1974_MECL_Integrated_Circuits_Series_A_Vol4 1974 MECL Integrated Circuits Series A Vol4

User Manual: 1974_MECL_Integrated_Circuits_Series_A_Vol4

Open the PDF directly: View PDF PDF.
Page Count: 624

Download1974_MECL_Integrated_Circuits_Series_A_Vol4 1974 MECL Integrated Circuits Series A Vol4
Open PDF In BrowserView PDF
Volume 4
MECL INTEGRATED CIRCUITS

Series A

• Technical Information
• MECL 10,000
• MECL III
• Phase-Locked Loop Components

frECHNICAL DATA]
MECL GENERAL INFORMATION

•

MECL SELECTOR GUIDES

MECL 10,000 Series

MECL III MC1600 Series

•

COMPATIBLE CIRCUITS

PHASE-LOCKED LOOP COMPONENTS

MIL-M-38510 PROGRAM

•
•

THE
SEMICONDUCTOR
DATA LIBRARY
SERIESA
VOLUME IV

prepared by
Technical I nformation Center

MECL INTEGRATED CIRCUITS

This book presents technical data for a broad line of MECL integrated circuits. Complete specifications for the individual monolithic circuits in the most popular MECL
families are provided in the form of data sheets. In addition, selector guides are included
to simplify the task of choosing the best combination of circuits for optimum system
archi teet ure .
The information in this book has been carefully checked and is believed to be reliable;
however, no responsibility is assumed for inaccuracies. Furthermore, this information
does not convey to the purchaser of microelectronic devices any license under the patent
right of any manufacturer.

©

Printed in U.S.A.

Series A
MOTOROLA INC., 1974
"All Rights Reserved"

MECL, MECL I,MECL II, MECL III, MECL 10,000, MTTL,
MTTL III, and MDTL are trademarks of Motorola Inc.

CONTENTS

NUMERICAL INDEX . ....................... ii
GENERAL INFORMATION . .................. 1·1
HIGH SPEED lOGICS . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Definitions and Abbreviations . . . . . . . . . . . . . . . . 1-10
TECHNICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
OPERATIONAL DATA . . . . . . . . . . . . . . . . . . . . . . . . 1-20
SYSTEMS DESIGN CONSIDERATIONS . . . . . . . . . . . . 1-23
Package Outl ine Dimensions . . . . . . . . . . . . . . . . .1-32
APPLICATION NOTE ABSTRACTS . . . . . . . . . . . . . . . 1-34

MECL SELECTOR GUIDES . .................. 2-1
MECl II MC1000/MC1200 Series . . . . . . . . . . . . . . . . . 2-3
M ECl III MC1600 Series . . . . . . . . . . . . . . . . . . . . . . 2-5
MECl 10,000 Series . . . . . . . . . . . . . . . . . . . . . . . . . .2-11

MECL 10,000 Series DATA SHEETS . ........... 3-1
MECL III MC1600 Series DATA SHEETS .. ...... 4-1
COMPATIBLE CiRCUITS ..... ................ 5-1
PHASE-LOCKED LOOP COMPONENT .......... 6-1
DATA SHEETS
MIL-M-38510 PROGRAM . .................... 7-1

NUMERICAL INDEX

DEVICE
MC1543L
MC1648
MC1650
MC1651
MC1654
MC1658
MC1660
MC1662
MC1664
MC1666
MC1668
MC1670
MC1672
MC1674
MC1678
MC1688
MC1690
MC1692
MC1694
MC7900C
MC10100
MC10101
MC10102
MC10103
MC10104
MCl 01 05
MC10l06
MC10107
MCl 01 09
MC10110
MC10111
MC10113
MC10114
MC10115
MC10116
MC10117
MC10118
MC10119
MC10121
MC10123
MC10124
MC10125
MC10128
MC10129
MC10130
MC10131
MC10132
MC10133
MC10134
MC10135
MC10136
MC10137
MC10138
MC10141
MC10153

DEVICE

PAGE

MC10160
MC10161
MC10162
MC10163
MC10164
MC10165
MC10166
MC10168
MC10171
MC10172
MC10173
MC10174
MC10175
MC10176
MC10177
MC10178
MC10179
MC10180
MC10181
MC10182
MC10193
MC10195
MC10197
MC10210
MC10211
MC01212
MC10216
MC10231
MC10287
MC10501
MC10502
MC10504
MC10505
MC10506
MC10507
MC10509
MC10514
MC10515
MC10516
MC10517
MC10518
MC10519
MC10521
MC10524
MC10525
MC10530
MC10531
MC10533
MC10535
MC10536
MC10537
MC10541
MC10560
MC10561
MC10562

5-3
4-3
4-10
4-10
4-23
4-26
4-30
4-34
4-38
4-42
4-47
4-52
4-60
4-64
4-68
4-72
4-75
4-81
4-85
5-9
3-3
3-5
3-8
3-11
3-13
3-16
3-19
3-22
3-25
3-28
3-31
3-34
3-36
3-39
3-42
3-45
3-48
3-51
3-54
3-57
3-59
3-62
3-65
3-71
3-75
3-79
3-83
3-88
3-92
3-97
3-101
3-107
3-111
3-114
3-118

ii

PAGE
3-121
3-125
3-129
3-133
3-141
3-146
3-150
3-154
3-157
3-161
3-165
3-170
3-173
3-177
3-180
3-183
3-186
3-191
3-195
3-199
3-133
3-204
3-207
3-210
3-212
3-214
3-217
3-221
3-225
3-232
3-235
3-238
3-241
3-244
3-247
3-250
3-253
3-256
3-259
3-262
3-265
3-268
3-271
3-274
3-277
3-280
3-284
3-288
3292
3-296
3-303
3-308
3-312
3-316
3-321

NUMERICAL INDEX(continued)

DEVICE

PAGE

MC10564
MC10571
MC10572
MC10574
MC10575
MC10579
MC10580
MC10581
MC10616
MC10631
MC12000
MC12012
MC12040

3-326
3-331
3-335
3-339
3-343
3-347
3-352
3-356
3-362
3-366
6-12
6-23
6-38

DEVICE
MC12060
~1C12061

MC12560
MC12561
MCM7001 L
MCM10140
MCM10142
MCM10143
MCM10144
MCM10145
MCM10147
MCM10148
MCM10150

PAGE
6-42
6-42
6-42
6-42
5-18
3-370
3-370
3-374
3-379
3-383
3-387
3-370
3-391

GENERAL
INFORMATION

MECL GENERAL INFORMATION

Table of Contents
PAGE

SECTION I: HIGH SPEED LOGICS
MECL Products ..
Family Comparison tables ..
MECL in Perspective
MECL Applications ..
Considerations for High Speed Logic Design ..
MECL Circuit Description ..
Variations among MECL Families
Definitions, Symbols, and abbreviations.

1-4
1-5
1-6
1-6
1·7
1-8
1-9
1-10

SECTION II: TECHNICAL DATA
General Characteristics and Specifications
Maximum Ratings.
Noise Margin
Maximum Ratings (table!
Logic Levels (table!
Logic Level variations - tables and graphs.
AC or time Parameters.
Variations in ac parameters (graphs!
Package Dimensioned Drawings.

1-12
1·12
1-12
1-13
1-13
1-13
1·17
1-17
1·32

SECTION III: OPERATIONAL DATA
Power supply considerations .. .
Loading characteristics . . . . . .
AC variations with loading (graphs!
Unused MECL inputs ..

1-20
1·21
1-22
1-23

SECTION IV: SYSTEM DESIGN CONSIDERATIONS
Thermal Management. ..
Thermal Data (tables! ....
Mounting and heat sinks for MECL III
Compatibility among MECL Families ..
Interfacing MECL to slow logic
Circuit Interconnections . . . . .
Clock Distribution . . . . . . . . . . . . . .
System Design - Summary Recommendations . . . . . . . . . . .

1-23
1-24
1-24
1-26
1-27
1-28
1-29
1-31

SECTION V: MECL LITERATURE
Application Note abstracts ..
Supplementary Literature . . . . . . . . . . . . . . . . . . .
MECL System Design Handbook - contents

1-34
1-37
1-38

1-3

GENERAL INFORMATION
SECTION I: HIGH SPEED LOGICS
of over 70 MHz. Speeds were later increased first to
120 MHz (typical) for the MC1027/MC1227 J·K
flip·flop circuit, and then to 180 MHz (min.) for
the MC1034 type 0 flip·flop.
Complex functions became available in MECL II
when production capabilities shifted toward more
complicated circuits. The family now has adders, data
selectors, multiplexers, decoders, and a gas display
tube decoder/driver.
Continuing development of MECL made possible
an even faster logic family. As a result, MECL III was
introduced in 1968. Its 1 ns gate propagation delays
and greater than 500 MHz flip·flop toggle rates
remain the industry leaders. For the moment, the
very high speed capabilities of MECL III appear to
have outstripped the general speed requirements of
today's computer systems, however they are being
utilized extensively in special high·speed sections of
computers and high speed test and communication
equipment. Motorola is continuing to develop and
expand this product line.
For general purpose computer applications, trends
in large high·speed systems showed the need for an
easy·to·use logic family with propagation delays on
the order of 2 ns. To match this requirement, the
MECL 10,000 Series was introduced in 1971.
An important feature of MECL 10,000 is its
compatibility with MECL III to facilitate using both
families in the same system. A second important
feature is its significant power economy - MECL
10,000 gates use less than one·half the power of
MECL III or high speed MECL II gates. Finally, low
gate power and advanced circuit design techniques
have permitted a new level of complexity for MECL
circuits. For example, complexity of the MC10181
four bit arithmetic unit compares favorably to that of
any bipolar integrated circuit on the market.
The basic MECL 10,000 Series has recently been
expanded by a subset of devices with even greater
speed. This additional series provides a selection of
MECL 10,000 logic functions with flip·flop repetition
rates up to 200 MHz min. The MECL 10,200 Series is
meant for use in critical timing chains, and for clock
distribution circuits. MECL 10,200 parts are other·
wise identical to their 10,000 Series counterparts
(subtract 100 from the MECL 10,200 part number to
obtain the equivalent standard MECL 10,000 part
number).
Although the basic design of all MECL families is
the same, there are differences other than the speed
and power capabilities. Comparisons of the key
characteristics of each family are given in the tables
of Figure 1.

For the purposes of this discussion, high speed
logic has either or both of two characteristics:
a) toggle rates over 50 MHz
b) gate propagation delays under 6 ns
Only two types of standard high speed logic
integrated circuits are commonly available in the
marketplace: Schottky·clamped TTL logic (TTL·S),
and non·saturating emitter·coupled logic (ECL).
Schottky·clamped TTL logic is similar to conven·
tional TTL logic in its circuit configuration and
operating characteristics. Conventional TTL is a
saturated form of logic; that is, during turn·on, both
the emitter·base and collector·base junctions of a
transistor are forward biased, causing an accumula·
tion of charged carriers in the base regions. Then,
when the transistor is turned off, this charge must
discharge through the collector. The finite time
required for this charge to dissipate causes a delay in
turning the transistor off. This "storage time" delay is
an integral part of all saturated logic forms. Schottky·
clamped TTL logic reduces storage time by means of
Schottky·diodes between base·collector junctions.
These diodes tend to keep the transistor out of
saturation, but they also tend to increase the input
capacitance of the Schottky·clamped transistor. Thus,
while the speed of TTL·S is greater than that of TTL,
due to a reduction in storage time, it is limited by the
RC time constant of the transistor input.
Emitter·Coupled Logic, being non·saturating by
design, completely avoids transistor storage time and
its attendent speed limitation without the tradeoffs
inherent in TTL·S. Gate delays of less than a
nanosecond and operating frequencies approaching a
gigahertz are currently feasible, and even these are
not ultimate limits.

MECL PRODUCTS

Motorola offers four ECL logic families under its
MECL trademark: MECL I, MECL II, MECL III, and
MECL 10,000.
The MECL I family, introduced by Motorola in
1962, was the first monolithic integrated circuit line
of emitter·coupled logic. Its propagation delay time
of 8 ns and toggle rate of 30 MHz, though no longer
considered state of the art, still places it above the
speed capabilities of most saturated logic lines. It is
still being produced in quantity for use in existing
equ ipment designs, but several features of the more
advanced MECL II, III, and MECL 10,000 families
favor the use of these families in new designs.
In 1966, Motorola introduced MECL II with gate
propagation delays of 4 ns, and flip·flop toggle rates

1-4

MECL FAMILY COMPARISONS

Feature

MECL 10,000
10,100 Series
10,200 Series
10,500 Series
10,600 Series

MECLI

MECL II

8 ns

4 ns

2 ns

1.5 ns

8.5 ns

4 ns

3.5 ns

2.5 ns

1 ns

3. Flip-Flop Toggle Speed (min)

30 MHz

165 MHz

125 MHz

200 MHz

500 MHz

4. Gate Power

31 mW

22mW

25mW

25mW

60mW

5. Speed-Power Product

250 pJ

88 pJ

50 pJ

37 pJ

60 pJ

6. Transmission Line Capability

No

On Some Devices

Ves

Ves

Ves

7. Wire-Wrap Capability

Ves

Ves

Ves

Ves

No

8. Output Pulldown Resistors

Ves

Optional

No

No

No

9. Input Pulldown Resistors

No

No

50 k!1

50 k!1

2 k!1 & 50 k!1

1. Gate Propagation Delay
2. Gate Edge Speed

MECL III
1 ns

FIGURE la - GENERAL CHARACTERISTICS

Ambient Temperature Range

MECLI

MECL II

MECL III

aOc to +75°C

MC350

MC1000

-

-30°C to +85°C (industrial)

-

-

-55°C to +125°C (military)

MC300

MC1200

(commercial)

-

MC1600F .L

.

FIGURE lb - OPERATING TEMPERATURE RANGE

~

--

Ceramic Flat Pack_ (Hermetic)

Plastic DIP

Ceramic DIP (Hermetic)
(For package dimensions see page 32)

MECL III

MECL 10,000

Ves

Ves

Ves
(selected types)

Ves

Ves

Yes

FIGURE 1c - PACKAGE STVLES

1-5

MECL 10,100
MECL 10,200
MECL 10,500
MECL 10,600

*Planned for selected devices.

Package Style

MECL 10,000

MECL IN PERSPECTIVE
CMOS (quiescent dissipation)

60
50
40

. ~
.

E
>

I

20

I

"0

o

o 10

.~

g' 7.0

~

I!

30

Gi

I

I __
I

-

-t

+ - -

1

consta~t 5?

93LOO

,:'

pJ Lone

}

__

t--+--+-H-~

18060

54LS/~4LS! 154/14
•
-l-t--'-+~i'd-H+

I-

60

~

TT\~

40

1./r;lJCL

"• 30

./

:0



80

~r5d~f==t==F=t~--+--t
, , l--+-++1
54L/~4~
t +
t--,--,-

20

i

ECL
IITI
I

10

2.0

10
1.0

-nW

I
MECL 10,000

rm
100

Frequency (MHz)

2

3

4 567

10

70100

Power dissipation (mW/gate)

FIGURE 2b - POWER DISSIPATION

versus FREQUENCY (MECL versus TTL-SI

FIGURE 2a - SPEED-POWER CHARACTERISTICS
OF MAJOR LOGIC LINES

MECL IN PERSPECTIVE

Wide Variety of Functions, including complex
functions facilitated by low power dissipation
(particularly in MECL 10,000 series). A basic MECL
10,000 gate consumes less than 8 mW in on-chip
power in some complex functions.
Wide Performance Flexibility due to differential
amplifier design which permits MECL circuits to be
used as linear as well as digital circuits.
Transmission Line Drive Capability is afforded by
the open emitter outputs of MECL devices. No "Line
Drivers" are listed in MECL families, because every
device is a line driver.
Wire-ORing reduces the number of logic devices
required in a design by producing additional OR gate
functions with only an interconnection.
Twisted Pair Drive Capability permits MECL
circuits to drive twisted-pair transmission lines as long
as 1000 feet.

In evaluating a logic line, speed and power
requirements are the obvious primary considerations.
In Figure 2, today's major logic families are compared
on the basis of these characteristics. But these are
only the start of any comparative analysis. While the
chart clearly shows that MECL and other ECL-type
families are without peer in the speed category, with
low power levels that rival some of the TTL lines,
there are a number of other characteristics that make
MECL highly desirable for systems implementation.
Among these:
Complementary Outputs cause a function and its
complement to appear simultaneously at the device
outputs, without the use of external inverters. It
reduces package count by eliminating the need for
associated invert functions and, at the same time, cuts
system power requirements and reduces timing differential problems arising from the time delays
introduced by inverters.
High Input Impedance and Low Output Impedance permit large fan out and versatile drive char·
acteristics.
Insignificant Power Supply Noise Generation, due
to differential amplifier design which eliminates
current spikes even during signal transition period.
Nearly Constant Power Supply Current Drain
simplifies power-supply design and reduces costs.
Low Cross-Talk due to low-current switching in
signal path and small (typically 850 mV) voltage
swing, and to relatively long rise and fall times.

MECL APPLICATIONS
The graduated speed ranges of the various MECL
Families satisfy a great many digital system requirements. MECL 10,000 is a general-purpose, high-speed
logic family specifically designed for smaller digital
systems and peripherals as well as large computers.
MECL III is recommended where its exceptionally
high speed can buy needed system performance. It is
used frequently in counter pre-scalers, high-speed
digital communication systems, VHF phase-locked
loops, high-speed digital processors, and high-speed
timing chains in computers.

1-6

to another are insignificant. But for a great many
externally interconnected parts, this can soon add up
to an appreciable delay time. Hence, the greater the
number of functions per chip, the higher the system
speed. MECL circuits, particularly those of the MECL
10,000 Series are designed with a propensity toward
complex functions to enhance overall system speed.

The compatibility among MECL families provides a bridge between system performance and
system cost. Thus, the many functions and complex
circuit members of the MECL 10,000 Line can be
conven iently mixed with the very-high-speed functions
of MECL III, in judicious combinations for system
optimization.
BASIC CONSIDERATIONS
LOGIC DESIGN

FOR

Waveform distortion due to line reflections also
becomes troublesome principally at state-of-the-art
speeds. At slow and medium speeds, reflections on
interconnecting lines are not usually a serious
problem. At extreme speeds, however, line lengths
can approach the wavelength of the signal and improperly terminated lines can result in reflections
that will cause false triggering (see Figure 3). The
solution, as in RF technology, is to employ "transmission-line" practices and properly terminate each
signal line with its characteristic impedance at the end
of its run. The low-impedance, emitter-follower outputs of MECL circuits facilitate transmission-line
practices without upsetting the voltage levels of the
system_
The increased affinity for crosstalk in high·speed
circuits is the result of very steep leading and trailing
edges (fast rise and fall times) of the high-speed
signal. These steep wavefronts are rich in harmonics
that couple readily to adjacent circuits. In the design
of MECL 10,000, the rise and fall times of the gate
waveforms have been deliberately slowed. This reduces
the affinity for crosstalk without compromising other
important performance parameters.
From the above, it is evident that the MECL logic
line is not simply capable of operating at high speed,
but has been specifically designed to reduce the
problems that are normally associated with highspeed operation.

HIGH SPEED

High-speed operation involves only four considerations that differ significantly from operation at jow
and medium speeds:
1. Time delays through interconnect wiring, which
may have been ignored in medium-speed systems,
become highly important at state-of-the·art speeds.
2. The possibility of distorted waveforms due to
reflections on signal lines increases with edge speed.
3. The possibility of "crosstalk" between adjacent
signal leads is proportionately increased in high speed
systems.
4. Electrical noise generation and pick-up are
more detrimental at higher speeds.
In general, these four characteristics are speed- and
frequency-dependent, and are virtually independent
of the type of logic employed. The merit of a
particular logic family is measured by how well it
compensates for these deleterious effects in system
applications.
The interconnect-wiring time delays can be
reduced only by reducing the length of the interconnecting lines. At logic speeds of two nanoseconds,
an equivalent "gate delay" is introduced by every
foot of interconnecting wiring. Obviously, for functions interconnected within a single monolithic chip
the time delays of signals travelling from one function

-~··8"---~-8"-

F-

~S!

RL - Zo

VTT"" -2 Vdc

~

+--

I

I

I

Receiving Gate

··
·, ;.

·.." f\

Input A

I
Low

.h

n

I,

:,

n"

I
High ~
1Jv..,..J

H:9h

I
I

V

:

,

\

,
,

Receiving Gate

Input A

(

I

Low

1

~ v

I

J

FIGURE 3b - PROPERLY TERMINATED
TRANSMISSION LINE
(Ground Plane Added)

FIGURE 3a - UNTERMINATED TRANSMISSION LINE
(No Ground Plane Used)

1-7

GATE TRANSFER CURVES

GATE CIRCUIT
Multiple
Input'

Oift~.nti.1

Bies

Amplifier

Network

Complementary
Output,

~

~

~

;---"-..

C2

-0.800
Hlth (-O.9 V typ.)

I---~-"----/I--

-::::~:

-1.200
VBS - -1.29 V

-+_VC_t-

Low(-1.75 V typ_)

·1.800
-1.200
-1.400
Input Voltage (Volt,)

A

B~A+B+C+O

C

o

~---v,...-----'

A+8+0+C

GATE SYMBOL

INPUTS

FIGURE 4 - MECL GATE STRUCTURE AND SWITCHING BEHAVIOR

CIRCUIT DESCRIPTION
The typical MECL circuit, Figure 4, consists of a
differential-amplifier input circuit, a temperature and
voltage compensated bias network, and emitterfollower outputs to restore dc levels and provide
buffering for transmission line driving. High fan-out
operation is possible because of the high input
impedance of the differential amplifier input and the
low output impedance of the emitter follower outputs. Power-supply noise is virtually eliminated by
the nearly constant current drain of the differential
amplifier, even during the transition period. Basic
gate design provides for simu Itaneous output of both
the OR function and its complement, the NOR
function.

are cut off because their P-N base-emitter junctions
are not conducting, and the forward-biased 05 is
conducting. Under these conditions, with the base of
05 held at -1.29 V by the VBB network, its emitter
will be one diode drop (0.8 V) more negative than its
base, or -2.09 V. (The 0.8 V differential is a
characteristic of this P-N junction.) The base-toemitter differential across 01 - 04 is then the
difference between the common emitter voltage
(-2.09 V) and the LOW logic level (-1.75 V) or 0.34
V. This is less than the threshold voltage of 01
through 04 so that these transistors will remain cut
off.
When anyone (or all) of the logic inputs are
shifted upward from the -1.75 V LOW state to the
-0.9 V HIGH state, the base voltage of that transistor
increases beyond the threshold point and the transistor turns on. When this happens, the voltage at the
common-emitter point rises from -2.09 V to -1.7 (one
diode drop below the -0.9 V base voltage of the input
transistor), and since the base voltage of the fixedbias transistor (05) is held at -1.29 V, the baseemitter voltage of 05 cannot sustain conduction.
Hence, this transistor is cut off.
This action is reversible, so that when the input
signal(s) return to the LOW state, 01 - 04 are again
turned off and 05 again becomes forward biased. The
collector voltages resulting from the switching action
of 01 - 04 and 05 are transferred through the output
emitter-follower to the output terminal. Note that
the differential action of the switching transistors
(one section being off when the other is on) furnishes
simultaneous complementary signals at the output.
This action also maintains constant power supply
current drain.

Power-Supply Connections - Any of the power
supply levels, VBB, VCC, or VEE may be used as
ground; however, the use of the VCC node as ground
results in best noise immunity. In such a case: VCC =
0, VBB = -1.15 to -1.3 V (depending on the specific
MECL family), VEE = -5.2 V.
System Logic Specifications - The output logic
swing of 0.B5 V, as shown by the typical transfer
characteristics curve, varies from a LOW state of VL =
-1.75 V to a HIGH state of VH = -0.9 V with respect
to ground. (These logic levels are valid for the MECL
10,000 and MECL III families. MECL I and II logic
levels differ slightly.)
Positive logic is used when reference is made to
logical "D's" or "l's." Then
"0" =

~1.75

V = LOW

typical
"1" = -0.9 V = HIGH
Circuit Operation - Beginning with all logic inputs
LOW (nominal -1.75 V), assume that 01 through 04

'-8

MECL I

MECL II

.,t;.'

Dittar•
Amplifier

Vee

Inputs

Bia.
Network

Follower Outputs

~~~~
Vee

,--"--..
270

Diff.rential
Amplifier

300
290

NOR
OR

1.18k

2k

2.30k

RL

RL

A

v

VARIATIONS AMONG MECL FAMILIES

Inputs

The basic gate circuits of the four MECL families
are illustrated in Figure 5. From these diagrams, it is
evident that some variations were employed as
technology advanced. The first of these is that the
bias driver for the MECL I Line is not included on the
chip, whereas all subsequent lines have this as an
internal feature.
Second, most corresponding resistor values differ
among all MECL Lines. This difference is necessary to
achieve the varying speed and power improvements of
the different lines. Of course, speed is not determined
by resistor values alone. Transistor geometries, while
not represented on a schematic, are a major deter·
minant. The transistor geometries in conjunction with
the resistor values provide the speed and power
characteristics of the different families.
Third, it will be noted that MECL 10,000 and
MECL III gates are supplied with base pull-down
resistors (Rp = 50,000 m in each of the input
transistors while the other two families are not. These
resistors provide a path for base leakage current to
unused input bases, causing them to be well turned
off. Where these resistors are not used, any unused
inputs must be externally tied to a suitable negative
potential, e.g., VEE.
A final significant difference among the families
is in the output circuits. MECL I circuits normally are
supplied with output pull·down resistors on the chip.
MECL II circuits can be obtained with or without
output resistors. MECL III and MECL 10,000 circuits
have open outputs.
The use of on·chip output resistors has both
advantages and limitations. On the plus side is the
obvious advantage that fewer external components
are required. On the minus side is the fact that
wire·ORing capability with on·chip pulldown resistors
is limited. Moreover, with open outputs the designer
can choose both the value and location of his
termination to meet the system requirements. And
finally, the use of external resistors reduces on·
chip heating and power dissipation, allowing more
complex LSI and increasing chip life and reliability.

MECL III
Emitter

MultIple t "puts

DIfferentIal
Ampllf,er

Network

Follower
Outputs

100

36'

2k

1958

MECL 10.000
EmItter

Multiple

D,fferentIal

Bias

FOllower

Input$

AmplifIer

Network

Outputs

~~~r---"-.

FIGURE 5 - BASIC GATE DIAGRAMS FOR
THE MECL FAMILIES

'-9

DEFINITIONS OF LETTER SYMBOLS AND ABBREVIATIONS
Current:

Voltage:
Base leakage current of a MECL expander
input when at VEE.

ICC

VBB

Reference bias supply voltage.

VBE

Base·to-emitter voltage drop of a transistor at specified collector and base

VCB

Collector-to-base voltage drop of
transistor at specified collector and base
currents.

Vce

General term for the most positive power
supply voltage to a MECL device (usually

Total power supply current drawn from
the positive supply by a MECL unit under
test (IC on older data sheets).

ICBO

Leakage current from input transistor on
MECL devices without pulldown resistors
when test voltage is applied.

ICCH

Current drain from VCC power supply
with all inputs at logic HIGH level.

ICCL

Current drain from VCC power supply

ICEX

Collector

currents.

ground, except for translator and interface circuits).

"CC1

with all inputs at logic LOW level.
cut·off

current

(VCE

devices.)

VBE(off) as specified). For a MECL gate
expander, this term signifies the total

VCC2

collector leakage current when all inputs
are at the negative supply potential.

Most negative power supply voltage for a
circuit (usually -5.2 V for MECL devices).

Forward diode current drawn from an
input of a saturated 10gic·to·MECL trans·
lator when that input is at ground

interface circuits.

Input voltage for measuring IF on TTL
Input logic HIGH voltage level (nominal
value).

potential.

*VIH max Maximum HIGH level input voltage: The
most positive lIeast negative) value of
high-level input voltage, for which
operation of the logic element within

when a maximum logic HIGH (VIH max)
is applied at that input.
HIGH level node input current into an
input node with a specified HIGH level

specification limits is guaranteed.

Input logic HIGH threshold voltage level.

(V I H max) logic voltage appl ied to that
node. (Same as lin for positive logic.)

VIHA min Minimum input logic HIGH level (threshold) voltage for which performance is
specified.

LOW level node input current. The cur·
rent flowing into an input node with a
specified LOW level IV I L min)
voltage applied to that node.

logic

'VIH min

Minimum HIGH level input voltage: The
least positive (most negative) value of
HIGH level input voltage for which operation of the logic element within specification limits is guaranteed.

VIL

Input logic LOW voltage level (nominal
value).

'VI L max

Maximum LOW level input voltage: The
most positive (least negative) value of
LOW level input voltage for which operation of the logic element within specification limits is guaranteed.

V I LA

I nput logic LOW threshold voltage level.

Load current that is drawn from a MECL
circuit output when measuring the output
HIGH level voltage.
HIGH level output current: the current
flowing into the output, at a specified
HIGH level output voltage.
*IOL

LOW level output current: the current
flowing into the output, at a specified
LOW level output voltage.

lOS

Output short circuit current.

lout

Output current (from a device or circuit,
under such
context).

conditions

mentioned

VILA max Maximum input logic LOW level (threshold) voltage for which performance is
specified.

in

Reverse current drawn from a transistor
input of a test unit when VEE is applied
at that input.

ISC

Most positive power supply voltage Icurrent switches and bias driverllusually
ground for MECL devices).

Total power supply current drawn from a
MECL test unit by the negative power
supply.

Current into the input of the test unit

*IOH

Most positive power supply voltage (output devices). (Usually ground for MECL

and

'VIL min

Short·circuit current drawn from a trans·
lator saturating output when that output
is at ground potential.

Minimum LOW level input voltage: The
least positive (most negative) value of
LOW level input voltage for which opera-

• JEDEC, EIA, NEMA standard definition

1-10

t-+

tion of the logic element within specification limits is guaranteed_
Yin

I nput voltage (to a circuit or device\-

V max

Maximum (most positive) supply voltage,
permitted under
specified set of

tpd
tx±y±

conditions.

'VOH

VOHA

Output logic HIGH voltage level: The
voltage level at an output terminal for a
specified output current, with the
specified conditions applied to establish a
HIGH level at the outpuL
Output logic HIGH
leveL

threshold voltage

t x+

Output waveform rise time as measured
from 10% to 90% or 20% to 80% points
on waveform (whichever is specified) at
pin x with input conditions as specified.

t x-

Output waveform fall time as measured
from 90% to 10% or 80% to 20% points
on waveform (whichever is specified) at
pin x, with input conditions as specified.

VOHA min Minimum output HIGH threshold voltage
level for which performance is specified.
VOH max

Maximum output HIGH
voltage for given inputs.

or high-level

Propagation Delay, see Figure 12.
Propagation delay, input to output from
the 50% point of the input waveform at
pin x (falling edge noted by - or rising
edge noted by +) to the 50% point of the
output waveform at pin y (falling edge
noted by -, or rising edge noted by +\- (Cf
Figure 12.)

f tog

Toggle

frequency

of

a

VOH min

Minimum output HIGH or high-level voltage for given inputs.

Shift rate for a shift register.
fshift
Te mperature:

'VOL

Output logic LOW voltage level: The
voltage level at the output terminal for a
specified output current, with the
specified conditions applied to establish a
LOW level at the outpuL

tstg

VOLA

TJ

Output logic LOW threshold voltage leveL

Maximum output LOW level voltage for
given inputs.

VOL min

Minimum output LOW level voltage for
given inputs.

°JC

Line load-resistor terminating voltage for
outputs from a MECL device.
Output logic LOW level on MECL 10,000
line receiver devices with all inputs at
VEE voltage leveL (This parameter is only
valid for devices on whose data sheets it is
specified).

LFPM

VOLS2

tr

Same as t+

tf
t+-

Same as tPropagation Delay, see Figure 12.

Linear feet per minute.

Miscellaneous:

Time Parameters:

Waveform fall time (HIGH to LOW), 90%
to 10%, or 80% to 20%, as specified.

Thermal resistance of an IC package,

Thermal resistance of an IC package, case
to ambient.

(This parameter is only valid for devices
on whose data sheets it is specified).

t-

Junction (or die) temperature of an integrated circuit device.

junction to case.

line receiver devices with all inputs open.

Waveform rise time (LOW to HIGH), 10%
to 90%, or 20% to 80%, as specified.

or

Thermal resistance of an IC package,
junction to ambienL

Output logic LOW level on MECL 10,000

t+

damage

Am bien t (environment) temperature
existing in the immediate vicinity of an
integrated circuit device package.

VOL max

VOLS1

or

Maximum temperature at which device

may be stored without
performance degradation.

VOLA max Maximum output LOW threshold voltage
level for which performance is specified.

VTT

flip-flop

counter device.

eg

Signal generator inputs to a test circuit_

TPin

Test point at input of unit under test.

TP out

Test point at output of unit under test.

O.U.T.

Device under test.

Zout

Output impedance.

'PO

The total dc power applied to a device,
not including any power delivered from
the device to a load_
Load Resistance.
Terminating (load) resistor.

Rp

An input pull-down resistor (i.e., connected to the most negative voltage).

• JEOEC, EIA, NEMA standard definition

1-11

SECTION II - TECHNICAL DATA
MECL TRANSFER CURVES
For MECL logic gates, the dual (complementary)
outputs must be represented by two transfer curves:
one to describe the OR switching action and one to
describe the NOR switching action. A typical transfer
curve and associated data for all MECL families is
shown in Figure 7a.
It is not necessary to measure transfer curves at all
points of the curves. To guarantee correct operation
it is sufficient merely to measure two sets of min/max
logic level parameters.
The first set is obtained by applying test voltages,
VI L min and VIH max (sequentially) to the gate
inputs, and measuring the OR and NOR output levels
to make sure they are between VOL max and VOL
min, and VOHmax and VOHmin specifications.
The second set of logic level parameters relates to
the switching thresholds. This set of data is
distinguished by an "A" in symbol subscripts. A test
voltage, VILA max, is applied to the gate and the
NO Rand 0 R outputs are measured to see that they
are above the VOHA min and below the VOLA max
levels, respectively. Similar checks are made using the
test input voltage VIHA min.
The result of these specifications insures that:
a) The switching threshold ('" VSS) falls within
the darkest rectangle; i.e. switching does not begin
outside this rectangle;
b) Quiescent logic levels fall in the lightest shaded
ranges;
c) Guaranteed noise immunity is met_
Figure 7b shows guaranteed 25 0 C logic level limits
and switching thresholds for each of the MECL families, along with typical HIGH and LOW logic levels.

GENERA L CHARACTERISTICS and
SPECIFICATIONS
(See pages 7 and 8 for definitions of symbols and
abbreviations)
In subsequent sections of this Data Sook, the
functional blocks of all four MECL lines are identified and characterized. Complete data sheets are
provided for each of the functions in the MECL II,
MECL III, and MECL 10,000 families'. To make
these data sheets as useful as possible, and to avoid a
great deal of repetition, the data that is common to
all functional blocks in a line is not repeated on each
individual sheet. Rather, these common characteristics, as well as the application information
that applies to each family, are discussed in this
section.
In general, the common characteristics of major
importance are:
Maximum Ratings, including both dc and ac
characteristics and temperature limits;
Transfer Characteristics, which define logic levels
and switching thresholds;
AC Parameters, such as propagation delays, rise
and fall times and other time dependent characteristics.
In addition, this section will discuss general layout and design guides that will help the designer
in building and testing systems with MECL circuits.
LETTER SYMBOLS AND ABBREVIATIONS
Throughout this section, and in the subsequent
data sheets, letter symbols and abbreviations will be
used in discussing electrical characteristics and
specifications. Recently, these symbols have been
under scrutiny by various industry organizations,
resulting in a number of additions and changes. The
symbols used in this book, and their definitions, are
listed on the preceeding two pages.

Of additional interest are the variations of these
parameters at Ii mit temperatures. These are given in
the tables of Figure 8, for the MECL II, III, and
10,000 families.
All of these specifications assume -5.2 V power
supply operation. Operation at other power-supply
voltages is possible, but will result in further transfer
curve changes. Transfer characteristic data obtained
for a variety of supply voltages are shown in Figure
9. The table accompanying these graphs indicates the
change rates of output voltages as a function of
power supply voltages.
Variations in logic swing amplitude for MECL II,
III, and 10,000 are shown in Figure 10.

MAXIMUM RATINGS
The dc limit parameters beyond which the life of
the devices may be impaired are given in the
following table in Figure 6 for all MECL families. In
addition, the table provides certain ac parameter
limits which, if exceeded, will not destroy the devices,
but could degrade the performance below that of the
guaranteed specifications.

NOISE MARGIN
"Noise margin" is a measure of a logic circuit's
resistance to undesired switching. MECL noise margin
is defined in terms of the specification points
surrounding the switching threshold. The critical
parameters of interest here are those designated with

"'Complete data sheets for MECL I functions are not included
because this line is recommended only for replacement

purposes. However, such data sheets are available and can be
by contacting your nearest Motorola
representative.

obtained

1-12

A. Limits beyond which device life may be impaired:

FamilY

Symbol

Unit

~~~------~M~E~C~L~II~A~~M~E~C~L~I~II~--7M=E~C~L~10~.~OOO~'
'MECL
I

Power Supply Voltage (VCC

VEE

Vdc

-10toOV

-10toOV

-8 to 0 V

-8 to 0 V

B.... Input Voltage (VCC

Vin

Vdc

0'0 VEe

o to Vee

o to vee

<20

<20

<40

o to VEE


5
5
o

~

>

50!1 Load
-0.2

...

C)

0(

+0.2

/I

0(

'JVEE' -J.6V

IoJ

1j-4.4V
5.2 V
6.0 V

-1.6

-1.2

-O.B

-0.4

~

-1.1

C)
0(

-1.3

...

TA

-2.B

-2.4

IoJ

o
>

~

-1.5

..55
o
;

-1.7
-1.9
-2.1

>0

I'--

)

"-

IoJ

-1.4

= 2SoC
-0.4

0

-0.7

<.:>



5.2 V

......

I::l

-1.7
-1.9

::l

TA

:::z

+25 0 C

0

50
>

-1.0

-O.S

w

It

~~ -B.OIV

-2.3
-1.B

-1.2

-0.9

0

4.4 V

V

-1.6

~ -1.1

-6.0V

I-- "~-7.0

-2.0

Vin.INPUT VOLTAGE (VOLTS!

u;

3.6

~

FIGURE 9b - MECL 111/10,000 "NOR"

iff

J Y. i"-

-

-2.2

-3.0
-3.2

0

-0.6

-0.2

0

-2.1
-2.3
-l.B

-1.4

-1.0

-0.2

-0.6

Yin. INPUT VOLTAGE (VOLTS!

Vin. INPUT VOLTAGE (VOLTS)

FIGURE 9c - MECL II "OR"

FIGURE 9d - MECL II "NOR"

MEClll
0.015
0.230
0.115

Voltage
~VOH/~VEE

~VOl/~VEE
~VBB/~VEE

MECl10,OOO"
0.016
0.250
0.148

0

MEClll1
0.033
0.27
0.14

"and subsets: 10,200; 10,500; 10,600.
FIGURE 9a - LEVEL CHANGE RATES

LOGIC SWING VARIATIONS WITH TEMPERATURE AND SUPPLY VOLTAGE
1.60
~ 1.44 50

n

'to -2

J

oJ

o

1.28

C)

1.12

~

......,:::,;;

Z

i

0.96

!:1

0.80

III
C)

Beoe ...

g 0.64

.

>0. 0 .48 ~ ~

~

0.32
-3.6

.......-:: ~

....-::::: ~

rP'

~~

'-Jooe
25°C

-4.4

-5.2

-6.0

VEE. SUPPLY VOLTAGE (VOLTS!

0.2 '--_'--_-1._ _......._ _'--_ _......._ _-"
-3.0 -3.8

-4.4

-5.2

-8.0

-7.0

-8.0

VEE. SUPPL.Y VOL. TAOE (VOLTS)

FIOURE 1Gb - MECL 111/10.000

FIOURE 10. - MECL II

1-15

".

-6.8

--------Jr+
·1.475

·1.105

1l.V

= High .Noise
Margm

VOHA min

{

V,HA min

1High
VOHA min

------t.o

·0.980

JSt8te

.6.

Gate
Output

Gate
Input

·1.630

VOLA max

V

, Low

i State
V,LA max

Vas

VILAmax

= Low Noise {

Margin

VOLA max

NOISE
MARGIN COMPUTATIONS

V,HA min

(switching threshold)

Family

SPECIFICATION POINTS FOR
DETERMINING NOISE MARGIN

MECL II

~

~~

Guaranteed
Worst·Case de
Noise Margin

Typical de
Noise Margin

0.175/0.150'

0.250/0.200'

All MECL 10.000

0.125

0.210

MECL III
01 L and Flat Package

0.115

0.200

*Depending on part type. See selector gUide or data sheet.
MECL NOISE MARGIN DATA'

ELEMENT 2 NOISE MARGIN MEASUREMENT
POINTS FOR MECL GATES

FIGURE 11

the "A" subscript (VOHA min, VOLA max, VIHA
min, V ILA max) in the transfer characteristic curves.
Guaranteed noise margin (NM) is defined as
follows:

between the two specification voltages, or for the
MECL 10,000 levels shown:
NMLOW = VILA max' VOLA max
= ·1.475 V· (·1.630 V)
= 155 mV.
Similarly, for the HIGH state:
NMHIGH = VOHA min' VIHA min
= ·0.980 V . (·1.105 V)
= 125 mV
Analogous results are obtained when considering
the "NOR" transfer data.
Note that these noise margins are absolute worst
case cond itions. The lesser of the two noise margins is
that for the HIGH state, 125 mV. This then,
constitutes the guaranteed margin against signal
undershoot, and power or thermal disturbances.
As shown in the table, typical noise margins are
usually better than guaranteed - by about 75 mV.
Noise margin is a dc specification that can be
calculated, since it is defined by specification points
tabulated on MECL data sheets. However, by itself,
this specification does not give a complete picture
regarding the noise immunity of a system built with a
particular set of circuits. Overall system noise im·
munity involves not only noise·margin specifications,
but also other circuit·related factors that determine
how difficult it is to apply a noise signal of sufficient
magnitude and duration to cause the circuit to
propagate a false logic state. In general, then, noise
immunity involves line impedances, circuit output
impedances, and propagation delay in addition to
noise·margin specifications. This subject is discussed
in greater detail in Application Notes AN·298 and
AN·592.

NMHIGH LEVEL = VOHA min' VIHA min
NMLOW LEVEL = VILA max' VOLA max·
To see how noise margin is computed, assume a
MECL gate drives a similar MECL gate, Figure 11.
At a gate input (point B) equal to VI LA max, MECL
gate #2 can begin to enter the shaded transition region.
This is a "worst case" condition, since the VOLA
max specification point guarantees that no gate can
enter the transition region before an input equal to
VI LA max is reached. Clearly then, VI LA max is one
critical point for noise margin computation, since it is
the edge of the transition region.
To find the other critical voltage, consider the
output from MECL gate #1 (point A). What is the
most positive value possible for this voltage (consider·
ing worst case gate specifications)? From Figure 11 it
can be observed that the VOLA max specification
insures that the LOW state OR output from gate 1
can be no greater than VOLA max.
Note that VOLA maxis more negative than VILA
max. Thus, with VOLA max at the input to gate #2,
the transition region is not yet reached. (The input
voltage to gate #2 is still to the left of VI LA max on
the transfer curve.)
In order to ever run the chance of switching gate
#2, we would need an additional voltage, to move the
input from VOLA max to VI LA max. This con·
stitutes the "safety factor" known as noise margin. It
can be calculated as the magnitude of the difference

1-16

AC OR TIME PARAMETERS

"conditions" associated with a particular parameter
may differ among logic families, the common MECL
waveform and propagation delay terminology are
depicted in Figure 12. Specific rise, fall, and propagation delay ti mes are given on the data sheet
for each specific functional block, but like the
transfer characteristics, ac parameters are temperature
and voltage dependent. Typical variations for the
MECL families are given in the curves of Figure 13.

Time dependent specifications are those that
define the effects of the circuit on a specified input
signal, as it travels through the circuit. They include
the time delay involved in changing the output level
from one logic state to another (t+; t-). In addition,
they include the ti me required for the output
of a circuit to respond to the input signal, des·
ignated as propagation delay. Since this terminol·
ogy has varied over the years, and because the

Undershoot

1
VIHA
t~~~~~~~~~~~~~.~i~~~~~~~H~i:9h~L~evel
VILA

Overshoot
50%

VBB

Undershoot

t

V out OR

Low Leval

-+

MECL WAVEFORM TERMINOLOGY
o%

Vout

~
10%

t--

t+

~

t+-

50%

20%

t-

-

t+ = tr

t- = tf

• Designated tpd· on older data sheets
•• Designated tpd+ on older data sheets

t+

t- .,.

MECL II, III RISE AND FALL TIMES

V out NOR

o%

Vout

~

tf

t+ "'" tr

MECL PROPAGATION DELAY

MECL 10,000 RISE AND FALL TIMES
FIGURE 12

2.6

]

2.5

~ I-sol n

LJad to l -2.0

~

_1+B5°
~ SOcj
:::;.. _30 0

I

>

OR

..: 2.4
.J

~ 2.3

~ 2.2
~ 2.1

..:

1-

t

1.9

t---

CL

1.8

~

1.7
1.6

~ 2.0

a:

---

NOR

-

r::-- .....

-~

I--

2.S

Jc

c

>

..:
.J

c

w

0
Z

I

l

2.1
2.0
1.9

0

1.8

:..

1.6

a:

t

-3.6

-4.4

-5.2

2.2

..:
C>
..:

..
.

sOei
30°C

2.3

9
....

8Soe

2.4 t - - t-so1n

3.7
w

~ 3.6

w

::;

3.5

~ 3.4
.J
.J

.....:

-

3.3

i'-..

I--

3.1
3.0

--r-

2.9
-3.6

-4.4

. / 8Soe

r-

-- 250~1

V

OA

__

30°C

1.S
-4.4

-S.2

-6.0

-6.8

FIGURE 13b - TYPICAL PROPAGATION DELAY t++-versus VEE and TEMPERATURE (MECL 10,000)

5.2

Load to -2.0 V

J'-..

_30 e

.......

• -Formerly designated tpd+

NOR

85 0

5.0

J

..

soc!
_30°C

I---

"

3.2

.n

r-r--

-I

25°,:1
o

VEE. SUPPLY VOLTAGE (VOLTS)

FIGURE 13a - TYPICAL PROPAGATION DELAY t··versus VEE and TEMPERATURE (MECL 10,000)

50

NJA

-3.6

• Formerly designated tpd-

3.8

./

I--

VEE. SUPPLY VOLTAGE (VOLTS)

3.9

85°C

r-

1.7

-6.8

-6.0

LO~d '°1_2 .0 Y

~

w

::;

4.8
4.6

r-:h.

-+--.-.
-S.2

-

t

8Soe

r---,~soei
-6.8

+-2.~

r

V

I

t::i-

T8s oe
-..,J25Oe

4.0
3.8
3.6

NiA

.........

1· 30oe

I
I

I
I

r--..

~ t-- - I -

OA

8SoC

-I-

25°C,

1.30°9

1

3.2
-3.6

VEE. SUPPLY VOLTAGE (VOLTS)

L10ad

"""'=:::I:::::::

3.4

1--..L'300e

-6.0

~I n

4.4

~ 4.2
w

!!?
a:

~

-4.4

-5.2

-6.0

-6.8

VEE,SUPPLY VOLTAGE (VOLTS)

FIGURE 13d - TYPICAL RISE TIME (10%to 90%)
_SUI TEMPERA TUR E and SUPPLY VO L TAG E
(MECL 10,100)

FIGURE 13c - TYPICAL FALL TIME (90%to 10%)
_sus TEMPERATURE and SUPPLY VOLTAGE
(MECL 10,100)

1·17

TYPICAL DELAY TIMES FOR MECL II FAMILY

7.S

-

r--.,.---r-----,--~---_._--___,

Input tT .. t- • 5.0 ns
Fen-out = 1
"'
+12SoC
~
+7S o C
j: 6.0 ~-+----I---

20

5.

+1250~ -..........

w

+750~~

~

"''"'+--'::O'......~£...-.---l

j:

>
«

>

w

w

«

-'

+2S0C,
OoC

10

-'

C

-SSoC

f'

Z

a

j:

~5.0

«

.."«c

"

~4.0~~~~~~~~~::::~::::::~~~~
__

-3.0

~

-3.6

____

~

____

-44

~

____-,-______

-S.2

-6.0

~

a:

Q.

t;.

-8.0

""
....,
,""X 'V/
/

~

A

...v

~

~

~-

I

2.0

-3.6

-4.4

-5.2

-6.0

- 7.0

-8.0

VEE. SUPPLY VOLTAGE (VOL TS)

FIGURE 131 - TYPICAL PROPAGATION DELAY
t++** versus TEMPERATURE and
SUPPLY VOLTAGE (MECL II)

11

7.0.----,----,-----,---,----,-----,
Input t+ = t- = 5.0 ns

Fan-out = 1
I

9.0

w S.O
:!
;:: 7.0

~

/

7'

FIGURE 138 - TYPICAL PROPAGATION DELAY
t- -* versus TEMPERATURE and
SUPPLY VOLTAGE (MECL II)

10

...

"0

>

........

z

Q

2.0

......

r-- ~

1.B

"'-........
........",.,

1.6
1.4
-3.6

-4.4

3.0

~

2.8

"""
~

-5.2

+12SoC

~

+250~

o

II:

-650~-

"-

J

+

-6.0

/

2.6

lL

2.4

...........
f--'

2.2

!.
-6.8

2.0
-3.6

~V
V

0

.;j5 C

-

-5.2

-4.4

1

-6.0

-6.8

•• Formerly designated tpd+

FIGURE 131 - TYPICAL PROPAGATION DELAY
t--* versus VEE and TEMPERATURE

FIGURE 13i - TYPICAL PROPAGATION DELAY
t++** venus VEE and TEMPERATURE

(MECL 10,500)

(MECL 10,500)

1.9

NOR

1.8

'"

1cio n

r----. 0

1.7

UJ

:;;

L~.d

to 1_ 2 .0

j: 1.6
1.5

2.2

V~c

'00

I

r-

~
r-... ~

..J
..J

«
u.

/

_55°C

/1

VEE,SUPPLY VOLTAGE VOLTS

-Formerly des;gnated tpd-

~

1

j:

«
(!)

1+1250~

/

VEE. SUPPLY VOLTAGE (VOLTS)

0

LO~d to -J.o Vd~
N6R

u!

o

II:

"-

100ln
3.2

«

I'---t-.,

2.2

....
«
t:l
«

"
o

7.4

«
..J
w
0

3.4

~2.0 V~C

~

.!.

2. 1

1

NOR

~
~

t

1.4

-5.2

-4.4

r--........

1.9

-6.0

1.8

II:

+2SOC

1.3
-3.6

-............

UJ

-550~-

-6.8

1.7

1.6
-3.6

Load Ito -2.ci Vd c

l""- t'-....

2.0

+125 0 C -

ri

r-- r--4.4

"'"f',.'\

~

.......

t--

-5.2

-55°C

~-

+12SoC

I

+25 0 C -

-6.0

1

-6.8

VEE,SUPPLY VOLTAGE (VOLTS)

VEE,SUPPLY VOLTAGE (VOLTS)

FIGURE 13k - TYPICAL FALL TIME
(80% to 20%) versus TEMPERATURE and

FIGURE 131 - TYPICAL RISE TIME (20% to 80%) versus
TEMPERATURE and SUPPLY VOLTAGE
(MECL 10,500)

(MECL 10,500)

SETUP AND HOLD TIMES
The tsetup and thold times are two ac specifications which can be confused unless clearly defined.
For MECL devices, tsetup is defined as the time
(50% - 50%) before a Clock transition that Data must
be present for a bistable circuit to "recognize" the
incoming Data.

The thold is similarly defined to be the time after the
Clock transition that Data must remain to insure that
bistable outputs retain their state.
In specifying devices, Motorola establishes and
guarantees values for tsetup and thold. The limits for
tsetup and thold insure proper logical function of
bistable circuits, but do not guarantee that propagation delay or noise specifications wi II be met under
all conditions when operating near the limits. For
MECL bistable circuits, proper device operation
usually occurs with Data present for somewhat less
time than that specified for tsetup and thold.

50%

D - - -J
50%

c---4--..J
tsetup

1-19

SECTION III - OPERATIONAL DATA
POWER SUPPLY CONSIDERATIONS

Output
Transistor

MECL circuits are characterized with the VCC
point at ground potential and the V EE point at -5_2
V_ While this MECL convention is not necessarily
mandatory, it does result in maximum noise immunity _ This is so because any noise induced on the
VEE line is applied to the circuit as a common-mode
signal which is rejected by the differential action of
the MECL input circuit_ Noise induced into the Vee
line is not cancelled out in this fashion_ Hence, a good
system ground at the Vce bus is required for best
noise immunity_
Power supply regulation of 10% or better is
recommended_ The -5.2 V power supply potential
will result in best circuit speed. Other values for VEE
may be used. A more negative voltage will increase
noise margins at a cost of increased power dissipation.
A less negative voltage will have just the opposite
effect.
On logic cards, a ground plane or ground bus
system should be used. A bus system should be wide
enough to prevent significant voltage drops between
supply and device and to produce a low source
inductance.
Although little power supply noise is generated by
MECL logic, power supply bypass capacitors are
recommended to handle switching currents caused by
stray capacitance and asymmetric circuit loading. A
parallel combination of a 1.0 /--IF and a 100 pF
capacitor at the power entrance to the board, and a
0.01 /--IF low-inductance capacitor between ground
and the -5.2 V line every four to six packages, are
recommended.
Most MECL 10,000 and MECL III circuits have
two Vec leads. Veel supplies current to the output
transistors and VCC2 is connected to the circuit logic
transistors. The separate VCC pins reduce cross·
coupling between individual circuits within a package
even when the outputs are driving heavy loads.
Circuits with large drive capability, similar to the
MC10ll0, have two Vee1 pins. The Vee pins should
be connected to the ground plane or ground bus as
close to the package as possible.
All MEeL II, MEeL III, and MECL 10,000 devices
have their own internal temperature and power-voltage-compensated bias voltage sources.
For further discussion of MECL power supply
considerations to be made in system designing, see
MECL System Design Handbook, Ch. 5.

Power

Terminating
Resistor Value

150 ohms to -2.0 Vdc
100 ohms to -2.0 Vdc
75 ohms to -2.0 Vdc
50 ohms to -2.0 Vdc
2.0 k ohms to VEE
1.0 k ohm to VEE
680 ohms to VEE
510 ohms to VEE
270 ohms to VEE
82 ohms to Vee and
130 ohms to VEE

Dissipation
(mWI

Terminating
Resistor
Power
Dissipation
(mWI

5.0
7.5
10
15
2.5
4.9
7.2
9.7

4.3
6.5
8.7
13
7.7
15.4
22.6
30.2

18.3
15

57.2
140

FIGURE 14 - TYPICAL POWER DISSIPATION
IN OUTPUT CIRCUIT WITH EXTERNAL
TERMINATING RESISTORS

system designer can compute total package power for
his particular termination technique by adding, IE x
5.2 + Output Device Power. Some of the devices in
the MECL I, II, and III Lines include on-chip
output pulldown resistors, so that adding termination power has already been accomplished. None of
the devices in the MECl 10,000 Series incorporate
internal output pulldown resistors.
The omission of these resistors permits the use of
external terminations designed to yield best system
performance. To obtain total operating power dissipation of a particular functional block in a system, the
dissipation of the output transistor, under load, must
be added to the specified power dissipation of those
circuits without internal termination.
The table in Figure 14 lists the power dissipation
in the output transistors plus that in the external
terminating resistors, for the more commonly used
termination values and circuit configurations. To
obtain true package power dissipation, one outputtransistor power-dissipation value must be added to
the specified package power dissipation for each
external termination resistor used in conjunction with
that package. To obtain system power dissipation, the
stated dissipation in the external terminating resistors
must be added as well. Unused outputs draw no
power and may be ignored.
The power dissipation of MEel functional blocks
varies with both temperature and VEE. Typical
variations are shown in Figure 15. The graph is
normalized so that it applies to all MEeL lines. The
reference temperature is 25°C and the reference
power is obtained by multiplying the typical IE value
(total power supply drain current specified on the

POWER DISSIPATION

The power dissipation of MEeL functional blocks
is specified on their respective data sheets. This
specification does not include power dissipated in the
output devices due to output termination. The

'-20

+1.0

3.0

J. - Lv

'~

"2.5

I

;::-

<•
L.!!

=~
'0&

2.0

I:~

~ ~1.5
Q '
wi

..J

5.2 V

:l~

-4~4

0:-

3.6V_

"~

-

-55

o

....

-

~ -1.0
:0

0_1.5

;

o

+25

+75

~

/-

~L

r

+126 0 C
2SOC

H

"-Issoc ,
VOH

~

+~2S0C

"

25°C

/

~

5SoC

>.

-

VOL I
VOL

-2.0

I

I

-2.5
+5.0

I
-25

r
-0.5

>

3.0 V

o

o

2!

V

Q

0.6

o
w

-7.0 V

I

~.::
1.0
.. >

......

r--

6.0 V

•

Z

;;;

1

W 0

L

Vee - -5.2 V

+0.5

(10

m •• j

-

- 5.0 - 10 -15 - 20 - 25

+125

30

35

- 40

LOAD CURRENT (mAl

T A. AMBIENT TEMPERATURE CDC)

FIGURE 168 - MECL II TYPICAL OUTPUT VOLTAGES
versus LOAD CURRENT and TEMPERATURE

FIGURE 15 - NORMALIZED POWER DISSIPATION
versus TEMPERATURE and SUPPLY VOLTAGE

+1. 0

Vee = -5.2 V

+0.

~...

data sheet) by VEE (5.2 V). For those devices where
only the maximum value of IE is specified on the
data sheet, nominal power dissipation is approximate·
Iy 80% of that calculated with the I E (max)
specification.

•

o

~
w

"«~

-0. 5

o

+7SoC

~r-- VOH

/

VOI

C

>

to- -1.0
:0

~

LOADING CHARACTERISTICS

:0

o

....

The differential input to MECL circuits offers
several advantages. Its common-mode·rejection
feature offers immunity against power-supply noise
injection, and its relatively high input impedance
makes it possible for any circuit to drive a relatively
large number of gate inputs without deterioration of
the guaranteed noise margin. Hence, dc fan·out with
MECL circuits does not normally present a design
problem.
The specified dc loading factors (the number of
gate inputs of the same family that can be driven by a
circuit output) for MECL I and MECL II families is
25. For MECL 10,000, it is 90; and for MECL III, it
is 70 or 7, depending on the input impedance of the
circuit (whether the system is implemented with
high-impedance or low-impedance devices).
Graphs showing typical output voltage levels as a
function of load current for MECL II, III, and 10,000
are shown in Figure 16. These graphs can be used to
determine the actual output voltages for loads
exceeding normal operation.
While dc loading causes a change in output voltage
levels, thereby tending to affect noise margins, ac
loading increases the capacitances associated with the
circuit and, therefore, affects circuit speed. The effect
of fan-out on MECL II speed is shown in the graphs
of Figure 17.
For MECL 10,000 and MECL III, best
performance at fan-outs greater than 10 and 6,
respectively, will occur with the use of transmission
lines.

-1. S

:0

~r-L- ---; V

v

H

v

L""::

1.<= .Loc
OOC

o

:> -2.0

F=

(10 m . . )

-2.5

5.0

+5.0

10

15

20

25

30

35

40

LOAQ CURRENT (mAl

FIGURE 16b - MECL II TYPICAL OUTPUT VOLTAGES
vemls LOAD CURRENT and TEMPERATURE O·C I!o +75·C

1-... 301-----i>--~'"

520~~~~~~+-~~-4~-*---*---+f-~

(LOAD LINES FOR TERMINATION TO VEE (-5.2 Vdcl250C

50

LHA
JI

40

VOH min

VOH

m~x J

~ 1I
200 Ohms

JOOOh~'

10

1K Ohm.

a :----2K
o

~

J••-vlA
I
I

I

I
I

I
I

I

I

1

VOl

rna.

l J0"L
moo

/
I

-

J

Ohm.

·0.5

1.0

1.5

2.0

VOUTCVOL TS)

FIGURE 16c- OUTPUT VOLTAGE LEVELS
versus DC LOADING, MECL III and MECL 10,000

1-21

10

I.

,n'put t1 = t· = 5.0 n.
Vee >= -5.2 V

30 -

;::;;-. ".....

--=="
:::;0-

;::;-55 0

~

I

4.0

10

I
I

]
E

2 SoC-..

20

;;;
~

ooJ ./

20

30

40

6

15

./..

10

8

50

60

10
12
FAN·aUT

70

80

90

100

16

18

20

14

,

~~
10

10

\

"- ·5SoC

r
I

~

r--

c

20

30 40
50
60
70
80
LOAD CAPACITANCE tpF)

8

10

12

14

16

90

100

18

20

FAN-OUT

.

~

>
~

6.0

FIGURE 17b - MEeL " FALL TIME versus
LOADING and TEMPERATURE,
(Single Pull-down Resistod

~

~

40

I""""

~

0

~
20

o

o

--- i~
20

,a

30

40

50

>

I--

-

I-- f.-

('-- o(

~

~

I-::::::

2',8

;

2. 6

IoU

2.4

~

2. 2

g

2.0

r-- ~o n

551°C

,"-- 2SoC
: \ ,lsoC I

'-rOCI

60

70

_

-

aD

90

'00

LOAD CAPACIT ANCE (pF)
6
B
10
12
14
16
FAN·OUT

18

20

°0~-'~0~~2~0~3~0~~40~~5~0~~60~~'~0~~~~~1~00
LOAD CAPACITANCE

6

1.8
1.6

~

1.4

I

4.0

6.0

B.O

6.0

~

5.5

I

j

I

I

~

5.0

.J
.J

4.5

~

I

,
,

I

2.0

]
~

I

1

12

14

16

18

20

6.5

t--

~
:

10

FIGURE 17d - MEeL" PROPAGATION DELAY t-versus LOADING and TEMPERATURE

I
t++
I

8

FAN·OUT

J J

Lood I

I

15~~--~--~--~-+~-p~+-~~~~~

o

FIGURE 17c - MEeL" PROPAGATION DELAY t++
versus LOADING and TEMPERATURE
3.0

20~-+--~--+-~---+--~--r-~---b~

~

-\ f.--

Z

o

1:7

tn~ut t+l= t. =150 n1

8.0

~

]

~

,"

~

Vee'" -5.2 v

]

-

~~

6

FIGURE 17a - MEeL" RISE TIME versus
LOADING and TEMPERATURE

~

'" ~ ~ ~
IY

~~~

,:

1./ /

LOAD CAPACITANCE (pF)

""

VV

,/

I

2.0

.J

/

(Single PulldOl/lln Resistor)

'5OC ........

I

w
0

I

125°C ........

5.0

w

~s

2.

,......,::;:f:::::::;-- -

6.0

~

~putt1

I
'" t· :. 50
Vee = ·5.2 V

~ ~~~

c

~
,:

35

l125l\

8.0

ii'
t-

.l

~

4.0

0

z

3.S

w

3.0

~

!!!
a:

i

I

I

I

I

I

10

12

14

16

18

..

t
20

2.5

-150 n l LOad l

-?

- -;.-

-

<:::

.;-

V

I

2.0
1.5

I
2.0

FANOUT (NUMBER OF GATE INPUTS)

f--:

4.0

6.0

8.0

10

12

14

16

18

20

FANOUT (NUMBER OF GATE INPUTS)

FIGURE 188 - MEeL 10,000 GATE PROPAGATION
DELAY TIME versus FANOUT (Fanout-at End of 14"
50 n Matched Transmission Linel

FIGURE 18b - MEeL 10,000 RISE and FALL TIME
(10% to 90%1 versus FANOUT (Fanout at End of 14" 50
Matched Transmission Linel

The propagation delay and rise time of a driving
gate are affected very little by capacitance loading
along a matched parallel-terminated transmission line_
However, the delay and characteristic impedance of
the transmission line itself are affected by the
distributed capacitance. Signal propagation down the
line will be increased by a factor,...; 1 + Cd/Co. Here

n

Co is the normal line capacitance, and Cd is the
distributed capacitance due to loading and stubs off
the line_
Maximum allowable stub lengths for loading off of
a MECL 10,000 transmission line vary with line
impedance_ For example, with Zo = 50 ohms,
maximum stub length would be 4_5 inches (1.8 in. for

'-22

MECL III). But when Zo = 100 ohms, the maximum
allowable stub length is decreased to 2.8 inches (1.0
in. for MECL III).
The input loading capacitance of a MECL 10,000
device is 2.9 pF (e.g. MC10l09). Therefore it is
recommended that non·transmission-line environment
fanout be limited to a maximum of 10 loads, due to
line delay increases which limit system speed.
The input loading capacitance of a MECL III logic
function is 3.3 pF. Therefore it is recommended
that non·transmission·line environment fanout be limi·
ted to a maximum of 6 loads.
Shown in Figure 18 are the effects of fanout on
MECL 10,000 time parameters.

reliable system operation. Most devices can use VEE
as the input return, but control inputs of series
reliable system operation. Most devices can use
VEE as the input return, but control inputs of
series gated devices such as the MC1019, MC1021,
MC1028, MC1035, MC1038, MC1045, and MC1066
should be returned to the VOL level. This protects
against voltage buildup on the unused inputs and
assures that noise immunity depends only on those
inputs actively used.
All single·ended input MECL 10,000 and MECL III
circuits contain input pull·down resistors between the
input transistor bases and VEE. As a result, unused
inputs may be left unconnected (the resistor provides
a sink for ICBO leakage currents, and inputs are held
sufficiently negative that circuits will not trigger due
to noise coupled into such inputs).
Input pull·down resistor values for the MECL III
high·impedance circuits and all MECL 10,000 devices
are typically 50 kn and are not to be used as
pull-down resistors for preceding open·emitter out·
puts.
Several MECL 10,000 devices don't contain input
pull·downs. Examples are the differential line reo
ceivers, MC10115 and MC10116. If a single dif·
ferential receiver of either device type is unused, one
input of that receiver must be tied to the VBB pin
provided, and the other input goes to VEE.

UNUSED MECL INPUTS
The input impedance of a differential amplifier, as
used in the typical MECL input circuit, is very high
when the applied signal level is low. Under low·signal
conditions, therefore, any leakage to the input
capacitance of the gate could cause a gradual build·up
of voltage on the input lead, thereby adversely
affecting the switching characteristics at low repeti·
tion rates.
For MECL I and MECL II circuits, the gate inputs
are essentially open. In use, therefore, any unused
inputs should be tied to a negative potential for

SECTION IV - SYSTEM DESIGN CONSIDERATIONS
/I JC = thermal resistance, junction to case
/lCA = thermal resistance, case to ambient
/I JA = thermal resistance, junction to ambient
Only two terms on the right side of equation (1)
can be varied by the user - the ambient temperature,
and the device case·to-ambient thermal resistance,
/lCA. (To some extent the device power dissipation
can be also controlled, but under recommended use
the VEE supply and loading dictate a fixed power
dissipation.) Hence, both system air flow and the
MECL package mounting technique affect the
thermal resistance term.

THERMAL MANAGEMENT
Circuit performance and long-term circuit reo
liability are affected by die temperature. Normally,
both are improved by keeping the IC junction
temperatures low.
Electrical power dissipated in any integrated cir·
cuit is a source of heat. This heat source increases the
temperature .of the die relative to some reference
point, normally the ambient temperature of 25°C in
still air. The temperature increase, then, depends on
the amount of power dissipated in the circuit and on
the net thermal resistance between the heat source
and the reference point.
the average temperature at the junction is a
function of the system's ability to remove heat
generated in the circuit - from the junction region to
the. ambient environment. The basic formula for
converting power dissipation to estimated junction
temperature is:
TJ

=

TA + Po (/lJC + /lCA)

OJA _ °CIWatt
IStillAir)
Package

°JC °CIWatt

Worst Case Typicat Worst Case

Ceramic Flat Pack

210

.166

60

Plastic Dual-In-line,
14 lead or 16 lead
(Gold Eutectic Die Bond)

150

100

70

Ceramic Dual-in-Line
14 or 16 lead
(Gold Eutectic Ole BondI

150

100

50

45'

10'

(Cerflat) 1I4x 1/4
(Gold Eutectic Die Bond)

(1)

or

Ceramic Dual-ln·Line
24 Lead

(2)

Plastic Dual-I n-Lme

where

24 Lead

T J = junction temperature
T A = ambient temperature
Po = calculated power dissipation

65··

"Data for 8200 SQ. mil die SIZe
0·500 If pm air flow

FIGURE 19"':" WORST CASE AND TYPICAL THERMAL
RESISTANCE RATINGS FOR SELECTED Ie PACKAG ES

1-23

Internally, thermal resistance of an integrated
circuit is a function of the package material and size,
and of the method used in bonding the IC die to the
package. For some standard IC packages, the worst·
case and typical thermal resistance values are given in
the table in Figure 19. In Figure 20, this basic data is
converted into a graph showing the maximum power
dissipation allowable at various ambient temperatures
for circuits mounted in the various packages, taking
into account the maximum permissible junction
temperature for devices packaged in plastic or ceramic.
These measurements are taken in still air.
The effect of air flow over the packages on 8 JA is
illustrated in the graph of Figure 21 for two different
mounting methods. This driven air flow reduces the
thermal resistance of the package, therefore per·
mitting a corresponding increase in power dissipation
without exceeding the maximum permissible junction
temperature.
As an example of the use of the information
above, the junction temperature for a quad MECL
10,000 gate loaded with ·four SO ohm loads can be
calculated. Typical total power dissipation (including
a load) for this quad gate is 164 mW. Assume for this
thermal study that air flow is 500 linear feet per
minute and that the device is soldered into a printed
circuit board. From Figure 21, curve #2, 8JA is
SOoCIW. With T A (air flow temperature at the device)
equal to 2SoC, the following junction temperature
results:

• 1200r---,---,---,---,----r--,
~

A
@:: 1000k--:-+- B

'" Ceramic Flat Package
-= Pla,tic Package.

3:
E

= Ceramic Dual In-Line

C

O~_~_~~~~_~_~~~

25

50

75

100

T A. Ambient Temperatur. (oC)

FIGURE 20 - AMBIENT TEMPERATURE
DERATING CURVE

100r---r--,r--,---.--~--r-~

Z A)(is

TJ
TJ

Package Tvpe - 1S-Lead Black CeramIc
Dissipation Le .... el - 200 mW

Air Flow - Z-Axis 2SoC·
Method - Calibrated Diode

Package Mounting #1 Barnes Socket
#2 Printed Circuit Board
.Ie

0.062" - 2 oz. Cu.

• x-axis air flow lowers 8 JA by SoC per watt.

FIGURE 21 - TYPICAL THERMAL RESISTANCES FOR
16-PIN BLACK CERAMIC DUAL IN·LINE PACKAGES

Pack_
Stud
Dual I n·Line
Low Power
Dual In·Line
High Power
(PD>500mW)

Ambient Condition

9JA

Copper heat si nk

37°C/W typ

MOUNTING and HEAT SINK SUGGESTIONS for
MECL.III
With large subnanosecond logic systems, the use of
multilayer printed circuit boards is recommended.
Such boards permit better ground planes and shorter
interconnection runs than single·layer boards and also
allow better use of stripline techniques.
MECL III circuits have an average power dissipa·
tion of approximately 60 mW per logic gate. Ade·
quate cooling should be provided to insure that
device junction temperatures do not exceed 110°C.
The dc data sheet specifications for MECL III are
given for an operating temperature range from -300 C

;;. 500 linear fpm blown air SOoC/W typ
Mounted in heat sink
and
500 linear fpm blown air
or
Mounted in heat sink
and
on printed circuit ground
plane using termal paste

8 JA + T A
(SOoCIW) + 2SoC = 33.2 °c

= (0.164 W)

Under the above operating conditions the MECL
10,000 quad gate has its junction elevated above
ambient temperature by only 8.2°C.
Ellen though devices on a printed circuit board
may each have different power dissipations, all will
have the same input and output levels provided that
each is subject to identical air flow and the same
ambient air temperature. This eases design, since the
only change in levels between devices is due to the
increase in ambient temperature as the air passes over
the devices, or differences in ambient temperature
between two devices.

AlA FLOW (LFPM)

4" )( 6"

= PD

35°C/W max

FIGURE 22 - THERMAL CONDITIONS FOR
DC SPECIFICATIONS - MECL III

'·24

to +850 C for the conditions described in the table
of Figure 22.
The designer may want to use MECL III under
conditions that vary from those given. The main
restriction facing the designer is that a few high power
dual in·line parts' dissipating typically 900 mW under
load require heat sinking to assure a 0 JA .;;; 350 C/W
which will keep iunction temperature below 1100 C.
The .Iow-power dual in-line parts may be used
without air and with higher 8JA. However, the
designer must bear in mind that junction temperatures will be higher for higher 8 JA, even though the
ambient temperature is the same. Higher junction
temperatures will cause logic levels to shift.
As an example, a 450 mW device operated at 8 JA
= BO°CIW shows a HIGH logic level shift of about
17.5 mV above the HIGH logic level when operated
with a 8JA = 50°CIW (level shift = 6TJ X 1.3
mVtC).
If logic levels of individual devices shift by
different amounts (depending on PD and 8 JA). noise
margins are somewhat reduced. Therefore, the system
designer must layout his system bearing in mind that
the mounting procedures to be used should minimize
thermal effects on noise margin.
The following sections on package mounting and
thermal characteristics are intended to provide the
designer with sufficient information to insure good
noise margins and high reliability in MECL III system
use.

thermal conduction and mechanical strength. Also,
mounting holes for low power devices may be
counter sunk to allow the package bottom to contact
the heat plane. This technique used along with
thermal paste will provide good thermal conduction.
Printed channeling is a useful technique for conduction of heat away from the MECL dual in-line
package when the device is soldered into a printed
circuit board. As illustrated in Figure 23, this heat
dissipation method could also serve as VEE voltage
distribution or as a ground bus. The channels should
terminate into channel strips at each side or the rear
of a plug-in type printed circuit board. The heat can
then be removed from the circuit board, or board
slide rack, by means of wipers that come into thermal
contact with the edge channels.

Top View

Ceramic Dual In-Line Package, Case 620

Pac:kage

MECL III low-power devices are specified with
OJA typically 50o CIW, and the high-power units (PD
> 500 mW} with 8JA equal to 35°CIW maximum. To
aid the designer in using the "L" (ceramic dual in-line}
package, curves and data showing thermal characteristics of the package are provided in Figure 21.
The use of multi-layer printed circuit boards is
recommended to provide both a ground plane and a
good thermal path for heat dissipation. Also, a
mUlti-layer board allows the use of microstrip line
techniques to provide transmission line interconnections.
Two-sided printed circuit boards. may be used
where board dimensions and package count are small.
If possible, the VCC ground plane should face the
bottom of the package to form the thermal conduction plane. If signal lines must be placed on both
sides of the board, the VEE plane may be used as the
thermal plane, and at the same time may be used as a
pseudo ground plane. The pseudo ground plane
becomes the ac ground reference under the signal
lines placed on the same side as the VCC ground
plane (now on the opposite side of the board from
the packages). thus maintain ing a' microstrip signal
line environment.
Two-ounce copper board i.s recommended for

Ceramic
Dual-In-Line
Flat

Spacing (Inchs,)
Cy
Cz
Cx
0.5
0.2
0.9
0.4

0.08

0.45

Side View

FIGURE 230 - TYPICAL MECL IIilMECL 10,000
CIRCUIT BOARD SPACING

FIGURE 23b - CHANNEL/WIPER HEAT SINKING ON
DOUBLE LAYER BOARD USED WITH MECL III

°i.e. MC1654. MC167B. MC1694, etc.

1-25

For the high-power devices requiring (}JA of
less than 350 C/W, a suitable heat sink is the
IERC-LlC-214A2WCB shown in Figure 24. The heat
sink should have a minimum of 500 Ifpm blown air
or be mounted directly on the copper ground plane
(using silicone paste) if used in still air, to meet the
350 C/W maximum rating. (See IERC Data Sheet for
lIC-214A2WCB.) The heat sink shown allows easy
access to the dual in·line IC pins for connection to
Microstrip line.

Air Flow
The majority of MECl III users employ some
form of air-flow cooling. As air passes over each
device on a printed circuit board, it absorbs heat from
each package. This heat gradient from the first
package to the last package is a function of the air
flow rate and individual package dissipations. Figure
25 provides gradient data at power levels of 200 mW.
250 mW, 300 mW, and 400 mW with an air flow rate
of 500 Ifpm. These figures show the proportionate
increase in the junction temperature of each dual
in-line package as the air passes over each device. For
higher rates of air flow the change in junction
temperature from package to package down the air
stream will be lower due to greater cooling.
(For further discussion of Thermal Management in
MECl systems, see MECl System Design Handbook,
Ch.6.)
FIGURE 24 - MECL III HIGH-POWER DUAL IN-LINE
PACKAGE MOUNTING (With Heat Sink, in 500 Ifpm of Airl

COMPATIBILITY AMONG MECL FAMILIES
Power Dissipation

Junction Temperature Gradient

(mWI

(OC/Package I

200
250
300
400

0.4
0.5
0.63
0.88

MECL circuits are designed to interface with each
other over a power supply voltage range of ±10%
from the nominal -5.2 V without loss of noise margin
(other than that due to reduced signal swing at low
voltage). However, if two circuits are at different
supply voltages or on the same power supply with a
voltage offset between circuits, there will be a
predictable loss of noise margin.
The MECL 10,000 logic family was designed to be
directly level compatible with the MECL III logic
family in dual in-line packages. The MECL II family
has somewhat higher output levels but is compatible
with the faster MECl 10,000 and MECL III inputs
when MECL II is loaded with the resistor pair, shown
in Figure 26. The resistor combination insures full
noise margin in the logic LOW level. An alternate
approach is to use a single 510 ohm resistor to VEE
on the MECl II output, but some loss of noise margin
takes place. Conversely, lightly loading the MECL
10,000 or MECL III outputs with a 1.5 kD resistor
raises the output logic levels to meet MECL II
requirements. MECL II will operate directly with
MECL 10,000 and MECL III, but there is a loss of
noise margin (at the interface point only).

Devices mounted on 0.062" PC board with Z aXIs spacing of
0.5". Air flow is 500 'fpm along the Z axis.
FIGURE 25 - THERMAL GRADIENT OF
JUNCTION TEMPERATURE
U6-Pin MECL Dual In·Line Packagel

MECL II'
6n

MECL 10.000
orMECLII'

~
1.5 k

MECL 10000
or MECL "'

VEE
MECL II

~

• no internal 1.5

kn

pulldown resistor

FIGURE 26 - INTERFACING MECL II TO
MECL III OR MECL 10,000

'-26

INTERFACING MECL to SLOWER LOGIC TYPES

~

MECL circuits are interfaceable with most other
logic forms. For MECLlMTTLlMDTL interfaces, when
MECL is operated at the recommended -5.2 volts and
TTL/DTL at +5 V supply, currently available translator circuits, such as MC10124 and MC10125, may
be used.
For systems where a dual supply (-5.2 V and + 5
V) is not practical, a discrete-component translator
can be designed. For details, see MECL System
Design Handbook, Ch. 8. Such circuits can easily be
made fast enough for any available TTL.
MECL also interfaces readily with MOS. With
CMOS operating at +5 V, any of the MECL to TTL
translators works very well. On the other hand,
CMOS will drive MECL directly when using a
common -5.2 V supply. P-channel MOS, operating
with a negative supply, requires simple translators to
equalize the differing logic levels.
Specific circuitry for use in interfacing MECL
families to other logic types is given in detail in
Chapter 8 of the MECL System Design Handbook.
Complex MECL 10,000 functions are presently
available to interface MECL 10,000 with MOS
logic, MOS memories, TTL tri-state circuits, and
IBM bus logic levels.

·5.2 V

(a)

~

(b)

~

(c)

·2.0 V

Rp

·5.2 V

FIGURE 27 - PULL-DOWN RESISTOR TECHNIQUES

power and load requirements (see MECL System
Design Handbook, Ch. 3). Power may be saved by
connecting pull-down resistors in the range of 50
ohms (100 ohm minimum for MC10,500 and
MC10,600 Series parts) to 150 ohms, to -2.0 Vdc, as
shown in Figure 27(b). Use of a series damping
resistor, Figure 27(c), will extend permissible lengths
of unmatched-impedance interconnections, with
some loss of edge speed.
With proper choice of the series damping resistor,
line lengths can be extended to any length', while
limiting overshoot and undershoot to a predetermined amount. Damping resistors usually range in
value from 10 ohms to 150 ohms, depending on the
line length, fanout, and impedance. The open emitterfollower outputs of MECL III and MECL 10,000 give
the system designer all possible line driving options.

CIRCUIT INTERCONNECTIONS
Though not necessarily essential, the use of multilayer printed circuit boards offers a number of
advantages in the development of high-speed logic
cards. Not only do multi-layer boards achieve a much
higher package density, interconnecting leads are kept
shorter, thus minimizing propagation delay between
packages. This is particularly beneficial with MECL
III which has relatively fast (1 ns) rise and fall times.
Moreover, the unbroken ground planes made possible
with multi-layer boards permit much more precise
control of transmission line impedances when these
are used for interconnecting purposes. Thus multilayer boards are recommended for MECL III layouts
and are justified when operating MECL 10,000 at top
circuit speed, when high-density packaging is a
requirement, or when transmission line interconnects
are used.
Point-to-point back-plane wiring without matched
line terminations may be employed for MECL interconnections if line runs are kept short. At MECL II
speeds, this applies to line runs up to 12 inches, for
MECL 10,000 up to 8 inches, and for MECL III up to
1 inch (maximum open wire lengths for less than 100
mV undershoot!. But, because of the open-emitter
outputs of MECL 10,000 and MECL III circuits,
pull-down resistors are always required. Several ways
of connecting such pull-down resistors are shown in
Figure 27.
Resistor values for the connection in Figure 27 (a)
may range from 270 ohms to 2 kn depending on

I----tpd - - - - - l
B

FIGURE 29. - PARALLEL TERMINATED LINE

~r=:) Rlf.~D=::J--)

Zo

R2
·5.2 V

fiGURE 29b - PARALLEL TERMINATION THEVENIN eQUIVALENT
• Limited only by line attenuation and
bandwidth characteristics.

1-27

~:t--c;=
Ap

l

VEE

A

8

c

"':+-r'L~-_-_-_-_~-_-_"i______.J 50%
FIGURE 31 - TWISTED PAIR LINE DRIVER/RECEIVER
FIGURE 30 - SERIES TERMINATED LINE

For board to board interconnections, coaxial cable
may be used for signal conductors. The termination
techniques just discussed also apply when using coax.
Coaxial cable has the advantages of good noise
immunity and low attenuation at higR frequencies.
No significant performance degradation occurs for
lengths up to 20 feet for MECL III, and up to 50 feet
for MECL 10,000.
Twisted pair lines are one of the most popular
methods of interconnecting cards or panels. MECL
complementary outputs are connected to one end of
the twisted-pair line, and a differential line receiver to
the other as shown in Figure 30. RT is used to
terminate the twisted pair line. The 1 to 1.5 V
common-mode noise rejection of the line receiver
ignores common·mode cross-talk, permitting multiple
twisted pair lines to be tied into cables. MECL signals
may be sent very long distances (> 1000 feet) on
twisted pair, although line attenuation will limit
bandwidth, degrading edge speeds when long line runs
are made.

One major advantage of MECL over saturated
logic is its capability for driving matched-impedance
transmission lines. Use of transmission lines retains
signal integrity over long distances. The MECL III and
MECL 10,000 emitter·follower output transistors will
drive a 50·ohm transmission line (100 ohms or greater
for MECL 10,500 and MC10,BOO Series) terminated
to ·2.0 Vdc. This is the equivalent current load of 22
mA in the HIGH logic state and B mA in the LOW
state.
Parallel termination of transmission lines can be
done in two ways. One, as shown in Figure 28(a),
uses a single resistor whose value is equal to the
impedance (Zo) of the line. A terminating voltage
(VTT) of ·2.0 Vdc must be supplied to the
terminating resistor.
Another method of parallel termination uses a pair
of resistors, Rl and R2. Figure 28(b) illustrates this
method. The following two equations are used to
calculate the values of R 1 and R2:
Rl

=

1.B Zo

-D

R2=Rl'Zo
Rl + Zo

~  1000'

Limited by Cable Response
Only, Usually> 1000'

Limited by Cable Response
Only, Usually> 1000'

>25%

>50%

>75%

Yes

Yes

Not recommended

-

Yes

MSI/LSI Parts
Maximum Twisted Pair Length
(Differential Drive)

No
Yes
(Wire·OR)

The Ground Plane to Occupy

Percent Area of Card

Wirewrap may be used
Compatible with MECL 10,000

With

proper I ntertace

*Some devices may not be connected to VEE; see specific data sheet Information.

1-31

PACKAGE OUTLINE DIMENSIONS
A letter suffix to the MECL logic function part number is used to specify the package style (see drawings below).
See appropriate selector guide for specific packaging available for a given device type.

L SUFFIX
CERAMIC PACKAGE
CASE 620

F SUFFIX
CERAMIC PACKAGE
CASE 607·04

INCHES
MA.

MILLIMETERS

DIM

A
C

D
f
Ii

DIM MI.

Mil IMETERS
......
MAlt
S.10 S.!!!

A

•

076

203
0.250.41
0.08 015
1 2165C
013 089

C

0

•

..

, ''"

G
H
J

181(1
O.2!'!
1.62

OJOO

K
L
M

0

•

MA'

19.05 19.81
6.98
6.22
4.116
.111
0.51
0.38
1.85
1.40
2.54 ISC
1.14
0.51
0.30
0.20
4.06
3.18
1.31
7.87
0.51

'"

1.02

MIN

NOTES:
1 lEADS WITHIN 0.13 mm (O.DOS) RADIUS

0.780
0.245 0.215
0.160 0._
0.015 0.020
o.os. 0....
o.l00RSC
0.020 0.045
0.008 0.012
0.125 0.160
Q.150

-

0.020

OF TAUE POSITION AT SEATING PLANE
2 AT MAXIMUM MATERIAL CONDITION'
PKG. INDEX: NOTCH IN LEAD
NOTCH IN CERAMIC OR INK DOT'
3 DIM "t" TO CENTER OF LEADS
WHEN FORMED PARALLEL'

0.31

",

0.040

L SUFFIX
CERAMIC PACKAGE
CASE 632-02

L SUFFIX
CERAMIC PACKAGE
CASE 623

.
.
~
~
~

1

-1l-oJ

f

r- A-L.l
~-1c

DIM

M lIMET RS
MI.
MU

.,.

31.Z4

1.Z30

••
• ..
••
I.

C

D

J

K

L

32.21
13.1Z

..

.41
1.27
1.52
U4BSC
0.20
D."

..IS.248SC.. ..D.

M

•

•0.1

JIH" ~ I\I~~J~

INCME

D.'
0.016
aulD
0.1
0.0111

D.

[L

H~-lGf--

•• x

1.210
D.
D.
.020
0.060
C

DIM

..

A
B

C

asc

0
F
G

"

J
K
L
M

NOTES:
1. DIM "l" TO CENTER OF
LEADS WHEN FORMED
PARALLEl.

M
P

2. LEADS WITHIN 0.13 mm
(0.005) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
(WHEN fORMED PARALLEL)

SEATING K
PLANE

MILLIMETERS
MIN MAX
16.S
19.9
0.660
5.59
7.11 0.220
5.08
0.3SI 0.584
0.77
1.77
2.54 BSC
0.203 0.3SI
2.54
7.62 SSC
15"
0.51
0.76
8.25

NOTE, OIMENSION "L" TO CENTER OF
LEAOS WHEN FO RMED PARALLEL.

'-32

U

11_

J-,r-

PSUFFIX
PLASTIC PACKAGE
CASE 646

MllllMETlRS
DIM

MIN

MAX

A

18.16
610
4.06
0.38

18.80
660
4.57

•
•
C
f

0.51

H

1.02
152
254 lise
1.83
132

J

0.20

0.30

292
7.31

3.43

G

•

l
M

P

051
.13

Q

0.51

N

7.81

10'
102
0.38
0.76

iNCHt$
MAX
MI'

0740

0.715
0.240
0.160
0.015

~
0.180

0.040

0.060

0.052
0008
0.115
0.290

0.012
0.012
0.135

PSUFFIX
PLASTIC PACKAGE
CASE 649

NOTES
1 LlAOSWITHINO 13mm
(DOO~I

Dlooese

0.020
.0005
0020

RAOIUS

O~

TRUE

POSITIONATS(AT1NG
PLA/riEAT IoIAXIMUM
MATEAIAlCONOITION
2 DIMENSiON "l" TO
CHHEAOFUAOS
WH(NfORMED
PARAllEL

0.020

0.310

10'
0.040
0015
D.OlD

O"n~""o"
I~'n\.~

l In IUd C'''tf,I" .. ",h."
ga,an,1

F SUFFIX
CERAMIC PACKAGE
CASE 660

P SUFFIX
PLASTIC PACKAGE
CASE 648
MllliMITlHS

INCH(S

DIM

MIN

MAX

MIN

MA-~

A

20.10

2134

oel~

08~

B

610

6.60

02UJ

0160

ON UAOOROoro .. COvl P

III
,

0300008
3430115
lBl0190
100

0012
13
310
100

0 ~1
0.13

1.02
alB

0

051

01600200030

292
131

0
OOO!l

TOTAtOFTRuEPOSITlf)NAT

I OIM"L"TO CfNTEIIOf LEADS
WHENFOAMEO

PAR~LlEL

94 •

l

, •
I "

~OTES

j

~~"]-,],~:TI'11~(

lor

1. _.

HI-

_7--1
IN

~,~~~~~~.~
__~I_==_==K==~I~;
J

,I

I

c

f·

L SUFFIX
CERAMIC PACKAGE

CASE 690·05
MILLIMETERS

DIM
A
C
0
F
G
H
J
K
L

M
N

MIN
MAX
1S.80 19.23
2.79 3.S1
0.41 0.51
1.14 1.52
2.54 sse
0.33 0.S9
0.20 0.30
3.56 4.06
762 sse
10"
0.76
1.14

INCHES

MIN
MAX
0.740 0.757
0.110 0.150
0.016 0.020
0.04
.06(1
O.IIM sse
0.013 0.035
0.008 0.012
0.140 0.160
0.300 sse
10'
0.030 0.045

NOTES.
I. LEADSWITHtN 0.13 mm !0.0051 RAOIUS
OF TRUE POSITION AT SEATING PLANE
AT MAXIMUM MATERIAL CONDITION.

1-33

0310
0245 0260
0060 aDA'
0015 0019
0.003 0006
00508
0.025 0035
0250 OJ
0.145
-

• "

G

H

,

INCHES
MAK
MI'

1016
2.03

f

'.lAXI'.lUMMAHRIAl COlo,01111".

.., ."

MILLIMETER
MIN
MAX

622
152
OJ,

C

1 LEAf)SWITIiIt.jO II n'''''O 005'

{~~~h;J~h~~~
f+~4B~r~O_~o~
oro

·"
A

1 LEAOt.lO ttOE'ltTlflE08¥!A8

~+-~ ~+: ~~--WafH-~JD!

J
K
L
M

OIM

~OTES

01.
'D1B ""
.64 '.5."'

.

1892

-

-

.38

"'00

-

0015

SECTION V - MECL LITERATURE
Application Note Abstracts

(Application notes are available from Motorola Inc.
at P.O. Box 20924, Phoenix, Arizona 85036)

AN-417A
"ICCrystal Controlled Oscillators"
Crystal controlled square wave oscillators can be used
as clock drivers, harmonic sources for frequency
markers, in frequency synthesizers, frequency comparators, etc_ It is difficult to obtain high frequency
square waves due to the long propagation delays of
most integrated circuits_ MECL 10,000 circuits with 2
ns propagation delays eliminate this problem_ This
note describes square wave oscillator circuits with
crystal control that are capable of output frequencies,
inverted and non-inverted, up to 200 MHz_

Exclusive-OR gates and parity trees available in the
MRTL, MTTL, MOTL, and MECL families to design
simple parity and single error Hamming parity detection and correction circuits is discussed.
AN-504
"The MC1600 Series MECl III Gates"
This application note explains the basic operation of
the various gates available in the MECL III logic
family. Typical operating characteristics are included
as an aid to the designer of high-speed logic along
with recommended layout, breadboarding, and testing procedures. This note will also provide the
designer with some insight into the overall capabilities
of this logic line as they apply to this application.

AN-418
"High Speed Monostable Multivibrators
Design with MECL Integrated Circuits"
This note describes two configurations of monostable
multivibrators using the MC1023 clock driver and a
delay element_ Operating frequencies in excess of 70
MHz and pulse widths of 4 nanoseconds are possible.
Methods of obtaining the predetermined delay are
also discussed.

AN-532-A
"MTTL and MECl
Avionics Digital Frequency Synthesizer"
This application note discusses several approaches
that illustrate applications of complex digital integrated circuits directed toward avionics frequency
synthesizers. The techniques presented point out the
simpliCity with which both MTTL and MECL digital
integrated circuits can be used to produce frequency
synthesis for avionic communications.

AN-487
"A High-Speed Ripple-Through
Arithmetic Processor"
A simple, systematic building block approach for
designing a high-speed, ripple-through arithmetic
processor is described. Using only gates and full
adders, ultra-high speed multiplication, division,
square root extraction, addition, and subtraction may
be performed. Several variations of an arithmetic
processor design are detailed and comparisons of
speed and package count using the MECL and MDTL
logic in l4-pin, l6-pin, 24-pin, 32-pin, and 64-pin
packages are given.

AN-534
"Com mutating Filter Techniques"
This note describes the design and construction of
commutating (digital) filters using Motorola MECL II,
MTTl III and MC7400 digital integrated circuits. A
short section on commuting filter theory is included
along with examples of filters and their responses.
AN-536
"Micro-T Packaged Transistors
for High Speed logic Systems"
Integrated circuits have become the first thought of
most designers faced with a digital problem. For
specialized needs such as extremely high speed, high
speed with minimum power dissipation, or unusual
logic functions, however, discrete transistors in the
ultra-small Micro-T package may prove advantageous.

AN-488
"High-Speed Addition
Using Lookahead Carry Techniques"
The use of the lookahead carry principle to increase
the operating speed of adder systems is described.
Several adders of different sizes using variations of
lookahead carry are developed and the logical
implementation of these using the MTTL III and
MECL II logic families is given.

AN-553
"A New Generation of
. Integrated Avionic Synthesizers"
The need to generate signals of a multitude of
different frequencies for avionic systems has resulted
in complex solutions in the past. With the introduction of certain standard product integrated circuits,
frequency synthesis using digital phase locked loop
techniques presents a more practical solution. Several
different types of servo phase locked loop systems are

AN-496-A
"Error Detection and Correction
Using Exclusive-OR Gates and Parity Trees"
The availability of Exclusive-OR gates and parity
trees allows digital system designers to use error
detection and correction codes to improve their
system reliability and maintainability without the
major cost penalty that has existed in the past. Use of

1-34

(Application notes are available from Motorola Inc.
at P.O. Box 20924, Phoenix, Arizona 85036)

APPLICATION NOTE ABSTRACTS(continuedl
discussed and a practical design example is given.
Results of design examples are presented along with
possible applications.

AN-581
"An MSI 500 MHz Frequency
Counter Using MECl & MTTl"
The design of an MSI a-digit lED readout 500 MHz
counter using MECl III, MECl 10,000 and TTL is
discussed. Described are two prescalers using MECl,
along with the designs for two input amplifiers. A
unique time-base controller is also shown for
providing a multiphase clock to the counter.

AN-556
"Interconnection Techniques
for Motorola's MECl 10,000 Series ECl"
This application note describes some of the characteristics of high speed digital signal lines and gives
wiring rules for MECl 10,000 emitter coupled logic.
The note includes discussions of printed circuit board
interconnects, board-to-board interconnects, and
wirewrapping techniques.

AN-583
"A MECl 10,000 Main Frame
Memory System Employing Dynamic
MMOS RAMS"
Thi.s application note describes the construction of a
dynamic MOS random access memory system that
employs MECl 10,000 for the memory control logic.
Considered in detail are the memory organization,
layout rules, interfacing, and generation of the
needed control signals.

AN-565
"Using Shift Registers
as Pulse Delay Networks"
This note discusses a high-speed clocked shift register
using MECl 10,000 flip-flops and employed as a
digitial incremental delay. The register may be
clocked with a frequency division counter to accom·
plish delay with increments as small as 7.5 ns. The
circuit, as developed, may be used for timing basic
computer decisions or as an adjustable digital delay
fine for pulses.

AN-584
"Programmable Counters Using the
MC10136 and MC10137 MECl 10,000
Universal Counters"
This application note describes operation of two
MECl 10,000 Universal counters, and their use in
high speed programmable counters. Circu it diagrams
and waveform traces are included.

AN-566
"High Speed Binary Multiplication
Using the MC10181"
With a MECl 4-bit arithmetic unit you can reduce
both package count and interconnections in a ripple
multiplier and achieve very fast multiply times.

AN-592
"AC Noise Immunity of MECl 10,000
Integrated Circuits"
This application note discusses ac noise immunity as
it relates to MECl systems. Test circuits for measuring
ac noise immunity are shown, and results to be
expected for typical MECl 10,000 circuits are
presented.

AN-567
"MECl Positive and Negative logic"
Either positive or negative logic assignments may
prove convenient to the MECl system designer. This
note describes the equivalences between the two
approaches and providing guides for converting
between them.

AN-700
"Simulate MECl System Interconnections
With A Computer Program
Circuit interconnections are an important part of
system design when using high speed logic circuits.
The design of interconnecting paths affects both system speed and system accuracy. This application note
describes the use of a computer program to simulate
interconnections for high speed digital systems.

AN-579
"Testing MECl 10,000
Integrated logic Circuits"
Circuit testing techniques become increasingly important as circuit speeds approach and exceed the 2
ns range. With MECl 10,000 and MECl III circuits it
is possible to exploit their 50-ohm output drive
capability to obtain highly accurate test data. This
application note describes techniques for testing
MECl 10,000 circuits for laboratory evaluation, and
discusses key parameters which should be measured
during incoming inspection rapid testing_

AN-701
'-Understanding MECl 10,000 DC and AC
Data Sheet Specifications"
The dc and ac specifications for emitter-coupled logic
are somewhat different than those for saturated logic.
This application note describes the specifications
found on a MECl 10,000 data sheet and provides
information for understanding these specifications for
persons unfamiliar with emitter-coupled logic.

'-35

(Application notes are available from Motorola

APPLICATION NOTE ABSTRACTS (continued)

at P.O. 60·x 20924, Phoenix, Arizona 85036)

AN-709
"MECL 10,000 Arithmetic Elements
MC10179, MC10180, MC10181"
The MECL 10,000 arithmetic functions include a
4-bit arithmetic unit, a dual adder/subtractor, and a
lookahead carry block. This application note describes
the devices and shows their operation in large system
configurations.

AN-720
"Interfacing With MECL 10,000"
This article describes some of the MECL circuits used
to interface with signals not meeting MEGL input or
output requirements. The characteristics of these circuits such as; input impedance, output drive, gain,
and bandwidth allow the system designer to use these
parts to optimize his system. MEGL interface circuits
overcome a problem area of many system designs,
which is the efficient coupling on non-compatible signals.

AN-726
"Bussing With MECL 10,000
Integrated Circuits"
High speed data bus lines are an important part of
modern computer systems. Features of the MEG L
10,000 family allow construction of data busses in a
transmission line environment. This application note
describes some of the guidelines to consider when
designing high speed bus lines and shows how the
MG10123 can be used for maximum bus performance.

1-36

SUPPLEMENTARY LITERATURE
1. "The Case for Emitter·Coupled Logic," by
Anthony A. Vacca, ELECTRONICS, April 26,
1971.
2. "Low Power ECL Bids for TTL Applications,"
by Ed Tynan, ELECTRONIC PRODUCTS, May
17,1971.
3. "High·Speed Translators Simplify ECL/TTL
Interface ," by Bill Blood, COMPUTER
HARDWARE, July 15, 1971.
4. "Speedup in ECL," by John Rhea,
ELECTRONIC NEWS, September 13,1971.
5. "Generate Stable High·Frequency Signals With
Digital Mixers and Phase Locked Loops," by R.
Treadway and l. J. Reed, ELECTRONIC
DESIGN, January 6, 1972.
6. "ECL vs. Schottky," Special Report by John
Rhea, ELECTRONIC NEWS, March 13, 1972.
7. "ECL Gates Stretch Oscillator Range," by W.
Blood, ELECTRONICS, March 13, 1972.
B. "ECL - Who's Leading the Band?" by Sheldon
Edelman, THE ELECTRONIC ENGINEER,
April 1972.
9. "ECL Arithmetic Unit Performs High·Speed
Binary Multiplication," by Tom Balph, EDN,
May 1, 1972.
10. "Measure Frequency and Propagation Delay with
High Speed ECL Circuits," by William R. Blood,
Jr., EDN, July 1, 1972.
11. "Use ECL 10,000 Layout Rules to Help Solve PC
Board I nterconnections, Part I," by Tom Balph,
ELECTRONIC DESIGN, August 17, 1972.
12. ibid, Part II, ELECTRONIC DESIGN, September
2,1972.
13. "ECL/MOS for Optimum Minicomputer
Systems," by P. Breedlove, COMPUTER
DESIGN, August 1972.

15. "Boost Counting Speed to 110 MHz with ECL
Universal Counters", by Tom Balph and Howard
Gnauden, ELECTRONIC DESIGN, April 1, 1973.
16. "Digital Alphabet Spells Change in IC Usage" by
Ed Tynan, ELECTRONIC BUYERS NEWS,
October 2, 1972.
17. "ECL Shift Registers make Versatile Pulse Delay
Networks", by Jon DeLaune, EDN, October15,
1972.
lB. "Testing MECL 10,000 - What it Takes to Get
High on Speed," by Bill Blood, ELECTRONIC
PRODUCTS, November 20, 1972. (AN·579)
19. "Blend ECL and TTL ICs to Obtain High Fre·
quency Counter Circuits," by Jon DeLaune,
ELECTRONIC DESIGN, March 15, 1973, page
112.
20. "Leapfrog Ahead with Standard Family MSII
LSI," by Bob Cushman, Special Features Editor,
EDN, April 5, 1972, page 30.
21. "Positive versus Negative Logic," by Tom Balph,
Electronic Products Magazine, August 21, 1972.
22. "Improve Fast·Logic Designs," by Bill Blood,
Electronic Design, May 10, 1973.
23. "Use ECL for Your High·Speed Design - Part I,"
by lloyd Maul, EDN, July 20, 1973.
24. "ECL 10,000 Layout and Loading Rules Part II," by lloyd Maul, EDN, August 5, 1973.
25. "Interface TTL Systems With ECL Circuits," by
George Adams, EDN, September 5, 1973.
26. "MECL 10 K Reliability Evaluation," by Paul
Greer, Electronic Buyers' News, November 26,
1973.
27. "Make Sure Your Logic Keeps Pace With Mem·
ory Cycle Times" by Dick Brunner, EON,
January 20, 1973.
2B.

14. "Testing MECL 10,000 - What it Takes to Get
High on Speed", by Bill Blood, ELECTRONIC
PRODUCTS, November 20, 1972.

'·37

"Increasing Minicomputer Speed With Emitter·
Coupled Logic" by Jon DeLaune, COMPUTER
DESIGN, February 1974.

Contents of the MECL SYSTEM DESIGN
HANDBOOK (206 pages):
CHAPTER 1 - MECL Families
The Basic MECL Gate
Noise Margin
MECL Circuit Types
MECL Flip-Flops
Operation of Flip-Flop
MECL Family Comparison

CHAPTER 6 - Thermal Considerations
MECL Integrated Circuit Heat Transfer
MECL DC Thermal Characteristics
Heat Dissipation Techniques
Mounting Techniques
CHAPTER 7 - Transmission Line Theory
Transmission Line Design Information, With
Examples
Signal Propagation Delay for Microstrip and Strip
Lines With Distributed or Lumped Loads
Microstrip Transmission Line Techniques,
Evaluated Using TOR Measurements, with
Examples
The Effect of Loading on a Parallel-Terminated
Transmission Line, With Examples
Analysis: Series Terminated Lines Compared to
Parallel Terminated Lines, With Example
Analysis of Series Damping Terminations
Bibliography

CHAPTER 2 - Using MECL
MECL II Design Rules
A_ Logic Design Considerations
B_ System Layout Considerations
C_ Circuit Board Layout Techniques
D_ Backplane Wiring
E_ System Considerations
MECL 10,000 Design Rules
A_ General Considerations
B_ Printed Circuit Card Layout Techniques
C_ Power Supply Bypassing on Circuit Cards
D_ Backplane and Loading Considerations
E_ System Distribution and Grounding
F_ Loading Rules for MECL 10,000

CHAPTER 8 - MECL Applications
Counters
Shift Registers
Adders
Code Converters
Memories
Oscillators
One-Shot Mu Itivibrators
Linear Applications
Translators

MECL III Design Rules
A Circuit Card Layout
B_ Transmission Line (Microstrip Line)
C_ On-Card Clock Distribution via Transmission
Lines
0_ Off-Card Clock Distribution
E_ Testing MECL III
CHAPTER 3 - Printed Circuit Board Connections
Transmission Line Geometries
Basic Transmission Line Operation
Unterminated Lines
Series Damped and Series Terminated Lines
Parallel Terminated Lines
Transmission Line Comparison
Wirewrapped Cards

CHAPTER 9 - AC Noise Immunity
Introduction
Test Circuits
Test Conditions
Test Results
Conclusions
CHAPTER 10 - MECL 10,000 For Military
Applications
Fanout
Termination and Interconnect Techniques
Power
Noise Margin
AC Performance

CHAPTER 4 - System Interconnections
Connectors
Coaxial Cable
Differential Twisted Pair Lines and Receivers
Ribbon Cable
Schottky Diode Termination
Parallel Wire Cables
Twisted Pair Cable, Driven Single-Ended

APPENDIX I - MECL Hardware and Components

CHAPTER 5 - Power Distribution
System Power Calculations
Power Supply Considerations
System Power Distribution
Backplane Power Distribution
On-Card Power Distribution
VTT Termination Voltage Distribution

Motorola's MECL System Design Handbook may be
purchased for $2.50 per copy. Copies may be obtained
by sending check or money order payable to Motorola
Inc., at P. D. Box 20924, Phoenix, Arizona 85036.

'-38

INTEGRATED CIRCUITS

SELECTOR GUI DES

2-1

INTEGRATED CIRCUITS
+750

MC1000 Series (0 to
C)
MC1200 Series (-55 to +1250 C)

FEATURES

The MECL II series of monolithic integrated logic circuits presents the system
design engineer with an integrated circuit family designed to permit system implementation with the fewest possible number of individual units. This approach offers
cost savings, reduced power supply requirements, smaller physical size and high
reliability.

• Propagation typically 4 ns
per logic decision
• Excellent noise immunity
characteristics
• Simultaneous OR/NOR
outputs
• High fan-in and fan-out
capabi Iities
• Internally temperature
compensated

MECL II circuits feature the fastest propagation delay times with commensurate
rise and fall times of any family of integrated circuits. This feature plus the constant
current feature of MECL imposes fewer restrictions on design, layout and system
fabrication than any other high·speed family.

FSUFFIX
CERAMIC PACKAGE
CASE 1107

LSUFFIX
CERAMIC PACKAGE
CASE 832
TO-ll11

LSUFFIX

PSUFFIX

CERAMIC PACKAGE
CASE 620

-

PLASTIC PACKAGE
CASE 1148

F SUFFIX

."''"OX

CERAMIC PACKAGE
CASE 650

PLASTIC PACKAGE
CASE 6411

FUNCTIONS AND CHARACTERISTICS

(VCC

=0

VEE

= -52

V TA

Typo

Function

= 25 0 CI

CD
o to +75 0 C

-55 to +1250 C

Loading
Factor
Each
Output

Propogation
Dolay
ns typ

Power

Dissipation

mW
typ/pkg

Caso

Single 6-lnput Gate, 3 OR Outputs w/Pulldowns
3 NOR Outputs w/Pulidowns

MC1201F,L

MC1001P

25

4.0

115

607,632,646

Dual4-lnput Gate, 2 OR Output's w/Pulidowns

MCI204F.L

MC1004P

25

4.0

95

607,632,646

Dual 4-1 nput Gate, 2 OR Outputs w/o Pulldowns
2 NOR Outputs w/o Pulldowns

MC1206F,L

MC1D06P

25

4.0

45

607,632,646

Triple 3·lnput Gate, 3 NOR Outputs w/Pulidowns

MC1207F,L

MC1007P

25

4.0

110

607,632,646

Quad 2-lnput Gate, 4 NOR Outputs w/Pulidowns

MC1210F,L

MC10l0P

25

4.5

115

607.632,646

Quad 2-lnput Gate, 2 NOR Outputs w/Pulldowns

MC1211F,L

MC10llP

25

4.5

95

607,632,646

2 NOR Outputs w/Pulidowns

2 NOR Outputs w/o Pulldowns

hm Load
nstyp

Type

CASE 632

-

PSUFFIX
PLASTIC PACKAGE
CASE 648

L SUFFIX
CEFtAMIC PACKAGE

'SUFFIX
PLASTIC PACKAGE
CASE 646

Power Dissipation
(No Load)
mW
typfpkg

Coso

150

607,632,646

Dual AID Comparator

MC1650

70

3.5

275

620,650

Dual AID Comparator

MC1651

70

3.0

275

620,650

Binary Counter

MCI654

70

"325 MHz typ

Voltage-Controlled Multivibrator

MC1658

70

"150 MHz tvP

750 LL/

620

125

620,648,650

Dual4-lnput ORINOR Gate

MCI660

70

1.1

120

620,650

Quad 2-1 nput NOR Gate

MCI662

70

1.1

240

620,650

Quad 2-lnput OR Gate

MCI664

70

1.1

240

620,650

Dual Clocked R-S Flip-Flop

MCI666

70

1.8

220

620,650
620,650

Dual Clocked Latch

MCI668

70

1.8

220

Mester-Slave Type D Flip-Flop

MC1670

70

"350 MHz typ

220

620,650

Triple 2-1 nput Exclusive OR Gate

MCI672

70

1.3

220

620,650

Triple 2-lnput Exclusive NOR Gete

MC1674

70

1.3

220

620,650

Bi-Quinary Counter

MC1678

70

"350 MHz tvP

Dual 4-5-lnput ORINOR Gate

MC1688

70

0.8
-500 MHz min

UHF Pre",sler Type D Flip-Flop

MC1690

70

Quad Line Receiver

MC1692

70

4-8it Shift Register

MC1694

70

"325 MHz typ

1 GHz Divide-By-Ten Counter

MC1696

-

·1 GHzmin

1.1

750 L.LJ

620

125

650

200

620,650

220

620,650

750 LL/
650

620
650

CD L suffix denotes Dual In-Line Ceramic Package, F suffix denotes Ceramic Flat Package, P suffix denotes Dual In-Line Plastic Package.
Ii.e., MCI600L = Ceramic Dual In-Line Package, MCI600F

= Ceramic Flat Packege, MCI600P =

U-' Requires Heat Sink - IERC-LIC-214A2WCB or equivalent.
-Toggle Frequency
#DC Loading F actors are based on:
1. Full load output current, IL = -25 mAdc max

2. Maximum input current, lin

=

350 "Adc

2-5

Plastic Dual In-Line Package).

~ rn (S ~ DOD

LOGIC DIAGRAMS

Numbers at ends of terminals denote pin numbers for L package (Case 620 unless noted

CASE

as Case 632) and P pecka99 (Case 646 unless noted as Case 648).
Numbers in parenthesis denote pin numbers for F package (Case 650 unless noted as Case 607).

VCC

VEE

Pin No.

Pin No.

4,5
1,16

12
8

650
620

See individual drawing
for devices withoth.rC .....

GATES------------------------------~----------~
MCl660

(81

.~

(81

5

B

X

3

(7J

(91

(101

6

C

y

2

(61

(101

(11 I

7

0

(91

(111

(14110~

(141

(151 11

15 (31

(161

---X

Po

3~2
5
B

(141
(111

6

(21

(141

=

(161
15

(31

(11

4~
5 B
2

(61

6~
7
3

01

10~
11
14

(21

12~ 15

(31

13

A+B

X

Po == 240 mW typ/pkg (no load)

14 (21

11~ 15
7

MCl688

DuaI4-5·lnput

Triple 2-lnput Exclusive NOR Gate

(61

(81
(91

2

8

(16113~

(101
(141

(31

3
5

(111

6

8

= A+B

tpd == 0.9 ns typ (S10-ohm load)
1.1 ns typ (50-ohm load)

1.1 ns typ (50-ohm load)
mW typ/pkg (no load)

= 240

MC1674

MC1672

Triple 2·lnput Exclusive OR Gate

(16113~

(111

tpd == 0.9 ns typ (510-ohm load)

Po == 120 mW typ/pkg (no loed)

(101

12~

= A+8+C+O
= A+B+C+O

1.1 ns typ (50-ohm load)

(91

(71

(101

(151

(11 13

tpd '" 0.9 ns typ (SlO-ohm load)

(81
(91

10~ 14

14 (21

(1113

(61

~~3

(15111

(81

Quad 2-lnput OR Gat.

B
2
4~
5

(161 12

X
Y

MCl664

MC1662
Quad 2-lnput NOR Gat.

Dual 4-lnput ORINOR Gat.

(61

ORINOR Gate

81
(91
(
(101

3=t=

(71
(61

(111

14 (21

11~
15
7
B

""¥
(141

(31

(21

(151

(31

(161

X=AeS+AeB

tpd'" 1.1 ns typ 15l0-ohm load)
"" 1.3 ns typ (50-ohm load)
Po

= 220 mW

typ/pkg

X=AeB+AeEi

tpd
Po

= 1.1 ns typ (510·ohm load)
= 1.3 ns type (50-ohm load)
= 220 mW typ/pkg

2·6

(11

tpd = 0.8 ns tvp
Po = 125 mW tYP/pkg (No Load)

LOGIC DIAGRAMS (continued)

FLiP-FlOPS------------------------.
MC1SSS

MC1SS8

Dual Clocked R-S Flip-Flop

Dual Clocked latch

(9)

5~a 2

(11)

7

C

(8)

4

R

a

(6)

(::)) : g s :2

(7)

(111

7

(8)

4

3

(16)12~a 15(3)
(14)

9

C

(1113

R

a

C

R

a

«116:):~gs
~

14(2)

(14) 9

C

A

a

(6)

3

(7)

15 (3)
14 (2)

(1) 13

tpd == 1.6 nstyp (5l0-ohm load)
== 1.8 ns typ (50-ohm load)

Po = 220 mW typ!pkg (no-load)

tpd == 1.6 ns typ (S10-ohm load)
= 1.8 ns tvp (50-ohm load)

PO::: 220 mW tvp/pkg (no-load)

(9)

(11)

5

MC1S70

MC1S90

Master·Slave Tvpe 0 Flip-Flop

UH F Prosealar Typo D Flip-Flop

S------,

7 C1

(14) 9 C2

(11) 7 C1

a

2 (6)

2 (6)

(14) 9 C2

(15) 11 01
(15) 11

(8)

4

0

Q 3 (7)

3 (7)

(16) 1202

A-------'

fTog = 500 MHz min

fTog == 350 MHz typ

PO;' 200 mW tvp/pkg (No Load)

Po = 220 mW typ/pkg (no load)

2-7

LOGIC DIAGRAMS (continued)

COUNTERS
MCI654
Binary Counter

00 5

50 3

Clock 1 15

C1

Clock 2

C2

7

01

6

52 9

02

53

11

14

03 12

o·

Q'

AT

AT

a

A

Reset

51

Q

C

10

00

03 13

4

·po = 750 mW typ/pkg
Operating Frequency'" 325 MHz typ
• Requires special heat sink IERe Lie 214A2WCB or equivalent.

MC1678
BI-Quinary Counter

SO

Clock

15

14

ao

13

51

10

Q1

11

52 3

02 4

53 7

03 6

C1
A

Reset

9

o----J---~-t==t==:::!=~==E===~~-J
aD

12

C2 2

03 5

·po

= 750

mW typ

Toggle Frequency

= 350

MHz typ

• Requires special heat sink IERe Lie 214A2WCB or equivalent.

2-8

LOGIC DIAGRAMS (continued)

COUNTERS

(cant.) - - - - - - - - - - - - - - - - - - - - - - - ,
MC1696
l-GHz Divide-By-Ton
Counter

11

vee1

= Pin

VCC2'"
VEE1 =
VEE2""
Bia. POint'"

Pin
Pin
Pin
Pin

ao

10

Q2

4
5
13
12
1•

o

o

a

a
710 Out

Clock 16

....- - - - - - - j c
Enable 2

ceQ
A

A

A

ftog = 1.2 GHz tvp
Po = 650 mW tvp/pkg (No Load)
Output Rise and Fall Times = '.0 ns (20% to 80%)
-This bias point permits capacitive decoupling for

a c performance enhancement.

SHIFT

REGISTER'------------------~
MCl694
4-Bit Shift Registo,

FLIP-FLOP TRUTH TABLE
INPUTS
UTPU
an
D C R S
0
0
0

0
0
0

0

0

0
0
0
0

1
1
1

1

1
1
1
1
1
1
1

0
0

0

°n_1

1
1

0
0
1

1
0

0
1
0
1

0
1
0

1

0
0
1
1

0
0
0
0

0
0
1
1

0
1
0
1

°n_1
1
0

1

0

1

0
1
1

0
1
0
1

1
1
0

1
1

50
2

01
02

aD
13

51
10

01
12

52
3

a2
4

14
15

Clock
Reset

9

·Output State
Undefined

Total Power Dissipation

=<

750 mW typ/pkg

Shift Frequency"" 326 MHz typ

2·9

53

a3

6

5

LOGIC DIAGRAMS (continued)

MULTIVIBRATOR-----........,

OSCILLATOR------_
MC1648
Emitter Coupled Oscillator

MCI668
Voltage-Controlled
Muhivibrator

Co

~~;~~g <>-114--......- 0
Vcx

a

2

6

Bias Filter 12

Input Filter 13

4

veel

= Pin

Pins 1, 14

Vee

=:

VEE

= Pins

7,8

1

VCC2 = Pin 5
VEE=PinS

Operating Frequency

Po

= 225
z:

MHz typ

150 mW typ!pkg
(+5.0 Vdc Supply)

Operating Frequency"" 150 MHz typ

Po

= 125

L, C, Co are external components.
Co is a varactor diode.

mW typ!pkg

COMPARATOR-------------

RECEIVER-----------------MC1692

MCI660
MC16S1
Dual AID Comparator

v,.

6~O

(10)

(9) 5

c.

Quad Line Receiver

(8)

4

-

(6)

00

(7)

00

02

C

a

3

(8) 45~
(9)~

2

(6)

67~.
(10)~

3

(7)

(111

:~::~~~14

Cb(I)13~'5

(14)10~ 14 (2)

(2) 01

(15) 11

(1l12~

(3) 01

(16) 13

15 (3)

~9(13)
Vss

tpd = 3.5 ns typ (MC1650)
3.0 ns typ (MC16S1)

Po = 330 mW tvp/pkg (No load)
Vee = +5.0 V -= Pin 7,10· (11), (14)
VEE
Gnd

tpd

0.9 ns typ (SlO-ohm load)
'.1 ns typ (50·ohm load)
Po = 220 mW typ/pkg (No load)

= -5.2 V = Pin 8 (12)
= Pin I, 16 (4) (5)

2·10

=

MECL 10.000

SERIES

INTEGRATED CIRCUITS FROM MOTOROLA
MC10,100/10,200 Series (-30 to +850 C)
MC10,500/10,600 Series (-55 to +1250 C)

Circuit design with MECL 10,000 is unusually con·
venient. The differential amplifier input and emitter·
follower output permit high fanout, the wired·OR option,
and complementary outputs. MECL III is directly com·
patible with MECL 10,000, and can be used to extend the
speed capability of the MECL 10,000 series.

MECL 10,000 has an excellen t speed-power product,
has relatively slow rise and fall times, and transmission·
line drive capability. The combination of versatile logic
functions and the 2.0 ns propagation delay make MECL
10,000 a versatile family for data handling and processing
systems.
L SUFFIX

P SUFFIX

Cf::AAMIC PACKAGE

Pl-ASTIC PACKAGE

CASE 648

~
_;i"
'.

..

t

PSU'FI'
PL.ASTIC PAC!<::AGE
CASE 649

F SUFFIX
CERAMIC PACKAGE
CASE 652

i

FUNCTIONS AND CHARACTERISTICS

(Vcc'

0

VEE'

-52

V TA'

25°C)

TypoG)

Function

-30

to +850 C

-55

to +125 0 C

Propagation
Delay
nstyp

Power Dissipation

mW
typ/pkg*

Case

Quad 2-lnput NOR Gate With Strobe

MC10l00

-

2.0

100

620

Quad ORINOR Gate

MC10l0l

MC10501

2.0

100

620,648,650

Quad 2-lnput NOR Gate

MC10l02

MC10502

2.0

100

620,648 ,650

Quad 2-lnput OR Gate

MC10l03

-

2.0

100

620

Quad 2-lnput AND Gate

MC10l04

MC10504

2.7

140

620,648,650

Triple 2-3-2-lnput ORINOR Gate

MC10l05

MC10505

2.0

90

620.648,650

Triple 4-3-3-lnput NOR Gate

MC10l06

MC10506

2.0

90

620,648,650

!riple 2-lnput Exclusive OR/Exclusive NOR

MC10l07

MC10507

2.5

110

620,648,650
620,648,650

DuaI4-5-lnput OR/NOA Gate

MC10l09

MC10509

2.0

60

Ouar3-lnput 3-0utput OA Gate

MC10l10

-

2.4

160

620,648

Dual 3-lnput 3-0utput NOR Gate

MC10111

-

2.4

160

620,648

Qued Exclusive OR Gate

MC10113

-

2.5

175

620

Triple Line Receiver

MC10114

MC10514

2.4

145

620,648,650

Q.uad L.ine Receiver

MC10115

MC10515

2.0

110

620,648,650

Triple Line Rac&iver

MC10116

MC10516

2.0

85

620,648,650

Duel2·Wide 2·3·lnput OR·AND/OR·AND·
INVERT Gete

MC10117

MC10517

2.3

100

620,648,650

Dual 2-W'ida 3-lnput OR-AND Gate

MC10118

MC10518

2.3

100

620,648,650

4-Wldo 4,3·3·3·lnput OR·AND Gate

MC10119

MC10519

2.3

100

620,641.;650

:4--Wlde OR-AND/OR-AND-INVEAT Gate

MC10121

MC10521

2,3

100

620,648,650

T .. iple 4-3-3-lnput Bus Driver

MC10123

-

3.0

310

620

Quad MTTL to MECL Translator

MC10124

MC10524

3.5

380

620,648,650

Quad MECL to MTTL Translator

MC10125

MC10525

4.5

380

620,648,650

Dual MECL to MOS Translator

MC10127

-

-

620

BUI Driver

MC10128

-

12.0

700

620

MC10129

-

10.0

750

620

Dual Latch

MC10130

MC10530

2.5

155

620,648,650

Dua' Type 0 Master-Slave Flip-Flop

MC10131

MC10531

f'" 160 MHz

235

620,648,650

Dual Multiplexer With Latch and Common Reset

MC10132

-

3.0

225

Quad Latch

MC10133

MC1Q533

4.0

310

Multiplexer with Latch

MC10134

-

225

620,648

Dual J-K Master-Slave Flip-Flop

MC10135

MC10535

f

140 MHz

280

620,648,650

Universal Hexadecimal Counter

MC10136

MC10536

f - 150 MHz

625

620,650

Quad

CD

a us

Receiver

3.0

620,648
620,648,650

L suffix denotes Dual In-Une Ceramic Package. P suffix denotes Dual In-Une Plastic Package, F suffix denotes flat package
(i .••• MC10100L ~ C.ramic Dual In-Line Package. MC10l00P:: Plastic Dual In-Line Package and MC10500F "" Ceramic Flat Package,)
-External Load Power not included.

2-11

~ ~ ~ [110.000

LOGIC DIAGRAMS

Numbers In parenthesis denote pin numbers for F package (Case 650).

FUNCTIONS AND CHARACTERISTICS

(continued)

Propagati on

Power Dissipation

-30 to +850 C

-55 to + 125°C

Delay
ns typ

typ/pkV'

C ....

MC10137

MC10537

f'" 150 MHz

625

620,650

TypeQ)

Function
Universal Decade Counter
Bi-Quinary Counter

64-Bit Random Acces. Memory (900)

mW

MC10138

-

f::::: 150 MHz

370

620

MCM10140

-

tAccess'" 15 (max)

420

620,690

f = 200 MHz

425

620,648,650

tAccess - 10 (max)

420

620

MCM10143

-

tAccess::: 10

610

623

2S6-Bit Random Access Memory

MCM10144

-

t Access == 30 (max I

420

620,690

64-Bit Regilter Fila (RAM)

MCM10145

625

620

MCM10147

-

= 10

128-Bit Random Access Memory

tAccess

= 12 (max)

420

620

64-Bit Random Access Memory (50 fl)

MCM10148

-

tAecass

= 15

420

620

1 024-Bit Programmable Read Only Memory

MCM10150

-

-

690

Four-Bit Universal Shift Register

MC10141

64-Bit Random Accesl Memory (50 fl)

MCM10142

8)( 2 Multiport Regilter File (RAM)

Quad Latch

MC10153

12-Bit Parity Generator-Checker

MC10160

Binary to 1-8 Decoder (LOW)
Binary to 1-8 Decoder (High)
Error Detection-Correction Circuit

MC10163

S-Line Multiplexer

MC10164

MC10541

tAces"

(max)

tAccess::: 20
4.0

310

620

MC10560

5.0

320

620,648,650

MC10161

MC10561

4.0

315

620,648,650

MC10162

MC10562

4.0

315

620,648,660

5.0

520

620

3.0

310

620,648,650

MC10564

a-Input Priority Encoder

MC10165

-

7.0

545

620,648

5-Bit Magnitude Comparator

MC10166

6.0

440

620

Quad Latch

MC10168

-

3.0

310

620

Dual Binarv To 1-4 Decoder (Low)

MC10171

MC10571

4.0

325

620,648,650

MC10572

4.0

325

620,648,650

2.5

275

620,648

Dual Binary To 1-4 Decoder (High)

MC10172

Quad 2-lnput Multiplexer/Latch

MC10173

Dual 4 To 1 Multiplexer

MC10174

MC10574

3.5

305

620,650

Quint Latch

MC10175

MC10575

2.5

400

620

Hex "0" Malter-Slave Flip-Flop

MC10176

-

460

620

Triple MECL to NMOS Tranllator

MC10177

-

1.0W

620

Binary Counter

MC10178

-

Look-Ahead Carry Block

MC10179

MC10579

-

Dual High Speed Adder/Subtractor

MC10180

MC10580

4-Bit Arithmetic Logic Unit/Function Generator

MC10181

MC10581

2-Bit Arithmetic Logic Unit/Function Generator

MC10182

Error Detection-Correction Circuit

MC10193

Hex Inverter/Buffer

MC10195

Hex "AND" Gate

f = 250 MHz

f : 150 MHz

370

620

3.0 (Cn,P) 4.0 (G)

300

620,648,650

360

620,648,650

See Logic Oiag.

600

623,649,652

See Logic Dieg.

575

620

7.5

520

620

2.0

200

620

MC10197

-

2.8

200

620

High Speed Dual 3-lnput 3-0utput OR Gat.

MC10210

-

1.5

160

620

High Speed Dual "3-lnput 3-0utput NOR Gate

MC10211

-

1.5

160

620

High Sp.ed Dual 3-lnput 3-0utput OR/NOR Gate

MC10212

-

1.5

160

620

High Speed Triple Line Receiver

MC10216

MC10616

1.8

100

620,648,650

High Speed Dual Type 0 Matter-Slave Flip-Flop

MC10231

MC10631

270

620,648,650

High Sp. . d 2 x 1 Bit Array Multiplier Block

MC10287

400

620

CD

-

-

4.6

f - 225 MHz

-

L .ufflx denotel Dual In-Line Ceramic Package, P suffix denotes Dual In-Line Plastic Package, F suffix denotes flat package
(I.e., MC10100L" Ceramic Dual In-Une Package, MC10100P '"' Pla.tlc Dual In-Line Package and MC10500F "" Ceramic Flat Package.)
-Load Power not included

2-12

LOGIC DIAGRAMS

CASE

VCCl

VCC2

VEE

620

Pin 1

Pin 16

Pin 8

650

Pin 5

Pin 4

Pin 12

GATES-----------------------------------------,
MCl0l00
Quad 2-lnput NOR Gate
With Strobe

MC10l0l
MC10&01
Quad OR/NOR Gate

4

2

(8)

(11 )

6

. . .,,---d. . .----

4

7

MCl0l02
MC 1 0&02
Quad 2-lnput NOR Gate

2

(6)

-"-~--- 5

(9)

--I-...,--...d/JI_"---- 3

(7)

t---L____- ......---- 6

( 1 0)

(14) 10~1-...'--...d/JI_"----14 (2)
10

......---- 11

t---L~-

14

11

(15)

(1) 13 ~I-...,--...d/JI_"---- 15 (3)
(16) 12

12

9

(13)

45~

(8)

.2

(9)~

(6)

(10)6~

(11)7~3(1)
(14)10~
(15) 11

14 (2)

(16) 12~15 (3)
(1)13~9(13)

15

13

Po = 25 mW typ/gate (No Load)

tpd = 2.0 ns typ

Po = 25 mW typ/gate (No Load)
tpd = 2.0 ns typ

MC10l03

MCl0l04
MC10504
Quad 2-lnput AND Gate

Quad 2·lnput

OR Gate

4-----,=C>--

:c>---

(8)4~

11
Po

= 25

3

MCl010&
MC 10505
Tripi. 2-3-2 Input OR/NOR Gate

_

(10)G~
(11)7~3(1)
(14)10~

_

('5),,~'4(2)
(IG)12~9(13)

(814~3(7)

(9)5~2(6)

[13)9~ 6
(14) 10

7

(10)
(11)

(15) 11

(1)13~'4(2)

:C>--'4

(')'3~'5(3)

mW typ/gate (No Load)

Po = 35 mW typ!gate (No Load)
tpd - 2.7 nstyp

Po 230 mW tvp/gate (No Load)
tpet '"" 2.0 nl typ

MC10107
MC10507
Triple 2-lnput Exclusive
OR/Exclusive NOR

MC10l09
MC10&09
Dual 4-5-lnput
OR/NOR Gat.

tpd :::: 2.0 ns typ

MC10l06
MC10506
Triple 4-3-3-lnput NOR Gate

(::::~3(7)

(11)7~

A

Y

[8)4~2161

19)5~317)
(13)

9~11 (15)

(11)7~'O(14)

(t3)9~
(14) 10

2 (G)

(2)'4~12(16)

(3)15~13(1)

(15) 11

(lG)12~
(1) 13

=

(9)5~2(G)

;~ ____~::~~':
10

Po =- 25 mW typ/gate (No Load)
tpel
2.0 ns typ

(IG)

12~15[3)

: : :~3

[10)

6

111)

7

;:::,:~

2

15
12

(1)

13

[6)

14 12)

(15) 11
(I G)

[7)

13)

15 (3)

(2) 14

Po = 30 mW typ!gate (No Load)
tpd = 2.0 ns typ

Po
tpd

z~ IA_S)+

(A_B)

Y

(A. BI

=-

LA. • HI

+

= 110 mW typ/pkg
= 2.5 ns typ

2-13

(No Load)

Po - 30 mW typ/gete (No Load)
tpel • 2.0 ns typ

LOGIC DIAGRAMS (continued)

GATES(continuedl - - - - - - - - - - - - - - - - - - - - - - - - - - - - " " "
MC10110
MC10210
Dual 3-lnput 3-Output
OR Gate

MC10lll
MC10211
Dual 3-1 nput 3-0utput
NOR Gate

5~~

6
7

'~~''2
"

'2

9

13

10
11

14

Po

Po'"" 160 mW tvp/pkg (No Load)
MC101'O
tpd "" 2.4 ns typ
MC1021D
tpd = 1.5 ns typ

3

10

14

Load)

MC10l17
MC10517
DU81 2-Wido 2-3-1 nput
OR-AND/OR-AND-INVERT
Gate
(8)

4

(91

5
,

6

= 160 mW ryp!pkg (No

13

tpd "" 2.4 ns 'tYP
MC1D211
tpd"" 1.5 ns typ

9
2

~

MC1D111

MC10113
Quad Exclusive
OR Gete

E

4

(101

6

(11\

7

(13)

9

(14)

10

(15)

11

r -___ "

= (A

+ B) • (e + 0 + E)
+ 0 + E)

3

(7)

y

2

(6)

X = (A + B) • (e

14

11

12
13

15

Po = 100 mW tYP/pkg (No Load)

tpd

=

2.3 ns typ

L-_r---"_ _ 14 (2)
.--,

Po'" 175 mW typ!pkg (No Load)
tpd

= 2.5 nl typ

J - - 1 5 (3)

(16) 12
(1)

3

MC10l19
MC10519

MC10118
MC1OS18

4-Wide 4-3-3-3 Input
OR-AND-Gate

Duel2-Wide 3-lnput
OR-AND Gete

(7) 3
(B) 4

(7) 3

(8) 4

(11) 7

(9)
(10)
(11)
(13)

(13) 9

(14) 10

(9) 5
2 (6)

(10) 6

(14) 10
(15) 11
(16) 12
(1) 13
(2) 14

(15)
(16)
(1)
(2)
(3)

15 (3)

6
7

9
2

(6)

11
12
13
14
15

·Collector Dot
Po = 100 mV typa/pkg (No Load)

• Collector Dot
PO:::: 100 mW typ!pkg (No Load)
tpd - 2.3

5

tpd:::O 2.3 ns typ

ns tYP

2·14

LOGIC DIAGRAMS (continued)

MC10196
MC10121
MC10621

Hex In_tw/Buffer

4-Wida

A

OR-AND/OR-AND-INVERT
Gate

:::;--~~~---------,
- - - 1 . _____- - - - ,

(10) 6

1111 7
(13)9

a

B

6

4

-~.,-...,o_--I----~

2(7)

114110

3(6)
13

10

(15)11
116112 ---"'---------.,

14
(1) 13 -~'''o_--l----­
(2)14
(3) 1 5 ----,L -------

11

IS

12

Po ~ 200 mW typ/pkg INo Load)
tpd ::: 2.8
typ

n.

Po: 100 mW typ/pkg INo Load)
tpd '" 2.3 ns typ

MC10197

Hex AND Gate
MC10212

High Speed Duol 3-lhput
3-0utput OR/NOR Gote
3

-

5~:

4

6

2

7 --

-+___"o.L.-'i------ 13

10 ____

9
10
11

12-----

~
.

'2

13
14

VCC1 - 1,15
VCC2: 16
VEE :8

.,...----- 15

PO:: 160 mW typ/pkg (No Load)

tpd;;:: 1.5 nl typ (All Outputs Loaded)

Po'" 200 mW typ/pkg (No Load)

tpd :: 2.8

n. typ

2-15

LOGIC DIAGRAMS (continued)

TRANSLATORS==~-----------------------------MC10124
MC 10525
Quad MTTL to MECL Translator

MC10125
MC10525
Quad MECL to MTTL Translator

MC10127
Dual MECL to MOS Translator

(6)2~
(9) 5

4(8)

(10) 6

2(6)

III) 7

3 (7)
1(5)
12(16)

(14) 10

15 (3)
13(1)

(15) 11

(7)3~418)

(10)6~_
(11)7~519)
(14)10~

(15)11~12116)
(2)14~

=t>--j1.-

(3)'5~'311)

~'(5)

14(2)

Vse
Po = 380 mW typ/pkg (No Load)
tpd = 3.5 os typ

12
11

Po = 380 mW tvp/pkg (No Load)

13

,

,

14

9

....../'.r~

Vee = Gnd:= Pins 1, 2, 15.16
VEE=Pin8
VSS:= Pins 7, 9

tpd "" 4.5 01 typ (50% to
~1.5

Vdc out)

RECEIVE RS=====______---------------------=
MC10114
MC105l4

Triple Line Receiver
(8)4~216)

(9)5~317)
(13)9~6110)

(14)10~7111)
(16) 12~14(2)

(1)13~'513)
~11(15)
VSS

MC10115
MC10515
Quad Line Receiver

Triple L ina Receiver
le)4~216)

le)4~

(9)5~216)
(11)7~

(10)6~317)
(14)10~

(15)11~'412)
(1)13~

(16)12~'513)

'v-SS

tpd "" 2.4 nstyp (Single Ended Input)
tpd "" 2.0 ns typ (Differential Input)
Po "" 145 mW typ/pkg (No Load)

MCl0116, MCl05l6
MC102l6, MC106l6

9(13 )

(9)5~317)
(13)9~6110)

(14)10~7111)
(16)12~1412)

1')13~'513)
~"1'6)
MCIOl16, MCI0516
Vss
Po = 85 mW typ!pkg (No Load)

tpd "" 2.0 ns typ
MCI0216, MCI0616

PO"" 110 mW typ/pkg (No Load)

Po

~

tpd = 2.0 ns typ

tpd

= 1.8 ns typ

1400

100 mW typ/pkg INo Load)

MC10129
Quad Bus Receiver

1501
Po'"' 750 mW tvp/pkg (No Load)
tpd = 1001 typ

302

034
Hyster•• i.
Control
50-------'
Clock 11 u - - - - - - - '

R.MtIOo------~-~

Strobe 12

2-16

LOGIC DIAGRAMS (continued)

FLiP-FLOPS--------------------,
MC10131,MC10631
MC10231,MC10631

Duo! Type D M..ter·S!..,.
Flip-Flop

51

(9)

01 (11)

GEl (10)

R-8 TRUTH TABLE

5---------------.

7----..-ot

2

(6)

6

R

S

L

L

L

H

H

L

L

H

N.D.

H
3

(7)

Q

n +l
an
H

N.D. "" Not Defined

MC10131. MC10531
Rl

(8)

Cc (13)

R2

Po = 235 mW typ/pkg (No Load)
f = 160 MHz typ

4-+-------'
9

MC10231. MC10631

(1) 13--+------------.

PO::: 270 mW typ/pkg (No Load)
f'" 225 MHz typ

CLOCKED TRUTH TABLE

14 (2)

GE2 1'5)"---~__/
15 (3)

02 (14) 10-----.ao.t

lP

c

0

Q n +l

L

rp

an

H

L

L

H

H

H

= Don't Care

C = GE + CC'
52 (16) 12 - - - - - - - - - '

MC10176

MC10135
MC10535

H.x "D" M.st ..·S.... Flip-Flop

Duol J·K M.st.r-S ....
Flip·Flop
2 00

R-S TRUTH TABLE
51 (9) 5

Jl (11) 7

2(6)

Kl(10) 6

3(7)

Rl (8) 4
C(13) 9
52(16)12

R

S

°n+1

L

L

an

L

H

H

H

L

H

H

L
N.D.

3 01

4 02

CLOCKE.D TRUTH TABLE

N.D. '" Not Defined

CLOCK J·K TRUTH TABLE"

J2(14)10

15(3)

K2(15)11

14(2)

K

Q n +l

L

L

an

H

L

L

L

H

H

H

H

Q

R2 (1) 13

13 03

Q n +l

rp

On

H'

L

L

H'

H

H

• A clock H is 8 clock
transition from 8 low

to a high state.

n
15 Q5

positive transition of clock
for J-K input-condition

present.

= 280

0

L

(/> == Don't Care.
14 Q4

·Output states change on

Po

C

Po '" 460 mW typ!pkg (No Load)

mW tvp/pkg (No Load)

f tog ::: 150 MHz typ

f tog '" 140 MHz typ

2-17

LOGIC DIAGRAMS (continued)

DRIVER------------------------------------------~
MC10128
Bus Driver

MCl0123
Tripi. 4-3-3 Input Bu.s Driver

Dl

01
Clock

Reset "",,rl...,...---'

':~2
11~

Disable 1 o-';~-+---+-'
Disable 2

0--'''-1-+---+..,

D2

12~ 15

13

14
Stro~~--------~

Control 2

Po - 310 mW typ/pkg (No Load)
tpd = 3.0 ns typ

Po = 700 mW typ/pkg (No Load)
tpd = 12 ns typ

PARITY CHECKER - - - - - - - - - - - - - - - - - - - - - .
MC10160
MC10560

(7) 3
(B) 4

12-Bit Parity Generator-Checke,

INPUT

OUTPUT

Sum of
High Level

Pin 2

(9) 5

(10) •
(11) 7

Inputs

(13) 9
(14)1.
(15)11
(16)12
(1) 13

2 (6)

Even

Low

Odd

High

PD - 320 mW fVP!pkg (No Load)
tpd .. 5.0 ns typ

(2)14
(3) 15

ENCODER-----------------------------------~
MC10165

8-lnput
Priority Encoder
Vee 11 -

_ 1 6 Vee 2

012-

- 1 5 02

003-

- 1 4 03

e4-

- 1 3 D2

D05-

- 1 2 D5

D76-

- 1 1 D4

D17-

- 1 0 D3

VEEB-

-9

D6

DO

Dl

H

,. Don't Care 2-18

¢JIPHHHHHHHH H " '" (/) L L L L L L l A L L L H aD Q1 Q2 Q3 04 H L H L L L as L L L L L L L L L L L L L H L L L L L L H H L L L L L H L L L l L L L H L L L L H l H L L L L L H H L L L L L H H L H L L L L L " L L l l L L L H L L L L L L H •• •" •• 06 07 L ... L H • H OUTPUTS • c L !) Po 02 03 9 1106 14 4 3 13 04 9 12 05 C 00 01 A 7 13 04 B 6 5 L L L L L H L L L L L H L L L H L L L L L Don t Care 315 mW typ/pkg (No Load) tpd ... 4.0 n. typ c Po - 315 mW tvp/pkg (No Load) tpd - 4.0 ns typ MC10171 MC10172 Dual Binary To 1·4 Dacoder Dual Binery To 1-4 Decoder (Low) (High) 10 003 10 00 3 'II 002 11 00 2 12 00 1 12 00 1 13 00 0 13 00 0 A 9 B 7 E 3 01 3 4 01 2 5 01 15 3 01 3 4 01 2 1 6 01 5 01 0 El 2 1 6 01 0 TRUTH TABLE ENABLE INPUTS E EO L L L L L L L L L L L H H •• L L L l H L A L L H H L L • l H l H L L • • • • TftUTHTAR.E OUTPUTS INPUTS 0.0 011 0'2 013 000 00. 002 003 l H H H H L H L H H L H H H H H H H H H H H, H H L H H H H H H H H H H L H H H L L H H L H H •• Don't c.,. H H H H H H L H H H • f. Eo l H L L L L L H H H L H H H H H H L H A • a. 0 all 0.2 0.3 000 00' 002 003 l L H L L H H H H H L L L L L L L L L • • • • H L L L L L L L L H L L L L L L L H L L L L H H L L L L L H . - Oont Cere Po - Po - 325 mW typ/pkg(No Load) tpd - 4.0 nl typ !pet 2-19 ~ 325 mW typ/pkg (No LOIld) 4.0 no typ L L L L L L L H L L L L L L L H L L L LOGIC DIAGRAMS (continued) DATA SELECTORS/MULTIPLEXERS----------Al1~ 011 012 MC10132 MC10134 Dual Multiplex .. With Dual Multiplexer with latch r--- 4 A06~ Latch and Common R_t ~2 01 ~ A"'--U011 ----:l 5 CEO 10 ~3 Cc 7 R 6 (11 r--- 4 012 5 CEO 10 j 9 021 13 eEl ~1502 ~ 02212 Cc 7 eEl 9 021 13 ~'4Q2 R 0 C CE Ontl L L L L L L L H H L H L an an an L L L H L L L H H H H H H an an an L H L H H H H * :i ~3 ~ ~- 022 12 TRUTH TABLE L L L T ~2 01 01 ~'5 02 -,402 TRUTH TABLE Po = 225 mW typ/pkg (No Load) tpd = 3.0 ns typ C AO 011 012 On+ 1 L L L L L L L H H H L L H H H On H L Po = 225 mW typ/pkg tpd = 3.0 ns (No Load) typ rJ> = Don't Care c= Ce + Cc rJ> - Don't Care A (11) 7 L B(13)9~ MCl0173 Quad 2-lnput Multiplexer/Latch MCtOt64 MCt0564 B-Lin. Multiplexer S.'.ct9~ C(14)10~ Enable (6) 2 ===\ -; ~ ;- =\ ;- XO (10) 6 Xl (9) 5 X2(B)4 r H X3 (7) 3 ~ X4 (15)11 X6 (1) 13 -B )" '------='=\ ;- X7 (2) 14 0006 ~- 0015 -0 ~= J=< 0104 P.o = 310 mW typ/pkg ns typ/pkg ~ -L./ 02112 ~:= ~ ~ 03011 ADDRESS INPUTS ENABLE C B A Z L L L L L L L L H L L L L L L L XO Xl X2 X3 H H L L H H H H H H ~ H L H L 201 ~;= ~ 15 02 02013 TRUTH TABLE 100 ~ 0113 (No Load) tpd'" 3.0 ;- R X5 (16) 12 ;- 15 (3) Z 03110 Clock 7 - 1403 '-- TRUTH TABLE SELECT CLOCK X4 H xs H L L H X6 X7 L L H ~ L q, = Don't Car • • - Don't Cere 2-20 OOn+l 000 001 aO n Po = 275 mW typ/pkg tpd ~ (No Lo.ad) 2.5 n. typ LOGIC DIAGRAMS (continued) DATA SELECTORS/MULTIPLEXERS (continuedl MC10174 MC10674 MCl0l. MCl0530 Dual 4 to 1 Multiplex .. Quell l.8teII 51 (9) 5 XO (7) 3 - - - - - - ' Xl (9) 5----H--,.-{~ 01(11) 7 2 (6) Z X2 (8) 4 ----H::8~ 2 (6) CEI (10) 6 X3 (10) 6 -----1-t-b8~ 3 (7) A (11) 7 Al (8) 4 C (13) 9 8 (13) 9 A2 (1) 13 Po ~ 305 mW tvp/pkg (No Load) YO (1) 13 ----+++1-1.____ 14 (2) Y 1 (15) 11 ----+-=H:....::{____ 15 (3) W CE2 (15) 11 02 (14) 10 Y2(16) 12'----F=f=L-/ Y3 (14) 15 (3) 10---===L____ S2 (16) 12 TRUTH TABLE TRUTH TABLE ENABLE I'/> ADDRESS INPUTS OUTPUTS E B A Z W H L L L L L L L H L H L L H H XO Xl X2 X3 YO Yl Y2 Y3 = Don't D C CE L L L L H L L H L H an H L an H an q, H cp - Don t Care. Care MC10175 MC10575 Quint Latch LATCHES----------' MC10133 MC10533 Quad Latch °n+1 00I0---~ 1400 -----t--t'"1 15 01 MC10153 Quad Latch 003------"'! 2 00 GO 5 , - - - - - [ - - - -.......,-, 01 7----4--~~~ 003,------Ai,nn~~~ 6 01 01 12 2 00 6 01 02 13 ----t---+-1 2 02 CE4 03 9 11 02 11 02 -----+--t"i t 3 03 9 45 ----t-l''''I 404 CO 6 C17 15 Q3 Po::: 310 mW typ/pkg (No Load) tpd "" 4.0 ns typ 15 03 Po::: 310 mW typ/pkg (No Load) tpd = 4.0 ns typ 11----+-~ Aesat Po tpd = 400 mW typ/pkg (No = 2.5 ns typ TRUTH TABLE TRUTH TABLE TRUTH TABLE "G C D Q n +1 "G C D Q n +l H q, L H q, q, L H q, an 0 CO C1 Reset L L H L L L L L a n+1 L L L an L L H L L L L L L H L H H H L L H H q, q, q, H L an an H H L q, H H L tP c Don t Care C=Cc+ce I'/> '" Don't Care C '" Cc + CE 2·21 Load) H LOGIC DIAGRAMS (continued) SHIFT REGISTERS----------------~ MC10141 MC10541 Four-Bit Universe. Shift Register (1) 13 I TRUTH TABLE OL ( (8) 4-C aD f---14 (16) 1 2 - DO (15) 1 1 - 01 (13) 9 - 02 (10) 6 - 03 (14) 1 0 - SI (11) 7 - S2 al f---15 SELECT (2) (3) a2 f - - - 2 (6) a3 - 3 (7) 5 S2 OPERATING MODE 02n +l 03n+l l L Parallal Entry DO 01 02 03 L H Shift Right- aln Q2 n a3 n DR H L Shift Left- Dl aO n aln a2n OOn+l 0l n+l H H Stop Shift aO n aln a2n a3" • Outputs .. exist after pulse appear, at "c" input with input condition. as .hown. (Pulse "" Positive tran.ition of clock Input). DR (9) OUTPUTS SI I Po "" 425 mW tvp/pkg fahift" 200 MHz typ ERROR DETECTION-CORRECTION MC10163. MC10193 Error Detection-C orraction Circuit MC10193 LOGIC DIAGRAM MC10163 LOGIC DIAGRAM 81 B2 Bl B2 6 7 6 )-f---15P4 15 POA _B412 B711 B412 B711 )-t---3P3 3 P3 - B5 4 B6 5 Jl5 4 B6 5 2 P5 2 POB BO 9 B310 - BO 9 B310 ) - - - - 1 4 PI > - - - - 1 4 PI > - - - - 1 3 P2 >----13P2 IBM CODE MOTOROLA CODE POA = Bl, B2, B4, B7 POB = 80, B3, B5, 86 PI = Bl, B3, B5, 87 P2 ;c P3 = B4, PI = Bl, B3, B5, B7 P2 = B2, B3, B6, B7 P3 = B4, B5, B6, B7 82, 83, 86. B7 P4 B5, B6, B7 P5 = 81, 82, 84, B7 = Byt. (BO, 1,2,3,4,5,6,7) .. Po = 520 mW typ/pkg (No load) tpd"" 7.5 ns typ (Pin 7 to Pin 2) Po = 520 mW tvp/pkg (No Load) tpd:: 5.0 ns tvp 2-22 LOGIC DIAGRAMS (continued) COUNTERS--------------------------------------~ (14)10(1)13(16)12(15)11(10) 6 (9) 5 (13) 9 (11) 7 - - Cin 00 r-14 C r-15 DO 01 01 02 r-- 2 02 03 03 r-- 3 51 S2 C out r-- 4 MC10136 MC10536 Universal Hexadecimal Counter (2) SEQUENTIAL TAUTH TABLE' (3) INPUTS (6) 5' L (7) L (8) 52 H H H H H - FUNCTION SELECT TABLE 51 52 DO O. Operating Mode L L H H L L L L Pr..., (ProGram) DlICr.mant (Count Cown) OUTPUTS 02 03 H CMrV ;;; Clock H •• •• •• • • • •• •• •• •• • • • • •• •• •• H H •• L ao o. H H H H H H H H L •• •• Carry 0,; 02 03 H H H H H H H H H H L L L L L L H H (/) "" Don't care. HOLd (Stop Cound 'Truth table shows logic states assuming inputs vary in sequence shown from top to bottom. Po = 626 mW typ/pkg (No Load) •• A clock H is defined as a clock input transition from a low to f count -150MHztyp a high logic level. MC10137 U River ..1 Decade Counter .-10-C;n ~~=~O 1 1 - 01 6 - 02 5-03 9-51 00-14 SEaUENTIAl TRUTH TABLE' 5iTV 01-15 51 02-2 52 00 01 H 03-3 H H L L 7 - 52 C ou, - 4 H H ~ fUNCTION SELECT TABLE 51 52 OUTPUTS INPUTS Operating Mode H H L L H H H L L L ••" ••• • H H •• • ••• • H 02 03 H ••• iii' Clock CXI at ~ 02 OJ OUt L •• • •• H H H L • ••• •• • • H H H H H H L L L L L L L H L L H L H H L Incramant (Count Up) OllCremant (Count Down) q, = Don't care. Hold (Stop Count) -Truth table shows logic states assuming inputs vary in sequence shown from top to bottom. _. A clock H is defined as a clock input transition from a low to 8 high logic level. Po = 625 mW typ/pkg (No Load) f eount "" 150 MHz tvp 12-Cl 9-R 7-C2 11-50 10-51 6 - 52 5-53 MC10138 Bi-au inary Count. 0 0 r - 15 01r-13 02r- 4 03r-- 2 00r-14 03r-- 3 11-50 7 - 51 6-52 5 - 53 12-Cl ;O-C2 9- R COUNTER TRUTH TABLES BI·QUlNARY BCD (Clock conneettd to C2 .nd 03 connecttd to C1) IClock connected to Cl and CO connected to C2) 01 02 6 L L H 8 H L L L H H L L L H H L COUNT 0 1 2 3 • , 6 • 00 ao MC 1 0178 Binary Counter COUNT , ao O. Q2 L H L H L H L L H H L L H H H H Po 00 0 = 370 mW 00-15 01-13 02-4 03-2 00-'4 03-3 TRUTH TABLE INPUTS R 50 5. 52 L L H L L H H co 01 02 OJ H L H' LJ H L L H L NoCounl 'YP/pkg L L 1'og - 150 MHz (Typ) L L L L 2 ] OUTPUTS C2 *- •• ~•• I. \,1 (No Load) L 3 L H S3 Cl L L L H H .L L L ~ - Oon't Care Clock tran,itlon from VI L to VI H may be applied to C 1 or C2 or both Po "" 370 mW typ/pkg (No Load) f tog "" 150 MHz typ for 2-23 .ame effect. LOGIC DIAGRAMS (continued) ADDER AND ARITHMETIC FUNCTIONS-----------. MC11l179 Look-Ahead Carry Block G3 5 P3 13 9 J ./ P2 12 ~" G2 --L/ -= =:::; Cn ~3 ~ '" 15 PG ./ Gl Po: 300 mW tvp/pkg tpd "" 3.0 ns typ (Carry, Propagate) 4.0 ns typ (Generata) 7 PI 10 GO GG >- ~ II ~2 ./ C n +4 ) 4 6 C n +2 ~ PO 14 (11) 7 (13) 9 (9) 5 (10) 6 (8) 4 MC10181 MC10581 4-Bit Arithmetic Logic MC10180 MC10580 Dual High Speed AddarlSubtr.ctor ..... ... ... Unit/Function Generator SelA 50 ......... 15 (3) (19) 13 Sala SO .........2 (6) (21) 15 AO Po BO .... = 360 mW typ/pkg (23) 17 ~ (20) 14 C out .........3 (7) Cin tpd (typ) ... SalA 51 L-........ Sala 51 _ (IS) 11 (14) 10 (16) 12 ...... - ~14(2) ~1(5) 50 51 Cin to C out = 2.2 ns AO to SO = 4.5 ns AO to C out = 4.5 ns (3) 21------ AO (2) 20------ BO (24) lB------ Al (1) 19------ Bl (22) 16------ A2 Al (17) 11------ B2 Bl C out ~13(1) r 52 53 FO - 2 ( B ) Fl - 3 ( 9 ) F2 - 7 ( 1 3 ) F3 - 6 ( 1 2 ) (16)10-- A3 GG - 4 ( 1 0 ) Positive Logic Only (15) 9------ B3 ( 4 ) 2 2 - - Cn PG -8(14) A': A 0SoIA: A (!)SoIA (5)23--M Cin B' ~ B 0 C n +4 - 5 ( 1 1 ) SOla= B (!) Sola FUNCTION SELECT TABLE SoiA SelB H H Po Function ~ 600 mW typ/pkg (No Load) A1 to F -6.5 n. C n to C n + 4 - 3.1 nl A1 tOPG'"'6.0nl 'pd (typ), S - A plu. B H L S - A minus B L L H S'" B minus A A 1 to GG ,.. 4.5 nl L S - 0 minus A minus B A1 to C n +4'" 5.0"s 2-24 LOGIC DIAGRAMS (continued) ADDER AND ARITHMETIC FUNCTIONS ( c o n t i n u e d ) - - - - - - - - - - - , MC10182 2-Bit Arithmetic Logic Unit/Function Generator 9----------, 10-----, SO 13 SI cn 6 BO 12 Al 11 Bl Po = 575 mW tvp/pkg (No Load) FO 4 F1 14 C n to C n +2:: 2.7 ns PG 15 A 1 to PG '"' 6.5 ns A 1 to GG : 5.5 ns GG 3 AO tpd (typ) A 1 to F '" 7.5 ns Al toC n +2= 7.0ns C n +2 M 2 CO aO X MCl0287 HighS.... d 1 Bit Array Multiplier 9 6 aO' 7 bO 4 bO° MO 5 a' " 2 SO Po'" 400 mW typ/pkg (No Load) tpd: (Outputs loaded 1 kfl to Vee) co to C2 1.7nstyp C, aO to C2 2.8 aO to SO 2.7 bO to SO 3.' 5' al' '0 b' M' 3.9 4.4 MO '3 "51' 12 aO to 51 bO to 51 '5 to 5'8.7 C2 '4 Vee'" Pin 16 VEE=Pin8 2-25 LOGIC DIAGRAMS (continued) MEMORIES MCM10145 64·8it Register File (RAM) MCM10143 8 x 2 Multiport Register File (RAM) Read Enable 4 6 BO REB B, 5 Write Enable Data 9 14 15 Lines 13 8 Data 11 17 16 18 Chip Enable ,...... WEO DO aBO 3 Lines AO { OC, 11 12 21 C, _ Clock C2 REC Write Enable 00 AI 01 Data Output A3 DO 01 0, OCO AO CE A2 4 0 ... '"."" { Lines WE, Co 9 5 Lines 22 10 6 Data Output AI A2 3 2 B2 10 Address Write Enable OB, 15 02 02 03 _ 0 3 WE 14 13 20 19 Read Enable - - - - - - - ' Clock - - - - - - - - - - ' tpel: Clock to Data out = 5 ns (typ) I Read Selected) Address to Data out = Veca :::: Pin Veel Pin 23 = 1 Vee = Pin 24 10 ns (typ) (Clock High) Read Enable to Data out = 3.5 ns Vee:::: Pin 16 VEE=Pin8 Vee = Pin Po = 625 mW typ/pkg (No Load) Access Time:::: 10 ns typ 12 (typ) (Clock high, Addresses present) PO::: 610 mW typ/pkg (No Load) MCM10140 (90 {"I) MCM10142 (50 fl) MCM10148 (50 {"I) 64-Bit Random Access Memory Address Inputs The Chip is enabled when Po:::: 420 mW typ!pkg EEl and C E 2 inputs are at positive logic "0" tAccelS = 15 nl (maxI MCM10140, MCM10148 :::: 10 nl (max) MCM10142 CEI CE2 Data Out Data In O-:-=---------j Write 2·26 o-----------i Lines LOGIC DIAGRAMS(continued) MEMORIES (continued) - - - - - - - - - - - - - - - - - - - - - - - , D out Is is i7 1,5 ~ Data Out Buffer Chip Enable Sense J Amplifier r AO------1~ A' ----2 A2~ A3~ i .. " ~ :& ·. -1 • • ,';0 'ON «~ i l ,,~ A4~~ B;, Add,." Buffe,/ 1/8 Decoder ['0 [" AS r-L-- . ,,::: c , J- 32 x 8 Memorv Cell Array 0 u MCM10144 256 Bit Random A ..... M.mory CE2 CE3 GE1 J 16 r-;-;;- WE tAcces. = 30 ns (max) (Addrellinputs) «III !E ";: nI ~:; 0 ~Din TRUTH TABLE MODE ['2 A7 AS = Pin Vee VEE:: Pin 8 INPUT OUTPUT CE WE Din Write "0" L L L L Write "1" L L H L Read L H a Disabled H " tP "" Don't Care 1,3 14[ Address ( 4 3 A, 2 5 6 7 '0 AO eEl L MCM10147 128 Bit Random A ..... M.mory Chip Enable Chip Enable °out CE2 A2 A3 A4 AS Q~OatBOut AS TRUTH TABLE 11 Data Input D WE 12 Read/Write MODE j OUTPUT WE D a L L L L L Writ."," L L L H L R.ad L L H H L 4> '" a Disabled 4> L L H 4> 4> L = 415 mW tvp/pkg (No Load) (Access = 10 ns typ (Address Inputs) CE2 Writ. "0" Enable Po INPUT CE'

B X L L L Word A = Word B L L L Word A > Word B L H L Word A < Word B H L 9 10 12 83 11 A2 13 82 14 6 Al 81 AD 80 5 4 E 15 Po = 440 mW typ/pkg (No Load) tpd = Data to output 6.0 ns tvp E to output 2.5 ns typ 2·28 2 A> 8 3 A<8 INTEGRATED CIRCUITS MECL 10.000 3-1 SERIES MECL 10,000 series , QUAD 2-INPUT NOR GATE WITH STROBE MC10l00 Advance In~orIDatton The MC10l00 is a quad NOR gate. Each gate has 3 inputs, two of which are independent and one of which is tied common to all four gates. Input pulldown resistors eliminate the need to tie unused inputs to a voltage supply. Open emitter outputs permit wire-ORing and direct connection to busses. Po - 25 mW typ/gote (No Load) ~ 2.0 n. typ tpd POSITIVE LOGIC NEGATIVE LOGIC 4 4 2 2 6 5 6 6 3 7 9 10 Vee1 - Pin 1 VCC2 14 12 :II: Pin 16 VEe· Pin 8 11 3 9 10 14 11 12 16 13 15 13 2-4+"5+9 2- 'i"i"'"5i9 SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS @l250 C m v e e1 '" vCC2 Vin Co.. Input +2.0 Vdc V out o~ r-----.., 25; COOK PROPAGATION DELAY ",F Pulse Generator Input Pulse t+ == t- == 2.0 ±. 0.2 ns (20 to 80%1 V out All input and output cables to the scope are equal lengths of 50-ohm coaKia' cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin. VEE = -3.2 Vdc Unused outputs connected to a 50-ohm resistor to ground. 5O~hm termination to ground located in each scope channel input. SH General Information Section for packaging and maximum ratlngl. This II advance information and specifications are subject to change without notice. 3-3 --.j....o"T- ...o...:s:: ELECTRICAL CHARACTERISTICS (") Eaeh MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit bo ..d and transverse air flow greater o o 8::I than 500 linear fpm is maintained. Outputs only one input and one output. - 5 are terminated through a S().ohm resistor to -2.0 volts. Test procedures are shown for 6 3 4 g§2 1~ The other inputs and outputs are tested in the same manner. 14 11 12 13 15 ..... ::I L SUFFIX c: CERAMIC PACKAGE CASE 620 ~ CD TEST VOLTAGE VALUES CVolts) @THt T emp8fatur. -lOGe +2SoC T8SoC w ~ Characteristic Power Supply Drain Current Input Current Symbol IE linH linL Logic "1" Output Voltage Logic "0" Output Voltage Logic "1" Threshold Voltage Logic "0" Threshold Voltage Switching Times (50-ohm load) Propagation Delav Rise Time 120% 10 80%1 Fall Time C20% 10 VOH VOL VOHA VOLA Pi" Under Test -lOoC Min -1.890 -0.810 -0.700 Min Typ - 8 4· 9 4· - - 2 14 -1.060 -1.060 -0.960 -0.960 2 14 -1.890 -1.890 -0.890 -0.890 -1.675 -1.675 2 3 14 15 -1.090 -1.090 -1.090 -1.090 - - -0.980 -0.980 -0.980 -0.980 2 3 14 15 - - - '2+ '2_ 2 - - - -1.655 -1.655 -1.655 -1.655 - 0.5 -1.850 -1.850 - - - - - - - - 80%) ·Individually test each input applying VIH or VI L to input under test. - VIHmax Ma. Min Ma. Unit 21 26 J.lAde J.lAde 4· 9 - - - 245 470 - mAde - J.lAde -0.810 -0.810 -0.890 -0.890 Vdc Vdc -1.650 -1.650 -1.825 -1.825 -0.700 -0.700 -1.615 -1.615 - Vdc Vdc 4,5.9 9,10,11 - -0.910 -0.910 -0.910 -0.910 - Vdc -1.630 -1.630 -1.630 -1.630 - -1.595 -1.595 -1.595 -1.595 Vdc - -- - 2.0 j -1.205 -1.500 -1.850 -1.105 -1.825 -1.035 -1.475 -1.440 VEE - - - - - - t t ns j - VILmin VIHAmin VILAmax 4· - - - - - -5.2 - - 9 9 9 9 8 8 8 - 8 8 8 8 8 - 9 9 9 9 - Pul.ln Pulse Out - - - - - 4 VEE - - 2 I -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +85 oC +250 C Ma. VILmin VIHAmin VILAmax -0.890 MC10100L Test Limits 2 2 2 t4+2t4-2+ VIHmax 8 • CVCC) Gnd 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 t 8 1,16 -3.2 V + +2.0 V 8 1,16 + j j j j f 'I MECL 10,000 series~ \.---------'~ QUAD OR/NOR GATE L -_ _.... MC10l0l POSITIVE LOGIC NEGATIVE LOGIC 4 4----~.-~,.---- --~~--~~~---3 -;-~~---3 t----'L__.... ~--- 6 r---~ 10--~~,-~~-----14 __ ~------6 ..t:.I1~'d"~---14 10 ~-"----11 r---~ 13 1---~~~~-15 __~------11 P D = 25 mW typ/gate (No Load) 13-+-~1--~~----15 12 ~,.<.-"'-----9 12 The MC10l0l is a quad 2-input OR/NOR gate with one input from each gate common to pin 12. Input pulldown resistors eliminate the need to tie unused inputs to an external supply. tpd = 2.0 ns tvp 9 Output Rise and Fall Time: = 3.5 = ns typ (10% - 90%) 2.0 ns typ (20% - 80%) vee1 = Pin 1 VCC2 = Pin 16 VEE=Pin8 SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS@ 2SoC Vee1 Vin Input = VCC2 +2.0 Vdc ""' t I±""' To Channel "A" --- - --..., V aut NOR V aut OR To PROPAGATION DELAY Channel "B" I +1.11 V 50% Pulse Generator ' -____-J_ -------+0.31 V Input Pulse t+ = t- = 2.0 ±. 0.2 ns V aut OR (20'080%) Unused outputs connected to SO-ohm termination to a 50-ohm resistor to ground. ground located in each scope channel input. L ___ ~ _ _ ..J V out NOR All input and output cabl.s to the scope are equal length, of 50-ohm eoaxial eable. Wire length should be < 1/4 inch from TPin to input Din and TP out to output pin. I-= 0.1 ,.,.F VEE: -3.2 Vdc See General Information section for packaging. 3-5 ,+ ,- s: ELECTRICAL CHARACTERISTICS ...o ...o (') Each MECL 10,000 series has been de· signed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than "Ji' - ... 5 7 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for 3 ~4 10 only one gate. The other gates are tested in the same manner. iJ 15 '2 9 8 L SUFFIX ... ::J CERAMIC PACKAGE CASE 620 11 ::J c: It! c.. TEST VOLTAGE VALUES (Volts) @Test VIHmax Vilmin VIHA min -0.890 -0.810 -1.890 -1.205 . -1.500 +2SoC -1.850 +85o C -0.700 -1.825 -1.105 -1.035 -1.415 Temperature -lOoe MC10101l Test Limits Pin Characteristic W c» I Power Supply Drain Current Input Current Logic "1" Output Voltage I I I Svmbol Undo< Test Ie 8 I VOL Logic "1" Threshold Voltage I VOHA Propagation Delay I Rise Time 120 to IICJ%I Fall Time (20 to 80%1 I 12 - - 5 5 -1.060 -1.060 -1.060 -1.060 -0.890 -0.890 -0.890 -0.890 -1.675 4 linL Logic "0" Output Voltage Switching Times (5()..ohm loadl .. VOLA '4+2- I 5 5 1-1.890 f1890 I 5 5 1- I -1.675 -1.890 -1.675 -1.890 -1.675 1 .080 -1.080 - 1-1.080 -1.080 5 5 2 2 t4_2+ t4+5+ t4_5_ 5 '2+ '5+ '2_ '5_ 2 5 2 5 5 I - 1.0 Ma. Min Ma. Unit - 20 26 - mAde - - 265 535 ~Adc 4 - - ~Adc - "Ado - -0.700 Vdo 12 4 -1.850 -1.850 -1.850 -1.850 -0.980 -0.980 -0.980 -0.980 - 1.655 -1.655 - -1.655 - - -1.655 - - 3.1 ~ + 1.1 Tv. - 3.6 ~ ~ 1.0 + 1.1 + 2.0 j -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Min 0.5 05 -0.960 -0.960 -0.960 -0.960 -1.440 VEE -5.2 +8S0C +25 0 C Ma. - 12 VOH I " linH I Logic "0" Threshold Voltage _lODe Min VILA max - - - -0.810 -0.890 -0.810 -0.890 -0.810 -0.890 -0.810 -0.890 -0.700 -0.700 -0.700 -1.650 -1.825 -1.615 -1.650 -1,650 -1.650 -1.825 -1.825 -1.615 -1.615 -1.615 - --0.910 -1.630 -1.630 -1.630 -1.630 2.9 + 3.3 + -1.825 -0.910 -0.910 -0.910 - -1.595 -1.595 1.0 -1.595 -1.595 3.3 ~ + 1.1 + + Vdo + Vdo - - ~Adc 3.7 + + Vdo + n, VIHmax 12 - VIL min VIHA min VILA max Vee - - - - 4 12 8 8 8 8 - - - - - - - 12 4 - - - - - - j - - 1.1S 8 1,16 1,16 8 1.16 - + 8 1,16 - +8 1,16 +8 1,16 - + + 12 4 + 12 4 12 4 - Pulse In Pul. Out -3.2V +2.0V 2 2 8 1,16 4 - 1,16 1,16 - - - Gnd - 12 4 IVeel j 5 5 2 5 2 , + + j j 3: 0 ...A C ELECTRICAL CHARACTERISTICS Each MECL 10,000 series has been designed to meet the de specifications shown - .~. in the test table. after thermal equilibrium has been established. The circuit is in a 5 7 3 test socket or mounted on a printed circuit board and tranSverse air flow greater than 500 linear fpm is maintained. Outputs are 10 terminated through a 50-ohm resistor to 13 15 " 9 ':4 11 -2.0 volts. Test procedures are shown for onlv one gate. The other gates are tested in the same manner. VIH max +25 o C -0.890 -0.810 +85o C -0.700 MC10101P Test Limits Pi" Unci .. To.. Symbol 4 12 4 12 5 5 2 2 linL ..:... Logic "1" Output Voltage VOH Logic "0" Output Voltage VOL Propagation Delay I I VOLA '4+2l4-2+ l4+5+ t4-5AiseTime (20 to 80%) Fall Time (20'0_1 Ma. '2+ '5+ '2_ '5- I ::J .... S' c CD Co Min TV. Ma. Min Ma. -1.060 -1.060 -1.060 -1.060 -1.890 -1.890 -1.890 -1.890 -0.890 -0.890 -0.890 -0.890 -1,675 -1.675 -1.675 -1.675 26 265 535 /JAde /JAde I = -0.810 -0.810 -0.810 -0.810 -1.650 -1.650 -1.650 -1.650 -1.630 -1.630 -1.630 -1.630 2.0 -1.825 -1.825 -1.825 -1.825 -0.700 -0.700 -0.700 -0.700 -1.615 -1.615 -1.615 -1.615 3.3 1 Vd, ~ _1.850 -1.105 -1.035 -1.825 VILAma" -1.500 -1.475 -1.440 Vilmin VIHA min VILA mall( 12 4 12 12 + + Vdc -1.595 -1.595 -1.595 -1.595 V'HAmi" -1.205 Vdc 12 4 12 4 12 4 + Vdc + 12 4 12 4 Pulse In 4 2.9 ~ + 1.1 ~ -0.890 -0.890 -0.890 -0.890 -0.910 -0.910 -0.910 -0.910 -1.655 -1.655 -1.655 -1.655 1.0 VIH ma. /JAde -0.980 -0.980 -0.980 -0.980 1.080 -1.080 -1.080 -1.080 Unit mAde .Ad, -0.960 -0.960 -0.960 -0.960 -1.850 -1.850 -1.850 -1.850 Vil min -1.890 VEE -5.2 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +SSoC 0.5 0.5 1- VOHA LogiC "'" Threshold Voltage Switching Times (5().ohm load) Min 20 linH W Logic "0" Threshold Voltage +25o C -JO"C IE Input Current g- (VoIt.1 -3O"c Characteristic C ...A P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES IiiTost Temperature Power Supply Drain Current ...A j j VEE 1,16 1,16 1,16 8 1,16 +8 1,16 +8 1.16 + 1.16 8 + PuI.Out (Veel GncI 8 8 8 8 8 -3.2 V 1,16 1.16 + + + + +2.0V 1,16 1 j f L-._ _..... QUAD 2-INPUT NOR GATE "\ MECL 10,000 series ~"'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---' MC10102 POSITIVE LOGIC The MC10l02 is a quad 2-input NOR gate, Input pulldown resistors eliminate the need to tie unused inputs to an external supply, NEGATIVE LOGIC :=::=:cr--:=::=:cr--- :~2 :~3 ,O~ "~ ,O~ '4 "~ 12~15 2 3 '4 Po"" 25 mW typ!gate (No Load) tpd :: 2.0 ns typ Output Rise and Fall Time: = 3.5 nstvp (10% - 90%) = 2.0 n$ typ (20% - 80%) '2~'5 13~9 '3~9 vee1 "" Pin 1 VCC2::: Pin 16 VEE=Pin8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SoC Vin To Channel "A" Input Pulse Generator Input Pulse t+ ::: t- = 2.0 ±. 0.2 ns (20 to 80%) Vee1 V out NOR = VCC2 +2.0 Vdc 1 '''',---± ---, ±""' V out OR PROPAGATION DELAY To Channel "S" U>--+ ~ V out OA ~ I I 50·ohm termination to 9'0 und located in each scope channel input, L ___ All input and output cables to the :~~~a~~a:~~81~~:t~~::h5~~~~: V out NOR ~_ _ -l l 0.1 JlF Unused outputs connected to a 50-ohm resistor to ground. be < 1/4 inch from TPin to input pin and TP out to output pin. VeE = -3.2 Vdc See General I nformation section for packaging. 3-8 s: (") ELECTRICAL CHARACTERISTICS .... o .... o Each M·ECL 10.000 series has been de· signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are N :~2 terminated through a 50-ohm resistor to 10~ 14 in the same manner. 8 - :~3 -2.0 volts. Test procedures are shown for onlv one gate. The other gates are tested 11 t2~15 lJ~9 =.c: ::J ::J L SUFFIX ~ CERAMIC PACKAGE CASE 620 I TEST VOLTAGE VALUES (Voltsl @Test T emperatur. VIH max VIL min VIHAmin \(ILAmax VEE -0.890 -0.810 -1.890 -1.205 -1.500 -5.2 +250 C -1.105 -1.475 +85 0 C -0.700 -1.850 -1.825 -1.035 -1.440 -5.2 -5.2 _30 D e MC10102L Test Limits Pin w cO +25 o C lOoe Undo< Ma. Characteristic Symbol Te.. Power Supply Drain Current 'E linH 8 12 IlnL 12 VOH 9 9 15 15 1.060 -0.890 -1.060 -0.890 9 9 15 15 9 9 15 15 I nput Current Logic "1" Output Voltage Logic "0" Output Voltage Logic "1" Threshold Voltage Logic "0" Threshold Voltage VOL VOHA VOLA 9 9 15 15 Min Min 0.5 Ma. Min 20 26 - - 265 - -0.960 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +SSoC Tvp Ma. - R,seTime 120 to 80%1 Fall Time 120 to 80%) t12+15112-15+ 112+9+ t12-9115+ '9+ 115_ '9_ 15 15 9 9 15 9 15 9 VIH max VEE (Vee l G"d mAdc - 8 1,16 ,&lAde 12 8 1,16 8 1,16 8 1,16 -0.890 -0.890 -0.810 -0.810 -0.810 -0.810 -0.890 -0.890 -0.890 -0.700 -0.700 -0.700 -0.700 Vdc -0.960 -0.960 -0.960 -1.890 -1.890 -1.890 -1.675 -1.675 -1.675 -1.890 -1.675 -1.850 -1.850 -1.850 -1.850 -1.650 -1.650 -1.650 -1.650 -1.825 -1.825 -1.825 -1.825 -1.615 -1.615 -1.615 -1.615 Vdc -1.080 -1.080 -1.080 -1.080 -0.980 -1.060 -1.060 - - .. - -0.910 -0.910 -0.910 -0.910 -0.980 -0.980 -0.980 -1.655 -1.655 -1.655 -1.655 -0.890 - -1.630 -1.630 -1.630 -1.630 - - 1.0 + 1.1 ~ 3.1 •~ 3.6 1.0 + 1.1 + 2.0 j 2.9 + 3.3 + 1.0 ~ ~ 1.1 + + VILmin 12 13 -1595 -1.595 -1.595 -1.595 3.3 12 13 - Vdc - • j • 12 13 12 13 12 13 + - - - - - - - - + 8 1,16 +8 1.16 + 1.16 - 12 13 - 3.7 + - + "' VILA max - Vdc - VIHA min 12 ,&lAde SWltchmg Times (50-ohm load) Propagation Delay Unit 8 + + + + Pulse In Pul. Out -3.2V +2.0 V 12 15 15 9 9 8 1.16 j 15 9 15 9 j j s:(') ...o ... o ELECTRICAL CHARACTERISTICS Each MECL 10,000 series has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5--3 :: -----':-...0:= 10 11 ~=.:[)--3 Po'" 25 mW typ/gate (No Load) tpd:E 2.0 nt t:yp 12~15 13~9 1: . :[)--14 11 14 10==:[)=-- veel "" Pin 1 VCC2 ~ Pin 16 VeE = Pin 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @125°C V out NOR PROPAGATION DELAY Coax Coax +1.11 V Input 50% Pulse Generator Input Pulse t+ - t- = 2.0 ±. 0.2 ns (20 to 80%1 SO-ohm termination to ground located in each scope channel input. ' - - - - - - ----+0.31 V t:L>+ I ~ ~-f V out OR Unused outputs connected to a 50·ohm resistor to ground. V out NOR' "--n-:'"' VEE = -3.2 Vdc All input end output cabl•• to the ICOpti .r. equal lengths of 50-ohm coexlal C8bl •. Wire length should be< 114 inch from TPln to input pin end TPout to output pin. See G.n .... ' Information Metlon for packaging and maximum r8tingl. Thill, advance Information and .peclflc.tionl ar. subject to change without notice. 3·11 3: ELECTRICAL CHARACTERISTICS ...o ("') Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test t~le. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit bo.d and tr.,werse air flow greater than 500 linear tpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. -Test procedures are shown for ...o w C') o :~2 :::l manner. :::l - ;~3 only one input and one output. The other inputs and outputs are tested in the ~me =. 12~'5 13~9 10~'4 "~ c: CD a. L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES IVolts) Ii! T", Temp .... tur. -30"<: ctJ ..... ~ VIHmex +2SoC -0.890 -0.SI0 +8SoC -0.700 MC10103L Test Limits CharK.,iltic Power SupplV Drain Current Symbol Ie -1.035 -1.440 -5.2 M •• Min M .. Unit S 4" - - 26 245 - mAde - IolAde 4" - - - IolAde - 4" -0.SI0 -O.SIO -0.S90 -0.890 -0.700 -0.700 Vdc Vdc 4,5 -1.650 -1.650 -I.S25 -1.S25 -1.615 -1.615 - -0.910 -0.910 - -1.630 -1.630 - -1.595 -1.595 Vdc Vdc Vdc Vdc Vdc Vdc - - - - - - - _30 oe - 21 - 0.5 2 9 -1.060 -1.060 -0.890 -0.890 -0.960 -0.960 2 9 -1.S90 -1.S90 -1.675 -1.675 -1.850 -1.S50 - -0.980 -0.9S0 VOL - - VOHA 2 9 ·1.080 ·1.080 - VOLA 2 9 - -1.655 -1.655 - - t4+2+ t'2+9· 2 9 2 - - - 2.0 - - 2 - - - - +85oC +2SoC - Logic "0" Output Voltage '2_ -1.S25 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Typ Logic "'" Output Voltage '2+ -5.2 -5.2 Min 4" Rise Tin. (20%'0 SO%) FaU Ti,... (20%'080%) -1.500 -1.475 M •• 'inL VOH Switching Times (5O-ahm load) Propagation oalav -1.205 -1.105 Min linH Logic "0" Threshold Voltage VEE -1.890 -1.S50 Pi" Undof T. . Input Current L.ogic "'" Threshold Voltage VILmin VIHAmin VILAm •• ·Individu:ellv Iftt .ach input eppIving VIH or VtL to input undar talt. - j - n. j VIHmax VILmin VIHAmin VILAm.x - - 12,13 - - - - - - 4,5 - - 12,13 VEE 8 8 1,16 8 8 S 1,16 1,16 1,16 1,16 1,16 1,16 1,16 S 8 8 8 8 S Pul.ln Pul.Out -3.2 V 12,13 (Vee) Gnd 4,5 1,16 1,16 1,16 +2.0 V 4 12 2 9 S - - 4 2 - - 4 2 j j 1.16 f QUAD 2-INPUT AND GATE L -_ _.... ' MECL 10,000 series "'-...._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---' MC10l04 Po = 35 lpd = The MC10l04 provides a very useful low power, high speed logic AND function. High Z input pulldown resistors allow high dc and ac fanouts and eliminate the need to tie unused inputs to an external supply. The open emitter outputs allow maximum flexibility in the selection of termination techniques and minimize the power requirements when driving transmission lines. Open emitter outputs also allow wire-ORing capability, which is very useful in control, bussing, and communications in high speed central processors, high speed peripherals, digital communications systems, minicomputers and instrumentation. mW typ/gate (No load) 2.7 ns typ Output Rise and Fall Times: ~ 3.5 ns typ (10% - 90%) = 2.0 ns tYP (20% - 80%) NEGATIVE LOGIC POSITIVE LOGIC :~2 ;~3 10~ 14 10~ 11 11~ 12'~9 12~9 13~15 ~14 13~15 veel 1 = Pin VC C2 == Pin 16 VEE == Pin 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SoC Vin To Channel "A" veel = VCC2 +2.0 Vdc Your Your NAND AND PROPAGATION DELAY To Channel "8" Input Pulse Generator Input Pulse t+ = t- = 2.0 ±. 0.2 ns Your AND (20 to 80%) +1.11V~ 0.1"F J L __ ~_..J Unused outP~ts connected to a 50-ohm resistor to ground. ~0.1"F SO-ohm termination to ground located in each SCOpe channel input. VEE = -3.2 Vdc All input and output cabl., to the scope ar. equallengthl of 50~hm coaxial CIIbl•. Wlr. length thould be< 1/4 inch from TP'n to input pin and TPout to output pin. s~ G.".,..I Information Section for packaging and maximum ratings. 3-13 s: ELECTRICAL CHARACTERISTICS ...o ... (') Each MECL 10,000 series has been de· signed to meet the de spacifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated through a 5O-ohm resistor to - :~2 :~3 -2.0 volts. Test procedures are shown for only one gate. The other gates are tested 10~""14 in the same manner. "~ 12~9 -cp Power SupplV Drain Current Input Current 'E linH· linL 12 Logic "1" VOH 15 .;:. Output Voltage VOL Output Voltage VOHA 15 9 9 15 15 Lgolc "0" VOLA Threshold Voltage Switching Times· (50-ohm load) Propagation Delay Max VILAm.. -1.500 +2SoC -0.810 -1.850 -1.105 -1.475 -5.2 +8S o C -0.700 -1.825 -1.035 -1.440 -5.2 Typ I 28 -1.060 -1.060 I -0.890 -0.890 I TEST VOLTAGE APPLIEO TO PINS LISTED BLEOW, Max Min I (Vec' Mu 35 mAdc 265 220 /JAdc /JAdc 0.5 -0.960 -0.960 -0.810 1-0.890 1-0.700 -0.810 -0.890 -0.700 -1.890 1-1.675 -1.890 -1.675 -1.850 -1.850 -1.650 1-1.825 -1.650 -1.825 -1.080 -1.0BO -1.080 -1.080 -0.980 -0.980 -{I.980 -0.980 -0.910 -0.910 -0.910 -0910 -1.655 -1.655 -1.655 -1.655 9 9 15 15 Unit -1.630 -1.630 -1.630 -1.630 -1.615 -1.615 I VIH max VILmin t12+15+ t12-9+ 9 t13~15+ 15 9 t13+9Rise Time (20 to 80%1 19+ 15 9 t15- 15 19_ 9 t15+ Fall Time (20 '080%1 15 15 9 1.0 4.3 12.13 2.2 4.0 1.0 4.2 1.5 37 ~ j beh ..... ir:n~~y for K and linH Ylllu~. l T l 1.5 8 8 1.16 1.16 8 1.16 8 1.16 1,16 Vdc 12,13 Vdc 12 13 12 13 13 12 12 3.5 1.5 1.16 1.16 ~ ~ Gnd 8 Vdc ~ -1.595 -1.595 -1.595 -1.595 VEE Vdc 1,16 Vdc 2.7 2.7 ·Inputs 4,7, 10, and 13 will behave similarly for ac and linH values. 12wil~ 1.0 VILAl'ftllx 12 /JAde Vdc VIHAmin 12.13 13 I I - - +1~ '12-15112+9- InputI5.S. 11 • .,d Min VEE -5.2 VIHAmin -1.205 +850 C 12 13 9 Logic "1" Threshold VOltage I +25 0 C 8 9 Logic "0" Min Co Vil min -1.890 MC10104L Test Limits I Tnt c: (I) VIH m •• -0.890 -30"<: Symbol .... ::J 3" Volts ilTost Temperatur. Ch..acteristic CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES 13~15 -lOOC ~ nO L SUFFIX 3.6 t - - I I 12 13 8 1.16 - ~ ~ 8 1.16 12 13 ~ ~ Pulse In Pul_Out -3.2 V +2.0V 12 15 15 9 9 8 1.16 13 12 13 12 ~ 13 13 I I - 15 9 15 9 t 15 9 3:. ELECTRICAL CHARACTERISTICS (') -" E.... MECL 10.000 ......... been de· ligned to ..-1 the de _ificalionl shown in the test bbll, 8fter th_mll equilibrium . . been ntablilhed. The circuit is in I test mcket or mounted on I printed circuit boerd and ,,.nwe,.. lir flow gr••tar than 500 lin. . fpm is mlinhined. Outputs .r. ••min.ted through • 5O-ohm resistor to • :~2 ~~3 -2.0 volts. Test procedures ara shown for only ona gate. The other gates ar. tested in the ume manner. ,.~11~'4 12~9 13 o -" o.p. 8:J P SUFFIX ...s· PLASTIC PACKAGE CASE 648 c CD a. TEST Val TAGE VALUES 15 Volts @Test Temperatur. -30 oe +25 o C +85"c MC10104P Test Limits -lOoe Ch..8Cteriscic Power Supply Drain Current C:J ..... Input Current U1 Symbol IE linHlinL Logic "1" Output Voltage VOH Logie "0" OutPUt Volt. Logic "1" Threshold Voltage Val Lgoic "0" Threshold Voltage Switching Tim.(50-ohm 1... 1 Propegetion Delay VOHA VOLA Min Mo. Min Ty. 8 12 13 - 28 - - 12 15 9 - - -1.()60 -1.060 -0.890 -0.890 0.5 0.960 -0.960 15 9 -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 9 9 15 15 -1.080 -1.080 -1.080 -1.080 - -0.980 -0.980 -0.980 -0.980 - -1.655 -1.655 -1.655 -1.655 - 9 9 15 15 - - - - - - VIL min VIHA min -0.890 -0.810 -1.890 -1.850 -0.700 -1.825 -1.205 -1.105 -1.035 Rise Time 120 to 110%1 t'3"'5+ '13+9t15+ t9+ FeU Time 120 t.80%1 tl5t9- 15 15 9 9 15 9 15 9 15 9 - - -lnputs4, 7.10. and 13 will behave simil.ly for ac and I inH valulS. Input'S. 6, " , and 12 will behave similarly for a: and linH vatues. 1.0 2.2 ~ 2.7 2.7 1.5 2.0 VEE -5.2 -1.475 -52 -1.440 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BlEOW, 1Veel Gnd M•• Min M •• Unit VIH max Vil min VIHAmin VILA max VEE 35 265 220 - mAde - - - /lAde J.lAdc 12.13 13 - jJAdc - - 8 8 8 1.16 - - - - -0.810 -0.810 0.890 -0.890 -0.700 -0.700 Vdc Vdc 12.13 8 8 1.16 1.16 -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vdc Vdc 12.13 - -0.910 -0.910 -0.910 -0.910 - Vdc 12 13 -1.630 -1.630 -1.630 -1.630 - ~ -1.595 -1.595 -1.595 -1.595 Vdc - - - ~ - 12 - - 12 13 - - 4.0 - I - - 3.5 ! ! ! - - - ns 1.16 1.16 - - 8 1,16 - - 8 1.16 - - 8 1,16 12 13 8 1,16 13 12 13 12 - ~ ~ 8 1.16 ~ ~ - - _. - - 12 13 Pulse In Pulse Out -3.2 V +2.0V 12 15 15 9 9 15 9 15 9 15 9 8 1.16 13 ~ 12 12 - - - - +1.11 V t'2+15+ tI2-15'12+9t12-9+· VILA max -1500 +8SoC +25"c Toot VIH mall( t - - - ~ 13 13 ,I MECL 10,000 series TRIPLE 2-3-2 INPUT OR/NOR GATE MC10l05 The MC10l05 isa triple 2-3-2 input OR/NOR gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply. POSITIVE LOGIC NEGATIVE LOGIC :~: 4~3 1:~~ 1:~~ 13~14 13~14 12~15 12~15 5~2 11~ 11~ Po = 30 mW typ/gate (No Loa(H tpd = 2.0 ns typ Output Rise and Fall Time =::: 3.5 ns typ (10%-90%) "" 2.0 ns typ (20%-80%) veel : : Pin 1 VCC2 = Pin 16 VEe =Pin8 SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS @ 25°C VCC1 = VCC2 V out V out +2.0 Vdc NOR OR PROPAGATION DELAY Coax Input Puis. t+ = t- "" 2.0 ±. 0.2 ns (20 to 80%1 50-ohm termination to ground located in each scope channel input. Coax ~ ~ ~ L _ _ _ All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin. _ __ ~ I -I V out OR Unused outputs connected to a 50-ohm resistor to ground. V out NOR 0.1 jJF _ - VeE = -3.2 Vdc s .. Ganeral Information _c:tion for packa"ln". 3-16 3: ELECTRICAL CHARACTERISTICS ..., (') Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermat equi· librium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner. o..., ~ 8 ::J .... ::J c: - 4~3 '~2 9 10~~' 11~ lJ~14 12~15 ~ L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (V ...., @IT ... Temperllture C:-l ..... '-I Characteristic Symbol Pin Under Te" Power Suppty Drain Current Ie 8 tinH 4 tinL 4 tnput Current -3IJOe Min Max VILmin VIHAmin VILA max VEE -0.890 -1.890 -1.205 +2SoC +8So C -0.810 -1.850 -1.105 -0.700 -1.825 -1.035 -1.500 -1.475 -1.440 -5.2 -5.2 5.2 MCl0105L Test Limits +25 o C +8Soc Min TVp - 17 0.5 LogiC "1" Output Voltage VOH 3 2 -1.060 -0.890 -1.060 -0.890 -0.960 LogiC "0" Output Vottage VOL 3 2 1.890 -1.675 -1.890 -1.675 -1.850 -1.850 - LogiC "'" Threshotd Voltage VOHA 3 2 -1.080 -1.080 - -0.980 -0.980 - LogiC "0" Threshotd Voltage VOLA - -1.655 -1.655 - 3.1 1.0 3 2 VIH max -lOoe -0.960 - Ma. 21 265 Min M.. Unit VIH max VILmin mAdc - - /JAdc 4 - - /JAdc - 4 4 - - -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vd, Vd, -1.650 -1.825 -1.825 -1.615 -1.615 Vd, Vd, -0.910 -0.910 - - Vd, Vd, -1.595 -1.595 Vd, Vd, -1.650 -1.630 - TEST VOLTAGE APPLIED TO PINS LISTED BELOW: -1.630 4 - - - - - - - SWitching Times (50-ohm toad) Propagation Detay Rise Time (20 to 80%) Fait Time (20 to 80%1 t4+3_ t4-3+ 14+2+ 14_2_ 3 3 2 2 1.0 '3' '2' '3_ '2- 3 2 1.1 3 2 + 3.6+ + 1.1 ~ ~ ~ 2.0 j 2.9 + 3.3 1.0 + 1.1 ~ ~ 3.3 + 3.7 ~ "' I - - - - - VIHA min VILA max VEE (Vee) Gnd 8 1.16 - - 8 8 1.16 - 4 4 4 - - 1,16 8 8 1,16 8 8 1,16 1,16 1,16 1,16 4 8 8 8 8 Pulse In Pul.Out -3.2 V +2.0V 4 3 3 2 2 8 1,16 I 3 2 3 2 j 1.16 1,16 1.16 I 3: ELECTRICAL CHARACTERISTICS (') --o --~ Each MECl 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thennal equilibrium has been established. The circuit is in 8 test socket or mounted on a printed circuit bo_d and transverse air flow greater th., 500 line.. fpm is maintained. Outputs are terminated through a S(k)hm resistor to -2.0 volts. Test procedures are shown for 8 ...5' :I c: ~ only one input and one output. The other - inputs and outputs are tested in the same manner. '~3 5~2 .~. 10~7 "1~~14 ':Z~'5 PSUFFIX PLASTIC PACKAGE CASE 648 . TEST VOLTAGE VALUES IVoIts) 'fl "Test Temper8lure (XI -- Pin Under Chllracteristic Power Supply Drain Current Input Current SVmbol Test 'E 8 4 linH linL Logic "1" Output Voltage Logic "0" Output Voltage VOH • -300e Min Max - - - MC10105P T_ limits +2SoC +850 C Min Ma. Min Ma. TV. 17 21 - - -1.890 -1.675 -1.890 -1.675 -1.850 -1.850 3 2 -1.080 -1.080 -0.980 Logic "0" Threshold Voltage VOLA 3 2 - -1.655 -0.980 -1.655 - - 1.0 -1.850 +8SoC -0.700 -1.825 -5.2 -5.2 5.2 (Vee l Uni1 VIH max mAde - VIL min VIHAmin 4 - -0.810 -0.810 -0.890 Vdo Vdo - -0.890 -0.700 -0.700 - -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vdo Vdo • - - - - -0.910 -0.910 - Vdo Vdo -1.630 - -1.595 -1,595 Vdc Vdo 2.9 - -1.630 4 - Rise Time (2010~) Fell Time (2010_1 '4+314-3+ 14+2+ 14-2- 3 3 2 2 '3+ '2+ 3 2 '3- 3 2 '2_ - - - - - •~ 1.1 2.0 j •~ 3.3 - - - - n, j - VeE Gnd - 8 1,16 - 8 8 1,16 8 8 1.16 1.16 - - - - 8 8 1,16 1,16 4 • - 8 8 1,16 1,16 - 4 8 8 1,16 1,16 Pulse In Pulse Out -3.2 V +2.0V 4 3 3 2 2 8 1,16 - - - 1,16 - 4 - - VILAm8x - Switching Times (50-ohm load) Propagation Delay -1.440 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: - - -0.810 -1.500 -1.475 -",Adc - 3 2 +25o C -1.205 -1.105 -1.035 - - VOL -1.890 - 265 VOHA VeE -0.890 4 - Logic "1" Threshold Voltage VILA max _lODe j.lAdc - -1.060 -0.890 VIHA min - 0.5 -0.960 -0.960 -1.0GO -0.890 VIL min - - 3 2 VIH max j 3 2 3 2 II MECL 10,000 series TRIPLE 4-3-3 INPUT NOR GATE MC10106 The MC10l06 is a triple 4-3-3 input NOR gate_ Input pulldown resistors eliminate the need to tie unused inputs to an external supply_ POSITIVE LOGIC NEGATIVE LOGIC 1:~--2 1:~2 11~ 11~ 12~ 13 15 12~ 13~15 14 14 veel = Po "" 30 mW tvp/gata (No Load) tpd = 2.0 ns typ n. Output Rise and Fall Time : 3_5 typ (10% - 90%) ::z: 2.0 ns typ (20% - 80%) Pin 1 VCC2 "" Pin 16 Vee = Pin 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2S0C Vee, Vee2 ~ +2.0 Vdc Coax Input ''''i~'''' r-- PROPAGATION DELAY Coax --, ,.-----+1.11 V I I I -----+0_31 V I Input Pulse t+:::; t- = 2.0±. 0.2 ns 120 to 80%) 5O~hm termination to ground lo- cated in each scope channel input. ~! ~nu"'d '- --ti _..J All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should N V ~ < 1/4 inch from TP in to input out outputs connected to • 50-ohm ,.sisto, to g,ound_ ! ~O.II'F pin and TP out to output pin. Vee' -3.2 Vdc &H Oen.,.llnformatlon section for packaging. 3-19 ELECTRICAL CHARACTERISTICS s: n ..... o ..... Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater o0) than 500 linear fpm is maintained. Outputs :~3 are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other 8::J ~, ::J 7 inputs and outputs are tested in the same manner. C 9~2 - IO~ 11 12~'5 13~ 14 (I) Co L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Volts) ctJ @Test '"0 Temperature _lOGe +250 C +8SoC Characteristic 1 Symbol Power Supply Drain Current Input Current l 'E Pin Und.. Te .. -3O"c Min +2SoC Max Min 8 +85o C Min Max -1.890 -1.675 -1.890 -1.675 -1.850 -1.850 -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vdc Vdc -1.080 -1.080 -0.980 -{).980 -0.910 -0.910 -1.655 -1.655 -1.630 -1.630 -1.595 -1.595 1.0 3.1 1.0 t4-3+ 1.0 1.1 3.1 3.6 1.0 1.1 1.1 3.6 1.1 1 2.0 1 2.9 1.0 3.3 2.9 1.0 3.3 3.3 1.1 3.7 3.3 1.1 3.7 VIH max VILmin VIHAmin VilA max 1,16 4 9 8 8 1,16 1,16 Vdc Vdc 8 8 1,16 1,16 Vdc Vdc 8 8 1,16 -3.2 V +2.0 V Switching Times (50-ohm load) 14+3- 1VCCI Gnd 1,16 3 2 Threshold Voltage VEE 1.16 VOL 12111080%' -5.2 -5.2 1.16 Logic "0" ,~ -1.440 ~Adc Vdc Vdc '3+ -1.035 1,16 -0.890 -0.700 -0.890 -{).7oo 120'080%' -1.825 .,Adc -0.810 -0.810 Rise Time -0.100 265 0.5 Unit -0.960 -{).960 Fa.. Time -1.105 mAde -1._ -0.890 -1.060 -0.890 Propagation Delay -1.850 21 3 2 VOHA -5.2 -0.810 -1.500 -1.475 17 VOH VOLA VEE -1.205 Max Logic "'" Logic "0" VILAma. -1.890 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: 4 Logic "'" Threshold Voltage VIHA min -0.890 TV. l,n H Output Voltage VILmin MCl0106L Test Limits ImL Output Voltage VIH max 1 1,16 Pulse In Puis. Out 4 3 1 1 1 1 1.16 ELECTRICAL CHARACTERISTICS 3: n Each MECl 10,000 ..,ies circuit has been designed to meet the dc specifications shown in the test table, after thennal equilibrium has been established. The cirC1lit is ...a C ...a C en in a test socket or mounted on 8 printed circuit bo ..d and tr.,sverse air flow greater th... 500 linear fpm is maintained. Outputs g are terminated through a 50-0hm resistor to -2.0 volts. Test procedures are shown for .... :l :;' :~3 only one input and one output. The other inputs and outputs are tested in the same manner. t: CD Co - 7 9 '0~ 11~2 12 '3~ 14~'5 P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Volts) Co) @Test ~ Temperature _30 D e +250 C +8SoC Pin Chlnct.,istie Power Sup~y I Test l 4 LogiC "1" Output Voltage VOH 3 LogiC "0" Output VOltage VOL LogiC "1" Threshold Voltage a" Logic .. Threshold VOltage -3O"c Min Mo. Rise Time 120'080%1 Fall Time 120'080%1 -52 -0.810 -1.850 -1.105 -1475 -52 -0.700 -1.825 -1.035 -'440 -52 c Max (Vee' Unit mAde 1.16 265 J..IAde 1.16 J..IAdc 1.16 -0 700 -0700 Vdc Vdc 1,16 1.16 -1.615 -1.615 Vdc 4 Vdc 9 0.5 -0.890 -0.810 -0.890 -1.890 -1.675 -1.890 -1.675 -1.850 -1.650 2 -1.850 -1.650 VOHA 3 -1.080 2 -1.080 VOLA 3 -0.980 -0.980 -1.825 -1.825 -0.910 -0.910 -1.655 -1.655 -1.630 -1.630 -1.595 -1.595 VIH max VIL min VIHAmin 1.0 t4-3+ 1.0 '3' 1~ 1 1.1 1.1 2.0 VILA max VEE 8 8 1,16 1,16 Vdc Vdc 1,16 1.16 Vdc 1.16 1,16 vdc Pulse In t4+3- Gnd 21 Switchmg Times ISO-ohm loacl) Propagation Delay -1.500 17 Min -0.810 2 VEE -1.205 Max -0.960 --0.960 3 VILA max -1.890 TVp -1.060 -0.890 -1.060 -0.890 2 VIHA min -0.890 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +8So +2SoC Min Im H ImL Vilmin MC10106P Test Limits Ie Oram Current Input Current Und. Symbol VIH max 2.9 4 PulseOul -3.2 V +-2.0 V 1.16 2.9 1 3.3 3.3 1 1 1 1 1 MECL 10,000 series TRIPLE 2-INPUT EXCLUSIVE "OR"/EXCLUSIVE "NOR" MC10l07 POSITIVE LOGIC NEGATIVE LOGIC :~: 4~2 9~11 9~11 5~3 7~IO 7~IO '4~'2 14~12 15~13 5) (4 • 5) 3 : (4 • 2 : + (4 • 5) + (4 • 5) This three gate array is designed to provide the positive logic Exclusive OR and Exclusive NOR functions in high speed applications. Input pulldown resistors eliminate the need to tie unused inputs to VEE· 15~13 3 :=; (4 .5) 2: (4 • 5) vee1 "" Pin 1 Po + (4 • 5) + (4 • 5) = 40 mW typ/gat8 (No Load) tpd "" 2.5 ns typ Output Ri .. and Fall Time. VCC2::::S Pin 16 "" 2.5 n. typ (20% to 80%) "" 3.5 ns typ (10% to 90%) VeE"" Pin 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C V out VCCI : vCC2 EXCLUSIVE+2.0 Vdc NOR V out EXCLUSIVEOR PROPAGATION DELAY Coax Coax -+1.11 V Input Pulse t + = t- "" V out EXCLUSIVE-NOR 2.0 ± 0.2 ns (20 to 80%) t+ t- 50-ohm termination to ground located in each scope channel input. V out EXCLUSIVE-OR All input and output cables to the scope are eQual lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. VIH VEE: -3.2 Vdc Unused outputs connected to 8 50-ohm resistor to ground. See General I nformation section for packaging. 3-22 ~ ELECTRICAL CHARACTERISTICS - Each MECL 10,000 _ies circuit has been designed to meet the de specifications shown in the test table, after thermat equilibrium has been established. The circuit is in a test socket or mounted on a printed 4~' 5~3 9~11 7~'O circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to 14~12 15~13 -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. n ...a o...a LSUFFIX ...,o CERAMIC PACKAGE CASE 620 nO ::J .... 5' c: a TEST VOLTAGE VALUES IVoitsl • Test T-.nperature -3O"c +2SoC +SSoC W r\.) I Characteristic _30°C Under TH' Symbol Min W LogIC "0" Threshold Voltage VOL I VOHA I I -1.060 -1.060 -1.060 -1.060 -0.890 -0.890 -0.890 -0.890 -0.960 -0.960 -0.960 ...(}.960 -1.890 -1.890 -1.890 -1.890 -1.675 -'.675 -1.675 -1.675 -1.850 -1.850 -1.850 -1.850 H ,-- -1.2(1) -1.500 -1.105 -1.035 -1.475 -0.810 -0.700 M.,. Unit VIH m.. mAde All Inputs 265 220 j.lAdc j.lAdc Min Inputs 4, 90r 14 to either Output Inputs 5,7, or 15 to either Output Rise Time 1.1 3.8 j j I VIL min VIHAmin 12Oto~) "IndIVidually test each Input applymg VI H or VI L to Input under test "Any Output VEE -5.2 -5.2 I -5.2 VILAmu VEE -0.890 -0.890 Vd, -0.890 -0.700 -0.700 -0.700 -0.700 -1.825 -1.825 -1825 -1.825 -'.615 -1.615 -1.615 -1.615 Vd, -0.890 -0.910 -0.910 -0.910 -0.910 Mo" Ty. Mu 11 2.0 3.7 ~ 2.8 + 1,16 1,16 4,5 • 5 4,5 40 + + j j 1,16 + 8 1.16 8 +1.1 V Pulsetn Pu . . Out 5,7,15 Input 4,9,or Correspondino Ex-OR/E.·NQR Outputs ~ 4,9,14 •• Input 5.7, or 15 1.1 3.5 2.5 3.5 3,8 4,9,14 ~ Any Input 1.1 3.5 2.5 J.5 3.8 4,9,14 Any Input ~ 8 + Vd, Unit 1.' Gnd 1.16 Vdo -1.595 -1.595 -1.595 -1.595 -1.630 -1.630 -1.630 -'.630 + tVee' 1,16 120 to 80%1 Fall Time -1.440 I .Ade -0.810 -0.810 -0.810 -0.Bl0 -1.650 -1.650 -, 650 -1.650 -1.655 -1.655 -1.655 -1.655 SWitching Times 150 H Load) ,+- -1.890 -1.850 -1.825 28 ...(}.980 -0.980 -0.980 -0.980 -1.080 -1.080 -1.080 -1.080 VOLA Propagation Oelay VILAm.. -0.890 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: 0.5 VoH Logic "0" Output Voltage LogIC "1" Threshold Voltage Mox Min 4,9,14 5,7,15 lin L Logic "1" Output Volt&ge VIHA min +asoc +25"<: Mu 'E lin H ',p", Cu,,,", VIL min MC10107L T . . Limits Pin Power Supply Dram Current VIHmax Corresponding e • .oR/h·NQR Outputs Corresponding b-OR/Ex NOR Outputs + -3.2 V 8 + + 1.16 + 1.16 + +2.0 V 1.16 s: ELECTRICAL CHARACTERISTICS ("') Each MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit bo..d and transverse air flow greater - 4~2 S~3 9~11 than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to 7~1() 14~12 -2.0 volts. Test procedures are shown for 15~13 only one gate. The other gates are tested .... in the same manner. o.... o..... PSUFFIX CERAMIC PACKAGE CASE 648 8::J .... s· c CD Co TEST VOL TAGE VALUES (Volts) .Tut Temper.ture -3O"C '. Power SupplV Drain Current W I,np ", Cu",", Min -3O"c -0.890 -1.500 -5.2 -0.810 -0.700 -1.890 -1.850 -1.825 -1.205 +25 o C -1.105 -1.035 -1.475 -1.440 -5.2 -5.2 Min -1.060 -1.060 -1.060 -1.060 -0.890 -0.890 -0.890 -0.890 -0.960 -0.960 -0.960 -0.960 Logic "0" Output Voltage VOL -1.890 -1.890 -1.890 -1.890 -1.675 -1.675 -1.675 -1.675 -1.850 -1.850 -1.850 -1.850 -1.080 -1.080 -1.080 -1.080 VOHA I Switchinll Times (50 n Load) I Propagation Oelav VOLA ,++ ,+,-+ I I -1.630 -1.630 -1630 -1.630 -1.655 -1.655 -1.655 -1.655 " -0.890 -0.890 -0.890 -0.890 -0.700 -0.700 -0.700 -0.700 -1.815 -1825 -1.825 -1.825 -1.615 -1615 -1.615 -1.615 -0.910 -0.910 -0.910 -0910 -0.980 -0.980 -0.980 -0.980 Min Inputs 4,9 or 14 to either Output -0.810 -0.810 -0.810 -0.810 -1.650 -1.650 -1650 -1.650 TVO Mu 2.0 3) Unit VIHma. mAde All Inputs VIL min .uAdc Vd, '.' + Vd, + S ',S + + 1,16 + 1,16 + Put. Out -3.2 V +2.0 V ,. Corresponding Ex-ORfEx·NOA Outputs 8 1,16 Input 5,7, or 'S Corresponding Ex-OAfEx-NOR Outputs Anv Input Fall Time (20 to 2.S 3.S 4,9,14 Anv Input VIH or Vil to input under test. + + Input 4,9,or 4,9,14 input~lvinll 1.16 Pulse In 3. ·lndivkiu"ly t ..t each ··Any Output + 8 5,7,15 2.' *"'1 1,16 +1.1 V Rise Time (201080%) ,+- 2.8 1,16 8 + 8 + Vd, Unit 8 + Vd, -1.595 -1.595 -1.595 -1.595 Gnd 1,16 1,16 1,16 4,9,14 Inputs 5.7, or 15 to either Output V •• 8 i i j ,-,++ VILA ma. VIHAmin _Ade j.lAdc O.S VOH Vee IVee· M.. 220 lin L LOllic "0" Threshold Voltage Mi" 26. 4,9,14 5,7,15 Logic "1" Output Voltage Logic "1" Threshold Voltage M •• VILA TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +85o C +25"1: M.. 28 lin H ~ ~ T .., I VIHAmin MCl0107P Tnt Limi" Pin Undo, Symbol m." VIL min +85o e Ch....:: ....... ic I VIHm.JII + i I Corresponding Ex-OR/Ex NOR Outputs MECL 10,000 series DUAL 4-5-INPUT "OR/NOR" GATE MC10109 POSITIVE LOGIC The MC10l09 is a dual 4-5 input OR-NOR gate which is pin compatible with the MECL III MC1660L dual OR-NOR gate. All inputs are terminated by a 50 k ohm resistor to VEE eliminating the need to tie unused inputs low. NEGATIVE LOGIC :~3 :§=t=3 7 7 6 2 11:~ 12 6 2 1:~ 14 11 15 12 13 14 15 tpd = 2.0 ns typ PO::: 30 mW tvp/gate (No Load) 13 Output Rise and Fall Times (10%t090%13.5 ns (20% to 80%) 2.0 ns vee1 = 1 VCC2" 16 VEE" 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SoC Veel Vin To Channel "A" = V out NOR VCC2 i +2.0 Vdc ,,» £ ±""' r--- V out OR PROPAGATION DELAY To Channel ··8" ---, +1.11 V 50% '--_ _....L_ - - - +0.31 V I Input Pulse t+ :r:: t- :.: 2.0 ±. 0.2 ns (20 to 80%) 50-ohm termination to . ground located in each scope channel input. . ~ L ______ All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. V out OR Unused outputs connected to a 50-ohm resistor to ground. t+ t- V out NOR J ~ I ' -= 0 1 ~F Vee::: -3.2 Vdc See-Generellnformation section for packaging. 3-25 3: ELECTRICAL CHARACTERISTICS (') ..... o..... Each MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit bo .. d and tranwerse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a SG-ohm resistor to -2.0 volts. Test procedures are shown for ~ 8" ::J .+ :i' c: :§=t' only one input and one output. The other inputs and outputs are tested in the same manner. • ~ - 2 7 9~ 10 11 14 12 15 13 L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Voltsl I;> Test W VIHmu VILmin VIHA min VILA max -0.890 -1.890 -1.206 -1.500 +25"<: -0.810 -1.850 -1.105 -1.475 +8SoC -0.700 -1.825 -1.035 -1.440 Temper.tur. _lOGe ~ CD Characteristic I Symbol Power Supplv Drain Current Input Current l Pin Under Test MC10109L TN Limits _JaDe Min +250 C Max Min 'E VOH Low Output Voltage VOL High Threshold Voltage VOHA Low Threshold Voltage VOLA -1.060 -H160 -1.890 -1.890 -1.080 -1.080 -0.890 -0.890 -1.675 -1.675 Max 14 mAde 265 JlAdc -0.810 -0.810 1.650 -1.650 -1.630 -1.630 -1.655 -1.655 -0.890 -0.700 -0.890 -0,700 -1.825 -1.615 -1.825 -1.615 -0.910 -0.910 -1.595 -1.595 SWitching Times (50-ohm load) Propagation Delay VIH max Vilmin VIHA min 14+314_3+ Rise Time 420 to 80%) 12+ 13+ Fait Time (20 to '2'3_ 1.0 3.1 1.0 l 3.6 ~ ~ 1.1 1.1 l J l 2.0 ~ -5.2 -5.2 2.9 10 ~ 1.1 3.3 ~ 3.3 ~ 3.7 l l l VILA rna. VEE 8 {Veel Gnd 1.16 ,I.IAdc 1.16 1.16 Vdc Vdc Vdc Vdc 1.16 1.16 1.16 1.16 Vdc Vdc 1.16 1.16 Vdc Vdc 1.16 1.16 Pulse In 14+2+ 14-2- 80%. Unit 11 -0.960 -0.960 -1.850 -1.850 -0.980 -0.980 -5.2 I +85D C Min Max 0.5 linL High Output Voltage VEE TEST VOLTAGE APPLIED TO PINS BELOW: TV. ItnH I Pul .. Out -3.2 V +2.0 V 1,16 3: n ..... o..... ELECTRICAL CHARACTERISTICS _ie. Eoch MECL 10,000 circuit ho. been designed to meet the de specifications shown in the test table, after thermal equilibrium hes been established. The circuit is in I test socket or mounted on a printed circuit bo.d and tranwerse air flow greater th., 500 line... fpm is maintained. Outputs are terminated through. SO-ohm resistor to -2.0 volts. Test procedures are shown for o c.c 8 .... ::l :¥J onlv one input and one output. The other inputs and outputs are tested in the same • manner. -- 2 7 9~ 10 11 14 12 15 13 3' c ~ PSUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Volts) iiITost Temperatur. _lOGe w N " +25oC +85·C MCl0109P Test Limits Pin -:ID"c Under Symbol T_ Ie Input Current linH High Output Voltage VOH CharK,.ristie Power Supply Drain Current linL Low Output Voltage M .. 8 11 14 4 4 - 265 - -0.810 -0.810 2 3 VOLA 2 3 - 2 Low Threshold Voltage M •• - VOHA 2 3 High Threshold Voltage M;" -1.060 -1.060 -1.890 -1.890 -1.080 -1.080 VOL +25°C Typ 3 VIH max -0.890 -0.810 -0.700 Min 0.5 -0.890 -0.960 -0.890 -0.960 -1.675 -1.850 -1.675 -1.850 -0.980 -0.980 -1.655 -1.655 - - - -1.630 -1.630 Rise Time 120'.80%1 Fall Time 120'.80%1 t4+2+ t4-2t4+3_ 14!.3+ '2+ '3+ '2_ '3_ 2 2 3 3 2 3 2 3 - - - - 1.0 l l 1.1 2.0 2.9 +85o C Min M.. - 1 3.3 l - -1.475 -5.2 -1.035 -1.440 -5.2 1VCCI Unit VIH max mAde - ,.,.Ade 4 Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vll min - - n, j VIHAmin VILA mu: 4 .uAdc -0.890 -0.700 -0.890 -0.700 -1.825 -1.615 -1.825 -1.615 -0.910 -0.910 -1.595 -1.595 - -1.105 -1.850 -1.825 4 4 - - - Switching Times (50-ohm load) Propagation Delay VEE -5.2 VILAmu TEST VOLTAGE APPLIED TO PINS BELOW: -1.650 -1.650 -1.500 -1.890 VIHAmin -1.205 Vel min - - - _. - - 4 Gnd 8 8 1.16 1.16 8 1.16 8 8 8 8 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 4 - 8 8 8 8 Pulse In Pul.Out -3.2 V +2.0 V 4 2 2 3 3 8 1.16 - - - - VEE j 4 4 2 3 2 3 I MEel 10,000 series DUAL 3-INPUT 3-0UTPUT "OR"GATE MClono POSITIVE LOGIC NEGATIVE LOGIC ~~2 7 3 4 1~~12 1~~12 11 13 11 13 14 14 The Mel 011 0 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire·"OR"· ing of several levels of gating for minimization of gate and package count. The ability to control three parallel lines from a single point makes the Me 10 11 0 particu' larly useful in clock distribution applications where minimum clock skew is desired. Three Vee pins are provided and each one should be used. Po = 80 mW typ/gate (No Load) tpd "" 2.4 ns typ (All Outputs Loaded) veel VCC2 Output Rise and Fall Time: (All Outputs Loaded) "" 2.2 ns typ (20% to 80%) = 4.0 ns typ (10% to 90%) = 1, 15 = 16 VEE = 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS PROPAGATION DELAY Coax r----- Input - - - - - +0.31 V Pulse Generator Input Pulse t+ = t- '"" 2.0 ±. 0.2 ns (20 to 80%) 5O-ohm termination to ground 10' cated in each scope channel input. All input and output cabl •• to the scope are equal lengths of 50·oh m coaxial cabl.. Wire 'ength should be < 1/4 inch from TPin to input +1.11 V VEe = -3.2 Vdc pin and TP out to output pin. See General 1nformation section for packaging. 3-28 3: ELECTRICAL CHARACTERISTICS ....oo ........ Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is o in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for - ~~2 7 only one input and one output. The other 3 inputs and outpu ts are tested in the same manner. o o 4 9~1213 10 11 14 ::J !:!. ::J L SUFFIX c: CERAMIC PACKAGE CASE 620 CD .e: TEST VOLTAGE VALUES (Volts) @Test Temperature W ~ CO I I Characteristic I Symbol Power Supply Drain Current I Input Current L LogiC "1" Ou tpu t Voltage LogiC "0" Output Voltage Pin Under Te.. Min Min linL 5,6,7 Logic ·'1" Threshold Voltage VOHA LogiC "0" Threshold Voltage VOLA Max Min Rise Time 120 to 80%1 Fall Time 1201080%1 -0.890 -1.890 -1.205 VI LA max -1.500 +2SOC -0.810 -1.850 -1.105 -1.475 I +85 0 C -0.700 -1.825 -1.035 -1.440 I Unit VIH max VILmin VIHAmin Vdc Vdc Vdc 1.15.16 -0890 -1.825 -1.825 -1.825 -1.615 -1.615 -1.615 Vdc Vdc Vdc 1.15.16 1,15.16 1,15.16 Vdc Vdc Vdc 1.15.16 Vdc Vdc Vdc 1.15.16 1.15.16 1,15.16 -0.810 -0.810 -0.810 2 3 4 -1.890 -1.890 -1890 -1.675 -1.675 -1.675 -1.850 -1.850 -1.8S0 -1.650 -1.6S0 -1.650 '2+ '3+ '4+ '2_ '3_ '4_ 3 • 4 -0.910 -0.910 -0.910 -0980 -0.980 -0.980 -1630 -1.630 -1.630 -1.595 -1.595 -1.595 1 3.5 1.5 1 1 1 1 11 1 10 -IndiVidually test each Input uSing the pm connections shown. 1.1 2.2 1.15.16 1,15,16 -0.960 -0.960 -0.960 2.4 8 1.15.16 -0.890 -0.890 1 .• (Veel Gnd IJAdc 4 3.5 VEE -0.700 -0.700 -0.700 -0.890 -0.890 1.4 VILA me)! /JAdc 1,15,16 1,15,16 1,15,16 1,15,16 Pulse In t5+2+ t5_2_ t5+3+ t5_3_ t5+4+ t5_4_ -5.2 -5.2 mAdc 0.5 -1.655 -1.655 -1.655 -5.2 38 -0.890 -1.080 -1.080 -1.080 VEE TEST VOLTAGE APPLIED TO PINS LISTED BELOW, Max Switching Times (50-ohm load) Propagation Delay -JOoe 425 -1.060 -1.060 -1.060 VOH VOL TV. 30 5,6,7 VIHAmin +8SoC +250 C Max IE linH VILmin MC10110L Test limits _lODe I VIH max 1 1.2 3.8 Pul.Out -3,2 V +2_0 V 8 1,15,16 3: ELECTRICAL CHARACTERISTICS o Each MECL 10,000 series circuit has been o ~ ~ designed to meet the de specifications ~ shown in the test table, aher thennal equilibrium has been established. The circuit is in a test socket or mounted on 8 printed circuit bo_d and transverse air flow greater then 500 line. fpm is maintained. Outputs o - ~~2 are terminated through. 51k>hm resistor to -2.0 volts. Test procedures are shown for 7 only one input and one output. The other 3 4 inputs and outputs are tested in the same manner. 9~12 10 11 8 13 ::J .... P SUFFIX 3' PLASTIC PACKAGE CASE 648 a TEST VOLTAGE VALUES 14 (Volts) In... Temperature -lOoe +26OC +85oC Pin 'rl (,J 0 I I I CharKteristic Power Supplv Drain Current I nput Current Logic "'" Output Voltage Logic "0" Output Vol1age logic "1" Threshold Voltage Logic "0" Threshold Voltage I I ~ u_, Symbol T ... Mel0110P Tnt Limits +25"<: _lOGe Min Ma. Min Ty. Ma. Rise Time 1201080%) Fell Time (20 .. _1 M.. Unit IE 8 38 mAde 5,6.7 5,6,7 425 /lAde ~.890 2 3 4 -1.060 -1.060 -1.060 -0.890 -0.960 -0.960 ~.890 ~.960 4 -1.890 -1.890 -1.890 -1.675 -1.675 -1.675 -1.850 -1.850 -1.850 2 3 4 -1.080 -1.080 -1.080 VOL VOHA 0.5 VOLA -0.810 -0.810 -0.810 -1.650 -1.650 -1.650 -0.890 -0.890 -0.890 -1.825 -1.825 -1.825 -0.980 ~.910 ~.980 -0.910 -0.910 ~.980 -1.655 -1.655 -1.655 -1.630 -1.630 -1.630 1.4 '2+ '3+ '4+ 1.1 '2_ 1 1I '3_ ·lndlViduetty tett eKh Inpu1 usn'll the PI" connlC1lon1lhown. I VIHAmin ~.890 -1.890 -1.205 -1.500 -0.810 -1.850 -1.105 -1.475 I I ~.700 -1.825 -1.035 -1.440 I VIH max VILmin VIHAmin VEE 5.2 -5.2 -5.2 VILA max VEE (Veel Gnd 8 1.15,16 1.15.16 -0.700 -0.700 Vdc Vdc Vdc -1.615 -1.615 -1.615 Vde Vdc Vdc ~.700 1,15.16 8 8 8 Vde Vdc Vde -1.595 -1.595 -1.595 2.4 3.5 1 1 2.2 ! 1.15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 8 8 8 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 Vdc Vdc Vdc Put. In t5+2+ t5_2_ t5+3+ 15-3t5+4+ t5_4- .... VILA ma. VILmin /lAde Switching Times (50-ohm load) Propagation Delay +85·C Min VIH max TEST VOLTAGE APPLlEO TO PINS LISTED BELOW, linH linL VOH ~ Put.Ou1 -3.2 V +2.0 V 2 2 3 3 8 1,15.16 MECL 10,000 series DUAL 3-INPUT 3-0UTPUT "NOR"GATE MC10lll POSITIVE LOGIC 9 10 11 ~ NEGATIVE LOGIC ~ 1~ 12 13 . 14 12 The Me 10111 is designed to drive up to three transmission lines simultaneously, The multiple outputs of this device also allow the wire-"OR"ing of several levels of gating for minimization of gate and package count. The ability to control three parallel lines from a single point makes the Me 10 111 particularly useful in clock distribution applications where minimum clock skew is·desired. Three Vee pins are provided and each one should be used. 13 14 11 Po == 80 mW typ/gate (No Load) tpd = 2.4 ns typ (All Outputs Loaded) Output Ris. and Fall Time: (All Outputs Loaded) ==2.2 ns typ (20% to 80%) == 4.0 nl tvp (10% to 90%) VCCI = I, 15 VCC2 = 16 VEE = 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C VCC 1 = VCC2 +2.0 Vdc Vout ~. ,,,,t1t"" r--Input I I ----, ~-+-_----J V out Pulse Generator Input Pulse t+ ;. t- = 2.0 ± 0.2 ns (20 to 80%) 50-ohm termination to ground lo- cated in each sCOpe etlannel input. All Input and output cables to the scope are equal lengths of 50-ohm coaxial cabl.. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. s.. G,enera' PROPAGAT)ON DELAY VEE == -3.2 Vdc Information section for packaging. 3-31 ELECTRICAL CHARACTERISTICS 3: Each MECl 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in I test socket or mounted on 8 printed circuit bo_d and tra"$Verse air flow greater than 500 linear fpm is maintained. Outputs ..... Q ..... ..... ..... (') ~ ~: '" 7~4 are terminated through a 5o.ohm resistor to 9 -2.0 volts. Test procedures are shown for 10 11 ~ 12 13 14 only one input and one output. The other inputs and outputs are tested in the same manner. lSUFFIX CERAMIC PACKAGE CASE 620 n-o .... ::J :5' I: a TEST VOLTAGE VALUES (Voltsl • Test Temperatar. Pin 'fJ W Charact.",tte . '" Power Supply Dram Current Inpu1 Current LogiC "1" Output Voltage LogiC "0' Output Voltage LogiC "1" Threshold Voltage Symbol Under T ... 'E 8 IlnH 5,6.7 IlnL 5.6,7 VOH 2 I VOLA TV. M.. -1.060 -1,060 -1.060 -0.890 -0.960 -0.890 -0.890 -0960 -1.675 -1.675 -1.675 -1850 -1.850 -1.850 I -1080 -1.080 -0.810 -0.810 -0.810 -1.650 -1650 -1.650 -0.960 -0.980 -0980 -0980 Rise Time ~20 to amc.I Fall Time IZOtoaa..1 VILA m.. VEE -JOoC -0.890 -1.890 -1.205 -1.500 -5.2 +25o C -0.B10 -1.475 -0.700 -1.850 -1.825 -1.105 +8So C -1.035 -1.440 -5.2 -5.2 Unit VIH max IVeel VIL min VIHA min -0.890 ~Adc 1.15,16 1,15,16 Vdo Vdo Vdo 1,15,16 1,15,16 1,15,16 -1.825 -1.825 -1.825 -1.615 -1.615 -1.615 Vdo Vdo Vdo 1,15,16 1,15,16 1,15,16 Vdo Vdo Vdc 1.15,16 1,15,16 1.15,16 Vdo Vdo Vdo 1.15,16 1,15.16 1,15,16 -1.595 -1.595 -1.595 14 '2' '3' '4' '2_ '3_ 10 1.1 2.2 1 1 1 1 1 1 '4_ 1 -Individuelly test eech input using the pin connections stlown. 1 1 3.5 1 3.5 1,15,16 ~Adc Pul.ln 2.4 GncI 8 -0.700 -0.700 -0.700 -1630 -1630 -1630 14 VEE -0.890 -0.890 t5+2_ 15-2+ t5+3_ 16-3+ 15+4_ 15_4+ 3.5 VILA max mAdc S....lItchmg Times (50·ohm load) Propagation Delay VIHA min TEST VOL rAGE APPLIED TO PINS LISTED BELOW: M.. -0.910 -0.910 -0.910 -1655 -1.655 -1.655 I VIL min +85o e Mon 425 -1.080 LogiC "0" Threshold Voltage Min 0.5 -1.890 -1.890 VOHA Max 38 I -1890 VOL MCl0111l Test Limits +25 o e -lOoe Min VIH me. 1.5 3.8 1 1 1.2 3.8 Pul_Out -3.2 V +Z.oV 8 1,15,16 3: n .o ..- ELECTRICAL CHARACTERISTICS _ie. Ea:h MECL 10,000 circuit has been designed to moet the dc opecificetion. shown in the test table, after thenn. equilibrium has been established_ The circuit i. in I test mcket or mounted on I printed ciraJit bo.d and trlnwene lir flow greater th.. 500 linear fpm is maintained. Outputs ant t .. minlted through a 5O-ohm resistor to -2_0 volts. Test procedure. are shown for only one input and one output. The other inputs and outputs are tasted in the same manner. - ~: : 7~4 9 10 11 ~ '2 .- 8 ::J ~ 3' c PSUFFIX PLASTIC PACKAGE CASE 648 13 14 !l TEST VOL TAGE VALUES IVolts) @T8'51 VIHm ... Vilmin VIHAmln VILA mu _lODe -0.890 -1.890 -1.205 -1.500 +25o C -0.810 -1.850 -1.105 -1.475 +85 Q C -0.100 -1.825 -1.035 -1.440 Unit VIHmax T .mperature Pin ~ W W CharKtaristic vmbol Toot 'E 8 Input Current IlnH 5,6,1 Iml 5,6,7 LogiC "'" VOH 2 Power SupplV Drain CurrenT OutPUt Voltage Logic "0" Output Voltage MCl0111P 111ft Limit. +2SoC _lOGe u ... Min I M.. Min I Tvp I MIX 38 425 -1.890 -1.890 -1.890 LogIC "1" Threshold Volt. VOHA -1.080 -1.080 -1.080 Logic "0" Threshold Voltage VOLA -0.890 -0.890 -0.890 -1.675 -1.675 -1675 -0960 -0960 -0960 -0810 -0810 -0.810 -1650 -1650 -1.650 -1850 -1850 -1.850 -0980 -0980 -0980 -0.890 -0.890 -0.890 -1.825 -1825 -1.825 -1.655 -1.655 -1.655 -1630 -1630 -1630 Vil min VIHAmtn 1.4 2.4 '5-2+ 15+3_ 15-3+ '5+415-4+ Rise Time '2. '3. 12Ota_1 '4. Fan Time '2_ '3_ 12Ota_1 '4USing the pin connections shown. 1 1 1.1 2.2 !1 3.5 -52 -5.2 I -52 tVee' VEE Gnd 8 1,15,16 J.lAde: 1,15,16 J.lAde: 1,15,16 -0.700 -0.700 Vdo Vdo Vdo 1,15,16 1,15,16 1,15,16 -1.615 -1.615 -1.615 Vdo Vdo Vdo 1,15.16 1,15,16 1,15,16 Vdo Vdo Vdo 1,15,16 1,15,16 1,15,16 Vdo Vdo Vdo 1.15,16 1,15,16 1,15,16 -0700 -1.595 -1.595 -1.595 Pulse In 15+2_ VILArn. . mAde: -0.910 -0.910 -0.910 SWitching Times (5().ohm load' -Individually test NCh input Max OS -1.060 -1._ -1.060 VOL ProP8glltlon Delay I VEE TEST VOL TAGE APPLIED TO PINS LISTED BELOW' +850 C Mon I Pul_Out -3.2 V +2.0 V 8 1,15,16 MECL 10,000 series QUAD EXCLUSIVE OR GATE MC10113 Advance InforIDation POSITIVE LOGIC E 9 2 6 TRUTH TABLE A B E OUTPUT 3 L L H H 10--"-~~ 14 11 L H L H 4> 4> L L L L H The MC10113 is a quad Exclusive OR gate, with an enable common to all four gates. All four outputs may be wire·ORed together to perform a 4·bit comparison function (A = BI. The enable is active low. Input pulldown reo sistors included in the circuit make it un· necessary to tie down unused inputs. Open emitter outputs permit direct connection of outputs to busses. L H H L L

$"'"> r - (~--~~--TI~~ Pulse Generator I Coax - - -, I :>'"-Ir-+--------' Input Pulse t+ = t- = 1.5.±. 0.2 ns V out (20 to 80%) 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input < pin and TP out to output pin. VEE = -3.2 Vdc Unused outputs connected to a 50-ohm resistor to ground. This is advance information and specifications are subject to change without notice. See General I nformation section for packaging. 3-34 @ 25°C ELECTRICAL CHARACTERISTICS "'" The circuit is in a 6 3 -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other 10---'--'" inputs and outputs are tested in a similar manner. "~ 12 14 CERAMIC PACKAGE CASE 620 8 ::J ~. ::J c: CD +25"C +85oC MCl0113l Test Limits Pin Power Supply Drain Current Input Current w W UI lin L Logic "1" Output Voltage VOH Logic "0" Output Voltage VOL Logic "1" Threshold Voltage VOHA Logic "0" Threshold Voltage VOLA Switching Times (50 n Propagation Delav 2 3 14 15 2 3 14 15 2 3 14 15 2 3 14 15 - - - - - -1.060 -1.060 -1.060 -t.060 -1.890 -t.890 -1.890 -.1.890 -1.080 -1.080 -1.080 -1:080 -0.890 -0.890 -0.890 -0.890 -1.675 -1.675 -1.675 -1.675 - - - - - - -0.960 -0.960 -0.960 -0.960 -1.850 -1.850 -1.850 -1.850 -0.980 -0.980 -0.980 -0.980 - 12+ 2 2 2 2 2 12_ 2 t9+2t9-2+ - - - - - SlAdc SlAdc - 9 - - - ,.Adc - -0.890 -0.890 -0.890 -0.890 -1.825 -1.825 -1.825 -1.825 -0.910 -0.910 -0.910 -0.910 -0.700 -0.700 -0.700 -0.700 -1.615 -1.615 -1.615 -t.615 Vdc 4 7 11 13 - Vdc - -1.595 -1.595 -1.595 -1.595 Vdc - - - - 2.0 - Min - - - - - - - (20 to 80%) . - -Individuallv test each input applying VIH or V'L to input under test. Unit mAdc ,.Adc l Vdc ~ l ~ Unit (20 to 80%) Fall Time -1.500 -1.475 -1.440 - - - VILA mix -1.205 -1.t05 -t.035 42 - - VIHAmin -1.890 -1.850 -1.825 265 220 545 0.5 -0.810 -0.810 -0.810 -0.810 -1.650 -1.650 -1.650 -1.650 - - - VILmin Ma. - -1.630 -1.630 -1.630 -1.630 TVp Ma. 3.0 3.0 3.4 3.4 2.0 - -1.655 -1.655 -1.655 -1.655 Min t4+2+ Ma. Min VIH IftIIx -0.890 -0.810 -0.700 VEE -5.2 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +85oC +25°C Ma. - Min Load) 14-2_ Rise Time . _lODe .eo TEST VOLTAGE VALUES (Volts) @Tost Tlmp ••tur. _30G e 1"5 13 Unci. Symbol Tort 8 IE lin H 4,7,10,13 5,6,11,12 9 o LSUFFIX 4 test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to Characteristic ... ......w o 9 designedta meet the de specifications shown in the test table. after thermal equilibrium has been established. 3: E Each MECL 10.000 series circuit has been ns I -- VIH mIIX .. - - VILmin . - - 4 7 11 13 - - - +1.11 V VIHAmln VILAma. - - - - - - 4 6 10 12 - - - 5 7 11 13 - VEE 8 8 8 8 8 8 (VCC) GncI t,16 1,16 1,16 1.16 1.16 1,16 8 1.16 ! l l l l l l l 8 t,16 8 l.t6 Pulse In Pul_Out -3.2 V +2.0 V 4 4 9 9 4 2 8 1.16 - - - - 4 4 4 I II MECL 10,000 series TRIPLE LINE RECEIVER MC10114 The MC10114 is a triple line receiver designed for use in sensing differential signals ovef long lines. An active current source and translated emitter follower inputs provide the line receiver with a common mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount of common mode noise immunity for extra long lines. POSITIVE LOGIC Another feature of the MC10114 is that the OR outputs (pins 3,7, 15) go to a logic low level whenever the inputs are left floating. The outputs are each cap. able of driving 50 ohm transmission lines. NEGATIVE LOGIC 4~2 Thisdevice is useful in high speed central processors, minicomputers, peripheral controllers, digital communication systems, testing and instrumentation systems. The MC10114 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS RAM's. A VBB reference is provided which is useful in making the MC10114 a Schmitt trigger, allowing singleended driving of the inputs, or other applications where a stable reference voltage is necessary. 4~2 5~3 5~3 9~6 9~6 '0~7 '0~7 '2~'4 '2~'4 '3~'5 '3~'5 L-" Vee L-" Vee vee1 "" Pin 1 VCC2 = Pin 16 VEE Pin 8 tpd = 2.4 ns typ (Single Ended Input) tpd = 2.0 ns typ (Differential Input) Po = 145 mW typ/pkg = SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C VCC1 ::: VCC2 V out +2.0 Vdc Coax Input V out PROPAGATION DELAY ""ill'' ' r-- ----, I Pu lse Generator V out Input pulse Unused outputs connected to a 50-ohm resistor to ground. t+ '" t - '" 2.0 ±. 0.2 ns (20 to eO%) I I I L 50-ohm termination to ground 10' .cated in each scope channel input. All ;nput and output cables to the scope ere equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. I O" "F IlOne .Input from -11-.-J each gate must be tied to Vee (Pin 11) during testing . ::to'IlF -32 Vdc See General I nformation section for packaging. 3-36 ~ ELECTRICAL CHARACTERISTICS ...... ... Each MECL 10,000 series has been de- o signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit ~ 4~2 nO 5~3 ~. board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested :::J :::J 9~6 c: <» 10~7 in the same manner. 12~14 '3~'5 ~" VBB .. T", Temperatur. w W ...... Iu_ Pon C.....act.,istic Symbol Test Vil min VIHA min +zsOC Min Typ' 28 " 'inH ICeD +85OC Me. I Min 1 Mall L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Voftsl VILA rna. VIHH-I VllH-1 VtHl·\ VILL V •• -I VEE -30ot: -O.B90 -1.890 -1.205 -1.500 F,~ +0.110 -0.890 -1.890 -2.890 .25OC -0.B10 -1.850 -1.105 -1.475 Pm +0190 -0.850 -1810 -2850 -5.2 -5.2 +8SOC -0.700 -1.825 -1.035 -1.440 11 +0.300 -0.825 -1.700 -2.825 -5.2 MC1D114l T . . Limits -30"<: Min M.. Power SupplV Drain Current Input Current VIH max - a. TEST VOL TAGE APPLIED TO PINS BELOW: Unit I V'H rna. V,L min I V,HA min I V,LA mlJl. I VBB I V,HH·' VllH·' V,Hl· I VILl· I 35 mAd< 4,9.12 I 15,10,131 4' .AoX 9,12 I 15,10,13 1.0 9,12 5,10,13 1 - I VEE - {Vee l Gnd 1,16 1,16 8.4 1,16 I logiC "1" Output Volt. VOH -1.060 -1.060 -0.890 -0.890 -0.960 -0960 =~ :~~ I=~::: I =~:~: 9.12 4 5,10,13 5,10,13 1,16 I logiC "0' Output Voltage VOL -1.890 -1,890 -1.675 -1.675 -1.850 -1.850 =~::~~ I=~.:~~ I =~::~~ 4 9,12 5,10,13 5.10,13 1,16 1,16 5.10,13 5.10,13 1,16 5.10,13 5,10,13 1,16 1,16 5,10,13 1,16 IlogiC ·'1" Threshold Voltege VOHA LogiC ·'0" Threlhold Volt8lle VOLA -1.CIIO -1.080 -0.980 -0.980 Vd, VOX -0.910 -0.910 -1.655 -1.655 9.12 9,12 1,16 - -1.595 -1.595 Reference Voltage Vea -1.420 -1.280 -1350 -1.230 -1.295 -1.150 Vd, Common Mode Rejection Tnt VOH -1.060 -1.060 -0.890 -0.890 -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vd, VOX 1.16 VOL -1.890 -1.890 -1.675 -1.675 -1.850 -1.8SG -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vd, VOX 1,16 1,16 Min , 0 M.. Min Tvp M •• '.0 2.4 40 Min 0 .• M.. 44 • + + I.' Swnchi", Ti_ (SO-ohm lOMt) Prop...-Ilon oelav·· AI. Time (20% 1080%) FaU Time (20% 10 80%) 14+2+ t4-2_ 14+3t4_3+ '2. '3· '2_ '3_ I 11 1.-+ ~ 38 + + 21 ~ ·V,HH = Input logiC "1" level shifted poSitive one volt for common mode rejection tests. V, LH '" I nput logiC ..a" level shifted positive one volt for common mode rejection tests. Y,HL '" Input logiC "I" level shifted negative one volt for common mode rejection tests. Y,LL a Input logiC "O"level shifted negative one volt for common mode rejection tests. ·-Delay IS 2.0 ns With differentlellnput. -1.630 -1.630 1,16 - • I.,+ + + 3.' 43 Vd< Vd, + 9.12 1,16 Pul.'n " • j 3.7 9,12 4 j -3.~V 1+2.0V Pul.Oul 5,10,13 j I 'J ELECTRICAL CHARACTERISTICS 3: n ....o .... Each MECL 10.000 .ries has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and tranlV8rse air flow greater than 500 linear fpm is maintained. Outputs t.min.ted· through 8 SD-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. .... ~ .r. n-O 5~3 .. 9~6 c 4~2 :J :j' - 10~7 12~14 '3~'5 L-" VBe .T", T . . . .atun ......"""" -30"1: W W CO 'No u_ C_ _ _ istic T_ Power Supply Orein Current Input Current VOL VOHA logic "0" Threshold Voluee VOLA Common Mode Rltjection Tes. V•• VOH VOL Swhchina T ..... (IO-oh... Loedl P,opeption Oeley·· 28 -1.060 Logic "'" ThreshOld Voigge R.f8f"enCeVoltege +25OC 8 Loaic "'" Output Vol• • Logic "0" Output Volt. MCl0114P Test Limits -3QOc MinlMulMifllTyplMa '4+2. ....2'4+3- I J. -1.060 -0.890 -1.890 -1.675 -0.... -0.... -1.850 -1.890 -1.080 -1.675 - -0.980 -1.080 2 3· 11 -1.420 -1.060 -1.060 -1.890 -1.890 Min ~.890 -1.655 -'.655 -1.280 -0.890 -0.890 -1.675 -1.675 M,. -1.850 -'.630 -1.630 -1.230 -0.810 -0.810 -1.650 -1.650 -1.350 -0.960 -0.... -1.850 -1.850 ~ 1.0 t Ri. Time (2mC, to 8010' '2. '.5 11ft. '3. '2_ '3- + Typ M.. 2.4 4.0 + 2.' ~ ·VIHH .. Input logic "l"level shifted po.iti.". one volt for common mod. rejechon tests. VILH - Input logic "0" tlNel.hifted positiveonevolt tor common mode reiec1ion t ...... VIH.L '" Input logic "'''level.hitted ne.... iwone voh for common mode reiectfon tests. 'Vlll • Input lolic ..0'·. ...,.1 .r.iftad n ...trw OM 11011 for common mod. rejection test •. --De&ay i. 2.0 with differ .... till input. n. 36 45 1.0 -0.810 -0.810 -1.650 -1.650 -0.980 ....3. FilII Time (ZOK t. I • 3.5 + .IS""M,. Min -0.890 -0.100 -0.890 -0.700 -1.825 -1.615 -1.825 -1.615 -0.910 -0.910 -1.595 -1.595 -1.295 -1.150 -0.890 -0.700 -0.890 -0.700 -1.825 -1.615 -1.825 -1.615 Min M.. Unit mAdo "A"" "Ado Vdo Vde Vde Vde Vde Vde Vde Vde Vde Vde Vde Vde Vde CD Co PSUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES IV_ VIH", .. Vllmin VIHAmin VILA max V•• VIHH-I VILH-J VIHL -I VILL -<>.890 -0.810 -0.700 -1.890 -1.850 -1.825 -1.205 -1.105 -1.035 -1.500 -1.475 -1.440 F,om +0.110 +0.190 ... 0.300 VIH",... VIL min VIHAmin Pin >1 -0.890 -0.850 -0.825 -1 VeE -1.890 -1.810 - t. 700 -2.890 -2.850 -2.825 -5.2 -5.2 -5.2 VIHL- VILL- VEE TEST VOLTAGE APPLIED TO PINS BELOW: • VILA max 4,9.12 9.12 9.12 9,12 9,12 9,12 4 4 9,12 9.12 V. . 5.10,13 5,10,13 5.10,13 5,10,13 5:10.13 5,10,13 5,10.13 5,10,13 5,10,13 5,10.13 5,10.13 5,10,13 4 9,12 9,12 9.12 Pul.ln no 4 j j Pul_Out 5,10,13 j V'HH- VILH- • .,' 8 8 -3.2 V 8 lYeel a ... 1.16 1.16 1,16 1.16 1,16 1,16 1.16 1.16 1,16 1.16 1,16 1,16 1.16 1,16 1,16 1.16 +2.0 V 1.16 j j J '--___ QUAD LINE RECEIVER "'\ MECL 10,000 series '--...._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.......J MC10115 POSITIVE LOGIC The MC10115 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (Va a) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the MC 10115 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to Vaa (pin 9) to prevent upsetting the current source bias network. NEGATIVE LOGIC :~2 :~3 10~ 14 10~ 13~ 16 L-g 12 13~ 16 11~14 11 12 VBB L-g tpd ... 2.0 n. typ Po - 110 mW typ/pkg (No Load) VBB VCC1 - Pin 1 VCC2-Pln 16 VEE'" PinS SWITCHING TIME TEST CIRCUIT AND WAVEFORMS.:zsOc VCC, - VCC2 ,.,,± I±"" +2.0 Vdc Input V out Coax PROPAGATION DELAY r----...., I l"putPul.. t+ - t- - 2.0±. 0.2 nl Vout (20 to 80%) 5O-ohm terminetion to ground 10' cet. . in .ach tcope channel input. All Input and output cable. to the scope ar. equal I.ngths of 50-ohm co.JCI.1 cabl.. WI,. length should be < 1/4 Inch from TPln to Input pin and TP out to output pin. One Input from .ch gete must be t'-t to (Pin 9) during tmlng. Vas unu.-:l outputl connected to • 50-0hm ,.Iaor to ground. VEE - -3.2 Vde s_ Oen._1 I "formation _etlan for .peckaglng. 3-39 s: o ~ o ~ ~ (11 ELECTRICAL CHARACTERISTICS nO Each MECL 10,000 series has been designed to rnfit the de specifications shown in the test table, .fter thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested ::J ~, ::J c: (1) a. :~2 :~3 ,O~ in the same manner. 11 - ,. 13~'5 L-g Vea 12 lilT.., Temper.ture W ~ -lODe 0 +25"c +85o C Ch.rec:'eri.Uc Power Supply Drain Current I nput Current Svmbol Pin Under T.., IE 8 +25"c -lODe M .. M .. lin H IceD Logic "'" Output VOltage Logic "0" Output Voltage Logic "'" Threshold Valt&ge Logic "0" Threshold VOltage Reference Voltage Switching Times (50 n Load) Propagation Delav Rise Time (20% to 80%) Fall Time (20% to 80%) VOH VOL VOHA -1.060 -1.890 VIL min VIHA min VILA me. VBB -0.890 -{J.810 -1.890 -1.205 -1.500 -1.850 -1.105 -1.475 From Pin 26 mAde 95 -0.890 -0.700 -1.825 -0.910 1.615 /JAde /JAde Vde Vde Vde 1.295 -1.150 1.0 -0.810 -1.675 -1.850 -1.650 -{J.!lB0 1.280 -1.595 -1.630 -1.655 1.420 Unit -{J.960 -1.350 t4_2+ t4+2_ 1.0 1.0 '2+ '2_ 3.1 3.1 3.6 1.0 1.0 1.1 1.1 1.1 3.6 1.1 -1.230 1.0 1.0 3.3 3.3 3.3 1.1 3.7 3.3 1.1 3.7 2.9 2.9 -1.035 -1.440 9 VEE -6.2 ~ ~ TEST VOLTAGE APPLIED TO PINS LISTED BELOW, M •• Min -1.825 -0.700 +ISOC M •• -0.890 -1.080 VOLA V88 TEST VOLTAGE VALUES VIHmax MC10115L Test Limits Min L SUFFIX CERAMIC PACKAGE CASE 620 VIHmo VILmin ~ VBB VEE 4,7,10,13 5,6.11,12 8 7,10,13 5,6,11,12 7,'0,13 V.LAmb (Vee) Gnd 1,16 1,16 5,6,",12 5,6.11,12 8,4 4 7,10,13 5,6,11,12 8 1,16 7,10,13 5,6,11,12 8 1,16 7,10,13 5,6,11,12 8 1,16 -32 V 8 +2.0 V 1,16 7,10,13 Vde Vde VIHA min 8 Pul.Out 4 2 5,6,11.12 ~ ~ ~ 1,16 1,16 5,6,11,12 Pul_ln 1,16 ! ~ ~ o..... o.... .... (J1 ELECTRICAL CHARACTERISTICS 8:J Each MECL 10,000 series has been de· ... signed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in 8 test socket or mOU'lted on a printed circuit ::J c: Cl) a. 4=::::t>--2 7=::::t>--3 10 =::::t>--14 board and transverse air flow greater than 500 linear fpm is maintained. Outputs are 5 terminated through a 5(}'ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. - 6 11 13~15 12 L-9 v •• P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES ~Test Temperature W -lODe ~ Ch.rKteristic: Power Supply Drain Current I nput Current Logic "1" Output Voltage Logic "0" Output VOltage Logic "'" Threshold Voltage Logic "0" Threshold Voltage Reference VOltage Rise Time (20% to 80%1 Fall Tim. (20% to 80%1 VILmin VIHA min VILA max Vaa VEE -0.890 -1.890 -1.205 -1.500 From Pin 9 ~ +25"c -0.810 -1.850 -1.105 -1.475 +85°C -0.700 -1.825 -1.035 -1.440 MCl01 15P Tnt Limhs Symbol Pin Und.r Test IE 8 26 mAde 4,7,10,13 5,6,11,12 'in H IcaO 4 4 95 IlAdc 7,10,13 1.0 }JAde 7,10,13 5,6,11,12 5,6,11,12 -lODe Min ·-1.060 VOH -1.890 VOL VOLA 2 V88 9 Min Min Ma. Unit VIL min V'Hmo ~.960 -0.810 -0.890 -0.700 Vdc -1.675 -1.850 -1.650 -1.825 -0.910 -1.615 Vde Vde 4 7,10.13 7,10,13 -1.595 Vde 7,10,13 -1.150 Vde ~.9B0 -1.630 -1.655 '.420 M .. -0.890 -1.080 VOHA +8SOC +25"c Ma. 1.280 -1.350 -1.230 1.295 t4_2+ t4+2- 1.0 1.0 2.9 2.9 '2+ '2_ 1.1 3.3 1.1 3.3 ~ -5.2 TEST VOLTAGE APPLIEO TO PINS LISTEO BELOW, Switching Times (50 1l Load) Propagation Delav VIH max ~. 7,10.13 VIHA min VILA max Vaa 5,6.11,12 5,6,11,12 4 VEE (Vee) Gnd 1,16 1,16 8,4 8 1.16 1.16 1,16 5,6,11,12 1,16 5,6.'1.12 5,6.11.12 1,16 Pul.ln Pul.Out 4 2 5,6,11,12 ~ ~ ~ 1,16 -3.2 V +2,0 V 1,16 ~ ~ MECL 10,000 series TRIPLE LINE RECEIVER MC10116 POSITIVE LOGIC The MC10116 is a triple differenlial amplifier designed for use in sensing differential signals over long lines. The base bias supply (Vaa) is made ..ail_ at pin 11 to make the device u.ful as 8 Schmitt trigger, or in other applications INhere a stable reference voltage is necessery. Active current sources provide the MC101 16 with excellent common mode noi. rejection. If any amptifier in 8 package is not used, one input of that amplifter must be connected to Ves (pin 111 to prevent upsetting the current source bias network. Complementary outputs are provided to allow driv· ing twisted pair lines, to enable cascad ing of several NEGATIVE LOGIC :~: :=:tt=~ 9~6 9~6 10~7 10~7 12~14 12~14 13~16 13~16 L--ll L--ll Vaa amplifiers in a chain, or simplv to provide complement outputs of the input logic function. Vaa fpd - 2.0 ns typ Po - 86 mW typ/pkg (No Load) VCCI - Pin 1 VCC2 - Pin 16 VEE - Pin 8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS., 25°C VCCI - VCC2 +2.0 Vdc Coax V out V out PROPAGATION DELAY 25"F~0'I"F Input r - -......' - - - - - + 1 . 1 1 r£l~~ +0.31 V V out t+ t- Input pulse t+,.. t-- 2.0t. 0.2 ns (20 to 80%) 50~hm termination to ground 10' c.ted in each lCOpe channel input. All Input and output cab'.. to the IeOp. are equal langthl of 50-ohm coaxial cabl._ WI,. length ahould be < 1/4 Inch from TPln to Input pin and TP out to output pin. V Unused outputl connected to • 50-ohm res'ltor to ground. One Input from each gete mult be tied to Vee (Pin 11) during testing. Sea Ganerallnformatlon ..etlon for packaglno. 3-42 ELECTRICAL CHARACTERISTICS 3': ... ...... C") Each MECL 10,000 series has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for I:) 0) c;O :l :::!. :l c: only one gate. The other gates are tested in the same manner. ~ - 4~2 5~3 9~6 'O~7 '2~14 13~'5 L-" V L SUFFIX CERAMIC PACKAGE CASE 620 "" TEST VOLTAGE VALUES (Volts) filTost Temperature w .;:. W -0.890 VILmin -1.890 VIHAmin -1.205 VILA max -3o"c +25o C -0.810 -1.850 +8So C -0.700 -1.105 -1.035 -1.475 -1.440 VIHm •• MC1Q116L T_ Limits Pi" u_, Characteristic Svmbol T_ Power Supply Drain Current 'E linH 8 4 4 Input Current 'eao -3o"c Min - High Output Vortage VOH 2 3 -1.060 -1.060 low Output VOllage VOL 2 3 -1.890 -1.890 VOHA 2 3 High Threshold Voltage low Threshold Voltage Reference V04tege +2SoC M .. - Min - Rise Time (20% to 80'" Fall Time (20%1080%' 17 21 -0.890 -0.890 -1.675 -1.675 -0.960 -0.960 -LOBO -LOBO - -0.980 -0.980 -1.850 -1.850 Min M •• /JAde .- 1,16 9,12 5,10,13 5,10,13 8 8,4 1,16 1,16 5.10,13 5.10.13 5,10,13 5,10,13 8 8 1,16 1,16 8 8 1,16 1.16 5.10.13 5.10.13 8 8 5,10.13 5.10.13 8 8 1.16 1.16 1,16 5.10.13 8 1.16 -3.2 V +2.0 V 8 1.16 Vdc Vdc 4 9,12 9,12 4 -1.615 -1.615 Vdc Vdc 9,12 4 4 9,12 - - -0.910 -0.910 - Vdc Vdc - 9,12 9.12 - 4 -1.630 -1.630 - -1.595 -1.595 Vdc Vdc - 9,12 9.12 -1.230 -1.295 -1.150 Vdc - - - -1.655 -1.655 - -1.280 -1.350 Min Mu Min Typ M •• Min M •• 2 2 3 3 1.0 3.1 1.0 2.0 2.9 1.1 3.3 2 3 1.1 3.6 1.1 ~ ~ ~ ~ - t ~ j t ~ ~ 3.3 1.1 3.7 n, j VILA max 9,12 -0.700 -0.700 - 2 3 IVCCI God 8 -1.825 -1.825 -1.420 t 4 VEE -0.890 -0.890 2 3 ~ ~ Vas -1.650 -1.650 11 ~ 11 VEE ~ -5.2 5,10,13 VIHAmin -0.810 -0.810 Vas '4+2+ '4-2"'+3'4-3+ 12+ 13+ 12_ 13_ Pin 4,9,12 VILmin - VOLA - VIH max /JAde - - Unit mAde 95 1.0 Switching Times (50 n Load) Propagation Delay Ma. Vaa From TEST VOLTAGE APPLIED TO PINS BELOW: +8SoC TV. -1.825 -1.500 - - - 4 .. 4 4 - - Pulse In Put. Out 4 2 2 3 3 j 2 3 2 3 5.10.13 1.16 j j j s: (') ELECTRICAL CHARACTERISTICS ... ...o... Each MECL 10,000 series has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. Q) 8 :J ~, :J r::: ~ • 4~2 5~3 9~6 'O~7 '2~'4 '3~'5 L-" V BB P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOL TAGE VALUES (Volts) @Test to.) Temperature ~ -30 De ~ -3o"e Under Characteristic Power Supplv Oram Current Input Current Symbol Tes' 'E 8 ImH 4 'CBO HIgh Output Voltage Low Output Voltage High Threshold Voltage Low Threshold Voltage Reference Voltage VOH Rise Time 120% to 80%) Fall Time '120% to 80%) 2 3 Min -0890 -0.890 -1.675' -1.675 VOL 2 3 - 1890 2 3 -1.080 VOLA 2 3 V88 " VIHA min -1.890 -1.205 VILA rna. -1.500 From p,n 11 +2SoC -0.810 -'.850 -1.105 -1.415 +8So C -0.700 -1.825 -1.035 -1.440 -1.890 -1.080 - - -1.655 Min -0.960 -0.960 -1.850 -1.850 -0.980 -0980 -- M •• 17 21 mAde 95 )JAde 1.0 )JAde - M •• 9,12 -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vd, 9,12 - -0.910 -0.910 - 9,12 Vd, - -1.350 -1.230 -1.295 -1.150 Min Ty. M •• Min M •• - - 1.0 2.0 2.9 - - 2 - '2'3_ 2 3 - - ~ ~ 1.1 I + 3.3 ~ 9.12 -- M •• 3 Vd, Vd, Vd, Vd, -1.280 '2+ '3+ Vdc -1.595 -1.595 Min -- • •- Vd, Vd, -1.420 - • -0.700 -0.700 -1655 2 2 3 3 VIH mall: -0.890 -0.890 - t4+2+ t4-2_ t4+3_ t4_3+ Unit -0.810 -0.810 -1.630 -1.630 - -- -:sT ~ (Vee l Ty. Min VEE -52 TEST VOLTAGE APPLIED TO PINS BELOW' +8SoC +2SoC M .. -1.060 -1.060 VOHA SWitching Times 150 it load) Propagat Ion Delav • VILmin -0.890 MCl0116P Test limits Pin VBB VIH max - -- - n, I - - VILmin 4,9,12 VIHA min VILA max VBB 5,W,13 VEE 8 Gnd 1,16 9,12 5,10,13 8 1,16 9,12 5,10,13 8,' 1.16 5,10,13 5.10,13 8 8 1.16 1,16 - 5,10.13 5.10,13 8 8 1.16 1.16 • 5,10,13 5,10,13 8 8 1,16 1,16 4 5.10,13 5.10,13 8 8 1.16 1.16 - 5.10.13 9.12 • • 9,12 9,12 - - - - -• 9, '2 - - - -- - - 4 - - - Pulse In Pulse Out 4 2 2 3 3 5.10.13 8 1,16 -3.2 V +2.0 V 8 1.16 I II I 2 3 2 3 MECL 10,000 series DUAL 2-WIDE 2-3-INPUT "OR-AND/OR-AND-INVERT" GATE MC10117 The MelOl17 is a general purpose logic element designed for use in data control, such as digital multiplexing or data distribution_ Pin 9 is common to both gates_ Po = 100 mW typ/pkg (No Load) tpd = 2.3 ns typ Output Rise and Fall Times: 3.5 ns (10% to 90%) = 2.2 ns (20% to 80%) = r------ POSITIVE LOGIC _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NEGATIVE LOGIC _ _ _ _---, 4 4 5 5 3 2 6 9 9 10 10 11 L-_r---~ veel = Pin 1 ____ 14 ,,~_1~-- ~_~--~~ VCC2 = Pin 16 VEe 15 = Pin 8 12 12 13 13 2 = (4.5) + (6.7.9) 3= (4e5) + (6-'-9) 2 = (4 + 5) • (6 + 7 + 9) 3 = (4 ___ 14 ~-~__~---o15 + 5) • (6 + 7 +9) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@250C VCCI = VCC2 ''m +2.0 Vdc V out OR-ANDI NVEAT V out OR-AND Coax PROPAGATION DELAY ""'c... r - - - - - --.-------, I I ~----+1.11 V ---~-+O.31 V V out OR·AND Input Pulse t+ t+ = t- = 2.0 ±. 0.2 ns (20 to 80%) tV out OR·AND·INVERT L _ _ _ _ _ _ _ _ _ _ ----l ~ 5O..ohm termin.tton to Ground 10CIIted in •• ch scop. chenne' input. I All input and output cables to the scope are equal lengths of 50-ohm coaKial cable. Wire length should :7n ~n~~~:~~ :~o:::Jt:~it"p~~.input s.. Ganaral Unused outputs connected to a 50-ohm resistor to ground 0.1 ,.,F _ VEE = -3.2 Vdc I nformatlon section for packSging. 3-45 s: ELECTRICAL CHARACTERISTICS n ....o .... Each MECL 10,QCK) series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than SOO linear fpm is maintained. Outputs .... 4 8"""" 5 ~3 are terminated through a 50-ohm resistor to ::J ~. ::J 6~ -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. C ~ - 10 11 ~14 15 12 13~ L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (VoI..1 I @IT.st Temperature t.) ,i. 0> Characteristic Power Supply Drain Current Svm~ Pin Under Test -lODe Ma. Min - - - IE 8 lin H 4 9 lin l 4 9 - - 0.5 0.5 Logic "1" Output Voltage VOH 2 3 -1.050 -1.050 -0.890 -0.890 -0.960 -0.960 Logic "0" Output Voltage VOL 2 3 -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 VOHA 2 3 -1.080 -1.080 - -0.980 -0.980 2 3 - -1.655 -1.655 - Input Current Logic "1" Threshold Voltage Logic "0" Threshold Voltage Switching Times (50 Propagation Delay n VOLA Fall Time (20 '0 110%1 VIHAmin -1.890 -1.205 -1.500 -5.2 -1.850 -1.105 -1.475 -5.2 +85"C -0.700 -1.825 -1.035 -1.440 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, Ma. Unit VIH max VIL min VIHAmin 20 26 ./JAde ./JAde 4 9 - - - - 265 350 - mAde - ./JAde .lJ Ade - 4 9 -0.810 -0.810 -{).890 -{I.890 -0.700 -0.700 Vd, Vd, 4,9 -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 Vd, Vd, - - -0.910 -0.910 - Vd, Vd, - - -1.630 -1.630 - -1.595 -1.595 Vdc Vd, - - 4.9 9 9 - +1.11 V t4+2+ t4-2_ '2+ '3+ '2_ '3_ 2 2 3 3 1.4 2 3 0.9 2 3 ~ ~ 3.9 ~ 4.1 + '4 2.3 3.4 1.4 3.8 + 2.2 + 4.0 + 1.1 + 4.6 + + 1.1 + + + VEE -0.810 Min - INX -0.890 Ma. TV. VILA _30 G e Load) t4+3t4-3+ Rise Time (20'080%1 VILmin +25o C MCl0111L Test limits +25"C +850 C Min VIHma + ns 9 j I - - - 4 - VILA max VEE IVeel Gnd 8 1,16 - 8 8 - 8 8 1,16 1.16 1,16 1.16 8 8 1,16 1,16 8 8 1,16 1,16 8 8 1.16 1,16 - - - 4 4 - 8 8 Pul.ln Pul_Out -3.2 V 1,16 1.16 +2.0 V 4 2 2 3 3 2 3 2 3 8 1,16 j 4 Ij 3: ELECTRICAL CHARACTERISTICS (") .... o Each MECL 10,000 series circuit has been ........ ...... designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater 8 4 5~ than 500 linear fpm is maintained. Outputs are terminated through 8 50-ohm resistor to ::J :. ::J ~3 c 2 -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. 6~ - 9 10 11 ~14 '---" 12~ 13 15 (Volts) w +85"C Pin Ch.KC.ristic Power Supply Drain Current Input Current Symbol IE 'in H lin L Logic "1" Output Voltage VOH Logic "0" Output Voltage VOL Tost 8 4 9 Mel0117P Te. Limfts +25"C +85"e -30"e Undlr VILA max VEE -1.890 -1.205 -1.850 -1.105 -1.035 -1.500 -1.475 -1.440 -5.2 -5.2 -1.825 TEST VOLTAGE APPLIEO TO PINS LISTEO BelOW, Ma. Min M •• Unit VIH max VIL min VIHAmin VILA m.x VEE - - 20 - - mAde - - 8 1Veel Gnd 1.16 - - - 8 8 1.16 1.16 - - .Adc - - - .- 26 265 350 8 8 1.16 1.16 - -0.810 -0.810 -0.890 -1.650 -1.650 -1.825 -1.825 8 8 8 8 1.16 1.16 - 8 8 1.16 1.16 8 8 -3.2 V 1.16 1.16 +2.0 V 8 1.16 4 9 2 3 2 3 - - -1.060 -1.060 -1.890 -1.890 -1.675 -1.675 -0.890 -0.890 0.5 0.5 -0.960 -0.960 -1.850 -1.850 - 2 3 -1.080 -1.080 - - -0.980 -0.980 VOLA 2 3 - -1.655 -1.655 - 2 2 3 3 2 3 - - 1.4 2.3 3.4 ~ ~ ~ ~890 ~Adc -0.700 -0.700 -1.615 -1.615 - -0.910 -0.910 - -1.630 -1.630 - -1.595 -1.595 - .Adc .Adc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Switching Times (50 n loadl 4 9 - - 4 9 4.9 - 4.9 9 .- 9 - - - +1.11 V ~+2+ '4-2- 14+3'4-3+ '2+ '3+ '2_ '3_ 2 3 ! -5.2 TVp VOHA 120'080%1 VIHA min Min Logic "0" Threshold Voltage Fall Time VIL min Mu LogK: "'" Threshold Voltage Rise Time 120'080%1 VIH max -0.890 -0.810 -0.700 Min - Propagation Delay P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES tiT ... Temperatur. -30"C +25o C ~ ..... ~ - - - - - 1.1 2.2 4.0 ~ ! ~ - - - - ns 9 j I - - - - - 4 - - 4 4 - 4 - Pul.ln Pul_Out 4 2 2 3 3 2 3 2 3 j 1.16 1.16 j j MECL 10,000 series DUAL 2-WIDE 3-INPUT "OR-AND" GATE MC10llS The MC10118 is a basic logic building block providing the OR-AND function, useful in data control and digital multiplexing applications. Po = 100 mW tvp/pkg (No Load) tpd = 2.3 ns tvp Output Rise and Fall Times: :::: 3.5 ns (10% to 90%) = 2.5 ns (20% to 80%1 POSITIVE LOGIC NEGATIVE LOGIC 3 4 5 2 6 2 6 Vee1 :::: Pin 1 VCC2:::< Pin 16 9 Vee 10 = Pin 8 9 10 11 11 15 12 15 12 13 13 14 ·Collector Dot 14 SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS@2SoC VCCI = VCC2 +2.0 Vdc V out CoaM. PROPAGATION OELAY Input Pulse Generator Input Pul .. t+ .. t- ~ 2.0 ±. 0.2 ns (20 to 80%1 5O..,hm to'mlnotlon to ground 10. c.ted in ••ch &COp. channel input. V out L- - - ~-- - ---.J Unused outputs connected to a 50-ohm resistor to ground I-= 0.1 ~F All input and output coblo. to tho scop. ar. equal lengths of 50-ohm coe.iel cabl.. Wire length should be < 1/4 inch from TPin to input pin end TP out to output pin. VeE = -3.2 Vdc See Genera' I nformation section for packaging. 3-48 s:(") .... C .... .... 00 ELEC1RICAL CHARACTERISTICS Each MECL 10,000 series haS been de, signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flQW greater than 8 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to ...5' ::J -2.0 volts. Test procedures are shown for onlv one gate. The other gates are tested in the same manner. 11 c: CD 15 a. 12 - 14 L SUFFIX CERAMIC PACKAGE eASE 620 , TEST VOLTAGE VALUES (Volts) ct> ~ @Test Temperature _30 o e Pin Characteristic Power Supply Drain Current I nput Current Symbol IE 'In H 8 6 7 9 VtHA min VILA max VEE +2SoC -0,700 -1.205 -1.105 -1,035 -1.500 -1.475 -1,440 -5,2 -5.2 +8So C -1.890 -1.850 -1.825 MC10118L Test Limits +8So C +25o C -lOoe Min Max Min - - - Max Min Max Unit VIH max VIL min 20 26 - - mAde - 265 265 370 ~Ade - 6 7 9 - - - Typ t 2 -1.060 -0.890 -0.960 - -0.810 -0.890 -0,700 Vdc -2.000 -1.675 -1.990 - -1.650 -1.920 -1.615 Vdc -0.910 Vdc VOL 2 VOHA 2 Logic "0" Threshold Voltage VOLA 2 .- - 0.5 -0.980 1.080 - - - -1.595 -1.630 -1.655 + /JAde - + - 6 7 9 3,9 - Rise Time Fall Time C20 to 80%) C20 to 80%1 t6+2+ 2 ~ t+ t- 1.4 1.4 2.3 2.3 3.4 3.4 1.4 1.4 3.8 3.8 4.1 1.5 2.5 4.0 1.5 4.6 4.1 1.5 2.5 4.0 1,5 4.6 1.4 1.4 3.9 3,9 0.8 0.8 - - n, ~ 3 • VILA max - - - - - 3 9 +1.11 V '6_ 2- VIHA min -- VEE 1Veel Gnd 8 1.16 8 1.16 + + 8 1.16 8 1.16 8 1.16 8 1,16 + + 3 8 1,16 Pulse In Pulse Out -3.2V +2.0V 6 2 8 1.16 ~ ~ ~ ~ Vdc Switching Times (50 H Load) Propagation Delay -5.2 TEST VOLTAGE APPLlEO TO PINS LlSTEO BelOW: VOH 6 7 9 Logic "'" Threshold Voltage Logic "0" Output Voltage Vil min -0,890 -0.810 - lin L Logic "'" Output Voltage Und .. Tes. VIHmax ELECTRICAL CHARACTERISTICS 3: Each MECL 10.000 series has be.n de- n o 3 signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flew greater than 500 linear fpm is maintained. Outputs are ~ 4 ~ 5 ~ 6 terminated through a 50-ohm resistor to 9 -2.0 volts. Test procedures are shown for only one gate. The other gates are tested 10 CO 8:::l .... s· 11 in the same manner. c: 15 12 (I) Co - 13 14 Col P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES g, IVolh' 0 ilT ... VIH max VILmin VIHA min VILA !NIX VEE +25°C -0_890 -0.810 -L205 -1.105 -0.700 -1.500 -1.475 -1.440 -5.2 -5_2 +85o C -1.890 -L850 -1.825 T emperatur. -lOoC MCl0118P Test Limit. Pin Characteristic JSYmbol Power Supply Drain Current I I Input Current I Ie 1m H lin L I I Unci.. Test 8 6 7 9 6 7 9 Logic "1" Output Voltage VOH 2 Logic "0" Output Voltage Logic "1" Threshold Voltage VOL VOHA 2 2 Logic "0" Threshold Voltage VOLA 2 -lOOC Min Ma. - - - -1.060 -0.890 -2.000 -1.675 +25D C Typ Ma. Min - 20 26 - - - 265 265 370 - 0.5 + -0.960 -1.990 -1.080 - -0_980 - -1.655 - - Ma. - VIH max VILmin VIHAmin VILAIU. VEE mAde - - 1.16 6 7 9 - 8 /JAde - 8 1.16 - - + 8 1.16 -0.810 -0.890 -0_700 + + Vdc -1.650 -1.920 -L615 Vdc - IJAdc Rise Time f20 to IO%J fa!1 Time 120 10 10%' - -- 6 7 9 3.9 - - - -0_910 - Vdc 9 -1.630 - -1.595 Vdc - 16+2+ .+ .- 2 ~ - - - 1.4 L4 1.5 1.5 2.3 2_3 3_4 3.4 2.5 2_5 4.0 4.0 - - - ns l 3 • - GncI + - - - 3 - 8 8 - Pulse In 3 Pul.Out 8 -3.2V 1.16 +2.0 V 6 2 8 1.16 l l l +1.11 V ts- 2- IVCC' Unit Switching Times (50 12 Loadl Propagation Delay -5.2 +lI!i"c Min - -L035 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: - + 8 + 1.16 1.16 1.16 ~ MECL 10,000 series 4-WIDE 4-3-3-3 INPUT "OR-AND" GATE MC10119 POSITIVE LOGIC The MC10119 is a 4-Wide 4-3-3-3 Input ORAND gate with one input from two gates common to pin 10_ Input pulldown resistors eliminate the need to tie unused inputs to an external supply_ NEGATIVE LOGIC 3 3 4----"',r--' 4 5 --~ ___ 5 6 6 7 7-~'L._ 9 9 10 10 11 11 12 12---"'.r-- 13 2 Po = 100 mW typ/pkg (No Load) tpd - 2.3 nl typ Output Alse and Fell Time: ~ 3_5 n. typ (HI" - 90%) - 2_5 n. typ (20% - 80%) 13--,,-_ 14 14 15-...... . - - 15-""<::.r-- vee1 "" Pin 1 VCC2 = Pin 16 ·Colleetor Dot VEE=Pin8 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 1!l2SoC +2.0 Vdc nco.. I~ 25I'FRO.'I'F r--~l~-_-, Coax I Pulse Generator I I I I I Input Pul .. t+ - t- ., 2.0 ± 0.2 nl (20 to 80") PROPAGATION DELAY I I I I I ~hm I t_ml".tlon to ground 10- CMed in . .ch .co.,. channel input. ~=: L ___ AU Input end output cabl •• to the ICOpe .re equal length I of 50-ohm co._la' cable. Wlr. length should be < 1/4 Inch from TPln to input pin and TP out to output pin. VEE:-' -3.2 Vdc See G.nera' Information seetion for p6ekaging_ 3-51 V out s: C') ELECTRICAL CHARACTERISTICS Each MECL 10,000 series has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is -in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are ~ o ~ ~ (C 8 terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for .... :J :J C onlv one gate. The other gates are tested in the same manner. [ '0 - " '2 ,.'3 '5 L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES Co) &. I\) (Voltsl @Test Tempetoature Pin Characteristic Power Supply Drain Current Input Current Symbol Unci. Test IE B lin H 7 9 10 lin L logic "1" 0 utput Voltage 7 9 10 VOH 2 VIH max Vil min VIHA min VILA max VEE _lOGe -0.890 -1.890 -1.205 -1.500 +25°C -0.810 -1.850 -1.105 -1.475 -5.2 -5.2 +8SoC -0.700 -1.825 -1.035 -1.440 -5.2 MC10119L Test Limits +25oC -lOoe Min - - TEST VOLTAGE APPLIED TO PINS LISTED BELOW, Max - Min 0.5 + -1.060 -0.890 -0.960 +8SoC Typ Max 20 26 - 265 265 370 -0.810 Min Max Unit - - /.lAde + ,uAde + -0.890 -0.700 Vdc VOL 2 -2.000 -1.675 -1.990 -1.650 -1.920 -1.615 Vdc Logic "1" Threshold Voltage VOHA 2 -1.080 -0.980 -0.910 Vdc Logic "0" Threshold Voltage VOLA 2 t3+2+ '3-2- 2 Logic "0" Output Voltage Switching Times (50 n 80%. Fall Time (20 to 8O%J VILmin 7 9 10 - - 7 9 10 3,10,15 - 10,15 -1.595 Vdc 3.8 3.8 4.6 4.6 ns ,+ ,- ~ 1.4 1.4 3.9 3.9 1.4 1.4 2.3 2.3 3.4 3.4 1.4 1.4 10,13 0.8 4.1 4.1 1.5 2.5 4.0 1.5 1.5 2.5 4.0 1.5 0.8 ~ ~ VEE (VCCI Gnd - - 8 1,16 - - B 1,16 + B 1,16 VIHA min VILA max - - 3 3 +1.11 V Load) Propagation Delay Rise "Time 120 to -1.630 -1.655 VIH max mAde - + B 8 + + 1.16 1,16 B 1,16 B 1,16 Pulse In Pulse Out -3.2V +2.0 V 3 2 8 1,16 ~ ~ ~ ~ ELECTRICAL CHARACTERISTICS 3: n Each MECL 10,000 series has been designed to meet the de specifications shown ~ in the test table. after thermal equilibrium has been established. The circuit is in a Q test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are cg ~ ~ nO terminated through a 50-ohm resistor to ...::s:;- - -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. '0 "'2 c: CIl Co P SUFFIX PLASTIC PACKAGE CASE 648 ..... "tI~'tinl ~ ~ ,.,. '3 w TEST VOLTAGE VALUES ~ IVoltsl lilTost T emperatur. Pin Ch.... ct.'i.ic Power Supply Drain Current Input Current Sy_ IE lin H lin L Logic "1" Output Voltage Logic "0" Output Voltage Logic "1" Threshold Voltage Logic "0" Threshold Voltage Und. Toot 8 7 9 10 7 9 10 - - Min - - - 0.5 - + -0.960 +25°C Typ 20 - VOL 2 2 -1.060 -0.890 -2.000 -1.675 -1.990 - VOHA VOLA 2 2 -LOBO - -0.980 - -1.655 - - VOH Rise Time t20 to 80". Fall Time 120 to 80%) VIHAmin -1.890 -1.850 -1.825 -1.205 -1.105 -1.035 Unit VIH max YILmin VIHAmi" VILA.,... VEE mAde - - ",Adc 7 9 10 7 9 10 3,10,15 - - 8 8 - - 2 '3-2.+ ~ .- - - - 1.4 1.4 1.5 1.5 2.3 2.3 2.5 2.5 miX -1.500 -1.475 -1.440 -5.2 -5.2 -5.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW, Min 26 265 265 370 - - - - M.. - -0.810 -0.890 -0.700 -1.650 -1.920 -1.615 - -0.910 - -1.630 - -1.595 + ",Adc + Vdc Vdc Vdc Vdc 10,15 +1.11 V t3+2+ VILA +85o C Mo. Switching Times (50 n Load) Propagation Delay VIL min -0.890 -0.810 -0.700 MC10119P Test Limits _30°C Min Mo. VEE VIHm.. -3O"c +25°C +85°C 3,4 3.4 4.0 4.0 - - - ns 10,13 ~ ~ - + 8 + 8 8 IVcel Gnd 1,16 1,16 + 1,16 + 1,16 1,16 1,16 1,16 - 3 Pulse'n Pul.Out 8 8 -3,2 V 3 2 8 +2,0 V 1,16 ~ ~ ~ l 3 MECL 10,000 series 4-WIDE "OR-AND/OR-AND-INVE RT" GATE MC10121 The MC10121 is a basic logic building block providing the simultaneous OR-AND/OR-ANDINVERT function, useful in data control and digital multiplexing applications_ Po = 100 mW typ/pkg (No Load) tpd ::: 2.3 ns typ Output Rise and Fall Times: = 3.5 ns (10% to 90%) = 2.5 ns (20% to 80%) NEGATIVE LOGIC POSITIVE LOGIC :--~--~-------. 4 5 6 --L---'----, 7--~--~--~__, 7 9 &--'-----------, 9 2 3 10 11 12--'---./----.,. veel ::: Pin 11 12 ---'_..r-~ 1 VCC2 0 Pin 16 VEE-Pln8 13-~--~~~--~ ~l-~-~--r--~ 14 15--'--------2 ::: (4 ... ~ 2 3 10 15 ---"L---'--- ... 6) • (7 ... 9 + 10) • (10 + 11 + 12) • (13 + 14 + 15) 3= (4+ 5+6) .(7+ 9'+ 10)e(10+ 11 + 12) .(13+ 14+ 15) 2= (4_ se6) + (7 _9_ 10) + (10. 11.12) + (13.14.15) 3 - (4.5.6) + (7.9.10) + (10.11.12) + (13.14.15) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SoC veel =: VCC2 +2.0 Vdc ~,tiJ'" r----- - - - - - V out Coax Coal( ---., I 50 Input Pul •• PROPAGATION DELAY 50 :z 2.0 ± 0.2 ns (20 to 80%) t ... "" t- +1.11 V I Vin I 5O-ohm termln.tion to ground 10CIIted in ..ch lcope chennel input. All input and output cables to the scope are equal lengths of 50-ohm I I ----fl_ ::-,,~ - coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin. 1~ VE E = -3.2 I V out OR-AND _.J V out OR AND INVERT Vdc See General Information section for packaging. 3-54 ELECTRICAL CHARACTERISTICS _ie. E.:h MECL 10,000 circuit 11M b8en delignod to meet tho de spocificotions shown in the test table, after thermal equilibrium has been established. The circuit is in 8 test socket or mounted on 8 printed circuit bo..d and transverse air flow greater ...~ ... ... o N i~ th.. 500 linear fpm is maintained. Outputs are terminated through a 5O-ohm resistor to -2.0 volts. Test procedures are shown for onlv one gate_ The other gates are tested in the same manner. 8 ::J .... 7~ 2 3 1D 5- - 9 11 12~ 13~ 14 15~ c: It> c.. LSUFFIX CERAMIC PACKAGE CASE 62D TEST VDL TAGE VALUES (Volts) @Test VIH max VILmin VIHAmin VILA max VEE -30D e -0.890 -1.890 -1.205 -1.500 -5.2 +2S o C -0.810 -1.850 -1.105 -1.475 -5.2 +8SD C -0.700 -1.825 -1.035 -1.440 -5.2 Temperature Co.) hm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. ... ... ... n o i~ N 8 ...:;i' :l ~~ - 2 3 10 11 12~ 13~ 14 15 c: CD Co P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Vellsl @Test Temperature _30 Ge W C) ~ MlO,n,,,p -~ -~ ~ I 1 VIH max VILmin VIHA min -0.890 -1.890 -1.205 I -1.500 -0.810 -1.850 . -1.105 1 - --U./UU - --".LO • "35 I VILA max 1 VEE I -52 -1."75 1 -52 -1.440 I -5.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW, Characteristic 1 Symbol Power Supph,. Drain Current I Input Current Logic "1" Output Voltage lin H I logic "0" Output Voltage logic "1" Threshold Voltage Log" "0" Threshold Voltage IE Unit VIL min mAd<: .Ad<: + lin L J..IAdc VOH Vdc Vdc VOL VIH max 7 9 10 VILA max VEE IVeel Gnd 8 1,16 8 1,16 + 8 + Vdc Vdc VIHA min 10 4,10,13 4,10,13 + + 1,16 + 1,16 1,16 1,16 1,16 I VOHA I Vdc Vdc 10.13 1,16 1,16 VOLA Vd<: Vdc 10,13 1,16 1,16 Switching Times (SO n load) Propeg8tion Delav Rise Time (20'080%) FO\lT .... ,~ ... ~ it.-," iif'E9.j.111~~ r. CHVI4Vhm resistor to -2.0 volts. Test procedures are shown for only one translator. The other tl'1lnslatorlar& tested in the same manner. - 4 6 2 3 10 12 11 15 13 ...a 0 ...a N ~ 8::J L SUFFIX CERAMIC PACKAGE CASE 620 ~. ::J c:: ct> C. 14 TEST VOLTAGE/CURRENT VALUES Volt. n ... T.mper ..tur~ ~ C) C ...... Ch.,..::t.,,,hc Sv_ NegatIVe Power Supply T... M,. ·lOoe pOSllI\le Power SupplV Moo, Mi. Tvo Drain Current forward Current I, I nput Breakdown Voltage •• eV ln Moo, Min Moo, V, High Output Voltage VOH -1060 -1.060 -0.890 -0890 LOW Output Voltage VOL -1.890 -1.890 -1.675 -1.675 Hogh Threshold Voltage VOHA VOLA +8SoC +4.0 ><1'0 +1.80 Unit ,>3!) Vde 10 50%J(j) • ~T'_I20"'0_1 fall TIrM'18O%to2O%1 (j) I 16+1+ '6-1t7+1+ 11_1_ 11+3_ 17-3+ 25 mAde 200 SO -12.8 -3.2 Jl.Ade Jl.Ade mAde mAde -1.080 -1.080 -0.960 -0960 -1.850 -1.850 00.40 v. ,240 +2.40 +2.40 I Vee '.00 I VEE .S> I " I'i. +1.0 +5.00 ·5.2 10 ·10 " 0 '.00 ".2 ·10 " IS 10 IS 10 1.' 1.0 6 .• 6.0 6 .• •.0 -0890 -0890 -0700 -0.700 Vd, Vd, -1.650 -1.650 -1.825 -1825 -1.615 -1615 Vd, Vd, -0.910 -0910 VllllWlx VIHA" 0 VILA' V, V. Vee VEE 3.' 6.0 ... 1 1 1 •.0 I" 1.0 '.2 2.' 3.' '1· 1.0 '.2 2.5 3.' 10 " 10 1.' 1.0 15 6.0 60 ..• ..0 '.3 1.1 j GM 16 .. 5,6.1,10,11.16 5,7.10,11 6 16 16 5},IO,11 6 16 16 5},10,11,16 6,16 16 16 6.7 16 16 6.7 6.7 .. 16 16 6.7 .. 16 I. Vd, Vd, •• •• 'in 16 Vd, Vd, -1595 -1.595 -1.630 -1630 IS V,H Vd, Vd, -0810 -0.810 -0980 -0.980 -1655 -1655 3 3 +0.90 I Vd, Vd, ·IS IS + ><140 5,6.7.10,11 $Wild,,", TirM t50-H lo.-n PrOPdOJiI'lon Delav v, ><1.40 +1.10 mAde 55 Clamp Input Voltage LOW Threshold Vollage ><140 16 ICCL 'R >--~ =:::t>--=:::t>--=:::t>--~ Each MECL 10,000 se,ies ci,cuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in • test socket or mounted on a printed circuit board and transverse air flow greater th., 500 Ii.... fpm i. maintained. Test procedures •• shown for only one trans'ator. The other translators are tested in the urn. manner. 4 5 ....s: n o N C1I C') o 10 11 12 14 13 15 ::J ~. ::J PSUFFIX c: PLASTIC PACKAGE CASE 648 a L-l VSS TEST VOL TAGE VALUES (Volu! . '''' Temperature -lOoe m II ~ C.....ect.ristic Symbol N~r"e Power Supply VIHml. -0.890 -0.810 Vilmin -1.890 +8SOC -0700 -'850 -1825 VIH max VIL min MC10125P T_ Limit. Pin ,_ U..... W +25°C -3O"e Min Mo. TV. IE Mo. 40 -1 105 -1475 +0.190 -0.850 -1.810 -2.850 -1035 -1440 'O:JJO -0.825 -17001. 282• I v.. I From Pm Vee •• 0 I I ".0 VEE ·52 -5.2 +5.0 I ·.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +>sOC Min I V.. Am,n VI LA ml" V,HH VILH VIHL VILl -1205 -1500 +0110 -0.890 -1.890 -2890 Min +8SOC Mo. Unit VIHAmin VILAmu V:"iH VILH mAdc VIHL VILL V•• 3,1,11.15 Vee VEE 8 God I Output Condition 16 Dram Current POSItIve Power Supply Drain Current Input Current leO-l leCl linH Input Leekage Current ICBO HI~ VOH Output Voltage LOw Output VOltage 2.' VOL High Threshold VOltage mAdc II. s.cAdc 1.0 J,lAdc 2.' 2.' 0.' Vd, 16 3,1,11,15 2,6,10,14 2,6,10,14 .~ 2,6,10,14 Vd, 2.' 3,1,11,15 2,6,10,14 Vd, 2.' 16 16 3,1,11,15 2,6,10,14 mAdc a.• 0.' 2 .• VOHA .2 39 6,10,14 3,1,11,15 2,6,8,10,14 16 3,7,11.15 8 16 -20mA 3,7,11,15 16 20mA 3,7,11,15 16 16 -2.0 rnA 20mA Low Threshold VOltage VOLA VOlSl 0.' 0.' 0.' 0.' 0.' 0.5 Vd, Indelermin... Input Protecttan Tests Vd, 2,3,6,7,8, 10,11,14,15 16 20mA VOlS2 0.' 0.' 100 -1,230 0.5 Vd, 8 20mA -1.150 mA Vd, Vd, Short·Circuit Current lOS Ret.,ence Volt. VB. -1,420 Common Mode ReJection Tests VOH 2.' 2.' VOL SWi.intTi .... Prop-o-llon Oelav (~to +1.5 Vd(1 RilO Timo 1+1.0Vdc 10 2.0 Vdcl Fett Timtt+l,OVdc to 2,0 Vdd (J-·',,"~idu.lly I 2.' 2.5 -1295 2' 2.' 0.' 0.' I~+~ '6-5+ 12+412-4+ '4+ ..... -1,28 40 -1,350 0.' 0.' A. ~ ....... Inpu'r,.-v VIH INK to pin t,lnd., teat. 4.5 + ~ ~ 3,7,11,15 2,6,10,14 3,7,11,15 16 ,. Vd, 16 0.' 6.0 3.3 3.3 2,6,10,14 16 4,16 16 16 Pulse In 1.0 3,7,11,15 6,10,14 Pulse Out 1 ~ ~ -2 OmA -2,0 rnA Cl (pF) 2. 6 6 2 T 120mA 20mA 1 3,7,11,15 16 1 1 1 1 BUS DRIVER " MECL 10,000 series '------------' MC10128 Ad vance InforIllation The MC10128 is designed to provide outputs which are compatible with IBM·type bus levels; or, if desired, it will drive TTL type loads andlor provide TTL three·state out· puts. The inputs accept MECL 10,000 levels. The MC· 10128 output levels can be accepted by the MC10129 Bus Receiver. The operating mode I BM or TTL is selected by tying the external control pins to ground or leaving them open. Leaving a control pin open selects the TTL mode, and tying a control pin to ground selects the I BM mode. The TTL mode will drive a 25-ohm load, terminated to +1.5 Vdc or a 50·ohm load, terminated to ground. The device has totem· pole type outputs, but it also has a dis· able input for three· state logic operation when the circuit is used in the TTL mode. When in the high state the disable input causes the output to exhibit a high impedance state when it would normally be a positive logic "1" state. When the strobe is in the high state it inhibits the output data to the low state. Latches are provided on each data input for temporary storage. When the clock input is in the low logic state, information present at the data inputs Dl and D2 will be fed directly to the latch output. When the clock goes high, the input data is latched. The outputs are gated to allow full bus driving and strobing capability. The MC10128 is useful in interfacing and bus applica· tions in central processors, mini·computers, and peripheral equipment. CONTROL' '3 0"0'-----'-10 '0 CLOCK:6--~-~ RESETo7___+-~_~ DISABLE ,'2 6--~--l----+..J 01 SAB L E 5 2:0----+-1----+..., 6 020----+-1......, R _ _ _3 STROBEo------------~ 4 CONTROL2 Vee = Pin 14 Gnd 1 Gnd 2 = Pin =: 16 Pin 1 Gnd 3 =: Pin 9 Po = 700 mW pkg/typ (No Load) tpd = 12 ns typ VEE = PinS Thfll, advance information and specifications are subject to change without notice. S •• General I nformat-ion section for packaging, and maximum ratings. 3-65 ~ "fl~~:ynl' ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flovv greater than 500 linear fpm is maintained. Char.t.risttc: Negat.v. Power Supply Drain Current @Test Temperature _lODe Symbol I Pin Und.r Te>st -JO"e Min I Mn ICC Input Leakage Current linH I Min VOL '5 2 logic "1" Threshold Voltage VOHA '5 2 Logic "0" Threshold Voltage VOLA '5 Output S~on Circuit Current IsC -0.-5~- 2.5 ~ 0.5 0.5 ~ 2._5_ 0.5 0.5 -1.- 260 260 2 SwitehingTimes t Propagation Delay '10-15- STROBE Input Setup Time Hold Time 17+1517+2- mAde '0 logIC "0" Output Voltage ,5 '5 15 '5 3.5 $ 13+1513-15+ 13+113-1+ '5 '5 tsetupH tsetupl tholdH lholdl '5 '5 Rise Time 120% to 80%1 115+ '5 '5 '5 Fall Time (20% to 80%) "5- '5 Apply VILmin individu.lly to pin under test. Negative Power Supply Drain Current D ~'.'- W cD Q) I T... 'ee Input Leak. Currant linH -0.810 -0.700 +25OC +85 o c 1 -1.850 -1.825 MCl0128L T. limits -3o"e Min M •• +25 o C Min M •• M .. VEE -5.2 Vee +6.00 IOHl -59.3 IOH2 -30 IOL -240 -1.1OS -1.475 -5.2 +6.00 -59.3 -30 -240 -1.035 -1.440 -5.2 +6.00 -59.3 -30 -240 VILAm•• Unit VIHmax VILmin VIHAlnin 97 mAde 6,11 I. 73 mAde 6,11 /lAde 10 11 12 620 350 265 265 500 VILAmax 1,4,9,13,16 I' 1,4,9,13,16 " l,4.9,P,16 8 1 7 10 11 12 j.LAdc logic "'" Output Voltage VOH 5.85 Vd, Vd, 11 11 8 8 Logic "0" Output Voltage VOL 15 2 -0.5 -0.5 0.15 0.15 Vd, Vd, 3 3 8 logic "1" Threshold Voltage VOHA 15 2 2.9 2.9 Vd, Vd, 11 6 7 logic "0" Threshold Voltage VOLA 15 2 15 2 0.25 0.25 Vd, Vd, 11 6 7,10 7,10 320 320 mAde mAd, 11 6 Data Input 111+15+ 111-15110-15+ 110-15t7+15_ 17+2_ Reset Input STROBE Input Setup Time HOld Time Aise Time (20% to 80%) Fall Time (20% to 80%) 15 15 15 15 3.5 ffi ~~ 1 10 @ 1O@ 10 10 11 11 15 10 10,11 10,11 7,10 7,10 3 13+1513-15+ t3+2_ t3-2+ 15 15 2 2 tsetupH 1setupL lholdH lholdl t15+ t15_ 15 15 15 15 15 1.0 8.0 10 11 15 1.0 8.0 10 11 ApplV VILmin individually to pin under test. Output latched to logic High st ... prior 10 tnt. ts..w.veforns VILA--..j IOH2 IOL 1 " " 1,4,9,13,16 J ! 15 15 2 2 10.11 15 ! V,H ~l00n.ec-min I I 8 I " 1,4,9,13,16 1,4,9,13,16 2,15 2,15 2,15 2,15 1,4.9,13,16 1,4.9,13,16 2,15 2,15 1,4,9,13,'6 1,4,9,13,16 2,15 2,15 ,.,. Pulse Out 11 6 11 ,.,." ,." 1. 1. -0.890 V -1.690 V Pulse In 23 IOH1 1 1 0.5 Switching Times t Propagation Delay Gnd I' 3.11 Clock Input C!) Vee 15 15 'se c: 9; 8 All Output Short Circuit Current ::l ~. ::l VEe linL -0.5 -0.5 n0 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +8S oC Min N CO /JAde -1.500 VIHmax VILmin VIHAmin -0.890 -1.890 -1.205 -30°C CO"lR~' mAd. Volts Temperature 'E Positive Power Supply Drain Current ~ TEST VOLTAGE/CURRENT VALUES Pin Under Symbol ~ 0 TEST VOLTAGE VALUES STlroil J Cb8ractermic :: (') L SUFFIX CERAMIC PACKAGE CASE 620 I ,I 1,4,9,13,16 1,4,9,13,16 1,2,4,9,13,15,16 1,2,4,9,13,15,16 I - I 1,4,9,13,16 MC10128 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @250C -IBM MODE VfiC~6TOV:C, ~F Vin -=- r - - - - - -'4 CONTROL 1 13 ---- I 450 11 o--+--~D 10 56 !! Pulse Generator Input Pulse t+ '" t- '" 2.0+ 0.2 ns (20 to 80%) PRF V,H VIL = 1.0 MHz = -0.890 = -1.690 12 5 CL - 50pF, Including test fixture 6 3 ~---""' - - - - - - - 0 . 8 9 0 50% \..-_ _ _ -1.690 50-ohm termination to ground lo- r------- -0.890 cated in each $Cope channel input. All input and output cables to the c : - - - - - - J - - - - - - - - -1.690 scope are equal lengths of 50-ohm coaxial cable, Wire 'ength should be 1/4 inch from TPin to input pin < and TP out to output pin. 3-69 MC10128 (continued) VOLTAGE WAVEFORMS DATA INPUT Start Cycle '11-15 - ,----_.+--+-------------- -0.890 Oata 4-------------1.690 Ou' STROBE INPUT -0.890 ~ -1.690 Ou' t3+1513+2- t3-15+ t3_2+ CLOCK INPUT -0.890 200 nl Data -1.690 Clock 140 nt Output '10_15_ RESET INPUT Clock -0.890 ~60n.-I 35 Resat nl II \ 60 ns - Output 1.690 0.890 \ 50% +1.5 Volts j.:==- '7+2_ IBM - MODE Vo L = 0.25 Volts Max Vo H - 5.85 Volts Min TTL - MODE Vo L '" 0.5 Volts Max VOH - 2.5 Volts Min 3-70 -1.690 MECL 10,000 series '\ QUAD BUS RECEIVER ~...._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _----l MC10129 inputs must be tied to VCC or Gnd. The clock, strobe, and reset inputs each have 50 k ohm pulldown resistors to VEE. They may be left floating, if not used. The MC10129 will operate in either of two modes. The first mode is obtained by tying the hysteresis control input to VEE. In this mode, the input threshold points of the 0 inputs are fixed. The second mode is obtained by tying the hysteresis control input to ground. In this mode, input hysteresis is achieved as shown in the test table. This hysteresis is desirable where extra noise margin is required on the 0 inputs. The other input pins are unaffected by the mode of operation used . The MC10129 is especially useful in interface applications for central processors, mini-computers, and peripheral equipment. The MC10129 bus receiver works in conjunction with the MC10128 to allow interfacing of MECL 10,000 to other forms of logic and logic buses. The data inputs are compatible With, and accept MTTL logic levels as well as levels compatible with IBM-type buses. The clock, strobe, and reset inputs accept MECL 10,000 logic levels. The data inputs accept the bus levels, and storage elements are provided to yield temporary latch storage of the information after receiving it from the bus. The out. puts can be strobed to allow accurate synchronization of signals and/or connection to MECL 10,000 level buses. When the clock is low, the outputs will follow the D in.puts, and the reset input is disabled. The latches will store the data on the rising edge of the clock. The outputs are enabled when the strobe input is high. Unused D POSITIVE LOGIC DO 7 TRUTH TABLE 1400 0 C

_ V... i II iiI 'VW"-"'''''''IICIl_.,!he1- Reset _ _ _ _ _ _ _J 1-=:::------ +1.11 V ' - - - - - +0.31 V - - - - - +0.31 V Clock +1.1' V tl1-14+ t11-14+0.31 V FIGURE 5 - TSET UP AND THOLo WAVEFORMS +1.11 V 50% r----_, - - - - - - +5.00 V /50% o _ _ _-¥ 20% 150% ----+2.400 V D~L- '~'up +0.31 V C tl1-14+ t10+14- 3-74 F-'-h-O-'d--- +1.11V 50% +0.31 V '\ MECL 10,000 series "-------------' DUAL LATCH MC10130 POSITIVE LOGIC NEGATIVE LOGIC 515------, C Al 5 - - - - - - , 9 5213-+-----, ~e2 11 eE2 11 - - , - - - - " 0210 15 A212------ TRUTH TABLE CE vee1 : : : Pin 1 VCC2 "" Pin 16 VeE"" Pin 8 On+1 L Co Co Co f/! - Don', Ca,. Po tpd = 155 mW typ/pkg = 2.5 ns typ (No Load) CIRCUIT SCHEMATIC s .. Gen • • llnformatlon section for packaging. 3·75 The MC10130 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (e). Any change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system layout and design criteria. The set and reset inputs do not override the clock and D inputs. They are effective only when either C or CE or both are high. ELECTRICAL CHARACTERISTICS 3: n o ... ... Each MECL 10,000 series circuit has been designed to meet the de specifications Sl 5---------------- shown in the test table, after thermal equi· librium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latch is tested in the same manner. 01 7 CE 1 6 Col o 8::J .. 3 Rl - 4~ R~ 1:---r-1-----------14 CE211~ 0210 ~ S212 to) ~ 0) Characteristic PO\l\ler Supply Drain Current Input Current Symbol Pin Und.. Test - Min Typ - 30 35 - - 220 265 285 285 - 0.50 - - Max Min 4- VOH 2 -1.060 -0.890 -0.960 - -0.810 VOL 2 -1.890 -1.675 -1.850 - -1.650 VOHA 2 -1.080 - -0.980 - - -0910 - eASE 620 TEST VOLTAGE VALUES VIHmax VILmm VIHAmin VILAmax VEE _lODe ·0.890 -1.890 -1.205 -1.500 -5.2 +2SoC -0.810 -1.850 -1.105 -1.475 -5.2 +8SoC -0.700 -1.825 -1.035 -1.440 -5.2 TEST VOL TAGE APPlIEO TO PINS lISTEO BELOW, +8So C +2Soc Max ~ L SUFFIX CERAMIC PACKAGE (Volts) Temperature I inL 8 6,11 9 Logic "1" Output Voltage _lODe c: @Test - IE linH 4,5,9 7,10,12,13 Logic "0" :~~15 MC10130L Test Limits Min ~. ::J - VIHmax VILmin VIHAmin VILAmax VEE (Vee' Gnd mAde - -- - 1,16 6,11 9 4,5,9 7,10,12,13 - 8 /JAde 8 1,16 Ma. Unit - - 9 - - J.lAdc - 4 .- -0.890 -0.700 Vdc 5 .- - - -1.825 -1.615 Vdc 4 - - - Vdc - 9 7 - - - 8 1,16 Pulse In Pulse Out -3.2 V +2.0 V 7 5 4 6 2 8 1,16 - + + + 8 1,16 8 1,16 8 1,16 8 1,16 Output Voltage Logic ''1'' Threshold Voltage Logic "0" Threshold Voltage Switching Times (50 (See Figure 1) Propagation Delay 2 VOLA - -1.655 - - -1.630 - -1.595 Vdc n Load) - 9 +1.11 V 17+2+ 15+2+ 14+216-2+ Rise Time (20% to 80%1 '2+ Fall Time (20% to 80%1 '2- Setup Time 1.tup Hold Time thold.....::...:... 2 1.0 II -All other inputsar. tested in the same manner 2 2 - 3.6 3.6 3.6 4.3 1.0 3.6 1.1 3.6 1.1 - 25 1.5 + 4.0 1.0 1.1 1.1 1.0 3.8 3.9 3.9 4.1 3.5 1.1 3.B 2.7 3.5 1.1 3.8 - - - - 2.5 2.7 2.7 3.5 2.7 • n, - - I 6 6 - n, ns - an H L L H H H

L H L H H L L L If! L L L H (/) E vee1 0= IA. 011) + IA. 012) an an an = Pin 1 VCC2 = Pin 16 VeE = Pin 8 H an an On Po tpd L Don't Car. SH General Information section for packaging. 3·83 = 225 mW tvp/pkg (No Load) :::% 3.0 ns typ s: ELECTRICAL CHARACTERISTICS n Each MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equ jlibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated through a SO-ohm resistor to ~ ~e ~ Cc' 2 N Q, nO ~ 0 ' 2,. 5 CEO manner. to) 11""---' 011 4 -2.0 volts. Test procedures are shown for only one Iltch. The other latches are tested in the o Al1 ::J ~. 3 ---'~H;- T R6 01 ::J C ,-, =:: ,: • III ~ . _ LSUFFIX CERAMIC PACKAGE CASE 620 hL/.=:::r-- 02212 CD Q. 15 02 140.2 TEST VOL TAGE VALUES (Volts) ~T"t Tempere'ure Co) t l I Ch"Kteriltic Power Supply Current I I Input Current 'in H Test _lOGe Min I Min Typ M .. 44 55 290 290 390 290 265 265 4 5 6 7 10 11 'in L logic "1" Output Voltagl VOH Logic "0" Output Voltage VOL Logic "'" Threshold Voltage VOHA Logic "0" Threshold Voltage VOLA VIHA min -1.205 VILA max -1.500 +2S oc -0.810 -1.850 -1.105 -1.475 +8SoC -0.700 -'.825 -1.035 -1.440 Min 1Vee' M •• Unit 1 Data Aeset Clock Select t4+2+ t6+2t7-2+ t11+2-+ Setup Time Data Select tsetup lsetup Hold Time Data Sliect Ri. Time (20% to 80%) (2~ -All other inputs tIIted·in·th. lt10ld lt10ld '2+ '2_ to 80%) ~ m"1I~.r. 7 10 11 -0.890 -0.890 -0.960 -0.960 -0.810 -0.890 -{I.890 -0.700 -0.810 -0,700 Vd, Vd, 5,11 7,9,10 7,9,10 -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 -1.650 -1.650 -1.825 -1.825 -1,615 -'.615 Vd, Vd, 4 5,11 7,9,10 7,9,10 Vd, Vd, 11 7,9,10 7,9,10 Vd, Vd, 11 -0.910 -0.910 -1.655 -1,655 2 ~ I 4 J.lAdc -0.980 -0.980 -1,630 -1.630 1.0 1.0 1.0 1.0 2.5 3.5 1.5 1.0 1.5 1.' - I I 3.3 3.8 5.7 4.6 3.5 3.5 VIHA min VILA INX -1.595 -1.595 I • VEE Gn. a 1,16 ---s- r--;-:-;s l.11V ProP8lJ8ltion Delay Vll min .uAdc SWitching Times (5().ohm load) hit Ti.,. VIH max mAde -1.060 -1.060 -'.080 -1.080 -5.2 -5.2 -5.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: 0.50 4" VEE +8S0C +25 0 C M •• a IE VIL min -1.890 MCl0132L Test Limits Und", PI" Symbol _lODe VIH INX -0.890 -- - - - 4 11 8 8 8 8 8· 1.16 1.16 8 1,16 1,16 1,16 1,16 5 - a 7,9,10 7,9,10 4 5 - 8 8 1.16 1,16 +0.31 V Pulse In Pulse Out -3.2 V +2.0V 7,9,10 4 2 8 1,16 • 8 8 8 8 8 8 1,16 1,16 7 11 11 7 4,10 10,11 11 7 4,10 10,11 7,9,10 4 7,9,10 4 2 2 2 2 2 2 ~ 1,16 • 1,16 1.16 1,16 1,16 ElECTRICAL CHARACTERISTICS r--=--" ! 3: '" Each MECL 10,000 senes circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The Circuit is In a test socket or mounted on a printed o 11.,---... 011 4 circuit board and transverse air flow greater than 500 linear fpm IS maintained. Outputs are terminated through a 5()..ohm reSIstor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner. ... ... (") All 2 Cc 7 A 6 O ::J 3 01 15 Q2 III~ ~-===r-- 02212 ~. - r-----l T ~:,',: N c:;- ~ 0125 CEO '0 W Q, ::J c: (I) PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Voltsl (ilT"t Tempereture _30o e Under w U1 Characteristic Po~r Symbol Supply Current T... ~-:!!;~--+----r2!;!...!:,-~-+--:-::...:..::r-=::­ 44 -1.105 -1.475 -5.2 -1.825 -1.035 -1.440 -5.2 (Vee l Unit "f Vd, Vd, VOL -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 -1.650 -1.650 -1.615 -1.615 Vd, Vd, VOHA -1080 -1.080 Vd, Vd, -0.980 -0.980 -1630 -1630 -1.595 -1.595 Vd, Vd< SWitching Times (Sl).ohm load) Data Reset Clock Select t4+2+ ts+2t7_2+ tl1+2+ Setup Time Data Select tsetup tsBtup Data Select thold thold HOld Time R lie Time (20% to 80%) '2' '2- Fall Time 120% to 80%) • All other Inputs tested In the same manner. 2 ~ 1.0 1.0 1.0 1.0 2.5 3.5 1.5 1.0 1.5 1.5 I Vll min I VIHA min I VILA INX I 3.3 3.8 5.7 4.6 3.5 3.5 VEE Gnd 8 1.16 1,16 4 5 6 7 10 l' 1 1 1,16 ~Adc 050 -1.655 -1.655 VIH m •• mAde 55 -0.700 -0.700 Propagation Delav -5.2 -1.850 -0.810 -0.810 VOLA VILA .... -1.500 VEE -1.205 -0.700 -0.960 -0960 Logic "0" Output Voltage Logic "0" Threshold Voltage .. 2 2 I VIHA min -0.810 -0.890 -0.890 VOH VIL min -1.890 +8SoC -1060 -1.060 Logie "I" Output Voltage Logic "'" Tlue5l'l0ld Voltage I 290 290 390 290 265 265 7 10 11 lin L J TEST VOL TAGE APPLIED TO PINS LISTED BELOW; 'E lin H Input Current VIH m. . -0.890 +2SoC Pin 00 Co PSUFFIX 5,11 1,16 1,16 7,9,10 7,9,10 11 1,9,10 1.9.10 8 8 8 8 1,16 1,16 PuI.Ou1 -3.2 V +2.0V 2 8 1,16 8 7,9,10 11 7,9.10 +1.11 V +0.31 V Pul .. ln I 7,9,10 • 1,18 1,16 8 5,11 7,9,10 7,9,10 4 7 tt 1i 4,10 10,11 7 11 7 7,9,10 7,9,10 4,10 10,11 1,16 1,16 • • • 2 2 8 8 1,16 1,16 2 2 8 8 1,16 1,16 1,16 1,16 MC10132 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS vee1 '" VCC2 = +2.0 Vdc 25~F$f$01~F Input Pulse t+ = t- = 2.0 ± 0.2 nl V out r-----------, I (20 to 80%) Coa)( I I \ TP out 50 ol"lm termonation to ground 10 cated In each scope channel ,nput All Input and outj.Jut cables to the scope are equal lengths of 50 ohm caallial cable Wife length sho,Jld be < 1/4 Inch from TP. n to Input pm and TP out to output pm Unused outputs connected to a 50-ohm resistor to ground. -JI ______ C Input _ _ _ _ o a n - _ - ___ :~~:: ~---------- +1.11 V Input --_'+. ___________ +0.31 V D "----+031 V ~-----+'.'1 V Output C - - - - -I ------------+031 V ~---'------ +1.11 V A Input _ _ _ _ _ _J ________________ +0.31 V NOTE: t setup is the minimum time before the positive transition of the clock pulse (e) that information mun be pr.,ent at the data input (0). thold is the minimum time .fter the positive tran· litian of the clock pulse (e) that information must remain uncnanged at the data input (D). 3-86 MC10132 (continued) APPLICATION INFORMATION A typical application of the MC10132 is temporary ,storage in a minicomputer. The arithmetic section of a minicomputer might have a configuration similar to that illustrated in Figure 1. Data may be entered into the "B" register from either the register file or the input bus, re- quiring a multiplexed input to the register. Figure 2 shows the MC10132 as the elements in the "B" register. Eight packages of the dual latch is necessary to construct a 16-bit register. Note that reset is available on the MC10132 if this capability is required. FIGURE 1 Register File 16 x 16 Bit Output Bus Input Bus FIGURE 2 Data lines from Register File (_-----------------------------A-----------------------------~ Data Lin .. from Input BUI Receiver II I _I\J..~1I2 2~ ~I I~ ~~ ~II~ ~~ -II~ 2- ~H~ 2~ 2~J I~ 2~ 2~II~ 2~ ~II~ 2~ 2 101 2 2 N -N'" Mgl0l~2 I I N _N..... '1lCl0~2 I I N -N'" Mffl0~2 I I N _,.., ... Me=101e I I N _N'" MS=101e I I Mi3 il I I N"'t..)... N N MpCl0le I I _N ... Mfole I I \----------------------------~y-----------------------------~) Data Lines to Arithmetic Logic 3-87 '\ QUAD LATCH MECL 10,000 series '-_ _ _ _ _ _- - - - - 1 MC10133 The MC10133 is a high speed, low 'power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated outputs. Open emitters allow a large number of outputs to be wire ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is high, outputs will follow 0 inputs. Information is latched on negative going transition of the clock. ' a TRUTH TABLE G c 0 On+1 H rt> rt> L L L rt> H L an L H H Po = 310 mW typ/pkg (No Load) L tpd = 4.0 ns typ H L tj)- Oont Care C "" Cc + CE DO 3 2 00 6 01 GO 5 01 7 CE 4 Cc 13 CE 12 02 9 1102 (3110 15 03 0314 veel = Pin 1 VCC2 = Pin 16 VEE=Pin8 See General Information section for packaging. 3·88 "I:i~'\rjM' ~::;, ~'~:. ~Q: f'5J'!;rf::1I'~ ,l.r.,,~··-,rl<-: ',p" ';f.".' ElECTRICAr'cHARAC"rERISftCS . OO·.3~ 2 00 ~o. 6 EaCh MECL 10,000 seri •• has been de· signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Output :0 GIl:: 'r to 01 7 EE 4 .~ I "'I Cc 13 dor ~sted Symbol Pin Under Test IF 8 linH 3 Power SUpply Drain Current Input Current lin w eX! (D LogiC "1" OutPut Voltage VOH LogIC "0" Output Voltage VOL Logic "1" Threshold Voltage Logic "0" Threshold Voltage VOHA VOLA VIH max VIL min VIHA min VILA max VEE _30°C -0.890 -1.890 -1.205 -1.500 -5.2 +25 0 C -0.810 -1.850 -1.105 -0.700 -1.825 -1.035 -1.475 -1.440 -5.2 +85 0 C 0.3 MC10133L Test Limits TVp - - 3 - 0.5 - - 2 2 -1.060 -1.060 -0.890 -0.890 -0.960 -0.960 2 2 2 -1.890 -1.675 -1.850 2 2 2 2t 2tt 2tt 2 2 -1.080 2 2 2 2t 2tt 2tt - -1.655 - 1 - 1.0 1.0 1.0 5.6 1.0 3.2 - - j - - -0.980 j - - Max Min 60 75 - 245 265 350 350 - Max 2 2 3 3 Rise Time (20% to 80%) '2+ 2 1.0 3.6 2.5 1.5 1.1 Fall Time (20% to 80%) '2- 2 1.0 3.6 1.1 tOutput level to be measured after iii ,,4 - + :J c: CO .e: -5.2 Unit VIH max VIL min VIHAmin VILA max VEE tVccl Gnd .. mAdc - 13 8 1,16 JiAdc - - 8 1,16 - - - - 3 4 5 13 - - - - - - 3 - - -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vdc Vdc 3.4 3,13 - - -1.650 -1.825 -1.615 Vdc • + + 13 3,5,13 4 - - - - .. - - - -0910 j -1.630 1 , Vdc - _. - - + JiAdc - -1.595 - - - j Vdc 1 1 3.4 4 3.4 3 3 3 3.4 4 4 3 3 - 5.4 5.4 3.1 . - clock pulse has been applied to the clock input (Pm 41. ttData input at proper high/low level while clock pulse is high so that device latches at proper highltow level. for test. Levels are measured after device has latched. 1.1 1.2 1.0 5.9 6.0 3.4 - - - 3.5 1.1 ~~- ~~ 3.8 3.8 ILV1Hma)( VIL min ---- ns j 4 3 • - • • - - 3 3 .- - - 5 3 - - - 4 4 13 - 5 - + • 8 1,16 8 8 1,16 1,16 8 1.16 8 1,16 • 1 8 , j 1,16 3 - - 13 Pulse In Pulse Out -J,2V +2.0V 3 4 5 3 3 2 2 2 2 2 8 1,16 3 2 3 2 - - ' - -. '--- • Latch set to zero state before test. - - - - +1.11 V 2 t3+2+ t4+2+ t5_2+ tSetup tHold :J !:'. (Voltsl +8SoC Min • • • TEST VOLTAGE VALUES TEST VOL TAGE APPLIED TO PINS LISTED BELDW, +2SoC _30D C Switching Times 150 l! Loadl Propagation Delay 8 15 Q3 Max 5 13 Co) Co) CERAMIC PACKAGE CASE 620 @Test Temperature Gl10 Min 4 - ...... L SUFFIX ::':~"O' 0314 Characteristic al 3: n o -- 1 1 j I E lECTR ICAl CHARACTER 1ST ICS 2 Each MECL 10,000 series has been de· signed to meet the de specifications shown in the test table. after thermal equfiibrium has been established. The circuit is in a ~~ test socket or mounted on a printed circuit CE board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to I~ 4 00 6 -- 01 Cc 13 a,,~ ~,.~ "0' -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. _JODe Under Characteristic Power Supply Drain Current Input Current ::J VIHA min VILA max VEE c: (1) _JODe -0.890 -1.890 -1.205 -1.500 -5.2 Q. +250 C -0.810 -1.850 -1.105 -1.475 -5.2 +8So C -0.700 -1.825 -1.035 -1.440 -5.2 to) ~ Logic "1" Output Voltage Logic ·"0" Logic "0" Threshold Voltage Ma. Min TVp Ma. Ma. Unit VIH maK VIL min 'E 8 - 60 75 - - mAde - 13 ImH 3 4 5 13 - - - 245 265 350 350 - - ~Adc 3 4 5 13 - - 3 'inL 3 VOH 2 2 -1.0E0 -1.0E0 -0.890 -0.890 -0.960 -0.960 VOL 2 2 2 -1.890 -1.675 -1.850 2 2 2 21 211 211 2 2 -1.080 VOHA VOLA 2 2 2 21 211 211 0.5 - - - - - - + .u.Adc j - -1.655 - - -0.980 j - - -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vdc Vdc 3.4 3,13 -1.650 -1.825 -1.615 Vdc 13 3,5,13 4 - l - j - - - - -1.630 - - -0.910 - - Vdc j 1 - - - - 3 - 3 .. - 3.4 4 4 - - - Vdc 1 1 3 3 - - 'Setup 'Hold Rise Time 420% to 80%) '2+ 2 Fall Time 120% to 80%) '2_ 2 13+2+ '4+2+ '5-2+ - - - 1.0 + 2.5 1.5 1.1 1.1 - 5.4 5.4 3.1 at proper· high/low I41verwhile ctOek pulse is high so that devicalatches.jll Pfoper high/low level for test. Level, ara measured aftar device has latched. - - - - - 3.5 - - 3.5 - .Jl:VIHmax YlL min. ns - - tOutput level to be measured after a clock pulse has been applied to the clock input"(Pin 41. - - j 4 3 • 4 4 VILA max VEE (Vee l Gnd - 8 1,16 8 1,16 .. - + + - 8 1,16 - 8 8 1.16 1,16 8 1.16 .. 5 - - -1.595 .. - .. .. - - 3 3 - - - 3,4 4 3,4 3 VIHA min - 3 .. .. - - - - 4 4 13 - 5 - t 8 , 1,16 j j 8 1,16 3 - - 13 Pulse In Pulse Out -3.2V +2.0V 2 2 2 2 2 8 1,16 - 3 4 5 3 3 - 3 2 3 2 - +1.11 V 2 2 2 3 3 ttO ata input Min ,,, ,,,, Switching Times (50 H Loadl Propagation Delay +8SoC +25 O C Min Output Voltage Logic "1" Threshold Voltage TEST VOLTAGE APPLIED TO PINS LISTED BElOW, Test - IVolts) VIL min Symbol - (") o ::J ,... VIHmax MC10133P Test Limits Pin w @Test Temperature 1503 03 ....w PLASTIC PACKAGE CASE 648 TEST VOL TAGE VALUES Gl10 0314 s: (') .... o P SUFFIX - .. - - ":• Latch set to zero state before test. - 1 l j j MC10133(continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 250 C VCCl : VCC2 +2.0 Vdc Vin V out ~"'t tt"" ~. PROPAGATION DELAY r----- -- --..., I +1.11 V 50% Input Pulse t+ c t- = 2.0 ± 0.2 ns (20 to 80%) Vout from 0 input 50-ohm termination to ground 10- I ,ceted in each scope channal input._.;-1------"'1 Vout from -t-=-,----...J I L ____ Unused outputs connected to a 50-ohm resistor to ground. 1 ~ 0.1 ~F G input C VEE: -3.2 Vdc o All input and output cables to the scope are equal lengths of 50-ohm coaxial cabl.. Wire length should a be < 1/4 Inch from TPin to input pin and TP out to output pin. 1 _--.-J tSetup is minimum time before the negative transition of the clock pulse (e) that information must be present at the data input (D), tHold is the minimum time after the negative transition of the clock pulse ee) that information must remain unchanged at the data input (0). The latch will store the data on the falling edge of the clock. The outputs are gated when the output enable is low. All four latches may be clocked at one time with the common clock, or each half may be clocked separately with its clock. This device is useful as a temporary storage element in high speed central processors, accumulators, register files, digital communication systems, instrumenta· tion and test equipment. APPLICATION INFORMATION The MC10133 device consists of four bistable latch circuits with 0 type inputs and gated Q outputs. When the clock is high the outputs will follow the 0 inputs. 3-91 MECL 10,000 series DUAL MULTIPLEXER WITH LATCH MC10134 The MC1D134 is a dual multiplexer with clocked D type latches. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the com', mon clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the com, mon clock (CC). The data select inputs determine which data input is enabled. A high (H) level on the AD input enables data input D12 and a low (L) level on the AD input enables data input D11. A high (H) level on the A1 input enables data input, D22 and a low (L) level on the A 1 input enables data, input D21. Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched. on the positive transition of the clock. While the clock is in the high state, a change in the information present at' the data inputs will not affect the output information. , Output rise and fall times have been optimized to pro,. vide relaxation of system layout and design criteria. POSITIVE LOGIC NEGATIVE LOGIC AO 6 AO 6 11 AlII Al 011 4 ----+++I~I....., 012 5 2 011 4 01 ----++--w:......./ 012 5 GE010 3 01 CE010 Gc 7 CEI 9 Cc 7 GEl 15 02 9 021 13 -----~~~--, 02113 14 02 02212 02212 TRUTH TABLE C AO L L L L 4> H H H 4> 4> 4> an cP C 011 012 On+l L L L 4> 4> L H H H 4> L L = Pin 1 VCC2 = Pin 16 Vee = Pin 8 H Po = 225 mW tvp/pkg (No Load) tpd'" 3.0 ns typo Don t Care = CE veel + Cc See General Information section for packaging. 3-92 , ~""""""~~_.:.r.~:~.'~:::'~~.10 ......:;;:;'. ~'.< . ELecTRICAL CHARACTERISTICS E";h MEet 10,000 ~r,sclri:ui'thas been designed to· \ meet·· the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner, ..o.. 3: .00. AI o 11 ~~'~,~ CE1 ~ IIII~ 0114 .11 ~ II ==::::: 9 D2113 2 Q, 3 a, 15 ~ nv;~:l~; if I: g ::J .... I a~ 5' c(1) L SUFFIX CERAMIC PACKAGe CASE 620 .e: D2212~r---14C2 TEST VOL TAGE VALUES (Voltsl @Test Temperature -lOoe +25 o C +8So C w W w Characteristic SYmbol Power Supply Drain Current Pin Under T..t Min M •• Min 55 lin H ..... 290 7 290 10 logic "1" Output Voltage VOH 2 2 Logic "a" Output Voltage Unit "f 290 4' 265 0.50 -0.890 -0.890 -0.960 -0.9S0 -0814[) -0.890 -0.81~ -0890 -0.700 -0.700 Vdc Vdc VOL -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 -1.651t) -1.65eo logic "1" Threshold VOltage -1.825 -1.825 -1615 -1.615 VOHA -1.080 -1.080 Logic "0" Threshold Voltage VOLA Propagation Delay Setup Time Hold Time -0.980 -0.980 -1.655 -1.655 Data Salect Data Seloct Rise Time (20% to 80%) Fall Time (20% to 80%) • All other inputs tested in the same manner. t.4+2+ tl0-2+ '6+2+ tsetup t setup lt10ld thold '2+ '2_ 2 • -0.910 -0.910 -1.6Jt:) -163(;) ~ Data Clock Select VILA milk -1.500 VEE -0.810 -1.850 -1.105 -1.475 -5.2 -0.700 -1.625 -1.035 -1.440 -5.2 1.0 1.0 1.0 2.5 3.5 VIH max VIL min I VIHA min I VILA max 4 5 6 7. 10 5.2 VEE -1.595 -1.595 1Veel Gnd 1.16 1.16 ' 4 5.6 6,7.10. 7.10 1,16 1,16 Vdc Vdc 4.6.7,10. 5,7.10 1,16 1,16 Vdc Vdc 6.7,10 7,10 Vdc Vdc 6,7,10 M.. 3.3 n• 5.7 t 4.6 I 11 T ~Adc -1.060 -1.060 SWItchmg Times 150-ohm load) VIHA min -1.205 mAdc 265 lin L VIL min -1.890 TEST VOL TAGE APPLIED TO PINS LISTED BELOW Ie Input Current VIH max -0.890 ~ 8 8 1,16 1,16 Pul.Out -l.2V +2.0V 4 2 8 1,16 10 t 1,16 1,16 ~.10 .0.31 V ., 6.7.10 7 ·"'7.10 6.7 7,11 PuI_ln. 6 4,10 6.10 t t m 1.16 1.5 1.0 1.5 3.5 6.7.TIi 1.5 m 3.5 6,7.10 1.16 6.7 7.11 4.10 6.10 ill 1.16 ....s: ELECTRICAL CHARACTERISTICS Each MEeL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures Ire shown for only one latch. The other latches are tested in the same manner. o AO 6 o ~ nO A,111 Dl1 1111.,-... 4 ;:;,: Cc 7 • II II ~~:1: ~ - 0' J 1502 ~ ::J 02212~~14Q2 ::t, ::J C It> P SUFFIX Cl. PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Volts) til Test Temperature c.l ~ CharKteristic Symbol Power Supply Drain Current Pin Under T... .... -30"<: I +2S0C I Min 7 10 ~ LogiC ''1'' Output Voltage -1060 -1.060 -0.890 -0.960 -0.890 VOL -1.890 -1.890 -1.675 -1.675 Logic "I" Thresl"lold Voltage VOHA -1.080 -1.080 LogiC "0" Threshold Voltage VOLA LogiC "0" Output Voltage Propagation Delay Setup Time Hold Time Data Clock Select Data Select l4+2+ tlO_2+ ts+2+ tsetup tsetup Data Select "'old ltlold Rise Time (20% to 80%1 '2. Fall Time '(20% to 80%) '2- • All other inputs tested in the serne manner. 2 t Min -1.850 -1.105 -1.475 -5.2 +850 C -0.700 -1.035 -1.440 -5.2 M.. Unit "f -1.625 I -5.2 VIH m.. I VIL min I VIHA min I VILA max I VEe -0.960 -1.850 -1.850 -1.650 -1.650 -0.980 -0980 1,16 Min M.. 1.0 1.0 1.0 2.5 3.5 3.3 5.7 4.6 6.7,10. 7.10 1.16 1,16 Vdc Vdc 4.6.7.10, 5,7,10 1,16 1,16 Vdc Vdc 6,7,10 7,10 6,7,10 7,10 1,16 1,16 -0.890 -0.700 -0.700 Vdc Vdc -1.825 -1.825 -1.615 -1.615 -0.910 -0.910 -1.630 -1.630 -1.595 -1.595 4 5,6 Vdc Vdc +1.11 V l +0,31 V 7,10 6.7 6,7 1.0 ~ 3.5 1,16 1,16 Pulse In 6,7,10 7,11 1:5 (Vee l Gnd 1.16 11 T 10 /JAdc -0.890 1.5 I min mAdc -0.810 -0.810 -1.655 -1.655 Switcl"llng Times 150-ohm loadl -1.205 -0.810 +8S0C I .... 0.50 4' VOH -1.890 VILA nux -1.500 VEE -0.890 Vil min TEST VOL TAGE APPLIED TO PINS LISTED BELOW 55 290 290 265 290 265 'E i";;"H Input Current I VIHA -lOGe MC10134P Test Limits Min I +25 o c VIH mu. 10 6 4,10 6,10 7,11 4,10 6,10 6,7,10 4 6,7,10 I Pulse Out I -3.2 V I +2.0 V 2 8 1,16 2 2 2 2 2 8 8 8 8 8 1,16 1,16 t t t 1,16 1,16 1,16 1,16 MC10134 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS V out Input Pulse t+ = t- = 2 a ns ± a 2 n5 (20 to 80%) Coax n Dalal~ TPin/ 50-ohm termination to ground 10' cated in each scope channel input All input and output cables to the scope are equal lengths of S.O-ohm coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin. Unused outputs are terminated 50-ohm resistor to ground. I I ~-----10~:-_1 VEE LY2 Vdc J/n ______ _____ :~:::: C Input _ _ _ _ _ ~----------- o Input ~ +1. II V ___,,-+____________ +0.31 V _ _......,,_ _ _ _ _ +1. II V o '-----+0.31 V +---~-~thold ~ a _ _ _ _ _ +1.11 V Output C - - - - - - ' - - - - - - - - +0.31 V NOTE' tsetup is the minimum time before the positive transition of the clock pulse (C) that information must be pre.ent 8t the data input (0), thold is the minimum time after the positive transition of the clock pulse (e) that information mult remain unchanged at the date input (0), 3-95 a~ MC10134 (continued) APPLICATION INFORMATION A typical application of the MC10134 is temporary storage in a minicomputer. The arithmetic section of a minicomputer might have a configuration similar to that illustrated in Figure 1. Data may be entered into the "B" register from either the register file or the input bus, reo quiring a multiplexed input to the register. Figure 2 shows the MC10134 as the elements in the "B" register. Eight dual latch packages are necessary to construct a 16·bit register. FIGURE 1 Aegister File 16 Ii( 16 Bit Output Bus Input Bus FIGURE 2 Data Linas from Register Fil. ( r - - - - - - - - - - - -_________________ A~_____________________________, Oeta Lina, from Input Bu. Receiver I I 1 [2 2~ ':[[2 2~ ~II~ 2~ ~1I2 2~ ~H2 2~ ~H2 2~ ~J 12 2~ ~112 2~ ~I _p,J 1'1.) ... MB10le 4 I I "' ... IIJ .... M§101§4 I I N .... N ... M8101~4 I I '" ..oN'" MfOl~4 I I II.) _I\J'" MfOl§4 I I IIJ ... IIJ ... M8101~4 I I N .... I\J ... M8101~4 I I N _I\J ... Me 101e 4 I I \------------------------------~y~----------------------------~) Data Lines to Arithmetic Logic 3-96 MECL 10,000 series DUAL J-K MASTER-SLAVE FLIP-FLOP MC10135 POSITIVE LOGtc 5' • , . " The Me 10135 is a dual master-slave dc coupled J-K flip-flop" Asynchronous set (S) and reset (R) are provided. The set and reset inputs override the clock. A common clock is provided with separate J-K inputs. When the clock is static. the J-i< inputs do not effect the output . The output states of the flip-flop change on the positive transition of the clock . Input pulldown "resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system design and layout criteria. NEGATIVE LOGIC ~, 5---~ J1 , ,• "' •• 5212 • , 4_1-_--1 l! • C 1212-1--~ J210 J210 15 '4 il211 "213 "213;---- vee1 '" Pin 1 VCC2 = Pin 16 CLOCK J.K TRUTH TABLE· R-8 TRUTH TABLE Qn a n +1 an H L Q n+1 Vee == Pin 8 Po ~ 280 mW typ/pk. (No Load) fTog -= 140 MHz tvp ·Output l1.t.. ch,ne- on pOlio ,ive ,.,n,I,lon of clock fa.]· N.D. - Not O.fined i( input condition p ....nt. CIRCUIT SCHEMATIC 1/20F CIRCUIT SHOWN MASTER h rYl~ 51""'" 124 I ,0>- 1.914 k '"17 >---- ~ 1.11Sk 647 30' 30' 1.34311 1.3"3k )- t·, 1.91" k ~ ~~ ~t'->= ) ~ Kt-< ~ !iii -': ~ y " I '6. ~~~ ,J" '0'( '" '68 \- rr i Y ) 124 Vee 2 Vee' LAVE R 13 , .. ,., I-- 43 1.0910; " L -_ _ _ _ _ _ _ _-'--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.-J 8M G . . . .I Information section for packaging. 3-97 51 5 j 1 7 -------"' ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet thedc specifications shown ---'" in the test table. after thermal equilibrium K 1 6 - ---'" has been established in an ambient temperature of 2SoC, while the circuit is in a test Al socku or mounted on a printed circuit ~ 4 Q2111o.......-'5 w.. Other inputs tested in the same J A2 13 Symbol W CO I I Min lin H +25 oC +SSoC MC10135L Test Limits +2S oC -lOoe Max Min IE Input Current cO Pin Under Test @T... Temperature _JODe 62~14 j(:2 1 1 -------AI manner. ChllrKt_istic ! r ' ] 2 1 0 - -"'" TV. 54 6.7.9.10.11 4,5,12,13 3: n - Ql~J 5212 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input con- Power Supply Drain Current Ql~2 c ._ board and transverse air flow greater than ditions. .--l Ma. I L SUFFIX ... CERAMIC PACKAGE CASE 620 Co) ... 0 U1 n0 TEST VOLTAGE VALUES ::J .-+ Vdc.t.'" VIH max -0.890 -0.810 -0.700 VILmin -1.890 1.850 1.825 5' VIKAmin -1.205 VILA INK -1.500 VEE -1.105 -1.475 -5.2 -1.035 -1.440 -5.2 Ma. Unit 68 mAde 265 390 ~Ade ~Adc VIH IMX --------<>-...=...j Input Pulse t+ = t- = 1.0 ns Unused outputs connected to a 50-ohm resistor to ground. Duty Cycle'" 50% 50-ohm termination to ground to :::r:: 0.' I'F cated in each scope channel input. VEE" -3.2 Vdc FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 2So C veel = VCC2 '" +2.0 Vdc ::rO., I'F J Vout coa. iT'P All input and output cables to the scope are aqua,! lengths of 50-ohm coaxial cable. Wire length should be < 1/4' inch from TPin to input pin and TP out to output pin. out Clock Input Input Pulse t+ " t- " 2.0 ns ± 0.2 ns (20 to 80%1 50-ohm termination to ground 10· cated in each scope channel input. Unused outputs connected to a SO-ohm resistor to ground. XO.'I'F VEE = -3:2 Vdc +1.11 V C 50% +0.31 V R Input thold +0.31 V +1.11 V K S 'nput - - - - ' I Q Q NOTE, Output - - - - , , . . . , a Output / ts8'tup is the minimum time before the positive transition of the clock pulse (C) that .information must be present at the inputs} or K. - - - -...... 1 thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the inputs J or K. 3-100 MECL 10,000 series UNIVERSAL HEXADECIMAL COUNTER MC10136 -The MC10136 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. This binary counter is useful in high speed central processors and peripheral controllers, minicomputen, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use one SEQUENTIAL TRUTH TABLE' INPUTS ao Ql L H L H L L H H H H H H H H H H L H H L L H H H H H H H H H H H H H H L H H H L H clock pulse is necessary to load the counter. and the H H L L L L L H H H H L H L H H L L H L L L H L L L H H H L H information present on the data inputs (DO, 01, 02. and D3) will be entered into the counter. Carry Out goes low on the terminal count. or when the counter is being preset. This device i. not designed for u ... with gated iii" L H H L L L L L H L H H H L rp rp H H rp H H L L H H H H L L L L rp rp rp L L L L S2 L DO 01 02 rp rp rp rp Carry H H H H 03 L H H H SI basic counter for most applications, and the synchronous count feature makes the MC10136 suitable for either computers or instrumentatio_n._ _ ThreecontroilinoslSl,S2, and Carry In) determine OUTPUTS Carry Clock 02 03 Out the operation mode of the counter. lines 51 and 52 determine one of four operations; pr:eset (program). increment (count up), decrement (count down), or hold 1stPI' count). Note that in the prosat mode a clocks. Control i, via 51 and 52. A proseal,r can b, constructed using the MC10136 in conjunction with the MC10231 which will operate at over 200 MHz inputfroquency. A 500 MHz proseal,r is possible using an MC1690 500 MHz 0 Flip-Flop, an MC1670300MHz D Flip-Flop,and the MC10136 . tP ... Don't cara . • Truth table shows logic states assuming inputs vary in sequence shown from top to bottom. •• A cloek H is defined as a clock input transition from a low to a high logic level. I 1 0 - Cin 00 r- 14 01 f----- 15 02 rr- 3 13- C 1 2 - DO 1 1 - 01 6- 02 5 - 03 03 9 - SI 7 - S2 C out 2 FUNCTION SELECT TABLE SI S2 L L Preset (Program) Incramant (Count Up) Operating Mode L H H L Decrement (Count Down) H H Hold (Stop Count) r- 4 Po; 625 mW typ/pkg (No Load) vee1 :z Pin 1 f eount = 150 MHz typ VCC2= Pin 16 Vee = Pin 8 1 .. i;- !~ i---I Input Pul •• t+ .. t- .. 1.0ns Duty Cycl. " 50% ~ All input and output cabl •• to the scope are equal 'ength, of 50-ohm coaxial cabl •. Wire length should be < 1/4 inch from TP,n to input pin and TP out to output pin. UnuMd outputs .r. connected to O.lJ.&FJ; 50-ohm t ... ml~tlon to ground 10CIIt.::t in .ach tcOp. channa' Input. III 50-ohm r81iltor to ground. +1.11 V VEE'" -3.2 Vdc UNIVERSAL BINARY UP/DOWN COUNTER 51 9 100-1-+----, 1200 14QO 1101 15Q1 602 3-104 202 503 303 MC10136 (continued) APPLICATIONS INFORMATION MC1670. Usa of the MC10231 in place of the MC1670 permits 200 MHz op.ration. Th. MC10136 mav also be used as a programmable counter. The configuration of Figure 3 requires no additional gates, although To provide more than four bits of counting capability several MCl0136 count.... may be cascadad. Th. C.rry In input ov.rrides the clock when the counter is either in the increment mode or the decrement mode of operation. This input allows several devices to !be CIIICeded in a fully synchronous multistage counter as illustrated 'in Figura 1. Th. carry is advancad b.tween stages as shown with :noexternal gating. The Carry In of thafirst device may be left open. ;The aystem clock is armmon to all devices. maximum frequency is limited to about 50 MHz. The divider modulus is equal to the program input plus one 1M = N + 11. there fore, the counter will divide by a modulus varying from 1 to 16. A second programmable configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this figuro is equal to the program input 1M = N). The minimum modylus is 2 because of the pulse swallowing technique, and the The various operational modes of the counter make it useful for • wide variety of applications. If used with MECL III devices, prelCalers with input toggle frequencies in excess of 300 MHz are ;possibl•. Figure 2 shows such a prasealer using the MC10136 and modulus may vary from 2 to 15. This programmable configuration requires an additional gato. such asllMC10l09 and a flip-flop such as IIMC10131. FIGURE 1 - 12 BIT SYNCHRONOUS COUNTER MSB LSB ~r;::m----~~---------- ______________ ________________________--1 ~ Note: S1 and S2 are set either for increment or decrement operation. FIGURE 2 - 300 MHz PRESCALER Logic High MC10136 SI S2 ar--r-------i~C ________ ~--~ I "put F requencv 32 a MC1670 3-105 MC10136(continued) FIGURE 3 - 50 MHz PROGRAMMABLE COUNTER Program Input I I I I fin DO C t= 01 02 03 Cln Cout 52 i f out 51 fin 1 f out "" Program I "put +1 2 f max ~ 50 MHz Typ. 3 Divide Ratio is from 1 to 16. FIGURE 4 - 100 MHz PROGRAMMABLE COUNTER Program I "put I I I I DO 01 02 03 C - 52 r-- 51 MC10136 00 02 03 L ~ r-----" %MC10l09 0 Q J YaMC10131 C f out - fin ::---"-"-Program I "put 2 1m.x ~ 110 MHz Typ. 3 Divide Ratio I, from 2 to 16. 3·106 °l f out ELECTRICAL CHARACTERISTICS 10 Cin Each MECL 10,000 series circuit has been 13· C 12 DO 11 01 6 02 designed to meet the de specifications shown in the test table, after thermal equi. librium has been established. The circuit is in a test socket or mounted On a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test Procedures are shown only for selected 5 03 9 S1 inputs and outputs. Other inputs and outputs are tested in a similar manner. ....... a...ect.i1lic Po~r SupplV Dr •• n Current 031-- 3 _30°C Min +25 0 C M. . Min 1m H TyO 120 5,6,11,12 7 9,10 13 1m l foP ..... oCX) All CERAMIC PACKAGE CASE 620 ~ TE$TVOLTAGE VALUES .T.. Cout~4 'E Input Current "" 021--2 MCl0137l Tett Limits "n T.t .... Min ..."" VEE ~, -:JOllie -5.2 ::J +25 I11 C +85 I11 C -5.2 r.t.. Unit VIH mu J.lAdc 5,6,11,12 ~ 9,10 I Vil min ~ 1,16 7,9 1,16 I. (2) -1060 -0.890 -0.960 -0.810 -0.890 -0700 Vde 140 -1.890 -1675 -1.SSC -1.650 -1.825 +1615 Vde 7.9 VOHA "0 -1.080 Vde 7,9 VOLA "<21 Vde 7,9 -1.630 -1.595 Swltchmg Times lSO·ohm Load' .... !Veel VEE eg.t ..... numb'" VCCl VCC2 '20 Vdc You! NOTE t setup IS thE' minimum tim. before the pOsitive tranSllton of the clock pulse (el that Information must be present at the Input 0 or S. thold .s the minImum tIme after The pOSItive tran· Sitlon of the clock pu lse (el that information must remain unchanged at the input 0 or S. ~ .'IIIV Clock tc.a. a Clock I.,~"t 50% . (Ol--+----o \ +031 V tc.a- 1+- 1-- 2.0n. (20 10 eow,) t 0,2n. Output '0· ,-----~--.1 11 V VEE - -32Vdc '0.31 V 50-ohm ~rmination to ground 10' cat«:l in each scope channel input o or S All input and outPut cabl . . to the scope ar. equal length, of 50·ol'lm coaxial cable. Wire lengtl'l thould be 1/4 inch from TP,n to input pin and TP out to outp ... t pin. Unuied outpull .r. connected 10 a 50-ohm '"Itor to FO ... nd. 3·109 MC10137 (continued) UNIVERSAL DECADE UP/DOWN COUNTER 519 527 10'0---+-+- 12 DO 1400 1101 1501 602 2 Q2 STATE DIAGRAMS COUNT UP 3·110 503 3 03 4 Carry Out ~~__________________M __E_C_L_l_0_,O_o_o__~_r_ie_s~ BI-QUINARY COUNTER MC10138 Advance In:forDl.ation The MC10138 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set-reset master-slave flip-flops. Clock inputs trigger on the positive going edge of the clock pulse. Set or reset input override the clock, allowing asynchronous Hset" or "clear". In· dividual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits. COUNTER TRUTH TABLES BI-QUINARY (Clock connected to C2 and Q3 connected to CII COUNT 01 02 03 00 L H L H L L H L H L L L H H L L L H H L L L L L H L L L L H L L L L L H H H H H 0 1 2 3 4 5 6 7 8 9 Po '" 370 mW typ/pkg (No Load) 1tog '" 150 MH:; typ vee1 :c Pin 1 VCC2 :: Pin 16 Vee"" Pin 8 BCD (Clock connected to Cl and 00 connected to C21 COUNT 00 01 02 03 0 1 2 3 L H L H L H L H L H L L H H L L H H L L L L L L H H H H L L L L L L L L L L H H 4 5 6 7 8 9 12 - - C1 00 - - 1 5 9- R 01 - - 1 3 7 - - C2 02 - - 4 1 1 - - 50 Q3 10 - - 51 00 - 1 4 6 - - 52 03 --2 --3 5 - 53 BLOCK DIAGRAM 50 11 00 51 15 5 L51 12 0-- C1 0'- ~ - R 9 Reset 14 52 C2 or---- L51 - o R R 1 I I 1 Oro'r-of- 51 r - - 52 - C2 R 3 C2 03 This i. advance information and specifications are subject to change without notice. s.. Q~ C2 03 2 5 5 0'- C1 - 7 00 53 4 5 ofo'r-- LB1 02 52 6 5 00',---- Clock 01 13 10 Genaral I nformation section for packaging and maximum ratings. 3-111 MC10138 (continued) ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal eqUIlibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated through a 5~ohm onlv one input and qne output ao R a1 13 C2 a2 4 50 OJ 10 51 00 14 6 52 03 3 9 resistor to -2.0 volts. Test procedures are shown for 11 The other inputs and outputs are tested In the !iame manner 15 C1 12 L SUFFIX CERAMIC PACKAGE CASE 620 53 TEST VOLTAGE VALUES (VollI) Temp ....tur. _30 oe +250 C +85 0 C VIHmII. VILmin VIHAmini -0.890 -1.890 -1.205 ~.810 -1.850 -1.105 -0.700 -1.825 -, .035 Power Supply Dram Current Symbol T... M .. 'E 1m H 12 5,6,10,11 lin L All LogIc "'" Output Voltage VOH Logic "0" Output Vollage VOL VOHA TyO . Min M" .... Resel ell four flip-flops by ~plying pul .. 15 13 12 •2 7 15 I. 13 12 12 7 3.5 •• ~ ~ ~ ,." 15 2.' 15 I. "2 " IL~II~:: n ~ 5.2 15 I. VIH",.JO; ~ MH, MH, 150 150 to pins 5,6,10,11 prior 10 applyIng tnt volt... indicated. lEI pin 9 prior to IIPPlying test volt. indicated. VILmin 3-112 11 11 9 9 11 11 • 12 I. I• 13 " I. 13 15 I. ,. 15 I. I. "" 2 I. 1.16 MC10138 (continued) COUNT FREQUENCY TEST CIRCUIT "eCl· VCC2· +2.0 Vde: CIOc:k Input ~_...J.---'Cl Input Pul •• t+ - t- '" 1.0 nl Duty Cycle" SO% 01 C2 Q2 50 Cl3 51 00 Ci3 52 All Input MId output cebl.. to the KOp • • -.ual lengths 0' 50-ohm cOI.i,1 c.... Wire I'nlth ....ould be 1/4 inch from TPin to Input 00 R 5C).ohm .. ,min.tion to ,round located In leeh Kope channel Inp",t. 53 r. r. pin MId TP out to output pin: Unu.d output•• connected to • 5O-ohm , . . .tor to .ound. VEe" .3.2 Vde: SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 0 25°C V,n "CC1" VCC2" +2 0 Vde "OUI +1.11V Cl or C2 Cl QO R 01 C2 Q2 50-ohm grmination to ,round 10CIted In ..,h KOpe enannl' input. aOor 03 Output 50 Cl3 51 00 00 or 0.3 52 Ci3 Output Clock Input +O.31V 53 All input end output cabl .. to thl .cope .r. lIqual langtl,. of 50·ot"lm coaxi,1 cabl.. Wire length should be 1/4 Inch from TP in to input pin and TP out to output pin. Un ... 1M! outputs .... oonnect~ to • 5O-ohm , • •tor to .ound. veE" -32 Vdc COUNTER STATE DIAGRAM - POSITIVE LOGIC 00 c:onnocted to C2 Clock connected to C2 3·113 MECL 10,000 series FOUR-BIT UNIVERSAL SHIFT REGISTER MC10141 The Me 10141 is a four-bit universal shift register which performs shift le~t, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs SI and 52 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (OL) and one for shifting in from the right (DR). All four outputs . are car1ble of driving 50 ohm lines. When the register is used for serial output only, the unused emitter follower outputs can be left open. 13 OL 4 C 12 DO 11 01 9 02 6 03 10 51 52 00 14 01 15 02 2 03 3 veel = Pin 1 VCC2:: Pin 16 VEE = Pin 8 DR 5---...J TRUTH TABLE SELECT rs-;-'S2 OUTPUTS OPERATING MODE 00n+1 Q1n+1 Q2n+1 Q3n +1 D. P.r.II •• Entry Shift Right· 0'" Shift Left· 0'" 00" Stop Shift ·Outputs .. eXI't 02" 00" 0'" .tt., putM-.pCle.".' "e" input With 0'" 0." rroput condition. Po = 425 mW tvp/pkg (No Load) fShift = 200 MHz typ . . .hown. (Put .. - Poaltiv. tran.ition of clock Input). LOGIC DIAGRAM 0' 5' 52 OR~----~+----L~ OJ 02 See General Information section for packaging. 3-114 Q1 00 ...."...., .... " ....,. ............,. ~- ---'-"-~- 13 ELECTRICAL CHARACTERISTICS Each MECL 10,000 _i .. circuit lin been designed 'to meet the de specifications shown in the tost tobie, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are tenn inated through a 5O-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner. .... I C11 I Logic "0" Logic "1" Output Voltage 12 DO 11 01 9 D2 10 00 14 01 15 02 SI 7 - 52 03 f - - 3 MC10141L Test Limits +25 De _lODC I Max Min - I - - Typ 82 I,n H I 5 I I I I +BSDe Max 102 Min Max Unit mAdc 220 - .!JAdc 0.5 - - -0.890 -0.960 - -0,810 -0,890 -0,700 -1.675 -1.850 - -1,650 -1.825 -1.615 - -0.980 - -0.910 - -1.655 - - -1.630 - lIn L 12 - - VOH 3 -1,060 VOL 3 -1.890 3 -1.080 n 0 .... ::J 220 245 265 I I I I I +ssoe -0.700 -1.440 -5.2 -1.825 -1.035 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: - - ~ L SUFFIX CERAMIC PACKAGE CASE 620 (Volts) @Test Temperature VIH mu: VILmin VIHAmi VILAmax VEE _lODe -0.890 -1.500 -5.2 -1.890 -1.205 +25 De -0.810 -1.850 -1.105 -1.475 -5.2 J Min 3: .... ....C .... (") TEST VOL TAGE VALUES DR 8 Ie I Input Current ~ 1SymbDlj U~:: C D3 Pin Characteristic Power-Supply DraIn Current - OL 4 ~ - VIHmu VILmin VIHAmi VILAmax Vee 8 5 - PI P2 P3 - - - 8 8 - - IVee) Gnd 1.16 1,16 ~ 4.5.6.7.9. 10.11,13 12 - Vdc 6 - - - 8 4 - - 1.16 Vdc - - - - 8 4 - - 1.16 Vdc - - 6 - 8 4 1.16 t @ @ 7 ~- - t t - - 6 - - 6 7 4 - .!JAdc t - - 1,16 Output Voltage Logic "'" Threshold Voltage V8)A I Logic "0" Threshold Voltage 3 V(bA Sw;tch;ng T;mes 150 n Loadll Propagation Delay t4+3+ Setup Time (tsetupl t'2+4+ t,2-4+ t10+4+ t10-4+ Hold Time (thold) I t4+12+ t4+12t4+10+ t4+10R;se T;me 120% to 80%) t3+ Fall TIme (20% to 80%1 t3ShIft Frequency fShift I Pl VIH ~VIL t t t I t t P2 - 3 I. j 3 3 - 0,9 3,9 - - - 1,0 1.0 150 3.4 3,' VIHA ~VIL - - 1.0 2.5 2.5 5,0 5.0 ~ t 2.9 3.8 U u! 200 33 - -1.595 Vdc ~ t - 4.2 1.2 ns 6 6 0 - - - 6 7 - 8 ~ • - 4 - - •• :~ 1.1 150 ! P3 ! 11 150 ! VILA JLVIL 36 36 - ! - - - LI ~ I .."'.-,"-_._" '".~., 2 See switching tIme test cIrcuIt for test procedures. 3 See shift frequency test circu~t for test procedures. 4 Reset to zero before performing test 5 Reset to one before performing test. •- • -• - 1.5 1.5 1,0 - - ~ 1,16 t ~ 1.16 :i" c: ~ ELECTR ICAl CHARACTER ISTICS 13 Each MECL 10,000 series circuit has been OL designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a 4 printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are tenn inated through a 5O-ohm resistor to -2.0 volts. Test procedures are DO 11 01 9 02 6 03 - 14 00 C 12 15 01 02 2 1 0 - SI shown for only selected inputs and outputs. 03 7 - S2 Other inputs and outputs tested in the DR same manner. r-- 3 ...& MCl0141P Tost Limits Ch.r.ct_istie Power Supply Drain Current I Input Current W .:... en I Symbol Logic "1" Output Voltage I Logic "0" Output Voltage logic "1" Threshold Voltage Ie Tnt 8 lIn H 5 I P~VIH VIL M;n I - I Ty. 82 I Max 102 Min Max Unit mAdc 220 220 245 265 - JJAdc 5 ~ 6 7 4 4.5.6,7,9, 10,11,13 - - - 12 .- - - - 0.5 - - - VOH 3 -1.060 -0.890 -0.960 - -0.810 -0.890 -0.700 Vde 6 VOL 3 -1.890 -1.675 -1.850 - -1.650 -1.825 -1.615 Vde - .- - VOHA 3 1.080 - -0.910 6 @) @) - VThA t4+10+ t4+10- t3+ t3fShift I •t 3 3 14 1 3 3 - - t - - - - - -0.980 - - - t • -1.655 - - - P2~VIHA VIL - - - ~ - - 1.0 2.5 2.5 5.0 5.0 2.9 - 3.8 6 - Vde t t - - CD ~s - - 6 - ~- - - - 6 7 - - - -, - - - P3 8 4 8 4 - - 4 4 4 - - 4 8 t 1Vee l Gnd 1.16 8 ~ 7 P2 t 8 6 t -1.595 - PI - 8 - Vde - -1.630 jJ.Adc - t - ctI a. -1440 1 -52 VIHmax VILmin VIHAmu VILAmax Vee 8 12 t.t+12- 1 I Max lin L Sw;'eh;ng T;mes (50 n Loadll Propagation Delay t4+3+ Setup Time Itsetup) 112+4+ t12-4+ t10+4+ t10-4+ Hold Time Ithold) I t4+12+ R;s. T;me 120% to 80%1 Fall Time 120% to 80%) ShIft Frequency Min ~ I :i' c: TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +8So C +2Soc -1.035 - (!) Logic "0" Threshold Voltage _lODe n0 :::J .... TEST VOL TAGE VALUES +8Soc -0.700 1-18251 Pin 0 ...& ,JiIo IVolts) @I Test Temperature IVIH max Vll min VIHAminVllAmax VeE _lODe -0890 -1500 -52 -1.890 -1.205 -1.475 +2S o C -0.810 -5.2 -1850~ -1.105 -.J Und. 3: n ...& P SUFFIX PLASTIC PACKAGE CASE 648 - 1,16 - - 1.16 4 - - - 4 - + 1,16 - - 1,16 1,16 4 4 ,3.2V 8 t 1,16 ., + ~ 1,16 1.5 1.5 1.0 1.0 1.1 1.1 150 I 17 1.7 200 I 33 - I = I P3JLVILA VIL - I LI m............_." _.,... ~,. ,,-" 2 See sw'teh;ng t,me test e;'eu,t fo, test pmeedu,",. 3 See shih frequency test .cirCUit for test procedures. 4 Reset to zero befort.perfQrmina.test. ! 5 Reset to one before ·per1ori'lN~~:--:. ':~ " MC10141 (continued) ~ SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2S0C VCC1 • VCC2 V out +2.0 Vdc 251' F Input Pulse t+ "" t- l Coax lO.1I'F = 2.0 ±O.2 ns (20 to 80%) Input All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input Pulse Generator pin end TP out to output pin. f' 50-ohm termination to ground located in each scope channel input. Clock I o. 1 I-l F VEE· -3.2 Vdc Q Output MC10102 SHIFT FREQUENCY TEST CIRCUIT VCC1 ~ VCC2 V out +2.0 Vdc lO.1I'F Coax All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 114 inch from TP in to input pin and TP out to output pin. Input Pulse Generator Test Procedures: 1. Set 01,02,03 = +0.31 Vdc (Logic L) DO:: +1.11 Vdc (Logic H) 50..ohm termination to ground located in each scope channel input. 2. Apply Clock pulse n:~:~ 3. Maintain Clock Low. Set Sl = +0.31 Vdc (Logic U 52 = +1.11 Vdc (Loyic H) 4. Test Shift Frequency I O. 1 I'F Vee = -32 Vdc 3·117 to set ao high. '\ QUAD LATCH M Eel 10,000 series '--------------' MC10153 Advance InforIllation TRUTH TABLE G c 0 H °n+1 L L

.e: 13 14 TEST VOLTAGE VALUES 15 (Vol..) OT... T emp....tur. -30Ge +250 C +850 C Characteristic Power Supply Drain W .:.. Symbol Pin Und.r T ... IE 8 linH 3 4 MC10160P T•• Limits -3O"c Min Mo. +25oC Min Typ 62 Min Ma. VILmin -1.890 VIHAmin -1.205 VI LAm. . -1.500 -0.810 -0.700 -1.850 -1.825 -1.105 -1.035 -1.475 -1.440 T VeE -5.2 1 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +85·C Ma. 78 VIHma" -0.890 Unit VIHmelt mAde 4.5,9,10,13,14 VILmin VIHAmin VI LAm. . VEE (Vee) GNI 8 1,16 8 8 1,16 1.16 1,16 Current II npu. Curren' I\J W 265 220 0.5 linL Logic "1" Output Voltage VOH logic "0" Output Voltage VOL Logic "'" Threshold Voltage VOHA Logic "0" Threshold Voltage VOLA /JAde /JAde IJAdc -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 Vdc 4,5.6,7,9,10, 11,12,13,14,15 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Vdc 3.4,5,6,7,9,10,1 11,12,13,14.15 Vdc 4,5,6,7,9,10,11,1 12,13,14,15 Vdc 3,5,6,7,9,10,111 12,13,14,15 -1.080 -0.980 -0.910 -1.655 -1.630 -1.595 1,16 3 8 1.16 8 1,16 8 1,16 SWitching Times (SO 0 Load) Propagation Oelay +1.11 V t3+2+ t3+2- '3-2t3-2+ t4+2+ '4+2'4-2'4-2+ 2.0 5.0 7.5 Pul.ln +2.0 V 3 1,16 4 j j j Rise Time (20% '080%) '2+ 1.1 2.0 3.3 Fall Time (20% '080%) '2_ 1.1 2.0 3.3 4 + 4 + , 3 Me1 0160 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SOC :1. Vin Input Pulse Generator VCC1 ; VCC2 +2.0 Vdc V out 25~F~ltO.1~F r---- Coax - - --., I I o---- ., '25"C Min T,• ....7. Unit Mu mAd< 220 -1.<160 -1.060 -1.890 -4.890 -4.890 -1.675 ,Ad< ,Ad< 1.. 1.0 1.0 -1.850 -4.980 -0.980 -1.080 -1.080 ,. -0.810 -0.810 -1.650 -0.960 -0.960 -1.655 6.2 6.2 3.3 3.3 -0.890 -4.890 -1.825 -0.910 -0.910 -1.630 ,1...• VIHAmin VILAm.. -1.890 -1.850 -1.825 -1.205 -1.500 -5.2 -1.105 -',475 -5.2 -1.035 -1.440 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: .85"C Mm 0.' '3 '3 '3 13 t14_13+ Ri_Time 120% to 80%) M'. ,.,. linH lin .... -JO"c u.... CharllC.,lstie -0.100 -0.100 Vd< Vd< -1.615 Vdo VIHm_ 2,1,9,14,15 ,. ,.,. VIL min 1.1 1.1 2.0 6.0 6.0 3.3 3.3 1.. 1.. 1.1 1.1 2 ,.,. 2 Vd< ~ Pul. Out '3 ~ V out Coax PROPAGA TlON DE LAY Input Pulse Generator Input Pulse t+ = t- = 2.0 ±. 0.2 ns (20 to 80%1 V out 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50·ohm coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin Unused outputs connected to a 50-ohm resistor to ground. VEE 0:: -3.2 Vdc 3-126 1Vccl 0 ... l,1e 1,16 l,1e l,t6 1,18 1,18 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 2S0C Coax VEE 1,18 1,16 ,. 6.' 6.' 3.' 3.' VILAm.. ,. Vd< Vd< -1.595 VIHArnin Pul.ln '.0 '.0 2.0 VEE VILmin -12V S ~ +2.0 V ',18 MC10161 (continued) ELECTRICAL CHARACTERISTICS Elen MECL 10,000 series clfe .... ' has been cfntgned to meet the de specificatIons -.own in the test table, after thermal eqUIt;briurn hh been established. The CirCUit '5 in • test socket or mounted on a pnnted circuit bo.d and tranwerse air flow greater ~... 500 line.. fpm IS maintained. Outputs in tlll'minlled through a 50-ohm resistor to ·2.0 volt •. Tnt proc:edures are shown for anly one input/outpUt combination. Other QClmbiMitions te.ted according to the avrh Ilbl •. If. - P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Voltsl n ... Temperatu,. -30"<: .,.,,<: -- u_P'. Sy_ ...... Supply Dr. Current l ....tCunwnt _T_ Ou1pUtVoitaIgt laIk "a' OutpUt Vo'''' LeIII:"," " 'inH I. " "OH 13 13 VOL 13 VOHA 13 13 VOLA 13 "T"tNWIoIdVol.... "'''0''' Th ..... otd Vol . . . (IDOL_' ~ionDel.., I -30"<: Min M. 8 linL LAllie"'" T. . ..."<: MC'O'6'P THI Limits R_ Time (~to 80%) '13+ 13 13 13 F.'TlrM(~toamc., '13- 13 114+131'4-13-t -1.060 -1.060 -1.890 -1.080 -1.080 Min •.. -".890 -0.890 -1.675 ., • .."<: Min M. '25"<: TyO M. 7. 220 -0.810 -0.810 -1.650 -1.655 -0.890 -0.890 -1.825 -0.910 -0.910 -1.630 I., 1.1 1.1 VIHAmin -0.890 -1.890 -1.850 -1825 -1.206 -'.500 "EE -5.2 -1.105 -1.035 -1.475 -5.2 -1.440 -5.2 -0.8'0 ·0,700 TEST VOLTAGE APPLIED TO PINS LISTED BELOW; Unn mAd< ,Ad< -".560 -0.980 I.' VILmin V'H",. ..• '.0 2.0 ..0 •.0 3.3 2.0 3.3 -0.700 -0.700 "d< "d< I. -1.615 "d< " "d< "d< -1.595 "d< ~ Val min VIHA min VILA max VEE 2 (Veel Gnd 1,16 2,7.9,14,15 14 ,Ad< -".560 -0.960 -1.850 VILA",.. V'Hm .. 1.16 1,16 1,16 1,16 " 1,16 1,16 1,16 1,16 2 " " Pul. In Pul. Oul -3.2 V +2.0 V 14 13 8 1.16 ~ A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the MC10136 control counters, has the capability of incrementing, decrementing or holding data channels. When both SO and Sf are low, the index counters reset, thus initializing both the mux and demux units. Thefour binary outputs of the counter are buffered by the MC10101s to send twisted-pair select data to the multiplexer/demultiplexer units. APPLICATION INFORMATION The Mel01Bl is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This design provides the identical 4 ns delay from any address or enable input to any output. 3-127 s: (") .... o.... FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER .... Control Selection MC10101 0) MC10115 8::J .... ::J SO SI CR A 15141312111098 7· 6 5 4 3 2 1 0 C 0 El C El MC10164 B A DO C MC10164 B A DO C;ol .... I\J CD so SO SI SI CR A MC10136 B C Cl> Q. MC10136 B c: 0 CR El C EO MC10161 El C B B A A 1514131211109 B EO MC10161 765 4 3210 MECL 10,000 series BINARY TO 1-8 DECODER (HIGHI MC10162 The MC10162 is designed to convert three lines of input data to a one-of-eight output_ The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low. POSITIVE LOGIC A 7 • 9 Po:::: 315 nl typ/pkg (No Load) tpd '" 4.0 nl typ C 14 vee1 = Pin 1 VCC2=Pln16 Vee E: PinS TRUTH TABLE INPUTS OUTPUTS Eo E1 C B A L L L L L L L L H L L L L L L L L L L L L H H H H L L H H L L H H L H L H L H L H 'i> 'i> H 'i> 'i> 'i> 'i> 'i> 'i> 00 01 H L L L L L L L L L L H L L L L L L L L Q2 03 04 os 06 07 L L H L L L L L L L L L L H L L L L L L L L L L L H L L L L L L L L L L H L L L '" - Don t Car• . . . .Gen..1 Information section for peck-Uing. 3-129 L L L L H L L L L L L L L L L L L H L L MC10162(continued) ELECTRICAL CHARACTERISTICS Each MEeL 10,000 series circuit hal been designed to I'TIHt the de specifications shown in lne test table, after tMrmai equilibrium has been established. The eita.!!t is in a test socket or mounted on a printed Circuit bo.d and tran .. erse ai, flow greater than 500 linear fpm is meinlained. Outputs are terminated through 8 SG-ohm resistor to - 2.0 volU. Test procedures .reshown for L SUFFIX _liv input/O\ltput combination. Other combination, .... t-st~ Kcordinll to the truth t8ble. CERAMIC PACKAGE CASE 620 ~"Q' TEST VOl.TAGE VALUES ~"Q' IVahsl @lIS! VIHAmin VILA milt VEE -lOoe -0.890 -1.890 -1205 -1500 -5.2 +25 o C -0810 -1.850 -1105 -1475 -5.2 +8SoC -0700 -1825 -1035 -1440 -5.2 Temperltur. VIHm..: VILmln MC10162L Tm Limilt P'" C .... '.ct.... U.... ItIC Symbol Power Supply Or,lIo Current T... .... +2SoC -lOoe M,n M," Input Current T,p ImH O. l,nL log.c·" M,n 1Veel UnIt M•• 76 mAd.: 220 "Ade VIHm. . VIHAmin VILAm •• VEE Gnd 8 1.16 1.16 1,16 13 ·1060 -<7890 -0960 -0810 -0890 -0700 Vd, 14 VOL 13 13 ., 890 -1890 -1675 -1675 -1850 ., 650 -1650 1825 -1815 -1615 -1615 Vdc 2 15 VOHA 13 -1080 VOLA 13 13 Logie "0" Output VOltage VILmm "Ade VO" Output Voltage Log'c"," .... 61 'E TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +SSoC ·1850 -0980 1,16 1,16 1,16 ·0910 14 1,16 2 15 1.16 Threshold VOltage LogIC "0" Threshold Voltage .1655 .1.655 -1630 -1595 -1595 ., 630 V", 1,16 SWItChIng T ,mes /SO-ohm loadl 13 13 I.. Pulse I" PulMOut 13 -J.2V +2DV 62 62 I.' I.' 40 4.0 6.0 6.0 1.5 15 64 6.4 n, 14 15 Rise TIme (20,*, 10 80%1 13 1.0 33 1.1 2.0 3.3 11 3.' Fall TIme (20~ to 80'1101 13 1.0 33 1.1 2.0 3.3 1.1 3.' l 1 l l l Propagllt.on Delav ft4")+ '14-13- 1,16 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C VCC1 • VCC2 +2.0 Vdc Coax Input ~,,± !t,,", Vout r---------..,I I ,... PROPAGATION DELAY I Pulse ~ I Generator Input Put . . :c: t- = 2.0 t+ - ----+0.31 V t++ t-- ±. 0.2 ns ---......" (20 to 80%) V out 50-ohm termination to ground lo- cated in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. +1.11V 50% Unused outputs connected to a 50·ohm resistor to ground. VEE"" -3.2 Vdc 3·130 80% MC10162 (continued) I!t.ECTRICAL CHARACTERISTICS Eah MECL 10,000 serlu ClfCUlt has been dftitned to meet the de specifications ~n in the test table, after thermal eQui· librh.lm hn been established. The circuit is - in • test KlCket or mounted on II prmted circuit bo.d and tr .... "'erw alf flow greater thlnftOOline.fpmismaintained. Outputs . . terminated through II 50-ohm resistor to -2.0 vo'tI. Tnt proceduresllr. shown for --. only input/output combination. Other combiMtions ere t"tecl according to the P SUFFIX PLASTIC PACKAGE CASE 648 TEST VOLTAGE VALUES (Volu) , .. -----r=r= .- Power SuPJlly Or.in Current V,, -1500 -5.2 -1105 -, 035 -1.475 -1440 -5.2 -52 I---,----,---,-----,------j M~ 8 " linH .Input Current VILA me_ -'205 TEST VOLTAGE APf'lIED TO PINS LISTED BELOW: Pin Symbol VIHAmin -1890 -1850 -1.825 MCl0162P Tillt limitt u .... et.ad.iR,C VILmm M.. 61 76 mAde 220 J'Ade 1,16 J'Adc 1,16 14 LOIIIIC "'" VOH 13 -1.060 - MC10136 ) x=;( I MC10101 76643210 o rrar I EO MC10162 1514131211 10 9 8 I iBr EO MC10162 76543210 MECL 10,000 series ERROR DETECTIONCORRECTION CIRCUIT MC10163 • MC10193 Advance In~orDl.ation The MC10163 and the MC10193 are error detection and correction circuits. They are building blocks designed for use with memory systems. They offer economy in the design of error detection/correction subsystems for mainframe and add-on memory systems. For example, using eight MC10163's together with eight 12-bit parity checkers (MC10160), single-bit error detection/correction and double-bit error detection can be done on a word of 64-bit length. Only eight check bits (80-87) need be added to the word. A useful feature of this building block is that the MC10193 option generates the parity of all inputs to the block. Thus, if the MCl 0193 is applied in a byte sequence, individual byte parity is automatically available. MCl0163 LOGIC DIAGRAM MC10193 LOGIC DIAGRAM 81 7 82 II 81 7 82 6 16POA 15 P4 8412 8711 8412 8711 3 P3 86 4 86 6 3 P3 85 4 86 5 2 P5 2 P08 80 II 8310 80 9 8310 }-----14PI r----14 }-----'-13P2 }-----13P2 IBM CODE PO A P08 PI P2 P3 MOTOROLA CODE = 81. 82. 84. 87 PI - 81. 83. 85. 87 P2 = 82. 83. 86. 87 P3 - 84. 85. 86. 87 P4- 81. 82. 84. 87 P5 = 8yt. (80.1.2.3.4.5.6.7) - 80. 83. 85. 86 = 81. 83. 85. 87 = 82. 83. 86. 87 = 84. 85. 86. 87 VCCI = Pin 1 VCC2 - Pin 16 VEE - Pin 8 VCCI - Pin 1 VCC2 = Pin 16 VEE = Pin 8 Po = 520 mW typ/pkg (No Load) Po = 520 mW typ/pklj (No Load) 'Pd = 5.0 ns typ tpd Thill. advance information and specifications are subject to change without notice. S- General Information section for packaging and maximum rating•. 3-133. E: 7.5 n. typ (pin 7 to pin 2) PI ELECTRICAL CHARACTERISTICS - 15 PO", flow greater than 500 linear fpm is main- 2 POe I II I Ie :~,~ tained. Outputs are terminated through a 50-0hm r.sistor to -2.0 volts. Test pro- s:("') .... o .... en ~ 817 Each MECL 10,000 .ries circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test mcket or mounted on a printed circuit board and transverse air to) s:• L SUFFIX I .... o .... CO ("') CERAMIC PACKAGE CASE 620 cedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. to) n ~... @T.st Temperatur. _30 G e 'rl ~ w ~ CharleteristK: Power Supply Drain Current Input Current Symbol 'E linH Min Mo. Logic "0" Output Voltage - - 2 3 13 14 VOL ~ Logic "0" Threshold Voltage Switching Times 150 n Loadl Propagation Delay VOHA VOLA 0.5 VOH 1.060 + -1.890 + 2 3 13 14 -1.080 2 3 13 14 - t7+15+ t4+14+ 15 14 Rise Time (20% to 80%) t15+ 15 Fall Time (20% to 80%) t15- 15 Typ - 8 4.6.10 5.7.9.11.12 3 13 14 Logic "'" Threshold Voltage Min -Individually telt each input, apply VILmin to pin under test. + - -0.890 + -1.675 ~ - -1.655 + - - 0.960 ~ -1.850 -1.825 ~ -0.980 + - 5.0 5.0 2.0 2.0 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, VIHmex - - mAde - jJAde jJAdc 4,6,10 5,7,9,11,12 jJAde - Vdc 4 4 11 11 + - - -0.890 -0.700 + -1.825 + - -0.910 - ~ -1.630 - + - - 20 -5.2 -1.850 -0.700 125 + -5.2 -1.440 -0.810 +8So C Unit -1.650 -1.475 -1.035 +25 oC Mo. - -1.105 -1.205 Min 0.810 - ::J C R> -5.2 -1.890 Ma. 220 265 VEE -1.500 VILmin VIHAmin VILAmax -0.890 +ssoc +2SoC linL Logic "'" Output Voltage VIHmax MC10163L Test Limits _lOGe ::J .... (Volts) 13P2 Pin Under T ... o TEST VOLTAGE VALUES + -1.615 + - - -1.595 + Vdc ~ Vdc + Vdc + + - n. - ~ - - - IVcc l Gnd - - 8 1.16 1.16 1.16 - - - 8 8 - 8 1,16 8 1.16 - - - 4 11 11 11 - - 5 11 5 4 - - 5 11 5 4 Pulse In Pul.Out +1.11 V - VEE VILmin VIHAmin VILAmax - 7 4 15 14 - 7 15 7 15 + + 8 1,16 + 1.16 8 + 8 + + ~ 1.16 + -3.2 V +2.0 V 8 1,'6 ~ ~ ELECTRICAL CHARACTERISTICS r:C :;; r Each MECL to,ooo .rias circuit has been designed to ineet the de specifications shown in the test table. after thermal equilibrium has been established. The cir· - .. ~ I,I I! )C cuit is in a test socket or mounted on a printed circuit board and transverse air 3: flow greater than 500 linear fpm is main- (') ~ o en ~ w • s: (') L SUFFIX tained. Outputs are terminated through . a 5O-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. CERAMIC PACKAGE CASE 620 ~ o ~ c. ctJ ..... W ....., FIGURE 2 - 370/146 PATTERN GENERATION co = POAO P080 P11 POAI P081 Cl = Pl0 P12 P13 POA2 P14 P082 PIS POA3 P16 P083 P17 C2= P20 P21 P22 P23 P24 P25 P26 P27 8(32) 8(32) C4 = P30 P31 P32 P33 P34 P35 P36 P37 C8 = POAI P081 POA3 P083 POA5 P085 POA7 P087 C16 = POA2 POA2 POA3 POA6 P086 POA7 P087 C32= POA4 P0s4 POA5 P0s3 P085 . POA6 P086 POA7 P087 8(0) CT= POAO P081 P082 POA3 POA4 P085 P086 POA7 8(0) Where for PNM: N = MC10163 OUtpUl M = 8yt. Number MC10163 • MC10193 (continued) MC10193 APPLICATIONS INFORMATION ;n&;~~~I~m 0 ill 18 ., is ill - - - E 8 D [>---E81 56 S6 - ~. EB2 ~ E83 S7§ij ~ 55 56 _ .57§ij ~ SI- D} EC 52 - - - EC1 53---EC2 I 55 ---ECD 56 - - - EC1 (Byte. 4.7 57---EC2, $1[ > - - - EB4 52 53 54 $152 S3 - 54 [ > - - - EB5 $1 52 53 - - [ > - - - EB6 54 51- Byte. 0·3 ~ S2 5354 ~E87 3·139 MC10163 • MC10193 (continued) FIGURE 6 - SYNDROME AND CHECK BIT GENERATOR. M2 PATTERN Bit p 1 2 3 10 20 30 : 6 7 40 50 'IJ {IJ" ,{ "IJ ...o{ "1" for Check Bits "0" for Syndromes 10 12 54 56 664 21 31 20 22 54 57 ·LIJ rIJ ,{ ~IJ 5 55 S2 MC10160 665 30 32 54 57 31 33 56 S3 MC10160 MC10193 {~IJ 47 21 23 55 MC10193:: 12 22 32 42 52 23 SI MC10160 MC10193 1 15 11 13 55 866 13 23 33 43 53 40 42 55 57 41 43 56 S4 MC10160 667 14 24 34 44 54 14 16 50 52 15 17 51 MC10160 968 15 25 35 55 24 26 50 53 25 27 51 MC10193:: 56 MC10160 869 16 26 36 46 56 34 36 50 53 35 37 52 MC1Q193 57 MC10160 870 'LIJ 17 27 37 47 57 44 46 51 53 871 3-140 45 ' 47 52 58 MC10160 '\ 8-LlNE MULTIPLEXER MECL 10,000 series \.--------------' MC10164 The MC10164 is a high speed, low power eight-channel data selector which routes data present at one-ot-eight inputs to the output_ The data is routed eccording to the three bit code present on the address inputs_ An enable input is provided tor easy bit expansion_ TRUTH TABLE --ENABLE ADDRESS INPUTS C B A Z L L H H L H L H XI X2 L L L L L L L .L H H H H L L H H L H L H X6 X7 H q, q, q, L L L i. L xo X3 X4 X5 Po - 310 mW typ/pkg (No Load) tpd - 3.0 nl typ (Oete to output) t/J "" Don't Care .-A ) 7 .---B 2 9 C 10 ~ Jr- 15 Z xo 6 Xl 5 X2 4 ) ~ ~T T R r R X3 3 y X4'1 ~:; X512 >-- R X613 X714 --===4 T Y vee1 = Pin 1 VCC2 't. r..~ = Pin 16 PinS Vee = _____________________________________________________________________________________ s .. Gen.r.1 --J Information section for packaging. 3-141 ElECTR ICAl CHARACTER ISTICS s:(') Each MECL 10,000 series circuit has been designed to meet thedcspecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 2SoC, while the circuit is in a test socket or mounted on a printed circu it board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to A 1 • 9 ...o ... ~ o C 10 o ~ 111111 E"n.bi02 only one input. or for one set of input conditions. Other inputs tested in the same manner. t]§ )(5 12 )(6 13 )(7 14 ~ ~ I\) Charut .. istic Power SupplV Drain Current I nput Current Symbol Pin Under T... IE 8 lin H 2 4 lin L -30"c Min Mo. - Min Typ - - Mo. 75 265 ~.890 ~.810 +85oC ~.700 VILmin -1.890 -1.850 -1.825 VEE -5.2 -5.2 -1.440 -5.2 Mo. Unit VIH ~ax VILmin 8 IVcCI Gnd 1,16 - 8 1,16 - - 8 8 1,16 1,16 V'HAmin VILA max mAde - - ,.Ade 2 ,.Ade - - 4 VEE ~.810 ~.890 ~.700 Vde 4,9 -1.675 -1.850 - -1.650 -1.825 -1.615 Vde 9 - - - 8 1,16 -1.080 - ~.980 - - ~.910 - Vde 4,9 - 8 1,16 -1.655 - - -1.630 - -1.595 Vde 9 - - 2 - 2 8 1,16 Pulse Out -3.2 V +2.0 V 8 1,16 -1.060 ~.890 Logic "0" Output Voltage VOL 15 -1.890 Logic "1" Thres,",old Voltage Logic "0" Threshold Va Itage VOHA 15 VOLA 15 Pul .. ln +1.11 V ,- VILA milK -1.500 -1.475 ~.960 15 t4+15+ '4-1&t7+15+ '7-15t2+15+ t2-15+ t+ VIHA min -1.205 -1.105 -1.035 TEST VOLTAGE APPLIED TO PINS LISTED BELOW +l5oC Min VIH max -30"c +:ZSOC - VOH Rise Time 120%'080%1 Fall Time (2011 to 80%1 (Volts) tilT ... T emper.ture 0.5 Logic "1" Output Voltage Switching Times 150 n Loadl Propagation Delav <» a. CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES MC10164L Tnt Limits +25oC 60 - ::J c:: L SUFFIX t fTTT=L-.- )(4 11 cp ::J .... - 15 Z -2.0 volts. Test procedures are shown for 15 15 15 15 15 15 1.5 1.5 1.9 1.9 0.9 0.9 4.7 4.7 6.3 6.3 3.3 3.3 1.5 1.5 2.0 2.0 1.0 1.0 15 0.9 3.3 1.1 15 0.9 3.3 1.1 3.0 3.0 4.0 4.0 2.0 ~ 4.5 4.5 6.0 6.0 2.9 2.9 1.6 1.6 2.2 2.2 1.0 1.0 3.3 1.2 4.8 4.8 6.5 6.5 3.1 3.1 3.6 3.3 1.2 3.6 ns j 9 9 5 5 7,5 7,5 9 9 - - 4 4 7 7 2 2 - 4 - 4 - 15 j j j ELECTRICAL:Cti'ARACTERisTICS Each MECL 10,000 series circuit has been designed to meet thedcspecifications shown in the test table. after thermal equilibrium has been established in an ambient temperature of 2SoC, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to A 7 B 9 3: o o ... ... ~ C '0 ,n.bl. I I I I I I 2 -2.0 volts. Test procedures are shown for only one input. or for one set of input con- 4 X3 3 II I ffil--.II ffil--.- L+R 'J R 'J -===\ )(7 14 ~ Charact_istic Power Supply Drain Current , I nput Current Logic "1" Output Voltage Logic "0" Output Voltage Logic "1" Threshold Voltage Logic "0" Threshold Voltage Switching Times 150 n Loadl Propagatton Delay Rise Time (20%'080%1 Fill Time 120%'080%1 --- - - - - - - Symbol IVoltsl @Test T empM'.tur. 'E lin H lin L r MC10164P Test Limits +2SoC -30"e Min M.. Min 8 VIH INX -ao"e ~.890 +;zsoe ~.810 +850 ~.700 C VILmin -1.890 -1.860 -1.825 Typ Mox Min Mox 60 - 75 265 - - - - VOH -1.060 ~.890 ~.960 Unit VIHm..: VIL min - ~.810 ~.890 ~.700 VOL 15 -1.890 -1.675 -1.850 - -1.650 -1.825 VOHA 15 -1.080 - ~.980 - - VOLA 15 - -1.655 - - -1.630 ,+ t- 15 '----~ - - - 1.5 1.5 2.0 2.0 1.0 1.0 1.1 - - 1,1 - - 3.0 3.0 4.0 4.0 2.0 ~ 4.5 4.5 6.0 6.0 2.9 2.9 -5.2 -5.2 -5.2 VIHAmin VILA IN. - - - - 8 1,16 4,9 - - 2 8 1,16 9 - 4 4,9 -1.615 Vde 9 ~.910 - Vde - -1.595 Vde 3.3 - - 3.3 - - n. j 1,16 1,16 1,16 1,16 - - Vde - IVeel GNI 8 8 8 8 ,.Ade - VEE - - ,.Ade Pul.ln +1.11 V - VEE -1.500 -1.475 -1.440 - 2 0.5 - -1.035 VILA max mAde - 15 15 15 15 15 15 15 VIHAmin -1.205 -1.105 TEST VOLTAGE APPLIED TO PINS LISTED BELOW +85o C 2 4 15 t4+15+ '4-15t7+15+ '7-15t2+15+ '2-15+ I TEST VOLTAGE VALUES ~ )(6 13 Pin U'T_ :::l c: (1) a. tmn ____ )(5 12 W :::l ~. P SUFFIX PLASTIC PACKAGE CASE 648 ' X411 ~ ..... 8 - IIIIII G X'.5 X2 '5 Z II~ X06 ditions. Other inputs tested in the same manner. ...,-----.., 9 9 5 5 7,5 7,5 9 - 4 4 7 7 2 2 4 9 - 4 2 PuI.Out 15 8 1,16 -32 V +2.DV 8 1,16 j j I Me1 0164 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C VCC1 ~ VCC2 +2.0 Vdc ~"'rtJ'"' Coax r--------...---.. I I Input I Pul. Generetor Input Pul .. t+-t-""2.0±O.2ns (20 to 80%) ) -- - - - ---, I I 2- I ~ ) ~y I I ===\ I I ~ I I I I I scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from Tpiin to input ~ ;- '5 B'5 ~'5 I t pin and TP out to output pin. '5 r I I All Input and output cable. to the --1,/ I I I cated in each scope channal input. 1 ,. I 50..ohm termination to ground lo- V out VEE - -3.2 Vdc PROPAGATION DELAY V out 3·144 I I I I ~ Coax r'C10164 (continued) i 'II- _c Itl{;- Ii ei:' !t::I!'~i ". eight data inputs and an enable, A high level on the enable forces the output low. The MC10164 can be connected directly to a data bus, due to its open emitter output and output enable. Figure one illustrates how a 1·of-64 line multiplexer can be built with eight MC10164's wire ORed at their outputs and one MC10161 to drive the enables on each multiplexer, without speed degradation over a single MC10164 being experienced. APPLICATION INFORMATION f1.~~..,...;-.:.--.:-. .. ~.....:,....:.~ •.:._:<.,.,. ... ;:...;..:...;.~O.:.- ............,.;... i - ..... ~ ..... ,~~ .• 3 Each MECl 10,000 _ios circuit has been designed to meet thedcspecifications shown in the test table. after thermal equilibrium has been established in an ambient temperature of 250 C. while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner. 100-- 03 110-- 04 Power Supply Drain Current I nput Current 9 0 - - 06 6 0 - - 07 ...'fl .j:O ..... Logic "0" ---~ (j) (2) -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2 +8SOC Unit VIH max VIL min VIHA min VILA max VEE (VCC) Gnd - mAdc - - 8 1,16 4 5(j) - - "Adc "Adc - - 8 8 1,16 1,16 "Adc "Adc Vdc - 4 5(j) 4 - 8 8 6 - 8 1,16 1.16 1.16 + 8 1.16 + 8 1,16 + 8 1.16 105 131 - - - - 245 220 - - 4 5 - - 0.5 0.5 - - - 2 3 14 15 -1.060 -1.060 -1.060 -1.060 -0.890 -0.890 -0.890 -0.890 -0.960 -0.960 -0.960 -0.960 - -0.810 -0.810 -0.810 -0.810 -0.890 -0.890 -0.890 -0.890 -0.700 -0.700 -0.700 -0.700 2 3 14 ·15 2 3 14 15 -1.890 -1.890 -1.890 -1.890 -1.675 -1.675 -1.675 -1.675 -1.850 -1.850 -1.850 -1.850 -1.650 -1.650 -1.650 -1.650 -1.825 -1.825 -1.825 -1.825 -1.615 -1.615 -1.615 -1.615 Vdc -1.060 -1.080 -1.080 -1.080 - -0.980 -0.980 -0.980 -0.980 - -0.910 -0.910 -0.910 -0.910 - Vdc 2 3 14 15 - -1.655 -1.655 -1.655 -1.655 - -1.630 -1.630 -1.630 -1.630 - -1.595 -1.595 -1.595 -1.595 Vdc - - Min - + + - + + - + ~ - + + Unit 'hold H '3+ '3_ - 14 15 3 2 2 2@ 3 j - - - - 4.4 6.5 11.0 7.0 7.0 - 3.5 3.4 3.0 -2.3 -2.7 - 2.0 2.0 - - - - - - - - The same limit applies for all D type input pins. To test input currents for other D inputs, individually apply proper voltage to pin under test. Output latched to low state prior to test. 5' c ~ Max - tsetup H tsetup L '0 80%) -1.850 - thold L Fall Time (20% -5.2 -0.810 - '13-2- Rise Time (20% to 80%~ -1.500 +25OC 4 5 t13+2+ t4+2+ HOld Time VILA max -1.205 8 t7+14+ t11+15+ t7+3+ Clock Input Setup Time VIHAmin -1.890 IE - ::J .... TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Switching Times (50-ohm Load) Propagation Delay Data Input VILmin lin H VOLA C') -0.890 Typ Threshold Voltage ("') o VIH max Min VOHA 3: U1 _30°C Max - "-"1 ...o ... l.SUFFIX-CERAMIC PACKAGE CASE 620 VEE Min VOL Logic "1" Threshold Voltage Test Temperature +85 0 C - "-.----- f· ...'..... ·~· @II MC10165 Test Limits +25OC Max t', ..t:1 CI') r---0 '4 -300C "'",'"...'"" TEST VOL TAGE VALUES (Volts) Test VOH Logic "0" Output Voltage 03 • PSUFFIX PLAS-TIC PACKAGE CASE 648 Symbol lin L Logic "1" Output Voltage 02 --015 120-- 05 Pin Under Characteristic - 2 '·1·'· ~~,.~-. ;-5L.ecT"ICALCHAR~RfST-tCS ns - 4 - -- 4 6 + 4 + - + - - - - 6 + + + + + + +1.11 V +0.31 V Pulse In Pulse Out -3.2 V +2.0 V - 4 7 11 7 13 13 14 15 3 2 2 8 1,16 4 4.7 3 3 7 ! - - - - - - - 4 4 + 7 7 --- * - j -- To preserve reliable performance, the MC10165P (plastic-packaged device only) is to be operated in ambient temperatures above 7SoC only when 500 Ifpm blown air or equivalent heat sinking is provided. MC10165 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS VCC1 VCC2+2.0 Vdc K V out 25"F~ C08J1i Input Pul .. t+ ". t- "" 2.0 ns ± 0.2 n. (20 to 80%) Data Input [()o~---""-o TPin '--TP J Unu..c:l outputs connected to • 50-ohm rasistor to ground. 50-ohm termination to ground located in each lcope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cabl.. Wire length should be < 1/4 inch from TPin to input -3.2 Vdc VEE pin and TP out to output pin. ~--"""',-------+1.11 out V o Input NOTE: '------+0.31 V tsetup is the minimum time before the positive tra~ sitlon of the clock pulse (C) that information must be pra.ent at the data Input (0). thold is the minimum time after the positive transition of the clock pulse· (C) that information must remain unchanged .at the data input (0). ~---+1.11V .....--....,.,-+---- +0.31 V C +0.31 V \"---3-148 MC10165 (continued) i I nected to this encoder such that, when a given condition exists, the respective input will be at a logic high level. This scheme will select the one of 64 different system condi· tions, as represented at the encoder inputs, which has priority in determining the next system operation to be performed. The binary code showing the address of the highest priority input present will appear at the encoder outputs to control other system logic functions. APPLICATION INFORMATION ~typical application of the MC10165 is the decoding of /It8qI $tatus on a priority basis. A 64 line priority encoder in the figure below. System status lines are con· tboW" 64-LINE PRIORITY ENCODER ,---------------------------------------------OLse 112 MC10l0l I Iz MC10164 XO .... X7ABC i~r~!:'"~~ ~ DO "Input 07 l1 02 03 ~ C i J. i J. i J i o I .J. " k'Ow"t i iprlority :tnput i..:. J- ~z I MC10164 ~O ~ o l~l~ Im=tta'~Il=mm=tt:E11~1=~ Q1 f+-+++l+lf+--------J r;:::::::= r;::= 001-- 01~---+1+If+-------~ OOt-- o 01~----1+If+---------~ u 02~----HHH-----------HHH_--------~ 07 l1 03~----I+If+-----------I+IH-----------HHH_~ ., 001---- DO ~ 01~-----HH----------u 021------H~-----------Hf+---------~ 07 l1 03~-----H~-----------HH-----------_HH_~ aO'L....----~ C 10 DO ~ 01~----_4+_----------~ C DO 02~----~+_----------~+_----------~ 03~----~+_----------~+_----------_;;_---" . ., 00 01 U 02 07 l1 03 C DO 0 . ., 00 01 U 02 07 l1 03 0 3-149 I-<> DO 00 a 1 I- I-<> , 02 I--H> MSB r- 011---++1+If+-------~ u 02~--~HH~--------~HHH_---------J 07 l1 03~--~HH~--------~HHH_--------~HH~ ~O ~ Six bit output XO ...... X7ABCJ u 02~--~HH~--------~HH~------~ 07 l1 03~--++1+I~--------++1+If+---------++1+I~ U 07 l1 ;- XO . . . X7ABC Il ., 00r- DO .. C J ~ MC10164 J ~:$!$~~===:$!$~~===~~~~===1rc--- Highest 0: ~'Io'ity ol-i I r- 07 '----- ~ word yielding number of hlghett priority channel pr.sent at input MECL 10,000 series 5-BIT MAGNITUDE COMPARATOR MC10166 Advance InforIllation The MC10166 is a high speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs 8Ff provided: A < B and A B. A = B can be obtained by NORing the two outputs with ail· additional gate. A high level on the enabl1t< function forces both outputs low. Multlplr MC10166s may be used for larger word comparisons. TRUTH TABLE I I A X H 8 A <8 A>8 X L L L Word A = Word B L Word A > Word L Word A < Po = 440 mW tpd = > Outputs Inputs E L L B L H Word B H L tvp/pkg (No Load) Data to output 6.0 ns typ E to output 2.5 "I typ LOGIC DIAGRAM veel = Pin 1 VCC2'" Pin 16 Vee A4 84 = Pin 8 9 10----.-~ ./ A3 12 83 2A>8 11 - - - _...._ / L 1 t I 1 A2 13 B2 14 ---~--n._/ t; 3A-_ _ _ _~ BO 4 E 15 ! ! \ I This is advance information and specifications are subject to change without notice. ,.J S•• Genera' Information ..ction for packaging. 3-150 ...o...3: ELECTRICAL CHARACTERIST'ICS (") Each ME C L 10.000 series has been de· signed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a 0') 0') test socket or mounted on a printed circuit board and transverse air flow greater than nO - 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner. ::J ::to ::J L SUFFIX ffi CERAMIC PACKAGE CASE 620 c. TEST VOL TAGE VALUES Volts @Tost Temperatur. ::!~ ...... I If' U'I Power Supply Drain Current Test +2SoC -lOoe Unci... Symbol VILmin -0.890 -1.205 -1.500 -5.2 -0.810 -1.890 -1.850 -1.105 -1.475 -5.2 +850 C -0.700 -1.825 -1.035 -1.440 -5.2 Min M•• Min Typ 85 +8SoC Ma. Min Max Unit 106 mAde 220 IlAdc V.Hmax linL 5 Logic "'" Output Voltage VOH 2 3 -1.060 -1.060 -0.890 -0.890 0.5 -0,960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vdc Vdc Logic "0" Output Voltage VOL 2 3 -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 -1.650 -1.650 -1.615 -1.615 Vdc Vdc Logic "'" Threshold Voltage VOHA 2 3 -1.080 -1,080 -1.825 -1.825 -0.910 -0.910 5 4 5,15 4,15 Vdc Vdc 5 4 Logic "0" Threshold Voltage VOLA Vdc Vdc 5 4 -0.980 -0.980 -1.630 -1.630 Switching Time, Rise Time (20% to 80%) Fall Time (20% 10 80%) -1.595 -1.595 - (50 n Loadl Enable to Output VIHAmin VILAmex +1.11 V 6.0 I 2.5 2.5 2.0 2.0 VEE (VCC I GncI 8 1,16 8 1,16 8 8 1,16 1,16 8 8 8 8 1,16 1,16 1,16 .uAdc -1.655 -1.655 2 2 2 2 3 3 3 3 2 VILmin 4,7,10,11,14 'E linH t9+2+ '9_2_ t1'-2+ t,'+2_ 17+3+ '7-3115-3+ t'5+3'2+ '2_ VEE VOLTAGE APPLIED TO PINS LISTED BELOW, Input Current Propagation Delay Data to Output VIHAmin VILAmax MC10166L Test Limits Pin Characteristic VIHmax -lO"c +25"c 12 12 15 15 15 15 Pul.ln Pul.Out 9 9 11 11 6 6 10 10 15 15 9 9 1,16 1,16 1,16 1,16 8 8 -3,2 V +2.0 V 8 1,16 MC10166 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 0 25°C ~ VCCI VCC2: +2.0 Vdc 251'F ~ V out ,x.0.11<'F Coax Coax A >B A2 Oate Input or----:6--o TPinJ B2 AI Bl AB Al BO AO B19 A19 BIB AlB B17 A17 B16 A16 B15 A15 B4 B14 A14 B13 A13 B12 A12 Bll All Bl0 Al0 B4 A4 B3 A3 AB Al 80 AO B9 84 A4 B3 A3 AB AI BO AO A9 BB AS B7 A7 B6 AS B5 A5 B4 A4 B3 A3 B2 A2 Bl Al BO AO MC10166 A>B A4 B3 A3 AB Al BO AO B4 A4 B3 A3AB AI BO AO A6B6A6B6A7B7ABBB MC10166 A8 A<8 A' 8 FOT 9-81t Word B4 A4 B3 A-8 I-++---,A < 8 ~==::jA2 FIGURE 2 - 25·BIT MAGNITUDE COMPARATOR . - - - - - i B l A>BI-....- - - A > 8 A1 80 AO The MC10166 compares the magnitude of two 5·bit words. Two outputs are provided which give a high level for A> B and A < B. The A = B function can be obtai ned by wire·ORing these outputs (a low level indicates A = B) or by NORing the outputs (a high level indicates A = B). For longer word lengths, the MC10166 can be serially expanded or cascaded. Figure 1 shows two devices in a serial expansion for a 9-bit word length. The A> Band A < B outputs are fed to the AO and BO inputs respectively of the next device. The connection for an A = B output is also shown. The worst case delay time of serial expansion is equal to the number of comparators times the data· to· output delay. For shorter delay times than possible with serial ex· pansion, devices can be cascaded. Figure 2 shows a 25-bit cascaded comparator whose worst case delay is two data· to·output delays. The cascaded scheme can be extended to longer word lengths. 3·153 MECL 10,000 series '\ "'---------' QUAD LATCH MC10168 Advance Infor:rnation The MC10168 is a Quad Latch with common clocking to all four latches. Separate output enabling gates are provided for each latch, allowing direct wiring to a bus. When the clock is high. outputs will follow the 0 inputs. In· formation is latched on the negative·going transition of the clock. Po = 310 mW typ/pkg INo Load) tpd: G to a,. 2 n. typ o to a - 3 nl typ C to a .. 4 n. typ DO 3------------~~ GO Gl 4------+-----------------~ 00 5----~~~~~----------~--/ ;c------- 6 01 01 Cc 02 13 9----~~------~ G2 12------+-----------------~~__/ G3 I 0 ----~----=----------~ 03 14 ____________ ;c------- II 02 15 03 ~~ G H 0 L L L H H L 0-dontcare VCC1 "" Pin 1 VCC2 = Pin 16 VEE = Pin TRUTH TABLE C 0 a,,+1 - 8 This is advance information end speciflcationsllr. subject to change without notice. s . . General Information .action for peckaglng. 3·154 0 0 L H L 0 L H ELECTRICAL CHARACTERISTICS 3: C') Each MECL 10,000 series has been de· signed to meet the de specifications shown ...& o...& in the test table. after thermal equilibrium has been established. The circuit is in a 0) test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for 00 0o - only selected inputs and outputs. The other inputs and outputs are tested in the same manner. I-~L../ :l ~. :l L SUFFIX c: CERAMIC PACKAGE CASE 620 c. ct> TEST VOLTAGE VALUES (Volts) @Test Temperature C Min Max Min MCt017tP T . . Limits +2S oC +IS<>C TVp M.. Min Ma. +2S<>C +15<>C VIHma. -0.890 -0.810 -0.700 VILmin -1.890 -1.850 -1.825 V'HAmi" -1.205 -1.105 -1.035 VILAma. 1.500 -1.475 -1.440 VEE -5.2 -5.2 ' -5.2 I TEST VOLTAGE APPLIED TO PINS LISTED BELOW, Unit VIHm8. VILmin VIHAmin VILA..... VEE IVCCI Gnd Ie 8 - - - 65 77 - - mAde: 2,7,9,14,15 - - - 8 1,16 linH 14 - - - - 220 - - #lAde 14 - - - 8 1,16 linL 14 - - 0.5 - - - - #lAde - 14 - - 8 1,16 VOH 6 13 13 6 13 -1.060 -1.060 -1.890 -1.080 -1.060 -0.890 -0.890 -1.675 - -0.960 -0.960 -1.850 -0.980 -0.980 - -0.110 -0.810 -1.650 - -0.890 -0.190 -1.825 -0.910 -0.910 -0.700 -0.700 -1.615 - Vdc Vdc Vdc Vdc Vdc 15 15 - 2,7,9,14,15 - 15 15 - 8 8 8 8 1,16 1,16 1,16 1,16 1,16 6 13 - -1.655 -1.655 - - -1.630 -1.630 - -1.595 -1.595 Vdc Vdc - 2,9,14,15 2,7,14,15 - 7 9 8 1 1,16 1,16 +0.31 V Pulse In Pulse Out -3.2 V +2.0 V 2'9'1~4'15 ]7 : 8] 1,16 VOL VOHA . VOLA Switching Times (SO n Load) Propagation Delay PSUFFIX PLASTIC PACKAGE CASE 648 4 012 _30Ge E1 2 U1 co ::J c: II> Q. :~~~: :: :: t7+13+ 13 - - t7-13- 1&+ 13 6 - - Rise Time (20% to 80%1 t13+ 13 6 - - - - Fall Time 120'1(, to 10%1 t13- 13 - - Ifl- 1~'5 t 1.1 4!.0 2,0 J t 6 .0 :: :: - - - - - - ! - - 3.3 "5 :: - - - - - - - - - 13 13 6 13 6 13 8 MC10171 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 25"c Vec, - VCC2 V out +2.0 Vdc Pul .. V out PROPAGATION DELAY Gener.tor Input Pul •• t+ = t-:::: 2.0± 0.2 ns (20 to 80%) L-------T f;.-,:-----' I Vee z -3.2 Vdc All input end outpu t eabl •• to th_ scop ..... equal length. of 5G-ohm coaxial cabl.. Wlr. length thculd < be 1/4 inch from TPin to input pin end TP out to output pin. 3-160 Unused outputs connected to a 50-ohm resistor to ground. MECL 10,000 series DUAL BINARY TO 1-4-DECODER (HIGH) MC10172 The MC10172 is a binary-coded 2 line to dual 4 line decoder with selected outputs high. With either ~O or El low, the corresponding selected 4 outputs are low. The common enable ~, when high, forces all outputs low. All propagation delay times are equal. High impedance 50 k ohm resistors on all inputs eliminate the need to tie unused inputs to Vee. POSITIVE LOGIC 10003 11 002 12001 A 9 13 '00.0 301 3 Po - 326 mW typ/pkg (No Load) tpd'" 4.0 typ n. B 7 401 2 E 16 601 1 6 01 0 E1 2 vee1 - Pin 1 VCC2 '!'" Pin 16 VEE-PinS TRUTH TABLE E El EO A B 010 011 L H H H H H H H H L L L H H L L L H H H "L L L L L 4> 4> .4> 4> L L L" H L H L H L L H L L H L L L L 012 013 000 001 L L H L L L L L H L L L L L L L tP .. 00 nit Care ... G......,lnformetlon Mctlon for ~ck.liiJl"g and" ",..Imum ratlngl. 3-161 H L L L H L L L H L L L L L 002 003 L L H L L L L L L L H L L L s: ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linaar fpm il maintained. Outputs are terminated through a 5O-ohm resistor to -2.0 volts. Test procadures are shown only for selected inputs and outputs. Other inputs and outputl are tested in a similar manner. .... ....'-I (') EOt. 10 0 ao 3 12 ao 1 13 ao 0 A 9 nO ::J ~. ::J c: <» c.. L SUFFIX CERAMIC PACKAGE CASE 620 3 01 3 • N - 11 00 2 7 4 01 2 E 15 5 01 1 o;2~6al0 TEST VOLTAGE VALUES IVolts' lilT... Temperature ~ ( I) I\J Pin U_ CMrllCteriltic POwtr Supply Drain Current Input Currant Logic "1" Outpu,Vol_ T.. Min IE 8 14 14 - linH linL VOH - VILA,...x -1.500 VEE -5.2 +25"c +S5"c -0.810 -0.700 -1.850 -1.825 -1.105 -1.475 1.440 -5.2 +B5"c Mo. TVp M... Min 62 77 220 - - mAde - - - 0.5 -0.960 -0.960 -1.850 -0.980 -0.980 - - -0.890 -0.890 -1.825 -0.910 -0.910 Unit VILmin VIHAmin VILAmex .Ade 14 - - ",Adc - 14 - - -0.700 -0.700 -1.615 Vdc Vdc Vdc 2 14 15 - - 2,7,9,14 - - - Vde Vde - - - 2 14 - - 2.9,14 2,7.14 - VOHA 6 13 -1.060 -1.060 -1.890 -1.060 -1.060 Logic "0"' Th ..... oId Voltogo VOLA 6 13 - -1.655 -1.655 - - -1.630 -1.630 - -1.595 -1.595 Vdc Vde '7+6t7-6+ 6 6 13 13 6 1.5 6.2 1.5 4.0 6.0 1.5 6.4 ns + 3.3 + 1.1 ~ 2.0 ~ 3.3 ~ ~ VOL - 0.810 -0.810 -1.650 Switching Times ISO 0 Lood. Prop8ption DellIY RiM Time (20% to 8ea) Foil Time 120% 10_1 +1.11 V t7+13'7-13+ '6+ t13+ '6'13- 13 6 13 ,,! 1.0 ~ -1.035 VIHm.x Logic "0" Outpu, VoI_ Logic "1" Th ..... oIdVoI_ 6 13 13 -0.890 -0.890 -1.675 VIHAmin -1.205 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, +25"c Min - - VILmin -1.890 MC10172L T . . Limits -30"c SV- _lO°e VIHmax -0.890 ,, ~ 1.1 ~ 3.4 2 2 14 14 2 14 2 14 +0.31 V 9,14 9,14 2,9 2,9 9,14 2,9 9.14 2,9 VEE IVee' Gnd 1,16 7 9 8 8 8 8 8 8 8 8 8 8 1.16 1.16 1,16 1.16 1,16 1,16 1,16 1,16 1,16 Pulse In Pulse Out -3.2 V +2.0 V 7 6 6 13 13 6 13 6 13 8 1,15 - j , EUemfOAL CHARACTERISTICS :;: n ..... o..... Each MECL 10,000 serias circuit has been d.igned to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is E014 10 ao 3 in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated through a 50-ohm resistor 11 aD 2 to -2.0 volts. Test procedures are shown 12 ao 1 13 ao 0 " N only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. c;- - A 9 J Q1 3 O ...5' ::J c: (!) a. P SUFFIX • E 7 PLASTIC PACKAGE CASE 648 15 5 Q1 1 601 0 e; :z TEST VOLTAGE VALUES (Volts) @T... 4' .... Temperature 0) W _lOGe VIHmax -0.890 +25"<: -0.810 +85"<: -0.700 I I I I VILmin -1.890 I -1.850 -1.825 I VIHAmin -1.205 VILAma • -1.500 VEE -5.2 -1105 -1.475 -5.2 -1.035 -1.440 -5.2 TEST VOLTAGE API'LIED TO PINS LISTED BELOW, CNract_iltic Power Supply Drain Current Input Current Logic "1" OulpU.Vol_ Logic: "0" OuIPu, VoI_ Logic: "1" I linL 14 - - 0.5 6 -1.060 -1.060 0.890 -0.890 -0.960 -0.960 -0.810 -0.810 -0.700 -0.700 13 -1.890 -1.675 -1.850 -1.650 -1.615 6 13 -1.080 -1.080 - -0.980 -0.980 6 13 - VOH 13 I VOL I VOH!. I VOLA Throohold Vol.age 62 77 8 14 Threshold Vohage LOQic "0" I IE linH 220 -1.655 -1.655 -1.595 -1.595 Switching Times 150 n Loadl Propegetion OeIay Fall TIme C20% to 80%) VEE IVee l Gnd 8 1,16 14 8 1.16 2 14 15 t7+13'7-13+ ts+ t13+ ts'13- 6 6 1.5 4.0 6.0 ! ~ 6 1.1 2.0 ~ 3.3 13 6 13 ~ ~ ~ 13 13 14 8 1,16 1.16 1,16 2.7,9,14 8 8 8 8 8 1.16 1,16 8 8 1,16 1.16 2 14 2,9,14 2,7,14 +1.11 V '7 H OOn Po ~ 275 mW tvp/pkg (No Lood) tpd - 2.5 nl tvp tP., Don't Cere POSITIVE LOGIC NEGATIVE LOGIC 00 I 1 00 000 6 000 60 001 5 DOl 50 201 201 0104 0104 011 3 011 3 15 15 02 Q2 020 13 020 13 021 12 021 12 1403 , .( 1403 030 11 030 II 031 10 031 10 Clock 7 - - - - - - ' Vcc Vee z Pin 16 Pin 8 8M General Information section for packaging. 3-165 ELECTRICAL CHARACTERISTICS - Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5().ohm resistor to -2.0 volts. 3: L SUFFIX ...o ........ CERAMIC PACKAG E CASE 620 c;- o W O ::J .... ::J ~l tEJ,,· Ch • .ctl'risttc Power Supply Drltin Current I"put Current ....ctJOl II Ol j I I Symbol 'E linH Input leakage Cur"'"t linL logic "'" OutPUt Voltage VOH logic "0" Output Voltage VOL Logic "'" Thr8lhold Voltega VOHA Logic "0" Threshold VoltagIJ VOLA lUnd .. Test -30"1: +25"c _DC MC10173L T_ Limit. +25"c I I 8 5 -30"1: Min I - I Max Min I - - I I I All M.. Typ 56 I I -0.890 -0.890 -1.675 -1.675 -0.960 -0.960 -1.850 -1.850 -0.980 -0.980 -1.655 -1.655 M.. t5+1+ '5-1t7-1+ t7_1_ t9+1+ t9+1t9-1+ '9-1Setup Time Data Input Select Input lsetup lsetup Hold Time Data Input Select Input 66 295 295 250 250 ~Adc thold thold -1.475 0.8 3.7 -0.810 -0.810 -1.650 -1.650 -0.890 -0.890 -1.825 -1.825 -0.700 -0.700 -1.615 -1.615 -0.910 -0.910 -1.630 -1.630 1.0 l l l 1.6 1.6 1.1 1.2 1.2 6.2 1.6 1.6 1.3 t t t -1.595 -1.595 3.5 1.1 5.3 VIHma I VIL min I VIHA min I - (VCCI VEE VILA mal 16 16 l i6 Vdc Vdc 6.9 5 Vdc Vdc 6.8 5.1 1.4 1.4 1.2 Vdc Vdc +0.31 Vdc I 6.8 6.8 6.1 l t l 2.0 3.0 I Pul.ln Pul_Out 6 6 5 5 5.7 5.1 1 9 I I I 1 5.1 1,9 2.5 1.5 1.5 3.5 1.4 4.0 Fell Time t- 1.2 4.0 1.5 3.5 1.4 4.0 16 16 16 16 16 16 16 16 -3.2 Vdc +2.0Vck I l l l ~.8 4.0 touch input pin, one at a time. -1.440 Vdc Vdc 1.2 (:!OlO_1". VEE -5.2 -5.2 -5.2 l t+ _led VILArnu 1.500 -1.105 -1.035 ~Adc RiNTime (20 to 80%1 ·VILmin VIHAmin -1.205 -1.850 -1.825 1.11 Vdc 16+1+ '&-1- Select Input Unit mAde Propagation Delay Clock Input VIL min 1.890 -0.810 -0.700 +85"c Min Switching Tun.. Data Input VIH max -0.890 VOL TAGE APPLIED TO PINS LISTED BELOW: 0.5 -1.060 -1.060 -1.890 -1.890 -1.(110 -1.080 Co (Vohl) • Toot Temper.tuN CIOC" 1 _ _ Pin c: ro TEST VOLTAGE VALUES 5,1 1,9 8 8 8 I 16 I I I EtEC'TRtCAt: CtlARACTE1llSTteS . • Each MECL 10,000 _ieo circuit hao been designed to meet the de opacifications _ n in the test table, eft.. thermal . .uilbrium has been established. The circuit is in a test lOCket or mounted on a printed circuit board and transverse air flow greet.. than 500 linear fpm is maintained. Outputs are terminated through a 51k>hm resistor to ·2.0 volts. Power SupplV Drain Current Input Currant --Cf'en III Symbol Toot -...J Logic "'" Output Voltage Logi.c "0" I: (I) -30"<: Min Max Min +25"<: Ty. o Toot T.........eture -3O"c +25"<: +8&"<: VOH -1.060 -1.060 VOL -1.890 -1.890 -1.080 -1.080 Output Voltage VOHA Logic "0" Threshold Voltage VOLA T'h,lIhoid Voltage VIH max -0.890 -0.810 VILmin -1.890 VIHAmin -1.206 ViLA ..... -1.500 VEE -1.850 -1.105 -1.475 ~.2 -0.100 -1.825 -1.035 -1.440 ~.2 -0.890 -0.890 -1.675 -1.675 ~.2 VOLTAGE APPLIED TO PINS LISTED BELOW: +85"<: MIX Min Max .-l Unit 16 16 1 16 ",Adc -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.100 -0.700 Vdc Vdc 6.9 5 -1.850 -.1.850 -0.980 -0.980 -1.650 -1.650 -1.825 -1.825 -0.910 -0.910 -1.615 -1.615 Vdc Vdc 9 -1.655 -1.655 -1.630 -1.630 Switchl", TI ..... - IVeel VIHmu mAde 0.5 All C. (Volte) MCt0173P TIM Limits 'E lotte "'" ::J .... TEST VOLTAGE VALUES 66 295 295 250 250 linL n-O :5. linH nput leek. Current ..& PLASTIC PACKAGE CASE 648 CIOC.'-- Ch ....:teriltic ..& P SUFFIX ~-., Pin Und.r ~ n o ..... Co) I I I 16 16 16 16 Vdc Vdc -1.595 -1.595 Vdc Vdc +1.11 Vdc Pro~tion Oetev Oat. Input 16 2.5 16+1+ ! '6'115+1+ 15-1_ Clock Input 17_1+ t7_1_ 4.5 4.5 5.1 5.1 Select Input 19+1+ 3.5 9 '9+1'9-1+ '9-1SetUP Tim. Date Input Select Input Hold Time D.t.lnput S.lect Input Ri.Time 120 to 80%1 F.II Time (20 to 80%1 ·Vllmin .pplied 10 1 1 ltetup lsetup 1.5 2.5 5.1 1.9 thold thold 0.0 -0.5 5,1 1.9 t+ 2.0 t- each input pin, one III 2.0 II time. MC10173 (continued) SWITCHING TIMES TEST CIRCUIT V out oeta Input s.1~tg t+ .. t- '"' 2.0 nl 000' .;----+-I-ooJ 001 5 +----+_+<~ 010" +---++.j...o.J 011 3 -'-----1-+...j...~ 02013 .!....--++.+ooJ (20% to 80%) f tOg a•• hown on wav",orml. 1 00 TP out 201 021 12 +-----1-+.j...o~ 030 11 +---++-,O,J 03110 -'---+--'01 3.2 Vdc 50·ohm termination· -to ground fa· cated in each ICOpe channel input. All input and output cabl •• to the scope ar. equal lengthl of SG-ohm coaxl., cabl•. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. Unu_d outputl ar. connected to 50-ohm r.,lltor to ground. 3·168 t· MC10173 (continued) ,I L WAVEFORMS.26"C DATA TO OUTPUT WITH CLOCK AT VIL CLOCK TO OUTPUT J OATA f tog - 1.0 MHz OUTPUT o ."~)-t:'~O~I-d----------~~~~: ~ , 50% c-------I-------- +0.31 V NOTE: t . . up I, the minimum time !Mfor. the pollttv. tranlltlon of the clock put.. le) ttaM Info,,.,...tion mu. be pr_nt at the Input (D) or (~). . thold I, the mlnl~um time aft. the posltlv. tranIItJon of the clock put. (e) thet Inform8tion mu. ramain unchllnged at the det.lnput (D) or (S), i- t 3-169 MECL 10,000 series DUAL 4 TO 1 MULTIPLEXER MC10174 The MC10174 is a high speed dual channe~ multiplexer with output enable capability. The: select inputs determine one of four active data inputs for each multiplexer. An output enable forces both outputs low when in the high state~ The enable is also useful in wire·DRing several, multiplexers to achieve additional channel caps-< bility. Delay from data input to output is typi~ cally 3.5 nanoseconds. Po = 305 mW .yp/pkg (No Load) tpd == 3.5 nltyp (Data to output) xo 3 X1 5 X2 4 X3 6 A 7 B 9 2 Z e;;;bi; 14 VO 13 V111 15 W V212 V310 TRUTH TABLE ENABLE VCC1 = Pin 1 VCC2 "" Pin 16 E VEE""Pin8 H L L L L 4J - s •• General ADDRESS INPUTS B OUTPUTS A Z W '" L XO X1 X2 X3 L YO Y1 Y2 Y3 '" L L .L H L H H H Don't Cere Information section for peck aging. 3·170 :r. >~ _ _ ,_,' __ 4 ____ " ~_ •. ~A""_" .,,~ ... '," ~ t\ .. :.~. ,":' ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet thedcspecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for onlv one input, or for one set of input conditions. Other inputs tested in the same manner. 30 X, 50 II X2 40 III~ X3 60 A 7 • 9 3: n o ~ ~ xo ~ ..... ~ 2 8 I I I l""'i ~'40 VO'30 Illl~ '''': ~'" 4J +8SoC Ur;:;. eharact.istic Power Supply Drain Current -lOoe L SUFFIX CERAMIC PACKAGE CASE 620 VIH max -0.890 VIL m;n -1.890 VIHA m;n -1.205 VILA max -1.500 VEE -5.2 -0.810 -1,850 -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW +8So C Min - CD Co (Voltsl Temp... 'u,. -3o"C +25o C Mel0174L Test limits +25oe :::I c: ,=w,,~"""" @lTest V3'O ..... :::I .... - IIII Y212 - ~ Z SVmbol Test Min Mu: Min Typ IE 8 - - - 58 Max 73 Max - ImH 4 14 - 220 330 - - - Unit VIH max mAdc - !JAdc 4 14 Vll min VIHA min VILA max (Vee l VeE Gnd 8 1.16 - 8 8 - 1m L 4 - - 0.5 JJAdc - 4 - - 8 1,16 1.16 1,16 LogiC "'" Output Voltage VOH 15 -1.060 -0.890 -0.960 - -0.810 -0.890 -0700 Vdc 13 - - - 8 1,16 Logic "0" Output Voltage VOL 15 -1.890 -1.675 -1.850 - -1.650 -1.825 -1.615 Vdc 14 - - - 8 1,16 -0.910 - Vdc - - 13 - 8 1,16 -1.595 Vdc - - 14 - 8 1,16 Input Current - - Logic "1" Threshold Voltage VOHA 15 -1.080 - -0.980 - - logic "0" Threshold Voltage VOLA 15 - -1.655 - - -1.630 +1.11 V Switching Times (50 n - - Pulse In Pulse Out -3.2 V +2.0 V '5 j8 l'j'6 Load) .,opaga"on O.'ay Rise TIme (20% '0 80%) Fall Time (20% to 80%) ::;~,';~:~ t7+15_ 15 '7_15+ 15 '14+1515 '14-15+ 15 t+'5 t- 15 :: :: :; :~ :: :: ! ;~ 6.4 6.4 3.1 3.1 3.4 2.0 2.0 1.0 1.0 1.1 5.0 5.0 2.0 2.0 2.0 6.0 6.0 2.9 2.9 3.3 2.1 2.1 0.9 0.9 1.1 6.4 6.4 3.2 3.2 3.6 3.4 1.1 2.0 3.3 1.1 3.6 1.9 1.9 1.0 n, = = :; 11 11 13 - 7 1 - 7 14 14 14 - 14 j MC10174 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS., 26°C Input Input Pulse t+ = t- = 2.0 1. 0.2 ns (20 to 80%1 50-ohm t .... min.tion to ground lo- I cated in each scope channal input. L----Fi---J All input and output cabl.s to the scope are equal lengths of 50-ohm coaKia' cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. 1:t 0.1 I'F VEE:::;: -3.2 Vdc Unu.d output connected to a 5O-ohm resistor to ground. PROPAGATION DELAY Vout Vout 3-172 '\ QUINT LATCH MC10175 MECL 10,000 series ' - - - - -_ _- - - - - l The MC10175 is a high speed, low power quint latch. It filatures five D type latches with common reset and a eon,mon two-input clock. Data is transferred on the nega:tive edge of the clock and latched on the positive edge. ,The two clock inputs are "OR"ed together. Propagation ".ys are typically 2,5 nanoseconds from each data input 11) the output. Any change on the data input will be reflected at the .outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock IS In the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state. The MC10175 allows storage of five bits of information, and ~t is useful in temporary storage applications in high speed central proCessors, accumulators, register files, digital communication systems, instrumentation, and test equip· ment. POSITIVE LOGIC NEGATIVE LOGIC 001o-------------~~ 1400 OOIOI---------------i 01 12'----------i-lf--l 1501 01 02 13---------~_I~ 2 03 9-----------+-i~ 3 04 5,----------i-lf--l Co6 4 04 12'---------~_I~ 15 01 02 0213-----------+-~~ 2 02 03 03 3 03 04 5----------~_I~ 4 01 CO 6 Ci 7 R.Mt11 ___________~~--~ CI 7 A.Hetl' ___________~~---J "~------------------------------------------------------------~ TRUTH TABLE :.! ... 0 CO Cl Reset a n+l L L L L H L L L L H X X X X H X L On X H L On H X H L X H H L vee1 '" Pin 1 VCC2 "" Pin 16 VEe" Pin 8 Po:c: 400 mW typ/pkg (No Load) tpd ..... General Information section for packaging and maximum ratings. 3-173 c 2.6 ns tvp (Oete to Output) ELECTRICAL CHARACTERISTICS " :is: 00 Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater ~; o.... " I I I than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor , to -2.0 volts. Test procedures are shown 0' onlv for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. ~3 I I I 3 03 ~. R 04 5 co 6 Cl 7 ... I Power Supply Drain Current .". II nput Current ~ '-I Ch.rc:teristic I Symbol I Test Temperatur. _30 Ge a1 C FI +25"c MC10175L Test Limits -lOoe Min I linH I Logic "'" Output Voltage VOH 14 15 -1.060 -1.060 Logic "0" Output Voltage VOL 14 15 14 15 -1.890 -1.890 -0.890 -0.890 -1.675 -1.675 -1.080 -1.080 VOLA 14 15 t10+14+ 110-14t6-14+ ts-14t11+4 t11+14- 14 1.0 ~ ! 4 14 14 14 14 14 0.9 0.9 1 +8SoC Min 1 MI. Unit .uAdc ! -0.810 -0.810 -1.650 -1.650 -1.850 -1.850 -0.980 -0.980 -1.655 -1.655 Clock Input Reset Input Setup Time Hold Time -0.890 -0.810 -0.700 I VIH ma. Rise Time (20 to 80%) tsetup thold t+ Fall Time (20 to 80%) t- 1.0 1"0 3.6 3.6 1.0 1.0 2.5 1.5 - 1.1 11 / / 35 3.5 VILA.,... -1.850 -1.205 -1.105 -1.500 -1.475 -1.825 -1.035 -1.440 VEE -5.2 -5.2 -5.2 VIL min I VIHA min I VILA m •• I VEE 1,16 - Vdc Vdc 6 6 10 12 - Vdc Vdc 6 6 - 10 12 +0.31 Vdc 6.7 6,7 7 7 6 6 7 7 6,7 6,7 Pul_ln Put. Out 10 10 10,6 10,6 7,11 7,11 6,10 6,10 10 14 1,16 8 1,16 8 1,16 8 1,16 8 -3,2 Vdc +2.0Vdc 1,16 8 ! l ! -1.8251-1.615 -1.825 -1.615 Vdc Vdc -0.910 -0.910 1.0 3.6 3.6 4.4 4.4 4.2 4.2 ~ 1.0 1.0 / 11/ 1.1 CD Individually test 88Ch input; IPply VIL min to pin under test. ® Output I.tched ttJ h~ logic Itate prior to test. .- - ns t 3.7 3.7 ... -- 10 12 5 10 10 - 1~~ ",.".- ._-- --.----- .......! 8 1,16 8 8 1,16 1,16 8 8 1,16 1,16 8 8 8 14 1,16 1,16 1,16 l t l ,r ... Gnd 6 6 6,10 6,12 Vdc Vdc -1.595 -1.595 3.5 3.5 4.3 4.3 3.9 3.9 .~ VIHAmin VILmin -1.890 .e: 6 7 10 11 +1.11 Vdc 3.6 3.6 4.7 4.7 4.0 4.0 c: mAdc Switching Times Data Input VIH m •• j..IAdc 0.5 -0.960 -0.960 ~, :J VOLTAGE APPLIED TO PINS LISTED BELOW, 97 290 290 290 650 6 7 10 11 All VOHA M •• 78 linL Logic "0" Threshold Voltage L +25"1: Typ Min 'E Input Leakage Current Logic "1" Threshold Voltage M•• :J CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES CVOItI) +85"c I C1I nO L SUFFIX (IT"t ReYll11 Pin Under o .... ..... - 0' .:, :0· ~~ ,.; . MC10175 (continued) SWITCHING TIME TEST CIRCUIT V out Coax Data Input 2 02 TP out PRF == 1.0 MHz t+ = t- = 2.0 n$ (20% to 80%) 9 VOL = 0.31 V VOH=1.11V 04 4 01 5~-------t-t-1 CO 6 Cl 7 Reset 11--+________-+__---" J ----f}~~~F VEEL~'VdC 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TP out to output pin. 3·175 MC10175 (continued) VOLTAGE WAVEFORMS RESET INPUT CLOCK --+1.11 V ~--1'-----+0.31 V 50% tl1+14_+0.31 V ~+1.11V 50% 1'----+0.31 V CLOCK INPUT DATA INPUT +0.31 V r:==-~=h..j:::.!.::::":'::::- + 1. 11 V +0.31 V ~---~------+1.11 V 50% o '-----+0.31 V ~------+1.11 V C------...J'---------+0.31 V NOTE: tsetup i, the minimum time before the positive transition of the clock pulse (C) that information mUlt be present at the data Input (0), thold i, the minimum time after the pOlitive transition of the clock pulse eel that information mUlt remain unchanged at the data input (0). 3-176 MECL 10,000 series HEX "0" MASTER-SLAVE FLIP-FLOP MC10176 The MC10176 contains six high-speed, master slave lype "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive· going Clock transition. Thus, outputs may change only on a postive·going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device. Po - 460 mW typ/pkg (No Load) f'ogglo 150 MHz (typ) 2 00 3 01 VCCI - Pin 1 VCC2 - Pin 16 VEE - Pin 8 4 02 13 03 CLOCKED TRUTH TABLE D C 14 04 a,,+1 L ,. HO HO L L H H an tP '"' Don't Car. 15 06 • A elock H i, • clock transition Clock 9 's.f ~,..r" from a low to a high .tate. Information Mction for peckaging. 3-177 ELECTRICAL CHARACTERISTICS Each MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table, after thermal uilibrium has been established. Th e elf· M' on a flow ined. -ohm Q"'- =U-"Q, =U-"Q' s are I the C_.9 Power Supply Drain Current Input Current Symbol Tm IE 8 Mo. +25OC Typ Min 88 'inH 9 'fJ ..... Input Leakage Current IVol..1 "8 V.Hme. V'Lmin VIHAmin ViLA ..... VEE _lODe -0.890 -1.890 -1.205 -1.500 -5.2 +2S o C -0.810 -1.850 -1.105 -1.475 -5.2 +85OC -0.700 -1.826 -1.035 -1.440 -5.2 ::J ~. C MCl0176l Test limits -30D e Min '-I en TEST VOLTAGE VALUES ::J ~=U-"~ Pin Und. CharKt.ristic OTm Temperatur. ... ... n o - ~" Itr in· nner. - :tJ '" - ~ L SUFFIX CERAMIC PACKAGE CASE 620 rinL TEST VOLTAGE APPLIED TO PINS LlSTEO BELOW: +8SoC Mo. Min M. . Unit 110 mAde; 220 310 ~Ade; VIHma.x V'Lmin V,HAmin ViLA..... VEE 5 9 #JAde 0.5 0.5 9 l3. 8 1.16 8 1.16 1.16 8 5 9 ~Ade; IIICC I Gnd 8 1.16 1.16 8 8 1.16 1.16 8 8 1.16 1.18 8 8 1.16 1.16 8 8 1.16 1.16 -3.2 llde; +2.0 llde; 8 1.16 ~ CD Logic "'" VOH Logic "0" IIOL Output Voltage Outpu t Voltage Logic "'" Threshold Voltage IIOHA Logic "0" IIOLA Threshold Voltage 2t 1St -1.060 -1.060 -0.890 -0.890 -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 IIde llde; 2t 1St -1.890 -1.890 -1.675 -1.675 -1.850 -1.850 -1.650 -1.650 -1.825 -1.825 -1.615 -1.615 llde; llde; 2t 1St -1.080 -1.080 -1.655 -1.655 2t 1St -1.630 -1.630 12 IIde IIde -1.595 -1.595 12 llde; llde; 12 +1.11 Vdc Switching Times Clock Input Pr~tion Delay '9+2+ '9+2'2+ '2- Rise Tim. C20 to 80%) FoU Time 120'080%1 1.4 1.4 1.0 1.0 1.5 1.5 1.1 1.1 4.6 4.6 4.1 4.1 Setup Time tsetup 2.5 Hold Time 'hold 1.5 Toggle Fr_oncy Ou"",t I~ to be .... -0.910 -0.910 -0.980 -0.980 12 f.og -\.... 2 4.5 4.5 4.0 4.0 150 -. ~ '.' - . -. -. - . -.. J ," . MHz . ". . . ~ '- _red after. clack pu" h. bean -'ied to C inpUt IpIn91JL ~~~ ~~ Pulse In 5.9 5.0 5.0 4.4 4.4 n, n, 125 . 1.5 1.5 1.1 1.1 +0.3111de; 5.9 5.9 Put .. Out 2 II j 8 1.18 8 1.16 8 1.16 IVIC10176 (continued) L SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 2SoC VCCI = VCC2 = Gnd Coax Coax ' T P out Pulse Generator Input Pulse t+ = t-::: 2.0 ± 0.2 ns (20 to 80%) 50-ohm termination to ground lo- cated in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be Unused outputs arG tied to a 50ohm resistor to ground. < 1/4 inch from TPin to input pin and TP out to output pin. VEE::: -3.2 Vdc PROPAGATION DELAY r------""'---- +1.11 V 50% +0.31 V C _---JI .;;....0 o f,etup is the minimum time before the positive transition of the clock pul •• Ie) that information mu,t be pr ...nt at the data input (0), thold is the minimum time after the positive transition of the clock pulse (e) that information must ramain unchanged at the data input (0). Note that thold may be a negative number. 3-179 ., : ~. MECL 10,000 series TRIPLE MECL TO NMOS TRANSLATOR MC10177 Advance In:for:rnation tr.nsI~ • • Max Load: 350 pF Po = 1.0 W typ/pkg @ 5.0 MHz • Operating Rate: 5.0 MHz typo (all 3 translators in use simultaneously) • INPUT: MECL 10,000 (differential) • OUTPUT: NMOS + 0.5 V VOLmax + 3.0 V VOHmin' The MC10171 consists of three MECL to MOS tors which convert MECL 10,000 logic levels to NM~ levels. It is designed for use in N·channel memory systernt as a ReadlWrite, Data/Address driver. It may also be usee! as a high fanout (30) MECL to TTL translator, or in oth~ applications requiring the capability to drive high capacitive loads. A separate lead from each of the three translei tors is brought out of the package. These leads may tMi connected to VSS or to an external capacitor (0.01 tci 0.05/lF to ground). for waveform improvement, and shor. circuit protection. When connection is made to an external capacitor, VSS line fluctuations due to transient currend are also reduced. ' 'May be raised by increasing VSS. POSITIVE LOGIC NEGATIVE LOGIC ~ 2 ~ 4 ---l(--l- 15 =t>----l>= 14 -l(-~ 13 12 --i(1 13 4 12 11 11 10 10 Vee - Gnd = Plnl 1,16 VEE - Pin B - -5.2 Vdc i5% VSS - Pin 9 (+5.0 Vdc or +6.0 Vdc ± 10%) Thl, I, advance Information and 1P8Clflcetlon••r. subject to chenge without notice. S.. Gen.rel Inform.tlon IeCtlon of pecke"ln,. 3-180 · ... ~.- .. ~~ .-.... -._ .... _~._ - .. .. _.. , ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. In general test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. - 15~; 14 2 13~~ 12 ,,~: 10 Charac: .... istic Power Supply Drain Negative Positive Output Low Output High Input Current Symbol +25oC Min Mo. Unit VIHm.x VILmin VIHAmi. VILAmlik Vee Vsc mAde 8 mAde 8 1.0 ~Adc ISSL ISSH 9 linH 10 11 12 13 14 15 Logic "1" Output Voltage VOH 2 Logic "0" Output Voltage VOL Logic "1" Threshold Voltage VOHA Logic "0" Threshold Voltage VOLA ~Adc ~ 3.0 4.0 3.0 4.0 50 0.5 0.6 3.0 4.0 -90 0.5 0.6 -50 -90 ! t1~2_ 0.5 0.6 3.0 4.0 6.0 t14+2t14-2+ + 3.0 4.0 0.5 0.6 t15+2+ I -1.0 0.5 0.6 ISC ~ j 3.0 4.0 ~. :t5" ::J C C# CD a. 0.05 0.05 0.05 +85"C Mo. 96 11 13 15 Rite Time Typ ~F TEST VOL TAGE/CURRENT APPLIEO TO PINS LISTED eELOW, 88 88 44 ICBq Switching Times (350 pF Load) Propagation Delay +25"c Min ::J mAdc:t1% 'E ~ ..... ..... Output Short-Circuit Current Max Volts VIHmax VILmin VIHAmin VILAmo: VEE Vsc Vss lOLl 10LZ 10H -0.890 -1.890 -1.205 -1.500 -5.2 +5.0 +6.0 +1.0 +20 -15 ~.810 -1.850 -1.105 -1.475 -5.2 +5.0 +6.0 +1.0 +20 -15 ~.700 -1.825 -1.035 -1.440 -5.2 +5.0 +6.0 +1.0 +20 -15 MC10177L T.st Limits -30"!: ..... n0 liT... Temper.tur. -30"!: Min ~ 0 ..... ..... CERAMIC PACKAGE CASE 620 '550 00 Input Leakage Current Te.. (') TEST VOL TAGE~URRENT VALUES +85"C Pin Under 3: LSUFFIX -50 10.12.14 11.13.15 11.13.15 10.12,14 10 11 12 13 14 15 11 10 13 12 15 14 15 15 14 14 Vdc Vdc 14 14 15 15 Vde Vdc 14 14 0.5 0.6 Vde Vd. -90 mAdc 15 14 n. -l,29V -1.69V 14 14 11,13 (Vee 1 Gnd C# 1.16 9 ~ ~ 1.16 8 9 1,16 + j j 10 12 ,14 Vdc Vde Vss lOLl 10LZ IOH j 8.11 a,13 8,15 9 1,16 8 9 1.16 1.16 ~ ~ 9 15 15 14 14 8 8 15 15 8 1.16 1.16 9 9 1.16 1.16 9 9 9 9 1.16 1.16 1.2.16 Pul.ln Pul.Out -5,2V 15 15 15 15 14 14 15 '2+ 12 14 '2_ 12 14 15 10,12,14 11,13.151 9 3.5.7 1.16 110%'090%1 FaU Time 110%'090%1 Supply Source Current 1@5.0MHzl 1350 pF Loadl #See test circuit. ISS 9 B3 mA I 8 I- I 9 I - I - I- I 3,5.7 I 1.16 MC10177 (continued) SWITCHING TIME TEST CIRCUIT Vee = Gnd Vss =: +6.0 Vdc V out Coax :;.oo~--+-----. TP out CL 350 pF Input Pulse t+ = t- = 2.0 ±O.2 ns (20% to 80%) PRF:: 5.0 MHz Duty Cycle"" 50% ~­ 50-ohm termination to ground lo- cated in each scope channel input, and 50-ohm termination to ground on each unmonitored input. All input and output cables to the scope are equal 'engths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input < .'''J l' VEE:: -5.2 Vdc pin and TP out to output pin. SWITCHING WAVEFORMS@ 250C Switching times afe measured after the device under test reaches a stabilized temperature (air flow ~ 500 .fpm) ,50% _______ ....1 t++ t+ 90% 10% Vout::::::::::::::J V out 3-182 MECL 10,000 series '\ BINARY COUNTER '---------------' MCl0178 Advance InforIDation The MC10178 is a four-bit counter capable of divideby-two, divide-by-four, divide-by-eight or a divide-bysixteen function_ Clock inputs trigger on the positive going edge of the clock pulse_ Set and Reset inputs override the clock, allowing asynchronous "set" or "clear"_ Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits_ True outputs are available at all bits_ Po - 370 mW typ!pkg (No Load) ftoggl. 150 MHz (typ) TRUTH TABLE INPUTS R SO 51 52 H L L L L H L L L L L L L L L L L L L L L L L L L H L L L L L L L L L L L L L L L L L L L H L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L OUTPUTS 53 C1 C2 00 L H L L 4> 4> 4> 4> 4> H 4> L L L L L L L L L L L L L L L L .. ...... .... .. ...... ...... .. 01 02 L IL H H J 03 LI L H H No Count No Count H L H L H L H L H L H L H L H L H .... L L H H L L H H L L H H L L H H L L L L H H H H L L L L H H H H L L L L L L L L H H H H H H H H vee1 = Pin 1 VCC2:S Pin 16 VEe - Pin 8 f/) -= Don t Care "VIL JV1H Clock transition from VIL to VIH may be applied to Cl or C2 or both for same effect. 50 00 15 11 01 12 Clock 1 C1 10 Clock 2 C2 5 01 13 01 A' 0' C1 0' 02 4 52 6 5 A' a R R • •t 51 7 01 5 C1 a 03 2 53 5 5 A' 01 A' 0' C1 a a 0 0 R R R 9 14 Qij 3 Q3 th.ll Is edvance information on • new introduction and .paciflcatlons .r. subject to change without a.. Gen.ral Information section for packaging. 3·183 notice. s: ELECTRICAL CHARACTERISTICS ....o (") Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test ta~e. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the 11 50 00 15 7 51 01 13 .... ...., 6 52 00 5 53 12 Cl 10 C2 9 A 02 4 03 2 00 14 - 03 same manner. 0o L SUFFIX ::J a. CERAMIC PACKAGE CA5E 620 ::J C (I) a. TEST VOLTAGE VALUES IVolts) r - - - r- (jITest T emperatur. -1.890 -1.205 -1.500 -5.2 +25o C -0.810 -0.700 -1.850 -1.825 -1.105 -1.475 -1.035 -1.440 -5.2 -5.2 ':'l ~ (Xl ~ I I I Symbol I Power Supply Drain Current Input Current IE I 'inH l MCl0178L Test Limits Pin Und... Test I +25o C _3)°C Min M•• VOL Logic "1" Threshold Voltage I Switching Times I VOLA I 14 15 14 15 -1.060 -1.060 -1.890 -1.890 3 14 15 -1.080 -1.080 -1.080 3 14 15 -0.890 -0.890 -1.675 -1.675 Min Max mAde 245 220 410 /JAde j.lAdc #lAde /JAde -0.890 -0.890 -1.850 -1.850 -0.980 -0.980 -0.980 -1.650 -1.650 -1.825 -1.825 -0.910 -0.910 -0.910 -1.630 -1.630 -1.630 -1.655 -1.655 -1.655 3.5 6.0 8.5 11 Rise Time (20 to 80%) Fall Time (20 to 80%) 'H,. 15 2.5 Set Input tll-15+ 15 5.2 Reset Input t9-15+ 15 5.2 Counting Frequency fcount 15 150 test each input applving VIL to input under te.t. Unit 88.5 -0.810 -0.810 15 13 4 3 15 ·Jn~ivtdu,"v ; M .. -0.960 -0.960 '12+15+ '12-13t12+4t12-3+ t15+ Clock Input·· Propagation Delav ., VOHA Logic "0" Threshold Voltage TEST VOLTAGE APPLIED TO PINS LISTED aELOw: +85 oe 0.5 VOH Logic "0" Output Voltage Typ 8 12 11 9 linL Logic "1" Output Voltage Min 2.5 VEE -0.890 +8S oC Characteristic VIHmlx VILmin V'HAm;n IvILAmex -30"c -0.700 -0.700 -1.615 -1.615 Vdc Vdc Vdc Vdc Vdc Vdc Vdc -1.595 -1.595 -1.595 Vdc Vdc Vdc n. l I MHz VEE 1Veel Gnd - 8 1.16 - 8 8 8 1.16 1.16 1.16 1.16 VIHmllx VILmin VIHAmin VILAmlix 9 12 11 9 - - - - 1 l ~' I 9 11 8 - - - I = - - - 5 11 9 - .... ~ 8 8 8 8 8 8 8 8 8 8 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 5 1.16 11 1.16 9 Pul.ln Pul.Out -3.2 Vdc +2.0 Vdc 12 j 15 13 4 3 15 15 8 1.16 !! 11 15 9 15 8 1.16 1.16 12 16 8 1.16 8 rt'C1 0178 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS., 25°C veel = VCC2::O:: +2.0 Vdc V out Coe. Coax Pulse Generator I I L Input Pulse t+ = t-= 2.0 ± 0.2 ns (20 to 80%) 50-ohm termination to ground 10· cated in each scope channel input. VEE ti = -3.2 Vdc Unused outputs are tied to a 50ohm resistor to ground. ~.II input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 0.1 jtF < 1/4 inch from TPin to input pin and TP out to output pin. PROPAGATION DELAY ~ _ _ _ _""",,!"""-'-_ _ _ +1.11 V +0.31 V t+- t-+ 3-185 LOOK-AHEAD CARRY BLOCK ~ 1_0_.0_o_0_._r_ie_s~'r ___________________M_E_C_L__ MC10179 The MC10179 device has 12 low power gatIIS internally connected to perform the look-ahud carry function. This device has high Z input pulldown resistors and open emitter ouUlU.1L, This device has applications in fast look-ahead: adders such as with the MC10181: It can b.used also as a boolean function generator. Po - 300 mW typ/pkg (No Lood) fpd - 3.0 nl typ (Corry, Propogoto) 4.0 nl tVP (Oener8t11) POSITIVE LOGIC G3 6 P3 13 G2 J 9 P2 12 3 '----" C n +4 ..-J ~ --- ~>---L en 11 ..... ~ >- 1 --G1 7 P1 10 GO 4 ) ~ PO 14 PG GG C n +2" C n +4 - Ir ~ PO + P1 + P2 + P3 (GO + P1 + P2 + P3) (G1 + P2 + P3) (G2 + P3) G3 (en + PO + P1) (GO + Pl) G1 (C n + PO + P1 + P2 + P3) (GO + P1 + P2 + P3) (G1 + P2 + P3) (G2 + P3) G3 3-186 6 C n+2 VCC1 - Pin 1 VCC2 = Pin 16 VeE = Pin 8 ~ EtEeJ;,UCA1io ~(ll t"IStlC& n ..... ~MCCL IO,QOO lliri. de.,iQO.habeen designed to meet· the de specifications Shown in the test tab~e. after thermal equi~ibrium has been established. The circuit is in a test socket or mounted on I printed circuit board and transverse air flow greater than 500 lineaf fpm is maintain$d. O~tputs o..... &-----' ::~ are terminated through a SO-ohm resistor to -2.0 volts. Test procedures are shown only for selected input5and outputs. Other inputs and outputs are tested in a similar manner. II 11 i 2 [Tffft " i~) ...., - 3 .16 1;~6 cg nO :I ~. LSUFFIX :I CERAMIC PACKAGE CASE 620 c: CD Q. TEST VOL TAGE VALUES (Volts' lilT... Temperature -30"1: +25"C +85"C 14 VIHm .. VIL min VIHAmin VILAm.. VEE -0.890 -1.205 -1.500 -5.2 -0.810 -1.890 -1.850 -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2 TEST VOLTAGE APPLlEO TO PINS LISTED BELOW, ~ .- Ch_.:twimc Symbol Power Supply Or." Current IE Input Current linH 00 ..... linL Lbgic: "I" Output VOI_ Logic: "0" Outpu. VoI_ Loge "'" Threshold Voltage Logic "0" Threshold VoIUge VOH V VOHA VOLA Mox 8 4.7.11 5.9 10.13 12 14 4 2 3 2 2 2 2 2 2 2 2 Swi1iChi"l Tim. l60nLood' t5+3+ t5-3t11+6+ tl1-615+2+ '1>-2_ t10+6+ '1D-6t10+15+ 'lD-ll>- 3 3 6 6 2 2 6 6 15 15 Rise Time f2O" to· 80%) '6+ FaU Time 120" to 80%) '6_ 6 6 Prop-a-tion Oat8y Unit ~ 270 225 440 395 355 -1.060 -1.890 1.080 + -0.890 -1.675 - -1.655 05 -0.960 -1.850 -0.980 + - • 1.0 ~ -0.810 - -1.650 - - -1.630 • 5.5 t 3.5 1.1 1.1 ~ VIH m.. I Vil min I YIHA min I VILA max ~r -0.890 -1.825 -0.910 1 -0.700 -1.615 T - I 11 8 8 4 4.5.7.9 (Vtc' Gnd r 1.16 1.16 1.16 1.16 Vdc • I-If T - 4.7.11 5.9 10.13 12 14 ~Adc Vde VEE 8 mAde 13 5.12 5.9 5 5 9 12 13 13 5 5 5.9 1 - - 5 13 9 12 8 1.16 • • • • 8 1.16 +1.11 V Pul_ln PV_OU, -3.2 V +2.0 V 4.7.9 4.7.9 4.7 4.7 4.7.9 4.7.9 4.7 4.7 12.13.14 12.13.14 5 5 11 11 5 5 10 10 10 10 3 3 6 6 2 2 6 6 15 15 8 1.16 4.7 11 6 4.7 11 6 ELECTRICAL CHARACTERISTICS s: Each MECL 10;000 series device has been daignBd to meet the de specifications shown in the test table, after thermal &qui· librium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linearfpm is maintained. Outputs ... o... ...... n i 6 ::~ . , terminated through • 5O-ohm resistor to -2.0 volts. Test procedures are shown only for.lected inputsond outputs. Other inputs and outputs are tested in 8 similar manner. -- 3 2 1I1FTff"' ./ 11 I Lff:!;:::I::j$ ") 15 ~. 7 10 4' 14 o Toot T."..per"ur. -3o"c Mel0179P Test Limits Sy_ Ch...n.tic CfJ ..... ~ II Power Supply Drain Current Input Curr,nt IE 8 linH 4.7,11 5.9 10.13 12 ~ 4 linL Logic ''1'' Output Volt. Logic "0" Output Volt. Threshold VOHA I Logic "0" -Ul60 -1.890 -1.080 VOH V Logic "1" Threshold Voltage -3O"c M.. Min + VOLA -0.890 -1.675 - - -1.655 V~tege + Switching Tim. 1500 Loodl Propagation Delay 15+3+ 15-3_ t11+6+ - 1.0 110+15+ '1a-l!>- '6+ 6 1.1 1.1 15+2+ 15-2_ 110+6+ t1()"6- Foil T .... t~·tq 80%1 + - 3 3 6 6 2 2 6 6 15 15 1'1_6- , Rn. Time 120.'''0 80%1 -1.850 -0.980 .... 6 j VIHma VILmin VIHAmin VILA mu. VEE -0.890 -0.810 -0.700 -1.890 -1.850 -1.825 -1.205 -1.105 -1.035 -1.500 -5.2 -5.2 -5.2 Mu VEE - - 8 - - 4 - - - - - - 13 5.12 5,9 5 13 5 5 5,9 - Vil min VIHAmin - 12 14 - ",Adc - Vdc Vde Vde 4,5,7.9 mAde - 270 225 440 395 355 .Ade 4,7,11 -0,810 -1.650 - - - - - - - -1.075 -1.440 VILAmu VIH mIX Unit T l 58 i l72 - -1.630 + 5.5 j 3.5 ~ I: PLASTIC PACKAGE CASElla +85"c Min - ::J 'SUFFIX (II Co TEST VOLTAGE APPLIED TO PINS LISTED BELOW, +25"c Min 05 -0.960 8 ...:;' TEST VOLTAGE VALUES IVoIa) +25"c +85"c Pin U_. T... (C ! -0.890 -1.825 -0.910 + - T-0.700 -1.615 -1.595 + 5,9 10,13 + Vde + ns 8 - ~ I 4,7,9 4,7,9 4,7 4,7 4,7;~ 4,7,9 4,7 4,7 12,13.14 12,13,14 4,7 4,7 5 9 12 13 Pulse In - - 5 5 11 11 5 5 10 10 10 10 11 11 - 5 13 9 12 Pul.Out 3 3 6 6 2 2 6 6 15 15 6 6 IVee l Gnd 1,16 1,16 ! ! 8 1,16 1,16 1,16 1,16 + 8 1,16 8 8 8 + + + -32V +2.0 V 8 1,16 MC10179 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25"c vee1 = VCC2::= +2.0 Vdc ! V out ""t i"'" r----- ------, G3 51 P3 131 G2 50-ohm termination to ground lo- cated in each scope channel input. Pulse Generator Input Pulse t+ "" t- '" 2.0 ± 0.2 ns (20 to 80%) Coax I 13 91 P2 121 C n 111 Gl 71 PI 101 GO 41 PO 141 PROPAGATION DELAY 1 I L-----ti~,~,J VEE = -3.2 Vdc All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. V out t APPLICATION INFORMATION , The MC10179 is a high speed, low power, standard :WlECL complex function that is designed to perform the lobk-ahead carry function. This device can be used with :1he MC10181 4-bit ALU directly, or with the MC10180 ~ual arithmetic unit in any computer, instrumentation or 'digital communication application requiring high speed arithmetic operation on long words. When used with the MC10181, the MC10179 performs a second order or higher look-ahead. Figure 2 shows a 16· bit look·ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32-bit words is imprOVed from 30 nanoseconds with ripple-carry techniques, to 18 nanoseconds with carry look-ahead techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC10179 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables. FIGURE 1 - 32·BIT ALU WITH CARRY LOOK·AHEAD 3-189 3: ...o (') ........ Bl A6 A2 AI B5 B2 yi .'-r--"so , . - - 51 r- . A9 iii 1'r+. If A080 A1 81A,282A383 en + .. C. Cin .. AD 80 Al 81A282A313 en en M MelDl81 .-BIT ARITHMETIC LOGIC UNIT 52 53 F F1 F2 F3 Gr-- • ;--5. _51 MelDl.' Gf-- .·BIT ARITHMETIC LOGIC UNIT F. Fl F2 F3 F. F' F6 F7 .,. B" AI. if LJ B. AI . , A2 B2 J3enJ3 5• _51 r- e. AI. :::l I en +. f-o ;--M G_ MelQl8' .-BIT ARITHMETIC LOGIC UNIT 52 53 F. Fl F2 -5. ~51 • F3 MelDl81 ".BIT ARITHMETIC LOGIC UNIT 53 F. Fl F2 F3 Fl. Fl' 51 52 53 F. Fl F2 F3 PO C. F. GO " Gl II P2 G2 MC10178 CARRY LOOKAHEAD '3 F. FlO Fl' G3 G--o .--0 en + 2 en + 4 bCl. .. ..: ,~.v: ~j,.~ ~ _ '._" .~.,. ".".J. "'""'Rit ... _T Riu.. LOOK-AHIADCARR~~!'...~m."~WJ.L . Gf-- r- -52 M 8 ..... c: 8fS A/f AD 80 .,8'A282 A3 83 + • -M r--- 8:::l Bl. A" r~9' en • ; - - 52 •3 f-o (D AI' F12 F13 MECL 10,000 series DUAL 2-BIT ADDER/SUBTRACTOR MC10180 The MC 10180 is a high speed, low power general-pu rpose adder/subtractor. It is designed to be used in special purpose adders/subtractors or in high speed multiplier arrays. The MC10180 can be used in any piece of equipment where these operations are necessary. Inputs for each adder are Carry-in, operand A, and operand B; outputs are Sum, Sum, and Carry-out. The common Select inputs serve as'a control line to invert A for subtract, and a control line to invert B. The speed is very fast, with Carry-in to Carry-out propagation delay of 2.2 ns and Operand in to Sum or Carry-out propagation delay of 4.5 ns. Po ~ 360 mW typ/pkg (No Load) tpd (typ) Cin to Cout - 2.2 "' AO to SO - 4.6 n' AG to C out - 4.6 n. POSITIVE LOGIC NEGATIVE LOGIC FUNCTION SELECT TABLE Vec" Pin 10 SeI,4 \lEe" Pina Sela Function S" A pl",l. I" A mlnu,' "•• '2 t3 S " . minul A .. S .. 0 min .... A min .. , • '2 POlIti". Lotlc Only /lit' .. A (i) SII" .. A 0 SelA e' .. B@Se1e-,elf)Stl. s= C gut - f,n lA' 8' + A' j') + Cln IA'" t,,> j'l Cln A,' + Cln e' t A' 8' POSTIVE LOGIC DIAGRAM - 1/201 Circuit Shown TRUTH TABLE ... !'UNCTION .-. .-.0----++-----+--1 lutTII"'CT u. '., "",m : " " " :" : c," .IV'"1t IUITIIACT :" " 3-191 OUTPUTS " " .: " " " " " . " .... G ......llnformatlen .alon for pedlealngend .".xlmum ratlng.inform.h)n. . ''" " . . " " ~ . " .. : " .: " 0.., " " " ~ ~ - ELECTRICAL CHARACTERISTICS I. SelA Each MECL 10,000 series has been de- signed to meet the de specifications shown Sela in the test table. after thermal equilibrium AO ' 8O has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are Cin terminated through a 50-ohm resistor to La. -2.0 volts. ~ .. It 10 12 Characteristic I Symbol I Power Supply Drain Current I IE I"put Current I linH C:' .....l CD (I,.) Pin Under Test SalA Sl~14 Sela SI-I C out - 1 3 Max Min I I M •• 70 86 370 220 220 290 290 220 220 370 4 5 6 7 9 10 11 12 2 3 15 -1.060 -1.060 -1.060 -0.890 -0.890 -0.890 0.5 -0.960 -0.960 -0.960 -0.810 -0.810 -0.810 VOL 2 3 15 -1.890 -1.890 -1.890 -1.675 -1.675 -1.675 -1.850 -1.850 -1.850 -1.650 -1.650 -1.650 Logic "1" Threshold Voltage VOHA 2 3 15 -1.060 -1.080 -1.080 Logic "0" Threshold Voltage VOLA Switching Times Propagation Delay Operand Input t5+15+ t6+15+ Carry·m Input Select Input Ai_Time (20'080%1 Fall Time -0.810 -1.850 1.205 -1.105 +8S DC -0.700 1.825 -1.035 Min M •• Unit VIH max jJ.Adc j -0.890 -0.890 -0.890 -1.825 -1.825 -1.825 -0.700 -0.700 -0.700 -1.615 -1.615 -1.615 -0.910 -0.910 -0.910 -1.630 -1.630 -1.630 Vdc •~ Vdc Vdc -1.595 -1.595 -1.595 • Vdc • n. Pulse In 0.9 0.9 1.1 1.1 3.6 3.6 5.8 5.8 3.8 3.7 1.1 3.9 7,9 5.7,9 4,9 7.4 7,9 3.8 1.1 3.7 1.1 3.9 7,9 -....,_..- :..- 16 16 • •I 8 16 8 16 ~ 4 -3.2 V Pulse Out 7,9 7,9 16 • • 4 5 4 +1.11 V 3.3 3.3 5.4 5.4 -,_._". 16 16 • 4 1.3 1.3 1.1 ~- 8 8 j 7,9 7,9 4,7,9 1.0 1.0 ... (Vee l Gnd 8 5.8 5.8 1.0 VEE 5,7,9 7,9 7,9 7,9 4,7,9 7,9 3.4 3.4 16 VILA max VIHAmin 8 5.8 5.8 '15_ VIL min 8 1.1 1.1 15 -5.2 7,9 4,5,7,9 4,7,9 5.4 5.4 t15+ 5.2 -5.2 4 5 6 7 9 10 11 12 1.3 1.3 t7+15+ t9+15+ I VEE VILA max 1.500 -1.475 -1.440 VIHAmin mAde 5.8 5.8 1.3 1.3 1.0 'Indlvll\lolly~IL mlft ...."'.. u - _.' -0.890 1.3 1.3 1.0 1.0 15 3 15 15 '4+15+ 14+3+ -0.980 -0.980 -0.980 -1.655 -1.655 -1.655 2 3 15 15 15 -300 e +25"c VIL min -1.890 VIH max jJ.Adc All Logic "0" Output Voltage 0 ::s .... +B5"c Typ 'inL VOH Logic "1" Output Voltage -" CO 0 n L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, +2SoC -30"c 0 Volts CHest Temperature MCl0180 L Test Limits Min -" , TEST VOLTAGE VALUES 81 Cin s: 0 • +2.0 V 16 15 15 4 4 7 9 5 15 3 15 ! 5 ~:j~. ...- ".~ .. ~." ~ . . .. ---.. ~.- .... _.. , 5° c: CD C. 3: ELECTRICAL CHARACTERISTICS Each MECL 10,000 series has been de· SoIA signed to meet the de specifications shown Sela in the test table. after thermal equilibrium AO has been established. The circuit is in a .0 test socket or mounted on a printed circuit board and transverse air flow greater than tin 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. ... n 1. L.. ~ SelA Sale ., S1~'4 Power Supply Drain Current Ie Input Current I 'inH ~ ....CO Co) LogiC: "'" Output Voltage Logic "0" Output Voltage . . Cin Cout ~'3 All VOL 2 3 15 2 3 16 VOHA Logic: "0" Threlhold Voltage VOLA -30"1: Min Mo. +250 C Min 2 3 15 2 3 15 -1.060 -1.060 -1.060 -1.890 -1.890 -1.890 0.890 -0.890 -0.890 -1.675 -1.675 -1.675 -1.080 -1.080 -1.080 0.5 0.960 -0.960 -0.960 -1.850 -1.850 -1.850 Max 70 86 370 220 220 290 290 220 220 370 -0.810 -0.700 Max Unit VIH rna. IJAdc I -0.890 -0.890 -0.890 -1.825 -1.825 -1.825 -5.2 -5.2 VIL min VIHAmin VILA max 5.4 5.4 VEE (Vee l Gnd 8 16 16 II Vdc 7,9 4,5,7,9 4,7,9 8 16 16 -1.615 -1.615 -1.615 Vdc 5,7,9 7,9 7,9 7,9 4,7,9 7,9 8 16 8 t t 16 8 16 -0.910 -0.910 -0.910 -1.630 -1.630 -1.630 ClI -0.700 -0.700 -0.700 t ~ Vdc ~ -1.595 "1.595 -1.595 Vdc t ns 7,9 7,9 4,7,9 t 4 5 4 4 +'.'1 V PuI,.ln PuI.Out 7,9 7,9 7,9 5,7,9 5 6 4 4 4,9 7,4 7 9 15 15 15 3 15 1.3 1.3 t'5+ 15 1.1 3.7 7,9 115- 15 1.1 3.7 7,9 ·lndividuaUy apply VIL min to pin under test. -5.2 -1.825 -1.205 4 5 6 7 9 10 11 12 17+15+ 19+15+ '4+15+ 1.4+3+ -1.440 -1.890 -1.850 mAde 3.3 3.3 5.4 5.4 Select Input -1.035 VIHAmin TEST VOLTAGE APPLIEO TO PINS LISTEO BELOW, Min 1.3 1.3 1.0 1.0 '6+15+ VEE -1.105 VILA mi. -1.500 -1.475 VIL min ",Adc 0.810 -0.810 -0.810 -1.650 -1.650 -1.650 c: I l +85"1: Typ -0.980 -0.980 -0.980 -1.655 -1.655 -1.655 VIH max -0.890 15 15 15 3 15 15 '5+15+ C.ry.m Input Ri.Time 1201080%1 Fall T"ime MCl0180P Test Limits 4 5 6 7 9 10 11 12 'inL VOH Logic: "'" Threshold Voltage Switching Times Propagation Delav Operand Input I ...5' Volts @Test Temperature _30 D e +8SoC Test 0 0- J TEST VOLTAGE VALUES S'~' A1 +25 oC Pin Under 00 PLASTIC PACKAGe CASe 648 0 10 12 I Symbol I 0 ::J 11 Ch.rllCteriitic ... , . .W,," ! t t I ~ t -3.2 V +2.0 V 16 .9: MC10180 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C veel V out VCC2"'" +2.0 Vdc = r--'~'j it:-, Coax I Coal( , SoiA 7 , 9, 5, 6, .0.0 41 Cin SO Sole BO C out I TPin ./TP 1 I Pul,. Generator 11 I Input Pul.. 10i------'-! t+-t;-2.0n •• 0 . 2 n . ' 111 (20 to 80") 12/ Cln 50..,hm tormlnotlon to ground catea in .ach 10' 13 -11-.- __ .~p. channa' input. L.. - - - - All input and output cabl •• to the cO•• ia' cabl.. be < 1/4 inch to ground. Vee = -3.2 Vdc PROPAGATION DELAY ~---,------- +1.11 V '------+0.31 V TP out TP out 3·194 UnuMd outputs connected to • 50· ohm r.,i'tor J x_ 0.' ~F scope .r. aqua' 'angth. of 50-ohm Wlr. length .hould from TPin to input pin and TP out to OU1put pin. 1 L -_ _- - ' out MECL 10,000 series 4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR MC10181 The MCIOISI is a high-speed arithmetic logic unit i:apable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation. Arithmetic logic operations are selected by apply ing the Bppropriate binary word to the select inputs (SO through 53) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided to allow fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M). When used with the MC10179, full-carry look·ahead, as a second order look ahead block, the MC101Sl provides high speed arithmetic operations on very long words. POSITIVE LOGIC NEGATIVE LOGIC 13 13 15 15 17 17 14 14 SO SI S2 S3 S3 21 21 20 3 Fl 18 Vee1 '" Pin 1 VCC2 ::: Pin 24 20 3 Fl 18 VEE - Pin 12 19 19 16 11 F3 6 Po 8 16 4 9 22 6 11 10 4 9 8 22 5 23 23 Po - 600 mW typ/pkg (No Load) tpel (typ): Al to F - 6.6 C n to C n +4- 3.1 nl A 1 to Po - 6.0 n. A 1 to GG - 4.6 nl Al to C n +4 "" 5.0 n. NEGATIVE LOGIC POSITIVE LOGIC Logic Function. Function Select S3 S2 51 50 M i, Hlth C- D.C. F H F""A H F=A+B H L· L· L H H F '" H L H H H H H H H H H H H H H H H H· = A ... B Logical " ' " F=Aei F = Function Select S3 52 51 SO P:"A B •• L H F H L F = F = IA ... 8) pi .... (A H L H H H H F=A+8 F • A plus IA + BI H H F-A'ee F '" IA ... 81 plus F ~ A minus B minus 1 H F = IA + BI plus IA • HI F '" A plu. IA + iiI H H H H F a minus 1 (two'. complement) H F = IA • SJ minus 1 H H F .. (A • HI minus 1 H H F" A minus 1 H H F = A@ B F = 8 H H L L F '" A ... B F = Logical "0" H F=Aei H L F"AeH H H F" A a 3·195 F '" A plus (A + iii F " A plus (A + BI F = A times 2 F ",A";'1j F = (A • BI minus 1 F "8 F:A(i)B F = fA • BI olus (A + 81 n H . . . General Information section for packaging. B F " LOllical "0" H .81 A. Arithmetic Operation M is Low C n of LSB must be High F F "A minus' ",ATi F "' A plul (A. ill F '" A plu. IA • BI F = A time. 2 F = IA ... HI plus a F ;: A plus 8 F=A H H F F Logic Functions M is High F F"Aplu.O L H ArlthlTWtlc Oper.tion Mi,Low Co I, low F~Aph.. sH F '" A. F=A+H F - A plus (A .81 F = A@,)B F = A minus B minus 1 F=H F"A.B F = Logical "1" F = (A • iiI minus' F = {A .81 plus (A + Bl F = (A • BI plus A F = minus 1 (two's complementl F=A+S F H F"'A+B F = (A + BI plus 0 H F=A H & (A + 81 plus 0 F "A plus 0 MC10181 (continued) i· 5313 POSITIVE 5215 LOGIC DIAGRAM S117 5014 8020)0-- Dt P f----tL./ rr:C> ~2F o I-L ~ AO 2 1 811 90-- Dt ~ ,~/ ~ All 8 A2 ~ 16~ P ,~ ~ §P- 9C>-- ~ ~, F2 ~ ~ '~, ,~./ L...-..; 83 Fl .~ W J 82 llC>-- ~, 6 F3 " ~~ ./ ~ A3 10 22 ./ M 23 3·196 5 C n +4 MC10181 (continued) ELECTRICAL CHARACTERISTICS LSUFFIX CERAMIC PACKAGE CASE 623 E.:h MECL 10,000 series has boon de· signed to meet the de specifications shown in the test table, after thermal equilibrium ... been established. The circuit is in a test lOCket or mounted on 8 printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are PSUFFIX PLASTIC PACKAGE CASE 649 TEST VOLTAGE VALUES terminated through a 50-ohm resistor to IYoIu) -2.0 volts. VIHrnp I -0.B90 -0.810 -0.700 I, PoMr Su9Ply O,..in Current Input CurNnt 'inH .... T,. I.• ,.,. 12 14S 246 220 24' 11 " 21 22 I.• 23 •. S pAdc 11 13 14 15 16 17 I. 1. " 20 20 21 21 22 22 2J YOHA 23 -1.060 -O.8SIO -0.980 -0.810 -0.890 -0.700 -2.000 -1.67S -',990 -0.980 -1.6&0 -1.080 L.ow~Volt8ge -1.630 -1.665 VOLA -T_ alllnput-outpUt combln-,ions 8CCoromli to Function Tillbil . •• For m~d IWI! ~, apply dll"llllfloid input I..,.. to only _ 12 1.24 .1.920 -1.615 Vd, 12 -0.910 "do Vdo 12 1,24 1.24 1,24 -1.596 12 input pin It I timl -lOoe· Characteristic Propagation Delay Rise Time, F~II Time Propagation Delay Rise Time, Fall Time Propagation Delay Rise Time, Fall Time 1,24 2. " 200 17 HWI ThrWIold Voluge 12 14 15 17 1. VOH VOL 1,24 1,24 13 18 H~OutpUtYoI . . . God 12 12 11 13 14 15 t.- Output Vol." -5.2 -5.2 -1.825 ,.,. 290 I. -5.2 -1.475 -1.440 11 220 9 -1.500 -1.105 -1.036 I.• "Ade 2.' 2. 21 22 2' VILArnp -1.205 -1.850 VILA me", 285 220 286 220 2" 17 vlHAmln TEST VOLTAGE APPLIED TO PINS BELOW: .... 200 266 13 14 IS I""", LelkO CUrHnt M'. VEE YtLmln -1.890 Conditions t Min Me. Min Typ M.. Min Mo. Unit AO,A l,A2,A3 AO,A 1.A2,A3 5.1 1.0 3.2 1.0 7.2 1.7 7.2 1.7 5.3 1.3 2.6' 10.4 2.6 10.4 5.4 1.3 1.1 1.0 3.1 2.0 5.0 3.0 1.1 1.0 5.4 3.2 ns n, 2.0 2.0 1.5 4.5 4.5 3.0 6.5 6.5 3.0 5.0 2.0 7.0 7.0 5.0 7.5 7.5 5.3 10.8 10.8 5.3 ns 10 10 5.0 2.0 2.0 1.5 3.0 3.0 1.5 6.5 3.5 2.0 1.1 ns ns Symbol Input Output t++, t-t+,t- Cn Cn Cn+4 C n +4 t++, t+t-+, t-t+, t- Cn Fl AO t++, t+t-+, t-- I I Al I I j Fl - 50,53 SO.S3 AO,A2,A3.C n AO,A2,A3,C n 1.6 0.8 1.1 1.2 7.0 3.7 7.4 6.1 t+, t- AC SWitching Characteristics +2S0C +85D e· - Propagation Delay Rise Time, Fall Time t++, t-t+, t- Al Al Pro~tion Delay Rise Time, Fall Time t++, t-t+, t- Al Al PG PG GG GG Prol»9ltion Delay Rise Time, Fall Time t+-, t-+ t+, t- Al Al C n +4 C n+4 AO,A2,A3,C n AO,A2,A3,C n 1.7 1.0 Propagation Delay Aise Time, Fall Time t++, t-+ t+, t- Bl Bl Fl F1 S3,C n S3,C n 2.7 1.2 tLogic high level (+1.11 VdcJ applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc, VCCl = VCC2 = +2.0 Vdc, VEE = -3.2 Vdc 2.0 1.1 I n, j 4.5 4.0 7.0 5.0 1,2 7.3 3,1 2.0 1.5 2.0 1.0 7.0 3.8 7.7 6.3 5.0 2.0 7.0 3.0 2.0 1.0 7.8 3.2 ns ns 11.3 5.3 3.0 1.5 8.0 3.5 11 5.0 3,0 1.5 11.9 5.3 ns ns ·L Suffix Only 3-197 3.0 3.0 1.5 1.3 ns ns MC10181 (continued) ELECTRICAL CHARACTERISTICS (continuedl AC Switching Ch•• cteri.ics Conditions t PG PG 50,53 50.53 Rise Time, FIll Time t++, t-t+, t- GG GG 53. Cn 53,C n Propagation Deily Rise Time, Fin Time t+-. t-+ t+, t- Bl Bl Cn +4 C n +4 53,C n S3,C n Propagation Delay t++. t+- M M Fl F1 - 51 SI Fl Fl Al,81 Al,81 51 SI 51 51 PG PG Cn+4 Cn +4 A3,83 A3.83 A3,83 A3.83 51 51 GG GG A3.83 A3.83 Propeglltlon DeilY Rise Time, Fill Time Pro~gation Delay Rise Time, Fall Time Symbol Output Input 81 Bl Bl Bl Ctt.lcteriltic 1++, t-t+, t- H.1- Propagation Delay Rise Time, Fall Time t+-. t-+ Propagation Deily t-+, t+- Rise Time, Fall Time Propagation DeilY Rise Time. Fill Time Prop8ption OellV Rise Time. Fill Time 1+, l- t+. lt+-, t-+ t+, t- t+-, t-+ t+, t- -3O"C· Min Mox 1.6 7,7 1.0 3.6 1.7 8.2 1.4 5.2 1.8 0.9 2.4 1.1 2.5 1.0 1.7 0.8 1.6 0.9 1.6 0.8 t~ogic high lovol (+1.11 Vdcl oppliod to pin.linod. All othor 8.2 3.1 10.3 5.1 10.7 5.4 8.3 5.1 9.3 6.3 9.6 8.2 +2SoC Min 2.0 1.1 2.0 1.5 2.0 1.0 3.0 1.5 3.0 1.5 2.0 1.1 2.0 1.1 2.0 0.8 Typ 6.0 2.0 6.0 3.0 6.0 2.0 6.5 4.0 6.5 3.0 6.0 3.0 6.0 3.0 6.0 3.0 +860 C· M.. 8.0 2.0 3.9 1.1 2.0 8.6 1.2 5.4 Mox 7.5 3.5 B.O 5.0 8.0 3.0 10 5.0 10 5.0 8.0 5.0 9.0 5.0 9.0 6.0 Min 2.0 1.0 3.0 1.5 3.0 1.5 2.0 1.1 2.0 1.0 8.7 3.2 10.8 5.3 10.8 5.4 1.9 0.8 9.7 8.6 Unit n. n. ns ns n. ns n, n. ns n, 8.4 5.2 ns ns 9.9 6.2 ns ns n. n. · l Suffix Only Of' tied 10 +0.31 Vdc. VCCI • VCC2' +2.0 Vdc, Vee' -3.2 Vdc input pin, ere teft fla.ting SWITCHING TIMe TEST CIRCUIT AND WAveFORMS., 250C veel • Vee2 • +20 Vdc: Von V out PROPAGATION DE~AY r---~-------+1.tt V TPin '------+0.31 V P ..... Gen.r.,or 'nput Pu'" t+ ~ t~ .. 2.0! 0.2 n. (20 to 80%) l5O-ohm termine, ion 10 .,..oulld 10 miMi in . .e" IOOpe e .... n,...1 ",put. Unu.-d ololtPlol1i eonnected to a 50· ohm ,"ino' to .,..ound. AU Input and output eeblft 10 the lCoPe "101" Ientitti. D' 50·."m e,. co. .... e.... W.,. 'entltI'I .... OUld tM; < 1/4 'nc" f,om TPln to input p'n Md TP out to output pin. VEE .. ~J.2 Vdc: 3·198 TP out MECL 10,000 series 2-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR MC10182 Advance InforDl.atlon The MC10182 is a high-speed arithmetic logic unit Capable of performing 4 logic operations and 4 arithmetic operations on two 2-bit words. Full internal carry lis incorporated for arithmetic operation. f Arithmetic logic operations are selected by applying the ilPPropriate binary word to the select inputs (SO and 511 as indicated in the tables of arithmetic/logic functions. !Group carry propagate (PG) and carry generate (GG) are provided for a second order lOok ahead carry using the MC10179. The internal carry is enabled by applying a low level voltage to the mode control input (M). The MC10182 provides an alternate to the MC10181 four-bit ALU for applications not requiring the extended functions of the MC10181 or for applications requiring a 16-pin package. The MC10182 also differs from the MC10181 in that Word A and Word 8 are treated equally for addition and subtraction (A plus B, A minus B, Bminus A). POSITIVE LOGIC NEGATIVE LOGIC 9 9--------------~ 10 10-------, SO Cn 13 S1 BO 12 A1 11 81 SO Cn 13 AO II VCC1 - Pin 1 VCC2 - Pln·1e VEE-Pine FO 4 F1 14 Pa 15 aa 3 C n +2 2 S1 AO e II 80 12 A1 11 B1 FO 4 F1 14 Pa 1e aa 3 C n +2 2 M M Po - 575 mw typ/pkg (No Load) tpd (typ),A1 to F - 7.5 n. en to C n +2 - 2.7 ". A1 to'G - 6.S n, A 1 to 00 - 5.5 n. A1 to C n +2" 7.0 nl POSITIVE LOGIC Function Select S1 SO L L H H L H L H NEGATIVE LOGIC Arithmetic Operation Logic Function Arithmetic Operation M i.High M ilLow F F F F F - A plu. B plu. Carry F - A plu. B plUI Carry F-A 0B F- A 0B F - A plul i plu. Carry F - A tim•• 2 F-AeB F - A plus B plu. Carry F - A plus B plu. Carry F - A plu. i plu. Carry F-Atlmft2 F-A 0B F- ~0 B F- A e B F-A+B Logic Function Mi. High F-A+B See Gen.,.' Inform81ion ..etlon for p.ckagln'8nd maximum r.tln81 'nforrnlltlon. Thill, advance Inform.tlon .,d tpeclflcetlon, .r. aubJact to ch.ne- without notice. 3-199 Mi.Low MC10182 (continued) POSITIVE LOGIC DIAGRAM 13 10 SOO-------------~~ 9 sl~------------~1~~------, M O-------------~1 ____6-+_____, FO Fl 12 Al o-----~~~--~--~ 81 o---~~--~ 11 __~----~ 3·200 3: ...o (') ... TRUTH TABLE Input M L L L I. H H H H 51 L L H H L L H H H L H I. H L H 50 Al Bl AO BO w ~ o I. Co Fl FO PG L L L L L L L L L L L L I.. I.. I.. H L L H L L L H H I.. H I.. I.. I.. H I.. H L H H I.. I.. H H H L L L H I.. H H H L H L L I.. H H H H H H H H H H H H H H H H L L L I.. L L L H L I.. H L I.. I.. H H L H L L L H L H L H H L L H H H H H H H H H H H H H H H H H H H L L L L L L I.. L L L H H H H L L H H L L H H L L L I.. H L H H L H I.. H H H H I.. L H L H L H L H L H H L I.. H H L H L H H I.. L L I.. L L H L H H L H I.. H L L H H I.. H I.. I.. H L H H H H H I.. H L H I.. H H H L H H I.. H I.. L L H H H L H L L L H L L H H L H H H I.. C n +2 Fl FO PG GG Cn +2 Fl FO PG GG Cn +2 Fl FO PG L L L L L L L H L H L I.. H H H L L L H H H I.. L H L H H H I.. H H H H H H H H Go H H H H H H H H H H H H H H H H H L H L I.. H I.. H H H H H I.. H L H H I.. H L H L L H L H H H I.. H L L L H H H L I.. I.. H L I.. H H H L H I.. H H L H H L L H L H H L L I.. L I.. I.. L H I.. H L H H H H H H H H H H H I.. H H H H H H H H H H H H H H H H L H H L H H H L L L H L L H L H H L H H H H H H H L L L H H L 1.. I.. L L I.. H I.. H I.. I.. H H I.. H H H H I.. H I.. H H H I.. H H L H I.. I.. L H I.. L H I.. H H I.. H L H H H H L H L H L H L L H H I.. H I.. H L L L H L H L L L H L H H L H L H H H L H L I.. I.. L H H H H I.. L H L H H L L I.. H H H L I.. H L L I.. H L L 'L H H I.. H H H L H H H H H H H H H H L L L H L L H H I.. H H I.. Go L I.. I.. L L L L I.. I.. L I.. L L L L I.. I.. L I.. H H L L L L H H H Ii H H L L' L L H L, H L '+V'L ~ L L I.. L k H H L L t L H H L H ~>L. L L L L L '\:"":' L L L L L L L L 'L H. L L I.. L L L H L I.. H H L H L L H H H L L L L H H !. H ''1'" 't;!. I.. L H L L H H L H L L L L L L L H H H L L H L H H L H L H "- L L L H 'L L L L LLL.L L L L L Ii H L L ·L L L I.. L L. :'-' H L L L L L L 'L H L L L L H H HLHI. 'L L H H L! H L Ii L H L H L H H H L L L L L H L I. L L .t H L L '1.. I.. L L L H H L H 11.. L H L H I.. I.. H L I.. it,·I. .. H, sj H L 'H H H H L I.. L I.. I.. I.. H L L L H' L H H H L I.. L L I.. H. H L L H L L I.. H L I.. I.. H H H H I.. H 'M '" . 1+ H i.'H: Ii H H H L H L It L L H H H H H H H H H 'H I.. H H I.. L I.. H H H H; I.. H L H L H L H L H H H H H H H H H H H H H H H H H H H L L H H H H H I.. H I.. H I. I. L H H H H H H H L L ... t L it. L L L I. L L .. L H H H L L H H H H H H H H H H H H H L iii i. .L" I.. 'H H L I.. ~ H L H H H H .!:'~ ,. H L H H 'H L L L H L H H H H H HLHH: H H L .... H:H H L H H H H H L ·,"7: L H 'H't'-H~")' H' H H L Ii H I.. H H\",.' L H H L tl.J'L tl .... I.. H H l. L H I.. H H H L H H. H H H H H "K L I.. !-. H H H H H H H I.. L L H ;l. H H H H H .H··H H L, H' H Ii: I- ~ .Jot, 'H - H I.. H H H. H ...: .. H L H L H L H H H L L H H L L L L L L L L L H L H L L L L L L L L H L '" I.. L I. H H H.1'I L H L L I.. H H L H H H L H H H ::J !:!. J. H H H Ii H H L L H H H L The,. outputs ara not normally used during logic operation. H L Ii L L H H L L H H L I. H H H H L L L L L L L I.. H L H I.. H I.. H I.. H L H H H H I.. L L L H L L L I. N ~ L L L L' ,L L I.. L L L L I.. t H L L L L H Ii I.. H H'1i If L H H H H H L L H H H H I.. L L' "L :.1:\ ~... L L I.. H H H H H H H H H I.. H I.. H H H H L H H H I.. H H H H H H H H H L L H L I.. H H H I.. H L H H L H ~ H I.. L ~ H H H H H H. H H L H ~ L L L H L L H I. I. L I. L L L H L L H H L H I.. H L H H H L H N 8 Cn +2 Fl FO PG GG Cn+2 Fl FO PG GG Cn +2 Fl FO PG GG Cn +2 Fl FO PG GG Cn +2 H H H H H H H H I.. 00 H H H H I.. H H H H H H H H H H H H H H H H H H L H L H H H H H H ·H H H H H H H L H H L H H Ii H H H H ,t!. H H Ii H H .M H H H H H H H ,1:i H H H Ii H .H H H H H H H H Ii H H H H Ii H ::J C to Q. ELECTRICAL CHARACTERISTICS flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5O-ohm relistor to -2.0 volts. Power Supply Drain Current Input Currlnt I Sy_,1 I I 'E linH I I ------ - logiC "'" Output Voltage Logic "0" Output Voltage CAl ~ 0 r-J Ir Logtc "'" Threshold Volt. Logic "0" Threshold Voltage Switching Times (SO n Load) Prepagation Delay I I I I VOH VOL M.. 8 - - 7 - I VOHA VOLA 1"3+2+ "3+4t5+4- '&-4t12-14+ "'-14t5+2+ "2-2t6-2"'+2+ t5-15tti+l5+ 15+3_ ts-3+ '7-4+ (11)..4A.Time I2m' to 80%) hllTime 1_ .. _1 I ..... '4+ - - 0.5 -<1.890 -<1.960 I -1.060 :: II I I I I I I I I I -1890 2 3 4 14 15 -1.080 2 3 4 14 15 - 2 4 4 4 14 14 2 2 2 .2 - - - - -1.675 -1.850 - -<1.980 -1.655 - I - - Typ . 110 .... 138 I - I:: - I 14 15 - I - 2 2 Min I - I I I +25"1: M.. 5 I -3O"c ':!:' 13 - - - ......, +25"c VIH",.. -<1.890 -0.810 -0.700 - - - - - - 2.7 2.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 5.5 5.5 '.0 6.0 - - - - - - ·r - - 5 5.6,11 I Vdc - -1.595 Vdc - - - 2.5 - - - - 2." - - - - - - 12.13 I 7,9,10 II -1.630 - VILmin VIHAmi VILAma VEE - Vdc - -5.2 - - - -5.2 -1.0W0 - -0.910 - -1.475 -1.035 - - - -1.105 - Vdc -1.815 -5.2 7 5 6 13 - -1.825 -1.500 - mAde: -0.700 I I I I I I I I I n0 -1.205 VIH".a -<1.890 -1.650 N -1.890 -1.860 -1.825 Unk ~.810 • • - .... +1Ii"C Min I I n. - - 6.7.9 5,10,13 7,9,10 9,10 67" 6,7,9 5,10,13 7,9,10 9,10 6.7,9 - - - - - - - - - n. - - n. - 00 v'Lmin vIHAm", VILAma VEE VOLTAGE APPLIED TO PINS LISTED BELOW: .Adc • 4 -30"\: - 290 350 0 Volts - - 15 15 3 3 TEST VOL TAGE VALUES .T... T. . ..mr. MCl0112L T . . Limits UT ... ... (') CERAMIC PACKAGE CASE 620 Pin Ct.._rmic 3: .w"g Each MECL 10,000 series circuit has been designed to meet the de specifications snown in the tast table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air - - - - - - - - - - - - - - - 5 6 5 5 5 - - - 5 6 5 5 5 +'.11 V Pu"ln Pu'.Out 13 2 10 13 5 5 7 9,10 6 12 14 11 5 2 9 12 2 9,10 6 2 10 11 2 12 15 10 5 15 10 6 5 3 10 6 9 3 9,10 7 6,11.13 10 8 8 ... ::J 1Vee) Gnd 1,16 1,16 II 8 1,16 8 1,16 8 1,16 II I8 I I8 If 1.16 II i-3.2V 8 +2.0V "1.16 - " - 5 5 I •• I 81 8 ,.,8 1.1' ::J c:: It) - c.. MC10182 (continued) SWITCHING TIME TEST CIRCUlf AND WAVEFORMS CiI 25°C V out veel '" VCC2 '" +2.0 Vdc Coax 25 IJ.F J I Coale 0.1 ~F "/TP Pulse Generator 50·ohm termination to ground lo- UnuMd outputl cated in .ach 'COp. channel Input. connected to • 50-ohm r.,i,tor to ground. All input and output cabl •• to the scope ar. equal length, of 50-ohm cOlucial cable, Wire length thould be < 1/4 inch from TPln to input pin and TP out to output pin. VEE = -3.2Vdc PROPAGATION DELAY r-----' '--;---- +1.11 V +0.31 V t+- t-+ 3·203 out MECL 10,000 series HEX INVERTER/BUFFER MC10195 Advance InforInation The MC10195 is a Hex Buffer I nverter which is built using six EXCLUSIVE NOR gates. There is a common input to these gates which when placed low or left open alloYfs them to act as inverters. With the common input connected to a high logic level the MC10195 is a hex buffer. useful for high fanout clock driving and reducing stub lengths on long bus lines. TRUTH TABLE Inputs B L L L H H H Output H L L L H H POSITIVE LOGIC A 9 5 B JJ '" ./ Q 2 Po "" 200 mW typ/pk 9 (No Load) 6 JJ ./ tpd "" 2.8 ns typ 3 .~ 7 JJ ./ 10 JJ ./ 4 13 ,....---. II JJ 12 JJ ./ 14 16 Thl. i. advance InformatIon and .paclflcatlon •• r. subject to change without notice. S. . Gener.1 I "formatIon Metlon for peckaglng. 3-204 Vee1 "" Pin 1 VCC2"" Pin 16 VEE "" PinS ' ..... _. ...~o ...c.c ELECTRICAL CHARACTERISTICS A :~2 Each MECL 10,000 series circuit has been designed to meet the dc specifkations shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5().ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner, U1 n 6 o ~I' :J e. :J C 'Y:~ynll!l 4 CD a. L SUFFIX CERAMIC PACKAGE CASE 620 13 10 14 11 )00" 15 12 TEST VOLTAGE VALUES Volts w ~ o @Test Temperatur. -30"1: +25o C U1 +850 C Pin Cheruteristic I Power Supply Drain Current I nput Current I Symbol U_, T ... IE 8 finH 5 9 MC10195L Test Limits -30"1: Min Max VOH Logic "0" Output Voltage VOL Logic "1" Threshold Voltage Logic "0" Threshold Voltage VOHA VOlA SWitchIng TIme (50 ohm load) Propagation Delay t5+2- 39 49 mAde 265 ",Adc ",Ade -0.810 -1.675 -1.850 -1.650 -1.080 -0.980 Min Max -0.890 -1.825 Unit -0.700 Vdc -1.615 Vdc -1.595 Vdc Vdc -0.910 -1.630 2.8 '11-14'2+ 2 ! 2.0 120%'080%1 120%'080%1 -1.205 -1.500 -5.2 -0.810 -1.850 -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2 ---'---r'---'---~--II !Vee 1 VIHmax IVILminlvlHAminlvlLAmu I Vee GncI 1.16 8 8 1.16 1.16 1,16 ",Ade -1.655 4 13 14 tl0t13+ Fall Time +85"1: -0.890 VEE -1.890 9 8 1,16 1,16 8 8 1.16 1,16 pUI.lnIPul.outl-3.2Vdcl +2.0Vdc t7-4+ Rise Time Max 290 -1.060 -1.890 VILmin VIHAmin VILAmu -0.890 VOLTAGE APPLIED TO PINS LISTED BELOW, +25"1: Typ 0.5 -0.960 linL Logic "1" Output Voltage Min VIHmax '2_ 2.0 ns 8 10 11 4 13 14 5 2 I 1,16 MC10195 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 2&oC VCCI - VCC2 - +2.0 Vdc V out ~"' ± It··" Co •• rA--- ---:-1 B Q ' T P out Input Pul .. t+ E t-- 2.0 t 0.2 nl '(20 '080%) 50-ohm t.rmin.tion to ground 10' input. e.ted In ••ch leope en.nn,' UnuHd outputs .r. tied to I 50· All Input .nd output cab I•• to the ohm r.,I,tor to ground. tcope .r. equII 'Ingthl of eO-ohm :I.' co .. cabl.. Wire I,ngth thould be 1/4 Inch from TPin to input < pin .nd TP out to output pin. VeE - -3.2 Vdc PROPAGATION DELAY ~ _ _ _ _ _ _ L--'---_ _ _ +1.11 V +0.31 V .-+ .+- 3-206 MECL 10,000 series " HEX "AND" GATE \.._--------' MC10197 Advance Int'or:rnatlon The MCtOt97 provides a high speed hex AND function with strobe capability. Open emitter out· puts allow wire DRing. This high density function is useful in control, bussing, communications in high speed central processors, high speed peripherals, digital communications systems, minicomputers, and instrumentation. TRUTH TABLE Inputs A B L L H H L H L H Output L L L H POSITIVE LOGIC A 9 5 B J~ Q 2 ~ Po - 200 mW typ/pkg (No Loadl ~ tpd - 2.8 nl typ 3 6 J 7 -.--... J ./ 4 10 J 13 11 J 12 ->oj J J .. .~ ..... ./ 14 ; ---... ./ 15 ~ i r-''' II advance Information and speciflcatlonl .r. lubject to change without notice. S- General VCC1 - Pin 1 VCC2 - Pin 16 VEE"Pln8 ~ Information section for packaging. 3-207 ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been ~ A 9 B ....0(") ....CD 2 designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The cir- cuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated throu!tl a 50-ohm resistor to -2.0 volts. Test procedures are shown for only .Iected inputs and outputs. Other inputs and outputs tested in the 6 -- 4 Slme manner. 10 11 12 ...., nO 3 ::::I !:t. ::::I C <1> .e: L SUFFIX 13 CERAMIC PACKAGE CASE 620 14 15 TEST VOLTAGE VALUES ctJ I'.) o Volts @Telt 00 VILmin VIHAmin VILAm•• VEE -30OC -0.890 -1.890 -1.205 -1.500 -5.2 +2SoC -0.810 -1.850 -1.105 -1.475 -5.2 +8SoC -0.700 -1.825 -1.035 -1.440 -5.2 Temperature 1----::::;;::--,--=:.::::';;:'-=-=="'·'l·ir----+S::5:;OC==----,,----t1 Min I Max VIHrnax VOLTAGE APPLIED TO PINS LISTED BELOW, Unit J VIHm.x I VILminl VIHAminlVILAmax I VEE mAde 8 ,lJAdc /JAde 8 j.lAdc -0.890 I -0.700 I Vdc -1.825 1.1.615 -0.910 -1.595 Vdc Vdc Vdc 8 5,9 Gnd 1.16 1.16 1.16 1,16 1,16 8 1,16 1,16 8 1.16 8 9 9 (Vee I 1.11Vdcl pUI.lnIPul.outl-3.2VdCI +2.0Vdc ns 9 j 9 9 j j l L,.. _, MC10197 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS veCl - VeC2' +2.0 Vdc "., t Coal( 9 5 I 1"" 8 +1.11 V o-r-o O.l1'F 1 ± 0.2 os J 12 I < Wire length should 1/4. inch from TP in to input pin and TP out to output pIn 4 I I .to.11 input and output cables to the scope are equal lengths of 50-ohm 3 I I 13 I 14 I I c:ated in each scope channel input l I ~~ 11 50-ohm termination to ground 10 coaxial cable. J J (20 to 80%) be I 1 I Input Pulse t+ = t-= 2.0 Con; I I 10 V out I I I Pulse Generator 2SoC Ar-----.,a I 6 @ -~ 15 L _ _ _ _ _ ...J !lo.l1'F VEE'" -3.2 Vdc PROPAGATION DELAY V out AND 3-209 Unused outputs are tied to a 50· ohm resistor to ground. MEeL 10,000 series HIGH SPEED DUAL 3-INPUT 3·0UTPUT "OR" GATE MC10210 POSITIVE LOGIC NEGATIVE LOGIC ~~2 7 3 4 1~~1213 1~~1213 11 11 14 14 VCCI VCC2 z D Pin 1, 15 ·Pln 16 The MC10210 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"· ing of several levels of gating for minimization of gate and pack age cou nt. , The ability to control three parallel lines wi~ minimum propagation delay from a single point makes the MC10210 particularly useful in clod[ distribution applications where minimum clod[ skew is desired. The MC 10210 is a higher speed version cit the MC10ll0. It is a pin·for-pin replacemenit for the device. Three VCC pins are provided and each one shou Id be used. Po = 160 mW tvp/pkg (No Load) tpd - 1.5 nl typ (All Output Loaded) VEE "" Pin8 Output RIM and Fell Time: (All Outputs Loaded) - 1.6 ns (20% to 80%) tvp CIRCUIT SCHEMATIC 16 VCC2 VCCI 1 50----------------, 6 , - - - - . . - - -.....- - _ 0 0---------.., .........---+---+----0 4 "----+----03 2 110--+______________- - , 10 0--+--------, VCCI ,----.....---.,---0 15 ~----~---+--_o14 9 ~--__II__-o 8 VEe See Gen.,el I "formation ..ction for packaging_ 3·210 13 12 ~Cl0210 (continued) EJ,.ECTRICAL CHARACTERISTICS ·beh MECL 10,000 ..rias circuit ha. been dlligned to ....t the de opacification. shown in the tast table, after thermal equilibrium ..... been established. The circuit is in a ~~2 'te!It lOCket or mounted on a printed circuit 4 7 160wd end transverse air flow greater than Pow. SUpply ~rain Currlnt u."" T_ ItipUtCurfWIt linH 5,6,1 linL 5,8,7 L."I" OutputVolrage "OH LOIic"O" Output Volt. VOHA LagIc"O" l'ttt-tItIoldVolt. VOLA SWitching Timn 15O--oIam1OMt1 '~ionD.,1V .... ..."1: Min Typ VILmin ~1.890 VIHAmin -1.205 VILA IMlI ~.890 -1.500 -5.2 ·21"1: ..."1: -OSlO -0.100 -1.850 -, 825 -1.105 -1.035 -1.475 -1.440 -5.2 -5.2 U •• VIHm_ ...0.890 ...0.890 ...0.890 -1.675 -1.675 -1.675 -UJ60 -1.(160 -1060 -1.890 -1.890 -1.890 -1.080 -1.080 -1.080 0.' -0.960 Ma ~0.810 -1650 -1.650 -1.650 -1.850 VIHAm .... YILAtnP "EE ...0.890 ...0.890 -0.890 -1.825 -1.825 -1.825 ...0.700 ...0.700 ...0.700 -1.615 -1.615 -1.615 -1630 -1630 -1.630 I.S -1.595 -'.595 -1.595 "do Vdo Vdo V", "do Vdo "do "do Vdo Vdo 'u'.'n 2." (Vee' Gnd 1,15,'6 1,15.16 1,15,16 1,15,.16 1,15.16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1.15,18 1,15,1& 1,15,16 "Ado -0.910 -0.910 ...0.910 -1.655 -1.655 -1.655 1.0 VILmin mAdo "Ado -0.810 -0.810 -<>.960 -0.960 -1.850 -1.850 -0.980 -0.980 -a.980 ...,. VEE TEST VOLTAGE APPLIED TO PINS LISTED BELOW.: _oc M'. JII 410 t6_2_ , .... I VIH"'b -3O"c TemperetuN -. . .C VOL LotIc"I" Ttlr.....o!dVolt. . (Volta! n .. 14 M .. • 'E TEST VOLTAGE VALUES 11 MC,02,OL Tal Limiu Pin Symbol 3 1~~1219 &00 linear fpm is maintained. Outputs are _",in8ted through 8 5().ohm resistor to -2.0 volts. Test procedures are shown for only one get.. The other get. is tested in the ame manner. C~iI: LSUFFIX CERAMIC PACKAGE CASE 620 ' . . . Out -3.2 V +2.0 V S 1,15,16 '"'' ..... ...'2. ..' ..J- ·t t5_ .... .,.Tw. (20"10%1 F.,T"", 120.11*1 '3• '2- '3- -,lIdhoidlHHy.t ~h input ut.ing the pin conn8Ctionllihown. TIME CIRCUIT l ; r -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _SWITCHING ______ _ _TEST ___ _ _ _ _AND _ _ WAVEFORMS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ " " Coax ,----+1.11 V Input - - - - - +0.31 V Pul .. Generator I I r=tt' : e. , , ,, ~- Input Pulse t+ _ t- _ 1.5.:!:. 0.2 ns (20 to 80%) 1 (~ - - __'_'.0 m , ••0' .L -- Vout -r;:I ;1 cated in each lcope channel input =:-<. : Unu ..d outputs connected to a 50-ohm ,esistor to ground. x_ 0.1 ",F All Input and output cable. to the ~r:.~i:a~~;egtl:~;:h5!-:~~ VeE ~ -3.2 Vdc be 1/4 Inch from TPln to Input pin end TPout to output pin. 3·211 MECL 10,000 series HIGH SPEED DUAL 3-INPUT 3-0UTPUT "NOR" GATE MC10211 POSITIVE LOGIC ,g ~ . The MC 10211 is designed to drive up to s.ix transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR~(­ ing of several levels of gating for minimization of gate and package count. The ability to control three parallel lines with minimum propagation delay from a single point makes the MC 10211 particularly useful in clook distribution applications where minimum clock skew is desired. . NEGATIVE LOGIC '2 13 14 ~ 1~ '2 13 14 11 11 Po = 75 mW typ/gate (Outputs Open) tpd "" 1.5 ns typ (All Outpuu Loaded) Output Rise and FeU Time: (All Outputs Loaded) VCCI = 1. 15 VCC2 = 16 VEE = 8 = 1.5 ns typ 120% to 80%) CIRCUIT SCHEMATIC 16 VCC2 VCCI r--'--~-_o 6 1 0--------, "'---+--+----0 4 ---+---03 110--+_ _ _ _ _ _ _ _-, VCCI 100--+------, .--~---~---O15 '---r--~-_o14 9 "---+--013 12 See General I nformation section for packaging. 3-212 : MC10211 (continued) ",m' ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test tabli, after thermal equilibrium ha been established. The circuit is in a test lOCket or mounted on a printed circuit ~d and transverse air flow greater than 500 linear fpm is maintained. Outputs are 5 ~ terminated through a 50-oh m resistor to 1~ -2.0 volts. Test procedures are shown for 11 only one gate. The other gate is tested in the same manner. 4 ~ :: T_ T" " LogIC"'" OulputVo1tage IInH 5.6.1 r,nL 5.6,7 VOH 2 3 , 4 Logie "0" Va' OulputVoilage 3 L09IC'"'" VOHA Threshold Vollage ..o.890 -1.675 -1675 -1675 -LOBO -lOBO -1.080 'LoglC "0" (Volts! I Vil min VIHA min VILA m .. -0.890 -1.890 -1.205 +2SoC -0.810 -1105 +8SoC -0.700 -1.850 -1.825 -1.500 -1.475 -1440 r',",""a1u •• _lOGe VIH m •• -1.035 ViH m.. 38 ViL min ViHA min -'850 -1850 -1.850 -0980 -0.980 -0.980 ..o.890 ..o.890 -0890 -1.825 -1.825 -1.825 ..o910 ..o.910 -0910 -1.630 -1.630 -1630 1.0 1.' 120·to.w1 -'595 -1.595 -1.595 "'3_ 120to.w1 '4_ ·Ind.... idu.lly ,., each Inpul USIng Ihe P'" eonnKllons shown SWITCHING TIME TEST CIRCUIT lIND WAVEFORMS@ 25°C VCC 1 = VCC2 +2.0 Vdc Coax , , if t"" r- - - , Input V out ,_. - --, r--4'------~ I V out Pulse Generator Input Pulse t+ t- "" 1.5 ±. 0.2 ns (20 to 80')6) :E 5O-ohm termination to ground located in each scope channel input. All Input and output cables to the ICOpe ar. aqual langths of 50-ohm cOIIxl.1 cabl.. Wire length should be < 1/4 Inch from TPin to input pin end TP out to output pin. i-A ~ Unused outputs connected to 50-ohm resistor to ground. 8 C_-!1-;'" I -S.2 -52 VEE iVec l Gnd 1.15.16 Pul_Out +2.0 V 1.15.16 2.' '3' F"ITime -52 1.15.16 1.15.16 1.15.16 1.15.16 1.15.16 1.15.16 1.15,16 1.15.16 1.15.16 1.15.16 1.15,16 1.15.16 ". '4. Ri_Tome VEE 1.15.16 1,15,16 -0.700 -0700 -0.700 -1.615 -1.615 -1.615 Pulse'n 15+2_ 15-2115+315-3+ '51-415_401- IN. pAde -0810 -0810 -0.810 -1.650 -1.650 -1650 SWItchIng TImes (50-ohm load) ProplJllltion Delay ViLA mAde 0' -0.960 -0.960 -0.960 I TEST VOLTAGE APPLi£D TO PiNS LiSTED BELOW, M.. -1655 -'655 -1655 VOLA Threshold Voltage LSUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES 410 -0.890 -0.890 -1.060 -1.060 -1.060 -1.890 -1.890 _'.890 " ~\ i 14 30 inputCurrenl , I; -lOoe Undltr Symbol 2 3 MCl0211L Test Limit. Pin CharecteristlC ~ I VEE = -3.2 Vdc 3·213 MECL 10,000 series HIGH SPEED DUAL 3-INPUT 3-0UTPUTOR/NOR GATE MC10212 Advance InforIIlation POSITIVE LOGIC The MC10212 is designed to drive up to six transmission lines simultaneously. The multipl~ outputs of this device also allow the wire "OR"-' ing of several levels of gating for minimiiatiOn of gate and package count. The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10212 particularly useful in clock" distribution applications where minimum clock ' , skew is desired. NEGATIVE LOGIC 5~: 6 2 7 9 10 11 ~ '2 13 14 ~ 1~ '2 13 14 11 vee1 = 1. 15 Po ==160mW typ/pkg (No Load) VCC2: 16 Vee: 8 tpd"" 1.5 n. typ (All Outputs Loadad) Output Rise and Fall Time: (All Output. Loaded) = 1.5 ns typ (20% to 80%) CIRCUIT SCHEMATIC 16 6 VCC2 <>-------, ......--4--+---0 2 5 <>-+_--f ........-+--<>3 4 Ilo--+_ _ _ _ _ _ _ ~ 10o--+---~ VCCI 15 ......_-1---+---<> 12 9 ......- - 1 - - 0 1 3 8 Vee Thi, i, edwnce information and .peclfleatlon•• re ,ubject to cheng. without notice. S.. G.n .... ' Information ..ctktn for packaging. 3-214 14 3: ELECTRICAL CHARACTERISTICS E.,h MECL 10.000 _ies circuit h.. been designed to !Met thode opecific.tions shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted,on a printed circuit board and transverse air flow greater than 500 line. fpm is maintained. Outputs are ~ - ~: 7~2 terminated through a 50-ohm resistor to 9 -2.0 volts. Test procedures are shown for only one gate. The other gate is tested in 10 11 ~ '2 13 14 n ..... o N LSUFFIX ....N CERAMIC PACKAGE CASE 620 nO :::I ~. :::I C (1) the same manner. Q. TEST VOLTAGE VALUES (Voltsl til Test Tempet'ature w ~ ..... Characteristic Symbol Power SupplV Drain Current Ie Input Current U1 'inH 5,6,7 'inL 5,6,7 logic "'" Output Voltage VOH logic "0" Output Voltage VOL _lODe Min VOHA logic "0" Threshold Voltage VOLA Min TV. 30 Max Min -0.890 +25o c +85·C -0.810 -0.700 -1.890 ·1.850 -1.105 -1.825 -1.035 Unit V,H max 38 -1.890 -1.890 -1.890 I -0.890 -0.890 -0.890 -1.675 -1.675 -1.675 -1.850 -1.850 -1.850 -0.980 -0.980 -0.980 -1.080 -1.080 -1.080 I -0.810 -0.810 -0.810 -1.650 -1.650 -1.650 -0.960 -0.960 -0.960 -0.890 -0.890 -0.890 -1.825 -1.825 -1.825 -0.700 -0.700 -0.100 -1.615 -1.615 ":'.615 -0.910 -0.910 -0.910 -1.655 -1.655 -1.655 -1.630 -1.630 -1.630 VIHA 1 VILA mul Vee -1.500 -5.2 -1.205 I I -1.475 -1.440 I I -5.2 -5.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: M_ 405 2 Threshold Voltage -30"1' +85o C +25OC Max 0.5 -1.060 -1.060 -1.060 3 logiC "'" VILmin MC10212L Test Limits Pin Under Tnt min VIHmal( -1.595 -1.595 -1.595 mAde #JAde !lAde Vde Vde Vde Vdc Vde Vdc Vdc Vde Vdc Vdc Vdc Vdc I V'L min I V'HA min I IVcCI VeE V,LA max Gnd 1,15,16 5,6,7+ 1.15,16 5.6.7+ 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 1,15,16 8 8 8 1,15,16 1,15,16 1,15,16 Switching Times Pulse In (50-ohm load) Propagation DeiaV Rise Time 1201080%. 15+2+ t5-215+315-3+ 15+415-4+ '2+ '3+ '4+ Fall Time 120'.80%1 '2. '3_ '4_ -Individuallv test each input using the pin connections shown. I 1.5 Pul. Out I -3.2 V I +2.0 V I 1,15,16 MC10212 (continued) SWITCHING TIME TEST CIRCUIT PND WAVEFORMS@ 2SoC Vee, = Vee2 V out +2.0 Vdc Coax ! ''-' £ ±" " "" +0.31 V ±.10mV r'- - - - ---, ,-+-_----J I Input I ~--+-----+I~~_~~ Pulse Generator Input Puis. t+ '"' t- "" 2.0 ±. 0.2 ns 120 to 80%1 ~ I I I I I I Unused outputs connected to a 50-ohm resistor to ground. - - V out I 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TP in to input pin and TP out to output pin. < C_ --fl-'"'" VEE = -3.2 Vdc 3-216 MECL 10,000 series HIGH SPEED TRIPLE LINE RECEIVER MC10216 The MC10216 is a high speed triple differential amplifier designed for use in sensing differential signals over long lines. The basa bias supply (VSS) is made available at pin 11 to make the device usaful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the MC10216 with POSITIVE LOGIC excellent common mode noise rejection. If any ampli- NEGATIVE LOGIC 4~2 fier in 8 package is not used, one input of that amplifier must be connected to Vee (pin 11) to prevent upsetting the current source bias network. Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several 4~2 5~3 5~3 9~6 10~7 9~6 10~7 12~14 12~14 amplifiers in 8 chain, or simplv to provide complement outputs of the input logic function. 13~15 ~11 13~15 ~11 Vaa Vaa vee1 Pin 1 VCC2 = Pin 16 VEE::: Pin 8 = Po = 100 mW typ/pkg (No Load) tpd = 1.8 ns typ (Single ended) = 1.5 nstyp (Oifferential) CIRCUIT SCHEMATIC 3 6 VCC1 14 15 1 5 4 9 13 10 SM General Information section for packaging. 3·217 VCC2 16 12 ..s: .. ELECTRICAL CHARACTERISTICS Each MECL 10,000 series circuit has been desigred to meet the de specifications shown - 4~2 in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are 5~3 9~6 10~7 12~14 lJ~15 L~11 terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for VB B only one gate. The other gates are tested in the same manner. (") o L SUFFIX N CERAMIC PACKAGE CASE 620 en 8 ::J .... :i" c: <11 3: TEST VOLTAGE VALUES (Volts) lilT ... Tanper.ture ...,W ... I CO Pm Ch.rKte,istic Symbol Power Supply Drain Current 'E linH Input Current IC80 Undor TOft MCl0218L Test Limits +2SoC -3O"c M'" Mo. Min 20 • • 9 High Output Voltage VOH -1.060 -1.060 -0.890 -0.890 -0.960 -0.960 low Output Voltage VOL -'.890 -1.890 -'.675 -'.675 -1.850 -1.850 High Threshold Voltage VOHA -1.080 -1.080 Low Threshold Voltage VOLA Ref.rence Voltage V8S Ty. 11 -1.420 Mo. -'.500 VBB From +25o C -0.810 -1.850 -1.105 -1.475 Pin +85°C -0.700 -1.825 -1.035 -1.440 11 M •• Unit Ri.Time 120% to 80%1 FatlTime I";: 2 2 3 3 '3+ '2'3-Deily i. 1.5 ns when inputs •• driwn diHerwntially Dttey II 1.8 ns when inputt •• driven tingle ended. (~toemr.1 VIHmax 4,9,12 VILmin VIHAmin 1VCCI Gnd 1,16 9,'2 5,10,13 9,'2 ','2 9,12 4 5,'0,'3 5,10,13 5,10,13 1,16 1,16 4 9,'2 9,12 5,10,13 5,10,13 ','6 ','6 9,12 5,10,13 5,10,13 -1.230 -0.890 -0.890 -0.700 -0.700 Vdc Vdc 4 9,12 -1.825 -1.825 -1.615 -1.615 Vdc Vdc 9,12 -1.295 Vdc Vd, -'595 -1.595 Vd, Vdc -1.150 Vdc • 5,1~,13 9,'2 j 2 3 1,16 1.16 ','6 1,16 8 8 1,16 1.16 1,16 -3.2 Vd, +2.0 Vdc 1,16 5,'0,'3 Pu. . Out 5, '0,'3 j 1,16 8,' 8,9 5,'0,'3 5,10,13 9,12 2.5 j •~ j 1.5 VEE /-lAde /-lAde -0.910 -0.910 1.8· VBB 5,10,13 /-lAde -1.630 -1.630 1.0 VILA max '.0 '.0 Pullt ... t4+2+ '4-2'4+3- -5.2 ~ mAde Switching Tim.. (SO-ohm LOoecU Propagation Delay -:H-1 TEST VOLTAGE APPLIED TO PINS BELOW: +SSoC Min VEE 25 -0.8'0 -0.8'0 -1.650 -1.650 -'.350 -'.205 VIH max 115 -0.980 -0.980 -1.655 -'.655 -1.280 VILA max -0.890 VILmin -1.890 VIHAmin -3O"c B j j j ~-- ._.--_.-..- ~ftECTR1CAt·eHARAtTERts'Tit:s'­ . Each IIIIECL 10,000 series circuit h_ been designed to meet the de specifications shown 3: .- (') • :~: in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a pr-inted circuit board and transverse air flow greater than 500 'inear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested 9~6 10 7 12~14 13~'5 ~" V BB in the same manner. 2.- PSUFFIX PLASTIC PACKAGE CASE 648 en 8 ...S' ::J c: CD .e: TEST VOLTAGE VALUES I (Voltsl i;>T... Temper"uN -lII"c to) N .... to Characteristic s"mboI Power Supplv Drain Current 'E I "put Current linH 'C80 High Output Voltage low Output Voltage VOH VOL Pin Undo, Tnt -3O"c +2SoC Min Mo. 8 4 4 9 - - 2 3 -1.()60 -1.060 2 3 -1.890 - - Min -0.960 -0.960 -0.100 25 115 1.0 10 - mAde .. J.lAde J.lAde .uAde -1.890 - -0.980 -0.980 - VOHA 2 3 - -1.655 -1.655 - Reference Voltage SWitchi .... Times Vaa 2 3 11 -1.420 -1.280 -1.350 t.t+2+ '4-2'4+3'4-3+ 2 2 3 3 - - 1.0 I _ m l.... ' - - - - - - j - - 1.8' ~ 1.5 ! -0.890 -0.890 - -0.910 -0.910 -1.630 -l.630 - -1.230 2.5 j Mo- - -0.810 -0.810 -1.650 -1.650 -1.825 -1.825 -0.700 -0.700 -1.615 -1.615 Unit V'Lmin 4 9,12 9,12 4.12 Vdc Vdc 4 9.12 Vdc Vdc 9.12 4 Vdc Vdc Vdc Vdc 9,12 -1.295 -1.150 Vdc - - - - - - n. j 9.12 4 4 9.12 9.12 - - -1.825 VIH max 4,9.12 -1.595 -1.595 - -1.850 VIHA min VILA max Vaa VEE -1.205 -1.105 -1.035 -1.500 F,om -1.475 Pin -1.440 11 ~ ~ -5.2 IVce' 20 - VOLA +BS"c Min - VILmin -1,890 TEST VOLTAGE APPLIED TO PINS BELOW: M •• -1.850 -1.850 Low Threshold Voltage 2 '2+ 3 '3+ F8IITime 2 '2_ (20%1080%) 3 '3Oelav is 1.5 n. when inpu1s,,-. driven different.. Uy O".y is 1.8 ns wt-n inputs ..e driven single ended +SSoC Ty. -0.890 -0.890 -1.675 -1.675 -LOBO -LOBO Ri .. Time (20% to 80%) -0.890 -0.810 MC1021IP Test Limits High Threshold Voltage Propegltion Oelav VIHmax +25o C 9,12 - V,HA min 4 - 9,12 - - - - - 4 Pul.ln 4 j V,LA max -- _. 4 4 - Vaa VEE 5,10,13 5,10,13 8 Gnd 1,16 8 8,4 8,9 -1.16 1.16 5.10.13 5,10.13 5.10.13 5.10.13 5,10.13 5,10.13 8 8 1.16 1.16 8 1.16 1.16 1.16 1.16 5,10,13 5,10,13 8 5.10.13 5.10.13 5.10,13 Pul.Out 2 2 3 3 2 3 2 3 5.10,13 8 8 8 1,16 8 8 1.16 1.16 1.16 -3.2 +2.0 Vdc Vdc 8 1,16 j j j MC10216 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C V out +2.0 Vdc Coax Coax Input pulse t+ :II t- '"' 1,5 ±. 0.2 ns (20 to 80%) n I I I I I I L_- lO.l/lF I -: 1 /l F v:e = -3.2 Vdc 50-ohm termination to ground lo- Unused outputs connected to cated In .ach scope channel input. a 50-ohm resistor to ground. All input and output cabl., to the scope are equal lengths of 50-ohm One input from each gate must C08ICiai cabl.. Wire length should be < 1/4 inch from TPin to input be tied to Vee (Pin 11) during testing. pin and TP out to output pin. PROPAGATION DELAY 3-220 MEeL 10,000 series HIGH SPEED DUAL TYPE D MASTER-SLAVE FLIP-FLOP MC10231 The MC10231 is a dual master-slave type 0 flip-flop. Asynchronous Set (5) and Reset (R) override Clock(Cc)and Clock Enable (CE) inputs_ Each flip-flop may be clocked separately by holding the common clock in the low state and using' the enable inputs for the clocking function_ If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state_ In this case. the enable inputs perform the'function of controlling the common clock_ The output states of the flip-flop change on the positive transition of the clock _ A change in the information present at the data (0) input wi II 'not affect the output information at any other time due to master slave construction. Input pulldown resistors eliminate the need to tie unused inputs to VEE:- Output rise and fall times allow high frequency operation over 200 R-5 TRUTH TABLE n +l R S L L an H Q L H H L L H H N.D. = Not N.D. Defined CLOCKED TRUTH TABLE C 0 Qn+l L q, an H L L H H H MHL cP "" Don't Care e = Ce + ee· . A clock H is 8 clock transition from 8 low to a high state. Po"" 270 mW typ/pkg (No Load) f TOg POSITIVE LOGIC S1 01 GEl 225 MHz typ NEGATIVE LOGIC R1 5--------------' 7 - - - - - - - -.... ~ 2 01 6 eEl 5------------~ 7 ---------""'I 6 3 R1 3 51 4--~----------~ ee g R2 4 __~----------~ ee g 13--~----------, 52 13--~----------, 14 14 CE 2 11 ------..___' 02 10--------..... C E 2 11 -----...__. / 15 02 10 R2 S212--------------~ vee1 == P n 1 VCC2=Pn 16 VEE = P n 8 s-,. General I nformation section for packaging. 3-221 --------..J::ot 12--------------~ 15 ELECTRICAL CHARACTERISTICS SI Each MECL 10,000 series circuit has been designa:d to meet thedc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test prOCedures are shown for only one input, or for one set of input con· ditions. Other inputs tested in the same manner. 01 CEI eh.rKt.,istic Input Current Input Leakage Current ~ I\.) I\.) logic ",." Threshold VQltage logic "0" Threshold Voltage AI. 4~ CC~ """§)= CE2 " 0210---- - - - - - - - - 0.5 0.5 VOH 2 2t VOL 3 3' 2 2' 3 3' -1.060 -1.060 -1.890 -1.890 -0.890 -0.890 -1.675 -1.675 -0.960 -0.960 -1.850 -1.850 -LOBO -1.080 - 0.980 -0.98Q -1.655 -1.655 - VOLA Q2 15 OTost T........tur. _30o e MC10231L Test Limits +250e _30o e - VOHA 14 +25"<: +85oe 8 4 5 6 7 9 4,5,· 6,7,9· linL 02 5212 Min Co) Logic "1' Output Voltage logic "0" Output Voltage 3· Ma. 'E linH - - - Ty. 52 - t9+2t6+2+ 2 2 1.4 1.4 Rise Time 120 to 80%' '2+ 2 0.9 3.4 3.4 3.3 Fall Time (20 to 80%) '2- 2 0.9 3.3 1.0 1.0 Min 65 - 410 410 220 220 290 - - - -0.810 0.890 -0.700 -0.810 -0.890 -0.700 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 - -0.910 -0.910 -1.630 -1.630 - 1.5 1.5 t5+2+ t'2+15+ t5+3+ t'2+14- ·2 15 3 14 1.0 3.4 1.1 t4+2t'3+15_ t4+3t13+14+ - p,.opagation Delay Reset Input P,.opagation Delay Setup Time tSetup Hold Ti,!,e tHold 2 15 3 14 7 7 T~. ITog 2 Ff'equency 1M•• ) + + ~ !l 1.1 + -1.595 -1.595 3.3 3.3 1.5 1.5 3.1 3.1 1.0 3.7 3.7 3.5 1.0 3.5 1.1 3.7 - -1.850 -1.105 .. -1.475 -1.825 -1.035 -1.440 Unit V,Hm•• mAde - - ",Ade 4 5 6 7 9 - ! ",Adc J.lAde Vdc Vdc V'Lmin - 5 7 Vdc Vdc 5 7 Vdc Vdc Vdc Vdc - - - -- _'ied : ,,", • ~ 7 nS 7 - 3.3 ! t - .- 200 ~,_~._ n- VIH .... . __ ' - 9 250' .___ . ........ to ,fie ~ input Ipin61 '. _'.' ns ns 200 200 _ _- ;,;:"""', : _,,,,,,,- -v.••, ....... V'LAm•• -1.500 CD VEE 0- -5.2 .-5.2 -5.2 6 - + ns 9 ns MHz .. VIHAmin V,LA mi. VEE 0'" " - - 8 8 1',16 1,16 - - ! ! - - + + t: -0.700 + + - VIHAmin -1.205 -0.810 + - ...3' IVolts' -0.890 6 0.75 tobo _ _ . _ pujOl ' - boon .' ,~ .. , : "'.~".. .,__ '''. _':, ',_, :.._'. . 3.3 1.0 .. .... ~~_"'!y,~~,i~~~;~~VLL·miJt'~oJ~,,_......... _.......__ , J\. - 8::J IVee - - W VOLTAGE APPLIED TD PINS LISTED BELOW, M.. - - N TEST VOLTAGE VALUES V'Lmin -1.890 +85 o e M.. Set Input tau.... _ V,Hm •• ... L SUFFIX CEAAMIC PACKAGE CASE 620 - - - 5 7 9 5 7 - Pulse In 9 Pulse Out - 9 6 2 2 9 2 9 2 - 5 12 5 12 2 15. 3 14 - 4 13 4 13 6,7 6,7 2 15 3 14 2 - +l.llVde SWitching Times Clock Input P,.opagation Delay ,.:, .. :.:;-... ,.:•• :.:,;, ':,.' .i .. ::.; - 7 6 Min Symbol Power Supply Drain Current Pin Und.r T., s: n .... o 5----, 6 2 2 8 8 1,16 1,16 1,16 1,16 8 8 1,16 1,16 8 8 1,16 1,16 8 8 1,16 1,16 -3.2Vck: +2.0 Vdc 8 1,16 8 8 ! ! 8 + 1,16 + 8 1,16 + 8 1,16 8 8 + 1,16 1,16 i ELECTRICAL CHARACTERISTICS S1 5 Each MECL 10,000 serias circuit has been designed to meet thade specifications shown 01 CE1 7 6 in the test table, after thermal equilibrium - 3 The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through 8 5(H)hm resistor to -2.0 volts. Test procedures are shown for has been established. A1 "'O':~" CE2 11 0210 only ona input, or for one set of input con· ditions. Other inputs tested in the same manner. Pin Characteristic I Symbol I linH Input Leakage Current l.nL 4,5,6,7,9- ~ N CN Logic "1' Output Voltage VOH 2 21 Logic "0" Output Voltage Logic "I" Threshold Voltate Logic "0" Thre$hold Voltage VOL 3 31 VOHA 2 21 VOLA 3 31 I I Switching Times Clock Input Propagation Delay IE 19+21".2+ '2+ Fall Time (20 to 80%) '2- Set Input Propagation Delay Setup Time Hold Time Toggle Frequency (Maxi I I ii Test Temperatu,. 15 5212 MC10231P Test Limits +2Soc _lODe Min I Max Min I - I I Typ M•• 52 65 I I M.. -0.890 -0.890 -1.675 -1.675 -0.960 -0.960 -1.850 -1.850 -0.980 -0.980 -0.890 -0.700 -0.890 -0.700 -1.825 -1.615 -1.825 -1.615 -1.630 -1.630 '5+2+ t12+15+ 15+3+ tI2+14- I 14+2tI3+15_ t4+3_ tI3+14+ 1 'Setup 1 'Hold I 'T"II 2 2.0 2 2.0 -1.595 -1.595 1.3 VILA rna. VEE _lODe -1.890 -1.205 -1.500 -5.2 +2SoC -0.810 -1.850 -1.105 -1.475 -5.2 +85oC -0.700 -1.825 -1.035 -1.440 -5.2 + 1.0 VIH mall 200 tOutput level to be menured after'. dock pul. has been epplied to the Ce VILmin VIHA min VILA mall G'" 8 1,16 ~ /JAde /JAde Vdc Vdc 5 7 Vdc Vdc 5 7 8 8 1,16 1,16 Vdc Vdc 9 1,16 1,16 2.25 MHz Vlfj max VIL min 1,16 1,16 9 • :..fL ~ 1,16 1,16 1,16 1,16 Vdc Vdc + input (pin 6) VEE 1,16 Pulse In Pulse Out 6 5 12 15 9 12 14 4 13 -IndIvidually test eec:h Input. apply VIL mIn to pin under test. BO e> CO bO bO' co 9 NEGATIVE LOGIC C1- M1 14 co (AOe> BO e> MO) + AD (BO e MO) M1 .1 .1' b1 A1 eB1 eM1 A1 (B1 e S1 - A1 e> B1 e> C1 Mn b1' C2 Thi,l. advance Information end .peciflcatlon. ara .ubJect to change without notice. S. 0." .... ' I "formation section for peckaglng. 3-225 Me 10287 (continued) MC10287 FUNCTIONAL TRUTH TABLE Ml MO bl bl' .1 .1 • bO bO'.o 00' 14 3 13 12 11 10 4 H H H H H H H H H H .H H H H H H H H H H H H H H H H H L L H H H L L H H L L L H H L H L H L H H L H L L L H L H H H L H L L 78 79 80 81 82 H L L L L H L L L L L H H L L L H H L L L H L H L H L H H H L L L H L H H H L 83 84 85 86 87 H L H L· H L H L L H H H H L H H L L H H H L L H H L H L H H L L H L H L L L H L L L L L L L L L L 88 89 90 91 92 L L L H H L L L H H L L H L L H H H L L H H L H H L H L H H L H H L L L H H 93 94 95 96 97 H H H H H L L H L L H H L H H H H H L H L H H H L H L L H H H H H 98 99 100 101 102 L L L L L L L L L L H H H H H H H H H H 40 41 42 43 44 L L L L L L 45 46 47 48 49 L L L L L L L L L L L 5 6 7 8 9 L L L L L L H L L H H L H H H H L L L L L L L L 10 11 12 13 14 L H L L H H L H H H L H H H H 15 16 L H H L H L L L H H H H H H L H H H H H H H H H H H H H H H L L L L L L L L L L H H H H H H H L L L H H L L L L L H H H H H H 18 19 L L L L L H H H H H L L L L L L L L L L H H H H H H H H H H L L L L L H H H H H L L L L L L L L L L H 20 21 22 23 24 L L L H H 25 26 27 28 29 L L L L L H H H L L L H H H L H H H H L H H H 30 31 32 33 34 L L L L L H L H H L L H L L L L H L L L 35 36 37 38 39 H L H L H H L L H L L L L H L L L L L L L H H L H L H H H L L L L L H H L L H H H L L L L L H H H H L H H H H L H H H H L L L L L L L L H H H L L H H H L H H H H L L H L L H H H L L H H L H L H L L L H H L L L H H L L H H L H L H L H H L H L L L L H L H L L H H L H H H H H H L L L L H H L L L H L H H L L H H H H H H L L L L L L L L L L L L L L L L H H H L L L L L L H H H H H H H L L L H H H L L H H H L L H H H L L H H H L L L L H H H H H H L L H H L H H H H H L L L L L H H H H H H H H H H H H H H H H H H H H H L L L L H L L L L L H H L L H H H H H L L L L L H H H H H H H H H H L L L L L L L L L L H H H H L H H H H L H H L L H H H L H H H H H H L L L L L L L H H L L L H H L L L H H H L L H H H L L H H L H H H H L H L L L H H H H L L L L L L L L L L L H H H H H H H H H H H H L L L H H L L L H H H H H L L L L L L L L L L L L L L L H L L L L H L L H H H H H H H H L L L L L H L L L L H L L L L L L L H L L L L H L L L H H H H H H H H H H H H H L L H H L L H H L L L H L H L H L L H L H L H L H L H L H L H L H L L L L 17 L L L L L L L L L L L H H H H H H H H H H H H L L L H H L L L L L L H L H H L L L L H L L L L L H H H H L H H H H L H H L L L H H L L L H L H L L H L L H L L L L H H H H H L 103 104 105 106 107 H H H H L H L H L H L H ·L L H L L L L H L L L L H L L L L H H H L H H L H L H L H H L H L H L H L H L H H H L H L L L H 108 109 110 111 112 L L L L L L L L L L H H H H H H H H H H H H H L L H H H L L H L L H H H L L H H L H L H L L L H L H L L H L H H H L H L 113 114 115 116 117 H H L L L H H H L L H H L L L L L H H L L L H H L H L H L H H L H L L H H H H H L L L L L 118 119 120 121 122 L L L L H L H L L L H H L L L L L L L L L L L L H H L L H L L L L L L H H L L L L L 123 124 125 126 127 L L L L H L L L L L L L L L L L L L L L L L L L L L L L L H H H H H L L L L L L 128 129 130 131 132 L L L H L L L H L L L H L L L H H H L L L L L L 133 134 135 L L H H H L L L L L L L L H H H H L 55 56 57 58 59 L L L ·L L H H H H H L L L L L L L L L L L L L L L H L H L H L H H L H H L L L H H L L H 60 61 62 63 64 L L L L L L L L L L H L L L L L H L L L L L L L H L H L L H L L L L H L L L H H H 65 66. 67 L L L L L L L L L L L L L L L L L L L H H H H L H H L L H L H L L H H L L H L L L L H L L L L H H H L L H H H L L H H H H H H H H H H H L L L H L H H L H L H H L H L H H L L L L L 3·226 L L L H H L L L L L L L H L H L L L H H L L L L L L L H H L L L L L L H H 50 51 52 53 54 H L L H H L L L H H H L L L L H H H L L H H L L 73 74 75 76 77 H H L H L H H L L L H H L H H H H H L L L L L H H L H L L H H H H H H L L L L L L L H H H L H L L H H H H H H H H· H H H H H L L L H L H L L H H H H H H H H H H L L H L H L L L H H H H H H H H L L H L L H H L L L L H H H L L L L H L L H H 0 1 2 3 4 H H H H H·'H H H H H L L H H H L L H L L L H H H H H L H H H H H H H H L L H L L L. H H H H H H L L L L L L H L L H L H H H H L H L H 68 69 70 71 72 H L H L L L L L H Word H H H H H H H L L H L L L L L H 15 H H L L H H H H H H H 1 H H H L L H H H H L H H 2 L H H L H H H H H L H H H H H H H H 9 H L H L H 1 15 H L L L L H H 7 H H L L H 2 H H 6 H H L L H 9 H H H H H H 5 L L L L H 14 3· 13 12 11 10 4 Word 7 H H H H. H L Ml MO bl b" .1 .1' bO bO' .0 00' CO 5051 C2 51 C2 6 H H H H co so 5 L L L L L H L L H H H H H H H L L H L H L L H L .. ~t;!CT1UCAt: CHAlIACTERlST1CS Each MECL 10.000 _ios circuit hils been . designed to meet the de specifications shown in the tnt table. after thermal 3 MO 6 eO so - 2 .0' equilibrium has been .tabUlhed. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater man ouu Imear rpm IS mamtam80. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedu res are Ihown for only .Iected inputs and outputs. Other inputs and outputs tested in the .me mannar. 4 bO 5 bO' 9 - co 1 4 - Ml 11101 3 - bl 1 2 - bl' - ., .,' OT ... Temperatur. -30"1: C2r-------15 +25o C +85"1: Met0287 Test Limits Pin Cherec.... illic Po.,..r Supply Or.in Current Input Current w ~ Symbol 'E 'inH lint Logic "1" Output Vottege VOH I\J -.J Logic "0" Output Volt. Logic "1" Thr..... old VOlt. Logic "0" Thr..... old Vol .... VOL VOHA VOLA Un_r T. . 8 3 4 6 9 3 1 2 15 1 2 15 1 2 15 I 2 15 '9+15+ '6-t14+2l4-t+ t11+1_ t13+1t3+1+ t3+15+ t14+15+ 15 1 2 1 1 1 1 15 15 Ri_Tin. (20%.080%1 '15+ F.U Tin. (20%.080%1 'ts- ·Apply +0.31 V to all other inputs. -1.890 -1.850 -1.825 -1.205 -1.105 -1.035 Typ Max Min M•• Unit VIH ..... - - 77 - 3 4 6 9 - 0:5 - - - #lAde - 96 200 220 265 410 mAde - - j.lAdc - 3 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 Vdc ~ ~ ~ ~ ~ t 5.9 9 6.9.10 -1.890 -1.675 -1.850 -1.650 -1.825 -t.615 Vdc ~ t - t - - - - - -0.910 - Vdc 6.7 - 9 4 9 -1.630 - -1.595 Vdc t + t - - - ~ - -0.980 -1.655 - ~ t - - - - ~ ~ - t t t -1.500 -1.475 -1.440 - - - - ! ~ t - 6.7.10.11 6.7 - - - 6.7.10.11 +1.t1 V +0.31 V . - - - - - Pul.ln - - - - 2.0 - - - - 3 15 15 - - - 2.0 - - - - 3 15 - - - - ~ 8 8 ! 16 16 ~ t t t ~ 16 9 8 4 9 u . . Out -3.2 Vd. +2.0Vdc 11 13 3 3 14 15 1 2 1 1 1 1 15 15 4 16 16 16 - - 8 8 8 - - - (Vee 1 GncI ~ 15 - ns VEE - - - -5.2 -5.2 -5.2 16 - - 3 3 6 6 13 3.9 9 9.14 11 - VEE 8 - - - ~. c: CD c. - - - - 9 6 4 - 2.0 4.5 3.5 4.5 3.0 3.5 8.5 8.0 8.0 - ::J ::J VILmin V.HAmi VILA...... Min -1.060 8' Volts M•• - ...... TEST VOLTAGE VALUES Min Switching Tim .. Prop. .tion Del-v (50ohmlo~) CUE~O VOLTAGE APPLIED TO PINS LISTED BELOW, +1Ii"l: +25"1: -30"1: 200 CERAMIC PACKAGE VIM ...... VILmin VIHAm;' ViLA ..... -0.890 -0.810 -0.700 ~ -. Lwrnx t + 8 16 MC10287 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS" 25°C Vee - +2.0 Vdc COIX i 5~F V out t MO Coax 0.1 SO ~ .0 .0' bO bO' Pul •• Ganerator CO 51 ~ Ml Input Pulse .1 t+ = t-:: 2.0 ± 0.2 ns .1' (20 to 80%1 bl bl' 50-ohm termination to ground 10 c:ated in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxi,1 cable. Wire length should be 1/4 inch from TP in to input pin and TP out to output pin. C2 I - - - - 0,1 < Vee' -3.2 Vde ± ~ Unused outpl.JU .re tied to a 50ohm resistor to ground. PROPAGATION DELAY _----~~-:---- +1.11 V +0.31 V t+- t-+ 3-228 MC10287 (continued) APPLICATION INFORMATION gram" matrix of the single·bit products (or summands) can be written: : The MC10287 is a stand alone fully iterative dual multi· Plier' cell. It is intended for use in parallel multiplier arrays where maximum speed is desired. Each cell is a modified gated adder/subtractor individually controlled by a mode select line. Internal carry lookahead (also called anticipated carry) is used to minimize sum and carry out delay times. . The mode controls are specifically buffered such that they.c'm be grounded. Normally. MECL 10.000 device inputs should not be placed at ground to establish a high logic level. However. MO and Ml can be used at ground potential for ease of layout in large arrays. An array multiplier is defined as a multi· input. multi· output combinational logic circuit that forms the product of two binary numbers. Binary multiplication can be treated in two categories. that is. simple magnitude multi· plication and 4·quadrant multiplication (requiring both positive and negative numbers). X3YO x2YO xlYO xOYO x3Yl x2Yl XlVI xOYl x3Y2 x2Y2 x 1V2 xOY2 x3Y3 x2Y3 xlY3 xOY3 Z7 z6 z5 MAGNITUDE BINARY MULTIPLICATION '.;' Magnitude multiplication consists of the product of two binary numbers in which all digits are number bits (no sign bit). Magnitude representation then includes only positive numbers. Thus. for a 4·bit number X the representation is: X=X3 x2 Xl xO A 4-bit by 4-bit product becomes: 4 B. 12 lB z2 zl zO xlY3 x3YO x2YO xlVO xOYO The product consists of the sum of the single· bit products formed by this expression. The standard "parallelo- Number of Bill z3 x2Y3 x3Yl x2Yl xlYl xOYl x3Y3 x3Y2 x2Y2 xlV2 xOY2 Z = X. Y = (X3 x2 Xl xO) • (Y3 Y2 Yl YO) TA8LE 1 - TYPICAL MUL TIPL Y TIME FOR AN n-BIT BY n.aIT BINARY MAGNITUDE ARRAY MULTIPLIER z4 The MC10287 is used in an array summing the single· bit products to form the final result. It is observed that the arithmetic product of binary digits Xi and Yi is also the logical product (Xi times Yi = Xi AND Vi· The AND function on the operand inputs of the MC10287 forms the single·bit products of the matrix directly and sums them internally. For magnitude binary multiplication. the MC10287 functions as a dual full adder (MO. Ml are both low). The partial product array can be summed using a number of different techniques. The fastest technique is some form of matrix reduction scheme that prevents carry propagation until the final level of summation. Several of these schemes are discussed in detail in Reference 1. As an example. if the matrix is rearranged and written in a different form: xOY3 Z7 z6 z5 z4 z3 22 zl zO FIGURE 1 - 4-BIT BY 4-BIT MAGNITUDE ARRAY MUL TIPLIER Total Multiply Time Inll 14 25 39 44 "0 3-229 Me 10287 (continued) The summation of the partial products for this con· figuration is shown in Figure 1. The number of MC10287's for an n·bit by n·bit array is n (n·l)/2. Note also that the least significant product bit (ZO = xOYOI is formed by an individual AND gate (negative logicl. Table 1 gives package count and typical multiplication times for n·bit by n·bit magnitude multiplier arrays. The mUltiply times do not include wiring delays, and the package count does not include the gate for the least significant product bit. in which all inputs are positive quantities. If one input is negative (such as 8). the outputs Cout and S must be coded such that they can represent the 4 possible output conditions. If 8 can be a negative one or zero, .tha-~ output can then be: net output = I -~ +1 +2 FOUR·QUADRANT MULTIPLICATION If Cout, whose weight is twice that of S, is assigned, positive value and S is a negative value, the above vllu.is can be represented: .; Sign·magnitude and 2's complement representations are commonly used for 4·quadrant multiplication. For sign·magnitude representation, the binary word consists of a sign bit and magnitude bits which indicate the absolute value of the number. For a 4·bit example: where: net output = 2 • Cout - S -1 = 0 - 1 0= 0-0 = 2-1 +2= 2-0 +1 X= Xs x2 Xl xo For X. y= Z Z = X • Y = (xs x2 Xl xOI • (Ys Y2 Yl YO) An array multiplier for this representation consists of an (n·l)·bit by (n·l)·bit magnitUde multiplier that pro· duces the product of the magnitude bits of X and Y and of logic that produces the proper product sign bit (zs = Xs @Ys)' 2's complement representation also inclUdes a sign bit which is a negative bit. That is: If the truth table is written and logic equations gen8/) ated, the result is a subtractor. That is, a subtractor uS8Cf in place of a full adder produces the proper outputs. The symbol for the subtractor is: . A ! /-B G-Cin X = -x3 x2 Xl xo co: ~ where x3 is the sign bit. The product of two 4·bit 2's complement numbers becomes: Z = X. Y = (-x3 x2 Xl xO). (-Y3 Y2 Yl YO) -5 The matrix for this expression is: Also, if the input variables are multiplied by -1, the outputs also are multiplied by -1. Thus, the following devices are equivalent: -x3YO x2YO xlVO xoyo x2Yl xlYl xOYl x1V2 x OY2 -A A -Z7 z6 Z3 ! /B zO The product is the sum of this array of single·bit products. However, notice that several summands are nega· tive quantities. Therefore, they can not be simply added as is the magnitude binary multiplier. The subtraction capability of the MC10287 is utilized when considering these negative quantities. A standard full adder is symbolized as: c:U: A C ;n ~ .C:: ~ -5 A -A G-C;n ~ C; ~ 5 -5 3·230 1/-- G--Ci;' 5 ! /-B ! /a G-C;n c:U: 8- ! /G_-C ~~ 5 in MC10287 (continued) A basic adder/subtractor can then handle all the varying situations that appear in the multiplication matrix. If the 2's complement matrix is rearranged: IMPROVED SWITCHING DELAYS The specified ac switching delays are given for output loading of 50 n to -2 volts. With lower output current, propagation delavs will be improved and decreased multi· ply times can result. For output loading of 1 kn to VEE, the following delavs are typical. -xOY3 -X1Y3 -x3VO x2YO xlVO xOYO -x2Y3 -x3Yl x2Yl xlVl xOYl x3Y3 -x3Y2 x2Y2 xlV2 xOY2 -z7 z6 z5 z4 z3 z2 Zl Input CO AO AO BO AO BO MO zO The adder/subtractor array for this configuration is shown in Figure 2. Care must be taken to insure that the proper mode of operation (add or subtract) appears at each summing node as a function of the positive and negative weighted inputs. The summand matrix can be altered different ways to speed up the multiplier array. Reference 2 discusses the algorithm used with the MC10287 in detail. Also, the techniques of Reference 1 also apply to 2's complement arrays using the MC10287. Table 2 gives typical multiply times for 2's complement arrays for n'bit by n-bit multipliers. REFERENCE AND ACKNOWLEDGEMENT The techniques for implementing the MC10287 in multiplier arrays resulted from work done originally at M.I.T. Lincoln Laboratories. Also, applications information presented here developed in part from personal correspondence with P. Blankenship of Lincoln Labs. The following references are useful in developing multipliers using the MC10287: TABLE 2 - TYPICAL MULTIPLY TIME FOR AN n-BIT BY n·BIT 2'.CO~LEMENT ARRAY MULTIPLIER Total Multiply Time Number of Bits (ns) Package Count 4 8 12 16 14 25 6 28 66 120 39 44 Delay (ns) 1.7 2.8 2.8 3.1 3.9 4.4 8.7 Output C2 C2 SO SO 51 51 51 1. A. Habibi and P.A. Wintz, "Fast Multipliers," IEEE Trans. Computers (Short Notes!. Vol. C·19, Feb. 1970, pp. 153-157. 2. S.D. Pezaris, "A 40-ns 17-Bit by 17-Bit Array Multiplier", IEEE Trans. Computers, Vol. C·20, Number 4, April, 1971, pp. 442-447. FIGURE 2 - 4-BIT BY 4-BIT 2'. COMPL EMENT ARRAY MULTIPLIER '0 3-231 ~f ') QUAD OR/NOR GATE ~---------' MC10501 POSITIVE LOGIC (8) 4 2 (6) r--L-~~--5 . / " - - - 5 (9) (11) The MC10501 is a quad 2·input OR/NOR gate with one input from each gate common to pin 12 in the L package and pin 16 in the F package. Input pulldown resistors eliminate the need to tie unused inputs to an external supply. NEGATIVE LOGIC ...----...--~- 2 (6) (81 4·· MECL 10,000 series 7-'L---r---"'-~-3 ..--~~~--6 (7) (9) 3 (71 (11) 7 "---L-~~--6 (10) (10) ...L--<:",-"",,,,,,_ _ 14 (2) (14)10 . - - , - - _ , , - - - 11 (15) (1)13 Po 15(3) (16) 12 _ _--.'---'_ _ _ 9 (13) tpd _ - , - _ . / " - - _ 9 (13) = 25 mW typ/gate = 2.0 ns typ (No Load) Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%) Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers (C .... in parenthesis denote pin numbers for F package 6501. CASE VCC1 VCC2 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 VEE SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25 0 C V out NOR vee1 = VCC2 +2.0 Vdc Coax V out OR Coax Coax PROPAGATION DELAY 50 50 Input +1.11 V Pulse Generator 50% Input Pulse ' -_ _....J_ t+ = t- = 2.0±. 0.2 ns (20 to 80%) ---+0.31 V t++ Unused outputs connected to a 100.ohm resistor to ground. L_~_ @x_--o I~F 50 ohm termination to ground 10 cated In each scope channel Input All Input and output cables to the ~~~~~a~:·a:~81~~~!tl~~;:h5~~~~~ V out OR V aut NOR ,... -32 Vdc VEE be <114 inch from TP in to input pin and TP out to output pin. V out is 2: 1 attenuated. See General Information section for packaging. 3-232 ELECTRICAL CHARACTERISTICS 3: Each full tamperatura range MECL 10,000 5 7 after thermal equilibrium has been astab-- lished. ... ~ o... o 4~2 series circuit has been designed to meet the de specifications shown in the test table, The circuit is in a test socket or mounted on a printed circu it board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 1~ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same man ner. 3 10 ~4 13 12 11 15 9 - L SUFFIX CERAMIC PACKAGE CASE 620 8 ::J e. ::J C CD 0. TEST VOLTAGE VALUES CVoIt.1 ttT... T ........tur. -liIi"c +:zsoC +126"c Co) ~ Co) Co) CherKt..istic Sy ..... POwer Supplv Or8.n Current IE Input Current l.nH l.nL Logte "',. Output Voltage LogiC "0" VOH VOL Output Voltage logic "'" 8 4 12 4 12 5 5 2 2 5 5 2 2 VOHA 5 5 2 2 VOLA 5 5 2 2 Threshold Vol lege Logic "0" Threshold Voll. P,n Unci. Tnt M;. Max Min Typ M_ - 29 450 910 - 20 26 - 0.5 0.5 -UJ80 t4+2l4-2+ 14+5+ '4-5Rise Time 12010_' Fall Time 12010_1 '2+ '5+ '2_ 's- 2 2 5 5 2 5 2 5 - ~.880 + ~ -1.920 -1.655 0.5 0.5 -0.930 ~ - - 1.0 j - - 1.635 + 3.7 + .. - - 2.0 j + 2.9 + 33 ~ VIHA min VILA meK VEE ~.880 -1.920 -1.255 -5.2 ~.780 _1.850 -1.820 -1.106 -1.000 -1.510 _"'75 ~.83O -"'00 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: 0.3 0.3 -0.825. VIHmu VILmin VIHAmin VILAmla VEE GncI 29 265 mAde - "Adc 4 12 - 8 8 1,16 ",Adc - - 536 - ,.,Adc - - .Adc - ~.830 Vdc 12 - + ~ -1.545 ~.845 ~ -1.525 - 1.0 j IVeel IJn;t + + + -1.600 1.0 + + ~ - - 1.1 - .... VILmin +125Oc Mi.. -1.620 -1.820 - + + 4.0 265 536 ~.780 -0.950 .. + - -1.850 + + + -1.100 Switching Times I1,QO-ohm la.jl Propagation Delay MC101i01L T . . Lim. +25o C -li6"c VIHmn + 3.7 + 40 + 4 • • • • Vdc Vdc 12 4 - 4 12 - - -- - - - .. - n, I - - .. - - - - - 12 4 - - 1,16 8 8 !:!: 8 1,16 I • • 8 + 1,16 + 8 1,16 + 1.16 - 12 4 - 12 4 12 4 - Pu"'n PuI.Out -3.2 V +2.0 V 4 2 2 5 5 8 1,16 Vdc - - 1,16 8 8 + • • I II 2 5 2 5 ELECTRICAL CHARACTERISTICS s: B~6~ Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and ....oo C1'I o.... 11. 10 14 2 15 1 transverse air flow greater than 500 linear ~ 3 16 fpm is maintained. Outputs are terminated 13 throu~ a l00-ohm resistor to -2.0 volts. Test procedures are shown for onlv one gate. The other gates are tested in the same manner. 8:::J .... F SUFFIX 5' CERAMIC PACKAGE CASE 650 t: ~ reST VOLTAGE VALUES I (Voltsl @T ... T ernperatu,e VIH",,, Vll min VIHA min -0.830 -0.720 -1.920 -1.255 +25o C + 125°C -0.580 -1.850 -1.820 -1.105 -1.000 -55"<: MCl0501F T_ Limits Pin (.) ~ ~ Power Supply Dram Current Input Curren I Symbol Test Min M.. Min 'E 12 - 29 - ImH 8 16 8 16 9 9 6 6 9 9 6 6 450 910 - ImL logIC "1" Oulpul VOltage LogIC "0" Output Voltagt! VOH VOL Loglc'T' Threshold Voltage VOHA 9 9 6 6 LogIC "0" Threshold Voltage VOLA 9 9 6 6 - RlseTlmt! (2Ot08O%J Fall Time (2010_1 t8-9- 6 6 9 9 16+ 19+ 6 9 16- 8 t8+618-6+ t8+9+ ~~ 9 --- - 0.5 0.5 -1.080 -0.830 + ~ -1.920 -1.655 ~ -1.100 + - + - SWltchulg Tlme~ (l00-ohm load) Propagation Delay +2SoC -55"<: Unci. Charact",istlc - - - - - - -1.635 ~ - - 0.5 0.5 -0.930 ~ -1.850 + -0.950 ~ - 1.0 + 1.1 ~. TV. 20 - - - - 2.0 VEE -1.475 -5.2 -5.2 -1.400 -5.2 reST VOLTAGE APPLIED TO PINS LISTED BELOW: + 125°C M.. Min M.. Unit VIHmaJ( VIL mm VIHA min V,LA ma. VEE 26 - 29 265 635 mAdc - - - ,..Adc /oIAdc 8 16 - - - - 8 16 - - 12 12 12 12 12 12 265 535 - - -0.720 ~ 0.3 0.3 -0.825 ~ -1.620 -1.820 + - -0.845 - - -1.600 ~ 2.9 ~ + - - j VILAma. -1.510 + 3.3 ~ - i,.!Adc - .Ad, - -0.580 Vd, 16 8 ~ + -1.545 Vdc: + - Vd, - -1.525 ~ - - + - - 16 8 - - + Vd, + 0, j - - - - 16 8 - - ---- L- - - - + 12 + 16 8 - - 4.5 4.5 4.5 4.5 4.5 4.5 + 4.5 + 12 4.5 + 4.5 - 16 8 16 8 12 + • + Pulse In PuI.Out -l.2V +2.0V 8 6 6 9 9 12 4.5 j - - IVeel GncI 6 9 6 9 lj "') QUAD 2-INPUT GATE MEeL 10,000 series \..._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---1 MC10502 The MC10502 is a quad 2-input NOR gate. Input pu IIdown resistors elim inate the need to tie unused inputs to an external supply. NEGATIVE LOGIC POSITIVE LOGIC (8) (9) (10) (11) (14) :~2 ~~3 :~2 (8) (6) (!l) ~~3(7) (10) (7) (11) 10~ 14 10~_14(2) (14) (2) (15) 11 11~ (15) (16) 12~15 (1) 13 9 (6) Po'" 25 mW tvp/gata (No Load) tpd = 2.0 ns tvp Output Rise and Fall Time: (16) 12~15(3) (3) 113) 13~9(13) 11) = 3.5 nstyp (10% - 90%) = 2.0 ns typ (20% - 80%) Number. at end. of terminals denote pin number, for L package (C... 6201. Numbers in (C ... 660>- parenthesis danote pin numbers CASE VCCI VCC2 VEE 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 for F package SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS@ 25°C VCCI = VCC2 +2.0 Vdc Coax V out NOR V out OR Coax 50 Coax 50 PROPAGATION DELAY Input Pulse Generator Input Pulse 't+ = t- = 2.0 ±. 0.2 ns (20 to 80%) C_--f1:'~' 50-ohm termination to ground located in each scope channal input. Unused outputs connected to 8 100-0 h m reli stor to ground. L3fvdC V out NOR All input and output cables to the scope are equa' lengths of 50-ohm coaxial cable. V out OR Wire length should be <1/4 inch from TPin to input pin and TP out to output pin. V out is 2: 1 attenuated. See General Information section for packaging and maximum ratings. 3-235 ELECTRICAL CHARACTERISITCS s: ...nc Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been estab· lished. The circuit is in 8 test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear :~2 10~ through a 1~ohm resistor to -2.0 volts. Test procedures are shown for only one 11 C - ~~3 fpm is maintained. Outputs are terminated gate. The other gates are tested in the same manner. C1I " 12~15 13~9 N 8 ...3' :::J c: no ~ L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES IVoIts) lilT... Temperatur. -SS"C +25o C +125 0 C MC10502L Test Limits Pin w r() w en -SS"C Symbol Power SupplV Drain Current 'E linH 8 12 IlnL 12 VOt< 9 9 15 15 -1.080 -0.830 VOL 9 9 15 15 -1.920 -1.655 VOHA 9 9 15 15 -1.100 9 9 15 15 - Logic "'" Output Voltage Logic "0" Output Voltage Logic "'" Threshold Voltage logic "0" Threshold Voltage Switching Times (lOO-ohm loedl Propagation Delay Rise Time (20'0_1 Fall Time (20 to 8II%J VOLA 112+15_ 112-15+ '12+9+ '12-9'15+ '9+ '15'9- 15 15 9 9 15 9 15 ~ M;n 0.5 ~ + ~ - 1.0 j VIL min -1.920 -1.850 -1.820 VIHA min -1.255 -1.105 -1.000 VllAm•• VEE -1.510 -5.2 -1.415 -1.400 -5.2 -5.2 I TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +2SoC Chllract.-istic U..... T... Input Current VIH m.x -0.830 -0.720 -0.580 +t25°C 1Veel Min TV. Max Min M. . Unit VIH malIC VILmin VIHA min VllAmn VEE Gnd 20 26 265 - 29 mAde - - - 1,16 265 j,lAdc 12 - 8 1,16 - 0.5 - 0.3 - j.lAdc - 12 - - 8 450 - - 8 1,16 -0.720 -0.825 -0.580 Vd, 8 1.16 ~ ~ - +8 1,16 - • • M. . 29 ~ ~ - - -1.635 ~ 0.930 + -1.850 + -0.950 + - - 3.1 1.0 + 1.1 4.0 ~ - - - - - + -1.620 + - -1.600 - 2.0 • j + ~ .. 2.9 + 33 + -1.820 -1.545 ~ ~ -0.845 + - - 1.0 j + Vd, + Vd, -1.525 Vd, 3.1 ~ ~ 4.0 - - - ~ 12 13 + + n, j 12 13 - - - - - - - - - - - 12 13 - - - + 8 1,16 + 1,16 - 12 13 12 13 12 13 - Pulse In Put. Out -3.2V +2.0V 12 15 15 9 9 15 9 15 9 8 1.16 j 8 + + • j j 3!: n .... ELECTRICAL CHARACTERISTICS Each full temperature range MEeL 10,000 series circuit has been designed to meet the :~6 de specifications shown in the test table, ,O~, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 10~ohm resistor to -2.0 volts. Test procedures are shown for only one gate. '4~ ~ o ; "~ 2 ,.~ '6~3 1_~13 N 8::l ~, :J c:: a F SUFFIX The other gates are tested in the CERAMIC PACKAGE CASE 650 same manner. rEST VOLTAGE VALUES (Voltsl "'Tnt T emperatur. -55"<: +2So C +12SoC w N w ...... Pin -SSOC Und .. MCt0602F Telt Lim"s +25 o C + 125°C Typ Min M.. Min M.. CNiract.i5tic Svmbol Te.. Min M.. Power Supply Drarn Current 'E IlnH 12 - 29 450 IlnL 16 13 13 3 3 13 13 3 3 0.5 - 0.5 -1.080 -0.880 -0.930 Input Current logic "1" Output Voltage logic "0" Output Voltage logic "1" Threshold Voltage LogiC "0" Threshold Voltage SWitching Times (100ohm loadl Propagation Delay Rise Time 1201080%) Fall Time 120 to 80%) 16 VOH VOL VOHA VOLA 13 13 3 3 13 13 3 3 t16+3'16+3+ t16+13+ t16+13- 3 3 13 13 '3+ t13+ '3_ t13- 3 13 3 13 - •• • • • • + • + -1.920 -1.655 -1.100 - - - - -1.850 20 26 - 265 - - - - - -1.635 - - - -- 10 + 1.1 + - - 20 j -0.780 - + - -1.415 ·1.400 -5.2 -5.2 -5.2 TEST VOL rAGE APPLIED TO PINS LISTED BELOW: VILA m.x VEE - - 265 j.lAdc 16 - 12 12 j.lAdc - 16 - + -1.545 - + -1.105 -1.000 VIHA min -1.525 3.3 -1.850 -1.820 VIL min - - -1.510 - -1.600 29 VEE -1.255 mAde -0.845 - VILA mill -1.920 29 -0.825 -0.630 1.820 -0.880 -0.780 -0.630 VIHA min VIHmiJ_ • • • • •• • • -1.620 r-- Vilmin Unit 0.3 -0.950 - - VIHmn - - Vd< + Vd< - - + 16 1 + - Vd< Vd< + 0, - '6 1 - - - - j - - - - 16 1 - - I - - - - 16 I 4,5 12 4,5 12 4,5 + 12 + + 4.5 + 12 4.5 + 4,5 + - 16 1 16 1 - + Pulse In PuI_Qut -J.2V +2.0 V 16 3 3 13 13 12 4,5 - - - - tVeel Gnd 4,5 j - 3 13 3 13 12 j + I MECL 10,000 series QUAD 2·INPUT AND GATE MC10S04 The MC10504 provides a very useful low power, high speed logic AND function. High Z input pulldown resistors allow high dc and ac fanouts and eliminate the need to tie unused inputs to an external supply. The open emitter outputs allow maximum flexibility in the selection of ter· mination techniques and minimize the power requirements when driving transmission lines. Open emitter outputs also allow wire·ORing capability, which is very useful in control, bussing, and communications in high speed central processors, high speed peripherals, digital communication systems, minicomputers and instrumentation. Po = 35 mW typ/gate (No load) tpd '" 2.7 ns tYP Output Rise and Fall Times' = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%) POSITIVE LOGIC (8)4~ ~ (9)5~216) (10)6~3 (7) 1111 7 NEGATIVE LOGIC (14)10~ ~14(2) 18)54~ (15)11~ ~2(6) (9)~ (16)12~9113) 1')'3~'513) 110) 67~- '~317) (11)~ Numbers at ends of terminals denote pin numbers for 114)10~1 L package (Case 6201. (2) 115) 11 Numbers in parenthesis denote pin numbers for 116)12~9113) F package (Case 6501. (1)13~1513) CASE 620 650 Pin 1 Pin 5 Pin 16 Pin 4 Pin 8 Pin 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C veel Vin To Channel "A" V CC2 t2.0 Vdc V out V out NAND AND PROPAGATION DELAY To Channel "8" Input Pulse Generator 50 50 Input Pulse tt '" t- =- 2.0 ! 0.2 ns (20 to 80%) I +1.11V~ O.ljJF L ____ ~1: I 50 ohm termmatlon to ground located in each scope channel Input VEE I ...J Unused outputs connected to a 1 aD-ohm resistor to ground. 0 1 ~F -3.2 Vdc All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input pin and TP out to output pin. V out is 2: 1 attenuated. < See General I nformation Section for packaging and maximum ratings. 3-238 3: o o U'I o ELECTRICAL CHARACTERISTICS ~ signed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit ,o~ board and transverse air flow greater than ~ Imear rpm IS maintained. Outputs are terminated through a 1()()..ohm resistor to Power Supply Drain Current w ~ W CO Symbol _ 11~14 12~9 13 -2.0 volts'- Test procedures are shown for only one gate. The other gates are tested in the same manner. Characteristic - :~2 :~3 Each MECL 10.000 series has been de· 15 L SUFFIX ~. c.. Min 8 - Max 39 Min - Typ 28 VILAmax VEE _55 0 e -C.880 -1.920 -1.255 -1.510 -5.2 -C. 780 -1.850 -1.105 -1.475 -5.2 +1250 e -0.630 -1.820 -1.000 -1.400 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +2SoC -550 e VIHAmin +25o C MCl0504L Test Limits Pin Under Test VILmin +1250 e Max Min 35 265 220 VIHmax VILmin VIHAmin VILAmax VEE' (Vee) Gnd mAde - - 8 1.16 13 12.13 - - ..Adc ",Adc - - 8 8 1.16 1,16 8 1,16 - 8 1,16 • 1,16 8 1,16 Max Unit - 39 - 265 220 linL 12 0.5 - 0.5 - - 0.3 - ",Adc - 12' VOH 9 9 9 15 -1.080 -0.880 0.930 -0.780 -0.825 -0.630 Vdc - ~ 12 13 12,13 9 15 15 15 -1.920 - Vdc 12,13 - 13 12 - - 9 9 15 15 -1.100 12 13 12 13 - - 13 12 - 13 12 9 9 15 15 - 12 13 12 13 - - Logic "I" Threshold Voltage Logic "0" Threshold Volt_ VOL VOHA VOLA c: (!) (Volts) VIHme. Logic "I" Output Voltage ::J @Test Temperatur. Ie I· Logic "0" 8::J TEST VOLTAGE VALUES I "out Current Output Voltage .1=0 CERAMIC PACKAGE CASE 620 13 12 450 375 + t t -1.655 t • + - -1.635 ~ Switching Times- 1.850 t 0.950 t - - - - + -1.620 + -1.820 t t - -C.845 -1.600 - t t - t' -1.545 + - - -1.525 + t Vdc i i Vdc - - +1.11 V - 13 12 - - - - 8 t t t ~ 8 ~ 1,16 t - - 13 12 Pulse In purse Out -3.2 V +2.0 V 12 9 9 15 15 9 15 8 1,16 + (l00-ohm load) Propagation Dalay Rise Time (20%1080%) Fall Time (20%1080%) 112+9112-9+ 112+15+ 112-15113+9+ 113+15- 9 9 15 15 9 15 19+ tl5+ 9 15 19115- 9 15 - - - -Inputs 4, 7, 10, and 13 will behave similarly for ac and I inH values. Inputs 5, 6, 11, and 12 will behave similarly for ac and linH values. - - - - - - 1.0 2.2 4.0 j t 2.7 2.7 1.5 2.0 t ~ 3.5 - - t - - - - - ns 13 ~ 12 j - - - t 13 l 9 15 9 15 s: ELECTRICAL CHARACTERISTICS Each full temperature range MECL 10,000 seriescircuit has been designed to meet the 8~ de specifications shown in the test table, after thermal equilibrium has been estab- 10~_ mounted on a printed circuit board and 14~ -2 15~ 16~13 transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. Characteristic Power Supply Dram Current Input Current Symbol 'e ImH linL ~ o Logic "1" Output Voltage Logic "0" Output Voltage Logic "1" Threshold Voltage Logic "0" Threshold Voltage Switching Times· (100-ohm load) Propagation Delay Rise Time (20%'08O%) Fall Time (20% '0 80%) VOH VOL VOHA VOLA t16+3+ '16-3'16+13'16-13+ '1+3:t1+13+ '3+ t13+ '3_ '13_ 1 o.... FSUFFIX CERAMIC PACKAGE CASE 650 ~ 11~7 lished. The circuit is in a test socket or w -6 9o-~ o ~ ~ 8 TEST VOL TAGE VALUES 3 ::J ~. IVoltsl ::J c: @Test Temperature Pin Under Tes. Ma. Min TVp 12 39 - 1 16 16 - 450 375 0.5 - 0.5 3 13 13 t3 3 3 3 13 3 3 13 13 -1.080 -0.880 -0.930 3 3 13 13 - 3 3 13 13 3 13 - 3 13 3 13 i t -1.920 -1.655 ~ t -1.850 t i - -1.100 t -0.950 ~ -1.635 -550 e -0.880 -1.920 -t.255 -1.510 -5.2 -0.780 -1.850 -1.105 -1.475 -5.2 +12SoC -0.630 -1.820 -1.000 -1.400 -5.2 - - 39 mAde 1 1,16 4.5 4.5 - 16 - - 12 12 1,16 - 4.5 ,....Adc ,....Adc - 12 - 265 220 12 12 4,5 4,5 - 12 - 16 1 - 12 0.3 - ,....Ade -0.780 -0.825 -0.630 Vdc ~ ~ i ~ -t.620 -1.820 -1.545 Vdc ~ ~ -0.845 Vdc - - - -1.600 t - -1.525 Vdc 1.0 - 1.5 2.0 ~ ~ Inputs 9,10,15 and 16 will behave similarly for ec and linH yaJues_ VEe - - • Inputs 1.. 8 .. 11 and 14will behave similarly for at and linH yalues_ V.LAme. - + - VIHAmin - - - VILmin 35 2.2 j t 2.7 2.7 ! ~ 4.0 j ! 3.5 IVee) Gnd VIHmax 265 220 - a Unit 28 - - - - VEE Ma. Min - VILAma. +12SoC Ma. - VIHAmin TeST VOL TAGE APPLIED TO PINS LISTED aELOw: +2SoC -55 O e VILmin +2SoC MCl0504F Test Limits Min VIHmax - i - - - - + t t ns 1 16 1 16 1,16 1 16 1 16 16 1 16 1 +1.11 V - t - j - 1 16 - - - 16 1 t ~ t 4,5 + 4.5 t t t ~ 12 4,5 - 1 16 1 16 Pulse In Pulse Out -3.2 V +2.0 V 3 3 13 13 3 13 12 4,5 16 t 1 j - 3 13 3 13 MECL 10,000 series TRIPLE 2·3-2 INPUT OR/NOR GATE MC10SOS The Me 10505 is a triple 2-3-2 input gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply. POSITIVE LOGIC NEGATIVE LOGIC 18)4~317) (8)4~3(7) (9)5~2(6) 113)9~ (14) 10 ~ (9)5~2(6) (10) (13)9~ 6 (11) (14)10 (15) 11 7 (10) (11) (15) 11 (1)13~14(2) (1)13~14(2) (16)12~15(3) (16)12~15(3) Po = 30 mW typ/gate (No Load) tpd '" 2.0 ns typ Output Rise and Fall Time == 3.5 ns typ (10% - 90%) == 2.0 ns typ (20% - 80%) Numbers at ends of terminals denote pin numbers for L package (C. . . 620). Numbers in parenthesis denote pin numbers for F package (Case 650). CAse VCCI VCC2 Vee 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@250 C Vee 1 = Vee2 V out NOR +2.0 Vdc ~",t ii""' r--- ---, V out OR Coax Coax 50 50 PROPAGATION DELAY Unused outputs connected to a 1QQ.880 -1.920 -1.855 -1.920 -1.655 -1.100 -1.100 - - V,Lmin ~.880 -1.920 -1.850 -1.820 -0.780 ~,530 MC106015F T. . Limib +25"1: +125"1: -li6"1: Mm V,H m •• -'.635 -1.635 - -1.850 -1.850 ~.950 ~.950 - -- - Rise Time (2010_' Fall Time 120 •• _ , 18+1_ 18-7+ 18-+6. '8-6'7+ '6+ '7_ '&- 7 7 6 6 7 6 7 6 - - 1.0 2.0 ! TEST VOLTAGE APPLIED TD PINS LISTED BELOW: VIHm8ll V,Lmin VIHAmin V'LAm•• - 24 285 mAd, - - - - ~Adc 8 - - - 0.3 - ,.Adc ~.825 ~,63O ~.825 -<>.630 -'.545 -1.545 Vd, Vd, -'.620 -'.820 -'.520 -1.820 -0.845 -0.845 -',600 -1.600 - - ! 3.3 1.' • 1 ~ -5.2 -5.2 -5.2 Unit ~.780 2.9 VEE -1.510 -1.475 -1.400 Ma. -',525 -'.525 Vd, Vd, Vd, Vd, Vd, Vd, 8 -8 - 8 - - - - Switching Times (lQO.ohm la.jl Propagation Delay -1.106 -t.ooo VILAmu Mm ~.780 0.5 ~.9;JO ~.930 V'HAmi" -1.255 - - - - "' - - - 1 - - -- VEE IVeel Gnd - 8 '2 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Pul.ln Pul.Out -3.2 V +2.0 V 8 7 7 6 6 '2 4.5 1 6 7 6 - - - 8 8 - 8 7 '2 '2 '2 '2 12 '2 12 '2 12 '2 II f '--_ _-' TRIPLE 4-3-3 INPUT GATE ' MECL 10,000 series '--..._ _ _ _ _ _ _ _ _~_ _ _ _ _ _ _ _ _ _ _____' MC10506 The MC10506 is a triple 4-3-3 input NOR gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply. POSITIVE LOGIC 181 NEGATIVE LOGIC 4 :~3171 1101 (11 ) 7 111) 1131 1141 1:~2161 1151 11 1161 ~~, 181 1101 191 191 1131 1141 171 1:~2161 Po'= 30 mW typ/gate (No Load) tpd = 2.0 ns typ 1151 11 12~ 15131 1161 12~ 15 111 13 11) 13 121 14 121 14 Output Rise and Fall Time == 3.5 nstyp (10% - 90%) = 2.0 ns typ (20% - 80%) 13) Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers In (Case 650). parenthesis denote pin numbers CASE VCC1 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 for F package VEE SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2SoC VCC1 = VCC2 V out 50-ohm termination to ground 10- +2.0 Vdc catad in each scope channa' input. "~m"~ All input and output cable. to the scope ara aqual lengths of 50-ohm coaxial cable. Wire langth should ba <1/4 inch from T'Pin to input pin and TP out to output pin. V out il 2: 1 attenuated. r------, Coax 50 I I PROPAGATION DELAY Input Pulse = t- = 2.0 ±. 0.2 ns t+ 120 to 80%1 ~----+1.11V '---~ 1-----+0.31 V V out See General Information section for packaging. 3-244 Unused outputs connected to a 100-ohm resistor to ground. 3: o ..a ~ o en ELECTRICAL CHARACTERISITCS Each full temperature range MECL 10.000 series circuit has been designed to meet the :~3 de specifications shown in the test table, after thermal equilibrium has been estab- lished. 8 =. 7 The circuit is in a test socket or ,O~ transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated 11 12 '3~ through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one ::l - 9~2 mounted on a printed circuit board and '4~15 gate. The other gates are tested in the same manner. ::l c: ~ ~ L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Voltst @Test VIHA min VILAm . . VEE -55"c -0.880 -1.920 -1.255 -1.510 -5.2 +2SoC -0.780 -5.2 -0.630 -1.105 -1.000 -1.475 +l25 o C -1.850 -1.820 -1.400 -5.2 Temperature w ~ tTl Under Power Supply Drain Current I nput Current Svmbol T." log.c "". 24 ~ Im H VOH -1920 -1.655 -1920 -1.655 VOL Output Voltage L99 l c "'" Threshold Voltage logiC "a" Threshold Voltage +2S0C Min t-- I Typ Max I 17 21 265 0.5 1---05 -1.080 -0.880 -0.930 -1.080 -0.880 -0930 Output Voltage logiC "0" -55°C Min I Max 'E Ilnl -1.100 VOHA +l25 o C Min I 1 .. T -1.850 Unit 24 mAde 1,16 265 /-lAde 1,16 /-lAde 1,16 -0.780 -0.825 -0.180 -0.825 -0.630 -0.630 Vd, Vd, 1-1.820 -1.820 -1.545 -1.545 Vd, Vd, -0.845 -0.845 - Vd, Vd, -1.525 -1.525 Vd, Vd, -1.620 -1.620 -1.850 -1.635 -1.635 tVecl Mo. 0.3 -0.950 -0950 -1.100 VOLA I Rise Time 1201080%. Fall Time 1201080%) VILmlR TEST VOLTAGE APPLIED TO PINS LISTED BELOW: -1.600 -16~1 - 2.9 1.0 1 SWitching Times. (l00-ohm loadl Propagation Delay mall( MC10506L Test limits P,n Characteristic VIH VIH max Vll min VIHAmin 1.0 '4_3+ 3.7 10 2.9 3.7 3.7 '3' 4.0 1.1 3.3 4.0 4.0 11 ,~ 3 1.0 1 1 2.0 1 3.3 4.0 VEE Gnd 1,16 1.16 4 1,16 9 1.16 1.16 1,16 1,16 4 9 Pulse In 3.7 14+3_ VILA max 1,16 Pulse OUI -3.2 V +2.0 V 1,16 1 1 1 1I 1 3: n ..... o c.n o C) ELECTRICAL CHARACTERISITCS Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been estab- lished. The circuit is in a test socket or :~7 ,o~ nO " '3~. . mounted on a printed circuit board and transverse air flow greater than 500 linear '4~ fpm is maintained. Outputs are terminated through a l()().ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the '~~3 ::J # .. •./.~' //&y , ~ ~.;.;. , ~, ::J c: 20 M .. 3 7 i i j 2. 25 35 2S 35 -1.820 --5.2 -VEE Unit VIHm •• mAd< All Inputs 265 ~Adc 220 ~Adc 12 ,..Adc 12 12 -0.630 + -1.545 Vdo + Vdo VIL min VIHA min VILAm.. (Veel Gnd 12 --,-, I .,9 + • 12 ::: 'oS 'oS 'oS + 'oS 9 + • -1.525 - -5.2 -5,2 -1.475 -1.400 31 + -0.845 VEE -1.510 M .. 03 -0.930 1.1 Min I VILA m.. TEST VOLTAGE APPLIED TO PINS LISTED BELOW: + 12SoC M •• Os Mo. Inputs Output ··Any Output M", 6 LogIC "0" Output Voltage SWllct'llng Times (100 11 load' 6 VOH Voltage Min D,S I.n L rut limit, '25"1: I - - + + .,9 Vdo + + ',S + + Vdo Unit + 12 '2 +1.11 V 3,9,11 ~ Pulse In Input 2.80r 13 2,8,13 Inpu1 j 3,9 or 11 Any InPlJ1 Any Input + Pu . . Out -3.2 V Co"npondlng Ex.QR/Ex·NOA Outputl 12 Corrnpondi r-. Ex.QRJEx·NOR OutpyU I Corresponding EII.QRIEII·NQR OutPUts + 'oS + +2.0 V ',. MECL 10,000 series DUAL 4-5-INPUT "OR/NOR" GATE MC10509 POSITIVE LOGIC NEGATIVE LOGIC ::::~3 (10) 6 (Ill 7 The MC10509 is a dual 4-5 input OR-NOR gate which is pin compatible with the MECL III MC1660L dual OR-NOR gate. All inputs are terminated by a 50 k ohm resistor to VEE eliminating the need to tie unus,ed inputs low. 2 (7) (B)4~ (9) 5 3 (6) (1319~ (10) 6 (Ill 7 2 (13)9~ (14) 10 . (14110 14 (21 (15) 11 (7) (6) tpd = 2.0 ns typ 14 (2) (15) 11 15 (31 (16) 12 (16112 (1113 (1113 Po == 30 mW tvp/gate (No Load) 15 (31 Output Rise and Fall Times (10% to 90%) 3.5 ns (20% to BO%I 2.0 ns Numbers at ends of terminals denote pin numbers for L package (Co. 6201. Numbers (Case in parenthesis denote pin numbers for F package 6501. CASE VCCI 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@250C veel - VCC2 +2.0 Vdc Coax Input Pulse Generator Input Pulse t- "" 2.0 ±. 0.2 ns (20 to 80%) t+ "" V out NOR ~"'m"'"' r--- ---, I V out OR Coax 50 Coax 50 I I ~ PROPAGATION DELAY I I I I I I L ___ ~__ J :J; 50-ohm termination to ground 10 cated in each scope channel input All input and output cables to the seop • •,. equal lengths of 50-ohm coaxial cable. Wire length should Unused outputs connected to 8 100-ohm resistor to ground. V out OR 0 1 jJF -3 2 Vdc Vee b. <1/4 inch from TPin to input V out NOR pin and TP out to output pin. V out is 2: 1 attenuated. See General I nformation section for packaging. 3-250 3: o ELECTRICAL CHARACTERISTICS ..& Each fuJi \a!1IP8rature range MECL 10,000 l81"iescircuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been estab~ 'ished. The circuit is in a test socket or mounted on 8 printed circuit board and transverse-air flow greater than 500 linear fpm is maintained. Outputs are terminated through a l00-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner. ~ ocg :~3 6 2 7 .~ '0 11 14 12 15 8::J - 13 ~, ::J c:: (1) c.. L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES «Volts) Test T emperetur. _55°C +25 o C (iI +125 GC CrJ I\.) .... Characteristic 5vmbot Power Supply Drain Current Input Current 'E ImH linl High Output Voltage VOH Low Output Voltage VOL High ThreshOld Voltage Low Threshold Voltage VOHA T..t 4 2 3 2 3 2 3 Min Max Min 16 Ty. 11 450 0.5 -1.080 -O.SIIO -1.080 -O.SIIO -1.920 1.655 -1.920 -1.655 1.100 -1.100 2 3 - -1.635 -1.635 14+2+ 14_2_ t4+3_ 14-3+ 2 2 3 3 1.0 3.7 '2+ t3+ 3 '2_ t3- 2 3 VOLA VEE -1.510 -5.2 -0.780 -1.850 -1.106 -5.2 -0.630 -1.820 -1.000 -1.475 -1.400 M •• Unit 1. 16 mAde 265 265 ,!.lAde M •• 05 -0.930 -0.930 -1.850 -1.850 -0.950 -0.950 Min ,!.lAde 0.3 - -0.780 -0.780 - 1.620 -1.620 - - -0.845 -0.845 - - - -1.600 -1.600 1.0 2.0 2.9 - -0.825 0.630 -0.825 -0.630 -1.820 -1.545 -1.820 -1.545 Vdc Vdc Vdc Vdc - Vdc Vdc VIH ma" • •• VILmin • - Rise Time (20 to l1li%1 Fall Time (20'0l1li%1 - - - 2 l ! l ! 4.0 1,1 t Il 3.3 - -1.525 -1.525 Vdc Vdc - 1.0 3.7 ns - - ~ I VEE - 8 8 - 8 - 1.16 - 8 8 8 8 1.16 1.16 1,16 1.16 4' 8 8 1.16 1.16 4 - ~ - - - - (Veel Gnd 1.16 VILA ma. - - - .- 4.0 VIHA min ~- SWitching Times 1100 ohm load) Propagation Delay I -5.2 TEST VOLTAGE APPLIED TO PINS BELOW: +125 o C +25o C -55"<: 8 • VIHAmi" -1.255 VILAnNIC -o.SIIO V'Lmin -1.920 MC10601L T_ Limits Pin Under U1 VIH ma. 1.16 4 4 - 8 8 1.16 1.16 Pulse In Pulse Out -3.2 V +2.0 V 2 2 3 3 2 3 2 3 8 1.16 • I I ELECTRICAL CHARACTERISTICS Ea<;h full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 1()().ohm resistor to -2.0 IIolts. Test procedures are shown for only one gate. The other gates are tested in the same manner. B3=t= s: (') .... o • 1 10 • · V 11 lJ~ 2 "IS I. c.n ~ 8::J J ~~-" 1 :::, ::J c: ~ -'. ~ F SUFFIX CERAMIC PACKAGE CASE 650 TEST VOLTAGE VALUES (Volts) @Test Temperature W N (JI r-.) I Pin Under 'E Teo. 12 Input Current IIIlH 8 High Output Voltage VOH CharactenSllC Power Supply Oram Current Symbol ImL Low Output Voltage VOL 7 High Threshold Voltage VOHA Low Threshold Voltage VOLA 6 Ma. Min 16 450 0.5 -1.080 -1.080 -1.920 -1920 -1.100 t2O'.8O%1 -0.580 -0.930 -0.930 -1.655 -1.655 -1.850 -1.850 -0.950 -0.950 -1.850 -1.820 VIHA min -1.255 VILA max -1.105 -1.000 -1.475 Ma. Unit 11 14 16 mAdc 265 265 /JAde Min 0.3 -0.720 -0.720 -1.620 -1.620 VIH max VILmin VIHA min '6- 6 '7- ! ! 1.1 7 29 l l 3.3 VILA ....ax /lAdc -5.2 -5.2 I -5.2 VEE tVee l Gnd 12 12 4,5 4,5 12 12 12 4,5 4,5 4,5 4,5 4,5 Vdc Vdc Vdc Vdc -0.845 Vdc Vdc 12 12 4,5 4,5 Vdc Vdc 12 12 4,5 4,5 -3.2 V +2,0 V 12 4,5 -1.525 -1.525 12 12 Pulse In '6+ '7+ -1.400 VEE -0.825 0.580 -0.825 -0.580 -1.820 -1.545 -1.820 -1.545 -0.845 -1.600 -1.600 2.0 I -1.510 TEST VOLTAGE APPLIED TO PINS BELOW: M •• 05 -0.830 -0.830 1.0 t9+6+ t9-6_ t9-7+ Fall Time + 125°C Typ -1.635 -1.635 t9+7_ (20 to 8O%t -1.920 -0.720 +125 o C +2So C -5SoC Min SWItchmg Times (100 ohm load) Rise Time Vil min -0.830 +25 o C MC10509F Test Limits -1.100 Propagation Delay VIH max -5SoC 8 I Pulse Out MECL 10,000 series TRIPLE LINE RECEIVER (HIGH COMMON MODE) MC10514 The MC10514 is • triple line receiver designed for use in sensing differential signals over long lines. An active current source and translated emitter fOllower inputs provide the line receiver with a oommon mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount NEGATIVE LOGIC POSITIVE LOGIC of common mode noise immunity for extra long lines. Another feature of the MCt0514 is that the OR outputs go to a logic low level whenever the inputs are left floating. The outputs are each capable of driving (8)4~2(6) (a)4~2(6) (9)5~317) (9)5~3(7) 9~6 (10) (13) 9~6 (10) (14)10~7 (11)(t4)tO~7 (11) (13) (16)12~t412) l()(k)hm transmission lines. This device is useful in high speed central processors. minicomputers, peripheral controllers, digital commu· nication systems. testing and instrumentation systems. The MC10514 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS It6)12~1412) RAM's. (1)13~t513) (1)13~1513) ~11(15) ~11(15) Vea A Vee reference is provided which is useful in making the MC10514 a Schmitt trigger, allowing single- Vae J [CAsEivcc11vcc2JVEE 620 ended driving of the inputs, or other applications where a stable reference voltage is necessary. Pin 1 Pin 16 Pin 8 tpd":: 2.4 ns typ (Single Ended Input) tpd '" 2.0 ns typ (Differential Input) PO'" 145 mW typ!pkg (No Load) Numbers at ends of terminals denote pin numbers for L package (Case 620), Numbers in parenthesis denote p'in numbers for F package (Case 650). SWITCHING TIME TEST CIRCUIT ANO WAVEFORMS il250C PROPAGATION DELAY Coax 50 Input pulse t+ Unused outputs connected to 8 100-0hm resistor to ground. = t - = 2.0 ±. 0.2 ns (20 to 80%) I I o--~f---t----l VB B 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50·ohm coaxial cable. Wire length should be 114 inch from TPin to input pin and TPoutto output pin. V out 1.2: 1 attenuated. < L -1]- I I One Input from each gate must J I0 J O l jJ F be tied to V SB during testing 1jJF - 32 Vdc VEE See General Information section for packaging. 3-253 ELECTRICAL CHARACTERISTICS s Each full temperature range MECL 10,000 .... C') series circuit has been designed to meet the de specifications shown in the test table, o .... after thermal equilibrium has been estab- 0'1 lished. The circuit is in a test socket or 4~2 mounted on a printed circuit board and ~ 5~3 transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the sarne manner. L SUFFIX 9~6 """ 10~7 12~t4 13~15 ~" VBB 8 CERAMIC PACKAGE CASE 620 :J !Z. :J c: ct> C- TEST VOLTAGE VALUES (Volts) @IT.lt Temperature -5SoC +2SOC +12SoC CharKteristic W r\J Symbol Power Supply Drain Current Input Current Logic "1" Output Voltage BO logic "1 'Threshold Voltage VOLA Aeference Voltage VBB Common Mode AeJection Test A ise Time (20% to 80%1 Fall Time (20% to 80%1 I 3. 1.5 -0.880 -0.880 -1.655 -1.655 Logic "0' Threshold Voltage Switching Tintel (l00-ohm Load) Propagation Delay·· M.. linH VOHA I Min ICBO VOH -1.080 -1.080 -1.920 -1.920 -1.100 -1.100 VOL Logic "0" Output Voltage MC10514L T.t Limits +2SoC -6SoC 'E 01 "'" Pin Under T .., Min -1.080 -1.080 -0.830 -0.830 VOL -1.920 -1.920 -1.655 -1.655 -0.930 -0.930 -1.850 -1.850 Min M.. Min t4+2+ t4_2_ t4+3_ t4_3+ '2' '3' '2_ '3_ -1.510 -1.475 -1.400 From +0.170 +0.280 +0.420 -1.105 -1.000 Pm 11 -0.920 -O.B50 -0.B20 -I -1.830 -1.720 -2.920 -1.580 -2.820 VIHL· Vlll· -2.B50 I VEE -5.2 -5.2 -5.2 VEE (Veel Gnd 8 1,16 3. mAde 4,9,12 5.10.13 45 1.0 -0.780 -0.780 -1.620 -1.620 45 /JAdc 9,12 5,10,13 '0 -0.630 -0.630 -1.545 -1.545 /JAdc 9,12 5,10,13 8,' 9,12 4 5,10,13 5,10,13 8 8 9,12 5,10,13 5,10,13 Min -0.B25 -0.825 -1.B20 -1.820 M.. -0.845 -0.845 9,12 Vdc Vdc 9,12 4 Vdc Vdc Vdc -1.620 -1.620 -1.820 -1.820 Ty, M.. Min M.. 1.0 I 25 4.0 '5 21 3.5 ~ ~ + ·VI HH = Input logic "1" level shifted positive one volt for common mode rejection tests. VILH = Input logic "0" level shifted positive one volt for common mode rejection tests. VIHL = I nput logic "1" level shifted negative one volt for common mode rejection tests. VILL = Input logic "0" I~vel shifted negative one volt for common mode rejection tests, • -Delav is 2.0 ns with differential input. VIH malt Vdc Vdc -1.525 -1.525 -0.825 -0.825 + -1.240 Unit Vdc Vdc -1.120 -0.580 -0.580 -1.545 -1.545 • -1.255 TEST VOLTAGE APPLIED TO PINS BELOW: -1.230 -0.720 -0.720 , VIHH-I V'lH-l VIHl-1 VILL -1.920 -1.850 -1.820 +12So C -1.600 -1.600 VOH VBB -0.880 -0.780 -0.630 35 -1.850 -1.850 -1.350 VllAm.x M.. -0.950 -0.950 -1.320 VIHA min 28 -0.930 -0.930 -1.440 VIL mill Ty, -1.635 -1.635 11 VIHmax VIL min VIHA min VILA max 9,12 9,12 9,12 9,12 VB. VIHH· VllH· 1,16 5,10,13 5,10,13 1,16 1,16 1,16 1,16 5,10.13 5,10,13 1,16 1,16 5,10,13 1,16 1,16 1,16 Vdc Vdc 1,16 1,16 Vdc Vdc Pulse In 4 j 1.16 1,16 1,16 j Pulse Out 5,10,13 j -3.2 V +2.DV 8 1,16 j j ELECTRICAL CHARACTERISTICS 3: Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, (') ..... o U1 ..... .;a after thermal equilibrium has been estab- lished. The circuit is in a test socket or ~ 8~6 mounted on a printed circuit board and transverse air flow greater than 500 linear 9~7 fpm is maintained. Outputs are terminated 13~10 through a 100-ohm resistor to -2.0 volts. 14~11 Test procedures are shown for only one 16~2 1~3 ~15 input, or for one set of input conditions. Other inputs or outputs are tested in the same manner. nO ::J d. ::J c: F SUFFIX CERAMIC PACKAGE CASE 650 VBB CD Cl. TEST VOLTAGE VALUES (Volts) @Test T emper0ill1ure -5SoC +25"c +12SoC Pon Under Chaf.:te,istic eN r:., C11 C11 I Power Supply Dram Current Input Current -SSoC Symbol T ... 'E 12 3. IlnH 8 SO 1.5 -0.880 -0.880 Min ICBO LogiC "1" Output Voltage VOH LogiC "0" Output Voltage VOL L(i9lc "1" Threshold Vall. LogiC "0" Threshold Voltage MC10S14F Test Limit5 "'2So C -1.080 -1.080 -1.920 -1.920 M.. -1.655 -1.655 -1.100 -1.100 VOHA Min 15 -1.440 -1.320 -1.350 6 , VOL 6 -1.080 -1.080 -1.920 -1.920 -0.830 -0.830 -1.655 -1.655 -0.930 -0.930 -1.850 -1.850 Min M.. Min 1.0 Switch"" TinMI l100-ohm lOMt11 Prop8pIIOn Deley·· ....,- 18+6+ 18+718-7+ Rise Time (20% to 80%1 Fall Time (20% to 80%1 'B' '"'B"- ~ 1.5 VIHH· -1.920 -1.850 -1.820 -1.255 -1.105 -1.000 -1.510 From +0.170 -1.475 -1.400 Pm +0.280 +0.420 IS VBS M.. Unit 39 mAdc 8,13,16 1.9,14 45 45 10 j.lAdc 13,16 1,9,14 j.lAd..: -0.630 -0.630 Vd, Vd, 8 13,16 13,16 13,16 8 -1.545 -1.545 Vd, Vdc Vd, Vd, 13,16 8 13,16 Vd, Vd, 13,16 1,9,14 1,9,14 1,9,14 1.9,14 1,9,14 1,9,14 1,9,14 1,9,14 1,9,14 1,9.14 Mon -0.780 -0.780 -1.620 -1.620 -0.825 -0,825 -1.820 -1.820 -0.845 -0.845 -1.230 -0.720 -0.720 -1.620 -1.620 TVO 2.5 + 21 M.. 4.0 -1.525 -1.525 -1.240 V'LH-l VIHL -I YILL -, -0.920 -0.850 VEE -1.830 -2.920 -5.2 -2.850 -5.2 -0.82"l-1.580~ -2.820~ -5.2 -1.720 TEST VOLTAGE APPLIED TO PINS BELOW: 3S -1.600 -1.600 V88 VBB -0.880 -0.790 -0.630 M.. -0.950 -0.950 VOH VILAm ... "'12So C 1.0 Common Mode Rejection Test VIHAmin 28 -1.635 -1.635 VOLA VILmm TVO -0.930 -0.930 -1850 -1.850 Reference Voltage VtHmaK -0.825 -0.825 -1.820 -1.820 -1.120 -0.580 -0.580 -1.545 -1.545 Min M.. + 3.S ~ ~ ~ ·VIHH::: Input logic "1" level shifted positive one volt for common mode rejection tests. VILH = Input logic "0" level shifted positive one volt for common mode rejection tests, VIHL = Input logiC "1"level shifted negative one volt for common mode rejection tests. VILL = Input logic "O"level shifted negative one volt for common mode rejection tests. ··Delay is 2.0 ns with differential input, VIHmali Vll min VIHA min VllAmu 13,16 13,16 13,16 Vd, Vd, Vd, Vd, Vok Puis. In 8 j j Pul.-Oul 1,9,14 j VIHH- VllH- VIHl e Ville VEE 12 12 8,12 12 12 12 12 12 12 12 12 12 1VCC' Gnd 4.5 4.5 4.5 4.5 4.5 12 12 12 12 -3,2 V +2.0 V 12 45 j j L--..-;f (SI '-------- MC10515 POSITIVE LOGIC 54~ (91~ MECL 10,000 series " QUAD LINE RECEIVER NEGATIVE LOGIC 2 (SI (SI 54 ~~ (gl~ (1117~ (1117~ (14110~ (14110~ (10IS~3(71 14 (21 (15111 (1113~ Vse 2 (SI (1016~3(71 (15111 (16112~ The MC10515 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the MC10515 with excellent common mode noise rejection. If any amplifier in a "ackage is not used, one input of that amplifier must be connected to VBB to prevent upsetting the current source bias network. 14 (21 (1113~ 15(31 (16112 9 (131 ~15(31 L - g (131 Vee Numbers at ends of terminals denote pin numbers for L package (Casa 620). N umbers in parenthesis denote pin numbers for F package tpd = 2.0 ns typ Po = 110 mW tvp!pkg (No Load) (Case 650). CASE VCCI VCC2 VEE 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 250 C +2.0 Vdc Vout Coax PROPAGATION DELAY 50 Input Pulse t+ = t- = 2.0 ±. 0.2 ns Unused outputs (20 to SO%I connected to 8 1 OO"hm resistor V out to ground. 50-ohm termination to ground located in each scope channel input. One input from each gate must be tied to dur Ing testing. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable, Wire length should be <1/4 inch from TP in to input pinandTPouttooutputPin. V out is 2: 1 attenuated. See General I nformation section for packaging. 3-256 Vee 3:' n .... ElECTR ICAL CHARACTER ISITCS Each full temperature range MECL 10,000 • ries circuit has been designed to meet the ~ .... trI :=::t>---2 :=::t>--- de specifications· shown in the test table, after thermal eQuilibr~um has been established. The circuit is in a test socket or n o :::l J. mounted on a printed circuit board and transverse air flow· greater than 500 linear fpm is maintained. Outputs are terminated ::!. 10~ I. :::l C 11 (I) 13~15 through a 100-ohm resistor to -2.0 volts. C:. ~9 12 Test procedures are shown- for only one v •• gate. The other gates are tested in the same man ner. ~. i' "f1~~~nr Ii j I' L SUFFIX CERAMIC PACKAGE CASE 620 w li'T ... r:., Temperature U1 -ssOC '" +25"c +12SoC Charect.,iltic Power SupplV Dr.in Current Input Cur,ent Symbol Pin Und.r Test -!SoC IE 8 29 I," H 4 165 leBO 4 1.5 Min - Logic ",.. Output Voltage VOH 2 -UlBO -O.BBO -0.930 Logic "0" Output Voltage VOL 2 2 -1.920 1.100 -1.655 -1.850 -0.950 Logic "'" Threshold Voltage logic "0" ThreshOld Voltage Reference Voltage VOHA Propagation Delav Fall Time (20% to 80%1 -1.850 -1.105 -0.630 -1.820 VIL min 4,7,10,13 VIHA min VILA max VB8 - 7,10,13 - 7,10,13 - - 5,6,11,12 4 - VIH max Unit 26 - 29 mAde 95 1.0 IJAdc JJAdc -0.630 -1.545 Vd, 7,10,13 4 4 7,10,13 - Vdc Vd, - -1.820 -0.845 -1.000 - 7,10,13 2 - -1.635 - -1.600 - -1.525 Vdc - 7.10,13 4 Vee 9 -1.440 -1.320 -1.350 -1.230 -1.240 -1.120 Vd, - - - Min Max Min M •• Min Max 1.0 3.5 3.5 1.0 1.0 2.9 2.9 1.0 14_2+ 14+2_ 2 2 '2+ '2_ 2 2 ~ 3.9 1.1 3.3 3.9 1.1 3.3 ~ -6.2 ~ -6.2 TEST VOLTAGE APPLIED TO PINS L1STED BELOW, VOLA Switching Tjmes~ l000hm load) Rise Time (20% to 80%1 -1.510 M •• -0.780 -1.620 -1.400 9 -1.255 Min -0.825 -1.475 -1.920 Max 95 1.0 VEE ~ -0.880 -0.780 +125o C +25"c Max V88 From Pin V,L min MC10515L Test Lilnits Min TEST VOLTAGE VALUeS V,HA min V'LAm .. V,HmllX 4.0 4.0 4.4 4.4 4 - Pul.ln Pul.Out ns 4 2 ~ ~ -- ~ - 1Veel GNI 8 1.16 5.6.11,12 8 5,6.11,12 8.4 1.16 1,16 5.6,11.12 8 1,16 5,6,11.12 5,6,11.12 8 1,16 8 1.16 5,6.11,12 8 1,16 5.6,11,12 8 1,16 -3.2 V +2.0 V 8 1,16 5,6,11.12 - VEE l ~ ~ .. ~ (") .. ~ ELECTRICAL CHARACTERISITCS Each full temper.ture range MECL 10.000 :~6 series circu it has been designed to meet the de specifications- shown in the test table, "~ 10~7 after thermal equilibrium has been estab- lished. The circuit is in a test socket or 8::J !:!. 14~2 mounted on a printed circuit board and transverse air flow greater than 500 linear '~~ fpm is maintained. Outputs are terminated through a l~ohm resistor to -2.0 volts. ::J c: (D 3 Co 16~13 v •• Test procedurlts are shown for onlv one gate. U'I ~ The ot!"!er gates are tested in' the same manner. F SUFFIX CERAMIC PACKAGE CASE 650 w ~ OT ... 'hmper.ture U1 CO VILmin -55"c .2$"c _55°C U ...., Ch.rKt."ic Power Supply Drain Current I nput Current SVmbol IE II~ H Toot 12 8 IC80 8 Logic "1" Output Volt. VOH 6 Logic "e" Output Volt.... VOL 6 Logic "1" Threshold VOl..,. VOHA 6 Logic "0" Threshold VOlt. VOLA Reference Voltage V88 13 '8-6. 6 6 6' 8 Switching Times! 1000hm loed) PropagahGn Del.,. Rise Time·i2O% too ~I hI! Time (20% to ..,., '8-6'6. t&- Min I M~' MC10515F T_ Limits +25OC +125o C -1.440 Min Mo. 1.1 1.1 I 3.3 3.3 VIL min mAde l,B,l'.14 #JAde 1,11.14 #JAde -1.525 -1.120 -1.510 -1.475 -1.400 V_ VEE From r-:rr- Pin 13 ~.2 ~ TEST VOLTAGE APPLIED TO 'INS LISTED BELOW, VIH rna 165 1.5 -1.080 I -0.880 I -0.930 -1.920 I -1.655 I -1.850 -1.100 -0.950 -1.255 -1.105 -1.000 -1.920 -1.850 -1.820 +l25 DC Pin TEST VOLTAGE VALUES VILA_ VIHA min Vde 1.11,14 Vde 8 I \lIHA min VILA 1.11.14 8 Vde 1,11,14 1,11,14 Vde 1.11.14 8 Vde V_ VEE (Vee) Gn1I 9.10.15.16 9.10.15.16 9.10.15.18 12 12 8.12 12 12 12 4.5 4.5 ••5 4.5 4.5 4.5 9.10.15.16 9.10.15.18 9.10.15.16 9.10.15.16 9.10.15.16 Pul.ln ~ mb: Pu"Out '.10.15.16 8 ! 1 12 4.5 4.5 12 -3.2 V +2.0 V '2 4.5 ! l l MECL 10,000 series TRIPLE LINE RECEIVER MC10S16 The MC10516 is a triple differential amplifier designed for use in sensing differential signals over long POSITIVE LOGIC lines. The base bias supply (VSS) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference NEGATIVE LOGIC voltage is necessary. (8)4~2 (6) (9) (7) 5 3 (8)4~2 (6) (9) 5 3 17) (13)9~6 110) 113)9~6 110) 7 1111 (14) 10 (14)10 1'6)'2~'412) (1) 13 15 Active current sources provide the MC10516 with excellent common mode noise rejection. If any ampli· fier in a package is not used, one input of that amplifier must be connected to VaB to prevent upsetting the current source bias network. Complementary outputs are provided to allow driv- 7 1111 ing twisted pair lines. to enable cascading of several 1'6)'2~'4(2) 11113 (3) amplifiers in a chain, or simply to provide complement outputs of the input logic function. 1513) L - 11115 ) L-'11'5) Vaa Vaa Numbers at ends of terminals denote pin numbers for L package (Case 620), Numbers in (Case 650). parenthesis CASE denote pin numbers VeCl for F tpd = 2.0 ns typ Po = 85 mW typ/pkg (No Load) package VEE 620 Pin' Pin 16 Pin 8 650 Pin 5 Pin4 Pin 12 SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 0 25°C 50-ohm termination to ground located in each scope channel input. VCC1 = VCC2 Vin All input and output cables to the scope are equal lengths of 50·ohm coaxial cable. Wire length should be <1/4 inch from TP in to input pin and TP out to output pin. V out is 2: 1 attenuated. ""dJ'" r- PROPAGATION DELAY V out +2.0 Vdc --, V out Coax 50 Coax 50 Input pulse t+ Unused outputs connected to a l00-ohm resistor to ground. = t- = 2.0 ±. 0.2 ns (20 to aO%) I I IlOne input from each oate must I L. J;" ....J "'-11::," Vee See General I nformation section for packaging. 3-259 betted to VBBdurtngtestlng. s: n ..A Each full temperature range MECL 10,000 4 lished. =:::.r.:t:=' 5 - 3 9~6 after thermal equilibrium has been estab- 12~t4 transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a l00-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same man ner. '3~15 0') 8 , ::J ~, .,1\ 10~7 The circuit is in a test socket or mounted on a printed circuit board and U1 - ELECTRICAL CHARACTERISITCS series circuit has been designed to meet the de specifications shown in the test table, o ..A ::J c: (1) L SUFFIX " CERAMIC PACKAGE CASE 620 Q. ~11 vBe TEST VOLTAGE VALUES tVolts) @Test Temperature -SSoc -t-2SoC + 12SoC w ~ 0) o Char~tenstM: Symbol Power Supply Drain Current Ie Input Current High Output Voltage Low Output Voltage High Threshold Voltage Low'Threshold Voltage Reference Voltage SWitching Times t l00-ohm load) Propagation Delay Pin Under Test -SSoC Min Min Unit mAdc 95 95 ,u.Adc 1.0 /JAdc -0.630 -0,630 -1.545 -1.545 Vdc Vdc 4 9,12 9,12 4 Vdc Vdc 9,12 4 4 9,12 -0,880 -0.880 -0930 -0,930 VOL 2 3 -1.920 -1.920 -1.655 -1.655 -1.850 -1.850 .. VOHA 2 3 -1.100 -1.100 - -0,950 -0,950 - - - - -1.635 -1.635 -. - -1.320 -1.350 RlseT.me 120% to 80%) Fall Time 120% to 80%1 '213- 2 .3 2 3 - Min 1.0 - .. -0.780 -0.780 -0825 -0.825 -1.620 -1.620 -1,820 -1.820 -1.525 -1.525 Vdc Vdc -1.240 -1.120 Vdc M •• 4.0 Min TVO M.. 3,5 1.0 2.0 2.9 1.0 ! I j ~ ~ 1.1 ~ 3.3 ! -1.255 ~ j ~ 4,4 ns j V'Lmin 4,9,12 VIHAmin V,LA max 9,12 V2 - 9,12 - -1.230 M •• 4 9,12 -1.600 -1600 1.0 VIH max Vdc - Min ~ ~dc -0.845 -0.845 Min 3,9 11 24 -1.080 -1.080 -1.440 -1.400 M.. 2 3 2 3 -1.000 21 VOH 11 -1.820 14 ICBO VBB VILAmax .-1.510 -1.475 VBB From -1.105 M .. 165 1.5 VOLA VIHA min TVO 4 24 VILmin -1.920 -1.850 Pin Vee -5.2 ~ ~ TEST VOLTAGE APPLIED TO PINS BELOW: +125 o C +250 C M •• IlnH 2 2 3 3 -0,880 -0.780 -0.630 MC10516L Ted Limits 8 4 t4+2+ '4-2t4+3_ t4-3+ 12+ '3+ VIHmalII - - 9,12 9,12 - - - - 4 " - - 4 4 - - 4 Pulse In Pu •• Out 4 2 2 3 3 j 2 3 2 3 VBB Vee Gnd 5,10.13 5,10,13 8 8 1.16 1,16 5.10.13 8,4 1,16 5.10.13 5,10,13 8 8 5,10,13 5,10,13 8 8 1,16 1,16 1,16 1,16 5,10,13 5,10,13 8 8 1,16 1,16 5,10,13 • 5.10.13 8 8 1.16 1,16 5.10.13 8 1,16 -3,2 V +2.0 V 8 .1,16 5.10.13 j j j 3: n o ~ U'I ~ ELECTRICAL CHARACTERISITCS 0) 8 Each full temperature range MECL 10,000 .=::tt=6 13=::tt=10 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or ~ 9 - 7 14 mounted on a printed circuit board and transverse air flow greater than 500 linear 11 16~2 Test procedures are shown for only one ::J c: (I) F SUFFIX Co CERAMIC PACKAGE 1~3 ~'5 v •• fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. ::J ~. CASE 650 gate. The other gates are tested in the same man ner. TEST VOL T AGE VALUES (Volts) @T.st Temperature w ~ en .... Characteristic I SYmbol I J,:;., I rest Min _55°C I Max I Min 1 +250 e Tvp 17 11 Low Output Voltage VO H VOL VOHA Low Threshold Voltage VOLA Reference Vortage V88 SWitching Times fl00-ohm load) Propagation Delay Rise Time (20% to 80'" 16+ '7+ Fall Time 120% to 80%. 17_ '6_ From -1.475 ~ -5.2 + 125°C -0.630 -1.820 -1.000 -1.400 Pin 15 I I Maw: +125 0 e M '" Ma. Unit Va8 24 mAde 1,9.14 12 4,5 j.lAdc 12 4,5 1.0 1.0 j.lAdc 1.9,14 1.9,14 8,12 4,5 1,9,14 12 12 4,5 4,5 1,9,14 1,9,14 12 12 13,16 1.9,14 1,9,14 12 12 4,5 4,5 4,5 4,5 13.16 1,9,14 1,9,14 12 12 4.5 4,5 1,9,14 12 4.5 -3.2 V +2.0 V 12 4,5 -0.630 -0.630 Vd< Vd< 13.16 -1.920 -1.655 -1.655 -1.850 -1.850 -1620 -1620 -1.820 -1.820 -1.545 Vd< Vd< 13,16 9 Vd< Vd< 13,16 1~40 -0.845 -1600 -1600 Moo 10 ~ 1.1 ~ -1.545 -0.845 -0.950 ~50 Max -1.525 -1.525 Vd< Vd< Vdc 1.9,14 13,16 8 13,16 13,16 -1230 -1240 -1.120 TyO M. . Min Max Pulse In 20 2.9 - 8 - - j 1Veel Gnd 95 21 -0825 -0825 -1350 VEE 95 -0.180 -1.320 ~ TEST VOLTAGE APPLIED TO PINS BELOW: -0.780 -1.635 -1.635 7 7 VEE -1.510 -0930 -0930 -1.100 -1.100 6 6 VS8 -1.255 -1.105 -0.880 -0.880 Min t8+6+ 18-6_ 18+7_ 18-7+ VILA ma. -1.850 -1.080 -1.080 -1.920 High Threshold Voltage VllmIR -1.920 -0.780 Me 10516F Test Limits -,High Output Voltage VIHmax -0.880 VIHAmin -SSoC +250 C 3.3 *~ - - - - j j Pul.Out 1,9,14 j j j MECL 10,000 series DUAL 2-WIDE 2-3-INPUT "OR-AND/OR-AND-INVERT" GATE MC10517 The Me 10517 is a general purpose logic element designed for use in data control, such as digital multiplexing or data distribution. Input E is common to both gates. Po = 100 mW typ/pkg (No Load) tpd = 2.3 ns typ Output Rise and Fall Times: '" 3.5 ns (10% to 90%) = 2.2 ns (20 0 ,," to 80%) POSITIVE LOGIC (8) NEGATIVE LOGIC 4 (8) 4 (9) (9) L.~.r-~"",,, __ 2 ('0) (6) r--,--~~-~ 6 9 (14) 10 ('5) 3 (71 2 16) 110) 6 ( 11) ('3) 5 3 (7) Ill) 7 113) 9 1'4) '0 115) 11 11 14 (2) ' - - . . - -.....- - 1 4 (2) 15 (3) ~~--<>15 (16) '2 (1) '3 13) 116) 12 111 13 Y Y = (A + B) • (e + 0 + E) X X = (A + B) • (C + 0 + E) = (A = (A • S) + (C. 0 • E) • B) + (C. 0 • E) Numbers at end of terminals are pin numbers for L package (Case 620), Pin 8 Pin 12 Numbers in parenthesis denotes pin numbers for F package (Case 650), SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2S0C Vee 1 = VCC2 "·'i It,,·, +2.0 Vdc V out OR·AND INVERT V out OR AND PROPAGATION DELAY r---- -----, (~__~~~I~~ 50 I I 50 ~~---+1.11 V --~~-+0.31 V V out OR-AND Input Pulse t+ = t- = 2.0! 0.2 ns (20 to 80%) t+ t- 9roun~l~ each scope channel 50-ohm termination to cated In Input All input and Output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 Inch from TP in to Input pinand TPoutto output pin. V out is 2:1 attenuated. - - -h-__ V out OA·ANQ·INVERT Unused outputs connected to a 100-ohm resistor to ground. J I-= 0.1 ~F -3.2 Vdc VEE See General Information section for packaging and maximum ratings. 3-262 ELECTRICAL CHARACTERISTICS 3: Each full temperature range MECL 10,000 C') series circuit has been designed to meet the de specifications shown in the test table, ~ lished. ~ 4.-r---.... after thermal equilibrium has been estab- ~ The circuit is in a test socket or ...... mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a l00-ohm resistor to -2.0 volts. n-O 2 6 - Test procedures are shown for only one gate. The other gates are tested in the same manner. 9 10 11 ~14 15 12 ::J .... ::J c: ~ L SUFFIX CERAMIC PACKAGE CASE 620 13 TEST VOL TAGE VALUES (Volts) @Test w VIH max VIL min VIHA min VILA max VEE -5SoC -0.830 -1.920 -1.255 -1.510 -52 +2SoC -0.120 -1.850 -1 105 -1475 -52 + 125°C -0.580 -1.820 -1.000 -1400 -52 Temperature '" 0> W Characteristic Symbol Power Supply Drain Current Inpul Current Pin Under Teo. MC10517L Test limits +12SoC +25 oC -55°C Min Mox 'E 29 lin H 450 630 'm L LogiC "1" Output Voltage LogiC "0" Output Voltage LogiC "1" Threshold Voltage LogIC "0" Threshold Voltage Min TVp Ma. 20 26 Min 265 370 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: Ma. Unit 29 265 370 mAdc 0.5 05 -0.930 _0.930 -0.720 -0.720 -0.825 -0.825 -0.580 -0.580 Vdo Vdo VOL -1.655 -1.655 -1.620 -1.620 -1.820 -1.920 -1.850 -1.850 -1.545 -1.545 Vdo Vdo -0.845 -0.845 -0.950 -0.950 VOLA -1.600 1.1 3.5 1.4 2.3 AlseTlme (201080%1 '2+ 13+ 1.0 + 4.1 + 1.1 22 4.0 Fall Time (20 to 80%) '2_ '3_ + ~ ~ ~ - '-- 2 3 - i i ~ 3.4 ~ 1.2 3.5 0.9 4.1 i i ~ ~ j 1,16 1.16 1,16 1 16 4,9 1.16 1,16 4,9 4,9 4.9 +1.11 V t4+2+ 14_2_ 14+314-3+ 1.16 4,9 4.9 Vdo Vdo SWitching Times (l00-ohm load) Propagation Delay (Vee) Gnd 8 4,9 Vdo Vdo -1.525 -1.525 -1.600 VEE 1,16 1.16 -0.830 -0.830 -1.635 -1.635 VILA mall; /JAdc /JAdc -1.920 -1.100 -1.100 V,HA min 1,16 1,16 -1.080 -1.080 VOHA VIL min /JAdc /JAdc VOH -1.820 VIH max j 4,9 1,16 1,16 Pulse In -3.2 V +2.0V 8 1.16 j Pulse Out j j s: ELECTRICAL CHARACTERISTICS ...o Each full temperature range MECL 10,000 ("') series circurt has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear -..J 9 ; ~7 fpm is maintained. Outputs are terminated 6 10 through a ·lQO.ohm resistor to -2.0 volts. Test procedures are shown for only one gate. ... (J1 ------r--... 8 11 The other gates are tested in the same man ner. 13 14 8 ... :i' ::J t: (I) 0. F SUFFIX CERAMIC PACKAGE CASE 650 15 3 16 11 TEST VOLTAGE VALUES lVoltsl @Test trJ VIHmu Vil min VIHA min VILA max VEE -5SoC -0.830 -1.920 -1.510 -5.2 +25 o C -0.720 -{).S80 -1.850 -1.255 -1 105 -1.475 -5.2 -1.820 -1.000 -1.400 -52 T emperatu rll '" 0) ~ +1ZSoC I Symbol Characteristic Power SupplV Dram Current Input Current J I logic "1" Outpt:lt Voltage Logic "0" Output Voltage logic "1" Threshold Voltage Logic "0" Threshold Voltage MC10517F Test limIts Pin Under Tes. -5SOC Min M.. 'E 12 29 1m H 8 450 630 '3 1m l 8 13 VOH 6 VOL VOHA VOLA Min TV. 20 MaN t4+2+ '4+3_ t4-3+ l20t~80%) FeU ·'lime 120 to 80%) M.. Unit 29 265 370 mAdc 0.5 0.5 /.IAdc -0.930 -0.930 -0.720 -0.720 -0.825 -{).825 -{).580 -{).580 Vd, Vd, -1.920 -1.655 -1.850 -1.620 -1545 -1.920 -1.655 -1.850 -1.620 -1.820 -1.820 Vd, Vd, -1.545 -0.845 -0.950 -{).950 -1.635 -1.600 -1.525 -1.635 -1.600 -1.525 '2+ '3+ '2_ '3_ 1.4 ~ 2.3 ~ 34 ~ 1.1 2.2 4.0 ~ ~ ~ VILA max 13 8.13 8,13 8.13 8,13 8,13 Vd, Vd, -0.845 VIHA min 13 ,!JAdc ,!JAdc -0.830 -{).830 -1.100 -1.100 Vll min "Ad< -LOBO -1.080 VIH max 8.13 Vd< Vd, Pul_ln VEE IVee l Gnd 12 12 12 12 12 4,5 12 12 12 12 4,5 4.5 4,5 4,5 12 12 4,5 4,5 4.5 4.5 4,5 4,5 8.13 '2 12 4.5 4.5 PuJseOut -3.2 V +2.0V 8,13 +1.11 V '4-2_ Rise Time Mon 26 265 370 SWitching Times (l00<»hm load) Propagation Delav TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +125 oC +25"1: 13 j j j j j MECL 10,000 series DUAL 2-WIDE 3-INPUT "OR-AND" GATE MC10518 Po = 100 The MC10518 is a basic logic building block providing the OR·AND function, useful in data control and digital multiplexing applications. mW typ/pkg (No Load) tpd = 2.3 ns Output Rise = 3.5 ns = 2.5 ns typ and Fall Times: (10% to 90%) (20% to 80%) POSITIVE LOGIC (7) 3 (8) 4 NEGATIVE LOGIC (9) (7) 3 (8) 4 (9) (10) 2 (6) 6 (13) 9 (14) 10 2 (6) 6 (10) (11) (11 ) 7 (13) 9 (14) 10 (15) 11 (15) 11 15 (3) (16) 12 15 (3) (16) 12 (1) 13 (1) 13 (2) 14.. (2) 14 Numbers at end of terminals are pin numbers for L package {Case 6201Numbers in parenthesis dEmotes pin numbers for F package (Case 650). SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 2SoC v c el = VCC2 +2.0 Vdc VOIJt ""m""' ,---- Input Coax ---l I 50 I I PROPAGATION DELAY Pulse Generator Input Pulse t+ ::0 t- = 2.0 ±. 0.2 ns (20 to 80%) sb-ohm termination to ground 10i o 100 C8ted in .ach tcOp. channal input. V out ~II inpl4t and output cables to the -.cope are equal lengths of 50-ohm coaKiat cable. Wire length should h c; 1/4 inch from TPin to input pin and TPoutto output pin. V out : "2:1 attenuated. ' See G"neta1 Information section for packaging and maximum ratings, 3-265 s: ELECTRICAL CHARACTERISTICS ... ... n o Each lull temperature range MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equ il ibrium has been estab- C11 lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 00 3 8 4 ::J fpm is maintained. Outputs are·terminated . through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one 6 gate. The other gates are tested in the same manner. 9 !:!. 2 ::J c: CII Q. - 10 11 15 12 13 14 w LSUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Volts) ~ Ol @!Test VIH max VIL min VIHAmin VILA max VEE -1.920 -1.255 -1.510 +2SoC -0.880 -0.780 -1.850 -1.105 -1.475 -5.2 -5.2 +125"c -0.630 -1.820 -1.000 -1.400 -5.2 Temperatur. -56°C Ch,...ct.,istic Power Supply Drain Current Input Current Symbol IE lin H lin L Pi" Und. TOS1 Min Max 8 6 7 9 - 29 6 7 9 -55·C MC10518L Test limits +25o C + 125°C Typ Min Max Min Max - , , 0.5 450 450 630 - 0.5 VOH 2 -1.080 -0.880 -0.930 VOL 2 -1.920 -1.655 -1.850 Logic "1" Threshokt Voltage VOHA 2 -1.100 - -0.950 Logic "0" Threshold Voltage VOLA 2 - -1.635 - 16+2+ '6- 2- 2 1.1 1.1 3.5 3.5 1.3 1.3 4.1 4.1' 1.4 1.4 1.5 1.5 Logic "'" Output Voltage Logic "0" Output VOltage 20 26 - 265 265 370 -0.780 -1.620 , , , - Unit VIH max VILmin 29 mAde - 265 265 370 ",Ade 6 7 9 - - .$JAde - 6 7 9 I Rise Time C20 to 80%1 '2+ Fall Time C20to 11*) '2_ ~ VILA max VEE CVCCI Gnd 8 1.16 - - 8 1.16 - 8 1.16 VIHA min - -0.825 -0.630 Vdc 3.9 - -1.820 -1.545 Vdc - 3.9 - - 0.3 - -0.845 - Vdc 9 - 3 -1.600 - -1.525 Vdc - 9 - 3.4 3.4 1.2 1.2 3.9 3.9 n. +1.11 V 2.3 2.3 2.5 4.0 1.2 4.0 2.5 4.0 1.2 4.0 Switching Times (1QO-ohm load) Propagation Oelay TEST VOLTAGE APPLIED TO PINS LISTED BELOW, l 3 + - - - ,, , + 8 1.16 8 1.16 8 1.16 8 1.16 Pulse In 3 Pulse Out -3.2 V +2.0 V 6 2 8 1.16 l l l l ELECTRICAL CHARACTERISTICS 3: ...n ... Each full temperature range MECl 10,000 series circuit has been designed 'to meet .the de specifications shown in the test table, 0 (JI after mermet equilibrium has bea:n esteblished. The circuit is in a test. sOcket or mounted on a printed. circuit board and transverse air flow greater than 500 linear 00 8 8 9 fpm is maintained. Outputs are ~erminated through a l00-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tasted in the same manner. ... ~ 6 10 :;' 11 ~ CD a. 13 14 15 3 16 F SUFFIX CERAMIC PACKAGE CASE 650 w ~ TEST VOL rAGE VALUES ...., O'l IVolts• @Test Temperatur. VIH max VIL min VIHAmin VILA max VEE _1.510 -0.580 -1.105 -1.000 -1.475 -1.400 -5.2 -5.2 +125"c -1.920 -1.850 -1.820 -1.255 +2SoC -0.830 -0.720 -5SoC Characteri.ic Power Supply Drain Current input Current Symbol 'E lin H lin l logic "'" Output Voltage logic "0" Output Voltage logic "'" Threshold Voltage Logic "0" Threshold Voltage Pin Unci. Tos' 12 10 11 '3 10 11 13 VOH 6 VOL 6 VOHA 6 6 VOLA MC10518F Test Limits +25o C -55"c Min - , - Min M.. Unit VIH max Vil min VIHA min VILA max VEE 1Veel Gnd 20 26 29 mAde - jJAdc '0 11 '3 12 4.5 370 265 265 370 - 0.3 - }.lAd\: - 4.5 265 - 12 - - 12 4,5 Min 29 450 450 630 - - - 0.5 - -LOBO -0.830 -1.920 -1.655 + -0.930 -1.850 -1.100 - -0.950 - -1.635 - + 125°C M.. M•• 0.5 TVp - - Vdc - 7,13 - - -0.845 - Vdc 13 - 7 -1.600 - -1.525 Vdc - '3 26~ - ~.720 -1.620 + - -0.825 -0.~80 -1.820 -1.545 Switching Times 1100-0hm 10.U Propagation Delav Rise Time 420 to 8O%J Fall Time e20 to 8Q%) 1'0+6+ '10-6- '6+ '6_ 6 ~ ~- '-- - 1.4 1.4 1.5 - - ~~ -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, 2.3 2.3 3.4 3.4 2.5 4.0 ~- 4.0 - - + - - + - 10 '1 '3 Vdc 7. '3 - n. ~ +1.11 V 7 + - - , + '2 12 '2- + + 4,5 4.5 4,S 4,5· - 7 Pulse In Pulse Out '2 -3.2 V +2.0V 10 6 12 4,5 ~ ~ ~ ~ MECL 10,000 series 4-WIDE 4-3-3-3 INPUT "OR-AND" GATE MC10519 POSITIVE LOGIC The MC10519 is a 4-Wide 4-3-3-3 Input ORAN D gate with one input for two gates common to pin 10 (14). Input pulldown resistors eliminate the need to tie unused inputs to an external supply. NEGATIVE LOGIC (7) 3 (7) (8) 4 (8) 4 (9) 5 (9) 5 (10) 6 (10) 6 (11) 7 (11) (13) 9 (13) 9 (14)10 2(6) (14)10 (15)11 (15)11 (16)12 (16)12 (1) 13 (I) 7 2(6) Po =.100 mW typ/pkg (No Load) tpd ::: 2.3 ns typ Output Rise and Fall Time: = 3.5 ns typ «10% - 90%) = 2.5 ns typ (20% - 80%) 13 (2) 14 (2) 14 (3) 15 (3) 15 Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650), SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 2SoC vee1 VCC2 +2.0 Vdc n coa • I~ V out ' ">$''"> Cqax r--------., I I I I I Pulse Generator 50 PROPAGATION DELAY I I Input Pulse t+ = t- :: 2.0 ±. 0.2 nt I I I (20'080%) I I I I 50-ohm termination to ground located in each SCO.p9 channel Input. All input and output cables to the SCOpe are equal lengths of SO-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TPout to output pin. V out is 2: 1 attenuated. L ___ l1~~"~ LfvdC VEE See General Information section for packaging and maximum ratings. 3-268 V out 3: ELECTRICAL CHARACTERISTICS ... ... o Each full temperature range MECL 10,000 serincircuit has been designed to meet the de specifications shown in the t8St table, after thermal equilibrium has been established. The circuit is in a test socket or o C11 3 --+-__, (13)9 (11) 7 (13)9 2 (7) (14)10 (15) 11 ( 16) 12 2(7) (14)10 3(6) 3(6) (15)11 ( 16) 12 ----,~../"---. ----<-....------,. (1) 13 - -.......\~r_-t------.J (2)14 (3) 1 5 ----,c....___---- (1)13 (2)14 (3) 15 ----,--../---- Logic equation using pin numbers for L package 2= (4+ 5+6)-(7 +9+ 10)- (10+ 11 + 12)_(13+ 14+ 15) 3= (4+ 5+6).(7+9+ 10)- (10+ 11 + 12).(13+ 14+ 15) Logic equation using pin numbers for L package 2~ (4. 5.6) + (7 .9.10) + (10.11. 12) + (13.14.15) 3= (4e5_6) + (1e9.10) + (10.11.12) + (13.14.15) Numbers at end of terminals are pin numbers for L package (Case 620), Numbers in parenthesis denotes pin numbers for F package (Case 6501. SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@2S0C VCC1 = VCC2 +2.0 Vdc V out ""ffJ'" CoaJIC r---- ----- - CoaJIC --, I 50 I nput Pulse t+ = t- = 2.0 ± PROPAGATION DELAY 50 0.2 ns (20 to 80%) +1.11 V I Vin I I I 50-ohm termination to ground 10' ~-~"\"""..,.....-f------..J cated in each scope channel input. All input and output cables to the ,cope are equal length, of 50-ohm coaxia' cable, Wire length should be < 114 inch from TPin to input pin and TP out to output pin. V out I, 2: 1 anen uated. I V out OR-AND L ______________ .J t+ t- V out OR·AND·INVERT S" Gen"a' I nformation section for packaging end maximum ratingt. 3-271 s: ELECTRICAL CHARACTERISTICS Each full temperatura range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, n .... ;~ o 6 U1 N .... after thermar equilibrium has been estab- lished. The circuit is in 8 test socket or 7~ mounted on a printed circuit board and transverse air flow greater than 500 I inesf fpm is maintained. Outputs are terminated through. l00-ohm resistor to -2.0 volts. Te,t procedures are shown for only one gate. The other gates are tested in the same manner. 2 3 10 n - 9 11 12~ o :J ~, :J c: (I) c. L SUFFIX CERAMIC PACKAGE CASE 620 13~ 14 15 TEST VOL TAGE VALUES (Volts) @Test Tamperature w N ...... Characteristic: Power Supply Drain Current Input Current VILA maw. Vee -55"<: -0.830 -1.920 -1.255 -52 +2SoC -0.720 -1.850 -1.105 -1.510 -1.475 -5.2 +lZS o C -0.580 -1.820 -1.000 -1.400 -52 -55°C TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +l25 o C +25"<: (Vee) Min Max Min TVp Max Min Max Unit VIH max VIL min VIHA min VILA max Vee Gnd Ie 8 - 29 26 mAde - 1,16 265 265 370 265 265 370 ,uAdc 7 9 10 - 8 - - - 450 450 630 - 29 7 - 20 - - 8 1,16 - - - - 0.3 - ,uAdc - - lin H 9 10 , 3 2 -1.080 -1.080 - - Logic "1" Output Voltage VOH Logte "0" Output Voltage VOL 3 2 -1.920 -1.920 VOHA 3 2 -1.100 3 2 - -1.635 - -1.635 - - t4+3_ t4-3+ t4+2+ t4-2- 3 3 2 2 1.2 3.6 14 2.3 '3+ '2+ '3_ '2_ 3 2 1.0 + 4.5 11 + 2.5 4.0 t 0.9 + 4.4 ~ ~ ~ ~ ~ ~ ~ lin L VOLA 7 0.5 -1.100 - 05 -0.830 -0.830 -1.655 -1.655 -0.930 -0.930 -1.850 -1.850 - -0.950 -0.950 + - -0.720 -0.720 -1,620 -1.620 - + -0.825 -0.825 -1.820 -1.820 + - - + -0.580 -0.580 Vdc Vdc -1.545 -1.545 Rise Time 120 to 80%1 Fall Time t20 to 80"') - - 7 9 10 10,13 4 - 4.10.13 - Vdc Vde 4,10,13 - 10.13 4 Vdc Vdc 10,13 10,13 - - 10.13 10.13 - , - -0.845 - -0.845 - -1.600 -1.600 - -1.525 - -1.525 Vdc Vdc 3.' 1.1 3.5 ns Switching Times (100-ohm loadl Propagation Delay I Test 10 Logic "0" Threshold Voltage VIHA min Symbol 9 Logic "1" Threshold Voltage VIL min MC10521L Test limits Pin Under N VIH max - +1.11 V 3 2 + + 10,13 - j j - - + 8 + 1,16 • 8 1,16 1,16 8 8 1,16 1,16 8 8 1.16 1.16 - - 8 8 1,16 1.16 Pulse In Pulse Out -3.2 V +2.0V 4 3 3 2 8 1.16 2 j j - - 8 , , 4 - + - - + j 3 2 3 2 s: ELECT,"GAL CHARACTERISTICS Each lUll temperature range MECL lO,OOO series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or ...o c.n ... (') ~~ 10 N mounted on a printed circu"it board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated ~~~ through a 1OQ-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested In the same manner. 14 ~ 7 6 15 16~ 8 ... c:: a :::l :::l FWH~ CERAMIC PACKAGE CA~~O ~~ TEST VOLTAGE VALUES (Volts) @Test Temperature W i\.) -...J W I Power Supply Drain Current Input Current Symbol IE linH lin L LogiC "1" Output Voltage VOH Logic "0" Output Voltage Test 12 11 13 14 11 13 14 _56°C Min 0.5 + Min Tv. 20 , Ma. 26 265 265 370 VILA mall( VEE _56°C ~.83O -1.920 -1.255 -5.2 +2SoC +l25 o C ~.720 -1.850 -1.105 -1.510 -1475 ~.580 -1.820 -1.000 -1.400 -5.2 0.5 Unit 29 265 265 370 mAde + ~.93O ~.930 ~.720 ~.825 ~.580 ~.720 ~.825 ~.580 -1.655 -1.655 -1.850 -1.850 -1.620 -1.620 -1.820 -1.820 -0.845 -1.545 -1.920 -1.920 VOHA Logic "0" Threshold Voltage VOLA ~.830 ~.950 ~.950 -1.635 -1.635 -1.600 -1.600 t8+1_ t8-1+ t8+6+ t8-6- 1.4 ~ ~ ~ '7+ 1.1 25 4.0 ~ -1.545 --0845 Switching Times (1()(k)hm loadl 23 3.4 ~ ~ j.J.Adc , + V,Hmax -1.525 -1.525 V,L min V,HA min V,LA max 11 13 14 j.J.Adc 0.3 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Ma. ~.830 -1.100 -1.100 '6+ '7_ '6_ Min -1.080 -1.080 VOL Rise Time 120'.80%1 Fall Time (20'.80%1 VIHA min + 125°C +25"C Ma. ·29 450 450 630 LogiC "1" Threshold Voltage Propagation Delay VIL min MCl0521F Test Limits Pin Unde, Char.ctertstfc VIH max VEE IVeel Gnd 12 4.5 12 4.5 , , + 11 13 14 + 12 4.5 12 12 4.5 4.5 Vdc Vdc 1,14 1.8.14 Vdc Vde 1,8,14 1.14 12 12 4.5 4.5 Vdc Vdc 1.14 1,14 12 12 4.5 4.5 Vde Vdc 1,14 1,14 8 12 12 4.5 4.5 +1.11 V Pul.'n -3.2 V +2.0V 1,14 8 12 4.5 j j j j j 8 Pul.Out MECL 10,000 series QUAD MTTL TO MECL TRANSLATOR MC10S24 Advance In:forIDation The MC10524 is a quad translator fQ( interfiw:ing data and control signals between a saturated togic section and the MECL section of digital systems. The MC10S24 has MTTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting!non·inverting translator or as a differen- POSITIVE LOGIC (9) 5 (10) NEGATIVE LOGIC 4 (8) 6-T""""-"""L_~--2 (6) (10) 3 (7) (11)7 ..---"'--_~--1 (5) (11) 7 (14)10 (9) 5 4 (8) 6-..--,--~~--2 (6) 12(16) (14110 (7) 1 (5) 12(161 ~-,-_~--15(3) (15111 3 15 (3) 13 (1) (15)11 13 (1) 14 (2) 14 (2) tial line driver. When the common strobe input"is at the low logic level, it forces· all true outputs to a MECL low logic state and all inverting outputs to a . MECL high logic state. Power supply .requirements are ground, +5.0 Volts, and -S.2 Volts. Propagation delay of the MC10S24 is typically 3.S ns. The dc )evels are standard or Schottky TTL in, MECL 10,OOOout . An advantage of this device is that MTTL level information can be transmitted differentially. via balanced twisted pair lines, to the MECL equipment. where the signal can be received by the MC10515 o~ MC1051S differential line receivers. The MC10524 i. useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems. Numbers at end. of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650), Po = 380 mW typ/pkg (No Load) tpd "" 3.5 n·, typ (+1.5 Vdc in to 50% out) Output Rise, Fall Times; 2.5 ns typ (20% to 80%) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 25°C Vee +6.0 Vdc C0811C ""J V out V out NAND AND ''''t rF~ r---'---, 50-ohm termination to ground lo- cated in each scope channel input. Co.x Coax All ioput and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPln 10 input pin and TP out to output pin. V out is 2: 1 attenuated. < 50 Input Pulse Generator PROPAGATION OELAY Input Pul . . t+ = t- ~ 5.5 ±.D.S ns (10 to 90%1 O.lI'F Unused outputs con "ected to a 10G0hm resistor L._ --11,,,, to ground. +2.0 Vdc L3+VdC VeE This il advance Information and 'Pacifications .r. subject to change without notlc •. S . . Ganaral Information Metlon for PRk."lng. 3·274 V out AND VoutNAND s: (') ELECTRICAl.. CHARACTERISTICS .... Each full ~ure range MECL 10,000 _i_ circuit h_ been designed to meet the de opecificlrtions shown in th" t . table, lifter thermal equilibrium ~ been estoblilhed. The circuit is in 8 tett socket or mounted on 8 printed circuit board and tranlVene air flow greater than 500 linear fpm is maintained. Outputs are terminated through 0 1OQ.ohm r_istor to -2.0 volts. Test procedures . •8 shown for only one input, or for one set of input conditions. Other inputs or. outputs are tested in the same nwnner. o U'I ~3 - 12 10 ~15 11 13 ~14 LSUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGEICURRENT VALUES V_ • T_ T.......MUr. • oo"c W "-:I ...., C11 - ..- II .......... ,.....~ppty Dr_mC,,"1Int " ~iwe"""SutIPfy ... ..TM • - ... -III"<: IE'ClUtLT_Umili +2ri°C .... T. . Or.inCun'enl 'CCl '. F~C""rem 'F • • • Inpul~VOIt ... 8V,n Ce.mp 1.....1 Volt... V, H. . OU....IVoltail VOH LOIOII Ovtpul Voh... VOL H" TtnItIoId V~ VOHA L... Ttw........ VDh... VOLA 200 50 -12.8 -3.2 1 .1 ... I.' -1.,*, -UBI -1.120 -1.120 - ... ....... -1.856 -1.856 -1.000 -1.000 ........ .." 'CCH R_CutTent ... I.' -1.& -1.5 ....830 ....830 ·1.850 -1.850 '-0.780 .... 180 -1.820 -1.820 ....... ....... -1.836 -1.100 -1.6QD -1.835 . . . T_'...... _ , Fill Time"" to 28U - +2Ii"c +I2Ii"c ... +1"'" . ...... .2.CI! +1.110 j 1.0 + 3.' •.0 +1.10 +4.0 ..... VIH ...... Vll ..... 1 1 '6+ 2' 3.' '&- 2.' 3.' Ci) ........... *- _ciraHt. ............ ~ for IhiI circuit . . . . if'-i f,om . .. .........., -1.545 -t.545 Vw .2.40 +2.40 +2.40 ..... ..... Vee ..... VIE ~.2 ~.2 ~.2 V WH VF V. Vee VEE ·211 +ID +ID -1 +ID 'II '" ... .... I• I. 5,e,7,10,1t S.8.1,10,1'," mAd< ,.Adc 5,1,10,11 ,IoIAdc 6 "' I. I. I• ~7.1Q." • Vd, Vd, ••1 1 I. I• I. I. I. I• Vd, Vd, '.1 I. I. Vd< Vde • ." Vd, Vd, -1.525 -1.525 CIl c.. ... ',. I ... .,. ... .".1." 'II ·1' TEST YOlTAGEJCURRENT APPLIED TO PI" LIlTED .LOW: Vd, Vd, ..g.825 ..... VF mAd, I. Vd, Vd, ....•,. ......... I 6 1 1 3 3 VWH "4.0 ·'.80 ...OV• 110+6+ 11o-&111+" tlt_&t11+7_ 111-7" VIL .... +1.10 mAd< mAd, ....... ....... ....... -1.820 -1.820 .... VIH",'" mAd, -0.845 -0.845 .............. '1 .... Pr. . . . . ian~ '+3.5 Vck 10 ~t(j) ~ 8::J ...:i' c: 4 6~ j j I •. .7.0'1* • 3.0_ ~ I. + +1.5 Vdc in to the!iD% point on the outpl,lt --'Ofm. The +3.5 Vdc is II--. .... '**'- 811 . . .rId 1UPPY ....... 1hHtId 2 ............ j s: ELECTRICAL CHARACTERISTICS (") Each ·full temperature range MECL 10,000 series circuit has been designed to meet the ~ o de specifications shown in the test t&bte, U'1 after thermal equilibrium has been established. The circuit is in a test socket or N 1~~8 11~6 mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-0hm resistor to -2.0 volts. Test proc;edures .e shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the ~ n-O ::J .... 5' FSUFFIX 16 14 c: (1) CERAMIC PACKAGE CASE 650 ~3 Q. 15 same ITlIIInner. TEST VOLTAGE/CURRENT VALUES VoIII mA ill", Tempe,.fur, W ~ ...... en II. ett..xtltnsuc S, ..... ...... A"v"'w Curr*1n! forward Curr~n! B'~akdown 'npu! CI~mp Vollage VAH -SS°c'" +2So C -200 +1.10 +"'.0 "'40 +1.80 +110 +4.0 "'40 +2.40 +12SOC -180 +0.80 .4.0 -040 +2.40 .... -SSoC M" +25~C Mo" T,. .... M," .... 03 " mAde 03 10 25 200 50 mAde 'A I, 10 ·128 -3.2 mAde IC~H ICCL V, "10 " 10 5.5 5.5 5.5 55 5.5 5.5 VO" -15 LowOulpu! VollagP -1080 -1.080 VOL -1920 -1.920 Vollage '.(OHA -1.000 -1.000 Low Tn,,'sholc1 VOlldgl;' VOLA Hogh Th't~hold -0.880 -0.880 -1655 -1.655 -0.930 -0.930 -0.180 -0,180 ·1850 ·1850 -1620 -1.620 -0.825 -0825 -1820 -1820 -0.630 -0.630 -1.545 -1545 -0845 -0845 -0.950 -0.950 -1600 -1635 -1635 -1600 tlo-5tl1 ... 5 ... 111-5111+-7- I '.- 111-7"t A~T'm.''''%'o80~1 Fatl Timit (8)% to 2CWd l5 1)0"'6'" .' ~~ 1 1 60 1 25 3.' 25 3. Vd, Vd, Vd, Vd, Vd, Vd, Vd, Vd, Vd, Vd, -1.525 -1.5:15 Sw.ldu", TimelSO-ll loadl P'Op"'!IilI,on OI#I~V 1'35Vdc!oS""",G) VIHmin VIL m.1I VAH VA -240 m.s..'r"~~~~ I~ \at fi,cl.lit: ~~~tion "'ey ' !'" '"","Circuit" specified from "".5 Vde In to the 50% polnl on Ihe output VA 9.11,14.15 I~ 10 10 9,11,14,15 " " 10 10 Vee -500 -500 -500 VEE -5.2 -S.2 100 -.0 -10 -5.2 -'0 " " " VEE 12 03 12 03 13 13 13 13 13 12 12 02 02 02 12 02 10 ..11 02 12 02 02 12 12 10 10 10 10 03 13 03 13 "" "" " 10 " Vee 03 13 03 03 13 13 13 10.11 10 Vile Vd, V. '.10,11,14.1 uAde uAde -1.5 H'9n Output Vollage """ mAde 02 V. ',2 -12 -12 -12 I I~ +1.0 +1.0 +1.0 TEST VOL TAGEICUARENT APPLIED TO PINS LISTED aELOW: .,25oC -66 'E BV,n Inpu! Vollag*1 T", Vil ""'. MC10624F Tefl' Limits Po. Nl'9d! 'v" Pow~. SupplV a'don CU''''n! POS,hvl' Power Supply ar~,n Curlen! VtH ",in I"TI'2T ,;" I - I - I - 1 -1 -1 1 t4i.OVdc Pulse In Pulse Out +7.0 Vdc ·3.2 Vdc ""10 10 10 5 13 02 " _ _ I l G... • 14.9.10.11,14.15 '0 11 10 " + j j w ....,form. Tne"'3.5 Vde i,lhQwn hllfe bec*-t. ell logic endlUpply Itve!,.,.ttliftecl 2voeb positivi. n~ MECL 10,000 series QUAD MECL TO MTTL TRANSLATOR MC10525 Advance InforIDation The MC10525 is a quad translator for interfacing data and control signals between the MECL section POSITIVE LOGIC (6) (7) (10) (11) :=::.:t>--~ =::.:t>--=::.:t>--=::.:t>--- NEGATIVE LOGIC (6) 4 (S) (3) :~4(S) 17) 5 (9) (11) 12 (16) (14)10~ 12 (16) (15) 11 14 15 14~ 13 (2) 13 (1) L--l (3) 15 11) L - 115 ) (5) Vaa Power supplV requ irements are ground, +5.0 Volts and -5.2 Volts. Propagation delay of the MC10525 is typically 4.5 ns. The MC10525 has fanout of 6 MTTL loads. The dclevels are MECl, 10,000 in and Schottky TTL, or MTTL out. This device has an input common mode noise rejection" of ±1.0 Volt. An advantage of this device is that MECL level information can be received, via balanced twisted pair ~~5(9) 110) (14) 10 (15) 11 (2) and saturated logic sections of digital systems. The MC10525 incorporatasdifferential inputs and Schottky TTL "totem p>le" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as 8 differential line receiver. The Ves reference voltage is available for use in single-ended input biasing. The outputs of the MC10525 go to a low logic level whenever the inputs are left floating. lines, in the MTTL equipment. This isolates the MECL logic from the noisy MTTL environment. This device is useful in computers, instr·umentation. peripheral can· trollen, tBst equipment ~nd digital communications $Vstems. Vaa Numbers at end of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denOte pin numbers for F package (Case 650), I CASE I VCC 620 Pin 9 I I 650 I Pin 13 VEE I Pin 8 Pin 12 Po = 380 mW tvp/pkg (No I I ~ood) tp::t - 4.5 ns typ (50% to +1.6 Vdc out) Output Rise, Fall Times; 2.5 ns typ (20% to 80%) VCCmax::: +7.00 Vdc SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 2SoC vee Coa~ "out 5"" vee +50 Vde J O 1 p.F Input r-- --, 280 4.0 I Pulse Gen •• ato. fL Input Pulse t+ '" t- '" 2 0 1.0.2 ns (20 to 80%) _1 69 \Ide All DIodes MM07000 or Equlv o--+.....--1-.....~ 50'Ohm termination to ground 10· cated In each $COpe channel Input One 'I'IDut from e,1ch gate must be tied to Vee during test,ng All input and output cabllils to the scope are equal lengths 01 SO-ohm coal'llal cable. Wire length should be 1/4 inch from TPin to input pin and TP out to output pin. V out il 10: t attenuated < PROPAGATION DELAY V out This is advance information and specifications are subject to change without notice. See Goimerat Information section for packaging. 3-271 ELECTRICAL CHARACTERISTICS 3: n Each full temperature range MECL 10,000 series circu it has been designed to meet the de specifications shown in the test table, ~ after thermal equilibrium has been estab- fished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are :~4 C ~~5 U'I c.n N - 10~ 12 shown for onlv one input, or for one set of input conditions. Other inputs or outputs 11 are tested in the same manner. 14~ 13 15 L---, VBB 8 ::J .... L SUFFIX CERAMIC PACKAGE CASE 620 ::J c:: (1) a. TEST VOLTAGE VALUES (Voltsl t>T... T""pet'etur. .- C~ad"''''ic W N --.I IX) l Neptive Power Supply Dr.ln Current l 'E POSttive Power Supply Dr.in Current Pin Undo< Toot ...."" Min '>sOC M.. Min Ty. e 'in H (J) 'eBoll) Short-Circuit Current HilJh Output VOlt. 'OS VOH CD Low Output Volt. . VOL High Threshold Volt. Min M.. 52 39 115 ICCL Input L . . . . . Current M•• 40 ICCH Input Current ......, MC10U5L T_ Limita 1.0 4. VOHA '.0 100 40 2.5 2.5 2.5 0.5 2.5 -0.180 -1.920 -1.860 -1.820 Unit mAde VIHmu mAde 2,6,10,14 0.5 2.5 J'Ade ,.Ade /JAde ,.Ade 3,7,11,15 Vd, 2,6,10,14 Vde Vd, 6,10.14 VOLA VOLSI 0.5 0.5 0.5 0.5 0.5 05 VOLS2 0.5 0.5 05 Vd, -1.120 Vde Vd, 05 0.5 Vde Common Mode . Re;ectton Tests l VOH -'.440 2.5 2.5 VOL ...itdI.... T ..... Pt-opegetion Oel-V I~ to +1.5 Vdcl R" Time l+l.0Vdc to 2.0 Vdd F•• Time(+1.0Vdc t~2.0Vdc) d> -1.320 -1.350 I......~~ 2.5 2.5 '2+4t2--4+ ....... ~ IndiwiduMty wt IKh input, epp6y VIH ...... to pin undlr ,-" IndMdulllty,. ~ oulDUl. foMcMI,. ............. for Din 4. -1.240 2.5 2.5 0.5 0.5 fa) 1~1y_1Kh Input, ~ VEe to pin u""~ • -1,230 0.5 0.5 + 4." + 6.0 + 3.3 3.3 Vee .50 I VEE -5.2 -5.2 +5.0 1 +5.0 V'Lmin VIHAmin VILAm.a VIHH VILH VIHL VILL Vu 3.7.11.15 Vee 9 .1 -5.2 ! VEE Gnd e 16 3,7,11,15 '6 16 2,6,10,14 3.7,11,15 2,6.8,10,14 .6 .6 2,6,10.14 2,6,10,14 3,7,11,15 3,7,8,1115 B 4,16 2,6,10,14 3,7,11,15 3,7,11,15 3,7,11,15 6.10,14 3,7,11,15 1~,~'~::4~'5 • 3.7,11.15 Pu ... Out ~ ~ ! 3,7,11,15 Output Condition •• 16 16 16 16 16 9 • !!! -2.0mA 12,0 rnA -2.0mA 12.0 rnA 12,0 rnA 16 12,OmA 16 16 -2.0mA -2.0mA 16 .6 12.0mA 12.0mA CL IpFI 25 6 6 2 I 16 3,7,11,15 Vd, Pul.'n '.0 I Vu F,om Pin 3,7,11,15 2,6,10,14 Low Threshold Volt. Tv•• 1 1v,LLl VHAmin VILA",.. VIHH VILH VIHL -1.510 100·11 -0.920 -1.8301-2.920 -1.256 -1.476 100·281: -0.860 - •. 1201-2.860 -1.106 -1.000 -1.400 100.4'" -0.820 -1.580 -2.820 TEST VOLTAGE APPLIED TO PINS LISTED 8ELOW: 1",,""ln. Input Protct ion T lISts Reference Vat .... -0.630 mA Vd, 2.5 0.5 VILmin -0.880 '2sOC +1260(: mAdc "" 2 3 VIHm.. -56OC 16 1 3: ELECTRICAL CHARACTERISTICS ... o Each full temperature range MECL 10,000 ~~8 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 10~ 11~ o U1 I\,) F SUFFIX U1 CERAMIC PACKAGE CASE 650 0- 9 fpm is maintained. Test procedures are 14~ 16 shown for only one input. or for one set of 15 o ::J ~. ::J :~1 input conditions. Other inputs or outputs are tested in the same manner. C CD Q. ~5 Vss TEST VOL rAGE VALUES (VollS) @Test Temper,ture -..I CO I I Ch....I... mu: Symbol T.., 'E 12 Neg,t,1o'e Powe-r Supply Dr"n Cun.nl POJ'llIIt Pow.r SUPP'y Dr"nC"rrenl leeH 13 leCL 13 6 'tlPul Cun.nl ',nH (J) Inpul leo. . . . Currenl IC80<2) -SS"c M •• 'os HI~ OutPUt Voll. VO H Q) lOW Output Volu.Je VOL " M," T" M .. M," M .. VOHA 25 40 05 VIH rn •• VILm,n VIHAmlll VILAm,. VIHH V'LH 05 Voll -1240 25 60 110-9+ IndlVldUlilly tlllSt uch Input, apply VIH milt to pin under ttst I%) Individually tnt lt8Ch IIlPUt. applv VeE 10 pin unci., lesl 0'1 Indlyi~ltv tetteach output. folloM", '''Imple shown for Pin 8. 3.1,11,12,15 + + 33 33 Ic~;::-;n 12 2.6.10,12,14 • 261014 13 12 761014 3.7.11.15 13 12 10mA 3)1115 13 13 13 12 12 12.0mA 10 mA 12 12.0mA 13 2.3.6,7.10, 11.12.14.15 12.0mA 13 12 120mA 13 13 13 13 12 12 12 12 12.0 rnA 12.0mA 13 12 261014 37.111!l 3.111.15 2.10.14 Vde -1120 ',8 3.11115 05 05 Puhlt In "' Don"te ••• H a" Po ~ ;45 mW tYP/pkg (No Load) tpd :::: 2.5 ns typ Numbers at end of terminals ar. pin number. for L package (Ca•• 620). Numbers In parenmnia denotes pin number. for F package (Ca .. 650). CIRCUIT SCHEMATIC This is advance information and specifications are subject to change VIo!ithout notice. S.e General Information section for packaging. 3·280 The MC10530 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CEI inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (el. Any change at the D input will be reflected at the output while the clock is low. The out· puts are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been opti· mized to provide relaxation of system layout and design criteria. The set and reset inputs do not override the clock and D inputs. They are effective only when either C or CE or both are high. m~ f..,t: (·,i.~;'I··f iCI "f_! t:ft."ci-~''''t:.,; S, ELECTRICA[· CHARACTERISTICS Each full temperature range MECL 10,000 series tircuit has been designed to meet the dc specifications shown in the test table, after t.hermal equilibrium has been estab· lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a l00-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or Ol.,ltputs are tested in the same man ner. 5~--~-------, 0' 7 CE' 6 MPoj 2 ~ .... o - 3 R'4j R~ ,:~~-+----------, U'I W o nO LSUFFIX CERAMIC PACKAGE CASE 620 ::J r+ ::J C (I) ~ 14 CE211~ "1 02'0 Q2r--'5 TEST VOLTAGE VALUES 1 S2'2 (Voltsl @Test Temperature -550 e +2So C +125 O e w ..:., Pin Und. CX) Char.ct .. irtic Power Supply Drain Current Input Current Logic "0" Output Voltage Logic·"1" Threshold Voltage Logic "0" Threshold Voltage S'!Vitching T~mes (50 (See Figure 11 Propagation Delav Fall Time (20% to 80%1 VILAm.x VEE -0.880 -'.920 -1.850 -'.255 -1.'05 -1.000 -'.5'0 -1.475 -5.2 -5.2 -5.2 -0.780 -0.630 -1.820 +125o C Min MI' Min Typ Mo. Min MI' Unit IE 8 6 9 4 7 4· - 39 375 450 485 485 - 28 - 35 220 265 285 285 - 39 220 265 285 285 0.5 - 0.3 - ~Ade - 4 2 -1.0BO -0.880 -0.930 - -0.780 -0.825 -0.630 Vdc 7 VOL 2 -1.920 -1.655 -1.850 - -1.620 -1.820 -'.545 Vdc - VOHA 2 -1.'00 -0.950 - - -0.845 - Vdc - VOLA 2 - -'.635 - - -'.600 - -'.525 Vdc - t7+2+ t5+2+ t4+2_ '&-2- 2 - - 1.0 2.7 2.7 2.7 3.5 _. ns - t - - l 6 - - - - 0.5 VIHmax VILmin VIHAmin VILAmax VEE mAde 9 - /JAde 6 9 4,9 7,9 - - - 8 - - - 7 - - - 7 - - + 9 +1.11 V '2+ '2_ Setup Time tsetup Hold Time thold I -All other inputs are tested in the same manner CD See test circuit for test procedures. 2 2 _. - - + 1.1 - 1.1 2.7 2.7 2.5 1.5 - 4.0 3.5 3.5 - - - - -1.400 TEST VOL TAGE APPLIED TO PINS LISTED BELOW, Load) Rise Time (20% to 80%1 VIHAmin T.. 'inL VOH n -550 e VILmin Symbol linH Logic "1" Output Voltage MC10530L Test Limits +2Soe VIHmax 6 - - - 1.16 - 8 1.16 7 8 1,16 Pulse In Pul. Out -3.2 V +2.0 V 7 5 4 6 7 2 8 1,16 6,7 CD (j). - • 8 7 ns + 1,16 1,16 6,7 - - '.16 1.16 8 - ns 8 (Vee l Gnd 8 I II 2 2 - 8 1.16 8 1.16 ELECTRICAL CHARACTERISTICS 3: 519 01 11 de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and 6 through a 10Q.ohm resistor to -2.0 volts. R18 Test procedures are shown for only one C 13 input, or for one set of input conditions. R21 W 0 8 .... ::l 5' "1 0214 Q2r-- 3 eVolts) @Te... Temptrlltur. VIHmn VILmin VIHAmin VILAmlx VEE -SSoC +2SoC +12SoC -0.880 -0.7BO -1.920 -1.850 -1.255 -1.105 -1.510 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 MCl0530F Test Limit. +2SoC -55°C (1) TEST VOLTAGE VALUES ~ 5216 w c: .eo Q2~2 L.r-J CE2 '5 Pin U1 F SUFFIX CERAMIC PACKAGE CASE 650 Other inputs or outputs are tested in the same manner. ,:., ~ CEllO transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated CO .... 0 0 Each lull temperature range MECL 10,000 series circuit has been designed to meet the -5.2 -5.2 TEST VOLTAGE APPl1ED TO PINS LISTED BELOW, +l25°C Und.. Test Min Ma. Min Typ Ma. Min Mo. Unit VIHmlx VILmin VIHAmin VILAmlx VEE 12 10 13 8 11 - 39 - 28 35 220 265 285 285 - - - 13 10 13 8,13 11,13 - - 39 220 265 285 285 mAde 375 450 485 485 - - - 12 12 linL 8' 0.5 - 0.5 - 0.3 - /JAde - 4 Logic "1" Output Voltage VOH 6 -1.0BO -0.880 -0.930 - -0.780 -0.825 -0.630 Vde 11 Logic "0" Output Voltage VOL 6 -1.920 -1.655 -1.850 - -1.620 -1.820 -1.545 Vde - -0.845 - -1.600 - -1.525 2.7 2.7 2.7 3.5 - - ns - - 4.0 3.5 3.5 j 10 10 n. ns (j) (j) "-l Chllr.ct.istic Po~r Supply Drain Current Input Current Symbol IE 'inH Logic "1" Thntshold Voltage VOHA 6 - -0.950 _. Logic "0" Threshold Voltage VOLA 6 - -1.635 - - t11+6+ 6 - - 1.0 Switc;:hing Times {SO n Load) (See Figure 1) Propagation Oel8Y Fen Time (20% to 80%) Setup Tin. t.tup Hold Time thold I -All other inputs.re tilted in the ..me ".nner (i) s.._ circu~ IOf , . . " ' _ " - 6 6 - - ~ 1.1 1.1 2.5 1.5 2.7 2.7 + - - - - - - Gnd 4,5 4,5 - - ~ ~ - 12 12 4,5 - - 4,5 - 11 - - 12 4,5 Vde - - 11 - 12 4,5 Vde - - - 11 12 4,5 Pul.ln Pul.Out -3.2 V +2.0Y 11 9 8 10 11 11 6 12 4,5 • +1.11 V '9+6+ '11+6'10-6_ '6+ '6- Rise Time (20% to 80") -1.100 /JAde '''eel - - - - .10,11 10,11 I II 6 6 12 12 4,5 4,5 MC10530 (continued) FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@l250 C veC1 = VeC2 +2.0 Vdc = V out ""ll'' ' r--- ---, I Input Pulse t+ = t- ::: 2.0 nl ± 0.2 S "S Clock Input lot----~'--o (20 to 80%) a O--I---1D 50-ohm termination to ground located in each scope channel input. A All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TP in to input < pin and TP out to output pin. V out is 2; 1 attenuated. +1.11 Vdc V'H +'.11 V CIOCk'~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ +0.31 V .~---.... - - - - - +1.1 1 V C 50% ----", '-----+0.31 V thold -----+1.11 V R'npu,~ S Input 50% r-+ + _____JI 1 . 11V . '--_ _ - - - - - - - - - +1.11 V '--_ _ _ _ _ _ _ +0.31 V D '-----+0.31 v +0.31 V '2+ tsetup a ~ ------:::r--~ to+o:-- I NOTE: t setup is the minimum time before the positive transition of the clock pulse (e) that information must be present at the data input (0). thold is the minimum time after the pOSitive tran· sition of the clock pulse (e) that information must remain unchanged at the data input (0). 3-283 MECL 10,000 series DUAL TYPE D MASTER-SLAVr FLIP-FLOP MC10531 The MC10531 is a dual master-slave type 0 flip-flop. Asynchronous inputs Set (51 and Reset (RI override the Clock (CCI and Clock Enabie (CEI inputs. Each flip·flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the fli poflop, the Clock Eiia1iie inputs mllst be in the low state. In this case, the enable inputs perform the function of controlling the common clock. The output states of the flip·flop change on the positive transition of the clock. A change in the information present at the data (01 input will not affect the output information at any other time due to master slave construction .. Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system design and layout criteria. R-5 TRUTH TABLE R S L L On+l Qn H L H H L L H H N.D. N.D.;::: Not Defined CLOCKED TRUTH TABLE ¢ C 0 °n+l L 4> Qn H L L H H H = Don't Care C = CE + Cc· A clock H is a clock transition from a low to a high state. CASE VCCI VCC2 VEE 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 Po POSITIVE LOGIC 51 191 5 01 (111 7 CEI 1101 .. 6~ Rl 181 Cc 1131 R2 Al ~2 161 ~3 7 52 • ~ 01 ~3 171 ~ 02 ~14121 ::;;r----;. A2116112 Q2 ~15131 4 Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650), 3-284 161 4 11113 02114110 See General 1nformation section for packaging_ ~2 9-< CE2115111 ~ Ql 6~ 02 ~14121 Q2 ~15131 02 114110 b r-- 181 4 Cc 1131 111 13 52 116112 01 1111 51 9--< CE2 115111 5 171 1 4 191 CEI 1101 01 mW tvpipkg NEGATIVE LOGIC , Ql = 235 f Tog ", 160 MHz typ S1 ELECTRICAL CHARACTERISITCS series circuit has been designed to meet the de specifications shown in the test table, =:J (9) 5 01 (II) eEl (10) Each full temperature range MECL 10,000 7 6 3 (7) after thermal equilibr.um has been established. The circuit is in a test socket or Rt (8) Cc (13) 4-+--9 ~ 152 '__ Pin Symbol Tes. 'E 8 l,nH 4 5 6 7 9 - 565 565 375 420 450 IInL 4,5,6,7,9' 0.5 0.5 - LogiC "1" Output Voltage VOH 2 21 LogiC "0" VOL 3 31 -1.080 -0.880 -1.080 -0.880 -1.920 -1.655 -1.920 -1.655 LogiC "1" Threshold Voltage VOHA 2 21 -1.100 -1.100 Logic "0" Threshold Voltage VOLA 3 31 - Power Supply Dratn Current Input Current Input Leakage Current w ~ C11 Output VOltage SWitching Times(l00-ohm load) Clock Input Propagation Delay Min - Q2 MC10531L Test Limits +2S o C -55°C Under Characteristic - 2 (6) Ma' 62 - - - -1.635 -1.635 Min - - -- -1.600 -1.600 -1.105 -1.475 -5.2 -1.820 -1.000 -1.400 -5.2 62 mAde - 330 330 220 245 265 #JAde 4 - - ~ 5 6 7 9 - }JAde /JAde 0.825 -0.630 -0.825 -0.630 -1.820 -1.545 -1.820 -1.545 -0.845 -0.845 - - -1.525 -1.525 - - Vdc Vdc 5 7 Vdc Vdc 5 7 Vdc Vdc - Vdc - Vdl.: +1.11 Vdc 4.6 1.5 3.0 1.4 16+2+ 16+2- 2 2 2 2 Rise Time (20 to 80%' '2+ 2 Fall Time (20 to 80%) '2- 2 1.0 1.0 15+2+ 112+15+ t5+3_ 112+14- 2 15 3 14 1.1 4.5 ~ ~ + + 14+2- 1.1 4.5 12 2.8 14+3+ 113+14+ 2 15 3 14 Setup Time tsetup 7 - Hold Time thold 7 Toggle Frequency (Max) fTog 2 19+2- 19+2+ ~ J ~ 4.5 ~ 1.5 ~ 5.0 ns + - 1.1 J 1.2 4.9 ns 2.5 1.1 2.5 J 1.1 1.2 2.8 4.3 7 7 4.9 4.9 1.1 Reset Input Propagation Delay '13+15- + + 4.3 + ~ 1.2 + - • -• 2.5 1.5 1.5 -0.5 • 115 125 160 125 - - Individually test each input;.apply V, L min to pin under test. ··Pin 3 is tied to pm 7 for these tests. - . , rI- tOutput level to be measured after a clock pulse has been applied to the CE mput (pin 6~ L VtH max VIL min + 4.9 ~- + ns + ns ns MHz -+0.31 Vck - - -- - - - - - - - .. - - - Set Input Propagat Ion Delay -5.2 ~. :::J c: M .. 03 0.3 -0.930 0 VIH max +l25 oC Typ 05 05 6 6f T lsetup I I 0.5 0.5 VOHA VOL LogiC "1" Threshold Voltage M.. 6 6f 7 7t VOH Output Voltag!! W Q2}- 3 +2SoC 12 Inpul Leakage Current @Test Temperature MC10531F Test Limits 'E 13 8,9· F SUFFIX Vdc:t.l% I S2 16----- _. uTne~~r l,nH s:C") ... ... n -~ r TEST VOLTAGE VALUES 5;1..-2 CE2 15 D214-- I Svmbol I I I Power Supply Dram Current ~ ~--~ ""~"'--"'" ""'/,:.,= Other inputs are tested in the same manner. Pm ~ GEl meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is In a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Charactenstlc 9 Dl + 10,11 6 12 4,5 10,11 6 6 12 12 ',5 10 ',5 MC10531 (continued) FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT V out Coax t+ '" t--~1.0ns (20% '080%) 50 ot----~--------~CE Clock Input Qf-------' O---------lc 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should 100 be <1/4 inch from TPin to input pin and TP out to output pin. V out is 2: 1 attenuated. FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C vee1 '" VCC2 '" +2.0 Vdc Input Pulse t+ = t- "" 2.0 ns ± 0.2 ns (20 to 80%) PW PRF = ~2.0 ns = 1.0 MHz Clock Input (Ot------;~- L L L Qn L H L L Po tpd '= 310 mW typ = 4.0 ns typ H L H H ¢ - Don t Care C==CC+ Ce POSITIVE LOGIC DO GO (7) 3 2 161 QO 6 1101 Ql 191 01 1111 7 CE 4 181 Cc (1113 CE 116112 02 1131 9 11 1151 Q2 Gl (14110 15 131 03 Q3 12114 Numbers at end of terminals are pin numbers for L package (Case 6201Numbers in.parenthe'i~ denotes pin numbers for F package (Case 6501. Ca .. VCC1 VCC2 VEE 620 Pin 1 Pin 16 Pin 8 650 Pin 5 Pin 4 Pin 12 See General I "formation section for packaging. 3·288 '1i...,\/OM."" 'IOlt.tI.'~,* ti.t: UiM....~·i..,orqlii ~ - - -1.525 }ldc 1 Vdc j .) - - - j 4 4 1.16 • 8 1.16 8 8 1.16 1.16 8 U6 + - - , 5 .8 1.16 3 -- I 8 1.16 -3.2 V +2.0 V 8 1.16 - 3 - - -- 1.16 8 - 3 3 4 3· - Gnd 8 - - ns - VEE 3 3 3 3,4 4 4 - - - - - ~ 5.4 5.4 3.1 :J !:t. TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +12SoC .. -1.820 -0.630 ilIH~i~ --- - - 4 4 13 - 5 --3 - - - - 13 PulSBln PulsaOut 3 4 5 3 3 2 2 2 2 2 3 2 3 2 'I n ..... ~. CERAMIC PACKAGE CASE 620 . VIHmax VILmin -0.880 ·1.920 -0.780 -1.850 MCl0533L Test Limits VOH VOLA 11Q2 0.3 logic "1" Output Voltage logic "0" Threshold Voltage , tEST VOLTAGE VALUES IVoltsl ~'15Q3 3 VOHA .- ' I .. 02 ~110 Pin Under Test f .... 13 lin l logiC "1" Threshold Voltage .. _., .. _ .. I 0314 Symbol ~ CE4 fpm is main.tained. Outputs are terminated through •. 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other in"puts are tested in the same manner. Characteristic "' .. O~: 6 . :~;:,;;.~~~,.~~':f:~:::::::.~~~~~::::::~:'~~2~;?~: !::?2:~:~~~~=~!:~!:?:~~~~~~!?~r.F~~;~~~~~~~~~~~ • j j j 1j 00 ELECTRICAL CHARACTERISITCS 6 00 Each full temperature range MECL 10,000 series circuit has been cfltsigned to meet the 01 I ... 11 Cc ::~~'502 Input Current w Logl(~ 8 Logic "0" Output Voltage "1" Output Voltage ~ Logic "1" Threshold Voltage Lo.gic "O!' Th.reshold Voltage Switching Tinw. l1oo..hmLOI.CII Propagation Delay Rise Time (20% to 80%. f'aHTimo 120% .0'_1 -SSoC Tnt Min Ie 12 - lin H 7 8 9 lin L VOH VOL VOHA VOLA 13+2+ •7 - -1.920 6 -1.100 . 6 6t 6tt 6tt 6 6 6 6 6 6t 6tt 6tt 6 6 6 7 7 14-2+ '5-2+ t.tup 'hold ·'2+ 6 '2- 6 VIHlnlx -55"C +25"1: -0.880 -0.780 +l25o C -0.630 - - j - - '- - - -0.880 -0.880 . -1.655 - - - -1.635 ! - - -1.820 -1.000 -1.400 VEE Gnd 12 4,5 - - 12 4,5 12 + 4,5 12 12 4,5 .';5 12 4,fi. - ,, 9 12 4,5 B Ij Min MIX Unit VIH.,... - 60 75 - -' mAde - - 245 265 350 350 - - J,lAdc 7 8 9 1 -- - 0.5 - - - J,iAdc - 7 - - cO.930 -0.930 - -0.780 -0.780 -1.620 -0.825 -0.825 Vdc Vdc 7,8 1,7 1 1,7,9 - - - • -0.950 - - - j - - - - -1.600 - 1.0 ~ 2.5 1.5 1.1 1.1 - -. - -- - ,,, - ! 5.4 5.4 3.1 -1.820 -0.845 -0.630 -0.630 -1.545 - - J - ~ - -1.525 - J - - - - - 3.5 - 3.5 - - - tOulpUt_1 to 1I......and.f. . . .lock pul. . . . bIo8n """lied 10 tlw oIacIi l"Pllt'!,"''''' . .IJ:VIH..... -5.2 - MI. -1.850 IiCo -5.2 1 TVp - VEE -5.2 VlLmin VIHAmin VIHAmII. Min - ...5' ::J Vilmin V.HAmin VIHAmII. -1.920 -1.510 -1.255 -1.475 -1.105 "'.850 TEST VOL TAGE APPL1EO TO PINS L.STEO BELOW: +l2SoC +25"C M.. - ,• -1.080 -1.080 6 6 6 6 6 Ii Temperatur. MC10633F Tnt Limi.. Symbol 8 (Voltsl @Tnt Q3 Pin Under 3: n .... o ~ ·W F SUFFIX CERAMIC PACKAGE CASE 650 TE$T VOLTAGE VALUES ~303 2 Power Supply Drain Current 10 Q1 CE ,. Chlr.cte,i5tic ~ llo de specifications shown in the test table, after thermal equilibriu"m has been estab· lished. The circuit is in a test socket or mounted on a printed circuit board and - • • Vdc 7 - 11 Vdc 7,8 Vdc' ! 7,8 7 - 7 7 7,8 8 8 - - 7" - - 1, 7 - - 7 1 9 - - - - 1 - 1 J2 8 . 7 8 - 9 7 7 - 7 - 7 r.11i~~e="'~~~,_t~"·_~'''''~"""",~.,,~~ ,.,~.,l 6 6 6 6 6 8 8 + 4,5 ! ,! Pu . . ln PuI.Out -3.2 V V 8 . - .- 7 7 I +1.11 - - - ns - - 8 1 7· - 12 1 +2.0 V 4,6 I ~ ~,~"i"~ 2~:,;":'1 ; '-::"'7-~" ;::~ "':--:-:""~ .- MC10533 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 25°C '-.,\ VCC1 = VCC2 +2.0 Vdc Coax ""$'''' 50 Input V out Coax PROPAGATION DELAY r----- ----., Pul,sa Generator 50 I +1.11 V Input Pulse 2.0±O.2ns tt"'t-=- . (20 to 80%) V out from 0 Input L----n--.J 5O-ohm termination to ground 10 each scope channel Input cated !" V out from G Input ~ 0.1 IJF C All Input and output cables to the scope are equal lengths of 1 CO-ohm coaxial cable. Wire length should be < 1/4 ,inch from TP in to input pin and TP out to output pin. VEE = ~3.2 Vdc Unused outputs connected to 8 100-ohm resistor to ground. o a t setup is minimum time before the negative transitiorl of the clock pulse ee) that information must be present at the data input (OJ. thold is the minimu~ time after the positive transition of the clock pulse ee) that information must remain unchanged at the data input (0). The latch will store the data on the falling edge of the clock. The outputs are gated when the output enable is low. All four latches may be clocked at one time with the common clock, or each half may be clocked separately with its clock. This devil:!! is useful as a temporary storage element in high speed central processors, accumulators, register files, digital communication systems, instrumenta· tion and test equipment: APPLICATION INFORMATION . The Me 10533 device consists of four bistable latch citcuits with D type inputs and gated a outputs. When the clock is high the outputs will follow the D inputs. 3-291 MECL 10,000 series DUAL J.K MASTER-SLAVE FLIP-FLOP MC10535 Advance POSITIVE LOGIC In~orIDatlon re.tlI NEGATIVE LOGIC 51 (9t 5 - - - - - , 51 (9) 5 - - - - - , Jl (11.) 7 2 (6) Jl (11) 7 2 Kl (10) 6 3 (7) Kl (10) 6 3 (7) (6) AI (B) 4 -1---' Rl (B) 4----1'----' e (13) 9 52 (16)12-+--~ C(13) 9 52 (16) 12 -1------, J2(14)10 15 (3) J2 (14)10 K2 (15)11 '4 (2) K2 (15) 11 Rl (1)13-----" 15 (3) 14(2)~'_· ____--,________________________________~. AI (1) 1 3 - - - - - - ' R-S TRUTH TABLE Num~ers -, The MC10535 is a dual master-slave de coup' led J-K flip-flop. Asynchronous set (5) and (R) are provided. The set and reset inputsover- j ride the clock. A common clock is provided with sep.... J-K inputs. When the clock is static, the j.j( inputs do not effect the output. . The output states of the flip-flop change the positive transition of the clock. . Input pulldown resistors eliminate the need to tie .unused inputs to VEE. Output rise fall. times have been optimized to provide relax. tion of system desi9F1 and layout criteria_ CLOCK J-K TRUnt TABLE' at eods of terminals denote pin numbers for L package (C•• 620), L' Numbers in parenthesis denote pin numbers for F package (ease 650), H CASE V CCI V CC2 VEE 620 650 Pin 1 Pin 5 Pin 16 Pin 8 Pin 12 Pin 4 o N.D. (1.= Not.Qellned 'Output .1at.. change on""; t;1I8 trentilion of cJack for j K ,nput condition p_~l. Po ~ 280 mW tvp/pkg (No Loedl 'Tog· 1.0 MH, tVa FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT vee, "Vee2 = +2.0 Vdc V out Coax Clock Input All input and output cables to the seops are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 Inch from TPin to Input pin and TP out to output pin. V out is 2: 1 attenuated. (Ot---~-----(~-; < Input Pul .. t+::: t-= 1.0n. Duty Cycle""' 50% SO.ohm termination to ground 10· cated in each scope channel"input. *O,'jlF Unu.d outputs connected to • 50-ohm resistor to ground. VEE = -3.2 Vdc r ...__________________________________________________________________~--------------------------..-.:'#,~: i ;.·;rl~; 1 -::,i SH Generel Information Nctlon for peckaging. Thla la advance Information end speclflcatlona ere subject to chano- without notice. 3·292 ' .. "-.~,..,..; .. • ...; ••_ _ ..... ;~~P'81AA..."C\f~j:RISTICS ~.th(f~1I temp8'.fJ1ii'"r.ntli'MECL '111,odo .rfli.'cit-' ",,1t"tI8i; been' deslgnOd tbi'ineet tl18 dC".peciflCatlonS J, , shown in 'the u.f'tablil,efter ther";'l equilibrium he, been established. The circuit i. in e test socket or mounted on a printed circuit board and transverse air flow lII'elter ihen 500 Iineerfpm i. maintained. Outputs ere terminated through • 1QO-ohm resistor to -2.0 volts. Test procedures Ire shown for only one input, or for one sat of in put conditions. Other inputs or outputs are tested in the same manner. i(1 - a ""y" ~211 15.2" POMr Supply ~r.in CU~"t Input Cur,.". Input LNk.., Current Co) ~ = Symbol 'E \ lin H 'Iin L ·~.·T" Outpu.VaI • • VOH Lotic:·O" Outpu.VoI_ VOL Logic _"1" _ Vol_ 8 6.7.9.10.11 4.5.12.13 4.5.6.7.9. 10.11.12.13 2 2C1> 3 j@ 2 2@ 3. 3@ VOHA. Co) . Logic "0" Thnihokl Volt.... VOLA -550 C Min Temperatur. -5Soc +250 C +12&oC - +26"c Ma. 75 450 665 - 0.5 0.5 -1.080 -0.880 -1.080 -0.880 ·1.920 -1.655 -1.920 -1.655 -UOO' . -UOO " -- -- -1.635 -1.635 Min ' - Mo. ·54 68 0.5 0.5 ·0.530 -0.930 -1.850 :1.850 --- -0.950 -0.950 -. - - "?':~:.~~,.~r-,:,:, t :.,~p"'" '~~':;~;':"';"., •• N" •• : •• Min - 265 390 - - -0.780 -0.780 -1.620 -1.620 - .. ~ 0.3 0.3 -0.825 -0.825 -1.820 ·~1.820 -0.845 -0.845 _1.800'-1.800 -- 75 265 390 - - ·0.630 -0.630 -1.645 -1.645 '- -1.525 -1.525 Unit ,'mAde J.lAdc J.lAde J.lAdc J.lAde Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Ri. Ti .... (20'0 BOlli ... fall Time (20'0 BOlli Set 'np'it PropegIition Del-V t2+·tJ+ t2_·t3"- .-. '5+3- o.-v 1.4+3+ '13+15•.. tuP 'hold ime Hold To.a!' Frequ.ency fT~. - ---- 2 3 15 14 7' '4+2'13+14+ Setup Tim. - 2 15 3 14 t5+2+ '12+15+ t12-+14- R_t Input Pr. .tiO!' - 2 2 2.3 2.3 t9+2+ t9+2- - 7 2 - - '-- - - -- -- 4.5 1-1 .3.0 3.0 2.0 2.0 1.0 3.0 5.0 1.0 1.0 U t .~ 1.0 3.0 ~ ~ 1.5 2.5 125 ~ ~ 5.0 ~ All Input and output cables to the scope .re equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TPin to input pin and TP out to output pin. V out is 2: 1 attenuated. All unused outputs are tied to 100 ohm resistor to ground. VEE' -3.2 Vdc NOTE: t ..tup is the minimum time before the positive tr8n,itlon of the clock pulse (el that information must be pr.sent at the input. J or K. thold i'the minimum time after the positive tran· Iition of the clock pulse (e) that information must remain unchanged .t the Inputt J or K. 3-295 J1p1 ;"i MEeL 10,000 series UNIVERSAL HEXADECIMAL COUNTER MC10536 The MC10536 is a high speed synchronoul coune. that can count up, count down, pre.t, or stop count. frequencies exceeding 100 MHz. This binar{ COU ...... is useful in high speed central processors and per. . . . . controllers. minicomputers, high speed digital comtnunieations equipment Wid instrumentation. Theft.,. .. INPUTS 01 L H L H L L H H H H H H H H H H L H H L L I/l I/l L H H H H H H H H H H H H H H L H H H L H H H L I/l I/l I/l I/l L L L L H H H H L H L H H L L H L L L H L L L H H H L H DO 01 D2 D3 in L H H H L L H H I/l I/l I/l I/l I/l I/l I/l I/l I/l I/l I/l I/l I/l L L L L L H L H H H L I/l I/l I/l I/l I/l I/l I/l I/l I/l H H L H H H H L L L L I/l I/l I/l I/l I/l I/l I/l I/l I/l I/l ., ao S2 L L L L either computers or instrumentation. I/l Th~ro H H 02 03 . ~---.._ •• ' " -of " 'the .,, .... ' " Lines " '"' S1 ... the operation mode counter. Carry H H H H SI pile basic counter for most ..plications, and the .,nchrOftous count f""ture makes the MC10536 suil8bie for OUTPUTS Carry Clock u. 1 bility of this device allows the designer to SEQUENTIAL TRUTH TABLE' Out determine one of four operations; preset {progrll'nl increment (count up). decrement (count downl. Of hold (stop count I. Note that in the pr_t _ clock pulse is necessary to load the counter. _ dIej information presant on the data inputs (DO, Dl. D2# and D31 will be entered into the counter .. Caory goes low on the terminal count, or when coun~ the is being preset. au . When an output is not needed, it can be left ~ to conserve system pow.. (The open emitter outpUt will require no power if left open). The cau~ter ~ st-ate only on the positive going edge afl the clock. Any other input may change at any time except durilll the positive transition of the clock. This device is not designed for use with _ _ clocks. Control. is via 51 and 52.. A prosealer can be constructed using the MC10531 in conjunction with the MC10631 which w~1 oper_ at over 200 MHz input frequency. A 500 MHz pr-.:'" is possible using an MC1690 500 MHz D Flip-FlOP. 1ft MC1670 300 MHz D Flip-Flop. and the MC10536. tfJ "" Don't care. I • Truth tabla shows logic Itates assuming inputs vary in sequence shown from top to bottom. •• A clock H is defined as a clock input transition from a low to a high logic level. FUNCTION SELECT TABLE 114110- Cin QO '--14(21 (1)13- C (16112- 00 ( 1 5 ) l t - 01 (10) 6 - 02 (91 5 - 03 (13) 9 - St (11) 7 - S2 Ql -15(31 Q2 - 2 (61 Q3 - 3 SI S2 L L " L H H L. H H Operating Mode Preset (Program) I ncrement (Count Up) Decrement (Co .... nt Down) Hold (StOP Count) m C out - 4 18) --'fPo f count Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Co.e 6501. See General I nformatlon section for packagIOg. 3·296 = 625 mW typ/pkg (No Load) = 150 MHz typ ICose I VCCI I VCC2 I 1620 1650 I I Pin 1 Pin 5 VEE J I Pin 16 I Pin 8 J I Pin 4 I Pin 12 I 'fL'I'm'iexeTBiA'fiJ:M1ft~TICi' .....,.. ",~"""",.,, " \ , . ' W,"'" ',.", :t'iiifi:fuliliiTiji8retU,.'ri,.geMECLfO 000 .. _lei c/rwlt h.. been designed to ~ the Q:,tp8Clflcatlonl shown In the toot table, after thermal equilibrium h.. been _I>lisheil· The circuit is in a toot lOCket or mounted on a printed circu it board and transversa air flow groater than' 500 linear fpm is maintained. Output""e terminated through a 1QO.ohm resistor to -2.0 yolts. Toot procedures are shown for Only one inp~t. or. for one set of input conditions. Othor inputs or output. are tested in tho same manner. 0Wect8r... lin H .......,.. C -0.830 -1.850 -1.820 -1.000 -5.2 VILmin VtHAmtn ViLA ..... VEE - 165 - - - - 8 1,16 /oIAdc 5,6,11,12 1 9,10 13 8 1,16 - 220 265 2•• 290 0,3 - l "Ad, ~ ~ ... IndividUllly appfy V I L min to Pin unctlr test, ",.• CD 12 1,9 Vd, Vd, - -0.845 - Vd< - 1,' -1.600 - -1.525 Vd, - 1,' +1.11 V -to.31V 2.' 1.9 I,. 1,9 (b Measure output after clock pulse .. 8 1. IS 1,16 J.18 "'''In _Out -3.2 V +2.0 V 13 ,. 1.9 1,.9 12,13 12,13 • 7,13 10,13 10.13 .4 • !,. 9,1l . " ,, f 1.16 1,16 8 t 9 Vll ~ 8 8 12 '0 '0 7,9" 1.1 l 8 13 13 -1.0 '25 - 12 12 5,2 6.2 1:l.6 12.6 1.6 1,6 -1.0 125 3.3 - -1.645 1.' 1.' 2.' - - - -1.0 -2.5 -2.5 -1.6 3.' 0.9 150 '50 2,0 ..... VIH ..... 3,1 115 115 IVcc· Unit -0.630 8.9' 6,. <'D Q. m,Adc -0.825 10.5 c: ... -1.820 4,' -1.400 TEST VOLTAGE APPLIED TO "NILISTED BELOW ~.780 ..• ::J ~. ::J IVofbl VEE -1.620 10.6 ~ TEstVOLTAOE VAWES I ~ILA me. I ·7.S t •• t14_ 3,3 3,3 1.0 1,0 5.0 50 Q CJ1 8 VIH.""ft 3,5 3,' 1,' feountup 'cOuntdown ',4+ 1.0 1,0 2,5 2.5 1.6 1.6 ' LSUFFIX Vll",,,, +laoC 'n ...a CERAMIC PACKAGE CA5E 620 VIH",. . TMftper"lIre Switchi . . Til"Ml 1100-0ttm lotd) Pra,...tton o.t.y - i . Q3,-- 3 MC10138L T... limha . +26Q C Ty. 0.5 -0.930 VOLA Q1' ,_"T,·-·,:' _t"It~~""':.~.~ 9 - 51 Pi. PoWer"Suppty Drain Current Input Current ':-"""1S"'",,!,".'I'7¥1 12,13 12,.13 '.13 7,13 10,13 10,13 MH, MH, 3,3 115 115 1,2 3,1 l ~ l VIH appears at clock Input (pm 13) 13 1 (3) Before test set 11111 a outputs to III logic high. ,. ,.• 1,16 ELECTRICAL CHARACTERISTICS Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in 8 test socket or 14 2 00 Cin mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 1()().ohm resistor to -2.0 volts. Test procedures .8 shown for onlv one 16 DO 15 01 10 02 9 - 03 01 3 02 6 03 - 7 1 1 - 52 Caut Pi. Power ....""1. Drein Cur,.n, Inpul CUrtwnl -eeoc Mi. -- T..........ure ~ CO .a"c T., 120 +12fiOc 00;. 150 21S 2"" 2~ -1.080 -<1.660 -0.930 -0.780 VOL -1.120 -1.655 -1,850 -1.620 -1.820 Output VOltllll Lotic "1" ThNlhold VoI_ 21Z VOHA 2C1 -1.100 .....'0'. VOLA 21Z ~Vol" Swrritcfti,.Ti".. ~.950 -1.600 -1.256 -1~5'O ....2 -1.105 -1.475 -1.000 -1.400 .... 2 ... .2 ~.8110 -1.920 -1.850 -1.820 .,;aoc -0.830 TEST VOL TAG! APPLIED TO ,'INS LIlTED _LOll VIH ...... VILllllin VIMA..- v.. ViLA .... 12 12 9.10.15.16 11 13,14 ~ -0.630 .Adc Vdc -1.545 Vdc 11.13 Vdc 11.13 Vdc 11.13 -1.526 ...;5' ::J v.. VIH ...... 285 -0.845 -1.636 n0 VILA_ vlLlllin -0180 .Adc 2"" 26. O.S W mAdc 260 VOH All 0 U1 0) VIH .... .2&"c .... .... 165 21S 260 "0 O.S .... 0.3 -0.825 Outpu. Vol~ ..... '0'. W Mi. 36. 1 ......,.. ...... MC1D538F T. . Lirni1l 165 13,14 I,n L .... (") CERAMIC PACKAGE CASE 650 IV... I .r.. r--8 same manner. I_I~ I " I 12 I Ito H 19.10;~5.16 ... F SUFFIX TEIT VOLTAGE YALUES 1 3 - 51 input, or for ana set of input conditions. Other inputs or outputs are tested in the 3: ~ C 1 1 (j) 16 +1.11 V 11,13 .0.31 V tl~mLOIdJ CI) Co ... lVeel '.5 4.5 ~ 12 12 '.' '.5 12 4.5 12 '.. 18 12 '.5 _0.. -3.2 V +Z.V 1. '.5 III ........ c: ~tOf'IOrtI.y Clock Input c;;;;TnTo~ art '1+2+ t1+2"+8+ 11+8- "4+ '''+9+ 2 2 I I ICI) I 1.0 1.0 3.3 3.3 4.S 4.S 16 2.5 2.5 7.0 7.0 10.5 I." 5.0 1.6 5.0 6.9 6.9 11 11 11 11 t(}.S I 1. 1. Up Tim. o.u Inputs Stfect Inputl c;;;Tn Input 118+1+ 118-1+ 113+1+ 111+1+ ·114-H 11+14+ 3.S 3.S 7." 7.' 3.7 11.13 11.13 1.16 13 13 1,13 1.11 1,1:4 1,14 11.13 11.13 1,11 '1.18 . 13 13 1.13 1,11 1.14 1,14 11 11 -1.0 1.18 Ho6d TifM Oat. Inputs Sttect InPf,ttl ~Inpul Countj,. F,.quency -.- RiliTima 1 - .. - 1 PolIn.... 11+18+ 1.1+1&11+13+ 11+11t1+1 ..... 114+1+ fcountup 'countdown ... '2+ ta'2- -1.0 -1.0 -2.5 -2.5 -1'.6 3.1 125 126 1.1 ~ MH, MH. 150 150 2.0 ~ 1 13 3.3 11 l J ~i~;,.,,~~~,t~ ....~,~~: "II~!"'l!!"oho!:!'OC"~~I&.£V1H~"~~tl~j31 .,,:. 11 11 11 I• ' . J •.__ , I 2 I "-":(;"" G,~-""'Q"""''' \;' MC10536 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS .. 25"c NOTE: .tup i, the minimum time before the pOliti.... e tranlition of the clock pulse Ie) that informetlon "('Ult be Aretant at the input 0 or S . thold' i. ttte minimum time after the pOliti.... e tran· .ition of the clock pul .. ICI thet information mUlt remain unchenged et the input 0 or S. VCC1 '" VC;:C2 '" .2.0 Vdc Vout Co•• 50 In~ut Pul.. t+ :: t- "" 2.0 ns ± 0.2 ns (20 tb 80%) Clock Input @--.....- " - o \ \ TP out Ctock .0.31 V Q Output VEE = -3.2 Vdc r-----__-- .'.1, V c +0.31 V SO·ohm termination to ground located In each scope channel input. o DrS All Input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 114 Inch from TPln to input pin and TP out to output pin. V out is 2: 1 anem.Jated. < Unused outputs are connected to 8 100-ohm resistor to ground. SET UP AND HOLD TIMES L 'e) il the minimum time to WIIlt eft.,. the counter hu ~n enebl~ to eJodt it. Ib) I. the minimum 'tlme before the counter ..... tt.-, dl.bled t ....t It rn.y be elodled. Clock Ie} i. the m6nlmum time b4rfore t .... count.r I, enabled tNt' a IOlock pul. may be applied with no eftect on the IUIte of the countllr. , Id} I, the minimum time to welt eft_ the counter .. d_bled that • elodl pul. rNY be applied with "0 effect In the 1UIt. Of the count_. (b) .,.d lei rn.sy be neeatlve "um", 3-299 MC10536 (continued) COUNT FREQUENCY TEST CIRCUIT Vee,· VCC2" +2.0 Vdc V out Co.x Clock Input @)--.....----<>--t Input Pull. t+ .. t- .. 1.0 Duty Cve'. - n. 5o" ~ O.'''F l All input and output cables to the scope are equal lengths of 50·ohm coaxial cab! •. Wire· length shou~d be 1/4 inch from TPjn to input < 60-ohm termlnetlon to ground 10co," .n Neh ...... chon ...' 'nput. pin and TP out to output pin. V out is 2:1 attenuated. ...,... 0.1 "F ~ Unused outputs are connected to • 100-ohm r.,istor to ground. UNIVERSAL BINARY UP/DOWN COUNTER r-------------------------------------~--~----------------------~ 51 • "--+---, 52 1 <>-1>-+-L__ 12 DO 14QO 1101 16Q1 602 3-300 202 503 303 i j'tr MC10536 (continued) ":-' f APPLICATIONS INFORMATION ~. ii MC1670. Usa of the MCI0631 in place of the MCI670 permit. To provide more than four bits of counting capability several ~10638 counter. may be cascadad. The Carry In input overrides 200 MHz operation. '. clock when the counter is either In the increment mode or the t mode of operation. This input aUows several devices to c-=eded in a fuliV synchronous multistage counter as illustrated Figure 1. The carry is advanced between stages IS shown with external gating. The CiiTyTri ofthe first device may be left open. ".,..; . . system clock is common to all devices. ~~: j I The various operational modes of the counter make it useful wide variety of applications, If used with MECL III davices. -I with input toggle frequencies in excess of 300 MHz are . ~ . Figure 2 shows such a prescaler using the Me 10536 and ~' ~ The MCI0536 may .Iso be used I I a programmable counter. The configuration of Figure 3 requires no additional gatas, although maximum frequency is limited to about 50 MHz. The divider modulus is equal to the program input plus one 1M - N + II. therefore. the counter will divide by • modulus varying from 1 to 16. A second progr.-nmabl. configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 .MHz typically. The divider modulus for this figure is equal to the progrem input 1M z NI. The minimum modulus is 2 because of the pulse swallowing technique•• nd the modulus may vary 'from 2 to 1S. This programmable confitJJration requires In additional glte. such os %MCI0609 Ind I flip-flop such os%MCI053I. . :. '.t=. 1 $! FIGURE 1 - 12 BIT SYNCHRONOUS COUNTER MSB LSB ~r:!:m----~~------------------------~--------------------------~ Note: 51 and 52 are set either for Increment or decrement operation. FIGURE 2 - 300 MHz PRESCALER Logic High MC101i311 SI S2 o aJ--t-------1~C ________ ~~~ '-_________ t nput Frequency 32 MC1670 3-301 MC10536 (continued) FIGURE 3 - &8 MHz PROGRAMMABLE COUNTER Progr.m I"put fin - - -.....----1 C Cln <:out 1---....- - - f out S2 Sl 1 f out "" ::-_ _..,f:;.ln:...-._-: Program Input 2 f 3 +1 m•x ~ 50 MHz Typ. Divide Ratio is from 1 to , 6. FIGURE 4 - 100 MHz PROGRAMMABLE COUNTER Program Input I I I I DO 01 02 03 C - S2 MC10536 ; - - - ~1 00 02 03 - L 1--, ~ 0 0 1 %MC10509 %MC10531 C fin f out = ::----"':--Program Input 2 1m.x ~ 1'0 MHz Typ. 3 Divide Ratio i. from 2 to 15. 3-302 - °l f out MEeL 10,000 series UNIVERSAL DECADE COUNTER MC10S37 The MC10537 is a high speed synchronous counter thatca" count up. count down, preset, or stop count at frequencies exceeding 100 MHz. This decade counter is useful in high speed central processors and peripheral , L INPUTS I OUTPUTS Carry ,-- , -, controllers, minicomputers, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use one SEOUENTIAL TRUTH TABLE" 51 52 L L L L L H H H L L L H L H H H H L H H H L L L DO 01 H ¢ ''"" ''"" '"

IIthad. Tho circuit i. in 0 test socket or mounted on ". printed circuit boIird and transverse air flow groator than 500 linear fpm II maintained. Outputs ore terminated 1hrough • l()().ohm raslltorto -·2.0 volts. Tast procadur..... shown for only one Power Supply Input Current ~.in S,mbol Cur,ent " lin H Logic "'" tTl 13 D3 .51 11 52 93 02~6 nO 031--7 Output Vol .... Logic "0" OutPUt "Vol .... Logic "'." Threlhold Votlell ........0 .. ::J TEST VOLTAGE-VALUES !!. IV~I ::J fOT. . TMft.,.,et""e Cout.r- 8 ...... T.. I -5.2 ~5.2 12 165 9,10,15,16 11 376 4SO 13,1. 1 415 406 Typ 120 I I Mi. Unit Min 150 165 mAd, 220 26. 22Q 265 >45 290 245 290 ~r lin L All VOH 2(2) -1.080 I -0.880 I -0.930 -0.180 I -0.825 I -0.630 VOL 2(2) -1.920 I -1.855 , -1.850 -1.620 I -1.820 VOHA 2(2) -1.100 I I -0.9SO VOLA 2~ 0.5 0.5 0.3 -1.636 -1.600 VIL min I VIHA min I VILA INa I Wec· VEE Gnd 12 '.5 r 9,10,15,18 11 13,14 1 (i) 4f 4.5 Vdc ",13 12 4.5 I Vdc ",,3 12 4.5 I Vdc 11,13 Vdc I -t.545 I -0.845 I -1.525 I 12 12 ,&lAde I I VII'I rna. 11,13 I I' ~ TEST' VOLTAGE APPLIED TO PINS LJSTED BELOW +1moc I M.. +250 C M;n Mall (I) -5.2 +2SoC +12S oc MC10637F T... Limm _56°C Min c: VEE _550C P;n ~ Dl D2 Thrlllhoid Voll... Switching Times (l00-0hm LOIdI 16 16 4.5 18 12 4.5 Pu_Out -3.2 V +2.0 V 16 2 2 12 4.5 11 11 8 +1.11V 1.a.31V Pu".ln Propepnon Del• ., Clock InPUI 11+2+ 11+2- 11+8+ 1'+fIr 1'4_fIr 1'4+8+ ca;;;Tn To c;;;;ow 2 2 1.0 1.0 8 2.5 8 2.5 1.6 1.6 :~ 3.3 3.3 7.0 7.0 5.0 5.0 4.5 4.5 10.5 10.5 6.9 6.9 14 14 11 11 SIt UpTime o.,.lnpUlt 3.5 3.5 116+1+ 116-1+ 11,13 11,13 7.5 Select Inputs tI3+'+ 111+1+ 75 ~lnPUI 114-1+ 11+14+ 3.7 -1.0 Oet.lnputt 11+16+ 11+16- -1.0 -10 Inpull 11+13+ 11+11+ -2.5 -2.5 Cetrv In Inpul 11+14_ 114+1+ -1.6 3.1 1,16 ! 1.16 1,13 I,ll 11 11 13 1,14 1,'4 11,13 11,13 1,16 1,16 Hold Time ~ect Counting Frequency RiM Time (2OK to 80%) Fell Ti.... (2OK 10 al'%) 'counlUP fcountdown 18+ '2+ IS12_ CD IndividueliV .PPlv Vil min to pin unelllr test, • 8 125 125 1.1 ~ ~ Me_ure output after clock pulse VIL ..r ~. (!) ~ ...... CERAMIC PACKAGE CASE 650 01~3 ma""IH'. aw-._ ~ 16 .. -.",,~-,.....~'.~~'~ ~~~'~~~ .. '~~-"":""-~-.'~~-:-~ F SUFFIX DO 10 ; ... OO~2 C 1Ii input, or for one"sat of input conditions. Other inputs or outputs are tested in the ~. co;; 14 , 1,13 I,ll 11 11 MH, MH, 150 150 3.3 11 13 13 13 1,14 1,14 1 11 T l V1H appears at clock i~ut Ipin ,) a> Before test counter must be stt to a zero count condition lall outputs low) MC10537 (continued) COUNT FREQUENCY TEST CIRCUIT Coax 60 Clock Input@--....- - - o - - j 5O-oh." terminatIon to ground located In each ICOp. channel input. Input PutN. t+-t--1.0n. All Input and output cables to the ~ Duty Cycle - 51H1. O.II' F scope are equal lengths of 5()..ohm coaxial cabl •. WI,. length shOuld be 114 Inch from TPln to Input pin "and TP out to output pin. V out Is 2: 1 attenuated. I < Unused outputs are connected to +1.11 V a 100-ohm resistor to ground. Vee =- -3.2 Vdc SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C , ~' (a) Is the minimum time to walt after the counter has been enabled to c:lock It. (b) I. the minimum tim. before the counter has been disabled that it may be clocked. (e) is the minimum time before the counter is enabled that 8 clock pulse may be applied with no effect on the .tate of the cou owr. (d) I, the minimum time to walt after the counter I_ disabled that B clock pul_ may be applied with no effect In the state of the counter. (b) .,d (c) may be negative numbers. Vln VCC1""VCC2-+2.0Vdc V out NOTE: "setup is the minimum time before. the positive transition of the clock pulse (C) that Information must be present at the Input 0 or S. Coax Coax tra:~f1~n I~ft~~e r::~~,;up':I'::'7~) a::.:~ ;~:0~;:~~1:~ 50 must remain unchanged at the Input 0 or s. ;. ~. , ; ~; Clock ~ +1.11V 50% tc + Q+ tc + Q- +0.31 V Clock Input@--....--o Input PUIM \ t+ - t- a 2.0 ± 0.2 ns TP ln (20 to 80%) \TP r-----~-- +1.11 V C +0.31 V VEE = -3.2 Vdc 50-ohm termination to ground located in each seope channel Input. . OarS All input and output cables to the scope are eq~al lengths of 50-ohm coax lal cable. Wire length shou-Id be <114 Inch from TP in to Input pin and TP out to output pin. V out Is 2:1 attenuated. Unused outputs are connected to a 100-ohm resistor to ground. 3-306 out MC10537 (continued) UNIVERSAL DECADE UP/DOWN COUNTER 12 DO 1400 1101 1501 602 202 STATE DIAGRAMS COUNT UP COUNT DOWN (.;,. 3·307 503 3Q3 4~ MECL 10,000 series FOUR-BIT UNIVERSAL SHIFT REGISTER MC10541 The MC10541 is a four-bit universal sbift register which performs shift left. or shift riam. serial/parallel in. and serial/parallel out ope~ tions with nO external gating. InputsS1 and control the four, possible operations of • register without external gatill9 of the cloc:lt. The flip·flops shift information on the positiYe edge of the clock. The four operations ~re st~' shift. shift left, shift right, and parallel entry f data. The other six inputs are all data type i, puts; four for parallel entry data, and one ,f9r shifting in from the left (DL) and one fOr shift· ing in from the right (DR). All four out~ are capable of driving 100 ohm lines. ' When the register is used for serial output only, the unused emitter follower outputs cljn be left open. 52 11113 OL 181 4 C 116112 00 14121 01 15131 02 '2 161 03 3 171 DO 115111 01 1131 9 02 1101 6 03 114110 51 1111 7 52 DR 191 5 - - - - ' - ' TRUTH TAILE rT,=E~ OllTPIJTS OPERATING MODE 00"+1 Qln+l Q2n+1 Q3n +1 P.,."" Entry 00 02 D. Shift Right- Q1". a', Shih Left" OL 00, a', a', 02, StopS""' 00, a', 02, a', PR :a: 425 mW typ/pkg (No Load) fShift • Outputs ..... In .fter pul .. IIPpe.,. M "c" Input with Input eoncUtlon • 150 MHz typ .. 1tI_n. Wul.... PotJt ..... trantltion of .c:loclil Input). ea•• VEE 620 650 Numbers at end of terminals .!!Ire pin numbers for L package (Case 620). Numbers In parenthesis denotes pin numbers for F package (Case 650), LOGIC DIAGRAM D. 02 52 OR~------H----L~ 03 02 See General Information section for packaging. 3-308 01 00 nrtmfl~t'CM••""~. £.c"h-lulfi~u"i"'iiiit~lcL';O.OO(f . i""'iHcireart .... beenrttlllGl'*! to me.t "' ......~ de _ilicadon •.¥.!9.\Nn in tit. test tabl.; after thermal equilibrium has been astab- . lish.ct . .Tht -~irct..lit i$ in a test socket "Qr .. t3----.. mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100·ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. .I" C 12 DO 11 01 9 02 6 03 •. r.~,,m~:~'.~... ." '.'~, u..1J'J8'rt."?\!' .• :,", i~';~l"".. '1 0 " ' . •.•." . '. ;.,. ' . . .. . Power SupplV Drain Current I Input Current , I LOgie "1'~ Output Voltage g LLogic "a.. Output Voltage W W I I lilT... Temperature _55°C +25o C I MCl0541L Test Limits +2S o C -SS"C CD VIHmax Propagation Delav Fall Time (20% to 80%) Shift Frequency V,L -1.820 -1.000 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, + 125"c TVp Ma. Min M •• Unit VIHm•• 110 - 100 mAde: - - - 220 220 245 265 220 220 245 265 ~Adc 4 375 375 415 450 - 110· - - 5 - 5 6 7 4 - - ~ VILmin VIHAmi - - - - - 0) - 0.5 - - 0.3 - ",Adc 4.5.6.7.9 10,11.13 12 - -1.080 -0.880 -0.930 - ,0.780 -0.825 -0.630 Vdc 6 VOL 3 3 -1.920 -1.655 -1.850 -1.620 -1.820 -1.545 Vdc - - -0.950 - - -0.845 - 6 - ~- - - - -1.600 T - - -1.100 - - - V8)A I ~ 3· ~ ~ - - -1.635 3 14 j t4+12+ 14+1214+10+ 14+10- - + 1. 3+ '3'Shift - - - - - - 3 - 3 - - - + - - - 1.0 2.5 2.5 5.0 5.0 1.5 1.5 1.0 1.0 11 11 150 I ~ - - ~ 2.9 3.8 1 71 1 7 33 33 - - -1.525 Vdc ~ ~ - n, I I ILl I - - P2-.r-LVIHA : VIL P3-.r-LVILA V,L 6 6 6 @ ~- - - tVee l 7 6 7 - - P3 PI P2 - .- 8 - - - 1.16 '8 '4 - - 1.16 8 4 4 4 VILAm..: VEE 3 Logic "I" Output Vol_ Logic "0" Min +2I"e - IV-. VI_ VII"".. VI_ VIa.- VEE ~.880 ~.780 -1.920 -1.850 -1.265 -1.106 -1.610 -1.475 ~.830 -1.820 -1.000 -1.400 -5.2 -5.2 -6.2 TEST VOLTAGE APPLIED TO PINS LISTED IIILOW: +121"1: IVCCI VEE G_ 12 4.6 12 ·4.6 12 4.5 12 4.& - 12 4.5 - - 12 4.5 1.2.3.8.9.10. 11.13.14.15.16 7 - 12 4.5 1.2.3.7.9.10. 11.13.14.15.16 - 8 12 4.5 _In _Out -3.2 V 7 6 12 +2.0 V 4.& Min Typ Max Min Max Unit VI_ - 62 78 - 86 mAde 1.2.8.9.13.14 220 ....- 1 8 - ""de - 7 VILmIn VIH_ Ie 12 'inH 7 8 - 460 375 - - :116 220 'inL VOH 0.5 - 0.5 - - - 1 0.3 - 6 -1.090 ~.880 -11.930 - -11.780 ~.825 ~.830 Vde 1 1.2.3.8.9.10. 11.13.14.15.16 - 6 -1.920 -1.6&5 -1.850 - -1.620 -1.820 -1.545 Vde - 1.2.3.1.8.9.10. 11.13.14.15.16 6 -1.100 - -O.9S0 - - -O.B45 - Vdc - 6 - -1.635 - - -1.600 - -1.525 Vdc - 6 - - 4.0 7.5 - - n. W -- .... MCl0660F T_ Lima ..."1: ~ POONer Supply Or.in Cu"lnt Input Cu"ent 86 VOL Output Voigge Logic "1" Thr.... old VoIt.ge VOHA Logic ''0'' Threlhold Voltage VOLA !:!. :I C II> L H H H H H H H L H H H H H H H H ~ II> H H H H H L H H H H H H H H H L H H H H H H H t/J • Oon't Cara See Gen ... 1 Information section for packaging. 3·316 H H H H L H H H H H H L H H H H H H H H H H H H H H L H H H H H H H H H H L H H ELECTRICAL CHARACTERISTICS 3: ... ... c;n Each full temperatura range MECL 10.000 series circuit has' been designed to meet the de specifications shown in the test table. o C11 after thermal equilibrium has been estab- 0) lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow grealer than 500 linear fpm is maintained. Outputs are terminated through a lOO-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a sim ilar manner. - O :J .... S' c: (1) a. L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES lVolts' lilT... Temper.ure -&&"C w +:ZSOC +,25"c W ...... P;n Undor Test Ch.racteristk; Symbol Power Supply Drain Current 'E linH 14 linL 14 I nput Current logtc ."" Output Voltage logic "0" Output Voltage - +25"C -a"C Min 8 MHo VOH 13 13 VOL 13 -1.920 Logic "'" Threshold Voltage VOHA 13 13 -1.100 -1.100 Logic "0" Threshold Voltage VOLA 13 Typ 61 84 374 0.5 -1.0B0 -LOBO - MCl0&61L Tat Limits I Min 76 0.3 -{I.880 -{I.880 -{I.780 -{I.780 -{I.825 -{I.825 -1.855 -'.850 -1.620 -1.820 -0.845 -0.845 -1.600 VIHAmi" -0.880 -0.780 -1.920 -1.850 -1.255 -1.510 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2 mIX I -5.2 TEST VOLTAGE APPL'EO TO PINS LISTED BELOW, 220 -1.835 VILmin +1260 C 0.5 -{I.930 -{I.930 -{I.950 -{I.950 VILA I VEE VIH max Max Unit VIHm_ VIL min VIHA min VILA max VEE lVee' Gntl 84 220 mAde 2.7,9,14,15 - - - 8 1,16 .Ade 14 8 14 - - 8 1.16 1,16 - 8 8 1,16 1,16 .Ade - -0.630 -{I.630 Vdc Vde 2 15 I -1.545 Vde 14 Vde Vde - T I -1.525 - - - Vde 2 15 - 8 1,16 8 8 1,16 1,16 8 1,16 14 - Pul.ln PuI.Out -3.2 V +2.0 V 14 13 8 1,16 I ~ ~ ~ ~ SWltdling TUMI 1100 o Load' Propagation Celay Rise Time (20% to 80%) Fall Time (20% to 80%1 It14+1~ I t14-13+ 13 13 t13+ 13 tl~ 13 1.5 1.5 1.1 1.1 4.0 4.0 2.0 6.0 6.0 3.3 2.0 3.3 ~ I - - I - ELECTRICAL CHARACTERISTICS s: Ea:h full temperature ran,," M ECl 10,000 .rie. circujt hI. been designed to meet the de _ifi""tion. Ihown in the toll tabla, eftor thermol equilibrium ha. baan established. The circuit i, in 8 test socket or mounted on 8 n ...... o ~ ...... printed circuit board and ,,.."Mr. lir flow gr.t., than 500 linear nO !pm i. maintained. OutpUt. ore terminated ::J through a l000hm miotor to -2.0 volts. Tilt pr~um are Ihown onlv for IIl.:tld inputo and output •. Other inputs and output.ar. tested in a similar manner. :!. ::J C ... (II C. F SUFFIX CERAMIC PACKAGE CASE 650 TEI;r VOLTAGE VALUES 'fl to) ... co I CVohll .T. . T _.. ....C +211"1: +1a"C ~ Symbol Pow.- Supply Onin Cu"..,t Ie I .. H Input CUrTent VOH 12 2 2 1 VOL I I I .. Logic "1" Outpu.VoI_ Logic "ft' Outpu. Vol_ Logic "I" Th_oIdVol_ VOHA Logic "ft'Th_VoI_ VOLA _"'T_ 1100 n LolIIl "'-Ion DoIoy 12+112-1+ 11_ Timo 120'''0_1 F.I Timo 1_10 80!11 '1+ ";~ 1,> • PIn U_ T. . I I , , , I I - -II"c Min - 0.6 -1.0B0 -LOBO -1.920-1.100 -1.100 84 374 - - - MC10&81F Tett Limitl +211"1: Min Typ - 61 0.6 -4.930 -4.930 -4.880 -4.880 -1.855 -I.B50 - -4.950 -4.950 - -1.836 - - - 1.5 1.5 1.1 1.1 4.0 4.0 2.0 2.0 Min - - 0.3 -4.825 -4.825 -1.820 -4.845 -4.846 - VILmin VIHAmln VILA_ VEE -4.880 -4.780 -4.630 -1.920 -1.850 -1.820 -t.256 -1.105 -1.610 -1.475 -1.400 -5.2 -5.2 -5.2 ~1.000 , TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +ta"C 76 220 -4.780 -4.780 -1.820 VIH_ 84 220 - CVCCI GIld UMt VIH ..... VILm" V'HAmin VlLAma: VEE mAde 2.3.6.11.13 2 - - - '12 12 12 12 12 12 12 12 12 4,5 4,5 4,5 4,5 4,6 4,5 ...._OU. -3.2 V +2.0 V I '2 4,5 .Ade -4.630 -4.630 ."de Vde Vde -1.646 Vde - Vde Vde -1.800 - -1.526 Vde 6.0 6.0 3.3 3.3 - - os ~ 6 3 2 - 2 - - 6 3 2 - Pu.. ln 2 - - - ! 4.6 45 4.& ! ! ! MCl0561 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 25°C Vee,· VCC2 +2.0 Vdc ,,,.± j t"" Coax Input V out ~.. PROPAGATION OELAY r---- ----, I I I 50 Input Pul .. 1+ - t-· 2.0t.. 0.2 (20 to 80") n. V out . IO-ohm t ... mln~k)n to ground 10ceted In Hch ICOpe ch.nnel Input. UnuMd outputs I:onnected to I All Input end output Clbl., to the I.",~ of 50-ohm 1 OO-ohm ,.Iltor to ground. IC" .r. equal coa.'aI e..,I.. Wlr. 'enath Ihould be < 1/. inch from TPln to in~ut pin and TPout to output pin, VOU! I, 2:1 .ttenueted. VEE· -3.2 Vdc A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the MC10536 control counters, has the capability of in· crementing, decrementing or holding data channels. When both SO and Sl are low, the index counters reset, thus initializing both the mux and demux units. Thefour binary outputs of the counter are buffered by the MC1050ls to send twisted·pair select data to the multiplexer/demulti· plexer units. APPLICATION INFORMATION The MC10561 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times fOund in other decoders. This design provides the identical .. lIS delay from any address or enable input to any Cl!-'tput. 3-319 FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXERIDEMUL TlPLEXER s: n c ~ en en Control Selection MC10501 I::J } ~ r-- ~ MC10515 nO X'")(i) - L ~ ::J 51 1514131211109 8 ::J 76543210 c: CD MC10536 E: CR A t:J"} !:!- SO B C 'CJ. i 0 H> E1 .--- C r-- B r-A ~ MC10564 E1 .---- C r-- MC10564 B .-A DO DO w W '"o MC10501 50 MC10515 H W)~ ~ ~ 50 51 ~ ~H>--- J 2. J"~~ X I . 51 CR A CR MC10536 B C 0 ~ LL )("""X. ~ E1 ~: EO ~ MC10561 1514131211109 B I E1 rfr=: EO MC10561 - 76543210 MECL 10,000 series BINARY TO '-8 DECODER (HIGH) MC10562 The MC10562 is designed to convert three linesof input data to a one-of-eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low. POSITIVE LOGIC EO (8) E1 (3) 15 2 6 (10100 5 (91 Q1 4 lSI Q2 A ,1') 7 3 (7) Q3 13 (1) Q4 8 (13) 9 Po = 315 tpd = C Numbers at and of terminals ar. pin number. for L package (C.se 620). Numbers in parenthesi, denote. pin numbers for F package (ca. 650). ns typ/pkg (No Load) nl typ I Ca .. I VCCI VCC2 VEE I 620 I Pin 1 Pin 16 Pin 8 I 660 I Pin 6 Pin 4 Pin 12 TRUTH TABLE INPUTS £1 C B A L L L L L L L L H L L L L L L L L L L H H L L H H L H L H L H L H L L L L H H H H "" ''"" ''"" '" ''Car. '" Don't H G~.'lnform.tion OUTPUTS ~O ~ S .. 4.0 (2) 14 00 01 H L L L L L L L L L L H L L L L L L L L Q2 OJ 04 05 L L H L L L L L L L L L L L H L L L L L & section for packaging. 3·321 L L L H L L L L L L L L L L L H L L L L ae 07 L L L L L L H L L L L L L L L L L H L L ELECTRICAL CHARACTERISTICS 3: n o at Each lull temperature range MECL 10.000 .riescircuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in 8 test socket or mounted on 8 ~ m N printed circuit board and transver. air flow greater than 500 linear fpm is maintained. Outputs are terminated through 8 l00-0hm resistor to -2.0 volts. nO - Test procedures ar. shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. ::J ~. ::J c: CD Q. L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES (Volt.1 f l ... T ...per.tur•. VIH ..... ....C +25°C +121i"C ~ "l "l Vil min V'HAntin ViLA .... VEE -0.8111 -1.920 -1.256 -1.510 -5.2 -0.780 -1.850 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2 MC10512L Test Limit, Ct.,.ct.i.ic Power SupptV Drain Current I nput Current Symbol Pin Und. TOIl 8 Ie linH 14 +2&oC -se"C Min TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Mo. 84 - - Min - linL 14 0.5 - 0.5 Logic ''1'' Output Voltage VOH 13 -1.080 -0.8111 -0.930 Logic "0" Output Voltage VOL 13 13 -1.920 -1.920 -1.655 -1.665 -1.850 -1.850 logiC "1" Threshold Voltage VOHA 13 -1.100 - Logic "0" Threshold Voltage VOLA 13 13 - -1.835 -1.835 t14+13+ '14-13,+ 13 13 - - - 13 - - ,- 13 - - Typ +121i"C Mox Min Mo. Unit VIH mil. VIHAmin ViLA .... VEE 8 - - 8 1.16 8 1.16 8 1.16 8 8 1.16 1.16 8 1.16 8 8 1.16 1.16 81 78 84 - 220 - - IoI Adc - - 0.3 - ,..Adc "- I. - 14 - - - - - -0.780 -0.825 -0.630 Vde - -1.620 -1.620 -1.820 -1.820 -1.545 -1.545 Vdc Vde 2 15 -0.950 - - -0.845 - Vde - - - - -1.600 -1.600 - -1.526 -1.525 Vde Vde - - 1.5 1.5 1.1 4.0 4.0 6.0 6.0 3.3 - - ns - - - - 3.3 - - ! - - - SVJitching Times I1CJO.ohm loadl ProJ)9tion Del.v Rise Time (20% to 110%1 F.U Time (20%'080"1 1.1 2.0 2.0 (Veel Gnd V,Lmin mAde - " 2 15 - Pul .. ln PulteOut 14 13 j j -32 V 8 1.16 +2.DV 1.16 !i ELECTRICAL CHARACTERiSTICS··· . e..h full tom_.turo ,.ngo MECL 10.000 ~ .... .rielcircujt hi. been designed to meet the de lPfICificationl shOwn in the test table. o ~ after thermal equilibrium has been IstaboIIshed. The circuit is in 8 test lOcket or mounted on a printed circuit board and trlnlYer. air flow greater than 500 lir)8ar N fpm is maintained. Outputs are terminated 8:::s ~ th,ough 8 l00-0hm , .. isto, to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are telted in 8 similar manner. ~. :::s 5i Co F SUFFIX CERAMICPACKAGE CASE 650 TEST VOLTAGE VALUES (Vah,) .rOIl VIHmIX VILmin VIHAmin VILA_ VEE -0.830 -1.255 -1.105 -1.000 -1.610 -1.415 +1211"C -1.920 -1.850 -1.820 -5.2 +ZSoC -0.880 -0.780 T....per8tur. -55"c ctJ to) p..) to) I I Chlr.ct.,istic I Svmbol Power Supply Dram Current I nput Current I L -55"c tE linH 2 - 2 1 0.5 -LOBO 1 1 1 -1.920 -1.920 -1.100 -1.655 -1.655 -1.850 -1.850 - -0.950 1 1 - -1.635 -1.635 - - - - - 1.6 1.5 1.1 4.0 4.0 I. 1 1 1 '- 1 - - 1.1 VOH Min Min Mo. TV' 61 Mo. Min 16 - 84 Unit mAde - 220 - - 0.3 -0.825 - ,..Adc - ,..Adc -0.630 Vde 2 -1.820 -1.820 -0.845 -1.645 -1.645 6 3 - - Vde Vde Vde - - 2 - - -1.525 -1.525 Vde Vde - - - - n. - - - - - - - - 84 - - -0.880 0.5 -0.930 - -1.620 -1.620 - -1.600 -1.600 -0.180 VIHmelII VILmi" VIHAlllin 2 - - 2 Output Voltage LogiC "0" VOL Output Voltage LogiC "1" VOHA Threshold Voltage lOgiC "0" VOLA Threshold Voltage - - - -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +l21oC +2SoC Mo. T... 12 linL LogiC "1" MC1068ZF T. . Limill Pin Und... · -1.400 - - 'Vee Gnd VILA . . . VEE 12 - - - - 12 12 12 4.6 - - 12 12 12 4.5 4.5 4.5 8 3 - 12 12 4.6 4.5 Put_In Pu. . Out -3.2 V +2.0 V 2 1 - - 4.5 4.6 4.5 Switching Times (l00-0hm loed) Propeglltion Delay t2+1+ '2_1_ Rise Time (20%1080%1 Fall Time (20% '0 80%1 I - - 2.0 6.0 6.0 3.3 2.0 3.3 - - - ! 12 4.6 I I !! MC10562 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS ~ 2SoC Vcc, = VCC2 "'2.0 Vdc Input .::±1t'~" ,. . I I I I Generator ±. 0.2 PROPAGATION DELAY I Pulse Input Pul .. ti- ., t- ::: 2.0 Vout 50 Von I O% t-- I "S (20 to 80%) ~ -----.. I +'.11 V - ----+0.31 V t++ 80% V out 50-ohm termination to ground located in each scope channel input. All input and output cables to the Unused outputs connected to • scope are equal lengths of 50· ohm coaxial cabl.. Wire length should be < 1/4 inch from TP in to input pin and TP out .t~ output pin. V out i. 2: 1 attenuated. l00-ohm resistor to ground. veE = -3.2 Vdc FIGURE 1 _. DEMULTIPLEXER (1 OF-S LOCATIONS) APPLICATION INFORMATION The MC10562 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. Data Select 00 This device is ideally suited for demultiplexer applications as shown in Figure 1. One of the two enable inputs is used as the data input, while the other is used as a data enable input. a, 02 c Data In Enable A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 2. This system, using the MC 10536 control counters, has the capability of incrementing, decrementing or holding data channels. When both SO and Sl are low, the index counters reset, thus initializing both the mux and demux units. Control information via twisted pair lines is sent through MC10501 gates to the MC10515 line receivers to provide select data to the multiplexer/demultiplexer units. E, MC'0552 Oata Output 3-324 ~.... FIGURE 2 - HIGH SPEED 18-8IT MUL TIPLEXERIDEMULTIPLEXER C ~ Control Selection MC10501 N 0o MC10515 ~-.XJ. I :J ~. :J Lso r- ~Sl 1514131211109 8 76543210 CR A 8 C 0 ...... ~ tU- ~ El ,---- C ;-- 8 ~A r - El MC10564 -C MC10564 -8 r-A DO DO w W "l U1 so MC10601 ~ MC10515 ...... .-- -L)~ SO Sl j )~ ~'---V Sl MC10636 CR A CR ~ --L XX ~ 8 C C (I) C. MC10536 0 ~ I El ~: EO MC10562 1514131211109 8 ~ r - - - El ~: EO MC10562 76543210 l . ._____________________--'·.1 MECL 10,000 series a·LlNE MULTIPLEXER MC10564 The MC10564 is a high speed. low power MECL eight·channel data selector which routes data present at one·of·eight inputs to the out· put. The data is routed according to the three bit code present on the address inputs. An en· able input is provided for easy bit expansion. TRUTH TABLE ---ENABLE L L L L L L L til - DATA ROUTED FROM: ADDRESS INPUTS C B A L L L L L L L xo H H H L Xl X2 X3 H L L L L H H H H H H H X4 X6 X6 X7 H 4> 4> 4> L H L Po - 310 mW tvp/pkg (No Lo.d) tpd - 3.0 nl tvp Don't Cere .:", POSITIVE LOGIC ., A (11) 7 :=. B (13) C (14) En.bi8 (6) ) 1. 10~ 9 ----- 2 XO (10) 6 Xl (9) 5 X2 (B) 4 X3 (7) 3 X4 (16) 11 X6 (16) 12 X6 (1) 13 X7 (2) 14 ) 15 .. (3) J -r-;R .;: :J B'r ~ R .. r r r ~ Numbers at end of terminals are pin numbers for L package (Case 620) Number. in parenth..is denot.. pin numbers for F package (Case 6501 S .. Ganar.1 Information section for peckellnlend mexlmum r.tlnge. 3-326 Case VCC1 VCC2 VEE 620 PinT Pin 16 Pln8 660 Pin 5 Pin 4 Pin 12 ,-'!'.": •• ~,'" /0': .":~. ·.1~. ,:',"~:~r- '~"~"':~'~':~::'~:~~~~~.~~'.' !~:~::'::~~~:=':~~:'t~~~:~~:~~::~:j~~'~~~~.r~~~~~~ ~. .... o E'r'CT~L~ACf&RIUjCS. hchfuU _ _.tur. r _ MECL 10.000 ....i.. circ~it h. been designed to meet the A de specification. thaw" in the test table, after tharme' equilibrium h. been established. The circuit il in a test socket or mounted on a printed circuit bo.d and tranwerse air flow gr••ter than 500 line.r fpm il maintained. Outputs are terminated through 8 l()().ohm resistor to -2.0 volts. Test procedures are shown for only one 1 en •• c '0 En"'. 2 ~ c;I I I I I I t Imn xo. input, or for one set of input conditions. Other inputs are tested in the same manner. x, 5 X' 4 X4 " 13 )(7,. Co) N -...I Pin Ct.rect.. iltic Symbol Power Supply Drain Current IE I nput Current (Votul T ......... ..."1: +25"c +12&"1: V.Hmax -0.880 -0.780 -0.830 +2SoC VIH_ Typ Mo. Min M.. Ik* - 83 - 60 75 265 - 83 265 ""'de ,.Adc 0.5 -0.930 V'HAmin ViLA .... VEE -1.920 -1.850 -1.820 -1.265 -1.105 -1.000 -1.510 -1.475 -UOO -5.2 -5.2 -5.2 - VILmin VIHAmin VILA miX VEE - - - 8 .8 (Vee I Gnd - 0.3 - ,.Ade - - ~.780 ~.825 ~.630 Vde 4.9 4 2.7.10 - - 8 8 1.16 1.16 1.16 1.16 455 - VILmin TEST VOLTAGE APPLlEO TO PiNS LISTED BELOW +12&"1: Min ~.880 CASE 820 TEST VOLTAGE VALUES M.. 0.5 -1.080 c: It) .eo LSUFFIX CERAMIC PACKAGE fi_ Min VOH lin H "", MC10684L T_ Llmilo _Oc 8 4 4 15 lin L Logic "1" Output Voltage U_ TOM :::J ,/ IliE X612 ~ o ...5' ,s I I fTTT=L..-t I I fTF1-.-.IllfTn-I fTTT=L..-- X33 xe "'" - 2 VOL 15 -1.920 -1.655 -1.850 - -1.620 -1.820 -1.545 Vdc 9 2.4.7.10 - - 8 1.16 Logic "1" Threshold Voltage VOHA 15 -1.100 - -0.950 - - -0.845 - Vdc 9 7.10 4 2 8 1.16 Logic "0" Threshold Voltage VOLA 15 - -1.635 - - -1.600 - -1.525 Vde - 4.7.10 Logic ''0'' Output Volt. Switching Times l1000hm loedl Pro~tton Delay Rise Time 1+ 15 15 15 15 15 15 15 (2O%108O'W.1 FeI'Time (2O%1080'l1.1 ,- IS '4+15+ '4-1517+15+ '7-1512+1612_15+ 1.3 1.3 1.8 1.8 0.9 ! 4.6 4.6 6.1 6.1 3.0 3.0 3.3 1.5 1.5 2.0 2.0 1.0 1.0 1.1 3.3 1.1 3.0 3.0 4.0 4.0 2.0 ~ 4.5 4.5 6.0 6.0 2.9 2.9 3.3 3.3 1.2 1.2 1.9 1.9 0.9 ! 4.5 4.5 6.0 6.0 2.9 2.9 3.4 3.4 n. 1 9 9 5 5 7.5 7.5 9 9 9 Pue-In +1.11 V - - - 4 4 7 7 2 2 4 4 8 1.16 PuI.Out -3.2 V +2.0 V 15 8 1.16 2 j j j s: ELECTRICAL CHARACTERISTICS Each full temperature range MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been estab· lished. The circuit is in a test socket or A 11 • 13 mounted on a printed circuit board and transverse air flow greater than 500 linear C 14 En.iii'8 fpm is maintained. Outputs are terminated mrouWl a lOO-ohm resistor to. -2.0 voltl. Test procedures are shown for onlv one ...o (") C1I ~ 0o 6 :::1 XO 10 XI 9 X2 • X3 7 !:!. t I I I I I L-- :::1 X5 I~ ~ 1 X7 2 TEST VOLTAGE VALUES (Volts) IIgj 16 X6 CPT . . TemfMr·tur. -$"1: +~e CAl I'.) C..... ct.istic Power Supply Drain Current Input Current Symbol Pin U_ T... IE 12 lin H lin L MC10664F T_ Limits +25oC ~5"1: -0.780 -0.630 VIHmn 13 6.8.11.14 8 - - -0.845 - Vdc 13 tt. 14 3 - - - -1.600 - -1.525 Vde - 8.11.14 - - - +1.11 V 1.1 4.1 Vde -0.950 - 12 -1.545 - - t3+ 8 -1.820 -1.850 -1.635 ' 4,5 -1.620 -1.655 -1.100 .. 12 8 6.11.14 3 " - 8.13 0.5 -0.930 - VOHA j 4,5 -0.630 ,.Ade Vde - -0.780 0.3 -0.825 - - - 12 12 6 - -1.920 Rise Time (20"'0_) F ... Time (20%'080%1 4,5 4,5 mAde ,.Ade -0.880 - 12 12 83 265 0.5 -1.080 1.5 1.5 2.0 2.0 1.0 1.0 1.1 (Veel Gnd - - - Vee 75 265 455 - -5.2 -5.2 -1.400 60 - VILmin 3 3 -1.475 Unit VOL '8+3+ '8-3t11+3+ '11-3'8+3'8-3+ t3+ -1.105 -1.000 Mo. Logic "0" Output Voltage VOLA VEE -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW +125"1: VOH Switching Times 1100.ohm loedl Pro~hon Delay ViLA .... -t.510 Min Logic "1" Output Voltage Logic "0" Threshold Voltage VIHAmill -t.255 Mo. Mo. 83 +125"1: VIL min -1.920 -1.850 -1.820 Typ Min Min VIH milK -0.880 8 8 3 Logic "1" Threshold Voltage CD a. CERAMIC PACKAGE CASE 650 X415 CD c: F SUFFIX input, or for one set of input conditions. Other inputs are tested in the same manner. 3.0 3.0 4.0 4.0 2.0 t 4.5 4.5 6.0 6.0 2.9 2.9 3.3 3.3 - - - - - - - ns I 13 13 9 9 9.11 9.11 13 13 VIHAmin .- 13 Pu"ln - - 8 8 11 11 6 6 8 8 VILA mil. 4.1 6 12 4.1 Pul.Out -3.2 V +2.0 V 12 4,5 15 III MC10564 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 2SoC VCCI = VCC2 +2.0 Vdc Coax V out ""Cm"" Coax r-------- --------, I I I Input L i Pulse Generator )~ ~" I ) r I Input Pulse t+ '" t- = 2.0 ±. 0.2 (20 to 80%) ns 50-ohm termination to ground lo- cated in each scope channel input All input and output cables to the scope are equal lengths of 50-9hm coaxial cable. Wire length should be < 1/4 inch from TP in to input pin and TPoutto output pin. V out 50 _1- ~ I : R -:; : R r : -:; i ~-:; ~ 1 I 8; ~; I is 2: 1 attan uated. VEE = -3.2 Vdc PROPAGATION DELAY O% ~ t-- I +1.1111 - ----+0.31 V t++ ---"..L- 80% V out t+ 3-329 ] ) ~ ./ MC10564 (continued) eight data inputs and an enable. A high level on the enable! forces the output low. The MC10564 can be connected! directly to a data bus, due to its open emitter output andi output enable. ! Figure one illustrates how a 1-of-64 line multiplexer can: be built with eight MC10564'swire ORed at their outPUt~ and one MC10161 to drive the enables on each multi-j plexer, without speed degradation over a single MC10564: being experienced. ' APPLICATION INFORMATION The MC10564 can be used wherever data multiplexing or parallel to serial conversion is desirable. Full parallel gating permits equal delays through any data path. The output of the MC10564 incorporates a buffer gate with FIGURE 1 - HIF-&4 LINE MULTIPLEXER ABC The Bit chosen is dependent on six-bit code pre.nt on inputs 1. 9, 14 of the MC10161 and the A. B. C inputs of the MC10564. 3-330 MECL 10,000 series DUAL BINARY TO 1-4 DECODER (LOW) MC10571 I The MC10571 is a binary coded 2 line to dual 4 line decoder with selected outputs low. With either Eo or E1 high, the corresponding selected 4 outputs are high. The common enable E forces all outputs high. All propagation delay ti mes are equal due to the internal emitter dotting techniques used. High impedance 50 k ohm resistors on all inputs eliminate the need to tie unused inputs to VEE. POSITIVE LOGIC T-- fo (2) 14 10(14) QO 3 i ...Q 2 tl(le) QO i t2(16) QO 1 I- A(13)9 r- 13 (1) QO 0 .. i -, 3 (7) Ql 3 4 (8) Qt 2 e 1 Po - 330 mW typ/pkg (No Lood) fpd - 4.0 n. typ B(II)7 , \ ; 1"--' E (3) 16 (9) Ql 6 (10)Ql 0 El (6) 2 Number•• t end of termlnall .r. pin number. for L pickage (C ... 620). Number. in parenthesis denot.. pin numa. for F pickage (ca. 650). t .. TRUTH TABLE ENABLE INPUTS ,.to. INPUTS OUTPUTS E EO Et A B atO att at2 a13 000 oot 002 a03 L L L L L L H L L L L L H ~ L L L L H L ~ L L H L H L L ~ L H H H H L H H L H H H H H H H L H H H H H H H L H H H L H H H L H H H L H H H H H H H L H H H H H H H L H H H L H H L L 4> tP""' Don't Car. See Generel Information section for Pick aging and maximum rating •. 3-331 ELECTRICAL CHARACTERISTICS EO 14 s: n .... o 10 003 Each MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table. after thermal &qui· librium has been established. The circuit is ...~ 11 002 in 8 test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs g 12 001 ::J ar. terminated through a 1()().ohm fesistor d. to -2.0 volts. Test procedures ar. shown ::J only for _Iected inputs and outputs. Other inputs and outputs are tested in a similar manner. 3 013 B 7 4 012 E 15 TEST VOLTAGE VALUES 1~6010 IVo/III -6&"c Logic "1" Output Voltage Logic "0''' Ou1put Voltagll Logic: "1" Threahold Voitaga Logic "0" Threshold Voltagll Switching Tim.. 1100,n Loodl Propegation Delay 'E linH linL VOH VOL VOHA VOLA t7+8+ '7-6t7+13+ '7-13- te+ At. Time f2Q% to ~) Foil Tlmo (20% '0 BOlli t13+ '6'13 8 14 14 8 13 13 8 13 6 13 8 6 13 13 6 13 8 13 -16"c Min Max Min MCl0671L Toot Llm~. +26"c Typ Max - - - 0.5 -1.080 -1.080 -1.920 -1.100 -1.100 - 0.5 -0.930 -0.930 -1.860 -0.960 -0.960 -0.880 -0.880 -1.665 - 64 - - - - - - - -0.780 -0.780 -1.620 - - -1.635 -1.635 - 77 220 +l26o C M.. Min 0.3 -0.825 -0.826 -1.820 -0.846 -0.845 -1.600 -1.600 1.5 4.0 6.0 1.1 2.0 3.3 *~ ~ .~ ~* - -0.630 -0.630 -1.645 -1.525 -1.525 - - - - - - VILmln -0.880 -1.920 -1.860 -1.820 +2lioC -0.780 +126"c -0.630 VIHAmln VILAm .. -1.266 -1.610 -1.106 -1.476 -1.000 -1.400 VEE -6.2 -6.2 -6.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Un~ VIHmax VILmin mAde 2.7.9.14.16 14 - - - - 14 15 15 - - - 15 15 - ~Adc ,!.lAdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc n. I VIHAmin VILAma 2.7.9.14.15 - - +1.11 V 2.9.14.15 2,7.14.15 +0.31 V 14 14 2 2 I. I. 2 2 2.9.15 2,9.15 9.14,15 9.14.16 2.9.16 9.14.16 2.9,1& i.1416 7 9 VEE 8 8 8 8 8 8 8 8 8 8 Pu_ln ~IooOu' -3.2 V 7 6 6 13 13 6 13 8 13 8 IVeel Gnd 1.18 1.18 1.18 1,16 118 1.16 1.16 1.16 1.16 1.18 +2.0 V 1.18 I II r __ ._ ••• . Power Supply Or.in Current I nput Current Pin U_ Toot VIH ..... ~ 1 I~ . I • Toot Temper.tur. Symbol L SUFFIX CERAMIC PACKAGE CASE 620 5 all El 2 Char8CtM'istic 4> L L L L L L L L L vo H L XO Xl X2 H H X3 H til = Don't Car. t 0 . . . . 1 Inform.tion ..ction for p.ckaging •• nd maximum r.tings. 3·339 W B Numbers at end of terminals are pin numbers for L package (Ca .. 620). Number. in parenthesis denotes pin numbers for F package (C• • 650), , ..., OUTPUTS E VI Y2 Y3 ELECTRICAL CHARACTERISTICS each full temperature range MECL 10,000 sari.. circuit his been designed to maet the de specifications shown in the test table, after thermel equilibrium hes been elt8biilhed. The circuit is in 8 test socket or mounted on 8 printed circuit board and transverse air flow greater than XC X150 II ~ X240 III ~ 500 linear fpm is maintained. Outputs are X3 terminated through a l000hm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner. 7 • 9 2 - Z IIII '\""'- 60 " s: (") r----. 30 : En;bi'; 140 YO 130 .... Y212 ~ ... W Chlrut.istic Power Supply Drain Current I nput Current Logic "1" Output Voltage Logic "0" MCl11574L T . . Limits +25o C -65"e Symbol Unci. Test Min IE 8 - lin H lin L 4 14 4 0.5 - 0.5 VOH 15 -1.080 -{I.880 VOL 15 -1.920 VOHA 15 -1.100 VOLA 15 '13+15+ 113-1517+15_ 17_15+ 114+15_ 114-15+ .+ 15 15 15 15 15 15 - CD Q. (Voltsl T '::"":.ur. 58 73 220 -0.930 - -1.655 -1.850 - -1.620 -1.820 -1.545 - -{I.950 - - -{I.845 - -1.635 - - -1.600 - 4.6 4.6 6.1 6.1 3.0 3.0 3.3 1.5 1.5 2.0 2.0 1.0 1.0 1.1 3.5 3.5 5.0 5.0 2.0 2.0 1.2 1.2 1.9 1.9 0.9 2.0 4.5 4.5 6.0 6.0 2.9 2.9 3.3 3.3 t. t 2.0 3.3 80 330 Vil min VIHAmin VILA miX .s5"c +25o C -{I.SBO -1.255 -1.105 -1.510 VEE -5.2 -{I.780 -1.920 -1.850 -1.475 -5.2 +125°C -{I.630 -1.820 -1.000 -1.400 -5.2 +125o C - - Typ VfHmax TEST VOLTAGE APPLIED TO PINS LISTED BELOW Min Min 565 Mo. Unn 80 mAde - 220 330 .,Ade 4 14 VIHmax VIL min - - VIHA min - Rise Tune (20%'080%1 Fait Time ·1~.o8O!l1 .- 15 15 l - (Vcel Gnd 1.16 8 8 1.16 1.16 8 1.16 8 1.16 0.3 - .,Ade - 4 -{I.630 Vde 13 - Vde 14 - - - 8 1.16 Vde - - 13 14 8 1.16 -1.525 Vde - - 14 - 8 1.16 -3.2 V +2.0 V 4.5 4.5 6.0 6.0 2.9 2.9 3.4 ns 8 1.16 Pul .. ln +1.11 V 1.3 1.3 1.8 1.8 0.9 - VEE 8 -0.825 Switching Times (100 n Loadl Propagation Delav miX - Threshold Voltage Logic "0" Threshold Voltage VILA ~.780 Output Voltage Logic '.,.' ::J c: TEST VOLTAGE VALUES Mo. M.. 375 ::J .... III I L...--- Co) ~ 8 L SUFFIX CERAMIC PACKAGE CASE 620 II I I Y310 Pin .... o ~ -'=" ! 3.4 ..... I 13 13 13 t3 13 13 - - 13 13 7 7 14 14 - 14 - 14 Pul.Out 15 j II .- ~L~TRlG+&. oCM~""tSTICS, Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed Circuit board and transverse alT flow greater than 500 Imear fpm IS maintained. Outputs are 7 0 X1 '0 II ~ X280 III ~ X3100 IIII ~ ~ 6 Z ~ e;;;,bie 2 0 YO 1 0 I I I I L--I I I ~'. TEST VOLTAGE VALUES IVoial liT... T.,...,.t... -55"c +25"c +125"C Input Current Logic "'" Output Voltage Logic "0" Output Voltage Logic "1" ThreshOld Voltage Logic "0" Threshold Voltage SwitchinG Times MC10674F T_ Limit, Max +l25o C Min Max - 73 220 330 80 220 330 0.5 -0.930 - - -5s"C Min M.. 80 375 555 0.5 -1.080 -0.880 - lin L VOH Undor T ... 12 8 2 8 3 VOL 3 -1.920 -1.655 -1.850 VOHA 3 -1.100 - VOLA 3 - -1.635 Symbol Ie lin H r::: It) .e: F SUFFIX CERAMIC PACKAGE CASE 650 IIII Y314 Charact.istic Power Supply Drain Current ::l ~~ 813 Y216: Pin 8 ...5' <-~~ VI 150 4J ~ .- ...o n '" terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of Input conditions. Other inputs tested in the same manner i: ,--"";-,,.- xo - Min +26"c Typ 58 - - - VIH .... -0.880 -0.780 -0.630 VILmin -1.920 -1.8&0 -1.820 VitIA min -1.255 VILA_ _1.510 -1.105 -1.000 -.1.475 -1.400 VEE -5.2 -5.2 -6.2 TEST VOLTAGE APPLlEO TO PINS LlSTEO BELOW (Vee l Unit Gnd - VEE 12 12 12 12 12 VIH .... VILmin VIHAmin ViLA .... 8 2 - - - - 8 - mAde "Adc: - - 4,5 4,5 4,5 4,5 4,5 -0.780 0.3 -0.825 -0.630 "Adc Vdc - -1.620 -1.820 -1.545 Vdc 2 - - - 12 4,5 -0.950 - - -0.845 - Vdc - - - 2 12 4,5 - - -1.600 - -1.525 Vdc - - 1 +1.11 V 2 - 12 4,6 'ul.ln 'u,.Out -l.2V +2.0 V 1 1 11 11 2 3 12 4,5 110011 Leadl Propagation Delay Aiae Time 120%'0110%1 Fall Time (20% '0 110%1 t'+3+ '1-3t11+3_ t11-3+ t2+3'2-3+ .+ 3 3 3 3 3 3 3 .- 3 - - - - 3.5 3.5 5.0 5.0 2.0 2.0 2.0 4.5 4.5 6.0 6.0 2.9 2.9 3.3 - - - 1.5 1.5 2.0 2.0 1.0 1.0 1.1 - - - - 1.1 2.0 3.3 - - - - - - ns 1 j - - - j MC 10574 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 2SoC Vee,· Vee2 +2.0 V.dc ''''f r------- V out it" . ------, 60 Input TPout Pul. Generator Input Pulse tT'" t- '"' 2.0 ±. 0.2 ns (20 to 80%) 50..ohm termination to ground 10· cated in each scope channel input. All input and output cables to the scope are equal lengths of 50·ohm coaxial cable. Wire length should be < 114 inch from TPin to input VEE = -3.2 Vdc pin and TP out to output pin_ V out I, 2: 1 attenuated. PROPAGATION DELAY V out V out 3-342 '\ QUINT LATCH MECL 10,000 series ~----------' MC10575 is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state. ThrMC10575 is a high speed, low power quint .latch. It features five 0 type latches with common reset and a common ~o·!f1put clock. Data is tranSferred on the negative e4ge of the clock and latched on the positive edge. t1f/o"1!lock inputs are "OR"ed together. Propagation .Iays'are typically 2.1 nanO!l~n4s. from each data input 111 the :output. . Any C;hal198. On the. data input will be reflected at the ciltIlUfs while the clock is low. the outputs are latched po.sitiye transition of the clock. While the clock 1M The MC10575 alldwsstorage of five bits of information, and it is useful in temporary storage applications in high speed central processOrs, accumulators, register files, digital communication systems, instrumentation, and test equ ip· ment. ., tI1i POSITIVE LOGIC NEGATIVE LOGIC 00Io---------~--~ 1400 DOlO-------------~ 12-----------+-1~ 1501 0213-----------+-i~ 2 02 D21~--------_+_+~ 2 02 03 9------~--4_~~ 3 03 03 3 03 D. 5--~------4_~~ 4 04 o. 4 01 I !' 01 15 01 co Co6 Ci 7 ·A_t 11 ____________--4____-:' TAUTHTA8LE C{) ~ R_t On+1 L L L L L ~ ~ L H ~ ~ H ~ tP H L L an an PD - 400 mW typ/pkg (No Load) ~ ~ H tP H L tpd - 2.6 netyp (Dllt. to Output) ~ H H L H ~ VCCI - Pin 1 VCC2 - Pin 16 VEE -PinS 0 - don't car• . . . . . . . . Infoml8ti!NIl8Cticin for packaging end "",ximum retingo. ~Gi 3-343 ELECTRICAL CHARACTERISTICS ,. DO s: 0 00 '0 Each full temperature range MECL 10,000 series circuit has been designed to meet the de spftcifications shown in the test table, after thermal equilibrium has been esut>fished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow weater than 500 linear fpm is maintained. Outputs are terminated through a l000hm resistor to -2.0 volts. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in the same manner. ...a Q,, . DJ : C i Chltactetittic Power Supp4y Drain Current IE 8 - linH 6 7 10 11 All 14 15 14 15 - Input Current Input Leakage Current linL LOgic: "1" Output Voltage VOH Logic "0" Output Voltage VOL Logic: "1" Threshold Voltage Logic "0" Threshold Voltage Switcltinl Timet Data Input Clock Input Reset Input Setup Time Hold Time Ri. Time (20 to 80%1 Fon T,imo (20",_1 VOHA VOLA Min +25o C Typ - - 78 - - - -65"c Min Mo. 0.5 -1.080 -1.080 14 t5 14 15 - - - - 0.5 -0.930 -0.930 - -1.920 -1.920 -0.880 -0.880 -1.655 -1.655 -1.100 -l.too - -1.850 -1.850 -0.950 -0.950 -1.635 -1.635 - - - R +25oC +125 oC -0.880 -0.7811 -0.630 - Mo. 97 290 290 290 645 -0.780 -0,7811 -1.620 -1.620 -1.600 -1.600 +125Oc Min Mo. Unit V.H mix t+ ,- - 14 - t4 -- 14 14 14 14 14 - - - - 1.0 1.0 1.0 1.0 1.0 1.0 2.5 1.5 1.1 - 1.1 - (i),1 'n~vidual'V ...t each input; apply Vel mm to pin unct.r telt. a>~tpu~~~d ~o ~"'}~~~_~~or ta_tolt. _ ,"" ::J C to Cl. - mAde - - 0.3 -0.825 -0.825 -1.820 -1.820 -0.845 -0.845 - - - - 2.1 2.1 2.6 2.6 2.8 2.8 - 2.0 2.0 3.5 3.5 4.3 4.3 3.9 3.9 - 3.5 3.5 - - - VIL min -1.920 -1.850 -1.820 VIHA min -t.2I5 -1.111i -1.000 ~Adc • VIL min VillA min 6 7 10 l' - - - CD -0.630 -0.630 "Adc: Vdc Vdc 10 12 -1.545. -1.545 Vdc Vdc - 6 6 6,10 6,12 - - Vdc Vdc Vdc Vdc - 6 6' 10 12 - 6 6 +0.31 Vd. 6,7 6,7, 7 7 6 6 7 7 6,7 8,7 - -1.525 -1.525 - - - ViLA ..... VEE -5.2 -1.475 -1.400 -6.2 -5.2 -'.500 VOLTAGE APPLIED TO PINS LISTED BELOW: +1.11 Vd. '10>14+ '10-14t6-14+ '&-14t11+4'11+14tsetup 'hold ::J (Vo"" V,H .... MCl11i75L T. . Limk, Pin Und_ T. . ... TEST VOLTAGE VALUES OT. . Tamperature -lisOc R, •• " Sy_1 8" L SUFFIX CERAMIC PACKAGE CASE 820 J OJ -~" ~: e CTI ..... en - os 0' ns I - 5 10 - - VILA .... - - , , - 10 12 'ul.ln PU .. OU. 10 10 6,10 6,10 7,11 7,11 6,10 6,10 10 14 '0 , VEE Gnd 8 8 1'6 1,16 ~ 1,18 1,16 1,16 1,16 8 8 1,18 1,18 8 1,18 8 1,18 8 116 8 -3.2Vdc +2.oVdc 1,16 8 8 8 8 :414~ .:..G ~. ~ ; MC10575 (continued) SWITCHING nME TEST CIRCUIT Vee 1 =vCC2- ""ill"" r---DO 10 1 V out ---l 14 100 I I I 1 0,1 I 60 Data Input TP out PRF = 1.0 MHz t+ = t- = 2.0 ns (20% to 80%) VOL ~ 0.31 V VOH ~ 1.1, V 04 5'~1-------+-+~ ~~ ~ I R._t11~1~______~~__~ '----IF"~ VEEL~'VdC 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input pin and TP out to output pin. < Unused outputs connected to a 100 n resistor to ground. 3-345 MC10575 (continued) VOLTAGE WAVEFORMS RESET INPUT CLOCK~ \ /r-------+l.11 L J________ +0.31 v RESET +0.31 V r--.....,.+----- +1.11 V OUTPUT '------+0.31 V DATA INPUT r-----.'----- +1.11 V DATA +0.31 V ~---.....,.:+---- +1.11 V OUTPUT +0.31 V CLDCKINPUT DATA ~----+1.11 V CLOCK '--"------+0.31 V t6-14+ ------+1.11 V OUTPUT '-----''---------+0.31 v ~---.....,.-----+1.11 V D '----+0.31 V tsetup'-'+---r---t--thold r-------+1.11 v NOTE: tsetup I, the minimum tima befbre the positive tranlltlon of the clock pul .. (e) that information mUlt ba pres.nt at the data Input (0), thold I, the minimum tim. aftar the pOsitive transition of the clock pul .. (e) that information mUlt c --------'·--------+0.31 V a remain unchanged at the data input (0). 3-346 _/ MECL 10,000 series LOOK-AHEAD CARRY BLOCK MC10579 The MCI 0579 device has 12 low power gates internally connected to perform the look-ahead carry function. This device has high Z input pulldown resistors and open emitter outputs. This device has applications in fast look-ahead adders such as with the MC10581. It can be used also as a boolean function generator. Po : 300 mW typ/pkg (No Load) 1pd = 3.0 ns typ (Carry. Propagete) 4.0 n. tv'P (Generate) POSITIVE LOGIC G3(9)5 -----------'~ P3(1) 1 3 - - -...._ _ _ _ _ _ _....,,~_., G2(13)9---+-------'~ P2116) 12 ~m=: 3(7) C n +4 ---t:;:=======:4--" )c>---++. C n (15)11 1513)PG GlIll)7 P1114)10 6(10)C n +2 GO(S)4 L P012)14 Pa - PO + P1 + P2 + P3 GG ~ IGO + PI + P2 + P3) (Gl + P2 + P3) (G2 + P3) G3 C n +2 = (C n + PO + P1) (GO + P1) Gl C n +4 = (C n + PO + P1 + P2 + P3) (GO + P1 + P2 + P3) (Gl + P2 + P3) (02 + P3) G3 Numbers at end of terminals"ore pin numbers for L package (e ... 620). Numbert In parenthesis denotes pin numbers for F package (CUll 660), See General Information section for packaging. 3-347 VCCI VCC2 VEE ~ ~ ~ Pin I (e) Pin 16 (4) Pin S 112) s: ELECTRICAL CHARACTERISTICS Each MECL 10,000 series has t..n designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-0hm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. ... n o L: 5 ::1, ~ U1 ..... c.c nO 3 2 ::J ~. II I 1111"'"" -' 11 ! 4i::!:::!::J::: ') IIII:D 1~ t. """ 15 ~ 6 ~ ::J c: L SUFFIX RI CERAMIC PACKAGE CASE 620 Co TEST VOLTAGE VALUES (Voltsl OT... Temper.... ,. VIHmu VILmin VIHAmin VILAm .. VEE -1.920 +25"1: -0.880 -0.750 -1.510 -1.475 -5.2 +126°0 -0.630 -1.820 -1.255 -1.105 -1.000 -1.400 -5.2 -55"c Col) ~ Q) Ch .....ristic Power Supply Drain Current Input Current Symbol Ie linH Pin Undor T... 8 4.7.11 5.9 10.13 12 14 linL 4 Logic "1" Output Voltage VOH 2 Logic "0" Output Voltage Logic "1" Threshold Voltage VOL VOHA 3 2 2 2 2 Logic "0" Threshold Voltage Switching Tim. 150n Lo..1 Propagation Delay Ri.Time 120"10 80%1 Flil Tim. (20"'0811%1 MCl0679L Test Limits ~50C Min Max Min Ty. M ... Min Max Unit - - - 58 72 270 225 - - mAde 0.5 - -1.080 -1.920 -1.100 ~ - -0.850 -0.930 -1.655 -1.850 -0.950 - 2 2 2 2 - ~ t11+6+ '11-6t5+2+ '5_2_ 6 6 2 2 - - '6+ 6 'I>- 6 VOLA -1.635 ~ - - - - 440 395 355 - - - - -0.750 -0.825 -1.820 -0.845 -1.620 -1.600 ~ - - ~Ade ~ VIH max VIL min VIHAmin - - - 4.7.11 5.9 10.13 12 14 ~Ade - -0.630 -1.545 Vde 4.5.7.9 Vde - - Vde - -1.525 Vde ~ ~ 13 5.12 5.9 5 13 5 5 5,9 - ns - - - - ~ - ~ - 1.0 ~ 1.1 1.1 - - - - 4.5 4.5 5.5 5.5 3.5 3.5 - j 4,7 4.7 4.7,9 4.7.9 4.7 4,7 - - - 4 - - - +1.11 V - -5.2 TEST VOLTAGE APPLlEO TO PINS LISTEO BELOW: +l25oC +2SoC -1.850 - - 5 9 12 13 VILA max - - VEE (Veel Gnd 8 1,16 8 1,16 ~ ~ 8 8 8 8 1.16 1.16 1.16 1.16 ~ ~ 8 1.16 - 5 13 9 12 ~ ~ Pulse In Pul. Out -3.2 V +2.0 V 11 11 5 5 11 6 6 2 2 8 1.16 11 6 - - - 6 j j s:: ELECTRICAL CHARACTERISTICS Each MECL 10,000 .rie. hOI been de, signed to meet the de specifications shown in the test table, efter thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are C') -0 9 o g] -----I ::~ terminated through a 10Q-0hm resistor to (S) ~ 6 -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner. 15 nO II I FTff"" ./ ....::::l 3' c Q. AO 80 At 81 A2 82 P.3 83 51 -- c: SiS M w ~ en -~ .... o g: en t- .. ,---M p .3 .• O A' •• A2.2 A3 C r-" r-- 52 ." A.3 r~9' 9"f t'y en 4 G_ MC10581 ,----50 -~ A.' A'O .'0 A" AD 80 A1 81.4.282 A3 83 ~M r--" ., AS rli AD 80 A 1 81 .4.2 82 ,A,3 83 Cin ~? CD .. A. ," F.2 F1J ~ MEeL 10,000 series DUAl2·BIT ADDER/SUBTRACTOR MC10580 The MCl0580 is a high speed, low power ganeral·pur· pose adder/subtractor. It is designed to be used in spacial purpose adderslsubtractors or in high speed multiplier' arrays. The Mel 0580 eIIn be used in any piece of equipment where these operations are necessary. Inputs for each adder are Carry·in, operand A, and operand B; outputs are Sum, Sum, and Carry·out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert B. The speed is very fast, with Carry·in to Carry·out propagation delay of 2.2 ns and Operand in to Sum or Carry·out propagation' delay of 4.5 ns. Po - 380 mW typ/pkl (No Loodl n. tpd(typ): el n to C out - 2.2 AO 10 SO - 4.5 n. AO to Cout - 4.15 n. POSITIVE LOGIC NEGATIVE LOGIC (11)1 (11)7 1& 131 1131. UU 15 (13) g :2 {e, (101 • (1016 J (71 '9' 5 (8) .. (8) .. , . (2) 1 (115)11 (Hi! 11 (14)10 (14' 10 (16112 (18) 12 Positive Logic Only A' = A (!) SelA .. A 0 (5) 13 ell Both Po,ltive end Negative Logic: S SetA = Cjn (A'S' + A' 8') + Cin (A'S' + A'S') Cout :: Cin A' + Cjn B' + A'S' S'" S@S.IS" S0SoiS Numb.,.. at Wid of termlnel' .re pin number. for L peeke,. (Case 620). Numbe,.ln pe,.,th..11 denot.. pin number. for F package (C... 650). POSTIVE LOGIC DIAGRAM - 1/2 Of Circuit Shown TRUTH TABLE FUNCTION .00 .... eo C," o------++----t---l SUBTRACT REVERse SUeTA.4CT FUNCTION SELECT TABLE .... .... "" " """ "" "" "" "" "" L L L L L L L L L L L L L L L L FunctIon S - .4plul a S·.4 Wllnul a S· B,,"nuI.4 S • 0 minUI A m,nul a S. . Gen .. al Information ..ction for peck aging. 3·352 "" "" "" "" L L L L L L L L """ "" "" " L L L L L L L L INPUTS OUTPUTS AO 80 Cin so so C~, L L L L L L L L " L L L """ " L L L L "" " " L L L L " "" " L L L L " """ "" "" L L L L "" "" L L L L "" L L "" L L " " "" L L " " L L "L "L " L " L "L " L " " L L " L "L " L " L " " L "" " L L L " " L L "L " "" L L " " "" L L " " "" L L L L L "" " L L L " L L L L L " " " " " "" L L L L "L L " " " "" L L L L " " "" " L L L L "" " L L L " "" L " " L L L ,. ELECTRICAL CHARACTERISTICS Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown In the test table, - after thermal equilibrium has been estab· lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear 'pm is maintained. Outputs are terminated mruug" a luu-onm reSistor fO -L U VOltS. L::: Test procedures are shown for only one SelA ,.'2--- '" ':==== input, or for one set of input conditions. Other inputs are tested in the same manner. 51 Sels 51 8' Cin Cout ~ CtwI'Kt_iRic Power Supply Dr.in Cur,..nt Input Current $v_ IE 'inH w W (11 w linL VOH Logic "I" OutPUt Volu.g. logic "0" OutPUt Vol . . . VOL Logic "1" Thrnhold Voltlgl Logic "0" ThrW'told Voltlgl Switching Times PrOlMPtion 0tI1-V Opwnlnput C_ry·in Input Select Input Ri_Tim. (20tollOlfol F.,Time ·lndiYidu.lly ~Iy VOHA VOLA Pin U-' TOIl 8 4 5 6 1 9 10 11 12 All 2 3 15 2 3 15 2 3 15 2 3 15 Min .Tat TemptntuN ~" +25"c Ty. Mo. 10 86 - - 630 314 314 493 483 314 314 630 310 220 220 290 290 220 220 310 0.6 -1.080 -1.080 -1.080 -1.920 -1.920 -1.920 -0.880 -0.880 -0.880 -1.665 -1.666 -1.666 - - -1.100 -1.100 -1.100 - 15 15 15 3 15 15 15 - 'IS- IS - - - -1.635 -1.635 -1.635 - - - - - - - - 0.5 -0.930 -0.930 -0.930 -1.850 -1.850 -1.650 - -0.950 -0.950 -0.950 - 1.0 - - - - -0.180 -0.180 -0.180 -1.620 -1.620 -1.620 -aGe +25"c +1210 c - 220 290 290 220 220 - - 0.3 -0.825 -0.830 -0.825 -0.630 -0.826. -0.630 -1.820 -1.645 -1.820 -1.645 -1.820 -1.645 - -1.525 -1.525 -1.625 - - 3.3 3.3 5.4 5.4 3.1 - - 3.1 - - 2.2 2.2 1.1 1.1 2.0 -0.880 -0.180 VILmin -1.920 -1.850 -0.630 -1.820 VIHmu 00 o CERAMIC PACKAGE CASE 620 o o ::J ~. ::J V'HAmin -1.266 -1.106 -1.000 r:: CD a. VILA.,." -1.510 -1.415 -1.400 VEE -52 -5.2 -5.2 (Veel Unit VIH m•• VILmin mAde - - .Ade j 310 - 4.5 4.5 2.0 _L--- 95 310 220 -1.600 -1.600 -1.600 5.4 5.4 j - - 4.5 4.5 U1 L SUFFIX TEST VOLTAOE APPLlEO TO PINS LISTED BELOW, +1211"e Min Mo. -0.845 -0.845 -0.845 - ....o TEST VOLT AOE VALUES Vol .. ~, 96 15+15+ tl+15+ 1.4+15+ l4+3+ t'7+16+ '9+15+ t15+ Vil min to pin under test. ~,. MC10680L Tell Limits -56"c Min Mo. s:(") .Ade Vdc t T Vde t Vde t n. - - - - - 1~ - VIHAmin - - - - - - - - 5 4 4 1.9 1.9 1.9 5.1.9 4.9 1.4 1.9 - 1.9 - - - VEE and 8 8 16 16 - - 4.5.1.9 4.1.9 5.1.9 1.9 1.9 1.9 4.1.9 1.9 1.9 1.9 4.1.9 +1.11 V - VILA.mp - - j 8 8 18 16 8 16 t t 4 8 - 8 - t t t , 16 I 16 5 - ~ Pul_ln PuI_Out -3.2 V +Z.OV 15 15 15 3 15 8 16 - 6 6 4 4 1 9 5 - 5 - 4 1 s: (") .... o ELECTRICAL CHARACTERISTICS II 13 9 10 8 Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown In the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Itnear 'pm is maintained. Outputs are terminated 3 ~ 6 --I--+---a.j L::: SelA S1 8ele 51 ., 1 5 - - AI 14-1 6 - - C,n Other inputs are tested in the same manner. ::J ~2 ~5 POW'er Supply Drein Current I nput Current 'E linH w W CTI ~ linL VOH Logic: "I" OulPUIVoIlIIIO LOIIic:"O" Output Voigg. VOL Logic "1" Thr.oId VolUge VOHA Logic "0" Thf"llhold VOLA Vol~ Switching Timll Propegetion DeI~ ap.end I"Put C_ry·in Input 5eIect Input Ai_Time 12010_' FoIIT_ -Indhfiduelty 12 8 9 10 II 13 14 15 16 Cout Temper.~,. ~1 -a"C +2Ii"C +121i"c All 3 6 7 3 6 7 3 6 7 3 6 7 Min Typ - 98 830 - - 374 374 483 483 374 374 630 0,5 -LOBO -LOBO -LOBO -1.920 -1.920 -1.920 -{I.880 -{I.sao -{I,880 -1.855 -1.655 -1.655 0.5 -{I.930 -{I.930 -{I.930 -1.850 -1.850 -1.850 -1.100 -1.100 -1.100 - -0.950 -0,950 -{I,950 - - -1.635 -1.635 -1.635 -- - - 1.0 t9+3+ t10+3+ ta+3+ ta+7+ 111+3+ 113+3+ 3 3 3 7 3 3 13+ 3 - 3 - 13- IPP.'.¥ VIL min 10 pin under~. - - -- Min -1.000 -1.400 -{I,630 -5.2 -5.2 -5.2 70 B6 - 370 220 220 290 - - - 290 220 220 370 - - -0.780 -{I.780 -0.780 -1.620 -1.620 -1.620 - - - 0.3 -{I.825 -{I,825 -{I,825 -1.820 -1.820 -1.820 Unit VIH mu: VILmin VIHAmin VILA m •• VEE IVeel Gnd 95 370 220 220 mAde - - - - - 12 12 4 4 JlAdc 290 290 - 220 220 370 - JlAdc -{I.630 -{I,630 -{I.630 -1.545 -1.545 -1.545 Vdc ~ Vde 11,13 11,13 8,11,13 8,11,13 11,13 11,13 +1.11 V ~ -1.600 -1.600 -1,600 - -1.525 -1.525 -1.525 Vdc 4.5 4.5 5.4 5.4 - ns 2.2 2.2 - 4.5 4.5 2.0 3.3 3,3 5.4 5.4 3.7 - ~~1__ ~.O 3,7 - - - - - 8,11,13 11,13 8,9,11,13 11,13 9,11,13 11,13 - - i ~ 11,13 11,13 11,13 9,11,13 - 6,13 8,11 - 11,13 - -~ - - Vdc - 1.1 -1.820 -O.sao -0,780 c. VEE , M ... -{I.845 -{I,845 -{I.845 j VILAmu -1.510 -1.475 VILmin +1211"C Mo. - - -1.920 -1.850 VIHAmin -1.255 -1.106 VIHmu TEST VOLTAGE APPLIED TO PINS LISTED ULOW, +2Ii"c Mo. - Cb .T. . Min - ::J c: Vol .. MC10610F T_ Limits -W'c ~, TEST VOLTAGE VALUES '--- lo- o C"l Test procedures are shown for only one input, or for one set of input conditions. Ctw. .illlic (J'I 0) o through a l00-ohm resistor to -2.0 volts PI. U_ T. . F SUFFIX CERAMIC PACKAGE CASE 650 ~~ - - - - - - - - - 9 9 8 - - 9 10 8 8 II 13 9 9 II 12 12 - ~ - 12 - ~ 12 8 - Pu"ln - - - 8 8 PuI_Out 3 3 3 7 3 J i 12 ~ 4 4 ~ 4 ~ , 4 I 4 -3,2 V +2.0 V 12 4 :MC10580 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@l2SoC Vee, : VCC2 -' +2.0 Vdc V out Coax Coax 9 +-......--.I--t SelA + .....+--'~ SelB 5 AO 6 80 4 ~--:"'15 60 C out Cin -~-~ 3 TP in 14 Pulse Generator 11+------1-. 10+------1-. 12-i---aot 50-ohm termination to ground to cated In each scope channel input. All input and output cables to the scope .re equal lengths of 50-ohm co . .:ial cable. Wire length should be < 1/4 inch from TP in to input pin end T~out to pin. outPut V out I, 2:1 att.,uated. 13 L----fi-1J 01 Unu_d outputl connected to • -l 100~hm r ..i,tor to ground. ~F VEE'" -3.2 Vdc PROPAGATION DELAY r---~-------+1.11 v '-------+0.31 V TP out TP out 3-355 MECL 10,000 series 4-BIT ARITHMETIC lOGIC UNIT/FUNCTION GENERATOR MC10581 The MC10681 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated. for ripple through operation. Arithmetic operations are selected by applying the appropriate binary word to the select inputs (SO through S31 as indicated in the tables of arithmetic/logic functions. Group carry propagate (PGI and carry generate (GGI are provided to allow fast addition of very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (MI. When used with the MC10579, full-carry look-ahead, as a second order look ahead block, the MC10581 provides high speed arithmetic operations on very long words. POSITIVE LOGIC NEGATIVE LOGIC (19) 13 (19) 13 (21) 15 (21) 15 (23) 17 (23) 17 (20) 14 (20) 14 50 (3) 21 (2) 20 (8) (24) 18 (11 19 (22) 16 (17) 11 F1 3 (9) F2 7 (13) F3 6 (12) 4 (10) 8 (14) (16) 10 (15) 9 (4) 22 (6) 23 PG (3) 21 (2) 20 51 52 53 2 (24) 18 (1) 19 (22) 16 (17) 11 (16) 10 (16) (11) 9 (4) 22 (5) 23 (8) 3 (9) 7 (13) 6 (12) 4 (10) 8 (14) 5 (11) Numben at end of terminals are pin numbers for L package (Case 620) Numbers in parenthesis denotes pin numbers for F package (Case 650) Po :: 600 mW typ/pkg (No Load) tpd (typ): Al to PG :=. 5.0 ns A 1 to GG = 4.5 ns Al to C n +4 = 5.0 ns Al to F =6.5n5 en to C n +4 = 3.1 ns POSITIVE LOGIC Function Select 53 52 51 Arithmetic Operation Mi,low i,tow F F 50 F F ~ H F " H H H H F L H H H H Ii H F L F" A It F A .. = • F "A" 8 L F - Logical "0" Anthmetlc Operation M is High M IS Lowen of LSB must be HIgh F Select S1 SO F F'A, F - A minus 1 A plus (A. iiI F'~ A plus (A. Bt F - (A" SI plutO A. B F - H ,;:-;-s F • A plus B F ~ AiDB F A plus (A .. 8) FA. F (A" BI plus 0 F • A minus B minus 1 F A plul (A" F . A H F A@B H F " A • B ~ H mmus 1 (twO's complement) F ." A e B F' (A e BI minUS 1 F A mInus 1 + B F ." B Ell F '. (A e SI mInus 1 B H F • (A .. HI plus (A • BJ F H F < ~ 3-356 ~ ih 81 A times 2 F fA. BI minus 1 (A • BI olus (A + Bl A plus B F - A plus (A. BI F ~ (A • SI mInus 1 F A mInus B mInus 1 F ~ (A .51 plus A F mInus 1 (two's complement' 8 F ~ (A + 51 plus 0 A + B F - (A + BI plus 0 F - A See General Information .. ction for peckaging.nd maximum ratingl. A plus (A • F F ' (A .51 plus (A + BI LogIcal "1'" F " A + F F F . A plus (A B F F"'Aes F'" A S2 F ' (A .. II plus fA • 81 • B F", A0 B F Function S3 A tlme52 .i.i H H F F Logical "1" H H H en LogiC Functions F'" A plul 0 A A .. ii A+B F-A".a H H ~ F H NEGATIVE LOGIC Logic Fundion. Mi, Htgh C .. D.C. F . A plus 0 MC10581 (continued) ,S3 S2 POSITIVE LOGIC DIAGRAM SI so BO 0-- ~ ~ f---J-L/ ---D ~ FO -L ~ AO Bl 0-- ~ ~ ,~/ ~ 0-- ~ Vi ~ £>t ~ F2 ~ ~ , 0-- " ~ A2 B3 Fl -L AI B2 ~ .--" F3 ,~ ~§P A3 ,/ M 3-357 ELECTRICAL CHARACTERISTICS 3: Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thennal equilibrium has been mtablished. The circuit is in 8 test (") ~ socket or mounted on a printed circuit board and transverse air flow greater than 500 linear {pm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner. ~ 0 C11 CO ~ 8 L SUFFIX CERAMIC PACKAGE CASE 623 :::l ~. :::l c: CD a. TEST VOLTAGE VALUES IVai.., OT... T .... perMu ... Pin Undo< a.eracteriltic W W POMr Supply Drein Currant Iinpu. Cuneo. Symbol TOOl IE 12 linH 9 10 11 13 U1 (Xl " 15 16 17 18 19 20 21 22 23 Input Leakage Current I linL I 9 10 11 13 14 15 16 17 18 19 20 21 22 23 - 0.5 Ma. ~.780 -1.850 -1.105 . +126"1: ~.630 -1.820 -1.000 -1.476 -1.400 VIH mill 180 145 - 245 220 245 200 160 245 220 245 200 265 265 220 265 220 2.5 2.5 220 290 200 mAde 420 375 420 340 - /JAde 9 10 11 13 14 15 16 17 18 19 20 21 22 23 - ",Adc - 450 450 375 460 375 420 420 376 496 340 - - - 0.5 TV. - - 220 265 220 245 245 220 290 200 - - - -- - - -1.080 -0.8BO -0.930 -1.920 -1.855 -1.850 -1.100 -0.950 -1.836 VOLA -.lrest ell iDpUt-GloltpUt.CGnIbift.8tioDl.-:coa:l". to.function T.Ibla. ·-For ttw'fthoklle¥iM _ . apply thrnhold input IIwI to only one input pin • • time. 265 265 - - ~.780 -1.620 -1.8110 - - 0.3 - - - - ~.825 I I I VEE -5.2 I -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS BELOW, Unit VOL Low Thl'fthofd Volt. . -1.510 Mao VOH . VILA....,. -1.266 Min High Output Voltage VOHA VIHA min -1.920 M.. Min Low Output Voltage High Threshold Voltage Vil min -0.880 MCl0511L T_ Limit. +25 o C +126"1: ~6"1: Min VIH,.,.. -&15"1: +25o C - ~.630 Vdc -1B20 -1.545 Vdc ~.845 Vdc -1.625 'Vdc 1 - 9 10 11 13 IVee' Gild VEE VILA m •• VIHA min VILmin I 1,24 12 1 - 1 - T 12 I 1,24 I - I - I 12 I 1.24 " 15 16 17 18 19 20 21 22 23 . - .... - ..... . 12 1,24 12 1,24 12 1,24 12 1,24 .. ' .'~~ EL.ECTRICAL CHARACTERISTICS E.th full temporeture r..... MECL 10.000 _ies circuit has been dlligned to mftt the dc ~pecificetions shown in the t-'t toble. efter thermol equilibrium he, been astat>lished. The circuit is in 8 test .:Jeket or mounted on 8 printed circuit board and transverse air flow greater than 500 1inear fpm is maintained. Outputs are terminated t"'ough a HIO·ohm resistor to -2.0 volts. ~ .... ~ 0 U1 00 .... ------ ~ 8 F SUFFIX ::J CERAMIC PACKAGE CASE 652 !:!. ::J c: ~ TEST VOLTAGE VALUES IVaitsl @Test T.... per.tur. Ch.,.....istic Po.,..., Supply Drain Current W W II nput Current Symbol Pin Under T.,. IE 18 160 linH 15 16 17 19 20 21 22 23 24 1 2 3 4 5 420 375 420 U1 CO Input Leakage Current I linL I 15 16 17 19 20 21 22 -5SoC Min MIX MC10681F Test Limit. +25"1: +125oC Min Typ MIX Min M •• 116 340 450 450 375 450 375 420 420 375 495 340 145 245 220 245 200 265 265 220 265 220 245 245 220 290 200 0.5 0.5 160 245 220 245 200 265 265 220 265 220 245 245 220 290 200 0.3 VIHAmin -1.255 -1.510 -0.780 -1.850 + 12SoC -0.630 -1.820 -1.IOS -1.000 -1.475 -1.400 I mAde ",Adc VILmin VIHm•• 15 16 17 19 I ",Adc VOH -1.080 -0.880 -0.930 -0.780 -0.825 -0.630 Vdc -1.920 -1.620 Vdc VOHA -1.100 -1.820 -1.545 -0.845 -1.525 VOLA ·Test aUlnput-output combinatIOns eccordtng to Function Table. ··For threshold level test, apply threshold input level to only one input pin at a time. 1 Vee -5.2 -5.2 -5.2 VILA I m.. I I I I I Vee) VeE 18 I 6.7 18 I Gnd 6.7 21 22 23 24 VOL -1.600 I I 20 15 16 17 19 20 21 22 24 1 2 3 4 5 -0.950 VIHA min I 23 -1.635 I TEST VOLTAGE APPLIED TO PINS BELOW: Unit 24 1 2 3 4 5 -1.850 me. -1.920 23 -1.655 VILA -0.880 High Output Voltage High Threshold Voltage VILmin _55°C +25 o C Low Output Voltage Low Threshold Voltage VIHma. 18 I I Vdc Vdc -1 1 1 I 1 1 18 6.7 I 6.7 18 1 6.7 18 1 6.7 18 1 6.7 MC10581 (continued) ELECTRICAL CHARACTERISTICS (CONT'I AC Switching CharaCleriSlies +25o C ~s"C· Min MIl. Min Typ M.. Min MIl. Unit 1.B 1.0 2.0 1.1 2.0 1.5 7.6 3.5 B.l 5.0 S3, C n S3,C n 1.9 0.9 B.l 3.0 2.0 1.0 6.0 2.0 - 2.B 1.3 10.3 5.2 3.0 1.5 6.5 4.0 B.O 3.0 10 5.0 1.6 0.9 2.0 1.3 1.9 0.9 ns ns 1.9 1.3 6.0 2.0 6.0 3.0 7.5 3.5 53, C n S3,C n 7.6 3.5 B.l 5.0 Fl FI AI, Bl AI, Bl 2.7 1.3 3.0 1.5 6.5 3.0 PG A3, B3 A3 B3 1.9 1.0 10.2 5.2 B.l 5.1 2.0 1.1 Input Output Propagation Delay Rise Time, Fall Time t++. t-t+, t- Propagation Delay AiseT.rne Fall Tmle tt+, t-tt t- Bl Bl Bl Bl PG PG GG GG Propagation Delay Rise Time, Fall TIrr'le f+-, t-+ Bl Bl Cn +4 C n ?4 Propagation Delay Rise TIlTle, Fall Time It+, t+t+, t- M M Fl FI Propagation Delay Rise Time, Fall Time t+-, t-+ f+, l- 51 SI Propagation Delay t-+,lt- 51 SI P~ tt, Rise Tmle, Fall Time t- f+, l- +l25°C· Conditions t SO,S3 50,53 Symbol Characteristic B.O 5.0 ns n. ns ns 2.B 1.3 B.l 3.0 10.2 5.2 10 5.0 2.6 1.3 10.2 5.2 ns ns 6.0 3.0 8.0 5.0 1.8 1.0 8.1 5.1 ns ns ns ns 51 51 C n +4 Cn+4 A3,83 A3,83 1.9 1.0 9.1 5.1 2.0 1.1 6.0 3.0 9.0 5.0 1.8 1.0 9.1 5.1 ns n. 51 SI GG GG A3, B3 A3,B3 1.7 0.8 9.2 6.2 2.0 0.8 6.0 3.0 9.0 6.0 1.7 0.8 9.1 6.2 ns ns Cn Cn C n +4 C n +4 AO,A I ,A2,A3 AO,A I ,A2,A3 5.1 3.1 Cn Fl I I 3.1 2.0 4.5 4.5 3.0 5.1 3.1 7.1 7. I 5.2 Al I F( 2.9 2.9 1.3 5.0 3.0 7.0 7.0 5.0 10 10 5.0 0.9 0.3 2.0 2.0 1.3 t++, Ht-+, t-t+, t- 7.1 7. I 5.2 10.1 10.1 5.2 1.1 1.0 2.0 2.0 1.5 3.0 3.0 1.5 ns ns t++. t+t-+, t-t+, t- 1.0 0.9 1.9 1.9 1.3 2.8 2.8 1.3 Propagation Oelay Rise Time, Fall Time t++, t-t+, t- Al Al 6.6 3.5 2.0 1.1 1.8 1.0 Al Al 1.9 1.3 7.1 5.2 2.0 1.5 5.0 2.0 4,5 4.0 6.5 3,5 t++, t-t+, t- 50,53 50,53 AO,A2,A3,C n AO,A2,A3,C n 1.8 0.9 Propagation Delay Rise Time, Fall Time PG PG GG GG 7.0 5.0 2.0 1,3 10.2 10.2 5.2 6.5 3.6 7.1 5.2 ns ns Propagation Delay Rise Time, Fall Time t+-, t-+ t+, t- Al Al Cn+4 C n+4 AO,A2,A3,C n AO,A2,A3,C n 2.0 0.9 7. I 3.0 2.0. 1.0 5.0 2.0 7.0 3.0 1.9 0.9 7. I 3.1 ns ns Propagation Delay Rise Time, F311 Time t++, t-+ Bl Bl Fl FI 53, C n 53,C n 2.9 1.3 11.1 5.2 3.0 1.5 8.0 3.5 11 5.0 2.7 1.3 11.2 5.2 ns ns Propagation Delay Rise Time, Fall Time t+-, t-+ Propagation Delay Rise Time, Fall Time f+-, t-+ t+,l- '+, l- Propagation Delay Rise Time, Fall Time 1++, t-- t+.t- Propagation Oelay Rise Time, FaU Time Propagation Oelay Rise Time, Fall Time t+, t- AO I- tLogic high level (+1.11 Vdd applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. VCCI = VCC2 = +2.0 Vdc, VEE = 6.5 6.5 3.0 -For L Suffix only. -3,2 Vdc 3·360 ns I T n. ns 'MC10581 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS., 25"<: VCCl - ""CC2 +20 \,Ide V oul PROPAGATION DELAY 50 '------+0.31 V TP,ro 'roput Input Pul,e 2 ! 0.2 ns (20 to 80%) t+ = t- = TP out 50-ohm termination 10 ground locat.cj in lI..:h IeOp. chenne' input. All input a"d output cabl" 10 the scope ar. ~u.ll.ngths at 50-ohm c08",ial clbla Wire length should be < 1/4 inch "om TP in to input pin and TP out to output pin. V out itl2:1 attenuated. UnuHd outpuuconn..:ted to II 100 ohm retl.tor to grou ... d. 3-361 MECL 10,000 series HIGH SPEED TRIPLE LINE RECEIVER MC10616 POSITIVE lOGIC The MC10616 is • high speed triple different.. amplifier designed for use in sensing differential IignM. over long lines. The base bias supply (Vaal il ...available to make the device useful as a Schmitt NEGATIVE lOGIC trigger. or in other appl ications where a stable reference voltage is necessary. (S)4~2 (9) 5 ActivB currant sources provide the MC10616 with (6) 3 (7) (S)4~2 (6) (9) (7) 5 3 (13)9~6 (10) (13)9~6 (10) (14)10 (14)107 (11) 7 (11) (16)12~14(2) (1)13 (16)12~14 (2) 15(3) 15 (3) (1) 13 L - 11 (15) excellent common mode noise rejection. If any ampli· fier in a package is not used, one input of that amplifier must be connected to Vas to prevent upsetting the current source bias network. Complementary outputs are provided to allow driv· ing twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function. L - l 1 (15) Vaa Vaa Numbers at end of terminals are pin numbers for L package (Case 620), Numbers in parenthesis denotes pin numbers for F package (Case 650), I Case I I 620 I 650 I I VCC1 Pin 1 Pin 5 I VCC2 I I I Pin 16 Pin 4 VEE I PO'" 100 mW typ/pkg (No LOad) tpd '" 1.8 ns typ (Single ended) '" 1.5 ns typ (Differential) I Pin B I I Pin 12 I CIRCUIT SCHEMATIC (6) 2 (7) 3 7 (111 (10)6 14 (21 vcel VCC2 15 (3) 16 (4) 1 (5) (g) 5 (S) 4 (13) 9 (14) 10 (1) 13 See General I nformation section for packaging. 3-362 (16112 8 VEE (12) ELECTRICAL CHARACTERISTICS ...3:o Each lull temperatura range MECL·l0,OOO _i •.circuit has been designed to meet the de specifications shown in the test table. mounted on a printed circuit board and ::=:tt=~ transverse air flow greater than 500 linear fpm is maintained. Outputs ara terminated through a 101k>hm resistor to -2.0 volts. T.t procedures are shown only for selact- 9:=:tt=6 10 1 12~14 ed inputs and outputs. Other inputs and 13~'5 outputs are tested in a similar manner ...~ - attar thermal equilibrium has baan established. The circuit is in a test socket or ~" VBB 0) L SUFFIX 8::J CERAMIC PACKAGE CASE 620 ~. ::J C en a. TEST VOLT AGE VALUES IV....I .T... Tem,.rature w W en w Ch ___ ristic Power Supply Or.in Current Input Current 5¥mbol 'E linH 'CBO Hith Output Volt. . Low Output Voltege VOH VOL High Threshold Volt. VOHA Low Threshold Voll. VOLA R.ferenc::eVoltage VIB Pi" U_, T... 8 4 4 9 2 3 2 3 2 3 2 3 11 F.IITime .2&"c ~.780 .1Z5"c ~.830 ."1.820 -1._ -1.820 +25o C Min M.. - 28 195 1.5 1.5 -LOBO -LOBO -1.820 -1.920 -1.100 -1.100 -1.440 Min - M •• 20 25 115 1.0 1.0 ~.880 ~.930 - -0.880 -1.8&1i -1.8&1i ~.930 - -1.850 - ~.950 ~.850 -1.850 -1.835 -1.835 -1.320 -1350 - .- 1.0 1.8' - Min - M •• Unit 28 115 1.0 1.0 mAde VIHm. . VILmin - 9.12 4.12 - 4 9.12 9.12 4 9,12 - 9,12 - - 9.12 4 - 4 - ~Ade ~.780 ~.625 ~.630 -1.620 -1.620 -1.820 -1.820 -1.545 -1.545 Vdc Vdc - Vdc Vdc 9.12 - Vdc Vdc - 9.12 9,12 Vdc - - -1.240 2.5 - -1.526 -1.525 -1.120 - ,!lAde Vdc Vdc - VILA ..... 9,12 ~.630 -1.BOO -1.BOO -1230 VIHAmin 4 ~Ade ~.825 ~.845 ~.845 -1.510 -1.475 -1.400 4.9.12 ~.780 - ViLA ..... V. . F..." Pi" 11 VEE -5.2 ~ ~ TEST VOLTAGE APPLIED TO PINS BELOW, .1Z5"c Ty. V'HAmin -1.2&1i -1.106 -1.000 4 4 - - -- 4 4 - V. . VEE 5.10.13 5.10.13 5.10.13 5.10.13 8 8 1,4 5.10.13 5.10.13 5.10.13 5.10.13 5.10.13 5.10.13 5.10.13 5.10.13 5.10.13 B.8 8 8 I 8 8 8 8 B 8 -3.2 14+2+ .... 2'4+3.... 3+ Ri.Time 120% to 80%) VILmin -0.880 Mel.1IL T . . L1_ -&Ii"c Switching Til'Ml ISCHhmLoodl Propaptlon Oeley VtHm •• -5II"c '2+ '3. '2_ 2 2 3 3 2 3 2 3 120%'080%1 '3D• ..., i, 1.5 n. when inputs .... driven diff.rentillUy Delay i, 1.8 n. when inpuh •• driven lingle ended - - - - j •~ j 1.5 - - - n. j - - - - - - Pul.ln Pul.Out 4 2 2 3 3 2 3 2 3 j 5.10.13 IVecl Ond • 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1,16 1.16 1.16 Vdc +2.0 Vdc 8 1.16 j j j ELECTRICAL CHARACTERISTICS 3: Each full temperature range MECL 10.000 series circuit has been designed to meet the de specifications shown in the test table, (') ...A o0) ... after thermal equilibrium has been estab- lished. The circuit is in a test socket or ~ 8~6 mounted on a printed circuit board and 9-~7 transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 1OQ..ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner 0) ~FSUFFIX 13~10 14~11 16~2 8:::l ~. CERAMIC PACKAGE CASE 650 1-~-3 L ___ 15 :::l c: (1) Co VBe TEST VOL TAOE VALUES I IV....' .T... T....per..u,. eN W ~ So- T... Power SupplV Drlin Current 'E 12 a a 13 6 1 Input Current linH Icao Htgh Output Volt. . low Output Voltage VOH VOL High Thrnhold Volt. VOHA low Threshold Voltage VOLA Reference Volt. . Va8 6 1 6 1 6 , 15 V'lillin V'HAIR. VILA . . . -SS"c ~.811) .aoc .laoc ~.180 -1.820 -1._ -1.820 -1.2M -1.IOS -1.110 -1.4111 ~.630 Me,GS,., T. . limits Pin -SS"c u...., Characteristic VIHIll. . Min - -1.0B0 -1.0B0 -1.920 -1.920 -1.100 -1.100 - -'.440 Min Typ M.. Min M.. Unit VIHm•• Vil min 28 195 1.5 1.5 - 20 25 lIS 1.0 10 - 28 115 1.0 '.0 mAde. - - ~Adc 8 - 8. '3.'6 '3.16 13.16 8.'3 ~.825 ~.630 Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc 8 13.'6 13.16 8 13.16 8 8 13.16 - 13.16 8 ~.930 - - ~.180 ~.880 ~.930 ~.180 ~.825 ~.630 -1.855 -1.655 -1.850 -1.850 -1.620 -1.620 -1.820 -1.820 -1.545 -1.545 - ~.850 ~.950 -1.635 -1.635 -1.320 - - -1.350 - ~.845 ~.845 - -1.600 -1.600 - -1.230 -1.240 -1.525 -1.525 -1.120 - .- Pin 15 ",Adc ",Adc 13.16 - - 13.16 13.'6 - - VIHA min - - 8 VILAma -. - - 8 8 - - - Pul.ln Pul_Out V. '.8.'4 1.8.'4 '.8.'4 '.8.'4 '.8.'4 '.8.'4 '.8.'4 '.8.'4 1.8.'4 1.8.'4 '.8.'4 19.'4 1.8.'4 Switching Times ~5O-ohm Pr~ion LoMI) Oelav te+6+ ta~- lfI+1lfI-1+ Ri.Time (20% to 80%1 '6+ Fell Time (20% to 80%1 '6- '1+ '1_ 6 6 1 1 6 1 6 1 D.-y i, 1.6 "' wtwn input, •• driven d;tferenttlilly D...., i, 1.8 ,.. when inpuh •• driven lint" ended - - - 10 - - j 1.8' + 1.5 ~ 2.5 j - ~ ~ -5.2 IVCCI Mo. ~.880 -'.400 VEE TEST VOL TIIOE .... LIEO TO PINS BELOW, .,aoc "25Q C -',- V. F,om n. - - - j - - 8 6 6 j 1 6 1 6 1.8.'4 VEE ,2 '2 8.'2 '2.'3 t2 0"'" 4.1 4.& 4.& 4.5 ,2 12 8 4.11 4.11 4.& 4.11 4.1 4.11 4.11 4.1 4.11 -3.2 Vde ,2 +2.0 Vdc 4.6 '2 ,2 ,2 12 12 7 7 j j j ,- MC10616 (continued) I ..... SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C veel : VCC2 Vout +2.0 Vdc V out Coa .. Input Pulse Generator Input pulse t+ = t- = 1.5 ±. 0.2 ns (20 to 80%) -n I I I I I One input from each gate must be tied to Ves during testing. I L_- JO.' ~F I -:, ~F Unused outputs connected to a 100-ohm resistor to ground. V:E '" -3.2 Vdc PROPAGATION DELAY 50-ohm termination to ground lo- cated in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coax ial cable. Wire length should be 1/4 inch from TPln to input < pin and TP out to output pin. V out Is 2:1 attenuated. 3-365 MECL 10,000 series HIGH SPEED DUAL TYPE D MASTER-SLAVE FLIP-FLOP MC10631 The MC 10631 is a dual master-slave type D flip-flop. Asynchronous inputs Set (S) and Aeset (A) override the Clock (CC) and Clock Enable (eE) inputs. Each flip-flop may be clocked separately by hold ing the common clock in the low state and using the enable inputs for the clack.ing function. If the common clock is to be u~ to clock the flip-flop, the Clock Enable inputs must be in the low state. I n this case, the enai>le inputs perform the function of controlling the common clock. The output states of the flip-flop change on the positive transition of the clock. A chailge in the information present at the data (0) input will not affect the output information at any other time due to master slave construction .. Input pulldown resistors eliminate the nl!ed to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxatjon of system design and layout criteria. R.s TRUTH TABLE A L L L On+1 an H H H L L H H N.D. S N.D. '" Not Defined CLOCKEO TRUTH TABLE H 0

- - - - - - - - - - j Writ. C > - - - - - - - - - - j and Data I nput Buffer 3-370 INPUT OUTPUT Din °out CE WE Write "0" L L L Write "1" L L H L Read L H 'I> Q Disabled H 'I> 'I> L ~ = Don't Care. L 3: n 3: o ELECTRICAL CHARACTERISTics ... ... Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The cir· cuit is in a test socket or mounted on a printed circui.t board and transverse air flow greater than 500 linear 'pm is maintained. ~CE2 3 .;.. CE1 AO o -.. ~A1 3: n A2 Outputs are tenn inated through. So-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner. ~A3 10 A4 D out 115 ...s: ... o A5 13 Din WE it TEST VOL TAGE VALUES 12 n-O (Volts) @Test VILmin VIHAmin VILAmax VEE _30 oe -0.890 -1.890 -1.500 -5.2 +2S"c -0.810 -1.850 -1.105 -1.475 -5.2 +SSoC -0.700 -1.825 -1.035 -1.440 -5.2 Tamperature VIHmax -1.205 ::J ~, ::J ~ Q. MCM10140, MCM10142, MCM10148 Test Limi" Pin.J W W ..... r r Und.r Test Characteristtc Power Supply Drain Current 'E linH 8 6 4 linL 6 Logic "1" Output Voltage VOH Logic "0" Output Voltage VOL Inpu. Cunen' Logic "'" Threshold Voltage Logic "0" Threshold Voltage SWitching Times Access Times Chip Enable 1 -30G C Min ,- 1 - ..1 Min - - 1 I ..1 Typ Max 80 100 mAdc 265 50 ",Adc Min I VOLTAGE APPLIEO TO PINS LISTED BELOW, +8S0C +2SOC Ma. Max Unit • VIHm•• ! VILmin !VIHAmin!V,LAmu ! VEE 6 - - 15 -1.060 . -0.890 -0.960 -0.810 -0.890 -0.700 Vdc 14 I 15 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Vdc 14 VOHA 15 -1.090 - -1.980 .1 VOLA 15 - -1.655 0.5 -0.910 -1.630 Vdc -1.595 6 - I .1 3,14 3,14 Vdc Pul. In Pulse Out 4 15 4 '5 2 15 15 15 15 tCE-D+ tCe+D- 15 15 12 12 Address Inputs tA+D+ tA+DtA_D+ tA-D- 15 15 15 15 10",15"" 10",15"" 10" ,15"" 10" ,15"" Write Pulse Width 'WWE 12 10 13 Chip Enable Pulse Width 'WICEI 13 13 Write Strobe Mode Times Setup Data Chip Enable Address Hold Data Chip Enable Address "MCM10142 ""MCM10140, MCM10148 - 0 12 12 tsetup(OtW-) 12 tsetup(CE-W-) 12 4 12 tsetup(AtW-) 12 4 12 thold(W+D±1 15 12 15 tholdIW+CE+) 4 tholdIW+A:t) o 12 12 IIVCCI Gnd 8 16 t ..1 8 1,16 8 8 8 1,16 -3,2 V 8 16 1,16 1,16 +2,0 V 1,16 MCM10140/MCM10148 (continued) CHIP ENABLE ACCESS TIME Dout ADDRESS ACCESS TIME Address D out WRITE STROBE MODE Address th01d(W+O±1 14---. . thold(W+CE+) thold(W+A±)~ °aut 3-372 SWITCHING TIME TEST CIRCUIT., 25°C r" : VCCI = VCC2= +2.0Vdc ,- d! Coax 25 "F -- - r... -- I I I I I I I 41 2 3 6 7 Pu I. Generator Input Pulse t+ = t- ., 2.0 ± 0.2 120% to 80%) "I I I I 9 10 I 13 I I I I L 51 CEI AO AI A2 CE2 A3 A4 I D out I 15 I A5 I Din WE I 112 I I I -Q~ I 01"F - 3 :Vdc 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope ar. equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input pin and TP out to output pin. < 3-373 Coe", 01 "F I Input V out MECL 10,000 series 8 x 2 MULTIPORT REGISTER FILE (RAM) MCM10143 8 x 2 MULTlPORT REGISTER FILE (RAM) The MC10143 isan 8 word by 2 bit multi port register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit. L SUFFIX CERAMIC PACKAGE CASE 623 WRITE The word to be written is selected by addresses AO-A2. Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is Iowa positive transition of the bit enable will write that bit into the address selected by AO-A2. PIN ASSIGNMENT READ When the clock is high any two words may be read out simulta· neously, as selected by addresses BO-B2 and Co-C2, including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates (Bo-B,), (CO-C,). 3 4 21 5 20 6 19 18 tpd: Clock to Data out = 5 ns (typ) (Read Selected) Address to Data out = 10 ns (typ) (Clock High) Read Enable to Data out = 2.8 ns (typ) (Clock high, Addresses present) Po = 610 mW/pkg (typ no load) 8 17 9 16 10 15 11 1. 12 13 Vcco" Pin 1 Vee1 = Pin 23 Vee - Pin 24 VEE See General Information taetion for packaging. 3-374 = Pin 12 MCM 10143 (conti nued) BLOCK DIAGRAM 4 REB BO B1 B2 OB1 6 5 aBo WEo DO Clock 9 10 19 AO A1 A2 14 15 13 WE1 01 8 11 Co C1 C2 17 16 18 OC1 OCo REC 20 3-375 MCM1 0143 (continued) ELECTRICAL CHARACTERISTICS 80 REB B, Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The cir- OB, B2 WEo '0 cuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5O-ohm resistor to -2.0 volts. Test procedures are Address DO 080 3 AO '5 Line, Data Output A, 13 A2 OC, 22 Lines shown only for selected inputs and outTEST VOLTAGE VALUES puts. Other inputs and outputs are tested in a similar manner. Test Temperllur. @I Symbol I, T.., -lOoe M~ .... Ty. ". ,.'..,. ,." M. . Min M.. -1.890 -1.205 -1.500 -5.2 -0810 -1.850 -1105 -1.475 -5.2 +85o C ...(l700 Unit '47 mAdc 200 /lAde: -1.060 J 21 22 LogiC .. ,,, Threst10ld Voltage 22 Selup Address 'setup(B-Clock-1 Hold Address 'l'1old(Clock-B+1 WriteTirne@ Setup Wnte Enable Iselup(WE-Clock~) 'setup(WE+C10Ck-1 Address 'setup(A-Clock+) Da~a tsetupID-Clock+) Hold Wrote Enable tl'1old(Clock+A+) Data tholdtClock+O+1 Write Pul. Width ""'WE RIM Tune -0.890 • -0.910 -0.980 t • -1.655 t -1.630 '0 10 i. ,. ,.,. ,.,. 5.0 10 (:= 12 1,23,= 12 1.21; + Vd, 4,20G) 12 ,,no t Vd, • t • -, 595 Vd, t• t t •+ 4 llG) 10 10 + 4 20 "llG) 10 " 20 + 4. 20 20 Fiture Put. In Pul.Out 5 5 4 19 19 19 -2.0 -20 -3.0 ,. ,. ~2.6 '9 '0 20 ---, r- L-....J ,. -0810 V -1.85 V 3-376 ,. '9 19 19 • + + '9 2 •.: 12 '.23.: '2 '.m t + ..,1 -3.2 V '2 14 10 120% 10 80"'{') • Lim" appl'es for all 'nputs, indiVidually apply VI Lmm 10 pin under les! In. 1.»; 20 20 30 2.0 2.0 fill T"", AC liming f'9Ure$ do nOt show all tl'1e necessary pre· seiling cond,tlons 1.:n:': 12 19 (20% to 80%1 Datil has to be clocked 12 CD 10,11 -4.5 5.0 2 CD • + -1.615 Vd, 5.5 ,. @ -0.700 • ++ •+ + + + thotd(Clock+~+1 IholdICtock+M-1 Address 4.5,6,7,8, 9,13,14, 15,16,17, 18.19,20 /-lAde -0.Bl0 -1815 21 Read Enable Data 0.5 -0960 -1.650 VOLA tB-OS_ tS+08+ t/rE_Q8+ tClock+QB_ '"'V""I-H-_-.""""'Vo-"'L-m-'n""""'Vo-",H-""'-'n"V'""'L...... --.-.-V"".-.--f 20 10 -1850 22 SWltch.ng Tun., @ AccessT'me Address Input -1675 -1080 VOHA 21 Log'c "0" Tl'1reshold Voltage -0890 + + + -1890 VOL -5.2 ,...,,. ,." 245 245 245 lin L 21 22 -1.825 -1035 -1.440 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: 13 '4 15 20 10 Log'c "0" Output Voltage VEE' -0890 +25o c 13 14 '5 VOH !Vohsl VILmin VIHArmn VILA",.. _lOGe +85oe +25°e M" 12 Input Current LogiC .. ,., Outpul Vollage VIHmu MCM10143L Test Limits Pin Undo< Power Supply Dram Currenl f-----.-, . '.23.1 MCM10143(continued) SWITCHING TIME TEST CIRCUIT. 25°C Vcc ~ VCCO = VCCI = +2.0 Vdc ±O.I~F Coax Coax ,----- -----, I I , : { BO O-----;Ic--i 0---'---1 0----'-1--1 1 • 0-----;1,----1 « o--~Ic--i REB Bl B2 DB 1 WEO 00 '®-~ H~====~:===~ :: Pulse Generator Input Pulse t+ "" t- : 2.0 ± 0.2 ". (20% to BO%) WE 1 n. 1------;---<> OCI 1----;---<> 0--- 0---71I -...,0 1 {o----+: --I 1 ~~ _ c~~c: 1-----;---<> C 2 REC PRR "" 1 MHz PW ;:;:'20 OBO 0-----+,_---'I I 50-ohm termination to ground lo- cated in each scope channel input. All input and output cables to the Unused output. connected to a 50-ohm resistor scope ar. aqual lengths of 50-ohm coaxial cable_ Wire length should be 1/4 inch from TPin to input pin and TP out to output pin. to ground. < 3·377 MCM10143(continued) READ TIMING DIAGRAMS FIGURE 1 Enable RE a t~'''.Q'- ·,,~·t ~ FIGURE 2 FIGURE 3 Setup .nd Hold t/~-----------d~' _________1 B _ _ FIGURE 4 ,_. _ _ _ _ _ _ _ ~ Clock . ~-'-ho-l-d---r----------- '.,up WRITE TIMING DIAGRAMS Enable WE Clock Diloble WE Clock PuiloWidth r~·"'=r·M·1 F~·'l F'""4== WE FIGURE 6 FIGURE 7 '»'hOld Clock Ad.... FIGURE 5 FIGURES A Clock _____________________'1 3-378 MECL 10,000 series 256 BIT RANDOM ACCESS MEMORY MCM10144 256 X 1 BIT RANDOM ACCESS MEMOR Y The MCM10144 is a fully decoded 256-bit Random Access Read/Write Memory organized as 256 one bit words. Stored data is .Iected by means of an eight bit address, consisting of inputs AO through A7. The MCM10144 has three active· low chip enable inputs for increased logic flexibility permitting memory expansion up to 2048 words without additional decoding. For larger memories, the upper inputs for address words are selected by using one of the enabling 1024 word segments. The MCM10144 operating mode (all ~ inputs low) is controlled by the W£ input. With W£ low, the chip is in the WRITE mode, the output, Dout, is tow and the data state present at the data input (pin 13) is stored at the selected address. With the ~ high the chip is in the READ mode and the data state at the selected memory location will be presented, noninverted at the data output (pin 15). Open emitter outputs permit full wire-ORing to data buses, with 1-· .Q low when the chip is disabled. The device is fully compatible with the MECL 10,000 logic family. It is designed for use in high speed scratch pad, control, cache, and buffer storage applications. CERAMIC PACKAGE CASE 620 cr MCM10144AL CERAMIC PACKAGE CASE 690 BLOCK DIAGRAM PIN ASSIGNMENT A2 A3 A4 VCC 16 Al Dout 15 3 A2 WE 14 4 A3 Din 13 5 CEI A7 6 CE2 -;: AO A1 AO 2 2 3 4 9 : i ';. III", "':::, ~ " 0 n -DO 14 WE 8 12 11 CE3 A5 10 VEE A4 9 «III . 8= "~';; "'N «l:! is "'- 0 13 Din ~ TRUTH TABLE INPUT MODE A5 A6 A7 Dout WE Din Writ. "0" L L L L Write "1" L L H L R..d L H H t/J t/J t/J Q Disabled tP - 3-379 OUTPUT CE Don't Car•. L ElECTR ICAl CHARACTER ISTICS 3i: Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal eQui- (") ...c3i: librium has been established. The circuit is in a test Socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 5O~hm resistor to -2.0 volts. Test procedures are shown for selected inputs; other inputs are tested in the same manner. ... t A, A, AJ A4 ~T 11 A6 12 A7 13 Din Dout nO I,. .... ::J :;' c: CI> ~ TEST VOLTAGE VALUES We IVott., l'T ... remp ••tur. 1'4 VIHINJI: VILmin VIHAmin _lOGe -0.890 -1.890 -1205 +2SoC -0.810 -1.850 -1.105 +8SoC -0.700 -1.825 -1.035 I VILAmiX 1 VEE -1.500 -1.475 1 -1.440 I ·1 I -5.2 -5.2 -5.2 MCM10144 Test Limits Pin Under Charecteristic W W 00 I Power SupplV Drain Current I,npu, Cunen' Symbol T... +25o _lODe Min M.. Ie 'in H 0 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +8SoC M•• M.. 80 100 mAde 265 50 50 50 IJAde Min VOH 15 -1.060 -0.890 -1.675 VOL 15 -1.890 VOHA 15 -1.0BO Logic "0" Threshold Voltage VqLA 15 tCE_D out + 15 Unit I 05 Logic "1" Threshold Voltage Logic "0" Output Voltage c TV. 5 1 12 14 IlnL Logic "1" Output Voltage Min Write Strobe Mode Times Setup Data Chip Enable Address Hold Data Chip Enable Address tsetuplO±W- thold(W+D±) thold(W+~+1 tholdlW+A±1 Recovery Aher Writ" Time tW+Dout + tW-Do ... t- Wri~ tw(WE) Ptli. Width 15 tsetup(A!VJ:) Vdc -1.850 -1.650 -1.825 -1.615 Vdc " Vdc 13,14 Vdc· 13·,14 -0.910 -1.655 -1.630 10 10 30 30 -1.595 ns I I 16 1,2,3,4,5,6, 7,9,10,11,1"2 16 1,2,3.4.5,6,7, 9.10,l1,1:l,13 1,2,3,4,5,6, 7,9,10,11,12 1,2,3,4,5,6, 7,9,10,",12 5,6,7 Pulse In Pul .. Out 6,7 5 15 2.0 2.0 0 13,14 7,14 1,14 14 14 14 16 16 5,6,7 13,14 5,14 1,14 30 Vee Gnd 16 2.0 2.0 10 17 17 12 13,14 -0.700 -0.980 VEE 16 -~.890 18 18 tsetup(~-W-) VILA ... x 16 -0.810 tA±Dout + tA±Dout - VIHAmin 5 1 12 14 -0.960 t~+Dout- Address Inputs VILMin IJAde Switching Times Access Times Chip Enable V1H""x 16 MCM10144 (continued) SWITCHING TIME TEST CIRCUIT. 250 C Vee"" +2.0 Vdc V out ,,~rtt"~ Coax ,- - - ---.----, I I I Input Pulse Generator Input pulse t+ = t - '" 2.0 ±. 0.2 ns (20 to 80%) I I 1 I I 3 sl 51 I 7 I I CEI CE2 CE3 AO 2 Al I A2 4 I A3 I 9 I I 10 I I 11 12 I A4 A5 15 Dout AS A7 I I I I I I I J I I 13 Din I IL _ _ _ _ WE 114 I I I -fl ~,~, 1-3~vdc 50-ohm tarmin,tion to ground located in e.ch scope channel input. .r. All input end output cables to the ICOpe equel lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TPin to input < pin end TP out to output pin. 3-381 eoa. ..- MCM 10144 (continued) CHIP ENABLE ACCESS TIME Dout ADDRESS ACCESS TIME Addrell Dout WRITE STROBE MOOE Addr.... 'hold(W+O±l1 \4---.....+'hold(W+CE+) 'hOld(W+A±)-..l Oaut 3-382 MECL 10,000 series 64-BIT REGISTER FILE (RAMI MCM10145 64-BIT REGISTER FILE (RAMI The MC10145 is a 64-Bit RAM organized as a 16x4 array. This organization and the high speed make the MC10145 particularly useful in register file or small scratch pad applications. Fully decoded inputs, together with a chip enable, provide expansion of memory capacity. The Write Enable input, when low, allows data to be entered; when high, disables the data inputs. The Chip Enable input when low, allows full functional operation of the device; when high, all outputs go to a low logic state. The Chip Enable, together with open emitter outputs allow full wire-OR ing and data bussing capability. On-chip input pulldown resistors allow unused inputs to remain open. L SUFFIX CERAMIC PACKAGE CASE 620 BLOCK DIAGRAM PIN ASSIGNMENT Chip Enable AO_{ Lines AO CE 00 16 AI A2 01 A3 "_,",o.{ Lines DO Dl 2 15 Data 3 14 Output Lines 4 13 02 D2 5 12 6 11 10 D3 _ 0 3 WE 9 8 Write Enable TRUTH TABLE VCC = Gnd MODE VEE - -5.2 Vdc Po"" 625 mW tvp!pkg (No Load) tAeces. = 10 ns tvp (Addre. Inputs) 3-383 OUTPUT a WE D Writ. "0" L L L L Writ. "1" L L H L R.ed L H Disabled H 4J See General Information section for packaging. INPUT CE Don't Care. o L MCM10145 (continued) ElECTRICAL CHARACTERISTICS Chip Enable - - - - - , Each MECL 10,000 series circuit has been 10 designed to meet the de specifications shown 9 in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed cirCUit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to Addre .. { Lines 5 08t8ln ut'{ p Lines 4 11 12 QO A1 A2 6 -2.0 volts. AO 3 Ce Q1 Data A3 Output DO Q2 01 Lines 15 02 03 _ Q 3 14 WE 13 Write Enable - - - -..... nST VOLTAGE VALUES (Yohs) "Tao T.n""'I1'" ~n a..-.... ..m... Power Supptv O,.,n Current InputCurrllOt '. I,n H ...T_ • ---"'C MCM10146l T . . Llml.. +25o C Tv. 'SO '0 " '3 -1.060 OutputVoltaga -0.890 I VOL , '5 LogIe "',. Thrll'Shold Voltage VOHA ,. , ,. 2 '5 Logie "0" VOLA -U90 ~1.675 I I WrIte Strobe Mode T,,"" Setup Do,. ChIP Eneble Add,.., t~tuplO'WI tMtupIC""!·W lyluPIA.W -, 890 -1850 -1.105 ...·c -0.700 -1.825 -1.035 .... ~Adc 4 7 • '0 .Ad, Vdo I I I I I -0_ ~ I -1.825 I I -1,615 ~1.630 I IIde Vd, -0.910 ~1.655 "'3 12 I I I I -1.595 I Vd, ,~, " I a> I I 5 12 " <2l 5 " +1.11.11 r--- 7.0 7.0 PUI.ln PUI.Out 6,1,9.10 1,2,14,15 ()) ! 10,0 l l ! 2 1,2,14.15 0 3.5 3.5 5,13 3.13 8,1,9,10,13 1,2.14,15 3.0 3.0 3.' 7.5 7.5 7_5 5,13 3,13 6,1.9,10,13 2 1,2.14,15 7.5 11.0 3.0 3.5 3.13 3,6,1.9,10 1,2,14.15 3.0 3.0 3.0 7.5 3_5 3.13 3.6.1.9.10 2 1,2,14,15 Hold 0 ... ....,"' ChIP EnMJI. Reeo_y Ah., Wnt. Time Wnte Pulse Width Chip Enable Strobe Mode Timll'l; setup 0010 Write Enlble -- o.t' Wrote Enabl' Hold tholdlW·OI 'hold IW.e-E1 tholdlW'·AI tW+Q+ tW+Q_ PWw .1.tupIO-CE1 t.tup(W..c"l1 'lHupIA-C"!") Chip Enable Pulse Wldlh RIM TIme 120%10110%1 FilII Til"" t20%fO 10%1 2 2 1,2.14,15 2 1 1.2,14.15 'hold let.OI lholdle1:;·WI 2 2 1,2.14.15 PWce 2 ....no lhotdler·AI -52 -5.2 -52 -1440 -.. 5 6 ~1.650 V •• -1.500 3 220 200 200 200 200 220 220 .70 I ~1.850 VILA"". TEST VOLTAGE APftLIEO TO PINS USTED BELOW 220 -0.700 -1.080 1,2,14.15 -<1.8'0 -0.810 -0.890 SlJritchi",n. . . ~ Atasl Times Addr. . ,nP\lIl -lOoe +25o C YIHAnlln -1.205 -0.810 2 ICE...Q+ tCE+QlA+Q+ lA...Q+ lA+Q+ lA-Q_ VILmin -0..... '5 Ch,pEnlble ... 0_5 lin l VOH logic "0" Output Vollage Mn 200 12 LogIC "," .... VIHmK ! , , , '3 '3 '3 3.0 ()) 3.0 ()) ·Llmlt IIPPhM for.1I inputs, ind''lldUlilly apply V'L mIn to pm un_ IHI. ·-For definItIon of tlml,.. per,met.rs, _ F,g .....,· a. TEST VOLTAGE VALUES tVoltol @II Test Temperature -lOoe w ~ I'J Characteristic Power S~pply Drain Current I nput Current -1.890 -1.205 -1.!!QO .5.2 +25"<: ~.810 -1.850 -1.475 +85oC -0.700 -1.825 -1.105 -1.035 -5.2 -5.2 MCM10150AL Test Limits IE ImH 2 - - - - linL - - - - - - ~Adc -1.060 -0.890 0.5 -0.960 -0.810 ~.890 ~.7oo Vdc -1.675 -1.850 - -1.650 -1.825 0.910 -1.615 Vdc -1.655 - -1.595 Min Min TVp 110 Logic" 1" Output Voltage VOH" 2 15 Logic "0" Output Voltage VOL 15 Logic" 1" Threshold Voltage VOHA' 15 -1.890 -0.080 Logic "0" Threshold Voltage VOLA 15 - +8SoC +2SoC Ma. -0.980 - - -1.630 Ma. Unit V,Hmax V,Lmin V,HAmin V,LAmax Min - - ~Adc 2 - - - . - - - mAdc 13 2 Address Inputs" tC'E-D ou.t + tCE.+D out tA+D out + tA-O out + Rise Time /20% to 80%) t15+ Fall Time (20% to 80%1 t15- 15 - j - - - - 7.0 7.0 20 20 4.0 - - - - 4.0 - - ·VOH measurement pattern dependent . •• AC tests shown for only one address line and one output /times are pattern dependent). - - - Vdc Vdc - - Switching Times (SO n Load) Access Time Chip Enable -1.440 TEST VOLTAGE APPLIED TO PINS LISTED BELOW, Max 150 265 -3d'e VEE ~.890 Pin Under Te.. 8 Symbol V,Hm.x V,Lmin VIHAmin VI LAm. . - - - ns j - - - - - - - 13 Pula In Pula Out 13 13 7 7 7 7 15 VEE Vee Gnd 8 1,16 8 1,16 8 1,16 8 1,16 8 1,16 8 1,16 8 1,16 -32 V +2.0 V 8 1,16 j j I MCMl 0150 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 2SoC Veel "" v CC2 .. +2.0 Vdc Coax 0.1 IlF AD AI A2 A3 A4 A5 A6 Pulse Generator V out Co •• °outO °out1 °out2 ' T P out A7 CE °out3 Input Pulse t+ = t-'" 2.0 ± 0.2 ns (20 to 80%) 50-ohm termination to ground 10 cated in each scope channel input. 0.1 IlF VEE· -3.2 Vdc Unused output• • r. tied to a 50ohm r.,iltor to ground. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. ADDRESS PROPAGATION DELAY CHIP ENABLE PROPAGATION DELAY NOTE: Addr • • mult be.t up _ to produce a high state on the output being examined. 3-393 MCM 10150 (continued) MASTER PART NUMBER ---- MOT'CHIOLA 'NO. 101_11111,1.1111,111'111111,2 ~ 'V Sentlconduc 1.0 Megohm must •• The 1200 -ohm resistor and the scope termination impedance constitute a 25: 1 attenuator probe. Coax shall be CT 070-50 or equivalent . ••• Bvpass only that supply opposite ground. '. Duty Cycle (VOC) '" _. 'b 4-4 MC1648 (continued) OPERATING CHARACTERISTICS Figure 1 illustrates the circuit schematic forthe MC1648. The oscillator incorporates positive feedback by coupling the base of transistor 07 to the collector of 08. An auto· matic gain control (AGC) is incorporated to limit the cur· rent through the emitter·coupled pair of transistors (07 and 08) and allow optimum frequency response of the oscillator. In order to maintain the high 0 of the oscillator, and pro· vide high spectral purity at the output, a cascode transistor (04) is used to translate from the emitter follower (05) to the output differential pair 02 and 03. 02 and 03, in conjunction with output transistor 01, provide a highly buffered output which produces a square wave. Transistors 010 thru 014 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3). FIGURE 4 - THE MC1648 OPERATING IN THE VOLTAGE CONTROLLED MODE When operating the oscillator in the voltage controlled mode (Figure 4). it should be noted that the cathode of the varactor diode (0) should be biased at least 2 VSE above VEE ('" 1.4 V for positive supply operation). When the MC1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5. FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM I .,::; 100 z· Q ~ I- :5 > w 0 vcc a: 10 V 5.0 Vdc Oscillator Tank Components {Circuit of Figure 4J >- f MHz 0 L jlH 1.0·10 MV2115 100 10-60 MV2115 2.3 60·100 MV2106 0.15 u z W ::J 0 W a: u. 52 48 w 44 d w 40 .. 32 :J ...a: I:J I:J 0 ; _0 4 turns of No. 22 copper wire. Vin 56 U z L, Micro Metal Toroidal Core #T44-1D, 60 ./ /' 36 "" "'~'~' ~ 1 k L: -= , I II..... 24 20 /' 16 12 8.0 M~1401 /' 1.0 2.0 I f out I (31 L_______ J (121 (51 Veel '-' VCC2 = +5 Vdc 51'FJ 3.0 4.0 5.0 7.0 6.0 8.0 9.0 O. 1 1'F X VEE 1 ," VEE2 '" Gnd 1-0 I I'FI L 28 [J (10) -The 1200 ohm resistor and the scope termination impedance constitute a 25: 1 attenuatar probe. Coax shall be CT -070-50 or equivalent. 10 Vin. INPUT VOLTAGE (VOLTS) FIGURE 7 18 N L' Micro Metal Toroidal Core 6T44 10, 4 turns of No. 22 copper wire. 17 I ~ > Von 16 C '" 500 pF U 15 :J 14 zw 0 w ...a: . I:J I- ._- -- - 13 12 / 11 :J 0 ; _0 V 10 / 9.0 / ~ f.-r---- t-- 0 1.0 ,r,~ 1 k (: : I'FI ~ I L C: 1200' I f out I (~ =, 1 L_______ J / ,,~ MV1401 51'FJ 2.0 0.1 U... 1/ 8.0 J (10) -- ----- ---- - - - 3.0 4.0 5.0 6.0 7.0 8.0 9.0 (121 (51 Veel '" VCC2 '" +5 Vdc VEEl = VEE2::::' Gnd XO"1'F -The 1200 ohm resistor and the scope termina- 10 tion impedance constitute a 25; 1 attenuatar probe. Coax shall be CT-070-50 or equivalent. Vin. INPUT VOLTAGE (VOLTS) FIGURE 8 190 i ~ > u Z w :J 0 w ...a: .. I:J I:J 5 turns of No. 20 copper wire. 170 /' 160 ./ 150 140 130 120 / ; 70 60 ......0 51k - - :! 1.0 2.0 3.0 ./ "m 0 ""' ,r--------, I L I I 1200' I f out , (3) I I I IL _ _ _ _ _ _ 1121 L' 4.0 (10) f:.) ./ 50 I= VCC1=-VCC2-+ 5Vdc "ceo ~ /. 90 _0 V £ I'FX > 100 80 V tn 51'F 1/ 110 0 £U L, Micro Metal Torodial Core #T30·22. 180 I _J (51 ::r:: 0.1 I'F 5.0 6.0 7.0 8_0 9.0 Vin. INPUT VOLTAGE (VOLTS) 4-6 10 ·The 1200 ohm resistor and the scope termination impedance constitute a 25: 1 attenuator probe. Coax shall be CT -070·50 or equivalent. MC1648 (continued) Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7 and 8. Figures 6 and 8 show transfer characteristics employing onl~ the capacitance of the varactor diode (pluse the input capdcitance of the oscillator, 6 pF typical). Figure 7 illus· trates the oscillator operating in a voltage controlled mode with the output frequency range Ii mited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 kn resistor in Figures 6 and 7 is used to pro· tect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger·valued resistor (51 kn) in Figure 8 is required to provide isolation for the high· impedance junctions of the two varactor diodes. Good R F and low-frequency bypassing is necessary on the power supply pins (see Figure 2). Capacitors (Cl and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points. For output frequency operation between 1 MHz and 50 MHz a 0.1 /IF capacitor is sufficient for Cl and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance. The peak-to·peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the IViC1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10. At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to· peak voltage in order to maintain a square wave at the output of the MC1648. This is accomplished by tying a series resistor (1 kn minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle. The tuning range of the oscillator in the voltage con· trolled mode may be calculated as: f max yco (max) + Cs fmin yCo (min) + Cs 1 --:--r=:======= where fmin = 2tr y L (CO (max) + CS) Cs = shunt capacitance (input plus external capacitance) . CD = varactor capacitance as a function of bias voltage. APPLICATIONS INFORMATION erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode). The phase locked loop shown in Figure 9 illustrates the use of the MC 1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and landmobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are com· patible. The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; fout = Nfref. The channel spacing is equal to frequency (fref). For additional information on applications and designs for phase locked·loops and digital frequency synthesizers, Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lock· up. Additional features include de digital switching (pref- see Motorola Application Notes AN-532A, AN-535, AN-553, AN-564, AN-594, or Phase-Locked Loop Systems Data Book. 4·7 MC1648 (continued) FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION VoltageControlled Oscillator MC1648 f - -....~_fout fout = Nfref where N = Np • P +A N = Np. P + A Figure 10 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE. Figure 11 shows the MC 1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k·ohm minimum). Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L 1 and Cl at resonance. The optimum value for R at 100 MHz is approximately 850 ohms. FIGURE 10-METHODOF OBTAINING ASINE·WAVE OUTPUT FIGURE 11 - METHOD OF EXTENDING THE USEFUL RANGE OF THE MC1648 (SQUARE WAVE OUTPUT) +5.0Vdc +5.0 Vdc 1--+---0 Output 1 k min 8 I 4-8 MC1648 (continued) FIGURE 12 - CIRCUIT SCHEMATIC USED FOR COLLECTOR OUTPUT OPERATION +9.0 V ~.01 jJF R VCC2 (14) +5.0 Output v ~----~--_1----_+--_1Ql0 t-----+-----+---~ all Q12 02 (10) (7) Bias Pt. '.2 k L2 +--__::#~::::C=o2_' VEEl ('2) (8) V EE 2 (5) ILl. I , 0 'T'''_ 'T' . AGC~ ~ "f .. +5.0 V ~ ci Tank FIGURE 13 - POWER OUTPUT varsus COLLECTOR LOAD FIGURE 14 - POWER OUTPUT varsus COLLECTOR LOAD $eetestcircuit, Figure 12,f= 100MHz S.etestcircuit, Figur.12,f:::: 10MHz C3 = 3.0 - 35 pF C3 = 470 pF Collector Tank Collector Tank Ll=0.22jJH Cl=1.0-7.0pF R=50n-l0kn Rpof Ll andCl:::: 11 k{l@100MHzResonance L1 = 2.7 jJH C' = 24 - 200 pF R = 50 n - 10kn Rp of L 1 and Cl Oscillator Tank L2 = 4 turns #20 AWG 3/16" 10 C2 = 1.0 - 7.0 pF = 6.8 kn@ 10 MHz Resonance Oscillator Tank L2 = 2.7 jJH C2 = 16 - 150 pF 14 _ 6 ~ -4 I / I:;) ~ 3 o a: 2 w \ !II ~ a: 5 :;) '\ _'2 !II ~ a:,O \ ~ S .. / 8 V l- \ :;) I- ~ ioo'" 6 ~ :;) \ 0 a: 4 w . ~ .. ~ 01 0 2 0 100 1000 TOTAL COLLECTOR LOAD (ohms) '0,000 10 100 1000 TOTAL COLLECTOR LOAD (ohm,) 10,000 MC1650. MC1651 The MC1650 and the MC1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The MC1650 provides high impedance Darlington inputs, while the MC· 1651 is a lower impedance option, with higher input slew rate and higher speed capability. Complementary outputs permit maximum utility for applications in high speed test equipment, frequency meas· urement, sample and hold, peak voltage detection, transmitters, receivers, memory translation, sense amplifiers and more. The clock inputs (Ca and Cb) operate from MECL III or MECL 10,000 digital levels. When Ca is at a logic high level, ao will be at a logic high level provided that V 1 V2 (Vl is more positive than V2). is the logic com· plement of ao. When the clock input goes to a low logic level, the outputs are latched in their present state. Assessment of the performance differences between the MC1650 and the MC1651 may be based upon the relative behaviors shown in Figures 3 and 6. Positive Logic _O~ V1a(10) V2a(9) 56 3 : - 1+ 0 C. (8) 4· a C 2(6)_00 3 (7) 00 '----' 0_~14(2)_01 V1b(16) 1 2 3- : 1 +0 V2b(15)11 Cb(1) 13 a C 15(3)01 L.......-_...J v CC • +5.0 V - P;n 7,10 - (11). (14) VEE - -5.2 V D P;n 8 (12) Po = 330 mW tvp/pkg (No Load) • tpd "" 3.5 ns typ (MC1650) • Input Slew Rate = 350 V/",s (MC16501 • Differential Input Voltage: -5.0 V to +5.0 V (-30o e to +8SoC) • Common Mode Range: -3.0 V to +2.5 V (-30o e -2.5 V to +3.0 V (-30o C = 3.0 ns typ (MC1651) - 500 VII" (MC1651) TRUTH TABLE to +SSoCI (MC1651) to +8SoC) (MC1650) • Resolution: ~20 mV (_30o e to +8SoC) • Drive. 50 n > ao Gnd"" Pin 1,16 (4) (5) • lines Number at end of tarminal danotes pin number for L package (Case 6201, Number in parenthesis denotes pin number for F package (Case 650). t/J "" C V1, V2 00n+1 H V1>V2 H L H V1 3 a: (7) } - - - - - - - --0 ' - - - -_______- - -- -E MC16S1 Inputs ,---_------ A +--------8 t---+-------- C O-------r--+-+-~~-+~ V1 (10) 6 E-------~----~~--~----_+~--~----+---~ Rp }--------o 4 Clock --- E S. Gen.,.' Inform.tion Metion for p.::k . . ing Informetion. 4-10 - POSITIVE LOGIC ELECTRICAL CHARACTERISTICS 5 _ 0: 2:0 V1a6~ V~. This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (lERC-LlC214A2WCB or equivalent) or a transverse Ca 4 C 3 00 Q 3: .... (") O'l CJ'I o L SUFFIX V1b12~ V2bl1 0 Q 14Ql airflow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed (;b13 a C • CERAMIC PACKAGE CASE 620 3: .... (") 1501 circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general Pin Und .. T", 'CC 7,10 S VIHm. . VILmln VIHA.min VILAm. . _30°C +25 oC -0.875 -1.890 -0.810 +8So C -0.700 data. Symbol .... CJ'I (Valt,) Clock Aperture Time_Q}_ RiltTi .... 110%'0 _ I FellTi ... 110%'090%1 NOTES: Mel11iOU11161 L T... Limits _oe +25o C -:JIIOe Sell F iou'. 8. Sell No •• @ VlO( Vee a> VEE a> +2.00 +7.00 +1.110 +2.00 +1.190 +2.00 +7.00 +7.00 -3.20 -3.20 -3.20 See Figure 2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW Min Mo. Min Mo. Min Mo. Unit VR' VR2 VR3 Vx Vxx Vee a> VE~a> PI P2 '3 2.0 5.0 2.0 5.0 2.0 5.7 ns 5 - - 4 1,11,16 7,10 8 6 - - - - '2+ 13+ '2_ 2 2 2 3 3 3 2 2 2 3 3 3 2 2 3 3 6 6 2 3 2 .~ 3 '&-2'6-2'&-2t6-3+ '&-3+ '6-3+ t4+2+ t4+2t4+3+ t4+3t.tUD .~ - 5 5 ~ - 1.0 1.0 1.0 1.0 4.7 2.0 !- ! - 3.5 3.5 3.0 3.0 2.5 1.5 1.0 1.0 1.0 1.0 4.7 2.0 5.2 n. ~ ~ ~ ~ - - - - - 3.5 3.5 3.0 3.0 1.0 1.0 1.0 1.0 3.8 3.8 3.3 3.3 n. n. n. n. n. n. 5 - 5 - - - 5 5 - - 5 2.0 CD Mlximum Power Supply VoltllQII (bayond which device life may be iq)8ired: IVccl+ IVEEI"12Vdc. ® Unu.d clock input. may be tied to ground. (3) ~ +2.000 Vx +1.040 T... '6+~ Clock Enable Time VR3 t6+2+ t6+2+ t6+2+ '6+~ <2> VR2 Symbol t6+3- Clod< '0 Ou'PU' VRI ~ 5 6 6 5 5 5 5 5 5 5 - - - - 5 - 6 5 5 - - 6 6 - 5 - - - 1,11,16 7,10 8 - l ~ ~ - - - - 4 4 4 4 1,11,16 1,11,16 1,11,16 1,11,16 1,11,16 1,11,16 7,10 7,10 7,10 7,10 7,10 7,10 @) 8 8 8 8 8 8 6 5 5 6 6 6 6 6 6 6 I All T. .pero.u... I MC16&O I MC1861 6 6 6 6 - - 6 6 - '4 --~ 6 - - 4 - B - - ~ 4 4 - - - - VR2 I VR3 I +4.900 I ~.4OO I +4.400 I ~.9OO ELECTRICAL CHARACTERISTICS POSITIVE LOGIC "'."~ Thil MECL III circuit has bHn deligned to milt the de ip8cificationl Iho'M'1 in the tl.t table, after thermal equilibrium hal t:.en estabtished. Air flow greater than 500 linear fpm thould be maintained while the circuit il either in a test lOCket or is mounted on a printed circuit board. Telt procedures are shown for selected inputs and selected outputs. The other inputs and outputl are tested in 8 simitar manner. Jutputs are tested with 8 50-ohm resistor to -2.0 Vdc. See genera' information .ction for complete thermal data. V2. 9 Ca 8 . - 0 0 6 00 C Q 7 00 2 01 " "~ 'V2b Cb 15 - 0 0 1 C 0 Power SupPIv Or.,n Current Positive Neptive ~ ..... w ICC 'e Input Current lin MCl650 MC165! Input Le.k. Cur...nt MC1650 MC1651 Input Clock Current 'R 10 10 L09IC "1" Output Voigge LogiC "0" Output VOltaige L.g;c "I" n ... ho'd V.'~ a> Log;c "0" T",.. hold 6 6 VOH 6 6 6 6 7 7 7 7 6 6 6 6 7 7 7 7 VOL f VOHA 2 3 4 v.'-r a> ' 3 < 10 10 lin H lin L VOLA ~ • FSUFFIX 3: ... CERAMIC PACKAGE CASE 650 (") m ... -3D"c -0.875 -1.890 -1.180 -1.515 +0.020 -<1.020 v". +26 oC -0.810 -0.700 -1.850 -1.095 -1.025 -1.485 -1.440 +0.020 -0.020 See NotefD -+(1.020 -0.020 _·c MC161OF/1651F T... Limits (j) _"c -3O"c +25 o C U .... Tost M" Min Min 11,14 12 ~ (Vah.) Pin Sy_' (") TEST VOL TAGE VALUES OT ... Temperatur. C....ct• •ic ~ 01 3 ...3: -. ....,..,; .... - - - - .... .... YA< YA3 VAl g Ycc<3l YEE<3 ... ::l +5.0 +5.0 -5.2 -5.2 :;' +5.0 -5.2 t: Yc~ y.;110-7+ Clock to Output (l) Clock Enable Time G> Clock Aperture Time R_Time G> (10%'090%1 Fill Time (10%'090%1 NOTES: aired: (2) Unu.d clock @ See F igur. 8. Ma. Unit 5.7 VR3 TEST VOLTAGE APPLlEO TO PINS LISTEO BELOW +85°C M.. 110-7+ 110-7+ t7_ +25 oC Min VR2 _lODe +8SoC Pin Under T. . VRl 9 10 10 9 - 9 - 9 - 9 - 9 9 9 9 9 - - 10 - 9 -- - - - - 4.5.16 11,14 12 - 4,5,16 11,14 12 10 8 4,5,16 4,5,16 11.14 11,14 12 12 10 10 4,5,16 4,5,16 11,14 11,14 1.· 12 10 10 8 8 8 ! 11.14 ~ @) 12 ~ - 8 - 10 - 4.5.16 - - - P4 10 10 10 - 10 10 - P3 10 10 - 9 - - - 9 P2 10 9 9 10 10 - - r All Tempor ••ur•• I VR2 10 - - - - ~ 8 8 - I VR3 I -0.400 I Me1650 I +4.900 I MC1651 I +4.400 I -0.900 MC1650, MC1651 (continued) FIGURE 1 - SWITCHING TIME TEST CIRCUIT @ 25°C V In to Channel A '~"p-+----+---+-----+-11':~:f1 fr'~ ~J I ~~ I PI ~ ·V out to Channe' B Gnd - - , Q~-+--"'" I Q~-~-----' VEE· -3.2 Vdc 50-ohm termination to ground located in each scope channel input All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. ·Complement of output under te.t should always be loaded with 50-ohms to ground. 4-15 MC1650. MC1651(continued) FIGURE 2 - SWITCHING AND PROPAGATION WAVEFORMS @2s"C The pulse levels shown are used to check Be parameters over the full common-mode range. V - I nput to Output ~V'H 7 50%---VA _ _ _ _oJ .._ _ _ _ _ v, L a t+ Test pulses: t+. t_ f =" 1.5 ±O.2 n$ (10% to 90%) = 5.0 MHz 50% Duty Cycle VIH is applied to C during tests. TEST PULSE lEVELS Pulse 1 Pulse 2 Pulse 3 MCI650 MC1651 MCI650 MC1651 MCI650 MC1651 +2.100V +2.100 V +5.000 V +4.500 V -0.300 V -0.800 V VR +2.000 V +2.000 V +4.900 V +4.400 V -0.400 V -0.900 V VIL +1.900V +1.900 V +4.800 V +4.300 V -0.500 V -1.000V VIH Clock to Output PI V'H +2.100 V VA +2.000 V Vin VIL + 1.900 V +1.'10 V P4 C +0.310 V a P4, t+. C "" 1.5 ± 0.2 ns. 4-16 MC1650. MC1651 (continued) FIGURE 3 - PROPAGATION OELAY Itpdl versus INPUT PULSE AMPLlTUOE ANO CONSTANT OVERDRIVE Test Circuit ,-------1 t>-D Vin C V ,H = Gnd I L 1 '= 50 50 -2.0 a C 50 Vref I % Device I a II a - Vref ______ ~ Negative Pulse Diagram Positive Pulse Diagram Positive Overdrive .. ~ ,pr- " Vm j t V::f Pe V PA a v I o 50% Negative Ove,d,;v. t ~ Input switching time is constant at 1.5 ns (10% to 90%), Propagation Delay versus Pulse Amplituda 5 11TT T T T;]IIII - 4~ 1 OverdrIVe Constant@100mV w ~ ~ > I--- - - - I Positive Going Pulse - - - Negative Going Pulse MC1650" 3 III tll,~ )< 11:') f;(V ~ '"z '">= '"'" i MC1651,V 2 l- I f----t- tPC! referenced to PA, Ps '" 20 mV i'-.. ........ 1' o 0.01 0.02 0.05 0.10 0.20 0.50 1.0 PULSE AMPLITUDE PA. PB (VOL TSI 4-17 2.5 10 MC1650. MC1651 (continued) FIGURE 3 (continued) Propagation Delay versus Overdrive P~. p~ C;n~ta~tl~ 100 ~v 1\ 2 - - I I I Positive Overdrive (PAl - - - - Negative Overdrive (PSI 1\ \.\1 tpd is measured from Vrel on the input to 50% on the output. MC1650 -/ r~ 1 MC1S51 0 0.01 ~:\ \: ~ ~ tpd Isreterenced to 2.5 V overdrIve. II'f ~ 0.02 0.04 0.07 0.10 0.2 0.3 05 0.7 1.0 II I 2.5 OVERDRIVE (VOLTS) FIGURE 4 - LOGIC THRESHOLO TESTS (WAVEFORM SEQUENCE DIAGRAM) +0.020 V Vin -0.020 V I (I i \ I I V 1HA I I C "'" Q "0" i\ "1" I 5 "0" Sequential Test Number (See Test Table) 3 4-18 4 10 MC1650. MC1651 (continued) FIGURE 5 - TRANSFER CHARACTERISTICS (0 venusVini Test Configuration Dif,f:~:~tia' ~ Vin { I 4>--- - - -1 o-----4~-t__"..J1: V IH Q~-;'-I-'----O Q D I I % DeVice Q~: _____ ~ o-c----1---- ~ => ~ ~ => o -1j-------- [ - - - --f-;.------+--t- ,...+--..... ...--+-+-+ .........+t--...., logic "I" - -1-- - - - t - - t----- t---- f--1rI- -- ~ --- - - - - t - - t-- w '" ; -- ----1--+-----1 - --- - ~-t--- --- -t---t- ci ---t------j logic "0" -:2~O-~-175-~-1~O---5~-.r-~~-~lO~-~,~5-~20 Vrel V m, DIFFEAENTIAllNPUT VOLTAGE (m VOLTS) 4-19 MC1650. MC1651 (continued) FIGURE 6 - OUTPUT VOLTAGE SWING vorsus FREQUENCY (AI Test Circuit r-------, V, "" V,H v2 C * I t>-o I Q f 50 50 I Q C Q I I Y:. Device -2.0 Vdc I I L ______ ~ (BI Tvpical Output Logic Swing versus Frequencv 0.850 MC,651 ....... v; ~ ~ , 0.650 ~ l"'-~ r---..:' ~ 1\'" \ \ f'\..'"~ I\. l- ~ g 0.450 .: ~ ~ 0.250 \ " 50 ~ \ 1\ \ \ mV 20 30 70 50 ~ 75\ '00\ Input Voltage 0.050 10 \\ leak to 200 pear- 100 200 \~O 300 FREQUENCY (MHz) 0.850 -r-... MC,650 v; :; ~ 0.650 -....... ....... ....... ........ I- => ~ ...;;~ r-.... ......... "- t'--,. "- I- ~ 0.450 "'" ~ ~ 0.250 ~ '" "" " '" '" '"'" ('-----r=="",- \ 50 " ~ \ 75' 100' 100\ lboo Input Voltage mV Peak to Peak 0.050 10 ,\ \ f', 20 30 50 70 FREQUENCY (MHz) 4·20 100 200 300 MC1650. MC1651 (continued) FIGURE 7 - INPUT CURRENT versus INPUT VOLTAGE TEST CIRCUIT lr--rTo+50 50 J- i _ : 50 b Vee Vdc O.l/JFI r - Vee- -Vee ---,I r---~-~~,l--it>-- ° I 'I Q -2.0 Vdc c I lin e Q I VIH:~: I - f+ , 0 Q I e Q I L VEE Gnd Gnd 0'~1--9 r'lVEE , , I J = -5.2 Vdc Typical MCI650 (Complementary Input Grourdedl 1---+--+--= ~-:---=~-+- 151----j--l--+--+-~-_~30~07e-+--+-...+.-..~···~· .~k:.....".... :;;---,...- - 1 10r-~r--j-_+--+--+--~-'~~~'~"'~"~'~"'-+-~ ~ .... ...•.... +250C~ __ ~ +85 0e ~ 15r----jI--j--+--+--Hi-~ ___ -~~+-~+-~ +25'e I---t----t--f ---+----t-+:' .......• 3 a.... - )-- .. ' .... .' 5I----jl--l---I---- - - -30'e 4' ~ ~ ~ 10r----j1--j-_+--+--H~~~~~--~·~~-------+--~ ..- -- - """ j - . Y:;; 0 Typical MC1SSl (Complementary Input Grourdodl 30,--,-,--,--,-,--,-,-,--,-,--, ---f--+---II---+--t---j ~ 5r----jI--j--+--+-~-~-+_-+_-+~85~O~e~ 0b;t;_~~=+=+=+=~ -5 -5 .,.,...••... -1.5 -1 -1 +1 +2 +2.5 -1.5 -1 -1 Vin, INPUT VOLTAGE (VOLTS) Vin.INPUT VOLTAGE (VOLTS) 4-21 2 1.5 MC1650. MC1651 (continued) FIGURE 8 - CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS@250C Vee = Vin to Channel A +7.0 0:;1 VXX = +2.0 V out to Channel B hCo, I'F:Jri_~I'F r- Vee V;no---f---<~-+-"'l+ VR 0 U CO--------I---""ole 1 Gnd--' 1 _+-__ ..J 0 ..... 1 _ _-+1_--, Or 1 i DO 1 e 1 1 1 I 1 Q 1 50 1 1 L ___VEE _ _ ~ r---11 T -=- 0.' I'F 0 VEE = -3.2 Vdc 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Analog Signal Positive and Negative Slew case Vin Negative - - - ~----------VR --,,\ " Vin Positive ---~ + 100 mV = +2.100 V VA = 2.000 V '- - - - -CIOCkE~abl;-VR -100 mV "" +1.900V c ---+--.---,. VtH=+1.'10V X-------V'L ~V:-:--- = +0.3'0 V .. , .. -L Positi...,e ----+-----...r.... '--l--\j'----"O" 50% Q o Nega,;ve -----ic=---,-Pd-3-_F u! __ u': ', -% ..... 50 Clock enable time = minimum time between analog and clock signal such that output switches, and tpd (analog to 0) is not degraded by more than 200 ps. - - - - - - Clock aperture time = time difference between clock enable time and time that output does not switch and V is less than 150 mV. 4-22 'l~ BINARY COUNTER ________~____ M __E_C_L_I_II_M_C__16_0_0_~ __ri_es~ MC1654 The MC1654 is a four-bit counter capable of divideby-two, divide-by-four, divide-by-eight, or a divide-by-16 functions_ When used independently, the divide-by-16 section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the Clock pulse. Set and Reset inputs override the Clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits. TRUTH TABLE OUTPUTS INPUTS C2 00

R SO Sl S2 S3 Cl 1 a a a a a 0 a a a a a a a a a a a a a 0 1 1 1 1 a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 0 a 0 a a a a a a a a a a a a a a a a (/J = Don t 0 a a a a a a a a a a a 0 a

- 125 ~>- D Cl 0 - ' - - 100 300 <» 125 :>c 100 1 100 ~ >- -----t .J .... ~ .... ~ x ...f ~~ Q ~~~~ 60 1235 f- f- C2 5 50 k 50 k 50 k 50 50 k k 560 ~ 1- r----rt: R ~ 1.3 k 1.3 k ~~ (05 675 325 ~ ) 675 .Iv EE ~ 1.5 k 1 k 1.5 k FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT VCC VEE -3.2 Vdc +2.0 Vdc Coax Coax Coax 50 50 Clock 1nput {ot----1~--O--- 100 0". I 2 3 Cl 00 C2 03 12 50 51 9 14 10 50 100 52 4 53 00 R 01 03 02 6 11 All input and output cables to the scope are equal lengths of 50,ohm coaxial cable. Open 4·24 13 100 -=- 0 S03005 51 7 Qt • 52902'" ELECTRICAL CHARACTERISTICS This MEeL III circuit has been designed to - - me, 11' R_., o Cl 2 Clock 2 C2 R a c u 11' AT c A - u 11' AT AT Clock 1 15 s - " 11' 12 a @Test Temperatur V'Hmu -JOoc -0.875 10 oo! .. o 53 13 t Pin Power Supply Drain Current Input Current LogiC "1" ",. ~ c.n +8SoC -0.700 Set Delay Reset Delay Rise Time Fall TIme MaXimum Toggle Frequency ~ --- -5.2 ::J C -1.025 -1.440 -5.2 Co -1.850 -1.830 +8SoC VEE Gnd 8 1.16 - - 8 8 1.16 1.16 - - 8 8 1.16 1.16 8 8 1.16 1.16 1.16 1.16 3.7.9.14 10 8 8 1.16 10 3.7.9.14 8 8 1.16 1.16 Max Min Ma. Unit VIHmax IE 8 - - 200 mAde 10 - 10 2.3.7.9.14.15 - 1.00 0.60 - mAde mAde 10 - 1m L 10 2.3.7.9.14.15 - 0.5 0.5 - - - 'in H - - j.JAdc /JAde - 10 -0.875 -0.875 -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vdc Vdc - 3.7.9.14 10 - - 10 3.7.9.14 - - - VOH G) -1.045 4.13 5.6.11.12 ~ -1.045 VOL 4.13 ~ -1.890 5.6.11.12 1 -1.890 - -1.650 -1.650 -1.850 -1.850 -1.620 -1.620 -1.830 -1.830 -1.575 -1.575 Vdc Vdc -1.065 -1.065 - -0.980 -0.980 - -0.910 -0.910 - Vdc Vdc - -1.630 -1.630 - - -1.600 -1.600 - -1.555 -1.555 Vdc Vdc 2.9 1.0 2.7 1.0 3.1 ns 2.7 1.0 ~ 2.0 2.0 ~ ~ 3.1 3.7 2.0 2.0 4.1 4.1 ~ ~ 2.0 2.0 4.1 4.1 ns ns ns ns VOHA 4.13 ,~ 5.6.11.12 4 VOLA 4.13 5.6.11.12 '15+4+ 1.0 '15+5+ '2+4+ '2+5+ 4 5 4 5 '15+4'15+5'2+4'2+5- 4 5 4 5 1.0 t3+4+ t3+5_ 4 5 2.0 2.0 39 39 '10+4+ tl0+5- 4 5 2.0 2.0 3.9 3.9 2.0 2.0 3.1 3.7 14+ 15+ 14_ IS_ 4 5 1.0 1.0 2.9 2.9 1.0 1.0 2.7 2.7 1.0 1.0 3.1 3.1 4 1.0 1.0 2.8 2.8 1.0 1.0 3.0 3.0 ns ns 260 1.0 1.0 300 2.6 2.6 - 260 - MHz ~ II -Individually apply VIH or VIL to tnput under test 2.9 ~ ~ S 3 ~ ~ ® - - -- ~ 1.0 + - ~ ~ - - - 10 a.> Set all four flip-flops by applYing PAt to pins 3,7,9, and t4 Simultaneously Q) Reset 3.1 + ns ns ns - - - - all four fltp-flaps by applYl!lg PA 2 to pin 10 ---,-VIH PAl L..-VIL 8 8 1~ PutSBln Put. Out -3.2Vdc +2.0Vdc 15 4 8 1.16 IS 5 2 4 2 5 - - - - 3 3 4 5 8 8 1.16 1.16 - - 10 10 4 5 8 8 1.16 1.16 - 15 IS 4 - 5 8 8 1.16 1.16 15 15 4 5 8 8 1.16 1.16 - - 8 1.16 - - ~ - 15 15 2 2 4 5 4 5 - 1t-Q Vcx 6 Q ~ - -2.0 volts. Bias Filter 12 F SUFFIX CERAMIC PACKAGE CASE 6S0 P SUFFIX Q Input Filter 13 PLASTIC PACKAGE CASE 648 4 TEST VOLTAGE VALUES Vdc±'% Test Temperature V,H -3O"c 0.0 +25o C 0.0 0.0 (@I ~ '" +85o C '" MC1658 T.t Limits Pin Under Ch.racteristic Power Supply Orain Current Symbol Test 'E M.. Min Ty. V3 -1.0 VIHA -2.0 -1.0 -2.0 -1.0 +2.0 +2.0 Min Input Current linH I nput Leakage Current linL 2· "0" High Output Voltage VOH 4· S·· -1.045 -1.045 -0.875 -0.960 -0.960 -0.810 -0.890 -0.875 -0.810 -0.890 "0" Low OutPUt VOltage VOL 4· S·· -1.890 -1.890 -1.650 -1.850 -1.830 -1.650 -1.850 -1.620 -1.S20 Mo. Unit 32 32 mAde 350 .uAdc V,H 2 V,L V3 0.5 -1.830 Vdc VOC Oscillator Frequency Tuning Ratio Test t 1.S 1.' 2.7 130 155 175 78 90 100 TR 3.1 4.5 ·Germaruum dIode (0.4 drop) forward bIased from 11 to 14 (11 • -Germanium diode (0.4 drop) forward bUlSed from 14 to 11 (11 tTR '" Output frequency at V!;;X '" Gnd OutPut frequency at VCX -2.0 V 130 2.7 2.7 fosc2 foscl ~ ---+t---- 14). 141. VIHA VEE -1.575 -1.575 Vdc Vdc 1,5 MHz MHz C1 = C2 = CX1'" CX2 '" 1,5 1,5 1,5 1,5 3.0 3.0 110 1Vcel Gnd 1,5 1,5 1,5 8 8 CXl 2.7 I -5.2 .uAdc -0.700 -0.700 (Tests shown for one output, but checked on both) t+ t- VEE -S.2 -S.2 mAde AC Charecteristics (Figure 2) Rise Time (10% to 90%) I +8SoC Mo. 8· 8·· 2· Fall Time (10% to 90%) +2.0 VOL T AGE APPLIED TO PINS LISTED BELOW: +2SoC -3O"c Min V,L -2.0 CX2 Gnd VEE -3.2 V VCC +2.0 V 11,14 11.14 1,15 1.15 11.14 1,5 11.14 1,5 11,14 1,5 O.OlI-6F connected from pin 12 to Gnd. 0.1)01 "F connected from pin 13 to Gnd. 10pF connected from pin 11 to pin 14. 5 pF connected from pin 11 to pin 14. n o ::l ~, ::l C ct> Q. MC1658 (continued) FIGURE 2 - AC TEST CIRCUIT AND WAVEFORMS Vee +2.0 Vdc Input Filter Coax iei Cables '---"t----o---! vex (Equal lengths, typ 2 places) To Scope ex 50-ohm termination to ground located in each scope channel input. *O.I"F -3.2 Vdc VEE All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TPin to input pin and TP out to output pin. a 4-28 MC1658 (continued) FIGURE 4 - RMS NOISE O.EVIATION versus OPERATING FREQUENCY FIGURE 3 - OUTPUT FREQUENCY varsus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE 1000 150 MHz @ 10,000 5.0 pF 1111111 100 Z 0 1 75 MHz @ 5.0 pF N ~ >- ~ VEE' :;; w_ o N 35 MHz @ 5.0 pF I: Vee'" +5.2 Vdc i= < >-! u'" z::; 10 w ~a: ::> Cl - w II: IL 1.0 0,0 Vde 1000 === Vcx U~lx w a: IL /i\ .lllJv de 'Z. 1.0 1""- 11111111 10 DC CONTROL INPUT' 4.0 Vde III I I 11111~_LLUl 1.0 10 100 10 L 0.1 VIC~ "Ifi~ Vdt o. 1 100 Cl o Vdc 100 1000 CX(PICOFARODS) f. OPERATING FREQUENCY (MHz) " 10,000 FIGURE 5 - FREQUENCY·CAPACITANCE PROOUCT varsus CONTROL VOLTAGE (VCXI ...U :;:J o o a: Q. 1500 1400 w 1200 Z 1100 U < ... U < < ~ >U Q. Frequency-Capacitance Product at Desired / 7' - . - aw 400 IL 300 --- _ . - ./ 700 500 ..,.L. --/ /' 800 600 Vex _ Desired Frequency (MHz) 900 Z a: = 1000 :;:J w CX(pf) 1300 L /' ./ f-"'" x u • -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 Vcx, INPUT VOLTAGE (Vde) 4-29 -0.4 -0.2 o MECL III MC1600 series DUAL 4-INPUT GATE MC1660 MC1660 provides simultaneous OR-NOR or ANDNAN D output functions with the capability of driving 50-ohm lines_ These devices contain an internal bias reference voltage insuring that the threshold point is POSITIVE LOGIC ::: : § = t i =X : 3 (10) 6 (11) 7 C (14) 10 (1S) " always in the center of the transition region over the (7) y 2 §=x= o (16) 12 temperature range (-300 to +850 C)_ The input pulldown (6) resistors eliminate the need to tie unused inputs to VEE. X=A+B+C+D Y =A + B + C + D 14 (2) 1S (3) (1) 13 NEGATIVE LOGIC (8)4~A B X (9) S (10) 6 (11) 7 c y §=x= 3 (7) 2 (6) tpd'" 0.9 ns typ 15l0-ohm load) == 1.1 ns typ ( 50-ohm load) 0 (14) 10 (1S) 11 (16) 12 Po = 120 mW typ/pkg (No load) X=A_S_C_O Y=A-S-C_O Full Load Current, I L -= -25 mAde ma)( 14 (2) 1S (3) (1) 13 Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650). CIRCUIT SCHEMATIC (4) (S) 16 VCC2 (6) OR 2 (3) o---I--~~ ----+-----sOC +86°C P .. ~UPPIY Drain Cur,..nt Input Current NOR Logic "1" Output Voltaglt Svmbol Tat .>sOC -3O"c M.. M.. IE linH linL M.. _DC M.. Min -0.875 -0.960 -1,890 -1.850 -1.830 -1.180 -1.095 -1.025 -1.515 -1.485 -1.440 VEE -5.2 -5.2 -5.2 TEST VOLTAGE APPLI ED TO PINS LISTED BELOW: M.. Unit VIHmo VILmin VIHAmin VILAmax IVCCI VEE Ond 28 mAde 1,18 350 ~Adc 1,18 1,18 0.5 -1.045 VOHtP -0.815 -0.810 -0.700 MC1116DL Test LimiU u_ Cher.n.inic VIHmu VILmin VIHAmk'l VILAm •• -0.810 -<).890 -0.700 /o'Adc Vd, 1,16 j I 1 1 1 1 w,1 j ! 1 1 l 1 1 j ! 1 1 l I 1 1 1 1 1 1 1 1 1 NOR LogiC "0" Output Voltage VOl. tP -1.890 -1.650 -1.850 -1.620 -1.830 -1.575 OR Logic "1" Output Voltage VOHtP -1.045 -0.875 -0.960 -0.810 -0.890 -0.700 Vd, 1,16 OR Logic "0" Output Volta. VOL41 -1.890 -1.650 -1.850 -1.620 -1.830 -'.575 Vd, 1,'6 2 I NOR Logic "'" Threshold Voltage VOHAtP 3 NOR Logic "0" Threshold Voltage VOLAtI> I I OR Logic "'" Threshold Voltage VOHA41 j -'.065 j -'.065 I OR Logic "0" Threshold Voltage VOLAtP Switcl'ling Times (50 n load) Propagation Delay Ri. Time Fall Time 14+3t4_2_ t4+2+ t4-3+ '3· '2. '3'2- j 1 1 1 1 1 1 1 1 j j 1 1 1 1 I j 1 1 -0.980 -1.630 3 1,18 -0.910 -1.600 -0.980 -1.555 -0.910 Vdo 1,16 Vd, ',18 Vdo 1,16 1,16 -1.630 -1.600 -1.555 Vd, 18 18 16 1.6 2.2 2.2 2.2 2.2 1.7 1.7 1.5 15 2.1 2.1 2.1 2.1 1.9 1.9 1.7 1.7 2.3 2.3 2.3 2.3 "' Pul.ln Pul.Out 4 3 2 -3.2 V 8 I 1 I 1 ',16 1,16 1,16 1,16 4 • 4 -IndiVidually test each Input applying VIH or VIL to the Input under test. +2,0 V 1,18 tP NOTES The electrical spacifiClltions shown abow apply to the MCl880 under the following conditions: 1. The packagl is hou.d in a suitable "'at sink. t D' 2. Air is blown transwr.ly ovar the PICkage. See 91ne,..1 information section for mora details. tA suitable heat sink is an IERC UC14A2U or equivalent. 4-32 MC1660 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS. 25°C V out OR Vin to Channel "A" V out NOR To Channel "8" Coax 50 , - - Input ~____~~__;'__~ - --., Coax 50 50 100 100 I I Pulse Generator §xt: I All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. 100 Input Pulse t+ =:: t- = I I I I L ______ ...JI 1.5 i.O.2 ns Unused outputs connected to 8 50-ohm resistor to ground PROPAGATION DELAY ,-----+1.11 V +0.31 V V out OR t+ t- V out NOR 4-33 MECL III MC1600 series QUAD 2-INPUT "NOR" GATE MC1662 NEGATIVE LOGIC POSITIVE LOGIC (8) (9) (10) (11 ) 4~ S 2 (6) ~==Lr--3 (7) B (14)10~ (8) 4~ 2 (6) (10)6~3 (7) (9) S B Four 2-input NOR or NAND gating functions in a single package. An internal bias reference voltage insures that the threshold point remains in the center of the transition region over the temperature range (-30 to +850 C). Input pulldown resistors eliminate the need to tie unused inputs to VEE. (11) 7 14 (2) (lS) 11 (14)10~ 14 (2) (lS) 11 (16)12~ (1) 13 X= 15 (3) (16)12~ lS (3) (1) 13 x = .A""iB A+B tpd "" 0.9 ns typ (510-ohm load) 1.1 ns typ (50-ohm load) = Po == 240 mW typ/pkg (No load) Full Load Current. I L = -25 mAde max Number at end of terminals denotes pin number of L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650). CIRCUIT SCHEMATIC (11 ) (4) (10) 6 (S) (8) 4 (9) 5 --++-- CL LSUFFIX CERAMIC PACKAGE CASE 620 14 12~ 13~15 TEST VOLTAGE VALUES IVoIts) ,I::> @Test ~ Temperature o -JO"c Under Power Supply Drain Current Input Current Logic ''1'' Sy ... bol Tost Logic "0" Logic "0" Min -1.045 -1.045 VOL -1.890 -1.890 -1.065 -1.065 VOLA Threshold Voltage Min Fall Time -1.890 -1.180 -1.515 -5.2 -'.850 -1.095 -5.2 +8SoC -1).700 ·1.830 -1.025 -1.485 -1.440 Max -0.875 -0.875 -1.650 -1.650 -0.960 -0.960 -1.850 -1.850 350 ~Adc V'H max 14+2+ '2+ '2_ ·lndividually test each input applying VIH or VIL to input under test. VILmin -5.2 -0.810 -0.810 -0.890 -0.890 -1.620 -1.620 -1.830 -1.830 -0.910 -0.910 -1.600 -1.600 -0.700 -0.700 -1.515 -1.575 -1.555 -1.555 VIHAmin VILA max VEE Gnd 8 1.16 1,16 8 .uAdc -0.980 -0.980 -1.630 -1.630 Unit mAde 1,16 1,16 Vdc Vdc 1.16 1,16 Vdc Vdc 1,16 1,16 Vdc Vdc 1,16 1,16 Pulse Out -3.2 V +2.0V 1,16 1,16 1.6 1.8 1.5 2.1 1.7 1.9 2.3 8 8 2.2 2.2 2.1 2.3 8 1.7 1,16 Vdc Vdc Pulse In '4-2Rise Time VEE -0.875 -0.810 56 Switching Times (50 n Load) Propagation Delay V,LA max _30 De +2S o C +8S0C Max 05 VOH VOHA V'HA min TEST VOLTAGE APPLIED TO PINS LISTED BelOW, +250 C Max ~ 'in L Output Voltage Logic "1" Threshold Voltage Min IE Output Voltage V'lmin MCl664L Test Limits Pin Characteristic VIH max 1,16 1,16 MC1664(continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 0 2SD C V In to Chennel "A" V out to Channel "s" Coax 50 Input r-----..., , ~ 50 I ----+0.31 V t- - I PUI .. Generetor 100 -= ~ 100 -+-L-./I I I ~ ~ L _ _ _ _ _ ..I +1.11V 50% V out AU input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Input Puis. t+., C.,. 1.6 (±O.2) ns Unused outputs connected to a 50-ohm resistor to ground. 4-41 t++ MECL III MC1600 series DUAL CLOCKED R-S FLIP-FLOP MC1666 This device consists of two Set· Reset flip· flops in a single package which require a clock input to enable the set·reset inputs. Internal input pull·down resistors eliminate the need to return unused inputs to a negative voltage. The device is usefu I as a high-speed dual storage element. POSITIVE LOGIC (9) (6) (11) 5 7 C =t t (8) 4 A a 2 3 (7) (16) 1 2 t = t 0 15(3) (14) 9 C 11) 13 R a 14 (2) tpd "" '.6 ns tvp (51 O-ohm load) = 1.8 ns typ (50-ohm load) P D = 220 mW typ!pk 9 (No Load) TRUTH TABLE R C S 0 1 0 1 0 0 1 0 vee1 = Pin 1 (5) VCC2 = Pin 16 (4) VEE = Pin 8 (12) °n+1 On On 1 0 N.D. Numbers at ends of terminals denote pin numbers for L package (Case 620). (/) - Do n't Care N.D. = Not Numbers in parenthesis denote pin numbers for F package (Case 650). Defined CIRCUIT SCHEMATIC C (14) 9 a VCC2 S (4) (16) (2) 16 12 14 Q R 11) 15 13 (3) vee1 R Q ·0 S C (5) (8) (6) (7) (9) 111) 7 1 4 2 3 50 k 8 (12) Vee Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650). See Ganeral Information section for packaging. 4-42 3: .... en (") ELECTRICAL CHARACTERISTICS This MECL III circuit has been designed to ~ meet the de tp8cifications shown in the test table, aft.r thermal equilibrium has bean established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test 6 11 9c U 8 A 7 a procedures are shown for only one input and one output. The other inputs and 16U3 14 c 1 A a 2 Characteristic I Symbol ~ (.oJ Under Test I 12 1 16 14 CD Povver Supply Drain Current I IE Input Current I ImH ImL ~ I +2SoC -30°C Min M" - 0" LOyle .. , , Output Voltage VOH I "0" Lagle "0" Output Voltage VOL "0" Lagle "1 'Output Voltage VOH -1.890 +25 0 C -0.810 +8SoC -0700 Min 55 -5.2 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: Max Gnd 11.14 12 4.5 1.14 14.16 14 12 12 12 12 12 12 12 4.5 4.5 4.5 VIHmax mAde mAde mAde mAde - - VILmln VIHAmm VILAmaM -0 810 -0810 -0 890 -0.890 -0700 -0700 3~ 5 -1 620 -1620 -t 830 3 -1 850 -1 850 -1 575 -1 575 Vrl, Vdc 22~ 5 -1 045 -1 045 -0.875 ~O 875 ·0.960 -0 960 -0 810 ·0810 -0 890 -0 890 -0700 -0700 Vrl, Vd, -1 650 -1 650 -1 850 -1850 -1 620 -1 620 -1 830 -1830 -, 575 -1 575 Vdc Vrl, - 1 14 - -0910 -0910 - VOLA 3@ VOHA 2@ "0" Logic "0" Output Threshold VOltage VOLA 2@ 2(Z) -0.980 ·0.980 -1630 -1 600 -0 980 -1 065 -1 830 -1630 -1630 ., 555 -1.555 -1600 1,14 - 1 14 - - 16 14 - - 16 14 - Vrl, Vdc -1.555 -1 600 16 /JAde jJAdc -0910 t16+3+ t16+211+2+ 11+3- ,. ,- 2.7 10 25 11 2.8 • • • • • • 1a 2.5 10 23 3 2 ~ ! ~ ~ 2.3 08 2.8 09 05 2.4 0.8 05 20 2.3 22 05 Notes appear on page lollowlng Elecl(lcal Characte(lstlcs tables 11 4.5 4.5 12 12 4.5 4.5 4.5 4.5 4.5 4.5 1 16 1 16 12 16 14 - 14 - 1 Pulse In Pulse Out 10 12 12 Velc Vdc Vd, 1 4.5 4.5 4.5 4.5 Vdc 1 16 14 ns ~ 2.7 ns ! ! "' ns 14 • 3 3 2 2 16 16 3 2 ns 1 1 2 3 2.9 ns 14 2.3 2.6 ns 14 2.3 4.5 4.5 12 12 12 12 12 SWitching Times (50 H Load) 3 3 2 2 3 2 (Vee l VEE Unit ·0.960 -0 960 "0" LogiC "1" Output Threshold Voltage o -5.2 -1 440 -1650 -, 650 "0" LogiC "0" Output Thleshold Voltdge Rise Time -1 485 -1 025 -0875 -0875 33~ 7 Fall Time -1.095 -1 830 -1 890 -1 890 VOHA Reset Input -1.850 3 3 $ 3 -1.065 -1.065 Set Input -5.2 Vrl, Vdc -1 890 -1 890 I VEE -1 515 0.5 0.5 ~~ 114+3+ t14+3t14+2114+2+ ::l C -1 180 - VOL Clock Input ::l VILmin VIHAmln VllAmax -0875 -, 045 -, 045 16 "0" LogiC .. ,., Output Threshold Voltage "0' Lagle' 0" Output Voltage V'Hma)( -JOoC +85 M" 0.370 0370 0.225 1.14 I. Mon 0 ~. @Test Temperature MC1666F Test Limits Pon r;- TEST VOL TAGE VALUES (Volts) outputs are tested in a similar manner. Outputs af. t.sted with a 5CHlhm resistor to -2.0 Vdc. See general information section for complete thermal data. en en F SUFFIX CERAMIC PACKAGE CASE 650 12 12 4.5 4.5 -3.2 V +2.0V 12 4.5 12 12 • 4.5 4.5 12 12 12 4.5 4.5 4.5 12 4.5 - - - .. - • ro a. ELECTRICAL CHARACTERISTICS 3: n .... This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been e.tablished. The package should be hou.d in a suitabte heat sink (lERC- O'l O'l O'l 14A2CB or equivalent) or a transverse air flow gr.ater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a !iO-<>hm ...istor to -2.0 Vdc. See general C 4 R 9 C 13 A a Characteristic I Symbol P01/\le1 Supply Drain Current I 'E Input Current I lonH 5", l- Vin3 Vin2 to S (VIH to VIL) H f Vin2 Vin1 to C (VIH to VIL) Vin2 to R (VIH to VIL) L ® Apply Sequentially: ® Apply Vin3 to C (VIH to VIL) (J) Apply Vin3 to S (VIH to VIL) H ~ Vin1 to A (VIH to VIL) Vin1 to S (VIH to VIL) Vin2 to R (VIH to VIL) L test 4-45 Me 1666 (conti nued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @25 0 C V out To Chanr.el "8" Vin To Channel "A" All input and output cables to the scope are equal lengths of Coax 100 50-ohm coaxial cable. Coax 50 Coax 50 50 C2 Q2 +2.0 Vdc 1/2 02 52 R2 Input pulses by 2 pulse 51 generators g g I ----'----- --~ 50 1 Plo---~,,~------------_+----~t->---------------lr_,----~5~0~il~c~o-a-x~-o5 100 Vin To Channel "A" 100 50 MC1670 Pl o P2 ---+1.11 V n ----- +0.31 V 1\- ::::120 n.I----------------' -----+1.11V '-----------+0.31 V S A SET/RESET TO ta_ a/a (Switch Sl in position shown) a 0 to+ C 5 A CLOCK TOO/a (Switch S1 in opposite position) Q 0 4-46 MECL III MC1600 series DUAL CLOCKED LATCH MC1668 This device is a Dual Clocked Latch/R-S Flip-Flop. Whenever the Clock is low, the R-S inputs control the output state. Whenever the Clock is high, the output follows the data (D) input. POSITIVE LOGIC (9) 5 ~ S (10) 6-0 (11 ) 7 - C a ""'-----2 0""'-----3 (6) TRUTH TABLE (7) R (8) 4 (16) 12 (IS) 1 1 - - 0 ~ ~ S S R 0 I 0 I 0 0 I I ''"" ''"" On+1 '" ''"" 0 0 0 0 I I On I 0 '" 0 I

(Vee) Gnd -1.650 -1.650 -0.890 -0.890 VOLA 1.15,16 VEE 12 -1.890 -1.890 -1.620 -1.620 "0" LogiC "0" Output Threshold Voltage I VIHA min I VILA max I Vd, Vd, -0.810 -0.810 2@ -5.2 -0.700 -0.700 -1.850 -1.850 -0.980 2 -1.440 -0.890 -0.890 -0.960 -0.960 VOHA -5.2 -5.2 -1.u25 -1.810 -1.810 -1.650 -1.650 3 VIH mulVIL min 11,14 I .'lAdc /.IAdc 0.500 -0.875 -0.875 3@ 3@ -1.095 -0960 -0.960 -1.890 -1.890 2@ Vee -1.515 -1.485 -0.875 -0.875 -1.045 VOHA VILA mex -1.180 -1.045 -1.045 -1,045 '"0" LogiC "I" Output Threshold Voltage Reset Input Max 20> VOLA Set Input I 2@ 2@ "0" LogiC "0'" Outpu t Threshold Voltage n Min VOL 3@ Switching Times (50 Clock Input +8soe Mu VIHA min TEST VOLTAGE APPLIED TO PINS LISTED BELOW: VOH Output Voltage "a'" 3e 3@ I C. (Volts) @Test 13 "a" (I) TEST VOLTAGE VALUES Pon Power Supply Ora In Current 0) ~ '* ~ +8so cl -0.700 I -I.H.JU Symbol 3: n 8 1 B to -2.0 Vdc. See general information section for complete thermal data. ChliracteristlC ~ CERAMIC PACKAGE CASE 650 .. 2,9 14 t 16 12 15 15 Vd, 15 14 'i' Pulse In IPulseout 3 14 2,3 2.6 14 2,3 2.7 2.7 2,7 2.7 16 16 + + + + 4,5 • -32 V I! +2.0 V 4,5 12 12 4,5 12 12 4,5 4,5 12 12 4,5 4,5 ~ 4,5 ELECTRICAL CHARACTERISTICS This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (I ERC·LIC· 214A2WCB or equivalent) or a transverse 5~ 60 S Q 2 : R Q 3 C 12~ 11 0 S Q 15 9 C RQ1 14 LSUFFIX 13 airflow greater than 500 linear fpm should be maintained while the circuit is either in a - :s:: .... C') 0) ~ 8 CERAMIC PACKAGE CASE 620 test socket or is mounted on a printed ... ::J ::J circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with 8 5O-ohm resistor to -2.0 Vdc. See general information section for complete thermal Power Supply Drain Current Input Current IE (HI'Z) T... -100C Min "'.i:-" Min 1m H 1'1,'2,13(2) 9 lin L 111.12.13(i) I Max Min I 0.500 0.500 VOH 15@ 15@ -1.045 -1.045 -0.960 1-1.810 -0.960 -1.810 -0.890 -0.890 "0" Logic "a" Output Logic VOL 15@ 1~ -1.890 1-1.650 -1.890 -1.650 -1.850 -1.850 620 -1.620 -1.830 -1830 "O"Logic "1" Output Voltage VOH 14@ 14® -1.045 1-0.875 -1.045 -0,875 -0.960 1-0.810 -0.960 -0.810 -0.890 -0.890 14 Q) 14@) -1.890 1-1.650 -1.890 -1.650 -1.065 -1.850 1-1.620 -1.850 -1.620 -0.980 -1.830 -1830 15 15 15 VOL "0" LogiC "1" Output Threshold Voltage VOHA "0" LogIC "0" Output Threshold Voltage VOLA "0" Logic" '" Output Threshold Voltage VOLA "0" Logic "0" Output Threshold Voltage Switching Times (SO Clock Input n VOLA t9+15+ t9+14ts+14+ Fan Time .+ ,- Set Input 112+15+ t12+14Reset Input ® 15 15® 15Q) 14 14® 14Q) 14 14 (i) 14® • 113+14+ tt3+15- 15 15 14 14 -0.87~ ,• -1630 -1.065 • Load) t9+15- Rise Time (i) -0.875 't 14,15 0.8 14,15 15 14 0.5 1.0 1.0 14 15 1.0 1.0 ONotes appear on page following Electneal Characterlstic51ables -0.980 -1.630 • 2.7 1-' • t ':T5i'5 -1.095 -1.485 ·52 +S50C -0.700 -1.830 -1025 ~ ~ 2! 1.1 0.9 0.5 2.5 2.2 0.9 0.5 2.5 25 1.1 1.1 2.3 23 1.1 25 25 1.1 1.( 2.3 2.3 ~ 2.8 2.4 ~ • 1.1 1.1 1.1 Unit I VIH maxlVIL min mAde 7,9 mAde mAde 11,12,131 9 -0.700 -0.700 Vdo Vdo 13 Vdo Vdo 12 -0.700 -0.700 Vdo Vdo 12 -1.575 -1.575 Vdo Vdo '3 Vdo "f V1• I VIHA min I VILA max • • 13 12 11 11 13 12 11 ~ 2.9 2.6 27 27 2.7 27 12 ~ 11 9 I PUI~ In Pul~_Out 15 15 14 14 l 14,15 Gnd 1,16 1,16 13 11 2.8 1,16 1,16 1,16 9 Vdo (Vee I I 1,16 1,16 1,16 1,16 " 11 I 1,16 1,16 1,16 1,16 12 V1 -1555 VEE 11,12,13 9 -1.575 -1.575 -0910 • 'TI ~ -1.850 jJAdc jJAdc -0.910 -1600 -1.600 1.0 , I I I I VEE TEST VOL TAGE APPLIED TO PINS LISTED BELOW; Max 55 0.370 0.225 "0" LogiC "1" Output Voltage "0" Logic "0" Output Voltage I VILA max -0.810 +8S o C +2SoC Max 11 9 CC I VIHA min +2SoC MCl668L Test Limits Pin Under Symbol ~ (Volts) Temperature VIH max Vil min -30°C -0875 -1.890 data. Chilractaristic c: TEST VOLTAGE VALUES @lTest 13 8 1,16 • • •t • • • 8 1,16 8 1,16 8 1,16 -3.2 V , +2.0 V 1T 1,16 14,15 1,16 12 12 15 14 1,16 1,16 13 13 14 1,16 '5 1,16 MC1668 (continued) NOTES CD I E is measured with no output pulldown resistors. ® Test voltage applied to pin under test. (SLVIH) V,L H --.~--. @) Apply S8Cluentially: Vin2 to C (V'H, V,L) Vin3 to 0 (V,H to V,L) Vinl ~ 1~5 ns H Vin2 ® Apply Sequentially: Vinl to S (V,H to V,L) (i) Apply Sequentially: Vinl to A (V,H to V,L) Vin2 to C (VIH. V,L) ---{ ~5 ns Vin3 ~5 ns~ t"" 0 Vinl to R (V,H to VIL) ~ H L test 4-50 Vin2 to C (V,H. V,L) Me 1668 (continued) SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS@250C Vin V out To Channel "A" To Channel "S" All input and output cables to Coax 100 the scope are equal lengths of 50-ohm coaxial cable. Coax Coax Vee'" +2.0 Vdc VEE 50 Cl 50 02 1/2 1/2 Ql D 51 Rl I nput pulses by 2 pulse eenerators Vdc C2 01 D = -3.2 50 Q2 52 R2 o o 0 0 Plv---~T<~__________~______________________~~~__~5AO~-U====J--05 +____________-l--~_-,\5A°;"""--fI-J._OR Vin Coax P2v--~I<~+_ _ _ _ _ To Channel "A" Coax 100 100 --+1.11 V Pl r-\ P2 +0.31 V r-'\---. ---- +1.11 V - - - - - - : : ] 2 0 n,f-~-----.J '------- +0.31 5 A '0- SET/RESET TO a/a (Switch 51 in position shown) 0 5 to+ C D CLOCK TOO/a (Switch S1 in opposite position) 0 5 4-51 V MC1670 The MC1670 is a Type D Master-Slave Flip-Flop designed for use in high speed digital applications. Master slave construction renders the MC1670 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output. When both clock inputs (Cl and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (Cl "OR" C2) are taken from a low to a high level. In other words, the output state of the fl ip-flop changes on the positive transition of the clock pu lse. While either Cl "OR" C2 is in the high state, the "Master" (and data input) is disabled. Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) inputs. Input pulldown resistors eliminate the need to tie unused inputs to VEE. POSITIVE LOGIC NEGATIVE LOGIC 1915 S--------, 1111 7 C1 1141 9 C2 1151 11 D 181 4 191 5 S------, a 2 161 1111 7 e:1~ro,r-" 1141 9 C2-_____../1 a 2 161 a 3 171 1151 11 a 3 D 171 1814 R-------.J R------" Number at end of terminal denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650). veel VCC2 = Pin = Pin 1 (5) 16 (4) VEE::: Pin 8 (12) Power Dissipation = 220 mW typical (No Load) ftog = 350 MHz typ TRUTH TABLE TIMING DIAGRAM C \'------ R S D C On+1 L H 4> 4> H H L 4> 4> L H H 4> 4> N.D. L L L L an L L L -F L L L L H On L L H L L H ...r On L L L H H

---+-----'''' 0 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Open [: 100 t 100 50 l O. 1 1'F -3.2 Vdc SET UP TIME WAVEFORMS@ 2s"C , - - - - -...... - - - - - - + 1 . 1 1 V ' - - - - - - - +0.31 V TPin2 Clock +0.31 V TP out Q Output ~ \'--HOLD TIME WAVEFORMS @ 250 C ,..----+1.11 V " - - - - - - ' , - - - - +0.31 V TPin2 Clock +0.31 V TPout QoutPut~ \'------'/ Set up time I, the minimum time before the positive transition of the clock pulse (C) that information mUlt be pr...nt at the data (D) Input. Hold time I, the minimum tlma after the positive tranlitlon of the clock pulse (e) that information mUlt remain unchangad at the dna (D) input. 4-56 MC1670 (continued) FIGURE 4 - TOGGLE FREQUENCY TEST CI RCUIT +2.0 Vdc Coax Coax l 50 o.... F al"'-----~ Sine-Wave Generator, VSias = 0.71 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Vdc '00 (Use High I mpedance Probe to Adjust VBias) I o. 50 1IlF de Supply -3.2 Vdc FIGURE 5 - TOGGLE FREQUENCY WAVEFORMS TA = 2 SoC -+1.11V Clock Input --- +0.71 V Sias 300 MHz-max -+0.31 V -r aora 600 mV min Output The maximum toggle frequency of the MC1670 has been exceeded when either: 1. The output peak-To-peak voltage swing falls below 600 mill ivoln. OR 2. The device ceases to toggle (divide bV two). ~ FIGURE 6 - MAXIMUM TQGGLE FREQUENCY (TYPICAL) +1.050 +1.000 +0.950 +-0.900 '6 +0.850 C +0.800 ~ +0.150 ~ +0.700 ~ +0.650 1+0 .500 ii +0.450 > +0.400 +0.350 +0.300 +0.250 .75 -, - ......... ....... = 2SoC = +2.0 Vdc Vee ::< -3.2 Vdc Figure 6 illustrates the variation in toggle frequency with the de offset voltage (VBia,) of the input clock ,ignal. VBia, i, defined by the test circuit in Figure 4, and waveform Figure 5. Figures 8 and 9 illustrate minimum clock pulse width recom· mended for reliable operation of the MC1670. ..... 225 TA Vee 275 325 '\ ./ 375 425 fTog (MHz) 4-57 MC1670(continued) FIGURE 7 - TYPICAL MAXIMUM TOGGLE FREQUENCY .ersus TEMPERATURE 400 350 1".000 , - - 300 250 o -30 85 50 25 T A. AMBIENT TEMPERATURE (oC) FIGURE 8 - MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD = 50 n I .1 I o or ~ L i r -- ;-... - - CJCK V 1\ j ..L 1 J \J ~ II 10 ns/OIV FIGURE 9 - MINIMUM "UP TIME" TO CLOCK OUTPUT LOAD = 50 n I_ V\ a or a r-/' .1 r yI I L f\ 1.0 ns/DIV. 4-58 CLOCK MC1670 (continued) u u > <>----L ~Cl --:.c'Cl =n ----:"1- ~ ~ A ~ A ~,i rOIVN U U > ~,L <.) y A- i= « :t w x <.) ¥ A ~ w w > III .... :5 <.) a: (3 Ir=7\ 0 .... CD U I- :t W I :;! w ~ a: J ¥ A ::J t!l ~\ '::,,L "0 "' ~ .fi.- "0 "' ~ ~ ~ J r; u: " 0 "' " 0 "' 0" "' u (/) C[ 0 4·59 MECL III MC1600 series TRIPLE 2-INPUT EXCLUSIVE-OR GATE MC1672 This three gate array is designed to provide the positive logic Exclusive-OR function in high speed applications. These devices contain a temperature compensated internal bias which insures that the threshold point remains in the center of the transition region over the temperature range (-30°C to +85 0 C). Input pulldown resistors eliminate the need to tie unused inputs to VEE. POSITIVE LOGIC (8) (9) (16) (10) (14) (11) 3~ 8 2 (6) S 13~ 6 14 (2) 1:~lS(3) X=AeS+Aes ve e l = Pin NEGATIVE LOGIC (8) (9) (16) (10) (14) (11) 1 (5) VCC2 == Pin 16 (4) VEE == Pin 8 (12) 3~2(6) S B tpd == 1.1 ns typ (5l0-ohm load) 1:~14(2) == 1.3 os typ (50-ohm load) Po = 220 mW typ/pkg 1:~lS(3) Full Load Current, IL = -25 mAde mal( X=AeB+Aes Number at end of terminal denotes pin number fOl" L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650). CIRCUIT SCHEMATIC Vee, VCC2 16 (4) 2 (6) 7( 11) 14 (2) 1 (S) (3) ......-+-1-<> 3 (8) 8 13 (16) (12) VEE Number at end of terminal denote. pin number for L package (Case 620). Number in parenthesis denote. pin number for F package (Ca.. 650). S . . General 1nformation section for packaging. 4-60 11 (14) 15 ...3: ELECTRICAL CHARACTERISTICS C') This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs ~ I\) 8 ::I F SUFFIX ~ CERAMIC PACKAGE CASE 650 and selected outputs. The other inputs ::I c: a 8~_X.6 and outputs are tested in a similar manner. 9~ Outputs are tested with a 50-ohm resistor to ~ -2.0 Vdc. See general information 16~2 TEST VOL TAGE VALUES (Volts) @l Tost Temperature Pin ~ ~ Characteristic Power Supply Drain Current Input Current Symbol IE linH 0.75 linH linL Logic "1" Output Voltage Logic "0" Output Voltage Logic "I" Threshold Voltage Logic "0" Threshold Voltage Switching Times (50 VOH VOL VOHA VOLA Under Test 12 8,14,16 . 9,10,11 6 6 6 6 6 6 6 6 -30"c Max - Min -1.045 -1.045 -1.890 -1.890 -1.065 -1.065 - -0.875 -0.875 -1.650 -1.650 -1.630 -1.630 MC 1672F To.t Limits +25"c +85"c Min Max Min Max 55 350 - 0.5 -0.960 -0.960 -1.850 -1.850 -0.980 -0.980 - - 270 -0.810 -0.810 -1.620 -1.620 - -0.700 -0.700 -1.600 -1.600 -0.890 -0.890 -1.830 -1.830 -0.910 -0.910 - 1.8 1.8 1.9 1.9 2.3 - 2.3 2.3 2.4 2.4 2.8 - -1.575 -1.575 - -1.555 -1.555 VIHmax V'Lmin VIHAmin VILAmax VEE -3O"c +25"c -0.875 -1.890 -1.180 -1.515 -5.2 -0.810 +85"c -0.700 -1.850 -1.830 -1.095 -1.025 -1.485 -1.440 -5.2 -5.2 TEST VOLTAGE APPLIED TO PINS LISTED BELOW Unit mAde "Adc "Adc "Adc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc V,Hmax V'Lmin VIHAmin V,LAmax VEE .. All Inputs - - - - - - - - - . 9 8 8,9 - - 8 9 8,9 - - - - - - n Load) Propagation Delay - 8 9 8,9 - - 9 8 8,9 (Vce) Gnd 12 12 12 12 4,5 4,5 4,5 4,5 12 12 12 12 12 12 12 12 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 12 4,5 Pulse In Pulse Out 6 - j - Rise Time 6 - 2.7 - 2.5 - 2.9 Fall Time '6_ 6 - 2.4 - 2.2 - 2.6 - -Individually test each input applving V I H or V IL to input under test. 2.0 2.0 2.1 2.1 2.5 - '8+6+ t8-6+ '8+6t8-6t9+6+ t9-6+ '9+6t9-6t6+ + - - - + - + ns j ns ns - 8 6 + 9 j jj - - - + 8 - 8 6 6 12 4,5 12 4,5 s:(') ELECTRICAL CHARACTERISTICS This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink IIERC·LlC214A2WCB or equivalent) or a transverse ...a ~ - airflow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with ::J .... ::J C a CERAMIC PACKAGE CASE 620 1:~14 information section for complete thermal 8 LSUFFIX 3~2 5~ a 50-ohm resistor to -2.0 Vdc. See general N 1~~15 data. TEST VOLTAGE VALUES (Volts) "T ... Temper.lure .". -JO"c ~ +25 o C +8Sac m Pin Und_ Characteristic Symbol Power Supply Drain Current T... 8 MC1672L Tnt limits +25o C -JO"c Min M.. Min " Input Current I.., H 0.751.., H Logic "0" Output Voltage VOL VOHA Voltage Logic "0" Threshold Voltage SWltchmg Tunes (50 PropagatIon Delay A.seTlme Fall Time 5.6,7 'mL VOH LogIC "'" Output Voltage Logic "'" Thremold 3,11.13 LoatU -1.045 ·".045 -1.890 ·1.890 '2+ '2_ "IndivtduaUy test each input applying VIH or V,L to input under test. -0.875 -0.875 -'.650 -1.650 -1.065 -1.065 -0.960 -0.960 -1.850 -1.850 M.. -0.875 -0.810 -1.890 -1.850 -1.180 -1.515 -5.2 -1.485 -5.2 -0.700 -1.830 -1.095 -1.025 -1.440 -5.2 VILA tUX VEe TEST VOLTAGE APPLIED TO PINS LISTED BELOW: Min M.. Unit mAde VIHmu All Inputs VILmin VIHA min VILA IMX VEE • (Vee l Gnd 1,16 J.lAde ,.Ad, 1,16 -0.810 -0.810 -0.700 -0.700 /.lAde Vd, Vd, 1,16 1,16 1,16 -1.575 -1.575 Vd, Vd, -1.620 -1.620 -0.890 -0.890 -1.830 -1.830 M.. -1.555 -1.555 Min 1,16 1,16 1,16 3,' 3,' Vd, Vd, -0.910 -0.910 -1.600 -1.600 Min VIHA min 350 270 -0.980 -0.980 -1.630 -1.630 Min t3+2+ t3-2+ t3+2_ t3-2_ t5+2+ t5_2+ t5+2_ t5_2_ •• 1 Vllmin +8SOc 0.' VOLA n M.. I VIHmu Vd, Vd, 1.• 1.• 1.9 1.9 2.3 2.3 2.3 2.' 2' 2.8 + 2.7 + 2.' + 2.9 2.' 2.2 2 .• 1,16 1,16 3,' -3.2 V +2.0 V Pul.ln Pul.Out "' 3 2 j + • j j j Max 2.0 2.0 2.1 2.1 2.' 1,16 1,16 3,' + • 1,16 1.16 1,16 MC1672 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@25"<: V out to Channel "8" Vin to Channal "A" Coax Input Coax 50 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. r-------, 50 Pulse Generator I Coax 50 I ~ +0. 31V ~ =:J 100 a> Power Supply Drain Current Input Current Symbol Logic "1" Output Voltage -30"1: Under Test Min -1.180 -1.515 -5.2 -1.850 -1.095 -1.485 -5.2 +85"1: -0.700 -1.830 -1.025 -1.440 -5.2 +25"1: TEST VOL TAGE APPLIED TO PINS LISTED BELOW +85"1: Min Max Min Max Unit - 55 - - - mAde 350 'E 8 - - 3,11,13 - 0. 751 inH 5,6,7 - . -1.890 -0.810 Max 'inH linL -0.875 +25"1: MC1674L Test Limits Pin Characteristic VIHrnax VILmin VIHAmin VILAmax VEE -30"1: - 270 0.5 /JAdc uAde VIHmax VILmin VIHAmin VILAmax VEE .. All Inputs ,u.Ade VOH 2 2 -1.045 -1.045 -0.875 -0.875 -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0.700 Vdc Vdc 3,5 VOL 2 2 -1.890 -1.890 -1.650 -1.650 -1.850 -1.850 -1.620 -1.620 -1.830 -1.830 -1.575 -1.575 Vdc Vdc VOHA 2 2 -1.065 -1.065 - -0.980 -0.980 - -0.910 -0.910 - VOLA 2 2 - -1.630 -1.630 - - - -1.600 -1.600 - '3+2+ '3-2+ '3t2'3-2'5+2+ '5-2+ '5+2'5-2_ 2 2 2 2 2 2 2 2 - 1.8 1.8 1.9 1.9 2.3 - Rise Time '6+ 2 2.7 - 2.5 - 2.9 Fall Time '6_ 2 2.4 - 2.2 - 2.6 Logic "0" Output Voltage Logic "I" Threshold Vol.age Logic "0" Threshold Vol.age Swi'ching Times (50 n Propagation Delay - - - B 1,16 - - - 8 1,16 . - - 8 1,16 8 1,16 1,16 1,16 - 3,5 - 3 5 5 3 - Vdc Vdc - 3,5 -1.555 -1.555 Vdc Vdc - - 2.3 2.3 2.4 2.4 2.8 ns - (VCC) Gnd Load) 3 5 - 8 8 - B B 3,5 8 1,16 1,16 5 3 8 8 1,16 1,16 8 1,16 8 1,16 1,16 Pulse In Pulse Out - - - - - - -Individually test each input applying VIH or V,L to input under test. 2.0 2.0 2.1 2.1 2.5 + - + - - + - ns - - + 3 2 B 1,16 ns - - 3 2 8 1,16 j 3 2 + j jj - - - 5 MC1674 (continued) SWITCHING TIME TEST CIRCUIT AND WAVEFORMS@ 25°C V out to Channel Vin to Channal "A" Coax t+ = t- = 1.5 ±. 0.2 ns All input and output cables to the scope are eQual lengths of 50-ohm coaxial cable. 50 Input ,- Pulse Generator -- I ---, Coax 50 1 ~ ~ +1.11V~i +0.31 V o----J (i) Apply Vin to input A and +1.11 V to input B @ Apply Vin to input A 100 ~ ~ ~ 1 I L _____ ...J and +0.31 V to input B Unused outputs connected to 8 50-ohm resistor to ground. PROPAGATION DELAY J,-----+1.11 V -,.::.=::.........:."1------ +0.31 V @ V out 4-67 100 "e" MECL III MC1600 series BI-QUINARY COUNTER MC1678 The MC1678 is a four-bit counter capable of divideby-two, divide-by-five, or divide-by-lO functions_ When used independently, the divide-by-two section will toggle at 350 MHz typically, while the divide-by-five section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the clock pulse. Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". I ndividual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are avai lable at all bits. A = 2.40 DC Input Loading Factor C1 '" 0.77 C2=1.23 5 = 1.00 SO 14 DC Output Loading Factor == 70 Power Dissipation == 750 mW typ fTog = 350 MHz typ 00 S1 13 10 Q1 11 52 3 53 7 02 4 03 6 Cl Clock 15 R Reset 9 o----l---L-t==t===!~~==:;t====~~-J 0.0 12 2 C2 03 5 CIRCUIT SCHEMATIC 1/4 OF CIRCUIT SHOWN 100 K ~ 125 I~~~ 02 100 300 100 I K ---x- 1:r~:t- H:: ~>- l., ,)"" ~ "" ~~ ~ Q -<~~r< Cl 60 1235 I-- I-- C2 s ~ R 50 50 50 50 50 50 k k k k k k 560 1.3 k 'r ~ 1.3 k ~ 675 (,05 J 100 bV EE See General I nformation section for peckaging. 4-68 ~ ~ ~ H:: 325 675 50 1.5 k 1 k 1 k 1.5 k i5 MC1678 (continued) COUNTER TRUTH TABLES BCD BI-QUINARY (Clock connected to C1 (Clock connected to C2 and 0.0 connected to C2) R-S and 53 connected to C 1 ) COUNT ao a1 a2 a3 COUNT a1 a2 03 00 C R 5 a,,+1 0 L H L H L L H H L L L L L L L L 0 L H L H L L H H L L L L L L L L ¢ ¢ ¢ ¢ L H L H L L H H an 1 2 3 4 5 6 7 8 9 L H L H L L H H H H H H L L L L L H L L L L H H 1 2 3 4 5 6 7 8 9 L L H L L L L H H L L L L H H H H L H L L H H H ¢ '" Don't Care NO:::: Not Defined COUNTER STATE DIAGRAM - POSITIVE LOGIC ao connected to C2 Clock connected to C2 o FIGURE 1 - TOGGLE FREOUENCY TEST CIRCUIT -3.2 Vdc +2.0 Vdc Coax Coax Coax 50 50 50 15 Clock Input I 14 100 10 0,., 3 C1 00 C2 03 50 51 100 52 53 50 R 01 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. 03 02 11 Open 4-69 4 100 H H NO ELECTRICAL CHARACTERISTICS This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (I ERC·LlC214A2WCB or equivalent) or a transverse --"""" test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 5O-<)hm resistor to -2.0 Vdc. See general airflow greater than 500 linear fpm should information section for complete thermal be maintained while the circuit is either in a data. I Power Supply Drain Current Input Current I Symbo' 'E I,n H I _lODe Min Min .:...t 0 r M.. Min M.. 9 2 Unit 200 mAde 1.00 mAde 0.70 0.45 0.45 0.5 05 0.5 3,7,10,14,15 .jOo + + VOH 5,12 ~ 4,6,11,'3 -1.045 -1.045 -0.875 -0.875 -0.960 -0.960 -0.810 -0.810 -0.890 -0.890 -0.700 -0700 Vd, Vd, Logic "0" Output Voltage VOL 5,12 ~ 4,6,11,13 1 -, .890 -1.890 -1.650 -1.650 -1.850 -1.850 -1.620 -1.620 -1.830 -1.830 -1 575 -1.575 Vd, Vd, VOHA 5,12 ~ 6,8,11,134 -1.065 -1.065 VOLA 5,12 4,6,13,16 r l'1h~~~~ld Voltage @ Q) -0.980 -0.980 t15+12+ 115+13+ t2+11+ t2+4+ 12+6+ t2+5+ 12 13 115+12'15+1313+11t2+4_ t2+612+5- 12 13 Set Delay 114+13+ 114+12_ 13 12 vlHAmin -1.890 -1.180 VILAlNx -1.515 -0.810 -".850 -1.095 -1.485 -5.2 -0.700 -1.830 -1.025 -1.440 -5.2 -1600 -1.630 -1.630 10 29 2.9 3.2 -I 555 -1.555 -1.600 10 2.7 2.7 30 1.0 !•! ! ! ! 1 " 4 6 5 1.0 " 4 6 5 29 2.9 3.2 1.0 + VIHmlllIl Vllmin VIHAmin VllAmillil 9 2 15 ::J ::J c: (!) Co + 2.7 2.7 3.0 + 1.0 + 31 31 3.4 + 1 n, 1 Gnd 8 1.16 8 1.16 8 3.7.10,14 , 1,16 1,16 9 116 9 1,16 3,7,10,14 1 16 Vd, Vd, 3.1 3.1 3.4 VEE + + + Vd, Vd, -0.910 -0.910 AC C.. ,uteristics Clock Delays 50 n Loads vilmin /oIAdc Logic "1" Output Voltage logic "1" Threshold Voltage ... vEE -5.2 vlHmu -0.-875 TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +8S o C +2SoC M.. 9 2 15 I '"00 n0 TEST VOLTAGE VALUES MC1678l Test limits -lOoe T ... 3,7,10,14 lin L ~ 0) @T ... Temper.tur. Pin Un.r· I 0 CERAMIC PACKAGE CASE 620 +2Soc +8S oC ChI,.cterittic s: 3.7,10,14 1,16 9 1 16 1,1'6 1,16 3,7,10,14 Pulse In Pulte Out 15 15 2 2 2 12 13 -3.2Vde +2.0Vde 8 ! " 15 15 2 2 2 2 12 13 8 t " 4 6 5 1,16 t 1.16 1 2.0 2.0 3.9 3.9 2.0 2.0 3.7 3.7 2.0 2.0 41 41 14 14 13 12 1,16 1,16 Reset Delay t9+12+ 19+13_ 12 13 2.0 2.0 3.9 3.9 2.0 20 3.7 3.7 2.0 2.0 4.1 4.1 1,16 1,16 t13+ '12+ 13 12 1.0 1.0 2.9 2.9 1.0 1.0 2.7 2.7 1.0 10 3.1 3.1 9 9 15 15 12 13 AiseTime 13 12 1.16 1,16 Fall Time t13112_ 13 12 1.0 1.0 2.8 2.8 10 10 2.6 2.6 1.0 1.0 30 3.0 15 15 13 12 1,16 1,16 13 @ 6 @ 260 250 M8lIimum Toggle Frequency 50 n load 't 't 300 275 260 250 MH, MH, 1,16 1,16 -Individually apply VIH or Vll to mput under test. ill Reset all four flip, flops by applymg PA to pin 9. @ Set all four fllp.flops by applYing PA 10 pins 3, 7, 10, and 14 Simultaneously. @ Reset all four flip-flops by applYing PA, to pin 9. @) ® Set all four fllp·flops by applYing PA 10 pms 3. 7, 10, and 14 simultaneously. PA~ See Figure 1 for toggle lesl circuit VIL MC1678(continued) APPLICATIONS INFORMATION With the addition of a single gate package, the Me 1678 wi II count in a fully synchronous mode, as shown below. 50 14 1/2 MC1662 00 13 S1 10 01 11 52 3 02 4 53 7 03 6 Clock 15 »-----o--iC1 R Reset 9 o----JL---J--1=====t======~~::::t:::::::~--~ Cio 12 2 C2 03 5 4-71 MECL III MC1600 series DUAL 4-5-INPUT OR/NOR GATE MC1688 Advance InforIllation The MC1688 is a dual 4-5 input OR-NOR gate. All inputs are terminated by a 50 k ohm resistor to VEE eliminating the need to tie unused inputs low. POSITIVE LOGIC 8~ NEGATIVE LOGIC 9 7 10 6 8¥ 11 9 7 10 6 11 13~ 14 15 16 13~ 14 2 15 3 2 3 16 1 tpd "" 0.8 ns typ 1 VCC1 ~ Po = 125 mW tvp/pkg (No Load) Output Rise and Fall Times (10% to 90%) 1.7 ns (20% to 80%) 1.1 ns 4 VCC2 = 5 VEE = 12 CIRCUIT SCHEMATIC 4 OR 6 ------+-- - - 15 (3) 12 Vaa L P D '" 220 mW typ/pkg (No load) 9(13) Full Load Current, I L ::: -25 mAde max Number at end of terminals denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650). CIRCUIT SCHEMATIC (6) (7) (2) (5) 2 3 14 1 (4) (3)· 15 16 VCC2 100 100 100 100 100 350 100 Vaa 9 (13) 1958 365 4 (8) 5 (9) 7 (11) 6 (10) 11 (15) 10 (14) 13 (1) 8 (12) 12 (16) Number at and of terminel denotes pin number for L package (Case 620), Number in parenthe$is denotes pin number for F package (Case 6501. Sea General I nformation section for packaging information. 4-81 2k s ... en ELECTRICAL CHARACTERISTICS (') This MECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been establ ished. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is U) N n o :::J mounted on a printed circuit board. Test ~, procedures are shown for selected inputs :::J C ~ and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data. (1) 0.. F SUFFIX CERAMIC PACKAGE CASE 650 :~6 11~ 10~7 14~ 15~2 1;~3 Vaa .". L1 3 cD I\J TEST VOLTAGE VALUES @Test VIH max VIL min VIHA min VILA max Vaa VEE -0.875 -1.890 -1.180 +2SOc -0.810 -1.850 -1.095 -1.515 -1.485 From Pin +8SoC -0.700 -1.830 -1.025 -1.440 13 ~ ~ Temperature _30°C MC1692F Test Limits Symbol Pin Under Test Power Supplv Drain Current 'E 12 50 mAdc Input Current I in 8 250 J.lAdc I nput Leakage Current 'R 100 J.lAdc Characteristic logic "1" Output VOltage LogIc "0" Output Voltage _JODC Min Min TEST VOL TAGE APPLIED TO PINS LISTED BELOW: +85~C +25"<: Max Max Min Max Unit VIH max VOH -1.045 -0.875 -<).960 -0.810 -0.890 -0.700 Vdc 1.11,14 VOL -1.890 -1.650 -1.850 -1.620 -1.830 -1.575 Vdc 8 Logic "1" Threshold Voltage VOHA -1.065 Logic "0" Threshold Voltage VOLA Reference Voltage SwitchIng Times (50 Propagation Delay RIse Tune Fall Time n Load) Vaa t8-6+ t8+6- '6+ '6- -1.630 13 6 6 -1.600 Vaa VEE (VCC) Gnd 1,8,11,14 9,10,15,16 12 4.5 1,11,14 9,10,15,16 12 4.5 1,11,14 9,10.15,16 8,12 4,5 VIL min VIHA min VILA max 9,10,15,16 12 4.5 1,11,14 9,10,15,16 12 4.5 Vdc 1,11,14 9,10,15,16 12 4,5 -1.555 Vdc 1.11,14 9,10,15,16 12 4.5 Vdc 9,10,15,16 12 4,5 12 4.5 -0.910 -0.980 -5.2 1.375 1.275 -1.35 -1.25 1.30 1.20 Min Max Min Max Min Max Pulse In Pul.Out a 6 9,10,15,16 ~ ~ ~ 1.6 1.8 1.5 1.7 1.7 1.9 2.2 2.2 2.1 2.3 2.1 2.3 ~ ~ I~ s: (") .... ELECTRICAL CHARACTERISTICS en This MECL III circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The package should be housed in a suitable heat sink OERC-UC214A2WCB or equivalent} or a transverse airflow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 5O-ohm resistor to -2.0 Vdc. See general information section for complete thermal data. CD to.) Cl o :::J !:.', :::J - C (I) a. LSUFFIX CERAMIC PACKAGE CASE 620 :=.:t>--2 ~=:::t>-3 "'" ~ 10~'4 11~ 13 12 =:::::r>--vaa Symbol Pin Und.r T ... IE 8 I nput Current lin 4 I nput Leakage-Current Logic "1" Output Voltage 'R 4 VOH 2 Chllracteristic Power Supply Drain Current Logic "0" Output Voltage Logic" I" Threshold Voltage LogiC "0" Threshold Voltage Reference Voltage VOL 2 VOHA VOLA 2 Vaa 9 Propagation Delay Rise Time _ Fall Time 2 2 t4_2+ t4+2- 2 '2+ t2 ___ - 2 V'H max Vil min VIHA min VILA m•• Vaa VEE -1.890 -1.850 -1.180 -1.095 -1.515 -1,485 From Pin ~,2 +25"<: -0,875 -0,810 +8SGe -0.700 -1.830 -1.025 -1,440 Temper.ture _lOGe Lg MCl692l T.t Limits _lOGe Min -1.045 -1.890 -1.065 -0.875 -1.650 Min Ma. Min Ma. Unit - 50 - - mAd, -0,960 -1.850 VIHmb VIL min VIHA min - 4 4,7,10,13 7,10,13 250 #Adc 100 J,lAdc -0.810 -O,B90 -0,700 Vd, 7,10,13 -1.620 -1,830 1.575 Vd, • -0.980 - -0.910 - Vd, - -1.600 - -1.555 Vd, - 1.375 1.275 -1.35 -1.25 1.30 1.20 Vd, - Min Ma. Min Ma. Min Ma. - 1.6 1.8 - 1.5 1.7 2.2 - 2.1 2.3 - - 2.1 '----- ~ - 1.7 1.9 2.3 - 4 7,10,13 7,10,13 - 7,10,13 4 - - n, ~ VILA m •• 7,10,13 -1.630 - 9 I 1---0-::- ~ ~,2 I TEST VOLTAGE APPLIED TO PINS LISTED BELOW: +8S GC +25"<: Ma. - 2 Switching Times (SO H Loadl TEST VOLTAGE VALUES In... 15 - Vaa VEE Gnd 5,6,11,12 8 1,16 5,6,11,12 5,6,11,12 B 1,16 5,6,11,12 B,' 8 5,6,11,12 8 4 5,6,11,12 8 1,16 - 5,6,11,12 8 - 5,6,11,12 8 1.16 1,16 B 1,16 Pul.ln Pul.Out 4 2 5,6,11,12 ~ ~ ~ -- '-- 1,16 1,16 1,16 ~ ~ MC1692 (continued) the differential line receiver inputs of the MC1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The APPLICATIONS INFORMATION waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line is 1.68 ns/toot. The MC1692 Quad line receiver is used prlmanly to receive data from balanced twisted pair lines, as Indicated In Figure 1. The MC1692 may also be applied as a high frequency schmitt trigger as illustrated In Figure 4. ThiS Circuit has been used in excess of 200 MHz. The MC1692 when loaded Into 50 ohms will produce an output rising edge of about 1.5 nanoseconds. The line is driven with a MC1660 OR/NOR gate. The MC1660 is terminated with 50 ohm resistors to -2.0 volts. A t the end of the tWIsted pair a 100 ohm termination resistor is placed across FIGURE 1 - LINE DRIVER/RECEIVER FIGURE 2 - 400 MBS WAVEFORMS FIGURE 3 - PULSE PROPAGATION WAVEFORMS Sending End Sending End 2 ns/cm 5 ns/cm Receiving End ReceiVing End VEE = -5.2 V MC1692 -1.3V~ )-----'-1 3 FIGURE 4 - 200 MHz SCHMITT TRIGGER 9 500 0.01 0.01 J.lF J.lF 50 E--y1 100 VTT = -2 V 4-84 MECL III MC1600 series 4-BIT SHIFT REGISTER MC1694 The MC1694 is a 4-Bit register capable of shift rates up to 325 MHz (typical). This shift register operates in the shift·right mode, accepting serial data at either data input 01 or 02. A master reset and individual set inputs override the clock allowing asynchronous entry of information. FLIP-FLOP TRUTH TABLE Inputs D C R S Output an 0 0 a a a a a I a a I a a a I I a I a a a I a I a I a a a a a a a a a a a a 1 1 a 1 1 1 1 a °n-l I a a , ,, , a ,, , , ,, ,, , a ,, , 1 1 1 I LOGIC DIAGRAM °n-1 VCC,: 1 VCC2: 16 VEE: 8 50 2 00 13 S1 Q1 10 12 52 3 02 53 6 4 03 5 1 a 01 02 1 ·Output State 14 15 Undefined DC Input Loading Factors Reset = 2.5 Set = 1.0 Clock = 1.6 Data ,,:::=::=j====j==~=:t=~ Clock Reset 97 0 __J = 0,9 DC Output Loading Factor = 70 Total po ......er Dissipation = 750 mW typ/pkg Shift Frequency = 325 MHz typ FLIP-FLOP ELEMENT CIRCUIT SCHEMATIC 114 OF CI RCUIT SHOWN o· 100 ~ >- 100 300 pc ~rl ~ >- ~>125 01 02 100 100 K- Il > ~ ~ I----"" r--- ~~ 0 ~~ C 60 1235 f-- f-R 50 50 50 k k k 50 k 50 560 k 1.3k ~ 1.3 k [os ~ ~k 675 bv EE S.. General I nformation section for packaging. 4-85 ~ ~ )- r----rt s 325 675 ~ 1.5 k I k 1.5 k MC1694 (continued) ELECTRICAL CHARACTERISTICS so '1 This MECL III circuit has been designed to meet the de specifications shown in the test table. after thermal equilibrium has been established. The package should be housed in a suitable heat sink (lERe-LIC214A2VVCB or equivalent) or a transverse 01 14 02 15 aD 51 01 52 Q'1 S3 03 13 10 12 :] 4 6 5 L SUFFIX airflow greater than 500 linear fpm should CERAMIC PACKAGE CASE 620 Clock be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs, The other inputs and outputs are tested in a similar manner. Outputs are tested with a 5O.-ahm resistor to -2.0 Vdc. See general information section for complete thermal data. TEST VOLTAGE VALUES @Test Temperature _30°C Power Supply Drain Current Input Current Symbol Logic' -3O"c M,n 1m H LogiC "0' Output Voltage VOH M" M,n 7 0750 2,3,6,10 14,15 OS -1.485 -5.2 +85 0C -0700 -1830 -1.025 -1440 -52 Unit VILmin VIHAmin VILAmu t -1045 -0.875 -0 960 -0810 -0.890 -0 700 -1650 -, 850 -1620 -1830 -1575 V ® 1,16 1,16 CD Reset all four flip flops bv applvmg PAl to pin 9 and 10 SImultaneously Reset all lour flip Ilops bV applVIng PA2 to Pin 10 PA1~~II~ 4-86 X X -3,2 V +2,QV 8 8 1,16 1,16 1,16 1,16 1,16 1,16 30 ~ Set all four fl'p·flops by applVIng PAl to PinS 2,3,6, Q) 7 3.1 250 • 1.16 1,16 Pulse In Pul.Out t9+X- 1.16 • • (j) AC Characteristics AlseTlme Gnd 1.16 /JAde -0.980 VEE 8 + 05 -, 630 VIHrm. mAde LogiC "0' Threshold Voltage LogiC -1.095 mAde 05 0.5 05 7.• 4,5,12,13 -1850 TEST VOLTAGE APPLIED TO PINS LISTED BELOW: M" 200 , 0 2,3,6,10 14,15 ' Output Voltage M,n VEE 52 -0 810 +8S 0C +2SoC Mo, 'E Ion L , .. , T... VILmin VIHAmin VILAma. -1.890 -1.180 -1.515 +ZSoC MC1694L Pin Undflf Chlr.elenstle VIHma. -0 875 MH, @)Set all four fl,p·flops bV applVlng PA2 to pins 2,3,6, and 14 Simuitaneousiv PA2 -----c=~:~: ® See Figure 1 tor shift freQuency test cirCUit. MC1694 (continued) FIGURE 1 - SHIFT FREQUENCY TEST CIRCUIT V out +2.0 Vdc AIJ input and output cables to the scope are equal lengths of 50-ohm coaxial cable. - 3.2 Vdc Coax II'F I'FI 0.1 0.1 1 50 168 50 Clock Input 100 100 100 1/4 MC1662 4-87 COMPATIBLE INTEGRATED CIRCUITS 5-1 \ - ._ _ _ _ _ _D_U_A_L_S_E_N_S_E_A_M_PL_I_F_IE_R----'l MC1543L DUAL MECL CORE MEMORY SENSE AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC DUAL MECL CORE MEMORY SENSE AMPLIFIER MONOLITHIC SILICON EPITAXIAL PASSIVATED · .. a dual de coupled sense amplifier providing output levels compatible with emitter-coupled logic levels_ The MC1543L offers adjustable threshold and excellent threshold stabilitv over a wide range of power-supply voltage variation_ • Input Threshold - Adjustable from 10 to 40 mV (positive or Negative Signals) • Both OR and NOR Outputs Available 14 • Low Power Dissipation • Threshold Insensitive VCC or VEE Voltage Variation • Each Amplifier is Separately Strobed CERAMIC PACKAGE CASE 632 TO·116 CIRCUIT SCHEMATIC Vee OUTPUTS , No,,,,"Hy lOVO 6 , " 13 GilD VE( "U" frlg,,,,oUy HIGH I (1"~!~HOlO v,., AOJUST) , , OUTPUTS J"l. frlo,m.lI. ". See General Information section for packaging 5-3 MC1543L (continued) MAXIMUM RATINGS ITA = +25 0 C unless otherwise noted.l Rating Povver SupplV Voltage Symbol Value Unit VCC VEE +10 -10 Vde Vde VID ±5.0 Vde VICM ±5.0 Vde IL 25 mA 1000 6.7 mW mW/oC °c °c Differential Input Voltage Common-Mode Input Voltage Load Current Po POlNSr Dissipation (Package Limitation) Ceramic Dual-tn-Line Package Derate above T A = +2S o C Operating Temperature Range TA -55 to +125 Storage Temperature Range T"g -65 to +150 ELECTRICAL CHARACTERISTICS lEach Amplifierl IVCC = +5.0 Vdc ±5%, VEE = -5.2 Vdc ±5%, Vref = 0.54 V 1.1%, TA = +25 0 C unless otherwise noted.) Fig.No. Symbol Min Typ M.. Input Threshold Voltage 8 VTH 17 20 23 mV Power Supply Currents (V2= V3= Vll = V12= V14 =01 6 6 ICC lEE - - 9.5 26.5 12 33 mAde mAde Input Bias Current 7 liB 10 ~Ade 7 110 - 3.5 Input Offset Current 0.05 0.5 !lAdc Output Voltage High 9 VOH -0.85 -0.8 -0.67 Vdc Output Voltage Low 9 VOL -1.7 -1.46 Vdc Strobe Threshold Level 10 VST Strobe Input Current High 10 ISH Strobe Input Current Low 10 ISL - Input Common Mode Range 14 VCMA 3.0 - 10-40 - mV 185 230 mW 10 40 "A ns Characteristic Unit -1.30 - Vde 25 50 ,."Adc 0.01 0.1 4.0 - "Ade Vdc Input Threshold Aange(by varying Vrefl 8 VTHA Power Dissipation 6 Po Aeference Supply Input Current (Pin 131 6 'ref - - 28 35 16 20 ns 18 30 ns SWITCHING CHARACTERISTICS Propagation Delay (Input to Output) 1 tlO Propagation Delay (Strobe to Output) 12 tso Strobe Release Time 12 tSA - Recovery Time (Differential-Model (ein = 400 mVdcl 13 tDA - 10 15 ns Aecovery Time (Common-Model (ein = 3.0 Vdel 14 tCMA - 3.0 15 ns Strobe Width Minimum 12 ts - 8.0 - ns 8 VTH 18 15 21.5 18.5 25 22 TEMPERATURE TESTS (-55 0 C to +125 0 CI Input Threshold Voltage TA - -55 0 C TA = +125 0 C Input Bias Current Input Offset Current mV 7 liB 2.2 7.0 20 "Ade 7 110 0.02 '0.1 1.0 "Ade 5-4 MC1543L (continued) EQUIVALENT CIRCUIT INPUTS REFERENCE 13 VOLTAGE INPUTS Il STROBE TYPICAL CHARACTERISTICS (VCC = +5.0 Vdc. VEE = -5.2 Vdc. V re, set for 20 mV Threshold. TA noted.1 45 4 40 ! 2 = +25 0 C unle.. otherwise FIGURE 2 - TYPICAL INPUT THRESHOLD vorsus REFERENCE VOL TAGE FIGURE 1 - TYPICAL INPUT THRESHOLO v.rsus TEMPERATURE \ :> .§ 35 r-- 0 c ~ ------- -r--"--- 8 0 ~ '"i= ~ ---- ~ ~ +25 25 +50 +75 +100 \ I T ...... 20 ................ 15 5.0 ---- r- - ~ I o +125 II \. 25 > 10 16 -55 50 30 I Recommended voltage tor 20 mV _ Threshold: Vref:: 0.540 Volt 0.2 TA. AMBIENT TEMPERATURE lOCI 0.4 0.6 0.8 1.0 1.2 1.4 Vref. REFERENCE VOLTAGE (VOLTSI FIGURE 38 - TYPICAL INPUT THRESHOLD versus VEE FIGURE 3A - TYPICAL INPUT THRESHOLD versus VCC 4.----------.------------r---------~ 4 :> 2 .§ =: c :r 2~----------+_-----------+----------~ 0 ;=~ "" ii! O~ I~~~~~~--~------------~~~~====~::j 8 ~ 8~------------~------------~------------_1 ~ 16 4.5 5.0 5.5 6.0 ~~f:,.5-------..,51::.0-------..,.5L,-.5-------::'-6.0 6.5 Vee. POSITIVE SUPPL Y VOLTAGE IVOL TS) VEE. NEGATIVE SUPPLY VOLTAGE (VOLTS) 5-5 MC1543L (continued) TYPICAL CHARACTERISTICS Icontinuedl (Vee = +5.0 Vdc, VeE = -5.2 Vdc, Vref set for 20 mV Threshold. T A = +25 0 C unless otherwise noted.) FIGURE 4 - TYPICAL INPUT THRESHOLD varsus INPUT PULSE WIDTH FIGURE 5 - INPUT·OUTPUT TRANSFER CHARACTERISTICS lona outputl -0. 5 0 "NOR"! Output :; E u; ;;; 50 \ '" ~ o > 40 :J ~ 30 % ~ .c o ~ -1 0 w ~ ~ >>~ :; '" ~ o "'-. 20 ...> ~ ~ -1. 5 r---. o ---f ~O.5 mr Transitior Width :> -2. 0 -40 10 o 10 20 40 30 t. INPUT PULSE WIDTH 50 60 30 20 losl .10 10 + 20 t 'in. INPUT VOLTAGE ImVI TEST CIRCUITS (Vee = +5.0 Vdc, VEE'" -5.2 Vdc, Vref FIGURE 6 - = 0.54 V, TA = +25 0 C unless otherwise noted.! POWER SUPPL Y CURRENT DRAIN FIGURE 7 - INPUT BIAS CURRENT INPUT OFFSET CURRENT +5.0 Vdc +5.0 Vdc A 13 Unless otherwise specifier! Vref should beset for 20 mV threshold IV re !" 0.4 VI 14 12f-o--+ 111-0--.... 101-0--" A -52 Vdc FIGURE 8 - INPUT THRESHOLD LEVEL FIGURE 9 - OUTPUT VOLTAGE LEVELS +5.0 Vdc to voltmeter 5.1k 990 ±.O.l% 11 50 51 12 10 !O.l% -5.2 Vdc to voltmeter 5-6 30 . 40 MC1543L (continued) TEST CIRCUITS (continued I FIGURE 10 - STROBE THRESHOLD LEVEL STROBE INPUT CURRENTS FIGURE 11 - PROPAGATION OELAYINPUT TO OUTPUT Ito dual-trace oscilloscope) 5.1 k 51 25 mV INPUT FIGURE 12 - PROPAGATION OELAY - STROBE TO OUTPUT and STROBE RELEASE TIME +5.0 Vdc 5.1 k <1% 51 <1% FIGURE 13 - OIFFERENTIAL MOOE RECOVERY TIME (See definition section) Vret +5.0 Vdc (to dual·trace ostilloscope) (to oscilloltop,) 11 3 12 -= -= -5.2 Vdc Ito dUII·lrm oscilloscope) -0.7V DIFFERENTIAL 400 mV INPUT -1./V STROBE -....;.:;"----.,f') DUffUT_________________________ 5-7 -1./ V MC1543L (continued) TEST CIRCUITS (continued I FIGURE 14 - COMMON MOOE RECOVERY TIME COMMON MOOE INPUT RANGE IS.8 definition section. +5.0 Vdc Vref (to ostilloscopel -5.2 Vdc COMMON MOOE INPUT tPLH 3.0 V 0 10 no STROBE -1.7 V i "VT,....I------ OUTPUT 100mV DEFINITIONS tso Propagation Delay. Strobe I nput to Amplifier Output - The time required for the amplifier output pulse to achieve 50% 110 Input Offset Current - The difference between amplifier input current velu .. IlIA - 12AI or 111B - 12BI· of its final value referenced to 50% of the strobe input pul. ISH Strobe High Current - The amount of input current when at pins 4 or 10. the strobe pin il grounded. tSR Strobe Release Time - The time required for the output to change to 50% of its swing after the strobe reach.. 50% of its level going low. A dc level of 50 mV is the input signal. ISL Strobe Low Current - The leakage current when the strobe input il tied to the _tive .. pply. Po Power Oillipetion - The amount of power dissipated in the unit. leMR Common-Mode Recovery Time - veMR The minimum time by Maximum Common-Mode Input Range - The common-mode input voltage which causes the output voltage level of the amplifier to change by 100 mV (strobe high). which the strobe input may follow the high level common mode Input "MI without elusing 8 signal to appear at the amplifier output. VOH Output Voltage High - The high·leval output voltage It pinl 6 and B with no input - or at pins 5 and 9 with Input abova threshold. tOR Differential-Mode Recovery Time - Differential recovery time. the minimum time by which thl strobe input may follOW the high .....1 differential input lignal without cauling a . .nal to 8PPMr at tha amplifi.. output. VOL OutPUt Voltage Low - Tha low·level output voltage 81 pinl 5 and 9 with no input - or at pinl 6 and 8 with input above threshold. tlO Pro-,Ion Oalay. Ampllfi.. Input to Ampliflar Output The time required for the amplifier output 10 reach 50'J1. of III flM! vel . . . . ref..- to lim' of tha level of tha pUl. inpUt.(Amplifi.. input· 26% over set threshold or approxi· mately 26 mVdc.) \1sT Strobe Threshold Level - The voltage It which the IIrobe turns the 8mplifier to the ON ltate. VTH Input Threshold - Input pul. amplitude .t pins 2,3.11. or 12 thet ceu_ the ..utpUt gatl to just reach ill new vel.... VOL or VOH· IS Strobe Width - The amount of time the strobe must be high to " I n a IMn output. Minimum strobe width ilth81 min- VTHR Input Threshold Ringe - The maximum lPI"eed of input threshold level that can be Ittained by _ying tha thrnhold voltage reference. Vrof. Imum time __ Ired to cau. the output to complete a full ..tng VOL 10 VOH or VOH to VOL. 5-8 MC7900C l . . __ N_E_G_A_T_I_V_E_V_O_L_T_A_G_E_R_E_G_U_L_A_T_O_R_S---J Series MC7900C SERIES THREE-TERMINAL NEG.ATIVE VOLTAGE REGULATORS THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C devices. In addition, two extra voltage options commonly employed in MECL systems are al!D available in the negative MC7900C Series. Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe·area compensation - mak ing them remarkably rugged under most operating conditions. With adequate heat·sinking they can deliver output currents in excess of 1.0 ampere. MONOLITHIC SILICON INTEGRATED CIRCUITS • No External Components Required • Internal Thermal Overload Protection • Internal Short·Circuit Current Limiting K SUFFIX METAL PACKAGE CASE 11 (TO·3 TYPE) • Output Transistor Safe·Area Compensation • Packaged in the Plastic Case 199·04 (Pin Compatible with the VERSAWATTt or TO·nO) Or Hermetic TO-3 Type Metal Power Package SCHEMATIC DIAGRAM P SUFFIX PLASTIC PACKAGE CASE 199-04 Pin 1 GNO (8) Pin 2 Output (E) Pin 3 Input (e) Heat sink surface connected to pin 3. .---+--1-0 v 0 STANDARD APPLICATION 0.3 A common ground il required between the input and the output volta" ••. The input voltege mUlt remain typicallv 2.0 V more negative even during the high point on the input ripple voltage. xx '" these two digit$ of the type number indi- cate voltage . • '" Cin i$ required if regulator i$ located an appreciable distance from power supply filter. DEVICE TYPE/NOMINAL OUTPUT VOLTAGE MC7902C - 2.0 VolU MC7906C - 6.0 Volts MC7905C - 5.0 Volts MC790S.2C - 5.2 Volt, MC7908C - 8.0 Volu MC7912C - 12 Volts MC7915C - 15 Volt' MC7918C - 18 VOlts MC7924C - 24 Volts 5-9 •• = Co improves stability and transient respon$e. MC7900C Series (continued) MC7900C Series MAXIMUM RATINGS IT A = +25 0 C unlessotherw"e noted I Rlting Symbol Input Voltage (2.0 V - 18 VI (24 VI Value Power Dissipation and Thermal Characteristics Plastic Package TA = +250 C Derate above T A = +2SoC Po Watts mW/oC °C/W 15 SOO 2.0 Watts mW/oC 2.S 28.6 35 Watts mW/oC °C/W mW/oC °JA TC = +2SoC Derate above TC = +9SoC (See Figure 1) Po 1/0JC Thermal Resistance. Junction to Case Vdc 2.0 20 50 1/0JA Thermal Resistance. Junction to Air Unit -35 -40 Vin °JC °C/W Metal Package TA = +250 C Derate above T A = +250 C Po 1/0JA Thermal Resistance, Junction to Air °JA TC = +2SoC Derate above T C = +6SoC Po Storage Junction Temperature Range Operating Junction Temperature Range MC7902C ELECTRICAL CHARACTERISTICS IV Characteristic Output Voltage (TJ °JC 15 250 4.0 T stg -20 to +150 °c TJ Oto +125 °c 1/0 J C Thermal Resistance, Junction to Case '" - 10 V 'a = 500 rnA OOC « 0.1 50 75 125 100 NO HEAT SINK ~ 1. 0 F"== i==NO HEAT SINK 25 INFINITE HEAT SINK ~ (5 5.0 I-=::;; C- 2.0 ffi L- or-- o ;:: ~ r-- CI< f .... 50 :t Q ; i:: iz 150 -- '" " = IIJOCJW HEAT SINK- " oI +25 +50 +75 +100 +125 +150 TA, AMBIENT TEMPERATURE 1°C) TA. AMBIENT TEMPERATURE 1°C) FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT·OUTPUT DIFFERENTIAL VOLTAGE FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREOUENCY 2. 5 100 Vin=-tl V H++H1+1tH++lfttill-+++-t-tttttt- Vo • -S.O V /1----. 0 ....... i'.. If ; " 5 z 0 ~ "r-.. " .... ....... ~ S.O 3.0 9.0 12 15 21 IB 60 .... 40 i: "' ........ ::0. o o 10·20 mA 80 24 27 " 20 0 10 30 100 FIGURE 5 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES lOOk FIGURE 6 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE BO S.26 or--- ~ \ 10·20 mA ~vin 6.2 2 o :r.... ;o f'" 120 Hz ............ r- '" 1.0 V(RMS) - Cl --........ 6.1 8 ~ !j 40 4.0 S.O B.o 10 12 14 IS 18 20 ./ ~ 6.14 6.10 S.OS -25 22 VO, OUTPUT VOLTAGE IVOLTS) 5-15 ./ - --- V ./ -- f.-"1 ~ > 0 2.0 10 k 1.0 k I, FREQUENCY 1Hz) IVin-Voutl, INPUT·OUTPUT VOLTAGE DIFFERENTIAL (VOLTS) I I Vio = -11 V Vo·-S.OV10 ·20mA Y I +25 "'50 +75 +100 +125 TJ, JUNCTION TEMPERATURE 1°C) +150 +115 MC7900C Series (continued) TYPICAL CHARACTERISTICS Icont,nued) fiGURE 7 - OUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE DEfiNITIONS Line Aegulation - The change In output voltage for a change In the input voltage. The measurement IS made under conditions of 5. 2 low dissipation or by uSing pulse techniques such that the average O~ chip temperature is not significantly affected. Load Regulation -- The change 10 output voltage for a change load current at constant chip temperature. ....... r-...... 8 MaXimum Power Dissipation - The maximum total deVice dissipation for which the regulator Will operate within speCifications . ......... ............ 6 Yin = -11 V o 25 QUiescent Current - VO·-6.0V'0' 20mA ....... " 4.2 100 That part of the Input current that IS not delivered to the toad. -- .................. 50 75 TJ. JUNCTION TEMPERATURE 10C) Output Noise Voltage -- The rms ae voltage at the output. with constant load and no Input ripple, measured over a specified fre· quency range. Long Term Stability - Output voltage stability under accelerated life test conditions with the ma)(lmum rated voltage listed in the devices' electncal characteristics and maximum power dissipatIOn 125 OUTLINE DIMENSIONS MIUIMETE S O.M ll~ r~, LEAO CONFIGURATION PIN 1. GNO 2. OUTPUT CASE: INPUT 's~1 PLAN" • ~ J __ M I. 10 NOn: I.OIM··C··ISOIA ••• .J MAX INeMU M•• MAX .."" I. ... lU7 2'" 1 ". 34' ... .... • 0." O.OB 1.117 11.11 0..20 1115 12.19 0.SS5 ,.• • .... " '09 11.18 '.84 OISI 21.67 0.043 0.135 1.197 ..... 0.2 0.175 0.... 0.161 '05' R G L.d111t90 ld pliledCtlp""to'edKo"'" 'T"d.nwko'WnI'nIlIhr;lu.EII(Ir,cCofpll""OO G,oundeonnKlidtoCl•. Md•• ,.c"" ~~I ~=t-+~ FTrfM tH .---..1 I( 0-!!tGL IIILLIMETERS • X • 16.0. 11.33 12.57 12.13 3.11 3.43 0 .. DJI 3.11 2.!t4ISC 2.01 2.t2 0.43 0." 14.73 lUI ,... l ] S m • 1.47 I.n S.O .1 , 4.1 11 .11 S. --JL-J ~~l r r 13 2 lEAD CONFIGURATION PIN 1. GND PIN 2 OUTPUT PIN] INPUT CAU"·II Helll,nk,u,l.utonnectedtop,03 5-16 D'. UI ... 7.4 .,, H X 0.03' 0.'" .. 0.... 0.... .• 25 0.020 D.... 0.142 0.152 D.' o.le .11 0.011 DO 0.... 0.590 T o.osa o.oa .1 .1 O. O. O.D .275 NOTES 101M '"G . IS TO CENTUI OF LEADS PLASTIC PACKAGE CASE 111-04 PSUFFIX W."h!.2U9'iml MC7900C Series (continued) APPLICATIONS INFORMATION Onign Consi_ationl In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with 8 capacitor if the regulator is connected to the power supply filter with·long wire lengths, or if the output load capacitance is large. An input bypass capacitor ,should be selected to provide> good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 ~F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor is used, its value should be 1.0 ",F or larger. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no. external sense lead. Bypassing the output is also recommended. FIGURE 8 - CURRENT REGULATOR FIGURE 9 - CURRENT BOOST REGULATOR The MC7900c Series of fiJCed voltage regulators are desi!Jled with Thermel Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, I "ternal Short-Circuit Protection that limits the maximum current the circuit will piss, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current 85 the voltage across the PBH transistor is increased. (-5.0 V@ 4.0 A, With 5.0 A current limiting) -10 V I nput ____ ..... --'\N\~ ~( '),-------------....._ -5.0 V Output 10 = 200 mA Input Vo ~10 V 2'+ 1.0 ",F e-~----------------~+---------__ .Gnd The MC7902. -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows: Gnde---------------~------+_------~_eGnd -Mounted on common heet sink, Motorola MS·100r equivalent. When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/ASC. Operation beyond this point to the peak current capability of the MC7905C is pos· sible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator. The quiescent current for this regulator is typically 4.3 rnA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage. FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY (±15V@1.0AI +20 V +15 V Input Output 0.33"F Gnd FIGURE 11 - TYPICAL MECL SYSTEM POWER SUPPLY (-5.2 V@ 4.0 A and -2.0 V@ 2.0 A: lor PC Board) -12 V Input -5.2 V >-----'V'."v-------_--_Output 1N4001 or Equiv Gnd -2.0 V .....--~W\r------e---+_ Output -20 V -15 V Input Output Gnd The MC7815 and MC7915 positive and negative regulators may When current·boost power transistors are used, 4 J·ohm base·to· emitter resistors (RI must be used to bypass the quiescent current at no load. These resistors, in conjunction with the VBe of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation. be connected as shovvn to obtain a dual power supply for oper· ationll amplifiers. A clamp diode should be used at the output of tlw MC7815 to prevent potential latch·up problems. 5-17 RANDOM ACCESS MEMORY MCM7001L "\ MCM7001L-l ~-----------' Advance Inf'orxnation MOS 1024-BIT STATIC RANDOM ACCESS MEMORY IN-CHANNEL. METAL GATE) The MCM7001 memory is fabricated with high-density, highlyreliable, N-channel, metal-gate MOS technology_ The device utilizes low-voltage inputs (except Chip Select) and on-chip address registers, and has low power consumption. Low output capacitance and a Chip Select input allow memory expansion without speed degradation. The charge pump technique is used to automatically refresh all memory cells without affecting memory access_ • Organized as 1024 Words of 1 Bit • Access Time = 55 ns Maximum = 75 ns Maximum (MCM7001 L) (MCM7001.L-l) • Cycle Time = 180 ns Minimum • Static Operation • Low Power Dissipation 640 IIW/Bit Maximum Active 60 IIW/Bit Maximum Standby • Differential Current Sinking Outputs • On-Chip Address Registers CERAMIC PACKAGE CASE 694 • Low-Voltage Inputs (Except Chip Select) • Chip Select for Memory Expansion • MCM7001 L Direct Replacement for AMS7001 PIN ASSIGNMENT ABSOLUTE MAXIMUM RATINGS (See Note 11 (Referenced to most negative supply voltage, Vsx.l Rating Supply Voltages Symbol Value Unit VDD -0.5 to +25 Vdc VREF -0.5 to +25 Vdc VSS -0.5 to +10 Vdc Vin,V out -0.5 to +25 Vdc Operating Temperature Range TA o to + 70 Storage Temperature Range T stg -55 to +125 ue °e I nput and Output Voltages NOTE 1 1024-BIT STATIC RANDOM ACCESS MEMORY Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGSareex- VSX 22 At AO 21 A2 VSS 20 A3 NC 19 A" op 18 VDD D,n 17 D out WE 16 Dout A9 15 VAEF A8 CS NC A5 A7 10 " 13 A6 11 12 ceeded. Functional operation should be restricted to RECOMMENDED OPERAT· ING CONDITIONS. Exposure to higher than recommended or maximum voltages for extended periods of time could affect deyice reliability BLOCK DIAGRAM VDD VSS· v,x '0 17 Data Oel' IDoel,1 Ditta (" 10,,,1 60-- 16 Da';I0ul (OOul' W",. E"abl. lWEI 7 0 - - - - - - - - - 0 - 1 C"cu,uy AO A' AJ Buff." 14 CI'I,pSelec\ ICSI This is advance Information and specifications are subject to change without notice. 5-18 This deyice contains circuitry to protect the Inputs against damage due to hIgh static voltages or electric fIelds; however. it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high Impedance CIrCUIt. MCM7001 L,MCM7001 L-l (continued) RECOMMENDED OPERATING CONDITIONS IF ull T emperature R ange Parameter Symbol Min Nom Max VOO 14.7 15.5 16.3 V VREF 7.0 7.5 8.0 V Supply Voltages Unit VSS 0 0 0 V VSx -2.7 -3.0 3.3 V - 5.5 V Logic Leyels Input High Voltage IAn, Din, WE) VIH 4.0 Input Low Voltage (An. Din. WE) VIL -1.0 Chip Select High Voltage VCSH VOO -1.0 Chip Select Low Voltage 0.8 V VOO + 1.0 V VCSL -1.0 V VpH 8.0 - 1.0 Charge Pump High Voltage 12 V Charge Pump Low Voltage VPL VSx - 2.0 - VSx - 5.0 V Timing (tCSr and tCSf - 10 ns) Chip Select On Time TCS 80 - 500 ns Chip Select Off Time TCS 100 - - ns Chip Select Rise Time tCSr 5.0 - 40 ns Chip Select Fall Time tCSf Cycle Time (Read or Write) Teye 5.0 180 - Setup Time (An. Din, WE) TIS 0 Address Hold Time TAh 40 - Write Valid Time TWv TCS + TIS Data I n Valid Time TOv TCS + TIS f pump 200 - Charge Pump Input Frequency (See Figure 1 for waveform 40 ns - ns ns ns ns ns kHz 1000 characteristics) DC ELECTRICAL CHARACTERISTICS IFull operating voltage and temperature range unless otherwise noted.1 Symbol Characteristic Input Current (An. Din) IIH Min - Typ Max Unit 0.4 1.0 mA IVI = 4.0 V, VCS = 01 Write Enable I "put Current (V I - 4.0 V. V CS - OJ IWH Chip Select I nput Current, Average Over Operating Mode IVA = VI L, T eye = 180 nsl ICSH Chip Select Low Input Current IV A = 4.0 V, V CS = 01 Differential Output Sink Current ICSL 100 0.2 Supply Current, Unselected Mode IVCS = 01 ISXU - IDOU IREFU Supply Current, Operating Mode ITeye= 180nsl - - 100 ~A 10 mA -11 mA - mA - -100 ~A 2.5 3.0 mA - 60 -400 ISX IREF 10 - ~A 25 35 "A mA 6.0 10 mA AC ELECTRICAL CHARACTERISTICSIFul1 operating voltage and temperature range unless otherwise noted.1 Characteristic MCM7001 L MCM7001 L-l Access Time (I DO '" 0.2 mA, tCSr - 10 ns, RL = 100ohms,CL = 50pF, Figure 21 Address Capacitance'" . Write Enable Capacitance Data In Capaci tance . Symbol Min Typ Max Unit T aee - 45 - 55 75 ns ns 5.0 6.0 pF 5.0 6.0 pF 5.0 6.0 pF 65 80 pF 6.0 pF 80 pF CA CWE VI = VSS, f = 1.0 MHz - COl Charge Pump I nput Capacitance- COP Data Output Capacitance'" IVCS = VSS, f = 1.0 MHzl COO Effective Chip Select Capacitance (Figure 3)- CCSIEFFI ·Capacitances are periodically sampled rather than 100% tested. 5-19 - - 65 MCM7001 L, MCM7001 L-l (continued) FIGURE 1 - CHARGE PUMP OSCILLATOR WAVEFORM REQUIREMENTS Characteristic Rise Time High Level Dwell Time Fall Time Low Level Dwell Time Symbol Min " 100 tQPH 100 " 100 tQPL Max Unit ns ns 500 100 FIGURE 2 - MEMORY TIMING OIAGRAM ___-+____ Read Cycle (T eye) VCSH Chip Select VCSL V,H Address V,L Write Enable V'L V'H Data In V ,L Data £\ Out Current 0 FIGURE 3 - MEASUREMENT OF EFFECTIVE CHIP SELECT CAPACITANCE .. 15 V o----1CS MCM70011 The effective capacitance of the Chip Select input terminal CCS(EFFl is determined by measuring the difference In rise times of the voltage waveforms at pOint A with and without the Chip Select terminal connected CCSIEFFI ",Kt.t, where K ~ 'K/V (15 V) 'K ~ 100 rnA 5-20 MCM7001 L,MCM7001 L-1 (continued) APPLICATIONS INFORMATION The MCM7001 static random access memory provides the high speed and low power required for large memory systems. Only a single clock input is required with this memory. Data Output and its complement can be detected using a differential amplifier for sensing. The outputs of several devices can be wire-ORed with no significant degradation in speed. Operation of the Charge Pump input is shown by the basic memory cell in Figure 4. Assume the arbitrary state of 03 "on" and 04 "off". In this state, Cl is charged and C2 discharged. Over a period of time, Cl will lose its charge due to leakage unless the charge is replenished. By driving the charge pump devices with an oscillator of the correct frequency, the memory will be refreshed. The Charge Pump oscillator must operate within the frequency and amplitude limits listed under Recommended Operating Conditions. These frequencies and voltages provide low power consumption and static operation. The Charge Pump input does not need to be operated synchronously with any other input signal and has no effect on access ti me. the address inputs (approximately 400 pF for a 32 k x 2 or 4 k x 16 memory board). This will maintain a fast access measured from the address input_ The circuit of Figure 6 should also be used to drive the write enable input. The circuit of Figure 7 is capable of driving the four data inputs required in a 4 k x 16 memory board, but the circuit of Figure 6 should be used if more than four devices are being driven. Interface circuits MC3459 (Ouad TTL-to-N channel) and MC10177 (triple ECL-to-N channel) will be available in 1974 for system use, The Chip Select driver must charge its capacitive load with the specified rise time to maintain the fast access time, In addition, it must supply a small dc current in both the High and Low states. Figure 8 shows a MECL interface circuit which will drive a load of eight devices (one byte) to the required level of VDD ± 1.0 volt. MECL level translation is first made through a differential amplifier. The amplifier turns on a switch which in turn drives the output transistors. In order to minimize rise time and overshoot, proper line integrity and termination must be used. Some rules for achieving this are found in the MECL System Design Handbook. Another approach for driving the Chip Select inputs, although slower, is to use the MC10127 dual clock driver for MECL systems or the MMH0026 for TTL systems. The data outputs, D out and Dout, are current sinking terminals and require pullup resistors. If a logic "1" exists in the addressed location, Dout will sink a minimum current of 200 IJ,A toward ground, while Dout is a high impedance. If a logic "0" exists, Dout will be a high impedance and Dout sinks current. The output data from the memory then is referenced around the supply voltage connected to the pullup resistors. A simple, fast, and reliable output sensing circuit is shown in Figure 9. The PNP transistors are used to translate the memory outputs to a voltage that can be detected by the differential amplifier. The 3.6 k-ohm resistors are used as 2.0 mA current sources that produce a 1.0-volt drop across the 510 ohm resistors. The voltage at the data outputs (D out and Doutl is fixed at one diode drop above VR EF· When one data output sinks current, less current is available across the 510 ohm resistor and a lesser voltage appears at that terminal of the differential amplifier (e.g., .:l200 IJ,A = Lll00 mV; Ll400 IJ,A = Ll200 mV). For a fast MECL system the MC 1650 dual comparator should be used (propagation delay = 3,5 ns). It requires a low overdrive, low input switching current and has a latch for data storage. If desired, the MC10115 quad line rece'iver could also be used for the differential amplifier, The MC10125 quad MECL·to·MTTL translator, which has a propagation delay of 5.0 ns can be used as the differential amplifier with TTL systems. If longer delays are tolerable, the MC1514, MC3450 or MC75107 can be used. A major advantage of the technique used in Figure 9 is that up to 16 memory outputs can be tied together without appreciably affecting the access time. The Charge Pump oscillator of Figure 5 uses the Charge Pump input capacitance of the MCM7001 as part of a Colpitts-type oscillator. The oscillator can drive from B to 64 devices in a push-pull manner by connecting half of the RAM charge pump inputs to each end of the inductor. The zener and resistor are used to control the oscillator amplitude. The positive peak of the swing is determined by the zener voltage and the negative swing is 0.6 V below the VSS voltage (-5.2 V). It is important that the maximum voltage rating of the MC14049 feedback buffer be observed. Frequency of oscillation is dependent on the number of RAMs to be driven. The inductance is determined as L""--_--;: 10 n COP f2 where n = total number of RAMs, COP = charge pump capacitance, and f = frequency. Typical values will therefore be Frequency Number of RAMs Inductance (Ll 800kHz 8 16 30QjJ.H 32 64 150,uH 75.uH 37.uH Figures 6 and 7 show possible interface circuits for driving the address and data inputs of the MCM7001. The MC10125 MECL-to-MTTL translator is used if ECL logic is being interfaced to the memory card; if TTL is being used, an MTTL gate such as the MC3000 can be used. The pullup resistor at the output is needed to meet the required "1" level. The extra drive circuitry shown in Figure 6 is required to drive the normally heavy load of 5-21 MCM7001 L,MCM7001 L-1 (continued) FIGURE 4 - BASIC MEMORY CELL FIGURE 5 - CHARGE PUMP OSCILLATOR From Oscillator Charge Pump ~ Charge 15.5 V 10 V 180 Pump Sit/Sense ,", .. Bit/Sense "0" -S.2V ,, B A , MCM70010pH MCM7001 H a p MCM7001 QP~ 6..-10P MCM7001 Vss F rom Decoder FIGURE 6 - ADDRESS INPUT DRIVER 150 ,;4 MC10125 r---, I v .. 5.0 V 470 I I ME C L 0-----1--<1 >--;---0............- . Input I I I HAn I MCM7001 I LJ [An MCM7001i . PACKAGE DIMENSIONS CASE 694 CASE 677 NOTES 1 OIM"V"TO INSIDE OF LEADS (MEASURED O~I mm (0.0201 FROM PACKAGE BASE) 2 lEADSWITtUNO~ RADIUM OF TRUE POSITION (TP)AT SEATING PLANE WITH MAlIlMUM MATERIAL CONDITION J LEAD No. 1 IDENTI FifO BY NOTCH ON TOP DIM A B C D F G H J K L +. N MILLIMETERS MIN MAX INCHES MIN MAX 26.54 27.94 9.02 9.40 3.30 4.06 0.38 0.53 1.02 1.27 2.54 SSC 0.89 1.40 0.20 0.30 2.92 3.68 9.78 10.79 15' 0~51 ·'.52 1.045 1.100 0.355 0.370 0.130 0.160 0.D15 0.021 0.040 0.050 0.100 8SC 0.035 0.055 0.008 0.012 0.115 0.145 0.385 0.425 15' 0.020 0.060 The MCM7001 may be pack· aged in Case 677 (white ceramic) rather than in Case 694. If your application requires precise toler ances, consult the factory. SEATING PLANE 5-22 DIM A MILLIMETERS MIN MAX 27.05 21.94 INCHES MIN MAX 1.065 1.100 C D F G H 2.16 3. 0.43 0.58 1.02 REF 2.54BSC 0.76 1.78 0.085 0.14 0.017 0.023 0.040 REF 0.100BSC 0.030 0.070 MCM7001 L,MCM7001 L·1 (continued) FIGURE 7 - DATA INPUT DRIVER +5.0 V 1/4 MC10125 MECL Input 330 I I MCM7001 I Din FIGURE 8 - CHIP SELECT DRIVER +15Ve_--~------------------~----._----__, 10 620 MPS3646 1 k MPS834 MPS834 or Equiv MECL Input 91 360 -5.2 360 Ve_-_._--------_---------' FIGURE 9 - OUTPUT SENSE CIRCUIT IMCM7001 ~out~ 00ut I I I I I 2N4209 or Equiv 510 1% Amp!. .-<>--'----Ic 2N4209 or Equiv I I L ______ -.J 510 1% Strobe 5·23 PHASE·LOCKED LOOP COMPONENTS 6-1 LOGIC PRODUCTS for PHASE-LOCKED LOOP APPLICATIONS Motorola offers the designer a choice of specially designed integrated circuits for performing phase-locked loop functions: phase detection, frequency division, filtering, and voltage-controlled signal generation. In addition, the choice of circuits permits the designer to select TTL circuits where speed is not critical «25 MHz), or ECL circuits where high speed is required. The MC12000 series circuits will operate at either +5.0 V or -5.2 V, and translators are included where needed so that all functions are compatible. SPEED DEVICE NUMBER LDGIC FAMILY (TYP) Phase-Frequency Detector MC4044 MTTL 10 Consists of two diSital phase detectors, charge pump. and amplifier FUNCTION MHz CHARACTERISTICS Phase-Frequency Detector MC12040 MECL 80 Operation similar to MC4044 Voltalle·Controlied Multivibrator MC4024 MTTL 25 Contains two independent voltagecontrolled multivibrators with output buffers Voltage-Controlled Oscillator MCI648 MECL 200 Emitter-coupled oscillator with output levels compatible with MECL III MCI2000 MECL 250 A "0" flip·flop with MTTL to MECL and MECL to MTTL translators Two-Modulus Prescaler MCI2012 MECL 200 ~2, Two-Modulus Prescaler MC12013' MECL 400 '710/11, '710/12 Counter Control Logic MCI2014 MTTL 25 Crystal Oscillator MCI2060 MECL Crystal Oscillator MC12061 MECL Programmable Divide By N Decade Counter MC74416 (MC4016) MTTL 10·· '70 throullh 9 Two Programmable Divide By N Counters MC74417 MTTL 10·· '70·1, '70 through 4 Programmable Divide By N Hexadecimal Counter MC74418 (MC4018) MTTL 10·· '70 throullh 15 Two Programmable Divide By N Counters MC74419 MTTL 10·· '70 through 3 Universal Counter MC4023 MTTL 30 '72 through 12 except 7 and 11 Decade Counter MC7490 MTTL 20 '72,'75, '710 Digital Mixer/Translator '75/'76, ~IOh·11, '710/'712 Used with MCl2012 and MC74416 to accomplish direct high-frequency programming 100 kHz to Provide complerflentary sine wave, 2 MHz ~fn~r~~~d:~artt~iil~'!~~r~~:p~t~~ 2 MHz to 20 MHz Frequency stability prOllided by external crystal (fundamental, series mode). COUNTER OPTIONS Bi·Quinary Counter MCI678 MECL 325 '72, '75,'710 UHF Prescaler Type D Flip-Flop MCI690 MECL 500 '72 Universal Hexadecimal Counter MCIOl36 MECL 150··· Universal BCD Decade Counter MCIOl37 MECL 150··· '710 o to 15 Decade Counter· Divider MCI4017 MeMOS 5 '710 Binary Counter MC14040 MeMOS 10 '7(2") '710 BCD Presettable Up/Down Counter MCI4510 MeMOS 6 Binary Up/Down Counter MCI4516 MeMOS 6 '716 Dual BCD Up Counter MCI4518 MeMOS 6 '7100r'7JOO Dual Binary Up Counter MCl4520 MeMOS 6 '716 or '7256 BCD Prollrammable Divide By N MCl4522 MeMOS 5 '70 throullh 9 Binary Programmable Divide By N MCI4526 MeMOS 5 '70 throullh 15 (.) To be announced. ( .. ) Speed can be increased to 25 MHz (typ) when used with MC12014 ( ••• ) When used as a prescaler, it is possible to extend the input frequency to over 200 MHz with the MCI0231; to 300 MHz with the MC1670; or to over 500 MHz with the MCI690 6-3 CONTENTS PAGE MC1648 Voltage Controlled Oscillator. . . . . . . . . . . . . . . . . . . . .. 6·5 MC12000 Digital Mixer/Translator. . . . . . . . . . . . . . . . . . . . . . . .. 6·12 MC12012 Two Modulus Prescaler . . . . . . . . . . . . . . . . . . . . . . . . .. 6·23 MC12040 Phase Frequency Detector. . . . . . . . . . . . . . . . . . . . . . .. 6·38 MC12060, MC12560 Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6·42 MC12061, MC12561 Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6·42 NOTE: For individual data sheets on other products listed in the selector guide write Motorola Semiconductor Products Inc. P.O. Box 20924 Phoenix, Arizona 85036 6-4 MECL III MC1600 series VOLTAGE·CONTROLLED OSCILLATOR MC1648 The MC1648 is an emitter·coupled oscillator, constructed on a single monolithic silicon chip. Output levels are compatible with MECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C). A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The MC1648 was designed for use in the Motorola Phase-Locked Loop shown in Figure 9. This device may also be used in many other applications requiring a fixed or variable frequency clock source of high spectral purity (See Figure 2). The MC1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements. 110) 112) 15) Numbers in parenthesis denote pin number for F package (Case 607) L package (Case 632), and P package (Case 646). Input Capacitance = 6 pF typ Maximum Series Resistance for L (External Inductance) = 50 51 typ Power Dissipation = 150 mW typ/pkg (+5.0 Vdc Supply) Maximum Output Frequency == 225 MHz typ I SUPPLY VOLTAGE GND PINS SUPPl Y PINS I +5.0 Vdc 7,8 1,14 -5.2 Vdc 1,14 7,8 l FIGURE 1 - CIRCUIT SCHEMATIC vee1 VCC2 (141 +---+---+---+---{ t---t---t---i 11) a1 0 Output all a12 014 Q13 f-T-+-,-+--++-t D2 (101 (121 (8) (5) 171 818S Pt Tank Vee 2 AGe Vee 1 Numbers in parerUhesls denote pm number for F package (Case 6071, L package (Case 632), and P pacKage (Cas.e 6461 FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT L: Micro Metal torroid #T20-22, 8 turns #30 Enamlad Copper wire. C'" 3.0 - 35 pF r--"'~"--"'''''' +5.0 Vdc 110) 1200' (3) (12) (5) X B.W. "" 10 kHz Canter Frequency"" 100 MHz Scan Width = 50 k Hz/div Vertical Scale:: 10 dB/div Signal Under Test 0.1jlF -The 1200 ohm resistor and the scope termina· tion impedance constitute a 25: 1 attenuator probe. Coax shall be CT ·010·50 or equivalent. MC1648 (continued) ELECTRICAL CHARACTERISTICS r-------, Vol~ ~ SupplV (101 +5.0 volts I I : : (31 I (121 Output TEST VOL 'AGE/CUAAlNT VALUES (Voitel I L_______ J .T... r..,....''''. (51 OI._~I"IC logK ."" Symbol ·"'c .. " VO:~ , YO' ". ,., Output Vall. LOOOC "0" Oulpul Volt. B, .. Voll. Ve,n" P• ..,·la·P.... rink Voll-.JII 1I!).p VDC OseillatlOnF~uerw:y "Thl' mUlUrll~1 '-. YIL,,"n -..,,<: +1.800 +1410 ., JOO +1.680 +1180 '0 M:164. Tnt L""," ... "'. " .. 3<0 320 M.. .. , .... T" OutPUt Duty Cyel. YIHma. . . .·C .... p" p _ Supply 0 ••," CU"'n! ·,..C " -..,,<: .... ·'.960 Vee 'L SO SO SO ·SO ·SO ·SO TEST VOL 'A.GE/CURRENT ... HlIED TO 'INS LISTED BELOW +850 C M.. .0 .,S IGndl 7.8 1.14 ,... 7.' 1.1" 7.' 'SO 1,14 7.' '.' 7.8 •• J2' '1.0 Megphm must be used). . • -The 1200-ohm resistor and the scope termination Impedance constitute a 25: 1 attenuator probe. Coax shall be CT ·070·50 or .eQuivalent . r~'1LJ!l, I I • _. Bypass only that supply opposite ground. I I I 6-6 (Ond) 1.1" Vee ~ ... Vee Vllm.n 7.8 .... T, • -I -4000 I 7.' Vd< s..F'lIur.3 50 1 M;" VILmin -3300 ·3-400 -3500 TEST VOL TAGE/CURIUNT APPLIED TO PINS LISTED BEL.OW .. - ., M.. -0815 VOH +l6 o C M(:1&48T ... L.imiti (VoIu) VIHm. . I.'" I.'" MC1648 (continued) OPERATING CHARACTERISTICS Figure 1 illustrates the circu it schematic for the MC 1648. The oscillator incorporates positive feedback by coupling the base of transistor 07 to the collector of 08. An auto· matic gain control (AGC) is incorporated to limit the cur· rent through the emitter·coupled pair of transistors (07 and 08) and allow optimum frequency response of the oScillator. In orderto maintain the high a of the oscillator, and pro· vide high spectral purity at the output, a cascode transistor (04) is used to translate from the emitter follower (05) to the output differential pair 02 and 03. 02 and 03, in conjunction with output transistor 01, provide a highly buffered output which produces a square wave. Transistors 010 thru 014 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3). FIGURE 4 - THE MCl648 OPERATING IN THE VOLTAGE CONTROLLED MODE When operating the oscillator in the voltage controlled mode (Figure 41. it should be noted that the cathode of the varactor diode (D) should be biased at least 2 VBE above VEE ("" 1.4 V for positive supply operation). When the MCl648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5. (12) (5) ~C2 FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM ! 100 "'~ VCC 5.0 Vdc Oscillator Tank Components (Circuit of Figure 4) It z" Q ~ I- « :; w Q 10 ....... > u f MHz 0 L I'H 1.0·10 MV2115 100 10-60 MV2115 2.3 60·100 MV2106 0.15 zw :J" 0 w It u. ~ 1.0 1.0 10 100 f, OPERATING FREQUENCY, (MHz) I l 20 kHz .bov, MCI648 Froquoncy ~ Signal Generator HP 608 or EQuiv I 300mV II' MC1~ Under TI. Attenuator lI 10mV MCI848 Product O.tector Frequency (1) F requlncy Deviation· I 20 kHz I IB.W. - 1.0 kHz Fr~u.ncy L Mo"" HP~~OA or E ulv (HP5210A oUtJ)ut voltlge) (Full Selll Frequency) 1.0 Voll NOTE: Any frequency deviation clulld by thl •• n.I'. . . .tor end MC1648 power iu_'y Ihould bl determined end mlnlmzld prior to tlltlnl. 6·7 Voltmeter RMS HP3400A or Equiv I MC1648 (continued) TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. TA· 25°C FIGURES . 1: ! > U Z III :> a III a: II. l- :> o. I:> 0 , ;. _0 64 L: Micro Metel Torold.1 Cor. #T44-10. 4 turn, of No. 22 copper wir •. 60 56 Vin 92 48 ...... 1-"" 44 40 /' 36 32 28 24 20 "~'~' • k I'FI!L I = (I /' ,,1 / 16 .2 8.0 0 51' F V 3.0 2.0 4.0 5.0 7.0 6.0 8.0 9.0 .0 Vin,lNPUT VOLTAGE (VOLTS) l I f : (3) out L. I _______ II" 1\.0 IJ (10) V ('2) MV140. I ~ (5) Vee1 .: VCC2 == +5 Vdc: Vee 1 '" VEE2 ::: God :;J;0.'I'F -The 1200 ohm resistor and the scope termInation impedance constitute II 25: 1 attenuatar probe. Coax shall be CT -010-50 or equivalent. FIGURE 7 .8 r ! > U Z III :> a III L: Micro Metal Toroidal Core IT44·10, 4 turns of No. 22 copper wire. 17 Vin 16 C .5 a: 13 I- 12 / :> o. I:> \I 0 10 _0 9.0 ; / / I k I'FI ( : CL M~O' 1.0 (12) I : I I f out (3) '---------' (5) / 5I'FI_ = +5 Vdc = Gnd Vee, '" VCC2 VEE1 "" VEE2 2.0 1200· : C I = 1 ,,~ 8.0 0 ;--------""] / / IJ 500 pF 0"r:(~0~) .4 II. = 3.0 4.0 5.0 6.0 7.0 8.0 9.0 '0 Vin. INPUT VOLTAGE (VOLTS) ""= 0.1 ",F ..L -The 1200 ohm resistor and the scope termina- tion impedance constitute a 25: 1 attenuator probe. Coa", shall be CT -070-50 or equivalent. FIGURE B 190 r ! > U z III :> 170 V a: 120 II. I- 110 100 , _0 1/ 90 60 50 ~ ....... 0 1.0 2.0 3.0 ./ • 0 ('0) L ~'-' I I : : ( I (3) L. I _______ (12) V 4.0 VEEl ~g =~~ ) ./ 70 VCCI = VCC2 = +S Vdc = VeE2 '" Gnd -!=" , / /' ao Von 0.' I'F:t 51'Ff 51 k ./ ISO ,.0 130 0 ./ 160 aw :> o. I:> L: Micro Metal Torodial Core #T30-22. 5 turn, of No. 20 copper wir •. 180 f out 0 ~ (5) :;J;0.'I'F 6.0 6.0 7.0 Vin. INPUT VOLTAGE (VOLTS) 8.0 9.0 10 -The 1200 ohm resistor and the scop. termination impeda'lce con,titute a 25: 1 attenuator probe. Co.", shall be CT -070-50 or equivalent. MC1648 (continued) Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7 and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (pluse the input capacitance of the oscillator, 6 pF typical). Figure 7 iIIus· trates the osci lIator operating in a voltage controlled mode with the output frequency range Ii mited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 kn resistor in Figures 6 and 7 is used to pro· tect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger·valued resistor (51 kn) in Figure 8 is required to provide isolation for the high· impedance junctions of the two varactor diodes. Good R F and low-frequency bypassing is necessary on the power supply pins (see Figure 2). Capacitors (Cl and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode). guaranteeing only dc levels at these points. For output frequency operation between 1 MHz and 50 MHz a 0.1 J.lF capacitor is sufficient for Cl and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All by· passing should be as close to the package pins as possible to minimize unwanted lead inductance. The peak·to·peak swing of the tank circuit is set inter· nally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the MCl648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used. -5.2 volts if a negative supply is used) as shown in Figure 10. At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak·to·peak voltage in order to maintain a square wave at the output of the MCl648. This is accomplished by tying a series resistor (1 kn minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used. ground if a -5.2 volt supply is used). Figure 11 illustrates this principle. The tuning range of the oscillator in the voltage con· trolled mode may be calculated as: f max fmin where fmin yco (max) + Cs yco (min) + Cs 1 = 21T YL (CO (max) + Cs) Cs = shunt capacitance (input plus external capacitance ). CD = varactor capacitance as a function of bias Voltage. APPLICATIONS INFORMATION erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode). The output frequency of the synthesizer loop is deter· mined by the reference frequency and the number program· med at the programmable counter; f out = Nfref. The channel spacing is equal to frequency (fref). For additional informatIon on applications and designs for phase locked·loops and digital frequency synthesizers, see Motorola Application Notes AN-532A, AN·535, AN-553, AN·564, and AN·594. The phase locked loop shown in Figure 9 illustrates the use of the MC 1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and land· mobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are com· patible. Frequency generation of this type offers the advantages of single crystal operation. simple channel selection, and elimination of speCial circuitry to prevent harmonic lock· up. Additional features include dc digital switching (pref· 6-9 MC1648 (continued) FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATlQN VoltageControlled Oscillator MC1648 r---.....- - f out f out = Nfref where N = Np. P + A N :: Np. P + A Figure 10 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE. Figure 11 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz!. a resistor is added to the AGC circuit at pin 5 (1 k·ohm minimum). Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L 1 and Cl at resonance. The opti mum value for R at 100 MH z is approximately 850 ohms. FIGURE 10-METHOOOF OBTAINING ASINE·WAVE OUTPUT FIGURE 11 - METHOO OF EXTENOING THE USEfUL RANGE Of THE MCI648 ISQUARE WAVE OUTPUTI +5.0 Vdc +5.0 Vdc 1--+--<> Output 1 k min 8 I 6-10 MC1648 (continued) FIGURE 12 - CIRCUIT SCHEMATIC USED FOR COLLECTOR OUTPUT OPERATION +9.0 V l' .01.I'F A VCC2 (14) +5.0 11) _ 8 .... 12 '0 5· ~ 4 TEST VOLTAGE/CURRENT VALUES V.... {, "T... Tlrnpermfl MTll 0"" 25"" 70"" +25 o C . .e Min MM Min TyO o. Power Supply Or.in Current 9l ..... TM Inpl,l1CuITent CAl 3.8 3.8 IINLI -1.6 IINL2 Logic"'" OutpUt Volt.... 8 9 4 10 11 121 13' 6 VOH' I Logic "0" OutpUtVol~ logic "'" Thrllhold Voltage I logic: "0" Th"""ald Voltege Short Cin:uit Curr.nt tOulput Lwei to be ~..t T M.. VOH2 I 1~ VOLl 11 12t 13. VOL2T 6 VOMA I 1~ VOLA I Osc T 11 121 13. 4 10 11 12. 13' 6 4.000 l l l 2.400 3.130 4.160 3.8 2.0 4.040 6." 4 .• 4.190 3.150 ~ j 3.380 0.500 +3.150 +3.895 +3.525 +3.110 "'3.955 +3.550 -20 l ~" 4.100 2.400 J 170 ·65 after. clock pul. h. tlMn -,plied to the C Input (pin 2) V,Hmp IlVILmin VIHAmin VILAmu: VOL VOH VIHH V. VIHT VILT Vee IloLT'oH 14 ! °L 1 18 18 -1.8 -1.8 -1.8 4.280 V"" 14 Vd, ,. V"" 14 Vd, Vd, ,. • 3.410 3.430 ~" Vd, mAde fYElI 00H1 and jl=I=I=IH rnA"" + °OL 1 -1.6 0.500 -20 VIHmax; VILmin /lAde j 3.400 -2. ." 14 .A"" 4.080 3.390 IVIH IVIHAIVR IVIHTIVILTlvcc IL +0.5 +2.4 +5.0 +4. :t"5.0 '2. to.5 +2.4 +5.0 +4.5 +2.0 +0.8 +5.0 -2.5 +0.5 +2.4 +5.0 +4.5 +2.0 +0.8 +5.0 -2.5 rnA"" rnA"" 0.500 4.020 3.980 Unit l l l l l l l l l l l l l 2.400 3.370 40 6." 6." 2.0 2.0 2.0 -1.6 IL_ . . o.unnd IINL3 +4.190 mA I VIL TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW: Min 2.0 200 200 40 4.0 IINH2 IINH3 +3.855 YllAmu +3.510 .76OC M.. 85 IINH1 I V'HAmin I +4.280 MC12000 Pin u_. .... _0 Ch8rlCteri.dc YIHrnu VILmin +4.160 +3.130 l ,.l 1 14 l ,. • 10 11 12 13 • 10 11 12 13 10 11 12 13 • 10 11 12 13 - I I - I 8.7 s: ELECTRICAL CHARACTERISTICS ... n Supply Voltage - -5.2 V N o o o ,~" 2~12 8 ... ::J ,~" ~" -8>- ::J c: ~ TH S '0 Moe '=t>--Mm _ 10 • " .T.. . T_ 6 n TEST VOL TAGE!CURRENT VALUES V_ "'" IL o"c .. "I: - Me ..... PI. I .._I u;:- Pow. Supply Oqjn Current InputCul"l'Wl' IE I - I - I - I - I - Min ~. 200 C{J .... 40 IIINH' • 40 6.S 6.' 3.0 3.0 IINH3 IINL2 : IINL3 ••• Logic··,·---;----~VOH1 Output VOI'-81 11 ',t tl. VOlt I I.• VOLl '" I• VOH. logic "0" OutPUt Vol .... -1.8 -1.000 -<1.640 11 VOHA Th~Vol .... ..I., VOLA Shon Circuit CurNnt tO~1PUt L.vet lObe ~r.t T ISC I ••• T 11 •• t tlt 6 -1.820 -1.020 -4.700 .. - -0.720 Vd. 1 l -1.596 -4.700 -0.980 -0.920 1 1 -1.600 -1.815 ....1 -2.800 -1.830 mAde: ~ VILArNx VIL VIH VIHH VR VIHT VILT V •• -1.575 l .... .. .. - - lifter • dock pul.habeen IPPlild to ItI.C input !pin 21 "IHm... .n.VILmin ION -1.8 to -1 .• 18 -1.8 IOL IoL .... I' •• 7 ! l -1.6 VIMAmin 1 •• 1.7 '.7 3.7 : : I.• I.• 11 t. tl Vd. Vd, 1 1 ~ ~.700 tl, Tlu...tuMd Vol. -1.860 mAd' .Ad< ~ -<1.900 IL 1. lVeel VIH_ VILmin .Ad< 1 1 11 L.ooi<"." ~~ ~.810 -2.800 -1.836 tl, logic"'" ~: - IEH1371 t+ '" t- '" 5.0 ± 0.5 os 50 ~ I 50 1191 .-~__-----t---o-1~ L-~o-~__-+__-o-;~18~ 161 1/2 MC10l09 50 OR 100 EQUIV. CT = 15 pF = total parasitic capacitance, which includes probe, widng, and load capacitances. 6-16 I )--~~~--~~.--. 400 MC12000 (continued) FIGURE 4 - AC TEST VOLTAGE WAVEFORMS Pulse Generator 1 Pulse Generator 2 Q (131 Q (121 OR (111 NOR (101 (91 MTTL Out (61 Pulse Generator 3 MECL Out (41 NOTES: 1. Vee + 1.5 V 2. Vee + 0.5 V max 6·17 MC12000 (continued) FIGURE 5 - SETUP AND HOLD TIME WAVEFORMS (See Figure 31 Pulse Generator 1 Clock Pulse Generator 2 o 0(13) Pulse Generator 2 o 1 0(13) \ ' - - _ _--1 FIGURE 6 - TOGGLE FREQUENCY TEST CIRCUIT Vee = +2.0 Vdc V out Coax O.lI'F ~ Sine Wave in = 800 mV P-to-P Sine Wave Generator AC Coupled HP 32008 or Equivalent 50 0.1 ,sF ~ TPin / --, r- \I----<~---_il__l ~ 450 I I I C 01-1-----'TP out VSia5 = +0.700 Vdc o------~ (Use High Impedance Probe to Adjust V Bias) 100 VEE OC Supply -3.2 Vdc or -3.0 V The maximum Toggle frequency of MC12000 h . been exceeded when either: 1. The output Peak-ta-Peak voltage swing falls below 600 mV 2. The device. cease to Toggle (divide bV 21. 6-18 MC12000 (continued) MC12000 DIGITAL MIXER This device is a digital mixer designed to operate with logic levels at its input and output ports. I n operation it is an MECL type "0" flip-flop with level translators to and from MTTL to accomodate most interfacing demands. Output frequency (fa) as a function of "0" and clock inputs is shown in Figure 7. I t can be seen that either direct or harmonic mixing may be employed, that is, fa may be either the difference between fO and fC or the difference between fO and the Nth harmonic of fC. One particular advantage of mixing in phase locked loops (PLL) is that lower frequencies may be generated for use in portions of the circuit where digital processing is done (with divide-by-P network and/or phase detector). Lower frequency operation often reduces overall system cost since a less expensive logic form may be utilized. However use of the mixing technique is not a panacea for all VHF applications and the design of such synthesizer systems must be approached with care. FIGURE 7 fa output frequency may be changed by varying either fl or fC. the clock input is usually crystal controlled since it is of the same magnitude as fO and more difficult to stabilize. FIGURE 9 fe----------------~ Combining a standard synthesis configuration with the mixer yields a circuit capable of high frequency operation at low cost (Figure 9). if the output frequency range is relatively small (P max - Pmin) fl fC12. In fact the choice of harmonic or non-harmonic mixing is largely based on the availability of a suitable crystal or other reference source for fC versus the needed frequency coverage. Considering all the restrictions on fC. its value (and the maximum harmonic number N) are dictated by the following expressions: < N Use of the MC12000 in a non-harmonic PLL is straightforward (Figure 8). Output frequency is the sum of both input quantities (fl + fe) as long as fl is less than fC/2 (See Figure 7). since fa can go no higher than that. Unless VCO output range is restricted somewhat there is a chance also that the loop may operate at the second harmonic of fC. This problem is minimal in the loop of Figure 8. however. since the output frequency would have to vary more than 2: 1. Mixing is used because the digital phase detector has an upper frequency limit of about 10 MHz and many loops require direct locks at 20 MHz or more. Oirect down-mixing does not change any loop characteristics except the sampling rate which restricts loop natural frequency to about fC/l0 in practical circuits. Although FIGURE 8 < fO(min) - fl (1) 2~fO Nfc = fO(min) - fl (2) where NO = change in output frequency. FIGURE 10 Ie ----------------~ Using Equations (1) and (2) above the minimum value of fC may be found for the circuit of Figure 10 and still get adequate frequency coverage. In this minimum configuration all necessary output frequencies may be generat· ed by programming the "P" count string. But the divide number might bear no obvious relation to the output frequency such as often happens with non-mix ing synthesizers. 6-19 MC12000 (continued) DESIGN EXAMPLES Example #1 Example #2 Output Frequency: 48-54 MHz Frequency Increments: 10 kHz Using Equations (1) and (2), a minimum frequency (fe) version can be designed: Output Frequency: 144-148 MHz Frequency Increments: 10 kHz f1 = increment = 10 kHz 144_00 - 0.01 fl = increment = 10 kHz N< 48 MHz - 10 kHz N<-----2 (54-48) MHz N< 18 2 (4) LetN= 17 Nfe = N<4 144.00 - 0.01 MHz 143.99 Let N = 3 Nfe = 47_99 MHz 47_99 3 Nfe fe = 8.470 MHz N Pmin = 15.99666 MHz 4MHz Pmax = fe = 15.996666 MHz Pmin.= 1 10 kHz + 1 401 afo Pmax = - - - + Pmin 10 kHz (3) fa(max) = Pmax fl = 4.01 MHz 6MHz Pm ax = 10 kHz + Pmin Pmax = 601 fa(max) = Pmax fl = 6.01 MHz (4) Equation (4) above puts the divider string (divide-by-P) into a medium frequency situation where devices such as the Me4016/4316 may be utilized. Note that the divider number now indicates the channel selected rather than output frequency_ That is, at fO = 48.000 MHz, P = 1; at fO = 54.000 MHz, P = 601. If "proper" divide-by·P readings are desired for direct frequency readout a slight circuit modification is necessary. To enable a division at 48_000 MHz the first divide-by-P must be 100 rather than 1, and Pmax would then be 700 to cover all 6 MHz. Recalculating fa(max) from Equation 4 we still find that the 7 MHz maximum value allows use of the same components. The next question concerns the allowable rang~ of fa in relation to fe (fa < fel2)_ Since fe is nearly 16 MHz, the range of fa can be contained. A cosmetic change to the most significant digit switch completes the design. Instead of reading 1 through 7 it must be modified to display 48 through 54. Maximum frequency seen by the divide-by·P chain is still well within the Me4016 rating. When converting this synthesizer to one that reads fre· quency directly, a "1" is again added to the most signifi· cant digit (MSO). This results in a Pmin of 100 to Pmax of 500. In this example, however, fa(max) is 5 MHz which easily exceeds fel2. To alleviate this difficulty, the "N" factor must be decreased in order to raise fe to at least 10 MHz. Let fe = 10 MHz N<-14.4 Let N = 14. Nfe = 143.99 (from above) 143.99 Nfe fe= N = 14 fe = 10.28500 MHz 6-20 (5) MC12000 (continued) VCO RANGE RESTRICTIONS As in all harmonically locked PLL's, it is possible for the loop to lock on the wrong harmonic if there is too wide a range in the VCO. Th is situation is shown in Figure 11 where the possible false lock areas are ind icated near the (N - 1) and (N + 11 harmonic points. The problem of VCO restraint however is more than just mak ing sure that output frequency fO isn't able to go to B or A' (the closeest false lock points). Actual operating limits are C and C', symmetrically placed frequencies corresponding to fO(min) about NfC and fO(max) about (Nf+l/21 fC. If the veo drops below C while the feedback counter is at Pmin the phase detector will try to push fO even lower, toward the stable condition at A (Figure 12). Likewise, at C' (when P = Pmax l the tendency is for the loop to accelerate toward lockup at B' (Figure 131. When Cor C' are exceeded the loop will "hang up" and not attain the proper lock. The VCO frequency constraints may be quite severe if the minimum fC formulation is followed and the Nth harmonic is quite high. Where VCO constraint may pose a problem, decrease N below the maximum indicated by Equation (11 until sufficient room is generated by placing the operating range of fa on only a small part of the fO slope (F igure 141. Note that fC goes up as we approach the more idealized case (Equation 51. FIGURE 14 'Q'.:~'~ tQ(m;n) _ _ ___________________ _ c : NfC to(min) FIGURE 11 fa fO(max) to(m;nl: ~ u---~___t_~nH~~_~ ,, :a(m~XI ~m~ ,' Q(mln)~ (N - l ) f e to NfC (N + 1) fC The most likely reasons for a "latched up" state in a harmonic loop are turn-on transients and loop overshoot when changing frequency abruptly from One end of the range to the other. SUMMARY OF SYNTHESIS PROCEDURE 1. Compute harmonic number N FIGURE 12 Toward Toward Latch up Lock-up N < fO(minl - fl 2/lfO Lock Point where /lfO = change in output frequency fl = channel spacing to fQ{min) 2. Compute minimum mixing frequency fC NfC - fQ(min) fO(minl - fl fC=----'--'---N 10 (min) to 3. Calculate feedback divider's maximum value /lfO Pm ax = -- + Pmin fl FIGURE 13 where Pmin = 1 for minimum fC- Lock Point I Toward I Toward Lock-up I Latch-up 4. Find maximum divide-by-P frequency -+-- fO(max) = /lfO + fl 5. Calculate allowable VCO swing ,Q,...{----- --- NfC - fl T to(max) (N + 1) fC - fQ(max) < fVCO < (N + 11 fC - fO(max) 6. If the above constraints are too tight choose the next lower number for N and repeat steps 2 and 5 until satisfied. 6-21 MC12000 (continued) SKIP-LOCK TUNING Harmonic mixing provides an alternate means to frequency synthesis without the feedback divide-by-P network. In th is instance the design objective is to provide a large frequency coverage with a set (and relatively wide) channel spacing. The configuration is identical to a single frequency PLL (Figure 15) except it operates in the harmonic mode and tuning is accomplished at the veo. Output frequency is fixed as being f 1 above all harmonics of fe. As the veo is tuned through its range, the loop will acquire and lose signals spaced fe apart. Since these must be some frequency for the phase detector to operate with, the output frequency cannot be a direct harmonic of fe. This facet of the circuit often causes users to refer to fl as the" offset" frequency. The value of fl is often dictated by output frequency and channel spacing requ irements. However the relation- ship of fl to fe has a large effect on the tunability both up and down the frequency range. If, for example, the loop were locked at point A (Figure 16) and B were tlie next desired point, then the veo must be "dragged" from A to A' before lock can be achieved. This frequency adjustment may be quite critical since the frequency difference between A' and B is only 2fl. If the veo is tuned past B the opportunity for lock has been passed. On the other hand, in going from B to A, the upper end of the veo control range must only cross A' before the loop acqu ires frequency A. I n either case it's apparent that the loop will not "jump" from one lock point to another and some indication of loop lock should be added. This is normally done by monitoring the veo dc control line with a pair of comparators and noting when the line reaches its I im its. FIGURE 15 FIGURE 16 . veo 1 Range I t------Capture -------. ! I , I : (N+2)fC NfC MAXIMUM RATINGS I Symbol Ch ..actaristic Rating Unit Ratings above which device lif, may be impaired' Power Supply Voltage IVCC I nput Voltage IV CC =0) =0) Output Source Current Storage Temperature Range VEE -8.0 Vde Vin 10 Oto VIL min 40 mAde T stg -55 to +125 °c Operating Temperature Range DC Fan-Out' IGates 8nd Flip-Flops) • AC fan-out is limited by desired system performance. 6-22 Vde MECL Phase-Locked Loop Components TWO-MODULUS PRESCALER MC12012 The MC12012 is a two-modulus presealer which consists of three functional blocks: 1) a controllable divide by 5/divide by 6 presealer; 2) a divide by 2 presealer; and 3) a MECL to MTTL translator_ When used with the MC 12014 Counter Control Logic function and the MC4016 programmable counter. a divide by N programmable counter can be constructed for operation to 200 MHz. This arrangement is especially useful in frequency synthesizer ilPplications. LSUFFIX CERAMIC PACKAGE CASE 620 PIN ASSIGNMENT o I nput Toggle 1 16 VCC • -;'2. -;'51+6. -;'10/-;'11. -;'10/-;.12 03 2 15 04 • MECL to MTTL Translator on Chip 03 3 14 04 • +5.0 or -5.2 V Operation' I-I 4 13 E2 MECL • 200 MHz (typ) Toggle Frequency (+) 12 CLOCK MTTL VCC 6 11 E1 MECL MTTL Output 'When using +5.0 V supply. apply +5.0 V to pin 16 (VCCI and ground pin 8 (VEE). When using -5.2 V supply. ground pin 16 (VCCI and apply -5.2 V to pin 8 (VEE). 10 E4 MTTL 9 E3 MTTL VEE 8 FIGURE 1 _. LOGIC DIAGRAM To obtain an MTTL output connect 5 and 4 to 2 and 3 or 14 and 15 respectively. The MECL outputs (2, 3, 14, 151 require terminating resistors. When used, the translator (4 and 5) will provide the proper termination for connection to IT. MTTL E4 10 MTTL E3 MECL to Toggla Flip Flop 9 MECL E2 13 MTTL Trans -Iator MECLE111 12 3 7 1 0303 Input C 141554 Q4Q4+ - MTTL OUT Toggle FIGURE 2 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION VoltegeControlled Phase Detector Oscillator MC1648 MC4044 6-23 -_f out f - -.... s: MAXIMUM RATINGS R.ting Unit VEE -8.0 Vd, V," Oto VIL min Vd, '0 T 20 -55to +125 mAd, Symbol C ....ct.. i.ic n ..... N Rati . . . .boWl which device life .... y be imPIJired: Power Supply Voltage Input Voltage (Vee = 01 (Vee = o. Output Source Current Storage Temperature Range s1g Recommended .... ximum ratings abo". which performance may be d . .aded: I I OperatIng Temperature Range DC Fan..()ut· (Giltes and F lip-F lops) I I TA o to +15 10 I I 0 ..... N e:;- °c °c 0 l I -AC fan-out is limited by desired system performance. ELECTRICAL CHARACTERISTICS Supply Voltage -5.2 V Ch.rect_istic I Pin Und.r Test Symbol +25o C o"c Min M.. Min TV. 8 100 100 200 IINH2 1 11 13 40 40 40 en 'INHJ 9 10 100 100 100 40 40 ~ IINH4 4 5 'E '" 3.5 3.5 IINL1 lea kage Current 11 12 13 1.1 1.1 9 IINL:7 10 4 5 IINL3 OutPUt Voltage (i) VOH2 Logic "0" VOLI Output Voltage (i) logic "0" Threshold Voltage I I Short Circuit Current I Logic "'" Threshold Voltage 14 15 T I VOHA VOLA I ~~ 14 15 'OS -1.850 -{l.120 -1.880 -1.595 ~ -20 -1.620 t -4.100 -0.980 -1.615 + -65 + -20 VILAlNlx V,HT -3.2 V,LT -4.4 VEE -5.2 'L -2.5 IOL 16 IOH -1.6 -4.1 +0.3 -3.2 -4.4 -5.2 -2.5 16 -1.6 -4.1 +0.3 -3.2 -4.4 -5.2 -2.5 16 -1.6 'L 'OL IOH V,L V,HH V,HT V,LT 9 10 4 4 9 10 + 9.10 9,10 11,13 11,13 Vd, 4 + -4.700 Vd, 11,13 + + Vd, 9,10 9,10 + -65 -20 -1.515 + -65 • mAde 16 16 8 8 6 6 1.8 8.11 8,12 8,13 16 8 8 16 16 8 ~ ~ 16 18 2 3 14 15 16 2 3 14 15 16 11,13 11,13 8 2 3 14 15 16 9,10 9,10 + 8 2 3 14 15 16 ~ 8 ~ 6 • • 6 8 9,10 9,10 11.13 11,13 -1.600 8 8 8 + Vd, 16 16 16 8 Vd, -{l.920 8 8 8 + 11,13 + !Vee) Gnd 6,16 8 8 mAde mAde Vdc VEE 16 mAde mAde -1.830 + VIHAmin + • 2.2 2.2 + -1.020 1 11 13 ~Adc + -4.700 "Adc mAde -2.800 -1.850 V'HH +0.3 8 12 mAde • -1.635 VIHml. VILmin ~Adc 2.0 • • • • + • -2.800 Unit 5.5 5.5 0.960 -{l.840 -1.106 -1.045 V,L -4.1 /lAde -0.120 -1.810 i -0.810 VILAma. -1.490 -1.415 -1.450 mAde -0.900 2 3 14 15 14 4 15 4 M •• 6.5 4.0 -2.800 I~ Min -0.810 1 1 VOL21 25"c 75°C VIHAmin -1.145 I TEST VOL TAGE/eURRENT APPLIED TO PINS LISTED BELOW, 3.8 2.0 -1.000 VOHl Logic "',. -1.810 +15"c Mo. 12 Input Current -0.840 MC12012 1"NHl Power Supply Drain Current VIHmax VILmin :::J I mA Volts @Test Temperatur. oOe :::J .... I TEST VOL TAGE/eUAAENT VALUES + 8 c: It! a. ...3: o... (') N N 8 ::J ~. ::J TEST VOLTAGE/CURRENT VALUES mA Volts @Test Temperatur. O·C ELECTRICAL CHARACTERISTICS Supply Voltage +5.0 V 25"C 7SoC Pin Power Supply Dr.in Current Input Current Symbol T... IE 8 12 IINHl IINH2 Q) N UI Leakage Current logic "'" Output Volta. Logic "',. - tlNH4 4 5 1 11 12 13 - - - IINL2 9 10 - - I'NL3 4 5 - - VOH1 (2) VOLl 2 3 14 15 1 ® 2 3 14 15 VOL2 1 VOHA 1~' 15 4 Short Circuit Current - - IINLl VOLA 'OS l~i® 15 1 +3.170 4.000 4.160 + + 3.190 3.430 2.400 + + 0.500 3.980 + - -20 Min - 3.450 + -65 +5.5 mAde ~Adc 12 ~Adc 1 11 13 - - - - - - - - - - 9 10 - - 40 40 40 100 100 100 40 40 - 2.0 ~ - Min Max - - - - - Unit VIHmu VILmin j.lAdc - - mAde mAde 5 5 4 4 - IlAdc - - ~ - 2.2 2.2 - - mAde mAde - - - 6.5 4.0 - - mAde mAde 4 4 5 5 11.13 - - 2.400 4.190 4.100 4.280 Vdc 2.400 - 3.440 3.230 3.410 0.500 - - - - -20 - - 3.460 + -65 - - 5 4 - 11.13 11.13 Vdc Vdc 11,13 4 - 5 Vdc 4.080 - Vdc + t + + t t ,I ,I t + 0.500 + - +5.0 +0.5 - 4.020 - to.8 +3.550 200 5.5 5.5 ~ +2.0 +3.525 +2.0 95 100 - 3.210 +2.0 VIHT +5.0 +5.0 IL -2.5 IOH -1.6 -2.5 IOL 16 16 -2.5 16 1.6 1.6 IL IOL IOH +7SOC - + +3.955 Vee VIHH +5.5 +5.5 Max - 1.1 1.1 3.8 2.0 4.040 +3.855 +3.895 VILT to.8 +0.8 VIL +0.5 to.5 VILAm.x +3.510 TV. 3.5 3.5 - VIHAmin 0.. TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW, +25"C Max - 9 10 Threshold Voltage Logic "0" Threshold Voltage oOC Min 'INH3 VOH2 Logic "0" Output Voltage 1 11 13 +4.280 MCl2012 lind., Characteristic I: (I) VIHm8lC VILmin +4.160 +3.130 +4.190 +3.150 - - 3.490 -20 -65 + Vdc + mAde - - - - - 5 4 VIHAmin - - VILAma. VIL VIHH VIHT VILT VCC - - - - 6.16 16 - - - - - 9 10 - - - - - 9.10 9.10 - - 16 16 6 6 16 - - - 16 16 16 + 16 16 6 6 16 - - ~ 8 8 - - - - - - - - - - 2 3 14 15 11.13 11.13 - - - - 11.13 11.13 - 9.10 9.10 - - - - - - - , 16 - I - - - - - - 9.10 9.10 - - 16 + 16 ~ 6 ------~ - - 1 6 9.10 9.10 7 2 3 14 15 8 8 8 8 8 8 8 1.8 8.11 8.12 8.13 8 8 8 8 8 6 - (VEE) Ond ~ 8 ,I 8 8 2 3 14 15 - - 2 3 14 15 - - - 8 ~ 8 + 8 Ch.'lICteristic Propagotion Deloy (So. Figures 3 and 41 Output Ri .. Tim. (See F igur. 41 Output F ell Time (Soe Figure 41 cp I\,) O'l Sotup Tim. (See Figure 51 R.I .... Tim. (See Figure 51 Symbol '12+2+ '12+3+ '12+ '12+3'1+14+ '1+15+ '1+14'1+15t5+7+ 15-7- 12,2 12,3 12,2 12,3 1,14 1,15 1,14 1,15 5,7 5,7 - '2+ 13+ t14+ t15+ 2 3 14 15 - - - '2t3'14t15- 2 3 14 15 11,13 9,10 11,13 9,10 - - - - - - - - - - 2 2 14 14 - 'setup 1 tsetup2 Toggi. Frequ.ncy Figure 6 (751 (761 (+21 Figure 7 (7100r 111 MC12012 +25"<: +75"<: Min Typ Mox Min MIX Pin Und.r Test ',.11 t r.12 f max ~ O"e Min MIx - - 2.0 - - - - -- - - - - - - 4.0 7.0 2.5 4.0 - - - - - - 3.0 3.0 2.8 2.8 3.0 3.0 2.8 2.8 8.0 5.0 2.0 2.0 2.0 2.0 - - - - - - - - 12.0 10.0 - - - - - - j - - Unit ns 12 + 1 t - - A A ns t - - 2.0 2.0 2.0 2.0 - - - - - - - - 2.4 5.0 3.0 7.0 2.0 3.5 - 4.0 8.5 ns ns - 2.0 2.0 ns ns MHz - - - - - ~ - 1.2 2.5 175 200 + (j) All MECL OUlputs (2,3,14,15) are lerminated 10 VEE Ihrough an external 510 n resistor during the DC tests. - 4.0 TEST VOL TAGESIWAVEFORMS APPLIED TO PINS LISTED BELOW: Pul.. G.n. 1 • - - - - - ns + @ 12 12 1 1 12 12 1 1 Pul.. Gen. 2 - - - Pul.. Gon.l VIHmin +1.100 VILmin +O.ll0 - - 11,13 11,13 11,13 11,13 - - - - - - - - - - - - - - - - - - - - - - - - VF VEE Vee -l.OV -3.011'-3.2 +2.0 9,10 9,10 9,10 9,10 - - c. 11,13 11,13 9,10 9,10 - - 11,13 11,13 9,10 9,10 - - - - - - - - 12 12 12 12 11/13 - - 9/10 - 11113 - - - 9/10 - - - - - - 11 - - - - - - n VILmin nVIHmax VILmin --.J L ---1 + 6,16 8 + ~ + 8 8 6,16 6,16 13 11,13 9,10 9,10 8 16 + + -- L In addition to meeting the output levels specified, the device must divide bV 6 during this test. The clock input is I n addition to meeting the output levels specified, the device must divide by 5 during this test. The clock input is 6,16 13/11 11,13 nVIHmax @ 8 6,16 6,16 - --.J r::: CD 8 8 In addition t6 meeting the output levels specified the device must divide by 2 with a clock input of VILAmax ::J 9,10 10/9 9,10 10/9 13/11 11,13 nVIHAmin ® ::J !:!. must be maintained between tests. The clock input is L ....oN 8' - the truth table. All input, power supply and ground voltages --.J 6,16 - Test outputs of the device must be tested by sequencing through VILmin 8 s:(") .... N VIHmax L MC12012 (continued) FIGURE 3 - AC TEST CIRCUIT rtJ VCC. +2.0 V 6,16 251'F J 10"I'F r-------- --------~ I I I I Pulse Generator Vee = +2.0 V 04 11'2 Toggle o - , - - - - - - - - - - - l c Flip- (EH 137) 400 Flop PuIs. Generator '3 (EH 137) V out I D'}------+-<> Input Pulse t+ ... t- = S.O±. 0.5 ns 50 04 I ~~(5~)+_------------~+ 100 MM06150 MECL or equiv to MTTL Trans- (4) ~ A MC10109Lor_. __q6-u-;v------t . . MTTL OUT lator - - ~~:±-l~,~.~ :,=:,~ -- ~ MM07000 17) or equiv VEE All input and output cables to the scope are equal lengths of 50 n coaxial cable. V The 950-ohm resistor and the scope termination impedance All unused cables must be terminated with 50 ohms. All r.sistors are = -3.2 or -3.0 wiring, and load capacitance. constitute 8 20:8 attenuator probe. + 1%. CT :: 15 pF "" total parasitic capacitance which includes probe, The 50-ohm resistor and the scope termination impedance constitute a 2: 1 attenuatar probe. FIGURE 4 - AC VOLTAGE WAVEFORMS Pulse Generator 1 03 12) 03 13) 04 114) 04 (15) 15) MTTL Out 17) 6-27 MC12012 (continued) FIGURE 5 - SETUP AND RELEASE TIME WAVEFORMS Pul,. Generator 1 Pulse Generator 2 t setup 2 Pul,. Generator 3 \ 03 (2) Pulse Generator 1 Pul.e Genefator 2 Pulse Generator 3 Q3 (2) Divide by 5 FIGURE 6 - MAXIMUM FREQUENCY TEST CIRCUIT cD CC:+2.0V 25 I'F J J 0.1 I'F r------- V out V out --------~ I I 1 1 1 03 H-o----t---, 1(14) 04r-----------~~-~ <>1---------., Toggle FlipFlop 04r-----~----~>_, Pul •• Generator o1---__________ 100 ~MECL (EH 122) to MTTL or equlv <>-'----------j (4)L - - MTTL OUT ---..=..=J,- - - - - - - __ .J 0.1I'F± NOTE: Output Waveform. are Trans lator bVEE--3.20r-3.0V sam a .1 shown in Figure. 4 and 5. 6-28 (7) 100 MC12012 (continued) FIGURE 7 - MAXIMUM FREQUENCY TEST CIRCUIT V out Vee = +2.0 V 50 r------------- -----, Q4 15 +MECL to Toggle ~~.:~ 17 Flip· Flop _ lator 04 Pulse Generator 1 _ _ -.J 0 (EH 122) 3 2 14 100 "'JlJ +o~ 5 Vee'" -3.2 or -3.0 V V NOTE: For divide by 11 connect 11 to VIL "" +0.130 and 9 and 10 to VF "" -3.0 V For divide bV 10 connect 11 to VIH = +1.160 or9 or 10 to VA = 0.0 V FIGURE 8 - STATE DIAGRAMS 6-29 4 MC12012 (continued) FIGURE 9 - .;. 5/6 MTTL E4 10 MTTL E3 MECL MECL E2 13 MECL E1 to Toggle Flip Flop 9 MTTL Trans 'Iator 11 12 3 2 C (13 1 141554 Q4Q4+ - Q3 C4 MTTL OUT Divide by 2 use Toggle Flip·Flop El+E2+E13 + E4 COUNT 01 Q2 03 6 7 0 1 1 1 1 1 5 1 0 1 1 1 0 0 0 0 0 0 0 1 0 =1 2 ".".,: 3 + E4 = 0 To obtain a MTTL output connect 5 and 4 to 2 and 3 or 14 and 15 respectively. FIGURE 10 - .;. 10/11 MTTL E4 ECL to Togle Flip Flop MECL E2 3 2 C El + E3 + E4 =1 12 14 155 03 03 03 04 1 1 1 1 1 1 1 1 COUNT 01 02 14 0 15 1 13 1 0 9 8 1 0 0 1 0 0 0 1 10 0 1 0 1 7 1 1 .1 0 5 1 0 1 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 To obtain a MTTL output connect 5 and 4 to 14 end 15 respectively. 6-30 TTL Translator C4 04 4 04 MTTL Out E 1 + E3 + E4= 0 MC12012 (continued) FIGURE 11 - - - 10/12 MTTL E4 10 MTTL E3 MECL to Toggle Flip Flop 9 MECL E2 13 MTTL Trans -Iator MECL El 11 12 To obtain 8 MTTL outPut connect 5 and 4 to C 14 and 15 respectively. ,-------I4=~=EEE~jij~8----1 El + E2+ E3+ E4= 1 FIGURE 12 -- 20/21 ~~~ ~l % MC3060 ~ MTTL E4 10 MTTL E3 9 l- 03 f-4 ~ '------.J rt-I~ El+E3 2 1 ~C4 03 z 1 COUNT 01 02 03 04 05 30 31 29 0 1 , 1 1 , 1 0 1 1 1 25 24 26 23 21 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 , 1 0 0 1 1 17 16 18 1 0 0 0 0 0 0 0 0 1 1 , 0 , 0 1 0 0 0 '5 '3 9 8 10 7 5 1 0 2 , , , 0 0 1 1 1 0 0 1 0 1 0 0 0 1 , 0 0 0 1 , 1 , , 0 0 0 1 1 1 1 0 0 0 0 0 0 0 D , 6-31 14 04 to C -Iator + - El + E3 = 0 0 '--- 554 04 1 0 0 0 0 0 0 MECL ~ 1 "0 L~ ~ r---MTTL Trans ~ 03 C f--- .-- - 3 12 To obtain a divide by 20/22 omit as to 10. To obtain a divide by 20124 omit 14 to 13. Toggle Flip Flop .-- MECL E213 MECL E 1 11 r---- 7 MC12012 (continued) FUNCTION DESCRIPTION INTRODUCTION The MC12012 isone part of a variable modulus (divisor) prescaling subsystem used in certain Digital Phase-Locked Loops (PLL). More often than not, the feedback loop of any PLL contains a counter·d ivider. Many methods are available for building a divider, but not all are simple, economical, or convenient in a particular application. The technique and system described here offer a new approach to the construction of a phase· locked loop divi· der. In addition to using the MC12012 variable modulus prescaler, this system requires an MC12014 Counter Con· trol Logic function, together with suitable programmable counters (e.g. MC4016s). Data sheets for these additional devices should be consulted for their particular functional descriptions. THE MC12012 TWO MODULUS PRESCALER Three functional blocks are contained in the MC12012 variable modulus prescaler: 1) a controllable 75/76 pre· scaler; 2) a 72 prescaler; and 3) an ECL to TTL translator (for single power supply operation). Selection of division by 5 or by 6 is made by inputs to E 1 through E4. I f all E inputs are low before the tran· sition of the clock pulse driving 03 high, 03 will stay high for 3 clock pulses, then will go low for 3 clock pulses. This provides a divide by 6 function. On the other hand, if anyone or all of the E inputs are high prior to the positive transition of the clock pulse driving 03 high, 03 will stay high for only 2 clock pulses, then will go low for 3 clock pulses. The result is division by 5. For the 75 operation, at least one of the E inputs must go high sometime before the clock pulse. This time is referred to as the "setup time." Specifications for setup time are given in the electrical characteristics table: tsetup 1 and t se tup2 for El and E2 (MECL inputs), and E3 and E4 (MTTL inputs). For the divide by 6 operation all E inputs must be low for some time prior to the clock pulse. This time is reo ferred to as the "release time." Data for release time is given in the electrical characteristics table; tre 1 and t re 2 for E 1, E2, E3, E4. The data given in the tables for setup and release times are referenced to the positive transition of the clock pu lse causing 03 to go high. If it is necessary to reference the setup and release times to the positive transition of 03, add t++ (specified for 03) to the setuplrelease times given. It should be noted that the logic states for the enable inputs are important only for only one clock pulse which causes 03 to go high (within the limits specified by setup and release times). The 7 5/7 6 prescaler may be connected externally to the 7 2 prescaler to form a 7 10/7 11 prescaler (Figure 10) ora7 10/712 prescaler (Figure 11). By way of an example showing how a 7 10/7 11 pre· scaler operates, note that if El, E3, and E4 (Figure 10) are held in a low state, the counter divides by 11. To do this, a feedback connection is established from 04 to E2 (or to Ell. With this feedback, the 75/76 prescaler di· vides by 5 when 04 is high, and by 6 when 04 is low. Since 04 changes state with each positive transition of 03, the prescaler alternates between 7 5 and 7 6 resulting in a 7 11 at 04. If anyone or all of the E inputs are high (Figure 10), the 5/6 prescaler always divides by 5 and a divide by 10 results at 04. With the addition of external flip·flops and counters (MECL or MTTL) various other modulus prescalers may be produced (20/21,20/22,20124,40/41,50/51, 1001 101, etc.). THE TECHNIQUE OF DIRECT PROGRAMMING BY UTILIZING A TWO MODULUS PRESCALER (MC12012) The disadvantage of using a fixed modulus (7 P) for frequency division in high frequency phase·locked loops (PLL) is that it requires dividing the desired reference frequency by P also (desired reference frequency equals channel spacing.) The MC12012 is specially designed for use with a tech· nique called "variable modulus prescaling". This technique allows a simple MECL two·modulus prescaler (MC12012) to be controlled by a relatively slow MTTL programmable counter. The use of this technique permits direct high· frequency prescaling without any sacrifice in resolution since it is no longer necessary to divide the reference fre· quency by the modulus of the high frequency prescaler. 6·32 MC12012 (continued) The theory of "variable modulus prescaling" may be explained by considering the system shown in Figure 13. For the loop shown: fout = N. p. fref to multiply by a fractional number, equation 4 must be synthesized by some other means. Taking equation 3 and adding ±AP to the coefficient of fref, the equation becomes: (1) fout = (Np • P + A + A • P - A. P) fref. (5) FIGURE 13 - FREQUENCY SYNTHESIS BY PRESCALING Collecting terms and factoring gives: fout""Nepefref Reforonco@-ha-ase . F Is) veD Frequencv ~ (fref) fout= [(Np - A) P+ A (P+ 1)] fref / oet. (6) From equation 6 it becomes apparent that the frac· tional part of N can be synthesized by using a two·modu· Ius counter (P and P + 1) and dividing by the upper modu· Ius, A times, and the lower modulus (Np - A) times. This equation (6) suggests the circuit configuration in Figure 15. The A counter shown must be the type that FIGURE 15 - FREQUENCY SYNTHESIS BY TWO MODULUS PRESCALING where P is fixed and N is variable. For a change of 1 in N, the output frequency changes by P • fref. If fref equals the desired channel spacing, then only every P channel may be programmed using th is method. A problem reo mains: how to program intermediate channels. One solution to this problem is shown in Figure 14. Frequency (frof) FIGURE 14 - FREQUENCY SYNTHESIS BY PRESCALING Roference &@-ha--fOU'=N-\frOf Fr.qu.ncv~ -;-p (f re 1) ase F (s) veo Det. N""' N p • P+A counts from the programmed state (A) to the enable state, and remains in this state until divide by Np is completed in the programmable counter. In operation, the prescaler divides by P + 1, A times. For every P + 1 pulse into the prescaler, both the A coun· ter and Np counter are decremented by 1. The prescaler divides by P + 1 until the A counter reaches the zero state. At the end of (P + 1) • A pulses, the state of the Np counter equals (Np - A). The modulus of the prescaler then changes to P. The variable modulus counter divides by P until the remaining count, (Np - A) in the Np counter, is decremented to zero. Finally, when this is completed, the A and Np counters are reset and the cycle repeats. To further understand this prescaling technique, consi· der the case with P = 10. Equation 6 becomes: A .;. P is placed in series with the desired channel spacing (frequency) to give a new reference frequency: channel spacing/Po Another solution is found by considering the defining equation (1) for fout of Figure 13. From the equation itmay be seen that only every P channel can be programmed simply, because N is always an integer. To obtain inter· mediate channels, P must be multiplied by an integer plus a fraction. This fraction would be of the form: A/P. If N is defined to be an integer number, Np, plus a fraction, AlP, N may be expressed as: N = Np+ AlP. Substituting this expression for N in equation 1 gives: or: fout = (Np + A/P) • P. fref (2) fout = (Np P + A) • fref (3) fout = Np. P • fref + A. fref. (4) fout = (A + 10 Np). fref If Np consists of 2 decades of counters then: Np = 10 Npl + NPO (Npl is the most significant digit), Equation 4 shows that all channels can be obtained directly if N can take on fractional values. Since it is difficult and equation 7 becomes: 6-33 (7) MC12012 (continued\ FIGURE 16 - DIRECT PROGRAMMING UTILIZING TWO-MODULUS PRESCALER 2:0 2:, Eo 2:2 L.E - MC12D12' MTTL out r--- ® 2:3 ® fin PO C, MC12014 P' 'Connected fout P2 f01"710/11 r- LOOQ'OO~~ 000,0203 MC40,8 '--C C MC40'6 P3 B' Be---< C MC40'8 _ R fiE fiE PE t , , t1 r r 1r t - t t ttl I I I I I I I I N' A @ c----<>-- NO FIGURE 17 - WAVEFORMS FOR DIVIDE BY 43 11 Pulsel I 11 Pulses 11 Pulse! I 10 Pulses 11 Pulses 11 Pulses 11 Pulses fin ® ® © 1 CYcle = 43 Pulses r f out FIGURE 18 - WAVEFORMS FOR DIVIDE BY 42 11 Pulses 11 Puls.s 10 Pulses I 10 Pulses I 11 Pulses 10 Pulses 11 Pulses I fin ® ® © 1 Cycle = 42 Pulses I- 1 tout ·1 1 ,-- FIGURE 19 - WAVEFORMS FOR DIVIDE BY 44 11 Pulses ® ® © I 11 Pulses 11 Pulses ,. 11 Pulses I 11 Pulses 1 CYcle - 44 Pulses f out 6-34 11 Pulses 11 Pulses I..._ _ _--'r MC12012 (continued) and the A counter goes to O. The zero state of the A counter is detected by the MC12014, causing point @to go to 1 and changing the modulus of the MC12012 to 10 at the start of the cycle. When fout goes low, the programmable counters are reset to the programmed number. After 11 pulses (the enable went high after the start of the cycle and therefore doesn't change the modulus until the next cycle), point makes another positive transition. This positive transi· tion causes fout to return high, release the preset on the counter, and generates a pulse to clear the latch (return point ® to 0). After 10 pulses the cycle begins again (point was going high). The number of input high prior to point pulses that have occured during this entire operation is: 11 + 11 + 11 + 10 = 43. Figures 18 and 19 show the waveforms for divide by 42 and divide by 44 respectively. fout = (100 Npl + 10 NPO + A) fref. To do variable modulus prescaling using the MC12012 and programmable divide by N counters (MC4016, MC4018, one additional part is required: the MC12014 (Counter Control Logic). In variable modulus prescaling the MC12014 serves a dual purpose: it detects the terminal (zero) count of the A counter, to switch the modulus of the MC 12012; and it extends the maximum operating frequency of the pro· grammable counters to above 25 MHz. (See the MC12014 data sheet for a detailed description of the Counter Con· trol Logic). Figure 16 shows the method of interconnecting the MC12012, MC12014, and MC4016 (or MC4018) for vari· able modulus prescaling. To understand the operation of the circuit shown in Figure 16, consider division by 43. Division by 43 is done by programming Npl = 0, NPO = 4, .nd A= 3. Waveforms for various points in the circu it are shown in Figure 17 for this division. From the waveforms it may be seen that the two·modulus prescaler starts in the divide by 11 mode, and the first input pulse causes point A to go high. This positive transition decrements the Np counter to 3, and counter A to 2. After 11 pulses, point ® again goes high; the Np counter decrements to 2 and the A counter to 1. The "2" contained in the Np counter enables the inputs to the frequency extender portion of the MC12014. After 11 more pulses point ® goes high again. With this position transition at ® ' the output (fout) of the MC12014 goes low, the Np counter goes to 1, ® ® ® The variable modulus prescaling technique may be used in any application as long as the number in the Np counter is greater than or equal to the number in the A counter. Failure to observe this rule will result in erroneous results. (For example, for the system shown in Figure 16 if the number 45 is programmed, the circuit actually will divide by 44. This is not a serious restriction since Np is greater than A in most applications). It is important to note that the A counter has been composed of only one counter for discussion only; where required, the A counter may be made as large as needed by cascading several programmable counters. Figure 20 shows the method of interconnecting counters. Opera· tion is previously described. The number of stages in the A counter should not exceed the number of stages for the FIGURE 20 - METHOO OF INTERCONNECTING COUNTERS zo Zl Z2 Z3 B2 f' n MC120l4 PO PI ,...----. P2 f out EOU I E MTTLoutl C~C12012 fin I yc I~ ~" MC40l~B t-:c:a~~J h 00010203 MC40,;1 PE , ffLP 03 B MC40'63 PE fffff I lA' C PE V ~ C I A2 , I I Q3 B ,--' Lt fftU TTTft Tffff NpO Np, Np2 v A Counter Np Counter A- '00A2+ lOA, + AD Np 6-35 ~ ____ ~EJ PE PE , ,...---1- 1 --Q3--l: 03 C PE I ------, MC40~ Yc MC4016~ MC4016{~ MC40'6~:J ,---- 00Q1Q2Q3 T'TT~" II 1 t tf t f I r=~ ------~ 03 f out '00 Np2 + '0 Np, + NpO ::::: -I-rrr"'-, MC12012 (continued) FIGURE 21 - DIRECT PROGRAMMING 100-200 MHz SYNTHESIZER IN 50 kHz STEPS 50kHz Reference f out - 100 to 200 MHz VCO MCI648 F(I) Frequency in 50 kHz step,. + 10/+ 11 MTTL 100 MHz 10MHz 1 MHz 100kHz 60 kHz ·Used·1II Modulus Two Programmable Count.r. Also could u .. MC4017. FIGURE 22 - FM BAND SYNTHESIZER WITH 10.7 MHz I.F. OFFSET MC4044 f - - - - -...... f out DIAL IT] DIAL 0 0 1 0 0 0 1 1 0 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 o 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 o 0 1 0 o 1 .3 .5 .7 CD .9 6-36 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 & 98.8-118.6 MHz in 200 kHz steps. MC12012 (continued) Np counters. As many counters as desired may be cascaded, as long as fan-in and fan-out rules for each part are observed. The theory of "variable modulus prescaling" developed above, examined a case in which the upper modulus of the two-modulus prescaler was 1 greater than the lower modulus. However, the tedhnique described is by no means limited to this one special case. There are applications in which it is desirable to use moduli other than P/(P + 1). It can be shown that for a general case in which the moduli of the two-modulus prescaler are P and P + M, equation 6 becomes: From equation 8 it may be seen that the upper modulus of the two-modulus prescaler has no effect on the Np counter, and that the number programmed in the A counter is simply multiplied by M. APPLICATIONS There is no one procedure which will always yield the best counter configuration for all possible MC12012 applications, Each designer will develop his own special design for the counter portion of his PLL system. An insight into some of the various possible counter schemes may be obtained by considering the various PLL systems shown in Figures 21,22, and 23. These examples were chosen to show some of the moduli that may be obtained by using the MC12012. f out = [(Np-A)P+A(p+M)Jefref or (8) fout = [Np e P + M e AJ e fref. FIGURE 23 - UHF SYNTHESIZER USING 10112 COUNTER f out MC4044 = 103.2-186.0 MHz in 1.2 MHz step •. \ 600 kHz f out ::: 516-930 MHz in 6 MHz steps. I.F. Strip SWITCH READING 1 2 3 4 5 5 1 8 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 2 3 4 0 1 0 5 6 1 8 9 6-37 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 MECL Phase-Locked Loop Components PHASE-FREQUENCY DETECTOR MC12040 The MC12040 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock. In combination with a voltage controlled oscillator (such as the MC16481, it is useful in a broad range of phase-locked loop applications. Operation of this device is identical to that of Phase Detector #1 of the MC4044. A dis· cussion of the theory of operation and applications information is given on the MC4344/4044 data sheet. CERAMIC PACKAGE CASE 632-02 VCC1 • Operating Frequency = 80 MHz typical 14 VCC2 NC 2 13 NC U 3 12 D U 4 11 0 NC 5 10 NC R 6 VEE 9 V 8 NC NC - No Connection --....o-~--o 4 U (IR> Ivl ./'----0 R60----/ V90----\ 3 0 (IR > IVI 12DIIV>IRi VCC1 = Pin 1 VCC2 = Pin 14 VCC3 = Pin 7 6-38 MC12040 (continued) ELECTRICAL CHARACTERISTICS INPU 00 01 1 1 o 1 1 1 o 1 R 6 U 4 o 3 1 1 1 1 o 1--11 o 1 9- V OUTPUT TRUTH TABLE RVUOOO The MC12040 has been designed to meet the de specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 50 ohm resistor to +3.0 V for +5.0 V tests and through a 50 ohm resistor to -2.0 V for -5.2 V tests. XXXX XXXX X X X X 'X X X X 1 0 0 1 This is not strictly a functional truth table; Le., it does not cover all possibile modes of operation. However it gives a sufficient num· ber of tests to ensure that the de- 1 1 0 1 1 0 0 o 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 l O X " " Oon't Care 1 1 1 0 0 0 1 1 0 1 1 1 [jf---12 0 vice will function properly in all modes of operati on. 0 0 0 TEST VOLTAGE VALUES IVoh11 .T", Temptr.tu .. OOc ,.·c Supply VOltage .. -S.2V 75"0 MCl2040 Pin Symbol Pow.r Supply Ora," Current Und.r Test M.x Min Typ -90 'e Input Current VIL min VIMA "un VILA m.. VEE -0840 -1870 -1.145 -1490 -52 -0810 -1.850 -1.105 -1475 -52 -0 720 -1 830 -1.045 1.450 -5 2 TEST VOLTAGE APfiLIED TO PINS LISTEO BELOW: oGe Min VIM m.. M .. Unit -120 mAdc VIH max VIL min VIHA mIn VILA m.. VeE 1,14 1,14 350 350 1,14 os os LogIc "1" Output Voltage -1000 -0840 ~ ~ ~ -1.870 -1.635 -1.850 -1.620 11 12 LClglc "0" Output Voltage ~ 4 11 12 L09'c ''1'' -1.020 OHA(l: -0810 -0960 J,lAdc 1, J,lAdc 1,14 114 -0900 -0.720 Vd< ~ j -1.830 -1595 Vd, 1.14 ~ ~ ~ -0.980 -0.920 Vd< ~ 6,9 11 12 LOllI(: "0" Threshold Voltage 12 1.14 ~ ~ Threshold Voltage 1Vee' Grtd -1.615 -1600 -1575 Vdc 1.14 ~ ~ ~ ~ ~ TEST VOLTAGE VALUES !Votu' fitTest T,ml"'r.tu., O·C 25'C Supply Voltage = +S.OV 7S Cl C MC12040 p," Symbol Power SupplV O'~ln Current Under Tesl -85 OS 4000 4.160 ~ ~ 3.190 3.430 3.210 12 LogIC "0" Output ~ Voll~ge 11 12 LogIC ", .. !vOHA@: 4.040 3.440 1 12 +3.550 +5.0 VIL mIn VIHA mIn VILA m.. Vee ,Ad< 1,14 1.14 1,14 U4 1.14 ! ~ 3.230 3.470 1,14 ~ ~ j Vd< '6.9 ~ 3.450 3.460 3.490 Vdc ~ ~ ~ ~ :_.Q) Outputs of the device must ® +5.0 Ad, J,lAdc J,lAdc ~ 11 12 Threshold Vollage +3.510 +3525 4280 4080 Th!e$hold Voltage LogIC "0" +3.855 +3895 +3.955 4.100 T~ 4.020 3.980 Vee +3.130 +3.150 +3.170 1,14 350 350 11 VILA m.. +4.160 +4190 +4.280 -lIS os Lqglc"I' Oulpur Voltage VIHA mIn VIH max -60 ',""ut Current . VIL mIn TEST VOL TAGE APfiLIED TO PINS LISTED BELOW' M •• 'e VIH m.. be tested by sequencing through .the truth table. All input. power supply and ground voltages must be maintained between tests. The device must also function according to the truth table during these tests. 6-39 1.14 (VEE] Gnd MC12040 (continued) AC TESTS To Scope Channel A 6.01'F 1 1 0 1 . I'F 14 6 U R U 3 To Scope Channa' B 11 0 0 ) - - - -.....- - 0 v 0 0.1 12 Vee ". -3.2 or -3.0 V NOTES, .f. Pul •• Gen. 1 1. All input and output cables to the Icope equal lengths of 50 n +0.3V coaxial cable. \-----+I.IV 2. Unused input and output. are connected to a 50 n resl'tor to ground. Pulse Gen. 2 '-'-= ___-X'-_ _ _ _ 3. The device under test mUlt be precondi· tioned before performing the Be tests. Preconditioning may be accomplished by +0.3V Output applying pulse "en8rator 1 for I minimum of two pulses prior to pulse "enerator 2. The device mUlt be preconditioned again Waveform A when inputl to pins 6 and 9 are interchanged. The ••me technique applies. Output Waveform B TEST VOLTAGES!WAVEFORMS Pin Cher.n.-Ntic Propeption Delay Symbol ....+ 1&+12+ '11+31&+111&+11+ '9+3+ '9+12OutpUt Ri. Tim. Output F.II Tim. Und. Ton 6.4 6.12 6.3 6.11 9.11 OUtpu' Pu_ Mo. Unit Gen. 1 +1&OC Min Mo. Min Typ Mo. Min 8 - 2.8 4.5 2.8 4.8 2.8 4.5 2.8 4.8 2.4 1.6 2.6 1.6 2.8 1.6 2.6 1.6 2.8 - 0.8 1.5 2.8 4.5 2.8 4.8 2.8 4.5 2.8 4.8 2.4 - 3.8 5.7 3.8 6.1 3.8 5.7 3.8 6.1 3.1 - 3.1 A A 8 8 -'3+ '4+ t11+ t12+ 3 4 11 12 A '3_ 3 4 A t1'_ t12_ oac w.."orm 9,3 9.12 9,4 <4- APPLIED TO PINS LISTED BELOW: MC12CMO +:z&OC A A 8 8 8 A l' 8 8 12 A - - - - - - III 1 I I 2.4 0.8 6-40 1.5 1 2.4 - 1 -- 6 6 9 9 7 1.14 6 6 9 9 7 no 1 1 Vee +2.0 V 1,14 6 9 6 9 9 6 9 8 no VEE -3.0 or -3.2 V 7 n. 1 1 Pu_ Gen. 2 9 6 9 I I 1 1,'4 1 MC12040 (continued) APPLICATIONS INFORMATION detector (U and 01. Using this technique the Quiescent differential voltage to the operational amplifier is zero (assuming matched "1" levels from the phase detector). The 0 and [) outputs are then used to pass along phase information to the operational amplifier. Phase error summing is accompHshed through resistors .A 1 connected to the inputs of the operational amplifier. Some A-C filtering imbedded within the input network (Figure 2) may be very beneficial since the very narrow correctional pulses of the MC12040 would not normally be integrated by the amplifier. General design guides for calculating A1, A2, and C are included in the MC4044 data sheet. Phase detector gain for this configuration is approximately 0.16 volts/radian. System phase error stems from input offset voltage in the operational amplifier, mismatching of nominally equal resistors, and mismatching of phase detector "high" states between the outputs used for threshold setting and phase measuring. All these effects are reflected in the gain constant. For example, a 16 mV offset voltage in the amplifier would cause an error of 0.016/0.16 = 0.1 radian or 5.7 degrees of error. Phase error can be trimmed to zero 'initially by trimming either input offset or one of the threshold resistors (R1 in Figure 2), Phase error over temperature depends on how much the offending parameters drift. If better performance were desired. the "charge pump" concept of the MC4044 could be implemented and subsequent errors could be reduced considerably since offsets no longer enter the picture. The MC12040 is a logic network designed for use as a phase comparator for MECL-compatible input signals. It determines the "'ead" or "lag" phase relationsh ip and the time difference between the leading edges of the waveforms. Since these edges occur only once per cycle. the detector has a range of i211' radians. Operation of the device may be illustrated by assuming two waveforms. R and V (Figura 1), of the same frequency but dif- fering in phase. R If the logic had established by past history that was leading V, the U output of the detector (pin 4) would pro- duce a positive pulse width equal to the phase difference and the 0 output (pin 11) would simply remain low. On the other hand, it is also possible that V was leading A (Figure 1), giving rise to a positive pulse on the 0 output and a con~ stant low level on the U output pin. Both outputs for the sample condition are valid since the determination of lead or lag is dependent on past edge crossing and initial conditions at start-up. A stable phase-locked loop will result from either condition. Phase error information is contained in the output duty cycle that is, the ratio of the output pulse width to total period. By integrating or low~pass filtering the outputs of the detector and shifting the level to accommodate Eel swings, usable analog information for the voltage-controlled oscillator can be developed. A circuit useful for this function is shown in Figure 2. Proper level shifting is acomplished by differentially driving the operational amplifier from the normally high outputs of the phase FIGURE 1 - TIMING DIAGRAM R_~--v ___ ~- --j (0 r- Lead .JnL_____-Jn._ 1.C --U ~u;:~~s= ~.o:)Jl'-_____ V leads A (U Output =: "0") Lag FIGURE 2 - TYPICAL FILTER AND SUMMING NETWORK c 3 u f-o-r'Mr'T""'Nv-~-I >-0....__.. To MC12040 510 6-41 VCO MTTL Phase-Locked Loop Components CRYSTAL OSCILLATOR M C12 060. M C12 5 60 MC12061·MC12561 The MC12060/12560 and MC12061/12561 are designed for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and IiIITTL outputs. • Frequency Range = 100 kHz to 2.0 MHz for MC12060/12560 = 2.0 MHz to 20 MHz for MC12061/12561 • Temperature Range = -550 C to +125 0 C for MC12560, 61 = to +700 C for MC12060, 61 • Single Supply Operation: +5.0 Vdc or -5.2 Vdc • Three Outputs Available: 1. Complementary Sine Wave (600 mVp-p typ) 2. Complementary MECL 3. Single Ended MTTL L SUFFIX CERAMIC PACKAGE CASE 620 ,- ,~'''' ooc PLA~T~~::~KAGE 1 MC12060/MC12061onlv. FIGURE 1 - BLOCK DIAGRAM Bias Bypass 0.1 jlF AGC Filter 0.1 jlF VCC -- Sine Wave Output MECL + 1 VCC 4 3 2 14 11 VCC MECL to MTTL 10 Trans- MTTL Output lator Note: 0.1 ",F power supply pin bypass capacitors not shown. TYPICAL CIRCUIT CONFIGURATIONS FIGURE 2 SINE WAVE OUTPUT CRYSTAL REQUIREMENTS Note: Start-up stabilization time is a function of crystal series resistance. The lower the resistance, Note: 0.1 JlF power supply pin bypass capacitors not shown. FIGURE 3 - MTTL OUTPUT FIGURE 4 - MECL OUTPUT 1+5.0 V Supply) Characteristic MC12060112560 FIGURE 5 - MECL OUTPUT 1-5.2 V Supply) MC12061/12561 Fundamental Series Resonance Mode of Operation 100 kHz - 2.0 MHz Frequency Range Series Resistance, Al 2.0 MHz - 20 MHz Minimum at Fundamental the faster the circuit I-M':":"':":'"'-'-=Ef'-'f::....:'-'·'-R'-'--·---R-----1t-----4-k-o-h-m-'----.-----15-5-0-hm-'-----1 stabilizes. aXlmum ectlVe eSlstance, E(max) 6-42 3:3: ELECTRICAL CHARACTERISTICS ...... (')(') NN Vee 00 F,11 ... Si .... W .... 0')0') 01,.F .....0 3:3: ...... NN (')(') UIUI 0')0') "'0 nO ::J ~. ::J C (I) TEST VOLTAGE/CURAENT VALUES .... Volt, Unt T.ml"'~':~ MC12560, MC12561 0) .;. w MCl2080. MCl2061 Vee VIHm. . VILmin VIHAmin VILAlMx VIHT VCCL 4.07 3.18 3.72 3.49 +25o C ' +12SoC 4.19 3.21 3.90 3.52 4.37 4.16 4.19 3.25 3.19 3.21 4.03 3.86 3.90 3.60 3.51 3.52 +7S o C 4.28 3.23 3.96 3.55 4.0 I+a~ 4.0 4.5 5.0 4.0 4.5 4.0 4.0 4.0 4.5 4.75 4.75 4.75 C. VCCH IOl 10H IL 5.5 1'6 -0.4 -2.5 5.0 5.5 16 -0.4 -2.5 5.0 5.0 5.0 5.5 5.25 5.25 '6 16 16 -0.4 -0.4 -0.4 -2.5 -2.5 -2.5 5.0 5.25 16 -0.4 -2.5 TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW C ..... cr.illic Unit VIHnwli1 VILminl VIHArnmiVllAIM.lVIHT]VCCL! Vee IVCCHlloL PoWIr Supply Or.m Currenl - MCI2060112560 - Mel 2061/12561 ICC InPIJtCurrent 'INH "NL Olfferentlel Othet Volt9 MCl2060112560 MC12061112561 Output Voltege Lel/el .Y I - - -220 -100 2 to 3 I VOM,.I VOH2 VOl1- 16 23 30 19 ~ 40 VOl2 VOHA Logic "0" Threshold VoltegB: VOLA Output Short-Circuit Current 'os - - - 13 18 - "'220 +100 16 n 19 ~ - - 30 40 - - - - 2.4 I - 2.4 I -' I 2.4 I 2.4 12 13 10 4.02· 4.02 J.41 J.41 20 60 ~~I=I~~I=I~: 4.15 3.98 4.15 3." - - - 2.4 3.00. 3.00 3.441 3.041 J.50 12.981 J.4J J.44 3.04 3.50 2.98 3.43 12 12"'13.3913.00 2.97 3.39 3.00' 10 0.5 10 0.5 g I~::I - 14 15 - 1:::~ 14 15 15 15 14 J.46' • J.46 - 60 20 20 -Devices will meet st.ncMrd MECl logic levels using VEE = -5.2 Vdc end Vee '" O. 3.52 3.52 60 I:~~' :~:1 - = I~::' - 6O~.1 20 20 I Ydc 14 15 14 14 1. 15 14 15 15 - - • 4.081 - I 4.081 - I ~::: I 60 1 1 60 1mAdcl 15 - 14 14 15 14 15 14 15 ,. ...••• - 8,14 • 8,15 • + + ,. '11,16' 16 16 ..' .....' ~~ 1. 12 13 12 13 - '1\9,10 16 • 11,'6' 12 13 10 1. 1. ,. 15 - and - - "1,161 - ",J6l !g 15 Vdc Vdc =I ~::: I ~:~ 20 IL 1 •• + - I IOH I 16 Yd, Ydo 2.4 I ,.,. ,. ,. '11,161 5.6 =1::~:I::!gl::~:1 ~~~I !~ 15 ~::: I ~:~~ I ~::; I ~:~ 14 ~:~l = I g::1 ~=~ - - mYdc 35 3.5 ~; 1~::~I::g~I:::1 =.I::!:I::gl::~;I:::I::!:I:::1 10 . - I:::~ ,. 1325 -300 -200 3.5 3.5 13 logic "1" Tt'lreshold Volt. - 1= 1= 1= 1= 1~~ 1= 1= 1= 1= 1= 1=1~~ I :: 1= 1= 1= 1= 1:~ 1= 1= 1=1= 1= 1=1:~ 14'0'1-1-140 1-13251 -1- 1-1- 140 I 2t03 Y out 13 18 - I :: logic ''1'' Output Volt9 LOgiC "0" Output Volt. ~ I -I -I ~ I ~ I ~ I -I -I -I -I ~ I ~ I ~ I -I -ImAdO'! 1 1 11 - I MC12060, MC12560 MC12061, MC12561 (continued) FIGURE 6 - AC CHARACTERISTICS - MECL AND MTTL OUTPUTS' Vee"" +2.0 Vdc +200 mV 0.1jlF f 16 " 13 450 12 450 10 1.2 k Pul .. Generator (EH 137 or Equiv) 2.0 PRF MHz t- "'" 2.0 ± 0.2 t+ MECL Output (Pin 13) ---+=""1 t+ tf[-+ 50~ t- n. t- outPut--"::"8=-~:':~~- MECL (P;n 121 IE 14 _ 2:.:0:.:"=-____ L-.---r-~rr~~r=~4:00~~ .--l4--.. . . .~'V--o+~d~ t+ MM06150 or Equiv MM07000 or EQuiv VEe = -3.0 Vdc -3.0 Vdc All Input and output cable, to the scope are equal length, of 50 n coaxial cable. Unu.,d outputs are connectad to • 50 n ±1% r.sistor to ground. CT "" 15 pF - total parasitic capacitance which Includes probe, wiring, and load capacitance. C ...... _ _ ic Propeg.tlonOeI.v ..-, 1'5+10+ '15_10"5+12- '15-'2+ 115+13+ Ri. Time hUTirne 1'5_13112. t13+ t12"3- p~ u.... T. . ,." """ " "" "" .... MCl25l1O. Mel21e' · ...c +aGe T" JO "" " ..." 5 .• 4 .• 5 .• 3 .• 3.' 3. 3 .• ....,. " 6 .• 5.5 54 S.2 3. 3 .• '.5 4.S 3 .• 3 .• 55 5.2 5 .• 5 .• .. 4 .• MCl2060, MCl2061 +25 o C "c JO .....• ..• ..• '.3 37 - +l25Gc Min S .• 5 .• 6-44 T,. "" "" ..... 4 .• - ,. ,." :IS ......" ....•..• 4.3 5.' 5. 4 .• 5 .• TEST VOL TAGES/WAVEFORMS 55 5.2 5 .• S .• - " .. ! !"" 3 .• 3 .• - 4.' 4 .• ..• ... PuI_ln Put-Out .2.oVclc -3.0Vdc 5 .• 5.2 52 5.' 3. 3 .• ,.,. APPLIED TO PINS LISTED BELOW: +l'SoC "' "' " "' "" """ "" " "" 11,16 G... " ! ...! ! 11.16 11,16 11.16 11,16 ... ..9 "" '.' "" MC12060, MC12560 (continued) MC12061, MC12561 FIGURE 7 - AC TEST CIRCUIT - SINE WAVE OUTPUT Vee Crystal - = +2.0 Vdc O.I/OF Reeves Hoffman Series Mode Series Aesistance Minimum at F u "dame" tal • MCI2060/12560, O.I/OF fz:500kHz Re =1 k n MC12061/12561' f= 10MHz Re c ,..-.l-_--L_ _ _ _....L-, 3 450 2 450 5 n 'RS - MCI2060/12560= 3 kn MC12061112561 c 150 n AS is inserted only for test purposes. When used with the above specified crystal. 6 it guarantees oscillation with any crystal which has an equivalent series resistance ~4 kn for MC12060/12560 and 155 n .....---<1>----. Vee· -3.0 Vdc for MC12061/12561. Cry""1 All output cables to the scope are equal D~ .n lengths of 50 coaxial cable. All unused cables must be terminated with 8 50 n ±'% resistor to ground. 450 n resistor and the scope termination impedance constitute 8 10:1 attenuatar probe. Pin Characteristic MCI2560 MC12561 +25 o C MC12060 MCI2061 TEST VOLTAGE APPLIED TO PINS LISTED BELOW +250 C Undar Test Min Typ Min Typ 2 3 600 600 675 675 500 500 650 650 2 700 700 750 750 650 650 750 750 Unit +2.0Vdc -3.0Vdc Sine Wave Amplitude MC12060/12560 MC12061/12561 3 1 8,9 p mr + + OPERATING CHARACTERISTICS The MC12060/12560 and MC12061/12561 consist of three basic section5: an oscillator with AGe and two translators (Figure 1). Buffered complementary sine wave outputs are avail8~e from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL andlor MTTL. Series mode aystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive elen'Ent can be inserted in series with the crystal - an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the aystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming oomponents then affects overall oscillator IJE!'rformance. The MC12060/12560and MC12061/12561 are designed to operlta from • single supply - either +5.0 Vdc or -5.2 Vdc. Although each translator has separate VCC and Vee supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate VEE pin from the MTTL translator helps minimize transient disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to VEE (pin 81. With the translators not IX)vvered, supply current drain is typically rodUC8d from 35 mA to 16 mA for the MC12060/12560, and from 42 mA to 23 mA for the MC12061/12561. Frequency Stability Output frequency of different oscifiator circuits (of a given device type number) will very somewhat when used with a given test .tup, however the variation should be within approximately ±O.001% from unit to unit. Frequency variations with temperature (independent of the crystal, which is held at 2sDC) are smoll - about -0.08 ppmfDC for MC12061/12561 operating at 8.0 MHz, and about -0.16 ppmfDC lor MC12060/125600peratingat 1.0 MHz (see Figure 81. Signal Chlract.istics The sine wave outputs at either pin 2 or pin 3 will typically range from 800 mVp-p (no load) to SOO mVp·p (120 ohm ac load). Approximately 500 mVp-p can be provided across 50 ohms by slightly increaSing the dc current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than 0.0003% when going from a high-impedance load 11 megohm, 15 pF) to the 50-ohm load of Figure 9. The dc voltage level at pin 2 or 3 is nominally 3.5 Vdc with Vee = +5.0 Vdc. Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The har· monic content is approximately load independent except that the higher harmonic levels (greater than the fifth) are increased when the MECl translator is being driven. Typically. the MECl outputs (pins 12and 13) will drive upto five gates, as defined in Figure 10, and the MTTl output (pin 10) will drive up to ten gates, as defined in Figure 11. Noi. Cher.~.iltics Noise level evaluation of the sine wave outputs using the circuit of Figure 12, with operation at 1.0 MHz for MC120601 12560 or 9.0 MHz for MC12061/12561, indicates the following characteristics: 1. Noise floor (200 kHz from oscillator center frequency) is approximately -122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions andlor translator operation. 2. Close-in noise (100 Hz from OScillator center frequency) is approximately -88 dB when referenced to a 1.0 Hz bandwidth. MC12060, MC12560 MC12061, MC12561 (continued) FIGURE 9 - DRIVING LOW-IMPEOANCE LOADS FIGURE 8 - FREOUENCY SHIFT versus TEMPERATURE +10~-----r----'r----'-----'-----'-----'-----' +5.0 V O.1I.lF O.1IJF E ! .... ~ ~ -10 S 0.' IlF To ~ ~ -20~----4-----~---1-----+----~----+-~~ -30'--_ _"'-_........._ _........_ _'--_-'-_ _-'-_--' -55 -25 75 100 125 25 50 ·See te)(t under signal characteristics. lA. AMBIENT TEMPERATURE (DC) FIGURE 10 - MECL TRANSLATOR LOAD CAPABILITY Vee = FIGURE 11 - MTTL TRANSLATOR LOAD CAPABILITY +6.0 V Vee "'" +5.0 V +5.0 V ~ O.l/lF 16 11 ........,------0 13 Sine to MECL 270 MECL 10 to MTTL All Trans- diodes 1.5 k lator 8.2 k MBol0l or EQuiv 9 FIGURE 12 - NOISE MEASUREMENT TEST CIRCUIT +5.0 V ANALYZER SETTING O.1IJ,F Video Sweep Bandwidth Filter Noise Floor 50 kHz/div 10 kHz 10 Hz Close-In Noise 20 kHz/div 10 Hz 10 Hz Measurement To HP8552B/53B Spectrum Analyzer or Equiv 6-46 RESISTOR R 1 (2 Placo.) R2(2Placos) R3 (2 Place.) I I 10kn 5 kn MC12061112561 200 n 400n 2 kn 3:3: ...... 00 NN 00 en en CIRCUIT SCHEMATIC .....0 3:3: Sine to MECL Voltage Regulator Amplifier! AG C Oscillator MECL TO MTTL Translator Translator Sina Wave Output 2 3 I I 16 VCC 2.98 1k 014- NN U'IU'I en en MECLI "'0 O,u;~~t I 15 + ...... 00 11 ~VCC 1.2 k >100 nO ,...:J :J c: (!) 0. 0) .r.. -...I 1.5 '>1.5 k 60 Crystal 05 9 VEE INTEGRATED CIRCUITS MIL-M-38510 PROGRAM 7-1 MOTOROLA MIL-M-38S10 PROGRAM - the ultimate in quality assurance, for integrated circuits Motorola is the industry's pioneer manufacturer of high-reliability integrated circuits, having been the first company to be qualified as a MIL-M-38510 approved facility_by the Defense Electronics Supply Center of the Department of Defense early iri 1971. Motorola's extensive experience in high-reliability military and manned spacecraft programs such as Apollo, Minuteman and Safeguard, coupled with an investment of millions of dollars for research and development, has resulted in the ultimate in quality assurance for integrated circuits: the MOTOROLA MIL-M-38510 PROGRAM_ The MOTOROLA MIL-M-38510 PROGRAM is designed to facilitate delivery and to minimize specification preparation time_ Beginning with a nucleus of popular IC types from our high-volume lines, the program is continually adding more devices to the list of MIL-M-38510 JAN-Qualified products_ Because it is a "standard" hi-rei program, the MOTOROLA MIL-M-38510 PROGRAM aids in reducing the high costs and delivery delays normally associated with "custom" hi-rei programs in the past. It is a functional. operating program, based on the Military's own long-range objective to improve and demonstrate integrated circuit reliability, and is designed to provide hi-rei customers with the finest in quality, reliability and performance - fast! This comprehensive program is structured to provide an environment in which proven methods of manufacturing, quality assurance, monitoring, screening and testing can thrive - to give you the most reliable product on the market today - and to give it to you fast! The MOTOROLA MIL-M-38510 PROGRAM is designed to support a broad base of test and evaluation programs for micro-electronic d\!vices: materials, workmanship, performance capabilities, identification and processing - applied to all Motorola standard integrated circuit product, with appropriate levels of reliability_ This product can be ordered in accordance with MIL-M38510 JAN-Qualified standards or to the lowercost, but similar hi-rei specifications designated as MIL-M-38510 JAN-Processing. (See ordering information.) THE MOTOROLA MIL-M-38S10 PROGRAM OFFERS YOU THESE BENEFITS: L Standardization of environmental and electrical test procedures 2_ Less specification writing required 3_ Less time required in negotiating specifications 4_ Fast delivery 5_ Lower costs 7-2 I J MI L·M·38510Ioontin ",d) MIL -M-3851 0 processed devices are offered by Motorola in the MECL 10,000 family for both commercial and military temperature range use. Hermetically·sealed ceramic dual in line and flat packages are available. Industry·wide "slash-specs" are being issued, and when available, will permit Motorola to provide MIL·M-3851O qualified MECL 10,000 devices. Most devices in the MECL II, and MECL III families can also be processed to meet MIL·M-38510 requirements. Motorola's MIL-M-38510 Program supplants our former high reliability "Checkmate" program. You are invited to inquire directly to Motorola for price and delivery quotations on your MIL·M-38510 MECL device requirements. MECL MIL-M-38510 SELECTOR MECL 10,000 MC10,OXX MC10,lXX MC10,2XX MC10,3XX MC10,4XX MC10,5XX MC10,6XX MC10,7XX Rated Temperature Range Package Styles Available -30 0 C/+850C L L -55 0 C/+1250C L,F L,F -300 C/+850C L,F MECLIII MC16XX 7-3 THE MOTOROLA MIL·M·38510 PROGRAM Under this program, Motorola integrated circuits may be procured to the specifications of MIL·M· 38510 and to four levels of processing which meet the screening requirements of MIL·STD·883. MIL·M·38510 JAN·QUALIFIED PRODUCT I I I CassA Class B CassC JAN·QUALIFIED DEVICE MARKINGS JM38510/XXXXXAXX JM38510/XXXXXBXX JAN QUALIFIED JM38510/XXXXXCXX Examples of MIL·M·38510 JAN·Qualified markings: 1. G.S.I. (Government Source Inspection) Linear Digital provided upon request. 2. Must be manufactured in a Government· approved facility. DEVICE: MC1741BCBJ ORDER: MCI74IBCBJ MC5400BCBJ MC5400BCBJ MARKING: JM385IO/lOIOIBCB 3. Product inventoried in distributor and OEM warehouses. JM385IO/OOI04BCB HOW TO ORDER MIL·M·38510 JAN·QUALIFIED PRODUCT BaSIC Numbering Parameters - M38510 ')' (2) /XXX xx ,3) B C B 15' (6) rll (1) = J - This Indrcates a qualified deVice. (2) = M385IO - The military designator. (3) = /XXX - This three·dlglt number signifies the detail specification In which the device type is found. The detail specifications. also referred to as "slash specs," generally contain more than one device type and are written for various generic groupings (i.e .. TTL NAND Gates. TTL NAND Buffers, TTL Flip·Flops. Op Amps. Voltage Regulators. etc.) (4) = xx - ThiS two·digit number Identifies the device type within the detail specification. (5) = B - This is a single letter and specifies the device class per MIL·M·385IO and will be class A, B or C. (6) = Case Outline. (See listings in adjacent column). (7) = Lead finish. (See lIStings in adlacent column). The Motorola equivalent of the JAN M385IO part num· ber is as shown In the following example and should be referenced when ordering your specific device requirement. MCXXXX BCB J (1) (2) (3) 1. The MCXXltX designates the Motorola source deVice type. 2. The first three letters after the part type have the same meaning and order as in the JAN part numbering sys· tern. This will simplify your cross· referencing. 3. J. which is the last letter in the part number. desig· nates a JAN·qualified device. Example: JM38510/XXXXXBCB Case outline and lead finish designations are common to both JAN Qualified andJAN~de~ QUALIFIED # (6) PROCESSED # (3) C - This is a single letter and specifies the package or case outline. A list of the currently· defined package types (the letters define the same case outline for all detail speCifications) is shown below: CASE OUTLINE DESIGNATOR *A B C *0 E F G H I J K Z - CASE OUTLINE 1/.' x 1,4" flat pack, l4'pin I/S' x 1,4" flat pack, l4-pin 1,4" x %" dual-in· line, l4·pin 1/4 " X If.'' flat pack, l4'pin 1/.' x 3,4" dual·in-line, 1/4 " X 8-lead can 1,4" x 1,4" flat pack, lO-lead lO·lead can %" x 11,4" dual·in·line, 24-pin 3fa" x I/Z" flat pack, 24-pin 1,4" X 1/2 " flat pack, 24-pin - A and D outlines are Interchangeable 7·4 l6-pin If.'' flat pack, l6'pin MIL-M-38S10 JAN· PROCESSED PRODUCT I I Class A I Class B I Class D Class C JAN·PROCESSED DEVICE MARKINGS MC38510/XXXXAXXM MC38510/XXXXBXXM MC38510/XXXXCXXM MC38510/XXXXDXXM MC38510/XXXXAXXS MC38510/XXXXBXXS MC38510/xxxxcxxs MC38510/XXXXDXXS JAN PROCESSED 2. Government·approved facility not required. 3. Product supplied with MIL·M· 38510 elect rica Is will be desig· nated by an "M" suffix. 4. Product supplied with Motorola standard data sheet electricals Examples of MIL·M·38510 JAN·Processed markings: linear DEVICE: MCI741BCBIM or 51 MCI741BCBIMor51 ORDER: MARKINGS: MC3851011741BCB 1M or SI will be designated by an "S" suffix. 1. No G.S.I. provided. 5. Devices will be manufactured using design and processing guidelines contained in MIL·M· 38510. Digital DEVICE: MC5400BCB 1M or 51 ORDER: MC5400BCB 1M or 51 MARKINGS: MC38510/5400BCB 1M or 51 6. Inventories will be maintained prior to burn·in and final elec· trical tests. HOW TO ORDER MIL·M·38510 JAN·PROCESSED PRODUCT QUALIFIED #(7) PROCESSED # (4) B - This is a single letter and specifies the finish to be used on the package leads. There are three types of lead finishes which are acceptable for JAN product. They are: LEAD FINISH SYMBOL A B c LEAD FINISH - Kovar or Alloy 42. with hot solder dip - Kovar or Alloy 42. with bright acid tin plate - Kovar or Alloy 42. with gold plate Note: For other Motorola standard pack· aging. not currently identified in MIL·M· 38510. contact your Motorola represen· tative. EXAMPLE: If you wish to enter an order for an MCXXXX Class B device in a 14·pin. dual·in·line ceramic package with the lead finish to be tin plate and electrically tested to Motorola's standard data sheet electricals. the order would be entered as follows: MCXXXX il) (1) (2) B C (3) B ," S (5) = Motorola deVice type. This is a single letter and specifies the device ciass per MIL·M·38510 for Classes A. Band C. Class D is an added Motorola JAN processing class and is the same as the MIL·M·38510 Class B except for the differences shown in the following screening procedures table. (3) = Case Outline. (See listings in adjacent column). (4) = Lead finish. (See listings in adjacent column). (5) = S - This is a single letter and specifies the elec· trical specifications to which the device is to be screened during electrical test and will be either an S or M. "S" specifies the use of Motorola stan· dard data sheet electricals. "M" specifies the use of JAN slash·sheet electricals where they exist. =B - Electrical Test Symbols Test Level S - Motorola standard data sheet electricals - JAN slash·sheet electricals M 7·5 SCREENING PROCEDURES (To MIL·STD·883 Requirements) This program establishes screening pro· cedures for total lot screening of integrated circuits to assist in achieving levels of quality and reliability commensurate with the intended application. In recognition of· the fact that the level of screening has a direct impact on the cost of the product as well as Its quality and reliability, four standard levels of screening are provided to coincide with four device classes or levels of product assurance. Flexibility is provided in the choice of con· ditions and stress levels to provide screens. tailored to a particular product or application. Selection of a level better than that required for the specific product and application will. of course, result in unnecessary expense. A level less than that required will result in an unwar· ranted risk that reliability and other require· ments will not be met. For general hi·rel applications. the Class B screening level should be considered. CLASS A SCREEN CLASS B RQMT METHOD ROMT Internal Visual (Precap) 2010 Cond A and 38510 100% 2010 Cond Band 38510 100% Stabilization Bake 100824 hrs min. test 100% 1008. 24 hrs min, test condition C )')0% 1010. Cond C 100% condition C Thermal Shock lOll. Cond A 100% Temperature Cycling 1010, Cond C 100% 2002 Cond F One Shock In V, plane only or 5 shocks 100% Mechanical Shock at Cond B y, plane Seal (a) Fine (b) Gross (min) in VI plane then V, plane 100% 1014 100% JAN slash -sheet ROMT METHOD RQMT 100% 2010 Cond Band 38510 100% 10OS. 24 hrs 100% min, test condition C 100% 100% 1010, Cond C 100% condition C 2001 Cond E (min) YI plane 100% 1010 Cond C - 1014 100% 2001 Cond E (min) y, 100% plane - 1014 2001 Cond E (min) y, 100% plane 100% 1014 100% 100% 100% - Motorola stand. data sheet electrical specs unless otherwise ir.dicated 1015 168 hrs@ 125·C min 100% - 1015 168 hrs@ 125·C min 100% JAN slash-sheet electrical specifications unless otherwise designated 100% Motorola stand. data sheet electrical specs unless otherwise Indicated 100% JAN slash·sheet 100% electrical specifications unless otherwise designated Burn-in test 1015 240 hrs @ 125°C min 100% Interim Electricals JAN slash-sheet electrical specIfications unless otherwise deSignated 100% Reverse Bias Burn-In 1015 Cond A or C 72 hrs at 150·C min 100% Final Electrical tests (a) Static tests (1) 25' C (Subgroup 1 table 1 5005) JAN slash-sheet electrical specifications unless otherwise designated 100% (2) Max and min rated op. temperature (subgroups 2 and 3 table I. 5005) (b) Dynamic tests and/or switching tests 2S·C (subgroup 4 and 9 . table 1. 5005) (C) functional test 25'C (subgroup 7 table I. 5005) 2010 Cond Band 38510 10OS, 24 hrs min, test - electrical specification unless otherwise designated Interim Electrical Parameters METHOD In 2001 Cond E Constant Acceleration CLASS D CLASS C METHOD JAN slash-sheet electrical specifications unless otherwise designated 100% 100% 100% - - 100% 100% - - 100% 100% 100% 100% - - 5005 Class B 2009 Radiographic 2012 Qualification or quality conformance inspection 5005 Class A 100% per 38510 External Visual 2009 100°0 . . - Group A per 5005, Generic data available for .roups B & C on deVices produced to Class B. C. 0 for JAN processed (from JAN pro. ram) 7-6 per 38510 5005 Class C 100% 2009 . - per 38510 5005 Class B 100% 2009 ::> 100%


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2014:07:19 19:10:08+02:00
Creator                         : Adobe Acrobat 11.0.7
Modify Date                     : 2014:07:21 21:07:08-07:00
Title                           : 
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Metadata Date                   : 2014:07:21 21:07:08-07:00
Creator Tool                    : Adobe Acrobat 11.0.7
Format                          : application/pdf
Document ID                     : uuid:c4b4106e-1da8-4ba1-aba8-f3c22567a1c2
Instance ID                     : uuid:7b5f8cf5-545e-9c41-ac10-29006f713a3f
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Page Layout                     : SinglePage
Page Count                      : 624
EXIF Metadata provided by EXIF.tools

Navigation menu