G17BX17 102G18BX1S 102G19BX19 102G20BX20 102G24BX24 TRANSIENT VOLTAGE SELENIUM SUPPRESSORS ELECTRICAL AND MECHANICAL CHARACTERISTICS - DC INPUT TYPES PAPER TUBE TYPES MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS MAX. ZENER VOLTS DIA. (A) LENGTH (6) 20 40 60 80 100 120 140 160 I BO 200 220 240 260 2BO 300 320 340 360 3BO 400 31 63 93 126 157 1 BB 220 251 282 314 345 377 409 440 472 502 534 566 597 62B 104 208 312 416 519 623 727 831 934 1039 1143 1247 1350 1454 155B 1662 1766 lB70 1974 207B 31B 318 31B 31B 318 318 31B 31B 31B 31B 31B 31B 31B 31B 31B 31B 31B 31B 31B 31B 27132 27132 27132 27132 27132 27132 27132 27132 27132 27132 3132 3132 3132 3132 3132 3132 3132 3132 3132 3132 ITT PART NO. MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS MAX. ZENER VOLTS' 8Al PGO 8A2PGO 8A3PGO BA4PGO 8A5PGO BA6PGO BA7PGO 8A8PGO BA9PGO 8Al0PGO BAll PGO BA12PGO BA13PGO BA14PGO BA15PGO BA16PGO BA17PGO BAI BPGO BA19PGO BA20PGO 20 40 60 BO 100 120 140 160 1BO 200 220 240 260 280 300 320 340 360 380 400 31 63 93 126 157 18B 220 251 2B2 314 345 377 409 440 472 502 534 566 597 62B B7 177 266 354 443 532 620 709 79B BB6 975 1063 1152 1241 1329 1417 1507 1595 1684 1772 DIMENSIONS I 1 I 1 I I I I I I DIMENSIONS DIA. (A) LENGTH (6) 37/64 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 37164 ITT PART NO. I 1164 I 1164 1 1164 I 1164 I 1164 I 1164 I 1164 I 1164 I 1164 1 1164 1 114 1.114 1 114 1 114 I 114 I 114 I 114 1 114 I 114 1 114 25Al PGO 25A2PGO 25A3PGO 25A4PGO 25A5PGO 25A6PGO 25A7PGO 25A8PGO 25A9PGO 25Al0PGO 25Al1PGO 25A12PGO 25A13PGO 25A14PGO 25A15PGO 25A16PGO 25A17PGO 25A18PGO 25A19PGO 25A20PGO PHENOLIC TUBE TYPES MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 310 340 360 380 400 31 63 93 126 157 lB8 120 251 2B2 314 345 377 409 440 472 502 534 566 597 62B DIMENSIONS MAX. ZENER VOLTS' 104 208 312 416 519 623 727 831 934 1039 1143 1247 1350 1454 1558 1662 1766 1870 1974 207B DIA. (A) LENGTH (B) 15m 31132 31132 31132 31132 31132 31132 31132 31132 31132 31132 31/32 31131 31132 31132 31131 31132 31/32 31132 31132 31132 15132 15132 15132 15132 15132 15132 15132 15132 15m 15132 15132 15132 15132 15131 15132 15132 15/32 15132 15{32 FERRULE LENGTH (C) 318 318 318 318 318 31B 318 318 318 318 31B 318 318 318 318 31B 31B 318 31B 318 ITT PART NO. FERRULE 8Al08GO 8A208GO 8A30BGO 8A40BGO 8A50BGO 8A60BGO 8A70BGO 8A80BGO 8A90BGO 8Al00BGO 8All OBGO 8AlZOBGO BAI30BGO 8A140BGO BA1508GO BA160BGO 8A170BGO 8A1808GO 8A190BGO BA200BGO WIRE LEAD 8A1A8GO 8A2ABGO 8A3ABGO 8A4ABGO 8A5ABGO 8A6ABGO 8A7ABGO 8A8ABGO 8A9ABGO 8A 1OABGO BA11ABGO 8412ABGO 8A13ABGO 8A14ABGO 8A15ABGO 8A16ABGO 8A17ABGO 8A18ABGO 8A19A8GO BA20A8GO EYELET TYPES MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS 20 40 GO 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3BO 400 31 63 93 DIMENSIONS MAX. ZENER VOLTS' 104 20B 312 416 519 623 126 157 lB8 210 251 282 314 345 377 409 440 472 502 534 566 597 62B 727 B31 934 1039 1143 1247 1350 1454 155B 1662 1766 lB70 1974 207B OIA. (A) LENGTH (B) FERRULE LENGTH (C) FERRULE WIRE LEAD 31132 31132 31132 31132 31131 31132 31132 31132 31m 31132 31132 31m 31132 31132 31132 31132 31132 31132 31132 31/32 1 1132 1 1132 1 1m 1 1132 1 1132 1 1132 11132 1 1132 1 1132 1 1m 1 1/32 11132 11132 11132 11132 11132 11132 11132 1 1132 11132 13132 13132 13131 13132 13132 13132 13132 13132 13132 13132 13132 13m 13132 13132 13132 13132 13132 13132 13132 13{32 25Al0BGO 25A20BGO 25A30BGO 25A40BGO 15A508GO 25A60BGO 25A708GO 25ABOBGO 25A908GO 15Al00BGO 25Al10BGO 25A120BGO 25A130BGO 15A140BGO 15A150BGO 15A160BGO 15A170BGO 25Al BOBGO 25A190BGO 25A200BGO 25A1ABGO 25A2ABGO 25A3ABGO 25A4ABGO 25A5A8GO 25A6ABGO 25A7ABGO 25ABABGO 25A9A8GO 25Al0A8GO 15AllABGO 25A12ABGO 25A13A8GO 25A14ABGO 25A15ABGO 25A16ABGO 25A17ABGO 25A1BABGO 25A19ABGO 25A20ABGO ITT PART NO. STUD TYPES DIMENSIONS MAX. RMS INPUT VOLTS MAX. PEAK INPUT VOLTS MAX. ZENER VOLTS' 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 31 63 93 126 157 188 220 251 282 314 345 377 409 440 472 502 80 159 239 319 398 478 558 637 717 795 876 956 1035 1115 1195 1274 DIMENSIONS LENGTH (6) 27132 718 29132 15116 1 1 1132 1 1116 1 118 I 5132 I 3116 I 114 I 9132 I 5{16 I 1 I 132 I 318 I 7{16 NOTES: 1. At 4 millisecond pulse current=O.75 Amperes 2. At 4 millisecond pulse current=2 Amperes 3. At 4 millisecond pulse current=B Amperes MAX. RMS INPUT VOLTS ~X. PEAK ITT PART NO. INPUT VOLTS MAX. ZENER VOLTS' 102Gl EXO 102G2EXO 102G3EXO 102G4EXO 102G5EXO 102G6EXO 102G7EXO 102G8EXO 102G9EXO 102Gl0EXO 102GllEXO 102G12EXO 102G13EXO 102G14EXO 102G15EXO 102G16EXO 20 40 60 BO 100 120 140 160 180 200 220 240 260 2BO 300 320 31 63 93 126 157 188 220 251 2B2 314 345 377 409 440 472 502 BO 159 239 3\9 398 47B 558 637 717 797 876 956 1035 1 I 15 1195 1274 12-9 STUD LENGTH (A) 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 2 5{16 318 31B 7116 112 51B 51B 11116 314 314 13/16 71B 15116 15116 15116 STACK LENGTH (6) 1 1 1 1 1 1 1 1 1 1 1 13116 27132 71B 29!32 15116 3132 118 3116 7132 1/4 9132 11132 31B 13132 15132 112 ITT PART NO. 102G1BXO ·102G2BXO 102G3BXO 102G4BXO 102G5BXO 102G6BXO 102G7BXO 102GBBXO 102G9BXO 102Gl0BXO. 102G116XO 102G12BXO 10ZG13BXO 102G14BXO 102G15BXO 102G16BXO SELENIUM TRANSIENT VOLTAGE SUPPRESSORS HOW TO SELECT THE PROPER RECTIFIER Determination of Current Rating Although the peak value and duration of a transient current cannot always be determined, certain valid assumptions can be made to determine the ITT suppressor rectifier current rating for the application. For circuits in which a transformer is the power source, usually the greatest transient currents have been observed when the circuit is interrupted with no load on the transformer. The transient current is the magnetizing current of the transformer. If the actual transient current is not known, a valid assumption can be made by the use of the magnetizing current versus voltage on page 4. If the transient results from opening a circuit containing an inductance, the transient current will be the current through the inductance at the instant of interruption. To select the proper ITT suppressor series, assume a single pulse width of 4 milliseconds and refer to the pulse current versus time curve on page 4: The same curve can be used to select the appropriate ITT series when a single pulse width other than 4 milliseconds is known or assumed. Voltage Rating After the required current rating has been established, determine the maximum steady-state voltage which will appear across the suppress?r rectifier and select the appropriate type number from the tables on pages 2 and 3. Note that both RMS and peak voltage ratings are tabulated for AC types and DC ratings for DC types. Use the RMS value for. sinusoidal voltages' otherwise, use the peak value of the input voltage to select the proper rectifier. Zener Voltage where the pUls'e wid'th is less than 4 milliseconds. For other values of peak current, however, the indicated Zener voltage will be as shown in the curves on page 4. To obtain the expected protection, rectifiers should be used within their rated currents. For optimum protection, the maximum Zener voltage should be below the PIV rating of tfie semiconductor devices being protected. The maximum Zener voltages shown in the characteristics tables have been derived from the curves on page 4 which represent the conservative ratings placed on suppressor rectifiers. These voltampere curves apply to a single cell. To determine the Zener voltage for a particular rectifier, multiply the peak voltage values that are shown by the number of cells per arm for AC rectifiers, or by the total number of cells for DC rectifiers. The final step is to be sure that the silicon or germanium rectifier or silicon controlled rectifier to be protected has a PIV rating higher than the Zener voltage of the ITT protector rectifier. The volt-ampere curves ~re also v~li~ for DC applications I~ determining the proper rectifier for a given peak transient voltage. Similar protection is also provided to transformers, capacitors resistor~, switches, relays, or' any electrical component subject to damage from transient over-voltage. 3. From the RATINGS table on page 1, select a rectifier series whicH will withstand 3.8SA peak @ 4 millisecondplilse width. The 102 series, either stud mounting or eyelet mounting may be used. Assume a stud type is preferred for this application. 4. Select the appropriate ITT part number from the stud mounting table on page 2 by finding a type with a RMS input voltage rating equal to or above 115V. 102GSBXS meets this requirement. S. De~ermine the PIV rating reqUired for the rectifier to be protected. Use the 102 series curve on page 4 to determine the voltage corresponding to 3.8SA. The maximum voltage is 73 volts per cell. The number of cells in each rectifier is indicated by the first number after the first letter in the part number. In this case the 102GSBXS has five cells. The maximum voltage is 73 X S = 36SV. The PIV rating required for the protected rectifier is 36SV. CODING SYSTEM FOR EYELET AND STUD TYPE ITT SELENIUM VOLTAGE SUPPRESSOR RECTIFIERS 102 G 5 E X 5 I ~lNumber Indicates Number of ce.llS 0= Always Indicates DC Oevice letter Indicates Finish X= Industrial y= Humidity Resistant YF= Humidity and Fungus Resistant letter Indicates Construction A=Stud B=Screw E- Eyelet Number Indicates Number of Cells Indicates ITT Suppressor Rectifier l~===GNumbers Indicate Cell Size and Voltage Example As.sume a single phase fullcwave 102- 1" SQ. 25 VAC 20 VDC bridge rectifier application with a transformer rated at 8.SKVA CODING SYSTEM FOR TUBULAR TYPE ~ISV. The rectifier to be protected In SELENIUM VOLTAGE SUPPRESSOR IS across the transformer sec- RECTIFIERS ondary. 8 A 5 P G 1 1. Assume a 4 millisecond pulse ~L Indicates Number of Cells L Number Q=Always Indicates DC Device width. G I ndicates ITT Suppressor Rectifier . letter Indicates Construction 2. From. the curve on page 4, deP= Paper Tube H= Hermetically Sealed Can terf!1l.ne the per cent of magnetizing current. Using the ~~: ~~~nn~:f/~~~:A'~r~r l:!~inaIS Terminals "maximum" plot line, 8.SKVA Number Indicates Number of Cells ZS.2% of full load current. I The Zener voltages shown in the characteristics tables are the maxi~um instantaneous voltages that will appear across the rectifier if the 4 millisecond current rating is not e~c.eeded. Any ITT suppres- Full load current VA z 8S00 Z 74A s en ~ Single-Phase Half-Wave Silicon Rectifier' DC CONTACT PROTECTOR Single-Phase Full-Wave Center Tap Silicon Rectifier ~ ~ n. n. n. ::> ~ 110---.....---. . en en o o ~ ~ DC CONTACT PROTECTOR + RESISTIVE OR CAPACITIVE LOAD Single-Phase Full-Wave Bridge Silicon Rectifier RESISTIVE OR CAPACITIVE LOAD DC CONTACT Three-Phase Full-Wave Bridge Silicon Rectifier PROTECTOR DC CONTACT PROTECTOR + RESISTIVE OR CAPACITIVE LOAD INDUCTIVE LOADSingle-Phase Full-Wave Silicon Rectifier Single-Phase Half-Wave Silicon-Controlled Rectifier 12-12 _I 1 N645 THRU 1 N649 DIFFUSED SILICON mm -L-L ______G_E_N_ER_A_L_-_PU_R_P_O_S_E_D_I_O_D_E_S SEMICONDUCTORS DIFFUSED SILICON GENERAL-PURPOSE DIODES • Hermetically sealed • Rugged construction • 00-7 package • High reliability ABSOLUTE MAXIMUM RATINGS at 25 C Free-Air Temperature (unless otherwise noted) IN64S 1N646 1N647 1N648 1N649 Characteristics Symbol D 225 Working Peak Reverse Voltage over Operating Free-Air Temperature Range VRl\Itwlig) 400 300 500 Unit V 600 10 Average Rectified Forward Current at (or below) 25 D C Free-Air Temperature Range (See Note 1) 400 mA 10 Average Rectified Forward Current at 150 D C Free-Air Temperature (See Note 1) 150 mA IFl'.I(surge) Peak Surge Current, One Second, at 25 D C to 150 D C Free-Air Temperature (See Note 2) P Continuous Power Dissipation at (or below) 25 D C Free-Air Temperature (See Note 3) 3 Operating Free-Air Temperature Range TA(oprJ A 600 mW -65 to 150 °C *IN645, IN647 and IN649 are available in JAN and JAN TX versions. ELECTRICAL CHARACTERISTICS @ 25 D C Free Air Temperature (unless otherwise noted) IN64S· 1N646 1N647 1N648 1N649 Min Max Min Max Min Max Min Max Min Max [unit Symbol Parameter V(BR) Reverse Breakdown Voltage IR Static Reverse Current 0.2 0.2 0.2 0.2 0.2 15 15 20 20 25 VF Static Foward Voltage 1 1 1 1 1 CT Total Capacitance 360 275 6 typ 480 6 typ NOTES: 1. These values may be applied continuously under single-phase SO-Hz half-sine-wave operation with resistive load. Above 25°C see Thermal Characteristics Chart. 600 6 typ 720 6 typ Conditions V h,=100p.A, T A =100 D C 6 typ p.A VR=Rated VRM(wkg) VR= Rated VRM(wkg)l p.A T A =100 D C V IF =400mA pF VR=12V, f=1 MHz 2. These values apply for a one-second squarewave pulse with the device at nonoperating thermal equilibrium immediatelly prior to the surge. 3. Derate linearly to 200 mW at 150°C free-air temperature at the rate of 3.2 mW/deg. 12-13 ITT ----. 1 N4000 SERIES, EM500 SERIES PLASTIC SILICON RECTIFIER SEMICONDUCTORS 1-AMP PLASTIC SILICON RECTIFIERS • Moisture resistant • Voltages to 1000 volts The ITT Plastic Silicon Rectifier is molded using a new plastic formulation' with the following advantages over silicone and epoxy compounds: ELECTRICAL CHARACTERISTICS @ 25°C Unless Otherwise Noted Peak Reverse Voltage (PRV) ............ 50 100 200 400 600 800 1000 Average Rectified Current @ 25°C Ambient .. Average Rectified Current @ 75°C Ambient .'. Foward Voltage Drop @ 1 Amp ........... . Reverse, Current @ Rated DC Voltage ..... ~ . Full Cycle Average Reverse Current @ Rated PRV @ 85°C Ambient @ Rated Average Rectified Current ......................•... 100°C Ambient @ Rated Average Rectified Current .......................... _. __ .... __ __ Half Cycle Surge Current, 60 Hz ........... . Temperature Range (operating) ............ . Temperature Range - Storage ............ . *1N4000 Series EM500 Series 1N4001 50 1N4002 100 1N4003 200 1N4004 400 1N4005 600 1N4006 800 1N40071000 1.0 1.0 1.1 10 (EM500) (EM501) (EM502) (EM504) (EM506) (EM508) (EM510) 1.0 0.5 1.1 1.0 Amps Amps Volts Volts 200 200 Volts 50 30 -65 to +175 -65 to +200 50 50 -65 to +175 -65 to +200 Volts Amps • Electrical Equivalent 12-14 Units Volts o,C °C 1N4000 SERIES, EM500 SERIES PLASTIC SILICON RECTIFIER ITT SILICON RECTIFIER CROSS-REFERENCE Now you can replace older types of rectifiers with dependable, inexpensive ITT Plastic types. In most cases, the ITT types will have higher output current and PRV ratings than the types to be replaced. Case dimensions are not always physically identical, in many cases the ITT types are smaller. Type To Be Replaced iN253 iN254 iN255 iN256 iN3i6 iN3i6A iN3i7 iN3i7A iN3i8 iN3i8A iN3i9 iN3i9A iN320 iN320A iN32iA iN322A iN323A iN324A iN325A iN326A iN327A iN328A iN329A iN332 iN333 iN334 iN335 iN336 iN337 iN338 iN339 iN340 iN34i iN342 iN343 iN344 iN345 iN346 iN347 iN348 iN349 ITT Replacement iN4002 iN4003 iN4004 iN4005 iN400i iN400i iN4002 iN4002 iN4003 iN4003 iN4004 iN4004 iN4005 iN4005 iN4007 iN4007 iN400i iN4002 iN4003 iN4004 iN4005 1N4007 iN4007 iN4004 iN4004 iN4004 iN4004 iN4003 iN4003 iN4002 iN4002 iN4002 iN4004 iN4004 iN4004 iN4004 iN4003 iN4003 iN4002 iN4002 iN4002 Type To Be Replaced iN359A iN360A iN36iA iN362A iN363A iN364A iN365A iN440 iN440B iN44i iN44iB iN442 iN442B iN443 iN43B iN444 iN44B iN445 iN445B iN530 1 N53i iN532 iN533 iN534 iN535 iN536 iN537 iN538 iN539 iN540 iN547 iN550 iN55i iN552 iN553 iN554 iN555 iN560 iN561 iN562 iN563 ITT Replacement , iN4002 iN4002 iN4003 iN4004 iN4005 iN4007 iN4007 iN4002 iN4002 iN4003 iN4003 iN4004 iN4004 iN4004 iN4004 iN4005 iN4005 iN4005 iN4005 iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 iN400i iN4002 iN4003 iN4004 iN4004 iN4005 iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 IN4006 iN4007 iN4006 iN4007 Type To Be Replaced 1N596 iN597 iN598 iN599 iN599A iN600 iN600A iN60i iN60iA iN602 iN602A iN603 iN603A iN604 iN604A iN605 iN605A iN606 iN606A iN607 iN607A iN608 iN608A iN609 iN609A iN6i0 iN6i0A iN6ii 1 N6iiA iN6i2 iN6i2A iN6i3 iN6i3A iN6i4 iN6i4A iN645 iN645A iN646 iN647 iN648 iN649 iN676 iN677 iN678 iN679 iN68i iN682 iN683 iN684 iN685 iN686 12-15 Type To Be Replaced ITT Replacement iN4005 iN4006 iN4007 iN400i iN400i iN4002 iN4002 iN4003 iN4003 iN4003 iN4003 iN4004 iN4004 1N4004 IN4004 iN4005 iN4005 iN4005 iN4005 iN400i iN400i iN4002 iN4002 iN4003 iN4003 1N4003 iN4003 iN4004 iN4004 iN4004 iN4004 iN4005 iN4005 iN4005 iN4005 iN4004 iN4004 iN4004 iN4004 iN4005 IN4005 iN4002 iN4002 iN4003 iN4003 iN4004 iN4004 iN4004 1N4004 iN4005 iN4005 __ I- iN687 iN689 iN846 iN847 iN848 iN849 iN850 iNB5i iN852 iN853 iN854 iN855 iN856 iN857 iN858 iN859 iN860 iN86i iN862 iN863 iN864 iN865 iN866 iN867 iN868 iN869 iN870 iN87i iN872 iN873 iN874 iN875 iN876 iN877 iN878 iN879 iN880 iN88i iN882 iN883 iN884 iN885 iN886 iN887 iN888 iN889 1 Ni08i 1 Ni082 iNi083 iNi084 1 Ni095 ITT Replacement , iN4005 iN4005 iN400i iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 iN4006 iN4006 iN4007 iN4007 iN4001 iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 iN4006 iN4006 iN4007 iN4007 iN400i iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 iN4006 iN4006 iN4007 iN4007 1 N400i iN4002 iN4003 iN4004 iN4004 iN4005 iN4005 1N4006 iN4006 iN4007 iN4007 iN4002 iN4003 iN4004 iN4004 iN4005 • 1 N4000 SERIES, EM500 SERIES PLASTIC SILICON RECTIFIER Type To Be Replaced ITT Replacement Type To Be Replaced ITT Replacement 1N1096 1N1100 1N1101 1N1102 1N1103 1N1104 1N1·105 1N1122A 1N1169 1N1217 1N1217A 1N1218 1N1218A 1N1219 1N1219A 1N1220 1N1220A 1N1221 1N1221A 1N4005 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4004 1N4004 1N4001 1N4001 1N4002 1N4002 1N4003 1N4003 1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 1N4005 1N4005 1N4006 1N4006 1N4006 1N4006 1N4002 1N4002 1N4003 1N4004 1N4004 1N4007 IN4005 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4002 1N4003 1N4003 1N4004 1N4004 1N4005 1N4005 1N4002 1N4003 1N4004 1N4004 1 N1692 1N1693 1N1694 1N1695 1N1696 1N1697 1N1701 1N1702 1N1703 1N1704 1N1705 1N1706 1N1707 1N1708 1N1709 1N1710 1N1711 1N1712 1N1730 1N1763 1N1764 1N1907 1N1908 1N1909 1N1911 1N1912 1N1913 1N1914 1N1915 1N1916 1N2069 1N2069A 1N2070 1N2070A 1N2071 1N2071A 1N2072 1N2073 1N2074 1N2075 1N2076 1N2077 1N2078 1N2079 1N2103 1N2104 1N2105 1N2106 1N2107 1N2108 1N2482 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4007 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 1N4003 1N4003 -1N4004 1N4004 1N4005 1N4005 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4003 -fr-;J1222 1 N1223 1N1224 1N1224A 1N1225 1N1225A 1N1226 1N1226A 1N1251 1N1252 1 N125'3 1N1254 1N1255 1N1443 1N1486 JN1487 1N1488 1N1489 1N1490 1N1491 1N1492 1N1538 1N1539 1 N1540 1N1541 1N1542 1N1543 1N1544 1N1617 1N1618 1N1619 1N1620 Type To Be Replaced 12-16 1N2483 1N2484 1N2485 1N2486 1N2487 1N2488 1N2489 1N2609 1N2610 1N2611 1N2612 1N2613 1N2614 1 N2615 1N2616 1N2617 1N2858 1N2859 1N2860 1N2861 1N2862 1N2863 1N2864 1N2878 1N2879 1N2880 1 N2881 1N2882 1N2883 1N3189 1N3190 1N3191 1N3193 1N3194 1N3195 1N3196 1N3253 1N3254 1N3255 1N3256 1N3544 1N3545 1N3546 1N3547 1N3548 1N3549 1N3611 1N3612 1N3613 1N3614 1N3639 ITT Replacement 1N4004 1N4005 1N4003 1N4004 1N4004 1N4005 1N40051N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 1N4007 1N4007 1N4007 1N4003 1N4004 1N4005 1N4003 1N4004 1N4005 1N4006 1N4003 1N4004 1N4005 1N4006 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4003 1N4004 1N4005 1N4006 1N4003 Type To Be Replaced 1N3640 1N3641 1N3642 1N4245 1N4246 1N4247 1N4248 1N4249 1N4250 1N4251 1N4361 IN4364 1N4365 1N4366 1N4367 1N4368 1N4369 1N4383 1N4384 1N4385 2E4 3MS5 3MS10 3MS20 3MS30 3MS40 3MS50 5A2 5A4 5A5 5A6 5A8 5A10 5E4 5E5 5E6 5MA2 5MA4 5MA5 5MA6 5MA8 5MA10 5MS5 5MS10 5MS20 5MS30 5MS40 5MS50 1081 1082 1083 ITT Replacement 1N4004 1N4005 1N4006 1N4003 1N4004 1N4005 1N4006 1N4007 1N4006 1N4007 1N4007 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4003 1N4004 1N4005 1N4004 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4003 1N4004 1N4005 1N4005 1N4006 1N4007 1N4004 1N4005 1N4006 1N4003 1N4004 1N4005 1N4005 1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4002 1N4003 1N4004 1 N4000- -SERIES, EM500 SERIES ---.- PLASTIC SILICON RECTIFIER Type To Be Replaced ITT Replacement Type To Be Replaced ITT Replacement Type To Be Replaced ITT Replacement Type To Be Replaced ITT Replacement , 1084 10B5 1086 1088 10810 1002 1003 1004 1005 1006 1007 1008 10010 320A 3208 320C 3200 320F 320H 320M 320K 320P 320S 320Z 1N4005 1N4005 1N4005 1N4006 1N4007 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 359B 3590 359F 359H 359K 359M 359P 359S 359Z A10A A108 A10C A100 A10E A10M A10N A10P A13A2 A1382 A13C2 A1302 A13E2 A13F2 A13M2 1N4002 1N4003 1N4404 1N4004 1N4005 1N4005 • 1N4006 1N4006 1N4007 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4002 1N4003 1N4004 1N4004 1N4005 1N4001 1N4005 12-17 1N4006 AH805 1N4006 AH810 AH815-- --'fN4006 1N4007 AH1005 1N4007 AH1010 1N4007 AH1015 1 N4001 AM3 1N4002 AM13 1N4003 AM23 1N4004 AM33 1N4004 AM43 1N4005 AM 53 1N4005 AM63 1N4006 G100K 1N4007 G100M 1N4004 PA3 1N4003 PA069 IN4004 PA070 IN4005 PA071 1 N4001 PA305 1N4002 PA310 1N4003 PA315 1N4003 PA320 1N4004 PA325 PA330 PA340 PA350 PA360 PA380 PT3 PT5 PT5B PT505 PT510 PT515 PT520 PT525 PT530 PT540 PT550 PT560 S91 S91H S92 S92H S93 S93H S94 IN4004 1N4004 1N4005 1N4005 1N4006 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 IN4005 1N4002 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 ITT -------1 N4001 THROUGH 1 N4007 GLASS RECTIFIERS SEMICONDUCTORS 1 AMP, 50 TO 1 ,000 VOL T8 GLASS RECTIFIERS MAXIMUM RATINGS AT 50°C AMBIENT Max • Hermetic seal V. cycle • Glassivatedepitaxial grown state of the art chip • Peak inverse voltage to 1000V Peak inverse voltage (volts) Type • Average forward current, 1 Amp • Surge current, 30 Amp max, • .Withstands iead pull, 18 Ibs. for 15 sec. This series designed for power rectification in military and industrial. These devices are ideal for ·Appliance & Entertainment circuits, Test Equipment, Control circuits, Computer and Peripheral and many more. Ideal lead material for welding. @ 60 cps rated load in amps 30 1N4001 50 1.0 1.0 30 1N4002 100 200 1.0 30 1N4003 400 1.0 30 1N4004 1.0 600 30 1N4005 1N4006 800 1.0 30 1N4007 1,000 1.0 30 .. For additional ratings see figures 1, 2 and 3. II> W UNITS ABSOLUTE MAXIMUM RATINGS Max peak forward voltage drop @ 1A peak @ 25°C ............ 1.1V Max peak reverse current at rated PIV @ 25°C .............. 10p.A Max average reverse current at rated full load .................. 30p.A Max peak reverse current at rated PIV D.C. ................. 50p.A Operating temperature range ................. -65°C to +175°C Storage temperature range .. -65°C to 200°C surge Average forward current amps ._-". - 1.2 _ ...- 0: w 0. ::; « z I" f- 0.8 ~ 0.6 u ~ ii: 0.4 ~ 0.2 zw :> Icc 1.0 I" i'. -1>..,1 '" ~ « I" Icc o 25 . ,'J'65 105 -T2S" 85 145 "'" - -'-6"5 TA IN DC 17 FIG. 1 FORWARD CHARACTERISTICS 1.6 '" II> 0. :> :; « Z w « 0: ::; W 0. Z :> 0.8 Z 0: 0.6 ~~ -::;;::« ~o: 0 u. « / 1.0 50 w 1.4 0: f- 0: II> 1.2 OfW Z SURGE RATINGS CYCLES AT 60 Hz. II 40 f- zw 0: 0: / 30 :> u I 0.4 0.2 0 0.1 0.2 ... v 0.4 0.5 0.6 w 20 ':>" "« 10 0: V II> "- "- I'. r--- I- w 0. U 0 0.8 1.0 1.2 1.4 1.5 2 3 4 6 10 20 30 50 VFMINSTANTANEOUS FORWARD VOLTAGE DROP VOLTS SURGE RATINGS CYCLES AT 60 H:l. FIG.2 FIG.3 12-18 80 100 ITT ----1 N4383/5, 1 N4585/6, RG1122/3 i-AMP GLASS RECTIFIERS SEMICOND.UCTORS 1-AMP SILICON GLASS RECTIFIERS The ITT1N4383-5, 1N4585-6, offer up to oneamp rectified current at 100°C in a small, hermetically sealed 00-29 glass package. All units are passivated, 100 percent tested, and have a 50-amp surge current rating to insure a stable, highly reliable rectifier. Rectifiers are supplied with solderable leads and may be delivered reel-packed for automatic insertion equipment. • VR Ratings 50 to 1000 Volts • Surge Current Rating 50 Amperes • Series JAN approved ABSOLUTE MAXIMUM RATINGS· Characteristics Maximum Maximum Maximum Maximum current recurrent peak reverse voltage .. RMS voltage ................ DC blocking voltage .......... average forward rectified '/a" lead length .. 50°C Ambient 100°C Ambient 150°C Ambient Maximum peak surge 1 Cycle overload current 10 Cycles 100 Cycles Maximum forward voltage drop at 1 amp DC, 25°C ................. Maximum full cycle average reverse current, @ rated average forward current and 100°C ambient .......... Maximum DC leakage at rated DC blocking voltage and 25°C ambient ... Typical recovery time at 2SoC ambient ... Temperature Range, op & stg ........... RGl122 lN4385 lN4585 lN4586' Units RGl123 lN4383 lN4384 50 35 50 100 70 100 200 140 200 400 280 400 600 420 600 800 560 800 1000 700 100 Volts Volts Volts 1.0 1.0 0.3 50 16 6 1.0 1.0 0.3 50 16 6 1.0 1.0 0.3 50 16 6 1.0 1.0 0.3 50 16 6 1.0 1.0 0.3 50 16 6 1.0 0.6 0.2 50 16 6 1.0 0.6 0.2 50 16 6 Amps Amps Amps Amps Amps Amps 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Volts 275 250 275 250 225 200 200 "amps 10 10 10 10 10 10 10 10 10 10 10 10 ramps ",secs °C NOTE: 60 cps, inductive or resistive load, single phase half wave. 12-19 10 10 -65 to +175 1N4383/5, 1 N4585/6, RG1122/3 1-AMP GLASS RECTIFIERS TYPICAL CHARACTERISTICS 25°C unless otherwise noted @ Maximum Average Forward Current Rating (Resistive or Inductive Load, Single Phase, 60cps) Maximum Average FWD Current Rating-%" Lead Length (Capacitive Load, Single Phase, 60cps) ... ~ in OJ 1.0 !I ~ 0.8 ~~ 100)'fd TO 50 ~§ .,u r'<: ..... ~ 5 ~ P.fd..t ~" 0.6 ..... ~~.... 0.4 TYPES IN43IP. IN438 ,IN438 TYPES IN45~ IN4!l& 0 ~ 0.2 ;:: ~ 20 .... ~~ 40 60 80 100 120 140 AMBIENT TEMPERATURE ('C) ~ 0. "''" 0: :0 .......... -- ~ °0 160 TYPES IN438!' 1N438 ,IN431 5 TYPES IN458 IN451~ 20 40 60 AMBIENT 80 100 - in 0. '"OJ 60 YPES IN438 TYPES 1N458 NORM. L MOU mNG '" 0. .......... ~ .. ~ 0.6 ",:0 ""-.. 20 ..........; ....... ",,: ""U ~~ r--.... 10 0.4 c( .... r---- VI loojdd ffi u: 0.2 rei SOC ~f~ ~ ~O"fd TO 101 ..--'0. 0. ~ Q. 2 I 6 4 8 10 20 40 60 '" SURGE DURATION CYCLES AT 60CPS Maximum Average FWD Current Rating-l/." Lead Length (Capacitive L.oad, Single Phase, 60cps) OJ 1.0 08 0. II! li!5 0.6 ....... "'u ~~ 0.4 .... ~ 0.2 TO 100" -- YPES Yf'0 Vi 0: 3/4 ~!5 0.6 ~~ ~3/8 112 ",,,, Non-Recurrent Surge Rating (-65° to 17S0C) ., "' :I! L,~~~ ~-.... ",0. ~ 00 '" IO.ufd TO 10 .fd 10)'fd TO 10C ~fd " LEA~ '"::.~ 1.0 '"z 0.8 ;: II 235710 235710 235710023 REVERSE JUNCTION POTENTIAL VOLTS (APPLIED V-O.7 VOLTS) 5 7 1 N4383/5, 1 N4585/6, RG1122/3 1-AMP GLASS RECTIFIERS TYPICAL CHARACTERISTICS, continued FORWARD VOLTAGE DROP REVERSE CURRENT IA "~ IOOMA lOTH PERCENTILE - , ...a: a: u " ...., " i IOMA ~ z I IMA ~ :!! PULSE z 300,UStc DUTY CYCLE< 2% AMBIENT TEMP- 25°C I IOOjJA 10.uAO 90TH PERCENTILE I Q it r I 0.25 0.50 0.75 100 125 RATED INSTANTANEOUS FWD VOLTAGE DROP.VFIVOL.TS) DC REVERSE LEAKAGE TEST The circuit at right provides a simple and inexpensive means for checking the instantaneous leakage characteristics of the 1N4383 series and other low current rectifiers. The pushbutton switch should not be omitted as it minimizes junction heating when testing is being done at high voltage, and prevents the possibility of thermal runaway. Tests may be conducted at high temperature by placing the test rectifier(s) in an oven. Junction temperature rise above ambient due to internal heating is generally low enough to be neglected. 12-21 VOLTAGE 1%) REYERSE CURRENT TEST CIRCUIT I V TI '" "z aoo • pA MICROAMMETEII -1000 VOI.T YOI.TNETER -TRIAD R-107A "4 -tOO K" CI -IO",f-t Kv C2 -Ij.I'-1 Kw -IN4!S., -SKn-z. WATTI 0, -100 Kl1. 02 -IN451!S AS -10"EO.4 D -TUT RECTI"'" ITT _ EM500G SERIES, 1 N3611 SERIES, 1 N4245 SERIES __________________G_L_A_ss__R_E_C~T_IF_IE_R_S SEMICONDUCTORS 1 AMP, 50 THROUGH 1 ,000 VOLTS GLASS RECTIFIERS MAX RATINGS AT 100°C • Hermetic seal • Glassivated epitaxial grown state of the art chip • Peak inverse voltage to 1000V • Average forward current ••• 1 Amp • Surge current . • . 50 Amp max • Withstands lead pull - 18 Ibs. for 15 sec. Type This series is designed 'for power rectification in military and industrial applications at low cost. These devices are ideal for telephone switching applications, appliance & entertainment circuits, test equipment, control circuits, computer and peripherals and many more. Ideal lead material for welding. . Max ';' Cycle Surge @60Hz Peak Average Inverse Forward Voltage Current EM050G, 50 1A 50A EM501G, 100 1A 50A EM502G, 1N3611, 1N4245 200 1A 50A EM504G, 1N3612, 1N4246 400 1A 50A EM506G, 1N361.3, 1N4247 600 1A 50A EM508G, 1N3614, 1N4248 800 1A 50A EM510G, 1N3957, 1N4249 1000 1A 50A .. For additional ratings see Figures 1, 2, & 3 SURGE RATINGS CYCLES AT 60 Hz. til UNITS w a: w Max peak forward voltage drop @ 1.0 Amp @ 25°C ............ 1.0V Max peak reverse current at rated PIV, 25°C ................ 5MA Max peak reverse current at rated PIV & 150°C ............. 300MA Operating temperature range ................ -65°C to +175°C Storage temperature range .. -65°C to 200°C ::; ABSOLUTE MAXIMUM RATING "- « .... 50 40 Z w a: a: 30 \. :J u w 20 CJ "- a: :J til "w« "- 10 I--- I-0 2 3 4 6 10 20 30 50 80 100 SURGE RATINGS CYCLES AT 60 Hz, FIG.3 FORWARD CHARACTERISTICS 1.6 ~ til :i « 1.2 z « w .... a:a: z :J 1.0 :J £ ....z « .... U til Z 0 a: til W 1.4 I CCa: :i' lK I') J 0.8 f- z a: 0 0.1 0.2 o w f= u w 0.8 -5» » ';>/<\,.:'"0<1' l'(-5>o"'l.l'<$- ~o 0,6 I'" <$-",0", ~+J-~O ~~ J"'o 0.4 u. ,/ 0.40,50.6 "- U / 0.2 1"- :J V 0.4 0,8 w II 0.6 DERATING CURVE '.2 1/ - « :i;: a: 1.0 1.2 1.41.5 V FM INSTANTANEOUS FORWARD VOLTAGE DROP VOLTS 0.2 1""'- a: > « (( 25 )) 65 85 105 T A IN °c FIG.1 FIG.2 12-22 1 25 145 - "- 165175 ITT ----1 N5400 THROUGH 1 N5408 SILICON RECTIFIERS SEMICONDUCTORS 3 AMPS, 50 VOLTS TO 1000· VOLTS SILICON RECTIFIERS .. Diffused silicon construction ABSOLUTE MAXIMUM RATINGS • PIV to 1000 volts Max peak forward voltage drop @ 3A ...................... 1.0Volt Max peak reverse current at rated PIV @ 25°C ...................... 25p.A Max peak reverse current at rated PIV @ 50°C ..................... 250p.A Operating temperature range ............... , -65°C to +150°C Storage temperature range ................ -65°C to +150°C • Surge current ••• 300 amps max. • Average forward current· ••• 3A (J Molded epoxy construction Rectifier is designed for pliance and entertainment plies and test equipment. ged construction, 3 Amp 300 Amp surge. motor controls, apindustry, power supDesign features rugforward current and MAXIMUM RATINGS AT 50°C Type IN5400 IN5401 IN5402 IN5403 IN5404 IN5405 IN5406 IN5407 IN540B PIV 50 100 200 300 400 500 600 800 1000 Average Forward Current 3A 3A 3A 3A 3A 3A 3A 3A 3A For additional ratings see Figures 1, 2, 3, 4 12-23 Max 112 Cycle Surge I't ::;;;S.3ms amp'sec 300A 300A 30DA 300A 300A 30DA 300A 300A 300A 190 190 190 190 190 190 190 190 190 UNITS 1N5400 THROUGH 1 N5408 SILICON RECTIFIERS DERATING CURVE w > wI .~Q ,I f".,.~"',.).'1- 50 1\ I- ~~<> ~"'01- o SURGE RATINGS 0 Il. 0.4 0.2 0.1 ' - - ---o 0.2 0.4 CJ / J 0.6 0.8 a: V> L.U ~ "- 100 0 0.. 0 o 25 50 75 I .06 U c: L.U I Z "- i,\ 200 0 j .08 I- 100 U 125 150 ::J 0 I- « c: w i I i .- f--f- J J -.02 w .. - 3 4 5 6 78910 300,.....: r--,---.---,....,..--.--'--.--.---. ······1 • L=Lead Length To Heat Sink 200 ~ I / i ~ -"" 0.4 « Cl. 100 7 REVERSE VOLTAGE (volts) V> V> 30 20 I,. o ~ 30 TYPICAL. FO AWARD CHARACTERISTIC POWER TEMPERATURE DERATING CURVE z o i= 20 VOL TAGE (volts) ZENER CHARACTERISTICS 0.6 -f- -.04 I- MAXIMUM ALLOWABLE AMBIENT TEMPERATURES (oC) ~ ~ ~ I J ::; 175 j , J 1I .02 UJ c: "- I .04 UJ 0 1\ 1\ rT rT' , , .1 .e: ;f 1\ 11\ .~ £ II 0 0.2 10 1······1 0.6 j1zt / 0.7 0.8 0.9 1.0 VF (volts) i--t--="""'.t:---f---f-3000:-f---'' 200 E -- -13-6 ~ Izm -1'-- -- -- !:! 1.5 1 N4729 THROUGH 1 N4752 ZENER DIODES IDENTIFICATION OF SYMBOLS Iz Zener Current Zo Zener impedance lot Zener test current Vz Nominal Zener voltage Zzt Zener impedance at test current (lot) 10k Zener current near breakdown knee ZOk Zener impedance near breakdown knee (10k) 10m Maximum DC Zener .current (limited by power dissipation) If Forward current Vf Forward voltage DYNAMIC IMPEDANCE The Zener Impedance is derived from the 60H z AC voltage which results when an AC current having an RMS value equal to 10% of the DC Zener current (lot or Izk) is superimposed on Izt or Izk. Zener Impedance is measured at two points to insure a sharp knee on the break down curve and eliminates unstable units. 13-7 ITT ----- 1N5226 THROUGH 1N5257 ZEN ER DIODES SEMICONDUCTORS 500mW, 3.3 VOLTS TO 33 VOLTS SILICON GLASS ZENER DIODES FEATURES • Hermetically sealed • Rugged construction • Planar, nitride passivated • Low dynamic impedance • Weldable leads ABSOLUTE MAXIMUM RATINGS Max power dissipation @Tl.=75°C .... 500mW Derating factor above 75°C ...... 4.0mW;oC Max forward voltage @ 200 ma .... 1.1 volts Operating and storage temperature range .................. -65°C to 200°C ITT's glass zeners are inherently reliable and are ideally suited for use under stringent environmental conditions. The applications include: Computers, Instruments, Automotive, Industrial and Entertainment markets. ELECTRICAL SPECIFICATIONS @ 25 C Type Number MaxiMaximum mum OyRe- IR Test namic Reguverse ~oltage lator Test Imped- Current (VR) (IR) (For A Voltage Current ance (Iz.,,) 25°C Suffix) (Vz) (Z~T) v made ohms v p, MaxiIR Test Voltage (VR) (For B Suffix) v Maximum Regulator Current (b,) ma mum Oynamic Knee Impedance Zzk ohms Typical Temperature Coefficient %/oC 0.95 0.95 0.95 0.95 1.9 1.0 1.0 1.0 1.0 2.0 138 126 115 106 97 1600 1700 1900 2000 1900 -.070 -.065 -.060 -.055 ±.030 5 5 5 5 3 1.9 2.9 3.3 3.8 4.8 2.0 3.0 3.5 4.0 5.0 89 81 76 73 67 1600 1600 1600 1000 750 ±.030 +.038 +.038 +.045 +.050 3 3 3 3 3 5.7 6.2 6.2 6.7 7.6 6.0 6.5 6.5 7.0 8.0 61 55 52 50 45 500 500 600 600 600 +.058 +.062 +.065 +.068 +.075 1N5226 1N5227 1N5228 1N5229 1N5230 3.3 3.6 3.9 4.3 4.7 20 20 20 20 20 28 24 23 22 19 25 15 10 5 5 1 N5231 1N5232 1N5233 1N5234 1N5235 5.1 5.6 6.0 6.2 6.8 20 20 20 20 20 17 11 7 7 5 1N5236 1N5237 1N5238 1N5239 1N5240 7.5 8.2 8.7 9.1 10 20 20 20 20 20 6 8 8 10 17 13-8 1 N5226 THROUGH 1 N5257 ZENER DIODES ELECTRICAL SPECIFICATIONS @ 25 C Type Number MaxiMaximum mum Re- III Test Dyverse \voltage namic Regulator Test Imped- Current (VII) (11/) (For A Voltage Current ance 25°C Suffix) (V z) (1zT) (Z"T) MaxiIII Test mum Voltage Regulator (VII) (For B Current Suffix) (br) ma Maximum Dynamic Knee Impedance Zzk ohms Typical Temperature Coefficient %;oC v made ohms I)' v v 1N5241 1 N5242 1N5243 1 N5244 1N5245 11 12 13 14 15 20 . 20 9.5 9.0 8.5 22 30 13 15 16 2 1 0.5 0.1 0.1 8.0 8.7 9.4 9.5 10.5 8.4 9.1 9.9 10 11 41 38 35 32 30 600 600 600 600 600 +.076 +077 +.079 +082 +.082 1N5246 1 N5247 1N5248 1N5249 1 N5250 16 17 18 19 20 7.8 7.4 7.0 6.6 6.2 17 19 21 23 25 0.1 0.1 0.1 0.1 0.1 11.4 12.4 13.3 13.3 14.3 12 13 14 14 15 28 27 25 24 23 600 600 600 600 600 +083 +084 +.085 +086 +.086 1 N5251 1N5252 1 N5253 1N5254 1 N5255 22 24 25 27 28 5.6 5.2 5.0 4.6 4.5 29 33 35 41 44 0.1 0.1 0.1 0.1 0.1 16.2 17.1 18.1 20 20 17 18 19 21 21 21 19.1 18.2 16.8 16.2 600 600 600 600 600 +087 +.088 +089 +.090 +091 1N5256 1N5257 30 33 4.2 3.8 49 58 0.1 0.1 22 24 23 25 15.1 13.8 600 700 +.091 +092 1ZK=6.25ma Standard tolerance is ±20 %. Add suffix "A" for ±10% tal., suffix "8" for ±5% tal. Consult factory for other tolerances and nonstandard voltages. 13-9 1N5226 THROUGH 1N5257 ZENER DIODES ZENER CHARACTERISTICS TEMPERATURE RATING ~~ :g z o ~ 1200 1000 ""'I\. 800 600 ~ 400 a: 200 is w .. ~ o o "E --r- 200 7 <> !u. T YPICAL - FORWAR o CHARACTERISTIC • i\. I 100 20 30 75 100125150175 200 10 [··'1 11,1. I.k MAXIMUM ALLOWABLE AMBI ENT TEMPERATURES 10C) . 0.6 0.7 ~ 0.8 0.9 1.0 VF (volts) --- -- - .! -- -- 0.5 , REVERSE CHARACTERISTIC POWER TEMPERATURE DERATING CURVE e ~ REVERSE VOLTAGE (volts) '\ 25 50 {1 300 r-- ..... 3.0 ~--'--"'---',...-r-'--"'-'"'T--j 1.0 a. ! z -- -- 0 .. f: 0.1 "~ 0.05 l< V-I CHARACTERISTICS Q. ~ TERMS AND SYMBOLS Switching Voltage-Closest point to peak voltage in Region' II where slope of V-I curve is -3301!. This definition is adopted because of instrumentation requirements I, Switching Current-Current which flows through the diode at Vs I, Holding Current-The closest point to the minimum voltage in Region II where the slope of the V-I Curve is -loon Vh Holding Voltage-Voltage across the diode at Ih Ip Peak Current-Current which the diode can pass when in Region III; duration limited to 50 #s Ron ON Resistance-Slope of V-I curve measured at currents> Ih I'k Leakage Current-Measured in Region I at 60%Vs V,b Reverse Breaker Voltage 0.02 '" 0.01 0001 0.01 0.1 DUTY FACTOR (, PULSE WIDTH REPETITION FREQUENCY) V, x POWER DERATING CURVE 125 i .§ 100 1\ \ z 0 ~ 75 iii '"aa: "'0 ~ 50 25 Q. 50 - \ 1\ '\ \ 100 AMBIENT TEMPERATURE IOC) 15-2 ITT ---------- TYPE E 4E20 - 4E200 COMMERCIAL SERIES DIODE THYRISTORS SEMICONDUCTORS Package: 00-7 4-LAYER DIODE THYRISTORS • Firing Voltages 20 to 200 volts • Switching current <125 p,A @ 25°C • ON resistance <2Q @ 70mA The ITT diode thyristor is a reliable negative resistance device designed for use in switching circuits_ Typical applications include ring counters, matrixes, pulse generators, relay drivers, multivibrators, pulse modulators, and timing circuits_ ELECTRICAL SPECIFICATIONS TYPE Switching Voltage (Vs) (Volts) 4E20-8 4E20-28 4E30-8 4E30-28 4E40-8 4E40-28 4E50-8 4E50-28 4E80-8 4E80-28 4E100-8 4E100-28 4E200 ·8 4E200-28 20±4 20±4 30±4 30±4 40±4 40±4 50±4 50±4 80±8V 80±8V 100±10 100±10 200±20V 200±20 V Holding Current (I,) (rnA) Reverse Breakdown Voltage (Min.) 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 12 12 18 18 24 24 30 30 48 48 60 60 120 120 0.5-60 0.5-60 0.5-60 0.5-60 0.5-60 0.5·60 0.5-60_ 12 18 24 30 Series A (Broad Spec) 4E20A 4E30A 4E40A 4E50A 4E80A 4E100A 4E200A 20±6 30±6 40±6 50±6 80",,8 100±10 200±20 MECHANICAL DATA Case: Hermetically sealed glass Finish: All external surfaces corrosion resistant and leads readily solderable Leads: Dumet, tin plated Weight: 0.135 grams (approx.) Mounting Position: Any Marking: 48 60 120 Cathode band Type number Manufacturer's Symbol ABSOLUTE MAXIMUM RATINGS UNITS CHARACTERISTICS Average Forward Current, 50·C ........................ . Power Dissipation, 50·C .............................. . Power-Temperature Derating .......................... . 150 150 1.5 Reverse Breakdown Voltage from T A = -40 to +70·C ............................ . Operating and Storage Temperature ..................... . nominal Vs/2 -40 to +70 15-3 mA mIJY mWrC min. ·C TYPEE 4E20-4E200 ELECTRICAL CHARACTERISTICS SYMBOL MIN. ~ 25'C unless otherwise noted TYP. Is (forward switching current) MAX. UNIT 125 250 /lA /lA -60 to +125'C 15 /lA 75% of nom. Vs 1.4 1.2 V V If = 70 mA~lJVs 80, 100, 200 If = 70 mA@Vs 20,30,40,50 2.0 II If = 70 mA I'k (OFF state) (forward leakage current) VON (forward voltage drop) roo (dynamic forward impedance) "- CONDITIONS .,," +200V 0.1 too /lsec t f""'.v :zvoTn '0,." TEST +300V 5 toff CI~CUIT '" ~ 2V.rn..~ OVT ~onpulSE G(~~ 390 2~~lon /lsec VAR PULSEWIDT>t ~~~~~FA:~i:R~A:TT~~~~ Ion 'OFF TEST CI~CUIT j ~:~ . ., I U HOW THE 4-LAYER DIODE OPERATES The voltage-current characteristic for the 4-layer diode shows three essential operating regions: I-"off" or high resistance state II-transition or negative resistance state 1I1-"on" or low resistance state This curve is shown on a very expanded scale (non-linear). for illustration purposes only. Note that as the voltage rises and reaches the switching voltage (Vs), the device begins to switch "on." The current at this point (Is) is typically several microamperes. The device switches because of an internal feedback mechanism allowing the diode to pass a steadily increasing current as the voltage decreases (negative resistance state, Region II). When "on" (Region III), the 4-layer diode passes a current which is limited principally by the external circuit. In the "on" state, the device has a dynamic resistance of less than a few ohms and a voltage drop of about one volt. As long as sufficient current is passed by the cirCUit, the device will remain in the "on" condition. At the point on the curve marked Ih, the clfcuit is passing just enough current to keep the device in the "on" condition. If the current drops below. Ih the diode ·switches back .to the high resistance or "off" condition. Rate Effect In its "off" condition the device will pass a capacitive current in response to a .sharply rising voltage wave. If the rise rate of this voltage wave is large enough (usually 10 .to 100 volts / /lS), switching occurs below the DC switching voltage. DERATING CURVES +1 PULSE DERATING CURVE ~ m NEGATIVE RESISTANCE REGION_ - } EXPANDED I IT SCALE -V~~~~~-~-~ Vs +v Ela: w a. '" ~ 20 10 .... 05 a: a: 0.2 u 01 ~ => V-I CHARACTERISTICS 50 "I..... I~ 50°C MAX I I, "- V 0.01 01 "'" ~ 5'" 0.05 a. ~ 002 :> 0.01 0.001 TERMS AND SYMBOLS Switching Voltage-Closest point to peak voltage in Region·1I where slope of V-I curve is -330!!. This definition is adopted because of instrumentation requirements I, Switching Current-Current which flows through the diode at Vs Ih Holding Current-The closest point to the minimum voltage in Region II where the slope of the V-I curve is -100!! Vh Holding Voltage-Voltage across the diode at Ih Ip Peak Current-Current which the diode can pass when in Region III; duration limited to 50 M Roo ON Resistance-Slope of V-I curve measured at currents> Ih I'k Leakage Current-Measured in Region I at 75% Vs V,b Reverse Breaker Voltage DUTY FACTOR (, PULSE WIDTH X REPETITION FREOUENCY) V, 15-4 POWER DERATING CURVE 125 'i .5 1\ 100 z ;:: 75 0 it :;j 0 50 \ -~ 1\ ~ a: ~ 25 0 a. 50 100 AMBIENT TEMPERATURE (OC) \ ITT ----TYPE E 4E20M - 4E200M DIODE THYRISTORS MILITARY SERIES Package: 00-7 SEMICONDUCTORS 4-LAYER DIODE THYRISTORS • Firing Voltages 20 to 200 volts • Switching current <125 J1.A @ 25°C • ON resistance <2Q @ 70mA The ITT diode thyristor is a reliable negative resistance device designed for use in switching circuits. Typical applications include rin.g counters, matrices, pulse generators, relay drivers, multivibrators, pulse modulators, and timing circuits. ELECTRICAL SPECIFICATIONS Mil-Line Series for extended temperature ranges Holding Reverse Breakdown Voltage (Min.) Current (In) -60 to 125"C (mA) 25"C -60to 125"C Switching Voltage (Vs) TYPE 25"C 4E20M-S 4E20M-2S 4E30M-S 4E30M-2S 4E40M-S 4E40M-28 4E501¥11-8 4E50M-28 4E30M-8 4E30M-28 4E100M-8 4E100M-28 4E200M-8 4E200M-28 20±4 20±4 30±4 30±4 40±4 40±4 50±4 50±4 SO±g 80±8 100±10 100±1 0 200±20 200±20 14-25 14-25 23-36 23-36 32-46 32-46 41-57 41-57 68-92 618-92 SO-115 SO-115 160-230 160-230 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1 -15 14-45 1-15 14-45 1-15 14-45 10 10 15 15 20 20 25 25 40 40 50 50 100 100 MECHANICAL DATA Case: Hermetically sealed glass Finish: All external surfaces corrosion resistant and leads readily solderable Leads: Dumet, tin plated Weight: 0.135 grams (approx.) Mounting Position: Any Marking: Cathode band Type number Manufacturer's Symbol I I ABSOLUTE MAXIMUM RATINGS CHARACTERISTICS UNITS Average Forward Current, 50"C ...... , ..................... . Power Dissipation, 50"C. , ................................ . Power- Temperature Derating ....... , ........ , .... , ........ . 150 150 1.5 Reverse Breakdown Voltage from TA = -60 to +125°C ............................... , Operating and Storage Temperature ... , ............ , ... , .... . nominal Vs/2 -60 to +125 15-5 mA mW mW/"C . min. "C • TYPE E4E20M· 4E200M ELECTRICAL CHARACTERISTICS SYMBOL MIN. TYP. @ 25°C unless otherwise noted MAX. UNIT 125 250 ",A ",A -60 to +125°C 15 ",A 75% of nom. Vs (forward voltage drop) 1.4 1.2 V V if = 70 mA@Vs 80.100,200 Ii = 70 mA@Vs 20,30,40,50 ren (dynamic forward impedance) 2.0 n If = 70 mA Is (forward switching current) i;k (OFF state) (forward leakage current) VON CONDITIONS .",. +zoov ton 0.1 t f"'" OUT ",sec CAO __--'-"'20"'. V tON TEST CIRCUIT ... ~ toll 5 ",sec DERATING CURVES HOW THE 4-LAYER DIODE OPERATES The voltage-current characteristic for the 4-layer diode shows three essential operating regions: I-"off" or high resistance state II-transition or negative resistance state III-"on" or low resistance state This curve is shown on a very expanded scale (non-linear) for illustration purposes only.' Note that as the voltage rises and reaches the switching voltage (Vs), the device begins to switch "on." The current at this point (Is) is typically several microamperes. The device switches because of an internal feedback mechanism allowing the diode to pass a steadily increasing current as the voltage decreases (negative resistance state, Region II). When "on" (Region III), the 4-layer diode passes a current which is limited principally by the external circuit. In the "on" state, the device has a dynamic resistance of less than a few ohms and a voltage drop of about one volt. As long as sufficient current is passed by the circuit, the device will remain in the "on" condition. At the point on the curve marked Ih, the Circuit is passing just enough current to keep the device in the "on" ·condition. If the current drops below Ih the diode switches back to the high resistance or "off" condition. Rate Effect In its "off" condition the device will pass a capacitive current in response to a sharply rising voltage wave. If the rise rate of this voltage wave is large enough (usually 10 to 100 volts / ",S), switching occurs below the DC switching voltage. PULSE DERATING CURVE +I ........... m NEGATIVE RESISTANCE REGION__ } EXPANDED n SCALE -V ..=-;'i;;::=....p==-~~ +V Vs iii "' ,."' II: 0- ~ I- 5.0 2.0 "'" "' ......... 1.0 105°CMAX II: II: 0.2 u 0.1 50°C MAX ./ A. 0.5 z "'::> ~ "' I'--. V, I, Ih Vh Ip Ron ';k Vrb TERMS AND SYMBdLS Switching Voltage-Closest point to Pl voltage in Region II where slope of \ curve is -330P.. This definition is adopt& because of instrumentation requirements Switching'Current-Current which flows through the diode at Vs Holding Current-The closest point to the minimum voltage in Region II where the slope of the V·I curve is -1000 HoldingVoltage-Voltage across the diode at Ih Peak Current-Current which the diode can pass when in Region III; duration limited to 50 #s ON Resistance-Slope of V-I curve measured at currents> Ih Leakage Current-Measured in Region I at 75% Vs Reverse Breaker Voltage ."' 0- x 0.02 ,. 0.01 0.001 "" "" '" .. 0.05 V·I CHARACTERISTICS 0.01 0.1 DUTY FACTOR (= PULSE WIDTH X REPETITION FREQUENCY) POWER DERATING CURVE 125 \ i .§ 100 z 0 1= ~ 75 iii 0 50 '" \ \ 1\ \ II: "'0 ~ 25 0- 50 10.0 AMBIENT TEMPERATURE (OC) 15-6 \ ITT __ . FOUR-LAVER DIODE _____________________ **_A_PP_L_IC_A_T_IO __ N_N_O_T_E_S SEMICONDUCTORS TWENTY-FOUR CIRCUIT APPLICATIONS FOR ITT 4-LAYER DIODES THEORY OF OPERATION Figure 2B The ITT Semiconductor Four-Layer Diode is a two-terminal semiconductor switch, sometimes referred to as a negative-resistance diode. These PNPN silicon devices are useful in many applications including pulse generators, oscillators, telephone switching, sweep generators, and multivibrators. IC2 The diode has two stable states; the ON or low impedance state, and the OFF or high impedance state. To turn the device ON, voltage across the terminals must exceed the switching voltage (V,). The device can be turned OFF by reducing the current through the device below the holding current ((h). ----I I I I I Vs II I/32 The diode will remain in this condition until either the temperature or the anode voltage is increased to a point where B1 B2 = 1. At this point, the middle junction breaks down and the circuit becomes regenerative. This occurs because the collector of each transistor supplies current to the base of the complimentary transistor in the equivalent circuit and their Betas are current dependent. As sOOn as they reach unity the device effectively "runs away" or "fires" and the current through the circuit is limited only by external impedance. Figure 1 is the V-I characteristic of a typical device. V, is the point at which the device breaks down and switches to the ON state where current is limited only by the external circuit impedance. Ih is the minimum current that must be passed through the diode to keep it in the ON state. If the current drops below this value the diode will switch to the 0 FF state. Vac Figure 3 Figure 2A ANODE p p N N N p p p N ICI The PNPN diode can be thought of as a complimentary pair of transistors, one a PNP and the other an NPN as shown in Figure 2A. Figure 2B shows the two transistors as they would appear schematically. The collector of T2 drives the bose of T1 giving rise to a positive feedback loop with a gain of B1 B2. As long as B1 B2 is less than 1 the equivalent circuit is stable with the upper and lower PN junctions biased forward' and the middle junction reversed biased. In this condition only a small leakage current flows. I Vh t ~ :m Is TI. I L, Figure 1 Ih ~I t N CATHODE **Application notes will be found in the last pages of this section. 15-7 APPLICATION NOTES FOUR-LAYER DIODE CIRCUITS Triggered Pulse Generators These circuits are used mainly for generating ar amplifying pulses and for triggering purposes. They are similar to Figure 3 except that the switching voltage of the diode is greater than the supply voltage. Four variations, with their input and output pulses, are shown in Figure 4. A pulse, large enough to break dawn the diode, is capacitively coupled either positive to the anod e or negative to the cathod e. The conventional diode is used to present a high impedance to the input pulse. Relaxation Oscillator Figure 3 illustrates a circuit used far oscillator, sweep generator, and timing applications. The output is a saw-tooth voltage the amplitude of which is dependent On the diode Ys• Frequency is dependent upon the RlC time constant and the supply voltage. The supply voltage should be chosen so that the charging of C is done in the linear portion of the curve. When C reaches Ys the diode breaks down and conducts. C rapidly discharges through the diode. Rl should be large enough so that it will not pass Ih or the diode will remain in the ON can· dition after C has discharged. With C discharged the diode turns OFF and C commences to charge again. Rl must be able to pass the switching current (Is) when C reaches Y, and the diode flres again. Jl o--j~,0:1,0C Voc . ..'_ '~lf Voc Figure 5 L·C Pulse Generators As with the circuits in foregoing section, those in this section also require a pulse to flre the diode. Y, of the diode is greater than the supply voltage. In Figure 5, a negative pulse is applied to the cathode which breaks down the diode. C, which was charged to YoC through R, discharges through the diode, L, and Rl. This is a resonant circuit and the wave shape across Rl is a half sinusoid. When the current goes through zero, the voltage across the diad e becomes negative, turning it 0 FF. A smail positive output will occur due to the pulse recovery current through the diad e. J\ c R'I c v 0---1 R2 Figure 6 L2 1J 0---1 H----1'---o c 1[0---1 v 15-8 APPLICATION NOTES FOUR-LAVER DIODE the cathode, the four-layer diode (Ol) conducts. RL is made large enough so that it will not deliver the minimum Ih. C discharges through the four-layer diode (Ol) the conventional diode (02), and the inductive load_ C must be large enough to supply the "read" peak current. The shape of the curve is dependent on the inductances and R,_ The RLC product must be selected so that C charges in less time than the time from the end of the "read" pulse to the beginning of the next complete cycle. JL Voe Figure 7 lJ This type of generator does not depend On R being large enough not to pass Ih but rather On the fact that ringing of the L-C loop turns OFF the diode. Ouring the OFF half cycle C charges to Voe but in the opposite polarity. With the completion of the output pulse and the cessation of ringing, C begins to recharge toward the power supply voltage and polarity. Figures 6 and 7 illustrate the same principle but with a resonant charging circuit. C moy charge to approximately twice the supply voltage if the circuit Q is high. The resistance of L must be. large enough to keep the current through the four-layer diode below its rated maximum. The anode af the diode must be kept negative long enough to turn completely OFF, otherwise the diode will turn back ON when the anode goes positive. This requirement limits the maximum operating repetition rate. OFF 0---1 02 Figure 9 Relay Drivers In Figure 9, V, is greater than Voe. A negative pulse on the cathode turns 0, ON_ It remains in this state until it is pulsed OFF by a negative pulse on the anod e. This'is a typical relay driver application. 02 prevents excessive spiking caused by the relay inductance. Voe 1f e Figure 10 Figure 8 circuit is to provide a current wave form which Stroboscope In Figure 10, the four-layer diodes replace thyratrons as triggers to activate a stroboscope flash tube. The diodes form a relaxation oscil- reads the memory and then restores (writes) the initial flux condition. In Figure 8, the V, of the four-layer diode is greater than Voe. C charges to Voe through RL When a negative pulse of the proper magnitude is coupled to lator delivering pulses up to 150V at a few hundred per second depending on the circuit constants. Because of the pulse magnitude two diodes are used in series with equalizing resistors across them. Magnetic Memory Driver Circuits The purpose of a magnetic memory driving 15-9 APPLICATION NOTES FOUR-LAYER DIODE Voc Figure 13 RI R2 C2 ~----If----+B o-jf-+-......-+!...j!-------. 1J 02 01 Figure 11 B A-Stable Circuit YOC is greater than Y. of both diodes in Figure 11. When power is applied, one of the diodes will conduct. Let it be assumed that DI flres flnt. Point A will go approximately to ground potential and the current through RI will be greater than Ih. The capacitor C will begin to charge through R2 and DI to ground. When the voltage at B exceeds the breakdown potential of D2, it will conduct and point B will go to ground. Since the capacitor can not charge instantly, point A will drop approximately Y. volts. This puts a negative voltage at A, which if kept there until the turn OFF potential of DI is reached, will prevent it from sWitching back until the voltage at A reaches Y._ C therefore charges through RI. The circuit oscillates back and forth from DI to D2 with the frequency dependent On RI C and R2C and on YOC and the switching voltage of the diodes. A modiflcotion of the gate circuit where both' diodes are in the OFF state until a pulse is opplied is shown in Figure 13. The Y. of DI is slightly higher than YoC. A pulse of currenl is opplied through RL which turns Dl ON. C2 charges through Dl ond R2 to Yoc- Cl charges through Rl and Dl toward YoC olso_ When the voltage at point A reaches Y. of D2, it will commence to conduct. The voltage rise. at' B is commutated back to DI, turning it OFF, which in turn, turns OFF D2. voc 02 01 RI (-0 1f 1f Figur'e 14 Figure 12 BI-Stable Multivlbrator Flip-Flop The Y. of both diodes are chosen 50 that they are greater than YOC in Figure 14. Whichever diode is ON, it remains in that condition until a trigger pulse arrives turning OFF the diode which was ON and turning ON the previously OFF diode by the commutating action of C. By interchanging one 4-layer diode with its series cathode diode,-the circuit will become sensitive to the polarity of the pulses. The circuit will then switchover only when·. the polarity of the trigger pulse reverses. This is shown in Figure 15. Diode 1 triggers On negative·pulses only and diode 2 on positive pulses. Th.erefore, a positive pulse keeps branch B ON and a negative pulse keeps branch A ON. Monostable Multivibrator If diode Dl in Figure 12 is selected so that it. switching voltage is less than Yoc, and diode D2's is greater than YOC, diode Dl will normally be in the ON condition and D2 will be OFF. Capacitor Cwill charge through R2_ When D2 is pulsed ON, DI will turn OFF due to the commutating action of C. The voltage at point A will then start rising as C charges through Rl and D2_ When the voltage at point A reaches the switchover voltage of Dl it will turn ON ond D2will turn OFF until another p.ulse is received. Frequency is determined by Rl C, YoC, and Y.·of diode Dl. 15-10 APPLICATION NOTES FOUR-LAYtErFi2 DOODlE Ring Counters Figure 15 Figure 16 T The basic requirement of a ring counter is to turn one stag e at a time ON in a simple progression. Each time a trigger pulse is applied, the ON stage will advance one stage. The circuit forms a closed loop, or ring, so that when the final stage has been activated the next pulse will move the ON condition back to the first stage where the cycle begins over again. In Figure 17, one stage will turn ON as soon as power is applied. The commutating capacitor C between the ON stage and the next successive stage charges through RL and the ON 4-layer diode to VA, which is less than the Vs of the diodes and keeps them from turning ON. A trigger pulse, either positive or negative, causes VB to drop almost to ground potential, which in turn, causes VA to drop at the same time due to the coupling action of Cl. Since Rl is large enough so that a current of less than Ih flows through the trigger diodes, the pulse is only momentary. The drop in voltage at A turns OFF the ON diode. At the same time Cl begins to charge and the voltage at A rises again. The voltage at the high end of the charged commutating capacitor C adds to VA causing the next stage to fire. The repetition rate of the output pulses equals the rate of the trigger pulses divided by the number of stages. VI T A different steering circuit is shown in Figure 16. Assume thot Dl is ON. Point A will be ap· proximately at ground potential and paint B at VI. When a negative pulse is applied it is blocked by CRI but passes through CR2, causing swilchaver to take place. Current from V2 passes through Rand D2 to ground. The principal source of current for the conducting branch is V2. The RL'S are need"ed to maintain a voltage of less than V. across the OFF diode. Figure 18 Voc Figure 17 Telephone Switching When trigger signals of the polarity shown in Figure 18 are simultaneously applied to the lines, one of positive polarity to lines I, 2, or 3, and the other of negative polarity to lines 4, 5, or 6, two of the lines will be connected. If triggers are applied to lines 2 and 5 as shown, the 4-layer diode A will conduct connecting them together. The series resistors allow a current greater than Ih to flow, thus keeping the diode in the ON state. To open the circuit, a contact is opened to interrupt the flow of current through the diode which will then revert to its 0 FF condition. Jl o-j 1J 15-11 APPLICATION NOTES FOUR-LAYER DIODE A Figure 21 REGULAR POWER SUPPLY EMERGENCY POWER SUPPLY Figure 19 Emergency Power Transfer In the normal state, the 4-loyer diode in Figure 19 is OFF and the regular power supply is the source of power for the load RL. If the supply voltage should fall off for any reason, the voltage at point A will drop. If this change in voltage is sufficient to cause the potential from 8 to A to exceed the diad .. V" it will turn ON and the emergency power supply will provide power to the load until the condition is corrected. In Figure 21, succeeding half cycles can have different firing angles since there are two control diodes, One for each leg of the rectifier circuit. A.C. C' 1J Figure 20 Rectifier Control Circuits Figure 20 illustrates a method for controlling the power output of a rectifier by varying the point at which a 4-layer diode is triggered. Pulses may be applied at any phase angle from the start of the input waveform (100% power! to 180° (zero power!. AC Control Circuits The circuit in Figure 22 is useful for the control of AC power in such applications as light dimmers and motor controls. The trigger portion is composed of two back-to-back relaxation oscillators with an adjustable resistor COntrolling the time at which they fore the control diodes and thus the amount of current through the load. The load resistor of the oscillator and C set up the time constant to fore the trigger diodes at approximately 90° in each half cycle. When a positive input cycle occurs the diode A will break down at approximately 90°. The charged capacitor C will discharg e through diad e A with the result that a negative pulse will appear at point CI. This pulse will turn ON control diad e AI which will allow current to flow until the half cycle is completed. 80th diodes will then turn OFF since the current through them will drop below their holding current. This cycle is repeated during the negative portion of the input waveform. 15-12 APPLICATION NOTES FOUR-LAVER DIODE +v Figure 23 Figure 24 Invarter Circuits The circuit in Figure 24 is a typical power inverter used to convert DC power to AC power over a range of frequency from 60 to a few thousand cycles. When power is applied, one of the 4-layer diodes begins to conduct. Assume this to be 01. The battery supplies current through the coil L, primary t and 01. The reflected load limits the current through 01. When a negative trigger pulse is applied 02 will conduct. The commutating capaciior C which is reflected into the primary from across RL will cause point A to go negative thus turning OFF 01. L smooths the current during switching. The following negative trigger pulse turns 01 ON again and C turns 02 OFF. This completes one cycle. The switchover voltage of the diodes must be greater than 2XVoC and capacitor C must be big enough so thot when reflected back into the primary it can turn 0 FF the diode which was ON just prior to the triggering pulse. The capacitor can be across the primary or the secondary. SCR Phasing Circuit Diode t and 2 are both designed into relaxation oscillator circuits in Figure 23. The diode t circuit has a frequency of just under 60 cycles per second. The half-wave supply circuit ot its anode causes the frequency of the oscillator to be synchronized with the line frequency. The output at VA is a sawtooth which is coupled to the cathode of 02. It is sup erimposed on a DC value set by the potentiometer in the cathod e of 02. As the voltage across 02 is increased by decreasing the cathode potential, the negative peak of the waveform from 01-will exceed V, of 02 putting it into oscillation at a frequency much greater than that of 01. This signal is fed to the gate of the SCR which is flred by the steep wave front at the start of oscillations. The timing of the conduction of the SCR is controlled by the setting of the potentiometer. • I 15-13 APPLICATION NOTES FOUR-LAVER DIODE THYRISTOR DIODES +-r .020 '.002 t~=t:::I:::E ,0~4-tl.o"., 11 SEE NOTE r-- .2S!I t.035 .•• L ~ .096*.011 .020 *.002 TE...... L ~ I ~~w - .iSOIA . I '--1 ~.51DIA. .n_ L -U·025 OIl.. 1.2. NOTE; WITHIN THIS ZONE. DIAMETER NAY VARY TO ALLOW FOR LEAD FINISHES AND IRREGULARITIES. TOP HAT 00-7 00-7 PACKAGE Reverse TYPE lN3831 1N3832 1N3833 1N3834 1N3835 1N3836 1N3837 1N3838 Switching Voltage (Vs) (Volts) Halding Current Ub) 25"C -40 to B5"C 14-25 20 ± 4 25 ± 4 19-30 30 ± 4 23-36 35 ± 4 28-41 40 ± 4 32-46 37-51 45 ± 4 50 ± 4 41-57 100 + 10 80-115 25"C 0.5-15 0.5-15 0.5-15 0.5-15 0.5-15 0.5-15 0.5-15 0.5-15 Switching Voltage (VsJ (Volts) Holding Current (Ib) (Milliamps) (Milliamps) -40"C 40 max 40 max 40 max 40 max 40 max 40 max 40 max 40 max Breakdown 25"C 12v min 15v min 18v min 21v min 24v min 27v min 30v min 60v min Reverse TYPE 25°C -40 to 58°C 1N3839 1N3840 1N3841 1N3842 1N3843 1N3844 1N3845 1N3846 20 ± 4 25 ± 4 30 ± 4 35 ± 4 40 ± 4 45 ± 4 50 ± 4 100 ± 10 14-25 19-30 23-36 24-81 32-46 37-51 41-57 80-115 25"C 14-50 14-50 14-50 14-50 14-50 14-50 14-50 14-50 B5"C 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min Capaci- 4E20M-8 4E20M-28 4E30M-8 4E30M-28 4E40M-8 4E40M-Z8 4E50M-8 4E50M-28 4El00M-8 4El00M-Z8 4E200M-8 4E200M-28 Capacitance down (Typical) OV Bias 80 70 60 50 45 45 40 30 pI pI pI pI pI pI pI pI Switching Voltage (Ve) TYPE 80 pI 70 pI 60 pI 50 pI 45 pI 45 pI 40 pI 30 pI Break- 25"C 12v min 15v min 18v min 21v min 24v min Z7v min 30v min 60v min Mil-Line Series for extended temperature ranges tance (Typical) OV Bias 25"C -60 to l2S"C ZO ± 4 20 ± 4 30 ± 4 30 ± 4 40 ± 4 40 ± 4 50 ± 4 50 ± 4 100 ± 10 100 ± 10 200 ± ZO ZOO + 20 14-Z5 14-25 23-36 Z3-36 32-46 32-46 41-57 41-57 80-115 80-115 160-Z30 160-Z30 Holding Current (Ih) (rnA) 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 Series A (Broad Spec) Switching Voltaga (Ve) (Volts) TYPE 20 ± 6 30 ± 6 40± 6 50 + 6 4E20A 4E30A 4E40A 4E50A Holding Currant (Ib} (rnA) 0.5-60 0.5-60 0_5-60 0.5-60 Commercial Series (Volts) Holding Current (Ib) (rnA) 20 ± 4 ZO ± 4 30 ± 4 30 ± 4 40 ± 4 40 ± 4 50;!: 4 50 ± 4 100 ± 10 100 ± 10 ZOO ± 20 200 + 20 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-15 Switching TYPE mO-8 4EZO-28 4E30-8 4E30-28 4E40-8 4E40-28 4E50-8 4E50-28 4El00-8 4El00-28 4EZOO-8 4E200-Z8 Voltage (Vs) TOP-HAT PACKAGE-TYPE J TYPE 4J50-5 4J50-25 4J100-5 4Jl00-Z5 4J200-5 4JZOO-25 Switching Voltag. (V,} (Volts} Holding Currant IIh) 50 ± 5 50 ± 5 100 ± 10 100 ± 10 ZOO ± 20 200 ± 20 1-10 9-45 1-10 9-45 1-10 9-45 (rnA) Current Carrying Capacity: 300 rnA steady dc. Maximum peak current rating 20 amperes - dependent on duty lactor. repetition rale, pulse duralion, ,!'mbient temperature. 15-14 TYPE TAG Plastic Encapsulated Tantalum Capacitors TAG PLASTIC ENCAPSULATED TANTALUM CAPACITORS o ::.pR"';'." rf:= Tq • Extremely low leakage current • Small size - high component density • Reliability - long term stability L CASE SIZE 1-7; 0.72 ±0.20 ~ ~g • Outstanding performance over wide frequency range J • Wide temperature range CASE SIZE 1-70.016 DIA 8-150.020 DIA The extremely stable oxide' layer of TAG capacitors allows only a very small leakage current even after long storage. The solid electrolyte guarantees very stable electrical performance over wide temperature ranges and long time periods. TAG capacitors are finished in red epoxy and can be mounted in any position. Rugged construction allows installation in moderate environments experiencing moderate shock and vibration. RATINGS Capacitance ................. 0.1 to 680p.F Tolerance Range ...... +50 - 20 %, (±20 %) Voltage ...................... 3 to 50 volts Temperature Range .... Continuous operation between -55°C to +85°C Leakage Current .......... CXVXO.05 (p.A) or 2p.A, whichever is greater Dissipation Factor at 120 Hz and 25°C up to 100 p.F ............. less than 10% over 150p.F ............... less than 12 % Impedance ........ Nominally less than other electrolytic types, see table For further requirements see ITT data sheet on TAP CAPACITORS featuring the following ratings: Tolerance Range .......... ±20% (±10%, ±5%) Leakage Current .......... CXVXO.02 (p.A; or 1 p.A, whichever is greater Dissipation Factor at 120 Hz and 25°C up to 100 p.F .............. less than 6 % over 100 p.F . . . . . . . . . . . . . . .. less than 8 % UPPER EDGE OF PRINTED CIRCUIT . BOARD TABLE-OUTLINE DIMENSIONS Case Size Diameter D 3 4 5 6 7 8 9 10 11 12 13 14 15 0.16 0.18 0.20 0.20 0.22 0.24 0.26 0.33 0.37 0.37 0.39 0.41 0.41 0.43 . 0.43 (maximum in inches) Length L 0.28 0.28 0.31 0.33 0.35 0.37 0.39 0.45 0.53 0.55 0.55 0.59 0.63 0.65 0.67 . -Applies to capacitors w/l,,·p",lght.leads only. For TAGIS see drawing. 16- I Lead Space R" 0.11 0.11 0.12 0.12 0.12 0.12 0.14 0.22 0.22 0.22 0.22 0.24 0.24 0.24 0.24 TYPE TAG .Plastiq Encapsulated Tantalum Capacitors TABLE - .. u c to .. .... STANDARD RATINGS .!! -==1.&. ...:il "- to (.) 6.3 Volts 3Volls III to (.) Ii. Ii. .5 .5 .cto E 0 z II .!! . III II CD (.) == 0.1 0.15 0.22 0.33 0.47 0.68 Ii. .5 E z0 .. .5 .. ..c . Ii. .!! III (.) == 16Volls 10Volls Ii. .5 Ii. .5 .c E 0 z II Ii. .!! .5 Ii. .5 .c E to 0 z . .. III II to (.) == N Ci) (.) == Ii. .5 E 0 z r.o 1.5 2.2 3.3 4.7 6.8 10.0 15.0 22.0 33.0 47.0 68.0 100.0 150.0 220.0 330.0 470.0 680.0 1 1 2 3 4 5 6 7" 8 9 11 13 14 5.5 4.5 2 1.8 1.2 0.9 0.7 0.5 0.5 0.4 0.4 0.3 0.3 17 15.5 8.5 7.5 7 4.2 3.5 3 1.8 1.1 0.9 0.8 0.7 1 2 3 4 5 6 7 8 9 11 12 14 5.6 4 3 2 1.5 0.8 0.6 0.5 0.5 0.4 0.4 0.3 1 8 19 2 5 10.5 3 4 9.5 4 3 8.5 5 1.8 6 1 5 3.5 7 0.8 8 0.6 3 2.2 9 0.5 1:7 11 0.4 1.1 13 0.4 0.9 14 0.3 0.7 22 12 10.5 9.5 5.5 3.5 3.5 2.4 1.8 1.2 0.9 0.7 1 2 3 4 5 6 7 10 25 6.5 14.5 5 12 3.5 7.5 2.5 6.5 1.5 4 1 3.5 10 11 13 15 0.6 0.5 0.4 0.3 7 8 9 1.9 11 1.3 12 1 .14 0.8 1.5 1 0.8 0.7 0.6 0.5 "Case slleS In bold type are factory stocked Items. Sample quantities are availabla In most case CATALOG ORDERING INFORMATION JJ (1)T:::I:mN F[J20 4.7/35-50 Performed Leads Ii. ... N Ii. Ii. .. N .5 .5 . . zE ..c . .5 .c Ci) II to (.) Ci) II 0 CD (.) == == 112 2 9 3 6.5 4 4.5 E 3 6 2 4 8 1.7 3 9 1.2 2.2 10 0.8 1.5 12 0.7 1.2 13 0.6 0.9 25 17 14.5 10 6 6.0 3.5 2.5 2.0 1.4 1.1 35 Volls Ii. .5 E 0 z 1 165 1 110 1 75 1 51 1 37 1 27 1 18 2 13 3 90 4 6 5 4 6 3 7 2.5 9 1.2 11 1 12 0.8 14 0.6 . .5 .. ..c . Ii. == 310 50Volls .!! Ii. III .5 (.) ~ 1 200 1 150 1 105 2 68 2 53 3 34 4 .25 5 17 6 12 7 8 8 6 9 5.5 11 3 2.2 1.7 . 1.2 Ii. E .5 .c CD 170 105 80 50 32 25 16 13 8 6.2 3.5 2.2 1.8 310 180 130 85 60 45 32 23 15 11 7 4.5 3.5 == SlZ88, Environment & Mechanical Properties HUMIDITY-Capacitors are tested after exposure to a maximum humidity of 95 % at 40·C for 21 days with no voltage applied. LEAD STRENGTH-Leads are capable of withstanding a pull of 1 po.und for 10 seconds and can tolerate two 90 degree bends without failure. Lead Spacing .2 In. Capacitance 4.7 p.F 35 Volts - - ' - - - - - - - - ' Tolerance +5 -20% - - - - - - - ' (2) Optional Features on Special Order A. Preformed 0.25" leads, model number codeu 25." Flexible leads, mod~ el number code "00." B. Capacitance tolerance of ±20 %. C. Numerical Stamping. (3) Minimum Packaging Quantity units. 25 Volts 20 Volts .. .... 100 MOUNTING & SOLDERING-TAG tapacitors can be dip~soldered with a maximum bath temperature of 270·C. Acid flux is not suitable and can damage the units. Soldering time sho.':Ild no~ exceed 3 seconds and the cases of tne- -units should not be dipped to closer than Va" of the bath surface. When bending leads, no stress should be applied to the case. Avoid mounting adjacent to heat radiating components. 16-2 TYPE TAG Plastic Encapsulated Tantalum Capacitors Definitions and Ratings Protective Circuit Resistance Value measured at The failure rate of TAG capacitors will be A = 4,2 X 16 -u h -1 at 3 Ohm/voltage circuit resistance 85°C and rated voltage CAPACITANCE TOLERANCE Variation of actual value from nominal rated value in per cent (%). Any lower resistance will increase the failure rate. RATED CAPACITANCE 60 cycles and +25°C. RATED DC VOLTAGE - Listed rating in volts DC at a surface temperature of +40°C. CONTINUOUS MAXIMUM VOLTAGE-Highest DC voltage which can be applied to capacitor. Max voltage equals rated voltage up to +85°C ambient temperature. SURGE VOLTAGE-Maximum voltage to which capaCitor may be subjected 5 times per hour for one minute. Maximum value is 1.15 times the rated voltage. Capacitors should not be used in electrical circuits where the capacitor is regularly charged and discharged to the peak of the surge voltage. REVERSE VOLTAGE-Not to exceed 0.5 Reverse voltage higher than this limit can be handled by connecting 2 capacitors in antiseries (bipolar capacitor); Resulting capacitors will be of same voltage, but half capacity of single unit. AC RIPPLE VOLTAGE-Sum of superimposed peak AC voltage and DC voltage must not exceed rated voltage. See figures 3, 6 and 9. LEAKAGE CURRENT· Current measured throug h a 1,000n resistor with rated voltage applied for 3 minutes at +25°C. This current does not exceed 0.05 times capacitance (p.F) times rated voltage (volts), or 2 p.A, whichever is greater. At +85°C, typical leakage current is less than 10 times the value at +25°C. See figure 4. IMPEDANCE-Measured at 10KHz and 25°C. See figure 8. This can be compensated by voltage derating. See figures 12, 13, and 14. Operational Reliability The reliability is measured by the reject rate, = FR m nXh = where m number of rejects. n X h = components X hours. The reject rate increases with applied voltage VB and ambient temperature and falls with increased circuit resistance R•. As a result of comprehensive life-tests the reject rate has and Rs. been determined as a function of VB, The reject rate for catastrophic failures for the particular case can be determined from Fig. 12 to 14 as follows: 1. Determine the reject rate of FR" as a function of the applied voltage from Fig. 12 with = +85°C and Rs = 3nN. 2. Multiply FR" with the corresponding factor from Fig. 13 for the actual ambient temperature to obtain the reject rate FR'. 3. Determine the final reject rate FR as a function of the circuit resistance by multiplying FR' with the corresponding correction factor obtained from Fig. 13 (ambient temperature as parameter). EXAMPLE: Determination of F for VB = SOOA, llU = 125'C RS = InN FR" = 2.8 • 10- 7 • h- I FA Variation of tanll with temperature is shown in figure 10. 16 -3 (from Fig. 12) h- I (from Fig. 13) Fe" = 2.8.10- 7 .9.2.8. h- ' FR DISSIPATION FACTOR-(tangent of loss angle:, tanll) defined by tanll =2".fRC, is measured at a frequency of 120 Hz, at room temperature; 25°C. = 2.8· 10- 7 .9. .= 7.06 x 10- 6 h- 1 (from Fig. 14) TYPE TAG Plastic Encapsulated Tantalum Capacitors .I +10 CASE SIZE 15 ~ I ASE IZE ~ "''" 1111 11I1 11I1 ......., i ~ +5 ::i il CASE "- i'SifE ""- 9. ~ ~ '\ -i3 .,. I ~ I 0 Z ;! > ~ U "<1 ~ 100 IT ~ -. -SS-40 -20 0 +20 +40 +60 + 80 roo CASE SIZE 5 90 85 10" -- / V 3 / / 10' I 0.8 I I " I "''" !} ~ 0 > 1 ~ 0 .8 'r , 0.' IDI z 1 ~!!- 0.2 , , V- I 0.1 10·' -SS-40 -20 0 +20 +40 +60 +100 TEMPERATURE - CENTIGRADE - - - Figure 4 o.oe I., >~ V V 1 Figure 3 • I-t-:: , , '10' Figure 2 , ~; , , , 10' FREQUENCY- KHz Figure 1 10' , , , TEMPERATURE _·C - - 0 "'~ V ~ ! 04 OB vl2 OPERATIONAL YOL.TAGE ~ - 10 I , , 10' III CASE SIZE 6-10 I- . j-j:! , , 'OV ~ i 10' 10V 10·'2 ,3 ~'IOO 2 I "''" ~ ~ > "' il: ~ -ir1. ,== , .. ,- ~ rei ~ 7 3 _. - 10' ', -Ff _. -, <,"V ) 2. V ~I 20V "' '~ ~ 10 , , "'~" , , c-- - CASE SIZE 11-15 10;~ ~ c .,"' 10V --- .j... 10V I 10"' 10" 16-4 2 Figure 6 ;1 Figure 8 ~ 7 3 l\ 10' FREQUENCY' - KHz >~ Figure 7 ~ IO~ IIII~~~ 10,== FREOUENCY- t / 1m ~SIZE •• ~ I ~ Iii 20 , f- II Figure 11 ·, 10',: 1,[ 11'1 FREQUEHCY- KHI - Figure 10 10- 4 ~ II, IIIIIL J- ~ TEMPERATURE--C I. , ill:' .... i -!S~·40 I ,i ! 0 '" I--' 1,Ii ~ I I! I i 'I 0.03 ~ 0.04 SIZE I I c.oe I CASE , 1i:!\ i I . o i , , , 0.01 , SIZE I I 1 0.06 '"I .J..- CAS£ 1111' , II 0.07 SIZE I--' .... ~ 0.03 0.08 V C1SEI I - 1 2 . ~·3.n/V 6• . TEMPERATURE ·C 100 ~ Fig. 13 vs Ambient Temperature 16 - 5 +12 I "\ \ \ 0.1 0.2 0.3 0.4 0.60.8 I CIRCUIT RESISTANCE n l v - Fig. 14 vs Circuit Resistance 2 - TYPE TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS MINIATURE TYPE SOLID-ELECTROLYTE ITT - - - - SEMICONDUCTORS TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS • Small size - high component density ~L • Reliability - long term stability '~==:-.1]R • Extremely low leakage current ~I· ~ • Outstanding performance over wide frequency range qCASESIZE 1-3; 0.72 ±0,20 4-6; 0,8 ±0,20 ''''',,] • Wide temperature range 1-4 0.D16 DIA 5-60,020 DIA The extremely stable oxide layer of TAP capacitors allows only a very small leakage current even after long storage. The solid electrolyte guarantees very stable electrical performance over wide temperature ranges and long time periods. TAP capacitors are finished in red epoxy and can be mounted in any position. Rugged construction allows installation in moderate environments experiencing moderate shock and vibration. CATALOG ORDERING INFORMATION (1) J ~~f:~~;';~~} rT~~ UPPER EDGE OF PRINTED CIRCUIT BOARD TABLE - OUTLINE DIMENSIONS (maximum in inches) Case Size Diameter D Length L Lead Space R* Capacitance 4.7 MF 35 Volts - - - - - - - - - ' Tolerance ±20"!o - - - - - - - ' (2) Optional Features on Special Order A. Preformed 0.25" leads, number code "25." model B. Capacitance tolerance of ±10"!o or ±5"!o. (3) Minimum Packaging Quantity units. 100 1 0.18 0.28' 0.10 2 0.20 0.30 0.10 3 0.26 0.36 0.10 4 0.34 0.40 0.10 5 0.40 0.56 0.20 6 0.44 0.68 0.20 * Applies to capacitors w/straight leads only. For, TAG/S see drawing. Information furnished by ITT is believed to be accu rate and reliable. However, no responsibility is assumed by ITT for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of ITT_ 16 - 6 TYPE TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS MINIATURE TYPE SOLID-ELECTROLYTE TABLE - .. .. u c ell .~ U- u STANDARD RATINGS ~ ell "CCell U 0.1 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 10.0 15.0 22.0 33.0 47.0 68.0 100.0 150.0 220.0 330.0 470.0 680.0 .!::! rn Ol UI ell U 6.3 Volts 3 Volts Ii ..§ Ii ..§ E ell 0 z ::E " .. .. N iii UI ell u Ii ..§ 10 Volts Ii ..§ E ell 0 z ::E " .. N .. Ii iii ..§ UI ell u 16 Volts Ii ..§ E III 0 z ::E " .. .. N iii UI ell u Ii Ii ..§ ..§ E ell 0 z ::E " 1 12 1 10 1 1 2 2 6 18 5.5 16 4.5 12.5 2 8.5 1 8 20 2 4 10 3 3 3 3 4 4 1.2 0.9 0.7 0.5 5 5 6 6 0.4 0.4 0.3 0.3 5.5 3.6 4 2.5 2.0 5 0.9 0.8 6 0.7 0.6 1.5 4.0 0.6 2.0 4 0.4 0.9 0.3 0.7 0.8 3 2.5 5.0 4 1 2.5 5 5 6 6 0.6 0.5 0.4 0.3 1.5 1.1 0.9 0.8 4.5 2.2 5 0.4 1.0 6 0.3 0.8 N UI ell u Ii ..§ Ii ..§ E ell 0 z ::E " 1 19 30 2 9 15 3 3 4.5 3 7.5 5.5 4 1.7 2.8 5 0.8 1.8 6 0.6 1.0 6.5 13.5 5 12 1.8 .. .. iii 25 22 2 2 25 Volts .. .. N iii UI to u 35 Volts Ii Ii .. N ..§ ..§ iii E 0 z ::E " u to 1 165 170 1 110 180 1 75 130 1 51 85 1 37 58 1 27 40 2 18 28 2 13 20 3 90 13 3 6 10 4 4 7 4 3 4.5 4 2.5 3.2 5 1.2 2.5 2.0 5 1 0.8 6 1.6 6 0.6 1.2 .. UI ell 50 Volts Ii Ii ..§ ..§ E 0 z ::E " to 1 170 270 1 105 280 1 80 130 1 50 85 2 32 55, 2 25 38 3 16 26 3 13 18 4 8 12 4 6.2 9 5 3.5 6.5 6 2.2 4.2 6 3.0 1.8 NOTE: Sample quantities are available in most case sizes. RATINGS Capacitance ................. 0.1 to 680 p.F Tolerance Range .... +20% (±10%, ±5%) Voltage ...................... 3 to 50 volts Temperature Range .... Continuous operation between ~55°C to +85°C Leakage Current .......... CXVXO.02 (p.A) or 1 p.A, whichever is greater Dissipation Factor ...... at 120 Hz and 25°C up to 100p.F less than 6 % over 100 p.F less than 8 % Impedance ...... Nominally less than other electrolytic types, see table For standard requirements see ITT data sheet on TAG CAPACITORS featuring the following ratings: Tolerance Range ...... +50 -20% (±20%) Leakage Current .......... C X V X 0.05 (p.A) or 2 p.A, whichever is greater Dissipation Factor ...... at 120 Hz and 25°C up to 150 p.F less than 10% over 150 p.F less than 12 % Environment & Mechanical Properties HUMIDITY-Capacitors are tested after exposure to a maximum humidity of 95 % at 40°C for 21 days with no voltage applied. LEAD STRENGTH-Leads. are capable of withstanding a pull of 1 pound for 10 seconds and can tolerate two 90 degree bends without failure. MOUNTING & SOLDERING-TAG capacitors can be dip-soldered with a maximum bath temperature of 270°C. Acid flux is not suitable and can damage the units. Soldering time should not exceed 3 seconds and the cases of the units should not be dipped to closer than ,/," of the bath surface. When bending leads, no stress should be applied to the case. Avoid mounting adjacent to heat radiating components. 16 -7 TYPE TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS MINIATURE TYPE SOLID-ELECTROLYTE Definitions and Ratings RATED CAPACITANCE 60 cycles and +25°C. Value measured at CAPACITANCE TOLERANCE Variation of actual value from nominal rated value in per cent (%). RATED DC VOLTAGE - Listed rating in volts DC at a surface temperature of +40°C. CONTINUOUS MAXIMUM VOLTAGE-Highest DC voltage which can be applied to capacitor. Max voltage equals rated voltage up to +85°C ambient temperature. SURGE VOLTAGE-Maximum voltage to which capacitor may be subjected 5 times per hour for one minute. Maximum value is 1.15 times the rated voltage. Capacitors should not be used in electrical circuits where the capacitor is regularly charged and discharged to the peak of the surge voltage. REVERSE VOLTAGE-Not to exceed 0.5 Reverse voltage higher than this limit can be handled by connecting 2 capacitors in antiseries (bipolar capacitor). Resulting capacitors will be of same voltage, but half capacity of single unit. AC RIPPLE VOLTAGE-Sum of superimposed peak AC voltage and DC voltage must not exceed rated voltage. See figures 3, 6 and 9. LEAKAGE CURRENT --'- Current measured through a 1,000n resistor with rated voltage applied for 3 minutes at +25°C. This current does not exceed 0.02 times capacitance (,u.F) times rated voltage (volts), or 1 JJ.A, whichever is greater. At +85°C, typical leakage current is less than 10 times the value at +25°C. See figure 4. IMPEDANCE-Measured at 10KHz and 25°C. See figure 8. DISSIPATION FACTOR-(tangent of loss angle:, defined by tan {l =2'lTfRC, is measured at a frequency of 120 Hz, at room temperature, 25°C. tant~) Variation of tan,'j with temperature is shown in figure 10. Protective Circuit Resistance The failure rate of TAP capacitors will be 70.=1 x 10- 0 h-l at 3 Ohm/voltage circuit resistance 65°C arid rated voltage Any lower resistance will increase the failure rate. This can be compensated by voltage derating. See figures 12, 13, and 14. CHARACTERISTIC CURVES "0 CASE SIZE • + r' ~ SIZE 100 iT I CASE SIZE I "- I •• ~ CASE SIZE m z ~5 0 • 90 ! -. :i -SIS -40 -20 0 +20 +40 +60 +BOtIOO TEMPERATURE--C - Figure 1 •• 10"' , , , , 10' , , . '10 FREQUENCY - KHz - - Figure 2 16- 8 Figure 3 TYPE TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS MINIATURE TYPE SOLID-ELECTROLYTE CHARACTERISTIC CURVES (continued) ':~ , , 1 I .l-j-, I I ; , I ~ ~ ~I -10 ~ - ~+'~: I' I I • • ' I ! ! ! I I I I 0 ! I I iff r-1T -M- i ! I 10" -~S-40 i I -20 ! 0 I :t -- +20 +40 +60 TENPERATUREJC +100 I ~ 1\g 10.0 0.2 V 0.1 10' , , CASE SIZE 10' 4-' , ~ , / 0.' ;1; ! ! ~ >~ V I 0.0 t i '. 0 / ~ , , I 'OV '"VI I 23V 0; ~ / ~ 10:~ 16V , i 2H iill~v , IOV 6.3V 0.05 0.4 0,8 V l2 OPERATIONAL VOLTAGE ~ - 10-' 2 3 ~ 7100 2 3 ~ 7 10' 2 3 5 7 102 ..0 Figure 6 I 10' H 0 ~ f ,-- tl ~ ~ ~ ~ ~ 0; ~ ._,-+ - I --jot ~ CASE 10' S~ZE!_ , , =+-1= <' ,"V ',,- i ,+ -l 3V 0' 10° 16V 100rm_1I I 6.3V ,- j+v 10' 10 10·' , II , ~ '" 1 100 , , 5 , FREQUENCY- KHz FREQUENCY - KHz - - ,+ ~ ,M- -- 10' 10' Figure 9 Figure 8 o.os ;i 10V ~ Figure 7 10' FREQUENCY - KHz - - Figure 5 Figure 4 1\ I 16' 0 0.05 CASE SIZE 0 10.04 CASE ]J; 1 i-' 0.03 0.03 ,/ 1--.- ~- r-- ---- 1.1. i-' SIZE I 0.02 0.01 1--- -20 0 +20 +40 +60 +100 TEMPERATURE _·C - - Figure 10 0 I-10-' CASE SIZE I , .. V 7 ,/ 0 -5e-40 ,II 0.02 / ~ 0.01 .. 0 . 04 ,I .- , , 10° FREQUENCY - KHz Figure 11 16-9 , -- m 10' 10·71~~~~~~~_~ ~ so 40 60 100 OPERATING VOLTAGE· ~ % - Fig. 12 Reject Rate vs Applied Voltage 120 TYPE TAP PLASTIC ENCAPSULATED TANTALUM CAPACITORS MINIATURE TYPE SOLID-ELECTROLYTE CHARACTERISTIC CURVES (continued) .0 ," , e .. 1 '0' 1 g • / ~ ~ z 0 ~ ~ § -C 0.1 - The reliability is measured by the reject rate. =m nXh where m =:; number of rejects. n X h ponents X hours. = com- The reject rate increases with applied voltage Vn and ambient temperature il u ' and falls with increased circuit resistance R,. As a result of comprehensive life-tests the reject rate has been determined as a function of Vn. il u and Rs. The reject rate for catastrophic failures for the particular case can be determined from Fig. 12 to 14 as follows: = 125°C RS = 1nIV 0.:5 0.4 0.80.8 I • 1. Determine the reject rate of FR" as a function of the applied voltage from Fig. 12 with ilu +85°C and Rs = 3nN. = 2. Multiply FR" with the corresponding factor from Fig. 13 for the actual ambient temperature to obtain the reject rate FR'. 3. Determine the final reject rate FR as a function of the circuit resistance by multiplying FR' with the corresponding correction factor obtained from Fig. 13 (ambient temperature as parameter). EXAMPLE: Determination of F for F " = 6.2.10- 8 • h-' 3U 0.' Fig. 14 vs Circuit Resistance Operational Reliability VB = 50% \ CIRCUIT RESISTANCE £l/V - Fig. 13 vs Ambient Temperature FR • • • , IOl2Sb-l----.J" ••......L-,J ••=-"--.. ,l,-J-l.,o•......L.,d •• TEMPERATURE • • R F' R F' R = 6.2.10- 8 .9. h- 1 - FR = 7.56 x 70- 6 • h- 1 (from Fig. 12) = 6.2.10- 8 .9.2.8. h-' 16-10 (from Fig. 13) (from Fig. 14) ITT ----- TYPE TAM Plastic Encapsulated Tantalum Capacitors SEMICONDUCTORS TAM PLASTIC ENCAPSULATED TANTALUM CAPACITORS • Sub-Miniature size-high component density RATINGS Capacitance .............. 0.015p,F to 6.8~F Tolerance Range .................. ±20 % Voltage ..................... 3 to 35 volts Temperature Range ... Continuous operation between -55°C to +85°C Leakage Current ................ 1p,A, Max. Dissipation Factor ...... at 120 Hz and 25 ° C 10% Max. Impedance ........ Nominally less than other electrolytic types Fixed Capacitor. Tantalum Electrolytic. Solid Electrolyte: Porous Anode: Polar: Resin Dipped: The extremely stable oxide layer of TAM capacitors allows only a very small leakage current even after long storage. The solid electrolyte guarantees very stable electrical performance over wide temperature ranges and long time periods. Radial Terminations. General Application. TAM capacitors are finished in epoxy and can be mounted in any position. Rugged construction allows installation in moderate environments experiencing moderate. shock and vibration. 1. Manufacturing dimensions are in millimetres. 2. Length of terminations (L,) 15mm (0.6in.) minimum. 3. Marking for polarity shall be indicated, as shown, by the position of the coloured spot relative to the positive terminal. TYPE TAM CATALOG ORDERING INFORMATION (1) Model No. TAM - - TantalumT Capacitance 4.7 p,F 31 - 4.7/35 - 4. The complete capacitance/rated range is given in Table 1. ~~ 5. The t61erance on the wire diameter is + 10 % -0.05mm (0.002in.). 6. The maximum length of resin along the terminal wires is 1.5mm (0.055in.) and is contained within the maximum body length L,. 35 Volts - - - - - - - - - - ' Tolerance ±20 %- - - - - - - - - ' Table Case Size X Y voltage Outline Dimensions L, mm Max. in. D, mm Max. in. D' mm 4.5 5.0 0.18 0.20 2.5 2.5 0.10 0.10 0.35 0.35 Nom. in. 0.014 0.014 16 - 11 Capacitance Range and Rated Voltage Range 3.3p,F 3V to 0.Q15~F 35V 3V to 0.68p,F 35V 6.8~F Typical Weight (g) 0.064 0.073 TYPE TAM Plastic Encapsulated Tantalum Capacitors Factor 0.5 0.1 0.02 Frequency 1 kHz 10 kHz 100 kHz These conditions apply at all temperatures up to 85°C. Ripple voltage ratings at higher frequencies are obtained by multiplying the above 100 Hz values by the following factors:TYPICAL PERFORMANCE Fig. 1-Variation of Capacitance with temperature (referred to 20°C) Fig. 2-Variation of Power Factor with temperature (measured at 120Hz with maximum working voltage applied). 5 10 ~ 8 III 6 :!i'" G2 ~ 0 z ~ -2 ~ -4 Q, 4 ~~ 4 i,,::::: P"" .... -- :.- -- - II: ~ 3 o I-. ~ 1:::=== P"" 2 II: III 3: o f- f- -8 -10 -60 o -40 -20 0 20 TEMPERATURE 40 60 80 100 '" -- I Q, '" o -6 -60 -40 -20 °c o 20 40 TEMPERATURE 60 80 100 °c Fig. 4-Variation of Impedance with Frequency. 1000 r'\. Fig; 3-Variation of leakage current with temperature (measured at maximum working voltage after 3 minutes). 100 d 10 ~ z ~ r'\. 10 r--- Q, ! 1,0 ./ V 0, I / I 100 V /' / / ", /' / / 10- 3 -60 -40 /' /' -20 0 /' /' 20 40 TEMPERATURE OC 10k lOOk 1M 10M FREQUENCY Hz 1/ / Ik 60 80 100 APPLICATION NOTES These capacitors are suitable for coupling and decoupling and general applications in electronic circuits. The reliability of these capacitors depends on circuit impedance. In very low impedance (a.g. less than 3nJV) circuits, such as power supplies, particular care is necessary to ensure that the surge voltage rating is not exceeded. The main mode of failure is high leakage current or short circuit. 16-12 TYPE TAM Plastic Encapsulated Tantalum Capacitors TABLE STANDARD RATINGS (letter denotes Case Size Code) Capacilance }.LF 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 3V Case Size 16V 6.3V 10V 25V 35V X X X X X X X X X X X X X X X Y Y LEAD STRENGTH-Leads are capable of withstanding a pull of .12 oz for 10 seconds and can tolerate three 90 degree bends without failure. MOUNTING & SOLDERING-TAM capacitors can be dip-soldered with a maximum bath temperature of 270°C. Acid flux is not suitable and can damage the units. Soldering time should not exceed 3 seconds and the cases of the units should not be dipped to closer than '/." of the bath su rface·. When bending leads, no stress should be applied to the case. Avoid mounting adjacent to heat radiating components. Protective Circuit Resistance Y Y The failure rate of TAM capacitors will be A 4.2 X 16-" h-, at 3 Ohm/voltage circuit resistance 85°C and rated voltage = Y Y Any lower resistance will increase the failure rate. This can be compensated by voltage derating. Y Definitions and Ratings Table 2-Ripple Voltage Ratings (r.m.s.) Working Voltage 3 6.3 10 16 25 35V d.c. Surge Voltage 3.5 7 12 13 30 40V d.c. Maximum Reverse 0.3 0.5 0.5 0.5 0.5 0.5V d.c. Voltage AC RIPPLE VOLTAGE-Table 2 gives the maximum r.m.s. ripple voltage which may be applied at 100 Hz. The sum of the D.C. voltage and the peak value of the superimposed alternating voltage must not exceed the normal rated voltage and no inadmissible reverse polarity must occur. LEAKAGE CURRENT-Maximum Leakage Current I}.LF (after 3 minutes at rated voltage with 1,000 n series resistance). . IMPEDANCE-Measured at 10 KHz and 25°C. DISSIPATION FACTOR-(tangent of loss angle:, 2-fRC, is measured tan defined by tan at a frequency of 120 Hz at room temperature, 25°C. Dissipation Factor is 10% Max. = Variation of tan Figure 2. Environment & Mechanical Properties HUMIDITY - Capacitors are tested after exposure to a maximum humidity of 95 % at 40°C for 21 days with no voltage applied. with temperature is shown in Capacitance }.LF 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 16 -13 3 6.3 Rated Voltage D.G. 10 16 25 35 10 10 10 10 10 10 10 10 10 7.1 4.3 2.8 1.7 0.9 0.9 0.9 0.9 4.3 2.8 1.7 10 5.7 TYPE TAM Plastic Encapsulated Tantalum Capacitors Capacitance in p.F Colour Black Brown Red Orange Yellow Green Blue Violet Grey White D.C. Working Voltage 1st 2nd Polarity & Ring Ring Multiplier Colour Volts 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 7 8 9 White Yellow Black Green Grey Pink 3 6.3 10 16 25 35 1st 2nd RING RING POLARITY VOLTAGE a MULTIPLIER Example _BLUE 6} ·6.8,uF/3 volts XO.001 XO.01 XO.1 _GREY 8 \----~ N.B.-The above sketch shows the position of the coloured spot which serves both as multiplier and anode indicator. 16-14 WHITE 0.1 6.8JJF -I mm PACKAGE DIMENSIONS ~~--------- SEMICONDUCTORS Dual In-Line Plastic Package TO-116 ~ ORDERING CODE FOR 930 DTL, 9000 TTL, 9300 TTL, 950 CTL AND LINEAR CIRCUITS '"n ,nmm Operating Temperature Range (add) -1 for -55 to + 125°C -5 for 0 to + 70° C + 75°C for digital J:--~:o\ \'--15°TYP. 200 MAX. . ,..:,I~ r-020 MIN. ~::r- Package (add) B for Flat Pack C for TO-5 Style D for Ceramic Dual In-Line P for Plastic Dual In-Line T Example: ITT709A-1 D is -55 to -f125°C Range in Dual In-Line Package m I" .375 NOM. , I 14 .745 .760 ~lli~ 8 f...- .245_..J .2601 14-Lead Ceramic Dual-In-Line 14-Lead Plastic Power Dual-In-Line ~ I~I ~ 200 MAX . .020 MIN. ""';0 n I iI E .375 NOM. ~ "-'''" I J~---: =:0 \ \'--15°TYP. I" Jl' .020±.002 ~.--r'---1 .760 T--r'---1 U' .375 NOM. r-r~ .745 .760 f...- .245 ---.J .2601 17-1 I 14 ~lli~ !------! 280 ~I .250 I... , 8 PACKAGE DIMENSIONS 16-Lead Ceramic Dual-In-Line 18-Lead Ceramic Dual-In-Line .~~~ ~ I; o,,_~ .009+-:-~ I .125 i MAX .110 .375 NOM .' .< I ~TI 'c ---- --~-- I I ~ I ------- .090 _ _.r--, n, .785 L .....-.--" t .. ___ --0, .023-_ _ -', MAX. =::::::::;::::;JI !-I<-:orn:~>1 .250 -;.1 f-.020MIN. NOTES: All dimensions in inches. Leads are intended for insertion in hole rows on .300' centers. They' are purposely shipped with "positive" misalignment to facilitate insertion. 18-Lead Plastic Dual-In-Line 16-Lead Plastic Dual-In-Line I; .ii~ 'I ''''''~t_cccc, .009. .011 • / .375 .. NOM .1 .050., ~_ _ TYP .• .._ _ _--' .·~~~l ~~---, L _ _.---, ,------' .020 _ _~ , TVP--_-' '17~ PACKAGE DIMENSIONS 24 -Lead Ceramic Dual-In-Line 24 -Lead Plastic Dual-In-Line I" .020 .560 .550 ·1 ~JX~1 8 MIN. L 1----.600-----1 I Ii' .020L TYP.T 1.250 TYP. ~'~~~~.J 150 TYR Mini DIP a-Lead Plastic Package IMIN' I -1 0. 02 1-- I MAX. L - j 0.20 I 0.067 [MAX. T~'I MAX .433 1 17-3 ~'2 "------.J.J PACKAGE DIMENSIONS DIMENSIONS - FLAT PACK 1/4 X 3/16" 14 LEAD 1/4 X 1/4" 10 LEAD ---: ;---.0101.016 IruIUull.t.~t~ T t ~ i_ : .: : - - ..... I TOl6/020 : I ...' _ .045/,055 -----i ~.Q20/.Q30 1,0035/.0060 NOTES: I. PACKAGE WEIGHT: 26GRAMS 1/4 X 3/8" 16 LEAD 1/4 X 1/4" 14 LEAD I' f= I 250 MIN. f 1!4 300 I 11 718 .240 .260 I !I 1. 'I k .L..-~==..= L: 050TYP L004~C==:JI..£*·06=5=MA=X. T I~ 240 MIN 260MAX .0050 .0035 IT 17-4 PACKAGE DIMENSIONS DIMENSIONS - DIODES . DOUBLE PLUG DIODE STANDARD MECHANICAL DATA Case: Hermetically sealed glass Finish: All external surfaces corrosion --.L.062 020 .rl-= r===('-_---"i)---d~ ~I ... :I~ ~I resistant and leads readily solderable Leads: Dumet, tin plated Weight: 0.135 grams (approx.) Mounting Position: Any Marking: Diodes carry ITT identification, l..!-1.00 MIN. 160 MAX. 00-35 and are EIA Color Coded. Bands 1, 2, 3 and 4 on the illustration above indicate the first, second, third and fourth digit respectively of the type designation starting from the cathode, end of the diode. Black o Green .5 Brown ... 1 Blue ... 6 Red Violet 2 ... 7 Orange 3 Gray ... 8 Yellow White .4 .9 .022 018 .110 ,..--_ _ _---., --.L MAX. ", - ~I..[i'--~. L.!-1.00 MIN. .290 .250 00-7 EPOXY PACKAGE Lead-Material Silver Plated Copper 00·29. 17-5 )I---r. 1.00 _.". MIN. ~i PACKAGE DIMENSIONS PHYSICAL DIMENSIONS 1-,.195 --.J .gl::180-1~05 .020 =fi190 MAXL .- ,/ (f .019/ 3 LE~gS (f .500 MIN (f U Us U_ _ 90 0 - .200 LEAD CIRCLE 033 TO-18 TO-5 1. 195 -0.-< .180 020 MAX ~ ~ ,115 11 11 IT 019 3 LEADS I ~-------+--4.150 r .016 .230 I -1~00 'LMIN / ..... 6 90 0 / C .225 ·210 .100 LEAD CIRCLE TO-52 0 .209 .335 *t~:J, .230 .370 175 .195 T -+.030 .040 .170 .210 .165 .m5 8LEAg~, a~ ~ ~ ~ '~J~ 8LE!:! ~ ~ ~ ~ ~~l~ SEATING PLANE TO-71 TO-78 TO-77 R-131c ALL DIMENSIONS IN INCHES. LEADS ARE GOLD-PLATED KOVAR. NOTE: DIMENSIONS AS PER LATEST JS-IO COMMITTEE. 17-6 PACKAGE DIMENSIONS TO-92 PACKAGE DIMENSIONS R.-r TO.100~;~ .335 f-'~~;--j '. .305 I I Ii ~~In'~f -r- 5m ~9L~~~S .016 . Imnn nnnn IWUU UUlllL I DIA. T"t- - .210 '~~ .500 MIN. t_ .500 MIN. ~ 00 SEATING PLANE ~~3 .019 LEADS .016 DIA . •055 .045 TP. NOTES: LEADS ARE GOLD-PLATED KOVAR PACKAGE WEIGHT IS 1.32 GRAMS TO·99 .370 .335-~ 1-.335 -----..1 I .305 I SEATING PLANE '~1~~r"85 -.L .165 T 8 LEADS-oO ..016 019 .040 M:.:.:,;Ac..:X .:-,,-.-+---l~ t 0onU .500 * MIN . NOTE-ON SPECIAL ORDER ITT Semiconductors will provide TO-18, TO-46 and TO-52 units with formed leads to the requirements of the TO-S package. In addition' disc insulators on the above devices are also available by special order. NOTE: DIMENSIONS AS PER LATEST J'S-IO COMMITTEE. ALL DIMENSIONS IN INCHES. LEADS ARE GOLD-PLATED KOVAR. PACKAGE WEIGHT IS 1.12 GRAMS. 17-7 For Price and Delivery Information Call 'Your Local ITT Office ARIZONA MINNESOTA ITT Semiconductors Suite 209B 201 East Southern Tempe , Arizona 85282 Telephone: 602-277-8166 ITT Semiconductors Office 140 4510 West 77th Street Minneapolis , Minnesota 55435 Telephone: 612-920-2943 Telex : 029-0105 CALIFORNIA ITT Semiconductors 1121 San Antonio Road Palo Alto , California 94303 Telephone : 415-961-5265 Tele x: 0348-450 ITT Semiconductors Suite 540 11222 La Cienega Boulevard I ng lewood, Cal iforn ia 90304 Telephone: 213-649-4644 Telex : 653-552 ILLINOIS ITT Semiconductors Suite 709 8550 West Bryn Mawr • Chicago , Illinois 60631 Telephone: 312-693-7070 Telex: 025-4409 TWX : 910-253-4905 NEW YORK ITT Semiconductors Suite 3003 333 North Broadway Jericho , Long Island , New York 11753 Telephone: 516-938-1191/2 Telex : 0961-416 ITT Semiconductors 7000 East Genesse Street Fayetteville , New York 13066 Telephone: 315-445-0560 Telex: 093-7357 PENNSYLVANIA ITT Semiconductors 676 East Swedesford Road Wayne , Pennsylvania 19087 Telephone : 215-688-6990/1/2/3 Telex: 084-6351 TEXAS MASSACHUSETTS ITT Semiconductors ITT Semiconductors Suite 19 594 Marrett Road Lexington , Mass. 02173 Telephone: 617-861-0880 Telex : 092-3470 2995 LBJ Freeway Suite 204 Dallas ,Texas 75234 Telephone: 214-243-6631 MICHIGAN ITT Semiconductors 23629 Liberty Street Suite 104 Farmington , Michigan 48024 Telephone: 313-477-6060 Telex: 023-5353 CANADA ITT Semiconductors Unit 2 1855 Dundas Street Mississauga , Ontario , Canada Telephone: 416-625-9022 Telex : 0696-1313 semiconductors TT ITT SE M ICONDUC TORS IS A DIVISION OF INTERN ATIONAL TELEPHONE AND TELEGRAPH C O RPORAT ION. 3301 ELECTRON ICS WA Y, WEST PALM BEACH . FLORI DA 33407, (305) 842·2411 FACTORIES IN FLOR IDA· MAS SACHUSE TT S · ENGLAND· FR A N CE · GE RMANY· PORTUGAL· AUSTRALIA


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:05 13:22:58-08:00
Modify Date                     : 2013:08:05 19:28:29-07:00
Metadata Date                   : 2013:08:05 19:28:29-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:03d19fef-d8d7-da4a-9161-04f9ffc5456d
Instance ID                     : uuid:fd54e806-4ba3-a84a-b841-ec7be2b9dc3d
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 972
EXIF Metadata provided by EXIF.tools

Navigation menu